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Preface

The 2023 edition of the European Conference on Machine Learning and Principles and
Practice of Knowledge Discovery in Databases (ECML PKDD 2023) was held in Turin,
Italy, from September 18 to 22, 2023.

The ECMLPKDD conference, held annually, acts as a worldwide platform showcas-
ing the latest advancements in machine learning and knowledge discovery in databases,
encompassing groundbreaking applications.With a history of successful editions, ECML
PKDD has established itself as the leading European machine learning and data min-
ing conference, offering researchers and practitioners an unparalleled opportunity to
exchange knowledge and ideas.

The main conference program consisted of presentations of 255 accepted papers and
three keynote talks (in order of appearance):

– Max Welling (University of Amsterdam): Neural Wave Representations
– Michael Bronstein (University of Oxford): Physics-Inspired Graph Neural Networks
– Kate Crawford (USC Annenberg): Mapping Generative AI

In addition, there were 30 workshops, 9 combined workshop-tutorials, 5 tutorials,
3 discovery challenges, and 16 demonstrations. Moreover, the PhD Forum provided
a friendly environment for junior PhD students to exchange ideas and experiences
with peers in an interactive atmosphere and to get constructive feedback from senior
researchers. The conference included a Special Day on Artificial Intelligence for Finan-
cial Crime Fight to discuss, share, and present recent developments in AI-based financial
crime detection.

In recognition of the paramount significance of ethics in machine learning and data
mining, we invited the authors to include an ethical statement in their submissions. We
encouraged the authors to discuss the ethical implications of their submission, such as
those related to the collection and processing of personal data, the inference of personal
information, or the potential risks. We are pleased to report that our call for ethical
statements was met with an overwhelmingly positive response from the authors.

The ECML PKDD 2023 Organizing Committee supported Diversity and Inclusion
by awarding some grants that enable early career researchers to attend the conference,
present their research activities, and become part of the ECML PKDD community. A
total of 8 grants covering all or part of the registration fee (4 free registrations and 4
with 50% discount) were awarded to individuals who belong to underrepresented com-
munities, based on gender and role/position, to attend the conference and present their
research activities. The goal of the grants was to provide financial support to early-
career (women) scientists and Master and Ph.D. students from developing countries.
The Diversity and Inclusion action also includes the SoBigData Award, fully sponsored
by the SoBigData++ Horizon2020 project, which aims to encourage more diverse par-
ticipation in computer science and machine learning events. The award is intended to
cover expenses for transportation and accommodation.
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The papers presented during the three main conference days were organized in four
different tracks:

– Research Track: research or methodology papers from all areas in machine learning,
knowledge discovery, and data mining;

– Applied Data Science Track: papers on novel applications of machine learning, data
mining, and knowledge discovery to solve real-world use cases, thereby bridging the
gap between practice and current theory;

– Journal Track: papers published in special issues of the journals Machine Learning
and Data Mining and Knowledge Discovery;

– Demo Track: short papers introducing new prototypes or fully operational systems
that exploit data science techniques and are presented via working demonstrations.

We received 829 submissions for the Research track and 239 for the Applied Data
Science Track.

We accepted 196 papers (24%) in the Research Track and 58 (24%) in the Applied
Data Science Track. In addition, there were 44 papers from the Journal Track and 16
demo papers (out of 28 submissions).

We want to thank all participants, authors, all chairs, all Program Committee mem-
bers, area chairs, session chairs, volunteers, co-organizers, and organizers of workshops
and tutorials for making ECML PKDD 2023 an outstanding success. Thanks to Springer
for their continuous support and Microsoft for allowing us to use their CMT software
for conference management and providing support throughout. Special thanks to our
sponsors and the ECML PKDD Steering Committee for their support. Finally, we thank
the organizing institutions: CENTAI (Italy) and Politecnico di Torino (Italy).

September 2023 Elena Baralis
Francesco Bonchi

Manuel Gomez Rodriguez
Danai Koutra
Claudia Plant

Gianmarco De Francisci Morales
Claudia Perlich
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Neural Wave Representations

Max Welling

University of Amsterdam, The Netherlands

Abstract. Good neural architectures are rooted in good inductive biases
(a.k.a. priors). Equivariance under symmetries is a prime example of a
successful physics-inspired prior which sometimes dramatically reduces
the number of examples needed to learn predictive models. In this work,
we tried to extend this thinking to more flexible priors in the hidden vari-
ables of a neural network. In particular, we imposed wavelike dynamics
in hidden variables under transformations of the inputs, which relaxes
the stricter notion of equivariance. We find that under certain conditions,
wavelike dynamics naturally arises in these hidden representations. We
formalize this idea in a VAE-over-time architecture where the hidden
dynamics is described by a Fokker-Planck (a.k.a. drift-diffusion) equa-
tion. This in turn leads to a new definition of a disentangled hidden rep-
resentation of input states that can easily be manipulated to undergo
transformations. I also discussed very preliminary work on how the
Schrödinger equation can also be used to move information in the hidden
representations.

Biography. Prof. Dr. Max Welling is a research chair in Machine Learning at the Uni-
versity of Amsterdam and a Distinguished Scientist at MSR. He is a fellow at the Cana-
dian Institute for Advanced Research (CIFAR) and the European Lab for Learning and
Intelligent Systems (ELLIS) where he also serves on the founding board. His previous
appointments include VP at Qualcomm Technologies, professor at UC Irvine, postdoc
at the University of Toronto and UCL under the supervision of Prof. Geoffrey Hinton,
and postdoc at Caltech under the supervision of Prof. Pietro Perona. He finished his
PhD in theoretical high energy physics under the supervision of Nobel laureate Prof.
Gerard ‘t Hooft. Max Welling served as associate editor-in-chief of IEEE TPAMI from
2011–2015, he has served on the advisory board of the NeurIPS Foundation since 2015
and was program chair and general chair of NeurIPS in 2013 and 2014 respectively. He
was also program chair of AISTATS in 2009 and ECCV in 2016 and general chair of
MIDL in 2018. MaxWelling was a recipient of the ECCVKoenderink Prize in 2010 and
the ICML Test of Time Award in 2021. He directs the Amsterdam Machine Learning
Lab (AMLAB) and co-directs the Qualcomm-UvA deep learning lab (QUVA) and the
Bosch-UvA Deep Learning lab (DELTA).



Physics-Inspired Graph Neural Networks

Michael Bronstein

University of Oxford, UK

Abstract. The message-passing paradigm has been the “battle horse” of
deep learning on graphs for several years, making graph neural networks
a big success in a wide range of applications, from particle physics to
protein design. From a theoretical viewpoint, it established the link to
the Weisfeiler-Lehman hierarchy, allowing us to analyse the expressive
power of GNNs.We argue that the very “node-and-edge”-centric mindset
of current graph deep learning schemes may hinder future progress in
the field. As an alternative, we propose physics-inspired “continuous”
learning models that open up a new trove of tools from the fields of
differential geometry, algebraic topology, and differential equations so
far largely unexplored in graph ML.

Biography. Michael Bronstein is the DeepMind Professor of AI at the University of
Oxford. He was previously a professor at Imperial College London and held visiting
appointments at Stanford, MIT, and Harvard, and has also been affiliated with three
Institutes for Advanced Study (at TUM as a Rudolf Diesel Fellow (2017–2019), at
Harvard as a Radcliffe fellow (2017–2018), and at Princeton as a short-time scholar
(2020)). Michael received his PhD from the Technion in 2007. He is the recipient of the
Royal Society Wolfson Research Merit Award, Royal Academy of Engineering Silver
Medal, five ERC grants, two Google Faculty Research Awards, and two Amazon AWS
ML Research Awards. He is a Member of the Academia Europaea, Fellow of the IEEE,
IAPR, BCS, and ELLIS, ACM Distinguished Speaker, and World Economic Forum
Young Scientist. In addition to his academic career, Michael is a serial entrepreneur and
founder of multiple startup companies, including Novafora, Invision (acquired by Intel
in 2012), Videocites, and Fabula AI (acquired by Twitter in 2019).



Mapping Generative AI

Kate Crawford

USC Annenberg, USA

Abstract. Training data is foundational to generative AI systems. From
Common Crawl’s 3.1 billion web pages to LAION-5B’s corpus of almost
6 billion image-text pairs, these vast collections – scraped from the inter-
net and treated as “ground truth” – play a critical role in shaping the
epistemic boundaries that govern generative AI models. Yet training data
is beset with complex social, political, and epistemological challenges.
What happens when data is stripped of context, meaning, and prove-
nance? How does training data limit what and howmachine learning sys-
tems interpret the world? What are the copyright implications of these
datasets?Andmost importantly,what formsof power do these approaches
enhance and enable? This keynote is an invitation to reflect on the epis-
temic foundations of generative AI, and to consider the wide-ranging
impacts of the current generative turn.

Biography. Professor Kate Crawford is a leading international scholar of the social
implications of artificial intelligence. She is a Research Professor at USC Annenberg in
Los Angeles, a Senior Principal Researcher atMSR in NewYork, an Honorary Professor
at the University of Sydney, and the inaugural Visiting Chair for AI and Justice at the
École Normale Supérieure in Paris. Her latest book, Atlas of AI (Yale, 2021) won the
Sally Hacker Prize from the Society for the History of Technology, the ASIS&T Best
Information Science Book Award, and was named one of the best books in 2021 by
New Scientist and the Financial Times. Over her twenty-year research career, she has
also produced groundbreaking creative collaborations and visual investigations. Her
project Anatomy of an AI System with Vladan Joler is in the permanent collection of
the Museum of Modern Art in New York and the V&A in London, and was awarded
with the Design of the Year Award in 2019 and included in the Design of the Decades
by the Design Museum of London. Her collaboration with the artist Trevor Paglen,
Excavating AI, won the Ayrton Prize from the British Society for the History of Science.
She has advised policymakers in the United Nations, theWhite House, and the European
Parliament, and she currently leads the Knowing Machines Project, an international
research collaboration that investigates the foundations of machine learning.
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Sample Prior Guided Robust Model
Learning to Suppress Noisy Labels

Wenkai Chen, Chuang Zhu(B), and Mengting Li

School of Artificial Intelligence, Beijing University of Posts and Telecommunications,
Beijing, China

{wkchen,czhu,mtli}@bupt.edu.com

Abstract. Imperfect labels are ubiquitous in real-world datasets and
seriously harm the model performance. Several recent effective methods
for handling noisy labels have two key steps: 1) dividing samples into
cleanly labeled and wrongly labeled sets by training loss, 2) using semi-
supervised methods to generate pseudo-labels for samples in the wrongly
labeled set. However, current methods always hurt the informative hard
samples due to the similar loss distribution between the hard samples
and the noisy ones. In this paper, we proposed PGDF (Prior Guided
Denoising Framework), a novel framework to learn a deep model to sup-
press noisy label by using the training history to generate the sample
prior knowledge, which is integrated into both sample dividing step and
semi-supervised step. Our framework can save more informative hard
clean samples into the cleanly labeled set. Besides, our framework also
promotes the quality of pseudo-labels during the semi-supervised step by
suppressing the noise in the current pseudo-labels generating scheme. To
further enhance the hard samples, we reweight the samples in the cleanly
labeled set during training. We evaluated our method using synthetic
datasets based on CIFAR-10 and CIFAR-100, as well as on the real-world
datasets WebVision and Clothing1M. The results demonstrate substan-
tial improvements over state-of-the-art methods. The code is available
at https://github.com/bupt-ai-cz/PGDF.

