
Danai Koutra · Claudia Plant ·
Manuel Gomez Rodriguez · Elena Baralis ·
Francesco Bonchi (Eds.)

 123

LN
AI

 1
41

71

European Conference, ECML PKDD 2023
Turin, Italy, September 18–22, 2023
Proceedings, Part III

Machine Learning and
Knowledge Discovery
in Databases
Research Track

Lecture Notes in Computer Science

Lecture Notes in Artificial Intelligence 14171
Founding Editor
Jörg Siekmann

Series Editors
Randy Goebel, University of Alberta, Edmonton, Canada
Wolfgang Wahlster, DFKI, Berlin, Germany
Zhi-Hua Zhou, Nanjing University, Nanjing, China

The series Lecture Notes in Artificial Intelligence (LNAI) was established in 1988 as a
topical subseries of LNCS devoted to artificial intelligence.

The series publishes state-of-the-art research results at a high level.Aswith theLNCS
mother series, the mission of the series is to serve the international R & D community
by providing an invaluable service, mainly focused on the publication of conference and
workshop proceedings and postproceedings.

Danai Koutra · Claudia Plant ·
Manuel Gomez Rodriguez · Elena Baralis ·
Francesco Bonchi
Editors

Machine Learning and
Knowledge Discovery
in Databases
Research Track

European Conference, ECML PKDD 2023
Turin, Italy, September 18–22, 2023
Proceedings, Part III

Editors
Danai Koutra
University of Michigan
Ann Arbor, MI, USA

Manuel Gomez Rodriguez
Max Planck Institute for Software Systems
Kaiserslautern, Germany

Francesco Bonchi
CENTAI
Turin, Italy

Claudia Plant
University of Vienna
Vienna, Austria

Elena Baralis
Politecnico di Torino
Turin, Italy

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Artificial Intelligence
ISBN 978-3-031-43417-4 ISBN 978-3-031-43418-1 (eBook)
https://doi.org/10.1007/978-3-031-43418-1

LNCS Sublibrary: SL7 – Artificial Intelligence

© The Editor(s) (if applicable) and The Author(s), under exclusive license
to Springer Nature Switzerland AG 2023, corrected publication 2024
Chapter “Towards Memory-Efficient Training for Extremely Large Output Spaces – Learning with 670k
Labels on a Single Commodity GPU” is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/). For further details see license information
in the chapter.

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors, and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the
editors give a warranty, expressed or implied, with respect to the material contained herein or for any errors
or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

Paper in this product is recyclable.

https://orcid.org/0000-0002-3206-8179
https://orcid.org/0000-0003-3930-1161
https://orcid.org/0000-0001-9464-8315
https://orcid.org/0000-0001-5274-8123
https://orcid.org/0000-0001-9231-467X
https://doi.org/10.1007/978-3-031-43418-1
http://creativecommons.org/licenses/by/4.0/

Preface

The 2023 edition of the European Conference on Machine Learning and Principles and
Practice of Knowledge Discovery in Databases (ECML PKDD 2023) was held in Turin,
Italy, from September 18 to 22, 2023.

The ECMLPKDD conference, held annually, acts as a worldwide platform showcas-
ing the latest advancements in machine learning and knowledge discovery in databases,
encompassing groundbreaking applications.With a history of successful editions, ECML
PKDD has established itself as the leading European machine learning and data min-
ing conference, offering researchers and practitioners an unparalleled opportunity to
exchange knowledge and ideas.

The main conference program consisted of presentations of 255 accepted papers and
three keynote talks (in order of appearance):

– Max Welling (University of Amsterdam): Neural Wave Representations
– Michael Bronstein (University of Oxford): Physics-Inspired Graph Neural Networks
– Kate Crawford (USC Annenberg): Mapping Generative AI

In addition, there were 30 workshops, 9 combined workshop-tutorials, 5 tutorials,
3 discovery challenges, and 16 demonstrations. Moreover, the PhD Forum provided
a friendly environment for junior PhD students to exchange ideas and experiences
with peers in an interactive atmosphere and to get constructive feedback from senior
researchers. The conference included a Special Day on Artificial Intelligence for Finan-
cial Crime Fight to discuss, share, and present recent developments in AI-based financial
crime detection.

In recognition of the paramount significance of ethics in machine learning and data
mining, we invited the authors to include an ethical statement in their submissions. We
encouraged the authors to discuss the ethical implications of their submission, such as
those related to the collection and processing of personal data, the inference of personal
information, or the potential risks. We are pleased to report that our call for ethical
statements was met with an overwhelmingly positive response from the authors.

The ECML PKDD 2023 Organizing Committee supported Diversity and Inclusion
by awarding some grants that enable early career researchers to attend the conference,
present their research activities, and become part of the ECML PKDD community. A
total of 8 grants covering all or part of the registration fee (4 free registrations and 4
with 50% discount) were awarded to individuals who belong to underrepresented com-
munities, based on gender and role/position, to attend the conference and present their
research activities. The goal of the grants was to provide financial support to early-
career (women) scientists and Master and Ph.D. students from developing countries.
The Diversity and Inclusion action also includes the SoBigData Award, fully sponsored
by the SoBigData++ Horizon2020 project, which aims to encourage more diverse par-
ticipation in computer science and machine learning events. The award is intended to
cover expenses for transportation and accommodation.

vi Preface

The papers presented during the three main conference days were organized in four
different tracks:

– Research Track: research or methodology papers from all areas in machine learning,
knowledge discovery, and data mining;

– Applied Data Science Track: papers on novel applications of machine learning, data
mining, and knowledge discovery to solve real-world use cases, thereby bridging the
gap between practice and current theory;

– Journal Track: papers published in special issues of the journals Machine Learning
and Data Mining and Knowledge Discovery;

– Demo Track: short papers introducing new prototypes or fully operational systems
that exploit data science techniques and are presented via working demonstrations.

We received 829 submissions for the Research track and 239 for the Applied Data
Science Track.

We accepted 196 papers (24%) in the Research Track and 58 (24%) in the Applied
Data Science Track. In addition, there were 44 papers from the Journal Track and 16
demo papers (out of 28 submissions).

We want to thank all participants, authors, all chairs, all Program Committee mem-
bers, area chairs, session chairs, volunteers, co-organizers, and organizers of workshops
and tutorials for making ECML PKDD 2023 an outstanding success. Thanks to Springer
for their continuous support and Microsoft for allowing us to use their CMT software
for conference management and providing support throughout. Special thanks to our
sponsors and the ECML PKDD Steering Committee for their support. Finally, we thank
the organizing institutions: CENTAI (Italy) and Politecnico di Torino (Italy).

September 2023 Elena Baralis
Francesco Bonchi

Manuel Gomez Rodriguez
Danai Koutra
Claudia Plant

Gianmarco De Francisci Morales
Claudia Perlich

Organization

General Chairs

Elena Baralis Politecnico di Torino, Italy
Francesco Bonchi CENTAI, Italy and Eurecat, Spain

Research Track Program Chairs

Manuel Gomez Rodriguez Max Planck Institute for Software Systems,
Germany

Danai Koutra University of Michigan, USA
Claudia Plant University of Vienna, Austria

Applied Data Science Track Program Chairs

Gianmarco De Francisci Morales CENTAI, Italy
Claudia Perlich NYU and TwoSigma, USA

Journal Track Chairs

Tania Cerquitelli Politecnico di Torino, Italy
Marcello Restelli Politecnico di Milano, Italy
Charalampos E. Tsourakakis Boston University, USA and ISI Foundation, Italy
Fabio Vitale CENTAI, Italy

Workshop and Tutorial Chairs

Rosa Meo University of Turin, Italy
Fabrizio Silvestri Sapienza University of Rome, Italy

viii Organization

Demo Chairs

Nicolas Kourtellis Telefonica, Spain
Natali Ruchansky Netflix, USA

Local Chairs

Daniele Apiletti Politecnico di Torino, Italy
Paolo Bajardi CENTAI, Italy
Eliana Pastor Politecnico di Torino, Italy

Discovery Challenge Chairs

Danilo Giordano Politecnico di Torino, Italy
André Panisson CENTAI, Italy

PhD Forum Chairs

Yllka Velaj University of Vienna, Austria
Matteo Riondato Amherst College, USA

Diversity and Inclusion Chair

Tania Cerquitelli Politecnico di Torino, Italy

Proceedings Chairs

Eliana Pastor Politecnico di Torino, Italy
Giulia Preti CENTAI, Italy

Sponsorship Chairs

Daniele Apiletti Politecnico di Torino, Italy
Paolo Bajardi CENTAI, Italy

Organization ix

Web Chair

Alessandro Fiori Flowygo, Italy

Social Media and Publicity Chair

Flavio Giobergia Politecnico di Torino, Italy

Online Chairs

Alkis Koudounas Politecnico di Torino, Italy
Simone Monaco Politecnico di Torino, Italy

Best Paper Awards Chairs

Peter Flach University of Bristol, UK
Katharina Morik TU Dortmund, Germany
Arno Siebes Utrecht University, The Netherlands

ECML PKDD Steering Committee

Massih-Reza Amini Université Grenoble Alpes, France
Annalisa Appice University of Bari, Aldo Moro, Italy
Ira Assent Aarhus University, Denmark
Tania Cerquitelli Politecnico di Torino, Italy
Albert Bifet University of Waikato, New Zealand
Francesco Bonchi CENTAI, Italy and Eurecat, Spain
Peggy Cellier INSA Rennes, France
Saso Dzeroski Jožef Stefan Institute, Slovenia
Tias Guns KU Leuven, Belgium
Alípio M. G. Jorge University of Porto, Portugal
Kristian Kersting TU Darmstadt, Germany
Jefrey Lijffijt Ghent University, Belgium
Luís Moreira-Matias Sennder GmbH, Germany
Katharina Morik TU Dortmund, Germany
Siegfried Nijssen Université catholique de Louvain, Belgium
Andrea Passerini University of Trento, Italy

x Organization

Fernando Perez-Cruz ETH Zurich, Switzerland
Alessandra Sala Shutterstock, Ireland
Arno Siebes Utrecht University, The Netherlands
Grigorios Tsoumakas Aristotle University of Thessaloniki, Greece
Isabel Valera Universität des Saarlandes, Germany

Program Committee

Guest Editorial Board, Journal Track

Richard Allmendinger University of Manchester, UK
Marie Anastacio RWTH Aachen University, Germany
Giuseppina Andresini University of Bari, Aldo Moro, Italy
Annalisa Appice University of Bari, Aldo Moro, Italy
Ira Assent Aarhus University, Denmark
Martin Atzmueller Osnabrück University, Germany
Jaume Bacardit Newcastle University, UK
Anthony Bagnall University of East Anglia, UK
Mitra Baratchi Leiden University, The Netherlands
Nicola Basilico University of Milan, Italy
Franka Bause University of Vienna, Austria
Viktor Bengs LMU Munich, Germany
Anna Bernasconi Politecnico di Milano, Italy
Lorenzo Bisi ML cube, Italy
Veronica Bolon-Canedo University of A Coruña, Spain
Paolo Bonetti Politecnico di Milano, Italy
Ilaria Bordino UniCredit, Italy
Claudio Borile CENTAI, Italy
Luca Cagliero Politecnico di Torino, Italy
Ricardo Campello University of Newcastle, Australia
Barbara Catania University of Genoa, Italy
Michelangelo Ceci University of Bari, Aldo Moro, Italy
Loïc Cerf Universidade Federal de Minas Gerais, Brazil
Julen Cestero Politecnico di Milano, Italy
Sudhanshu Chanpuriya University of Massachusetts, Amherst, USA
Tianyi Chen Boston University, USA
Federico Cinus Sapienza University of Rome, Italy
Gabriele Ciravegna Politecnico di Torino, Italy
Luca Colomba Politecnico di Torino, Italy
Silvia Corchs University of Milan, Italy

Organization xi

Marco Cotogni University of Pavia, Italy
Gabriele D’Acunto Sapienza University of Rome, Italy
Cassio Fraga Dantas TETIS, Université Montpellier, INRAE, France
Jérôme Darmont Université Lumière Lyon 2, France
George Dasoulas Harvard University, USA
Sébastien Destercke Université de Technologie de Compiègne, France
Shridhar Devamane Global Academy of Technology, India
Claudia Diamantini Università Politecnica delle Marche, Italy
Gianluca Drappo Politecnico di Milano, Italy
Pedro Ferreira University of Lisbon, Portugal
Cèsar Ferri Universitat Politècnica de València, Spain
M. Julia Flores Universidad de Castilla-La Mancha, Spain
Germain Forestier University of Haute-Alsace, France
Elisa Fromont Université de Rennes 1, France
Emanuele Frontoni University of Macerata, Italy
Esther Galbrun University of Eastern Finland, Finland
Joao Gama University of Porto, Portugal
Jose A. Gamez Universidad de Castilla-La Mancha, Spain
David García Soriano ISI Foundation, Italy
Paolo Garza Politecnico di Torino, Italy
Salvatore Greco Politecnico di Torino, Italy
Riccardo Guidotti University of Pisa, Italy
Francesco Gullo UniCredit, Italy
Shahrzad Haddadan Rutgers Business School, USA
Martin Holena Czech Academy of Sciences, Czech Republic
Jaakko Hollmén Stockholm University, Sweden
Dino Ienco INRAE, France
Georgiana Ifrim University College Dublin, Ireland
Felix Iglesias TU Vienna, Austria
Angelo Impedovo Niuma, Italy
Manfred Jaeger Aalborg University, Denmark
Szymon Jaroszewicz Warsaw University of Technology, Poland
Panagiotis Karras Aarhus University, Denmark
George Katsimpras National Center for Scientific Research

Demokritos, Greece
Mehdi Kaytoue Infologic R&D, France
Dragi Kocev Jožef Stefan Institute, Slovenia
Yun Sing Koh University of Auckland, New Zealand
Sotiropoulos Konstantinos Boston University, USA
Lars Kotthoff University of Wyoming, USA
Alkis Koudounas Politecnico di Torino, Italy
Tommaso Lanciano Sapienza University of Rome, Italy

xii Organization

Helge Langseth Norwegian University of Science and Technology,
Norway

Thien Le MIT, USA
Hsuan-Tien Lin National Taiwan University, Taiwan
Marco Lippi University of Modena and Reggio Emilia, Italy
Corrado Loglisci University of Bari, Aldo Moro, Italy
Manuel López-ibáñez University of Manchester, UK
Nuno Lourenço CISUC, Portugal
Claudio Lucchese Ca’ Foscari University of Venice, Italy
Brian Mac Namee University College Dublin, Ireland
Gjorgji Madjarov Ss. Cyril and Methodius University in Skopje,

North Macedonia
Luigi Malagò Transylvanian Institute of Neuroscience, Romania
Sagar Malhotra Fondazione Bruno Kessler, Italy
Fragkiskos Malliaros CentraleSupélec, Université Paris-Saclay, France
Giuseppe Manco ICAR-CNR, Italy
Basarab Matei Sorbonne Université Paris Nord, France
Michael Mathioudakis University of Helsinki, Finland
Rosa Meo University of Turin, Italy
Mohamed-Lamine Messai Université Lumière Lyon 2, France
Sara Migliorini University of Verona, Italy
Alex Mircoli Università Politecnica delle Marche, Italy
Atsushi Miyauchi University of Tokyo, Japan
Simone Monaco Politecnico di Torino, Italy
Anna Monreale University of Pisa, Italy
Corrado Monti CENTAI, Italy
Katharina Morik TU Dortmund, Germany
Lia Morra Politecnico di Torino, Italy
Arsenii Mustafin Boston University, USA
Mirco Mutti Politecnico di Milano/University of Bologna, Italy
Amedeo Napoli University of Lorraine, CNRS, LORIA, France
Kleber Oliveira CENTAI, Italy
Gabriella Olmo Politecnico di Torino, Italy
Marios Papachristou Cornell University, USA
Panagiotis Papapetrou Stockholm University, Sweden
Matteo Papini Universitat Pompeu Fabra, Spain
Vincenzo Pasquadibisceglie University of Bari, Aldo Moro, Italy
Eliana Pastor Politecnico di Torino, Italy
Andrea Paudice University of Milan, Italy
Charlotte Pelletier IRISA - Université Bretagne-Sud, France
Ruggero G. Pensa University of Turin, Italy
Simone Piaggesi University of Bologna/ISI Foundation, Italy

Organization xiii

Matteo Pirotta Meta, France
Marc Plantevit EPITA, France
Konstantinos Pliakos KU Leuven, Belgium
Kai Puolamäki University of Helsinki, Finland
Jan Ramon Inria, France
Rita P. Ribeiro INESC TEC/University of Porto, Portugal
Matteo Riondato Amherst College, USA
Antonio Riva Politecnico di Milano, Italy
Shota Saito University College London, UK
Flora Salim University of New South Wales, Australia
Roberto Santana University of the Basque Country, Spain
Lars Schmidt-Thieme University of Hildesheim, Germany
Thomas Seidl LMU Munich, Germany
Kijung Shin KAIST, South Korea
Shinichi Shirakawa Yokohama National University, Japan
Konstantinos Sotiropoulos Boston University, USA
Fabian Spaeh Boston University, USA
Gerasimos Spanakis Maastricht University, The Netherlands
Myra Spiliopoulou Otto-von-Guericke-University Magdeburg,

Germany
Jerzy Stefanowski Poznan University of Technology, Poland
Mahito Sugiyama National Institute of Informatics, Japan
Nikolaj Tatti University of Helsinki, Finland
Maximilian Thiessen TU Vienna, Austria
Josephine Thomas University of Kassel, Germany
Kiran Tomlinson Cornell University, USA
Leonardo Trujillo Tecnológico Nacional de México, Mexico
Grigorios Tsoumakas Aristotle University of Thessaloniki, Greece
Genoveva Vargas-Solar CNRS, LIRIS Lab, France
Edoardo Vittori Politecnico di Milano/Intesa Sanpaolo, Italy
Christel Vrain University of Orléans, France
Willem Waegeman Ghent University, Belgium
Yanbang Wang Cornell University, USA
Pascal Welke University of Bonn, Germany
Marcel Wever LMU Munich, Germany
Stefan Wrobel University of Bonn/Fraunhofer IAIS, Germany
Guoxian Yu Shandong University, China
Ilias Zavitsanos National Center for Scientific Research

Demokritos, Greece
Ye Zhu Deakin University, Australia
Albrecht Zimmermann Université de Caen Normandie, France

xiv Organization

Area Chairs, Research Track

Fabrizio Angiulli University of Calabria, Italy
Annalisa Appice University of Bari, Aldo Moro, Italy
Antonio Artés Universidad Carlos III de Madrid, Spain
Martin Atzmueller Osnabrück University, Germany
Christian Böhm University of Vienna, Austria
Michael R. Berthold KNIME, Switzerland
Albert Bifet Université Paris-Saclay, France
Hendrik Blockeel KU Leuven, Belgium
Ulf Brefeld Leuphana University, Germany
Paula Brito INESC TEC - LIAAD/University of Porto,

Portugal
Wolfram Burgard University of Technology Nuremberg, Germany
Seshadhri C. UCSC, USA
Michelangelo Ceci University of Bari, Aldo Moro, Italy
Peggy Cellier IRISA - INSA Rennes, France
Duen Horng Chau Georgia Institute of Technology, USA
Nicolas Courty IRISA - Université Bretagne-Sud, France
Bruno Cremilleux Université de Caen Normandie, France
Jesse Davis KU Leuven, Belgium
Abir De IIT Bombay, India
Tom Diethe AstraZeneca, UK
Yuxiao Dong Tsinghua University, China
Kurt Driessens Maastricht University, The Netherlands
Tapio Elomaa Tampere University, Finland
Johannes Fürnkranz JKU Linz, Austria
Sophie Fellenz RPTU Kaiserslautern-Landau, Germany
Elisa Fromont IRISA/Inria rba - Université de Rennes 1, France
Thomas Gärtner TU Vienna, Austria
Patrick Gallinari Criteo AI Lab - Sorbonne Université, France
Joao Gama INESC TEC - LIAAD, Portugal
Rayid Ghani Carnegie Mellon University, USA
Aristides Gionis KTH Royal Institute of Technology, Sweden
Chen Gong Nanjing University of Science and Technology,

China
Francesco Gullo UniCredit, Italy
Eyke Hüllermeier LMU Munich, Germany
Junheng Hao University of California, Los Angeles, USA
José Hernández-Orallo Universitat Politècnica de Valencia, Spain
Daniel Hernández-Lobato Universidad Autonoma de Madrid, Spain
Sibylle Hess TU Eindhoven, The Netherlands

Organization xv

Jaakko Hollmén Aalto University, Finland
Andreas Hotho University of Würzburg, Germany
Georgiana Ifrim University College Dublin, Ireland
Jayaraman J. Thiagarajan Lawrence Livermore, USA
Alipio M. G. Jorge INESC TEC/University of Porto, Portugal
Ross King Chalmers University of Technology, Sweden
Yun Sing Koh University of Auckland, New Zealand
Lars Kotthoff University of Wyoming, USA
Peer Kröger Christian-Albrechst University of Kiel, Germany
Stefan Kramer JGU Mainz, Germany
Jörg Lücke University of Oldenburg, Germany
Niklas Lavesson Blekinge Institute of Technology, Sweden
Bruno Lepri Fondazione Bruno Kessler, Italy
Jefrey Lijffijt Ghent University, Belgium
Marius Lindauer Leibniz University Hannover, Germany
Patrick Loiseau Inria, France
Jose A. Lozano UPV/EHU, Spain
Emmanuel Müller TU Dortmund, Germany
Donato Malerba University of Bari, Aldo Moro, Italy
Fragkiskos Malliaros CentraleSupelec, France
Giuseppe Manco ICAR-CNR, Italy
Pauli Miettinen University of Eastern Finland, Finland
Dunja Mladenic Jožef Stefan Institute, Slovenia
Anna Monreale University of Pisa, Italy
Luis Moreira-Matias Sennder GmbH, Germany
Katharina J. Morik TU Dortmund, Germany
Siegfried Nijssen Université catholique de Louvain, Belgium
Evangelos Papalexakis UC, Riverside, USA
Panagiotis Papapetrou Stockholm University, Sweden
Andrea Passerini University of Trento, Italy
Mykola Pechenizkiy TU Eindhoven, The Netherlands
Jaakko Peltonen Tampere University, Finland
Franz Pernkopf TU Graz, Austria
Bernhard Pfahringer University of Waikato, New Zealand
Fabio Pinelli IMT Lucca, Italy
Goran Radanovic Max Planck Institute for Software Systems,

Germany
Jesse Read École Polytechnique, France
Matthias Renz Christian-Albrechst University of Kiel, Germany
Marian-Andrei Rizoiu University of Technology, Sydney, Australia
Celine Robardet INSA Lyon, France
Juho Rousu Aalto University, Finland

xvi Organization

Sriparna Saha IIT Patna, India
Ute Schmid University of Bamberg, Germany
Lars Schmidt-Thieme University of Hildesheim, Germany
Michele Sebag LISN CNRS, France
Thomas Seidl LMU Munich, Germany
Junming Shao University of Electronic Science and Technology

of China, China
Arno Siebes Utrecht University, The Netherlands
Fabrizio Silvestri Sapienza University of Rome, Italy
Carlos Soares University of Porto, Portugal
Christian Sohler University of Cologne, Germany
Myra Spiliopoulou Otto-von-Guericke-University Magdeburg,

Germany
Jie Tang Tsinghua University, China
Nikolaj Tatti University of Helsinki, Finland
Evimaria Terzi Boston University, USA
Marc Tommasi Lille University, France
Heike Trautmann University of Münster, Germany
Herke van Hoof University of Amsterdam, The Netherlands
Celine Vens KU Leuven, Belgium
Christel Vrain University of Orleans, France
Jilles Vreeken CISPA Helmholtz Center for Information

Security, Germany
Wei Ye Tongji University, China
Jing Zhang Renmin University of China, China
Min-Ling Zhang Southeast University, China

Area Chairs, Applied Data Science Track

Annalisa Appice University of Bari, Aldo Moro, Italy
Ira Assent Aarhus University, Denmark
Martin Atzmueller Osnabrück University, Germany
Michael R. Berthold KNIME, Switzerland
Hendrik Blockeel KU Leuven, Belgium
Michelangelo Ceci University of Bari, Aldo Moro, Italy
Peggy Cellier IRISA - INSA Rennes, France
Yi Chang Jilin University, China
Nicolas Courty IRISA - UBS, France
Bruno Cremilleux Université de Caen Normandie, France
Peng Cui Tsinghua University, China
Anirban Dasgupta IIT Gandhinagar, India

Organization xvii

Tom Diethe AstraZeneca, UK
Carlotta Domeniconi George Mason University, USA
Dejing Dou BCG, USA
Kurt Driessens Maastricht University, The Netherlands
Johannes Fürnkranz JKU Linz, Austria
Faisal Farooq Qatar Computing Research Institute, Qatar
Paolo Frasconi University of Florence, Italy
Elisa Fromont IRISA/Inria rba - Université de Rennes 1, France
Glenn Fung Liberty Mutual, USA
Joao Gama INESC TEC - LIAAD, Portugal
Jose A. Gamez Universidad de Castilla-La Mancha, Spain
Rayid Ghani Carnegie Mellon University, USA
Aristides Gionis KTH Royal Institute of Technology, Sweden
Sreenivas Gollapudi Google, USA
Francesco Gullo UniCredit, Italy
Eyke Hüllermeier LMU Munich, Germany
Jingrui He University of Illinois at Urbana-Champaign, USA
Jaakko Hollmén Aalto University, Finland
Andreas Hotho University of Würzburg, Germany
Daxin Jiang Microsoft, Beijing, China
Alipio M. G. Jorge INESC TEC/University of Porto, Portugal
George Karypis University of Minnesota, USA
Eamonn Keogh UC, Riverside, USA
Yun Sing Koh University of Auckland, New Zealand
Parisa Kordjamshidi Michigan State University, USA
Lars Kotthoff University of Wyoming, USA
Nicolas Kourtellis Telefonica Research, Spain
Stefan Kramer JGU Mainz, Germany
Balaji Krishnapuram Pinterest, USA
Niklas Lavesson Blekinge Institute of Technology, Sweden
Chuan Lei Amazon Web Services, USA
Marius Lindauer Leibniz University Hannover, Germany
Patrick Loiseau Inria, France
Giuseppe Manco ICAR-CNR, Italy
Gabor Melli PredictionWorks, USA
Anna Monreale University of Pisa, Italy
Luis Moreira-Matias Sennder GmbH, Germany
Nuria Oliver ELLIS Alicante, Spain
Panagiotis Papapetrou Stockholm University, Sweden
Mykola Pechenizkiy TU Eindhoven, The Netherlands
Jian Pei Simon Fraser University, Canada
Julien Perez Naver Labs Europe, France

xviii Organization

Fabio Pinelli IMT Lucca, Italy
Zhiwei (Tony) Qin Lyft, USA
Visvanathan Ramesh Goethe University, Germany
Zhaochun Ren Shandong University, China
Sriparna Saha IIT Patna, India
Ute Schmid University of Bamberg, Germany
Lars Schmidt-Thieme University of Hildesheim, Germany
Thomas Seidl LMU Munich, Germany
Fabrizio Silvestri Sapienza University of Rome, Italy
Myra Spiliopoulou Otto-von-Guericke-University Magdeburg,

Germany
Karthik Subbian Amazon, USA
Liang Sun Alibaba Group, China
Jie Tang Tsinghua University, China
Jiliang Tang Michigan State University, USA
Sandeep Tata Google, USA
Nikolaj Tatti University of Helsinki, Finland
Marc Tommasi Lille University, France
Yongxin Tong Beihang University, China
Vincent S. Tseng National Yang Ming Chiao Tung University,

Taiwan
Antti Ukkonen University of Helsinki, Finland
Willem Waegeman Ghent University, Belgium
Fei Wang Cornell University, USA
Jie Wang University of Science and Technology of China,

China
Sinong Wang Meta AI, USA
Zheng Wang Alibaba DAMO Academy, China
Lingfei Wu Pinterest, USA
Yinglong Xia Meta, USA
Hui Xiong Rutgers University, USA
Hongxia Yang Alibaba Group, China
Min-Ling Zhang Southeast University, China
Jiayu Zhou Michigan State University, USA
Xingquan Zhu Florida Atlantic University, USA
Fuzhen Zhuang Institute of Artificial Intelligence, China
Albrecht Zimmermann Université de Caen Normandie, France

Organization xix

Program Committee, Research Track

Matthias Aßenmacher LMU Munich, Germany
Sara Abdali Microsoft, USA
Evrim Acar Simula Metropolitan Center for Digital

Engineering, Norway
Homayun Afrabandpey Nokia Technologies, Finland
Reza Akbarinia Inria, France
Cuneyt G. Akcora University of Manitoba, Canada
Ranya Almohsen West Virginia University, USA
Thiago Andrade INESC TEC/University of Porto, Portugal
Jean-Marc Andreoli Naverlabs Europe, France
Giuseppina Andresini University of Bari, Aldo Moro, Italy
Alessandro Antonucci IDSIA, Switzerland
Xiang Ao Institute of Computing Technology, CAS, China
Héber H. Arcolezi Inria/École Polytechnique, France
Jerónimo Arenas-García Universidad Carlos III de Madrid, Spain
Yusuf Arslan University of Luxembourg, Luxemburg
Ali Ayadi University of Strasbourg, France
Steve Azzolin University of Trento, Italy
Pierre-Luc Bacon Mila, Canada
Bunil K. Balabantaray NIT Meghalaya, India
Mitra Baratchi LIACS/Leiden University, The Netherlands
Christian Bauckhage Fraunhofer IAIS, Germany
Anna Beer Aarhus University, Denmark
Michael Beigl Karlsruhe Institute of Technology, Germany
Khalid Benabdeslem Université de Lyon, Lyon 1, France
Idir Benouaret Epita Research Laboratory, France
Paul Berg IRISA, France
Christoph Bergmeir Monash University, Australia
Gilberto Bernardes INESC TEC/University of Porto, Portugal
Eva Besada-Portas Universidad Complutense de Madrid, Spain
Jalaj Bhandari Columbia University, USA
Asmita Bhat TU Kaiserslautern, Germany
Monowar Bhuyan Umeå University, Sweden
Adrien Bibal University of Colorado Anschutz Medical

Campus, USA
Manuele Bicego University of Verona, Italy
Przemyslaw Biecek Warsaw University of Technology, Poland
Alexander Binder University of Oslo, Norway
Livio Bioglio University of Turin, Italy
Patrick Blöbaum Amazon Web Services, USA

xx Organization

Thomas Bonald Télécom Paris, France
Ludovico Boratto University of Cagliari, Italy
Stefano Bortoli Huawei Research Center, Germany
Tassadit Bouadi Université de Rennes 1, France
Ahcène Boubekki UiT, Arctic University of Norway, Norway
Luc Brogat-Motte Télécom Paris, France
Jannis Brugger TU Darmstadt, Germany
Nhat-Tan Bui University of Science - VNUHCM, Vietnam
Mirko Bunse TU Dortmund, Germany
John Burden University of Cambridge, UK
Wolfram Burgard University of Technology, Germany
Julian Busch Siemens Technology, Germany
Sebastian Buschjäger TU Dortmund, Germany
Oswald C. NIT Trichy, India
Seshadhri C. UCSC, USA
Xin-Qiang Cai University of Tokyo, Japan
Zekun Cai University of Tokyo, Japan
Xiaofeng Cao University of Technology, Sydney, Australia
Giuseppe Casalicchio LMU Munich, Germany
Guilherme Cassales University of Waikato, New Zealand
Oded Cats TU Delft, The Netherlands
Remy Cazabet Université de Lyon, Lyon 1, France
Mattia Cerrato JGU Mainz, Germany
Ricardo Cerri Federal University of Sao Carlos, Brazil
Prithwish Chakraborty IBM Research, USA
Harry Kai-Ho Chan University of Sheffield, UK
Joydeep Chandra IIT Patna, India
Vaggos Chatziafratis Stanford University, USA
Zaineb Chelly Dagdia UVSQ - Université Paris-Saclay, France
Hongyang Chen Zhejiang Lab, China
Huaming Chen University of Sydney, Australia
Hung-Hsuan Chen National Central University, Taiwan
Jin Chen University of Electronic Science and Technology

of China, China
Kuan-Hsun Chen University of Twente, The Netherlands
Ling Chen University of Technology, Australia
Lingwei Chen Wright State University, USA
Minyu Chen Shanghai Jiaotong University, China
Xi Chen Ghent University, Belgium
Xiaojun Chen Institute of Information Engineering, CAS, China
Xuefeng Chen Chongqing University, China
Ying Chen RMIT University, Australia

Organization xxi

Yueguo Chen Renmin University of China, China
Yuzhou Chen Temple University, USA
Zheng Chen Osaka University, Japan
Ziheng Chen Walmart, USA
Lu Cheng University of Illinois, Chicago, USA
Xu Cheng Shanghai Jiao Tong University, China
Zhiyong Cheng Shandong Academy of Sciences, China
Yann Chevaleyre Université Paris Dauphine, France
Chun Wai Chiu Keele University, UK
Silvia Chiusano Politecnico di Torino, Italy
Satyendra Singh Chouhan MNIT Jaipur, India
Hua Chu Xidian University, China
Sarel Cohen Academic College of Tel Aviv-Yaffo, Israel
J. Alberto Conejero Universitat Politècnica de València, Spain
Lidia Contreras-Ochando Universitat Politècnica de València, Spain
Giorgio Corani IDSIA, Switzerland
Luca Corbucci University of Pisa, Italy
Roberto Corizzo American University, USA
Baris Coskunuzer University of Texas at Dallas, USA
Fabrizio Costa Exeter University, UK
Gustavo de Assis Costa Instituto Federal de Goiás, Brazil
Evan Crothers University of Ottawa, Canada
Pádraig Cunningham University College Dublin, Ireland
Jacek Cyranka University of Warsaw, Poland
Tianxiang Dai Huawei European Research Institute, Germany
Xuan-Hong Dang IBM T.J. Watson Research Center, USA
Thi-Bich-Hanh Dao University of Orleans, France
Debasis Das Indian Institute of Technology Jodhpur, India
Paul Davidsson Malmö University, Sweden
Marcilio de Souto LIFO, University of Orleans, France
Klest Dedja KU Leuven, Belgium
Elena Demidova University of Bonn, Germany
Caglar Demir Paderborn University, Germany
Difan Deng Leibniz University Hannover, Germany
Laurens Devos KU Leuven, Belgium
Nicola Di Mauro University of Bari, Aldo Moro, Italy
Jingtao Ding Tsinghua University, China
Yao-Xiang Ding Nanjing University, China
Lamine Diop EPITA, France
Gillian Dobbie University of Auckland, New Zealand
Stephan Doerfel Kiel University of Applied Sciences, Germany
Carola Doerr Sorbonne Université, France

xxii Organization

Nanqing Dong University of Oxford, UK
Haizhou Du Shanghai University of Electric Power, China
Qihan Du Renmin University of China, China
Songlin Du Southeast University, China
Xin Du University of Edinburgh, UK
Wouter Duivesteijn TU Eindhoven, The Netherlands
Inês Dutra University of Porto, Portugal
Sourav Dutta Huawei Research Centre, Ireland
Saso Dzeroski Jožef Stefan Institute, Slovenia
Nabil El Malki IRIT, France
Mohab Elkaref IBM Research Europe, UK
Tapio Elomaa Tampere University, Finland
Dominik M. Endres University of Marburg, Germany
Georgios Exarchakis University of Bath, UK
Lukas Faber ETH Zurich, Switzerland
Samuel G. Fadel Leuphana University, Germany
Haoyi Fan Zhengzhou University, China
Zipei Fan University of Tokyo, Japan
Hadi Fanaee-T Halmstad University, Sweden
Elaine Ribeiro Faria UFU, Brazil
Fabio Fassetti University of Calabria, Italy
Anthony Faustine ITI/LARSyS - Técnico Lisboa, Portugal
Sophie Fellenz RPTU Kaiserslautern-Landau, Germany
Wenjie Feng National University of Singapore, Singapore
Zunlei Feng Zhejiang University, China
Daniel Fernández-Sánchez Universidad Autónoma de Madrid, Spain
Luca Ferragina University of Calabria, Italy
Emilio Ferrara USC ISI, USA
Cèsar Ferri Universitat Politècnica València, Spain
Flavio Figueiredo Universidade Federal de Minas Gerais, Brazil
Lucie Flek University of Marburg, Germany
Michele Fontana University of Pisa, Italy
Germain Forestier University of Haute-Alsace, France
Raphaël Fournier-S’niehotta CNAM, France
Benoît Frénay University of Namur, Belgium
Kary Främling Umeå University, Sweden
Holger Froening University of Heidelberg, Germany
Fabio Fumarola Prometeia, Italy
María José Gómez-Silva Universidad Complutense de Madrid, Spain
Vanessa Gómez-Verdejo Universidad Carlos III de Madrid, Spain
Pratik Gajane TU Eindhoven, The Netherlands
Esther Galbrun University of Eastern Finland, Finland

Organization xxiii

Claudio Gallicchio University of Pisa, Italy
Chen Gao Tsinghua University, China
Shengxiang Gao Kunming University of Science and Technology,

China
Yifeng Gao University of Texas Rio Grande Valley, USA
Luis Garcia University of Brasilia, Brazil
Dominique Gay Université de La Réunion, France
Suyu Ge University of Illinois at Urbana-Champaign, USA
Zhaocheng Ge Huazhong University of Science and Technology,

China
Alborz Geramifard Facebook AI, USA
Ahana Ghosh Max Planck Institute for Software Systems,

Germany
Shreya Ghosh Penn State University, USA
Flavio Giobergia Politecnico di Torino, Italy
Sarunas Girdzijauskas KTH Royal Institute of Technology, Sweden
Heitor Murilo Gomes University of Waikato, Sweden
Wenwen Gong Tsinghua University, China
Bedartha Goswami University of Tübingen, Germany
Anastasios Gounaris Aristotle University of Thessaloniki, Greece
Michael Granitzer University of Passau, Germany
Derek Greene University College Dublin, Ireland
Moritz Grosse-Wentrup University of Vienna, Austria
Marek Grzes University of Kent, UK
Xinyu Guan Xian Jiaotong University, China
Massimo Guarascio ICAR-CNR, Italy
Riccardo Guidotti University of Pisa, Italy
Lan-Zhe Guo Nanjing University, China
Lingbing Guo Zhejiang University, China
Shanqing Guo Shandong University, China
Karthik S. Gurumoorthy Walmart, USA
Thomas Guyet Inria, France
Huong Ha RMIT University, Australia
Benjamin Halstead University of Auckland, New Zealand
Massinissa Hamidi LIPN-UMR CNRS 7030, France
Donghong Han Northeastern University, USA
Marwan Hassani TU Eindhoven, The Netherlands
Rima Hazra Indian Institute of Technology, Kharagpur, India
Mark Heimann Lawrence Livermore, USA
Cesar Hidalgo University of Toulouse, France
Martin Holena Institute of Computer Science, Czech Republic
Mike Holenderski TU Eindhoven, The Netherlands

xxiv Organization

Adrian Horzyk AGH University of Science and Technology,
Poland

Shifu Hou Case Western Reserve University, USA
Hongsheng Hu CSIRO, Australia
Yaowei Hu University of Arkansas, USA
Yang Hua Queen’s University Belfast, UK
Chao Huang University of Hong Kong, China
Guanjie Huang Penn State University, USA
Hong Huang Huazhong University of Science and Technology,

China
Nina C. Hubig Clemson University, USA
Dino Ienco Irstea Institute, France
Angelo Impedovo Niuma, Italy
Roberto Interdonato CIRAD, France
Stratis Ioannidis Northeastern University, USA
Nevo Itzhak Ben-Gurion University, Israel
Raghav Jain IIT Patna, India
Kuk Jin Jang University of Pennsylvania, USA
Szymon Jaroszewicz Polish Academy of Sciences, Poland
Shaoxiong Ji University of Helsinki, Finland
Bin-Bin Jia Lanzhou University of Technology, China
Caiyan Jia School of Computer and Information Technology,

China
Xiuyi Jia Nanjing University of Science and Technology,

China
Nan Jiang Purdue University, USA
Renhe Jiang University of Tokyo, Japan
Song Jiang University of California, Los Angeles, USA
Pengfei Jiao Hangzhou Dianzi University, China
Di Jin Amazon, USA
Guangyin Jin National University of Defense Technology,

China
Jiahui Jin Southeast University, China
Ruoming Jin Kent State University, USA
Yilun Jin The Hong Kong University of Science and

Technology, Hong Kong
Hugo Jonker Open University of the Netherlands,

The Netherlands
Adan Jose-Garcia Lille University, France
Marius Köppel JGU Mainz, Germany
Vana Kalogeraki Athens University of Economics and Business,

Greece
Konstantinos Kalpakis University of Maryland Baltimore County, USA

Organization xxv

Andreas Kaltenbrunner ISI Foundation, Italy
Shivaram Kalyanakrishnan IIT Bombay, India
Toshihiro Kamishima National Institute of Advanced Industrial Science

and Technology, Japan
Bo Kang Ghent University, Belgium
Murat Kantarcioglu UT Dallas
Thommen Karimpanal George Deakin University, Australia
Saurav Karmakar University of Galway, Ireland
Panagiotis Karras Aarhus University, Denmark
Dimitrios Katsaros University of Thessaly, Greece
Eamonn Keogh UC, Riverside, USA
Jaleed Khan University of Galway, Ireland
Irwin King Chinese University of Hong Kong, China
Mauritius Klein LMU Munich, Germany
Tomas Kliegr Prague University of Economics and Business,

Czech Republic
Dmitry Kobak University of Tübingen, Germany
Dragi Kocev Jožef Stefan Institute, Slovenia
Lars Kotthoff University of Wyoming, USA
Anna Krause University of Würzburg, Germany
Amer Krivosija TU Dortmund, Germany
Daniel Kudenko L3S Research Center, Germany
Meelis Kull University of Tartu, Estonia
Sergey O. Kuznetsov HSE, Russia
Beatriz López University of Girona, Spain
Jörg Lücke University of Oldenburg, Germany
Firas Laakom Tampere University, Finland
Mateusz Lango Poznan University of Technology, Poland
Hady Lauw Singapore Management University, Singapore
Tuan Le New Mexico State University, USA
Erwan Le Merrer Inria, France
Thach Le Nguyen Insight Centre, Ireland
Tai Le Quy L3S Research Center, Germany
Mustapha Lebbah UVSQ - Université Paris-Saclay, France
Dongman Lee KAIST, South Korea
Yeon-Chang Lee Georgia Institute of Technology, USA
Zed Lee Stockholm University, Sweden
Mathieu Lefort Université de Lyon, France
Yunwen Lei University of Birmingham, UK
Vincent Lemaire Orange Innovation, France
Daniel Lemire TÉLUQ University, Canada
Florian Lemmerich RWTH Aachen University, Germany

xxvi Organization

Youfang Leng Renmin University of China, China
Carson K. Leung University of Manitoba, Canada
Dan Li Sun Yat-Sen University, China
Gang Li Deakin University, Australia
Jiaming Li Huazhong University of Science and Technology,

China
Mark Junjie Li Shenzhen University, China
Nian Li Tsinghua University, China
Shuai Li University of Cambridge, UK
Tong Li Hong Kong University of Science and

Technology, China
Xiang Li East China Normal University, China
Yang Li University of North Carolina at Chapel Hill, USA
Yingming Li Zhejiang University, China
Yinsheng Li Fudan University, China
Yong Li Huawei European Research Center, Germany
Zhihui Li University of New South Wales, Australia
Zhixin Li Guangxi Normal University, China
Defu Lian University of Science and Technology of China,

China
Yuxuan Liang National University of Singapore, Singapore
Angelica Liguori University of Calabria, Italy
Nick Lim University of Waikato, Sweden
Baijiong Lin The Hong Kong University of Science and

Technology, Hong Kong
Piotr Lipinski University of Wrocław, Poland
Marco Lippi University of Modena and Reggio Emilia, Italy
Bowen Liu Stanford University, USA
Chien-Liang Liu National Chiao Tung University, Taiwan
Fenglin Liu University of Oxford, UK
Junze Liu University of California, Irvine, USA
Li Liu Chongqing University, China
Ninghao Liu University of Georgia, USA
Shenghua Liu Institute of Computing Technology, CAS, China
Xiao Fan Liu City University of Hong Kong, Hong Kong
Xu Liu National University of Singapore, Singapore
Yang Liu Institute of Computing Technology, CAS, China
Zihan Liu Zhejiang University/Westlake University, China
Robert Loftin TU Delft, The Netherlands
Corrado Loglisci University of Bari, Aldo Moro, Italy
Mingsheng Long Tsinghua University, China
Antonio Longa Fondazione Bruno Kessler, Italy

Organization xxvii

Grigorios Loukides King’s College London, UK
Tsai-Ching Lu HRL Laboratories, USA
Zhiwu Lu Renmin University of China, China
Pedro Henrique Luz de Araujo University of Vienna, Austria
Marcos M. Raimundo University of Campinas, Brazil
Maximilian Münch University of Applied Sciences

Würzburg-Schweinfurt, Germany
Fenglong Ma Pennsylvania State University, USA
Pingchuan Ma The Hong Kong University of Science and

Technology, Hong Kong
Yao Ma New Jersey Institute of Technology, USA
Brian Mac Namee University College Dublin, Ireland
Henryk Maciejewski Wrocław University of Science and Technology,

Poland
Ayush Maheshwari IIT Bombay, India
Ajay A. Mahimkar AT&T, USA
Ayan Majumdar Max Planck Institute for Software Systems,

Germany
Donato Malerba University of Bari, Aldo Moro, Italy
Aakarsh Malhotra IIIT-Delhi, India
Fragkiskos Malliaros CentraleSupelec, France
Pekka Malo Aalto University, Finland
Hiroshi Mamitsuka Kyoto University, Japan/Aalto University, Finland
Domenico Mandaglio University of Calabria, Italy
Robin Manhaeve KU Leuven, Belgium
Silviu Maniu Université Paris-Saclay, France
Cinmayii G. Manliguez National Sun Yat-Sen University, Taiwan
Naresh Manwani IIIT Hyderabad, India
Giovanni Luca Marchetti KTH Royal Institute of Technology, Sweden
Koji Maruhashi Fujitsu Research, Fujitsu Limited, Japan
Florent Masseglia Inria, France
Sarah Masud IIIT-Delhi, India
Timothée Mathieu Inria, France
Amir Mehrpanah KTH Royal Institute of Technology, Sweden
Wagner Meira Jr. Universidade Federal de Minas Gerais, Brazil
Joao Mendes-Moreira INESC TEC, Portugal
Rui Meng BNU-HKBU United International College, China
Fabio Mercorio University of Milan-Bicocca, Italy
Alberto Maria Metelli Politecnico di Milano, Italy
Carlo Metta CNR-ISTI, Italy
Paolo Mignone University of Bari, Aldo Moro, Italy
Tsunenori Mine Kyushu University, Japan

xxviii Organization

Nuno Moniz INESC TEC, Portugal
Pierre Monnin Université Côte d’Azur, Inria, CNRS, I3S, France
Carlos Monserrat-Aranda Universitat Politècnica de València, Spain
Raha Moraffah Arizona State University, USA
Davide Mottin Aarhus University, Denmark
Hamid Mousavi University of Oldenburg, Germany
Abdullah Mueen University of New Mexico, USA
Shamsuddeen Hassan Muhamamd University of Porto, Portugal
Koyel Mukherjee Adobe Research, India
Yusuke Mukuta University of Tokyo, Japan
Pranava Mummoju University of Vienna, Austria
Taichi Murayama NAIST, Japan
Ankur Nahar IIT Jodhpur, India
Felipe Kenji Nakano KU Leuven, Belgium
Hideki Nakayama University of Tokyo, Japan
Géraldin Nanfack University of Namur, Belgium
Mirco Nanni CNR-ISTI, Italy
Franco Maria Nardini CNR-ISTI, Italy
Usman Naseem University of Sydney, Australia
Reza Nasirigerdeh TU Munich, Germany
Rajashree Nayak MIT ADT University, India
Benjamin Negrevergne Université Paris Dauphine, France
Stefan Neumann KTH Royal Institute of Technology, Sweden
Anna Nguyen IBM, USA
Shiwen Ni SIAT, CAS, China
Siegfried Nijssen Université catholique de Louvain, Belgium
Iasonas Nikolaou Boston University, USA
Simona Nisticò University of Calabria, Italy
Hao Niu KDDI Research, Japan
Mehdi Nourelahi University of Wyoming, USA
Slawomir Nowaczyk Halmstad University, Sweden
Eirini Ntoutsi Bundeswehr University Munich, Germany
Barry O’Sullivan University College Cork, Ireland
Nastaran Okati Max Planck Institute for Software Systems,

Germany
Tsuyoshi Okita Kyushu Institute of Technology, Japan
Pablo Olmos Universidad Carlos III de Madrid, Spain
Luis Antonio Ortega Andrés Autonomous University of Madrid, Spain
Abdelkader Ouali Université de Caen Normandie, France
Latifa Oukhellou IFSTTAR, France
Chun Ouyang Queensland University of Technology, Australia
Andrei Paleyes University of Cambridge, UK

Organization xxix

Menghai Pan Visa Research, USA
Shirui Pan Griffith University, Australia
Apostolos N. Papadopoulos Aristotle University of Thessaloniki, Greece
Chanyoung Park KAIST, South Korea
Emilio Parrado-Hernandez Universidad Carlos III de Madrid, Spain
Vincenzo Pasquadibisceglie University of Bari, Aldo Moro, Italy
Eliana Pastor Politecnico di Torino, Italy
Anand Paul Kyungpook National University, South Korea
Shichao Pei University of Notre Dame, USA
Yulong Pei TU Eindhoven, The Netherlands
Leonardo Pellegrina University of Padua, Italy
Ruggero Pensa University of Turin, Italy
Fabiola Pereira UFU, Brazil
Lucas Pereira ITI/LARSyS - Técnico Lisboa, Portugal
Miquel Perello-Nieto University of Bristol, UK
Lorenzo Perini KU Leuven, Belgium
Matej Petkovifá University of Ljubljana, Slovenia
Lukas Pfahler TU Dortmund, Germany
Ninh Pham University of Auckland, New Zealand
Guangyuan Piao Maynooth University, Ireland
Francesco Piccialli University of Naples Federico II, Italy
Martin Pilát Charles University, Czech Republic
Gianvito Pio University of Bari, Aldo Moro, Italy
Giuseppe Pirrò Sapienza University of Rome, Italy
Francesco S. Pisani ICAR-CNR, Italy
Srijith P. K. IIIT Hyderabad, India
Marc Plantevit EPITA, France
Mirko Polato University of Turin, Italy
Axel Polleres Vienna University of Economics and Business,

Austria
Giovanni Ponti ENEA, Italy
Paul Prasse University of Potsdam, Germany
Mahardhika Pratama University of South Australia, Australia
Philippe Preux Inria, France
Ricardo B. Prudencio Universidade Federal de Pernambuco, Brazil
Chiara Pugliese CNR-ISTI, Italy
Erasmo Purificato Otto-von-Guericke-University Magdeburg,

Germany
Abdulhakim Qahtan Utrecht University, The Netherlands
Lianyong Qi China University of Petroleum, China
Kun Qian Amazon Web Services, USA
Tieyun Qian Wuhan University, China

xxx Organization

Chuan Qin BOSS Zhipin, China
Yumou Qiu Iowa State University, USA
Dimitrios Rafailidis University of Thessaly, Greece
Edward Raff Booz Allen Hamilton, USA
Chang Rajani University of Helsinki, Finland
Herilalaina Rakotoarison Inria, France
M. José Ramírez-Quintana Universitat Politècnica de Valencia, Spain
Jan Ramon Inria, France
Rajeev Rastogi Amazon, India
Domenico Redavid University of Bari, Aldo Moro, Italy
Qianqian Ren Heilongjiang University, China
Salvatore Rinzivillo CNR-ISTI, Italy
Matteo Riondato Amherst College, USA
Giuseppe Rizzo Niuma, Italy
Marko Robnik-Sikonja University of Ljubljana, Slovenia
Christophe Rodrigues Pôle Universitaire Léonard de Vinci, France
Federica Rollo University of Modena and Reggio Emilia, Italy
Luca Romeo University of Macerata, Italy
Benjamin Roth University of Vienna, Austria
Céline Rouveirol LIPN - Université Sorbonne Paris Nord, France
Salvatore Ruggieri University of Pisa, Italy
Pietro Sabatino ICAR-CNR, Italy
Luca Sabbioni Politecnico di Milano, Italy
Tulika Saha University of Manchester, UK
Pablo Sanchez Martin Max Planck Institute for Intelligent Systems,

Germany
Parinya Sanguansat Panyapiwat Institute of Management, Thailand
Shreya Saxena Quantiphi, India
Yücel Saygin Sabanci Universitesi, Turkey
Patrick Schäfer Humboldt-Universität zu Berlin, Germany
Kevin Schewior University of Southern Denmark, Denmark
Rainer Schlosser Hasso Plattner Institute, Germany
Johannes Schneider University of Liechtenstein, Liechtenstein
Matthias Schubert LMU Munich, Germany
Alexander Schulz CITEC - Bielefeld University, Germany
Andreas Schwung Fachhoschschule Südwestfalen, Germany
Raquel Sebastião IEETA/DETI-UA, Portugal
Pierre Senellart ENS, PSL University, France
Edoardo Serra Boise State University, USA
Mattia Setzu University of Pisa, Italy
Ammar Shaker NEC Laboratories Europe, Germany
Shubhranshu Shekhar Carnegie Mellon University, USA

Organization xxxi

Jiaming Shen Google Research, USA
Qiang Sheng Institute of Computing Technology, CAS, China
Bin Shi Xi’an Jiaotong University, China
Jimeng Shi Florida International University, USA
Laixi Shi Carnegie Mellon University, USA
Rongye Shi Columbia University, USA
Harsh Shrivastava Microsoft Research, USA
Jonathan A. Silva Universidade Federal de Mato Grosso do Sul,

Brazil
Esther-Lydia Silva-Ramírez Universidad de Cádiz, Spain
Kuldeep Singh Cerence, Germany
Moshe Sipper Ben-Gurion University of the Negev, Israel
Andrzej Skowron University of Warsaw, Poland
Krzysztof Slot Lodz University of Technology, Poland
Marek Smieja Jagiellonian University, Poland
Gavin Smith University of Nottingham, UK
Carlos Soares University of Porto, Portugal
Cláudia Soares NOVA LINCS, Portugal
Andy Song RMIT University, Australia
Dongjin Song University of Connecticut, USA
Hao Song Seldon, UK
Jie Song Zhejiang University, China
Linxin Song Waseda University, Japan
Liyan Song Southern University of Science and Technology,

China
Zixing Song Chinese University of Hong Kong, China
Arnaud Soulet University of Tours, France
Sucheta Soundarajan Syracuse University, USA
Francesca Spezzano Boise State University, USA
Myra Spiliopoulou Otto-von-Guericke-University Magdeburg,

Germany
Janusz Starzyk WSIZ, Poland
Jerzy Stefanowski Poznan University of Technology, Poland
Julian Stier University of Passau, Germany
Michiel Stock Ghent University, Belgium
Eleni Straitouri Max Planck Institute for Software Systems,

Germany
Łukasz Struski Jagiellonian University, Poland
Jinyan Su University of Electronic Science and Technology

of China, China
David Q. Sun Apple, USA
Guangzhong Sun University of Science and Technology of China,

China

xxxii Organization

Mingxuan Sun Louisiana State University, USA
Peijie Sun Tsinghua University, China
Weiwei Sun Shandong University, China
Xin Sun TU Munich, Germany
Maryam Tabar Pennsylvania State University, USA
Anika Tabassum Virginia Tech, USA
Shazia Tabassum INESC TEC, Portugal
Andrea Tagarelli University of Calabria, Italy
Acar Tamersoy NortonLifeLock Research Group, USA
Chang Wei Tan Monash University, Australia
Cheng Tan Zhejiang University/Westlake University, China
Garth Tarr University of Sydney, Australia
Romain Tavenard LETG-Rennes/IRISA, France
Maguelonne Teisseire INRAE - UMR Tetis, France
Evimaria Terzi Boston University, USA
Stefano Teso University of Trento, Italy
Surendrabikram Thapa Virginia Tech, USA
Maximilian Thiessen TU Vienna, Austria
Steffen Thoma FZI Research Center for Information Technology,

Germany
Simon Tihon Euranova, Belgium
Kai Ming Ting Nanjing University, China
Abhisek Tiwari IIT Patna, India
Gabriele Tolomei Sapienza University of Rome, Italy
Guangmo Tong University of Delaware, USA
Sunna Torge TU Dresden, Germany
Giovanni Trappolini Sapienza University of Rome, Italy
Volker Tresp Siemens AG/LMU Munich, Germany
Sofia Triantafillou University of Crete, Greece
Sebastian Trimpe RWTH Aachen University, Germany
Sebastian Tschiatschek University of Vienna, Austria
Athena Vakal Aristotle University of Thessaloniki, Greece
Peter van der Putten Leiden University, The Netherlands
Fabio Vandin University of Padua, Italy
Aparna S. Varde Montclair State University, USA
Julien Velcin Université Lumière Lyon 2, France
Bruno Veloso INESC TEC/University of Porto, Portugal
Rosana Veroneze LBiC, Brazil
Gennaro Vessio University of Bari, Aldo Moro, Italy
Tiphaine Viard Télécom Paris, France
Herna L. Viktor University of Ottawa, Canada

Organization xxxiii

Joao Vinagre Joint Research Centre - European Commission,
Belgium

Jordi Vitria Universitat de Barcelona, Spain
Jean-Noël Vittaut LIP6 - CNRS - Sorbonne Université, France
Marco Viviani University of Milan-Bicocca, Italy
Paola Vocca Tor Vergata University of Rome, Italy
Tomasz Walkowiak Wrocław University of Science and Technology,

Poland
Ziwen Wan University of California, Irvine, USA
Beilun Wang Southeast University, China
Chuan-Ju Wang Academia Sinica, Taiwan
Deng-Bao Wang Southeast University, China
Di Wang KAUST, Saudi Arabia
Dianhui Wang La Trobe University, Australia
Hongwei Wang University of Illinois at Urbana-Champaign, USA
Huandong Wang Tsinghua University, China
Hui (Wendy) Wang Stevens Institute of Technology, USA
Jiaqi Wang Penn State University, USA
Puyu Wang City University of Hong Kong, China
Qing Wang Australian National University, Australia
Ruijie Wang University of Illinois at Urbana-Champaign, USA
Senzhang Wang Central South University, China
Shuo Wang University of Birmingham, UK
Suhang Wang Pennsylvania State University, USA
Wei Wang Fudan University, China
Wenjie Wang Shanghai Tech University, China
Yanhao Wang East China Normal University, China
Yimu Wang University of Waterloo, Canada
Yue Wang Microsoft Research, USA
Yue Wang Waymo, USA
Zhaonan Wang University of Tokyo, Japan
Zhi Wang Southwest University, China
Zijie J. Wang Georgia Tech, USA
Roger Wattenhofer ETH Zurich, Switzerland
Pascal Weber University of Vienna, Austria
Jörg Wicker University of Auckland, New Zealand
Michael Wilbur Vanderbilt University, USA
Weng-Fai Wong National University of Singapore, Singapore
Bin Wu Zhengzhou University, China
Chenwang Wu University of Science and Technology of China,

China

xxxiv Organization

Di Wu Chongqing Institute of Green and Intelligent
Technology, CAS, China

Guoqiang Wu Shandong University, China
Peng Wu Shanghai Jiao Tong University, China
Xiaotong Wu Nanjing Normal University, China
Yongkai Wu Clemson University, USA
Danyang Xiao Sun Yat-Sen University, China
Zhiwen Xiao Southwest Jiaotong University, China
Cheng Xie Yunnan University, China
Hong Xie Chongqing Institute of Green and Intelligent

Technology, CAS, China
Yaqi Xie Carnegie Mellon University, USA
Huanlai Xing Southwest Jiaotong University, China
Ning Xu Southeast University, China
Xiaolong Xu Nanjing University of Information Science and

Technology, China
Hao Xue University of New South Wales, Australia
Yexiang Xue Purdue University, USA
Sangeeta Yadav Indian Institute of Science, India
Qiao Yan Shenzhen University, China
Yan Yan Carleton University, Canada
Yu Yan People’s Public Security University of China,

China
Yujun Yan Dartmouth College, USA
Jie Yang University of Wollongong, Australia
Shaofu Yang Southeast University, China
Yang Yang Nanjing University of Science and Technology,

China
Liang Yao Tencent, China
Muchao Ye Pennsylvania State University, USA
Michael Yeh Visa Research, USA
Kalidas Yeturu Indian Institute of Technology Tirupati, India
Hang Yin University of Copenhagen, Denmark
Hongwei Yong Hong Kong Polytechnic University, China
Jaemin Yoo KAIST, South Korea
Mengbo You Iwate University, Japan
Hang Yu Shanghai University, China
Weiren Yu University of Warwick, UK
Wenjian Yu Tsinghua University, China
Jidong Yuan Beijing Jiaotong University, China
Aras Yurtman KU Leuven, Belgium
Claudius Zelenka Christian-Albrechts University of Kiel, Germany

Organization xxxv

Akka Zemmari University of Bordeaux, France
Bonan Zhang Princeton University, USA
Chao Zhang Zhejiang University, China
Chuang Zhang Nanjing University of Science and Technology,

China
Danqing Zhang Amazon, USA
Guoqiang Zhang University of Technology, Sydney, Australia
Guoxi Zhang Kyoto University, Japan
Hao Zhang Fudan University, China
Junbo Zhang JD Intelligent Cities Research, China
Le Zhang Baidu Research, China
Ming Zhang National Key Laboratory of Science and

Technology on Information System Security,
China

Qiannan Zhang KAUST, Saudi Arabia
Tianlin Zhang University of Manchester, UK
Wenbin Zhang Michigan Tech, USA
Xiang Zhang National University of Defense Technology,

China
Xiao Zhang Shandong University, China
Xiaoming Zhang Beihang University, China
Xinyang Zhang University of Illinois at Urbana-Champaign, USA
Yaying Zhang Tongji University, China
Yin Zhang University of Electronic Science and Technology

of China, China
Yongqi Zhang 4Paradigm, China
Zhiwen Zhang University of Tokyo, Japan
Mia Zhao Airbnb, USA
Sichen Zhao RMIT University, Australia
Xiaoting Zhao Etsy, USA
Tongya Zheng Zhejiang University, China
Wenhao Zheng Shopee, Singapore
Yu Zheng Tsinghua University, China
Yujia Zheng Carnegie Mellon University, USA
Jiang Zhong Chongqing University, China
Wei Zhou School of Cyber Security, CAS, China
Zhengyang Zhou University of Science and Technology of China,

China
Chuang Zhu Beijing University of Posts and

Telecommunications, China
Jing Zhu University of Michigan, USA
Jinjing Zhu Hong Kong University of Science and

Technology, China

xxxvi Organization

Junxing Zhu National University of Defense Technology,
China

Yanmin Zhu Shanghai Jiao Tong University, China
Ye Zhu Deakin University, Australia
Yichen Zhu Midea Group, China
Zirui Zhuang Beijing University of Posts and

Telecommunications, China
Tommaso Zoppi University of Florence, Italy
Meiyun Zuo Renmin University of China, China

Program Committee, Applied Data Science Track

Jussara Almeida Universidade Federal de Minas Gerais, Brazil
Mozhdeh Ariannezhad University of Amsterdam, The Netherlands
Renato M. Assuncao ESRI, USA
Hajer Ayadi York University, Canada
Ashraf Bah Rabiou University of Delaware, USA
Amey Barapatre Microsoft, USA
Patrice Bellot Aix-Marseille Université - CNRS LSIS, France
Ludovico Boratto University of Cagliari, Italy
Claudio Borile CENTAI, Italy
Yi Cai South China University of Technology, China
Lei Cao University of Arizona/MIT, USA
Shilei Cao Tencent, China
Yang Cao Hokkaido University, Japan
Aniket Chakrabarti Amazon, USA
Chaochao Chen Zhejiang University, China
Chung-Chi Chen National Taiwan University, Taiwan
Meng Chen Shandong University, China
Ruey-Cheng Chen Canva, Australia
Tong Chen University of Queensland, Australia
Yi Chen NJIT, USA
Zhiyu Chen Amazon, USA
Wei Cheng NEC Laboratories America, USA
Lingyang Chu McMaster University, Canada
Xiaokai Chu Tencent, China
Zhendong Chu University of Virginia, USA
Federico Cinus Sapienza University of Rome/CENTAI, Italy
Francisco Claude-Faust LinkedIn, USA
Gabriele D’Acunto Sapienza University of Rome, Italy
Ariyam Das Google, USA

Organization xxxvii

Jingtao Ding Tsinghua University, China
Kaize Ding Arizona State University, USA
Manqing Dong eBay, Australia
Yushun Dong University of Virginia, USA
Yingtong Dou University of Illinois, Chicago, USA
Yixiang Fang Chinese University of Hong Kong, China
Kaiyu Feng Beijing Institute of Technology, China
Dayne Freitag SRI International, USA
Yanjie Fu University of Central Florida, USA
Matteo Gabburo University of Trento, Italy
Sabrina Gaito University of Milan, Italy
Chen Gao Tsinghua University, China
Liangcai Gao Peking University, China
Yunjun Gao Zhejiang University, China
Lluis Garcia-Pueyo Meta, USA
Mariana-Iuliana Georgescu University of Bucharest, Romania
Aakash Goel Amazon, USA
Marcos Goncalves Universidade Federal de Minas Gerais, Brazil
Francesco Guerra University of Modena e Reggio Emilia, Italy
Huifeng Guo Huawei Noah’s Ark Lab, China
Ruocheng Guo ByteDance, China
Zhen Hai Alibaba DAMO Academy, China
Eui-Hong (Sam) Han The Washington Post, USA
Jinyoung Han Sungkyunkwan University, South Korea
Shuchu Han Stellar Cyber, USA
Dongxiao He Tianjin University, China
Junyuan Hong Michigan State University, USA
Yupeng Hou UC San Diego, USA
Binbin Hu Ant Group, China
Jun Hu National University of Singapore, Singapore
Hong Huang Huazhong University of Science and Technology,

China
Xin Huang Hong Kong Baptist University, China
Yizheng Huang York University, Canada
Yu Huang University of Florida, USA
Stratis Ioannidis Northeastern University, USA
Radu Tudor Ionescu University of Bucharest, Romania
Murium Iqbal Etsy, USA
Shoaib Jameel University of Southampton, UK
Jian Kang University of Rochester, USA
Pinar Karagoz METU, Turkey
Praveen C. Kolli Carnegie Mellon University, USA

xxxviii Organization

Deguang Kong Yahoo Research, USA
Adit Krishnan University of Illinois at Urbana-Champaign, USA
Mayank Kulkarni Amazon, USA
Susana Ladra University of A Coruña, Spain
Renaud Lambiotte University of Oxford, UK
Tommaso Lanciano KTH Royal Institute of Technology, Sweden
Md Tahmid Rahman Laskar Dialpad, Canada
Matthieu Latapy CNRS, France
Noah Lee Meta, USA
Wang-Chien Lee Pennsylvania State University, USA
Chang Li Apple, USA
Chaozhuo Li Microsoft Research Asia, China
Daifeng Li Sun Yat-Sen University, China
Lei Li Hong Kong University of Science and

Technology, China
Shuai Li University of Cambridge, UK
Xiang Lian Kent State University, USA
Zhaohui Liang National Library of Medicine, NIH, USA
Bang Liu University of Montreal, Canada
Ji Liu Baidu Research, China
Jingjing Liu MD Anderson Cancer Center, USA
Tingwen Liu Institute of Information Engineering, CAS, China
Weiwen Liu Huawei Noah’s Ark Lab, China
Andreas Lommatzsch TU Berlin, Germany
Jiyun Luo Pinterest, USA
Ping Luo CAS, China
Xin Luo Shandong University, China
Jing Ma University of Virginia, USA
Xian-Ling Mao Beijing Institute of Technology, China
Mirko Marras University of Cagliari, Italy
Zoltan Miklos Université de Rennes 1, France
Ahmed K. Mohamed Meta, USA
Mukesh Mohania IIIT Delhi, India
Corrado Monti CENTAI, Italy
Sushant More Amazon, USA
Jose G. Moreno University of Toulouse, France
Aayush Mudgal Pinterest, USA
Sepideh Nahali York University, Canada
Wolfgang Nejdl L3S Research Center, Germany
Yifan Nie University of Montreal, Canada
Di Niu University of Alberta, Canada
Symeon Papadopoulos CERTH/ITI, Greece

Organization xxxix

Manos Papagelis York University, Canada
Leonardo Pellegrina University of Padua, Italy
Claudia Perlich TwoSigma, USA
Fabio Pinelli IMT Lucca, Italy
Giulia Preti CENTAI, Italy
Buyue Qian Xi’an Jiaotong University, China
Chuan Qin BOSS Zhipin, China
Xiao Qin Amazon Web Services AI/ML, USA
Yanghui Rao Sun Yat-Sen University, China
Yusuf Sale LMU Munich, Germany
Eric Sanjuan Avignon University, France
Maria Luisa Sapino University of Turin, Italy
Emmanouil Schinas CERTH/ITI, Greece
Nasrullah Sheikh IBM Research, USA
Yue Shi Meta, USA
Gianmaria Silvello University of Padua, Italy
Yang Song Apple, USA
Francesca Spezzano Boise State University, USA
Efstathios Stamatatos University of the Aegean, Greece
Kostas Stefanidis Tampere University, Finland
Ting Su Imperial College London, UK
Munira Syed Procter & Gamble, USA
Liang Tang Google, USA
Ruiming Tang Huawei Noah’s Ark Lab, China
Junichi Tatemura Google, USA
Mingfei Teng Amazon, USA
Sofia Tolmach Amazon, Israel
Ismail Hakki Toroslu METU, Turkey
Kazutoshi Umemoto University of Tokyo, Japan
Yao Wan Huazhong University of Science and Technology,

China
Chang-Dong Wang Sun Yat-Sen University, China
Chong Wang Amazon, USA
Chuan-Ju Wang Academia Sinica, Taiwan
Hongzhi Wang Harbin Institute of Technology, China
Kai Wang Shanghai Jiao Tong University, China
Ning Wang Beijing Jiaotong University, China
Pengyuan Wang University of Georgia, USA
Senzhang Wang Central South University, China
Sheng Wang Wuhan University, China
Shoujin Wang Macquarie University, Australia
Wentao Wang Michigan State University, USA

xl Organization

Yang Wang University of Science and Technology of China,
China

Zhihong Wang Tsinghua University, China
Zihan Wang Shandong University, China
Shi-ting Wen Ningbo Tech University, China
Song Wen Rutgers University, USA
Zeyi Wen Hong Kong University of Science and

Technology, China
Fangzhao Wu Microsoft Research Asia, China
Jun Wu University of Illinois at Urbana-Champaign, USA
Wentao Wu Microsoft Research, USA
Yanghua Xiao Fudan University, China
Haoyi Xiong Baidu, China
Dongkuan Xu North Carolina State University, USA
Guandong Xu University of Technology, Sydney, Australia
Shan Xue Macquarie University, Australia
Le Yan Google, USA
De-Nian Yang Academia Sinica, Taiwan
Fan Yang Rice University, USA
Yu Yang City University of Hong Kong, China
Fanghua Ye University College London, UK
Jianhua Yin Shandong University, China
Yifang Yin A*STAR-I2R, Singapore
Changlong Yu Hong Kong University of Science and

Technology, China
Dongxiao Yu Shandong University, China
Ye Yuan Beijing Institute of Technology, China
Daochen Zha Rice University, USA
Feng Zhang Renmin University of China, China
Mengxuan Zhang University of North Texas, USA
Xianli Zhang Xi’an Jiaotong University, China
Xuyun Zhang Macquarie University, Australia
Chen Zhao Baylor University, USA
Di Zhao University of Auckland, New Zealand
Yanchang Zhao CSIRO, Australia
Kaiping Zheng National University of Singapore, Singapore
Yong Zheng Illinois Institute of Technology, USA
Jingbo Zhou Baidu, China
Ming Zhou University of Technology, Sydney, Australia
Qinghai Zhou University of Illinois at Urbana-Champaign, USA
Tian Zhou Alibaba DAMO Academy, China
Xinyi Zhou University of Washington, USA

Organization xli

Yucheng Zhou University of Macau, China
Jiangang Zhu ByteDance, China
Yongchun Zhu CAS, China
Ziwei Zhu George Mason University, USA
Jia Zou Arizona State University, USA

Program Committee, Demo Track

Ferran Diego Telefonica Research, Spain
Jan Florjanczyk Netflix, USA
Mikko Heikkila Telefonica Research, Spain
Jesus Omaña Iglesias Telefonica Research, Spain
Nicolas Kourtellis Telefonica Research, Spain
Eduard Marin Telefonica Research, Spain
Souneil Park Telefonica Research, Spain
Aravindh Raman Telefonica Research, Spain
Ashish Rastogi Netflix, USA
Natali Ruchansky Netflix, USA
David Solans Telefonica Research, Spain

Sponsors

Platinum

xlii Organization

Gold

Silver

Bronze

PhD Forum Sponsor

Publishing Partner

Invited Talks Abstracts

Neural Wave Representations

Max Welling

University of Amsterdam, The Netherlands

Abstract. Good neural architectures are rooted in good inductive biases
(a.k.a. priors). Equivariance under symmetries is a prime example of a
successful physics-inspired prior which sometimes dramatically reduces
the number of examples needed to learn predictive models. In this work,
we tried to extend this thinking to more flexible priors in the hidden vari-
ables of a neural network. In particular, we imposed wavelike dynamics
in hidden variables under transformations of the inputs, which relaxes
the stricter notion of equivariance. We find that under certain conditions,
wavelike dynamics naturally arises in these hidden representations. We
formalize this idea in a VAE-over-time architecture where the hidden
dynamics is described by a Fokker-Planck (a.k.a. drift-diffusion) equa-
tion. This in turn leads to a new definition of a disentangled hidden rep-
resentation of input states that can easily be manipulated to undergo
transformations. I also discussed very preliminary work on how the
Schrödinger equation can also be used to move information in the hidden
representations.

Biography. Prof. Dr. Max Welling is a research chair in Machine Learning at the Uni-
versity of Amsterdam and a Distinguished Scientist at MSR. He is a fellow at the Cana-
dian Institute for Advanced Research (CIFAR) and the European Lab for Learning and
Intelligent Systems (ELLIS) where he also serves on the founding board. His previous
appointments include VP at Qualcomm Technologies, professor at UC Irvine, postdoc
at the University of Toronto and UCL under the supervision of Prof. Geoffrey Hinton,
and postdoc at Caltech under the supervision of Prof. Pietro Perona. He finished his
PhD in theoretical high energy physics under the supervision of Nobel laureate Prof.
Gerard ‘t Hooft. Max Welling served as associate editor-in-chief of IEEE TPAMI from
2011–2015, he has served on the advisory board of the NeurIPS Foundation since 2015
and was program chair and general chair of NeurIPS in 2013 and 2014 respectively. He
was also program chair of AISTATS in 2009 and ECCV in 2016 and general chair of
MIDL in 2018. MaxWelling was a recipient of the ECCVKoenderink Prize in 2010 and
the ICML Test of Time Award in 2021. He directs the Amsterdam Machine Learning
Lab (AMLAB) and co-directs the Qualcomm-UvA deep learning lab (QUVA) and the
Bosch-UvA Deep Learning lab (DELTA).

Physics-Inspired Graph Neural Networks

Michael Bronstein

University of Oxford, UK

Abstract. The message-passing paradigm has been the “battle horse” of
deep learning on graphs for several years, making graph neural networks
a big success in a wide range of applications, from particle physics to
protein design. From a theoretical viewpoint, it established the link to
the Weisfeiler-Lehman hierarchy, allowing us to analyse the expressive
power of GNNs.We argue that the very “node-and-edge”-centric mindset
of current graph deep learning schemes may hinder future progress in
the field. As an alternative, we propose physics-inspired “continuous”
learning models that open up a new trove of tools from the fields of
differential geometry, algebraic topology, and differential equations so
far largely unexplored in graph ML.

Biography. Michael Bronstein is the DeepMind Professor of AI at the University of
Oxford. He was previously a professor at Imperial College London and held visiting
appointments at Stanford, MIT, and Harvard, and has also been affiliated with three
Institutes for Advanced Study (at TUM as a Rudolf Diesel Fellow (2017–2019), at
Harvard as a Radcliffe fellow (2017–2018), and at Princeton as a short-time scholar
(2020)). Michael received his PhD from the Technion in 2007. He is the recipient of the
Royal Society Wolfson Research Merit Award, Royal Academy of Engineering Silver
Medal, five ERC grants, two Google Faculty Research Awards, and two Amazon AWS
ML Research Awards. He is a Member of the Academia Europaea, Fellow of the IEEE,
IAPR, BCS, and ELLIS, ACM Distinguished Speaker, and World Economic Forum
Young Scientist. In addition to his academic career, Michael is a serial entrepreneur and
founder of multiple startup companies, including Novafora, Invision (acquired by Intel
in 2012), Videocites, and Fabula AI (acquired by Twitter in 2019).

Mapping Generative AI

Kate Crawford

USC Annenberg, USA

Abstract. Training data is foundational to generative AI systems. From
Common Crawl’s 3.1 billion web pages to LAION-5B’s corpus of almost
6 billion image-text pairs, these vast collections – scraped from the inter-
net and treated as “ground truth” – play a critical role in shaping the
epistemic boundaries that govern generative AI models. Yet training data
is beset with complex social, political, and epistemological challenges.
What happens when data is stripped of context, meaning, and prove-
nance? How does training data limit what and howmachine learning sys-
tems interpret the world? What are the copyright implications of these
datasets?Andmost importantly,what formsof power do these approaches
enhance and enable? This keynote is an invitation to reflect on the epis-
temic foundations of generative AI, and to consider the wide-ranging
impacts of the current generative turn.

Biography. Professor Kate Crawford is a leading international scholar of the social
implications of artificial intelligence. She is a Research Professor at USC Annenberg in
Los Angeles, a Senior Principal Researcher atMSR in NewYork, an Honorary Professor
at the University of Sydney, and the inaugural Visiting Chair for AI and Justice at the
École Normale Supérieure in Paris. Her latest book, Atlas of AI (Yale, 2021) won the
Sally Hacker Prize from the Society for the History of Technology, the ASIS&T Best
Information Science Book Award, and was named one of the best books in 2021 by
New Scientist and the Financial Times. Over her twenty-year research career, she has
also produced groundbreaking creative collaborations and visual investigations. Her
project Anatomy of an AI System with Vladan Joler is in the permanent collection of
the Museum of Modern Art in New York and the V&A in London, and was awarded
with the Design of the Year Award in 2019 and included in the Design of the Decades
by the Design Museum of London. Her collaboration with the artist Trevor Paglen,
Excavating AI, won the Ayrton Prize from the British Society for the History of Science.
She has advised policymakers in the United Nations, theWhite House, and the European
Parliament, and she currently leads the Knowing Machines Project, an international
research collaboration that investigates the foundations of machine learning.

Contents – Part III

Graph Neural Networks

Learning to Augment Graph Structure for both Homophily and Heterophily
Graphs . 3

Lirong Wu, Cheng Tan, Zihan Liu, Zhangyang Gao, Haitao Lin,
and Stan Z. Li

Learning Representations for Bipartite Graphs Using Multi-task
Self-supervised Learning . 19

Akshay Sethi, Sonia Gupta, Aakarsh Malhotra, and Siddhartha Asthana

ChiENN: Embracing Molecular Chirality with Graph Neural Networks 36
Piotr Gaiński, Michał Koziarski, Jacek Tabor, and Marek Śmieja

Multi-label Image Classification with Multi-scale Global-Local Semantic
Graph Network . 53

Wenlan Kuang, Qiangxi Zhu, and Zhixin Li

CasSampling: Exploring Efficient Cascade Graph Learning for Popularity
Prediction . 70

Guixiang Cheng, Xin Yan, Shengxiang Gao, Guangyi Xu,
and Xianghua Miao

Boosting Adaptive Graph Augmented MLPs via Customized Knowledge
Distillation . 87

Shaowei Wei, Zhengwei Wu, Zhiqiang Zhang, and Jun Zhou

ENGAGE: Explanation Guided Data Augmentation for Graph
Representation Learning . 104

Yucheng Shi, Kaixiong Zhou, and Ninghao Liu

Modeling Graphs Beyond Hyperbolic: Graph Neural Networks
in Symmetric Positive Definite Matrices . 122

Wei Zhao, Federico Lopez, J. Maxwell Riestenberg, Michael Strube,
Diaaeldin Taha, and Steve Trettel

Leveraging Free Labels to Power up Heterophilic Graph Learning
in Weakly-Supervised Settings: An Empirical Study . 140

Xugang Wu, Huijun Wu, Ruibo Wang, Duanyu Li, Xu Zhou, and Kai Lu

lii Contents – Part III

Train Your Own GNN Teacher: Graph-Aware Distillation on Textual
Graphs . 157

Costas Mavromatis, Vassilis N. Ioannidis, Shen Wang, Da Zheng,
Soji Adeshina, Jun Ma, Han Zhao, Christos Faloutsos,
and George Karypis

Graphs

The Mont Blanc of Twitter: Identifying Hierarchies of Outstanding Peaks
in Social Networks . 177

Maximilian Stubbemann and Gerd Stumme

RBNets: A Reinforcement Learning Approach for Learning Bayesian
Network Structure . 193

Zuowu Zheng, Chao Wang, Xiaofeng Gao, and Guihai Chen

A Unified Spectral Rotation Framework Using a Fused Similarity Graph 209
Yuting Liang, Wen Bai, and Yuncheng Jiang

SimSky: An Accuracy-Aware Algorithm for Single-Source SimRank
Search . 226

Liping Yan and Weiren Yu

Online Network Source Optimization with Graph-Kernel MAB 242
Laura Toni and Pascal Frossard

Quantifying Node-Based Core Resilience . 259
Jakir Hossain, Sucheta Soundarajan, and Ahmet Erdem Sarıyüce

Construction and Training of Multi-Associative Graph Networks 277
Adrian Horzyk, Daniel Bulanda, and Janusz A. Starzyk

Skeletal Cores and Graph Resilience . 293
Danylo Honcharov, Ahmet Erdem Sarıyüce, Ricky Laishram,
and Sucheta Soundarajan

GDM: Dual Mixup for Graph Classification with Limited Supervision 309
Abdullah Alchihabi and Yuhong Guo

Two-Stage Denoising Diffusion Model for Source Localization in Graph
Inverse Problems . 325

Bosong Huang, Weihao Yu, Ruzhong Xie, Jing Xiao, and Jin Huang

Contents – Part III liii

Interpretability

Sparse Neural Additive Model: Interpretable Deep Learning with Feature
Selection via Group Sparsity . 343

Shiyun Xu, Zhiqi Bu, Pratik Chaudhari, and Ian J. Barnett

Learning Locally Interpretable Rule Ensemble . 360
Kentaro Kanamori

XAI with Machine Teaching When Humans Are (Not) Informed About
the Irrelevant Features . 378

Brigt Arve Toppe Håvardstun, Cèsar Ferri, Jose Hernández-Orallo,
Pekka Parviainen, and Jan Arne Telle

Generating Robust Counterfactual Explanations . 394
Victor Guyomard, Françoise Fessant, Thomas Guyet, Tassadit Bouadi,
and Alexandre Termier

Neural Models for Factual Inconsistency Classification with Explanations 410
Tathagata Raha, Mukund Choudhary, Abhinav Menon, Harshit Gupta,
K. V. Aditya Srivatsa, Manish Gupta, and Vasudeva Varma

iSAGE: An Incremental Version of SAGE for Online Explanation on Data
Streams . 428

Maximilian Muschalik, Fabian Fumagalli, Barbara Hammer,
and Eyke Hüllermeier

Interpretation Attacks and Defenses on Predictive Models Using
Electronic Health Records . 446

Fereshteh Razmi, Jian Lou, Yuan Hong, and Li Xiong

An Empirical Evaluation of the Rashomon Effect in Explainable Machine
Learning . 462

Sebastian Müller, Vanessa Toborek, Katharina Beckh, Matthias Jakobs,
Christian Bauckhage, and Pascal Welke

Interpretable Regional Descriptors: Hyperbox-Based Local Explanations 479
Susanne Dandl, Giuseppe Casalicchio, Bernd Bischl,
and Ludwig Bothmann

TIGTEC: Token Importance Guided TExt Counterfactuals 496
Milan Bhan, Jean-Noël Vittaut, Nicolas Chesneau,
and Marie-Jeanne Lesot

liv Contents – Part III

Knowledge Graphs

Towards Few-Shot Inductive Link Prediction on Knowledge Graphs:
A Relational Anonymous Walk-Guided Neural Process Approach 515

Zicheng Zhao, Linhao Luo, Shirui Pan, Quoc Viet Hung Nguyen,
and Chen Gong

Comparing Apples and Oranges? On the Evaluation of Methods
for Temporal Knowledge Graph Forecasting . 533

Julia Gastinger, Timo Sztyler, Lokesh Sharma, Anett Schuelke,
and Heiner Stuckenschmidt

Improving Few-Shot Inductive Learning on Temporal Knowledge Graphs
Using Confidence-Augmented Reinforcement Learning . 550

Zifeng Ding, Jingpei Wu, Zongyue Li, Yunpu Ma, and Volker Tresp

Clifford Embeddings – A Generalized Approach for Embedding
in Normed Algebras . 567

Caglar Demir and Axel-Cyrille Ngonga Ngomo

Exploring Word-Sememe Graph-Centric Chinese Antonym Detection 583
Zhaobo Zhang, Pingpeng Yuan, and Hai Jin

Distinct Geometrical Representations for Temporal and Relational
Structures in Knowledge Graphs . 601

Bowen Song, Chengjin Xu, Kossi Amouzouvi, Maocai Wang,
Jens Lehmann, and Sahar Vahdati

LitCQD: Multi-hop Reasoning in Incomplete Knowledge Graphs
with Numeric Literals . 617

Caglar Demir, Michel Wiebesiek, Renzhong Lu,
Axel-Cyrille Ngonga Ngomo, and Stefan Heindorf

Large-Scale Learning

Cross Model Parallelism for Faster Bidirectional Training of Large
Convolutional Neural Networks . 637

An Xu and Yang Bai

Distributed Adaptive Optimization with Divisible Communication 654
An Xu and Yang Bai

Contents – Part III lv

propagate: A Seed Propagation Framework to Compute Distance-Based
Metrics on Very Large Graphs . 671

Giambattista Amati, Antonio Cruciani, Daniele Pasquini, Paola Vocca,
and Simone Angelini

Towards Memory-Efficient Training for Extremely Large Output
Spaces – Learning with 670k Labels on a Single Commodity GPU 689

Erik Schultheis and Rohit Babbar

Correction to: Towards Memory-Efficient Training for Extremely Large
Output Spaces – Learning with 670k Labels on a Single Commodity GPU C1

Erik Schultheis and Rohit Babbar

Author Index . 705

Graph Neural Networks

Learning to Augment Graph Structure
for both Homophily and Heterophily

Graphs

Lirong Wu, Cheng Tan, Zihan Liu, Zhangyang Gao, Haitao Lin,
and Stan Z. Li(B)

AI Lab, Research Center for Industries of the Future, Westlake University,
Hangzhou, China

{wulirong,tancheng,liuzihan,gaozhangyang,
linhaitao,stan.zq.li}@westlake.edu.cn

Abstract. Recent years have witnessed great successes in performing
graph structure learning for Graph Neural Networks (GNNs). However,
comparatively little work studies structure augmentation for graphs,
where the augmented structures are onlyused for training andare not avail-
able during inference. This is mainly due to that structure augmentation
is a discrete combinatorial optimization problem rather than a continu-
ous optimization problem like structure learning. In this paper, we propose
Learning to Augment (L2A), a novel structure augmentation framework
that learns customized augmentation strategies for graphs with different
homophily levels. Specifically, L2A simultaneously performs the maximum
likelihood estimation ofGNNparameters and the learning of optimal struc-
ture augmentations in a variational inference framework. Moreover, L2A
applies two auxiliary self-supervised tasks to exploit both global position
and label distribution information in the graph structure to further reduce
the reliance on annotated labels and improve applicability to heterophily
graphs. Extensive experiments have shown that L2A can produce truly
encouraging results at various homophily levels compared with other lead-
ing methods and can learn customized structure augmentation strategies
across various GNNs architectures and graph datasets. Codes are available
at: https://github.com/LirongWu/L2A.

Keywords: Graph Neural Networks · Graph Structure
Augmentation · Variational Inference · Graph Self-supervised Learning

1 Introduction

Recently, the emerging Graph Neural Networks (GNNs) [27,31] have demon-
strated their powerful capability to handle a variety of graph-related tasks.
However, existing methods are prone to suffer from poor generalization or weak
robustness due to their heavy reliance on the quantity of annotated labels and the
quality of the graph structure [16,17]. To improve the generalization capability,
a natural solution is to augment training data by creating plausible variations

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
D. Koutra et al. (Eds.): ECML PKDD 2023, LNAI 14171, pp. 3–18, 2023.
https://doi.org/10.1007/978-3-031-43418-1_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-43418-1_1&domain=pdf
https://github.com/LirongWu/L2A
https://doi.org/10.1007/978-3-031-43418-1_1

4 L. Wu et al.

of existing data without additional ground-truth labels, which have been widely
adopted in fields such as computer vision [3,8] and natural language processing
[5,22]. The data augmentation on graphs mainly includes two branches: node
feature augmentation and graph structure augmentation. While the former has
been well studied by directly extending existing approaches for image and text
data to graph data [9,12,30,33], comparatively little work has been done to
study graph structure augmentation [2,19,21,34]. For example, DropEdge [21]
randomly removes a fraction of edges before each training epoch, somewhat sim-
ilar to dropout [24]. Different from the ad-hoc, two-stage DropEdge, GAUG [34]
proposes to optimize the structure augmentation and GNN parameters in an
end-to-end manner. Despite their great success, the above methods are based on
the class-homophily assumption which greatly limits their applicability to het-
erophily graphs, where connected nodes may have different class labels. Thus, a
crucial question here is: Can we adaptively perform graph structure augmentation
in an end-to-end framework for graphs with low-to-high homophily levels?

In this paper, we explore whether one can adaptively learn customized aug-
mentation strategies for different graphs. There are several tricky challenges on
the way: (1) The structure augmentation is a discrete combinatorial optimization
problem with complexity O(2N2

), which is computationally expensive to solve.
(2) The graph data is too complex to create hand-crafted or heuristic augmenta-
tion rules, especially when we know little about the underlying graph properties,
e.g., homophily ratio. (3) It is hard to directly obtain the optimal strategies for
structure augmentation as supervision signals for model optimization.

To address the above challenges, we propose a simple yet effective Learning
to Augment (L2A) framework that learns customized augmentation strategies
for graphs with different homophily levels. To achieve this, we adopt the proba-
bilistic generative model and take the optimal augmentations as latent variables
[14,32], which transforms structure augmentation from a discrete combinatorial
optimization problem into a continuous optimization problem. Moreover, to fur-
ther reduce the reliance on annotated labels and improve the applicability to
heterophily graphs, we apply two auxiliary self-supervised tasks to incorporate
both global position and label distribution information embedded in the graph.

Our contributions are summarized as: (1) Proposing a general graph structure
augmentation framework to learn customized augmentation strategies for both
homophily and heterophily graphs. (2) Transforming discrete structure augmen-
tation into a continuous optimization problem and solving it in a variational
inference framework. (3) Two important contextual topological information,
global position and label distribution, are incorporated to improve graph struc-
ture augmentation. (4) Extensive experiments show that L2A outperforms other
leading methods covering the full spectrum of low-to-high homophily ratios.

2 Related Work

2.1 Graph Neural Networks

Graph Neural Networks (GNNs) can be mainly divided into two categories:
spectral-based GNNs and spatial-based GNNs. The spectral-based GNNs, such

Learning to Augment Graph Structure 5

as GCN-Cheby [4] and GCN [15], define convolution kernels in the spectral
domain based on the graph signal processing theory. Instead, the spatial-based
GNNs, including GraphSAGE [7] and GAT [15], focus on the design of aggrega-
tion functions. However, the above four GNNs are based on the class-homophily
assumption, so they cannot be directly generalized to heterophily settings, where
the homophily level h is defined as the fraction of edges in a graph that connect
nodes that have the same class label, i.e., intra-class edges. To solve this problem,
several works have been specifically proposed to deal with heterophily graphs
[26]. For example, Geom-GNN [20] exploits structural similarity to directly cap-
ture long-range dependencies in heterophily graphs. In addition, H2GNN [36]
separates raw and aggregated features so that both low- and high-frequency
information can be preserved. Moreover, FAGCN [1] proposes a self-gating mech-
anism to adaptively weigh between low- and high-frequency signals. For more
GNNs for heterophily graphs, please refer to a recent survey [35].

2.2 Graph Structure Augmentation

The mainstream algorithms for graph structure augmentation can be divided
into three categories: hand-crafted, heuristic, and end-to-end. As a typical hand-
crafted algorithm, DropEdge [21] randomly removes a fraction of edges before
each training epoch according to the hand-crafted probability. In a heuristic
way, AddEdge [2] iteratively adds (removes) edges between nodes predicted to
have the same (different) labels. Different from the above methods, GAUG [34]
propose to optimize the structure augmentation and GNN parameters in an end-
to-end manner. Instead, MH-Aug [19] proposes a sampling-based augmentation,
where a sequence of augmented graphs are directly drawn from an explicit target
distribution. However, due to the overemphasis on the class-homophily assump-
tion, these methods may not be applicable to graphs with strong heterophily. A
recent work, KDGA [28], provides deep insights into the potential distribution
shift problem in structure augmentation, extending it to heterophily settings for
the first time, but it is essentially a post-processing operation based on knowledge
distillation rather than an architectural design for graph structure augmentation.

2.3 Variational Inference for GNNs

Inspired by variational autoencoder [14], there have been a lot of works applying
variational inference to GNN learning. Our work is greatly inspired by L2P [32],
which studies the problem of learning message propagation strategies in a vari-
ational Expectation-Maximization (VEM) framework. However, we differ from
it in the following three aspects: (1) Research Objectives. L2A and L2P focus
on two completely different research areas, L2P for message propagation and
L2A for structure augmentation, which are orthogonal and compatible. Besides,
L2P considers node-level propagation with the distribution space size of latent
variables as O(kN) (k is the layer number, N is the node number), but L2A
considers edge-level augmentation with the distribution space size of O(2N2

),

6 L. Wu et al.

which is more challenging. (2) Learning Strategy. L2P is formulated in a bi-level
optimization framework, while L2A can be directly optimized in an end-to-end
manner. (3) Evaluation Protocol. The augmented graphs learned by L2A are
only used during training and are not available during testing. In contrast, the
learned propagation strategy of L2P is used during both training and testing.

3 Methodology

3.1 Problem Statement

Given a graph G = (V, E), where V is the set of N nodes with features X =
[x1,x2, · · · ,xN] ∈ R

N×d and E ⊆ V × V is the edge set. Each node vi ∈ V is
associated with a d-dimensional features vector xi. The graph structure can also
be denoted by an adjacency matrix A ∈ [0, 1]N×N with Ai,j = 1 if ei,j ∈ E and
Ai,j = 0 if ei,j /∈ E . For semi-supervised node classification, only a subset of
node VL with corresponding labels YL are known, and we denote the labeled set
as DL = (VL,YL) and unlabeled set as DU = (VU ,YU), where VU = V\VL. The
task of semi-supervised node classification is to learn a mapping fθ : V → Y on
labeled data DL, so that it is used to infer the labels YU of unlabeled data DU .

Learning to Augment. In this section, we introduce Learning to Augment
(L2A) framework, which allows for learning customized structure augmentation
as well as GNN parameters. The key here is to transform structure augmentation
from a discrete combinatorial optimization problem to a continuous optimization
problem. To this end, we introduce a set of discrete latent variables {ti,j}N

i,j=1,
where ti,j ∈ {0, 1} denotes the optimal augmentation selection between node vi

and vj . Furthermore, we follow [32] to propose a generative model for modeling
the joint distribution of node labels and structure augmentation conditioned on
node features and adjacency matrix, i.e., p (yn,T | X,A), where T ∈ R

N×N

and Ti,j = ti,j . The distribution space size of latent variables T is 2N2
, and

without loss of generality, we can denote all possible permutation schemes in
this distribution space by {T1, T2, · · · , T2N2 }. Finally, we can formulate it in
a variational inference framework, that learns optimal GNN parameters and
structure augmentation distribution in an end-to-end manner, as shown in Fig. 1.

3.2 Augmentation from a Probabilistic Generation Perspective

In the proposed L2A framework, we treat the optimal augmentation (e.g., adding
or removing edge) between node vi and vj as a discrete latent variable ti,j and
adopt the principle of the probabilistic generative model, which has been shown
to be effective in estimating the underlying data distribution [18,32]. In practice,
ti,j is edge-wise since the optimal augmentation for node pairs may vary largely
from one to another. With a set of latent variables {ti,j}N

i,j=1, we can model the
joint distribution of observed label yi and latent variables T as follows

pθ(yi,T | X,A) = pθ (yi | X,A,T) p (T) , (1)

Learning to Augment Graph Structure 7

where p (T) is the prior of latent variables and pθ (yi | X,A,T) represents the
label prediction probability of node vi based on latent variables T. Given the
generative model in Eq. (1), our learning objective is twofold as in [32]:

– Learning GNN parameters by maximizing the marginal likelihood:

log pθ(yi | X,A) = log
2N

2

∑

n=1

pθ (yi | X,A, Tn) p (Tn) . (2)

– Inferring posterior p(T | X,A, yn) of latent variables T:

p (T = Tk | X,A, yi) =
pθ (yi | X,A, Tk) p(Tk)

∑2N2

n=1 pθ (yi | X,A, Tn) p(Tn)
. (3)

For learning, since it involves marginalizing 2N2
latent variables, we cannot

directly learn GNN parameters θ. For inferring, the non-parametric true pos-
terior in Eq. (3) is not applicable since we don’t have access to all the ground-
truth labels [32]. Therefore, we adopt the variational inference principle [14] and
consider the lower bound L(θ, q) of the marginal log-likelihood in Eq. (2) as
follows

log pθ (yi | X,A) = Eq(T)[log pθ (yi | X,A,T)]
− KL (q (T) ‖p (T)) + KL (q (T) ‖p (T | X,A, yi))
≥ Eq(T)[log pθ (yi | X,A,T)] − KL (q (T) ‖p (T)) = L(θ, q)

(4)

where the detailed derivation of Eq. (4) can be referred to [14]. Maximizing
the ELBO L(θ, q) means (i) maximize the posterior defined in Eq. (2) and to
(ii) make the introduced variational distributions q(T) be close to its intractable
true posteriors p (T | X,A, yi) as derived in [32]. When we do not have any prior
about how to augment, p(T = Tk) = 1

2N2 (k = 1, 2, · · · , 2N2
) can be defined as

uniform distribution. In practice, overly drastical topological perturbations to
the graph structure not only fails to increase generalizability but also hinders
performance. Therefore, we can use Dirichlet distribution p(T = A) = 1 as
augmentation prior. In this case, the second KL divergence term in L(θ, q) is
equivalent to approximate A by the probability q(T = 1) directly. Thus, the
lower bound L(θ, q) of Eq. (4) can be approximated and re-writed as follows:

L(θ, q) ≈ Eq(T)[log pθ(yi | X,A,T)] − CE (q (T = 1) ‖A) , (5)

where CE (q (T = 1) ‖A) denotes the cross entropy between q (T = 1) and A.

3.3 Iterative Variational Inference

Since directly maximizing the ELBO L(θ, q) in Eq. (5) is challenging, we adopt an
end-to-end iterative variational inference algorithm to minimize negative ELBO
in this paper. Specifically, we introduce the parameterized posterior qφ (T | X,A)

8 L. Wu et al.

Input Graph

+

Augmentation
Strategy

Augmented Graph

GNN
Classifier

Weighted Graph

Label Distribution Preservation

Global-Path PredictionParameterized
Augmentation
Distribution

Gumbel-Softmax
Sampling

Fig. 1. Illustration of the proposed Learning to Augment (L2A) framework, which
consists of five major components: (1) Estimating latent variables T by parameter-
ized augmentation distribution qφ (T | X,A); (2) Obtaining the optimal augmentation

strategy M by the weighted fusion; (3) Sampling augmented graph ̂T from augmen-
tation strategy M through differentiable Gumbel-Softmax Sampling; (4) Learning a
weighted graph P and classifying nodes based on it; (5) Capturing global position
information and label distribution information through two auxiliary pretext tasks.

(how to exactly parameterize the variational distribution q(T) is deferred until
the next section) into Eq. (5) and then simultaneously learn the optimal augmen-
tation distribution qφ (T | X,A) and GNN parameters in an end-to-end man-
ner. Furthermore, we follow [11,32] to adopt Gumbel-Softmax Sampling, which
substitutes non-differentiable sampling from a discrete distribution with a dif-
ferentiable Gumbel-Softmax distribution. Finally, the learning objective is to
minimize the following negative ELBO, as follows

Lcla(θ, φ) = − log pθ(y | X,A, T̂) + CE (qφ (T = 1 | X,A) ‖A) , (6)

where T̂ is drawn from a categorical distribution, defined as follows,

T̂i,j =

⌊
1

1 + exp−
(
logMi,j+G

)
/τ

+
1
2

⌋
, 1 ≤ i, j ≤ N, (7)

where Mi,j = αqφ (T = 1 | X,A) [i, j] + (1 − α)Ai,j is defined as the learned
optimal augmentation strategy. Besides, α ∈ [0, 1] is the fusion factor, which
aims to prevent the sampled augmentation T̂ from deviating too much from the
original graph A. τ is the temperature of Gumbel-Softmax distribution, and G ∼
Gumbel(0, 1) is a Gumbel random variate. Next, we will discuss in detail how
to model parameterized posterior qφ (T | X,A) and posterior pθ(y | X,A, T̂).

3.4 Parameterized Augmentation Distribution

In the variational inference principle, we adopt the amortization inference [14,32]
to fit a shared neural network to model parameterized posterior. Specifically, a
two-layer shared GCN encoder and an inner-product decoder are used to param-
eterize the augmentation distribution qφ (T | X,A) as follows

qφ (T = 1 | X,A) = σ
(
ZZT

)
,where Z = f

(1)
GCN

(
A, f

(0)
GCN (A,X)

)
, (8)

Learning to Augment Graph Structure 9

where Z denotes the hidden embeddings learned by the encoder, and σ(·) is an
element-wise sigmoid function. As many previous works, such as GAUG, have
pointed out, overly severe topological perturbation to graph structure not only
fails to improve robustness, but also hinders generalizability, especially for het-
erophily graphs. In practice, augmenting a graph from heterophily to homophily
inevitably changes the contextual information of the graph, which may further
affect the model performance. Therefore, we treat the label distribution of
nodes as important contextual information and take its preservation
as a constraint to control the perturbation level of graph structure during
structure augmentation. Specifically, we propose a self-supervised pretext task
Label Distribution Preservation, which forces the augmented graph T̂ to have a
consistent label distribution with the original graph A. First, we take the origi-
nal graph A as an example to define the local label distribution. Given labeled
set DL = (VL,YL), we first assign labels for those unlabeled nodes through label
propagation [37] on graph A and then defines the local label distribution yA

i for
each node vi within its k-hop neighborhood, with the c-th element yA

i,c is

yA
i,c =

∣∣N L
i (c)

∣∣ +
∣∣N U

i (c)
∣∣

∣∣N L
i

∣∣ +
∣∣N U

i

∣∣ , c = 1, 2, · · · , C (9)

where N L
i and N U

i are labeled and unlabeled nodes within k-hop neighborhood
of node vi, respectively. N L

i (c) denotes only those in the neighborhood with
the ground-truth label c, and N U

i (c) denotes those in the neighborhood that are
assigned label c by label propagation. Similarity, we obtain the label distribution
y ̂T

i for the augmented graph T̂. Finally, the learning objective is defined as

Lldp =
1

|V|
∑

vi∈V

∥∥ŷT
i − yA

i

∥∥2
. (10)

The experimental results in Fig. 2 have demonstrated the effectiveness of the
label distribution preservation, especially for heterophily graphs. Due to space
limitations, more discussions on the motivations behind the proposed self-
supervised pretext tasks and how they differ from existing work [29] can be found
in Appendix A at https://github.com/LirongWu/L2A/tree/main/appendix.

3.5 GNN Classifier Module for Node Classification

Next, we detail how to model posterior pθ(y | X,A, T̂). Specifically, we first
transform the input nodes to a low-dimensional space by a parameter matrix
Wh ∈ R

F×d, that is h′
i = Whxi. The transformed features are finally used to

generate a weighted graph P based on the augmented graph T̂, defined as

Pi,j = σ
(
Ωψ(h′

i,h
′
j)

) · T̂i,j , 1 ≤ i, j ≤ N, (11)

where σ = tanh(·) is an activation function, and Ωψ(·) is a function that takes
the contacted features of node vi and vj as input and takes the form of a one-layer

https://github.com/LirongWu/L2A/tree/main/appendix

10 L. Wu et al.

MLP in our implementation. To improve the applicability of L2A to graphs with
different homophily levels, the global position information embedded in
the graph structure needs to be further exploited. To this end, we apply a
self-supervised auxiliary task Global-Path Prediction [12], which takes the short-
est path length between nodes as the target, enables the model to consider
both label information and global position topological information in the fea-
ture extraction process, and thus models the long-distance dependencies between
nodes. It pre-obtains a set of clusters from the node set V and then guides the
model to preserve global topology information by predicting the shortest path
from each node to the anchor nodes associated with cluster centers. Specifically,
it firstly partitions the graph into K clusters {M1,M2, · · · ,MK} by applying
graph partition algorithm [13]. Inside each cluster Mk (1 ≤ k ≤ K), the node
with the highest degree is taken as the cluster center, denoted as mt. Secondly, it
calculates the distance li ∈ R

K from node vi to cluster centers {mk}K
k=1. Finally,

the learning objective of Global-Path Prediction can be defined as follows

Lglobal =
1

|V|
∑

vi∈V
‖fω (h′

i) − li‖2 , (12)

where fω(·) linearly maps the input to K-dimension values.
Once the weighted graph P is obtained, we can aggregate features by taking

the weighted sum of its neighbors:

h(l)
i = (1 − β)

∑

j∈Ni

Pi,jh
(l−1)
j + βh(0)

i , (13)

where 1 ≤ l ≤ L and h(0)
i = ReLu(W1xi). β and L are the teleport probability

and aggregation layer, respectively. Finally, we make a prediction on node vi by

ŷi = softmax(W2 · h(L)
i), (14)

where W1 ∈ R
F×F and W2 ∈ R

C×F are weight matrices.
The total loss to train the whole model is defined as

Ltotal = Lcla(θ, φ) + λLldp + κLglobal. (15)

where λ and κ are the weights to balance the influence of the two self-supervised
losses Lldp and Lglobal. The pseudo-code of L2A is summarized in Algorithm 1.

3.6 Complexity Analysis

The time complexity of L2A mainly comes from three parts: (1) augmenta-
tor O(|V|dF + |V|2F) (2) self-supervised tasks O(|E|F), and (3) GNN classifier
O(|V|dF + |E|F), where d and F are the dimensions of the input and hidden
space. The total complexity O(|V|dF + |V|2F + |E|F) is squared to the number of
nodes |V| and linear to the number of edges |E|, which is nearly in the same order
as the leading method GAUG and other graph generation algorithms. Compared
to GAUG, the additional computational burden of L2A comes mainly from the
two self-supervised pretext tasks O(|E|F), which is negligible as E
 V2.

Learning to Augment Graph Structure 11

Algorithm 1 . Algorithm for the proposed L2A framework
Input: Feature Matrix: X; Adjacency Matrix: A.
Output: Predicted Labels YU .
1: Randomly initialize Augmentator φ and GNN Classifier θ;
2: Pretrain Augmentator until convergence based on CE (qφ (T = 1 | X,A) ‖A) and

Lldp defined in Eq. (6) and Eq. (10).
3: Pretrain GNN Classifier until convergence based on Lglobal and − log pθ(y |

X,A, ̂T) defined in Eq. (12) and Eq. (6).
4: while Not Converged do
5: # Graph Augmentation
6: Obtain augmentated graph ̂T by Eq. (8) and Eq. (7);
7: Make label prediction by Eq. (11), Eq. (13), and Eq. (14);
8: Compute total loss Ltotal by Eq. (15);
9: Update the parameters θ and φ by back propagation.

10: end while
11: Predict labels YU for unlabeled nodes VU with GNN Classifier on the original

structure A (rather than augmentated graph ̂T).
12: return Predicted labels YU , Augmentor φ and Classifier θ.

4 Experiments

In this section, we conduct extensive experiments to evaluate the effectiveness of
the L2A framework. Specifically, the experiments aim to answer five questions:
Q1. How effective is L2A for the task of semi-supervision node classification on
various real-world graph datasets Q2. Is L2A robust to different GNN architec-
tures? Is L2A robust to different homophily and homophily levels? Q3. How do
the two self-supervised pretext tasks and structure augmentation influence the
performance of L2A? Q4. Could L2A effectively learn the customized augmen-
tation strategies for graphs with different homophily levels? Q5. How do the
two key hyperparameters α and L influence the performance of L2A?

4.1 Experimental Setups

Datasets. There are totally Eight graph datasets (including ONE synthetic
and seven real-world datasets) used to evaluate the proposed L2A framework.
An overview summary of the statistic characteristics of datasets is given in
Table 1. Three common homophily citation networks, e.g., Cora [23], Citeseer
[6], and BlogCatalog [10] are included in the comparison. Besides, we consider
four heterophily datasets: Cornell, Texas, Wisconsin and Aactor [25]. Finally,
one synthetic dataset Syn-Cora is generated to evaluate the capabilities of the
model to handle graphs with different homophily levels. The Syn-Cora dataset is
generated with various heterophily ratios h by adopting a modified preferential
attachment process. Starting from an empty initial graph, new nodes are added
into the graph one by one until the number of nodes |V| reaches 1490. Let pi,j

denote the probability that a newly added node u in class i is connected with an
existing node v in class j. As a result, heterophily ratio h can be controlled by

12 L. Wu et al.

{pi,j}C
i,j=1. We first randomly select C = 5 classes from the Cora dataset. Then,

the node features of Syn-Cora dataset in each class are generated by sampling
node features from the corresponding class in the real-world Cora dataset.

Table 1. Statistical information of the datasets.

Dataset Syn-Cora Cora Citeseer BlogCatalog Texas Cornell Wisconsin Actor

Nodes 1490 2708 3327 5196 183 183 251 7600

Edges 2965-2968 5278 4552 171743 279 277 450 26659

Features 1433 1433 3703 8189 1703 1703 1703 932

Classes 5 7 3 6 5 5 5 5

Homophily Ratio h 0.00-1.00 0.81 0.74 0.40 0.11 0.30 0.21 0.22

Baselines. To demonstrate the powerful capability of the proposed L2A for
structure augmentation, we compare it with five state-of-the-art baselines: And-
Edge, DropEdge, MH-Aug, GAUG, and KDGA. Besides, we compare L2A with
Geom-GCN, H2GCN, and FAGCN to demonstrate that L2A may work well
for graphs with low-to-high homophily levels. In particular, four classical meth-
ods, MLP, GCN, GraphSAGE, and GAT, are also included in the comparison
as baselines. Note that L2A is a plug-and-play augmentation module that can
theoretically be combined with any GNN architecture to further improve perfor-
mance, such as with FAGCN to create a more powerful variant of L2A-FAGCN.

Hyperparameters. The following hyperparameters are set the same for all
datasets: Adam optimizer with learning rate lr = 1e-2 and weight decay decay
= 5e-4; Epoch E = 500; teleport probability β = 0.1. The other hyperparameters
are determined by a hyperparameter search tool - NNI for each dataset, including
hidden dimension F = {16, 32, 64, 128}, fusion factor α = {0.1, 0.3, 0.8, 1.0},
aggregation layer L = {1, 2, 3, 4, 5, 6, 7, 8}, and loss weights λ, κ = {0.1, 0.5, 1.0}.
All methods are implemented with PyTorch 1.6.0 library running on NVIDIA
v100 GPU, and the model with the highest accuracy on the validation set is
selected for testing. Each set of experiments is run five times with different
random seeds, and the average performance and standard deviation are reported.

4.2 Classification on Real-World Datasets (Q1)

To answer Q1, we conduct experiments on seven datasets with different
homophily levels. The GNN classifier module proposed in this paper is used
as a benchmark GNN architecture to compare L2A with four state-of-the-art
structure augmentation methods: AndEdge, DropEdge, MH-Aug, GAUG, and
KDGA. Besides, the original implementations of MLP, GCN, GraphSAGE, and
GAT are also included as baselines. Moreover, we also compare L2A with algo-
rithms specifically designed for heterophily graphs, such as Geom-GCN, H2GCN,

Learning to Augment Graph Structure 13

Table 2. Classification accuracy (%) on seven real-world datasets. The homophily
ratios h is defined as the fraction of intra-class edges among all the edges in a graph:
h = |{(u, v) ∈ E | yu = yv}| /|E|. In practice, a graph with category number C displays
a homophily tendency if h < 2

C
, otherwise it displays a heterophily tendency.

Heterophily Homophily

Texas Wisconsin Actor Cornell BlogCatalog Citeseer Cora

Homophily Ratio h 0.11 0.21 0.22 0.30 0.40 0.74 0.81

Nodes |V| 183 251 7,600 183 5,196 3,327 2,708

Edges |E| 279 450 26,659 277 171,743 4,552 5,278

MLP 81.9 ± 4.8 85.3 ± 3.6 35.8 ± 1.0 81.1 ± 6.4 65.7 ± 2.1 46.5 ± 0.5 55.1 ± 0.5

GCN 59.5 ± 5.3 59.8 ± 7.0 30.3 ± 0.8 57.0 ± 4.7 75.0 ± 0.4 70.3 ± 0.5 81.5 ± 0.8

GraphSAGE 82.4 ± 6.1 81.2 ± 5.6 34.2 ± 1.0 76.0 ± 5.0 73.4 ± 0.4 71.2 ± 0.4 82.2 ± 0.7

GAT 58.4 ± 4.5 55.3 ± 8.7 26.3 ± 1.7 58.9 ± 3.3 63.8 ± 5.2 72.5 ± 0.5 83.1 ± 0.5

DropEdge 82.8 ± 4.7 85.3 ± 5.1 36.5 ± 1.3 79.1 ± 4.1 77.4 ± 0.3 72.4 ± 0.2 82.5 ± 0.8

AddEdge 83.4 ± 5.2 84.9 ± 4.6 35.9 ± 0.9 78.8 ± 4.0 77.3 ± 0.3 72.8 ± 0.7 82.4 ± 0.6

MH-Aug 82.3 ± 3.8 85.4 ± 3.0 35.3 ± 1.1 79.8 ± 3.3 79.1 ± 0.6 72.9 ± 0.5 83.6 ± 0.4

GAUG 80.7 ± 3.5 83.7 ± 3.4 34.5 ± 1.0 78.4 ± 2.9 78.6 ± 0.4 73.1 ± 0.6 83.9 ± 0.5

KDGA 84.0 ± 4.2 86.7 ± 3.8 36.4 ± 1.2 81.8 ± 3.5 78.8 ± 0.3 72.8 ± 0.6 84.4 ± 0.6

L2A (ours) 85.6±3.4 90.2±3.2 38.8±0.7 84.7±1.3 80.2±1.0 73.3±0.2 84.7±0.6

GEOM-GCN 67.6 64.1 31.6 60.8 - - -

H2GCN 82.2 ± 5.3 85.9 ± 4.2 35.6 ± 1.3 82.2 ± 6.0 77.6 ± 0.8 72.8±0.4 83.5 ± 0.5

FAGCN 84.0 ± 4.7 88.4 ± 3.6 35.9 ± 1.1 84.3 ± 4.8 78.5 ± 0.6 72.7 ± 0.8 84.1 ± 0.5

L2A-FAGCN 86.2±3.9 89.1±3.7 37.8±0.9 85.2±3.3 81.9±0.9 72.4 ± 0.5 84.5±0.4

and FAGCN, to demonstrate that L2A may well work for the full spectrum of
low-to-high homophily levels. Table 2 summarizes the graph properties and clas-
sification performance, from which it can be seen that (1) It can be seen that
L2A consistently achieves the best overall performance on all seven datasets,
especially in strong heterophily settings. For example, L2A obtains the best per-
formance on the Wisconsin and Cornell datasets, and more notably, our accu-
racy outperforms GAUG by 6.5% and 6.3%, respectively. (2) Though GAUG and
MH-Aug perform well on homophily graphs, it falls behind even DropEdge and
AddEdge on heterophily graphs due to the overemphasis on class-homophily.
(3) More importantly, L2A shows great advantages even when compared to
algorithms specifically designed for heterophily graphs, including Geom-GCN,
H2GCN, and FAGCN. More importantly, L2A can be easily combined with
existing GNNs to further improve their performance. For example, the variant
L2A-FAGCN, obtained by combining L2A with FAGCN, significantly improves
the performance of the vanilla FAGCN by 2.2% and 3.4% on the Texas and
BlogCatalog datasets.

4.3 Homophily Ratios and GNN Architectures (Q2)

The performance on the Syn-Cora dataset is reported in Table 2. Experi-
ments are conducted on the Syn-Cora dataset by varying homophily ratio h as
{0.0, 0.1, · · · , 0.9} with three classical GNN architectures: GCN, GraphSAGE,

14 L. Wu et al.

and GAT. It can be observed from Table 2 that: (1) The proposed L2A framework
generalizes well to different homophily levels and achieves the best overall perfor-
mance across all settings. This suggests that L2A favors learning in homophily
settings without sacrificing excellent performance in heterophily data. In con-
trast, while GAUG can work well in homophily settings, it cannot even match
the results of baselines on heterophily data. (2) L2A achieves consistent improve-
ments across all three GNN architectures. For example, L2A improves 3.5%
(GCN), 1.8% (GraphSAGE), and 1.8% (GAT) averaged across all 10 homophily
ratios compared to baselines, respectively. However, GAUA improves only 0.2%
(GCN), 0.3% (GraphSAGE), and 0.3% (GAT), respectively (Table 3).

Table 3. Classification accuracy ± std(%) on the Syn-Cora dataset under different
homophily ratios h and three GNN architectures (GCN, GraphSAGE, and GAT).

h 0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90

GCN 33.7 ± 1.7 37.1 ± 4.6 42.8 ± 1.9 51.1 ± 0.8 56.9 ± 2.6 66.2 ± 1.0 77.3 ± 1.2 84.5 ± 0.5 91.2 ± 1.3 96.1 ± 0.8

GAUG-GCN 35.2 ± 1.3 37.0 ± 0.8 41.5 ± 1.2 50.1 ± 1.2 57.5 ± 1.6 65.7 ± 0.9 78.4 ± 1.1 84.9± 0.8 91.4 ± 1.5 97.3± 0.6

L2A-GCN 40.2±1.0 45.0±1.0 47.3±1.8 56.0±2.0 61.7±1.2 68.6±1.4 79.9±2.5 84.7 ± 0.7 91.9±1.7 96.9 ± 0.4

GraphSAGE 76.0±1.9 72.9 ± 2.4 70.6 ± 1.4 71.8 ± 0.7 72.0 ± 1.7 76.6 ± 0.8 81.3 ± 1.0 85.1 ± 0.5 90.8 ± 1.0 95.1 ± 1.2

GAUG-GraphSAGE 73.8 ± 1.4 71.9 ± 1.0 71.1 ± 0.7 70.9 ± 0.9 72.3 ± 1.5 76.0 ± 0.9 83.0 ± 1.3 87.3 ± 0.6 92.5 ± 1.2 96.5 ± 0.7

L2A-GraphSAGE 74.2 ± 0.6 73.6±1.1 73.1±0.6 74.8±0.7 74.1±0.7 77.5±0.9 84.2±0.7 88.0±0.7 93.6±1.2 96.7±0.6

GAT 30.2 ± 1.3 33.1 ± 1.2 39.1 ± 0.3 48.8 ± 1.6 55.4 ± 2.4 64.5 ± 0.5 76.3 ± 1.8 84.0 ± 1.0 90.9 ± 1.5 95.9 ± 0.2

GAUG-GAT 31.2 ± 1.2 32.9 ± 1.1 38.5 ± 0.9 47.9 ± 1.3 55.2 ± 1.3 64.8 ± 1.4 77.0 ± 1.2 84.2±0.8 92.8 ± 1.3 97.1±0.8

L2A-GAT 33.5±1.4 35.8±1.4 42.6±2.5 50.3±1.4 55.6±1.5 65.5±0.9 78.8±0.9 83.9 ± 0.9 93.7±1.5 96.9 ± 0.5

4.4 Ablation Study (Q3)

This evaluates the effectiveness of the structure augmentation and the two auxil-
iary self-supervised tasks in the L2A framework through four sets of experiments:
the model without (A) structure augmentation (w/o Augmentor); (B) Global-
Path Prediction (w/o Lglobal); (C) Label Distribution Preservation (w/o Lldp),
and (D) the full model. Experiments are conducted on seven datasets, and classi-
fication accuracy is reported as the metric. After analyzing the reported results in
Fig. 2, we find that both Global-Path Prediction and Label Distribution Preser-
vation contribute to improving performance. More importantly, applying these
two tasks together can further improve performance on top of each, which demon-
strates the benefit of capturing global position information and preserving label
distribution in the graph structure. Moreover, the removal of the structure aug-
mentation will lead to a sharp drop in performance, e.g., 4.7%, 3.2%, 8.9% on
the BlogCatalog, Actor, and Texas datasets, which demonstrates the importance
of structure augmentation and the effectiveness of the L2A framework.

Learning to Augment Graph Structure 15

Fig. 2. Ablation study on the structure augmentation and the two self-supervised tasks.

Fig. 3. Relationship between augmentation strategy and graph homophily levels.

4.5 Augmentation Strategy Learning (Q4)

To explore the relationship between the structure augmentation strategy and
the level of homophily, we visualized the change in the number of edges on the
augmented graph T̂ as training proceeds on all datasets in Fig. 3. Additionally,
we provide the number of edges in the original graph A as baselines, denoted by
dotted lines. It can be seen that for three relatively homophily graphs, Cora, Cite-
seer, and BlogCatalog, the number of edges in the augmented graph decreases
consistently with training to produce a relatively sparse augmented graph, which
helps to alleviate the common over-smoothing problem in homophily data. How-
ever, for relatively heterophily graphs, the optimal augmentation strategy is to
increase the number of edges to obtain a densely connected augmented graph.
This is because heterophily data are less affected by the over-smoothing problem,
and more dense connectivity helps to establish long-range dependencies between
nodes, allowing a larger receptive field to capture contextual information, which
is beneficial for node classification on heterophily graphs.

4.6 Parameter Sensitivity Analysis (Q5)

To answer Q5, we evaluate the sensitivity analysis w.r.t two key hyperparame-
ters: fusion factor α in Eq. (7) and aggregation layer L in Eq. (13). The results are

16 L. Wu et al.

reported in Fig. 4 with the best performance circled, from which we can observe:
(1) The performance gain of L2A becomes larger as α increases. However, when
α becomes too large, L2A in turn yields lower performance gains. This is because
a too-small α weakens the contribution of structure augmentation to model per-
formance, while a too-large α can cause the topology of the augmented graph
to deviate too much from the original graph, bringing misleading information
or noise. (2) The model performance can be improved with a larger aggregation
layer L, which enables each node to establish connections with nodes in a larger
multi-hop neighborhood, capturing more contextual information. However, the
performance gain becomes lower when L becomes too large.

Fig. 4. Parameter sensitivity analysis on four datasets.

5 Conclusion

In this paper, we propose Learning to Augment (L2A), a general structure aug-
mentation framework that learns customized augmentation strategies for graphs
with different homophily levels. Specifically, L2A transforms structure augmen-
tation from a discrete combinatorial optimization problem to a continuous opti-
mization problem. This further enables us to simultaneously perform the maxi-
mum likelihood estimation of GNN parameters and learning of optimal augmen-
tations in a variational inference framework. Extensive experiments on synthetic
and real-world datasets have shown that L2A outperforms other leading graph
structure augmentation methods. Despite the great progress, limitations still
exist, for example, L2A has only been evaluated on some small-scale datasets.
In our opinion, decoupling edge addition and removal may be helpful to achieve
better scalability for large-scale graphs, which will be left for future work.

Acknowledgement. This work was supported by the National Key R&D Program
of China (No. 2022ZD0115100), the National Natural Science Foundation of China
Project (No. U21A20427), and Project (No. WU2022A009) from the Center of Syn-
thetic Biology and Integrated Bioengineering of Westlake University.

Ethical Statement. Our submission does not involve any ethical issues, including

but not limited to privacy, security, etc.

Learning to Augment Graph Structure 17

References

1. Bo, D., Wang, X., Shi, C., Shen, H.: Beyond low-frequency information in graph
convolutional networks. arXiv preprint arXiv:2101.00797 (2021)

2. Chen, D., Lin, Y., Li, W., Li, P., Zhou, J., Sun, X.: Measuring and relieving the
over-smoothing problem for graph neural networks from the topological view. In:
Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34, pp. 3438–
3445 (2020)

3. Cubuk, E.D., Zoph, B., Mane, D., Vasudevan, V., Le, Q.V.: Autoaugment: learning
augmentation strategies from data. In: Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pp. 113–123 (2019)

4. Defferrard, M., Bresson, X., Vandergheynst, P.: Convolutional neural networks on
graphs with fast localized spectral filtering. arXiv preprint arXiv:1606.09375 (2016)

5. Fadaee, M., Bisazza, A., Monz, C.: Data augmentation for low-resource neural
machine translation. arXiv preprint arXiv:1705.00440 (2017)

6. Giles, C.L., Bollacker, K.D., Lawrence, S.: Citeseer: an automatic citation indexing
system. In: Proceedings of the Third ACM Conference on Digital Libraries, pp. 89–
98 (1998)

7. Hamilton, W., Ying, Z., Leskovec, J.: Inductive representation learning on large
graphs. In: Advances in Neural Information Processing Systems, pp. 1024–1034
(2017)

8. Ho, D., Liang, E., Chen, X., Stoica, I., Abbeel, P.: Population based augmentation:
efficient learning of augmentation policy schedules. In: International Conference on
Machine Learning, pp. 2731–2741. PMLR (2019)

9. Hu, W., et al.: Strategies for pre-training graph neural networks. arXiv preprint
arXiv:1905.12265 (2019)

10. Huang, X., Li, J., Hu, X.: Label informed attributed network embedding. In: Pro-
ceedings of the Tenth ACM International Conference on Web Search and Data
Mining, pp. 731–739 (2017)

11. Jang, E., Gu, S., Poole, B.: Categorical reparameterization with gumbel-softmax.
arXiv preprint arXiv:1611.01144 (2016)

12. Jin, W., et al.: Self-supervised learning on graphs: deep insights and new direction.
arXiv preprint arXiv:2006.10141 (2020)

13. Karypis, G., Kumar, V.: A fast and high quality multilevel scheme for partitioning
irregular graphs. SIAM J. Sci. Comput. 20(1), 359–392 (1998)

14. Kingma, D.P., Welling, M.: Auto-encoding variational bayes. arXiv preprint
arXiv:1312.6114 (2013)

15. Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional
networks. arXiv preprint arXiv:1609.02907 (2016)

16. Liu, Z., Luo, Y., Wu, L., Li, S., Liu, Z., Li, S.Z.: Are gradients on graph struc-
ture reliable in gray-box attacks? In: Proceedings of the 31st ACM International
Conference on Information & Knowledge Management, pp. 1360–1368 (2022)

17. Liu, Z., Luo, Y., Wu, L., Liu, Z., Li, S.Z.: Towards reasonable budget allocation
in untargeted graph structure attacks via gradient debias. In: Advances in Neural
Information Processing Systems (2022)

18. Mohamed, S., Rezende, D.J.: Variational information maximisation for intrinsically
motivated reinforcement learning. arXiv preprint arXiv:1509.08731 (2015)

19. Park, H., et al.: Metropolis-hastings data augmentation for graph neural networks.
In: Advances in Neural Information Processing Systems, vol. 34 (2021)

http://arxiv.org/abs/2101.00797
http://arxiv.org/abs/1606.09375
http://arxiv.org/abs/1705.00440
http://arxiv.org/abs/1905.12265
http://arxiv.org/abs/1611.01144
http://arxiv.org/abs/2006.10141
http://arxiv.org/abs/1312.6114
http://arxiv.org/abs/1609.02907
http://arxiv.org/abs/1509.08731

18 L. Wu et al.

20. Pei, H., Wei, B., Chang, K.C.C., Lei, Y., Yang, B.: Geom-GCN: geometric graph
convolutional networks. arXiv preprint arXiv:2002.05287 (2020)

21. Rong, Y., Huang, W., Xu, T., Huang, J.: Dropedge: towards deep graph convolu-
tional networks on node classification. arXiv preprint arXiv:1907.10903 (2019)

22. Şahin, G.G., Steedman, M.: Data augmentation via dependency tree morphing for
low-resource languages. arXiv preprint arXiv:1903.09460 (2019)

23. Sen, P., Namata, G., Bilgic, M., Getoor, L., Galligher, B., Eliassi-Rad, T.: Collec-
tive classification in network data. AI Mag. 29(3), 93 (2008)

24. Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.:
Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn.
Res. 15(1), 1929–1958 (2014)

25. Tang, J., Sun, J., Wang, C., Yang, Z.: Social influence analysis in large-scale net-
works. In: Proceedings of the 15th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, pp. 807–816 (2009)

26. Wu, L., et al.: Beyond homophily and homogeneity assumption: relation-based
frequency adaptive graph neural networks. IEEE Trans. Neural Netw. Learn. Syst.
(2023)

27. Wu, L., Lin, H., Huang, Y., Fan, T., Li, S.Z.: Extracting low-/high-frequency
knowledge from graph neural networks and injecting it into MLPs: an effective
GNN-to-MLP distillation framework. arXiv preprint arXiv:2305.10758 (2023)

28. Wu, L., Lin, H., Huang, Y., Li, S.Z.: Knowledge distillation improves graph struc-
ture augmentation for graph neural networks. In: Advances in Neural Information
Processing Systems (2022)

29. Wu, L., Lin, H., Tan, C., Gao, Z., Li, S.Z.: Self-supervised learning on graphs:
contrastive, generative, or predictive. IEEE Trans. Knowl. Data Eng. (2021)

30. Wu, L., Xia, J., Gao, Z., Lin, H., Tan, C., Li, S.Z.: Graphmixup: improving class-
imbalanced node classification by reinforcement mixup and self-supervised context
prediction. In: Amini, M.R., Canu, S., Fischer, A., Guns, T., Kralj Novak, P.,
Tsoumakas, G. (eds.) PKDD 2022. LNCS, vol. 13716, pp. 519–535. Springer, Cham
(2023). https://doi.org/10.1007/978-3-031-26412-2 32

31. Wu, Z., Pan, S., Chen, F., Long, G., Zhang, C., Philip, S.Y.: A comprehensive
survey on graph neural networks. IEEE Trans. Neural Netw. Learn. Syst. 32(1),
4–24 (2020)

32. Xiao, T., Chen, Z., Wang, D., Wang, S.: Learning how to propagate messages in
graph neural networks. In: Proceedings of the 27th ACM SIGKDD Conference on
Knowledge Discovery & Data Mining, pp. 1894–1903 (2021)

33. You, Y., Chen, T., Sui, Y., Chen, T., Wang, Z., Shen, Y.: Graph contrastive learn-
ing with augmentations. In: Advances in Neural Information Processing Systems,
vol. 33 (2020)

34. Zhao, T., Liu, Y., Neves, L., Woodford, O., Jiang, M., Shah, N.: Data augmentation
for graph neural networks. arXiv preprint arXiv:2006.06830 (2020)

35. Zheng, X., Liu, Y., Pan, S., Zhang, M., Jin, D., Yu, P.S.: Graph neural networks
for graphs with heterophily: a survey. arXiv preprint arXiv:2202.07082 (2022)

36. Zhu, J., Yan, Y., Zhao, L., Heimann, M., Akoglu, L., Koutra, D.: Beyond homophily
in graph neural networks: current limitations and effective designs. In: Advances
in Neural Information Processing Systems, vol. 33 (2020)

37. Zhu, X., Ghahramani, Z., Lafferty, J.D.: Semi-supervised learning using gaussian
fields and harmonic functions. In: Proceedings of the 20th International conference
on Machine learning (ICML 2003), pp. 912–919 (2003)

http://arxiv.org/abs/2002.05287
http://arxiv.org/abs/1907.10903
http://arxiv.org/abs/1903.09460
http://arxiv.org/abs/2305.10758
https://doi.org/10.1007/978-3-031-26412-2_32
http://arxiv.org/abs/2006.06830
http://arxiv.org/abs/2202.07082

Learning Representations for Bipartite
Graphs Using Multi-task Self-supervised

Learning

Akshay Sethi(B), Sonia Gupta, Aakarsh Malhotra, and Siddhartha Asthana

AI Garage, Mastercard, Gurugram, India
{akshay.sethi,sonia.gupta,aakarsh.malhotra,

siddhartha.asthana}@mastercard.com

Abstract. Representation learning for bipartite graphs is a challeng-
ing problem due to its unique structure and characteristics. The primary
challenge is the lack of extensive supervised data and the bipartite graph
structure, where two distinct types of nodes exist with no direct connec-
tions between the nodes of the same kind. Hence, recent algorithms uti-
lize Self Supervised Learning (SSL) to learn effective node embeddings
without needing costly labeled data. However, conventional SSL methods
learn through a single pretext task, making the trained model specific to
the downstream task. This paper proposes a novel approach for learning
generalized representations of bipartite graphs using multi-task SSL. The
proposed method utilizes multiple self-supervised tasks to learn improved
embeddings that capture different aspects of the bipartite graphs, such as
graph structure, node features, and local-global information. We utilize
deep multi-task learning (MTL) to further assist in learning generalizable
self-supervised solution. To mitigate negative transfer when related and
unrelated tasks are trained in MTL, we propose a novel DST++ algo-
rithm. The proposed DST++ optimization algorithm improves existing
DST by considering task affinities and groupings for better initialization
and training. The end-to-end proposed method with complimentary SSL
tasks and DST++ multi-task optimization is evaluated on three tasks:
node classification, link prediction, and node regression, using four pub-
licly available benchmark datasets. The results demonstrate that our
proposed method outperforms state-of-the-art methods for representa-
tion learning in bipartite graphs. Specifically, our method achieves up
to 12% improvement in accuracy for node classification and up to 9%
improvement in AUC for link prediction tasks compared to the baseline
methods.

Keywords: GNNs · Multi Task · Unsupervised · Self-Supervised

1 Introduction

Bipartite graphs are versatile structures representing the relationship between
two distinct types of nodes. Its applicability extends to a wide range of real-world

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
D. Koutra et al. (Eds.): ECML PKDD 2023, LNAI 14171, pp. 19–35, 2023.
https://doi.org/10.1007/978-3-031-43418-1_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-43418-1_2&domain=pdf
https://doi.org/10.1007/978-3-031-43418-1_2

20 A. Sethi et al.

scenarios, such as recommender systems [1], drug discovery [42], and informa-
tion retrieval [49]. For instance, in recommender systems, users and items can
be modeled as two types of nodes within a bipartite graph. The edges in this
graph represent interactions between users and items. Additionally, bipartite
graphs possess unique structural features that set them apart from heteroge-
neous graphs. Notably, there are no direct connections between nodes of the
same type in a bipartite graph.

In recent years, significant progress has been made in graph embedding gen-
eration [3,13]. While these methods have proven effective for homogeneous and
heterogeneous graphs, developing meaningful node representations for bipartite
graphs remains a persistent challenge. Primarily, such algorithms must be opti-
mized for modeling bipartite graphs, otherwise the resulting node and graph
embeddings prove to be suboptimal [9]. To address this, researchers have pro-
posed algorithms specific to bipartite graphs [1,9,41,43,46,47,50].

However, in such a domain, SSL can assist in generating meaningful repre-
sentation as most problems in bipartite graph domain lack labelled data. SSL
based methods can learn effective embeddings without the use of costly labelled
data. Motivated by SSL for homogeneous graphs, the current state-of-the-art
studies in bipartite graphs utilizing SSL include BiGi [4] and COIN [21]. These
approaches build upon a single pretext task with a particular philosophy, such
as maximizing mutual information. Such methods have illustrated promising
results for bipartite graph representation learning. However, their efficacy is
usually limited to only one task and performs lower across other downstream
tasks and datasets. For instance, BiGi [4], which is based on mutual information
maximization between local and global representations, performs well in link
prediction tasks but poorly in node classification tasks. Additionally, COIN [21],
deliver excellent results for clustering task as it maximize the mutual informa-
tion of co-clusters to captures the cluster-level information whereas it doesn’t
perform well on other tasks like link prediction.

This issue has been studied in other domains, such as Natural Language
Processing [33,34] and Computer Vision [6,29]. These research studies have
indicated that models enhanced by SSL over multiple pretext tasks have demon-
strated strong task generalization and the ability to learn transferable intrinsic
patterns. Similarly, there has been some work in the homogeneous graph domain
[22] showing that MTL for homogeneous graphs enables better task performance
(Fig. 1).

In this work, we propose a multi-task SSL algorithm for bipartite graphs
with pretext tasks to impart generalized knowledge to the model. We use differ-
ent SSL tasks used in homogeneous graph learning literature, which include fea-
ture reconstruction, edge reconstruction, contrastive learning, and mutual infor-
mation maximization. We simultaneously optimize and dynamically coordinate
the pretext tasks by proposing a novel MTL optimization algorithm DST++.
The proposed DST++ improves upon DST [27] by modeling task affinities and
groupings, eventually dropping and scheduling the grouped tasks together. Fur-
thermore, using the task groupings, we better initialize the shared backbone of

Multi-task Self-supervised Bipartite Graph Representation Learning 21

Fig. 1. Multi-Task Network for Self Supervised learning

the multi-task network to promote weaker tasks. The overall contributions of
this study are summarised as follows:

– As an initial step towards exploring foundational bipartite graph models [2]
and improving overall generalization, we developed five pretext tasks for SSL.
We introduce a multi-task SSL algorithm called MultiBipGNN, which is self-
supervised by pretext tasks and dynamically reconciles them according to
DST++. This ensures the graph encoder learns knowledge from every pretext
task while minimizing conflicts.

– We also propose a novel bipartite graph encoder that aggregates information
from two hops (same type) nodes and one hop (different type) nodes via
multi-head soft attention (MHSA) [38,39].

– We evaluate MultiBipGNN against seven state-of-the-art unsupervised bipar-
tite representation methods on four public benchmark datasets across three
downstream tasks (node classification, node regression, and link prediction).
Our experiments demonstrate that MultiBipGNN outperforms the state-of-
the-art unsupervised methods by +7.1% in overall performance, indicating
better task generalization by learning disjoint yet complementary knowledge
from different tasks.

2 Background Work

This section describes the background work in SSL for bipartite graphs. We
explain SSL in bipartite graphs and then move to SSL in homogeneous graphs via
GNNs. Next, we list research studies in multi-task SSL in different domains, such
as language, vision, and graphs. Finally, we illustrate how to optimize multiple
tasks better while learning to avoid negative transfer.

2.1 Bipartite Graph Representation Learning

Bipartite graphs are commonly modeled using (i) homogeneous or (ii) hetero-
geneous graph embeddings. Some homogeneous random-walk-based methods
include Node2vec [10], DeepWalk [32], LINE [37], or, GNN ones like GraphSAGE

22 A. Sethi et al.

[12] and GAT [39]. Random-walk-based methods employ Skip-Gram to acquire
node embeddings to maintain the graph structure but seldom employ the node
features. Alternatively, GNN-based methods recursively aggregate features of
neighboring nodes and learn node representations.

On the other hand, heterogeneous graph embedding methods include stud-
ies such as Metapath2vec [7] and DMGI [30]. Metapath2vec constructs diverse
node neighborhoods using meta path-based random walks. Such heterogeneous
methods, however, are not tailored for bipartite graphs and may lose their
structural characteristics [9]. To preserve structural detail, several methods are
designed for bipartite graphs, including PinSage [43], BiNE [9], C-BGNN [15],
BiGI [4], and COIN [21]. BiNE [9] proposes a biased random walk that generates
vertex sequences to preserve the long-tail distribution of vertices and trains skip-
gram-based embeddings on them. C-BGNN [15], on the other hand, aggregates
information across and within the two partitions of a bipartite graph by utiliz-
ing a customized Inter-domain Message Passing and Intra-domain Alignment.
BiGI [4] focuses on learning better representations by using mutual information
maximization between global and local graph embeddings. Recently, COIN [21]
also utilized mutual information maximization between co-clusters to capture
the cluster-level information.

2.2 Self Supervised Learning (SSL) for GNNs

SSL has attracted a lot of attention in graphs due to its ability to learn effec-
tive node embeddings without costly labeled data. Most graph SSL frameworks
for node-level tasks rely on a single philosophy and pretext task. Such tasks
include mutual information maximization, contrastive learning, or generative
reconstruction. Although initially used in computer vision, contrastive learning
methods are adapted to graph representation learning. For instance, DGI [39]
learns node representations by contrasting local and global embeddings. Due
to contrastive learning, DGI achieved impressive results in node classification
benchmarks. GIC [28] proposes an unsupervised method that maximizes the
mutual information between node-level and cluster-level representations. GMI
[31] generalizes conventional mutual information computations from the vector
space to the graph domain, measuring mutual information from node features
and topological structure. Lastly, by creating two views of the graph to learn
node representations GRACE [51] and GCA [52] use contrastive learning. They
pull the representation of the same node in two views close while pushing the
embedding of every other node apart.

2.3 Multi-task Self Supervised Learning and Optimization

Multi-task SSL is extensively studied in computer vision and natural language
processing [6,26,29,33,34]. Within the graph domain, AutoSSL [20] examines
a multi-task setting where tasks are reconciled to promote graph homophily.
Additionally, Hu et al. [18] focus on graph-level tasks and pre-trained GNNs
in separate stages. The tasks were reconciled using either weighted summation

Multi-task Self-supervised Bipartite Graph Representation Learning 23

or pre-defined heuristics. Recently, Ju et al. [22] proposed a multi-task self-
supervised framework for learning in homogeneous graphs. The different tasks
are coordinated using multiple gradient descent. Though some of these stud-
ies [18,22] work towards unsupervised learning or pretraining in graphs using
multiple tasks, they cannot be extended to bipartite graphs directly.

When optimizing an MTL network, the aim is to orchestrate priorities of
tasks dynamically during training. Two commonly used approaches in MTL
optimization are (i) task grouping and (ii) task prioritization. The former method
groups the tasks based on their relatedness and selects a group of tasks or sub-
network for efficient MTL. Various methods are used to compute task grouping,
such as measuring affinities [48], cross-task consistencies [45], or probability of
concurrently simple/difficult tasks [25]. After grouping, different sub-networks
may be generated [25], or MTL be orchestrated [45,48].

On the other hand, in weight-based task prioritization, each task is weighed
individually and optimized using ˜L =

∑k
t=1 wtLt. Studies use informative task-

specific loss value, validation performance, or gradients to balance training
dynamically. For instance, GradNorm [5] and LBTW [24] alter the gradients
of the network and prioritize tasks. Alternatively, some studies utilize train or
validation set performance to determine the difficulty or the incompleteness of
the task [11,19]. Task-wise weights can also be added as learnable parameters
and constrained using regularization terms to enforce non-trivial solutions as
done in [23]. Recently, DST [27] proposed a dropping mechanism to drop tasks
during MTL training. The tasks were dropped to prioritize the remaining weaker
tasks.

3 Proposed Algorithm

In this section, we first describe the notations, followed by our proposed algo-
rithm MultiBipGNN and its three components: (i) Bipartite Graph Encoder, (ii)
Multi Task Self Supervised Learning, and (iii) DST++.

3.1 Notation

Let G be a bipartite graph = (U , V , E), where U and V are two separate sets
of nodes, and E ⊆ U × V represents the edges. G comprises two types of nodes:
those that belong to the same set are similar, while those in different sets are
dissimilar. Let A be a binary adjacency matrix of size |U | × |V |, where each
element Aij indicates whether a node ui ε U has a connection with a node vj ε
V . The aim of bipartite graph embedding is to assign a d-dimensional vector to
each node in G, denoted as ui and vj for ui and vj , respectively.

3.2 Bipartite Graph Encoder

We propose a bipartite graph encoder for the shared backbone of the multi-task
network. We train two encoders, the first one learning representations of u-type
nodes and the other for v-type nodes.

24 A. Sethi et al.

Since the direct neighbors in a bipartite graph are of different types, the
message-passing mechanism of homogeneous graphs cannot be applied to bipar-
tite graphs. Hence, we describe the message passing for uk

i as follows, with vk
j

also following the same process. First, we generate temporary representations v̂k
j

via a mean aggregation as:

v̂k
j = δ(Ŵ k

v .MEAN(uk−1
i : ui ∈ N(vj))), (1)

where, k is the layer, δ the non-linear activation, W k is a weight matrix, and
N(vj) denotes one-hop neighbors of vj . Due to its construction, v̂k

j can be consid-
ered a u-type embedding. Now at the one hop, we have two types of neighbors:
vk−1

j , the natural neighbor, and v̂k
j , the constructed temporary neighbor. We

apply a non-linear transform on vj using an MLP and then aggregate both
kinds of neighbors and the self-node using multi-head soft attention (MHSA)
(Fig. 2).

Fig. 2. Message Passing in Proposed Bipartite Graph Encoder

We define an augmented neighborhood for a node ui, consisting of all the
one-hop natural neighbors vj and temporary neighbors v̂j . We then perform a
graph attention-based convolution using MHSA on the augmented neighborhood
to learn the feature representations for the node ui.

αk
ij =

exp(δ(aT [W k
u uk−1

i ‖W k
u vk−1

j))
∑

l∈Ni
exp(δ(aT [W k

u uk−1
i ‖W k

u vk−1
l]))

(2)

ui = δ

⎛

⎝

1
N

N
∑

n=1

∑

j∈Ni

αk
ijW

k
u vk−1

j

⎞

⎠ (3)

Here, αk
ij denotes the attention weights that aggregate information over the

augmented neighborhood. δ is the non-linear activation, and a is an MLP which
adds further expressivity to the attention mechanism. To stabilize attention, we
use N heads [38,39] and take an average to obtain the final embedding.

Multi-task Self-supervised Bipartite Graph Representation Learning 25

Building the intuition of the algorithm, we require information from the
same type of nodes for message passing. However, complementary information
from the other node type can also assist. Hence, we aggregate the two kinds
of neighbors using MHSA, which can decide how much to weigh each piece of
information. We use an MLP for implicit domain alignment between the two
feature domains u and v, as followed by C-BGNN [15].

3.3 Multi Task Self Supervised Learning

This work proposes five pretext tasks to cover three high-level philosophies: gen-
erative reconstruction, contrastive learning, and maximizing mutual information
between local and global representations. The details of these five tasks are:

Generative Reconstruction: This aims to generate the node features (feature
reconstruction) and topology (topological reconstruction) from its embedding.

Feature Reconstruction: Using MultiBipGNN, we first encode node features
by masking the features of a random batch of nodes. Next, we reconstruct the
masked node features after remasking them against the node representations [17].
For the same, we utilize the u encoder, fg,u, to reconstruct the representations for
u-type nodes and v encoder, fg,v to reconstruct for v-type nodes. The following
equations describe the reconstruction loss for u type nodes.

X̂u
′
= A′.fg,u(G′; θg,u) � Mu.WDec

u (4)

LFeatRec,u =
‖X̂ ′

u � M̂u − X ′
u � M̂u‖F

‖X ′
u � M̂u‖F

(5)

Here � refers to the Hadamard product, X ′
u is the feature matrix of the

sampled subgraph, A′ is the adjacency matrix for the same and Mu and M̂u are
the masked and remasked feature matrices. The final loss to be minimized for
feature reconstruction is the sum of u-type and v-type losses.

Topological Reconstruction: We also reconstruct links between connected
nodes to retain pair-wise topological knowledge. Given a sampled sub-graph G

′
,

we randomly sample B positive node pairs where the links exist and B negative
node pairs where no edge exists. The probability of connection between two
nodes is calculated as:

Plink(i, j) = δ
(

(fu(G
′
; θg,u)[ui] � fv(G

′
; θg,v)[vj]).WTopo

)

(6)

Finally, topological reconstruction maximizes the probabilities of positive node
pairs and minimizes for negative node pairs as:

LTopoRec =
−1
2B

∑

(ui,vj)∈V +

log(Plink(ui, vj)) +
∑

(ui,vj)∈V −
log(1 − (Plink(ui, vj)))

(7)

26 A. Sethi et al.

Contrastive Learning: Contrastive learning aims to maximize mutual infor-
mation by contrasting positive pairs with negative-sampled counterparts. Moti-
vated by GraphCL [44], we define a formulation for bipartite graphs. While
pre-training the GNN, a random set of N sub-graphs is chosen and used in con-
trastive learning. This process results in 2N augmented graphs, which are used
to optimize the contrastive loss. Here, u nodes are contrasted with u-type nodes
to obtain positive examples for the u-type anchor. On the contrary, negative
pairs are not explicitly sampled but obtained from the other augmented graphs
in the same set of N sub-graphs. un,i and un,j are the positive samples gener-
ated using augmentation from the same node. sim is a similarity measure like
cosine similarity. We follow the same process for v type nodes. Lastly, the final
contrastive learning loss to be minimised is the sum of u-type and v-type losses.

LContrastive,u = −log
exp(sim(un,i, un,j)/τ)

∑N
n′=1,n′ �=n exp(sim(un,i, un′ ,j)/τ)

(8)

Mutual Information Maximization: This involves maximizing the mutual
information between two views of the same target, which assists in learning
intrinsic patterns [16]. To maximize local-global mutual information, we min-
imize the distance between the intact graph-level representation and its edge
representations while simultaneously maximizing the distance between the for-
mer and the corrupted edge representations. We extend the DGI [39] method
for a bipartite graph by maximizing the mutual information between the edge
embeddings and the global representation of the graph.

L1
MI =

1
N + M

⎛

⎝

N
∑

i=1

E(X,A) [logD(hi, g)] +
M
∑

j=1

E(˜X,˜A)

[

log(1 − D(˜hj , g))
]

⎞

⎠

(9)
Here, g is the graph representation, defined using mean over node represen-

tations for both u-type and v-type and then concatenated. Similarly, we com-
pute local edge representation h by concatenating node representations of u
and v. As a proxy for maximizing the mutual information, we employ a dis-
criminator D(hi, g) [4,39]. It represents the probability scores assigned to the
patch-summary pair (higher score for patches contained within the summary).

Motivated from BiGI [4], we also maximize the mutual information between
sub-graph and global graph representations. Here, we maximize the mutual infor-
mation between the embeddings of a subgraph defined around an edge and the
global representation.

pu = MEAN(ui;ui ∈ U),pv = MEAN(vi; vi ∈ V),
g = COM(pu, pv) = [σ(pu)|σ(pv)] (10)

gh
(u,v) =

⎡

⎣σ(
∑

vi∈Gh(u)

αu,ivi + u)|σ(
∑

ui∈Gh(u)

αv,iui + v)

⎤

⎦ (11)

Multi-task Self-supervised Bipartite Graph Representation Learning 27

Here g is the global graph representation and gh
(u,v) is the sub-graph rep-

resentation. gh
(u,v) is computed around edge u, v and is defined by taking a h-

hop neighbourhood and learning attention weights for both u and v. Finally, as
described below, we maximize the mutual information between the subgraph and
global graph representation using the actual graph and its corrupted version.

L2
MI =

1

N + M

(
N∑
i=1

E(X,A)

[
logD(gh

(u,v), g)
]

+

M∑
j=1

E(˜X,˜A)

[
log(1 −D(˜gh

(u,v), g))
])

(12)

3.4 DST++: Dropped Schedule Task MTL with Task Affinity

Fig. 3. DST++ Task Dropping Mechanism

Empirical observations show that combining pre-text SSL tasks with
weighted summation can improve task generalization, but a multi-task self-
supervised GNN may not always perform as well as expert models on some
downstream tasks due to potential conflicts between SSL tasks (Fig. 3).

Malhotra et al. [27] recently proposed the DST algorithm for optimized train-
ing of weaker tasks and avoiding negative transfer in MTL. They encoded a
cumulative activation probability Pk,t with five different metrics. This activa-
tion probability Pk,t denoted the probability with which the tth task will remain
active in the kth epoch. Stochastically, the dropped task was removed from
joint optimization in the epoch, and the remaining tasks jointly optimized the
network. However, the DST algorithm fails to consider task relatedness and
affinities. Independent task-level activation can result in dissimilar tasks being
“switched ON” together. Hence, in this research, we proposed DST++. The
enhanced DST++ includes task affinity alongside three original key metrics of
task completion, task stagnancy, and regularization to avoid catastrophic for-
getting.

28 A. Sethi et al.

Task Affinity Metric: First, we require a task affinity matrix based on which
task affinity metric Pa

k,t can be defined. This task affinity metric Pa
k,t will then

be used to obtain the task activation probability Pk,t. Inspired by Fifty et al. [8],
the idea is to compute how gradient update due to a task Ti affects another task
Tj at the shared layers. If the forward looking weight update due to Ti positively
impacts Tj (loss Lj decreases), the task can be said to be related. Hence, the
affinity at iteration k can be defined as:

Zk
j→i = 1 − L

(k+1)|θk+1
i

j

Lk
j

(13)

On a positive impact, L
(k+1)|θk+1

i
j < Lk

j and hence, Zk
j→i indicates a positive

affinity. On the contrary, if L
(k+1)|θk+1

i
j > Lk

j , the weight update on shared layers
due to Ti harmed the learning of Tj , and hence a negative affinity. A generalized
score at training or epoch level can then be computed as Ẑk

j→i = 1
K

∑K
k=1 Zk

j→i.
Lastly, using Ẑk

j→i, the task groupings are computed using a branch and bound
algorithm [8]. Once the groups are created based on task affinity, the next step is
to create the task affinity metric Pa

k,t. For all tasks Ti ⊆ T , where Ti are number
of task in the ith group, the task affinity metric Pa

k,t can be defined as:

Pa
(k,t) =

{

1
2 ∗ (1 + sin2πk

M) if k ∈ (n ∗ (i − 1), n ∗ i];
1
2 ∗ sin2πk

M

(14)

Here k is the training epoch, M is the total number of groups and it operates
same for all tasks in the ith group. n represents a natural number, which takes
on values 1,2,3 depending on values of k to make the entire metric periodic.

As a last step, we also utilize Pb
k,t, Pc

k,t, and Pd
k,t for task completion, task

stagnancy, and regularization from DST [27], respectively. Task completion met-
ric is Pb

(k,t) = min
(

1,
I(k,t)

E(I(k))

)

, where I(k,t) is the ratio of current loss value over

initial loss value for tth task and E(I(k)) is expected value across all task. Simi-
larly, Pc

k,t computes the duration for which the loss value for each task has been
stagnant and prefers activation of longer stagnant tasks. Lastly, Pd

k,t=1 is a reg-
ularization to prevent tasks from remaining OFF forever and limits catastrophic
forgetting.

With all four metrics computed, the overall task activation probability Pk,t

can be defined as:

P(k,t) = λ1Pa
(k,t) + λ2Pb

(k,t) + λ3Pc
(k,t) + λ4Pd

(k,t) (15)

where
∑

λi = 1. For each task, its activation is decided by sampling 1 or 0
gate using the P(k,t), sampled from an independent Bernoulli distribution, hence
scheduling tasks at each epoch.

Multi-task Self-supervised Bipartite Graph Representation Learning 29

DST++ Multi-task Network Initialization: Another extension we propose
to DST in DST++ is in the area of better network initialization. DST uses ran-
dom init, with no emphasis on initialization based on tasks. Once we obtain the
task affinities and groupings, we then compute inter-group affinities. Using these
inter-group affinities, we initialize the multi-task network by network weights of
tasks belonging to the group with minimum inter-group affinity. This takes the
network weights in a space where the remaining tasks don’t dominate the less
related task group. The formulation for inter-group affinity is given as follows:

Ai =

∑T
t=1

∑J
j=1 τt,j

Nt ∗ Nj
(16)

Here Ai is the affinity of task group i and τt,j is the task affinity of the tasks
t and j. Here, task t belongs to group i while task j is outside group i. Finally,
Nt is the number of tasks in group i and Nj is the remaining number of tasks.

4 Experiments

In this section, we go into detail about the datasets, tasks, and experimental
setup that MultiBipGNN was trained and tested on. Furthermore, we will also
describe the baselines it has been compared with.

4.1 Datasets

We conduct extensive experimentation with different tasks using four open
benchmark datasets. These include MovieLens-100k (ML) [14], Amazon CD
(AC) [36], Amazon Movie (AM) [35] and Aminer Paper-Author (PA) [40]
datasets. Table 1 lists the statistics for different datasets, comprising the number
of nodes, types of nodes, and number of edges in the graph. The aim of using such
a wide range of datasets and tasks is to thoroughly evaluate how generalizable
the proposed approach is.

Table 1. Dataset Statistics

Dataset Node Types |U | |V | |E|
MovieLens-100k [14] User, Movie 943 1,682 100,000

Amazon Music [35] User, Movie 53,986 54,523 453,228

Amazon CD [36] User, CD 44,025 48,856 946,138

Paper-Author [40] Author, Paper 79,250 47,385 260,897

30 A. Sethi et al.

4.2 Downstream Tasks and Evaluation Metrics

We assess the performance of our proposed method using the node classification,
node regression, and link prediction tasks as three common downstream tasks.
The metrics used to evaluate each task’s performance are Accuracy (Acc), Mean
Squared Error (MSE), and Area under the Curve (AUC).

To carry out node regression, we rely on three datasets, Amazon CD, Ama-
zon Music and MovieLens-100k. For the link prediction we again rely on three
datasets, Amazon CD, Amazon Music and MovieLens-100k. To perform node
classification, we make use of the Paper-Author dataset, which involves a subset
of Aminer papers published in the top 10 venues.

4.3 Evaluation Protocol

To conduct various downstream tasks, we utilize the standard linear-evaluation
protocol on graphs, as proposed by [22,39]. For all three tasks, this entails freez-
ing the parameters of the GNN encoder, retrieving the embeddings of the corre-
sponding nodes during inference, and training only linear models. For datasets
whose splits are available we utilize the public splits provided for evaluation.
However, for other datasets, we adopt a 80%/10%/10% split for train/validation
/test, which is consistent with the methodology used in other works [4,22,39].

4.4 Baselines

We compared the state of the art (SoTA) unsupervised graph representation
learning methods from the homogeneous, heterogeneous, and bipartite graph
literature with our proposed algorithm.

– Homogeneous and Heterogeneous Graph Embeddings: We compare
our algorithm with strong homogeneous methods like Node2Vec, GraphSAGE
and GAT. Node2Vec employs Skip-Gram to acquire node embeddings that
maintain the graph’s structure, but it never employs the features of the nodes.
GraphSAGE and GAT aim to preserve the local graph structure by aggre-
gating neighbouring features. On the Heterogeneous side, we compare with
Metapath2Vec.

– Bipartite Graph Embeddings: As mentioned in the related work section,
there are several works which learn representations for bipartite graphs as
homogeneous and heterogeneous methods prove to be suboptimal. We do a
comparison with algorithms like BiNE, C-BGNN and BiGI.

5 Results and Analysis

Results of the proposed algorithm, MultiBipGNN are discussed in this section.
We extensively experiment on different datasets and tasks, and compare with
various strong baselines.

Multi-task Self-supervised Bipartite Graph Representation Learning 31

5.1 Comparison with Unsupervised Baselines

We evaluate MultiBipGNN by comparing it with seven other unsupervised learn-
ing methods, which are considered as strong baselines. Table 2 shows that none
of the baseline algorithms can perform favorably on all downstream tasks across
all datasets. When it comes to specific tasks, BiGI excels at link prediction but
struggles with node classification and node regression. However, C-BGNN is less
effective for other tasks than node regression and classification.

As detailed in above sections, we carry out node regression using three
datasets AC, AM and ML. In AC and AM the task is the predict the mean
rating of a CD and Movie respectively, whereas in ML we predict the user’s age.
We use Mean Squared Error (MSE) to compare the performance of all methods
on this task. We see a relative improvement of about 10% using our algorithm
across all three datasets relative to the corresponding best performing baseline.
For the link prediction we again rely on three datasets, Amazon CD, Amazon
Music and MovieLens-100k. In the AC dataset, a connection between a user
and a CD signifies that the user has given a rating to that particular CD. Like-
wise, in the AM and ML datasets, a link exists if a user has rated a movie.
Our algorithm has shown a comparative improvement of approximately 7% in
all three datasets. We use the PA dataset for the node classification task where
the aim is to predict the venue of a paper. Here also we beat the baselines with
an improvement of 5%.

The results reveal that our technique can generalize across tasks and datasets
due to the usage of multiple SSL tasks and DST++ to coordinate them. Multi-
BipGNN outperforms baselines on all tasks, in contrast to competing baselines,
which excel on a single task.

Table 2. Performance Comparison with existing Literature

Method Regression(MSE) Link Prediction(AUC) Classification (Acc)

AC AM ML AC AM ML PA

Node2Vec 0.50 0.52 0.71 0.80 0.82 0.62 0.50

GraphSage 0.32 0.41 0.67 0.76 0.80 0.64 0.55

GAT 0.32 0.38 0.79 0.72 0.75 0.70 0.56

Metapath2vec 0.36 0.42 0.70 0.85 0.86 0.62 0.55

BINE 0.34 0.50 0.71 0.86 0.86 0.75 0.54

BiGi 0.36 0.4 0.81 0.91 0.92 0.82 0.54

C-BGNN 0.31 0.37 0.65 0.85 0.88 0.75 0.58

MultiBipGNN 0.27 0.34 0.58 0.95 0.96 0.90 0.62

32 A. Sethi et al.

5.2 Ablation Study

We perform experiments on our pretext tasks and evaluate their performance
individually as shown in Table 3. Our observations shows that a model designed
for single-task is not efficient to give competitive results on different down-
stream task for all datasets. This reveals that knowledge learned through a single
methodology is not enough for consistent task generalization. Models trained on
a single pretext task alone can only provide satisfactory results on a few tasks
or datasets, making them narrow experts.

For example, Feature Reconstruction performs well on node classification and
regression but performs poorly on all other tasks. Similarly, MI-Subgraph-Graph
(BiGI) performs well on link prediction but underperforms on other tasks. How-
ever, when we compared these models with the model which is trained on combi-
nation of all pretext tasks through weighted summation (i.e., w/o DST++), we
discover that the latter achieved both robust task generalization and stronger
single-task performance. Multiple objectives help regularize the learning model
against extracting unessential information, enabling the model to learn multiple
complementary views of the given bipartite graphs.

Table 3. Ablation Results

Method Regression (MSE) Link Prediction (AUC) Classification (Acc)

AC AM ML AC AM ML PA

MI-Edge-Graph 0.35 0.38 0.78 0.88 0.90 0.80 0.55

MI-Subgraph-Graph 0.36 0.40 0.81 0.91 0.92 0.82 0.54

Topological Reconstruction 0.34 0.40 0.76 0.86 0.89 0.80 0.52

Feature Reconstruction 0.31 0.38 0.65 0.80 0.80 0.73 0.58

Contrastive Learning 0.32 0.37 0.70 0.84 0.80 0.76 0.56

MultiBipGNN (w/o DST++) 0.29 0.39 0.62 0.90 0.92 0.84 0.58

MultiBipGNN 0.27 0.34 0.58 0.95 0.96 0.90 0.62

In some cases, we notice significant performance differences between the best-
performing single-task models and the vanilla multi-task model w/o DST++.
MultiBipGNN addresses this issue by dropping and scheduling tasks. Table 3
shows that MultiBipGNN is the highest-performing model in terms of both
average metric and individual downstream tasks, indicating strong task gen-
eralization and promising single-task performance.

6 Conclusion

We present MultiBipGNN, a multi-task self supervised approach for learning rep-
resentations in bipartite graphs. We furthermore propose DST++ to minimize
conflicts and negative transfer among the SSL pretext tasks. Through exten-
sive experimentation across four public graph datasets and three tasks, node

Multi-task Self-supervised Bipartite Graph Representation Learning 33

classification, node regression and link prediction we show that our algorithm
is able to capture complementary knowledge from diverse SSL philosophies and
is able to comprehensively beat strong baselines and individual SSL tasks it is
trained on. We believe our work is a first step towards training a generalist model
(foundation model) for bipartite graphs.

Ethics Statement. Our proposed algorithm does not raise any ethical concerns, how-

ever, it is important to note that ethical applications of graphs can potentially benefit

from the improved task generalization and performance provided by our work. To

ensure positive and socially beneficial outcomes of machine learning algorithms, it is

crucial to exercise caution and responsibility.

References

1. Berg, R.V.D., Kipf, T.N., Welling, M.: Graph convolutional matrix completion.
arXiv preprint arXiv:1706.02263 (2017)

2. Bommasani, R., et al.: On the opportunities and risks of foundation models. arXiv
preprint arXiv:2108.07258 (2021)

3. Cai, H., Zheng, V.W., Chang, K.C.C.: A comprehensive survey of graph embed-
ding: problems, techniques, and applications. IEEE Trans. Knowl. Data Eng. 30(9),
1616–1637 (2018)

4. Cao, J., Lin, X., Guo, S., Liu, L., Liu, T., Wang, B.: Bipartite graph embedding
via mutual information maximization. In: ACM International Conference on Web
Search and Data Mining, pp. 635–643 (2021)

5. Chen, Z., Badrinarayanan, V., Lee, C.Y., Rabinovich, A.: Gradnorm: gradient nor-
malization for adaptive loss balancing in deep multitask networks. In: International
Conference on Machine Learning, pp. 794–803 (2018)

6. Doersch, C., Zisserman, A.: Multi-task self-supervised visual learning. In: IEEE
International Conference on Computer Vision, pp. 2051–2060 (2017)

7. Dong, Y., Chawla, N.V., Swami, A.: metapath2vec: scalable representation learn-
ing for heterogeneous networks. In: ACM International Conference on Knowledge
Discovery and Data Mining, pp. 135–144 (2017)

8. Fifty, C., Amid, E., Zhao, Z., Yu, T., Anil, R., Finn, C.: Efficiently identifying task
groupings for multi-task learning. Adv. Neural. Inf. Process. Syst. 34, 27503–27516
(2021)

9. Gao, M., Chen, L., He, X., Zhou, A.: Bine: bipartite network embedding. In: ACM
Conference on Research & Development in Information Retrieval, pp. 715–724
(2018)

10. Grover, A., Leskovec, J.: node2vec: scalable feature learning for networks. In: ACM
International Conference on Knowledge Discovery and Data Mining, pp. 855–864
(2016)

11. Guo, M., Haque, A., Huang, D.A., Yeung, S., Fei-Fei, L.: Dynamic task prioriti-
zation for multitask learning. In: European Conference on Computer Vision, pp.
270–287 (2018)

12. Hamilton, W., Ying, Z., Leskovec, J.: Inductive representation learning on large
graphs. In: Advances in Neural Information Processing Systems, vol. 30 (2017)

13. Hamilton, W.L., Ying, R., Leskovec, J.: Representation learning on graphs: meth-
ods and applications. arXiv preprint arXiv:1709.05584 (2017)

http://arxiv.org/abs/1706.02263
http://arxiv.org/abs/2108.07258
http://arxiv.org/abs/1709.05584

34 A. Sethi et al.

14. Harper, F.M., Konstan, J.A.: The movielens datasets: history and context. ACM
Trans. Interact. Intell. Syst. 5(4), 1–19 (2015)

15. He, C., et al.: Cascade-BGNN: toward efficient self-supervised representation learn-
ing on large-scale bipartite graphs. arXiv preprint arXiv:1906.11994 (2019)

16. Hjelm, R.D., et al.: Learning deep representations by mutual information estima-
tion and maximization. arXiv preprint arXiv:1808.06670 (2018)

17. Hou, Z., Liu, X., Dong, Y., Wang, C., Tang, J., et al.: Graphmae: self-supervised
masked graph autoencoders. arXiv preprint arXiv:2205.10803 (2022)

18. Hu, W., et al.: Strategies for pre-training graph neural networks. arXiv preprint
arXiv:1905.12265 (2019)

19. Jean, S., Firat, O., Johnson, M.: Adaptive scheduling for multi-task learning. arXiv
preprint arXiv:1909.06434 (2019)

20. Jin, W., Liu, X., Zhao, X., Ma, Y., Shah, N., Tang, J.: Automated self-supervised
learning for graphs. arXiv preprint arXiv:2106.05470 (2021)

21. Jing, B., Yan, Y., Zhu, Y., Tong, H.: Coin: co-cluster infomax for bipartite graphs.
arXiv preprint arXiv:2206.00006 (2022)

22. Ju, M., et al.: Multi-task self-supervised graph neural networks enable stronger
task generalization. arXiv preprint arXiv:2210.02016 (2022)

23. Liebel, L., Körner, M.: Auxiliary tasks in multi-task learning. arXiv preprint
arXiv:1805.06334 (2018)

24. Liu, S., Liang, Y., Gitter, A.: Loss-balanced task weighting to reduce negative
transfer in multi-task learning. In: AAAI Conference on Artificial Intelligence, vol.
33, no. 01, pp. 9977–9978 (2019)

25. Lu, Y., Kumar, A., Zhai, S., Cheng, Y., Javidi, T., Feris, R.: Fully-adaptive feature
sharing in multi-task networks with applications in person attribute classification.
In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 5334–5343
(2017)

26. Malhotra, A., et al.: Multi-task driven explainable diagnosis of COVID-19 using
chest X-ray images. Pattern Recogn. 122, 108243 (2022)

27. Malhotra, A., Vatsa, M., Singh, R.: Dropped scheduled task: mitigating negative
transfer in multi-task learning using dynamic task dropping. Trans. Mach. Learn.
Res. (2022)

28. Mavromatis, C., Karypis, G.: Graph infoclust: maximizing coarse-grain mutual
information in graphs. In: Advances in Knowledge Discovery and Data Mining,
pp. 541–553 (2021)

29. Ni, M., et al.: M3P: learning universal representations via multitask multilingual
multimodal pre-training. In: IEEE Conference on Computer Vision and Pattern
Recognition, pp. 3977–3986 (2021)

30. Park, C., Kim, D., Han, J., Yu, H.: Unsupervised attributed multiplex network
embedding. In: AAAI Conference on Artificial Intelligence, vol. 34, no. 04, pp.
5371–5378 (2020)

31. Peng, Z., et al.: Graph representation learning via graphical mutual information
maximization. In: The Web Conference, pp. 259–270 (2020)

32. Perozzi, B., Al-Rfou, R., Skiena, S.: Deepwalk: online learning of social repre-
sentations. In: ACM International Conference on Knowledge Discovery and Data
Mining, pp. 701–710 (2014)

33. Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., Sutskever, I., et al.: Language
models are unsupervised multitask learners. OpenAI Blog 1(8), 9 (2019)

34. Sanh, V., et al.: Multitask prompted training enables zero-shot task generalization.
arXiv preprint arXiv:2110.08207 (2021)

http://arxiv.org/abs/1906.11994
http://arxiv.org/abs/1808.06670
http://arxiv.org/abs/2205.10803
http://arxiv.org/abs/1905.12265
http://arxiv.org/abs/1909.06434
http://arxiv.org/abs/2106.05470
http://arxiv.org/abs/2206.00006
http://arxiv.org/abs/2210.02016
http://arxiv.org/abs/1805.06334
http://arxiv.org/abs/2110.08207

Multi-task Self-supervised Bipartite Graph Representation Learning 35

35. Stratigi, M., Li, X., Stefanidis, K., Zhang, Z.: Ratings vs. reviews in recommender
systems: a case study on the amazon movies dataset. In: New Trends in Databases
and Information Systems, pp. 68–76 (2019)

36. Sun, J., Cheng, Z., Zuberi, S., Pérez, F., Volkovs, M.: HGCF: hyperbolic graph
convolution networks for collaborative filtering. In: The Web Conference, pp. 593–
601 (2021)

37. Tang, J., Qu, M., Wang, M., Zhang, M., Yan, J., Mei, Q.: Line: large-scale infor-
mation network embedding. In: International Conference on World Wide Web, pp.
1067–1077 (2015)

38. Vaswani, A., et al.: Attention is all you need. In: Advances in Neural Information
Processing Systems, vol. 30 (2017)

39. Veličković, P., Cucurull, G., Casanova, A., Romero, A., Lio, P., Bengio, Y.: Graph
attention networks. arXiv preprint arXiv:1710.10903 (2017)

40. Wan, H., Zhang, Y., Zhang, J., Tang, J.: Aminer: search and mining of academic
social networks. Data Intell. 1(1), 58–76 (2019)

41. Wang, X., He, X., Wang, M., Feng, F., Chua, T.S.: Neural graph collaborative fil-
tering. In: ACM International Conference on Research and Development in Infor-
mation Retrieval, pp. 165–174 (2019)

42. Yamanishi, Y., Kotera, M., Kanehisa, M., Goto, S.: Drug-target interaction predic-
tion from chemical, genomic and pharmacological data in an integrated framework.
Bioinformatics 26(12), i246–i254 (2010)

43. Ying, R., He, R., Chen, K., Eksombatchai, P., Hamilton, W.L., Leskovec, J.: Graph
convolutional neural networks for web-scale recommender systems. In: ACM Inter-
national Conference on Knowledge Discovery & Data Mining, pp. 974–983 (2018)

44. You, Y., Chen, T., Sui, Y., Chen, T., Wang, Z., Shen, Y.: Graph contrastive learn-
ing with augmentations. Adv. Neural. Inf. Process. Syst. 33, 5812–5823 (2020)

45. Zamir, A.R., et al.: Robust learning through cross-task consistency. In: IEEE Con-
ference on Computer Vision and Pattern Recognition, pp. 11197–11206 (2020)

46. Zhang, M., Chen, Y.: Inductive matrix completion based on graph neural networks.
arXiv preprint arXiv:1904.12058 (2019)

47. Zhang, Y., Xiong, Y., Kong, X., Zhu, Y.: Learning node embeddings in interaction
graphs. In: ACM Conference on Information and Knowledge Management, pp.
397–406 (2017)

48. Zhang, Y., Yeung, D.Y.: A regularization approach to learning task relationships in
multitask learning. ACM Trans. Knowl. Discov. Data (TKDD) 8(3), 1–31 (2014)

49. Zhang, Y., Wang, D., Zhang, Y.: Neural IR meets graph embedding: a ranking
model for product search. In: The World Wide Web Conference, pp. 2390–2400
(2019)

50. Zhang, Z., Cui, P., Wang, X., Pei, J., Yao, X., Zhu, W.: Arbitrary-order proximity
preserved network embedding. In: ACM International Conference on Knowledge
Discovery & Data Mining, pp. 2778–2786 (2018)

51. Zhu, Y., Xu, Y., Yu, F., Liu, Q., Wu, S., Wang, L.: Deep graph contrastive repre-
sentation learning. arXiv preprint arXiv:2006.04131 (2020)

52. Zhu, Y., Xu, Y., Yu, F., Liu, Q., Wu, S., Wang, L.: Graph contrastive learning
with adaptive augmentation. In: The Web Conference, pp. 2069–2080 (2021)

http://arxiv.org/abs/1710.10903
http://arxiv.org/abs/1904.12058
http://arxiv.org/abs/2006.04131

ChiENN: Embracing Molecular Chirality
with Graph Neural Networks

Piotr Gaiński1(B), Micha�l Koziarski2,3, Jacek Tabor1, and Marek Śmieja1

1 Faculty of Mathematics and Computer Science, Jagiellonian University, Kraków,
Poland

piotr.gainski@doctoral.uj.edu.pl
2 Mila - Quebec AI Institute, Montreal, QC, Canada

3 Université de Montréal, Montreal, QC, Canada

Abstract. Graph Neural Networks (GNNs) play a fundamental role in
many deep learning problems, in particular in cheminformatics. However,
typical GNNs cannot capture the concept of chirality, which means they
do not distinguish between the 3D graph of a chemical compound and
its mirror image (enantiomer). The ability to distinguish between enan-
tiomers is important especially in drug discovery because enantiomers
can have very distinct biochemical properties. In this paper, we propose
a theoretically justified message-passing scheme, which makes GNNs sen-
sitive to the order of node neighbors. We apply that general concept in
the context of molecular chirality to construct Chiral Edge Neural Net-
work (ChiENN) layer which can be appended to any GNN model to
enable chirality-awareness. Our experiments show that adding ChiENN
layers to a GNN outperforms current state-of-the-art methods in chiral-
sensitive molecular property prediction tasks.

Keywords: Graph Neural Networks · GNN · Message-passing ·
Chirality · Molecular Property Prediction

1 Introduction

Recent advances in Graph Neural Networks (GNNs) have revolutionized chemin-
formatics and enabled learning the molecular representation directly from chem-
ical structures [9,30]. GNNs are widely used in molecular property prediction
[20,31,34,36], synthesis prediction [3,17], molecule generation [2,21,22], or con-
former generation [6,11,19,33]. Surprisingly, typical GNNs cannot capture the
concept of chirality, roughly meaning they do not distinguish between a molecule
and its mirror image, called enantiomer (see Fig. 1). Although enantiomers share
many physical, chemical, and biological properties, they may behave remark-
ably differently when interacting with other chiral molecules, e.g. chiral pro-
teins. For this reason, capturing chirality is critical in the context of drug design
[10,12,16,23,25] and should not be ignored by the design of GNN architecture.

A chiral molecule is a molecule with at least one chiral center which is usu-
ally a carbon atom with four non-equivalent constituents. The mirror image
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
D. Koutra et al. (Eds.): ECML PKDD 2023, LNAI 14171, pp. 36–52, 2023.
https://doi.org/10.1007/978-3-031-43418-1_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-43418-1_3&domain=pdf
https://doi.org/10.1007/978-3-031-43418-1_3

ChiENN: Embracing Molecular Chirality with Graph Neural Networks 37

Fig. 1. An example of a chiral molecule (left) and its mirror image (right).

of a chiral molecule, called an enantiomer, cannot be superposed back to the
original molecule by any combination of rotations, translations, and conforma-
tional changes (see Fig. 1). Therefore, enantiomers are molecules with different
bond arrangements and the same graph connectivity. There are many examples
of chiral drugs used in pharmacy whose enantiomers cause substantially differ-
ent effects [23]. For instance (S)-penicillamine is an antiarthritic drug while its
enantiomer (R)-penicillamine is extremely toxic [15].

Actually, chirality can be a characteristic of any class of graphs embedded in
euclidean space (where we have an intuitive notion of reflection). For instance,
Fig. 2 shows two 2D road maps that are mirror images of each other and possess
different properties. For this reason, modeling chirality in GNNs is not restricted
to the chemical domain.

Fig. 2. An illustration of a road map (left)
and its mirror image (right). We see that the
maps share the same connectivity between
cities, however, to get from city A to city B
one has to take the second exit on a round-
about D for the left map, and the first exit
for the right map.

In this paper, we propose and
theoretically justify a novel order-
sensitive message-passing scheme,
which makes GNNs sensitive to chi-
rality. In contrast to existing meth-
ods of embracing chirality, our frame-
work is not domain specific and does
not rely on arbitrary chiral tagging or
torsion angles (see Sect. 2). The only
inductive bias our method introduces
to a GNN is the dependency on the
orientation of the neighbors around a
node, which lies at the core of chiral-
ity.

The key component of the proposed framework is the message aggregation
function. In a typical GNN, the messages incoming to a node from its neighbors
are treated as a set and aggregated with a permutation-invariant function (sum,
max, etc.). It makes the model unable to distinguish between chiral graphs with
the same connectivity, but with different spatial arrangements. We re-invent this
approach and introduce a message aggregation function that is sensitive to the
spatial arrangement (order) of the neighbors. Our approach can be used in any

38 P. Gaiński et al.

chiral-sensitive graph domain where chirality can be expressed by an order of
the neighboring nodes.

We apply that general order-sensitive message-passing framework in the con-
text of molecular chirality to construct Chiral Edge Neural Network (ChiENN)
layer. The ChiENN layer can be appended to most molecular GNN models to
enable chirality sensitiveness. Our experiments show that ChiENN can be suc-
cessfully used within existing GNN models and as a standalone model consisting
of stacked ChiENN layers. In both cases, ChiENN outperforms current state-
of-the-art methods in chiral-sensitive molecular property prediction tasks by a
large margin. We make our code publicly available1.

Our contributions are as follows:

1. We propose and theoretically justify a general order-sensitive message-passing
scheme. Our method can be adapted to any chiral-sensitive graph domain
where chirality can be expressed by an order of the neighboring nodes
(Sect. 3).

2. We use the proposed framework to construct a novel ChiENN layer that
enables chirality awareness in any GNN model in the domain of molecular
graphs (Sect. 4). The proposed ChiENN can be applied to any 3D graph task
with the notion of chirality.

3. We evaluate and analyze the ChiENN layer and show that it outperforms cur-
rent state-of-the-art methods in chiral-sensitive molecular property prediction
tasks (Sect. 5).

2 Related Work

Explicit Tagging of Chiral Center. The most common approach for incor-
porating chirality into GNN is to use local or global chiral tags [13,18,27]. Both
local and global tagging can be seen in the following way. Every carbon atom
with four non-equivalent constituents, called a chiral center, is given a tag (CCW
or CW) describing the orientation of its constituents. The orientation is defined
using the enumeration of constituents computed by an arbitrary algorithm. The
constituent with the highest number (4) is positioned so that it points away
from the observer. The curve passing through the constituents with numbers 1,
2, and 3 respectively determines a clockwise (CW) or counterclockwise (CCW)
orientation of the chiral center. Although enumeration algorithms for global and
local tagging differ (the latter is not explicitly used in practice), the expressivity
of both methods is limited, as we show in Sect. 5.

3D GNNs with Torsion Angles. Some recent GNN models enrich graphs
with 3D information, like distances between atoms [4,20], angles between bonds
[8,28], and torsion angles between two bonds joined by another bond [5,7]. As dis-
tances and angles are invariant to chirality, the torsion angles (that are negated

1 https://github.com/gmum/ChiENN.

https://github.com/gmum/ChiENN

ChiENN: Embracing Molecular Chirality with Graph Neural Networks 39

upon reflection) are required for 3D GNN to express the chirality. However,
even access to a complete set of torsion angles does not guarantee expressivity
in chiral-sensitive tasks as shown in [1]. Torsion angles are sensitive to bond rota-
tions and can also be negated by the reflection of a non-chiral molecule. In [1],
the authors proposed the ChIRo model that instead of embedding single torsion
angles, embeds sets of torsion angles with a common bond. ChIRo is the current
state-of-the-art method for chiral-sensitive tasks. In contrast to ChIRo, our pro-
posed method does not incorporate distances, angles, or torsion angles. It only
relies on the orientation of neighbors around a node, making it more general and
easily adaptable to other chiral graph domains. Moreover, our experiments show
that the ChiENN layer outperforms ChIRo by a large margin on chiral-sensitive
molecular tasks (see Sect. 5).

Changing Aggregation Scheme. The method most related to our approach
is the Tetra-DMPNN model from [24] which replaces a classic message-passing
scheme with a chiral-sensitive one. The proposed aggregation scheme is guided by
local chiral tags, meaning that it relies on some arbitrary rules for enumerating
neighbors and cannot be applied to nodes other than chiral centers. Moreover,
the Tetra-DMPNN method is computationally expensive and does not scale with
the number of possible neighbors of a chiral center, making the model useful
only in the context of chemistry. Our approach provides a general, efficient, and
scalable chiral-sensitive message passing and outperforms the Tetra-DMPNN on
chiral-sensitive molecular tasks by a large margin (see Sect. 5).

3 Order-Sensitive Message-Passing Scheme

Setting. Let us consider a directed graph G = (X,E) in which every node
xi ∈ X is represented by a N -dimensional encoding (xi ∈ R

N). Edge eij connects
nodes xi and xj and is represented by M -dimensional encoding (eij ∈ R

M).
In addition, we assume that for every node x ∈ X, we are given an order o of

all its neighbors o = (x0, x1, . . . , xd−1). The order of neighbors forms a sequence,
which stands in contrast to typical graphs, where neighbors are treated as an
unordered set. Given a permutation π on {0, 1, . . . , d − 1}, we assume that two
orders o1 = (x0, . . . , xd−1) and o2 = (xπ(0), . . . , xπ(d−1)) are equivalent if and
only if π is a shift i.e. π(i) = (i + k) mod d, for a fixed k ∈ Z. In other words,
the neighbors form the sequence on a ring.

One of the most common mechanisms in GNN is message-passing, which
updates the representation of a node x by the information coming from its
neighbors (x0, . . . , xd−1), which can be written as:

x′ = f(x;x0, . . . , xd−1).

In this paper, we are going to describe the general message-passing scheme,
which is aware of the neighbors’ order. Before that, we discuss possible choices
of the aggregation function f .

40 P. Gaiński et al.

Vanilla Message-Passing as a Permutation-Invariant Transformation.
Let us first discuss a basic case, where f is a permutation-invariant function, i.e.

f(x;x0, . . . , xd−1) = f(x;xπ(0), . . . , xπ(d−1)),

for every permutation π of {0, 1, . . . , d − 1}. This aggregation ignores the order
of neighbors and lies in a heart of typical GNNs.

Let us recall that f is permutation-invariant with respect to {x0, x1, . . . , xd−1}
if and only if it can be decomposed in the form [35]:

f(x0, x1, . . . , xd−1) = ρ(
d−1∑

i=0

φ(xi)),

for suitable transformations φ and ρ. In the context of graphs, a general form of
a permutation-invariant aggregation of neighbors {x0, x1, . . . , xd−1} of x is:

x′ = f(x;x0, . . . , xd−1) = ρ(x;
d−1∑

i=0

φ(x;xi)), (1)

for suitable transformations φ and ρ. By specifying ρ, φ as neural networks, we
get the basic formula of vanilla message-passing.

Shift-Invariant Aggregation. Vanilla message-passing relies on permutation-
invariant aggregation and it does not take into account the neighbor’s order.
Thus we are going to discuss the weaker case of aggregation function f and
assume that f is shift-invariant, i.e.

f(x;x0, . . . , xd−1) = f(x;x0+p, . . . , xd−1+p),

for any shift by a number p ∈ 0, . . . , d − 1, where the additions on indices are
performed modulo d. This assumption is consistent with our initial requirement
that shifted orders are equivalent.

The following theorem gives a general formula for shift-invariant mappings.

Theorem 1. The function f is shift-invariant if and only if f can be written
as:

f(x0, . . . , xd−1) =
d−1∑

p=0

g(x0+p, . . . , xd−1+p)

for an arbitrary function g.

Proof. If f is shift invariant, then f(x0, . . . , xd−1) = f(x0+p, . . . , xd−1+p) for
every p, and consequently

f(x0, . . . , xd−1) =
d−1∑

p=0

1
d
f(x0+p, . . . , xd−1+p).

On the other hand, if the function f can be written as
∑d−1

p=0 g(x0+p, . . . , xd−1+p),
then it is shift-invariant for arbitrary function g.

ChiENN: Embracing Molecular Chirality with Graph Neural Networks 41

Following the above theorem, we get a general formula for shift-invariant
aggregation applicable to graphs:

x′ = ρ(x;
d−1∑

p=0

ψ(x;x0+p, . . . , xd−1+p)), (2)

for suitable ρ and ψ, where all additions are performed modulo d.
Now, we want to ensure that our function f is not only shift-invariant but

also order-sensitive

Order-Sensitive Message-Passing. Let us assume that we are in the class of
shift-invariant transformations. We are going to specify the formula (2) to obtain
ab aggregation, which is sensitive to any permutation other than shift. More
precisely, we say that f is order-sensitive if and only if for every permutation π,
we have:

f(x;x0, . . . , xd−1) = f(x;xπ(0), . . . , xπ(d−1)) ⇐⇒ π(i) = (i + k) mod d.

Let us investigate typical functions ψ in formula (2), which can be imple-
mented using neural networks. We start with the simplest case, where ψ is linear.
Then

d−1∑

p=0

ψ(x0+p, . . . , xd−1+p) =
d−1∑

p=0

d−1∑

i=0

wixi+p =
d−1∑

i=0

wi

d−1∑

p=0

xi+p =
d−1∑

i=0

wi

d−1∑

j=0

xj ,

does not depend on the order of the neighbors (x0, ..., xd−1). To construct more
complex functions, we use an arbitrary Multi-Layer Perceptron (MLP) as ψ.
Since MLPs are universal approximators (for a sufficiently large number of hid-
den units), we can find such parameters θ that

∑d−1
p=0 ψθ(xπ(0)+p, . . . , xπ(d−1)+p)

returns a different value for every permutation π that is not a shift. Therefore
our aggregation scheme with ψ given by MLP can learn order-sensitive mapping.

Following the above observations, we implement our order-sensitive message-
passing using MLP as ψ. To match our construction to various numbers of
neighbors in a graph, we restrict ψ to be k-ary (denoted as ψk) for some fixed
k > 1 and overload it so that:

ψk(x0, . . . , xd−1) = ψk(x0, . . . , xd−1, 0, . . . , 0)︸ ︷︷ ︸
k−d

for d < k.

Given that, we implement the Eq. (2) with the following neural network layer:

x′ = Wx +
d−1∑

p=0

ψk(x0+p, ..., xk−1+p),

ψk(x0+p, ..., xk−1+p) = W1σ(W2(x0+p|...|xk−1+p)).

(3)

42 P. Gaiński et al.

Fig. 3. An illustration of our update rule for node x with 3 ordered neighbors
(x0, x1, x2) and for k = 2. We see that ψk is used to embed pairs of consecutive
nodes.

Our k-ary message function ψk is composed of concatenation operator | and
two-layer MLP with ELU as σ. Intuitively, the output of ψk(x0+p, ..., xk−1+p)
can be seen as a message obtained jointly from k consecutive neighbors starting
from a neighbor p in order (x0, ..., xd−1) which is illustrated in Fig. 3.

4 ChiENN: Chiral-Aware Neural Network

In this section, we apply the order-sensitive message-passing framework to molec-
ular graphs. We show that order-sensitive aggregation is a key factor for embrac-
ing molecular chirality. Roughly speaking, in contrast to vanilla message-passing,
the proposed ChiENN (Chiral-aware Edge Neural Network) is able to distinguish
enantiomers, where one molecule is a mirror image of the second. Although we
evaluate the ChiENN model in the context of molecular property prediction, the
proposed model can be applied to any 3D graph task with the notion of chirality.

To construct ChiENN based on our order-sensitive message-passing scheme
from Eq. (3), we need to define a notion of neighbors’ order in molecular graphs
that grasps the concept of chirality (see Fig. 4). We introduce this notion of
order for edge (dual) molecular graphs and provide a simple transformation
from standard molecular graphs to edge molecular graphs. Therefore the rest of
the section is organized into three subsections:

1. Edge Graph describing the transformation from a molecular graph to its
edge (dual) form used in our ChiENN model,

2. Neighbors Order defining the order of the neighbors in an edge graph,
3. Chiral-Aware Update constructing order-sensitive update rule using our

order-sensitive framework from the Sect. 3.

4.1 Edge Graph

Let us suppose, we have a directed graph G = (X,C,E) that represents a con-
crete conformation (3D embedding) of a molecule. The node encoding xi ∈ X

ChiENN: Embracing Molecular Chirality with Graph Neural Networks 43

Fig. 4. An intuitive illustration of the neighbor ordering in a molecule. First, we pick
a directed bond from atom C to H and then order the rest of the neighbors around
that bond. We observe that for a chiral molecule (left) and its mirror image (right), we
obtain different orders of the COOH, CH3, and OH constituents.

corresponds to an i-th atom from a molecule, ci ∈ C ⊆ R
3 are its coordinates

in 3D space, and the edge encoding eij ∈ E represents a bond between i-th and
j-th atoms.

To make the definition of neighbor order straightforward, our ChiENN model
operates on an edge (dual) graph G′ = (X ′, C ′, E′) which swaps nodes with edges
from the original graph G. It means that the node xij ∈ X ′ represents the edge
eij ∈ E, while the edge eij,jk ∈ E′ represents the node xj that connects edge
eij ∈ E with ejk ∈ E. Similarly, c′

ij ∈ R
3 × R

3 is now a 3D coordinate vector
that links positions ci and cj . Formally, we have:

X ′ = {xij = eij : eij ∈ E},

C ′ = {cij = ci|cj : ci, cj ∈ C, eij ∈ E},

E′ = {eij,jk = eij |xj |ejk : eij , ejk ∈ E, xj ∈ X},

where | stands for a concatenation operator. Clearly, the constructed edge graph
G′ = (X ′, C ′, E′) can be fed to any GNN that can take as an input the original
graph G = (X,C,E).

4.2 Neighbors Order

In an edge molecular graph G = (X,C,E), a node xjk ∈ E represents a directed
bond from atom j to atom k in the original molecule. It is assigned with a 3D
vector cjk ∈ C ⊆ R

3 × R
3 spanned from atom j to atom k. Therefore, we will

sometimes refer to nodes as if they were 3D vectors.
Let us consider the node xjk and the set of its incoming neighbors: N(xjk) =

{xi1j , xi2j , ..., xidj}. By construction of G, every node xjk has a corresponding
parallel node xkj . For simplicity, we will treat this parallel node separately and
exclude it from the set of neighbors, i.e. xkj /∈ N(xjk).

The construction of the neighbors N(xjk) order is illustrated in Fig. 5 and
consists of two steps:

1. Transformation: first, we perform a sequence of 3D transformations on xjk

and N(xjk) to make xjk anchored to coordinate origin, perpendicular to yz
plane and pointed away from the observer (see Fig. 5b)).

44 P. Gaiński et al.

Fig. 5. An illustration of ordering the neighbors {x0, x1, x2} of xjk for a chiral molecule
(top) and its mirror image (bottom) around the chiral center j. First, we perform a
sequence of 3D transformations on xjk and its neighbors to make xjk anchored to
coordinate origin, perpendicular to yz plane and pointed away from the observer. Next,
we project the transformed neighbors to the yz plane and sort the projections by the
angle to the y axis. We see that for the chiral molecule (top) and its mirror image
(bottom), we obtained non-equivalent orders (x1, x0, x2) and (x0, x1, x2).

2. Sorting: second, we project the transformed neighbors N(xjk) to the yz plane
and sort the projections by the angle to the y axis.

Details of the above construction are presented in the supplementary materials.
Two observations can be made regarding the above construction:

Observation 1. The above construction returns non-equivalent orders for a chi-
ral center and its mirror image.

Observation 2. Any SE(3) transformation of a molecule coordinates C and
any internal rotation of its bonds (conformation) can only change the shift of
the order o, resulting in equivalent order o′.

Therefore, the above construction grasps the notion of chirality in a molecule
and is additionally SE(3)- and conformation-invariant.

We artificially excluded xkj from a set of xjk neighbors, because its parallel
to xjk and therefore its angle to y axis after the sequence of transformations is
undefined. In theory, another neighbor xij can also be parallel to xjk and should
also be excluded from the neighbor set, but we have not observed such a case in
our experiments and decided not to take it into account.

4.3 Chiral-Aware Update

Once we transformed a molecular graph to edge (dual) molecular graph G =
(X,E,C) using transformation from Sect. 4.1 and assigned every node xjk with

ChiENN: Embracing Molecular Chirality with Graph Neural Networks 45

an order of its neighbors (x1, ..., xd) using construction from Sect. 4.2, we can
define the order-sensitive update rule of our ChiENN model:

x′
jk = W1xjk + W2xkj +

d−1∑

p=0

ψk(x0+p, ..., xk−1+p),

ψk(x0+p, ..., xk−1+p) = W3σ(W4(x0+p|...|xk−1+p)),

(4)

where ψk is k-ary message function and σ is ELU non-linear activation. The
update rule is almost the same as that from Eq. (3), but here we add a term
that explicitly embeds xkj node, which was artificially excluded from the order
of the xjk neighbors.

5 Experiments

We compare ChiENN with several state-of-the-art models on a variety of chiral-
sensitive tasks. Details of experiments are described in Sect. 5.1, while the results
can be found in Sect. 5.2. Furthermore, to validate design choices behind ChiENN
we also conducted an ablation study, presented in Sect. 5.3.

5.1 Set-Up

Datasets. We conduct our experiments on five different datasets affected by
molecule chirality. First, two datasets proposed in [1] which are designed specif-
ically to evaluate the capability of a model to express chirality: classification
of tetrahedral chiral centers as R/S (which should be a necessary, but not suf-
ficient, condition to learn meaningful representations of chiral molecules); and
enantiomer ranking, in which pairs of enantiomers with enantioselective docking
scores were selected, and the task was to predict which molecule of the pair had
a lower binding affinity in a chiral protein pocket.

Second, the binding affinity dataset, which is an extension of the previously
described enantiomer ranking, with the same underlying molecules, but the task
being regression of the binding affinity.

Additionally, we take two datasets from the MoleculeNet benchmark [32]
that do not explicitly require prediction of molecule chirality, but contain some
percentage of molecules with chiral centers, and the underlying biological task
in principle might be chirality-dependant: BACE, a binary classification dataset
for prediction of binding results for a set of inhibitors of human β-secretase 1
(BACE-1) [29]; and Tox21, a multilabel classification dataset containing quali-
tative toxicity measurements on 12 different targets, including nuclear receptors
and stress response pathways.

Reference Methods. As reference models we consider several state-of-the-
art neural network architectures for processing graphs, both chirality-aware and
general: GPS [26], SAN [14], DMPNN [34], ChIRo [1], and Tetra-DMPNN [24].

46 P. Gaiński et al.

Table 1. Comparison of ChiENN-based approaches with the reference methods on
chiral-sensitive tasks. Methods are split into groups by the underlying base model,
except for the bottom group which includes models specifically designed to be chiral-
sensitive. We bold the best results in every group and underline the best results across
all groups. All variations of our method (ChiENN, SAN+ChiENN, and GPS+ChiENN)
significantly outperform current state-of-the-art chiral-sensitive models. Note that for
the R/S task, we omitted the results for models with chiral tags encoded in node
features, for which the task is trivial.

Model R/S Enantiomer ranking Binding affinity

Accuracy ↑ R. Accuracy ↑ MAE ↓
DMPNN 0.500 ± 0.000 0.000 ± 0.000 0.310 ± 0.001

DMPNN+tags - 0.701±0.003 0.285±0.001

GPS 0.500 ± 0.000 0.000 ± 0.000 0.330 ± 0.003

GPS+tags - 0.669 ± 0.037 0.318 ± 0.004

GPS+ChiENN 0.989 ± 0.000 0.753 ± 0.004 0.258 ± 0.001

SAN 0.500 ± 0.000 0.000 ± 0.000 0.317 ± 0.004

SAN+tags - 0.722 ± 0.004 0.278 ± 0.003

SAN+ChiENN 0.987±0.001 0.764 ± 0.005 0.257 ± 0.002

ChIRo 0.968 ± 0.019 0.691 ± 0.006 0.359 ± 0.009

Tetra-DMPNN 0.935 ± 0.001 0.690 ± 0.006 0.324 ± 0.026

ChiENN 0.989 ± 0.000 0.760±0.002 0.275±0.003

For models not designed to process chirality, that is DMPNN, GPS, and SAN,
we additionally considered their variants with chiral atom tags included in the
node features, similar to [1]. For the proposed approach we consider both a
pure model obtained by stacking several ChiENN layers, as well as combining
ChiENN layers with other architectures (ChiENN+GPS and ChiENN+SAN).

Training Details. All models were trained using Adam optimizer for up to
100 epochs, with a cosine learning rate scheduler with 10 warm-up epochs and
gradient norm clipping, following the set-up of [26]. Cross-entropy and L1 loss
functions were used for classification and regression, respectively. Note that in
contrast to [1], to keep the set-up consistent across models we did not use triplet
margin loss for ChIRo, and observed worse results than reported in [1].

We also performed a grid search of parameters with the identical budget. For
all datasets and models, we reported results averaged from three runs.

For enantiomer ranking, binding affinity, and R/S, we used data splits pro-
vided by [1] and for BACE and Tox21, we used random splits with a train-valid-
test ratio of 7:1:2. For each model and dataset, we report mean results from 3
independent runs with the best parameters picked by grid search.

ChiENN: Embracing Molecular Chirality with Graph Neural Networks 47

Evaluation. Note that for the binding rank task we used accuracy modified
with respect to [1]. We required the difference between the predicted affinity of
two enantiomers to be higher than the threshold of 0.001. This led to ranking
accuracy being equal to 0 for models unable to distinguish chiral molecules.

5.2 Comparison with Reference Methods

In this section, we compare ChiENN-based networks with state-of-the-art refer-
ence architectures using the experimental setting described in Sect. 5.1.

Chiral-Sensitive Tasks. The results on chiral-sensitive tasks are presented in
Table 1. For both the enantiomer ranking and binding affinity, ChiENN-based
approaches achieved the best results, producing a significant improvement in per-
formance over the state-of-the-art chiral-aware architectures, that is ChIRo and
Tetra-DMPNN. For both GPS and SAN, there was a significant improvement
in performance due to the addition of ChiENN layers when compared to chiral
tag inclusion. It demonstates that ChiENN model can enable chiral-awareness
demonstrating the general usefulness of the proposed layer, and the fact that it
can be combined with a model preferred in a given task.

Finally, as expected, all of the chirality-aware methods can properly distin-
guish chiral centers in the R/S task, while the baselines that do not capture the
concept of chirality (DMPNN, GPS and SAN) cannot. Note that for this task,
we omitted the results for models with chiral tags encoded in node features, for
which the task is trivial.

Remaining Tasks. The results on BACE and Tox21 tasks are in Table 2. We
see that the ChiENN model achieves results comparable to state-of-the-art mod-
els, however the influence of chirality-sensitiveness on these tasks is not clear.
For SAN we actually observed a slight drop in performance when using Chi-
ENN layers, and for GPS the results remained roughly the same. The possible
explanations for that might be either 1) lack of importance of chirality on pre-
dicted tasks, or 2) small dataset size, leading to overfitting in presence of chiral
information. Our conclusion is that ChiENN layers significantly improve the per-
formance in chiral-sensitive tasks, and produce comparable results in the other
tasks, where the influence of chirality is not clear. We believe that further investi-
gation on the influence of chirality on the tasks commonly used in the molecular
property prediction domain would be beneficial and we leave it for future work.

5.3 Ablation Studies

Comparison of k-Ariness of the Message Function. We began with an
analysis of the impact of k-ariness (Eq. 3) of the message function used by Chi-
ENN. Specifically, in this experiment, we used the pure variant of ChiENN,
which is a graph neural network using ChiENN layers as message-passing layers.

48 P. Gaiński et al.

Table 2. Comparison of ChiENN-based approaches with the reference methods on
tasks not explicitly requiring chirality. We see that the ChiENN model achieves results
comparable to state-of-the-art models.

Model BACE Tox21

AUC ↑ AUC ↑
DMPNN 0.847±0.015 0.813 ± 0.008

DMPNN+tags 0.840 ± 0.004 0.824±0.006

GPS 0.841±0.004 0.821 ± 0.000

GPS+tags 0.812 ± 0.017 0.825±0.002

GPS+ChiENN 0.839 ± 0.008 0.821 ± 0.007

SAN 0.846 ± 0.012 0.842±0.007

SAN+tags 0.829 ± 0.009 0.841 ± 0.004

SAN+ChiENN 0.826 ± 0.014 0.834 ± 0.005

ChIRo 0.815 ± 0.010 0.847 ± 0.005

Tetra-DMPNN 0.824 ± 0.017 0.807 ± 0.003

ChiENN 0.838±0.003 0.838 ± 0.003

Table 3. Comparison of k-ariness of the message function.

k-ary R/S Enantiomer ranking Binding affinity BACE Tox21

Accuracy ↑ R. Accuracy ↑ MAE ↓ AUC ↑ AUC ↑
k = 1 0.500 ± 0.000 0.000 ± 0.000 0.328 ± 0.000 0.831 ± 0.028 0.833 ± 0.005

k = 2 0.989±0.001 0.759 ± 0.003 0.267±0.001 0.788 ± 0.014 0.836 ± 0.004

k = 3 0.989±0.000 0.760±0.002 0.275 ± 0.003 0.838±0.003 0.838±0.003

We varied k ∈ {1, 2, 3}, where k = 1 disables the ability of the network to dis-
tinguish enantiomers as it collapses our order-sensitive message passing scheme
from Eq. (3) to vanilla message-passing from Eq. (1). We considered values of k
up to 3 since it corresponds to the airiness of standard chiral centers observed
in the edge graphs (see Sect. 4.1) of molecules.

The results are presented in Table 3. As expected, choosing k = 1 leads
to a failure in distinguishing enantiomers (makes message passing permutation
invariant), as demonstrated by minimum performance in R/S and enantiomer
ranking tasks. Interestingly, for most datasets choosing k = 2 was sufficient,
leading to a comparable performance to k = 3. The only exception to that was
BACE dataset, for which a noticeable drop in performance was observed when
using k = 2. We used k = 3 in the remainder of this paper.

Using ChiENN Layer with Existing Models. Secondly, we conducted an
ablation of different design choices that can be made to enable enantiomer recog-
nition within the existing architectures. Specifically, we focused on the GPS
model and considered using three different strategies: conversion to edge graph

ChiENN: Embracing Molecular Chirality with Graph Neural Networks 49

Table 4. Ablation study of different design choices for GPS+ChiENN model. The
“Graph” column indicates conversion to the edge graph; the “Tags” column indicates
the inclusion of the chiral tags as node features; the “ChiENN” column indicates the
usage of ChiENN as a message-passing layer.

Graph Tags ChiENN R/S Enantiomer ranking Binding affinity BACE Tox21

Accuracy ↑ R. Accuracy ↑ MAE ↓ AUC ↑ AUC ↑
No No No 0.500 ± 0.000 0.000 ± 0.000 0.330 ± 0.003 0.841 ± 0.004 0.821 ± 0.000

Yes No No 0.500 ± 0.000 0.000 ± 0.000 0.306 ± 0.001 0.851±0.007 0.821 ± 0.007

No Yes No 1.000±0.000 0.669 ± 0.037 0.318 ± 0.004 0.812 ± 0.017 0.825 ± 0.002

Yes Yes No 1.000±0.000 0.720 ± 0.002 0.283 ± 0.008 0.802 ± 0.019 0.838±0.003

Yes No Yes 0.989 ± 0.000 0.753±0.004 0.258±0.001 0.839 ± 0.008 0.821 ± 0.007

proposed in this paper, the inclusion of chiral tags in the node features of the
graph, and finally, replacement of message passing layers with ChiENN layers.

The results are presented in Table 4. Several observations can be made: first
of all, in the case of R/S task, we can see that both using chiral tags and the
ChiENN layers allows us to properly recognize chiral centers (and as stated
before, due to the simplicity of the task, good performance here is a necessary,
but not sufficient, requirement for learning meaningful chiral representations).

Secondly, using ChiENN layers significantly improves the performance in the
enantiomer ranking (explicitly requiring chirality) and binding affinity (implic-
itly requiring it) tasks, more than simply including chiral tags. Interestingly,
combining chiral tags with edge graph transformation improves the performance
compared to using the tags alone (though not as much as using ChiENN layers),
suggesting that it might be a feasible general strategy.

Finally, the results on two remaining tasks, that is BACE and Tox21, for
which the impact of chirality is unclear, are less straightforward: in the case of
BACE, GPS with edge graph transformation achieves the best performance, and
in the case of Tox21, using both the edge graph transformation and including
the chiral tags. However, we can conclude that using ChiENN layers outperforms
simply including chiral tags in tasks requiring chirality, and have comparable
performance to the baseline GPS in other tasks.

6 Conclusions

In this paper, we proposed and theoretically justify a general order-sensitive
message-passing scheme that can be applied to any chiral-sensitive graph domain
where chirality can be expressed by an order of the neighboring nodes. We used
the proposed framework to construct a novel ChiENN layer that enables chirality
awareness in any GNN model in the domain of molecular graphs, where chiral-
ity plays an important role as it can strongly alter the biochemical properties
of molecules. Our experiments showed that the ChiENN layer allows to outper-
form the current state-of-the-art methods in chiral-sensitive molecular property
prediction tasks.

50 P. Gaiński et al.

Acknowledgements. The research of J. Tabor was supported by the Foundation
for Polish Science co-financed by the European Union under the European Regional
Development Fund in the POIR.04.04.00-00-14DE/18-00 project carried out within the
Team-Net program. The research of P. Gaiński and M. Śmieja was supported by the
National Science Centre (Poland), grant no. 2022/45/B/ST6/01117.

Ethical Statement. As we consider our work to be fundamental research, there are

no direct ethical risks or societal consequences; these have to be analyzed per concrete

applications.

References

1. Adams, K., Pattanaik, L., Coley, C.W.: Learning 3D representations of molecular
chirality with invariance to bond rotations. In: The Tenth International Confer-
ence on Learning Representations, ICLR 2022, Virtual Event, 25–29 April 2022.
OpenReview.net (2022)

2. Brown, N., Fiscato, M., Segler, M.H.S., Vaucher, A.C.: GuacaMol: benchmarking
models for de novo molecular design. J. Chem. Inf. Model. 59(3), 1096–1108 (2019)

3. Chen, S., Jung, Y.: Deep retrosynthetic reaction prediction using local reactivity
and global attention. JACS Au 1(10), 1612–1620 (2021)

4. Choukroun, Y., Wolf, L.: Geometric transformer for end-to-end molecule properties
prediction. arXiv preprint arXiv:2110.13721 (2021)

5. Coors, B., Condurache, A.P., Geiger, A.: Spherenet: learning spherical representa-
tions for detection and classification in omnidirectional images. In: Proceedings of
the European Conference on Computer Vision (ECCV), pp. 518–533 (2018)

6. Ganea, O., et al.: Geomol: torsional geometric generation of molecular 3D con-
former ensembles. Adv. Neural. Inf. Process. Syst. 34, 13757–13769 (2021)

7. Gasteiger, J., Becker, F., Günnemann, S.: Gemnet: universal directional graph neu-
ral networks for molecules. Adv. Neural. Inf. Process. Syst. 34, 6790–6802 (2021)

8. Gasteiger, J., Groß, J., Günnemann, S.: Directional message passing for molecular
graphs. arXiv preprint arXiv:2003.03123 (2020)

9. Gilmer, J., Schoenholz, S.S., Riley, P.F., Vinyals, O., Dahl, G.E.: Neural message
passing for quantum chemistry. In: International Conference on Machine Learning,
pp. 1263–1272. PMLR (2017)

10. Gómez-Hortigüela, L., Bernardo-Maestro, B.: Chiral organic structure-directing
agents. In: Gómez-Hortigüela, L. (ed.) Insights into the Chemistry of Organic
Structure-Directing Agents in the Synthesis of Zeolitic Materials. SB, vol. 175,
pp. 201–244. Springer, Cham (2017). https://doi.org/10.1007/430 2017 9

11. Hawkins, P.C., Skillman, A.G., Warren, G.L., Ellingson, B.A., Stahl, M.T.: Con-
former generation with omega: algorithm and validation using high quality struc-
tures from the protein databank and Cambridge structural database. J. Chem. Inf.
Model. 50(4), 572–584 (2010)

12. Jamali, F., Mehvar, R., Pasutto, F.: Enantioselective aspects of drug action and
disposition: therapeutic pitfalls. J. Pharm. Sci. 78, 695–715 (1989)

13. Kovatcheva, A., Golbraikh, A., Oloff, S., Feng, J., Zheng, W., Tropsha, A.: QSAR
modeling of datasets with enantioselective compounds using chirality sensitive
molecular descriptors. SAR QSAR Environ. Res. 16(1–2), 93–102 (2005)

14. Kreuzer, D., Beaini, D., Hamilton, W., Létourneau, V., Tossou, P.: Rethinking
graph transformers with spectral attention. Adv. Neural. Inf. Process. Syst. 34,
21618–21629 (2021)

http://arxiv.org/abs/2110.13721
http://arxiv.org/abs/2003.03123
https://doi.org/10.1007/430_2017_9

ChiENN: Embracing Molecular Chirality with Graph Neural Networks 51

15. Krstulović, A.M.: Chiral Separations by HPLC. Ellis Horwood, Chichester (1989)
16. Liao, K., et al.: Design of catalysts for site-selective and enantioselective function-

alization of non-activated primary C-H bonds. Nat. Chem. 10, 1048–1055 (2018)
17. Liu, C., Korablyov, M., Jastrzebski, S., Wlodarczyk-Pruszynski, P., Bengio, Y.,

Segler, M.H.S.: RetroGNN: fast estimation of synthesizability for virtual screening
and de novo design by learning from slow retrosynthesis software. J. Chem. Inf.
Model. 62(10), 2293–2300 (2022)

18. Mamede, R., de Almeida, B.S., Chen, M., Zhang, Q., Aires-de Sousa, J.: Machine
learning classification of one-chiral-center organic molecules according to optical
rotation. J. Chem. Inf. Model. 61(1), 67–75 (2020)

19. Mansimov, E., Mahmood, O., Kang, S., Cho, K.: Molecular geometry prediction
using a deep generative graph neural network. Sci. Rep. 9(1), 20381 (2019)

20. Maziarka, L., Danel, T., Mucha, S., Rataj, K., Tabor, J., Jastrzebski, S.: Molecule
attention transformer. CoRR abs/2002.08264 (2020)

21. Maziarka, �L, Pocha, A., Kaczmarczyk, J., Rataj, K., Danel, T., Warcho�l, M.: Mol-
CycleGAN: a generative model for molecular optimization. J. Cheminform. 12(1),
2 (2020)

22. Maziarz, K., et al.: Learning to extend molecular scaffolds with structural motifs.
In: The Tenth International Conference on Learning Representations, ICLR 2022,
Virtual Event, 25–29 April 2022. OpenReview.net (2022). https://openreview.net/
forum?id=ZTsoE8G3GG

23. Nguyen, L., He, H., Pham-Huy, C.: Chiral drugs: an overview. Int. J. Biomed. Sci.
IJBS 2, 85–100 (2006)

24. Pattanaik, L., Ganea, O.E., Coley, I., Jensen, K.F., Green, W.H., Coley, C.W.:
Message passing networks for molecules with tetrahedral chirality. arXiv preprint
arXiv:2012.00094 (2020)

25. Pfaltz, A., Drury, W.: Design of chiral ligands for asymmetric catalysis: from C2-
symmetric P, P- and N, N-ligands to sterically and electronically nonsymmetrical
P, N-ligands. Proc. Natl. Acad. Sci. USA 101, 5723–5726 (2004)

26. Rampášek, L., Galkin, M., Dwivedi, V.P., Luu, A.T., Wolf, G., Beaini, D.: Recipe
for a general, powerful, scalable graph transformer. Adv. Neural. Inf. Process. Syst.
35, 14501–14515 (2022)

27. Schneider, N., Lewis, R.A., Fechner, N., Ertl, P.: Chiral cliffs: investigating the
influence of chirality on binding affinity. ChemMedChem 13(13), 1315–1324 (2018)

28. Schütt, K.T., Sauceda, H.E., Kindermans, P.J., Tkatchenko, A., Müller, K.R.:
SchNet-a deep learning architecture for molecules and materials. J. Chem. Phys.
148(24), 241722 (2018)

29. Subramanian, G., Ramsundar, B., Pande, V., Denny, R.A.: Computational model-
ing of β-secretase 1 (BACE-1) inhibitors using ligand based approaches. J. Chem.
Inf. Model. 56(10), 1936–1949 (2016)

30. Veličković, P., Cucurull, G., Casanova, A., Romero, A., Lio, P., Bengio, Y.: Graph
attention networks. arXiv preprint arXiv:1710.10903 (2017)

31. Wang, Y., Wang, J., Cao, Z., Barati Farimani, A.: Molecular contrastive learning of
representations via graph neural networks. Nat. Mach. Intell. 4(3), 279–287 (2022)

32. Wu, Z., et al.: MoleculeNet: a benchmark for molecular machine learning. Chem.
Sci. 9(2), 513–530 (2018)

33. Xu, M., Luo, S., Bengio, Y., Peng, J., Tang, J.: Learning neural generative dynam-
ics for molecular conformation generation. In: 9th International Conference on
Learning Representations, ICLR 2021, Virtual Event, Austria, 3–7 May 2021.
OpenReview.net (2021)

https://openreview.net/forum?id=ZTsoE8G3GG
https://openreview.net/forum?id=ZTsoE8G3GG
http://arxiv.org/abs/2012.00094
http://arxiv.org/abs/1710.10903

52 P. Gaiński et al.

34. Yang, K., et al.: Analyzing learned molecular representations for property predic-
tion. J. Chem. Inf. Model. 59(8), 3370–3388 (2019)

35. Zaheer, M., Kottur, S., Ravanbakhsh, S., Poczos, B., Salakhutdinov, R.R., Smola,
A.J.: Deep sets. In: Advances in Neural Information Processing Systems, vol. 30
(2017)

36. Zhu, J., et al.: Unified 2D and 3D pre-training of molecular representations. In:
Zhang, A., Rangwala, H. (eds.) KDD 2022: The 28th ACM SIGKDD Conference
on Knowledge Discovery and Data Mining, Washington, DC, USA, 14–18 August
2022, pp. 2626–2636. ACM (2022)

Multi-label Image Classification with
Multi-scale Global-Local Semantic Graph

Network

Wenlan Kuang1,2, Qiangxi Zhu1,2, and Zhixin Li1,2(B)

1 Key Lab of Education Blockchain and Intelligent Technology, Ministry of
Education, Guangxi Normal University, Guilin 541004, China

2 Guangxi Key Lab of Multi-source Information Mining and Security,
Guangxi Normal University, Guilin 541004, China

lizx@gxnu.edu.cn

Abstract. With the development of deep learning techniques, multi-
label image classification tasks have achieved good performance.
Recently, graph convolutional network has been proved to be an effective
way to explore the labels dependencies. However, due to the complexity
of label semantic relations, the static dependencies obtained by exist-
ing methods cannot consider the overall characteristics of an image and
accurately locate the target region. Therefore, we propose the Multi-
scale Global-local Semantic Graph Network (MGSGN) for multi-label
image classification, which mainly includes three important parts. First,
the multi-scale feature reconstruction aggregates complementary infor-
mation at different levels in CNN through cross-layer attention, which
can effectively identify target categories of different sizes. We then design
a channel dual-branch cross-attention module to explore the correlation
between global information and local features in multi-scale features,
which using the way of adaptive cross-fusion to locate the target area
more accurately. Moreover, we propose the multi-perspective weighted
cosine measure in multi-perspective dynamic semantic representation
module to construct content-based label dependencies for each image to
dynamically construct a semantic relationship graph. Extensive exper-
iments on the two public datasets have verified that the classification
performance of our model is better than many state-of-the-art methods.

Keywords: Multi-label image classification · Multi-scale feature ·
Attention mechanisms · Semantic relationship graph

1 Introduction

Multi-label image classification (MLIC) is a challenging fundamental task in
the field of computer vision, which aims to assign multiple labels to an image.
At present, MLIC has been widely used in various application scenarios such
as image annotation [24], image retrieval [35], human attribute recognition [23],
medical image recognition [14], etc. Unlike single-label classification tasks, MLIC

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
D. Koutra et al. (Eds.): ECML PKDD 2023, LNAI 14171, pp. 53–69, 2023.
https://doi.org/10.1007/978-3-031-43418-1_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-43418-1_4&domain=pdf
https://doi.org/10.1007/978-3-031-43418-1_4

54 W. Kuang et al.

is more challenging because each image in the real world usually contains not
just a single object, but multiple foreground objects. More importantly, objects
in multi-label images usually have different sizes and location distributions, with
foreground objects often occluding other objects. Therefore, it is necessary to
simultaneously explore image features and consider the relationship between
labels to the performance of the MLIC.

The simplest approach to MLIC is to convert it to multiple binary classi-
fication problems or single-label classification [1]. However, the problem with
this approach is that the underlying relationship between labels is not com-
pletely explored resulting the not good classification effect. Many works have
been proposed to effectively capture the dependencies between labels, including
probabilistic graphical models [22] and structured inference networks [18]. The
appearance of recurrent neural networks (RNN) has nicely alleviated the scala-
bility challenges of probabilistic graphical model-based methods. For example,
Wang et al. [28] combined RNN with convolutional neural network (CNN) for the
first time in an MLIC task to capture semantic label dependencies. They unify
CNN and RNN into a framework (CNN-RNN) that mines label dependencies on
a global level and predicts labels in a predefined order. However, the pre-defined
label prediction order of the RNN will affect the performance of the model.
Therefore, Chen et al. [2] proposed using a long short-term memory model to
learn label dependencies without pre-defining the order of prediction, thereby
reducing the constraint of label order. These RNN-based methods explore the
limited relationships between labels in a sequential manner.

In addition, some researchers have also introduced the attention mechanism
[43] into MLIC to implicitly model the spatial relationship between different
labels. For example, Chen et al. [5] first introduced reinforcement learning to
learn a local region of the attention area. Zhu et al. [41] proposed a spatial
regularization network (ResNet-SRN) to learn the semantic and spatial correla-
tion between image labels by employing an attention mechanism. However, SRN
relies on image-level supervision to obtain attention regions, without considering
the correlation between attention regions and each label. Recently, some stud-
ies have introduced graph convolutional networks (GCN) to take full advantage
of the image-label pairwise relationship. Chen et al. [8] proposed a multi-label
image recognition with graph convolutional networks (ML-GCN), which utilizes
a directed graph of label embeddings to model label correlations. Li et al. [21]
proposes a label graph module to learn label information for word embeddings,
and augments the tag graph module with sparse correlation constraints. Wang
et al. [29] proposes an operation of superimposing statistical label maps and
knowledge prior label maps (KSSNet), and fuses the label structure information
generated by GCN at different stages of CNN. However, these above methods
builds a global graph for the entire dataset, which leads to each image sharing
a static graph, and the co-occurrence probability will cause the frequency devi-
ation problem of the dataset under different scenarios. In particular, these ML-
GCN based extension methods [3,7] may learn spurious correlations when label
statistics are insufficient. To alleviate the limitations caused by static graphs,
these methods [6,33,34] explore high-level semantic feature descriptors based

Multi-scale Global-Local Semantic Graph Network 55

on specific images, which can dynamically generate individual graphs for each
image and mine the correlation between them through the graph propagation
mechanism. These MLIC methods consider the features of each image in con-
structing the relational graph, which solves the negative impact brought about
by the co-occurrence probability. However, the high-level semantic features at a
single scale may lack sufficient supervision information, this modeling approach
does not fully exploit the deeper semantic information in multi-scale feature
descriptors. Therefore, it is still necessary to further improve the semantic rep-
resentation abilities of dynamic graphs.

label 1

label 2

label 3

label n

GloVe/word2vec...

GloVe/word2vec...

GloVe/word2vec...

GloVe/word2vec...

Statistics

Static graph

Adjacent matrixNodesword embedding

Fig. 1. Motivation of the proposed dynamic semantic graph. Different images have their
own graphs that provide global and local information to dynamically learn category
dependencies related to the content of each image, instead of all images sharing a fixed
adjacency matrix.

To solve the aforementioned problems, we propose the Multi-scale Global-
local Semantic Graph Network (MGSGN) for MLIC. As shown in Fig. 1, the key
of our model is to dynamically learn the category dependencies related to the
content of each image, through the extracted multi-scale global-local information
in the image target region features. Our model consists of three important parts:
multi-scale feature reconstruction, channel dual-branch cross-attention module,
and multi-perspective dynamic semantic representation module. The multi-scale
features involved in this paper refer to the shallow, middle and deep features of
CNN. And, the channel dual-branch cross-attention module is divided into upper
and lower branches according to the channel dimension. We design the gated
adaptive convolution for the first branch to capture fine-grained local features.
In the second branch, we employ self-attention to learn the global contextual
information. Finally, we employ a semantic attention module on the global-local
information to obtain class-specific semantic representations as nodes of the
semantic relation graph. Different from the co-occurrence matrix based on label
statistics, we construct a multi-perspective weighted cosine similarity metric
to calculate the semantic correlation between node vectors, and average the

56 W. Kuang et al.

similarity matrices of all perspectives as a new adjacency matrix. The main
contributions of this paper can be summarized as:

– To increase the diversity and complementarity of image features, we fuse the
cross-layer attention features into the feature maps of different levels in the
CNN during the multi-scale feature reconstruction module.

– We design the channel dual-branch cross-attention module that extracts the
global-local information from the reconstructed multi-scale features. Then,
the local and global feature representations are regarded as queries, the cor-
relation between each local-global token pair is adaptively explored through
the cross-attention mechanisms in order to enhance the objects perception of
different sizes for our model.

– We construct a multi-perspective dynamic semantic representation module to
mine class-specific semantic representations for multi-scale global-local fea-
tures. The key to this module is to use the weighted cosine measure to jointly
construct the semantic graph structure related to specific content of each
image from multiple perspectives.

2 Proposed Method

The overall framework is shown in Fig. 2. The proposed MGSGN primarily
includes: (1) multi-scale feature reconstruction, (2) channel dual-branch cross-
attention module, and (3) multi-perspective dynamic semantic representation.

Fig. 2. Overview of our proposed MGSGN. The key of the proposed model is to dynam-
ically learn the category dependencies related to the content of each image through the
extracted multi-scale global-local information.

2.1 Multi-scale Feature Reconstruction

We use the ResNet-101 [17] pre-trained on the ImageNet [10] dataset to
extract image features, we employ the outputs of three convolutional layers (i.e.

Multi-scale Global-Local Semantic Graph Network 57

“conv3 x”, “conv4 x” and “conv5 x”) of ResNet-101 serve as the multi-scale
feature representation in our model, from which three different sizes of features
fl ∈ �Cl×Hl×Wl , fm ∈ �Cm×Hm×Wm , and fh ∈ �Ch×Hh×Wh are extracted,
where C, H, and W are the channel number, height, and width of the feature
map, respectively. Cl×Hl×Wl = 512×56×56, Cm×Hm×Wm = 1024×28×28
and Ch × Hh × Wh = 2048 × 14 × 14. Specifically, given an input image I, the
multi-layer feature extraction process can be described as:

fl, fm, fh = Fcnn (I, θ) (1)

where Fcnn is the feature extractor, and θ is the network weight parameter.
However, while increasing information diversity and complementarity, dif-

ferent levels of features also increase the computational burden and redundant
information. To suppress the noise at different levels of features, we use the
cross-layer attention module [34] to effectively integrate the feature maps from
different layers to enhance the location information of objects. We first utilize
1 × 1 convolutional layers to compress their channel numbers respectively to
reduce the computational cost. Secondly, the feature map f ′

l , f
′
m, and f ′

h is up-
sampled, and the common location information of the target in different levels
of feature maps is extracted by performing position multiplication on the three
up-sampled feature maps. Subsequently, the three extracted feature maps are
down-sampled and location information enhanced to obtain new feature maps
fp
l ∈ �C×Hl×Wl , fp

m ∈ �C×Hm×Wm , and fp
h ∈ �C×Hh×Wh , which is expressed as

f ′
l = F 1×1 (fl) , f ′

m = F 1×1 (fm) , f ′
h = F 1×1 (fh)

fp
i = F down

(
j∏
i

Fup (f ′
i) + f ′

i

)
(2)

where F 1×1 represent convolutional layers, Fup and F down are upsampling and
downsampling operations.

2.2 Channel Dual-Branch Cross Attention

The CNN and attention mechanisms are both considered as the powerful rep-
resentation learning technologies, which have achieved excellent performance
in image recognition, semantic segmentation and so on. Different from pre-
vious attention mechanism and CNN-related researches [37,44], we develop a
dual-branch cross-attention module (DBCAM) in this paper, which effectively
explores the interaction of attention aggregation and gated convolutional features
in the multi-scale reconstruction module. We first add position embedding (gen-
erated by convolution operation) to fp

l , fp
m, fp

h , and divide the channel dimension
into upper and lower parts (taking the reconstructed shallow feature fp

l as an
example, we divide it into fL

l ∈ �C1/2×Hl/2×Wl/2 and fG
l ∈ �C1/2×Hl/2×Wl/2).

Subsequently, the self-attention and gated adaptive convolution are integrated
into two paths, and feature maps of different resolutions are processed respec-
tively to obtain global context and local details. Finally, the information inter-
actions are performed through the process of cross fusion.

58 W. Kuang et al.

As shown in Fig. 2, the DBCAM module includes: 1) local feature extraction,
through a gated adaptive convolution layer to effectively capture the fine-grained
local features in fG

l ; 2) global feature extraction, here, we downsample fG
l and

use self-attention to learn the global context information in feature map fG
l ; 3)

cross fusion, two different types of local-global features are dynamically inte-
grated via cross attention. Thus, DBCAM can enjoy the benefits of both self-
attention and CNN while having minimal computational overhead compared to
pure convolution operations or self-attention.

(1) Local feature extraction: To realize the consistency of the channel dimen-
sions of the two branches in DBCAM, we extract local features using depthwise
separable convolutions [9] in the first branch. However, a convolution kernel is
responsible for the feature extraction of one channel for depthwise separable
convolution, and the communication between channels (i.e., depth) is missing.
Therefore, the gated adaptive convolution module is proposed, we introduce a
gated conversion unit before the depth separable convolution layer to promote
“competition” and “cooperation” between channel features (here, “competition”
means increasing the variance of channel activation, and “cooperation” means
decreasing the variance of channel activation), so that the model learns better
channel feature correlation. Considering the reconstructed shallow feature input
fL
l ∈ �C1/2×Hl/2×Wl/2 , the gated adaptive convolution is expressed as

fLd

l = F depth
(
fL
l ∗ [

1 + δ
(
γ

(
α
∥∥fL

l

∥∥
2

)
+ β

)])
(3)

where ‖·‖2 is l2-norm, δ (·) represents the activation function, here we use the
tanh function. We use 3× 3 depthwise separable convolution layer F depth (·) to
extract features. Three trainable parameters α ∈ �C1/2×1×1, β ∈ �C1/2×1×1, and
γ ∈ �C1/2×1×1 are introduced into the gating conversion unit to evaluate channel
features, and these three parameters can be optimized for training together with
network weights. α is a learnable parameter that facilitates the adaptability of
feature embeddings. The weights γ and biases β are used to control the activation
of the channel features, i.e. they determine the behavior of the gated conversion
unit on each channel. During training, we initialize α to 1, γ and β are initialized
to 0. After enhancing the channel correlation through the gating conversion unit,
the final features fLd

l containing local details are obtained. Similarly, the local
detail features fLd

m and fLd

h in the middle and deep features are obtained.
(2) Global feature extraction: The convolution operation is a local opera-

tion, the receptive field of the CNN is limited, so the global dependency between
features cannot be effectively explored. Here, we introduce the self-attention to
strengthen the global correlation among target attributes. Considering the fea-
ture input fG

l ∈ �Cl/2×Hl/2×Wl/2 , we first downsample the feature input fG
l

to reduce the computational complexity of self-attention while retaining impor-
tant information. Then, the processed features are flattened into f̂G

l ∈ �Cl/2×L,
L = Hl/2 × Wl/2, and input into self-attention, so the captured global context
information fGs

l is defined as:

fGs

l = F self
(
F down

(
fG
l

))
(4)

Multi-scale Global-Local Semantic Graph Network 59

where F self (·) represents the self-attention layer. Similarly, the global context
information of mid-level and deep features are denoted as fGs

m and fGs

h .
(3) Cross Attention Fusion (CAF): Inspired by works [13,32], we employ

cross-attention to align two types of features obtained from CNN and self-
attention. Specifically, given the local features fLd

l and global features fGs

l

extracted from shallow features fp
l , they are transformed as follows:

QL = fLd

l WL
q ,KL = fLd

l WL
k , VL = fLd

l WL
v

QG = fGs

l WG
q ,KL = fGs

l WG
k , VL = fGs

l WG
v

(5)

where WL
q ,WL

k ,WL
v ,WG

q ,WG
k ,WG

v are the learnable hyperparameters. After
obtaining the transformed local and global representations, we compute the
cross-attention fusion between each pair of fLd

l and fGs

l :

CAFG→L (QL,KG, VG) = softmax
(

QLKT
G√

d

)
VG

CAFL→G (QG,KL, VL) = softmax
(

QGKT
L√

d

)
VL

(6)

where d is the dimension of QL and QG. By taking local features and global infor-
mation as queries at the same time, the correlation and importance between each
local-global token pair can be adaptively explored in three different levels feature
maps, so that the fused multi-scale features are more representative and infor-
mative. After cross-attention fusion, local and global features are concatenated
to complete the final information fusion. Finally, the reconstructed feature maps
of the three levels pass through the channel dual-branch cross-attention module
to obtain new feature maps fCA

l , fCA
m and fCA

h .