Keywords: Noisy label · Hard sample · Semi-supervised learning ·
Pseudo-label

1 Introduction

Deep learning techniques, such as convolutional neural networks (CNNs), have
recently achieved great success in object recognition [20], image classification
[15], and natural language processing (NLP) [39]. Most existing CNN deep mod-
els mainly rely on collecting large scale labeled datasets, such as ImageNet [24].
However, it is very expensive and difficult to collect a large scale dataset with
clean labels [38]. Moreover, in the real world, noisy labels are often inevitable
in manual annotation [27]. Therefore, research on designing robust algorithms
with noisy labels is of great significance [33].
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
D. Koutra et al. (Eds.): ECML PKDD 2023, LNAI 14170, pp. 3–19, 2023.
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Fig. 1. (a) Loss distribution of the clean and noise samples in CIFAR-100 with 50%
symmetric noise ratio, samples in the yellow dotted box are indistinguishable by train-
ing loss. (b) Mean prediction probability distribution of the clean and noisy samples
in CIFAR-100 with 50% symmetric noise ratio, we used training history to distinguish
the clean/noisy samples between threshold T1 and T2. (Color figure online)

In the literature, a lot of approaches were proposed to improve the learn-
ing performance with label noise, such as estimating the noise transition matrix
[8,22], designing noise-robust loss functions [7,19,37], designing noise-robust reg-
ularization [18,29], sample selection [4,9], and semi-supervised learning [6,16].
Recently, methods of semi-supervised learning achieve the state-of-the-art per-
formance. They always first divide samples into cleanly labeled and wrongly
labeled sets by training loss, and then use semi-supervised methods to generate
pseudo-labels for samples in the wrongly labeled set. Since the noisy samples
tend to have larger training loss than the clean one, the sample dividing step
is generally based on the small-loss strategy [40]. At each epoch, samples with
small loss are classified as clean data, and large loss as noise. However, the above
methods fail in distinguishing informative hard samples from noisy ones due to
their similar loss distributions (as depicted in Fig. 1(a), samples in the yellow
dotted box are indistinguishable), and thus may neglect the important informa-
tion of the hard samples [36]. To the best of our knowledge, there are very few
works studying hard samples under noisy label scenarios. Work [32] mentioned
the hard samples in learning with noisy labels, but that work did not explic-
itly identify hard samples. Work [2] proposed an approach which alternatively
optimized the classifier and updated the training sample to rescue hard samples.
However, this approach still only uses the information of training loss and those
hard samples that cannot be distinguished by training loss are seriously injured.

Although the hard samples and noisy samples cannot be directly distin-
guished by training loss, we observed that they have different behaviors in train-
ing history, and our previous work [46] conducted some preliminary research
on this in medical images. Through this intuition, based on a popular semi-
supervised denoising framework “DivideMix”, we propose PGDF (Prior Guided
Denoising Framework), a novel framework to learn a deep model to suppress
noise while avoid the misinjury of hard clean samples. We first use the train-
ing history to distinguish the hard samples from the noisy ones (as depicted in
Fig. 1(b), samples between two thresholds are distinguished by training history).
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Thus, we classify the samples into an easy set, a hard set, and a noisy set by
using the prior knowledge. The divided dataset is then guiding the subsequent
training process. Our key findings and contributions are summarized as follows:

– Hard samples and noisy samples can be recognized using training history. We
first propose a Prior Generation Module, which generates the prior knowledge
to pre-classify the samples into an easy set, a hard set, and a noisy set.
Compared to the existing sample dividing scheme (small-loss strategy), ours
can save more informative hard clean samples. We further optimize the pre-
classification result at each epoch with adaptive sample attribution obtained
by Gaussian Mixture Model.

– We realize robust noisy labels suppression based on the divided sets. On one
hand, we generate high-quality pseudo-labels with the help of the estimated
pseudo-label distribution transition matrix. On the other hand, we further
safely enhance the informative samples in the hard set, while previous exist-
ing noisy labels processing methods cannot achieve this because they fail to
distinguish the hard samples and noisy ones.

– We experimentally show that our PGDF significantly advances state-of-the-
art results on multiple benchmarks with different types and levels of label
noise. We also provide the ablation study to examine the effect of different
components.

2 Related Work

In this section we describe existing works on learning with noisy labels. Typi-
cally, the noisy-label processing algorithms can be classified into five categories
by exploring different strategies: estimating the noise transition matrix [8,22],
designing noise-robust loss functions [7,19,37,44,45], adding noise-robust regu-
larization [18,29], selecting sample subset [4,9,12], and semi-supervised learning
[6,16].

In the first category, different transition matrix estimation methods were pro-
posed in [8,22], such as using additional softmax layer [8], and two-step estimat-
ing scheme [22]. However, these transition matrix estimations fail in real-world
datasets where the utilized prior assumption is no longer valid [10]. Being free of
transition matrix estimation, the second category targets at designing loss func-
tions that have more noise-tolerant power. Work in [7] adopted mean absolute
error (MAE) which demonstrates more noise-robust ability than cross-entropy
loss. The authors in work [37] proposed determinant-based mutual information
loss which can be applied to any existing classification neural networks regardless
of the noise pattern. Recently, work [45] proposed a novel strategy to restrict the
model output and thus made any loss robust to noisy labels. Nevertheless, it has
been reported that performances with such losses are significantly affected by
noisy labels [23]. Such implementations perform well only in simple cases where
learning is easy or the number of classes is small. For designing noise-robust
regularization, work in [29] assumed the existence of multiple annotators and
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introduced a regularized EM-based approach to model the label transition prob-
ability. In work [18], a regularization term was proposed to implicitly prevent
memorization of the false labels.

Most recent successful sample selection strategies in the fourth category con-
ducted noisy label processing by selecting clean samples through “small-loss”
strategy. Work [13] pre-trained an extra network, and then used the extra net-
work for selecting clean instances to guide the training. The authors in work
[9] proposed a Co-teaching scheme with two models, where each model selected
a certain number of small-loss samples and fed them to its peer model for fur-
ther training. Based on this scheme, work [4] tried to improve the performance
by proposing an Iterative Noisy Cross-Validation (INCV) method. Work [12]
adjusted the hyper-parameters of model to make its status transfer from over-
fitting to underfitting cyclically, and recorded the history of sample training loss
to select clean samples. This family of methods effectively avoids the risk of false
correction by simply excluding unreliable samples. However, they may eliminate
numerous useful samples. To solve this shortcoming, the methods of the fifth
category based on semi-supervised learning treated the noisy samples as unla-
beled samples, and used the outputs of classification models as pseudo-labels
for subsequent loss calculations. The authors in [16] proposed DivideMix, which
relied on MixMatch [3] to linearly combine training samples classified as clean
or noisy. Work [6] designed a two-stage method called LongReMix, which first
found the high confidence samples and then used the high confidence samples to
update the predicted clean set and trained the model. Recently, work [21] used
different data augmentation strategies in different steps to improve the perfor-
mance of DivideMix, and work [43] used a self-supervised pre-training method
to improve the performance of DivideMix.

The above sample selection strategy and semi-supervised learning strategy
both select the samples with clean labels for the subsequent training process.
All of their selecting strategies are based on the training loss because the clean
samples tend to have small loss during training. However, they will hurt the
informative hard samples due to the similar loss distribution between the hard
samples and the noisy ones. Our work strives to reconcile this gap by distin-
guishing the hard samples from the noisy ones by introducing a sample prior
knowledge generated by training history.

3 Method

The overview of our proposed PGDF is shown in Fig. 2. The first stage (Prior
Guided Sample Dividing) of PGDF is dividing the samples into an easy set,
a hard set, and a noisy set. The Prior Generation Module first pre-classifies
the samples into three sets as prior knowledge; then, at each epoch, the pre-
classification result is optimized by the Gaussian Mixture Model (Sample Divid-
ing Optimization). With the divided sets, the second stage (Denoising with the
Divided Sets) conducts label correction for samples with the help of the esti-
mated distribution transition matrix (Pseudo-labels Refining), and then the hard
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Fig. 2. PGDF first generates the prior knowledge by the Prior Generation Module.
Then, it trains two models (A and B) simultaneously. At each epoch, a model divides
the original dataset into an easy set, a hard set, and a noisy set by combining the prior
knowledge and the loss value of each sample. The divided dataset is used by the other
network. After the first stage, the models conduct label correction for samples with
the help of the estimated distribution transition matrix. Finally, the training loss is
reweighted by the dividing result to further enhance the hard samples.

samples are further enhanced (Hard Samples Enhancing). The details of each
component are described in the following.

3.1 Prior Guided Sample Dividing

Prior Generation Module. Many previous work methods use the “small-loss”
strategy to detect noisy samples, where at each epoch, samples with small loss
are classified as clean data and large loss as noise. Sample with small loss means
the prediction probability of the model output is closer to the supervising label.
We directly used the normalized probability for analysis since the loss value is
just calculated by the normalized probability and the ground truth label. We
first train a CNN classification model with the data, and record the probability
history of the model output for each sample on the class of its corresponding
label. Then, we calculate the mean prediction probability value of the sample
training history which is shown in Fig. 1(b). The figure shows the clean sample
tends to have a higher mean prediction probability than the noisy one. Therefore,
we can set two thresholds (such as the black dotted lines in Fig. 1(b)). Samples
with mean prediction probability lower than T1 are almost noisy, while higher
than T2 are almost clean. However, we still cannot distinguish the samples with
mean prediction probability between two thresholds. We define this part of clean
data as hard samples in our work.

In order to distinguish the hard samples from the noisy ones, we construct the
Prior Generation Module based on the prediction history of the training samples,
as depicted by Fig. 3. For the training set D with N samples, we gradually obtain
the corresponding N prediction probability maps through the training of a CNN
classification model for k epochs. This module first selects easy samples De and
part of noisy samples Dn1 by using the mean prediction probability values. Then
we manually add noise to the De as Da and record whether the sample is noise
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Fig. 3. The overview of the Prior Generation Module. It takes training history as input
and pre-classifies the samples into an easy set, a hard set, and a noisy set.

or not. The noise ratio of the adding noise is the same as the original dataset,
which can be known or estimated by the noise cross-validation algorithm of work
[4]. After that, we train the same classification model by using Da and record
training history again. Then we discard the “easy samples” and part of “noisy
samples” of Da according to mean prediction probability, and utilize the rest
samples as training data to train the classifier. We use a simple one dimension
CNN which contains 3 one dimension convolution layers and a fully connected
layer as the classifier here. So far, we will obtain a classifier that takes the
prediction probability map of training history as input, and output whether it is
a hard sample or a noisy one. Finally, we put the samples in D \ (De ∪Dn1) into
the classifier to get the hard sample set Dh and a part of the noisy set Dn2, and
we combine Dn1 and Dn2 as the noisy set Dn. Algorithm 1 shows the details of
this module.

Algorithm 1. Prior Generation Module.
Input: D = [d1, d2, ..., dn], di is input image, label Y = [y1, y2, ..., yn], yi is label for

di, easy samples ratio τe, part of noisy samples ratio τn1

Output: easy set De, hard set Dh, noise set Dn

1: Train classification model Mc by using D and Y , record training history H =
[h1, h2, ..., hn], where hi is a vector with shape of 1 ∗ k(epoch)

2: Calculate the mean value of H as Hm, Hm = [mean(h1), mean(h2), ..., mean(hn)],
sort D descending by Hm, select easy samples De = D[0 : len(D) ∗ τe], select part
of noisy samples Dn1 = D[len(D) ∗ (1 − τn1) : len(D)]

3: Add noise to De as Da, get noisy label Yn and record whether it is noise or not
R = [r1, r2, ..., rn]

4: Retrain Mc by Da and Yn, record training history Hn

5: Sort Hn descending by mean, select training history H ′
n = Hn[len(Hn) ∗ τe :

len(Hn) ∗ (1 − τn1)]
6: Train classifier Mm by using H ′

n and R
7: Put the samples in D \ (De ∪ Dn1) into Mm and get Dh and Dn2

8: Dn = Dn1 ∪ Dn2

9: return De, Dh, Dn
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Sample Dividing Optimization. Considering the online training loss at each
epoch is also important information to help sample dividing, we apply this infor-
mation to optimize the pre-classification result. Specifically, as shown in Fig. 2,
at each epoch, we get the clean probability wit of each sample from training loss
by using Gaussian Mixture Model (GMM) following previous work [16]. And we
have already got the prior knowledge of each sample, we set the clean probability
of prior knowledge as wip from Eq. (1),

wip =

⎧
⎪⎪⎨

⎪⎪⎩

1, di ∈ De

ph, di ∈ Dh

1 − pn, di ∈ Dn2

0, di ∈ Dn1

, (1)

where ph is the classifier (Mm) prediction probability for di to be hard sample
and pn is the classifier prediction probability for di to be noisy sample. Then,
we combine wit and wip to get the clean probability wi by Eq. (2),

wi =
{

1, di ∈ De

mwit + (1 − m)wip, di ∈ Dh ∪ Dn
, (2)

where m is a hyper-parameter. Finally, we divide samples with wi equal to 1
into the easy set D̃e, the samples with 0.5 < wi < 1 are divided into the hard
set D̃h, and the rest samples are divided into the noisy set D̃n. Each network
divides the original dataset for the other network to use to avoid confirmation
bias of self-training similar to previous works [4,9,16].

3.2 Denoising with the Divided Sets

Pseudo-labels Refining. After the sample dividing phase, we combine the
outputs of the two models to generate the pseudo-labels P to conduct label
correction, similar to “co-guessing” in DivideMix [16]. Considering the samples
in the easy set are highly reliable, we can use this part of data to estimate
the distribution difference between pseudo-label and the ground truth, which
can then be used to refine the pseudo-labels. Given the ground truth label Y ,
we use a square matrix T to denote the differences between ground truth label
distribution Ŷ and pseudo-label distribution P̂ , thus P̂ = Ŷ T and Ŷ = P̂ T−1.