2.3 Multi-perspective Dynamic Semantic Representation

To fully mine the semantic relationships of labels, we propose a multi-view
dynamic semantic representation module in Fig. 2, which takes multi-level global-
local feature maps as input to generate class-specific semantic representations
for explicit embedding. Then, a learnable weighted similarity metric mechanism
is used to explore the semantic correlation between class-specific vectors from
multiple perspectives, thus dynamically building a semantic relationship graph
for each input image.

(1) Semantic attention module (SAM) [33]: Given the new feature maps fCA
l ,

fCA
m and fCA

h , obtained in Sect. 2.2, taking fCA
l as an example, first we utilize the

SAM to compute category-specific activation maps Ml ∈ �C×Hl×Wl . Through
Ml, the transformed feature map is mapped to a class-specific semantic repre-
sentation Hl ∈ �C×D, D represents the number of categories, and the specific
process of generating a class-specific semantic representation can be expressed
as

Hl = ς
(
fCA
l

)
MT

l , Ml = softmax
(
ς
(
F 1×1

(
fCA
l

)))
(7)

where ς (·) represents the feature dimension conversion operation, F 1×1 (·) and
is a 1 × 1 convolutional layer. The SAM is able to expose the hidden attention

60 W. Kuang et al.

Fig. 3. Illustration of the multi-perspective dynamic semantic representation module.

on the feature map without bounding box and segmentation, and the resulting
class-specific semantic representation Hl can selectively describe the features
related to a specific class.

(2) Multi-perspective dynamic semantic representation module (MDSR):
Given a feature matrix Hl ∈ �C×D containing D node (category) objects
k ∈ �C . Inspired by the multi-head attention mechanism, we propose a multi-
perspective weighted cosine measure to calculate the similarity between each
node, to construct a new adjacency matrix and enhance the expressive ability of
similarity, shown in Fig. 3. In particular, the multi-perspective weighted cosine
similarity is expressed as

uij =
1
n

∑n

m=1
um
ij , um

ij = cos (Wm � ki,Wm � kj) (8)

where � represents the Hadamard product, and W represents the learnable
weight vector. um

ij represents the similarity matrix of two input node vectors ki
and kj from the mth perspective, and uij represents the average value of the sim-
ilarity matrix calculated using n independent weight vectors Wm (similar to the
multi-head attention mechanism, each weight vector represents a perspective),
which is used as the final similarity matrix.

However, the usual adjacency matrix is a non-negative matrix, so we extract
a new adjacency matrix Aij ∈ �D×D from the final similarity matrix through a
non-negative threshold τ , which is represented as follows:

Aij =
{

0, otherwise,
uij , uij > τ.

(9)

We dynamically construct new adjacency matrices Al, Am, and Ah for the
feature maps of the shallow, middle and deep branches of the network according
to Eqs. 8 and 9. Subsequently, this paper adopts the GCN [19] to model the
content-related category dependencies, and the result of dynamic semantic graph
of the shallow feature map branch can be expressed as

Zl = δ (AlHlWl) (10)

where Wl denotes the state update weight, δ (·) and denotes the LeakyReLU
activation function [26]. Zl represents the updated multi-perspective semantic

Multi-scale Global-Local Semantic Graph Network 61

relation graph. Notably, the dynamic adjacency matrix A is constructed by
learning weighted correlations between class-specific semantic representations for
each specific image from multiple perspectives. It captures the content-related
category dependencies of each image from different semantic aspects, and also
solves the problem of semantic deviation caused by rough label dependencies in
static statistical graphs.

2.4 Classification and Loss

In order to speed up the convergence process, after obtaining three levels of
local-global visual features and multi-perspective semantic relationship graphs,
we further jointly train the prediction results Ffusion of visual features and Fsac

of semantic features.

Ffusion=ψ
(
Fcat

(
GMP

(
fCA
l , fCA

m , fCA
h

)))
Fsac=ϕ (∇ (Zl, Zm, Zh)) (11)

where ψ (·) represents the category classifier of visual features, GMP (·) is the
global average pooling operation, ∇ (·) denotes the fusion of three levels semantic
features. ϕ (·) represents the category classifier of semantic features. We train
the entire MGSGN with the traditional multi-label cross-entropy loss function,
and train the loss function of visual features �fusion and the loss function of
semantic features �sac in a collaborative learning manner. Therefore, the final
loss function is expressed as

�total = �fusion + �sac (12)

Through the above collaborative training approach, our model can jointly
perceive different levels of global-local visual features and multi-perspective
dynamic semantic features, thereby achieving better MLIC results.

3 Experiments

Datasets and Evaluation Metrics. We use two public image datasets, MS-
COCO [25] and Pascal VOC 2007 [11], to verify our proposed method. The
statistics of the experimental dataset are shown in Table 1. In order to achieve a
fair comparison, we discuss the effectiveness of the proposed method using the
following evaluation metrics in the MS-COCO dataset, namely mean average
precision(mAP), the average per-class precision(CP), recall(CR), F1(CF1) and
the overall precision(OP), recall(OR), F1(OF1). We will also list the classifi-
cation scores for the top-3 labels in the experimental results. Furthermore, an
average precision for each class is reported in the Pascal VOC 2007 dataset.

Implementation Details. We employ ResNet-101 pretrained on ImageNet as
our image feature extractor. During the training phase, all input images are
rescaled to 512 × 512, augmented by random cropping and resizing to 448× 448,
and then randomly horizontally flipped. In the testing stage, we simply resize the
input image to 448 × 448. The optimizer uses stochastic gradient descent (SGD)

62 W. Kuang et al.

Table 1. Statistics of the experimental datasets.

Datasets Class Training Testing Total Class per image

MS-COCO 2014 80 82,081 40,137 122218 2.9

Pascal VOC 2007 20 5011 4952 9963 1.5

with a momentum of 0.9 and weight decay set to 0.0001. In particular, for the
basic convolutional neural network and other parts, the initial learning rate of
MS-COCO is 0.03, and the initial learning rate of VOC 2007 is 0.01, which is
decayed by a factor of 10 every 30 epochs. Our model MGSGN is trained in 50
epochs with a batch size of 64. Our method is implemented based on PyTorch
[27] and all experiments are carried out on NVIDIA GeForce RTX 3090.

3.1 Comparison with State of the Arts

Results on MS-COCO. In Table 2, when the resolution of the input image is
448 × 448 and the image feature extractor is ResNet101, our model MGSGN can
reach 85.1% on mAP and is superior to the above comparison methods in most
indicators. Specifically, the mAP of MGSGN is significantly improved by 7.8%
over the ResNet101 baseline, which illustrates the superiority of our method.
The MGSGN model is better than ML-GCN 2.1%, CPCL 2.3%, KSSNet 1.4%
and TDRG 0.5% in the mAP, which also uses the GCN method. In addition, the
performance of the MGSGN model on mAP is 1.2%, 1.1% and 0.9% higher than
the SOTA methods LGR, FL-Tran and AAMN, respectively. Meanwhile, after
we resize the input image to 576 × 576, the performance of the MGSGN model
can be further improved to 86.6%. The MGSGN model outperforms the SSGRL
model with mAP increased by 2.8%, CF1(ALL) increased by 4.5%, OF1(ALL)
increased by 3.2%, CF1(top-3) increased by 3.9%, and OF1(top-3) increased by
2.3%. Compared with the recently released C-Tran and DA-GAT, the MGSGN
model greatly outperforms these methods on most metrics.

Results on Pascal VOC 2007. In Table 3, compared with other state-of-the-
art methods, our proposed model MGSGN achieves the best performance. Specif-
ically, when the input image resolution is 448× 448, compared to the baseline
method ResNet-101, which obtains 89.9% mAP, the MGSGN model significantly
improves to 95.7%, an increase of 5.8%. Even when MCAR uses larger image
sizes, the MGSGN model outperforms the method by 0.9%. Although the TDRG
and FL-Tran models also utilize the multi-scale feature mechanism of the CNN
to learn object features at different scales of the image, the mAP of MGSGN
model is 0.7% and 1.8% higher than these two advanced methods, respectively,
MGSGN also outperforms the two methods in AP values for most categories.
It is worth noting that when the input image resolution is 576× 576, it can
be found that the mAP of the MGSGN model is further improved to 96.4%.
Compared with the state-of-the-art methods such as ADD-GCN, AAMN, and
MCAR, our MGSGN model also achieves the best performance.

Multi-scale Global-Local Semantic Graph Network 63

Table 2. Comparisons with state-of-the-art methods on the MS-COCO dataset. Str

and Ste denote image resolution used in the training and testing stage.

Methods (Str, Ste) Backbone mAP ALL top-3

C-P C-R C-F1 O-P O-R O-F1 C-P C-R C-F1 O-P O-R O-F1

CNN-RNN [28] (-, -) vgg-16 61.2 - - - - - - 66.0 55.6 60.4 69.2 66.4 67.8

RNN-Attention [31] (-, -) vgg-16 - - - - - - - 79.1 58.7 67.4 84.0 63.0 72.0

ResNet-SRN [41] (224, 224) ResNet-101 77.1 81.6 65.4 71.2 82.7 69.9 75.8 85.2 58.8 67.4 87.4 62.5 72.9

ResNet101 [17] (224, 224) ResNet-101 77.3 80.2 66.7 72.8 83.9 70.8 76.8 84.1 59.4 69.7 89.1 62.8 73.6

ResNet101-ACfs [15] (224, 224) ResNet-101 77.5 77.4 68.3 72.2 79.8 73.1 76.3 85.2 59.4 68.0 86.6 63.3 73.1

CPCL [36] (448, 448) ResNet-101 82.8 85.6 71.1 77.6 86.1 74.5 79.9 89.0 63.5 74.1 90.5 65.9 76.3

ML-GCN [8] (448, 448) ResNet-101 83.0 85.1 72.0 78.0 85.8 75.4 80.3 89.2 64.1 74.6 90.5 66.5 76.7

KSSNet [29] (448, 448) ResNet-101 83.7 84.6 73.2 77.2 87.8 76.2 81.5 - - - - - -

LGR [7] (448, 448) ResNet-101 83.9 85.0 73.3 78.4 86.2 76.4 81.0 89.0 64.8 75.0 90.7 67.0 77.1

FL-Tran [38] (448, 448) ResNet-101 84.0 84.9 73.5 78.8 86.0 76.3 80.9 88.7 65.2 75.1 90.6 67.0 77.0

AAMN [39] (448, 448) ResNet-101 84.2 86.2 72.7 78.9 87.0 76.0 81.1 89.7 64.8 75.2 91.2 66.9 77.2

TDRG [34] (448, 448) ResNet-101 84.6 86.0 73.1 79.0 86.6 76.4 81.2 89.9 64.4 75.0 91.2 67.0 77.2

SSGRL [6] (576, 576) ResNet-101 83.8 89.9 68.5 76.8 91.3 70.8 79.7 91.9 62.5 72.7 93.8 64.1 76.2

KGGR [4] (576, 576) ResNet-101 84.3 85.6 72.7 78.6 87.1 75.6 80.9 89.4 64.6 75.0 91.3 66.6 77.0

DA-GAT [40] (576, 576) ResNet-101 84.8 87.0 74.2 80.1 87.3 77.5 82.1 89.2 65.6 75.6 91.6 67.7 77.9

C-Tran [20] (576, 576) ResNet-101 85.1 86.3 74.3 79.9 87.7 76.5 81.7 90.1 65.7 76.0 92.1 71.4 77.6

TDRG [34] (576, 576) ResNet-101 86.0 87.0 74.7 80.4 87.5 77.9 82.4 90.7 65.6 76.2 91.9 68.0 78.1

MGSGN(ours) (448, 448) ResNet-101 85.1 86.3 73.9 79.6 86.1 77.1 81.4 89.9 64.8 75.3 90.9 67.2 77.3

MGSGN(ours) (576, 576) ResNet-101 86.6 87.4 76.9 81.3 88.1 77.1 82.9 92.1 67.1 76.6 92.7 67.1 78.5

Table 3. Comparisons with state-of-the-art methods on the VOC 2007 dataset. The
performance based on two resolution settings are reported.

Methods aero bike bird boat bottle bus car cat chair cow table dog horse mbike person plant sheep sofa trian tv mAP

CNN-RNN [28] 96.7 83.1 94.2 92.8 61.2 82.1 89.1 94.2 64.2 83.6 70.0 92.4 91.7 84.2 93.7 59.8 93.2 75.3 99.7 78.6 84.0

ResNet-101 [17] 99.5 97.7 97.8 96.4 65.7 91.8 96.1 97.6 74.2 80.9 85.0 98.4 96.5 95.9 98.4 70.1 88.3 80.2 98.9 89.2 89.9

RARL [5] 98.6 97.1 97.1 95.5 75.6 92.8 96.8 97.3 78.3 92.2 87.6 96.9 96.5 93.6 98.5 81.6 93.1 83.2 98.5 89.3 92.0

SSNP [30] 97.1 94.0 95.4 93.7 59.6 88.2 94.4 94.9 71.7 85.3 81.9 94.1 95.4 91.7 97.4 74.8 87.1 78.7 96.9 84.0 87.8

LDR [16] 99.6 98.3 98.0 98.2 78.2 94.2 97.0 97.8 80.8 94.9 84.9 97.7 97.5 96.6 98.7 85.0 96.2 83.2 98.5 92.6 93.4

FL-Tran [38] 99.7 97.7 98.2 98.4 81.5 95.4 97.3 97.0 82.1 95.5 85.5 97.9 96.9 95.7 98.7 86.1 96.7 83.9 98.9 93.9 93.9

ML-GCN [8] 99.5 98.5 98.6 98.1 80.8 94.6 97.2 98.2 82.3 95.7 86.4 98.2 98.4 96.7 99.0 84.7 96.7 84.3 98.9 93.7 94.0

LGR [7] 99.6 95.6 97.3 96.4 84.0 95.8 94.1 98.9 86.9 96.8 86.8 98.7 98.6 96.9 98.8 84.8 97.2 83.7 98.8 93.6 94.2

CSRA [42] 99.9 98.4 98.1 98.9 82.2 95.3 97.8 97.9 84.6 94.8 90.8 98.1 97.6 96.2 99.1 86.4 95.9 88.3 98.9 94.4 94.7

TDRG [34] 99.9 98.9 98.4 98.7 81.9 95.8 97.8 98.0 85.2 95.6 89.5 98.8 98.6 97.1 99.1 86.2 97.7 87.2 99.1 95.3 95.0

KGGR [4] 99.8 97.1 98.4 98.0 84.2 95.1 96.9 98.4 78.6 94.9 87.0 98.1 97.7 97.4 98.7 82.4 97.1 82.5 98.7 92.0 93.6

AAMN [39] 99.8 97.0 98.2 97.9 83.6 95.5 97.7 98.2 82.4 96.6 85.6 98.3 98.6 96.2 99.0 87.9 97.6 86.4 98.7 93.8 94.4

FL-Tran [38] 99.8 98.6 98.7 98.4 83.2 95.9 97.4 98.4 81.5 96.2 86.1 98.9 98.7 97.1 99.0 84.9 96.9 83.1 99.2 95.4 94.4

MCAR [12] 99.7 99.0 98.5 98.2 85.4 96.9 97.4 98.9 83.7 95.5 88.8 99.1 98.2 95.1 99.1 84.8 97.1 87.8 98.3 94.8 94.8

ADD-GCN [33] 99.8 99.0 98.4 99.0 86.7 98.1 98.5 98.3 85.8 98.3 88.9 98.8 99.0 97.4 99.2 88.3 98.7 90.7 99.5 97.0 96.0

MGSGN(ours) 99.8 99.0 98.5 98.7 83.8 96.0 98.1 98.9 86.4 96.4 91.3 98.9 99.3 97.1 99.2 86.5 98.6 90.1 99.6 96.4 95.7

MGSGN(ours) 99.8 99.3 98.9 99.1 87.5 97.6 98.7 99.2 86.7 98.6 90.8 99.0 99.2 97.9 99.5 88.9 99.0 91.2 99.3 97.3 96.4

In summary, the significant accuracy improvement is attributed to our pro-
posed MLIC framework with the multi-scale global-local semantic graph net-
work. Compared with static graph-based models, our multi-perspective dynamic
semantic graph constructed from multi-scale global-local information in image
target region features has better performance, especially in predicting some
semantically dependent labels.

3.2 Ablation Studies

Effect of Multi-scale Mechanisms in MGSGN. To verify the effectiveness
of our proposed MGSGN, we analyzed the impact analysis of the combination
of different levels of the CNN features on our model, and the experiment was

64 W. Kuang et al.

Table 4. Analysis of the impact of CNN different level feature combinations on the
proposed model MGSGN. The dataset used for this experiment is MS-COCO.

Methods mAP ALL Top-3

C-F1 O-F1 C-F1 O-F1

Conv3+DBCA+MDSR 83.9 78.5 80.5 74.6 76.6

Conv4+DBCA+MDSR 84.1 78.7 80.7 74.7 76.8

Conv5+DBCA+MDSR 84.4 79.0 80.9 74.9 77.2

(Conv3, Conv5)+DBCA+MDSR 84.6 79.1 81.2 75.0 77.2

(Conv4, Conv5)+DBCA+MDSR 84.7 79.5 81.2 75.1 77.9

(Conv3, Conv4)+DBCA+MDSR 84.5 79.2 81.1 74.9 77.1

MGSGN (ours) 85.1 79.6 81.4 75.3 77.3

implemented on the MS-COCO dataset. The input image resolution is 448 ×
448. In Table 4, the model that fuses shallow, middle and deep features works
best. Specifically, the mAPs of MGSGN are 0.7%, 1.0% and 1.2% higher than
the three methods using only single-level features, respectively. When equipped
with two-level features, the performance of the model is also improved on the
basis of single-level features. Finally, our model achieves the highest mAP of
85.1% when combining three-scale features. This shows that a single-level feature
representation is not enough for object recognition of multiple different sizes, and
our model incorporates the complementarity and diversity of features at different
levels, which contains richer semantic correlation and feature-aware capabilities.

Table 5. Performance comparisons of different components in the MGSGN.

Architecture mAP ALL Top-3

ResNet-101 CLA DBCA MDSR C-F1 O-F1 C-F1 O-F1

� 77.3 72.8 76.8 69.7 73.6

� � 82.8 77.3 79.4 73.8 75.9

� � 83.2 77.9 80.0 74.2 76.3

� � 83.3 78.0 80.0 74.4 76.4

� � � 84.0 78.5 80.5 74.5 76.6

� � � 84.1 78.7 80.7 74.7 76.8

� � � 84.6 79.0 81.1 75.0 77.1

� � � � 85.1 79.6 81.4 75.3 77.3

Comparison of Different Module Structures in MGSGN. To analyze the
contribution of individual components in MGSGN, we conduct ablation exper-
iments on MS-COCO. In Table 5, we first apply cross-layer attention (CLA)

Multi-scale Global-Local Semantic Graph Network 65

Table 6. Performance comparison of the label dependency modeling method in
MGSGN on the MS-COCO dataset.

Methods mAP ALL Top-3

C-F1 O-F1 C-F1 O-F1

MGSGN(∗) 84.2 78.7 80.7 74.7 78.7

MGSGN(†) 85.1 79.6 81.4 75.3 77.3

to the baseline, and the model performance is significantly improved by more
than 5.5%. This shows that CLA is able to allow the model to learn multi-scale
features from images, thus improving the model’s performance. Next, we equip
the baseline with a dual-branch cross-attention module (DBCA) and observe a
model performance improvement of 5.9% relative to the baseline, which demon-
strates that our DBCA can effectively capture local-global features in images.
Subsequently, we add multi-perspective dynamic semantic representation mod-
ule (MDSR) to the baseline, which improves the baseline’s performance by 6%,
illustrating that a multi-perspective dynamic semantic representation module
can effectively model content-related category dependencies. Finally, under the
full architecture, our model MGSGN achieves the best performance of 85.1%,
which greatly exceeds the baseline. This shows that the three modules we propose
can mutually promote each other in improving the performance of the model.

Performance Comparison of Different Label Graphs in MGSGN. In
Table 6, ∗ means that the static graph shared by the entire dataset obtained
according to statistical probability is added to the semantic graph learning mod-
ule [8]. † represents the proposed dynamic semantic relationship. We can see
that the overall classification performance of the dynamic semantic map we con-
structed is better than that of the static graph, increasing mAP by 0.9%, and it
is better than the MGSGN method under the static graph in most indicators.
This is because the semantic information of the target object contained in the
image is not only determined by its intrinsic attributes, but also needs to consider
the context information of the target object. More importantly, our multi-view
dynamic semantic graph module establishes the dependencies between different
semantics from a global perspective, which can better explore label correlation.

3.3 Visual Analysis

In this section, we visualize the learned attention maps to illustrate the ability of
the proposed model to exploit meaningful regions and capture spatially global-
local semantic dependencies. In Fig. 4, the three columns of example images
from left to right are the original image, the classification attention map gener-
ated by ResNet101 and MGSGN. The results show that the MGSGN model
can focus on more semantic regions and has stronger modeling ability than

66 W. Kuang et al.

Fig. 4. Visualization results of salient features on MS-COCO.

ResNet101 to mine more discriminative and meaningful information. Further-
more, our MGSGN model has the ability to capture spatial global-local seman-
tic dependencies, especially for invisible or small objects appearing in images.
For example, when recognizing tennis racket and sports ball, due to their sim-
ilar semantics, people pay attention to sports ball and also pay attention to
tennis racket, thus recognizing these objects requires richer contextual informa-
tion. Thanks to the multi-scale feature reconstruction module and the channel
dual-branch cross-attention module, our method captures the global-local infor-
mation in multi-scale features and adaptively explores the correlation between
global-local feature pairs through cross-attention, so that the model can more
accurately locate and perceive objects of different sizes.

4 Conclusion

We propose the Multi-scale Global-local Semantic Graph Network for MLIC.
First, we exploit the multi-scale feature reconstruction module to extract com-
plementary information from shallow, middle and deep features in CNN. In
addition, the channel dual-branch cross-attention module is designed to further
process the complementary information of the CNN to fuse the global-local fea-
tures extracted from multiple scale mechanisms in an adaptive cross-fusion man-
ner. Finally, we propose a multi-perspective dynamic semantic representation
module that explores complex semantic correlations from multiple perspectives.
Extensive experiments on benchmark datasets demonstrate that our proposed
MGSGN significantly improves the performance of MLIC models.

Acknowledgments. This work is supported by National Natural Science Founda-
tion of China (Nos. 62276073, 61966004), Guangxi Natural Science Foundation (No.
2019GXNSFDA245018), Innovation Project of Guangxi Graduate Education (No.
YCBZ2022060), Guangxi “Bagui Scholar” Teams for Innovation and Research Project,

Multi-scale Global-Local Semantic Graph Network 67

and Guangxi Collaborative Innovation Center of Multi-source Information Integration
and Intelligent Processing.

Ethical Statement. We affirm that the ideas, concepts, and findings presented in

this paper are the result of our own original work, conducted with honesty, rigor, and

transparency. We have provided proper citations and references for all sources used,

and have clearly acknowledged the contributions of others where applicable.

References

1. Boutell, M.R., Luo, J., Shen, X., Brown, C.M.: Learning multi-label scene classifi-
cation. Pattern Recogn. 37(9), 1757–1771 (2004)

2. Chen, S.F., Chen, Y.C., Yeh, C.K., Wang, Y.C.: Order-free RNN with visual atten-
tion for multi-label classification. In: Proceedings of the 32th AAAI Conference on
Artificial Intelligence, vol. 32 (2018)

3. Chen, S., Li, Z., Tang, Z.: Relation R-CNN: a graph based relation-aware network
for object detection. IEEE Signal Process. Lett. 27, 1680–1684 (2020)

4. Chen, T., Lin, L., Chen, R., Hui, X., Wu, H.: Knowledge-guided multi-label few-
shot learning for general image recognition. IEEE Trans. Pattern Anal. Mach.
Intell. 44(3), 1371–1384 (2020)

5. Chen, T., Wang, Z., Li, G., Lin, L.: Recurrent attentional reinforcement learning
for multi-label image recognition. In: Proceedings of the 32th AAAI Conference on
Artificial Intelligence, vol. 32 (2018)

6. Chen, T., Xu, M., Hui, X., Wu, H., Lin, L.: Learning semantic-specific graph rep-
resentation for multi-label image recognition. In: Proceedings of the IEEE/CVF
International Conference on Computer Vision, pp. 522–531 (2019)

7. Chen, Y., Zou, C., Chen, J.: Label-aware graph representation learning for multi-
label image classification. Neurocomputing 492, 50–61 (2022)

8. Chen, Z.M., Wei, X.S., Wang, P., Guo, Y.: Multi-label image recognition with
graph convolutional networks. In: Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 5177–5186 (2019)

9. Chollet, F.: Xception: deep learning with depthwise separable convolutions. In:
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pp. 1251–1258 (2017)

10. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: Imagenet: a large-scale
hierarchical image database. In: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pp. 248–255. IEEE (2009)

11. Everingham, M., Eslami, S.A., Van Gool, L., Williams, C.K., Winn, J., Zisserman,
A.: The pascal visual object classes challenge: a retrospective. Int. J. Comput.
Vision 111, 98–136 (2015)

12. Gao, B.B., Zhou, H.Y.: Learning to discover multi-class attentional regions for
multi-label image recognition. IEEE Trans. Image Process. 30, 5920–5932 (2021)

13. Gao, P., et al.: Dynamic fusion with intra-and inter-modality attention flow for
visual question answering. In: Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition, pp. 6639–6648 (2019)

14. Ge, Z., Mahapatra, D., Sedai, S., Garnavi, R., Chakravorty, R.: Chest X-rays clas-
sification: a multi-label and fine-grained problem. arXiv preprint arXiv:1807.07247
(2018)

http://arxiv.org/abs/1807.07247

68 W. Kuang et al.

15. Guo, H., Zheng, K., Fan, X., Yu, H., Wang, S.: Visual attention consistency
under image transforms for multi-label image classification. In: Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 729–739
(2019)

16. Hassanin, M., Radwan, I., Khan, S., Tahtali, M.: Learning discriminative represen-
tations for multi-label image recognition. J. Vis. Commun. Image Represent. 83,
103448 (2022)

17. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In:
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pp. 770–778 (2016)

18. Hu, H., Zhou, G.T., Deng, Z., Liao, Z., Mori, G.: Learning structured inference
neural networks with label relations. In: Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pp. 2960–2968 (2016)

19. Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional
networks. arXiv preprint arXiv:1609.02907 (2016)

20. Lanchantin, J., Wang, T., Ordonez, V., Qi, Y.: General multi-label image classifica-
tion with transformers. In: Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 16478–16488 (2021)

21. Li, Q., Peng, X., Qiao, Y., Peng, Q.: Learning category correlations for multi-label
image recognition with graph networks. arXiv preprint arXiv:1909.13005 (2019)

22. Li, X., Zhao, F., Guo, Y.: Multi-label image classification with a probabilistic
label enhancement model. In: Proceedings of the 30th Conference on Uncertainty
in Artificial Intelligence, vol. 1, pp. 1–10 (2014)

23. Li, Y., Huang, C., Loy, C.C., Tang, X.: Human attribute recognition by deep
hierarchical contexts. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV
2016. LNCS, vol. 9910, pp. 684–700. Springer, Cham (2016). https://doi.org/10.
1007/978-3-319-46466-4 41

24. Li, Z., Lin, L., Zhang, C., Ma, H., Zhao, W., Shi, Z.: A semi-supervised learning
approach based on adaptive weighted fusion for automatic image annotation. ACM
Trans. Multimedia Comput. Commun. Appl. (TOMM) 17(1), 1–23 (2021)

25. Lin, T.-Y., et al.: Microsoft COCO: common objects in context. In: Fleet, D.,
Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp.
740–755. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10602-1 48

26. Maas, A.L., Hannun, A.Y., Ng, A.Y., et al.: Rectifier nonlinearities improve neural
network acoustic models. In: Proceedings of the 30th International Conference on
Machine Learning, Atlanta, Georgia, USA, vol. 30, p. 3 (2013)

27. Paszke, A., et al.: Automatic differentiation in pytorch (2017)
28. Wang, J., Yang, Y., Mao, J., Huang, Z., Huang, C., Xu, W.: CNN-RNN: a uni-

fied framework for multi-label image classification. In: Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pp. 2285–2294 (2016)

29. Wang, Y., et al.: Multi-label classification with label graph superimposing. In:
Proceedings of the 34th AAAI Conference on Artificial Intelligence, vol. 34, pp.
12265–12272 (2020)

30. Wang, Z., Fang, Z., Li, D., Yang, H., Du, W.: Semantic supplementary network
with prior information for multi-label image classification. IEEE Trans. Circuits
Syst. Video Technol. 32(4), 1848–1859 (2021)

31. Wang, Z., Chen, T., Li, G., Xu, R., Lin, L.: Multi-label image recognition by recur-
rently discovering attentional regions. In: Proceedings of the IEEE International
Conference on Computer Vision, pp. 464–472 (2017)

32. Xian, T., Li, Z., Tang, Z., Ma, H.: Adaptive path selection for dynamic image
captioning. IEEE Trans. Circuits Syst. Video Technol. 32(9), 5762–5775 (2022)

http://arxiv.org/abs/1609.02907
http://arxiv.org/abs/1909.13005
https://doi.org/10.1007/978-3-319-46466-4_41
https://doi.org/10.1007/978-3-319-46466-4_41
https://doi.org/10.1007/978-3-319-10602-1_48

Multi-scale Global-Local Semantic Graph Network 69

33. Ye, J., He, J., Peng, X., Wu, W., Qiao, Yu.: Attention-driven dynamic graph
convolutional network for multi-label image recognition. In: Vedaldi, A., Bischof,
H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12366, pp. 649–665.
Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58589-1 39

34. Zhao, J., Yan, K., Zhao, Y., Guo, X., Huang, F., Li, J.: Transformer-based dual
relation graph for multi-label image recognition. In: Proceedings of the IEEE/CVF
International Conference on Computer Vision, pp. 163–172 (2021)

35. Zhao, Q., Wang, X., Lyu, S., Liu, B., Yang, Y.: A feature consistency driven atten-
tion erasing network for fine-grained image retrieval. Pattern Recogn. 128, 108618
(2022)

36. Zhou, F., Huang, S., Liu, B., Yang, D.: Multi-label image classification via cate-
gory prototype compositional learning. IEEE Trans. Circuits Syst. Video Technol.
32(7), 4513–4525 (2021)

37. Zhou, T., Li, Z., Zhang, C., Ma, H.: Classify multi-label images via improved CNN
model with adversarial network. Multimedia Tools Appl. 79, 6871–6890 (2020)

38. Zhou, W., Dou, P., Su, T., Hu, H., Zheng, Z.: Feature learning network with trans-
former for multi-label image classification. Pattern Recogn. 136, 109203 (2023)

39. Zhou, W., Hou, Y., Chen, D., Hu, H., Su, T.: Attention-augmented memory net-
work for image multi-label classification. ACM Trans. Multimedia Comput. Com-
mun. Appl. 19(3), 1–24 (2022)

40. Zhou, W., Xia, Z., Dou, P., Su, T., Hu, H.: Double attention based on graph atten-
tion network for image multi-label classification. ACM Trans. Multimed. Comput.
Commun. Appl. 19(1), 1–23 (2023)

41. Zhu, F., Li, H., Ouyang, W., Yu, N., Wang, X.: Learning spatial regularization with
image-level supervisions for multi-label image classification. In: Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, pp. 5513–5522
(2017)

42. Zhu, K., Wu, J.: Residual attention: a simple but effective method for multi-label
recognition. In: Proceedings of the IEEE/CVF International Conference on Com-
puter Vision, pp. 184–193 (2021)

43. Zhu, Q., Kuang, W., Li, Z.: Dual attention interactive fine-grained classification
network based on data augmentation. J. Vis. Commun. Image Represent. 88,
103632 (2022)

44. Zhu, Q., Kuang, W., Zhixin, L.: Fusing bilinear multi-channel gated vector for
fine-grained classification. Mach. Vis. Appl. 34(2), 26 (2023)

https://doi.org/10.1007/978-3-030-58589-1_39

CasSampling: Exploring Efficient Cascade
Graph Learning for Popularity Prediction

Guixiang Cheng1,2, Xin Yan1,2(B), Shengxiang Gao1,2, Guangyi Xu3,
and Xianghua Miao1,2

1 Faculty of Information Engineering and Automation, Kunming University of
Science and Technology, Kunming, China

kg yanxin@sina.com
2 Yunnan Key Laboratory of Artificial Intelligence, Kunming University of Science

and Technology, Kunming, China
3 Yunnan Nantian Electronics Information Co., Ltd., Kunming, China

Abstract. Predicting the growth size of an information cascade is one
of the primary challenges in understanding the diffusion of information.
Recent efforts focus on utilizing graph neural networks to capture graph
structure. However, there is considerable variance in the information cas-
cade size (from few to million). From the perspective of efficiency and
performance, the method of modeling each node is inappropriate for
graph neural networks. In this paper, we propose a novel deep learn-
ing framework for popularity prediction called CasSampling. Firstly, we
exploit a heuristic algorithm to sample the critical part of cascade graph.
For the loss of structure information due to sampling, we keep outdegree
of sampled node in the global graph as part of the node feature into
the graph attention networks. For the loss of temporal information due
to sampling, we utilize the time series to learn the global propagation
time flow. Then, we design an attention aggregator for node-level repre-
sentation to better integrate local-level propagation into the global-level
time flow. Experiments conducted on two benchmark datasets demon-
strate that our method significantly outperforms the state-of-the-art
methods for popularity prediction. Additionally, the computation cost
is much less than the baselines. Code and (public) datasets are available
at https://github.com/Gration-Cheng/CasSampling.

Keywords: Popularity prediction · Cascade graph sampling · Graph
neural network

1 Introduction

With the improvement of communication technology, the rapid development of
online social media has promoted the propagation and interaction of massive
information. Through social media, people spread news, politics, and life hot
spots in a cascading way. Therefore, the prediction of the information propaga-
tion cascade is significant, and the effective prediction of the number of retweets
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
D. Koutra et al. (Eds.): ECML PKDD 2023, LNAI 14171, pp. 70–86, 2023.
https://doi.org/10.1007/978-3-031-43418-1_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-43418-1_5&domain=pdf
https://github.com/Gration-Cheng/CasSampling
https://doi.org/10.1007/978-3-031-43418-1_5

CasSampling: Exploring Efficient Cascade Graph Learning 71

Future growth

Fig. 1. A real-world example of a propagation graph in the Weibo dataset. The left
figure shows the propagation graph during the observation time 1 h, while the right
figure shows the propagation graph after 23 h. The blue nodes denote the observed
nodes, while the orange nodes represent the nodes that will propagate in the future.

in a period is beneficial for understanding the cascade, which has attracted con-
siderable attention in academia and industry. Cascading propagation plays a
crucial role in many downstream tasks, such as accelerating or suppressing the
spread of information [1,2], rumor detection, and even epidemic prediction. How-
ever, social media are large open platforms, and the uncertainty about cascading
effects makes popularity prediction an extremely challenging problem.

In recent years, Most of the research uses deep learning-based approaches to
learn the representation of cascades. Most of them [3–6], view an information
propagation as a sequence of events and use subgraphs or subsequences to rep-
resent the cascade. However, modeling subgraph or subsequence is difficult to
learn the cascade effect of information propagation.

Recent research has focused on using graph neural networks to capture the
cascade effect [4,6–8]. Graph Neural Networks (GNN) are able to effectively
model graph-structured data by integrating node attributes and topology. How-
ever, when facing a large number of nodes, GNNs can be computationally expen-
sive and inefficient. As shown in Fig. 1, many of the nodes within the observation
time do not bring new forwarding propagation. These nodes have little effect on
propagation. It is obvious that nodes with more propagation during the obser-
vation time will have a larger cascading effect.

Note that with these problems, existing methods confront several challenges:
(1) Some methods model each node to learn node-level representation, but it is
not efficient because of the cascade size (from few to million). (2) The method
of modeling subgraphs or subsequences is difficult to learn the cascade effect of
information propagation. (3) Time is crucial information. Existing methods lack
the extensive use of time information both at the local-level and the global-level.

72 G. Cheng et al.

To address these challenges, we proposed a novel neural network model
named CasSampling. The model focuses on sampling the cascade graph and
compensates for the loss of time and structure information due to sampling,
making the model more efficient and performing better. Our main contributions
can be summarized as follows:

– Efficiency graph representation. We implemented a heuristic algorithm
to sample the key part of cascade graph, which address the problem of the
large variable size of graphs that make it difficult to model with GNNs. To
compensate for the loss of graph structure due to sampling, we retain the
outdegree of sampled nodes as part of the sampled nodes feature. It efficiently
models cascade graphs with the large variable sizes and is effective for explicitly
capturing cascading effects.

– Multi-scale time information. We design an attention aggregator that
combines the node’s propagation embedding with the time stamp of nodes.
To compensate for the loss of time information caused by graph sampling, we
use time series to learn the global propagation time flow. We have successfully
integrated two types of temporal information for the first time, which enables
us capture the potential information between the retweet time of the active
node and the global propagation time flow, and it can more fully model the
information diffusion process.

– Evaluation on benchmark datasets. We conduct extensive evaluations on
two publicly available benchmark datasets, demonstrating that CasSampling
significantly outperforms the state-of-the-art (SOTA) baselines and reduces
the computational cost.

2 Related Work

We review the related work grouped into three main categories: featured-based,
generative process and deep learning-based approaches.

Featured-Based Approaches. It usually extracts features from specific plat-
forms, such as Arxiv; Weibo [3]; Twitter [9]; These features include user-related
features [10,11], content-related features [12], cascades structural [13,14] and
temporal features [15]. However, feature-based approaches extract features from
different platforms, making the learned features difficult to generalize into dif-
ferent scenarios, and the prediction performance heavily relies on the quality of
the hand-crafted feature.

Generative Process Approaches. It mainly regards the process of message
diffusion as an arrival time sequence [16–19]. These methods focus on modeling
the intensity function for the arrival process. The popularity prediction can be
obtained by event simulation of the intensity function. These methods demon-
strate enhanced comprehensibility, but they rely on certain assumptions, and
we do not know whether these assumptions are valid in real situations, limiting
model performance.

CasSampling: Exploring Efficient Cascade Graph Learning 73

Deep Learning-Based Approaches. Generally, existing methods for popu-
larity prediction mainly focus on four types of information, i.e., temporal infor-
mation, node representation, structure representation, and content.

For node and structure representation. DeepHawkes [3] integrates an inter-
pretable Hawkes process for information cascade prediction. With the booming
development of graph neural networks (GNN), CasCN [4] uses it to model the
structural information of cascade subgraphs (via cascade Laplacian). CasFlow
[20] uses a variational autoencoder to learn the uncertainty of the cascade. Tem-
pCas [5] exploits a heuristic algorithm to sample critical paths and utilizes some
handcraft features as compensation for the sampled graph. All the work above
depicts the subgraph of participating users. However, modeling subgraphs or
subsequences is difficult to learn the cascade effect of information propagation.
CouledGNN [7] uses the global propagation graph to capture the interaction
between node activation states and diffusion; CasGCN [21] considers that the
cascade effect is bidirectional, uses in-coming and out-going adjacency matrices
as the representation of graph structure, and combines the time information with
the graph structure by attention mechanism. These GNN-based methods model
each node for graph embedding. However, from the perspective of efficiency and
performance, the method of modeling each node is inappropriate for GNN.

For temporal information modeling, DeepHawkes [3] introduced a nonpara-
metric time decay function into the path modeling of recurrent neural net-
works. DFTC [22] represents temporal information by time series, which used a
Convolution-1d neural network for capturing short-term outbreaks and LSTM
for long-term fluctuations. TempCas [5] improves the DFTC [22] by combining
the short-term and long-term rather than capturing them separately. However,
these methods do not fully utilize global-level and local-level time information.

Note these problems. We propose a novel model, called CasSampling, which
implements a heuristic algorithm to sample the cascade graph and compensate
for the loss of time and structure information caused by sampling. Compared
with the same model, we sample cascade at the graph-level for the first time and
fully utilize multi-scale time information. It achieved better performance and
less computation cost.

3 Preliminaries

We now present the essential background and formally define the popularity
prediction problem.

Definition 1 (Cascade Graph). Suppose that we have n posts, P = {pc, c ∈
[1, n]}. For each post pc, there is a cascade graph denoted by Gc = (Vc, Ec, Tc),
where Vc is a set of nodes that have been involved in the cascade during the
observation time T , a directed edge (vi, vj) ∈ Ec represents that node vj retweet
from node vi, and a tuple of node time label (vi : ti) ∈ Tc denotes the time elapsed
between the original post and node v’s retweet.

74 G. Cheng et al.

Definition 2 (Growth size). It is defined as the amount of cascade growth
number over observation time window T after it has spread for Δt. According
to Definition 1, we obtain Gc = (Vc, Ec, Tc), Tc < T . Our task is to predict the
growth size ΔSi of a cascade after a given time interval Δt. The growth size can
be defined as ΔSi = |VT+Δt

i | − |VT
i |.

Fig. 2. The framework of CasSampling for popularity prediction.

4 Method

Before introducing the details of the CasSampling model, we present the overall
framework of CasSampling in Fig. 2. It contains four major parts:(1)A heuristic
algorithm to sample the critical parts of a graph. (2) Local-level propagation
embedding model graph structure with GAT and uses the attention aggregator to
combine it with node time information. (3) Global-level time flow representation
adopts LSTM on time series to capture the propagation trend. (4) Prediction
layer concatenates local-level propagation and global-level time flow into the
self-attention layer to fuse each other and feed into Multilayer-Perception(MLP)
to predict the increment size.

4.1 Graph Sampling

Efficient node representation is challenging due to the variable size of cas-
cades(from few to million). Specifically, the millions of nodes for the GNN are
computation expensive. To achieve an efficient graph representation, we used
rule-based graph sampling to reduce the number of nodes while preserving the
original graph information as much as possible.

CasSampling: Exploring Efficient Cascade Graph Learning 75

Algorithm 1 Graph sampling
Input: A cascade graph Gc, degree vector D of Gc; the maximum number of nodes K.
Output: Sampled graphGsampled

c and out-degree vector Dsampled of Gsampled
c

1: Vc, Ec, Tc ← Gc

2: if |Vc| < K then
3: return Gc, D
4: end if
5: Dsorted,Vsorted=sort(D,Vc, Tc)# Sort by Rule 1 and Rule 2
6: Dsampled,Vsampled=selectTop(Dsorted,Vsorted,K)
7: Esampled ← ∅, Tsampled ← ∅

8: for each {vi, vj} in Ec do
9: if vj /∈ Vsampled then

10: continue
11: else if vi ∈ Vsampled then
12: Esampled ← Esampled ∪ {vi, vj}
13: else
14: vk=findAncestor(vi,Ec,Vsampled) # Find the nearest ancestor of node vi in

the Vsampled.
15: Esampled ← Esampled ∪ {vk, vj}
16: end if
17: end for
18: for each v in Vsampled do
19: Tsampled ← Tsampled ∪ (v : T (v))
20: end for
21: Gsampled

c = {Vsampled, Esampled, Tsampled}
22: return Gsampled

c ,Dsampled

Given a cascade graph Gc and the adjacency matrix Ac.The outdegree vector
D = {di, i ∈ [1, n]} can be computed with:

di = log2(
N∑

j=1

aij), (1)

where N is the number of nodes and aij is one element of Ac. The di denotes
the outdegree of node i after logarithmic scaling.

Since the node with a larger out-degree is more critical, and according to
the Hawkes process [3], the point closer to the occurrence of time has the more
significant influence, there are two rules for sorting:

Rule 1: Sort the Vc by the outdegree D of nodes.(from large to small).
Rule 2: For nodes with the same outdegree, make a second sort according to
their time(from late to early).

To reduce computation costs and improve performance, we sampled nodes
based on their sorted out-degree vector and selected the top K nodes. However,
this process may result in some nodes missing parent nodes. To address this
issue, we identified the nearest ancestor node that was not filtered out and used

76 G. Cheng et al.

it as the parent node. To preserve the original graph information, we used the
out-degree of the original graph node as the feature for the sampled node.

The process of graph sampling is shown in Algorithm 1.

4.2 Local-Level Propagation Embedding

Graph Attention Layer. Recently, Graph neural networks have been
advanced in graph learning. To capture the local information and achieve node-
level representation, we utilize graph neural networks to learn hidden informa-
tion among cascade nodes. Each tweet has a different cascade graph which is an
inductive task, so we choose Graph Attention networks [23] (GAT) to learn the
graph structure.

The input of GAT consists of two parts, adjacency of the graph and the node’s
feature matrix. After graph sampling, we obtain the Gsampled

c and Dsampled of
a cascade. To retain the original graph information, we reserve the outdegrees
of nodes as part of nodes feature to learn the node influence and the size of the
original cascade. The node input feature H0 can be defined as:

H0 = A + diag(Dsampled) =

⎡

⎢⎢⎢⎣

− h0
1 −

− h0
2 −
...

− h0
N −

⎤

⎥⎥⎥⎦ , (2)

where A is the adjacency matrix of Gsampled
c . diag(Dsampled) indicates diagonal-

izing the Dsampled vector. h0
i ∈ R

F is the input feature of node i, F = N , and
N is the number of nodes.

For the adjacency matrix, we add self-connection to prevent loss of self-
information during aggregation. The Adjacency Ã is formulated as:

Ã = A + In, (3)

where In ∈ R
N×N is an identity matrix.

The main idea of GAT is to aggregate node features by calculating the atten-
tion weight between connected nodes. After n layers of GAT, the node receives
messages from other nodes within n-hops. The aggregate function is as follows:

hn
i = σ(

∑

j∈Ni

αijWhn−1
j), (4)

where Ni is the neighborhood of node vi in the graph, which can be obtained
from Ã. The hn−1

j represents embedding of node j after n-1 layers of GAT. The
αij is the attention score between node i and node j. It can be calculated by:

αij =
exp(LeakyReLU(aT [Whi‖Whj]))∑

k∈Ni
exp(LeakyReLU(aT [Whi‖Whk]))

, (5)

CasSampling: Exploring Efficient Cascade Graph Learning 77

where a ∈ R
2F

′
denote the learnable parameters. LeakyReLU is an activation

function. ‖ is the concatenation operation. A weight matrix W ∈ R
F

′ ×F is
shared to every node.

We do mean pooling with the output Hn of the n layers of GAT, and pooling
the feature of each node.

Hn
pooling = MeanPooling(Hn). (6)

The final graph embedding can be expressed as: Hn
pooling = [hn

1 , hn
2 , . . . , hn

N]T ,

Hn ∈ R
N , where hn

i ∈ R is the embedding of node i.

Node Time Information. To integrate graph structure and global tempo-
ral flow, we preserve the original time information of nodes instead of incor-
porating it into GAT input features. We utilize the attention aggregator to
merge node structure and time information as the graph represents. Let T ′ =
[ht

1, h
t
2, . . . , h

t
N]T , T ′ ∈ R

N denote the time stamp of the node, which is obtained
from Tsampled. h′

i = [hn
i ‖ht

i] represents node i concatenating GAT output and
time information.

ej
i = vT tanh(Wa[h

j
i‖h′

i]), (7)

where hj
i denotes one of the node feature of h′

i. Wa and v denote the learnable
parameter.

αj
i =

exp(ej
i)∑

k∈{t,n} exp(ek
i)

, (8)

where αj
i represents the attention score of hij .

Aggregate the features of node i, and the aggregate function is as follows:

hi =
∑

j∈{t,n}
αj

i h
j
i . (9)

HG = [h1, h2, . . . , hN],HG ∈ R
N contains nodes structure embedding and

nodes time information.

4.3 Global-Level Time Flow Representation

Given a fixed interval of time ts, We have T/ts time slots. From Gc, we can
get the global graph node’s time information, then calculate the time slot of
each node. Let RT = {r1, r2, . . . , rT/ts}, RT ∈ R

T/ts denote the temporal flow
sequence. We utilize LSTM to capture the time flow information.

HT = LSTM(RT), (10)

where HT ∈ R
T/ts is the global propagation time flow representation.

78 G. Cheng et al.

4.4 Prediction Layer

Each node in HG represents graph structure information. HT contains global
temporal information. We concatenate the two parts into Self-Attention [24]
layer to fuse each other and feed into MLP to predict the increment size.

H = HG ⊕ HT , (11)

H ′ = Self Attention(H) + H, (12)

ΔSi = MLP(H
′
), (13)

Our ultimate task is to predict the increment size for a fixed time interval,
which can be done by minimizing the following loss function:

L(ΔSi,ΔŜi) =
1
P

P∑

i=1

(log2 ΔSi − log2 ΔŜi)2, (14)

where P is the number of posts, ΔSi is the predicted amount of growth, ΔŜi is
the ground truth.

4.5 Complexity Analysis

The complexity based on the sparse matrix operation of GAT is O(|Vc|F ′F +
|Ec|F), where F is the number of input features and F ′ is the number of output
features. The complexity of the node-level time attention mechanism is O(|Vc|).
Compare with the subsequence-based method, our method can be parallelized.
The complexity of global time flow representation is O(T/ts). The complexity of
Self-Attention layer is O((|Vc| + T/ts)2). Sum up, the complexity approximates
to O(|Vc|F ′F + |Ec|F + (|Vc| + T/ts)2).

5 Experiments

To evaluate the performance of our model, we compare CasSampling with several
SOTA methods on two benchmark datasets under various evaluation metrics.

5.1 Datasets

Sina Weibo. The dataset [3] comes from Sina Weibo, a major microblogging site
that is similar to Twitter. It contains posts that were published between 0:00 to
24:00 on June 1, 2016.

Twitter. The dataset is collected by [9] and contains public English written tweets
published between Mar 24 and Apr 25, 2012.

The observation time T for Weibo is set to 0.5 h, 1 h and 2 h, and 1 days,2
days and 3 days for Twitter. We select 24 h as the prediction time for the Weibo
dataset and 32 days for the Twitter dataset. Following earlier methods [3,20],

CasSampling: Exploring Efficient Cascade Graph Learning 79

we filter out cascades whose |Vc| < 10, and due to the effect of diurnal rhythm in
Weibo, we focused on tweets published between 8 a.m. and 6 p.m. to give each
tweet at least 6 h to gain retweets. For Twitter, we only tracked tweets published
before Apr 10, ensuring at least 15 days for each tweet to grow adopters. For
each of two datasets, we randomly split it into training set (70%), validation set
(15%), and test set (15%). The statistics and visualization of these two datasets
are shown in Table 1 and Fig. 3.

5.2 Baseline

To validate CasSampling’s performance in popularity prediction, we chose the
following SOTA baselines for comparison:

Table 1. Descriptive statistics of two datasets.

Dataset Ori. Cascade Avg. path length Avg. popularity 0.5 h/1 day 1 h/2 days 2h/3days

Train Val Test Train Val Test Train Val Test

Weibo 119313 1.217 171.098 21461 4598 4598 27353 5860 5860 32943 7059 7059

Twitter 88440 1.201 142.672 9640 2065 2065 12740 2729 2729 15777 3380 3380

Fig. 3. Cascade size distribution of each dataset. In the 1st column, each figure shows
the distribution of cascade sizes. The 2nd column denotes the mean sum cascade size
changing over observation time. The 3rd column describes the mean hourly cascade
size change over the observation time.

Feature-Linear and Feature-Deep. We have extracted all the predictable
features from recent research [10,12,13,15]. Then, we feed it into a linear regres-
sion model and a fully-connected layer to predict the increment size.

DeepHawkes [3]. DeepHawkes considers three important aspects of the Hawkes
process: user influence, time decay effect, and self-exciting mechanism.

80 G. Cheng et al.

CasCN [4]. CasCN is the first GNN-based framework exploiting both structural
and employs a sequence of sub-cascade graphs with cascade Laplacian.

CasFlow [20]. CasFlow combines the local structure of cascade graph with
global social collaboration network.

TempCas [5]. TempCas sample the critical path of cascade and utilizes hand-
crafted features to compensate for structural loss. It uses LSTM and attention
CNN to model long-short term time information.

5.3 Evaluation Metrics

Following existing works [3,4,25], we use Mean Square Logarithmic Error
(MSLE) and Symmetric Mean Absolute Percentage Error (SMAPE) for pre-
diction performance evaluation, which are defined as:

MSLE =
1
P

P∑

i=1

(log2 ΔSi − log2 ΔŜi)2, (15)

SMAPE =
1
P

P∑

i=1

|log2 ΔSi − log2 ΔŜi|
(log2 ΔSi + log2 ΔŜi)/2

, (16)

where P is the number of posts, ΔSi is the predicted amount of growth, ΔŜi is
the ground truth.

Table 2. Results on Weibo and Twitter dataset.

Model Weibo Twitter

0.5 h 1 h 2 h 1 Day 2 Days 3 Days

MSLE SMAPE MSLE SMAPE MSLE SMAPE MSLE SMAPE MSLE SMAPE MSLE SMAPE

Feature-Linear 3.025 0.305 2.653 0.323 2.451 0.332 9.123 0.698 6.729 0.632 5.833 0.602

Feature-Deep 2.891 0.281 2.612 0.319 2.332 0.311 7.801 0.669 6.330 0.599 5.439 0.574

DeepHawkes 2.674 0.277 2.538 0.303 2.312 0.302 6.874 0.635 5.085 0.545 4.281 0.463

CasCN 2.660 0.275 2.613 0.323 2.452 0.310 7.121 0.638 5.438 0.560 4.482 0.463

CasFlow 2.418 0.247 2.298 0.257 2.003 0.281 6.989 0.625 5.143 0.552 4.102 0.449

TempCas 2.332 0.243 2.219 0.248 2.001 0.278 6.232 0.611 4.332 0.525 3.680 0.455

CasSampling-Struct 2.553 0.246 2.483 0.283 2.339 0.307 7.329 0.667 5.773 0.591 4.681 0.483

CasSampling-St.ND 2.793 0.287 2.681 0.312 2.539 0.352 7.811 0.687 5.983 0.610 4.997 0.498

CasSampling-TimeFlow 2.388 0.244 2.241 0.248 2.021 0.281 6.322 0.602 4.349 0.521 3.757 0.457

CasSampling-NNT 2.311 0.244 2.178 0.247 1.988 0.273 6.198 0.599 4.298 0.516 3.658 0.451

CasSampling 2.194 0.227 2.113 0.243 1.883 0.276 5.908 0.594 4.125 0.512 3.433 0.447

Table 3. Computation cost on Weibo dataset with 1h observation time.

Models Time cost Parameter

Preprocessing Trainning Inference

DeepHawkes ∼1 min ∼40 min 323 samples/s ∼103M

CasCN ∼3 h ∼2 h 158 samples/s ∼210M

CasFlow ∼28 min ∼15 min 1432 samples/s ∼11M

TempCas ∼6 min ∼13 min 1591 samples/s ∼12M

CasSampling ∼2 min ∼5 min 6328 samples/s ∼720K

CasSampling: Exploring Efficient Cascade Graph Learning 81

5.4 Experiment Settings

Parameter Settings. For baselines, we follow the settings of their works. In
our experiment, the maximum number of nodes in cascade graph K is set to
128. For local propagation embedding, CasSampling contains 2 layers of GAT,
the hidden dimension feature is set to 512 and the output dimension of the node
feature is set to 8. For the global propagation time flow, the number of time
slots is set to 64. For the prediction layer, the number of neurons in each layer
of the MLP is {64,32}. The optimizer is Adam with learning rate = 0.0001. We
set the batch size as 64 and the training epochs as 50.

Experimental Environment. We ran the experiment on a PC with an AMD
5600X 3.70 Ghz, an NVIDIA GTX 3090 24 GB, and 64 GB memory. CasSampling
was trained by using PyTorch 1.11.0.

6 Results and Analysis

In this section, we report experimental results and conduct further analysis.

6.1 Experiment Results

The experimental results are shown in Table 2. Our approach outperforms the
baseline methods for all metrics. CasCN and DeepHawkes only focus on node-
level modeling, which is inadequate for large graphs. CasFlow combines cascade
graphs with a global social network for structure learning. However, the method
above does not take into account the importance of time information, which
may be the reason to limit their performance. TempCas implements a heuris-
tic algorithm to sample critical paths, but compensates for structural losses
using hand-crafted features without alignment with structural representation.
Although it uses LSTM and attention CNN to model long-short term global
propagation time information, the node-level time information is not integrated
into the structure representation, which may result in poor integration between
the structure embedding and the time-flow representation.

Our proposed CasSampling model beats all counterparts on all datasets.
Compared with the classic models DeepHawkes and CasCN, our method has

Table 4. Effect of varying maximum number of node K on the performance of the
model.

Model Weibo Dataset

MSLE

0.5 h 1 h 2 h

K = 64 K = 128 K = 256 K = 64 K = 128 K = 256 K = 64 K = 128 K = 256

CasSampling-Struct 2.612 2.553 2.501 2.551 2.483 2.432 2.389 2.339 2.302

CasSampling 2.282 2.231 2.228 2.158 2.113 2.128 1.924 1.883 1.891

82 G. Cheng et al.

(a) Global graph (b) Sampled graph

Fig. 4. An example of graph sampling. The left is the original global graph, which has
over 3000 nodes. The right is the sampled graph, with colored edges and points being
selected (The max number of node K is 128). The depth of color and the size of nodes
indicate the activity of nodes, which is derived from the degree of sampling nodes in
the global graph.

improved by 10%–25% on each evaluation metrics. Compared with the recent
SOTA models (CasFlow, TempCas), our method also has improved by 5%–15%
on MSLE. This shows that our method is significantly better than the baseline
in information popularity prediction.

We compute the time cost and parameter for baselines and CasSampling, as
shown in Table 3. It demonstrates that CasSampling is more efficient compared
with all the SOTA baselines.

Table 4 illustrates the impact of different maximum node number of K on
the model’s performance. As K increases, we observe a consistent improvement
in the performance of CasSampling-Struct, since a larger number of nodes leads
to more temporal information being captured. However, the overall performance
of the model is best at K = 128, indicating that an appropriate value of K can
facilitate better capturing of cascading effects.

6.2 Ablation Study

To study the relative importance of each module in the CasSampling, we conduct
ablation studies over the different parts of the model as follows:

– CasSampling-Struct. It only uses the local-level propagation embedding
part to predict increment size.

– CasSampling-St.ND. It only uses the local-level propagation embedding
part and removes the outdegree feature of node.

– CasSampling-TimeFlow. It only uses global-level time flow representation
to predict increment size.

CasSampling: Exploring Efficient Cascade Graph Learning 83

– CasSampling-NNT. It removed the attention aggregator module of node
time information.

The results are shown in Table 2. CasSampling-Struct demonstrates that
the sampled graph can still represent global propagation. Figure 4 is an example
of graph sampling. The performance of CasSampling-St.ND decreases con-
siderably, which shows that the importance of maintaining the outdegree of the
node plays a great role in compensating for the graph structure. The perfor-
mance of CasSampling-NNT is not as good as CasSampling, which proves
that adding time information to nodes can make local-level propagation embed-
ding better integrated with global-level time flow representation. CasSampling-
TimeFlow shows an interesting result that only time information is better than
most models, so we did a further analysis to explore the underlying reason.

6.3 Further Analysis

We select samples based on the average path length of the graph to further
analysis the time-flow based method and graph-embedding based method.

We link the performance with the graph structure. Figure 5 indicates that
CasSampling-TimeFlow’s performance slightly decreases with longer average
path lengths in the cascade graph, while CasSampling-Struct performs better
under these conditions. This suggests that CasSampling-Struct can learn the
intrinsic information of complex cascades, while CasSampling-TimeFlow can-
not.

Fig. 5. The Relationship between performance and average path length of cascade
graph.

84 G. Cheng et al.

7 Conclusion

We present CasSampling, a new deep learning framework for efficient popu-
larity prediction. It captures cascade graph structure and leverages multi-scale
time information. CasSampling consists of four main components: (1) a heuris-
tic algorithm for sampling critical parts of a graph, (2) a local-level propagation
embedding model that uses GAT and an attention aggregator to combine graph
structure with node time information, (3) A global-level time flow representation
using LSTM to capture propagation trends, and (4) a prediction layer that fus-
ing local-level propagation and global-level time flow and feeds it into an MLP
to predict the increment size. We conducted extensive experiments on Weibo
and Twitter datasets, and achieved SOTA performance on information cascade
size prediction with much less computation cost than the baselines.

Our future work mainly focuses on the following aspects: (1) Exploit a bet-
ter strategy to sample graph. (2) Explore the relationship between structural
information and temporal information, and better integrate each other.

Acknowledgments. The work was supported by National Natural Science Founda-
tion of China (Grant Nos. 61966020, 61972186, U21B2027), Yunnan high-tech industry
development project (Grant No. 201606), Yunnan provincial major science and technol-
ogy special plan projects (Grant No. 202103AA080015, 202002AD080001-5), Yunnan
Basic Research Project (Grant No. 202001AS070014), and Talents and Platform Pro-
gram of Science and Technology of Yunnan (Grant No. 202105AC160018).

Ethical Statement. The purpose of this paper is to explore efficient and effective

methods for learning cascade graphs for popularity prediction while adhering to aca-

demic integrity and research ethics requirements. We used publicly available data from

social media datasets that have been authorized by Twitter and Weibo officials. To

ensure the confidentiality of personal information, all data is anonymized and stored

securely. We obtained approval and permission from the ethics committee of our insti-

tution to conduct this research.

The models and algorithms used in this study are based on publicly available data

and previous research results, and we have thoroughly tested and verified them. We

commit to conducting a transparent and fair evaluation of the algorithms and models

used in this research, and we will present them fully in the paper.

Throughout this study, we will adhere to academic standards and ethical require-

ments, striving to avoid any behavior that may violate these requirements. We hope

that this research will contribute to the development of cascade graph learning and

popularity prediction, promoting further research in this area.

References

1. Mishra, S., Rizoiu, M.A., Xie, L.: Modeling popularity in asynchronous social media
streams with recurrent neural networks. In: Twelfth International AAAI Confer-
ence on Web and Social Media (2018)

CasSampling: Exploring Efficient Cascade Graph Learning 85

2. Li, G., Chen, S., Feng, J., Tan, K.l., Li, W.S.: Efficient location-aware influence
maximization. In: Proceedings of the 2014 ACM SIGMOD International Confer-
ence on Management of Data, pp. 87–98 (2014)

3. Cao, Q., Shen, H., Cen, K., Ouyang, W., Cheng, X.: Deephawkes: bridging the gap
between prediction and understanding of information cascades. In: Proceedings of
the 2017 ACM on Conference on Information and Knowledge Management, pp.
1149–1158 (2017)

4. Chen, X., Zhou, F., Zhang, K., Trajcevski, G., Zhong, T., Zhang, F.: Informa-
tion diffusion prediction via recurrent cascades convolution. In: 2019 IEEE 35th
International Conference on Data Engineering (ICDE), pp. 770–781. IEEE (2019)

5. Tang, X., Liao, D., Huang, W., Xu, J., Zhu, L., Shen, M.: Fully exploiting cascade
graphs for real-time forwarding prediction. In: Proceedings of the AAAI Conference
on Artificial Intelligence, vol. 35, pp. 582–590 (2021)

6. Yuan, C., Li, J., Zhou, W., Lu, Y., Zhang, X., Hu, S.: DyHGCN: a dynamic het-
erogeneous graph convolutional network to learn users’ dynamic preferences for
information diffusion prediction. In: Hutter, F., Kersting, K., Lijffijt, J., Valera,
I. (eds.) ECML PKDD 2020. LNCS (LNAI), vol. 12459, pp. 347–363. Springer,
Cham (2021). https://doi.org/10.1007/978-3-030-67664-3 21

7. Cao, Q., Shen, H., Gao, J., Wei, B., Cheng, X.: Popularity prediction on social
platforms with coupled graph neural networks. In: Proceedings of the 13th Inter-
national Conference on Web Search and Data Mining, pp. 70–78 (2020)

8. Wu, Z., Zhou, J., Liu, L., Li, C., Gu, F.: Deep popularity prediction in multi-source
cascade with HERI-GCN. In: 2022 IEEE 38th International Conference on Data
Engineering (ICDE) (2022)

9. Weng, L., Menczer, F., Ahn, Y.Y.: Virality prediction and community structure in
social networks. Sci. Rep. 3(1), 1–6 (2013)

10. Cui, P., Jin, S., Yu, L., Wang, F., Zhu, W., Yang, S.: Cascading outbreak prediction
in networks: a data-driven approach. In: Proceedings of the 19th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, pp. 901–909
(2013)

11. Ma, Z., Sun, A., Cong, G.: On predicting the popularity of newly emerging hashtags
in twitter. J. Am. Soc. Inform. Sci. Technol. 64(7), 1399–1410 (2013)

12. Petrovic, S., Osborne, M., Lavrenko, V.: Rt to win! predicting message propagation
in twitter. In: Proceedings of the International AAAI Conference on Web and Social
Media, vol. 5, pp. 586–589 (2011)

13. Shulman, B., Sharma, A., Cosley, D.: Predictability of popularity: gaps between
prediction and understanding. In: Tenth International Conference on Web and
Social Media (2016)

14. Bao, P., Shen, H.W., Huang, J., Cheng, X.Q.: Popularity prediction in microblog-
ging network: a case study on Sina Weibo. In: Proceedings of the 22nd International
Conference on World Wide Web, pp. 177–178 (2013)

15. Cheng, J., Adamic, L., Dow, P.A., Kleinberg, J.M., Leskovec, J.: Can cascades be
predicted? In: Proceedings of the 23rd International Conference on World Wide
Web, pp. 925–936 (2014)

16. Rizoiu, M.A., Xie, L., Sanner, S., Cebrian, M., Yu, H., Van Hentenryck, P.: Expect-
ing to be hip: hawkes intensity processes for social media popularity. In: Proceed-
ings of the 26th International Conference on World Wide Web, pp. 735–744 (2017)

17. Mishra, S., Rizoiu, M.A., Xie, L.: Feature driven and point process approaches for
popularity prediction. In: Proceedings of the 25th ACM International on Confer-
ence on Information and Knowledge Management, pp. 1069–1078 (2016)

https://doi.org/10.1007/978-3-030-67664-3_21

86 G. Cheng et al.

18. Shen, H., Wang, D., Song, C., Barabási, A.L.: Modeling and predicting popularity
dynamics via reinforced poisson processes. In: Proceedings of the AAAI Conference
on Artificial Intelligence, vol. 28 (2014)

19. Yang, S.H., Zha, H.: Mixture of mutually exciting processes for viral diffusion. In:
International Conference on Machine Learning, pp. 1–9. PMLR (2013)

20. Xu, X., Zhou, F., Zhang, K., Liu, S., Trajcevski, G.: Casflow: exploring hierarchical
structures and propagation uncertainty for cascade prediction. IEEE Trans. Knowl.
Data Eng. (2021)

21. Xu, Z., Qian, M., Huang, X., Meng, J.: CasGCN: predicting future cascade growth
based on information diffusion graph. arXiv preprint arXiv:2009.05152 (2020)

22. Liao, D., Xu, J., Li, G., Huang, W., Liu, W., Li, J.: Popularity prediction on online
articles with deep fusion of temporal process and content features. In: Proceedings
of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 200–207 (2019)

23. Veličković, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph
attention networks. In: International Conference on Learning Representations
(2018, accepted as poster). https://openreview.net/forum?id=rJXMpikCZ

24. Vaswani, A., et al.: Attention is all you need. In: Advances in Neural Information
Processing Systems, vol. 30 (2017)

25. Chen, X., Zhang, F., Zhou, F., Bonsangue, M.: Multi-scale graph capsule with
influence attention for information cascades prediction. Int. J. Intell. Syst. 37(3),
2584–2611 (2022)

http://arxiv.org/abs/2009.05152
https://openreview.net/forum?id=rJXMpikCZ

Boosting Adaptive Graph Augmented
MLPs via Customized Knowledge

Distillation

Shaowei Wei, Zhengwei Wu, Zhiqiang Zhang, and Jun Zhou(B)

Ant Group, Hangzhou, China
{weishaowei.wsw,zejun.wzw,lingyao.zzq,jun.zhoujun}@antgroup.com

Abstract. While Graph Neural Networks (GNNs) have shown con-
vinced performance on handling non-Euclidean network data, the high
inference latency caused by message-passing mechanism hinders their
deployment on real-time scenarios. One emerging inference accelera-
tion approach is to distill knowledge derived from teacher GNNs into
message-passing-free student multi-layer perceptrons (MLPs). Neverthe-
less, due to the graph heterophily causing performance degradation of
teacher GNNs, as well as the unsatisfactory generalization ability of stu-
dent MLPs on graph data, GNN-MLP like designs often achieve infe-
rior performance. To tackle this challenge, we propose boosting adap-
tive GRaph Augmented MLPs via Customized knowlEdge Distillation
(GRACED), a novel approach to learn graph knowledge effectively and
efficiently. Specifically, we first design a novel customized knowledge
distillation strategy to modify the guided knowledge to mitigate the
adverse influence of heterophily to student MLPs. Then, we introduce
an adaptive graph propagation approach to precompute aggregation fea-
ture for node considering both of homophily and heterophily to boost the
student MLPs for learning graph information. Furthermore, we design
an aggregation feature approximation technique for inductive scenarios.
Extensive experiments on node classification task and theoretical anal-
yses demonstrate the superiority of GRACED by comparing with the
state-of-the-art methods under both transductive and inductive settings
across homophilic and heterophilic datasets.

Keywords: Graph learning · Inference acceleration · Knowledge
distillation · Inductive learning

1 Introduction

Graph Neural Networks (GNNs) have shown remarkable effectiveness in pro-
cessing non-Euclidean structural data and achieved enormous success in diverse

Supplementary Information The online version contains supplementary material
available at https://doi.org/10.1007/978-3-031-43418-1 6.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
D. Koutra et al. (Eds.): ECML PKDD 2023, LNAI 14171, pp. 87–103, 2023.
https://doi.org/10.1007/978-3-031-43418-1_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-43418-1_6&domain=pdf
https://doi.org/10.1007/978-3-031-43418-1_6
https://doi.org/10.1007/978-3-031-43418-1_6

88 S. Wei et al.

graph mining tasks [5,22]. The achievement of current GNNs relies on the
employment of message passing paradigm, which extracts graph information
by propagating node feature on graph iteratively to learn node representation.
However, the number of neighbor for each node would exponentially explodes
as the time of feature propagation increases. Therefore, the time-consuming and
computation-intensive problem caused by neighbor explosion severely hinders
the deployment of GNNs for practical scenarios that have strict constraint on
inference latency, especially for large-scale graphs.

Common inference acceleration techniques like hardware improvement [4,
10], pruning [31], quantization [29] and distillation [23] can accelerate GNNs to
some extent by reducing Multiplication-and-ACcumulation (MAC) operations.
Nevertheless, their improvements are limited, since they cannot completely get
rid of time-consuming neighborhood fetching imposed by message passing.

Inspired by the promising effectiveness of MLP-like models in computer vision
[12], graph-less neural networks (GLNN) [28] transfers the graph knowledge from
GNNs to MLPs using knowledge distillation (KD) [7]. This idea combines the
performance advantage of GNNs and the latency advantage of MLPs. Hence,
the performance of deployed MLPs is improved while the fast inference speed of
MLPs is retained without requiring explicit message passing.

GLNN has proved that KD can help MLP to find fitted parameters to bridge
the gaps in model structure through transferring inductive bias of GNNs when
node feature and topology are strongly correlated. However, common GNNs
are built on the homophily assumption [14] that the edges with a higher ten-
dency to connect nodes of same types. This assumption fails when meeting het-
erophilous graph data which results in GNNs underperforming corresponding
graph-agnostic models [3,13,32]. Under the circumstances, simply transferring
knowledge of teacher GNN that ignores this harmful heterophily would degrade
distillation effectiveness.

On the other hand, we observe the performance of GLNN under inductive
setting is closer to MLP that lack of utilization of graph structure information as
present in Fig. 1. This can be explained by PMLP [24], which pinpoints the mes-
sage passing mechanism inherently improves model’s generalization capability
for dealing with unobserved samples. Specifically, in transductive settings, since
all node features and graph structures are available in training phase, student
MLPs can memorize teachers’ outputs on all nodes, which may lead to proper
performance. However, in inductive setting, since test information is unseen in
training phase, the lack of structure information limits the generalization of
MLPs. Thus the structure information plays an important role to generalize
knowledge learned from training set to test set. In summary, due to the neglect
of harmful heterophily and lack of structure information, GLNN-like approaches
are difficult to achieve satisfactory results, especially under the inductive setting.

To address above mentioned issues, we propose boosting adaptive GRaph
Augmented MLPs via Customized knowlEdge Distillation (GRACED), a novel
approach to learn graph knowledge with effectiveness and efficiency. Specifically,
to mitigate the heterophily problem, we first design a novel customized knowl-
edge distillation approach that adaptively utilizes label information to modify

GRACED 89

Fig. 1. Performance of GNN, GLNN and MLP on three webpage datasets under induc-
tive setting.

the guided knowledge from teacher GNNs, and thereby mitigates the harmful
influence of heterophily to student MLPs. To further improve the generalization
capability of student MLPs, we introduce adaptive graph propagation (AGP)
approach to precompute aggregation node feature considering both of homophily
and heterophily in weighted manner. Hence student MLPs can fully capture
graph structure information as well as node content information of different
types of graphs. Finally, we introduce a method to approximate the aggregated
node features to alleviate performance degradation caused by neighbor missing
in inductive setting. In addition, we provide theoretical analyses on gradient per-
spective to facilitate a better understanding of the model. The core contributions
of this work are summarized as follows:

(i) We design a customized knowledge distillation strategy that modifies the
teacher’s knowledge to mitigate the heterophily problem.

(ii) We introduce adaptive graph propagation which make MLPs capture struc-
ture information of homophilic graphs and heterophilic graphs to improve
the model’s generalization capability, especially under the inductive setting.

(iii) We propose a method to approximate the aggregated node features to alle-
viate performance degradation caused by neighbor missing in inductive set-
ting.

(iv) Comprehensive experiments, including performance comparisons, sensitiv-
ity analyses, efficiency comparisons, ablation studies and online deployment
demonstrate the superiority of GRACED.

2 Related Work

2.1 Inference Acceleration

Existing technical approaches for speeding up GNNs inference can be broadly
divided into two categories: data reduction and model compression. Data reduc-
tion is to reduce the data scale. GraphSAINT [27] proposes an sampling algo-
rithms for variance reduction. Further, it can decouple the sampling from the

90 S. Wei et al.

forward and backward propagation. Zhou et al. propose a pruning framework
[31] via a novel LASSO regression formulation. LPGNAS is [29] a novel network
architecture search (NAS) mechanism, constrains both architecture and quanti-
sation choices to be differentiable. Both data reduction and model compression
can not eliminate the latency to fetch neighbor. Concurrently, Graph-Augmented
Multi-Layer Perceptrons (GA-MLPs) attempts to bypass GNN neighbor fetching
[17] by decoupling the feature transformation and message propagation.

2.2 GNN Distillation

Most GNN knowledge distillation works attempt to distill large GNNs to smaller
GNNs. LSP [26] conducts Knowledge distillation while preserving local informa-
tion. GraphAKD [6] adversarially trains a discriminator and a generator to adap-
tively detect and decrease the discrepancy between teacher and student networks.
GKD [25] proposes geometric knowledge distillation to transfer geometric knowl-
edge from a teacher GNN to a student GNN. These GNN-GNN distillation designs
still suffer from latency-inducing neighbor fetching. GLNN [28] distills GNN to
MLP, which solves the neighbor fetching problem. Cold Brew [30] attempts to
solve the cold start problem and noisy-neighbor challenges for GNNs. NOSMOG
[20] learn Noise-robust and Structure-aware MLPs on graphs that considers posi-
tion encoding, similarity distillation, and attribute augmentation.

2.3 GNN on Addressing Heterophily

Geom-GCN [15] precomputes unsupervised node embedding and utilizes graph
structure defined by geometric relationships in the embedding space to execute
the bi-level aggregation. FAGCN [1] learns edge-level attention scores as GAT
[21] but allows the scores to be negative which enables the network to capture
the high-frequency graph signals. GPRGNN [3]uses learnable weights that can
be both positive and negative for message passing. Thus it is able to handle both
homophily and heterophily of the graph. ACM-GNN [13] proposes an adaptive
channel mixing framework to adaptively exploit aggregation, diversification and
identity channels in each GNN layer to address heterophily. The inference speed
of these models is normally slower than that of general GNNs due to the special
design for heterophily.

3 Preliminaries

Notations. Consider an undirected graph G = (V, E) with node set V and
edge set E ⊆ V × V. N = |V| denotes the total number of nodes, assumed to
be assigned to one of C ≥ 2 classes. The initial nodes feature is represent by
matrix X ∈ R

N×d, where d stands for the number of features per node. The
topological structure of G is described by the adjacency matrix A ∈ R

N×N , in
which Au,v = 1 if edge(u, v) ∈ E , otherwise Au,v = 0. The diagonal degree matrix
is denoted as D. Let Ã = A + I and D̃ = D + I denote the adjacency matrix
and the degree matrix for a graph with added self-loops, respectively. Then

GRACED 91

Fig. 2. The overall framework of GRACED: In training phase, a teacher GNN is trained
on graph data for soft labels. Furthermore, GRACED modifies the obtained soft labels
by customized knowledge distillation method. Then the aggregated node feature pre-
computed through adaptive graph propagation is used to train a student MLP, which is
guided by the modified soft labels of teacher GNN. In inference phase, GRACED merely
relies on the precomputed aggregated feature of node itself or its one-hop neighbors,
and hence GRACED infers much faster than GNNs.

the symmetric normalized adjacency matrix with self-loops can be represent by
Ãsym = D̃−1/2ÃD̃−1/2.

Metric of Homophily. The metric of homophily is defined by considering the
different correlation between node labels and graph structure described by adja-
cency matrix. Following work in [11], we calculate the homophily of graphs as:

Q(G) =
1

C − 1

C∑

c=1

max(Qc − |{v|Yv,c = 1}|
N

, 0), (1)

Qc =
∑

v∈V |{u|Yv,c = 1, u ∈ Nv,Yu,: = Yv,:}|∑
v∈{v|Yv,c=1} |N (v)| , (2)

where Q(G) ∈ [0, 1], which closes to 1 corresponds to strong homophily, while
closes to 0 indicates strong heterophily. Qc is the class-wise homophily metric.
Y ∈ R

N×C denotes the label encoding matrix, whose v-th row Yv,: is the one-hot
encoding of the label of node v. |N (v)| is the degree of node v.

4 Methodology

The key idea of our approach is to solve the heterophily problem of teacher GNN
and the generalization problem of student MLP on graph data. We explicitly
boost the low-latency student MLP with a carefully designed distillation strategy
and an innovative adaptive graph propagation method.

In this section, we introduce the proposed methodology in detail, along with
its implementation. An overview of the proposal is depicted in Fig. 2.

92 S. Wei et al.

4.1 Customized Knowledge Distillation

Training MLPs with the knowledge derived from fixed GNNs is a forthright idea
as in GLNN [28]. Given the output generated by a cumbersome teacher GNN
and the ground truth labels, the target is to learn a “boosted” student MLP.
For a single sample, the objective function of the distillation process is weighted
by distillation loss (corresponding to teacher output) and label supervised loss
(corresponding to ground truth labels):

L = (1 − λ)Lkd + λLlabel, (3)

where λ is a trade-off hyper-parameter for balancing two loss terms.
Specifically, Lkd is the knowledge distillation loss between the classification

probabilities pT ,t of teacher GNN T and that of student MLP S in temperature
t. It is calculated by KL-divergence:

Lkd = KL(pT ,t||pS,t) =
C∑

i=1

pT ,t
i log(

pT ,t
i

pS,t
i

), (4)

where

pS,t
i =

ez
S
i /t

∑C
c=1 ez

S
c /t

,

pT ,t
i =

ez
T
i /t

∑C
c=1 ez

T
c /t

.

(5)

zT and zS are the output logits of teacher GNN and that of student MLP
respectively.

The cross-entropy loss between the ground truth labels y and classification
probabilities pS,1 of the student MLP is as following:

Llabel = CE(y,pS,1) = −
C∑

i=1

yi log pS,1
i . (6)

However, this simple design does not consider that GNN can be affected
by graph heterophily, resulting in unreasonable probabilities output, which is
then transferred as injurious distillation knowledge, causing degradation of the
student model performance. Therefore, how to avoid the adverse influence of
heterophily while retaining the distillation effectiveness of teachers’ knowledge
is a significant challenge. Distinguishing from specific design on addressing het-
erophily, we start from the distillation task and propose customized knowledge
distillation (CKD) to jointly utilize the ground truth labels and cross-entropy to
modify the teacher’s output, thereby improving the distillation effect.

Original ground truth labels are one-hot vectors, which take a value of 1
in the target dimension and 0 in other dimensions. This characteristic allows
labels to only change the value of teacher’s output on target dimension. To make
modification effective for all dimensions, a simple idea is to assign a non-zero

GRACED 93

value to the dimension with value 0 in advance. Therefore, we introduce label
smooth regularization (LSR) [19], a method proposed at first to encourage deep
models to generalize and exploit inter-class information, to soften the ground
truth one-hot labels. Considering a sample of class m with ground truth label
distribution y = δ(m), where δ(·) is impulse signal, the LSR label is given as:

ŷ = (1 − ε)δ(m) + ε/C, (7)

where ε is a hyper-parameter. Comparing with one-hot labels distribution, it
gives a less confident probability (but still the most confident among all the
classes) to the ground truth labels, and allocates the remainder of the probability
equally to other classes. The obtained LSR labels is subsequently used to modify
the output logits of teacher GNN.

Furthermore, we define a weight according to the teacher’s cross entropy
CET and the student’s cross entropy CES . The weight can be formulated as:

γ = 1 − exp(− CES

CET),

CES = −
C∑

i=1

yi log pS,1
i ,

CET = −
C∑

i=1

yi log pT ,1
i ,

(8)

where γ ∈ (0, 1). Intuitively, the greater the cross entropy, the worse model is
trained on the sample. Thus, when student MLP learns worse than teacher GNN,
γ will become greater.

Then we use γ to weight the teacher’s original classification probabilities and
the LSR labels, and the modified probabilities is rewritten as:

p̂T ,t
i = γpT ,t

i + (1 − γ)ŷi. (9)

The above equation means that a weighting factor is assigned to teacher’s
probabilities and LSR labels according to the discrepancy extent of the teacher
and the student on sample i. When γ = 1, p̂T degenerates into teacher’s proba-
bilities; when γ = 0 and ε = 0, p̂T degenerates into ground truth labels. In this
way, if compared to the student, a teacher network is relatively worse trained on
a sample, a smaller weight is assigned to teacher’s probabilities.

We then substitute Eq. (9) into Eq. (4) to calculate the distillation loss.
Hereto, we obtain a more powerful KD to transfer knowledge with less het-
erophily from the teacher GNN into the student MLP to achieve better perfor-
mance.

Analysis of effectiveness of CKD. We attempt to analyze the gradient of KD
loss Lkd to explain the effectiveness of CKD. Specifically, for any single sample,
we compute the gradient of Lkd for its i-th output:

94 S. Wei et al.

∂Lkd

∂zS
i

= − ∂

∂zS
i

C∑

c=1

p̂T ,t
c log pS,t

c =
1
t
(pS,t

i − p̂T ,t
i)

=
1
t
(

ez
S
i /t

∑C
c=1 ez

S
c /t

− eẑ
T
i /t

∑C
c=1 eẑ

T
c /t

).

(10)

Then the gradient of KD loss function for this sample should be:

∂Lkd

∂zS =
1
t

C∑

i=1

(pS,t
i − p̂T ,t

i) =
1
t

C∑

i=1

(pS,t
i − γpT ,t

i) + (γ − 1). (11)

As reflected in Eq. (11), when the teacher GNN predicts a sample with high
heterophily, the cross entropy of the sample is greater than that with low het-
erophily. The weight γ decreases thereby, and then the teacher’s output related
information will play less important role in gradient computation.

4.2 Adaptive Graph Propagation

Though KD helps MLP to explore suitable parameters which can well approx-
imate the prediction function from transferring inductive bias of GNNs [28] on
training set, the generalization capability of student MLP on unseen samples is
poor stemming from lack of graph information. Specifically, the input of MLP
only contains node content features, while the input of GNN also contains both
of node content features and topology information. This difference in input lim-
its the expression and generalization ability of MLP on graph data [2,24]. In
order for MLP to make full use of graph structure information without losing
the advantage of inference efficiency, we attempt to augment node feature via
computing propagation during preprocessing.

Generalized PageRank (GPR) [9] methods were first used in the context of
unsupervised graph clustering, which is defined as follows:

H̃ =
∞∑

k=0

αkHk,

Hk = Ãk
symX,

(12)

where αk is the weights of the k-th order convolution matrix. If we truncate the
infinite sum in the definition of GPR at some natural number K,

∑K
k=0 αkÃk

sym

corresponds to a polynomial graph filter of order K. Thus, learning the optimal
GPR weights is equivalent to learning the optimal polynomial graph filter. Note
that one can approximate any graph filter using a polynomial graph filter [18] and
hence the GPR method is able to deal with different category of graph, including
heterophilic graphs. However, Eq. (12) only considers the weights from the per-
spective of the base filter with different hops, which is too coarse for sundry and
heterophilic node feature. Therefore, we explicitly model the weights for node

GRACED 95

features by introducing diagonal parameter matrices Bk. Then we rewrite Eq.
(12) as follows:

H̃ =
K∑

k=0

αkHkBk,

Bk = diag(β1
k, β

2
k, ..., β

d
k),

(13)

where Bk represents the weight of the features in the k-th basic propogation.
It performs as a 1D convolution to reduce the number of input parameters to
the subsequent student MLP, avoiding a multiplicative increase in the number
of model parameters by a factor of N .

Before training the student MLP, we precompute the message propogation
as:

X = {X,H1,H2, ...,HK}. (14)

In this way, we can greatly reduce the time overhead caused by message propa-
gation during training and inference phase. Subsequently, the graph augmented
feature is decoded by MLP to obtain the output predictions. The parameters of
MLP are trained together with αk and Bk in an end-to-end fashion.

Z = MLP (H̃). (15)

4.3 Approximate Aggregation Feature

In practical deployment, the model often conducts inference in inductive setting.
For example, in recommendation scenario, one user is newly added who is unseen
in train set and test set, and thereby has not precomputed aggregation feature.
We should compute the aggregation feature for this user on existing user-item
bipartite graph. However, the time cost grows exponentially with the number
of hops is unacceptable under strict latency limitation in inference phase. As a
result, we propose an approach to approximate K-hop node aggregation feature
merely with linear time complexity.

Specifically, for a target node v to be predicted, we attempt to utilize pre-
computed feature in X of its neighbor u ∈ N (v) to represent approximate aggre-
gation feature.

Firstly, we initialize h
0

v and h
0

u as node content feature:

h
0

v = xv,h
0

u = xu. (16)

Then, the k-hop feature h
k

v of v is aggregated in mean pooling manner:

h
k

v =
∑

u∈N (v)

1
|N (v)|h

k−1

u . (17)

96 S. Wei et al.

The k-hop representation h
k

u of u is approximate by h
′k
u:

h
k

u ≈ h
′k
u =

|N (u)|
|N (u)| + 1

(
l

l + 1
)k−1hk

u +
1

|N (u)| + 1
h
k−1

v

+
k−2∑

i=0

|N (u)|
|N (u)| + 1

(
l

l + 1
)i

1
l + 1

h
k−2−i

v ,

(18)

where l is a constant set manually. After replacing h
k

u with h
′k
u, we can obtain

the approximate aggregation feature {hk

v}Kk=0 of node v in time complexity
O(|N (v)|Kd) through alternately calculating Eq. (17) and Eq. (18).

Table 1. Statistics of used datasets.

Datasets Homophily #Nodes #Edges #Features #Classes

Cora 0.766 2708 5429 1433 7

Citeseer 0.627 3327 4732 3703 6

Pubmed 0.664 19717 44338 500 3

Texas 0.001 183 309 1703 5

Chameleon 0.062 2277 36101 2325 5

Squirrel 0.025 5201 217073 2089 5

The error caused by approximation is bounded by:

||hk

u − h
′k
u|| ≤ |N (u)|

|N (u)| + 1

+
|N (u)|

|N (u)| + 1

k−2∑

i=0

[
f i

2i
+ (

l

l + 1
)i

1
l + 1

],
(19)

where f is the max degree of neighbors of node v within K hop.

5 Experiments

5.1 Datasets

we evaluate the performance of our proposed GRACED on three benchmark
homophilous graphs and three benchmark heterophilous graphs respectively. The
statistics is as described in Table 1.

Homophilous Graphs. We choose the commonly used citation datasets, e.g.,
Cora, Citeseer and Pubmed as homophilous graphs. Edges in these networks
represent the citation relationship between two papers, node features are the

GRACED 97

bag-of-words embedding of the papers and labels are the fields of papers. In
each network, we use 20 labeled nodes per class for training, 500 nodes for vali-
dation and 1000 nodes for testing. More details can be found in [22].

Heterophilous Graphs. Texas is webpage graph from WebKB1. Chameleon
and Squirrel are two Wikipedia networks2. Edges represent the hyperlinks
between two pages, node features are some informative nouns in the pages
and labels correspond to the traffic of the pages. We split labeled nodes into
train/validation/test set according to ratio of 60%, 20% and 20% as Geom-GCN
[15].

5.2 Experimental Setup

Baseline Methods. We choose three types of methods that are most rele-
vant to our proposal as competitive baselines: neighbor-fetching free methods,
i.e., MLP and GLNN [28]; Methods designed for heterophily, i.e., FAGCN [1],
GPRGNN [3], Geom-GCN [15] and ACM-GCN [13]; distillation methods, i.e.,
the traditional logit-based knowledge distillation (KD) [7], the feature mimicking
algorithm FitNet [16], the recent local structure preserving (LSP) method [26]
and the adversarial knowledge distillation methods (GraphAKD) [6]. We also
compare GRACED with classical GCN [22].
Parameter Settings. For all GNN-based methods, we set the number of lay-
ers as 2 or 3. The embedding size is fixed to 64 for all methods. For GLNN
and GRACED, We choose classical GCN and ACM-GCN as teacher models for
homophilic datasets and heterophilic datasets respectively. We optimize all meth-
ods using Adam [8] optimizer. The hyper-parameter search space is: learning rate
lr ∈ [0.005, 0.05], droupout rate dp ∈ [0.5, 0.7], ε ∈ [0.1, 0.6], λ ∈ [0.2, 0.8], and
distillation temperature t ∈ [10−2, 102].

5.3 Node Classification on Different Types of Graph

To fully evaluate the model, we conduct node classification in two settings: trans-
ductive and inductive as in GLNN [28]. Table 2 and Table 3 show the transduc-
tive/inductive performance comparison between proposal and state-of-the-art
competitors on node classification task. We run 10 times and report the mean
accuracy with standard deviation.

From the transductive results, we observe that GRACED outperforms all
comparing methods on 5/6 datasets. Specifically, MLP performs worst, because
it merely encodes node context feature. Furthermore, GRACED outperforms
GLNN due to additionally encode the structure information in an adaptive
way. By combining customized knowledge distillation and adaptive graph prop-
agation, our proposal can achieve outstanding performance on graph data.

1 http://www.cs.cmu.edu/afs/cs.cmu.edu/project/theo-11/www/wwkb.
2 https://github.com/benedekrozemberczki/datasets.

http://www.cs.cmu.edu/afs/cs.cmu.edu/project/theo-11/www/wwkb
https://github.com/benedekrozemberczki/datasets

98 S. Wei et al.

The results demonstrate the effectiveness of GRACED learning on both of
homophilous graphs and heterophilous graphs.

Moreover, we also conduct comparison experiment under inductive setting
as shown in Table 3. The performance of GLNN drops significantly, since the
graph information learned in training set cannot be generalized to the test set.
In contrast, GRACED still maintains competitive performance on most datasets,
which proves the effectiveness of the approximate aggregation feature module.

5.4 Comparing with GNN Distillation Methods

To further demonstrate the effectiveness of GRACED, we compare the proposed
framework with several GNN distillation methods and present comparisons in
Table 4. Although the student model of these four compared distillation meth-
ods is GCN, which can better capture the graph structure information than
MLP, our method still achieves competitive performance. That’s because the
precomputed adaptive graph propagation serves as message passing in GCN to
boost generalization ability of MLP on graph data. As for distillation, these four
comparison methods directly feed the teacher’s output to the student, ignoring
the heterophily problem, as we specially design a specialized strategy to elude
heterophily. Therefore, GRACED is comparable to GNN distillation methods.

Table 2. Mean accuracy (%) with standard deviation on real world benchmark datasets
under the transductive setting. Bold letters are used to mark the best results while
underlined letters represent suboptimal results.

Cora Citeseer Pubmed Chameleon Squirrel Texas

MLP 58.89±1.32 60.58±0.60 70.07±0.63 50.81±1.91 35.98±1.60 76.49±4.37

GCN 81.25±0.63 72.06±0.61 78.88±0.31 63.46±2.06 46.39±2.25 59.19±4.65

GLNN 81.07±0.50 71.46±0.93 79.95 ± 0.42 57.04±2.26 43.37±1.68 81.62 ± 6.92

FAGCN 83.83 ± 0.59 72.37 ± 0.68 79.42±0.35 59.47±2.83 43.45±1.97 74.59±3.46

GPRGNN 81.33±0.52 71.77±0.82 79.83±0.38 62.59±2.04 46.31±2.46 81.35±5.32

Geom-GCN 73.22±0.34 58.45±1.01 71.86±0.66 60.00±2.81 38.15±0.92 66.76±2.72

ACM-GCN 79.75±1.13 69.04±1.21 77.01±0.49 68.15 ± 1.05 51.66± 1.29 81.35±5.60

OURS 83.99±0.45 72.56±0.69 81.07±0.47 68.44±1.56 49.88 ± 1.81 83.51±4.90

Table 3. Mean accuracy (%) with standard deviation on real world benchmark datasets
under the inductive setting. Bold letters are used to mark the best results while under-
lined letters represent suboptimal results.

Cora Citeseer Pubmed Chameleon Squirrel Texas

MLP 58.89±1.32 60.58±0.60 70.07±0.63 50.81±1.91 35.98±1.60 76.49±4.37

GCN 77.72±1.36 68.17 ± 1.52 76.72 ± 0.79 62.46±1.86 44.87±2.13 60.00±7.03

GLNN 63.37±0.94 61.46±0.53 74.17±0.56 51.73±2.01 36.76±1.19 76.49±6.05

FAGCN 78.61 ± 2.41 66.27±2.23 76.49±0.65 59.14±2.53 41.37±1.87 77.54±3.02

GPRGNN 78.54±1.01 67.98±1.33 75.41±0.98 64.12±2.52 46.39±2.22 81.00 ± 4.75

Geom-GCN 24.60±3.49 42.44±1.40 59.26±3.24 61.04±1.99 46.36±1.49 66.22±8.04

ACM-GCN 74.28±0.97 65.06±1.42 74.38±0.70 66.51±1.92 47.18±2.08 80.54±3.15

OURS 78.77±1.02 68.18±2.09 77.70±0.53 65.99 ± 1.83 46.74 ± 2.17 81.89±3.91

GRACED 99

5.5 Ablation Study

To evaluate the capability of designed modules, we conduct ablation experiment
on the same six graph datasets. Specifically, we separately test each component
to clarify the essential improvement. As present in Fig. 3, only employing KD or
AGP is always inferior to teacher GNN. Through combining KD and AGP, we
can obtain compared results. While we use CKD to further modify the output
of teacher GNN that even is specifically designed to address heterophily, the
performance can still be improved.

The fact that GRACED outperforms the variants demonstrates that each
component can capture orthogonal and useful knowledge.

Table 4. Comparison results of GRACED and other GNN distillation methods.

Cora Citeseer Pubmed

KD 83.2 71.4 80.3

FitNet 82.4 71.6 81.3

LSP 81.7 68.8 80.8

GraphAKD 83.6 72.9 81.3

GRACED 84.0 72.6 81.1

(a) Homophilous graphs. (b) Heterophilous graphs.

Fig. 3. Performance of GRACED and its variants

5.6 Parameter Sensitivity Analysis

We further examine the effects of important hyper-parameters λ, ε and distilla-
tion temperature t on Citeseer and Squirrel.

As reflected in Fig. 4, for each parameter, increasing the value promotes the
performance, but further increasing will degrade the performance. This indicates
that selecting the suitable parameter will result in the optimal model perfor-
mance.

100 S. Wei et al.

5.7 Inference Acceleration and Practical Deployment

We finally verify the efficiency and effectiveness of GRACED on Pumbed and a
real-world recommendation system. As shown in Table 5, GLNN infers as MLP
and so is the fast method on Pumbed. The inference efficiency of GRACED
is close to GLNN. Other GCN-like methods suffer from message passing and
heterophily design, and thus are obviously slower than GLNN and GRACED.

We further train and deploy GCN, GLNN and GRACED on a real-world rec-
ommendation system from 2022-12 to 2023-01. Comparing with GCN, GLNN
and GRACED still have obvious efficiency advantages in offline and online sce-
narios. Besides, the Click-Through-Rate(CTR) of GRACED has no statistical
difference w.r.t GCN in online inference. Once we attempt to expand the traf-
fic, GCN will encounter out of time(OOT) problem due to the limited online

(a) Citeseer

(b) Squirrel

Fig. 4. Parameter analysis of λ, ε and t.

Table 5. Inference time of compared methods.

Pubmed Offline Online

GCN 62.3 s 2025.7 s 40.2 ms

GLNN 19.6 s 810.1 s 15.1 ms

FAGCN 93.7 s – –

GPRGNN 54.5 s – –

Geom-GCN >10 h – –

ACM-GCN 2366.1 s – –

GRACED 22.8 s 860.4 s 15.9 ms

GRACED 101

resources of the inference service. Thus we merely observe the model perfor-
mance at 5% traffic for the sake of fair comparison. In other word, GRACED
still has advantages in large-scale inference scenarios.

6 Conclusion

In this paper, we present GRACED, a practical solution to address the deploy-
ment of GNNs via knowledge distillation and graph propagation. This is achieved
by designing an customized knowledge distillation strategy and combining it with
a novel adaptive graph propagation approach. We also design an approximation
technique to deal with new nodes without precomputed aggregation feature in
inductive setting. Experimental results on benchmark datasets confirm the effec-
tiveness, efficiency and versatility of proposed GRACED. We will make further
attempts to explore how to learn MLPs on graphs for link prediction task.

Ethical Statement. As machine learning and data mining researchers, we recognize

the importance of ethical considerations in our work. The ethical implications of our

research can have a significant impact on individuals, communities, and society as

a whole. Therefore, we believe that it is our responsibility to carefully consider and

address any ethical concerns that may arise from our work. We acknowledge that the

collection and processing of personal data can have significant ethical implications. As

such, we have taken steps to ensure that our research adheres to ethical guidelines and

regulations. We have obtained all necessary permissions and have taken encryption

measures to protect the privacy and confidentiality of any personal data used in our

research. Additionally, we have implemented measures to ensure that any inferences

made from data are transparent and are not used to perpetuate any forms of bias or

discrimination. Our research aims to provide insights that are beneficial to society, while

avoiding any potential negative impacts on individuals or communities. Our research

does not relate to, nor collaborate with, the police or military. We believe that by

addressing ethical concerns in our work, we can promote the responsible and beneficial

use of machine learning and data mining technologies.

References

1. Bo, D., Wang, X., Shi, C., Shen, H.: Beyond low-frequency information in graph
convolutional networks. In: AAAI (2021)

2. Chen, L., Chen, Z., Bruna, J.: On graph neural networks versus graph-augmented
MLPs. In: ICLR (2021)

3. Chien, E., Peng, J., Li, P., Milenkovic, O.: Adaptive universal generalized pagerank
graph neural network. In: ICLR (2021)

4. Geng, T., et al.: AWB-GCN: a graph convolutional network accelerator with run-
time workload rebalancing. In: MICRO (2020)

5. Hamilton, W.L., Ying, Z., Leskovec, J.: Inductive representation learning on large
graphs. In: NeurIPS (2017)

6. He, H., Wang, J., Zhang, Z., Wu, F.: Compressing deep graph neural networks via
adversarial knowledge distillation. arXiv preprint: arXiv:2205.11678 (2022)

http://arxiv.org/abs/2205.11678

102 S. Wei et al.

7. Hinton, G., Vinyals, O., Dean, J., et al.: Distilling the knowledge in a neural net-
work. arXiv preprint: arXiv:1503.02531 (2015)

8. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint:
arXiv:1412.6980 (2014)

9. Li, P., Chien, I., Milenkovic, O.: Optimizing generalized pagerank methods for
seed-expansion community detection. In: NeurIPS (2019)

10. Liang, S., et al.: EnGN: a high-throughput and energy-efficient accelerator for large
graph neural networks. IEEE Trans. Comput. 70, 1511–1525 (2021)

11. Lim, D., Li, X., Hohne, F., Lim, S.: New benchmarks for learning on non-
homophilous graphs (2021). https://arxiv.org/abs/2104.01404

12. Liu, H., Dai, Z., So, D.R., Le, Q.V.: Pay attention to MLPs. In: NeurIPS (2021)
13. Luan, S., Hua, C., Lu, Q., Zhu, J., Zhao, M., Zhang, S., Chang, X.W., Precup, D.:

Is heterophily a real nightmare for graph neural networks to do node classification?
arXiv preprint: arXiv:2109.05641 (2021)

14. McPherson, M., Smith-Lovin, L., Cook, J.M.: Birds of a feather: homophily in
social networks. Ann. Rev. Sociol. 27(1), 415–444 (2001)

15. Pei, H., Wei, B., Chang, K.C.C., Lei, Y., Yang, B.: Geom-GCN: geometric graph
convolutional networks. In: ICLR (2019)

16. Romero, A., Ballas, N., Kahou, S.E., Chassang, A., Gatta, C., Bengio, Y.: FitNets:
hints for thin deep nets. In: ICLR (2015)

17. Rossi, E., Frasca, F., Chamberlain, B., Eynard, D., Bronstein, M.M., Monti, F.:
SIGN: scalable inception graph neural networks (2020). https://arxiv.org/abs/
2004.11198

18. Shuman, D.I., Narang, S.K., Frossard, P., Ortega, A., Vandergheynst, P.: The
emerging field of signal processing on graphs: extending high-dimensional data
analysis to networks and other irregular domains. IEEE Sig. Process, Mag. 30,
83–98 (2013)

19. Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., Wojna, Z.: Rethinking the incep-
tion architecture for computer vision. In: CVPR (2016)

20. Tian, Y., Zhang, C., Guo, Z., Zhang, X., Chawla, N.: Learning MLPs on graphs:
a unified view of effectiveness, robustness, and efficiency. In: ICLR (2023)

21. Veličković, P., Cucurull, G., Casanova, A., Romero, A., Lio, P., Bengio, Y.: Graph
attention networks. arXiv preprint: arXiv:1710.10903 (2017)

22. Welling, M., Kipf, T.N.: Semi-supervised classification with graph convolutional
networks. In: ICLR (2016)

23. Yan, B., Wang, C., Guo, G., Lou, Y.: TinyGNN: learning efficient graph neural
networks. In: KDD (2020)

24. Yang, C., Wu, Q., Wang, J., Yan, J.: Graph neural networks are inherently good
generalizers: isights by bridging GNNs and MLPs. In: ICLR (2023)

25. Yang, C., Wu, Q., Yan, J.: Geometric knowledge distillation: topology compression
for graph neural networks. In: NeurIPS (2023)

26. Yang, Y., Qiu, J., Song, M., Tao, D., Wang, X.: Distilling knowledge from graph
convolutional networks. In: CVPR (2020)

27. Zeng, H., Zhou, H., Srivastava, A., Kannan, R., Prasanna, V.K.: Graphsaint: Graph
sampling based inductive learning method. In: ICLR (2020)

28. Zhang, S., Liu, Y., Sun, Y., Shah, N.: Graph-less neural networks: teaching old
MLPs new tricks via distillation. In: ICLR (2022)

29. Zhao, Y., Wang, D., Bates, D., Mullins, R.D., Jamnik, M., Liò, P.: Learned low
precision graph neural networks (2020). https://arxiv.org/abs/2009.09232

http://arxiv.org/abs/1503.02531
http://arxiv.org/abs/1412.6980
https://arxiv.org/abs/2104.01404
http://arxiv.org/abs/2109.05641
https://arxiv.org/abs/2004.11198
https://arxiv.org/abs/2004.11198
http://arxiv.org/abs/1710.10903
https://arxiv.org/abs/2009.09232

GRACED 103

30. Zheng, W., Huang, E.W., Rao, N., Katariya, S., Wang, Z., Subbian, K.: Cold brew:
distilling graph node representations with incomplete or missing neighborhoods.
In: ICLR (2022)

31. Zhou, H., Srivastava, A., Zeng, H., Kannan, R., Prasanna, V.: Accelerating large
scale real-time GNN inference using channel pruning. VLDB (2021)

32. Zhu, J., Yan, Y., Zhao, L., Heimann, M., Akoglu, L., Koutra, D.: Beyond homophily
in graph neural networks: current limitations and effective designs. In: NeurIPS
(2020)

ENGAGE: Explanation Guided Data
Augmentation for Graph Representation

Learning

Yucheng Shi1, Kaixiong Zhou2, and Ninghao Liu1(B)

1 University of Georgia, Athens, GA 30602, USA
{yucheng.shi,ninghao.liu}@uga.edu

2 Rice University, Houston, TX 77005, USA
kaixiong.zhou@rice.edu

Abstract. The recent contrastive learning methods, due to their effec-
tiveness in representation learning, have been widely applied to model-
ing graph data. Random perturbation is widely used to build contrastive
views for graph data, which however, could accidentally break graph
structures and lead to suboptimal performance. In addition, graph data
is usually highly abstract, so it is hard to extract intuitive meanings
and design more informed augmentation schemes. Effective representa-
tions should preserve key characteristics in data and abandon superfluous
information. In this paper, we propose ENGAGE (ExplaNation Guided
data AuGmEntation), where explanation guides the contrastive augmen-
tation process to preserve the key parts in graphs and explore removing
superfluous information. Specifically, we design an efficient unsupervised
explanation method called smoothed activation map as the indicator of
node importance in representation learning. Then, we design two data
augmentation schemes on graphs for perturbing structural and feature
information, respectively. We also provide justification for the proposed
method in the framework of information theories. Experiments of both
graph-level and node-level tasks, on various model architectures and on
different real-world graphs, are conducted to demonstrate the effective-
ness and flexibility of ENGAGE. The code of ENGAGE can be found
here (https://github.com/sycny/ENGAGE).

Keywords: Graph learning · Contrastive learning · Explainability

1 Introduction

Graph representation learning has been shown to be powerful in many graph
analysis tasks [10,30,51,52,57]. In particular, unsupervised graph representa-
tion learning methods [16,21,23] have attracted substantial attention, as they
are adaptive to various applications especially when labels are scarce. Among
them, recently contrastive learning [35,57] has achieved superior performance by
learning representations from contrastive views to reduce superfluous informa-
tion. However, most existing works [2,3,52,57] simply apply random sampling for
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
D. Koutra et al. (Eds.): ECML PKDD 2023, LNAI 14171, pp. 104–121, 2023.
https://doi.org/10.1007/978-3-031-43418-1_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-43418-1_7&domain=pdf
https://github.com/sycny/ENGAGE
https://doi.org/10.1007/978-3-031-43418-1_7

Explanation Guided Data Augmentation for Graph Learning 105

data augmentation, which could accidentally break the graph structures, thus
reducing the effectiveness of representations. In other domains such as com-
puter vision and natural language processing, more intelligent data augmenta-
tion methods have been proposed by leveraging the semantic information [22,35]
or domain knowledge [4]. However, it is obscure to define and extract meaning-
ful elements from abstract data types such as graphs. Also, the non-Euclidean
property of graph increases the augmentation difficulty.

Some preliminary efforts have been made to tackle the problem. For example,
Fang et al. [5] propose using knowledge graphs to augment the original input
graph and help construct contrastive pairs, which is applicable to computational
chemistry. However, a more common and intriguing problem is how to design
intelligent augmentation without external information sources. In addition, Zhu
et al. [58] apply centrality as the node importance indicator and encourage per-
turbing nodes of lower centrality. However, node centrality is a static metric and
is not necessarily relevant to downstream tasks in all scenarios. Some work [11,51]
design end-to-end frameworks to automatically formulate data augmentation
policies, but they could induce high computational costs. Also, their black-box
nature would fail to explicitly locate task-relevant information in graph data.

To solve the problem, this work proposes ENGAGE (ExplaNation Guided
data AuGmEntation), where we use explanation to guide the generation of con-
trastive views for learning effective unsupervised representations on graph data.
Specifically, we first propose a new explanation method called Smoothed Acti-
vation Map (SAM). Different from existing explanation methods that focus on
understanding model predictions, SAM measures node importance based on the
distribution of representations in the latent space. Then, with the node impor-
tance scores, we design an explanation guided graph augmentation method by
perturbing edges and node features, which is used to construct paired graph
views for contrastive learning. By leveraging explanations, significant graph
structures are less likely to be damaged by accidents. Meanwhile, our SAM
method is efficient by using the quantization technique [14], so that it can be
applied into the training process. Finally, we conduct experiments on multiple
datasets and tasks to demonstrate the effectiveness and flexibility of our pro-
posed method. The contributions can be summarized as below:

– We propose the ENGAGE framework which leverages explanation to inform
graph augmentation, and uses contrastive learning for training representations
to preserve the key parts in graphs while removing uninformative artifacts.

– We propose a new efficient explanation method called SAM for unsupervised
representation learning on graph data.

– We conduct comprehensive experiments on both node-level and graph-level
classification tasks, with two representative contrastive learning models and
different encoders, demonstrating the effectiveness and flexibility of ENGAGE.

106 Y. Shi et al.

2 Related Work

2.1 Representation Learning for Graph Data

Learning effective node or graph representations benefits various graph min-
ing tasks. There are several major types of representation learning methods for
graph data, including random-walk based methods [8,23,25,33], graph neural
networks (GNNs) [7,9,37,38,43,44], and graph contrastive learning [2,32,46,57].
As the pioneering methodology of representation learning on graphs, random-
walk based methods optimize node representations so that nodes within simi-
lar contexts tend to have similar representations. Then, graph neural networks
become the new state-of-the-art architecture to process graph data. Finally,
graph contrastive learning could be used to further refine the representation
learning process with GNNs as the encoder.

2.2 Graph Contrastive Learning

Contrastive learning trains representations by maximizing the mutual infor-
mation between different augmented views [2,3,12,34,38]. For example,
GRACE [57] constructs the negative node examples by dropping edges and
masking features, and employs a contrastive model similar to SimCLR [2].
GraphCL [52] perturbs graphs with four kinds of data augmentations on the
graph level, and employs NT-Xent loss [2] for training. SimGRACE [46] gets
rid of input data augmentation, and chooses to perturb model parameters. Data
augmentation is vital for contrastive learning to achieve good performance on
downstream tasks [22,35]. However, existing methods mainly rely on random
perturbation, which could hurt graph information in the augmented views. To
tackle the issue, Zhu et al. [58] propose to use node centrality as an importance
indicator and perturb nodes with lower node centrality. Xu et al. [47] propose
an information-aware representation learning model [36] to keep task-relevant
information both in local and global views. Li et al. [17] propose a graph ratio-
nale guided data augmentation to better preserve semantic information. You et
al. [51] design an end-to-end framework to automatically optimize data augmen-
tation. However, it remains a challenge how to design data augmentation that is
adaptive to different graph/node samples while keeping relatively low computing
costs.

2.3 Explanation for Graph Neural Networks

Existing approaches for explaining GNN models can be divided into sev-
eral categories [54], such as substitute-based, relevance-based, perturbation-
based, generation-based, and rationale-based methods. Substitute-based meth-
ods approximate the original model with simplified but explainable substitutes,
which either leverage GNN mechanisms [1,24,42] or bypass the model infor-
mation [13,39,55]. Relevance-based methods compute input contributions by
redistributing activations between neurons from the output layer to the input

Explanation Guided Data Augmentation for Graph Learning 107

layer [24,27,28]. Perturbation-based methods [19,20,26,41,50] estimate input
scores with the assumption that removing important features will have a large
impact on the prediction. Generation-based methods produce synthetic graphs
that maximally activate the target neuron [53]. Rationale-based methods find a
small subgraph which best guides the model prediction as explanation [17,18,45].
Existing methods mainly focus on supervised graph learning models, while we
attempt to obtain explanation for unsupervised graph learning. Meanwhile, we
propose to leverage explanation for improving models, which further requires
the explanation algorithm to be efficient.

3 Preliminaries

3.1 Notations

Let G = {V, E ,A,X} be a graph, where V and E denote the set of nodes
and edges, respectively. A ∈ {0, 1}|V|×|V| is the adjacency matrix. If node vi

and node vj are connected, then Aij = 1, where we use ei,j to denote that
edge. X ∈ R

|V|×D is the feature matrix and xi = Xi,: is the feature vector
of node vi. The GNN encoder is denoted as f(·), which transforms the nodes
to representations Z = f(X,A),Z ∈ R

|V|×K , where K is the latent dimension
and zi = Zi,: denotes the representation of node vi. Meanwhile, we also consider
graph-level tasks in this work. Let G = {G1, G2, ..., GN} denote a set of graphs.
In this case, the representation of a graph Gn is obtained as zn = f(Gn), where
zn ∈ R

K . Our proposed method is applicable to both types of tasks. Unless
otherwise stated, the methodology part in this paper assumes using graph-level
tasks for illustration.

3.2 Contrastive Learning Frameworks

In this work, we adopt contrastive learning for learning node/graph representa-
tions. We consider two types of contrastive learning frameworks. The first type
includes GraphCL [52] and GRACE [57] that are motivated by SimCLR [2] and
learn to maximize the consistency between positive views compared with nega-
tive views. The second type is based on Simsiam [3] and could get rid of negative
samples by using the stop gradient to prevent model collapse. We modify Sim-
CLR and Simsiam frameworks to adapt to graph representation learning, and
apply ENGAGE on both frameworks.

Learning Objectives. In contrastive learning, each instance is augmented into
two positive views whose representations are z1 and z2, respectively. In Sim-
CLR [2], the loss for learning the representation of i-th instance is:

�i = − log
exp

(
sim

(
z1

i ,z
2
i

)
/τ

)

∑
j 1[j �=i] exp

(
sim

(
z+

i ,zj

)
/τ

) , (1)

108 Y. Shi et al.

where z+
i refers to z1

i or z2
i , and zj denotes the embeddings of other instances

as negative views. Positive views are expected to preserve the core information
of the original instance, while negative views are expected to be irrelevant to the
original instance. sim

(
z1,z2

)
= z1T

z2/
∥
∥z1

∥
∥

∥
∥z2

∥
∥. The Simsiam [3] model gets

rid of the negative views, and its loss function is defined as below:

�i = −(z1
i /

∥
∥z1

i

∥
∥
2
) · (z2

i /
∥
∥z2

i

∥
∥
2
). (2)

Encoder and MLP Heads. We use graph neural networks as the encoder
f(·) to learn graph/node representations z. To comprehensively test our pro-
posed framework, we apply several architectures, including graph convolutional
networks (GCN) [15] and graph attention networks (GAT) [37] for node-level
tasks. Also, we employ graph isomorphism networks (GIN) [48] for graph-level
tasks. Then, the representations are fed into different MLP heads depending on
the CL framework. In SimCLR, there is only one MLP head called po(·). In
Simsiam, there are two MLP heads, namely po(·) and pe(·).

4 The ENGAGE Framework

4.1 Mitigating Superfluous Information in Representations

We begin by introducing the guideline of minimizing superfluous information,
which we will follow throughout this work, for learning effective and robust
representations. Without loss of generality, we denote the original input and
downstream task label as X and y, respectively.

Definition 1. (Sufficiency) A representation z is defined as sufficient for label
y iff I(X;y) = I(z;y).

An illustration of sufficient representation is shown in Fig. 3(a). To achieve
good downstream task performance, it is encouraged to learn z from X without
losing task-relevant information. Meanwhile, according to the information bot-
tleneck principle [36], by reducing superfluous information from X, the sufficient
representation z becomes more robust and gives better performance. This can
be better understood by splitting the mutual information between X and z into
two parts as below:

I(X;z) = I(X;z | y)
︸ ︷︷ ︸

superfluous information

+ I(z;y)
︸ ︷︷ ︸

task-relevant information

. (3)

The first term is the information in z that is not useful for predicting y, which
should be minimized. The second term denotes the predictive information, which
is not affected by the representation as long as z is sufficient for y.

Recent research shows contrastive learning (CL) can control the amount of
information preserved in representations [35,40]. However, without label infor-
mation, it is difficult to specify which part of input information to be preserved

Explanation Guided Data Augmentation for Graph Learning 109

in CL. In this work, we utilize explanation to identify non-trivial structural
information in graphs. Then, the information recommended by explanation is
given higher priority to be preserved in representations, while other information
is more likely to be discarded. This is done by using explanation, instead of
random perturbation, to guide data augmentation in contrastive learning.

... ...

Node Embeddings

Pooling

Local
Smoothing ...

Smoothed
Node Importance

Graph
Augmentation

Input Graph(s)

GNN
Encoder

GNN
Encoder

MLP
Projector

+

Contrastive Loss

Update

Fig. 1. Graph augmentation guided by Smoothed Activation Map (SAM) for con-
trastive learning.

4.2 Efficient Explanations for Unsupervised Representations

Class Activation Map. The goal of explanation is to identify the key compo-
nents in input. We use GCN to illustrate the idea of explaining graph neural net-

works. A graph convolutional layer is defined as F l = σ(D̃
− 1

2 ÃD̃
− 1

2 F (l−1)W l),
where F l is output of l-th layer, F 0 = X, Ã = A + IN is the adjacency matrix
with self-connections, and D̃ is the degree matrix of Ã. W l denotes trainable
weights, and σ(·) is the activation function. In supervised learning, the Class
Activation Map (CAM) [24,56] can be used to compute the importance of node
vi as: ψc

i = ReLU(
∑

k wc
kFL

k,i), where L is the final convolutional layer, and F l
k,i

is the k-th latent dimension (i.e., channel) of node vi at the l-th layer. wc
k is the

weight of channel k at the output layer towards predicting class c.
However, there are two challenges that impede us from directly applying

CAM to our problem. First, CAM is designed for specific model architectures
with a GCN and a fully-connected output layer (consisting of the wc

k weights),
where its applicability is limited. Second, CAM works for supervised models,
while we focus on unsupervised learning.

G1

G2 G3

Smoothed
node importance

Graph embeddings

motif

Fig. 2. Extracting reliable explanations
via local smoothing.

Smoothed Activation Map. To
tackle the challenges, we propose
Smoothed Activation Map (SAM) to
explain representations without class
labels. The key idea is to leverage the
distribution of graph/node represen-
tations to identify the locally impor-
tant and reliable graph components,
as shown in Fig. 2. Unlike CAM, our
method works for different types of

110 Y. Shi et al.

Algorithm 1 SAM-based node importance estimation for graph-level tasks.
Input: Encoder f(·), the target graph Gn = {V, E ,A,X} ∈ G.

1: Z ← f(X ,A); z ← Pool(Z); // z ∈ R
K , the graph-level embedding of Gn

2: For Gn, find its m nearest-neighbor graphs Ñn in the latent space;
3: w̃graph

k ← Norm(z +
∑m

n′∈Ñn
zn′)[k]; // smoothed importance score

4: for vi ∈ Gn do
5: FL

k,i ← Z [i, k];

6: ψi ← ReLU(
∑

k w̃
graph(n)
k FL

k,i); // node importance score
7: end for

Output: Node importance scores {ψi}.

GNN models and does not require supervised signals. Without loss of gener-
ality, we write the feedforward process of GNNs as follows:

al
i = AGGREGATIONl({F

(l−1)
i′ : n′ ∈ Ni}), F l

i = COMBINEl(F (l−1)
i ,al

i),
(4)

where F l
i is the embedding of vi at l-th layer. Ni denotes the neighbors of vi.

Then, the SAM heat-map is calculated as:

ψi = ReLU(
∑

k w̃kFL
k,i), (5)

where ψi explains the importance score of vi, w̃k is the smoothed importance of
channel k, and L is the final layer. For graph-level tasks, the channel impor-
tance of graph Gn is estimated based on its local context, so w̃

graph(n)
k =

Norm(
∑

n′∈Ñn
Pool{FL

i′ : i′ ∈ Gn′})[k], where Ñn denotes the set of neigh-
bors graphs around Gn in the embedding space. The Pool() operation pro-
duces the heat-map of Gn′ from its nodes embeddings, where we use Aver-
age Pooling in experiments. The Norm() operation means performing L2 nor-
malization for heat-maps. The set Ñn of neighbors can be retrieved efficiently
by using quantization techniques [14]. For node-level tasks, the channel impor-
tance is estimated by averaging the heat-maps of nearby node embeddings, i.e.,
w̃

node(i)
k = Norm(

∑
i′∈Ñi

FL
i′)[k], where Ñi is the set of neighbors that are close

to vi in the embedding space. The explanation process is shown in Fig. 1.
Both w̃N

k and w̃G
k are estimated in unsupervised learning, and they play a

similar role as wc
k in CAM. By considering nearby nodes and graphs, explana-

tion information of the target node/graph is smoothed. Another perspective to
understand SAM is that it provides explanation not only for a single node or
graph, but for a group of nodes or graphs in the local manifold region.

Finally, many explanation methods have been proposed for graph neural
networks (e.g., perturbation-based, substitute-based, and generation-base meth-
ods), so we want to justify our selection of CAM-style explanation in this work.
The main consideration is computational efficiency. The heat-maps in CAM-style
methods are directly obtainable in the feedforward process of GNNs, requir-
ing minimal additional computation. In contrast, both perturbation-based and

Explanation Guided Data Augmentation for Graph Learning 111

substitute-based methods require sending a number of perturbed inputs to esti-
mate the effect of different graph features, which leads to significantly greater
time costs. Generation-based methods face the similar issue, as they require
training a global explainer on a large number of graph samples.

4.3 Explanation-Guided Contrastive Views Generation

We design two data augmentation operations utilizing explanation results, where
graph components highlighted by explanation are considered as important [22,
24]. The general idea is to keep important information intact, while maximally
perturbing unimportant information.

Edge Perturbation. We define two masks M edge,1,M edge,2 ∈ {0, 1}|V|×|V|

to perturb edges and obtain different data views from the original graph. The
adjacency matrix of the two new views are

A1 = A � M edge,1, A2 = A � M edge,2, (6)

where � denotes the Hadamard product. The masks are obtained based on the
explanation results:

M edge,1
i,j =

{
1, if φi,j > θe

Bernoulli(φi,j) if φi,j ≤ θe
, M edge,2

i,j =

{
1, if φi,j > θe

1 − M edge,1
i,j if φi,j ≤ θe

,

(7)
where θe is a threshold, and φi,j = (ψi + ψj) /2 is the edge importance between
vi and vj . The edge importance averages the explanation scores of end nodes.
The intuition of edge masking is that, with explanations, we want to maintain the
important connections intact while perturbing the relatively unimportant part
as much as possible. Based on the above definition, the two views are set to keep
minimal mutual information while both contain task-relevant information. Here
θe is a threshold that controls the degree of distinction between the two graph
views. Empirically, we set θe = μφ +λe ∗σφ, where μφ and σφ are the mean value
and standard deviation of all the edge interpretability from a graph or a batch
of graphs. λe is the hyperparameter used to control the size of important part,
because the range of importance scores can be different for different datasets.

Feature Perturbation. We also define two masks M feat,1,M feat,2 ∈
{0, 1}|V|×D to perturb node features. The feature matrix of the two views are

X1 = X � M feat,1, X2 = X � M feat,2. (8)

The masks are obtained based on explanation results:

M feat,1
i,d =

{
1, if ψi > θf

Bernoulli(ψi) if ψi ≤ θf ,
, M feat,2

i,d =

{
1, if ψi > θf

1 − M feat,1
i if ψi ≤ θf

,

(9)

112 Y. Shi et al.

where θf is a threshold, and ψi is the explanation of node vi. Similar to edge
perturbation, we set the threshold as θf = μψ + λf ∗ σψ, where μψ and σψ are
the mean and standard deviation of node explanations from a graph or a batch
of graphs. By this design, we can keep important information intact, while the
features of unimportant nodes are more likely to be perturbed. Also, the two
views are constructed in a way to reduce their mutual information I(X1,X2).

Fig. 3. Illustration of theoretical justification (best viewed in color): (a) z contains all
task-relevant information and is a sufficient representation of X; (b) z1 is a sufficient
representation of U1 containing task-relevant and non-shared information; (c)(d) z∗

1

is the approximate minimal sufficient representation of U1 that only includes shared
information between U1 and U2.

4.4 Theoretical Justification

In this part, we theoretically justify the design of our explanation guided method
for building the contrastive views. The original input is denoted as X, the posi-
tive pair containing two data views obtained through augmentation is {U1, U2},
and y is the downstream task label.

Definition 2. (Redundancy) The view U1 is redundant with respect to view U2

for y iff I(U1;y|U2) = 0.

The intuition behind is that a view U1 is redundant for the task if the infor-
mation in y is already observed in U2. Let z1 and z2 denote the representation
of U1 and U2, respectively. When U1 and U2 are mutually redundant, if z1 is
sufficient for U2 (refer to Definition 1 for “sufficiency”), then z1 retains task-
relevant information about y, as shown in Fig. 3(b). The proofs for the above
statements are provided in Appendix A2.

The statements above suggest that, in contrastive learning, the task-relevance
of the representations z1 and z2 depends on the quality of the constructed con-
trastive views U1 and U2, where it is crucial to keep important task-relevant
information intact when building U1 and U2. However, in unsupervised learning,
the task label is not accessible. Thus, our assumption in this work is that, the
graph information important for z in unsupervised representation distribution

2 The appendix file is provided here: https://github.com/sycny/ENGAGE.

https://github.com/sycny/ENGAGE

Explanation Guided Data Augmentation for Graph Learning 113

could also be important for downstream tasks, and should be preserved in U1

and U2 with higher priority. This motivates the design of explanation guided
contrastive views construction from Eq. 6–9, since graph components with high
importance scores could be regarded as approximately preserving the key infor-
mation of graphs. In addition, to mitigate noises in a single node/graph instance,
our proposed SAM method gathers the explanatory information from the local
context.

Definition 3. (Sufficient Contrastive Representation) A representation z1 of
U1 is sufficient for U2 iff I(z1;U2) = I(U1;U2).

Definition 4. (Minimal Sufficient Contrastive Representation) The sufficient
contrastive representation z1 of U1 is defined as minimal iff I(z1;U1) ≤
I(z′

1;U1), ∀z′
1 that is a sufficient contrastive representation.

Let z∗
1 denote the minimal sufficient contrastive representation learned from

U1. We can have I(z∗
1;U2) = I(U1;U2), which implies that the shared infor-

mation I(U1;U2) is retained in the contrastive representation while the non-
shared information is ignored [6]. To obtain such representations, the encoder
in contrastive learning is trained so that z1 ≈ z∗

1 and z2 ≈ z∗
2 (it also implies

I(z1,z2) ≈ I(U1, U2)) [40]. After encoding, the minimal sufficient representation
z1 (or z2) is obtained from U1 (or U2), and is used for prediction in downstream
tasks. An illustration of z∗

1 is presented in Fig. 3(c). However, the representation
may still contain a significant amount of superfluous information, which could
degrade the downstream task performance.

Our design in Eq. 6–9 aims to address the above problem. In our ENGAGE
method, when thresholds θe and θf are set higher in Eq. 6 and 8, more informa-
tion in U1 and U2 is deleted, making I(U1,z1|y) further reduced after training for
z1. Thus, assuming I(z;y) is untouched (i.e., U1 and U2 remain mutually redun-
dant) by setting appropriate thresholds, our proposed method reduces I(X;z) by
suppressing the superfluous information contained in z, as depicted in Fig. 3(d).
On the other hand, when θe and θf values are set smaller, we keep more infor-
mation in z after contrastive learning.

5 Experiments

We answer the following research questions in experiments. RQ1: How effective
is the proposed ENGAGE method in building contrastive views and learning
graph representations? RQ2: How does the proposed method influence repre-
sentation learning as indicated by explanations? RQ3: What is the effect of
hyperparameters (e.g., λe and λf) on the proposed method?

5.1 Experimental Setup

We apply ENGAGE to contrastive learning models for both unsupervised graph-
level and node-level classification tasks. For graph classification, we follow the

114 Y. Shi et al.

Table 1. Graph classification performance comparison.

Method NCI1 PROTEINS DD PTC-MR COLLAB RDT-B RDT-M5K IMDB-B A.R.

WL 80.01 ± 0.50 72.92 ± 0.56 74.02 ± 2.28 58.00 ± 0.50 69.30 ± 3.44 68.82 ± 0.41 46.06 ± 0.21 72.30 ± 3.44 9.62

DGK 80.31 ± 0.46 73.30 ± 0.82 74.85 ± 0.74 60.10 ± 2.60 64.66 ± 0.50 78.04 ± 0.39 41.27 ± 0.18 66.96 ± 0.56 9.88

node2vec 54.89 ± 1.61 57.49 ± 3.57 — 58.60 ± 8.00 56.10 ± 0.20 — — — 6.25

sub2vec 52.84 ± 1.47 53.03 ± 5.55 54.33 ± 2.44 60.00 ± 6.40 55.26 ± 1.54 71.48 ± 0.41 36.68 ± 0.42 55.26 ± 1.54 13.12

graph2vec 73.22 ± 1.81 73.30 ± 2.05 70.32 ± 2.32 60.20 ± 6.90 71.10 ± 0.54 75.78 ± 1.03 47.86 ± 0.26 71.10 ± 0.54 9.62

MVGRL 77.00 ± 0.80 — — 62.50 ± 1.70 76.00 ± 1.20 84.50 ± 0.60 — 74.20 ± 0.70 3.12

InfoGraph 76.20 ± 1.06 74.44 ± 0.31 72.85 ± 1.78 61.70 ± 1.40 70.65 ± 1.13 82.50 ± 1.42 53.46 ± 1.03 73.03 ± 0.87 7.62

GraphCL 77.87 ± 0.41 74.39 ± 0.45 78.62 ± 0.40 61.30 ± 2.10 71.36 ± 1.15 89.53 ± 0.84 55.99 ± 0.28 71.14 ± 0.44 5.38

JOAO 78.07 ± 0.47 74.55 ± 0.41 77.32 ± 0.54 — 69.50 ± 0.36 85.29 ± 1.35 55.74 ± 0.63 70.21 ± 3.08 6.75

JOAOv2 78.36 ± 0.53 74.07 ± 1.10 77.40 ± 1.15 — 69.33 ± 0.34 86.42 ± 1.45 56.03 ± 0.27 70.83 ± 0.25 6.12

SimGRACE 79.12 ± 0.44 75.35 ± 0.09 77.44 ± 1.11 — 71.72 ± 0.82 89.51 ± 0.89 55.91 ± 0.34 71.30 ± 0.77 4.00

RD-SimCLR 79.02 ± 0.52 74.61 ± 0.56 77.40 ± 0.81 58.55 ± 2.01 69.32 ± 1.54 85.67 ± 5.40 55.52 ± 0.74 69.08 ± 2.47 8.00

EG-SimCLR 82.97 ± 0.20 75.44 ± 0.65 78.86 ± 0.51 61.51 ± 2.41 76.60 ± 1.26 90.70 ± 0.46 56.22 ± 0.56 71.78 ± 0.34 2.12

RD-Simsiam 79.62 ± 0.59 75.42 ± 0.50 77.20 ± 1.33 58.55 ± 1.85 66.50 ± 2.31 86.12 ± 1.80 54.30 ± 0.64 69.86 ± 0.86 7.88

EG-Simsiam 81.49 ± 0.19 76.06 ± 0.51 78.35 ± 0.83 62.67 ± 1.50 74.73 ± 0.79 89.17 ± 0.43 56.37 ± 0.17 71.93 ± 0.40 2.38

evaluation pipeline in [31] by training an SVM as the classifier. The whole dataset
is used to learn graph-level representations, which are evaluated under the SVM
classifier with cross-validation. Eight benchmark datasets are all selected from
the TUDataset. We modify SimCLR and Simsiam to adapt to graph repre-
sentation learning and select GIN [48] as the encoder network. Besides using
contrastive learning models with random perturbation as baselines, we compare
our proposed model with graph kernel methods like WL [29] and DGK [49].
We also choose state-of-the-art graph self-supervised learning methods including
GraphCL [52], JOAO [51], JOAO(v2) [51], SimGRACE [46] and MVGRL [10].

For node classification, we follow [57] where the whole dataset is used to learn
node representations, which are evaluated under a logistic regression classifier
with cross-validation. Popular datasets like Cora and CiteSeer are selected, and
other real-world datasets, including Wiki-CS, Amazon-Computers, and Amazon-
Photo are also used. Similar to graph-level tasks, we modify SimCLR and
Simsiam frameworks to adapt to node representation learning. Both GCN [15]
and GAT [37] models are used as encoders. We also compare with other self-
supervised learning models including GCA [58], MVGRL [10], DGI [38]. We eval-
uate model performance using the accuracy metric. For each model, we report
mean accuracy and standard deviation of five runs. The ‘—’ in Table 1 and
Table 2 means that these results are not available in currently published papers.
The implementation details of our experiments can be found in Appendix G.

5.2 Experiment Results and Comparisons

Table 1 lists the result for graph classification, where the top three results are
highlighted in bold. The proposed ENGAGE models are abbreviated as EG-
SimCLR and EG-Simsiam, corresponding to their vanilla versions RD-SimCLR
and RD-Simsiam, respectively. The results show that the average ranks (A.R.)
of EG-SimCLR and EG-Simsiam are highest as 2.12 and 2.38, respectively, com-
pared with other state-of-the-art methods. Among them, NCI1 has the biggest
improvement of 2.66% over the most competitive baselines. Most importantly,

Explanation Guided Data Augmentation for Graph Learning 115

Table 2. Node classification performance comparison.

Method Cora Citeseer Wiki-CS Amazon-Computers Amazon-Photo A.R

GCN 81.50 ± 0.00 70.30 ± 0.00 77.19 ± 0.12 86.51 ± 0.54 92.42 ± 0.22 11.6

GAT 83.00 ± 0.70 72.50 ± 0.70 77.65 ± 0.11 86.93 ± 0.29 92.56 ± 0.35 7.2

DeepWalk 70.70 ± 0.60 51.40 ± 0.50 77.21 ± 0.03 86.28 ± 0.07 90.05 ± 0.08 13.6

GAE 71.50 ± 0.40 65.80 ± 0.40 70.15 ± 0.01 85.27 ± 0.19 91.62 ± 0.13 13.6

DGI 82.30 ± 0.60 71.80 ± 0.70 75.35 ± 0.14 83.95 ± 0.47 91.61 ± 0.22 11.4

MVGRL 86.80 ± 0.50 73.30 ± 0.50 77.52 ± 0.08 87.52 ± 0.11 91.74 ± 0.07 6.8

GCA — — 78.35 ± 0.05 87.85 ± 0.31 92.53 ± 0.16 8.3

GRACE 82.01 ± 0.56 71.51 ± 0.33 79.12 ± 0.15 88.36 ± 0.18 92.52 ± 0.26 6.8

EG-SimCLR(GCN) 84.07 ± 0.18 72.40 ± 0.46 79.21 ± 0.12 88.53 ± 0.13 92.65 ± 0.19 3.0

GRACE(GAT) 83.57 ± 0.55 71.70 ± 0.55 78.48 ± 0.18 88.09 ± 0.15 92.74 ± 0.20 5.4

EG-SimCLR(GAT) 83.78 ± 0.53 72.28 ± 0.40 78.76 ± 0.07 88.56 ± 0.17 92.97 ± 0.07 3.2

RD-Simsiam(GCN) 82.65 ± 0.62 70.72 ± 0.64 78.79 ± 0.10 87.40 ± 0.31 92.53 ± 0.17 8.2

EG-Simsiam(GCN) 83.46 ± 0.56 71.49 ± 0.31 79.27 ± 0.34 88.66 ± 0.19 92.77 ± 0.14 3.4

RD-Simsiam(GAT) 80.31 ± 0.34 70.18 ± 0.54 78.61 ± 0.27 87.96 ± 0.27 92.63 ± 0.12 8.8

EG-Simsiam(GAT) 82.31 ± 0.43 70.73 ± 0.17 78.93 ± 0.20 88.28 ± 0.18 92.73 ± 0.28 6.0

ENGAGE methods consistently outperform random perturbation based mod-
els (e.g., RD-SimCLR and RD-Simsiam) on the eight datasets, with an aver-
age improvement of 2.90%. In addition, ENGAGE reduces performance vari-
ance compared with random perturbation, indicating that representation learn-
ing becomes more stable. These observations validate the effectiveness of using
explanation toward a more adaptive and intelligent data augmentation scheme.

The result for the node classification is presented in Table 2 with the top
three results highlighted. Our ENGAGE models are named as EG-SimCLR
and EG-Simsiam, while their vanilla counterparts are GRACE [57] and RD-
Simsiam, respectively. Many observations are similar to graph classification,
such as improved performance and representation learning stability. In addi-
tion, we observe that ENGAGE works better for the GCN architecture than
GAT. The reason could be that the attention mechanism in GAT already equips
it with some abilities to select graph components during training. The proposed
ENGAGE is compatible with various GNN backbones and contrastive learning
models.

5.3 Ablation Study

We conduct ablation studies to further verify the effect of using SAM explana-
tions for guiding graph representation learning, and the influence of hyperpa-
rameters.

Does ENGAGE Remove Redundant Information? The explanation
extracted from the model should become sparser as training goes on, since
ENGAGE gradually removes superfluous information from representations.
Thus, we define explanation sparsity [24,54] for graph Gn as Sn = 1 −

116 Y. Shi et al.

(
∑|Vn|

i=1 1[ψi > μψ])/ |Vn| , where |Vn| is the number of nodes in Gn. ψi is the
importance score of node vi. μψ is the mean importance score of all nodes in
graphs G. The changes of explanation sparsity on DD, PROTEINS, and RDT-B
at different training iterations are shown in Fig. 4. We can observe that if we
choose to perturb the original view radically (λe = 2, λf = 2), then sparsity
tends to increase during the training process. In this mode, only the most cru-
cial graph components will be kept, while other information will be discarded.
If we perturb graphs softly (λe = −2, λf = −2), then the sparsity will remain
stable or even decrease slightly, which means most of graph information is kept
intact during training. We also provide visualization and quantitative analysis
for explanation results of SAM in Appendix H and I, respectively.

Table 3. Effect of proposed SAM guided data augmentation.

Method NCI1 PROTEINS DD PTC-MR COLLAB RDT-B RDT-M5K IMDB-B

RD-SimCLR 79.02 ± 0.52 74.61 ± 0.56 77.40 ± 0.81 58.55 ± 2.01 69.32 ± 1.54 85.67 ± 5.40 55.52 ± 0.74 69.08 ± 2.47

RD-Simsiam 79.62 ± 0.59 75.42 ± 0.50 77.20 ± 1.33 58.55 ± 1.85 66.50 ± 2.31 86.12 ± 1.80 54.30 ± 0.64 69.86 ± 0.86

HG-SimCLR 80.48 ± 0.44 74.93 ± 0.62 78.40 ± 0.69 56.62 ± 3.16 72.53 ± 0.97 89.92 ± 0.53 56.01 ± 0.25 69.88 ± 2.29

HG-Simsiam 80.70 ± 0.64 75.45 ± 0.72 77.87 ± 1.10 58.61 ± 1.99 72.84 ± 0.91 89.63 ± 0.55 55.92 ± 0.60 71.28 ± 0.82

EG-SimCLR 82.97 ± 0.20 75.44 ± 0.65 78.86 ± 0.51 61.51 ± 2.41 76.60 ± 1.26 90.70 ± 0.46 56.22 ± 0.56 71.78 ± 0.34

EG-Simsiam 81.49 ± 0.19 76.06 ± 0.51 78.35 ± 0.83 62.67 ± 1.50 74.73 ± 0.79 89.17 ± 0.43 56.37 ± 0.17 71.93 ± 0.40

Fig. 4. Evolution of explanation sparsity of three datasets during training.

SAM Guided Data Augmentation. We first compare our proposed EG-
SimCLR, EG-Simsiam models with RD-SimCLR and RD-Simsiam using random
perturbation. Besides that, we formulate two variants of our method, called HG-
SimCLR and HG-Simsiam (“HG” refers to “heatmap guided”), which do not
employ local smoothing to obtain explanations. The comparison is in Table 3.
The result shows that the explanation guided models (HG and EG models)
generally perform better than models with random data augmentation, which
means the explanations can be successfully leveraged to improve representation
learning with contrastive views. In addition, it can be observed that our proposed
SAM-based methods consistently outperform other baselines, showing that local
smoothing helps capture the important information more accurately.

Explanation Guided Data Augmentation for Graph Learning 117

Hyperparameter Analysis. We now explore the effect of different (λe, λf)
combinations on model performance. We conduct a detailed study on 13 datasets,
where λe and λf are changed, and all the other settings are the same. Larger λ
means a greater portion of data is perturbed. The results of DD, PROTEINS,
and RDT-B datasets are shown in Fig. 5. The results on other datasets are
provided in Appendix C.

Fig. 5. Model performances with different combinations of λe and λf .

Some observations are made as follows. First, the optimal data augmentation
threshold varies for different datasets. For example, Fig. 5(a) and (c) show that
DD benefits from more perturbation, but RDT-B does not. The reason could be
that, without data augmentation and contrastive learning, the vanilla represen-
tations in different datasets contain different levels of superfluous information.
Second, the sensitivity to λe and λf varies across different datasets. Here we
define performance gap as the difference between the best accuracy and the
worst one. For graph-level and node-level tasks, COLLAB and CiteSeer have a
maximum performance gap of 9.55% and 2.45%, respectively, while the RDT-
M5K and Amazon-Photo have a minimum performance gap of 0.97% and 0.23%.
The possible reason could be that in some datasets, the task-relevant information
is redundant, so it does not hurt performance when more graph components are
removed. We thus benefit more from searching for the optimal hyperparameters
for datasets like COLLAB and CiteSeer. Third, Simsiam-based models generally
show better stability than SimCLR-based models. The average performance gap
of Simsiam-based models is 3.39% and 0.75% in graph-level and node-level tasks,
respectively. By comparison, the corresponding numbers are 3.96% and 1.08%
for SimCLR ones.

6 Conclusion and Future Work

In this paper, we propose an explanation guided data augmentation methods for
graph representation learning. First, we design a new explanation method for
interpreting unsupervised graph learning models by leveraging the information
shared by local embeddings. Then we propose guided data augmentation using
explanation results. We will preserve the graph structure and features whose

118 Y. Shi et al.

importance exceeds the importance threshold. For the other part, we try to
keep the mutual information between two views as low as possible. The final
results show that our proposed methods achieve superior performance on mul-
tiple datasets. The ablation study also shows that the optimal thresholds vary
across different datasets, while a general random perturbing may hurt task per-
formance. For future work, we will (1) design more faithful unsupervised GNN
explanation methods; (2) design intelligent explanation guided augmentation
methods for other applications with domain knowledge.

Acknowledgements. The work is in part supported by NSF grant IIS-2223768. The
views and conclusions contained in this paper are those of the authors and should not
be interpreted as representing any funding agencies.

Ethical Statement. Our team acknowledges the importance of ethical considerations

in the development and deployment of our ENGAGE framework. We ensure that our

work does not lead to any potential negative societal impacts. We only use existing

datasets and cite the creators of those datasets to ensure they receive proper credit.

Additionally, we do not allow our work to be used for policing or military purposes.

We believe it is essential to prioritize ethical considerations in all aspects of machine

learning and data mining to ensure that these technologies are used for the benefit of

society as a whole.

References

1. Baldassarre, F., Azizpour, H.: Explainability techniques for graph convolutional
networks. arXiv preprint: arXiv:1905.13686 (2019)

2. Chen, T., Kornblith, S., Norouzi, M., Hinton, G.: A simple framework for con-
trastive learning of visual representations. In: International Conference on Machine
Learning, pp. 1597–1607. PMLR (2020)

3. Chen, X., He, K.: Exploring simple Siamese representation learning. In: Proceed-
ings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pp. 15750–15758 (2021)

4. Cheng, P., Hao, W., Yuan, S., Si, S., Carin, L.: FAIRFIL: contrastive neural debias-
ing method for pretrained text encoders. arXiv preprint: arXiv:2103.06413 (2021)

5. Fang, Y., et al.: Molecular contrastive learning with chemical element knowledge
graph. arXiv preprint: arXiv:2112.00544 (2021)

6. Federici, M., Dutta, A., Forré, P., Kushman, N., Akata, Z.: Learning robust repre-
sentations via multi-view information bottleneck. arXiv preprint: arXiv:2002.07017
(2020)

7. Gao, H., Ji, S.: Graph U-Nets. In: ICML, pp. 2083–2092. PMLR (2019)
8. Grover, A., Leskovec, J.: node2vec: scalable feature learning for networks. In: Pro-

ceedings of the 22nd ACM SIGKDD International Conference on Knowledge Dis-
covery and Data Mining, pp. 855–864 (2016)

9. Hamilton, W., Ying, Z., Leskovec, J.: Inductive representation learning on large
graphs. In: NeurIPS, pp. 1024–1034 (2017)

10. Hassani, K., Khasahmadi, A.H.: Contrastive multi-view representation learning on
graphs. In: International Conference on Machine Learning, pp. 4116–4126. PMLR
(2020)

http://arxiv.org/abs/1905.13686
http://arxiv.org/abs/2103.06413
http://arxiv.org/abs/2112.00544
http://arxiv.org/abs/2002.07017

Explanation Guided Data Augmentation for Graph Learning 119

11. Hassani, K., Khasahmadi, A.H.: Learning graph augmentations to learn graph
representations. arXiv preprint: arXiv:2201.09830 (2022)

12. He, K., Fan, H., Wu, Y., Xie, S., Girshick, R.: Momentum contrast for unsupervised
visual representation learning. In: Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 9729–9738 (2020)

13. Huang, Q., Yamada, M., Tian, Y., Singh, D., Yin, D., Chang, Y.: GraphLIME:
local interpretable model explanations for graph neural networks. arXiv preprint:
arXiv:2001.06216 (2020)

14. Johnson, J., Douze, M., Jégou, H.: Billion-scale similarity search with GPUs. IEEE
Trans. Big Data 7(3), 535–547 (2019)

15. Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional
networks. arXiv preprint: arXiv:1609.02907 (2016)

16. Kipf, T.N., Welling, M.: Variational graph auto-encoders. arXiv preprint:
arXiv:1611.07308 (2016)

17. Li, S., Wang, X., Zhang, A., Wu, Y.X., He, X., Chua, T.S.: Let invariant rationale
discovery inspire graph contrastive learning. In: ICML (2022)

18. Liu, G., Zhao, T., Xu, J., Luo, T., Jiang, M.: Graph rationalization with
environment-based augmentations. arXiv:abs/2206.02886 (2022)

19. Lucic, A., Ter Hoeve, M., Tolomei, G., de Rijke, M., Silvestri, F.: CF-
GNNExplainer: counterfactual explanations for graph neural networks. arXiv
preprint: arXiv:2102.03322 (2021)

20. Luo, D., et al.: Parameterized explainer for graph neural network. In: Advances in
neural information processing systems, vol. 33, pp. 19620–19631 (2020)

21. Pan, S., Hu, R., Long, G., Jiang, J., Yao, L., Zhang, C.: Adversarially regularized
graph autoencoder for graph embedding. arXiv preprint: arXiv:1802.04407 (2018)

22. Peng, X., Wang, K., Zhu, Z., You, Y.: Crafting better contrastive views for Siamese
representation learning. arXiv preprint: arXiv:2202.03278 (2022)

23. Perozzi, B., Al-Rfou, R., Skiena, S.: DeepWalk: online learning of social represen-
tations. In: Proceedings of the 20th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, pp. 701–710 (2014)

24. Pope, P.E., Kolouri, S., Rostami, M., Martin, C.E., Hoffmann, H.: Explainabil-
ity methods for graph convolutional neural networks. In: Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 10772–
10781 (2019)

25. Qiu, J., Dong, Y., Ma, H., Li, J., Wang, K., Tang, J.: Network embedding as matrix
factorization: unifying DeepWalk, LINE, PTE, and node2vec. In: Proceedings of
the Eleventh ACM International Conference on Web Search and Data Mining, pp.
459–467 (2018)

26. Schlichtkrull, M.S., De Cao, N., Titov, I.: Interpreting graph neural networks for
nlp with differentiable edge masking. arXiv preprint: arXiv:2010.00577 (2020)

27. Schnake, T., et al.: XAI for graphs: explaining graph neural network predictions
by identifying relevant walks. arXiv preprint: arXiv:2006.03589 (2020)

28. Schwarzenberg, R., Hübner, M., Harbecke, D., Alt, C., Hennig, L.: Layerwise
relevance visualization in convolutional text graph classifiers. arXiv preprint:
arXiv:1909.10911 (2019)

29. Shervashidze, N., Schweitzer, P., Van Leeuwen, E.J., Mehlhorn, K., Borgwardt,
K.M.: Weisfeiler-lehman graph kernels. J. Mach. Learn. Res. 12(9) (2011)

30. Shi, Y., et al.: Chatgraph: interpretable text classification by converting ChatGPT
knowledge to graphs. arXiv preprint: arXiv:2305.03513 (2023)

http://arxiv.org/abs/2201.09830
http://arxiv.org/abs/2001.06216
http://arxiv.org/abs/1609.02907
http://arxiv.org/abs/1611.07308
http://arxiv.org/2206.02886
http://arxiv.org/abs/2102.03322
http://arxiv.org/abs/1802.04407
http://arxiv.org/abs/2202.03278
http://arxiv.org/abs/2010.00577
http://arxiv.org/abs/2006.03589
http://arxiv.org/abs/1909.10911
http://arxiv.org/abs/2305.03513

120 Y. Shi et al.

31. Sun, F.Y., Hoffmann, J., Verma, V., Tang, J.: InfoGraph: unsupervised and semi-
supervised graph-level representation learning via mutual information maximiza-
tion. arXiv preprint: arXiv:1908.01000 (2019)

32. Tan, Q., et al.: S2GAE: self-supervised graph autoencoders are generalizable learn-
ers with graph masking. In: Proceedings of the Sixteenth ACM International Con-
ference on Web Search and Data Mining, pp. 787–795 (2023)

33. Tang, J., Qu, M., Wang, M., Zhang, M., Yan, J., Mei, Q.: Line: large-scale infor-
mation network embedding. In: Proceedings of the 24th International Conference
on World Wide Web, pp. 1067–1077 (2015)

34. Tian, Y., Krishnan, D., Isola, P.: Contrastive multiview coding. In: Vedaldi, A.,
Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12356, pp.
776–794. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58621-8 45

35. Tian, Y., Sun, C., Poole, B., Krishnan, D., Schmid, C., Isola, P.: What makes for
good views for contrastive learning? In: Advances in Neural Information Processing
Systems, vol. 33, pp. 6827–6839 (2020)

36. Tishby, N., Pereira, F.C., Bialek, W.: The information bottleneck method. arXiv
preprint: arXiv:physics/0004057 (2000)

37. Veličković, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph
attention networks. In: ICLR (2018)

38. Veličković, P., Fedus, W., Hamilton, W.L., Liò, P., Bengio, Y., Hjelm, R.D.: Deep
graph infomax. arXiv preprint: arXiv:1809.10341 (2018)

39. Vu, M.N., Thai, M.T.: PGM-explainer: probabilistic graphical model explanations
for graph neural networks. arXiv preprint: arXiv:2010.05788 (2020)

40. Wang, H., Guo, X., Deng, Z.H., Lu, Y.: Rethinking minimal sufficient representa-
tion in contrastive learning. arXiv preprint: arXiv:2203.07004 (2022)

41. Wang, X., Wu, Y., Zhang, A., He, X., Seng Chua, T.: Causal screening to interpret
graph neural networks (2021)

42. Wiltschko, A.B., et al.: Evaluating attribution for graph neural networks (2020)
43. Wu, F., Souza, A., Zhang, T., Fifty, C., Yu, T., Weinberger, K.: Simplifying graph

convolutional networks. In: ICML, pp. 6861–6871. PMLR (2019)
44. Wu, X., Zhou, K., Sun, M., Wang, X., Liu, N.: A survey of graph prompting meth-

ods: techniques, applications, and challenges. arXiv preprint: arXiv:2303.07275
(2023)

45. Wu, Y., Wang, X., Zhang, A., He, X., Chua, T.S.: Discovering invariant rationales
for graph neural networks. In: International Conference on Learning Representa-
tions (2022)

46. Xia, J., Wu, L., Chen, J., Hu, B., Li, S.Z.: SimGRACE: a simple frame-
work for graph contrastive learning without data augmentation. arXiv preprint:
arXiv:2202.03104 (2022)

47. Xu, D., Cheng, W., Luo, D., Chen, H., Zhang, X.: InfoGCL: information-aware
graph contrastive learning. In: Advances in Neural Information Processing Systems,
vol. 34 (2021)

48. Xu, K., Hu, W., Leskovec, J., Jegelka, S.: How powerful are graph neural networks?
arXiv preprint: arXiv:1810.00826 (2018)

49. Yanardag, P., Vishwanathan, S.: Deep graph kernels. In: Proceedings of the 21th
ACM SIGKDD International Conference on Knowledge Discovery and Data Min-
ing, pp. 1365–1374 (2015)

50. Ying, Z., Bourgeois, D., You, J., Zitnik, M., Leskovec, J.: GNNExplainer: gener-
ating explanations for graph neural networks. In: Advances in Neural Information
Processing Systems, vol. 32 (2019)

http://arxiv.org/abs/1908.01000
https://doi.org/10.1007/978-3-030-58621-8_45
http://arxiv.org/abs/physics/0004057
http://arxiv.org/abs/1809.10341
http://arxiv.org/abs/2010.05788
http://arxiv.org/abs/2203.07004
http://arxiv.org/abs/2303.07275
http://arxiv.org/abs/2202.03104
http://arxiv.org/abs/1810.00826

Explanation Guided Data Augmentation for Graph Learning 121

51. You, Y., Chen, T., Shen, Y., Wang, Z.: Graph contrastive learning automated. In:
International Conference on Machine Learning, pp. 12121–12132. PMLR (2021)

52. You, Y., Chen, T., Sui, Y., Chen, T., Wang, Z., Shen, Y.: Graph contrastive learn-
ing with augmentations. In: Advances in Neural Information Processing Systems,
vol. 33, pp. 5812–5823 (2020)

53. Yuan, H., Tang, J., Hu, X., Ji, S.: XGNN: towards model-level explanations of
graph neural networks. In: Proceedings of the 26th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining, pp. 430–438 (2020)

54. Yuan, H., Yu, H., Gui, S., Ji, S.: Explainability in graph neural networks: a taxo-
nomic survey. arXiv preprint: arXiv:2012.15445 (2020)

55. Zhang, Y., Defazio, D., Ramesh, A.: Relex: a model-agnostic relational model
explainer. arXiv preprint: arXiv:2006.00305 (2020)

56. Zhou, B., Khosla, A., Lapedriza, A., Oliva, A., Torralba, A.: Learning deep fea-
tures for discriminative localization. In: Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pp. 2921–2929 (2016)

57. Zhu, Y., Xu, Y., Yu, F., Liu, Q., Wu, S., Wang, L.: Deep graph contrastive repre-
sentation learning. arXiv preprint: arXiv:2006.04131 (2020)

58. Zhu, Y., Xu, Y., Yu, F., Liu, Q., Wu, S., Wang, L.: Graph contrastive learning
with adaptive augmentation. In: Proceedings of the Web Conference 2021, pp.
2069–2080 (2021)

http://arxiv.org/abs/2012.15445
http://arxiv.org/abs/2006.00305
http://arxiv.org/abs/2006.04131

Modeling Graphs Beyond Hyperbolic:
Graph Neural Networks in Symmetric

Positive Definite Matrices

Wei Zhao1,2(B), Federico Lopez1, J. Maxwell Riestenberg2, Michael Strube1,
Diaaeldin Taha2, and Steve Trettel3

1 Heidelberg Institute for Theoretical Studies, Heidelberg, Germany
{Wei.Zhao,Federico.Lopez,Michael.Strube}@h-its.org

2 Heidelberg University, Heidelberg, Germany
{mriestenberg,dtaha}@mathi.uni-heidelberg.de
3 University of San Francisco, San Francisco, USA

strettel@usfca.edu

Abstract. Recent research has shown that alignment between the struc-
ture of graph data and the geometry of an embedding space is crucial for
learning high-quality representations of the data. The uniform geometry
of Euclidean and hyperbolic spaces allows for representing graphs with
uniform geometric and topological features, such as grids and hierarchies,
with minimal distortion. However, real-world graph data is characterized
by multiple types of geometric and topological features, necessitating
more sophisticated geometric embedding spaces. In this work, we utilize
the Riemannian symmetric space of symmetric positive definite matri-
ces (SPD) to construct graph neural networks that can robustly handle
complex graphs. To do this, we develop an innovative library that lever-
ages the SPD gyrocalculus tools [26] to implement the building blocks of
five popular graph neural networks in SPD. Experimental results demon-
strate that our graph neural networks in SPD substantially outperform
their counterparts in Euclidean and hyperbolic spaces, as well as the
Cartesian product thereof, on complex graphs for node and graph clas-
sification tasks. We release the library and datasets at https://github.
com/andyweizhao/SPD4GNNs.

Keywords: Graph Neural Networks · Riemannian Geometry ·
Symmetric Space · Space of Symmetric Positive Definite Matrices

1 Introduction

Complex structures are a common feature in real-world graph data, where the
graphs often contain a large number of connected subgraphs of varying topologies
(including grids, trees, and combinations thereof). While accommodating the

F. Lopez and D. Taha—These authors contributed equally to this work.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
D. Koutra et al. (Eds.): ECML PKDD 2023, LNAI 14171, pp. 122–139, 2023.
https://doi.org/10.1007/978-3-031-43418-1_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-43418-1_8&domain=pdf
https://github.com/andyweizhao/SPD4GNNs
https://github.com/andyweizhao/SPD4GNNs
https://doi.org/10.1007/978-3-031-43418-1_8

Modeling Graphs Beyond Hyperbolic 123

Fig. 1. Propagation schema for utilizing SPD geometry while performing calculations
in the tangent (Euclidean) space: starting from an SPD embedding, map a node and
its neighbors to the tangent space via the logarithm, and perform a modified Euclidean
aggregation (Table 1) before returning to SPD via the Riemannian exponential map.

diversity of such graphs is necessary for robust representation learning, neither
Euclidean nor hyperbolic geometry alone has been sufficient [23].

This inefficiency stems from geometric reasons. Properties of the embedding
space strongly control which graph topologies embed with low distortion, with
simple geometries selecting only narrow classes of graphs. Euclidean geometry
provides the foundational example, where its abundant families of equidistant
lines allow for efficient representation of grid-like structures, but its polynomial
volume growth is too slow to accommodate tree-like data. This is somewhat
ameliorated by moving to higher dimensions (with faster polynomial volume
growth), though with a serious trade-off in efficiency [4]. An alternative is to
move to hyperbolic geometry, where volume growth is exponential, providing
plenty of room for branches to spread out for the isometric embedding of trees
[7,35]. However, hyperbolic geometry has a complementary trade-off: it does
not contain equidistant lines, which makes it unfit for embedding the grid-like
structures Euclidean space excelled at [8].

Many proposed graph neural networks utilize representations of graph data
to perform machine learning tasks in various graph domains, such as social net-
works, biology and molecules [2,11,13,14,22,31,32,37]. A subset of these net-
works take seriously the constraints of geometry on representation capability,
and work to match various non-Euclidean geometries to common structures seen
in graph data. For instance, Chami et al. [11] and Defferrard et al. [13] show that
constructing graph neural networks in hyperbolic and spherical spaces have been
successful in embedding graphs with hierarchical and cyclical structures, respec-
tively. However, the relative geometric simplicity of these spaces poses serious
limitations including (a) the need to know the graph structure prior to choosing
the embedding space, and (b) the inability to perform effectively with graphs
built of geometrically distinct sub-structures, a common feature of real-world
data.

Avoiding these limitations may necessitate resorting to more complex geo-
metric spaces. For example, Gu et al. [18] employed Cartesian products of various
geometric spaces to represent graphs with mixed geometric structures. But any

124 W. Zhao et al.

such choice must be carefully considered: isometries play an essential role in the
construction of the above architectures, and any increase in complexity accom-
panied by too great a decrease in symmetry may render a space computationally
intractable.

Riemannian symmetric spaces, which have a rich geometry encompassing all
the aforementioned spaces, strike an effective balance between geometric general-
ity and ample symmetry. Lopez et al. [25] proposed particular symmetric spaces,
namely Siegel spaces, for graph embedding tasks, and demonstrated that many
different classes of graphs embed in these spaces with low distortion. Lopez et al.
[26] suggested utilizing the symmetric space SPD of symmetric positive definite
matrices that is less computationally expensive than Siegel spaces. Furthermore,
they developed gyrocalculus tools that enable “vector space operations” on SPD.

Here we extend the idea of Lopez et al. [26] to construct graph neural net-
works in SPD, particularly by utilizing their gyrocalculus tools to implement the
building blocks of graph neural networks in SPD (Fig. 1). The building blocks
include (a) feature transformation via isometry maps, (b) propagation via graph
convolution in the tangent space of SPD (the space of symmetric matrices Sn),
(c) bias addition via gyrocalculus, (d) non-linearity acting on eigenspace, and
(e) three classification layers. We develop SPD4GNNs, an innovative library that
showcases training five popular graph neural networks in SPDn, alongside the
functionality for training them in Euclidean and hyperbolic spaces.

We perform experiments to compare four ambient geometries (Euclidean,
hyperbolic, products thereof, and SPD) across popular graph neural networks,
evaluated on the node and graph classification tasks on nine datasets with vary-
ing complexities. Results show that constructing graph neural networks in SPD
space leads to big improvements in accuracy over Euclidean and hyperbolic
spaces on complex graphs, at the cost of doubling (resp. quadrupling) the train-
ing time of graph neural networks compared to hyperbolic space (resp. Euclidean
space).

Finally, we provide a summary of the numerical issues we encountered and
the solutions to addressing them (see Appendix F).

2 Related Work

Graph Neural Networks. Graph neural networks (GNNs) have been profiled as
the de facto solutions for learning graph embeddings [2,14,22,31,37,38]. These
networks can be differentiated into two dimensions: (a) how they propagate
information over graph nodes and (b) which geometric space they use to embed
the nodes. In Euclidean space, a class of GNNs has been proposed that repre-
sents graph nodes in a flat space and propagates information via graph convolu-
tion in various forms, such as using Chebyshev polynomial filters [12,22], high-
order filters [38], importance sampling [19], attention mechanisms [37], graph-
isomorphism designs [2,32,39], and differential equations [14,16,31]. In contrast,
non-Euclidean spaces have a richer structure for representing geometric graph
structures in curved spaces. Recently, there has been a line of GNNs developed in

Modeling Graphs Beyond Hyperbolic 125

these spaces that performs graph convolution on different Riemannian manifolds
in order to accommodate various graph structures, such as hyperbolic space on
tree-like graphs [11,24,40], spherical space on spherical graphs [13], and Carte-
sian products of thereof [18].

SPD Space. Representing data with SPD matrices has been researched for many
years, with the representations being primarily in the form of covariance matrices
[9,15,17,21,42]. These matrices capture the statistical dependencies between
Euclidean features. Recent research focused on designing the building blocks
of neural networks in the space of covariance matrices. This includes feature
transformation that maps Euclidean features to covariance matrices via geodesic
Gaussian kernels [6,15], nonlinearity on the eigenvalues of covariance matrices
[21], convolution through SPD filters [42] and Frechét mean [9], Riemannian
recurrent networks [10], and Riemannian batch normalization [5].

Nguyen et al. [29] recently approached hand gesture classification by embed-
ding graphs into SPD via a neural network. The architectures we consider here
are different. While we alternate between SPD and its tangent space using the
exponential and logarithm maps, Nguyen et al. [29] do so via an aggregation
operation and the log map. Further, we couple this alternation with our build-
ing blocks to operate graph neural networks in SPD.

3 Background

3.1 The Space SPD

We let SPDn denote the space of positive definite real symmetric n×n matrices.
This space has the structure of a Riemannian manifold of non-positive curvature
of n(n+1)/2 dimensions. The tangent space to any point of SPDn can be identi-
fied with the vector space Sn of all real symmetric n×n matrices. SPDn is more
flexible than Euclidean or hyperbolic geometries, or products thereof. In partic-
ular, it contains n-dimensional Euclidean subspaces, (n − 1)-dimensional hyper-
bolic subspaces, products of �n

2 � hyperbolic planes, and many other interesting
spaces as totally geodesic submanifolds; see the reference [20] for an in-depth
introduction to these well-known facts. While it is not yet fully understood how
our proposed models leverage the Euclidean and hyperbolic subspaces in SPDn,
we hypothesize that the presence of these subspaces is an important factor in
the superior performance of SPDn graph neural networks. Refer to Fig. 2 for a
demonstration of how this hypothesis may manifest.

Riemannian Exponential and Logarithmic Maps. For SPDn, the Riemannian
exponential map at the basepoint In agrees with the standard matrix exponen-
tial exp: Sn → SPDn. This map is a diffeomorphism with inverse the matrix
logarithm log : SPDn → Sn. These maps allow us to pass from SPDn to Sn and
back again. Given any two points X,Y ∈ SPDn, there exists an isometry (i.e.,
a distance-preserving transformation) that maps X to Y . As such, the choice of
a basepoint for the exponential and logarithm maps is arbitrary since any other
point can be mapped to the basepoint by an isometry. In particular, there is no
loss of generality with fixing the basepoint In as we do.

126 W. Zhao et al.

Fig. 2. Graphs exhibiting both euclidean/grid-like and hyperbolic/tree-like features
(left) cannot embed well in either euclidean or hyperbolic spaces due to the impossibility
of isometrically embedding trees in Euclidean spaces and grids in hyperbolic spaces
(center). However, SPDn (right) contains both euclidean and hyperbolic subspaces,
which allows embedding a broad class of graphs, including the example in the figure.

Non-linear Activation Functions in SPDn. We use two non-linear functions on
SPD matrices, namely (i) ReEig [21]: factorizing a point P ∈ SPDn and then
employing the ReLU-like non-linear activation function ϕa to suppress the pos-
itive eigenvalues that are bigger than 0.5 1:

ϕSPD(P) = Uϕa(Σ)UT P = UΣUT (1)

(ii) TgReEig: projecting P ∈ SPDn into the tangent space and then suppressing
the negative eigenvalues of the projected point ∈ Sn with the ReLU non-linear
activation function ϕb, i.e. ϕSPD(P) = U exp(ϕb(log(Σ)))UT .

3.2 Gyrocalculus on SPD

Addition and Subtraction. Gyro-calculus is a way of expressing natural analogues
of vector space operations in Riemannian manifolds. Following Lopez et al. [26],
given two points P,Q ∈ SPDn, we denote gyro-addition and gyro-inversion by:

P ⊕ Q =
√

PQ
√

P � P = P−1 (2)

For P,Q ∈ SPDn, the value P ⊕ Q ∈ SPDn is the result of applying the SPDn-
translation moving the basepoint In to P , evaluated on Q.

Isometry Maps. Any invertible n × n real matrix M ∈ GL(n,R) defines an
isometry of SPDn by

M � P = MPMT (3)

where P ∈ SPDn.
Lopez et al. [26] proposed defining M in two forms, namely a rotation element

in SO(n) and a reflection element in O(n). In this case, the choice of rotation
and reflection becomes a hyperparameter for M , and that needs to be selected
before training. In contrast, the form of M we considered is more flexible and can
be automatically adjusted by training data. To do so, we first let M denote the
1 TgReEig equals ReEig in the case of ϕa(x) = max(x, 1).

Modeling Graphs Beyond Hyperbolic 127

orthogonal basis of a learnable square matrix, and then tune the square matrix
from training data. Thus, M , as an orthogonal matrix that extends rotations
and reflections, is better suited to fit the complexity of graph data.

Table 1. Comparison of operations in different spaces across three graph neural net-
works, i.e., GCN [22], GAT [37] and 1-order Cheb [12]. SGC [38] and GIN [39] are pre-
sented in Appendix B, which indeed apply propagation before feature transformation.

Operations GNNs Euclidean Space Hyperbolic and SPD Space

Feature Trans All hl
i = W lxl−1

i Ql
i = M l � Zl−1

i

Propagation GCN pl
i =

∑
j∈N (i) ki,jh

l
j P l

i = exp(
∑

j∈N (i) ki,j log(Ql
j))

GAT pl
i = αi,ih

l
i +

∑
j∈N (i) αi,jh

l
j P l

i = exp(αi,i log(Qi) +
∑

j∈N (i) αi,j log(Ql
j))

Cheb pl
i = hl

i + W l ∑
j∈N (i) ki,jh

l
j P l

i = Ql
i ⊕ (M l � exp(

∑
j∈N (i) ki,j log Zl−1

j))

Bias&Nonlin All xl
i = ϕ(pl

i + bl) Zl
i = ϕ(P l

i ⊕ Bl)

4 Graph Neural Networks

In this section, we introduce the notation and building blocks of graph neural net-
works using graph convolutional network (GCN) [22] as an example, and present
modifications for operating these building blocks in SPD. Table 1 establishes par-
allels between five popular graph neural networks in Euclidean, hyperbolic and
SPD spaces.

4.1 GCN in Euclidean Space

Given a graph G = (V, E) with a vertex set V and an edge set E , we define
d-dimensional input node features (x0

i)i∈V , where the superscript 0 indicates the
first layer. The goal of a graph neural network is to learn a mapping denoted by:

f : (V, E , (x0
i)i∈V) → Z ∈ R

|V|×d

where Z is the space of node embeddings obtained from the final layer of GCN,
which we take as the input of classification layer to perform downstream tasks.

Let N (i) = {j : (i, j) ∈ E} ∪ {i} be the set of neighbors of i ∈ V with
self-loops, and (W l, bl) be a matrix of weights and a vector of bias parameters
at layer l, and ϕ(·) be a non-linear activation function. We now introduce mes-
sage passing, which consists of the following three components for exchanging
information between the node i and its neighbors at layer l:

hl
i = W lxl−1

i Feature transform (4)

pli =
∑

j∈N (i)

ki,jh
l
j Propagation (5)

xl
i = ϕ(pli + bl) Bias &Nonlinearity (6)

where ki,j = c
− 1

2
i c

− 1
2

j with ci as the cardinality of N (i). ki,j represents the
relative importance of the node j to the node i.

128 W. Zhao et al.

4.2 GCN in SPD

Mapping from Euclidean to SPD space. Oftentimes, input node features are not
given in SPD, but in Euclidean space (x0

i)i∈V ∈ R
d. Therefore, we design a

transformation that maps Euclidean features to a point in SPD. To do so, we
first learn a linear map that transforms the d-dimensional input features into
a vector of dimension n(n + 1)/2, that we arrange as the upper triangle of an
initially zero matrix A ∈ R

n×n. We then define a symmetric matrix U ∈ Sn such
that U = A + AT . We now apply the exponential map such that Z = exp(U),
which moves the coordinates from the tangent space Sn to the original manifold
SPDn. Thus, the resulting node embeddings (Z0

i)i∈V are in SPDn. By performing
this mapping only once, we enable GNNs to operate in SPDn.

Feature Transform. We apply isometry maps to transform points in SPD at
different layers, denoted by: Ql

i = M l � Zl−1
i , where Ql

i, Z
l−1
i ∈ SPDn and M l

is a isometry map (see §3.2) at layer l of the GNN.

Propagation. This step aggregates information from all the neighbors N (i) of a
given node i, with the information weighted by the importance of a neighbor to
the node i (see Eq. 5). We note that propagation involves addition and scaling
operators. This results in two alternative approaches for computing propagation:
(a) employing gyro-addition to aggregate information over the neighbors for each
node; (b) computing the Riemannian Fréchet mean in SPDn—which requires
hundreds of iterations to find a geometric center. Therefore, these approaches
are costly to compute and also involve the use of cumbersome Riemannian opti-
mization algorithms (see Appendix A for optimization). Here we perform aggre-
gation via graph convolution in the space of symmetric matrices Sn denoted by:
P l
i = exp(

∑
j∈N (i) ki,j log(Ql

j)), where P l
i ∈ SPDn and ki,j = c

− 1
2

i c
− 1

2
j (as in the

Euclidean case). This is similar to the approach of Chami et al. [11] by perform-
ing propagation in the tangent pace and the posterior projection through the
exponential map.

Bias Addition and Non-linearity. Finally, we add the bias Bl at layer l to the
result of propagation through gyro-addition followed by applying a non-linear
function, denoted by: Zl

i = ϕSPD(P l
i ⊕ Bl), with Zl

i ∈ SPDn as the new embed-
ding for the node i at layer l and Bl ∈ SPDn.

Message Passing in SPD. We establish a one-to-one correspondence between the
Euclidean and SPD versions of GCN at layer l for node i:

Ql
i = M l � Zl−1

i Feature transform (7)

P l
i = exp(

∑

j∈N (i)

ki,j log(Ql
j)) Propagation (8)

Zl
i = ϕSPD(P l

i ⊕ Bl) Bias & non-lin (9)

Modeling Graphs Beyond Hyperbolic 129

Classification. In node classification setups2, we are given {Zi, yi}Ni=1 on a
dataset, with N as the number of instances, Zi ∈ SPDn as the i-th node embed-
ding obtained from the final layer of a graph neural network, and yi ∈ {1, . . . , K}
as the true class of i-th node. Let h : SPD
→ {1, . . . , K} be a classifier that best
predicts the label yi of a given input Zi. Indeed, the input space of h can be in var-
ious forms, not limited to SPDn. Here we introduce three classifiers in two alter-
native input spaces: (a) Rd(d+1)/2 and (b) Sn

3. To do so, we first take Riemannian
logarithm log : SPDn → Sn of each Zi at the identity. For (a), we vectorize the
upper triangle elements of X as x = (X1,1 · · · X1,d,X2,2, · · · ,Xd,d) ∈ R

d(d+1)/2,
and then design two classifiers, i.e., Linear-XE (Linear Classifier coupled
with Cross-Entropy loss) and NC-MM (Nearest Centroid Classifier with Multi-
Margin loss). For (b), we design a SVM-like classifier SVM-MM acting in Sn,
a similar approach to the proposal of Nguyen et al. [29]. We present the details
of these classifiers in Appendix G.

5 Experiments

In this section, we first perform experiments for node and graph classification,
and then analyze the ability of three geometric spaces in arranging and separat-
ing nodes with different classes. Further, we compare the training efficiency of
different spaces and the usefulness of three classifiers. Lastly, we discuss product
space (the Cartesian product of Euclidean and hyperbolic spaces) and compare
it with SPD in Appendix H.

Baselines. To investigate the usefulness of different geometric spaces on graph
neural networks, we choose five well-known graph architectures as representa-
tives: GCN [22], GAT [37], Cheb [12], SGC [38] and GIN [39], and evaluate
these architectures in Euclidean, hyperbolic and SPD spaces. For the hyperbolic
versions of these architectures, we use Poincaré models and extend the imple-
mentation of Poincaré GCN [11] to other four architectures.

5.1 Node Classification

Datasets. We evaluate graph neural networks in the three spaces on 5 popular
datasets for node classification: Disease [1], Airport [41], Pubmed [28], Citeseer
and Cora [34]. Overall, each dataset has a single graph that contains up to
thousands of labeled nodes. We use the public train, validation and test splits
of each dataset, and provide dataset statistics in Appendix C. Unlike previous
works [11,40], we only use original node features to ensure a fair and transparent
comparison.

2 For graph classification, Zi and yi denote the ‘center’ of the graph i and its true class.
We take the arithmetic mean of node embeddings in SPDn to produce Zi ∈ SPDn.

3 We also design several classifiers with the input space in SPDn, but these do not
yield better results than those in Sn.

130 W. Zhao et al.

Setup. We compare three geometries, namely Euclidean, hyperbolic and SPD,
in two low-dimensional spaces: (i) 6 dimensions: R

6, H
6 and SPD3, and (ii)

15 dimensions: R15, H15 and SPD5, a common choice of dimensions in previ-
ous work [11,40]. The reason we considered for low-dimensional space is the
following: If the structure of data matches the geometry of embedding space,
a low-dimensional space can be leveraged efficiently for producing high-quality
embeddings. If they do not match, a large dimension is needed to compensate
for the wrong use of unsuitable geometric spaces. Here we investigate the effi-
ciencies of different geometries in space use when given a small dimension. We
report mean accuracy and standard deviation of binary/multi-label classification
results under 10 runs, and provide training details in Appendix A.

GIN

SGC

Cheb GAT

GCN

30

40

50

60

70

80

90

100

Euclidean Hyperbolic SPD

(a) Disease (δ = 0.0)

GIN

SGC

Cheb GAT

GCN

30

40

50

60

70

Euclidean Hyperbolic SPD

(b) Airport (δ = 1.0)

GIN

SGC

Cheb GAT

GCN

40

45

50

55

60

65

70

75

Euclidean Hyperbolic SPD

(c) Pubmed (δ = 3.5)

GIN

SGC

Cheb GAT

GCN

20

30

40

50

60

Euclidean Hyperbolic SPD

(d) Citeseer (δ = 5.0)

GIN

SGC

Cheb GAT

GCN

20

30

40

50

60

70

80

Euclidean Hyperbolic SPD

(e) Cora (δ = 11.0)

Fig. 3. Evaluation of five graph neural networks coupled with Linear-XE on five node
classification datasets in the three 6-dimensional spaces: R6, H6 and SPD3. Each radar
chart shows classification accuracy (on a varying scale, as noted by the gridlines with
circular shapes) from the five GNN architectures on a dataset. Each dataset has only
one graph. δ-hyperbolicity shows the degree to which the dataset graph is a hyperbolic
tree. A smaller δ indicates a more tree-like dataset.

Results. Figure 3 shows the accuracy results of a node classification task in
the three 6-dimensional geometries across five datasets on five GNNs, see also
Table 6 (appendix). For graphs with δ-hyperbolicity > 1, SPD3 achieves the best
accuracy in all cases except the Cheb architecture on the Citeseer dataset. We
also observe that the accuracy of SPD is similar to hyperbolic space on the
Airport dataset δ = 1. The Disease graph is a tree (δ = 0) and has optimal

Modeling Graphs Beyond Hyperbolic 131

GIN SGC Cheb GAT GCN
50

60

70

80

90

100

A
cc
ur
ac
y

H
6

R
15 SPD5

Fig. 4. Comparison of 6d and 15d spaces on Disease. SPD5 has 15 dimensions.

performance in hyperbolic space. The accuracy is much lower for these two tree-
like datasets in Euclidean geometry for all GNNs except Cheb.

In the case of tree-like datasets, hyperbolic space provides not only accuracy
for these tasks but also efficiency. Figure 4 compares 6-dimensional hyperbolic
space to R

15 and SPD5 (also 15-dimensional), showing that even a much smaller
dimensional hyperbolic space achieves the best performance on Disease. Notably,
the poor performance of Cheb across all spaces might be attributed to the low
representational capacity of the first-order Chebyshev polynomial used in the
graph neural network for embedding the tree structure of Disease. Results com-
paring the 6d and 15d geometries are reported in Table 7 (appendix).

5.2 Graph Classification

Datasets. We evaluate graph neural networks in three spaces on the popular
TUDataset benchmark [27]. Here we focus on datasets with node features, and
choose a sample of 4 popular datasets in two domains, namely (a) Biology:
ENZYMES [33] and PROTEINS [3]; (b) Molecules: COX2 [36] and AIDS [30].
Overall, each dataset instance has one labeled graph with dozens of nodes. We
use the first split of train and test sets in the 10-fold cross-validation setup, and
select 10% of the training set uniformly at random as the development set. We
provide data statistics in Appendix C.

Setup. Following Morris et al. [27], we predict the class of an unlabeled graph
by classifying its center. In particular, we produce the graph center by using
mean pooling to take the arithmetic mean of node embeddings in a graph. To
compare efficiency in space use, we conduct experiments in three spaces with the
same dimension size of 36, namely R

36, H36 and SPD8, the smallest dimension
size in the grid search from Morris et al. [27]. We report the mean accuracy and
standard deviation of graph classification results under 10 runs, and provide
training details in Appendix A.

132 W. Zhao et al.

Results. Figure 5 shows the accuracy results of a graph classification task in
three geometries across five datasets on five GNNs, see also Table 8 (appendix).
Figure 6 shows the distribution of δ-hyperbolicity over instances. We see that
SPD8 achieves better or similar accuracy than its counterparts of the same
dimension in all cases except Cheb on COX2 and GIN on ENZYMES. On the
AIDS dataset, SPD achieves much better accuracy across all GNNs, and on
ENZYMES SPD achieves much better accuracy on SGC.

We also observe that hyperbolic space does not yield much increased accuracy
over Euclidean space in most cases, except the AIDS data set. Furthermore,
SPD significantly outperforms hyperbolic space on the AIDS dataset but not
the COX2 data set. Both of these datasets have the property that almost all
instances are tree-like (δ ≤ 1) (see Fig. 6), but the hyperbolicity constants are less
concentrated in the AIDS dataset than in the COX2 dataset. It is possible that
the flexibility of SPD explains the increased performance over hyperbolic space
in this case. For example, SPD admits totally geodesic submanifolds isometric
to hyperbolic spaces of varying constant curvatures. It would be interesting to
find out, for example, if these graphs of different hyperbolicity constants stay
near copies of hyperbolic space of different curvatures.

GIN

SGC

Cheb GAT

GCN

50

55

60

65

70

75

80

Euclidean Hyperbolic SPD

(a) COX2

GIN

SGC

Cheb GAT

GCN

50

60

70

80

90

Euclidean Hyperbolic SPD

(b) AIDS

GIN

SGC

Cheb GAT

GCN

0

5

10

15

20

25

30

35

Euclidean Hyperbolic SPD

(c) ENZYMES

GIN

SGC

Cheb GAT

GCN

40

45

50

55

60

65

70

75

Euclidean Hyperbolic SPD

(d) PROTEINS

Fig. 5. Evaluation of five graph neural networks with Linear-XE on four graph clas-
sification datasets in the three 36-dimensional spaces: R36, H36 and SPD8.

0 0.5 1 1.5 2 2.5 3 3+
0

100

200

300

C
ou

nt

PROTEINS

0 0.5 1 1.5 2 2.5 3 3+
0

100

200

300

COX2

0 0.5 1 1.5 2 2.5 3 3+
0

50

100

150

200

250

C
ou

nt

ENZYMES

0 0.5 1 1.5 2 2.5 3 3+
0

200

400

600

800

AIDS

Fig. 6. Distributions of δ-hyperbolicity on four graph classification datasets, where
each instance consists of one graph. Y-axis shows the number of graphs for a given
δ-hyperbolicity on X-axis.

Modeling Graphs Beyond Hyperbolic 133

5.3 Analysis

Class Separation. Figure 7 shows a visualization of node embeddings obtained
from the final layer of SGConv on Cora. In each space, we vectorize node embed-
dings, and then use PCA to extract the top 3 dimensions. We then look at the
projections to that 3-dimensional space by further projecting to the x-y, y-z, and
x-z planes. For instance, the x-y plane is the projection to the top 2 dimensions
of PCA. The x-x, y-y and z-z planes show the informativeness of each dimension
in terms of class separation.

Figure 7 (a) depicts the case when the ambient geometry is Euclidean. In
this example, nodes from the pink, blue and green classes are well-separated but
the nodes in red and orange cannot be easily distinguished. Figure 7 (b) depicts
the case when the nodes are embedded in the Poincaré ball model of hyper-
bolic space. In the x-z plane five classes are well-separated, including the red
and orange classes. Figure 7 (c) depicts the case when the nodes are embedded
into SPD where the best class separation is achieved. Indeed, the Cora graph
has hyperbolicity constant δ = 11, so one cannot expect it to embed well into
hyperbolic space.

−5

0

5

Y

0 10
X

−1

0

1

2

3

Z

0 10
Y

0 2
Z

(a) Euclidean space

−1.0

−0.5

0.0

0.5

1.0

Y

−1 0 1
X

−0.25

0.00

0.25

0.50

Z

−1 0 1
Y

0 1
Z

(b) Hyperbolic space

0

2

4

6

Y

0 5
X

−4

−2

0

2

4

Z

0 5
Y

−5 0 5
Z

(c) SPD space

Fig. 7. Vizualizations of the node embeddings into three 6-dimensional geometries for
SGC on the Cora dataset. In each space, the nodes are vectorized and then projected
linearly to R

3 via PCA.

Training Time. As a case study on the impact of the choice of the latent space
geometry on the training time of GNN models, Fig. 8 compares the training
efficiency of three graph neural networks on Citeseer across three 6-dimensional
manifolds: R6, H6, and SPD3. Overall, we see that models with Euclidean latent
spaces needed the least amount of training time, but produced the lowest accu-
racy. Moreover, hyperbolic space slows down the training in Euclidean space by
up to four times, and the effect on accuracy is either slightly positive or negative.
For instance, using hyperbolic space with the SGC architecture only brought
small accuracy improvements, while applying it to GCN resulted in a drop in
accuracy. On the other hand, even though SPD models require nearly double

134 W. Zhao et al.

the training time of hyperbolic models, the SPD models bring big improvements
in accuracy, not only on Citeseer in the current study case, but also on many
datasets such as AIDS and PROTEINS (see Fig. 5). We note that the longer
training times for SPD models can be attributed to the involvement of eigende-
compositions. However, the benefits of using SPD space in graph neural networks
appear to outweigh this drawback.

5 10 15 20 25 30
Training Time (seconds)

50

55

60

65

70

A
cc
ur
ac
y
on

T
es
t
Se
t
(p
er
ce
nt
)

GCN GCN

GCN

GAT

GAT

GAT

SGC
SGC

SGC

Euclidean Hyperbolic SPD

Fig. 8. Evaluation of three 6-dimensional spaces across graph neural networks in terms
of training time and accuracy on Citeseer (δ = 5.0). Each point has a unique pattern
that combines color and shape. For instance, a red triangular means GCN in SPD.
(Color figure online)

Classifiers. Our three classification layers are built upon traditional classification
methods. LINEAR-XE and SVM-MM are both linear classifiers that separate
classes with hyperplanes, differing in the choice of loss functions: cross-entropy
and multi-margin loss. In contrast, NC-MM layer learns class-specific centroids
and then determining the class of an unlabeled node (or graph) by examining
which centroid it is closest to according to a similarity function.

Table 2 shows the usefulness of our classifiers in SPD on Citesser and Cora.
Overall, we see that the MM-based classifiers (SVM-MM and NC-MM) are
often helpful, outperforming Linear-XE in SPD, and when they succeed, their
improvements are substantial. This means the benefits of using SPD and these
advanced classifiers are complementary, resulting in stacked performance gains.
This is an important finding as it hints at the possibility of accommodating
more advanced classification methods recently developed in Euclidean space,
when constructing graph neural networks in SPD. Note that the results on other
datasets are similar, which we present in Appendix D and E.

Modeling Graphs Beyond Hyperbolic 135

Table 2. Comparison of different classifiers on Citeseer (top) and Cora (bottom). We
bold the best accuracy in each row.

R
6 SPD3

Lin-XE Lin-XE SVM-MM NC-MM

GIN 48.2 ± 6.3 68.0 ± 1.3 67.3 ± 1.2 67.0 ± 0.8

SGC 62.6 ± 3.4 69.4 ± 1.0 69.7 ± 0.8 67.9 ± 1.5

Cheb 63.2 ± 2.1 54.6 ± 10.4 61.4 ± 4.4 64.0 ± 2.3

GAT 55.0 ± 5.2 67.3 ± 1.7 69.2 ± 0.7 68.1 ± 1.1

GCN 64.7 ± 2.3 69.9 ± 0.8 69.2 ± 0.8 68.2 ± 1.0

GIN 77.1 ± 1.0 79.9 ± 0.6 79.5 ± 0.6 78.8 ± 1.0

SGC 75.7 ± 3.6 81.5 ± 0.9 81.8 ± 0.3 81.1 ± 0.6

Cheb 71.9 ± 2.8 75.5 ± 3.9 77.9 ± 2.4 79.2 ± 1.3

GAT 67.9 ± 4.2 79.4 ± 0.9 81.2 ± 1.4 81.2 ± 1.1

GCN 78.1 ± 1.7 79.7 ± 0.9 80.7 ± 0.5 80.2 ± 1.3

6 Conclusions

This work brings sophisticated geometric tools to graph neural networks (GNNs).
Following the maxim ‘complex data requires complex geometry’, we leverage the
flexibility of the space of symmetric positve definite (SPD) matrices to construct
GNNs which do not require careful prior knowledge of graph topologies. This is a
distinct advantage over familiar spaces such as Euclidean, spherical or hyperbolic
geometries, where only narrow classes of graphs embed with low distortion.

To operate GNNs in SPD, we designed several building blocks, and devel-
oped a library (SPD4GNN) that enables training five popular GNNs in SPD,
Euclidean and hyperbolic spaces. Our results confirm the strong connection
between graph topology and embedding geometry: GNNs in SPD provide big
improvements on graph datasets with multi-modal structures, with their coun-
terparts in hyperbolic space performing better on strictly tree-like graphs.

Determining the optimal classifier for training GNNs in the complex geom-
etry of SPD is challenging, and presents an avenue for continued improvement.
This work only begins the process of designing geometrically meaningful clas-
sifiers and identifying the conditions which guarantee good performance. Addi-
tional performance gains may come through careful implementation of the com-
putationally demanding functions in SPD. While this work contains techniques
for accelerating computations in SPD, further optimization is likely possible.

Constructing tools to aid the interpretability of SPD embeddings is an impor-
tant direction of future work, including quantitative measures for (a) comparing
the geometry of the learned embeddings to the real-world graphs’ topology and
(b) understanding how the geometric features of SPD are leveraged in for graph
tasks. While the results of this current work suggest some of SPD’s superior
performance may be due to graphs of varying hyperbolicity finding geometric

136 W. Zhao et al.

subspaces optimally adapted to their curvature, such measures would enable the
precise quantitative analysis required for verification.

Acknowledgements. We thank Anna Wienhard and Maria Beatrice Pozetti for
insightful discussions, as well as the anonymous reviewers for their thoughtful feedback
that greatly improved the texts. This work has been supported by the Klaus Tschira
Foundation, Heidelberg, Germany, as well as under Germany’s Excellence Strategy
EXC-2181/1 - 390900948 (the Heidelberg STRUCTURES Cluster of Excellence).

Ethical Considerations. We have not identified any immediate ethical concerns such

as bias and discrimination, misinformation dissemination, privacy issues, originating

from the contributions presented in this work. However, it is important to note that our

SPD models use computationally demanding functions, such as determining eigenvalues

and eigenvectors, which may incur a negative environmental impact due to increased

energy consumption. Nevertheless, SPD models do not outsuffer Euclidean and hyper-

bolic counterparts in terms of computational overhead. This is because Euclidean and

hyperbolic models would require substantial computing resources when dealing with

larger dimensions, a necessity for compensating for the challenges of embedding com-

plex graphs into these ill-suited spaces.

References

1. Anderson, R.M., May, R.M.: Infectious Diseases of Humans: Dynamics and Con-
trol. Oxford University Press, Oxford (1992)

2. Barcelo, P., Galkin, M., Morris, C., Orth, M.R.: Weisfeiler and leman go rela-
tional. In: The First Learning on Graphs Conference (2022). https://openreview.
net/forum?id=wY IYhh6pqj

3. Borgwardt, K.M., Ong, C.S., Schönauer, S., Vishwanathan, S., Smola, A.J.,
Kriegel, H.P.: Protein function prediction via graph kernels. Bioinformatics
21(suppl 1), i47–i56 (2005)

4. Bronstein, M.M., Bruna, J., LeCun, Y., Szlam, A., Vandergheynst, P.: Geometric
deep learning: going beyond euclidean data. IEEE Signal Process. Mag. 34(4),
18–42 (2017)

5. Brooks, D., Schwander, O., Barbaresco, F., Schneider, J.Y., Cord, M.: Rie-
mannian batch normalization for SPD neural networks. In: Wallach, H.,
Larochelle, H., Beygelzimer, A., d’Alché-Buc, F., Fox, E., Garnett, R. (eds.)
Advances in Neural Information Processing Systems, vol. 32, pp. 15489–15500.
Curran Associates, Inc. (2019). https://proceedings.neurips.cc/paper/2019/file/
6e69ebbfad976d4637bb4b39de261bf7-Paper.pdf

6. Brooks, D.A., Schwander, O., Barbaresco, F., Schneider, J.Y., Cord, M.: Explor-
ing complex time-series representations for Riemannian machine learning of radar
data. In: ICASSP 2019–2019 IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP), pp. 3672–3676 (2019). https://doi.org/10.1109/
ICASSP.2019.8683056

7. Buyalo, S., Schroeder, V.: Embedding of hyperbolic spaces in the product of trees.
Geom. Dedicata. 113(1), 75–93 (2005)

8. Cannon, J.W., Floyd, W.J., Kenyon, R., Parry, W.R., et al.: Hyperbolic geometry.
Flavors Geom. 31(59–115), 2 (1997)

https://openreview.net/forum?id=wY_IYhh6pqj
https://openreview.net/forum?id=wY_IYhh6pqj
https://proceedings.neurips.cc/paper/2019/file/6e69ebbfad976d4637bb4b39de261bf7-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/6e69ebbfad976d4637bb4b39de261bf7-Paper.pdf
https://doi.org/10.1109/ICASSP.2019.8683056
https://doi.org/10.1109/ICASSP.2019.8683056

Modeling Graphs Beyond Hyperbolic 137

9. Chakraborty, R., Bouza, J., Manton, J., Vemuri, B.C.: ManifoldNet: A deep neural
network for manifold-valued data with applications. IEEE Trans. Pattern Anal.
Mach. Intell., 1 (2020). https://doi.org/10.1109/TPAMI.2020.3003846

10. Chakraborty, R., et al.: A statistical recurrent model on the manifold of symmetric
positive definite matrices. In: Bengio, S., Wallach, H., Larochelle, H., Grauman, K.,
Cesa-Bianchi, N., Garnett, R. (eds.) Advances in Neural Information Processing
Systems, vol. 31. Curran Associates, Inc. (2018). https://proceedings.neurips.cc/
paper/2018/file/7070f9088e456682f0f84f815ebda761-Paper.pdf

11. Chami, I., Ying, Z., Ré, C., Leskovec, J.: Hyperbolic graph convolutional neural
networks. In: Advances in Neural Information Processing Systems, vol. 32, pp.
4869–4880. Curran Associates, Inc. (2019). https://proceedings.neurips.cc/paper/
2019/file/0415740eaa4d9decbc8da001d3fd805f-Paper.pdf

12. Defferrard, M., Bresson, X., Vandergheynst, P.: Convolutional neural networks on
graphs with fast localized spectral filtering. In: Advances in Neural Information
Processing Systems, vol. 29 (2016)

13. Defferrard, M., Milani, M., Gusset, F., Perraudin, N.: DeepSphere: a graph-based
spherical CNN. In: International Conference on Learning Representations (2020).
https://openreview.net/forum?id=B1e3OlStPB

14. Di Giovanni, F., Rowbottom, J., Chamberlain, B.P., Markovich, T., Bronstein,
M.M.: Graph neural networks as gradient flows. arXiv preprint: arXiv:2206.10991
(2022)

15. Dong, Z., Jia, S., Zhang, C., Pei, M., Wu, Y.: Deep manifold learning of symmetric
positive definite matrices with application to face recognition. In: Proceedings of
the Thirty-First AAAI Conference on Artificial Intelligence, AAAI’17, pp. 4009–
4015. AAAI Press (2017)

16. Eliasof, M., Haber, E., Treister, E.: PDE-GCN: novel architectures for graph neu-
ral networks motivated by partial differential equations. In: Advances in Neural
Information Processing Systems, vol. 34, pp. 3836–3849 (2021)

17. Gao, Z., Wu, Y., Bu, X., Yu, T., Yuan, J., Jia, Y.: Learning a robust repre-
sentation via a deep network on symmetric positive definite manifolds. Pattern
Recogn. 92, 1–12 (2019). https://doi.org/10.1016/j.patcog.2019.03.007, https://
www.sciencedirect.com/science/article/pii/S0031320319301062

18. Gu, A., Sala, F., Gunel, B., Ré, C.: Learning mixed-curvature representations in
product spaces. In: International Conference on Learning Representations (2019).
https://openreview.net/forum?id=HJxeWnCcF7

19. Hamilton, W., Ying, Z., Leskovec, J.: Inductive representation learning on large
graphs. In: Guyon, I., et al. (eds.) Advances in Neural Information Processing
Systems, vol. 30. Curran Associates, Inc. (2017). https://proceedings.neurips.cc/
paper/2017/file/5dd9db5e033da9c6fb5ba83c7a7ebea9-Paper.pdf

20. Helgason, S.: Differential Geometry, Lie Groups, and Symmetric Spaces. Academic
Press, New York (1978)

21. Huang, Z., Van Gool, L.: A Riemannian network for SPD matrix learning. In: Pro-
ceedings of the Thirty-First AAAI Conference on Artificial Intelligence, AAAI’17,
pp. 2036–2042. AAAI Press (2017)

https://doi.org/10.1109/TPAMI.2020.3003846
https://proceedings.neurips.cc/paper/2018/file/7070f9088e456682f0f84f815ebda761-Paper.pdf
https://proceedings.neurips.cc/paper/2018/file/7070f9088e456682f0f84f815ebda761-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/0415740eaa4d9decbc8da001d3fd805f-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/0415740eaa4d9decbc8da001d3fd805f-Paper.pdf
https://openreview.net/forum?id=B1e3OlStPB
http://arxiv.org/abs/2206.10991
https://doi.org/10.1016/j.patcog.2019.03.007
https://www.sciencedirect.com/science/article/pii/S0031320319301062
https://www.sciencedirect.com/science/article/pii/S0031320319301062
https://openreview.net/forum?id=HJxeWnCcF7
https://proceedings.neurips.cc/paper/2017/file/5dd9db5e033da9c6fb5ba83c7a7ebea9-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/5dd9db5e033da9c6fb5ba83c7a7ebea9-Paper.pdf

138 W. Zhao et al.

22. Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional
networks. In: 5th International Conference on Learning Representations, ICLR
2017, Toulon, France, 24–26 April 2017. Conference Track Proceedings (2017).
https://openreview.net/forum?id=SJU4ayYgl

23. Krioukov, D., Papadopoulos, F., Kitsak, M., Vahdat, A., Boguná, M.: Hyperbolic
geometry of complex networks. Phys. Rev. E 82(3), 036106 (2010)

24. Liu, Q., Nickel, M., Kiela, D.: Hyperbolic graph neural networks. In: Wallach,
H., Larochelle, H., Beygelzimer, A., d’Alché-Buc, F., Fox, E., Garnett, R. (eds.)
Advances in Neural Information Processing Systems, vol. 32. Curran Associates,
Inc. (2019)

25. López, F., Pozzetti, B., Trettel, S., Strube, M., Wienhard, A.: Symmetric spaces for
graph embeddings: a finsler-riemannian approach. In: Meila, M., Zhang, T. (eds.)
Proceedings of the 38th International Conference on Machine Learning. Proceed-
ings of Machine Learning Research, vol. 139, pp. 7090–7101. PMLR (2021). https://
proceedings.mlr.press/v139/lopez21a.html

26. López, F., Pozzetti, B., Trettel, S., Strube, M., Wienhard, A.: Vector-valued dis-
tance and gyrocalculus on the space of symmetric positive definite matrices. In:
Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M.F., Lin, H. (eds.) Advances in
Neural Information Processing Systems, vol. 34. Curran Associates, Inc. (2021)

27. Morris, C., Kriege, N.M., Bause, F., Kersting, K., Mutzel, P., Neumann, M.:
TUDataset: a collection of benchmark datasets for learning with graphs. In: ICML
2020 Workshop on Graph Representation Learning and Beyond (GRL+ 2020)
(2020). https://www.graphlearning.io

28. Namata, G., London, B., Getoor, L., Huang, B., Edu, U.: Query-driven active
surveying for collective classification. In: 10th International Workshop on Mining
and Learning with Graphs, vol. 8, p. 1 (2012)

29. Nguyen, X.S., Brun, L., Lezoray, O., Bougleux, S.: A neural network based on SPD
manifold learning for skeleton-based hand gesture recognition. In: Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)
(2019)

30. Riesen, K., Bunke, H.: IAM graph database repository for graph based pattern
recognition and machine learning. In: da Vitoria Lobo, N., et al. (eds.) SSPR
/SPR 2008. LNCS, vol. 5342, pp. 287–297. Springer, Heidelberg (2008). https://
doi.org/10.1007/978-3-540-89689-0 33

31. Rusch, T.K., Chamberlain, B., Rowbottom, J., Mishra, S., Bronstein, M.: Graph-
coupled oscillator networks. In: International Conference on Machine Learning, pp.
18888–18909. PMLR (2022)

32. Satorras, V.G., Hoogeboom, E., Welling, M.: E (n) equivariant graph neural net-
works. In: International Conference on Machine Learning, pp. 9323–9332. PMLR
(2021)

33. Schomburg, I., et al.: BRENDA, the enzyme database: updates and major new
developments. Nucleic Acids Res. 32(suppl 1), D431–D433 (2004)

34. Sen, P., Namata, G., Bilgic, M., Getoor, L., Galligher, B., Eliassi-Rad, T.: Collec-
tive classification in network data. AI Mag. 29(3), 93 (2008)

35. Sonthalia, R., Gilbert, A.: Tree! i am no tree! i am a low dimensional hyperbolic
embedding. In: Advances in Neural Information Processing Systems, vol. 33, pp.
845–856 (2020)

36. Sutherland, J.J., O’brien, L.A., Weaver, D.F.: Spline-fitting with a genetic algo-
rithm: a method for developing classification structure- activity relationships. J.
Chem. Inf. Comput. Sci. 43(6), 1906–1915 (2003)

https://openreview.net/forum?id=SJU4ayYgl
https://proceedings.mlr.press/v139/lopez21a.html
https://proceedings.mlr.press/v139/lopez21a.html
https://www.graphlearning.io
https://doi.org/10.1007/978-3-540-89689-0_33
https://doi.org/10.1007/978-3-540-89689-0_33

Modeling Graphs Beyond Hyperbolic 139

37. Veličković, P., Cucurull, G., Casanova, A., Romero, A., Lió, P., Bengio, Y.: Graph
attention networks. In: International Conference on Learning Representations
(2018). https://openreview.net/forum?id=rJXMpikCZ

38. Wu, F., Souza, A., Zhang, T., Fifty, C., Yu, T., Weinberger, K.: Simplifying graph
convolutional networks. In: International Conference on Machine Learning, pp.
6861–6871. PMLR (2019)

39. Xu, K., Hu, W., Leskovec, J., Jegelka, S.: How powerful are graph neural networks?
In: 7th International Conference on Learning Representations, ICLR 2019, New
Orleans, LA, USA, 6–9 May 2019. OpenReview.net (2019). https://openreview.
net/forum?id=ryGs6iA5Km

40. Yu, T., De Sa, C.: HyLa: hyperbolic Laplacian features for graph learning. arXiv
preprint: arXiv:2202.06854 (2022)

41. Zhang, M., Chen, Y.: Link prediction based on graph neural networks. In: Advances
in Neural Information Processing Systems, vol. 31 (2018)

42. Zhang, T., Zheng, W., Cui, Z., Li, C.: Deep manifold-to-manifold transforming
network. In: 2018 25th IEEE International Conference on Image Processing (ICIP),
pp. 4098–4102 (2018). DOI: https://doi.org/10.1109/ICIP.2018.8451626

https://openreview.net/forum?id=rJXMpikCZ
https://openreview.net/forum?id=ryGs6iA5Km
https://openreview.net/forum?id=ryGs6iA5Km
http://arxiv.org/abs/2202.06854
https://doi.org/10.1109/ICIP.2018.8451626

Leveraging Free Labels to Power
up Heterophilic Graph Learning

in Weakly-Supervised Settings: An
Empirical Study

Xugang Wu, Huijun Wu, Ruibo Wang(B), Duanyu Li, Xu Zhou, and Kai Lu(B)

College of Computer, National University of Defense Technology, Changsha, China
{wuxugang13,wuhuijun,wangruibo,liduanyu,zhouxu,kailu}@nudt.edu.cn

Abstract. Graph learning on heterophilic graphs is challenging for clas-
sic graph neural network models. Recent research addresses this issue by
using adaptive graph filters that consider signals with different frequen-
cies. Although such models provide insightful design patterns for het-
erophilic graph analysis, their practical effect has been overlooked. Previ-
ous studies have evaluated adaptive graph filters with a large proportion
of training data to demonstrate their effectiveness. However, such dense
labeling is often impractical. Empirically, we observed that typical adap-
tive filters perform badly in weakly-supervised settings, making them
easily outperformed by fixed filters. With empirical evidence, we demon-
strate that the key reason is that sparse node labels make it difficult to
learn effective filters. Fortunately, although labeled nodes are sparse in
weakly-supervised settings, graph structures provide substantial super-
vision by indicating whether an edge is present. Through theoretical
analysis on contextual Stochastic Block Models, we show that a good
link predictor can imply the knowledge needed by a good node classifier.
Therefore, we propose to use the “free labels” from the graph structure to
form link prediction tasks and obtain an effective graph filter, which can
be used to initialize the node classification model. Experimental results
on both synthetic and real-world heterophilic graphs demonstrate the
effectiveness of our approach. We also provide an in-depth analysis of
the learned filters, which sheds light on the underlying mechanisms of
our proposed approach. Codes are available at https://github.com/lucio-
win/PKDD2023.

Keywords: Heterophilic Graph Learning · Adaptive Filter ·
Weakly-Supervised Learning

1 Introduction

In recent years, graph neural networks (GNNs) have gained considerable atten-
tion as a powerful method for analyzing graph-structured data across various
domains [2,30,32,33]. Most classic GNNs are designed with explicit or implicit
assumptions of homophily [7,22]. However, homophily does not hold for het-
erophilic graphs, thus making existing GNNs inefficient on heterophilic graphs.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
D. Koutra et al. (Eds.): ECML PKDD 2023, LNAI 14171, pp. 140–156, 2023.
https://doi.org/10.1007/978-3-031-43418-1_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-43418-1_9&domain=pdf
https://github.com/lucio-win/PKDD2023.
https://github.com/lucio-win/PKDD2023.
https://doi.org/10.1007/978-3-031-43418-1_9

Leveraging Free Labels to Power up Heterophilic Graph Learning 141

To address this issue, recent work introduces adaptive filters, which learn adap-
tive graph filters based on the graph data [3,4,6,11,23,28,34–36]. Such models
have shown great potential in enhancing the performance of learning tasks on
heterophilic graphs.

It should be noted, however, that a large proportion of training data is typi-
cally used to evaluate adaptive spectral GNNs on heterophilic graphs [19,23,24].
A common practice is to divide data into train, validation, and test sets with a
ratio of 60%, 20% and 20%, respectively. Although a large amount of training
nodes enables the adaptive models to learn better graph filters, such a partition
is less practical in real-world scenarios where we normally know less but pre-
dict more. Moreover, a high training ratio means that a substantial number of
labeled nodes is required to predict an unknown node, making the learning pro-
cess cost-ineffective. It remains unclear how adaptive filter-based GNNs perform
in weakly-supervised settings.

To figure this out, we investigate the performance of the adaptive spectral
GNNs under different data splits. Surprisingly, as the amount of training data
decreases, the performance of the adaptive spectral GNNs deteriorates rapidly.
In some cases, they can even be easily outperformed by GNNs with fixed filters.
For example, when the proportion of the training set is less than 15%, typi-
cal adaptive filter-based GNNs like GPR-GNN can be outperformed by GCN.
To understand why adaptive filter-based GNNs are sensitive to the amount of
training data, we further analyzed the graph filters learned by the model under
different data splits. The results indicate that when the training sample ratio
is low, the model is unable to learn an effective filter, resulting in poor perfor-
mance. By using an effective initial filter, which accounts for less than 0.2%1

of all trainable parameters, the performance of the model can be significantly
improved in weakly-supervised settings.

Motivated by the above observations, we propose a novel approach to learn
an effective graph filter in a weakly-supervised setting. According to the above
analysis, the lack of supervision and the resulting ineffective filters should be
blamed for the poor performance. The key to the solution is therefore obtaining
a good filter without heavy labeling. To achieve this, we utilize the free link
labels in the graphs. To be specific, although getting labeled nodes requires a
non-trivial amount of annotations, labeled edges are free to get in a graph. The
graph structure already tells whether an edge exists, which provides N2 edge
labels where N is the number of nodes. Through theoretical analysis, we found
that a good link predictor also implied the knowledge needed by a good node
classifier. Hence, we leverage the edge information to form a problem of link
prediction. The graph filter learned for the link prediction problem is used to
initialize the filter of the node classifier. Such prior powers the node classifier
with the ability to keep informative signals in the graph, thus improving the
classification accuracy.

1 This value depends on the number of node features, classes, hidden units, hidden
layers and propagation layers. The calculation is provided in the supplementary
material.

142 X. Wu et al.

Our experiments on synthetic and real-world datasets demonstrate the effec-
tiveness of our approach in node classification tasks. We also provide an in-depth
analysis of the learned filters, which sheds light on the underlying mechanisms
of our proposed approach.

2 Related Work

2.1 Adaptive Filters for Heterophilic Graph Learning

Graph neural networks (GNNs) have achieved remarkable success in learning
representation for graph data. From the perspective of graph signal processing,
most GNNs can be viewed as fixed low-pass graph filters that smooth features
over graph topology [5,10,12,14–16,27,29,31]. These models are designed with
the assumption of homophily which assumes similar nodes tend to connect in
a graph. In homophilic graphs, low-frequency signals dominate so that low-pass
filters work well. For heterophilic graphs, however, the information lies at dif-
ferent frequencies due to complex edge patterns. Therefore, existing low-pass
filters are not applicable in such graphs. In response to this challenge, a recent
line of research focuses on designing adaptive filters which adapt their frequency
response according to the graph patterns in both homophilic and heterophilic
settings. GPR-GNN [6] uses a polynomial function to represent the graph fil-
ter and learn the optimal polynomial coefficients that can automatically adjust
to the node label pattern. BernNet [11] approximates the optimal filter using a
Bernstein polynomial of order-k and utilizes the coefficients of the Bernstein basis
to design its spectral property. JacobiConv [28] employs the Jacobi basis which
is orthogonal and adaptable to a diverse array of weight functions. AdaGNN [9]
utilizes a trainable filter that spans over several layers. ARMA [3] introduces a
new graph convolutional layer inspired by the auto-regressive moving average
(ARMA) filter, which could offer a more adaptable frequency response. ARMA
is more resilient to noise and is better equipped to capture the overall struc-
ture of the graph. PP-GNN [21] proposes a piece-wise polynomial filter to model
more complex frequency responses. Compared with GNNs that employ fixed fil-
ters, the above methods with adaptive filters can better adjust their frequency
response based on data characteristics, thus achieving good performance on het-
erophilic graphs. However, it is worth noting that the current evaluation of these
methods often uses a large proportion of nodes for training. Their performance
in weakly supervised scenarios remains to be explored.

2.2 Evaluation on Heterophilic Graph Learning

There are three primary benchmarks in evaluating graph neural network models
for heterophilic graphs. The most widely used benchmarks are the six datasets
proposed by Pei et al [23], which include Wikipedia graphs, chameleon and
squirrel, the Actor co-occurrence graph, and the webpage graph Texas and

Leveraging Free Labels to Power up Heterophilic Graph Learning 143

Cornell from WebKB3. The majority of works on heterophilic graph learn-
ing adopt these datasets as standard benchmarks for performance evalua-
tion [6,11,20,23,28,35,36]. Lim et al. [19] address the large-scale heterophilic
graph learning and present larger heterophilic datasets with a wider range of
applications. Platonov et al. [24] point out that the prior datasets used for evalu-
ating heterophily-specific models suffer from serious drawbacks, including dupli-
cate nodes and unstable performance due to their small scale. To address these
issues, they propose a new benchmark dataset with graphs of varying properties.
Evaluation of spectral GNNs with adaptive filters on these heterophilic graphs
verifies that they can learn adaptive frequency responses from the data, thereby
achieving better performance than the GNNs with fixed filters.

However, we notice that current evaluations for these models often use a
large proportion of graph nodes for training. For example, the dataset proposed
by Pei et al. [23] adopts a 60%, 20%, and 20% split for training, validation, and
testing, respectively. In addition, the datasets proposed by Lim et al. [19] and
Platonov et al. [24] adopt a 50%, 25%, and 25% split for training, validation, and
testing, respectively. Such dense training splits indeed help with filter training
but are not practical for real applications. In real-world scenarios, we normally
only know the true labels of a small portion of nodes and expect to predict the
labels of more. Therefore, it is crucial to understand the effectiveness of these
adaptive methods in weakly supervised scenarios, motivating us to conduct the
empirical studies in this paper.

3 Motivation

In this section, we start with an empirical investigation into the performance of
GPR-GNN [6], a pervasive model utilizing an adaptive filter, across diverse parti-
tions of heterophilic graph data. We observe a notable performance degradation
of GPR-GNN under weakly supervised settings. Intriguingly, with inadequate
training data, GPR-GNN may even exhibit inferior performance compared to
GNNs with fixed graph filters, such as GCN.

3.1 Experimental Setups

Problem Setup. The empirical study focuses on the semi-supervised node
classification task on heterophilic graphs. Given a graph G = (V, E ,X) with n
nodes, where V is the set of nodes {v1, · · · , vn} with |V| = n, E is the set of edges,
and X = (x1,x2, · · · ,xn)T ∈ R

n×m is the corresponding feature matrix. The
feature of each node v ∈ V can be denoted as an m-dimensional row vector xv ∈
R

m. The adjacency matrix A ∈ R
n×n can be constructed by setting Aij = 1 if

(vi, vj) ∈ E and Aij = 0, otherwise. Ã stands for the adjacency matrix with self-
loops. Let D̃ be the diagonal degree matrix of Ã and the symmetric normalized
adjacency matrix with self-loops can be expressed as Ãsym = D̃−1/2ÃD̃−1/2.
y ∈ Y |V| denotes the ground truth label for each node. Our goal is to predict
the classes of unlabeled nodes.

144 X. Wu et al.

Table 1. Real-world Dataset Statistics.

Dataset Chameleon Squirrel Actor Genius Tolokers Questions

Nodes 2,277 5,201 7,600 421,961 11,758 48,921

Edges 36,101 216,933 29,926 984,979 519,000 153,540

Features 2,325 2,089 931 12 10 301

Classes 5 5 5 2 2 2

Datasets and Splits. For the experiments, we adopt one synthetic dataset:
the cSBM dataset from [8], as well as six real-world datasets: chameleon, squirrel
and actor from [23], tolokers and question from [24] and genius from [19].

The cSBM dataset is a synthetic dataset generated from a stochastic block
model (SBM) [8]. Within the framework of cSBM, the node features are modeled
as Gaussian random vectors, with their means conditioned on the corresponding
community assignments. The difference in means is modulated by a parameter
μ, whereas the difference in edge densities between and within communities is
governed by a parameter λ. In our experiments, we consider the same setting
of the cSBM dataset as in [6]. Specifically, we generate two communities with
equal sizes. The parameter φ = arctan

(
λ

√
ξ

μ

)
× 2

π is used to control the relative
information of node features and graph structures. A value of φ = 0 implies that
only node features contain pertinent information, whereas a value of |φ| = 1
implies that solely the graph topology contains informative signals. Since we
focus on heterophilic graph learning, we generate the cSBM dataset with a list
of φ as [−1,−0.75,−0.5]. We refer readers to [1,6,8] for more detailed settings
and the generating process of the cSBM dataset.

Chameleon and squirrel are two of the most widely utilized heterophilic
datasets for node classification tasks. The two datasets were originally col-
lected by Rozemberczki et al. [25]. Nodes in these graphs correspond to articles
from the English Wikipedia and the edges represent mutual hyperlinks between
them. Node features denote the occurrence of specific nouns within the articles.
Actor is an actor-only induced subgraph derived from the film-director-actor-
writer network proposed by Tang et al. [26]. Each node in the graph represents
an actor, while edges denote their co-occurrence on the same Wikipedia page.
Node features correspond to certain keywords extracted from the corresponding
Wikipedia page. The task is to classify the actors into five categories. Tolokers
is derived from the data collected from the Toloka crowdsourcing platform [17].
Each node in the graph corresponds to a toloker who has taken part in at least
one of the 13 chosen projects. An edge connects two tolokers if they have col-
laborated on the same task. The objective is to predict which tolokers have
been banned in any of the projects. Node features are derived from the profile
information and task performance of the workers. Questions dataset is derived
from data collected from the Yandex Q question-answering website. Nodes in
the graph correspond to users, with an edge connecting two nodes if one user
answered the other user’s question within one year. The classification task aims

Leveraging Free Labels to Power up Heterophilic Graph Learning 145

to predict which users were active on the website at the end of the period. Genius
is a social network introduced in [18], the task is to predict the reported gender
of the users. Node features are the bag-of-words representation of the bios of the
users. Key statistics of these datasets are shown in Table 1.

In terms of data splits, we are interested in the performance of GPR-GNN
under different data partitions. Since node classification tasks on synthetic data
are relatively easy, we evaluate with lower training sample ratios, namely [0.005,
0.01, 0.025, 0.05]. For real-world datasets, the training sample ratios include
[0.025, 0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45, 0.5, 0.55, 0.6]. We fix the
validation set ratio as 0.1, and the remaining nodes are used as the test data.
We repeat the random sampling process 10 times and report the average perfor-
mance.

Model. In our evaluation, We employ the GPR-GNN as the representative
GNN model which adopts the idea of adaptive filters. Taking a graph with
feature X and normalized adjacency matrix Ãsym as the input, GPR-GNN first
extracts the embeddings of each node by a 2-layer MLP, H(0) = fθ (X) and
then applies a K-layer Generalized PageRank propagation to obtain the final
representations of each node Z =

∑K
k=0 γkÃk

symH
(0), where γk is the weight

of the k-th layer and θ correspond to the MLP parameter. From the spectral
perspective, it parameterizes the graph filter as a polynomial of degree K: g(λ) :=∑K

k=0 γkλk, where λ is the eigenvalue of the normalized adjacency matrix. Given
the fact that GPR-GNN is one of the most representative prototypes of adaptive
filter-based models, results obtained from it can be potentially generalized to
other similar models. Meanwhile, we adopt the GCN model as the representative
of fixed filter-based GNN for comparison.

Implementation Details. For all datasets, we set the number of training
epochs as 1000 and the early stopping patience as 200, using the validation
accuracy as the supervision. We use Adam optimizer [13] with the learning rate
tuned in [0.005, 0.01, 0.05] and the weight decay tuned in [0, 0.0005] for all
trainable parameters. For GPR-GNN, we set the number of MLP layers as 2,
the number of hidden units as 64 and the number of propagating layers as 10.
For GCN, we utilize a 2-layer convolution structure with 64 hidden units.

3.2 Results and Observations

Figure 1 show the mean accuracy of GPR-GNN and GCN on the synthetic and
real-world datasets, respectively. From the results, we make the following obser-
vation. GPR-GNN outperforms GCN in most cases when the training ratio is
high. However, as the volume of training data decreases, the performance of
GPR-GNN deteriorates much more severely than that of GCN. For example, on
the chameleon dataset, GPR-GNN exhibits up to 5% improvements in perfor-
mance over GCN when the training sample ratio exceeds 0.25. However, with
lower training sample ratios, GPR-GNN is inferior to GCN. Intriguingly, we

146 X. Wu et al.

Fig. 1. The performance of GPR-GNN and GCN on synthetic and real-world datasets
under different data splits

observed that when the training ratio is as low as 0.025, the performance of
GPR-GNN is over 10% lower than that of GCN, highlighting the significant
impact of the training sample ratio on model performance in heterophilic graph
analysis.

3.3 Analysis

Based on the experimental results, it appears that the adaptive filter-based GNN
is particularly sensitive to the density of the training data. To gain a deeper
understanding of the underlying reasons for this phenomenon, we make a detailed
analysis of the frequency response of the learned filters of GPR-GNN under
different splits. Figure 2 displays the frequency response of the learned filters
and the mean accuracy of GPR-GNN on the chameleon dataset. Each curve with
different colors corresponds to a different initialization. The results demonstrate
that, in scenarios where the training data is insufficient, the model is unable to
learn an effective filter from the data, and the frequency response is primarily a

Leveraging Free Labels to Power up Heterophilic Graph Learning 147

Fig. 2. The learned response filter and mean accuracy of GPR-GNN for chameleon
dataset under different data splits

Fig. 3. The learned response filter and mean accuracy of GPR-GNN for chameleon
dataset under different data splits, using the learned filters of GPR-GNN at a training
ratio of 0.6 as the initialization for γ

result of random initialization. This is further reflected by the decreasing speed
of accuracy as the training ratio drops. Specifically, when the training ratio
decreases from 0.5 to 0.3, the model is still able to learn a decent filter, resulting
in only an 8% decrease in accuracy. However, when it further drops from 0.3
to 0.1, the accuracy significantly decreases by 19%. The results suggest that
a critical factor leading to the performance degradation of GPR-GNN under
conditions of insufficient training data is its inability to learn an effective filter.
As a consequence, the filter’s performance is primarily determined by random
initialization, eliminating its ability to capture graph features.

To verify this hypothesis, we design another set of experiments. We adopt
the filters learned by GPR-GNN at a training ratio of 0.6 as initialization for
γ (where γ represents the coefficients of the polynomial filter) and evaluated
the performance of GPR-GNN under different training ratios. Notably, the γ
parameters only account for less than 0.2% of all trainable parameters in GPR-
GNN. The results, as depicted in Fig. 3, demonstrate a significant improvement
in GPR-GNN’s performance when the training ratio is low, suggesting that the
model’s performance is closely correlated to the quality of the learned filter. Sur-
prisingly, providing a good initialization for only a tiny subset of the parameters
can lead to such significant improvement. For instance, when the training ratio is
as low as 0.1, adopting the well-pre-trained filter can improve the performance by

148 X. Wu et al.

14%. Confirming the impact of filters on the performance in cases of insufficient
training data, the challenge now becomes how to obtain an efficient filter that is
well-suited to the characteristics of graph data in weakly supervised scenarios.

4 Proposed Approach

The empirical results clearly illustrate the critical role of an effective filter in
improving the performance of the adaptive filter-based GNNs in weakly super-
vised scenarios. However, it is also indicated that, when the training data is
insufficient, the model is unable to learn an effective filter solely based on the
available node labels. Motivated by the recent work [2] that presents the con-
nection between node classification (NC) and link prediction (LP) on knowledge
graphs, we propose to leverage the edge information, which comes “free” with
the graph data, to learn an effective filter for the initialization of the adaptive
filter-based GNNs in node classification tasks. Specifically, we first train a link
prediction model on the graph data, and then use the learned filter as an ini-
tialization for the adaptive filter-based GNNs to conduct node classification on
the same graph. The intuition behind this approach is that, in the process of
learning the link prediction model, the model should capture the intrinsic prop-
erties of the graph data, such as the node relationships, and therefore encourage
its adaptive filter to respond to the “informative frequency”. In this way, the
model can learn an effective initial filter from the data, and the performance of
the adaptive filter-based GNNs in weakly-supervised settings can be significantly
improved.

To further illustrate the connection between node classification and link pre-
diction on the same graph, we provide a theoretical analysis of the relationship
between the two tasks on a generative graph model presented in Sect. 3.1, the
cSBM [8]. In essence, our theoretical analysis demonstrates how, on the cSBM,
an optimal model learned from one task can be transformed into an optimal
model for another task.

Problem Setup. Let G = (V,E) be an undirected graph, where V = 1, 2, ..., N
is the set of nodes and A is the adjacency matrix. We assume that the graph is
generated by the contextual stochastic block model (cSBM) with 2 clusters. Let
C = C1, C2 be the partition of the nodes. The cSBM model assumes that the
probability of an edge between two nodes depends only on their clusters. Let pij

be the probability of an edge between node i and node j, where i, j ∈ V . Then,
the SBM model is defined as follows:

pij =

{
pin, if i, j ∈ Cl for l ∈ 1, 2
pout, if i ∈ Cl and j ∈ Cm for l �= m

where pin is the in-cluster probability and pout is the inter-cluster probability.

Leveraging Free Labels to Power up Heterophilic Graph Learning 149

From NC to LP. Assuming we have an optimal node classifier NC∗(i), we
can construct an optimal link predictor LP∗(i, j) that outputs the probability of
there being an edge between nodes i and j as:

LP∗(i, j) =

{
p̂in, if NC∗(i) = NC*(j),
p̂out, if NC∗(i) �= NC*(j)

where p̂in and p̂out can be estimated by Maximum Likelihood Estimation (MLE)
as follows:

p̂in =

∑
i∈V

∑
j∈V Aij [i ∈ Cl and j ∈ Cl, l ∈ 1, 2]∑
i∈V

∑
j∈V [i ∈ Cl and j ∈ Cl]

,

p̂out =

∑
i∈V

∑
j∈V Aij [i ∈ Cl and j ∈ Cm, l �= m]∑

i∈V

∑
j∈V [i ∈ Cl and j ∈ Cm]

,

where the [] denotes the Iverson bracket, which converts a boolean expression to
0 if the boolean expression in the bracket is false, and 1 otherwise. The complete
MLE procedure can be found in the supplementary material.

From LP to NC. Assuming we have an optimal link predictor LP∗(i, j) and
a subset of the node labels ysub, the procedure of constructing an optimal node
classifier NC∗(i) is derived as follows:

1. Randomly select an anchor node a.
2. Compute the link probabilities of all other nodes with the anchor node:

pi = LP∗(a, i) for all i �= a.
3. Sort the nodes in descending order of their link probabilities.
4. Assign the first N/2 nodes to the same community and the remaining

nodes to another community.
5. Repeat steps 1–4 with different anchor nodes and take the partition that

yields the highest modularity score as the optimal partition.
6. Based on the optimal partition and the ysub, construct the node classifier

NC∗(i) by assigning node i to the label of the community that it belongs to in
the optimal partition.

The modularity score is a measure of the quality of the partition and is
defined as:

Q =

∣∣∣∣∣∣
1

2m

∑
i,j

(Aij − kikj

2m
)δ(ci, cj)

∣∣∣∣∣∣
where Aij is the observed edge between nodes i and j, ki and kj are the

degrees of nodes i and j, respectively, m is the total number of edges in the
network, and δ(ci, cj) is an indicator function that equals 1 if nodes i and j
belong to the same community and 0 otherwise.

We take the absolute value of Q here because we cannot determine the rela-
tive magnitudes of pin and pout. Furthermore, when pin and pout are close, LP

150 X. Wu et al.

may have difficulties in distinguishing intra-class edges from inter-class edges,
resulting in non-trivial noise in the partition. Therefore, we use multiple anchors
and repetitions to improve the robustness of the partition. Once the optimal par-
tition is obtained, we only need a small number of node labels as the partition
labels to complete the classification.

The above analysis indicates how the node classification tasks relate to the
link prediction tasks on the cSBM, which motivates us to solve the challenge of
node classification on the heterophilic graph under weakly-supervised settings
via utilizing the “free label”. That is, using the link prediction tasks to obtain
a filter that well captures the informative graph signals and initializes the node
classification model with such a filter.

4.1 Implementation

Our proposed approach is implemented as follows. For each node classification
task on the heterophilic graph, we first formulate a link prediction task on the
same graph. To prepare the edge data for the link prediction, we randomly split
all edges into training, validation, and testing edges with a split of 0.85:0.1:0.05.
Note that the testing split is only reserved to check the performance of the link
predictor. During each training epoch, we sample pairs of unconnected nodes
in the graph as negative edges, which have the same number as the training
edges. The model is trained to predict the link probability of each edge, where
1 indicates a positive edge and 0 refers to a negative edge.

The link predictor uses the same backbone as the model used for the node
classification task, with only one exception: we remove the softmax layer and
replace it with a linear layer combined with a sigmoid layer, which takes the
concatenation of the node embeddings of a pair of nodes as input and outputs
the link probability. The link predictor is trained with the same hyperparameters
as the node classification task, using binary cross-entropy loss as the training loss.
After the link predictor is fully trained, we obtain the learned filter, denoted by
the parameter γL.

To conduct the node classification task, we initialize the filter as γL and
randomly initialize the other parameters. We keep the rest of the training details,
including hyperparameters and training procedure, the same as described in
Sect. 3.1.

5 Experiments

To evaluate the effectiveness of our proposed methods, we conduct the following
experiments on both synthetic and real-world heterophilic graphs. Specifically,
we are examining the following aspects: (1) whether the proposed approach can
effectively utilize the “free label” to improve the performance of node classifica-
tion on heterophilic graphs. (2) whether the proposed approach can be applied
to other adaptive filter-based GNNs. (3) the visualization of the learned filters.
The experiment setups we used in this section keep the same as presented in
Sect. 3.1.

Leveraging Free Labels to Power up Heterophilic Graph Learning 151

Fig. 4. The performance of GCN, GPRGNN-R and GPRGNN-L on both synthetic and
real-world heterophilic graphs under different data splits

5.1 Performance Improvements on GPR-GNN

We first evaluate our proposed method on GPR-GNN. The main results are
shown in Fig. 4, we also provide a detailed accuracy table in the supplemen-
tary material. GPRGNN-R denotes the original GPR-GNN that uses random
initialization of the filter. GPRGNN-L denotes our approach that first trains a
link predictor to obtain a learned filter and then uses the filter to initialize the
filter of the node classifier. The results show that our approach can significantly
improve the performance of GPR-GNN on heterophilic graphs, especially when
the training sample ratio is low. For example, when the training set proportion
is 0.1, GPRGNN-L achieves 14% and 8% improvements over GPRGNN-R on
the chameleon and squirrel datasets, respectively. This indicates that our app-
roach can effectively utilize the “free label” to improve the performance of node
classification under weakly-supervised settings. Furthermore, we also observe a
smaller variance in the performance of GPRGNN-L than that of GPRGNN-R,
meaning that our approach also enhances the stability of GPR-GNN.

152 X. Wu et al.

Fig. 5. The performance of GCN, BernNet-R and BernNet-L on both synthetic and
real-world heterophilic graphs under different data splits.

5.2 Performance Improvements on BernNet

To verify that the proposed approach can be applied to other adaptive filter-
based GNNs, we also evaluate our approach on BernNet [11], a GNN model
that learns a filter with Bernstein basis. The results are shown in Fig. 5, which
demonstrates that our approach can also improve the performance of BernNet
under weakly-supervised settings. In addition, we find that the amount of data
that BernNet requires to learn an effective filter is smaller than GPR-GNN. For
example, on the squirrel dataset, BernNet-R achieves comparable performance
to BernNet-L with a training set proportion of 0.2 for chameleon and squirrel
datasets, whereas GPRGNN-R requires a proportion of 0.35. We also notice that
on specific datasets like questions, the adaptive filter is insensitive to the training
set proportion.

Leveraging Free Labels to Power up Heterophilic Graph Learning 153

Fig. 6. The learned initial filter of GPRGNN-L and BernNet-L on squirrel, compared
with the optimal filter learned with a training ratio of 0.6, denoted as GPRGNN-0.6 and
BernNet-0.6. (More learned filters on other datasets are provided in the supplementary
material.)

5.3 Visualization of the Learned Filters

To verify that the learned filters are effective, in this section we visualize the
learned filters and compare them with the optimal filters. The visualization
results are shown in Fig. 6. We can see that the learned filters are consistent with
the well-optimized filters learned with sufficient training data, which verifies the
effectiveness of using the link predictor to initialize the adaptive filter.

6 Conclusion

This paper addresses a pitfall inherent in the evaluation of adaptive filter-based
GNNs in heterophilic graph learning: the common practice of data splitting is to
allocate a high proportion of data for training, making the evaluation impracti-
cal. To fill this gap, we conducted a series of empirical experiments and verified
that in weakly supervised scenarios, the performance of adaptive filter-based
GNNs rapidly deteriorates, and they may even be outperformed by fixed filter-
based GNNs. Through additional experiments, we highlighted that the ineffec-
tiveness of the learned filters is a key factor leading to the performance degrada-
tion. To address this issue, we proposed an edge information-based approach to
learn an effective initial filter. We conducted experiments on two adaptive filter-
based GNNs, GPR-GNN and BernNet, and verified that the proposed approach
can effectively learn a good initialization and therefore improve the performance
of adaptive filter-based GNNs under weakly-supervised settings.

Acknowledgements. This work is supported by the National University of Defense
Technology Foundation under Grant Nos. ZK20-09 and ZK21-17, the Natural Science
Foundation of Hunan Province of China under Grant No. 2021JJ40692 and the National
Key Research and Development Program of China under Grant 2021YFB0300101.

Ethical Statement. The purpose of this research is to study the performance of adap-

tive filters on heterophilic graphs in weakly-supervised settings. The research involves

the usage of several open-sourced real-world datasets proposed and used by the het-

erophilic graph learning community. The potential risks associated with the research

154 X. Wu et al.

include the potential privacy issues on these datasets. We take the following measures

to minimize these risks: when conducting the experiments, we will not track the orig-

inal source of the dataset, but use the data anonymized by the dataset builders. The

results of the research will be presented in an unbiased and objective manner.

References

1. Abbe, E.: Community detection and stochastic block models: recent developments.
J. Mach. Learn. Res. 18(1), 6446–6531 (2017)

2. Abboud, R., Ceylan, İ.İ.: Node classification meets link prediction on knowledge
graphs. arXiv preprint arXiv:2106.07297 (2021)

3. Bianchi, F.M., Grattarola, D., Livi, L., Alippi, C.: Graph neural networks with
convolutional ARMA filters. IEEE Trans. Pattern Anal. Mach. Intell. 44(7), 3496–
3507 (2021)

4. Bo, D., Wang, X., Shi, C., Shen, H.: Beyond low-frequency information in graph
convolutional networks. In: Proceedings of the AAAI Conference on Artificial Intel-
ligence, vol. 35, pp. 3950–3957 (2021)

5. Bojchevski, A., et al.: Scaling graph neural networks with approximate pagerank.
In: Proceedings of the 26th ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining, pp. 2464–2473 (2020)

6. Chien, E., Peng, J., Li, P., Milenkovic, O.: Adaptive universal generalized pagerank
graph neural network. In: 9th International Conference on Learning Representa-
tions, ICLR 2021, Virtual Event, Austria, 3–7 May 2021 (2021)

7. Ciotti, V., Bonaventura, M., Nicosia, V., Panzarasa, P., Latora, V.: Homophily
and missing links in citation networks. EPJ Data Sci. 5(1), 7 (2016)

8. Deshpande, Y., Sen, S., Montanari, A., Mossel, E.: Contextual stochastic block
models. In: Bengio, S., Wallach, H.M., Larochelle, H., Grauman, K., Cesa-Bianchi,
N., Garnett, R. (eds.) Advances in Neural Information Processing Systems 31:
Annual Conference on Neural Information Processing Systems 2018, NeurIPS 2018,
Montréal, Canada, 3–8 December 2018, pp. 8590–8602 (2018)

9. Dong, Y., Ding, K., Jalaian, B., Ji, S., Li, J.: AdaGNN: graph neural networks with
adaptive frequency response filter. In: Proceedings of the 30th ACM International
Conference on Information & Knowledge Management, pp. 392–401 (2021)

10. Hamilton, W.L., Ying, Z., Leskovec, J.: Inductive representation learning on large
graphs. In: Advances in Neural Information Processing Systems 30: Annual Con-
ference on Neural Information Processing Systems, Long Beach, CA, USA, pp.
1024–1034 (2017)

11. He, M., Wei, Z., Xu, H., et al.: BernNet: learning arbitrary graph spectral filters via
Bernstein approximation. Adv. Neural. Inf. Process. Syst. 34, 14239–14251 (2021)

12. Kenlay, H., Thanou, D., Dong, X.: Interpretable stability bounds for spectral graph
filters. In: International Conference on Machine Learning, pp. 5388–5397. PMLR
(2021)

13. Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980 (2014)

14. Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional
networks. In: 5th International Conference on Learning Representations, ICLR
2017, Toulon, France, 24–26 April 2017, Conference Track Proceedings. OpenRe-
view.net (2017)

http://arxiv.org/abs/2106.07297
http://arxiv.org/abs/1412.6980

Leveraging Free Labels to Power up Heterophilic Graph Learning 155

15. Klicpera, J., Bojchevski, A., Günnemann, S.: Predict then propagate: graph neural
networks meet personalized pagerank. In: 7th International Conference on Learn-
ing Representations, ICLR 2019, New Orleans, LA, USA, 6–9 May 2019. OpenRe-
view.net (2019)

16. Levie, R., Isufi, E., Kutyniok, G.: On the transferability of spectral graph fil-
ters. In: 2019 13th International conference on Sampling Theory and Applications
(SampTA), pp. 1–5. IEEE (2019)

17. Likhobaba, D., Pavlichenko, N., Ustalov, D.: Toloker Graph: Interaction of Crowd
Annotators (2023)

18. Lim, D., Benson, A.R.: Expertise and dynamics within crowdsourced musical
knowledge curation: a case study of the genius platform. In: Proceedings of the
International AAAI Conference on Web and Social Media, vol. 15, pp. 373–384
(2021)

19. Lim, D., et al.: Large scale learning on non-homophilous graphs: new benchmarks
and strong simple methods. Adv. Neural. Inf. Process. Syst. 34, 20887–20902
(2021)

20. Lim, D., et al.: Large scale learning on non-homophilous graphs: new benchmarks
and strong simple methods, pp. 20887–20902 (2021)

21. Lingam, V., Sharma, M., Ekbote, C., Ragesh, R., Iyer, A., Sellamanickam, S.:
A piece-wise polynomial filtering approach for graph neural networks. In: Amini,
M.R., Canu, S., Fischer, A., Guns, T., Kralj Novak, P., Tsoumakas, G. (eds.) ECML
PKDD 2022, Part II. LNCS, vol. 13714, pp. 412–452. Springer, Cham (2023).
https://doi.org/10.1007/978-3-031-26390-3 25

22. McPherson, M., Smith-Lovin, L., Cook, J.M.: Birds of a feather: homophily in
social networks. Ann. Rev. Sociol. 27(1), 415–444 (2001)

23. Pei, H., Wei, B., Chang, K.C., Lei, Y., Yang, B.: Geom-GCN: geometric graph con-
volutional networks. In: 8th International Conference on Learning Representations,
ICLR 2020, Addis Ababa, Ethiopia, 26–30 April 2020 (2020)

24. Platonov, O., Kuznedelev, D., Diskin, M., Babenko, A., Prokhorenkova, L.: A crit-
ical look at evaluation of GNNs under heterophily: are we really making progress?
In: International Conference on Learning Representations

25. Rozemberczki, B., Allen, C., Sarkar, R.: Multi-scale attributed node embedding.
J. Complex Netw. 9(2), cnab014 (2021)

26. Tang, J., Sun, J., Wang, C., Yang, Z.: Social influence analysis in large-scale net-
works. In: Proceedings of the 15th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, pp. 807–816 (2009)

27. Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph
attention networks. In: 6th International Conference on Learning Representations,
ICLR 2018, Vancouver, BC, Canada, April 30 - May 3, 2018, Conference Track
Proceedings. OpenReview.net (2018)

28. Wang, X., Zhang, M.: How powerful are spectral graph neural networks. In: Inter-
national Conference on Machine Learning, pp. 23341–23362. PMLR (2022)

29. Wu, F., Jr., A.H.S., Zhang, T., Fifty, C., Yu, T., Weinberger, K.Q.: Simplifying
graph convolutional networks. In: Proceedings of the 36th International Conference
on Machine Learning, ICML 2019, Long Beach, California, USA, 9–15 June 2019,
pp. 6861–6871 (2019)

30. Wu, Z., Pan, S., Long, G., Jiang, J., Chang, X., Zhang, C.: Connecting the dots:
multivariate time series forecasting with graph neural networks. In: Gupta, R., Liu,
Y., Tang, J., Prakash, B.A. (eds.) KDD 2020: The 26th ACM SIGKDD Conference
on Knowledge Discovery and Data Mining, Virtual Event, CA, USA, 23–27 August
2020, pp. 753–763. ACM (2020)

https://doi.org/10.1007/978-3-031-26390-3_25

156 X. Wu et al.

31. Xu, K., Li, C., Tian, Y., Sonobe, T., Kawarabayashi, K., Jegelka, S.: Representation
learning on graphs with jumping knowledge networks. In: Proceedings of the 35th
International Conference on Machine Learning, ICML 2018, Stockholmsmässan,
Stockholm, Sweden, 10–15 July 2018. Proceedings of Machine Learning Research,
vol. 80, pp. 5449–5458. PMLR (2018)

32. Ying, R., He, R., Chen, K., Eksombatchai, P., Hamilton, W.L., Leskovec, J.: Graph
convolutional neural networks for web-scale recommender systems. In: Guo, Y.,
Farooq, F. (eds.) Proceedings of the 24th ACM SIGKDD International Conference
on Knowledge Discovery & Data Mining, KDD 2018, London, UK, 19–23 August
2018, pp. 974–983. ACM (2018)

33. Zhang, Z., Cui, P., Zhu, W.: Deep learning on graphs: a survey. IEEE Trans. Knowl.
Data Eng. 34(1), 249–270 (2022)

34. Zheng, X., Liu, Y., Pan, S., Zhang, M., Jin, D., Yu, P.S.: Graph neural networks
for graphs with heterophily: A survey. arXiv preprint arXiv:2202.07082 (2022)

35. Zhu, J., et al.: Graph neural networks with heterophily. In: Thirty-Fifth AAAI
Conference on Artificial Intelligence, Virtual Event, 2–9 February 2021, pp. 11168–
11176 (2021)

36. Zhu, J., Yan, Y., Zhao, L., Heimann, M., Akoglu, L., Koutra, D.: Beyond homophily
in graph neural networks: current limitations and effective designs. In: Annual
Conference on Neural Information Processing Systems 2020, NeurIPS 2020, 6–12
December 2020, virtual (2020)

http://arxiv.org/abs/2202.07082

Train Your Own GNN Teacher:
Graph-Aware Distillation on Textual

Graphs

Costas Mavromatis1(B), Vassilis N. Ioannidis2, Shen Wang2, Da Zheng2,
Soji Adeshina2, Jun Ma3, Han Zhao2,4, Christos Faloutsos2,5,

and George Karypis1,2

1 University of Minnesota, Minneapolis, USA
mavro016@umn.edu

2 Amazon Web Services, Seattle, USA
3 Walgreens AI Labs, Seattle, USA

4 University of Illinois at Urbana-Champaign, Champaign, USA
5 Carnegie Mellon University, Pittsburgh, USA

Abstract. How can we learn effective node representations on textual
graphs? Graph Neural Networks (GNNs) that use Language Models (LMs)
to encode textual information of graphs achieve state-of-the-art perfor-
mance in many node classification tasks. Yet, combining GNNs with LMs
has not been widely explored for practical deployments due to its scala-
bility issues. In this work, we tackle this challenge by developing a Graph-
Aware Distillation framework (GraD) to encode graph structures into an
LM for graph-free, fast inference. Different from conventional knowledge
distillation, GraD jointly optimizes a GNN teacher and a graph-free stu-
dent over the graph’s nodes via a shared LM. This encourages the graph-
free student to exploit graph information encoded by the GNN teacher
while at the same time, enables the GNN teacher to better leverage textual
information from unlabeled nodes. As a result, the teacher and the student
models learn from each other to improve their overall performance. Exper-
iments in eight node classification benchmarks in both transductive and
inductive settings showcase GraD’s superiority over existing distillation
approaches for textual graphs. Our code and supplementary material are
available at: https://github.com/cmavro/GRAD.

Keywords: Graph Neural Networks · Language Models · Knowledge
Distillation

1 Introduction

Graph Neural Networks (GNNs) offer state-of-the-art performance on graph
learning tasks in real world applications, including social networks, recommenda-
tion systems, biological networks and drug interactions. GNNs [10,17,26] learn

C. Mavromatis—Work done while interning at Amazon Web Services, Santa Clara.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
D. Koutra et al. (Eds.): ECML PKDD 2023, LNAI 14171, pp. 157–173, 2023.
https://doi.org/10.1007/978-3-031-43418-1_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-43418-1_10&domain=pdf
https://github.com/cmavro/GRAD
https://doi.org/10.1007/978-3-031-43418-1_10

158 C. Mavromatis et al.

node representations via a recursive neighborhood aggregation scheme [8], which
takes as input the node features and the graph structure. In textual graphs, text-
based information is associated with the graph’s nodes. Methods such as bag-
of-words, word2vec [21] or pre-trained Language Models (LMs), e.g., BERT [5],
are used to transform raw texts of nodes into features. Transforming raw text
to numerical features is usually associated with a non-negligible cost. For exam-
ple, LMs that rely on transformers [25] have a very large number of parameters
and their cost depends on the LM’s architecture1. This high computational cost
results in expensive and/or slow inference during deployment.

Recent works show that combining GNNs with LMs in an end-to-end man-
ner [15,31] leads to state-of-the-art performance for node classification and link
prediction tasks. Although powerful, these models are associated with expensive
inference costs. During mini-batch inference, a K-layer GNN fetches an expo-
nential number of nodes w.r.t. K, where raw texts of the fetched nodes need
to be transformed to numerical features on the fly. As a result, combining LMs
with GNNs in a cascaded manner exponentially grows the LM inference cost for
each target node. This cost is prohibitive for applications where fast inference is
vital, such as providing instant query-product matching in e-commence.

Aiming at a balance between effectiveness and efficiency, we seek to transfer
useful knowledge from a GNN teacher to a graph-free student via distillation.
As the graph-free student does not use the graph structure during inference, the
inference cost depends only on the LM employed. However, existing knowledge
distillation (KD) approaches for graphs either do not take full advantage of the
graph structure [39] or they require powerful student models (e.g., large LMs)
to achieve good performance [42].

34 218 445 OOM
70

72

74

76

BERT

GNN
GradBERT

Inference Time (sec.)

A
cc
ur
ac
y
(%

)

ogbn-arxiv

Pareto front
L=64 GradBERT

– BERT
– GNN

L=128 GradBERT
– BERT
– GNN

L=512 GradBERT
– BERT
– GNN

Fig. 1. GraDBERT is on the Pareto
front: Accuracy performance w.r.t. infer-
ence time for ogbn-arxiv. L is the input
sequence length and OOM (out of mem-
ory) means that the model encountered
GPU failure.

To address these limitations, we
developed a Graph-Aware Distillation
approach (GraD) that jointly opti-
mizes the GNN teacher with its graph-
free student via a shared LM. The
shared LM serves as an interaction
module that allows the two models
to learn from each other. On the
one hand, the GNN teacher updates
the LM’s parameters with graph-aware
information and distills graph knowl-
edge as soft-labels, which are provided
to the student. On the other hand,
the graph-free student imitates the
GNN’s predictions and leverages tex-
tual information from unlabeled nodes
to improve the fine-tuning of the shared LM. This dynamic interplay between

1 For example, the inference cost of a single transformer layer is O(L2d + Ld2), where
L is the sequence length and d is the number of hidden dimensions.

Graph-Aware Distillation on Textual Graphs 159

the two models stimulates the student to not only mimic the GNN predictions
but to learn node features that improve its teacher’s performance.

GraD is formulated as a multi-task learning for the shared LM, whose goal
is to achieve good performance for both the GNN teacher and the graph-free
student models. We designed three different strategies for optimizing the GraD
framework. Their key differences is on how tight the teacher and student models
are coupled and on how much flexibility the student model has to fit to its
teacher’s predictions. As a result, GraD can be applied in both large-scale
graphs, where the student model is a powerful LM, and in small-scale graphs,
where the LM is substituted by simple MLPs.

Figure 1 illustrates the superiority of GraD when the graph-free student
model is a BERT model (GraDBERT). It outperforms a fine-tuned BERT model
for node classification by 3.24%, and it is as effective as combining BERT with
a GNN with 2.4x–13x smaller inference time. Our contributions are summarized
below:

– We analyze and identify the limitations of conventional knowledge distillation
for textual graphs, which have been previously under-studied (Sect. 3.2).

– We present a graph-aware distillation (GraD) framework that couples a GNN
teacher and a graph-free student together to fully exploit the underlying graph
structure. GraD improves classification for both seen and unseen nodes, that
are present in either large or small-scale graphs (Sect. 6.1 and Sect. 6.2).

– We developed three different strategies (Sect. 4) to effectively optimize GraD
framework, which we comprehensively study. This enables GraD to scale to
large graphs and achieve state-of-the-art performance in node classification
tasks.

2 Background

2.1 Problem Formulation

In an input textual graph G = {V, E}, each node v ∈ V is associated with
raw text, which we denote as Xv. V is the node set and E is the edge set.
Let N denote the total number of nodes. For node classification, the prediction
targets are Y ∈ R

N×m, where row yv is a m-dim one-hot vector for node v.
The node set is divided into labeled nodes VL and unlabeled nodes VU , i.e.,
V = VL ∪ VU . In inductive scenarios, the input graph G is divided into two
subgraphs G = Gtran ∪ Gind, where Gtran is used for learning (transductive part)
and Gind is used only during inference (Gind is the inductive part that is not
observed during learning). In transductive scenarios, we have G = Gtran and
Gind = ∅.

As introduced Sect. 1, utilizing the textual graph G for making predictions
at test time results in slow inference. Thus, we seek to learn a graph-free model
τ ′, e.g., a LM, that only takes node text Xv during inference. It is desired that
τ ′(Xv) ≈ f(G,Xv), where f is a model that uses the graph, e.g., a GNN, so that

160 C. Mavromatis et al.

the graph-free model achieves as effective node classification as a graph-based
model.

2.2 GNNs on Textual Graphs

To handle raw texts in textual graphs, Xv is transformed to numerical features
xv ∈ R

d via a function τ(·),
xv = τ(Xv). (1)

For example, LMs, such as BERT [5] for modelling τ(·), transform each token of
the input sequence Xv to a representation. The final xv can be obtained as the
representation of a specific token, which is usually the [CLS] token.

GNNs [17,26] transform a computation graph Gv that is centered around node
v to a d-dimensional node representation hv. We write the GNN transformation
as

hv = GNN
({τ(Xu) : u ∈ Gv})

, (2)

where τ(Xu) generates the input features xu of node u. For a GNN with K
layers, Gv includes nodes and edges (with self-loops) up to K hops away from v.

The (k + 1)-th GNN layer takes as input a node’s representation h(k)
v of

the previous layer k as well as the representations of its 1-hop neighbors. It
aggregates them to a new representation h(k+1)

v as follows,

h(k+1)
v = φ

({h(k)
u : u ∈ Nv})

, (3)

where Nv is the set of direct neighbors of v and φ(·) is an aggregation function.
For example, a common GNN update φ(·), which is employed in GraphSAGE [10]
and RGCN [24], can be described as follows,

h(k+1)
v = σ

(
W

(k)
selfh

(k)
v +

∑

u∈Nv

W (k)h(k)
u

)
, (4)

where W
(k)
self,W

(k) are learnable parameters and σ(·) is a nonlinearity mapping.
At the first layer, we usually have h(0)

v = xv, that are text features extracted
from the node. Computing hv can be as expensive as O(SKC), where τ(·) is a
LM with inference cost C, S is the neighborhood size, and K is the number of
GNN layers.

3 Towards Graph-Aware Knowledge Distillation

As discussed in Sect. 2.1, we seek to learn a graph-free model τ ′ for fast inference,
that also achieves as effective node classification as a GNN model f .

Graph-Aware Distillation on Textual Graphs 161

3.1 Knowledge Distillation

A straightforward solution is to use the Knowledge Distillation (KD) tech-
nique [11], where a powerful teacher model transfers knowledge to a simpler
student model. In our case, the teacher model corresponds to a graph-based
model (GNN), while the student model is a graph-free model, such as an LM.

We follow the standard KD paradigm, in which the teacher distills knowledge
via soft-labels. At a high level, the algorithmic procedure is

– First Stage. The GNN teacher is trained for node classification. The objec-
tive is given by

Lnc =
∑

v∈VL

lCE(t̂v,yv), (5)

where lCE is the standard cross-entropy and

t̂v = MLP
(
GNN

({xu : u ∈ Gv}))
(6)

are teacher’s label predictions (logits). Numerical features xu are learned by
fine-tuning an LM τ(·) in an end-to-end manner; see Eq. (1). The trained
GNN teacher generates soft-labels t̂v for all nodes v ∈ G.

– Second Stage. Another LM τ ′(·) is trained to mimic GNN’s predictions t̂v.
The LM is optimized via

LKD =
∑

v∈VL

lCE(ŝv,yv) + λ
∑

v∈V
lKL(ŝv, t̂v), (7)

where
ŝv = MLP

(
τ ′(Xv)

)
(8)

are the student’s predictions and lKL is the KL-divergence between the stu-
dent’s and teacher’s logits. Hyper-parameter λ ∈ R controls the relative
importance of the knowledge distillation term.

3.2 What Does Knowledge Distillation Learn? An Analysis

In many cases, only a subset of the nodes in a graph is labeled; it is denoted as
VL. Since the GNN’s predictions t̂v are treated as soft-labels, the second term
in Eq. (7) allows KD to fine-tune its LM τ ′ over both labeled and unlabeled
nodes. However, as t̂v are pre-computed after the first stage of GNN training,
the graph-free student does not use the actual graph structure during learning
(second stage). In other words, nodes are treated independently from the under-
lying graph and the graph-free model can only infer how nodes interact via the
provided soft-labels by the GNN.

Next, we quantify the importance of capturing node interactions, which ben-
efits many applications such as community detection and label propagation in
graphs [16]. As discussed in Sect. 2.2, the node classification objective aims at

162 C. Mavromatis et al.

transforming a subgraph Gv centered around node v to its label yv. In informa-
tion theory, this is equivalent to maximizing the mutual information I(·),

max
f

∑

v∈VL

If (yv;Gv), (9)

between Gv and label distribution yv, where If is parametrized by the GNN
function f . It is always true that I(·) ≥ 0.

If we consider Gv as a joint distribution of the feature set Xv = {Xu : u ∈ Gv}
and edge set Ev, we have

I(yv;Gv) = I(yv; (Xv, Ev)) = I(yv;Xv) + I(yv; Ev|Xv), (10)

which is obtained via the chain rule of mutual information. Now by setting
X̃v = Xv \ {Xv}, we can further obtain

I(yv;Gv) = I(yv;Xv) + I(yv; X̃v|Xv) + I(yv; Ev|Xv). (11)

The joint mutual information is decomposed into three terms, (i) the information
that comes from the node itself, (ii) the information that comes from other
nodes in Gv, and (iii) the additional information that comes from the actual
links between nodes.

Remark 1. If the neighbor set or the graph structure is not utilized during learn-
ing, only I(yv;Xv) of Eq. (11) can be maximized.

Corollary 1. Assume that predictions t̂u for unlabeled nodes u ∈ VU are
obtained via Eq. (6) with a GNN f and an LM τ . The graph-free student of
KD, that employs an LM τ ′, solves

max
τ ′

∑

u∈VU

Iτ ′(t̂u;Xu), (12)

where

t̂u = f
(
τ(Xu′) : u′ ∈ Gu

)
,

s.t. f, τ = arg max
f̃ ,τ̃

∑

v∈VL

If̃ ,τ̃ (yv;Gv). (13)

The student models solves Eq. (12) without directly accessing the graph
structure G. Since t̂u are obtained through a teacher GNN in Eq. (13), which
maximizes all three parts of Eq. (11), it is possible that t̂u can still implicitly con-
tain graph information from Gu. However, due to the data-processing inequality
of mutual information, it holds that

If,τ (yu;Gu) ≥ I(yu; t̂u). (14)

This means that, despite being a function of Gu, the information contained in
t̂u w.r.t. yu is less than that of the original Gu. Thus, student’s performance
depends on how informative t̂u are, compared to Gu.

Graph-Aware Distillation on Textual Graphs 163

Fig. 2. GraD framework. GraD captures textual information among unlabeled linked
texts by allowing the teacher GNN and the graph-free student to jointly update the
shared text encoding function.

Note that the objectives of Eq. (12) and Eq. (13) are applied over different
sets of nodes VU and VL, which does not ensure that GNN f is the optimal func-
tion to encode graph information for nodes u ∈ VU . For example, a GNN might
overfit to nodes that appear frequently in the training subgraphs, and ignore
nodes that appear infrequently. In Sect. 4, we present a framework that aims at
better capturing the existing graph and textual information during distillation.

4 GRAD Framework

In this work, we take a different approach from the traditional KD, as imple-
mented in Eq. (12). As we cannot use the graph structure during inference, our
GRaph-Aware Distillation (GraD) improves structure utilization during train-
ing. The motivation is to use the original graph G while training the graph-free
student, even if GNN predictions t̂u may (or may not) implicitly contain such
graph information.

Our GraD framework does this by coupling the teacher GNN with its graph-
free student with a shared function τ(·). This allows the GNN to directly encode
structural information into τ , that is then used by the graph-free model during
inference. The overall framework is illustrated in Fig. 2. GraD is posed as a
multi-task learning for the shared LM, whose goal is to collectively optimize the
GNN teacher and the graph-free student models. The learning problem is given
by

max
f,τ

∑

v∈VL

If,τ (yv;Gv) +
∑

v∈VU

Iτ (t̂u;Xu),

where t̂u = f
(
τ(Xu′) : u′ ∈ Gu

)
,

(15)

164 C. Mavromatis et al.

Fig. 3. GraD strategies for coupling the GNN teacher and the graph-free student. SL
denotes soft-label and GT denotes ground-truth label. GraD-Joint couples the two
models in a single step, GraD-Alt couples them in an alternate fashion, while GraD-
JKD couples them in the first stage and decouples them in the second stage. For
illustration purposes only, the star metric (�) quantifies the teacher-student coupling
tightness and the flexibility of the student model.

and function τ contributes in both objectives that GraD maximizes. This results
in a coupled multi-objective optimization, since predictions t̂u depend on func-
tion τ and thus, tie the GNN f with the graph-free model together.

Notably, the graph-free student uses soft-labels provided by the GNN to fine-
tune the LM over textual information from unlabeled nodes; see second term of
Eq. (15). This, consequently, ensures that the GNN leverages all the graph’s
textual information (in an implicit manner) to compute t̂u, which might have
been neglected in Eq. (13). As the GNN teacher better encodes graph-aware
textual information from the input (transdutive) nodes, the graph-free student
manages to train its own GNN teacher via the shared LM.

In what follows, we present three different optimization strategies (GraD-
Joint, GraD-Alt, and GraD-JKD) for solving Eq. (15). Figure 3 presents them
at a high-level, and their key difference is on how tight they couple the teacher
and the student model.

4.1 GRAD-Joint

The first strategy (GraD-Joint) optimizes GraD framework in a single-stage,
where the teacher and the student are jointly updating τ . GraD-Joint objective
is given by

LJoint = λ
∑

v∈V
lKL(ŝv, t̂v) +

∑

v∈VL

[
αlCE(t̂v,yv) + (1 − α)lCE(ŝv,yv)

]
, (16)

where λ ∈ R and α ∈ [0, 1] are hyperparameters that control the importance of
each term and ensure that the GNN models does not learn to ignore the struc-
ture. The first term is the KD loss between GNN teacher’s predictions t̂v and
graph-free student’s predictions ŝv, and the other two terms are for ground-truth
labels yv. Predictions ŝv and t̂v are optimized via a shared encoding function
τ(·) (multi-task learning).

We highlight the dynamic interplay between the GNN teacher and the graph-
free student in Eq. (16). The GNN teacher provides a soft-label t̂v, which the

Graph-Aware Distillation on Textual Graphs 165

graph-free student tries to mimic via lKL(ŝv, t̂v). However, instead of training
τ(·) to simply mimic the GNN predictions, term lCE(t̂v,yv) encourages τ(·)
to generate text representations that are beneficial for the GNN teacher. This
co-learning between the GNN teacher and the graph-free student leads to graph-
aware text representations, as the two models learn from each other.

4.2 GRAD-Alt

A common challenge in multi-task learning is negative transfer [40], in which the
performance improvement of a specific task leads to performance degradation of
other tasks. Our second strategy (GraD-Alt) alleviates this issue, which might
be present in GraD-Joint, by optimizing the teacher and the student model in
an alternate fashion. GraD-Alt objective is given by

LT-step =
∑

v∈VL

lCE(t̂v,yv), (17)

LS-step = λ
∑

v∈V
lKL(ŝv, t̂v) +

∑

v∈VL

lCE(ŝv,yv), (18)

where the teacher objective LT-step and the student objective LS-step alter-
nately update function τ . Different from GraD-Joint, decoupling S-step from
the teacher gives more flexibility to the student to fit to its teacher’s predictions.

4.3 GRAD-JKD

Solving Eq. (17) and Eq. (18) consists of many alternate optimization steps that
update τ . This is associated with significant computational costs when τ is a
large LM and when the input graph consists of a large number of nodes.

Our third strategy (GraD-JKD) is motivated by the benefits discussed in
Sect. 4.1 that lead to improving the GNN teacher as well as the benefits dis-
cussed in Sect. 4.2 that lead to improving the flexibility of the graph-free student.
GraD-JKD consists of two distinct stages, as summarized below

– First Stage. The GNN teacher is jointly trained with its graph-free student
via objective LJoint; see Eq. (16).

– Second Stage. The GNN teacher is decoupled by its student, and the student
is retrained alone to mimic the teacher’s predictions via

LKD = λ
∑

v∈V
lKL(ŝv, t̂v) +

∑

v∈VL

lCE(ŝv,yv). (19)

The second stage is similar to conventional KD, which is why we term this
strategy GraD-JKD (Joint +KD). In our case, however, the GNN teacher has
been trained with a graph-free student, which allows it to better leverage textual
information from unlabeled nodes.

166 C. Mavromatis et al.

4.4 Student Models

A powerful function τ(·), that can encode information from both the GNN and
the graph-free model, is a key factor in the co-optimization of the teacher and
student model. We use LMs, such as BERT [5], to instantiate τ(·), and name
our method GraDBERT. GraDBERT is fine-tuned end-to-end, which is shown
to benefit node classification tasks [15].

GraDBERT requires raw texts on nodes and assumes the graphs have ade-
quate data for training. Although not common in practical scenarios, some
graphs might be of small scale and not associated with raw texts. In such cases,
we model τ(·) by bag-of-words or TF-IDF text vectors (if provided), followed by
trainable MLPs, which we name GraDMLP.

5 Experimental Setup

5.1 Datasets

For GraDBERT, we use three widely used node classification benchmarks that
provide raw text on nodes, ogbn-arxiv (Arxiv), ogbn-products (Products), and
a smaller version of ogbn-papers100M (Papers1.5M) [3,12]. For GraDMLP,
we use Cora, Citeseer, Pubmed, A-Computer, and A-Photo [29], where input
features are bag-of-words or TF-IDF word encodings.

5.2 Implementation Details

For our GNN teacher, we use GraphSAGE [10] for both the GraDBERT and
the GraDMLP students. To further reduce the training computation cost for
GraDBERT, we use an 1-layer GraphSAGE and sample S ∈ {8, 12} neigh-
bors for Eq. (4), which has a training cost of O(SC) per node. We initialize
GraDBERT parameters with SciBERT [2] for Arxiv and Papers1.5M that pro-
vides better tokenization for scientific texts. Due to computational constraints,
we use a smaller LM for Products, i.e., DistilBERT [23], and we only use GraD-
Alt for small-scale graphs. Further implementation details and ablation studies
on GraD’s framework can be found in the Appendix.

5.3 Compared Methods

We develop the BERT+KD baseline, which employs conventional GNN-to-
BERT KD via Eq. (7). GLNN [39] is a GNN-to-MLP distillation approach that
does not leverage LMs, to which we refer as MLP+KD baseline. We also com-
pare GraDBERT with methods that fine-tune LMs on graphs. Graph-Aware
BERT (GA-BERT) [15] and BERT-LP [3] fine-tune BERT models to solve the
link prediction task. GIANT [3] fine-tunes BERT to solve neighborhood pre-
diction, which is a task similar to link prediction. E2EG [6] trains GIANT for
neighborhood prediction and node classification end-to-end. GLEM [42] utilizes

Graph-Aware Distillation on Textual Graphs 167

Table 1. Performance comparison of graph-free methods. Bold font denotes the overall
best results. We also report the number of trainable parameters of each LM model in
millions (#Params).

Arxiv Products Papers1.5M
Acc. (%) #Params Acc. (%) #Params Acc. (%) #Params

MLP 62.91±0.60 No LM 61.06±0.08 No LM 47.24±0.39 No LM
GLNN 72.15±0.27 No LM 77.65±0.48 No LM -

BERT 72.81±0.12 110M 77.64±0.08 110M 61.45±0.07 110M
BERT-LP 67.33±0.54 110M 73.83±0.06 110M -
GIANT 73.06±0.11 110M 80.49±0.28 110M 61.10±0.19 110M
E2EG 73.62±0.14 110M 81.11±0.37 110M -
GLEM 74.53±0.12 138M 81.25±0.15 138M -

BERT+KD 74.39±0.32 110M 81.91±0.64 66M 61.85±0.04 110M

GraDBERT
Joint 74.92±0.16 110M 81.42±0.40 66M 63.44±0.05 110M
JKD 75.05±0.11 110M 82.89±0.07 66M 63.60±0.05 110M

variational inference to jointly optimize the LM and the GNN for node classifica-
tion. For a fair comparison, we have the same GNN architecture (GraphSAGE)
among methods that use GNNs (GraD, KD, GA-BERT, and GLEM) during
training.

6 Experimental Results

In the following experiments, we assess GraD’s performance for node classi-
fication over textual graphs. In Sect. 6.1, we compare GraDBERT with other
methods that do not use graph structure during inference, as well as we assess
the performance of GraD’s GNN teacher. In Sect. 6.2, we evaluate how well
different GraD strategies generalize to inductive (unseen) nodes. Furthermore,
we conduct inference time analysis to demonstrate the efficiency advantage of
GraD and provide qualitative examples in the Appendix.

6.1 GRADBERT Results

Table 1 shows performance results for methods that do not use graph structure
during inference. Clearly, GraDBERT is the method that performs the best.
MLP and GLNN are methods that do not fine-tune LMs, and thus, perform
poorly. GIANT and BERT-LP pretrain BERT to encode structural information,
but BERT is fixed for node classification, which may be suboptimal. For exam-
ple, E2EG, that adapts GIANT for node classification, improves GIANT by
0.61% points on average. GLEM relies on powerful LMs to alternately fine-tune
the teacher and the student models, and thus outperforms previous methods.
However, GLEM does not show a clear advantage over our baseline BERT+KD

168 C. Mavromatis et al.

Table 2. GNN performance comparison for different methods that jointly fine-tune
LMs for node classification. The underlying GNN model is GraphSAGE. We also report
the number of trainable parameters of each backbone LM model in millions (#Params).

Arxiv Products Papers1.5M

Acc. (%) #Params Acc. (%) #Params Acc. (%) #Params

BERT-GNN 74.78±0.52 110M 82.01±0.43 110M 65.80±0.23 110M

GA-BERT-GNN 74.97 110M 82.35 110M -

GLEM-GNN 75.50±0.24 138M 83.16±0.19 138M -

GraD-GNN 76.42±0.21 110M 83.34±0.24 66M 66.61±0.22 110M

Table 3. Performance comparison of different distillation strategies in the inductive
setting, in which we hold 50% of validation and test nodes out of the full graph. Full
means that methods are trained and evaluated on the full graph, while ind shows
performance on inductive nodes. Δacc reports the relative performance degradation
between the two settings.

Dataset MLP+KD BERT+KD GraDBERT

Joint JKD

Arxiv full 68.26 74.43 74.45 75.15

ind 59.34 73.45 74.22 73.81

Δacc −13.06% −1.32% −0.31% −1.78%

Products full 77.20 82.31 81.47 82.82

ind 72.93 80.94 81.24 81.69

Δacc −5.53% −1.66% −0.28% −1.36%

method, while it utilizes 28M or 77M more parameters. GraDBERT outper-
forms BERT+KD by 0.66%, 0.98%, and 1.75% points for Arxiv, Products, and
Papers, respectively, which is a considerable improvement for these large-scale
graphs. In Products, GraD-JKD improves over GraD-Joint by 1.45% points,
and shows that JKD allows the student model to better fit to its teacher’s pre-
dictions.

Table 2 evaluates the performance of GNNs combined with LMs (LM-GNN
methods). GraD’s GNN teacher performs the best, which verifies that GraD’s
student improves its teacher’s effectiveness. BERT-GNN is the baseline LM-GNN
with end-to-end training, which performs the worst. GA-BERT enhances BERT
with a link prediction task and leads to better results than BERT-GNN. GLEM
that leverages unlabeled nodes, as GraD does, performs better than BERT and
GA-BERT. However, it does not train the LM-GNN model end-to-end, which
limits its performance compared to GraD, while it requires larger LM models.

In transductive settings, graph-free students could perform well by imi-
tating their GNN teachers’ predictions without learning effective features
(Sect. 3.2). Thus, we evaluate our GraD approach in the inductive setting, where

Graph-Aware Distillation on Textual Graphs 169

Table 4. Performance comparison of different GraD strategies on transductive (tran)
and inductive (ind) nodes. We sample 50% nodes from the test set as the inductive
nodes to evaluate every method. We report mean accuracy over 10 runs.

Dataset GLNN (MLP+KD) GLEM (MLP) GraDMLP (ours)

Joint Alt JKD

Cora tran 76.72 76.78 79.39 79.20 79.04

ind 70.74 70.44 73.00 72.86 72.51

Citeseer tran 69.55 69.06 70.33 70.96 68.69

ind 69.72 69.33 70.38 70.80 69.28

Pubmed tran 74.00 76.38 78.13 77.71 77.72

ind 73.61 75.53 77.54 76.96 76.89

A-Comp tran 82.12 81.15 81.20 82.60 82.28

ind 79.11 78.07 78.79 80.09 79.41

A-Photo tran 92.21 89.83 91.68 91.70 92.36

ind 89.96 86.49 88.83 89.03 90.09

well-trained students are essential to generalize to features of unseen nodes,
which are not connected to the existing graph during training. Table 3 shows
GraDBERT’s performance in inductive settings. GraDBERT outperforms the
baseline BERT+KD by more than 0.7% points, on average. Note that MLP+KD
uses a static BERT model and cannot generalize well to unseen nodes. As Table 3
shows, methods that use conventional KD (BERT+KD and GraD-JKD) have
a higher performance drop for inductive nodes. This suggests that conventional
KD favors transductive settings while it might be limited for inductive nodes.

6.2 GRADMLP Results

Table 4 shows the performance of different GraD strategies for small-scale
graphs, where MLPs uses as the backbone share function τ . Methods that employ
KD do not couple the teacher and student models sufficiently, and thus do not
learn as effective node features in these small-scale graphs. GLEM performs the
worst as it requires a powerful student model that generates high-quality soft-
labels, which is not the case for simple MLPs. GraD-Alt performs the best
on Citeseer and A-Comp, while GraD-Joint performs the best on Cora and
Pubmed. We suspect that, in the second case, node texts are more informative
(paper keywords) and thus, coupling the teacher and student models tightly
improves the performance.

Moreover, Fig. 4 shows that GraDMLP consistently outperforms MLP+KD
with different inductive rates, ranging from 10% to 75%. In these small graphs,
having an inductive ration close to 90% results in training graphs with few
connections among nodes. Thus, in this case, GraDMLP does not have useful
graph information to leverage.

170 C. Mavromatis et al.

7 Related Work

Learning on Textual Graphs. A common approach for effective learning
on textual graphs is to combine LMs [5,19,22] with GNNs [10,17,26]. Meth-
ods such as [3,15,34] focus on pre-training LMs over graph data to preserve
node-level structure, while [35] focuses on token-level information. Methods such
as [6,31,37,42] focus on fine-tuning LMs for solving node classification directly,
which is more related to our work. Experiments showed that GraD outperforms
these competing approaches. Apart from node classification, leveraging GNNs
for learning on textual graphs has been applied to question answering [20,41],
sponsored search [18,45], and document classification [14,33].

Fig. 4. Performance on inductive nodes w.r.t. inductive node rate (inductive node rate
equals to #ind test nodes/#total test nodes). GraDMLP consistently outperforms
MLP+KD for reasonable inductive rates.

Distillation Approaches. Distillation approaches mainly focus on model com-
pression (see a survey in [9]). It is worth to mention that [38] proposed a self-
distillation technique that distills knowledge from deeper layers to shallow ones
of the same architecture. Inspired by self-distillation, GraD-Joint self-distills
knowledge from deeper layers (GNN) to shallow layers (LM or MLP). How-
ever, our work is motivated by capturing node interactions, and not by model
compression. Moreover, [36] shows a connection between self-distillation and
label smoothing, which may be interpreted as a graph-aware label smoothing in
our case. Closely related to our work, GLNN [39] and ColdBrew [43] propose
to distill knowledge from a graph modality to a graph-less modality. However,
experiments showed that GraD learns better graph information than GLNN for
both inductive and transductive settings, while ColdBrew can only be applied to
transductive settings. Graph-regularized MLPs [1,7,13,30,44] are also methods
that improve MLP performance for node classification. However, their perfor-
mance is inferior to the one achieved by KD approaches. Other graph-based
distillation approaches focus on distilling large GNNs to smaller GNNs [28,32]
or to simpler graph models [29]. Finally, the work in [4] distills knowledge from
pretrained GNNs and the work in [27] applies graph-based distillation for incre-
mental learning in recommender systems.

Graph-Aware Distillation on Textual Graphs 171

8 Conclusion

In this paper, we developed a graph-aware distillation approach (GraD) that
jointly trains a teacher GNN and a graph-free student via a shared LM. This
allows the two models to learn from each other and improve their overall per-
formance. We have evaluated GraD in eight node classification benchmarks in
both transductive and inductive settings, in all of which GraD outperforms
conventional knowledge distillation. GraD is a method that achieves a balance
among efficiency and effectiveness in textual graphs.

Acknowledgment. Part of this work was supported by NSF (1704074, 1757916,
1834251, 1834332). Access to research and computing facilities was provided by the
College of Science & Engineering and the Minnesota Supercomputing Institute.

Limitations and Ethical Statement. GraD relies on informative input node fea-

tures to learn effective shared LMs (or MLPs) that can generalize to unseen nodes,

which is the case in textual graphs. Thus, one limitation is that it is not certain how

GraD generalizes to other graphs, e.g., to featureless graphs. Moreover as a knowledge

distillation approach, GraD trades accuracy for computation efficiency and it cannot

adapt to dynamic graphs with edge changes the same way as GNN could. To over-

come biases encoded in the training graph, e.g., standard stereotypes in recommender

graphs, GraD needs to be retrained over the new unbiased graph.

References

1. Ando, R., Zhang, T.: Learning on graph with laplacian regularization. In: NIPS
(2006)

2. Beltagy, I., Lo, K., Cohan, A.: SciBERT: a pretrained language model for scientific
text. In: EMNLP-IJCNLP (2019)

3. Chien, E., et al.: Node feature extraction by self-supervised multi-scale neighbor-
hood prediction. In: ICLR (2022)

4. Deng, X., Zhang, Z.: Graph-free knowledge distillation for graph neural networks.
arXiv (2021)

5. Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: BERT: pre-training of deep
bidirectional transformers for language understanding. In: ACL (2019)

6. Dinh, T.A., Boef, J.D., Cornelisse, J., Groth, P.: E2EG: end-to-end node classifi-
cation using graph topology and text-based node attributes. arXiv (2022)

7. Dong, W., Wu, J., Luo, Y., Ge, Z., Wang, P.: Node representation learning in graph
via node-to-neighbourhood mutual information maximization. In: IEEE/CVF
CVPR (2022)

8. Gilmer, J., Schoenholz, S.S., Riley, P.F., Vinyals, O., Dahl, G.E.: Neural message
passing for quantum chemistry. In: ICML (2017)

9. Gou, J., Yu, B., Maybank, S.J., Tao, D.: Knowledge distillation: a survey. In: IJCV
(2021)

10. Hamilton, W., Ying, Z., Leskovec, J.: Inductive representation learning on large
graphs. In: NeurIPS (2017)

11. Hinton, G., Vinyals, O., Dean, J., et al.: Distilling the knowledge in a neural net-
work. arXiv (2015)

172 C. Mavromatis et al.

12. Hu, W., et al.: Open graph benchmark: datasets for machine learning on graphs.
In: NeurIPS (2020)

13. Hu, Y., You, H., Wang, Z., Wang, Z., Zhou, E., Gao, Y.: Graph-MLP: node clas-
sification without message passing in graph (2021)

14. Huang, L., Ma, D., Li, S., Zhang, X., Wang, H.: Text level graph neural network
for text classification. In: EMNLP (2019)

15. Ioannidis, V.N., et al.: Efficient and effective training of language and graph neural
network models. arXiv (2022)

16. Jia, J., Benson, A.R.: Residual correlation in graph neural network regression. In:
KDD (2020)

17. Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional
networks. In: ICLR (2017)

18. Li, C., et al.: AdsGNN: behavior-graph augmented relevance modeling in sponsored
search. In: ACM SIGIR (2021)

19. Liu, Y., et al.: Roberta: a robustly optimized bert pretraining approach. arXiv
(2019)

20. Mavromatis, C., Karypis, G.: ReaRev: adaptive reasoning for question answering
over knowledge graphs. arXiv (2022)

21. Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed repre-
sentations of words and phrases and their compositionality. In: NIPS (2013)

22. Raffel, C., et al.: Exploring the limits of transfer learning with a unified text-to-text
transformer. JMLR 21(1), 5485–5551 (2020)

23. Sanh, V., Debut, L., Chaumond, J., Wolf, T.: Distilbert, a distilled version of bert:
smaller, faster, cheaper and lighter. arXiv (2019)

24. Schlichtkrull, M., Kipf, T.N., Bloem, P., Berg, R.V.D., Titov, I., Welling, M.:
Modeling relational data with graph convolutional networks. In: ESWC (2018)

25. Vaswani, A., et al.: Attention is all you need. In: NIPS (2017)
26. Veličković, P., Cucurull, G., Casanova, A., Romero, A., Lio, P., Bengio, Y.: Graph

attention networks. In: ICLR (2018)
27. Xu, Y., Zhang, Y., Guo, W., Guo, H., Tang, R., Coates, M.: Graphsail: graph

structure aware incremental learning for recommender systems. In: CIKM (2020)
28. Yan, B., Wang, C., Guo, G., Lou, Y.: Tinygnn: learning efficient graph neural

networks. In: KDD (2020)
29. Yang, C., Liu, J., Shi, C.: Extract the knowledge of graph neural networks and go

beyond it: an effective knowledge distillation framework. In: WWW (2021)
30. Yang, H., Ma, K., Cheng, J.: Rethinking graph regularization for graph neural

networks. In: AAAI (2021)
31. Yang, J., et al.: Graphformers: GNN-nested transformers for representation learn-

ing on textual graph. In: NeurIPS (2021)
32. Yang, Y., Qiu, J., Song, M., Tao, D., Wang, X.: Distilling knowledge from graph

convolutional networks. In: IEEE/CVF CVPR (2020)
33. Yao, L., Mao, C., Luo, Y.: Graph convolutional networks for text classification. In:

AAAI (2019)
34. Yasunaga, M., et al.: Deep bidirectional language-knowledge graph pretraining. In:

NeurIPS (2022)
35. Yasunaga, M., Leskovec, J., Liang, P.: Linkbert: pretraining language models with

document links. In: ACL (2022)
36. Yuan, L., Tay, F.E., Li, G., Wang, T., Feng, J.: Revisiting knowledge distillation

via label smoothing regularization. In: IEEE/CVF CVPR (2020)
37. Zhang, J., Zhang, H., Xia, C., Sun, L.: Graph-bert: only attention is needed for

learning graph representations. arXiv (2020)

Graph-Aware Distillation on Textual Graphs 173

38. Zhang, L., Song, J., Gao, A., Chen, J., Bao, C., Ma, K.: Be your own teacher:
improve the performance of convolutional neural networks via self distillation. In:
IEEE/CVF ICCV (2019)

39. Zhang, S., Liu, Y., Sun, Y., Shah, N.: Graph-less neural networks: teaching old
MLPs new tricks via distillation. In: ICLR (2022)

40. Zhang, W., Deng, L., Zhang, L., Wu, D.: A survey on negative transfer. arXiv
(2020)

41. Zhang, X., et al.: GreaseLM: graph REASoning enhanced language models. In:
ICLR (2022)

42. Zhao, J., et al.: Learning on large-scale text-attributed graphs via variational infer-
ence. arXiv (2022)

43. Zheng, W., Huang, E.W., Rao, N., Katariya, S., Wang, Z., Subbian, K.: Cold brew:
distilling graph node representations with incomplete or missing neighborhoods.
In: ICLR (2022)

44. Zhou, D., Bousquet, O., Lal, T., Weston, J., Schölkopf, B.: Learning with local and
global consistency. In: NIPS (2003)

45. Zhu, J., et al.: Textgnn: improving text encoder via graph neural network in spon-
sored search. In: WWW (2021)

Graphs

The Mont Blanc of Twitter: Identifying
Hierarchies of Outstanding Peaks

in Social Networks

Maximilian Stubbemann(B) and Gerd Stumme

Knowledge and Data Engineering Group, University of Kassel, Kassel, Germany
{stubbemann,stumme}@cs.uni-kassel.de

Abstract. The investigation of social networks is often hindered by
their size as such networks often consist of at least thousands of ver-
tices and edges. Hence, it is of major interest to derive compact struc-
tures that represent important connections of the original network. In
this work, we derive such structures with orometric methods that are
originally designed to identify outstanding mountain peaks and relation-
ships between them. By adapting these methods to social networks, it
is possible to derive family trees of important vertices. Our approach
consists of two steps. We first apply a novel method for discarding edges
that stand for weak connections. This is done such that the connectivity
of the network is preserved. Then, we identify the important “peaks” in
the network and the “key cols”, i.e., the lower points that connect them.
This gives us a compact network that displays which peaks are connected
through which cols. Thus, a natural hierarchy on the peaks arises by the
question which higher peak comes behind the col, yielding to chains
of peaks with increasing heights. The resulting “line parent hierarchy”
displays dominance relations between important vertices. We show that
networks with hundreds or thousands of edges can be condensed to a
small set of vertices and key connections between them.

Keywords: Social Networks · Orometry · Hierarchies

1 Introduction

Relationships in social networks are usually modelled as graphs. Examples of
this are follower relations on Twitter or friendships on Facebook. However, even
for medium-sized graphs with thousands of nodes to display and comprehend the
full structure is often not possible. Another problem is that the importance of
different edges often varies. This is especially possible in networks that arise as
projections from other graphs. Examples for this are networks of co-group mem-
berships of Youtube users or co-Follower networks on Twitter. Here, there will be
a large amount of “weak” edges where the set of shared neighbors in the original
graph was small. In such cases, it is crucial to derive compact representations of
structurally important relationships.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
D. Koutra et al. (Eds.): ECML PKDD 2023, LNAI 14171, pp. 177–192, 2023.
https://doi.org/10.1007/978-3-031-43418-1_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-43418-1_11&domain=pdf
http://orcid.org/0000-0003-1579-1151
http://orcid.org/0000-0002-0570-7908
https://doi.org/10.1007/978-3-031-43418-1_11

178 M. Stubbemann and G. Stumme

Often, the importance of individual vertices can be measured by a given
“height” function. For example, Twitter users can be evaluated by the amount
of followers and academic authors by their h-index. While it is intuitive to sample
the “top k” users as a subset, this may not lead to a reasonable representation
of the important nodes. This is for example the case if Twitter users with high
follower counts are surrounded by users with even higher counts. Hence, they
may have a overall large height which is however not outstanding for the specific
community they belong to. In contrast to just assume the “highest” vertices as
important, we propose a way to identify locally outstanding nodes in networks,
i.e., nodes with a large height with respect to their surrounding community.
Additionally, we derive hierarchical relations between these outstanding nodes.

Our approach adopts notions from the realm of orometry which are origi-
nally designed to evaluate the outstandingness of mountains. The (topographic)
prominence of a mountain quantifies its local outstandingness by computing the
minimal vertical descent that is needed to reach a higher peak. Paths with min-
imal descent to a higher peak deliver two important reference points for each
mountain. First, the lowest point of this path determines the prominence value.
This point is called the key col. Secondly, the first higher peak reached after
the key col is called the line parent. Adopting these notions to networks allows
to find locally outstanding nodes and to derive a compact tree structure which
displays how these outstanding nodes are dominated by each other.

When deriving such structures, the question arises on how to traverse the
network to find key cols and line parents. Here, it is natural to use the edges of
the graph. However, as mentioned above, some edges in the graph may represent
weak connections and should not contribute to the derived landscape. Hence,
it can be beneficial to remove edges as a preprocessing step. To this point,
we propose a method for parameter-free edge-reducing based on the relative
neighborhood graph (RNG) [26]. We will show that our edge-reduction technique
preserves connectivity. This is not guaranteed by other approaches which discard
edges via a weight threshold or only keep the k most important edges. Note, that
the key contribution of our approach are mountain graphs and line parent trees.
Discarding unimportant edges is an optional preprocessing step.

To sum up, our approach derives line-parent trees between locally outstand-
ing nodes. This significantly simplifies the study of networks because trees can
be satisfactory visualized and navigating through them is possible for larger
node sets. Furthermore, the derived hierarchy is not a subset of the original
edge relation. Thus, we create a novel view on social networks which is not cap-
tured by existing approaches. We provide our experimental code for the sake of
reproducibility1.

2 Related Work

Deriving compact structures that display important relations in the original
network is often done via sampling vertices or edges [10,12,15,16,21]. In contrast,
1 https://github.com/mstubbemann/mont-blanc-of-twitter.

https://github.com/mstubbemann/mont-blanc-of-twitter

The Mont Blanc of Twitter 179

Table 1. Important Notations

Name Notation Description

Landscape L = (G, d, h) Triple of a graph, a metric and a height
function

Mountain Graph MG = (VMG(L),EMG(L)
) Graph that reflects connections between

peaks and key cols

Line Parent Tree LP(L) = (P (L), ELP(L)) The line parent hierarchy of the peaks

Relative Neighborhood
Graph (RNG)

RNG(d) = (M,ERNG(d)) The relative neighborhood graph of a
metric space

Essential Landscape L(G,h) = (RNG(G), dSP, h) The landscape of a graph that uses the
shortest path distance as metric and the
RNG of the shortest path metric

other works focus on the aggregation of vertices and edges such that the original
network can be reconstructed [14,22,25]. All these methods have in common that
they return a proxy of the original network. Thus, they are not able to identify
hierarchies and connections of outstanding vertices that are not approximations
or explicit subgraphs of the original graph.

The study of hierarchic structures has gained recent interest. Lu et al. [17]
derives acyclic graphs by removing cycles. Other works use likelihoods to derive
suitable hierarchies [5,18] or provide a quantification on how “hierarchical” a
graph is [6]. In contrast to our approach, these methods are solely based on the
graph structure and are not able to incorporate the “height” of nodes. The usage
of the height function is a unique feature of our line-parent hierarchy, resulting
in a tree structure that capture different connections than existing approaches.

The idea of adapting methods from orometry to different areas has been
followed in recent works [9,19]. On the other hand, there is a variety of works
which study prominence in different abstract settings [20,23,24]. All these works
have in common, that they focus on the computation of prominence and not on
the underlying structure, i.e., the connections to key cols and line parents which
determine prominence values.

3 Mountain Graphs and Line Parent Trees

In this section we present our approach to derive small hierarchies between peaks
from larger networks. We first explain how one can derive mountain graphs and
line parents from networks that provide distance and height information. After-
wards, we propose an optional preprocessing step that uses the notion of rela-
tive neighborhood graphs (RNGs) [26] to remove a significant amount of edges
while preserving the connectivity of the original network. This will provide us
with an end-to-end pipeline for extracting line parent hierarchies from networks
by first discarding unimportant edges, which is described in Sect. 3.3 and by

180 M. Stubbemann and G. Stumme

Fig. 1. Generating the mountain graph and the line parent tree. In i), a graph is
displayed with the heights next to the nodes and with the edge weight put in the
middle of each edge. The RNG in ii) is derived by discarding the edge between i and
j, because h is closer to both i and j than they are to each other and by discarding the
edge between a and c because node b is closer to both of them than they are to each
other. From this, the Mountain Graph is derived in iii), where we display the shortest
path distances between the cols and peaks. Additionally, we derive from ii) the Peak
Graph which is displayed in iv). According to Definition 8, we then discard the edge
from g to i because j is closer to the key col f than i and we discard the edge between
d and i because j is closer to the key col h to arrive at v). From this, the line parent
tree vi) is derived by discarding the edge between d and g because the key col h over
which j is reached is closer to g than the key col f over which g is reached.

secondly computing the mountain graph and line parent tree from the resulting
network as described in Sect. 3.1 and Sect. 3.2. We rely on the prominence term
from Schmidt and Stumme [23]. A complete example of the procedure which
we develop in the following is given by Fig. 1. Table 1 contains the most impor-
tant notations. The proofs of all theorems presented in the following can be
found in the supplementary material which is available at https://github.com/
mstubbemann/mont-blanc-of-twitter.

3.1 Landscapes and Mountain Graphs

In the following, we will work with undirected graphs G = (V,E), where E ⊆(
V
2

)
. We call a function w : E → R>0 a weighting function of (V,E). If we have

a triple G = (V, e, w) where (V,E) is an undirected graph and w a weighting
function on (V,E), we call G a weighted graph. If we simply speak of graphs, we
refer to undirected and unweighted graphs.

A walk p of a graph G is a finite sequence p = (vi)ni=0 with vi ∈ V for all
i ∈ {0, . . . n} and {vj−1, vj} ∈ E for all j ∈ {1, . . . , n}. We call a walk p a path,
if for all i �= j it holds that vi �= vj or {i, j} = {1, n}. For each walk p = (v)ni=0,
we call start(p) := v0 the starting point and end(p) := vn the end point of p.
We follow the usual convention to not distinguish between walks p = (vi)ni=0

https://github.com/mstubbemann/mont-blanc-of-twitter
https://github.com/mstubbemann/mont-blanc-of-twitter

The Mont Blanc of Twitter 181

and the corresponding set {vi | i ∈ {0, . . . n}}, meaning that we say that v is
element of p and write v ∈ p. A graph is connected, if for all pairs u, v ∈ V there
is a walk from u to v. Additionally, let NG(v) := {u ∈ V | {u, v} ∈ E} be the
neighborhood of v in G. If clear from the context, we omit G and write N(v).

We consider graphs with a height function h : V → R≥0 and a metric, i.e.,
d : V × V → R≥0 with • ∀x, y ∈ V : d(x, y) = 0 ⇐⇒ x = y (reflexivity),
• ∀x, y ∈ V : d(x, y) = d(y, x) (symmetry) and • ∀x, y, z ∈ V : d(x, z) ≤
d(x, y) + d(y, z) (triangle inequality).

Definition 1 (Landscape). We call L = (G, d, h) a landscape if G = (V,E)
is a connected2 and finite graph, d is a metric on V and h is a height function on
V such that h has a unique maximum. We denote the highest point by max(L).

To sum up, a landscape is given by a set of points, where we can traverse the
points (via the given graph structure), where we know, how “high” each point
is and where we can measure distances. If G has a weighting function w on it, a
metric on the nodes of G is provided by the weighted shortest path distance.

As mentioned earlier, our aim is to display hierarchies of peaks and connec-
tions between peaks and cols. For this, we first have to define peaks and cols. In
the following, we will always assume to have given a landscape L = (G, d, h).

Definition 2 (Peaks, Mountain paths and Cols3). We call a node v ∈ V
a peak of L if h(v) > h(u) for all u ∈ N(v) and denote by P (L) the set of
peaks of L. A path p of G is a mountain path if start(p), end(p) ∈ P (L). We
denote by M(L) the set of all mountain paths. For each p ∈ M(L) we call
c(p) := argminv∈p h(p) the col of p. If this argmin is not unique, we choose the
point in the path which is visited first.

To compute the prominence of a peak, we have to identify the cols which
connect it with higher peaks.

Definition 3 (Cols of Peaks). For each peak v ∈ P (L)\{max(L)} we call the
set ↑L (v) := {p ∈ M(L) | start(p) = v, h(end(p)) > h(v),�u ∈ p \ {end(p), v} :
u ∈ P (L) ∧ h(u) > h(v)} the ascending paths of v and denote by CL(v) :=
{c(p) | p ∈↑L (v)} the set of all cols of v.

To sum up, the ascending paths p ∈↑L (v) are the paths from v to higher
peaks such that there is no higher peak w ∈ p and the cols of v are the lowest
points of the ascending paths. We omit the L in the index if clear from the
context. As prominence for mountain peaks is the minimal descent needed to go
to higher points, we are just interested in the highest cols.

2 This is assumed for simplicity. The following foundations can be applied to uncon-
nected graphs by studying every connected component for itself.

3 To simplify notations, our definition of cols allow only one col per path which differs
from the definition in geography,.

182 M. Stubbemann and G. Stumme

Fig. 2. Prominence: Here, the vertical positioning displays the height of the different
points. To compute the prominence of v5, we first identify the paths that lead to higher
peaks. Then, we determine the cols of these paths and compute the height difference
of v5 to these cols. The lower difference yield the prominence of v5.

Definition 4 (Key Cols and Prominence). Let promL(max(L)) :=
h(max(L)). For each peak v ∈ P (L)\{max(L)} we call the elements of KL(v) :=
{u ∈ CL(v) | h(u) = maxũ∈CL(v) h(ũ)} the key cols of v. For u ∈ KL(v) the
prominence of v is given via

promL(v) := h(v) − h(u).

Thus, the prominence of a peak v displays the vertical distance to the key
cols. For v ∈ P (L) \ {max(L)} the prominence is the minimal height difference
to a col, i.e., promL(v) = minu∈C(v) h(v) − h(u). Again, we write prom(v) and
K(v) if the choice of the landscape is clear. An illustration of the definition of
prominence is given by Fig. 2.

We are interested in the structure which determines the prominence of peaks,
i.e., in the higher peaks to reach from a specific peak and in the cols which
connects the peaks of the mountain landscape. Hence, we do not only study the
key cols of peaks but also the higher peaks that can be reached from their cols.

Definition 5 (Dominators). Let v be a peak of the landscape L. We then call
the set DL(v) := {end(p) | p ∈↑L (v) ∧ c(p) ∈ K(v)} the dominators of v.

Definition 6 (Mountain Graph). For a given landscape L = ((V,E), d, h),
let K(L) := ∪v∈P (L)KL(v) be the set of key cols of L and let VMG(L) := P (L)∪
K(L) be the critical points of L. Let for v ∈ P (L) be ↑KL (v) := {p ∈↑L (v) | c(p) ∈
KL(v)} the ascending paths of v with key cols as cols. Let then

EMG(L) :=
⋃

v∈P (L)

⎛

⎝
⋃

p∈↑K
L(v)

{{v, c(p)}, {c(p), end(p)}}
⎞

⎠ .

The graph MG = (VMG(L), EMG(L)) is called the mountain graph of L and the
landscape LMG := (MGL, d|MG, h|MG) the mountain landscape of L.

To sum up, if a peak v1 is connected via a key col u to a higher peak v2,
we add edges between v1 and u and between u and v2 to the mountain graph.
Thus, the mountain graph displays which peaks are connected through which key
cols. If clear from the context, we omit L and simply write MG = (VMG, EMG).
The mountain graph contains all relevant information for the computation of
prominence values as the following theorem shows.

The Mont Blanc of Twitter 183

Theorem 1. The following statements hold:

1. MG is connected.
2. P (L) = P (LMG)
3. Consider for each peak v ∈ P (L) \ {max(L)} of L the set N ′

MG(v) := {u ∈
NMG(v) | ∃v′ ∈ NMG(u) : h(v′) > h(v)}. Then:

u ∈ N ′
MG(v) ⇒ ∃u′ ∈ CL(v) : h(u′) ≥ h(u).

4. It holds for v ∈ P (L) \ {max(L)} that:

promL(v) = min
u∈N ′

MG(v)
(h(v) − h(u)).

Theorem 1 shows that to study relations between cols and peaks that determine
prominence values, it is sufficient to check the cols to which a peak is connected
in the mountain graph. Note, that the key cols and the paths between peaks
passing through them have to be determined to derive the mountain graph.
Hence, Theorem 1 does not allow for a faster computation of prominence values.
Instead, it provides a representation that can be used to observe important
connections between peaks and cols.

3.2 Line Parent Trees

As the prominence of mountain peaks is computed by descending to key cols
and then ascending to higher peaks, a hierarchy between peaks arises by the
question to which higher peak one can traverse from a key col of a given peak.

Definition 7 (Peak Graph). Let

EP (L) :=
⋃

v∈P (L)

{{start(p), end(p)} | p ∈↑KL (v)}.

We call PG(L) := (P (L), EP (L)) the peak graph of L and we call

TPG(L) := {(start(p), c(p), end(p)) | p ∈↑KL (v)}

the defining triples of PG(L).

Peaks may be connected to different key cols and different higher peaks. To
define a meaningful hierarchy on the peaks, we use the metric d to determine a
unique line parent for all peaks.

Definition 8 (Line Parents). Let T ′
PG(L) := {(v, u, ṽ) ∈ TPG | �v′ :

(v, u, v′) ∈ TPG ∧ (d(u, v′) < d(u, ṽ) ∨ (d(u, v′) = d(u, ṽ) ∧ h(v′) > h(ṽ)))}.
Let ELP(L) := {{v, ṽ} | ∃u : (v, u, ṽ) ∈ T ′

PG(L) ∧ �u′, v′ : (v, u′, v′) ∈ T ′
PG(L) ∧

d(v, u′) < d(v, u)}. We call LP(L) := (P (L), ELP(L)) the line parent graph of L.
If {u, v} ∈ ELP(L) with h(v) > h(u), v is a line parent of u.

184 M. Stubbemann and G. Stumme

Again, we omit L when possible without confusion. In Definition 8, we first
remove edges to higher peaks that are further away from the corresponding key
col. If there are multiple higher peaks with the exact same distance to the key
col, we keep the highest peak. Then we remove edges where the key col is further
away. If for all v ∈ P (L) \ max(L) the line parent is unique, LP(L) is a tree.

Theorem 2. If for each peak v ∈ P (L) \ {max(L)} the line parent is unique,
then LP(L) is a tree.

The uniqueness of the line parent is only violated in two cases. First, if there
are multiple peaks being reached after the same key col with the exactly same
distance to the key col and the same height. In such a case, we can enforce
the uniqueness by sampling one of the peaks. Secondly, if there are key cols
c1, . . . , cn with corresponding higher peaks p1 . . . pn with the exact same distance
to the point. In such a case, we choose pi such that d(ci, pi) is minimal. If these
minimum is reached multiple times, we enforce uniqueness by sampling one of
the higher peaks with minimal distance to the corresponding key col.

To sum up, we enforce the uniqueness of the line parent. The simple edge
structure of trees enables a satisfactory visualization even for medium sized node
sets. The line parent tree can also be used to study dominance relationships with
a non peak as a starting point. In this case, we suggest to navigate through the
line parent tree starting with the closest peak with respect to the given metric.

3.3 Discarding Edges via Relative Neighborhood Graphs

Let G = (V,E,w) be a weighted graph and let h : V → R≥0 be a height function
on G. In the following, we extend this structure to a landscape by using the
shortest path metric on G. In practical applications, the amount of peaks will
often be very low. One reason for this is the huge amount of connections one
may have in social networks. Let us for example assume to have a weighted co-
follower graph (for example weighted with Jaccard-distance) where the height
function is given by the amount of followers. Here, all pairs of users with just
one common follower would be connected and thus nearly all users would have
a “higher” neighbor and thus will not be peaks. Hence, it is of major interest to
only keep edges which stand for a strong connection, i.e., edges between users
with a large amount of common followers.

A straight-forward way to remove edges would be by choosing a k ∈ N and
keep for all vertices only the k edges with the smallest weights or to choose a
t ∈ (0, 1) and remove all edges with weights higher than t. However, besides the
disadvantage that in both cases a parameter has to be chosen, this procedure
can lead to disconnected graphs. Restricting to the biggest connected component
of the resulting graph would then lead to the discarding of whole regions of the
graph. To this end, we develop in the following a parameter free, deterministic
edge sampling approach which always preserves connectivity. This approach is
based on the relative neighborhood graph (RNG) [26]. The RNG derives a graph
structure from a metric space by connecting points nearby. More specifically, two
points are connected if there is no third point which is closer to both of them.

The Mont Blanc of Twitter 185

Definition 9 (Relative Neighborhood Graph). The relative neighborhood
graph of a metric space (M,d) is given by the undirected graph RNG(d) :=
(M,ERNG(d)) with ERNG(d) ⊆ (

M
2

)
such that {m1,m2} ∈ ERNG(d) if and only if

there does not exist m3 ∈ M with max({d(m1,m3), d(m2,m3)}) < d(m1,m2).

Our goal is to thin out graphs by computing the RNGs. Hence, it is of
fundamental interest that RNGs are connected. For points in R

2, it has been
shown that the RNG is a supergraph of the minimum-spanning-tree [26] which
implies connectivity [8]. Because RNGs are commonly only studied in R

d with Lp

metrics we could not find a proof for the connectivity in arbitrary finite metric
spaces. Hence, we prove it in the supplementary material.

Theorem 3 (Connectivity of relative neighborhood graph). Let (M,d)
be a finite metric space. Then RNG(d) is connected.

What still needs to be shown is that deriving RNGs from the shortest-path
metric is indeed an edge-reduction technique, i.e., that edges are just removed
and that is not possible that new edges are added.

Theorem 4 (RNG as Edge-Reduction). Let G = (V,E,w) be a connected,
undirected and weighted graph and dSP : V × V → R≥0 be the shortest path
metric on G. Then it holds that ERNG(dSP) ⊆ E.

In the following, we use the term relative neighborhood graph of G, denoted
by RNG(G), which will always refer to the RNG with respect to the shortest-
path-metric. A sketch of an edge-reduction on a graph is given as part of Fig. 1.

For a weighted graph G = (V,E,w) with a height function h, our standard
procedure is to 1. compute the weighted shortest path metric dSP, 2. compute
RNG(G), 3. derive from this the following landscape.

Definition 10 (Essential Landscape). Let h : V → R≥0 be a height function
on a graph G = (V,E,w). Let dSP be the weighted shortest path metric on G.
We call

L(G,h) := (RNG(G), dSP, h)

the (essential) landscape of G and MG(G,h) := MG(L(G,h)) the essential
mountain graph of G. We call LP(G,h) := LP(L(G,h)) the (essential) line
parent tree of G. If clear from the context, we simply write MG(G) and LP(G).

Complexity. The naive approach to compute the RNG for a finite metric space
(M,d) would be to check for all pairs m1 �= m2 ∈ M whether there exists
m3 which is closer to both of them. This results in an algorithm with runtime
O(|M |3) [26]. For R

d with a lp metric, there are algorithms with better run-
time [1,7,26]. However, these results can not be applied to shortest path metrics.
To compute RNG(G) for a graph G = (V,E), we can use Theorem 4 to speed
up the computation as we only have to check the elements of E and not all node
pairs. Hence, computing the RNG has complexity O(|E|||V |).

186 M. Stubbemann and G. Stumme

Table 2. Network statistics. In the first table, we display from left to right: 1.) the
number of vertices of the network, 2.) its density 3.) the density of the RNG 4.) the
number of vertices of the mountain graph, 5.) the density of the mountain graph, 6.)
the number of vertices in the line parent tree, 7.) its maximum width and 8.) its depth.
In the second table, we show the node sizes and degrees of the sampled graphs serving
a) as a comparison for discarding edges via the RNG procedure and b) for serving as a
comparison for the mountain graph which is computed from the RNG. For the latter,
we apply the sampling baselines on the RNG, not on the original network itself.

|V | DG DRNG(G) |VMG| DMG |VLP| WLP DPLP

Twitter>10K 6635 .9958 .0005 1171 .1089 652 88 20

Twitter>100K 430 1.0000 .0064 146 .1084 84 14 13

ECML/PKDD 742 .0123 .0052 190 .1957 98 21 10

KDD 1674 .0100 .0036 219 .2236 115 30 8

PAKDD 889 .0124 .0054 132 .2155 67 27 5

RNG Baselines MG Baselines

ES CNARW [16] RPN [12] RCMH [15]

|V | DG |V | DG |V | DG |V | DG

Twitter>10K 5192.8 .0008 5174 .0007 271.1 .0079 1171 .0021

Twitter>100K 374.8 .0084 325.5 .0112 35.9 .0652 146 .0168

ECML/PKDD 650.7 .0067 560 .0092 77.1 .0304 190 .0153

KDD 1575.5 .0041 1407.5 .0041 67.2 .0390 219 .0138

PAKDD 814.7 .0064 704.1 .0087 34.3 .0812 132 .0222

4 Line Parent Trees of Real-World Networks

We experiment with networks built from a Twitter follower network [3,4,11]
which we found at SNAP [13] and with networks that display co-author rela-
tions. These networks are derived from the Semantic Scholar Open Research
Corpus [2]. From the Twitter dataset, we derive two weighted co-follower net-
works. In these networks two users have an edge if they have a common follower.
The edges are weighted via Jaccard distance. We derive a version containing
users with at least 10, 000 followers (Twitter>10K) and a network containing
users with at least 100, 000 followers (Twitter>100K). Here, the height of a
user is given via the amount of followers.

The co-author networks are derived by considering communities of authors
that regularly publish at a specific conference. We derive datasets for the Euro-
pean Conference on Machine Learning and Principles and Practice of Knowledge
Discovery in Databases (ECML/PKDD), the SIGKDD Conference on Knowl-
edge Discovery and Data Mining (KDD) and the Pacific-Asia Conference on
Knowledge Discovery and Data Mining (PAKDD). The heights of the authors
are given via h-indices.

The Mont Blanc of Twitter 187

For all graphs, we use well-established measures to get further insights. To
be more detailed, we display node sizes and densities of the networks themselves,
the RNGs and the mountain graphs derived from the RNGs. Additionally, we
display node sizes, maximum widths and depths of the line-parent trees derived
from the RNGs. The results can be found in Table 2. Plots of labeled trees and
details on dataset creation are part of the supplementary material.4

4.1 Comparison with Sampling Approaches

To further understand the steps of our approach, we compare them with com-
monly used sampling approaches [12,15,16]. To be more specific, we sample edges
from the original network to get graphs which have an equal amount of edges
as the RNG. Then we take the biggest connected component of these graphs.
We call these methods the RNG Baselines. We use two sampling approaches:
First, we sample edges with the probability of an edge e to be chosen being
proportional to 1 − w(e), where w(e) is the weight of the edge5. We call the
resulting baseline the Edge Sampling (ES) approach. As a second comparison,
we use a weighted version of CNARW [16], a modern random walk approach.

Additionally, we use sampling approaches to sample from the RNG in such
a way, that we have an equal amount of nodes as in the mountain graph and
take the biggest component of the resulting network. We call these methods the
MG Baseline. First, we sample nodes by their PageRank value viaRPN [12].
Again, we also use a modern random walk based approach, namely RCMH [15].
The CNARW method used above relies on common neighbors. Since triangles in
the RNG are very uncommon (for these, 2 of the 3 corresponding edges in the
original graph need to have the same distance weight), we use RCMH instead.

Note, that we use the comparison with other methods to contextualize our
novel structures. As our structures have a different purpose, namely displaying
important connections that are derived from the original network, they are not
directly comparable to regular sampling approaches. These approaches derive
small graphs that behave similar to the original graph with respect to specific
measures. This makes it unreasonable to interpret the comparison to our base-
lines as a competition where higher/lower node sizes or densities are, in some way,
better. As our comparison methods include random sources, we repeat them 10
times and report means. Statistics, including sizes of the derived RNGs, moun-
tain graphs and line parent trees, can be found in Table 2. Additionally, we
include node sizes and densities for all comparison approaches.

We observe that computing the RNG reduces the density by a large margin.
It stands out, that this effect is stronger for the dense Twitter networks. When
sampling an equal amount of edges, there are nodes which do not belong to the
biggest connected component anymore. This results in a higher density of the
(biggest component) of the networks created by sampling compared to the RNG.

4 https://github.com/mstubbemann/mont-blanc-of-twitter.
5 We use 1 − w(e) instead of w(e) because we assume edge weights to be distances,

not similarities.

https://github.com/mstubbemann/mont-blanc-of-twitter

188 M. Stubbemann and G. Stumme

Table 3. Mean, median and maximum of the minimal shortest path distance (MSPD)
from all non-peaks v to the set P of all peaks (left) to the set H which contains the
|P | highest nodes of the network (right).

d(P)Mean d(P)Median d(P)Max d(H)Mean d(H)Median d(H)Max

Twitter>10K 0.87 0.88 1.00 0.90 0.91 1.00

Twitter>100k 0.86 0.87 0.97 0.92 0.95 0.99

ECML 1.28 1.00 2.98 1.74 1.91 4.91

KDD 1.30 1.00 2.95 1.83 1.95 3.90

PAKDD 1.46 1.00 3.78 1.94 1.96 4.90

The resulting line parent trees are much smaller than the original network,
reducing the node set by a factor of about 5 to 10 times. Another remarkable
point is that the mountain graph is always denser than the RNG from which it is
computed and than the graphs which are sampled via the comparison methods.
An explanation is that edges from a peak v to a col u in the mountain graph
correspond to paths (not edges!) in the RNG. As the amount of paths in a graph
is commonly remarkably higher than the amount of edges, this could be one
reason for the higher density of the mountain graph.

4.2 Distances to Line-Parent Trees

To investigate to which extent line parent trees are representative for the struc-
ture of the whole network, we compute how “dense” the line parent trees lay in
the networks, i.e. the shortest path lengths from all non-peaks to the peaks. To
evaluate whether choosing locally outstanding nodes lead to a better representa-
tion than choosing nodes solely based on their height, we compare our approach
with a “naive” approach of assuming the n highest points to be relevant, where
n is the amount of peaks. To be more detailed, we compute for each non-peak v
the minimal shortest path distances (MSPD) to all peaks in the original graph
G. We do the same using the n highest points instead of the set of peaks. We
report means, medians and maximum values over the MSPDs of all non-peaks,
the results can be found in Table 3.

Our results show that locally outstanding nodes better reflect the overall
network then just choosing the highest nodes, with median and mean values of
the MSPDs being fundamentally lower. Furthermore, median MSPDs to peaks
are always not higher then 1. In contrast, MSPDs to the “highest” nodes have
median values of nearly 2 for the sparse co-author networks. This indicates that
selecting locally outstanding points indeed lead to a more reasonable represen-
tation instead of selecting nodes solely by their height, ignoring spatial informa-
tion. Note, that we compute distances in a weighted graph. Hence, shortest path
distances (and thus medians and maxima over them) do not have to be integers.

5 Experiments on Random Data

To investigate sizes and densities of the RNG, the mountain graph and the line
parent tree, we additionally experiment with randomly generated data. Here,

The Mont Blanc of Twitter 189

Fig. 3. Experiments on random data. In both rows, the set A on which is projected has
size 100. The other set has size 100, 000 on the first row and size 100 in the second row.
The x-axes display the densities of the original bipartite graph B. The left plots display
the densities for the resulting network G, which is the biggest connected component of
the weighted projection, the line parent tree RNG(G) and the mountain graph MG(G).
The right pictures plot the node size of G,MG(G) and LP(G).

we start with a randomly generated bipartite graph with vertex sets M1,M2

with |M1| = 100 and |M2| ∈ {100000, 100}. We then project on the vertex set
A and set for two vertices with an edge in the resulting graph the edge weight
to the Jaccard distance. The graph G is then given via the biggest connected
component of this graph. As height function, we map each vertex to the amount
of neighbors in the original bipartite network. This procedure is motivated by the
background of often investigated real-world networks. Co-author networks are
for example projection from the bipartite author-publication graph. Here, the
corresponding height function then would be the amount of papers of an author,
where each author is connected to multiple publications but only a small amount
of the overall publications. This leads to a small density of the bipartite network.

We generate networks for different densities d. Namely, we iterate d
through {0.0001, 0.0002, . . . , 0.01999} for |M2| = 100, 000 and through
{0.01, 0.02, . . . 0.99} for |M2| = 100. The experiments with different sizes of |M2|
allow us to investigate if our methods behave fundamentally different for net-
works of different kinds. From G we compute the RNG(G), the mountain graph
MG(G) and the line parent hierarchy LP(G)) of the essential landscape. For each
d and |M2|, we repeat this procedure 20 times and display means. The results
can be found in Fig. 3. The following facts stand out.

190 M. Stubbemann and G. Stumme

– The density of both the RNG and the mountain graph of the RNG are growing
in a significant smaller pace than the density of G. Considering the case
|M2| = 100, 000 it is remarkable, that, when G has a density of nearly 1, the
density of both other graphs are still under 0.3.

– The characteristic points for describing the resulting mountain landscape
build indeed a subset that is remarkably smaller than the vertex size of the
biggest component of G.

– Considering the second row, it stands out that for very high densities of nearly
1 of the original bipartite network, the density and thus the amount of edges
of the RNG start to rise rapidly. We assume that this is driven by the case,
that, if the bipartite graph is nearly complete, there will be a large amount of
vertex pairs with the same neighbor set in the bipartite graph. Thus, nearly
all shortest path distances are equal and just very few edges will be discarded.
In consequence, the mountain graph is built from a nearly complete graph
where nearly all edges have similar weights. Thus, there will be only a small
amount of peaks and the mountain graph is nearly vanishing.

Note, that we use a height that is directly derived from the graph. Such
height functions are indeed reasonable. For example, the amount of followers of
Twitter users in co-follower graphs is indeed a useful indicator of importance.

6 Conclusion and Future Work

In this work, we showed how the notions of peaks, cols and line parents, which are
originally designed to characterize connections and hierarchies between moun-
tains, can be adapted to networks. We discussed how these notions can be used to
identify important vertices and meaningful connections and hierarchies between
them. Our method further benefits from a novel preprocessing procedure that
removes unimportant edges without hurting the connectivity of the network.
This preprocessing step is based on relative neighborhood graphs which were
originally invented to connect data points in two-dimensional euclidean spaces.

Our experiments indicate that our method finds dependencies and hierarchies
from the original network that are remarkably smaller than the original graph
and therefore can enhance the comprehension of real-world social networks.

Future work will investigate the application to further kinds of networks
such as friendship networks on Facebook. As some of these networks may be
unweighted, the question arises on how to use our RNG procedure in this case. On
the other hand, it would be interesting to involve temporal aspects in networks.
How does the line parent hierarchy of social networks change over time?

Acknowledgment. This work is partially funded by the German Federal Ministry of
Education and Research (BMBF) under grant 01PU17012A.

The Mont Blanc of Twitter 191

References

1. Agarwal, P.K., Matousek, J.: Relative neighborhood graphs in three dimensions.
In: Annual Symposium on Discrete Algorithms (1992)

2. Ammar, W., et al.: Construction of the literature graph in semantic scholar. In:
NAACL (2018)

3. Boldi, P., Rosa, M., Santini, M., Vigna, S.: Layered label propagation: a multireso-
lution coordinate-free ordering for compressing social networks. In: WWW (2011)

4. Boldi, P., Vigna, S.: The webgraph framework I: compression techniques. In:
WWW (2004)

5. Clauset, A., Moore, C., Newman, M.E.: Hierarchical structure and the prediction
of missing links in networks. Nature 453, 98–101 (2008)

6. Gupte, M., Shankar, P., Li, J., Muthukrishnan, S., Iftode, L.: Finding hierarchy in
directed online social networks. In: WWW (2011)

7. Jaromczyk, J.W., Kowaluk, M.: A note on relative neighborhood graphs. In:
Annual Symposium on Computational Geometry, Waterloo (1987)

8. Jaromczyk, J.W., Toussaint, G.T.: Relative neighborhood graphs and their rela-
tives. Proc. IEEE 80, 1502–1517 (1992)

9. Karatzoglou, A.: Applying topographic features for identifying speed patterns using
the example of critical driving. In: ACM SIGSPATIAL International Workshop on
Computational Transportation Science (2020)

10. Krishnamurthy, V., Sun, J., Faloutsos, M., Tauro, S.L.: Sampling internet topolo-
gies: how small can we go? In: International Conference on Internet Computing
(2003)

11. Kwak, H., Lee, C., Park, H., Moon, S.B.: What is twitter, a social network or a
news media? In: WWW (2010)

12. Leskovec, J., Faloutsos, C.: Sampling from large graphs. In: KDD (2006)
13. Leskovec, J., Krevl, A.: SNAP Datasets: Stanford large network dataset collection

(2014). http://snap.stanford.edu/data
14. Li, F., Zou, Z., Li, J., Li, Y.: Graph compression with stars. In: Yang, Q., Zhou,

Z.-H., Gong, Z., Zhang, M.-L., Huang, S.-J. (eds.) PAKDD 2019. LNCS (LNAI),
vol. 11440, pp. 449–461. Springer, Cham (2019). https://doi.org/10.1007/978-3-
030-16145-3 35

15. Li, R., Yu, J.X., Qin, L., Mao, R., Jin, T.: On random walk based graph sampling.
In: IEEE International Conference on Data Engineering (2015)

16. Li, Y., et al.: Walking with perception: efficient random walk sampling via common
neighbor awareness. In: IEEE International Conference on Data Engineering (2019)

17. Lu, C., Yu, J.X., Li, R., Wei, H.: Exploring hierarchies in online social networks.
IEEE Trans. Knowl. Data Eng. 28, 2086–2100 (2016)

18. Maiya, A.S., Berger-Wolf, T.Y.: Inferring the maximum likelihood hierarchy in
social networks. In: IEEE International Conference on Computational Science and
Engineering (2009)

19. Nelson, G.D., McKeon, R.: Peaks of people: using topographic prominence as a
method for determining the ranked significance of population centers. Prof. Geogr.
71, 342–354 (2019)

20. Pavĺık, J.: Topographic spaces over ordered monoids. Math. Appl. 4, 31–59 (2015)
21. Rafiei, D., Curial, S.: Effectively visualizing large networks through sampling. In:

IEEE Visualization Conference (2005)
22. Royer, L., Reimann, M., Andreopoulos, B., Schroeder, M.: Unraveling protein net-

works with power graph analysis. PLoS Comput. Biol. 4, e1000108 (2008)

http://snap.stanford.edu/data
https://doi.org/10.1007/978-3-030-16145-3_35
https://doi.org/10.1007/978-3-030-16145-3_35

192 M. Stubbemann and G. Stumme

23. Schmidt, A., Stumme, G.: Prominence and dominance in networks. In: Faron
Zucker, C., Ghidini, C., Napoli, A., Toussaint, Y. (eds.) EKAW 2018. LNCS
(LNAI), vol. 11313, pp. 370–385. Springer, Cham (2018). https://doi.org/10.1007/
978-3-030-03667-6 24

24. Stubbemann, M., Hanika, T., Stumme, G.: Orometric methods in bounded metric
data. In: IDA (2020)

25. Toivonen, H., Zhou, F., Hartikainen, A., Hinkka, A.: Compression of weighted
graphs. In: KDD (2011)

26. Toussaint, G.T.: The relative neighbourhood graph of a finite planar set. Pattern
Recognit. 12, 261–268 (1980)

https://doi.org/10.1007/978-3-030-03667-6_24
https://doi.org/10.1007/978-3-030-03667-6_24

RBNets: A Reinforcement Learning
Approach for Learning Bayesian Network

Structure

Zuowu Zheng, Chao Wang, Xiaofeng Gao(B), and Guihai Chen

MoE Key Lab of Artificial Intelligence, Department of Computer Science and
Engineering, Shanghai Jiao Tong University, Shanghai, China

{waydrow,wangchao.2014}@sjtu.edu.cn, {gao-xf,gchen}@cs.sjtu.edu.cn

Abstract. Bayesian networks are graphical models that are capable
of encoding complex statistical and causal dependencies, thereby facili-
tating powerful probabilistic inferences. To apply these models to real-
world problems, it is first necessary to determine the Bayesian network
structure, which represents the dependencies. Classic methods for this
problem typically employ score-based search techniques, which are often
heuristic in nature and have limited running times and performances that
do not scale well for larger problems. In this paper, we propose a novel
technique called RBNets, which uses deep reinforcement learning along
with an exploration strategy guided by Upper Confidence Bound for
learning Bayesian Network structures. RBNets solves the highest-value
path problem and progressively finds better solutions. We demonstrate
the efficiency and effectiveness of our approach against several state-
of-the-art methods in extensive experiments using both real-world and
synthetic datasets.

Keywords: Bayesian network · Structure learning · Reinforcement
learning

1 Introduction

A Bayesian network is a probabilistic graphical model that represents prob-
abilistic dependencies between random variables in a domain compactly and
intuitively. It has a wide range of applications in data mining, classification prob-
lems, medical diagnosis and engineering decisions, etc. Learning the structure of
Bayesian networks involves finding the acyclic graph that fits a discrete dataset
best over the random variables. It is the basis for solving practical problems, but
is a very challenging task in machine learning.

This work was supported by the National Key R&D Program of China
[2020YFB1707900], the National Natural Science Foundation of China [62272302,
62202055, 62172276], Shanghai Municipal Science and Technology Major Project
[2021SHZDZX0102], and CCF-Ant Research Fund [CCF-AFSG RF20220218].

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
D. Koutra et al. (Eds.): ECML PKDD 2023, LNAI 14171, pp. 193–208, 2023.
https://doi.org/10.1007/978-3-031-43418-1_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-43418-1_12&domain=pdf
https://doi.org/10.1007/978-3-031-43418-1_12

194 Z. Zheng et al.

In this work, we consider the problem of learning an appropriate Bayesian
network structure for a given dataset and scoring function. Such score-based
learning has been shown to be NP-hard [6], so much early research focused
on local search strategies, searching for a structure that optimizes a particular
scoring function, such as greedy hill climbing approaches [9,10,12], ordering-
based search [14,19,25], and ant colony optimization [4]. They all take as input
scores of candidate parent sets of all variables, and use various optimization
techniques to find a structure that is a good predictor of the data. Unfortunately,
these algorithms are unable to guarantee the quality of the learned networks.
Thus, it motivates the research of more principled search algorithms.

Over the past several decades, exact algorithms have been studied exten-
sively and there have been proposals based on A* search [5,28], dynamic pro-
gramming [21,23], branch and bound [3,16], model averaging [15], and integer
linear programming [7,8,13]. Besides, some reinforcement learning based meth-
ods are proposed, such as RL-BIC [29] and CORL [26]. These methods achieve
good performance on smaller networks but fail in domains with a large number
of variables unless the cardinality of parent sets is severely restricted.

In this paper, we view the problem of learning a Bayesian network structure
via the optimization of a scoring function as a path-finding problem in an order
graph [28]. A straightforward approach to solve this path-finding problem is to
resort to A* [28]. However, because the number of nodes in this order graph is
exponential in the number of variables, even A* struggles to solve this problem
as the number of variables increases. The goal of this paper is to propose a
novel method based on reinforcement learning (RL) to improve the learning
performance.

RL is a machine learning method [24] concerned with how agents ought to
take actions in an environment so as to maximize some notion of expected cumu-
lative reward. Recently, it has been shown [17,22] that it can scale to decision-
making problems that were previously intractable, such as high-dimensional state
and action spaces. It is therefore natural to use RL to tackle this path-finding
problem. To demonstrate this idea, we apply Deep Q-network (DQN) to find a
highest-value path in the order graph, which achieves good performance in many
fields. The proposed approach RBNets amounts to doing a stochastic search
guided by the costs of the edges of the graph while A* searches for a short-
est path guided by a heuristic function. Upper Confidence Bound (UCB) based
strategy is utilized for better exploration rather than simple ε-greedy strategy.

The contributions of this paper are as follows: (1) we propose a novel method
RBNets based on deep reinforcement learning for Bayesian network structure
learning; (2) we integrate it with a UCB-based exploration strategy to tackle
the dilemma of exploration and exploitation; (3) we thoroughly validate our
propositions on diverse sets of experiments using several real-world and synthetic
datasets, which shows the efficiency and effectiveness of our proposition.

RBNets 195

2 Preliminaries

In this section, we first review the problem of Bayesian Network Structure Learn-
ing (BNSL). Then we introduce the local score and pruning rules for calculating
the candidate parent sets. We formulate the BNSL as a shortest-path prob-
lem [28] using order graph. It is the basis of our proposed method.

2.1 Bayesian Network Structure Learning

A Bayesian network is a directed acyclic graph (DAG) defined as G = (V, E),
where V = {X1,X2, ...,Xn} is a set of random variables and E ⊆ V × V
is a collection of arcs. A directed arc from Xi to Xj denotes a probabilistic
dependence between the two variables, which also means Xi is a parent of
Xj . The parent set of Xj is denoted by Πj . Numerically, a conditional prob-
ability distribution P (Xj | Πj) describes the dependence between Xj and the
variables in Πj . The joint probability over all variables factorizes as the prod-
uct of all the conditional probability distributions in the Bayesian network,
P (X1,X2, ...,Xn) =

∏n
i=1 P (Xi | Πi).

Given a dataset D = {D1,D2, ...,Dm}, where Di is a set of values over
variables in V. The goal of structure learning is to find a DAG G that optimizes a
given scoring function, which measures the goodness of fit of a network structure
to D. In this work, as customary, we assume that each variable is discrete with
a finite number of possible values, and no data point has missing values in D.
Thus we can define the BNSL as follows.

Definition 1 (BNSL). The optimal Bayesian network structure

G∗ = arg max
G∈G

ŝ(G,D), (1)

where G is the set of all possible DAGs and ŝ is the scoring function.

To make the problem tractable, the standard approach is to use a scor-
ing function that is decomposable over the Bayesian network’s structure, i.e.,
the score of a network can be decomposed into a sum of node scores ŝ(G) =∑n

i ŝi(Πi) [12]. The values of ŝi(Πi) are often called local scores.

2.2 Local Scores

Many decomposable scoring functions can be used to measure the quality of a
network structure, such as the K2, BDeu, BDe, MDL or BIC scores [15]. For con-
creteness, we present our work with the Bayesian Information Criterion (BIC),
i.e., ŝi = BIC. However, our method could be extended to other decomposable
scoring functions. BIC is defined as follows.

BIC(G) =
n∑

i=1

BIC(Xi, Πi) where

BIC(X, Π) =
∑

π∈Π

∑

x∈X

(
mx,π log θ̂x|π

)
− log m

2
(|X| − 1) |Π| ,

196 Z. Zheng et al.

where π ∈ Π (resp. x ∈ X) denotes an assignment of all variables in Π (resp.
of variable X), θ̂x|π is the maximum likelihood estimate of the conditional prob-
ability P (X = x | Π = π), mx,π denotes the number of data points consistent
with (X = x ∧ Π = π), and |Π| (resp. |X|) represents the number of possible
instantiations of variables in Π (resp. of variable X) with the convention that
|∅| = 1.

Given n variables, there are 2n−1 possible parent sets for each variable. Thus,
the size of the solution space grows exponentially in the number of variables. It is
therefore impractical to calculate local scores for all parent sets. The computation
of this process can be sped up by adopting exact pruning approaches, which
guarantees not to remove the optimal network from consideration. There are also
other pruning strategies, e.g., restricting the cardinality of parent sets. However,
they could eliminate parent sets that are in a globally optimal network. We utilize
the following theorems that hold in particular for the BIC scoring function. The
first theorem [3] is useful and can handle the issue of having to compute scores
for all possible parent sets.

Theorem 1. The optimal graph G has at most O(log m) parents per node.

Therefore, there is no need to compute scores for any parent set with a size larger
than O(log m), because these parent sets are guaranteed to be suboptimal.

This second theorem [3] provides a bound to discard parent sets without even
inspecting them.

Theorem 2. Let Xi be a variable with Πi ⊂ Π ′
i two possible parent sets such

that ti(Π ′
i)+ŝi(Πi) > 0, where ti(Π ′

i) = |Π ′
i| (|Xi|−1). Then Π ′

i and all supersets
Π ′′

i ⊃ Π ′
i are not optimal parent set of Xi.

The entropy of a parent set is also a useful measure for pruning. [2] gave a
pruning rule that provides an upper bound on conditional entropy of candidate
parent sets and their subsets. The entropy for a variable Xi and parent set Πi

are defined as follows, respectively.

H(Xi) = −
|Xi|∑

k=1

mik

m
log

mik

m
(2)

H(Πi) = −
|Πi|∑

j=1

mij

m
log

mij

m
, (3)

where mik and mij represent, respectively, the number of times (Xi = xik) and
(Πi = πij) appear in the dataset. The conditional information is defined as
usual,

H(X | Y) = H(X ∪ Y) − H(Y). (4)

Theorem 3. Let Xi be a variable, and Πi be a parent set for Xi. Let Xj /∈ Πi

such that m ·min{H(Xi | Πi),H(Xj | Πi)} ≥ (1−|Xj |) · ti(Πi). Then the parent
set Π ′

i = Πi ∪ {Xj} and all its supersets can be safely ignored when building the
list of parent sets for Xi.

RBNets 197

It can be used for pruning the search space of parent sets without having to
compute their BIC scores.

After pruning, the remaining parent sets are defined as potentially optimal
parent sets (POPS). We denote the set of POPS as Pi for variable Xi. Given
POPS as the input, the BNSL problem can be converted into the following form.

G∗ = arg max
G∈G

n∑

i=1

ŝi(Xi,Πi), (5)

where Πi is the parent set of Xi in G and Πi ∈ Pi. In practice, POPS are of
course not computed, but the two previous theorems are used to stop the search
for known suboptimal subsets.

2.3 Order Graph

Fig. 1. RBNets framework. We have three components in our method. (a) Order graph
is the environment of the agent, from which it can extract states and return rewards.
This figure is an example order graph with three variables. (b) We use random walk
to learn latent representations of states in the order graph. The agent explores order
graph based on UCB search strategy and takes action in the environment. Finally it
finds the ordering of variables. (c) From the ordering and POPS, we can calculate the
parent sets and rebuild the Bayesian network structure.

Learning the structure of a Bayesian network can be seen as a search in a state-
space graph (see Fig. 1(a) for an example with three variables). For a problem
with n variables, this graph contains 2n nodes. Each node represents a subset of
variables. For ease of presentation, we identify nodes and subsets. They can be
organized into n + 1 layers. The top node corresponding to the empty set is the
start node at layer 0, while the bottom node, which includes all variables, is the
goal node at layer n. For any subset U and any variable Xi 	∈ U , an arc connects
U to U ∪ {Xi}. In our context, an arc corresponds to adding a new variable Xi

198 Z. Zheng et al.

to a subnetwork whose variables are in U . The value of an arc is defined as

cost(U → U ∪ {Xi}) = BestCost(U,Xi)
= max

Πi⊆U,Πi∈Pi

ŝi(Xi,Πi), (6)

where BestCost(U,Xi) is the score of an optimal parent set for Xi in predeces-
sor set U with the POPS constraint. For example, the edge from {X1,X3} to
{X1,X2,X3} has a cost equal to BestCost({X1,X3},X2), which is the score of
the parent set of X2 optimal in {X1,X3}.

With this definition of search graph, each path from the start node
to the goal node represents an order of the variables; that is, each node
can only find their parents in its predecessor. For example, the path
∅, {X2}, {X1,X2}, {X1,X2,X3} denotes the variable ordering X2,X1,X3, so
this graph is called order graph. The value of a path is equal to the sum of
the value of all the edges over the path. The longest path is then the path with
the maximum total value in the order graph.

From a longest path from the start node to the goal node, we can reconstruct
a Bayesian network structure by noting that each edge on the path encodes the
choice of good parents for one of the variables out of the preceding variables.
Therefore, we can generate a valid Bayesian network by putting together all the
good parent choices.

3 Deep Reinforcement Learning-Based Bayesian Network
Structure Learning

In this section, we present our proposed approach for solving BNSL problem.
First, we formulate the BNSL problem by Reinforcement learning. Then we
introduce Upper-Confidence Bound based exploration strategy for the agent.
Finally, we present Deep Q-learning algorithm for our method. The framework
is depicted in Fig. 1.

3.1 Reinforcement Learning Formulation

We propose to solve the previously-described highest-value path problem with a
reinforcement learning (RL) approach. In RL, an agent interacts with its envi-
ronment in order to learn a policy (i.e., which determines how to select actions
in each state) in order to maximize an expected sum of rewards. As shown in
Fig. 1(a), we use the order graph as the environment of the RL agent. Formally,
the problem is defined as an episodic RL problem with a deterministic transition
function, i.e.,

(a) state. Each node represents a state s of the agent. The initial state cor-
responds to the start node and the final state is the goal node.

RBNets 199

(b) action. In time step t, the agent arrives at a state st from st−1 and then
selects an action at from a discrete action set At according to a policy π. In
our formulation, At is the set of the neighbor states of st. Since each state has
a varying number of actions, |At| is set to the maximum number of actions of
states. The illegal actions (i.e., there exists no corresponding arc in the order
graph) are not considered.

(c) transition function. Following an action at in state st, a transition to
st+1 occurs with probability one if there exists an arc between the corresponding
nodes in the order graph.

(d) reward. We use the value of each arc as the reward signal rt at each time
step t, that is, if the agent arrives at st from U to U ∪ {Xi}, the reward is

rt = max
Πi⊆U,Πi∈Pi

ŝi(Πi) (7)

The RL agent interacts with the environment as follows: The agent starts in
the initial state (i.e., start state). The agent repeatedly chooses an action in its
current state, observes a reward and moves to a new state (i.e., adjacent node in
the order graph). When the agent reaches the goal node, it returns automatically
to the initial state.

Q-learning [24] is a standard algorithm for solving an RL problem. While
interacting with the environment, it consists in learning the value Q(s, a) of
actions a in states s. It is updated as follows after an action a is performed in
state s, observing reward r and moving to s′:

Q(s, a) ← Q(s, a) + α[r + γ max
a′

Q(s′, a′) − Q(s, a)],

where α is the learning rate (0 < α ≤ 1) determining to what extent newly
acquired information overrides old information and γ ∈ [0, 1] is a discount factor
determining the importance of future rewards. In our episodic problem, γ is set
to one so that sum of rewards corresponds to the value of a path.

When Q-learning is used to solve a path problem, Q(s, a) has a simple inter-
pretation: it is the estimated score of the best path found so far from s to the
final state starting from the arc corresponding to a. When learning stops, the
best found path can be recovered by choosing the actions that maximizes Q(s, a)
starting from the initial state. Using Q-learning makes the algorithm progres-
sively find better and better solution. However, its efficiency depends on the
exploration strategy used in the algorithm, which decides which action to try
during learning.

3.2 Upper Confidence Bounds Based Strategy

The exploration strategy makes a trade-off between exploration (i.e., try actions
that are currently considered sub-optimal but that may reveal to be good later
on) and exploitation (i.e., select the best action found so far, which may in fact
not be optimal).

200 Z. Zheng et al.

Classically, Q-learning is run with an ε-greedy action selection: in current
state s, select arg maxa Q(s, a) with probability 1−ε or choose a uniform random
action otherwise. Running Q-learning amounts then to perform a local random
search in each encountered state in order to find the best subpath to the final
state. Although such strategy guarantees the convergence to an optimal solution
(under some technical conditions) [24], it is clearly inefficient as actions will
continue to be chosen with some non-negligible probability even if they revealed
to be very bad. A better approach is to use an exploration based on an Upper-
Confidence Bound (UCB), which is optimal (in terms of regret) in multi-armed
bandits [1].

In every state and for each action, we define the following bonus b(s, a) as

b(s, a) =

√
2 ln τ(s)
τ(s, a)

,

where τ(s) is the number of times s has been visited so far and τ(s, a) is the
number of times action a has been tried in state s. Note that the bonus is
higher for less-tried actions. A UCB-based exploration strategy chooses actions
in a state s with arg maxa [Q(s, a) + b(s, a)]. This strategy automatically finds a
good balance between exploration (i.e., high bonus) and exploitation (i.e., high
Q value).

3.3 Deep Q-Learning Algorithm

When the number of Bayesian network variables becomes large, the number of
states grows exponentially, which prevents the direct application of Q-learning.
For large or continuous state-space, a function approximation scheme is needed
to approximate the Q function. In this paper, we use the deep Q-network (DQN)
algorithm [17] for its proven efficiency and performance. DQN learns Q(s, a; θ),
an approximation of the Q values, with θ representing the parameter of the
neural network, by minimizing the following loss function:

L(θ) = Es,a,r,s′ [(ŷ − Q(s, a; θ))2], (8)

where ŷ = r + γ maxa′ Q(s′, a′; θ−), and θ− represents the independent target
network’s parameters that is a copy of θ, which is updated at a lower frequency.

In addition, experience replay is adopted to improve the stability of the DQN
training. It consists in (1) storing in a replay buffer the transitions (s, a, r, s′)
experienced by the agent during its interactions with the environment, then (2)
minimizing the previous loss function on mini-batches uniformly sampled from
the buffer.

Besides, both DQN and Q-learning are known to overestimate the Q values,
as the max operator uses the same values to both select and evaluate an action.
Correspondingly, the Deep Double Q-network (DDQN) [11] is proposed to solve
this problem by redefining the target ŷ with:

ŷ = r + γQ(s′, arg max
a′

Q(s′, a′; θ); θ−), (9)

RBNets 201

Algorithm 1: DDQN Algorithm with UCB
Input: empty replay buffer B, initial network parameters θ, θ−-copy of θ,

replay buffer maximum size Nr, training batch size Nb, target network
replacement frequency N−

Output: the parameters of Q-network
1 for episode e ∈ 1, 2, ..., M do
2 Initialize node sequence x ← ();
3 for t ∈ 0, 1, ... do
4 Set state s ← x, take action a with arg maxa [Q(s, a) + b(s, a)];
5 Sample next node xt from environment given (s, a) and receive reward

r, and append xt to x;
6 if |x| > Nr then
7 delete oldest node xtmin from x;

8 Set s′ ← x, and add transition tuple (s, a, r, s′) to B, replacing the
oldest tuple if |B| ≥ Nr;

9 Sample a minibatch of Nb tuples (s, a, r, s′) ∼ Uniform(B);
10 Construct target values, one for each of the Nb tuples;
11 if s′ is terminal then
12 yi = r; break;

13 else
14 yi = r + γQ(s′, arg maxa′ Q(s′, a′; θi); θ

−);

15 Do a gradient descent step with loss ‖yi − Q(s, a; θ)‖2;
16 Replace target parameters θ− ← θ every N− steps;

while the other parts are identical to DQN. For simplicity, we base our work
on DDQN. It would be straightforward to use instead other variants of DQN,
such as prioritized experience replay [20], dueling network [27], or bootstrapped
DQN [18].

We illustrate the DDQN algorithm with UCB in Algorithm 1. The whole
process of BNSL in our framework RBNets is summarized in Algorithm 2.

4 Experimental Validation

In this section, we present extensive experiment results over the performance of
our method, against state-of-the-art methods.

4.1 Experiment Setup

The experiments were performed on a PC with 2.10 GHz Intel Xeon E5-2620
processor, 64 GB of RAM, 1024 GB of hard disk space, and running Ubuntu
16.04. About parameter setting, the reward discount factor γ = 1 and the max-
imum episodes M = 300. We used RMSProp for learning parameters with the
learning rate α of 0.001. We used a replay buffer size Nr of 2000, batch size Nb

of 200, and target network replacement frequency N− of 300.

202 Z. Zheng et al.

Algorithm 2: RBNets Algorithm
Input: Dataset D = {D1, D2, ..., Dm} and variables V = {X1, X2, ..., Xn}
Output: The Bayesian network structure G∗

1 Extract POPS Pi for each variable Xi based on Theorem 1, Theorem 2 and
Theorem 3;

2 Build a search graph and calculate the value of each edge using Equation (6);
3 Find a good ordering of variables using Algorithm 1;
4 Obtain the parent sets Πi of each variable Xi according to POPS given the

ordering of variables;
5 Rebuild the network structure by the parent sets.

Table 1. The description of datasets sorted according to the number n of variables
and the number m of instances. An asterisk indicates that the dataset is from BNR
and we generate instances from it, otherwise it is from UCI.

Small Medium Large Very large Very Large and Massive

Dataset n m Dataset n m Dataset n m Dataset n m Dataset n m

shuttle 9 58000 horse colic 27 368 hailfinder* 56 500 pathfinder* 109 1000 isolet 617 7797

adult 14 48842 water* 32 500 hepar* 72 1000 gas sensor 128 13910 parkinson 754 756

voting 16 435 alarm* 37 1000 ozone 73 2536 semeion 256 1593 androgen 1024 1687

segment 19 2310 sponge 45 76 insurance 86 9000 madelon 500 4400 wikipedia 1068 731

4.2 Datasets

The datasets are from UCI repository1 and Bayesian Network Repository
(BNR)2. We removed the lines with missing data and discretized continuous
variables into two states using the mean values. The BNR classifies networks
as small (less than 20 variables), medium (20–50 variables), large (50–100 vari-
ables), very large (100–1000 variables), and massive (more than 1000 variables).
The description is depicted in Table 1.

4.3 Baseline Methods

Many existing techniques in heuristic search and exact solver can be used to han-
dle the problem of Bayesian network structure learning. We compare our method
with the following two exact methods (A* and GOBNILP), three heuristic meth-
ods (GHC, OBS, and ASOBS), and one reinforcement learning based method
(RL-BIC).

– A* [28] is developed based on the dynamic programming recurrences to learn
optimal network structures. It formulates learning optimal Bayesian network
as a shortest path finding problem. With the guidance of a consistent heuris-
tic, the algorithm learns an optimal Bayesian network. We use the version
2017 from URLearning3.

1 http://archive.ics.uci.edu/ml/.
2 https://www.bnlearn.com/bnrepository/.
3 http://www.urlearning.org/.

http://archive.ics.uci.edu/ml/
https://www.bnlearn.com/bnrepository/
http://www.urlearning.org/

RBNets 203

Table 2. The running time (in seconds) of different methods. Note that the extraction
of POPS was computed in a preprocessing step and the running time does not include
it. We use the same extracted POPS in different methods. Running time of RBNets
includes model training time. Resource limits of 12 h of CPU time and 64 GB of memory
were imposed: OT = out of time; OM = out of memory. Bold indicates that the time
is the best result among all tested methods. An asterisk indicates that the dataset is
generated from BNR.

Dataset Time (s)

A* GOBNILP GHC OBS ASOBS RL-BIC RBNets

shuttle 0.8 3.6 5.6 3.2 3.0 2.8 1.2

adult 9.6 0.9 28.4 12.8 6.4 3.6 2.3

voting 4.4 3.1 19.2 18.6 12.5 8.3 2.6

segment 2.8 4.0 26.7 10.2 5.8 6.1 3.5

horse colic 8.5 11.8 121.6 64.0 42.3 29.6 12.4

water* 6.2 4.7 239.4 43.9 26.6 25.7 15.8

alarm* 70.1 6.9 1385.1 482.3 320.7 105.4 80.5

sponge 138.4 20.6 OT 215.6 68.5 29.8 19.7

hailfinder* OM 129.3 OT 673.3 104.3 105.6 71.1

hepar* OM OT OT 1204.7 382.4 309.1 209.2

ozone OM OT OT 3420.0 715.7 769.2 526.4

insurance OM OT OT 3257.8 2802.5 2035.7 1953.0

pathfinder* OM OM OT 3070.6 1961.0 1544.9 1194.1

gas sensor OM OM OT 3641.2 3409.4 3284.8 3026.5

semeion OM OM OT 18530.6 13298.5 12037.0 10573.2

madelon OM OM OT 30268.9 22746.6 22453.7 19281.7

isolet OM OM OT 38211.4 29682.3 28444.8 26318.6

parkinson OM OM OT OT 31842.1 28373.5 27805.9

androgen OM OM OT OT 39467.4 37009.2 36256.0

wikipedia OM OM OT OT 40369.2 38675.1 38096.8

– GOBNILP [7] is based on the integer programming (IP) for exact BN learn-
ing, which learns Bayesian networks from complete discrete data or from local
scores. It adds acyclicity constraints to the ILP during solving in the form of
cutting planes. We use the version 1.6.1 with SCIP 3.2.1 of GOBNILP4.

– Greedy Hill Climbing (GHC) [9] examines all possible local changes (edge
addition, edge deletion, and edge reversal) in each step and apply the one
that leads to the biggest improvement in score and optimizes the network
structure. We use the implementation of bnlearn5 package with version 4.5.

– OBS [25] makes use of the topological orderings of variables as a search space,
selecting for each ordering the best network consistent with it. This search
space is much smaller, makes more global search steps, has a lower branching
factor, and avoids costly acyclicity checks.

4 https://www.cs.york.ac.uk/aig/sw/gobnilp/.
5 https://www.bnlearn.com/.

https://www.cs.york.ac.uk/aig/sw/gobnilp/
https://www.bnlearn.com/

204 Z. Zheng et al.

– ASOBS [19] performs approximated structure learning without constraints
on the in-degree. It is made of two parts: parent set identification for explor-
ing the space of possible parent sets of a node; structure optimization for
maximizing the score of the resulting structure.

– RL-BIC [29] proposes an encoder-decoder model, which takes observable
data as input and generates graph adjacency matrices that are used to com-
pute rewards. The reward incorporates both the predefined score function
and two penalty terms for enforcing acyclicity.

4.4 Evaluation Metrics

The explicit goal of Bayesian network structure learning is to maximize the BIC
score. Therefore, in addition to the running time, we evaluate the performance
of methods by the BIC score. The difference in BIC scores between the two
alternative networks is an asymptotic approximation of the logarithm of the
Bayesian factor, which is the ratio of two posterior probabilities [19]. ΔBIC1,2 =
BIC1 − BIC2 represents the difference between the BIC scores of network net1
and network net2. If ΔBIC1,2 > 0, it means that net1 is better than net2.
In order to quantify this metric, the evidence in favor of net1 is respectively
{neutral, positive, strongly positive, very strong} if ΔBIC1,2 is between {0 and
2; 2 and 6; 6 and 10; beyond 10} [19]. In the same way, the evidence in favor
of net2 is respectively {neutral, negative, strongly negative, very negative} if
ΔBIC1,2 is between {−2 and 0; −6 and −2; −10 and −6; smaller than −10}.

Table 3. The comparison of RBNets with four heuristic baselines in unknown network
structures.

RBNets vs GHC OBS ASOBS RL-BIC

ΔBIC(K)

Very positive (K > 10) 24 21 15 12

Strongly positive (6 < K < 10) 3 4 3 6

Positive (2 < K < 6) 2 2 6 5

Neutral (−2 < K < 2) 1 3 5 6

Negative (−6 < K < −2) 0 0 1 1

Strongly negative (−10 < K < −6) 0 0 0 0

Very negative (K < −10) 0 0 0 0

4.5 Performance Evaluation of Time

We first tested the running time of different methods in solving the benchmark
datasets. We terminate a method early if it runs for more than 12 h on a dataset,
which means out of time in our scenario. The result is presented in Table 2, from

RBNets 205

Table 4. The comparison of RBNets with four heuristic baselines in known network
structures.

RBNets vs GHC OBS ASOBS RL-BIC

ΔBIC(K)

Very positive (K > 10) 29 23 19 14

Strongly positive (6 < K < 10) 0 1 0 5

Positive (2 < K < 6) 1 3 2 3

Neutral (−2 < K < 2) 0 3 5 4

Negative (−6 < K < −2) 0 0 2 2

Strongly negative (−10 < K < −6) 0 0 1 2

Very negative (K < −10) 0 0 1 0

which we can draw that the running time mainly depends on the scale of the
datasets, including the number of variables and instances. The conclusions are
as follows.

– Small networks and medium networks datasets are easy for exact algorithms,
A* and GOBNILP, while heuristic methods including GHC, OBS, ASOBS,
and RL-BIC need more time to find a solution. However, our proposed
RBNets achieves satisfactory results and are even better than exact meth-
ods in voting and sponge datasets.

– In large networks, it can be challenging for both A* and GOBNILP, either out
of memory or out of time. As for the heuristic methods, GHC does not work
when number of variables is larger than 40, which is understandable because
it examines all possible local changes in each step. ASOBS performs better
than OBS because it extends the ordering-based algorithm and provides an
effective approach for model selection with reduced computational cost. RL-
BIC achieves good performance among baseline methods. Our RBNets has
the best performance compared with all baselines.

– In very large and massive networks, A*, GOBNILP, and GHC fail to complete
the finding process due to out of memory or out of time. OBS, ASOBS, and
RL-BIC can be applied to very large networks, but is still slower than RBNets.

– A* method can easily exceed the memory limit in large datasets, the reason
is that it requires all the search information, such as parent and order graphs,
to be stored in memory during the search process.

To sum up, the improvement of RBNets is significant in running time when
compared with baselines, especially in large, very large, and massive networks.

4.6 Learning Performance from Datasets

In addition to running time, we measure the quality of networks that are learned
from datasets of different methods. Based on the datasets mentioned in Table 1,

206 Z. Zheng et al.

there are 15 datasets from UCI with unknown network structures and 5 datasets
from BNR with known network structures. For the former, we randomly divide
each dataset into two subsets of instances, which forms 30 datasets with unknown
network structures. For the latter, we generated instances from these networks
using logic sampling. Each instance corresponds to a value assignment for all
nodes. Then we run each method when given the first 200, 500, 1000, 2000,
3000, and 5000 instances from each dataset, i.e., overall we consider 30 datasets
(5 original datasets multiplied by 6 different number of instances) with known
network structures.

Then we compare our RBNets with four heuristic methods GHC, OBS,
ASOBS, and RL-BIC respectively. It should be noted that exact methods A*
and GOBNILP are not appropriate here since they aim to learn the optimal
Bayesian networks. Besides, A* and GOBNILP can not work in very large net-
works unless the in-degree is restricted. A positive ΔBIC means that RBNets
yields a network with higher BIC score than the network obtained using other
approaches; vice versa for negative values of ΔBIC. The comparison results are
shown in Table 3 and Table 4, from which we draw following conclusions.

– The ΔBIC of the learned network is larger than 10 in most cases, implying
very effective calculation for the networks learned by RBNets.

– Especially comparing with GHC and OBS, RBNets acts much better than
them whether the network structure is known or not. ΔBIC > 10 is obtained
in 24/30 cases and 29/30 cases in unknown and known structures, respectively.

– ASOBS and RL-BIC have good performance in a few datasets, e.g., ASOBS
leads to ΔBIC < −2 in 1/30 cases in unknown structures and 4/30 cases
in known structures. However, they still perform worse than RBNets in most
cases.

– RL-BIC yields ΔBIC < −2 in 1/30 cases and 4/30 cases in different data
scenarios. However, RBNets performs better than R-RBNets in most cases.

5 Conclusion

In this paper, we discuss the problem of learning Bayesian network structures
from a given dataset and scoring function, which has been shown to be NP-
hard. The running time and learning performance of traditional methods are
not satisfactory, which calls for further research. In this paper, we propose a
novel deep Reinforcement learning based Bayesian Network structure learning
approach (RBNets). We formulate this problem as a highest-value path prob-
lem and calculate the ordering of variables using the Deep Double Q-network
algorithm with Upper Confidence Bound based exploration strategy. Then we
can reconstruct the structure of Bayesian networks from the potential optimal
parent sets and the ordering of variables. Substantial experiments on real and
synthetic datasets show the efficiency and effectiveness of our method against
baseline methods. RBNets has better performance over running time and BIC
score when compared with state-of-the-art methods, especially in large networks.

RBNets 207

References

1. Auer, P., Cesa-Bianchi, N., Fischer, P.: Finite-time analysis of the multiarmed
bandit problem. Mach. Learn. (ML) 47(2–3), 235–256 (2002)

2. de Campos, C.P., Scanagatta, M., Corani, G., Zaffalon, M.: Entropy-based pruning
for learning Bayesian networks using BIC. Artif. Intell. (AI) 260, 42–50 (2018)

3. Campos, C.P.D., Ji, Q.: Efficient structure learning of Bayesian networks using
constraints. J. Mach. Learn. Res. (JMLR) 12, 663–689 (2011)

4. de Campos, L.M., Fernández-Luna, J.M., Gámez, J.A., Puerta, J.M.: Ant colony
optimization for learning Bayesian networks. Int. J. Approx. Reason. 31(3), 291–
311 (2002)

5. Chen, C., Yuan, C.: Learning diverse Bayesian networks. In: AAAI Conference on
Artificial Intelligence (AAAI), pp. 7793–7800 (2019)

6. Chickering, D.M.: Learning Bayesian networks is NP-complete. Networks 112(2),
121–130 (1996)

7. Cussens, J.: Bayesian network learning with cutting planes. In: Conference on
Uncertainty in Artificial Intelligence (UAI), pp. 153–160 (2011)

8. Cussens, J., Bartlett, M.: Advances in Bayesian network learning using integer
programming. In: Conference on Uncertainty in Artificial Intelligence (UAI), pp.
182–191 (2013)

9. Friedman, N., Nachman, I., Peér, D.: Learning Bayesian network structure from
massive datasets: the “sparse candidate” algorithm. In: Conference on Uncertainty
in Artificial Intelligence (UAI), pp. 206–215 (1999)

10. Gasse, M., Aussem, A., Elghazel, H.: An experimental comparison of hybrid algo-
rithms for Bayesian network structure learning. In: Flach, P.A., De Bie, T., Cris-
tianini, N. (eds.) ECML PKDD 2012. LNCS (LNAI), vol. 7523, pp. 58–73. Springer,
Heidelberg (2012). https://doi.org/10.1007/978-3-642-33460-3 9

11. van Hasselt, H., Guez, A., Silver, D.: Deep reinforcement learning with double
q-learning. In: AAAI Conference on Artificial Intelligence (AAAI), pp. 2094–2100
(2016)

12. Heckerman, D.: A tutorial on learning with Bayesian networks. In: NATO
Advanced Study Institute on Learning in Graphical Models, pp. 301–354 (1998)

13. Jaakkola, T., Sontag, D., Globerson, A., Meila, M.: Learning Bayesian network
structure using LP relaxations. J. Mach. Learn. Res. (JMLR) 9, 358–365 (2010)

14. Lee, C., van Beek, P.: Metaheuristics for score-and-search Bayesian network struc-
ture learning. In: Canadian Conference on Artificial Intelligence (Canadian AI),
pp. 129–141 (2017)

15. Liao, Z.A., Sharma, C., Cussens, J., van Beek, P.: Finding all Bayesian network
structures within a factor of optimal. In: AAAI Conference on Artificial Intelligence
(AAAI), pp. 7892–7899 (2019)

16. Malone, B., Yuan, C., Hansen, E.A., Bridges, S.: Improving the scalability of opti-
mal Bayesian network learning with external-memory frontier breadth-first branch
and bound search. In: Conference on Uncertainty in Artificial Intelligence (UAI),
pp. 479–488 (2011)

17. Mnih, V., et al.: Human-level control through deep reinforcement learning. Nature
518, 529–533 (2015)

18. Osband, I., Blundell, C., Pritzel, A., Roy, B.V.: Deep exploration via bootstrapped
DQN. In: Neural Information Processing Systems (NeurIPS), pp. 4026–4034 (2016)

19. Scanagatta, M., de Campos, C.P., Corani, G., Zaffalon, M.: Learning Bayesian
networks with thousands of variables. In: Neural Information Processing Systems
(NeurIPS), pp. 1864–1872 (2015)

https://doi.org/10.1007/978-3-642-33460-3_9

208 Z. Zheng et al.

20. Schaul, T., Quan, J., Antonoglou, I., Silver, D.: Prioritized experience replay. In:
International Conference on Learning Representations (ICLR) (2016)

21. Silander, T., Myllymaki, P.: A simple approach for finding the globally optimal
Bayesian network structure. In: Conference on Uncertainty in Artificial Intelligence
(UAI) (2006)

22. Silver, D., et al.: A general reinforcement learning algorithm that masters chess,
shogi, and go through self-play. Science 362(6419), 1140–1144 (2018)

23. Singh, A.P., Moore, A.W.: Finding optimal Bayesian networks by dynamic pro-
gramming. In: USENIX Annual Technical Conference (USENIX ATC) (2005)

24. Sutton, R., Barto, A.: Reinforcement Learning: An Introduction. MIT Press, Cam-
bridge (1998)

25. Teyssier, M., Koller, D.: Ordering-based search: a simple and effective algorithm for
learning Bayesian networks. In: Conference on Uncertainty in Artificial Intelligence
(UAI), pp. 548–549 (2005)

26. Wang, X., et al.: Ordering-based causal discovery with reinforcement learning. In:
International Joint Conference on Artificial Intelligence (IJCAI), pp. 3566–3573
(2021)

27. Wang, Z., Schaul, T., Hessel, M., van Hasselt, H., Lanctot, M., de Freitas, N.:
Dueling network architectures for deep reinforcement learning. In: International
Conference on Machine Learning (ICML), pp. 1995–2003 (2016)

28. Yuan, C., Malone, B.M., Wu, X.: Learning optimal Bayesian networks using A*
search. In: International Joint Conference on Artificial Intelligence (IJCAI), pp.
2186–2191 (2011)

29. Zhu, S., Ng, I., Chen, Z.: Causal discovery with reinforcement learning. In: Inter-
national Conference on Learning Representations (ICLR) (2020)

A Unified Spectral Rotation Framework
Using a Fused Similarity Graph

Yuting Liang1, Wen Bai2, and Yuncheng Jiang1,2(B)

1 School of Artificial Intelligence, South China Normal University,
Foshan 528225, China

ytliang@m.scnu.edu.cn
2 School of Computer Science, South China Normal University,

Guangzhou 510631, China
{wbai,ycjiang}@scnu.edu.cn

Abstract. Multi-view spectral clustering has recently received a lot
of attention. Existing methods, however, have two problems to be
addressed: 1) similarity matrices used in clustering omit the high-order
neighbor information, reducing embedding accuracy; 2) two independent
procedures of embedding and discretization may result in a suboptimal
result, lowering the final performance. To address the abovementioned
issues, we propose a unified spectral rotation framework for multi-view
clustering using a fused similarity graph. The method begins with estab-
lishing similarity graphs for each view and constructing first-order and
high-order Laplacian matrices for capturing the hidden similarity among
different nodes. Then embedding and discretization procedures are inte-
grated into a new framework for performing a spectral rotation to obtain
a global clustering result. Finally, a three-step optimization method for
obtaining the final clustering labels is proposed. We conduct extensive
experiments on a variety of real-world and synthetic datasets to validate
the effectiveness of the proposed algorithm. Our method outperforms
state-of-the-art methods by 8.0% on average, according to experimental
results. The code of the proposed method is available at https://github.
com/lting0120/USRF FSG.git.

Keywords: Multi-view clustering · Spectral clustering · High-order
Laplacian

1 Introduction

Multi-view clustering is a hot topic in unsupervised learning, widely applied in
data mining, machine learning, image processing, and so on [7,9]. A large num-
ber of multi-view clustering methods are proposed, including multi-kernel learn-
ing [5], multi-view spectral clustering [13], multi-view subspace clustering [31],
etc. Among them, multi-view spectral clustering becomes more popular [29,30]
because of its good performance and simple implementation, which is success-
fully applied to many applications, such as image segmentation [1], social multi-
media [21], and cancer biology [12]. The classical multi-view spectral clustering
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
D. Koutra et al. (Eds.): ECML PKDD 2023, LNAI 14171, pp. 209–225, 2023.
https://doi.org/10.1007/978-3-031-43418-1_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-43418-1_13&domain=pdf
https://github.com/lting0120/USRF_FSG.git
https://github.com/lting0120/USRF_FSG.git
https://doi.org/10.1007/978-3-031-43418-1_13

210 Y. Liang et al.

algorithm can be summarized in three steps: 1) constructing a similarity graph
for every view; 2) finding a fusion graph between all similarity graphs and per-
form spectral embedding; 3) performing spectral discretization by k-means after
spectral embedding to obtain the final clustering results.

One of the important tasks of classical multi-view clustering methods that
has received much attention is how to improve accuracy. According to the task,
the existing algorithms can be divided into two categories. The first category
pays attention to constructing similarity graphs effectively, aiming to mine hid-
den neighbor information from multiple views. To be specific, the category
mainly includes anchor approximation [22,26], high-order information acquisi-
tion [20,33], and graph information fusion [8,25]. These methods often calculate
the distance among local neighbors to establish contact and construct similar-
ity graphs. The second category commits to fusing the second and third steps
thus avoiding the extra k-means step. These methods make the obtained discrete
clustering results closer to the real clustering labels by imposing the rank con-
straint on the fusion matrix to avoid the suboptimal result [14,32]. Besides, some
studies [19,24] may obtain the discrete clustering allocation matrix by rotating
the continuous allocation matrix.

Although the first category of studies obtained a representative embedding
matrix, the two individual steps of spectral embedding and spectral discretiza-
tion resulted in a suboptimal clustering result. The algorithms in the second cat-
egory, on the other hand, obtained the best discrete clustering allocation matrix.
Still, the embedding matrix lacked sufficient information to capture node fea-
tures, lowering the final performance. Overall, the current multi-view spectral
clustering still has two flaws: 1) lack of a suitable matrix to distinguish similar-
ity among different nodes; 2) individual embedding and discretization processes
lead to a suboptimal clustering result.

To solve the above problems, we propose a unified spectral rotation frame-
work using a fused similarity graph. First, instead of conventional similarity
graphs, anchor graphs are produced, which selects more representative anchors.
Then, we construct the first-order and high-order Laplacian matrices for cap-
turing the hidden similarities among different nodes, where the first-order and
high-order Laplacian matrices complement the information held by each other
and the optimal Laplacian matrix can be learned for clustering. Finally, embed-
ding and discretization procedures are integrated into a unified framework for
performing a spectral rotation to obtain a global clustering result. Furthermore,
we design a three-step optimization method for obtaining the final clustering
labels. Extensive experiments are conducted on eight benchmark datasets to
validate the effectiveness of the proposed algorithm. Experimental results show
that our method outperforms the state-of-the-art techniques by 8.0% on average.

The main contributions of our work are summarized below:

– We fuse the information of first-order and high-order Laplacian matrices to
capture the hidden similarity among different nodes. In this way, sample-
to-sample information can be fully exploited, leading to better clustering
performance.

A Unified Spectral Rotation Framework Using a Fused Similarity Graph 211

– We propose a new unified framework for integrating the spectral embedding
and discretization procedures and performing a spectral rotation to obtain a
global clustering result. Also, a three-step optimization method is designed
for obtaining the final clustering labels.

– Comprehensive experiments are conducted on a variety of real-world and
synthetic datasets to evaluate the effectiveness of our proposed algorithm. As
demonstrated, when compared to other state-of-the-art baselines, the pro-
posed algorithm can show its superiority, validating its effectiveness.

The rest of this paper is organized as follows. Related works are introduced in
Sect. 2. We propose our method and its optimization in Sect. 3. The experimental
results are given in Sect. 4. Finally, we conclude our work in Sect. 5.

2 Related Work

This section introduces the previous studies close to our work. Multi-view cluster-
ing aims to exploit the mutual agreement of diverse views information to obtain
better clustering performance. Hence, most multi-view clustering methods are
similarity-based.

To exploit the similarity between each sample, many researchers constructed
affinity matrices by proximity functions, such as local proximity function [15],
Gaussian proximity [25], and k-nearest proximity [33]. Considering the noise
damage caused by clustering measurement, some studies adopted anchor-based
methods such as k-means policy [11] and directly alternate sampling method [14].
Moreover, Sun et al. [22] and Wang et al. [26] performed subspace clustering by
integrating the two processes of anchor learning and graph construction. How-
ever, the first-order proximity information is insufficient to handle the similarity
between nodes. Therefore, another research of multi-view spectral clustering [33]
was put forward that searches for the information in the linear combination of
the first-order and high-order Laplacian matrices simultaneously. However, there
is no effective method to explore hidden information between neighbors.

After the graph construction stage, the clustering process needs an extra step
to generate clustering labels. Zong et al. [34] used an extra k-means stage to
generate final clustering labels. However, the continuous solution obtained from
the graph cutting may deviate far from the discrete solution. Therefore, Huang
et al. [10] applied spectral rotation to get the continuous spectral vector closer
to the discrete cluster indicator. Because the solution of traditional spectral
rotation is approximate, Chen et al. [3] proposed an improved spectral rotation
directly obtaining the discrete solution. However, the two-stage method may not
lead to a globally optimal solution. Therefore, Nie et al. [19] performed the fusion
spectral rotation on all graph matrices to obtain the discrete solution directly.
Besides, some works [2,27] performed spectral embedding and spectral rotation
on a single view simultaneously. But there is a lack of combination with neighbor
information in terms of multiple views.

212 Y. Liang et al.

3 Methodology

This section proposes a unified spectral rotation framework using a fused simi-
larity graph. This framework makes the first-order and high-order information of
the matrix complementary to each other for mining the hidden neighbor infor-
mation. More importantly, we can search for the optimal Laplacian matrix and
the global optimal clustering result simultaneously.

3.1 Similarity Matrix Construction

We first introduce how to construct first-order similarity matrices by the anchor-
based method. As we know, random sampling is less representative than k-
means based strategy. In this work, we utilize k-means to produce anchors. When
choosing anchors, there are numerous ways adopting the clustering centers of k-
means. Although these methods can improve the clustering performance, it is
unstable due to the random initialization of k-means. In this work, we take the
nearest nodes of the centroids generated by k-means as anchors, which is named
k-nearest point (KNP) method.

Given a dataset X = {X1,X2, ...,Xv}, where Xv ∈ R
n×d, consisting of

n samples from v views and d is the feature number. The KNP method
firstly selects m anchors A ∈ R

m×d, where m = γ × n � n and γ is the
anchor rate of samples n. To be specific, we first concatenate all feature as
X′ = [X1,X2, ...,Xv]. Second, we adopt k-means method to generate the nearest
nodes of the m clustering centers as anchors. Then by calculating the euclidean
distance between anchors and all samples to build the representation matrix
C ∈ R

n×m for each view, which is calculated by

min
ci(v)1=1,(ci(v))T �0

m∑

j=1

‖xi − aj‖22 cij(v) + τ

m∑

j=1

(
cij(v)

)2 (1)

where ci(v) denotes the ith row of C and the first term measures the distances
between the ith sample and jth anchor. According to [3], the optimal solution
cij(v) to problem (1) is

cij(v) =

{
Ei,g+1−‖xi−aj‖2

2
gEi,g+1−∑g

ε=1 Ei,ε
xj ∈ Ng (xi)

0 otherwise
(2)

where Ei,ε is the square of Euclidean distance between xi and its εth neighbor,
and Ng contains the g nearest neighbors of xi. After this, the adjacency matrix
is calculated by

W = CΛ−1CT (3)

where Λ ∈ R
m×m is a diagonal matrix which the jth entry is Λjj =

∑n
i=1 cij .

A Unified Spectral Rotation Framework Using a Fused Similarity Graph 213

3.2 High-Order Laplacian Construction

Given a similarity matrix W, each item wij is the first-order similarity, which
indicates the relationship between node i and node j. In addition to the simi-
larity between nodes, we also consider the similarity between the neighbors of
nodes [23]. Suppose Φi = {x1,x2, · · · ,xn} is the neighbor set of node i, then
its corresponding weight set is Ω(1)

i = {w
(1)
i1 , w

(1)
i2 , . . . , w

(1)
in }. If there exist com-

mon neighbors between node i and node j, i.e. Φi∩Φj �= ∅, then there exists a
second-order similarity w

(2)
ij =

∑n
t=1 w

(1)
it w

(1)
jt = w(1)T

i w(1)
j ,∀i, j ∈ [n].

Expanding from the second-order similarity, we can deduce the formula for
the high-order similarity as W(o) = W(o−1)W [33]. Then the corresponding
Laplacian matrix is calculated by: L(o) = D(o) − W(o) ∈ R

n×n, where D is
degree matrix and the ith element Dii =

∑n
j=1 wij . To obtain more compre-

hensive information, we fuse the first-order and high-order Laplacian matri-
ces of multiple views to obtain an optimal synthetic Laplacian matrix [12]
L∗ =

∑O
o=1

∑v
p=1 αpL

(o)
p , where αp is to assign a weight for each Laplacian

matrix. Next, we establish the multi-view clustering based on an synthetic Lapla-
cian matrix as follows:

min
HTDH=I,α

Tr(HTL∗H)

s.t. L∗ =
O∑

o=1

v∑

p=1

αpL(o)
p , ‖α‖1 = 1,α ≥ 0,H = Y(YTDY)− 1

2

(4)

where Y ∈ B
n×k represents the discrete cluster allocation matrix and k repre-

sents the cluster number. The process is designed to optimize the continuous
cluster allocation matrix H ∈ R

n×k which also known as spectral embedding.

3.3 Unified Framework

To get the globally optimal result, the spectral rotation is used to perform spec-
tral discretization [10]:

min
RTR=I,Y∈Bn×k

‖H∗R − Y‖2F (5)

where H∗ is the optimal solution and R is an orthonormal matrix. Since HR
also a solution of Eq. (4) with the constraint (HR)TD(HR) = I, the goal of
Eq. (5) is to find a suitable R making the H∗R closer to the discrete indicator
matrix Y by minimizing the distance between them [10].

In order to obtain optimal Y∗, there exists a method that transform H back
to the Y by

Y∗ = Diag
(
diag− 1

2

(
H∗ (H∗)T

))
H∗ (6)

Since Y∗ is an approximate solution, the final clustering result may deviate from
the proper discrete solution if Y is solved by Eqs. (5) and (6) only. So we use the

214 Y. Liang et al.

original form Y(YTDY)− 1
2 of Y such that Y approximates the correct solution,

the improved spectral rotation formula is:

min
RTR=I,Y∈Bn×k

‖H∗R − Y(YTDY)− 1
2 ‖2F (7)

Finally, we integrate the spectral embedding and spectral rotation in a single
framework with a trade-off parameter β for measurement. We also add a diversity
inducement term to balance the contribution of different orders with different
views:

min
HTDH=I,RTR=I,Y∈Bn×k,α

[
Tr(HTL∗H) + β‖HR − Y(YTDY)− 1

2 ‖2F + θαTNα
]

s.t. L∗ =
O∑

o=1

v∑

p=1

αpL(o)
p , ‖α‖1 = 1,α > 0

Npq =
O∑

o=1

Tr(W(o)
p W(o)

q)

‖W(o)
p ‖F ‖W(o)

q ‖F

(∀p, q ∈ [v] and o ∈ [O])

(8)
The first term tries to find a consensus matrix H among multiple views. The
second tends to find a global optimal discrete indication solution Y. The third
of the proposed formula is the diversity inducement term, which is introduced to
consider the effects between different views of different orders fully. The weight
parameter αp tends to depend only on the adjacency matrix W(o)

p and a given
H, while independent of the other adjacency matrices [16]. So a regulariza-
tion term is introduced here to characterize the correlation among all adjacency
matrices. And the optimal Laplacian matrix is constructed by minimizing this
regularization term to update α [33]. θ is the equilibrium coefficient, and N is
the correlation measurement matrix that records the central kernel alignment
values among the matrices.

Given the constraint RTR = I, HR can be fused into a variable so that H
directly replaces HR, and then we extend the second term by D

1
2 . By transform-

ing the above, we obtain the optimization problem of the proposed algorithm as
follows:

min
HTDH=I,Y∈Bn×k,α

[
Tr(HTL∗H) + β‖D 1

2 H − D
1
2 Y(YTDY)− 1

2 ‖2F + θαTNα
]

s.t. L∗ =
O∑

o=1

v∑

p=1

αpL(o)
p , ‖α‖1 = 1,α > 0,

Npq =
O∑

o=1

Tr
(
W(o)

p W(o)
q

)

∥∥∥W(o)
p

∥∥∥
F

∥∥∥W(o)
q

∥∥∥
F

(∀p, q ∈ [v] and o ∈ [O])

(9)
The three terms are spectral clustering, spectral rotation, and diversity induce-
ment.

A Unified Spectral Rotation Framework Using a Fused Similarity Graph 215

3.4 Optimization

A newly proposed optimization process for Eq. (9) is presented. We decompose
it into three optimization sub-problems, namely H-step, Y-step, and α-step.
In addition, the computational complexity of the optimization algorithm is also
discussed.
1) α-step. This step aims to update α with the given H and Y. Then the
objective function w.r.t. α can be formulated as

min
α

αTNα + bTα s.t. ‖α‖1 = 1, 0 ≤ αp ≤ 1(p ∈ [v]) (10)

where bp = β
θ Tr

(
HT

∑O
o=1 L(o)

p H
)

(p ∈ [v]). Because N is semi-positive definite
and the constraint of Eq. (10) is convex, the corresponding QP problem is convex.
We can solve it with a standard convex quadratic programming problem. So, the
optimal solution can be obtained.
2) H-step. This step aims to update H with given α and Y. Let G = D

1
2 H,

because GTG = I, the objective function can be transformed as:

min
GTG=I

[
Tr

(
GTD− 1

2 L∗D− 1
2 G

)
+ β

∥∥∥G − D
1
2 Y

(
YTDY

)− 1
2
∥∥∥
2

F

]
(11)

According to L∗ = D − W∗, we can simplify it as:

max
GTG=I

[
Tr

(
GTD− 1

2 W∗D− 1
2 G

)
+ 2β Tr

(
GTD

1
2 Y

(
YTDY

)− 1
2
)]

(12)

where M = D− 1
2 W∗D− 1

2 . Because of view diversity, we calculate matrix M by

M =
O∑

o=1

v∑

p=1

αp

(
D(o)

p

)− 1
2
W(o)

p

(
D(o)

p

)− 1
2

(13)

Then, the H-step can be further expressed as:

max
GTG=I

Tr(GTMG + 2βGTK) (14)

where K = D
1
2 Y(YTDY)− 1

2 ∈ R
n×k. We consider taking the Lagrangian mul-

tipliers to tackle the problem because there is a constraint GTG = I. The
Lagrangian function can be written as:

L(G, λ) = Tr(GTMG + 2βGTK) − Tr(λ(GTG − I)) (15)

The λ is the Lagrangian multiplier, and now we need to solve the following:

∂L
∂G

= 2MG + 2βK − 2Gλ = 0 (16)

Let Z = 2MG + 2βK, the optimal G∗ can be obtained by solving the below
question:

max
GTG=I

Tr(GTZ) (17)

216 Y. Liang et al.

Because Eqs. (14) and (17) satisfy the KKT condition, we can decompose Z by
single value decomposition (SVD), w.r.t. Z = UΣVT, then the optimal G∗ is
obtained by GT∗ = VUT. So the optimal H∗ can be calculated by:

H∗ = D− 1
2 UVT (18)

where U, VT come from the SVD of Z.
3) Y-step. This step aims to update Y with the given α and H. The objective
function of Y is:

min
Y∈Bn×k

‖D 1
2 H − D

1
2 Y

(
YTDY

)− 1
2 ‖2F (19)

It can be simplified as follows:

max
Y∈Bn×k

Tr
(
HTDY

(
YTDY

)− 1
2
)

Then we can solve the problem above by

max
Y∈Bn×k

k∑

j=1

∑n
i=1 hijDiiyij√

yT
j Dyj

(20)

where hij and yij denote the i, jth entries of matrix H and Y respectively, Dii

denotes the ith entry of D, yj is the jth column of matrix Y. We are going

to fix the other rows and calculate Y row by row for the reason of
√

yT
j Dyj

containing all rows of Y. To calculate the ith row of Y, we need to consider
the increment in the value of the target function from yij = 0 to yij = 1. The
formula for calculating the increment is:

sij =
∑n

t=1 htjDttytj + Diihij (1 − yij)√
yT

j Dyj + Dii (1 − yij)
−

∑n
t=1 htjDttytj − Diihijyij√

yT
j Dyj − Diiyij

(21)

Then the optimal value of Y can be obtained by the following equation:

yij =

{
1, j = arg max

j∈[1,k]

sj

0, else
(22)

Iterate yj row by row according to the formula above until the process converges
and no labels change.

3.5 Complexity Analysis

Finally, we summarize the pseudo code about the optimization process in Algo-
rithm 1, where l1, l2 and l3 indicate the iteration numbers of Algorithm 1, H-step
and Y-step respectively. We discuss the time complexity of the proposed algo-
rithm mainly in two parts:

A Unified Spectral Rotation Framework Using a Fused Similarity Graph 217

Algorithm 1. A Unified Spectral Rotation Framework Using a Fused Similarity
Graph
Input: Data from v views X(1) , ...,X(v) ∈ R

n×d, number of clusters k, parameter β
and θ, the anchor rate γ.

Output: The indicator matrix Y ∈ B
n×k.

1: Construct first-order and high-order similarity matrices for every view according
to W = CΛ−1CT and W(o) = W(o−1)W respectively.

2: Construct first-order and high-order Laplacian matrices by L(o) = D(o) − W(o).
3: Initialize H ∈ R

n×k, randomly initialize Y, α as 1v
v

.

4: Calculate: K = D
1
2 Y

(
YTDY

)− 1
2 ,G = D

1
2 H, and matrix M by Eq. (13).

5: while convergence criterion is not satisfied do
6: Calculate L

(o)

(l1+1) =
∑v

p=1 αp(l1)L
(o)
p .

7: Update α(l1+1) by calculating Eq. (10).
8: while convergence criterion is not satisfied do
9: Calculate Z(l2+1) = 2MG + 2βK.

10: Calculate the SVD of Z(l2+1) that Z(l2+1)= UΣVT.
11: Calculate H by Eq. (18).

12: repeat
13: for i = 1 to n do
14: for j = 1 to k do
15: Calculate sij according to Eq. (21).

16: Update Y(l3+1) by calculating Eq. (22).

17: until Y does not change

(1) The first part is similarity graphs construction. This part selects m
anchors and constructs representation matrices C which time complexity
is O (vnmd + vnm log(m)) where d =

∑v
p=1 dv. Because m � n,m � d,

the complexity of the first part is O (vnmd).
(2) The second part is optimization. Specifically, the optimization of α-step

requires solving a standard convex quadratic programming problem whose
complexity is O (

δ−1v
)
. δ is the precision of the result. The optimization of

H-step includes the calculation of MG, which takes O (
n2k

)
time. So the

H-step needs the complexity of O (
l2n

2k
)
, where k is the cluster number.

The optimization of Y-step needs O (l3nk) time. In short, the complexity
of optimization process is O (

l1
(
δ−1v + l2n

2k + l3nk
))

.

In conclusion, the proposed method takes O (
vnmd + l1

(
δ−1v + l2n

2k + l3nk
))

time. Considering δ−1 � n, k � n and l1, l2, l3 are independent with n, the
overall complexity of our method is O (

vnmd + n2k
)
, which is reasonable.

4 Experiments

In this section, we evaluate the effectiveness of the proposed algorithm on seven
widely used real-world datasets and a synthetic dataset. Yale [24] contains images
of 165 different subjects under different conditions. MSRC [28] contains several

218 Y. Liang et al.

features of images such as trees, buildings, airplanes, cows, faces, cars, and bicy-
cles. ORL [17] contains detailed pictures of different faces at different times.
WikiArticles1 are selected sections from the Wikipedia’s featured articles collec-
tion. 100Leaves2 consists of 100 plant species leaves. NUS [4] contains animal
object images. Mnist4 is a subset of MNIST [6], composed of the numbers 0–3.
Synthetic3D3 is a synthetic dataset about 3D objects. The detailed information
about the datasets is listed in Table 1.

Table 1. Information of Benchmark Datasets

Dataset #Sample #Cluster #View #Feature

Yale 165 15 3 4096, 3304, 6750

MSRC 210 7 5 24, 576, 512,256, 254

ORL 400 40 4 512, 59, 864, 254

WikiArticles 693 10 2 10, 128

100Leaves 1600 100 3 64, 64, 64

NUS 2400 12 6 64, 144, 73,128, 225, 500

Mnist4 4000 4 3 30, 9, 30

Synthetic3D 600 3 3 3, 3, 3

4.1 Experimental Setup

In our experiment setup, we mainly set three parameters: trade-off coefficient β,
regularization parameter θ, and anchor rate γ, respectively. The trade-off coef-
ficient β is searched in

[
10−4, 10−3, · · · , 100

]
. The regularization parameter θ is

selected from the range
[
2−15, 2−12, · · · , 215

]
. Our proposed method explores the

optimal anchor numbers in [0.1n, 0.2n, ..., 0.9n], where n is the sample number.
According to the relevant literature [33], the optimal order O of the high-order
Laplacian matrix is 2. To eliminate the instability of experimental performance
caused by the randomness of anchor selection based on k-means, we ran the
experiment 10 times. In addition, we implement the baselines using the author’s
source codes and set the parameters according to their study. A similarity matrix
is pre-calculated with the cosine similarity for the algorithm. The clustering
representation uses three widely used metrics: ACC, NMI, and Purity. All our
experiments were carried out on Matlab R2021B (64bit) on the same desktop
computer.

4.2 Comparison with State-of-the-Art Algorithms

To verify the effectiveness of this algorithm, we compare it with nine multi-view
clustering algorithms. The details of the baselines are summarized below:
1 http://www.svcl.ucsd.edu/projects/crossmodal/.
2 https://archive.ics.uci.edu/dataset/241/one+hundred+plant+species+leaves+

data+set.
3 https://github.com/lting0120/USRF FSG/tree/main/Datasets.

http://www.svcl.ucsd.edu/projects/crossmodal/
https://archive.ics.uci.edu/dataset/241/one+hundred+plant+species+leaves+data+set
https://archive.ics.uci.edu/dataset/241/one+hundred+plant+species+leaves+data+set
https://github.com/lting0120/USRF_FSG/tree/main/Datasets

A Unified Spectral Rotation Framework Using a Fused Similarity Graph 219

Table 2. The clustering results in comparing with the state-of-the-art method, where
the bolded value is the best.

Dataset MLAN [18] WMSC [34] AWP [19] MCGC [32] LMVSC [11] GMC [25] SMVSC [22] SFMC [14] FPMVS [26] Proposed

ACC (%)

Yale 49.8 ± 1.4 61.8 ± 0.0 57.6 ± 0.0 62.4 ± 0.0 54.6 ± 0.0 65.5 ± 0.0 59.4 ± 0.0 52.7 ± 3.3 44.2 ± 0.0 70.3 ± 0.0

MSRC 74.3 ± 1.3 83.8 ± 0.0 82.4 ± 0.0 89.1 ± 0.0 34.3 ± 0.0 74.8 ± 0.0 81.4 ± 0.0 81.0 ± 5.1 78.6 ± 0.0 89.1 ± 0.8

ORL 55.9 ± 1.5 84.6 ± 1.3 83.8 ± 0.0 81.8 ± 0.0 72.3 ± 0.0 83.8 ± 0.0 57.5 ± 0.0 75.0 ± 3.6 56.5 ± 0.0 89.3 ± 0.0

WikiArticles – 52.5 ± 1.2 45.7 ± 0.0 52.7 ± 0.0 55.1 ± 0.0 44.9 ± 0.0 32.6 ± 0.0 50.0 ± 4.7 32.6 ± 0.0 62.3 ± 0.0

100Leaves 58.7 ± 0.3 87.2 ± 1.2 75.7 ± 0.0 31.4 ± 0.0 55.9 ± 0.0 82.4 ± 0.0 38.7 ± 0.0 70.2 ± 1.3 35.4 ± 0.0 94.6 ± 0.0

NUS 24.5 ± 0.5 26.2 ± 0.1 24.6 ± 0.0 20.3 ± 0.0 18.5 ± 0.0 16.5 ± 0.0 27.4 ± 0.0 11.4 ± 1.3 25.9 ± 0.0 28.0 ± 0.6

Mnist4 69.6 ± 3.7 91.95 ± 0.0 65.6 ± 0.0 88.5 ± 0.0 72.7 ± 0.0 92.0 ± 0.0 88.4 ± 0.0 91.7 ± 0.2 88.5 ± 0.0 92.0 ± 0.0

Synthetic3D 46.4 ± 2.8 69.7 ± 0.0 34.7 ± 0.0 33.5 ± 0.0 95.7 ± 0.0 34.8 ± 0.0 96.8 ± 0.0 95.1 ± 1.3 91.5 ± 0.0 98.3 ± 0.0

Average 54.2 69.7 58.8 57.5 57.4 61.8 60.3 65.9 56.7 78.0

NMI (%)

Yale 54.1 ± 2.1 65.2 ± 0.2 60.5 ± 0.0 65.9 ± 0.0 59.7 ± 0.0 68.9 ± 0.0 62.2 ± 0.0 58.6 ± 2.7 51.1 ± 0.0 71.6 ± 0.1

MSRC 74.6 ± 1.9 75.3 ± 0.0 73.0 ± 0.0 81.1± 0.0 24.6 ± 0.0 77.1 ± 0.0 70.8 ± 0.0 72.1 ± 3.8 68.6 ± 0.0 79.5 ± 0.2

ORL 73.3 ± 0.1 93.3 ± 0.6 91.0 ± 0.0 93.3 ± 0.0 86.9 ± 0.0 93.9 ± 0.0 79.2 ± 0.0 91.8 ± 1.7 78.9 ± 0.0 95.5 ± 0.0

WikiArticles – 45.1 ± 0.7 32.0 ± 0.0 49.7 ± 0.0 52.4 ± 0.0 41.7 ± 0.0 17.9 ± 0.0 49.1 ± 3.8 17.2 ± 0.0 56.2 ± 0.0

100Leaves 80.8 ± 0.2 94.5 ± 0.4 87.9 ± 0.0 41.8 ± 0.0 77.6 ± 0.0 92.9 ± 0.0 71.7 ± 0.0 86.1 ± 0.6 69.8 ± 0.0 97.1 ± 0.0

NUS 15.1 ± 0.4 13.7 ± 0.0 13.3 ± 0.0 11.8 ± 0.0 7.8 ± 0.0 12.2 ± 0.0 15.4 ± 0.0 5.3 ± 2.2 14.7 ± 0.0 16.4 ± 0.5

Mnist4 65.2 ± 2.0 80.2 ± 0.0 65.1 ± 0.0 72.1 ± 0.0 50.5 ± 0.0 80.9 ± 0.0 71.2 ± 0.0 80.1 ± 0.5 71.5 ± 0.0 80.5 ± 0.0

Synthetic3D 46.4 ± 2.0 30.4 ± 0.0 2.4 ± 0.0 0.3 ± 0.0 83.1 ± 0.0 2.1 ± 0.0 86.7 ± 0.0 81.7 ± 4.0 74.2 ± 0.0 92.1 ± 0.0

Average 58.5 62.2 53.2 52.0 55.3 58.7 59.4 65.6 55.8 73.6

Purity (%)

Yale 52.1 ± 1.8 61.8 ± 0.0 58.2 ± 0.0 62.4 ± 0.0 66.1 ± 0.0 66.1 ± 0.0 60.0 ± 0.0 52.7 ± 3.1 47.3 ± 0.0 70.3 ± 0.0

MSRC 80.5 ± 1.2 83.8 ± 0.0 82.4 ± 0.0 89.1 ± 0.0 38.0 ± 0.0 79.1 ± 0.0 81.4 ± 0.0 81.0 ± 4.1 78.6 ± 0.0 89.1 ± 0.8

ORL 64.7 ± 1.4 87.4 ± 1.0 83.8 ± 0.0 86.8 ± 0.0 84.8 ± 0.0 86.8 ± 0.0 60.5 ± 0.0 79.3 ± 2.8 61.5 ± 0.0 91.5 ± 0.0

WikiArticles – 57.0 ± 1.1 49.8 ± 0.0 57.1 ± 0.0 62.3 ± 0.0 48.2 ± 0.0 35.9 ± 0.0 53.2 ± 4.4 35.8 ± 0.0 64.7 ± 0.0

100Leaves 63.1 ± 0.3 89.4 ± 0.8 77.1 ± 0.0 36.3 ± 0.0 65.1 ± 0.0 85.1 ± 0.0 40.3 ± 0.0 72.1 ± 1.2 37.1 ± 0.0 95.6 ± 0.0

NUS 26.0 ± 0.5 28.3 ± 0.1 27.1 ± 0.0 22.7 ± 0.0 29.9 ± 0.0 17.9 ± 0.0 28.9 ± 0.0 11.8 ± 1.4 27.4 ± 0.0 30.7 ± 0.6

Mnist4 74.4 ± 2.2 91.95 ± 0.0 74.3 ± 0.0 88.5 ± 0.0 72.7 ± 0.0 92.0 ± 0.0 88.4 ± 0.0 91.7 ± 0.2 88.5 ± 0.0 92.0 ± 0.0

Synthetic3D 46.4 ± 2.5 69.7 ± 0.0 35.7 ± 0.0 33.7 ± 0.0 95.7 ± 0.0 35.5 ± 0.0 96.8 ± 0.0 95.1 ± 1.3 91.5 ± 0.0 98.3 ± 0.0

Average 58.2 71.2 61.0 59.6 64.3 63.8 61.5 67.1 58.5 79.0

– MLAN [18] performed semi-supervised classification and local structure learn-
ing simultaneously to obtain the cluster.

– WMSC [34] used spectral perturbation to model the weight of views and then
performed multi-view spectral clustering.

– AWP [19] weighted each view according to their clustering ability and formed
a weighted Procrustes Average problem accordingly.

– MCGC [32] extracted consensus information from different views and learned
a uniform affinity graph, finally imposing rank constraints to obtain clusters
directly without additional operations.

– LMVSC [11] proposed using anchor points on large-scale graphs to learn a
smaller one for each view and implement spectral clustering on small graphs.

– GMC [25] proposed a general graph-based multi-view clustering which lets
each view graph matrix and the unified graph matrix mutual reinforcement.

– SMVSC [22] proposed to fuse the anchor selection strategy in graph construc-
tion to build a unified optimization framework.

– SFMC [14] proposed a parameterless graph fusion framework for multi-view
spectral clustering, which looks for a self-supervised weighted joint graph
compatible across multi-view.

– FPMVS [26] let anchor selection and subspace graph construction negotiate
with each other in a process to improve cluster quality.

220 Y. Liang et al.

Table 2 shows the experimental results running on all baselines and the pro-
posed method. We also report the average of each metric across all datasets
and the standard deviation of each method in each dataset. The sign “-” in
the table represents the unsuitable dataset for the algorithm. Compared with
the baselines, the performance of our proposed algorithm can far exceed the
baselines with 8% on average. Regarding ACC and Purity, the proposed algo-
rithm achieves greater than or equal to all baselines. Taking 100Leaves as an
example, it is 7.4%, 6.2% higher than the second-best algorithm in the two
criteria, respectively. Meanwhile, under the two criteria, our algorithm has the
same effect as MCGC in MSRC and GMC in Mnist4. In addition, the NMI of
MSRC and Mnist4 is slightly worse than that of MCGC and GMC, respectively,
due to the robustness of the fusion graph generated by GMC and MCGC. The
experiment results demonstrate the effectiveness of fusing the first-order and
high-order information in the unified spectral rotation framework.

4.3 Ablation Study

As shown in Table 3, we fix other parameters to explore the effectiveness of fusing
similarity matrices which combining first-order and high-order Laplacian matri-
ces. The column L only uses the first-order Laplacian matrices to participate
in the clustering process while HL+L combining the first-order and high-order
Laplacian matrices for clustering. Table 3 shows the performance of HL+L is
superior to that of L. Taking ACC as an example, HL+L is 1.8%, 5.2% and
4.0% higher than L in Yale, MSRC and ORL respectively, which demonstrates
the fusing similarity matrices takes full use of neighbor information.

Table 3. Ablation study. Comparing the clustering results of first-order Laplacian
matrix and fuse high-order Laplacian matrix on eight benchmark datasets.

ACC (%) NMI (%) Purity (%)

Datasets L HL+L L HL+L L HL+L

Yale 68.5 70.3 70.9 71.6 69.1 70.3

MSRC 83.8 89.1 72.5 79.5 83.8 89.1

ORL 85.3 89.3 93.6 95.5 88.8 91.5

WikiArticles 58.3 62.3 53.2 56.2 61.0 64.7

100Leaves 89.2 94.6 94.7 97.1 90.8 95.6

NUS 24.5 28.0 15.8 16.4 27.7 30.7

Mnist4 91.8 92.0 80.2 80.5 91.8 92.0

Synthetic3D 98.0 98.3 90.7 92.1 98.0 98.3

A Unified Spectral Rotation Framework Using a Fused Similarity Graph 221

4.4 Parameter Sensitivity

This section explores the influence of different parameters within a specific range.
Parameter changes on ACC, NMI, and Purity with various datasets are shown
in Fig. 1 and Fig. 2.

Fig. 1. The clustering results of the proposed method with different γ on six real-world
datasets.

To explore the influence of different γ on the clustering result, we fix other
coefficients and explore the γ in the range of [0.1, 0.2, · · · , 0.9]. ACC, NMI, and
Purity of six real-world datasets are shown in Fig. 1. First, in the four datasets of
MSRC, ORL, 100Leaves, and WikiArticles, the practical effects show an upward
trend with the increase of anchors. They do not rise with the continuous growth
of anchors but fluctuate within a specific range. Second, the experimental effects
of NUS and Synthetic3D datasets do not fluctuate significantly with the anchors
increase but remain in a small range. So, we can choose the appropriate anchor
rate for the similarity matrix construction.

Figure 2a shows the influence of θ with fixed γ and β in six datasets. It can
be seen that the ACC has improved as θ changes but it is not promoted so much.
Although they fluctuate within a specific range, we can find the suitable θ that
balances the spectral clustering and diversity-inducing terms. Specifically, the
optimal value of θ in Yale, MSRC, and ORL are 210, 2−12 and 20 respectively.
Figure 2b shows the ACC of β with fixed γ and θ. It can be seen that the ACC
increases with the variation of β and reaches its maximum when β is around 0.1.

In short, it can be seen from the above three experiments that all parameters
adopted can effectively improve the algorithm’s efficiency, both γ and β can
enhance the clustering performance more apparently than θ.

222 Y. Liang et al.

4.5 Convergence Analysis

The objective function values of Yale, 100Leaves, and Mnist4 in our algorithm
and their convergence are shown in Fig. 3. The values of the objective function
decrease monotonically and converge rapidly within thirty iterations. In partic-
ular, the Yale monotonically falls the function object value within five iterations
and then fluctuates within a small range.

Fig. 2. The algorithm sensitivity against the variation of two parameters θ and β.

Thus, the efficiency of our proposed algorithm is verified. The time complex-
ity of our algorithm is reasonable, as displayed in the complexity analysis.

Fig. 3. The convergence of the overall objective function on three datasets.

5 Conclusion

This paper proposes a unified spectral rotation framework with a fused similar-
ity graph for multi-view spectral clustering. It combines the first-order Laplacian
matrices and high-order Laplacian matrices to find an optimal synthetic Lapla-
cian matrix. Then it embeds the optimal synthetic Laplacian matrix in a new
spectral rotation framework that integrates spectral embedding and discretiza-
tion. Compared with the existing approaches, our method captures the hidden

A Unified Spectral Rotation Framework Using a Fused Similarity Graph 223

similarity among different nodes and obtains a global clustering result with a
three-step optimization. Experiments on eight benchmark datasets validate the
effectiveness of the proposed algorithm.

Acknowledgements. The works described in this paper are supported by The
National Natural Science Foundation of China under Grant Nos. 61772210 and
U1911201; The Project of Science and Technology in Guangzhou in China under Grant
No. 202007040006.

Ethical Statement. The authors declare that they have no conflict of interest and

this study does not contain any research with human participants and/or animals.

References

1. Cai, X., Nie, F., Huang, H., Kamangar, F.: Heterogeneous image feature integration
via multi-modal spectral clustering. In: CVPR 2011, pp. 1977–1984. IEEE (2011)

2. Chen, J., Zhu, J., Xie, S., Yang, H., Nie, F.: FGC SS: fast graph clustering method
by joint spectral embedding and improved spectral rotation. Inf. Sci. 613, 853–870
(2022)

3. Chen, X., Nie, F., Huang, J.Z., Yang, M.: Scalable normalized cut with improved
spectral rotation. In: Proceedings of the Twenty-Sixth International Joint Confer-
ence on Artificial Intelligence, pp. 1518–1524 (2017)

4. Chua, T.S., Tang, J., Hong, R., Li, H., Luo, Z., Zheng, Y.: NUS-WIDE: a real-world
web image database from national university of Singapore. In: Proceedings of the
ACM International Conference on Image and Video Retrieval, pp. 1–9 (2009)

5. De Sa, V.R., Gallagher, P.W., Lewis, J.M., Malave, V.L.: Multi-view kernel con-
struction. Mach. Learn. 79(1), 47–71 (2010)

6. Deng, L.: The MNIST database of handwritten digit images for machine learning
research [best of the web]. IEEE Signal Process. Mag. 29(6), 141–142 (2012)

7. Djelouah, A., Franco, J.S., Boyer, E., Le Clerc, F., Pérez, P.: Sparse multi-view con-
sistency for object segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 37(9),
1890–1903 (2015)

8. Greene, D., Cunningham, P.: Producing a unified graph representation from mul-
tiple social network views. In: Proceedings of the 5th Annual ACM Web Science
Conference, pp. 118–121 (2013)

9. Hong, W., Wright, J., Huang, K., Ma, Y.: Multiscale hybrid linear models for lossy
image representation. IEEE Trans. Image Process. 15(12), 3655–3671 (2006)

10. Huang, J., Nie, F., Huang, H.: Spectral rotation versus k-means in spectral cluster-
ing. In: Proceedings of the Twenty-Seventh AAAI Conference on Artificial Intelli-
gence, pp. 431–437 (2013)

11. Kang, Z., Zhou, W., Zhao, Z., Shao, J., Han, M., Xu, Z.: Large-scale multi-view
subspace clustering in linear time. In: Proceedings of the Thirty-Fourth AAAI
Conference on Artificial Intelligence, pp. 4412–4419 (2020)

12. Khan, A., Maji, P.: Approximate graph Laplacians for multimodal data clustering.
IEEE Trans. Pattern Anal. Mach. Intell. 43(3), 798–813 (2021)

13. Kumar, A., Rai, P., Daume, H.: Co-regularized multi-view spectral clustering. In:
Advances in Neural Information Processing Systems, pp. 1413–1421 (2011)

224 Y. Liang et al.

14. Li, X., Zhang, H., Wang, R., Nie, F.: Multiview Clustering: a scalable and
parameter-free bipartite graph fusion method. IEEE Trans. Pattern Anal. Mach.
Intell. 44(1), 330–344 (2022)

15. Liu, B.Y., Huang, L., Wang, C.D., Lai, J.H., Yu, P.S.: Multi-view consensus prox-
imity learning for clustering. IEEE Trans. Knowl. Data Eng. 34(7), 3405–3417
(2022)

16. Liu, X., Dou, Y., Yin, J., Wang, L., Zhu, E.: Multiple kernel k-means clustering
with matrix-induced regularization. In: Proceedings of the Thirtieth AAAI Con-
ference on Artificial Intelligence, pp. 1888–1894 (2016)

17. Lu, H., Gao, Q., Zhang, X., Xia, W.: A multi-view clustering framework via inte-
grating k-means and graph-cut. Neurocomputing 501, 609–617 (2022)

18. Nie, F., Cai, G., Li, X.: Multi-view clustering and semi-supervised classification
with adaptive neighbours. In: Proceedings of the Thirty-First AAAI Conference
on Artificial Intelligence, pp. 2408–2414 (2017)

19. Nie, F., Tian, L., Li, X.: Multiview clustering via adaptively weighted procrustes.
In: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining, pp. 2022–2030 (2018)

20. Peng, H., Hu, Y., Chen, J., Wang, H., Li, Y., Cai, H.: Integrating tensor similarity
to enhance clustering performance. IEEE Trans. Pattern Anal. Mach. Intell. 44(5),
2582–2593 (2022)

21. Petkos, G., Papadopoulos, S., Kompatsiaris, Y.: Social event detection using mul-
timodal clustering and integrating supervisory signals. In: Proceedings of the 2nd
ACM International Conference on Multimedia Retrieval, pp. 1–8 (2012)

22. Sun, M., et al.: Scalable multi-view subspace clustering with unified anchors. In:
Proceedings of the 29th ACM International Conference on Multimedia, pp. 3528–
3536 (2021)

23. Tang, J., Qu, M., Wang, M., Zhang, M., Yan, J., Mei, Q.: LINE: large-scale infor-
mation network embedding. In: Proceedings of the 24th International Conference
on World Wide Web, pp. 1067–1077 (2015)

24. Wan, Z., Xu, H., Gao, Q.: Multi-view clustering by joint spectral embedding and
spectral rotation. Neurocomputing 462, 123–131 (2021)

25. Wang, H., Yang, Y., Liu, B.: GMC: graph-based multi-view clustering. IEEE Trans.
Knowl. Data Eng. 32(6), 1116–1129 (2020)

26. Wang, S., et al.: Fast parameter-free multi-view subspace clustering with consensus
anchor guidance. IEEE Trans. Image Process. 31, 556–568 (2022)

27. Wang, Z., Li, Z., Wang, R., Nie, F., Li, X.: Large graph clustering with simultaneous
spectral embedding and discretization. IEEE Trans. Pattern Anal. Mach. Intell.
43(12), 4426–4440 (2021)

28. Winn, J., Jojic, N.: LOCUS: learning object classes with unsupervised segmenta-
tion. In: Proceedings of the Tenth IEEE International Conference on Computer
Vision, pp. 756–763 (2005)

29. Xia, R., Pan, Y., Du, L., Yin, J.: Robust multi-view spectral clustering via low-rank
and sparse decomposition. In: Proceedings of the Twenty-Eighth AAAI Conference
on Artificial Intelligence, pp. 2149–2155 (2014)

30. Xu, H., Zhang, X., Xia, W., Gao, Q., Gao, X.: Low-rank tensor constrained co-
regularized multi-view spectral clustering. Neural Netw. 132, 245–252 (2020)

31. Yin, Q., Wu, S., He, R., Wang, L.: Multi-view clustering via pairwise sparse sub-
space representation. Neurocomputing 156, 12–21 (2015)

32. Zhan, K., Nie, F., Wang, J., Yang, Y.: Multiview consensus graph clustering. IEEE
Trans. Image Process. 28(3), 1261–1270 (2019)

A Unified Spectral Rotation Framework Using a Fused Similarity Graph 225

33. Zhou, S., et al.: Multi-view spectral clustering with optimal neighborhood Lapla-
cian matrix. In: Proceedings of the Thirty-Fourth AAAI Conference on Artificial
Intelligence, pp. 6965–6972 (2020)

34. Zong, L., Zhang, X., Liu, X., Yu, H.: Weighted multi-view spectral clustering based
on spectral perturbation. In: Proceedings of the Thirty-Second AAAI Conference
on Artificial Intelligence, pp. 4621–4629 (2018)

SimSky: An Accuracy-Aware Algorithm
for Single-Source SimRank Search

Liping Yan1 and Weiren Yu2(B)

1 Nanjing University of Science and Technology, Jiangsu, China
lipingyan@njust.edu.cn

2 The University of Warwick, Coventry CV4 7AL, UK

Weiren.Yu@warwick.ac.uk

Abstract. SimRank is a popular node-pair similarity search model
based on graph topology. It has received sustained attention due to its
wide range of applications in real-world scenarios. Considerable effort
has been devoted to devising fast algorithms for SimRank computa-
tion through either iterative approaches or random walk based meth-
ods. In this paper, we propose an efficient accuracy-aware algorithm
for computing single-source SimRank similarity. First, we devise an
algorithm, ApproxDiag, to approximate the diagonal correction matrix.
Next, we propose an efficient algorithm, named SimSky, which uti-
lizes two Krylov subspaces for transforming high-dimensional single-
source SimRank search into low-dimensional matrix-vector multiplica-
tions. Extensive experiments on various real datasets demonstrate the
superior search quality of SimSky compared to other competitors.

Keywords: SimRank · Single-Source Similarity Search · Low-order
Approximation

1 Introduction

A graph is a key structure for modeling complexity networks, in which nodes rep-
resent objects and edges represent relationships. Measuring similarity between
objects is an important task in graph mining, with many real applications,
e.g. link prediction [8], recommendation systems [3], web page ranking [17],
and so forth. A variety of similarity measures have been proposed over the
past decades, including Personalized PageRank [6], SimRank [5], RoleSim* [14],
CoSimRank [10,19], CoSimHeat [20]. Among them, SimRank is considered an
influential one. SimRank is based on the simple recursive concept [5] that “two
nodes are similar if their in-neighbors are similar; every node is most similar to
itself”. Let G = (V,E) be a digraph with |V | nodes and |E| edges. We denote
by I(i) = {j ∈ V | ∃(j, i) ∈ E} the in-neighbor set of i, and |I(i)| the in-degree
of i. The SimRank score s(i, j) between nodes i and j is defined as

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
D. Koutra et al. (Eds.): ECML PKDD 2023, LNAI 14171, pp. 226–241, 2023.
https://doi.org/10.1007/978-3-031-43418-1_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-43418-1_14&domain=pdf
http://orcid.org/0009-0003-3710-8840
http://orcid.org/0000-0002-1082-9475
https://doi.org/10.1007/978-3-031-43418-1_14

SimSky: An Accuracy-Aware Algorithm for Single-Source SimRank Search 227

s (i, j) =

⎧
⎪⎪⎨

⎪⎪⎩

1, i = j;
c

|I(i)||I(j)|
∑

u∈I(i)

∑

v∈I(j)

s (u, v) , i �= j;

0, |I(i)| or |I(j)|= 0,

(1)

where c ∈ (0, 1) is a decay factor, typically assigned a value of 0.6 or 0.8.

SimRank Matrix Notations. Let S(k) be the k-th iterative SimRank matrix,
where each element [S(k)]i,j is the similarity score s(i, j) at iteration k. Let A
be the column-normalized adjacency matrix of a graph, and I be the identity
matrix. In matrix notations, the SimRank matrix S(k) can be expressed as

S(k) = cAT S(k−1)A + Dk

=
k∑

i=0

ci(AT)iDk−iA
i,

(2)

where S(0) = D0 = I, and Dk = I − (cAT S(k−1)A) ◦ I is called the diagonal
correction matrix. The symbol (∗)T stands for matrix transpose, and ◦ denotes
entry-wise multiplication.

Single-Source SimRank. Given a query j, single-source SimRank search returns
the similarity scores between node j and each node in the graph. Mathematically,
given the query vector ej (a unit vector with only a 1 in the j-th entry, and 0 s
elsewhere), the single-source SimRank vector [S(k)]∗,j at the k-th iteration can
be represented as

[S(k)]∗,j = S(k)ej . (3)

Recently, many endeavors [7,9,12,13,15,18] have been invested in design-
ing faster and more efficient algorithms for accelerating single-source SimRank
computation at the expense of accuracy. The low accuracy of SimRank arises
from two main barriers: (1) the challenge of dealing with the intractable diagonal
correction matrix; (2) the problem of high-dimensionality in SimRank iterations.

– Intractable Diagonal Correction Matrix. The challenge in retrieving single-
source SimRank via Eq. 2 lies in the computation of diagonal correction
matrix Dk. There are studies [4,7,16] that attempt to mitigate this issue
using the following equation:

S(k) = cAT S(k−1)A + (1 − c)I. (4)

However, the similarity models represented by Eqs. 2 and 4 are different.

– High Dimensionality. In reality, most graphs are large and sparse, leading to
the high dimensionality of the adjacency matrix. Most existing work [12,13]
employs random walk-based methods through Monte Carlo sampling. While
these methods excel in superior scalability on large graphs, they typically
exhibit low accuracy with a certain probability. For instance, the state-of-the-
art single-source SimRank algorithms (e.g. ExactSim [13] and SLING [12])
using Monte Carlo approaches can only achieve a precision level of up to 10−7

on diverse real datasets.

228 L. Yan and W. Yu

Contributions. Our main contributions to this work are summarized as follows:

– We first design an algorithm, ApproxDiag, to approximate the diagonal cor-
rection matrix D with guaranteed accuracy. To make approximation more
stable, we resort to a row orthogonal matrix to characterize D (Sect. 2).

– We next propose an efficient algorithm, SimSky, which transforms high-
dimensional single-source SimRank search into matrix-vector multiplications
over two small Krylov subspaces, eliminating much redundancy (Sect. 3).

– We conduct extensive experiments to demonstrate the superiority of SimSky
over other rivals on real datasets (Sect. 4).

2 ApproxDiag: Approximate Diagonal Correction Matrix

For any matrix X ∈ IRn×n, we denote by the column vectors
−−→
diag(X) and

d̃iag(X) the exact and approximate solution of the main diagonal elements of
X, respectively. Bekas et al. [1] showed that d̃iag(X) can be obtained by arbitrary
column vectors w1, w2, · · · , ws ∈ IRn as follows:

d̃iag (X) = [
s∑

l=1

wl ◦ (Xwl)] � [
s∑

l=1

wl ◦ wl], (5)

where � represents entry-wise division. Let W = [w1|w2| · · · |ws]. If WWT is a
diagonal matrix with all diagonals being nonzeros, then d̃iag(X) =

−−→
diag(X).

Construct Matrix W . Bekas et al. [1] chose the matrix W as a Hadamard matrix,
which takes only the entries ±1 so that WWT = nI. This type of matrix W is
suitable for approximating the main diagonal elements of a band matrix. How-
ever, in practice, the graph adjacency matrix is rarely a band matrix. Therefore,
we design a novel method to construct matrix W ∈ IRn×s as follows:

1) W (1 : s, 1 : s) is an identity matrix;
2) the element of W (1+s : n, s) is −1 at odd positions and 1 at even positions;
3) the remaining entries in W are all 0s.
As a special case, when s = n, W reduces to I and d̃iag(X) =

−−→
diag(X).

Subtracting the item
∑k

i=1 ci(AT)iDk−iA
i from both sides of Eq. 2 and

applying Eq. 5 yield the following equation:

d̃iag(Dk) =
−→
1 n − (

s∑

l=1

wl ◦ f(A,wl, k)) � (
s∑

l=1

wl ◦ wl), (6)

where f(A,wl, k) =
∑k

i=1 ci(AT)iDk−iA
iwl.

By virtue of the idea in [18], for k ≥ 2, we can express the vector f(A,wl, k)
as follows: ∀i = 1, 2, · · · , k, initialize x0 = wl,

xi = Axi−1; (7)

SimSky: An Accuracy-Aware Algorithm for Single-Source SimRank Search 229

Algorithm 1: ApproxDiag(A, c, k)
Input: A - column-normalised adjacency matrix, c - decay factor, k - number of

iterations
Output: ̂D - contains (k + 1) approximate diagonal correction vectors

1 Custom matrix W and set denom = (W ◦ W) · −→
1 s;

2 Initialise ̂D = zeros(n, k + 1) and set ̂D(:, 1) =
−→
1 n;

3 for j = 1 to k do
4 Initialise nume = zeros(n, 1), X = zeros(n, j + 1);
5 for i = 1 to s do
6 X(:, 1) = W (:, i);
7 for a = 1 to j do
8 X(:, a + 1) ← A · X(:, a);
9 end

10 Initialise Y = zeros(n, j + 1), set Y (:, 1) = ̂D(:, 1) ◦ X(:, j + 1);
11 if j = 1 then
12 Y (:, j + 1) ← cAT · Y (:, j);
13 else
14 for b = 2 to j do

15 Y (:, b) ← cAT · Y (:, b − 1) + ̂D(:, b) ◦ X(:, j + 2 − b)
16 end

17 Y (:, j + 1) ← cAT · Y (:, j);

18 end
19 nume ← nume + W (:, i) ◦ Y (:, j + 1);

20 end

21 ̂D(:, j + 1) ← −→
1 n − nume � denom;

22 end

23 return ̂D;

∀j = 1, 2, · · · , k − 1, initialize y0 =
−−→
diag(D0) ◦ xk,

yj = cAT yj−1 +
−−→
diag(Dj) ◦ xk−j , (8)

thus we can get f(A,wl, k) = cAT yk−1 easily. Substituting f(A,wl, k) into Eq. 6,
we can get our ApproxDiag algorithm.

Example 1. Given a graph and its column-normalised adjacency matrix A as
shown in Fig. 1, decay factor c = 0.8, number of iterations k = 2. Take 6 × 2
matrix W2, 6×3 matrix W3, 6×4 matrix W4, 6×5 matrix W5 and 6×6 identity
matrix W6, where

W2 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0
0 1
0 −1
0 1
0 −1
0 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

, W3 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0 0
0 1 0
0 0 1
0 0 −1
0 0 1
0 0 −1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

, W4 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 −1
0 0 0 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

, W5 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
0 0 0 0 −1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

230 L. Yan and W. Yu

Fig. 1. A digraph with six nodes and its column-normalised adjacency matrix

According to our ApproxDiag algorithm, when W takes W2,W3,W4,W5,W6

respectively, the corresponding matrix contains approximate diagonal correction
vectors are

D̂2 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0.2 0.2
1 0.6 0.68
1 1 1
1 0.2 0.2
1 0.2 0.04
1 0.6 0.92

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

, D̂3 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0.2 0.2
1 0.6 0.52
1 1 1
1 0.2 0.2
1 0.2 −0.12
1 0.6 0.92

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

, D̂4 = D̂5 = D̂6 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0.2 0.2
1 0.6 0.6
1 0.6 0.28
1 0.2 0.2
1 0.2 0.2
1 0.2 0.2

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

�

Error Analysis. We analyze the error of
−−→
diag(Dk) and d̃iag(Dk). ‖·‖ represents

the L2 norm for a vector or the spectral norm for a matrix. First of all, suppose
that Z =

∑k
i=1 ci(AT)iDk−iA

i, subtract Z from both sides of Eq. 2 and vec-
torize the main diagonal elements,

−−→
diag(Dk) =

−→
1 n − −−→

diag(Z) can be obtained.
Similarly, combine with Eq. 5, we can get that d̃iag(Dk) =

−→
1 n −−−→

diag(WWT Z).
According to the definition of W , we know that (WWT −I)(1 : s−1, 1 : s−1) = 0,
and (WWT − I)ii = 0, except that all the other elements either 1 or −1.
Given column-normalised adjacency matrix A, due to c ∈ (0, 1), we have spec-
tral radius ρ(

√
cA) < 1. As per Theorem 5 in [2], exists a constant θ depends

only on
√

cA and σ, where ρ(
√

cA) < σ < 1, θ = max(1, σk

‖(√cA)k‖), such that

||(√cA)i−1|| ≤ θσi−1. At the same time, it’s obvious ‖√
Dk−i‖ ≤ 1. Finally,

combine the above equalities and inequalities, the gap between
−−→
diag(Dk) and

d̃iag(Dk) is bounded by

‖−−→
diag(Dk) − d̃iag(Dk)‖∞ ≤ θ2 c(1−σ2k)

1−σ2 max
s≤l≤n

n∑

j=s,j 	=l

‖Ael‖‖Aej‖, (9)

where el (resp. ej) is a n-dimensional unit vector with only a 1 in the l-th (resp.
j-th) entry. The equal sign “=” holds when s = n.

Cost Overheads. We analyze the computational cost of ApproxDiag as follows.
First, initializing A,W,D requires O (nd) ,O (ns) ,O (nk) memory, respectively1.
Second, computing D (lines 3–22) take O(

∑k
j=1 s(jnd + (j − 1)(n + nd))) time.

Therefore, it requires O (n · max(d, s, k)) memory and takes O (
k2snd

)
time.

1 d denotes the average node degree.

SimSky: An Accuracy-Aware Algorithm for Single-Source SimRank Search 231

3 SimSky

Yu et al. [18] demonstrated that single-source SimRank search [S(k)]∗,j can be
expressed as a double loop function, we notice that it can be further rewritten
as a piecewise function

[S(k)]∗,j = r2k, (10)

where

rl =

⎧
⎪⎨

⎪⎩

d̃iag(Dl+1) ◦ (Ak−1−lej), 0 ≤ l ≤ k − 1;−−→
diag(D0) ◦ (Akej), l = k;
cAT rl−1 + rl−1−k, k + 1 ≤ l ≤ 2k.

(11)

The calculation of the last item r2k can be divided into three parts to com-
plete: (1) approximating d̃iag(Dl+1) using our ApproxDiag algorithm, (2) com-
puting Ak−1−lej , A

kej via the Arnoldi algorithm [11], (3) computing rl by means
of our SimSky algorithm for k + 1 ≤ l ≤ 2k.

For k + 1 ≤ l ≤ 2k, rl can be expressed as

rl = BRl−1, (12)

where B =
[
cAT 0 · · · 0 I

]
, Rl−1 =

[
rT
l−1 rT

l−2 · · · rT
l−k rT

l−1−k

]T . Meanwhile, we

use the auxiliary equation
[
rT
l−1 rT

l−2 · · · rT
l−k

]T = Ikn · [
rT
l−1 rT

l−2 · · · rT
l−k

]T , Ikn

is a kn-dimensional identity matrix. Concatenate the Eq. 12 and the auxiliary
equation along the vertical direction, we can get the following expression

Rl =
[

B
Ikn 0

]

Rl−1 = CRl−1, (13)

where Rl =
[
rT
l rT

l−1 · · · rT
l−k+1 rT

l−k

]T , 0 is a kn × n null matrix, C is a sparse

block matrix. Set Rk =
[
rT
k rT

k−1 · · · rT
1 rT

0

]T , we can get that R2k = CkRk, and
r2k is the first component of R2k.

Therefore, Rk as the initial vector, C as the initial matrix, we can construct
the Krylov subspace

Km2 = span{Rk, CRk, C2Rk, · · · , Cm2−1Rk},

then we can again use the Arnoldi algorithm [11] to compute its basis matrix
and projection matrix, and calculate vector r2k according to Lemma 3.1 in [11].

Example 2. Given the graph and its column-normalised adjacency matrix as
shown in Fig. 1. Given the query vector e1 is a unit vector with only a 1 in the
first entry, decay factor c = 0.8, low-order parameters m1 = m2 = 3, number of
iterations k = 2. For brevity, we assume that diagonal correction matrix Dk−i is
an identity matrix. Then the process to calculate single-source SimRank search

[S(2)]∗,1 = c2(AT)2A2e1 + cAT Ae1 + e1 (14)

using our SimSky algorithm is as follows.

232 L. Yan and W. Yu

First, we convert Eq. 14 into a piecewise function

r0 = Ae1, r1 = e1, r2 = A2e1, r3 = cAT r2 + r0, r4 = cAT r3 + r1,

it’s obvious that [S(2)]∗,1 = r4.
Second, we construct the first Krylov subspace

Km1 = span{r1, r0, r2} = span{e1, Ae1, A
2e1},

its column orthonormal matrix U and projection matrix Y can be generated by
Arnoldi method [11], and a relationship is established

AU(:, 1 : 3) = UY.

As a result, according to Lemma 3.1 in [11], r0, r1, r2 can be rewritten as

r0 = UY e′
1, r1 = U3e

′
1, r2 = UY Y3e

′
1, (15)

where e′
1 is a 3-dimensional unit vector with only a 1 in the first component,

matrix U3 consists of the first three columns of matrix U , Y3 includes the first
three rows and first three columns of matrix Y .

Finally, we construct the second Krylov subspace

Km2 = span{v, Cv,C2v},

where block vector v =
[
r2 r1 r0

]
, block matrix C =

[
B

I12 0

]

and B =
[
cAT 0 I

]
, I12 is a 12-dimensional identity matrix.

Its column orthonormal matrix Q, non-orthonormal matrix P and projection
matrix H can be generated through the Arnoldi method [11] and the equality
holds as follows

cAT Q(:, 1 : m2) + P (:, 1 : m2) = QH.

Thus, r3, r4 can be rewritten as

r3 = ‖r2‖QHe′
1, r4 = ‖r2‖QHH3e

′
1,

where matrix H3 includes the first three rows and first three columns of matrix
H. In other words, we can transform high-dimensional single-source SimRank
search r4 into low-dimensional matrix vector multiplication ‖r2‖QHH3e

′
1 to

eliminate the barrier of redundant dimensionality. �

Cost Overheads. We analyze SimSky’s cost overheads step-by-step. At the begin-
ning, invoking the Arnoldi algorithm takes O(m1nd) time and requires O(m1n)
memory. Meanwhile, computing the scalar β takes O((k − 1)m2

1) time. Sec-
ond, invoking the ApproxDiag algorithm takes O(k2snd) time and requires
O(n · max(d, s, k)) memory. Then, initialising V,H require O(km2n),O(m2

2)
memory respectively. And, setting the first column V (:, 1) needs O(m2

1n) time.
Finally, computing matrices V,H (lines 7–20) take O(m2

2kn + m2nd) time,
and computing [Sm1,m2]∗,j (line 22) takes O(m2

2n) time. Add them up, in
the aggregate, it takes O((m1 + m2 + k2s)nd + (m2

1 + km2
2)n) time, requires

O(n · max(km2, d, s,m1)) memory.

SimSky: An Accuracy-Aware Algorithm for Single-Source SimRank Search 233

Algorithm 2: SimSky(A,m1,m2, k, c, ej)
Input: A - column-normalised adjacency matrix, m1, m2 - low-order

parameters, k - number of iterations, c - decay factor, ej - query vector
Output: [Sm1,m2]∗,j - single-source SimRank score

1 [U, Y, m1] ← Arnoldi(A, m1, ej);

2 Set Ym = Y (1 : m1, 1 : m1), β = ‖Y Y k−1
m e1‖ �= 0;

3 D ← ApproxDiag(A, c, k);
4 Initialise matrices V = zeros((k + 1)n, m2 + 1), H = zeros(m2 + 1, m2);
5 e1(e2) is an m1(m2)-dimensional unit vector with only a 1 in the first entry;

6 Set V (:, 1) = 1
β

⎡

⎢

⎢

⎢

⎢

⎢

⎣

D(:, 1) ◦ (UY Y k−1
m e1)

D(:, k + 1) ◦ ej

...

D(:, 3) ◦ (UY Y k−3
m e1)

D(:, 2) ◦ (UY Y k−2
m e1)

⎤

⎥

⎥

⎥

⎥

⎥

⎦

;

7 for i = 1 to m2 do
8 r ← cAT V (1 : n, i) + V (kn + 1 : (k + 1)n, i);
9 t ← V (1 : kn, i);

10 s ← concatenate r and t along the vertical direction;
11 for j = 1 to i do
12 temp ← inner product of r and V (1 : n, j);
13 s ← s − temp · V (:, j);
14 H(j, i) ← temp;

15 end
16 if H(i + 1, i) satisfies stop criterion then
17 m2 = i, V = V (:, 1 : m2 + 1), H = H(1 : m2 + 1, 1 : m2);
18 end
19 V (:, i + 1) ← s

H(i+1,i)
;

20 end
21 Q = V (1 : n, :), Hm = H(1 : m2, 1 : m2), P = V (kn + 1 : (k + 1)n, :);

22 return [Sm1,m2]∗,j = βQHHk−1
m e2;

Error Analysis. Finally, according to different value ranges of m1,m2, k, we ana-
lyze the error generated by our SimSky algorithm at length. Taking into account
the effects of k,m1,m2 on the error, we exclude the interference of diagonal
correction matrix Dk on the error, that is, we suppose that W is an identity
matrix. The error of single-source SimRank search caused by two aspects. On
the one hand, the iterative solution [S(k)]∗,j is used to approximate the accu-
rate solution [S]∗,j , which leads to the iterative error. On the other hand, the
dimension-reduced solution [Sm1,m2]∗,j generated by our SimSky algorithm is
used to approximate the iterative solution [S(k)]∗,j , which leads in the dimension-
reduced error.

Iterative Error. We analyze the iterative error. First, the same rationale as in
the error analysis in Sect. 2, we can obtain that ||(√cA)l|| ≤ θσl. Second, Lu et
al. [9] proved that ‖Dk − D‖ ≤ ck+2. And it’s obvious that ‖D‖ ≤ 1. Combine

234 L. Yan and W. Yu

the three aforementioned inequalities, we assume that θ = max(1, σk

‖(√cA)k‖), the

gap between [S]∗,j and [S(k)]∗,j is bounded by

‖[S]∗,j − [S(k)]∗,j‖ < θ2‖√
cAej‖(

σ2k+1

1 − σ2
+

ck+2(1 − σ2k+2)
σ − σ3

). (16)

Example 3. Taking the column-normalised adjacency matrix A in Fig. 1 as an
example, we set decay factor c = 0.8, scalars θ = 1 and σ = ρ(

√
cA) + 10−16,

query node j = 3, number of iterations k = 5, the result obtained after 30
iterations is taken as the accurate solution S. By substituting these values for
Eq. 16, the values on the left and right sides are 0.0996 and 1.4739. Numerical
example shows that our error upper bound is feasible. �

Dimension-Reduced Error. Dimension-reduced error should be discussed sepa-
rately according to the value ranges of m1,m2, k.

As per Lemma 3.1 in [11], for line 6 of the SimSky algorithm, we know that if
k ≥ m1+1, only those terms UY Y i−1

m e1 are accurate solutions to Aiej for 1 ≤ i ≤
m1, the rest terms are approximate solutions to Aiej for m1+1 ≤ i ≤ k. Through
the initial vector V (:, 1), which leads to the gap between the approximate solution
and the accurate solution of the last k’s terms in Eq. 11. Therefore, if there is
the dimension-reduced error on the former m1-dimensional Krylov subspace,
which is transmitted to the latter m2-dimensional Krylov subspace through the
initial vector. It’s difficult to give an explicit expression of the nested dimension-
reduced error, so our error analysis in theory only considers 1 ≤ k ≤ m1. In the
experiments, we cover all value ranges for m1,m2, k.

For 1 ≤ k ≤ m1 and 1 ≤ k ≤ m2, in accordance with Lemma 3.1 in [11],
we know that V (:, 1) in line 6 and [Sm1,m2]∗,j in line 22 are accurate solutions.
Therefore, the gap between the dimension-reduced solution [Sm1,m2]∗,j and the
iterative solution [S(k)]∗,j is bounded by 0.

For 1 ≤ k ≤ m1 and k ≥ m2 + 1, according to Lemma 3.1 in [11], there is
no dimension-reduced error on the former m1-dimensional Krylov subspace, and
only exists on the latter m2-dimensional Krylov subspace. We have to establish
a few auxiliary equalities to complete the analysis according to the SimSky
algorithm. Due to the limited space, we ignore the specific calculation process
and give a direct result. Let k−m2 = g, the gap between the dimension-reduced
solution [Sm1,m2]∗,j and the iterative solution [S(k)]∗,j is bounded by

‖[Sm1,m2]∗,j − [S(k)]∗,j‖ ≤ βhm2+1,m2(P1 + P2), (17)

where hm2+1,m2 is (m2 + 1,m2)-th entry of H, P1 =
g∑

i=1

‖ciAi‖|eT
m2

Hm2+g−1−i
m e2|,

P2 =
g−1∑

i=0

‖ciAi‖‖
m2+g−2−i∑

l=0

eT
m2

Hm2+g−2−i−l
m e2Ql (:, 1 + m2)‖. When g = 0, the equal sign

“=” is established.

SimSky: An Accuracy-Aware Algorithm for Single-Source SimRank Search 235

4 Experiments

Our experiments2 on real datasets will evaluate the search quality of the SimSky
algorithm, and verify our superiority over other competitors. We choose the
optimized single-source SimRank [18] as our baseline.

4.1 Experimental Setting

Datasets. We adopt the six real datasets from the Stanford Large Network Dataset
Collection3. They are email-Eu-core(euc), ca-GrQc(cag), Wiki-Vote(wiv),
p2p-Gnutella09(p2p09), ca-AstroPh(caa) and p2p-Gnutella25(p2p25).

Metrics. To evaluate search quality, we use two metrics:

(1) MaxError. Given the query node j, the approximate solution [S̃]∗,j and the
accurate solution [S]∗,j , MaxError= ‖[S]∗,j−[S̃]∗,j‖∞ = max{|[S]i,j−[S̃]i,j |}
for 1 ≤ i ≤ n.

(2) Precision@k. Given the query node j, the approximate top-k result V̂k =
{v̂1, v̂2, · · · , v̂k}, the accurate result Vk = {v1, v2, · · · , vk}, Precision@k =
∑k

i=1 δv̂ivi
|Vk| , where δ is Kronecker delta function. In our experiment, we use

Precision@500.

Parameters. We set the decay factor c = 0.8. In experiments verifying Eqs. 9
and 17, we set θ = 1 and σ = ρ(

√
cA) + 10−16, where ρ(

√
cA) represents the

spectral radius of the matrix
√

cA.
We evaluate the search quality of our SimSky algorithm and the other two

competitors, including SLING [12] and ExactSim [13]. For each dataset, we gen-
erate 50 query nodes randomly and calculate their average value of MaxError
and Precision@500. All experiments are run with an Intel(R) Core(TM) i7-8750H
CPU @ 2.20 GHz CPU and 32 GB RAM, on windows 10.

4.2 Comparative Experiments

Our SimSky is a dimensionality reduction algorithm, SLING [12] and Exact-
Sim [13] are random walk algorithms. To be fair, we compare their search preci-
sion and the time required under the same value of MaxError.

Precision. Fix k = m1 = m2 = 10, adjust the value of s, resulting in the
different values of MaxError. We compare the precision of our SimSky with other
competitors including ExactSim and SLING under the same value of MaxError
on real datasets, as shown in Fig. 2. We notice that the ExactSim has only the
ability to calculate the value of MaxError no less than 10−7 on all datasets.
When the value of MaxError is a double-precision floating-point number, such
2 https://github.com/AnonSimRank/SimSky.
3 http://snap.stanford.edu/data/index.html.

https://github.com/AnonSimRank/SimSky
http://snap.stanford.edu/data/index.html

236 L. Yan and W. Yu

Fig. 2. Precision comparisons on all datasets

as 10−16, none of our competitors are capable of doing so. However, our SimSky
is able to do it within a reasonable time. Even the value of MaxError exceeds
10−6, our SimSky attains competitive precision compared to our competitors.
Especially on dataset wiv, a precision of 100% can be achieved even with the
value of MaxError takes 10−2.

Time. Parameters are identical to the precision comparison experiments.
Figure 3 depicts the cost comparisons of our SimSky with other competitors.
The time required for our SimSky remains almost constant as the value of Max-
Error varies. This is consistent with our analysis, the reason lies in whatever
the value of MaxError is, the deviation between s and n is not too big. Taking
the dataset p2p09 as an example, when the values of MaxError are 1.0e − 2,
1.0e − 3, 1.0e − 4, 1.0e − 5, 1.0e − 6, 1.0e − 7 and 1.0e − 16, the corresponding
values of s are 7600, 8000, 8085, 8094, 8101, 8102 and 8108, and n = 8114, so
the time overhead for our SimSky doesn’t vary much as the value of MaxError
varies. For our competitors, although they require less time than our SimSky
when the values of MaxError are 1.0e − 2 and 1.0e − 3, there is no advantage in
their search precision.

4.3 Ablation Experiments

We will verify the influences of s,m1,m2, k on search quality and error through
a series of experiments.

SimSky: An Accuracy-Aware Algorithm for Single-Source SimRank Search 237

Fig. 3. Time comparisons on all datasets

Fig. 4. Effects of s on Precision@500 and MaxError

Effect of s. Fix k = m1 = m2 = 10, Fig. 4 depicts the effects of s on Max-
Error and Precision@500 on the datasets euc, cag and wiv. The gap between
the dimension-reduced solution [Sm1,m2]∗,j and the iterative solution [S(k)]∗,j

narrows, as the value of s approaches the value of n. As a result, the value of
error metric MaxError gets smaller. Instead, the value of search quality metric
Precision@500 gradually increases. And it demonstrates that our modified row
orthogonal matrix W is feasible.

Effects of m1,m2, k. Fix m2 = k = 10, s = n, Figs. 5a and 5b describe the
influences of m1 on MaxError and Precision@500 respectively. It can be seen
that the scale of the y-axis in the Fig. 5a is logarithmic. The value of MaxError
shrinks as the value of m1 approaches the value of k, which indicates that the gap
between our dimension-reduced solution [Sm1,m2]∗,j and the iterative solution
[S(k)]∗,j is shrinking. It also shows that the search quality of our SimSky is

238 L. Yan and W. Yu

Fig. 5. Effects of m1, m2, k on Precision@500 and MaxError

increasing. Our dimension-reduced solution is equal to the iterative solution if
the value of m1 exceeds the value of k, so that the gap between them can be
regarded as infinitesimal, and the value of precision is 1. Theoretical analysis is
consistent with Fig. 5b.

Fix m1 = k = 10 and s = n, Figs. 5c and 5d describe the influences of m2

on MaxError and Precision@500 on all datasets respectively. It is noteworthy
that the scale of the y-axis in the Fig. 5c is not logarithmic. Although the value
of MaxError decreases as the value of m2 approaches the value of k, the value
of MaxError cannot be ignored. In other words, our SimSky is more sensitive
to m2 in comparison to m1. This is consistent with the idea of our algorithm.
Because the dimensionality of the basis matrix is n by m1+1 on the previous m1-
dimensional Krylov subspace, but the dimensionality of the basis matrix is (k +
1)n by m2+1 on the subsequent m2-dimensional Krylov subspace. Experimental
results show that the value of m2 is not expected to be less than the value of
k. When the value of m2 exceeds the value of k, the theoretical analysis and
experimental results be similar with m1.

Fix m1 = m2 = 10 and s = n, Figs. 5e and 5f depict the effects of k on
MaxError and Precision@500 on all datasets respectively. When k ≤ 10, Sim-
Sky returns almost the same results as the conventional iterative method. When
k > 10, only the top-10 solutions are accurate, and the last 2 solutions are
approximate in the m1-dimensional Krylov subspace, leading to the dimension-
reduced error. These results will be passed to the m2-dimensional Krylov sub-
space by means of the initial vector V (:, 1) in the line 6. As such, the nested
dimension-reduced error cannot be ignored. This also shows that the precision
of our model has been significantly affected, as shown in Fig. 5f.

SimSky: An Accuracy-Aware Algorithm for Single-Source SimRank Search 239

Fig. 6. Effects of m1, m2 on error Fig. 7. Actual error and upper bound

Effects of m1,m2 on Dimension-Reduced Error. In the experiments to verify the
influences of m1,m2 on the dimension-reduced error, we set s = n and k = 10,
keep the remaining parameter at 10, as shown in Figs. 6a and 6b respectively.
Because we use the L2 norm of the vector to describe the dimension-reduced
error, the L∞ norm of the vector to quantify error metric MaxError, therefore the
tendency of influence of the single variable on them should be close to consistent,
as shown in Figs. 5a and 6a, 5c and 6b respectively.

Actual Error and Upper Bound. Figs. 7a and 7b depict the tendency of the
actual error and its upper bound in Eqs. 17 and 9 respectively. Fix s = n,
m1 = m2 = 10, the number of iterations k gradually decreases from 19 to 10,
Fig. 7a shows that our theoretical upper bound is tight. Figure 7b depicts the
tendency of actual error of the diagonal correction vector and its upper bound
as the value of n−s varies. When n = s, the values of the actual error and upper
bound are 0. The theoretical analysis is consistent with the experimental result.

5 Conclusions

In this paper, we propose an accuracy-aware algorithm for efficiently computing
single-source SimRank similarity. Firstly, we design an algorithm, ApproxDiag,
to approximate the diagonal correction matrix with guaranteed accuracy. Sec-
ondly, we present SimSky, an algorithm that leverages two Krylov subspaces to
transform high-dimensional single-source SimRank search into low-dimensional
matrix-vector multiplications. To evaluate the effectiveness of SimSky, we con-
ducted extensive experiments on various real datasets. Our results demonstrate
that SimSky outperforms competing algorithms in terms of search quality.

Acknowledgments. This work has been supported by the National Natural Science
Foundation of China under Grant No. 61972203.

Ethical Statement. We acknowledge the importance of ethical considerations in the

design of our ApproxDiag and SimSky algorithms. All the datasets used in this paper

are publicly-available online, and do not have any privacy issues. We ensure that our

algorithms do not lead to any potential negative influences. We declare that we allow

our algorithms to be used for the benefit of society.

240 L. Yan and W. Yu

References

1. Bekas, C., Kokiopoulou, E., Saad, Y.: An estimator for the diagonal of a matrix.
Appl. Numer. Math. 57(11–12), 1214–1229 (2007)

2. Boley, D.L.: Krylov space methods on state-space control models. Circuits Syst.
Signal Process. 13, 733–758 (1994)

3. Fouss, F., Pirotte, A., Renders, J.M., Saerens, M.: Random-walk computation of
similarities between nodes of a graph with application to collaborative recommen-
dation. IEEE Trans. Knowl. Data Eng. 19(3), 355–369 (2007)

4. Fujiwara, Y., Nakatsuji, M., Shiokawa, H., Onizuka, M.: Efficient search algorithm
for SimRank. In: 2013 IEEE 29th International Conference on Data Engineering
(ICDE), pp. 589–600. IEEE (2013)

5. Jeh, G., Widom, J.: SimRank: a measure of structural-context similarity. In: Pro-
ceedings of the Eighth ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, pp. 538–543 (2002)

6. Jeh, G., Widom, J.: Scaling personalized web search. In: Proceedings of the 12th
International Conference on World Wide Web, pp. 271–279 (2003)

7. Kusumoto, M., Maehara, T., Kawarabayashi, K.i.: Scalable similarity search for
SimRank. In: Proceedings of the 2014 ACM SIGMOD International Conference on
Management of Data, pp. 325–336 (2014)

8. Liben-Nowell, D., Kleinberg, J.: The link prediction problem for social networks.
J. Am. Soc. Inform. Sci. Technol. 58(7), 1019–1031 (2007)

9. Lu, J., Gong, Z., Yang, Y.: A matrix sampling approach for efficient SimRank
computation. Inf. Sci. 556, 1–26 (2021)

10. Rothe, S., Schütze, H.: CoSimRank: a flexible & efficient graph-theoretic similar-
ity measure. In: Proceedings of the 52nd Annual Meeting of the Association for
Computational Linguistics, pp. 1392–1402 (2014)

11. Saad, Y.: Analysis of some Krylov subspace approximations to the matrix expo-
nential operator. SIAM J. Numer. Anal. 29(1), 209–228 (1992)

12. Tian, B., Xiao, X.: SLING: a near-optimal index structure for SimRank. In: Pro-
ceedings of the 2016 International Conference on Management of Data, pp. 1859–
1874 (2016)

13. Wang, H., Wei, Z., Yuan, Y., Du, X., Wen, J.R.: Exact single-source SimRank com-
putation on large graphs. In: Proceedings of the 2020 ACM SIGMOD International
Conference on Management of Data, pp. 653–663 (2020)

14. Yu, W., Iranmanesh, S., Haldar, A., Zhang, M., Ferhatosmanoglu, H.: Rolesim*:
scaling axiomatic role-based similarity ranking on large graphs. World Wide Web
25(2), 785–829 (2022). https://doi.org/10.1007/s11280-021-00925-z

15. Yu, W., Lin, X., Zhang, W., Pei, J., McCann, J.A.: Simrank*: effective and scalable
pairwise similarity search based on graph topology. VLDB J. 28(3), 401–426 (2019)

16. Yu, W., McCann, J.A.: Efficient partial-pairs SimRank search on large networks.
Proc. VLDB Endow. 8(5), 569–580 (2015)

17. Yu, W., McCann, J.A., Zhang, C., Ferhatosmanoglu, H.: Scaling high-quality pair-
wise link-based similarity retrieval on billion-edge graphs. ACM Trans. Inf. Syst.
40(4), 78:1–78:45 (2022). https://doi.org/10.1145/3495209

18. Yu, W., McCann, J.A.: High quality graph-based similarity search. In: Proceedings
of the 38th International ACM SIGIR Conference on Research and Development
in Information Retrieval, pp. 83–92 (2015)

https://doi.org/10.1007/s11280-021-00925-z
https://doi.org/10.1145/3495209

SimSky: An Accuracy-Aware Algorithm for Single-Source SimRank Search 241

19. Yu, W., Wang, F.: Fast exact CoSimRank search on evolving and static graphs.
In: Proceedings of the 2018 World Wide Web Conference on World Wide Web,
WWW 2018, Lyon, France, 23–27 April 2018, pp. 599–608. ACM (2018). https://
doi.org/10.1145/3178876.3186126

20. Yu, W., Yang, J., Zhang, M., Wu, D.: CoSimHeat: an effective heat kernel similarity
measure based on billion-scale network topology. In: WWW 2022: The ACM Web
Conference 2022, Virtual Event, Lyon, France, 25–29 April 2022, pp. 234–245.
ACM (2022). https://doi.org/10.1145/3485447.3511952

https://doi.org/10.1145/3178876.3186126
https://doi.org/10.1145/3178876.3186126
https://doi.org/10.1145/3485447.3511952

Online Network Source Optimization
with Graph-Kernel MAB

Laura Toni1(B) and Pascal Frossard2

1 EEE Department, University College London, London, UK
l.toni@ucl.ac.uk

2 LTS4, EPFL, Lausanne, Switzerland

Abstract. We propose Grab-UCB, a graph-kernel multi-arms bandit algo-
rithm to learn online the optimal source placement in large scale net-
works, such that the reward obtained from a priori unknown network
processes is maximized. The uncertainty calls for online learning, which
suffers however from the curse of dimensionality. To achieve sample effi-
ciency, we describe the network processes with an adaptive graph dictio-
nary model, which typically leads to sparse spectral representations. This
enables a data-efficient learning framework,whose learning rate scaleswith
the dimension of the spectral representation model instead of the one of the
network. We then propose Grab-UCB, an online sequential decision strategy
that learns the parameters of the spectral representation while optimizing
the action strategy. We derive the performance guarantees that depend
on network parameters, which further influence the learning curve of the
sequential decision strategy We introduce a computationally simplified
solving method, Grab-arm-Light, an algorithm that walks along the edges
of the polytope representing the objective function. Simulations results
show that the proposed online learning algorithm outperforms baseline
offline methods that typically separate the learning phase from the test-
ing one. The results confirm the theoretical findings, and further highlight
the gain of the proposed online learning strategy in terms of cumulative
regret, sample efficiency and computational complexity.

Keywords: multi-arms bandit · graph dictionary · graph-kernel

1 Introduction

Large-scale interconnected systems (transportation networks, social networks,
etc.), which create services and produce massive amounts of data, are becoming
predominant in many application domains. The management of such networked
systems is exceedingly hard because of their intrinsic and constantly growing
complexity. Many works have been proposed to tackle this problem (e.g., model
based optimal control, consensus works [29,30,34,50,51], Bayesian approaches
[1], etc.) but with a limited focus on online learning and control of large-scale net-
works. The latter becomes extremely challenging with dynamic and high dimen-
sional network processes that controls the evolution of states of network nodes.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
D. Koutra et al. (Eds.): ECML PKDD 2023, LNAI 14171, pp. 242–258, 2023.
https://doi.org/10.1007/978-3-031-43418-1_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-43418-1_15&domain=pdf
https://doi.org/10.1007/978-3-031-43418-1_15

Grab-UCB 243

The dynamics introduce uncertainty about the system environment, which can
be addressed by online learning strategies that infer the system behaviour before
taking the appropriate adaptation actions or decisions. The high dimensionality
of the problem calls for proper information representation methods.

We consider the particular problem of optimal source placement in order to
maximize a reward function on a network, which depends on network processes
that are a priori unknown and must be learned online. We address this challenge
by blending together online learning theory [22] and Graph Signal Processing
(GSP) [31,35] with the key intuition that the latter permits to appropriately
model the large-scale network processes via sparse graph spectral representa-
tions. This generates a data-efficient learning framework, whose learning rate
does not scale with the dimension of the network as in most methods of the
literature, but rather with the dimension of the spectral representation. Indeed,
in classical online learning solutions such as those casted as Multi-arm bandit
(MAB) problems, the main learning steps happen in the action (or node) domain
and do not scale properly with the search space. The key intuition underpinning
our new framework is to consider these learning steps at the crossroad of the
search space (or node) domain and the latent space (or spectral) domain. An
agent takes sequential decision strategies in the high-dimensional vertex domain
based on the uncertainty of the model estimated in the low-dimensional spectral
domain. Similar intuition is shared in literature on bandit for spectral graph
domains (see Sect. 6), which aims at applying linUCB algorithms while pre-
serving the low-dimensionality assumption of the reward. However, we do not
limit ourselves to smoothness assumption in inductive bias and rather model
the entire network process as a graph filter that is excited by a set of unknown
low-rank inputs (action). As a result, the learning process boils down to inferring
spectral graph representations with a learning rate that scales with the dimen-
sion of their generating kernels, which is substantially lower than the one of the
search space. With our framework, this online learning problem can be reformu-
lated and reduced to a linearUCB problem [9] that is a well-known algorithm
achieving good sample efficiency in the literature for linear stochastic bandit
problems. We then derive the theoretical bound of the estimation of the graph
spectral model and translate it to the MAB upper confidence bound. Finally, we
observe that the optimization method leads to an arm selection problem that
is NP-hard, and we provide a low-complexity algorithm, Grab-arm-Light, by
exploiting the structure of the optimization function (maximization of a con-
vex function over a polytope). Simulations validate the accuracy of the proposed
low-complexity algorithm as well as the gains of the proposed graph-kernel MAB
strategy, in terms of cumulative regret, sample efficiency and computational com-
plexity, when compared to baseline offline methods.

The reminder of this paper is as follows. The online source optimization prob-
lem is formulated in Sect. 2. The proposed Grab-UCB is detailed in Sect. 3, and
the low complexity solution Grab-arm-Light is introduced in Sect. 4. Simula-
tion results are discussed in Sect. 5. Related works are presented in Sect. 6, and
conclusions in Sect. 7.

244 L. Toni and P. Frossard

2 Online Source Optimization Problem

2.1 Problem Formulation

Let consider a learner (or agent) controlling processes on large scale networks
with no a priori information on their dynamics. Examples can be network cooling
systems [18], opinions spreading across social networks [32], or energy distribu-
tion networks [33] that need to be managed online with no a priori information
about the underlying processes. In this paper, we model these processes as sig-
nals on graphs, as depicted in Fig. 1, with actions and resultant signal defined
on the weighted and undirected graph G = (V, E ,WWW) with V being the vertex
set (|V| = N), E the edge sets, and W the N × N graph adjacency matrix.
Namely, we assume that the action taken by the learner at time t, aaat ∈ R

N , is
modelled as an excitation signal on the graph and produces a resultant graph
signal yyyt ∈ R

N . The instantaneous reward wwwt = V → R
N can be modelled as

a function of the resultant graph signal, and reads wwwt = f (yyyt) + nnnt, with f(·)
being an affine function1 and nnnt an additive noise. The overall goal of the agent
is to learn which actions need to be selected to achieve the maximum reward,
with no prior information on the network process (i.e., the mapping from aaat

to wwwt). The problem can be casted as a stochastic MAB problem, aimed min-
imizing the cumulative loss (or equivalently maximize the cumulative reward)
over a time horizon T , which is seen as the minimization of the pseudo regret
RT = Tr(aaa�) − ∑T

t=1 r(aaat), with r(aaa) being the mean reward for action aaa.
In this following, we consider the online source optimization problem2, where

a decision maker needs to select T0 sparse actions out of N , i.e., A = {hhh | ||hhh||0 ≤
T0 ∧ hn ∈ [0, 1], n = 1, ..., N}, where T0 is the maximum sparsity level of
the actions. We assume that the rewards associated to consecutive actions are
independent and model the affine function f(·) as the mapping function MMM ∈
R

N×N , a diagonal binary matrix, with the n-th diagonal element being 1 if the
signal at the node n is consdiered in computing the reward, or 0 if that signal
is masked. Real-world examples are influence maximization problems, such as
targeted advertisement online [17,37] or optimization of cooling systems and/or
power networks [16]. This online learning problem can be solved by classical
MAB problems, with a sublinear regret RT = O(|A| log T) [22], with |A| =

(
N
To

)
,

if T0 is the imposed sparsity of hhh. This regret is not sustainable in large-scale
networks with large action space |A|.

2.2 Graph-Kernel MAB Framework

We now propose a graph-kernel MAB problem that exploits the geometry of the
network processes to achieve a better regret scaling. Specifically, we model the
1 This includes many reward shapes such as subsampled or filtered signal as well as

mean value.
2 It is worth noting that the formalism introduced in this Section extends to most

problem on learning on network process, but for the sake of brevity and clarity we
discuss only the source optimization problem.

Grab-UCB 245

Fig. 1. Graphical visualisation of the proposed framework.

mapping aaat → wwwt as an unknown structured function of the graph Laplacian LLL
(defined to be LLL = DDD − WWW , with DDD being the degree matrix), i.e.,

wwwt = f (yyyt) + nnnt = f (gL(aaat)) + nnnt (1)

with gL(·) being an unknown generating kernel3 of the graph Laplacian LLL. The
generating kernel models the process on graphs and characterizes the effect of
an action in a resulting graph signal, which will impact the mean reward. Hence,
the agent infers the mapping aaat → r (aaat) by learning the graph generating kernel
gL(·) in the spectral domain, which is much more sample-efficient than learning
the mapping aaat → r (aaat) directly in the high-dimensional vertex (action) space.

We formulate the online learning problem via GSP tools, and we cast the
problem into a linear MAB problem, in which the confidence bound is defined on
the graph spectral parameters of the generating kernel. We model the network
process via the graph-based parametric dictionary learning algorithm in [40],
with a signal on graph defined as yyy = DDDhhh + εεε, with hhh = [h1, h2, . . . , hN]T being
the latent variables (localized events) defined on the graph, i.e., the excitation
signal defined as actions in our model, and εεε = [ε1, ε2, . . . , εN]T is a Gaussian
and N -dimensional random variable with εn ∼ N (0, σ2

e) [9].
The graph dictionary DDD is defined as DDD = gLLL(·) =

∑K−1
k=0 αkLLL

k [40] and
represents the graph-kernel, which incorporates the intrinsic geometric structure
of data domain into the atoms of the dictionary through LLL. Assuming that signals
have a support contained within K hops from vertex n, the resulting signal in
n can be represented as combinations of localized events (e.g., local signals) on
the graph, which can appear in different vertices and diffuse along the graph.
Namely,

yn =
N∑

m=1

hm

K−1∑

k=0

αk(LLLk)n,m + εn (2)

where (LLLk)n,m is the (m,n) entry of LLLk and we recall that (LLLk)n,m = 0 if the
shortest path between n and m has a number of hops that is greater than k.
3 Graph filter defined in the spectral domain of the graph, typically in the form of the

power series of the graph Laplacian [40].

246 L. Toni and P. Frossard

With the following matrix notations where PPP = [LLL0,LLL1,LLL2, . . . ,LLLK−1], with PPP ∈
R

N×NK , captures the powers of the Laplacian, and with α =α =α = [α0, α1, . . . , αK−1]T

representing the polynomials coefficients in the dictionary, we can rewrite the
resulting signal as

yyy = gL(hhh;ααα) = PPPIIIK ⊗ hhhααα + εεε = PHPHPHααα + εεε (3)

with IIIK being the K × K identity matrix, ⊗ the Kronecker product, and HHH =
IIIK ⊗hhh, with HHH ∈ R

NK×K . In our framework, at the decision opportunity t, the
agent controls the latent variables hhht while learning the polynomial coefficients
ααα. Given that the instantaneous reward is an affine function of the resultant
signal yyyt, substituting (3) in the reward expression (4), we achieve the following

wwwt = MMMyyyt = MMMPHtPHtPHtααα + MMMεεεt = XXXααα + nnnt (4)

where and XXX = MMMPHtPHtPHt, with XXXt ∈ R
N×K .

In short, the reward can be expressed as a linear combination of the K-
degree polynomial ααα and the matrix XXXt, which includes both the graph structure
information (via the Laplacian LLL) and the action hhht. This is important because:

– the reward is a linear mapping between the unknown parameters ααα and the
actions hhhthhhthhht (hence XXXt), implying that we can solve the online learning problem
with the linUCB [9] theory.

– the reward is given by the generating kernel gL(·), which is parametrized by
the vector ααα with dimensionality K. Therefore the uncertainty bound in the
linUCB is evaluated in the spectral (low-dimensional) domain. This presents
an important advantage, as the regret scales as O(d

√
T log T) in LinUCB,

where d is the dimension of the unknown (low-dimension) parameter ααα.

3 Grab-UCB: Proposed Algorithm

We now propose a theoretical bound and algorithmic solution to the online source
optimisation problem using the new framework described in Sect. 2, which permits
to learn in the spectral domain and to act in the vertex domain, see Fig. 2. There
are two interacting subtasks in the algoirthm: 1) refinement of the coefficients esti-
mate, 2) selection of the arm given the updated knowledge of the system.

Step 1: Coefficients Estimation. Let consider the t-th decision opportunity,
when t − 1 decisions have already been taken and the corresponding signals
and rewards have been observed. The training set is built over time thus it cor-
responds to sequence of pairs {(hhhτ ,wwwτ)}t−1

τ=1, where we recall that p(yyy|hhh,ααα) ∼
N (gL(hhh;ααα), σ2

eIIIN), and that the randomness is due to the random noise εεετ . For
large t, maximizing the MAP probability p(ααα|yyy,hhh) corresponds to minimizing
the l2-regularized least-square estimate of ααα, leading to the following problem:
α̂ααt : arg minααα

∑t−1
τ=1 ||MMMPHταPHταPHτα − wwwτ ||22 + μ||ααα||22 . It follows that

α̂ααt =

[
t−1∑
τ=1

ZZZT
τ ZZZτ + μIIIK

]−1 t−1∑
τ=1

ZZZT
τ wwwτ =

[
ZZZT

1:tZZZ1:t + μIIIK

]−1

ZZZT
1:tWWW t = VVV −1

t ZZZT
1:tWWW t

(5)

Grab-UCB 247

Fig. 2. Figurative example of the online graph-strcutured processing. Green (red)
dashed boxes are defined in the vertex (spectral) domain. (Color figure online)

with ZZZ1:t = [ZZZ1,ZZZ2, . . . ,ZZZt−1]T , ZZZτ = MMMPHPHPHτ , WWW t = [www1,www2, . . . ,wwwt−1]T , and
VVV t = ZZZT

1:tZZZ1:t+μIIIK . The l2-regularized least-square estimate leads to an approx-
imation of the actual polynomial ααα, and this approximated estimate α̂ααt is refined
at each decision opportunity.

Step 2: Action Selection. Once the estimation of the ααα coefficients is refined,
the decision maker needs to select the best action to take for the t-th decision
opportunity. Following the theory of linear UCB [9], the decision maker evaluates
the confidence bound Et as an ellipsoid centered in α̂ααt defined such that ααα ∈ Et

with probability 1 − δ for all t ≥ 1, see Fig. 2. Then, the decision maker selects
the best action that maximizes the estimated mean reward, for each possible
generating kernel in the ellipsoid (optimism in face of uncertainty [22]). Formally,
the decision maker selects the action hhh (and therefore XXX = MMMPPPIIIK ⊗ hhh) such
that

hhht : arg max
hhh∈A

max
ααα∈Et

XαXαXα . (6)

To apply (6), we need to formally derive the confidence bound Et. This can be
derived by the following two Lemmas (proofs in Appendix A in [41]). Lemma
1 bounds the matrix VVV t, which defines the regularized least-square solution as
shown in (5). Lemma 1 is key to evaluate the upper confidence bound in Lemma
2. Specifically, Lemma 2 provides the confidence bound Et such that Et : {||α̂ααt −
ααα∗|| ≤ ct}. It is worth noting that both bounds have explicit dependency on
topological features of the graph, such as the sum of eigenvalues power, as we
comment later.

Lemma 1: Suppose ZZZ1,ZZZ2, . . . ,ZZZt ∈ R
1×K , with ZZZτ = MMMPPPIIIK ⊗ hhhτ and for

any 1 ≤ τ ≤ t − 1, ||hτ ||2F ≤ T0, and ||MMM ||2F ≤ Q. Let VVV t =
∑

τ ZZZT
τ ZZZτ + μIIIK

with μ > 0, then |VVV t| ≤ [μ + dQT0]
K

,with d =
∑

k

∑
l λ

k
l , with λl being the l-th

eigenvalue of the graph Laplacian.

Lemma 2: Assume that VVV t =
∑

τ ZZZT
τ ZZZτ + μIIIK , define wwwτ = ZZZτα∗α∗α∗ + ηηητ , with

ZZZτ = MMMPPPIIIK ⊗hhhτ and with ηηηt being conditionally R-sub-Gaussian, and assume

248 L. Toni and P. Frossard

Algorithm 1. Grab-UCB
Input:
N : nr of nodes, T0: sparsity level of action signal hhh, K: sparsity of the basis coefficients
μ, δ: regularization and confidence parameters
R, S: upper bounds on the noise and ααα∗
t = 1
while t ≤ T do

Refine estimate of the coefficients
XXX1:t = [XXX1,XXX2, . . . ,XXXt−1]

T

YYY 1:t = [yyy1, yyy2, . . . , yyyt−1]
T

VVV t = XXXT
1:tXXX1:t + μIIIK+1

Step 1: Coefficients estimation:
α̂ααt = VVV −1

t XXXT
1:tYYY 1:t

Step 2: Action Selection
Evaluate the confidence bound and select the best action
Select action by solving (7) numerically or via Grab-arm-Light

Observe the resulting signal yyyt and the instantaneous reward
t = t + 1

end while

that ||ααα∗||2 ≤ S, and ||hhhτ ||2F ≤ T0. Then, for any δ > 0, with probability at least
1 − δ, for all t ≤ 0, ααα∗ lies in the set

Et :

{
ααα ∈ R

1×K : ||α̂ααt − ααα||VVV t ≤ R

[√
K log(μ + tdQT0) + 2 log(μ−1/2δ)

]
+ μ1/2S

}

with d =
∑

k

∑
l λ

k
l , with λl being the l-th eigenvalue of the graph Laplacian and

α̂ααt is the l2-regularized least-square estimate of ααα with t training samples.

From Lemma 2, the maximization in (6) becomes (see Appendix A in [41]
for details)

hhht = arg max
hhh∈A

max
α∈Et

XαXαXα = arg max
hhh∈A

XαXαXα + ct

√

XXXVVV −1
t XXXT

= arg max
hhh∈A

XαXαXα + ct||XXX||VVV −1
t

= arg max
hhh∈A

[
MMMPHPHPHα̂ααt + ct||MMMPHPHPH||VVV −1

t

]
(7)

with ct = R
[√

K log(μ + tdQT0) + 2 log(μ−1/2δ)
]

+ μ1/2S following Lemma 2.
This optimization characterizes the Step 2, i.e., the action selection. However,
this cannot be solved efficiently in large scale networks, see Appendix A in [41]
for description of the solving method and scalability issues. In the following
Section, we propose a computationally effective optimization algorithm.

In Algorithm 1, we summarize the main steps of the proposed Grab-UCB strat-
egy. This algorithm achieves the following regret bound (derived in Appendix B

in [41]) of RT ≤ 2(cT + 1)
√

2KT log
(
1 + QT0d

μ

)
. It is worth noting the depen-

dency on the topological structure via d, sum of eigenvalues power. Finally, the

Grab-UCB 249

regret does not depend on the network size N but rather on the sparsity level
T0, hence the strong gain with respect to linUCB like algorithms.

4 Grab-arm-Light: Efficient Action Selection

The methodology proposed in the previous Section entails two main optimiza-
tion/learning steps that need to be solved. While the solution to the optimization
in Step 1 has a closed form, i.e., Eq. (5), in Step 2 the optimization problem in
(7) needs to be solved efficiently. This optimization becomes computationally
expensive in large-scale graphs, see Appendix C in [41]. Therefore, in the follow-
ing we propose a computationally effective optimization algorithm to address
the scalability issue that we call Grab-arm-Light. It is a computationally light
solving method aimed at selecting the action/arm in Step 2 of Grab-UCB. We
first rewrite the problem (7) (see Appendix A in [41]) as follows

max
hhh

DDDhhh + ct||LLL ∗ bbbT ⊗ hhhT ||2 s.t. h(n) ∈ [0, 1], ∀n||hhh||0 ≤ T0 (8)

where we have used XXX = MMMPPPIIIK+1 ⊗ hhh = bbb ⊗ hhh. The above problem maximizes
a convex objective function over a polytope, defined by both constraints. If the
objective function has a maximum value on the feasible region, then it is at the
edges of the polytope. Therefore, the problem reduces to a finite computation of
the objective function over the finite number of extreme points.

However, in the case of large networks, this computation could be too expen-
sive. Therefore, we propose an algorithm that walks along the edges of the poly-
tope. The intuition is similar to the one of the simplex algorithm or any hill
climbing algorithm. Let consider an iterative algorithm, where at each iteration
the N variables hn, with n = 1, . . . , N , are subdivided into basic variables and
non-basic variables. The former are the ones such that hn = 1, while the non
basic variables are the remaining zero sources. At each iteration, we perform the
operation of moving from a feasible solution to an adjacent feasible solution by
swapping a basic variable with a non basic one (similar to the pivoting operation
in the simplex algorithm). We move in such a way that the objective function
always increases. We then stop the algorithm either after a maximum number
of iteration steps or when convergence is reached. This is the Grab-arm-Light,
presented in Algorithm 2 and further described in the following.

Let hhh(t−1) = [h(t−1)
1 , h

(t−1)
2 , . . . , h

(t−1)
N] be the optimal variable at the iter-

ation step i − 1. Let Bt = {n|h(t−1)
n = 1} be the set of the indices of basic

variables at t. Let then denote by J the objective function J(hhh) = MMMPPPIIIK+1 ⊗
hhhα̂ααt +ct||LLL∗bbbT ⊗hhhT ||2 and by ∂J/∂hn be the partial derivative of J with respect
the nth variable. Finally, note that vertices are adjacent if they share all but one
non-basic variable. Equipped with the above notations and definitions, we now
state the following Lemmas (proofs in Appendix A in [41]):

Lemma 3: One vertex is optimal if there is no better neighboring vertex.