Specifically, we use the easy set D̃e and its label YD̃e
to estimate the T to

refine P . We first pass the easy set D̃e to the model and get PD̃e
, where PD̃e

denotes the model outputs of D̃e. Then we obtain T , of which the element Ti,j

can be calculated by Eq. (3),

Ti,j =
1

|Ni|
∑

n∈Ni

pn
j , (3)

where Ni consists of samples with the same label of class i in De, |Ni| is the
sample number of Ni, pn

j is the model output softmax probability for class j of
the sample n. After that, we refine the pseudo-labels P by Eq. (4),

P̃ = PT−1, (4)
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where P̃ is the refined pseudo-labels. Because P̃ may contain negative values,
we first utilize Eq. (5) to enable the non-negative matrix, and then perform
normalization along the row direction by Eq. (6) to ensure the summation of
elements in each pseudo-label probability vector equal to 1.

P̃ = max
(
P̃ , 0

)
. (5)

P̃ij = P̃ij/
∑

j

P̃ij . (6)

Finally, the labels of samples in noisy set D̃n are replaced by the refined
pseudo-labels P̃ . And the label of sample i in hard set D̃h is replaced by the
combination of the refined pseudo-label pi in P̃ and original label yi in Y as Eq.
(7), where wi is the clean probability of sample i.

yi = wiyi + (1 − wi)pi. (7)

Hard Sample Enhancing. After generating the pseudo-labels, the samples in
easy set and hard set are grouped in labeled set X̂ , and the noisy set is considered
as unlabeled set Û . We followed MixMatch [3] to “mix” the data, where each
sample is randomly interpolated with another sample to generate mixed input
x and label p. MixMatch transforms X̂ and Û to X ′ and U ′. To further enhance
the informative hard samples, the loss on X ′ is reweighted by wi as shown in
Eq. (8), where r is a hyper-parameter. Similar to DivideMix [16], the loss on U ′

is the mean squared error as shown in Eq. (9), and the regularization term is
shown in Eq. (10).

LX = − 1
|X ′|

∑

xi∈X ′

1
wr

i

∑

c

pc log (pcmodel(xi; θ)) . (8)

LU =
1

|U ′|
∑

xi∈U ′
‖p − pmodel(xi; θ)‖22 . (9)

Lreg =
∑

c

πc log

(

πc/
1

|X ′| + |U ′|
∑

xi∈X ′+U ′
pcmodel(xi; θ)

)

. (10)

Finally the total loss is defined in Eq. (11). λu and λr follow the same settings
in DivideMix.

L = LX + λuLU + λrLreg. (11)

4 Experiment

4.1 Datasets and Implementation Details

We compare our PGDF with related approaches on four benchmark datasets,
namely CIFAR-10 [14], CIFAR-100 [14], WebVision [34], and Clothing1M [31].
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Both CIFAR-10 and CIFAR-100 have 50000 training and 10000 testing images
of size 32 × 32 pixels. CIFAR-10 contains 10 classes and CIFAR-100 contains
100 classes for classification. As CIFAR-10 and CIFAR-100 datasets originally
do not contain label noise, following previous works [16,21], we experiment with
two types of label noise: symmetric and asymmetric. Symmetric noise is gen-
erated by randomly replacing the labels for a percentage of the training data
with all possible labels, and asymmetric noise is designed to mimic the struc-
ture of real-world label noise, where labels are only replaced by similar classes
(e.g. deer→horse, dog↔cat) [16]. WebVision contains 2.4 million images in 1000
classes. Since the dataset is quite large, for quick experiments, we follow the pre-
vious works [4,16,35] and only use the first 50 classes of the Google image subset.
Its noise level is estimated at 20% [26]. Clothing1M is a real-world dataset that
consists of 1 million training images acquired from online shopping websites and
it is composed of 14 classes. Its noise level is estimated at 38.5% [26].

Table 1. Comparison with state-of-the-art methods in test accuracy (%) on CIFAR-10
with symmetric noise (ranging from 20% to 90%) and 40% asymmetric noise.

Noise type sym. asym.

Method/Ratio 20% 50% 80% 90% 40%

Cross-Entropy best 86.8 79.4 62.9 42.7 85.0
last 82.7 57.9 26.1 16.8 72.3

Mixup best 95.6 87.1 71.6 52.2 -
[41] last 92.3 77.3 46.7 43.9 -

M-correction best 94.0 92.0 86.8 69.1 87.4
[1] last 93.8 91.9 86.6 68.7 86.3

Meta-Learning best 92.9 89.3 77.4 58.7 89.2
[17] last 92.0 88.8 76.1 58.3 88.6

ELR+ best 95.8 94.8 93.3 78.7 93.0
[18] last - - - - -

LongReMix best 96.2 95.0 93.9 82.0 94.7
[6] last 96.0 94.7 93.4 81.3 94.3

DivideMix best 96.1 94.6 93.2 76.0 93.4
[16] last 95.7 94.4 92.9 75.4 92.1

DM-AugDesc-WS-SAW best 96.3 95.6 93.7 35.3 94.4
[21] last 96.2 95.4 93.6 10.0 94.1

PGDF (ours) best 96.7 96.3 94.7 84.0 94.8
last 96.6 96.2 94.6 83.1 94.5

In our experiment, we use the same backbones as previous methods to make
our results comparable. For CIFAR-10 and CIFAR-100, we use an 18-layer Pre-
Act ResNet [11] as the backbone and train it using SGD with a batch size of
128, a momentum of 0.9, a weight decay of 0.0005, and the models are trained
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for roughly 300 epochs depending on the speed of convergence. We set the initial
learning rate as 0.02, and reduce it by a factor of 10 after 150 epochs. The warm
up period is 10 epochs for CIFAR-10 and 30 epochs for CIFAR-100.

For WebVision, we use the Inception-ResNet v2 [28] as the backbone, and
train it using SGD with a momentum of 0.9, a learning rate of 0.01, and a batch
size of 32. The networks are trained for 80 epochs and the warm up period is 1
epoch.

For Clothing1M, we use a ResNet-50 with pre-trained ImageNet weights. We
train the network using SGD for 80 epochs with a momentum of 0.9, a weight
decay of 0.001, and a batch size of 32. The initial learning rate is set as 0.002
and reduced by a factor of 10 after 40 epochs.

The hyper-parameters proposed in this paper are set in the same manner for
all datasets. We set m = 0.5, r = 2, τe = 0.5 ∗ (1 − τ), and τn1 = 0.5 ∗ τ (τ is
the estimated noise ratio).

4.2 Comparison with State-of-the-Art Methods

We compare the performance of PGDF with recent state-of-the-art meth-
ods: Mixup [41], M-correction [1], Meta-Learning [17], NCT [25], ELR+ [18],
DivideMix [16], NGC [35], LongReMix [6], and DM-AugDesc-WS-SAW Results
for those techniques were directly copied from their respective papers.

Table 2. Comparison with state-of-the-art methods in test accuracy (%) on CIFAR-
100 with symmetric noise (ranging from 20% to 90%).

Method/Ratio 20% 50% 80% 90%

Cross-Entropy best 62.0 46.7 19.9 10.1
last 61.8 37.3 8.8 3.5

Mixup best 67.8 57.3 30.8 14.6
[41] last 66.0 46.6 17.6 8.1

M-correction best 73.9 66.1 48.2 24.3
[1] last 73.4 65.4 47.6 20.5

Meta-Learning best 68.5 59.2 42.4 19.5
[17] last 67.7 58.0 40.1 14.3

ELR+ best 77.6 73.6 60.8 33.4
[18] last - - - -

LongReMix best 77.8 75.6 62.9 33.8
[6] last 77.5 75.1 62.3 33.2

DivideMix best 77.3 74.6 60.2 31.5
[16] last 76.9 74.2 59.6 31.0

DM-AugDesc-WS-SAW best 79.6 77.6 61.8 17.3
[21] last 79.5 77.5 61.6 15.1

PGDF (ours) best 81.3 78.0 66.7 42.3
last 81.2 77.6 65.9 41.7
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Table 3. Comparison with state-of-the-art methods trained on (mini) WebVision
dataset in top-1/top-5 accuracy (%) on the WebVision validation set and the Ima-
geNet ILSVRC12 validation set.

Method WebVision ILSVRC12
top1 top5 top1 top5

NCT [25] 75.16 90.77 71.73 91.61

ELR+ [18] 77.78 91.68 70.29 89.76

LongReMix [6] 78.92 92.32 - -

NGC [35] 79.16 91.84 74.44 91.04

DivideMix [16] 77.32 91.64 75.20 90.84

PGDF (ours) 81.47 94.03 75.45 93.11

Table 4. Comparison with state-of-the-art methods in test accuracy (%) on the Cloth-
ing1M dataset.

Method Test Accuracy

Cross-Entropy 69.21

M-correction [1] 71.00

Meta-Learning [17] 73.47

NCT [25] 74.02

ELR+ [18] 74.81

LongReMix [6] 74.38

DivideMix [16] 74.76

DM-AugDesc-WS-SAW [21] 75.11

PGDF (ours) 75.19

Table 1 shows the results on CIFAR-10 with different levels of symmetric label
noise ranging from 20% to 90% and with 40% asymmetric noise. Table 2 shows
the results on CIFAR-100 with different levels of symmetric label noise ranging
from 20% to 90%. Following the same metrics in previous works [6,16,18,21],
we report both the best test accuracy across all epochs and the averaged test
accuracy over the last 10 epochs of training. Our PGDF outperforms the state-
of-the-art methods across all noise ratios.

Table 3 compares PGDF with state-of-the-art methods on (mini) WebVision
dataset. Our method outperforms all other methods by a large margin. Table 4
shows the result on Clothing1M dataset. Our method also achieves state-of-the-
art performance. The result shows our method also works in real-world situa-
tions.

4.3 Ablation Study

We study the effect of removing different components to provide insights into
what makes our method successful. The result is shown in Table 5.

To study the effect of the prior knowledge, we divide the dataset only by wit

and change the easy set threshold to 0.95 because there is no value equal to 1
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Table 5. Ablation study results in terms of average test accuracy (%, 3 runs) with
standard deviation on CIFAR-10 with 50% and 80% symmetric noise.

Method/Noise ratio 50% 80%

PGDF best 96.26 ± 0.09 94.69 ± 0.46
last 96.15 ± 0.13 94.55 ± 0.25

PGDF w/o prior knowledge best 95.55 ± 0.11 93.77 ± 0.19
last 95.12 ± 0.19 93.51 ± 0.23

PGDF w/o sample dividing optimization best 95.73 ± 0.09 93.51 ± 0.28
last 95.50 ± 0.12 93.20 ± 0.32

PGDF w/o pseudo-labels refining best 95.78 ± 0.26 94.06 ± 0.68
last 95.35 ± 0.27 93.71 ± 0.52

PGDF w/o hard samples enhancing best 96.01 ± 0.19 94.39 ± 0.28
last 95.78 ± 0.07 94.21 ± 0.23

in wit. The result shows the prior knowledge is very effective to save more hard
samples and filter more noisy ones. By removing the prior generation module,
the test accuracy decreases by an average of about 0.93%.

To study the effect of the sample dividing optimization, we divide the dataset
only by the prior knowledge wip. The result shows that whether a sample is noisy
or not depends not only on the training history, but also on the information of
the image itself and the corresponding label. Integrating this information can
make judgments more accurate. By removing the sample dividing optimization
phase, the test accuracy decreases by an average of about 0.68%.

To study the effect of the pseudo-labels refining phase, we use the pseudo-
labels without being refined by the estimated transition matrix. By removing the
pseudo-labels refining phase, the test accuracy decreases by an average of about
0.69%. We also evaluate the pseudo-labels refinement method in DivideMix [16]
by replacing our scheme with “co-refinement” and “co-guessing”. By replacing
our pseudo-labels refining phase with “co-refinement” and “co-guessing”, the test
accuracy decreases by an average of about 0.49%.

To study the effect of the hard samples enhancing, we remove the hard
enhancing component. The decrease in accuracy suggests that by enhancing the
informative hard samples, the method yields better performance by an average
of 0.32%.

Among the prior knowledge, sample dividing optimizations, pseudo-labels
refining, and hard enhancing, the prior knowledge introduces the maximum per-
formance gain. All components have a certain gain.