250 L. Toni and P. Frossard

Algorithm 2. Grab-arm-Light
Input:
number of iterations MaxIter, action sparsity level T0, graph topology (and therefore
LLL and PPP), reward mask MMM , estimated polynomial α̂αα, confidence bound c.
Output:
optimal source signal hhh�

Initialization:
Definition of the objective function J(hhh) = MMMPPPIIIK+1 ⊗ hhhα̂αα + c||LLL ∗ bbbT ⊗ hhhT ||2
Evaluation of the partial derivatives an = ∂J

∂hn

∣∣
ununun

, ∀n

Selection of hhh(0): h
(0)
n = 1 if an belongs to the T0 largest partial derivatives.

t = 1
for t ≤ MaxIter do

Set Bt = {n|h(t−1)
n = 1}

Evaluate the IN and OUT variables:

in = arg max
n|hn /∈Bt

{
∂J

∂hn

∣∣∣
hhh(t−1)

}
, out = arg min

n|hn∈Bt

{
∂J

∂hn

∣∣∣
hhh(t−1)

}

Set hhh(t) = hhh(t−1)

Set h
(t)
in = 1, h

(t)
out = 0

if J(hhh(t)) ≤ J(hhh(t−1)) then
hhh� = hhh(t)

break
end if
t ← t + 1

end for

Lemma 4: From a vertex, moving to one of the neighboring nodes in the direc-
tion of the greatest gradient leads to a no-worse objective function. Let h

(t)
in and

h
(t)
out be the variable that enters and leaves the set of basic variables, respectively,

at the t-th iteration. These variables are evaluated as follows

in = arg max
n|hn /∈Bt

{
∂J

∂hn

∣
∣
∣
hhh(t−1)

}

, out = arg min
n|hn∈Bt

{
∂J

∂hn

∣
∣
∣
hhh(t−1)

}

From Lemma 4, given a vertex hhh(t−1), at the t-th iteration the algorithm will
move to the neighboring vertex hhh(t) defined as follows:

h
(t)
in = 1, h

(t)
out = 0, and h(t)

n = h(t−1)
n ,∀n �= in, out.

As shown in Algorithm 2, if the swap variable leads to an improvement of the
objective function, i.e., if J(hhh(t)) > J(hhh(t−1)), then we proceed to the next
step. Otherwise, we set the optimal source signal hhh� = hhh(t−1) and we break
the iterative loop. Further details are provided in Algorithm 2, together with
the initialization step. Rather than a randomly generating starting point, we
consider the one with the T0 variables having the maximum partial derivative
an = ∂J

∂hn

∣
∣
ununun

,∀n, with ununun being a N -dimensional vector all elements null but the

Grab-UCB 251

n-th, which is set to 1. Note also that in the algorithm the partial derivative of
the objective function can be derived as (see Appendix D.2 in [41] for details)

∂J(hhh)
∂hn

= MMMPPPIIIK+1 ⊗ 111nα̂αα +

(
LLL ∗ bbbT ⊗ hhhT

)

||LLL ∗ bbbT ⊗ hhhT ||2
(
LLL ∗ bbbT ⊗ 111T

n

)T
(9)

In summary, the proposed algorithm requires the evaluation of the partial
derivative (N operations) instead of exhaustively evaluating the objective func-
tion in (8) at all

(
N
T0

)
possible edges. In the following Section, we show emporically

that this complexity reduction does not come at the price of reduced optimality.

5 Simulation Results

5.1 Settings

As benchmark solution, we propose an algorithm denoted as Act After Learn-
ing (AAL), in which the exploration and the exploitation phases are separated,
while our proposed method finds the best tradeoff between exploitation and
exploration automatically. The key intuition is that it first gathers a training
set (in the first TL decision strategies) and therefore experience a reward as a
function of random actions. Then, after a training phase of TL decision oppor-
tunities, the generating kernel is estimated and the best arm is selected. In the
remaining decision opportunities the best action is taken. Note that we do not
compare with the linUCB algorithms since its regret would scale with the cardi-
nality of the decision space |A| =

(
N
To

)
, if T0 is the imposed sparsity of hhh, which

is prohibitive in the case of large-scale network. .
We carry out experiments on Barabási-Albert model (BA) graphs [3], on

radial basis function (RBF) random graphs, and on non-synthetic graphs (e.g.,
Minnesota graph4). For BA graphs, the network begins with an initial con-
nected network of m0 = 10 nodes. At each iteration, one node is added to
the network and it is connected to m ≤ m0 existing nodes. Connections to
existing nodes are built following a preferential attachment mechanism, which
eventually builds a scale-free network. For the RBF model, we generate the
coordinates of the vertices uniformly at random in the unit square, and we
set the edge weights based on a thresholded Gaussian kernel function so that
W (i, j) = exp(−[dist(i, j)2)/2σ) if the distance between vertices i and j is
smaller than or equal to T , and zero otherwise. We further set σ = 0.5 and
we vary T to change the edge density of the generated graphs.

We model the network processes as a diffusion processes with generating
kernel gL = e−τL [39]. We then consider that each signal on the graph is char-
acterized by the source signal, the generating kernel and an additive random
noise εt with zero mean and variance σ2

e (i.e., R = σe in the spectral UCB). The
remaining parameters of the sequential decision strategy are set as μ = 0.01,
δ = 0.01. The mask M is randomly generated and it covers 20% of the nodes.

4 Available at https://lts2.epfl.ch/gsp/.

https://lts2.epfl.ch/gsp/

252 L. Toni and P. Frossard

Fig. 3. Cumulative regret vs. time for randomly generated graphs with N = 100,
diffusion process (with τ = 5) and sparsity level T0 = 5 for Grab-UCB.

5.2 Performance of Grab-UCB

We now study the performance of the proposed Grab-UCB with Grab-arm-Light
used in Step 2. First, a randomly generated graph (RBF model) with N = 100
nodes is considered, in the case of diffusion process acting on the graph with
τ = 10 and with σ2

e = 10−2. Figure 3 depicts the cumulative regret over time (in
terms of decision opportunities) for the considered graph. Each point is averaged
over 100 realizations (when at each realization both the graph and the noise of the
signal on graph are generated). The Grab-UCB is compared to AAL with TL = 10
(AAL short) and TL = 20 (AAL long). Note that a longer exploration leads to a
better estimate but for a longer (suboptimal) exploration phse. From Fig. 3, we
observe that Grab-UCB outperforms the baseline algorithms in both networks.
The proposed algorithm is tested also in the case of ct = 0, which means that
the confidence bound is ignored when acting – leading to less exploration. The
comparison shows the gain in striking the optimal tradeoff between exploitation
and eploraztion (ct > 0). Further results are provided in Appendix E.1 in [41].

We further illustrate in Fig. 4 that optimal placement of sparse resources in
high dimensional networks is not necessarily an intuitive step. It depicts the
optimal source signal computed by Grab-UCB with optimal solver introduced in
Appendix A in [41] and the resulting signal for a randomly generated graph
(RBF model) with N = 100, and sparsity level T0 = 4. In Fig. 4a, the optimal
signal is depicted in red, while the mask signal used to evaluate the reward is
depicted in blue. Interestingly, the optimal signal is placed on nodes that do not
necessarily belong to the mask and do not necessarily appear to be central in
the graph. Yet, this results in the optimal reward signal depicted in Fig. 4b.

We validate now the proposed algorithm for solving the action selection
step, which is a priori NP-hard. We empirically compare the numerical solver
(FMICON) adopted to optimally solve Step 2 (labelled in the following figure
as “Exact”) and the Grab-arm-Light (labelled as “Algorithm 2”). Figure 5a
depicts the CPU time required by both solvers as a function of the number
of nodes N for a randomly generated graph (RBF model), with sparsity level

Grab-UCB 253

Fig. 4. Optimal source signal and resulting signal for a randomly generated graph
(RBF model) with N = 100, and sparsity level T0 = 4.

Fig. 5. Comparison of the optimal solver and Grab-arm-Light (Algorithm 2) for ran-
dom graphs (RBF model) with different number of nodes, and T0 = 5.

T0 = 5. The achieved reward after 100 decision steps is also depicted in Fig. 5b.
Results are averaged over 50 generated graphs. As expected, the problem in (8)
is NP-hard (maximization of a convex function under convex -or affine- con-
straints) and the solver’s complexity grows exponentially with N . Conversely,
the complexity of Grab-UCB grows linearly with N , as shown by Fig. 5a. From
Fig. 5b, it can be observed that the proposed solution still achieves the opti-
mal solution in terms of reward. Note that the reward is not monotonic with N
because the density of the graph is not necessarily kept constant for different N
values.

Finally, we evaluate the effect of network topology on the estimation error
(From Lemma 2, we see that the confidence bound increases with the sparsity
level T0 and d =

∑K
k=0

∑N
l=1 λk

l). We consider a randomly generated training set
of 300 signals, and we then estimate the accuracy of the learned polynomial α.
To measure the accuracy of the estimate, we evaluate the error on the resulting
signal given the action hhh of test signals. We consider graphs generated with the
BA model; by changing the parameter m, we generate more or less connected
graphs (the larger the m the more connected is the graph). This is reflected in the
power sum d and in a more narrow profile of the eigenvalues of the Laplacian λl,
as observed from Fig. 6a, where the values of λl are provided for different graph

254 L. Toni and P. Frossard

Fig. 6. Graph Laplacian distribution and signal estimation error for graphs generated
with the BA model with different levels of connectivity, N = 200 nodes, and sparsity
value T0 = 25. The estimation error is evaluated both in the case of full observability
(solid line) or in the case of partial observability (dotted line).

topologies. As a consequence, more connected graphs lead to a more accurate
estimate of the generating kernels, see Fig. 6b. This validates the understanding
we had from the theoretical bounds, which depend on d.

6 Related Work

Multiple works have looked at graph-based bandit problems with the ultimate
goal of addressing sample-efficiency [4,17,28,36,43,46], identifying and leverag-
ing the structure underneath data in optimisation problems where the outputs
have semantically rich structure. In this direction, graph knowledge has been
used for 1) sharing the payoff throughout the graph Laplacian [10,12,23,27] or
reducing the dimensionality of the search space by clustering arms [6,7,11,21,24–
26] – those usually perform poorly in irregular datasets [48], typical of most of
the real-world problems; 2) modelling each arm as graph [19] – the main goal is
optimization over graph domains (set of graphs) while our focus is optimizing
over geometrical signal domains (set of signals on a given graph); 3) modelling
the reward signal, seen as smooth signal on the graph [44]– this shares most sim-
ilarities with our work hence they are further describe in the following paragraph
where differences with respect to our works are also highligthed.

Looking at the arms as nodes on a graph and the reward as a smooth signal on
this graph [13,20,43,44] permits to i) define the reward as a linear combination
of the eigenvectors of the graph Laplacian matrix, where the linear coefficients
are unknown, ii) apply LinUCB [9] in the spectral domain. These algorithms
achieve a regret bound of the order

√
dT , with d being the effective dimension

(linked to the dimensionality of the characteristic eigenvalues) and T being the
number of rounds. Similar intuitions have been introduced in [42], which per-
forms maximization over the smooth functions that have a small Reproducing
kernel Hilbert space (RKHS) norm, or in [38,47] that exploit graph homophily to
denoise/generalize the reward. Similarly, our work exploits spectral graph prior

Grab-UCB 255

to solve a linUCB algorithm with the assumption of low dimensional reward
behavior. Yet, we expand the literature on spectral MABs by modelling process-
ing evolving on graphs. Namely, each action represents possibly a set on a graph
(not limited to a node only) and the reward is not necessarily smooth on the
graph and it is a resultant signal on the entire graph instead of on one node only.

Our work, as well as spectral MAB ones, can be seen as extensions of the rich
field of methods for kernelized bandits working under the norm bounded RKHS
assumption [5,8,42,49] but they are not limited to Euclidean domains. Another
line of works consider bandits theory for decision-making strategy [15,49] (and
many references therein), which however differ from our model in which we limit
decisions to bandit problems and we exploit GSP tools to learn the dynamic
process of the network flow. Our paper share the ultimate goal of [17], focused
on online targeted advertising on social networks, where the multi-mode tensor
tool can nicely complement our work to extend our signal processing analysis
to heterogeneous feature vectors. Complementary to this work, there is also the
vast literature on Thompson sampling for the multi-arms bandit problem that
could be an interesting alternative to our Grab-arm-Light [2].

Finally, there is a vast literature from the GSP community [31] aimed at
capturing structural properties of network processes (i.e., node centrality [14],
community detection [45]) for network problems such as diffusion dynamics,
pricing experiments, and opinion dynamics: the work in [45] models an unknown
network process as a graph filter that is excited by a set of unknown low-rank
inputs, the study in [33] models power systems as generative low-pass graph
filters. However, no work so far has focused on learning while acting, i.e., inferring
network process models while taking sequential actions on those networks.

7 Conclusions

In this work, we study network optimization problems under uncertainty in the
case of optimal source placement. As main contributions, we cast the network
optimization problem under uncertainty as a linear MAB problem, which infers a
K-dimensional polynomial that defines the graph generating-kernel while taking
actions over time on the network-graph. We then derive the theoretical bound of
the estimation of the graph spectral model and translate it to the MAB upper
confidence bound. We show both mathematically and empirically that more
connected graphs and sparser signals lead to a more accurate estimation of the
network processes. Finally, we observe that the optimization method leads to an
arm selection problem that is NP-hard, and we provide a low-complexity algo-
rithm by exploiting the structure of the optimization function. Beyond proposing
a data-efficient solution to problems of network optimization, this work aims at
opening the gate to new research directions in which graph signal processing
tools are blended to online learning frameworks to exploit structural knowledge
of network optimization problems.

Ethical Statement. Our work is mostly of theoretical nature, and we do not foresee

any direct ethical implications. There is always a risk, as for most works of theoretical

256 L. Toni and P. Frossard

and algorithmic nature in machine learning, that the work would be diverted from its

original objective, and largely modified to design extensions in non-ethical applications.

However, this is not obviously envisaged by the authors at the time of the writing.

References

1. Acemoglu, D., Ozdaglar, A.: Opinion dynamics and learning in social networks.
Dyn. Games Appl. 1(1), 3–49 (2011)

2. Agrawal, S., Goyal, N.: Analysis of Thompson sampling for the multi-armed bandit
problem. In: Conference on Learning Theory. JMLR Workshop and Conference
Proceedings, pp. 1–26 (2012)

3. Barabási, A.L., Albert, R.: Emergence of scaling in random networks. Science
286(5439), 509–512 (1999)

4. Bellemare, M.G., et al.: A geometric perspective on optimal representations for
reinforcement learning. CoRR abs/1901.11530 (2019)

5. Camilleri, R., Jamieson, K., Katz-Samuels, J.: High-dimensional experimental
design and kernel bandits. In: Meila, M., Zhang, T. (eds.) Proceedings of Interna-
tional Conference on Machine Learning (ICML) (2021)

6. Caron, S., Kveton, B., Lelarge, M., Bhagat, S.: Leveraging side observations in
stochastic bandits. ArXiv abs/1210.4839 (2012)

7. Cesa-Bianchi, N., Gentile, C., Zappella, G.: A gang of bandits. In: Proceedings of
Advances in Neural Information Processing Systems (NIPS), pp. 737–745 (2013)

8. Chowdhury, S.R., Gopalan, A.: On kernelized multi-armed bandits. In: Precup, D.,
Teh, Y.W. (eds.) Proceedings of International Conference on Machine Learning
(ICML) (2017)

9. Chu, W., Li, L., Reyzin, L., Schapire, R.E.: Contextual bandits with linear pay-
off functions. In: Proceedings of Artificial Intelligence and Statistics Conference
(AISTATS), vol. 15, pp. 208–214 (2011)

10. Esposito, E., Fusco, F., van der Hoeven, D., Cesa-Bianchi, N.: Learning on the
edge: online learning with stochastic feedback graphs. arXiv:2210.04229 (2022)

11. Gentile, C., Li, S., Zappella, G.: Online clustering of bandits. In: Proceedings of
International Conference on Machine Learning (ICML) (2014)

12. Ghari, P.M., Shen, Y.: Online learning with probabilistic feedback. In: Proceed-
ings of IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP) (2022)

13. Hanawal, M.K., Saligrama, V.: Cost effective algorithms for spectral bandits. In:
Proceedings of IEEE Conference on Communication, Control, and Computing
(2015)

14. He, Y., Wai, H.T.: Detecting central nodes from low-rank excited graph signals via
structured factor analysis. arXiv preprint arXiv:2109.13573 (2021)

15. Hsieh, Y.G., Kasiviswanathan, S.P., Kveton, B., Blöbaum, P.: Thompson sampling
with diffusion generative prior (2023)

16. Hölzle, U.: Our commitment to climate-conscious data center cooling. https://blog.
google/outreach-initiatives/sustainability/our-commitment-to-climate-conscious-
data-center-cooling/ (2022)

17. Idé, T., Murugesan, K., Bouneffouf, D., Abe, N.: Targeted advertising on social
networks using online variational tensor regression. arXiv:2208.10627 (2022)

18. Jones, N.: How to stop data centres from gobbling up the world’s electricity. Nature
561(7722), 163–167 (2018)

https://arxiv.org/abs/1901.11530
https://arxiv.org/abs/1210.4839
http://arxiv.org/abs/2210.04229
http://arxiv.org/abs/2109.13573
https://blog.google/outreach-initiatives/sustainability/our-commitment-to-climate-conscious-data-center-cooling/
https://blog.google/outreach-initiatives/sustainability/our-commitment-to-climate-conscious-data-center-cooling/
https://blog.google/outreach-initiatives/sustainability/our-commitment-to-climate-conscious-data-center-cooling/
http://arxiv.org/abs/2208.10627

Grab-UCB 257

19. Kassraie, P., Krause, A., Bogunovic, I.: Graph neural network bandits. In: Confer-
ence on Neural Information Processing Systems (NeurIPS) (2022)

20. Kocák, T., Valko, M., Munos, R., Agrawal, S.: Spectral thompson sampling. In:
Proceedings of AAAI Conference on Artificial Intelligence (2014)

21. Korda, N., Szorenyi, B., Li, S.: Distributed clustering of linear bandits in peer to
peer networks. In: Proceedings of International Conference on Machine Learning
(ICML) (2016)

22. Lattimore, T., Szepesvári, C.: Bandit algorithms. arXiv (2018)
23. Lee, C.W., Luo, H., Zhang, M.: A closer look at small-loss bounds for bandits

with graph feedback. In: Proceedings of International Conference on Algorithmic
Learning Theory (ALT) (2020)

24. Li, S., Gentile, C., Karatzoglou, A., Zappella, G.: Data-dependent clustering in
exploration-exploitation algorithms. arXiv preprint arXiv:1502.03473 (2015)

25. Li, S., Gentile, C., Karatzoglou, A., Zappella, G.: Online context-dependent
clustering in recommendations based on exploration-exploitation algorithms.
ArXiv abs/1608.03544 (2016)

26. Li, S., Karatzoglou, A., Gentile, C.: Collaborative filtering bandits. In: Proceedings
of International ACM Conference on Research and Development in Information
Retrieval (2016)

27. Lykouris, T., Tardos, E., Wali, D.: Feedback graph regret bounds for thompson
sampling and ucb. In: Proceedings of International Conference on Algorithmic
Learning Theory (ALT) (2020)

28. Mohaghegh Neyshabouri, M., Gokcesu, K., Gokcesu, H., Ozkan, H., Kozat, S.S.:
Asymptotically optimal contextual bandit algorithm using hierarchical structures.
IEEE Trans. Neural Netw. Learn. Syst. 30(3), 923–937 (2019)

29. Movric, K.H., Lewis, F.L.: Cooperative optimal control for multi-agent systems on
directed graph topologies. IEEE Trans. Autom. Control 59(3), 769–774 (2014)

30. Nassif, R., Vlaski, S., Sayed, A.H.: Adaptation and learning over networks under
subspace constraints. ArXiv 1905.08750 (2019)

31. Ortega, A., Frossard, P., Kovačević, J., Moura, J.M.F., Vandergheynst, P.: Graph
signal processing: overview, challenges, and applications. Proc. IEEE 106(5), 808–
828 (2018)

32. Perra, N., Rocha, L.E.: Modelling opinion dynamics in the age of algorithmic per-
sonalisation. Sci. Rep. 9(1), 1–11 (2019)

33. Ramakrishna, R., Scaglione, A.: Grid-graph signal processing (grid-gsp): a graph
signal processing framework for the power grid. IEEE Trans. Signal Process. 69,
2725–2739 (2021)

34. Salami, H., Ying, B., Sayed, A.H.: Social learning over weakly connected graphs.
IEEE Trans. Signal Inf. Process. Netw. 3(2), 222–238 (2017)

35. Shuman, D.I., Narang, S.K., Frossard, P., Ortega, A., Vandergheynst, P.: The
emerging field of signal processing on graphs: extending high-dimensional data
analysis to networks and other irregular domains. IEEE Signal Process. Maga.
30(3), 83–98 (2013)

36. Slivkins, A.: Contextual bandits with similarity information. J. Mach. Learn. Res.
15(1), 2533–2568 (2014)

37. Tang, S.: When social advertising meets viral marketing: sequencing social adver-
tisements for influence maximization. In: AAAI (2018)

38. Thaker, P.K., Malu, M., Rao, N., Dasarathy, G.: Maximizing and satisficing in
multi-armed bandits with graph information (2022)

39. Thanou, D., Dong, X., Kressner, D., Frossard, P.: Learning heat diffusion graphs.
IEEE Trans. Signal Inf. Process. Netw. 3(3), 484–499 (2017)

http://arxiv.org/abs/1502.03473
https://arxiv.org/abs/1608.03544
https://arxiv.org/abs/1905.08750

258 L. Toni and P. Frossard

40. Thanou, D., Shuman, D.I., Frossard, P.: Learning parametric dictionaries for sig-
nals on graphs. IEEE Trans. Signal Process. 62(15), 3849–3862 (2014)

41. Toni, L., Frossard, P.: Online network source optimization with graph-kernel MAB.
https://arxiv.org/abs/2307.03641 (2023)

42. Valko, M., Korda, N., Munos, R., Flaounas, I., Cristianini, N.: Finite-time analysis
of kernelised contextual bandits (2013)

43. Valko, M., Munos, R.: Cheap bandits. In: Proceedings of International Conference
on Machine Learning (ICML) (2015)

44. Valko, M., Munos, R., Kveton, B., Kocak, T.: Spectral bandits for smooth
graph functions. In: Proceedings of International Conference on Machine Learning
(ICML) (2014)

45. Wai, H.T., Segarra, S., Ozdaglar, A.E., Scaglione, A., Jadbabaie, A.: Blind com-
munity detection from low-rank excitations of a graph filter. IEEE Trans. Signal
Process. 68, 436–451 (2019)

46. Waradpande, V., Kudenko, D., Khosla, M.: Deep reinforcement learning with
graph-based state representations. arXiv:2004.13965 (2020)

47. Yang, K., Dong, X., Toni, L.: Laplacian-regularized graph bandits: algorithms and
theoretical analysis. In: Proceedings of International Conference on Artificial Intel-
ligence and Statistics (AISTATS) (2020)

48. Yang, K., Toni, L.: Graph-based recommendation system. In: 2018 IEEE Global
Conference on Signal and Information Processing (GlobalSIP) (2018)

49. Yang, L., Wang, M.: Reinforcement learning in feature space: matrix bandit, ker-
nels, and regret bound. In: III, H.D., Singh, A. (eds.) Proceedings of International
Conference on Machine Learning (ICML), pp. 10746–10756 (2020)

50. Yuan, K., Ying, B., Zhao, X., Sayed, A.H.: Exact Diffusion for Distributed Opti-
mization and Learning – Part I: Algorithm Development. ArXiv abs/1702.05122
(2017)

51. Zhang, H., Feng, T., Yang, G.H., Liang, H.: Distributed cooperative optimal control
for multiagent systems on directed graphs: an inverse optimal approach. IEEE
Trans. Cybern. 45(7), 1315–1326 (2015)

https://arxiv.org/abs/2307.03641
http://arxiv.org/abs/2004.13965
https://arxiv.org/abs/1702.05122

Quantifying Node-Based Core Resilience

Jakir Hossain1(B), Sucheta Soundarajan2, and Ahmet Erdem Sarıyüce1

1 University at Buffalo, Buffalo, NY 14260, USA
{mh267,erdem}@buffalo.edu

2 Syracuse University, Syracuse, NY 13244, USA
susounda@syr.edu

Abstract. Core decomposition is an efficient building block for various
graph analysis tasks such as dense subgraph discovery and identifying
influential nodes. One crucial weakness of the core decomposition is its
sensitivity to changes in the graph: inserting or removing a few edges can
drastically change the core structure of a graph. Hence, it is essential to
characterize, quantify, and, if possible, improve the resilience of the core
structure of a given graph in global and local levels. Previous works
mostly considered the core resilience of the entire graph or important
subgraphs in it. In this work, we study node-based core resilience mea-
sures upon edge removals and insertions. We first show that a previously
proposed measure, Core Strength, does not correctly capture the core
resilience of a node upon edge removals. Next, we introduce the concept
of dependency graph to capture the impact of neighbor nodes (for edge
removal) and probable future neighbor nodes (for edge insertion) on the
core number of a given node. Accordingly, we define Removal Strength
and Insertion Strength measures to capture the resilience of an individ-
ual node upon removing and inserting an edge, respectively. As naive
computation of those measures is costly, we provide efficient heuristics
built on key observations about the core structure. We consider two key
applications, finding critical edges and identifying influential spreaders,
to demonstrate the usefulness of our new measures on various real-world
networks and against several baselines. We also show that our heuristic
algorithms are more efficient than the naive approaches.

1 Introduction

The k-cores are proposed as the seedbeds in which cohesive subsets of nodes can
be found [36]. A k-core is defined as the maximal connected subgraph in which
every vertex has at least k neighbors in the subgraph. Each node is assigned
a core number which denotes the maximum k for which the node is a part of
k-core. Thanks to its linear time complexity, k-cores are used as a standard tool
in various applications at downstream graph analytics. Examples include the
analysis of internet topology [11], predicting protein interactions [2], identifying
influential spreaders [20], and community detection [3,6,16,21].

Despite its widespread use, k-cores are known to have a weak resilience
against a few changes in the graph [1,22]. Inserting or removing a few edges
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
D. Koutra et al. (Eds.): ECML PKDD 2023, LNAI 14171, pp. 259–276, 2023.
https://doi.org/10.1007/978-3-031-43418-1_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-43418-1_16&domain=pdf
https://doi.org/10.1007/978-3-031-43418-1_16

260 J. Hossain et al.

can drastically change the core structure of a graph. In applications where noise
is common or the studied graph has uncertain parts, core decomposition is not
reliable. For example, networks are constructed as a result of indirect measure-
ments in various applications, such as the Internet router/AS level graphs by
traceroutes [15], biological networks by experimental correlations [35], and social
media based networks by limited samples via the APIs [5]. It is essential to char-
acterize, quantify, and, if possible, improve the resilience of the core structure of
a given graph in such applications at global and local levels.

In previous works, the resilience of k-core is studied under node or edge
removal to improve users’ involvement in social networks [29,42,45], bolster
connections to protect a social network from unraveling [9] and determining the
edges that should be monitored for attacks on technological networks [22]. Those
studies only consider the core structure of the entire graph or a few important
subgraphs (e.g., maximum k-cores). There is no holistic study to quantify
the node-based core resilience for any given node in the graph upon
edge removals and edge insertions. Considering the query-driven scenarios
in uncertain or noisy networks where the properties of the nodes are important,
such as identifying influential nodes in spreading processes [26] or information
diffusion [27] and finding critical nodes/edges [31], it is crucial to measure the
resilience of core numbers against edge removals as well as insertions.

In this work, we study node-based core resilience measures upon edge
removals and insertions. We first demonstrate that a previously proposed node-
based measure, Core Strength [22], is inaccurate at capturing the changes in the
core number upon edge removals. Next, we propose the concept of dependency
graph which captures the impact of neighbor nodes (for removal case) and prob-
able future neighbor nodes (for insertion case) on the core number of a given
node. In the dependency graph for removal, one-way dependency relationships
between neighboring nodes help to identify the resilience of core numbers. Like-
wise, in the insertion case, we discover the one-way dependency relationships to
quantify the likelihood of a change in the core number. Using the dependency
graphs, we define a pair of Removal Strength and Insertion Strength measures
for each node. Calculating those node strengths for big graphs in a naive way
is computationally intensive. For edge removal, we use the equal edges [46] and
k-corona [17] properties to design RSC algorithm. For insertion, we design ISC
algorithm based on the number of connections a node has with the same or higher
core number. As node-level aspects of a graph are important in many real-world
applications, we consider two applications to demonstrate the benefit of our new
measures: finding the most critical edges to remove/insert such that the number
of nodes that changes their initial core numbers is maximized [14,45,46] and
identifying influential spreaders [13,28,40]. For both applications we compare
our node-based measures against several state-of-the-art baselines.

Our contributions can be summarized as follows:

– We point out that the Core Strength definition (by [22]) is incorrect and
provide counterexamples as well as empirical results to show its unreliability.

Quantifying Node-Based Core Resilience 261

– To quantify the node resilience upon edge removal and edge insertion, we
use the concept of dependency graphs. Accordingly, we introduce a pair of
Removal Strength and Insertion Strength measures.

– We design RSC and ISC algorithms to compute the new node resilience mea-
sures for removal and insertion.

– We consider two motivating applications to examine the effectiveness of those
metrics: finding critical edges and identifying influential spreaders.

– We evaluate our measures and algorithms on real-world networks. We demon-
strate the efficiency and effectiveness of our techniques against several base-
lines on the two applications mentioned above.

2 Background

In this work, we consider G = (V,E) as an undirected and unweighted graph,
where V and E represent the set of nodes and edges in G, respectively. We use
Ē to denote the complement of E, i.e., Ē = {(u, v)|u ∈ V, v ∈ V, (u, v) /∈ E}. We
use N(u,G) to represent the set of neighbors of u in G and Γ(u,G) to denote
the distance-2 neighbors of u. Let S ⊆ G be a subgraph of G. We use deg(u, S)
to denote the degree of u in S. In some cases we consider a directed graph G′ in
which deg−(u,G′) and deg+(u,G′) denotes the in-degree and out-degree of u in
G′, respectively. In our notations, we omit G when it is obvious.

The k-core, denoted by Ck(G), is the maximal connected subgraph S ⊆ G
where every vertex has at least k connections in S, i.e., deg(u, S) ≥ k ∀u ∈ G.
The core number of a vertex is the largest k value for which a k-core contains the
vertex. Here, K(u,G) denotes the core number of u in G, and K.(G) is the core
vector, which is the core numbers of all vertices in G. The maximum k-core(s)
of a graph are the (non-empty) k-cores with largest value of k. The k-shell of a
graph is the set of nodes with core number k [11] and a subcore is a connected
subgraph of nodes with core number k [32]. The k-cores (for all k) are computed
by recursively removing vertices with degree less than k and their adjacent edges,
while assigning core numbers during the process, which takes O(|E|) time [8].

We define the subset of neighbors of a node u based on the relative core
numbers: Δ<(u,G) denotes the neighbors with smaller core numbers, i.e., {v :
v ∈ N(u,G) ∧ K(v,G) < K(u,G)} and Δ=(u,G) is the neighbors with equal
core numbers. Similarly, Δ>(u,G) and Δ≥(u,G) are defined.

3 Related Work

Network resilience is the capability of a network to maintain or restore its func-
tion under faults. Characterizing the resilience of a network is important for
critical systems such as power grids and transportation systems [24]. Character-
ization of the resilience is made with respect to various graph characteristics,
such as components and paths [34]. One interesting direction in this context is
the resilience of the core structure. Core decomposition is one of the most widely
used graph algorithms thanks to its linear complexity [36]. However, it is quite

262 J. Hossain et al.

sensitive to changes in the graph and there are a few studies to characterize
and improve its robustness [1,10,14,22,44]. Here we summarize the literature on
core resilience and explore its significance in two motivating applications: finding
critical edges and identifying influential spreaders.

Table 1. Comparison of previous works on core resilience and our work.

[1] [22] [10] [14] [44] Our work

Graph structure Max cores Entire graph Entire graph Entire graph k-shells Core number

Edge insertion Yes No No No Yes Yes

Edge removal Yes Yes No No Yes Yes

Core Resilience. Adiga and Vullikanti found that the stability of maximum
k-cores under noise and sampling perturbations does not degrade in a monotonic
way [1]. Laishram et al. defined the core resilience of a graph as the correlation
between the core number rankings of the top r% nodes before and after p%
edges or nodes are removed at random [22]. As computing this is costly, they
proposed Core Strength and Core Influence measures as proxy to quantify the
resilience of a node’s core number upon node or edge deletions. Burleson-Lesser
et al. modeled network robustness by using the histogram of core numbers [10]
and found that ecological and financial networks with U-shaped histograms are
resilient to node deletion attacks. Dey et al. defined a graph’s stability based on
changes in each node’s core number upon node removals and studied identifying
critical nodes to delete to maximize the number of nodes falling from their initial
cores [14]. More recently, Zhou et al. studied attack strategies to change the core
numbers of the nodes by rewiring edges [44]. Unlike those studies, we focus on
node-based core resilience and consider both removal and insertion. For a given
node, we quantify the resilience of its core number upon edge insertion and
removals. Table 1 compares our work and previous studies on core resilience.

Finding Critical Edges. A related line of work has proposed problems to
minimize and maximize the size of a k-core by inserting/removing nodes/edges.
For the removal, the motivation is often to find critical nodes/edges that should
be kept in the graph to avoid unraveling in social networks or be watched against
targeted attacks in infrastructure networks [29,42,43,46]. In the context of core
resilience, such nodes/edges are the weak structures with low resilience against
removal and are suitable for targeted attacks. Regarding the insertion, the objec-
tive is to find new edges that can increase the user engagement [38,45] or incen-
tivize existing nodes to stay engaged so that other nodes are kept engaged as
well [9,23,41]. In the scope of core resilience, such nodes/edges are the critical
graph structures that are most vulnerable to increases in core numbers or core
sizes. All those works consider a specific k-core and study targeted attacks to
change the core structure with a minimal number of edge/node changes. In this

Quantifying Node-Based Core Resilience 263

work, we focus on the core numbers and use our new node-based core resilience
measures to select a limited number of edges so as to maximize the number of
nodes whose core numbers change (see Sect. 5.2).

Identifying Influential Spreaders. Another application that core numbers
are heavily used is identifying influential spreaders [20]. Influential spreaders
are the nodes that determine how information spreads over the network or how
a virus is propagated [4,18]. SIR (Susceptible-Infected-Recovered) model is a
classical tool to measure the influence of a given set of nodes [37]. In the SIR
model, a set of initially infected nodes are chosen which will spread the disease
at each time step, t. The fraction of infected nodes, denoted by S(t), is used to
measure the spread after t iterations. Kitsak et al. demonstrated that the most
efficient spreaders are located in the highest k-shells [20]. Wang et al. discovered
that greedily choosing multiple spreaders may result in some of them being
too close to each other and hence their influence overlaps [39]. They proposed
the IKS algorithm to select nodes from different k-shells based on the highest
node information entropy, which outperforms the other centrality or core-number
based measures. Considering the success of core-based measures, we use node-
based core resilience as a proxy to identify influential spreaders (see Sect. 5.3).

4 Node-Based Core Resilience

Earlier studies mostly defined core resilience measures for the entire graph. One
exception is the core strength (CS) definition by Laishram et al. [22], which
aims to measure the resilience of a node’s core number upon edge removals and
is defined as CS(u,G) = |Δ≥(u,G)| − K(u,G) + 1. They claim that in order
to decrease K(u,G), at least CS(u,G) connections from u must be removed.
Here we show that this claim is not true by a simple counterexample and give
empirical evidence to show how frequently it fails in practice.

Consider the toy graph in Fig. 1a. CS(v3) is 3, which means that at least
three edges of v3 should be removed to decrease its core number, according to
Laishram et al. [22]. However, if we remove only (v3, v2) and (v3, v4), K(v3)
decreases to 1. Note that removing two edges does not always decrease K(v3),
e.g.,. deleting (v3, v1) and (v3, v2) does not affect K(v3). Depending on the edges
being removed, other nodes may have their core numbers changed too, and this
cascading effect may result in decreasing the core number of the vertex of interest.
Hence, not only the count but also the position of the removed edges matters in
quantifying the node-based core resilience.

One question is how likely to see such structures, where removing less than
CS(u) edges decreases K(u), in real-world networks. We perform a simple exper-
iment to check this. We consider the nodes in the maximum k-cores with a CS
of at least two. For each node, we remove one of its edges and observe its core
number changes. We repeat this for each edge of a node. Removing even a single
edge is sufficient around 10% of the time to decrease the core number (as shown
in [19]). Hence, the CS definition also fails frequently in practice.

264 J. Hossain et al.

Fig. 1. Illustrative examples

As the CS definition is inaccurate in capturing the core resilience of a node
upon edge removals, we define a new measure, Removal Strength, to compute
the likelihood of a node’s core number change (Sect. 4.1). Moreover, we propose a
new measure, Insertion Strength, to assess the stability of a node’s core number
after an edge insertion (Sect. 4.2).

4.1 Resilience Against Edge Removal

We capture a node’s core resilience against edge removals by analyzing its depen-
dency on neighbor nodes. We focus on single edge removal, with a conjecture
that multiple edge removals can be approximated by considering multiple single
edge removals.

We define that the node u is dependent on node v, denoted as a relationship
v → u, if K(u) decrements after removing the edge (u, v). For a given graph
G = (V,E), we define the removal dependency graph , denoted by Grd = (V,Erd),
as a directed graph such that an edge (u, v) ∈ Erd if (u, v) ∈ E and K(v,G \
(u, v)) < K(v,G). We give an example in Fig. 1b. For the toy graph on the left,
the corresponding removal dependency graph (Grd) is given on the right. In the
Grd, v2 has two in-neighbors (v1 and v4) which means it is dependent on v1 and
v4. For an edge in G, if neither node is dependent on the other, then no edge
will appear in the Grd, such as (v1, v4). If each node is dependent on another,
then there are two edges in both directions, as for (v5, v6).

In-degree and out-degree of a node in the removal dependency graph give
important insights about its core resilience. A node with a large in-degree is
dependent on many of its neighbors, hence removing a nearby edge could reduce
its core number, implying a lower core resilience. We define In-Degree Removal
Strength of a node u, RSID(u), to quantify the resilience of u to retain its core
number upon edge removal(s): RSID(u) = 1

deg−(u,Grd)
. The higher a node’s

out-degree in the dependency graph, the more strength it has to change the
other nodes’ core numbers. We define Out-Degree Removal Strength of a node
u, RSOD(u), to quantify the strength of u to change the core number of other
nodes: RSOD(u) = deg+(u,Grd).

4.1.1 Removal Strength Computation

A naive way to compute the removal dependency graph is to run incremental
core decomposition algorithm for every single edge removal [32,33], which will

Quantifying Node-Based Core Resilience 265

be costly. Here we propose efficient heuristics by using key observations about
the core structure.

We define node u ∈ G as vulnerable if K(u,G) = |Δ≥(u,G)|. For a vulner-
able node u, the set of edges (u, v) where v ∈ Δ≥(u,G) is called the sensitive
edges of u (also called as equal edges in [46]).

Lemma 1. If a sensitive edge (u, v) of a vulnerable node u is removed, then
K(u,G) will decrease.

Proof. Proofs of Lemmas 1–7 are available in the extended version [19].

Sensitive edges of a vulnerable node provide a way to group certain edges
whose removal yields the same core vector, as first shown in [46].

Lemma 2. For a vulnerable node u, removing any sensitive edge yields the same
core vector, i.e., K.(G \ {(u, v1)}) = K.(G \ {(u, v2)}) where both edges are
sensitive.

According to [17], k-corona is a maximal connected subgraph of vulnerable
vertices with the same core number, k. Formally, S ⊆ G is a k-corona if ∀u ∈ S,
K(u,G) = k and u is a vulnerable vertex. We define k-corona adjacent edge
set, KAES(S), as the union of the sensitive edges of the vulnerable nodes in a
k-corona S, i.e.,

⋃
u∈S {(u, v)|v ∈ Δ≥(u,G)}.

Lemma 3. When an edge (u, v) is removed from the graph, there will be a
change in the core numbers if and only if the removed edge (u, v) is part of
a KAES.

Lemma 4. For a k-corona S, removing any edge in KAES(S) yields the same
core vector, i.e., K.(G\{(u, v)}) = K.(G\{(x, y)}) for (u, v), (x, y) ∈ KAES(S).

We define the subset of nodes whose core numbers change after removing a
single edge as Core Changed Nodes (CCN). According to Lemma 4, for a
k-corona S, if we choose any edge (u, v) ∈ KAES(S) to delete, then we will
get the same core vector. Hence we denote the set of nodes whose core numbers
change after removing any edge in a KAES(S) as CCNKAES(S).

Instead of examining every single edge in a graph, we can utilize
CCNKAES(S) to efficiently detect the changes in the core numbers of nodes.
Assume w.l.o.g. that K(u) ≤ K(v). If u is a vulnerable node, then, by Lemma
1, deleting an edge (u, v) will decrement the core number of u. If u is not a vul-
nerable node, we need to look at the properties of both u and v. If v is also not
a vulnerable node, then the edge (u, v) /∈ KAES, and there will be no changes
in K(u) or K(v) (by Lemma 3). However, if the node v is vulnerable, we need
to consider the following two cases to determine the changes in K(v):

Case 1: K(u) = K(v). Here, (u, v) is a sensitive edge, and deleting (u, v)
will decrement K(v) (Lemma 1). In this case, K(u) will also decrement if it
becomes affected by the changes in K(v). This information is actually captured
by the CCN set. If two nodes are in a same CCN , a change in the core number

266 J. Hossain et al.

of one node affects the core number of the other node. Hence, if u and v are in
the same CCNKAES(S) for any k-corona S, then their core numbers depend on
each other.

Case 2: K(u) < K(v). In this case, K(v) will not change, as shown by [32].
Regarding K(u), as u is not a vulnerable node, it has at least K(u)+1 neighbors
in its k-core. Since v is not in the k-core of u, there will still be at least K(u)
neighbors in u’s k-core in G \ {(u, v}, and thus K(u) will not change either.

4.1.2 Removal Strength Algorithm
Building on the definitions and observations above, we propose RSC algorithm
(Algorithm 1) to compute RSID and RSOD for each node in a given graph. At
the beginning, we find the k-core(s) of a graph using the classical peeling based
algorithm proposed by Batagelj et al. [7] (line 4). Then using the BFS traversal,
we compute the set of k-coronas (S) in every k-core subgraph (line 6). Since
removing an edge (u, v) /∈ KAES does not affect the core number of any node
(by Lemma 3), we only consider the edges (u, v) ∈ KAES in each k-core. For
each k-corona S, we find the KAES (line 8). Thanks to Lemma 4, we remove
only one edge in KAES(S) and compute CCNKAES(S) for a KAES(S) (line
9) by using the incremental core decomposition algorithm from [33]. Next, we

Algorithm 1: RSC: Removal Strength Computation (G(V,E))
1 Input: G (V,E): graph
2 Output: RSID, RSOD: in and out-degree removal strength, respectively

3 Grd (V,E
′
) ← empty graph // removal dependency graph

4 Compute all the k-cores of G, Ck(G), and put in C
5 foreach k-core Ck(G) ∈ C do
6 Compute all k-coronas in Ck(G) and put in S
7 foreach k-corona S ∈ S do
8 Find KAES(S)
9 Delete any single edge e ∈ KAES(S), compute

CCNKAES(S) // by [33]

10 foreach u ∈ V do
11 if K(u) = |Δ≥(u,G)| then
12 foreach v ∈ Nu do
13 if K(u) ≤ K(v) then

14 E
′
.push((v, u)) // K(u) will decrement, by Lemma 1

15 else
16 foreach v in Nu do
17 if K(v) = K(u) & K(v) = |Δ≥(v,G)| &
18 u and v are in a same CCNKAES(S) then

19 E
′
.push((v, u)) // K(u) will decrement, by Case 1

20 foreach u in V do

21 RSID(u) ← 1
deg−(u,Grd)

, RSOD(u) ← deg+(u,Grd)

22 Return RSID, RSOD

Quantifying Node-Based Core Resilience 267

use Lemma 1 and the two observations (Case 1 and 2) to quickly determine
whether the core numbers will change after each edge removal (lines 10–19). At
the end, we calculate and return the in-degree and out-degree removal strengths
of all the nodes by using Grd (lines 20–22).

Time and Space Complexity. Line 4, as well as lines 10–19 takes O(|E|) time.
In the worst case, lines 5–9 takes O(|V | · |E|) time—if each node is a k-corona,
one edge is removed per node, hence |V | edge removals in total (line 9) and each
edge removal takes O(|E|) time per [33]. Overall time complexity is O(|V | · |E|),
but this is a loose bound as the number of k-coronas is significantly less than
|V | in real-world networks (even for large networks we observe the number of
k-coronas to be small, requiring us to remove fewer edges, as shown in Table 2
column 4 (% Gain)). In addition to graph (O(|E|)), we store |Δ≥(u,G)| values
(O(|V |)), component ids to bookkeep CCNKAES(S) for each node (O(|V |)), and
RSID, RSOD values (O(|V |)). Overall space complexity is O(|E|).

4.2 Resilience Against Edge Insertion

We now characterize the resilience of a node’s core number against edge inser-
tions. We again focus on the impact of a single edge change, consider the changes
in a node’s core number based on new links it forms with other nodes, and model
the resilience accordingly. Regarding the set of edge insertions, it is impracti-
cal and unrealistic to think about all possible new links between any pair of
unconnected nodes, namely Ē. It is impractical because real-world networks are
sparse, i.e., |E| <<

(|V |
2

)
, which implies |Ē| >> |E|. It is unrealistic as it is

unexpected that a link will form between two nodes if they have no common
neighbors, i.e., if they are not distance-2 neighbors [25,30]. Even the number
of non-neighbor node pairs with at least one common neighbor is too large to
be considered, reaching up to 100·|E| for some real-world networks. Further-
more, those node pairs are not located homogeneously in the graph; some nodes
(mostly low-degree) have very few (or no) distance-2 neighbors, hence it is not
clear how to define insertion core resilience for those (see [19] for statistics).

To address these issues, we consider a fixed number (b) of edge insertions for
each node and construct the insertion candidate graph, Gic, accordingly. Here, we
fix b = 5 as it is close to the average degrees of the networks used in experiments
and no significant advantage is observed for larger b values. For any node u ∈ G,
and its distance-2 neighbors Γ(u), we consider the below cases to select the edges
and add to Gic:

– If |Γ(u)| > b, choose b random edges (u, v) such that v ∈ Γ(u).
– Else, choose all (u, v) edges such that v ∈ Γ(u) and choose b − |Γ(u)| random

(u,w) edge(s) such that w ∈ V (and w /∈ Γ(u)).

Note that b ensures a lower bound on the degree of a node in Gic, there can be
nodes with larger degree due to random edges coming from the other nodes.

268 J. Hossain et al.

We define the dependency relationships between nodes by using the insertion
candidate graph, Gic. For each edge (u, v) ∈ Gic, we check how the core num-
bers of u and v change when (u, v) is inserted to G. u is said to be dependent
on node v, denoted as a relationship v → u, if K(u) increases after inserting the
edge (u, v). For a given graph G = (V,E) and Gic = (V,Eic), we define inser-
tion dependency graph, Gid = (V,Eid), as a directed graph such that an edge
(u, v) ∈ Eid if (u, v) ∈ Eic and K(v,G ∪ (u, v)) > K(v,G). Here, Gid is always
a subgraph of Gic. We give an example in Fig. 2. For the toy graph on the left,
corresponding insertion candidate graph is given in the middle (for b = 2). All
the nodes except v2 has at least two distance-2 neighbors. To ensure v2 has two
edges, we randomly select a node, v5, and put an edge between them. Straight
edges in the candidate graph are the edges due to the distance-2 neighborhood
(the if condition above) and the dashed edge is the random edge (from the else
condition). The corresponding insertion dependency graph is shown on the right.
For example, inserting (v3, v5) edge would increase K(v5) and does not impact
K(v3), hence (v3 → v5) is put.

Fig. 2. Examples for insertion candidate (b = 2) and dependency graphs.

A node with a large in-degree is dependent on many of its distance-2 (or ran-
dom) neighbors, implying a lower core resilience. We define In-Degree Insertion
Strength of a node u, ISID, to measure the node’s ability to preserve its core
number after edge insertion: ISID(u) = 1

deg−(u,Gid)
. A node with a large-out

degree implies the ability to increase the core numbers of other nodes. We define
Out-Degree Insertion Strength of a node u, ISOD, to measure the strength of a
node to impact the nodes around it: ISOD(u) = deg+(u,Gid).

4.2.1 Insertion Strength Computation

A naive computation of the insertion dependency graph is to run incremental
core decomposition algorithm for every single edge insertion [32,33], which is
costly. Here we consider four lemmas that help to determine the core number
changes without running the incremental algorithm.

Quantifying Node-Based Core Resilience 269

Lemma 5. For a node u such that K(u,G) = |Δ>(u,G)|, adding a new edge
(u, v) s.t. K(v,G) > K(u,G) will increment K(u), i.e., K(u,G ∪ (u, v)) =
K(u,G) + 1.

Lemma 6. For two non-neighbor nodes u and v, (u, v) /∈ E, such that
K(u,G) = K(v,G) = k, if |Δ>(u,G)| = K(u,G) and |Δ>(v,G)| = K(v,G),
then adding a new edge (u, v) will increment K(u) and K(v).

Lemma 7. Consider a node u ∈ G such that |Δ>(u,G)| = K(u,G) − 1. Say
u has a neighbor w for which K(u,G) = K(w,G) and |Δ>(w,G)| = K(w,G).
Adding a new edge (u, v) such that K(v,G) > K(u,G) will increment K(u) and
K(w).

4.2.2 Insertion Strength Algorithm

We use the above lemmas (Lemma 5 to Lemma 7) to design ISC (Insertion
Strength Computation) algorithm which creates the insertion dependency graph
by determining the changes in the core numbers (pseudocode is in [19]). We
start by computing the k-cores by [8]. We consider the edges of Gic, which is
given, to build the dependency graph of insertion. To construct the Gid, we check
whether each edge e ∈ Gic can be handled by the lemmas given in Sect. 4.2.1. If
the conditions in any of the lemmas are satisfied, we can readily determine the
dependency graph and tell if inserting the new edge (u, v) will change the K(u)
and/or K(v). If the edge does not fit to any of the lemmas, we use the incremental
core decomposition algorithm [33] to determine the new core numbers. For each
of the cases, if there is any increase in K(u) and/or K(v), we update the Gid

by inserting directed edges based on the core number changes. At the end, we
calculate and return the insertion strength measures of each node u ∈ G by using
the Gid.

Time and Space Complexity. In the worst case, incremental core decom-
position algorithm [33], which takes O(|E|), is run for each edge in Gic. There
is O(b · |V |) edges in Gic where b is a constant. In total, the time complex-
ity is O(|V | · |E|). However, this is a loose bound as we show runtime results
in Sect. 5. In addition to graph (O(|E|)), we store |Δ>(u,G)| values (O(|V |))
and ISID, ISOD values (O(|V |)). Overall space complexity is O(|E|).

270 J. Hossain et al.

Table 2. Statistics for the networks (first two columns) and runtime results for edge
removal and edge insertion (in seconds). %Gain denotes the savings how much less

edges are processed by our algorithm than the naive approach for edge removal. |Eic|
|E|

denotes the ratio of the number of edges in the insertion candidate graph to the actual
graph. Sp. is the speedup of our algorithms against the naive approaches.

Removal Insertion

Graph |V | |E| % Gain Naive (s) RSC (s) Sp. |Eic|
|E| Naive (s) ISC (s) Sp.

as19971108 3015 5156 50.2 % 4.88 2.93 1.67× 2.79 1.10 0.75 1.46×
as19990309 4759 8896 54.4 % 12.38 6.35 1.95× 2.58 1.70 1.31 1.30×
bio-dmela 7393 25569 79.4 % 56.96 12.85 4.43× 1.40 38.26 26.60 1.44×
ca-CondMat 21363 91286 89.0 % 575.82 67.19 8.57× 1.11 475.15 377.32 1.26×
ca-Erdos992 5094 7515 39.1 % 10.93 7.47 1.46× 3.11 7.48 5.23 1.43×
ca-GrQc 4158 13422 84.4 % 17.82 3.47 5.14× 1.39 32.41 26.66 1.22×
inf-openflights 2939 15677 86.8 % 15.67 2.49 6.29× 0.90 2.64 2.28 1.16×
inf-power 4941 6594 63.8 % 9.36 3.96 2.36× 2.76 504.87 486.43 1.04×
jazz 198 2742 97.8 % 0.43 0.06 7.17× 0.35 1.00 0.94 1.06×
p2p-Gnutella08 6301 20777 80.3 % 40.83 8.99 4.54× 1.45 951.50 918.05 1.04×
p2p-Gnutella09 8114 26013 78.8 % 63.81 14.51 4.40× 1.49 769.12 713.63 1.08×
soc-hamsterster 2426 16630 93.6 % 13.03 1.27 10.26× 0.72 4.82 4.22 1.14×
soc-wiki-Vote 889 2914 81.2 % 0.88 0.29 3.03× 1.46 1.45 1.09 1.33×
tech-routers-rf 2113 6632 77.8 % 4.26 1.30 3.28× 1.50 2.46 1.98 1.25×
tech-WHOIS 7476 56943 89.9 % 128.82 14.51 8.88× 0.65 6.59 5.60 1.18×
USAir97 332 2461 91.2 % 0.28 0.08 3.50× 0.65 0.12 0.09 1.46×
web-spam 4767 37375 91.5 % 52.48 5.28 9.94× 0.63 7.05 5.17 1.36×

5 Experimental Evaluation

We conduct experiments on real-world networks of various types and sizes to
evaluate the efficiency and effectiveness of our node-strength measures. Table 2
(first three columns) shows the statistics of the networks, obtained from SNAP1

and Network Repository2. All experiments are performed on a Linux operat-
ing system (v. 3.10.0-1127) running on a machine with Intel(R) Xeon(R) Gold
6130 CPU processor at 2.10 GHz with 192 GB memory. We implemented our
algorithms in Python 3.6.8. Our implementation is publicly available3.

Since we consider random edge selections to construct Gic and calculate ISID

and ISOD, we repeat insertion experiments 10 times to account for randomness
and report the average strength measure for each node. Note that the standard
deviation in those computations is quite low, e.g., in inf-openflights graph,
the standard deviation is less than .18 for most nodes where more than half of
the nodes have zero (or close to zero) standard deviation (details are in [19]).

1 http://snap.stanford.edu/.
2 http://networkrepository.com/.
3 https://github.com/erdemUB/ECMLPKDD23.

http://snap.stanford.edu/
http://networkrepository.com/
https://github.com/erdemUB/ECMLPKDD23

Quantifying Node-Based Core Resilience 271

5.1 Runtime Results

We first compare the runtime performances of our RSC and ISC algorithms
against the naive strategy which simply runs incremental core decomposition
algorithms for each edge removal and edge insertion. One important note is
that the three approaches (Subcore, Purecore, and Traversal) proposed in [32]
give different behaviors in our removal and insertion experiments. Although the
Traversal algorithm is shown to be the best in [32] for both single edge removal
and insertion, we observe that the Subcore algorithm can be made faster for
edge insertion in our experiments. The key is to precompute all the subcores in
each k-core and reuse when handling edge insertions. We use this pre-calculation
technique and Subcore algorithm in our edge insertion experiments, whereas the
Traversal algorithm is used in our edge removal experiments.

Table 2 gives the results. For the edge removal, we are able to remove 78.2%
less edges, on average, when compared to the naive approach (fourth column
in Table 2). This translates to 5.11× faster runtime on average. For edge inser-
tion, our algorithm well utilizes the lemmas in Sect. 4.2.1 and gives 1.25× faster
computation when compared to the naive approach.

5.2 Finding Critical Edges

Here, we compare our node resilience measures to several baselines for finding
critical edges in edge removal and insertion scenarios. We use four baselines:
Random, Core Number, Degree, Core Strength. Each method identifies a lim-
ited number (c) of critical edges to maximize the impact on the core numbers
of affected nodes. For Random, we repeat experiments 50 times and take the
average. For Core Number, Degree, and Core Strength; the score of each edge
is determined by the sum of its end points’ values and c edges with the highest
score are considered. We assess each method by the percentage of nodes affected,
F , (decreased or increased from the initial core number) by the removal or inser-
tion of the budget number of edges. For all experiments, we vary the budget (c)
from 50 to 1000 and evaluate our results. For better visualization, we show the
results from budget 600 to 1000 in Fig. 3(c) and Fig. 3(d).

5.2.1 Edge Removal Experiments.
We use RSID and RSOD to select c critical edges to remove from the graph. For
our measures, the score of each edge is set as the sum of its endpoints’ RSID or
RSOD values. For RSID, we choose c edges with the lowest scores as a node with
lower RSID is more likely to change its core number on edge removal, whereas,
for RSOD, we select c edges with the highest score as a node with larger RSOD

affect other nodes’ core numbers more. We also pay attention to not selecting no
more than one edge from any KAES(S), as removing any edges in KAES(S)
produces the same core vector for a k-corona S by Lemma 4. For Random, we
choose c random edges from the graph. Figure 3 (top row) shows the results
for four graphs (results for other graphs are in [19]). Both RSID and RSOD

outperform the baselines. RSID is slightly better than RSOD in some graphs
and significantly better in a few.

272 J. Hossain et al.

Fig. 3. Finding critical edges by our methods and baselines for edge removal (top row)
and edge insertion (bottom row).

5.2.2 Edge Insertion Experiments

We use ISOD and ISID to select c critical edges to insert to the graph. We
first consider all the non-neighbor node pairs who share at least two common
neighbors, called as candidate set, and then select a subset of size c edges of
the candidate set by using the baselines or our methods. When inserting an
edge (u, v), if core number of both u and v increased by a previous insertion,
we skip this edge. For our measures, we define the score of each candidate edge
(u, v) as max(ISID(u), ISID(v)) (likewise for ISOD), then select the c edges
with lowest scores to insert. Here, we consider maximum endpoint strength as
the edge score, unlike the edge removal case where we considered sum, to keep
the scores more regularized because the space of edge insertions is larger and can
yield very large edge scores if the sum is applied. We choose the edges with the
lowest score as they are the least resilient for incrementing core numbers. For
Random, we choose c random edges from the candidate set. Figure 3 (bottom
row) gives the results for four networks (rest are in [19]). Overall, ISID and
ISOD consistently outperform the baselines.

We also define a simple variant of our measures to handle the clique-like
structures in which core numbers are difficult to increase. We consider the
propagation effect of neighbor nodes by summing up the strength of a node
with its neighbors’ strengths. We define Neighbor Sum variants as IS∗

ID(u) =
ISID(u) +

∑
v∈N(u) ISID(v) (likewise for IS∗

OD). As above we define the score
of each candidate edge the maximum strength of its endpoints and then select
the c edges with the lowest scores to insert. As shown in Fig. 3 (bottom row),
IS∗

ID and IS∗
OD significantly outperform all the other methods in ca-CondMat,

which is a co-authorship network formed by cliques of authors on a paper.

5.3 Identifying Influential Spreaders

In this section, we consider the problem of identifying influential spreaders in
the SIR model. We use our node resilience measures as well as three baselines

Quantifying Node-Based Core Resilience 273

to choose 20% nodes in a given graph as the initially infected node set. For our
measures (RSID, RSOD, ISID, ISOD), we choose the node with largest strength
from the highest k-shell, then do the same for the next highest shell ((k − 1)-
shell), and so on until the 1-shell. Then we repeat this process until 20% of
the nodes are chosen. Ties are broken randomly. As the highest strength nodes
are more resilient upon graph changes, they are more important for influence
maximization than others. Regarding the baselines, we choose the methods that
rely on core numbers—the k-shell strategy [20], the IKS method [39], and the
Core Strength measure (the nodes with the largest values)—to select the 20%
initially infected node set. To ensure a smooth transmission in the SIR model,
we fix S→I probability μ = 0.01 and set the value of I→R probability β to be a
little bit bigger than βmin = 〈k〉/〈k2〉 [12], where 〈k〉 and 〈k2〉 are the first and
the second moment of the degree distribution, as done in [39] (exact β values are
in [19]). For each method, we run the model 50 times and take the average. We
consider the percentage of affected nodes at time t, denoted as S(t), to evaluate
the spreading effect of the initially infected node set.

Fig. 4. Identifying influential spreaders by our measures and baselines.

Figure 4 shows S(t) as a function of t ∈ [0, 15] for four networks (results
for other graphs are in [19]). As t increases, S(t) rises and eventually reaches a
steady value. Overall, our node strength measures outperform the k-shell and
IKS strategies. Core Strength measure shows superior performance than some
of our measures but RSOD consistently outperforms all the methods. The reason
for this behavior is that the nodes with large RSID do not always have large
core numbers whereas the nodes with large RSOD are consistently in highest
k-cores.

6 Conclusions and Future Work

In this paper, we studied the problem of node-based core resilience upon edge
removals and edge insertions. We first showed that the Core Strength [22] does
not correctly capture the core resilience of a node upon edge removals. Then we
introduced the concept of dependency graph to capture the impact of neighbor
nodes (for removal) and probable future neighbor nodes (for insertion) on the
core number of a given node. We defined node strengths in dependency graphs

274 J. Hossain et al.

based on in- and out-degrees and introduced efficient heuristics to compute those.
Experiments show that our heuristics are faster than the naive approaches and
our strength measures outperform the existing baselines on two key applications,
finding critical edges and identifying influential spreaders. For future work, we
plan to speed up the computation of insertion strength measures and also con-
sider more realistic scenarios to construct the Gic4.

Acknowledgments. Hossain and Sarıyüce were supported by NSF Award #1910063
and used resources of the Center for Computational Research at the University at
Buffalo. Soundarajan was supported by NSF Award #1908048.

Ethical Statement. Our contribution is algorithmic in nature, building on previ-

ously proposed concepts. We work on public datasets. We do not foresee any ethical

implications of our work.

References

1. Adiga, A., Vullikanti, A.K.S.: How robust is the core of a network? In: Blockeel,
H., Kersting, K., Nijssen, S., Železný, F. (eds.) ECML PKDD 2013. LNCS (LNAI),
vol. 8188, pp. 541–556. Springer, Heidelberg (2013). https://doi.org/10.1007/978-
3-642-40988-2 35

2. Altaf-Ul-Amine, M., et al.: Prediction of protein functions based on k-cores of
protein-protein interaction networks and amino acid sequences. Genome Inf. 14,
498–499 (2003)

3. Andersen, R., Chellapilla, K.: Finding dense subgraphs with size bounds. In:
Avrachenkov, K., Donato, D., Litvak, N. (eds.) WAW 2009. LNCS, vol. 5427, pp.
25–37. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-540-95995-3 3

4. Anderson, R.M., May, R.M.: Infectious Diseases of Humans: Dynamics and Con-
trol. Oxford University Press, Oxford (1992)

5. Bakshy, E., Hofman, J.M., Mason, W.A., Watts, D.J.: Everyone’s an influencer:
quantifying influence on twitter. In: Proceedings of the Fourth ACM International
Conference on Web Search and Data Mining, pp. 65–74 (2011)

6. Balasundaram, B., Butenko, S., Hicks, I.V.: Clique relaxations in social network
analysis: the maximum k-plex problem. Oper. Res. 59(1), 133–142 (2011)

7. Batagelj, V., Zaversnik, M.: An O(m) algorithm for cores decomposition of net-
works. corr. arXiv preprint cs.DS/0310049 37 (2003)

8. Batagelj, V., Zaversnik, M.: Fast algorithms for determining (generalized) core
groups in social networks. Adv. Data Anal. Classif. 5(2), 129–145 (2011)

9. Bhawalkar, K., Kleinberg, J., Lewi, K., Roughgarden, T., Sharma, A.: Preventing
unraveling in social networks: the anchored k-core problem. SIAM J. Disc. Math.
29(3), 1452–1475 (2015)

10. Burleson-Lesser, K., Morone, F., Tomassone, M.S., Makse, H.A.: K-core robustness
in ecological and financial networks. Sci. Rep. 10(1), 1–14 (2020)

11. Carmi, S., Havlin, S., Kirkpatrick, S., Shavitt, Y., Shir, E.: A model of internet
topology using k-shell decomposition. Proc. Natl. Acad. Sci. 104(27), 11150–11154
(2007)

4 https://ubir.buffalo.edu/xmlui/handle/10477/79221.

https://doi.org/10.1007/978-3-642-40988-2_35
https://doi.org/10.1007/978-3-642-40988-2_35
https://doi.org/10.1007/978-3-540-95995-3_3
https://ubir.buffalo.edu/xmlui/handle/10477/79221

Quantifying Node-Based Core Resilience 275

12. Castellano, C., Pastor-Satorras, R.: Thresholds for epidemic spreading in networks.
Phys. Rev. Lett. 105(21), 218701 (2010)

13. Chen, D., Lü, L., Shang, M.S., Zhang, Y.C., Zhou, T.: Identifying influential nodes
in complex networks. Physica A: Stat. Mech. Appl. 391(4), 1777–1787 (2012)

14. Dey, P., Maity, S.K., Medya, S., Silva, A.: Network robustness via global k-cores.
In: Proceedings of the 20th International Conference on Autonomous Agents and
MultiAgent Systems, pp. 438–446 (2021)

15. Faloutsos, M., Faloutsos, P., Faloutsos, C.: On power-law relationships of the inter-
net topology. ACM SIGCOMM Comput. Commun. Rev. 29(4), 251–262 (1999)

16. Giatsidis, C., Thilikos, D.M., Vazirgiannis, M.: D-cores: measuring collaboration
of directed graphs based on degeneracy. Knowl. Inf. Syst. 35(2), 311–343 (2013)

17. Goltsev, A.V., Dorogovtsev, S.N., Mendes, J.F.F.: k-core (bootstrap) percolation
on complex networks: critical phenomena and nonlocal effects. Phys. Rev. E 73(5),
056101 (2006)

18. Guille, A., Hacid, H., Favre, C., Zighed, D.A.: Information diffusion in online social
networks: a survey. ACM Sigmod Rec. 42(2), 17–28 (2013)

19. Hossain, J., Soundarajan, S., Sarıyüce, A.E.: Quantifying node-based core
resilience. arXiv preprint arXiv:2306.12038 (2023)

20. Kitsak, M., et al.: Identification of influential spreaders in complex networks. Nat.
Phys. 6(11), 888–893 (2010)

21. Kortsarz, G., Peleg, D.: Generating sparse 2-spanners. J. Algor. 17(2), 222–236
(1994)

22. Laishram, R., Sariyüce, A.E., Eliassi-Rad, T., Pinar, A., Soundarajan, S.: Mea-
suring and improving the core resilience of networks. In: Proceedings of the 2018
World Wide Web Conference, pp. 609–618 (2018)

23. Laishram, R., Sariyuce, A.E., Eliassi-Rad, T., Pinar, A., Soundarajan, S.: Residual
core maximization: an efficient algorithm for maximizing the size of the k-core. In:
Proceedings of the 2020 SIAM International Conference on Data Mining, pp. 325–
333. SIAM (2020)

24. Lewis, T.G.: The many faces of resilience. Commun. ACM 66(1), 56–61 (2022)
25. Liben-Nowell, D., Kleinberg, J.: The link prediction problem for social networks. In:

Proceedings of the Twelfth International Conference on Information and Knowl-
edge Management, pp. 556–559 (2003)

26. Lin, J.H., Guo, Q., Dong, W.Z., Tang, L.Y., Liu, J.G.: Identifying the node spread-
ing influence with largest k-core values. Phys. Lett. A 378(45), 3279–3284 (2014)

27. Liu, C., Zhang, Z.K.: Information spreading on dynamic social networks. Commun.
Nonlinear Sci. Numer. Simul. 19(4), 896–904 (2014)

28. Medo, M., Zhang, Y.C., Zhou, T.: Adaptive model for recommendation of news.
EPL (Europhys. Lett.) 88(3), 38005 (2009)

29. Medya, S., Ma, T., Silva, A., Singh, A.: A game theoretic approach for core
resilience. In: International Joint Conferences on Artificial Intelligence Organiza-
tion (2020)

30. Newman, M.E.: Clustering and preferential attachment in growing networks. Phys.
Rev. E 64(2), 025102 (2001)

31. Purevsuren, D., Cui, G.: Efficient heuristic algorithm for identifying critical nodes
in planar networks. Comput. Oper. Res. 106, 143–153 (2019)

32. Sariyüce, A.E., Gedik, B., Jacques-Silva, G., Wu, K.L., Çatalyürek, Ü.V.: Stream-
ing algorithms for k-core decomposition. Proc. VLDB Endow. 6(6), 433–444 (2013)

33. Sarıyüce, A.E., Gedik, B., Jacques-Silva, G., Wu, K.L., Çatalyürek, Ü.V.: Incre-
mental k-core decomposition: algorithms and evaluation. VLDB J. 25(3), 425–447
(2016)

http://arxiv.org/abs/2306.12038

276 J. Hossain et al.

34. Schaeffer, S.E., Valdés, V., Figols, J., Bachmann, I., Morales, F., Bustos-Jiménez,
J.: Characterization of robustness and resilience in graphs: a mini-review. J. Com-
plex Netw. 9(2), cnab018 (2021)

35. Schwab, D.J., Bruinsma, R.F., Feldman, J.L., Levine, A.J.: Rhythmogenic neuronal
networks, emergent leaders, and k-cores. Phys. Rev. E 82(5), 051911 (2010)

36. Seidman, S.B.: Network structure and minimum degree. Social Netw. 5(3), 269–287
(1983)

37. Sharkey, K.J.: Deterministic epidemic models on contact networks: correlations
and unbiological terms. Theor. Popul. Biol. 79(4), 115–129 (2011)

38. Sun, X., Huang, X., Jin, D.: Fast algorithms for core maximization on large graphs.
Proc. VLDB Endow. 15(7), 1350–1362 (2022)

39. Wang, M., Li, W., Guo, Y., Peng, X., Li, Y.: Identifying influential spreaders in
complex networks based on improved k-shell method. Physica A: Stat. Mech. Appl.
554, 124229 (2020)

40. Zareie, A., Sheikhahmadi, A.: A hierarchical approach for influential node ranking
in complex social networks. Expert Syst. Appl. 93, 200–211 (2018)

41. Zhang, F., Zhang, W., Zhang, Y., Qin, L., Lin, X.: OLAK: an efficient algorithm to
prevent unraveling in social networks. Proc. VLDB Endow. 10(6), 649–660 (2017)

42. Zhang, F., Zhang, Y., Qin, L., Zhang, W., Lin, X.: Finding critical users for social
network engagement: the collapsed k-core problem. In: Thirty-First AAAI Confer-
ence on Artificial Intelligence (2017)

43. Zhao, K., Zhang, Z., Rong, Y., Yu, J.X., Huang, J.: Finding critical users in social
communities via graph convolutions. IEEE Trans. Knowl. Data Eng. 35(1), 456–
468 (2023)

44. Zhou, B., Lv, Y., Mao, Y., Wang, J., Yu, S., Xuan, Q.: The robustness of graph
k-shell structure under adversarial attacks. IEEE Trans. Circ. Syst. II: Express
Briefs 69(3), 1797–1801 (2021)

45. Zhou, Z., Zhang, F., Lin, X., Zhang, W., Chen, C.: K-core maximization: an edge
addition approach. In: IJCAI, pp. 4867–4873 (2019)

46. Zhu, W., Chen, C., Wang, X., Lin, X.: K-core minimization: an edge manipulation
approach. In: Proceedings of the 27th ACM International Conference on Informa-
tion and Knowledge Management, pp. 1667–1670 (2018)

Construction and Training
of Multi-Associative Graph Networks

Adrian Horzyk1(B) , Daniel Bulanda1 , and Janusz A. Starzyk2,3

1 AGH University of Krakow, Mickiewicza Av. 30, 30059 Krakow, Poland
horzyk@agh.edu.pl, daniel@bulanda.net

2 University of Information Technology and Management in Rzeszow,
35225 Rzeszow, Poland

3 Ohio University, Athens, OH 45701, USA

Abstract. Modern methods and networks of supervised learning use a
vast amount of computational resources when adapting to large datasets.
They are unable to incorporate new training examples into trained mod-
els quickly and to represent internal knowledge for quick adaptation to
other computational tasks without retraining. The human brain is capa-
ble of representing and retrieving vast amounts of information and can
create associations between its various pieces based on frequent relation-
ships and patterns. The backpropagation algorithm is not the best and
only way to train neural networks, especially since its use is limited to
feed-forward architectures. Brain structures can be modeled using graph
architectures that are not feed-forward but recursive with many feedback
connections. This paper introduces Multi-Associative Graph Networks
that enable the representation of associated training data and objects
transformed from relational databases. These graphs store the data along
with the most useful relationships to facilitate computational intelligence
processes. We describe the associative transformation algorithm allowing
for the transformation of any relational database into this graph network,
reproducing stored relationships and enriching them with newly detected
ones. We also introduce the tuning algorithm that learns to associate dif-
ferent priorities with different neurons representing objects to improve
the relational dependencies and classification results. Finally, we draw
conclusions from the comparisons to other state-of-the-art models.

Keywords: Associative graph neural networks · Associative
transformation of relational databases · Relationship representation and
enrichment · Multi-association · Prioritization · Associative inferences

1 Introduction

Supervised learning is currently the most widely used learning strategy working
with many different types and structures of artificial neural networks. This type

Supported by AGH grant IDUB 1570, and Adrian Horzyk was partially supported by
the Ministry of Education and Science (Agreement Nr 2022/WK/1).

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
D. Koutra et al. (Eds.): ECML PKDD 2023, LNAI 14171, pp. 277–292, 2023.
https://doi.org/10.1007/978-3-031-43418-1_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-43418-1_17&domain=pdf
http://orcid.org/0000-0001-9001-4198
http://orcid.org/0000-0001-9518-4815
http://orcid.org/0000-0003-2678-5515
https://doi.org/10.1007/978-3-031-43418-1_17

278 A. Horzyk et al.

of learning is very useful in solving many practical tasks where we can collect
training data and define targets as labels (for classification problems) or numeri-
cal values (for regression problems). On the other hand, supervised learning also
has many limitations. First, it requires expert knowledge to label input data or
define the target values used during the training process. Training data prepa-
ration can be costly and prone to human errors. Second, the initial choice of
input values and targets limits the possible applications of trained models to
tasks that use similar input features and outputs. Even transfer learning can be
used with the same inputs and requires a costly training process to adapt the
network. It is not possible to swap inputs with targets without preparing and
training new models from scratch.

Human intelligence is based on acquired knowledge and a plastic nervous
system. It allows us to create associations between seemingly unrelated pieces of
information, which is essential for problem-solving, decision-making, and learn-
ing. Knowledge refers to the understanding and awareness of facts and skills
acquired through experience or learning. Knowledge develops thanks to the
ever-expanding associations between represented objects. Associations represent
various relationships with different strengths resulting from the frequency of
their occurrences or their reinforcement. So, the well-adapting machine learning
knowledge-based system should develop and store associations between various
pieces of information and not just focus on some of the feed-forward mathemat-
ical transformations that underpin many of today’s neural networks.

Today, formal ontologies allow knowledge to be represented in a struc-
tured and formal way, e.g., [9,13,19–21], and [3]. We can also use associative
graphs, such as knowledge graphs, which allow the representation of relationships
between different pieces of information and facilitate the processes of inference,
recommendations, and automatic search for significant relationships mentioned
in [10], and [3].

This paper describes a relationship-oriented approach to knowledge represen-
tation and its use in the introduced Multi-Associative Graph Networks (MAGN)
inspired and constructed on the basis of Associative Graph Data Structure
(AGDS) [10], Aggregative Sorting Associative graphs (ASA-graphs) [12], and
Deep Associative Semantic Neural Graphs (DASNG) [11]. This network facil-
itates the search for often-used relationships and decreases the computational
complexity of various operations. It can be created for any relational database
(RDB) using the associative transformation of an RDB or RDBs to a MAGN.
Aggregated representations of duplicated features define different objects that
share these features. Objects and features can define other objects represented by
neurons whose connections represent one-to-one, one-to-many, or many-to-many
relationships [16], so no join operations are necessary, saving time and computing
power. The introduced reversible associative transformation of RDBs not only
does not cause the loss of any data or relationships but automatically enriches
the set of relationships represented in MAGNs, which facilitates searching, rea-
soning, and inference.

Multi-Associative Graph Networks 279

While RDBs relate only entities from different tables, the MAGNs aggregate
the same and connect similar values of each attribute separately. Hence, the
graph enriches the representation of similarities of all entities based on similar
values that define them. This graph associates all objects representing entities
of the transformed databases not only by means of defined primary and foreign
keys but also by means of similarities and normalized distances between rep-
resented features, counting their occurrences (duplicates). It allows us to recall
other objects according to their similarities and other relationships represented
by weighted connections. Due to the proximity of related objects in the graph,
we can accelerate processes of inference, recommendations, and classification and
limit the number of search processes to closely connected neurons. With aggre-
gated representations of duplicates and connections of neurons representing sim-
ilar values, we can quickly establish various similarities like similar objects or
frequent patterns without looping through many data stored in database tables.
These graphs can also remember new relationships found in the form of new
graph neurons and connections, facilitating similar processes in the future and
updating knowledge representation. The obtained knowledge models represent-
ing relationships are necessary for developing advanced cognitive and artificial
intelligence systems.

2 Essence of Data Relationship Representation

In computer science, we focus on data, data structures, data search, data
retrieval, data sorting, databases, database management systems, data ware-
houses, data mining, etc., but what we are really interested in is finding valuable
data relationships. Whenever we use similarities or dependencies between values
or objects, search for larger or smaller values, look for next or previous objects in
space or time, compute weighted sums, averages, products, mean values, stan-
dard deviations, etc., we aim to find data relationships and their strengths.
The ability to find beneficial relationships is a product of human intelligence
and knowledge, so we should model and represent them in artificial intelligence
models. For example, similarity is one of the most valuable relationships that is
often used by various computational intelligence algorithms to determine clus-
ters or classes. We often use the proximity of various objects in space or their
chronological order. Therefore, we need to develop efficient structures to store
not only data but also detected or defined relationships.

Knowledge about ranges, extreme values, neighbors, duplicates, densities,
averages, means, medians, standard deviations, sums, counts, frequent patterns,
similarities, etc., facilitates efficient data representation. Therefore, we used
ASA-graphs [12], which are self-balancing and self-organizing structures that
represent all attribute values in B-trees combined with bidirectional sorted lists
of all elements (Fig. 1). ASA-graphs developed the concept of B-trees [4], B+trees
[14], clfB-trees [15], AVL-trees [1], and RB-trees [7], automatically aggregating
and count all duplicated values representing them by the same nodes and con-
necting them in order. ASA-graphs use very efficient algorithms for searching,

280 A. Horzyk et al.

inserting, and removing data, outperforming many commonly used self-balancing
trees and other commonly used data structures. Hence, all feature values are
accessible in the logarithmic time of the number of unique feature values. The
same computational time applies to the insert, remove, or update operations.
Thus, the ASA-graphs can efficiently organize all non-key database attributes.

Fig. 1. ASA-graph structure [12] combining a sorted list with a self-balancing search
B-tree spanned over all elements, consisting of nodes, B-tree branches, elements stor-
ing key values, counters of aggregated duplicates of these key values, and weights of
connections that link other elements or object nodes.

RDBs represent some data relationships using primary and foreign keys, but
the number and types of represented relationships are very limited. This lim-
itation is due to the fact that RDBs are optimized for storing and retrieving
data in a structured and efficient way, not for representing complex relation-
ships. Therefore, RDBs do not efficiently represent complex relationships like
hierarchies, causality, or similarity, which are important for knowledge models
and AI systems.

To overcome RDB limitations, several approaches have been proposed, such
as graph databases and knowledge graphs (KGs), which represent relationships
and use ontologies that provide a formal way to represent relationships between
different concepts [2,21]. KGs for a more comprehensive and rich representa-
tion of knowledge that is essential for natural language understanding, question-
answering, and recommendation systems. KGs can be constructed from a variety
of sources, such as structured data from databases, unstructured data from text
documents, and semi-structured data from social media. KGs integrate different
types of information and create a more comprehensive and accurate represen-
tation of knowledge. Knowledge graphs also facilitate the inference-making pro-
cess and retrieval of information. Knowledge-based AI systems utilize knowledge

Multi-Associative Graph Networks 281

graphs to perform tasks such as question-answering, language understanding,
and more.

In this paper, the knowledge graph approach is developed by using the asso-
ciative transformation of RDBs to a Multi-Associative Graph Network. This
transformation automatically enriches the number of directly represented rela-
tionships between features and objects that become automatically associated.
The created associations have different strengths, allowing for broader and
deeper inference-making and classification.

3 Multi-Associative Graph Network

Definition 1. Multi-Associative Graph Network (MAGN) (Fig. 2) is a
graph that consists of neurons representing objects (like database entities), ASA-
graphs representing aggregated, counted, and associated features as neurons, and
edges representing relationships between features and objects, together with their
strengths defined by the normalized distances between features or the number of
occurrences of features and objects.

The duplicated feature values are aggregated, counted, and represented by the
same ASA-graph nodes that will be used as neurons. The same feature cate-
gories of different tables are consolidated by the same ASA-graph. Duplicates of
objects are aggregated, counted, and represented by the same neurons. All rela-
tionships defined in the database by primary and foreign keys are transformed
into connections between MAGN neurons.

Definition 2. Two neurons in the MAGN are associated if there is at least
one path of edges between these neurons with a non-zero product of connection
weights on this path.

There are usually many paths between neurons in the MAGN, so the neurons
are usually associated, but these associations can have different strengths.

Definition 3. Association strength between two neurons in the MAGN is
a sum of products of connection weights on independent shortest paths between
these two neurons, where independent means that these paths do not share neu-
rons.

MAGNs can be built for RDBs sharing the same categories of features or
for a single RDB. First, entities of the tables that do not contain foreign keys
are transformed. Subsequently, in the loop, entities of the tables containing the
foreign keys related to the primary keys of the already transformed tables are
transformed until all tables are transformed. In each step of the loop, all feature
values of the transformed table are transformed into new ASA-graph elements
if such values were not previously represented; otherwise, the counters of exist-
ing elements are incremented. Elements of ASA-graphs are connected to MAGN
neurons representing primary keys of the transformed table. If the transformed

282 A. Horzyk et al.

Fig. 2. MAGN constructed for a sample Small Hospital RDB describing patients, doc-
tors, nurses, rooms, and their relationships, using associative transformation, enriching
represented relationships. Red arrows present some vertical relationships that are auto-
matically detected during the associative transformation of this RDB. (Color figure
online)

table contains some foreign keys, the created MAGN neurons are connected to
the existing neurons representing these keys in the MAGN. The transforma-
tion process is described by Principle 1 illustrated in Fig. 3 and is called the
associative transformation of databases to MAGNs because the same fea-
tures and objects are aggregated and connected due to their values and relation-
ships. Moreover, various undefined relationships in databases are automatically
detected, creating new associations between features and objects represented by
neurons and their connections in MAGNs, enriching the number of represented
relationships and expanding the represented knowledge.

Multi-Associative Graph Networks 283

Principle 1. Transform only these RDB tables that do not contain foreign keys
related to the tables that were not yet been transformed into the MAGN.

Fig. 3. The associative transformation algorithm of any RDBs used to create a MAGN.

First, it transforms only database tables with no foreign keys. As a result,
the MAGN already contains the representation of some tables with which enti-
ties of the next tables can be associated until all tables are transformed. This
principle does not strictly define the order in which tables are transformed but
allows for different orders, which always end up with the same MAGN struc-
ture. One possible order of transforming the tables shown in Fig. 2 is: nurses,
doctors, rooms, patients, doctor-patients, and nurses-rooms. At the top of this
figure, there are tables defining entities of four different objects, defined by sev-
eral categories, such as first name, last name, experience, specialization, age,
disease, etc. Some of these categories (e.g., first name, last name, experience)
are present in several tables, so they are consolidated and associated by the same
ASA-graphs to enable broader and automatic inferences.

3.1 Representation of Horizontal and Vertical Relationships

RDB table (Tm) entities are only linked horizontally between tables by pri-
mary and foreign keys, while entities from the same tables are not vertically
related. This major disadvantage costs search time, especially with Big Data. The
MAGNs represent both horizontal and vertical relationships, so related objects
are always quickly accessible, regardless of their number.

3.2 Consolidation of Attributes and Aggregation of Duplicates

Different RDB tables often use the same categories like first and last names
(of employers, employees, suppliers, contributors, patients, doctors, customers),
addresses, phones, e-mails, etc. Associative transformation aggregates all fea-
tures of the same categories of all tables of all RDBs and represents them by the
same ASA-graph (Figs. 1 and 2). This is time and memory efficient and allows
for self-associations between objects defined by aggregated features. We can find
and use associations between objects because they share the same or similar
features represented by connected neurons. They can be used for clustering and
classification.

284 A. Horzyk et al.

Assuming we have NC categories represented by NA attributes in all RDB
tables where NC ≤ NA. During the associative transformation process, the
attribute values of each transformed table are represented by an existing ASA-
graph when that attribute’s category is already represented in a MAGN (created
during the transformation of another table) or otherwise by a new ASA-graph.
After the transformation is finished, we achieve NC ASA-graphs representing all
categories and all attributes of all database tables of all integrated databases.
In the example shown in Fig. 2, the same category attributes of different tables
define separate ASA-graphs, and all these graphs are integrated with MAGN.

ASA-graphs not only efficiently organize features of the same categories but
also weigh connections between adjacent numerical features to express their sim-
ilarities in view of the range of values of the represented categories. Their connec-
tion weights are used in MAGNs. In each ASA-graph representing the numerical
values of the Cn category, we can quickly establish the minimum and maximum
values (vCn

min and vCn
max) and the range of all values (RCn = vCn

max − vCn
min). On

this basis, we can define the similarity sCn
i,i+1 of any two subsequent numerical

values (features) vCn
i and vCn

i+1 (where vCn
i < vCn

i+1) represented by the connected
neurons (V Cn

i and V Cn
i+1) in the ASA graph as:

sCn
i,i+1 = 1 − (vCn

i+1 − vCn
i)

RCn
(1)

The similarity is always less than one (sCn
i,i+1 < 1) because the connected neurons

representing neighbor values always differ due to the aggregated representation
of the duplicates. The similarity can be equal to zero only if the two extreme
values of the attribute (min and max) are connected. Similarities of values are
useful for finding similar objects or patterns. The defined similarities (1) between
numerical values of the two connected neighbor neurons V Cn

i and V Cn
i+1 can be

used as the weight wCn
i,i+1 = sCn

i,i+1 of their connection edge.
Non-numeric (symbolic) features are also represented by ASA-graphs in lex-

icographical order, using this structure, but the connections between adjacent
neurons usually have zero weights. Sometimes it is possible to set weights to
non-zero values and calculate similarities between symbolic values using vari-
ous string-based similarity measures [18], e.g., embedding spaces [6], which can
also be implemented here. In general, the similarity between any categorical or
ordinal values can be measured and represented in ASA-graphs if the distance
function f(vCn

i+1, v
Cn
i) is defined.

3.3 Associating Features and Objects

Features define objects (entities of database tables), so each neuron representing
a feature V Cn

i can be used one or more times to define neurons representing
objects (entities, patterns) OTm

j from various tables Tm. Such objects can be
related, and the relationships are represented by weighted connections (Fig. 2).
The connections are bidirectional, but the weight depends on the direction of

Multi-Associative Graph Networks 285

movement between the connected neurons. We define the connection weight from
the value neuron (V Cn

i) to the object neuron (OTm
j) as:

wV Cn
i ,OTm

j
=

1
d(V Cn

i)
(2)

and in the opposite direction as:

wOTm
j ,V Cn

i
= 1 (3)

where function d returns the number of duplicates of value vCn
i represented by

the node V Cn
i . Hence, if the value node V Cn

i represents only one value vCn
i ,

this weight is equal to one and expresses that the object OTm
j is unambiguously

defined by that value. When there are some duplicates, no object can be unam-
biguously defined by this value, so the weight is correspondingly less than one
according to (2). In the opposite direction, each defining feature should always
be clearly indicated by the object, so the weights of these connections should
not be distinguished (3).

Similarly, objects (entities) can define other objects (entities), and the
relations between them can be one-to-one, one-to-many, or many-to-many, so
depending on the number of objects defined by other objects, we also define the
weights of such connections due to the direction of movement between objects
and the number of the represented relations as follows:

wOTn
k ,OTm

j
=

1
d(OTn

k)
(4)

where the function d returns how many objects OTm
j from the table Tm are

defined by the object OTn

k .

Corollary 1. In the MAGN, differently, than in RDBs, objects from different
tables related in a many-to-many way are directly connected, so we do not lose
time searching for foreign keys and joining related entities of different tables.

MAGN neurons can be connected not only to the neurons they define but also
to neurons representing related objects expressing their sequence or position in
space. We can conclude that object B frequently comes after object A, and this
frequency is measured and stored in the connection weight between the neurons
representing these objects. Similarly, we can use the (frequent or non-frequent)
proximity of other objects to the defined object(s). The preservation of such
frequencies in the connection weights between related objects creates associations
of the calculated strength between them. It allows for quick inference because we
do not need to search again for such relationships that are already represented by
the connections and their weights. Such weights are only updated locally when
new data is inserted, removed, or changed in the MAGN. Weights can express
not only the direct succession or proximity but can also vary with distance
in sequence or space. Such relations are already used in many different neural
networks [5], where the succession and proximity of the represented objects affect
the weights of the connected neurons and allow them to process data differently.

286 A. Horzyk et al.

3.4 Associative Prioritization Algorithm

MAGNs can solve common machine-learning tasks. Supervised learning is the
most common type of machine learning, such as classification and regression. We
have developed a prioritization algorithm that improves their efficiency and the
representation of relational dependencies [8].

Fig. 4. The Training Phase of the Associative Prioritization Algorithm.

The associative prioritization algorithm is founded on the assumption that
neurons are not equally important for the prediction of the target variable. Every
MAGN neuron has a property called priority, which is a floating point number
greater than or equal to zero, initially equal to one. The sum of the stimuli
reaching a neuron is multiplied by its priority before it stimulates the other
neurons via connections, so this acts as a simple activation function.

Neuron priorities are trained during the training phase. Only two hyperpa-
rameters control the learning process: training epoch number and learning rate
α. The learning algorithm recursively searches all paths from the neurons rep-
resenting the target variable to all inputs that were activated by the training
example, avoiding any neurons that are no longer active. Then, the prediction

Multi-Associative Graph Networks 287

error δ is propagated through each path to penalize neurons that reinforce wrong
predictions and favor those that lead to correct predictions in proportion to
their activation and learning rate. If δ = 0, then the new priority is given by
P = P × (1 + α × z), where z is the normalized activation of the neuron in the
path, otherwise P = P × (1 − α × δ × z). In subsequent epochs, the process is
repeated. Optionally, an early stop condition can be used to speed up the train-
ing phase without significantly affecting performance. Figure 4 is a flowchart that
demonstrates the training phase of the associative prioritization algorithm.

Associative Prioritization is a powerful mechanism that enables better dis-
crimination between patterns present in the training data for any arbitrarily
selected target variable. This algorithm improved MAGN’s overall performance
in classification and regression tasks using a variety of popular datasets, as pre-
sented in the next section.

3.5 MAGN Implementation and Source Code

The MAGN source code is available at https://github.com/danbulnet/witchnet.
The source code can be downloaded and compiled on multiple platforms. There
are no specific minimal hardware requirements; however, since this is an in-
memory model, the amount of RAM should scale with the amount of data being
modeled. The code was tested on popular 64-bit operating systems, such as
Windows 11, MacOS 13, and Linux Endevaour OS 2023. Benchmark source
code is available at https://github.com/danbulnet/WitchnetBenchmarks.jl.

4 Results of Experiments and Comparisons

We divided our experiments into two phases. The first part presents experi-
ments with a machine learning regression task, comparing the results obtained
by MAGNs with popular machine learning models. In the second part, we have
selected 73 datasets from the Penn Machine Learning Benchmarks (PMLB) col-
lection [17] curated for classification tasks to compare the MAGN performance
with other popular machine learning models.

4.1 Regression Benchmark

We have implemented the MAGN to predict flat prices based on 23 numeri-
cal and categorical features like address (country, city, district), geographical
coordinates, transport accessibility, usable area, floor, number of rooms, places
for cars, facilities, and services, technical condition, year of building, and build-
ing type. Next, we compared it to the results obtained from popular machine
learning models. This dataset contains information about the completed sale
transactions of 25156 apartments in the years 2015–2020. The mean flat price
is 335432 with a standard deviation equal to 201227. The cheapest flat costs
70500, and the most expensive one is 3115000.

We divided the dataset into 19999 training samples and 5157 test samples
using the following models for comparisons:

https://github.com/danbulnet/witchnet
https://github.com/danbulnet/WitchnetBenchmarks.jl

288 A. Horzyk et al.

– Random Forest regressor from the scikit-learn library and BetaML.jl library,
– XGBoost regressor from the XGBoost.jl library,
– SVM regressor from the scikit-learn library,
– AdaBoost regressor from the scikit-learn library,
– KNN regressor from the scikit-learn library.

Fig. 5. Comparison of root mean square errors for a regression problem using MAGN
and other machine learning algorithms.

MAGN outperformed all of the tested models for the selected metrics: root
mean squared error (RMSE) (Fig. 5) and mean absolute error (MAE). For
RMSE, MAGN is 12% better than the second-best model - Random Forest,
and 7% better in view of MAE.

4.2 Classification Benchmark

We selected 73 benchmark datasets from the PMLB collection [17] dedicated
to the classification task, including binary/multi-class classification problems
defined by categorical, ordinal, and continuous features. We selected datasets
with less than or equal to a thousand records.

The following machine-learning models were selected for all comparisons:

– DecisionTreeClassifier from the DecisionTree.jl package
– RandomForestClassifier from the DecisionTree.jl package
– EvoTreeClassifier from the EvoTrees.jl package
– XGBoostClassifier from the XGBoost.jl package
– KNNClassifier from the NearestNeighborModels.jl package
– LinearClassifier from the MLJLinearModels.jl package
– LGBMClassifier from the LightGBM.jl package
– NeuralNetworkClassifier from the MLJFlux.jl package

We used the default set of hyperparameters for each of the models listed above.
The neural network model had 2 hidden fully-connected layers, with 64 and
32 neurons in the consecutive layers. All of the models and benchmarks were
implemented in Julia v. 1.9.1. The MAGN was implemented in Rust v. 1.70.0.

Multi-Associative Graph Networks 289

Fig. 6. Penn ML Classification Benchmark mean accuracy for 73 datasets with less
than 1000 records.

Fig. 7. Penn ML Classification Benchmark mean execution time of the inference phase
in seconds for 73 datasets with less than 1000 records.

Fig. 8. Penn ML Classification Benchmark mean allocated memory during the entire
benchmark (including the training and inference phase) in bytes for 73 datasets with
less than 1000 records.

290 A. Horzyk et al.

For all of the experiments, we have used a dedicated server with 2×CPU AMD
EPYC 7773X, 256 GB RAM, and GPU NVidia RTX A6000.

Figures 6, 7, and 8 demonstrate that the proposed MAGN achieved very
competitive average scores in this benchmark and can be used as a substitute
for most modern machine learning models. Note that only allocated memory was
measured during the benchmark, so it should be interpreted with caution as it
includes all allocations required in the training and inference phase.

5 Conclusions

Understanding and modeling human knowledge is a complex and active research
area focused on replicating the capabilities of the human brain in artificial
systems. In this paper, we introduced MAGNs, a promising approach that
enables the representation of relationships between different pieces of infor-
mation, enabling inference, recommendation, regression, and classification pro-
cesses. Unlike traditional feed-forward networks trained using a backpropagation
algorithm, MAGNs are constructed and adapted using associative approaches
based on frequency, similarities, and other detected data relationships. The rela-
tionships are detected during the introduced associative transformation process
and represented within the MAGN structure. Sparse connections are used to
represent real data relationships so they do not introduce bias as many full-
connected structures do. Moreover, MAGNs eliminate the need for predefined
input and output data and training goals before the construction phase, so they
can be used for multiple applications by easily switching attributes between
inputs and outputs. Furthermore, the introduced prioritization algorithm can
be used to further improve the final results.

The Multi-Associative Graph Networks aggregate, count, and store all fea-
ture values in order, representing duplicates by the same neurons, and all neural
object representations (database entities or training examples) are associated
due to their existing same or similar values. The described associative trans-
formation of RDBs to a MAGN is lossless and enriches the data with an effec-
tive representation of relations while maintaining time and memory efficiency.
MAGNs applied to classification and regression tasks show that networks using
relationships can achieve reasonable results when compared to other state-of-
the-art models and training methods. It is easily scalable and efficient, making
it suitable for many computational intelligence applications. The ability to rep-
resent and detect many different relationships allows MAGNs to be used as an
adaptable model of knowledge representation and use.

Ethical Issues. Our proposed algorithms do not raise any ethical concerns, and the

experiments shown used publicly available benchmark datasets.

Multi-Associative Graph Networks 291

References

1. Adelson-Velskii, G.M., Landis, E.M.: An algorithm for organization of information.
In: Doklady Akademii Nauk, vol. 146, pp. 263–266. Russian Academy of Sciences
(1962)

2. Baars, B.J., Gage, N.M.: Cognition, Brain, and Consciousness: Introduction to
Cognitive Neuroscience. Academic Press, Cambridge (2010)

3. Starzyk, J.A., Horzyk, A.: Episodic memory in minicolumn associative knowledge
graphs. IEEE Trans. Neural Netw. Learn. Syst. 30(11), 3505–3516 (2019)

4. Bayer, R.: Symmetric binary b-trees: data structure and maintenance algorithms.
Acta Informatica 1(4), 290–306 (1972)

5. Botvinick, M.M., Plaut, D.C.: Short-term memory for serial order: a recurrent
neural network model. Psychol. Rev. 113(2), 201 (2006)

6. Cai, H., Zheng, V.W., Chang, K.C.C.: A comprehensive survey of graph embed-
ding: problems, techniques, and applications. IEEE Trans. Knowl. Data Eng. 30(9),
1616–1637 (2018)

7. Chen, L., Schott, R.: Optimal operations on red-black trees. Int. J. Found. Comput.
Sci. 7(03), 227–239 (1996)

8. Fu, T.J., Li, P.H., Ma, W.Y.: Graphrel: modeling text as relational graphs for joint
entity and relation extraction. In: Proceedings of the 57th Annual Meeting of the
Association for Computational Linguistics, pp. 1409–1418 (2019)

9. Guo, Q.E.A.: A survey on knowledge graph-based recommender systems. IEEE
Trans. Knowl. Data Eng. 34(8), 3549–3568 (2022)

10. Horzyk, A.: Associative graph data structures with an efficient access via avb+
trees. In: 2018 11th International Conference on Human System Interaction (HSI),
pp. 169–175. IEEE (2018)

11. Horzyk, A.: Associative representation and processing of databases using DASNG
and AVB+trees for efficient data access. In: Fred, A., et al. (eds.) IC3K 2017.
CCIS, vol. 976, pp. 242–267. Springer, Cham (2019). https://doi.org/10.1007/978-
3-030-15640-4 13

12. Horzyk, A., Bulanda, D., Starzyk, J.A.: Asa-graphs for efficient data representation
and processing. Int. J. Appl. Math. Comput. Sci. 30(4), 717–731 (2020)

13. Horzyk, A., Starzyk, J.A., Graham, J.: Integration of semantic and episodic mem-
ories. IEEE Trans. Neural Netw. Learn. Syst. 28(12), 3084–3095 (2017)

14. Jensen, C.S., Lin, D., Ooi, B.C.: Query and update efficient b+-tree based indexing
of moving objects. In: Proceedings of the Thirtieth International Conference on
Very Large Data Bases, vol. 30, pp. 768–779 (2004)

15. Kim, W.H., Seo, J., Kim, J., Nam, B.: clfb-tree: cacheline friendly persistent b-tree
for nvram. ACM Trans. Storage (TOS) 14(1), 1–17 (2018)

16. Mishra, P., Eich, M.H.: Join processing in relational databases. ACM Comput.
Surv. (CSUR) 24(1), 63–113 (1992)

17. Romano, J.D., et al.: Pmlb v1.0: an open-source dataset collection for benchmark-
ing machine learning methods. arXiv preprint arXiv:2012.00058 (2020)

18. Vijaymeena, M., Kavitha, K.: A survey on similarity measures in text mining.
Mach. Learn. Appl. Int. J. 3(2), 19–28 (2016)

https://doi.org/10.1007/978-3-030-15640-4_13
https://doi.org/10.1007/978-3-030-15640-4_13
http://arxiv.org/abs/2012.00058

292 A. Horzyk et al.

19. Wang, Q., Mao, Z., Wang, B., Guo, L.: Knowledge graph embedding: a survey of
approaches and applications. IEEE Trans. Knowl. Data Eng. 29(12), 2724–2743
(2017)

20. Wang, Z., Zhang, J., Feng, J., Chen, Z.: Knowledge graph embedding by translating
on hyperplanes. In: Proceedings of the AAAI Conference on Artificial Intelligence,
vol. 28 (2014)

21. Ye, Z., Kumar, Y.J., Sing, G.O., Song, F., Wang, J.: A comprehensive survey of
graph neural networks for knowledge graphs. IEEE Access 10, 75729–75741 (2022)

Skeletal Cores and Graph Resilience

Danylo Honcharov1(B), Ahmet Erdem Sarıyüce2, Ricky Laishram1,
and Sucheta Soundarajan1

1 Syracuse University, Syracuse, NY 13244, USA
{dhonchar,rlaishra,susounda}@syr.edu

2 University at Buffalo, Buffalo, NY 14260, USA
erdem@buffalo.edu

Abstract. In network analysis, one of the most important structures
is the k-core: the maximal set of nodes such that each node in the k-
core has at least k neighbors within the core. Recently, the notion of the
skeletal k-core– a minimal subgraph that preserves the core structure
of the graph– has attracted attention. However, the literature to date
has contained only a biased greedy heuristic for sampling skeletal cores,
which resulted in a skewed analysis of the network. In this work, we
introduce a novel MCMC algorithm for sampling skeletal cores uniformly
at random, as well as a novel algorithm for estimating the size of the space
of skeletal k-cores, which, as we show, is important for understanding the
core resilience of the network. With these algorithms, we demonstrate
the relationship between resilience of the network and the core structure
of the graph and suggest fast heuristics for evaluating graph structure
from a skeletal cores perspective. We show that the normalized number of
skeletal cores in the graph correlates with the resilience of k-core towards
edge deletion attacks.

Keywords: networks · robustness · k-cores

1 Introduction

Within the machine learning and network science literature, the study of dense
subgraphs has received a great deal of attention. Examples of such structures
include cliques [18], k-clubs [21] and k-trusses [7]. Of particular interest is the k-
core, which plays a role in applications such as community detection [19,22],
influence maximization [11], visualization [3,12], anomaly detection [26] and
understanding network topology [3,27]. A network’s k-core is defined as the
maximal subgraph of the network such that every node in the subgraph has at
least k neighbours also in the subgraph [24]. The core number of a node is the
highest value of k for which that node belongs to a k-core.

k-cores have a history of being studied in the context of network resilience [17,
20]. To understand the structural properties of k-cores and their effect on
resilience, the concept of the skeletal core was proposed [16]. The skeletal core
of a graph is defined as a minimal subgraph that preserves the core number of
each node. Skeletal cores can be seen as a “backbone” of the k-core structure of
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
D. Koutra et al. (Eds.): ECML PKDD 2023, LNAI 14171, pp. 293–308, 2023.
https://doi.org/10.1007/978-3-031-43418-1_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-43418-1_18&domain=pdf
https://doi.org/10.1007/978-3-031-43418-1_18

294 D. Honcharov et al.

the graph, and so play an important role in the structure of the network. While
useful for applications such as speeding up community detection, they are crucial
in the context of analyzing the network’s resilience or robustness [16]. To this
end, understanding the space of skeletal cores can provide valuable insight into
the graph structure: understanding when a network’s core structure will change,
requires understanding when it remains the same.

However, because skeletal cores are a new concept, there are a number of
important open problems surrounding them. For instance, the literature contains
only a single greedy heuristic for identifying a single skeletal core, and it is not
known how to sample skeletal cores of a network uniformly at random, which
fundamentally limits the understanding of how skeletal cores are distributed
and how they affect the core structure. Relatedly, it is also not known how to
estimate the number of skeletal cores to which an edge belongs, making it difficult
to gauge the importance of an edge with respect to the overall core structure of
the network. Without solving these problems, one cannot properly understand
the effect of a network’s skeletal core structure on the resilience of the network.

In our work, we first introduce a novel MCMC (Markov Chain Monte Carlo)
algorithm for sampling skeletal k-cores uniformly at random and a corresponding
algorithm for estimating the number of skeletal cores in the graph. We then use
these algorithms to study the relationship between the space of skeletal cores
and the robustness of complex networks. We suggest practical heuristics for the
estimation of the probability of a given edge being part of a skeletal core and
experimentally validate these heuristics with respect to the ground truth.

Our main contributions are as follows:

1. We provide a novel MCMC algorithm for sampling skeletal cores of the graph
uniformly at random.

2. We suggest heuristics that can be used to estimate the likelihood of an edge
being part of a skeletal core and evaluate them experimentally.

3. We provide a novel algorithm for the estimation of the size of the skeletal core
space and experimentally demonstrate the relationship between the number
of skeletal cores in the graph and the core resilience of the network.

4. We demonstrate how the proposed algorithms can be used to identify
moments of fundamental change of the k-core structure during a process of
edge deletion.

2 Related Work

First introduced by Seidman in 1983 [24], the k-core of a graph G = (V,E) is
defined as the maximal connected subgraph such that any node in the subgraph
has a degree at least k. k-cores are an important part of network analysis, and
have been used for many tasks, including community detection [19], speedups of
the graph algorithms [22], influence maximization [11], anomaly detection [26],
prediction of protein functions [2], and others. k-cores have also been used to
gain deeper insight into a graph structure, including through visualization [12].

Skeletal Cores and Graph Resilience 295

A skeletal core of a graph G is defined as a minimal subgraph H of G such
that all nodes in H have the same core number as in G [16]. The literature
contains a greedy algorithm (discussed in more detail in Sect. 4.2) for generating
a single skeletal k-core for the given graph and suggests several applications for
skeletal cores [16]. However, the greedy algorithm for finding skeletal cores does
not sample uniformly at random from the whole space of skeletal cores, and so
may lead to bias in analysis. Moreover, because graphs may have many skeletal
cores, simply generating one such skeletal core may not provide sufficient insight
into the graph structure. The estimation of the expected properties of skeletal
cores (e.g. expected size of skeletal core or expected overlap between skeletal
cores) is a more useful tool for graph analysis, but it requires the ability to
sample cores uniformly at random.

Skeletal cores are particularly important to the robustness of networks. While
network robustness can be defined in many ways [8,10], of relevance to this work
is the resilience of a graph’s k-core structure against changes in the graph struc-
ture. k-core numbers are used as a way to quantify connectedness and importance
of the nodes in the network, and core structure can be used to study the local
density of the graphs. As such, it is important to estimate how these properties
may be affected if the graph is changed: for example, how do random communi-
cations failures in a communications network affect overall connectivity?

The core resilience measure was suggested to measure the propensity of nodes
to change core number when edges from the graph are dropped [17], and the
impact of noise and sampling process on the k-core of a graph has been stud-
ied [1]. Understanding when changes in the graph structure happen during some
processes (e.g. edge removal/addition) has been a long-standing research topic in
network science. Examples include research on changes in random networks [9],
including the emergence of k-cores in the random graphs [23] and dynamics of
the k-core during edge removal in the random graphs [13].

3 Background

Here, we introduce concepts necessary for the presentation of our work.

3.1 k-Cores

The k-core is defined as a maximal subgraph for which any node in the subgraph
is connected to at least k neighbours in subgraph. A node’s core number is the
maximum value k such that the node belongs to a k-core. The core numbers of a
graph can be obtained using a ‘peeling’ k-core decomposition technique, which
runs in O(|E|) time [4].

3.2 Core Strength

Core strength was introduced in [17]. The core strength of a node u provides an
upper bound on the number of edges to same or higher-shell neighbors that can

296 D. Honcharov et al.

be removed from the node without it decreasing its core number. The proposed
MCMC algorithm (Sect. 4.1) uses core strength to identify transitions; and the
greedy estimator algorithm from Sect. 4.2 uses it for estimating the number of
skeletal cores.

Formally the core strength of u is defined as CS(u) = |N≥(u)| − K(u) + 1,
where N≥ is the set of neighbours of u with a core number greater than or equal
to that of u (i.e., those that support u’s core number) and K(u) denotes the core
number of u.1

3.3 Core Valid Subgraph and Skeletal k-Core

A Core Valid Subgraph CV S of a graph G = (V,E) is defined as a spanning
subgraph of G such that all nodes in G have the same k-core number in CV S
as they do in G [16]. In other words, CV S preserves the core structure of G.

A skeletal k-core is defined as a minimal CV S: i.e., one for which removal
of any edge would lead to at least one node decreasing its core number [16]. Of
interest in the context of our work is the greedy algorithm for finding a single
skeletal core [16]. This algorithm serves to identify the starting state for the
MCMC algorithm in Sect. 4.2, and can be summarized as follows:

1. Identify a set of edges of G such that any edge in the set can be removed
without k-core numbers decreasing. Denote this set as R.

2. Select one of the edges e ∈ R and remove it from the G.
3. Recompute R and repeat 1-3, until R = ∅.
4. Return G as a skeletal core.

3.4 Core Resilience

Core resilience was proposed in [17] to measure the robustness of a network’s
k-core structure against random edge removal. It provides a way to compare
the estimated ability of the core structure of different networks to withstand
changes (for example, due to failure of the communication channels between
nodes or because of network evolution). Consider two graphs: G = (V,E) and
G′ = (V,E′), where G′ is a subgraph of G formed by randomly deleting p%
of the edges from G. Denote the top r% of the nodes with the highest k-
core numbers in G as Vr. The resilience R

(p)
r of G can then be defined as:

R
(p)
r = τb({((K(u,G), (K(u,G′)), u ∈ Vr}), where K(u,G) denotes the core

number of node u in graph G, and τb denotes the expected Kendall-Tau rank
correlation [14] between the two rankings (other rank correlations may be used).
R

(p1,p2)
r is defined as the mean core resilience as the percentage of dropped edges

changes from p1 to p2 [17]: R
(p1,p2)
r =

∫ p2
p1

R(x)
r (G)dx

p2−p1
. We use core resilience in our

1 Note that this sometimes overestimates the desired value, as loss of an edge (u, v) can
trigger reductions in core numbers of other nodes, and thus lower the core number of
other neighbors of u; however, computing the exact value is more computationally
intensive.

Skeletal Cores and Graph Resilience 297

experimental analysis to show the relationship between skeletal cores and the
robustness of the graph.

4 Algorithms to Explore the Space of Skeletal Cores

Here, we introduce an MCMC-based algorithm for sampling skeletal cores u.a.r.,
and then demonstrate how to estimate the number of skeletal cores in a graph.

Exploring the space of skeletal cores in unbiased way is useful for different
applications. Let‘s consider the scenario of the pandemic of a contagious virus
which spreads through the network of personal interactions. As was shown by
the research of COVID-19 [25], k-cores of high complexity are known to sustain
an outbreak even if the network becomes partially disconnected; thus, estimation
of which edges are most important for the k-core could be useful to minimize
the spread of the disease. While skeletal cores of the personal interaction net-
work provide important insight regarding these edges, application of previously
suggested greedy algorithm will provide a biased sample of the skeletal cores,
leading to the non-optimal decision-making. Similarly, for the opposite problem
of maintaining the k-core structure, a skewed sample of skeletal cores is undesir-
able. The proposed MCMC algorithm does not suffer from this drawback, and
is guaranteed to provide unbiased sampling.

The proposed MCMC algorithm uses the notion of core strength [17]
(described in Sect. 3.2) to identify transitions between different skeletal k-cores.

In our experimental analysis, we show that the core resilience of a graph is
strongly correlated with its skeletal core properties.

4.1 Sampling Skeletal Cores Uniformly at Random

In this section, we describe an MCMC algorithm for sampling skeletal k-cores
uniformly at random. At a high level, the proposed method is described as
following: First, begin from any skeletal core T0 (for example, one obtained by
the greedy algorithm in [16]). This skeletal core is the initial state of a Markov
Chain M . Next, randomly transform T0 into another skeletal core T1, or stay at
T0, with probabilities of D/Dmax and 1 − D/Dmax correspondingly, where D
stands for the number of possible transformations from the current state. Dmax

needs to be bigger than any possible number of transitions from one state. This
is equivalent to conducting a random walk over M . Repeat the procedure until
the process converges to the stationary distribution. If transition probabilities
are defined correctly, this stationary distribution will be an uniform distribution
over the space of skeletal cores. Once the stationary distribution is reached,
return the current skeletal core.

The key idea behind the proposed algorithm is to correctly transition between
skeletal cores of the graph. When at a skeletal core T , no edge can be deleted from
T without affecting core numbers (because T is skeletal), unless another edge
(or edges) is added to compensate. When these replacement edges are added,
this may necessitate further removal of edges to ensure that the new subgraph
is still skeletal. We consider only allowed transitions that go up to two steps in

298 D. Honcharov et al.

any direction, and we show in the proof that this is enough to reach any skeletal
core, while limiting the number of possible transitions at each step.

More formally, the proposed algorithm consists of the following steps:

1. Begin from some skeletal core T0 of the original graph G = (V,E). T0 can
be obtained from the original graph by using a greedy algorithm, like that
proposed in [16], or in any alternative way.

2. Initialize the set of possible transitions R0 = ∅.
3. Denote the current skeletal core as T . To identify possible transitions, iterate

over all edges (u, v) ∈ T and generate all skeletal cores that can be obtained
from T by removal of an edge (u, v), followed by the addition of an edge
(u, i) ∈ G\T or an edge (v, j) ∈ G\T (or both) and corresponding removal of
(i, p) ∈ T and/or (j, k) ∈ T , if needed. Add these transitions to R.

4. Similarly, for all edges (u, v) ∈ G\T , generate all skeletal cores, that can be
obtained from T by addition of (u, v), the removal of (u, i) ∈ T or (v, j) ∈ T
(or both), and corresponding addition of (i, p) ∈ G\T and/or (j, k) ∈ G\T .
Add these transitions to R.

5. Select one of the transitions from R uniformly at random or stay at T with
probability 1 − D/Dmax, where Dmax needs to be bigger than any possible
number of transitions from one state. Dmax can be bounded in several ways
- for example, it‘s trivial to show that Dmax ≤ |E| ∗ d4m, where dm is the
highest degree in the graph.2

6. Repeat steps 2–5 until the Markov Chain converges. Convergence can be
identified in several ways [6]. One simple example could be running several
instances of Markovian chains and comparing their outputs.

7. Return the current skeletal core.

The running time for this algorithm is high. In each iteration, the algorithm
iterates over all edges and considers O(d4m) possible transitions for every edge
in the worst-case scenario. Hence, the running time for one step is O(|E| ∗ d4m).
The overall running time of the proposed algorithm depends primarily on the
mixing time of the Markov chain M . While we do not propose proof that M is
rapidly mixing, experiments suggest that the stationary distribution is reached
relatively fast in most cases. Nonetheless, the main disadvantage of the algorithm
is running time, which makes it prohibitively expensive to run on big graphs.

In the next section, we discuss how properties of the space of skeletal cores
can be estimated more quickly.

Theorem 1. The described MCMC algorithm will sample skeletal cores u.a.r.

Due to space constraints, the proof of the theorem can be found in the extended
version of this paper.3. In the proof, we show that space of skeletal cores is
connected and that transitions between adjacent states are symmetric.

2 Experimentally this bound proved to be very loose, which may reduce the rate of
convergence.

3 Extended version and source code are available at https://github.com/honcharov-
danylo/extended skeletal.

https://github.com/honcharov-danylo/extended_skeletal
https://github.com/honcharov-danylo/extended_skeletal

Skeletal Cores and Graph Resilience 299

def estimator(G = (V,E) : Graph,K : HashTable):
R = ∅; c = 0; d = 1
repeat

CS = getCoreStrength(G)
R = {(u, v) ∈ E : (CS[u] > 1 ∧ CS[v] > 1)∨
∨(CS[u] > 1 ∧ K(u) < K(v))) ∨ (CS[v] > 1 ∧ K(v) < K(u)))}
d∗ = |R|; c+ = 1

until R! = ∅
return d/c!

def estimate size(G = (V,E) : Graph,K : HashTable,N : int):
S = List() ; W = List()
for i = 0; i < N ; i + + do

S.add(estimator(G,K))
end
return AV G(S)

Algorithm 1: Number of skeletal cores in the graph

4.2 Estimating the Number of Skeletal Cores

Analyzing the properties of the skeletal cores is important for many applications.
For instance, the k-core can be seen as a form of the equilibrium in a game-
theoretic model [5]; and, correspondingly, the skeletal core can be seen as the
minimal edge-induced subgraph that maintains this equilibrium. The question
of what this subgraph looks on average is crucial for understanding the network
as a whole. Another example could be using the average size of skeletal cores to
find the “breaking point” of the k-core structure, as shown in Sect. 5.4.

Because the MCMC algorithm is computationally expensive, here we suggest
an alternative approach for the estimation of the expected properties of skeletal
cores. We provide an algorithm that provides the expected number of skeletal
k-cores in the graph, and explain how it can be used to estimate properties of
skeletal cores (e.g. average size) without relying on the MCMC approach. An
outline of the algorithm can be found in Algorithm 1, further referred to as the
GE-algorithm. The algorithm takes a graph and k-core numbers of all nodes as
input and returns the expected number of skeletal cores in the graph.

The idea behind the algorithm is as follows: first, “unravel” the DAG H,
formed by transitions of the greedy heuristic for finding a single skeletal core [16]
(discussed in Sect. 3.3) to the tree and count its leaves, adjusting our estimate for
overcounting caused by such “unravelling”. To improve the estimate, we repeat
the process n times and use Davg as the final estimate.

4.3 Proof of the Algorithm Correctness

Theorem 2. Algorithm 1 returns the expected number of skeletal k-cores in the
graph.

Proof. Denote the original input graph as G. Use a greedy algorithm, (see
Sect. 3.3) to obtain a single skeletal core S from G. Next, create a new graph H,

300 D. Honcharov et al.

where nodes denote graphs that can be obtained during the process above and
directed edges denote transitions between these graphs in the greedy algorithm.
It can be shown that the greedy algorithm is capable of producing every skeletal
core in the graph. H is directed and acyclic, because an edge from u ∈ H to
v ∈ H requires that v is a subgraph of u in G. Nodes without out-edges are
skeletal cores of G (by definition). The root of H is G itself. Next, modify H by
“unravelling” the DAG to a tree by making copies of all nodes that have more
than one parent. Denote the resulting graph as Hm.

Because Hm is a tree, obtaining the expected number of terminal nodes
(leaves) in Hm could be done easily with the algorithm suggested by Knuth [15]
for the estimation of the space of the backtracking tree. This algorithm initializes
a counter D with 1 at the root of the tree (which denotes the original graph G)
and performs a random walk down the tree, multiplying D by the out-degree
of every node on the path, until it reaches a leaf. When a leaf is reached, the
counter will contain the expected number of the leaves in the graph [15].

However, the skeletal cores (leaves) in Hm may be copied (and counted)
several times. As edges removed from G to obtain any skeletal core Si may have
been removed in any order, there are Ai! ways to reach Si from G in H, where
Ai is the number of edges removed from G to obtain Si. As any of these paths
will lead to a unique copy of the skeletal core Si in Hm, we know that Si will be
counted Ai! times in Hm. Dividing the estimate by Ai! accounts for this.

Theorem 3. The running time of Algorithm 1 is O(|E|).
Proof. First, consider the running time of the function estimator. To compute
core strength, the function requires O(|E|) time in the first iteration. For subse-
quent iterations, core strength values can be updated in O(1) after every edge
deletion (as at most two values of Core Strength will be affected). Identifying
a set of edges R takes O(|E|) time the first time, but we can update it quickly
if the selected data structure allows us to quickly access and remove edges with
one known endpoint. One example of such a data structure could be a hashmap
with nodes as keys and edges from R as values. The function estimate size takes
O(k|E|) time, where k is the number of samples. Assuming that k is a small fixed
constant with k << |E|, the overall running time of the algorithm is O(|E|).

4.4 Estimation of Expected Properties of Skeletal Core

We can use a modified version of Algorithm 1 to obtain the expected properties
of skeletal cores in the graph. Suppose that we want to get the expected value
of property P of the skeletal core (e.g., the number of edges or average degree).

Denote P (Si) as the value of P for the core Si and define C =
∑

Si∈S P (Si).
C is the sum of P of all skeletal cores in the space S. Assign 0 as the cost of any
node in the H which is non-terminal (i.e., not a skeletal core), and assign P (Si)
as the cost of the skeletal core Si.

In this case, an expected estimate of total cost C for one Monte Carlo search
will be P (Si)∗D [15], and over multiple experiments it will be C =

∑n
i=0 P (Si)∗

Di/n. The expected value of P will then be E[P] = C/Davg = P (Si)∗Di/Davg.

Skeletal Cores and Graph Resilience 301

4.5 Normalized Number of Skeletal Cores

It is useful to introduce a notion of skeletal core density, which allows one to have
a sense of the number of skeletal cores that a graph has relative to its size. To
this end, we introduce a novel metric of a normalized number of skeletal k-cores.
Denoting the expected size of the space of skeletal cores as eest and the expected
number of edges in the skeletal core as sexp, we define the normalized number
of skeletal cores in the graph as en = log(eest)/log(

(|E|
sexp

)
). The denominator

represents the logarithm of the total number of possible subgraphs in G that
have sexp edges.

5 Experiments and Analysis

In this section, we demonstrate the relationship between skeletal k-cores and
core resilience; and show how skeletal cores can be used to analyze the “breaking
point” of the k-core structure.

5.1 Datasets

Networks used in our experiments are listed in Table 1. We compare networks
from different domains: AS denotes networks from autonomous systems; P2P
stands for peer-to-peer, BIO indicates graphs from bioinformatics; CA denotes
co-authorship networks; INF is used for infrastructure-related graphs; CO
denotes collaboration networks; SOC indicates social networks; TECH stands
for technological networks; WEB is used for internet network; EMAIL indicates
email networks; MISC denotes networks that do not fall into the categories
above.

5.2 Algorithm Validation

Before using the proposed algorithms to perform network analysis, we demon-
strate that they are effective at the desired objectives.

First, we show that the MCMC sampling algorithm reaches its stationary
distribution quickly. Any MCMC algorithm needs several steps before conver-
gence. While we do not provide theoretical proof that Markovian chain defined
by the suggested algorithm is rapidly mixing, experiments demonstrate fast con-
vergence of the algorithm. To show the speed of convergence of the algorithm
experimentally, we perform a sampling of skeletal cores for a different number
of steps, setting the number of steps to be equal to the fixed fractions of the
number of edges in the original graph.

Intuitively, after convergence, the distribution of the properties of skeletal
cores is stable. In Fig. 1, the distribution of sizes of skeletal cores is plotted for
a different number of steps of the algorithm. Due to the lack of space, we show

302 D. Honcharov et al.

Table 1. Datasets. |V | denotes number of nodes, |E| denotes number of edges, kmax

denotes highest k-core. † denotes SNAP as a source of the network, ‡ stands for Net-
workRepository, § stands for KONECT, §§ stands for Netzschleuder.

Type Network |V | |E| kmax Type Network |V | |E| kmax

AS auto as19990111† 549 1249 11 CO arena jazz‡ 198 2742 29

auto as19980318† 3455 6168 10 SOC wiki‡ 889 2914 9

auto as19971108† 3015 5156 9 hamsterer‡ 2426 16630 24

oregon010331† 10670 22002 17 musae facebook† 22470 170823 56

P2P gnutella08† 6301 20777 10 musae git† 37700 289003 34

BIO dmela‡ 7393 25569 11 TECH tech routers‡ 2113 6632 15

protein‡ 1870 2203 5 whois‡ 7476 56943 88

CA erdos‡ 5094 7515 7 tech pgp‡ 10680 24316 31

netscience§ 1464 2744 19 WEB webspam‡ 4767 37375 35

ca-HepPh‡ 12008 118521 238 EMAIL email enron† 36692 183831 43

ca grq† 4158 13422 43 email EuAll† 265214 364481 37

INF openflights‡ 2939 15677 28 MISC moreno innovation§ 245 927 6

inf-power‡ 4941 6594 5 norwegian(net1m)§§ 1421 3855 11

moreno oz‡ 217 2345 14

plots only for 3 networks. For higher number of steps, the distributions of skeletal
k-core sizes look very similar, which suggests convergence.4

As was seen in Sect. 4.4, we can compute the expected values of properties
of skeletal cores. To test this algorithm, we compare these estimated properties
to the average properties of skeletal cores sampled uniformly at random using
MCMC algorithm. Due to space limitations, we perform only an estimation of
the expected number of edges in the skeletal cores for selected graphs.

Results can be seen in Table 2. We compute Eavg as a simple average over
sizes of skeletal cores, sampled with the greedy algorithm from [16], Eexp is the
expected value over skeletal cores (method from Sect. 4.4), and Eu is obtained
by sampling skeletal cores uniformly at random with the MCMC algorithm. Our
goal is to show that Eexp is closer to Eu than Eavg is to Eu. Indeed, for most
graphs, the suggested expected estimate is much closer to Eu, the ground truth
obtained from the MCMC algorithm (and for the two networks where it is not
closer, the difference is very small).

5.3 Skeletal Core Analysis

Here, we experimentally validate the theoretical results of the GE-algorithm to
estimate the number of skeletal cores, as presented in Sect. 4.2. For every graph,
we sample 50 skeletal cores and compute the normalized number of skeletal cores
as shown in Sect. 4.5. Results are plotted against core resilience R

(0,50)
50 in Fig. 2.

(Core resilience is computed as described in Sect. 3.4.)

4 Such convergence diagnostics for MCMC methods don‘t guarantee convergence, and
should be seen as a type of statistical analysis [6].

Skeletal Cores and Graph Resilience 303

Fig. 1. Distribution of size of skeletal cores, sampled with a different number of steps
of MCMC (number of steps are set up as fixed fractions of the number of edges in the
graph). Colors denote the number of transitions made by the algorithm until a sample
was taken. (Color figure online)

Table 2. Expected number of edges in skeletal cores. Eavg is simple average over
skeletal cores, sampled with a greedy algorithm, Eexp is the expected value over skeletal
cores (method from Sect. 4.4), Eu is obtained by MCMC algorithm.

Network Eavg Eexp Eu

auto as19971108 4717.13 4724.53 4722.28

auto as19980318 5649.84 5648.00 5655.04

auto as19990111 1130.45 1128.28 1131.47

GrQc 11926.69 11936.83 11953.45

netscience 2628.29 2629.01 2630.30

norwegian 3657.30 3657.82 3660.14

wiki 2464.67 2466.16 2470.61

erdos 6864.28 6870.62 6877.34

protein 1816.31 1817.76 1821.81

inf-power 5286.41 5288.73 5314.86

Fig. 2. Normalized number of skeletal cores vs Core Resilience

304 D. Honcharov et al.

There is a very strong correlation between the two measures. The greater
the density of skeletal cores, the higher core resilience is. This suggests a clear
reason why certain networks have high core resilience: the core numbers of nodes
are supported in many different ways. The only outlier is the moreno innovation
network, discussed below.

Relationships between different skeletal cores of the graph (e.g. overlap) can
provide further insight into the network’s robustness. One example can be found
in Fig. 3. The moreno innovation network has many edges that belong only
to a fraction of skeletal cores of the network. In other words, there are many
edges that can be useful to skeletal cores, but are not always necessary. This
property explains the reason for an unusually high number of skeletal cores
in this graph, as was seen in Fig. 2, because these edges might support a higher
number of skeletal cores comparatively to other networks. This suggests a smaller
overlap between different skeletal cores, and so when edges are randomly deleted
destruction of many skeletal cores is more likely.

Fig. 3. Fraction of skeletal cores to which each edge belongs. Results were obtained
by sampling 200 skeletal cores with MCMC. We ignore edges for which at least one
endpoint has a core strength of 1, as they belong to all skeletal cores. moreno innovation
has a high normalized number of skeletal cores, but low core resilience; protein and
norwegian networks have a low number of skeletal cores and low core resilience.

Estimating the Probability of an Edge Belonging to a Random Skeletal
k-Core. The likelihood that an edge is part of an arbitrary skeletal core can be
used for visualizations of skeletal cores or evaluation of the “centralization” of
the core structure [16]. As our work is the first that can estimate this likelihood
in an unbiased way, we compare against heuristics introduced by [16], which we
denote as the Centralized Skeletal Score (CSS) heuristics.

In our proposed heuristics, we approximate the probability that an edge
connected to a node u ∈ V will be part of a random skeletal core. Denote the
number of edges that can be removed from node u without dropping the k-core
number of any node as:

ω(u) = |{v ∈ N(u) : K(v) > K(u) ∨ (K(u) = K(v) ∧ CS[v] �= 1)}|. (1)

Skeletal Cores and Graph Resilience 305

Fig. 4. Comparison of the heuristics. y-axis denotes the heuristics value for the edge,
x-axis denotes the proportion of skeletal cores that the edge belongs to (MCMC sam-
ple). CSS-heuristics are shown on the top row, ρ-heuristics on the bottom. ρ-heuristics
outperform the competition.

Similarly, define the number of edges that cannot be removed from u and
must be present in every skeletal core:

γ(u) = |{v ∈ N(u) : K(v) = K(u) ∧ CS[v] = 1}|. (2)

In a skeletal core, u will have at least K(u) neighbours, so we need to select
at least K(u) − γ(u) nodes from ω(u) for the skeletal core. Thus, for node u:

ρ(u) =

{
max(K(u)−γ(u)

ω(u) , 0) if ω(u) �= 0

1 if ω(u) = 0
(3)

For an edge (u, v) ∈ E we define heuristics as:

ρ((u, v)) =

⎧
⎪⎨

⎪⎩

max(ρ(u), ρ(v)) if K[u] = K[v]
ρ(u) if K[u] < K[v]
ρ(v) if K[u] > K[v]

(4)

We refer to these heuristics as “ρ-heuristics”. In Fig. 4, heuristics from [16] and
the proposed ρ-heuristics are plotted against the ground truth, as estimated with
the MCMC algorithm. The correlation between ρ-heuristics and ground truth is
significantly higher as compared to the earlier CSS heuristics.

5.4 Identifying the “Breaking Point” of the k-Core Structure

The normalized number of skeletal cores from Sect. 5.2 can be interpreted as
the “density” of the skeletal cores amongst subgraphs obtained by removal of

306 D. Honcharov et al.

Fig. 5. Skeletal cores and “breaking point” of the network. x-axis denotes number of
edges removed, left y-axis denotes the core resilience of the network for a certain per-
centage of removed edges, and the right y-axis denotes the gradient of Core Resilience.
After the destruction of skeletal cores (red line), the gradient of Core Resilience (green
line) flattens, indicating a fundamental loss of k-core structure. (Color figure online)

approximately |E| − sexp edges uniformly at random. If we remove edges past
this point, the graph will have fewer edges than the expected size of skeletal
cores, thus, edges will be unable to support the k-core.

In Fig. 5, we see that the average size of the skeletal core provides a good
estimate of when the k-core structure disappears during a random edge removal
process. Before the number of deleted edges equals the size of the average skeletal
core (red line), core resilience (blue line) drops rapidly; but after that point, it
shows a roughly linear decrease (as seen by the gradient, in green, flattening).
One explanation is that prior to this point, a single edge deletion can cause a
cascade in which many nodes drop their core number. After this point, the core
structure is essentially destroyed, and such cascades of are unlikely.

6 Conclusion

In this paper, we introduced an MCMC algorithm for sampling skeletal cores
uniformly at random as well as an algorithm for estimating the expected number
of skeletal cores and their properties. We demonstrated the relationship between
skeletal core structure and the core resilience of the graph, suggested a heuristic
to estimate the likelihood of an edge being part of a skeletal core, and showed that
skeletal cores can be used to find the “breaking point” of the k-core structure.

Acknowledgements. Honcharov and Soundarajan were supported by NSF Award
#1908048. Sarıyüce was supported by NSF Award #1910063.

Skeletal Cores and Graph Resilience 307

References

1. Adiga, A., Vullikanti, A.K.S.: How robust is the core of a network? In: Blockeel,
H., Kersting, K., Nijssen, S., Železný, F. (eds.) ECML PKDD 2013. LNCS (LNAI),
vol. 8188, pp. 541–556. Springer, Heidelberg (2013). https://doi.org/10.1007/978-
3-642-40988-2 35

2. Altaf-Ul-Amine, M., et al.: Prediction of protein functions based on k-cores of
protein-protein interaction networks and amino acid sequences. Genome Inform.
14, 498–499 (2003)

3. Alvarez-Hamelin, J.I., Dall’Asta, L., Barrat, A., Vespignani, A.: k-core decomposi-
tion: a tool for the visualization of large scale networks. arXiv preprint cs/0504107
(2005)

4. Batagelj, V., Zaversnik, M.: An o(m) algorithm for cores decomposition of net-
works. arXiv preprint cs/0310049 (2003)

5. Bhawalkar, K., Kleinberg, J., Lewi, K., Roughgarden, T., Sharma, A.: Preventing
unraveling in social networks: the anchored k-core problem. SIAM J. Discret. Math.
29(3), 1452–1475 (2015)

6. Brooks, S.P., Roberts, G.O.: Assessing convergence of Markov chain Monte Carlo
algorithms. Stat. Comput. 8(4), 319–335 (1998)

7. Cohen, J.: Trusses: cohesive subgraphs for social network analysis. National secu-
rity agency technical report 16.3.1 (2008)

8. Ellens, W., Kooij, R.E.: Graph measures and network robustness. arXiv preprint
arXiv:1311.5064 (2013)

9. Erdős, P., Rényi, A., et al.: On the evolution of random graphs. Publ. Math. Inst.
Hung. Acad. Sci 5(1), 17–60 (1960)

10. Freitas, S., et al.: Graph vulnerability and robustness: a survey. IEEE Trans.
Knowl. Data Eng. 35(6), 5915–5934 (2022)

11. Al-garadi, M.A., Varathan, K.D., Ravana, S.D.: Identification of influential spread-
ers in online social networks using interaction weighted k-core decomposition
method. Physica A: Stat. Mech. Appl. 468, 278–288 (2017)

12. Govindan, P., Wang, C., Xu, C., Duan, H., Soundarajan, S.: The k-peak decompo-
sition: mapping the global structure of graphs. In: Proceedings of the 26th Inter-
national Conference on World Wide Web, pp. 1441–1450 (2017)

13. Iwata, M., Sasa, S.: Dynamics of k-core percolation in a random graph. J. Phys.
A Math. Theor. 42(7), 075005 (2009)

14. Kendall, M.G.: A new measure of rank correlation. Biometrika 30(1/2), 81–93
(1938)

15. Knuth, D.E.: Estimating the efficiency of backtrack programs. Math. Comput.
29(129), 122–136 (1975)

16. Laishram, R., Soundarajan, S.: On finding and analyzing the backbone of the k-
core structure of a graph. In: 2022 IEEE International Conference on Data Mining
(ICDM), pp. 1017–1022. IEEE (2022)

17. Laishram, R., et al.: Measuring and improving the core resilience of networks. In:
Proceedings of the 2018 World Wide Web Conference, pp. 609–618 (2018)

18. Luce, R.D., Perry, A.D.: A method of matrix analysis of group structure. Psy-
chometrika 14(2), 95–116 (1949)

19. Malvestio, I., Cardillo, A., Masuda, N.: Interplay between k-core and community
structure in complex networks. Sci. Rep. 10(1), 1–12 (2020)

20. Medya, S., Ma, T., Silva, A., Singh, A.: A game theoretic approach for core
resilience. In: International Joint Conferences on Artificial Intelligence Organiza-
tion (2020)

https://doi.org/10.1007/978-3-642-40988-2_35
https://doi.org/10.1007/978-3-642-40988-2_35
http://arxiv.org/abs/1311.5064

308 D. Honcharov et al.

21. Mokken, R.J., et al.: Cliques, clubs and clans. Qual. Quant. 13(2), 161–173 (1979)
22. Peng, C., Kolda, T.G., Pinar, A.: Accelerating community detection by using k-

core subgraphs. arXiv preprint arXiv:1403.2226 (2014)
23. Pittel, B., Spencer, J., Wormald, N.: Sudden emergence of a giantk-core in a ran-

dom graph. J. Comb. Theory Ser. B 67(1), 111–151 (1996)
24. Seidman, S.B.: Network structure and minimum degree. Soc. Netw. 5(3), 269–287

(1983)
25. Serafino, M., et al.: Superspreading k-cores at the center of COVID-19 pandemic

persistence. medRxiv (2020)
26. Shin, K., Eliassi-Rad, T., Faloutsos, C.: Corescope: graph mining using k-core

analysis–patterns, anomalies and algorithms. In: 2016 IEEE 16th International
Conference on Data Mining (ICDM), pp. 469–478. IEEE (2016)

27. Zhang, H., Zhao, H., Cai, W., Liu, J., Zhou, W.: Using the k-core decomposition
to analyze the static structure of large-scale software systems. J. Supercomput. 53,
352–369 (2010)

http://arxiv.org/abs/1403.2226

GDM: Dual Mixup for Graph
Classification with Limited Supervision

Abdullah Alchihabi1(B) and Yuhong Guo1,2(B)

1 School of Computer Science, Carleton University, Ottawa, Canada
abdullahalchihabi@cmail.carleton.ca, yuhong.guo@carleton.ca

2 Canada CIFAR AI Chair, Amii, Canada

Abstract. Graph Neural Networks (GNNs) require a large number of
labeled graph samples to obtain good performance on the graph clas-
sification task. The performance of GNNs degrades significantly as the
number of labeled graph samples decreases. To reduce the annotation
cost, it is therefore important to develop graph augmentation methods
that can generate new graph instances to increase the size and diversity
of the limited set of available labeled graph samples. In this work, we
propose a novel mixup-based graph augmentation method, Graph Dual
Mixup (GDM), that leverages both functional and structural informa-
tion of the graph instances to generate new labeled graph samples. GDM
employs a graph structural auto-encoder to learn structural embeddings
of the graph samples, and then applies mixup to the structural infor-
mation of the graphs in the learned structural embedding space and
generates new graph structures from the mixup structural embeddings.
As for the functional information, GDM applies mixup directly to the
input node features of the graph samples to generate functional node
feature information for new mixup graph instances. Jointly, the gener-
ated input node features and graph structures yield new graph samples
which can supplement the set of original labeled graphs. Furthermore,
we propose two novel Balanced Graph Sampling methods to enhance
the balanced difficulty and diversity for the generated graph samples.
Experimental results on the benchmark datasets demonstrate that our
proposed method substantially outperforms the state-of-the-art graph
augmentation methods when the labeled graphs are scarce.

Keywords: Graph Augmentation · Graph Classification · Limited
Supervision

1 Introduction

Graph Neural Networks (GNNs) have successfully tackled a wide range of graph
related tasks such as node classification, knowledge graph completion, and graph
classification. In particular, the graph classification task has been addressed using
various GNN models such as Graph Convolution Networks (GCNs) [11], Graph
Attention Networks (GATs) [17], and Graph Isomorphism Networks (GINs) [22].
The effectiveness of such GNN models can be attributed to their natural ability
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
D. Koutra et al. (Eds.): ECML PKDD 2023, LNAI 14171, pp. 309–324, 2023.
https://doi.org/10.1007/978-3-031-43418-1_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-43418-1_19&domain=pdf
https://doi.org/10.1007/978-3-031-43418-1_19

310 A. Alchihabi and Y. Guo

to leverage both the functional information (nodes input features) and structural
information (graph adjacency matrix) of graph data using message passing and
message aggregation operations.

The success of GNNs in addressing the graph classification task nevertheless
has been contingent on the availability of a large set of labeled graph samples,
which induces a significant annotation burden in many domains where the labels
are scarce and require substantial domain-expertise to generate. To tackle this
problem, various graph augmentation methods have been proposed to increase
the size and diversity of the training set by generating additional new graph
samples. Most common graph augmentation methods, such as DropEdge [14],
DropNode [25], and SoftEdge [5], involve perturbing the nodes, edges, or sub-
graphs of a given graph sample to generate a new graph. However such methods
assume that the employed graph-augmentation operations are label invariant,
which is difficult to guarantee in many cases. Additionally, these methods use a
single graph sample to generate new graph instances, which limits the diversity
of the generated graphs. Although mixup-based augmentation methods have
demonstrated tremendous success in improving the generalization capacity of
deep neural networks on image-based [26] and text-based tasks [16], it remains
an open challenge to apply mixup to graph-based tasks given the irregular,
discrete and not well-aligned nature of graph data. Few works have proposed
methods to adapt mixup to graph data, including G-Mixup [7] and M-Mixup
[21]. However, these methods either are computationally expensive and need a
relatively large number of graph samples to obtain good performance or gener-
ate new graph samples in the manifold space and offer limited improvement in
performance.

In this work, we propose a novel mixup-based graph augmentation method
named Graph Dual Mixup (GDM) for graph classification, which applies paral-
lel mixup to the functional and structural information of the graph samples to
generate new graph instances in the input space. Given the discrete nature of
the graph structures, GDM employs a Graph Structural Auto-Encoder (GSAE)
to learn a structural embedding of the graph nodes. It then applies mixup to
the learned structural node embeddings of existing graphs to generate struc-
tural node embeddings for new mixup graph samples, which are subsequently
used to produce the graph structures (i.e., adjacency matrices) of the new graph
samples using the Graph Structural Decoder. Regarding the functional informa-
tion, GDM applies mixup directly to the input node features of existing graphs
to obtain the input node features of the corresponding mixup graph samples.
The new graph instances generated through the parallel mixup over both the
input features and graph structures are thereafter used to supplement the orig-
inal set of labeled graph samples, reduce overfitting, and help GNNs gener-
alize better with scarce graph labels. Furthermore, we propose two Balanced
Graph Sampling methods to guide the mixup procedure to achieve balanced
difficulty and diversity for the generated graph instances. We conduct compre-
hensive experiments on six graph classification benchmark datasets. The experi-
mental results demonstrate that our proposed method substantially outperforms

GDM: Dual Mixup for Graph Classification with Limited Supervision 311

state-of-the-art graph augmentation methods in the literature when the number
of labeled graphs is limited.

2 Related Works

2.1 Graph Classification

Earlier works have addressed the graph classification task using graph-kernel
based methods where the graph samples are decomposed into small subgraphs
[8,15,23]. More recently, Graph Neural Networks (GNNs) have been successfully
adopted in tackling the graph classification task. Many GNN models such as
Graph Convolution Networks (GCNs) [11], Graph Attention Networks (GATs)
[17], GraphSAGE [6] and Graph Isomorphism Networks (GINs) [22] have been
shown to possess strong capacity to represent the graph data using message pass-
ing and message aggregation operations, and facilitate graph classification. More-
over, some works have developed novel graph readout methods to obtain discrim-
inative graph-level representations from the node-level representation learned by
various GNN models [1,24].

2.2 Graph Augmentation

Data augmentation methods play a crucial role in regularizing the training of
deep models. Common graph augmentation methods are perturbation-based
methods that augment graph samples by applying perturbations to graph nodes
[9,25], edges [5,14], or subgraphs [13,20]. DropEdge randomly drops a num-
ber of edges from the graph structure during training [14]. SoftEdge selects a
random subset of edges and assigns random weights to them to generate aug-
mented graphs while preserving the connectivity patterns of the input graphs
[5]. DropNode randomly deletes a subset of the nodes in the graph together with
their connections to generate augmented graph samples [25]. GraphCrop aug-
ments the graphs with sub-structure deletion, which motivates GNNs to learn a
robust global-view of the graph samples [20]. Graph Transplant uses subgraph
transplantation to augment graphs where node saliency is used to select the
transplanted subgraphs [13]. These methods however operate under the strong
assumption that the applied graph perturbations are label-invariant insofar the
augmented graph shares the same ground-truth label as the original graph. Such
an assumption is hard to guarantee in many cases. Meanwhile, although there
has been tremendous success of Mixup-based methods in regularizing deep mod-
els in domains where the data is regular, well-aligned and continuous such as
images [26] and text [16], few works have attempted to adapt mixup to graph
data. M-Mixup applies mixup to the graph-level representation in the manifold
space learned by GNNs in a similar way to manifold mixup [21]. G-Mixup per-
forms mixup to the graphons of different classes which are learned from the
graph samples, and generates augmented graphs by sampling from the mixed
graphons [7]. GraphMix is a node-level augmentation method where manifold
mixup is applied to a fully-connected network that is trained jointly with a GNN
[18]. Further details on graph augmentation methods can be found in [27].

312 A. Alchihabi and Y. Guo

3 Method

3.1 Problem Setup

We consider the following graph classification setting. The input is a set of N
labeled graphs: G = {(G1,y1), · · · , (GN ,yN)}. Each graph G is made up of a
pair (V,E), where V is the set of graph nodes with size |V | = n and E is the
set of edges. E is represented by an adjacency matrix A of size n × n. The
adjacency matrix can have either binary or weighted values, be symmetric (in
the case of undirected graphs) or asymmetric (in the case of directed graphs).
Each node in the graph G is associated with a corresponding feature vector of
size d. The feature vectors of all the nodes in the graph are represented by an
input feature matrix X ∈ R

n×d. The graphs in the training set G may potentially
have different sizes (different number of nodes), while the feature vectors of the
nodes of all graphs have the same size d. The graph label vector y is a one-hot
label indicator vector of size C, where C is the number of classes.

3.2 Graph Classification

GNNs address the graph classification task by utilizing both the graph adjacency
matrix and the input node features, which correspond to the structural and
functional information of the graphs, respectively. GNN models in the literature
are commonly made up of three components: a node representation learning
function fθ, a graph readout function, and a graph classification function gφ.
The node representation function fθ typically consists of multiple (e.g., L) GNN
layers, each of which performs message propagation and message aggregation at
the node level to learn new node embedding as follows:

hl
u = AGGREGATE(hl−1

u ,hl−1
v |v ∈ N (u), θl) (1)

where hl
u ∈ R

dl×1 is the learned embedding of node u with size dl at layer l, N (u)
is the set of neighboring nodes of node u, θl is the learnable parameters of the l-th
GNN layer, and AGGREGATE is the message aggregation function which can be
any permutation invariant function (sum, average, max, etc.). The initial node
embedding h0

u is the input node feature vector xu. The graph readout function
is a permutation-invariant function used to obtain the graph-level embedding
from the learned node-level embedding as follows:

hG = READOUT(hL
u |u ∈ V) (2)

where hL
u ∈ R

dL×1 is the embedding of node u obtained from the top layer L of fθ

and hG ∈ R
dG×1 is the graph-level embedding. The graph classification function

gφ takes the graph-level embedding hG as input to produce the predicted class
probability vector for the given graph G as follows:

pG = g(hG|φ). (3)

GDM: Dual Mixup for Graph Classification with Limited Supervision 313

All the components are trained end-to-end by minimizing the following cross-
entropy loss over the labeled graphs in the training set:

L =
∑

G∈G �(pG,yG) (4)

where �(·, ·) is the cross-entropy loss function, pG and yG are the predicted
class probability vector and the ground-truth label indicator vector for graph G,
respectively.

3.3 Mixup

Mixup is an interpolation-based augmentation method that has demonstrated
significant success in reducing overfitting and improving the generalization of
deep neural networks [16,26]. Mixup generates augmented training samples (x̃, ỹ)
by applying linear interpolation between a randomly sampled pair of input
instances and their corresponding labels as follows:

x̃ = λxi + (1 − λ)xj , ỹ = λyi + (1 − λ)yj (5)

where λ is a scalar mixing coefficient sampled from a Beta distribution Beta(α, β)
with hyper-parameters α and β. (x̃, ỹ) is the new sample generated by mixing
the input labeled samples (xi, yi) and (xj , yj). Mixup can be readily applied
to any classification task where the input data is regular, continuous and well-
aligned such as images, text and time-series data. However, mixup cannot be
applied directly to graph data given that: (1) graph data is irregular where
different graphs may potentially have different sizes (different number of nodes).
(2) graphs do not have a natural-ordering of their nodes, therefore aligning a
pair of graphs is a non-trivial task. (3) graph structures may be discrete where
the edges are binary whereas mixup generates continuous samples. Therefore, it
is important to develop new methods that adapt mixup to the discrete, irregular
and not well-aligned graph data.

3.4 Graph Dual Mixup

In this section, we introduce our proposed Graph Dual Mixup (GDM) method
which generates new graph samples by applying parallel structural (i.e.,
structure-based) mixup and functional (i.e., feature-based) mixup over each
selected pair of existing graph samples. In particular, GDM employs a Graph
Structural Auto-Encoder (GSAE) to learn a structural embedding of the graph
nodes based on the adjacency matrix. The structural mixup is then applied on
the structural node embeddings of the input pair of graphs to produce a new set
of node embeddings, which is used to generate the adjacency matrix (i.e., graph
structure) of the mixup graph sample using the Graph Structural Decoder of
the GSAE. As for the functional information encoded with node features, GDM
applies mixup directly to the input node features to obtain the node features of
the generated mixup graph sample. In the remainder of this section, we elaborate
on the dual mixup procedure of this GDM methodology.

314 A. Alchihabi and Y. Guo

Structural Graph Node Representation Learning. Given the discrete
nature of graph structures, mixup cannot be directly applied to the structures of
a pair of graphs (represented by their corresponding adjacency matrices) to gen-
erate a new graph structure. Therefore, we propose to employ a Graph Structural
Auto-Encoder (GSAE) to learn a structural embedding of the graph nodes and
support mixup in the learned structural embedding space. This allows us to evade
the difficulties associated with applying mixup to the original graph structures.
GSAE is made up of a structural encoder Es and a structural decoder Ds. The
structural encoder Es consists of multiple GNN layers that learn the structural
node embeddings by propagating and aggregating messages across the graph
structure, where the messages reflect solely the structural information of the
nodes. The goal is to learn a structural embedding of all the nodes in the graph
that would enable us to reconstruct the graph adjacency matrix. Specifically, for
a given graph sample G = (X,A), Es takes the adjacency matrix A ∈ R

n×n and
the node degree matrix D ∈ R

n×n (represent the initial node structural features)
computed from A as input to learn the structural node embeddings as follows:

Hs = Es(D,A), where D[i, i] =
∑

j
A[i, j], (6)

where the node degree matrix D is an identity matrix whose main diagonal values
correspond to the degrees of the associated nodes; Hs ∈ R

n×ds is the learned
structural embedding of the nodes in the graph with size ds. Hs holds solely
the structural information of all the nodes in the graph, from which one can
reconstruct the connections/edges between the nodes and therefore the original
adjacency matrix A using the structural decoder Ds of the GSAE. In particu-
lar, we adopt a simple inner product similarity based decoder as the structural
decoder Ds, which takes the learned structural node embeddings as input to
reconstruct the graph adjacency matrix A as follows:

Â = Ds(Hs) = σ(HsH
T
s) (7)

where σ is the sigmoid activation function and Â ∈ R
n×n is the decoded/re-

constructed adjacency matrix. The GSAE is trained end-to-end to minimize the
following graph structure reconstruction loss:

Ls
re = −

∑
G∈G

[∑
(i,j)∈EG

log(ÂG[i, j]) +
∑

(i,j)∈Sneg
G

log(1 − ÂG[i, j])
]

(8)

where EG is the set of edges for graph G and Sneg
G is the set of randomly sampled

negative edges of graph G (i.e. edges that do not exist in the original graph).
It is important to note that GSAE does not access/use the input node features
(functional graph information) as it replaces the input node features with the
corresponding node degrees calculated from the adjacency matrix. GSAE also
does not make use of the graph class labels as it is learned in a completely
self-supervised/unsupervised fashion.

GDM: Dual Mixup for Graph Classification with Limited Supervision 315

Graph Generation via Dual Mixup. After training the GSAE, our pro-
posed Graph Dual Mixup is ready to apply Structural Mixup and Functional
Mixup to the structural and functional information of the graphs respectively
to generate new graph samples. To achieve that, for a given pair of graphs and
their corresponding label vectors (Gi,yi) and (Gj ,yj), where the two graphs
are made up of input node feature matrices and graph adjacency matrices such
as Gi = (Xi, Ai) and Gj = (Xj , Aj), GDM randomly aligns the nodes of the
graph pair. When Gi and Gj have different sizes (ni �= nj), we pad the input
node feature matrix and adjacency matrix of the smaller graph with zeros to
match the size of the larger graph. Then we apply functional mixup directly to
the input node features and the label vectors of the graph pair to generate the
node features of the new graph sample G̃ and its corresponding label vector ỹ
as follows:

X̃ = λXi + (1 − λ)Xj , ỹ = λyi + (1 − λ)yj (9)

To obtain the structural information of the generated new graph sample G̃,
GDM applies structural mixup in the structural embedding space learned by the
GSAE as follows:

H̃s = λ Es(Di, Ai) + (1 − λ) Es(Dj , Aj) (10)

where Di and Dj are the degree matrices of Gi and Gj , respectively; H̃s ∈
R

max(ni,nj)×ds is the structural node embedding matrix of the generated graph
G̃. The graph structural decoder is then used to reconstruct the adjacency matrix
of graph G̃ from the mixed structural node embeddings:

Ã = Ds(H̃s) = σ(H̃sH̃
T
s) (11)

The obtained matrix Ã ∈ R
max(ni,nj)×max(ni,nj) is a weighted adjacency matrix

with edge weights between 0 and 1. In order to filter out the noise in the edge
weights and sparsify the structure of generated graph sample, we prune the
adjacency matrix by dropping off the weak edges with weights smaller than a
pre-defined threshold ε as follows:

Ã[i, j] =

{
Ã[i, j], if Ã[i, j] ≥ ε

0, otherwise.
(12)

Moreover, in order for the structure of the generated graph sample G̃ to match
the structural properties of the original graph samples, we post-process Ã accord-
ingly. In the case that the original graph samples have weighted edges, no
post-processing is required. As for the case of the original graph samples being
unweighted/binary graphs, we binarize Ã by replacing all its non-zero values
with value 1 as follows:

Ã[i, j] =

{
1, if Ã[i, j] > 0
0, otherwise

(13)

In this manner, we obtain a new generated graph G̃ with its mixup node features
X̃, adjacency matrix Ã and label vector ỹ.

316 A. Alchihabi and Y. Guo

3.5 Balanced Graph Sampling

Given the limited number of available labeled graph instances, randomly sam-
pling pairs of graphs to generate new graph instances might be inadequate for
improving model generalization and reducing overfitting as random sampling
does not take the difficulty or diversity of the generated graph instances into con-
sideration. Therefore, we propose two novel Balanced Graph Sampling methods
to enhance the diversity and balanced difficulty of the generated graph sam-
ples. The proposed methods can separately: (1) generate low difficulty graphs
by applying GDM to randomly sampled pairs of low difficulty graphs; (2) gen-
erate medium difficulty graphs by applying GDM to mix randomly sampled
low difficulty graphs with high difficulty graphs; and (3) generate high difficulty
graphs by applying GDM to randomly sampled pairs of high difficulty graphs.
The advantage of balanced graph sampling over random sampling is that it guar-
antees that the generated graph samples have 3 subsets with equal sizes: a low
difficulty subset, a medium difficulty subset, and a high difficulty subset.

To achieve that, we need to assess/estimate the difficulty level of the original
graph instances. This is accomplished by pre-training a GNN model on the origi-
nal set of labeled graph instances to minimize the classification loss shown in Eq.
(1)—Eq. (4). Then the pre-trained GNN model is used to evaluate the difficulty
level of each graph G based on its predicted class probability vector pG. The
first balanced graph sampling method is an Accuracy-based method (Acc), which
determines the level of difficulty for graph G based on the accuracy/correctness
of its predicted class label:

DiffAcc(G) =

{
low, if argmax pG = argmax yG

high, otherwise
(14)

The second balanced graph sampling method is an Uncertainty-based method
(Unc), which uses the uncertainty/entropy of the model prediction on a sample
graph G to determine its level of difficulty. In particular, we sort the graphs from
the training set G based on the entropy of their corresponding predicted class
probability vectors, then consider the graphs with the lowest half of entropy
scores to be low difficulty ones while the other half of the graphs are taken as
high difficulty ones:

DiffUnc(G) =

{
low, if Ent(pG) ≤ Med

({Ent(p1), · · · ,Ent(pN)})

high, otherwise
(15)

where Ent(.) is the entropy function and Med(.) is the median function. There-
fore, GDM can be applied with Accuracy-based Balanced Graph Sampling
(GDM Acc) or Uncertainty-based Balanced Graph Sampling (GDM Unc) to
generate a new set of diverse graph samples GGDM with balanced difficulty.

GDM: Dual Mixup for Graph Classification with Limited Supervision 317

Algorithm 1. Augmentation and Training Procedure of Graph Dual Mixup
Input: Graph set G; hyper-parameters α, β ε, λGDM

Output: Learned model parameters θ, φ
Pre-train a GNN Model on G to determine the graph difficulty levels
Train GSAE on G using Eq. (6), (7), (8).
Glow = Generate low difficulty samples with GDM
Gmed = Generate medium difficulty samples with GDM
Ghigh = Generate high difficulty samples with GDM
GGDM = Glow ∪ Gmed ∪ Ghigh

Train the final GNN Model on G and GGDM using Eq. (1), (2), (3), and (16).

3.6 Augmented Training Procedure

The combination of Balanced Graph Sampling and Graph Dual Mixup generates
a diverse set of new graph instances, which can supplement the limited number of
original labeled graph samples. Finally, we train the GNN model using the orig-
inal graph set G and the generated graph set GGDM by minimizing the following
loss function:

Ltotal =
∑

G∈G
�CE(pG,yG) + λGDM

∑

G∈GGDM

�CE(pG, ỹG) (16)

where λGDM is a trade-off hyper-parameter controlling the contribution of the
generated graph set GGDM . An overview of the graph augmentation process and
the GNN augmented training procedure is presented in Algorithm 1.

4 Experiments

4.1 Experimental Setup

Datasets & Baselines. We evaluate our proposed method on 6 graph clas-
sification benchmark datasets from the TUDatasets [12], including 3 chemical
datasets and 3 social datasets. The chemical datasets are D&D [3], Proteins [2]
and NCI1 [19], while the social datasets are IMDB-Binary, IMDB-Multi and
Reddit-5K [23]. We employ the same 10-fold train/validation/test split provided
by [4]. We apply our proposed Graph Dual Mixup on the Graph Convolution
Network (GCN) baseline [11] and compare our proposed method against 5 other
graph augmentation methods from the literature: DropNode [25], DropEdge [14],
M-Mixup [21], SoftEdge [5] and G-Mixup [7].

Implementation Details. The node representation function fθ of the GNN
model is made up of 4 message passing layers, followed by Global Mean Pooling
as the Readout function. The graph classification function gφ is made up of
2 fully connected layers followed by a softmax function. Each message passing
layer and fully connected layer is followed by a Rectified Linear Unit (ReLU)
activation function. The structural encoder Es is made up of 2 GCN message

318 A. Alchihabi and Y. Guo

Table 1. Mean classification accuracy (standard deviation is within brackets) on 6
graph classification benchmark datasets with 10 labeled graphs per class.

Dataset Proteins NCI1 D&D IMDB-B IMDB-M Reddit

GCN 59.3(6.8) 51.0(1.6) 59.5(2.7) 54.5(3.9) 36.9(3.7) 25.1(5.1)

DropNode 61.0(8.5) 52.9(3.4) 62.1(2.9) 59.0(5.7) 36.9(4.6) 30.8(8.4)

DropEdge 59.4(5.8) 53.1(3.7) 62.6(4.5) 57.6(5.5) 37.2(4.1) 26.7(8.4)

SoftEdge 58.9(7.2) 52.0(3.2) 59.5(2.4) 55.3(6.6) 36.2(3.0) 25.0(4.9)

M-Mixup 59.0(7.2) 51.9(3.3) 59.1(5.3) 57.1(6.4) 37.4(5.3) 23.0(2.8)

G-Mixup 60.8(2.1) 51.8(3.2) 58.7(4.2) 55.1(8.5) 36.9(4.3) 24.1(7.3)

GDM Acc 66.0(5.3) 57.5(2.6) 62.1(3.7) 61.3(6.7) 40.9(5.4) 36.3(8.0)

GDM Unc 65.1(6.1) 56.8(3.9) 64.0(4.2) 61.0(7.0) 39.8(5.5) 34.9(9.1)

passing layers. The GNN model is pre-trained on the original graph set for 100
epochs and subsequently trained on the original graph set and augmented graph
set for 800 epochs, both using the Adam optimizer with learning rate of 1e-2.
The Graph Structural Auto-Encoder is trained for 200 epochs using the Adam
optimizer with learning rate of 1e-2. The loss trade-off hyperparameter λGDM

and the weak edge pruning threshold ε take values 1 and 0.1, respectively. The
mixing scalar coefficient λ is sampled from distribution Beta(α, β) with hyper-
parameters α = β = 1.0. We use a dropout rate of 0.25 for SoftEdge, DropNode
and DropEdge. For G-Mixup, we use the same hyper-parameters reported in [7].

4.2 Comparison Results

We investigate the performance of our proposed GDM with limited numbers of
labeled graphs. We aim to use a small number of labeled graphs per class, e.g.,
{2, 3, 5, 10, 25, 50}, as the training set. To achieve that, we randomly sampled
graphs from the training set of each fold in the 10-fold split provided [4] to
match the desired label rates. For each label rate, we repeat our experiments
3 times on all the 10-folds and average the test accuracy over all folds and all
runs. We evaluate GDM in combination with the proposed two Balanced Graph
Sampling methods to obtain: (1) “GDM Acc”, where GDM is applied with the
Accuracy-based Balanced Graph Sampling; and (2) “GDM Unc”, where GDM
is applied with Uncertainty-based Balanced Graph Sampling. We report the
obtained test accuracy results with 10 labeled graphs per class in Table 1, while
the test accuracy results for all label rates are presented in Fig. 1.

The results in Table 1 clearly demonstrate that both variants of our pro-
posed GDM greatly outperform the underlying GCN baseline and the other 5
graph augmentation methods across all 6 datasets. GDM improves the perfor-
mance of the underlying GCN baseline by 6.7%, 7.5%, 6.8% and 11.2% on the
Proteins, NCI1, IMDB-Binary and Reddit-5K datasets, respectively. The perfor-
mance gain over the other graph augmentation methods is also notable, exceed-
ing 5%, 4.4% and 6.3% on Proteins, NCI1 and Reddit-5K, respectively. Moreover,

GDM: Dual Mixup for Graph Classification with Limited Supervision 319

Fig. 1. Mean classification accuracy on 6 graph classification benchmark datasets with
few labeled graphs per class (2, 3, 5, 10, 25, 50).

Fig. 1 clearly shows that our proposed GDM consistently outperforms the GCN
baseline and the 5 comparison graph augmentation methods on 5 datasets across
almost all label rates. Only in the case of the Reddit-5K dataset with label rates
of larger than 25 labeled graphs per class, G-Mixup outperforms our proposed
method. Nevertheless, GDM consistently improves the performance of the under-
lying GCN baseline across all the label rates on all the datasets, achieving per-
formance gains over 6%, 5%, 5% and 11% on Proteins, NCI1, IMDB-Binary and
Reddit-5K, respectively, in the case of 2 labeled graphs per class. Furthermore,
GDM yields remarkable performance gains over the other graph augmentation
methods, exceeding 4% on Proteins, Reddit-5K and IMDB-Binary in the case
of 2 labeled graphs per class. This highlights the superior performance of the
proposed GDM over the existing state-of-the-art graph augmentation methods
for graph classification with limited supervision.

4.3 Ablation Study

Impact of Balanced Graph Sampling. We conduct an ablation study to
investigate the impact of our balanced graph sampling methods on the pro-

320 A. Alchihabi and Y. Guo

Table 2. Ablation study results on the impact of Balanced Graph Sampling in terms of
mean classification accuracy (standard deviation is within brackets) with a few labeled
graphs per class (2, 3, 5, 10).

D & D IMDB-Multi

2 3 5 10 2 3 5 10

GDM Rand 59.6(5.3) 61.2(3.9) 61.5(3.5) 63.0(4.5) 35.4(3.8) 35.5(4.0) 36.4(5.5) 39.7(5.3)

GDM Acc 61.0(2.6) 61.7(3.3) 61.6(3.5) 62.1(3.7) 36.6(4.9) 36.1(3.8) 37.4(4.5) 40.9(5.4)

w/o Low Diff 59.2(1.4) 57.7(5.7) 59.2(2.1) 58.2(4.0) 35.0(3.6) 34.4(2.8) 34.5(1.8) 36.5(3.1)

w/o Med Diff 60.2(3.9) 61.6(4.1) 59.9(2.1) 59.6(3.1) 34.9(3.4) 35.4(4.7) 38.3(4.0) 39.9(5.8)

w/o High Diff 60.1(3.2) 60.6(4.4) 60.6(2.7) 61.3(4.1) 33.8(3.2) 34.4(3.9) 38.4(4.3) 39.0(5.5)

GDM Unc 60.8(2.8) 62.9(3.7) 62.7(3.2) 64.0(4.2) 37.2(4.9) 35.6(3.6) 37.1(5.4) 39.8(5.5)

w/o Low Diff 59.3(1.0) 58.8(1.0) 58.9(1.0) 59.7(1.8) 35.8(2.9) 34.7(3.7) 34.4(2.7) 37.0(3.4)

w/o Med Diff 60.8(2.9) 60.4(4.3) 62.7(3.3) 62.8(4.5) 35.3(3.6) 34.8(3.4) 36.6(4.9) 38.8(4.6)

w/o High Diff 60.4(2.6) 61.5(3.7) 62.0(4.2) 63.2(3.4) 35.7(3.2) 35.0(3.1) 37.1(4.0) 39.6(3.8)

posed GDM method. Specifically, we consider four variants of the balanced
graph sampling: (1) w/o Low Diff: we do not generate low difficulty samples. (2)
w/o Med Diff: we do not generate medium difficulty samples. (3) w/o High Diff:
we do not generate high difficulty samples. (4) GDM Rand: we drop the proposed
balanced graph sampling method and use random sampling for mixup. We eval-
uate the first three variants using both the GDM Acc and GDM Unc methods of
balanced graph sampling. The comparison results with different label rates—{2,
3, 5, 10} labeled graphs per class—on the D&D and IMDB-Multi datasets are
reported in Table 2.

From Table 2, we can see that all variants have a performance drop from the
full balanced graph sampling on both datasets with almost all label rates for
both GDM Acc and GDM Unc. The w/o Low Diff variant produces the most
notable performance degradation, which can be attributed to the GNN mod-
els’ needs for low difficulty and confident samples to improve generalization and
prevent underfitting when learning with very low label rates. The w/o Med Diff
and w/o High Diff variants also suffer performance degradations, indicating the
importance of medium difficulty and high difficulty samples for inducing better
generalization and reducing overfitting. Additionally, the GDM Rand variant
also demonstrates notable performance drops compared to both GDM Acc and
GDM Unc with almost all label rates, which highlights the importance of ensur-
ing the diversity and balanced difficulty of the generated graph samples. These
results validate the contribution of each component in balanced graph sampling.

Impact of Graph Structural Auto-Encoder. We further conduct an abla-
tion study to investigate the impact of the Graph Structural Auto-Encoder on
the proposed GDM. Specifically, we compare our proposed GSAE with a Varia-
tional Graph Structural Auto-Encoder (VGSAE). The VGSAE learns the param-
eters of a Gaussian distribution (mean and variance) to represent the underlying

GDM: Dual Mixup for Graph Classification with Limited Supervision 321

Table 3. Ablation study results on the impact of Graph Structural Auto-encoder in
terms of mean classification accuracy (standard deviation is within brackets).

Proteins IMDB-Binary

2 3 5 10 2 3 5 10

GCN 59.4(6.7) 60.1(1.0) 60.4(4.6) 59.3(6.8) 52.6(2.7) 52.5(2.5) 55.0(6.4) 54.5(3.9)

GSAE Acc 65.3(5.5) 64.2(7.9) 65.8(6.2) 66.0(5.3) 56.1(4.6) 57.3(6.8) 59.1(6.2) 61.3(6.7)

VGSAE Acc 64.6(4.2) 63.4(5.1) 65.6(6.0) 65.3(7.0) 55.9(4.0) 58.7(5.2) 57.8(6.5) 59.7(7.4)

GSAE Unc 64.6(4.0) 63.5(7.2) 66.0(5.3) 65.1(6.1) 58.0(6.0) 57.4(7.1) 58.4(6.1) 61.0(7.0)

VGSAE Unc 61.8(9.4) 63.7(8.4) 65.2(5.2) 63.7(5.7) 55.2(3.9) 57.7(6.6) 56.9(6.5) 59.4(5.8)

Table 4. Ablation study results on the impact of GNN baselines in terms of mean
classification accuracy (standard deviation is within brackets).

IMDB-Binary IMDB-Multi

2 3 5 10 2 3 5 10

GIN 57.9(8.0) 54.5(6.1) 54.3(6.1) 56.7(9.7) 32.6(4.8) 31.6(6.0) 32.8(4.6) 36.0(5.2)

GDM Acc 58.8(6.9) 57.0(5.5) 57.8(6.3) 59.4(6.3) 35.6(4.2) 35.1(4.6) 36.9(3.9) 38.3(3.5)

GDM Unc 58.2(5.0) 58.0(6.5) 60.5(6.0) 57.7(6.2) 36.6(4.2) 37.2(4.8) 37.1(3.9) 39.5(4.5)

GAT 51.2(2.1) 50.6(1.2) 55.1(5.7) 54.4(5.5) 31.8(2.0) 34.0(1.5) 32.6(1.9) 33.6(2.4)

GDM Acc 55.7(4.3) 56.2(6.2) 55.0(6.5) 60.0(7.1) 35.6(2.9) 36.4(3.8) 37.2(4.3) 38.5(5.0)

GDM Unc 54.5(3.1) 58.2(6.7) 56.0(6.9) 59.2(5.0) 35.8(2.8) 34.4(3.6) 36.8(5.4) 38.8(4.3)

structure of the graph [10]. The comparison results with different label rates on
the Proteins and IMDB-Binary datasets are reported in Table 3. From the table,
it is clear that GSAE outperforms VGSAE on both datasets across almost all
label rates. The performance gain of GSAE decreases as the label rate increases,
which highlights that VGSAE requires more training samples to obtain good
performance. Therefore GSAE is more suitable for the case of learning with lim-
ited supervision as it is able to obtain good generalization performance with few
samples due to its simple architecture and smaller number of learnable parame-
ters. Nevertheless, the proposed GDM greatly and consistently outperforms the
underlying GCN baseline across all different label rates with both GSAE and
VGSAE on both datasets.

Impact of GNN Baseline. We also conduct an ablation study to investigate
the performance of our proposed GDM on additional GNN baselines. In partic-
ular, we applied GDM on the Graph Attention Network (GAT) [17] and Graph
Isomorphism Network (GIN) [22] baselines. The comparison results with multi-
ple label rates, {2, 3, 5, 10}, on the IMDB-Binary and IMDB-Multi datasets are
reported in Table 4. The table clearly shows that GDM significantly improves the
performance of both the GAT and GIN baselines across all label rates for both
datasets. The performance gains are notable, exceeding 6%, 5% for GAT with
label rates 5 and 3 for IMDB-Binary and IMDB-Multi, respectively. Similarly,

322 A. Alchihabi and Y. Guo

Table 5. Ablation study results on the impact of graph readout function in terms of
mean classification accuracy (standard deviation is within brackets).

Proteins IMDB-Binary

2 3 5 10 2 3 5 10

Acc Mean 65.3(5.5) 64.5(4.8) 65.8(5.2) 66.0(5.3) 56.1(4.6) 57.3(6.8) 59.1(6.2) 61.3(6.7)

Acc Add 64.9(5.1) 63.2(4.9) 65.3(4.8) 63.3(4.3) 53.0(2.8) 55.2(5.3) 56.9(6.1) 59.9(6.7)

Acc Max 63.8(4.7) 64.4(4.8) 63.2(7.0) 63.5(7.4) 53.9(4.7) 56.0(7.8) 58.6(7.0) 60.6(6.3)

Unc Mean 64.6(4.0) 63.6(6.0) 65.1(5.3) 66.0(5.0) 58.0(6.0) 57.4(7.1) 58.4(6.1) 61.0(7.0)

Unc Add 61.7(6.5) 63.6(6.1) 63.0(7.0) 63.4(5.5) 55.6(4.9) 54.8(3.6) 57.4(8.2) 60.5(6.7)

Unc Max 63.0(1.1) 63.4(6.6) 61.9(7.0) 66.8(5.9) 54.0(4.2) 54.4(7.6) 57.9(7.1) 60.4(7.1)

GDM yields notable performance boost over GIN, exceeding 7%, 5% with label
rates 3 and 5, respectively, for the IMDB-Binary dataset.

Impact of Graph Readout Method. We conduct an ablation study to inves-
tigate the impact of the graph Readout function employed in our GNN model.
Specifically, in addition to Global Mean Pooling, we consider the following two
variants: (1) Add, where Global Add Pooling is used to obtain the graph-level
embedding. (2) Max, where Global Max Pooling is used to obtain the graph-
level embedding. The comparison results with different label rates on the Pro-
teins and IMDB-Binary datasets are reported in Table 5. From the table, we can
see that the Global Max Pooling and Global Add Pooling variants have perfor-
mance drops compared to the Global Mean Pooling with almost all label rates
for both the Proteins and IMDB-Binary datasets. Global Add Pooling suffers
from obtaining un-normalized graph-level embeddings which causes generaliza-
tion issues given that the graphs in each dataset have different sizes. Global Max
Pooling only considers one feature per node corresponding to the feature with
max value, causing the obtained graph-level embeddings to omit discriminative
information present in the other features of the node-level embeddings.

5 Conclusion

In this paper, we proposed a novel Graph Dual Mixup (GDM) augmentation
method for graph classification with limited labeled data. The proposed method
employs a Graph Structural Auto-encoder to learn the structural embedding of
the nodes, and then applies dual mixup on the structural node embeddings and
the original node features of a pair of existing graphs in parallel to generate the
structural and functional information of a new graph instance. The generated
graph samples can augment the set of original graphs to alleviate overfitting
and improve the generalizability of the GNN models. Additionally, we further
propose two novel Balanced Graph Sampling methods to support GDM and
enhance the balanced difficulty and diversity of the generated graph samples.

GDM: Dual Mixup for Graph Classification with Limited Supervision 323

We conducted experiments on six graph benchmark datasets, the experimen-
tal results demonstrate that the proposed method improves the generalization
performance of the underlying GNNs when the labeled graphs are scarce and
outperforms the state-of-the-art graph augmentation methods.

References

1. Bianchi, F.M., Grattarola, D., Alippi, C.: Spectral clustering with graph neural
networks for graph pooling. In: International Conference on Machine Learning
(ICML) (2020)

2. Borgwardt, K.M., Ong, C.S., Schönauer, S., Vishwanathan, S., Smola, A.J.,
Kriegel, H.P.: Protein function prediction via graph kernels. Bioinformatics
21(suppl 1), i47–i56 (2005)

3. Dobson, P.D., Doig, A.J.: Distinguishing enzyme structures from non-enzymes
without alignments. J. Mol. Biol. 330(4), 771–783 (2003)

4. Errica, F., Podda, M., Bacciu, D., Micheli, A.: A fair comparison of graph neural
networks for graph classification. In: International Conference on Learning Repre-
sentations (ICLR) (2020)

5. Guo, H., Sun, S.: Softedge: regularizing graph classification with random soft edges.
arXiv preprint arXiv:2204.10390 (2022)

6. Hamilton, W., Ying, Z., Leskovec, J.: Inductive representation learning on large
graphs. In: Advances in Neural Information Processing Systems (NIPS) (2017)

7. Han, X., Jiang, Z., Liu, N., Hu, X.: G-mixup: graph data augmentation for graph
classification. In: International Conference on Machine Learning (ICML) (2022)

8. Haussler, D., et al.: Convolution kernels on discrete structures. Technical report,
Citeseer (1999)

9. Huang, W., Zhang, T., Rong, Y., Huang, J.: Adaptive sampling towards fast graph
representation learning. In: Advances in Neural Information Processing Systems
(NeurIPS) (2018)

10. Kipf, T.N., Welling, M.: Variational graph auto-encoders. arXiv preprint
arXiv:1611.07308 (2016)

11. Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional
networks. In: International Conference on Learning Representations (ICLR) (2017)

12. Morris, C., Kriege, N.M., Bause, F., Kersting, K., Mutzel, P., Neumann, M.:
Tudataset: a collection of benchmark datasets for learning with graphs. In: ICML
Workshop on Graph Representation Learning and Beyond (2020)

13. Park, J., Shim, H., Yang, E.: Graph transplant: Node saliency-guided graph mixup
with local structure preservation. In: AAAI Conference on Artificial Intelligence
(2022)

14. Rong, Y., Huang, W., Xu, T., Huang, J.: Dropedge: towards deep graph convo-
lutional networks on node classification. In: International Conference on Learning
Representations (ICLR) (2020)

15. Shervashidze, N., Schweitzer, P., Van Leeuwen, E.J., Mehlhorn, K., Borgwardt,
K.M.: Weisfeiler-Lehman graph kernels. J. Mach. Learn. Res. 12(9) (2011)

16. Sun, L., Xia, C., Yin, W., Liang, T., Yu, P.S., He, L.: Mixup-transformer: dynamic
data augmentation for NLP tasks. arXiv preprint arXiv:2010.02394 (2020)

17. Veličković, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph
attention networks. In: International Conference on Learning Representations
(ICLR) (2018)

http://arxiv.org/abs/2204.10390
http://arxiv.org/abs/1611.07308
http://arxiv.org/abs/2010.02394

324 A. Alchihabi and Y. Guo

18. Verma, V., et al.: Graphmix: improved training of GNNs for semi-supervised learn-
ing. In: AAAI Conference on Artificial Intelligence (2021)

19. Wale, N., Watson, I.A., Karypis, G.: Comparison of descriptor spaces for chemical
compound retrieval and classification. Knowl. Inf. Syst. 14, 347–375 (2008)

20. Wang, Y., Wang, W., Liang, Y., Cai, Y., Hooi, B.: Graphcrop: subgraph cropping
for graph classification. arXiv preprint arXiv:2009.10564 (2020)

21. Wang, Y., Wang, W., Liang, Y., Cai, Y., Hooi, B.: Mixup for node and graph
classification. In: International World Wide Web Conference (WWW) (2021)

22. Xu, K., Hu, W., Leskovec, J., Jegelka, S.: How powerful are graph neural networks?
In: International Conference on Learning Representations (ICLR) (2019)

23. Yanardag, P., Vishwanathan, S.: Deep graph kernels. In: ACM SIGKDD Interna-
tional Conference on Knowledge Discovery and Data Mining (KDD) (2015)

24. Ying, Z., You, J., Morris, C., Ren, X., Hamilton, W., Leskovec, J.: Hierarchical
graph representation learning with differentiable pooling. In: Advances in Neural
Information Processing Systems (NeurIPS) (2018)

25. You, Y., Chen, T., Sui, Y., Chen, T., Wang, Z., Shen, Y.: Graph contrastive learn-
ing with augmentations. In: Advances in Neural Information Processing Systems
(NeurIPS) (2020)

26. Zhang, H., Cisse, M., Dauphin, Y.N., Lopez-Paz, D.: mixup: beyond empirical risk
minimization. In: International Conference on Learning Representations (ICLR)
(2018)

27. Zhao, T., Liu, G., Günnemann, S., Jiang, M.: Graph data augmentation for graph
machine learning: a survey. arXiv preprint arXiv:2202.08871 (2022)

http://arxiv.org/abs/2009.10564
http://arxiv.org/abs/2202.08871

Two-Stage Denoising Diffusion Model
for Source Localization in Graph Inverse

Problems

Bosong Huang1, Weihao Yu2, Ruzhong Xie1, Jing Xiao1, and Jin Huang1(B)

1 South China Normal University, Guangzhou, China
{bosonghuang,rzxie,xiaojing,huangjin}@scnu.edu.cn

2 Research Institute of China Telecom Corporate Ltd., Guangzhou, China
yuwh3@chinatelecom.cn

Abstract. Source localization is the inverse problem of graph infor-
mation dissemination (information diffusion) and has broad practical
applications. However, the inherent intricacy and uncertainty in informa-
tion dissemination pose significant challenges, and the ill-posed nature
of the source localization problem further exacerbates these challenges.
Recently, deep generative models, particularly diffusion models inspired
by classical non-equilibrium thermodynamics, have made significant
progress. While diffusion models have proven to be powerful in solv-
ing inverse problems and producing high-quality reconstructions, apply-
ing them directly to the source localization problem is infeasible for
two reasons. Firstly, it is impossible to calculate the posterior dissemi-
nated results on a large-scale network for iterative denoising sampling,
which would incur enormous computational costs. Secondly, in the exist-
ing methods designed for this field, the training data itself are ill-posed
(many-to-one); thus simply transferring the diffusion model would only
lead to local optima. To address these challenges, we propose a two-
stage optimization framework, the source localization denoising diffu-
sion model (SL-Diff). In the coarse stage, we devise the source proximity
degrees as the supervised signals to generate coarse-grained source pre-
dictions. This aims to efficiently initialize the next stage, significantly
reducing its convergence time and calibrating the convergence process.
Furthermore, the introduction of cascade temporal information in this
training method transforms the many-to-one mapping relationship into
a one-to-one relationship, perfectly addressing the ill-posed problem. In
the fine stage, we design a diffusion model for the graph inverse problem
that can quantify the uncertainty in the dissemination process. Thanks
to the excellent collaboration of the two stages, the proposed SL-Diff
yields excellent prediction results within a reasonable sampling time, as
demonstrated in extensive experiments on five datasets.

1 Introduction

The exponential growth of network-structured information has aroused
widespread interest in studying its dissemination mode [6,15,21,25]. This involves
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
D. Koutra et al. (Eds.): ECML PKDD 2023, LNAI 14171, pp. 325–340, 2023.
https://doi.org/10.1007/978-3-031-43418-1_20

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-43418-1_20&domain=pdf
https://doi.org/10.1007/978-3-031-43418-1_20

326 B. Huang et al.

Fig. 1. Many-to-one (ill-posed) relationship when the supervised signal is the source
indicator.

Fig. 2. One-to-one relationship when the supervised signal is the source proximity
degree.

modeling the information dissemination (information diffusion1) based on the
corresponding network structure and dissemination source. While there are few
research followers, the inverse problem of information dissemination on graphs
and source localization is of great practical significance. For instance, locating the
source account for spreading rumors in social networks is crucial for rumor detec-
tion [5,24]. Similarly, source localization can aid in virus interception [20], mali-
cious email traceability [23], and other areas [12,30].

Fig. 3. Two types of super-
vised signal derived from a
cascade.

However, there are currently several challenges
hindering this field: Chall. 1. Existing models
do not fundamentally address the ill-posed prob-
lem because their training data are inherently ill-
posed (many-to-one). For instance, in the case
of blurred image restoration, the ill-posed prob-
lem cannot be solved if the training data consist
solely of blurred images. In fact, existing methods
unfortunately erase the relative temporal correla-
tion of each node from the cascades when setting
the training data, which essentially leads to the
ill-posed problem of source localization, as shown
in Fig. 1. This abandonment of temporal informa-
tion also significantly restricts the ability of the
model to learn the underlying dissemination pat-
tern. Chall. 2. In practical applications, informa-
tion dissemination in the network will introduce many uncertain factors, that
is, the noise irrelevant to the regular dissemination mode. Although some stud-

1 In most studies, this problem is referred to as “graph information diffusion”. However,
we refer to it as “graph information dissemination” in this paper to disambiguate with
the “diffusion model”.

SL-Diff: Denoising Diffusion Model for Source Localization 327

Fig. 4. Random initialization and proximity initialization of sampling.

ies [12,21] have begun to discuss the uncertainty in source localization, how to
quantitatively model them and more importantly, eliminate the relevant noise
in source localization is unresolved.

The denoising diffusion models [4,7,17] have flourished recently due to their
high-quality reconstructions and powerful inverse problem solving abilities. In
addition to leveraging its power and further addressing Chall. 2, we have taken
the first step in generalizing this powerful model to the source localization prob-
lem. However, the existing family of diffusion models poses the following chal-
lenges for direct migration. Chall. 3. As the inverse problem solver, existing
diffusion models need to calculate the conditional posterior probability at each
diffusion step for Maximum A Posteriori (MAP) approximation. However, in
the case of source localization, the calculation of posterior probability involves
simulating information dissemination across the entire network structure at each
diffusion step, making it extremely computationally expensive. Therefore, it is
almost impossible to directly apply existing diffusion models to source localiza-
tion. Chall. 4. Existing diffusion models [7,16,17,27] that were designed for
image or molecule data struggle to model dissemination patterns. For example,
the number of nodes in the molecular graph is much smaller than that in the
information dissemination network, and does not have the temporal information.

To address the complex challenges outlined above and effectively harness the
benefits of current technological developments, we propose a two-stage optimiza-
tion framework named Source Localization Denoising Diffusion model (SL-Diff).
In general, SL-Diff leverages an efficient initialization that is supervised with
temporal cascade information and an exquisitely redesigned denoising network
structure to achieve a series of outstanding performances. Specifically, for Chall.
1, we ingeniously retain the timing of the cascade (defined as the source proximity
degree, shown in Fig. 3(a) and elaborated in Sect. 3.2) during the model training
phase while remaining consistent with baselines that only take the disseminated
observation (Fig. 3(b)) as the input for prediction during testing. This means
that the model in the coarse stage aims to learn the source proximity relation-
ship (i.e., a kind of one-to one mapping correlation, as shown in Fig. 2) through

328 B. Huang et al.

training, which directly addresses the core of Chall. 1. On the other hand, due
to the contraction property of stochastic differential equations (SDEs), the error
reduction of the diffusion model is exponential. Based on this characteristic, we
propose a two-stage optimization framework. In the coarse stage, we use the one-
shot method to generate coarse source proximity degrees quickly and efficiently,
reducing the predicted source localization error. In the fine stage, the diffusion
model simulates information dissemination across the entire network, accurately
locating the source. Concretely, we optimize the verbose sampling process (Fig. 4
(left)) into an efficient two-stage process (Fig. 4 (right)) and further balance the
two-stage diffusion step ratio to achieve an optimum between efficiency and accu-
racy through parameter experiments. This approach effectively solves Chall. 3.
Since the coarse stage provides excellent initialization of the coarse source prox-
imity relationships, it prominently alleviates the local optimum problem caused
by class imbalance in the source localization problem. In addition, we propose
a new uncertainty graph information dissemination model that quantizes the
dissemination noise and a score function approximating network that adapts to
the underlying dissemination mode on the graph to jointly address Chall. 2 and
Chall. 4. In summary, our contributions are as follows:

• We propose a training framework that employs source proximity degree super-
vision, which fundamentally addresses the ill-posed problem of source local-
ization.

• Our contribution lies in proposing, for the first time, a two-stage denoising
diffusion model for the source localization problem. The targeted design of
the two stages effectively addresses the challenge of migrating the diffusion
model to this field.

• We design a new model that approximates graph information dissemination
and a score function approximating network to enhance the performance of
the diffusion model for source localization.

• Experiments on five real-world datasets demonstrate that our proposed SL-
Diff model outperforms state-of-the-art models.

2 Related Work

Graph Information Dissemination and Source Localization. Graph
information dissemination modeling aims to predict the nodes to be affected
given the source nodes, which is one of the foremost technologies in social net-
work analysis, disease infection prediction, etc. Traditional methods [1,9,10,28]
manually model the respective dissemination pattern for different application
fields while suffering from poor generalizability and high computational complex-
ity. With the blooming of deep learning, [21,22,26] incorporated recurrent neural
networks to capture the dynamic relationship of dissemination cascades. Graph
neural networks have further been introduced to aggregate the node neighboring
information and model the dissemination pattern to facilitate prediction.

SL-Diff: Denoising Diffusion Model for Source Localization 329

Source localization aims to infer source nodes given an observed set of nodes,
which has essential applications in rumor tracing and infection source discovery.
Generally speaking, source localization is used to study the traceability method
based on the dissemination model. Early studies [5,30,31] were based on specific
dissemination models such as Susceptible-Infected (SI) and Susceptible-Infected-
Recovered (SIR). [24] argues that a fixed propagation model to be preset is
not necessary. Furthermore, [23] focuses on detecting the source in the early
propagation stage to reduce the loss caused by propagation. [20] develops a
framework for the inverse of graph dissemination models to detect the source.
From another perspective, [12] introduces VAE [11] to probabilistically model
the uncertainty in source localization.

Diffusion Models. The diffusion model we discuss in this paper is the score-
based generative model [17], which applies the stochastic differential equation
(SDE) to learn the gradient of the target distribution. The currently popular
DDPM [7] is a particular case of it. As the diffusion model separates the noise
from the data step by step at a fine-grained level, its powerful generative capabil-
ities have achieved state-of-the-art results in many fields, e.g., image generation
[4,7,16,17], graph generation [8,27], and time series generation [14].

3 Preliminaries

3.1 Conditional Score-Based Diffusion Models

Diffusion models aim to approximate the prior distributions by learning the
noise of the data reversely. [17] combines SMLD [16] and DDPM [7] into a
generalized theoretical framework, known as the Score-Based Diffusion Model.
They generally map data to a noise distribution (the prior) with a stochastic
differential equation (SDE), and reverse this SDE for generative modeling.

Forward SDE. Given the i.i.d. original dataset samples x(0) ∼ px, which are
further indexed as x(t)T

t=0 by the diffusion step t ∈ [0, T] to indicate the noise
degree, the diffusion process can be modeled as the solution to an Itô SDE:

dx = −β(t)
2

xdt +
√

β(t)dw (1)

where β(t) ∈ R is the noise schedule that we uniformly adopt the one in [7] in
this paper, w is the Brownian motion.

330 B. Huang et al.

Reverse SDE. [2] clarifies that the reverse of a diffusion process is also a
diffusion process, which can be modeled as the reverse SDE:

dx =
[
−β(t)

2
x − β(t)∇xt

log pt (xt)
]

dt +
√

β(t)dw̄, (2)

where dt is the negative diffusion step from T to 0 and w̄ is the correspond-
ing Brownian motion of the reverse process. Since the direct estimation of
∇xt

log pt (xt) is too computationally intensive and badly generalizatial, we train
a score-based model to approximate it:

θ∗ = arg min
θ

Et∼U(ε,1),x(t)∼p(x(t)|x(0)),x(0)∼pdata [ξ]

ξ = ‖sθ(x(t), t) − ∇xt
log p(x(t) | x(0))‖2

2

(3)

Here ε � 0 is the small positive constant. After acquiring the trained score
function approximation network, the initial noise can be denoised to enable
sampling based on specific posterior conditions, leading to the generation of
expected data.

3.2 Graph Information Dissemination

The graph information dissemination problem involves a graph G = (V,E) with
edge set E and node set V . An information dissemination cascade Di at length
K +1 on the graph is defined as Di = {(vik

, k) | vik
∈ V, k = 0, 1 . . . , K − 1,K},

where k is non-decreasing and the first Ks nodes are defined as source nodes. The
source indicator i ∈ {0, 1}|V | is defined as 0 for being the source and 1 for not,
while the source proximity degree x ∈ [0, 1]|V | is defined as xk = k

K . The set of
affected nodes’ observations is denoted as y ∈ {0, 1}|V |, where 0 indicates being
affected and 1 indicates not being affected. The goal of the graph information
dissemination problem is to predict the affected nodes given the source indicator
and graph structure.

Thanks to the outstanding performance of GNN on graph data, the state-of-
the-art graph information dissemination methods [6,15,18,21] construct various
realistic-meaning attribute variables through GNN at the first stage, and then
perform variable dissemination to derive the final affected node sets. Specifically:
(1) In the variable construction, we define a neural network v = gw1(x) to
construct miscellaneous variables of nodes (such as sender variable or receiver
variable). (2) In variable dissemination, we define a dissemination neural network
fw2(v) to propagate information to neighbour nodes according to the topology
of the graph, where w1 and w2 are learnable parameters. Thus, the general
paradigm of graph information dissemination can be defined as:

y = fw2 (gw1(x)) (4)

SL-Diff: Denoising Diffusion Model for Source Localization 331

3.3 Problem Formulation for Source Localization

In order to eliminate ambiguity, the graph mentioned in Subsect. 3.2 is referred
to as the whole graph Gw = (V w, Ew). Source localization is the corresponding
inverse problem of graph information dissemination, which is formally defined
as: given the whole graph information Gw = (V w, Ew) and affected nodes
y ∈ {0, 1}|V |, reconstruct the source nodes î ∈ {0, 1}|V |. For the convenience
of mentioning later, we define the cascade graph as Gc

i = (V c
i ∈ Di, E

c) where
Ec = {(u, v) ∈ Ew | u ∈ Di or v ∈ Di}.

4 SL-Diff Method

4.1 Two-Stage Optimization Framework

Fig. 5. Two-stage optimization framework

To mitigate the computational bur-
den of simulating information dis-
semination on the whole graph at
each diffusion step (chall. 3), and
to leverage the cascade temporal
information for addressing the ill-
posed problem (chall. 3), we propose
a two-stage optimization framework,
as depicted in Fig. 5. Specifically, in
the coarse stage, the supervising sig-
nals for the model are the source proximity degrees (Fig. 3(a)) that fully retain
the cascade temporal information. In other words, the final outputs of this stage
are the relatively coarse-grained node infection sequence predictions, which are
used to initialize the precise source localization for the next stage efficiently. In
the second stage, i.e., the fine stage, the supervising signals of model training
are source indicators (Fig. 3(b)), which aim to accurately output the predicted
source under the given disseminated observation conditions.

4.2 Coarse Proximity Generation

In this section, we propose a coarse proximity generation model (depicted in
Fig. 6) at the first stage, which serves to effectively initialize the subsequent

Fig. 6. The forward diffusion and reverse process of the coarse stage.

332 B. Huang et al.

stage. The “coarse” is used in two senses. Firstly, the source proximity degree
derived from the cascade data does not strictly reflect the infection relationships
between nodes, as the nodes in a cascade may be infected by their common
ancestors rather than by their directly adjacent forward nodes. Secondly, as no
dissemination model is incorporated at this stage, it is not feasible to accurately
predict the dissemination source in reverse. Nonetheless, the generated coarse
source proximity degrees are well-suited for the initialization of the downstream
diffusion model. Although the coarse source proximity generation occurs only
within the cascade graph, it is incomplete without considering the structure of
the entire graph. This is due to the significant impact that the relative position
of each node in the graph has on information dissemination. To address this, we
utilize Position-aware Graph Neural Networks (P-GNN) [29] to perform node
position representation learning on the whole graph of each dataset. Through this
process, we obtain the positional embeddings Ew = {ei | ei = P-GNN(vi), vi ∈
V w} that reflect the relative position of each node with respect to other nodes
on the whole graph. We use this positional representation in the specific cascade
Ec = {ei | ei = P-GNN(vi), vi ∈ V c} as a conditional input to the score function
approximation network, enhancing its ability to fit the underlying features of
the cascades.

Let the original source proximity degrees derived from a cascade be denoted
as x0. The reverse SDE here follows the Eq. 2, while the score function con-
ditioned on the the cascade graph structure and the positional embeddings is
changed to sθ (xt, t | Gc, Ec). We adopt the same variance schedule as DDPM [7]
to discretize the formula, then the estimated reverse Markov chain is defined as
follows:

xt−1 =
1√

1 − βt

(xt + βtsθ∗ (xt, t | Gc, Ec)) +
√

βtzt, t = T, T − 1, · · · , 1 (5)

in which we use the following re-weighted variant of the evidence lower bound
(ELBO) to train the model to obtain the estimated score function:

θ∗=arg min
θ

N∑

t=1

(1 − αt)Epdata (x)Epαt (xt|x)
[
‖sθ (xt, t | Gc, Ec) − ∇xt log pαt(xt | x)‖2

2

]

(6)

where α :=
∏i

j=1(1 − βj).
To efficiently approximate the score functions, we propose a new network

structure that properly introduces conditional position embeddings while pre-
serving nodes’ adjacent characteristics at different orders. Our approach utilizes
a multi-head graph attention (GMT) [3] as the basic operation of graph convo-
lution, allowing us to aggregate information across L-layer graphs. Furthermore,
we leverage skip connections between each layer to improve the flow of informa-
tion. Finally, we concatenate the output of each layer and perform multi-layer
nonlinear transformations to obtain an estimated score function. The proposed

SL-Diff: Denoising Diffusion Model for Source Localization 333

Fig. 7. The forward diffusion and reverse process of the fine stage.

conditional score function approximating network is defined as follows:

Hl+1 = GMT(Hl,Gc) + Hl

sθ (xt, t | Gc, Ec) = MLP
(
catenate[Ec,H0, . . . ,HL−1,,HL, T (t)]

) (7)

where H0 = xt + Ec. We use the positional encodings [19] to encode the
diffusion step, and the formula is defined as: T (t) =

[
. . . , cos

(
t/r

−2d
D

)
,

sin
(
t/r

−2d
D

)
, . . .

]T

, where d = 1, . . . , D/2 is the dimension of the embedding,

and r is a large constant (set to 105). After obtaining the trained network sθ ,
we sample according to the Algorithm 1 and get the predicted coarse source
proximity degrees.

4.3 Graph Dissemination Conditioned Model

In the second stage, we apply the estimated source proximity degree to initialize
the graph dissemination conditioned diffusion model (depicted in Fig. 7). Signif-
icantly different from the conditional diffusion in the first stage, the diffusion
model here is an inverse problem solver, which aims to recover the source indi-
cator i from the disseminated observation y. The connection between them is
the forward information dissemination process of i → y.

If the assumption is the same as in [17], that is, pt (y | it) is tractable, then
the reverse SDE of the inverse problem is defined as:

di =
[
−β(t)

2
i − β(t) (∇it log pt (it) + ∇xt

log pt (y | it,Gw))
]

dt+
√

β(t)dw̄, (8)

However, in our case, pt (y | it) is intractable, as the dissemination model cannot
support the source with noise as input. To bridge this gap, we introduce the
approximation method [4] for p(î0 | it):

î0 � 1
√

ᾱ(t)
(it + (1 − ᾱ(t))sφ (it, t | Gw)) (9)

334 B. Huang et al.

where αi � 1−βi, ᾱi �
∏i

j=1 αi following [7]. Now the problem lies in determin-
ing an appropriate dissemination model to calculate the posterior probability
of y from estimated i. In real-world applications, various random factors can
impact the information dissemination process, which are not accounted for in
the basic dissemination function (Eq. 4). Our proposed model addresses this chal-
lenge by qualifying the uncertain trough Gaussian noise σ̃(t) with adaptive vari-
ance (parameterized by MLP and taking diffusion step as input). Additionally,
our model can eliminate interference from noise to source localization through
the powerful iterative denoising process of the diffusion model. Thus, the formula
is defined as follows:

y = f (g(i)) + σ̃(t)ε, ε ∼ N (0, I) (10)

From the above formula, we can calculate the partial derivative ∇i0 log p (y | i0).
And bring the conclusion in Eq. 8 into it to get an approximate for the derivative
of p (y | it) with respect to ît.

∇ît
log p (y | it) � − 1

σ̃(t)2
∇it

∥
∥∥y − ŷ

(
î0 (it)

)∥
∥∥

2

2
(11)

Hence, we can discretize Eq. 8 similarly to formula 5 and deduce the expression
for p(it−1) | it). This allows us to perform iterative denoising of i given the pos-
terior y, ultimately leading to an accurate estimation of i. For a more thorough
explanation of this procedure, please refer to Algorithm 2.

Algorithm 1: Sampling of the
coarse stage

Require: ground truth source proximity

degree x, number of diffusion steps T1,

variance schedule βt, the cascade graph

Gc

1: xT1 ∼ N (0, I)

2: for t = T1 − 1 to t = 0 do

3: ŝ ← sφ (xt, t | Gw, Ew)

4: x′
t−1 ← (2 − √

1 − βtxt) + βt (ŝ)

5: z ∼ N (0, I)

6: xt ← x′
t−1 +

√
βtz

7: end for

8: return the estimated x0

Algorithm 2: Sampling of the
fine stage

Require: disseminated observation y,

coarse source proximity degree x̂,

number of diffusion steps T2, variance

schedule βt, the whole graph GW

1: iT2 ← x̂

2: for t = T2 − 1 to t = 0 do

3: ŝ ← sφ (it, t | Gw)

4: i′t−1 ← (2 − √
1 − βtit) +

βt

(
ŝ − 1

σ̃(t)2
∇it

∥∥∥y − ŷ
(
î0 (it)

)∥∥∥2

2

)

5: z ∼ N (0, I)

6: it ← i′t−1 +
√

βtz

7: end for

8: return the estimated i0

SL-Diff: Denoising Diffusion Model for Source Localization 335

Table 1. Model performance across five datasets.

Datasets Methods Netsleuth OJC LPSI GCNSI IVGD SL-VAE SL-Diff

Digg RE 0.0142 0.0781 0.2352 0.0135 0.2310 0.5420 0.7813

PR 0.0023 0.0554 0.0072 0.2369 0.1397 0.4216 0.5839

F1 0.0040 0.0648 0.0140 0.0255 0.1741 0.4743 0.6683

ACC 0.7714 0.9035 0.9531 0.8064 0.9327 0.9742 0.9824

Memetracker RE 0.0647 0.0256 0.3047 0.2953 0.5954 0.5010 0.6902

PR 0.0247 0.0360 0.1145 0.0172 0.1556 0.4592 0.4721

F1 0.0358 0.0299 0.1665 0.0325 0.2467 0.4792 0.5607

ACC 0.5688 0.6675 0.9174 0.8428 0.8947 0.9420 0.9562

Android RE 0.3172 0.1401 0.3407 0.7434 0.7253 0.6261 0.8260

PR 0.0422 0.0610 0.2323 0.3024 0.4105 0.5284 0.5945

F1 0.0745 0.0850 0.2762 0.4299 0.5243 0.5731 0.6914

ACC 0.6215 0.8337 0.9404 0.8211 0.9530 0.9245 0.9937

Christianity RE 0.2491 0.3478 0.5309 0.7294 0.6433 0.8011 0.8352

PR 0.1184 0.2823 0.6249 0.2300 0.5202 0.4894 0.5120

F1 0.1605 0.3116 0.5741 0.3497 0.5752 0.6076 0.6348

ACC 0.7140 0.9304 0.9122 0.9673 0.9781 0.9529 0.9818

Twitter RE 0.0184 0.0154 0.2091 0.3770 0.6219 0.3273 0.9037

PR 0.0021 0.0238 0.1295 0.3719 0.4427 0.4210 0.7839

F1 0.0038 0.0187 0.1599 0.3744 0.5172 0.3683 0.8395

ACC 0.6348 0.8358 0.9149 0.9231 0.9381 0.9027 0.9630

5 Experiments

5.1 Settings

Data. To better demonstrate the practical value of the proposed model, we
conducted sufficient experiments on five datasets of various scales: Digg, Meme-
tracker, Android, Christianity, Twitter. Each dataset includes real information
cascade data, and the specific dataset details are shown in the Appendix2. In
order to unify the training standard with the previous method, we define the
nodes at the first 5% of the infection time in a cascade as dissemination sources,
and all the nodes in the cascade as disseminated observations. We set the ratio
of training, validation, and testing to 2:2:6.

Baselines and Metrics. We adopt the following two types of baselines to make
a more comprehensive comparison (please refer to the Appendix for details).
(1) Methods of presupposing dissemination mode: NetSleuth [13], OJC [30]. (2)
Methods compatible with multiple modes of dissemination: LPSI [24], GCNSI
[5], IVGD [20], SL-VAE [12].
2 https://github.com/marooncabbage/SL-Diff.

https://github.com/marooncabbage/SL-Diff

336 B. Huang et al.

Table 2. Ablation study (— represents GPU memory overflow).

Datasets Digg Memetracker Android Christianity Twitter

F1 ACC F1 ACC F1 ACC F1 ACC F1 ACC

SL-Diff(1) 0.4224 0.8510 0.4001 0.7410 0.5188 0.7309 0.4511 0.7792 0.6530 0.8630

SL-Diff(2) — — — — — — 0.6024 0.9530 — —

SL-Diff(3) 0.6202 0.9627 0.4346 0.9023 0.6427 0.9705 0.6210 0.9722 0.7401 0.9328

SL-Diff(4) 0.5985 0.9329 0.5792 0.9527 0.6132 0.9595 0.6285 0.9717 0.7620 0.9441

SL-Diff 0.6683 0.9824 0.5607 0.9565 0.6914 0.9937 0.6348 0.9818 0.8395 0.9630

Four evaluation matrices are used in the experiments to expose model perfor-
mance more objectively and comprehensively. First, we use the most commonly
used accuracy (ACC), the proportion of correctly classified samples to the total
sample. However, since the source localization is essentially an unbalanced classi-
fication problem, we added a more appropriate metric, F1-Score (F1)3 to recon-
cile the average of precision (PR) and recall (RE). We also attached the results
of PR and RE for reference.

Implementation Details. For our SL-Diff model, the details of its implemen-
tation are as follows. For the diffusion steps of the coarse stage and the fine stage,
we set them to T1 = 800 and T2 = 80, respectively. For the specific dissemination
model fw2 (gw1(i)) we chose DeepIS [25]. For the score function approximating
network (Eq. 7), four layers of MLP are applied. For other benchmarks, we fol-
low the original structural design. Specifically, for the dissemination model that
SL-VAE combines, we adopt DeepIS, while the IC function is used for IVGD.

The models are trained on a single NVIDIA GeForce RTX 3090 GPU. We
use a grid search to find the most appropriate combination of parameters for
each model. Specifically, the search range for the number of GCN stacks is from
2 to 8. The learning rate is tuned within {5 × 10−2, 10−2, 5 × 10−3, 10−3}. The
range of Riemannian SGD weight decay is {10−2, 10−3, 10−4, 10−5}.

5.2 Overall Performance

We have conducted in-depth comparisons of SL-Diff with state-of-the-art base-
lines on five real datasets, and the results are presented in Table 1. Generally,
models with preset dissemination modes perform relatively poorly, as real infor-
mation dissemination modes are complex and full of uncertainties. SL-Diff, on
the other hand, achieves significantly optimal results in most cases. Among them,
the improvement on the Twitter and Android datasets is particularly significant
which can be attributed to its ability to denoise the dissemination noise. And
this noise is more prominent on datasets with a large cascade length and a large
number of nodes. Correspondingly, on the Christianity dataset with a small num-
ber of nodes, the performance of SL-Diff is limited. In summary, SL-Diff is more
capable of handling large-scale datasets.
3 F1 = 2PR∗RE

PR+RE
.

SL-Diff: Denoising Diffusion Model for Source Localization 337

Fig. 8. Analysis on the ratio of the diffusion step of the fine stage to the coarse stage.

Fig. 9. Convergence analysis.

5.3 Ablation Study

To verify the effectiveness of each component of our proposed model, we con-
duct the following ablation experiments. Compared with the complete model,
SL-Diff(1) only retains the coarse stage and is initialized randomly. SL-Diff(2)
only retains the fine stage and we take the top 5% of nodes with the largest source
proximity degree generated as the source of prediction. SL-Diff(3) is the model
with the cascade positional representations removed, and SL-Diff(4) removes the
simulated dissemination noise term in Eq. 10. The diffusion step of the above four
models is all set to 800. From the results in Table 2, we can conclude that only
the coarse stage model can make rough predictions to a certain extent, and it
is difficult to make accurate predictions. The model with only the fine stage
is not necessarily more accurate than the two-stage model, and the computa-
tional overhead is huge, which is not feasible. From the results of SL-Diff(3), we
can see that cascade positional representations generally have a more important
influence on larger-scale graphs, which may be due to the fact that the relative
position of cascades in large-scale graphs will be more complicated, and their
influence on propagation will be larger. From the results of SL-Diff(4), we can
find that simulated dissemination noise improves the model with a longer cas-
cade length more significantly, which may be because a cascade with a longer
propagation chain will introduce relatively more noise.

5.4 Parameter Analysis

In this section, we explore the interdependence of the two stages in greater detail.
Specifically, we set the ratio of the diffusion step of the fine stage to the coarse
stage as RT = T2

T1
and keep the total diffusion step at 800. By adjusting the

value of RT , we gain a deeper understanding of how the two stages mutually
reinforce each other, and determine the optimal ratio. As shown in Fig. 8, we

338 B. Huang et al.

observe that the model’s performance initially improves significantly with an
increasing proportion of the fine stage, but then gradually declines, while the
sampling time steadily increases. This suggests that we can identify the most
suitable ratio of the two stages at a relatively low time cost across different
datasets. The performance degradation resulting from too high RT may be due
to insufficient denoising in the coarse stage. Additionally, we analyze the impact
of the diffusion step on the model’s performance under the configuration with
the optimal RT . Figure 9 reveals that the convergence of the sampling process
is comparatively faster for datasets with smaller scales.

Efficient Analysis. We compared the training time of various models (sampling
time is also included since SL-Diff and SL-VAE are generative models). As shown
in Fig. 10, the generative model exhibits a shorter overall running time for the
source localization task. Among all the models evaluated, SL-Diff effectively
controls the computational cost at a lower level, emphasizing the significance of
the coarse stage for initialization.

Fig. 10. Model efficiency comparison.

6 Conclusion

In this paper, we propose a new two-stage training paradigm to solve the ill-
posed problem in graph source localization from the root. SL-Diff also overcomes
the difficulties of introducing the powerful diffusion model into this problem,
and achieves optimal results on various real-world datasets. The modeling of
dissemination noise further improves the approximation performance of SL-Diff.
Overall, by leveraging the diffusion model, we have gained deeper insights into
the mechanism of the source localization problem, thereby elevating research in
this field to a new level.

Acknowledgments. This work was supported by the National Natural Science Foun-
dation of China under Grants 62177015, and the Natural Science Foundation of Guang-
dong Province, China under Grants 2022A1515010148.

SL-Diff: Denoising Diffusion Model for Source Localization 339

References

1. Ahmed, M., Spagna, S., Huici, F., Niccolini, S.: A peek into the future: predicting
the evolution of popularity in user generated content. In: Proceedings of the Sixth
ACM International Conference on Web Search and Data Mining, pp. 607–616
(2013)

2. Anderson, B.D.: Reverse-time diffusion equation models. Stochastic Process. Appl.
12(3), 313–326 (1982)

3. Baek, J., Kang, M., Hwang, S.J.: Accurate learning of graph representations with
graph multiset pooling. arXiv preprint arXiv:2102.11533 (2021)

4. Chung, H., Kim, J., Mccann, M.T., Klasky, M.L., Ye, J.C.: Diffusion posterior sam-
pling for general noisy inverse problems. arXiv preprint arXiv:2209.14687 (2022)

5. Dong, M., Zheng, B., Quoc Viet Hung, N., Su, H., Li, G.: Multiple rumor source
detection with graph convolutional networks. In: Proceedings of the 28th ACM
International Conference on Information and Knowledge Management, pp. 569–
578 (2019)

6. Feng, S., et al.: H-diffu: hyperbolic representations for information diffusion pre-
diction. IEEE Trans. Knowl. Data Eng. 35, 8784–8798 (2022)

7. Ho, J., Jain, A., Abbeel, P.: Denoising diffusion probabilistic models. Adv. Neural
Inf. Process. Syst. 33, 6840–6851 (2020)

8. Jo, J., Lee, S., Hwang, S.J.: Score-based generative modeling of graphs via the
system of stochastic differential equations. arXiv preprint arXiv:2202.02514 (2022)

9. Keeling, M.J., Eames, K.T.: Networks and epidemic models. J. Roy. Soc. Interface
2(4), 295–307 (2005)

10. Kempe, D., Kleinberg, J., Tardos, E.: Maximizing the spread of influence through
a social network. In: Proceedings of the Ninth ACM SIGKDD International Con-
ference on Knowledge Discovery and Data Mining, pp. 137–146 (2003)

11. Kingma, D.P., Welling, M.: Auto-encoding variational bayes. In: International Con-
ference on Learning Representations (2013)

12. Ling, C., Jiang, J., Wang, J., Liang, Z.: Source localization of graph diffusion via
variational autoencoders for graph inverse problems. In: Proceedings of the 28th
ACM SIGKDD Conference on Knowledge Discovery and Data Mining, pp. 1010–
1020 (2022)

13. Prakash, B.A., Vreeken, J., Faloutsos, C.: Spotting culprits in epidemics: how many
and which ones? In: 2012 IEEE 12th International Conference on Data Mining, pp.
11–20. IEEE (2012)

14. Rasul, K., Seward, C., Schuster, I., Vollgraf, R.: Autoregressive denoising diffu-
sion models for multivariate probabilistic time series forecasting. In: International
Conference on Machine Learning, pp. 8857–8868. PMLR (2021)

15. Sankar, A., Zhang, X., Krishnan, A., Han, J.: Inf-vae: a variational autoencoder
framework to integrate homophily and influence in diffusion prediction. In: Pro-
ceedings of the 13th International Conference on Web Search and Data Mining,
pp. 510–518 (2020)

16. Song, Y., Garg, S., Shi, J., Ermon, S.: Sliced score matching: a scalable approach to
density and score estimation. In: Uncertainty in Artificial Intelligence, pp. 574–584.
PMLR (2020)

17. Song, Y., Sohl-Dickstein, J., Kingma, D.P., Kumar, A., Ermon, S., Poole, B.: Score-
based generative modeling through stochastic differential equations. In: Interna-
tional Conference on Learning Representations (2021)

http://arxiv.org/abs/2102.11533
http://arxiv.org/abs/2209.14687
http://arxiv.org/abs/2202.02514

340 B. Huang et al.

18. Sun, L., Rao, Y., Zhang, X., Lan, Y., Yu, S.: Ms-hgat: memory-enhanced sequential
hypergraph attention network for information diffusion prediction (2022)

19. Vaswani, A., et al.: Attention is all you need. Adv. Neural Inf. Process. Syst. 30,
1–11 (2017)

20. Wang, J., Jiang, J., Zhao, L.: An invertible graph diffusion neural network for
source localization. In: Proceedings of the ACM Web Conference 2022, pp. 1058–
1069 (2022)

21. Wang, R., et al.: Dydiff-vae: a dynamic variational framework for information diffu-
sion prediction. In: Proceedings of the 44th International ACM SIGIR Conference
on Research and Development in Information Retrieval, pp. 163–172 (2021)

22. Wang, Y., Shen, H., Liu, S., Gao, J., Cheng, X.: Cascade dynamics modeling with
attention-based recurrent neural network. In: IJCAI, vol. 17, pp. 2985–2991 (2017)

23. Wang, Z., Hou, D., Gao, C., Huang, J., Xuan, Q.: A rapid source localization
method in the early stage of large-scale network propagation. In: Proceedings of
the ACM Web Conference 2022, pp. 1372–1380 (2022)

24. Wang, Z., Wang, C., Pei, J., Ye, X.: Multiple source detection without knowing
the underlying propagation model. In: Proceedings of the AAAI Conference on
Artificial Intelligence, vol. 31 (2017)

25. Xia, W., Li, Y., Wu, J., Li, S.: Deepis: susceptibility estimation on social networks.
In: Proceedings of the 14th ACM International Conference on Web Search and
Data Mining, pp. 761–769 (2021)

26. Xie, J., et al.: A multimodal variational encoder-decoder framework for micro-video
popularity prediction. In: Proceedings of the Web Conference 2020, pp. 2542–2548
(2020)

27. Xu, M., Yu, L., Song, Y., Shi, C., Ermon, S., Tang, J.: Geodiff: a geometric dif-
fusion model for molecular conformation generation. In: International Conference
on Learning Representations (2021)

28. Yang, D., et al.: Study on the characteristics of coal and gas outburst hazard under
the influence of high formation temperature in deep mines. Energy 268, 126645
(2023)

29. You, J., Ying, R., Leskovec, J.: Position-aware graph neural networks. In: Interna-
tional Conference on Machine Learning, pp. 7134–7143. PMLR (2019)

30. Zhu, K., Chen, Z., Ying, L.: Catch’em all: locating multiple diffusion sources in
networks with partial observations. In: Thirty-First AAAI Conference on Artificial
Intelligence (2017)

31. Zhu, K., Ying, L.: Information source detection in the sir model: a sample-path-
based approach. IEEE/ACM Trans. Netw. 24(1), 408–421 (2014)

Interpretability

Sparse Neural Additive Model:
Interpretable Deep Learning with Feature

Selection via Group Sparsity

Shiyun Xu1, Zhiqi Bu1(B), Pratik Chaudhari2, and Ian J. Barnett3

1 Department of Applied Mathematics and Computational Science,
University of Pennsylvania, Philadelphia, PA, USA

{shiyunxu,zbu}@sas.upenn.edu
2 Department of Electrical and Systems Engineering, University of Pennsylvania,

Philadelphia, PA, USA
3 Department of Biostatistics, Epidemiology, and Informatics,

University of Pennsylvania, Philadelphia, PA, USA

Abstract. Interpretable machine learning has demonstrated impres-
sive performance while preserving explainability. In particular, neural
additive models (NAM) offer the interpretability to the black-box deep
learning and achieve state-of-the-art accuracy among the large family
of generalized additive models. In order to empower NAM with feature
selection and improve the generalization, we propose the sparse neural
additive models (SNAM) that employ the group sparsity regularization
(e.g. Group LASSO), where each feature is learned by a sub-network
whose trainable parameters are clustered as a group. We study the the-
oretical properties for SNAM with novel techniques to tackle the non-
parametric truth, thus extending from classical sparse linear models such
as the LASSO, which only works on the parametric truth. Specifically,
we show that SNAM with subgradient and proximal gradient descents
provably converges to zero training loss as t → ∞, and that the esti-
mation error of SNAM vanishes asymptotically as n → ∞. We also
prove that SNAM, similar to LASSO, can have exact support recovery,
i.e. perfect feature selection, with appropriate regularization. Moreover,
we show that the SNAM can generalize well and preserve the ‘identi-
fiability’, recovering each feature’s effect. We validate our theories via
extensive experiments and further testify to the good accuracy and effi-
ciency of SNAM (Appendix can be found at https://arxiv.org/abs/2202.
12482.).

Keywords: Interpretability · Additive Models · Group LASSO ·
Feature Selection

1 Introduction

Deep learning has shown dominating performance on learning complex tasks,
especially in high-stake domains such as finance, healthcare and criminal justice.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
D. Koutra et al. (Eds.): ECML PKDD 2023, LNAI 14171, pp. 343–359, 2023.
https://doi.org/10.1007/978-3-031-43418-1_21

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-43418-1_21&domain=pdf
https://arxiv.org/abs/2202.12482
https://arxiv.org/abs/2202.12482
https://doi.org/10.1007/978-3-031-43418-1_21

344 S. Xu et al.

However, most neural networks are not naturally as interpretable as decision
trees or linear models. Even to answer fundamental questions like “what is the
exact effect on the output if we perturb the input?”, neural networks have to
rely on complicated and ad-hoc methods to explain the model behavior, with
additional training steps and loose theoretical guarantee. As a result, the black-
box nature of neural networks makes it difficult and risky for human to trust
deep learning models nor to understand them.

There is a long line of work studying the interpretable machine learning.
At high level, existing methods can be categorized into two classes: (1) model-
agnostic methods, and (2) innately interpretable models. On one hand, model-
agnostic methods aim to explain the predictions of models that are innately
black-box, via the feature importance and local approximation, which include
Shapley values [22,33,35] and LIME [32] as the representatives. On the other
hand, directly interpretable models such as the decision-tree-based models and
the generalized linear models (GLM, [25]) , are widely applied with demonstrated
performance.

To give more details, GLM is a powerful family of models that relates a linear
model with its response variable by a link function g.

g(E(y)) = β +
p∑

j=1

βjXj (1)

where y ∈ R
n is the response and Xj is the j-th feature of the input matrix.

However, such parametric form with βj limits the capacity of GLM when the
unknown truth function takes a general and non-parametric form. This limitation
is overcome by the development of generalized additive models (GAM) [18]:

g(E(y)) = β +
p∑

j=1

fj (Xj) ≡ β + f(X). (2)

Here fj is the unknown truth function to be learned, i.e. the ‘effect’.
Recently, the neural additive model (NAM) [1] introduces a new member into

the GAM family, which applies sub-networks to learn fj effectively, making accu-
rate predictions while preserving the explainable power. Similar to regular neural
networks, NAM learns a non-parametric model (2) via its trainable parameters,
instead of the functional approximation used by the traditional GAM. This para-
metric formulation allows NAM to be trained efficiently by off-the-shelf optimiz-
ers such as Adam. In addition, NAM can leverage arbitrary network architecture
to approximate fj , hence fully exploiting the expressivity of deep learning.

Yet, theoretical results about NAM on some important questions are missing:
Does the convergence of NAM behave nicely? Does NAM guarantee to learn the
true additive model consistently, as sample size increases? How to modify NAM
such as to select features and whether the feature selection is accurate? Can we
expect each sub-network in NAM to recover each fj?

In this paper, we answer these questions in the affirmative. We study the
sparse NAM with specific group sparsity regularization, especially the Group

Sparse Neural Additive Model 345

Fig. 1. Architecture of NAM, with each sub-network (blue circle) being a group for
Group LASSO regularization in SNAM. Note that in multi-class, multi-label, and multi-
task problems, the last layer can have multiple neurons. (Color figure online)

LASSO [16,23], which reduces to NAM when the penalty is zero. Our contribu-
tions are as follows:

1. We propose an innately interpretable model – sparse neural additive model
(SNAM) – to empower NAM with feature selection. In particular, SNAM can
employ the Group LASSO penalty in a unique way to regularize each sub-
network’s parameters as one group. Note that we can easily extend to other
group sparsity within SNAM, such as the Group SLOPE.

2. We employ efficient optimizers, such as the subgradient and proximal methods
(see appendix), to train SNAM with provable convergence.

3. We establish an interesting connection between the LASSO and the SNAM
with Group LASSO regularization, showing that the LASSO is indeed a sub-
case of SNAM. Building on top of this, we rigorously derive the slow rate and
the support recovery of SNAM. We show that SNAM approximates the true
model, selects important features in a sample-efficient manner, and identifies
individual functions fj asymptotically.

4. We empirically validate our results and advocate the effectiveness of SNAM
via synthetic and real datasets . For example, SNAM can be 3× faster than
SPAM [31] (see Table 2) and save half of parameters in NAM, while preserving
comparable performance (see Table 5).

For theoretical analysis, we focus on the additive model

y =
p∑

j=1

fj (Xj) + ε (3)

where i.i.d. samples Xj ∼ Xj for j ∈ [p] where Xj is some distribution and
the noise ε ∼ SG(σ2) where SG means sub-Gaussian with variance σ2. For
algorithms and experiments, we generalize from (3) to GAM in (2).

346 S. Xu et al.

2 Additive Models in a Nutshell

Linear regression is one of the most classic model, on which various extensions
are based. One extension is the LASSO [37], a linear model that adds �1 penalty
to the linear model. This penalty not only empowers ordinary linear regression
with feature selection but also regularizes the model against overfitting. Another
extension is the GLM, which adds a link function to relate the linear model
with its response to work on more general problems (e.g. logistic regression for
classification). Note that GLM can combine with the �1 penalty to give sparse
logistic regression.

While GLMs are all additive and thus directly interpretable, GAMs further
improve the capacity of models by introducing the non-linearity, for instance, in
NAM [1] and Explainable Boosting Machines (EBM) [21,27]. In this work, we
focus on NAM, a state-of-the-art GAM that incorporates neural networks and
uses four types of regularization: dropout, weight decay (�2 penalty), output
penalty, and feature dropout. Unfortunately, all these types of regularization do
not enable feature selection for NAM.

Traditionally, one can only allow feature selection on GLMs (with �1 regu-
larization) or a few special GAMs, e.g. sparse additive model (SPAM by [31],
restated in the appendix). As introduced in this paper, SNAM is a new mem-
ber of GAM with feature selection. In addition, SNAM is the only GAM that
is parametric (i.e. containing parameters that are trainable by gradient meth-
ods) besides GLMs: traditionally additive models are learned via the ‘backfitting
algorithm’1 [8], while neural networks are learned via gradient methods.

LASSO ⊆ GLM ⊆ NAM ⊆ SNAM ⊆ GAM

One drawback of the backfitting algorithm is that the computation time will
increase linearly with the number of features. This is due to the asynchronous
or sequential estimation for each feature and a lack of theoretical understanding
from the convergence viewpoint. The other drawback is the heavy memory com-
plexity when executing the ‘smoothing’ function (usually some smooth kernel
splines) on large sample size. In fact, SNAM can out-speed SPAM by 3 times in
Table 2 on synthetic datasets, and SPAM runs out of memory on all real datasets
considered here. We give a brief summary of additive models in Table 12.

3 SNAM: Model and Optimization

3.1 Model and Linearization Regimes

To analyze SNAM under the regularization, for the j-th sub-network, we write
the trainable parameters of as Θj (visualized in Fig. 1 by the blue circle) and

1 The backfitting algorithm can be recovered from SPAM algorithm (see appendix)
when λ = 0.

2 In ‘Non-param truth’ column of Table 1, Yes/No means whether a model works
without assuming that the truth is parametric.

Sparse Neural Additive Model 347

Table 1. Summary of additive (interpretable) models.

Models Non-linear model Non-param truth Parametric model Feature selection

LASSO No No Yes Yes

GLM No No Yes Yes

EBM Yes Yes No No

NAM Yes Yes Yes No

SPAM Yes Yes No Yes

SNAM Yes Yes Yes Yes

the output as hj . Then we write the SNAM output as

h(X,Θ) =
∑

j
hj(Xj ,Θj) + β

With these notations in place, we can learn the model via the following SNAM
optimization problem with some group sparsity regularization and an arbitrary
loss L:

min
Θ ,β

L(
y,

∑
j
hj(Xj ,Θj) + β

)
+ GroupSparsity({Θj}). (4)

Notably, the group structure defined on sub-networks is the key to feature selec-
tion in SNAM: it explicitly penalizes Θj so that the entries in Θj are either all
non-zero or all zero. The latter case happens when λ is large, resulting in the
j-th feature to be not selected as hj = 0.

In fact, if each sub-network has only a single parameter βj and no hidden
layers at all, then the Group LASSO penalty is equivalent to the LASSO penalty:
‖βj‖2 = |βj |. Therefore, we view LASSO as the simplest version of SNAM with
Group LASSO regularization. This connection leads to the theoretical findings
in this work, since we will analyze the linearization of SNAM.

A long line of research that linearizes the neural networks can be catego-
rized into two main regimes: the neural tangent kernel (NTK) and the random
feature (RF). The NTK regime linearizes the network under the ‘lazy training’
constraint, where Θ(t) ≈ Θ(0) during entire training process, by applying a
first-order Taylor expansion at Θ(0). This lazy training phenomenon is usually
guaranteed using the extremely (even infinitely) wide neural networks, and with-
out any regularization3 [2,4,11,14,19,42,45]. Such limitation renders the NTK
analysis invalid for SNAM.

The other branch of work uses the RF regime [17,24,30,43] to linearize the
neural network by fixing the weights in all hidden layers after initialization,
and only training the output layer’s weights. Mathematically, we decompose
Θj = [wj ,θj]. We denote wj as the weights of all hidden layers (green in Fig. 1)

3 Unfortunately, Θ(t) will be pushed away from its initialization Θ(0) towards zero
even under weak regularization, breaking the lazy training assumption [13,15].

348 S. Xu et al.

and θj ∈ R
m as the weights in the output layer (red in Fig. 1). Then we can

rewrite the output of SNAM as

h(X,w,θ) =
∑

j
hj(Xj ,wj ,θj) + β =

∑
j
gj(Xj ,wj)θj + β (5)

in which θ := [θ1, · · · ,θp],w := [w1, · · · ,wp], and the feature map gj : R → R
m

is the forward propagation of the j-th sub-network until the output layer.
In this RF regime, SNAM is linear in trainable parameters θ (though non-

linear in input X) and is indeed a kernel regression, a topic with rich theoretical
understanding.

3.2 Group Sparsity and Optimization Problems

It is well-known that group sparsity allows all parameters in the same group to
be simultaneously non-zero or zero. One popular choice is the Group LASSO,
with which the SNAM problem becomes

min
Θ ,β

L(
y,

∑
j
hj(Xj ,Θj) + β

)
+ λ

∑
j
‖Θj‖2. (6)

For another example, we may consider the Group SLOPE:

min
Θ ,β

L(
y,

∑
j
hj(Xj ,Θj) + β

)
+

∑
j
λj‖Θ‖2,(j), (7)

where the penalty is a decreasing vector (λ1, · · · , λp) and ‖Θ‖2(j) denotes the
j-th largest element in {‖Θ1‖2, · · · , ‖Θp‖2}. We demonstrate other choices of
group sparsity in the appendix. In what follows, we focus on SNAM with the
Group LASSO.

3.3 Random Feature SNAM

We study the RF neural network as a sub-class of SNAM, with two desirable
benefits: (i) we do not restrict to weak (infinitesimal) regularization as in [41];
(ii) we do not need neural networks to be wide. For the ease of presentation, we
omit the output layer bias β:

hRF(X,θ) =
∑p

j=1
hRF

j (Xj ,θj) =
∑p

j=1
Gjθj

where the random features Gj := gj(Xj ,w(0)) ∈ R
n×m. Therefore, the corre-

sponding optimization for the RF network is

θ̂
RF

:= argminθL(y,Gθ) + λ
∑

j
‖θj‖2 (8)

where G := [G1, · · · ,Gp] is the concatenation of Gj .

Sparse Neural Additive Model 349

3.4 Convergence of SNAM and RF

Algorithmically speaking, the general SNAM (4) can be efficiently optimized by
existing optimizers, e.g. the subgradient methods [5,7,34,36] and the proximal
gradient descent (ProxGD) [20,26,29] (see appendix for details). In fact, we can
show that the subgradient descent and ProxGD both provably find the minimizer
of SNAM (4) and its RF variant (8).

Denoting Θ to denote all trainable parameters in SNAM and Θj as those in
the j-th sub-network, we claim both subgradient descent and ProxGD have the
same gradient flow [29, Section 4.2]:

dΘ

dt
= −∂(L(y, h(X, Θ)) + λ

∑
j ‖Θj‖2)

∂Θ

Let multiply ∂Θ
∂t

�
on the left and integrate over time,

∫ ∞

0

∥∥∥∥
dΘ

dt

∥∥∥∥
2

2

dt =
∫ 0

∞

d(L(t) + λ
∑

j ‖Θj(t)‖2)
dt

dt ≤ L(0) + λ
∑

j
‖Θj(0)‖2.

Since the integral is increasing in time but upper bounded, we obtain that
dΘ
dt → 0 and thus dL

dt → 0, i.e. L converges to the minimum. The convergence
result implies the trainability of SNAMs (and NAMs as a by-product when
λ = 0) in practice.

Henceforth, we focus on the RF SNAM minimizer θ̂
RF

in (3) and drop the
super-script ‘RF’ for clearer presentation.

4 Non-Asymptotic Analysis of SNAM

In this section, we show that SNAM can approximate the truth model well on
training set and achieve exact support recovery with finite number of samples.

We study the primal problem

θ̂ := argminθ

1
2
‖y −

∑
j
Gjθj‖22 + λ

∑
j
‖θj‖2 (9)

and equivalently the dual problem

θ̂ := argminθ :
∑

j ‖θj‖2≤μ

1
2
‖y −

∑
j
Gjθj‖22 (10)

We point out that although the analysis of SNAM is similar to that of LASSO
at high level, our analysis is technically more involved and requires novel tools,
due to the fact that the true model (3) is non-parametric (unlike the LASSO
whose true model is parametric).

350 S. Xu et al.

4.1 Slow Rate with Group LASSO Penalty

Similar to the analysis of slow rate for the LASSO [40], our analysis needs SNAM
to overfit the training data under the low-dimensional G regime.

Assumption 1 (Overfitting of SNAM). Denoting the truth fj := fj(Xj),
we assume there exists μ such that

1
n

‖y −
∑

j
Gj θ̂j‖22 ≤ 1

n
‖y −

∑
j
fj‖22 =

1
n

‖ε‖22.
To guarantee a unique solution of SNAM, we further assume that the SNAM
feature map G has full rank.

Assumption 2 (Full rank of feature map). G ∈ R
n×M has full column rank

M and thus G�G ∈ R
M×M is invertible.

Here M is the sum of numbers of neurons at the last hidden layer of each sub-
network4. Our first result is the slow rate of the SNAM convergence h(X, θ̂) →
f(X) as n → ∞. We highlight the definition of estimation error ‖f(X) −
h(X, θ̂)‖2/n, which is different from the prediction error ‖y − h(X, θ̂)‖2/n.

Theorem 1. Under Assumption 1 and Assumption 2, supposing |fj | is upper
bounded by constant cj and noise ε ∼ SG(σ2), then with probability at least
1 − δ1 − δ2, we have for θ̂ in (10),

1

n
‖

∑
j
(fj − Gj θ̂j)‖22 ≤ 2σ√

n

(∑
j

cj√
δ2

+ μmax
j

√
Egj(Xj ,wj(0))2

√
2 log(mj/δ1)

)

where mj is the width of output layer in the j-th sub-network and μ is the penalty
coefficient.

We refer the interested readers to our appendix for the proof. In fact, we may
further relax our assumption on the noise distribution in the true model (3), at
the cost of a strictly worse bound for any δ1.

Corollary 1. Under Assumption 1 and Assumption 2, supposing |fj | is upper
bounded by constant cj and noise has mean(ε) = 0,Var(ε) = σ2, then with
probability at least 1 − δ1 − δ2, we have for θ̂ in (10),

1
n

‖
∑

j
(fj − Gj θ̂j)‖22 ≤ 2σ√

n

(
∑

j

cj√
δ2

+ μmax
j

√
Egj(Xj ,wj(0))2

√
mj/δ1

)

The proof only needs slight modification by leveraging the Kolmogorov inequality
instead of the maximal sub-Gaussian inequality in Theorem 1. In both Theorem
1 and Corollary 1, the MSE 1

n‖∑
j(fj − Gj θ̂j)‖22 converges to zero with rate

1/
√

n as n → ∞. We note that the convergence rate of SNAM has the same
order as that of LASSO, but SNAM requires two probability quantities δ1, δ2
due to the non-parametric true model (3), whereas the LASSO only needs δ1.
4 When all sub-networks have the same architecture, we write M = mp where the last

hidden layer width m. More generally, suppose the j-th sub-network has last hidde
layer width mj , then M =

∑
j mj .

Sparse Neural Additive Model 351

4.2 Exact Support Recovery

There has been a long line of research on the support recovery, particularly on the
parametric models such as the LASSO [12,38,40], where the support is defined
on the parameters, e.g. supp(β̂) = {j : β̂j �= 0}, supp(β) = {j : βj �= 0}, and the
regularization is also defined on the parameters via λ‖β̂‖1. For non-parametric
models like SPAM, the support is instead defined on the functions

S = supp(f) = {j : fj �= 0},

and the regularization is on the output function {hj}. In contrast, our SNAM
sets the sparse regularization on the parameters {θj}, similar to LASSO. This
explicit regularization allows us to borrow from the rich results of traditional
support recovery for the LASSO and extend them to SNAM.

First, we assume that an insignificant feature (j �∈ S) is small when regressing
on the true features.

Assumption 3 (Mutual incoherence). For some γ > 0, we have
∥∥∥

(
G�

S GS

)−1
G�

S Gj

∥∥∥
2

≤ 1 − γ, for j /∈ S (11)

where GS is the concatenation of Gj for all j ∈ S.

Next, we assume the regularization is not too large to omit significant fea-
tures.

Assumption 4 (Maximum regularization). The Group LASSO penalty
coefficient λ in (9) is small enough so that the following solution is dense

θ̃S := argminθS

1
2
‖y −

∑
j∈S

Gjθj‖22 + λ
∑

j∈S
‖θj‖2 (12)

We define the support of any prediction function h(·; θ̂) in two equivalent ways:
one on the function and the other on the parameters,

supp(h) ≡ {j : hj �= 0} ≡ {j : ‖θ̂j‖2 �= 0}.

We prove in the appendix that, with proper Group LASSO regularization, the
SNAM recovers the true supp(f) exactly.

Theorem 2. Under Assumption 2, Assumption 3 and Assumption 4, then

λ > maxj �∈S ‖G�
j ‖∞‖y‖∞/γ

guarantees that the SNAM solution θ̂ in (9) has the exact support recovery, i.e.
supp(h) = supp(f).

5 Asymptotic Analysis of SNAM

In this section, we study the asymptotic consistency of SNAM and hence indicate
its good generalization behavior. Our results build on top of the asymptotic zero
loss between the ground truth and the prediction on training data, given by the
slow rate in Theorem 1. The proofs can be found in the appendix.

352 S. Xu et al.

5.1 Consistency

We show in Theorem 3 that the SNAM hn, when trained on n samples, converges
to the unknown true model f in a probability measure. In other words, large
amount of data promises that SNAM as a whole function can learn the truth.

Theorem 3. Under the assumptions in Theorem 1, we have the convergence in
probability measure:

limn→∞ ρ({x ∈ X : |f(x) − hn(x)| ≥ ε}) = 0

for arbitrarily small ε > 0. Here ρ is the probability measure of X , the joint
distribution of data X. In words, the prediction hn converges to the truth f .

5.2 Effect Identifiability

Another more difficult challenge in the generalized additive models is the iden-
tifiability of individual effects, in the sense that we want to have hj → fj for
all j ∈ [p]. Notice that since the identifiability is a stronger property than the
consistency, we need to assume more about the feature distribution Xj . We show
that SNAM is capable of identifying the effects in Theorem 4.

Theorem 4 (Effect Identifiability). Assuming hn → f in probability mea-
sure of X as n → ∞, if Xj is independent of X−j, then limn→∞ hn,j(x) converges
to fj(x) in probability up to a constant.

6 Experiments

In this section, we conduct multiple experiments on both synthetic and real
datasets. we emphasize that here SNAM is not RF SNAM, i.e. we train all
parameters in sub-networks. All experiments are conducted with one Tesla P100
GPU. We use MSE loss for regression, cross-entropy (CE) loss for classification,
and wall-clock time for all tasks. Furthermore, we compare SNAM to other
possibly sparse interpretable methods: NAM, �1 linear support vector machine
(SVM), LASSO and SPAM [31]. Experiment details such as data pre-processing,
model architecture and hyperparamters are listed in the appendix5.

6.1 Synthetic Datasets

To validate our statistical analysis on SNAM, i.e. the feature selection (or support
recovery), the estimation consistency and the effect identifiability, we experiment
on synthetic datasets. We emphasize that it is necessary to work with synthetic
data instead of real-world ones, since we need access to the truth fj .

5 Code is available at https://github.com/ShiyunXu/SNAM.git.

https://github.com/ShiyunXu/SNAM.git

Sparse Neural Additive Model 353

Data Generation. We generate a data matrix X ∈ R
3000×24 and denote the

j-th column of X as Xj . y is generated by the following additive model, for
regression and binary classification, respectively:

P(y = 1) = sigmoid(f1(X1) + · · · + f24(X24)).

where all fj are zero functions except

f1(x) = 2x2 tanhx, f2(x) = sin x cos x + x2

f3(x) = 20/(1 + e−5 sinx), f4(x) = 20 sin3 2x − 6 cos x + x2

Performance Measures. Denote the output of each sub-network as f̂j . To
illustrate the performance on the support recovery, we use precision and recall
to compare f̂j and truth fj . In particular, we use �2 norm of a sub-network’s
weights to indicate whether f̂j = 0.

We now introduce the identification error (iden. error),

min
cj∈R

‖f̂j(Xj) − fj(Xj) − cj‖22/n = ‖f̂j(Xj) − fj(Xj) − ĉj‖22/n

in which ĉj := 1
n

∑n
i=1(f̂j(Xij) − fj(Xij)). Notice that Corollary 4 claims the

convergence up to a constant ĉj .

Table 2. Performance of sparse inter-
pretable methods on synthetic regres-
sion.

�1 SVM LASSO SPAM SNAM

MSE loss 140.7 139.7 25.75 10.61

Precision 0.17 1.00 0.17 1.00

Recall 1.00 1.00 1.00 1.00

Iden. error 5.90 6.09 3.07 0.69

Time (sec) 0.005 0.007 152.1 48.52

#. Feature 24 4 4 4

#. Param 24 4 – 127201

Table 3. Performance of sparse inter-
pretable methods on synthetic classifica-
tion.

�1 SVM LASSO SPAM SNAM

CE loss 0.27 0.26 – 0.15

Test accuracy 73.2 74.2 – 94.1

Precision 0.57 0.67 – 1.00

Recall 1.00 1.00 – 1.00

Time (sec) 0.005 0.019 – 10.10

#. Feature 13 6 – 4

#. Param 13 6 – 128402

Fig. 2. Individual effect learned by
SNAM on synthetic regression. Blue dots
are prediction f̂j(Xj) and orange dots
are truth fj(Xj), with j = 1, · · · , 6.
(Color figure online)

354 S. Xu et al.

Results. In Table 2, for regression task, SNAM domintes existing sparse inter-
pretable methods in all measures. Especially, SNAM (which includes LASSO as
a sub-case) is the only method that achieves exact support recovery, obtaining
perfect precision and recall scores. When facing complicated target functions,
SNAM, as a non-linear model, significantly outperforms linear models like linear
SVM and LASSO, in terms of test loss and identification error. In contrast to
SPAM, another non-linear model that achieves low loss, SNAM outperforms in
both loss and efficiency, with a 3 times speed-up.

We further visualize the effects learned by SNAM in Fig. 2, demonstrating
the strong approximation offered by the neural networks, and leave those learned
by other interpretable methods in the appendix.

Similarly in Table 3, for classification task, SNAM again significantly outper-
forms existing sparse interpretable methods: roughly 20% higher accuracy and
33% higher precision. Here LASSO means �1 regularized logistic regression and
SPAM cannot perform the classification in original text [31].

6.2 California Housing Regression

Table 4. Performance of interpretable
methods on California Housing
dataset.

�1 SVM LASSO NAM SNAM

MSE loss 0.654 0.712 0.451 0.567
MAE loss 0.594 0.654 0.479 0.526

R2 score 0.501 0.457 0.696 0.645
Time (sec) 1.37 0.01 343 340
#. Feature 6 2 8 7
#. Param 6 2 42401 37101

California Housing [28] is a dataset for
studying the effect of community char-
acteristics on housing prices in Califor-
nia districts from 1990 U.S. census. The
task is to predict the median housing price
based on 20640 examples and 8 features.

In [1], a well-trained NAM deems
the median income, latitude and longi-
tude as the most significant features for
an accurate prediction. Reassuringly, our
SNAM concurs with the their conclusion
by selecting the same features (see appendix). Although the conclusion is the
same, we highlight a key difference between the approaches: while the authors in
[1] base their conclusion on the ad-hoc visual examination of the shape function
f̂j , our approach is based on a hypothesis testing: θj = 0 v.s. θj �= 0 where
θj is all parameters in a sub-network. We recognize a small decrease in the
loss as the cost of feature selection, when compared to NAM, but SNAM can
save 12.5% in the number of parameters (or memory). Additionally, SNAM still
outperforms other sparse interpretable methods. In fact, although SNAM takes
longer to achieve its optimal performance in Table 4, it only takes about 14 s to
outperform the optimal LASSO and SVM.

Sparse Neural Additive Model 355

6.3 COMPAS Classification

Table 5. Performance of interpretable
methods on COMPAS dataset.

�1 SVM LASSO NAM SNAM

CE loss 0.486 0.484 0.503 0.504

Test accuracy 75.3 75.4 75.3 75.6

AUC score 0.744 0.743 0.714 0.745

Time (sec) 0.106 0.175 27.5 27.4

#. Feature 13 12 13 5

#. Param 13 12 69552 26750

Fig. 3. Variation of effects learned by
SNAM on COMPAS dataset.

COMPAS is a widely used commer-
cial tool to predict the recidivism risk
based on defendants’ features and it
is known for its racial bias against the
black defendants. It has 6172 exam-
ples and 13 features6. The ProPub-
lica released the recidivism dataset
[3], that includes the characteristics
of defendants in Broward County,
Florida, and the predictions on reof-
fending by the COMPAS algorithm.

In Table 5, we notice that all
interpretable methods perform sim-
ilarly, and SNAM has the highest
AUC score between label and pre-
diction, even though it only contains
54% of NAM’s parameters. A closer
look at Fig. 3 describes the relations
between features and the variation
of effect, which is gap between the
minimum recidivism risk and the
maximum one among all individual
samples for a particular feature, i.e.
maxi f̂j(Xij) − mini f̂j(Xij). If the
variation of an effect is large, then
SNAM indicates the feature is significant. Indeed, the top 5 features selected by
SNAM are prior counts, ages, two year recidivism and whether the defendant is
African American. The last feature clearly demonstrates SNAM’s explanability
of the COMPAS algorithm’s racial bias. In short, the features selected by SNAM
are consistent with NAM’s selection based on shape functions (see more figures
in appendix).

6.4 Super-Conductivity Regression

We further experiment on the super-conductivity dataset from UCI repository,
aiming to predict the critical temperature of super-conductors based on physi-
cal quantities (e.g. atomic radius, mass, density...) and chemical formulae. We
highlight that the Super-conductivity is a high-dimensional dataset with 21263
samples and 131 features7, whereas all datasets in [1] have at most 30 features.

6 The data preprocessing follows https://github.com/propublica/compas-analysis.
7 The original dataset has 168 features. We remove the column material and all

columns with variance less than 5%.

https://github.com/propublica/compas-analysis

356 S. Xu et al.

Table 6. Performance of interpretable methods on super-conductivity dataset.

�1 SVM LASSO NAM SNAM

MSE loss 410.0 311.7 274.1 280.3

MAE loss 15.47 13.43 11.56 12.09

R2 score loss 0.654 0.731 0.787 0.775

Time (sec) 5.00 1.87 682 688

#. Feature 100 50 131 72

#. Param 100 50 6289 3457

We note that SNAM obtains similar performance as NAM and LASSO.
In addition, the sparsity in SNAM saves 45% number of parameters. In fact,
given that NAM gives the best performance, a practitioner can always choose
small penalty in SNAM in order to trade model efficiency for better performance
(Table 6).

7 Discussion

In this work, we propose the sparse neural additive model (SNAM) which applies
a specific Group LASSO regularization explicitly to NAM. On one hand, SNAM
is an interpretable deep learning model where the effect of each feature on the
output can be extracted. On the other hand, the Group LASSO regulariza-
tion empowers the network to select informative features, in the same way that
LASSO empowers the linear model. We develop theoretical analysis of the opti-
mization, the slow rate, the support recovery, the consistency of prediction, and
the effect identifiability. Additionally, our experiments demonstrate the advan-
tage of SNAM in memory and training efficiency, especially over non-regularized
NAM and existing regularized interpretable methods. However, the superiority
in performance usually comes at the price of longer training time than simpler
methods like LASSO.

For future directions, one may further extend SNAM’s theory to the fast con-
vergence rate [39] in sample size, or to the jointly trained SNAM in terms of time.
We believe the theoretical analysis and empirical evaluation can be explored for
a whole family of interesting SNAMs. For example, while SNAM with Group
LASSO penalty contains LASSO as sub-case, we can view SNAM with Group
SLOPE [9] penalty as extension of SLOPE [6]. Other possible extensions of elas-
tic net [47], adaptive LASSO [46], K-level SLOPE [10,44] are also possible with
SNAM (see appendix for examples).

Acknowledgements. SX is supported through partnership with GSK. PC was sup-
ported by grants from the National Science Foundation (IIS-2145164, CCF-2212519)
and the Office of Naval Research (N00014-22-1-2255). IB is supported by the National
Institute of Mental Health (R01MH116884).

Sparse Neural Additive Model 357

Ethical Statement. High-stake applications like healthcare, criminal records empow-

ered by deep learning raise people’s concern about algorithms’ liability, fairness, and

interpretability. Our method can help build a fair, trustworthy and explainable commu-

nity by seeking the reason behind machine learning predictions. Sometimes, the system

may predict upon discrimination without realizing it (such as the COMPAS algorithm).

Examining into each feature’s contribution to the outcome provides a possibility of

avoid learning with bias. Our method is useful especially in high dimensional datasets,

such as some medical tabular records. Hence, our paper has an important impact on

ethical machine learning. Yet, we emphasize that interpretable machine learning does

not automatically guarantee its trustworthiness: it can still make mistakes and bias

towards certain group, even though it can explain why it does so.

References

1. Agarwal, R., Frosst, N., Zhang, X., Caruana, R., Hinton, G.E.: Neural addi-
tive models: interpretable machine learning with neural nets. arXiv preprint
arXiv:2004.13912 (2020)

2. Allen-Zhu, Z., Li, Y., Song, Z.: A convergence theory for deep learning via over-
parameterization. In: International Conference on Machine Learning, pp. 242–252.
PMLR (2019)

3. Angwin, J., Larson, J., Mattu, S., Kirchner, L.: Machine bias. Propublica (2016)
4. Arora, S., Du, S.S., Hu, W., Li, Z., Salakhutdinov, R., Wang, R.: On exact compu-

tation with an infinitely wide neural net. arXiv preprint arXiv:1904.11955 (2019)
5. Beck, A., Teboulle, M.: A fast iterative shrinkage-thresholding algorithm for linear

inverse problems. SIAM J. Imaging Sci. 2(1), 183–202 (2009)
6. Bogdan, M., Van Den Berg, E., Sabatti, C., Su, W., Candès, E.J.: Slope-adaptive

variable selection via convex optimization. Ann. Appl. Stat. 9(3), 1103 (2015)
7. Boyd, S., Xiao, L., Mutapcic, A.: Subgradient methods. Lecture notes of EE392o,

Stanford University, Autumn Quarter 2004, 2004–2005 (2003)
8. Breiman, L., Friedman, J.H.: Estimating optimal transformations for multiple

regression and correlation. J. Am. Stat. Assoc. 80(391), 580–598 (1985)
9. Brzyski, D., Gossmann, A., Su, W., Bogdan, M.: Group slope-adaptive selection

of groups of predictors. J. Am. Stat. Assoc. 114(525), 419–433 (2019)
10. Bu, Z., Klusowski, J., Rush, C., Su, W.J.: Characterizing the slope trade-off: a vari-

ational perspective and the donoho-tanner limit. arXiv preprint arXiv:2105.13302
(2021)

11. Bu, Z., Xu, S., Chen, K.: A dynamical view on optimization algorithms of overpa-
rameterized neural networks. In: International Conference on Artificial Intelligence
and Statistics, pp. 3187–3195. PMLR (2021)

12. Bühlmann, P., Van De Geer, S.: Statistics for High-Dimensional Data: Methods,
Theory and Applications. Springer, Heidelberg (2011). https://doi.org/10.1007/
978-3-642-20192-9

13. Chen, Z., Cao, Y., Gu, Q., Zhang, T.: A generalized neural tangent kernel analysis
for two-layer neural networks. In: Larochelle, H., Ranzato, M., Hadsell, R., Bal-
can, M.F., Lin, H. (eds.) Advances in Neural Information Processing Systems, vol.
33, pp. 13363–13373. Curran Associates, Inc. (2020). www.proceedings.neurips.cc/
paper/2020/file/9afe487de556e59e6db6c862adfe25a4-Paper.pdf

14. Du, S.S., Zhai, X., Poczos, B., Singh, A.: Gradient descent provably optimizes
over-parameterized neural networks. arXiv preprint arXiv:1810.02054 (2018)

http://arxiv.org/abs/2004.13912
http://arxiv.org/abs/1904.11955
http://arxiv.org/abs/2105.13302
https://doi.org/10.1007/978-3-642-20192-9
https://doi.org/10.1007/978-3-642-20192-9
www.proceedings.neurips.cc/paper/2020/file/9afe487de556e59e6db6c862adfe25a4-Paper.pdf
www.proceedings.neurips.cc/paper/2020/file/9afe487de556e59e6db6c862adfe25a4-Paper.pdf
http://arxiv.org/abs/1810.02054

358 S. Xu et al.

15. Fang, C., Dong, H., Zhang, T.: Mathematical models of overparameterized neural
networks. Proc. IEEE 109(5), 683–703 (2021)

16. Hastie, T., Tibshirani, R., Friedman, J.: The Elements of Statistical Learning. SSS,
Springer, New York (2009). https://doi.org/10.1007/978-0-387-84858-7

17. Ghorbani, B., Mei, S., Misiakiewicz, T., Montanari, A.: Linearized two-layers neu-
ral networks in high dimension. Ann. Stat. 49(2), 1029–1054 (2021)

18. Hastie, T.J., Tibshirani, R.J.: Generalized Additive Models. Routledge, Abingdon
(2017)

19. Jacot, A., Gabriel, F., Hongler, C.: Neural tangent kernel: convergence and gener-
alization in neural networks. arXiv preprint arXiv:1806.07572 (2018)

20. Li, H., Lin, Z.: Accelerated proximal gradient methods for nonconvex programming.
Adv. Neural Inf. Process. Syst. 28, 379–387 (2015)

21. Lou, Y., Caruana, R., Gehrke, J.: Intelligible models for classification and regres-
sion. In: Proceedings of the 18th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, pp. 150–158 (2012)

22. Lundberg, S.M., Lee, S.I.: A unified approach to interpreting model predictions. In:
Proceedings of the 31st International Conference on Neural Information Processing
Systems, pp. 4768–4777 (2017)

23. Meier, L., Van De Geer, S., Bühlmann, P.: The group lasso for logistic regression.
J. Roy. Stat. Soc. Ser. B (Stat. Methodol.) 70(1), 53–71 (2008)

24. Neal, R.M.: Priors for infinite networks. In: Bayesian Learning for Neural Networks,
pp. 29–53. Springer, Heidelberg (1996). https://doi.org/10.1007/978-1-4612-0745-
0 2

25. Nelder, J.A., Wedderburn, R.W.: Generalized linear models. J. Roy. Stat. Soc. Ser.
A (General) 135(3), 370–384 (1972)

26. Nitanda, A.: Stochastic proximal gradient descent with acceleration techniques.
Adv. Neural Inf. Process. Syst. 27, 1574–1582 (2014)

27. Nori, H., Jenkins, S., Koch, P., Caruana, R.: Interpretml: a unified framework for
machine learning interpretability. arXiv preprint arXiv:1909.09223 (2019)

28. Pace, R.K., Barry, R.: Sparse spatial autoregressions. Stat. Probab. Lett. 33(3),
291–297 (1997)

29. Parikh, N., Boyd, S.: Proximal algorithms. Found. Trends Optim. 1(3), 127–239
(2014)

30. Rahimi, A., Recht, B., et al.: Random features for large-scale kernel machines. In:
NIPS, vol. 3, p. 5. Citeseer (2007)

31. Ravikumar, P., Lafferty, J., Liu, H., Wasserman, L.: Sparse additive models. J.
Roy. Stat. Soc. Ser. B (Stat. Methodol.) 71(5), 1009–1030 (2009)

32. Ribeiro, M.T., Singh, S., Guestrin, C.: “why should i trust you?” explaining the
predictions of any classifier. In: Proceedings of the 22nd ACM SIGKDD Interna-
tional Conference on Knowledge Discovery and Data Mining, pp. 1135–1144 (2016)

33. Shapley, L.S.: 17. A Value for n-person Games. Princeton University Press, Prince-
ton (2016)

34. Shor, N.Z.: Minimization Methods for Non-Differentiable Functions, vol. 3.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-82118-9

35. Strumbelj, E., Kononenko, I.: Explaining prediction models and individual predic-
tions with feature contributions. Knowl. Inf. Syst. 41(3), 647–665 (2014)

36. Su, W., Boyd, S., Candes, E.: A differential equation for modeling Nesterov’s accel-
erated gradient method: theory and insights. Adv. Neural Inf. Process. Syst. 27,
2510–2518 (2014)

37. Tibshirani, R.: Regression shrinkage and selection via the lasso. J. Roy. Stat. Soc.
Ser. B (Methodol.) 58(1), 267–288 (1996)

https://doi.org/10.1007/978-0-387-84858-7
http://arxiv.org/abs/1806.07572
https://doi.org/10.1007/978-1-4612-0745-0_2
https://doi.org/10.1007/978-1-4612-0745-0_2
http://arxiv.org/abs/1909.09223
https://doi.org/10.1007/978-3-642-82118-9

Sparse Neural Additive Model 359

38. Tibshirani, R., Wasserman, L.: Sparsity, the lasso, and friends. Lecture notes from
“Statistical Machine Learning,” Carnegie Mellon University, Spring (2017)

39. Van De Geer, S.A., Bühlmann, P.: On the conditions used to prove oracle results
for the lasso. Electron. J. Stat. 3, 1360–1392 (2009)

40. Wainwright, M.J.: Sharp thresholds for high-dimensional and noisy sparsity recov-
ery using �1 -constrained quadratic programming (lasso). IEEE Trans. Inf. Theory
55(5), 2183–2202 (2009)

41. Wei, C., Lee, J., Liu, Q., Ma, T.: Regularization matters: generalization and opti-
mization of neural nets vs their induced kernel (2019)

42. Xiao, L., Pennington, J., Schoenholz, S.: Disentangling trainability and generaliza-
tion in deep neural networks. In: International Conference on Machine Learning,
pp. 10462–10472. PMLR (2020)

43. Yehudai, G., Shamir, O.: On the power and limitations of random features for
understanding neural networks. Adv. Neural Inf. Process. Syst. 32, 6598–6608
(2019)

44. Zhang, Y., Bu, Z.: Efficient designs of slope penalty sequences in finite dimension.
In: International Conference on Artificial Intelligence and Statistics, pp. 3277–3285.
PMLR (2021)

45. Zou, D., Cao, Y., Zhou, D., Gu, Q.: Gradient descent optimizes over-parameterized
deep relu networks. Mach. Learn. 109(3), 467–492 (2020)

46. Zou, H.: The adaptive lasso and its oracle properties. J. Am. Stat. Assoc. 101(476),
1418–1429 (2006)

47. Zou, H., Hastie, T.: Regularization and variable selection via the elastic net. J.
Roy. Stat. Soc. Ser. B (Stat. Methodol.) 67(2), 301–320 (2005)

Learning Locally Interpretable Rule
Ensemble

Kentaro Kanamori(B)

Artificial Intelligence Laboratory, Fujitsu Limited, Tokyo, Japan

k.kanamori@fujitsu.com

Abstract. This paper proposes a new framework for learning a rule
ensemble model that is both accurate and interpretable. A rule ensemble is
an interpretable model based on the linear combination of weighted rules.
In practice, we often face the trade-off between the accuracy and inter-
pretability of rule ensembles. That is, a rule ensemble needs to include a
sufficiently large number of weighted rules to maintain its accuracy, which
harms its interpretability for human users. To avoid this trade-off and learn
an interpretable rule ensemble without degrading accuracy, we introduce a
new concept of interpretability, named local interpretability, which is eval-
uated by the total number of rules necessary to express individual predic-
tions made by the model, rather than to express the model itself. Then, we
propose a regularizer that promotes local interpretability and develop an
efficient algorithm for learning a rule ensemble with the proposed regular-
izer by coordinate descent with local search. Experimental results demon-
strated that our method learns rule ensembles that can explain individual
predictions with fewer rules than the existing methods, including RuleFit,
while maintaining comparable accuracy.

Keywords: Interpretability · Explainability · Rule ensemble

1 Introduction

In the applications of machine learning models to high-stake decision-making
such as loan approvals, interpretability has been recognized as an important ele-
ment [27,36,37]. One of the well-known interpretable models is a rule model,
including decision trees [16], rule lists [2], and rule sets [23]. Because rule models
are expressed using logical rules that are easy to understand, they can explain
how they make predictions in an interpretable manner by themselves. Such expla-
nation helps human users ensure transparency for their critical decision-making,
as well as discover new knowledge from data [12]. In this study, we focus on a
rule ensemble [15,42], which is a rule model based on the linear combination of
weighted rules. For a given input, a rule ensemble makes a prediction depending
on the sum of the weights corresponding to the rules that the input satisfies.

One of the main obstacles to learning rule ensembles is the trade-off between
accuracy and interpretability. While the interpretability of rule models has sev-
eral definitions depending on their forms and applications [9,24], a common
criterion for evaluating the interpretability of a model is the total number of
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
D. Koutra et al. (Eds.): ECML PKDD 2023, LNAI 14171, pp. 360–377, 2023.
https://doi.org/10.1007/978-3-031-43418-1_22

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-43418-1_22&domain=pdf
https://doi.org/10.1007/978-3-031-43418-1_22

Learning Locally Interpretable Rule Ensemble 361

rules required to express the model [12,22]. Due to the cognitive limitations
of human users, a model should consist of as few rules as possible, even if the
model belongs to the class of inherently interpretable models [23,36]. In prac-
tice, however, a rule ensemble requires a sufficiently large number of weighted
rules to maintain generalization performance [30]. Therefore, we often need to
compromise interpretability to maintain accuracy when learning rule ensembles.

In general, a major approach to addressing the accuracy-interpretability
trade-off is to make each individual prediction, rather than a model itself, inter-
pretable. For example, if we need to validate an undesired prediction result (e.g.,
high risk of default) made by a model, it is often sufficient to explain a reason
why the model outputs the prediction in an interpretable way, even if the model
consists of too many rules to interpret [6]. To extract an explanation for each
individual prediction from a learned model, several model-agnostic methods,
such as LIME and SHAP, have been proposed [26,32]. However, because most of
these methods construct explanations by locally approximating a model, recent
studies have pointed out the risk that their explanations are inconsistent with
the actual behavior of the model [17,36,45]. To avoid this risk and provide faith-
ful explanations, we need to explain each individual prediction with the rules
that the model actually uses to make the prediction, without approximation.

In this paper, we propose locally interpretable rule ensemble (LIRE), a new
framework for learning accurate and interpretable rule ensembles. While a num-
ber of weighted rules are required to maintain the accuracy of a rule ensemble
model, not all of them are required to make each individual prediction by the
model. More precisely, only the weighted rules that a given input satisfies are
required to express its prediction, and the other rules are not by the definition
of rule ensembles. This fact suggests a chance to learn a rule ensemble with a
sufficient number of weighted rules to maintain accuracy but that can express
individual predictions using a few weighted rules [36]. Motivated by this fact, we
aim to learn a rule ensemble that can explain individual predictions with as few
weighted rules as possible, which we refer to as local interpretability. To this end,
we introduce a regularizer that promotes local interpretability, and propose an
efficient algorithm for learning a rule ensemble with the proposed regularizer.

Our Contributions. Our contributions are summarized as follows:

– We introduce a new concept for evaluating the interpretability of rule ensem-
bles. Our concept, named local interpretability, is evaluated by the total num-
ber of weighted rules that are necessary to express each individual prediction
locally, rather than to express the entire model globally.

– We propose a regularizer that promotes the local interpretability of a rule
ensemble, and formulate a task of learning a locally interpretable rule ensem-
ble (LIRE) classifier. Then, we propose an efficient algorithm for learning a
LIRE classifier by coordinate descent with local search.

– We conducted experiments on real datasets to evaluate the efficacy of LIRE.
We confirmed that our method can learn rule ensembles that are more locally
interpretable than the existing methods such as RuleFit [15], while maintain-
ing accuracy and entire interpretability comparable to them.

362 K. Kanamori

Table 1. Examples of an input vector x and rule ensemble classifiers on the Adult
dataset. The classifiers predict an input as “Income < $50K” if the sum of the weights
of the satisfied rules is greater than their intercept. In (b) and (c), rules that the input
x satisfies are highlighted in boldface.

(a) Input vector x with the label “Income < $50K”

Feature Value

Age 39

fnlwgt 120985

Education-Num 9

Capital-Gain 0

Capital-Loss 0

House-per-week 40

Workclass Private

Education HS-grad

Marital-Status Divorced

Occupation Other-service

Relationship Own-child

Race White

Sex Male

Country United-States

(b) RuleFit [15] (intercept: 0.0, test accuracy: 83.0%)

Rule Weight

Education-Num ≤ 12 & Capital-Gain ≤ 5119 1.006

Marital-Status �= Married-civ-spouse & Education �= Prof-school 0.644

Capital-Loss ≤ 1820 & Marital-Status �= Married-civ-spouse 0.411

Marital-Status �= Married-civ-spouse & Hours-per-week ≤ 44 0.312

Age > 31 & Sex = Male −0.191

Marital-Status �= Married-civ-spouse & Education �= Masters 0.050

Marital-Status = Married-civ-spouse & Education �= HS-grad −0.027

Hours-per-week > 43 & Marital-Status �= Never-married −0.014

(c) LIRE (ours, intercept: −1.637, test accuracy: 84.2%)

Rule Weight

Capital-Gain > 5119 −1.536

Relationship = Own-child & Hours-per-week ≤ 49 1.255

Capital-Loss > 1820 & Capital-Loss ≤ 1978 −1.245

Marital-Status = Married-civ-spouse −1.192

Hours-per-week ≤ 43 & Occupation = Other-service 0.906

Education-Num > 12 −0.801

Relationship �= Own-child & Capital-Gain > 5095 −0.661

Learning Locally Interpretable Rule Ensemble 363

Table 1 presents a demonstration of our framework on the Adult dataset [21].
While Table 1a shows an example of an input vector x, Tables 1b and 1c present
examples of rule ensemble classifiers leaned by RuleFit [15] and our LIRE. In
Tables 1b and 1c, we denote the weighted rules that the input x satisfies in
boldface, and the average total number of them was 3.8 for RuleFit and 1.1 for
LIRE, respectively. Table 1 demonstrates that our LIRE (i) could make an accu-
rate prediction for x with fewer weighted rules than RuleFit, and (ii) achieved
the test accuracy comparable to RuleFit. These results suggest that our method
can learn a locally interpretable rule ensemble without degrading accuracy.

Notation. For a positive integer n ∈ N, we write [n] := {1, . . . , n}. For a
proposition ψ, I [ψ] denotes the indicator of ψ; that is, I [ψ] = 1 if ψ is true, and
I [ψ] = 0 if ψ is false. Throughout this paper, we consider a binary classification
problem as a prediction task. Note that our framework introduced later can also
be applied to regression problems. We denote input and output domains X ⊆ R

D

and Y = {−1,+1}, respectively. Let a tuple (x, y) of an input vector x ∈ X and
output label y ∈ Y be an example, and the set S = {(xn, yn)}N

n=1 be a sample
with N examples. We call a function h : X → Y a classifier. Let l : Y ×R → R≥0

be a loss function, such as the logistic loss, hinge loss, or exponential loss [28].

2 Rule Ensemble

A rule ensemble is a model consisting of a set of rules and their corresponding
weights [15]. Each rule is expressed as a form of a conjunction of features (e.g.,
“Age > 31 & Sex = Male” as shown in Table 1), and has a corresponding weight
value. Given an input x ∈ X , a rule ensemble makes a prediction depending on
the linear combination of the weighted rules that the input satisfies. For binary
classification, a rule ensemble classifier hα : X → Y is defined as

hα (x) := sgn
(∑M

m=1
αm · rm(x)

)
,

where rm : X → {0, 1} is a rule, αm ∈ R is a weight corresponding to rm, and
M ∈ N is the total number of rules. We denote the decision function fα : X → R

of hα by fα (x) :=
∑M

m=1 αm · rm(x), i.e., hα (x) = sgn (fα (x)).
To learn a rule ensemble hα from a given sample S, we first need to obtain a

set of rules R = {r1, . . . , rM} from S. However, it is computationally difficult to
enumerate all the candidate rules on X ⊆ R

D because their size grows exponen-
tially with D [19,29,42]. To avoid enumerating all of them, we need to efficiently
generate a subset of candidate rules that can improve the accuracy of hα .

Another challenge is to learn a sparse weight vector α = (α1, . . . , αM) ∈ R
M .

By definition, a rule rm with αm = 0 does not contribute to the predictions of
a rule ensemble hα . While reducing the total number of the rules rm with non-
zero weights is essential to ensure the interpretability of hα , it often harms the
generalization performance of hα [30]. Therefore, we need to find a weight vector
α that is as sparse as possible while maintaining the accuracy of hα .

364 K. Kanamori

Fig. 1. Examples of a decision tree and its decomposed rules R = {r1, r2, r3, r4}.

2.1 RuleFit

A popular practical framework for learning rule ensembles is RuleFit proposed
by Friedman and Popescu [15]. RuleFit consists of two steps; it first extracts
a set of candidate rules R from a learned ensemble of decision trees, and then
optimizes a sparse weight vector α through the �1-regularization.

Rule Extraction. Given a sample S, RuleFit first learns a tree ensemble model,
such as random forests [5] and gradient boosting decision trees [20], on S. It then
decomposes each decision tree of the ensemble into a set of rules and collects the
decomposed rules over the entire ensemble as R. Because there exist several fast
algorithms for learning tree ensemble models, we can efficiently obtain a set of
rules R that can improve the accuracy of a rule ensemble hα on S.

Figure 1 shows an example of a decision tree and its decomposed rules. By
collecting the branching conditions on the path between the root and each node
of the decision tree in Fig. 1a, we can obtain the set of rules shown in Fig. 1b. For
example, we can obtain the rule r3 from the node t3 by combining the conditions
x1 > 31 and x2 = 1 on the path between the root t0 and t3.

Weight Optimization. For a set of extracted rules R = {r1, . . . , rM}, we optimize
a weight vector α ∈ R

M on the sample S. Because the size of the extracted rules
M grows in proportion to the total number of leaves in the tree ensemble, we need
to keep α as sparse as possible to avoid overfitting and ensure interpretability.
To learn a sparse weight vector α, RuleFit uses the �1-regularization (i.e., the
Lasso penalty [39]). Specifically, RuleFit solves the following learning problem.

Problem 1 (RuleFit). For a given sample S = {(xn, yn)}N
n=1, set of M rules

R = {r1, . . . , rM}, and trade-off parameter γ ≥ 0, find an optimal solution
α∗ ∈ R

M to the following problem:

α∗ = arg minα∈RM L(α | S) + γ · Ω1(α),

where L(α | S) := 1
N

∑N
n=1 l(yn, fα (xn)) is the empirical risk on S, and

Ω1(α) := ‖α‖1 is the �1-regularization term that promotes the sparsity of α.

Note that we can efficiently solve Problem 1 using the existing algorithms
for learning generalized additive models with the �1-regularization when the loss

Learning Locally Interpretable Rule Ensemble 365

function l is convex [14]. A common choice of the loss function l for a binary
classification task is the logistic loss l(y, fα (x)) = log(1 + e−y·fα (x)) [40,42].

3 Problem Formulation

This section presents our proposed framework, named Locally Interpretable Rule
Ensemble (LIRE). We introduce local interpretability, a new concept of inter-
pretability for rule ensembles that is evaluated by the total number of rules
required to express individual predictions, rather than the model itself. Then,
we propose a regularizer that promotes local interpretability, and formulate the
task of learning a rule ensemble with our local interpretability regularizer.

3.1 Local Interpretability of Rule Ensemble

In general, the interpretability of a rule ensemble hα is evaluated by the total
number of rules with non-zero weights [15,42]. Let supp(α) := {m ∈ [M] | αm �=
0} be the set of rules with non-zero weights, which we call the support of hα .
By definition, a rule ensemble classifier hα can be expressed using only weighted
rules in the support, i.e., hα (x) = sgn(

∑
m∈supp(α) αm · rm(x)). To ensure inter-

pretability, the existing methods reduce the support size | supp(α)| by the �1-
regularization [39]. In practice, however, since there is a trade-off between the
support size of a rule ensemble and its generalization performance, we often need
to compromise interpretability to maintain accuracy [30].

On the other hand, not all of the rules with non-zero weights are used for
making the individual prediction hα (x) of each input x ∈ X . This is because a
rule rm with αm �= 0 but rm(x) = 0 does not contribute to the prediction result
hα (x) by the definition of rule ensembles. It suggests that we only need the rules
rm with αm �= 0 and rm(x) = 1 to express the individual prediction hα (x) for
a given input x. In some practical situations (e.g., loan approvals and medical
diagnoses), even if a model itself is too complex to interpret, it is often sufficient
to explain its individual predictions in an interpretable manner [6,36,44].

Motivated by the above facts, we introduce a new concept of interpretability
for a rule ensemble model from the perspective of its individual predictions
rather than the model itself. We focus on learning a rule ensemble that can
express individual predictions using a few rules with non-zero weights, which we
call local interpretability. To evaluate the local interpretability of a rule ensemble
hα , we define the local support of hα for an input x by

lsupp(α | x) := {m ∈ [M] | αm �= 0 ∧ rm(x) = 1}.

By definition, the prediction hα (x) for x can be expressed using only weighted
rules in the local support, i.e., hα (x) = sgn(

∑
m∈lsupp(α |x) αm). To ensure local

interpretability, we aim to reduce the local support size | lsupp(α | x)| for each
x in a given sample S as much as possible.

To promote the local interpretability of a rule ensemble hα , we propose a
local interpretability regularizer. By definition, | lsupp(α | x)| ≤ | supp(α)| holds

366 K. Kanamori

for any x ∈ X , which implies that reducing the support size | supp(α)| leads to a
decrease in the upper bound on the local support size | lsupp(α | x)|. However, we
need to avoid achieving local interpretability by reducing the support size since
it may harm the accuracy of hα . To control the local support size separately
from the support size, we define our local interpretability regularizer ΩL as

ΩL(α | S) :=
1
N

∑N

n=1

| lsupp(α | xn)|
| supp(α)| .

That is, we evaluate the ratio of the local support size | lsupp(α | x)| to the
support size | supp(α)| for each input x in a sample S and average them over
S. Minimizing our regularizer ΩL allows us to reduce the average local support
size | lsupp(α | x)| without directly constraining the support size | supp(α)|.

3.2 Locally Interpretable Rule Ensemble

We now formulate our problem of learning a locally interpretable rule ensemble
(LIRE) classifier. As with RuleFit [15], we assume that we have a set of rules R
by extracting them from a tree ensemble leaned on a given sample S in advance.
Then, we learn a weight vector α that minimizes the empirical risk L(α | S) =
1
N

∑N
n=1 l(yn, fα (xn)) on S with the regularizers on its interpretability.

Problem 2 (LIRE). For a given sample S = {(xn, yn)}N
n=1, set of M rules

R = {r1, . . . , rM}, and hyper-parameters γ, λ ≥ 0, find an optimal solution
α∗ ∈ R

M to the following problem:

α∗ = arg minα∈RM Gγ,λ(α | S) := L(α | S) + γ · ΩG(α) + λ · ΩL(α | S),

where ΩG(α) := | supp(α)| is the global interpretability regularizer, and ΩL(α |
S) = 1

N

∑N
n=1

| lsupp(α |xn)|
| supp(α)| is the local interpretability regularizer.

By solving Problem 2, we are expected to obtain an accurate rule ensemble
hα∗ whose local support size | lsupp(α | x)| is small on average. We can control
the strength of the global and local interpretability regularizers by tuning the
parameters γ and λ. Note that our global interpretability regularizer ΩG(α) is
equivalent to the �0-regularization term ‖α‖0, and the �1-regularization term
‖α‖1 used in RuleFit can be regarded as a convex relaxation of ‖α‖0 [39]. We
employ ΩG(α) to penalize the support size of α more directly than the �1-
regularization without degrading the generalization performance of hα [8,25].

4 Optimization

In this section, we propose a learning algorithm for a LIRE classifier. Because our
local interpretability regularizer ΩL is neither differentiable nor convex due to
its combinatorial nature, efficiently finding an exact optimal solution to Problem
2 is computationally challenging, even if the loss function l and the global inter-
pretability regularizer ΩG are differentiable and convex. To avoid this difficulty,
we propose to extend the existing fast algorithms for learning �0-regularized
generalized additive classifiers [8,25] to our learning problem.

Learning Locally Interpretable Rule Ensemble 367

Algorithm 1. Coordinate descent algorithm with local search for learning LIRE.
Require: a sample S, a set of rules R = {r1, . . . , rM} extracted from a tree ensemble

learned on S in advance, trade-off parameters γ, λ ≥ 0, an initial weight vector
α(0) ∈ R

M , and a maximum number of iterations I ∈ N (e.g., I = 5000).
Ensure: a weight vector α(i).
1: for i = 1, 2, . . . , I do
2: α(i) ← α(i−1);
3: for m ∈ supp(α(i)) do

4: α
(i)
m ← arg minαm∈R Gγ,λ(α

(i)
−m + αm · em | S); � α

(i)
−m := α(i) − α

(i)
m · em

5: if α
(i)
m = 0 then

6: break; � Delete m
7: end if
8: for m′ ∈ [M] \ supp(α(i)) do

9: α∗
m′ ← arg minαm′ ∈R Gγ,λ(α

(i)
−m + αm′ · em′ | S);

10: if Gγ,λ(α
(i)
−m + α∗

m′ · em′ | S) < Gγ,λ(α(i) | S) then

11: α(i) ← α(i) − α
(i)
m · em + α∗

m′ · em′ ; � Delete m and insert m′

12: break;
13: end if
14: end for
15: if α

(i)
m = 0 then

16: break;
17: end if
18: end for
19: if α(i) = α(i−1) then
20: break;
21: else
22: while not convergence do � Minimize Gγ,λ with γ = λ = 0
23: for m ∈ supp(α(i)) do

24: α
(i)
m ← arg minαm∈R L(α

(i)
−m + αm · em | S);

25: end for
26: end while
27: end if
28: end for

4.1 Learning Algorithm

Algorithm 1 presents an algorithm for solving Problem 2. Our algorithm is based
on a coordinate descent algorithm with local search proposed by Liu et al. [8,25].
Given an initial weight vector α(0), which can be efficiently obtained in practice
by solving Problem 1, we iteratively update it until the update converges or the
number of iterations reaches a given maximum number I ∈ N. Each iteration
i ∈ [I] consists of the following steps to update the current weight vector α(i):

Step 1. For each rule m ∈ supp(α(i)) in the current support, we update its
weight α

(i)
m so that our learning objective function Gγ,λ is minimized with

respect to the coordinate αm (line 4). If the weight α
(i)
m is updated to 0, then

we delete m from the support and go to Step 3.

368 K. Kanamori

Step 2. For each rule m ∈ supp(α(i)), we attempt to replace m with another
rule m′ ∈ [M] \ supp(α(i)) outside the support (line 9). For efficiency, when
we find a rule m′ that improves the objective value, we immediately delete
m by setting its weight to 0 and add m′ to the support with a weight α∗

m′ .
Step 3. If the support of α(i) is changed from that of α(i−1), we optimize the

weight of each rule in supp(α(i)) so that the empirical risk L is minimized
(line 24), and go to the next iteration i + 1.

4.2 Analytical Solution to Coordinate Update

In lines 4, 9, and 24 of Algorithm 1, we need to update the weight of each rule m
so that our learning objective Gγ,λ is minimized with respect to the coordinate
αm. We show that we can obtain an analytical solution to this coordinate update
problem if we employ the exponential loss l(y, fα (x)) = e−y·fα (x) as the loss
function l in Gγ,λ. As with the previous study on the �0-regularized classifier [25],
our idea is based on the technique of AdaBoost [13], which iteratively updates
the weight of each base learner with an analytical solution that minimizes the
exponential loss [28]. In Theorem 1, we extend the technique of AdaBoost to
obtain an analytical solution to our coordinate update problem with Gγ,λ.

Theorem 1. For a weight vector α ∈ R
M and a rule m ∈ [M] with αm = 0,

we consider the coordinate update problem that is formulated as follows:

α∗
m = arg min

α′
m∈R

Gγ,λ(α + α′
m · em | S),

where em = (em,1, . . . , em,M) ∈ {0, 1}M is a vector with em,m = 1 and em,m′ = 0
for all m′ ∈ [M] \ {m}. If the loss function l in the objective function Gγ,λ is
the exponential loss l(y, fα (x)) = e−y·fα (x), then we have

α∗
m =

{
0 if ε−

m ∈ [12 − Bm, 1
2 + Bm],

1
2 ln 1−ε−

m

ε−
m

otherwise,

where ε−
m =

1
N

∑
n∈[N]:yn·rm(x n)=−1 l(yn,fα(xn))

εm
, εm = 1

N

∑
n∈[N]:rm(xn)=1 l(yn, fα

(xn)), Bm =
√

Cm·(2·εm−Cm)

2·εm
, Cm = γ + λ · pm−ΩL(α |S)

1+| supp(α)| , and pm = 1
N

∑N
n=1

rm(xn).

Theorem 1 implies that a rule m outside the current support does not improve
the objective value if ε−

m ∈ [12 −Bm, 1
2 +Bm]; otherwise, we can update its weight

as α∗
m = 1

2 ln 1−ε−
m

ε−
m

. By Theorem 1, we can solve the coordinate update problem
in Algorithm 1 analytically. Our proof of Theorem 1 is shown in Appendix [18].

In our experiments, we employed the exponential loss as l for learning LIRE
classifiers. In addition to the existence of an analytical solution, another advan-
tage of the exponential loss is that we can efficiently compute the objective value
of the updated weight vector α + α∗

m · em by simple mathematical operations.
This is mainly because we can update the empirical risk L in our learning objec-
tive Gγ,λ by multiplying each loss term l(yn, fα (xn)) by e−yn·α∗

m·rm(xn) if l is
the exponential loss [28]. Note that the exponential loss is known to perform
well similar to the other popular loss functions, such as the logistic loss [25].

Learning Locally Interpretable Rule Ensemble 369

Fig. 2. Experimental results on the accuracy-interpretability trade-off analysis.

5 Experiments

To investigate the performance of our LIRE, we conducted numerical experi-
ments on real datasets. All the code was implemented in Python 3.7 with scikit-
learn 1.0.2 and is available at https://github.com/kelicht/lire. All the experi-
ments were conducted on Ubuntu 20.04 with Intel Xeon E-2274G 4.0 GHz CPU
and 32 GB memory.

Our experimental evaluation answers the following questions: (1) How is the
trade-off between the accuracy and interpretability of LIRE compared to Rule-
Fit? (2) How does our local interpretability regularizer affect the accuracy and
interpretability of rule ensembles? (3) How is the performance of LIRE com-
pared to the baselines on the benchmark datasets? Owing to page limitations,
the complete settings and results (e.g., dataset details, hyper-parameter tuning,
other accuracy criteria, and statistical tests) are shown in Appendix [18].

5.1 Accuracy-Interpretability Trade-Off

First, we examine the trade-off between the accuracy and interpretability of
our LIRE compared to RuleFit. We used the Adult dataset (N = 32561,D =
108) [21] and conducted 10-fold cross-validation (CV). In each fold, we trained
a random forest (RF) with 100 decision trees and obtained M = 1220.3 rules on
average as R. For interpretability, each decision tree is trained with a maximum
depth of 3; that is, the length of each rule is less than or equal to 3. Then,
we trained rule ensembles by RuleFit and our LIRE and measured their test
accuracy, support size (#Support), and average local support size on the test
set (#LocalSupport). To obtain models with different support sizes, we trained
multiple models by varying the hyper-parameter γ. For LIRE, we set λ = 1.0.

Figure 2 shows the results, where the left (resp. right) figure presents the scat-
ter plot between the test accuracy and support size (resp. local support size).
From Fig. 2, we can see that LIRE (1) attained a similar trade-off between accu-
racy and support size to RuleFit, and (2) achieved lower local support size than
RuleFit without degrading accuracy. These results suggest that our LIRE could
obtain more locally interpretable rule ensembles than RuleFit while maintaining
similar accuracy and support size. Thus, we have confirmed that our method
can realize local interpretability without compromising accuracy.

https://github.com/kelicht/lire

370 K. Kanamori

Fig. 3. Experimental results on the sensitivity of the trade-off parameter λ.

5.2 Effect of Local Interpretability Regularizer

Next, we analyze the effect of our local interpretability regularizer ΩL on rule
ensembles by varying the hyper-parameter λ. As in the previous experiment, we
used the Adult dataset and conducted 10-fold CV. We trained rule ensembles by
varying λ, and measured their average accuracy, support size, and local support
size. To control the support size, we set γ to three different values.

Figure 3 shows the average accuracy, support size, and local support size for
each λ. For γ ∈ {0.0005, 0.001}, we could reduce the local support size without
significantly degrading accuracy by increasing λ, which indicates that we could
obtain accurate and locally interpretable rule ensembles. Furthermore, we can
see that the support size also decreased for large λ while maintaining accuracy.
In contrast, for γ = 0.005, the average accuracy decreased when λ > 1.0. This
result suggests that our local interpretability regularizer ΩL may harm accuracy
when γ is large, i.e., the support size is small. Thus, to maintain accuracy with
ΩL, we need to keep the support size larger to some extent by setting γ to be
smaller. These observations give us insight into the choice of λ and γ in practice.

5.3 Performance Comparison

Finally, we evaluate the performance of our LIRE on benchmark datasets in
comparison with the existing methods. We used five datasets: three datasets
are Adult, Bank, and Heart from the UCI repository [21], and two datasets are
FICO [11] and COMPAS [3]. In addition to RuleFit, we compared LIRE with
the generalized linear rule models (GLRM) [42], another existing method for
learning rule ensembles by column generation. We also employed three complex
models as baselines: RF [5], LightGBM [20], and KernelSVM. In each fold, we
tuned the hyper-parameters of each method through hold-out validation.

Figure 4 shows the test accuracy of each method in 10-fold CV. From Fig. 4,
we can see that LIRE achieved comparable accuracy to the other rule ensembles,
as well as complex models, regardless of the datasets. Figure 5 shows the results
on the support size, local support size, and support ratio, which is defined as
the ratio of #LocalSupport to #Support for each rule ensemble. We can see
that LIRE stably achieved lower local support sizes and support ratios than

Learning Locally Interpretable Rule Ensemble 371

Fig. 4. Experimental results on the test accuracy in 10-fold cross-validation.

RuleFit and GLRM. Furthermore, LIRE also achieved lower support sizes than
RuleFit while maintaining similar accuracy, which may be caused by the effect
of our global interpretability regularizer ΩG, i.e., �0-regularization. These results
indicate that our LIRE achieved local interpretability while maintaining not only
accuracy but also support size comparable to the baselines. Therefore, we have
confirmed that we can learn more locally interpretable rule ensembles than the
baselines without degrading accuracy in the benchmark datasets.

Regarding the computational time shown in Appendix [18], LIRE was slower
than the baselines because its objective Gγ,λ includes regularizers that have com-
binatorial nature. For example, the average computation time of LIRE, RuleFit,
and GLRM on the Adult was 148.5, 9.658, and 75.93 seconds, respectively.
However, Figs. 4 and 5 indicate that LIRE achieved higher local interpretability
than the baselines without degrading accuracy within a few minutes, even for
the dataset with N > 30000 and the size of candidate rules with M > 1000.

372 K. Kanamori

Fig. 5. Experimental results on the support size in 10-fold cross-validation.

6 Related Work

Globally Interpretable Models. This paper mainly relates to the communi-
ties of interpretable machine learning [37]. With the emerging trend of leverag-
ing machine learning models in various high-stakes decision-making tasks, inter-
pretable models, such as sparse linear models [8,25,40] and rule models [2,7,
16,23,43], have attracted increasing attention in recent years. Rule ensembles,
also known as generalized linear rule models, are one of the popular rule models
based on the linear combination of weighted rules [4,10,15,19,29,30,42].

In general, rule ensembles have a trade-off between their accuracy and inter-
pretability. To achieve good generalization, rule ensembles often need to include
a sufficiently large number of weighted rules [30]. However, increasing the total
number of weighted rules degrades the interpretability of a model because it
makes the entire model hard for human users to understand [9,12,24,36]. To
address this trade-off, most of the existing methods focus on achieving accuracy
with as few weighted rules as possible through �1-regularization [10,15,19,29,42].

Our contribution is to propose another approach for addressing the accuracy-
interpretability trade-off of rule ensembles. We introduced a new concept of
interpretability for a rule ensemble model, named local interpretability, focusing
on its individual predictions rather than the model itself. Our concept has a
similar spirit to the falling rule lists [41] and locally sparse neural networks [44]
that can explain individual predictions in an interpretable manner, and is help-
ful in some practical situations where we need to explain undesired predictions
for individual users, such as loan approvals and medical diagnoses [6,36,46]. We
also empirically confirmed that we could learn more locally interpretable mod-

Learning Locally Interpretable Rule Ensemble 373

els than the existing methods while achieving comparable accuracy. Note that
our framework can be combined with the existing practical techniques of rule
ensembles, such as stabilization [4] and compression [30] of weighted rules.

Local Explanation Methods. Our approach is inspired by the recent methods
that extract local explanations of the individual predictions made by a learned
model. These methods provide local explanations in a post-hoc manner by locally
approximating the decision boundary of a model by the linear models [26,32]
or rule sets [33,38]. To improve the quality of local explanations, some papers
have proposed to regularize a model during its training so that we can obtain
better local explanations in terms of their local approximation fidelity [31] or
consistency with domain knowledge [34,35]. Our proposed method also regular-
izes a rule ensemble for the quality of local explanations, i.e., the total number
of weighted rules used for making each individual prediction, during its training.

While several post-hoc local explanation methods have been proposed, recent
studies pointed out the issue of their faithfulness to an underlying model [17,45].
Most of the existing methods have a risk that their explanations are inconsistent
with the actual behavior of the model because they generate explanations by
local approximation [1,36]. In contrast to them, the local explanations provided
by our method are faithful to the model since they consist of the weighted rules
included in the model actually and they are provided without approximation.

7 Conclusion

In this paper, we proposed a new framework for learning rule ensembles, named
locally interpretable rule ensemble (LIRE), that simultaneously achieves accu-
racy and interpretability. We introduced a new criterion of interpretability,
named local interpretability, as the total number of rules that are necessary
to explain individual predictions made by the model rather than to explain
the model itself. Then, we proposed a regularizer that promotes the local inter-
pretability of a rule ensemble, and developed an efficient learning algorithm with
the regularizer by coordinate descent with local search. By experiments, we con-
firmed that our method learns more locally interpretable rule ensembles than
the existing methods, such as RuleFit, while attaining comparable accuracy.

Limitations and Future Work. There are several future directions to improve
our LIRE. First, a theoretical analysis of the convergence property of Algorithm
1 is essential to developing a more efficient one [8]. We also need to analyze
the sensitivity of the heyper-parameters λ and γ in more detail to decide their
default values. Second, it is important to conduct user studies to evaluate our
local interpretability in real applications [9,22]. Finally, extending our local inter-
pretability to other rule models, such as decision trees, is interesting for future
work [46].

374 K. Kanamori

Ethical Statement

Existing Assets

All datasets used in Sect. 5 are publicly available and do not contain any identi-
fiable information or offensive content. As they are accompanied by appropriate
citations in the main body, see the corresponding references for more details.
Scikit-learn 1.0.21 is publicly available under the BSD-3-Clause license. All the
scripts and datasets used in our experiments are available in our GitHub repos-
itory at https://github.com/kelicht/lire.

Potential Impacts

Positive Impacts. Our proposed method, named locally interpretable rule
ensemble (LIRE), is a new framework for learning rule ensemble models. Our
LIRE can explain its individual predictions with a few weighted logical rules, i.e.,
in a transparent manner for human users. Therefore, our LIRE helps decision-
makers to validate the prediction results made by machine learning models and
ensure the transparency of their decision results in critical tasks, such as loan
approvals, medical diagnoses, and judicial decisions [36,37].

Negative Impacts. Because our method provides explanations of its individ-
ual predictions in a transparent manner, one might use the output to extract
sensitive information from the training dataset. Note, however, that such unin-
tended use can occur not only with our method but also with other interpretable
models. One possible way to mitigate this risk is to check whether the features in
a dataset used to construct the weighted rules might reveal sensitive information
before training the model on the dataset and deploying it publicly.

Limitations

In the real applications of our LIRE, there might exist three limitations. First,
as mentioned in our experiments, the computational time of LIRE was certainly
longer than those of the baselines. To overcome this limitation, we need to ana-
lyze the convergence property of our learning algorithm and develop a more
efficient one. Second, since LIRE has two hyper-parameters, λ and γ, users need
to determine these values depending on the dataset by themselves, which may
incur additional computational costs. Finally, the effectiveness of our local inter-
pretability in real situations has not yet been verified. We plan to conduct user
studies to evaluate the usefulness of our concept for human users and analyze
how much local support size is acceptable for humans [9,22].

Acknowledgement. We wish to thank Koji Maruhashi, Takuya Takagi, Ken
Kobayashi, and Yuichi Ike for making a number of valuable suggestions. We also thank
the anonymous reviewers for their insightful comments.

1 https://scikit-learn.org/stable/.

https://github.com/kelicht/lire
https://scikit-learn.org/stable/

Learning Locally Interpretable Rule Ensemble 375

References

1. Alvarez-Melis, D., Jaakkola, T.S.: On the robustness of interpretability methods.
In: Proceedings of the 2018 ICML Workshop on Human Interpretability in Machine
Learning, pp. 66–71 (2018)

2. Angelino, E., Larus-Stone, N., Alabi, D., Seltzer, M., Rudin, C.: Learning certifi-
ably optimal rule lists. In: Proceedings of the 23rd ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, pp. 35–44 (2017)

3. Angwin, J., Larson, J., Mattu, S., Kirchner, L.: Machine Bias - ProPublica
(2016). www.propublica.org/article/machine-bias-risk-assessments-in-criminal-
sentencing. Accessed 20 June 2023

4. Bénard, C., Biau, G., da Veiga, S., Scornet, E.: Interpretable random forests via
rule extraction. In: Proceedings of the 24th International Conference on Artificial
Intelligence and Statistics, pp. 937–945 (2021)

5. Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001)
6. Caruana, R., Lou, Y., Gehrke, J., Koch, P., Sturm, M., Elhadad, N.: Intelligible

models for healthcare: predicting pneumonia risk and hospital 30-day readmission.
In: Proceedings of the 21th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, pp. 1721–1730 (2015)

7. Dash, S., Günlük, O., Wei, D.: Boolean decision rules via column generation. In:
Proceedings of the 32nd International Conference on Neural Information Process-
ing Systems, pp. 4660–4670 (2018)

8. Dedieu, A., Hazimeh, H., Mazumder, R.: Learning sparse classifiers: continuous
and mixed integer optimization perspectives. J. Mach. Learn. Res. 22(135), 1–47
(2021)

9. Doshi-Velez, F., Kim, B.: Towards a rigorous science of interpretable machine learn-
ing. arXiv, arXiv:1702.08608 (2017)

10. Eckstein, J., Goldberg, N., Kagawa, A.: Rule-enhanced penalized regression by
column generation using rectangular maximum agreement. In: Proceedings of the
34th International Conference on Machine Learning, pp. 1059–1067 (2017)

11. FICO, Google, Imperial College London, MIT, University of Oxford, UC Irvine,
UC Berkeley: Explainable Machine Learning Challenge (2018). www.community.
fico.com/s/explainable-machine-learning-challenge. Accessed 20 June 2023

12. Freitas, A.A.: Comprehensible classification models: a position paper. ACM
SIGKDD Explor. Newsl. 15(1), 1–10 (2014)

13. Freund, Y., Schapire, R.E.: A decision-theoretic generalization of on-line learning
and an application to boosting. J. Comput. Syst. Sci. 55(1), 119–139 (1997)

14. Friedman, J., Popescu, B.E.: Gradient directed regularization for linear regres-
sion and classification. Statistics Department, Stanford University, Technical report
(2003)

15. Friedman, J.H., Popescu, B.E.: Predictive learning via rule ensembles. Ann. Appl.
Stat. 2(3), 916–954 (2008)

16. Hu, X., Rudin, C., Seltzer, M.: Optimal sparse decision trees. In: Proceedings of
the 33rd International Conference on Neural Information Processing Systems, pp.
7265–7273 (2019)

17. Jacovi, A., Goldberg, Y.: Towards faithfully interpretable NLP systems: how should
we define and evaluate faithfulness? In: Proceedings of the 58th Annual Meeting
of the Association for Computational Linguistics, pp. 4198–4205 (2020)

18. Kanamori, K.: Learning locally interpretable rule ensemble. arXiv
arXiv:2306.11481 (2023)

www.propublica.org/article/machine-bias-risk-assessments-in-criminal-sentencing
www.propublica.org/article/machine-bias-risk-assessments-in-criminal-sentencing
http://arxiv.org/abs/1702.08608
www.community.fico.com/s/explainable-machine-learning-challenge
www.community.fico.com/s/explainable-machine-learning-challenge
http://arxiv.org/abs/2306.11481

376 K. Kanamori

19. Kato, H., Hanada, H., Takeuchi, I.: Safe rulefit: learning optimal sparse rule model
by meta safe screening. IEEE Trans. Pattern Anal. Mach. Intell. 45(2), 2330–2343
(2023)

20. Ke, G., et al.: LightGBM: a highly efficient gradient boosting decision tree. In:
Proceedings of the 31st International Conference on Neural Information Processing
Systems, pp. 3149–3157 (2017)

21. Kelly, M., Longjohn, R., Nottingham, K.: The UCI machine learning repository
(2023). www.archive.ics.uci.edu/. Accessed 20 June 2023

22. Lage, I., et al.: Human evaluation of models built for interpretability. In: Proceed-
ings of the 7th AAAI Conference on Human Computation and Crowdsourcing, pp.
59–67 (2019)

23. Lakkaraju, H., Bach, S.H., Leskovec, J.: Interpretable decision sets: a joint frame-
work for description and prediction. In: Proceedings of the 22nd ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, pp. 1675–1684
(2016)

24. Lipton, Z.C.: The mythos of model interpretability: in machine learning, the con-
cept of interpretability is both important and slippery. Queue 16(3), 31–57 (2018)

25. Liu, J., Zhong, C., Seltzer, M., Rudin, C.: Fast sparse classification for generalized
linear and additive models. In: Proceedings of the 25th International Conference
on Artificial Intelligence and Statistics, pp. 9304–9333 (2022)

26. Lundberg, S.M., Lee, S.I.: A unified approach to interpreting model predictions. In:
Proceedings of the 31st International Conference on Neural Information Processing
Systems, pp. 4765–4774 (2017)

27. Miller, T.: Explanation in artificial intelligence: insights from the social sciences.
Artif. Intell. 267, 1–38 (2019)

28. Mohri, M., Rostamizadeh, A., Talwalkar, A.: Foundations of Machine Learning.
The MIT Press, Cambridge (2012)

29. Nakagawa, K., Suzumura, S., Karasuyama, M., Tsuda, K., Takeuchi, I.: Safe pat-
tern pruning: an efficient approach for predictive pattern mining. In: Proceedings
of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, pp. 1785–1794 (2016)

30. Nalenz, M., Augustin, T.: Compressed rule ensemble learning. In: Proceedings
of the 25th International Conference on Artificial Intelligence and Statistics, pp.
9998–10014 (2022)

31. Plumb, G., Al-Shedivat, M., Cabrera, A.A., Perer, A., Xing, E., Talwalkar, A.:
Regularizing black-box models for improved interpretability. In: Proceedings of
the 34th International Conference on Neural Information Processing Systems, pp.
10526–10536 (2020)

32. Ribeiro, M.T., Singh, S., Guestrin, C.: “Why Should I Trust You?”: explaining the
predictions of any classifier. In: Proceedings of the 22nd ACM SIGKDD Interna-
tional Conference on Knowledge Discovery and Data Mining, pp. 1135–1144 (2016)

33. Ribeiro, M.T., Singh, S., Guestrin, C.: Anchors: high-precision model-agnostic
explanations. In: Proceedings of the 32nd AAAI Conference on Artificial Intel-
ligence, pp. 1527–1535 (2018)

34. Rieger, L., Singh, C., Murdoch, W., Yu, B.: Interpretations are useful: penalizing
explanations to align neural networks with prior knowledge. In: Proceedings of the
37th International Conference on Machine Learning, pp. 8116–8126 (2020)

35. Ross, A.S., Hughes, M.C., Doshi-Velez, F.: Right for the right reasons: training
differentiable models by constraining their explanations. In: Proceedings of the
26th International Joint Conference on Artificial Intelligence, pp. 2662–2670 (2017)

www.archive.ics.uci.edu/

Learning Locally Interpretable Rule Ensemble 377

36. Rudin, C.: Stop explaining black box machine learning models for high stakes
decisions and use interpretable models instead. Nat. Mach. Intell. 1, 206–215 (2019)

37. Rudin, C., Chen, C., Chen, Z., Huang, H., Semenova, L., Zhong, C.: Interpretable
machine learning: fundamental principles and 10 grand challenges. Stat. Surv. 16,
1–85 (2022)

38. Rudin, C., Shaposhnik, Y.: Globally-consistent rule-based summary-explanations
for machine learning models: application to credit-risk evaluation. J. Mach. Learn.
Res. 24(16), 1–44 (2023)

39. Tibshirani, R.: Regression shrinkage and selection via the lasso. J. Roy. Stat. Soc.
Ser. B (Stat. Methodol.) 58, 267–288 (1994)

40. Ustun, B., Rudin, C.: Learning optimized risk scores. J. Mach. Learn. Res. 20(150),
1–75 (2019)

41. Wang, F., Rudin, C.: Falling rule lists. In: Proceedings of the 18th International
Conference on Artificial Intelligence and Statistics, pp. 1013–1022 (2015)

42. Wei, D., Dash, S., Gao, T., Gunluk, O.: Generalized linear rule models. In: Pro-
ceedings of the 36th International Conference on Machine Learning, pp. 6687–6696
(2019)

43. Yang, H., Rudin, C., Seltzer, M.: Scalable bayesian rule lists. In: Proceedings of
the 34th International Conference on Machine Learning, pp. 3921–3930 (2017)

44. Yang, J., Lindenbaum, O., Kluger, Y.: Locally sparse neural networks for tabular
biomedical data. In: Proceedings of the 39th International Conference on Machine
Learning, pp. 25123–25153 (2022)

45. Yoon, J., Arik, S.O., Pfister, T.: LIMIS: locally interpretable modeling using
instance-wise subsampling. Transactions on Machine Learning Research (2022).
www.openreview.net/forum?id=S8eABAy8P3

46. Zhang, G., Gionis, A.: Regularized impurity reduction: accurate decision trees with
complexity guarantees. Data Min. Knowl. Disc. 37(1), 434–475 (2023)

www.openreview.net/forum?id=S8eABAy8P3

XAI with Machine Teaching When
Humans Are (Not) Informed About

the Irrelevant Features

Brigt Arve Toppe H̊avardstun1(B), Cèsar Ferri2, Jose Hernández-Orallo2,
Pekka Parviainen1, and Jan Arne Telle1

1 Department of Informatics, University of Bergen, Bergen, Norway
{brigt.havardstun,pekka.parviainen,jan.arne.telle}@uib.no

2 VRAIN, Universitat Politècnica de València, Valencia, Spain
cferri@dsic.upv.es, jorallo@upv.es

Abstract. Exemplar-based explainable artificial intelligence (XAI)
aims at creating human understanding about the behaviour of an AI sys-
tem, usually a machine learning model, through examples. The advantage
of this approach is that the human creates their own explanation in their
own internal language. However, what examples should be chosen? Exist-
ing frameworks fall short in capturing all the elements that contribute to
this process. In this paper, we propose a comprehensive XAI framework
based on machine teaching. The traditional trade-off between the fidelity
and the complexity of the explanation is transformed here into a trade-
off between the complexity of the examples and the fidelity the human
achieves about the behaviour of the ML system to be explained. We anal-
yse a concept class of Boolean functions that is learned by a convolutional
neural network classifier over a dataset of images of possibly rotated and
resized letters. We assume the human learner has a strong prior (Kar-
naugh maps over Boolean functions). Our explanation procedure then
behaves like a machine teaching session optimising the trade-off between
examples and fidelity. We include an experimental evaluation and several
human studies where we analyse the capacity of teaching humans these
Boolean function by means of the explanatory examples generated by our
framework. We explore the effect of telling the essential features to the
human and the priors, and see that the identification is more successful
than by randomly sampling the examples.

1 Introduction

In the field of eXplainable AI (XAI), there are multiple ways to explain humans
how an AI system works, one of them being example-based XAI [16,21,24],

A preliminary version of this work was presented as a poster at AAIP@IJCLR2022.
Supported by the Norwegian Research Council, project Machine Teaching for XAI.

Supplementary Information The online version contains supplementary material
available at https://doi.org/10.1007/978-3-031-43418-1 23.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
D. Koutra et al. (Eds.): ECML PKDD 2023, LNAI 14171, pp. 378–393, 2023.
https://doi.org/10.1007/978-3-031-43418-1_23

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-43418-1_23&domain=pdf
https://doi.org/10.1007/978-3-031-43418-1_23
https://doi.org/10.1007/978-3-031-43418-1_23

XAI with Machine Teaching 379

where the XAI system aims to find examples showing how the machine learn-
ing system acts in different situations. Machine teaching is the research area of
actively selecting an optimal (e.g., minimal) set of examples so that a learner
can identify a given concept or model [27]. The goal is for the teacher to find
the smallest training set—known as the teaching or witness set—such that, a
learning algorithm, when given the teaching set as an input, produces a tar-
get concept. In this work, we propose a framework based on machine teaching
techniques where the XAI system (the teacher) provides explanatory examples
to humans (the learners). The target concept is (a part of) the black-box AI
system that needs explanation. The machine teaching algorithm must find a
small set of labelled examples that will allow the human to build their own
model of the AI system and thereby arrive at an explanation of the target con-
cept [17,19]. We demonstrate the validity of our proposal by including some
results of an experimental evaluation where we evaluate the results of teaching
a black-box model to humans. Specifically, the black box to explain is an artifi-
cial neural network learned from images generated by Boolean expressions. We
choose Boolean functions because the notions of prototype, centroid, anchors or
boundary examples are more elusive in discrete concept classes like this, but we
also use neural networks that might use some other features. We analyse the
effect of giving humans information about how the examples were chosen and
indications about the relevant features. The results show that our framework
can generate explanatory examples useful to teach humans Boolean functions,
better than sampling examples at random.

The paper is structured as follows. In Sect. 2 we review part of the literature
related to XAI and machine teaching. Section 3 describes the framework we
developed to generate explanatory witness sets. We instantiate that method for
explaining neural network classifiers of images representing Boolean concepts in
Sect. 4. Section 5 describes the experiments and human studies, and discusses
the results. Finally, Sect. 6 closes the paper with conclusions and future work.

2 Machine Teaching for XAI

Explainable AI (XAI) is an active research field aiming at explaining the decisions
of AI systems [16]. Machine learning is a key component of many AI systems, and
therefore XAI usually focuses on explaining machine learning models [7,22].

Explainable AI must usually face several trade-offs, such as the tension
between fidelity (level of coincidence between the predicted or understood
behaviour of the system and the actual behaviour of the model) and com-
prehensibility (how much effort it takes for the human to understand) [5]. In
general, making useful explanations among these tensions requires a great deal
of abstraction, additionally modelling machine behaviour [20] in a way that is
comprehensible to humans.

XAI approaches are divided into two families. In the first one, the goal is to
extract an abstract representation of the AI system to serve as an explanation to
a human. An example of this approach is extracting comprehensible rules from

380 B. A. T. H̊avardstun et al.

models [3]. In the second family, the goal is to use examples such that humans
can infer their explanation themselves, known as exemplar-based explanations.
An example of this approach is using anchors or partial examples [21].

Machine teaching [26] is a research field that is sometimes considered as
an inverse problem to machine learning. In machine teaching the examples are
chosen wisely by a teacher to teach a concept to the learner. Figure 1 shows
a situation where the teacher has the concept of reversing a list. The teacher
could try to explain the concept, but the languages employed by the learner
and teacher might not be the same. In this situation, as happens with humans
frequently, a few examples may be more effective. In the image, the teacher sends
a couple of input-output pairs to the learner, thinking that this would be useful
for the learner to build and identify the concept.

Fig. 1. Machine teaching example. The teacher tries to teach the concept of the reverse
of a string. The teacher selects two examples carefully and shows them to the learner:
the input string abcd being mapped into dcba, and the input string aaabbb being mapped
into bbbaaa. The learner must infer the concept from only these two examples.

Mainly, machine teaching has been used to comprehend and depict how
humans teach. An example is the analysis conducted by [12], which examines
the teaching of 1D concepts (intervals) to machines, comparing a machine teach-
ing environment with a curriculum learning environment. In both instances, the
question is whether humans provide examples at the boundaries to assist the
learner in replicating these boundaries or if they provide examples in clear areas
so that the user can interpolate, as outlined by [1].

Our focus lies in machine teaching for the purpose of explaining concepts to
humans [8]. In certain models, the teacher can interact with the learner by posing
questions (e.g., [15]). On the other hand, some methods have attempted to expand
the machine teaching framework by using examples to achieve explainable AI. A
few proposals stray from the traditional machine teaching approach and instead
utilize well-selected demonstrations in inverse reinforcement learning [9], or in the
Cooperative Inverse Reinforcement Learning (CIRL) framework [6].

Yang et al. [25] evaluated the effectiveness of example-based explanations for
AI using Bayesian Teaching, with a focus on high sensitivity and high specificity,
and we will compare our findings to theirs. Another approach to teaching for
XAI is the decomposition of the learner’s hypothesis into an attention function
and a decision function, as proposed by Chen et al. [2]. Ouyang [18] presents an
algorithm for the Bayesian inference of regular expressions using examples. The
teaching paradigm proposed is also linked to how humans communicate and how
the speaker chooses the appropriate word based on their listener.

XAI with Machine Teaching 381

3 A MT Framework to Generate Explanatory Teaching
Sets

In machine teaching, the teacher T is viewed as a function from concepts to sets
of labelled examples, with T (θ) = S denoting the labelled examples S the teacher
employs to teach concept θ. Likewise, the learner L is viewed as a function from
sets of labelled examples to concepts, and we require that the concept guessed by
the learner is compatible with the given examples S, denoted L(S) |= S. Correct
teaching is achieved if L(T (θ)) = θ, i.e. the guessed concept is indeed the one
the teacher had in mind. To achieve an efficient teaching protocol we employ
simplicity β on concepts and δ on example sets (Occam’s razor), as in [23]. β
is shared by learner and teacher, and δ is used to prioritise simple witness set.
When applying this to XAI the concept θAI can be the entire AI model to be
explained or some particular substructure. To build our XAI system we employ
i) an machine learning algorithm LM modelling the human learner LH with its
simplicity prior β on guessed concepts, ii) a simplicity prior δ on example sets,
and iii) a loss function λ giving a penalty for deviations of the guess θM from
the intended θAI .

We propose a parameterised framework to generate explanatory examples
from a black-box model θAI . In the framework, we explore the trade-off between
fidelity (squared error of the guessed model compared to the black-box model)
and teaching complexity (measured as the complexity of the set of labelled exam-
ples used as a teaching set) [14,24]. The framework is defined as:

T (θAI) = argmin
S:θAI |=S

{δ(S) + μ · λ(θAI , θM) : LM (S) = θM} (1)

LM (S) = argmin
θM :θM |=S

{β(θM)}

In these equations T is a teacher, aiming to teach a concept θAI to a human
learner LH , by finding a teaching set S such that LH(S) = θAI . To achieve
automation and increase iteration speed a model LM of LH is used, and the
teacher will therefore aim for T (θAI) = S s.t. LM (S) = θAI . The fidelity func-
tion becomes 1−λ and it measures how closely the guessed concept θM matches
the concept θAI , while the factor μ allows us to balance the influence of com-
plexity (δ) and fidelity (1 − λ). In this work, we present an implementation1 of
Eq. 1 tested on a machine learning model trained on images generated by basic
Boolean functions.

4 Obtaining Explanatory Examples from a Neural
Network

In this section we discuss how the framework presented in the previous section
is applied to a black-box model represented by a neural network learned from
images generated by basic Boolean functions.
1 https://github.com/BrigtHaavardstun/ExplainableAI.

https://github.com/BrigtHaavardstun/ExplainableAI

382 B. A. T. H̊avardstun et al.

4.1 The Black-Box Model θAI

For the experimental setting, we implemented our own θAI , with the task of
learning a Boolean function on four variables, φ(A,B,C,D). Determining the
subjective difficulty of learning Boolean functions has been addressed in the
literature, see e.g. [4]. The input to θAI will be a bitmap containing a subset of
letters from the alphabet Σ = {A,B,C,D}, with the letters present being the
variables set to True. The bitmaps thus represent an example, with letters being
rotated and scaled and placed randomly. This gives us the possibility of extensive
training data for our AI. The output space of θAI is {0, 1}. For instance, with
the concept φ = (A∧B)∨ (C ∧D), we label an example 1 if φ evaluates to True,
and 0 if φ evaluates to False.

We chose a Convolutional Neural Network (CNN) [13], as a common tech-
nique for images, while at the same time not interpretable by themselves, making
them a good choice for generating our θAI . We implemented a CNN with 8 layers
in Python using Keras and TensorFlow.

4.2 The Model of the Human LM

For simplicity, our model LM of the human learner will not be given bitmaps as
examples. Instead, it takes as input the letters present in each image. We thus
hypothesise that the human will pay attention to the letters present in the image
and disregard other information such as rotation, size and position.

The hypothesis class of LM will consist of all Boolean functions over the 4-
letter alphabet. Then, given a teaching set like S = {(AC, 0), (AD, 0), (BD, 0),
(AB, 1), (BC, 1), (CD, 1)}, we must decide how LM will act. We assume a human
constructs something like a partial truth table, in this case with 3 rows out of
24 = 16 rows total filled with True, 3 rows filled with False, and 10 rows filled
with Don’t-Cares (x). Applying Occam’s razor, we need to define the function
β, to choose the Boolean function that is most simple and adheres to these
constraints. A commonly accepted answer is the use of Karnaugh maps [11].

We use disjunctive normal form (DNF) which mimics human reasoning. To
verify a positive instance you need only to confirm one clause, whereas to confirm
a negative instance you always need to check all clauses. The resource-heavy
task of confirming a negative compared to a positive is somewhat similar to how
humans are poor at negations [10]. For each teaching set the Karnaugh map
technique can find many possible DNFs, and in the spirit of K-map minimization
we use the following scheme to pick the simplest. The DNFs are sorted in order
by fewest clauses, and to break ties we compare clauses starting from the simplest
one, using the criteria 1) fewest variables, 2) fewest negations, 3) lexicographic
order. This defines β and gives us a unique Boolean formula in DNF form for
each teaching set.

4.3 The Fidelity Function 1 − λ

When we want to compare θAI and θM , we need to view the former as an
approximation to some Boolean function, but also being affected by the loca-

XAI with Machine Teaching 383

tion, rotation, etc., of the letter. Consequently, for each subset of letters (logical
example), we estimate the percentage of images containing exactly these letters
that θAI evaluates to True on new images, based on the full training set. We
get values like the top row in Table 1. We observe that θAI predicts some letter
groups the same and is more undecided on other letter combinations.

Table 1. Top row shows the percentage of bitmaps on letters for that column for which
θAI evaluates to True. Bottom row shows the truth table of θM = (A ∧ B) ∨ (C ∧ ¬A),
and λ(θAI , θM) = 0.2222

16
≈ 0.0139 is the MSE of the difference of all 16 columns, giving

fidelity 0.9861.

Symbol ∅ A B C D AB AC AD BC BD CD ABC ABD ACD BCD ABCD

θAI predicts 0.00 0.00 0.00 0.95 0.00 0.99 0.02 0.00 0.63 0.02 0.91 1.00 1.00 0.04 0.74 1.00

θM evaluates 0 0 0 1 0 1 0 0 1 0 1 1 1 0 1 1

To evaluate how well the θM , returned by the learner as the Boolean formula
minimizing β, matches θAI , we use its truth table as in the bottom row of
Table 1. We then compare the two rows (for θAI and θM) using Mean Square
Error (MSE) to get λ and fidelity 1 − λ.

We have experimented with various definitions for the complexity function,
to punish large and complicated teaching sets S. The chosen δ is a simple squared
sum of the number of variables present in each example, plus 0.1 for the empty
set (corresponding to setting no variable to True). We thus keep low the total
number of variables in all examples while simultaneously putting a high cost on
a single large example. Note that the δ values are typically much higher than
the λ values, so in our first set of experiments we set the multiplicative factor
μ = 800 when computing the aggregated score δ(S) + μ · λ(θAI , θM).

4.4 The Teacher T

The goal of the teacher is to find a teaching set explaining θAI , by iterating
over potential teaching sets. For each teaching set S, we compute LM (S) = θM

as described earlier, and the aggregate score δ(S) + μ · λ(θAI , θM). During the
iteration we retain the best aggregate score. For these experiments the iteration
is an exhaustive search.

5 Experimental Evaluation

Given the previous setting we performed a set of experiments using different
concepts and parameters to analyse the effect of several elements in the machine
teaching process on explaining the behaviour of various AI models. In particular,
we played with AI models trained on different sized training sets, which approx-
imate the original Boolean function to different levels of accuracy. Depending on
how well the AI is approximated by a Boolean function the trade-off parameter
μ between fidelity (1 − λ) and teaching complexity (δ) has different effects.

384 B. A. T. H̊avardstun et al.

5.1 Generation of Teaching Sets

5.1.1 Fixed μ for Varying Models. We trained nine different ΘAI models
with differently sized data sets. In this first experiment, all models are trained
with the ground truth φ = (A ∧ B) ∨ C and the alphabet Σ = {A,B,C}. The
data set sizes used in the experiment are: {10, 50, 100, 500, 1000, 2000, 5000,
10000, 50000}. Accordingly, we denote the different models: {AI10, AI50, AI100,
AI500, AI1000, AI2000, AI5000, AI10000, AI50000}.

In Table 2 we show several results. In the first row we see the expected result
that the accuracy of the models wrt the original concept φ increases as more
training examples were given to the neural network. In the next rows we show the
Boolean expression that best approximates the model, with its associated highest
possible fidelity (1 − λ) over all Boolean functions. We see that the language of
Boolean functions obtains a perfect match for the case of AI10 (because the
underlying concept is very simple, always predicting True, which is a Boolean
function) and almost perfect for AI10000 and AI50000 (because the number of
training examples leads to a concept that is very close to φ). Note that also in
other cases the most accurate Boolean function is φ (from AI2000 and up).

Table 2. Several ΘAI models AIt trained for size t of training examples for φ =
AB + C = (A ∧ B) ∨ C. We first show accuracy with respect to φ. The next two rows
show the closest Boolean expression (AB+C from AI2000 and on) and its fidelity value
1 − λ. Then we do teaching with μ = 800, and show the Boolean concept taught by
the system, the teaching set and its complexity, the fidelity and aggregate score.

AIs AI10 AI50 AI100 AI500 AI1000 AI2000 AI5000 AI10000 AI50000

Accuracy

AB+C

62.50 72.85 78.38 81.01 88.47 91.42 94.74 98.72 99.36

Boolean with

highest 1 − λ

Always

True

A+B+C A+B+C AB+

AC+BC

AB+

AC+BC

AB+C AB+C AB+C AB+C

Highest 1− λ 1 0.927 0.9578 0.9226 0.9843 0.9752 0.9936 0.9994 0.9999

Model

taught θM

Always

True

A+B+C A+B+C A+C AB+

AC+BC

AB+C AB+C AB+C AB+C

Teaching Set

S

{(∅,1)} {(∅,0),
(A,1),

(B,1),

(C,1)}

{(∅,0),
(A,1),

(B,1),

(C,1)}

{(∅,0),
(A,1),

(C,1)}

{(A,0),

(AB,1),

(AC,1),

(B,0),

(BC,1),

(C,0)}

{(A,0),

(AB,1),

(B,0),

(C,1)}

{(A,0),

(AB,1),

(B,0),

(C,1)}

{(A,0),

(AB,1),

(B,0),

(C,1)}

{(A,0),

(AB,1),

(B,0),

(C,1)}

δ(S) 0.1 3.1 3.1 2.1 15 7 7 7 7

1 −
λ(AIx, θM)

1 0.927 0.9578 0.9179 0.9843 0.9752 0.9936 0.9994 0.9999

δ + 800λ 0.1 61.52 36.71 67.82 27.63 26.84 12.17 7.49 7.09

Now let us look at the next few rows showing results for the teaching frame-
work when run with the chosen parameter μ = 800. First we show the Boolean
concept θM that is actually taught by the system and note that it is almost
always equal to the Boolean concept with highest fidelity (1 − λ) value in the
2nd row. The only exception is AI500 where the trade-off between δ and λ favours

XAI with Machine Teaching 385

the Boolean concept A ∨ C instead of (A ∧ B) ∨ (A ∧ C) ∨ (B ∧ C) because the
teaching set for the former is much simpler (δ = 2.1) than the teaching set for
the latter (δ = 15 as can be seen under AI1000). The next rows show the teaching
set employed, its δ value, the fidelity value and the aggregate score.

There are three clear cases in the table (AI10, AI10000 and AI50000) where
a simple teaching set allows the teacher to convey a concept to the learner
that very closely captures the model. But there are other cases, such as AI1000
and AI2000, where the situation is less clear. For AI1000 the fidelity is not bad
(1 − λ = 1 − 0.0157 = 0.9843) but the complexity of teaching becomes high
(δ = 15) so even if a sufficiently accurate concept can be taught this is at the
cost of a higher effort from the learner. For AI2000 we see that this cost is reduced
but the fidelity is worse (1 − λ = 1 − 0.0248 = 0.9752).

5.1.2 Varying μ for a Single Model. In a second experiment we trained a
ΘAI model on a data set of size 350 for φ = (A ∧ B) ∨ (C ∧ D) = AB + CD on
4 variables/letters. The accuracy was 78.25% and the closest Boolean function,
with a fidelity value 1 − λ of 1 − 0.06 = 0.94, turned out to be ABC + ABD +
ACD + BCD, which can be interpreted as “True if and only if at least 3 letters
present”. To investigate the trade-off between fidelity and complexity, teaching
was done with varying values of μ, see left column in Table 3. We see that as μ
increases more emphasis is put on fidelity at expense of complexity. Note that at
μ = 3200 the fidelity is as good as possible (i.e. highest possible 1 − λ) since the
teaching set at μ = 3200 is optimal for that optimal θM so increasing μ will have
no effect. Of course, this comes at the expense of a high complexity. An option
worth exploring is to take the characteristics of the human user into account
when deciding on the fidelity vs complexity trade-off, e.g., having a high value
of μ for an expert and a low value for a non-expert.

Table 3. Results for a single AI model where the closest Boolean function turned out
to be ABC+ABD+ACD+BCD. Teaching was done with varying values of μ, see left
column. As μ increases more emphasis is put on lower fidelity 1 − λ = 1 − λ(θAI , θM)
at expense of higher teaching complexity δ.

Range μ Model taught θM 1 − λ δ Teaching set

16 A 0.812 1.1 {(∅, 0),(A,1)}
160–960 AC+BD 0.9119 12 {(A,0),(B,0),(C,0),(D,0),(AC,1),(BD,1)}
1120–1840 AC+BCD+AD 0.9282 30 {(A,0),(AC,1),(AD,1),(BC,0),(BD,0),(CD,0)}
1920–2400 AC+ABD+BCD 0.9344 42 {(AC,1),(AB,0),(AD,0),(BC,0),(BD,0),(CD,0),

(ABD,1),(BCD,1)}
3200–∞ ABC+ABD+ ACD+BCD 0.94 60 {(AB,0),(AC,0),(AD,0),(BC,0),(BD,0),(CD,0),

(ABC,1),(ABD,1),(ACD,1),(BCD,1)}

This second experiment also shows that it is not difficult to determine when
the language used for the explanation leads to low fidelity and/or complex expla-
nations. Actually, in this case, since the function captured by the AI model does
not have a clean Boolean concept, we can detect that teaching will either lead to

386 B. A. T. H̊avardstun et al.

low fidelity or complex explanation (or both). In sum, the use of the complex-
ity of the teaching set in the trade-off is not only the right choice when doing
example-based XAI but it also leads to the same insights as when the complexity
of the concept is taken into account.

5.2 Different Hypothesis Spaces

This section will examine the effects of different hypothesis spaces (representa-
tion languages) between the AI model, the ground truth, the model of the learner
LM and the actual human learner LH . In our exemplar-based explanation sys-
tem, we added letter rotations, letter resizing and letter location as cognitive
noise and extra features, so that we have more confounders, and motivated by
these spurious variations the neural network will have error with respect to the
ground truth. This makes things more realistic, with the neural network creating
patterns that are not fully captured by LM . A neural network trained on images
can in principle model functions over all possible images creating an enormous
hypothesis space Hpix. On the other hand, the ground truth labelling function
is on a small set of features, i.e. the presence or absence of k letters, giving the
small hypothesis space Hpk , with p = {0, 1} indicating the two possibilities of
present or absent. When the actual human learner LH is given a set of labelled
images from the example space Hpix, they will create a rule based on the features
of the images they consider relevant.

Our exemplar-based explanation system has a focus on the simplicity of
examples, and so far this has been with respect to the δ function. But sim-
plicity also comes into play when generating images with certain letters present.
The simplest images contain letters that all have the same size, with no rotation
and with uniform placement, and these can be used as the simplified examples
most compatible with the smaller example space Hpk . The research question we
want to address with the following experiment is whether using such simplified
examples helps align the hypothesis spaces.

The experiment will compare the options for aligning the hypothesis spaces,
by three groups that are given the teaching sets in different formats

– Group I: Use original images.
– Group II: Use simplified images, without irrelevant features.
– Group III: Use original images, but alert learners to essential features

We created a 2AFC (two-alternative forced choice) survey. Participants were
shown a teaching set of carefully selected images and the (binary) classification
of these images into Box 1 or Box 2 (True/False). They were then shown a test
set of unclassified images and tasked to classify each image into one either Box 1
or Box 2. In Fig. 2, we display how these tasks were presented to the participants.

The teaching sets were selected according to the system presented in the
earlier sections. The test sets were randomly selected with the restriction that
exactly one image should contain the same letter combination as one in the
teaching set.

XAI with Machine Teaching 387

Fig. 2. Participants in group II were presented with this screen when tested on the
formula φ3 (C or both A and B). Note the teaching set for Box 1 (True) and Box
2 (False) have images without the noise (rotation, resizing and relocation) found in
the five images of the Test Set. For Groups I and III also the teaching set had noise.
For group III the following text was displayed prominently: “NB: Size, placement and
rotation do not matter. Focus on present/absent letters.”

In total, we trained six AI models (called ‘robots’ in the survey) to be tested.
All of them were trained to a high degree of accuracy. Each robot was trained
on a different Boolean expression φ.

We asked each participant to classify five test instances for each Boolean
expression φ. The participant’s answer to the ith test is denoted p(φ, i). The cor-
rect answer to each test is given by φ(i). To calculate a participant’s score for a
single Boolean expression, we use the following formula: p(φ) = 1

6

∑6
i=1[p(φ, i) =

φ(i)] where: p(φ, i) = φ(i) is 1 if the participant’s answer is correct and 0 oth-
erwise. We then calculate the score of the jth participant across all Boolean
expressions as follows: pj = 1

6

∑6
i=1 p(φi). Here, p(φi) represents the partici-

pant’s score for the ith Boolean expression.
In total, we had 42 voluntary participants, who were master students, doc-

toral students or faculty in informatics, none of whom received compensation.
The participants were presented with the survey and freely choose to participate.
The participants were randomly assigned to the groups, with 12 participants in
group I, 17 in group II, and 13 in group III.

The average scores for Groups I, II, and III were 0.564, 0.664, and 0.732,
respectively. Furthermore, we observed that group III had the highest average
score on 5 out 6 test instances. Though the results are not conclusive due to the
small sample size2, we decided to move on with option III, as we know that the
teacher should do something to align the hypothesis spaces of LM and LH to
achieve efficient learning. Next, we look at the quality of the teaching sets, by
comparing our teacher to a teacher randomly selecting teaching sets of similar
complexity, with both presenting the teaching sets as group III.

2 We conducted t-tests for all pairs of groups to test whether means differ statistically
significantly and got p-values 0.0297, 0.0013, and 0.0747 for pairs (I, II), (I, III)
and (II, III), respectively.

388 B. A. T. H̊avardstun et al.

5.3 Compare to Teaching Sets Chosen Randomly

In this section, we discuss a second survey where we compare the teaching sets
given by our exemplar-based explanation system (the smart teacher) to a system
where the teaching sets are chosen randomly but correctly labelled and without
repetitions (the random teacher).

To make the comparison of the random teacher and smart teacher fair, both
will present their teaching sets as in group III. For a given Boolean formula, we
first find the teaching set SS used by the smart teacher, and then we ensure that
the random teaching set SR has a complexity (δ∗-value3) close to SS (i.e. within
some ±ε additive difference) by choosing SR as follows, while making sure that
no letter combination is repeated in SR:

1. while δ(SR) < δ(SS) − ε → add a random new image to SR

2. if δ(SS) − ε ≤ δ(SR) ≤ δ(SS) + ε → use SR

3. if δ(SS) + ε < δ(SR) then set SR = ∅ and restart from 1.

To avoid bias from the previous survey, we changed most Boolean expres-
sions for the new survey. They were (again) chosen with a variation in terms of
expected difficulty, see Table 4. The formulas used can be found in Table 4.

Table 4. Boolean expressions used in the second survey.

Nr Prior LH Short description Boolean expression

φ1 High Less Than Two Letters (¬A ∧ ¬B ∧ ¬D) ∨ (¬B ∧ ¬C ∧ ¬D)∨
(¬A ∧ ¬C ∧ ¬D) ∨ (¬A ∧ ¬B ∧ ¬C)

φ2 Medium A or both B and D (B ∧ D) ∨ A

φ3 Medium B or D B ∨ D

φ4 High Exactly One Letter (A∧¬B∧¬C∧¬D)∨(¬A∧B∧¬C∧¬D)∨
(¬A∧¬B ∧C ∧¬D)∨ (¬A∧¬B ∧¬C ∧D)

φ5 Medium No D ¬D

Both groups GS given smart teaching sets and GR given random teaching
sets will be shown the same test sets, and we now discuss how to generate the
testing sets. When generating testing sets, we want them to be fair with regards
to both teaching sets SS and SR so that none of them get an unfair advantage.
Define l(S) to be the set of letter combinations in the teaching set S, and define
X to be the set of all images. We generate test sets for SS and SR by choosing
images from X as follows, while ensuring that each letter combination appears
at most once:

1. As long as there are new letter combinations in l(X)/(l(SR) ∪ l(SS)), choose
such an image at random.

2. Otherwise, fill the test set with images from the set of letter combinations in
l(SR) ∩ l(SS), chosen randomly

3 We use δ∗ = Number of present letters.

XAI with Machine Teaching 389

We select a test set of size five by the above protocol, for each Boolean
expression, see Table 6. We will thus be able to make a fair comparison between
the random and smart teaching sets.

Table 5. Teaching sets used for GS on left and GR on right (B1=Box 1, B2=Box 2).

Nr Teaching set group GS δ∗(GS) Teaching set group GR

φ1 B1:{ A , B , C , D }
B2:{ AB , AC , AD , BC , BD , CD }

16 B1:{ ∅ , A , B , C }
B2:{ AC , ACD , AD , BCD , CD }

φ2 B1:{ A , BD } B2:{ B , D } 5 B1:{ A , AC } B2:{ B }
φ3 B1:{ B , D } B2:{ ∅ } 2.1 B1:{ D } B2:{ C }
φ4 B1:{ A , B , C , D }

B2:{ ∅ , AB , AC , AD , BC , BD , CD }
16.1 B1:{ A , B , C }

B2:{ AB , ABC , ABD , AD , BCD }
φ5 B1:{ ∅ } B2:{ D } 1.1 B1:{ ∅ } B2:{ BD }

Table 6. Test sets used for both GS and GR.

Nr Test set

φ1 { ABC , ABCD , ABD , C , AD }
φ2 { ABD , ACD , C , ∅ , AD }
φ3 { ABC , BD , ABCD , AB , ACD }
φ4 { ACD , ABCD , B , AD , C }
φ5 { AC , CD , A , ABC , BC }

5.4 Overall Results

We will now discuss the results of the second survey. In total, we had 56 partic-
ipants, none of them overlapping with the previous test. The participants were
students in a university-level informatics course. The participants were randomly
assigned into two groups, with 22 participants in group GS and 34 in group GR.

We start by looking at each group’s average score for each φi. The results
are shown in Fig. 3. Our initial observation is that the group GS has average
accuracy over all 5 Boolean expressions of 0.809 versus 0.699 for the group GR,
suggesting that the smart teaching sets have an advantage. This difference is
statistically significant (p = 0.00016 from t-test). There are two cases where GR

exhibits slightly higher average accuracy than GS , namely for φ1 and φ4. Notice
these concepts are the ones we classified to have high prior for LH in Table 4
and if we look at Table 5 we see these are also the concepts where our automatic
system generates teaching sets with large size (δ-value). When the system is

390 B. A. T. H̊avardstun et al.

Task Group GS Group GR GS + GR

φ1 0.882 0.924 0.908
φ2 0.954 0.759 0.836
φ3 0.827 0.547 0.657
φ4 0.873 0.888 0.882
φ5 0.509 0.376 0.428

Total 0.809 0.699 0.742

Fig. 3. The table shows average accuracy in Groups GS , GR and GS +GR, for each φi

and Total. The bar plot shows average accuracy in GS , GR for each φi.

aligned4, as with φ2 and φ3, our system achieves substantially higher accuracy
than the random teacher (Fig. 4).

Fig. 4. Boxplot showing results of the two survey groups, to the left teaching sets with
the exemplar-based explanation system, and to the right the random teaching sets.
There is a clear difference between the groups.

Table 7 gives information on the most common answers for each robot. The
most common answer vector of group GS is the correct one for 4 of the 5 φis,
while for GR it is the correct one for 3 of the 5.

5.4.1 Detailed Discussion of φ4 (Exactly One Letter in Box 1). Note
in Table 7 that for φ4 a full 85 % of the participants in GR had all answers
correct, whereas this drops to 64 % for group GS . We believe this is because
the smart teaching set happens to be compatible with the (wrong) concept ‘Odd
Number of Letters’. Thus when shown the test set containing ‘ACD’ almost a
third (7/22) of those thought with smart teaching set made a wrong choice,

4 We say that the system is aligned when the prior of LM is similar to the prior of
LH .

XAI with Machine Teaching 391

Table 7. The most common answer for both groups. We show how correct the answer
is, with 1.0 being all 5 tests correct, and we also show how common it is.

Concept Most common

answer GS

Score [0..1] Fraction of

participants GS

Most common

answer GR

Score [0..1] Fraction of

participants GR

φ1 [2,2,2,1,2] 1.0 59% [2,2,2,1,2] 1.0 76%

φ2 [1,1,2,2,1] 1.0 82% [1,1,2,2,1] 1.0 44%

φ3 [1,1,1,1,1] 1.0 68% [2,1,1,2,1] 0.6 29%

φ4 [2,2,1,2,1] 1.0 64% [2,2,1,2,1] 1.0 85%

φ5 [2,2,2,2,2] 0.2 41% [2,2,2,2,2] 0.2 53%

while less than a tenth (3/34) of those taught with the random teaching set
selected the wrong box. The teaching sets are in Table 5. This is why we believe
the random teaching set is slightly better (accuracy 0.888 vs 0.873, see Fig. 3)
for formula φ4 where the procedure built on Karnaugh map used in our system
generates a very large smart teaching set.

We also asked participants for how they themselves would explain what they
thought each robot was doing. This information is useful to elucidate why the
smart teaching set does worse than the random teaching set on φ4.

In the group GS (the smart teaching set), 10 of the 22 subjects did not write
any explanation while 12 subjects had an explanation. 7 people answered wrong
for test ‘ACD’ and 3 of these had no explanation, whereas the other 4 confirm
our suspicion that they are focusing on odd/even numbers of letters.

In the group GR (the random teaching set) 27 subjects had an explanation.
3 people answered wrong for test ‘ACD’ and 2 of these had no explanation,
whereas the 3rd had an explanation that actually should have led the subject to
classify ‘ACD’ correctly.

6 Conclusions

The results of the paper are indeed promising and have the potential to advance
the field of explainable AI. Our proposed framework based on machine teach-
ing can effectively teach complex functions to humans using explanatory exam-
ples, with a clear advantage over choosing the examples randomly. These find-
ings demonstrate that machine teaching is a valid approach for exemplar-based
explainable AI, but also that the expectations on the features and the priors
of the humans is critical to get effective explanations from as few examples as
possible. As future work, we propose the study of LM models better aligned
with humans. Also, we are considering the use of teaching examples generated
by recent language models.

392 B. A. T. H̊avardstun et al.

References

1. Basu, S., Christensen, J.: Teaching classification boundaries to humans. In:
Twenty-Seventh AAAI Conference on Artificial Intelligence (2013)

2. Chen, Y., Mac Aodha, O., Su, S., Perona, P., Yue, Y.: Near-optimal machine
teaching via explanatory teaching sets. In: International Conference on Artificial
Intelligence and Statistics, pp. 1970–1978 (2018)

3. Domingos, P.: Knowledge discovery via multiple models. Intell. Data Anal. 2(1–4),
187–202 (1998)

4. Feldman, J.: Minimization of Boolean complexity in human concept learning.
Nature 407(4), 630–633 (2000)

5. Guidotti, R., Monreale, A., Ruggieri, S., Turini, F., Giannotti, F., Pedreschi, D.:
A survey of methods for explaining black box models. ACM Comput. Surv. 51(5),
93 (2018)

6. Hadfield-Menell, D., Russell, S.J., Abbeel, P., Dragan, A.: Cooperative inverse
reinforcement learning. In: NIPS, pp. 3909–3917 (2016)

7. Hernández-Orallo, J.: Gazing into clever hans machines. Nat. Mach. Intell. 1(4),
172 (2019)

8. Hernández-Orallo, J., Ferri, C.: Teaching and explanations: aligning priors between
machines and humans. In: Human-Like Machine Intelligence, pp. 171–198 (2021)

9. Ho, M.K., Littman, M., MacGlashan, J., Cushman, F., Austerweil, J.L.:
Showing versus doing: teaching by demonstration. In: NIPS, pp. 3027–3035.
Curran (2016). www.papers.nips.cc/paper/6413-showing-versus-doing-teaching-
by-demonstration.pdf

10. Hoosain, R.: The processing of negation. J. Verbal Learn. Verbal Behav. 12(6), 618–
626 (1973). https://doi.org/10.1016/S0022-5371(73)80041-6, www.sciencedirect.
com/science/article/pii/S0022537173800416

11. Karnaugh, M.: The map method for synthesis of combinational logic circuits. Trans.
Am. Inst. Electr. Engineers Part I: Commun. Electron. 72(5), 593–599 (1953).
https://doi.org/10.1109/TCE.1953.6371932

12. Khan, F., Mutlu, B., Zhu, J.: How do humans teach: on curriculum learning and
teaching dimension. In: NIPS, pp. 1449–1457 (2011)

13. Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to
document recognition. Proc. IEEE 86(11), 2278–2324 (1998). https://doi.org/10.
1109/5.726791

14. Lipton, P.: Contrastive explanation. Roy. Inst. Phil. Suppl. 27, 247–266 (1990)
15. Liu, W., Dai, B., Li, X., Liu, Z., Rehg, J.M., Song, L.: Towards black-box iterative

machine teaching. arXiv preprint arXiv:1710.07742 (2017)
16. Molnar, C.: Interpretable machine learning. https://lulu.com/ (2020)
17. Ortega, A., Fierrez, J., Morales, A., Wang, Z., Ribeiro, T.: Symbolic AI for XAI:

evaluating LFIT inductive programming for fair and explainable automatic recruit-
ment. In: Proceedings of the IEEE/CVF Winter Conference on Applications of
Computer Vision, pp. 78–87 (2021)

18. Ouyang, L.: Bayesian inference of regular expressions from human-generated exam-
ple strings. arXiv:1805.08427 (2018)

19. Pisano, G., Ciatto, G., Calegari, R., Omicini, A.: Neuro-symbolic computation for
xai: towards a unified model. In: WOA, vol. 1613, p. 101 (2020)

20. Rahwan, I., et al.: Machine behaviour. Nature 568(7753), 477 (2019)
21. Ribeiro, M.T., Singh, S., Guestrin, C.: Anchors: High-precision model-agnostic

explanations. In: Proceedings of the AAAI Conference on Artificial Intelligence,
vol. 32 (2018)

www.papers.nips.cc/paper/6413-showing-versus-doing-teaching-by-demonstration.pdf
www.papers.nips.cc/paper/6413-showing-versus-doing-teaching-by-demonstration.pdf
https://doi.org/10.1016/S0022-5371(73)80041-6
www.sciencedirect.com/science/article/pii/S0022537173800416
www.sciencedirect.com/science/article/pii/S0022537173800416
https://doi.org/10.1109/TCE.1953.6371932
https://doi.org/10.1109/5.726791
https://doi.org/10.1109/5.726791
http://arxiv.org/abs/1710.07742
https://lulu.com/
http://arxiv.org/abs/1805.08427

XAI with Machine Teaching 393

22. Samek, W., Müller, K.-R.: Towards explainable artificial intelligence. In: Samek,
W., Montavon, G., Vedaldi, A., Hansen, L.K., Müller, K.-R. (eds.) Explainable AI:
Interpreting, Explaining and Visualizing Deep Learning. LNCS (LNAI), vol. 11700,
pp. 5–22. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-28954-6 1

23. Telle, J.A., Hernández-Orallo, J., Ferri, C.: The teaching size: computable teachers
and learners for universal languages. Mach. Learn. 108, 1653–1675 (2019). https://
doi.org/10.1007/s10994-019-05821-2

24. van der Waa, J., Nieuwburg, E., Cremers, A., Neerincx, M.: Evaluating XAI: a com-
parison of rule-based and example-based explanations. Artif. Intell. 291, 103404
(2021)

25. Yang, S.C.H., Vong, W.K., Sojitra, R.B., Folke, T., Shafto, P.: Mitigating belief
projection in explainable artificial intelligence via Bayesian teaching. Sci. Rep.
11(1), 9863 (2021). https://doi.org/10.1038/s41598-021-89267-4. www.nature.
com/articles/s41598-021-89267-4

26. Zhu, X.: Machine teaching: an inverse problem to machine learning and an app-
roach toward optimal education. In: AAAI, pp. 4083–4087 (2015)

27. Zhu, X., Singla, A., Zilles, S., Rafferty, A.N.: An overview of machine teaching
(2018). arxiv.org/abs/1801.05927

https://doi.org/10.1007/978-3-030-28954-6_1
https://doi.org/10.1007/s10994-019-05821-2
https://doi.org/10.1007/s10994-019-05821-2
https://doi.org/10.1038/s41598-021-89267-4
www.nature.com/articles/s41598-021-89267-4
www.nature.com/articles/s41598-021-89267-4
http://arxiv.org/1801.05927

Generating Robust Counterfactual
Explanations

Victor Guyomard1,2(B), Françoise Fessant1, Thomas Guyet3, Tassadit Bouadi2,
and Alexandre Termier2

1 Orange Innovation, Lannion, France
victor.guyomard@orange.com

2 Univ Rennes, Inria, CNRS, IRISA, Rennes, France
3 Inria, AIstroSight, Paris, France

Abstract. Counterfactual explanations have become a mainstay of the
XAI field. This particularly intuitive statement allows the user to under-
stand what small but necessary changes would have to be made to a
given situation in order to change a model prediction. The quality of a
counterfactual depends on several criteria: realism, actionability, valid-
ity, robustness, etc. In this paper, we are interested in the notion of
robustness of a counterfactual. More precisely, we focus on robustness
to counterfactual input changes. This form of robustness is particularly
challenging as it involves a trade-off between the robustness of the coun-
terfactual and the proximity with the example to explain. We propose
a new framework, CROCO, that generates robust counterfactuals while
managing effectively this trade-off, and guarantees the user a minimal
robustness. An empirical evaluation on tabular datasets confirms the
relevance and effectiveness of our approach.

Keywords: Counterfactual explanation · Robustness · Algorithmic
recourse

1 Introduction

The ever-increasing use of machine learning models in critical decision-making
contexts, such as health care, hiring processes or credit allocation, makes it essen-
tial to provide explanations for the individual decisions made by these models.
To this end, Wachter et al. proposed counterfactual explanation [22]. A coun-
terfactual is defined as the smallest modification of feature values that changes
the prediction of a model to a given output. The counterfactual can provide
actions (or recourse) for individuals to attain more desirable outcomes. This is
particularly important in areas where decisions made by algorithms can have
significant impacts on people’s lives such as finance, health care or criminal

Supplementary Information The online version contains supplementary material
available at https://doi.org/10.1007/978-3-031-43418-1 24.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
D. Koutra et al. (Eds.): ECML PKDD 2023, LNAI 14171, pp. 394–409, 2023.
https://doi.org/10.1007/978-3-031-43418-1_24

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-43418-1_24&domain=pdf
https://doi.org/10.1007/978-3-031-43418-1_24
https://doi.org/10.1007/978-3-031-43418-1_24

Generating Robust Counterfactual Explanations 395

justice. Many methods have been proposed to generate counterfactuals, focus-
ing on some specific properties such as realism [7,14,20], actionability [16,19]
or sparsity [3,11,22]. According to Artelt et al. [1], many counterfactual gen-
eration methods are vulnerable to small changes, where even a minor change
in the value of a counterfactual feature can cause the counterfactual to have
a different outcome. Such a situation may arise for example in practical imple-
mentation of the counterfactual, due to various factors such as unexpected noise,
or adversarial manipulation. As an illustration, a counterfactual may suggest to
an individual to raise its salary by 200$ to obtain a credit, but in practice, the
salary is increased by 199$ or 201$, potentially resulting in a negative decision
(a rejected credit) regarding the decision model. This line of discussions falls
into the topic of robustness [4,9,15,21]. To address robustness in the context of
counterfactual explanation, Pawelcyk et al. [15] introduce the notion of recourse
invalidation rate which represents the probability of obtaining a counterfactual
with a different predicted class, when small changes (sampled from a noise distri-
bution) are applied to it. They presented an estimator of the recourse invalidation
rate in the context of Gaussian distributions, and also a framework (PROBE)
that guarantees the recourse invalidation rate to be no greater than a target
specified by the user. A limitation of their approach is that the satisfaction of
the user condition is dependent of the estimator quality, which means that in
practice, the recourse invalidation rate can be greater than the target fixed by
the user. Moreover, PROBE leads in practice to a poor trade-off management
between proximity and robustness i.e. the counterfactual is robust but far from
the example to explain. In this paper, we introduce a framework called CROCO
(Cost-efficient RObust COunterfactuals), which is based on a new minimization
problem inspired by PROBE [15]. Our framework introduces the novel concept
of soft recourse invalidation rate, as well as an estimator of it. It enables us
to derive an upper-bound for the recourse invalidation rate with almost certain
probability. This ensures that the user obtains a solution with a recourse invali-
dation rate lower than the predetermined target. An experimental evaluation on
different tabular datasets confirms these theoretical results, and shows that our
method better optimizes the two criteria of robustness and proximity.

2 Related Work

Since Wachter et al. seminal paper [22], a variety of counterfactual explana-
tion technics have been proposed. These methods seek to enhance the quality
of counterfactuals by incorporating additional properties, such as constraining
the counterfactual to support the data distribution in order to produce realistic
examples, freezing immutable features (such as race or gender), producing mul-
tiple counterfactuals at once, or even adding causality constraints. We refer the
readers to Guidotti et al. [6] for a detailed review about counterfactual expla-
nation properties and methods. The property of robustness has been studied
recently in the context of counterfactual explanations, where the validity of a
counterfactual is determined by its ability to maintain the same predicted class

396 V. Guyomard et al.

in the presence of changes. Mishra et al. [10] distinguish various types of robust-
ness:

Robustness to model change refers to the evolution of the validity of the
counterfactual explanation when machine learning models are re-trained or
when training parameters settings are slightly modified. Rawal et al. [17] have
demonstrated that state-of-the-art counterfactual generation methods have
the tendency to produce solutions that are not robust to model retraining.
To address this problem, Ferrario and Loi [5] proposed to use counterfac-
tual data augmentation every time machine learning models are retrained.
Upadhyay et al. [18] for their part developed an adversarial training objec-
tive that produces counterfactuals that are robust regarding changes in the
training data. More specifically, they evaluated the robustness on different
types of training data shift which are data correction shift, temporal shift,
and geospatial shift. However, the counterfactuals that are generated suffer
from a much higher cost of change regarding state-of-the art counterfactual
generation methods [15]. In the context of slightly changed training settings,
Black et al. [2] achieved robust counterfactual explanations with a regular-
ization method based upon a K-Lipschitz constant.

Robustness to input perturbations refers to how counterfactuals explana-
tions are sensitive to slight input changes. According to Dominguez-Olmedo
et al. [4], a counterfactual is said robust if small changes in the example to
explain result in valid counterfactuals. They proposed an optimization prob-
lem that applies to linear models and neural networks to generate robust
counterfactuals in this context. For Artelt et al. [1] robustness means that
two examples that are close, must result in two similar counterfactuals. To
address this issue they propose to solve an optimization problem that includes
a density constraint [1]. They empirically show that having a counterfactual
that lies in a dense area has the effect of improving the robustness. Laugel
et al. [8] pointed out that such a type of robustness issue cannot solely be
attributed to the explainer, but also arises from the decision boundary of the
classifier, thus increasing the problem complexity.

Robustness to counterfactual input changes refers to the ability of a coun-
terfactual explanation to remain valid when small feature changes are applied
(two similar counterfactuals should have the same predicted class). In this
context, Pawelcyk et al. [15] presented PROBE a framework to produce robust
counterfactuals that is based on an optimization problem. This framework
aims to find a trade-off between two criteria that are the recourse invalida-
tion rate and the proximity, i.e. the distance between the counterfactual and
the example to explain. From their side, Maragno et al. [9] introduced an
adversarial robust approach that generates counterfactuals that remain valid
in an uncertainty set, meaning that for a given example to explain, all the
solutions in the set are valid counterfactuals. This approach works for non-
differentiable model unlike PROBE. However there is no trade-off between
the recourse invalidation rate and the proximity as all the counterfactuals in
the uncertainty set are valid. In such a scenario, the robustness constraint

Generating Robust Counterfactual Explanations 397

cannot be relaxed, then allowing the generation of counterfactuals that are
far from the example to explain. Our approach, CROCO, is part of this cat-
egory of methods. It is inspired by the PROBE framework, and improves its
limitations. Indeed, the major criticism that we can make to PROBE is that
the guarantees in terms of robustness that it offers to the user are completely
dependent on the quality of their estimator (i.e. the guarantee is based on a
recourse invalidation rate approximation rather than the true recourse inval-
idation rate). Our method introduces a new optimization problem that is
proved to induce an almost-sure upper bound on the true recourse invalida-
tion rate. This leads to a significant improvement in the trade-off between
the robustness of the counterfactual and the proximity with the example to
explain.

3 Problem Statement

In this section, we define some notations related to the generation of counter-
factuals, and we formalize the robustness of counterfactual generation by intro-
ducing the notion of recourse invalidation rate.

3.1 Generation of Counterfactuals

We consider the generation of counterfactuals for a binary classifier. Let X ⊆ R
n

represents the n-dimensional feature space. A binary classifier is a function h :
X → Y where Y = {0, 1}. We assume that the classification is obtained from a
probabilistic prediction i.e. a function f : X → [0, 1] that returns p̂ which is the
predicted probability for the class 1. Then, the predicted class is the most likely
class according to p̂. For a given example x, h(x) = g ◦ f(x) where g : [0, 1] → Y
is a function that returns the predicted class from the probability vector. We
take g(u) = 1>t(u), where t is the decision threshold. 1>t(u) equals 1 if u > t
and 0 otherwise.

In this article, we do post-hoc counterfactual generation, meaning that f (and
thus h) are given. And for a given example to explain x ∈ X , whose decision
is h(x), we want to generate a counterfactual x̆ ∈ X . A counterfactual is a
new example close to the example to explain x, and with a different prediction,
i.e. h(x̆) �= h(x). If it is true that h (x̆) �= h (x), then x̆ is said to be valid.
A counterfactual x̆ is also seen as a change to apply to x: x̆ = x + δ where
δ ∈ R

n. Thus, a counterfactual is associated to a small change δ that modifies
the decision returned by h. Generating a counterfactual is basically solving the
following optimisation problem:

min
δ

� (f (x + δ) , 1 − h(x)) + λ ‖δ‖1 (1)

where � : [0, 1]2 �→ R
+ quantifies the distance between the predicted probability,

f (x̆), and 1 − h(x) that is the opposite of the predicted class for example x.
For instance, Wachter et al. suggested � as the L2 distance, so as to produce

398 V. Guyomard et al.

counterfactuals that are close to the desired decision [22]. The other term in the
optimization problem, constraints the change δ applied to the example x to be
small.

In what follows, we will focus specifically on the generation of counterfactuals
in the case of instances that have received a negative decision (which corresponds
to instances predicted as class 0). This choice has no limitation and is motivated
by the fact that the majority of robustness methods are defined in a recourse
context [15,17,18] where the goal is to provide explanations only for negatively
predicted instances. We will also assume that the classifier f is differentiable.

3.2 Recourse Invalidation Rate

In order to quantify the robustness of the counterfactual to an input perturba-
tion, the notion of recourse invalidation rate has been introduced by Pawelczyk
et al. [15].

Definition 1 (Recourse invalidation rate). The recourse invalidation rate
for a counterfactual x̆, of an example x predicted as class 0 can be expressed as:

Γ (x̆; pε) = Eε∼pε
[1 − h (x̆ + ε)]

where ε ∈ R
n is a random variable that follows a probability distribution pε.

Since h (x̆ + ε) ∈ {0, 1}, it ensues Γ(x̆; pε) ∈ [0, 1].

Assuming pε is centered, then pε defines a region around a counterfactual x̆
for similar counterfactuals x̆ + ε. Intuitively, Γ(x̆; pε) gives the rate of similar
counterfactuals that are not valid, i.e. that belong to class 0. Thus, the lower
Γ(x̆; pε), the more robust is the counterfactual. If Γ (x̆; pε) = 0, the counterfac-
tual is considered perfectly robust, given that all the perturbed counterfactuals
result in positive outcomes (i.e., there are all predicted as class 1). However, if
Γ (x̆; pε) = 1, the counterfactual is not at all considered robust, since no noisy
counterfactuals lead to positive outcomes (i.e., there are all predicted as class 0).

Figure 1 illustrates the intuition of the recourse invalidation rate. Γ(x̆; pε)
can be seen as the surface of the neighborhood that overlaps the region, split by
the decision frontier, on the side of the example. This neighborhood represents
the perturbations on the counterfactuals that we would like to accept without
changing its validity. The Figure also shows that finding a robust counterfactual
requires to make a trade-off between the robustness and the magnitude of the
change.

3.3 The PROBE Framework for Generating Robust Counterfactuals

Pawelczyk et al. [15] have developed a framework named PROBE that generates
robust counterfactuals regarding the recourse invalidation rate. It adapts the
minimization problem of Eq. 1 by adding a new term that enforces the recourse
invalidation rate to be under a target value Γt. This target value is chosen by the

Generating Robust Counterfactual Explanations 399

Fig. 1. Illustration of the recourse invalidation rate with a uniform distribution pε

(dashed-red circle). The recourse invalidation rate is figured out by the area of the
region in red. In (1) the counterfactual has a low robustness and is at a low distance
from the example. In (2) the counterfactual has a medium robustness and is at a
medium distance, and in (3) the counterfactual has a perfect robustness but is far
from the example (large distance). (Color figure online)

user. More formally, generating a counterfactual relies on solving the following
minimization problem:

min
δ

max [Γ (x + δ; pε) − Γt, 0] + � (f (x + δ) , 1 − h(x)) + λ ‖δ‖1 (2)

There are some difficulties with the additional constraint on recourse invalidation
rate. Indeed, the true value of Γ can not be evaluated in practice. Then, PROBE
proposes a Monte-Carlo estimator of Γ. This means that it is estimated by
computing the mean of a sample of perturbations in pε:

Γ̃ (x̆;K, pε) =
1
K

K∑

k=1

(1 − h (x̆ + εk)) (3)

However, Γ̃ is non-differentiable, because h(x) = g ◦ f(x) and g(u) = 1>t.
Then, it can not be part of a loss of an optimization problem. To overcome this
limitation, the authors proposed a first-order approximation of the true recourse
invalidation rate Γ in the context of a Gaussian distribution noise pε = N (0, σI),
named Γ̃PROBE.

Then, the optimization algorithm solves the problem in Eq. 2, replacing Γ
by Γ̃PROBE and stops when the approximation of recourse invalidation rate is
under the target value, i.e. when Γ̃PROBE(˘x; pε) ≤ Γt.

Thus, for a given counterfactual x̆ returned by PROBE, the user is guaranteed
that Γ̃PROBE(x̆; pε) ≤ Γt. However, this means that the guarantee depends on
the quality of the estimator. Indeed, it is possible to generate a counterfactual
where Γ̃PROBE(x̆; pε) ≤ Γt ≤ Γ(x̆; pε) which would then violate the user-selected
guarantee. The intuition behind this situation is depicted in Fig. 2.

400 V. Guyomard et al.

Fig. 2. Illustration of the potential problem with PROBE. The red region illustrates the
true recourse invalidation rate (see Fig. 1) while the green region illustrates the approx-
imated recourse invalidation rate through the approximation of the red region. In this
case, the approximation under-estimates the red region and misleadingly encourages
finding a x̆ that would break the robustness constraint. (Color figure online)

To sum up, PROBE has two limitations: 1) It offers users a guarantee based
on the recourse invalidation rate approximation rather than the true recourse
invalidation rate; 2) the approximation applies only for Gaussian distribution of
counterfactual perturbation. This makes the approach not applicable to dataset
with categorical attributes.

Our contribution overcomes the first limitation by introducing a new estima-
tor that is proved to induce an almost-sure upper bound on the true recourse
invalidation rate. Furthermore, our approach is independent to the noise distri-
bution, thus enabling the use of various noise distributions.

4 Our Contribution

In this section, we present our method, named CROCO standing for Cost-efficient
RObust COunterfactuals. It improves the generation of robust counterfactuals
according to the recourse invalidation rate.

This method, inspired from PROBE, introduces a new robustness term to the
optimization problem presented in Eq. 1. This term is based on an upper-bound
of the recourse invalidation rate.

4.1 An Upper Bound of the Recourse Invalidation Rate

As it is not feasible to derive a closed-form expression of Γ without making any
assumption about the noise distribution, and given that Γ̃ is not differentiable,
our idea is to compute an upper-bound of Γ.

Let x̆ be a counterfactual for an example x ∈ X , then we define the soft
recourse invalidation rate, Θ(x̆) by:

Θ(x̆; pε) = Eε∼pε
[1 − f (x̆ + ε)] .

The Proposition 1 states that the soft recourse invalidation rate, Θ, induces an
upper-bound of the recourse invalidation rate, Γ.

Generating Robust Counterfactual Explanations 401

Proposition 1. 1 Let t ∈ [0, 1] be a decision threshold and x̆ be a counterfactual
for an example x ∈ X , an upper bound of the true recourse invalidation rate is
given by:

Γ (x̆; pε) ≤ Θ (x̆; pε)
(1 − t)

(4)

Similarly to Γ, Θ can not be evaluated directly. However, we can use the
following Monte-Carlo estimator, where K is the number of random samples:

Θ̃ (x̆;K, pε) =
1
K

K∑

k=1

(1 − f(x̆ + εk)) (5)

This quantity can be seen as the mean predicted probability for class 0, computed
on perturbed samples that are randomly drawn from the pε distribution. The
proposed estimator is close to the recourse invalidation rate estimation outlined
in Eq. 3, but it differs in that it is differentiable as a composition of differentiable
functions, thus can be included in an objective function.

Moreover, the Proposition 2 shows that our estimator, Θ̃, defines an almost-
sure upper bound of the true recourse invalidation rate. This means that m+Θ̃

1−t
has a high probability to be an upper-bound of Γ.

Proposition 2. Let t ∈ [0, 1] be a decision threshold, pε a noise distribution, x̆
be a counterfactual for an example x ∈ X , then an almost-sure upper-bound of
the recourse invalidation rate is given by:

P

(
Γ (x̆; pε) ≤ m + Θ̃ (x̆;K, pε)

1 − t

)
≥ 1 − exp

(−2m2K
)

(6)

where m > 0 and K is the number of random samples.

With a high number of random samples and a given value of m, the expo-
nential term of Proposition 2 can be arbitrarily small. Then for a given value of
our estimator Θ̃ (x̆;K, pε), we have almost surely that the true recourse invali-

dation rate will be in the worst case equals to
m + Θ̃ (x̆;K, pε)

1 − t
. It ensues that if

we enforce
m + Θ̃ (x̆;K, pε)

1 − t
to be lower than a given threshold Γ̄t, then we are

almost-sure that the true recourse invalidation rate is lower than Γ̄t, i.e. that
the counterfactual is more robust than the given threshold.

Note that m ∈ R>0 is a parameter that defines the tightness of the upper-
bound. The lower m, the better the upper-bound. In return, low m requires a
higher K (i.e. more computational resource) to keep the confidence in the bound.
Section A.2 in supplementary material provides a table to choose the values of
m and K with respect to the desired level of confidence.

1 All proofs are provided in Section A.1 of supplementary material.

402 V. Guyomard et al.

Algorithm 1. CROCO optimization for counterfactual generation
Input: x s.t. f(x) < t, f , λ > 0, α, Γ̄t > 0, K,pε

Output: x + δ
δ ← 0;
Compute Θ̃ (x + δ; K, pε)

while f(x + δ) < t and m+Θ̃(x+δ;K,pε)
1−t

> Γ̄t do
δ ← δ − α · ∇δLCROCO(x + δ; Θt, pε, λ) � From Eq. 8
Update Θ̃ (x + δ; K, pε)

end while
Return: x + δ

For instance, with K = 500 and m = 0.1, and t = 0.5, the inequation of the
Proposition 2 gives:

P

(
Γ (x̆) ≤ 0.2 + 2Θ̃ (x̆)

)
≥ 0.999 (7)

4.2 Generate Robust Counterfactuals

We propose a minimization problem for the generation of robust counterfactuals
according to the recourse invalidation rate.

Given a neighborhood distribution pε, a number of samples K, a tightness
value m > 0 and a target upper-bound Γ̄t, a counterfactual x̆ = x + δ is found
by minimizing the following objective function:

min
δ

(
Θ̃ (x + δ;K, pε) + m

1 − t
− Γ̄t

)2

︸ ︷︷ ︸
Robustness

+ � (f (x + δ) , 1 − h(x))︸ ︷︷ ︸
Validity

+ λ ‖δ‖1︸ ︷︷ ︸
Proximity

(8)

The last two terms implement the classical trade-off for counterfactual gen-
eration. Indeed, the second term pushes the counterfactual class toward a class
that differs from the example class (if h(x) = 0 then we want h(x̆) = 1), while the
last term minimizes the distance between the counterfactual and the example to
explain.

The first term encourages our new estimator to be close to a target value
Γ̄t, i.e. the target upper-bound of the recourse invalidation rate. This pushes to
choose a counterfactual that has an upper bound close to the objective.

Algorithm 1 describes the optimization process for CROCO. Gradient steps
are performed until the counterfactual predicted class is flipped (f (x + δ) ≥ t),
and the value of the upper-bound m+Θ̃(x+δ;K,pε)

1−t is below the target value Γ̄t.
CROCO has several benefits, it allows the user to generate counterfactuals

with almost surely a minimal robustness, and this agnostically to the noise dis-
tribution. Moreover, our optimization problem relies on an almost-sure upper
bound of the true recourse invalidation rate instead of relying on an approxima-
tion as Pawelcyk et al. did with PROBE [15]. Our intuition is that this will in
practice improve the trade-off between proximity and robustness.

Generating Robust Counterfactual Explanations 403

5 Experiments and Results

We have divided our experiments into two sections. After experimentally con-
firming that our approach preserves the validity of the counterfactuals, the pur-
pose of the first section is to demonstrate empirically that CROCO provides an
effective management of the trade-off between proximity and robustness in com-
parison to PROBE. In the second section, we demonstrate experimentally that
the counterfactuals returned by CROCO exhibits a lower degree of invalidation
with respect to the user-defined target than PROBE do.

First of all, we describe the datasets that we used for evaluation, along with
the metrics we employed as well as the predictive model details.

5.1 Experimental Setting

For a fair comparison, we used the CARLA library [13], which was also used for
evaluating PROBE. It contains three binary classification datasets: Adult, Give
Me Some Credit (GSC), and COMPAS. These datasets contain both numerical
and categorical features. Both numerical and categorical variables are used to
train the classifier, but the counterfactuals are generated by modifying only the
numerical variables. The proportion of categorical variables for each dataset are
respectively 3/7, 1/12 and 25/40. Additional details about these datasets are
available in the section A.4 of the supplementary material. For every dataset,
the classification model, f , is the fully connected neural network implemented
in the CARLA library2. It is composed of 50 hidden layers and ReLU activation
functions.

We used for evaluation the following metrics:

Validity A counterfactual x̆ of an example x is valid if the classification model
predicts different classes for x and x̆ [11,12]. Formally:

Validity =
{

0, if f(x̆) = f(x)
1, if f(x̆) �= f(x)

The validity measure lies in [0, 1]. The higher it is, the better.
Distance The distance is the L1 distance between an example, x and its coun-

terfactual, x̆ [11,22].

Distance = ‖x̆ − x‖1 = ‖δ‖1
A low value indicates fewer changes of features to apply to the original exam-
ple to obtain the counterfactual. As the distance decreases, the proximity
increases. In the context of counterfactual generation, we assume that the
lower the distance, the more actionable the counterfactual, the better.

2 Function carla.models.catalog.MLModelCatalog of the CARLA library.

404 V. Guyomard et al.

Fig. 3. Trade-off between recourse invalidation rate and distance with Gaussian dis-
tribution noises. Each column corresponds to a dataset and each line to a value of
σ2 ∈ {0.005, 0.01, 0.015, 0.02}. In each subplot the value of σ2 is fixed. Each point of a
curve corresponds to a mean recourse invalidation rate and a mean distance for a given
target, we have target ∈ {0.05, 0.10, 0.15, 0.2, 0.25, 0.3, 0.35}. The points are connected
by target order.

Recourse invalidation rate We used Γ̃ (see Eq. 3) to evaluate recourse invali-
dation rate, i.e. the robustness of the counterfactual. This value indicates the
risk to have an invalid counterfactual in case the counterfactual is slightly
changing wrt to the automatically recommended counterfactual. The lower,
the better.
The recourse invalidation rate makes the assumption of a neighborhood repre-
sented by a distribution, pε. CROCO makes no hypothesis on this distribution
but PROBE requires a Gaussian distribution. For the sake of fairness, we use
a centered Gaussian distribution with a parameterized variance σ for the two
methods.

Generating Robust Counterfactual Explanations 405

For each dataset, we run PROBE with σ2 ∈ {0.005, 0.01, 0.015, 0.02} and
Γt ∈ {0.05, 0.10, 0.15, 0.2, 0.25, 0.3, 0.35}. Regarding the setting of CROCO, we
choose K = 500, m = 0.1, t = 0.5. λ is found through an iterative procedure
that is described in section A.5.2 of supplementary material. For each dataset, we
run CROCO with the same parameters as PROBE: σ2 ∈ {0.005, 0.01, 0.015, 0.02}
and Γ̄t ∈ {0.05, 0.10, 0.15, 0.2, 0.25, 0.3, 0.35}.

We also include the approach of Wachter et al. [22] (referred to as Wachter)
in our experiment. This counterfactual generation method establishes a baseline
for recourse invalidation rate.

In our experiments, we generated 500 counterfactuals for each dataset and
each parameterized method. We collected their recourse invalidation rate, dis-
tance and validity, that are discussed in the following.

5.2 Comparisons Between PROBE and CROCO

In this section, the quality of the counterfactuals generated using CROCO,
PROBE and Watcher is compared.

First of all, Watcher and CROCO achieves a perfect validity for all datasets.
PROBE achieved a perfect validity on all datasets, except for two counterfactual
sets, that corresponds to the COMPAS dataset where σ2 = 0.005 and Γt = 0.3
and also the GSC dataset where σ2 = 0.02 and Γt = 0.05. As a consequence, in
the following, we focus the analysis on the trade-off between the distance and the
recourse invalidation rate. The section A.3.1 of the supplementary material con-
tains details regarding the validity obtained for each dataset, and counterfactual
sets that are generated.

Figure 3 compares Watcher, PROBE and CROCO regarding the distance and
recourse invalidation rate on the three different datasets. Each point of a given
curve corresponds to the mean recourse invalidation rate and the mean dis-
tance that is obtained from CROCO or PROBE by fixing a target value. Note
that Watcher has only one point as it has no recourse invalidation rate target
parameter. The standard-deviation values are provided in section A.3.2 of sup-
plementary material. Note that for a given curve, the points are linked by order
of increasing target value.

For the GSC dataset, CROCO achieves both smaller distances (higher prox-
imities) and lower recourse invalidation rates compared to PROBE, regardless
of the value of σ2. The same conclusion can be drawn for the COMPAS dataset,
except for σ2 = 0.005 where CROCO achieves smaller recourse invalidation rates
but at the cost of higher distances.

Regarding the Adult dataset, we observe that PROBE is unstable, as it can
produce solutions with higher recourse invalidation rate than the target fixed by
the user (where Γ̃ ≥ Γt). On the other hand, CROCO is stable and achieves both
smaller distances (higher proximities) and lower recourse invalidation rates. We
also noticed that on all the datasets, distance values increase when σ2 increased,
thus confirming the presence of a trade-off between the two quantities.

When solutions are closely clustered together in terms of mean distances,
both PROBE and CROCO exhibit similar standard deviation values. However,

406 V. Guyomard et al.

Fig. 4. Comparison between targeted recourse invalidation rate and recourse inval-
idation rate. Each column corresponds to a dataset and each line to a value of
σ2 ∈ {0.005, 0.01, 0.015, 0.02}. In each subplot, the value of σ2 is fixed. Each point
corresponds to a counterfactual, on the x-axis is presented the target recourse invali-
dation rate for the counterfactual, and on the y-axis the recourse invalidation rate that
is computed.

when solutions are more widely dispersed, PROBE tends to have higher stan-
dard deviation values compared to CROCO (see section A.3.2 of supplementary
material).

Generating Robust Counterfactual Explanations 407

We observed that for all datasets and values of σ2, PROBE and CROCO
outperform Wachter in terms of recourse invalidation rates. The only exception
is the Adult dataset when Γt = 0.35, where PROBE produces higher recourse
invalidation rates due to instability issues.

5.3 Target Invalidation Study

For each counterfactual that is obtained from PROBE or CROCO, we computed
the recourse invalidation rate and compared it with the targeted recourse inval-
idation rate.3 The results are provided in Fig. 4. The graphics figure out the
diagonal representing the exact match between the targeted and the recourse
invalidation rate. All points that are above this diagonal correspond to coun-
terfactuals that do not achieve the robustness requested by the user. We notice
that with PROBE, the recourse invalidation rates frequently exceed the target
fixed by the user. It illustrates that the approximation of Γ made by PROBE is
too loose. In contrast, for CROCO, the recourse invalidation rates are typically
lower, indicating that the user-specified target is less invalidated.

We computed the upper bound value derived in Proposition 2 for each coun-
terfactual obtained from CROCO.

Figure 5 of section A.3.3 of the material illustrates the evolution of the upper
bound value (m+Θ̃

1−t) with regard to the recourse invalidation rate for different
values of σ2. Our analysis show that the theoretical bound is not violated. This
means that even in cases where CROCO failed to find a solution that matches
the user target (i.e., where m+Θ̃

1−t > Γ̄t), we can still provide the user a guarantee
on the true recourse invalidation rate. This guarantee is based on the value of Θ̃
that is obtained at the end of the optimization.

6 Conclusion

In this paper, we introduce CROCO, a novel framework for generating coun-
terfactuals that are robust to input changes. A robust method guarantees that
the slightly perturbed counterfactual is still valid. Our approach leverages a
new estimator that provides a theoretical guarantee on the true recourse inval-
idation rate of the generated counterfactuals. Through experiments comparing
CROCO to the state-of-the-art PROBE method, we demonstrate that our app-
roach achieves a better trade-off between recourse invalidation rate and prox-
imity, while also leading to less invalidation regarding the user-specified target.
While these initial results are promising, it is necessary to evaluate CROCO on a
larger number of datasets to confirm the robustness of the performance obtained.
Moving forward, we plan to extend the capabilities of CROCO by adapting it
to handle categorical variables. Since our approach is independent to the noise
distribution, it seems reasonably possible to generate robust counterfactuals for
data with both numerical and categorical variables. CROCO is implemented in
the CARLA framework and will be soon available for practical usage.
3 Watcher is not figured out as it does not set a target for recourse invalidation rate.

408 V. Guyomard et al.

References

1. Artelt, A., et al.: Evaluating robustness of counterfactual explanations. In: Pro-
ceedings of the Symposium Series on Computational Intelligence (SSCI), pp. 01–09.
IEEE (2021)

2. Black, E., Wang, Z., Fredrikson, M.: Consistent counterfactuals for deep models. In:
Proceedings of the International Conference on Learning Representations (ICLR).
OpenReview.net (2022)

3. Brughmans, D., Leyman, P., Martens, D.: Nice: an algorithm for nearest instance
counterfactual explanations. arXiv v2 (2021). arxiv.org/abs/2104.07411

4. Dominguez-Olmedo, R., Karimi, A.H., Schölkopf, B.: On the adversarial robustness
of causal algorithmic recourse. In: Proceedings of the 39th International Conference
on Machine Learning (ICML), vol. 162, pp. 5324–5342 (2022)

5. Ferrario, A., Loi, M.: The robustness of counterfactual explanations over time.
Access 10, 82736–82750 (2022)

6. Guidotti, R.: Counterfactual explanations and how to find them: literature review
and benchmarking. Data Min. Knowl. Disc., 1–55 (2022)

7. Guyomard, V., Fessant, F., Guyet, T.: VCNet: a self-explaining model for realistic
counterfactual generation. In: Proceedings of the European Conference on Machine
Learning and Principles and Practice of Knowledge Discovery in Databases
(ECML/PKDD), pp. 437–453 (2022)

8. Laugel, T., Lesot, M.J., Marsala, C., Detyniecki, M.: Issues with post-hoc coun-
terfactual explanations: a discussion. arXiv (2019). arxiv.org/abs/1906.04774

9. Maragno, D., Kurtz, J., Röber, T.E., Goedhart, R., Birbil, S.I., Hertog, D.D.:
Finding regions of counterfactual explanations via robust optimization (2023).
arxiv.org/abs/2301.11113

10. Mishra, S., Dutta, S., Long, J., Magazzeni, D.: A survey on the robust-
ness of feature importance and counterfactual explanations. arXiv (v2) (2023).
arxiv.org/abs/2111.00358

11. Mothilal, R.K., Sharma, A., Tan, C.: Explaining machine learning classifiers
through diverse counterfactual explanations. In: Proceedings of the conference on
Fairness, Accountability, and Transparency (FAccT), pp. 607–617 (2020)

12. de Oliveira, R.M.B., Martens, D.: A framework and benchmarking study for coun-
terfactual generating methods on tabular data. Appl. Sci. 11(16), 7274 (2021)

13. Pawelczyk, M., Bielawski, S., van den Heuvel, J., Richter, T., Kasneci, G.: CARLA:
a python library to benchmark algorithmic recourse and counterfactual explanation
algorithms. In: Conference on Neural Information Processing Systems (NeurIPS)
- Track on Datasets and Benchmarks, p. 17 (2021)

14. Pawelczyk, M., Broelemann, K., Kasneci, G.: Learning model-agnostic counterfac-
tual explanations for tabular data. In: Proceedings of The Web Conference (WWW
2020), pp. 3126–3132 (2020)

15. Pawelczyk, M., Datta, T., van-den Heuvel, J., Kasneci, G., Lakkaraju, H.: Proba-
bilistically robust recourse: navigating the trade-offs between costs and robustness
in algorithmic recourse. In: Proceedings of the International Conference on Learn-
ing Representations (ICLR). OpenReview.net (2023)

16. Poyiadzi, R., Sokol, K., Santos-Rodriguez, R., De Bie, T., Flach, P.: Face: feasible
and actionable counterfactual explanations. In: Proceedings of the AAAI/ACM
Conference on AI, Ethics, and Society, pp. 344–350 (2020)

17. Rawal, K., Kamar, E., Lakkaraju, H.: Algorithmic recourse in the wild: understand-
ing the impact of data and model shifts. arXiv v3 (2020). arxiv.org/abs/2012.11788

http://arxiv.org/2104.07411
http://arxiv.org/1906.04774
http://arxiv.org/2301.11113
http://arxiv.org/2111.00358
http://arxiv.org/2012.11788

Generating Robust Counterfactual Explanations 409

18. Upadhyay, S., Joshi, S., Lakkaraju, H.: Towards robust and reliable algorithmic
recourse. Adv. Neural Inf. Process. Syst. 34, 16926–16937 (2021)

19. Ustun, B., Spangher, A., Liu, Y.: Actionable recourse in linear classification.
In: Proceedings of the Conference on Fairness, Accountability, and Transparency
(FAccT), pp. 10–19 (2019)

20. Van Looveren, A., Klaise, J.: Interpretable counterfactual explanations guided by
prototypes. In: Proceedings of the European Conference on Machine Learning and
Knowledge Discovery in Databases (ECML/PKDD), pp. 650–665 (2021)

21. Virgolin, M., Fracaros, S.: On the robustness of sparse counterfactual explanations
to adverse perturbations. Artif. Intell. 316, 103840 (2023)

22. Wachter, S., Mittelstadt, B.D., Russell, C.: Counterfactual explanations without
opening the black box: automated decisions and the GDPR. Harvard J. Law Tech-
nol. 31(2), 841–887 (2018)

Neural Models for Factual Inconsistency
Classification with Explanations

Tathagata Raha1, Mukund Choudhary1, Abhinav Menon1, Harshit Gupta1,
K. V. Aditya Srivatsa1, Manish Gupta1,2(B), and Vasudeva Varma1

1 IIIT-Hyderabad, Hyderabad, India
{tathagata.raha,mukund.choudhary,abhinav.m,

harshit.g,k.v.aditya}@research.iiit.ac.in, vv@iiit.ac.in
2 Microsoft, Hyderabad, India

gmanish@microsoft.com

Abstract. Factual consistency is one of the most important require-
ments when editing high quality documents. It is extremely impor-
tant for automatic text generation systems like summarization, question
answering, dialog modeling, and language modeling. Still, automated fac-
tual inconsistency detection is rather under-studied. Existing work has
focused on (a) finding fake news keeping a knowledge base in context, or
(b) detecting broad contradiction (as part of natural language inference
literature). However, there has been no work on detecting and explaining
types of factual inconsistencies in text, without any knowledge base in
context. In this paper, we leverage existing work in linguistics to formally
define five types of factual inconsistencies. Based on this categorization,
we contribute a novel dataset, FICLE (Factual Inconsistency CLassifica-
tion with Explanation), with ∼8K samples where each sample consists
of two sentences (claim and context) annotated with type and span of
inconsistency. When the inconsistency relates to an entity type, it is
labeled as well at two levels (coarse and fine-grained). Further, we lever-
age this dataset to train a pipeline of four neural models to predict incon-
sistency type with explanations, given a (claim, context) sentence pair.
Explanations include inconsistent claim fact triple, inconsistent context
span, inconsistent claim component, coarse and fine-grained inconsistent
entity types. The proposed system first predicts inconsistent spans from
claim and context; and then uses them to predict inconsistency types
and inconsistent entity types (when inconsistency is due to entities). We
experiment with multiple Transformer-based natural language classifica-
tion as well as generative models, and find that DeBERTa performs the
best. Our proposed methods provide a weighted F1 of ∼87% for incon-
sistency type classification across the five classes. We make the code and
dataset publicly available (https://github.com/blitzprecision/FICLE).

Keywords: deep learning · factual inconsistency classification ·
explainability · factual inconsistency explanations

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
D. Koutra et al. (Eds.): ECML PKDD 2023, LNAI 14171, pp. 410–427, 2023.
https://doi.org/10.1007/978-3-031-43418-1_25

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-43418-1_25&domain=pdf
https://github.com/blitzprecision/FICLE
https://doi.org/10.1007/978-3-031-43418-1_25

Neural Models for Factual Inconsistency Classification with Explanations 411

1 Introduction

Although Transformer-based natural language generation models have been
shown to be state-of-the-art for several applications like summarization, dialogue
generation, question answering, table-to-text, and machine translation, they suf-
fer from several drawbacks of which hallucinatory and inconsistent generation
is the most critical [14]. Factual inconsistencies in generated text can lead to
confusion and a lack of clarity, make the text appear unreliable and untrustwor-
thy, and can create a sense of mistrust among readers. It can lead to inaccurate
conclusions and interpretations, and diminishes the overall quality of the text.
One approach to tackle this problem is to train robust neural language gener-
ation models which produce text with high fidelity and less hallucinations [14].
Another approach is to have human annotators post-check the generated text for
inconsistencies. Checking all generated output manually is not scalable. Hence,
automated factual inconsistency detection and explanations become crucial.

Fig. 1. Factual Inconsistency Classification with Explanation (FICLE) Example:
Inputs are claim and context. Outputs include inconsistency type and explanation
(inconsistent claim fact triple, inconsistent context span, inconsistent claim compo-
nent, coarse and fine-grained inconsistent entity types).

Accordingly, there have been several studies in the past which focus on detec-
tion of false or fake content. Fake content detection studies [8,31,35] typically
verify facts in claims with respect to an existing knowledge base. However,
keeping the knowledge base up-to-date (freshness and completeness) is difficult.
Accordingly, there have been other studies in the natural language inference
(or textual entailment) community [4,26,37] where the broad goal is to predict
entailment, contradiction or neither. More than a decade back, De Marneffe
et al. [9] proposed the problem of fine-grained contradiction detection, but (1)
they proposed a tiny dataset with 131 examples, (2) they did not propose any
learning method, and (3) they did not attempt explanations like localization of
inconsistency spans in claim and context.

Hence, in this paper, we propose the novel problem of factual inconsistency
classification with explanations (FICLE). Given a (claim, context) sentence pair,
our goal is to predict inconsistency type and explanation (inconsistent claim fact
triple, inconsistent context span, inconsistent claim component, coarse and fine-
grained inconsistent entity types). Figure 1 shows an example of the FICLE task.
Two recent studies are close to our work: e-SNLI [6] and TaxiNLI [15]. Unlike
detailed structured explanation (including inconsistency localization spans in

412 T. Raha et al.

Table 1. Comparison of FICLE with other datasets. #Samples indicates number of
contradictory/inconsistent samples (and not the size of full dataset).

Dataset #Samples Explanations #Classes Inconsistency localized?

Contradiction [9] 131 No 10 No

FEVER [32] 43107 No 1 No

e-SNLI [6] 189702 Yes 1 Yes

TaxiNLI [15] 3014 No 15 No

LIAR-PLUS [1] 5669 Yes 3 No

FICLE (Ours) 8055 Yes 5 Yes

both claim and context) from our proposed system, e-SNLI [6] contains only
an unstructured short sentence as an explanation. Unlike five types of inconsis-
tencies detected along with explanations by our proposed system, TaxiNLI [15]
provides a two-level categorization for the NLI task. Thus, TaxiNLI focuses on
NLI and not on inconsistencies specifically. Table 1 shows a comparison of our
dataset with other closely related datasets.

In this work, based on linguistic theories, we carefully devise a taxonomic cat-
egorization with five inconsistency types: simple, gradable, set-based, negation,
taxonomic relations. First, we obtain English (claim, context) sentence pairs
from the FEVER dataset [32] which have been labeled as contradiction. We
get them manually labeled with inconsistency types and other explanations (as
shown in Fig. 1 by four annotators. Overall, the dataset contains 8055 samples
labeled with five inconsistency types, 20 coarse inconsistent entity types and 60
fine-grained inconsistent entity types, whenever applicable.

We leverage the contributed dataset to train a pipeline of four neural models to
predict inconsistency type with explanations:M1,M2,M3 andM4. Given a (claim,
context) sentence pair, M1 predicts the inconsistent subject-relation-target fact
triple 〈S,R, T 〉 in the claim and also the inconsistent span in the context. M2 uses
M1’s outputs to predict the inconsistency type and the inconsistent component
(subject, relation or target) from the claim. M3 uses the inconsistent context-span
and inconsistent claim component to predict a coarse inconsistent entity type. M4

leverages both M3’s inputs and outputs to predict fine-grained inconsistent entity
type. Overall, the intuition behind this pipeline design is to first predict incon-
sistent spans from claim and context; and then use them to predict inconsistency
types and inconsistent entity types (when inconsistency is due to entities). Figure 3
shows the overall system architecture for FICLE.

We investigate effectiveness of multiple standard Transformer [34]-based nat-
ural language understanding (NLU) as well as natural language generation
(NLG) models as architectures for models M1, M2, M3 and M4. Specifically, we
experiment with models like BERT [10], RoBERTa [19] and DeBERTa [12] which
are popular for NLU tasks. We also experiment with T5 [27] and BART [18]
which are popular in the NLG community. DeBERTa seemed to outperform
other models for most of the sub-tasks. Our results show that while inconsis-

Neural Models for Factual Inconsistency Classification with Explanations 413

tency type classification is relatively easy, accurately detecting context span is
still challenging.

Overall, in this work,we make the followingmain contributions. (1)We propose
anovel problemof factual inconsistencydetectionwith explanations given a (claim,
context) sentence pair. (2) We contribute a novel dataset, FICLE, manually anno-
tated with inconsistency type and five other forms of explanations. We make the
dataset publicly available1. (3) We experiment with standard Transformer-based
NLU and NLG models and propose a baseline pipeline for the FICLE task. (4) Our
proposed pipeline provides a weighted F1 of ∼87% for inconsistency type classifi-
cation; weighted F1 of ∼86% and ∼76% for coarse (20-class) and fine-grained (60-
class) inconsistent entity-type prediction respectively; and an IoU of ∼94% and
∼65% for claim and context span detection respectively.

2 Related Work

Factual Inconsistency in Natural Language Generations: Popular natu-
ral language generation models have been found to generate hallucinatory and
inconsistent text [14]. Krysinski et al. [16] and Cao et al. [7] found that around
30% of the summaries generated by state-of-the-art abstractive models were
factually inconsistent. There are other summarization studies also which report
factual inconsistency of generated summaries [22,23,25,36,39,41]. Similarly, sev-
eral studies have pointed out semantic inaccuracy as a major problem with
current natural language generation models for free-form text generation [5],
data-to-text [11], question-answering [20], dialogue modeling [13,24], machine
translation [40], and news generation [38]. Several statistical (like PARENT)
and model-based metrics have been proposed to quantify the level of hallucina-
tion. Multiple data-related methods and modeling and inference methods have
been proposed for mitigating hallucination [14], but their effectiveness is still
limited. Hence, automated factual inconsistency detection is critical.

Natural Language Inference: Natural language inference (NLI) is the task
of determining whether a hypothesis is true (entailment), false (contradiction),
or undetermined (neutral) given a premise. NLI is a fundamental problem in
natural language understanding and has many applications such as question
answering, information extraction, and text summarization. Approaches used
for NLI include earlier symbolic and statistical approaches to more recent deep
learning approaches [3]. There are several datasets and benchmarks for evaluat-
ing NLI models, such as the Stanford Natural Language Inference (SNLI) Cor-
pus [4], the Multi-Genre Natural Language Inference (MultiNLI) Corpus [37]
and Adversarial NLI [26]. FEVER [32] is another dataset on a related problem
of fact verification.

Recently there has been work on providing explanations along with the clas-
sification label for NLI. e-SNLI [6] provides a one-sentence explanation aiming to
answer the question: “Why is a pair of sentences in a relation of entailment, neu-
trality, or contradiction?” Annotators were also asked to highlight the words that

1 https://github.com/blitzprecision/FICLE.

https://github.com/blitzprecision/FICLE

414 T. Raha et al.

they considered essential for the label. NILE [17] is a two stage model built on
e-SNLI which first generates candidate explanations and then processes explana-
tions to infer the task label. Thorne et al. [33] evaluate LIME [28] and Anchor
explanations [29] to predict token annotations that explain the entailment rela-
tion in e-SNLI. LIAR-PLUS [1] contains political statements labeled as pants-fire,
false, mostly-false, half-true, mostly-true, and true. The context and explanation
is combined into a “extracted justification” paragraph in this dataset. Atanasova
et al. [2] experiment with LIAR-PLUS dataset and find that jointly generating
justification and predicting the class label together leads to best results.

There has also been work on detailed categorization beyond just the two
classes: contradiction and entailment. Contradiction [9] is a tiny dataset with
only 131 examples that provides a taxonomy of 10 contradiction types. Recently,
TaxiNLI [15] dataset has been proposed with 15 classes for detailed categoriza-
tion with the entailment and not the contradiction category. Continuing this
line of work, in this paper, we contribute a new dataset, FICLE, which asso-
ciates every (claim, context) sentence pair with (1) an inconsistency type (out
of five) and (2) detailed explanations (inconsistent span in claim and context,
inconsistent claim component, coarse and fine-grained inconsistent entity types).

3 Inconsistency Type Classification

Factual inconsistencies in text can occur because of a number of different sen-
tence constructions, some overt and others that are complex to discover even
manually. We design a taxonomy of five inconsistency types following non-
synonymous lexical relations classified by Saeed [30, p. 66–70]. The book men-
tions the following kinds of antonyms: simple, gradable, reverses, converses and
taxonomic sisters. To this taxonomy, we added two extra categories, negation
and set-based, to capture the FICLE’s complexity. Also, we expanded the defi-
nition of taxonomic sisters to more relations, and hence rename it to taxonomic
relations. Further, since we did not find many examples of reverses and converses
in our dataset, we merged them with the simple inconsistency category. Overall,
our FICLE dataset contains these five different inconsistency types.

– Simple: A simple contradiction is a direct contradiction, where the negative
of one implies the positive of the other in a pair like pass vs. fail. This also
includes actions/processes that can be reversed or have a reverse direction, like
come vs. go and fill vs. empty. Pairs with alternate viewpoints like employer
vs. employee and above vs. below are also included in this category.

– Gradable: Gradable contradictions include adjectival and relative contradic-
tions, where the positive of one, does not imply the negative of other in a pair
like hot vs. cold, least vs. most, or periods of time etc.

– Taxonomic relations: We include three kinds of relations in this type: (a) Pairs
at the same taxonomic level in the language like red vs. blue which are placed
parallel to each other under the English color adjectives hierarchy. (b) When
a pair has a more general word (hypernym) and another more specific word

Neural Models for Factual Inconsistency Classification with Explanations 415

which includes the meaning of the first word in the pair (hyponym) like giraffe
(hypo) vs. animal (hyper). (c) Pairs with a part-whole relation like nose vs.
face and button vs shirt.

– Negation: This includes inconsistencies arising out of presence of explicit nega-
tion morphemes (e.g. not, except) or a finite verb negating an action (e.g. fail
to do X, incapable of X-ing) etc.

– Set-based: This includes inconsistent examples where an object contrasts with
a list that it is not a part of (e.g. cat vs. bee, ant, wasp).

4 The FICLE Dataset

4.1 Dataset Curation and Pre-processing

Our FICLE dataset is derived from the FEVER dataset [32] using the follow-
ing processing steps. FEVER (Fact Extraction and VERification) consists of
185,445 claims generated by altering sentences extracted from Wikipedia and
subsequently verified without knowledge of the sentence they were derived from.
Every sample in the FEVER dataset contains the claim sentence, evidence (or
context) sentence from a Wikipedia URL, a type label (‘supports’, ‘refutes’ or
‘not enough info’). Out of these, we leverage only the samples with ‘refutes’ label
to build our dataset.

We propose a linguistically enriched dataset to help detect inconsistencies
and explain them. To this end, the broad requirements are to locate where an
inconsistency is present between a claim and a context, and to have a classifica-
tion scheme for better explainability.

4.2 Annotation Details

To support detailed inconsistency explanations, we perform comprehensive anno-
tations for each sample in the FICLE dataset. The annotations were done in two
iterations. The first iteration focused on “syntactic oriented” annotations while
the second iteration focused on “semantic oriented” annotations. The annota-
tions were performed using the Label Studio annotation tool2 by a group of four

Table 2. Inconsistent Claim Fact Triple, Context Span and Claim Component exam-
ples for the context sentence “Prime Minister Narendra Modi enthusiastically hoisted
the Indian flag.” Subject, relation and target in the claim are shown in bold, italics
and underline respectively.

Inconsistent Claim Inconsistent Context Span Inconsistent Claim Component

Prime Minister Swami Vivekananda enthusiastically hoisted the Indian flag. Narendra Modi Subject-Head

President Narendra Modi enthusiastically hoisted the Indian flag. Prime Minister Subject-Modifier

Prime Minister Narendra Modi enthusiastically lowered the Indian flag. hoisted Relation-Head

Prime Minister Narendra Modi halfheartedly hoisted the Indian flag. enthusiastically Relation-Modifier

Prime Minister Narendra Modi enthusiastically hoisted the Indian culture. flag Target-Head

Prime Minister Narendra Modi enthusiastically hoisted the American flag. Indian Target-Modifier

2 https://labelstud.io/.

https://labelstud.io/

416 T. Raha et al.

Table 3. Inconsistency Type and Coarse/Fine-grained Inconsistent Entity Type exam-
ples. Inconsistent spans are marked in bold in both claim as well as context.
Claim Context Incon-sistency

Type
Coarse
Inconsistent
Entity Type

Fine-grained
Inconsistent
Entity Type

Kong: Skull Island is not a
reboot.

The film is a reboot of the
King Kong franchise and
serves as the second film in
Legendary’s MonsterVerse.

Negation enter-tainment brand

The Royal Tenenbaums only
stars Emma Stone.

The film stars Danny
Glover, Gene Hackman,
Anjelica Huston, Bill
Murray, Gwyneth
Paltrow, Ben Stiller,
Luke Wilson, and Owen
Wilson.

Set Based name musician

Lindsay Lohan began her
career as an adult fashion
model.

Lohan began her career as a
child fashion model when
she was three, and was later
featured on the soap opera
Another World for a year
when she was 10.

Simple time age

Karl Malone played the
shooting guard position.

He is considered one of the
best power forwards in
NBA history.

Taxonomic
Relation

profession sport

The Divergent Series:
Insurgent is based on the
third book in the Divergent
trilogy.

The Divergent Series:
Insurgent is a 2015 American
science fiction action film
directed by Robert
Schwentke, based on
Insurgent, the second book
in the Divergent trilogy by
Veronica Roth.

Gradable quantity ordinal

annotators (two of which are also authors). The annotators are well versed in
English and are Computer Science Bachelors students with a specialization in
computational linguistics, in the age group of 20–22 years. Detailed annotation
guidelines are in annotationGuidelines.pdf here (see footnote 1).

Syntactic Oriented Annotations: In this annotation stage, the judges labeled
the following syntactic fields per sample. Table 2 shows examples of each of these
fields. (1) Inconsistent Claim Fact Triple: A claim can contain multiple facts. The
annotators identified the fact that is inconsistent with the context. Further, the
annotators labeled the span of source (S), relation (R) and target (T) within
the claim fact. Sometimes, e.g., in case of an intransitive verb, the target was
empty. Further, for each of the S, R and T, the annotators also labeled head and
modifier separately. The head indicates the main noun (for S and T) or the verb
phrase (for R) while the modifier is phrase that serves to modify the meaning
of the noun or the verb. (2) Inconsistent Context Span: A span marked in the
context sentence which is inconsistent with the claim. (3) Inconsistent Claim
Component: This can take six possible values depending on the part of the claim

Neural Models for Factual Inconsistency Classification with Explanations 417

fact triple that is inconsistent with the context: Subject-Head, Subject-Modifier,
Relation-Head, Relation-Modifier, Target-Head, Target-Modifier.

Semantic Oriented Annotations: In this annotation stage, the annotators
labeled the following semantic fields per sample. Table 3 shows examples of each
of these fields. (1) Inconsistency Type: Each sample is annotated with one of the
five inconsistency types as discussed in Sect. 3. (2) Coarse Inconsistent Entity
Type: When the inconsistency is because of an entity, the annotator also labeled
one of the 20 coarse types for the entity causing the inconsistency. The types
are action, animal, entertainment, gender, geography, identity, material, name,
nationality, organization, others, politics, profession, quantity, reality, relation-
ship, sentiment, sport, technology and time. (3) Fine-grained Inconsistent Entity
Type: Further, when the inconsistency is because of an entity, the annotator also
labeled one of the 60 fine-grained types for the entity causing the inconsistency.

For inconsistency entity type detection, the annotations were performed in
two iterations. In the first iteration, the annotators were allowed to annotate
the categories (both at coarse and fine-grained level) freely without any limited
category set. This was performed on 500 samples. The annotators then discussed
and de-duplicated the category names. Some rare categories were merged with
frequent ones. This led to a list of 20 coarse and 60 fine-grained entity types
(including “others”). In the second iteration, annotators were asked to choose
one of these categories. We measured inter-annotator agreement on 500 samples.
For source, relation, target and inconsistent context spans, the intersection over
union (IoU) was found to be 0.91, 0.83, 0.85 and 0.76 respectively. Further, the
Kappa score was found to be 0.78, 0.71 and 0.67 for the inconsistency type, coarse
inconsistent entity type and fine-grained inconsistent entity type respectively.

Fig. 2. Distribution of coarse inconsistent
entity types in FICLE.

Table 4. Minimum, average, and maxi-
mum size (words) of various fields aver-
aged across samples in FICLE dataset.

MinAvg Max

Claim 3 8.04 31

Context 5 30.73 138

Incon. Claim Source 1 2.29 9

Relation 1 2.17 18

Target 0 3.39 21

Incon. Context-Span 1 5.11 94

4.3 FICLE Dataset Statistics

The FICLE dataset consists of 8055 samples in English with five inconsistency
types. The distribution across the five types is as follows: Taxonomic Rela-
tions (4842), Negation (1630), Set Based (642), Gradable (526) and Simple

418 T. Raha et al.

Fig. 3. FICLE: System Architecture

(415). There are six possible inconsistent claim components with distribution
as follows: Target-Head (3960), Target-Modifier (1529), Relation-Head (951),
Relation-Modifier (1534), Source-Head (45), Source-Modifier (36). The dataset
contains 20 coarse inconsistent entity types as shown in Fig. 2. Further, these
are sub-divided into 60 fine-grained entity types. Table 4 shows average sizes of
various fields averaged across samples in the dataset. The dataset was divided
into train, valid and test splits in the ratio of 80:10:10.

5 Neural Methods for Factual Inconsistency Classification
with Explanations

We leverage the FICLE dataset to train models for factual inconsistency classifi-
cation with explanations. Specifically, given the claim and context sentence, our
system does predictions in the following stages: (A) Predict Inconsistent Claim
Fact Triple (S,R,T) and Inconsistent Context Span, (B) Predict Inconsistency
Type and Inconsistent Claim Component, (C) Predict Coarse and Fine-grained
Inconsistent Entity Type. Overall, the system architecture consists of a pipeline
of four neural models to predict inconsistency type with explanations: M1, M2,
M3 and M4, and is illustrated in Fig. 3. We discuss details of the three stages
and the pipeline in this section.

Model Architectures. We experiment with five pretrained models of which
two are natural language generation (NLG) models. Specifically, we finetune
Transformer [34] encoder based models like BERT [10], RoBERTa [19] and
DeBERTa [12]. We also use two NLG models: BART [18] and T5 [27] which
are popular in the NLG community.

BERT (Bidirectional Encoder Representations from Transformers) [10] essen-
tially is a transformer encoder with 12 layers, 12 attention heads and 768 dimen-
sions. We used the pre-trained model which has been trained on Books Corpus
and Wikipedia using the MLM (masked language model) and the next sentence
prediction (NSP) loss functions. RoBERTa [19] is a robustly optimized method
for pretraining natural language processing (NLP) systems that improves on
BERT. RoBERTa was trained with 160GB of text, trained for larger number of
iterations up to 500K with batch sizes of 8K and a larger byte-pair encoding
(BPE) vocabulary of 50K subword units, without NSP loss. DeBERTa [12] is

Neural Models for Factual Inconsistency Classification with Explanations 419

trained using a special attention mechanism where content and position embed-
dings are disentangled. It also has an enhanced mask decoder which leverages
absolute word positions effectively. BART [18] is a denoising autoencoder for pre-
training sequence-to-sequence models. BART is trained by (1) corrupting text
with an arbitrary noising function, and (2) learning a model to reconstruct the
original text. T5 [27] is also a Transformer encoder-decoder model pretrained on
Colossal Clean Crawled Corpus, and models all NLP tasks in generative form.

When encoding input or output for these models, we prepend various
semantic units using special tokens like 〈claim〉, 〈context〉, 〈source〉, 〈relation〉,
〈target〉, 〈contextSpan〉, 〈claimComponent〉, 〈type〉, 〈coarseEntityType〉 and
〈fineEntityType〉. NLG models (BART and T5) generate the inconsistency type
and all explanations, and are trained using cross entropy loss. For NLU models
(BERT, RoBERTa, DeBERTa), we prepend input with a [CLS] token and use its
semantic representation from the last layer with a dense layer to predict incon-
sistency type, inconsistent claim component, and entity types with categorical
cross entropy loss. With NLU models, source, relation, target, and context span
are predicted using start and end token classifiers (using cross entropy loss) as
usually done in the question answering literature [10].

Stage A: Predict Inconsistent Spans
In this stage, we first train models to predict source, relation and target by
passing the claim sentence as input to the models. Further, to predict inconsis-
tent context span, we experiment with four different methods as follows. (1)
Structure-ignorant: The input is claim and context sentence. The aim is to
directly predict inconsistent context span ignoring the “source, relation, tar-
get” structure of the claim. (2) Two-step: First step takes claim and context
sentences as input, and predicts source, relation and target (SRT). Second step
augments source, relation and target to the input along with claim and context,
and predicts the inconsistent context span. (3) Multi-task: The input is claim
and context sentence. The goal is to jointly predict source, relation, target and
inconsistent context span. (4) Oracle-structure: The input is claim and context
sentence, and ground truth (source, relation and target). These are all used
together to predict inconsistent context span.

Stage B: Predict Inconsistency Type and Claim Component
This stage assumes that (1) SRT from claim and (2) inconsistent context span
have already been predicted. Thus, in this stage, the input is claim, context,
predicted SRT and predicted inconsistent context span. Using these inputs, to
predict inconsistency type and inconsistent claim component, we experiment
with three different methods as follows. (1) Individual: Predict inconsistency type
and inconsistent claim component separately. (2) Two-step: First step predicts
inconsistent claim component. Second step augments the predicted inconsistent
claim component to the input, and predicts inconsistency type. (3) Multi-task:
Jointly predict inconsistency type and inconsistent claim component in a multi-
task learning setup.

420 T. Raha et al.

Stage C: Predict Inconsistent Entity Types
To find inconsistent entity types, we build several models each of which take two
main inputs: inconsistent context span and the span from the claim correspond-
ing to the inconsistent claim component. We experiment with the following dif-
ferent models. (1) Individual: Predict coarse and fine-grained inconsistent entity
type separately. (2) Two-step: First step predicts coarse inconsistent entity type.
Second step augments the predicted coarse inconsistent entity type to the input,
and predicts fine-grained type.

Further, we also attempt to leverage semantics from entity class names.
Hence, we use the NLU models (BERT, RoBERTa, DeBERTa) to obtain embed-
dings for entity class names, and train NLU models to predict the class name
which is most similar to semantic representation (of the [CLS] token) of the
input. We use cosine embedding loss to train these models. Specifically, using
class (i.e., entity type) embeddings, we train the following models. Note that we
cannot train NLG models using class embeddings; thus we perform this exper-
iment using NLU models only. (1) Individual Embedding: Predict coarse and
fine-grained inconsistent entity type separately using entity type embeddings. (2)
Two-step Embedding: First step predicts coarse inconsistent entity type using
class embeddings. Second step augments the predicted coarse inconsistent entity
type to the input, and predicts fine-grained type using class embeddings. (3)
Two-step Mix: First step predicts coarse inconsistent entity type using class
embeddings. Second step augments the predicted coarse inconsistent entity type
to the input, and predicts fine-grained type using typical multi-class classification
without class embeddings.

After experimenting with various model choices for the three stages described
in this section, we find that the configuration described in Fig. 3 provides best
results. We also attempted other designs like (1) predicting all outputs (incon-
sistency type and all explanations) jointly as a 6-task setting using just claim
and context as input, (2) identifying claim component only as S, R or T rather
than heads versus modifiers. However, these alternate designs did not lead to
better results.

6 Experiments and Results

For prediction of spans like source, relation, target, and inconsistent context
span, we use exact match (EM) and intersection over union (IoU) metrics. EM
is a number from 0 to 1 that specifies the amount of overlap between the pre-
dicted and ground truth span in terms of tokens. If the characters of the model’s
prediction exactly match the characters of ground truth span, EM = 1, other-
wise EM = 0. Similarly, IoU measures intersection over union in terms of tokens.
For classification tasks like inconsistency type prediction as well as coarse and
fine-grained inconsistent entity type prediction, we use metrics like accuracy and
weighted F1.

Since factual inconsistency classification is a novel task, there are no existing
baseline methods to compare with.

Neural Models for Factual Inconsistency Classification with Explanations 421

Table 5. Source, Relation and Target Prediction from Claim Sentence

Model Exact Match IoU

Source Relation Target Source Relation Target

BERT 0.919 0.840 0.877 0.934 0.876 0.895

RoBERTa 0.921 0.865 0.871 0.936 0.883 0.885

DeBERTa 0.918 0.857 0.864 0.932 0.874 0.893

BART 0.981 0.786 0.741 0.986 0.873 0.842

T5 0.983 0.816 0.765 0.988 0.945 0.894

Table 6. Inconsistent Context Span Prediction

Model Exact Match IoU

Structure-ignorant Two-step Oracle-structure Structure-ignorant Two-step Oracle-structure

BERT 0.483 0.499 0.519 0.561 0.541 0.589

RoBERTa 0.542 0.534 0.545 0.589 0.584 0.632

DeBERTa 0.538 0.540 0.569 0.591 0.587 0.637

BART 0.427 0.292 0.361 0.533 0.404 0.486

T5 0.396 0.301 0.352 0.517 0.416 0.499

Table 7. Joint Prediction of Source, Relation and Target Prediction from Claim Sen-
tence and Inconsistent Context Span using Multi-Task Setting

Model Exact Match IoU

Source Relation Target Context Span Source Relation Target Context Span

BERT 0.769 0.665 0.752 0.524 0.801 0.708 0.804 0.566

RoBERTa 0.759 0.686 0.780 0.572 0.828 0.745 0.836 0.617

DeBERTa 0.788 0.704 0.819 0.604 0.843 0.768 0.844 0.650

BART 0.973 0.816 0.836 0.501 0.979 0.874 0.895 0.549

T5 0.981 0.764 0.717 0.570 0.988 0.870 0.842 0.602

Source, Relation, Target and Inconsistent Context Span Prediction:
Table 5 shows results for source, relation and target prediction from claim sen-
tences. The table shows that T5 works best except for prediction of relation
and target using the exact match metric. Further, Table 6 shows that surpris-
ingly structure ignorant method is slightly better than the two-step method.
Oracle method with DeBERTa expectedly is the best. NLG models (BART and
T5) perform much worse compared to NLU models for context span prediction.
Lastly, we show results of jointly predicting source, relation, target and inconsis-
tent context span in Table 7. The table shows while T5 and BART are better at
predicting source, relation and target, DeBERTa is a clear winner in predicting
the inconsistent context span.

422 T. Raha et al.

Table 8. Inconsistency Type Prediction

Model Accuracy Weighted F1

Individual Two-step Multi-task Individual Two-step Multi-task

BERT 0.84 0.84 0.84 0.86 0.86 0.86

RoBERTa 0.85 0.85 0.86 0.86 0.86 0.87

DeBERTa 0.86 0.85 0.87 0.86 0.87 0.87

BART 0.57 0.60 0.73 0.59 0.64 0.74

T5 0.53 0.61 0.74 0.58 0.66 0.74

Table 9. Inconsistent Claim Component Prediction (6-class classification)

Model Accuracy Weighted F1

Individual Multi-task Individual Multi-task

BERT 0.83 0.88 0.83 0.88

RoBERTa 0.85 0.89 0.85 0.89

DeBERTa 0.88 0.89 0.89 0.89

BART 0.80 0.75 0.81 0.76

T5 0.81 0.75 0.81 0.75

Table 10. Coarse Inconsistent Entity Type Prediction. Note that embedding based
methods don’t work with NLG models.

Model Accuracy Weighted F1

Individual Individual Embedding Individual Individual Embedding

BERT 0.82 0.84 0.78 0.84

RoBERTa 0.83 0.86 0.80 0.85

DeBERTa 0.85 0.87 0.81 0.86

BART 0.73 - 0.71 -

T5 0.74 - 0.73 -

Inconsistency Type and Inconsistent Claim Component Prediction:
Tables 8 and 9 show the results for the inconsistency type and inconsistent claim
component prediction. Note that the two problems are 5-class and 6-class clas-
sification respectively. We observe that joint multi-task model outperforms the
other two methods. Also, DeBERTa is the best model across all settings. For this
best model, the F1 scores for the inconsistency types are as follows: Taxonomic
Relations (0.92), Negation (0.86), Set Based (0.65), Gradable (0.78) and Simple
(0.81).

Neural Models for Factual Inconsistency Classification with Explanations 423

Table 11. Accuracy/Weighted F1 for Fine-grained Inconsistent Entity Type Predic-
tion. Note that embedding based methods do not work with NLG models.

Model Individual Two-step Individual Embedding Two-step Embedding Two-step Mix

BERT 0.65/0.59 0.74/0.71 0.64/0.62 0.72/0.70 0.75/0.71

RoBERTa 0.69/0.65 0.75/0.73 0.72/0.68 0.76/0.73 0.76/0.75

DeBERTa 0.70/0.67 0.77/0.74 0.73/0.70 0.76/0.73 0.78/0.76

BART 0.50/0.44 0.64/0.59 - - -

T5 0.56/0.48 0.67/0.62 - - -

Table 12. Confusion matrix for inconsistency type prediction. We observe a high
correlation between actual and predicted values, indicating our model is effective.

Predicted

Taxonomic Relations Negation Set Based Gradable Simple

Actual Taxonomic Relations 456 16 4 17 9

Negation 11 123 3 0 4

Set Based 17 4 22 1 1

Gradable 16 1 2 51 0

Simple 6 2 2 2 36

Inconsistent Entity Type Prediction: Tables 10 and 11 show accuracy and
weighted F1 for coarse and fine-grained inconsistent entity type prediction
respectively. We make the following observations from these tables: (1) DeBERTa
outperforms all other models for both the predictions. (2) For coarse inconsis-
tent entity type prediction, the embedding based approach works better than the
typical classification approach. This is because there are rich semantics in the
entity class names that are effectively leveraged by the embedding based app-
roach. (3) For fine-grained inconsistent entity type prediction, two-step method
is better than individual method both with and without embeddings. (4) The
two-step mix method where we use embeddings based method to predict coarse
inconsistent entity type and then usual 60-class classification for fine-grained
types performs the best.
Qualitative Analysis To further understand where our model goes wrong,
we show the confusion matrix for inconsistency type prediction for our best
model in Table 12. We observe that the model labels many set-based examples
as ‘taxonomic relations’ leading to poor F1 for the set-based class. In general
most of the confusion is between ‘taxonomic relations’ and other classes.

Amongst the coarse entity types, we found the F1 to be highest for time,
action, quantity, nationality and geography entity types, and lowest for animal,
relationship, gender, sentiment and technology entity types.

Further, for inconsistency spans in the context, we observe that the average
length of accurate predictions (3.16) is much smaller than inaccurate predictions

424 T. Raha et al.

(8.54), comparing the lengths of ground truth spans. Further, for inaccurate
predictions, we observe that as the length of the inconsistency span increases, the
coverage of ground truth tokens by the predicted tokens, decreases on an average.
Further, we categorized inaccurate span predictions into 4 buckets (additive,
reordered, changed and subtractive). Additive implies more terms compared to
ground truth, reordered means same terms but reordered, changed means some
new terms were generated by the model, and subtractive means misses out on
terms compared to ground truth. We found that ∼91 were of subtractive type,
indicating that our inconsistency span predictor model is too terse and can be
improved by reducing sampling probability for end of sequence token.

Hyper-parameters for Reproducibility: The experiments were run on a
machine with four GEFORCE RTX 2080 Ti GPUs. We used a batch size of 16
and the AdamW optimizer [21] and trained for 5 epochs for all models. We used
the following models: bert-base-uncased, roberta-base, microsoft/deberta-base,
facebook/bart-base, and t5-small. Learning rate was set to 1e-4 for BART and
T5, and to 1e-5 for other models. More details are available in the code1.

7 Conclusion and Future Work

In this paper, we investigated the problem of detecting and explaining types of
factual inconsistencies in text. We contributed a new dataset, FICLE, with ∼8K
samples with detailed inconsistency labels for (claim, context) pairs. We exper-
imented with multiple natural language understanding and generation models
towards the problem. We found that a pipeline of four models which predict
inconsistency spans in claim and context followed by inconsistency type pre-
diction and finally inconsistent entity type prediction works the best. Also, we
observed that DeBERTa led to the best results. In the future, we plan to extend
this work to multi-lingual scenarios. We also plan to extend this work to per-
form inconsistency detection and localization across multiple sentences given a
paragraph.

Ethical Statement. In this work, we derived a dataset from FEVER dataset3. Data

annotations in FEVER incorporate material from Wikipedia, which is licensed pursuant

to the Wikipedia Copyright Policy. These annotations are made available under the

license terms described on the applicable Wikipedia article pages, or, where Wikipedia

license terms are unavailable, under the Creative Commons Attribution-ShareAlike

License (version 3.0), available at this link: http://creativecommons.org/licenses/by-

sa/3.0/. Thus, we made use of the dataset in accordance with its appropriate usage

terms.

The FICLE dataset does not contain any personally identifiable information. Details of

the manual annotations are explained in Sect. 4 as well as in annotationGuidelines.pdf

at https://github.com/blitzprecision/FICLE.

3 https://fever.ai/dataset/fever.html.

http://creativecommons.org/licenses/by-sa/3.0/
http://creativecommons.org/licenses/by-sa/3.0/
https://github.com/blitzprecision/FICLE
https://fever.ai/dataset/fever.html

Neural Models for Factual Inconsistency Classification with Explanations 425

References

1. Alhindi, T., Petridis, S., Muresan, S.: Where is your evidence: improving fact-
checking by justification modeling. In: Proceedings of the First Workshop on Fact
Extraction and Verification (FEVER), pp. 85–90 (2018)

2. Atanasova, P., Simonsen, J.G., Lioma, C., Augenstein, I.: Generating fact checking
explanations. In: Proceedings of the 58th Annual Meeting of the Association for
Computational Linguistics, pp. 7352–7364 (2020)

3. Bowman, S.R., Angeli, G., Potts, C., Manning, C.D.: A large annotated corpus
for learning natural language inference. In: Conference on Empirical Methods in
Natural Language Processing, EMNLP 2015, pp. 632–642. Association for Com-
putational Linguistics (ACL) (2015)

4. Bowman, S.R., Angeli, G., Potts, C., Manning, C.D.: A large, annotated corpus for
learning natural language inference (2015). Preprint at arXiv:1508.05326. Accessed
21 Jun 2021

5. Brown, T., et al.: Language models are few-shot learners. Adv. Neural. Inf. Process.
Syst. 33, 1877–1901 (2020)

6. Camburu, O.M., Rocktäschel, T., Lukasiewicz, T., Blunsom, P.: e-SNLI: natural
language inference with natural language explanations. Adv. Neural. Inf. Process.
Syst. 31, 9539–9549 (2018)

7. Cao, Z., Wei, F., Li, W., Li, S.: Faithful to the original: fact aware neural abstractive
summarization. In: Proceedings of the AAAI Conference on Artificial Intelligence,
vol. 32 (2018)

8. Ciampaglia, G.L., Shiralkar, P., Rocha, L.M., Bollen, J., Menczer, F., Flammini,
A.: Computational fact checking from knowledge networks. PLoS ONE 10(6),
e0128193 (2015)

9. De Marneffe, M.C., Rafferty, A.N., Manning, C.D.: Finding contradictions in text.
In: Proceedings of ACL-08: HLT, pp. 1039–1047 (2008)

10. Devlin, J., Chang, M., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirec-
tional transformers for language understanding. arXiv preprint arXiv:1810.04805
(2018)

11. Dušek, O., Kasner, Z.: Evaluating semantic accuracy of data-to-text generation
with natural language inference. In: Proceedings of the 13th International Confer-
ence on Natural Language Generation, pp. 131–137 (2020)

12. He, P., Liu, X., Gao, J., Chen, W.: DEBERTa: decoding-enhanced BERT with
disentangled attention. arXiv preprint arXiv:2006.03654 (2020)

13. Honovich, O., Choshen, L., Aharoni, R., Neeman, E., Szpektor, I., Abend, O.:
q2: evaluating factual consistency in knowledge-grounded dialogues via question
generation and question answering. arXiv preprint arXiv:2104.08202 (2021)

14. Ji, Z., et al.: Survey of hallucination in natural language generation. ACM Com-
puting Surveys p, To appear (2022)

15. Joshi, P., Aditya, S., Sathe, A., Choudhury, M.: TaxiNLI: taking a ride up the NLU
hill. In: Proceedings of the 24th Conference on Computational Natural Language
Learning, pp. 41–55 (2020)

16. Kryściński, W., Keskar, N.S., McCann, B., Xiong, C., Socher, R.: Neural text
summarization: a critical evaluation. In: Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing and the 9th International
Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 540–
551 (2019)

http://arxiv.org/abs/1508.05326
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/2006.03654
http://arxiv.org/abs/2104.08202

426 T. Raha et al.

17. Kumar, S., Talukdar, P.: NILE: natural language inference with faithful natural
language explanations. In: Proceedings of the 58th Annual Meeting of the Associ-
ation for Computational Linguistics, pp. 8730–8742 (2020)

18. Lewis, M., et al.: BART: denoising sequence-to-sequence pre-training for natural
language generation, translation, and comprehension. In: Proceedings of the 58th
Annual Meeting of the Association for Computational Linguistics, pp. 7871–7880
(2020)

19. Liu, Y., et al.: RoBERTa: a robustly optimized BERT pretraining approach. arXiv
preprint arXiv:1907.11692 (2019)

20. Longpre, S., Perisetla, K., Chen, A., Ramesh, N., DuBois, C., Singh, S.: Entity-
based knowledge conflicts in question answering. In: Proceedings of the 2021 Con-
ference on Empirical Methods in Natural Language Processing, pp. 7052–7063
(2021)

21. Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. arXiv preprint
arXiv:1711.05101 (2017)

22. Mao, Y., Ren, X., Ji, H., Han, J.: Constrained abstractive summarization:
preserving factual consistency with constrained generation. arXiv preprint
arXiv:2010.12723 (2020)

23. Maynez, J., Narayan, S., Bohnet, B., McDonald, R.: On faithfulness and factuality
in abstractive summarization. In: Proceedings of the 58th Annual Meeting of the
Association for Computational Linguistics, pp. 1906–1919 (2020)

24. Mesgar, M., Simpson, E., Gurevych, I.: Improving factual consistency between a
response and persona facts. In: Proceedings of the 16th Conference of the European
Chapter of the Association for Computational Linguistics: Main Volume, pp. 549–
562 (2021)

25. Nan, F., et al.: Entity-level factual consistency of abstractive text summarization.
In: Proceedings of the 16th Conference of the European Chapter of the Association
for Computational Linguistics: Main Volume, pp. 2727–2733 (2021)

26. Nie, Y., Williams, A., Dinan, E., Bansal, M., Weston, J., Kiela, D.: Adversarial
NLI: a new benchmark for natural language understanding. In: Proceedings of
the 58th Annual Meeting of the Association for Computational Linguistics, pp.
4885–4901 (2020)

27. Raffel, C., et al.: Exploring the limits of transfer learning with a unified text-to-text
transformer. J. Mach. Learn. Res. 21(1), 5485–5551 (2020)

28. Ribeiro, M.T., Singh, S., Guestrin, C.: Why should i trust you? explaining the pre-
dictions of any classifier. In: Proceedings of the 22nd ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, pp. 1135–1144 (2016)

29. Ribeiro, M.T., Singh, S., Guestrin, C.: Anchors: high-precision model-agnostic
explanations. In: Proceedings of the AAAI Conference on Artificial Intelligence,
vol. 32 (2018)

30. Saeed, J.: Semantics. Wiley, Introducing Linguistics (2011)
31. Shi, B., Weninger, T.: Discriminative predicate path mining for fact checking in

knowledge graphs. Knowl.-Based Syst. 104, 123–133 (2016)
32. Thorne, J., Vlachos, A., Christodoulopoulos, C., Mittal, A.: Fever: a large-scale

dataset for fact extraction and verification. In: Proceedings of the 2018 Conference
of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies, Volume 1 (Long Papers), pp. 809–819 (2018)

33. Thorne, J., Vlachos, A., Christodoulopoulos, C., Mittal, A.: Generating token-level
explanations for natural language inference. In: Proceedings of the 2019 Conference
of the North American Chapter of the Association for Computational Linguistics:

http://arxiv.org/abs/1907.11692
http://arxiv.org/abs/1711.05101
http://arxiv.org/abs/2010.12723

Neural Models for Factual Inconsistency Classification with Explanations 427

Human Language Technologies, Volume 1 (Long and Short Papers), pp. 963–969
(2019)

34. Vaswani, A., et al.: Attention is all you need. In: NIPS, pp. 5998–6008 (2017)
35. Vedula, N., Parthasarathy, S.: FACE-KEG: fact checking explained using knowl-

edge graphs. In: Proceedings of the 14th ACM International Conference on Web
Search and Data Mining, pp. 526–534 (2021)

36. Wang, A., Cho, K., Lewis, M.: Asking and answering questions to evaluate the
factual consistency of summaries. In: Proceedings of the 58th Annual Meeting of
the Association for Computational Linguistics, pp. 5008–5020 (2020)

37. Williams, A., Nangia, N., Bowman, S.: A broad-coverage challenge corpus for sen-
tence understanding through inference. In: Proceedings of the 2018 Conference of
the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies, Volume 1 (Long Papers), pp. 1112–1122. Associ-
ation for Computational Linguistics, New Orleans, Louisiana (2018). https://doi.
org/10.18653/v1/N18-1101, www.aclanthology.org/N18-1101

38. Zellers, R., et al.: Defending against neural fake news. In: Advances in Neural
Information Processing Systems, vol. 32 (2019)

39. Zhang, S., Niu, J., Wei, C.: Fine-grained factual consistency assessment for abstrac-
tive summarization models. In: Proceedings of the 2021 Conference on Empirical
Methods in Natural Language Processing, pp. 107–116 (2021)

40. Zhou, C., Neubig, G., Gu, J., Diab, M., Guzmán, F., Zettlemoyer, L., Ghazvinine-
jad, M.: Detecting hallucinated content in conditional neural sequence generation.
In: Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021,
pp. 1393–1404 (2021)

41. Zhu, C., et al.: Enhancing factual consistency of abstractive summarization. In:
Proceedings of the 2021 Conference of the North American Chapter of the Associ-
ation for Computational Linguistics: Human Language Technologies, pp. 718–733
(2021)

https://doi.org/10.18653/v1/N18-1101
https://doi.org/10.18653/v1/N18-1101
www.aclanthology.org/N18-1101

iSAGE: An Incremental Version of SAGE
for Online Explanation on Data Streams

Maximilian Muschalik1(B) , Fabian Fumagalli2 , Barbara Hammer2 ,
and Eyke Hüllermeier1

1 LMU Munich, MCML Munich, Geschwister-Scholl-Platz 1, Munich, Germany
maximilian.muschalik@ifi.lmu.de

2 Bielefeld University, CITEC, Inspiration 1, Bielefeld, Germany

Abstract. Existing methods for explainable artificial intelligence
(XAI), including popular feature importance measures such as SAGE,
are mostly restricted to the batch learning scenario. However, machine
learning is often applied in dynamic environments, where data arrives
continuously and learning must be done in an online manner. Therefore,
we propose iSAGE, a time- and memory-efficient incrementalization of
SAGE, which is able to react to changes in the model as well as to drift in
the data-generating process. We further provide efficient feature removal
methods that break (interventional) and retain (observational) feature
dependencies. Moreover, we formally analyze our explanation method
to show that iSAGE adheres to similar theoretical properties as SAGE.
Finally, we evaluate our approach in a thorough experimental analysis
based on well-established data sets and data streams with concept drift.

1 Introduction

If machine learning is used for high-stake decision-making, e.g., in healthcare [47]
or energy consumption analysis [21], models learned on data should be transpar-
ent and explainable. However, as the best performing models are often opaque
in nature, this is typically not the case. The field of explainable artificial intelli-
gence (XAI) addresses this problem by developing methods to uncover the inner
working of black box models and to make the input-output relationships rep-
resented by such models more understandable [2]. Notably, this includes global
feature importance (global FI) methods, which quantify the influence of individ-
ual input features on the model predictions, and seek to rank the features in
terms of their importance.

So far, XAI has mainly focused on static learning scenarios, where a sin-
gle model is learned from data in a batch mode. However, in modern machine
learning applications such as online credit risk scoring for financial services [12],
intrusion detection in networks [3], or sensor network analysis [4,15], data is
not static but coming in the form of a continuously evolving stream of data.

M. Muschalik and F. Fumagalli—Equal contribution.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
D. Koutra et al. (Eds.): ECML PKDD 2023, LNAI 14171, pp. 428–445, 2023.
https://doi.org/10.1007/978-3-031-43418-1_26

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-43418-1_26&domain=pdf
http://orcid.org/0000-0002-6921-0204
http://orcid.org/0000-0003-3955-3510
http://orcid.org/0000-0002-0935-5591
http://orcid.org/0000-0002-9944-4108
https://doi.org/10.1007/978-3-031-43418-1_26

iSAGE: An Incremental Version of SAGE 429

Fig. 1. An incremental model is fitted on a data stream. Incrementally explaining this
model with iSAGE efficiently distributes the FI scores according to the model’s loss
evolving the user understanding of the model over time.

In applications of that kind, online algorithms are needed for learning in an incre-
mental mode, processing data in a sequential manner one by one. Incremental
learning should not only be time- and memory-efficient, but must also account
for possible changes in the underlying data distribution, which is referred to as
concept drift. Such drift may occur in different forms and for different reasons,
e.g., as a change of energy consumption patterns or hospital admission criteria
due to pandemic-induced lockdowns [16].

In dynamic scenarios, where models are constantly evolving and reacting to
their changing environment, static explanations do no longer suffice. To effec-
tively monitor dynamic models, explanations need to be updated in real-time,
keeping pace with the evolving models. As illustrated in Fig. 1, in this work,
we compute global FI in an incremental manner, thereby also addressing the
challenge of drifting data distributions, where batch methods are likely to yield
wrong explanations (cf. Figure 7 in Appendix C).

Providing an incremental global FI method comes with various challenges,
not only conceptually and algorithmically, but also computationally, especially
because the computation of many FI measures is already prohibitive in the batch
setting.

Contribution. We take a first step towards efficient explanations for changing
models on data streams and contribute:

– iSAGE ; a model-agnostic global FI algorithm that provides time- and
memory- efficient incremental estimates of SAGE values and is able to react
to changes in the model and concept drift.

– interventional and observational iSAGE ; two conceptual approaches to define
SAGE values that extend on the existing discussion of appropriate feature
removal techniques with an efficient incremental algorithm.

– open source implementation; a well-tested and general implementation of our
algorithms that integrates into the River [38] Python framework.1

1 iSAGE is implemented in iXAI at https://github.com/mmschlk/iXAI.

https://github.com/mmschlk/iXAI

430 M. Muschalik et al.

Related Work. Global FI is an active part of XAI research, and various methods
have been proposed [13]. Model-specific methods were developed based on the
magnitude of weights for linear models and neural networks (NNs) [23,28], as
well as split heuristics for tree-based models [25]. Another common approach
to global FI is to aggregate local explanations, such as model-agnostic LIME
[42] and SHAP [36] or NN specific methods [6,44–46,51]. Permutation Feature
Importance (PFI) [7] is a well-established model-agnostic, global FI method with
various extensions [8,33,37]. SAGE is based on the Shapley value [43], similar
to SHAP [36] and LossSHAP [35] and overcomes computational limitations of
aggregating local SHAP explanations. Retricting a model to compute FI is done
either by retaining (observational) or breaking (interventional) feature depen-
dencies, where it was shown that both methods generate different explanations
and the choice should depend on the application [1,11,19].

Traditionally, XAI focuses on the batch learning scenario. However, recently
more methods that natively support incremental, dynamic learning environments
are proposed. For instance, online feature selection methods compute FI period-
ically [5,50]. Haug et al. [26] propose a concept drift detection algorithm based
on clusterings and changes in SHAP’s base value. A model-specific approach
for tree-based models is measuring the mean decrease in impurity (MDI) [9,22].
In the notion of explaining change [39], iPFI [20] is a related model-agnostic
approach that computes the traditional PFI [7] in an incremental manner. To
efficiently restrict the model [14], we rely on geometric sampling [20] (interven-
tional) and a combination of the conditional subgroup approach [37] and the
TreeSHAP [35] methodology (observational).

Existing online FI methods are either model-specific or interpretation of the
resulting feature importance scores is unintuitive, emphasizing the need for incre-
mental variants of Shapley-based explanations, such as SAGE.

2 Shapley Additive Global Importance (SAGE)

Many feature importance techniques have been proposed in recent years [14],
where each method allows to assess an importance ranking of the features. How-
ever, interpreting the exact scores and quantifying the difference between the
importance of features remains unintuitive in many cases. Shapley-based expla-
nations have attracted a lot of attention due to their unique mathematical prop-
erties, in particular the efficiency condition that ensures that the sum of these
values over all features equals a specified model property, referred to as model
behavior [14]. SHapley Additive Global Importance (SAGE) [13] is a well-known
Shapley-based explanation technique that quantifies global FI as the contribu-
tion of individual features to the model’s loss. SAGE is further a model-agnostic
method that only relies on model evaluations and does not make any assumption
about the inherent structure. In the following, we distinguish between the SAGE
values φ, a statistical concept to define Shapley-based global FI, and the SAGE
estimator φ̂SAGE, an efficient approximator of the SAGE values. For a model
f : X → Y, the SAGE values φ(i) for every feature i ∈ D are constructed, such

iSAGE: An Incremental Version of SAGE 431

that the sum is equal to the expected improvement in loss over using the mean
prediction ȳ := EX [f(X)], i.e.

ν(D) := EY [�(ȳ, Y)]
︸ ︷︷ ︸

no feature information

−E(X,Y) [�(f(X), Y)]
︸ ︷︷ ︸

with feature information

=
∑

i∈D

φ(i),

where � is a suitable loss (e.g., cross-entropy for classification, absolute error for
regression, or kendall tau for rankings) and (X,Y) refers to the joint distribution
of the data-generating random variables X and Y . The quantity ν(D) is viewed
as the improvement in loss, if all features D are known to the model. It is then
also natural to define ν(∅) = 0, i.e. the improvement in loss is expected to be
zero, if no features are known to the model. To quantify the importance of single
features, the expected improvement in loss, if only a subset S ⊂ D of features
is known, is introduced. To restrict this loss, the model is restricted to a subset
of features S ⊂ D, by randomizing the features in D \ S. In the following, we
write f(x) = f(x(S), x(S̄)) to distinguish the features of x in S, x(S), and the
features of x in S̄ := D \ S, x(S̄). To randomize the features in S̄, we introduce
the notation f(x, S) with a set S ⊂ D and the observational approach [13,36]

fobs(x, S) := E

[

f(x(S),X(S̄)) | X(S) = x(S)
]

and the interventional approach [11,30]

f int(x, S) := E

[

f(x(S),X(S̄))
]

.

The essential difference between the two approaches is that f int breaks the depen-
dence between the features in S and S̄. The observational and interventional
approach are also referred to as on-manifold and off-manifold explanation [19],
or conditional and marginal expectation [30], respectively. While f int is easy
to approximate using the marginal distribution of the observed data points,
approaches using fobs rely on further assumptions on the conditional distribu-
tion [1,36]. SAGE values are introduced using the observational approach but
the SAGE algorithm relies on the interventional approach for approximation, i.e.
assuming feature independence [13]. It was shown that both approaches yield
significantly different explanations, if features are correlated [11,19,30]. We thus
propose an algorithm for each approach and leave the choice of explanation to
the practitioner, as it was concluded that this choice depends on the application
scenario [11]. We define the restricted improvement in loss as

ν(S) := EY [�(ȳ, Y)] − E(X,Y) [�(f(X,S), Y)] for f ∈ {f int, fobs}.

Then, ν : P(D) → R defines a function over the powerset P(D). The SAGE
values [13] are then defined as the Shapley value [43] of ν, i.e. the fair attribution
of ν(D) to individual features given its axiomatic propoerties.

Definition 1 (SAGE values [13]). The SAGE values are defined as

φ(i) :=
∑

S⊂D\{i}

1
d

(

d − 1
|S|

)−1

[ν(S ∪ {i}) − ν(S)] .

432 M. Muschalik et al.

We refer to the interventional and observational SAGE values, if f int and fobs

are used for f in ν, respectively.

Due to the exponential complexity of the Shapley value, the SAGE estimator
uses a Monte-Carlo approximation [10] based on the representation

φ(i) =
1
d!

∑

π∈SD

ν(u+
i (π)) − ν(u−

i (π)) = Eπ∼unif(SD)[ν(u+
i (π)) − ν(u−

i (π))],

where SD is the set of permutations over D and u+
i (π) and u−

i (π) refer to the set
of indices preceding feature i in π, in- and exclusively i. Plugging in the definition
of ν and using Monte-Carlo estimation, the SAGE estimator is constructed.

Definition 2 (SAGE Estimator [13]). Given data points (xn, yn)n=1,...,N and
permutations (π)n=1,...,N ∼ unif(SD) the SAGE estimator is defined as

φ̂SAGE(i) :=
1
N

N
∑

n=1

�(f̂(xn, u−
i (πn)), yn) − �(f̂(xn, u+

i (πn), yn)),

with f̂(x, ∅) := 1
N

∑N
n=1 f(xn) and f̂(x, S) := 1

M

∑M
m=1 f(x(S), x̃

(S̄)
m) for ∅ �=

S ⊂ D with x̃m sampled uniformly from x1, . . . , xN .

The mean prediction f̂(x, ∅) thereby differs to ensure that the SAGE val-
ues sum to the improvement in loss. For each permutation πn and observation
(xn, yn), the SAGE estimator can be efficiently computed by iterating through
the permutation and evaluating ν on the preceding elements [10,13]. The per-
mutation sampling approach ensures that the efficiency condition of the Shapley
value is maintained and thus the SAGE estimates sum approximately to ν(D).
In contrast to other global FI measures, where interpretation of the scores are
unintuitive, SAGE yields a meaningful axiomatic interpretation.

3 Incremental Global Feature Importance

In the following, we consider a data stream, where at time t the observations
(x0, y0), . . . , (xt, yt) have been observed. On this data stream, a model ft is
incrementally learned over time by updating ft → ft+1 using the observation
(xt, yt). [4,34] Our goal is to estimate the (time-dependent) SAGE values φt

alongside the incremental learning process using minimal resources. In particular,
in an online learning scenario, where the model is constantly adapting, huge
changes in global FI scores can occur, as has been observed by Haug et al. [26]
and Fumagalli et al. [20]. To guarantee the reliability of the learned models, it
is crucial to understand these global FI scores over time. The main challenge in
estimating the SAGE values in an online learning scenario is that the model ft

and the data-generating random variables (Xt, Yt) change over time and access
to observations to compute f̂t is limited.

iSAGE: An Incremental Version of SAGE 433

While the SAGE estimator provides efficient estimates of static SAGE values
for a given dataset, it does not react properly to changes in the model or concept
drift. In Appendix C, we show an example (Fig. 7) which illustrates that the
SAGE estimator yields wrong importance scores if the underlying distribution or
model is not static. Furthermore, computing the SAGE estimator repeatedly in
an incremental setting on a data stream quickly becomes infeasible. As a remedy,
we propose incremental SAGE (iSAGE), an incremental estimator, which reacts
to changing distributions and is able to explain dynamic, time-dependant models.
To compare iSAGE in an incremental learning setting, we first propose Sliding
Window SAGE (SW-SAGE), a time-sensitive baseline estimator that repeatedly
computes the SAGE estimator on a sliding window.

Sliding Window SAGE (SW-SAGE). A naive approach of approximating SAGE
values in an incremental manner is by repeated calculations within a sliding
window (SW), which we denote as SW-SAGE. Applying SW-SAGE, necessi-
tates storing all historical observations (xt, yt) for the last w (window length)
observations, and recomputing the SAGE estimator from scratch based on the
most up-to-date model ft. The main computational effort of SW-SAGE stems
from evaluating the model ft and, thus, scales linearly with w. The size w of
the window has a profound effect on the resulting SAGE estimates. Choosing a
large value for w, may increase the quality of the estimated SAGE values, but
can also lead to wrong importance scores, as the window may contain outdated
observations. Vice versa, a window size too small leads to a high variance.

3.1 Incremental SAGE (iSAGE)

The high computational effort and the inability to reuse past results, because of
the dynamic nature of ft, strictly limits SW-SAGE in many scenarios, further
discussed in Sect. 4.1. As a result, we now propose a time- and memory-efficient
variant of SW-SAGE, which we refer to as incremental SAGE (iSAGE). The
iSAGE algorithm computes the (time-dependent) SAGE values φt at time t
and is able to react to changes in the model and concept drift, while updating
its estimates efficiently in an incremental fashion with minimal computational
effort. At each time step, we observe a sample (xt, yt) from the data stream,
and our goal is to update the estimate using the current model ft. We sample
πt ∼ unif(SD) to compute the marginal contribution for i ∈ D as

Δt(i) :=�(f̂t(xt, u
−
i (πt)), yt) − �(f̂t(xt, u

+
i (πt)), yt),

where f̂t(x, S) is a time-sensitive approximation of the restricted model, further
discussed in Sect. 3.2. These computations are then averaged over time, which
yields the iSAGE estimator, outlined in Algorithm 1.

Definition 3 (iSAGE). The iSAGE estimator is recursively defined as

iSAGE: φ̂t(i) = (1 − α) · φ̂t−1(i) + α · Δt(i),

where α > 0 and computation starts at 0 < t0 < t with φ̂t0−1(i) := 0.

434 M. Muschalik et al.

Algorithm 1. Incremental SAGE (iSAGE)
Require: stream {xt, yt}∞

t=1, feature indices D = {1, . . . , d}, model ft, loss function
�, and inner samples m

1: Initialize φ̂1 ← 0, φ̂2 ← 0, . . . , φ̂d ← 0, and smoothed mean prediction y∅ ← 0
2: for all (xt, yt) ∈ stream do
3: Sample π, a permutation of D
4: S ← ∅
5: y∅ ← (1 − α) · y∅ + α · f(xt) {Udpate mean prediction}
6: lossPrev ← �(y∅, yt) {Compute mean prediction loss}
7: for j = 1 to d do {Iterate over π}
8: S ← S ∪ {π[j]}
9: y ← 0

10: for k = 1 to m do {Marginalize prediction with S}
11: Sample x

(S̄)
k ∼ Q

(x,S)
t {interventional (Appendix, Algorithm 2) or observa-

tional (Appendix, Algorithm 3)}
12: y ← y + ft(x

(S)
t , x

(S̄)
k)

13: end for
14: ȳ ← y

m

15: loss ← �(ȳ, yt)
16: Δ ← lossPrev − loss
17: φ̂π[j] ← (1 − α) · φπ[j] + α · Δ
18: lossPrev ← loss
19: end for
20: end for
21: return φ1, φ2, . . . , φd

The iSAGE estimator, thus, approximates φt by exponentially smoothing
previous SAGE estimates, as E[Δt(i)] = φt(i). In the static batch setting, the
SAGE estimator computes the restricted model ft(x, S) by sampling uniformly
from observations in the dataset. However, when ft is incrementally updated
in the data stream setting, access to previous observations is limited as obser-
vations are discarded after the incremental update of the model. Furthermore,
the distribution of previous observations might change over time, so recently
observed samples should be preferred. We thus present two sampling strategies
to implement the observational and interventional approach incrementally.

3.2 Incremental Feature Removal Strategies

As mentioned in Sect. 2, SAGE is defined using the observational approach,
which is then approximated by the interventional approach, i.e. sampling from
the marginal distribution and assuming feature independence. Clearly, this con-
stitutes a strong assumption that is rarely satisfied in practice. Instead, we sam-
ple from the marginal distribution to compute interventional iSAGE and propose
a novel approach to compute observational iSAGE, by approximating the condi-
tional distribution. This aligns with [11], where it is claimed that the choices of
feature removal is dependent on the application scenario. For both approaches

iSAGE: An Incremental Version of SAGE 435

we now provide a time- and memory-efficient incremental sampling approach by
maintaining time-dependent reservoirs to estimate f(x, S).

Definition 4 (Estimator for f(x, S)). At time t, we define for ∅ �= S ⊂ D

f̂t(x, S) :=
1
M

M
∑

m=1

ft(x(S), x̃(S̄)
m) with x1, . . . , xM ∼ Q

(x,S)
t ,

where S̄ := D \ S and Q
(x,S)
t is a sampling distribution over features in S̄.

Further, f̂t(x, ∅) := (1 − α)ft−1(x, ∅) + αft(xt) and f̂t0−1(x, ∅) := 0.

The interventional approach breaks the feature dependency and thus Q
(x,S)
t

does not depend on the location x, whereas for the observational Q(x,S)
t does

depend on both, the location x as well as the subset S. We now describe incre-
mental sampling algorithms to sample from Q

(x,S) for either approach.

Interventional iSAGE. The interventional approach in the incremental learn-
ing setting is defined as f int

t (x, S) := E

[

ft(x(S),X
(S̄)
t)

]

. The batch SAGE algo-
rithm samples uniformly from all observations from the given dataset. In an
incremental learning scenario, this approach has significant drawbacks. First,
access to previous observations is limited, as storing observations may be infea-
sible for the whole data stream. Second, the distribution of Xt may change over
time, and it is, thus, beneficial to favor recent observations over older data points.
The geometric sampling strategy, proposed by Fumagalli et al. [20], accounts for
both of these challenges. Geometric sampling maintains one reservoir of length
L, that is updated at each time step with an incoming data point by uniformly
replacing a data point from the reservoir. Then, at each time step, observations
x̃m are uniformly chosen from the reservoir. The geometric sampling strategy
(fully initialized at time step L := t0) thus chooses a previous observation from
time r at time s with probability L−1(1 − L−1)s−r−1 for r ≥ L, which clearly
favors more recent observations.

The complete procedure is given in the appendix (Algorithm 2). At any time
t, geometric reservoir sampling requires a storage space of O(L) data points. It
has been shown that the geometric sampling procedure is favorable in scenarios
with concept drift compared to memory-efficient uniform sampling approaches,
such as general reservoir sampling [20].

Observational iSAGE. The interventional approach can generate unrealistic
observations when features are highly correlated, resulting in out-of-distribution
evaluations of the model. When understanding causal relationships, it might
be inappropriate to evaluate the model outside the data manifold [11], and we
thus propose an alternative approach that can incorporate feature dependence
in the incremental sampling process. The observational approach in the incre-
mental setting is defined as fobs

t (x, S) := E

[

ft(x(S),X
(S̄)
t) | X

(S)
t = x(S)

]

. While
observing data points xt, we train for every feature i ∈ D an incremental deci-
sion tree that aims at predicting x

(i)
t given the remaining feature values x

(D\{i})
t .

436 M. Muschalik et al.

We then traverse the incremental decision tree using the input xt and maintain
a reservoir of length L at each leaf node, using the geometric sampling strategy
described above, i.e. uniformly replacing an observation in the leaf’s reservoir.
This yields a reservoir of length L at every leaf node of the incremental decision
tree, where both, the decision tree as well as the reservoir change over time. We
propose to use a Hoeffding Adaptive Tree (HAT), a popular incremental decision
tree [29], to adaptively maintain the structure. The approach can be viewed as
an incremental variant of the conditional subgroup approach [37].

Given a subset S ⊂ D and an observation xt, we obtain the values of x̃
(S̄)
m

separately for each feature j ∈ S̄. Using xt, we traverse the HAT and at every
decision node that splits on a feature in S̄, we randomly split according to the
split ratio of previous observed inputs, a statistic that is inherently available for
a HAT. From the reservoir at the resulting leaf node, we then uniformly sample
values for x̃

(j)
m and repeat this process for every feature j ∈ S̄ until we obtain all

values for x̃
(S̄)
m . This methodology parallels the TreeSHAP approach of traversing

decision trees for absent features, referred to as path dependent TreeSHAP [35].
Notably, our approach allows to extend the conditional subgroup approach to
an arbitrary feature subset S ⊂ D while maintaining only one decision tree
per feature and further extends the approach to an incremental setting. The
observational approach via HAT has a space complexity of O(d · TR · L) where
R refers to the HATs’ maximum tree depth, T is the maximum number of tree
splits, and L is the size of the reservoir at each leaf node.

3.3 Approximation Guarantees for Static Environments

We presented iSAGE as a time- and memory-efficient algorithm to estimate
SAGE values over time incrementally. In contrast to the SAGE estimator, iSAGE
reacts to changes in the model as well as concept drift, which we demonstrate
empirically in Sect. 4. Analyzing iSAGE theoretically in an incremental learn-
ing scenario would require strong assumptions on the data-generating random
variables (Xt, Yt) and the approximation quality of the learned model ft, as the
iid assumption in general is not fulfilled. Instead, we now show theoretically
that iSAGE has similar properties as the SAGE estimator in a static learning
environment. In the following, we assume that f ≡ ft is a constant model and
(X,Y) ≡ (Xt, Yt) a stationary data generating process. We further assume that
Q

(x,S)
t is the true marginal (interventional) or conditional (observational) distri-

bution and that samples are drawn iid, similar to Covert et al. [13].

Theorem 1. For iSAGE φ̂t(i) → φt(i) for M → ∞ and t → ∞.

Theorem 1 shows that iSAGE converges to the SAGE values. Further, the
variance is controlled by α.

Theorem 2. The variance of iSAGE is controlled by α, i.e. V[φ̂t(i)] = O(α).

Lastly, we show that iSAGE does not differ much from the SAGE estimator.

iSAGE: An Incremental Version of SAGE 437

Theorem 3. Given the SAGE estimator φ̂SAGE
t (i) computed at time t over all

previously observed data points, it holds for iSAGE with M → ∞, α = 1
t and

every ε > (1 − α)t−t0+1 that P
(

|φ̂t(i) − φ̂SAGE
t (i)| > ε

)

= O(1t).

While iSAGE admits similar properties as the SAGE estimator in a static
environment, we showcase in our experiments that iSAGE is able to efficiently
react to model changes and concept drift in an incremental learning setting.

4 Experiments

We now utilize iSAGE in multiple experimental settings. In Sect. 4.1, we show
how iSAGE can be efficiently applied in dynamic environments with concept
drift. In Sect. 4.2, we construct a synthetic ground-truth scneario for a data
stream with concept drift and show that iSAGE is able to efficiently recover
the SAGE values. In Sect. 4.3, we illustrate the difference of interventional and
observational iSAGE, which yield profoundly different explanations. In Sect. 4.4,
we show that iSAGE leads to the same results as the SAGE estimator in a
static environment validating our theoretical results. As our iSAGE explanation
technique is inherently model-agnostic, we train and evaluate our method on
different incremental and batch models.2

4.1 iSAGE in Dynamic Environments with Concept Drift

In this experiment, we demonstrate the explanatory capabilities of iSAGE in a
dynamic learning scenario with concept drift. We illustrate how iSAGE uncovers
hidden changes in black box incremental models applied in real-world incremen-
tal learning scenarios where models are updated with every new observation. We
compare iSAGE with incremental permutation feature importance (iPFI) [20],
which is up to our knowledge, the only model-agnostic explanation method that
can be applied in an incremental learning setting. For additional experiments
and a comparison with the mean decrease in impurity (MDI) for tree-based
models [22], we refer to the supplement material (cf., D.3). Figure 2 explains the
incremental learning procedure for an ARF classifier on the elec2 data stream.
Both methods detect similar feature importance rankings with varying abso-
lute values. In contrast to iPFI, iSAGE explanations sum to the time-dependent
difference in model loss over the loss using the mean prediction, due to the effi-
ciency axiom of the Shapley value, which naturally increases interpretability of
the method. Both methods accurately detect the model changes caused by con-
cept drift in elec2 [24]. The concept drift, which stems from the vicprice feature
not having any values in the first ≈ 20k observations, would be obfuscated by
solely plotting the model performance without any online explanations.
2 All model implementations are based on scikit-learn [41], River [38], and
torch [40]. The data sets and streams are retrieved from OpenML [17]
and River. All supplement materials and the appendix can be found at
https://github.com/mmschlk/iSAGE-An-Incremental-Version-of-SAGE-for-Online-
Explanation-on-Data-Streams.

https://github.com/mmschlk/iSAGE-An-Incremental-Version-of-SAGE-for-Online-Explanation-on-Data-Streams
https://github.com/mmschlk/iSAGE-An-Incremental-Version-of-SAGE-for-Online-Explanation-on-Data-Streams

438 M. Muschalik et al.

Fig. 2. iSAGE and iPFI of an ARF on elec2 (left) and iSAGE for an incrementally
fitted autoencoder for fault detection based on the reconstruction loss (right).

As an illustrative example, we conduct an experiment to show how online
SAGE values can detect sensor faults in online sensor networks, which constitutes
a challenging predictive maintenance problem [15,48]. Similar to Hinder et al.
[27], we simulate sensor network data of water pressures including sensor faults
(vertical lines in Fig. 2 denote the time points) via the L-Town [49] simulation
tool [32] and explain online learning models. We incrementally fit3 and explain
a NN autoencoder on the sensor readings. Figure 2 shows how the autoencoder’s
reconstruction error is distributed onto the individual senor values by iSAGE.
Notably, the faulty sensor can easily be identified through inspection of the
iSAGE values after the sensor faulted.

4.2 Approximation Quality with Synthetic Ground-Truths

We compare iSAGE to the inefficient baseline SW-SAGE, as well as synthetic
ground-truth (GT) values estimated using the SAGE estimator. Conducting GT
experiments in an incremental learning setting where models change with every
new observation is computationally prohibitive. Moreover, it is not defined what
constitutes a GT online explanation for real-world data streams with hidden
drifts. We construct a data stream that consists of multiple sub-streams, each
with different classification functions, i.e. inducing sudden concept drift when
sub-streams are switched. Within each substream, we maintain a static pre-
trained model with a pre-computed (constant) GT explanation. We observe how
differently parameterized SW-SAGE and iSAGE estimators approximate the
pre-computed GT values, see Fig. 3, and measure the approximation quality
in terms of MSE and MAE. We repeat the complete experimental setup 20

3 We update the autoencoder with each new data point using a single gradient update
(batch size of 1). For more details on the setup, please see Appendix D.3.

iSAGE: An Incremental Version of SAGE 439

Fig. 3. iSAGE (solid), SW-SAGE (dotted) and GT (dashed) values for an example GT
stream. SW-SAGE is computed with a stride of 100 (0.05 · w) resulting in an overhead
20 times higher than iSAGE.

times for each frequency scenario and summarize the resulting approximation
errors (MSE) in Table 1 and Fig. 3. Independently of the substantially increased
computational overhead (up to 20 times), SW-SAGE’s approximation quality is
substantially worse compared to iSAGE. In some scenarios, SW-SAGE reaches
the GT values faster than iSAGE. Yet, in the important phases of change, SW-
SAGE’ estimates are substantially worse than iSAGE’s (see Fig. 10 for a detailed
view). This is a result from SW-SAGE attributing equal weight to outdated
observations after a concept drift and the current model ft classifying the samples
differently than before. Yet, iSAGE smoothly transitions between the concepts.

4.3 Interventional and Observational iSAGE

In the presence of dependent variables, the choice of an interventional or obser-
vational approach has a profound effect on the SAGE values. In this experiment,
we compare both approaches using the efficient incremental algorithms presented
in Sect. 3.2. An ARF model is trained and explained on the synthetic agrawal
data stream. The synthetic classification function is defined in Appendix D.3. In

Table 1. Approximation quality of iSAGE (incc) and SW-SAGE (SWc) on synthetic
GT data streams for 20 iterations (c denotes the factor of additional model evaluations
compared to iSAGE). The complete results are given in Table 2.

scenario high middle low

size (w) 500 1 000 500 1 000 500 1 000

MSE(σ) inc1 .034 (.021) .038 (.022) .027 (.023) .027 (.026) .015 (.012) .013 (.009)

SW20 .283 (.262) .420 (.360) .191 (.271) .320 (.487) .049 (.043) .078 (.081)

SW1 .248 (.198) .462 (.413) .183 (.200) .399 (.792) .061 (.067) .080 (.079)

440 M. Muschalik et al.

Fig. 4. Interventional and observational
iSAGE for an ARF on an agrawal stream
showcasing profoundly different scores.

Fig. 5. SAGE values (median in red) per
feature of the california dataset for SAGE
and interventional iSAGE. (Color figure
online)

this stream the Xcommission feature (Xcom.) directly depends on Xsalary. When-
ever the salary of an applicant exceeds 75k, no commission is given (Xcom. = 0),
and otherwise the commission is uniformly distributed (Xcom. ∼ U(10k, 75k)).
Figure 4 showcases how interventional and observational iSAGE differ.

No significant importance is distributed to the Xcom. feature, if observational
iSAGE is used, as the information present in Xcom. can be fully recovered by
the observational approach based on Xsalary. The importance is distributed onto
the remaining two important features Xsalary and Xage. However, when interven-
tional iSAGE is used, the importance is also distributed to Xcom., as the model
is evaluated outside the data manifold. The unrealistic feature values uncover
that the incremental model has picked up on the transient relationship between
the target values and the feature Xcom..

4.4 iSAGE and SAGE in Static Environments

We consider a static learning scenario, in which we compare interventional
iSAGE with Covert et al. [13]’s original SAGE approach for well-established
benchmark batch datasets. The models are pre-trained and then explained. We
apply Gradient Boosting Trees [18], LightGBM models [31], and NNs. The orig-
inal SAGE explanations are directly computed from the batch datasets. iSAGE
experiences the datasets as a randomly shuffled data stream where the model
is not updated incrementally. We run this explanation procedure 20 times and
illustrate the SAGE values on the california example dataset in Fig. 5 (more
datasets in Section D.3). Figure 5 shows that iSAGE approximates SAGE in the
static setting on average with a higher variance. The higher variance is a direct
result of the iSAGE having no access to future data points and the exponential

iSAGE: An Incremental Version of SAGE 441

smoothing mechanism controlled by α. iSAGE, thus, focuses more on recent sam-
ples, which is essential for non-stationary environments like incremental learning
under concept drift.

5 Conclusion and Future Work

We propose and analyze iSAGE, a novel and model-agnostic explanation proce-
dure to compute global FI in dynamic environments based on time-dependent
SAGE values. In contrast to the batch SAGE algorithm [13], iSAGE is able to effi-
ciently react to concept drift and changes in the model while scaling linearly with
the number of features in terms of runtime complexity. We further extend SAGE
with the observational and interventional SAGE values as distinctive objectives
and present efficient incremental iSAGE variants, that are able to estimate these
values over time and react to changes in the model and concept drift. In particu-
lar, we present an incremental approximation for the observational approach that
combines the conditional subgroup approach [37] and the TreeSHAP methodol-
ogy [35], which could also be used in a static learning environment to further
improve the SAGE algorithm. We empirically confirm profound differences in
both explanations depending on the choice of approach, which yields support-
ing arguments in the interventional and observational debate [11,19,30] that the
choice should depend on the application scenario [11]. In a static environment,
we prove that iSAGE has similar properties as SAGE and that both do not
differ significantly. We further illustrate the efficacy of incremental explanations
in multiple experiments on benchmark data sets and streams and conduct a
ground-truth comparison.

Still, approximating Shapley values remains a computationally challenging
problem. Moreover, this approach does not address the problem of incrementally
decomposing the interactions between features, which requires further investi-
gation. Finally, the interaction between human users and incrementally created
explanations derived from methods like iSAGE need to be vigorously evaluated
to identify further research opportunities.

Acknowledgements. We gratefully acknowledge funding by the Deutsche
Forschungsgemeinschaft (DFG, German Research Foundation): TRR 318/1 2021 -
438445824. The authors would like to thank Rohit Jagtani for supporting the imple-
mentation and engaging discussions, as well as Gunnar König for valuable discussions.

Ethical Statement. We propose iSAGE as a novel XAI method that enables expla-

nations for any incrementally trained and dynamic black-box model. This is a novel

research direction, which could lead to various use cases. Models, that could not

be evaluated before, because of computational restrictions can be investigated with

iSAGE. This enables high-performing models to be applied in various critical appli-

cation domains such as healthcare [47], energy consumption analysis [21], credit risk

scoring [12]. These application domains could greatly benefit from XAI methods such

442 M. Muschalik et al.

as iSAGE, since they can help in uncovering inherent biases or problems with fair-

ness. This could help with more targeted regulation and scrutinization of opaque, yet

high-performing, technologies than without explanations. On the other hand, improved

interpretability may also lead to an increased acceptance and exploitation of potentially

harmful applications using black box models.