4.4 Generalization to Instance-Dependent Label Noise

Note that the instance-dependent label noise is a new challenging synthetic noise
type and would introduce many hard confident samples. We conducted additional
experiments on this noise type to better illustrate the superiority of our method.
In order to make the comparison fair, we followed the same metrics and used
the same noisy label files in work [5]. We compared the recent state-of-the-art
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methods in learning with instance-dependent label noise: CAL [47], SEAL [5];
and some other baselines [9,22,30,37,42]. Table 6 shows the experimental result.
Result for “CAL” was re-implemented based on the public code of work [47].
Other results for previous methods were directly copied from work [5].

Table 6. Comparison with state-of-the-art methods in terms of average test accuracy
(%, 3 runs) on CIFAR-10 with instance-dependent label noise (ranging from 10% to
40%).

Method 10% 20% 30% 40%

Cross-Entropy 91.25 ± 0.27 86.34 ± 0.11 80.87 ± 0.05 75.68 ± 0.29
Forward [22] 91.06 ± 0.02 86.35 ± 0.11 78.87 ± 2.66 71.12 ± 0.47
Co-teaching [9] 91.22 ± 0.25 87.28 ± 0.20 84.33 ± 0.17 78.72 ± 0.47
GCE [42] 90.97 ± 0.21 86.44 ± 0.23 81.54 ± 0.15 76.71 ± 0.39
DAC [30] 90.94 ± 0.09 86.16 ± 0.13 80.88 ± 0.46 74.80 ± 0.32
DMI [37] 91.26 ± 0.06 86.57 ± 0.16 81.98 ± 0.57 77.81 ± 0.85
CAL [47] 90.55 ± 0.02 87.42 ± 0.13 84.85 ± 0.07 82.18 ± 0.18
SEAL [5] 91.32 ± 0.14 87.79 ± 0.09 85.30 ± 0.01 82.98 ± 0.05

PGDF 94.09 ± 0.27 91.85 ± 0.09 90.64 ± 0.50 87.67 ± 0.32

According to the experimental results, our method outperforms all other
methods by a large margin. This shows the generalization ability of our method
is well since it also works in complex synthetic label noise.

4.5 Hyper-parameters Analysis

Table 7. Results in terms of average test accuracy (%, 3 runs) with standard deviation
on different “τe” and “τn1” on CIFAR-10 with 50% symmetric noise ratio.

τe 0.2 0.25 0.3 0.35

best 96.09 ± 0.04 96.26 ± 0.09 96.14 ± 0.08 96.11 ± 0.06
last 95.98 ± 0.06 96.15 ± 0.13 95.99 ± 0.10 95.93 ± 0.09

τn1 0.2 0.25 0.3 0.35

best 96.26 ± 0.12 96.26 ± 0.09 96.25 ± 0.13 96.02 ± 0.07
last 96.08 ± 0.11 96.15 ± 0.13 96.11 ± 0.16 95.82 ± 0.10

In order to analyze how sensitive PGDF is to the hyper-parameters τe and
τn1, we trained on different τe and τn1 in CIFAR-10 dataset with 50% symmetric
noise ratio. Specifically, we first adjusted the value of τe with fixed τn1 = 0.25,
and thus obtained the sensitivity of PGDF to τe. Then we adjusted the value
of τn1 with fixed τe = 0.25, and thus obtained the sensitivity of PGDF to τn1.
We report both the best test accuracy across all epochs and the averaged test
accuracy over the last 10 epochs of training, as shown in Table 7. The result
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shows that the performance is stable when changing τe and τn1 in a reasonable
range. Thus, the performance does not highly rely on the pre-defined settings
of τe and τn1. Although their settings depend on the noise ratio, they are still
easy to set due to the insensitivity. In fact, we set hyper-parameter τe to select
a part of samples which are highly reliable to train the Mm (the classifier to
distinguish the hard and noisy samples). The settings of τe and τn1 are not
critical, they just support the algorithm. Analysis of other hyper-parameters is
shown in Appendix.

4.6 Discussion for Prior Generation Module

To better discuss and verify the performance of our Prior Generation Module, we
calculated the pre-classification accuracy of our Prior Generation Module on the
CIFAR-10 and CIFAR-100 datasets compared to the strategy of directly using
loss to dividing samples. The result is shown in Table 8. According to the result,
the identification performance of our strategy is much better than the strategy
that only used the training loss. Our Prior Generation Module indeed improves
the accuracy of sample division and avoids hurting the hard samples.

Table 8. Comparison of samples classification accuracy (%, clean/noisy) between the
Prior Generation Module (PGM) and the strategy that directly using training loss.

Method CIFAR-10 CIFAR-10 CIFAR-100 CIFAR-100
Sym-20% Sym-50% Sym-20% Sym-50%

By training loss 88.80 78.16 81.12 68.99

PGM 97.66 94.71 94.77 90.80

5 Limitations

The quantifiable behavioral differences between hard and noisy samples are not
clear. There could exist other better metrics that can be used to directly distin-
guish them and thus can simplify the dividing phase. We conducted some pre-
liminary experiments for hard and noisy sample behavior analysis in appendix.
Our subsequent work will continue to investigate specific quantifiable metrics
to simplify the process of the Prior Generation Module, and how to strengthen
hard samples more reasonably is a direction worth studying in the future.

6 Conclusions

The existing methods for learning with noisy labels fail to distinguish the hard
samples from the noisy ones and thus ruin the model performance. In this paper,
we propose PGDF to learn a deep model to suppress noise. We found that the
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training history can be used to distinguish the hard samples and noisy samples.
By integrating our Prior Generation, more hard clean samples can be saved.
Besides, our pseudo-labels refining and hard enhancing phase further boost
the performance. Through extensive experiments show that PGDF outperforms
state-of-the-art performance.
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Abstract. We consider the problem of identifying the signal shared
between two one-dimensional target variables, in the presence of addi-
tional multivariate observations. Canonical Correlation Analysis (CCA)-
based methods have traditionally been used to identify shared variables,
however, they were designed for multivariate targets and only offer triv-
ial solutions for univariate cases. In the context of Multi-Task Learn-
ing (MTL), various models were postulated to learn features that are
sparse and shared across multiple tasks. However, these methods were
typically evaluated by their predictive performance. To the best of our
knowledge, no prior studies systematically evaluated models in terms of
correctly recovering the shared signal. Here, we formalize the setting of
univariate shared information retrieval, and propose ICM, an evaluation
metric which can be used in the presence of ground-truth labels, quanti-
fying 3 aspects of the learned shared features. We further propose Deep
Canonical Information Decomposition (DCID) - a simple, yet effective
approach for learning the shared variables. We benchmark the models
on a range of scenarios on synthetic data with known ground-truths and
observe DCID outperforming the baselines in a wide range of settings.
Finally, we demonstrate a real-life application of DCID on brain Mag-
netic Resonance Imaging (MRI) data, where we are able to extract more
accurate predictors of changes in brain regions and obesity. The code for
our experiments as well as the supplementary materials are available at
https://github.com/alexrakowski/dcid.

Keywords: Shared Variables Retrieval · CCA · Canonical Correlation
Analysis

1 Introduction

In this paper, we approach the problem of isolating the shared signal Z associated
with two scalar target variables Y1 and Y2, from their individual signals Z1

and Z2, by leveraging additional, high-dimensional observations X (see Fig. 1
for the corresponding graphical model). Analyzing the relationships between
pairs of variables is ubiquitous in biomedical or healthcare studies. However,
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while biological traits are often governed by complex processes and can have a
wide range of causes, we rarely have access to the fine-grained, low-level signals
constituting the phenomena of interest. Instead, we have to either develop hand-
crafted quantities based on prior knowledge, which is often a costly process, or
resort to high-level, “aggregate” measurements of the world. If the underlying
signal is weak, it might prove challenging to detect associations between such
aggregated variables. On the other hand, in many fields, we have access to high-
dimensional measurements, such as medical scans or genome sequencing data,
which provide rich, albeit “unlabeled” signal. We propose to leverage such data
to decompose the traits of interest into their shared and individual parts,
allowing us to better quantify the relationships between them.

Y1 Y2

ZZ1 Z2

X

Fig. 1. A Directed Acyclic Graph (DAG) representing the graphical model used in
our setting. Unobserved variables are denoted in circles. The two univariate random
variables Y1, Y2 are generated by their individual ancestors Z1,Z2, and a shared
ancestor Z. The multivariate X is generated by all 3 latent variables. The following
pairs of variables are independent under this model: Z ⊥ Z1, Z ⊥ Z2, Z1 ⊥ Z2,
Z1 ⊥ Y2 and Z2 ⊥ Y1.

Probabilistic CCA (pCCA) was one of the early approaches to learning the
shared signal between pairs of random variables (r.v.s) [4,23]. However, its effec-
tiveness is limited to multivariate observations - for scalar variables we can only
learn the variables themselves, up to multiplication by a constant. A variety of
methods from the field of Multi-Task Feature Learning (MTFL) learn feature
representations of X, which should be sparse and shared across tasks [2,25,41].
These models are typically evaluated by their predictive performance, and the
shared features are rather a means of improving predictions, than a goal itself.
To the best of our knowledge, no studies exist which systematically quantify how
accurate are such models in recovering the signal shared between tasks.

To this end, we define the ICM score, which evaluates 3 aspects of learned
shared features: informativeness, completeness, and minimality, when ground-
truth labels are available. Furthermore, we propose Deep Canonical Information
Decomposition (DCID), an approach utilizing Deep Neural Network (DNN) fea-
ture extractors and Canonical Correlation Analysis (CCA) to learn the variables
Z shared between traits. DCID approximates the traits of interest with DNN
classifiers and utilizes their latent features as multivariate decompositions of the
traits. It then identifies the shared factors by performing CCA between the two
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sets of latent representations and retaining the most correlated components (see
Fig. 3 for a graphical overview of the method).

Our contributions can be summarized as follows:

1. We define the ICM score, which allows evaluation of learned shared features
in the presence of ground-truth labels (Sect. 3)

2. We propose DCID, a method leveraging DNN classifiers and CCA to learn
the shared signal (Sect. 4).

3. We benchmark the proposed model, along several baselines, on a range of
scenarios with synthetic data, and analyze their performance wrt. different
properties of the underlying ground-truth (Sects. 5.3 and 5.4).

4. Finally, we demonstrate a real-life use-case of the proposed method, by apply-
ing it on a dataset of brain Magnetic Resonance Imaging (MRI) data to better
quantify the relationships between brain structures and obesity (Sect. 5.5).

2 Related Work

2.1 Canonical Correlation Analysis (CCA)

Y1 Y2

Z

(a)

Y1 Y2

ZZ1 Z2

(b)

Fig. 2. Two probabilistic interpretations of Canonical Correlation Analysis (CCA).
In (a), the observed variables are different, noisy views (linear transformations) of the
same underlying variable Z. In (b), two additional, view-specific latent variables Z1 and
Z2 are introduced, which can be interpreted as modeling the uncertainty of p(Y|Z).

CCA is a statistical technique operating on pairs of multivariate observations [19,
21]. It is similar to Principal Component Analysis (PCA) [30], in that it finds
linear transformations of the observations, such that the resulting variables are
uncorrelated. Specifically, for a pair of observations Y1 ∈ R

n×p and Y2 ∈ R
n×q,

it finds linear transformations U ∈ R
p×d, V ∈ R

q×d, d = min{p, q} which
maximize the correlation between the consecutive pairs of the resulting variables
C1 = Y1U, C2 = Y2V . In the probabilistic interpretation of CCA [4], one can
interpret the observed variables as two different views of the latent variable Z
(Fig. 2a). This interpretation is extended in [23] to include view-specific variables
Z1 and Z2 (Fig. 2b), which is the closest to our setting.
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2.2 Multi-Task Learning (MTL)

MTL is a machine learning paradigm, where models are fitted to several tasks
simultaneously, with the assumption that such joint optimization will lead to
better generalization for each task [9,33,42]. In Multi-Task Feature Learning
(MTFL), one aims to learn a low-dimensional representation of the input data,
that is shared across tasks [2,34]. The early approaches for MTFL worked
with linear models and were based on imposing constraints on the matrix of
model parameters, such as sparsity or low-rank factorization [2,3,25]. Modern
approaches extend MTFL to DNN models by using tensor factorization in place
of matrix factorization [40,41] or by employing adversarial training to learn task-
invariant, and task-specific features [7,26,36].

3 Univariate Shared Information Retrieval

In this section, we formalize the problem setting (Sect. 3.1) and define 3 quan-
tities measuring different aspects of the learned shared representations, which
constitute the model evaluation procedure (Sect. 3.2).

3.1 Problem Setting

In our setting, we observe two univariate r.v.s Y1, Y2 ∈ R, which we will refer
to as the target variables, and a multivariate r.v. X ∈ R

l. We further define 3
unobserved, multivariate, and pairwise-independent latent variables Z,Z1,Z2 ∈
R

k, which generate the observed variables. We will refer to Z1 and Z2 as the
individual variables, and to Z as the shared variables. The main assumption of the
model is that the individual variables Z1 and Z2 are each independent from one
of the target variables, i.e., Z1 ⊥ Y2 and Z2 ⊥ Y1, while the shared variable Z is
generating all the observed r.v.s, i.e., Y1, Y2 and X. The corresponding graphical
model is shown in Fig. 1. Similar to the pCCA setting, we assume additivity of
the effects of the shared and individual variables on Yi, i.e.:

Yi = ψi(Z) + φi(Zi), i ∈ {1, 2} (1)

where ψi and φi are arbitrary functions R
k �→ R.

Our task of interest is then predicting the shared variable Z given the
observed r.v.s, i.e., learning an accurate model of p(Z|Y1, Y2,X), without
access to Z,Z1,Z2 during training.

3.2 Evaluating the Shared Representations

While in practical scenarios we assume that the latent variables remain unob-
served, to benchmark how well do different algorithms recover Z, we need to
test them in a controlled setting, where all ground-truth variables are available
at least during test time. Let D = {x(i), y

(i)
1 , y

(i)
2 , z(i), z(i)1 , z(i)2 }N

i=1 be a ground-
truth dataset, and ẑ = {ẑ(i)}N

i=1 be the learned shared representations. We will
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denote by [x,y] the column-wise concatenation of x and y, and by R2(x,y) the
ratio of variance explained (i.e., the coefficient of determination) by fitting a
linear regression model of x to y:

R2(x,y) = 1 − 1
d

d∑

j=1

∑
i(e

(i)
j )2

∑
i(y

(i)
j − ȳj)2

(2)

where e
(i)
j = ŷj

(i) − y
(i)
j are residuals of the model of the j-th dimension of y.

Inspired by the DCI score [15] from the field of disentangled representation
learning, we define the following requirements for a learned representation Ẑ as
correctly identifying the shared variable Z:

1. Informativeness: Z should be predictable from Ẑ. We measure this as the
ratio of variance explained by a model fitted to predict Z from Ẑ:

Linfo(ẑ, z) = R2(ẑ, z) (3)

2. Compactness: Z should be sufficient to predict Ẑ. We measure this as the
ratio of variance explained by a model fitted to predict Ẑ from Z:

Lcomp(z, ẑ) = R2(z, ẑ) (4)

3. Minimality: Ẑ should only contain information about Z. We measure this
as one minus the ratio of variance explained by a model fitted to predict the
individual variables Z1 and Z2 from Ẑ:

Lmin(ẑ, z1, z2) = 1 − R2(ẑ, [z1, z2]) (5)

The final score, ICM , is given as the product of the individual scores:

ICM(ẑ,D) = Linfo(ẑ, z) · Lcomp(z, ẑ) · Lmin(ẑ, z1, z2) (6)

and takes values in [0, 1], with 1 being a perfect score, identifying Z up to a
rotation.

Note that minimality might seem redundant given compactness - if Z explains
all the variance in Ẑ, then, since Z ⊥ Z1,Z2, Ẑ would contain no information
about Z1 or Z2. However, if we accidentally choose the dimensionality of Ẑ to be
much higher than that of Z, a model can “hide” information about Z1 and Z2 by
replicating the information about Z multiple times, e.g., Ẑ = {Z1,Z2,Z, . . .Z}.
This would result in a perfect informativeness and an almost perfect compactness
score, but a low minimality score.

4 Method: Deep Canonical Information Decomposition

In this section, we outline the difficulty in tackling the problem formulated above
with CCA (Sect. 4.1), and describe an algorithm for solving it by exploiting the
additional observed variable X (Sect. 4.2).
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4.1 Limitations of the CCA Setting

Without X, our setting can be seen as a special case of Probabilistic CCA
(pCCA) [23], where the observed variables (“views” of the data) have a dimen-
sionality of one (see Fig. 2b). If we assume non-empty Z, then, by the pCCA
model, Z1 and Z2 would have a dimensionality of zero, resulting in degenerate
solutions in form of:

Ẑ = αY1

∨
Ẑ = αY2

α �= 0

(7)

as the only linear transformations of univariate Y1 and Y2 are the variables
themselves, up to scalar multiplication.

4.2 Deep Canonical Information Decomposition (DCID)

In order to find Z, we need “unaggregated”, multivariate views of Y1 and Y2. To
achieve this, we leverage the high-dimensional observations X, e.g., images, to
learn decompositions of Y1, Y2 as transformations of X. Specifically, we assume
that both Yi can be approximated as transformations of X with functions
hi(X) = Ŷi. We further assume they can be decomposed as hi = gi ◦ fi, where
fi : Rl �→ R

k, called the representation function, can be an arbitrary, potentially
nonlinear mapping, and gi : Rk �→ R, called the classifier function, is a linear
combination. The k-dimensional outputs of fi(X) = Bi constitute the multivari-
ate decompositions of Yi. Since these are no longer univariate, we can now apply
the standard CCA algorithm on B1,B2 to obtain pairs of canonical variables
C1,C2 ∈ R

k, sorted by the strength of their pairwise correlations, i.e.,

∀i, j ∈ |k| : i < j ⇒ corr(C1,i,C2,i) ≤ corr(C1,j ,C2,j) (8)

In order to extract the most informative features, we can select the n pairs of
canonical variables with correlations above a certain threshold T :

n = argmax
i∈|k|

corr(C1,i,C2,i) > T (9)

We then take the Ẑ = 1
2 (C1,1:n + C2,1:n) as our estimate of the shared Z. The

complete process is illustrated in Fig. 3 and described step-wise in Algorithm 1.

Modeling the hi. In practice, we approximate each hi by training DNN models
to minimize E[Yi−hi(X)]2, i.e., a standard Mean Squared Error (MSE) objective.
DNNs are a fitting choice for modeling hi, since various popular architectures,
e.g., ResNet [20], can naturally be decomposed into a nonlinear feature extractor
(our fi) and a linear prediction head (our gi).



26 A. Rakowski and C. Lippert

Fig. 3. A visual illustration of the Deep Canonical Information Decomposition (DCID)
model. The target variables Y1 and Y2 are approximated by fitting DNN predictors on
the high-dimensional data X. Outputs of the penultimate layers of the networks are
then used as multivariate decompositions of Y1 and Y2, and fed into CCA to estimate
the shared signal Ẑ.

Algorithm 1: DCID: Computing the shared features ẑ and the prediction
function f�

Input: D = {x(i), y
(i)
1 , y

(i)
2 }N

i=1 ; /* Training dataset */

Input: L(·, ·) ; /* Loss function to optimize the DNNs, e.g., L2 */

Input: T ; /* Canonical correlation threshold */

Output: Ẑ ; /* Features shared between Y1 and Y2 */

Output: f� ; /* Function to predict Ẑ from new data */

f1, g1 ← argminh=g◦f L(y1, h(x)) ; /* Fit a DNN to predict y1 from x */

f2, g2 ← argminh=g◦f L(y2, h(x)) ; /* Fit a DNN to predict y2 from x */

b1 ← f1(x) ;
b2 ← f2(x) ;
U, V ← CCA(b1,b2) ; /* Compute the CCA projection matrices U, V */

ẑ ← ∅ ;
n ← 1 ;

while corr(U�
n b1, V

�
n b2) > T do

bn ← 1
2
(U�

n b1 + V �
n b2) ;

ẑ ← ẑ ∪ {bn} ; /* Add a new shared component Sn */

n ← n + 1 ;

end
n ← n − 1 ;

f�(·) ← 1
2
[U�

1:nf1(·) + V �
1:nf2(·)] ; /* Save the function f� */
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5 Experiments

In Sect. 5.1 we describe the baseline models we compare against, and in Sect. 5.2
we describe the settings of the conducted experiments, such as model hyper-
parameters or datasets used. In Sects. 5.3 and 5.4 we conduct experiments on
synthetic data with know ground-truth - in Sect. 5.3 we benchmark the models in
terms of retrieving the shared variables Z, and in Sects. 5.4 we evaluate how the
performance of the models degrades when the variance explained by the shared
variables changes. Finally, in Sect. 5.5 we demonstrate a real-life use case of the
proposed DCID method on brain MRI data, where the underlying ground-truth
is not known.

5.1 Baselines

Multi-Task Learning (MTL). We train a DNN model in a standard multi-task
setting, i.e., to predict both Y1 and Y2 with a shared feature extractor f : Rl �→
R

k and task-specific linear heads g1, g2 : Rk �→ R. We then select as Ẑ the set of
features of f , for which the magnitude of normalized weights of the task-specific
heads exceeds a certain threshold TMTL for both heads, i.e.:

f(·)i ∈ Ẑ =⇒ TMTL ≤ |G1,i|
max|G1,:| ∧ TMTL ≤ |G2,i|

max|G2,:| (10)

where G1, G2 are weight vectors of the linear heads g1, g2.

Multi-Task Feature Learning (MTFL). We train a multi-task DNN as in the
MTL setting, and apply the algorithm for sparse common feature learning of [3]
on the features of f . This results in new sparse features f ′ and their correspond-
ing new prediction heads g′

1, g
′
2. As in the above setting, we select features of f ′

with the magnitude of normalized weights for g′
i above a threshold TMTL.

Adversarial Multi-Task Learning (Adv. MTL). Introduced in [26], this model
learns 3 disjoint feature spaces: 2 task-specific, private feature spaces, and a
shared space, with features common for both tasks. The model is trained in
an adversarial manner, with the discriminator trying to predict the task from
the shared features. Additionally, it imposes an orthogonality constraint on the
shared and individual spaces, forcing them to contain different information.

5.2 Experimental Settings

Synthetic Data. For experiments with known ground-truth, we employed the
Shapes3D dataset [8], which contains synthetic 64 × 64 pixel RGB images of
simple 3-dimensional objects against a background, generated from 6 indepen-
dent latent factors: floor hue, wall hue, object hue, scale, shape and orientation
of the object, resulting in 480, 000 samples total. We take the images as X, and
select different factors as the unobserved variables Z,Z1,Z2. As the 6 factors are
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the only sources of variation in the observed data X, it allows for an accurate
evaluation of model performance in terms of retrieving Z.

We employed the encoder architecture from [27] as the DNN backbone used to
learn f1 and f2. The models were trained for a single pass over the dataset, with a
mini-batch of size 128 using the Adam optimizer [22] with a learning rate of 10−4.
We repeated each experimental setting over 3 random seeds, each time splitting
the dataset into different train/validation/test split with ratios of (70/15/15)%.
For the hyperparameter sweep performed in Sect. 5.3 we considered: 10 values
evenly spread on [0, 1] for T of DCID, 10 values evenly spaced on [0, 1] for TMTL

of MTL, MTFL, and Adv. MTL, 10 values evenly spread on a logarithmic scale
of [10−4, 10] for the γ parameter of MTFL, and γ, λ ∈ {0.01, 0.05, 0.1, 0.5, 1} and
a learning rate of the discriminator in {10−4, 10−3} for Adv. MTL.

Brain MRI Data. For the experiments on brain MRI scans (Sect. 5.5) we
employed data from the UK Biobank (UKB) medical database [39]. Specifi-
cally, we selected data for participants who underwent the brain scanning proce-
dure, self-identified as “white-British”, and have a similar genetic ancestry, which
resulted in 34, 314 data points. As the input data X we took the T1-weighted
structural scans, which were non-linearly registered to an MNI template [1,28],
and downsampled them to a size of 96×96×96 voxels. For Y2, we selected body
mass-related measurements available in the dataset, such as the total body fat
mass (BFM), weight, or body mass index (BMI). For Y1, we computed the total
volumes of several brain Regions of Interest (ROIs), e.g., the total volume of
hippocampi or lateral ventricles, using the Synthseg software [6].

We employed a 3D MobileNetV2 [24], with a width parameter of 2, as the
DNN architecture used to learn f1 and f2. The models were trained for 40 epochs
with a mini-batch size of 12 using the Adam optimizer with a learning rate of
10−4. For each possible pair of Y1 and Y2 we repeated the experiments across 3
random seeds, each time selecting a different 30% of the samples as the test set.

5.3 Learning the Shared Features Z

To evaluate how accurately do different models learn the underlying shared fea-
tures Z, we trained them in controlled settings with known ground-truth. We
created the latent variables from the 6 factors of the Shapes3D dataset, by
randomly selecting two individual factors Z1, Z2 and one shared factor Z, and
constructed the target variables as Y1 = Z1+Z and Y2 = Z2+Z. This resulted in
60 possible scenarios with different underlying latent variables. To ensure a fair
comparison, for each model we performed a grid search over all hyperparameters
on 30 random scenarios, and evaluated it on the remaining 30 scenarios using
the best found hyperparameter setting.