References

1. Aas, K., Jullum, M., Løland, A.: Explaining individual predictions when features
are dependent: more accurate approximations to Shapley values. Artif. Intell. 298,
103502 (2021). https://doi.org/10.1016/j.artint.2021.103502

2. Adadi, A., Berrada, M.: Peeking inside the black-box: a survey on explainable
artificial intelligence (XAI). IEEE Access 6, 52138–52160 (2018). https://doi.org/
10.1109/ACCESS.2018.2870052

3. Atli, B.G., Jung, A.: Online feature ranking for intrusion detection systems. CoRR
abs/1803.00530 (2018)

4. Bahri, M., Bifet, A., Gama, J., Gomes, H.M., Maniu, S.: Data stream analysis:
foundations, major tasks and tools. Wiley Interdisc. Rev.: Data Min. Knowl. Dis-
cov. 11(3), e1405 (2021). https://doi.org/10.1002/widm.1405

5. Barddal, J.P., Enembreck, F., Gomes, H.M., Bifet, A., Pfahringer, B.: Boosting
decision stumps for dynamic feature selection on data streams. Inf. Syst. 83, 13–
29 (2019). https://doi.org/10.1016/j.is.2019.02.003

6. Binder, A., Montavon, G., Lapuschkin, S., Müller, K.-R., Samek, W.: Layer-wise
relevance propagation for neural networks with local renormalization layers. In:
Villa, A.E.P., Masulli, P., Pons Rivero, A.J. (eds.) ICANN 2016. LNCS, vol. 9887,
pp. 63–71. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-44781-0 8

7. Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001). https://doi.org/
10.1023/A:1010933404324

8. Casalicchio, G., Molnar, C., Bischl, B.: Visualizing the feature importance for black
box models. In: Berlingerio, M., Bonchi, F., Gärtner, T., Hurley, N., Ifrim, G.
(eds.) ECML PKDD 2018. LNCS (LNAI), vol. 11051, pp. 655–670. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-10925-7 40

9. Cassidy, A.P., Deviney, F.A.: Calculating feature importance in data streams with
concept drift using online random forest. In: 2014 IEEE International Conference
on Big Data (Big Data 2014), pp. 23–28 (2014). https://doi.org/10.1109/BigData.
2014.7004352

10. Castro, J., Gómez, D., Tejada, J.: Polynomial calculation of the Shapley value
based on sampling. Comput. Oper. Res. 36(5), 1726–1730 (2009). https://doi.org/
10.1016/j.cor.2008.04.004

11. Chen, H., Janizek, J.D., Lundberg, S.M., Lee, S.: True to the model or true to the
data? CoRR abs/2006.16234 (2020)

12. Clements, J.M., Xu, D., Yousefi, N., Efimov, D.: Sequential deep learning for credit
risk monitoring with tabular financial data. CoRR abs/2012.15330 (2020)

13. Covert, I., Lundberg, S.M., Lee, S.: Understanding global feature contributions
with additive importance measures. In: Advances in Neural Information Processing
Systems 33: (NeurIPS 2020), pp. 17212–17223 (2020)

14. Covert, I., Lundberg, S.M., Lee, S.I.: Explaining by removing: a unified framework
for model explanation. J. Mach. Learn. Res. 22(209), 1–90 (2021)

https://doi.org/10.1016/j.artint.2021.103502
https://doi.org/10.1109/ACCESS.2018.2870052
https://doi.org/10.1109/ACCESS.2018.2870052
https://doi.org/10.1002/widm.1405
https://doi.org/10.1016/j.is.2019.02.003
https://doi.org/10.1007/978-3-319-44781-0_8
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1007/978-3-030-10925-7_40
https://doi.org/10.1109/BigData.2014.7004352
https://doi.org/10.1109/BigData.2014.7004352
https://doi.org/10.1016/j.cor.2008.04.004
https://doi.org/10.1016/j.cor.2008.04.004

iSAGE: An Incremental Version of SAGE 443

15. Davari, N., Veloso, B., Ribeiro, R.P., Pereira, P.M., Gama, J.: Predictive main-
tenance based on anomaly detection using deep learning for air production unit
in the railway industry. In: 8th IEEE International Conference on Data Science
and Advanced Analytics (DSAA 2021), pp. 1–10. IEEE (2021). https://doi.org/
10.1109/DSAA53316.2021.9564181

16. Duckworth, C., et al.: Using explainable machine learning to characterise data drift
and detect emergent health risks for emergency department admissions during
COVID-19. Sci. Rep. 11(1), 23017 (2021). https://doi.org/10.1038/s41598-021-
02481-y

17. Feurer, M., et al.: OpenML-Python: an extensible Python API for OpenML. J.
Mach. Learn. Res. 22, 100:1-100:5 (2021)

18. Friedman, J.H.: Greedy function approximation: a gradient boosting machine. Ann.
Stat. 29(5), 1189–1232 (2001). https://doi.org/10.1214/aos/1013203451

19. Frye, C., Mijolla, D.d., Begley, T., Cowton, L., Stanley, M., Feige, I.: Shapley
explainability on the data manifold. In: International Conference on Learning Rep-
resentations (2021)

20. Fumagalli, F., Muschalik, M., Hüllermeier, E., Hammer, B.: Incremental Permuta-
tion Feature Importance (iPFI): Towards Online Explanations on Data Streams.
CoRR abs/2209.01939 (2022)

21. Garćıa-Mart́ın, E., Rodrigues, C.F., Riley, G., Grahn, H.: Estimation of energy
consumption in machine learning. J. Parallel Distrib. Comput. 134, 75–88 (2019).
https://doi.org/10.1016/j.jpdc.2019.07.007

22. Gomes, H.M., Mello, R.F.D., Pfahringer, B., Bifet, A.: Feature scoring using tree-
based ensembles for evolving data streams. In: 2019 IEEE International Conference
on Big Data (Big Data 2019), pp. 761–769 (2019)

23. Guyon, I., Weston, J., Barnhill, S., Vapnik, V.: Gene selection for cancer clas-
sification using support vector machines. Mach. Learn. 46(1–3), 389–422 (2002).
https://doi.org/10.1023/A:1012487302797

24. Harries, M.: SPLICE-2 Comparative Evaluation: Electricity Pricing. The Univer-
sity of South Wales, Tech. rep. (1999)

25. Hastie, T., Tibshirani, R., Friedman, J.: The Elements of Statistical Learning. SSS,
Springer, New York (2009). https://doi.org/10.1007/978-0-387-84858-7

26. Haug, J., Braun, A., Zürn, S., Kasneci, G.: Change detection for local explain-
ability in evolving data streams. In: Proceedings of the 31st ACM International
Conference on Information & Knowledge Management (CIKIM 2022), pp. 706–716.
ACM (2022). https://doi.org/10.1145/3511808.3557257

27. Hinder, F., Vaquet, V., Brinkrolf, J., Hammer, B.: Model based explanations of
concept drift. CoRR abs/2303.09331 (2023)

28. Horel, E., Mison, V., Xiong, T., Giesecke, K., Mangu, L.: Sensitivity based neural
networks explanations. CoRR abs/1812.01029 (2018)

29. Hulten, G., Spencer, L., Domingos, P.: Mining time-changing data streams. In:
Proceedings of the seventh ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining (KDD 2001), pp. 97–106. ACM Press (2001). https://
doi.org/10.1145/502512.502529

30. Janzing, D., Minorics, L., Blöbaum, P.: Feature relevance quantification in explain-
able AI: a causal problem. In: The 23rd International Conference on Artificial Intel-
ligence and Statistics (AISTATS 2020). Proceedings of Machine Learning Research,
vol. 108, pp. 2907–2916. PMLR (2020)

31. Ke, G., et al.: LightGBM: a highly efficient gradient boosting decision tree. In:
Advances in Neural Information Processing Systems, vol. 30 (NeurIPS 2017) (2017)

https://doi.org/10.1109/DSAA53316.2021.9564181
https://doi.org/10.1109/DSAA53316.2021.9564181
https://doi.org/10.1038/s41598-021-02481-y
https://doi.org/10.1038/s41598-021-02481-y
https://doi.org/10.1214/aos/1013203451
https://doi.org/10.1016/j.jpdc.2019.07.007
https://doi.org/10.1023/A:1012487302797
https://doi.org/10.1007/978-0-387-84858-7
https://doi.org/10.1145/3511808.3557257
https://doi.org/10.1145/502512.502529
https://doi.org/10.1145/502512.502529

444 M. Muschalik et al.

32. Klise, K.A., Bynum, M., Moriarty, D., Murray, R.: A software framework for assess-
ing the resilience of drinking water systems to disasters with an example earthquake
case study. Environ. Model. Softw. 95, 420–431 (2017). https://doi.org/10.1016/j.
envsoft.2017.06.022

33. König, G., Molnar, C., Bischl, B., Grosse-Wentrup, M.: Relative feature impor-
tance. In: Proceedings of International Conference on Pattern Recognition (ICPR
2021), pp. 9318–9325 (2021)

34. Losing, V., Hammer, B., Wersing, H.: Incremental on-line learning: a review and
comparison of state of the art algorithms. Neurocomputing 275, 1261–1274 (2018).
https://doi.org/10.1016/j.neucom.2017.06.084

35. Lundberg, S.M., et al.: From local explanations to global understanding with
explainable AI for trees. Nat. Mach. Intell. 2(1), 56–67 (2020). https://doi.org/
10.1038/s42256-019-0138-9

36. Lundberg, S.M., Lee, S.I.: A unified approach to interpreting model predictions.
In: Advances in Neural Information Processing Systems, vol. 30 (NeurIPS 2017),
pp. 4768–4777 (2017)

37. Molnar, C., König, G., Bischl, B., Casalicchio, G.: Model-agnostic feature impor-
tance and effects with dependent features - a conditional subgroup approach. CoRR
abs/2006.04628 (2020)

38. Montiel, J., et al.: River: machine learning for streaming data in Python. J. Mach.
Learn. Res. 22, 110:1–110:8 (2021)

39. Muschalik, M., Fumagalli, F., Hammer, B., Hüllermeier, E.: Agnostic explanation
of model change based on feature importance. KI - Künstliche Intelligenz (2022).
https://doi.org/10.1007/s13218-022-00766-6

40. Paszke, A., et al.: Automatic differentiation in PyTorch. In: Advances in Neural
Information Processing Systems, vol. 30 (NeurIPS 2017 Workshop) (2017)

41. Pedregosa, F., et al.: Scikit-learn: machine learning in Python. J. Mach. Learn.
Res. 12, 2825–2830 (2011)

42. Ribeiro, M.T., Singh, S., Guestrin, C.: Why should i trust you?: explaining the pre-
dictions of any classifier. In: Proceedings of International Conference on Knowledge
Discovery and Data Mining (KDD 2016), pp. 1135–1144 (2016)

43. Shapley, L.S.: A value for n-person games. In: Contributions to the Theory of
Games (AM-28), Volume II, pp. 307–318. Princeton University Press (1953).
https://doi.org/10.1515/9781400881970-018

44. Shrikumar, A., Greenside, P., Kundaje, A.: Learning important features through
propagating activation differences. In: Proceedings of the 34th International Con-
ference on Machine Learning (ICML 2017). Proceedings of Machine Learning
Research, vol. 70, pp. 3145–3153. PMLR (2017)

45. Springenberg, J.T., Dosovitskiy, A., Brox, T., Riedmiller, M.A.: Striving for sim-
plicity: the all convolutional net. In: 3rd International Conference on Learning
Representations (ICLR 2015) (2015)

46. Sundararajan, M., Taly, A., Yan, Q.: Axiomatic attribution for deep networks.
In: Proceedings of the 34th International Conference on Machine Learning (ICML
2017). Proceedings of Machine Learning Research, vol. 70, pp. 3319–3328. PMLR
(2017)

47. Ta, V.D., Liu, C.M., Nkabinde, G.W.: Big data stream computing in healthcare
real-time analytics. In: Proceddings of International Conference on Cloud Com-
puting and Big Data Analysis (ICCCBDA 2016), pp. 37–42 (2016). https://doi.
org/10.1109/ICCCBDA.2016.7529531

https://doi.org/10.1016/j.envsoft.2017.06.022
https://doi.org/10.1016/j.envsoft.2017.06.022
https://doi.org/10.1016/j.neucom.2017.06.084
https://doi.org/10.1038/s42256-019-0138-9
https://doi.org/10.1038/s42256-019-0138-9
https://doi.org/10.1007/s13218-022-00766-6
https://doi.org/10.1515/9781400881970-018
https://doi.org/10.1109/ICCCBDA.2016.7529531
https://doi.org/10.1109/ICCCBDA.2016.7529531

iSAGE: An Incremental Version of SAGE 445

48. Vaquet, V., Artelt, A., Brinkrolf, J., Hammer, B.: Taking care of our drinking
water: dealing with sensor faults in water distribution networks. In: Artificial Neu-
ral Networks and Machine Learning - ICANN 2022, pp. 682–693. Springer Nature
Switzerland, Cham (2022). https://doi.org/10.1007/978-3-031-15931-2 56

49. Vrachimis, S., et al.: Battle of the leakage detection and isolation methods. J.
Water Resour. Plann. Manage. 148, 04022068 (2022). https://doi.org/10.1061/
(ASCE)WR.1943-5452.0001601

50. Yuan, L., Pfahringer, B., Barddal, J.P.: Iterative subset selection for feature drifting
data streams. In: Proceedings of the 33rd Annual ACM Symposium on Applied
Computing, pp. 510–517 (2018)

51. Zeiler, Matthew D.., Fergus, Rob: Visualizing and understanding convolutional
networks. In: Fleet, David, Pajdla, Tomas, Schiele, Bernt, Tuytelaars, Tinne (eds.)
ECCV 2014. LNCS, vol. 8689, pp. 818–833. Springer, Cham (2014). https://doi.
org/10.1007/978-3-319-10590-1 53

https://doi.org/10.1007/978-3-031-15931-2_56
https://doi.org/10.1061/(ASCE)WR.1943-5452.0001601
https://doi.org/10.1061/(ASCE)WR.1943-5452.0001601
https://doi.org/10.1007/978-3-319-10590-1_53
https://doi.org/10.1007/978-3-319-10590-1_53

Interpretation Attacks and Defenses
on Predictive Models Using Electronic

Health Records

Fereshteh Razmi1, Jian Lou2, Yuan Hong3, and Li Xiong1(B)

1 Emory University, Atlanta, GA 30322, USA
{frazmim,lxiong}@emory.edu

2 Zhejiang University, Hangzhou, Zhejiang 310027, China
jian.lou@zju.edu.cn

3 University of Connecticut, Storrs, CT 06269, USA
yuan.hong@uconn.edu

Abstract. The emergence of complex deep neural networks made it cru-
cial to employ interpretation methods for gaining insight into the ratio-
nale behind model predictions. However, recent studies have revealed
attacks on these interpretations, which aim to deceive users and sub-
vert the trustworthiness of the models. It is especially critical in medi-
cal systems, where interpretations are essential in explaining outcomes.
This paper presents the first interpretation attack on predictive mod-
els using sequential electronic health records (EHRs). Prior attempts
in image interpretation mainly utilized gradient-based methods, yet our
research shows that our attack can attain significant success on EHR
interpretations that do not rely on model gradients. We introduce metrics
compatible with EHR data to evaluate the attack’s success. Moreover,
our findings demonstrate that detection methods that have successfully
identified conventional adversarial examples are ineffective against our
attack. We then propose a defense method utilizing auto-encoders to de-
noise the data and improve the interpretations’ robustness. Our results
indicate that this de-noising method outperforms the widely used defense
method, SmoothGrad, which is based on adding noise to the data.

Keywords: Interpretation Models · Electornic Health Records
(EHR) · Adversarial Attack · Robustness · Autoencoder

1 Introduction

Machine learning algorithms, particularly deep neural networks, are widely used
in various real-world tasks. However, their inner workings are often seen as a
black box. Thus, interpretation methods are essential for explaining an algo-
rithm’s output, allowing users to understand how and why an algorithm arrived

This work was funded by National Science Foundation (NSF) IIS-2302968, CNS-
2124104, CNS-2302689 and CNS-2308730, National Institute of Health (NIH)
R01ES033241, R01LM013712, and NSFC (62206207).

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
D. Koutra et al. (Eds.): ECML PKDD 2023, LNAI 14171, pp. 446–461, 2023.
https://doi.org/10.1007/978-3-031-43418-1_27

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-43418-1_27&domain=pdf
https://doi.org/10.1007/978-3-031-43418-1_27

Interpretation Attacks Using EHR 447

at a particular decision. Especially in sensitive applications such as medicine,
interpretations improve the system’s reliability and enable the discovery of new
biomarkers and important features for future decision-making processes. For
instance, Quellec et al. [15] use heatmaps to identify local patterns and demon-
strate which pixels in retinal fundus photographs are involved in the early signs
of retinal disease.

Adversarial examples [23] have been extensively studied in recent years as
a potential vulnerability of deep neural networks. Traditionally, they aim to
add a small perturbation to the input at inference time, causing the model
to classify it differently. With the increasing use of interpretation methods, a
new type of attack has emerged. These attacks focus on generating misleading
interpretations that deviate significantly from the true classifier interpretations,
leading to inaccurate conclusions about the importance of certain features or
rendering the interpretations unreliable [8].

Sequential electronic health records (EHR) are crucial data sources in the
medical field, containing discrete data of patients’ vital values and lab values
collected over time and across hospital visits. Due to the importance of these
data and their use in many classification based predictive models, recent efforts
have been made to enhance the interpretability of models trained on EHR data.
Despite the prevalence of interpretation attacks in image classification, to the
best of our knowledge, no interpretation attacks have been studied targeting
EHR-based models.

Conducting interpretation attacks on EHR data presents significant chal-
lenges due to the unique characteristics of the data. Firstly, for building inter-
pretable models using EHR data, models are designed to produce predictions
and interpretations simultaneously. In contrast, image interpretations are mostly
gradient-based and created via post-hoc approaches. Thus, manipulating the
EHR interpretations can easily alter the patient phenotype, consequently affect-
ing the predicted class.

Secondly, the structure of EHR data is vastly different from images. As a
result, the widely used L∞ norm based attacks in image domain are less mean-
ingful in the EHR domain since L∞ does not capture the distance between
the sequential data well (e.g., the temporal trends). Also, unlike images, EHR
data consist of multiple attributes, such as heart rate or temperature, whose
values are sequential and time-dependent. Therefore, moving across time and
attributes significantly influences the interpretations. Consequently, the crite-
ria used for assessing the image interpretation’s robustness on previous works
cannot be directly applied in the EHR domain.

This work proposes an interpretation attack on EHR data, utilizing specific
metrics suitable for this data type. We evaluate our attack against a power-
ful existing detection technique designed for conventional adversarial examples
on EHR data and demonstrate that the attack is not detectable. Furthermore,
we aim to make the EHR interpretations robust against the proposed attack.
We show that using an auto-encoder to de-noise the input is significantly more
effective than using noisy input, as in the state-of-the-art method SmoothGrad.

448 F. Razmi et al.

The source code of our implementation is publicly available on GitHub1. We
summarize our contributions as follows:

– We propose an interpretation attack on EHR data. This attack is created
on top of an interpretable model, so the interpretations are closely tied to
the model’s predictions. It differs from previous attacks in the image domain,
which rely on gradient-based and post-hoc interpretation methods.

– We propose three metrics to assess the EHR interpretation attack. In the
previous works, top-K salient explanations between the clean and adversarial
images were used for evaluation. However, it is not suitable for EHR data.
Two of our evaluation metrics are alternatives to the top-K criteria, and the
third metric is based on the Wasserstein distance which better captures the
similarity between temporal data.

– We conduct experiments showing that the state-of-the-art detector RADAR,
which was designed to detect conventional EHR adversarial examples, are not
successful in detecting the proposed attack. We then explore the factors that
contribute to this attack evasion.

– Finally, we present a method to enhance the interpretations’ robustness and
reduce the attack strength. We employ an auto-encoder to boost the robust-
ness of our interpretations through a de-noising process. We show that out
approach outperforms SmoothGrad, which is commonly used in gradient-
based methods by averaging noisy data.

2 Related Work and Preliminaries

2.1 Attacks on Image Model’s Gradients

Post-hoc interpretability are a set of interpretation methods that seek to explain
the predictions of models without relying on their underlying mechanisms [11].
Gradient-based approaches are commonly used in image classification to extract
these explanations [17,19,20]. They result in a saliency map that explains the
output of the model (usually a convolutional neural network (CNN)) by visu-
alizing the areas of the input image that contribute the most to the network’s
output. However, saliency maps are less common in Recurrent Neural Networks
(RNN) since RNNs are typically used for sequential data such as time-series.

Recent research has shown that these methods are vulnerable to interpreta-
tion attacks, where small perturbations are deliberately crafted and added to
input images to distort the explanations [8]. These attacks primarily focus on
images as they rely on gradient-based techniques and face significant challenges
in other domains. Several techniques have been proposed to address this issue,
including adding randomness to the input called SmoothGrad [21,26], modifi-
cation of the model architecture [6], or altering the training process using regu-
larization or integrated gradients [3,7]. These approaches are highly dependent
on the architecture of image models and their gradients. Interpretation attacks

1 https://github.com/Emory-AIMS/EHR-Interpretation-Attack.

https://github.com/Emory-AIMS/EHR-Interpretation-Attack

Interpretation Attacks Using EHR 449

in other domains including EHR have been relatively overlooked due to the dif-
ficulty in attacking against complex saliency maps and the lack of a definitive
interpretation benchmark.

2.2 Medical Attention-Based Models

Recent research in the medical field has focused on using the attention mecha-
nism to improve the interpretability and accuracy of predictions made using EHR
data [4,5]. The attention mechanism is an approach used in machine learning
models that assigns a weight to each input feature, indicating its relative impor-
tance to the model’s final decision. They generally use BERT models [10,16,18]
or multi-layer RNNs [9,12,13,25] as the baseline to obtain the attentions. BERT
models are mostly focused on binary medical codes and their pre-trained mod-
els are often not publicly available due to the sensitive nature of the medical
data used for their training. In this work, we use RETAIN [5] as a well-known
EHR attention-based RNN model. RETAIN can give interpretation on both
visit (temporal point) and attribute levels, and in contrast to other works, it
does not need access to extra meta data [9]. We then propose interpretation
attacks considering the structure of EHR data and also the intrinsic nature of
their non-post-hoc interpretable models.

3 Our Approach

In this section, we first describe the problem setting, then present our approach
to the interpretation attack on EHR models and elaborate the rationale behind
each objective loss term. We then improve the attack by incorporating dynamic
weighing to penalize the attack optimization process and reduce the detectability
by modifying the penalty term. We propose new metrics as the current evaluation
metrics are unsuitable for EHR data. Finally, we explore methods for defending
against the attack and demonstrate that de-noising is more effective than the
state-of-the-art method for improving the robustness of interpretations.

3.1 Problem Setting

EHR dataset is a set of clinical trajectories for patients where each trajec-
tory is a sequence of hospital or clinic visits, each visit corresponding to a
set of attributes/measurements [1]. For a given dataset with longitudinal EHR
data from N patients, we represent the clinical trajectory of patient n as X(n).
This trajectory is characterized by a sequence of tn hospital visits and can be
expressed as:

X(n) = [X1, X2, ..., Xtn], (1)

where Xi ∈ Rd denotes the variables from d vital sign measurements and lab
events of the i-th visit made by patient n. Each xi,j shows j-th attribute in

450 F. Razmi et al.

the i-th visit. We will exclude the superscript (n) in the subsequent sections to
simplify the presentation.

Given a neural network model f : R(t,d) → Rc where c is the number of possi-
ble classes, we denote the interpretation that is associated with the parameters of
function f as Φf : R(t,d) → R(t,d) in which every attribute in a specific visit gets
a score that shows its importance on the predicted outcome. Given a test input
X, the class and explanations of this input is determined by c∗ = arg maxc f(X)
and ω = Φf (X), respectively. In RETAIN [5], the impact of each input xi,k on
the final classification result is calculated using the two-level attention weights:

ωi,k = αiW (β � Wemb[:, k]) xi,k, (2)

where αi is the attention weight assigned to the i-th visit, βi is an attention
weight vector for all attributes and measurements xi,k of the i-th visit, W is the
output weight matrix, Wemb is the weight matrix at the embedding layer, and
the symbol � represents element-wise multiplication. ωi,k is the corresponding
contribution to the input xi,k. Therefore, we can obtain the contribution matrix
ω using all ωi,k.

3.2 Interpretation Attack Formulation

Given a patient record X, the goal is to find a new perturbed record ˜X that is
similar to the original record X both in input space and class predictions but
with distorted interpretations. The attack can either be targeted, where we try
to make the interpretations of ˜X closer to a new explanation ω†, or untargeted,
where we attempt to change the interpretations to be far from those of X. Here
we aim for a targeted one and formulate the interpretation adversarial attack by

min
˜X

α‖Φf (˜X) − ω†‖ + γ‖ ˜X − X‖1 + β(max{Logit(˜X)i : i �= c∗} − Logit(˜X)c∗)+

(3)
where (r)+ represents max(r, 0), c∗ is the predicted class of X, Logit is the out-
come of the neural network before the Softmax layer and ˜X is the adversarial
example resulting in misleading interpretations. α, β and γ are the coefficients
to balance the impact of the loss function terms. We will discuss each term one
by one:
1. Interpretation Loss: The first term ensures that the interpretations of ˜X
resemble the targeted interpretation ω†. This attack can be reformulated as an
untargeted attack by replacing the current term with −‖Φf (˜X)−Φf (X)‖. In the
case of the targeted attack, ω† can come from another set of interpretations with
different but still realistic phenotypes, such as the interpretations of a randomly-
selected patient, or patients’ average interpretations of a different class than the
X’s class c∗. Since this leads to a more realistic scenario we proceed with tar-
geted attacks.
2. Perturbation Loss: The second term aims to keep the adversarial pertur-
bations small. We optimize the perturbations using L1 norm rather than widely
used L2-norm or L∞-norm for images. L1 norm for adversarial attacks on EHR

Interpretation Attacks Using EHR 451

Algorithm 1: Interpretation Attack on EHR
Function: MINIMIZE-ATTACK-LOSS(.) : returns X and the corresponding

Y by minimizing Eq. 3
Input: initial clean sample (Xclean, Yclean), initial coefficients (αinit, βinit) in

Eq. 3, number of iterations T, the maximum possible β value βtreshold

and the number of extra steps for penalizing stepsextra
Initialize: α, β = αinit, βinit; X0, Y0 = Xclean, Yclean

1 for t ∈ {1, ..., T} do
2 Xt, Yt = MINIMIZE-ATTACK-LOSS(Xt−1,α,β)
3 if Yt �= Yclean then // Dynamically penalize the optimization

4 while Yt �= Yclean do
5 α, β = α/2, β × 2
6 Xt, Yt = MINIMIZE-ATTACK-LOSS(Xt,α,β)
7 if β > βthreshold then return Attack-failure

8 end
9 for se ∈ {1, ..., stepsextra} do

10 Xt, Yt = MINIMIZE-ATTACK-LOSS(Xt,α,β)
11 end
12 α, β = αinit, βinit

13 end

14 end
15 Return Xi from {X1, ..., XT } with Yi = Yclean and its interpretations have the

least distance to the target interpretations (i.e. min ‖Φf (Xi) − ω†‖)

data are more meaningful for several reasons. First, EHR data are sparse, where
many of the values are either zero or imputed and hence do not carry much
information. Second, unlike images, different medical attributes carry different
influences and weights on the output. Consequently, L1 norm is suitable to meet
both sparsity and heterogeneity of the EHR data [1,22].
3. Classification Loss: The third term aims to keep the class prediction
unchanged. Our interpretation method is non-post-hoc, so the predictions are
highly tied to the interpretations. Thus we need a more powerful function to
keep the class of ˜X unchanged. We employ the logits based function for this
purpose since it can be well optimized for manipulating the class predictions,
especially for non-linear objective f(x̃) = c∗ [2]. We will show in Sect. 3.4 that
it can be improved so that the output space Logit(˜X) resembles Logit(X) and
hence helps the adversarial example remain undetectable.

3.3 Optimization with Dynamic Penalty

Equation 2 denotes how the parameters of the model, including weights and
attributions, are directly involved in the explanations of the input. We observed
that in some cases, the objective to change in interpretations might lead to a
different class label. Given that the interpretation attack is conducted using a
gradient descent algorithm, we use dynamic penalty for the interpretation and
classification loss terms for preventing the prediction change.

452 F. Razmi et al.

Concretely, it involves adjusting the coefficient in Eq. 3 to prioritize the
objective of keeping the prediction label unchanged, i.e., incur a higher penalty
whenever encountering a label change in any iteration. We can achieve this by
decreasing α and increasing β by a factor (e.g., the factor is set to 2 in our
implementation) until the original class label is attained. We can then continue
using these coefficients for a few more steps to move away from the classification
boundaries. If this penalization process continues without successfully restoring
the original class, the algorithm is considered to have failed. Algorithm 1 outlines
the different components of the attack.

3.4 Minimizing Detectability

To carry out a stealthy attack, two aspects must be considered. The first is
to keep the perturbations in the input space minimum, while the second is to
maintain the integrity of the output space which includes the final class predic-
tions and their associated logits. The reason is that many state-of-the-art defense
methods for adversarial examples check changes both in the input feature space
and the output logits space [14,24]. So in order to minimize the detectability, it
is necessary to ensure that the logits do not change drastically during the attack.
We observed that as we repeatedly apply and remove the penalty according to
Algorithm 1, it causes the output space of the adversarial example to oscillate
near the classification boundaries. Consequently, while the final label is the same
as the original class, the logits do not resemble the original logits, nor does the
confidence level of the adversarial prediction. This difference in logits, which we
will refer to as output space, can be used to detect the attack.

To address this issue, we propose enhancing (3) by replacing the classifi-
cation loss with two different alternatives. First we use the Kullback-Leibler
divergence to directly compare the distribution of the original sample and adver-
sarial example logits in order to keep them similar. We denote this divergence
by KL (Logit(X) || Logit(˜X)) (KL attack). Second, similar to the idea of
C&W conventional adversarial attacks [2], we use max (max{Logit(˜X)i : i �=
c∗} − Logit(˜X)c∗ , −κ) where κ is a positive adjustable value and maintains a
margin between the predicted logit and the second largest logit value to ensure
high confidence in the predicted class (Confident attack parameterized by
κ). Since the classifier is trained based on the clean examples’ manifold, it can
classify them with high confidence. So by ensuring high confidence predictions
for the adversarial examples, we can keep their logits similar to their original
counterparts.

3.5 Metrics for Evaluation

For conventional adversarial examples, attack success rate (ASR) is measured as
percentage of examples with flipped class labels. However, interpretation attacks
aim to alter the multi-dimensional interpretation vector, making it difficult to
establish a clear binary metric for measuring the success of the attack. In the

Interpretation Attacks Using EHR 453

Fig. 1. Interpretations of a patient’s EHR data for six attributes (RR, HR, K, SBP,
DBP, Temp) with heart failure at the final time-stamp. Interpretations of different
attributes can be compared with each other in each specific time stamp. Also each
attribute separately can be explored for its changes across time. The interpretations
for EHR data generally gain more importance as the time of disease onset approaches.

subsequent discussion, we will outline two particular aspects of EHR data that
must be taken into account when defining evaluation metrics.

In many application of EHR data, the interpretations may carry either pos-
itive or negative connotations, each with its unique significance. For example,
when predicting the likelihood of a specific disease, the use of a particular medica-
tion may negatively affect the prognosis and decrease the chance of disease onset.
For a clinician, the classifier’s explanation of such a drug is no less important
than the factors that indicate positive interpretations towards the prediction.

Another characteristic of EHR data is the heterogeneity and time sensitivity.
Unlike pixels in images, the diverse attributes in EHR data hold distinct mean-
ings, and clinician’s interpretation may differ for each attribute. Additionally,
the value of interpretations for clinicians is affected by the timing of attribute
collection. Clinicians attach more significance to the data points that are closer
to the disease onset. Figure 1 displays interpretations of some attributes calcu-
lated by RETAIN for predicting heart failure in a patient. Given these factors,
we propose three metrics to evaluate the sucess of the interpretation attack,
which consider the connotations of the interpretations, the attribute-level het-
erogeneity, and the visit-level time awareness.

Signed Top-K Intersection Size: According to Ghorbani et al. [8], in many
cases, when interpreting a model, the explanations of the most important fea-
tures are often of interest. In a gradient-based saliency map, the top-K features
are determined by their magnitudes. Here we involve the connotation of the
interpretations and assess the success of the attack by comparing the propor-
tion of top-K features with consistent signs before and after the attack. So if
A = {a1, ..., ak} and B = {b1, ..., bk} are the sets of the K largest absolute-value
dimensions of Φ(˜X) and Φ(X) respectively, and C = A ∩ B, then we have

topK(C) = | {ci ∈ C : Φ(˜X)ci ∗ Φ(X)ci > 0} |. (4)

Asymmetrical Signed Top-K Intersection Size: Since the EHR is sequen-
tial and time-sensitive, the importance of different attributes are comparable in
each timestamp that they are collected. To reflect that, we suggest a new met-

454 F. Razmi et al.

ric that measures the top-K salient features in corresponding multivariate time
series at each time point and then aggregate them.

Also, we assign weight φi to each time to better attain the perspectives of
clinicians who may place greater emphasis on certain times. These weights can
be achieved by background knowledge (e.g., higher weight on certain time points
before the disease onset) or approximated by how the interpretable model weight
different times, e.g., by taking 100 random samples from the clean data and
summing up their interpretation values of all attributes at any given time. The
resulting values are averaged over all samples to derive the weight that should be
assigned to that specific time. For time ti ∈ {1, . . . , t}, we denote Ati = {ati

j }kj=1

and Bti = {btij }kj=1 as the sets of the K largest absolute-value dimensions of
Φ(˜Xti) and Φ(Xti), respectively, and their intersectino as Cti = Ati ∩ Bti .

topK asym =
t

∑

i=1

φi ∗ topK(Ci). (5)

Wasserstein Distance: The Wasserstein distance measures the cost of moving
a variable mass and is well-suited for comparing changes in time series. Its ability
to capture perturbations has made it increasingly popular in the context of
adversarial examples. We use the Wasserstein distance to measure the changes
of contribution by each attribute as time series - since the modality of data is
different across different attributes as discussed before. The resulting distances
are then summed to obtain the final Wasserstein distance. Given attribute index
dj ∈ [d], we denote X

dj

[t] as the sequential values of a specific attribute, and Wass

as the Wasserstein distance. Then, we calculate the final distance as:

Wass dist =
d

∑

j=1

W1(Φ(˜Xj
[t]), Φ(Xj

[t])). (6)

where W1 denotes 1-Wasserstein distance for one dimensional data.
To make Eqs. 4, 5 and 6 consistent with our targeted attack, we calculate

these relative metrics:

topKtargeted = topK(Φ(˜Xi), ω
†
i)/topK(Φ(˜Xi), Φ(Xi)); (7)

topK asymtargeted = topK asym(Φ(˜Xi), ω
†
i)/topK asym(Φ(˜Xi), Φ(Xi)); (8)

Wass disttargeted = Wass dist(Φ(˜Xi), ω
†
i)/Wass dist(Φ(˜Xi), Φ(Xi)). (9)

These three new metrics not only measure how the adversarial interpretations
are distant from the original ones, but also reflect how they resemble the target
interpretations ω†. The attacks with larger topKtargeted and topK asymtargeted,
and with smaller Wass disttargeted are more powerful. From now on, when we
mention these metrics, we are specifically referring to their targeted version.

3.6 Robustness

To provide robustness, we propose using a sequential auto-encoder to de-noise
the input data at inference time and recover the original information. A typi-
cal auto-encoder comprises an encoder that compresses the data into a smaller

Interpretation Attacks Using EHR 455

intermediate representation and a decoder that attempts to reconstruct the input
data from those embeddings. As the encoder and decoder process the data, the
output becomes de-noised. We train the auto-encoder on clean data so it learns
the normal manifold. As a result, at inference time, it can remove the noise that
caused the input data to become far from this manifold. We then utilize the
interpretations of the decoder’s output instead of those of the input. Our results
show that this approach leads to robust interpretations.

There are two reasons for this. Firstly, the EHR attack perturbations are
sparse and have a greater magnitude wherever the features have notable inter-
pretations. Therefore, the de-noiser can restore the original interpretations by
reducing the large sparse perturbations on the salient features. Secondly, inter-
pretation attacks differ from traditional adversarial examples in that they aim
to modify smoothly distributed, high-dimensional interpretations, especially in
EHR data. Once the de-noiser eliminates sudden, sparse perturbations, the inter-
pretations can be regained by relying on the information present in the surround-
ing neighborhood.

We compare our method with SmoothGrad, a known and strong defense
against interpretation attacks [21]. Although the attack in our case is gradient-
free, the idea of SmoothGrad is still applicable. It involves adding noise to the
data multiple times (usually 10 to 50) and averaging their contributions. How-
ever, this method is neither computationally efficient nor effectively provides
robustness against EHR attacks as we will show empirically.

4 Experiments

In this section, we will address these questions: 1) What is the effectiveness of
the attack in altering the interpretations while maintaining the classification
outcomes? 2) Can existing defense methods against adversarial examples detect
the interpretation attack? 3) How does the proposed de-noiser approach help
with the robustness?

Dataset. The MIMIC-III dataset is a collection of electronic health records from
thousands of patients in intensive care units. We use a dataset that was processed
by [22] for the binary task of mortality prediction, resulting in 3177 positive
samples and 30344 negative samples, each comprising 19 attributes across 48
timestamps including vital signs and lab events. Missing features were filled
using the average value across all timestamps, and outliers were removed and
imputed according to interquartile range criteria. Finally, each sequence was
truncated or padded to 48 h, and each feature was normalized using min-max
normalization. We use 80% of the data for training and the rest for testing.

Model Architecture and Parameters. Adversarial examples were generated
against RETAIN [5] as our target model, which includes an embedding layer of
size 128 and two GRU layers with 128 hidden units. The evaluation results of
the test data on the final trained model are AUROC = 0.92, AUPRC = 0.73,
F1Score = 0.57 and Accuracy = 0.86. We evaluate the detectability of the

456 F. Razmi et al.

Fig. 2. The comparison of three interpretation attacks, which differ in their penalty
term, shown using three metrics. The desirable results are located in the hatched area.
A lower perturbation achieved by a smaller γ leads to better attack success, but may
also result in a higher detection rate.

interpretation attack using RADAR [24]. It is a robust detection method, specif-
ically developed for traditional EHR adversarial examples where the objective is
to change the class. This detector identifies adversarial examples through both
changes in input space and also output space relative to the normal manifold,
making it well-suited for our purposes. Finally to enhance the data robustness, we
de-noised data by the same auto-encoder architecture as that used in RADAR.

4.1 Attack Performance

Comparison of Attacks. We evaluate the attack performance based on three
different metrics introduced in Sect. 3.5. We compare the original attack (Eq. 3)
with two alternatives, the KL attack and the Confident attack, proposed in Sect.
3.4. In our experiments with the Confident attack, we set κ = 0.8, as it provides
a high level of undetectability. Our comparison is based on different values of
the coefficient γ in Eq. 3, which constrains the perturbation size. The higher
the value of γ, the more restricted the attack is in terms of its distance from
the original sample. Since the parameters α and β are dynamically adjusted by
Algorithm 1, we simply select their initial values as 1. Also based on a grid-search
we set T = 1000 and stepsextra = 10.

Figure 2 illustrates the results based on the three metrics (Eq. 7, 8, 9) from
left to right, respectively. The hatched area in each figure demonstrates the
most desirable results. For Fig. 2.a and b, a ratio of over 1 implies that the
interpretations are more similar to the targeted interpretations than the original
ones, and the larger the ratio, the better. Conversely, in Fig. 2.c, the opposite is
true, as this measurement employs a distance metric rather than the intersection
of salient features. Although the attacks are very similar, in the next section, we
will show the main difference lies in the stealthiness of each of these attacks.

Selection of K. Figure 3 demonstrates that how the selection of K in top-K
metrics (7 and 8) impacts our evaluation of the attack’s success when γ = 0. In

Interpretation Attacks Using EHR 457

Fig. 3. The comparison of different values of K in two metrics, top-K (a) and asym-
metrical top-K (b). The concentration of perturbations on the latest time-stamps (c)
confirms that small values of K are sufficient for evaluation.

metric 4 since K is calculated in each time and over a lower dimension than the
entire EHR data, we set the value of K to a lower number than in metric 8. As
expected, the value of K affects the degree of overlap between interpretations
before and after attack. Figure 3.c shows the average perturbations of all the
adversarial examples when γ is zero and there is no constraint on the input space.
The perturbations are concentrated on the latest time-stamps which hold the
most significant interpretations in the model and clinical environments. There-
fore, selecting a large K does not yield significant interpretations, particularly
since many interpretations that are distant from these timestamps have close
to zero. Consequently, considering large K results in overlapping interpretations
that do not offer meaningful insights into the attack’s success.

4.2 Attack Detectability

Figure 4 illustrates an example before and after the attack and their difference
for the confident attack with γ = 0.5. The attack causes sparse but strong per-
turbations, which lead the interpretations to shift from the original to the target
interpretations. As previously discussed, the low number of perturbations and
their sparsity make them undetectable in EHR data. By decreasing γ, the mag-
nitude and density of the perturbations become more flexible. Figure 5 illustrates
the interpretations of the original sample and its adversarial counterpart from
Fig. 4 as well as the target interpretations across the latest timestamps. Due to
space limitations, only three attributes are included in the figure. It reveals that
the sparse perturbation attack caused the adversarial interpretations to deviate
from their original values and align more closely with the target interpretations.

We evaluated RADAR to demonstrate whether our proposed interpreta-
tion attacks can be detected by existing defense methods against conventional
adversarial examples. RADAR exhibits a 100% detection rate for conventional
adversarial examples on RETAIN. Figure 6 presents the detection percentage of

458 F. Razmi et al.

Fig. 4. An input space of a patient’s EHRs before (a), and after attack with γ = 5 (b),
and its additive perturbation (c). The perturbation is minimal and sparse.

Fig. 5. Comparison of Adversarial, original and target contributions (interpretations)
of three attributes of a patient’s EHR over time.

different interpretation attacks by RADAR which are significantly lower. As γ
increases, the perturbations become smaller, resulting in a decrease in the detec-
tion rate in input space. Additionally, considering the detection in output space,
when γ is small, the adversarial example has more flexibility during optimiza-
tion, allowing it to approach the classification decision boundary more closely
and activate the penalty process in Algorithm 1 more frequently. In Sect. 3.4,
we discussed how KL and confident attacks better maintain similarity between
the original and output space in such cases. However, for larger values of γ, the
original attack is less likely to trigger the penalty process and remains more
stealthy than the KL attack. Generally, the confident attack keeps the output
space less detectable and maintains a greater distance from the class boundary.

4.3 Robustness

In this part, we evaluate the effectiveness of the proposed auto-encoder (AE)
denoiser based defense method. We report the attack success rate of the attack
under the proposed defense method, and compare it with the attack without
defense, and the attack with the SmoothGrad defense. We select the confident
attack with κ = 0.8 and γ = 0.5 as the representative of successful attacks
with reasonably high success rate and low detection rate. For SmoothGrad, the
best results are reported based on selecting a noise level of 0.1 and calculating
the average over 50 samples, which is consistent with the result in paper [21].
Figure 7 displays a comparison of the median and quartile charts of the attack

Interpretation Attacks Using EHR 459

Fig. 6. Detection ratio of interpretation attacks using RADAR.

Fig. 7. Robustness of de-noising method vs. SmoothGrad based on three metrics. All
figures show the de-noising method outperforms SmoothGrad.

versus the robustness achieved through the de-noising method and SmoothGrad
for 100 samples. Smaller values for top-K and asymmetric top-K indicate bet-
ter robustness, whereas higher values for Wasserstein distance indicate better
robustness. As depicted, the de-noising method outperforms SmoothGrad in all
metrics.

5 Conclusion

This paper is the first study to develop and adapt interpretation attacks for EHR
models. We investigated various aspects of EHR data as well as interpretable
models designed specifically for EHR data. We presented interpretation attacks
on EHR models optimizing both attack success and detectability and evaluated
the attack using customized metrics that address EHR specifications. Our results
show that the attack not only can successfully alter the interpretations of the
model, but also can evade the detector RADAR, which is capable of detecting
100% of conventional adversarial examples. To counteract the attack, we pro-
posed a de-noiser defense and demonstrated that it improved the robustness and
outperformed existing method SmoothGrad. Future research can focus on modi-
fying EHR interpretable models to make them more robust, as well as exploring
data preprocessing, data augmentation, and adversarial training to enhance the
robustness of EHR models.

460 F. Razmi et al.

References

1. An, S., Xiao, C., Stewart, W.F., Sun, J.: Longitudinal adversarial attack on elec-
tronic health records data. In: The World Wide Web Conference, pp. 2558–2564
(2019)

2. Carlini, N., Wagner, D.: Towards evaluating the robustness of neural networks. In:
2017 IEEE Symposium on Security and Privacy (SP), pp. 39–57. IEEE (2017)

3. Chen, J., Wu, X., Rastogi, V., Liang, Y., Jha, S.: Robust attribution regularization.
In: Advances in Neural Information Processing Systems, vol. 32 (2019)

4. Chen, P., Dong, W., Wang, J., Lu, X., Kaymak, U., Huang, Z.: Interpretable clinical
prediction via attention-based neural network. BMC Med. Inform. Decis. Making
20(3), 1–9 (2020)

5. Choi, E., Bahadori, M.T., Sun, J., Kulas, J., Schuetz, A., Stewart, W.: Retain: an
interpretable predictive model for healthcare using reverse time attention mecha-
nism. In: Advances in Neural Information Processing Systems, vol. 29 (2016)

6. Dombrowski, A.K., Alber, M., Anders, C., Ackermann, M., Müller, K.R., Kessel,
P.: Explanations can be manipulated and geometry is to blame. In: Advances in
Neural Information Processing Systems, vol. 32 (2019)

7. Dombrowski, A.K., Anders, C.J., Müller, K.R., Kessel, P.: Towards robust expla-
nations for deep neural networks. Pattern Recogn. 121, 108194 (2022)

8. Ghorbani, A., Abid, A., Zou, J.: Interpretation of neural networks is fragile. In:
Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 3681–
3688 (2019)

9. Kwon, B.C., et al.: RetainVis: visual analytics with interpretable and interactive
recurrent neural networks on electronic medical records. IEEE Trans. Vis. Comput.
Graph. 25(1), 299–309 (2018)

10. Li, Y., et al.: BEHRT: transformer for electronic health records. Sci. Rep. 10(1),
1–12 (2020)

11. Lipton, Z.C.: The mythos of model interpretability: in machine learning, the con-
cept of interpretability is both important and slippery. Queue 16(3), 31–57 (2018)

12. Luo, J., Ye, M., Xiao, C., Ma, F.: HiTANet: hierarchical time-aware attention
networks for risk prediction on electronic health records. In: Proceedings of the
26th ACM SIGKDD International Conference on Knowledge Discovery & Data
Mining, pp. 647–656 (2020)

13. Ma, F., Chitta, R., Zhou, J., You, Q., Sun, T., Gao, J.: Dipole: Diagnosis predic-
tion in healthcare via attention-based bidirectional recurrent neural networks. In:
Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, pp. 1903–1911 (2017)

14. Meng, D., Chen, H.: Magnet: a two-pronged defense against adversarial examples.
In: Proceedings of the 2017 ACM SIGSAC Conference on Computer and Commu-
nications Security, pp. 135–147 (2017)

15. Quellec, G., Charriere, K., Boudi, Y., Cochener, B., Lamard, M.: Deep image
mining for diabetic retinopathy screening. Med. Image Anal. 39, 178–193 (2017)

16. Rasmy, L., Xiang, Y., Xie, Z., Tao, C., Zhi, D.: Med-BERT: pretrained contextu-
alized embeddings on large-scale structured electronic health records for disease
prediction. NPJ Dig. Med. 4(1), 1–13 (2021)

17. Selvaraju, R.R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., Batra, D.: Grad-
cam: visual explanations from deep networks via gradient-based localization. In:
Proceedings of the IEEE International Conference on Computer Vision, pp. 618–
626 (2017)

Interpretation Attacks Using EHR 461

18. Shang, J., Ma, T., Xiao, C., Sun, J.: Pre-training of graph augmented transformers
for medication recommendation. In: Kraus, S. (ed.) Proceedings of the 28th Inter-
national Joint Conference on Artificial Intelligence, IJCAI 2019, pp. 5953–5959.
IJCAI International Joint Conference on Artificial Intelligence, International Joint
Conferences on Artificial Intelligence (2019). https://doi.org/10.24963/ijcai.2019/
825

19. Shrikumar, A., Greenside, P., Kundaje, A.: Learning important features through
propagating activation differences. In: International Conference on Machine Learn-
ing, pp. 3145–3153. PMLR (2017)

20. Simonyan, K., Vedaldi, A., Zisserman, A.: Deep inside convolutional net-
works: visualising image classification models and saliency maps. arXiv preprint
arXiv:1312.6034 (2013)

21. Smilkov, D., Thorat, N., Kim, B., Viégas, F., Wattenberg, M.: SmoothGrad: remov-
ing noise by adding noise. arXiv preprint arXiv:1706.03825 (2017)

22. Sun, M., Tang, F., Yi, J., Wang, F., Zhou, J.: Identify susceptible locations in
medical records via adversarial attacks on deep predictive models. In: Proceedings
of the 24th ACM SIGKDD International Conference on Knowledge Discovery &
Data Mining, pp. 793–801 (2018)

23. Szegedy, C., et al.: Intriguing properties of neural networks. arXiv preprint
arXiv:1312.6199 (2013)

24. Wang, W., Tang, P., Xiong, L., Jiang, X.: RADAR: recurrent autoencoder based
detector for adversarial examples on temporal EHR. In: Dong, Y., Mladenić, D.,
Saunders, C. (eds.) ECML PKDD 2020. LNCS (LNAI), vol. 12460, pp. 105–121.
Springer, Cham (2021). https://doi.org/10.1007/978-3-030-67667-4 7

25. Xu, Y., Biswal, S., Deshpande, S.R., Maher, K.O., Sun, J.: RAIM: recurrent atten-
tive and intensive model of multimodal patient monitoring data. In: Proceedings
of the 24th ACM SIGKDD International Conference on Knowledge Discovery &
Data Mining, pp. 2565–2573 (2018)

26. Yeh, C.K., Hsieh, C.Y., Suggala, A., Inouye, D.I., Ravikumar, P.K.: On the (in)
fidelity and sensitivity of explanations. In: Advances in Neural Information Pro-
cessing Systems, vol. 32 (2019)

https://doi.org/10.24963/ijcai.2019/825
https://doi.org/10.24963/ijcai.2019/825
http://arxiv.org/abs/1312.6034
http://arxiv.org/abs/1706.03825
http://arxiv.org/abs/1312.6199
https://doi.org/10.1007/978-3-030-67667-4_7

An Empirical Evaluation of the Rashomon
Effect in Explainable Machine Learning

Sebastian Müller1,4(B) , Vanessa Toborek1,4 , Katharina Beckh3,4 ,
Matthias Jakobs2,4 , Christian Bauckhage1,3,4 , and Pascal Welke5

1 University of Bonn, Bonn, Germany
semueller@uni-bonn.de

2 TU Dortmund University, Dortmund, Germany
3 Fraunhofer IAIS, Sankt Augustin, Germany

4 Lamarr Institute, Bonn, Germany
5 TU Wien, Vienna, Austria

Abstract. The Rashomon Effect describes the following phenomenon:
for a given dataset there may exist many models with equally good per-
formance but with different solution strategies. The Rashomon Effect has
implications for Explainable Machine Learning, especially for the com-
parability of explanations. We provide a unified view on three different
comparison scenarios and conduct a quantitative evaluation across dif-
ferent datasets, models, attribution methods, and metrics. We find that
hyperparameter-tuning plays a role and that metric selection matters.
Our results provide empirical support for previously anecdotal evidence
and exhibit challenges for both scientists and practitioners.

Keywords: Explainable ML · Interpretable ML · Attribution
Methods · Rashomon Effect · Disagreement Problem

1 Introduction

We demonstrate the impact of the Rashomon Effect when analyzing ML models.
The Rashomon Effect [8] describes the phenomenon that there may exist many
models within a hypothesis class which solve a dataset equally well. The set of
these models is referred to as the Rashomon Set [12,37]. From a data-centric
perspective this phenomenon is also called Predictive Multiplicity [23], meaning
that there exist many strategies to solve a task on a dataset. Other works use
Rashomon Sets to analyze and describe data [12,30]. Somewhat surprisingly, the
Rashomon Effect has not yet found wider attention in the Explainable Machine
Learning (XML) literature. Although a few works have observed the effect it
was only anecdotally or without referring to its proper name [14,20,35].

XML has recently become a very active area of research and numerous expla-
nation methods exist [1,9,24]. Many approaches explain black-box models in
a post-hoc manner by providing attribution scores [22,27] which assign each
input dimension a numerical value that represents this feature’s importance with
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
D. Koutra et al. (Eds.): ECML PKDD 2023, LNAI 14171, pp. 462–478, 2023.
https://doi.org/10.1007/978-3-031-43418-1_28

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-43418-1_28&domain=pdf
http://orcid.org/0000-0002-0778-9695
http://orcid.org/0009-0009-8372-8251
http://orcid.org/0000-0002-7824-6647
http://orcid.org/0000-0003-4607-8957
http://orcid.org/0000-0001-6615-2128
http://orcid.org/0000-0002-2123-3781
https://doi.org/10.1007/978-3-031-43418-1_28

Empirical Evaluation of the Rashomon Effect 463

respect to the model decision. Attribution scores are used to answer questions
such as “What feature was the most important in this input sample?” and have
been used to uncover spurious correlations in the data [29] and biased behavior
of models [21]. However, attribution scores are sometimes ambiguous and their
interpretation depends on the application context. It is hard to decide at what
magnitude a feature is still important, particularly, if magnitudes of attribution
scores can be sorted into an evenly descending order. It follows that the task
of comparing different attribution methods is a difficult problem. Several works
touch upon the problem of explanation comparison [5,7,19,26,35] from different
perspectives.

Our main contribution is an empirical analysis of one novel and two existing
perspectives, 1) demonstrating model-specific sensitivity regarding the hyper-
parameter choice for explanation methods, 2) comparison of different explana-
tions from the same attribution method on differently initialized but otherwise
identical model architectures [5,35] and 3) the disagreement between different
explanations applied to the same architecture and parameterization [19,26]. We
place these three perspectives into a unified framework to investigate how the
Rashomon Effect manifests itself in each situation. Our evaluation is conducted
on four datasets of entirely different nature, analyzing differences in models
explained by five popular attribution methods using both naive and established
human-centered similarity measures.1 Our results highlight the need to fine-tune
the hyperparameters of XML methods on a per-model basis. We do find empirical
support for the disagreement problem, meaning practitioners cannot expect con-
sistent explanations across methods. Further, the high solution diversity across
models hinders the use of XML as an epistemic tool.

Next, Sect. 2 discusses how we connect different parts of the literature for
our analysis. Section 3 describes the experimental setup in detail. Sections 4.1, 4.2
and 4.3 present results and discuss the three perspectives we analyze. Section 4.4
summarizes our main findings. Section 5 concludes.

2 Comparing Attribution Scores

Given a classifier and a datum, an attribution method assigns each input dimen-
sion a numerical value that represents this feature’s importance with respect to
the model decision. Hence, an attribution scoring depends on three variables:
1) the model, 2) the input sample, and 3) the attribution method. This distinc-
tion enables us to systematically investigate the consequences of the Rashomon
Effect on established and novel perspectives in XML in one framework. This
framework is the first to bring the different perspectives into a unifying picture
which we present in Table 1. Our main mode of comparison is centered around
comparing pairs of attribution scores. Hence, we assume that the scores belong
to the same sample from the same dataset. We investigate model- or attribution
method-dependent effects and do not consider the scenario where the data is the
same but both models and methods are different.
1 Our code is available at github.com/lamarr-xai-group/RashomonEffect.

https://github.com/lamarr-xai-group/RashomonEffect

464 S. Müller et al.

Table 1. We investigate the Rashomon Effect in Explainable Machine Learning for a
set of models and a set of attribution methods. Three interesting scenarios arise for a
fixed input-sample from a given dataset.

Same
Model

Same
Sample

Same Attr
Method Scenario Examples

1 1 1 Numerical Stability −
0 1 1 Solution Diversity [12,17,35]

1 1 0 Disagreement Problem [11,19,26]

Numerical Stability (111): In Sect. 4.1 we discuss the scenario where the
same model and same attribution method are applied to the same sample. This
perspective is relevant to non-deterministic explanation methods that can be
controlled by hyperparameters. We investigate whether there are model-specific
differences regarding optimal parameter choice and find that the hyperparame-
ter choice is significantly dependent on both the investigated model and dataset.
This suggests that blindly applying non-optimal hyperparameters can lead to
erroneous explanations and thus wrong takeaways in an application scenario.
This need for rigorous hyperparameter tuning is mostly overlooked in the liter-
ature.

Solution Diversity (011): We can compare how similar or dissimilar two
models are w.r.t. their solution strategies by comparing explanations that were
computed for each of them using the same attribution method. Comparing any
two models not only by one, but by the average difference on explanations
over several samples, will only be able to measure a difference, if two mod-
els consistently behave differently. This is a coarse, but sufficiently sensitive
measure. Using this measure as a basis, we provide a large quantitative view
of the Rashomon Effect itself, recently also observed in [35]. In Sect. 4.2, we
extend existing results by comparing substantially more models on additional
data domains and investigate how diverse the strategies of the models within
a Rashomon Set are. We observe very high diversity in most cases and discuss
practical implications for machine learning (ML) as an epistemic tool [28,39].

Disagreement Problem (110): Aiming to find the “right” explanation,
prior work compared different attribution methods applied to the same model
on the same sample. It was found that explanations of different attribution meth-
ods often differ significantly, which is now known as the Disagreement Problem
[5,11,13,15,16,19,26]. So far, the Disagreement Problem was only reported on
individual or a very small number of models. It has not been sufficiently explored
whether the disagreement actually is model-dependent, i.e., whether any pair of
attribution methods is consistently less similar than other pairs across models.
We investigate this question in Sect. 4.3. We provide quantitative support for
anecdotal observations from the literature and add practically relevant insights.

A fundamental question is which metric should be used to compare two
attribution scores. One possible approach is to use feature (dis-)agreement, i.e.

Empirical Evaluation of the Rashomon Effect 465

the overlap of the top-k “most important” features, which ML practitioners
indicated as a key measure for disagreement [19]. Along the same lines, ranking
correlation measures are used, such as Kendall’s τ [26]. Another option is to
base the comparison on typical distance measures, such as cosine similarity [7]
or Euclidean distance [11,25]. In previous studies, only one metric or metric type
has been considered. In this work, we provide a comparison of both Euclidean
and (dis-)agreement based measures.

3 Experimental Framework

Before we report our results we introduce the experimental setup. To emphasize
the extent of the Rashomon Effect we will remove randomness from the training
process with the exception of model initialization.

3.1 Datasets

For the comparison we chose four publicly available datasets. AG News [40], a
benchmark dataset for text classification with an average sentence length of 43
words. Three tabular datasets containing only real valued variables: Dry Bean
[18], a 16-dimensional multi-class dataset with 7 classes of dry beans, Breast Can-
cer Wisconsin (Diagnostic) [36], a classical dataset posing a binary classification
problem over 30 features, and Ionosphere [31], a binary classification problem
over 34 features based on radar signal returns. The amount of data available
with each dataset differs greatly. A random subset Xref was held out from each
dataset during training and later used for the computation of explanations. Xref

contains 300 samples for AG News, 1050 for Dry Bean, 114 for Breast Cancer
and 71 for Ionosphere.

3.2 Models: Architecture, Training and Selection

For the tabular datasets we use small, fully connected Feed-Forward Neural
Networks with ReLU activation functions. Models for Dry Bean, Breast Cancer
and Ionosphere use 3× 16, 16 and 8 neurons, respectively. For the AG News
dataset we use a Bi-LSTM model with 128 dimensions for each direction and a
fully connected output layer. We learn a 128 dimensional word embedding from
scratch. We use the softmax function as output activation in all models.

We trained 100 models on each tabular dataset and 20 models on AG News.
We fixed all random aspects of the model training except for the initialization
of the network parameters. Each model observed exactly the same amount of
data in the exact same order. All differences in model behavior will thus only
stem from the initialization. To build the final Rashomon Set for each dataset,
we choose all models with at most 5% difference in accuracy to the best model.
With the exception of the Ionosphere dataset, nearly all models are selected. We
present average model accuracy and average pairwise output similarity computed
with the Jensen-Shannon-Distance over Xref in Table 2. All models achieve a high
accuracy and are nearly indistinguishable by their output distributions.

466 S. Müller et al.

Table 2. Mean accuracy and mean pairwise Jensen-Shannon-Distance (JSD) of all
models over Xref . All models were selected to lie within 5% accuracy of the best model.
According to both metrics, all models perform nearly indistinguishably. JSD is bounded
to [0, 1].

AG News Dry Bean Breast Cancer Ionosphere

Mean accuracy on Xref 0.91 ± 0.01 0.89 ± 0.01 0.95 ± 0.01 0.86 ± 0.01

Mean JSD on Xref 0.0315 ± 0.004 0.0207 ± 0.004 0.0019 ± 0.001 0.0103 ± 0.007

3.3 Attribution Methods

We compare five attribution methods. From the family of gradient based meth-
ods we use Vanilla Grad (VG) [32], Smooth Grad (SG) [33], and Integrated
Gradient (IG) [34]. From the family of perturbation based methods we include
KernelSHAP (KS) [22] and LIME (LI) [27] for which we use the implementations
provided by Captum2. For IG, KS, and LI we use zero-baselines. SG samples
with a noise ratio of 10%. Hyperparameters that further impact approximation
behavior will be discussed in Sect. 4.1.

3.4 Model Dissimilarity Measures Based on Attribution Scores

We use the following formula to express the scenarios in Table 1:

D(fa, fb,X, φ1, φ2, d) =
1

|X|
∑

x∈X

d(φ1(fa, x), φ2(fb, x)) (1)

where fa, fb ∈ R are classifier functions from our Rashomon Set, X ⊆ Xref :
{x|x ∈ Xref ∧ arg max fa(x) = arg max fb(x)} is a subset of the reference set
where both classifiers agree on the label, φ1, φ2 ∈ Φ = {VG, SG, IG, KS, LI} are
the aforementioned attribution methods and d ∈ D = {Feature Disagreement,
Sign Disagreement, Euclid, Euclid-abs} are dissimilarity measures on attribution
scores that we introduce now.

Feature Disagreement considers only the k top features (indices of k features
of highest magnitude) from each of the two explanations and computes then the
fraction of common features between them. Sign Disagreement is a more strict
version of Feature Disagreement. It applies Feature Disagreement and then sub-
selects only the top features that also have the same sign in both explanations.
Euclid and Euclid-abs are the Euclidean distance and the Euclidean distance
over absolute values of two attribution scores. Analogously to [19], for the dis-
agreement measures we set k = 11 for AG News, k = 4 for Dry Bean, and k = 8
for both Breast Cancer and Ionosphere.

2 See project page at github.com/pytorch/captum.

https://github.com/pytorch/captum

Empirical Evaluation of the Rashomon Effect 467

4 Examining the Rashomon Effect

We now present and discuss the experiments on numerical stability (Sect. 4.1),
the Rashomon Effect itself (Sect. 4.2) and the Disagreement Problem (Sect. 4.3).
Each section provides its own discussion.

4.1 Numerical Stability and the Rashomon Effect (111)

In this section we investigate the setting D(fa, fa,X = Xref , φ1, φ1,Euclid) to
analyze the numerical stability of all φ∗ w.r.t. differences of individual f∗.

Attribution methods often require to choose hyperparameters that control
approximation behavior. For IG this is the number of steps used to approximate
the integral. For SG, KS, and LI one has control over the number of samples
evaluated during computation. This allows to adjust the computation time but
if the parameter is too small, the resulting explanations may differ between two
computations. We investigate this approximation stability across many models:
Do explanations converge at the same hyperparameter for all models and if not,
how large are the differences between individual models?

On the AG News dataset for SG we evaluate sampling hyperparameters p ∈
[25, 50, 75, 100, 150], for IG, KS, and LI we evaluate p ∈ [25, 50, 100, 150, 300]. On
the tabular datasets we compute the approximation stability for p ∈ [25, 50, 75,
100, 125] for all methods. We quantify numerical stability in the following way:
We compute ten SG, KS, and LI explanations for each sample in Xref for each p.
Next, we compute the pairwise Euclidean distances between all ten explanations.
To obtain a stability score for one model, the average is taken across all samples
in Xref . As a final stability score we report the mean and standard deviation
of this score across all models. IG depends deterministically on the number of
steps in the integral, hence, we do not compute ten explanations per sample.
Instead, we compute the pairwise distance between explanations for the same
point obtained by pi and pi+1. To assess model dependent differences regarding
the optimal choice of p, we compute for each model the smallest pi in the set of
parameters, where pi+1 did not improve the average stability by a factor of two.

Results for all datasets are presented in Table 3. The rows that start with
SG, IG, KS, and LI report numerical stability for each method. The last row
(#) reports the accumulated number of models whose explanations are stable at
≤ p. The aggregated counts correspond to the attribution methods in the order
as they appear in the rows: SG, IG, KS, LI. Unsurprisingly, numerical stability
improves across all models with increasing p. At the same time, models clearly
respond differently to an increase in p. For SG the spread spans four values of p
on each dataset and the selected values for p can differ by a factor of up to three.
For IG there is no spread on the tabular datasets, but it has the largest spread
compared to any other method on AG News. For KS and LI the models mostly
split between two consecutive values. Note that KS displays conspicuously large
numerical instability for smaller p, even on the smaller tabular datasets. Default
parameters for KS and LI are set to 25 and 50 in Captum, which is insufficient

468 S. Müller et al.

Table 3. Explanation stability for sampling parameter p. We report mean±std across
all models and samples for each attribution method. The values for IG describe the
difference between using pi+1 instead of pi. The last row (#) accumulates the number
of models that converged at ≤ p for SG/IG/KS/LI.

25 50 75 100 150

SG 0.0062 ± 0.0028 0.0044 ± 0.0020 0.0036 ± 0.0016 0.0039 ± 0.0029 0.0027 ± 0.0013

25 50 100 150 300

IG 0.0734 ± 0.2740 0.0532 ± 0.2201 0.0412 ± 0.1389 0.0329 ± 0.1380 –

KS 6.48e4 ± 1.3e5 3.34e5 ± 4.94e5 6.39e6 ± 1.15e7 1.7121 ± 0.1655 0.9515 ± 0.0695

LI 0.0470 ± 0.0117 0.0330 ± 0.0079 0.0220 ± 0.0055 0.0175 ± 0.0045 0.0119 ± 0.0032

−/1/ − /− 10/2/ − /1 18/18/ − /19 19/18/20/19 20/20/20/20

(a) AG News. Total number of models is 20. The set of evaluated parameters is different
from other datasets and different for SG from other methods.

25 50 75 100 125

SG 0.0005 ± 0.0003 0.0004 ± 0.0002 0.0003 ± 0.0002 0.0003 ± 0.0001 0.0003 ± 0.0001

IG 0.0002 ± 0.0001 0.0001 ± 0.0001 0.0001 ± 0.0000 0.0000 ± 0.0000 –

KS 0.6087 ± 0.1724 0.2936 ± 0.0576 0.2232 ± 0.0422 0.1872 ± 0.0350 0.1645 ± 0.0306

LI 0.1561 ± 0.0413 0.0956 ± 0.0272 0.0723 ± 0.0219 0.0596 ± 0.0190 0.0515 ± 0.0170

−/ − / − /− 39/ − /73/96 62/99/99/99 87/99/99/99 99/99/99/99

(b) Beans. Total number of models is 99.

25 50 75 100 125

SG 0.0253 ± 0.0140 0.0181 ± 0.0099 0.0148 ± 0.0081 0.0128 ± 0.0070 0.0114 ± 0.0063

IG 0.0030 ± 0.0012 0.0013 ± 0.0006 0.0008 ± 0.0004 0.0006 ± 0.0003 –

KS 8.28e4 ± 1.67e5 0.4523 ± 0.0735 0.3036 ± 0.0402 0.2462 ± 0.0312 0.2126 ± 0.0265

LI 0.0506 ± 0.0152 0.0345 ± 0.0104 0.0279 ± 0.0085 0.0241 ± 0.0073 0.0215 ± 0.0065

−/ − / − /− 28/ − / − /65 58/100/95/86 91/100/100/100 100/100/100/100

(c) Breastcancer. Total number of models is 100.

25 50 75 100 125

SG 0.0298 ± 0.0135 0.0209 ± 0.0095 0.0172 ± 0.0077 0.0148 ± 0.0066 0.0133 ± 0.0060

IG 0.0036 ± 0.0017 0.0017 ± 0.0008 0.0011 ± 0.0005 0.0009 ± 0.0004 –

KS 1.02e5 ± 2.06e5 1.81e3 ± 3.67e3 0.1990 ± 0.0279 0.1561 ± 0.0205 0.1325 ± 0.0169

LI 0.0995 ± 0.0239 0.0678 ± 0.0166 0.0547 ± 0.0136 0.0472 ± 0.0119 0.0423 ± 0.0107

−/ − / − /− 13/ − / − /34 28/51/42/43 47/51/51/50 51/51/51/51

(d) Ionosphere. Total number of models is 51.

for a large number of models. For the remainder of the paper we use explanations
computed with the following p for all datasets: SG 100, IG 200, KS and LI 300.

Our results show that, for a rigorous workflow, hyperparameters need to be
tuned not only based on the dataset but, in fact, for each model individually.
Hence, choosing sensible default parameters is difficult. Providing implemen-
tations without default values or with very large values might be an option,
though impeding user-friendliness. This learning also impacts any down-stream

Empirical Evaluation of the Rashomon Effect 469

use of explanations such as benchmarking methods to assess the fidelity of an
attribution method [3,4,10,11,17,38] or explanation methods that build atop
attributions to extract rules as explanations [2]. In those contexts, numerical
stability is a pre-requisite to obtain reliable results.

4.2 Solution Diversity Or: The Rashomon Effect as Seen
with Different Dissimilarity Measures (011)

In this section we investigate how the Rashomon Effect manifests under different
metrics over different attribution methods. In Table 2 we saw that the output
behavior of the models is extremely similar. We are now interested to see how
diverse the Rashomon Sets appear if we use the explanation based dissimilarity
measure defined above. For each dataset and all dissimilarity measures d ∈ D we
evaluate D(fa, fb,X, φ1, φ1, d) for all pairs of fa, fb ∈ R with fa �= fb. Because
all attribution scores are specific to the predicted class, we restrict X ⊆ Xref :
{x|x ∈ Xref ∧ arg max fa(x) = arg max fb(x)}.

The distances produced by Feature Disagreement and Sign Disagreement are
naturally bounded to the [0, 1] interval. The gradient based attribution scores lie
in a bounded range because we compute the gradient through the softmax out-
put. Attribution scores for KS and LI produced distances larger than 1 with
the two Euclidean metrics on all datasets. In those cases we normalize the
Euclidean distances to the range [0, 1] by dividing by the maximal distance
observed. Figure 1 visualizes the pairwise distances of all models as histograms.
The x-axis discretizes dissimilarities, the farther to the right the more dissimilar.
The y-axis is the number of distances in each bin.

Euclid and Euclid-abs overlap significantly in all cases except for IG and
SG on the Ionosphere dataset. The Disagreement measures diverge on AG News
and Dry Bean. Naturally, Sign Disagreement produces larger dissimilarity scores
than Feature Disagreement.

In most of the cases, the means of the disagreement based measures and the
Euclidean based measures lie relatively far apart. The exceptions are IG, KS,
and LI on AG News, as well as KS and LI on Dry Bean. This means that one
metric always measures significantly more differences than the other, but what
metric that is depends both on the dataset and method.

We see that with most attribution methods and metrics the Rashomon Sets
produce a large variety of distances across all models. This has strong impli-
cations for use cases where ML models, specifically (Deep) Neural Networks,
are used as epistemic tools to develop hypotheses about the data generation
process as it is becoming frequent practice in several disciplines [28,39]. The
variance in our results illustrates that the number of viable solution strategies
is extensively large, hence, discovering all possibilities is highly improbable in
cases where training a large number of models is infeasible. Methods such as
ROAR [17] (despite being developed for a different purpose) could be useful to
iteratively narrow down the search space but may still fail to uncover all possible
correlations. The Rashomon Effect also has implications in user-centered scenar-
ios. In cases where users interact with model explanations and expect a certain

470 S. Müller et al.

Fig. 1. Histograms over pairwise distances of all models according to Formula 1. Dis-
agreement metrics computed with k = 11, 4, 8, 8 for AG News, Beans, Breast Cancer,
and Ionosphere, respectively. In the bottom rows both disagreement metrics overlap
nearly exactly.

behavioral consistency over time, the deployment of a new model, even if per-
formance itself is very similar, would pose a risk to user trust. Depending on the
explanation method, the data domain, and the model, computing explanations
can be very costly. Storing explanations for later re-use as a way to mitigate
costs only works if the model stays the same.

Empirical Evaluation of the Rashomon Effect 471

Table 4. Kendall rank correlation coefficient (τ) between rankings of attribution
method pairs. On average we observe a strong or very strong correlation, but the
standard deviation indicates that for some models the set of methods that (dis)agree
are very different compared to other models.

AG News Dry Bean Breastcancer Ionosphere

Feature Disagreement 0.67 ± 0.14 0.65 ± 0.26 0.66 ± 0.31 0.63 ± 0.28

Sign Disagreement 0.63 ± 0.10 0.57 ± 0.38 0.64 ± 0.37 0.73 ± 0.24

Euclidean 0.77 ± 0.29 0.69 ± 0.15 0.94 ± 0.12 0.95 ± 0.11

Euclidean-abs 0.79 ± 0.20 0.85 ± 0.15 0.81 ± 0.18 0.84 ± 0.14

In nearly all cases the human-oriented agreement metrics provide a very
different picture than the Euclidean distances. Without additional knowledge
about the suitability of a metric in a given context, practitioners should not rely
on either disagreement or Euclidean measure alone. Use cases like [7], that use
explanations to produce training signals for models, could benefit from exploring
both kinds of metrics separately or from mixing them in a curriculum.

4.3 The Rashomon Effect and the Disagreement Problem (110)

In this section we investigate the Rashomon Effect on the Disagreement Problem.
For all datasets and measures d ∈ D we compare D(fa, fa,X, φ1, φ2, d) over all
pairs (φ1, φ2) ∈ Φ × Φ with φ1 �= φ2. As before, X is the set of all samples in
Xref where the predictions of both models agree.

Existing literature on the Disagreement Problem compares disagreement of
method pairs for individual or very few models and only with the disagreement
measures [5,11,19,26]. These works report no consistent ranking between method
pairs, especially when the data complexity increases.

We now analyze whether we find quantitative support for those observations.
Additionally, we extend the analysis of the Disagreement Problem to include
results based on the Euclidean distances.

For each individual model we rank the ten possible method pairs from most
agreeing to most disagreeing. We calculate Kendall’s rank correlation coefficient
τ for all model pairs with a sufficiently small p-value (< 0.05). For the remaining
τ the mean and standard deviation across all models are reported in Table 4.

Two levels of correlation can be observed: 1) Stronger correlation � 0.8 for
Euclid on AG News, Euclid-abs on Dry Bean as well as both Euclidean based
metrics on Breast Cancer and Ionosphere. 2) A moderate correlation ≈ 0.65
for Feature Disagreement on all datasets with a lower standard deviation on
AG News. Sign Disagreement also falls in this range on all datasets but Dry
Bean, with a notably lower standard deviation on AG News compared to other
datasets. The lowest correlation (0.57) is produced by Sign Disagreement on Dry
Bean, showing the largest standard deviation (0.38) at the same time. The large
standard deviations suggest that a fair amount of models produces very different
rankings, particularly in the case of the disagreement based rankings.

472 S. Müller et al.

Fig. 2. Box plots of rankings over which pair of attribution methods disagrees most
or least for individual models on AG News (top) and Dry Bean (bottom). Higher rank
means larger disagreement. Plots on the left: Feature Disagreement Sign Disagreement,
plots on the right: Euclid-abs Euclid; Orange lines in each boxplot indicate the median.

Are lower correlations structural? I.e. is it always specific method pairs that
tend to swap ranks? We visualize the rank that each pairing occupies for every
model in the box plots in Fig. 2 and Fig. 3. The y-axis shows the rank, higher
rank meaning stronger disagreement relative to the other methods. Plots on the
left pair both disagreement based rankings (blue/ green) while plots on the right
show results for Euclidean based rankings (yellow/ red).

Generally, we can make the following observations about the Euclidean met-
rics: 1) For most explanation pairs, both Euclidean metrics show little to no
variance within each dataset, signifying agreement on the ranking of the respec-
tive explainability pair, but no consistent ranking across all datasets. 2) All three
tabular datasets agree for VG-SG being on rank one and VG-IG being on rank
two, both with no variance.

Looking at the results for the disagreement metrics for each dataset in detail,
we can see the following: AG News (Fig. 2) shows very stable rankings for both
Disagreement metrics for VG-{SG, IG, KS}. For Dry Bean (Fig. 2) across both
disagreement metrics, the median lies 8/20 times exactly on one of the quartiles

Empirical Evaluation of the Rashomon Effect 473

Fig. 3. Box plots of rankings over which pair of attribution methods disagrees most or
least for individual models on Breast Cancer (top) and Ionosphere (bottom). Higher
rank means larger disagreement. Plots on the left: Feature Disagreement Sign Disagree-
ment, plots on the right: Euclid-abs Euclid; Orange lines in each boxplot indicate the
median.

which show no whisker. This means that 50% of the models agree on the respec-
tive ranking. This is interesting because at the same time VG-{SG, IG} span
nearly the whole ranking, meaning that all rankings in the fourth quartile assign
the maximum rank. The pairs SG-{IG, KS} seem to swap places but are other-
wise rather consistently placed in the lower middle of the ranking. Breast Cancer
(Fig. 3) shows stable rankings for VG-{KS, LI} with both disagreement metrics.
More interestingly, for VG-{SG, IG} the medians lie again on “whiskerless”-
quartiles and the ranking agrees with the one on Dry Bean (rank 2 for VG-SG
and rank 10 for VG-IG). In contrast to Dry Bean, here it is IG-LI and KS-LI
that place comparably stable towards the middle of the ranking. On Ionosphere
(Fig. 3 bottom) the plot shows smaller boxes compared to the other tasks. Taking
outliers into account, multiple pairings span the whole ranking for disagreement
based rankings. Ignoring outliers, there are five stable rankings for VG-{IG, SG,
KS, LI}, four of which are achieved with Sign Disagreement.

474 S. Müller et al.

We summarize our observations: We did not see a consistent ranking across
all datasets and metrics. Our results for the disagreement based metrics support
the observation from the literature that there is no consistent ranking among
method pairs. However, we do not observe that results on the more complex
AG News appear less correlated than for smaller tabular tasks. Our evaluation
of Euclidean based rankings shows them to be notably more stable than their
disagreement counterparts.

Interestingly, we cannot identify a single pair of methods that produces high
disagreement across all tasks and metrics consistently, but there are pairs of
methods for each dataset that consistently take mid-range rankings. Practition-
ers that seek diverse explanations would be recommended to start their search
with comparing VG-KS, SG-{IG, KS}, and KS-LI.

4.4 Summary

In the first scenario in Sect. 4.1 we evaluated how sensitive individual mod-
els are to hyperparameter choices for non-deterministic attribution methods.
Expectedly, a higher sampling rate always improves the numerical stability of
the approximations. However, we found stark differences between the individual
models, some requiring larger parameter values by a factor of up to twelve. This
has direct implications for scientists and developers using XML methods, as it
means that prior knowledge is not necessarily transferable between two mod-
els. Choosing default values is de facto impossible. Especially scenarios where
parameters have to be chosen as small as possible require rigorous testing.

After verifying the numerical stability of our explanations, in Sect. 4.2 we
assessed how the Rashomon Effect manifests itself on different datasets, depend-
ing on the different attribution methods and dissimilarity measures. We illus-
trated the solution diversity under different dissimilarity measures. We found
that gradient based attribution methods in conjunction with Euclidean metrics
showed smaller distances and low variance on the simpler tabular datasets. Dis-
agreement based dissimilarity measures produced high distances and variances
in nearly all cases. The distances are notably higher for Sign Disagreement com-
pared to Feature Disagreement in half of the cases. We saw a large spectrum
of distances for perturbation based methods in all cases. Our observation of
large magnitudes and high variances in the distances has implications for ML
as an epistemic tool. It illustrates how large the space of possible viable solu-
tion strategies is, indicating the need to develop informed search strategies in
the future [6], especially in complex or resource constrained scenarios. Also, the
histograms of Euclidean and disagreement-based measures rarely show overlap,
meaning practitioners will have to make context-specific choices on what type of
metric to use. In cases where model behavior is explained to users, deploying a
model update can lead to irritations as the explanations will likely change dras-
tically between any two models; using the computationally intensive KS or LI
seems to give the best chances to maintain somewhat consistent explanations.
Conversely to the use-case of ML as an epistemic tool, a possible direction of

Empirical Evaluation of the Rashomon Effect 475

future work is the inverse search problem of finding a better performing model
that functions most similarly.

Investigating the Rashomon Effect on the Disagreement Problem in Sect. 4.3
revealed stark differences between results from the disagreement measures and
the Euclidean distances. Neither of the two metric types produced rankings
consistent across all datasets. Within tasks, the Euclidean metrics produced very
stable rankings while the disagreement measures only occasionally produced a
stable rank for a few pairs. Thus, our work provides quantitative support to the
observations in [11,19,26] that are based on a small number of models, only.
However, contrary to the literature, our results do not look more stable for
smaller models on tabular datasets than for the Bi-LSTM model on AG News.

5 Conclusion

We have quantitatively shown how the Rashomon Effect impacts the application
and interpretation of XML techniques and argue that it has to be taken into
account by the XML community in the future. Along the three variables 1) the
model, 2) the datum, and 3) the attribution method, we presented a structured
investigation of the Rashomon Effect from three perspectives within XML.

Our quantitative analysis on numerical stability showed models to have indi-
vidual sensitivity to hyperparameters of explanation methods. We have shown
that choosing the most efficient setting requires careful tuning not only to a
specific task or architecture, but in fact to every model instance individually, in
order to guarantee stable explanations. Assessing the Rashomon Effect itself by
measuring the diversity of solution strategies, we found that the solution space
appears extensive, especially under the disagreement metrics. This poses chal-
lenges to applications of ML as an epistemic tool, as well as use cases where
models are offered to consumers that expect consistent behavior. Our study of
the Disagreement Problem provides quantitative support for previously anec-
dotal evidence. No consistent ranking persists across all datasets and the only
option for practitioners that seek diverse explanations is trial and error. How-
ever, for each dataset individually we were able to identify a pair of methods
that consistently take mid-range ranks. Using those rankings to systematically
compare methods might yield insight into differences regarding what parts of
model behavior each method is sensitive to.

Acknowledgments. This research has been funded by the Federal Ministry of Edu-
cation and Research of Germany and the state of North-Rhine Westphalia as part of
the Lamarr-Institute for Machine Learning and Artificial Intelligence Lamarr22B. Part
of PWs work has been funded by the Vienna Science and Technology Fund (WWTF)
project ICT22-059.

Ethical Statement. In critical contexts, where persons are directly or indirectly

impacted by a model, and where explanations are used to verify that model behavior

is compliant with a given standard, proper use of explanation methods is of utmost

476 S. Müller et al.

importance. Hyperparameter choices have to be validated for each model individu-

ally. For model testing and validation procedures to be reliable they have to integrate

this knowledge. Our work demonstrated that it is unreasonable to expect an expla-

nation computed for one model, to be valid for another model, however similar their

performance otherwise may be. Re-using explanations from one model to give as an

explanation of behavior for another model is not possible and has to be avoided in

critical scenarios.

References

1. Adadi, A., Berrada, M.: Peeking inside the black-box: a survey on explainable
artificial intelligence (XAI). IEEE Access 6, 52138–52160 (2018)

2. Alkhatib, A., Boström, H., Vazirgiannis, M.: Explaining predictions by charac-
teristic rules. In: European Conference on Machine Learning and Principles and
Practice of Knowledge Discovery in Databases (ECML/PKDD) (2022)

3. Alvarez-Melis, D., Jaakkola, T.S.: On the robustness of interpretability meth-
ods. In: Workshop on Human Interpretability in Machine Learning (WHI@ICML)
(2018)

4. Ancona, M., Ceolini, E., Öztireli, C., Gross, M.: Towards better understanding
of gradient-based attribution methods for deep neural networks. In: International
Conference on Learning Representations, (ICLR) (2018)

5. Atanasova, P., Simonsen, J.G., Lioma, C., Augenstein, I.: A diagnostic study of
explainability techniques for text classification. In: Conference on Empirical Meth-
ods in Natural Language Processing (EMNLP) (2020)

6. Beckh, K., et al.: Harnessing prior knowledge for explainable machine learning: an
overview. In: 2023 IEEE Conference on Secure and Trustworthy Machine Learning
(SaTML), pp. 450–463 (2023). https://doi.org/10.1109/SaTML54575.2023.00038

7. Bogun, A., Kostadinov, D., Borth, D.: Saliency diversified deep ensemble for
robustness to adversaries. In: AAAI-22 Workshop on Adversarial Machine Learning
and Beyond (2021)

8. Breiman, L.: Statistical modeling: the two cultures (with comments and a rejoinder
by the author). Stat. Sci. 16(3), 199–231 (2001)

9. Burkart, N., Huber, M.F.: A survey on the explainability of supervised machine
learning. J. Artif. Intell. Res. 70, 245–317 (2021)

10. DeYoung, J., et al.: ERASER: a benchmark to evaluate rationalized NLP models.
In: Annual Meeting of the Association for Computational Linguistics (ACL) (2020)

11. ElShawi, R., Sherif, Y., Al-Mallah, M., Sakr, S.: Interpretability in healthcare: a
comparative study of local machine learning interpretability techniques. Comput.
Intell. 37(4), 1633–1650 (2021)

12. Fisher, A., Rudin, C., Dominici, F.: All models are wrong, but many are useful:
learning a variable’s importance by studying an entire class of prediction models
simultaneously. J. Mach. Learn. Res. 20(177), 1–81 (2019)

13. Flora, M., Potvin, C., McGovern, A., Handler, S.: Comparing explanation methods
for traditional machine learning models part 1: an overview of current methods and
quantifying their disagreement. arXiv preprint arXiv:2211.08943 (2022)

14. Guidotti, R., Ruggieri, S.: Assessing the stability of interpretable models. arXiv
preprint arXiv:1810.09352 (2018)

https://doi.org/10.1109/SaTML54575.2023.00038
http://arxiv.org/abs/2211.08943
http://arxiv.org/abs/1810.09352

Empirical Evaluation of the Rashomon Effect 477

15. Han, T., Srinivas, S., Lakkaraju, H.: Which explanation should i choose? A function
approximation perspective to characterizing post hoc explanations. In: Advances
in Neural Information Processing Systems (NeurIPS) (2022)

16. Hancox-Li, L.: Robustness in machine learning explanations: does it matter? In:
Conference on Fairness, Accountability, and Transparency (FAT*) (2020)

17. Hooker, S., Erhan, D., Kindermans, P.J., Kim, B.: A benchmark for interpretability
methods in deep neural networks. In: Advances in Neural Information Processing
Systems (NeurIPS) (2019)

18. Koklu, M., Özkan, I.A.: Multiclass classification of dry beans using computer vision
and machine learning techniques. Comput. Electron. Agric. 174, 105507 (2020)

19. Krishna, S., et al.: The disagreement problem in explainable machine learning: a
practitioner’s perspective. arXiv preprint arXiv:2202.01602 (2022)

20. Leventi-Peetz, A.M., Weber, K.: Rashomon effect and consistency in explainable
artificial intelligence (XAI). In: Future Technologies Conference (FTC) (2022)

21. Liu, F., Avci, B.: Incorporating priors with feature attribution on text classifica-
tion. In: Annual Meeting of the Association for Computational Linguistics (ACL)
(2019)

22. Lundberg, S., Lee, S.I.: A Unified approach to interpreting model predictions. In:
Advances in Neural Information Processing Systems (NeurIPS) (2017)

23. Marx, C.T., Calmon, F.P., Ustun, B.: Predictive multiplicity in classification. In:
International Conference on Machine Learning (ICML) (2020)

24. Molnar, C.: Interpretable Machine Learning. 2nd edn. (2022)
25. Mücke, S., Pfahler, L.: Check Mate: a sanity check for trustworthy AI. In: Lernen.

Wissen. Daten. Analysen. (LWDA) (2022)
26. Neely, M., Schouten, S.F., Bleeker, M.J., Lucic, A.: order in the court: explainable

AI methods prone to disagreement. arXiv preprint arXiv:2105.03287 (2021)
27. Ribeiro, M.T., Singh, S., Guestrin, C.: Why should i trust you?: explaining the

predictions of any classifier. In: International Conference on Knowledge Discovery
and Data Mining (KDD) (2016)

28. Roscher, R., Bohn, B., Duarte, M.F., Garcke, J.: Explainable machine learning for
scientific insights and discoveries. IEEE Access 8, 42200–42216 (2020)

29. Schramowski, P., et al.: Making deep neural networks right for the right scientific
reasons by interacting with their explanations. Nat. Mach. Intell. 2(8), 476–486
(2020)

30. Semenova, L., Rudin, C., Parr, R.: On the existence of simpler machine learning
models. In: Conference on Fairness, Accountability, and Transparency (FAccT)
(2022)

31. Sigillito, V.G., Wing, S.P., Hutton, L.V., Baker, K.B.: Classification of radar
returns from the ionosphere using neural networks. Johns Hopkins APL Tech.
Digest 10(3), 262–266 (1989)

32. Simonyan, K., Vedaldi, A., Zisserman, A.: Deep inside convolutional networks: visu-
alising image classification models and saliency maps. In: International Conference
on Learning Representations (ICLR) (2014)

33. Smilkov, D., Thorat, N., Kim, B., Viégas, F., Wattenberg, M.: Smoothgrad: remov-
ing noise by adding noise. arXiv preprint arXiv:1706.03825 (2017)

34. Sundararajan, M., Taly, A., Yan, Q.: Axiomatic attribution for deep networks. In:
International Conference on Machine Learning (ICML) (2017)

35. Watson, M., Hasan, B.A.S., Al Moubayed, N.: Agree to disagree: when deep learn-
ing models with identical architectures produce distinct explanations. In: Winter
Conference on Applications of Computer Vision (WACV) (2022)

http://arxiv.org/abs/2202.01602
http://arxiv.org/abs/2105.03287
http://arxiv.org/abs/1706.03825

478 S. Müller et al.

36. Wolberg, W., Street, N., Mangasarian, O.: Breast Cancer Wisconsin (Diagnostic).
UCI Machine Learning Repository (1995)

37. Xin, R., Zhong, C., Chen, Z., Takagi, T., Seltzer, M., Rudin, C.: Exploring the
whole rashomon set of sparse decision trees. In: Advances in Neural Information
Processing Systems (NeurIPS) (2022)

38. Yeh, C., Hsieh, C., Suggala, A.S., Inouye, D.I., Ravikumar, P.: On the (In)fidelity
and sensitivity of explanations. In: Advances in Neural Information Processing
Systems (NeurIPS) (2019)

39. Zednik, C., Boelsen, H.: Scientific exploration and explainable artificial intelligence.
Minds Mach. 32(1), 219–239 (2022)

40. Zhang, X., Zhao, J.J., LeCun, Y.: Character-level convolutional networks for text
classification. In: Advances in Neural Information Processing Systems (NeurIPS)
(2015)

Interpretable Regional Descriptors:
Hyperbox-Based Local Explanations

Susanne Dandl1,2 , Giuseppe Casalicchio1,2 , Bernd Bischl1,2 ,
and Ludwig Bothmann1,2(B)

1 Department of Statistics, LMU Munich, Ludwigstr. 33, 80539 Munich, Germany
2 Munich Center for Machine Learning (MCML), Munich, Germany

Ludwig.Bothmann@stat.uni-muenchen.de

Abstract. This work introduces interpretable regional descriptors, or
IRDs, for local, model-agnostic interpretations. IRDs are hyperboxes
that describe how an observation’s feature values can be changed with-
out affecting its prediction. They justify a prediction by providing a
set of “even if” arguments (semi-factual explanations), and they indi-
cate which features affect a prediction and whether pointwise biases or
implausibilities exist. A concrete use case shows that this is valuable for
both machine learning modelers and persons subject to a decision. We
formalize the search for IRDs as an optimization problem and introduce
a unifying framework for computing IRDs that covers desiderata, initial-
ization techniques, and a post-processing method. We show how existing
hyperbox methods can be adapted to fit into this unified framework. A
benchmark study compares the methods based on several quality mea-
sures and identifies two strategies to improve IRDs.

Keywords: Interpretability · Semi-factual explanations · Hyperboxes

1 Introduction

Supervised machine learning (ML) models are widely used due to their good
predictive performance, but they are often difficult to interpret due to their com-
plexity. Post-hoc interpretation methods from the field of interpretable machine
learning (IML) can help to draw conclusions about the inner processes of these
models: local methods explain individual predictions and global methods explain
the expected behavior of the model in general. Doshi-Velez and Kim [3] define
model interpretability as “the ability to explain or to present in understandable
terms to a human”. A topological form that satisfies this notion of interpretabil-
ity is a hyperbox. In this work, we investigate hyperboxes as local interpretations
that describe how the feature values of an observation can be changed without
affecting its prediction. We call these boxes interpretable regional descriptors
(IRDs). IRDs describe feature spaces by intervals for real-valued features and
subsets of possible classes for categorical features (see Table 1).

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
D. Koutra et al. (Eds.): ECML PKDD 2023, LNAI 14171, pp. 479–495, 2023.
https://doi.org/10.1007/978-3-031-43418-1_29

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-43418-1_29&domain=pdf
http://orcid.org/0000-0003-4324-4163
http://orcid.org/0000-0001-5324-5966
http://orcid.org/0000-0001-6002-6980
http://orcid.org/0000-0002-1471-6582
https://doi.org/10.1007/978-3-031-43418-1_29

480 S. Dandl et al.

Table 1. Credit dataset [4,10] example with 9 features, showing the values of a cus-
tomer with a moderate risk prediction. The IRD (generated by MaxBox & post-
processing (Sect. 4)) shows how all features could be changed simultaneously so that
the credit is still of moderate risk. B̄ shows how a single feature could be changed
(keeping the other features fixed, see Sect. 4.1). For features in the upper half, the IRD
covers the full observed value range (training data).

Feature Customer IRD B̄ (1-dim IRD) Range

sex female {female, male} {female, male} {female, male}
saving.accounts little {little, moderate

rich}
{little, moderate,
rich}

{little, moderate,
rich}

purpose car {car, radio/TV,
furniture, others}

{car, radio/TV,
furniture, others}

{car, radio/TV,
furniture, others}

age 22 [19, 22] [19, 75] [19, 75]

job skilled {skilled, highly
skilled}

{unskilled,
skilled, highly
skilled}

{unskilled,
skilled, highly
skilled}

housing rent {rent} {own, free, rent} {own, free, rent}
checking.account moderate {little, moderate} {little, moderate} {little, moderate,

rich}
credit.amount 4000 [4000, 5389] [2127, 8424] [276, 18424]

duration 30 [26, 33] [6, 44] [6, 72]

1.1 Motivating Example for the Use of IRDs

A customer applies for a credit of e4000 at a bank to buy a new car. She is
22 years old, skilled, lives in a rented accommodation, has few savings and a
moderate balance on her checking account. An ML model predicts whether the
credit is of low, moderate or high risk. Due to a moderate risk prediction, the
bank rejects the application. The IRD in Table 1 answers the question “to what
extent the feature or multiple features can be changed such that the prediction is
still in the moderate risk class”. From an IRD, multiple insights can be obtained.

First, IRDs offer a set of semi-factual explanations (SFEs) – also called a
fortiori arguments – to justify a decision in the form of “even if” statements
[23]. Compared to counterfactual explanations [31], SFEs reveal how feature
values can be changed without affecting the prediction. For these statements to
be convincing, domain knowledge is required, e.g., that higher balances in the
savings account, and that higher skilled jobs decrease the risk for a bank. Given
such knowledge, a multitude of SFEs can be derived from the IRD of Table 1
that (1) justify that a person is in the moderate risk class instead of the low risk
class (e.g., “even if you had moderate savings and become highly skilled, your
credit is still of moderate risk”)1, and that (2) justify that a person is not in the
high risk class (“even if you only have little balance in your checking account,
1 In contrast, a counterfactual would be “if you had rich savings and become highly

skilled, your credit would be a low risk”. Such statements are not covered by IRDs.

Interpretable Regional Descriptors 481

your credit would still be of moderate risk”). The latter represents a “safety
bound” if some of the features change towards the undesired, higher risk class
in the future.

Second, the interval width or cardinality of a feature in an IRD relative
to its entire feature space can indicate whether a feature affects a prediction
locally (under Theorems 1 and 2). For example, compared to credit amount or
duration, savings or purpose seem to have no local effect on the prediction since
the regional descriptor encompasses their entire observed feature ranges. These
insights also reveal what can be options to change a given prediction.2

Third, IRDs are tools for model auditing. If the insights from a box (e.g., an
SFE) agree with domain knowledge, users have more trust in the model, while
disagreement helps to reveal unintended pointwise biases or implausibilities of a
model. For example, an IRD that does not cover male customers might indicate
that the model classifies individuals differently based on gender.3 An IRD that
covers a credit amount of e300 and high balances in the checking account could
indicate an inaccurate model because such customers should pose only a low risk
to the bank. Other practical examples of IRDs shows Appendix A.4

1.2 Contributions

Our contributions are: 1) We introduce IRDs as a new class of local interpreta-
tions to describe regions in the feature space that do not affect the prediction
of an observation; 2) We formalize the search for IRDs as an optimization prob-
lem and develop desired properties of IRD methods; 3) We introduce a unify-
ing framework for computing IRDs including initialization and post-processing
methods; 4) We show how existing hyperbox methods from data mining or IML
can be adapted to fit into our unified framework; 5) We present a set of quality
measures and compare our derived methods accordingly in a benchmark study;
6) We provide an open-access repository with an R package for the implemented
approaches and the code for replicating the benchmark study.5

2 Methodology

Let f̂ : X → R be the prediction function of an ML model with X = X1×. . .×Xp

as a p dimensional feature space. For classification models, we consider a pre-
defined class of interest for which f̂ returns the predicted score or probability.

2.1 Formalizing the General Task for IRDs

Our goal is to find the largest hyperbox B covering a point of interest x′ ∈ X
where all data points in B have a sufficiently close prediction to f̂(x′). The
2 However, the concrete strategies can only reveal counterfactual explanations [31].
3 Note that if all genders are part of the box, it does not mean the model is fair.
4 https://github.com/slds-lmu/supplementary 2023 ird/blob/main/appendix.
5 https://github.com/slds-lmu/supplementary 2023 ird.

https://github.com/slds-lmu/supplementary_2023_ird/blob/main/appendix
https://github.com/slds-lmu/supplementary_2023_ird

482 S. Dandl et al.

hyperbox B should have p dimensions B = B1 × ... × Bp

with Bj =
{{c|c ∈ Xj} categorical Xj

[lj , uj] ⊆ Xj numeric Xj
,

consisting of intervals for numeric features and a subset of possible classes for cat-
egorical features. Xj reflects the value space of the jth feature Xj . In accordance
with Lemhadri et al. [22], a prediction is sufficiently close if it falls into a closeness
region, which is a user-defined prediction interval Y ′ = [f̂(x′) − εL, f̂(x′) + εH]
with εL, εH ∈ R≥0.6 In the bank lending example, the closeness region should
cover all model predictions that lead to the moderate risk class, e.g., a predicted
probability of 30–60 % of defaulting, i.e., Y ′ = [0.3, 0.6]. To operationalize the
above goal, we need three measures [25,28]:

1. coverage(B) = P(x ∈ B|x ∈ X), which measures how much a hyperbox covers
the entire feature space. Since, in practice, not all x ∈ X are observable, we
use an empirical approximation given data (xi)1≤i≤n with xi ∈ X

̂coverage(B) =
1
n

n∑
i=1

I(xi ∈ B). (1)

2. precision(B) = P(f̂(x) ∈ Y ′|x ∈ B), the fraction of points within a box B
whose predictions are inside Y ′. Again, we use an empirical approximation

̂precision(B) =
∑n

i=1 I(xi ∈ B ∧ f̂(xi) ∈ Y ′)∑n
i=1 I(xi ∈ B)

. (2)

3. an indicator of whether B covers x′

locality(B) = I(x′ ∈ B). (3)

The following operationalizes the search for an IRD [25]:7

arg max
B⊆X

(̂coverage(B))

s.t. ̂precision(B) = 1 and locality(B) = 1.
(4)

Definition 1. A box is maximal if and only if no box could be added under full
precision, such that for all numeric Xj, it holds that (� xj ∈ Xj ∧ xj < lj :
precision(B ∪ [xj , lj]) = 1) ∧ (� xj ∈ Xj ∧ xj > uj : precision(B ∪ [uj , xj]) = 1),
and for all categorical Xj, it holds that (� xj ∈ Xj \ Bj : precision(B ∪ xj) = 1).

6 For classification models, Y ′ ⊂ [0, 1] must hold.
7 For this, we extended the optimization task of Ribeiro et al. [25] to target IRDs by

aiming for a precision of 1 and by including the locality constraint.

Interpretable Regional Descriptors 483

A box B with maximum coverage satisfies this maximality property. We aim for
a maximal B, since B can then detect features that are not locally relevant for
a prediction f̂(x′). We prove the following in Appendix B.

Theorem 1. If B is maximal, Bj = [min(Xj),max(Xj)] holds for numeric
features Xj and Bj = Xj for categorical Xj that are not involved in model f̂ .

Similarly, we aim for homogeneous boxes B such that precision(B) = 1. Then,
B can detect features that are locally relevant for f̂(x′). We prove the following
in Appendix C.

Theorem 2. If precision(B) = 1, Bj ⊂ Xj holds for a feature that is locally
relevant for f̂(x′).

2.2 Desiderata for IRDs

In Sect. 3, we discuss related methods to generate B. The suitability of these
methods as IRD methods relies on whether they consider all objectives of Eq. (4)
and whether they satisfy the following desired properties for IRDs.

Interpretability. In order for B to be interpretable, we only consider methods
that return a single p-dimensional hyperbox. The hyperrectangular structure of
B allows for a natural interpretation, which is not the case for hyperellipsoids
or polytopes formed by halfspaces [22]. According to Eq. (4), B needs to cover
x′, which is the case if the following holds: ∀j ∈ {1, ..., p} : x′

j ∈ Bj .

Model-agnosticism. The definition of f̂ does not pose any restrictions on the
ML model or the feature space. Therefore, methods should be model-agnostic
such that they could explain both regression or classification models with various
feature types (binary, nominal, ordinal or continuous).

Sparsity Constraints. Eckstein et al. [5] proved that the optimization task for
the maximum box problem is NP-hard if the features defining the box are not
fixed. This also applies to the search for IRDs, which only additionally requires
x′ ∈ B. Since the search space for hyperboxes grows with the number of features,
it is infeasible to consider all potential solutions. Furthermore, the fact that IRDs
have as many dimensions as the dataset impedes their interpretability – the very
goal of IRDs in the first place. To reduce the number of features, methods should
be able to adhere to user-defined sparsity constraints such that for some features
Xj , Bj = x′

j . Section 7 discusses other solutions.

3 Related Work

The optimization task of Eq. (4) can be understood mathematically as finding
the preimage of prediction values ∈ Y ′ in the neighborhood of x′. Therefore,
IRDs can be seen as a subset of a level set for function values ∈ Y ′. Level set

484 S. Dandl et al.

approximations often consist of points [7], and only a few approaches approx-
imate these via hyperboxes [32,33] (or other geometric forms). These methods
produce multiple boxes instead of one and do not require to contain x′. Hence,
they are not interpretable in our sense and, therefore, not useful to produce
IRDs.

In data mining, Eckstein et al. [5] proposed a maximum box (MaxBox) app-
roach for datasets with binary outcomes to find the largest homogeneous hyper-
box w.r.t. the positive class. Friedman and Fisher [11] derived the patient rule
induction method (PRIM) for seeking boxes in the feature space in which the
outcome mean is high. Both approaches do not require x′ to be in the box.

Table 2. Overview of approaches that search for hyperboxes in feature spaces.

Objectives Desiderata

Coverage Precision Locality Interpretable Agnostic Sparse

Level set methods

PBnB [32,33]
√ √ × × √ ×

Data mining

MaxBox [5]
√ √ × √ × ×

PRIM [11] × × × √ × ×
Post-hoc IML

Anchors [25]
√ √ √ √ × ×

MAIRE [28]
√ √ √ √ × ×

LORE [14–16] × × √ √ √ ×
Interpretable classifier

Column generation [1]
√ √ × × √ ×

As described earlier, IRDs may also be seen as a method to summarize a
multitude of SFEs. Most proposed methods for SFEs return only a single point
as an explanation [2,17,23]. In contrast, LORE by Guidotti et al. [14–16] returns
a set of SFEs using surrogate trees. Their approach reveals which feature values
are most important for deriving a prediction by following the path to the point of
interest. The reliability of such a surrogate tree depends on the assumption that
the tree can adequately replicate the underlying model, which may not always be
the case [27]. Furthermore, LORE does not directly target Eq. (4) because the
level of precision cannot be set [16] and homogeneous boxes are only possible
with overfitting/deep-grown trees. This limits its coverage (the box could be
larger than the terminal node (Figure S. 5 in the Appendix)) and makes this
approach computationally expensive [6,8]. Therefore, the tree structure is more
suitable for deriving SFEs when the underlying model is tree-based [9,29].

An IML method that utilizes hyperboxes is the Anchors approach [25]. The
returned hyperbox indicates how features must be fixed or anchored to prevent
a model from changing the classification of a data point. Anchors were originally

Interpretable Regional Descriptors 485

proposed to aim for hyperboxes that also partly cover observations of other
classes; a precision of 0.95 is the default in its implementation [26]. Although
the precision can be changed to 1, Anchors are nevertheless not suitable for the
generation of IRDs due to their limited search space: Either the box boundary
of a feature is set to the full feature range observed in the data, or to the value
of x. This bears the risk of “overly specific anchors” with low coverage [25].
For larger coverage, features can be binned beforehand. However, no established
discretization technique for Anchors exists so far and the optimization procedure
underlying Anchors does not allow adaptions of the bins during optimization.

To overcome the discretization problem, Sharma et al. [28] proposed the
model-agnostic interpretable rule extraction (MAIRE) procedure. MAIRE finds
more optimal boundaries for continuous features via gradient-based optimiza-
tion. It still does not allow a more precise choice for categorical features; either
the box allows no changes to a feature or it covers all possible values of a feature.

Equation (4) also overlaps with the problem of deriving interpretable (surro-
gate) models using a combination of rules [12] or hyperboxes [18] that cover the
whole feature space (e.g., via column generation [1]). As such, the methods do
not focus on locality and are not interpretable in our sense.

Table 2 summarizes whether the addressed methods are suitable for gen-
erating IRDs. Overall, none of the methods satisfies all objectives of Eq. (4)
and desiderata from Sect. 2.2. Specifically, none of them addresses sparsity con-
straints, and only a few are model-agnostic. In Sect. 4.4, we modify MaxBox,
PRIM, and MAIRE such that they fulfill all of our requirements to transform
them into useful IRD methods. All other methods cannot be modified to the
required extent due to their underlying, irreplaceable optimization methods that
do not directly target Eq. (4) (LORE), target multiple boxes (PBnB) or have a
very limited search space. The latter applies in particular to Anchors. However,
the method serves as a baseline method for our benchmark study in Sect. 6.

4 Generating IRDs

We now present a unifying framework for generating IRDs, which consists of
four steps: restriction, selection, initialization, and optimization. Optionally, a
post-processing step can be conducted (Sect. 4.5).

4.1 Restriction of the Search Space

To restrict the initial search space for B, we propose a simple procedure to
find the largest local box B̄ of x′ such that B ⊆ B̄. For a continuous feature
Xj , we vary its value x′

j of x′ on an equidistant grid. Upper and lower bounds
of B̄j are set to the minimal changes in x′

j , yielding a prediction outside Y ′.
This approach is similar to individual conditional expectation (ICE) values [13].
For a categorical feature Xj , B̄j comprises all classes of Xj that still lead to a
prediction ∈ Y ′ after adapting x′

j of x′. If a user sets the sparsity constraint
that feature Xj is immutable, B̄j = x′

j must hold. We prove the following in
Appendix D.

486 S. Dandl et al.

Theorem 3. For any box B that solves the optimization problem of Eq. (4) it
holds that B ⊆ B̄.

4.2 Selection of the Underlying Dataset

All methods need a dataset X̄ consisting of x ∈ X as an input. This dataset is
used for evaluating (competing) boxes w.r.t. the empirical versions of coverage
and precision (Eq. (1) and Eq. (2)). For some methods, the dataset also offers
a set of potential box boundaries to be evaluated. A suitable dataset is the
training data. Since only instances ∈ B̄ are relevant (Theorem 3), we remove all
instances 	∈ B̄ from X̄. Consequently, xj = x′

j ∀x ∈ X̄ holds for all immutable
features Xj . More features and sparsity constraints increase the risk that X̄
is only sparsely populated around x′. Furthermore, training data may not be
readily available. Since we aim for IRDs that are faithful to the model and
not to the data-generating process (DGP), data can be artificially generated
by uniformly sampling from the admissible feature ranges of B̄. In Sect. 6, we
inspect how double-in-size sampled data8 within B̄ affects the quality of IRDs
and IRD methods compared to using training data.

4.3 Initialization of a Box

All methods require an initial box B as an input, which is either set to the largest
local box B̄ covering all X̄ or the smallest box possible, which only contains
x′. We define methods that start with the largest local box as top-down IRD
methods, and methods that start with the smallest box possible as bottom-up
methods.

4.4 Optimization of Box Boundaries

The last step comprises the optimization of the box boundaries. Top-down meth-
ods iteratively shrink the box boundaries of the largest local box to improve the
box’s precision (upholding that x′ ∈ B), while bottom-up methods iteratively
enlarge the box boundaries of the smallest box to improve the box’s coverage
(upholding the precision at 1). In this section, we describe the MaxBox, MAIRE,
and PRIM approaches and our extensions such that the methods optimize Eq. (4)
and fulfill the desiderata of Sect. 2.2. Pseudocodes and illustrations of the inner
workings of the extended approaches are given in Appendix E. All methods
receive as input a dataset X̄ and an initial box B.

MaxBox – Top-down Method. MaxBox was originally proposed for binary clas-
sification problems – with a positive and negative class. The method starts with
the largest box covering all data. A branch and bound (BnB) algorithm [21]
inspects the options to shrink the box to optimize its precision w.r.t. the posi-
tive class. The branching rule creates new boxes by bracketing out a sample x of
8 Double-in-size refers to the size of the training data, not of X̄.

Interpretable Regional Descriptors 487

the negative class, such that the box is shrunk to be either below or above the
values of x in at least one feature dimension (categorical features are one-hot
encoded). Estimates of the upper bound for the coverage of a box determine
which imprecise box is branched next, which sample is used for branching, and
which boxes are discarded because their upper bound does not exceed the cov-
erage of the current largest homogeneous box. If no boxes to shrink are left, the
largest homogeneous box is returned as an IRD.
Extensions. By labeling observations with predictions ∈ Y ′ as positive, the app-
roach becomes model-agnostic. Since the original algorithm does not consider
whether corresponding boxes still include x′, we adapted the approach to dis-
card boxes that do not contain x′ to guarantee locality.

PRIM – Top-down Method. The method originally aims for boxes with a high
average outcome. The procedure starts with a box that includes all points. In
the peeling phase, PRIM iteratively identifies a set of eligible subboxes (defined
by the α- and (1-α)-quantile for numeric features and each present category for
categorical features) and peels off the subbox that results in the highest average
outcome after exclusion. This step is repeated until the number of points included
in the box drops below a fraction of the total number of points. In the pasting
phase, the box is iteratively enlarged by adding the subbox that increases the
outcome mean the most. These subboxes consist of at least α observations with
the nearest lower or higher values in one dimension (numeric Xj) or with a new
category (categorical Xj).
Extensions. We adapted the approach to target Eq. (4): in each peeling itera-
tion, the subbox is excluded such that the resulting box has the highest precision
(coverage acts as a tiebreaker), and in each pasting iteration, the largest homoge-
neous subbox is added. If the precision and coverage are not sufficient to select a
best box for peeling or pasting, a subbox is randomly selected from the best ones.
Peeling stops as soon as the resulting box is homogeneous, while pasting stops
as soon as there exists no homogeneous box to add. Furthermore, only subboxes
that do not cover x′ are peeled. According to the authors’ recommendation, we
use α = 0.05 for the benchmark study (Sect. 6).

MAIRE – Bottom-up Method. The method starts with a box covering x′. In
each iteration, the box boundaries are adapted via ADAM [19] by optimizing
a differentiable approximation of the coverage measure. If the precision falls
below a certain threshold or x′ is not part of the box, the method additionally
optimizes a differentiable version of Eq. (2) and Eq. (3), respectively. MAIRE
stops after a specified number of iterations. In the end, the method returns the
largest homogeneous box over the iterations.
Extensions. The method requires 0–1-scaled features. To overcome the one-vs-all
issue for categorical features (Sect. 3), we one-hot-encode categorical features. We
implemented a convergence criterion for a fair comparison with the other (conver-
gent) approaches: we let MAIRE enlarge the box boundaries until the precision
falls below 1, then MAIRE is only allowed to run for another 100 iterations. The

488 S. Dandl et al.

implementation for the experiments in Sect. 6 is based on the authors’ imple-
mentation [28] with the discussed modifications. The hyperparameters were set
according to the authors’ recommendations. We only set the precision threshold
to 1, rather than 0.95.

4.5 Post-processing

All methods described in the previous section determine box boundaries based
on a finite number of data points in X̄. The limited access carries the risk
that some regions of the feature space are not represented in X̄ and that the
boundaries of a generated B are suboptimal: There could be areas in B that
have predictions /∈ Y ′, or there could be adjacent areas outside of B that also
have predictions ∈ Y ′. To improve the box boundaries of a given box B, we
developed the following post-processing method using newly sampled data. The
procedure consists of peeling and pasting as PRIM.

First, the precision of B is measured based on newly sampled data. If ∃x ∈ B
with f̂(x) /∈ Y ′, subboxes with the lowest precision in proportion to their size
(according to newly sampled data within this subbox) are iteratively peeled. If all
subboxes to peel are homogeneous, peeling stops. In the subsequent pasting step,
the largest subboxes that proved to be homogeneous (according to newly sam-
pled data within this subbox) are added. If the best box cannot be determined
(because several boxes have the same precision and coverage), a subbox is ran-
domly chosen. The method has three hyperparameters: the number of samples
used for evaluation, the relative box size (in relation to the size of Xj) for peeling
or pasting boxes for continuous features, and a threshold for the minimum box
size. The latter acts as a stopping criterion for pasting. If no homogeneous sub-
box can be added, the relative box size to add for continuous features is halved
as long as the relative box size is not lower than the threshold. The pseudocode
of our method displays Appendix F.

Section 6 investigates whether our post-processing method improves IRDs.
For the experiments, we set the number of samples to evaluate boxes to 100, the
relative box size to 0.1, and the threshold for the minimum box size to 0.05.

5 Quality Measures

We now present a set of quality measures for generated IRDs and IRD methods.
These measures apply to a single instance x′ to be explained, where B is the
returned IRD of x′ of an IRD method G. The assessment requires evaluation
data E consisting of x ∈ X ; for the benchmark study in Sect. 6, we use training
data and new data uniformly sampled from B̄. Training data helps to assess
whether the methods use the training data appropriately during IRD generation
(e.g., precision should be 1), while a proliferated number of newly generated data
∈ B̄ leads to a more precise evaluation w.r.t. the model, not the DGP.

Locality. The IRD should cover x′. This property is fulfilled if locality(B) =
I(x′ ∈ B) equals 1.

Interpretable Regional Descriptors 489

Coverage. Given two IRDs with equal precision, we prefer the one with higher
coverage (Eq. (1)). To evaluate the coverage, we use samples x ∈ E from the
connected convex level set L covering x′.

Definition 2. A data point x with f̂(x) ∈ Y ′ is part of L of x′ iff there exists a
path between x and x′ for which all intermediate points have a prediction ∈ Y ′.

Paths are identified via the identification algorithm of Kuratomi et al. [20],
details are given in Appendix G.

Precision. Given two IRDs with equal coverage, the IRD with higher precision
is preferred (Eq. (2)).

Maximality. A box should be maximal (Definition 1) based on x ∈ E.

No. of Calls. Lower number of calls to f̂ of an IRD method are preferred.9

Robustness. If we rerun method G on the same x′ and f̂ R times using the same
X̄, the produced IRDs B1, ..., BR should overlap with the originally produced
B, such that robustness(G) = min

k∈{1,...,R}

∑
x∈E I(x∈B∩Bk)∑
x∈E I(x∈B∪Bk)

has a high value.

6 Performance Evaluation

In a benchmark study, we address the following research questions (RQs):

1. How do MaxBox, MAIRE and PRIM perform against each other w.r.t. the
quality measures of Sect. 5 (training data as X̄, no post-processing)?

2. What effect do double-in-size sampled data originating from B̄ have on the
quality compared to using training data?

3. What effect does the post-processing (Sect. 4.5) have on the quality?

As a baseline method, we use the Anchors approach [25] with a precision of 1
and 20-quantile-based bins for numeric features (see Sect. 3 for details).

6.1 Setup

To answer the RQs, we utilize six datasets from the OpenML platform [30],
either with a binary, multi-class or continuous target variable. Table 3 summa-
rizes the datasets’ dimensions, target and feature types. For each dataset, five
data points were randomly sampled to be x′.10 On each of the datasets, four
models were trained: a hyperbox model, a logistic regression/multinomial/linear
9 We prefer this measure over computation time because it is independent of the

concrete implementation. We have made our best efforts to implement the methods
efficiently, but there is usually room for improvement.

10 These data points can also be excluded from the data before training a model.
However, our experiments showed the results for the RQs are almost the same.

490 S. Dandl et al.

model (depending on the outcome), a neural network with one hidden layer,
and a random forest model. The number of trees for the random forest and
the neurons on the hidden layer were tuned (details are given in Appendix H).
The hyperbox model is derived from a classification and regression tree (CART)
model for each x′ individually. For a given x′, the post-processed model predicts
1 if a point falls in the same terminal node as x′ and 0 otherwise.11

Table 3. Overview of benchmark datasets.

Name OpenML ID Target type Rows Continuous Categorical

diabetes 37 binary 768 8 0

tic tac toe 50 binary 958 0 9

cmc 23 three-class 1473 2 7

vehicle 54 four-class 846 18 0

no2 886 regression 500 7 0

plasma retinol 511 regression 315 10 3

Fig. 1. Comparison of methods w.r.t. coverage and precision. Addendum L means that
for the coverage evaluation only training or sampled points within L are considered.
Each point in the boxplot reflects one IRD. Methods were either run or evaluated on
training data or uniformly sampled data from B̄, and with or without post-processing.
Higher values are better.

For classification models, the prediction function returns the probability of
the class with the highest probability for x. For binary targets, we set Y ′ =
[0.5, 1]. For regression and multi-class targets, Y ′ is set to [f̂(x) − δ, f̂(x) + δ]

11 The true hyperbox of the CART model might be larger than the terminal node-
induced hyperbox (see Figure S. 5 in the Appendix).

Interpretable Regional Descriptors 491

with δ as the standard deviation of predictions f̂ of the training data. For multi-
class, the interval is additionally capped between 0 and 1. For each dataset,
model, and x′, we generate IRDs with MaxBox, PRIM, and MAIRE, as well as
Anchors – our baseline method. The hyperparameters of the methods were set
according to Sect. 4. The methods were either run on training or on uniformly
sampled data from B̄ (RQ 2), and either without or with post-processing (RQ
3). For the robustness evaluation, we repeated the experiments R = 5 times.

The methods and their generated IRDs were evaluated based on the perfor-
mance measures of Sect. 5 – either evaluated on the training data or 1000 new
instances sampled uniformly from B̄. We also compared the methods statistically
by conducting Wilcoxon rank-sum tests for the hypothesis that the distribution
of the coverage and precision values do not differ between two (IRD) methods
(RQ 1), for a method using training vs. sampled data (RQ 2), and for a method
without vs. with post-processing (RQ 3). The experiments were conducted on a
computer with a 2.60 GHz Intel(R) Xeon(R) processor, and 32 CPUs. Overall,
generating the boxes took 63 h spread over 20 CPUs. The five repetitions for the
robustness evaluation required another 316 h.

Table 4. Comparison of methods w.r.t. maximality and no. of calls to f̂ averaged
over all datasets, models and x′. Each method was run or evaluated on training data
or uniformly sampled data from B̄, and without (0) or with (1) post-processing. Higher
maximality and lower no. of calls are better.

Training data Sampled

Maxtraining Maxsampled No. calls to f̂ Maxtraining Maxsampled No. calls to f̂

0 1 0 1 0 1 0 1 0 1 0 1

MaxBox 0.60 0.42 0.06 0.41 184 55769 0.23 0.45 0.24 0.43 1621 37627

PRIM 0.42 0.37 0.18 0.39 184 46070 0.20 0.42 0.25 0.39 1621 42958

MAIRE 0.18 0.41 0.04 0.41 184 68126 0.06 0.41 0.11 0.35 1621 92976

Anchors 0.27 0.42 0.16 0.40 26402 94448 0.31 0.42 0.18 0.36 77818 129276

6.2 Results

Figure 1 compares the coverage and precision values of the methods visually.
Table 4 shows the frequency of fulfilling maximality and the number of calls to f̂
of the methods. The separate results for each dataset and model, the statistical
analysis, and the results of robustness are shown in Appendix I. We omitted the
results for the locality measure because all returned IRDs covered x′.
RQ 1 - Comparison of Methods. Without post-processing and training data as X̄
(first row, Fig. 1), MaxBox had the highest precision as evaluated on training and
newly sampled data. The IRDs of PRIM had on average the largest coverage,
but they also covered sampled data with predictions outside Y ′. Due to the
randomized choice of a subbox in the case of ties, PRIM is not robust according

492 S. Dandl et al.

to our robustness metric. None of the methods outperformed the other methods
w.r.t. maximality. By design, MAIRE’s optimizer disregards the constraints on
the search space (B̄), resulting in precisions below 1 on training data. Overall,
all methods outperformed the baseline method Anchors according to coverage
and precision. While all other methods called f̂ |X̄| times, Anchors evaluates
column-wise permutations of the observed data.
RQ 2 - Training vs. Sampled Data. On average, double-in-size sampled data
originating from B̄ led to slightly higher coverage, precision and maximality
rates w.r.t. newly sampled data but not w.r.t. the training data. Due to the
increase in the size of X̄, more calls to f̂ were necessary.12

RQ 3 - Without vs. With Post-processing Post-processing increased the coverage
and precision of IRDs for all methods. The difference in the quality of IRDs
between the methods and between the underlying data scheme (training data vs.
sampled data) diminished. Quality enhancement comes at the cost of efficiency
and robustness; on average, post-processing resulted in 57,000 additional calls
to f̂ and the sampling of new data decreased the robustness. MAIRE required
on average the most post-processing iterations, followed by Anchors.

7 Conclusion, Limitations and Outlook

Conclusion. We introduced IRDs that describe regions in the feature space that
do not affect the prediction of an instance in the form of hyperboxes. These
hyperboxes provide a set of semi-factual explanations to justify a prediction, and
indicate which features affect a prediction and whether there might be pointwise
biases or implausibilities. We formalized the search for IRDs, and introduced
desiderata, a unifying framework and quality measures for IRD methods. We
discussed three existing hyperbox methods in detail and adapted them to search
for IRDs. The lack of a method “ruling it all” in the benchmark study empha-
sizes the need for a unifying framework comprising multiple methods. The study
also revealed that a larger, uniformly sampled dataset and our post-processing
method can further enhance the quality of IRDs (at the cost of efficiency).

Limitations. Our work offers potential for further research, e.g., on the sensi-
tivity of the methods’ hyperparameters, on the influence of sampling sizes, on
the methods’ robustness w.r.t. slight changes in x′ or the underlying data, and
if the hyperbox-based explanations adhere to human reasoning (user studies).
While we only considered low-dimensional datasets in the benchmark study,
for high-dimensional datasets we proposed two strategies to restrict the search
space: either by letting users decide which features can be changed and which
cannot (Sect. 2.2), or by deriving the largest local box B ⊂ B̄ based on ICE
curves (Sect. 4.1). Further research can explore: (1) the use of other IML meth-
ods, such as feature importance methods, to select features for which changes
are investigated (all other features are set to their admissible value range); (2)
12 The size decuples instead of doubles compared to the training data, because not all

training data are ∈ B̄ and, thus, not in X̄.

Interpretable Regional Descriptors 493

the consideration of feature correlations or causal relations to generate IRDs,
which not only naturally restricts the search space but also makes the IRD
faithful to the DGP. While all presented methods are model-agnostic, we leave
investigations on image and text data to future research.

Outlook. We believe that our work can also be a starting point for investigations
on the application of IRDs in other fields, e.g., for hyperparameter (HP) tuning: if
a promising HP set for an ML model was identified by a tuning method, IRDs can
reveal its sensitivity and whether there are other equally good but more efficient
HP settings. IRDs might also identify high-fidelity regions for interpretable local
surrogate models, like LIME [24]. LIME approximates predictions of a black-
box model f̂(x) around an observation x′ using a (regularized) linear model
ĝ(x). Here, it might be useful to understand in which region B the linear model
approximates the black-box model (high-fidelity region); ĝ only provides valuable
insights in the region B around x′ where ∀x ∈ B : ĥ(x) := |f̂(x) − ĝ(x)| ≤ ε

for a user-defined ε > 0. With ĥ as the prediction model and Y ′ = [0, ε], IRD
methods might identify such high-fidelity regions B in an interpretable manner.

Acknowledgements. This work has been partially supported by the Federal Statis-
tical Office of Germany.

Ethical Statement. For this work, no personal data was collected or processed. Only

open source datasets were used for the illustrative example and the benchmark study.

Furthermore, our work does not aim at a possible use for policing or military.

References

1. Dash, S., Günlük, O., Wei, D.: Boolean decision rules via column generation. In:
Proceedings of the 32nd International Conference on Neural Information Process-
ing Systems, NIPS 2018, pp. 4660–4670. Curran Associates Inc., Red Hook, NY,
USA (2018)

2. Dhurandhar, A., et al.: Explanations based on the missing: towards contrastive
explanations with pertinent negatives. In: Proceedings of the 32nd International
Conference on Neural Information Processing Systems, NIPS 2018, pp. 590–601.
Curran Associates Inc., Red Hook, NY, USA (2018)

3. Doshi-Velez, F., Kim, B.: Towards a rigorous science of interpretable machine
learning. arXiv 1702.08608 v2, arXiv.org E-Print Archive (2017). 10.48550/arXiv.
1702.08608

4. Dua, D., Graff, C.: UCI machine learning repository (2017). www.archive.ics.uci.
edu/ml/datasets/statlog+(german+credit+data)

5. Eckstein, J., Hammer, P.L., Liu, Y., Nediak, M., Simeone, B.: The maximum box
problem and its application to data analysis. Comput. Optim. Appl. 23(3), 285–
298 (2002). https://doi.org/10.1023/a:1020546910706

6. El Shawi, R., Sherif, Y., Al-Mallah, M., Sakr, S.: Interpretability in healthcare: a
comparative study of local machine learning interpretability techniques. Comput.
Intell. 37(4), 1633–1650 (2021). https://doi.org/10.1111/coin.12410

http://arxiv.org/abs/org
www.archive.ics.uci.edu/ml/datasets/statlog+(german+credit+data)
www.archive.ics.uci.edu/ml/datasets/statlog+(german+credit+data)
https://doi.org/10.1023/a:1020546910706
https://doi.org/10.1111/coin.12410

494 S. Dandl et al.

7. Emmerich, M.T.M., Deutz, A.H., Kruisselbrink, J.W.: On quality indicators for
black-box level set approximation. In: Tantar, E., et al. (eds.) EVOLVE- A Bridge
between Probability, Set Oriented Numerics and Evolutionary Computation, pp.
157–185. Springer, Berlin (2013). https://doi.org/10.1007/978-3-642-32726-1 4

8. Fan, M., Wei, W., Xie, X., Liu, Y., Guan, X., Liu, T.: Can we trust your explana-
tions? Sanity checks for interpreters in android malware analysis. IEEE Tran. Inf.
Forensics Secur. 16, 838–853 (2021). https://doi.org/10.1109/TIFS.2020.3021924

9. Fernandez, G., Aledo, J.A., Gamez, J.A., Puerta, J.M.: Factual and counterfactual
explanations in fuzzy classification trees. IEEE Trans. Fuzzy Syst. 30(12), 5484–
5495 (2022). https://doi.org/10.1109/tfuzz.2022.3179582

10. Ferreira, L.: German credit risk (2018). www.kaggle.com/datasets/kabure/german-
credit-data-with-risk. Accessed 23 Jan 2023

11. Friedman, J.H., Fisher, N.I.: Bump hunting in high-dimensional data. Stat. Com-
put. 9(2), 123–143 (1999). https://doi.org/10.1023/A:1008894516817

12. Fürnkranz, J., Kliegr, T.: A brief overview of rule learning. In: Bassiliades, N., Got-
tlob, G., Sadri, F., Paschke, A., Roman, D. (eds.) RuleML 2015. LNCS, vol. 9202,
pp. 54–69. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-21542-6 4

13. Goldstein, A., Kapelner, A., Bleich, J., Pitkin, E.: Peeking inside the black box:
Visualizing statistical learning with plots of individual conditional expectation.
J. Comput. Graph. Stat. 24(1), 44–65 (2015). https://doi.org/10.1080/10618600.
2014.907095

14. Guidotti, R., Monreale, A., Giannotti, F., Pedreschi, D., Ruggieri, S., Turini,
F.: Factual and counterfactual explanations for black box decision making. IEEE
Intell. Syst. 34(6), 14–23 (2019). https://doi.org/10.1109/MIS.2019.2957223

15. Guidotti, R., Monreale, A., Ruggieri, S., Naretto, F., Turini, F., Pedreschi, D.,
Giannotti, F.: Stable and actionable explanations of black-box models through
factual and counterfactual rules. Data Min. Knowl. Disc. (2022). https://doi.org/
10.1007/s10618-022-00878-5

16. Guidotti, R., Monreale, A., Ruggieri, S., Pedreschi, D., Turini, F., Giannotti, F.:
Local rule-based explanations of black box decision systems. arXiv 1805.10820,
arXiv.org E-Print Archive (2018). 10.48550/arXiv. 1805.10820

17. Kenny, E.M., Keane, M.T.: On generating plausible counterfactual and semi-
factual explanations for deep learning. Proc. AAAI Conf. Artif. Intell. 35(13),
11575–11585 (2021). https://doi.org/10.1609/aaai.v35i13.17377

18. Khuat, T.T., Ruta, D., Gabrys, B.: Hyperbox-based machine learning algorithms:
a comprehensive survey. Soft Comput. 25(2), 1325–1363 (2020). https://doi.org/
10.1007/s00500-020-05226-7

19. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv 1412.6980
v9, arXiv.org E-Print Archive (2017). 10.48550/arXiv. 1412.6980

20. Kuratomi, A., Miliou, I., Lee, Z., Lindgren, T., Papapetrou, P.: JUICE: JUstI-
fied counterfactual explanations. In: Pascal, P., Ienco, D. (eds.) Discovery Science.
pp. 493–508. LNCS, Springer, Cham (2022). https://doi.org/10.1007/978-3-031-
18840-4 35

21. Land, A.H., Doig, A.G.: An automatic method of solving discrete programming
problems. Econometrica 28(3), 497–520 (1960). https://doi.org/10.2307/1910129

22. Lemhadri, I., Li, H.H., Hastie, T.: RbX: region-based explanations of
prediction models. arXiv 2210.08721, arXiv.org E-Print Archive (2022).
10.48550/arXiv.2210.08721

23. Nugent, C., Doyle, D., Cunningham, P.: Gaining insight through case-based expla-
nation. J. Intell. Inf. Syst. 32(3), 267–295 (2009). https://doi.org/10.1007/s10844-
008-0069-0

https://doi.org/10.1007/978-3-642-32726-1_4
https://doi.org/10.1109/TIFS.2020.3021924
https://doi.org/10.1109/tfuzz.2022.3179582
www.kaggle.com/datasets/kabure/german-credit-data-with-risk
www.kaggle.com/datasets/kabure/german-credit-data-with-risk
https://doi.org/10.1023/A:1008894516817
https://doi.org/10.1007/978-3-319-21542-6_4
https://doi.org/10.1080/10618600.2014.907095
https://doi.org/10.1080/10618600.2014.907095
https://doi.org/10.1109/MIS.2019.2957223
https://doi.org/10.1007/s10618-022-00878-5
https://doi.org/10.1007/s10618-022-00878-5
http://arxiv.org/abs/org
https://doi.org/10.1609/aaai.v35i13.17377
https://doi.org/10.1007/s00500-020-05226-7
https://doi.org/10.1007/s00500-020-05226-7
http://arxiv.org/abs/org
https://doi.org/10.1007/978-3-031-18840-4_35
https://doi.org/10.1007/978-3-031-18840-4_35
https://doi.org/10.2307/1910129
http://arxiv.org/abs/org
https://doi.org/10.1007/s10844-008-0069-0
https://doi.org/10.1007/s10844-008-0069-0

Interpretable Regional Descriptors 495

24. Ribeiro, M.T., Singh, S., Guestrin, C.: Why should I trust you? Explaining the pre-
dictions of any classifier. In: Proceedings of the 22nd ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, pp. 1135–1144 (2016)

25. Ribeiro, M.T., Singh, S., Guestrin, C.: Anchors: High-precision model-agnostic
explanations. In: Proceedings of the AAAI Conference on Artificial Intelligence,
vol. 32, no. 1 (2018). https://doi.org/10.1609/aaai.v32i1.11491

26. Ribeiro, M.T., Singh, S., Guestrin, C.: Anchor. Github
repository. www.github.com/marcotcr/anchor (2022), Commit:
b1f5e6ca37428613723597e85c38558e8cd21c2e

27. Schwartzenberg, C., van Engers, T.M., Li, Y.: The fidelity of global surrogates in
interpretable machine learning. BNAIC/BeneLearn 2020 (2020)

28. Sharma, R., Reddy, N., Kamakshi, V., Krishnan, N.C., Jain, S.: MAIRE - a
model-agnostic interpretable rule extraction procedure for explaining classifiers.
In: Holzinger, A., Kieseberg, P., Tjoa, A.M., Weippl, E. (eds.) CD-MAKE 2021.
LNCS, vol. 12844, pp. 329–349. Springer, Cham (2021). https://doi.org/10.1007/
978-3-030-84060-0 21

29. Stepin, I., Alonso, J.M., Catala, A., Pereira-Fariña, M.: Generation and evalua-
tion of factual and counterfactual explanations for decision trees and fuzzy rule-
based classifiers. In: 2020 IEEE International Conference on Fuzzy Systems (FUZZ-
IEEE), pp. 1–8. IEEE, Glasgow, United Kingdom (2020). https://doi.org/10.1109/
FUZZ48607.2020.9177629

30. Vanschoren, J., van Rijn, J.N., Bischl, B., Torgo, L.: OpenML: networked science
in machine learning. SIGKDD Explor. Newsl. 15(2), 49–60 (2014). https://doi.
org/10.1145/2641190.2641198

31. Wachter, S., Mittelstadt, B., Russell, C.: Counterfactual explanations without
opening the black box: automated decisions and the GDPR. Harvard J. Law Tech-
nol. 31(2), 841–887 (2018)

32. Zabinsky, Z.B., Huang, H.: A partition-based optimization approach for level set
approximation: probabilistic branch and bound. In: Smith, A.E. (ed.) Women in
Industrial and Systems Engineering. WES, pp. 113–155. Springer, Cham (2020).
https://doi.org/10.1007/978-3-030-11866-2 6

33. Zabinsky, Z.B., Wang, W., Prasetio, Y., Ghate, A., Yen, J.W.: Adaptive proba-
bilistic branch and bound for level set approximation. In: Proceedings of the 2011
Winter Simulation Conference (WSC), pp. 4146–4157. IEEE, Phoenix, AZ, USA
(2011). https://doi.org/10.1109/WSC.2011.6148103

https://doi.org/10.1609/aaai.v32i1.11491
www.github.com/marcotcr/anchor
https://doi.org/10.1007/978-3-030-84060-0_21
https://doi.org/10.1007/978-3-030-84060-0_21
https://doi.org/10.1109/FUZZ48607.2020.9177629
https://doi.org/10.1109/FUZZ48607.2020.9177629
https://doi.org/10.1145/2641190.2641198
https://doi.org/10.1145/2641190.2641198
https://doi.org/10.1007/978-3-030-11866-2_6
https://doi.org/10.1109/WSC.2011.6148103

TIGTEC: Token Importance Guided
TExt Counterfactuals

Milan Bhan1,2(B), Jean-Noël Vittaut2, Nicolas Chesneau1,
and Marie-Jeanne Lesot2

1 Ekimetrics, Paris, France
milan.bhan@ekimetrics.com

2 Sorbonne Université, CNRS, LIP6, Paris 75005, France

Abstract. Counterfactual examples explain a prediction by highlight-
ing changes in an instance that flip the outcome of a classifier. This
paper proposes TIGTEC, an efficient and modular method for generat-
ing sparse, plausible and diverse counterfactual explanations for textual
data. TIGTEC is a text editing heuristic that targets and modifies words
with high contribution using local feature importance. A new attention-
based local feature importance is proposed. Counterfactual candidates
are generated and assessed with a cost function integrating a semantic
distance, while the solution space is efficiently explored in a beam search
fashion. The conducted experiments show the relevance of TIGTEC in
terms of success rate, sparsity, diversity and plausibility. This method
can be used in both model-specific or model-agnostic way, which makes
it very convenient for generating counterfactual explanations.

Keywords: XAI · NLP · Counterfactual examples · Local Feature
Importance · Attention

1 Introduction

The high level of performance in the field of natural language processing (NLP)
achieved by Transformer models [30] comes along with complex architectures.
The domain of eXplainable Artificial Intelligence (XAI) aims at understanding
and interpreting the predictions made by such complex systems [18]. Among the
main categories of XAI methods to explain the prediction of a given instance,
local feature importance [3] quantifies the impact of each feature on the con-
sidered outcome. Another family of XAI methods consists in explaining with
counterfactual examples (see [9] for a recent survey), defined as instances close
to the instance of interest but associated with another prediction.

This paper proposes a new method to generate counterfactual explanations
in the case of textual data, called Token Importance Guided TExt Counterfactu-
als (TIGTEC). For example, given a classifier that predicts film synopsis genre
and an instance of interest predicted to be a comedy, TIGTEC outputs several
slightly modified instances predicted to be horror synopses (see Fig. 1).

The main contributions of TIGTEC are as follows: (i) textual counterfactual
examples are generated by masking and replacing important words using local
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
D. Koutra et al. (Eds.): ECML PKDD 2023, LNAI 14171, pp. 496–512, 2023.
https://doi.org/10.1007/978-3-031-43418-1_30

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-43418-1_30&domain=pdf
https://doi.org/10.1007/978-3-031-43418-1_30

TIGTEC: Token Importance Guided TExt Counterfactuals 497

Fig. 1. Example of sparse, plausible and diverse counterfactual examples generated
by TIGTEC for a film genre classifier that discriminates between horror and comedy
synopses. Here, the counterfactual generation goes from comedy to horror.

feature importance information, (ii) a new model-specific local feature impor-
tance method based on attention mechanisms [2] from Transformers is proposed,
(iii) a new cost function integrating textual semantic distance to preserve the ini-
tial content is introduced, (iv) the solution space is explored with a new tree search
policy based on beam search that leads to diversity in the generated explanations.
In this manner, TIGTEC bridges the gap between local feature importance, mask
language models, sentence embedding and counterfactual explanations. TIGTEC
can be applied to any NLP classifier in a model-specific or model-agnostic fashion,
depending on the local feature importance method employed.

This paper is organized as follows: we first introduce some basic principles of
XAI and the related work in Sect. 2. The architecture of TIGTEC is presented
in Sect. 3. Section 4 describes the performed experimental study and compare
TIGTEC to a competitor. Finally Sect. 5 concludes this paper by discussing the
results and future work.

2 Background and Related Work

We recall here some basic principles of XAI methods and existing counterfactual
generation methods in NLP.

2.1 XAI Background

Local Feature Importance. Let f : X → Y be a NLP classifier mapping an
input space X to an output space Y. Let x0 = [t1, ..., t|x0|] ∈ X be a sequence
of interest with f(x0) = y0. A local feature importance (or token importance
in NLP) operator g : X → R

|x0| explains the prediction through a vector
[z1, ..., z|x0|] where zi is the contribution of the i−th token. Two common local fea-
ture importance methods in NLP are Local Interpretable Model-agnostic Expla-
nations (LIME) [26] and SHapley Additive eXplanations (SHAP) [13]. These
methods have the advantage of being model-agnostic since they can be used
without any information about the model to explain.

498 M. Bhan et al.

Counterfactual Explanation Counterfactual explanations aim to emphasize
what should be different in an input instance to change the outcome of a classifier.
Their interest in XAI has been established from a social science perspective [17].
The counterfactual example generation can be formalized as a constrained opti-
mization problem. For a given classifier f and an instance of interest x0, a
counterfactual example xcf must be close to x0 and is basically defined as:

xcf = argmin
z∈X

d(x0, z) s.t. f(z) �= f(x0) (1)

with d : X ×X → R a given distance operator measuring proximity. The counter-
factual explanation is then the difference between the generated counterfactual
example and the initial data point, xcf − x0.

Many additional desirable properties for counterfactual explanations have
been proposed [9,16] to ensure their informative nature that we summarize in
three categories. Sparsity measures the number of elements changed between the
instance of interest and the generated counterfactual example. It is defined as
the l0 norm of xcf −x. Plausibility encompasses a set of characteristics to ensure
that the counterfactual explanation is not out-of-distribution [11] while being
feasible [22]. Since several instances of explanation can be more informative than
a single one [20,28], diversity measures the extent to which the counterfactual
examples differ from each other.

2.2 Related Work

This section presents two categories of methods for generating textual counter-
factual examples.

Text Editing Heuristics. A first family of methods aims at addressing the
problem introduced in Eq. 1 by slightly modifying the input text to be explained
with heuristics.

Model specific methods depend structurally on the models they seek to
explain. CLOSS [8] focuses on the embedding space of the classifier to explain.
After generating counterfactual candidates through optimization in the latent
space, the most valuable ones are selected according to an estimation of Shap-
ley values. MiCE [27] iteratively masks parts of the initial text and performs
span infilling using a T5 [24] fine-tuned on the corpus of interest. This method
targets tokens with high predictive power using model-specific gradient attribu-
tion metrics. While the label flipping success rate of CLOSS and MiCE are high
and the counterfactual texts are plausible, the notions of semantic distance and
diversity are not addressed. We show in Sect. 3 how the TIGTEC approach that
we propose tackles these constraints.

Generating counterfactual examples shares similarities with generating adver-
sarial attacks, aiming to incorrectly flip the prediction by minimally editing the
initial text. Numerous heuristics have been proposed differing in constraints,
text transformation methods and search algorithms [19]. Contrary to counterfac-
tual explanations, adversarial attacks seek to fool intentionally a model without
explanatory purpose. Therefore, plausibility and sparsity are not addressed.

TIGTEC: Token Importance Guided TExt Counterfactuals 499

Fig. 2. Illustration of the tree search policy with beam width = 2, mask div = 2,
strategy = evolutive, margin = 0.2. At each step, the beam width highest important
tokens are masked and replaced. The substitution token is selected considering the cost
function depending on the semantic similarity method s and the balancing parameter
α. Among the topk candidates, only mask div one are considered in the tree search.
A candidate is accepted if the prediction of the classifier changes and moves margin
away from the prediction threshold. Here, “I love this movie” is accepted. Since only
one counterfactual candidate was found out of two, the next iteration starts from the
nodes with the lowest cost value, here “I watch this movie”.

Text Generation with Large Language Models. A second category of
methods aims at generating counterfactual examples in NLP with large pre-
trained generative language models. A first approach [15] applies a Plug and Play
language model [6] methodology to generate text under the control of the clas-
sifier to explain. It consists in learning latent space perturbations from encoder-
decoder models such as BART [12] in order to flip the outcome. Polyjuice [31]
proposes to fine-tune a GPT-2 [23] model on a set of predefined tasks. It results
in a generative language model capable of performing negation, quantification,
insertion of tokens or sentiment flipping based on prompt engineering. Polyjuice
needs to be trained in a supervised way on ground truth counterfactual examples
in order to be able to generate the expected text. Therefore, the use of Polyjuice
to generate counterfactual examples is not generalizable since counterfactual
labels do not exist for all classification problems.

3 Proposed Approach: TIGTEC

This section describes the architecture of Token Importance Guided TExt Coun-
terfactuals (TIGTEC) by detailing its four components. The main idea is to
iteratively change tokens of the initial text by decreasing order of importance
instance to find a compromise between proximity to the initial instance and label

500 M. Bhan et al.

flipping. This way, TIGTEC belongs to the text editing heuristics category of
counterfactual example generators in NLP.

3.1 TIGTEC Overview

TIGTEC is a 4-step iterative method illustrated in Fig. 2. Algorithm 1 describes
the generation and evaluation steps, Algorithm 2 summarizes the whole process.
The code is available online on a public repository1. TIGTEC takes as input a
classifier f and a text of interest x0 = [t1, ..., t|x0|].

Targeting. To modify the initial text to explain, tokens with highest impact
on prediction are targeted given their local importance. TIGTEC implements
two methods of local token importance and a random importance generator as
a baseline.

Generating. High importance tokens are masked and replaced, with a fine-
tuned or pretrained mask model. Various counterfactual candidates are then
generated.

Evaluating. The generated candidates are evaluated by a cost function that
balances the probability score of the target class and the semantic distance to
the initial instance. Candidates minimizing the cost function are considered valid
if they meet acceptability criteria.

Tree Search Policy. The lowest cost candidates are kept in memory and a new
iteration begins from the most promising one. The solution space is explored in
a beam search fashion until a stopping condition is reached.

As outlined in Fig. 2, the counterfactual search heuristic is a tree search
algorithm, in which each node corresponds to a counterfactual candidate, and
each edge is a token replacement. Therefore, the root of the tree corresponds
to the instance to explain, and the deeper a node is in the tree, the more it is
modified.

3.2 Targeting

The first step consists in identifying the most promising tokens to be replaced
in the initial instance to modify the outcome of the classifier f . We use token
importance metrics to focus on impacting tokens and efficiently guide the search
for counterfactual examples. In particular, we integrate the possibility of comput-
ing both model-agnostic (e.g. SHAP [13]) and model-specific token importance
metrics. We propose a new model-specific token-importance method based on
the attention coefficients when the classifier f is a Transformer. Token impor-
tance is computed by focusing on the attention of the last encoder layer related
to the classification token representing the context of the entire sequence. The
efficiency gain of this token importance method is shown in Sect. 4. If the informa-
tion provided by SHAP is rich, its computation time is high, whereas attention
coefficients are available at no cost under a model-specific paradigm.
1 https://github.com/milanbhan/tigtec.

https://github.com/milanbhan/tigtec

TIGTEC: Token Importance Guided TExt Counterfactuals 501

Algorithm 1. Mask Language Inference (MLI)
Require: x = [t1, ..., tn] an input sequence
Require: f : X → Y = {1,2,...,k} a classifier
Require: i the input token to be masked
Require: M a BERT-like mask language model
Require: s, α, topk, mask_div
Ensure: x̂ = [x̂(1), ..., x̂(mask div)]
1: ti ← [MASK]
2: xmask ← [t1, ..., [MASK], ..., tn]
3: [t̂1, ..., t̂topk] = M(xmask) the topk most likely tokens
4: for j in {1,...,topk} do
5: x̂j = x[ti ← t̂j]
6: Compute cost(x̂j) see Eq. 4
7: end for
8: Retrieve in x̂ the mask_div sequences with lowest cost
9: return x̂

TIGTEC is also defined by its strategy which can take two values. The
static strategy consists in fixing the token importance coefficients for the whole
search, whereas the evolutive strategy recomputes token importance at each
iteration. Since SHAP has a high computational cost, it is not recommended to
combine it with the evolutive strategy.

In order to consider several counterfactual candidates at each iteration, sev-
eral tokens can be targeted in parallel. The beam_width parameter allows to
control the number of tokens of highest importance to target at each step to
perform a beam search during the space exploration.

3.3 Generating

The second step of TIGTEC generates counterfactual candidates and corre-
sponds to the first part of the mask language inference (MLI) formally described
in Algorithm 1, from line 1 to 5. Once high importance tokens have been targeted
in the previous step, they are masked and replaced with a BERT-type [7] mask
language model denoted M. Mask language models enable to replace tokens
considering the context while keeping grammatical correctness and semantic rel-
evance. This step ensures the plausibility of the generated text. Such models take
a masked sequence [t1, ..., [MASK], ..., tn] as an input and output a probability
score distribution of all the tokens contained in the BERT-type vocabulary. The
mask model can be either pretrained or fine-tuned on the text corpus on which
the classifier f has been trained.

Since replacing a token with another with low plausibility can lead to out-
of-distribution texts, inaccurate prediction and grammatical errors, the number
of substitutes proposed by M is limited to topk. The higher topk, the more we
consider tokens with low contextual plausibility.

502 M. Bhan et al.

Algorithm 2. TIGTEC: Token Importance Guided Counterfactual Text Generation

Require: f : X → Y a k-class classifier
Require: x0 = [t1, ..., tn] an input sequence of n tokens to be explained
Require: ytarget : target counterfactual class
Require: p : number of counterfactual examples to generate
Require: g, s, M, α, topk, beam_width, mask_div, strategy, margin, early stop
Ensure: xcf = [xcf

1 , ..., xcf
p]

1: waiting_list = [(x0, cost(x0))] the priority queue of counterfactual candidates
sorted by increasing cost (see Eq. 4)

2: i ← 0 the number of evaluated texts
3: xcf ← []
4: Compute token importance [z1, ..., zn] = g(x0)
5: while len(xcf) < p and i < early stop do
6: parent_node ← waiting_list.pop() the candidate with the lowest cost (see Eq. 4)

7: [t(1), ..., t(n)] ← sort(parent_node) by decreasing importance order with respect
to strategy and g

8: for t in [t(1), ..., t(beam width)] do
9: i ← i + 1

10: [x1, ..., xmask div] = MLI(parent_node , f , t, M, topk, mask_div, s α) (see
Algorithm 1)

11: for x in [x1, ..., xmask div] do
12: if p(ytarget|x) ≥ 1

k
+ margin then

13: xcf.append(x)
14: else
15: waiting_list.push((x, cost(x))) keep in the waiting list rejected candi-

dates with their cost
16: end if
17: end for
18: end for
19: end while
20: return xcf

3.4 Evaluating

Once the topk candidates are generated, we build a cost function to evaluate
them. This evaluation step corresponds to line 6 in Algorithm 1. The cost func-
tion has to integrate the need to flip the outcome of the classifier f and the dis-
tance to the original instance as formalized in Eq. 1. In order to ensure semantic
relevance, we define a distance based on text embedding and cosine similarity
measures. Finally, conditions for the acceptability of counterfactual candidates
are introduced to ensure the reliability of the explanations.

Distance. The widely used Levenshtein distance and BLEU score [21] do not
integrate the notion of semantics. An alternative is to compare sentence embed-
dings in order to measure the similarity of representations in a latent space. Sen-

TIGTEC: Token Importance Guided TExt Counterfactuals 503

tence embeddings have been introduced to numerically represent textual data
as real-value vectors, including Sentence Transformers [25]. Such networks have
been trained on large corpus of text covering various topics. This encoders are
compatible with a model-agnostic approach, as they do not require any prior
information about the classifier f .

Another text embedding approach can be used when the classifier f is a
BERT-like model and when the prediction is made through the classification
token. It consists in using the embedding of the classification token directly
from f . This embedding is however strongly related to the task of the classifier f .
Therefore, if the model has been trained for sentiment analysis, two texts with
the same associated sentiment will be considered similar, regardless of the topics
covered.

We derive the textual distance from the normalized scalar product of the two
embeddings: d : X × X → [0, 1] with:

ds(x, x′) =
1
2
(1 − s(x, x′)) (2)

s(x, x′) =
〈ex, e′

x〉
||ex||.||e′

x|| (3)

where ex is the embedding representation of input sequence x.

Cost. The cost function aims to represent the counterfactual optimization prob-
lem introduced in Eq. 1. We propose to integrate the probability score of the
target class to define the cost as:

cost(xcf, x0) = − (
p(ytarget|xcf) − αds(xcf, x0)

)
(4)

where ytarget is the target class and p(ytarget|xcf) represents the probability score
of belonging to the class ytarget given xcf from the classifier f. The probability
score is the information that guides the heuristic towards the target class. The
α coefficient enables for a balanced approach to the need to reach the target
class while remaining close to the initial point. The generated topk candidates
are evaluated with the cost function defined above.

Acceptability Criteria. A counterfactual candidate xcf is accepted if two
conditions are met:

f(xcf) = ytarget (5)

p(ytarget|xcf) ≥ 1
k

+ margin (6)

where k is the number of classes of the output space and margin ∈ [0, k−1
k] the

regularization hyperparameter ensuring the certainty of the prediction of the
model f. We assume then that all the counterfactual examples must reach the
same target class. The closer margin is to its upper bound, the more polarized
the classifier prediction must be in order to satisfy the acceptability criterion,
and the stronger the constraint.

504 M. Bhan et al.

3.5 Tree Search Policy

TIGTEC generates a set of diverse counterfactual examples. We address the
diversity constraint by considering the mask_div candidates with the lowest cost
function among the generated topk from Algorithm 1 and keep them in memory
in a priority queue (see line 15 in Algorithm 2). Therefore, we evaluate more
possibilities and aim to foster diversity in the counterfactual examples found by
TIGTEC. Once these candidates are stored in memory, the iterative exploration
step (Algorithm 2 from line 6 to 11) starts again, until a stopping condition is
reached. The stopping condition can either be to reach the target number of
counterfactual examples or to reach the maximum number of nodes in the tree
(see line 5 in Algorithm 2). The higher the maximum number of nodes, the longer
TIGTEC can search for counterfactual examples.

The candidate with the lowest cost is then selected from the priority queue
(see line 6 in Algorithm 2) in order to apply again the targeting, generation
and evaluation sequence. We call predecessor this previous candidate. Since we
evaluate several possibilities in parallel through beam search, Algorithm 1 is this
time applied to the beam_width tokens with the highest token importance within
the predecessor. From this perspective, the exploration approach enables to start
from a candidate that seemed less advantageous at a specific stage, but leads to
better results by going deeper into the tree. A tree search example is illustrated
in Fig. 2.

4 Experimental Analysis

This section presents the conducted experimental study and introduces five met-
rics to quantitatively assess the counterfactual examples generated by two dif-
ferent versions of TIGTEC and three comparable state-of-the-art competitors.

4.1 Evaluation Criteria

Considering the various objectives to be achieved, we propose a 5-metric evalua-
tion. Given an instance associated with p counterfactual examples, the evaluation
metrics are aggregated on average over the generated examples, except for diver-
sity. The same operation is performed on all the instances to be explained, and
the average metrics are finally computed.

Success Rate. Since TIGTEC does not guarantee to find counterfactual exam-
ples in all cases, the success rate (%S) is calculated.

Sparsity. For some methods we compare to, the lengths of the generated coun-
terfactual examples may differ from the initial instance. Therefore, sparsity (%T)
is measured assessed with word-based Levenshtein distance normalized by the
length of the sequence.

Proximity. We evaluate ex-post the semantic proximity between x0 and xcf

with cosine similarity (s) between Sentence Transformer embedding. This choice

TIGTEC: Token Importance Guided TExt Counterfactuals 505

is justified by the wish to remain in a general framework that does not depend
on the classifier f and the task for which it has been trained. The library used
to import the Sentence Transformer is sentence_transformers and the model
backbone is paraphrase-MiniLM-L6-v2.

Plausibility. One approach to evaluate text plausibility is the perplexity score
[10]. This score can be computed based on the exponential average loss of a foun-
dation model like GPT-2. We calculate the ratio (ΔPPL) between the perplexity
of the initial text and its counterfactual examples to compare the quality of the
generated text with the original one. The library used to import the pretrained
GPT2 is transformers and the backbone is GPT2LMHeadModel.

Diversity. Based on the distance measure d, we define diversity (div) as in [20]
where divd = det(K) with Ki,j = 1

λ+d(xcf
i ,xcf

j)
and λ ∈ R a regularization weight

set to 1.

4.2 TIGTEC Agnostic and Specific Variants

Two different versions of TIGTEC are assessed. The first one is model-specific
with access to the corpus of interest. Attention coefficients guide the counterfac-
tual example search and a fine-tuned mask language model is used to mask and
replace important tokens. We call this version TIGTEC-specific.

The second version is model-agnostic without access to the corpus of interest.
SHAP is used to compute token importance and the mask language model is
only pre-trained. We call this second version TIGTEC-agnostic. Since SHAP
computational cost is high compared to attention, we use the static strategy
for the agnostic version of TIGTEC, whereas the evolutive strategy is used for
the specific one.

4.3 Datasets and Competitors

We apply TIGTEC-agnostic and -specific on two DistilBERT [29] binary clas-
sifiers. We limit our analysis to DistilBERT, since it achieves almost the same
level of performance as BERT, while being significantly lighter. TIGTEC could,
however, be applied to larger models, the methodology remaining the same. The
first classifier performs sentiment analysis on the IMDB dataset [14] containing
movie reviews. The second classifier is trained on movie genre classification on a
dataset of horror and comedy synopses from Kaggle2. More information about
the datasets and the performance of the classifiers are provided online3.

The two versions of TIGTEC are compared to Polyjuice [31], MiCE [27] and
CLOSS [8]. The objective of each version of TIGTEC is to generate three counter-
factual examples associated with an initial instance. We apply Polyjuice by gen-
erating three counterfactual examples for each instance to explain. As Polyjuice
2 https://www.kaggle.com/competitions/movie-genre-classification/overview.
3 See the documentation on the publicly available repository: https://github.com/

milanbhan/tigtec.

https://www.kaggle.com/competitions/movie-genre-classification/overview
https://github.com/milanbhan/tigtec
https://github.com/milanbhan/tigtec

506 M. Bhan et al.

was trained to flip sentiment on IMDB with negation prompt, Polyjuice’s coun-
terfactual examples are generated in the same way. MiCE and CLOSS do not
address diversity, they only generate one counterfactual example per initial text.
We assess TIGTEC and Polyjuice performance by selecting the instance that
is semantically closest to the initial point among the 3 generated to compare
them to MiCE and CLOSS. We distinguish the results obtained with one and
three counterfactual examples by the notation TIGTEC1d and TIGTEC3d and
respectively Polyjuice1d and Polyjuice3d .

Each method is evaluated on the same 1000 texts from IMDB. The hyper-
parameters of TIGTEC are fixed at their optimal level as described in the next
section. TIGTEC-specific is also applied on the movie synopsis dataset from
Kaggle on 474 texts. Since movie genre classification is a more complex task, we
relax the hyperparameters by lowering the margin to 0.05 and alpha to 0.15.

4.4 Hyperparameter Setting

We optimize the nine hyperparameters presented in Sect. 3 with respect to suc-
cess rate, similarity, diversity and sparsity. The optimization is performed on
IMDB with the Optuna [1] library. The solution space is as follows:

– g ∈ {random, attention}, the input token importance method.
– M ∈ {Mft,Mpt} where Mft is a mask language model fine-tuned on the

corpus in which the classifier f has been trained. Mpt is a pretrained mask
language model without fine tuning phase.

– α ∈ [0, 1] the parameter balancing target probability and distance with the
initial point in the cost function

– topk ∈ {10, 11, ..., 100} the number of candidates considered during mask
inference

– beam_width ∈ {2, 3, ..., 6} the number of paths explored in parallel at each
iteration

– mask_div ∈ {1, 2, 3, ..., 4} the number of candidates kept in memory during a
tree search iteration

– strategy ∈ {static, evolutive} where static is the strategy consisting in com-
puting token importance only at the beginning of the counterfactual search.
The evolutive strategy consists in computing token importance at each itera-
tion.

– margin ∈ {0.05, 0.3} the probability score spread defining the acceptability
threshold of a counterfactual candidate

– s ∈ {sentence transformer,CLS embedding} the method used to compute the
semantic distance.

We perform the optimization over 100 iterations, with the objective to gener-
ate 3 counterfactual examples on 20 initial texts. An ablation study thoroughly
analyzes the sensibility to TIGTEC to its hyperparameters. For the other hyper-
parameters, beam_width = 4, mask_div = 4, topk = 50, margin = 0.15 and
α = 0.3 and Sentence Transformer embedding are reasonable. The maximum
number of nodes is set to 1000, which can lead to long searches for counterfac-
tual examples before TIGTEC stops.

TIGTEC: Token Importance Guided TExt Counterfactuals 507

Table 1. TIGTEC evaluation on 2 datasets and comparison with competitors on
IMDB.

Dataset Method Success rate↑%S Similarity↑%s Sparsity ↓%T Plausibility ↓ Δ PPL Diversity ↑ div

IMDB Polyjuice1d 60.8 55.6 72.2 1.09 –

Polyjuice3d 29.6 53.5 74.4 2.16 0.088

MiCE 99.6 81.1 18.0 1.35 –

CLOSS 97.3 95.4 2.3 1.47 –

TIGTEC-specific1d 98.2 96.8 4.2 1.25 –

TIGTEC-specific3d 98.2 95.8 4.4 1.34 0.019

TIGTEC-agnostic1d 92.7 96.1 4.5 1.24 –

TIGTEC-agnostic3d 92.7 94.6 4.7 1.34 0.075

Movie genre TIGTEC-specific1d 88.4 91.7 8.8 1.42 –

TIGTEC-specific3d 88.4 89.8 9.0 1.38 0.120

4.5 Results

Global Results. Overall, TIGTEC-specific gives very good results on IMDB,
succeeding in more than 98% of the time in generating counterfactual examples
(Table 1). The counterfactual examples are sparse, plausible and highly similar to
their original instance. TIGTEC-agnostic succeeds less than the specific version,
with a success rate at circa 93%. Similarity, sparsity and plausibility are at the
same level as the specific version, while the counterfactual examples are more
diverse. The significant gap in success rates between the agnostic and the specific
versions of TIGTEC can be explained by the cumulative effect of the evolutive
strategy and the fine-tuned mask model compared to the static strategy and
the pretrained mask model. We detail these effects separately in the following
ablation study. While the movie genre classification task is more complex (see
online4 for classifier accuracy), TIGTEC manages to generate plausible counter-
factual examples close to the initial instance, with more diversity compared to
the sentiment analysis task.

Comparative Results. TIGTEC-specific succeeds more often than CLOSS
and Polyjuice, while remaining on average closer to the initial instance and being
more plausible. The success rate of Polyjuice is low, and the counterfactual exam-
ples differ from the original instances in terms of proximity and sparsity. This
result is due to the absence of label switching constraint and the independence
of the text generation process to the classifier.

MiCE succeeds more often to flip labels than any other counterfactual genera-
tor. While the text generated by MiCE is plausible, the counterfactual examples
differ strongly from the original instances in terms of semantic proximity and
sparsity. TIGTEC-specific succeeds in the same proportion as MiCE and pro-
duces much more sparse, similar and plausible counterfactual examples. The low
similarity of the counterfactual examples generated by MiCE can be explained
by the underlying T5 model used to generate text. Such encoder-decoder models

4 https://github.com/milanbhan/tigtec.

https://github.com/milanbhan/tigtec

508 M. Bhan et al.

Table 2. Ablation study of token importance, exploration strategy and mask model.
With p as the p-value of the one-tailed t-test, *p < 10%, **p < 5%, ***p < 1%. Ref
stands for the reference modality.

Hyperparameter Success rate%
mean ± std

Similarity%

mean ± std

Sparsity%

mean ± std

Token importance random (ref.) 92.0 ± 14.0 91.4 ± 3.5 9.4 ± 3.0

attention 96.2* ± 7.0 95.0*** ± 1.7 4.2*** ± 1.1

SHAP 95.6* ± 7.2 95.0*** ± 1.5 4.4*** ± 1.4

Exploration strategy static (ref.) 93.6 ± 11.4 94.2 ± 2.9 5.9 ± 2.9

evolutive 95.4 ± 8.5 93.7 ± 2.9 5.8 ± 3.1

Mask model pretrained (ref.) 94.6 ± 10.5 93.3 ± 3.5 6.0 ± 3.5

fine-tuned 94.8 ± 9.2 94.4** ± 2.1 5.6 ± 2.6

perform mask span infilling by generating text whose meaning and length can
sharply change from the masked text.

TIGTEC-agnostic generates more similar, sparse and plausible counterfac-
tual texts than MiCE and Polyjuice. However, if the success rate of TIGTEC-
agnostic is high, it is lower than MiCE and CLOSS. Whether in its agnostic or
specific version, and with or without the diversity constraint, TIGTEC performs
well on all evaluation metrics. Finally, TIGTEC appears to be the best trade-off
in terms of success rate, proximity, sparsity, plausibility and diversity.

Ablation Study. This analysis comes from the data resulting from the hyper-
parameter optimization. We assess the sensitivity of TIGTEC to its hyperpa-
rameters through success rate, similarity and sparsity. Each comparison is made
with a one-tailed t-test to determine whether the mean of a first sample is lower
than the mean of a second one. We first evaluate the impact of hyperparame-
ters specific to the targeting and generating steps of TIGTEC in Table 2. We
compare the attention-based token importance and SHAP to a random base-
line. The evolutive exploration strategy is compared to the static one and the
contribution of the fine-tuned mask model is assessed with respect to the pre-
trained one. Attention-based token importance and SHAP give better results
both in terms of success rate, similarity and sparsity with statistical significance.
The fine-tuned mask model induces higher similarity with statistical significance.
While the evolutive strategy yields higher success rates on average, the results
are not statistically significant.

Besides, we focus on the hyperparameters specific to the exploration and tree
search step. The results for the beam_width and mask_div hyperparameters are
presented in Table 3. Each beam width is compared to the reference case where
beam_width= 2. Mask diversity is also analyzed with respect to the reference
case where mask_div= 1. The higher beam_width and mask_div, the higher the
similarity and sparsity. This results are statistically significant.

TIGTEC: Token Importance Guided TExt Counterfactuals 509

Table 3. Ablation study of beam width and mask div. With p as the p-value of the one-
tailed t-test, *p < 10%, **p < 5%, ***p < 1%. Ref stands for the reference modality.

Hyperparameter Success rate %
mean ± std

Similarity %

mean ± std

Sparsity %

mean ± std

beam width 2 (ref.) 94.4 ± 11.3 92.9 ± 3.6 6.6 ± 3.4

3 96.6 ± 7.4 93.8 ± 2.7 5.8 ± 3.3

4 96.0 ± 7.8 94.5** ± 1.9 4.5* ± 1.4

5 90.2 ± 12.5 95.1** ± 1.7 5.6** ± 2.7

6 95.7 ± 6.5 95** ± 1.6 5.1** ± 2.6

mask div 1 (ref.) 97.0 ± 7.6 93.2 ± 3.1 6.7 ± 3.3

2 94.7 ± 10.7 94.3* ± 2.0 4.9* ± 2.0

3 90.6 ± 12.2 94.6* ± 1.9 5.5** ± 3.0

4 93.3 ± 9.0 94.4* ± 3.9 5.3* ± 3.3

5 Discussion

We have introduced TIGTEC, an efficient textual counterfactual explainer, gen-
erating sparse, plausible, content-preserving and diverse counterfactual examples
in an agnostic or specific fashion. Other NLP counterfactual generators strongly
depend on the classifier to explain or the text corpus on which it has been trained.
As matter of fact, CLOSS [8] generates counterfactual candidates by optimizing
in the latent space from the classifier. MiCE [27] uses gradient-based information
from the classifier to target important tokens, while modifying the initial instance
with a language model fine-tuned on the corpus of interest. Polyjuice [31] needs
to learn to generate counterfactual examples in a supervised way, which requires
ground-truth counterfactual data. The adaptability of TIGTEC to any type of
NLP classifier and the fact that it works in an agnostic way make it particularly
flexible.

The proposed framework is versatile and can work with any token importance
method. Since the high computational cost of SHAP can be limiting for large-
scale applications, other methods such as gradient-based attributions can be
used. Besides, the token importance sensitivity analysis highlighted that atten-
tion drives TIGTEC as well as SHAP in the search process in terms of success
rate, similarity and sparsity. This study therefore favors the interpretabiltiy of
self-attention as other recent work [4,5]. If the experimental study has been per-
formed on binary classifiers only, TIGTEC can also be extended to multi-class
classifiers by specifiny the target class.

Finally, the use of TIGTEC is not limited to BERT-like classifiers. Our pro-
posed framework can be adapted to any type of classifier as long as a token
importance method is given as input. For other NLP classifiers such as recur-
rent neural networks, SHAP or gradient-based methods could be used to target
impactful tokens. TIGTEC can also help in explaining machine learning models
such as boosted trees with LIME as token importance method.

510 M. Bhan et al.

6 Conclusion and Future Work

This paper presents TIGTEC, a method for generating sparse, plausible and
diverse counterfactual explanations. The architecture of TIGTEC is modular
and can be adapted to any type of NLP model and to classification tasks of
various difficulties. TIGTEC can cover both model-agnostic and model-specific
cases, depending on the token importance method used to guide the search for
counterfactual examples.

A way of improvement of TIGTEC could be to cover more types of classifiers
as mentioned in the previous section. Other gradient-based token importance
methods could also be integrated to TIGTEC. Furthermore, diversity is only
implicitly addressed through the exploration strategy. We believe that diversity
could be improved by transcribing it into the cost function during the evaluation
step or sharpening the exploration strategy.

Finally, automatic evaluation of the counterfactual examples quality has its
limits. The metrics introduced above provide good indications of the performance
of TIGTEC, but they do not ensure human understanding. From this perspective,
human-grounded experiments would be more appropriate to assess the relevance
of the generated text and its explanatory quality.

Ethics Statement. Since the training data for mask language models, Sentence Trans-

formers and classifiers can be biased, there is a risk of generating harmful counterfac-

tual examples. One using TIGTEC to explain the predictions of one’s classifier must

be aware of these biases in order to stand back and analyze the produced results. On

the other hand, by generating unexpected counterfactual examples, we believe that

TIGTEC can be useful in detecting bias in the classifier it seeks to explain. Finally, as

any method based on deep learning, this method consumes energy, potentially emitting

greenhouse gases. It must be used with caution.

References

1. Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: a next-
generation hyperparameter optimization framework. In: Proceedings of the 25th
ACM SIGKDD International Conference on Knowledge Discovery & Data Mining
(2019)

2. Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning
to align and translate. arXiv:1409 (2014)

3. Barredo Arrieta, A., et al.: Explainable Artificial Intelligence (XAI): concepts, tax-
onomies, opportunities and challenges toward responsible AI. Inf. Fusion 58, 82–
115 (2020)

4. Bhan, M., Achache, N., Legrand, V., Blangero, A., Chesneau, N.: Evaluating self-
attention interpretability through human-grounded experimental protocol. arXiv
(2023)

5. Bibal, A., et al.: Is attention explanation? An introduction to the debate. In: Pro-
ceedings of the Association for Computational Linguistics (ACL) (2022)

http://arxiv.org/abs/1409

TIGTEC: Token Importance Guided TExt Counterfactuals 511

6. Dathathri, S., et al.: Plug and play language models: a simple approach to con-
trolled text generation. In: 8th International Conference on Learning Representa-
tions, ICLR (2020)

7. Devlin, J., Chang, M., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirec-
tional transformers for language understanding. In: Proceedings of the Association
for Computational Linguistics (ACL) (2019)

8. Fern, X., Pope, Q.: Text counterfactuals via latent optimization and shapley-guided
search. In: Proceedings of Conference on Empirical Methods in Natural Language
Processing (EMNLP) (2021)

9. Guidotti, R.: Counterfactual explanations and how to find them: literature review
and benchmarking. Data Mining Knowl. Discov. (2022)

10. Jelinek, F., Mercer, R.L., Bahl, L.R., Baker, J.K.: Perplexity-a measure of the
difficulty of speech recognition tasks. J. Acoust. Soc. Am. 62, 63 (1977)

11. Laugel, T., Lesot, M.J., Marsala, C., Renard, X., Detyniecki, M.: The dangers of
post-hoc interpretability: unjustified counterfactual explanations. In: International
Joint Conference on Artificial Intelligence (IJCAI) (2019)

12. Lewis, M., et al.: BART: denoising sequence-to-sequence pre-training for natural
language generation, translation, and comprehension. In: Proceedings of the Asso-
ciation for Computational Linguistics (ACL) (2020)

13. Lundberg, S.M., Lee, S.I.: A unified approach to interpreting model predictions.
In: Advances in Neural Information Processing Systems. NeurIPS (2017)

14. Maas, A.L., Daly, R.E., Pham, P.T., Huang, D., Ng, A.Y., Potts, C.: Learning
word vectors for sentiment analysis. In: Proceedings of the Association for Compu-
tational Linguistics (ACL) (2011)

15. Madaan, N., Bedathur, S., Saha, D.: Plug and Play Counterfactual Text Generation
for Model Robustness. arXiv (2022)

16. Mazzine, R., Martens, D.: A framework and benchmarking study for counterfactual
generating methods on tabular data. CoRR (2021)

17. Miller, T.: Explanation in artificial intelligence: insights from the social sciences.
Artif. Intell. 267, 1–38 (2019)

18. Molnar, C.: Interpretable Machine Learning, 2nd edn. (2022). https://christophm.
github.io/interpretable-ml-book

19. Morris, J.X., Lifland, E., Yoo, J.Y., Grigsby, J., Jin, D., Qi, Y.: Textattack: a
framework for adversarial attacks, data augmentation, and adversarial training in
NLP. In: Proceedings of Conference on Empirical Methods in Natural Language
Processing (EMNLP) (2020)

20. Mothilal, R.K., Sharma, A., Tan, C.: Explaining machine learning classifiers
through diverse counterfactual explanations. In: Proceedings of the 2020 Confer-
ence on Fairness, Accountability, and Transparency (FAT*) (2020)

21. Papineni, K., Roukos, S., Ward, T., Zhu, W.J.: Bleu: a method for automatic eval-
uation of machine translation. In: Proceedings of Association for Computational
Linguistics (ACL) (2002)

22. Poyiadzi, R., Sokol, K., Santos-Rodriguez, R., De Bie, T., Flach, P.: FACE: feasible
and actionable counterfactual explanations. In: Proceedings of the AAAI/ACM
Conference on AI, Ethics, and Society (AIES) (2020)

23. Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., Sutskever, I.: Language
models are unsupervised multitask learners. OpenAI blog (2019)

24. Raffel, C., et al.: Exploring the limits of transfer learning with a unified text-to-text
transformer. J. Mach. Learn. Res. 21, 5485–5551 (2019)

https://christophm.github.io/interpretable-ml-book
https://christophm.github.io/interpretable-ml-book

512 M. Bhan et al.

25. Reimers, N., Gurevych, I.: Sentence-BERT: sentence embeddings using siamese
BERT-networks. In: Proceedings of Empirical Methods in Natural Language Pro-
cessing (EMNLP) (2019)

26. Ribeiro, M.T., Singh, S., Guestrin, C.: “Why should I trust you?” Explaining the
predictions of any classifier. In: Proceedings of the 22nd ACM SIGKDD Interna-
tional Conference on Knowledge Discovery and Data Mining (2016)

27. Ross, A., Marasović, A., Peters, M.: Explaining NLP models via minimal con-
trastive editing (MiCE). In: Findings of the Association for Computational Lin-
guistics (ACL) (2021)

28. Russell, C.: Efficient search for diverse coherent explanations. In: Proceedings of
the Conference on Fairness, Accountability, and Transparency, pp. 20–28. FAT*
(2019)

29. Sanh, V., Debut, L., Chaumond, J., Wolf, T.: DistilBERT, a distilled version of
BERT: smaller, faster, cheaper and lighter (2020)

30. Vaswani, A., et al.: Attention is all you need. In: Advances in Neural Information
Processing Systems (NeurIPS) (2017)

31. Wu, T., Ribeiro, M.T., Heer, J., Weld, D.: Polyjuice: Generating counterfactuals
for explaining, evaluating, and improving models. In: Proceedings of the Associ-
ation for Computational Linguistics (ACL) and the Joint Conference on Natural
Language Processing (JCNLP) (2021)

Knowledge Graphs

Towards Few-Shot Inductive Link
Prediction on Knowledge Graphs:

A Relational Anonymous Walk-Guided
Neural Process Approach

Zicheng Zhao1,2, Linhao Luo3, Shirui Pan4, Quoc Viet Hung Nguyen4,
and Chen Gong1,5(B)

1 School of Computer Science and Engineering, Nanjing University of Science
and Technology, Nanjing, China

chen.gong@njust.edu.cn
2 Jiangsu Key Laboratory of Image and Video Understanding for Social Security,

Nanjing, China
3 Department of Data Science and AI, Monash University, Melbourne, Australia

4 School of Information and Communication Technology, Griffith University,
Nathan, Australia

5 Key Laboratory of Intelligent Perception and Systems for High-Dimensional
Information of Ministry of Education, Nanjing, China

Abstract. Few-shot inductive link prediction on knowledge graphs
(KGs) aims to predict missing links for unseen entities with few-shot
links observed. Previous methods are limited to transductive scenarios,
where entities exist in the knowledge graphs, so they are unable to han-
dle unseen entities. Therefore, recent inductive methods utilize the sub-
graphs around unseen entities to obtain the semantics and predict links
inductively. However, in the few-shot setting, the sub-graphs are often
sparse and cannot provide meaningful inductive patterns. In this paper,
we propose a novel relational anonymous walk-guided neural process
for few-shot inductive link prediction on knowledge graphs, denoted as
RawNP. Specifically, we develop a neural process-based method to model
a flexible distribution over link prediction functions. This enables the
model to quickly adapt to new entities and estimate the uncertainty when
making predictions. To capture general inductive patterns, we present a
relational anonymous walk to extract a series of relational motifs from
few-shot observations. These motifs reveal the distinctive semantic pat-
terns on KGs that support inductive predictions. Extensive experiments
on typical benchmark datasets demonstrate that our model derives new
state-of-the-art performance.

Keywords: Knowledge graphs · Few-shot learning · Link prediction ·
Neural process

Z. Zhao and L. Luo—Equal contribution.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
D. Koutra et al. (Eds.): ECML PKDD 2023, LNAI 14171, pp. 515–532, 2023.
https://doi.org/10.1007/978-3-031-43418-1_31

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-43418-1_31&domain=pdf
https://doi.org/10.1007/978-3-031-43418-1_31

516 Z. Zhao et al.

1 Introduction

Knowledge graphs (KGs) are structured representations of human knowledge,
where each link represents the fact in the format of a triple (head entity, relation,
tail entity). Recently, KGs have been widely used in various applications, such as
web search [21], community detection [20] and recommender systems [45]. How-
ever, the incompleteness of KGs [55] largely impairs their applications. Therefore,
many methods have been proposed to complete KGs by predicting the missing
links and they achieved impressive performances [2,25].

Despite the success, these traditional methods are often transductive, assum-
ing that all entities are seen during training. However, real-world KGs dynami-
cally evolve over time, with numerous unseen entities emerging every day [22,31].
In this case, transductive methods can hardly model the unseen entities, resulting
in an unsatisfactory performance for inductive link prediction. Moreover, unseen
entities usually have few links upon their arrival [47], thus providing insufficient
information to characterize themselves. Therefore, few-shot inductive link pre-
diction on KGs has recently attracted increasing attention [1,7,43]. As shown
in Fig. 1(a), given an unseen node u and its support set Cu with three observed
links (r1, r2, r3), few-shot inductive link prediction aims to predict possible links
rq with other entities eq in the query set Du.

Inspired by graph neural networks (GNNs) [40], recent studies utilize a sub-
graph around the unseen entity to predict links inductively [24,35,57]. The major
motivation behind these methods is that they try to capture the semantic pat-
terns from the graph topology that are agnostic to the target entity. The seman-
tic patterns on KGs are usually reflected as relational paths [44,52], and each
of them is a sequence of relations connecting the entities, as shown in Fig. 1(b).
Given the observations, an ideal pattern for inductive reasoning should be dis-
tinctive and can be matched during the inference. However, in the few-shot
setting, the sub-graphs are often sparse, making semantic features captured by
relational paths not general enough and meaningful for inductive link prediction
(Limitation 1). For example, as shown in Fig. 1(b), the three relational paths

Fig. 1. An illustration of few-shot inductive link prediction on knowledge graphs.

RawNP: Few-Shot Inductive Link Prediction on Knowledge Graphs 517

(i.e., s1 ∼ s3) extracted from the support set are distinct, where different colors
denote different relations. They cannot provide any inductive and distinctive
patterns that can be matched by the relational path extracted from the query
set. Therefore, the patterns represented by relational paths cannot be used for
supporting the inductive link prediction.

Recently, several meta-learning-based methods have been proposed to tackle
the problem of few-shot learning. Meta-learning-based methods quickly adapt
to a new entity by updating the model parameters with a few examples [3,
57]. However, due to the limitation of data, the meta-learning-based methods
often suffer from overfitting [8] and out-of-distribution problems [13]. Meanwhile,
they fail to quantify the uncertainty in the predictions (Limitation 2), which is
essential for generating reliable predictions under few-shot scenarios [49,56].

To address the aforementioned limitations, we propose a relational
anonymous walk-guided neural process approach (RawNP) for few-shot induc-
tive link prediction on knowledge graphs. Specifically, we develop a framework
based on neural process (NP) [11] to address the challenges mentioned above in
few-shot learning. Unlike previous few-shot methods (e.g., meta-learning), NP is
based on the stochastic process that models the distribution over the functions
conditioned on limited data. Given a few links, we can readily obtain a predic-
tion function from the distribution that is specialized for the unseen entity. By
modeling the distribution, RawNP can also estimate the uncertainty of its predic-
tion and generate more reliable results (addressing Limitation 2). To capture
the representative patterns, we propose a novel relational anonymous walk to
extract a series of relational motifs (addressing Limitation 1). As shown in
Fig. 1(c), the three relational paths (i.e., s1 ∼ s3) in Fig. 1(b) can be represented
by one relational motif m, which can be used to guide the inductive predictions
by matching with the motif mq in the query set. The main contributions of our
work are summarized as follows:

– We propose a novel neural process approach for few-shot inductive link pre-
diction on knowledge graphs. To the best of our knowledge, this is the first
work of developing a neural process framework to solve this problem.

– We propose a novel relational anonymous walk to extract a series of rela-
tional motifs. The patterns revealed from these motifs are more general and
distinctive than the previous methods for inductive link prediction.

– We conduct extensive experiments on typical public datasets. Experimental
results show that RawNP outperforms existing baseline methods, which proves
the superiority of our method.

2 Related Work

Link Prediction on Knowledge Graphs. Link prediction on knowledge
graphs is an important task to complete the missing facts. Previous methods
mainly focus on the transductive setting, where all entities are seen during train-
ing [2,39,53]. Inspired by the inductive ability of GNNs [41], several methods
adopt the graph structure to predict links inductively [5,19]. For example, GraIL

518 Z. Zhao et al.

[35] extracts the enclosing sub-graph of a given triple to capture the topological
structure. CoMPILE [24] generates inductive representations by modeling the
relations in sub-graphs. To better consider the semantics in knowledge graphs,
SNRI [52] adopts relational paths within a sub-graph to provide inductive fea-
tures. However, the features captured by these methods are not general enough
to provide inductive bias for unseen entities, especially in the few-shot setting.
Meanwhile, there are several works [14,48] that apply anonymous random walk
on temporal graphs to extract temporal network motifs, thus keeping their meth-
ods fully inductive. However, they focus on node anonymization and cannot
handle complex relations in knowledge graphs.

Several meta-learning-based methods have been proposed for few-shot link
prediction. MetaR [6] adapts to unseen relations by a relation-meta learner and
updates the parameter by using the meta-learning framework. Meta-iKG [57]
utilizes local sub-graphs to transfer sub-graph-specific information and rapidly
learn transferable patterns via meta-learning. However, the meta-learning-based
methods are sensitive to the quality of given few-shot data and unable to estimate
the uncertainty of the model. GEN [1] meta-learns the unseen node embedding
for inductive inference and proposes a stochastic embedding layer to model the
uncertainty in the link prediction, which achieves state-of-the-art performance
among all baseline models.
Neural Process. Neural process (NP) [11], a new family of methods, opens up
a new door to dealing with limited data in machine learning [42]. Based on the
stochastic process, NP enables to model the distribution over functions given
limited observations and provides an uncertainty measure to the predictions. An
increasing number of researches focus on improving the expressiveness of the
vanilla NP model. For instance, Attentive Neural Process (ANP) [15] leverages
the self-attention mechanism to better capture the dependencies and model the
distribution. Sequential Neural Process (SNP) [32] introduces a recurrent neural
network (RNN) to capture temporal correlation for better generalization. NP has
already been applied in many tasks to address the challenge of data limitation,
such as recommender systems [18], node classification [4], and link prediction [17,
22]. This also demonstrates the great potential of NP in other machine learning
areas. Recently, NP-FKGC [23] applies normalizing flow-based NP to predict
the missing facts for few-shot relations. To the best of our knowledge, this is the
first work to apply the neural process to the few-shot inductive link prediction
on knowledge graphs.

3 Preliminary and Problem Definition

3.1 Neural Process

NP [11] marries the benefits of the stochastic process and neural networks to
model the distribution over functions f : X → Y with limited data, where X
and Y are feature space and label space, respectively. Specifically, the function f
is assumed to be parameterized by a high-dimensional random vector z, whose
distribution P (z|C) is conditioned on the context data C = {(xC , yC)} with x

RawNP: Few-Shot Inductive Link Prediction on Knowledge Graphs 519

and y denoting feature and label of a data point accordingly. The P (z|C) is
empirically defined as a Gaussian distribution, which is modeled by an encoder
using the context data. By sampling a z from the distribution, NP can easily
obtain the function for a new prediction task. The prediction likelihood over the
target data D = {(xD, yD)} is calculated as

P (yD|xD, C) =
∫

z

P (yD|xD, z) P (z|C)dz, (1)

where P (yD|xD, z) is modeled by a decoder network. Since the actual distri-
bution of z is intractable, the training of NP can be achieved by amortized
variational inference [16]. The objective expressed by Eq. (1) can be optimized
by maximizing the evidence lower bound (ELBO), which is formulated as

log P (yD|xD, C) ≥ EQψ
(z|C,D) [log Pφ (yD|xD, z)] − KL (Qψ(z|C,D)‖Pθ(z|C)) ,

(2)
where θ and φ denote the parameters of encoder and decoder, respectively, and
Qψ(z|C,D) denotes the variational posterior of the latent variable z, approxi-
mated by another neural network with parameters ψ.

3.2 Problem Definition

A KG can be represented by a set of triples G = {(h, r, t) ⊆ E ×R×E}, where E
and R denote the set of existing entities and relations in KG respectively, h, t ∈ E
denote the head and tail entities and r ∈ R denotes the specific relations between
the entities. The few-shot inductive link prediction on KGs can be formulated
as follows:

Definition 1. Few-shot inductive link prediction on knowledge graphs.
Given a knowledge graph G and an unseen entity set Ẽ, where E ∩ Ẽ = ∅, we
assume that each unseen entity u ∈ Ẽ is associated with a K-shot support set
{(u, ri, ei)}K

i=1, where ei ∈ E ∪ Ẽ. For an unseen entity u, our task is to obtain a
function fu that predicts the other entity eq for each query q = (u, rq, ?) in the
query set {(u, rq, ?)}, where eq ∈ E ∪ Ẽ and rq is the given query relation.

In our paper, we propose a neural process-based framework for this task.
For each unseen entity u, we treat its support set as the context data Cu =
{(u, ri, ei)}K

i=1 and the query set as the target data Du = {(u, rq, ?)}.

4 Approach

In this section, we present our proposed model RawNP, which consists of three
major components: (1) a relational anonymous walk (RAW) to generate a series
of relational motifs for each entity and excavate distinctive semantic patterns;
(2) a RAW-guided neural process encoder to model the joint distribution over
link prediction functions on knowledge graphs and simultaneously estimate the
uncertainty for predictions; (3) an inductive neural process link predictor to infer
the inductive links given an unseen entity and its associated relation. The overall
framework of our proposed model is illustrated in Fig. 2.

520 Z. Zhao et al.

Fig. 2. The framework of our proposed model RawNP for few-shot inductive link pre-
diction on knowledge graphs.

4.1 Relational Anonymous Walk

The relational anonymous walk (RAW) is designed to capture the distinctive
semantic patterns on KGs, which better reveal the inductive identity and facili-
tate the link prediction. Previous methods capture the semantic patterns in the
sub-graphs around entities by using relational path [44,52], which is a sequence
of relations connecting the entities. Specifically, given a raw path in the knowl-
edge graphs: w = e0

r1−→ e1
r2−→ . . .

rl−→ el, the corresponding relational paths s is
the sequence of relations in the given path, i.e., s = {r1, r2, . . . , rl}. However, the
relational path is not general enough, as the combinations of relations explode
in KGs, making the patterns captured by relational paths not distinguishable.
To address this issue, we propose a relational anonymous walk to extract the
distinctive semantic patterns in the form of relational motifs. The process of
RAW is shown in Algorithm 1.

For each entity e in the triple (u, r, e) of the K-shot support set, we first
perform random walk [29] to sample a few l-step paths {wi = e

r1−→ e1
r2−→

. . .
rl−→ el}L

i=1 starting from e, where L denotes the number of walks. Then, we
could obtain the corresponding relational paths {si = {r1, r2, . . . , rl}}L

i=1, where
relations could be repeated in si. Later, we apply an anonymization operation
A(·) to each si by replacing the actual relations with their first positions in si.
This can be formulated as

mi =A(si) = {I(r1), I(r2), . . . , I(rl)}, (3)
I(rj) = min pos(rj , si), (4)

where pos(rj , si) ∈ [1, l] denotes the positions of rj in si. The anonymization
operation A(·) removes the relation identities and maps the relational paths into
a general semantic pattern defined as a relational motif mi. For example, as
shown in the bottom of Fig. 2, the two distinct relational paths s1 and s2 can be

RawNP: Few-Shot Inductive Link Prediction on Knowledge Graphs 521

Algorithm 1: Relational anonymous walk (RAW)
Input: Knowledge graph G; unseen entity u; support triple (u, r, e) ∈ Cu; walks

number L; walks length l
Output: Relational motifs set Me

1 Initialize Me ← ∅;
2 for i=1 to L do
3 Sample a l-step path wi starting from e using random walk;
4 Obtain the corresponding relational path si;
5 Apply anonymization operation A(si) to extract the motif mi;
6 Add mi to Me;

7 end

anonymized to the same relational motif structure m. In this way, by checking
the set of relational motifs Me, we can find the distinctive features for inductive
link predictions.

To obtain the representation of patterns, we first encode each motif mi ∈ Me

by using a recurrent neural network (RNN) and aggregate them with a mean
pooling, which is formulated as

m′
i =RNN({fenc

(
I(rj)

)|I(rj) ∈ mi}), (5)

M ′
e =

1
|Me|

∑
mi∈Me

m′
i, (6)

where fenc is a multi-layer perceptron (MLP) mapping function.

4.2 RAW-Guided Neural Process Encoder

RAW-guided neural process encoder attempts to model the joint distribution
over the link prediction functions based on the context data (support set). It
first learns a low-dimension vector ci for each triple in the context data. Then, it
aggregates them into a global representation z, which defines the distribution as
N (μ(z), σ(z)). By sampling a z from the distribution, we can adaptively obtain
the prediction function fu.

For each triple (u, ri, ei) in the support set, we first adopt RAW to obtain
the pattern representation M ′

ei
to inject the inductive ability into fu. Since the

relational motifs ignore the identity information, we also obtain the represen-
tations of entity e′

i and relation r′
i from a pre-trained model, e.g., TransE [2].

For the unseen node u, we adopt an inductive relational graph neural network
(I-RGNN) to generate the representation by aggregating all the triples in its
support set, which is formulated as

u′ = ReLU(
1

|Cu|
∑

(u,ri,ei)∈Cu

Wri
r′
i + We′

i), (7)

522 Z. Zhao et al.

where Wri
denotes a relation-specific weight matrix and W is a weight matrix.

Through aggregating from associated triples in the support set, I-RGNN enables
the inductive generation of embeddings for unseen entities.

By incorporating the representations of u′, r′
i, e′

i, and M ′
ei

, ci is generated as
follows:

ci = MLP
(
u′ ‖r′

i‖e′
i‖ yi‖M ′

ei

)
, yi =

{
1, (u, ri, ei) ∈ Cu

0, (u, ri, ei) ∈ C−
u

, (8)

where we sample a set of negative samples C−
u by replacing the ei in Cu with the

other entities randomly, and yi is an indicator vector. ‖ represents concatenation
operations.

Then, we aggregate all the latent representations ci ∈ Cu ∪ C−
u to obtain a

global representation z and define the joint distribution over the link prediction
functions. The aggregator function must satisfy the condition of permutation-
invariant [11,38]. Therefore, we select the mean pooling function, which can be
formulated as

z =
1∣∣Cu ∪ C−

u

∣∣
∑

ci∈Cu∪C−
u

ci. (9)

The distribution P (z|Cu) is empirically considered as a Gaussian distribution
N (μ(z), σ(z)) parameterized by z [10,15], in which the mean μ(z) and variance
σ(z) are modeled by two neural networks:

hz = ReLU(MLP(z)), (10)
μ(z) = MLP(hz), (11)

σ(z) = 0.1 + 0.9 ∗ Sigmoid(MLP(hz)). (12)

Noticeably, N (μ(z), σ(z)) not only defines the distribution over functions, but
also estimates the uncertainty of the model. When the support set is limited,
the encoder could generate a distribution with a larger variance, which indicates
that the model is more uncertain to its predictions. We detailly analyze the
uncertainty captured by RawNP in Sect. 5.7.

4.3 Inductive Neural Process Link Predictor

The inductive neural process link predictor serves the decoder to realize the fu

modeled by N (μ(z), σ(z)). Given a query q = (u, rq, ?), fu tries to predict the
possible entity eq. The details are as follows:

In the predictor, we obtain the representations of entities and relations (i.e.,
u′, r′

q, e
′
q) with the same process in Sect. 4.2 and combine them with a sampled

z by following the paradigm of neural process, which is calculated as

Sample z ∼ N (μ(z), σ(z)), (13)

where each sample of z is regarded as a realization of the function from corre-
sponding stochastic process.

RawNP: Few-Shot Inductive Link Prediction on Knowledge Graphs 523

Then, we use two independent MLPs to map z into the space of entities and
project u′ and e′

q into the hyper-planes defined by z via using an element-wise
addition, which can be formulated as

u′
z = u′ + MLPz

u(z), e′
z = e′

q + MLPz
e(z). (14)

For inductive prediction, we also obtain the relational motif representation
M ′

eq
produced by the relational anonymous walk introduced in Sect. 4.1. Simi-

larly, we inject this representation by another two MLPs, which are formulated
as

hu = u′
z + MLPM

u (M ′
eq

), he = e′
z + MLPM

e (M ′
eq

). (15)

Finally, we use a score function to measure the plausibility of triples, which
is formulated as

s (u, rq, eq) = ||hu + r′
q − he||. (16)

4.4 Optimization and Inference

Optimization. Given an unseen entity u and its support set Cu, our objective
is to infer the distribution P (z|Cu) from the context data that minimizes the
prediction loss on the target data log P (eq|u, rq, Cu). The optimization can be
achieved by maximizing the evidence lower bound (ELBO), as derived:

log P (eq|u, rq, Cu) =
∫

z

Q(z) log
P (eq, z|u, rq, Cu)

P (z|Cu)
, (17)

=
∫

z

Q(z) log
P (eq, z|u, rq, Cu)

Q(z)
+ KL (Q(z)‖P (z|Cu)) , (18)

≥
∫

z

Q(z) log
P (eq, z|u, rq, Cu)

Q(z)
, (19)

= EQ(z) log
P (eq, z|u, rq, Cu)

Q(z)
, (20)

= EQ(z)

[
log P (eq|u, rq, z) + log

P (z|Cu)
Q(z)

]
, (21)

= EQ(z) [log P (eq|u, rq, z)] − KL (Q(z)‖P (z|Cu)) , (22)

where Q(z) represents the true posterior distribution of z, which is intractable.
To address this problem, we approximate it with Q (z|Cu,Du) calculated by the
encoder during training. The detailed derivation of Eq. (22) can be found in the
Appendix.

We introduce the reparamterization trick for sampling z to support gradient
propagation, and then we estimate the expectation EQ(z) [log P (eq|u, rq, z)] via
the Monte-Carlo sampling as follows:

EQ(z) [log P (eq|u, rq, z)] � 1
T

T∑
t=1

log P
(
eq|u, rq, z

(t)
)

, (23)

z(t) = μ(z) + σ(z)ε(t), with ε(t) ∼ N (0, 1). (24)

524 Z. Zhao et al.

The likelihood term log P (eq|u, rq, z) is calculated by a widely-used margin
ranking loss as follows:

log P (eq|u, rq, z) = −
∑
q,q−

max
(
0, γ + s

(
q−) − s (q)

)
, (25)

where γ denotes a margin hyper-parameter, and q = (u, rq, eq) denotes the
ground truth triples, and q− denotes the negative triples by randomly corrupting
eq. By maximizing the likelihood, we aim to rank the scores of positive triples
higher than all other negative triples.

Inference. In the inference stage, given an unseen entity u, we generate
latent distribution P (z|Cu) by using its support set Cu. Then, we feed the sam-
pled z together with the embeddings of unseen entity u and its query relation
rq to the decoder and predict the possible entity eq for the target set Du. The
algorithms of the training and testing process can be found in the Appendix.

5 Experiment

5.1 Datasets and Evaluation

We conduct our experiments on two benchmark datasets: FB15k-237 [36] and
NELL-995 [50]. To support the inductive setting, we randomly filter a few
entities out of KGs as unseen entities. For FB15k-237 dataset, we first select
5000 entities whose related triples are between 10 to 100 and split them into
2,500/1,000/1,500 for training/validation/test. For NELL-995 dataset, we choose
3000 entities whose associated triples are between 7 to 100 and split them into
1,500/600/900 for training/validation/test. The splits are following the same
settings in GEN [1] and the statistics of two datasets can be found in Appendix.

In the evaluation stage, for a query triple (u, rq, ?), we construct the candidate
set by using all the possible entities in the KG. We obtain the rank of the correct
triples and report the results using the mean reciprocal rank (MRR) and the Top-
N hit ratio (Hits@N). The N is set to 1, 3, and 10 to directly compare with the
existing methods.

5.2 Baseline Models

We select a series of following baseline models for comparison, which can
be divided into three categories: (1) Traditional KGC methods, including
TransE [2], DistMult [53], ComplEx [37], RotatE [34]; (2) GNN-based meth-
ods, including R-GCN [30], MEAN [12], LAN [46]; (3) Few-shot inductive
methods, including GMatching [51], MetaR [6], FSRL [54], GEN [1]. Specifi-
cally, there are two versions of the GEN model: I-GEN, which does not consider
relations between unsees entities, and T-GEN which remedies the defect. More
details can be found in the Appendix. To avoid the re-implementation bias, we
directly use the existing SOTA results reported by GEN [1] in experiments.

RawNP: Few-Shot Inductive Link Prediction on Knowledge Graphs 525

5.3 Implementation Details

We implement our model with PyTorch [28] and PyG [9] package and conduct
experiments on a single RTX 3090 GPU. The dimensions of entity and relation
embedding are set to 100. The length of random walk l in the relational motifs
extractor is set to 10, and the walk number L is set to 5. We set the learning rate
as 10−3, margin γ as 1, dropout rate as 0.3, and negative sample size as 32 and 64
in FB15k-237 and NELL-995, respectively. We use Adam as the optimizer. We
use the pre-trained model (e.g., TransE [2]) to initialize the embeddings of entity
and relation, which is fine-tuned during training. We set the embedding of unseen
entities as the zero vector. Finally, the best model used for testing is selected
according to the metric of MRR on the evaluation set. More detailed experiment
settings can be found in the Appendix. Code and appendix are available at
https://github.com/leapxcheng/RawNP.

5.4 Results and Analysis

We present the results of 1-shot and 3-shot link prediction on FB15k-237 and
NELL-995 in Table 1, where the best results are highlighted in bold. From the
results, we can see that our RawNP achieves the best performance against all
baseline models, demonstrating the superiority and effectiveness of our model.

Traditional KGC methods get the worst results. Because they cannot well
represent the emerging unseen entity and barely works under the inductive set-
ting. GNN-based methods achieve better performance as they consider the local
structure of the knowledge graph. Specifically, LAN uses the attention mecha-
nism to capture the semantics inherent in the knowledge graph, which achieves
the best performance among GNN-based methods. However, with the limitation
of the data (e.g., 1-shot), their performance drops quickly. Few-shot methods
focus on making predictions with limited data and they reach the second-best
results. They often adopt the framework of meta-learning to update the embed-
dings of new entities with their support triples. However, when the support set
is inaccurate and shares different distributions with the query set, the perfor-
mance of few-shot methods will be affected. Therefore, T-GEN introduces a
stochastic embedding layer to account for the uncertainty, which improves the
reliability of its predictions. In our method, we not only adopt the framework
of the neural process to quantify the uncertainty but also extract the relational
motifs to inject the inductive ability into our model, which outperforms all base-
line models. Compared with the 3-shot results, the improvement on the 1-shot
is relatively small. The possible reason is that the model is less certain about
its predictions given a single observation, which impairs the predictions. Detail
studies about uncertainty captured by RawNP can be found in Sect. 5.7.

In real-world settings, unseen entities emerge simultaneously. Therefore, we
also consider the prediction of links between two unseen entities, i.e., Unseen-
to-unseen link prediction. We illustrate the performance of our model RawNP in
Table 2, where it achieves comparable results to existing state-of-the-art meth-
ods. This demonstrates that RawNP is capable of inferring hidden relationships

https://github.com/leapxcheng/RawNP

526 Z. Zhao et al.

Table 1. The results of 1-shot and 3-shot link prediction on FB15k-237 and NELL-995.
The best results are highlighted in bold.

Model FB15k-237 NELL-995

MRR Hit@1 Hit@3 Hit@10 MRR Hit@1 Hit@3 Hit@10

1-S 3-S 1-S 3-S 1-S 3-S 1-S 3-S 1-S 3-S 1-S 3-S 1-S 3-S 1-S 3-S

TransE .071 .120 .023 .057 .086 .137 .159 .238 .071 .118 .037 .061 .079 .132 .129 .223

DistMult .059 .094 .034 .053 .064 .101 .103 .172 .075 .134 .045 .083 .083 .143 .131 .233

ComplEx .062 .104 .037 .058 .067 .114 .110 .188 .069 .124 .045 .077 .071 .134 .117 .213

RotatE .063 .115 .039 .069 .071 .131 .105 .200 .054 .112 .028 .060 .064 .131 .104 .209

R-GCN .099 .140 .056 .082 .104 .154 .181 .255 .112 .199 .074 .141 .119 .219 .184 .307

MEAN .105 .114 .052 .058 .109 .119 .207 .217 .158 .180 .107 .124 .173 .189 .263 .296

LAN .112 .112 .057 .055 .118 .119 .214 .218 .159 .172 .111 .116 .172 .181 .255 .286

GMatching .224 .238 .157 .168 .249 .263 .352 .372 .120 .139 .074 .092 .136 .151 .215 .235

MetaR .294 .316 .223 .235 .318 .341 .441 .492 .177 .213 .104 .145 .217 .247 .315 .352

FSRL .255 .259 .187 .186 .279 .281 .391 .404 .130 .161 .075 .106 .145 .181 .253 .275

I-GEN .348 .367 .270 .281 .382 .407 .504 .537 .278 .285 .206 .214 .313 .322 .416 .426

T-GEN .367 .382 .282 .289 .410 .430 .530 .565 .282 .291 .209 .217 .320 .333 .421 .433

RawNP .371 .409 .289 .323 .411 .453 .532 .575 .283 .314 .210 .243 .316 .352 .419 .452

Table 2. The seen-to-unseen and unseen-to-unseen results of 1-shot and 3-shot link
prediction on FB15k-237. Bold numbers denote the best results.

Model Seen-to-unseen Unseen-to-unseen

MRR Hit@10 MRR Hit@10

1-S 3-S 1-S 3-S 1-S 3-S 1-S 3-S

I-GEN .371 .391 .537 .571 .000 .000 .000 .000

T-GEN .379 .396 .550 .588 .185 .175 .220 .201

RawNP .383 .422 .549 .601 .204 .198 .221 .220

among unseen entities and confirms its inductive ability. The I-GEN model
ignores the relations between unseen entities, resulting in poor performance.

5.5 Ablation Study

To evaluate the effectiveness of relational anonymous walks (RAW) and neural
process (NP), we perform an ablation study by removing each component. The
experiment is conducted on the FB15k-237 dataset with a 3-shot support set, and
the results are shown in Fig. 3. From the results, we can see that all components
(i.e., RAW and NP) are helpful for improving the performance. By removing the
RAW, the model ignores the inductive semantic patterns bought by relational
motifs, which impairs the ability of inductive reasoning. Without the NP, the
model just obtains a deterministic function for the unseen entity, instead of
modeling the function distribution. Therefore, the model could suffer from the
overfitting problem and fail to generalize to more situations.

RawNP: Few-Shot Inductive Link Prediction on Knowledge Graphs 527

Fig. 3. Ablation study on the FB15k-237 dataset.

Fig. 4. Parameter studies on walks
number L and walks length l.

Fig. 5. Uncertainty analysis under dif-
ferent K-shot support set.

5.6 Parameters Analysis

We study the impact of walks number L and walks length l in relational anony-
mous walks. The results are illustrated in Fig. 4. From the results, we can see
that the performance of RawNP improves as the walks number L increases. The
possible reason is that by increasing the walks number, the model could capture
more diverse relational motifs, and generate more representative patterns easily.
Nevertheless, too many walks could also extract many general patterns that are
not dedicated to the unseen entity. The performance of RawNP first increases and
then decreases as the walks length l reaches 10. When l is small, the path is too
short to represent meaningful patterns (e.g., 1-2-3-4). However, an over large
path length could contain redundant motifs that are also not helpful.

5.7 Uncertainty Analysis

The major advantage of RawNP is able to estimate the uncertainty in its predic-
tions. By using the neural process, we can obtain distribution of the prediction
function given the support set. The uncertainty of the model can be evaluated
by the entropy of z [26]. The higher the entropy, the more uncertain the model
is. We illustrate the Hit@1 under different K-shot support sets and calculate the
corresponding Entropy(z) by using [33], which are illustrated in Fig. 5.

From the results, we can see that with K increasing, the performance of
RawNP first improves. This indicates that RawNP could adaptively incorporate
new observations to enhance the distribution. Then entropy of z also supports
the claim. With more data in the support set, the Entropy(z) decreases, meaning
the model is more certain about its predictions. The performance of the model

528 Z. Zhao et al.

Fig. 6. The Top-3 relational motifs and corresponding occurrence numbers extracted
for entity 4192 in FB15k-237.

slightly decreases when K ≥ 4, which could be caused by the noise in the support
set. The Entropy(z) follows the same trend as the model performance. When
the model is more uncertain (i.e., larger entropy), the performance is also worse,
which indicates that RawNP enables estimating the uncertainty accurately.

5.8 Case Study of Relational Motif

In this section, we conduct a case study to illustrate the relational motifs cap-
tured by RawNP. We first select an unseen entity from FB15k-237, and we illus-
trate the Top-3 distinctive motifs extracted from its support set, positive triples
and negative triples, respectively in Fig. 6. From the results, we can see that the
relational motifs capture some general semantic patterns (e.g., 1-2-3-4), which
widely exist in all sets. However, we also easily find that the motifs from the
positive triples are more similar to the motifs from the support set, whereas the
motifs from the negative samples cannot match the motifs from the support set.
This indicates that RawNP could capture the distinguishable relational motifs of
the unseen entity for few-shot inductive link prediction. More detailed cases of
motif extraction can be found in the Appendix.

6 Conclusion

In this paper, we propose a novel relational anonymous walk-guided neural pro-
cess approach for few-shot inductive link prediction on knowledge graphs, named
RawNP. We first propose a neural process-based approach, which models the dis-
tribution over functions conditioned on few-shot observations. Then, we propose
a novel relational anonymous walk to extract relational motifs to capture general
semantic patterns. The comparison against other baseline models demonstrates
the superiority of our method. We plan to unify large language models (LLMs)
and knowledge graphs to improve the link prediction performance [27].

Acknowledgement. This research is supported by NSF of China (No: 61973162),
NSF of Jiangsu Province (No: BZ2021013), NSF for Distinguished Young Scholar of
Jiangsu Province (No: BK20220080), the Fundamental Research Funds for the Central
Universities (Nos: 30920032202, 30921013114), CAAI-Huawei MindSpore Open Fund,
and “111” Program (No: B13022).

RawNP: Few-Shot Inductive Link Prediction on Knowledge Graphs 529

Ethical Statement. In this research, we conducted experiments on publicly available

datasets and implemented our approaches using commonly accepted techniques, giving

utmost consideration to fairness and avoiding potential biases. We acknowledge the

significance of transparency and have furnished comprehensive elucidations regarding

our methodology and decision-making process. To conclude, our research adheres to

ethical guidelines and poses no potential risks.

References

1. Baek, J., Lee, D.B., Hwang, S.J.: Learning to extrapolate knowledge: transductive
few-shot out-of-graph link prediction. Adv. Neural. Inf. Process. Syst. 33, 546–560
(2020)

2. Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J., Yakhnenko, O.: Translating
embeddings for modeling multi-relational data. In: Advances in Neural Information
Processing Systems, vol. 26 (2013)

3. Brazdil, P., van Rijn, J.N., Gouk, H., Mohr, F.: Advances in metalearning:
ECML/PKDD workshop on meta-knowledge transfer. In: ECML-PKDD Work-
shop on Meta-Knowledge Transfer, pp. 1–7. PMLR (2022)

4. Cangea, C., Day, B., Jamasb, A.R., Lio, P.: Message passing neural processes. In:
ICLR 2022 Workshop on Geometrical and Topological Representation Learning
(2022)

5. Chen, J., He, H., Wu, F., Wang, J.: Topology-aware correlations between relations
for inductive link prediction in knowledge graphs. In: Proceedings of the AAAI
Conference on Artificial Intelligence, pp. 6271–6278 (2021)

6. Chen, M., Zhang, W., Zhang, W., Chen, Q., Chen, H.: Meta relational learning
for few-shot link prediction in knowledge graphs. arXiv preprint arXiv:1909.01515
(2019)

7. Chen, M., Zhang, W., Zhu, Y., Zhou, H., Yuan, Z., Xu, C., Chen, H.: Meta-
knowledge transfer for inductive knowledge graph embedding. In: Proceedings of
the 45th International ACM SIGIR Conference on Research and Development in
Information Retrieval, pp. 927–937 (2022)

8. Dong, M., Yuan, F., Yao, L., Xu, X., Zhu, L.: MAMO: memory-augmented meta-
optimization for cold-start recommendation. In: Proceedings of the 26th ACM
SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 688–697 (2020)

9. Fey, M., Lenssen, J.E.: Fast graph representation learning with pytorch geometric.
arXiv preprint arXiv:1903.02428 (2019)

10. Garnelo, M., et al.: Conditional neural processes. In: International Conference on
Machine Learning, pp. 1704–1713. PMLR (2018)

11. Garnelo, M., et al.: Neural processes. arXiv preprint arXiv:1807.01622 (2018)
12. Hamaguchi, T., Oiwa, H., Shimbo, M., Matsumoto, Y.: Knowledge transfer for

out-of-knowledge-base entities: a graph neural network approach. arXiv preprint
arXiv:1706.05674 (2017)

13. Huang, Q., Ren, H., Leskovec, J.: Few-shot relational reasoning via connection sub-
graph pretraining. In: Advances in Neural Information Processing Systems (2022)

14. Jin, M., Li, Y.F., Pan, S.: Neural temporal walks: motif-aware representation learn-
ing on continuous-time dynamic graphs. In: Advances in Neural Information Pro-
cessing Systems (2022)

15. Kim, H., et al.: Attentive neural processes. arXiv preprint arXiv:1901.05761 (2019)

http://arxiv.org/abs/1909.01515
http://arxiv.org/abs/1903.02428
http://arxiv.org/abs/1807.01622
http://arxiv.org/abs/1706.05674
http://arxiv.org/abs/1901.05761

530 Z. Zhao et al.

16. Kingma, D.P., Welling, M.: Auto-encoding variational Bayes. arXiv preprint
arXiv:1312.6114 (2013)

17. Liang, H., Gao, J.: How neural processes improve graph link prediction. In: ICASSP
2022–2022 IEEE International Conference on Acoustics, Speech and Signal Pro-
cessing (ICASSP), pp. 3543–3547. IEEE (2022)

18. Lin, X., Wu, J., Zhou, C., Pan, S., Cao, Y., Wang, B.: Task-adaptive neural process
for user cold-start recommendation. In: Proceedings of the Web Conference 2021,
pp. 1306–1316 (2021)

19. Liu, S., Grau, B., Horrocks, I., Kostylev, E.: Indigo: GNN-based inductive knowl-
edge graph completion using pair-wise encoding. In: Advances in Neural Informa-
tion Processing Systems, pp. 2034–2045 (2021)

20. Luo, L., Fang, Y., Cao, X., Zhang, X., Zhang, W.: Detecting communities from
heterogeneous graphs: a context path-based graph neural network model. In: Pro-
ceedings of the 30th ACM International Conference on Information & Knowledge
Management, pp. 1170–1180 (2021)

21. Luo, L., Fang, Y., Lu, M., Cao, X., Zhang, X., Zhang, W.: GSim: a graph neural
network based relevance measure for heterogeneous graphs. In: IEEE Trans. Knowl.
Data Eng. (2023)

22. Luo, L., Haffari, G., Pan, S.: Graph sequential neural ode process for link prediction
on dynamic and sparse graphs. In: Proceedings of the Sixteenth ACM International
Conference on Web Search and Data Mining, pp. 778–786 (2023)

23. Luo, L., Li, Y.F., Haffari, G., Pan, S.: Normalizing flow-based neural process for
few-shot knowledge graph completion (2023)

24. Mai, S., Zheng, S., Yang, Y., Hu, H.: Communicative message passing for inductive
relation reasoning. In: Proceedings of the AAAI Conference on Artificial Intelli-
gence, pp. 4294–4302 (2021)

25. Menon, A.K., Elkan, C.: Link prediction via matrix factorization. In: Gunopulos,
D., Hofmann, T., Malerba, D., Vazirgiannis, M. (eds.) ECML PKDD 2011. LNCS
(LNAI), vol. 6912, pp. 437–452. Springer, Heidelberg (2011). https://doi.org/10.
1007/978-3-642-23783-6 28

26. Naderiparizi, S., Chiu, K., Bloem-Reddy, B., Wood, F.: Uncertainty in neural pro-
cesses. arXiv preprint arXiv:2010.03753 (2020)

27. Pan, S., Luo, L., Wang, Y., Chen, C., Wang, J., Wu, X.: Unifying large language
models and knowledge graphs: a roadmap. arXiv preprint arXiv:2306.08302 (2023)

28. Paszke, A., et al.: PyTorch: an imperative style, high-performance deep learning
library. In: Advances in Neural Information Processing Systems, vol. 32 (2019)

29. Perozzi, B., Al-Rfou, R., Skiena, S.: DeepWalk: online learning of social repre-
sentations. In: Proceedings of the 20th ACM SIGKDD Conference on Knowledge
Discovery & Data Mining, pp. 701–710 (2014)

30. Schlichtkrull, M., Kipf, T.N., Bloem, P., van den Berg, R., Titov, I., Welling,
M.: Modeling relational data with graph convolutional networks. In: Gangemi, A.,
et al. (eds.) ESWC 2018. LNCS, vol. 10843, pp. 593–607. Springer, Cham (2018).
https://doi.org/10.1007/978-3-319-93417-4 38

31. Shi, B., Weninger, T.: Open-world knowledge graph completion. In: Proceedings
of the AAAI Conference on Artificial Intelligence (2018)

32. Singh, G., Yoon, J., Son, Y., Ahn, S.: Sequential neural processes. In: Advances in
Neural Information Processing Systems, vol. 32 (2019)

33. Singh, S., Póczos, B.: Analysis of k-nearest neighbor distances with application to
entropy estimation. arXiv preprint arXiv:1603.08578 (2016)

34. Sun, Z., Deng, Z.H., Nie, J.Y., Tang, J.: Rotate: knowledge graph embedding by
relational rotation in complex space. arXiv preprint arXiv:1902.10197 (2019)

http://arxiv.org/abs/1312.6114
https://doi.org/10.1007/978-3-642-23783-6_28
https://doi.org/10.1007/978-3-642-23783-6_28
http://arxiv.org/abs/2010.03753
http://arxiv.org/abs/2306.08302
https://doi.org/10.1007/978-3-319-93417-4_38
http://arxiv.org/abs/1603.08578
http://arxiv.org/abs/1902.10197

RawNP: Few-Shot Inductive Link Prediction on Knowledge Graphs 531

35. Teru, K., Denis, E., Hamilton, W.: Inductive relation prediction by subgraph rea-
soning. In: International Conference on Machine Learning, pp. 9448–9457. PMLR
(2020)

36. Toutanova, K., Chen, D., Pantel, P., Poon, H., Choudhury, P., Gamon, M.: Rep-
resenting text for joint embedding of text and knowledge bases. In: Proceedings of
the 2015 Conference on Empirical Methods in Natural Language Processing, pp.
1499–1509 (2015)

37. Trouillon, T., Welbl, J., Riedel, S., Gaussier, É., Bouchard, G.: Complex embed-
dings for simple link prediction. In: International Conference on Machine Learning,
pp. 2071–2080. PMLR (2016)

38. Van Kampen, N.G.: Stochastic differential equations. Phys. Rep. 24(3), 171–228
(1976)

39. Wan, G., Pan, S., Gong, C., Zhou, C., Haffari, G.: Reasoning like human: hier-
archical reinforcement learning for knowledge graph reasoning. In: Proceedings
of the Thirty-First International Joint Conference on Artificial Intelligence, pp.
1926–1932 (2021)

40. Wan, S., Pan, S., Yang, J., Gong, C.: Contrastive and generative graph convolu-
tional networks for graph-based semi-supervised learning. In: Proceedings of the
AAAI Conference on Artificial Intelligence, pp. 10049–10057 (2021)

41. Wan, S., et al.: Multi-level graph learning network for hyperspectral image classi-
fication. Pattern Recogn. 129, 108705 (2022)

42. Wan, S., Zhan, Y., Liu, L., Yu, B., Pan, S., Gong, C.: Contrastive graph poisson
networks: semi-supervised learning with extremely limited labels. Adv. Neural. Inf.
Process. Syst. 34, 6316–6327 (2021)

43. Wang, C., Zhou, X., Pan, S., Dong, L., Song, Z., Sha, Y.: Exploring relational
semantics for inductive knowledge graph completion. In: Proceedings of the AAAI
Conference on Artificial Intelligence, pp. 4184–4192 (2022)

44. Wang, H., Ren, H., Leskovec, J.: Relational message passing for knowledge graph
completion. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge
Discovery & Data Mining, pp. 1697–1707 (2021)

45. Wang, H., Zhang, F., Zhao, M., Li, W., Xie, X., Guo, M.: Multi-task feature
learning for knowledge graph enhanced recommendation. In: Proceedings of the
Web Conference 2019, pp. 2000–2010 (2019)

46. Wang, P., Han, J., Li, C., Pan, R.: Logic attention based neighborhood aggregation
for inductive knowledge graph embedding. In: Proceedings of the AAAI Conference
on Artificial Intelligence, pp. 7152–7159 (2019)

47. Wang, R., et al.: Learning to sample and aggregate: few-shot reasoning over tem-
poral knowledge graphs. In: Advances in Neural Information Processing Systems
(2022)

48. Wang, Y., Chang, Y.Y., Liu, Y., Leskovec, J., Li, P.: Inductive representa-
tion learning in temporal networks via causal anonymous walks. arXiv preprint
arXiv:2101.05974 (2021)

49. Xiao, S., et al.: HMNet: hybrid matching network for few-shot link prediction.
In: Jensen, C.S., et al. (eds.) Hmnet: Hybrid matching network for few-shot link
prediction. LNCS, vol. 12681, pp. 307–322. Springer, Cham (2021). https://doi.
org/10.1007/978-3-030-73194-6 21

50. Xiong, W., Hoang, T., Wang, W.Y.: DeepPath: a reinforcement learning method
for knowledge graph reasoning. arXiv preprint arXiv:1707.06690 (2017)

51. Xiong, W., Yu, M., Chang, S., Guo, X., Wang, W.Y.: One-shot relational learning
for knowledge graphs. arXiv preprint arXiv:1808.09040 (2018)

http://arxiv.org/abs/2101.05974
https://doi.org/10.1007/978-3-030-73194-6_21
https://doi.org/10.1007/978-3-030-73194-6_21
http://arxiv.org/abs/1707.06690
http://arxiv.org/abs/1808.09040

532 Z. Zhao et al.

52. Xu, X., Zhang, P., He, Y., Chao, C., Yan, C.: Subgraph neighboring relations
infomax for inductive link prediction on knowledge graphs. In: Proceedings of the
Thirty-First International Joint Conference on Artificial Intelligence (2022)

53. Yang, B., Yih, W.t., He, X., Gao, J., Deng, L.: Embedding entities and relations for
learning and inference in knowledge bases. arXiv preprint arXiv:1412.6575 (2014)

54. Zhang, C., Yao, H., Huang, C., Jiang, M., Li, Z., Chawla, N.V.: Few-shot knowl-
edge graph completion. In: Proceedings of the AAAI Conference on Artificial Intel-
ligence, pp. 3041–3048 (2020)

55. Zhang, X., Liang, X., Zheng, X., Wu, B., Guo, Y.: MULTIFORM: few-shot knowl-
edge graph completion via multi-modal contexts. In: Machine Learning and Knowl-
edge Discovery in Databases: European Conference, ECML-PKDD 2022, Grenoble,
France, September 19–23, 2022, Proceedings, Part II, pp. 172–187. Springer (2023).
https://doi.org/10.1007/978-3-031-26390-3 11

56. Zhang, Z., Lan, C., Zeng, W., Chen, Z., Chang, S.F.: Uncertainty-aware few-shot
image classification. In: Proceedings of the Thirtieth International Joint Conference
on Artificial Intelligence (2020)

57. Zheng, S., Mai, S., Sun, Y., Hu, H., Yang, Y.: Subgraph-aware few-shot inductive
link prediction via meta-learning. IEEE Trans. Knowl. Data Eng. (2022)

http://arxiv.org/abs/1412.6575
https://doi.org/10.1007/978-3-031-26390-3_11

Comparing Apples and Oranges?
On the Evaluation of Methods
for Temporal Knowledge Graph

Forecasting

Julia Gastinger1,2(B) , Timo Sztyler1 , Lokesh Sharma1 , Anett Schuelke1,
and Heiner Stuckenschmidt2

1 NEC Laboratories Europe, Heidelberg, Germany
{julia.gastinger,timo.sztyler,lokesh.sharma}@neclab.eu

2 Chair of Artificial Intelligence, University of Mannheim, Mannheim, Germany
heiner.stuckenschmidt@uni-mannheim.de

Abstract. Due to its ability to incorporate and leverage time infor-
mation in relational data, Temporal Knowledge Graph (TKG) learning
has become an increasingly studied research field. To predict the future
based on TKG, researchers have presented innovative methods for Tem-
poral Knowledge Graph Forecasting. However, the experimental proce-
dures employed in this research area exhibit inconsistencies that signifi-
cantly impact empirical results, leading to distorted comparisons among
models. This paper focuses on the evaluation of TKG Forecasting mod-
els: We examine the evaluation settings commonly used in this research
area and highlight the issues that arise. To make different approaches
to TKG Forecasting more comparable, we propose a unified evaluation
protocol and apply it to re-evaluate state-of-the-art models on the most
commonly used datasets. Ultimately, we demonstrate the significant dif-
ference in results caused by different evaluation settings. We believe this
work provides a solid foundation for future evaluations of TKG Fore-
casting models, thereby contributing to advancing this growing research
area.

Keywords: Temporal Knowledge Graphs · Temporal Graphs ·
Temporal Knowledge Graph Forecasting

1 Introduction

Temporal Knowledge Graphs (TKG) are Knowledge Graphs (KG) where facts
occur, recur or evolve over time [28]. TKG can accommodate time-evolving multi-
relational data by extending facts with a timestamp to indicate that a triple is
valid at this timestamp [7]. The research field of TKG Forecasting, or TKG
Extrapolation, aims at predicting facts at future timesteps, based on the KG
history [26]. Recently, various methods have been proposed to advance the field
[7,8,12,16–18,26,30].
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
D. Koutra et al. (Eds.): ECML PKDD 2023, LNAI 14171, pp. 533–549, 2023.
https://doi.org/10.1007/978-3-031-43418-1_32

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-43418-1_32&domain=pdf
http://orcid.org/0000-0003-1914-6723
http://orcid.org/0000-0001-8132-5920
http://orcid.org/0009-0009-2522-1209
http://orcid.org/0000-0002-0209-3859
https://doi.org/10.1007/978-3-031-43418-1_32

534 J. Gastinger et al.

Unfortunately, and despite the progress made so far in TKG Forecasting, var-
ious reported experimental settings show discrepancies: first, the existing models
are evaluated on scores computed with different filter settings; second, models
for single-step prediction that predict one step to the future are lumped together
with models for multi-step prediction that predict multiple steps to the future;
third, multiple versions of the same datasets exist. Last but not least, some mod-
els do use the information from the validation set for testing, whereas others do
not. These four issues can strongly influence the empirical results and signif-
icantly decrease comparability across works. As an example, the best results
in single-step setting are in average 6% better than the best results in multi-
step setting. Consequently, it is very difficult to understand existing methods’
strengths or weaknesses or to identify the currently best-performing method.

In this paper, we address the aforementioned issues in the evaluation of
TKG Forecasting models. We first provide an overview of existing models for
TKG Forecasting (Sect. 2). We then describe common evaluation settings and
compare those settings utilized in state-of-the-art approaches to highlight the
inconsistencies (Sect. 3). In this context, we explain the problems we discovered
for each setting. As it is essential to evaluate models in a consistent way, we
propose a unified evaluation protocol using reasonable and sound evaluation set-
tings (Sect. 4). We re-evaluate state-of-the-art models on this protocol and show
results for eight state-of-the-art models on five commonly used datasets (Sect. 5).
In addition, we provide insights into the influence of different setups on the result
scores. We hope to set a new standard for rigorous evaluations of new models in
this growing research field. Our contributions are:

1. A comprehensive discussion of evaluation settings and accompanying prob-
lems for TKG Forecasting.

2. The design of a unified evaluation protocol for TKG Forecasting from reason-
able evaluation settings.

3. An extensive re-evaluation of state-of-the-art models on a consistent eval-
uation protocol, showing results and insights on the influence of different
evaluation settings on these results.

Our work does not question the methods for TKG Forecasting developed by
individual researchers. Instead, it aims at giving a fresh view on the state of the
field as a whole and provides a solid basis for working on remaining problems.

2 Terminology and Related Work

2.1 Terminology

A TKG is formalized as a sequence of timestamped Knowledge Graphs, G =
(G1, G2, ..., Gt, ...). A timestamped KG Gt = {V,R, Et}, or KG snapshot,
describes the TKG at timestep t, with the set of entities V, the set of rela-
tions R, and the set of facts Et at discrete timestamp t. Facts Et are quadruples
(s, r, o, t), with s, o,∈ V, and r ∈ R, for example (Kamala Harris, visit, France,

Comparing Apples and Oranges? 535

2021-11-10). Entity prediction for TKG Forecasting is the task of predicting the
missing object entity (s, r, ?, t+ k) and subject entity (?, r, o, t+ k) for a query,
with k ∈ N

+. [18]

2.2 Related Work on Temporal Knowledge Graph Forecasting

In recent years (2017–2022), researchers have proposed various methods for TKG
Forecasting:

Graph Neural Networks (GNNs): A large group of models leverages a GNN
[22,24] in combination with a sequential approach to integrate the structural
and sequential information. RE-Net [12] applies an autoregressive architecture.
It learns the temporal dependency from a sequence of graphs and the local struc-
tural dependency from the neighborhood. The occurrence of a fact is modeled
as a probability distribution conditioned on the temporal sequence of past snap-
shots. RE-Net can predict full graphs. RE-GCN [18] also models the sequence
of the Knowledge Graph snapshots recurrently. For this, it combines a convolu-
tional graph Neural Network with a sequential Neural Network model. Further,
RE-GCN introduces a static graph constraint to take into account additional
information like entity types. TANGO [8] bases on neural ordinary differential
equations to model the temporal sequences combined with a GNN to capture
the structural information. In addition, the authors introduce a stochastic jump
method to incorporate stochastic events, i.e., triples appearing or disappearing
over time. xERTE [7] bases on so-called temporal relational attention mech-
anisms. To answer a query, it extracts query-relevant subgraphs. Further, it
computes and propagates attention scores to identify the relevant evidence in
the subgraphs, using a modified time-aware version of a message passing. CEN
[16] integrates a Convolutional Neural Network which can handle evolutional
patterns of different lengths via a learning strategy that learns these evolutional
patterns from short to long. The model can learn in an online setting, meaning
that it is updated with historical facts during testing.

Reinforcement Learning: CluSTeR [17] introduces a two-step process: First, a
Reinforcement Learning agent, working with randomized beam strategy, searches
and induces clue paths related to a given query. Second, an adapted GNN and
sequence method models temporal information among the clues to find answers
to a query. TimeTraveler [26] leverages a Reinforcement Learning model based
on temporal paths. Starting from the query’s subject node, the agent traverses
outgoing edges across graph snapshots. For this, TimeTraveler samples actions
according to transition probabilities, which are based on dynamic embeddings
of the query, the path history, and the candidate actions. TimeTraveler uses a
time-shaped reward based on Dirichlet distribution [13]. The model is able to
predict in the inductive setting.

Rule-based Approaches: TLogic [20], a symbolic framework, learns so-called
temporal logic rules via temporal random walks, traversing edges through the
graph backward in time. TLogic applies the rules to events that happened prior

536 J. Gastinger et al.

to the query. For scoring the answer candidates, it takes into account the rules’
confidence as well as time differences.

Other: CyGNet [30] predicts future facts purely based on the appearance of his-
torical facts. For this, to answer a query, it first computes each entity’s embed-
ding vector. Further, using these embeddings, it computes entity probabilities by
combining predictions from a so-called "copy mode" that computes probabilities
for historical events based on the repetition of facts in history and a "generation
mode" that computes probabilities for every entity.

In our work, we analyze the evaluation discrepancies of the introduced models
and evaluate the models on a joint evaluation protocol.

In addition to the described methods, there are also approaches focusing on a
slightly different problem setting. We exclude these from our evaluation, but list
them below for completeness: Know-Evolve [28] and the Graph Hawkes Neural
Network (GHNN) [9] utilize temporal point processes to estimate conditional
probabilities of future facts in a continuous time setting. Unlike the other meth-
ods discussed in this section, Know-Evolve and GHNN allow scenarios where
no facts occur at the same timestamp [18]. Due to their distinct problem set-
ting, where continuous time is considered, these works are not included in our
evaluation.

2.3 Related Work on the Evaluation of Graph-Based Machine
Learning Models

When conducting empirical evaluations of Machine Learning algorithms, various
issues can arise [19]. Such problems have been reported and partially addressed
in various subfields, but in the following, we limit the discussion to works in the
field of Graph Machine Learning. [25] describe the shortcomings of evaluation
strategies for Graph Neural Network models for node classification. [5] focus on
graph classification, providing standard practices that should be avoided for a
fair comparison. Further, [23] and [27] describe shortcomings in the evaluation of
KG link prediction. [10] focus on the evaluation of models for TKG completion
(not Forecasting). Our work is the first to study evaluation problems for TKG
Forecasting.

3 Description of Evaluation Settings and Evaluation
Problems

In this chapter, we subsequently focus on evaluation settings for TKG Fore-
casting. In each subsection, we first describe a setting, and second, describe
problems that we have encountered in that setting. In addition, Table 1, pro-
vides an overview, showing the settings each model uses by default. We refer to
the respective parts of the table in each subsection. Further, the table contains
links to the published code for each model, if available.

Comparing Apples and Oranges? 537

3.1 Filter Settings for Link Prediction Metrics

Researchers in TKG Forecasting evaluate the models on metrics known from
static link prediction, namely Mean Reciprocal Rank (MRR) and Hits@k, with
k = 1, 3, 10. There are three settings which have been introduced subsequently,
raw, static filter, and time-aware filter :

Raw: As introduced by [2], for each test triple (stest, rtest, otest), remove the
object (stest, rtest, ?), and compute the score that the model assigns for each
entity v ∈ V to be the object in that triple, where the set of all possible triples
(stest, rtest, v) is termed corrupted triples. Sort the scores in descending order,
and note the rank of the correct entity otest. Repeat this by removing the subject
(?, rtest, otest). The MRR is the mean of the reciprocal of these ranks across all
queries from the test set, and Hits@k is the proportion of correct entities ranked
in the top k.

Static Filter: To avoid counting higher ranks from other valid predictions as
errors and thus having flaws in the metrics, [1] propose to remove all triples
(except the triple of interest) that appear in the train, valid, and test set from
the list of corrupted triples.

Time-Aware Filter: [9] note that the static filter setting is inappropriate for tem-
poral link prediction because it filters out all triples that have ever appeared from
the list of corrupted triples, ignoring the time validity of facts. As a consequence,
it does not consider predictions of such triples as erroneous. For example, if there
is a test query (Barack Obama, visit, India, 2015-01-25) and if the train set con-
tains (Barack Obama, visit, Germany, 2013-01-18), the triple (Barack Obama,
visit, Germany) is filtered out for the test query according to the static filter
setting, even though it is not true for 2015-01-25 [7]. For this reason, numerous
works [7,8,16,17,20,26] apply the time-aware filter setting which only filters out
quadruples with the same timestamp as the test query. In the above example,
(Barack Obama, visit, Germany, t) would only be filtered out for the given test
query, if it had the timestamp t = 2015-01-25, and otherwise stay in the list of
corrupted triples.

Problem 1: Different Filter Settings. The works introduced in Sect. 2 do
present result scores with MRR and Hits@k using the above-described filter
settings. However, not all works report results on all filter settings, which is
a problem, as it decreases comparability across works. Further, as mentioned
above, the raw, and especially the static filter setting are not appropriate for
TKG Forecasting. The first part of Table 1 illustrates the filter settings that
each model reports.

3.2 Single-Step and Multi-step Prediction

Methods for Forecasting operate within two distinct prediction settings, single-
step and multi-step prediction. Single-step (or one-step) prediction means that
the model always forecasts the next timestep [4]. The ground truth facts are

538 J. Gastinger et al.

then fed before predicting the subsequent timestep. Multi-step prediction means
that the model forecasts more than one future time step [4]. More specifically,
the model predicts all timesteps from the test set, without seeing any ground
truth information in between. As described by [4], multi-step prediction is more
challenging, as the model can only leverage information from its own forecasts,
and uncertainty accumulates with an increasing number of forecasted timesteps.

Problem 2: Comparison of Multi-step and Single-Step Setting. The
models described in Sect. 2 run in different settings. Some can do single-step
prediction only, some can do multi-step prediction only, and some do both (see
Table 1, second part). Still, single-step models are compared to multi-step models
without drawing attention to the different setups. For example, TLogic [20] and
TANGO [8] (single-step) are compared to RE-Net [12] (multi-step), xERTE [7]
is compared to CyGNet [30], and CEN [16] is compared to CyGNet [30] and
RE-Net [12]. The second part of Table 1 shows each model’s prediction setting.

3.3 Datasets

Researchers in the domain of TKG Forecasting use the following datasets: Three
instances of ICEWS [3]: ICEWS05-15 [6], ICEWS14 [6], and ICEWS18 [11],
where the numbers mark the respective years; further, YAGO [21] and WIKI
[14], preprocessed according to [11], as well as GDELT [15]. Table 2 shows dataset
statistics for dataset version (a), as reported by [18].

Problem 3: Multiple Versions of the Same Dataset. The models described
in Sect. 2 report results on different versions of the same dataset. For instance,
three versions exist for ICEWS14. This hinders the comparability of results
across works, causing confusion and potential errors. The third part of Table 1
shows an overview of different versions of each dataset, describing each version
(marked with (a), (b), (c)) by the number of training triples. One version of the
ICEWS14 dataset (see Table 1, version (c)) is especially problematic, as it does
not contain a validation set. Instead, the test set is used for both validation and
testing. Thus, with this setting, the test set is leaked during training.