The resulting ICM scores are shown in Table 1. The proposed DCID model
performed best both in terms of the final ICM score, as well as the individual
scores. The MTL and MTFL methods performed similarly in terms of the ICM
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score, with MTL achieving higher informativeness, and MTFL a lower minimal-
ity score. The Adv. MTL model had the lowest ICM , performing well only in
terms of minimality.

Table 1. ICM scores of models trained on the Shapes3D dataset to retrieve the shared
Z. Reported are the mean and standard deviation of each score over 90 runs per model
(30 scenarios × 3 random seeds).

Model ICM ↑ Informativeness ↑ Compactness ↑ Minimality ↓
Adv. MTL 0.06 (±0.05) 0.22 (±0.11) 0.22 (±0.11) 0.03 (±0.02)

MTL 0.18 (±0.14) 0.65 (±0.19) 0.33 (±0.19) 0.23 (±0.12)

MTFL 0.19 (±0.15) 0.47 (±0.23) 0.37 (±0.22) 0.12 (±0.08)

DCID (ours) 0.62 (±0.15) 0.85 (±0.07) 0.73 (±0.17) 0.01 (±0.02)

5.4 Variance Explained by Z and Model Performance

We further investigated how the amount of variance in Y1, Y2 explained by Z
influences model performance, with two series of experiments. In the first one,
we controlled τ , the ratio of variance in Y1, Y2 explained by the shared variables
Z to the variance explained by the individual variables Z1,Z2, i.e.:

τ =
R2(Z, [Y1, Y2])

R2([Z1,Z2], [Y1, Y2])
(11)

We created 15 different base scenarios, each time selecting a different pair of
variables as Z1,Z2, and the remaining 4 as Z. For each scenario we then varied
τ 17 times on a logarithmic scale from 0.1 to 10, and trained models using their
best hyperparameter settings from Sect. 5.3.

We plot the resulting ICM scores against τ in Fig. 4. Firstly, all the models
fail to recover Z for τ ≤ 0.3, i.e., when the signal of Z is weak. For τ ∈ [0.3, 2.3]
the DCID model outperforms the baselines by a wide margin, even for τ < 1. The
MTL models begin to recover Z only when it dominates the signal in the target
variables. Interestingly, the performance of DCID drops suddenly for τ = 2.37,
and is outperformed by the MTL and MTFL models for τ > 2.8. This is a
surprising behavior, and we observed it occur independently of values of the
threshold T (see Fig. 1 of the supplementary material).

In the second scenario, we controlled κ, the ratio of variance explained by Z
in Y1 to the variance explained in Y2, i.e.:

κ =
R2(Z, Y1)
R2(Z, Y2)

(12)

We created 60 base scenarios, similarly as in Sect. 5.3, and for each we varied κ
6 times evenly on the scale from 0.1 to 1. Again, we selected the model hyper-
parameters that performed best in Sect. 5.3.
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Fig. 4. ICM scores (y-axis) of different models plotted against τ , the ratio of variance
in Y1, Y2 explained by Z to the variance explained by Z1,Z2 (x-axis, logarithmic scale).

We plot the resulting ICM scores against κ in Fig. 5. For κ ∈ [0.5, 1] the
DCID model retains a consistent performance. For values of κ below 0.5 its
performance decreases linearly, for κ ≤ 0.2 achieving lower ICM scores than the
MTL and MTFL models. The scores in the low κ regime are higher, however,
than the scores for low τ values, indicating that while DCID performs best when
Z explains a large amount of variance in both target variables, it is also beneficial
if at least one of the target variables is strongly associated with Z. The baseline
models, while achieving lower scores overall, seem to have their performance
hardly affected by changes in κ.

Fig. 5. ICM scores (y-axis) of different models plotted against κ, the ratio of variance
explained by Z in Y1 to the variance explained in Y2 (x-axis). For κ = 1 the shared
variables explain the same amount of variance in both target variables.

5.5 Obesity and the Volume of Brain Regions of Interest (ROIs)

Background. The occurrence of neuropsychiatric disorders is associated with
a multitude of factors. For example, the risk of developing dementia can depend
on age [11,37], ethnicity [10,35], or genetic [16,38], vascular [12,31], and even
dietary [17,42] factors. However, only a subset of these factors are modifiable.
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Being aware of the genetic predisposition of an individual for developing a dis-
order does not directly translate into possible preventive actions. On the other
hand, mid-life obesity is a known factor for dementia, which can be potentially
acted upon [5,18]. Several studies analyzed the statistical relations between brain
ROIs and obesity [13,14,32]. A natural limitation of these studies is the fact
that they work with “aggregated” variables, quantifying obesity or ROI volumes
as single values, potentially losing information about the complex traits. Phe-
nomena such as the “obesity paradox”, where obesity can have both adverse
and positive effects [29], indicate the need for deeper dissecting the variables of
interest and the connections between them.

Analysis Using DCID. We approach this problem by estimating the shared
signal Z between Y1, the body fat mass (BFM), and Y2, the volume of different
brain ROIs. We trained several DCID models on the UKB data to predict BFM
and volumes of the following ROIs: brain stem, cerebrospinal fluid (CSF), sub-
cortical gray matter, ventricles, and the hippocampus. Additionally, we trained
models for Y1 being the body weight, or BMI, and report results for these in
Sect. 2 of the supplementary material. Since the main interest lies in the effect
of obesity on the ROIs, we constructed “surrogate” variables of Y1, denoted by
ψ1(Z) (see Eq. 1), which isolate the shared signal in Y1 from the individual one.
This is a conservative approach since it only utilizes features of the model trained
to predict Y1, with the information about Y2 used only to rotate the features
and extract the shared dimensions.

First, we demonstrate how ψ1(Z) allows for more accurate estimates of
change in the ROIs, since it ignores the signal in Y1 which is independent of
Y2. We fitted Z on the training data by selecting shared components with a
threshold T > 0.2. We then obtained predictions of ψ1(Z) on the test set and
computed their correlation with the ROI. We report the results for all the ROIs
in Table 2, and plot BFM and ψ1(Z) against the volume of the subcortical gray
matter for a single model in Fig. 6. For all ROIs the surrogate variable is cor-
related stronger than BFM, up to 8-fold for the ventricles, while retaining the
sign of the coefficient. The smallest gains seem to be achieved for CSF, where
the spread of coefficients over different runs is also the highest.

Secondly, we show how obtaining ψ1(Z) allows us to estimate the variance
explained separately in Y1 and Y2, which is not possible by merely computing the
correlation coefficient between Y1 and Y2. We plot the ratio of explained variance
for each ROI in Fig. 7. While ψ1(Z) explains a similar amount of variance for
ventricles and BFM, we can see bigger disparities for other ROIs, especially for
the brain stem, where the variance explained in BFM is negligible. This might
indicate that predictions of the the brain stem volume from BFM would be less
reliable than predictions of other ROIs.
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Table 2. Pearson correlation coefficients between volumes of Regions of Interest (ROIs)
in brain MRI scans (columns) and two variables - Y1, being the measurements of total
body fat mass (first row), and a surrogate variable ψ1(Z), isolating the signal of the
shared variables Z contributing to Y1. In parentheses, we report the standard deviation
of the coefficients over 3 training runs over different subsets of data.

Variable Brain Stem CSF Gray Matter Hippocampus Ventricles

Y1 −0.03 (±0.01) 0.01 (±0.00) 0.04 (±0.00) 0.05 (±0.00) −0.02 (±0.00)

ψ1(Z) −0.20 (±0.07) 0.06 (±0.22) 0.25 (±0.04) 0.22 (±0.05) −0.17 (±0.08)

Fig. 6. Volumes of subcortical gray matter plotted against body fat mass (a) and
against the surrogate variable ψ1(Z) (b), for a single trained model. All variables were
standardized to a z-score before plotting. (Color figure online)

Fig. 7. Ratio of total variance explained by the surrogate variable ψ1(Z) in different
brain Regions of Interest (ROIs) (blue bars) and in BFM (yellow bars). (Color figure
online)

6 Discussion

In this work, we approached in a systematic manner the task of recovering the
latent signal shared between scalar variables, by formalizing the problem setting
and defining an evaluation procedure for model benchmarking, and proposed a
new method, DCID, for solving the task.
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6.1 Results Summary

By conducting experiments in controlled settings on synthetic data we could
analyze model performance wrt. properties of the latent variables. Notably, we
observed that the baseline models performed poorly when the shared variables
were not strongly dominating the signal in the data, which is arguably the more
realistic setting. The DCID model proved more robust in these scenarios, outper-
forming the baselines in most cases. We note, however, that it was still sensitive
to the magnitude of the shared signal, and, interestingly, exhibited a loss of
performance when the shared signal was strongly dominating. Investigating the
loss of performance in the strong-signal regime, and improving robustness in the
low-signal one are thus two natural directions for future work. Nevertheless, we
believe that DCID can serve as an easy-to-implement, yet effective baseline.

6.2 Limitations

A main assumption of the method is that the observed variables X are rich in
information, preserving the signal about the latent variables. Since, in practice,
we do not observe the latent variables, we cannot test whether this assumption
holds. As a substitute safety measure, we can assess the performance in pre-
dicting the observed target variables Y . If these cannot be predicted accurately,
then it is unlikely that the model will correctly recover the latent variables either.
Furthermore, we note that the method should not be mistaken as allowing to
reason about causal relations between variables. It could, however, be used as
part of a preprocessing pipeline in a causal inference setting, e.g., for producing
candidate variables for mediation analysis.
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Abstract. Weakly Supervised Object Detection (WSOD) with only
image-level annotation has recently attracted wide attention. Many exist-
ing methods ignore the inter-image relationship of instances which share
similar characteristics while can certainly be determined not to belong
to the same category. Therefore, in order to make full use of the weak
label, we propose the Negative Prototypes Guided Contrastive learning
(NPGC) architecture. Firstly, we define Negative Prototype as the pro-
posal with the highest confidence score misclassified for the category that
does not appear in the label. Unlike other methods that only utilize cate-
gory positive feature, we construct an online updated global feature bank
to store both positive prototypes and negative prototypes. Meanwhile,
we propose a pseudo label sampling module to mine reliable instances
and discard the easily misclassified instances based on the feature simi-
larity with corresponding prototypes in global feature bank. Finally, we
follow the contrastive learning paradigm to optimize the proposal’s fea-
ture representation by attracting same class samples closer and pushing
different class samples away in the embedding space. Extensive experi-
ments have been conducted on VOC07, VOC12 datasets, which shows
that our proposed method achieves the state-of-the-art performance.

Keywords: Weakly supervised learning · Object detection ·
Contrastive learning

1 Introduction

Object detection is a classic computer vision task that jointly estimates class
labels and bounding boxes of individual objects. In the last few decades, super-
vised learning of object detection has achieved remarkable progress thanks to
the advances of Convolutional Neural Networks (CNNs) [12,13,23]. However, the
supervision of object detection training process often requires precise bounding
boxes labels at a large scale, which is very labor-intensive and time-consuming.

Weakly supervised object detection (WSOD) [2] has recently attracted wide
attention due to its greatly substitution of only image-level annotated datasets
for precise annotated datasets in training process. Most existing methods are
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
D. Koutra et al. (Eds.): ECML PKDD 2023, LNAI 14170, pp. 36–51, 2023.
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Fig. 1. Illustration for negative prototypes. The green box in each of the three top-
right images refers to the ground truth bounding box of the category “Horse”, “Dog”
and “Sheep”, respectively. The yellow boxes refer to the misclassified proposals for the
category “Cow”. It is clear that “Cow” does not appear in any of the three images, while
there are still proposals mistakenly detected as “Cow”. We consider such proposals as
negative prototypes for the category “Cow”. We then extract the feature representations
of these proposals and store them in the negative prototypes bank. (Color figure online)

based on Multiple Instance Learning (MIL) [2,17,24,29,30] to transform WSOD
into a multi-label classification task. [30] tended to select the proposal with high
confidence as the pseudo label and adopted multiple branch to refine the original
proposal to gain more precise bounding-box, which has become the pipeline for
numerous subsequent studies.

However, with only image-level supervision, the classifier always faces the
problem of instance ambiguity and partial detection. Instance ambiguity
refers to the tendency to have missing instances or multiple grouped instances.
Partial detection means that the detector tends to detect the most discriminative
part of the target objects, which is also an inherent defect of the CNN network
[9]. Thus, there is still a large performance gap between weakly (mAP=56.8% in
VOC07) [17] and fully (mAP=89.3% in VOC07) [11] supervised object detectors.
Different methods [6,17,20,21,24–26,28,33,39,40] have been introduced to miti-
gate the above mentioned problems of WSOD. However, these methods generally
lack full exploitation of the given limited annotation information. They mainly
focus on the single input image itself, ignoring the corresponding relationship of
instances in the whole dataset.

Therefore, we think of mining the hidden inter-image category information
in the whole dataset. Instances belonging to the same category share similar
characteristics, and we consider the typical features of the same category in the
whole dataset as class positive prototypes. In contrast, we propose the concept of
negative prototypes as the proposals with high confidence score misclassified for
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Fig. 2. Comparison of classic contrastive learning (left) and our contrastive learning
(right). We proposed the concept of Negative Prototypes (proposal mis-classified for
category which has similar characteristics to current category while can certainly be
determined not to belong to) and construct a global feature bank to store both positive
prototype and negative prototype.

the category that does not appear in image label, which is illustrated in detail
in Fig. 1. Observation reveals that negative prototypes always contain valuable
category-specific discriminative features. The detector tends to produce false
predictions in the regions containing category discriminative features due to the
overfitting of discriminative regions (e.g. the heads of the dog and the horse).
By leveraging the positive prototypes, we can retrieve several missing instances,
and likewise, by leveraging the negative prototypes, we are also able to alleviate
the problem of partial detection.

In this paper, we propose a global negative prototypes guided contrastive
learning weakly supervised object detection framework (NPGC). Our intuition
is to fully exploit both visually correlated and visually discriminative category
information in the whole dataset to improve the object classification ability of
the weakly supervised detector. We construct an online updated global feature
bank to store multiple class Positive Prototypes (PP) and Negative Prototypes
(NP) from the whole dataset. Meanwhile, we design a novel Pseudo Label Sam-
pling (PLS) module, which is used to mine the missing instances and punish
overfitted instances that are prone to be partially detected. Based on the aver-
age feature similarity of candidate proposals and the positive prototypes of the
same category, we can obtain a threshold τpos to mine proposals that might be
omitted. Similarly, according to the average feature distance of candidate propos-
als and the negative prototypes of the same category with maximum similarity,
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a threshold τneg can also be obtained so as to discard the partial overfitted
instances. Afterwards, as shown in Fig. 2, we leverages a contrastive learning
paradigm to narrow the distance in representation space between positive sam-
ple pairs and push the distance between negative sample pairs.

Our key contributions can be summarized as follows:

• First, we construct an elaborate global negative prototypes guided contrastive
learning weakly supervised object detection framework.

• Second, we propose negative prototypes which contain valuable category-
specific discriminative features. We construct an online updated global feature
bank to store both class positive prototypes and negative prototypes, and then
leverage contrast learning loss to optimize it.

• Third, we devise a pseudo label sampling module, which utilized inter-image
information from the global feature bank into pseudo proposal selection. This
module effectively enables detector to mine the missing instances and simulta-
neously punish overfitted instances to alleviate the discriminal part detection
problem.

2 Related Work

2.1 Weakly Supervised Object Detection

Bilen [2] unifies deep convolutional network and Multi-Instance Learning (MIL)
in an end-to-end WSOD network called Weakly Supervised Deep Detection Net-
work (WSDDN) for the first time. As an improvement to WSDDN, Tang et
al. [30] gradually optimizes the predict bounding boxes by selecting high con-
fidence region as pseudo label and adding an Online Instance Classifier Refine-
ment module (OICR). Based on [30], in order to further improve detector’s
performance, Tang et al. [29] introduces a Proposal Clustering Learning (PCL)
method for candidate proposals, so that proposals with similar features could
be clustered together as much as possible. More recently, Huang et al. [17] pro-
poses Comprehensive Attention Self-Distillation (CASD) framework that aggre-
gate attention maps of input-wise and layer-wise to reach more balanced feature
learning. Yin et al. [37] devises an Instance Mining framework with Class Fea-
ture Bank (IM-CFB), which uses the uses the top-similarity scored instance to
improve proposal selection. Seo et al. [25] proposes a minibatch-level instance
labeling and Weakly Supervised Contrastive Learning (WSCL) method with fea-
ture bank, while it may encounter the situation that the same category does not
appear in the same minibatch. Inspired by [25], we propose a global class fea-
ture bank strategy and innovatively merge the prototypes of category negative
samples, instead of solely employing the positive prototypes.

2.2 Contrastive Learning

Recently, there has been a trend towards exploring contrastive loss for represen-
tation learning. The idea of contrastive learning is to pull the samples from the
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positive pair closer together and push the samples from the negative pair apart.
For instance, Hjelm et al. [16] propose Deep InfoMax to maximize the mutual
information between the input and output of a deep network for unsupervised
representation learning. More recently, Chen et al. [3] presents a method for
learning visual representations, which maximizes the agreement between differ-
ent augmented views of the same image via a contrastive loss. He et al. [15]
proposes Momentum Contrast (MoCo), which utilizes a memory bank to store
instance features. The purpose is to learn the representation by matching fea-
tures of the same instance in different augmented views. Tian et al. [31] extends
the input to more than two views. These methods are all based on a similar
contrastive loss associated with Noise Contrastive Estimation (NCE) [14]. Oord
et al. [22] proposed Contrastive Predictive Coding (CPC) that learns represen-
tations for sequential data. We choose the InfoNCE loss from [22] to minimize
the distance between samples of the same category and maximize the distance
between samples of different categories.

3 Proposed Method

In this paper, we introduce a negative prototypes guided contrastive learning
weakly supervised object detection framework. The overall architecture of the
proposed network is shown in Fig 3. We employ a MIL branch and an instance
refinement branch as the basic network. On this basis we utilised a context-
based feature extraction module to obtain more effective feature representation
and designed a novel contrastive branch to employ the hidden inter-image infor-
mation.

3.1 Preliminaries

Formally, given a weakly supervised dataset D, we denote I ∈ R
h×w×3 as an

input image from D. The image-level category label y = {y1, . . . , yC} ∈ R
C×1,

where C is the number of weakly supervised dataset categories. The correspond-
ing region proposals pre-generated are R = {r1, . . . , rN}, where N is total num-
ber of proposals.

MIL Branch. For an input image I and its region proposals R, a CNN backbone
firstly extracts the image feature map F . F is then fed into the feature extractor
module containing different pooling layers and two Fully-Connected (FC) lay-
ers to obtain proposal feature vectors fccls and fcdet. Subsequently, proposal
features fccls and fcdet pass through MIL branch according to WSDDN [2],
which includes two streams to produce classification score matrices Xcls ∈ R

C×N

and detection score matrices Xdet ∈ R
C×N , respectively. Xcls normalized by a

softmax layer σ(·) along the classes (rows) representing the probability of a
region r being classified as category c, whereas Xdet computed along the regions
(columns) representing the probability of whether detecting region r for category
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Fig. 3. Overall architecture of the proposed method. NPGC consists of four major
components: Feature extractor, MIL branch, Contrastive branch, and Online instance
refine branch. We constructed a global feature bank to store both positive prototypes
and negative prototypes, which utilized contrastive learning to pull close the samples
from the positive pair and to push apart the samples from the negative pair. We employ
a pseudo label sampling module to mine the missing instances and punish overfitted
instances.

c are obtained. The final proposal score X ∈ R
C×N is computed via an element-

wise product X = σ(Xcls) � σ(Xdet). The image score φ ∈ R
C×1 is obtained by

the sum over all proposals, φ =
∑N

r=1 Xr, and the following multi class cross
entropy is minimized,

Lmil = −
C∑

c=1

{yc log φc + (1 − yc) log(1 − φc)} (1)

where φc equals to image score φ for the c-th class, yc represents whether an
object of category c is presented in the image.

Online Instance Refine Branch. For the k-th refine branch (k ∈ {1, . . . , K}),
fcrefk ∈ R

(C+1)×N is the input proposal feature vector (The (C+1)-th category
refers to background class). Each refinement stage is supervised by the previ-
ous stage, thus the pseudo ground truth label ŷk

c,r ∈ R
(C+1)×N for stage k is

generated from the last stage’s output. Following the general pipeline [36] an
extra regression stream is added to regress bounding boxes online. Overall, the
instance refinement loss Lk

ref is defined as,

Lk
ref = −{ 1

Nk

Nk
∑

r=1

C+1∑

c=1

ŷk
c,r log xk

c,r − 1
Gk

Gk
∑

r=1

SmoothL1(tkr , t̂kr )} (2)

where Nk is the number of proposals and Gk is the total number of positive
proposals in the k-th branch. tr and t̂r are the coordinate offsets and sizes of the
r-th predicted and ground truth bounding-box.
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3.2 Feature Extractor

Inspired by [18], we extract three different features to represent each object
proposal, which are the RoI feature, the context feature, and the frame feature,
respectively. Specifically, the RoI feature is to represent the content of each
proposal. The context feature is to represent the outer context content of each
proposal, while the frame feature is to represent the inner context content of
each proposal.

To represent the location of each proposal, we follow [18,39] to subtract
the pooled context feature fccontext from the frame feature fcframe to obtain
the input representation of the detection branch fcdet. Meanwhile, we leverage
a dropblock to randomly mask out some blocks of the RoI feature map. We
then let it go through two fc layers and serve as the input representation of
the classification fccls and refine branch fcrefk , k ∈ {1, · · · ,K}. By considering
more information of the surrounding parts of the proposal, the extracted feature
contains more location information and can effectively alleviate the problem of
partial detection.

3.3 Contrastive Branch

For each image, all we know is its corresponding image level label, thus we
intend to make as much use of this information as possible. Instances of the
same category share similar characteristics, thus it is possible for us to extract
several positive instance prototypes of each category from the entire data set,
which is useful for alleviating the problem of missing instances. At the same
time, we can also extract the mis-classified instances corresponding to certain
category from the whole data set and treat them as negative instance prototypes,
which share the similar discriminative features of the highly overfitted region.
We can leverage this property to mitigate the problem of partial detection.

Following [25], we construct a similarity head ϕ(·) as shown in Fig 3, which
maps the input RoI feature vectors to S ∈ R

128×N a 128-dimensional embed-
ding space. For each ground truth category c from image I, we choose the top
ranking proposal r̃c,m = argmax

N
(Xc) from the final proposal score X ∈ R

C×N ,
where m is the proposal index. And s̃c,m denoted as the corresponding feature
representation of the top ranking proposal in the embedding space. And we store
it into the positive feature bank.

Negative Prototypes. Our objective is to discover the negative prototypes
of each category, so as to drive the detector’s predictions away from the corre-
sponding negative prototypes.

It can be calculated from the final proposal score matrix X ∈ R
C×N that

each image, except for categories in its ground truth label, gives out the index
of the highest confidence score proposal mis-classified for other categories. This
instance exactly is the negative prototype of its predicted category. Since we
know explicitly that this proposal’s prediction category is by no means exist in
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this image, yet it appears to be this category with high confidence. For example,
in an input image labeled with “cat”, one of the proposals is predicted to be
“dog” with high confidence, but obviously “dog” shouldn’t have been existed in
this image. Therefore, we can conclude that this proposal has feature expression
which tends to be mis-classified with “dog” while it is certainly not “dog”. In this
case, we suppose such proposal a negative prototype of category “dog”, then we
take its representation feature and store it into the negative feature bank.

The total global feature bank is denoted as M =
⋃C

c=1 Spos
c ∪ Sneg

c , where
Spos is the positive prototype bank and Sneg is the negative prototype bank. For
each selected negative prototype representation sc,i, we select the most similar
feature snegc,j from Sneg

c to maximize the assistance of the current instance.

snegc,j = r · snegc,j + (1 − r) · sc,i (3)

where r is the momentum coefficient [15], sc,i refers to the newly selected negative
prototype, snegc,j refers to the the most similar feature with sc,i from Sneg

c . And
the bank updating strategy is the same for the positive prototype bank.

Pseudo Label Sampling Module. As shown in Fig. 4, we construct a pseudo
label sampling module to mine the missing instances and discard the overfitted
instances.

We first calculate the representation feature similarity sim(·) between the
top ranking proposal s̃c,m and the positive prototypes sposc from the positive
prototype bank. The average similarity is regarded as the threshold τpos for
mining positive samples.