3.4 Train, Validation, and Test Set

Researchers in TKG Forecasting split each dataset D into a training Dtrain, val-
idation Dvalid, and test set Dtest. The model’s training is conducted on Dtrain,
not using information contained in Dvalid or Dtest. Dvalid can be used for mon-
itoring the training process, and selecting the best model (parameters) across
epochs. There are different options to use the validation set during testing:

(a) The model can leverage all information from Dtrain, but not from Dvalid, to
predict Dtest. This is consistent with the setting in link prediction for static
knowledge graphs.

Comparing Apples and Oranges? 539

(b) The model can leverage all information from Dtrain and from Dvalid, to
predict Dtest. This means, if a model has to answer the query (s, r, ?, n)
during testing, all quadruples from Dtrain and Dvalid can be used. This is
consistent with the setting used in time-series Forecasting.

Problem 4: Usage of Validation set for Testing. For multi-step setting,
during testing, some models (CygNet, TLogic) do not use the information from
the validation set (option (a)), whereas others (RE-GCN, RE-Net) do use it
(option (b)), see the fourth part of Table 1. Not using the information from the
validation set leads to a significantly harder task, as the model needs to forecast
more steps in the future: Instead of starting to predict the next unknown timestep
t+1 for the first test set sample, the model needs to already predict the timestep
t+numvalid +1, with numvalid being the number of timesteps in the validation
set, as an information gap between training and testing.

3.5 Problem Summary

When putting all four problems together, a dramatic picture emerges: results
have been compared using different filter settings, prediction settings, dataset
versions, and dataset splits. Table 1 illustrates the scattered landscape of eval-
uation settings, where no two models have ever been evaluated on identical
settings. Without a uniform and standardized evaluation protocol, we will never
be able to gauge true progress in the field. Still, in existing work, the methods
are compared to each other, leading to confusion and inconsistencies.

4 A Unified Evaluation Protocol

To tackle the problems introduced in Sect. 3, it is essential to evaluate TKG
models in a consistent way. For this reason, we introduce a unified evaluation
protocol with clear and reproducible choices.1

Filter Settings: We report results on the time-aware filter setting. As explained
in Sect. 3.1, this setting avoids counting higher ranks from other valid predictions
as errors while taking into account time validity of facts.

Single-Step and Multi-step: While both settings are valid, the comparison
of results for different settings is not fair (see Sect. 3.2). The setting to be used
depends on the use case and on the methods’ capabilities. If the method can
predict in single- and multi-step, we re-evaluate it on both settings.

Datasets Versions: The same dataset versions should be used across works to
ensure comparability. We suggest using version (a) for each dataset (see Table 1).
We selected the dataset versions used by the authors of RE-GCN [18], mainly
because these are (among) the most commonly used versions across all works.
Table 2 shows dataset statistics.
1 The supplementary material also contains a checklist for benchmark experiments in

this field.

540 J. Gastinger et al.

Table 1. Methods and their experimental settings: Filter settings (Sect. 3.1), settings
for single- and multi-step prediction (Sect. 3.2), dataset versions ((a), (b), (c)) used
in papers (Sect. 3.3), and validation set usage (Sect. 3.4). We report dataset versions
by the number of quadruples in the training set. An entry � means that the model
reported results on the respective setting, and an entry - that it does not. An entry
args means, that the method provides the option to set this in the args of the code,
but does not report the results in the paper. An entry ? means that we cannot answer
this question, as the code is not publicly available.

Name RE-GCN RE-Net xERTE CyGNet TLogic TANGO Time Traveler CEN CluSTeR

Filter settings:
raw � � – – – � – – �
static – � – � – � – – –
time-aware – – � – � � � � �
Prediction settings:
single-step args partlya � – � � � �b ?
multi-step � � – � args – – – ?
Datasets:
ICEWS14
(a): 74845 � – – – – – – � �
(b): 63685 – – � – � – � – –
(c): 323895 w/o validc – � – � – � – – –
ICEWS18
(a): 373018 y � � � � � � � �
ICEWS05-15
(a): 368868 � – – – � – – – �
(b): 322958 – – � – – – � – –
(c): 369104 – – – – – � – – –
GDELT
(a): 1734399 � � � – – – – �
YAGO
(a): 161540 � � — � – � � – –
(b): 51205 – – � – – – – – –
WIKI
(a): 539286 � � – � – � � � –
Validation Set for Testing:
Use Valid � � � – – � � � ?
Reference [18] [12] [7] [30] [20] [8] [26] [16] [17]
Code Published �d �e �f �g �h �i �j �k –
a RE-NET published results for the datasets ICEWS18 and GDELT ([12], Table 2, RE-Net w. GT).
The published code does not provide the option to set this in the arguments.
b In addition to providing results for single-step setting, CEN has a so-called “online-setting”. This
means, that the model is re-fit after each test timestep before predicting the next timestep.
c This specific version of ICEWS14 comes without validation set. Instead, the test set is used for
validation.
d https://github.com/Lee-zix/RE-GCN
e https://github.com/INK-USC/RE-Net
f https://github.com/TemporalKGTeam/xERTE
g https://github.com/CunchaoZ/CyGNet
h https://github.com/liu-yushan/TLogic
i https://github.com/TemporalKGTeam/TANGO
j https://github.com/JHL-HUST/TITer/
k https://github.com/Lee-zix/CEN

Train, Validation, and Test Set Usage: We use the train, validation, and
test sets as described in Sect. 3.4, option (b), where the information from the

https://github.com/Lee-zix/RE-GCN
https://github.com/INK-USC/RE-Net
https://github.com/TemporalKGTeam/xERTE
https://github.com/CunchaoZ/CyGNet
https://github.com/liu-yushan/TLogic
https://github.com/TemporalKGTeam/TANGO
https://github.com/JHL-HUST/TITer/
https://github.com/Lee-zix/CEN

Comparing Apples and Oranges? 541

validation set can be used for testing, to avoid time gaps between training and
testing. In addition, we make sure that the test set is never used for model
selection and the datasets are split based on ordered timestamps, whereas one
timestamp should not belong to two different sets.

Table 2. Dataset Statistics for dataset version (a), as reported by [18].

Dataset #Nodes #Rels #Train #Valid #Test Time Interval

ICEWS14 6869 230 74845 8514 7371 24 h
ICEWS18 23033 256 373018 45995 49545 24 h
ICEWS0515 10094 251 368868 46302 46159 24 h
GDELT 7691 240 1734399 238765 305241 15 min
YAGO 10623 10 161540 19523 20026 1 year
WIKI 12554 24 539286 67538 63110 1 year

5 Experiments

In the following, we show the results for eight models and five datasets2. The sup-
plementary material3 contains additional information on specific experimental
settings. Please find the source code with scripts for experiments and evaluation
at https://github.com/nec-research/TKG-Forecasting-Evaluation.

We run the experiments on a system with one Nvidia TITAN RTX (24 GB)
GPU, 512 GB Memory, and an Intel Xeon Silver 4208 CPU with 16 cores (32
threads).

To eliminate the four problems described in Sect. 3, we follow the evaluation
protocol from Sect. 4: We report results on time-aware filter settings for single-
step and multi-step settings, use the dataset versions (a), and report the results
with the validation set usage option (b). We show aggregated results (mean
MRR and Hits@k across all test samples) for the eight models for the datasets
GDELT, YAGO, WIKI, ICEWS14, and ICEWS18 in Table 3. The upper part
for each dataset contains results in multi-step setting, and the lower part in
single-step setting, where models with results for single-step prediction should
not be benchmarked against methods with results of multi-step prediction. We
mark the best result for each dataset for each setting in bold. In addition, for
the method CEN, we show results in online setting, where the model is updated
continually during testing. For completeness and comparability to related work,
the supplementary material reports results on raw and static filter settings. In
addition, the supplementary material contains tables with information on the
2 Because of memory and runtime issues for multiple models due to its large amount of

timestamps, and its similarity to the other ICEWS datasets, we excluded the dataset
ICEWS05-15. By running the script available in our GitHub repository, interested
readers can include this dataset.

3 Please find the supplementary material at https://github.com/nec-research/TKG-
Forecasting-Evaluation/blob/main/paper_supplementary_material.pdf.

https://github.com/nec-research/TKG-Forecasting-Evaluation
https://github.com/nec-research/TKG-Forecasting-Evaluation/blob/main/paper_supplementary_material.pdf
https://github.com/nec-research/TKG-Forecasting-Evaluation/blob/main/paper_supplementary_material.pdf

542 J. Gastinger et al.

Table 3. Experimental results for multi-step prediction, single-step prediction, and
single-step prediction in online setting (with model updates) with datasets GDELT,
YAGO, WIKI (top), and ICEWS14, ICEWS18 (bottom). Results for single-step pre-
diction should not be compared to results for multi-step prediction. We report mean
reciprocal rank (MRR), and Hits@k (H@k), with k = 1, 3, 10 in time-aware filter set-
ting. The best results for each setting are marked in bold.

multi-step setting (time filter)

GDELT YAGO WIKI

MRR H@1 H@3 H@10 MRR H@1 H@3 H@10 MRR H@1 H@3 H@10

RE-GCN 19.64 12.47 20.85 33.62 75.40 71.75 77.67 81.70 62.72 59.48 64.89 67.87
RE-Net 19.71 12.48 20.90 33.93 58.21 53.44 61.31 66.26 49.47 47.21 50.70 53.04
CyGNet 19.08 11.88 20.29 33.07 69.02 61.38 74.29 83.42 58.26 52.51 62.41 67.56
TLogic 17.68 11.26 18.90 30.29 66.93 63.14 70.63 71.58 63.99 61.31 66.36 68.22

single-step setting (time filter)

GDELT YAGO WIKI

MRR H@1 H@3 H@10 MRR H@1 H@3 H@10 MRR H@1 H@3 H@10

RE-GCN 19.75 12.51 21.02 33.88 82.20 78.72 84.24 88.48 78.65 74.75 81.71 84.68
xERTE 18.89 12.73 21.09 31.96 87.31 84.20 90.28 91.22 74.52 70.30 78.58 80.13
TLogic 19.77 12.23 21.67 35.62 76.49 74.02 78.91 79.17 82.29 78.62 86.04 87.01

TANGO 19.22 12.19 20.42 32.81 62.39 59.04 64.69 67.75 50.08 48.30 51.41 52.76
Timetraveler 20.23 14.14 22.18 31.17 87.72 84.55 90.87 91.20 78.65 75.15 82.03 83.05
CEN 20.43 12.98 21.81 35.04 82.72 78.81 85.24 89.35 79.29 75.51 82.37 84.91

online setting (single-step with model update) (time filter)

GDELT YAGO WIKI

MRR H@1 H@3 H@10 MRR H@1 H@3 H@10 MRR H@1 H@3 H@10

CEN 21.73 13.80 23.51 37.30 83.96 80.08 86.73 90.24 79.82 75.88 83.14 85.47

multi-step setting (time filter)

ICEWS14 ICEWS18

MRR H@1 H@3 H@10 MRR H@1 H@3 H@10

RE-GCN 37.82 27.86 42.14 57.50 29.03 19.52 32.66 47.50

RE-Net 37.00 27.80 40.80 54.92 27.86 18.47 31.43 46.19
CyGNet 36.12 26.66 40.28 54.54 26.01 16.69 29.59 44.43
TLogic 35.48 26.54 39.59 53.11 24.01 15.59 27.23 41.20

single-step setting (time filter)

ICEWS14 ICEWS18

MRR H@1 H@3 H@10 MRR H@1 H@3 H@10

RE-GCN 42.11 31.36 47.33 62.66 32.58 22.37 36.78 52.56

xERTE 40.91 33.03 45.48 57.07 29.23 20.92 33.50 46.26
TLogic 42.53 33.20 47.61 60.29 29.59 20.42 33.60 48.05
TANGO 36.77 27.29 40.84 55.09 28.35 19.10 31.88 46.27
Timetraveler 40.83 31.90 45.43 57.59 29.13 21.29 32.54 43.92
CEN 41.80 31.85 46.59 60.87 31.50 21.69 35.40 50.69

online setting (single-step with model update) (time filter)

ICEWS14 ICEWS18

MRR H@1 H@3 H@10 MRR H@1 H@3 H@10

CEN 43.17 33.20 48.03 62.43 31.78 21.82 35.79 51.27

Comparing Apples and Oranges? 543

Fig. 1. MRR (in %) over snapshots from test set (one snapshot is one timestamp) per
method. (a)-(d): Datasets ICEWS18 (a),(b) and WIKI (c),(d) for multi-step prediction
(left) and single-step prediction (right); (e): Using vs. not using the validation set during
testing for dataset WIKI; (f) Different filter settings for dataset GDELT.

reproducibility of the results that have been reported by the original works
[7,8,12,16,18,20,26,30]. Figure 1 shows the MRR for three selected datasets
(ICEWS18, WIKI, and GDELT) over test timestamps (snapshots) for different
evaluation settings. In the following, we will discuss important insights.

544 J. Gastinger et al.

Single-Step and Multi-step Setting: Table 3 shows the difference in scores
for single- vs. multi-step setting: Overall, scores for single-step setting are higher
than for multi-step setting. This is especially visible for the two models (TLogic
and RE-GCN) that run in both settings, but also true for the other results.
Figure 1(a)–(d) shows the MRR (in %) over snapshots in multi-step setting
(left) and single-step setting (right).4 The figure illustrates a contrasting trend
between multi-step prediction and single-step prediction with respect to MRR.
Specifically, the MRR for multi-step prediction exhibits a decreasing pattern
as the timestamps increase, whereas single-step prediction does not display a
similar decreasing trend. This is especially visible for the WIKI dataset in a
single-step setting, which displays an increasing tendency for the MRR with
increasing timestamps for the four best-performing methods. The results reflect
the statement from Sect. 3.2, that multi-step prediction is more challenging, and
uncertainty accumulates with increasing number of forecasted timesteps, as the
models can only leverage information from their own forecasts. Thus, bench-
marking models for multi-step prediction against single-step prediction is only
fair for the first timestamp.

Validation Set Usage: In Fig. 1(e), we show the MRR (in %) over snapshots
in multi-step setting for TLogic and CyGNet5, when using the validation set for
testing (Sect. 3.4, option (b)) vs. not using the validation set for testing (option
(a)) for the dataset WIKI.6 The figure displays a difference in MRR between the
two settings for each model, especially in the first two snapshots with a difference
in MRR of > 30 for TLogic. This difference is caused by the information gap
between the last training timestamp and the first testing timestamp. For the case
of WIKI, the number of timestamps in the validation set is numvalid = 11. The
difference decreases with increasing timestamps, because, due to the multi-step
setting, there is also a rising information gap when feeding the validation set.
Thus, using the information from the validation set for testing and avoiding the
information gap is crucial for fair comparison among models.

Filter Settings: Fig. 1(f) shows the MRR (in %) over snapshots in multi-step
setting, exemplary for CyGNet and RE-GCN for the dataset GDELT, computed
with raw, static, and time-aware filter setting, as described in Sect. 3.17. It reveals
a large difference in MRR for static filter setting, vs. raw setting or time-aware
filter setting, especially for CyGNet. This is also visible for aggregated results:
Where CyGNet does not have the highest MRR scores on any dataset for time-
aware filter settings (see Table 3), it has the highest MRR scores on all five
datasets in static filter setting (see supplementary material). The static filter
setting filters out all triples that have ever appeared from the corrupted triples,
4 The supplementary material shows results for ICEWS14, YAGO, and GDELT.
5 The two models that run per default in multi-step setting, validation set option (a)

from Sect. 3.4.
6 The supplementary material shows results for YAGO, GDELT, ICEWS14, and

ICEWS18.
7 The supplementary material shows results for YAGO, WIKI, ICEWS14, and

ICEWS18.

Comparing Apples and Oranges? 545

ignoring the time validity, and does not count a prediction of these triples as
error. Thus, for a given query, if a model predicts entities that have appeared in
this triple at an earlier timestep, this will not be considered erroneous, even if the
predicted fact is not true in the timestep of question. The model will potentially
be assigned a higher static filter score than if it would predict previously unseen
facts. Thus, the static filter setting favors models that predict repeated facts.

To summarize, we can see that no model shows the best results across all
datasets. This evidence remarks the importance of fairly comparing models on
different benchmarks. We stressed the clear differences in result scores for single-
step and multi-step prediction. In addition, we pointed out that the usage of
the validation set during testing does lead to substantially higher test scores.
Further, we showed the significant influence of the filter setting used for score
computation.

Comparing Results of Original Papers and This Work: It is not straight-
forward to compare the results from this study with the results reported in
the original papers, when it comes to assessing the state-of-the-art method
due to several reasons. Firstly, there exist variations in the evaluation settings
and inconsistencies in the evaluations across different methods, as elaborated
in Sect. 3. Secondly, the original papers lack complete comparisons between all
methods, due to varying factors such as earlier or parallel publication times or
results reported only on subsets of datasets.

To illustrate the impact of our proposed evaluation protocol on the ranking of
compared methods, we show an example for CyGNet. The original paper reports
higher MRRs for CyGNet compared to RE-Net on the datasets ICEWS14,
ICEWS18, and GDELT, while lower MRRs on the datasets YAGO and WIKI.
However, when employing our evaluation protocol, CyGNet achieves higher
MRRs than RE-Net on YAGO and WIKI, but lower MRRs on all other datasets.
A plausible explanation for this disparity is the utilization of different filter set-
tings which, as highlighted in the preceding paragraph, notably influences the
obtained scores.

6 Conclusion

Summary: In this work, we examined the evaluation of TKG Forecasting
models. We uncovered and described inconsistencies that strongly influence the
experimental results and thus lead to distorted comparisons among models. To
address these problems, we formed a unified evaluation protocol from reasonable
evaluation settings and re-evaluated state-of-the-art methods. We illustrated the
importance of a consistent evaluation by showing the effect of different evalua-
tion settings on the results. Our work aims at establishing a unified evaluation
protocol, stimulating discussions on the evaluation, and raising the community’s
awareness of experimental issues, with the goal of advancing the research field
of TKG Forecasting.

546 J. Gastinger et al.

Limitation of this Study: Due to computational infeasibility, we could not
conduct multiple repeats for each experiment run8. Even with one repetition
per run, we experienced significant computation times for many models, e.g.,
multiple days to weeks for the dataset GDELT; thus, multiple repetitions per
model and dataset were not possible. Adding multiple repetitions to the eval-
uation would have further improved the robustness of our results, which are
nonetheless obtained under a unified and reproducible protocol.

Future Work: In future work, we aim to extend the proposed evaluation
protocol to: First, evaluate the full predicted graph for methods that can predict
full graphs (e.g., RE-Net), instead of exclusively focusing on link prediction.
This could be based on graph similarity or computing a percentage of correctly
predicted triples. Second, evaluate the change of the predicted graph snapshots
over time to analyze if the predictions evolve and if they are able to capture time
information. This could be done by comparing the predictions at different time
steps. Third, include more fine-grained evaluation to answer what properties the
models learned and what they did not. This could, for example, be done using
the framework KGxBoard [29], which breaks down the performance measure
over individual data subsets.

Acknowledgements. We warmly thank Federico Errica for his time and very valuable
feedback.

Ethical Statement. While TKG Forecasting has the potential to enable predictions
for complex and dynamic systems, we argue that inconsistencies in experimental pro-
cedures and evaluation settings can lead to distorted comparisons among models, and
ultimately, misinterpretation of results. Therefore, with our work, we want to highlight
the importance of transparency and reproducibility in scientific research, as well as the
importance of rigorous and reliable scientific practice. In this context we have identified
inconsistencies in evaluation settings and provided a unified evaluation protocol. We
ensure transparency by providing a URL to a GitHub repository containing our eval-
uation code. Within this repository, we use forked submodules to explicitly link to the
original assets. Additionally, we report the training details, such as hyperparameters,
in the supplementary material of our work.

While we have not focused on increasing the interpretability of individual mod-
els, we acknowledge the importance of explainability and interpretability in the field.
Therefore, we note that among the compared models, xERTE [7] and TLogic [20]
address some aspects of explainability and interpretability.

We did not evaluate the predictions of existing models on bias and fairness as it was
out of scope for this work. However, we recognize that it is essential to increase fairness
in the comparison of TKG Forecasting models. Therefore, we highlight inconsistencies
and provide a unified evaluation protocol to improve comparability and fairness for
existing models.

In terms of data collection and use, we used publicly available research datasets
for our evaluation. We did not use the data for profiling individuals, and it does not
contain offensive content. However, it is important to note that even publicly available

8 One experiment run: A one time training of a model with a given setting on a specific
dataset.

Comparing Apples and Oranges? 547

data can be subject to privacy regulations, and we have taken measures to ensure that
our data usage complies with applicable laws and regulations.

As this study focuses purely on evaluation of existing models, it does not induce
direct risk. However, we recognize that TKG Forecasting models can have real-world
consequences, especially when applied in domains such as finance and healthcare.
Therefore, as the results in Sect. 5 show, we want to stress again that predictions
can be unreliable and incomplete, and that these limitations have to be acknowledged
when using them for decision making.

References

1. Bordes, A., Usunier, N., García-Durán, A., Weston, J., Yakhnenko, O.: Translat-
ing embeddings for modeling multi-relational data. In: Burges, C.J.C., Bottou, L.,
Ghahramani, Z., Weinberger, K.Q. (eds.) Advances in Neural Information Pro-
cessing Systems 26: 27th Annual Conference on Neural Information Processing
Systems 2013. Proceedings of a Meeting Held 5–8 December 2013, Lake Tahoe,
Nevada, United States, pp. 2787–2795 (2013)

2. Bordes, A., Weston, J., Collobert, R., Bengio, Y.: Learning structured embed-
dings of knowledge bases. In: Burgard, W., Roth, D. (eds.) Proceedings of the
Twenty-Fifth AAAI Conference on Artificial Intelligence, AAAI 2011, San Fran-
cisco, California, USA, August 7–11, 2011. AAAI Press (2011)

3. Boschee, E., Lautenschlager, J., O’Brien, S., Shellman, S., Starz, J., Ward, M.:
ICEWS Coded Event Data (2015)

4. Brownlee, J.: Deep learning for time series forecasting: predict the future with
MLPs, CNNs and LSTMs in Python. Machine Learning Mastery (2018)

5. Errica, F., Podda, M., Bacciu, D., Micheli, A.: A fair comparison of graph neural
networks for graph classification. In: 8th International Conference on Learning
Representations, ICLR 2020, Addis Ababa, Ethiopia, April 26–30, 2020 (2020)

6. García-Durán, A., Dumančić, S., Niepert, M.: Learning sequence encoders for tem-
poral knowledge graph completion. In: Proceedings of the 2018 Conference on
Empirical Methods in Natural Language Processing, Brussels, Belgium, October-
November pp. 4816–4821. Association for Computational Linguistics (2018)

7. Han, Z., Chen, P., Ma, Y., Tresp, V.: Explainable subgraph reasoning for forecast-
ing on temporal knowledge graphs. In: 9th International Conference on Learning
Representations, ICLR 2021, Virtual Event, Austria, 3–7 May 2021 (2021)

8. Han, Z., Ding, Z., Ma, Y., Gu, Y., Tresp, V.: Learning neural ordinary equations
for forecasting future links on temporal knowledge graphs. In: Moens, M., Huang,
X., Specia, L., Yih, S.W. (eds.) Proceedings of the 2021 Conference on Empirical
Methods in Natural Language Processing, EMNLP 2021, Virtual Event/Punta
Cana, Dominican Republic, 7–11 November 2021, pp. 8352–8364. Association for
Computational Linguistics (2021)

9. Han, Z., Ma, Y., Wang, Y., Günnemann, S., Tresp, V.: Graph Hawkes neural
network for forecasting on temporal knowledge graphs. In: Das, D., Hajishirzi,
H., McCallum, A., Singh, S. (eds.) Conference on Automated Knowledge Base
Construction, AKBC 2020, Virtual, 22–24 June 2020 (2020)

10. Han, Z., Zhang, G., Ma, Y., Tresp, V.: Time-dependent entity embedding is not all
you need: a re-evaluation of temporal knowledge graph completion models under a
unified framework. In: Moens, M., Huang, X., Specia, L., Yih, S.W. (eds.) Proceed-
ings of the 2021 Conference on Empirical Methods in Natural Language Processing,

548 J. Gastinger et al.

EMNLP 2021, Virtual Event/Punta Cana, Dominican Republic, 7–11 November
2021, pp. 8104–8118. Association for Computational Linguistics (2021)

11. Jin, W., Qu, M., Jin, X., Ren, X.: Recurrent event network: autoregressive structure
inference over temporal knowledge graphs. arXiv preprint arXiv:1904.05530 (2019).
preprint version

12. Jin, W., Qu, M., Jin, X., Ren, X.: Recurrent event network: autoregressive structure
inference over temporal knowledge graphs. In: Webber, B., Cohn, T., He, Y., Liu,
Y. (eds.) Proceedings of the 2020 Conference on Empirical Methods in Natural
Language Processing, EMNLP 2020, Online, 16–20 November 2020, pp. 6669–6683.
Association for Computational Linguistics (2020)

13. Kotz, S., Balakrishnan, N., Johnson, N.L.: Continuous Multivariate Distributions.
Models and Applications, vol. 1. Wiley, New York (2000)

14. Leblay, J., Chekol, M.W.: Deriving validity time in knowledge graph. In: Champin,
P., Gandon, F., Lalmas, M., Ipeirotis, P.G. (eds.) Companion of the The Web
Conference 2018 on The Web Conference 2018, WWW 2018, Lyon, France, 23–27
April 2018, pp. 1771–1776. ACM (2018)

15. Leetaru, K., Schrodt, P.A.: Gdelt: global data on events, location, and tone, 1979–
2012. In: ISA Annual Convention, pp. 1–49. Citeseer (2013)

16. Li, Z., et al.: Complex evolutional pattern learning for temporal knowledge graph
reasoning. In: Proceedings of the 60th Annual Meeting of the Association for Com-
putational Linguistics (Volume 2: Short Papers), Dublin, Ireland, May 2022, pp.
290–296. Association for Computational Linguistics (2022)

17. Li, Z., et al.: Search from history and reason for future: two-stage reasoning on
temporal knowledge graphs. In: Zong, C., Xia, F., Li, W., Navigli, R. (eds.) Pro-
ceedings of the 59th Annual Meeting of the Association for Computational Linguis-
tics and the 11th International Joint Conference on Natural Language Processing,
ACL/IJCNLP 2021, (Volume 1: Long Papers), Virtual Event, 1–6 August 2021,
pp. 4732–4743. Association for Computational Linguistics (2021)

18. Li, Z., et al.: Temporal knowledge graph reasoning based on evolutional represen-
tation learning. In: Diaz, F., Shah, C., Suel, T., Castells, P., Jones, R., Sakai, T.
(eds.) SIGIR 2021: The 44th International ACM SIGIR Conference on Research
and Development in Information Retrieval, Virtual Event, Canada, 11–15 July
2021, pp. 408–417. ACM (2021)

19. Liao, T., Taori, R., Raji, I.D., Schmidt, L.: Are we learning yet? A meta review of
evaluation failures across machine learning. In: Thirty-fifth Conference on Neural
Information Processing Systems Datasets and Benchmarks Track (Round 2) (2021)

20. Liu, Y., Ma, Y., Hildebrandt, M., Joblin, M., Tresp, V.: Tlogic: temporal logical
rules for explainable link forecasting on temporal knowledge graphs. In: Thirty-
Sixth AAAI Conference on Artificial Intelligence, AAAI 2022, Thirty-Fourth Con-
ference on Innovative Applications of Artificial Intelligence, IAAI 2022, The Twel-
veth Symposium on Educational Advances in Artificial Intelligence, EAAI 2022
Virtual Event, 22 February–1 March 2022, pp. 4120–4127. AAAI Press (2022)

21. Mahdisoltani, F., Biega, J.A., Suchanek, F.M.: Yago3: a knowledge base from mul-
tilingual Wikipedia’s. In: CIDR (2015)

22. Micheli, A.: Neural network for graphs: a contextual constructive approach. IEEE
Trans. Neural Networks 20(3), 498–511 (2009)

23. Rossi, A., Barbosa, D., Firmani, D., Matinata, A., Merialdo, P.: Knowledge graph
embedding for link prediction: a comparative analysis. ACM Trans. Knowl. Discov.
Data 15(2), 14:1-14:49 (2021)

24. Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The graph
neural network model. IEEE Trans. Neural Networks 20(1), 61–80 (2009)

http://arxiv.org/abs/1904.05530

Comparing Apples and Oranges? 549

25. Shchur, O., Mumme, M., Bojchevski, A., Günnemann, S.: Pitfalls of graph neural
network evaluation. In: Relational Representation Learning Workshop (R2L 2018),
NeurIPS, Montréal, Canada (2018)

26. Sun, H., Zhong, J., Ma, Y., Han, Z., He, K.: Timetraveler: reinforcement learn-
ing for temporal knowledge graph forecasting. In: Moens, M., Huang, X., Specia,
L., Yih, S.W. (eds.) Proceedings of the 2021 Conference on Empirical Methods in
Natural Language Processing, EMNLP 2021, Virtual Event/Punta Cana, Domini-
can Republic, 7–11 November 2021, pp. 8306–8319. Association for Computational
Linguistics (2021)

27. Sun, Z., Vashishth, S., Sanyal, S., Talukdar, P.P., Yang, Y.: A re-evaluation of
knowledge graph completion methods. In: Jurafsky, D., Chai, J., Schluter, N.,
Tetreault, J.R. (eds.) Proceedings of the 58th Annual Meeting of the Association
for Computational Linguistics, ACL 2020, Online, 5–10 July 2020, pp. 5516–5522.
Association for Computational Linguistics (2020)

28. Trivedi, R., Dai, H., Wang, Y., Song, L.: Know-evolve: deep temporal reasoning
for dynamic knowledge graphs. In: Precup, D., Teh, Y.W. (eds.) Proceedings of
the 34th International Conference on Machine Learning, ICML 2017. Proceedings
of Machine Learning Research, Sydney, NSW, Australia, 6–11 August 2017, vol.
70, pp. 3462–3471. PMLR (2017)

29. Widjaja, H., et al.: KGxBoard: explainable and interactive leaderboard for evalua-
tion of knowledge graph completion models. In: Proceedings of the 2022 Conference
on Empirical Methods in Natural Language Processing: System Demonstrations,
Abu Dhabi, UAE, December 2022, pp. 338–350. Association for Computational
Linguistics (2022)

30. Zhu, C., Chen, M., Fan, C., Cheng, G., Zhang, Y.: Learning from history: mod-
eling temporal knowledge graphs with sequential copy-generation networks. In:
Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI 2021, Thirty-Third
Conference on Innovative Applications of Artificial Intelligence, IAAI 2021, The
Eleventh Symposium on Educational Advances in Artificial Intelligence, EAAI
2021, Virtual Event, 2–9 February 2021, pp. 4732–4740. AAAI Press (2021)

Improving Few-Shot Inductive Learning
on Temporal Knowledge Graphs Using
Confidence-Augmented Reinforcement

Learning

Zifeng Ding1,2, Jingpei Wu1, Zongyue Li1,3, Yunpu Ma1,2, and Volker Tresp1(B)

1 LMU Munich, Geschwister-Scholl-Platz 1, 80539 Munich, Germany
zifeng.ding@campus.lmu.de, Volker.Tresp@lmu.de

2 Siemens AG, Otto-Hahn-Ring 6, 81739 Munich, Germany
3 Munich Center for Machine Learning (MCML), Munich, Germany

Abstract. Temporal knowledge graph completion (TKGC) aims to pre-
dict the missing links among the entities in a temporal knowledge graph
(TKG). Most previous TKGC methods only consider predicting the miss-
ing links among the entities seen in the training set, while they are
unable to achieve great performance in link prediction concerning newly-
emerged unseen entities. Recently, a new task, i.e., TKG few-shot out-
of-graph (OOG) link prediction, is proposed, where TKGC models are
required to achieve great link prediction performance concerning newly-
emerged entities that only have few-shot observed examples. In this work,
we propose a TKGC method FITCARL that combines few-shot learning
with reinforcement learning to solve this task. In FITCARL, an agent
traverses through the whole TKG to search for the prediction answer. A
policy network is designed to guide the search process based on the tra-
versed path. To better address the data scarcity problem in the few-shot
setting, we introduce a module that computes the confidence of each can-
didate action and integrate it into the policy for action selection. We also
exploit the entity concept information with a novel concept regularizer
to boost model performance. Experimental results show that FITCARL
achieves stat-of-the-art performance on TKG few-shot OOG link predic-
tion. Code and supplementary appendices are provided (https://github.
com/ZifengDing/FITCARL/tree/main).

Keywords: Temporal knowledge graph · Few-shot learning

1 Introduction

Knowledge graphs (KGs) store knowledge by representing facts in the form of
triples, i.e., (s, r, o), where s and o are the subject and object entities, and r
denotes the relation between them. To further specify the time validity of the
facts, temporal knowledge graphs (TKGs) are introduced by using a quadruple

Z. Ding and J. Wu—Equal contribution.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
D. Koutra et al. (Eds.): ECML PKDD 2023, LNAI 14171, pp. 550–566, 2023.
https://doi.org/10.1007/978-3-031-43418-1_33

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-43418-1_33&domain=pdf
https://github.com/ZifengDing/FITCARL/tree/main
https://github.com/ZifengDing/FITCARL/tree/main
https://doi.org/10.1007/978-3-031-43418-1_33

Few-Shot Inductive Learning on TKGs Using Confidence-Augmented RL 551

(s, r, o, t) to represent each fact, where t is the valid time of this fact. In this way,
TKGs are able to capture the ever-evolving knowledge over time. It has already
been extensively explored to use KGs and TKGs to assist downstream tasks,
e.g., question answering [12,27,45] and natural language generation [2,20].

Since TKGs are known to be incomplete [19], a large number of researches
focus on proposing methods to automatically complete TKGs, i.e., temporal
knowledge graph completion (TKGC). In traditional TKGC, models are given a
training set consisting of a TKG containing a finite set of entities during training,
and they are required to predict the missing links among the entities seen in the
training set. Most previous TKGC methods, e.g., [11,17,19,31], achieve great
success on traditional TKGC, however, they still have drawbacks. (1) Due to
the ever-evolving nature of world knowledge, new unseen entities always emerge
in a TKG and traditional TKGC methods fail to handle them. (2) Besides, in
real-world scenarios, newly-emerged entities are usually coupled with only a few
associated edges [13]. Traditional TKGC methods require a large number of
entity-related data examples to learn expressive entity representations, making
them hard to optimally represent newly-emerged entities. To this end, recently,
Ding et al. [13] propose the TKG few-shot out-of-graph (OOG) link prediction
(LP) task based on traditional TKGC, aiming to draw attention to studying
how to achieve better LP results regarding newly-emerged TKG entities.

In this work, we propose a TKGC method to improve few-shot inductive
learning over newly-emerged entities on TKGs using confidence-augmented rein-
forcement learning (FITCARL). FITCARL is developed to solve TKG few-shot
OOG LP [13]. It is a meta-learning based method trained with episodic training
[36]. For each unseen entity, FITCARL first employs a time-aware Transformer
[35] to adaptively learn its expressive representation. Then it starts from the
unseen entity and sequentially takes actions by transferring to other entities
according to the observed edges associated with the current entity, following
a policy parameterized by a learnable policy network. FITCARL traverses the
TKG for a fixed number of steps and stops at the entity that is expected to be the
LP answer. To better address the data scarcity problem in the few-shot setting,
we introduce a confidence learner that computes the confidence of each candi-
date action and integrate it into the policy for action selection. Following [13],
we also take advantage of the concept information presented in the temporal
knowledge bases (TKBs) and design a novel concept regularizer. We summa-
rize our contributions as follows: (1) This is the first work using reinforcement
learning-based method to reason over newly-emerged few-shot entities in TKGs
and solve the TKG few-shot OOG LP task. (2) We propose a time-aware Trans-
former using a time-aware positional encoding method to better utilize few-shot
information in learning representations of new-emerged entities. (3) We design
a novel confidence learner to alleviate the negative impact of the data scarcity
problem brought by the few-shot setting. (4) We propose a parameter-free con-
cept regularizer to utilize the concept information provided by the TKBs and it
demonstrates strong effectiveness. (5) FITCARL achieves state-of-the-art per-
formance on all datasets of TKG few-shot OOG LP and provides explainability.

552 Z. Ding et al.

2 Related Work

2.1 Knowledge Graph and Temporal Knowledge Graph Completion

Knowledge graph completion (KGC) methods can be summarized into two types.
The first type of methods focuses on designing KG score functions that directly
compute the plausibility scores of KG triples [1,4,5,22,25,32,43]. Other KGC
methods are neural-based models [28,34]. Neural-based models are built by cou-
pling KG score functions with neural structures, e.g., graph neural network
(GNN). It is shown that neural structures make great contributions to enhancing
the performance of KGC methods. TKGC methods are developed by incorpo-
rating temporal reasoning techniques. A line of works aims to design time-aware
KG score functions that are able to process time information [7,19,23,26,42,44].
Another line of works employs neural structures to encode temporal information,
where some of them use recurrent neural structures, e.g., Transformer [35], to
model the temporal dependencies in TKGs [39], and others design time-aware
GNNs to achieve temporal reasoning by computing time-aware entity represen-
tations through aggregation [11,17]. Reinforcement learning (RL) has already
been used to reason TKGs, e.g., [21,30]. TITer [30] and CluSTeR [21] achieve
temporal path modeling with RL. However, they are traditional TKG reasoning
models and are not designed to deal with few-shot unseen entities1.

2.2 Inductive Learning on KGs and TKGs

In recent years, inductive learning on KGs and TKGs has gained increasing inter-
est. A series of works [8,10,24,29,40] focuses on learning strong inductive rep-
resentations of few-shot unseen relations using meta-learning-based approaches.
These methods achieve great effectiveness, however, they are unable to deal with
newly-emerged entities. Some works try to deal with unseen entities by induc-
tively transferring knowledge from seen to unseen entities with an auxiliary set
provided during inference [15,16,37]. Their performance highly depends on the
size of the auxiliary set. [13] shows that with a tiny auxiliary set, these meth-
ods cannot achieve ideal performance. Besides, these methods are developed
for static KGs, thus without temporal reasoning ability. On top of them, Baek
et al. [3] propose a more realistic task, i.e., KG few-shot OOG LP, aiming to
draw attention to better studying few-shot OOG entities. They propose a model
GEN that contains two GNNs and train it with a meta-learning framework to
adapt to the few-shot setting. Same as [15,16,37], GEN does not have a tem-
poral reasoning module, and therefore, it cannot reason TKGs. Ding et al. [13]
propose the TKG few-shot OOG LP task that generalizes [3] to the context of
TKGs. They develop a meta-learning-based model FILT that achieves temporal
reasoning with a time difference-based graph encoder and mines concept-aware
1 TITer can model unseen entities, but it is not designed for few-shot setting and

requires a substantial number of associated facts. Besides, both TITer and CluSTeR
are TKG forecasting methods, where models are asked to predict future links given
the past TKG information (different from TKGC, see Appendix B for discussion).

Few-Shot Inductive Learning on TKGs Using Confidence-Augmented RL 553

information from the entity concepts specified in TKBs. Recently, another work
[38] proposes a task called few-shot TKG reasoning, aiming to ask TKG models
to predict future facts for newly-emerged few-shot entities. In few-shot TKG
reasoning, for each newly-emerged entity, TKG models are asked to predict the
unobserved associated links happening after the observed few-shot examples.
Such restriction is not imposed in TKG few-shot OOG LP, meaning that TKG
models should predict the unobserved links happening at any time along the
time axis. In our work, we only consider the task setting of TKG few-shot OOG
LP and do not consider the setting of [38].

3 Task Formulation and Preliminaries

3.1 TKG Few-Shot Out-of-Graph Link Prediction

Definition 1 (TKG Few-Shot OOG LP). Assume we have a background
TKG Gback = {(s, r, o, t)|s, o ∈ Eback, r ∈ R, t ∈ T } ⊆ Eback × R × Eback × T ,
where Eback, R, T denote a finite set of seen entities, relations and timestamps,
respectively. An unseen entity e′ is an entity e′ ∈ E ′ and E ′ ∩Eback = ∅. For each
e′ ∈ E ′, given K observed e′ associated TKG facts (e′, r, ẽ, t) (or (ẽ, r, e′, t)),
where ẽ ∈ (Eback ∪ E ′), r ∈ R, t ∈ T , TKG few-shot OOG LP asks models to
predict the missing entities of LP queries (e′, rq, ?, tq) (or (?, rq, e′, tq)) derived
from unobserved TKG facts containing e′ (rq ∈ R, tq ∈ T). K is a small number
denoting shot size, e.g., 1 or 3.

Ding et al. [13] formulate TKG few-shot OOG LP into a meta-learning
problem and use episodic training [36] to train the model. For a TKG G ⊆
E × R × E × T , they split its entities into background (seen) entities Eback and
unseen entities E ′, where E ′ ∩Eback = ∅ and E = (Eback ∪E ′). A background TKG
Gback ⊆ Eback×R×Eback×T is constructed by including all the TKG facts that do
not contain unseen entities. Then, unseen entities E ′ are further split into three
non-overlapped groups E ′

meta-train, E ′
meta-valid and E ′

meta-test. The union of all the
facts associated to each group’s entities forms the corresponding meta-learning
set, e.g., the meta-training set Tmeta-train is formulated as {(e′, r, ẽ, t)|ẽ ∈ E , r ∈
R, e′ ∈ E ′

meta-train, t ∈ T }∪{(ẽ, r, e′, t)|ẽ ∈ E , r ∈ R, e′ ∈ E ′
meta-train, t ∈ T }. Ding

et al. ensure that there exists no link between every two of the meta-learning
sets. During meta-training, models are trained over a number of episodes, where
a training task T is sampled in each episode. For each task T , N unseen entities
ET are sampled from E ′

meta-train. For each e′ ∈ ET , K associated facts are sampled
to form a support set Supe′ = {(e′, ri, ẽi, ti) or (ẽi, ri, e′, ti)|ẽi ∈ (Eback ∪E ′), ri ∈
R, ti ∈ T }Ki=1, and the rest of its associated facts are taken as its query set
Quee′ = {(e′, ri, ẽi, ti) or (ẽi, ri, e′, ti)|ẽi ∈ (Eback ∪ E ′), ri ∈ R, ti ∈ T }Me′

i=K+1,
where Me′ denotes the number of e′’s associated facts. Models are asked to simul-
taneously perform LP over Quee′ for each e′ ∈ ET , given their Supe′ and Gback.
After meta-training, models are validated with a meta-validation set Tmeta-valid

and tested with a meta-test set Tmeta-test. In our work, we also train FITCARL in
the same way as [13] with episodic training on the same meta-learning problem.

554 Z. Ding et al.

Fig. 1. Overview of FITCARL. To do prediction over the LP query q = (e′, rq, ?, tq),
FITCARL first learns he′ from a time-aware Transformer. It is then used in history
encoding (with GRU) and policy network. To search for the answer, FITCARL starts
from node (e′, tq). It goes to (e(l), t(l)), state s(l), at step l. It computes a policy using a
confidence-augmented policy network. Assume FITCARL selects action a1 in current
action space A(l) as the current action a(l). We compute a loss L(l)

q at step l, considering
a1’s probability in policy and reward R(s(l), a(l)), as well as an extra regularization

loss ηL(l)

KL|q computed by a concept regularizer. Please refer to Sect. 4.1, 4.2 and 4.3
for details.

3.2 Concepts for Temporal Knowledge Graph Entities

[13] extracts the concepts of TKG entities by exploring the associated TKBs.
Entity concepts describe the characteristics of entities. For example, in the Inte-
grated Crisis Early Warning System (ICEWS) database [6], the entity Air Force
(Canada) is described with the following concepts: Air Force, Military and Gov-
ernment. Ding et al. propose three ICEWS-based datasets for TKG few-shot
OOG LP and manage to couple every entity with its unique concepts. We use C
to denote all the concepts existing in a TKG and Ce to denote e’s concepts.

4 The Proposed FITCARL Model

Given the support set Supe′ = {(e′, ri, ẽi, ti) or (ẽi, ri, e′, ti)}Ki=1 of e′ ∈ E ′,
assume we want to predict the missing entity from the LP query q = (e′, rq, ?, tq)
derived from a query quadruple2 (e′, rq, ẽq, tq) ∈ Quee′ . To achieve this, FIT-
CARL first learns a representation he′ ∈ R

d (d is dimension size) for e′

(Sect. 4.1). Then it employs an RL agent that starts from the node (e′, tq) and
sequentially takes actions by traversing to other nodes (in the form of (entity,
timestamp)) following a policy (Sect. 4.2 and 4.3). After L traverse steps, the
agent is expected to stop at a target node containing ẽq. Figure 1 shows an
overview of FITCARL during training, showing how it computes loss L(l)

q at
step l.

2 For each query quadruple in the form of (ẽq, rq, e
′, tq), we derive its LP query as

(e′, r−1
q , ?, tq). r−1

q is rq’s inverse relation. The agent always starts from (e′, tq).

Few-Shot Inductive Learning on TKGs Using Confidence-Augmented RL 555

4.1 Learning Unseen Entities with Time-Aware Transformer

We follow FILT [13] and use the entity and relation representations pre-trained
with ComplEx [32] for model initialization. Note that pre-training only considers
all the background TKG facts, i.e., Gback.

To learn he′ , we start from learning K separate meta-representations. Given
Supe′ , we transform every support quadruple whose form is (e′, ri, ẽi, ti) to
(ẽi, r−1

i , e′, ti), where r−1
i denotes the inverse relation3 of ri. Then we create

a temporal neighborhood Ne′ = {(ẽi, ri, ti)|(ẽi, ri, e′, ti) ∈ Supe′ or (e′, r−1
i ,

ẽi, ti) ∈ Supe′} for e′ based on Supe′ , where |Ne′ | = K. We compute a meta-
representation hi

e′ from each temporal neighbor (ẽi, ri, ti) as hi
e′ = f(hẽi‖hri),

where hri ∈ R
d is the representation of the relation ri and ‖ is the concatenation

operation.
We collect {hi

e′}Ki=1 and use a time-aware Transformer to compute a contextu-
alized representation he′ . We treat each temporal neighbor (ẽi, ri, ti) ∈ Ne′ as a
token and the corresponding meta-representation hi

e′ as its token representation.
We concatenate the classification ([CLS]) token with the temporal neighbors in
Ne′ as a sequence and input it into a Transformer, where the sequence length
is K + 1. The order of temporal neighbors is decided by the sampling order of
support quadruples.

To better utilize temporal information from temporal neighbors, we propose
a time-aware positional encoding method. For any two tokens u, v in the input
sequence, we compute the time difference tu − tv between their associated times-
tamps, and then map it into a time-difference representation htu−tv ∈ R

d,

htu−tv =

√
1
d
[cos(ω1(tu − tv) + φ1), ..., cos(ωd(tu − tv) + φd)]. (1)

ω1 to ωd and φ1 to φd are trainable parameters. The timestamp for each tem-
poral neighbor is ti and we set the timestamp of the [CLS] token to the query
timestamp tq since we would like to use the learned he′ to predict the LP query
happening at tq. The attention attu,v of any token v to token u in an attention
layer of our time-aware Transformer is written as

attu,v =
exp(αu,v)∑K+1

k=1 exp(αu,k)
,

αu,v =
1√
d
(WTrQhu)�(WTrKhv) + wPos

�htu−tv .

(2)

hu,hv ∈ R
d are the input representations of token u, v into this attention

layer. WTrQ,WTrK ∈ R
d×d are the weight matrices following original definition

in [35]. wPos ∈ R
d is a parameter that maps htu−tv to a scalar representing time-

aware relative position from token v to u. We use several attention layers and
also employ multi-head attention to increase model expressiveness. The output
representation of the [CLS] token from the last attention layer is taken as he′ .
Figure 2 illustrates how the time-aware Transformer learns he′ in the 3-shot case.
3 Both original and inverse relations are trained in pre-training.

556 Z. Ding et al.

Fig. 2. Time-aware Transformer with one attention layer for learning unseen entity
representation in the 3-shot case.

4.2 Reinforcement Learning Framework

We formulate the RL process as a Markov Decision Process, and we introduce
its elements as follows. (1) States: Let S be a state space. A state is denoted
as s(l) = (e(l), t(l), e′, rq, tq) ∈ S. (e(l), t(l)) is the node that is visited by the
agent at step l and e′, rq, tq are taken from the LP query (e′, rq, ?, tq). The
agent starts from (e′, tq), and thus s(0) = (e′, tq, e′, rq, tq). (2) Actions: Let A
denote an action space and A(l) ⊂ A denotes the action space at step l. A(l) is
sampled from all the possible outgoing edges starting from (e(l), t(l)), i.e., {a =
(r, e, t)|(e(l), r, e, t) ∈ (Gback ∪

⋃
e′′∈ET

Supe′′), r ∈ R, e ∈ (Eback ∪ ET), t ∈ T }.
We do sampling because if e(l) ∈ Eback, there probably exist lots of outgoing
edges in Gback. If we include all of them into A(l), they will lead to an excessive
consumption of memory and cause out-of-memory problem on hardware devices.
We sample A(l) in a time-adaptive manner. For each outgoing edge (r, e, t), we
compute a score wΔt

�htq−t, where wΔt ∈ R
d is a time modeling weight and

htq−t is the representation denoting the time difference tq − t. htq−t is computed
as in Eq. 1 with shared parameters. We rank the scores of outgoing edges in
descending order and take a fixed number of top-ranked edges as A(l). We also
include one self-loop action in each A(l) that makes the agent stay at the current
node. (3) Transition: A transition function δ is used to transfer from one state
to another, i.e., δ(s(l), a(l)) = s(l+1) = (e(l+1), t(l+1), e′, rq, tq), according to the
selected action a(l). (4) Rewards: We give the agent a reward at each step
of state transition and consider a cumulative reward for the whole searching
process. The reward of doing a candidate action a ∈ A(l) at step l is given
as R(s(l), a) = Sigmoid

(
θ −

∥∥hẽq − hea

∥∥
2

)
. θ is a hyperparameter adjusting the

range of reward. hea denotes the representation of entity ea selected in the action
a = (ra, ea, ta). ‖ · ‖2 is the L2 norm. The closer ea is to ẽq, the greater reward
the agent gets if it does action a.

4.3 Confidence-Augmented Policy Network

We design a confidence-augmented policy network that calculates the probability
distribution over all the candidate actions A(l) at the search step l, according
to the current state s(l), the search history hist(l) = ((e′, tq), r(1), (e(1), t(1)), ...,
r(l), (e(l), t(l))), and the confidence confa|q of each a ∈ A(l). During the search,

Few-Shot Inductive Learning on TKGs Using Confidence-Augmented RL 557

we represent each visited node with a time-aware representation related to the
LP query q. For example, for the node (e(l), t(l)) visited at step l, we compute
its representation as h(e(l),t(l)) = he(l)‖htq−t(l) . htq−t(l) is computed as same in
Eq. 1 and parameters are shared.

Encoding Search History. The search history hist(l) is encoded as

hhist(l) = GRU
((
hr(l)‖h(e(l),t(l))

)
,hhist(l−1)

)
,

hhist(0) = GRU
((
hrdummy‖h(e′,tq)

)
,0

)
.

(3)

GRU is a gated recurrent unit [9]. hhist(0) ∈ R
3d is the initial hidden state

of GRU and hrdummy ∈ R
d is the representation of a dummy relation for GRU

initialization. h(e′,tq) is the time-aware representation of the starting node (e′, tq).

Confidence-Aware Action Scoring. We design a score function for com-
puting the probability of selecting each candidate action a ∈ A(l). Assume
a = (ra, ea, ta), where (e(l), ra, ea, ta) ∈ (Gback∪

⋃
e′′∈ET

Supe′′). We first compute
an attentional feature hhist(l),q|a that extracts the information highly-related to
action a from the visited search history hist(l) and the LP query q.

hhist(l),q|a = atthist(l),a · h̄hist(l) + attq,a · h̄q,

h̄hist(l) = W1
�hhist(l) , h̄q = W2

� (
hrq‖h(e′,tq)

)
.

(4)

W1,W2 ∈ R
2d×3d are two weight matrices. hrq is the representation of the query

relation rq. atthist(l),a and attq,a are two attentional weights that are defined as

atthist(l),a =
exp(φhist(l),a)

exp(φhist(l),a) + exp(φq,a)
, attq,a =

exp(φq,a)
exp(φhist(l),a) + exp(φq,a)

, (5)

where

φhist(l),a = h̄�
a h̄hist(l) + w�

Δthta−t(l) , φq,a = h̄�
a h̄q + w�

Δthta−tq ,

h̄a = W3
� (

hra‖h(ea,ta)

)
.

(6)

W3 ∈ R
2d×3d is a weight matrix. hra is the representation of ra. h(ea,ta) is

the time-aware representation of node (ea, ta) from action a. wΔt maps time
differences to a scalar indicating how temporally important is the action a to the
history and the query q. We take t(l) as search history’s timestamp because it is
the timestamp of the node where the search stops. Before considering confidence,
we compute a probability for each candidate action a ∈ A(l) at step l

P (a|s(l),hist(l)) =
exp(h̄�

a W4hhist(l),q|a)∑
a′∈A(l) exp(h̄�

a′W4hhist(l),q|a′)
, (7)

where W4 ∈ R
2d×2d is a weight matrix. The probability of each action a is

decided by its associated node (ea, ta) and the attentional feature hhist(l),q|a that
adaptively selects the information highly-related to a.

558 Z. Ding et al.

In TKG few-shot OOG LP, only a small number of K edges associated to
each unseen entity are observed. This leads to an incomprehensive action space
A(0) at the start of search because our agent starts travelling from node (e′, tq)
and |A(0)| = K is extremely tiny. Besides, since there exist plenty of unseen
entities in ET , it is highly probable that the agent travels to the nodes with other
unseen entities during the search, causing it sequentially experience multiple tiny
action spaces. As the number of the experienced incomprehensive action spaces
increases, more noise will be introduced in history encoding. From Eqs. 4 to 7, we
show that we heavily rely on the search history for computing candidate action
probabilities. To address this problem, we design a confidence learner that learns
the confidence confa|q of each a ∈ A(l), independent of the search history. The
form of confidence learner is inspired by a KG score function TuckER [4].

confa|q =
exp(ψa|q)∑

a′∈A(l) exp(ψa′|q)
, where ψa|q = W ×1 h(e′,tq) ×2 hrq ×3 h(ea,ta).

(8)
W ∈ R

2d×d×2d is a learnable core tensor introduced in [4]. As defined in tucker
decomposition [33], ×1,×2,×3 are three operators indicating the tensor product
in three different modes (see [4,33] for detailed explanations). Equation 8 can
be interpreted as another action scoring process that is irrelevant to the search
history. If ψa|q is high, then it implies that choosing action a is sensible and
ea is likely to resemble the ground truth missing entity ẽq. Accordingly, the
candidate action a will be assigned a great confidence. In this way, we alleviate
the negative influence of cascaded noise introduced by multiple tiny action spaces
in the search history. The policy π(a|s(l)) at step l is defined as

π(a|s(l)) =
exp(P (a|s(l),hist(l)) · confa|q)∑

a′∈A(l) exp(P (a′|s(l),hist(l)) · confa′|q)
(9)

4.4 Concept Regularizer

In the background TKG Gback, the object entities of each relation conform to
a unique distribution. For each relation r ∈ R, we track all the TKG facts
containing r in Gback, and pick out all their object entities Er (Er ∈ Eback)
together with their concepts {Ce|e ∈ Er}. We sum up the number of appearances
nc of each concept c and compute a probability P (c|r) denoting how probable it
is to see c when we perform object prediction4 over the LP queries concerning r.
For example, for r, Er = {e1, e2} and Ce1 = {c1, c2}, Ce2 = {c2}. The probability
P (c1|r) = nc1/

∑
c∈C nc = 1/3, P (c2|r) = nc2/

∑
c∈C nc = 2/3. Assume we have

an LP query q = (e′, rq, ?, tq), and at search step l, we have an action probability
from policy π(a|s(l)) for each candidate action a ∈ A(l). We collect the concepts
Cea of ea in each action a and compute a concept-aware action probability

P (a|Cea , q) =
exp(

∑
c∈Cea

P (c|rq))∑
a′∈A(l) exp(

∑
c′∈Ce

a′
P (c′|rq))

(10)

4 All LP queries are transformed into object prediction in TKG few-shot OOG LP.

Few-Shot Inductive Learning on TKGs Using Confidence-Augmented RL 559

Fig. 3. Concept regularizer. P (a1|Cea1
, q) = exp(0.3+0.1)/(exp(0.3+0.1)+exp(0.6)) =

0.45. P (a2|Cea2
, q) = exp(0.6)/(exp(0.3 + 0.1) + exp(0.6)) = 0.55.

We then compute the Kullback-Leibler (KL) divergence between P (a|Cea , q) and
π(a|s(l)) and minimize it during parameter optimization.

L(l)
KL|q =

∑
a∈A(l)

π(a|s(l)) log
(

π(a|s(l))
P (a|Cea , q)

)
. (11)

Note that rq ∈ R is observable in Gback. Gback is huge and contains a substantial
number of facts of rq. As stated in FILT [13], although we have only K associated
edges for each unseen entity e′, its concepts Ce′ is known. Our concept regularizer
enables a parameter-free approach to match the concept-aware action probability
P (a|Cea , q) with the action probability taken from the policy π(a|s(l)). It can be
taken as guiding the policy to conform to the distribution of rq’s objects’ concepts
observed in Gback. We illustrate our concept regularizer in Fig. 3.

4.5 Parameter Learning

Following [13], we train FITCARL with episodic training. In each episode, a
training task T is sampled, where we sample a Supe′ for every unseen entity
e′ ∈ E ′

meta-train (ET = E ′
meta-train) and calculate loss over Quee′ . For each LP

query q, we aim to maximize the cumulative reward along L steps of search. We
write our loss function (we minimize our loss) for each training task T as follows.

LT =
1∑

e′ |Quee′ |
∑
e′

∑
q∈Quee′

L−1∑
l=0

γlL(l)
q , L(l)

q = ηL(l)
KL|q − log(π(a(l)|s(l)))R(s(l), a(l)).

(12)
a(l) is the selected action at search step l. γl is the lth order of a discount factor
γ ∈ [0, 1). η is a hyperparameter deciding the magnitude of concept regulariza-
tion. We use Algorithm 1 in Appendix E to further illustrate our meta-training
process.

5 Experiments

We compare FITCARL with baselines on TKG few-shot OOG LP (Sect. 5.2). In
Sect. 5.3, we first do several ablation studies to study the effectiveness of different
model components. We then plot the performance over time to show FITCARL’s
robustness and present a case study to show FITCARL’s explainability and
the importance of learning confidence. We provide implementation details in
Appendix A.

560 Z. Ding et al.

5.1 Experimental Setting

We do experiments on three datasets proposed in [13], i.e., ICEWS14-OOG,
ICEWS18-OOG and ICEWS0515-OOG. They contain the timestamped polit-
ical facts in 2014, 2018 and from 2005 to 2015, respectively. All of them are
constructed by taking the facts from the ICEWS [6] TKB. Dataset statistics
are shown in Table 1. We employ two evaluation metrics, i.e., mean reciprocal
rank (MRR) and Hits@1/3/10. We provide detailed definitions of both met-
rics in Appendix D. We use the filtered setting proposed in [5] for fairer eval-
uation. For baselines, we consider the following methods. (1) Two traditional
KGC methods, i.e., ComplEx [32] and BiQUE [14]. (2) Three traditional TKGC
methods, i.e., TNTComplEx [18], TeLM [41], and TeRo [42]. (3) Three induc-
tive KGC methods, i.e., MEAN [15], LAN [37], and GEN [3]. Among them,
only GEN is trained with a meta-learning framework. (4) Two inductive TKG
reasoning methods, including an inductive TKG forecasting method TITer [30],
and a meta-learning-based inductive TKGC method FILT [13] (FILT is the only
previous work developed to solve TKG few-shot OOG LP). We take the experi-
mental results of all baselines (except TITer) from [13]. Following [13], we train
TITer over all the TKG facts in Gback and Tmeta-train. We constrain TITer to only
observe support quadruples of each test entity in E ′

meta-test for inductive learning
during inference. All methods are tested over exactly the same test examples.

Table 1. Dataset statistics.

Dataset |E| |R| |T | |E ′
meta-train| |E ′

meta-valid| |E ′
meta-test| |Gback| |Tmeta-train| |Tmeta-valid| |Tmeta-test|

ICEWS14-OOG 7128 230 365 385 48 49 83448 5772 718 705

ICEWS18-OOG 23033 256 304 1268 160 158 444269 19291 2425 2373

ICEWS0515-OOG 10488 251 4017 647 80 82 448695 10115 1217 1228

5.2 Main Results

Table 2 shows the experimental results of TKG 1-shot/3-shot OOG LP. We
observe that traditional KGC and TKGC methods are beaten by inductive
learning methods. It is because traditional methods cannot handle unseen enti-
ties. Besides, we also find that meta-learning-based methods, i.e., GEN, FILT
and FITCARL, show better performance than other inductive learning meth-
ods. This is because meta-learning is more suitable for dealing with few-shot
learning problems. FITCARL shows superior performance over all metrics on all
datasets. It outperforms the previous stat-of-the-art FILT with a huge margin.
We attribute it to several reasons. (1) Unlike FILT that uses KG score func-
tion over all the entities for prediction, FITCARL is an RL-based method that
directly searches the predicted answer through their multi-hop temporal neigh-
borhood, making it better capture highly-related graph information through
time. (2) FITCARL takes advantage of its confidence learner. It helps to alleviate
the negative impact from the few-shot setting. (3) Concept regularizer serves as
a strong tool for exploiting concept-aware information in TKBs and adaptively

Few-Shot Inductive Learning on TKGs Using Confidence-Augmented RL 561

guides FITCARL to learn a policy that conforms to the concept distribution
shown in Gback.

Table 2. Experimental results of TKG 1-shot and 3-shot OOG LP. Evaluation metrics
are MRR and Hits@1/3/10 (H@1/3/10). Best results are marked bold.

Datasets ICEWS14-OOG ICEWS18-OOG ICEWS0515-OOG

MRR H@1 H@3 H@10 MRR H@1 H@3 H@10 MRR H@1 H@3 H@10

Model 1-S 3-S 1-S 3-S 1-S 3-S 1-S 3-S 1-S 3-S 1-S 3-S 1-S 3-S 1-S 3-S 1-S 3-S 1-S 3-S 1-S 3-S 1-S 3-S

ComplEx .048 .046 .018 .014 .045 .046 .099 .089 .039 .044 .031 .026 .048 .042 .085 .093 .077 .076 .045 .048 .074 .071 .129 .120

BiQUE .039 .035 .015 .014 .041 .030 .073 .066 .029 .032 .022 .021 .033 .037 .064 .073 .075 .083 .044 .049 .072 .077 .130 .144

TNTComplEx .043 .044 .015 .016 .033 .042 .102 .096 .046 .048 .023 .026 .043 .044 .087 .082 .034 .037 .014 .012 .031 .036 .060 .071

TeLM .032 .035 .012 .009 .021 .023 .063 .077 .049 .019 .029 .001 .045 .013 .084 .054 .080 .072 .041 .034 .077 .072 .138 .151

TeRo .009 .010 .002 .002 .005 .002 .015 .020 .007 .006 .003 .001 .006 .003 .013 .006 .012 .023 .000 .010 .008 .017 .024 .040

MEAN .035 .144 .013 .054 .032 .145 .082 .339 .016 .101 .003 .014 .012 .114 .043 .283 .019 .148 .003 .039 .017 .175 .052 .384

LAN .168 .199 .050 .061 .199 .255 .421 .500 .077 .127 .018 .025 .067 .165 .199 .344 .171 .182 .081 .068 .180 .191 .367 .467

GEN .231 .234 .162 .155 .250 .284 .378 .389 .171 .216 .112 .137 .189 .252 .289 .351 .268 .322 .185 .231 .308 .362 .413 .507

TITer .144 .200 .105 .148 .163 .226 .228 .314 .064 .115 .038 .076 .075 .131 .011 .186 .115 .228 .080 .168 .130 .262 .173 .331

FILT .278 .321 .208 .240 .305 .357 .410 .475 .191 .266 .129 .187 .209 .298 .316 .417 .273 .370 .201 .299 .303 .391 .405 .516

FITCARL .418 .481 .284 .329 .522 .646 .681 .696 .297 .370 .156 .193 .386 .559 .584 .627 .345 .513 .202 .386 .482 .618 .732 .700

5.3 Further Analysis

Ablation Study. We conduct several ablation studies to study the effective-
ness of different model components. (A) Action Space Sampling Variants:
To prevent oversized action space A(l), we use a time-adaptive sampling method
(see Sect. 4.2). We show its effectiveness by switching it to random sample (abla-
tion A1) and time-proximity sample (ablation A2). In time-proximity sample, we
take a fixed number of outgoing edges temporally closest to the current node at
t(l) as A(l). We keep |A(l)| unchanged. (B) Removing Confidence Learner:
In ablation B, we remove the confidence learner. (C) Removing Concept
Regularizer: In ablation C, we remove concept regularizer. (D) Time-Aware
Transformer Variants: We remove the time-aware positional encoding method
by deleting the second term of Eq. 2. (E) Removing Temporal Reasoning
Modules: In ablation E, we study the importance of temporal reasoning. We
first combine ablation A1 and D, and then delete every term related to time
difference representations computed with Eq. 1. We create a model variant with-
out using any temporal information (see Appendix C for detailed setting). We
present the experimental results of ablation studies in Table 3. From ablation A1
and A2, we observe that time-adaptive sample is effective. We also see a great
performance drop in ablation B and C, indicating the strong importance of our
confidence learner and concept regularizer. We only do ablation D for 3-shot
model because in 1-shot case our model does not need to distinguish the impor-
tance of multiple support quadruples. We find that our time-aware positional
encoding makes great contribution. Finally, we observe that ablation E shows
poor performance (worse than A1 and D in most cases), implying that incorpo-
rating temporal information is essential for FITCARL to solve TKG few-shot
OOG LP.

562 Z. Ding et al.

Table 3. Ablation study results. Best results are marked bold.

Datasets ICEWS14-OOG ICEWS18-OOG ICEWS0515-OOG

MRR H@1 H@3 H@10 MRR H@1 H@3 H@10 MRR H@1 H@3 H@10

Model 1-S 3-S 1-S 3-S 1-S 3-S 1-S 3-S 1-S 3-S 1-S 3-S 1-S 3-S 1-S 3-S 1-S 3-S 1-S 3-S 1-S 3-S 1-S 3-S

A1 .404 .418 .283 .287 .477 .494 .647 .667 .218 .260 .153 .167 .220 .296 .404 .471 .190 .401 .108 .289 .196 .467 .429 .624

A2 .264 .407 .241 .277 .287 .513 .288 .639 .242 .265 .126 .168 .337 .291 .444 .499 .261 .414 .200 .267 .298 .545 .387 .640

B .373 .379 .255 .284 .454 .425 .655 .564 .156 .258 .106 .191 .162 .271 .273 .398 .285 .411 .198 .336 .328 .442 .447 .567

C .379 .410 .265 .236 .489 .570 .667 .691 .275 .339 .153 .190 .346 .437 .531 .556 .223 .411 .130 .243 .318 .544 .397 .670

D – .438 – .262 – .626 – .676 – .257 – .160 – .280 – .500 – .438 – .262 – .610 – .672

E .270 .346 .042 .178 .480 .466 .644 .662 .155 .201 .012 .117 .197 .214 .543 .429 .176 .378 .047 .239 .194 .501 .506 .584

FITCARL .418 .481 .284 .329 .522 .646 .681 .696 .297 .370 .156 .193 .386 .559 .584 .627 .345 .513 .202 .386 .482 .618 .732 .700

Performance Over Time. To demonstrate the robustness of FITCARL, we
plot its MRR performance over prediction time (query time tq). We compare
FITCARL with two meta-learning-based strong baselines GEN and FILT. From
Figs. 4a to 4f, we find that our model can constantly outperform baselines. This
indicates that FITCARL improves LP performance for examples existing at
almost all timestamps, proving its robustness. GEN is not designed for TKG rea-
soning, and thus it cannot show optimal performance. Although FILT is designed
for TKG few-shot OOG LP, we show that our RL-based model is much stronger.

(a) ICEWS14-OOG 1-shot (b) ICEWS18-OOG 1-shot (c) ICEWS0515-OOG 1-shot

(d) ICEWS14-OOG 3-shot (e) ICEWS18-OOG 3-shot (f) ICEWS0515-OOG 3-shot

Fig. 4. Performance comparison among FITCARL, FILT and GEN over different query
time tq. Horizontal axis of each subfigure denotes how temporally faraway from the first
timestamp. We aggregate the performance of each month to one point in ICEWS14-
OOG and ICEWS18-OOG. A point for ICEWS0515-OOG denotes the aggregated per-
formance in each year.

Few-Shot Inductive Learning on TKGs Using Confidence-Augmented RL 563

Case Study. We do a case study to show how FITCARL provides explainabil-
ity and how the confidence learner helps in reasoning. We ask 3-shot FITCARL
and its variant without the confidence learner (both trained on ICEWS14-OOG)
to predict the missing entity of the LP query (Future Movement, Express intent
to cooperate on intelligence, ?, 2014-11-12), where Future Movement is a newly-
emerged entity that is unseen during training and the answer to this LP query is
Miguel Ángel Rodŕıguez. We visualize a specific reasoning path of each model and
present them in Fig. 5. The relation Express intent to cooperate on intelligence
indicates a positive relationship between subject and object entities. FITCARL
performs a search with length L = 3, where it finds an entity Military Person-
nel (Nigeria) that is in a negative relationship with both Future Movement and
Miguel Ángel Rodŕıguez. FITCARL provides explanation by finding a reason-
ing path representing the proverb: The enemy of the enemy is my friend. For
FITCARL without confidence learner, we find that it can also provide similar
explanation by finding another entity that is also an enemy of Military Personnel
(Nigeria). However, it fails to find the ground truth answer because it neglects
the confidence of each action. The confidence learner assigns high probability to
the ground truth entity, leading to a correct prediction.

(a) FITCARL (b) FITCARL w.o. Confidence

Fig. 5. Case study reasoning path visualization. The entity marked in red are the
answer predicted by the model. w.o. means without. (Color figure online)

6 Conclusion

We present an RL-based TKGC method FITCARL to solve TKG few-shot OOG
LP, where models are asked to predict the links concerning newly-emerged enti-
ties that have only a few observed associated facts. FITCARL is a meta-learning-
based model trained with episodic training. It learns representations of newly-
emerged entities by using a time-aware Transformer. To further alleviate the
negative impact of the few-shot setting, a confidence learner is proposed to be
coupled with the policy network for making better decisions. A parameter-free
concept regularizer is also developed to better exploit concept-aware information
in TKBs. Experimental results show that FITCARL achieves a new state-of-the-
art and provides explainability.

564 Z. Ding et al.

References

1. Abboud, R., Ceylan, İ.İ., Lukasiewicz, T., Salvatori, T.: Boxe: a box embedding
model for knowledge base completion. In: NeurIPS (2020)

2. Ammanabrolu, P., Hausknecht, M.J.: Graph constrained reinforcement learning
for natural language action spaces. In: ICLR. OpenReview.net (2020)

3. Baek, J., Lee, D.B., Hwang, S.J.: Learning to extrapolate knowledge: transductive
few-shot out-of-graph link prediction. In: NeurIPS (2020)

4. Balazevic, I., Allen, C., Hospedales, T.M.: Tucker: tensor factorization for knowl-
edge graph completion. In: EMNLP/IJCNLP (1), pp. 5184–5193. Association for
Computational Linguistics (2019)

5. Bordes, A., Usunier, N., Garćıa-Durán, A., Weston, J., Yakhnenko, O.: Translating
embeddings for modeling multi-relational data. In: NIPS, pp. 2787–2795 (2013)

6. Boschee, E., Lautenschlager, J., O’Brien, S., Shellman, S., Starz, J., Ward, M.:
ICEWS Coded Event Data (2015)

7. Chen, K., Wang, Y., Li, Y., Li, A.: Rotateqvs: representing temporal information
as rotations in quaternion vector space for temporal knowledge graph completion.
In: ACL (1), pp. 5843–5857. Association for Computational Linguistics (2022)

8. Chen, M., Zhang, W., Zhang, W., Chen, Q., Chen, H.: Meta relational learning
for few-shot link prediction in knowledge graphs. In: EMNLP/IJCNLP (1), pp.
4216–4225. Association for Computational Linguistics (2019)

9. Cho, K., et al.: Learning phrase representations using RNN encoder-decoder for
statistical machine translation. In: EMNLP, pp. 1724–1734. ACL (2014)

10. Ding, Z., He, B., Ma, Y., Han, Z., Tresp, V.: Learning meta representations of one-
shot relations for temporal knowledge graph link prediction. CoRR abs/2205.10621
(2022)

11. Ding, Z., Ma, Y., He, B., Han, Z., Tresp, V.: A simple but powerful graph encoder
for temporal knowledge graph completion. In: NeurIPS 2022 Temporal Graph
Learning Workshop (2022)

12. Ding, Z., et al.: Forecasting question answering over temporal knowledge graphs.
CoRR abs/2208.06501 (2022)

13. Ding, Z., Wu, J., He, B., Ma, Y., Han, Z., Tresp, V.: Few-shot inductive learning on
temporal knowledge graphs using concept-aware information. In: 4th Conference
on Automated Knowledge Base Construction (2022)

14. Guo, J., Kok, S.: Bique: biquaternionic embeddings of knowledge graphs. In:
EMNLP (1), pp. 8338–8351. Association for Computational Linguistics (2021)

15. Hamaguchi, T., Oiwa, H., Shimbo, M., Matsumoto, Y.: Knowledge transfer for
out-of-knowledge-base entities: a graph neural network approach. In: IJCAI, pp.
1802–1808. ijcai.org (2017)

16. He, Y., Wang, Z., Zhang, P., Tu, Z., Ren, Z.: VN network: embedding newly emerg-
ing entities with virtual neighbors. In: CIKM, pp. 505–514. ACM (2020)

17. Jung, J., Jung, J., Kang, U.: Learning to walk across time for interpretable tem-
poral knowledge graph completion. In: KDD, pp. 786–795. ACM (2021)

18. Lacroix, T., Obozinski, G., Usunier, N.: Tensor decompositions for temporal knowl-
edge base completion. In: ICLR. OpenReview.net (2020)

19. Leblay, J., Chekol, M.W.: Deriving validity time in knowledge graph. In: WWW
(Companion Volume), pp. 1771–1776. ACM (2018)

20. Li, J., Tang, T., Zhao, W.X., Wei, Z., Yuan, N.J., Wen, J.: Few-shot knowl-
edge graph-to-text generation with pretrained language models. In: ACL/IJCNLP
(Findings). Findings of ACL, vol. ACL/IJCNLP 2021, pp. 1558–1568. Association
for Computational Linguistics (2021)

Few-Shot Inductive Learning on TKGs Using Confidence-Augmented RL 565

21. Li, Z., et al.: Search from history and reason for future: two-stage reasoning on
temporal knowledge graphs. In: ACL/IJCNLP (1), pp. 4732–4743. Association for
Computational Linguistics (2021)

22. Lin, Y., Liu, Z., Sun, M., Liu, Y., Zhu, X.: Learning entity and relation embeddings
for knowledge graph completion. In: AAAI, pp. 2181–2187. AAAI Press (2015)

23. Messner, J., Abboud, R., Ceylan, İ.İ.: Temporal knowledge graph completion using
box embeddings. In: AAAI, pp. 7779–7787. AAAI Press (2022)

24. Mirtaheri, M., Rostami, M., Ren, X., Morstatter, F., Galstyan, A.: One-shot learn-
ing for temporal knowledge graphs. In: 3rd Conference on Automated Knowledge
Base Construction (2021)

25. Nickel, M., Tresp, V., Kriegel, H.: A three-way model for collective learning on
multi-relational data. In: ICML, pp. 809–816. Omnipress (2011)

26. Sadeghian, A., Armandpour, M., Colas, A., Wang, D.Z.: Chronor: rotation based
temporal knowledge graph embedding. In: AAAI, pp. 6471–6479. AAAI Press
(2021)

27. Saxena, A., Tripathi, A., Talukdar, P.P.: Improving multi-hop question answering
over knowledge graphs using knowledge base embeddings. In: ACL, pp. 4498–4507.
Association for Computational Linguistics (2020)

28. Schlichtkrull, M., Kipf, T.N., Bloem, P., van den Berg, R., Titov, I., Welling,
M.: Modeling relational data with graph convolutional networks. In: Gangemi, A.,
et al. (eds.) ESWC 2018. LNCS, vol. 10843, pp. 593–607. Springer, Cham (2018).
https://doi.org/10.1007/978-3-319-93417-4 38

29. Sheng, J., et al.: Adaptive attentional network for few-shot knowledge graph com-
pletion. In: EMNLP (1), pp. 1681–1691. Association for Computational Linguistics
(2020)

30. Sun, H., Zhong, J., Ma, Y., Han, Z., He, K.: Timetraveler: reinforcement learn-
ing for temporal knowledge graph forecasting. In: EMNLP (1), pp. 8306–8319.
Association for Computational Linguistics (2021)

31. Tresp, V., Esteban, C., Yang, Y., Baier, S., Krompaß, D.: Learning with memory
embeddings. arXiv preprint arXiv:1511.07972 (2015)

32. Trouillon, T., Welbl, J., Riedel, S., Gaussier, É., Bouchard, G.: Complex embed-
dings for simple link prediction. In: ICML, JMLR Workshop and Conference Pro-
ceedings, vol. 48, pp. 2071–2080. JMLR.org (2016)

33. Tucker, L.R.: The extension of factor analysis to three-dimensional matrices. In:
Gulliksen, H., Frederiksen, N. (eds.) Contributions to Mathematical Psychology,
pp. 110–127. Holt, Rinehart and Winston, New York (1964)

34. Vashishth, S., Sanyal, S., Nitin, V., Talukdar, P.P.: Composition-based multi-
relational graph convolutional networks. In: ICLR. OpenReview.net (2020)

35. Vaswani, A., et al.: Attention is all you need. In: NIPS, pp. 5998–6008 (2017)
36. Vinyals, O., Blundell, C., Lillicrap, T., Kavukcuoglu, K., Wierstra, D.: Matching

networks for one shot learning. In: NIPS, pp. 3630–3638 (2016)
37. Wang, P., Han, J., Li, C., Pan, R.: Logic attention based neighborhood aggregation

for inductive knowledge graph embedding. In: AAAI, pp. 7152–7159. AAAI Press
(2019)

38. Wang, R., et al.: Learning to sample and aggregate: few-shot reasoning over tem-
poral knowledge graphs. In: NeurIPS (2022)

39. Wu, J., Cao, M., Cheung, J.C.K., Hamilton, W.L.: Temp: temporal message pass-
ing for temporal knowledge graph completion. In: EMNLP (1), pp. 5730–5746.
Association for Computational Linguistics (2020)

https://doi.org/10.1007/978-3-319-93417-4_38
http://arxiv.org/abs/1511.07972

566 Z. Ding et al.

40. Xiong, W., Yu, M., Chang, S., Guo, X., Wang, W.Y.: One-shot relational learning
for knowledge graphs. In: EMNLP, pp. 1980–1990. Association for Computational
Linguistics (2018)

41. Xu, C., Chen, Y., Nayyeri, M., Lehmann, J.: Temporal knowledge graph completion
using a linear temporal regularizer and multivector embeddings. In: NAACL-HLT,
pp. 2569–2578. Association for Computational Linguistics (2021)

42. Xu, C., Nayyeri, M., Alkhoury, F., Yazdi, H.S., Lehmann, J.: Tero: a time-aware
knowledge graph embedding via temporal rotation. In: COLING, pp. 1583–1593.
International Committee on Computational Linguistics (2020)

43. Yang, B., Yih, W., He, X., Gao, J., Deng, L.: Embedding entities and relations for
learning and inference in knowledge bases. In: ICLR (Poster) (2015)

44. Zhang, F., Zhang, Z., Ao, X., Zhuang, F., Xu, Y., He, Q.: Along the time: timeline-
traced embedding for temporal knowledge graph completion. In: CIKM, pp. 2529–
2538. ACM (2022)

45. Zhang, Y., Dai, H., Kozareva, Z., Smola, A.J., Song, L.: Variational reasoning for
question answering with knowledge graph. In: AAAI, pp. 6069–6076. AAAI Press
(2018)

Clifford Embeddings – A Generalized
Approach for Embedding in Normed

Algebras

Caglar Demir(B) and Axel-Cyrille Ngonga Ngomo

Data Science Research Group, Paderborn University, Paderborn, Germany
{caglar.demir,axel.ngonga}@upb.de

Abstract. A growing number of knowledge graph embedding models
exploit the characteristics of division algebras (e.g., R, C, H, and O) to
learn embeddings. Yet, recent empirical results suggest that the suitabil-
ity of algebras is contingent upon the knowledge graph being embedded.
In this work, we tackle the challenge of selecting the algebra within which
a given knowledge graph should be embedded by exploiting the fact
that Clifford algebras Clp,q generalize over R, C, H, and O. Our embed-
ding approach, Keci, is the first knowledge graph embedding model that
can parameterize the algebra within which it operates. With Keci, the
selection of an underlying algebra becomes a part of the learning pro-
cess. Specifically, Keci starts the training process by learning real-valued
embeddings for entities and relations in R

m = Clm0,0. At each mini-batch
update, Keci can steer the training process from Clmp,q to Clmp+1,q or
Clmp,q+1 by processing the training loss. In this way, Keci can decide
the algebra within which it operates in a data-driven fashion. Conse-
quently, Keci is a generalization of previous approaches such as Dist-
Mult, ComplEx, QuatE, and OMult. Our evaluation suggests that Keci
outperforms state-of-the-art embedding approaches on seven benchmark
datasets. We provide an open-source implementation of Keci, including
pre-trained models, training and evaluation scripts (https://github.com/
dice-group/dice-embeddings).

Keywords: Knowledge Graphs · Embeddings · Theory Unification

1 Introduction

A plethora of knowledge graph embedding (KGE) models have been developed
over the last decade [7,33,34]. Most KGE models map entities e ∈ E and rela-
tions r ∈ R found in a knowledge graph (KG) G ⊆ E × R × E to V, where V

is a d-dimensional vector space and d ∈ N\{0} [17]. This family of models is
currently one of the most popular means to make KGs amenable to vectorial
machine learning [33] and has been used in applications including drug dis-
covery, community detection, recommendation, question answering [3,14,15,34].
While early models (e.g., RESCAL [24], DistMult [37]) express embeddings in R

d

and perform well once tuned fittingly [28], later results suggest that embedding

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
D. Koutra et al. (Eds.): ECML PKDD 2023, LNAI 14171, pp. 567–582, 2023.
https://doi.org/10.1007/978-3-031-43418-1_34

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-43418-1_34&domain=pdf
http://orcid.org/0000-0001-8970-3850
http://orcid.org/0000-0001-7112-3516
https://github.com/dice-group/dice-embeddings
https://github.com/dice-group/dice-embeddings
https://doi.org/10.1007/978-3-031-43418-1_34

568 C. Demir and A.-C. Ngonga Ngomo

using the more complex division algebras C and H can achieve a superior link
prediction performance (measured in terms of hits at n, short h@n) [8,28,40,42].
This is at least partially due to the characteristics of (hyper)complex algebras
(e.g., C, H) being used to account for logical properties such as the symmetry,
asymmetry, and compositionality [30] of relations r found in the input data.
While recent works have continued improving the performance of KGE mod-
els by including ever more complex neural architectures atop division algebras
(see, e.g., ConvE [12], ConEx [9]), a fundamental assumption remains shared:
V is fixed for each approach. This assumption has the advantages of being con-
ducive to rapid implementation, execution and interpretation. However, its main
disadvantage is well illustrated by experimental results from recent works [28]:
The most adequate algebra for embedding a KG is contingent upon the data to
embed. This finding is corroborated by our experimental results (see Fig. 1).

The link between algebras and KGEs can be directly entailed from formal
treatments on embeddings. Consider ComplEx [32] embeddings for example.
When a KG does not contain triples with an anti-symmetric relation (e.g., the
bornIn or hasChild relations), embedding into C instead of R is of no advan-
tage. On the contrary, the space and time requirements of an approach based on
C are double that of an approach based on R (see Sect. 4). Similar insights can be
derived for the division algebras H and O (see, e.g., QuatE [42] and ConvO [8]).
Our goal therefore is to find a hypothesis space, i.e., a suitable algebra underlying
V that is rich enough to embed the input knowledge graph, yet simple enough to
ensure reliable generalization over unseen data. We implement this goal by pre-
senting Keci. Our approach exploits the fact that Clifford Algebras Clp,q (see
Sect. 2.1 for an overview) generalize over common division algebras and aims
to find a suitable algebra for a particular dataset in a data-driven fashion. We
conceived of two ways to find a suitable algebra: (1) Consider p and q as two new
hyperparameters to find a suitable Clp,q or (2) scale the imaginary dimensions
of Clp,q according to the training loss. While finding a suitable Clp,q via (1) is
computationally expensive as it requires multiple training phases, (2) is concep-
tually simpler. Keci is hence based on (2), and uses the cross-entropy training
loss to decide whether it should increase the number of imaginary dimensions
of the division algebra within which it operates. This process can be equated
with starting the learning process in a small hypothesis space (e.g., R = Cl0,0)
and steering the learning process towards a larger hypothesis space as required.
Our experiments on seven benchmark datasets (WN18RR, FB15K-237, YAGO3-
10, NELL-995-h25, NELL-995-h50, NELL-995-h75, UMLS, and KINSHIP) sug-
gest that Keci outperforms DistMult, ComplEx, QMult and OMult across all
datasets and benchmark metrics (MRR, Hit@1,Hit@3, and Hit@10).

2 Preliminaries and Notation

2.1 Clifford Algebras

A Clifford algebra Clp,q(R) is an associative algebra (i.e., additions and mul-
tiplications are associative) generated by the p + q orthonormal basis elements
e1, . . . , ep+q for which the following relations hold:

Clifford Embeddings 569

e2
i = +1 for 1 ≤ i ≤ p , (1)

e2
j = −1 for p < j ≤ p + q , (2)

eiej = −ejei for i �= j . (3)

The lowest-dimensional Clifford algebra Cl0,0(R) is a zero-dimensional alge-
bra with vector space V that is spanned by the basis element {1}. Hence, Cl0,0(R)
is algebra-isomorphic to R. Analogously, Cl0,1(R) is equivalent to C, and Cl0,2(R)
is equivalent to H [5,16]. In fact, the spaces used by a large portion of the state-
of-the-art KGE models are (sub-) algebras of some Clp,q(R) (see Sect. 3 and
Table 1).

2.2 Knowledge Graphs

A KG represents structured collections of assertions describing the world [17].
Formally, a KG is often defined as a set of triples G := {(h, r, t) ∈ E × R × E},
where E and R stand for a set of entities and a set of relations, respectively [1,2,
12]. Each triple (h, r, t) ∈ G represents an assertion based on two entities h, t ∈ E
and a relation r ∈ R. A relation r is symmetric iff (h, r, t) ⇐⇒ (t, r, h) holds.
Analogously, r is anti-symmetric iff (h, r, t) ∈ G ⇒ (t, r, h) �∈ G for all h �= t.
Most publicly available KGs contain missing and erroneous assertions [17]. These
triples can be inferred from an existing set of triples by means of designing
logical rules or learning continuous vector representations via knowledge graph
embedding models [22].

2.3 Knowledge Graph Embeddings

Most KGE models learn continuous vector representations tailored towards
link prediction [6,17]. They are often defined as parameterized scoring func-
tions φΘ : E × R × E �→ R, where Θ denotes parameters and often comprise
entity embeddings E ∈ V

|E|×de , relation embeddings R ∈ V
|R|×dr , and addi-

tional parameters (e.g., affine transformations, batch normalizations, convolu-
tions) [1,8]. Since de = dr holds for many models including models reported
in Table 1, we will use d to signify the number of real parameters used for the
embedding of an entity or relation Given (h, r, t) ∈ E × R × E , the prediction
ŷ := φΘ(h, r, t) signals the likelihood of (h, r, t) being true [12,33,41]. Since G
contains only assertions that are assumed to be true, assertions assumed to be
false are often generated by applying the negative sampling, 1vsAll or Kvsall
training strategies [28]. Throughout this paper, we will denote embeddings with
bold fonts, i.e., the embedding of h will be denoted h. Moreover, we use ◦ and
· to denote an element-wise vector multiplication and an inner product in V,
respectively.

3 Related Work

In the last decade, a plethora of KGE models have been successfully applied
to tackle various tasks, including link prediction, class expression learning, drug

570 C. Demir and A.-C. Ngonga Ngomo

discovery among many others [3,11,12,25,28,33,38,39]. Most KGE models are
designed to operate in a pre-determined vector space V based on a normed
division algebra to learn embeddings for entities and relations tailored towards
predicting missing links. Most of these models can be unified under a feature com-
position operator followed by an approximation operator in a respective division
algebra. Given a triple (h, r, t), most KGE models φΘ : E × R × E �→ R com-
putes a triple score via linear operations (e.g., element-wise multiplications or
additions) on h, r, and t [4,8,32,37,40,42].

3.1 Inner Product vs Distance

A large portion of the existing KGE approaches can be regarded as instances of
one of two paradigms. RESCAL [24], DistMult [37], ComplEx [32], ComplEx-
N3 [19], QuatE, OctonionE [42], QMult, and OMult [8] can be unified under the
inner product paradigm, where an inner product is used as an approximation
operator in a preselected vector space V. TransE [4], TransH [35], TransR [20],
CTransR [20], TransD [18], TransO [40], and RotatE [29] can be regarded as
belonging to the distance paradigm, where a distance (e.g., the Euclidean dis-
tance) is used as an approximation operator in a selected vector space V. Given
a triple (h, r, t), all aforementioned models apply element-wise multiplication or
addition to obtain a composite representation of the head entity embedding h
and the relation embedding r in V. A scalar real-valued prediction ŷ := φΘ(h, r, t)
is obtained via an inner product or a distance between a resulting composite rep-
resentation and the tail entity embedding t.

Table 1. State-of-the-art embedding approaches and algebras used for embeddings

Models Vector Space ⊆ Clp,q(R)

TransE, DistMult, RESCAL R Cl0,0

ComplEx, RotatE, ConEx C Cl0,1

QuatE, QMult, DensE H Cl0,2

OMult, OctonionE O Cl1,3

To obtain a more expressive composite representation of h and r, various
KGE models (e.g., HolE [23], ConvE [12], HypER [1], ConvKB [21], ConEx [9],
ConvQ [8], ConvO [8] and AcrE [27]) apply 1D or 2D convolutions followed
by an non-linear affine transformation as a feature composition operator. These
convolution-based models aim to learn a complex composite representation of h
and r that is ideally approximately equal to t, while maintaining a parameter
efficiency.

3.2 Selecting V

The vector space V can encode useful prior knowledge that enable KGE models
to infer missing triples. For instance, given a triple (h, r, t), DistMult computes

Clifford Embeddings 571

a triple score via (h ◦ r) · t, where h, r, t ∈ R
d, ◦ denotes the element-wise vector

multiplication, and · stands for the inner product in V = R. This formulation
leads DistMult to enjoy the linear time and space complexity of multiplication
and inner product in R. However, although DistMult can accurately infer missing
triples with symmetric relations, missing triples with anti-symmetric relations
cannot be accurately inferred. To alleviate this shortcoming and retain param-
eter and computational efficiency, ComplEx extends DistMult into C, where ◦
denotes the element-wise complex vector multiplication and · is a Hermitian inner
product. Since this inner product in C is symmetric in Re(·) and anti-symmetric
in Im(·), triples with anti-symmetric relations can be accurately predicted [31].

Overall, recent empirical results suggest that the suitability of an algebra
is contingent upon the input KG that is to be embedded. For instance, Com-
plEx outperforms DistMult by absolute 0.5% and 2.2% MRR scores on FB15K-
237 and WN18RR, respectively, provided that the models are well tuned and
d = 256 [28]. On the other hand, a recent work shows that DistMult outperforms
ComplEx by 2.1% absolute MRR on FB15K-237, while ComplEx outperforms
DistMult by 2.4% and 0.5% absolute MRR on WN18RR and YAGO3-10, respec-
tively. Note that in this experiment, DistMult operates on R

100 and ComplEx on
C

50 [9].1 Similarly, another recent work suggests that in a low-dimensional setting
with d = 32, DistMult outperforms ComplEx by 3.5% and 3.2% absolute MRR
on FB15K-238 and NELL-995-h100, respectively, while ComplEx outperforms
DistMult by 3.6% absolute MRR score on WN18RR [13]. Another recent clini-
cal study pertaining to drug discovery with d = 200 shows that the recall@200
performance of ComplEx is 5.7% higher than the performance of DistMult [25].
Many other recent works–including [9,13,25,28]–indicate similar dependencies
of the suitability of an algebra on the input KG. On the application side, studies
such as Bonner et al. [3] show that determining the selection criteria of a partic-
ular KGE model over another real datasets is a viable question. They highlight
the importance of understanding the properties of such models w.r.t. the input
dataset to improve drug discovery efforts.

We argue that the selection of the algebra underlying the vector space V

within which a KGE model learns embeddings for a given KGE can be a part
of the learning problem. In Sect. 4, we introduce the first KGE model that does
not only learn embeddings for entities and relations but also a suitable algebra
for V by means of a dimension scaling technique.

4 Methodology

4.1 Clifford Embeddings

Given a triple (h, r, t) ∈ G, let h, r, t ∈ Clp,q(Rm) denote three multi-vectors
representing embeddings of the head entity h, the relation r and the tail entity
t, respectively. We defined the multivector h as
1 Note that the two models have the same complexity w.r.t. the number of real num-

bers necessary to represent the final embeddings as every element of C is encoded
via two real numbers.

572 C. Demir and A.-C. Ngonga Ngomo

h = h0 +
p∑

i=1

hiei +
p+q∑

j=p+1

hjej , (4)

where h(·) ∈ R
m with m = �d/(p + q + 1)�. The vectors r and t are defined

analogously. Hence, every embedding vector can be represented by at most d
real numbers. The Clifford multiplication of h and r is given by

h ◦ r =h0r0 +
p∑

i=1

h0riei +
p+q∑

j=p+1

h0rjej (5)

+
p∑

i=1

hir0ei +
p∑

i=1

p∑

k=1

hirkeiek +
p∑

i=1

p+q∑

j=p+1

hirjeiej (6)

+
p+q∑

j=p+1

hjr0ej +
p+q∑

j=p+1

p∑

i=1

hjriejei +
p+q∑

j=p+1

p+q∑

k=p+1

hjrkejek. (7)

Grouping the terms using the bases and applying the Clifford algebra bases
rules (see Sect. 2.1) simplifies the above expression to

h ◦ r = σ0 + σp + σq + σp,p + σq,q + σp,q, (8)

where σ(.) are defined as

σ0 =h0r0 +
p∑

i=1

hiri −
p+q∑

j=p+1

hjrj , (9)

σp =
p∑

i=1

(h0ri + hir0)ei, (10)

σq =
p+q∑

j=p+1

(h0rj + hjr0)ej , (11)

σp,p =
p−1∑

i=1

p∑

k=i+1

(hirk − hkri)eiek, (12)

σq,q =
p+q−1∑

j=1

p+q∑

k=j+1

(hjrk − hkrj)ejek, (13)

σp,q =
p∑

i=1

p+q∑

j=p+1

(hirj − hjri)eiej . (14)

4.2 Scoring Function Based on Inner Product

Given a triple (h, r, t) and the respective multi-vector embeddings of h, r, t ∈
Clp,q(Rm), Keci’s scoring function is given by

Keci(h, r, t)p,q = (h ◦ r) · t, (15)

Clifford Embeddings 573

where · denotes the inner product between two multi-vectors in Clp,q(Rm). Dis-
tributing the components of t simplifies to

Keci(h, r, t)p,q =h0r0t0 +
p∑

i=1

(hirit0) −
p+q∑

j=p+1

(hjrjt0) (16)

+
p∑

i=1

(h0riti + hir0ti)ei (17)

+
p+q∑

j=p+1

(h0rjtj + r0hjtj)ej (18)

+σp,p + σq,q + σp,q. (19)

Therefore, Keci can be classified as a knowledge graph embedding model using
element-wise multiplication as a feature composition operator and the inner
product as an approximation operator. Hence, Keci is akin to DistMult, Com-
plEx, QMult and OMult depending on p and q. More specifically, selecting
p = q = 0 leads Keci(h, r, t)0,0 to generalize to DistMult:

Keci(h, r, t)p,q = h0 ◦ r0 · t0 = 〈Re(h),Re(r),Re(t)〉, (20)

where h, r, t ∈ Cl0,0(Rd), hence, h0, r0, t0 ∈ R
m=d. Similarly, selecting p =

0 ∧ q = 1 leads to Keci(h, r, t)0,1, which is equivalent to ComplEx.

Keci(h, r, t)p,q = h ◦ r · t = 〈Re(h),Re(r),Re(t)〉 (21)
+ 〈Re(h), Im(r), Im(t)〉 (22)
+ 〈Im(h),Re(r), Im(t)〉 (23)
− 〈Im(h), Im(r),Re(t)〉, (24)

where h, r, t ∈ C
d
2 . This clearly shows that the triple score computed by Keci

does not only depend on learned embeddings of h, r, t but also parameterization
of an algebra.

4.3 Learning to Scale Dimensions in Clp,q(R)

Remember that we argue that the selection of the vector space within which a
KGE operates should be a part of the learning problem. Hence, instead of fixing
p and q for Keci, we argue that Keci should be endowed with the capability of
selecting a particular subspace of Clp,q to operate in.

We propose to learn coefficients α1, . . . αp+q for the orthonormal bases
e1, . . . ep+q of Clp,q(R), where αi ∈ R. Entity embeddings and relation embed-
dings are now of the forms

574 C. Demir and A.-C. Ngonga Ngomo

hα = h0 +
p∑

i=1

hiαiei +
p+q∑

j=p+1

hjαjej , and (25)

rα = r0 +
p∑

i=1

riαiei +
p+q∑

j=p+1

rjαjej , (26)

where αi, αj ∈ R are trainable coefficients for each base vectors. Initializing
α1, . . . , αp+q = 0 leads Keci to start the training process as DistMult in R

m,
where m = �d/(p+ q +1)�. Hence, for a given (h, r, t), a triple score is computed
as

hα ◦ hα · tα = h0 ◦ r0 · t0, (27)

where the valued represented along e1, ep+q are scaled down to 0. During train-
ing, α1, . . . , αp+q can be updated iteratively on the basis of the training loss.
More specifically, let L denote the cross-entropy loss function that is defined as

L(y, ŷ) = −ylog(ŷ) − (1 − y)log(1 − ŷ), (28)

where y denotes a binary label of a given triple (h, r, t) and ŷ = σ(φΘ(h, r, t))
denotes a prediction obtained via the logistic sigmoid function (σ(x) = 1

1+e−x).
Moreover, let dL

dαi
denote the derivative of L w.r.t. αi on a single data point

(h, r, t). Therefore, a coefficient αi is updated on the bases of hi and ri,
dL

dhiαi
hi + dL

driαi
ri. In the mini-batch training setting, αi is updated with a batch

of respective terms. Consequently, updating αi in the negative direction of the
gradients assists to decrease the loss further. Hence, Keci can learn to select a
particular subspace of Clp,q that is more favorable to decrease the training loss.

5 Experiments

5.1 Datasets

We used the benchmark datasets UMLS, KINSHIP, NELL-995 h25, NELL-
995 h50, NELL-995 h100, FB15K-237, and YAGO3-10 for the link predic-
tion problem. An overview of the datasets is provided in Table 2. UMLS
describes relationships between medical entities and their relationships, e.g.,
immunologic factor, disrupts, and cell. KINSHIP describes the 25 differ-
ent kinship relations of the Alyawarra tribe and UMLS describes 135 medical
entities via 46 relations describing [30]. FB15K-237 and YAGO3-10 are subsets
of Freebase and YAGO [12]. They contain information about a general domain,
e.g., Stephen Hawking, and Copley Medal. The Never-Ending Language Learn-
ing datasets NELL-995 h25, NELL-995 h50, and NELL-995 h100 are designed
to evaluate multi-hop reasoning capabilities [36].

Clifford Embeddings 575

Table 2. An overview of datasets in terms of number of entities, number of relations,
and node degrees in the train split along with the number of triples in each split of the
dataset.

Dataset |E| |R| |GTrain| |GValidation| |GTest|
UMLS 135 46 5,216 652 661

KINSHIP 104 25 8,544 1,068 1,074

NELL-995 h100 22,411 43 50,314 3,763 3,746

NELL-995 h50 34,667 86 72,767 5,440 5,393

NELL-995 h25 70,145 172 122,618 9,194 9,187

FB15K-237 14,541 237 272,115 17,535 20,466

YAGO3-10 123,182 37 1,079,040 5,000 5,000

5.2 Experimental Setup and Optimization

Throughout our experiments, we use the cross-entropy loss function to train
each knowledge graph embedding model. We evaluated the link prediction per-
formance of models with benchmark metrics (filtered MRR, Hits@1,Hits@3, and
Hits@10). We did not used any regularization technique (e.g., dropout technique
or L2 regularization) as we report the training and validation performance of each
model on each dataset. Throughout our experiments, each entity and relation is
represented with 32-dimensional real valued vector across datasets and models
as in [6,13]. Hence, DistMult, ComplEx, QMult, and OMult learn embeddings
in R

32,C16,H8, and O
4, respectively. Consequently, all models have the same

number of parameters. We report the training, validation and test results to
prove a finer-grained overview of performance across datasets and models. We
use the Adam optimizer with 0.1 learning rate and train each model for 256
epochs with the batch size of 1024. The implementation of Keci can be found
in the dice-embedding framework [10]. Therein, we also provided the pre-trained
models2.

6 Results

6.1 Exhaustive Search

The goal of our first series of experiments was to verify that the performance of
Keci is contingent upon different values for p and q. Hence, we did not perform
any dimension scaling and tried all combinations of p ≤ 4 and q ≤ 4. Note
that we only kept one copy of (p, q) pairs for each equivalent class of Clp,q. For
example, Cl1,1 is isomorphic to Cl0,2.

Figure 1 shows the MRR trajectories of Keci with different (p, q) pairs on the
UMLS and KINSHIP benchmark datasets. At the end of each training epoch,
the MRR performances on the training and validation splits was registered and
2 https://github.com/dice-group/dice-embeddings#pre-trained-models.

https://github.com/dice-group/dice-embeddings#pre-trained-models

576 C. Demir and A.-C. Ngonga Ngomo

is reported. These results corroborate our hypothesis: The link prediction per-
formance substantially vary depending on the selection of algebras. For instance,
Keci performs well with Cl0,1 and Cl4,3 on both datasets, whereas Keci per-
forms poorly with Cl0,0 and Cl3,0. Figure 1 also shows that Cl0,0, Cl0,1, Cl3,4

greatly suffer from overfitting, whereas this is not observed for Cl4,3.

Fig. 1. MRR performance of Keci with different p and q for Clp,q.

Depending on the selection of Clp,q, Keci can greatly benefit from the early
stopping technique on UMLS, e.g., terminating the training after observing con-
secutive decreases in the validation performance [26]. For instance, although
Keci with Cl0,1 reaches its peak generalization performance around 50–75
epochs, training longer decreases its generalization performance. Yet, a possi-
ble overfitting is not observed for any configuration on KINSHIP.

6.2 Comparison with Other Approaches

Tables 3, 4, 5 report the link prediction results on WN18RR, FB15K-237,
YAGO3-10, NELL-995-h25, NELL-995-h50, and NELL-995-h75, respectively.
We report the link prediction performance of models on the training, validation,
and test splits of the respective dataset to allow for a fine-grained performance
analysis, e.g., by allowing for overfitting/underfitting to be detected. Keci is
trained with the dimension scaling technique (elucidated in Sect. 4.3). Overall,
our results corroborates our hypothesis: the suitability of algebras is contin-
gent upon the dataset that is to be embedded. For instance, although DistMult

Clifford Embeddings 577

reaches the second best performance on FB15K-237, YAGO3-10, and WN18RR,
DistMult performs poorly on NELL-995-h25, UMLS, and KINSHIP. Similarly,
although QMult outperforms DistMult, ComplEx, and OMult on FB15K-237,
QMult performs poorly on NELL-995-h25, NELL-995-h50, and KINSHIP. Note
that all models have the same number of parameters, i.e., DistMult, ComplEx,
QMult, OMult, and Keci operate in R

d,Cd/2,Hd/4
O

d/4, and Clp,q(Rm). Note
that each baseline model applies an element-wise vector multiplication followed
by an inner product in a respectively fixed algebra, whereas Keci begins the
search in R = Cl0,0 and updates the coefficients of the p + q base vectors based
on the training loss further as elucidated in Sect. 4.3.

Table 3. Link prediction results on FB15K-237, YAGO3-10 and WN18RR. All models
have the same number of parameters. Each entity and relation is represented with 32-
dimensional real valued vector. Each sequence of three rows for a model report the
model performance on the training, validation and test datasets. Bold and underlined
results indicate the best results and second best results.

Models FB15K-237 YAGO3-10 WN18RR

MRR @1 @3 @10 MRR @1 @3 @10 MRR @1 @3 @10

DistMult 0.365 0.259 0.412 0.573 0.644 0.564 0.691 0.794 0.932 0.885 0.978 0.993

0.212 0.140 0.236 0.355 0.252 0.182 0.275 0.385 0.353 0.342 0.357 0.372

0.213 0.141 0.235 0.351 0.247 0.174 0.278 0.382 0.351 0.340 0.353 0.371

ComplEx 0.336 0.237 0.379 0.534 0.623 0.543 0.669 0.773 0.906 0.879 0.927 0.948

0.196 0.128 0.214 0.332 0.227 0.158 0.249 0.364 0.308 0.277 0.326 0.359

0.197 0.129 0.218 0.333 0.230 0.156 0.257 0.373 0.313 0.282 0.331 0.364

QMult 0.338 0.238 0.381 0.537 0.471 0.382 0.516 0.642 0.996 0.996 0.996 0.997

0.210 0.143 0.229 0.343 0.176 0.113 0.195 0.300 0.313 0.278 0.337 0.366

0.207 0.139 0.226 0.341 0.179 0.112 0.202 0.309 0.308 0.274 0.332 0.361

OMult 0.323 0.226 0.362 0.517 0.429 0.334 0.479 0.610 0.977 0.971 0.982 0.988

0.195 0.131 0.210 0.327 0.160 0.099 0.177 0.282 0.298 0.269 0.314 0.353

0.192 0.127 0.206 0.325 0.163 0.100 0.181 0.288 0.295 0.263 0.314 0.353

Keci 0.496 0.390 0.551 0.699 0.664 0.579 0.718 0.821 0.967 0.952 0.982 0.989

0.268 0.191 0.291 0.421 0.260 0.180 0.293 0.414 0.357 0.343 0.365 0.379

0.262 0.185 0.286 0.419 0.265 0.187 0.295 0.414 0.354 0.341 0.359 0.377

Table 3 show that Keci finds a suitable subspace of Clp,q that leads to better
training, validation and test performances across datasets. Keci outperforms all
models in all metrics on FB15K-237 and YAGO3-10. Although Keci starts the
training process as DistMult, Keci finds a subspace of Clp,q that fits the train-
ing data better. For instance, Keci outperforms DistMult by 13.1% absolute
difference in MRR on the training split of FB15K-237. Surprisingly, although
Keci and QMult reach similar performances on the training split of WN18RR,
Keci generalizes better than QMult on WN18RR. This may indicate that learn-
ing coefficients for each imaginary dimension of Clp,q acts as a regularizer. We
also observe that as the size of the underlying algebras grows, the performance
of a respective model decreases on FB15K-237 and YAGO3-10, e.g., DistMult
and ComplEx outperform QMult and OMult in all metrics on FB15K-237 and

578 C. Demir and A.-C. Ngonga Ngomo

YAGO3-10. Hence, as the size of the algebra grows, increasing the embedding
size d may be beneficial depending on the input dataset Similarly observation is
also reported in [13]. Table 3 also show that all models greatly suffer from over-
fitting on all datasets, particularly, on WN18RR. This highlights the importance
of applying regularization.

Tables 4 and 5 show that Keci generalizes better than all baselines on NELL,
UMLS, and KINSHIP benchmark datasets. Keci outperforms all baselines mod-
els on NELL-005-h25 in all metrics, while baselines reach better training perfor-
mance on the other NELL datasets.

Table 4. Link prediction results on NELL-995-h25, NELL-995-h50, and NELL-995-
h75. All models have the same number of parameters. Each entity and relation is
represented with 32-dimensional real valued vector. Each three rows for a model report
performance on the training, validation and test datasets. Bold and underlined results
indicate the best results and second best results.

Models NELL-995-h25 NELL-995-h50 NELL-995-h75

MRR @1 @3 @10 MRR @1 @3 @10 MRR @1 @3 @10

DistMult 0.683 0.614 0.725 0.808 0.890 0.840 0.930 0.972 0.929 0.893 0.958 0.984

0.144 0.101 0.157 0.227 0.170 0.117 0.191 0.275 0.166 0.115 0.180 0.272

0.140 0.097 0.155 0.224 0.178 0.124 0.197 0.282 0.164 0.112 0.179 0.266

ComplEx 0.854 0.804 0.890 0.939 0.968 0.951 0.982 0.992 0.820 0.750 0.877 0.936

0.165 0.113 0.182 0.265 0.142 0.090 0.157 0.246 0.138 0.093 0.153 0.223

0.163 0.112 0.180 0.266 0.150 0.098 0.165 0.252 0.135 0.094 0.146 0.217

QMult 0.518 0.450 0.555 0.641 0.667 0.580 0.729 0.823 0.943 0.914 0.972 0.987

0.113 0.079 0.123 0.179 0.118 0.075 0.134 0.198 0.145 0.094 0.158 0.249

0.113 0.076 0.125 0.181 0.125 0.081 0.140 0.208 0.152 0.103 0.165 0.246

OMult 0.513 0.446 0.548 0.638 0.710 0.630 0.761 0.859 0.663 0.565 0.736 0.832

0.109 0.072 0.119 0.181 0.155 0.102 0.170 0.262 0.109 0.071 0.118 0.179

0.110 0.075 0.121 0.178 0.161 0.107 0.179 0.266 0.110 0.073 0.120 0.177

Keci 0.882 0.831 0.926 0.963 0.587 0.493 0.648 0.758 0.760 0.674 0.823 0.909

0.207 0.152 0.229 0.314 0.227 0.162 0.256 0.354 0.225 0.158 0.253 0.356

0.205 0.152 0.224 0.310 0.227 0.161 0.254 0.355 0.216 0.152 0.242 0.341

Table 5 shows that Keci outperforms all baselines in all metrics. ComplEx
and QMult outperform Keci on the training split of UMLS in 4 metrics, whereas
Keci outperform them considerably (up to absolute 15% in MRR). Importantly,
although DistMult and Keci reaches similar performance in the training split
in terms of MRR performance (e.g., 2% absolute difference in MRR), Keci gen-
eralizes considerably better than DisMult (e.g., circa 25% absolute difference in
MRR). This is an important result as it implies that although Keci starts the
search in R as DistMult does, Keci finds coefficients for base vectors that leads
to an improvement in the generalization. We observe that although ComplEx,
QMult and OMult reach on-par link prediction performance on the training
dataset of UMLS, this observation cannot be made on KINSHIP. OMult per-
forms worse than ComplEx, QMult on the training, validation and test splits of

Clifford Embeddings 579

Table 5. Link prediction results on UMLS and KINSHIP. All models have the same
number of parameters. Each entity and relation is represented with 32-dimensional
real valued vector. Each three rows per model report performance on the training,
validation and test datasets, respectively. Bold and underlined results indicate the best
results and second best results.

Models UMLS KINSHIP

MRR @1 @3 @10 MRR @1 @3 @10

DistMult 0.924 0.887 0.950 0.993 0.657 0.525 0.734 0.938

0.607 0.471 0.679 0.883 0.511 0.349 0.589 0.874

0.605 0.469 0.673 0.896 0.520 0.357 0.601 0.888

ComplEx 0.996 0.992 1.000 1.000 0.887 0.818 0.952 0.991

0.686 0.536 0.801 0.941 0.751 0.627 0.851 0.962

0.702 0.557 0.813 0.942 0.738 0.614 0.834 0.964

QMult 0.994 0.990 0.999 1.000 0.854 0.772 0.926 0.985

0.716 0.596 0.807 0.938 0.712 0.575 0.815 0.949

0.722 0.590 0.816 0.952 0.726 0.597 0.823 0.958

OMult 0.988 0.977 0.999 1.000 0.765 0.658 0.846 0.955

0.716 0.587 0.810 0.942 0.626 0.481 0.726 0.917

0.722 0.585 0.836 0.952 0.641 0.497 0.738 0.921

Keci 0.940 0.900 0.976 0.993 0.887 0.823 0.943 0.988

0.854 0.775 0.919 0.973 0.768 0.648 0.867 0.970

0.850 0.768 0.917 0.976 0.764 0.644 0.855 0.974

KINSHIP. This again corroborates our hypothesis that the selection of the alge-
bra within which a knowledge graph embedding model operates has a tangible
impact in the link prediction performance.

7 Conclusion

We introduced the first knowledge graph embedding model–Keci–that can
parameterize the algebra within which embeddings for entities and relation are
learned. With Keci, the selection of an underlying algebra can be performed in
a data-driven fashion. Our extensive experiments on seven benchmark datasets
suggest that this ability leads Keci to outperform state-of-the-art models in all
metrics. Importantly, our results also show that Learning to scale embedding
dimensions makes Keci more robust against overfitting.

Acknowledgements. This work has been supported by the HORIZON Europe
research and innovation programme (GA No 101070305), by the Ministry of Cul-
ture and Science of North Rhine-Westphalia (GA No NW21-059D), by the German
Research Foundation (GA No TRR 318/1 2021 - 438445824) and by the H2020 Marie
Sk�lodowska-Curie programme (GA No 860801).

580 C. Demir and A.-C. Ngonga Ngomo

References

1. Balažević, I., Allen, C., Hospedales, T.M.: Hypernetwork knowledge graph embed-
dings. In: Tetko, I.V., Kůrková, V., Karpov, P., Theis, F. (eds.) ICANN 2019.
LNCS, vol. 11731, pp. 553–565. Springer, Cham (2019). https://doi.org/10.1007/
978-3-030-30493-5 52

2. Balažević, I., Allen, C., Hospedales, T.M.: TuckER: tensor factorization for knowl-
edge graph completion. arXiv preprint arXiv:1901.09590 (2019)

3. Bonner, S., et al.: Understanding the performance of knowledge graph embeddings
in drug discovery. Artif. Intell. Life Sci. 2, 100036 (2022)

4. Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J., Yakhnenko, O.: Translating
embeddings for modeling multi-relational data. In: Advances in Neural Information
Processing Systems, vol. 26 (2013)

5. Brandstetter, J., Berg, R.v.d., Welling, M., Gupta, J.K.: Clifford neural layers for
PDE modeling. arXiv preprint arXiv:2209.04934 (2022)

6. Chami, I., Wolf, A., Juan, D.C., Sala, F., Ravi, S., Ré, C.: Low-dimensional hyper-
bolic knowledge graph embeddings. arXiv preprint arXiv:2005.00545 (2020)

7. Dai, Y., Wang, S., Xiong, N.N., Guo, W.: A survey on knowledge graph embedding:
approaches, applications and benchmarks. Electronics 9(5), 750 (2020)

8. Demir, C., Moussallem, D., Heindorf, S., Ngomo, A.C.N.: Convolutional hypercom-
plex embeddings for link prediction. In: Asian Conference on Machine Learning,
pp. 656–671. PMLR (2021)

9. Demir, C., Ngomo, A.-C.N.: Convolutional complex knowledge graph embeddings.
In: Verborgh, R., et al. (eds.) ESWC 2021. LNCS, vol. 12731, pp. 409–424. Springer,
Cham (2021). https://doi.org/10.1007/978-3-030-77385-4 24

10. Demir, C., Ngomo, A.C.N.: Hardware-agnostic computation for large-scale knowl-
edge graph embeddings. Softw. Impacts 13, 100377 (2022)

11. Demir, C., Ngomo, A.C.N.: Learning permutation-invariant embeddings for
description logic concepts. arXiv preprint arXiv:2303.01844 (2023)

12. Dettmers, T., Minervini, P., Stenetorp, P., Riedel, S.: Convolutional 2D knowledge
graph embeddings. In: Proceedings of the AAAI Conference on Artificial Intelli-
gence, vol. 32 (2018)

13. Gregucci, C., Nayyeri, M., Hernández, D., Staab, S.: Link prediction with atten-
tion applied on multiple knowledge graph embedding models. arXiv preprint
arXiv:2302.06229 (2023)

14. Hamilton, W., Bajaj, P., Zitnik, M., Jurafsky, D., Leskovec, J.: Embedding logi-
cal queries on knowledge graphs. In: Advances in Neural Information Processing
Systems, vol. 31 (2018)

15. Hamilton, W., Ying, Z., Leskovec, J.: Inductive representation learning on large
graphs. In: Advances in Neural Information Processing Systems, vol. 30 (2017)

16. Hitzer, E.: Extending Lasenby’s embedding of octonions in space-time algebra c
l (1, 3) cl\left (1, 3\right), to all three-and four dimensional Clifford geometric
algebras c l (p, q), n= p+ q= 3, 4 cl\left (p, q\right), n= p+ q= 3, 4. Mathematical
Methods in the Applied Sciences (2022)

17. Hogan, A., et al.: Knowledge graphs. ACM Comput. Surv. (CSUR) 54(4), 1–37
(2021)

18. Ji, G., He, S., Xu, L., Liu, K., Zhao, J.: Knowledge graph embedding via dynamic
mapping matrix. In: Proceedings of the 53rd Annual Meeting of the Association for
Computational Linguistics and the 7th International Joint Conference on Natural
Language Processing (volume 1: Long papers), pp. 687–696 (2015)

https://doi.org/10.1007/978-3-030-30493-5_52
https://doi.org/10.1007/978-3-030-30493-5_52
http://arxiv.org/abs/1901.09590
http://arxiv.org/abs/2209.04934
http://arxiv.org/abs/2005.00545
https://doi.org/10.1007/978-3-030-77385-4_24
http://arxiv.org/abs/2303.01844
http://arxiv.org/abs/2302.06229

Clifford Embeddings 581

19. Lacroix, T., Usunier, N., Obozinski, G.: Canonical tensor decomposition for knowl-
edge base completion. In: International Conference on Machine Learning, pp. 2863–
2872. PMLR (2018)

20. Lin, Y., Liu, Z., Sun, M., Liu, Y., Zhu, X.: Learning entity and relation embed-
dings for knowledge graph completion. In: Proceedings of the AAAI Conference on
Artificial Intelligence, vol. 29 (2015)

21. Nguyen, D.Q., Nguyen, T.D., Nguyen, D.Q., Phung, D.: A novel embedding
model for knowledge base completion based on convolutional neural network.
In: Proceedings of the 2018 Conference of the North American Chapter of the
Association for Computational Linguistics: Human Language Technologies, Vol-
ume 2 (Short Papers), pp. 327–333. Association for Computational Linguistics,
New Orleans, Louisiana (2018). https://doi.org/10.18653/v1/N18-2053, https://
aclanthology.org/N18-2053

22. Nickel, M., Murphy, K., Tresp, V., Gabrilovich, E.: A review of relational machine
learning for knowledge graphs. Proc. IEEE 104(1), 11–33 (2015)

23. Nickel, M., Rosasco, L., Poggio, T.: Holographic embeddings of knowledge graphs.
In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 30 (2016)

24. Nickel, M., et al.: A three-way model for collective learning on multi-relational
data. In: ICML, vol. 11, pp. 3104482–3104584 (2011)

25. Paliwal, S., de Giorgio, A., Neil, D., Michel, J.B., Lacoste, A.: Preclinical validation
of therapeutic targets predicted by tensor factorization on heterogeneous graphs.
Sci. Rep. 10(1), 1–19 (2020)

26. Prechelt, L.: Early Stopping-but When? Neural Networks: Tricks of the Trade:
Second Edition, pp. 53–67 (2012)

27. Ren, F., Li, J., Zhang, H., Liu, S., Li, B., Ming, R., Bai, Y.: Knowledge
graph embedding with atrous convolution and residual learning. arXiv preprint
arXiv:2010.12121 (2020)

28. Ruffinelli, D., Broscheit, S., Gemulla, R.: You CAN teach an old dog new tricks! on
training knowledge graph embeddings. In: 8th International Conference on Learn-
ing Representations, ICLR 2020, Addis Ababa, Ethiopia, April 26–30, 2020. Open-
Review.net (2020). https://openreview.net/forum?id=BkxSmlBFvr

29. Sun, Z., Deng, Z.H., Nie, J.Y., Tang, J.: RotatE: knowledge graph embedding by
relational rotation in complex space. arXiv preprint arXiv:1902.10197 (2019)

30. Trouillon, T., Dance, C.R., Gaussier, E., Welbl, J., Riedel, S., Bouchard, G.:
Knowledge graph completion via complex tensor factorization. J. Mach. Learn.
Res. 18(1), 4735–4772 (2017)

31. Trouillon, T., Dance, C.R., Welbl, J., Riedel, S., Gaussier, É., Bouchard, G.:
Knowledge graph completion via complex tensor factorization. arXiv preprint
arXiv:1702.06879 (2017)

32. Trouillon, T., Welbl, J., Riedel, S., Gaussier, É., Bouchard, G.: Complex embed-
dings for simple link prediction. In: International Conference on Machine Learning,
pp. 2071–2080. PMLR (2016)

33. Wang, M., Qiu, L., Wang, X.: A survey on knowledge graph embeddings for link
prediction. Symmetry 13(3), 485 (2021)

34. Wang, Q., Mao, Z., Wang, B., Guo, L.: Knowledge graph embedding: a survey of
approaches and applications. IEEE Trans. Knowl. Data Eng. 29(12), 2724–2743
(2017)

35. Wang, Z., Zhang, J., Feng, J., Chen, Z.: Knowledge graph embedding by translating
on hyperplanes. In: Proceedings of the AAAI Conference on Artificial Intelligence,
vol. 28 (2014)

https://doi.org/10.18653/v1/N18-2053
https://aclanthology.org/N18-2053
https://aclanthology.org/N18-2053
http://arxiv.org/abs/2010.12121
https://openreview.net/forum?id=BkxSmlBFvr
http://arxiv.org/abs/1902.10197
http://arxiv.org/abs/1702.06879

582 C. Demir and A.-C. Ngonga Ngomo

36. Xiong, W., Hoang, T., Wang, W.Y.: DeepPath: a reinforcement learning method
for knowledge graph reasoning. arXiv preprint arXiv:1707.06690 (2017)

37. Yang, B., Yih, W.t., He, X., Gao, J., Deng, L.: Embedding entities and relations for
learning and inference in knowledge bases. arXiv preprint arXiv:1412.6575 (2014)

38. Ye, Z., Kumar, Y.J., Sing, G.O., Song, F., Wang, J.: A comprehensive survey of
graph neural networks for knowledge graphs. IEEE Access 10, 75729–75741 (2022)

39. Yi, H.C., You, Z.H., Huang, D.S., Kwoh, C.K.: Graph representation learning
in bioinformatics: trends, methods and applications. Briefings in Bioinformatics
23(1), bbab340 (2022)

40. Yu, M., et al.: Translation-based embeddings with octonion for knowledge graph
completion. Appl. Sci. 12(8), 3935 (2022)

41. Zamini, M., Reza, H., Rabiei, M.: A review of knowledge graph completion. Infor-
mation 13(8), 396 (2022)

42. Zhang, S., Tay, Y., Yao, L., Liu, Q.: Quaternion knowledge graph embeddings. In:
Advances in Neural Information Processing Systems, vol. 32 (2019)

http://arxiv.org/abs/1707.06690
http://arxiv.org/abs/1412.6575

Exploring Word-Sememe Graph-Centric
Chinese Antonym Detection

Zhaobo Zhang1,2,3,4, Pingpeng Yuan1,2,3,4, and Hai Jin1,2,3,4(B)

1 National Engineering Research Center for Big Data Technology and System,
Wuhan, China

2 Service Computing Technology and System Laboratory, Wuhan, China
3 Cluster and Grid Computing Laboratory, Wuhan, China

4 Huazhong University of Science and Technology, Wuhan, China
{zhang zb,ppyuan,hjin}@hust.edu.cn

Abstract. Antonym detection is a vital task in NLP systems. Pattern-
based methods, typical solutions for this, recognize semantic relation-
ships between words using given patterns but have limited performance.
Distributed word embeddings often struggle to distinguish antonyms
from synonyms because their representations rely on local co-occurrences
in similar contexts. Combining the ambiguity of Chinese and the contra-
dictory nature of antonyms, antonym detection faces unique challenges.
In this paper, we propose a word-sememe graph to integrate relationships
between sememes and Chinese words, organized as a 4-partite graph. We
design a heuristic sememe relevance computation as a supplementary
measure and develop a relation inference scheme using related sememes
as taxonomic information to leverage the relational transitivity. The 4-
partite graph can be extended based on this scheme. We introduce the
Relation Discriminated Learning based on Sememe Attention (RDLSA)
model, employing three attention strategies on sememes to learn flexi-
ble entity representations. Antonym relations are detected using a Link
Prediction approach with these embeddings. Our method demonstrates
superior performance in Triple Classification and Chinese Antonym
Detection compared to the baselines. Experimental results show reduced
ambiguity and improved antonym detection using linguistic sememes. A
quantitative ablation analysis further confirms our scheme’s effectiveness
in capturing antonyms.

Keywords: Chinese antonym detection · Link prediction · Knowledge
graph representation · Word-sememe graph

1 Introduction

Relation Classification focuses on separating word pairs into synonyms,
antonyms, and hypernyms. Among them, Antonym Detection is one of the most
challenging subtasks and is also a key problem in linguistics which has great
significance for knowledge discovery and application to many NLP tasks, such
as Sentiment Analysis [9], Text Entailment [5], and Machine Translation [28].
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
D. Koutra et al. (Eds.): ECML PKDD 2023, LNAI 14171, pp. 583–600, 2023.
https://doi.org/10.1007/978-3-031-43418-1_35

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-43418-1_35&domain=pdf
https://doi.org/10.1007/978-3-031-43418-1_35

584 Z. Zhang et al.

Generally, appearances of words in synonyms and antonyms follow some pat-
terns (e.g., “X or Y” and “X and Y”). Thus, one straightforward way is to extract
word pairs according to the given patterns. For example, Lin [15] identified syn-
onyms and antonyms among distributionally large corpus of plain text based
on some fixed patterns in English. Nguyen [21] proposed AntSynNET, which
encodes simple paths in parse trees using LSTM [11] to train a classifier for
antonym detection. However, pattern-based methods are prone to low recall [26]
and rely heavily on external resources.

Since words with similar distributions tend to be relevant in meaning,
distribution-based methods are becoming popular recently. They can find out
target synonyms and antonyms in large corpora and rarely rely on external lex-
icon resources [1]. Nevertheless, distributed word embeddings based on contex-
tual co-occurrence cannot distinguish between relatedness and similarity because
antonyms usually have similar context. Thus, the mining of negative correlations,
i.e., antonymous relations, requires a combination of additional knowledge.

Compared with English, Chinese language has more ambiguity due to its
multi-layer structure, rich semantic elements, and evolving consensus senses,
which exacerbates ambiguity [4,18]. Previous works on Chinese Relation Clas-
sification focused on semantic opposites using Chinese-specific patterns, such
as Chinese four-character patterns antonym compounds [34], universal quantifi-
cation [43], and sizige [37]. Several works aimed to improve the performance
of Antonym Detection using more features [45], external linguistic knowledge
bases [14], or more complex model [29]. However, pattern-based Chinese antonym
extraction is limited by outdated and formal corpora [14,37], and methods based
on Chinese word embeddings also suffer from confusion between relatedness and
similarity for detecting antonyms.

Fig. 1. Illustration of overall architecture

To address these problems on Chinese Antonym Detection, we introduce
sememe to make implicit features explicit and propose a word-sememe lay-
ered knowledge graph. It can be modeled as a 4-partite graph which integrates
sememes, words, their relations such as synonym and antonym (Fig. 1). We
extract synonym and antonym triples from linguistic corpora and the Internet
resources to instantiate the graph. The relations in word-sememe graph often
carry properties that can improve integrity, such as reflexivity, symmetry, and
transitivity. We then design a framework with some schemes for utilizing rela-
tional properties, as shown in Fig. 1. The contributions of our approach are
summarized as follows:

Exploring Word-Sememe Graph-Centric Chinese Antonym Detection 585

Relation Inference. Synonymous and antonymous relations have transitiv-
ity and reflexivity properties. So, we develop a relation inference scheme with
sememe relevance computation. The heuristic sememe relevance computation
method aims to evaluate relevance between sememes based on the synonyms
and antonyms of word-sememe graph. This method can help refine the graph
and emphasize the direct connections between sememes. Guided by sememe rel-
evance, relation inference that combines above-mentioned relational properties
and supervision from sememe relevance can derive more potential and reliable
relations by eliminating transitivity paths [8] with ambiguities.

Relation Discriminated Learning. To model symmetry and discriminate
synonyms and antonyms, we also employ a knowledge graph embedding model
to encode entities for semantic computation and discovering new antonyms with
a distributed-based scheme. Specifically, we utilize three sememe-based attention
strategies for building sememe space to obtain semantic separation and disam-
biguation for entities. By mapping entities vector to the sememe vector space
dynamically, we can discriminate similar or opposing features.

Extensive Experiments. We evaluate our approach on Triple Classification
and Chinese Antonym Detection, and results show our model can effectively
distinguish between synonyms and antonyms. As we know, it is the first attempt
to detect antonyms using the dynamic embedding with sememes motivated by
Link Prediction on attributed graph [40]. Experimental results and ablation
analysis show that our model can achieve significant performance and exactly
capture the underlying antonymous relations1

2 Word-Sememe Graph-Centric Antonym Detection

Each word is composed of one or more sememes which are the finest semantic
unit in Chinese [42]. Synonyms and antonyms share some sememes, making it
crucial to identify these shared aspects for Antonym Detection. Furthermore,
synonymous and antonymous relations are symmetric, reflexive, and transitive,
complicating their discrimination and utilization.

In the following, we introduce a word-sememe graph which describes relation-
ships between words and sememes. By this way, it makes the implicit meanings
of words explicit and helps addressing the serious 1-N and N -N issues. Based on
word-sememe graph, we design a relation inference scheme that leverages tran-
sitivity. Then, an embedding learning model based on the graph employs the
attention strategies to address the problems incurred when detecting antonyms.

2.1 Word-Sememe Graph

Sememes are capable of conveying specific aspects of words. Antonyms and syn-
onyms can be represented as two instances composed of sememe sets in a par-
ticular context. Mathematically, antonyms (synonyms) are opposite (same or
1 Code and data: https://github.com/CGCL-codes/RDLSA.

https://github.com/CGCL-codes/RDLSA
https://github.com/CGCL-codes/RDLSA

586 Z. Zhang et al.

similar) in some salient dimensions (sememes), while highly correlated in other
dimensions. Discriminating their relationships requires calculating the semantic
distance of word vectors, but the implicit dimensions make this inefficient and
error-prone. However, the word-sememe graph can clarify these dimensions for
antonym and synonym detection.

The graph in Fig. 1 describes relationships between words and sememes,
with sets W and S representing words and sememes. Triples are denoted as
(w, composed of, s), (w1, syn/ant, w2). Figure 1 shows the 4-partite graph, with
potential relationships between sememes and entities are gathered by the seman-
tic flows represented by arrows (line 1-8). Salient dimensions are linguistically
clear, providing a foundation for word-sememe graph-centric antonym detection.

We build the initial graph by extracting sememes from openHowNet [24]2.
New relations can be inferred in Sect. 2.3 with sememe relevance (Sect. 2.2) using
the synonyms and antonyms in word-sememe graph. Finally, we can obtain more
relationships via distribution representations learned from Sect. 2.4.

2.2 Heuristic Sememe Relevance Computation

Sememe relevance refers to a sememe pair’s contribution to the establishment of
synonyms or antonyms. We primarily examine three features to evaluate this con-
tribution, encompassing the morphological and semantic properties of sememe
pairs and their informational popularity.

First, we consider the similarity of sememe strings, characterized by the Jaro-
Winkler Distance3 ls. Second, we assess the angle cs between sememes vectors,
also referred to as cosine similarity. These two features are intrinsically connected
as local variables. The third feature is evaluated globally, specifically the variant
TF-IDF values of sememe pairs. We employ this feature to represent its preva-
lence in the knowledge graph to prevent the widespread sememe from obscuring
the discovery of triples. The variant TF-IDF value gs is computed as follow:

g(si, sj) =
2 ∗ t(si) ∗ t(sj)
t(si) + t(sj)

where t(s) = tf(s) ∗ idf(s) =
freq(s)

|Sc| ∗ log
|E|

|Ess| + 1

(1)

here freq(s) is the frequency of sememe s in sememes of entity c (constant equal
to 1), and Sc represents the set of sememes of entity c. E is the set of all entities,
and Es represents the set of entities containing the sememe s.

Taking into account both local and global factors, we define the notion of
sememe relevance ds, i.e., the similarity of sememes from different synonyms
and antonyms. For two sememe s1, s2, their similarity is calculated as follow:

ds = αls + β |cs| + σgs

= α JW (s1, s2) + β |Cosine (vs1 ,vs2)| + σg(si, sj)
(2)

2 https://github.com/thunlp/OpenHowNet
3 https://en.wikipedia.org/wiki/Jaro-Winkler distance

https://github.com/thunlp/OpenHowNet
https://en.wikipedia.org/wiki/Jaro-Winkler_distance

Exploring Word-Sememe Graph-Centric Chinese Antonym Detection 587

here α, β, and σ are the parameters that adjust the weights of the three features.
We can ensure that the score accurately reflects the degree of relevance between
sememes, regardless of whether they are synonyms or antonyms.

We cross-combine the sememes corresponding to existing synonyms and
antonyms as positive examples for training. Then, we extract negative examples
from combinations of sememes of two Chinese entities in charKG (the dataset
built in Sect. 3.1), in descending order of the distance. These sememe pairs si

& sj and their features ls, cs, gs are input into XGBoost Regressor, with the
sememe relevance as the optimization goal, achieving reliable learning for α, β,
and σ.

Algorithm 1: Relation Inference
Input : Two Triples (A, rel1, B), (A, rel2, C);
Output : (B, rel, C) establishment or False;

1 Sc1 , Sc2 ← ∅;max1, max2 ← 0;Smax1 , Smax2 ← ∅;

2 foreach s0 in A.sememes do
3 foreach s1 in B.sememes do
4 if ds(s0, s1) > θ1 then
5 add s0, s1 into Sc1 ;

6 else if ds(s0, s1) > max1 then
7 max1 ← ds(s0, s1) and Smax1 ← (s0, s1);

8 foreach s2 in C.sememes do
9 if ds(s0, s2) > θ2 then

10 add s0, s2 into Sc2 ;

11 else if ds(s0, s2) > max2 then
12 max2 ← ds(s0, s2) and Smax2 ← (s0, s2);

13 if Sci
== ∅ then

14 Sci
← Smaxi

15 if Sc1 ∩ Sc2 == ∅ then
16 return False
17 else
18 return Generated rel by rel1 and rel2;

2.3 Proximal Pattern-Based Relation Inference

Synonymous and antonymous relations have transitivity or reflexive transitivity
properties. Two synonymous pairs sharing common entity, can infer new synony-
mous relation using transitivity (Eq. 3), while antonym pairs sharing common
entity can generate synonymous relation according to reflexive transitivity. (akin
to “two negatives make a positive”, Eq. 4). Furthermore, synonym and antonym
triples with common entity can create new antonymous relations (Eq. 5):

(A, syn,B) ∧ (B, syn,C) → (A, syn,C) (3)

(A, ant,B) ∧ (B, ant,C) → (A, syn,C) (4)

(A, syn,B) ∧ (B, ant,C) → (A, ant,C) (5)

here A,B,C are entities, syn and ant refer to synonymy and antonymy, respec-
tively. However, these inferences face challenges due to polysemy, as the synonym
and antonym triples may focus on different semantic aspects.

588 Z. Zhang et al.

To tackle this, we develop a relation inference scheme on word-sememe graph.
Specifically, this method applies the transitivity and reflexivity of synonyms and
antonyms to provide inference direction, and uses the correlation of sememe to
exclude interference items to achieve a proximal pattern-based (i.e., considering
transitivity) relation inference scheme as shown in Algorithm 1. Note that, we
implement this approach using only one-hop extensions to attenuate the noise
caused by multiple-hops error superposition. Based on these, inferences in Eqs. 3,
4, and 5 are established under relevant and reliable sememes.

(a) RDLSA (b) Char - Sememe (c) Sememe - Sememe

Fig. 2. Illustration of RDLSA and attention schemes

2.4 Knowledge Representation Learning via Attention on Sememe

The above relation inference can discover simple relations. Discovering more
complex relations relies on distributed representation method on word-sememe
graph. Since synonymous and antonymous relations have symmetry and transi-
tive properties etc., it limits the performance improvement of existing embedding
methods (e.g. TransE, TransX, and RotatE) on Antonym Detection.

TransE struggles with 1-N , N -N problems due to its representation of head
entities and semantic symmetry. As Eq. 6 shows, the head entity tends to force
different tail entities have similar representations for the same relation.

h + r − t1 = ε1
h + r − t2 = ε2

}
⇒ t2 − t1 = ε1 − ε2 (6)

Because of semantic symmetry in syn and ant relations, the head and tail
can be interchanged. TransX tends to learn zero vectors for the relation repre-
sentations as Eq. 7 shows:

gr,1(h) + r − gr,2(t) = ε1
gr,2(t) + r − gr,1(h) = ε2

}
⇒ 2r = ε1 + ε2 (7)

here gr,i() represents a matrix multiplication concerning relation r. RotatE [31]
models synonyms as 0◦ rotations and antonyms as 180◦ when learning relations
in complex vector space for symmetry. RotatE tends to cluster an entity’s syn-
onyms around itself and maximally away from antonyms. It inevitably overlooks
the 1-N and N-N problems within these two clusters, as indicated by Eq. 8:

Exploring Word-Sememe Graph-Centric Chinese Antonym Detection 589

h ◦ r − t1 = ε1
h ◦ r − t2 = ε2

}
⇒ t2 − t1 = ε1 − ε2 (8)

To address these issues, we propose Relation Discriminated Learning based
on Sememe Attention (RDLSA), inspired by SE [30], TransD [12], and TKRL
[36]. To better represent antonyms, we follow two assumptions from [38]: (a)
Antonyms tend to be related in multiple dimensions due to co-occurrence-based
learning, but differ in some salient dimensions; (b) In the entire distributional
semantic space, the salient dimensions of different antonyms will significantly
differ due to their specific polar oppositeness [28,43].

Here, we modify the role of r in the scoring function based on the inten-
sity and symmetry of the relation. We treat r as a deciding factor for scoring
functions, where syn corresponds to − and ant corresponds to + in Eq. 9. This
distinction aligns with linguistic rules.

fsyn(h, t) = ‖sh ◦ h ± st ◦ t‖ (9)

To comply with the mathematical assumptions, we introduce a sememe
mutual attention mechanism, enabling dynamic entity mapping and empha-
sizing salient dimensional differences in entity representations. We design two
attention strategies: (1) internal Char-Sememe (CS) attention, determining a
sememe’s weight by calculating its attention with the corresponding entity; (2)
external Sememe-Sememe (SS) attention, obtaining the maximum attention of
a sememe with all the sememes of another entity.

For CS, a sememe si gets its attention score from the entity as:

βei =
exp (e · si)∑

sj∈Se
exp (e · sj)

(10)

here e ∈ h, t are entities in a triple and Se indicates the set of sememes of entity
e. βei represents the attention score of i -th sememe in Se. Bold face e is the
vectors of entity e and sj indicates the vector of j-th sememe ∈ Se.

For SS, the attention score of the sememe si of the entity e can be calculated
with the sememes of another entity ê:

βei = max
sj

(
ds(si, sj) exp (si · sj)∑

sj∈Sê
exp (si · sj)

) (11)

here Sê indicates the set of sememes of entity ê. ds is defined in Sect. 2.2.
Then all the weighted sememes are stacked into a mapping vector (Eq. 12),

and the corresponding entities are dynamically mapped to the new sememe space
through Hadmard (or element-wise) product for the scoring function, Eq. 9.

sh =
∑

i∈|Sh|
βhi

si, st =
∑

j∈|St|
βtjsj (12)

Additionally, we provide a simplified strategy of averaging sememe vectors
(Avg, in Fig. 1) as projection vectors to verify the feasibility of the sememe
attentions. Specifically, we modify Eq. 12 by set βhi

and βtj to 1
|Sh| and 1

|St| .

590 Z. Zhang et al.

2.5 Training

The training of feature weight parameters for sememe relevance resembles the
method used in [44]. We insert the inferred triples to the training dataset after
deduplication, enhancing the integration of transitivity. Initially, we assign pre-
trained embeddings to each entity. We similarly initialize sememes to ensure
the semantic association of entities to sememes [42]. These embeddings are then
adopted in the trained model in Fig. 2 for fine-tuning.

We denote the overall synonym-antonym knowledge graph as G , with triples
represented as (h, r, t). Following the optimization scheme in TransE [3], we
combine our scoring function to generate an overall optimization objective:

L =
∑

(h,r,t)∈Gg

∑
(h′,r′,t′)∈Gc

[γ + fr (h, t) − fr (h′, t′)]+ (13)

Gg represents golden triples of antonyms and synonyms in the knowl-
edge graph, while Gc represents corrupted negative triples. For a golden triple
(h, r, t) ∈ Gg, we randomly replace the head (tail) to obtain the corresponding
negative triple (h′, r , t′). Our goal is to minimize the loss as much as possible to
extract synonymous and antonymous information comprehensively, while there
are far more synonyms than antonyms. To address this data imbalance, we use
a hyper-parameter δ to control the sampling ratio of synonyms and antonyms.

3 Experiments

We evaluate our framework on Triple Classification and Antonym Detection.
Furthermore, we conduct an ablation analysis to demonstrate the significant
interpretability and efficiency of our models.

3.1 Datasets Construction

We collect basic synonym and antonym triples from various linguistic cor-
pora and Internet resources such as Github4, Baidu Encyclopedia5, and Wik-
tionary6. Then, we annotate sememes [6] (Sect. 2.1) for entities in Character
Synonyms-Antonyms Knowledge Graph (namely, charKG, a subinstance of the
word-sememe graph for characters, can circumvent the low reliability and out-of-
vocabulary issues associated with antonym words in the lexicon). However, since
Chinese characters have a limited number and multiple meanings, we extend the
original 19178 triples by exploiting the transitivity and trans-transitivity with
relation inference (Sect. 2.3), resulting in 8808 new triples. We review and inte-
grate the qualified triples into charKG.

4 https://github.com/chatopera/Synonyms
5 https://dict.baidu.com/
6 https://zh.m.wiktionary.org/wiki/

https://github.com/chatopera/Synonyms
https://dict.baidu.com/
https://zh.m.wiktionary.org/wiki/

Exploring Word-Sememe Graph-Centric Chinese Antonym Detection 591

In addition to the dataset, charKG, we choose Zdic7 as a complementary
test dataset source in closed-world scenarios (named HanDian). We eliminate
the triples repeated with the training set and get 132 test antonym triples.

3.2 Experimental Settings

Baseline Models. We choose models from Knowledge Graph Representation
(KRL) and models migrated from other frameworks as baselines. For KRL mod-
els, we select TransE [3], TransR [16], TransD [12], RESCAL [23], DistMult [39],
and ComplEx [32] as baselines. We also train embeddings using the RotatE [31]
model. These models’ training and testing are based on OpenKE [10]. Also, we
train advanced HopfE [2] alone. Additionally, we fine-tune RoBERTa, a Chi-
nese pre-trained language model [17], on Triple Classification. For pattern-based
models, we use an Internet dictionary approach based on Baidu’s dictionary for
semantic relation classification [14]. We search for antonyms online and compare
them to the given character set.

Hyper-parameters and Training Setting. We unify all representations in
a 300-dimensional space, use a margin parameter γ of 0.2 in Eq. 13, and initial-
ize character and sememe vectors with existing embeddings [25]. We optimize
embeddings using Adaptive Moment Estimation (Adam) with a learning rate of
10−5. For baselines, we adopt their best-performing configurations. We set δ as
3:1 after maximizing prediction accuracy in the validation set.

Table 1. Experimental results of Antonym Detection and Triple Classification

charKG HanDian

hit@1 hit@3 hit@10 MRR MR TC (%) hit@1 hit@3 hit@10 MRR MR TC (%)

Word2vec - - - 0.0006 4191 18.50 - - - 0.0003 4317 9.09

TransE - 0.0833 0.1574 0.0568 668 62.03 - 0.1705 0.2689 0.1090 298 79.55

TransH - 0.0556 0.0741 0.0250 1558 61.11 - 0.0341 0.0758 0.0280 1247 62.12

TransR - 0.0556 0.0926 0.0384 1629 61.11 - 0.4545 0.6098 0.2434 526 78.79

TransD - 0.0463 0.1296 0.0404 1898 57.41 - 0.1401 0.3409 0.1085 686 74.62

RESCAL 0.0278 0.0463 0.0556 0.0395 1859 55.56 0.0341 0.0530 0.0682 0.0494 1419 63.64

DistMult 0.0555 0.1111 0.2407 0.1129 1079 68.52 0.5606 0.6515 0.6931 0.6149 369 81.81

ComplEx 0.0463 0.0741 0.1296 0.0745 1243 62.04 0.5379 0.6174 0.6364 0.5809 471 80.30

RotatE 0.0463 0.1667 0.2963 0.1279 613 70.37 0.5341 0.6364 0.6515 0.5883 296 79.55

HopfE 0.2045 0.2992 0.3864 0.2698 518 - 0.5189 0.6174 0.6553 0.5743 312 -

RoBERTa - - - 0.064 656 70.4 0.0227 0.0455 0.0909 0.0514 356 85.6

Internet-Dict - - - - - 59.26 - - - - - 80.30

RDLSA (Avg) 0.1019 0.1481 0.2593 0.1458 389 90.74 0.2424 0.3409 0.4242 0.3071 243 94.72

RDLSA (CS) 0.0926 0.1296 0.2222 0.1388 388 90.74 0.2462 0.3333 0.4205 0.3105 235 95.62

RDLSA (SS) 0.0926 0.1574 0.25 0.1458 364 91.32 0.2652 0.3674 0.4583 0.3345 189 96.34

7 https://www.zdic.net/

https://www.zdic.net/

592 Z. Zhang et al.

3.3 Triple Classification

Evaluation Datasets and Protocol. We divide the triples into train, valid,
and test datasets in an 8:1:1 ratio. For triple (h, ant, t), we create a corrupted
negative triple (h′, ant, t′) by randomly replacing the head or tail. We represent
entities using learned character embeddings and compute scores for both triples.
If the golden triple scores below the corrupted triple, we classify it as positive;
otherwise, negative.

Experimental Results. From ‘TC (%)’ results in Table 1, RDLSA outper-
forms all baselines on both datasets. TransX models struggle to distinguish syn-
onym and antonym relations due to symmetry and 1-N , N -N problems. TransH,
TransR, and TransD even perform worse than TransE on both datasets. Mapping
entities to the relation vector space does not improve classification performance.

RESCAL, DistMult, ComplEx, RotatE perform better than TransX except
RESCAL. RotatE shows significant performances on charKG, while DistMult
obtains the best score among baselines for 3 metrics on HanDian. However, their
accuracy is still lower than RDLSA due to lack of discrimination for relations.

Character embeddings from word2vec struggle to compute salient opposi-
tions between antonyms, as they can not distinguish semantic relatedness, sim-
ilarity, and opposites [27]. RoBERTa, after fine-tuning, can effectively identify
many relations of triples, particularly for HanDian in the closed-world setting.
Internet-Dict performs well on HanDian but not on charKG from the open world,
reflecting its closed-world nature. In summary, RDLSA outperforms these meth-
ods, showing its ability to exploit potential antonymous relations overlooked by
co-occurrence or structure-based embeddings and linguistic dictionaries.

3.4 Antonym Detection

Evaluation Datasets and Protocol. We use the same test dataset as in Triple
Classification, which focuses on detecting opposites. Given an antonym triple
(h, ant, t), we compute scores for head (tail) representations and all characters,
then sort them. The ranks indicate performance, and we calculate MR, MRR,
and Hit@1, Hit@3, and Hit@10 metrics.

Experimental Results. Table 1 summarizes Antonym Detection results for
baselines and RDLSA, with the best results shown in bold. In charKG, RDLSA
outperforms most baselines on most metrics, demonstrating its excellent ability
to capture antonym semantics and perform well on weaker salient opposition
dataset (chatKG). This advantage is amplified in the closed-world HanDian,
which contains stronger salient oppositions. Overall, our model effectively high-
lights salient oppositions.

TransX ’s MRs indicate that structure-based models have limited success in
capturing oppositional salience. The MRs of TransX, mostly miss the hit@1, are
insufficient for Antonym Detection. The semantic models are consistent with the

Exploring Word-Sememe Graph-Centric Chinese Antonym Detection 593

Triple Classification results in charKG, and DistMult shows significant improve-
ment in HanDian. ComplEx also improves in HanDian compared to charKG, but
the increase is smaller than other semantic models (e.g., DistMult). In particular,
RotatE and HopfE keep competitive performance in two datasets and highest
hit@10 on charKG for RotatE, and HopfE obtains surprising results on charKG’s
hit@X and MMR metrics. However, they fit some noise so that they underper-
form on MR. RoBERTa is good at classification, but it is hard to measure the
degree of antonymy which reflected by the weak hit@X performance.

Both experiments show that the semantic models are mostly better at han-
dling potential semantics than the structure-based models. We argue that the
semantic model is resistant to symmetry since factorization or bilinear function
focus more on head and tail entities [32] instead of relation.

3.5 Ablation Analysis

Accuracy for Different Part-Of-Speech. We examine the difference in accu-
racy between triples of different POS (Part-Of-Speech) in Triple Classification.
We first compute the POS distribution for the whole test dataset and then show
the POS accuracy in Fig. 3.

(a) charKG (b) HanDian (c) charKG (d) HanDian

Fig. 3. Frequency & Acc - POS, Frequency & Acc - Sememe Num

To ensure readability, the ‘Accuracy’ displayed for each POS in Fig. 3 is calcu-
lated by multiplying the accuracy by the corresponding frequency. To minimize
the impact of noise, we take the data of top 10 POS to visualize. The results
indicate that verbs, nouns, and adjectives are the most frequent. In charKG,
the highest percentage of verbs has 89.8% accuracy; followed by nouns with
85% accuracy. Adjectives, while less frequent, exhibit a remarkable accuracy
of 100%. In HanDian, adjectives have the highest frequency with 94.7% accu-
racy, while verbs and nouns have 95.7% and 89.2% accuracy respectively. The
analysis results of various POSs suggest that adjectives possess a clearer oppo-
sitional semantic representation, leading to improved performance on datasets
with a higher proportion of adjectives. This conclusion aligns with the observed
performance of models on the two datasets.

594 Z. Zhang et al.

Accuracy for Different Sememe Number. We count the frequencies of
characters corresponding to different numbers of sememe and their accuracies,
and display the overall distribution in Fig. 3(c) and (d).

Generally, an inverse relationship between the number of sememes and
accuracy can be observed. In charKG, characters with 1 to 7 sememes com-
prise 77.55% of the knowledge graph. Within this range, characters with fewer
sememes tend to perform worse, a trend consistent with HanDian. The aver-
age accuracy for characters with fewer sememes is 88.89% in CharKG (93.59%
for HanDian), while characters with more sememes have an average accuracy
of 94.29% in CharKG (96.70% for HanDian). This demonstrates that a larger
number of sememes enables the model to learn more discriminative embeddings.

Role of the Inferred Triples. The pattern-based scheme extends the knowl-
edge graph, charKG, by providing discovered triples. These triples are added
to the training dataset to enhance the data after removing duplicates in test
datasets. We compare the performance of the dataset before and after enhance-
ment to demonstrate the effectiveness of the pattern-based scheme in supporting
the distribution-based scheme.

As shown in the Fig. 4(a), our models all benefit from the extended triples on
Triple Classification. On the Antonym Detection task, our models suffer some
weakening in Handian, while making improvements in charKG. Overall, the ben-
efits of relation inference are substantial.

(a) Role of the inferred triples (b) Performance on Text Classification

Fig. 4. Results of Antonym Detection and Text Classification

3.6 Applications

Improving Performance in Downstream Task. Text Classification is a
typical downstream task used to test the effect of a well-trained embedding.

Exploring Word-Sememe Graph-Centric Chinese Antonym Detection 595

Here we use the Fudan8, THUCNews9, TouTiao10 datasets and verify whether
our embedding can achieve competitive performances on downstream tasks. An
entry in these datasets consists of a sentence and the category it belongs to.
Based on these datasets, we implement a CNN-based text classifier and use
a 3:1:1 ratio to divide the original dataset into training, testing, and validation
datasets. We select some models that can be trained for character representation
(CBOW [20], CWE [4], JWE [41], 4CWE [13]), as well as TransE [3], to compare
as our baseline model.

We conduct five rounds of experiments and calculate the mean and standard
deviation to illustrate the results. In Fig. 4(b), our model performs well on the
three datasets. On THU, RDLSA(Avg) outperforms the best baseline, 4CWE,
by 0.57%. On Fudan, RDLSA(CS) achieves a 0.19% advantage over JWE. On
TouTiao, RDLSA(SS) obtains a competitive result that is only slightly inferior
to 4CWE by 0.05% and beats the other baselines.

Enhancing Sentiment Lexicon Based on CharKG. Building on relation
inference, we find two levels of opposition: character and sememe. Using charKG,
we simply infer the relation between sememes by their internal characters based
on Sect. 2.2 and combine Algorithm 1 to verify the semantic relation of exist-
ing word pairs in HowNet [6] according to their sememes. Sememe-based word
antonym derivation is linguistically applicable in various scenarios. For example,
enhancing sentiment lexicons can improve sentiment classification performance.

We develop enhanced sentiment lexicons on BosonNLP and HowNet Senti-
ment Lexicons11. In BosonNLP, positive words score positively and the more
positive the word the higher the score, and the opposite is true for negative
words. HowNet Sentiment Lexicons divides sentiment words into two types (i.e.,
1 for positive words and -1 for negative words) and provides 6 lexicons of differ-
ently weighted adverbs.

(a) F1 (b) Accuracy (c) Positive Acc (d) Negative Acc

Fig. 5. Performance of the original and enhanced dictionaries on different datasets

8 http://www.nlpir.org/wordpress/download/tc-corpus-answer.rar
9 http://thuctc.thunlp.org/

10 https://github.com/aceimnorstuvwxz/TouTiao-text-classfication-dataset
11 https://www.heywhale.com/

http://www.nlpir.org/wordpress/download/tc-corpus-answer.rar
http://thuctc.thunlp.org/
https://github.com/aceimnorstuvwxz/TouTiao-text-classfication-dataset
https://www.heywhale.com/

596 Z. Zhang et al.

We evaluate the enhancement of the two sentiment lexicons on 5 datasets12.
Specifically, we insert new content into sentiment lexicons taking the same score
for synonyms and negative values for antonyms, and then we test the feasibility
on the datasets using two lexicons before and after the enhancement. It is clear
that the classification of negative sentiment texts is greatly enhanced (Fig. 5(d)),
while the accuracy of positive texts maintains a similar level (Fig. 5(c)). In sum-
mary, sentiment classification based on the sentiment lexicon benefits from the
new lexicon content (Fig. 5(a) and (b)), i.e., the product of our Antonym Detec-
tion extends the sentiment lexicon effectively and improves the ability to identify
negative texts.

4 Related Works

4.1 Synonym-Antonym Discrimination

Pattern-Based Approach. Lin [15] utilized fixed patterns (e.g., “X and Y”)
to identify semantically incompatible word pairs in English. Similarly, Wang [34]
searched the CCL corpus for Chinese four-character phrases (e.g., a+X+b+!X).
Zhang [43] extracted antonym pairs of nouns, adjectives, and verbs in Chinese
universal quantification word classes, while Wu [37] identified antonym pairs in
Chinese sizige using 379 four-character patterns.

Distribution-Based Approach. Nguyen [22] trained word embeddings to
decouple synonyms and antonyms by adjusting weights of salient and irrelevant
features. Dou [7] used the SkipGram model to train antonym-sensitive embed-
dings. Li [14] integrated Chinese word embedding and linguistic knowledge into
a classification system. Xie [38] employed a mixture-of-experts framework with
a divide-and-conquer strategy to learns specialties of different dimensions.

4.2 Knowledge Graph Representation

We introduce three categories of KG representation related to this paper.

Structure-Based Models. TransE [3] projects entities and relations into vector
space using h+r = t. TransH [35] maps relations to relation-specific hyperplanes
based on TransE. TransR [16] models entities and relations in separate spaces,
and TransD [12] uses a dynamic mapping matrix to achieve improvements.

Semantic Models. RESCAL [23] treats relations as matrices and learns rela-
tions through tensor factorization. DistMult [39] captures compositional seman-
tics via matrix multiplication. ComplEx [32] uses complex numbers to handle
symmetries and antisymmetries. HopfE [2] aims to achieve interpretability of
inferred relations in the four-dimensional space.

Other Models. TransC [19] differentiates between concepts and instances and
utilizes spheres vectors for representation. Wang [33] proposed a novel regularizer
to encourage entities with similar semantics to have similar embeddings.
12

https://drive.google.com/drive/folders/1qpLb-52DDEiYDmvpnlYgVfKbRlf428Mq?usp=sharing

https://drive.google.com/drive/folders/1qpLb-52DDEiYDmvpnlYgVfKbRlf428Mq?usp=sharing

Exploring Word-Sememe Graph-Centric Chinese Antonym Detection 597

5 Conclusion and Future Works

In this paper, we pay attention to the synonymy and antonymy in Chinese and
modify Link Prediction to Antonym Detection. More specifically, we construct
a Chinese word-sememe graph with only synonym and antonym relations, and
build a framework including relation inference and knowledge representation
learning model based on its transitivity, reflexivity, and symmetry. Afterwards,
the experimental results on Triple Classification and Antonym Detection show
that our approach has better representation ability with simplicity, and the abla-
tion analysis also excavates the inherent advantages.

In the future, we will explore more linguistic knowledge and Chinese char-
acteristics to improve the discriminative ability. We want to further extend the
approach to unlimited Chinese words based on limited characters and realize
complete word-level Antonym Detection.

Acknowledgment. The research is supported by The National Natural Science Foun-
dation of China under Grant Nos. 61932004 and 62072205.

Ethical Issues. Following the guidelines from General ethical

issues in Machine Learning (https://www.w3.org/TR/webmachinelearning-ethics/#

general-ethical-issues-in-machine-learning), we will briefly describe our ethical consid-

erations.

Our work mainly focuses on semantic mining in the Chinese domain, without

Bias, Fairness, Security, Privacy, Environmental Impact, and Discrimina-

tion against a group or collective. Our method combines external professional linguis-

tic knowledge and has good Transparency and Interpretability.

Our data is sourced from publicly available resources on the internet and all refer-

ences are cited in the paper, such as Github and other data that follows open-source

licenses. Our data does not involve any personal privacy or inference of personal infor-

mation. Our work is dedicated to researching the potential semantic relationships

between words in Chinese and does not have any police or military applications.

References

1. Ali, M.A., Sun, Y., Zhou, X., Wang, W., Zhao, X.: Antonym-synonym classifi-
cation based on new sub-space embeddings. In: Proceedings of the Thirty-Third
AAAI Conference on Artificial Intelligence, AAAI 2019, The Thirty-First Inno-
vative Applications of Artificial Intelligence Conference, IAAI 2019, The Ninth
AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2019,
pp. 6204–6211 (2019)

2. Bastos, A., Singh, K., Nadgeri, A., Shekarpour, S., Mulang, I.O., Hoffart, J.: Hopfe:
knowledge graph representation learning using inverse hopf fibrations. In: Proceed-
ings of the 30th ACM International Conference on Information and Knowledge
Management, Virtual Event, CIKM 2021, Queensland, Australia, 1–5 November,
pp. 89–99. ACM (2021)

https://www.w3.org/TR/webmachinelearning-ethics/#general-ethical-issues-in-machine-learning
https://www.w3.org/TR/webmachinelearning-ethics/#general-ethical-issues-in-machine-learning

598 Z. Zhang et al.

3. Bordes, A., Usunier, N., Garćıa-Durán, A., Weston, J., Yakhnenko, O.: Translating
embeddings for modeling multi-relational data. In: Proceedings of the 27th Annual
Conference on Neural Information Processing Systems 2013, NIPS 2013, pp. 2787–
2795 (2013)

4. Chen, X., Xu, L., Liu, Z., Sun, M., Luan, H.: Joint learning of character and word
embeddings. In: Proceedings of the Twenty-Fourth International Joint Conference
on Artificial Intelligence, IJCAI 2015, pp. 1236–1242. AAAI Press (2015)

5. Chen, Z., Feng, Y., Zhao, D.: Entailment graph learning with textual entailment
and soft transitivity. In: Proceedings of the 60th Annual Meeting of the Association
for Computational Linguistics, ACL 2022, pp. 5899–5910 (2022)

6. Dong, Z., Dong, Q.: Hownet-a hybrid language and knowledge resource. In: Pro-
ceedings of the 2003 International Conference on Natural Language Processing and
Knowledge Engineering, pp. 820–824 (2003)

7. Dou, Z., Wei, W., Wan, X.: Improving word embeddings for antonym detection
using thesauri and sentiwordnet. In: Proceedings of Natural Language Processing
and Chinese Computing - 7th CCF International Conference, NLPCC 2018, vol.
11109, pp. 67–79 (2018)

8. Etcheverry, M., Wonsever, D.: Unraveling antonym’s word vectors through a
siamese-like network. In: Proceedings of the 57th Conference of the Association
for Computational Linguistics, ACL 2019, pp. 3297–3307 (2019)

9. Gao, D., Wei, F., Li, W., Liu, X., Zhou, M.: Cross-lingual sentiment lexicon learn-
ing with bilingual word graph label propagation. Comput. Linguist. 41(1), 21–40
(2015)

10. Han, X., et al.: Openke: an open toolkit for knowledge embedding. In: Proceedings
of the 2018 Conference on Empirical Methods in Natural Language Processing,
EMNLP 2018, pp. 139–144 (2018)

11. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8),
1735–1780 (1997)

12. Ji, G., He, S., Xu, L., Liu, K., Zhao, J.: Knowledge graph embedding via dynamic
mapping matrix. In: Proceedings of the 53rd Annual Meeting of the Association for
Computational Linguistics and the 7th International Joint Conference on Natural
Language Processing of the Asian Federation of Natural Language Processing,
ACL 2015, pp. 687–696 (2015)

13. Jin, H., Zhang, Z., Yuan, P.: Improving Chinese word representation using four
corners features. IEEE Trans. Big Data 8(4), 982–993 (2022)

14. Li, C., Ma, T.: Classification of Chinese word semantic relations. In: Huang, X.,
Jiang, J., Zhao, D., Feng, Y., Hong, Yu. (eds.) NLPCC 2017. LNCS (LNAI), vol.
10619, pp. 465–473. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-
73618-1 39

15. Lin, D., Zhao, S., Qin, L., Zhou, M.: Identifying synonyms among distributionally
similar words. In: Proceedings of the Eighteenth International Joint Conference on
Artificial Intelligence, IJCAI 2003, pp. 1492–1493 (2003)

16. Lin, Y., Liu, Z., Sun, M., Liu, Y., Zhu, X.: Learning entity and relation embed-
dings for knowledge graph completion. In: Proceedings of the Twenty-Ninth AAAI
Conference on Artificial Intelligence, AAAI 2015, pp. 2181–2187 (2015)

17. Liu, Y., et al.: Roberta: a robustly optimized BERT pretraining approach. CoRR
abs/1907.11692 (2019)

18. Lu, W., Zhang, Z., Yuan, P., Jin, H., Hua, Q.: Learning Chinese word embeddings
by discovering inherent semantic relevance in sub-characters. In: Proceedings of the
31st ACM International Conference on Information & Knowledge Management,
CIKM, pp. 1369–1378. ACM (2022)

https://doi.org/10.1007/978-3-319-73618-1_39
https://doi.org/10.1007/978-3-319-73618-1_39

Exploring Word-Sememe Graph-Centric Chinese Antonym Detection 599

19. Lv, X., Hou, L., Li, J., Liu, Z.: Differentiating concepts and instances for knowledge
graph embedding. In: Proceedings of the 2018 Conference on Empirical Methods
in Natural Language Processing, EMNLP 2018, pp. 1971–1979 (2018)

20. Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed rep-
resentations of words and phrases and their compositionality. In: Proceedings of
Advances in Neural Information Processing Systems 26: 27th Annual Conference
on Neural Information Processing Systems 2013, pp. 3111–3119 (2013)

21. Nguyen, K.A., Walde, S.S.I., Vu, N.T.: Distinguishing antonyms and synonyms
in a pattern-based neural network. In: Proceedings of the 15th Conference of the
European Chapter of the Association for Computational Linguistics, EACL 2017,
pp. 76–85 (2017)

22. Nguyen, K.A., Walde, S.S.I., Vu, N.T.: Integrating distributional lexical contrast
into word embeddings for antonym-synonym distinction. In: Proceedings of the
54th Annual Meeting of the Association for Computational Linguistics, ACL 2016
(2016)

23. Nickel, M., Tresp, V., Kriegel, H.: A three-way model for collective learning on
multi-relational data. In: Proceedings of the 28th International Conference on
Machine Learning, ICML 2011, pp. 809–816 (2011)

24. Qi, F., Yang, C., Liu, Z., Dong, Q., Sun, M., Dong, Z.: Openhownet: an open
sememe-based lexical knowledge base. CoRR abs/1901.09957 (2019)

25. Qiu, Y., Li, H., Li, S., Jiang, Y., Hu, R., Yang, L.: Revisiting correlations between
intrinsic and extrinsic evaluations of word embeddings. In: Proceedings of Chinese
Computational Linguistics and Natural Language Processing Based on Naturally
Annotated Big Data - 17th China National Conference, CCL 2018, and 6th Inter-
national Symposium, NLP-NABD 2018, vol. 11221, pp. 209–221 (2018)

26. Roth, M., Walde, S.S.I.: Combining word patterns and discourse markers for
paradigmatic relation classification. In: Proceedings of the 52nd Annual Meeting
of the Association for Computational Linguistics, ACL 2014, pp. 524–530 (2014)

27. Samenko, I., Tikhonov, A., Yamshchikov, I.P.: Synonyms and antonyms: Embed-
ded conflict. CoRR abs/2004.12835 (2020)

28. Scheible, S., Walde, S.S.I., Springorum, S.: Uncovering distributional differences
between synonyms and antonyms in a word space model. In: Proceedings of the
6th International Joint Conference on Natural Language Processing, IJCNLP 2013,
pp. 489–497 (2013)

29. Shijia, E., Jia, S., Xiang, Y.: Study on the Chinese word semantic relation classifi-
cation with word embedding. In: Huang, X., Jiang, J., Zhao, D., Feng, Y., Hong,
Yu. (eds.) NLPCC 2017. LNCS (LNAI), vol. 10619, pp. 849–855. Springer, Cham
(2018). https://doi.org/10.1007/978-3-319-73618-1 74

30. Socher, R., Huval, B., Manning, C.D., Ng, A.Y.: Semantic compositionality
through recursive matrix-vector spaces. In: Proceedings of the 2012 Joint Confer-
ence on Empirical Methods in Natural Language Processing and Computational
Natural Language Learning, EMNLP-CoNLL 2012, pp. 1201–1211. ACL (2012)

31. Sun, Z., Deng, Z., Nie, J., Tang, J.: Rotate: knowledge graph embedding by rela-
tional rotation in complex space. In: Proceedings of the 7th International Confer-
ence on Learning Representations, ICLR 2019, New Orleans, LA, USA, 6–9 May,
2019. OpenReview.net (2019)

32. Trouillon, T., Welbl, J., Riedel, S., Gaussier, É., Bouchard, G.: Complex embed-
dings for simple link prediction. In: Proceedings of the 33rd International Confer-
ence on Machine Learning, ICML 2016, vol. 48, pp. 2071–2080 (2016)

https://doi.org/10.1007/978-3-319-73618-1_74

600 Z. Zhang et al.

33. Wang, J., Zhang, Z., Shi, Z., Cai, J., Ji, S., Wu, F.: Duality-induced regularizer
for semantic matching knowledge graph embeddings. IEEE Trans. Pattern Anal.
Mach. Intell. 45(2), 1652–1667 (2023)

34. Wang, X., Wu, Z., Li, Y., Huang, Q., Hui, J.: Corpus-based analysis of the co-
occurrence of Chinese antonym pairs. In: Proceedings of Advanced Data Mining
and Applications - 6th International Conference, ADMA 2010, vol. 6441, pp. 500–
507 (2010)

35. Wang, Z., Zhang, J., Feng, J., Chen, Z.: Knowledge graph embedding by trans-
lating on hyperplanes. In: Proceedings of the Twenty-Eighth AAAI Conference on
Artificial Intelligence, AAAI 2014, pp. 1112–1119 (2014)

36. Wu, J., Xie, R., Liu, Z., Sun, M.: Knowledge representation via joint learning of
sequential text and knowledge graphs. CoRR abs/1609.07075 (2016)

37. Wu, S.: Iconicity and viewpoint: antonym order in Chinese four-character patterns.
Lang. Sci. 59, 117–134 (2017)

38. Xie, Z., Zeng, N.: A mixture-of-experts model for antonym-synonym discrimina-
tion. In: Proceedings of the 59th Annual Meeting of the Association for Computa-
tional Linguistics and the 11th International Joint Conference on Natural Language
Processing, ACL/IJCNLP 2021, pp. 558–564 (2021)

39. Yang, B., Yih, W., He, X., Gao, J., Deng, L.: Embedding entities and relations for
learning and inference in knowledge bases. In: Proceedings of the 3rd International
Conference on Learning Representations, ICLR 2015 (2015)

40. Yang, S., et al.: Inductive link prediction with interactive structure learning on
attributed graph. In: Proceedings of Machine Learning and Knowledge Discovery
in Databases. Research Track - European Conference, ECML PKDD 2021, vol.
12976, pp. 383–398. Springer (2021)

41. Yu, J., Jian, X., Xin, H., Song, Y.: Joint embeddings of Chinese words, characters,
and fine-grained subcharacter components. In: Proceedings of the 2017 Conference
on Empirical Methods in Natural Language Processing, EMNLP 2017, pp. 286–291
(2017)

42. Zeng, X., Yang, C., Tu, C., Liu, Z., Sun, M.: Chinese LIWC lexicon expansion via
hierarchical classification of word embeddings with sememe attention. In: Proceed-
ings of the Thirty-Second AAAI Conference on Artificial Intelligence, (AAAI-18),
the 30th innovative Applications of Artificial Intelligence (IAAI-18), and the 8th
AAAI Symposium on Educational Advances in Artificial Intelligence (EAAI-18),
pp. 5650–5657 (2018)

43. Zhang, J.: Internal semantic structure and conceptual hierarchy of antonymous
compounds in modern chinese. In: Proceedings of Chinese Lexical Semantics -
14th Workshop, CLSW 2013, vol. 8229, pp. 181–190 (2013)

44. Zhang, Z., Zhong, Z., Yuan, P., Jin, H.: Improving entity linking in Chinese domain
by sense embedding based on graph clustering. J. Comput. Sci. Technol. 38(1), 196
(2023)

45. Zhou, Y., Lan, M., Wu, Y.: Effective semantic relationship classification of context-
free chinese words with simple surface and embedding features. In: Proceedings of
Natural Language Processing and Chinese Computing - 6th CCF International
Conference, NLPCC 2017. Lecture Notes in Computer Science, vol. 10619, pp.
456–464. Springer (2017)

Distinct Geometrical Representations
for Temporal and Relational Structures

in Knowledge Graphs

Bowen Song1,5, Chengjin Xu2, Kossi Amouzouvi3,5,6, Maocai Wang1(B),
Jens Lehmann3,4,5, and Sahar Vahdati5

1 School of Computer Science, China University of Geosciences (Wuhan), Wuhan, China
{songbowen,mcwang}@cug.edu.cn

2 International Digital Economy Academy, Shenzhen, China
3 Faculty of Computer Science, TU Dresden, Dresden, Germany

4 Amazon (work done outside of Amazon), Seattle, USA
5 Institute for Applied Informatics (InfAI), Dresden, Germany

6 Department of Mathematics, KNUST, Kumasi, Ghana

Abstract. Geometric aspects of knowledge graph embedding models directly
impact their capability to preserve knowledge from the original graph to the
vector space. For example, the capability to preserve structural patterns such
as hierarchies, loops, and paths present as relational structures in a knowledge
graph depends on the underlying geometry. In these years, temporal informa-
tion has gained lots of attention from researchers. While non-Euclidean geome-
try, e.g. Hyperbolic Geometry, has been shown to work well in static knowledge
graph embedding models for such relational structures, this does not hold for
temporal information in knowledge graphs. This is due to the different charac-
teristics of temporal information: time can be seen mostly as a linear construct
and using a geometry that is not suitable for this can adversely affect perfor-
mance. To address this research gap, we provide a novel temporal knowledge
graph embedding model that combines different geometries: the non-temporal
part of the knowledge is mapped to a hyperbolic space and the temporal part is
mapped to a Euclidean space. Our extensive evaluations on several benchmark
datasets show a significant performance improvement in comparison to state-of-
the-art models.

1 Introduction

Knowledge Graphs (KGs) are a core technology for several AI tasks such as recom-
mendation and prediction services as well as question-answering systems [4]. KGs
usually consist of facts represented in the form of triples (subject, relation, object),
where subject and object denote the entities and the relation connects those entities.
Despite the large quantities of triples in KGs such as Wikidata [29], DBpedia [19],
NELL [8], YAGO [25], they remain incomplete. One of the leading approaches to deal-
ing with the incompleteness problem of KGs is the use of Knowledge Graph Embedding
(KGE) models. KGE models predict links between existing entities in a KG by provid-
ing latent representation of the entities and relations in a low-dimensional space [1,5].
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
D. Koutra et al. (Eds.): ECML PKDD 2023, LNAI 14171, pp. 601–616, 2023.
https://doi.org/10.1007/978-3-031-43418-1_36

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-43418-1_36&domain=pdf
https://doi.org/10.1007/978-3-031-43418-1_36

602 B. Song et al.

While many KGE models are designed in Euclidean space, recent works show that
non-Euclidean geometry improves model performance for the preservation of several
complex relational structures [1]. For example, hyperbolic geometry is shown to be a
suitable space for mapping hierarchical structures [3]. Other works provide a combined
version of geometries such as GIE [7] that showed promising results in static KGs.
Recently, several Temporal Knowledge Graph Embedding (TKGE) models have also
considered non-Euclidean geometry or mixed spaces [14,21]. Temporal KGs (TKGs)
add time information to triples, which means that some connections between entities
have two properties, i.e., relation and time. Facts in TKGs are quadruples in the form
of (subject, relation, object, timestamp). Timestamps (τ) can be represented in various
forms, e.g., time points, start/end time, or time intervals. While relations are dynamic in
forming different structures, time information in knowledge graphs follows a static, lin-
ear nature. When previous works used non-Euclidean geometries for knowledge graph
embeddings, this choice of geometry also affected time information.

Our main research hypothesis is that this negatively affects the performance of the
model. In Fig. 1, we showcase this problem using subgraphs taken from the GDELT
dataset [18], which we re-labeled with movie information and year granularity to sim-
plify understanding. As can be seen, the time information is linear while the relations are
forming hierarchical structures. In order to preserve the relational patterns of the sym-
bolic space (i.e. the knowledge graph) in the embedding space, geometries with special
features such as hyperbolic space are used [14,21]. The hyperbolic space has negative
curvature and the distance between two points on its surface grows exponentially with
radius increase, while the discrete chain structure of time requires a zero curvature with
a polynomial growth of surface with radius increase. For example, changing all times-
tamps in a subgraph by 10 years should not change the relative distance of entities in
this subgraph. For Euclidean geometry this is the case, but not for hyperbolic geometry.

Fig. 1. Movie information is illustrated with different structures of the temporal (Euclidean for
linear) and relational part (Non-Euclidean for hierarchical).

In order to address this issue in temporal KGs, we propose a model that captures
both the relational and temporal parts appropriately. We provide different views of the
underlying temporal knowledge graph: one is the relational part that includes the subject
and object entities and their relations, and the other part is the temporal knowledge

Combining Temporal and Relational Knowledge Graph Embeddings 603

that includes the subject and object entities and timestamps. Our approach for TKG
embedding dubbed TRE (temporal and relational embeddings) that treats these two
parts with different geometries. To the best of our knowledge, the proposed approach
is the first one using distinct geometries (Euclidean and hyperbolic) simultaneously
for Temporal KGs. When providing different views, we first split the quadruples into
relational and temporal parts, and then embed the relational parts of the underlying
TKG into a hyperbolic space to keep the hierarchies and other complex structures, and
embed temporal parts into the Euclidean space that follows the nature of time. One
possible issue after splitting a quadruple into relational and temporal parts is that the
model can possibly overwrite the relational parts that are same and would normally only
be distinguishable with differences in temporal part. We avoid this issue by defining
time-related hyperplanes that implicitly keep the temporal information in the relational
part. In this way, the embeddings in different time-related hyperplanes that belong to
one entity are different. Thereby, our model can even distinguish the same relational
parts originally having different temporal parts. Attention based-transformations have
been proved to be effective for logical patterns such as symmetry, asymmetry or mixed-
behaviour relations (i.e. neither symmetric nor anti-symmetric) in static KGs [9]. In
TKGs, timestamps also form relational patterns. We adapt an attention-based rotation
and reflection from static KGE models to the temporal KGE model. In this way, our
model has a good grasp of facts based on relations and timestamps and the experiments
demonstrate that TRE significantly outperforms the other models in low dimensions.

2 Related Work

Geometries in Non-temporal Knowledge Graph Embedding Models. Most of pro-
posed KGE models have geometric and algebraic limitations. Until very recently, many
of the KGE models were proposed either in linear or complex spaces. Several state-of-
the-art KGE models such as TransE [6] and RotatE [26] represent entities as points in
a low-dimensional flat space, and relations are translations and rotations to map sub-
ject embeddings to their corresponding object embeddings, respectively. The scores are
calculated as geodesic distance between the embeddings of the mapped subject and
object entities. There are other KGE models that embed entities as vectors and relations
as matrices. For example, RESCAL [23] and ComplEx [27] calculate the scores by a
bilinear product of these embeddings. Other track of work is neural-based models such
as ConvE [11], ConvKB [22]. All of these models have been designed in Euclidean
space, however they used complex or hyper complex algebraic bases where transforma-
tions such as Homothety have been made possible. Recently, chain of works focuses on
providing non-Euclidean spaces such as MURP [3], AttH [9] and GIE [7], which have
shown the outstanding performance on using hyperbolic or spherical geometries. These
models are proven to perform best for complex structural patterns such as hierarchical
and loop structures but only on static KGs. Although KGEs have widely gained major
attention in using non-Euclidean spaces, they have limitations for time-sensitive facts.

Geometries in Temporal Knowledge Graph Embedding Models. TKGE models
use embeddings to represent temporal information along entities and relations. Many
TKGE models are built based on the existing KGE models. TTransE [17], the temporal

604 B. Song et al.

version of TransE, treats timestamps as extra translations. HyTE [10], an extension of
TransH [30] to TKGs, represents the timestamps by learnable temporal hyperplanes.
Both of these temporal KGEs are in Euclidean space. Based on ComplEx model, two
models namely TComplEx and TNTComplEx [16] are designed to factorize TKG as
a tensor. TeRo [31] defines the temporal evolution of entity embedding as a rotation
from the initial time to the current time in the complex vector space. ChronoR [24]
treats timestamps and relations as rotation and scale to do the prediction. BoxTE [20]
is a box embedding model for TKGC, and is adapted based on the BoxE model from
static KGE model to a temporal KGE. Despite the use of different algebraic aspects, all
of these models are designed in Euclidean space. Recently, temporal KGE models are
also considered non-Euclidean space such as DyERNIE [14] that learns evolving entity
representations on a product of Riemannian manifolds with heterogeneous curvatures.
HERCULES [21] is a TKGE model in a hyperbolic space, as an extension of ATTH
by defining a curvature as a product of both relations and time. While, the overall per-
formance of these models have increased, their evaluation methodology follows static
KGE models where time is not taken into account when filtering entities. Therefore,
the comparison is not fair to other models that use time-wise filtering. In the case of
TKGEs, doing link prediction without timestamps can potentially lead to a fake high
ranking of the facts. This is due to the confusion of the model in considering many
wrong predictions as correct prediction. Therefore, currently a non-Euclidean temporal
KGEmodel that is designed with a distinct geometrical representation for time and rela-
tional structures, also being correctly evaluated is missing. This gap is bridged in this
work by contributions on proposing the use of different but more suitable geometries
for each parts of time and relational knowledge.

3 Preliminaries

3.1 Temporal Knowledge Graph Completion

TKGs are multi-relational and directed graphs containing temporal information. We
define E ,R,T as the sets of entities, relations and timestamps, respectively. Each fact
in a TKG can be defined as a quadruple q = (s, r, o, τ), where s ∈ E is referred to
the subject entity, o ∈ E is referred to the object entity, r ∈ R is a relation between
s and o, and τ ∈ T is a timestamp. Temporal Knowledge Graph Embedding (TKGE)
models aim at completing TKGs by learning d-dimensional vector representations of
entities (E), relations (R), and timestamps (T) denoted by (s, r,o, τ) per quadruple
(s, r, o, τ). The original facts in the TKG without timestamps are assigned with unique
timestamp embedding. A TKGE score function computes the plausibility of a quadruple
by mapping (s, r, o, sτ) to a real value.

3.2 Hyperbolic Geometry

Hyperbolic geometry is a non-Euclidean geometry with negative sectional curvature. In
our work, we use a d-dimensional Poincaré ball from hyperbolic geometry, to model
the relational parts of TKGs, i.e. (s, r, o). We denote the non-negative curvature as
−c (c > 0), and define the Poincaré ball as Bd,c = {x ∈ R

d : ‖x‖2 < 1
c}, where ‖·‖ is

Combining Temporal and Relational Knowledge Graph Embeddings 605

the L2 norm. We therefore denote by T c
x , the tangent space associated to x ∈ Bd,c. By

definition, this space contains the tangent vector of all hyperbolic lines in Bd,c leaving
from x. The tangent space follows a Euclidean geometry.

We can map a tangent vector of T c
x onto Bd,c via the exponential map. Conversely,

we can also map vectors of Bd,c onto T c
x via the logarithmic map. Considering the

tangent space T c
0 , these two functions are defined as follows:

expc
0(x) = tanh(

√
c ‖x‖)

x√
c ‖x‖ , (1)

logc
0(y) = arctanh(

√
c ‖y‖)

y√
c ‖y‖ . (2)

Due to the non-zero curvature, addition in hyperbolic geometry is replaced with
Möbius addition [28], which is a closed operation in the Poincaré ball. It is expressed
as follows:

x⊕cy =
(1 − 2cxT y − c‖y‖2)x + (1 + c‖x‖2)y

1 − 2cxT y + c2‖x‖2‖y‖2
. (3)

Finally, the hyperbolic distance function between two vectors x and y is defined as:

dH
c (x, y) =

2√
c
arctanh(

√
c ‖−x⊕cy‖). (4)

3.3 Hyperbolic Transformations

We let R(Θ) and F (Φ) represent rotations and reflections in the hyperbolic space
respectively, which are modeled using the Givens transformation matrices [2]. In 2d
space, it is parameterized by a 2 × 2 matrix:

R(θ) =
[

cos(θ) − sin(θ)
sin(θ) cos(θ)

]
. (5)

These matrices are block diagonalized,

R(Θ) = diag(R(θ1),...,R(θd)), (6)

to achieve rotation in high dimension. In Eq. (6), Θ denotes the set {θi : i = 1, . . . , d}.
Since the blocks are 2 × 2 matrices R(θi), only rotation in even high dimension can
be achieved by this formalism. Equation (6) represents a rotation in 2d dimensional
Euclidean space. On the other hand, reflection in 2d dimensional Euclidean space, can
be represented by the block diagonal matrix

F(Φ) = diag(F(φ1),...,F(φd)) (7)

where

F(φi) =
[

cos(φi) sin(φi)
sin(φi) − cos(φi)

]
(8)

and Φ is the set of reflection angles, φi, in the 2D plane.

606 B. Song et al.

The limitation of Euclidean geometry in preserving hierarchical structures in KG,
has created the need to consider rotation and reflection in non-Euclidean space. One way
to extend this formalism to hyperbolic spaces, H, is through the use of the exponential
and the logarithm maps defined in Eqs. (1) and (2). Let us consider the point xH ∈ H.
Its tangent vector x ∈ T c

0 , is obtained by applying the logarithm map as

x = logc
0 x

H . (9)

By applying the exponential map to the linear transformation Mx, we obtain the hyper-
bolic point

yH = expc
0 (Mx) (10)

which is the hyperbolic rotation (M = R(Θ)) or reflection (M = F (Φ)) of xH .

4 Methodology

The proposed model is designed such that it (1) projects embeddings to time-related
hyperplanes, (2) uses rotation and reflection to transform entities, (3) uses time-
dependent and relation-specific curvature to make the hyperbolic manifolds time and
relation dependent, (4) learns embeddings of relational parts in hyperbolic space, suit-
able for hierarchical structure. (5) learns embeddings of temporal parts in the Euclidean
space, which is suitable for chain structure. The following sections are detailed descrip-
tion.

4.1 Time-Related Hyperplane

Fig. 2. Time-related Hyperplane and Hyperbolic
Space of TRE for a corresponding vector of a sub-
ject entity and its temporal part. TRE uses attention
mechanism with rotation and reflection to locate the
subject vector closer to a possible object vector.

For all the facts that are in the
form of quadruple (s, r, o, τ), in
a TKG, we project the relational
parts that has same temporal part
τ, onto their associated time-specific
hyperplane Hτ . In this way, we
implicitly encode the relational part
(s, r, o) with the temporal informa-
tion denoted by (sτ , rτ , oτ). Thus,
the model uses time-related hyper-
planes to bring temporal informa-
tion into the relational parts. Embed-
dings of the facts with the same rela-
tional part but different times, are por-
trayed on their corresponding time-
related hyperplanes. Moreover, the
hyperplanes, characterized by their normal unit vector, wτ , are the direct sum of two
Euclidean subspaces: Tτ and Eτ , where the former serves as a tangent space at point
0 of a Poincaré ball and the latter serves as a medium for explicitly propagating time
information from subject entities to object entities of temporal facts. We denote entity

Combining Temporal and Relational Knowledge Graph Embeddings 607

embeddings by e and their projection onto Hτ by eHτ
= eτ + eν where eτ ∈ Eτ and

eν ∈ Tτ . In other words,

eHτ
= eν + eτ = e − (wT

τ e)wτ . (11)

We replace e by s or o when we want to refer to the embeddings of the subject or object
entities, respectively. As shown in Fig. 2, we illustrate how this mechanism works for
the corresponding vector of a subject entity.

4.2 Transformation for Temporal and Relational Parts

Temporal facts with the same timestamp, τ, form a time-related Knowledge Graph,
Gτ = {(sτ , rτ , oτ) : (s, r, o, τ) ∈ TKG}. Therefore, for each timestamp, τ, we have
its corresponding knowledge graph, Gτ and its associated hyperplane Hτ . The rela-
tions rτ exhibit many relational patterns, mainly symmetry or antisymmetry, transitiv-
ity, composition, inversion, and so on. In order to preserve these relational patterns, we
decided to represent relations by rotation and reflection; these two transformations are
widely used in KGE models [26]. While rotation can preserve all the aforementioned
relational properties, reflection through a plane, an involutive transformation, fails to
adequately preserve antisymmetric relations. However, it is more flexible in preserving
symmetric relations.

Given Eq. (11), we define rotation of the subject embeddings on the hyperplanes as

Srot =
[

R(Θν) 0
0 R(Θτ)

]
sHτ

(12)

which could substantially be reduced to

Srot = R(Θν)sν + R(Θτ)sτ , (13)

and reflection as
Sref = F (Φν)sν + F (Φτ)sτ . (14)

Furthermore, in order to better combine the advantages of rotation and reflection,
we use the attention mechanism to allow the model to better adapt to symmetric, asym-
metric, and composition features. The attention mechanism uses relation and timestamp
specific attention vectors and coefficients. The two attention coefficients, αrot and αref ,
associated to relation and timestamp, are positive real scalers whose values quantified
how much relation and timestamp adhere to rotation or reflection embeddings or to a
mixture of both. This adhesion is guided by the relational patterns present in the TKG.
The attention vector and coefficients are related by the equation below:

(αrot, αref) = softmax
(
αTSrot, α

TSref

)
(15)

The model learns the new embeddings in the hyperplanes as:

SE
ν + SE

τ = SE = αrotSrot + αrefSref . (16)

We note that SE is separated into two parts, SE
ν and SE

τ , which are the projections
of αrotSrot + αrefSref from Hτ to Tτ and Eτ respectively. Since, the object entity
embeddings do not undergo any linear transformation, we conclude oE

ν = oν and oE
τ =

oτ from Eq. (11).

608 B. Song et al.

4.3 Geometric Score

Hyperbolic geometric embeddings are designed to capture complex structures such as
hierarchies. In order to do so, we set the curvature of the hyperbolic space to a trainable
parameter. It is defined in the parametric form

cν,τ = softplus(cν × cτ) (17)

where cν and cτ refer to relation and timestamp specific curvatures. Through curvatures,
the embeddings of the explicit non-temporal parts of the object, oE

ν , and transformed
subject, SE

ν , entities are projected from the hyperplane to the hyperbolic space while
keeping the implicit influence of the associated time. This is performed by:

SH
ν = expcν,τ

0 (SE
ν), oH

ν = expcν,τ

0 (oE
ν). (18)

For the transformed subject entities, the projection is followed by a möbius addition,
i.e. a hyperbolic translation defined by

XH
ν = expcν,τ

0 (SH
ν ⊕c rH) (19)

where rH is the hyperbolic embedding of relations. The score function for the hyper-
bolic geometric interaction is defined as:

h(sτ , rτ , oτ) = −dH
cν,τ

(XH
ν ,oH

ν)

= − 2
√

cν,τ
arctanh(

√
cν,τ

∥∥−XH
ν ⊕coH

ν

∥∥).
(20)

In order to allow the propagation of time information from subject to object enti-
ties, we used Euclidean geometry and translation. The score of Euclidean geometric
interaction is then defined as

g(s, o, τ) = −dE(XE
τ ,oE

τ) = −
∥∥XE

τ − oE
τ

∥∥ (21)

where XE
τ = SE

τ + τE , and τ represents the timestamp embeddings in Eτ .

4.4 The TRE Model

Different geometries for temporal and relational embeddings (TRE) is the proposed
model that treats time flow in a flat space and relational structures in a hyperbolic space.
TRE defines two entity embeddings as eH

ν in hyperbolic space, and eE
τ in Euclidean

space. Both have two particular latent embeddings eν and eτ , defined on a hyperplane
associated to the timestamp of the quadruple in which the subject and object entities
co-appear. TRE performs hyperbolic rotation and/or reflection (Eqs. 6, 7, 9, 15, 16,
18) followed by hyperbolic translation (Eq. 19) of subject entity sH

ν , and Euclidean
rotation and/or reflection (Eqs. 6, 7) followed by translation of sE

τ to transform the sub-
ject entity to XH

ν and XE
τ respectively. The model interaction with the object entity is

resumed to its embeddings oH
ν and oE

τ . The score of quadruples is assessed by the total
score function

Combining Temporal and Relational Knowledge Graph Embeddings 609

f(s, r, o, τ) = h(sτ , rτ , oτ) + g(s, o, τ) + bs + bo

= −dH
cν,τ

(XH
ν ,oH

ν) − dE(XE
τ ,oE

τ) + bs + bo

(22)

where bs and bo are biases related to subject and object entities. For each quadruple
(s, r, o, τ), k negative samples are generated by a random corruption of subject or object
entities. We use binary cross-entropy as the loss function, which is defined as

L = − 1
N

N∑
i=1

⎛
⎝log(pi) +

k∑
j=1

(log(1 − pi,j))

⎞
⎠. (23)

In Eq. (23), N is the total number of training samples, and pi and pi,j are the proba-
bilities of positive and negative quadruples, where p = σ (f (s, r, o, τ)) and σ (·) is the
sigmoid function.

5 Experiments

5.1 Experimental Setup

Datasets. In order to provide a fair and comprehensive comparison, three different types
of benchmark datasets (ICEWS14 [12], Yago15k [12], and GDELT [18]) that have been
used by previous state-of-the-art TKGEs are considered in our work. Statistics on these
datasets are provided in Table 1. ICEWS14 provides geopolitical information occurred
regularly in 2014. Because of geopolitical events, the relations between entities are
sparse and less temporally related. Yago15k is a modification of FB15K [6] with times-
tamps for some of the facts shown with “occursSince” and “occursUntil”. The facts
without timestamps are shown as triples and the ones with timestamps are represented
in the form of quintuples (subject, relation, object, type of timestamp, timestamp). The
third dataset GDELT is a subset of Global Database of Events, Language, and Tone that
contains the facts about human behaviors. Thus, facts in this dataset have rich temporal
patterns. And it contains facts with timestamps from April 1, 2015 to March 31, 2016.
GDELT have only 500 entities and 20 relations, which makes it a dense dataset.

In order to analyse the ability of our model in ablation experiments about represent-
ing relational parts and temporal parts, in the three last columns of Table 1, we report the
number of relations whose Krackhardt hierarchical score [15] is higher than 60%; and
among these relations, we counted and report the number of relations whose maximum
path (Max) and average path (Avg) are greater than 2.

Table 1. Statistics and Hierarchical information for ICEWS14, Yago15k and GDELT.

|E| |R| |T | Ntrain Nvalid Ntest Khs > 60% Max > 2 Avg > 2

ICEWS14 7128 230 365 72826 8963 8941 217 70 23

YAGO15k 15403 34 198 110441 13815 13800 47 5 4

GDELT 500 20 366 2735685 341961 341961 7 7 7

610 B. Song et al.

Evaluation Metrics. For each quadruple (s, r, o, τ) in the test set, two queries of form
(s, r, ?, τ) and (o, r−1, ?, τ) are created. For each query, the model replaces all possible
entities with ? and scores the generated quadruples. The results are then evaluated by
Mean Reciprocal Rank (MRR), and H@n where n ∈ {1, 3, 10}. MRR is measured by∑nt

j=1
1
rj
, where rj is the rank of the j-th test quadruple and nt is the number of triples

in the test set. It represents the overall performance of a model. H@n is the probability
of the number of test quadruples ranked less than n.

Time-Wise Entity Filtering. The time-wise entity filtering [13] is used to remove all
the candidate entities which yield correct quadruples. However, several works have
evaluated their methods by using only entity filtering that is suitable for non-temporal
KGs [14,21]. In this way, time information, that leads to negative but plausible facts,
is ignored. Consequently, the removal of such false negative candidates leads to higher
rankings. This is avoided in TRE with the time-wise entity filtering method. In our
experiments, our model and baseline models are evaluated by time-wise entity filtering.

Baseline Models. TRE is compared to well-performing KGE and TKGE models,
namely TERO [31], TNTComplEx [16], ATTH [9], HERCULES [21] and BoxTE [20].
ATTH is a KGE model in hyperbolic space. In the area of TKGE, there are two mod-
els built in hyperbolic space, namely DyERNIE [14] and HERCULES. DyERNIE is
built on a variable hyperbolic manifold, and HERCULES is the extension of ATTH in
TKGs. In our experiments, we only compare TRE to HERCULES as the original results
of DyERNIE are achieved by non-temporal KGE filtering and is not reproducible In
addition, DyERNIE is outperformed by HERCULES.

Hyperparameter Setting. Evaluations are done in multiple dimensions of entities
including 30, 50, and 100. Adam optimizer is used with learning rate of 0.001, 0.005,
and the cross-entropy loss is minimized by using negative samples which are uniformly
generated from valid entities.

5.2 Analysis and Results

Performance Analysis. As shown in Table 2, TRE outperforms the considered KGE and
TKGE models in all the metrics for all three datasets in dimension 30. This is the same
for other dimensions, except for H@10 of ICEWS14 in dimensions 50 and 100, and
H@1 of Yago15k in dimension 100. As can be seen in Table 1, among the number of
relations with high hierarchical scores in Yago15k, there are only 10.6% of the relations
that have more than 2 paths and only 8.5% of the relations whose average numbers
of paths are more than 2. This means the Yago15k dataset is not rich in hierarchical
structures. We observe that although 94.3% of the relations in the ICEWS14 dataset
have high hierarchical scores, only 32.3% of the candidate relations have a maximum
path greater than 2. Therefore, this dataset has less hierarchical structure. In contrary,
GDELT is rich in hierarchical structure since all the 35% of its candidate relations have
a maximum and an average path equal to 7. It is noteworthy that ICEWS14 is a sparse
TKG and largely temporally uncorrelated across distinct entities. Therefore, TRE shows
5.9% better performance on this dataset compared to other TKGE models that treat the
time and relation on the same geometry.

As mentioned before, the Yago15k dataset has either triples without timestamp and
quintuples with extra time indicator property. Because of this special pattern, most of

Combining Temporal and Relational Knowledge Graph Embeddings 611

Table 2. Results of performance analyses of baselines and TRE in dimensions 30, 50, and 100
(all the results for these dimensions are produced in this work. The highest values per metric are
shown in bold and not achievable results are dashed.)

Datasets ICEWS14 Yago15k GDELT

dim Model MRR H@1 H@3 H@10 MRR H@1 H@3 H@10 MRR H@1 H@3 H@10

30 ATTH 0.402 0.281 0.455 0.648 0.252 0.174 0.261 0.444 0.189 0.114 0.201 0.33

HERCULES 0.419 0.301 0.475 0.652 0.261 0.188 0.265 0.448 0.190 0.116 0.202 0.331

TERO 0.309 0.185 0.361 0.564 - - - - 0.161 0.0904 0.17 0.3

TNTComplEx 0.475 0.368 0.534 0.682 0.290 0.224 0.290 0.460 0.208 0.131 0.222 0.359

BoxTE 0.471 0.350 0.535 0.707 0.221 0.140 0.233 0.407 0.211 0.133 0.225 0.360

TRE (our) 0.503 0.394 0.567 0.708 0.322 0.246 0.333 0.498 0.220 0.141 0.235 0.372

50 ATTH 0.423 0.301 0.483 0.666 0.304 0.232 0.309 0.487 0.198 0.12 0.211 0.347

HERCULES 0.436 0.316 0.494 0.671 0.310 0.240 0.316 0.490 0.199 0.121 0.211 0.348

TERO 0.379 0.254 0.44 0.635 - - - - 0.179 0.103 0.189 0.326

TNTComplEx 0.504 0.402 0.560 0.700 0.320 0.256 0.321 0.487 0.224 0.144 0.239 0.377

BoxTE 0.512 0.401 0.578 0.723 0.275 0.194 0.287 0.465 0.223 0.143 0.239 0.375

TRE (our) 0.544 0.445 0.604 0.720 0.335 0.257 0.346 0.521 0.235 0.153 0.252 0.393

100 ATTH 0.450 0.329 0.511 0.691 0.292 0.215 0.304 0.485 0.206 0.126 0.220 0.361

HERCULES 0.452 0.332 0.511 0.691 0.284 0.205 0.296 0.476 0.206 0.125 0.219 0.361

TERO 0.454 0.34 0.522 0.670 - - - - 0.202 0.123 0.215 0.353

TNTComplEx 0.533 0.435 0.589 0.718 0.338 0.270 0.341 0.508 0.242 0.160 0.258 0.400

BoxTE 0.558 0.457 0.621 0.743 0.292 0.215 0.299 0.482 0.241 0.159 0.259 0.400

TRE (our) 0.579 0.493 0.629 0.733 0.339 0.257 0.354 0.531 0.255 0.171 0.274 0.416

the embeddings are affected by non-temporal facts during training. Therefore, these
baseline models do not perform well except TNTComplEx as it is specifically designed
for this situation. But on this dataset, TRE outperforms TNTComplEx by 11% in 30
dimension in MRR. As the dimension increases, the gap between two models decreases.
For the GDELT dataset, TRE outperforms the others in all the metrics, and improves
previous performances by a margin of 4.3%. Among these models, ATTH and HER-
CULES are hyperbolic models, our model is significantly better. And compared with
the box embedding model and tensor models, the overall performance of our model is
also much better. Overall the results show that learning relation-related structures in
hyperbolic spaces and time-related information in Euclidean spaces is effective.

Impact of Geometric Space. In Table 3, we conducted an experiment by providing
three variants of TRE: a) TRE-original where two different geometries of Euclidean
and hyperbolic are used, b) TRE-Euclidean where Euclidean geometry is used for both
time and relational parts, c) TRE-hyperbolic where hyperbolic space is used for both
temporal and relational structures. TRE-original shows a higher performance than the
other two versions in major cases. TRE-hyperbolic performs better on ICEWS14 only
in H@10 and for dimensions 30 and 50. This can be due to its sparsity and uncorre-
lated time for distinct entities. If we only compare TRE-hyperbolic and TRE-Euclidean,
in Yago15k, we observe that by dimension increase (100), the embeddings of times-
tamps are more expressive and distinguishable by TRE-Euclidean. While TRE-original
outperforms the other two versions in all metrics in GDELT dataset, the performance

612 B. Song et al.

Table 3. Impact of different geometries is evaluated by three versions of TRE: TRE-hyperbolic
represents facts on the hyperbolic space for both temporal and relational parts; TRE-Euclidean
model uses Euclidean for both, and TRE-original is the TRE with different geometries.

Datasets ICEWS14 Yago15k GDELT

dim Model MRR H@1 H@3 H@10 MRR H@1 H@3 H@10 MRR H@1 H@3 H@10

30 TRE-hyperbolic 0.481 0.361 0.548 0.713 0.308 0.226 0.321 0.502 0.219 0.140 0.234 0.371

TRE-Euclidean 0.471 0.350 0.537 0.706 0.294 0.212 0.305 0.489 0.219 0.140 0.234 0.371

TRE-original 0.503 0.394 0.567 0.708 0.322 0.246 0.333 0.498 0.220 0.141 0.235 0.372

50 TRE-hyperbolic 0.511 0.395 0.579 0.734 0.331 0.251 0.345 0.519 0.233 0.152 0.250 0.390

TRE-Euclidean 0.505 0.386 0.572 0.734 0.329 0.248 0.342 0.520 0.233 0.151 0.250 0.390

TRE-original 0.544 0.445 0.604 0.720 0.335 0.257 0.346 0.521 0.235 0.153 0.252 0.393

100 TRE-hyperbolic 0.575 0.478 0.635 0.750 0.335 0.252 0.350 0.528 0.250 0.167 0.269 0.411

TRE-Euclidean 0.570 0.471 0.630 0.751 0.337 0.254 0.353 0.530 0.250 0.167 0.269 0.410

TRE-original 0.579 0.493 0.629 0.733 0.339 0.257 0.354 0.531 0.255 0.171 0.274 0.416

of TRE-Euclidean and TRE-hyperbolic are similar. As shown in the last three columns
of Table 1, this dataset is rich in hierarchical relations. The results show that the hyper-
bolic space is more suitable to represent relational structures. However, we also observe
competitive results in Euclidean space, which is originally not suitable for hierarchical
structures but for temporal ones.

Impact of Geometric Operations. In Table 4, we conduct an ablation experiment on
several geometric operations of TRE and show results of these versions. In TRE-Rel,
rotations and reflections are only related to relational structures, and TRE-Time is only
related to timestamps. TRE-Rot only does rotation, and TRE-Ref only does reflection.
TRE-NoPlane does not use time-related hyperplane. These results are in correlation
with dataset characteristics shows in Table 1. In the case of Yago15K, the results are
higher by TRE-Rel which is explained with the low number of timestamps, and pres-
ence of time-related information in the entire dataset. In the case of ICEWS14, model
setting on TRE-Time and TRE-Ref show higher performance which is due to the special
structure of timestamps. And for GDELT, the results show the richness both in relational
and temporal structure.

Impact of Dimensions. With dimension increase, we can see from Fig. 3 that on
Yago15k and ICEWS14 datasets, the results of TNTComplEx and BoxTE have larger
improvement that TRE. As mentioned above, this is also caused by the characteristics of
these datasets. In other words, such models are not capable of capturing characteristics
in low dimensions. In GDELT dataset, we can see that the performance improvement
of our model is much more than BoxTE and TNTComplEx which is due to its abil-
ity in learning temporal information. We conclude that for real world TKGs with rich
temporal knowledge and dense graph structures, TRE can show higher performance
difference with regard to different dimensions.

Geometry for Time Preservation. To further demonstrate our hypothesis that times-
tamps can be better represented in the Euclidean space, we show the distribution of

Combining Temporal and Relational Knowledge Graph Embeddings 613

Table 4.Different settings of experiments with planes and transformations. TRE-Time has a focus
on temporal part only with both rotation and reflection, TRE-Rel has a focus on relational part
also both with rotation and reflection. TRE-Rot is a setting where only a rotation transformation is
used for both temporal and relational parts, and TRE-Ref is focused with only reflection on both
temporal and relational parts. We additionally show a setting of TRE-NoPlane where time-related
hyperplane is removed, also show the results of TRE-original.

Datasets ICEWS14 Yago15k GDELT

Model MRR H@1 H@3 H@10 MRR H@1 H@3 H@10 MRR H@1 H@3 H@10

TRE-Time 0.539 0.426 0.608 0.748 0.333 0.25 0.35 0.525 0.243 0.159 0.262 0.409

TRE-Rel 0.530 0.409 0.602 0.759 0.343 0.264 0.353 0.539 0.244 0.161 0.262 0.406

TRE-Rot 0.526 0.404 0.604 0.76 0.345 0.267 0.357 0.534 0.247 0.163 0.265 0.409

TRE-Ref 0.571 0.463 0.641 0.764 0.343 0.265 0.353 0.53 0.252 0.167 0.271 0.416

TRE-NoPlane 0.552 0.438 0.624 0.764 0.336 0.257 0.345 0.53 0.247 0.163 0.267 0.410

TRE-original 0.579 0.493 0.629 0.733 0.339 0.257 0.354 0.531 0.255 0.171 0.274 0.416

Fig. 3. Impact of dimension on performance increase by comparing on the MRR results of TNT-
ComplEx, BoxTE and TRE on dimensions 30, 50, and 100.

time embeddings in Fig. 4. Due to the rich structure both in temporal and relation parts,
we selected GDELT for this experiment. For reduction of dimension from 100 to 2,
t-SNE is used where timestamps of facts are grouped into 12months, which are marked
with different colors. Because the hyperbolic space in our model is not fixed, and the
points in tangent space at 0 point can also reflect the distribution, all time embeddings
are analysed in Euclidean space. Figure (a) is time embeddings of TRE-hyperbolic in
the tangent space, and figure (b) is time embeddings of TRE-Euclidean in the Euclidean
space. We can clearly see that the distribution in (b) is strictly in chronological order,
while the distribution of some groups in (a) are scattered. Besides, we can also find
that points of TRE-Euclidean have been well classified, while some groups of TRE-
hyperbolic are very scattered and messy. So we can conclude that temporal information
can be well represented in Euclidean space.

614 B. Song et al.

Fig. 4. Distribution of time embeddings on GDELT.

6 Conclusion

In this paper, we proposed a novel TKGE model for temporal knowledge graphs that
uses different geometric spaces for the temporal and relation parts. Specifically, the
relational part of the TKG is represented in hyperbolic space and the temporal part
in euclidean space. Through several studies, we show suitability of hyperbolic space
for relational part and Euclidean geometry for capturing the natural chain structure of
temporal information. We could positively answer our research hypothesis by show-
ing that the resulting model outperforms most competing models across three different
benchmark datasets and multiple dimension sizes. We provided statistics on the extent
to which the underlying knowledge graphs have hierarchical structures and their effect
in analysis. We also visually illustrated the resultant time embeddings that follows the
natural structure of time from symbolic space.

Acknowledgement. We acknowledge the support of the China Scholarship Council for the
first author, and contribution of the following EU projects: CALLISTO(101004152), E-Vita
(101016453), ScaDS.AI (IS18026A-F). We thank the Natural Science Foundation of China
(42271391 and 62006214), Joint Funds of Equipment Pre-Research and Ministry of Education
of China Grant No. 8091B022148, the 14th Five-year Pre-research Project of Civil Aerospace
in China, and Hubei excellent young and middle-aged science and technology innovation team
plan project under Grant No. T2021031. The authors are grateful to the Center for Informa-
tion Services and High Performance Computing [Zentrum für Informationsdienste und Hochleis-
tungsrechnen (ZIH)] at TU Dresden for providing its facilities for high throughput calculations,
and Leipzig universities.

References

1. Ali, M., et al.: Bringing light into the dark: a large-scale evaluation of knowledge graph
embedding models under a unified framework. IEEE Trans. Pattern Anal. Mach. Intell.
(2021)

2. Anderson, E.: Discontinuous plane rotations and the symmetric eigenvalue problem (2000)
3. Balažević, I., Allen, C., Hospedales, T.: Multi-relational poincaré graph embeddings. In:

Advances in Neural Information Processing Systems (2019)

Combining Temporal and Relational Knowledge Graph Embeddings 615

4. Bellomarini, L., Sallinger, E., Vahdati, S.: Chapter 2 Knowledge graphs: the layered per-
spective. In: Janev, V., Graux, D., Jabeen, H., Sallinger, E. (eds.) Knowledge Graphs and Big
Data Processing. LNCS, vol. 12072, pp. 20–34. Springer, Cham (2020). https://doi.org/10.
1007/978-3-030-53199-7 2

5. Bellomarini, L., Sallinger, E., Vahdati, S.: Chapter 6 Reasoning in knowledge graphs: an
embeddings spotlight. In: Janev, V., Graux, D., Jabeen, H., Sallinger, E. (eds.) Knowledge
Graphs and Big Data Processing. LNCS, vol. 12072, pp. 87–101. Springer, Cham (2020).
https://doi.org/10.1007/978-3-030-53199-7 6

6. Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J., Yakhnenko, O.: Translating embed-
dings for modeling multi-relational data. Advances in neural information processing systems
26 (2013)

7. Cao, Z., Xu, Q., Yang, Z., Cao, X., Huang, Q.: Geometry interaction knowledge graph
embeddings. In: AAAI Conference on Artificial Intelligence (2022)

8. Carlson, A., Betteridge, J., Kisiel, B., Settles, B., Hruschka, E.R., Mitchell, T.M.: Toward
an architecture for never-ending language learning. In: Twenty-Fourth AAAI Conference on
Artificial Intelligence (2010)

9. Chami, I., Wolf, A., Juan, D.C., Sala, F., Ravi, S., Ré, C.: Low-dimensional hyperbolic
knowledge graph embeddings. arXiv preprint arXiv:2005.00545 (2020)

10. Dasgupta, S.S., Ray, S.N., Talukdar, P.: Hyte: hyperplane-based temporally aware knowledge
graph embedding. In: Proceedings of the 2018 Conference on Empirical Methods in Natural
Language Processing, pp. 2001–2011 (2018)

11. Dettmers, T., Minervini, P., Stenetorp, P., Riedel, S.: Convolutional 2d knowledge graph
embeddings. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 32
(2018)

12. Garcı́a-Durán, A., Dumančić, S., Niepert, M.: Learning sequence encoders for temporal
knowledge graph completion. arXiv preprint arXiv:1809.03202 (2018)

13. Goel, R., Kazemi, S.M., Brubaker, M., Poupart, P.: Diachronic embedding for temporal
knowledge graph completion. In: Proceedings of the AAAI Conference on Artificial Intelli-
gence, vol. 34, pp. 3988–3995 (2020)

14. Han, Z., Ma, Y., Chen, P., Tresp, V.: Dyernie: dynamic evolution of riemannian manifold
embeddings for temporal knowledge graph completion. arXiv preprint arXiv:2011.03984
(2020)

15. Krackhardt, D.: Graph theoretical dimensions of informal organizations. In: Computational
Organization Theory, pp. 107–130. Psychology Press (2014)

16. Lacroix, T., Obozinski, G., Usunier, N.: Tensor decompositions for temporal knowledge base
completion. arXiv preprint arXiv:2004.04926 (2020)

17. Leblay, J., Chekol, M.W.: Deriving validity time in knowledge graph. In: Companion Pro-
ceedings of the The Web Conference 2018, pp. 1771–1776 (2018)

18. Leetaru, K., Schrodt, P.A.: Gdelt: global data on events, location, and tone, 1979–2012. In:
ISA Annual Convention, vol. 2, pp. 1–49. Citeseer (2013)

19. Lehmann, J., et al.: Dbpedia-a large-scale, multilingual knowledge base extracted from
Wikipedia. Semantic web 6(2), 167–195 (2015)

20. Messner, J., Abboud, R., Ceylan, I.I.: Temporal knowledge graph completion using box
embeddings. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 36,
pp. 7779–7787 (2022)

21. Montella, S., Rojas-Barahona, L., Heinecke, J.: Hyperbolic temporal knowledge graph
embeddings with relational and time curvatures. arXiv preprint arXiv:2106.04311 (2021)

22. Nguyen, D.Q., Nguyen, T.D., Nguyen, D.Q., Phung, D.: A novel embedding model for
knowledge base completion based on convolutional neural network. In: Proceedings of the
16th Annual Conference of the North American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies (NAACL-HLT), pp. 327–333 (2018)

https://doi.org/10.1007/978-3-030-53199-7_2
https://doi.org/10.1007/978-3-030-53199-7_2
https://doi.org/10.1007/978-3-030-53199-7_6
http://arxiv.org/abs/2005.00545
http://arxiv.org/abs/1809.03202
http://arxiv.org/abs/2011.03984
http://arxiv.org/abs/2004.04926
http://arxiv.org/abs/2106.04311

616 B. Song et al.

23. Nickel, M., Tresp, V., Kriegel, H.P.: A three-way model for collective learning on multi-
relational data. In: ICML (2011)

24. Sadeghian, A., Armandpour, M., Colas, A., Wang, D.Z.: Chronor: rotation based temporal
knowledge graph embedding. In: Proceedings of the AAAI Conference on Artificial Intelli-
gence, vol. 35, pp. 6471–6479 (2021)

25. Suchanek, F.M., Kasneci, G., Weikum, G.: Yago: a core of semantic knowledge. In: Proceed-
ings of the 16th International Conference on World Wide Web, pp. 697–706 (2007)

26. Sun, Z., Deng, Z.H., Nie, J.Y., Tang, J.: Rotate: knowledge graph embedding by relational
rotation in complex space. arXiv preprint arXiv:1902.10197 (2019)

27. Trouillon, T., Welbl, J., Riedel, S., Gaussier, É., Bouchard, G.: Complex embeddings for
simple link prediction. In: International Conference on Machine Learning, pp. 2071–2080.
PMLR (2016)

28. Ungar, A.: Hyperbolic trigonometry and its application in the poincaré ball model of
hyperbolic geometry. Comput. Math. Appl. 41(1), 135–147 (2001). https://doi.org/10.1016/
S0898-1221(01)85012-4

29. Vrandečić, D., Krötzsch, M.: Wikidata: a free collaborative knowledgebase. Commun. ACM
57(10), 78–85 (2014)

30. Wang, Z., Zhang, J., Feng, J., Chen, Z.: Knowledge graph embedding by translating on
hyperplanes. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 28
(2014)

31. Xu, C., Nayyeri, M., Alkhoury, F., Yazdi, H.S., Lehmann, J.: Tero: a time-aware knowledge
graph embedding via temporal rotation. arXiv preprint arXiv:2010.01029 (2020)

http://arxiv.org/abs/1902.10197
https://doi.org/10.1016/S0898-1221(01)85012-4
https://doi.org/10.1016/S0898-1221(01)85012-4
http://arxiv.org/abs/2010.01029

LitCQD: Multi-hop Reasoning
in Incomplete Knowledge Graphs

with Numeric Literals

Caglar Demir , Michel Wiebesiek, Renzhong Lu,
Axel-Cyrille Ngonga Ngomo , and Stefan Heindorf(B)

Paderborn University, Paderborn, Germany
{caglar.demir,axel.ngonga,heindorf}@upb.de, michel.wiebesiek@mailbox.org,

renzhong@mail.upb.de

Abstract. Most real-world knowledge graphs, including Wikidata,
DBpedia, and Yago are incomplete. Answering queries on such incom-
plete graphs is an important, but challenging problem. Recently, a num-
ber of approaches, including complex query decomposition (CQD), have
been proposed to answer complex, multi-hop queries with conjunctions
and disjunctions on such graphs. However, these approaches only con-
sider graphs consisting of entities and relations, neglecting literal values.
In this paper, we propose LitCQD—an approach to answer complex,
multi-hop queries where both the query and the knowledge graph can
contain numeric literal values: LitCQD can answer queries having numer-
ical answers or having entity answers satisfying numerical constraints.
For example, it allows to query (1) persons living in New York having a
certain age, and (2) the average age of persons living in New York. We
evaluate LitCQD on query types with and without literal values. To eval-
uate LitCQD, we generate complex, multi-hop queries and their expected
answers on a version of the FB15k-237 dataset that was extended by lit-
eral values.

1 Introduction

Knowledge Graphs (KGs) such as Wikidata [30], DBpedia [3], and YAGO [25]
have been of increasing interest in both academia and industry, e.g., for major
question answering systems [1,9,27] and for intelligent assistants such as Ama-
zon Alexa, Siri, and Google Now. Natural language questions on such KGs are
typically answered by translating them into subsets of First-Order Logic (FOL)
involving conjunctions (∧), disjunctions (∨), and existential quantification (∃)
of multi-hop path expressions in the KGs. However, this approach to modeling
queries has an important intrinsic flaw: Almost all real-world KGs are incom-
plete [8,10,20]. Traditional symbolic models, which rely on sub-graph matching,
are unable to infer missing information on such incomplete KGs [12]. Hence, they
often return empty answer sets to queries that can be answered by predicting
missing information. Hence, several approaches (e.g., GQE [12], Query2Box [22],
and CQD [2]) have recently been proposed that can query incomplete KGs by
performing neural reasoning over Knowledge Graph Embeddings (KGEs). How-
ever, all the aforementioned models operate solely on KGs consisting of entities
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
D. Koutra et al. (Eds.): ECML PKDD 2023, LNAI 14171, pp. 617–633, 2023.
https://doi.org/10.1007/978-3-031-43418-1_37

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-43418-1_37&domain=pdf
http://orcid.org/0000-0001-8970-3850
http://orcid.org/0000-0001-7112-3516
http://orcid.org/0000-0002-4525-6865
https://doi.org/10.1007/978-3-031-43418-1_37

618 C. Demir et al.

and relations and none of them supports KGs with literal values such as the age
of a person, the height of a building, or the population of a city. Taking literal
values into account, however, has been shown to improve predictive performance
in many tasks [13,18].

In this paper, we remedy this drawback and propose LitCQD, a neural
reasoning approach that can answer queries involving numerical literal values
over incomplete KGs. LitCQD extends CQD by combining a KGE model (e.g.,
ComplEx-N3 [19]) that predicts missing entities/relations with a literal KGE
model (e.g., TransEA [31]) able to predict missing numerical literal values. There-
with, LitCQD can mitigate missing entities/relations as well as missing numerical
values to answer various types of queries. Moreover, we increase the expressive-
ness of queries that can be answered on KGs with literal values by allowing
queries (1) to contain filter restrictions involving literals and (2) to ask for pre-
dictions of numeric values (see Example 1).

Example 1. The query “Who (P?) is married to somebody (P) younger than
25? ” with a filter restriction “younger than 25” can be rewritten as P?.∃P,C :
hasAge(P,C) ∧ lt(C, 25) ∧ married(P, P?).

To answer this query, we predict the age of all persons P in the knowledge graph
and check whether the condition “less than 25” is fulfilled. Then, all persons P?

married to persons P are returned.
To evaluate filter expressions such as “less than 25” on incomplete knowledge

graphs, we introduce continuous attribute filter functions (Sect. 4.1, Eqs. 8–10)
and improve them by introducing attribute existence checks (Eqs. 11–12). We
predict attribute values for a subset of entities that are obtained via beam search
with an attribute predictor (Sect. 4.2).

In our experiments (Sect. 5), we use a similar setup to Arakelyan et al. [12]
García-Durán and Niepert [11], Hamilton et al. [2] and use the FB15k-237 dataset
augmented with literals [11]. However, as previous work did not contain queries
with literal values, we generate such queries and their expected answers. Our
experiments suggest that LitCQD can effectively answer various types of queries
involving literal values, which was not possible before (Tables 3, 4). Moreover, our
results show that including literal values during the training process improves
the query answering performance even on standard queries in our benchmark
(Table 2). Our contributions can be summarized as follows:

– Filter restrictions with literals: We propose an approach that can answer
multi-hop queries where numeric literals are used to filter valid answers (e.g.,
“return entities whose age is less than 25”).

– Prediction of literal values: We propose an approach that can predict the
numeric values of literals (e.g., “return mean age of married people’).

– Benchmark construction: We generate multi-hop queries with numeric literals
and their expected answers.

– Embeddings with literals: We show that using knowledge graph embeddings
that support literal values even yields better results for traditional queries
without literal values.

LitCQD: Multi-hop Reasoning in Knowledge Graphs with Numeric Literals 619

2 Background and Preliminaries

In this section, we introduce knowledge graphs without literals and queries on
them, before introducing our approach with literals in Sect. 4.

2.1 Knowledge Graph Without Literals

A knowledge graph (KG) without literals is defined as G = {(h, r, t)} ⊆ E×R×E ,
where h, t ∈ E denote entities and r ∈ R denotes a relation [12,22]. G can be
regarded as a FOL knowledge base, where a relation r ∈ R corresponds to a
binary function r̂ : E × E → {1, 0} and a triple (h, r, t) corresponds to an atomic
formula α = r̂(h, t) [2]. When it is clear from the context that r̂ denotes a binary
function, we may simply write r as in the following definitions.

2.2 Multihop Queries Without Literals

Conjunctive Queries. A conjunctive graph query [2,12,22,23] q ∈ Q(G) over G
is defined as

q = E? . ∃E1, . . . , Em : α1 ∧ α2 ∧ . . . ∧ αn, (1)

where

– αi = r(e,E), with E ∈ {E?, E1, . . . , Em}, r ∈ R, e ∈ E or
– αi = r(E,E′), with E,E′ ∈ {E?, E1, . . . , Em}, E �= E′, r ∈ R.

In the query, the target variable E? and the existentially quantified variables
E1, . . . , Em are bound to subsets of entities E . The entities bound to E? represent
the answer nodes of the query. The conjunction α1 ∧ α2 ∧ . . . ∧ αn consists
of n atoms defined over relations r ∈ R, anchor entities e ∈ E and variables
E,E′ ∈ {E?, E1, . . . , Em}.

Example 2. The question “Which (D?) drugs are to interact with (P) proteins
associated with the diseases e1 and e2? ” can be represented as the query

q = D?.∃P : assoc(e1, P) ∧ assoc(e2, P) ∧ interacts(P,D?), (2)

where D?, P are bound to subsets of entities E , e1, e2 ∈ E are anchor entities,
and interacts, assoc ∈ R are relations.

The dependency graph of a query q ∈ Q(G) is defined over its query edges α1,
α2, . . . , αn with nodes being either anchor entities or variables [12]. Following
Hamilton et al. [12] and Arakelyan et al. [2], we focus on queries whose depen-
dency graph forms a Directed Acyclic Graph (DAG) with anchor entities being
source nodes and the target variable being the unique sink node (such queries
are called valid queries in previous work [2,12]). Figure 1 (left) represents the
dependency graph of the query in Eq. (2). Note that for simplicity, we use the
term of an entity in a KG interchangeably with a node in a dependency graph.

620 C. Demir et al.

Fig. 1. Example query without literals (see Eq. (2)). Dependency graph of query (left)
and symbolic query answering on an incomplete graph (right). Solid bold lines represent
paths leading to answer entities. Dashed lines represent missing triples.

The dependency graph of a query encodes the computation graph to obtain
the answer set �q� via projection P and intersection I operators [22]. Starting
from a set of anchor nodes (e.g., e1, e2), �q� is derived by iteratively apply-
ing P and/or I until the unique sink target node (e.g., D?) is reached. Given
a set of entities S ⊆ E and a relation r ∈ R, the projection operator is
defined as P(S, r) := ∪e∈S {x ∈ E : r̂(e, x) = 1} where the binary function
r̂ : E × E → {1, 0} indicates whether the triple (e, r, x) exists in G.Given a set
of entity sets {S1, S2, . . . , Sn}, Si ⊆ E , the intersection operator I is defined as
I({S1, S2, . . . , Sn}) := ∩n

i=1Si. Therefore, the conjunctive query defined in Eq.
(2) can be answered via the computation

P
(
I({P({e1}, assoc),P({e2}, assoc)

})
, interacts

)
. (3)

In the example of Fig. 2 (right), a traditional, symbolic approach yields the
answer set �q� = {d3, d4} although the complete answer set taking missing triples
into account would be �q� = {d2, d3, d4}. The result is obtained as follows: Start-
ing at the anchor entities e1 and e2, the entity p3 is the only entity for which both
assoc(e1, p3) and assoc(e2, p3) hold. Moving on from p3, a traditional, symbolic
approach can only reach the entities d3, d4 via the “interacts” relation, but not
the entity d2 because the edge (p3, interacts, d2) is missing. Note that d1 is not
part of the answer set because both p1 and p2 are only associated with e1.

Existential Positive First-order (EPFO) Queries. An EPFO query q in its Dis-
junctive Normal Form (DNF) is a disjunction of conjunctive queries [2,22]:

q = E? . ∃E1, . . . , Em : (α1
1 ∧ · · · ∧ α1

n1
) ∨ · · · ∨ (αd

n1
∧ · · · ∧ αd

nd
), (4)

where αj
i are defined as above. Its dependency graph is a DAG having three types

of directed edges: projection, intersection, and union; the union U of entity sets
S1, S2, . . . , Sn ⊆ E is U({S1, S2, . . . , Sn}) := ∪n

i=1Si.

LitCQD: Multi-hop Reasoning in Knowledge Graphs with Numeric Literals 621

3 Related Work

In this section, we overview the state of the art with regards to knowledge graph
embeddings and neural query answering on incomplete knowledge graphs.

3.1 Knowledge Graph Embeddings and Literals

In the last decade, a plethora of knowledge graph embedding (KGE) models
have been successfully applied to tackle various tasks, including link prediction,
relation prediction, community detection, fact checking, and class expression
learning [15–17,20,24,29]. KGE research has mainly focused on learning embed-
dings for entities and relations tailored towards predicting missing entities/links,
i.e., tackling single-hop queries [4,6–8,20,26,29,32,33]. Despite their effective-
ness in tackling single-hop queries, KGE models cannot be directly applied to
answer multi-hop queries because multi-hop query answering is a strict general-
ization [21]. Most KGE models do not incorporate literals (e.g., age of a person,
height of a person, or date of birth), but there has been a growing interest in
designing such models. For instance, Wu and Wang [31] propose TransEA by
extending the translation loss used in TransE [5] by adding the attribute loss as
a weighted regularization term. García-Durán and Niepert [11] propose KBLRN
that is based on relation features, numerical literals, and a KGE model. Kristiadi
et al. [18] propose LiteralE, which applies a non-linear parameterized function to
merge entity embeddings with numerical literals. Thereby, LiteralE is computa-
tionally less demanding than KBLRN as it does not require any rule generation
for relation features and is more expressive than TransEA as TransEA integrates
the impact of literals linearly.

3.2 Neural Query Answering on Incomplete Knowledge Graphs

In recent years, significant progress has been made on querying incomplete KGs.
Hamilton et al. [12] laid the foundations for multi-hop reasoning with graph
query embeddings (GQE). Given a conjunctive query (e.g., Eq. (2)), they learn
continuous vector representations for queries, entities, and relations and answer
queries by performing projection P and intersection I operations in the embed-
ding vector space. Ren et al. [22] show that GQE cannot answer EPFO queries
(see Eq. (4)) since GQE does not model the union operator U . Hence, they pro-
pose Query2Box that represents an EPFO query with a set of box embeddings,
where one box embedding is constructed per conjunctive subquery. A query is
answered by returning the entities whose minimal distance to one of the box
embeddings is smallest.

All the aforementioned models learn query embeddings and answer queries
via nearest neighbor search in the embedding space. However, learning embed-
dings for complex, multi-hop queries involving conjunctions and disjunctions can
be computationally demanding. Towards this end, Arakelyan et al. [2] propose
complex query decomposition (CQD). They answer EPFO queries by decompos-
ing them into single-hop subqueries and aggregate the scores of a pre-trained

622 C. Demir et al.

single-hop link predictor (e.g., ComplEx-N3). Scores are aggregated using a t-
norm and t-conorm—continuous generalizations of the logical conjunction and
disjunction [2,14]. Their experiments suggest that CQD outperforms GQE and
Query2Box; it generalizes well to complex query structures while requiring orders
of magnitude less training data. Zhu et al. [34] highlight that CQD is the only
interpretable model among the aforementioned models as it produces intermedi-
ate results. In this work, we extend CQD to answer multi-hop queries involving
literals.

4 LitCQD: Multi-hop Reasoning with Literals

A knowledge graph with numeric literals (i.e., with scalar values), can be defined
as GA = {(h, r, t)} ⊂ (E × R × E) ∪ (E × A × R), where R ∩ A = ∅ and A and
R denote numeric attributes and real numbers, respectively [18]. The binary
function â : E × R → {1, 0} indicates whether an entity has attribute a ∈ A
and we might just write a instead of â when this is clear from context. We
categorize EPFO queries q ∈ Q(GA) involving literals depending on the type of
their answer sets �q�: In Sect. 4.1, we define queries with entities as answer set
�q� ⊆ E ; in Sect. 4.2, we define queries with a literal value as answer �q� ∈ R.

4.1 Multihop Queries with Literals and Entity Answers

An EPFO query q on a KG with numeric literals (GA) can be defined as

q = E? . ∃E1, . . . , Em : (α1
1 ∧ · · · ∧ α1

n1
) ∨ · · · ∨ (αd

1 ∧ · · · ∧ αd
nd
), (5)

where

– αj
i = r(e,E), with E ∈ {E?, E1, . . . , Em}, r ∈ R, e ∈ E or

– αj
i = r(E,E′), with E,E′ ∈ {E?, E1, . . . , Em}, E �= E′, r ∈ R or

– αj
i = a(E,C)∧af (C, c), with E ∈ {E?, E1, . . . , Em}, C ∈ {C1, . . . , Cl}, a ∈ A,

af ∈ {lt, gt, eq}, c ∈ R.

In the query, the target variable E? and the variables E1, . . . , Em are bound to
subsets of entities E and the variables C1, . . . , Cl are bound to numeric values
from R. The binary function r : E × E → {1, 0} denotes whether a relation
exists between the two entities, a : E × R → {1, 0} whether an attribution
relation exists, and af : R × R → {1, 0} is one of the attribute filter conditions
lt (less-than), gt (greater-than), or eq (equal-to). For example, lt(20, 25) returns
1 because 20 ≤ 25. To approximately answer queries defined with Eq. (5) and
assuming an incomplete knowledge graph, we propose the following optimization
problem:

argmax
E?,E1,...,Em

(
α1
1 � . . . � α1

n1

) ⊥ . . . ⊥ (
αd
1 � . . . � αd

nd

)
(6)

where

LitCQD: Multi-hop Reasoning in Knowledge Graphs with Numeric Literals 623

Fig. 2. Example query with literals and entity answer (see Eq. (7)). On the left, the
query’s dependency graph is shown and on the right, symbolic query answering on
an incomplete graph with literal values. Bold lines represent paths leading to answer
entities, dashed lines represent missing triples, solid existing triples.

– αj
i = φr(e,E), with E ∈ {E?, E1, . . . , Em}, r ∈ R, e ∈ E or

– αj
i = φr(E,E′), with E,E′ ∈ {E?, E1, . . . , Em}, E �= E′, r ∈ R or

– αj
i = φaf ,a(φa(E), c), with E ∈ {E?, E1, . . . , Em}, a ∈ A, af ∈ {lt, gt, eq},

c ∈ R,

and φr : E × E → [0, 1] is a link predictor that predicts a likelihood of a link
between two entities via a relation r. φa : E → R is an attribute predictor that
predicts a value of an attribute a given an entity. An attribute filter predictor
φaf ,a : R × R → [0, 1] predicts a likelihood that the filter condition is met given
the predicted attribute value ĉ := φa(·) and the constant value c ∈ R specified in
the query. All three predictors are derived from a KGE model as described below.
A t-norm � : [0, 1]× [0, 1] → [0, 1] is considered as a continuous generalization of
the logical conjunction [2,14]. Given a t-norm �, the complementary t-conorm
can be defined as ⊥(a, b) = 1−�(1−a, 1− b) [2]. Numerically, the Gödel t-norm
�min(x, y) = min{x, y}, the product t-norm �prod(x, y) = x·y, or the Łukasiewicz
t-norm �Luk(x, y) = max{0, x + y − 1} can be used to aggregate predicted
likelihoods to obtain a query score [2]. With this formulation, various questions
involving numerical values can be asked on incomplete GA. For example, the
question “Which entities are younger than 25? ” can be represented as

q = E? . ∃C : hasAge(E?, C) ∧ lt(C, 25). (7)

The dependency graph of this query is visualized in Fig. 2 (left). Let S? be the
entities bound to variable E?. Then the projection of S? with hasAge is performed
by an attribute prediction model φhasAge(S?) ∈ R

|E| that predicts the value of
the attribute a for each entity in e ∈ E. The answer set is obtained by filtering
entities via φlt. A subgraph of GA satisfying this query is visualized in Fig. 2
(right). While a symbolic approach only yields the answer set �q� = {e1}, our
approach involving link predictors can identify the full answer set �q� = {e1, e2}.

We solve the optimization problem in Eq. (6) approximately with a variant of
beam search by greedily searching for sets of entities S?, S1, . . . Sm substituting
the variables E?, E1, . . . , Em in a fashion akin to CQD [2]. In the example in Eq.
(7), given the hasAge attribute, attribute values ĉ = φhasAge(e) ∈ R are predicted
for all entities e ∈ E . Next, likelihoods of fulfilling the filter condition “less than

624 C. Demir et al.

25” can be inferred via φlt(ĉ, 25). Finally, all entities are sorted by their query
scores in descending order and the top k entities are considered to be answers
of q. It is important to note that LitCQD like CQD not only computes the final
answer but also intermediate steps leading to this answer. In this sense, LitCQD
can be considered an interpretable model.

Joint Training of Link and Attribute Predictors. Following Arakelyan et al. [2],
we use ComplEx-N3 [19] as entity predictor φr(·, ·). As attribute predictor φa(·),
we employ TransEA [31]. We jointly train the KGE models underlying both
models. The link predictor ComplEx-N3 has previously been found to work well
for multi-hop query answering [2] and to perform better than DistMult [2,32]. In
a pilot study, we also experimented with the attribute predictor MTKGNN [28].
Overall, it achieved similar performance to TransEA, but we decided to move
forward with TransEA, because it slightly outperformed MTKGNN in terms of
MRR and required less parameters. KBLRN [11] and LiteralE [18] only com-
pute knowledge graph embeddings based on literal information, but they do not
predict the value of attributes which is required in our framework.

Attribute Filter Function without Existence Check. The attribute filter function
returns a score indicating the likelihood that the filter condition is met. First, we
define a preliminary version φ′

af ,a of the function, which does not check whether
the attribute relation a actually exist for an entity. The function is defined case
by case. For the equal-to condition, i.e., for af = eq, we define it as

φ′
eq,a(ĉ, c) :=

1
exp(|ĉ − c|/σa)

, (8)

where ĉ = φa(e), e ∈ E , c ∈ R is a numeric literal (e.g., 25 in Fig. 2), left) and
σa denotes the standard deviation of Ca where Ca := {c ∈ R|â(e, c) = 1, e ∈ E}
are all literal values found on GA given an attribute a. With φ′

eq,a(ĉ, c), we map
the difference between the predicted attribute value ĉ and the constant value
ĉ specified in the query into the unit interval [0, 1]. As the difference | ĉ − c |
approaches 0, φeq,a(ĉ, c) approaches 1. The division by the standard deviation σa

normalizes the difference | ĉ − c |. For the attribute filter function with less-than
(af = lt), we define

φ′
lt(ĉ, c) :=

1
1 + exp((ĉ − c)/σa)

. (9)

As ĉ − c → −∞, φlt(ĉ, c) → 1. Following Eq. (9), the attribute filter function
with greater-than is defined as

φ′
gt(ĉ, c) := 1 − φlt(ĉ, c). (10)

We also experimented with a version where the standard deviation σa was not
computed per attribute but for all literal values independent of a, i.e., σ was
computed for

⋃
a∈A Ca. We picked the latter variant as default for our LitCQD

approach as it outperformed the former variant in our experiments.

LitCQD: Multi-hop Reasoning in Knowledge Graphs with Numeric Literals 625

Attribute Filter Function with Existence Check. The preliminary attribute fil-
ter function φ′

af ,a assumes that the attribute relation a exists for each entity in
the knowledge base which is clearly not the case. Hence, we employ a model
φexists,a(e) that scores the likelihood that the attribute relation a exists for
entity e. Then the final attribute filter function φaf ,a is obtained by combining
the attribute existence predictor φexist,a(e) with the preliminary filter predictor
φ′
af ,a:

φaf ,a(ĉ, c) := φexists,a(e) · φ′
af ,a(ĉ, c) (11)

Technically, the attribute existence predictor is realized by adding a dummy
entity eexists to the knowledge base along with dummy edges ra(e, eexists) if
entity e has an attribute relation a. Then, the existence of an attribute is pre-
dicted with the link predictor as

φexists,a(e) := φra(e, eexists) (12)

Note that the dummy entity and the dummy relations are only added to the
train set but not the validation or test set.

4.2 Multihop Queries with Literals and Literal Answers

Here, we define an EPFO query q on an incomplete GA, whose answer �q� ∈ R

is a real number (instead of a subset of entities) as follows

q = ψ(C?) . ∃E?, E1, . . . , Em : (α1
1 ∧ · · · ∧ α1

n1
) ∨ · · · ∨ (αd

1 ∧ · · · ∧ αd
nd
), (13)

where ψ : 2R → R is a permutation-invariant aggregation function and

– αj
i = r(e,E), with E ∈ {E?, E1, . . . , Em}, r ∈ R, e ∈ E or

– αj
i = r(E,E′), with E,E′ ∈ {E?, E1, . . . , Em}, E �= E′, r ∈ R or

– αj
i = a(E,C) ∧ af (C, c), with E ∈ {E?, E1, . . . , Em}, C ∈ {C?, C1, . . . , Cl}

a ∈ A, af ∈ {lt, gt, eq}, c ∈ R.

Variable bindings S?, S1, . . . , Sm for E?, E1, . . . , Em are obtained via the same
optimization problem as in Sect. 4.1. Then the set of values C? can be computed
by applying the attribute value predictor φa on the entities in S?.

With this formulation, various questions can be asked on incomplete GA. For
instance, the question “What is the average age of Turing Award (TA) winners? ”
can be answered by computing the mean of a set of numeric literals C?:

mean(C?).∃E? : winner(E?, turingAward) ∧ hasAge(E?, C?) (14)

Similarly, the question “What is the minimum age of Turing Award (TA) win-
ners? ” can be answered by computing the minimum of a set of numeric literals
C?:

min(C?).∃E? : winner(E?, turingAward) ∧ hasAge(E?, C?) (15)
Figure 3 visualizes a subgraph of GA to answer q defined in Eq. (14). Having

found the binding S? = {e1, e2} for E?, to each e ∈ S?, we apply the attribute
predictor φwinner(e, turingAward) and average the results, yielding the answer
�q� = 22+24

2 = 23—in contrast to �q� = 22 by a symbolic approach that neglects
missing information.

626 C. Demir et al.

Fig. 3. Example of a query predicting attribute values (see Eq. (14)). On the left, the
dependency graph of the query is shown, on the right a subgraph to answer q. Dashed
lines represent missing information. Bold lines represent paths leading to the symbolic
answer �q� = 22.

5 Experimental Results

After a brief description of the experimental setup, we evaluate the performance
of LitCQD on the query types shown in Table 1. Finally, we show the answers
of LitCQD for an example query. Our code is publicly available.1

5.1 Experimental Setup

Dataset and Query Generation. We use the FB15k-237 dataset augmented with
attributes as done by García-Durán and Niepert [11]. The dataset contains 12,390
entities, 237 entity relations, 115 attribute relations, and 29,229 triples. Queries
and their expected answers are generated as by Hamilton et al. [12]. The newly
introduced attribute filter conditions (af) are handled as follows: When checking
for equality (af (C, c) = eq(C, c)), we consider all entities whose attribute value
lies within one standard deviation from c as correct where the standard deviation
is computed per attribute relation a; when checking the less-than or greater-than
criterion, the criterion is checked exactly, i.e., all entities with attribute value
“≤ c” or “≥ c” are considered correct. In a preprocessing step, we normalize all
values of an attribute to the unit interval via min-max scaling. Table 1 gives an
overview of the newly introduced query types along with previous query types.

Hyperparameters. Per query type, we tried 16 different configurations on the
validation set and chose the best before applying the model to the test set. As
our framework is derived from the CQD framework, it allows two different opti-
mization algorithms: Continuous optimization (Co), Combinatorial optimization
(Beam); two t-norms: Gödel (min), product (prod); and 7 different beam sizes
k ∈ {22, 23, . . . , 28} for the combinatorial optimization algorithm. Each optimiza-
tion algorithm is computed for both of the t-norms resulting in 2 configurations
using the continuous optimization algorithm and 14 using the combinatorial
optimization algorithm as every beam size is evaluated for both t-norms.

5.2 Multihop Queries Without Literals

In a first experiment (Table 2), we compare the performance of our approach
LitCQD to CQD [2] and Query2Box [22] on multihop entity queries without
1 https://github.com/dice-group/LitCQD.

https://github.com/dice-group/LitCQD

LitCQD: Multi-hop Reasoning in Knowledge Graphs with Numeric Literals 627

Table 1. Overview of different query types. Entity queries without literals were pro-
posed by Ren et al. [22]. Entity queries with literals and queries with literal answers
are newly proposed in this paper.

Multihop queries without literals

1p E? . r(e, E?)

2p E? . ∃E1 : r1(e, E1) ∧ r2(E1, E?)

3p E? . ∃E1E2.r1(e, E1) ∧ r2(E1, E2) ∧ r3(E2, E?)

2i E? . r1(e1, E?) ∧ r2(e2, E?)

3i E? . r1(e1, E?) ∧ r2(e2, E?) ∧ r3(e3, E?)

ip E? . ∃E1.r1(e1, E1) ∧ r2(e2, E1) ∧ r3(E1, E?)

pi E? . ∃E1.r1(e1, E1) ∧ r2(E1, E?) ∧ r3(e2, E?)

2u E? . r1(e1, E?) ∨ r2(e2, E?)

up E? . ∃E1.[r1(e1, E1) ∨ r2(e2, E1)] ∧ r3(E1, E?)

Multihop queries with literals and entity answers
ai E? . ∃C1.a(E?, C1) ∧ af (C1, c)

2ai E? . ∃C1C2.a1(E?, C1)∧ af1 (C1, c1)∧ a2(E?, C2)∧
af2 (C2, c2)

pai E? . ∃C1.r(e, E?) ∧ a(E?, C1) ∧ af (C1, c1)

aip E? . ∃E1C1.a(E1, C1) ∧ af (C1, c1) ∧ r(E1, E?)

au E? . ∃C1C2.a1(E?, C1)∧ af1 (C1, c1)∨ a2(E?, C2)∧
af2 (C2, c2)

Multihop queries with literals and literal answers
1ap mean(C?) . a(e, C?)

2ap mean(C?) . ∃E1.r(e, E1) ∧ a(E1, C?)

3ap mean(C?).∃E1E2.r1(e, E1)∧r2(E1, E2)∧a(E2, C?)

literals, which can be answered by all three models—in contrast to more expres-
sive queries that can only be answered by LitCQD. While CQD does not utilize
literal information and employs the vanilla ComplEx-N3 [19] model, LitCQD
employs a model combining ComplEx-N3 [19] with TransEA [31]. Table 2 shows
that LitCQD clearly outperforms CQD and Query2Box in terms of the mean
reciprocal rank (MRR), and Hits@k for k ∈ {1, 3, 10}.

5.3 Multihop Queries with Literals and Entity Answers

Table 3 shows the evaluation results for the new query types with filter restric-
tions introduced in Sect. 4.1 (second block in Table 1). For the simple ai query,
each filtering expression (less-than, equals, greater-than) is evaluated separately;
the other query types contain all three filtering expressions. Except for aip
queries, all query types with literals can be answered with a performance of
at least 0.256 which is comparable to query types without literals (cf. Table 2).

628 C. Demir et al.

Table 2. Query answering results for multihop queries without literals. Results were
computed for test queries over the FB15k-237 dataset and evaluated in terms of mean
reciprocal rank (MRR) and Hits@k for k ∈ {1, 3, 10}.

Method Average 1p 2p 3p 2i 3i ip pi 2u up

MRR
Query2Box 0.213 0.403 0.198 0.134 0.238 0.332 0.107 0.158 0.195 0.153
CQD 0.295 0.454 0.275 0.197 0.339 0.457 0.188 0.267 0.261 0.214
LitCQD (ours) 0.301 0.457 0.285 0.202 0.350 0.466 0.193 0.274 0.266 0.215
HITS@1
Query2Box 0.124 0.293 0.120 0.071 0.124 0.202 0.056 0.083 0.094 0.079
CQD 0.211 0.354 0.198 0.137 0.235 0.354 0.130 0.186 0.165 0.137
LitCQD (ours) 0.215 0.355 0.206 0.141 0.245 0.365 0.129 0.193 0.168 0.135
HITS@3
Query2Box 0.240 0.453 0.214 0.142 0.277 0.399 0.111 0.176 0.226 0.161
CQD 0.322 0.498 0.297 0.208 0.380 0.508 0.195 0.290 0.287 0.230
LitCQD (ours) 0.330 0.506 0.309 0.214 0.395 0.517 0.204 0.296 0.295 0.235
HITS@10
Query2Box 0.390 0.623 0.356 0.259 0.472 0.580 0.203 0.303 0.405 0.303
CQD 0.463 0.656 0.422 0.312 0.551 0.656 0.305 0.425 0.465 0.370
LitCQD (ours) 0.472 0.660 0.439 0.323 0.561 0.663 0.315 0.434 0.475 0.379

Moreover, we experimented with different variants of our model and per-
formed an ablation study. As described in Sect. 4.1, Eq. (11), the attribute filter
predictor φaf ,a is a product of φexists,a(e) and φ′

af ,a(ĉ, c). We performed three
experiments, where we replaced each/both of the two scoring functions by the
constant value 1. Table 3 shows that both components are crucial and the per-
formance drops drastically if one of them is removed.

Moreover, the Eq. (8) and Eq. (9) normalize the difference ĉ−c by dividing by
the standard deviation. Per default (first line), LitCQD employs the universal
standard deviation across all attributes of the knowledge base, i.e., the stan-
dard deviation σ of

⋃
a∈A Ca. As an alternative, we computed attribute-specific

standard deviations σa per Ca. Table 3 (last line) shows that using an attribute-
specific standard deviation instead of a universal standard deviation leads to a
lower performance on five query types, to the same performance on one query
type, and to a higher performance on only one query type.

5.4 Multihop Queries with Literals and Literal Answers

Table 4 evaluates the performance of queries asking for literal answers. The pre-
dicted numeric values are compared to the actual numeric values in terms of
mean absolute error (MAE) and mean squared error (MSE). Interestingly, we
notice that the mean absolute error for the 2ap queries is lower than for 1ap
queries. This can be explained by the fact that for 1ap queries a single predic-

LitCQD: Multi-hop Reasoning in Knowledge Graphs with Numeric Literals 629

tion of an attribute value is made whereas 2ap queries average multiple predic-
tions (the number of the beam width). For 3ap queries, the mean absolute error
increases again because the relation path becomes longer and errors accumulate.

Table 3. Query answering results for multihop queries with literals and entity answers.
Our best-performing model LitCQD is compared to variations thereof. Results were
computed for test queries over the FB15k-237 dataset and evaluated in terms of
Hits@10.

Method ai-lt ai-eq ai-gt 2ai aip pai au

LitCQD 0.405 0.361 0.317 0.336 0.182 0.463 0.256
- w/o attribute filter predictor 0.280 0.005 0.237 0.148 0.124 0.421 0.054
- w/o attribute existence predictor 0.206 0.137 0.128 0.104 0.167 0.470 0.120
- w/o both 0.015 0.001 0.003 0.001 0.051 0.412 0.003
- with attribute-specific stdev 0.405 0.232 0.329 0.216 0.174 0.320 0.212

Table 4. Query answering results for multihop queries with literals and literal answers.
Results were compute for test queries over the FB15k-237 dataset and evaluated in
terms of mean absolute error (MAE) and mean squared error (MSE).

Method 1ap 2ap 3ap
MAE MSE MAE MSE MAE MSE

LitCQD 0.050 0.011 0.034 0.005 0.041 0.007
Mean Predictor 0.341 0.143 0.346 0.141 0.362 0.152

As a simple baseline, we also report the results of the model that always
predicts the mean value 1

|Ca|
∑

c∈Ca
c of the attribute a in the whole knowledge

graph (mean predictor in the table).

5.5 Example Query and Answers

As an illustration of the model’s query-answering ability, consider the query
“What are musicians from the USA born before 1972?” and its logical represen-
tation

E? . ∃C1./music/artist/origin(USA, E?)∧
/people/person/date_of_birth(E?, C1) ∧ lt(C1, 1972).

(16)

Table 5 lists the top 10 returned answers. Although the model confuses the band
Funkadelic as musicians with a date of birth, the model is able to produce a
reasonable ranking of entities. Out of these 10 entities, the entity Robert E. Lee
receives the highest score of 0.95 for the attribute portion of the query. The model
is confident that the entity has the attribute /people/person/date_of_birth

630 C. Demir et al.

and that its value is less than 1972. The entities Dio, Rob Thomas, and Donna
Summer only receive a score of 0.39 for the attribute portion of the query because
their predicted values are closer to the threshold of 1972. The model is more cer-
tain that the connection /music/artist/origin, USA exists for John Denver
compared to Robert E. Lee. While Linus Pauling is a chemist rather than a musi-
cian and the dataset does not contain the connection /music/artist/origin,
USA, the learned embeddings implicitly encode that Linus Pauling has another
connection to the entity USA via the /people/person/nationality relation.

Table 5. Ranking of LitCQD’s top 10 answers to the query in Eq. (16) including
their expected and predicted attribute value for date_of_birth. The star (*) indicates
attribute values unseen during training and the double star (**) refers to attribute
values not part of the dataset at all. The dash (–) indicates that an entity does not
have a date of birth.

Rank Answer Expected Attr. Predicted Attr.

1 Linus Pauling 1901.17 1900.06
2 John Denver 1944.00 1941.52
3 Funkadelic – 1925.21
4 Friedrich Hayek 1899.42 1900.04
5 Robert E. Lee 1807.08 1794.49
6 Dio 1942** 1935.59
7 Marvin March 1930.42 1922.07
8 Rob Thomas 1972* 1943.72
9 Ezra Pound 1885.83 1882.00
10 Donna Summer 1949.00 1948.55

6 Conclusion

In this paper, we propose LitCQD, a novel approach to answer multihop queries
on incomplete knowledge graphs with numeric literals. Our approach allows
answering queries that could not be answered before, e.g., queries involving lit-
eral filter restrictions and queries predicting the value of numeric literals. More-
over, our experiments suggest that even the performance of answering multihop
queries that could be answered before improves as the underlying knowledge
graph embedding models now take literal information into account. This is an
important finding as most real-world knowledge graphs contain millions of enti-
ties with numerical attributes. In future work, we plan to further increase the
expressiveness of our queries, e.g., by supporting string literals, Boolean literals,
and datetime literals.

LitCQD: Multi-hop Reasoning in Knowledge Graphs with Numeric Literals 631

Acknowledgements. This work has received funding from the European Union’s
Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie
grant agreement No 860801, the Horizon Europe research and innovation programme
under the Marie Skłodowska-Curie grant agreement No 101073307, and the Horizon
Europe research and innovation programme under grant agreement No 101070305. This
work has also been supported by the Ministry of Culture and Science of North Rhine-
Westphalia (MKW NRW) within the project SAIL under the grant No NW21-059D
and by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation):
TRR 318/1 2021 - 438445824.

References

1. Adolphs, P., Theobald, M., Schäfer, U., Uszkoreit, H., Weikum, G.: YAGO-QA:
answering questions by structured knowledge queries. In: ICSC, pp. 158–161. IEEE
Computer Society (2011)

2. Arakelyan, E., Daza, D., Minervini, P., Cochez, M.: Complex query answering with
neural link predictors. In: ICLR, OpenReview.net (2021)

3. Auer, S., Bizer, C., Kobilarov, G., Lehmann, J., Cyganiak, R., Ives, Z.: DBpedia: a
nucleus for a web of open data. In: Aberer, K., Choi, K.-S., Noy, N., Allemang, D.,
Lee, K.-I., Nixon, L., Golbeck, J., Mika, P., Maynard, D., Mizoguchi, R., Schreiber,
G., Cudré-Mauroux, P. (eds.) ASWC/ISWC -2007. LNCS, vol. 4825, pp. 722–735.
Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-76298-0_52

4. Balazevic, I., Allen, C., Hospedales, T.M.: TuckER: tensor factorization for knowl-
edge graph completion. In: EMNLP/IJCNLP (1), pp. 5184–5193. Association for
Computational Linguistics (2019)

5. Bordes, A., Usunier, N., García-Durán, A., Weston, J., Yakhnenko, O.: Translating
embeddings for modeling multi-relational data. In: NIPS, pp. 2787–2795 (2013)

6. Demir, C., Moussallem, D., Heindorf, S., Ngonga Ngomo, A.: Convolutional hyper-
complex embeddings for link prediction. In: ACML, Proceedings of Machine Learn-
ing Research, vol. 157, pp. 656–671. PMLR (2021)

7. Demir, C., Ngomo, A.-C.N.: Convolutional complex knowledge graph embeddings.
In: Verborgh, R., Hose, K., Paulheim, H., Champin, P.-A., Maleshkova, M., Corcho,
O., Ristoski, P., Alam, M. (eds.) ESWC 2021. LNCS, vol. 12731, pp. 409–424.
Springer, Cham (2021). https://doi.org/10.1007/978-3-030-77385-4_24

8. Dettmers, T., Minervini, P., Stenetorp, P., Riedel, S.: Convolutional 2d knowledge
graph embeddings. In: AAAI, pp. 1811–1818. AAAI Press (2018)

9. Diefenbach, D., Tanon, T.P., Singh, K.D., Maret, P.: Question answering bench-
marks for Wikidata. In: ISWC (Posters, Demos & Industry Tracks), CEUR Work-
shop Proceedings, vol. 1963, CEUR-WS.org (2017)

10. Färber, M., Bartscherer, F., Menne, C., Rettinger, A.: Linked data quality of DBpe-
dia, Freebase, OpenCyc, Wikidata, and YAGO. Semantic Web 9(1), 77–129 (2018)

11. García-Durán, A., Niepert, M.: KBLRN: end-to-end learning of knowledge base
representations with latent, relational, and numerical features. In: UAI, pp. 372–
381. AUAI Press (2018)

12. Hamilton, W., Bajaj, P., Zitnik, M., Jurafsky, D., Leskovec, J.: Embedding logical
queries on knowledge graphs. Advances in neural information processing systems
31 (2018)

13. Heindorf, S., et al.: EvoLearner: learning description logics with evolutionary algo-
rithms. In: WWW, pp. 818–828. ACM (2022)

https://doi.org/10.1007/978-3-540-76298-0_52
https://doi.org/10.1007/978-3-030-77385-4_24

632 C. Demir et al.

14. Klement, E., Mesiar, R., Pap, E.: Triangular norms. position paper I: basic analyt-
ical and algebraic properties. Fuzzy Sets Syst. 143(1), 5–26 (2004)

15. Kouagou, N.J., Heindorf, S., Demir, C., Ngonga Ngomo, A.: Learning concept
lengths accelerates concept learning in ALC. In: ESWC. LNCS, vol. 13261, pp.
236–252. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-06981-9_14

16. Kouagou, N.J., Heindorf, S., Demir, C., Ngonga Ngomo, A.: Neural class expression
synthesis. In: Pesquita, C., et al. (eds.) ESWC. LNCS, vol. 13870, pp. 209–226.
Springer, Cham (2023). https://doi.org/10.1007/978-3-031-33455-9_13

17. Kouagou, N.J., Heindorf, S., Demir, C., Ngonga Ngomo, A.: Neural class expression
synthesis in ALCHIQ(D). In: ECML, Lecture Notes in Computer Science. Springer
(2023)

18. Kristiadi, A., Khan, M.A., Lukovnikov, D., Lehmann, J., Fischer, A.: Incorporating
literals into knowledge graph embeddings. In: Ghidini, C., Hartig, O., Maleshkova,
M., Svátek, V., Cruz, I., Hogan, A., Song, J., Lefrançois, M., Gandon, F. (eds.)
ISWC 2019. LNCS, vol. 11778, pp. 347–363. Springer, Cham (2019). https://doi.
org/10.1007/978-3-030-30793-6_20

19. Lacroix, T., Usunier, N., Obozinski, G.: Canonical tensor decomposition for knowl-
edge base completion. In: ICML, Proceedings of Machine Learning Research, vol.
80, pp. 2869–2878. PMLR (2018)

20. Nickel, M., Murphy, K., Tresp, V., Gabrilovich, E.: A review of relational machine
learning for knowledge graphs. Proc. IEEE 104(1), 11–33 (2016)

21. Ren, H., Dai, H., Dai, B., Chen, X., Zhou, D., Leskovec, J., Schuurmans, D.:
SMORE: knowledge graph completion and multi-hop reasoning in massive knowl-
edge graphs. In: KDD, pp. 1472–1482. ACM (2022)

22. Ren, H., Hu, W., Leskovec, J.: Query2box: reasoning over knowledge graphs in
vector space using box embeddings. In: ICLR, OpenReview.net (2020)

23. Ren, H., Leskovec, J.: Beta embeddings for multi-hop logical reasoning in knowl-
edge graphs. In: NeurIPS (2020)

24. da Silva, A.A.M., Röder, M., Ngomo, A.-C.N.: Using compositional embeddings
for fact checking. In: Hotho, A., Blomqvist, E., Dietze, S., Fokoue, A., Ding, Y.,
Barnaghi, P., Haller, A., Dragoni, M., Alani, H. (eds.) ISWC 2021. LNCS, vol.
12922, pp. 270–286. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-
88361-4_16

25. Suchanek, F.M., Kasneci, G., Weikum, G.: Yago: a core of semantic knowledge. In:
WWW, pp. 697–706. ACM (2007)

26. Sun, Z., Deng, Z., Nie, J., Tang, J.: RotatE: knowledge graph embedding by rela-
tional rotation in complex space. In: ICLR (Poster), OpenReview.net (2019)

27. Tahri, A., Tibermacine, O.: DBPedia based factoid question answering system. Int.
J. Web Semantic Technol. 4(3), 23 (2013)

28. Tay, Y., Tuan, L.A., Phan, M.C., Hui, S.C.: Multi-task neural network for non-
discrete attribute prediction in knowledge graphs. In: CIKM, pp. 1029–1038. ACM
(2017)

29. Trouillon, T., Welbl, J., Riedel, S., Gaussier, É., Bouchard, G.: Complex embed-
dings for simple link prediction. In: ICML, JMLR Workshop and Conference Pro-
ceedings, vol. 48, pp. 2071–2080. JMLR.org (2016)

30. Vrandecic, D., Krötzsch, M.: Wikidata: a free collaborative knowledgebase. Com-
mun. ACM 57(10), 78–85 (2014)

31. Wu, Y., Wang, Z.: Knowledge graph embedding with numeric attributes of enti-
ties. In: Rep4NLP@ACL, pp. 132–136. Association for Computational Linguistics
(2018)

https://doi.org/10.1007/978-3-031-06981-9_14
https://doi.org/10.1007/978-3-031-33455-9_13
https://doi.org/10.1007/978-3-030-30793-6_20
https://doi.org/10.1007/978-3-030-30793-6_20
https://doi.org/10.1007/978-3-030-88361-4_16
https://doi.org/10.1007/978-3-030-88361-4_16

LitCQD: Multi-hop Reasoning in Knowledge Graphs with Numeric Literals 633

32. Yang, B., Yih, W., He, X., Gao, J., Deng, L.: Embedding entities and relations for
learning and inference in knowledge bases. In: ICLR (Poster) (2015)

33. Zhang, S., Tay, Y., Yao, L., Liu, Q.: Quaternion knowledge graph embeddings. In:
NeurIPS, pp. 2731–2741 (2019)

34. Zhu, Z., Galkin, M., Zhang, Z., Tang, J.: Neural-symbolic models for logical queries
on knowledge graphs. In: ICML, Proceedings of Machine Learning Research, vol.
162, pp. 27454–27478. PMLR (2022)

Large-Scale Learning

Cross Model Parallelism for Faster
Bidirectional Training of Large
Convolutional Neural Networks

An Xu1(B) and Yang Bai2

1 ByteDance Inc., Seattle, USA
an.xu@bytedance.com

2 Tencent Inc., Beijing, China

mavisbai@tencent.com

Abstract. Large convolutional neural networks (CNNs) have been suc-
cessful in data mining tasks, but it is hard to train these large-scale
models. Model parallelism (MP) places a large CNN to several workers
(GPUs) to fit in the memory, but its computation efficiency is low as only
one worker is activated at a time and the other workers are idle during
training. Pipeline model parallelism (PMP) improves model parallelism
by pipelining mini-batches, checkpointing some intermediate activations,
and using delayed backward error gradients. But all these techniques have
certain limitations, add to the computation cost, and may deteriorate the
model performance. To address these important issues and improve the
efficiency of model parallelism, we propose a novel cross model paral-
lelism (CMP) method without requiring additional computation over-
heads and jeopardizing the performance. In cross model parallelism, we
reversely place two models to workers and bidirectionally train them at
the same time to improve the training throughput. A novel averaging
method to synchronize the two models is also proposed in cross model
parallelism. Theoretical analysis shows that cross model parallelism con-
verges as fast as model parallelism regarding training epochs. Extensive
deep learning experimental results show that our proposed cross model
parallelism can achieve a speedup of up to ×1.5 compared with model
parallelism regarding training time.

Keywords: Model Parallelism · Convolutional Neural Network

1 Introduction

Deep convolutional neural networks (CNNs) have been very successful in solving
various data mining tasks in recent years. As the CNN goes deeper and larger, the
performance usually gets better [11,12,26,31]. The backpropagation (BP) [22,29]
algorithm is the most popular method to compute the gradient when training
CNNs and consists of the forward pass and the backward pass. However, BP
requires the worker (GPU) to store all the intermediate activations in the forward
pass in order to calculate the gradient in the backward pass for optimizing the
model parameters. A deep CNN model has many layers which lead to many
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
D. Koutra et al. (Eds.): ECML PKDD 2023, LNAI 14171, pp. 637–653, 2023.
https://doi.org/10.1007/978-3-031-43418-1_38

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-43418-1_38&domain=pdf
http://orcid.org/0000-0001-7480-5010
https://doi.org/10.1007/978-3-031-43418-1_38

638 A. Xu and Y. Bai

Fig. 1. The training data flow of model parallelism and our proposed cross model
parallelism in the forward and backward pass of backpropagation. The CNN model is
placed onto K = 3 GPUs. Fi and Bi denote the forward and backward pass of the
i-th partition of the model respectively. Different partitions are denoted with different
colors. Two consecutive training iterations are displayed. The horizontal axis denotes
time. Best viewed in color.

intermediate activations to store, making it too large to fit into one worker’s
memory during training.

To address the memory issue using a single worker, checkpoint and recom-
putation [4] have been proposed to train large CNNs with sublinear memory
costs regarding the number of layers. During the forward pass of the train-
ing, the worker only stores (checkpoints) several layers’ activations. While in
the backward pass between two consecutive checkpoint layers, the worker re-
computes the forward using the stored activation of the lower checkpoint layer
and backward with the error gradient from the upper checkpoint layer. Therefore,
the peak memory consumption mainly consists of the intermediate activations
between the two consecutive checkpoint layers instead of the whole CNN model.
But the re-computation introduces non-negligible computation overheads. Other
memory-efficient methods include model compression [9] and activation quanti-
zation [42], but they usually lead to the loss of performance depending on the
compression ratio.

When training large CNN models with multiple workers, data parallelism
(DP) [3,7,8,13,24,25,33,35,36,38,39] and model parallelism (MP) [20,23] have
been the most popular methods and implemented in many existing libraries
[1,28]. In DP with K workers, each worker computes the gradient of a mini-
batch of size b and communicates with the other workers to average the gradient.
The equivalent mini-batch size is Kb. Nevertheless, as the number of workers K
increases, the equivalent mini-batch size grows, hampering the optimization and
leading to sharp local optima with worse performance [18]. Besides, in some other
tasks such as graph convolutional neural networks [19], each training iteration

Cross Model Parallelism 639

requires all the data and we cannot sample a mini-batch. MP, on the other hand,
divides the CNN model into K partitions and places them to K workers without
requirements on the mini-batch size. But MP is inefficient due to the forward
and backward computation dependencies [17] of the BP algorithm (Fig. 1a).

In this paper, we focus on improving the computation efficiency of
MP. Pipeline model parallelism (PMP) [14,15,27,37] pipelines the computa-
tion of the workers to decrease the idle time by feeding more batches of data
input. Each worker checkpoints the mini-batch but re-computes with a previous
checkpointed mini-batch, which leads to staleness and potentially jeopardizes
the model performance.

To address the aforementioned important issues and improve the computa-
tion efficiency of MP, we propose a novel cross model parallelism (CMP) method
(Fig. 1b). In CMP we carefully coordinate the training of two model copies at
the same time to achieve better efficiency with negligible peak memory
overheads in contrast with MP which trains one model. In the first place, we
introduce two important and novel concepts in our proposed method below.

– Reverse placement: we have two model copies of the same architecture and
initialization named as “obverse model” and “reverse model”. The first part
of the obverse model is placed onto the first worker, while that in the reverse
model is placed onto the last worker. The last part of the obverse model is
placed onto the last worker, and that of the reverse model is placed onto the
first worker. It follows a similar pattern for other parts.

– Bidirectional training: the backpropagation algorithm for the two models
is conducted in opposite direction due to reverse placement. Therefore we
name the training of the two models as bidirectional training.

To the best of our knowledge, CMP is the first synchronous model paral-
lel algorithm more efficient than MP without checkpoint and re-computation
overheads. The contributions are summarized as follows.

– We propose a novel cross model parallelism (CMP) training method without
requiring a large mini-batch size, computation overheads due to checkpoint
and re-computation, and performance deterioration due to staleness as in
existing works.

– We propose a novel out-of-step periodic model averaging technique to syn-
chronize the two bidirectionally trained models in CMP.

– Theoretical results show that out-of-step periodic averaging achieves the same
convergence rate as SGD. Extensive deep learning experimental results show
that CMP can achieve a speedup of up to ×1.5 compared with MP in terms
of wall clock time.

2 Background and Related Works

Let x ∈ R
d be the model parameters and f(x) be the objective function. The

optimization is to minx∈Rd f(x). Let the data distribution be D and the sam-
pling random variable be ξ. The SGD optimizer randomly selects a sample with

640 A. Xu and Y. Bai

the sampler ξ from the data distribution D to calculate the stochastic gradient
∇F (x; ξ) for model update

x ← x − η∇F (x; ξ) , (1)

where η is the learning rate. The stochastic gradient ∇F (x; ξ) is usually assumed
to be an unbiased estimation of the full gradient ∇f(x), i.e.,

Eξ∇F (x; ξ) = ∇f(x) . (2)

Backpropagation. BP is to efficiently compute the stochastic gradient of deep
CNNs needed by optimization. Suppose the CNN is split into K partitions and
the k-th partition is placed to worker k ∈ [K]. Let h(k+1) = F (k)(h(k),x(k)) be
the output activation of worker k with the data sample, where x(k) and F (k)(·)
are the parameters and forward function of the partition on worker k respectively.
MP with multiple workers using BP computes the stochastic gradient via Eq. (3).{

∇h(k)F (x; ξ) = ∂F (k)(h(k),x(k))

∂h(k) ∇h(k+1)F (x; ξ) ,

∇x(k)F (x; ξ) = ∂F (k)(h(k),x(k))
∂x(k) ∇h(k+1)F (x; ξ) ,

(3)

where ∇F (x; ξ) = (∇x(0)F (x; ξ), · · · ,∇x(K−1)F (x; ξ)). The forward in Eq. (3)
of the k-th partition to compute activation h(k+1) requires the activation h(k)

from the (k −1)-th partition. The backward pass in Eq. (3) of the k-th partition
to compute the gradient ∇x(k)F (x; ξ) requires the error gradient ∇h(k+1)F (x; ξ)
from the (k + 1)-th partition. Such computation dependencies make MP with
multiple workers using BP inefficient (Fig. 1a).

Staleness, Checkpoint and Re-computation. PMP pipelines the computa-
tion of mini-batches to achieve better efficiency. [37] pipelines the forward of h(k)

t

and h(k+1)
t−1 , where t denotes the iteration. It is the same with the backward pass.

However, the error gradient that worker k receives from worker k+1 is at a stale
iteration t′ ≤ t as waiting the error gradient at iteration t is inefficient. Worker
k has to checkpoint h(k)

t and re-compute F (k)(h(k)
t′ x(k)) in the backward pass.

In contrast to [14,15,37] only pipelines the backward pass without pipelining
the forward pass. [27] stores the forward intermediate activation without check-
point and re-computation, leading to large memory overheads. The staleness
potentially deteriorates the model performance in all PMP methods.

Model Modification. Other works to address the computation dependencies
in MP need careful design. Decoupled Neural Interfaces [17] designed auxiliary
networks to predict the error gradient to avoid waiting. Greedy layer-wise learn-
ing [2] works in a similar way, where an auxiliary local classifier is introduced
to each partition of the CNN model. Therefore, a partition updates its parame-
ters using the error gradient from its local classifier instead of waiting for other
partitions. However, these methods have to re-engineer the model architecture,
bringing about new challenges and difficulties.

Cross Model Parallelism 641

3 New Cross Model Parallelism (CMP)

In this section, we propose the novel cross model parallelism (CMP) to improve
the efficiency of MP without re-computation overheads and deterioration of
model performance.

3.1 Obverse and Reverse Models

Motivation. In MP, the inefficiency exists in the forward pass because when the
first worker 0 is conducting the forward, the last worker K −1 has to wait for the
forward results and becomes idle. It is the same in the backward pass. When the
last worker K − 1 is conducting backward, the first worker 0 has to wait for the
error gradient and becomes idle. However, if we can make this one-directional
training bidirectional, the inefficiency issues can be alleviated without the last
worker waiting for the first worker or the first waiting for the last.

Based on this motivation, we propose CMP where two models are initialized
from the same initialization and we split them into K partitions in the same
way to train on K workers (one partition per worker). Of the two models, we
place the k-th partition of the obverse model to worker k ∈ [K]. In contrast to
the obverse model, the partitions of the reverse model are reversely placed to
the workers, i.e., the k-th partition is placed to worker K −1−k. We denote the
obverse model parameters as xo and the reverse model parameters as xr. As the
obverse model xo and reverse model xr are placed in opposite direction regarding
the workers, their forward and backward passes are also conducted in opposite
direction. Therefore, we name the training of the obverse and reverse models
as bidirectional training. The bidirectional training independently samples data
from the distribution D for both models as the input.

Alternative Forward and Backward. Simply training two the same models
will lead to the contention of computation and memory resources and slow down
the overall progress. In CMP, however, the obverse and reverse models are placed
in the opposite direction regarding workers. Therefore, the obverse model xo

starts the forward from worker 0 while the reverse model xr starts the forward
from worker K − 1 to avoid any conflict and contention. It is similar for the
backward. More specifically, we denote the forward and backward pass of the
obverse and reverse models with blue and red arrows respectively in Fig. 1b.
The bidirectional training of the obverse and reverse models is conducted in an
alternative way. We start the forward of the first partition F0 on the last worker
K − 1 for the reverse model xr right after the backward of the last partition
BK−1 on the last worker K −1 for the obverse model xr finishes. It is vice versa
when we start the forward for the obverse model xo. Note that Fk and Bk take
place on worker k for the obverse model xo, but worker K −1−k for the reverse
model xr. In contrast to MP, the next batch of training can start before the
backward is finished in the previous batch of training. If we assume the model
is evenly split to K partitions in terms of the computation cost and the forward
and backward consume the same amount of computation time, we have the ideal
speedup of CMP over MP as:

642 A. Xu and Y. Bai

Algorithm 1. Out-of-step period averaging for the obverse and reverse models
in cross model parallelism.
1: Input: period p ≥ 1, number of iterations T , number of workers K, and learning

rate {ηt}T−1
t=0 .

2: Initialize: the initial obverse and reverse models xo
0 = xr

0 = x0.
3: for t = 0, 1, · · · , T − 1 do
4: xo

t+1 = xo
t − ηt∇F (xo

t ; ξ
o
t)

5: xr
t+1 = xr

t − ηt∇F (xr
t ; ξ

r
t)

6: if mod (t + 1, p) = 0 then
7: xo

t+1 ← 1
2
(xo

t+1 + xr
t)

8: xr
t+1 ← xo

t+1 + 1
2
(xr

t+1 − xr
t)

9: end if
10: end for

speedup =
2K

K + 1
, (4)

which approaches ×2 as K increases. This is a simplification because the back-
ward is usually more expensive than forward but it is hard to decide their ratio.
As there is no need to split the batch input, CMP does not require a large
mini-batch size.

Negligible Memory Overheads. The reverse model xr starts the forward on
worker k after the obverse model xo has finished the backward on worker k. The
intermediate activations computed during the forward pass of the obverse model
will be released from memory before the reverse model starts the forward on
worker k. It is vice versa when the obverse model xo starts the forward pass.
Therefore, CMP introduces no memory overheads of the intermediate activa-
tions. Some other memory overheads such as storing two sets of model parame-
ters are negligible in contrast to the intermediate activations.

No Checkpoint and Re-computation. We can further improve the efficiency
of CMP by starting the forward of the reverse model xr in advance rather than
waiting for the backward of the obverse model xo to finish on worker k. Nev-
ertheless, the intermediate activations will not be released from memory before
the backward pass. It will lead to memory overheads to store two sets of inter-
mediate activations for the obverse and reverse models on worker k. Checkpoint
and re-computation can be leveraged to avoid storing additional intermediate
activations as in PMP, but it will conflict with our goal to avoid extra com-
putational cost resulting from re-computation. In summary, our proposed CMP
improves the efficiency of MP with no compromise of memory and computation
overheads.

3.2 Out-of-Step Periodic Averaging

As we are training two models xo and xr at the same time with mini-batch data
sampled from the same data distribution D, they need to be synchronized during

Cross Model Parallelism 643

the training. Usually, the gradients of the obverse and reverse models need to be
averaged before updating xo and xr. But it is practically unfavorable because 1)
that the same partition of the obverse and reverse models is not placed on the
same worker and averaging gradient introduces communication overheads, and
2) that the obverse model xo and the reverse model xr are trained alternatively
and waiting for the other model’s gradient is inefficient.

To address the first important issue, we introduce periodic averaging to CMP
from Local SGD [32] in data parallelism (DP). Instead of averaging the gradient
of the obverse and reverse models, periodic averaging averages xo and xr every
p updates of xo and xr to reduce the communication frequency. As the obverse
and reverse models are placed to GPUs on a single machine in practice and the
GPU to GPU communication is fast via NVLink [5] connection, a small p is
enough to make the communication overheads negligible.

To address the second critical issue without loss of efficiency, we propose a
novel out-of-step periodic averaging algorithm as shown in Algorithm 1. In CMP,
the obverse and reverse models are trained in an alternative manner. When the
obverse model xo is updated p times, the reverse model is only updated p − 1
times. Therefore, in line 7 of Algorithm 1 when mod(t+1, p) = 0 (the communi-
cation iteration), we synchronize the obverse model to 1

2 (xo
t+1 + xr

t) other than
1
2 (xo

t+1 +xr
t+1) because xr

t+1 is still unavailable. The reverse model xr, however,
will be synchronized to the average of the obverse and reverse models in the com-
munication iteration. Note that it equals xo

t+1 + 1
2 (xr

t+1 −xr
t) in line 8 as xo has

been modified in line 7 of Algorithm 1. After synchronization in the communica-
tion iteration, there will be a synchronization error xo

t+1 −xr
t+1 = ηt

2 ∇F (xr
t ; ξ

r
t)

in out-of-step periodic averaging rather than 0 when using periodic averaging.
Intuitively, the synchronization error ηt

2 ∇F (xr
t ; ξ

r
t) will become small as the

training converges (∇F (xr
t ; ξ

r
t) → 0) and the learning rate decreases. Conse-

quently, out-of-step periodic averaging will not deteriorate the model perfor-
mance.

4 Theoretical Analysis

In this section, we provide a rigorous theoretical analysis of CMP with out-of-
step periodic averaging to show its same convergence rate as the SGD optimizer.
We consider the smooth (Assumption 1) and non-convex optimization problem
which is suitable for CNN models. We also make common Assumptions 2 and
3. The average model is denoted as xt = 1

2 (xo
t + xr

t). xt is an auxiliary variable
which will not be computed in real training.

Assumption 1. (L-Lipschitz) The objective function f(·) is L-smooth, i.e.,

‖∇f(x) − ∇f(y)‖2 ≤ L‖x − y‖2,∀x,y ∈ R
d , (5)

644 A. Xu and Y. Bai

Assumption 2. (Unbiased Gradient and Bounded Variance) Let D be the data
distribution. The stochastic gradient ∇F (x; ξ) is an unbiased estimation of the
full gradient ∇f(x), i.e.,

Eξ∇F (x; ξ) = ∇f(x),∀x ∈ R
d . (6)

Its variance is also bounded, i.e.,

Eξ‖∇F (x; ξ) − ∇f(x)‖22 ≤ σ2,∀x ∈ R
d . (7)

Assumption 3. (Bounded Full Gradient) The second moment of the full gra-
dient ∇f(x) is bounded, i.e.,

‖∇f(x)‖22 ≤ G2,∀x ∈ R
d . (8)

Theorem 1. Under Assumptions 1, 2, and 3, if the learning rate is fixed ηt = η
and η < min{ 1

2pL , 1
6L}, we have

1
T

T−1∑
t=0

E‖∇f(xt)‖22 ≤ 8(f(x0) − f∗)
ηT

+ (10(2p + 1)η2L2 + 2ηL)σ2 + 20η2L2G2 .

(9)

In the proof of the convergence rate of out-of-step periodic averaging (Theo-
rem 1), we have to jointly consider two different circumstances (mod(t+1, p) 	= 0
and mod(t+1, p) = 0) where the update rules of xt are different due to the syn-
chronization error. It differs from the analysis in periodic averaging [40] where
the update rule of xt does not change. According to Theorem 1, let η = O(1√

T
)

and p = O(
√

T), then we will have 1
T

∑T−1
t=0 E‖∇f(xt)‖22 ≤ O(1√

T
) which is

at least the same convergence rate as the SGD optimizer. The communication
complexity p = O(T) also matches periodic averaging [40]. Furthermore, we can
breakdown the extra terms in Eq. (9) to

10η2L2(σ2 + 2G2)︸ ︷︷ ︸
out-of-step O(1

T)

+ 20pη2L2σ2︸ ︷︷ ︸
divergence O(1√

T
)

+ 2ηLσ2︸ ︷︷ ︸
original O(1√

T
)

, (10)

where the out-of-step term resulting from the synchronization error ηt

2 ∇F (xr
t ; ξ

r
t)

equals O(1
T). The divergence term is caused by the infrequent synchronization

every p updates and equals O(1√
T

). The obverse model xo
t and the reverse model

xr
t diverges further (a larger ‖xo − xr‖) with a larger synchronization period p.

The original term resulting from stochastic sampling as in the SGD optimizer
also equals O(1√

T
). Therefore, the out-of-step term is trivial in contrast to the

other terms and it validates the effectiveness of our proposed out-of-step periodic
averaging to address the important issue of synchronizing the alternative and
bidirectional training of two models.

Cross Model Parallelism 645

Fig. 2. Verify out-of-step periodic averaging via illustrating a much smaller normalized
synchronization (blue) than divergence (green) errors before synchronization in the
communication iteration. Best viewed in color.

5 Experimental Results

5.1 Settings

All experiments are implemented using PyTorch [28] and run on a machine
equipped with 4 GPUs. The model is split into K = 4 partitions and the syn-
chronization period p = 8 unless specified otherwise. Each partition is placed on
one GPU.

CIFAR. We train the ResNet-164 and ResNet-1001 [11] models on CIFAR-10
[21] image classification task. The model size of ResNet-164 on CIFAR-10 is small
and it is fit for fast validation of arguments, while ResNet-1001 is relatively larger
on CIFAR-10. We report the mean and standard deviation metrics over 5 runs.
The base learning rate is 0.1 and the batch size is 128. The momentum constant
is 0.9 and the weight decay is 5×10−4. The model is trained for 200 epochs with
a learning rate decay of 0.1 at epoch 100 and 150. Random cropping, random
flipping, and standardization are applied as data augmentation techniques.

ImageNet. We train the ResNet-50 model with on ImageNet [30] image classifi-
cation tasks. The base learning rate is 0.1 and the batch size is 256. The momen-
tum constant is 0.9 and the weight decay is 1 × 10−4. The model is trained for
90 epochs with a learning rate decay of 0.1 at epoch 30, 60 and 80. Random
cropping, random flipping, and standardization are applied as data augmenta-
tion techniques. We have also trained other large models including ResNet-152,
ResNeXt-101-32x8d [34], Wide ResNet-101-2 [41], and VGG-19 [31].

5.2 Faster Convergence with Out-of-Step Periodic Averaging

Negligible Synchronization Error. We first plot the curves of the training
loss and test accuracy of ResNet-164 and ResNet-1001 on CIFAR-10 and ResNet-
50 on ImageNet regarding training epochs in Fig. 3. They validate that out-of-
step periodic averaging does not jeopardize the final performance of the model.

646 A. Xu and Y. Bai

Table 1. Test Accuracy (%) in Fig. 3. In each row, the first and second sub-rows denote
MP and CMP respectively. In the “Epoch” column, the left and right numbers denote
the epoch in CIFAR-10 and ImageNet respectively. Mean ± standard deviation are
shown for CIFAR-10.

Epoch CIFAR-10 ImageNet

ResNet-164 ResNet-1001 ResNet-50

100/30 84.61 ± 0.39 89.06 ± 0.17 55.02

88.43 ± 0.24 90.69 ± 0.22 59.36

150/60 93.43 ± 0.14 95.08 ± 0.14 71.00

94.72 ± 0.11 96.03 ± 0.07 73.44

200/90 94.89 ± 0.13 95.66 ± 0.09 76.33

95.28 ± 0.10 96.19 ± 0.09 76.38

94.64† 95.31 ± 0.20† 76.15‡

†From the original paper [12].
‡From https://pytorch.org/docs/stable/torchvision/
models.html

Table 2. Best Top-1 Accuracy (%) of training ResNet-164 on CIFAR-10 using CMP
with different period p. Mean ± standard deviation are reported.

Period p 1 2 4

Accuracy 94.80 ± 0.20 95.18 ± 0.09 95.32 ± 0.05

Period p 8 16 32

Accuracy 95.28 ± 0.10 95.26 ± 0.11 95.24 ± 0.19

To show the synchronization error η
2∇F (xr; ξr) and the divergence error xo −

xr before the communication iteration, we plot their �1-norm normalized by
the �1-norm of the average model x = 1

2 (xo + xr) during training as in Fig. 2.
The synchronization and divergence errors affect the out-of-step and divergence
terms respectively in Eq. (10). As the training proceeds with decreasing learning
rate, the divergence error also decreases and becomes trivial compared with
the averaged model x. Moreover, the synchronization error is much smaller in
contrast to the divergence error, leading to the trivial O(1

T) out-of-step term in
contrast to the O(1√

T
) divergence term. It empirically validates our analysis.

Faster Convergence. On the contrary of performance deterioration, we empir-
ically find that out-of-step periodic averaging can potentially even improve the
convergence speed and final performance. As in the first row of plots in Fig. 3,
we can see that our method accelerates the convergence speed both on CIFAR-
10 and ImageNet. Although the training loss of MP and CMP becomes very
close after the third learning rate decay, their gap is obvious when the learning
rate η > 0.0001. Specifically, out-of-step periodic averaging improves the test
accuracy by 3.82%, 1.29%, and 0.39% at epoch 100, 150, and 200 respectively

https://pytorch.org/docs/stable/torchvision/models.html
https://pytorch.org/docs/stable/torchvision/models.html

Cross Model Parallelism 647

Table 3. More ImageNet Top-1 Accuracy (%) (K = 4)

ResNet-50 VGG-19 ResNet-152

MP 76.33 ± 0.11 72.39 ± 0.08 78.34 ± 0.14

CMP 76.38 ± 0.13 72.44 ± 0.10 78.36 ± 0.06

PMP [37] 75.80 ± 0.22 71.62± 0.19 77.53 ± 0.15

PMP [27] 75.70 ± 0.27 71.56± 0.25 77.64 ± 0.21

WideResNet-101-2 ResNext-101-32x8d

MP 78.85 ± 0.12 79.31 ± 0.05

CMP 78.83 ± 0.14 79.34 ± 0.06

PMP [37] 77.76 ± 0.25 78.62 ± 0.22

PMP [27] 77.68 ± 0.19 78.52 ± 0.25

when training ResNet-164 on CIFAR-10. It becomes 1.63%, 0.95%, and 0.53%
for ResNet-1001 on CIFAR-10. Consequently, we have a faster and better test
accuracy of CMP than MP in CIFAR-10 experiments. The gap also exists for
ImageNet but is less obvious at the end of the training, with an improvement
of 4.34%, 2.44%, and 0.05% at epoch 30, 60, and 90. We summarize the test
accuracy in Table 1. We also compare the results of MP and CMP on more
models in ImageNet experiments in Table 3, where PMP leads to considerable
performance loss due to asynchronous training. Why can CMP even improve
the model performance? Periodic averaging [6,32] also shows an empirical faster
convergence, but the theoretical explanation via convergence analysis remains
an open problem. [10,16] empirically showed that the model tends to stay at the
edge of the local optima, thus we can reach the center of the local optima via
averaging to get better performance. Therefore, CMP can be regarded to have
an implicit regularization effect. Empirically, CIFAR-10 benefits more from it
than ImageNet, possibly due to the larger randomness in CIFAR-10.

Varying Period p. We summarized the test accuracy of ResNet-164 trained
with CMP using different synchronization period p in Table 2. It shows that CMP
works well with a wide range of period p without performance deterioration. The
performance empirically peaks at p = 4, but the performance of other choices is
also very close to it. A larger period p means a smaller communication cost and
p = 8 will suffice to achieve fast training regarding the wall clock time (Fig. 5).
Therefore, we simply set p = 8 and no other hyper-parameters is introduced in
CMP compared with MP.

5.3 Higher Throughput with Cross Model Parallelism

We plot the curves of the training loss and test accuracy regarding training time
in Fig. 4. CMP achieves much higher training throughput (faster training speed
regarding time) in contrast to MP. The bidirectional training of the obverse and

648 A. Xu and Y. Bai

Fig. 3. Training curves regarding epochs. The test accuracy curves at the end of train-
ing are not zoomed in for ResNet-50 as they are almost overlapped (Table 1). Best
viewed in color.

reverse models are partially overlapped, contributing to a faster training speed
by utilizing idle workers more efficiently. Therefore, both the faster convergence
of out-of-step periodic averaging and a higher training throughput contribute to
the considerably faster training speed of CMP in contrast to MP. We summarize
the speedup in Table 4, but it is inferior to the ideal training speedup 2K

K+1 of
CMP from Eq. (4). There are two possible causes. The first is that the workload
is not exactly balanced on different workers. We have fine-tuned the partition
of the CNN model but a more fine-grained grid search may further improve
the speedup. The second is that the forward time and backward time are not
empirically equal in Fig. 1. The backward time is usually in the range of ×1 ∼ ×2
the forward time. Therefore, the ideal speedup of CMP is hard to reach in
practice.

Scalability. The speedup for various models both on CIFAR-10 and ImageNet is
shown in Table 4. CMP is capable of accelerating MP for various large CNNs. For
smaller CNNs, we record the speedup of CMP in contrast to MP with K = 2, 3, 4.
For large CNNs, we record the corresponding metrics with K = 4. We achieve
the speedup close to ideal with various CNNs and K. In the meantime, the mem-
ory overheads are trivial even when we are bidirectionally training two models
in CMP. As the activations of the two models are alternatively released in CMP,
the memory overheads mainly consist of the additional model parameters and
environment setup for training an additional model. The CNNs are usually com-
putationally intensive, so the size of parameters is way less than the activations.
Although the absolute memory overhead is 2.4 GiB for training ResNeXt-101-
32x8d using CMP, it is only 3.9% compared with the original memory consump-
tion but leads to a 41% improvement of the training speed. Besides, the memory

Cross Model Parallelism 649

Fig. 4. Training curves regarding wall clock time. Best viewed in color.

Fig. 5. Running time breakdown using CMP. The computation time and communica-
tion time are normalized by the total time of p = 1. Best viewed in color.

overheads are way less than naively training two models at the same time, which
validates the feasibility of our proposed CMP method.

Running Time Breakdown. We breakdown the running time of CMP on both
the CIFAR-10 and ImageNet tasks to show how the synchronization period p
helps improve the training speed. As we only have two models for communi-
cation, the communication overheads of CMP are not as overwhelming as in
data parallelism with many workers. However, the communication still consumes
about 16.8% of the total running time when the obverse and reverse models are
synchronized every iteration (p = 1) in CIFAR-10 experiments. It decreases to
3.2% and 1.9% for ResNet-164 and ResNet-1001 respectively by increasing the
synchronization period p to 8. In comparison, the models on ImageNet are much
more computationally intensive due to the larger feature size and the communi-
cation overheads can be negligible when p ≥ 4.

650 A. Xu and Y. Bai

Table 4. Speedup and memory (GiB) comparison with K GPUs from small to large
models. The first two models are trained on CIFAR-10, while the rest are trained on
ImageNet. For larger models, we only show the results with K = 4.

Model MP CMP Ideal

Memory Memory Speedup 2K
K+1

ResNet-164 4.53 4.59 ×1.25 (K = 2) ×1.33

4.65 ×1.35 (K = 3) ×1.50

4.74 ×1.44 (K = 4) ×1.60

ResNet-1001 27.5 27.7 ×1.22 (K = 2) ×1.33

27.7 ×1.32 (K = 3) ×1.50

27.8 ×1.40 (K = 4) ×1.60

ResNet-50 21.2 22.1 ×1.29 (K = 2) ×1.33

22.7 ×1.41 (K = 3) ×1.50

23.5 ×1.49 (K = 4) ×1.60

VGG-19 20.3 21.8 ×1.23 (K = 2) ×1.33

22.3 ×1.33 (K = 3) ×1.50

23.0 ×1.42 (K = 4) ×1.60

Wide ResNet-101-2 42.0 44.4 ×1.44 (K = 4) ×1.60

ResNet-152 43.9 45.6 ×1.46 (K = 4) ×1.60

ResNeXt-101-32x8d 61.0 63.4 ×1.41 (K = 4) ×1.60

6 Conclusion

In this work, we focus on addressing the training difficulty of the large CNNs
which are playing a key role in many data mining tasks. We proposed a novel
cross model parallelism to improve the efficiency of model parallelism by bidi-
rectionally train two reversely placed models with negligible peak memory over-
heads. We also introduced a novel out-of-step periodic averaging method to
periodically synchronize the two alternatively trained models for lower com-
munication overheads. Both theoretical and experimental results show that the
synchronization error is negligible and out-of-step periodic averaging empirically
accelerates the convergence. We achieve a speedup of up to ×1.5 compared with
model parallelism. In contrast to pipeline model parallelism, cross model paral-
lelism improves the efficiency of model parallelism without these limitations of
re-computation overheads and staleness.

Ethical Statement. Our work focuses on improving the model parallelism for dis-

tributed training in data-centers. We do not see any potential ethical issues.

Cross Model Parallelism 651

References

1. Abadi, M., et al.: Tensorflow: a system for large-scale machine learning. In:
12th {USENIX} Symposium on Operating Systems Design and Implementation
({OSDI} 2016), pp. 265–283 (2016)

2. Belilovsky, E., Eickenberg, M., Oyallon, E.: Greedy layerwise learning can scale to
imagenet. In: International Conference on Machine Learning, pp. 583–593. PMLR
(2019)

3. Bottou, L.: Large-scale machine learning with stochastic gradient descent. In:
Lechevallier, Y., Saporta, G. (eds.) COMPSTAT 2010, pp. 177–186. Springer, Hei-
delberg (2010). https://doi.org/10.1007/978-3-7908-2604-3 16

4. Chen, T., Xu, B., Zhang, C., Guestrin, C.: Training deep nets with sublinear mem-
ory cost. arXiv preprint arXiv:1604.06174 (2016)

5. Foley, D., Danskin, J.: Ultra-performance pascal GPU and NVLink interconnect.
IEEE Micro 37(2), 7–17 (2017)

6. Gao, H., Xu, A., Huang, H.: On the convergence of communication-efficient local
SGD for federated learning. In: Proceedings of the AAAI Conference on Artificial
Intelligence, vol. 35, pp. 7510–7518 (2021)

7. Gu, B., Xu, A., Huo, Z., Deng, C., Huang, H.: Privacy-preserving asynchronous
vertical federated learning algorithms for multiparty collaborative learning. IEEE
Trans. Neural Netw. Learn. Syst. 33(11), 6103–6115 (2021)

8. Guo, P., et al.: Auto-FedRL: federated hyperparameter optimization for multi-
institutional medical image segmentation. In: Avidan, S., Brostow, G., Cissé, M.,
Farinella, G.M., Hassner, T. (eds.) ECCV 2022. LNCS, vol. 13681, pp. 437–455.
Springer, Cham (2022). https://doi.org/10.1007/978-3-031-19803-8 26

9. Han, S., Mao, H., Dally, W.J.: Deep compression: compressing deep neural net-
works with pruning, trained quantization and huffman coding. arXiv preprint
arXiv:1510.00149 (2015)

10. He, H., Huang, G., Yuan, Y.: Asymmetric valleys: beyond sharp and flat local
minima. In: Advances in Neural Information Processing Systems, pp. 2553–2564
(2019)

11. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In:
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pp. 770–778 (2016)

12. He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In:
Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9908, pp.
630–645. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46493-0 38

13. Huang, Y., et al.: Tangram: bridging immutable and mutable abstractions for dis-
tributed data analytics. In: USENIX Annual Technical Conference, pp. 191–206
(2019)

14. Huo, Z., Gu, B., Huang, H.: Training neural networks using features replay. In:
Advances in Neural Information Processing Systems, pp. 6659–6668 (2018)

15. Huo, Z., Gu, B., Huang, H., et al.: Decoupled parallel backpropagation with conver-
gence guarantee. In: International Conference on Machine Learning, pp. 2098–2106
(2018)

16. Izmailov, P., Podoprikhin, D., Garipov, T., Vetrov, D., Wilson, A.G.: Aver-
aging weights leads to wider optima and better generalization. arXiv preprint
arXiv:1803.05407 (2018)

17. Jaderberg, M., et al.: Decoupled neural interfaces using synthetic gradients. In:
International Conference on Machine Learning, pp. 1627–1635. PMLR (2017)

https://doi.org/10.1007/978-3-7908-2604-3_16
http://arxiv.org/abs/1604.06174
https://doi.org/10.1007/978-3-031-19803-8_26
http://arxiv.org/abs/1510.00149
https://doi.org/10.1007/978-3-319-46493-0_38
http://arxiv.org/abs/1803.05407

652 A. Xu and Y. Bai

18. Keskar, N.S., Mudigere, D., Nocedal, J., Smelyanskiy, M., Tang, P.T.P.: On large-
batch training for deep learning: generalization gap and sharp minima. arXiv
preprint arXiv:1609.04836 (2016)

19. Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional
networks. arXiv preprint arXiv:1609.02907 (2016)

20. Krizhevsky, A.: One weird trick for parallelizing convolutional neural networks.
arXiv preprint arXiv:1404.5997 (2014)

21. Krizhevsky, A., Hinton, G., et al.: Learning multiple layers of features from tiny
images (2009)

22. LeCun, Y., et al.: Backpropagation applied to handwritten zip code recognition.
Neural Comput. 1(4), 541–551 (1989)

23. Lee, S., Kim, J.K., Zheng, X., Ho, Q., Gibson, G.A., Xing, E.P.: On model paral-
lelization and scheduling strategies for distributed machine learning. In: Advances
in Neural Information Processing Systems, pp. 2834–2842 (2014)

24. Li, J., et al.: A general and efficient querying method for learning to hash. In:
Proceedings of the 2018 International Conference on Management of Data, pp.
1333–1347 (2018)

25. Li, M., Andersen, D.G., Smola, A.J., Yu, K.: Communication efficient distributed
machine learning with the parameter server. In: Advances in Neural Information
Processing Systems, pp. 19–27 (2014)

26. Liu, Y., Xu, A., Chen, Z.: Map-based deep imitation learning for obstacle avoid-
ance. In: 2018 IEEE/RSJ International Conference on Intelligent Robots and Sys-
tems (IROS), pp. 8644–8649. IEEE (2018)

27. Narayanan, D., et al.: Pipedream: generalized pipeline parallelism for DNN train-
ing. In: Proceedings of the 27th ACM Symposium on Operating Systems Principles,
pp. 1–15 (2019)

28. Paszke, A., et al.: Pytorch: an imperative style, high-performance deep learning
library. In: Wallach, H., Larochelle, H., Beygelzimer, A., d’ Alché-Buc, F., Fox, E.,
Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 32,
pp. 8024–8035. Curran Associates, Inc. (2019)

29. Rumelhart, D.E., Hinton, G.E., Williams, R.J.: Learning representations by back-
propagating errors. Nature 323(6088), 533–536 (1986)

30. Russakovsky, O., et al.: ImageNet large scale visual recognition challenge. Int. J.
Comput. Vision (IJCV) 115(3), 211–252 (2015). https://doi.org/10.1007/s11263-
015-0816-y

31. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale
image recognition. arXiv preprint arXiv:1409.1556 (2014)

32. Stich, S.U.: Local SGD converges fast and communicates little. In: International
Conference on Learning Representations (2018)

33. Valiant, L.G.: A bridging model for parallel computation. Commun. ACM 33(8),
103–111 (1990)

34. Xie, S., Girshick, R., Dollár, P., Tu, Z., He, K.: Aggregated residual transformations
for deep neural networks. In: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pp. 1492–1500 (2017)

35. Xu, A., Huang, H.: Coordinating momenta for cross-silo federated learning. In:
Proceedings of the AAAI Conference on Artificial Intelligence, vol. 36, pp. 8735–
8743 (2022)

36. Xu, A., Huang, H.: Detached error feedback for distributed SGD with random
sparsification. In: International Conference on Machine Learning, pp. 24550–24575.
PMLR (2022)

http://arxiv.org/abs/1609.04836
http://arxiv.org/abs/1609.02907
http://arxiv.org/abs/1404.5997
https://doi.org/10.1007/s11263-015-0816-y
https://doi.org/10.1007/s11263-015-0816-y
http://arxiv.org/abs/1409.1556

Cross Model Parallelism 653

37. Xu, A., Huo, Z., Huang, H.: On the acceleration of deep learning model parallelism
with staleness. In: Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pp. 2088–2097 (2020)

38. Xu, A., Huo, Z., Huang, H.: Step-ahead error feedback for distributed training
with compressed gradient. In: Proceedings of the AAAI Conference on Artificial
Intelligence, vol. 35, pp. 10478–10486 (2021)

39. Xu, A., et al.: Closing the generalization gap of cross-silo federated medical image
segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pp. 20866–20875 (2022)

40. Yu, H., Jin, R., Yang, S.: On the linear speedup analysis of communication effi-
cient momentum SGD for distributed non-convex optimization. In: International
Conference on Machine Learning, pp. 7184–7193 (2019)

41. Zagoruyko, S., Komodakis, N.: Wide residual networks. arXiv preprint
arXiv:1605.07146 (2016)

42. Zhou, S., Wu, Y., Ni, Z., Zhou, X., Wen, H., Zou, Y.: Dorefa-net: training low
bitwidth convolutional neural networks with low bitwidth gradients. arXiv preprint
arXiv:1606.06160 (2016)

http://arxiv.org/abs/1605.07146
http://arxiv.org/abs/1606.06160

Distributed Adaptive Optimization
with Divisible Communication

An Xu1(B) and Yang Bai2

1 ByteDance Inc., Seattle, USA
an.xu@bytedance.com

2 Tencent Inc., Beijing, China

mavisbai@tencent.com

Abstract. Synchronous distributed training can scale the training of
deep neural networks on large-scale data, thus it has been widely adopted
in large-scale applications. Because it often suffers from the commu-
nication bottleneck, many methods have been proposed to reduce the
communication cost. However, these communication reduction methods
often lead to poor performance for the adaptive optimizer, largely due
to its non-linearity. To address this challenging issue, we propose a novel
method to divide the communication into the foreground and background
communication. The foreground communication is more informative but
can be of low cost to achieve communication efficiency, while the back-
ground communication runs in the background and requires no synchro-
nization time. We use Adam as the base optimizer and achieve ×1024
foreground compression ratio on CIFAR-10, ×128 on non-iid CIFAR-
10, ×64 on ImageNet image classification tasks, and ×128 on WMT’16
EN-DE machine translation task with comparable performance, which
leads to ×7, ×6.4, ×3.5, and ×7 training speedup, respectively. More-
over, we provide rigorous theoretical analysis to prove that our method
obtains the same convergence rate as Adam and achieves linear speedup
regarding the number of workers.

Keywords: Adaptive Optimization · Communication Efficiency ·
Distributed Training

1 Introduction

Synchronous distributed learning is widely adopted to accelerate the training of
deep neural networks (DNNs) by scaling it to many workers (GPUs). It can be
formulated as an optimization problem of

min
x

1
N

N∑

i=1

fi(x) , (1)

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
D. Koutra et al. (Eds.): ECML PKDD 2023, LNAI 14171, pp. 654–670, 2023.
https://doi.org/10.1007/978-3-031-43418-1_39

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-43418-1_39&domain=pdf
http://orcid.org/0000-0001-7480-5010
https://doi.org/10.1007/978-3-031-43418-1_39

Distributed Adaptive Optimization with Divisible Communication 655

Algorithm 1. Vanilla Adam.
1: Input: model x, update Δ, lr γ, running average (u, v), coefficient (β1, β2), iteration

t, and ε.
2: function ADAM(x, Δ, γ, u, v, β1, β2, t, ε)
3: u′ = β1u + (1 − β1)Δ
4: v′ = β2v + (1 − β2)Δ

2

5: x′ = x − γ
u′/(1−βt+1

1)√
v′/(1−βt+1

2)+ε

6: return x′, u′, v′.
7: end function

where x is the model weight, fi is the objective function of worker i ∈ [N]. Let
the average stochastic gradient

gt
Δ=

1
N

N∑

i=1

∇Fi(xt; ξt) , (2)

where ∇Fi(xt; ξt) is the stochastic gradient and ξt is the unbiased data sampling
stochastic variable satisfying

Eξt∇Fi(xt; ξt) = ∇fi(xt) . (3)

Adam [15,23] is a representative method to solve this optimization problem for
DNN related tasks with adaptive learning rate (lr). Specifically, the synchronous
distributed Adam updates the model via Algorithm 1:

xt+1, ut+1, vt+1 = ADAM(xt, gt, γ, ut, vt, β1, β2, t, ε) ,

where t is iteration, γ is the learning rate (lr), ut is the running average with
coefficient β1, vt is the second moment running average with coefficient β2, and
ε is for numerical stability and controlled adaptivity.

However, averaging the stochastic gradient (gt) requires heavy communi-
cation [8–10,12,19,21,33,35,37]. It becomes the computational bottleneck for
scaling the training task especially for DNNs with large model sizes. There
have been many works to improve the efficiency of synchronous distributed
(momentum) SGD training, such as compression [2,5,30,31] with error feedback
[14,20,32,34,36,40], local SGD with local training and infrequent communica-
tion [26,39], or the combination of both [4,8]. We observe that their success
is largely due to the linearity of the (momentum) SGD update rule. Neverthe-
less, there are fewer works perfectly addressing the communication bottleneck
of synchronous distributed Adam because its adaptivity (coordinate-wise opera-
tor) breaks the linearity, which makes communication-efficient Adam much more
challenging.

In this work, we focus on tackling the communication efficiency challenge for
synchronous distributed Adam. To address this critical challenge, we propose
new concepts called foreground and background communication. The foreground

656 A. Xu and Y. Bai

communication is compressed and efficient, while the background communica-
tion runs in parallel with the computation so that it does not incur additional
synchronization time. In summary, our contributions are as follows.

– We propose a novel communication-efficient distributed Adam variant with
foreground and background communication (FB-Adam).

– We introduce a novel running average smoothing technique to stabilize and
improve local training.

– We prove that our new method has the same convergence rate as the vanilla
distributed Adam without compression.

– Extensive deep learning experiments show that our method achieves ×1024
foreground compression ratio on CIFAR-10, ×64 on non-iid CIFAR-10, ×16
on ImageNet image classification tasks, and ×32 on WMT’16 EN-DE machine
translation task with comparable performance to Adam, largely improv-
ing existing works. We achieve ×7, ×6.4, ×3.5, and ×7 training speedup
respectively.

2 Related Works

Local Training. In local SGD [26,39], workers perform local training with
(momentum) SGD. The model and momentum statistics are periodically aver-
aged. The same idea is applied to Adam by periodically averaging the model
and Adam statistics known as LocalAdam [7]. FedAdam [22], on the other hand,
uses SGD for local training and the corresponding local model update to per-
form server Adam update. However, its convergence analysis does not include
the running average u though its algorithm does. Besides, it is only evaluated
for federated learning [16] applications.

Compression. Gradient quantization reduces the precision of the gradient to
lower bits than the original 32-bit floating-point, e.g., QSGD [2], TernGrad [31],
SignSGD [5]. Gradient sparsification [1,3,27] selects partial gradient components
for communication, e.g., Top-K.

Communication-Efficient Adam. EfficientAdam [6] directly applies error
feedback [14,40] to the compression of Adam model update. But it does not
synchronize Adam statistics and its convergence analysis suffers from the model
dimensionality d. 1-bit Adam [28] shows that Adam statistics do not change too
much during the late training. however, it requires a non-negligible number of
warm-up training epochs that limits the overall compression ratio. 1-bit Lamb
[18] works on the large-batch training problem by applying a similar idea to the
Lamb [38] optimizer.

3 Methodology

3.1 Divisible Communication

The motivation of our FB-Adam is divisible communication, that is, dividing
the communication message into the foreground and background communication

Distributed Adaptive Optimization with Divisible Communication 657

Algorithm 2. Distributed Adam with divisible communication (FB-Adam) on
worker n ∈ [N].
1: Input: period P , #iterations T , #workers N , server lr γ, local lr η, coefficient

(β1, β2), and ε.

2: Initialize: running average u0 = u
(n)
0 = v0 = v

(n)
0 = 0, model x

(n)
0 = x0, compres-

sor C(·).
3: for t = 0, 1, · · · , T − 1 do

4: Let r
Δ
= � t

P
�

5: x
(n)
t+1 = x

(n)
t − η

P
u
(n)
r − η∇F (n)(x

(n)
t , ξ

(n)
t)

6: if mod (t + 1, P) = 0 then
7: if r > 0 then
8: Wait for the background communication.
9: Δr−1 = ˜Δr−1 + er + er

10: xt+1−P , ur, vr ← ADAM(xt+1−2P , Δr−1, γ, ur−1, vr−1, β1, β2, r, ε)
11: end if
12: Δ

(n)
r =

∑t
τ=t−P+1 η∇F (n)(x

(n)
τ , ξ

(n)
τ)

13: e
(n)
r+1 = Δ

(n)
r − C(Δ

(n)
r) and send C(Δ

(n)
r) to server. // Foreground.

14: Server: // Foreground.

15: ˜Δr = C(1
N

∑N
n=1 C(Δ

(n)
r))

16: er+1 = 1
N

∑N
n=1 C(Δ

(n)
r) − ˜Δr

17: Broadcast ˜Δr to workers.
18: Invoke a new thread in parallel: // Background.

19: Average er+1 = 1
N

∑N−1
n=0 e

(n)
r+1

20: Broadcast server error er+1 to workers.
21: x

(n)
t+1, u

(n)
r+1, v

(n)
r+1 = ADAM(xt+1−P , ˜Δr + e

(n)
r+1, γ, ur, vr, β1, β2, r + 1, ε)

22: end if
23: end for

message. In foreground communication, workers and the server communicate the
most important information of the message, which can be small in terms of the
message size. We leave the rest of the message to the background communication
that can be conducted in parallel to the training computation. The background
message will be stale for one communication round, but its negative effect will
be weakened due to less importance. In this way, only the foreground commu-
nication requires synchronization, but it will be communication-efficient, while
the synchronization time for the background communication will be hidden by
the training computation. After background communication, we can restore the
vanilla Adam update. The algorithm is summarized in Algorithm 2.

However, the background communication may not be able to be hidden by
the computation time of one training iteration. Hence we adopt local training
and periodic synchronization to stack the computation of P training iteration
together and reduce the communication frequency. Thus, we can ensure that
the background communication can be hidden by the local training, resulting in
barely any background synchronization time.

In local training, we propose to use SGD with a frozen running average term
as shown in Algorithm 2 line 4, and we refer to it as running average smoothing.

658 A. Xu and Y. Bai

Table 1. Compare FB-Adam (ours) with existing methods.

Method Message
Compression

Infrequent
Synchronization

Provable
Convergence
with Adam
Statistics

High
Communication
Reduction
Ratio

EfficientAdam
√ × √ ×

1-bit Adam
√ × √ ×

LocalAdam × √ × ×
FedAdam × √ × ×
FB-Adam (Ours)

√ √ √ √

It helps to stabilize local training as the stochastic gradient introduces noise. We
do not update this running average term during local training to avoid additional
communication for averaging optimization statistics.

Foreground and Background. In particular, the communication message
Δ

(n)
r at training round r is the sum of the local training gradient multiplied

by the local learning rate. We use a compressor C (e.g., Top-K) to extract the
important information of the message for foreground communication. It is effi-
cient both from workers to server and server to workers as shown in Algorithm 2
line 12 and 13. After foreground communication, each worker receives the com-
pressed message Δ̃r. The rest of the message exists as the local error e

(n)
r+1 and

server error er+1. It will be communicated in a background thread in parallel
to the next round of local training computation. Finally, we conduct the Adam
update at the server side with

Δ̃r + e
(n)
r+1 (4)

in Algorithm 2 line 15.

Correction. The updated model based on only the foreground message will
deviate from the vanilla Adam method. Therefore, we correct the starting model
at training round r by an Adam re-update with the sum of the foreground and
background message Δr−1, as shown in Algorithm 2 lines 7 to 9. Note that Δr−1

is the true average message from all workers in training round r − 1.
Overall, our method FB-Adam features message compression, infrequent

communication, and divisible communication techniques. The aforementioned
Adam variants suffer from a considerable performance loss when the communi-
cation reduction ratio is high, while FB-Adam can restore vanilla Adam’s update
rule. We compare our method with existing works in Table 1.

4 Convergence Results

Before introducing our main theoretical analysis results, we discuss the following
assumptions. These assumptions are mild and have been used in related works

Distributed Adaptive Optimization with Divisible Communication 659

frequently. For the combination of Top-K and QSGD compressor, [4] showed
that it satisfies Assumption 5.

Assumption 1 (Lower Bound). Function f has a lower bound f∗.

Assumption 2 (Lipschitz Gradient). Function fn is L-smooth (L > 0) for all
n ∈ [N], i.e., for all x, y ∈ R

d

‖∇fn(x) − ∇fn(y)‖ ≤ L‖x − y‖ . (5)

Assumption 3 (Bounded Variance). Function fn has bounded local variance
σl, i.e.,

E‖∇F (n)(x, ξ) − ∇fn(x)‖2 ≤ σ2
l (6)

for all x ∈ R
d and n ∈ [N]. Function f has bounded global variance σg, i.e., for

all x ∈ R
d,

1
N

N∑

n=1

‖∇fn(x) − ∇f(x)‖2 ≤ σ2
g . (7)

Assumption 4 (Bounded Gradient). Function F (n)(x, ξ) has G-bounded gradi-
ent, i.e., for any n ∈ [N] and x ∈ R

d, we have

‖∇F (n)(x, ξ)‖ ≤ G . (8)

Assumption 5 (Approximate Compressor [14,32,40]). For δ ∈ [0, 1] and all
x ∈ R

d, the compressor C satisfies

‖C(x) − x‖2 ≤ (1 − δ)‖x‖2 . (9)

In the following, we will provide the convergence analysis of our method. The
complete proof can be found in the Appendix and here we only show the sketch
of our proof.

Theorem 6. Let Assumptions 1 to 5 hold and

η =
1

160LP
√

R
, (10)

γ =
√

PNG

L
, (11)

ε =
G

(1 − β1)L
. (12)

Suppose zr
Δ= xrP and T = RP . Then for large T that satisfies

T ≥ P 2N , (13)

our algorithm satisfies

1
R

R−1∑

r=0

E‖∇f(zr)‖2 ≤ 640L(f(x0) − f∗) + σ2
l

(1 − β1)
√

NT

+
4PG2 + PNσ2

l + ((1 − δ)P 2 N + P)σ2
g

(1 − β1)T
. (14)

660 A. Xu and Y. Bai

Our convergence bound is free of the model dimensionality d, the first among
existing Adam variants with compression to the best of our knowledge, which is
significant for deep learning models.

Corollary 1. According to Theorem 6, our algorithm satisfies

E‖∇f(zr)‖2 ≤ O(
1√
NT

) + O(
PN

T
) + O(

(1 − δ)P 2N

T
).

When T is large enough, the dominating term is O(1√
NT

). Hence the convergence
rate of our algorithm is

O(
1√
NT

) , (15)

which indicates the linear speedup regarding N .

Corollary 2. According to Theorem 6, to guarantee the convergence of our algo-
rithm we need

P ≤ T 1/2

N1/2
. (16)

When term O(1√
NT

) is dominating, i.e.,

O(
1√
NT

) ≥ O(
P 2N

T
) , (17)

P satisfies P ≤ T 1/4

N3/4 . Thus, the upper bound of P is

O(
T 1/4

N3/4
) . (18)

Similarly, if the global variance σg = 0 (data-center distributed training) or δ = 1
(no compression), the upper bound of P is

O(
T 1/2

N3/2
) . (19)

5 Experiments

5.1 Experiment Setup

We compare our method FB-Adam with 5 baselines:
(1) vanilla Adam, (2) EfficientAdam (Adam + Error Feedback), (3) Local-

Adam, (4) FedAdam, and (5) 1-bit Adam.
The compressor C is the commonly-used Top-K sparsification, so that the

foreground compression ratio Rc can be easily adjusted. For our FB-Adam, the
overall communication reduction ratio

R = RcP (20)

Distributed Adaptive Optimization with Divisible Communication 661

Fig. 1. Test accuracy for training VGG-16 on CIFAR-10.

and P = 4 by default, since P = 4 is large enough to make sure that there is
no background synchronization overheads for all our experiment settings. While
R = Rc for EfficientAdam and 1-bit Adam, R = P for FedAdam, and R = P

3 for
LocalAdam due to its additional communication cost of averaging the running
average u and v.

For easy comparison, we report the model performance of 1-bit Adam with
the same compressor as the other communication-efficient methods in the tables,
though 1-bit Adam require a full-precision pre-training stage (i.e., the warm-up

662 A. Xu and Y. Bai

Table 2. Test accuracy for training VGG-16 on CIFAR-10. × denotes poor conver-
gence.

Ratio(R) Adam EfficientAdam LocalAdam FedAdam 1-bit Adam FB-Adam

×1 88.85 ± 0.16 – – – – –

×4 – 85.64 ± 0.13 86.03 ± 0.11 89.43 ± 0.09 88.45 ± 0.34 90.01±0.03

×16 – 85.60 ± 0.45 87.25 ± 0.35 89.62 ± 0.17 88.40 ± 0.18 89.98±0.14

×64 – 86.16 ± 0.02 88.15 ± 0.06 89.44 ± 0.19 88.15 ± 0.25 89.79±0.17

×256 – 86.20 ± 0.28 87.13 ± 0.52 88.43 ± 0.13 87.88 ± 0.11 90.09±0.03

×512 – 86.44 ± 0.15 × 85.58 ± 0.08 87.32 ± 0.28 89.54±0.03

×1024 – 84.86 ± 0.13 × × 86.01 ± 0.19 89.32±0.18

×2048 – × × × × 88.11±0.09

Table 3. Test accuracy for training VGG-16 on non-iid CIFAR-10. × denotes poor
convergence.

Ratio (R) EfficientAdam LocalAdam FedAdam 1-bit Adam FB-Adam

×8 × 84.36 ± 0.10 88.87 ± 0.16 88.35 ± 0.31 89.10±0.20

×32 × 84.20 ± 0.07 87.96 ± 0.02 88.03 ± 0.22 89.02±0.06

×128 × 84.90 ± 0.39 86.94 ± 0.19 87.85 ± 0.26 88.37±0.13

×512 × 84.44 ± 0.09 85.26 ± 0.28 86.88 ± 0.39 87.16±0.10

×1024 × × 81.65 ± 0.39 85.32 ± 0.32 86.90±0.22

×2048 × × × × 85.88±0.19

stage). Therefore 1-bit Adam actually will have a smaller overall compression
ratio than other compared methods in Tables 2, 3, 4, and 5. However, when
plotting the training curves regarding wall-clock time in the figures, the warm-
up stage of 1-bit Adam is communication-heavy and results in longer wall-clock
time than the other communication-efficient methods with the same compressor,
shown in Figs. 1, 2, 3, and 4. The warm-up stage setting follows the original paper
[18].

We conduct experiments on CIFAR-10 and ImageNet image classification
tasks, and WMT’16 EN-DE machine translation tasks. All experiments run in
a cluster of 16 machines where each has 1 NVIDIA P40 GPU and 10 Gb/s
networking bandwidth.

5.2 Results on CIFAR-10

For CIFAR-10 [17] image classification task, we train a VGG-16 [25] model.
We report the mean and standard deviation metrics over 3 runs. (β1, β2) =
(0.9, 0.999) and ε = 1 × 10−8. The batch size is 128 and the weight decay is
5 × 10−4. The model is trained for 200 epochs. We select the best (server and
local) learning rate from

{1 × 10−1, 5 × 10−2, 1 × 10−2, 5 × 10−2, · · · } . (21)

Distributed Adaptive Optimization with Divisible Communication 663

Fig. 2. Test accuracy for training VGG-16 on non-iid CIFAR-10.

Standard data augmentation techniques are applied such as random cropping,
random flipping, and standardization. For Adam, there is a learning rate decay
of 0.1 at epoch 120 and 160. While for the other methods, we find it better
without any learning rate decay.

We plot the training curves regarding both the training epoch and time in
Fig. 1 with test accuracy summarized in Table 2. It can be observed from Fig. 1
that 1-bit Adam takes a longer wall-clock training time due to the full-precision
warm-up stage, though it converges similarly to vanilla Adam regarding the

664 A. Xu and Y. Bai

Fig. 3. Test Accuracy for training ResNet-18 on ImageNet

training epochs. In comparison, the proposed FB-Adam converges faster and
better regarding the wall-clock time. When the communication reduction ratio
R = 256, FB-Adam accelerates Adam by ×7 without performance loss. From
Table 2, FB-Adam can achieve up to R = 1024 with comparable performance to
Adam, while the best counterpart only achieves R = 64.

We also consider non-IID CIFAR-10. Following the practice in [13], we ran-
domly distribute 80% of the data to workers, but distribute the rest 20% of
the data by sorting according to the label. We plot the training curves in Fig. 2

Distributed Adaptive Optimization with Divisible Communication 665

Table 4. Test accuracy for training ResNet-18 on ImageNet. × denotes poor conver-
gence.

Ratio (R) Adam EfficientAdam LocalAdam FedAdam 1-bit Adam FB-Adam

×1 68.14 – – – – –

×16 – × 67.21 68.33 67.95 68.88

×32 – × 67.26 67.36 67.88 68.82

×64 – × 65.20 66.06 67.73 68.22

×128 – × 63.15 64.86 67.51 67.71

Table 5. Validation loss for training Transformer on WMT’16 EN-DE.

Ratio (R) Adam EfficientAdam LocalAdam FedAdam 1-bit Adam FB-Adam

×1 2.0259 – – – – –

×8 – 2.3693 2.0852 2.0169 2.0268 2.0090

×16 – 2.3625 2.0855 2.0259 2.0411 2.0161

×32 – 2.3672 2.1180 2.0624 2.0645 2.0487

×64 – – 2.1240 2.1151 2.0859 2.0674

×128 – – 2.1710 2.2339 2.0939 2.0689

Table 6. Ablation study of running average smoothing. Test accuracy of FedAdam
v.s. FB-Adam without message compression for training VGG-16 on CIFAR-10.

Period P 4 16 64

FedAdam 89.43 ± 0.09 89.62 ± 0.17 89.14 ± 0.19

FB-Adam 90.01±0.03 89.98±0.14 89.54±0.04

with test accuracy summarized in Table 3. EfficientAdam converges poorly when
R = 32 and 128, therefore we do not include it in these two plots in Fig. 2.

For 1-bit Adam, we observe a similar pattern as in IID CIFAR-10 experi-
ments. When R = 128, FB-Adam accelerates Adam by ×6.4 without perfor-
mance loss. From Table 3, FB-Adam achieves R = 128 with comparable perfor-
mance to Adam, while the best counterpart only achieves R = 8.

5.3 Results on ImageNet

For ImageNet [24] image classification task, we train a ResNet-18 [11] model.
(β1, β2) = (0.9, 0.999) and ε = 1 × 10−8. The batch size is 256 and the weight
decay is 1 × 10−4. We select the best (server and local) learning rate from

{1 × 10−1, 5 × 10−2, 1 × 10−2, 5 × 10−2, · · · } . (22)

The model is trained for 90 epochs with a (server and local) learning rate decay of
0.1 at epoch 30, 60, and 80 for all methods. Random cropping, random flipping,

666 A. Xu and Y. Bai

Fig. 4. Validation perplexity (PPL) for training Transformer on WMT’16 EN-DE.
Lower is better.

and standardization are applied as data augmentation techniques. We plot the
training curves in Fig. 3 with test accuracy summarized in Table 4. EfficientAdam
converges poorly for this task and we do not include it.

The proposed FB-Adam converges faster than all other baselines regarding
the wall-clock training time. Specifically, FB-Adam accelerates Adam by ×3.5

Distributed Adaptive Optimization with Divisible Communication 667

without performance loss when R = 64, while the best counterpart only achieves
R = 16.

5.4 Results on WMT’16

For WMT’16 EN-DE machine translation task, we train a Transformer [29]
model. (β1, β2) = (0.9, 0.997) and ε = 1 × 10−1. The batch size is 4096 and the
label smoothing coefficient is 0.1. The dropout ratio is 0.1. The (server) learning
rate scheduling follows [29] with 16000 warm-up steps. The local learning rate
equals the server learning rate multiplied by a coefficient selected from

{1, 5 × 10−1, 1 × 10−1, · · · } . (23)

We plot the training curves of the validation perplexity (PPL) in Fig. 4 with
validation loss summarized in Table 5. 1-bit Adam converges well in this task
compared with vanilla Adam regarding the training epochs.

However, when taking the warm-up stage training time into consideration,
we find it to be slower than the other communication-efficient counterparts. FB-
Adam accelerates Adam by ×7 with comparable performance to Adam when
R = 128, while the best counterpart only achieves R = 8.

5.5 Ablation Study

We conduct an ablation study to show that the performance is improved by
running average smoothing during local training in Table 6.

Overall, our proposed method FB-Adam consistently outperforms the coun-
terparts in all tasks. We achieve a high foreground compression ratio due to
infrequent synchronization and message compression, with comparable perfor-
mance to Adam mainly due to the mathematical equivalence using foreground
and background communication. Its fast training speed validates the motivation
and efficiency of divisible communication.

6 Conclusion

In this work, we proposed a new FB-Adam method with divisible communica-
tion (foreground and background) to address the communication efficiency chal-
lenge for distributed adaptive optimizers. We also introduced running average
smoothing for better local training. Our experimental results on various tasks
validated the efficiency of FB-Adam. It achieves ×1024 foreground compression
ratio on CIFAR-10, ×128 on non-iid CIFAR-10, ×64 on ImageNet, and ×128
on WMT’16 EN-DE machine translation dataset with comparable performance
to Adam. Moreover, we showed our method has the same convergence rate as
Adam without compression.

Ethical Statement. Our work is to improve the communication efficiency of dis-

tributed adaptive optimization. A large part of the work focuses on the theoretical

analysis and we do not identify any potential ethical issues.

668 A. Xu and Y. Bai

References

1. Aji, A.F., Heafield, K.: Sparse communication for distributed gradient descent.
arXiv preprint arXiv:1704.05021 (2017)

2. Alistarh, D., Grubic, D., Li, J., Tomioka, R., Vojnovic, M.: QSGD: communication-
efficient SGD via gradient quantization and encoding. In: Advances in Neural Infor-
mation Processing Systems, pp. 1709–1720 (2017)

3. Alistarh, D., Hoefler, T., Johansson, M., Konstantinov, N., Khirirat, S., Reng-
gli, C.: The convergence of sparsified gradient methods. In: Advances in Neural
Information Processing Systems, pp. 5973–5983 (2018)

4. Basu, D., Data, D., Karakus, C., Diggavi, S.: Qsparse-local-SGD: distributed
SGD with quantization, sparsification, and local computations. arXiv preprint
arXiv:1906.02367 (2019)

5. Bernstein, J., Wang, Y.X., Azizzadenesheli, K., Anandkumar, A.: signSGD: com-
pressed optimisation for non-convex problems. In: International Conference on
Machine Learning, pp. 560–569. PMLR (2018)

6. Chen, C., Shen, L., Huang, H., Liu, W., Luo, Z.Q.: Efficient-adam: communication-
efficient distributed adam with complexity analysis (2020)

7. Chen, X., Li, X., Li, P.: Toward communication efficient adaptive gradient method.
In: Proceedings of the 2020 ACM-IMS on Foundations of Data Science Conference,
pp. 119–128 (2020)

8. Gao, H., Xu, A., Huang, H.: On the convergence of communication-efficient local
SGD for federated learning. In: Proceedings of the AAAI Conference on Artificial
Intelligence, vol. 35, pp. 7510–7518 (2021)

9. Gu, B., Xu, A., Huo, Z., Deng, C., Huang, H.: Privacy-preserving asynchronous
vertical federated learning algorithms for multiparty collaborative learning. IEEE
Trans. Neural Netw. Learn. Syst. 33(11), 6103–6115 (2021)

10. Guo, P., et al.: Auto-FedRL: federated hyperparameter optimization for multi-
institutional medical image segmentation. In: Avidan, S., Brostow, G., Cissé, M.,
Farinella, G.M., Hassner, T. (eds.) ECCV 2022, pp. 437–455. Springer, Cham
(2022). https://doi.org/10.1007/978-3-031-19803-8 26

11. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In:
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pp. 770–778 (2016)

12. Huang, Y., et al.: Tangram: bridging immutable and mutable abstractions for dis-
tributed data analytics. In: USENIX Annual Technical Conference, pp. 191–206
(2019)

13. Karimireddy, S.P., Kale, S., Mohri, M., Reddi, S., Stich, S., Suresh, A.T.: Scaffold:
stochastic controlled averaging for federated learning. In: International Conference
on Machine Learning, pp. 5132–5143. PMLR (2020)

14. Karimireddy, S.P., Rebjock, Q., Stich, S., Jaggi, M.: Error feedback fixes SignSGD
and other gradient compression schemes. In: International Conference on Machine
Learning, pp. 3252–3261. PMLR (2019)

15. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint
arXiv:1412.6980 (2014)

16. Konečnỳ, J., McMahan, H.B., Yu, F.X., Richtárik, P., Suresh, A.T., Bacon, D.: Fed-
erated learning: strategies for improving communication efficiency. arXiv preprint
arXiv:1610.05492 (2016)

17. Krizhevsky, A., Hinton, G., et al.: Learning multiple layers of features from tiny
images (2009)

http://arxiv.org/abs/1704.05021
http://arxiv.org/abs/1906.02367
https://doi.org/10.1007/978-3-031-19803-8_26
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1610.05492

Distributed Adaptive Optimization with Divisible Communication 669

18. Li, C., Awan, A.A., Tang, H., Rajbhandari, S., He, Y.: 1-bit lamb: communica-
tion efficient large-scale large-batch training with lamb’s convergence speed. arXiv
preprint arXiv:2104.06069 (2021)

19. Li, J., et al.: A general and efficient querying method for learning to hash. In:
Proceedings of the 2018 International Conference on Management of Data, pp.
1333–1347 (2018)

20. Lin, Y., Han, S., Mao, H., Wang, Y., Dally, W.J.: Deep gradient compression:
reducing the communication bandwidth for distributed training. arXiv preprint
arXiv:1712.01887 (2017)

21. Liu, Y., Xu, A., Chen, Z.: Map-based deep imitation learning for obstacle avoid-
ance. In: 2018 IEEE/RSJ International Conference on Intelligent Robots and Sys-
tems (IROS), pp. 8644–8649. IEEE (2018)

22. Reddi, S., et al.: Adaptive federated optimization. arXiv preprint arXiv:2003.00295
(2020)

23. Reddi, S.J., Kale, S., Kumar, S.: On the convergence of adam and beyond. arXiv
preprint arXiv:1904.09237 (2019)

24. Russakovsky, O., et al.: ImageNet large scale visual recognition challenge. Int. J.
Comput. Vision (IJCV) 115(3), 211–252 (2015). https://doi.org/10.1007/s11263-
015-0816-y

25. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale
image recognition. arXiv preprint arXiv:1409.1556 (2014)

26. Stich, S.U.: Local SGD converges fast and communicates little. In: International
Conference on Learning Representations (2018)

27. Stich, S.U., Cordonnier, J.B., Jaggi, M.: Sparsified SGD with memory. In: Advances
in Neural Information Processing Systems, pp. 4447–4458 (2018)

28. Tang, H., et al.: 1-bit adam: communication efficient large-scale training with
adam’s convergence speed. arXiv preprint arXiv:2102.02888 (2021)

29. Vaswani, A., et al.: Attention is all you need. In: Proceedings of the 31st Inter-
national Conference on Neural Information Processing Systems, pp. 6000–6010
(2017)

30. Vogels, T., Karimireddy, S.P., Jaggi, M.: Powersgd: practical low-rank gradient
compression for distributed optimization. In: Advances in Neural Information Pro-
cessing Systems, pp. 14259–14268 (2019)

31. Wen, W., et al.: Terngrad: ternary gradients to reduce communication in dis-
tributed deep learning. In: Advances in Neural Information Processing Systems,
pp. 1509–1519 (2017)

32. Xie, C., Zheng, S., Koyejo, O.O., Gupta, I., Li, M., Lin, H.: CSER: communication-
efficient SGD with error reset. In: Advances in Neural Information Processing
Systems, vol. 33 (2020)

33. Xu, A., Huang, H.: Coordinating momenta for cross-silo federated learning. In:
Proceedings of the AAAI Conference on Artificial Intelligence, vol. 36, pp. 8735–
8743 (2022)

34. Xu, A., Huang, H.: Detached error feedback for distributed SGD with random
sparsification. In: International Conference on Machine Learning, pp. 24550–24575.
PMLR (2022)

35. Xu, A., Huo, Z., Huang, H.: On the acceleration of deep learning model parallelism
with staleness. In: Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pp. 2088–2097 (2020)

36. Xu, A., Huo, Z., Huang, H.: Step-ahead error feedback for distributed training
with compressed gradient. In: Proceedings of the AAAI Conference on Artificial
Intelligence, vol. 35, pp. 10478–10486 (2021)

http://arxiv.org/abs/2104.06069
http://arxiv.org/abs/1712.01887
http://arxiv.org/abs/2003.00295
http://arxiv.org/abs/1904.09237
https://doi.org/10.1007/s11263-015-0816-y
https://doi.org/10.1007/s11263-015-0816-y
http://arxiv.org/abs/1409.1556
http://arxiv.org/abs/2102.02888

670 A. Xu and Y. Bai

37. Xu, A., et al.: Closing the generalization gap of cross-silo federated medical image
segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pp. 20866–20875 (2022)

38. You, Y., et al.: Large batch optimization for deep learning: training bert in 76
minutes. arXiv preprint arXiv:1904.00962 (2019)

39. Yu, H., Jin, R., Yang, S.: On the linear speedup analysis of communication effi-
cient momentum SGD for distributed non-convex optimization. In: International
Conference on Machine Learning, pp. 7184–7193. PMLR (2019)

40. Zheng, S., Huang, Z., Kwok, J.T.: Communication-efficient distributed blockwise
momentum SGD with error-feedback. arXiv preprint arXiv:1905.10936 (2019)

http://arxiv.org/abs/1904.00962
http://arxiv.org/abs/1905.10936

propagate: A Seed Propagation
Framework to Compute Distance-Based

Metrics on Very Large Graphs

Giambattista Amati1, Antonio Cruciani2(B), Daniele Pasquini3, Paola Vocca3,
and Simone Angelini1

1 Fondazione Ugo Bordoni, Rome, Italy
{gba,sangelini}@fub.it

2 Gran Sasso Science Institute, L’Aquila, Italy
antonio.cruciani@gssi.it

3 University of Rome “Tor Vergata”, Rome, Italy
{daniele.pasquni,paola.vocca}@uniroma2.it

Abstract. We propose propagate, a fast approximation framework to
estimate distance-based metrics on very large graphs such as: the (effec-
tive) diameter or the average distance within a small error. The frame-
work assigns seeds to nodes and propagates them in a BFS-like fashion,
computing the neighbors set until we obtain either the whole vertex set
(for computing the diameter) or a given percentage of vertices (for the
effective diameter). At each iteration, we derive compressed Boolean rep-
resentations of the neighborhood sets discovered so far. The propagate
framework yields two algorithms: propagate-p, which propagates all the
s seeds in parallel, and propagate-s which propagates the seeds sequen-
tially. For each node, the compressed representation of the propagate-p
algorithm requires s bits while propagate-s 1 bit only. Both algorithms
compute the average distance, the effective diameter, the diameter, and
the connectivity rate (a measure of the sparseness degree of the transi-
tive closure graph) within a small error with high probability: for any
ε > 0 and using s = Θ

(
log n

ε2

)
sample nodes, the error for the average dis-

tance is bounded by ξ = εΔ
α

; the errors for the effective diameter and the
diameter are bounded by ξ = ε

α
; and the error for the connectivity rate

is bounded by ε where Δ is the diameter and α is the connectivity rate.
The time complexity of our approaches is O(Δ ·m) for propagate-pand
O (

log n
ε2

· Δ · m
)

for propagate-s, where m is the number of edges of
the graph and Δ is the diameter. The experimental results show that the
propagate framework improves the current state of the art in accuracy,
speed, and space. Moreover, we experimentally show that propagate is
also very efficient for solving the All Pair Shortest Path problem in very
large graphs.

Keywords: Graph mining · shortest paths · effective diameter ·
sampling

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
D. Koutra et al. (Eds.): ECML PKDD 2023, LNAI 14171, pp. 671–688, 2023.
https://doi.org/10.1007/978-3-031-43418-1_40

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-43418-1_40&domain=pdf
https://doi.org/10.1007/978-3-031-43418-1_40

672 G. Amati et al.

1 Introduction

The fast computation of distances between pairs of nodes in a graph is a fun-
damental task in network applications. Distance-based metrics are also used to
compute different notions of centrality for nodes or edges that can be used to
detect communities in very large graphs, as proposed by Girvan and Newman
[26] or Fortunato et al. [25]. The diameter, i.e. the maximum distance between
all reachable pairs in a graph, is an important parameter for analyzing graphs
that, for example, change over the time [30], or real-world graphs as the web
and social network graphs, which have small diameters [29] that shrink as they
grow [33]. The fastest exact algorithm for computing the diameter of sparse
graphs is based on solving the All-Pairs Shortest Paths (APSP) problem which,
for unweighted graphs, can be computed by executing a Breadth-First Search
(BFS) for each vertex, with a time complexity of Ω(mn), where n is the number
of nodes and m the number of edges. For dense graphs, the best algorithm is
based on matrix multiplication [19], which can be performed in time of Õ(nω),
where ω < 2.38 [17,40]. However, its well known that computing the diameter
of a graph with m edges requires m2−o(1) time under the Strong Exponential
Time Hypothesis (SETH), which can be prohibitive for very large graphs [1,20],
so efficient approximation algorithms for diameter are highly desirable. A trivial
2-approximation algorithm for the exact diameter in undirected graphs can be
computed in O(m + n) time by means of a BFS-visit starting from an arbitrary
node. A 3/2-approximation algorithm was first presented by Aingworth et al. [2]
with a time complexity of Õ(m

√
n + n2), further improved to Õ(m

√
n) [37],

and, with the same approximation ratio, to Õ(m3/2) or o(n2), depending on the
degree of sparsity of the graph [13]. If a graph is weakly connected, experiments
with real-world graph data sets show that heuristics may decrease the average
running time of the diameter computation [10]. The computation of the exact
diameter is however susceptible to outliers. For this reason, it is preferable to
use more robust metrics, such as the effective diameter, which is defined as the
a percentile distance between nodes (e.g. 90th), i.e. the maximum distance that
allows to connect that percentage of all reachable pairs [35,38]. For large real
graphs, even the exact computation of the effective diameter remains prohibitive
since possible approaches are still based either on solving APSP or on computing
a transitive closure. Also, some diameter approximation algorithms [10,12] can-
not be used to compute the effective diameter, that is because they are based on
the computation of the greatest distances from the nodes that do not necessarily
pass through all reachable pairs [10] or on merging the diameters independently
computed on smaller subgraphs [12]. An alternative approach is to compute
the neighborhood function to derive distance metrics. A neighborhood N(u, r) is
the set of all nodes reachable from the node u by a path of length at most r.
N(u, r) is also known as the ball of center u and radius r. The most efficient
algorithms for approximating the effective diameter are based on the estimate of
the size of neighborhoods. For example, ANF [36] is based on BFS and the use
of Flajolet-Martin (FM) probabilistic counters [24], and HyperANF [7] is based
on the same approach as ANF but with the use of HyperLogLog as probabilistic

Computing Distance-Based Metrics on Very Large Graphs 673

counter [21]. Cohen [16] uses an approach based on a non-probabilistic counter,
that uses k hash functions on neighborhoods by keeping only the minimum hash
value (MinHash) for each hash function (k-mins sketches). When the hashing
values are in the unit interval [0, 1], then it is possible to estimate |N(u, r)| by
means of the unbiased cardinality estimator 1

MinHash(N(u,r)) , with the standard
error a function of k. The MHSE framework [4], instead, uses the MinHash app-
roach to derive dense representations (signatures) of large and sparse graphs that
preserve similarity and thus providing an approximation of the size of the neigh-
borhood of a node using the Jaccard similarity. ANF, HyperANF and MHSE
are grounded on the observation that the size of N(u, r) is sufficient to estimate
the distance-based metrics.

Our Contributions. We propose a framework to estimate the distance-based
metrics on graphs based on a mixed approach: sampling and counting. The
core idea of our approach is to consider a small set of s seed nodes and to
count the nodes that can be reached by at least one of these seeds, that is, the
size of the neighbourhood set at distance d. We define two implementations of
our framework: propagate-p, and propagate-s. The time complexity of our
approaches is, respectively, O(Δ·m), and O(s·Δ·m), while the space complexity
is O (s · n + m), and O(n + m). We provide an estimate on the sample size
needed to achieve a good estimate of the distance metrics up to a small error
bound. More precisely, we prove that s = Θ(log n

ε2) sample nodes are sufficient to
estimate, with probability at least 1− 2

n2 : (1) the average distance with the error
bounded by εΔ

α ; (2) both the effective diameter and the diameter with the error
bounded by ε

α ; and, (3) the connectivity rate α with error bounded by ε, where
α be the connectivity rate of the network (see Sect. 3 for the formal definition).
It is important to underline that both the algorithms admit a straightforward
and simple implementation in a fully distributed and parallel setting.

In Sect. 2, we give an overview of relevant results on approximation algo-
rithms of distance based metrics. In Sect. 3 we provide some basic preliminaries to
understand our work. In Sect. 4, we describe the core idea behind our novel frame-
work, then we introduce the new algorithms propagate-p and propagate-s,
and provide an unbiased error bound for the computation of the effective diame-
ter, the diameter, the average distance, and the connectivity rate. In Sect. 5, we
compare our framework with the state-of-the-art algorithms for approximating
the distance-based metrics. Finally, in Sect. 6, we conclude and present future
research directions.

2 Related Works

The literature on approximating distance-based metrics being vast, we restrict
our attention to approaches that are closest to ours. We, thus, particularly focus
on sampling and probabilistic techniques.

674 G. Amati et al.

Estimating Diameter by Sampling. There are three main questions to be
addressed when sampling from large graphs [32]: how to sample nodes and edges,
how to set a good sample size, how to evaluate the goodness of the sample, as
well as the goodness of the chosen sampling method. In the case of undirected
and connected graphs, the centrality of nodes can be estimated by sampling only
O(log n

ε2) nodes and compute all the distances to all other nodes, with an error of
εΔ, where Δ is the graph diameter [18,22], thus reducing the time complexity
to O(log n

ε2 (n log n + m)).

Estimating Diameter by Probabilistic Counters. Palmer et al. proposed the
ANF algorithm that exploits the (Flajolet-Martin) FM-counter [24] to derive
the distance-based metrics of a graph. The core idea is to count the number of
distinct nodes in each neighborhood N(u, r), for all nodes u and radius r. For
each set N(u, r), ANF yields a concatenation of l bit-masks (sketches), where
a bit-mask l has probability 1

2i+1 of having the i-th bit set to 1. An approxi-
mation of the number of distinct elements in a stream is derived by averaging
the index of the least significant bit with value 0 in each of the l bitmasks,
and is set to 2mean

0.77351 [24]. Building upon this approach, Boldi et al. [7] proposed
HyperANF that uses the HyperLogLog algorithm [21,23] and improves ANF in
terms of speed and scalability, providing a better estimate for the same amount
of memory and number of passes. Although HyperLogLog is the best approxi-
mate data stream counting algorithm, it is known that it tends to overestimate
the real size of small sets [27]. Empirical bias correction has been introduced
in [27], where the correction works well in a good range of sizes, however errors
persist on small sets where the LinearCounting algorithm [39], provides the
best results. Alternatively, the MinHash technique can be used to estimate the
size of the neighborhood with respect of All Distance Sketch (ADS) of a node
of a weighted graph [15,16]. For each node, an ADS consisting of the first k
MinHash is maintained. The estimate of the neighborhood of a node u is given
by hashing the nodes in the interval [0, 1] and filtering a node v when its hash
value is less than the k-th MinHash of the ADS, and when any other node in
ADS is closer to u than to v. This algorithm computes, for each pair (u, v) the
closeness similarity which generalizes the inverse probability of the MinHash
estimate [6] with a Jaccard-like similarity function, that is 1

max(πvx,πux)
in the

case of k = 1, where πu,v is the Dijkstra rank of u with respect to the node
v according to the position of u by increasing distance from v. If the graph is
unweighted, then the BFS visit can be used and Cohen’s framework can be con-
sidered equivalent in the spirit to HyperANF but with the use of the MinCount
probabilistic counter of [6] instead of HyperLogLog probabilistic counter. How-
ever, its implementation is very different from the one presented in [6] and does
not yield a O(m) space complexity as in [6]. Amati et al. proposed a different
probabilistic approach based on the MinHash counter [4], and experimentally
showed its superiority in comparison to HyperLogLog based counters. Another
sketching and sampling based technique to model public-private social network
graphs proposes to efficiently preprocess the public graph G and to integrate it
with a private user graph node in order to derive graph properties and measures
[14].

Computing Distance-Based Metrics on Very Large Graphs 675

3 Preliminaries

We proceed by formally introducing the terminology and concepts that we use
in what follows. For k ∈ N, we let [k] = {1, . . . , k}. An undirected graph1

is an ordered pair G = (V,E), where V is a set whose elements are called
vertices or nodes, and E is a set of unordered pairs of vertices, whose ele-
ments are called edges, or links or arcs. In a directed graph G = (V,E), E is
a set of ordered pairs of vertices. Let d(u, v) be the number of edges in the
shortest path between u and v. Given a graph G = (V,E), define the neigh-
borhood at distance at most r for a node u ∈ V as N(u, r) = {v ∈ V :
d(u, v) ≤ r}2. Additionally, we define the neighborhood function at hop r as
the size of the set of pairs of nodes within distance r, formally: |N(r)| =
|{(u, v) ∈ V × V : d(u, v) ≤ r}|. The diameter Δ of a graph is the longest
shortest path in the graph. In terms of the neighborhood function we have:
Δ = minr∈[0,n−1] {r :

∑
u |N(u, r)| =

∑
u |N(u, r + 1)|}. Similarly, the effective

diameter is defined as Δeff = minr∈[0,n−1] {r :
∑

u |N(u, r)| ≥ τ · ∑
u |N(u,Δ)|}

for τ ∈ [0, 1]. In this work, we consider τ = 0.9, i.e. the 90th percentile
distance between the nodes. We can also evaluate the average distance of
a graph G = (V,E). Let R(u, v) be the reachability function that assumes
value 1 if and only if u can reach v and 0 otherwise. Thus we can write:
AvgDist =

∑
u,v∈V R(u,v)·d(u,v)

∑
u,v R(u,v) =

∑
u

∑
r∈[Δ](|N(u,r)|−|N(u,r−1)|)·r

∑
u|N(u,Δ)| . Observe that

the number of reachable pairs can be also defined using the neighborhood
function as: Nr.Reachable Pairs = |N(Δ)|. Finally, we define the connec-
tivity rate α of a graph as the sparseness degree of its transitive closure.
α = 1

n·(n−1)

∑
u,v
u�=v

R(u, v) ∈ [0, 1]. Notice that the more the graph is connected

the higher is α, and vice versa. As extreme values α = 1 for a connected undi-
rected graph, while α = 0 when all the vertices are isolated.

4 propagate Framework

Any graph traversal algorithm, efficiently scans the edge list of a graph in a
random order. However, if the algorithm needs to be efficient on graphs that
do not fit in memory, we can not use standard graph traversal routines. As
in [4,7,36], we can find the nodes that are reachable from u within r hops by
first retrieving their neighbors reachable in r − 1 hops from u. Given u’s neigh-
borhood at hop 0, N(u, 0) = {u}, we can compute N(u, r) incrementally as:
N(u, r) =

⋃
(u,v)∈E N(v, r − 1). This technique allows to iterate over the edge

set instead of performing a classical graph traversal. Probabilistic counters have
been used to efficiently compute in terms of time and space the number of dis-
tinct elements in N(u, r). The best known algorithms, namely HyperANF [7],
and MHSE [4], use respectively the HyperLogLog [23] and the MinHash counter
and drop the required memory down to 2·s·n·log2(log2(n/s)) bits and 2·s·n·log2 n

1 We use the terms “graph” and “network” interchangeably.
2 Sometimes, we use the term “ball of radius r centered in u” to denote N(u, r).

676 G. Amati et al.

(where s is the number of seed nodes from which we are starting the edge scan
procedure). Even though their performance are impressive, they turn out to be
prohibitive on very large graphs if our memory budget is low. Our novel frame-
work overcomes such problems by using a clever implementation of a boolean
array-like data structure allowing to have high-quality approximations of the
distance-based metrics on machines with low memory requirements. Given a set
of starting nodes S = {x1, x2, . . . , xs}, propagate assigns to each node u ∈ V
a Boolean signature array Sig(u) of length s defined as follows: for all i ∈ [s]
Sigi(u) = 1 [u ∈ S], i.e., if the node u is a seed, we set its coordinate to 1.
Next, we extend the concept of signature to a set of nodes of arbitrary size.
Let K ⊆ V be a subset of nodes, then its signature is defined as the bitwise OR
between the signatures of every node u ∈ K, formally Sigi(K) =

∨
u∈K Sigi(u)

for every i ∈ [s]. Notice that the ith index of Sig(K) is equal to 1 if and only
if there exists at least one vertex u ∈ K such that Sigi(u) = 1. The intu-
ition behind our boolean signature is as follows. Suppose that we have only one
seed node x, by definition its signature will be of the form Sig(x) = 〈1〉 i.e.,
Sig1(x) = 1. Subsequently, we expand the ball centered in x to its hop-1 neigh-
borhood and for each neighbor v ∈ N(x) we create a new signature Signew(v)
equal to the bitwise OR between Sig(x) and Sig(v). After updating all x’s neigh-
bors, for each v ∈ N(x) we count the number of indices in its new signature
that assumed value 1 (one), we refer to the number of such indices as collisions
between the seed’s bit and nodes’ signatures. The total number of ones will be
equal to the size of x’s hop-1 neighborhood. Observe that such value can be
efficiently computed by summing the number of ones obtained by performing
the XOR (exclusive OR) operation between Sig(v) and Signew(v) for each neigh-
bor v, formally |N(x)| =

∑
u∈V ‖Sig(u) ⊕ Signew(u)‖. If we iterate this process

Δ times, we will compute the number of nodes at distance of exactly r from
x for each r ∈ [Δ]. By repeating this process Δ times for each node x ∈ V ,
we will obtain the exact neighborhood function |N(r)| for each r ∈ [Δ]. Recall
that, under SETH, computing the exact neighborhood function cannot be done
in O(n3−ε) for ε > 0 [40], thus we run the propagate framework on a subset
of nodes S sampled uniformly at random from V . Given a uniform sample of s
nodes from the vertex set V , the propagate framework can be implemented in
two different ways: (1) every node has a signature of s bits, and expands the s
balls (one for each seed node) in parallel until there is at least one signature that
changed its value; (2) in a sequential fashion, every node spreads its bit until
there is a signature that changed its value. We refer to these two implementa-
tions as propagate-p (Sect. 4.1), and propagate-s (Sect. 4.2). propagate-s
is preferable to propagate-p when s is very large and s · n bits becomes too
big to be kept in the memory of a single machine. For example, when the set
of seeds is the entire vertex set V , that is s = |V |, then propagate com-
putes the exact neighborhood function. To compute the ground-truth values,
propagate-p needs n2-bit array that, for big graphs, can be too large to be
stored on a single machine. propagate-s, instead, needs only n bits. Thus, for
this task, propagate-s is preferable to propagate-p. In Sect. 5.2 we compare

Computing Distance-Based Metrics on Very Large Graphs 677

the execution times of propagate-s and the All Pair Shortest Path algorithm
to compute the exact neighborhood function of big real-world graphs.

4.1 propagate-p Algorithm

Given s sample nodes {x1, . . . , xs} ⊆ V , propagate-p (Algorithm 1) works as
a synchronous diffusion process. It starts by initializing (line 1–3) the signature
s-array for each node u ∈ V , Sig(u) as described in Sect. 4. Subsequently, at
each hop r, it computes for each node u the signature of the ball N(u, r) = {v ∈
V : d(u, v) ≤ r}. The variable Count (line 5) keeps track of the number of new
collisions at hop r, that is the number of vertices at distance exactly r from u. The
collisions at hop r are subsequently stored in CountAll[r] and if new collisions
have been detected during the current hop, then the diameter lower-bound ΔLB

is updated, the approximated neighborhood function at hop r is computed (R[r]
contains the number of pairs at distance at most r), the variable AvgDist is
increased with the difference between R[r] and R[r − 1] times the hop r, and
the hop r + 1 is processed (lines 17–20). Once the stopping criterion is met, i.e.
no more collisions have been detected, the algorithm finds the minimum hop r
such that the ratio between the reachable pairs at hop r and at the maximum
hop is greater than 90% i.e., computes the effective diameter Δeff (line 21), and
normalizes the average distance value by dividing it with the maximum number
of reachable pairs (line 22). Algorithm propagate-p can be implemented using
an array of s bits for each vertex, thus we have the following theorem:

Theorem 1. Algorithm propagate-p (Algorithm 1) computes the: diameter,
effective diameter, average distance and number of reachable pairs in O(Δ · m)
time using O(s · n + m) space.

678 G. Amati et al.

Algorithm 1: propagate-p Algorithm
Data: G = (V, E) : |V | = n, s sample of vertices S ⊆ V , eff. diameter threshold

τ.
Result: Δeff effective diameter, ΔLB diameter, R[ΔLB] number of reach. pairs,

and AvgDist average distance.
1 Sigi(u) = 0; ∀u ∈ V, i ∈ [s] // n × s matrix of the nodes’ signature

2 for each xi ∈ S do
3 Sigi(xi) = 1

4 CountAll[0] = s, Count = 0, AvgDist = 0, r = 0, ΔLB = 0
5 R = [0, 0, . . . , 0] // Neighborhood function

// Process one hop at a time for all the sample vertices xi.

6 do
7 Count = 0 // Collision counter for hop r
8 foreach u ∈ V do
9 Signext(u) = Sig(u)

10 foreach u → v do
11 Signext(u) = Signext(u) ∨ Sig(v)

12 foreach u ∈ V do
13 Count = Count + ‖Signext(u) ⊕ Sig(u)‖
14 Sig(u) = Signext(u) // Update u’s signature

15 CountAll[r] = Count // Reachable vertices at hop r
16 ΔLB = max {r, ΔLB} // Update diameter lower bound

17 R[r] = R[r − 1] + CountAll[r] // R[−1] treated as 0 when r = 0
18 AvgDist = AvgDist + r · (R[r] − R[r − 1]) // R[−1] treated as 0 when

r = 0
19 r = r + 1

20 while Count > 0

21 Δeff = mink

{
k : R[k]

R[ΔLB]
≥ τ

}
// Compute the effective diameter Δeff

22 AvgDist = AvgDist/R[ΔLB] // Compute the average distance

23 R[ΔLB] = (n/s) · R[ΔLB] // Compute the number of reachable pairs

24 return Δeff,ΔLB,R[ΔLB], AvgDist

4.2 propagate-s Algorithm

We derive an even more space efficient algorithm in which we process each sample
vertex at a time using a single bit for each node in the graph, as with a Bernoulli
process. propagate-s’s pseudo code, is presented in the extended version of this
paper [5]. Differently from propagate-p which maintains a signature s-array
for each vertex u ∈ V , propagate-s uses a n-array Sig(V) that represents the
signature of the whole graph G = (V,E). More precisely, given a seed node xi

Sig(V), at each hop r, maintains the size of xi’s neighborhood at distance at
most r. Although, propagate-s has higher running time than propagate-p,
the independence of the seeds in propagate-s allows for a very simple imple-
mentation of the algorithm in a fully distributed and parallel processing, where

Computing Distance-Based Metrics on Very Large Graphs 679

cores or machines can be coupled with hash functions. Additionally, propagate-
s can be implemented using progressive sampling heuristics, that establish the
sample size “on the fly” (see [5] for propagate-s’s incremental approach). When
s = |V | = n, all propagate algorithms can compute the exact distance-based
metrics of interest. In this case, propagate-p requires as signature a n bit array
for each vertex u ∈ V thus requiring overall n2 bits, which for large graphs is
impracticable. However, propagate-s would require only a n-bit array at each
iteration and can be used to compute the exact values for various graphs faster
than the APSP algorithm implemented in WebGraph [8] (see Sect. 5). For huge
graphs, the only feasible algorithm in a standalone setting is the propagate-
s algorithm. The above considerations lead to the following theorem:

Theorem 2. propagate-s computes the: diameter, effective diameter, average
distance and number of reachable pairs in O(s·Δ·m) time using O(n+m) space.

Error Bounds of the Sample Size. We now evaluate the accuracy of the approx-
imations of the propagate framework. We use Hoeffding’s inequality [28] to
obtain the sample size s for good approximations of the distance-based metrics
of interest.

Theorem 3. With a sample of s = Θ
(
lnn
ε2

)
nodes, with high probability (at least

1 − 2
n2), propagate framework (propagate-p and propagate-s) compute:

i. the average distance with the absolute error bounded by εΔ
α

ii. the effective diameter with the absolute error bounded by ε
α̃
3

iii. the diameter with the absolute error bounded by ε
α̃

iv. the connectivity rate α with the absolute error bounded by ε

where α is the connectivity rate of the graph, and ε > 0 a positive constant.
Thus, propagate-s requires O(lnn

ε2 · Δ · m) time and O(n + m) space . While,

propagate-p requires O
(
n log n

ε2 + m
)

space complexity.

5 Experimental Evaluation

In this section, we summarize the results of our experimental study on approx-
imating the distance-based metrics in real-world networks. We compare our
framework with the state-of-the-art algorithms to approximate the distance met-
rics, i.e., for each algorithm, we compute the average distance, effective diameter,
and number of reachable pairs. Subsequently, we evaluate (using various metrics)
how these estimates relates to the exact ones computed by the All Pairs Shortest
Path algorithm.

3 α̃ is a very close value to α i.e., α̃ = α· n−1
n

. We actually compute the error bound for
the ratio on which the minimum integer is attained, clearly, the smaller the ratio’s
error the smaller the error bound.

680 G. Amati et al.

5.1 Experimental Setting

Algorithms. Our study includes several competitor algorithms for approximating
the neighborhood function. We provide a short description and a space complex-
ity analysis of the considered algorithms.

HyperANF: The O(Δ · m) algorithm of Boldi et al. [7,8], which uses Hyper-
LogLog algorithms [21,23] to approximate the neighborhood function. Hyper-
ANF requires for each node 2b = s registers that records the position R with
the bit 1 starting the tail ending with all 0s. More precisely, if n is the number
of distinct nodes in the graph, HyperANF needs 2 · s ·n · log2 (log2 (n/s)) bits
for the registers.

MHSE: The O(Δ · m) algorithm of Amati et al. [4], which uses the MinHash
counter to approximate the neighborhood function. MHSE is based on a BFS
visit and it requires an O(log n) register for each node to record the signature,
hence, it has the same space complexity as ANF (ANF maintains a bitwise
O(log n) register to count new incoming nodes in the stream, instead). MHSE
requires 2 · s · n · log2 n bits.

rand-BFS: The algorithm by Eppstein and Wang [22], which estimates the
distance-based metrics using BFS visits starting from random nodes. Its time
complexity is O(s · m) and needs O(n + m) space.

APSP: The Java implementation of the All Pair Shortest Path algorithm avail-
able in WebGraph [8]. The algorithm has been used to compute the exact
values of the distance metrics and as a competitor algorithm for the second
part of the experimental evaluation.

Networks. We evaluate all of the above competitors on real-world graphs of dif-
ferent nature, whose properties are summarized in Table 1. The networks come
from two different domains: social networks and web-crawls. According to The-
orem 3, the collection BlackFriday4 should require larger number of samples
than other collections, because of a small connectivity rate (see Table 1).

Implementation and Evaluation Details. We released an open source platform
for analyzing large graphs. This tool is developed in Java5 and uses some Web-
Graph libraries [8] to load and parse the graph in compressed form. We chose
WebGraph both for benchmarking with the compared algorithms and to allow
us to: (1) compress very large graphs; (2) iterate the neighbor list of a node
with faster random access; and, (3) use its offline methods to process very big
graphs that cannot be loaded in memory. We executed the experiments on a
server running Ubuntu 16.04.5 LTS equipped with AMD Opteron 6376 CPU
(2.3GHz) for overall 32 cores and 64 GB of RAM. All the algorithms are fairly
compared, i.e. using the same number of seeds/registers and cores. For the com-
parison between propagate, HyperANF, MHSE, and rand-BFS we use 256
4 The BlackFriday graph is built from Twitter considering retweet and reply activities

[3]. This graph is comparable in size to the largest publicly available social network
graphs, and is very sparse.

5 https://github.com/BigDataLaboratory/MHSE/tree/propagate-ecmlpkdd.

https://github.com/BigDataLaboratory/MHSE/tree/propagate-ecmlpkdd

Computing Distance-Based Metrics on Very Large Graphs 681

Table 1. The data sets used in our evaluation, where n denotes the number of nodes,
m the number of edges, Δ the exact diameter, α the exact connectivity rate (type D
stands for directed and U for undirected). The first seven graphs have been used in
comparison of the four algorithms (propagate, HyperANF,MHSE, and rand-BFS)
for accuracy and effectiveness, and speed. The last seven have been used to compare
the performances of the algorithms on huge graphs. Dashed lines indicate that the
exact metrics are not available due to the dimension of the data set.

Graph n m Δ α Type Ref.

BlackFriday 2700815 3811922 70 0.002 D [3]

Youtube-Links 1138495 4942298 23 0.446 D [31]

Amazon-2008 7600595 5158388 48 0.854 D [9]

Web-BerkStan 685230 7600595 715 0.488 D [34]

Twitch-Gamers 168114 13595114 8 1 U [31]

Hollywood-2009 1139905 113891327 12 0.88 U [9]

Orkut-2007 3072441 234370166 61 0.356 U [9]

it-2004 41291594 1150725436 - - D [9]

gsh-2015-host 68660142 1802747600 - - D [9]

sk-2005 50636154 1949412601 - - D [9]

gsh-2015 988490691 33877399152 - - D [9]

clueweb12 978408098 42574107469 - - D [9]

uk-2014 787801471 47614527250 - - D [9]

eu-2015 1070557254 91792261600 - - D [9]

sample nodes/registers and 32 cores. For the comparison between propagate-
s and APSP we use 32 cores. For the first part of the experiments, we repeat
every test 10 times and average over the results for every algorithm (HyperANF,
MHSE, rand-BFS, propagate-p, and propagate-s). Whenever we are able
to compute the exact value x̂ and thus the residual (x̂ − x̃)/x̂ where x̃ its esti-
mate we also exhibit a p-value. More precisely, we perform a two-sided unpaired
t-test [11] with confidence interval of 0.95. Given a set X of estimates of the
distance metric y obtained after 10 runs of an algorithm A, the null hypothesis
is that its mean X is equal to the exact value X. If the displayed p-value is in the
range [0.9, 1.0] then we fail to reject the null hypothesis, and conclude that the
means are not significantly different. Therefore, we can conclude that algorithm
A provides reliable and statistically significant estimates of y.

5.2 Experimental Results

Accuracy and Effectiveness. In our first experiment, we run on the networks
listed in the first group of Table 1 all the discussed approximation algorithms. In
Table 4, we show the accuracy and effectiveness of all the competitor algorithms.
propagate-p and propagate-s are grouped under the name of propagate,
that is because both algorithm produce the same results. We observe that our
novel framework leads the scoreboard against its competitors. It provides the
best estimations in terms of accuracy and statistical significance. For the average

682 G. Amati et al.

distance, propagate outperforms all the other algorithms on all the graphs
except on Orkut, in which rand-BFS provides the best estimate. Moreover, it
provides the best effective diameter estimates on all the datasets. Finally, for
the number of reachable pairs, propagate provides very accurate estimations
on all the networks except on Youtube for which MHSE’s estimate has lower
residual. Observe that propagate is the algorithm that provides the higher
number of statistically significant estimations and does not perform worse than
the competitor algorithms.

Speed. As a second experiment, we compared the average execution times of
propagate-p, propagate-s, HyperANF, MHSE, and rand-BFS. In the left
side of Table 2, we show the running times (in milliseconds) of the algorithms.
We observe that propagate framework outperform its competitors on almost
every data set. Remarkably, propagate-p, leads the scoreboard with the fastest
execution times on four over seven graphs. It is slightly slower than rand-BFS
on balckFriday, Amazon-2008, and Web-BerkStan i.e. the datasets with low
connectivity rate and longest diameters for which a classic traversal algorithm
should require less time than our framework. We point out that, rand-BFS
does not scale well as the size of the graph increases (as shown in the next
experiment). We observe that, on average, propagate-p is 60% faster than
HyperANF and 81% faster than MHSE. Moreover, propagate-p outperform
(in terms of speed) HyperANF, and MHSE on all the graphs. HyperANF’s
execution time is comparable with the one of propagate-s while MHSE is the
slowest one. More precisely, MHSE is slower than every other algorithm on every
network for which it does not require more than 64 GB or RAM i.e., does not
generate a memory overflow error.

Table 2. For each network (column 1), we show on the left side of the table the average
execution time (in milliseconds) over ten runs for each algorithm. On the right side,
we show the execution time (in hours) of propagate-s, versus WebGraph’s APSP
algorithm to compute the ground truth distance-based metrics. ✗ indicates that the
experiment was interrupted due to a memory overflow error.

Graph Execution time

Milliseconds Hours

Prop-P Prop-S HyperANF MHSE Rand-BFS Prop-S APSP

b.Friday 282.162 2899.075 22495.344 51034.047 69.21 9.513 33.705

YT-Links 1761.891 5040.347 5986.410 6655.706 1771.25 7.217 11.118

Amazon 4339.072 12686.703 8451.259 195200.019 1767.12 11.027 11.914

W.Berk. 1535.781 2477.531 2741.563 5980.219 645.25 33.108 122.59

Twitch-G. 1562.219 2901.497 2288.231 4486.044 1863.10 0.344 3.617

Hollywood 4113.060 15537.897 11068.953 46409.728 7672.18 47.77 158

Orkut 2875.688 8121.125 3833.688 ✗ 12783.13 840 960

Computing Distance-Based Metrics on Very Large Graphs 683

Estimating Distance Metrics on Huge Graphs. As a third experiment, we run all
the approximation algorithms on the biggest networks available in [9] (see the
second group of data sets in Table 1). We aim to investigate the performances
of all the competitor algorithms on very big graphs that cannot be loaded in
the main memory. In Table 3, we show the running times of the approximation
algorithms. The first column indicates whether the graph can be fully loaded
in memory in its uncompressed form. If this is not possible, we use WebGraph’s
offline methods to access the compressed graph from the disk without loading
it in memory. Observe that accessing the compressed graph directly from the
disk, slows down the overall execution of the algorithms. However, it is the only
way to analyze these graphs with our 64 GB memory machines. We observe that
propagate-s can compute the distance metrics on every graph. Considering
the size of the data sets, propagate-s requires a reasonable amount of time to
approximate the neighborhood function using 256 seeds. propagate-p can com-
pute the distance metrics for it-2004, gsh-2015-host, and sk-2005. More-
over, it is still possible to run propagate-p on the remaining graphs by appro-
priately decreasing the number of sample nodes. Instead, HyperANF can be used
only to compute the approximated neighborhood function only on it-2004, and
sk-2005. Finally, MHSE and rand-BFS cannot be used on any of these net-
works. Before comparing the time performances, we point out that the red dash
(–) in Table 3 indicates that the algorithm requires more than 64 GB of mem-
ory even with 1 seed/register. Thus, decreasing the number of seeds/registers
is not enough to run these algorithms on these huge networks, we would need
to upgrade the RAM of the machine. From the results in Table 3, we observe
that (on it-2004, and sk-2005) propagate-p is on average 64% faster than

Table 3. For each network (column 1), we show the loading method (column 2) “Yes”
means that it is possible to load the entire graph in memory, while “No” indicates that
is not possible. In such a case, we use WebGraph’s offline methods to iterate trough the
successor lists. For each algorithm, we show the execution time (using 256 seeds/regis-
ters). ✗ indicates that the experiment was interrupted due to a memory overflow error
of the algorithm while initializing the signature/registers array. Here, the red dash
– indicates that the algorithm cannot run even with 1 seed/register.

Graph In memory Execution Time

Propagate-P Propagate-S HyperANF MHSE rand-BFS

it-2004 Yes 33.26 min 52.13 min 62.18 min – –

gsh-15-h No 40min 4.16 h – – –

sk-2005 Yes 44min 6 h 4 h – –

gsh-2015 No ✗ 11 h – – –

clueweb12 No ✗ 9.56 h – – –

uk-2014 No ✗ 39 h – – –

eu-2015 No ✗ 7 days – – –

684 G. Amati et al.

Table 4. The comparison of HyperANF, propagate, and MHSE using 10 trials and
256 registers and 256 sample nodes respectively. Statistical significance at the 90%, 95%
and 99% confidence level are marked with •, * and ** respectively. The algorithms
requiring more heap size are marked with � , and ✗indicates that the algorithm needs
more than 64 GB of memory.

Graph Algo. Neighborhood Function Estimation

Av. Dist. Eff. Diam. 90 Nr. of conn pairs Residual/x̂(p-value)

Av. Dist. Eff. Diam. 90 Nr. of conn pairs

blackFriday Exact(x̂) 16.124 22.722 11,300,563,035

prop. 16.143 22.551 11,259,575,354 −0.001(0.92•) −0.008(0.95•) 0.003(0.72)

H.ANF(�) 16.214 22.841 11,032,542,659 0.01(0.26) 0.005(0.40) −0.024(0.34)

MHSE 16.338 23.029 12,193,068,803 −0.01(0.12) −0.01(0.23) −0.07(0.09)

rnd-BFS 17.381 24.30 8,636,102,833 −0.078(0.60) −0.069(0.68) 0.24(0.09)

Youtube Exact(x̂) 5.104 6.244 577,863,455,179

prop. 5.104 6.291 578,216,139,787 0(1∗∗) −0.007 (0.44) −6e-4 (0.73)

H.ANF 5.131 6.301 602,314,527,291 −0.005 (0.1) −0.009 (0.11) −0.042 (0.1)

MHSE 5.105 6.165 577,569,359,888 0.003(0.25) 0.013(0.08) 5e-4(0.65)

rnd-BFS 5.11 6.217 579,121,217,963 −0.001(0.72) 0.004(0.60) −0.002(0.01)

Amazon Exact(x̂) 12.075 15.544 461,523,315,650

prop. 12.08 15.519 461,523,315,650 0.00(0.93•) −0.002(0.80) 0.00(1∗∗)

H.ANF 12.042 15.47 451,448,606,322 −0.003(0.44) −0.022(0.31) −0.022(0.31)

MHSE 12.1 15.542 462,552,552,254 −0.002(0.54) 1e-4(0.98∗) −0.002(0.65)

rnd-BFS 12.103 15.579 461,522,729,233 −0.002(0.36) −0.002(0.53) 1.27e-6(0.05)

BerkStan Exact(x̂) 13.905 17.777 229,179,533,137

prop. 13.883 17.777 229,015,123,311 0.02(0.42) 0(1∗∗) 7e-4(0.65)

H.ANF 14.645 17.728 233,108,112,819 0.053(0.40) −0.003(0.83) 0.017(0.49)

MHSE 15.29 18.14 239,485,315,387 0.099(0.61) 0.02(0.61) 0.045(0.36)

rnd-BFS 14.341 18.02 228,188,757,612 −0.031(0.44) −0.02(0.28) 0.004(0.80)

Twitch Exact(x̂) 2.876 3.127 28,262,316,996

prop. 2.876 3.129 28,262,316,996 0.0(1∗∗) −0.001 (0.94•) 0.00(1.00∗∗)

H.ANF 2.891 3.180 28,451,734,342 −0.005 (0.03) −0.017 (0.06) −0.007 (0.78)

MHSE 2.881 3.140 28,262,316,996 −0.002(0.44) −0.001(0.62) 0.00(1.00∗∗)

rnd-BFS 2.868 3.096 28,262,020,235 0.0027(0.33) 0.01(0.29) 1e-5(0.01)

Hollywood Exact(x̂) 3.855 4.394 1,143,030,619,175

prop. 3.855 4.397 1,143,485,513,294 −2e-4(0.92•) −3.9e-4(0.95∗) −8e-4(0.90•)

H.ANF 3.848 4.374 1,136,104,164,355 0.16(0.49) −0.46(0.5) 0.61(0.80)

MHSE 3.857 4.382 1,138,248,927,314 −3.91e-4 (0.86) 0.003 (0.65) 0.0042(0.56)

rnd-BFS 3.840 4.364 1,143,960,403,951 0.004(0.18) 0.007(0.16) −0.001(0.90•)

Orkut Exact(x̂) 6.397 8.906 3,359,893,990,935

prop. 6.402 8.895 3,386,716,107,589 −7e-4(0.90•) 0.001(0.82) −0.008(0.60)

H.ANF 6.389 8.917 3,336,311,224,217 0.001(0.53) −0.001(0.76) 0.01(0.45)

MHSE ✗ ✗ ✗ ✗ ✗ ✗

rnd-BFS 6.399 8.929 3,328,105,314,542 −4e-4(0.91•) −0.003(0.61) 0.01(0.32)

HyperANF. Furthermore, propagate-s is the best algorithm to approximate
the neighborhood function on huge data sets. It requires n · s bits, to store
the graph signature. Indeed, for eu-2015, i.e. the biggest graph in Table 1, it
needs approximately at most 1 GB to store the graph signature. Thus, using
WebGraph’s offline methods to scan the graph, propagate-s could provide the
approximated neighborhood function of eu-2015 using an average laptop.

Computing Distance-Based Metrics on Very Large Graphs 685

Computing Ground Truth Metrics with propagate. As a last experiment,
we compare propagate-s with the WebGraph implementation of the All Pair
Shortest Path (APSP) algorithm to compute the exact neighborhood function.
Among all the competitor algorithms, HyperANF cannot be used to compute
the ground truth values of a graph. That is because its neighborhood function
estimator that uses the HyperLogLog counter is asymptotically almost unbiased
[7]. MHSE instead, cannot be employed because of its high space complexity.
Observe that rand-BFS coincides with WebGraph’s APSP algorithm. As showed
in the proof of Theorem 3 (see [5]) propagate’s distance metrics estimators are
all unbiased. Thus, our novel framework can be used to compute the ground
truth values. Given a n vertices graph G = (V,E), propagate suffices of the
entire vertex set V as set of seeds to compute the exact distance metrics. For this
experiment, we use propagate-s because it needs only n bits to store the graph
signature, while propagate-p would need n2 bits and with a 64 GB machine
can be used only for computing the ground truth metrics of the first three graphs
in Table 1. In the right side of Table 2, we show the running times of propagate-
s and APSP. We observe that propagate-s is faster than WebGraph’s APSP
implementation on all the data sets. These results suggest that our implementa-
tion of propagate-s is preferable for retrieving exact values of distance-based
metrics on very large real-world graphs.

6 Conclusions

We proposed propagate, a novel framework for estimating distance-based met-
rics on very large graphs. In Sect. 4, we provided two different implementation of
our framework, that, so far, can approximate: average distance, (effective) diam-
eter, and the connectivity rate up to a small error with high probability. Our
experimental results are summarized in Sect. 5.1, which depicts the performance
of our framework versus the state-of-the-art algorithms. Our approach over-
perform in terms of accuracy and running time all its competitors. Moreover,
when applied to very large real-world graphs, propagate-s (and propagate-
p if applicable) clearly outperforms all the other algorithms in terms of scal-
ability. As indicated in Table 3, our framework is the only available option to
approximate distance-based metrics when we do not have access to servers with
a large amount of memory. In the spirit of reproducibility, we developed an open
source framework in Java that allows any user with an average laptop to approx-
imate the distance-based metrics considered in this paper on any kind of graph.
Some promising future directions are to use propagate to compute centrality
measures on vertices and edges, and to extend our framework to community
detection tasks.

Acknowledgements. This work was partially supported by the European Union
under the Italian National Recovery and Resilience Plan (NRRP) of NextGenera-
tionEU, partnership on “Telecommunications of the Future” (PE00000001 program
“RESTART”).

686 G. Amati et al.

References

1. Abboud, A., Williams, V.V.: Popular conjectures imply strong lower bounds for
dynamic problems. In: 55th IEEE Annual Symposium on Foundations of Computer
Science, FOCS 2014, Philadelphia, PA, USA, 18–21 October 2014. IEEE Computer
Society (2014)

2. Aingworth, D., Chekuri, C., Indyk, P., Motwani, R.: Fast estimation of diameter
and shortest paths (without matrix multiplication). SIAM J. Comput. 28(4), 1167–
1181 (1999). https://doi.org/10.1137/S0097539796303421

3. Amati, G., Angelini, S., Capri, F., Gambosi, G., Rossi, G., Vocca, P.: Modelling
the temporal evolution of the retweet graph. IADIS Int. J. Comput. Sci. Inf. Syst.
11(2), 19–30 (2016). ISSN 1646-3692

4. Amati, G., Angelini, S., Gambosi, G., Rossi, G., Vocca, P.: Estimation of distance-
based metrics for very large graphs with minhash signatures. In: Proceedings of
2017 IEEE International Conference on Big Data. IEEE (2017)

5. Amati, G., Cruciani, A., Pasquini, D., Vocca, P., Angelini, S.: Propagate: a seed
propagation framework to compute distance-based metrics on very large graphs.
CoRR (2023). https://doi.org/10.48550/arXiv.2301.06499

6. Bar-Yossef, Z., Jayram, T.S., Kumar, R., Sivakumar, D., Trevisan, L.: Counting
distinct elements in a data stream. In: Rolim, J.D.P., Vadhan, S. (eds.) RANDOM
2002. LNCS, vol. 2483, pp. 1–10. Springer, Heidelberg (2002). https://doi.org/10.
1007/3-540-45726-7 1

7. Boldi, P., Rosa, M., Vigna, S.: HyperANF: approximating the neighbourhood func-
tion of very large graphs on a budget. In: Proceedings of 20th International Con-
ference on World Wide Web, Hyderabad, India, pp. 625–634 (2011)

8. Boldi, P., Vigna, S.: The WebGraph framework I: compression techniques. In:
Proceedings of the Thirteenth International World Wide Web Conference (WWW
2004), Manhattan, USA, pp. 595–601. ACM Press (2004)

9. Boldi, P., Vigna, S.: LAW datasets: laboratory for web algorithmics (2022). https://
law.di.unimi.it/datasets.php

10. Borassi, M., Crescenzi, P., Habib, M., Kosters, W.A., Marino, A., Takes, F.W.:
Fast diameter and radius BFS-based computation in (weakly connected) real-world
graphs. Theor. Comput. Sci. 586, 59–80 (2015)

11. Casella, G., Berger, R.: Statistical Inference. Duxbury Resource Center (2001)
12. Ceccarello, M., Pietracaprina, A., Pucci, G., Upfal, E.: Distributed graph diameter

approximation. Algorithms 13, 216 (2020). https://doi.org/10.3390/a13090216
13. Chechik, S., Larkin, D.H., Roditty, L., Schoenebeck, G., Tarjan, R.E., Williams,

V.V.: Better approximation algorithms for the graph diameter. In: Proceedings of
the Twenty-fifth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA
2014, pp. 1041–1052. Society for Industrial and Applied Mathematics, Philadelphia
(2014). https://dl.acm.org/citation.cfm?id=2634074.2634152

14. Chierichetti, F., Epasto, A., Kumar, R., Lattanzi, S., Mirrokni, V.S.: Efficient
algorithms for public-private social networks. In: Proceedings of the 21th ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining, Syd-
ney, NSW, Australia, 10–13 August 2015 (2015)

15. Cohen, E.: Size-estimation framework with applications to transitive closure and
reachability. J. Comput. Syst. Sci. 55(3), 441–453 (1997)

16. Cohen, E.: All-distances sketches, revisited: hip estimators for massive graphs anal-
ysis. In: Proceedings of 33rd ACM SIGMOD-SIGACT-SIGART Symposium on
Principles of Database Systems, Snowbird, Utah, USA, pp. 88–99 (2014)

https://doi.org/10.1137/S0097539796303421
https://doi.org/10.48550/arXiv.2301.06499
https://doi.org/10.1007/3-540-45726-7_1
https://doi.org/10.1007/3-540-45726-7_1
https://law.di.unimi.it/datasets.php
https://law.di.unimi.it/datasets.php
https://doi.org/10.3390/a13090216
https://dl.acm.org/citation.cfm?id=2634074.2634152

Computing Distance-Based Metrics on Very Large Graphs 687

17. Coppersmith, D., Winograd, S.: Matrix multiplication via arithmetic progressions.
J. Symb. Comput. 9(3), 251–280 (1990)

18. Crescenzi, P., Grossi, R., Lanzi, L., Marino, A.: A comparison of three algorithms
for approximating the distance distribution in real-world graphs. In: Marchetti-
Spaccamela, A., Segal, M. (eds.) TAPAS 2011. LNCS, vol. 6595, pp. 92–103.
Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-19754-3 11

19. Cygan, M., Gabow, H.N., Sankowski, P.: Algorithmic applications of baur-
strassen’s theorem: shortest cycles, diameter, and matchings. J. ACM 62(4), 28:1–
28:30 (2015). https://doi.org/10.1145/2736283. https://doi.acm.org/10.1145/
2736283

20. Dalirrooyfard, M., Wein, N.: Tight conditional lower bounds for approximating
diameter in directed graphs. In: STOC 2021: 53rd Annual ACM SIGACT Sym-
posium on Theory of Computing, Virtual Event, Italy, 21–25 June 2021. ACM
(2021)

21. Durand, M., Flajolet, P.: Loglog counting of large cardinalities (extended abstract).
In: Proceedings of 11th Annual European Symposium (ESA), Budapest, pp. 605–
617 (2003)

22. Eppstein, D., Wang, J.: Fast approximation of centrality. In: Proceedings of 12th
Annual ACM-SIAM Symposium on Discrete Algorithms, Washington, D.C., USA,
pp. 228–229 (2001)

23. Flajolet, P., Fusy, É., Gandouet, O., Meunier, F.: Hyperloglog: the analysis of
a near-optimal cardinality estimation algorithm. In: Analysis of Algorithms, pp.
137–156. Discrete Mathematics and Theoretical Computer Science (2007)

24. Flajolet, P., Martin, G.N.: Probabilistic counting algorithms for data base appli-
cations. J. Comput. Syst. Sci. 31(2), 182–209 (1985)

25. Fortunato, S., Latora, V., Marchiori, M.: Method to find community structures
based on information centrality. Phys. Rev. E 70(5 Pt 2), 056104 (2004). https://
doi.org/10.1103/PhysRevE.70.056104

26. Girvan, M., Newman, M.E.J.: Community structure in social and biological net-
works. Proc. Natl. Acad. Sci. 99(12), 7821–7826 (2002)

27. Heule, S., Nunkesser, M., Hall, A.: Hyperloglog in practice: algorithmic engineering
of a state of the art cardinality estimation algorithm. In: Proceedings of the 16th
International Conference on Extending Database Technology (EDBT), Genoa, pp.
683–692 (2013)

28. Hoeffding, W.: Probability inequalities for sums of bounded random variables. In:
Fisher, N.I., Sen, P.K. (eds.) The collected works of Wassily Hoeffding, pp. 409–426.
Springer, New York (1994). https://doi.org/10.1007/978-1-4612-0865-5 26

29. Kleinberg, J.: The small-world phenomenon: an algorithmic perspective. In: Pro-
ceedings of the Thirty-Second Annual ACM Symposium on Theory of Comput-
ing, STOC 2000, pp. 163–170. ACM, New York (2000). https://doi.org/10.1145/
335305.335325. https://doi.acm.org/10.1145/335305.335325

30. Kumar, R., Novak, J., Tomkins, A.: Structure and evolution of online social net-
works. In: Proc. 12th ACM SIGKDD International Conference on Knowledge Dis-
covery and Data Mining, Philadelphia, PA, USA, pp. 611–617 (2006)

31. Kunegis, J.: KONECT - The Koblenz Network Collection. In: Proceedings of Inter-
national Conference on World Wide Web Companion (2013)

32. Leskovec, J., Faloutsos, C.: Sampling from large graphs. In: Proceedings of 12th
International Conference on ACM SIGKDD, Philadelphia, PA, USA, pp. 631–636
(2006)

https://doi.org/10.1007/978-3-642-19754-3_11
https://doi.org/10.1145/2736283
https://doi.acm.org/10.1145/2736283
https://doi.acm.org/10.1145/2736283
https://doi.org/10.1103/PhysRevE.70.056104
https://doi.org/10.1103/PhysRevE.70.056104
https://doi.org/10.1007/978-1-4612-0865-5_26
https://doi.org/10.1145/335305.335325
https://doi.org/10.1145/335305.335325
https://doi.acm.org/10.1145/335305.335325

688 G. Amati et al.

33. Leskovec, J., Kleinberg, J., Faloutsos, C.: Graphs over time: densification laws,
shrinking diameters and possible explanations. In: Proceedings of 11th Interna-
tional Conference on ACM SIGKDD, Chicago, IL, USA, pp. 177–187 (2005)

34. Leskovec, J., Krevl, A.: SNAP Datasets: Stanford large network dataset collection
(2014). http://snap.stanford.edu/data

35. Palmer, C., Siganos, G., Faloutsos, M., Faloutsos, C., Gibbons, P.: The connectiv-
ity and fault-tolerance of the internet topology. In: Proceedings of Workshop on
Network-Related Data Management, vol. 25, S. Barbara, USA (2001)

36. Palmer, C.R., Gibbons, P.B., Faloutsos, C.: ANF: a fast and scalable tool for data
mining in massive graphs. In: Proceedings of 8th ACM SIGKDD International
Conference on Knowledge Discovery in Data Mining, pp. 81–90. ACM (2002)

37. Roditty, L., Williams, V.V.: Fast approximation algorithms for the diameter and
radius of sparse graphs. In: Proceedings of 45th Symposium on Theory of Com-
puting (STOC), Palo Alto, CA, USA, pp. 515–524 (2013)

38. Tauro, L., Palmer, C., Siganos, G., Faloutsos, M.: A simple conceptual model for
the Internet topology. In: Global Internet, San Antonio, TX, USA (2001)

39. Whang, K.Y., Vander-Zanden, B.T., Taylor, H.M.: A linear-time probabilistic
counting algorithm for database applications. ACM Trans. Database Syst. 15(2),
208–229 (1990)

40. Williams, V.V.: Multiplying matrices faster than coppersmith-winograd. In: Pro-
ceedings of the 44th Symposium on Theory of Computing Conference, STOC 2012,
New York, NY, USA, 19–22 May 2012, pp. 887–898 (2012). https://doi.org/10.
1145/2213977.2214056. https://doi.acm.org/10.1145/2213977.2214056

http://snap.stanford.edu/data
https://doi.org/10.1145/2213977.2214056
https://doi.org/10.1145/2213977.2214056
https://doi.acm.org/10.1145/2213977.2214056

Towards Memory-Efficient Training
for Extremely Large Output Spaces –
Learning with 670k Labels on a Single

Commodity GPU

Erik Schultheis1(B) and Rohit Babbar1,2

1 Aalto University, Espoo, Finland
erik.schultheis@aalto.fi, rb2608@bath.ac.uk

2 University of Bath, Bath, UK

Abstract. In classification problems with large output spaces (up to
millions of labels), the last layer can require an enormous amount of
memory. Using sparse connectivity would drastically reduce the memory
requirements, but as we show below, applied näıvely it can result in much
diminished predictive performance. Fortunately, we found that this can
be mitigated by introducing an intermediate layer of intermediate size.
We further demonstrate that one can constrain the connectivity of the
sparse layer to be of constant fan-in, in the sense that each output neuron
will have the exact same number of incoming connections, which allows
for more efficient implementations, especially on GPU hardware. The
CUDA implementation of our approach is provided at https://github.
com/xmc-aalto/ecml23-sparse.

1 Introduction

In this paper, we present findings towards employing sparse connectivity in order
to reduce the memory consumption of the classification layer for problems with
extremely large output spaces (XMC). Such problems arise in, e.g., tagging of
text documents [8], next-word predictions [21], and different kinds of recom-
mendation tasks [1,5,19,24,29]. In order to ensure computational tractability of
these tasks, which can have up to several millions of labels, one typically builds
a hierarchical label tree [14,23,30,32], only exploring branches that are likely to
contain relevant labels for the current instance. Even though this is very effec-
tive at reducing the computation (from linear to logarithmic in the number of
labels), it does not help in addressing the memory consumption, which is still
linear in the number of labels times the number of hidden units.

As an illustration consider the Amazon-3M [18] dataset. If we were to map
the inputs to a hidden representation of 1024 units, the fully connected last layer
for this dataset would need about 2.9 billion parameters, corresponding to 10.7
GiB1. Given that modern deep learning optimizers such as Adam [16] need to

The original version of this chapter was previously published without open access. A
correction to this chapter is available at
https://doi.org/10.1007/978-3-031-43418-1 42
1 Assuming 32-bit floating point numbers.

c© The Author(s) 2023, corrected publication 2024
D. Koutra et al. (Eds.): ECML PKDD 2023, LNAI 14171, pp. 689–704, 2023.
https://doi.org/10.1007/978-3-031-43418-1 41

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-43418-1_41&domain=pdf
http://orcid.org/0000-0003-1685-8397
http://orcid.org/0000-0002-3787-8971
https://github.com/xmc-aalto/ecml23-sparse
https://github.com/xmc-aalto/ecml23-sparse
https://doi.org/10.1007/978-3-031-43418-1_42
https://doi.org/10.1007/978-3-031-43418-1_41

690 E. Schultheis and R. Babbar

keep track of the value, gradient, and first and second moment, this leads to an
overall peak memory consumption of over 40 GiB, making it nigh impossible to
train such models on commodity hardware.

Therefore, we want to investigate possibilities for memory efficient sparse
training of this huge last layer. There are two pre-existing approaches that serve
as an indication that this is an idea that could be successful: First, for DiSMEC,
a linear model applied to tf-idf representations of input text, it is known that
the resulting layer can be sparsified after training to contain less than 1% non-
zeros [2]. In a linear model, the different classifiers for each label can be trained
independently. As a result, only the full weights of the label that is currently
trained needs to be kept in memory, and can be pruned as soon as the training
for that label has finished. For non-linear models, the Mach [19] algorithm
can be interpreted as a special case of training with static, random sparsity.
It works by hashing the labels into different buckets, and performing training
and predictions only on the level of buckets. If enough independent hashes are
used, this method allows to solve the original problem in the large output space.
However, in practice, the results presented for Mach are not as good as for
competing methods.

The contributions of this paper are as follows: We show that näıvely apply-
ing a dynamic sparse training algorithm to the last layer of an XMC problem
results in strongly reduced predictive performance. Inspired by Mach, we then
propose to alleviate this problem by inserting a penultimate layer that is larger
than the hidden representation of the inputs, but still much smaller than the size
of the label space. Such an increased layer size drastically improves the chances
of dynamic sparse training finding a good subnetwork, and enables us to get
results only slightly worse than training with a dense last layer. We demonstrate
this on several large-scale datasets, for which we train a classification layer on a
fixed set of pre-trained features. To ensure memory efficient and quick computa-
tions, we propose to restrict the sparsity structure to constant fan-in, such that
each unit in the output layer receives exactly the same number of inputs. This
has several important consequences: (i) it makes it impossible for the training
to focus most non-zero weights on a few, prominent head labels, and instead
ensures a more even distribution of the representational capacity, (ii) compared
to coordinate-format this requires only half the memory to store the indices, and
compared to compressed row sparse matrices the data layout is simpler, making
it easier to implement the corresponding operations on a GPU, and (iii) it also
means that changing the sparsity structure (redistribution of connections) can
be implemented as a very cheap operation.

2 Setup and Background

We consider classification problems that map an input instance x ∈ X to a
subset of a label set with m labels, represented as a binary vector y ∈ {0, 1}m.
More precisely, we assume that (x,y) ∼ P are jointly distributed according to
some probability measure. If almost surely ‖y‖1 = 1, it is a multiclass setup,

https://www.intel.com/content/www/us/en/docs/onemkl/developer-reference-c/2023-0/sparse-blas-coordinate-matrix-storage-format.html
https://www.intel.com/content/www/us/en/docs/onemkl/developer-reference-c/2023-0/sparse-blas-csr-matrix-storage-format.html

Towards Memory-Efficient Training for Extremely Large Output Spaces 691

otherwise a multilabel setup. We want to find a classifier f : X −→ {0, 1}m so
that predicted labels ŷ = f(x) and actual labels are close. Usually, f can be
decomposed into two operations: First, the inputs are embedded into a fixed-size
vector space using a function ψ : X −→ Re (e.g. a linear projection, multilayer
perceptron, or transformer-based text model), and then a decoding W ∈ Re×m

is applied to extract scores for each label. The actual prediction is then generated
by selecting the k highest scoring labels as positive, ŷ = topk(W

Tψ(x)). Con-
sequently, performance is typically measured in terms of precision-at-k, defined
as the fraction of correct predictions

P@k(y, ŷ) = k−1
m∑

j=1

yj ŷj for ‖ŷ‖1 = k. (1)

In order to find the optimal W that maximizes P@k, one often performs a
One-vs-All (OvA) reduction [2,3,20]: A binary classification loss � is applied to
each label separately. As this involves evaluating the scores WTψ(x) for each
label, many methods select a subset N ⊂ [m] of hard negatives [7,12,14,15,26],
to approximate the sum as

l(y, x) =
m∑

j=1

�(yj ,wT
j ψ(x)) =

∑

j:yj=1

�(1,wT
j ψ(x)) +

∑

j:yj=0

�(0,wT
j ψ(x))

≈
∑

j:yj=1

�(1,wT
j ψ(x)) +

∑

j∈N
�(0,wT

j ψ(x)) .

(2)

This is very effective at reducing the required computations, and could also be
beneficial for accuracy because it effectively changes the distribution of labels
seen by the classifier [25], but it does not decrease the enormous amount of
memory required to store the weight matrix W.

There are several established approaches to handle this problem: The most
straightforward method is to place a bottleneck layer just before the final clas-
sification layer, so that the dimension of the embedding that W operates on
is comparatively low. For example, LightXML [14] project the 3280-dimensional
representation used for determining hard negatives down to only 300 units for the
extreme-level classification. This approach is limited in its effectiveness, as too
small sizes start to severely affect the classification quality. A second strategy is
to prune the matrix W after training, turning it into a very sparse matrix. This
can reduce the model size to only a tiny fraction of the dense equivalent, without
negatively affecting its predictive power, but this does not solve the problem of
memory consumption during the training itself. The only exception are linear
models, where the weight vectors wj for different labels can be trained inde-
pendently, and be sparsified immediately after training, so that the full matrix
never has to materialize [2,3]. Additionally, it is possible to exploit the relation
between primal and dual of linear problems to achieve sparse training for max
margin classifiers with appropriate loss functions [31]. Finally, Mach [19] has
shown that it is possible to train an extreme classifier on the level of meta-labels,

692 E. Schultheis and R. Babbar

obviating the need for the large weight matrix W altogether. However, this cor-
responds, implicitly, to a multiplication by a sparse, fixed, binary matrix, which
therefore limits the expressiveness of the model, and it requires keeping multiple
copies of the embedding network ψ.

Thus, existing sparse training methods for XMC either use post-training
sparsification, or a fixed sparsity structure. Here, we want to apply the sparse
evolutionary training (Set) algorithm [22] to the classification layer, so that we
have sparse training with dynamic sparsity structure. The Set algorithm fol-
lows a general prune-redistribute-regrowth cycle, which means that periodically,
a subset of existing non-zero weights is selected to be removed (pruned), and
new structural non-zeros will be inserted (redistributed). After that, the training
of the sparse layer proceeds just as in any other gradient-based optimization,
i.e., the structural non-zeros are updated according to their mini-batch gradient
(regrown), and the structural zeros are left unchanged, until the next cycle.

This general algorithmic structure can be implemented in various ways,
depending on how the pruned weights are selected, and how it is determined
where they should be re-distributed. [11] The Set algorithm uses very sim-
ple heuristics: The set of least important connections is determined by sorting
according to the absolute value of their weight, and removing the fraction α of
connections with lowest weight. The same number of new connections is inserted
after pruning, by choosing uniformly randomly from the structural zeros.

While there exist more elaborate schemes, they are generally more complex
to implement and will require additional memory. For example, [4] chooses its
pruning based on weights switching their sign, which means that it needs to store
the previous signs of all structural non-zeros. To determine useful locations for
inserting the redistributed connections, [9] uses a momentum term, which means
that this requires the same amount of memory as the weights for the original
dense layer, and thus is infeasible in our setting. This also excludes any strategy
that requires, even if only intermittently, a full, dense gradient, such as [10].

A näıve application of Set to the last layer leads to unsatisfactory results,
and an implementation using just the available tools in tensorflow turns out to
be suboptimal in terms of speed and memory consumption. Thus, we present in
the next section some modifications to the architecture and training algorithm, as
well as insights into an efficient implementation, to alleviate these shortcomings.

3 Method

In principle, implementing a sparse layer in tensorflow2 is straightforward:
Replace the dense-dense matrix multiplication with a sparse-dense operation
that is supplied by the framework, and the weight matrix with a SparseTensor.

There are four problems with this approach: First, it wastes memory due to
tensorflows requirement that all indices be given as 64-bit integers. Second,
completely unstructured sparsity makes efficient implementations challenging,
especially on GPUs. Third, the tensorflow operations cannot exploit the spar-
sity in the gradient signal that arises naturally when training with hinge-like
2 PyTorch still considers its sparse tensor support to be in beta.

Towards Memory-Efficient Training for Extremely Large Output Spaces 693

losses. Finally, replacing the dense layer with a highly sparse layer results in
underfitting. We will address these problems below.

3.1 Efficient 32-Bit Indexing

In tensorflow, sparse tensors are represented in coordinate (Coo) format
(Fig. 1a), which means that each structural nonzero in a sparse matrix is
described by three numbers. Two 64-bit integers define the row and column
of the structural nonzero, and a 32-bit floating point number its value. This
means that a single sparse weight requires as much memory as five weights in
the dense matrix.

Even for extreme-scale classification, however, 32-bit integers would be more
than sufficient as column and row indices of W. A maximum representable value
of around 4 billion is still an order of magnitude larger than even very large
scale proprietary problems [19] with 100 s of millions of labels, and three orders
of magnitude larger than publicly available benchmark datasets.

Fig. 1. Schematic depiction of different sparse matrix formats. Note that in Coo format
(a), the indices array in Algorithm 1 is of shape 2 × nnz. In uniform format (c) it is
nnz per column× labels, and hence only half as big, compared to the Coo format, for
the same number of nonzeros.

3.2 Compressed Indexing and Equitable Work Distribution
Through Constant Fan-In

Even with 32-bit indices, a sparse weight still consumes three times as much
memory as a dense weight, when represented in coordinate format. This could
be made much more efficient by switching to compressed sparse column (Csc)
format, where only row indices are saved directly, and for each column only

694 E. Schultheis and R. Babbar

the offset of its first index is stored (Fig. 1b). While this drastically reduces the
amount of memory needed to store the indices, it also increases the complexity of
involved computations. For example, in Coo format, one can assign each GPU
thread to the same amount of structural non-zeros to handle during the matrix
multiplication, as getting the corresponding row and column indices is a simple
array lookup. In contrast, in Csc format, it is still trivial to assign one column
to each thread (i.e., each thread will compute one output), but that can lead to
a significant difference in the amount of work each thread has to do, and thus
lead to inefficient use of GPU resources. Furthermore, redistribution becomes
more involved, as inserting a new structural nonzero in an early column means
that all the weights and indices that come after have to be shifted.

This can be simplified if we stipulate that each column should have the exact
same amount of structural non-zeros, such that ∀j : ‖wj‖0 = s. Then, a single
index array is sufficient, and the starting offset of each column can be calculated
simply by multiplying the number of non-zeros per column with the column
index, like in regular multidimensional array indexing (Fig. 1c). Distributing a
multiplication with a constant fan-in sparse matrix across many threads is also
easy, as we can simply assign one column (i.e., wj) to each thread, knowing that
they correspond to the same amount of work. Finally, connection redistribution
is cheaper, because the number of non-zeros stays constant for each column,
and thus changes in one column never require moving around the data of other
columns. As we will show in Sect. 4.2, the additional constraint on the number
of connections per output does not negatively influence the models predictive
performance in the overparametrized regime.

Broadly, the implementation works as follows: The sparse weights are rep-
resented by two matrices, indices ∈ Ns×m and weights ∈ Rs×m. The input
is given as a matrix features ∈ Rb×e, where b denotes the batch size, and
the output is a matrix output ∈ Rb×m. CUDA threads are generated on a
two dimensional grid, with one thread for each output. Thus, threads will be
indexed by pairs, each of them consisting of instance ∈ [b] and label ∈ [m].
Every thread performs the calculations given, schematically, in Algorithm 1.

Algorithm 1. Calculation of the score for a single label label and instance
for uniform sparsity (see Fig. 1c) with s non-zeros for each label.
value = 0;

for weight_idx in range(s):

source = indices[weight_idx, label]

feature = features[instance, source]

value += feature * weights[weight_idx, label]

output[instance, label] = value

Towards Memory-Efficient Training for Extremely Large Output Spaces 695

3.3 Speeding up Backward Pass Through Implicit Negative Mining

Our experiments with a sparse last layer showed that the largest fraction of time
was spent in the backward pass. This is not surprising, as the backward pass
requires two sparse matrix multiplications: to calculate the gradient with respect
to the inputs, and to calculate the gradient with respect to the weights.

Fortunately, certain margin-based losses can induce high amounts of sparsity
in the gradient of XMC problems, which can be exploited to ensure considerable
speed-up [27,31]. In the given enormous label space, each instance will have
only a tiny subset of labels which are relevant to it, and many for which the
decision that they are not relevant is “easy”. Thus, if the loss function gives
zero penalty for these easy classifications (e.g., if the margin is large enough
in hinge-like losses), then the error term to be back-propagated will be highly
sparse. For the loss function that is mainly used in this paper, the squared-hinge
loss �(y, ŷ) = max(0, 1 − yŷ)2, the gradient is ∂�/∂ŷ = −2y max(0, 1 − yŷ), and
thus exactly zero whenever yŷ ≥ 1.

Therefore, in the backward kernel, it becomes beneficial to explicitly check
whether the backpropagated signal ∂�/∂ŷ, denoted by backward ∈ Rb×m in
the algorithm, is already zero, and if so to skip the corresponding operations. In
particular, this means not only that the multiplication with zero can be skipped,
but also makes it unnecessary to load the second operand and to store the result.
As sparse matrix operations are memory-bound, this can be highly beneficial.

In fact, if we distribute the threads in the same way as the forward pass for
the calculation of the gradient with respect to the features (one thread assigned
for each label and instance) then most threads can be skipped entirely.3 A
schematic of the resulting implementation is given in Algorithm 2. Because mul-
tiple labels can contribute to the gradient of each input feature, in this case
several threads need to update the same part of the gradient array. Therefore,
we have to resort to using atomic addition operations here.

For calculating the gradient of the weight values, it is possible to arrange
threads so that they can act independently, by using one thread for each gradient
entry, i.e., for each label ∈ [m] and weight idx ∈ [s]. In this case, one cannot
skip entire threads, but a zero in the backward signal still allows to skip the
unpredictable, indirect memory lookup of feature = features [instance,
source], as shown in Algorithm 3.

3.4 Mitigating Underfitting by Adding an Intermediate Layer

Finally, we noticed that—even without constant fan-in—replacing the dense
layer with a sparse layer results in diminished classification accuracy, which we
3 On a GPU, skipping a single thread might not be helpful, as threads are executed

together in groups of 32 as a warp. However, with the very high level of sparsity
in the backward signal, it becomes common that all threads within a warp can be
skipped.

696 E. Schultheis and R. Babbar

Algorithm 2. Contribution to the gradient for the input features caused by a
given label and instance in the mini-batch.
out = backward[instance, label]

if out == 0:

return

for weight_idx in range(s):

source = indices[weight_idx, label]

weight = weights[weight_idx, label]

atomicAdd(gradient[instance, source], weight * out)

Algorithm 3. Calculation of the gradient for a given structural non-zero weight.

source = indices[weight_idx, label]

result = 0

for instance in range(batch_size):

out = backward[instance, label]

if out == 0: continue

feature = features[instance, source]

result += feature * out;

gradient[weight_idx, label] = result

attribute to underfitting. Thus, we propose to improve the expressiveness of the
model by adding an intermediate layer between the embedding layer and the final
classification layer. Because the last layer is sparse, its memory consumption is
independent of the size of the preceding layer. Consequently, as long as this new
intermediate layer is at least an order of magnitude smaller than the number of
labels, this does not impede our goal of reducing memory requirements.

4 Experiments

In this section, we provide the experimental evidence showing that sparse last
layers are a viable approach to extreme multilabel classification. We run exper-
iments with several well-known benchmark datasets, measuring duration and
peak GPU memory consumption, as well as P@k. After presenting results that
justify the architectural choices we made, we provide additional data illustrating
the trade-offs between memory consumption and classification accuracy by vary-
ing the sparsity and size of the intermediate layer. Then we present investigate
the effect of implicit negative mining. The section concludes with a discussion of
the results. Additional experiments are given in the supplementary at https://
github.com/xmc-aalto/ecml23-sparse.

https://github.com/xmc-aalto/ecml23-sparse
https://github.com/xmc-aalto/ecml23-sparse

Towards Memory-Efficient Training for Extremely Large Output Spaces 697

4.1 Experimental Setup

In this paper we focus on the setting of learning from fixed, low-dimensional
representations of the instances. This enables us to do many more experiments
than if we had to fine-tune an expensive transformer-based encoder for each run.

We use two different sources for the embeddings: 512-dimensional fast-text
based representations as used for Slice [12], and the final classification embed-
dings from a trained CascadeXML [15] model with 768 dimensions. We present
results on two datasets, [33], Amazon-670k [17], and Wikipedia-500k [6].

To update the network’s weights, we use the Adam optimizer [16] with an
initial learning rate of 1× 10−3 that is decayed by 1/2 whenever validation P@3
stops improving, until reaching 1 × 10−4. After that, training is stopped once
P@3 stops increasing. For sparse layers, we initialize the connections uniformly
randomly, potentially subject to the constraint that each label gets the same
amount of connections. Every 1000 training steps, each consisting of 32 samples
in a minibatch, the 10% lowest-magnitude weights are randomly redistributed.
In order to mitigate overfitting, we apply dropout to the input features, drop-
ping 10% for Amazon-670k and Wikipedia-500k-Slice features, and 20% for
Wikipedia-500k-Cascade.

The experiments are run on a Nvidia V100. Even though we want to
demonstrate the feasibility of XMC learning on a commodity GPU, in order
to be able to make meaningful comparisons, we have to train on the same
GPU for all settings, which means that the GPU needs to have enough mem-
ory to fit in a dense last layer. To quantify the memory benefits of sparse
training, we record the peak memory consumption as reported by tensorflow
(tf.config.experimental.get_memory_info("GPU:0")[’peak’]). Note, in
particular, that all cases with our proposed architecture consume significantly
less than 4 GiB of GPU memory, and thus will be feasible, albeit training more
slowly, on cheap gaming GPUs.

4.2 Results with Varying Architecture

As a first step, we want to show that the architectural choices described in Sect. 3
are useful. To that end, we compare the training with a dense last layer to the
following settings:

– A single, unstructured sparse layer,
– A single, constant fan-in sparse layer,
– An intermediate, dense layer, followed by an unstructured sparse layer,
– An intermediate, dense layer, followed by a constant fan-in sparse layer.

The number of structural non-zeros is chosen such that in the Unstructured
sparse layers, there are an average of 32 connections per label, and in the
Constant-Fan-In sparse layers there are exactly 32 connections per label. As a
baseline with comparable memory consumption, we also trained a Bottleneck
architecture, that maps the input representation to a low-dimensional space of
only 64 dimensions, before projecting into the label space.

698 E. Schultheis and R. Babbar

Table 1. Comparison of different network architectures. Con denotes the (average)
number of connections per label, Int the intermediate layer’s size, Mem the peak GPU
memory consumption, Eps the number of training epochs, and Time the duration of a
single epoch in seconds. Bold marks the best results in any sparse setting.

Setup Test Train Mem. Eps. Time

Sparsity Con. Int. P@1 P@3 P@5 P@1 P@3 P@5 GiB sec

Wiki500k-Slice

Dense 512 – 58.2 37.9 28.0 97.3 77.5 60.4 6.7 39.4 1 249

Unstructured 32 – 45.5 27.3 19.9 58.3 37.7 28.1 4.8 78.0 3 612

Constant-Fan-In 32 – 37.5 23.2 17.6 42.6 28.0 21.9 0.7 54.8 659

Unstructured 32 32k 59.0 38.5 28.9 83.7 61.4 47.7 4.8 40.0 3 977

Constant-Fan-In 32 32k 58.9 38.4 28.9 84.2 62.2 48.4 1.0 45.8 723

Bottleneck 64 64 56.5 36.5 27.5 71.8 50.0 38.5 1.0 41.8 639

Wiki500k-Cascade

Dense 768 – 77.2 58.6 45.1 96.7 79.7 64.2 10.0 25.6 1 744

Unstructured 32 – 65.2 43.7 31.4 78.3 54.7 39.8 4.8 100.0 3 870

Constant-Fan-In 32 – 58.7 42.0 32.2 69.1 51.8 40.4 0.7 59.4 715

Unstructured 32 32k 73.7 54.7 42.0 92.4 73.5 58.1 4.9 58.0 4 423

Constant-Fan-In 32 32k 73.6 54.8 42.1 93.0 74.3 58.9 1.0 67.4 842

Bottleneck 64 64 71.9 50.7 37.9 86.4 64.8 49.5 1.0 47.6 678

Amazon670k-Slice

Dense 512 – 33.8 29.6 26.6 99.2 93.9 88.4 9.0 27.2 472

Unstructured 32 – 14.5 11.5 9.5 64.8 49.4 39.0 6.4 73.0 1 357

Constant-Fan-In 32 – 7.1 6.3 5.6 16.2 13.9 12.4 1.0 24.8 223

Unstructured 32 32k 32.7 28.7 25.8 98.8 93.4 87.5 6.4 45.0 1 619

Constant-Fan-In 32 32k 32.8 28.7 25.9 98.7 93.2 87.3 1.2 38.0 244

Bottleneck 64 64 30.7 27.3 24.6 96.4 88.9 80.1 1.1 33.6 219

Amazon670k-Cascade

Dense 768 – 47.5 42.3 38.3 99.8 94.5 89.0 13.4 28.4 624

Unstructured 32 – 30.4 23.8 19.0 88.8 71.4 55.6 6.3 95.0 1 369

Constant-Fan-In 32 – 37.1 31.6 27.6 92.4 84.0 74.8 1.0 76.2 234

Unstructured 32 32k 42.5 37.1 33.0 99.7 94.3 88.7 6.5 36.0 1 512

Constant-Fan-In 32 32k 42.6 37.1 33.1 99.7 94.3 88.7 1.4 36.4 271

Bottleneck 64 64 38.0 33.7 30.4 99.1 93.3 86.4 1.1 31.6 232

We repeated each experiment five times and report the average, expect for
the extremely slow settings with unstructured sparsity, which we ran only once.

The results of these experiments are presented in Table 1. Several facts are
immediately obvious from the recorded data: First, the naive, tensorflow-based
implementation for Unstructured sparsity is very slow, to the degree that the
sparse matrix multiplication ends up being 2-3× slower than dense multiplication
on the large datasets. Second, with the intermediate layer, the classification
performance of constant fan-in and unstructured sparsity is almost identical.

Towards Memory-Efficient Training for Extremely Large Output Spaces 699

Third, without an intermediate layer, there is a significant drop in P@3, both in
training and test performance, showing that näıve sparsification leads to severe
overfitting. In cases where the unstructured sparse layer fails to perform well
even on the training set, the additional constraint does lead to a further drop
in performance. The Bottleneck baseline outperforms the direct sparse layer,
but is significantly weaker than the combination of sparse and intermediate layer.

The measurements further show that for training based on Slice features,
the sparse implementation manages to attain and slightly surpass the classifica-
tion performance of the equivalent dense layer, whereas for Cascade features
there still remains a noticeable gap between dense and sparse training. As a
first possible explanation, one might argue that Cascade features have been
specifically trained so that they work well with a linear extreme classification
layer, whereas Slice are more general features. Therefore, it is not the sparse
realizations that perform better, but instead the dense setting that performs
disproportionately worse for Slice features, as it does not have the benefit of
the additional intermediate layer that allows non-linear classification boundaries.
This argument does not hold up, though, as both features result in comparable
model performance on the training set—it is the generalization gap that is much
increased with Slice features.

Looking at the memory consumption, we can see that sparsification of the
last layer does lead to a noticeable reduction, but only becomes really effective if
we use our implementation of constant fan-in sparsity. In this case, the memory
consumption reduces to between one third and on tenth of the dense equivalent.

4.3 Results with Varying Network Size

In Table 2, we demonstrate the effect of varying the number of connections per
label, and the size of the intermediate layer, for the uniformly sparse setup.
Unsurprisingly, increasing the network size results in improved classification per-
formance. For Slice features, the sparse network can be considerably better than
the dense counterpart. For Cascade features, increasing the size of the sparse
layer provides a way of shrinking the gap between sparse and dense performance,
while still remaining much more memory efficient than the dense setup. In par-
ticular for Wikipedia-500k, the change in memory consumption is only by a
few percent, while the improvement in P@k is substantial. Except for Amazon-
670k with Cascade features, increasing the model size results in reducing the
number of training epochs.

The data also shows a clear qualitative difference between Amazon-670k
and Wikipedia-500k: For Amazon-670k, switching from dense to sparse does
not lead to a noticeable decline in the ability of the classifier to fit the training
set, whereas for Wikipedia-500k the drop is dramatic, especially in the case
of Slice features. This suggests that for the smaller Amazon-670k (490 449
instances), even the sparse architectures are overparametrized enough to inter-
polate the training set, whereas for Wikipedia-500k (1 813 391 instances), this
is no longer the case, especially for the smaller sparse models.

700 E. Schultheis and R. Babbar

Table 2. Train and test P@k on Amazon-670k with varying sparsity and intermediate-
layer size, relative to dense performance. Results of a single run.

Setup Test Train Mem. Eps. Time

Sparsity Con. Int. P@1 P@3 P@5 P@1 P@3 P@5 GiB sec

Slice Features

Dense 512 – 33.8 29.6 26.6 99.2 93.9 88.4 9.0 27.2 472

Constant-Fan-In 32 16k −2.0 −1.8 −1.6 −1.0 −1.5 −2.4 1.1 42.0 259

Constant-Fan-In 32 32k −1.0 −0.9 −0.7 −0.5 −0.7 −1.0 1.2 38.0 244

Constant-Fan-In 32 65k −0.1 0.1 0.3 −0.2 −0.3 −0.4 1.3 36.0 309

Constant-Fan-In 32 100k 0.5 0.6 0.8 −0.1 −0.2 −0.2 1.8 35.0 302

Constant-Fan-In 64 16k −0.6 −0.4 −0.2 −0.1 −0.1 −0.2 1.9 33.0 301

Constant-Fan-In 64 32k 0.2 0.3 0.5 −0.1 −0.1 −0.1 2.2 32.0 314

Constant-Fan-In 64 65k 0.8 0.9 1.1 −0.1 −0.1 −0.1 2.5 30.0 396

Constant-Fan-In 64 100k 1.3 1.4 1.5 −0.1 −0.2 −0.2 2.6 29.0 411

Cascade Features

Dense 768 – 47.5 42.3 38.3 99.8 94.5 89.0 13.4 28.4 624

Constant-Fan-In 32 16k −6.2 −6.3 −6.4 −0.3 −0.5 −1.0 1.2 34.0 270

Constant-Fan-In 32 32k −4.9 −5.1 −5.2 −0.1 −0.2 −0.4 1.4 36.4 271

Constant-Fan-In 32 65k −3.8 −3.8 −3.9 −0.1 −0.1 −0.2 1.7 39.0 305

Constant-Fan-In 32 100k −2.8 −3.0 −3.0 −0.1 −0.2 −0.3 2.4 34.0 334

Constant-Fan-In 64 16k −4.2 −4.2 −4.1 −0.0 −0.1 −0.1 2.1 27.0 290

Constant-Fan-In 64 32k −3.3 −3.3 −3.2 −0.0 −0.1 −0.1 2.4 31.0 306

Constant-Fan-In 64 65k −2.3 −2.4 −2.4 −0.1 −0.1 −0.2 2.5 33.0 391

Constant-Fan-In 64 100k −1.9 −1.9 −1.9 −0.1 −0.1 −0.2 2.9 31.0 435

Constant-Fan-In 72 65k −2.3 −2.4 −2.3 −0.0 −0.1 −0. 2.7 31.0 440

4.4 Quantifying the Effect of Implicit Negative Mining

Next, we show that the implicit negative mining effect discussed above can have
a significant impact on the speed of training. To that end, we use the small
model configuration with constant fan-in sparsity with 32 structural non-zeros
per output and 16k intermediate units, and train it once using the squared hinge
loss (Sqh) and once using binary cross-entropy (Bce) loss function. As the Bce
loss only goes to zero asymptotically, this means that there will not be many
explicit zeros in the signal being back-propagated through the sparse layer, and
thus all labels have to be processed.

As shown in Table 3, this has a strong effect on the training time per epoch:
The implicit negative mining with Sqh reduces the duration by about one third.
Additionally, the squared hinge loss results in slightly better P@k, and fewer
training epochs.

Towards Memory-Efficient Training for Extremely Large Output Spaces 701

Table 3. Comparison of training with square hinge loss and binary cross-entropy.

Setup Test Train Mem. Eps. Time

dataset features loss P@1 P@3 P@5 P@1 P@3 P@5 GiB sec

Wikipedia-500K slice Sqh 58.0 37.7 28.4 80.3 58.2 45.1 0.9 59.0 946

Wikipedia-500K slice Bce 57.1 37.1 28.0 77.0 53.7 41.1 1.0 52.0 1 121

Wikipedia-500K cascade Sqh 73.1 54.2 41.5 90.7 71.4 56.3 0.9 68.0 746

Wikipedia-500K cascade Bce 71.6 52.4 40.1 89.2 68.6 53.4 1.0 79.0 1 247

Amazon670k slice Sqh 31.7 27.9 25.0 98.2 92.5 86.0 1.1 42.0 259

Amazon670k slice Bce 30.9 27.1 24.4 96.2 89.6 82.0 1.2 54.0 400

Amazon670k cascade Sqh 41.3 35.9 31.9 99.5 94.0 88.0 1.2 34.0 270

Amazon670k cascade Bce 38.4 33.2 29.4 98.2 92.3 85.3 1.3 63.0 423

4.5 Discussion

The results above show that sparsification of the extreme layer is possible with-
out a strong decrease in classification performance, relative to a dense layer.
However, it has to be noted that training the dense layer in the common experi-
mental protocol employed here yields worse results than reported state-of-the-art
for the same set of features. Thus, even in cases where the sparse architecture
outperforms the dense layer, reported results from the literature are still better.

In Table 4, we present the results from Slice [12] and Cascade [15], com-
pared against our largest setting with 64 nonzeros per label and 65k intermediate
units. Compared to these methods, ours performs up to 4% worse, trading off
a little classification accuracy versus a multifold reduction in memory consump-
tion. For example, Cascade runs for over a day on two NVidia A100 GPUs.

Table 4. Comparison of sparse results with state-of-the-art.

Dataset Method Slice Cascade

P@1 P@3 P@5 P@1 P@3 P@5

Wikipedia-500k Literature 62.6 41.8 31.6 77.0 58.3 45.1

Wikipedia-500k Ours 60.5 39.8 29.8 74.5 56.0 43.2

Amazon-670k Literature 37.8 33.8 30.7 48.8 43.8 40.1

Amazon-670k Ours 34.6 30.5 27.7 45.3 39.8 35.9

5 Conclusion and Outlook

In this paper, we have shown that it is possible to replace an extreme-scale dense
classification layer with a memory-efficient sequence of an intermediately-sized
layer followed by a constant-fan-in sparsely connected layer, without a strong
drop in classification performance, and in some cases even improved P@k.

The experiments performed so far investigate sparse layers in the context of
a simple training procedure: Learning with the full label space, from fixed, pre-
trained features. To achieve feature-parity with existing approaches, this needs to

702 E. Schultheis and R. Babbar

be extended to allow for end-to-end training, where the featurizer ψ is learned
jointly with the classifier. Secondly, even though the implicit negative mining
effect allows to reduce the computation for the backward pass to be sub-linear
in the overall number of labels, it still requires a full forward pass. In order to
get to competitive training times, one thus has to integrate also explicit negative
mining into the training pipeline. Finally, the datasets used in this work still do
not exceed millions of labels.

We performed some initial experiments using Amazon-3M [18], which indi-
cate a decrease of memory consumption from 63 GiB to 12 GiB, at the cost of
about 5% decrease in precision. While this is still too much memory consump-
tion for cheap gaming GPUs, it is still well within the parameters of common
workstation units. A more thorough investigation of this dataset is planned for
future work.

We believe that this paper provides a good foundation, from which these
goals can be achieved: First, by having the sparse multiplication implemented
as a regular tensorflow layer, it can be readily included in a more general model,
and automatic differentiation will ensure correct gradient calculations. Second,
because we are constraining the sparsity to have constant fan-in, selecting a
subset of labels for which scores shall be calculated becomes a trivial matrix
slicing operation, similar to the fully-connected case. In follow-up works, we aim
to incorporate our approach into existing end-to-end deep extreme classification
frameworks while benefiting from explicit negative mining. Furthermore, from a
statistical perspective, it is possible that constant-fan-in sparsity also leads to
a better coverage of tail-labels, and improvements in the corresponding metrics
[13,28], which should be investigated.

Acknowledgements. We acknowledge the support of computational resources pro-
vided by the Aalto Science-IT project, and CSC IT Center for Science, Finland. This
work is funded in part by the Academy of Finland projects 347707 and 348215.

Ethical Statement. Our work does not provide new datasets or introduce conceptu-

ally new learning setups. Instead, we focus on enabling existing methods to run with

much reduced hardware requirements. This will make large-scale classification more

readily available also to people and organizations that cannot afford to buy latest-

grade GPU hardware with enormous RAM, as they can reuse pre-existing and cheaper

hardware.

References

1. Agrawal, R., Gupta, A., Prabhu, Y., Varma, M.: Multi-label learning with millions
of labels: recommending advertiser bid phrases for web pages. In: Proceedings of
the 22nd International Conference on World Wide Web, pp. 13–24 (2013)

2. Babbar, R., Schölkopf, B.: Dismec: distributed sparse machines for extreme multi-
label classification. In: Proceedings of the tenth ACM International Conference on
Web Search and Data Mining, pp. 721–729 (2017)

3. Babbar, R., Schölkopf, B.: Data scarcity, robustness and extreme multi-label clas-
sification. Mach. Learn. 108(8–9), 1329–1351 (2019)

Towards Memory-Efficient Training for Extremely Large Output Spaces 703

4. Bellec, G., Kappel, D., Maass, W., Legenstein, R.: Deep rewiring: training very
sparse deep networks (2017)

5. Beygelzimer, A., Langford, J., Lifshits, Y., Sorkin, G., Strehl, A.L.: Conditional
probability tree estimation analysis and algorithms (2014)

6. Bhatia, K., et al.: The extreme classification repository: multi-label datasets and
code (2016). https://manikvarma.org/downloads/XC/XMLRepository.html

7. Chang, W.C., Yu, H.F., Zhong, K., Yang, Y., Dhillon, I.S.: Taming pretrained
transformers for extreme multi-label text classification. In: Proceedings of the 26th
ACM SIGKDD International Conference on Knowledge Discovery & Data Mining,
pp. 3163–3171 (2020)

8. Dekel, O., Shamir, O.: Multiclass-multilabel classification with more classes than
examples. In: Proceedings of the Thirteenth International Conference on Artificial
Intelligence and Statistics, pp. 137–144. JMLR Workshop and Conference Proceed-
ings (2010)

9. Dettmers, T., Zettlemoyer, L.: Sparse networks from scratch: faster training with-
out losing performance. arXiv preprint arXiv:1907.04840 (2019)

10. Evci, U., Gale, T., Menick, J., Castro, P.S., Elsen, E.: Rigging the lottery: making
all tickets winners. In: International Conference on Machine Learning, pp. 2943–
2952. PMLR (2020)

11. Hoefler, T., Alistarh, D., Ben-Nun, T., Dryden, N., Peste, A.: Sparsity in deep
learning: pruning and growth for efficient inference and training in neural networks.
J. Mach. Learn. Res. 22(1), 10882–11005 (2021)

12. Jain, H., Balasubramanian, V., Chunduri, B., Varma, M.: Slice: scalable linear
extreme classifiers trained on 100 million labels for related searches. In: WSDM,
pp. 528–536 (2019)

13. Jain, H., Prabhu, Y., Varma, M.: Extreme multi-label loss functions for recom-
mendation, tagging, ranking & other missing label applications. In: Proceedings of
the 22nd ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, pp. 935–944 (2016)

14. Jiang, T., Wang, D., Sun, L., Yang, H., Zhao, Z., Zhuang, F.: Lightxml: transformer
with dynamic negative sampling for high-performance extreme multi-label text
classification, vol. 35, no. 9, pp. 7987–7994 (2021)

15. Kharbanda, S., Banerjee, A., Schultheis, E., Babbar, R.: Cascadexml: rethinking
transformers for end-to-end multi-resolution training in extreme multi-label clas-
sification. In: Advances in Neural Information Processing Systems (2022)

16. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint
arXiv:1412.6980 (2014)

17. McAuley, J., Leskovec, J.: Hidden factors and hidden topics: understanding rat-
ing dimensions with review text. In: Proceedings of the 7th ACM Conference on
Recommender Systems, pp. 165–172 (2013)

18. McAuley, J., Pandey, R., Leskovec, J.: Inferring networks of substitutable and
complementary products. In: Proceedings of the 21th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2015)

19. Medini, T.K.R., Huang, Q., Wang, Y., Mohan, V., Shrivastava, A.: Extreme clas-
sification in log memory using count-min sketch: a case study of amazon search
with 50m products, vol. 32 (2019)

20. Menon, A.K., Rawat, A.S., Reddi, S., Kumar, S.: Multilabel reductions: what is
my loss optimising? In: Advances in Neural Information Processing Systems, vol.
32 (2019)

21. Mikolov, T., Chen, K., Corrado, G., Dean, J.: Efficient estimation of word repre-
sentations in vector space. arXiv preprint arXiv:1301.3781 (2013)

https://manikvarma.org/downloads/XC/XMLRepository.html
http://arxiv.org/abs/1907.04840
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1301.3781

704 E. Schultheis and R. Babbar

22. Mocanu, D.C., Mocanu, E., Stone, P., Nguyen, P.H., Gibescu, M., Liotta, A.: Scal-
able training of artificial neural networks with adaptive sparse connectivity inspired
by network science. Nat. Commun. 9(1), 2383 (2018)

23. Prabhu, Y., Kag, A., Harsola, S., Agrawal, R., Varma, M.: Parabel: partitioned
label trees for extreme classification with application to dynamic search advertising.
In: Proceedings of the 2018 World Wide Web Conference, pp. 993–1002 (2018)

24. Prabhu, Y., Varma, M.: Fastxml: a fast, accurate and stable tree-classifier for
extreme multi-label learning. In: Proceedings of the 20th ACM SIGKDD Interna-
tional Conference on Knowledge Discovery and Data Mining, pp. 263–272 (2014)

25. Rawat, A.S., et al.: Disentangling sampling and labeling bias for learning in large-
output spaces. In: International Conference on Machine Learning, pp. 8890–8901.
PMLR (2021)

26. Reddi, S.J., Kale, S., Yu, F., Holtmann-Rice, D., Chen, J., Kumar, S.: Stochastic
negative mining for learning with large output spaces. In: The 22nd International
Conference on Artificial Intelligence and Statistics, pp. 1940–1949. PMLR (2019)

27. Schultheis, E., Babbar, R.: Speeding-up one-versus-all training for extreme classi-
fication via mean-separating initialization. Mach. Learn. 111, 1–24 (2022)

28. Schultheis, E., Wydmuch, M., Babbar, R., Dembczynski, K.: On missing labels,
long-tails and propensities in extreme multi-label classification. In: Proceedings of
the 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining,
pp. 1547–1557 (2022)

29. Weston, J., Makadia, A., Yee, H.: Label partitioning for sublinear ranking. In:
International Conference on Machine Learning, pp. 181–189. PMLR (2013)

30. Wydmuch, M., Jasinska, K., Kuznetsov, M., Busa-Fekete, R., Dembczynski, K.: A
no-regret generalization of hierarchical softmax to extreme multi-label classifica-
tion. In: Advances in Neural Information Processing Systems, vol. 31 (2018)

31. Yen, I.E.H., Huang, X., Ravikumar, P., Zhong, K., Dhillon, I.: PD-sparse: a primal
and dual sparse approach to extreme multiclass and multilabel classification. In:
International Conference on Machine Learning, pp. 3069–3077. PMLR (2016)

32. You, R., Zhang, Z., Wang, Z., Dai, S., Mamitsuka, H., Zhu, S.: Attentionxml: label
tree-based attention-aware deep model for high-performance extreme multi-label
text classification, vol. 32 (2019)

33. Zubiaga, A.: Enhancing navigation on wikipedia with social tags (2012)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

Correction to: Towards Memory-Efficient
Training for Extremely Large Output Spaces –

Learning with 670k Labels on a Single
Commodity GPU

Erik Schultheis and Rohit Babbar

Correction to:
Chapter 41 in: D. Koutra et al. (Eds.): Machine Learning
and Knowledge Discovery in Databases, LNAI 14171,
https://doi.org/10.1007/978-3-031-43418-1_41

The chapter ‘Towards Memory-Efficient Training for Extremely Large Output Spaces –
Learning with 670k Labels on a Single Commodity GPU’, written by Erik Schultheis
and Rohit Babbar, was originally published electronically on the publisher’s internet
portal without open access. With the author(s)’ decision to opt for Open Choice the
copyright of the chapter changed on January 29, 2024 to © The Author(s), 2024 and
the chapter is forthwith distributed under a Creative Commons Attribution 4.0 Inter-
national Licence (http://creativecommons.org/licenses/by/4.0/), which permits use,
sharing, adaptation, distribution, and reproduction in any medium or format, as long as
you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons licence, and indicate if changes were made. The images or other
third-party material in this chapter are included in the chapter’s Creative Commons
Licence, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons Licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain
permission directly from the copyright holder.

The updated version of this chapter can be found at
https://doi.org/10.1007/978-3-031-43418-1_41

© The Author(s) 2024
D. Koutra et al. (Eds.): ECML PKDD 2023, LNAI 14171, p. C1–C2, 2024.
https://doi.org/10.1007/978-3-031-43418-1_42

http://orcid.org/0000-0003-1685-8397
http://orcid.org/0000-0002-3787-8971
https://doi.org/10.1007/978-3-031-43418-1_41
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-43418-1_42&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-43418-1_42&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-43418-1_42&domain=pdf
https://doi.org/10.1007/978-3-031-43418-1_41
https://doi.org/10.1007/978-3-031-43418-1_42

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appro-
priate credit to the original author(s) and the source, provide a link to the Creative Commons
license and indicate if changes were made.
The images or other third party material in this chapter are included in the chapter's Creative

Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter's Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder.

C2 E. Schultheis and R. Babbar

http://creativecommons.org/licenses/by/4.0/

Author Index

A
Adeshina, Soji 157
Aditya Srivatsa, K. V. 410
Alchihabi, Abdullah 309
Amati, Giambattista 671
Amouzouvi, Kossi 601
Angelini, Simone 671
Asthana, Siddhartha 19

B
Babbar, Rohit 689
Bai, Wen 209
Bai, Yang 637, 654
Barnett, Ian J. 343
Bauckhage, Christian 462
Beckh, Katharina 462
Bhan, Milan 496
Bischl, Bernd 479
Bothmann, Ludwig 479
Bouadi, Tassadit 394
Bu, Zhiqi 343
Bulanda, Daniel 277

C
Casalicchio, Giuseppe 479
Chaudhari, Pratik 343
Chen, Guihai 193
Cheng, Guixiang 70
Chesneau, Nicolas 496
Choudhary, Mukund 410
Cruciani, Antonio 671

D
Dandl, Susanne 479
Demir, Caglar 567, 617
Ding, Zifeng 550

F
Faloutsos, Christos 157
Ferri, Cèsar 378

Fessant, Françoise 394
Frossard, Pascal 242
Fumagalli, Fabian 428

G
Gaiński, Piotr 36
Gao, Shengxiang 70
Gao, Xiaofeng 193
Gao, Zhangyang 3
Gastinger, Julia 533
Gong, Chen 515
Guo, Yuhong 309
Gupta, Harshit 410
Gupta, Manish 410
Gupta, Sonia 19
Guyet, Thomas 394
Guyomard, Victor 394

H
Hammer, Barbara 428
Håvardstun, Brigt Arve Toppe 378
Heindorf, Stefan 617
Hernández-Orallo, Jose 378
Honcharov, Danylo 293
Hong, Yuan 446
Horzyk, Adrian 277
Hossain, Jakir 259
Huang, Bosong 325
Huang, Jin 325
Hüllermeier, Eyke 428

I
Ioannidis, Vassilis N. 157

J
Jakobs, Matthias 462
Jiang, Yuncheng 209
Jin, Hai 583

© The Editor(s) (if applicable) and The Author(s), under exclusive license
to Springer Nature Switzerland AG 2023
D. Koutra et al. (Eds.): ECML PKDD 2023, LNAI 14171, pp. 705–707, 2023.
https://doi.org/10.1007/978-3-031-43418-1

https://doi.org/10.1007/978-3-031-43418-1

706 Author Index

K
Kanamori, Kentaro 360
Karypis, George 157
Koziarski, Michał 36
Kuang, Wenlan 53

L
Laishram, Ricky 293
Lehmann, Jens 601
Lesot, Marie-Jeanne 496
Li, Duanyu 140
Li, Stan Z. 3
Li, Zhixin 53
Li, Zongyue 550
Liang, Yuting 209
Lin, Haitao 3
Liu, Ninghao 104
Liu, Zihan 3
Lopez, Federico 122
Lou, Jian 446
Lu, Kai 140
Lu, Renzhong 617
Luo, Linhao 515

M
Ma, Jun 157
Ma, Yunpu 550
Malhotra, Aakarsh 19
Mavromatis, Costas 157
Menon, Abhinav 410
Miao, Xianghua 70
Müller, Sebastian 462
Muschalik, Maximilian 428

N
Ngonga Ngomo, Axel-Cyrille 567, 617
Nguyen, Quoc Viet Hung 515

P
Pan, Shirui 515
Parviainen, Pekka 378
Pasquini, Daniele 671

R
Raha, Tathagata 410
Razmi, Fereshteh 446
Riestenberg, J. Maxwell 122

S
Sarıyüce, Ahmet Erdem 259, 293
Schuelke, Anett 533
Schultheis, Erik 689
Sethi, Akshay 19
Sharma, Lokesh 533
Shi, Yucheng 104
Śmieja, Marek 36
Song, Bowen 601
Soundarajan, Sucheta 259, 293
Starzyk, Janusz A. 277
Strube, Michael 122
Stubbemann, Maximilian 177
Stuckenschmidt, Heiner 533
Stumme, Gerd 177
Sztyler, Timo 533

T
Tabor, Jacek 36
Taha, Diaaeldin 122
Tan, Cheng 3
Telle, Jan Arne 378
Termier, Alexandre 394
Toborek, Vanessa 462
Toni, Laura 242
Tresp, Volker 550
Trettel, Steve 122

V
Vahdati, Sahar 601
Varma, Vasudeva 410
Vittaut, Jean-Noël 496
Vocca, Paola 671

W
Wang, Chao 193
Wang, Maocai 601
Wang, Ruibo 140
Wang, Shen 157
Wei, Shaowei 87
Welke, Pascal 462
Wiebesiek, Michel 617
Wu, Huijun 140
Wu, Jingpei 550
Wu, Lirong 3

Author Index 707

Wu, Xugang 140
Wu, Zhengwei 87

X
Xiao, Jing 325
Xie, Ruzhong 325
Xiong, Li 446
Xu, An 637, 654
Xu, Chengjin 601
Xu, Guangyi 70
Xu, Shiyun 343

Y
Yan, Liping 226
Yan, Xin 70
Yu, Weihao 325

Yu, Weiren 226
Yuan, Pingpeng 583

Z
Zhang, Zhaobo 583
Zhang, Zhiqiang 87
Zhao, Han 157
Zhao, Wei 122
Zhao, Zicheng 515
Zheng, Da 157
Zheng, Zuowu 193
Zhou, Jun 87
Zhou, Kaixiong 104
Zhou, Xu 140
Zhu, Qiangxi 53

	 Preface
	 Organization
	Invited Talks Abstracts
	 Neural Wave Representations
	 Physics-Inspired Graph Neural Networks
	 Mapping Generative AI
	 Contents – Part III

	Graph Neural Networks
	Learning to Augment Graph Structure for both Homophily and Heterophily Graphs
	1 Introduction
	2 Related Work
	2.1 Graph Neural Networks
	2.2 Graph Structure Augmentation
	2.3 Variational Inference for GNNs

	3 Methodology
	3.1 Problem Statement
	3.2 Augmentation from a Probabilistic Generation Perspective
	3.3 Iterative Variational Inference
	3.4 Parameterized Augmentation Distribution
	3.5 GNN Classifier Module for Node Classification
	3.6 Complexity Analysis

	4 Experiments
	4.1 Experimental Setups
	4.2 Classification on Real-World Datasets (Q1)
	4.3 Homophily Ratios and GNN Architectures (Q2)
	4.4 Ablation Study (Q3)
	4.5 Augmentation Strategy Learning (Q4)
	4.6 Parameter Sensitivity Analysis (Q5)

	5 Conclusion
	References

	Learning Representations for Bipartite Graphs Using Multi-task Self-supervised Learning
	1 Introduction
	2 Background Work
	2.1 Bipartite Graph Representation Learning
	2.2 Self Supervised Learning (SSL) for GNNs
	2.3 Multi-task Self Supervised Learning and Optimization

	3 Proposed Algorithm
	3.1 Notation
	3.2 Bipartite Graph Encoder
	3.3 Multi Task Self Supervised Learning
	3.4 DST++: Dropped Schedule Task MTL with Task Affinity

	4 Experiments
	4.1 Datasets
	4.2 Downstream Tasks and Evaluation Metrics
	4.3 Evaluation Protocol
	4.4 Baselines

	5 Results and Analysis
	5.1 Comparison with Unsupervised Baselines
	5.2 Ablation Study

	6 Conclusion
	References

	ChiENN: Embracing Molecular Chirality with Graph Neural Networks
	1 Introduction
	2 Related Work
	3 Order-Sensitive Message-Passing Scheme
	4 ChiENN: Chiral-Aware Neural Network
	4.1 Edge Graph
	4.2 Neighbors Order
	4.3 Chiral-Aware Update

	5 Experiments
	5.1 Set-Up
	5.2 Comparison with Reference Methods
	5.3 Ablation Studies

	6 Conclusions
	References

	Multi-label Image Classification with Multi-scale Global-Local Semantic Graph Network
	1 Introduction
	2 Proposed Method
	2.1 Multi-scale Feature Reconstruction
	2.2 Channel Dual-Branch Cross Attention
	2.3 Multi-perspective Dynamic Semantic Representation
	2.4 Classification and Loss

	3 Experiments
	3.1 Comparison with State of the Arts
	3.2 Ablation Studies
	3.3 Visual Analysis

	4 Conclusion
	References

	CasSampling: Exploring Efficient Cascade Graph Learning for Popularity Prediction
	1 Introduction
	2 Related Work
	3 Preliminaries
	4 Method
	4.1 Graph Sampling
	4.2 Local-Level Propagation Embedding
	4.3 Global-Level Time Flow Representation
	4.4 Prediction Layer
	4.5 Complexity Analysis

	5 Experiments
	5.1 Datasets
	5.2 Baseline
	5.3 Evaluation Metrics
	5.4 Experiment Settings

	6 Results and Analysis
	6.1 Experiment Results
	6.2 Ablation Study
	6.3 Further Analysis

	7 Conclusion
	References

	Boosting Adaptive Graph Augmented MLPs via Customized Knowledge Distillation
	1 Introduction
	2 Related Work
	2.1 Inference Acceleration
	2.2 GNN Distillation
	2.3 GNN on Addressing Heterophily

	3 Preliminaries
	4 Methodology
	4.1 Customized Knowledge Distillation
	4.2 Adaptive Graph Propagation
	4.3 Approximate Aggregation Feature

	5 Experiments
	5.1 Datasets
	5.2 Experimental Setup
	5.3 Node Classification on Different Types of Graph
	5.4 Comparing with GNN Distillation Methods
	5.5 Ablation Study
	5.6 Parameter Sensitivity Analysis
	5.7 Inference Acceleration and Practical Deployment

	6 Conclusion
	References

	ENGAGE: Explanation Guided Data Augmentation for Graph Representation Learning
	1 Introduction
	2 Related Work
	2.1 Representation Learning for Graph Data
	2.2 Graph Contrastive Learning
	2.3 Explanation for Graph Neural Networks

	3 Preliminaries
	3.1 Notations
	3.2 Contrastive Learning Frameworks

	4 The ENGAGE Framework
	4.1 Mitigating Superfluous Information in Representations
	4.2 Efficient Explanations for Unsupervised Representations
	4.3 Explanation-Guided Contrastive Views Generation
	4.4 Theoretical Justification

	5 Experiments
	5.1 Experimental Setup
	5.2 Experiment Results and Comparisons
	5.3 Ablation Study

	6 Conclusion and Future Work
	References

	Modeling Graphs Beyond Hyperbolic: Graph Neural Networks in Symmetric Positive Definite Matrices
	1 Introduction
	2 Related Work
	3 Background
	3.1 The Space SPD
	3.2 Gyrocalculus on SPD

	4 Graph Neural Networks
	4.1 GCN in Euclidean Space
	4.2 GCN in SPD

	5 Experiments
	5.1 Node Classification
	5.2 Graph Classification
	5.3 Analysis

	6 Conclusions
	References

	Leveraging Free Labels to Power up Heterophilic Graph Learning in Weakly-Supervised Settings: An Empirical Study
	1 Introduction
	2 Related Work
	2.1 Adaptive Filters for Heterophilic Graph Learning
	2.2 Evaluation on Heterophilic Graph Learning

	3 Motivation
	3.1 Experimental Setups
	3.2 Results and Observations
	3.3 Analysis

	4 Proposed Approach
	4.1 Implementation

	5 Experiments
	5.1 Performance Improvements on GPR-GNN
	5.2 Performance Improvements on BernNet
	5.3 Visualization of the Learned Filters

	6 Conclusion
	References

	Train Your Own GNN Teacher: Graph-Aware Distillation on Textual Graphs
	1 Introduction
	2 Background
	2.1 Problem Formulation
	2.2 GNNs on Textual Graphs

	3 Towards Graph-Aware Knowledge Distillation
	3.1 Knowledge Distillation
	3.2 What Does Knowledge Distillation Learn? An Analysis

	4 GraD5513621En10FigaPrint.eps Framework
	4.1 GraD-Joint
	4.2 GraD-Alt
	4.3 GraD-JKD
	4.4 Student Models

	5 Experimental Setup
	5.1 Datasets
	5.2 Implementation Details
	5.3 Compared Methods

	6 Experimental Results
	6.1 GraDBERT Results
	6.2 GraDMLP Results

	7 Related Work
	8 Conclusion
	References

	Graphs
	The Mont Blanc of Twitter: Identifying Hierarchies of Outstanding Peaks in Social Networks
	1 Introduction
	2 Related Work
	3 Mountain Graphs and Line Parent Trees
	3.1 Landscapes and Mountain Graphs
	3.2 Line Parent Trees
	3.3 Discarding Edges via Relative Neighborhood Graphs

	4 Line Parent Trees of Real-World Networks
	4.1 Comparison with Sampling Approaches
	4.2 Distances to Line-Parent Trees

	5 Experiments on Random Data
	6 Conclusion and Future Work
	References

	RBNets: A Reinforcement Learning Approach for Learning Bayesian Network Structure
	1 Introduction
	2 Preliminaries
	2.1 Bayesian Network Structure Learning
	2.2 Local Scores
	2.3 Order Graph

	3 Deep Reinforcement Learning-Based Bayesian Network Structure Learning
	3.1 Reinforcement Learning Formulation
	3.2 Upper Confidence Bounds Based Strategy
	3.3 Deep Q-Learning Algorithm

	4 Experimental Validation
	4.1 Experiment Setup
	4.2 Datasets
	4.3 Baseline Methods
	4.4 Evaluation Metrics
	4.5 Performance Evaluation of Time
	4.6 Learning Performance from Datasets

	5 Conclusion
	References

	A Unified Spectral Rotation Framework Using a Fused Similarity Graph
	1 Introduction
	2 Related Work
	3 Methodology
	3.1 Similarity Matrix Construction
	3.2 High-Order Laplacian Construction
	3.3 Unified Framework
	3.4 Optimization
	3.5 Complexity Analysis

	4 Experiments
	4.1 Experimental Setup
	4.2 Comparison with State-of-the-Art Algorithms
	4.3 Ablation Study
	4.4 Parameter Sensitivity
	4.5 Convergence Analysis

	5 Conclusion
	References

	SimSky: An Accuracy-Aware Algorithm for Single-Source SimRank Search
	1 Introduction
	2 ApproxDiag: Approximate Diagonal Correction Matrix
	3 SimSky
	4 Experiments
	4.1 Experimental Setting
	4.2 Comparative Experiments
	4.3 Ablation Experiments

	5 Conclusions
	References

	Online Network Source Optimization with Graph-Kernel MAB
	1 Introduction
	2 Online Source Optimization Problem
	2.1 Problem Formulation
	2.2 Graph-Kernel MAB Framework

	3 Grab-UCB: Proposed Algorithm
	4 Grab-arm-Light: Efficient Action Selection
	5 Simulation Results
	5.1 Settings
	5.2 Performance of Grab-UCB

	6 Related Work
	7 Conclusions
	References

	Quantifying Node-Based Core Resilience
	1 Introduction
	2 Background
	3 Related Work
	4 Node-Based Core Resilience
	4.1 Resilience Against Edge Removal
	4.2 Resilience Against Edge Insertion

	5 Experimental Evaluation
	5.1 Runtime Results
	5.2 Finding Critical Edges
	5.3 Identifying Influential Spreaders

	6 Conclusions and Future Work
	References

	Construction and Training of Multi-Associative Graph Networks
	1 Introduction
	2 Essence of Data Relationship Representation
	3 Multi-Associative Graph Network
	3.1 Representation of Horizontal and Vertical Relationships
	3.2 Consolidation of Attributes and Aggregation of Duplicates
	3.3 Associating Features and Objects
	3.4 Associative Prioritization Algorithm
	3.5 MAGN Implementation and Source Code

	4 Results of Experiments and Comparisons
	4.1 Regression Benchmark
	4.2 Classification Benchmark

	5 Conclusions
	References

	Skeletal Cores and Graph Resilience
	1 Introduction
	2 Related Work
	3 Background
	3.1 k-Cores
	3.2 Core Strength
	3.3 Core Valid Subgraph and Skeletal k-Core
	3.4 Core Resilience

	4 Algorithms to Explore the Space of Skeletal Cores
	4.1 Sampling Skeletal Cores Uniformly at Random
	4.2 Estimating the Number of Skeletal Cores
	4.3 Proof of the Algorithm Correctness
	4.4 Estimation of Expected Properties of Skeletal Core
	4.5 Normalized Number of Skeletal Cores

	5 Experiments and Analysis
	5.1 Datasets
	5.2 Algorithm Validation
	5.3 Skeletal Core Analysis
	5.4 Identifying the ``Breaking Point'' of the k-Core Structure

	6 Conclusion
	References

	GDM: Dual Mixup for Graph Classification with Limited Supervision
	1 Introduction
	2 Related Works
	2.1 Graph Classification
	2.2 Graph Augmentation

	3 Method
	3.1 Problem Setup
	3.2 Graph Classification
	3.3 Mixup
	3.4 Graph Dual Mixup
	3.5 Balanced Graph Sampling
	3.6 Augmented Training Procedure

	4 Experiments
	4.1 Experimental Setup
	4.2 Comparison Results
	4.3 Ablation Study

	5 Conclusion
	References

	Two-Stage Denoising Diffusion Model for Source Localization in Graph Inverse Problems
	1 Introduction
	2 Related Work
	3 Preliminaries
	3.1 Conditional Score-Based Diffusion Models
	3.2 Graph Information Dissemination
	3.3 Problem Formulation for Source Localization

	4 SL-Diff Method
	4.1 Two-Stage Optimization Framework
	4.2 Coarse Proximity Generation
	4.3 Graph Dissemination Conditioned Model

	5 Experiments
	5.1 Settings
	5.2 Overall Performance
	5.3 Ablation Study
	5.4 Parameter Analysis

	6 Conclusion
	References

	Interpretability
	Sparse Neural Additive Model: Interpretable Deep Learning with Feature Selection via Group Sparsity
	1 Introduction
	2 Additive Models in a Nutshell
	3 SNAM: Model and Optimization
	3.1 Model and Linearization Regimes
	3.2 Group Sparsity and Optimization Problems
	3.3 Random Feature SNAM
	3.4 Convergence of SNAM and RF

	4 Non-Asymptotic Analysis of SNAM
	4.1 Slow Rate with Group LASSO Penalty
	4.2 Exact Support Recovery

	5 Asymptotic Analysis of SNAM
	5.1 Consistency
	5.2 Effect Identifiability

	6 Experiments
	6.1 Synthetic Datasets
	6.2 California Housing Regression
	6.3 COMPAS Classification
	6.4 Super-Conductivity Regression

	7 Discussion
	References

	Learning Locally Interpretable Rule Ensemble
	1 Introduction
	2 Rule Ensemble
	2.1 RuleFit

	3 Problem Formulation
	3.1 Local Interpretability of Rule Ensemble
	3.2 Locally Interpretable Rule Ensemble

	4 Optimization
	4.1 Learning Algorithm
	4.2 Analytical Solution to Coordinate Update

	5 Experiments
	5.1 Accuracy-Interpretability Trade-Off
	5.2 Effect of Local Interpretability Regularizer
	5.3 Performance Comparison

	6 Related Work
	7 Conclusion
	References

	XAI with Machine Teaching When Humans Are (Not) Informed About the Irrelevant Features
	1 Introduction
	2 Machine Teaching for XAI
	3 A MT Framework to Generate Explanatory Teaching Sets
	4 Obtaining Explanatory Examples from a Neural Network
	4.1 The Black-Box Model AI
	4.2 The Model of the Human LM
	4.3 The Fidelity Function 1-
	4.4 The Teacher T

	5 Experimental Evaluation
	5.1 Generation of Teaching Sets
	5.2 Different Hypothesis Spaces
	5.3 Compare to Teaching Sets Chosen Randomly
	5.4 Overall Results

	6 Conclusions
	References

	Generating Robust Counterfactual Explanations
	1 Introduction
	2 Related Work
	3 Problem Statement
	3.1 Generation of Counterfactuals
	3.2 Recourse Invalidation Rate
	3.3 The PROBE Framework for Generating Robust Counterfactuals

	4 Our Contribution
	4.1 An Upper Bound of the Recourse Invalidation Rate
	4.2 Generate Robust Counterfactuals

	5 Experiments and Results
	5.1 Experimental Setting
	5.2 Comparisons Between PROBE and CROCO
	5.3 Target Invalidation Study

	6 Conclusion
	References

	Neural Models for Factual Inconsistency Classification with Explanations
	1 Introduction
	2 Related Work
	3 Inconsistency Type Classification
	4 The FICLE Dataset
	4.1 Dataset Curation and Pre-processing
	4.2 Annotation Details
	4.3 FICLE Dataset Statistics

	5 Neural Methods for Factual Inconsistency Classification with Explanations
	6 Experiments and Results
	7 Conclusion and Future Work
	References

	iSAGE: An Incremental Version of SAGE for Online Explanation on Data Streams
	1 Introduction
	2 Shapley Additive Global Importance (SAGE)
	3 Incremental Global Feature Importance
	3.1 Incremental SAGE (iSAGE)
	3.2 Incremental Feature Removal Strategies
	3.3 Approximation Guarantees for Static Environments

	4 Experiments
	4.1 iSAGE in Dynamic Environments with Concept Drift
	4.2 Approximation Quality with Synthetic Ground-Truths
	4.3 Interventional and Observational iSAGE
	4.4 iSAGE and SAGE in Static Environments

	5 Conclusion and Future Work
	References

	Interpretation Attacks and Defenses on Predictive Models Using Electronic Health Records
	1 Introduction
	2 Related Work and Preliminaries
	2.1 Attacks on Image Model's Gradients
	2.2 Medical Attention-Based Models

	3 Our Approach
	3.1 Problem Setting
	3.2 Interpretation Attack Formulation
	3.3 Optimization with Dynamic Penalty
	3.4 Minimizing Detectability
	3.5 Metrics for Evaluation
	3.6 Robustness

	4 Experiments
	4.1 Attack Performance
	4.2 Attack Detectability
	4.3 Robustness

	5 Conclusion
	References

	An Empirical Evaluation of the Rashomon Effect in Explainable Machine Learning
	1 Introduction
	2 Comparing Attribution Scores
	3 Experimental Framework
	3.1 Datasets
	3.2 Models: Architecture, Training and Selection
	3.3 Attribution Methods
	3.4 Model Dissimilarity Measures Based on Attribution Scores

	4 Examining the Rashomon Effect
	4.1 Numerical Stability and the Rashomon Effect (111)
	4.2 Solution Diversity Or: The Rashomon Effect as Seen with Different Dissimilarity Measures (011)
	4.3 The Rashomon Effect and the Disagreement Problem (110)
	4.4 Summary

	5 Conclusion
	References

	Interpretable Regional Descriptors: Hyperbox-Based Local Explanations
	1 Introduction
	1.1 Motivating Example for the Use of IRDs
	1.2 Contributions

	2 Methodology
	2.1 Formalizing the General Task for IRDs
	2.2 Desiderata for IRDs

	3 Related Work
	4 Generating IRDs
	4.1 Restriction of the Search Space
	4.2 Selection of the Underlying Dataset
	4.3 Initialization of a Box
	4.4 Optimization of Box Boundaries
	4.5 Post-processing

	5 Quality Measures
	6 Performance Evaluation
	6.1 Setup
	6.2 Results

	7 Conclusion, Limitations and Outlook
	References

	TIGTEC: Token Importance Guided TExt Counterfactuals
	1 Introduction
	2 Background and Related Work
	2.1 XAI Background
	2.2 Related Work

	3 Proposed Approach: TIGTEC
	3.1 TIGTEC Overview
	3.2 Targeting
	3.3 Generating
	3.4 Evaluating
	3.5 Tree Search Policy

	4 Experimental Analysis
	4.1 Evaluation Criteria
	4.2 TIGTEC Agnostic and Specific Variants
	4.3 Datasets and Competitors
	4.4 Hyperparameter Setting
	4.5 Results

	5 Discussion
	6 Conclusion and Future Work
	References

	Knowledge Graphs
	Towards Few-Shot Inductive Link Prediction on Knowledge Graphs: A Relational Anonymous Walk-Guided Neural Process Approach
	1 Introduction
	2 Related Work
	3 Preliminary and Problem Definition
	3.1 Neural Process
	3.2 Problem Definition

	4 Approach
	4.1 Relational Anonymous Walk
	4.2 RAW-Guided Neural Process Encoder
	4.3 Inductive Neural Process Link Predictor
	4.4 Optimization and Inference

	5 Experiment
	5.1 Datasets and Evaluation
	5.2 Baseline Models
	5.3 Implementation Details
	5.4 Results and Analysis
	5.5 Ablation Study
	5.6 Parameters Analysis
	5.7 Uncertainty Analysis
	5.8 Case Study of Relational Motif

	6 Conclusion
	References

	Comparing Apples and Oranges? On the Evaluation of Methods for Temporal Knowledge Graph Forecasting
	1 Introduction
	2 Terminology and Related Work
	2.1 Terminology
	2.2 Related Work on Temporal Knowledge Graph Forecasting
	2.3 Related Work on the Evaluation of Graph-Based Machine Learning Models

	3 Description of Evaluation Settings and Evaluation Problems
	3.1 Filter Settings for Link Prediction Metrics
	3.2 Single-Step and Multi-step Prediction
	3.3 Datasets
	3.4 Train, Validation, and Test Set
	3.5 Problem Summary

	4 A Unified Evaluation Protocol
	5 Experiments
	6 Conclusion
	References

	Improving Few-Shot Inductive Learning on Temporal Knowledge Graphs Using Confidence-Augmented Reinforcement Learning
	1 Introduction
	2 Related Work
	2.1 Knowledge Graph and Temporal Knowledge Graph Completion
	2.2 Inductive Learning on KGs and TKGs

	3 Task Formulation and Preliminaries
	3.1 TKG Few-Shot Out-of-Graph Link Prediction
	3.2 Concepts for Temporal Knowledge Graph Entities

	4 The Proposed FITCARL Model
	4.1 Learning Unseen Entities with Time-Aware Transformer
	4.2 Reinforcement Learning Framework
	4.3 Confidence-Augmented Policy Network
	4.4 Concept Regularizer
	4.5 Parameter Learning

	5 Experiments
	5.1 Experimental Setting
	5.2 Main Results
	5.3 Further Analysis

	6 Conclusion
	References

	Clifford Embeddings – A Generalized Approach for Embedding in Normed Algebras
	1 Introduction
	2 Preliminaries and Notation
	2.1 Clifford Algebras
	2.2 Knowledge Graphs
	2.3 Knowledge Graph Embeddings

	3 Related Work
	3.1 Inner Product vs Distance
	3.2 Selecting V

	4 Methodology
	4.1 Clifford Embeddings
	4.2 Scoring Function Based on Inner Product
	4.3 Learning to Scale Dimensions in Clp,q(R)

	5 Experiments
	5.1 Datasets
	5.2 Experimental Setup and Optimization

	6 Results
	6.1 Exhaustive Search
	6.2 Comparison with Other Approaches

	7 Conclusion
	References

	Exploring Word-Sememe Graph-Centric Chinese Antonym Detection
	1 Introduction
	2 Word-Sememe Graph-Centric Antonym Detection
	2.1 Word-Sememe Graph
	2.2 Heuristic Sememe Relevance Computation
	2.3 Proximal Pattern-Based Relation Inference
	2.4 Knowledge Representation Learning via Attention on Sememe
	2.5 Training

	3 Experiments
	3.1 Datasets Construction
	3.2 Experimental Settings
	3.3 Triple Classification
	3.4 Antonym Detection
	3.5 Ablation Analysis
	3.6 Applications

	4 Related Works
	4.1 Synonym-Antonym Discrimination
	4.2 Knowledge Graph Representation

	5 Conclusion and Future Works
	References

	Distinct Geometrical Representations for Temporal and Relational Structures in Knowledge Graphs
	1 Introduction
	2 Related Work
	3 Preliminaries
	3.1 Temporal Knowledge Graph Completion
	3.2 Hyperbolic Geometry
	3.3 Hyperbolic Transformations

	4 Methodology
	4.1 Time-Related Hyperplane
	4.2 Transformation for Temporal and Relational Parts
	4.3 Geometric Score
	4.4 The TRE Model

	5 Experiments
	5.1 Experimental Setup
	5.2 Analysis and Results

	6 Conclusion
	References

	LitCQD: Multi-hop Reasoning in Incomplete Knowledge Graphs with Numeric Literals
	1 Introduction
	2 Background and Preliminaries
	2.1 Knowledge Graph Without Literals
	2.2 Multihop Queries Without Literals

	3 Related Work
	3.1 Knowledge Graph Embeddings and Literals
	3.2 Neural Query Answering on Incomplete Knowledge Graphs

	4 LitCQD: Multi-hop Reasoning with Literals
	4.1 Multihop Queries with Literals and Entity Answers
	4.2 Multihop Queries with Literals and Literal Answers

	5 Experimental Results
	5.1 Experimental Setup
	5.2 Multihop Queries Without Literals
	5.3 Multihop Queries with Literals and Entity Answers
	5.4 Multihop Queries with Literals and Literal Answers
	5.5 Example Query and Answers

	6 Conclusion
	References

	Large-Scale Learning
	Cross Model Parallelism for Faster Bidirectional Training of Large Convolutional Neural Networks
	1 Introduction
	2 Background and Related Works
	3 New Cross Model Parallelism (CMP)
	3.1 Obverse and Reverse Models
	3.2 Out-of-Step Periodic Averaging

	4 Theoretical Analysis
	5 Experimental Results
	5.1 Settings
	5.2 Faster Convergence with Out-of-Step Periodic Averaging
	5.3 Higher Throughput with Cross Model Parallelism

	6 Conclusion
	References

	Distributed Adaptive Optimization with Divisible Communication
	1 Introduction
	2 Related Works
	3 Methodology
	3.1 Divisible Communication

	4 Convergence Results
	5 Experiments
	5.1 Experiment Setup
	5.2 Results on CIFAR-10
	5.3 Results on ImageNet
	5.4 Results on WMT'16
	5.5 Ablation Study

	6 Conclusion
	References

	propagate: A Seed Propagation Framework to Compute Distance-Based Metrics on Very Large Graphs
	1 Introduction
	2 Related Works
	3 Preliminaries
	4 propagate Framework
	4.1 propagate-p Algorithm
	4.2 propagate-s Algorithm

	5 Experimental Evaluation
	5.1 Experimental Setting
	5.2 Experimental Results

	6 Conclusions
	References

	Towards Memory-Efficient Training for Extremely Large Output Spaces – Learning with 670k Labels on a Single Commodity GPU
	1 Introduction
	2 Setup and Background
	3 Method
	3.1 Efficient 32-Bit Indexing
	3.2 Compressed Indexing and Equitable Work Distribution Through Constant Fan-In
	3.3 Speeding up Backward Pass Through Implicit Negative Mining
	3.4 Mitigating Underfitting by Adding an Intermediate Layer

	4 Experiments
	4.1 Experimental Setup
	4.2 Results with Varying Architecture
	4.3 Results with Varying Network Size
	4.4 Quantifying the Effect of Implicit Negative Mining
	4.5 Discussion

	5 Conclusion and Outlook
	References

	Correction to: Towards Memory-Efficient Training for Extremely Large Output Spaces – Learning with 670k Labels on a Single Commodity GPU
	Correction to: Chapter 41 in: D. Koutra et al. (Eds.): Machine Learning and Knowledge Discovery in Databases, LNAI 14171, https://doi.org/10.1007/978-3-031-43418-1_41

	Author Index