τpos =
1

|Spos
c |

|Spos
c |∑

i=1

sim(s̃c,m, sposc,i ) (4)

For each candidate proposal r ∈ R, we calculate the similarity between sr
and the top ranking proposal feature s̃c,m, from which we can mine proposals
might be omitted by selecting candidate proposals whose similarity exceed τpos.

sim(sr, s̃c,m) > τpos (5)

Accordingly, we calculate the similarity between each candidate proposal fea-
ture sr and its corresponding negative prototype s̃negc,r with maximum similarity,
where s̃negc,r = argmax

i
(sim(sr, s

neg
c,i )), i = {1, · · · , |Sneg

c |}. The average similarity
is regarded as the threshold τneg for discarding negative samples

τneg =
1

|R|
|R|∑

r=1

sim(sr, s̃negc,r ) (6)

The feature similarity between current instance and its negative prototype
represents the probability of belonging to easily mis-classified discriminal regions.
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Fig. 4. Pseudo Label Sampling Module

Instances with low feature similarity , i.e. those below the threshold τneg, means
that the instance is less likely overfitted and should be reserved.

sim(sr, s̃negc,r ) < τneg (7)

Contrastive Learning: We use contrastive learning to optimize the feature
representations for the proposals by attracting positive samples closer together
and repelling negative samples away from positives samples in the embedding
space. To obtain more views of samples for contrastive learning, we apply the
same feature augmentation methods following [25].

Lcont = − 1
|M |

|M |∑

i=1

log
exp(si · s+/ε)

exp(si · s+/ε) +
∑

S− exp(si · s+/ε)
(8)

where M =
⋃C

c=1 Spos
c ∪ Sneg

c , and ε is a temperature parameter introduced in
[19]. We use the contrastive loss to pull si close to s+ of the same class while
pushing it away from s− both positive prototypes from other classes and its
negative prototypes, and thus enhance the discrimination and generalization of
current instance representation

Finally, the total loss of training the network is the combination of all the
loss functions mentioned before.

Ltotal = Lmil +
K∑

k=1

Lk
ref + λLcont (9)

4 Experimental Results

4.1 Datasets

We evaluate our proposed method on both Pascal VOC 2007 and Pascal VOC
2012 [7] , which are commonly used to assess WSOD performance. For the VOC
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datasets, we employ the trainval set (5,011 images in VOC 2007, 11,540 images
in VOC 2012) for training and evaluate the model’s performance on the test set.
VOC 2007 and 2012 both contain 20 categories. We apply Mean average preci-
sion (mAP) with standard IoU threshold (0.5) to evaluate the object detection
accuracy on the testing set.

4.2 Implementation Details

We adopt the Imagenet [5] pretrained model VGG16 [27] as the backbone. For
VGG16, following the previous methods [25], we replace a global average pooling
layer with a RoI pooling layer, and remove the last FC layer leaving two FC
layers, which all the heads including the similarity head are attached to. Proposal
generating method such as Selective Search [32] and MCG [1] are used for VOC
dataset to generate initial proposals, and we use around 2,000 proposals per
image. Then, the whole model is trained on 4 NVIDIA GeForce GTX 3090 with
24 GB GPU memory using a SGD optimizer with an initial learning rate of 0.01,
weight decay of 0.0001 and momentum of 0.9 are used to optimize the model.

Table 1. Comparison of the State-of-the-arts
methods on VOC07 and VOC12 of mAP(%).

Method mAP(%)
VOC07

mAP(%)
VOC12

WSDDN [2] CVPR’16 34.8 -
OICR [30] CVPR’17 41.2 37.9
PCL [29] TPAMI’18 43.5 40.6
C-WSL [8] ECCV’18 46.8 43.0
C-MIL [34] CVPR’18 50.5 46.7
C-MIDN [10] ICCV’19 52.6 50.2
WSOD2 [38] ICCV’19 53.6 47.2
SLV [4] CVPR’20 53.5 49.2
MIST [24] CVPR’20 54.9 52.1
CASD [17] NIPS’20 56.8 53.6
IM-CFB [37] AAAI’21 54.3 49.4
CPE [21] TIP’22 55.9 54.3
NDI [35] IJCAI’22 56.8 53.9
Ours 57.7 54.3

The overall iteration numbers
are set to 35,000, 70,000 for
VOC 2007, VOC 2012. Follow-
ing the previous methods [17,24,
30], the inputs are multi-scaled
to {480, 576, 688, 864, 1000,
1200} for both training and infer-
ence time. The final predictions
are made after applying NMS of
which threshold is set to 0.4 for
both datasets. In the refinement
branch, we set the number of
refinement stages K = 3. The
bank size M is set to 6, which
is experimentally illustrated in
Table. 6. The hyperparameter ε
from Eq. (8) is set to 0.2 following
the experiments conducted in [3,19]. And hyperparameter λ from Eq. (9) is set
to 0.03 as explained in Sect.4.5.

4.3 Comparison with State-of-the-Arts

In Tables 1, 2 and 3, we compare our proposed method with other state-of-the-art
algorithms on PASCAL VOC07 and VOC12. Regardless of backbone structure,
the results show that our method achieves the 57.7% mAP and 54.3% mAP
in VOC07 and VOC12, respectively, which outperforms the other methods and
reach the new state-of-the-art performance.

More qualitative results are shown in Fig. 6, from which it can be seen that
our model is able to mine the easily omitted multiple instances of the same
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category (car, person) and detect various objects of different classes (tvmoniter,
pottleplant) in relatively complicated scenes.

Table 2. Comparison with the state-of-the-arts methods in terms of Per-class AP
results on VOC07.

Method Aero Bike Bird Boat Bottle Bus Car Cat Chair Cow Table Dog Horse Motor Person Plant Sheep Sofa Train TV mAP

WSDDN 39.4 50.1 31.5 16.3 12.6 64.5 42.8 42.6 10.1 35.7 24.9 38.2 34.4 56.6 9.4 14.7 30.2 40.7 54.7 46.9 34.8
OICR 58.0 62.4 31.1 19.4 13.0 65.1 62.2 28.4 24.8 44.7 30.6 25.3 37.8 65.5 15.7 24.1 41.7 46.9 64.3 62.6 41.2
PCL 54.4 69.0 39.3 19.2 15.7 62.9 64.4 30.0 25.1 52.5 44.4 19.6 39.3 67.7 17.8 22.9 46.6 57.5 58.6 63.0 43.5
C-WSL 62.9 64.8 39.8 28.1 16.4 69.5 68.2 47.0 27.9 55.8 43.7 31.2 43.8 65.0 10.9 26.1 52.7 55.3 60.2 66.6 46.8
C-MIL 62.5 58.4 49.5 32.1 19.8 70.5 66.1 63.4 20.0 60.5 52.9 53.5 57.4 68.9 8.4 24.6 51.8 58.7 66.7 63.5 50.5
C-MIDN 53.3 71.5 49.8 26.1 20.3 70.3 69.9 68.3 28.7 65.3 45.1 64.6 58.0 71.2 20.0 27.5 54.9 54.9 69.4 63.5 52.6
WSOD2 65.1 64.8 57.2 39.2 24.3 69.8 66.2 61.0 29.8 64.6 42.5 60.1 71.2 70.7 21.9 28.1 58.6 59.7 52.2 64.8 53.6
SLV 65.6 71.4 49.0 37.1 24.6 69.6 70.3 70.6 30.8 63.1 36.0 61.4 65.3 68.4 12.4 29.9 52.4 60.0 67.6 64.5 53.5
MIST 68.8 77.7 57.0 27.7 28.9 69.1 74.5 67.0 32.1 73.2 48.1 45.2 54.4 73.7 35.0 29.3 64.1 53.8 65.3 65.2 54.9
CASD - - - - - - - - - - - - - - - - - - - - 56.8
IM-CFB 64.1 74.6 44.7 29.4 26.9 73.3 72.0 71.2 28.1 66.7 48.1 63.8 55.5 68.3 17.8 27.7 54.4 62.7 70.5 66.6 54.3
CPE 62.4 76.4 59.7 33.8 28.7 71.7 66.1 72.2 33.9 67.7 47.6 67.2 60.0 71.7 18.1 29.9 53.8 58.9 74.3 64.1 55.9
NDI - - - - - - - - - - - - - - - - - - - - 56.8
Ours 69.1 77.1 54.7 31.8 29.7 74.3 78.6 71.5 20.1 72.6 34.5 61.6 75.3 78.4 35.7 24.1 59.1 66.4 72.9 67.1 57.7

Table 3. Comparison with the state-of-the-arts methods in terms of Per-class AP
results on VOC12.

Method Aero Bike Bird Boat Bottle Bus Car Cat Chair Cow Table Dog Horse Motor Person Plant Sheep Sofa Train TV mAP

OICR 67.7 61.2 41.5 25.6 22.2 54.6 49.7 25.4 19.9 47.0 18.1 26.0 38.9 67.7 2.0 22.6 41.1 34.3 37.9 55.3 37.9
PCL - - - - - - - - - - - - - - - - - - - - 40.6
C-WSL 74.0 67.3 45.6 29.2 26.8 62.5 54.8 21.5 22.6 50.6 24.7 25.6 57.4 71.0 2.4 22.8 44.5 44.2 45.2 66.9 43.0
C-MIL - - - - - - - - - - - - - - - - - - - - 46.7
C-MIDN 72.9 68.9 53.9 25.3 29.7 60.9 56.0 78.3 23.0 57.8 25.7 73.0 63.5 73.7 13.1 28.7 51.5 35.0 56.1 57.5 50.2
WSOD2 - - - - - - - - - - - - - - - - - - - - 47.2
SLV - - - - - - - - - - - - - - - - - - - - 49.2
MIST 78.3 73.9 56.5 30.4 37.4 64.2 59.3 60.3 26.6 66.8 25.0 55.0 61.8 79.3 14.5 30.3 61.5 40.7 56.4 63.5 52.1
CASD - - - - - - - - - - - - - - - - - - - - 53.6
IM-CFB - - - - - - - - - - - - - - - - - - - - 49.4
CPE - - - - - - - - - - - - - - - - - - - - 54.3
NDI - - - - - - - - - - - - - - - - - - - - 53.9
Ours 75.4 75.3 59.1 29.6 30.6 69.9 56.8 63.0 23.3 71.3 25.3 63.1 66.4 76.7 19.0 25.5 61.4 56.7 66.6 70.5 54.3

4.4 Qualitative Results

It is shown in Fig. 5 that our method effectively addresses on the main chal-
lenges of WSOD compared to OICR [30]. The left columns show the results
from OICR whereas the right columns show the results from our method. In (a)
and (b), we investigate the effectiveness of our model in resolving the instance
ambiguity problem which consists of missing instances and grouped instances,
respectively. We can observe that many instances that have been ignored pre-
viously can be detected via our model. Meanwhile, in (b) we can also observe
that grouped instances are separated into multiple bounding boxes. Moreover,
the partial detection problem is largely alleviated shown in (c), especially for the
categories with various poses such as dog, cat and person.
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Fig. 5. Qualitative results on VOC 2007 test set. The left columns show the results
from OICR whereas the right columns show the results from our method.

4.5 Ablation Study

In this section, we make a comprehensive ablation study of the effect gains
from different components, the sensitivity of hyperparameters, and the length of
feature bank. The experiments are implemented on the VOC 2007 dataset.

Components Effect. We conduct experiments to prove the effectiveness of
each component in our proposed method as shown in Table 5, where PLS, CL,
NP means the pseudo label sampling module, contrastive learning, negative pro-
totypes mentioned in Sect. 3.3, respectively. Our Baseline is the framework in
Fig. 3 without contrastive branch, which achieves 56.1% mAP.

Table 4. Ablation study on VOC 2007 dataset of different components in our method.

Baseline PLS CL NP mAP(%)
√

56.1√ √
56.8(+0.7)√ √ √
57.2(+1.1)√ √ √ √
57.7(+1.6)

We firstly analyze the effect of PLS and CL algorithm on our method NPGC.
As shown in Table 4, after applying PLS, our method achieves 56.8% mAP with
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0.7% gains. After applyig both PLS and CL, it brings 1.1% gains in mAP. Based
on this, we append the nagative prototyes into former structure, and it reach
57.7% mAP, which shows the effectiveness of our method.

Fig. 6. More detection results on VOC 2007 test set. Boxes in light green represent
ground-truth boxes, and boxes in other colors represent the predicted bounding boxes
and the confidence scores. (Color figure online)

Table 5. Ablation study on different hyperparameters’ value in our method.

λ 0.01 0.02 0.03 0.04 0.05

mAP(%) 56.6 57.0 57.7 56.1 56.3

Hyperparameters. We provide the experiment results with different values of
the hyperparameters we introduce. We conduct experiments on how to choose
the loss parameter λ from Eq. (9) in Table 5, and λ = 0.03 achieves the best
result. In Eq. (8), we use the same values of ε = 0.2 following the experiments
conducted in other contrastive learning methods [3,19].

Length of Feature Bank. We finally analyze the effect of the length of feature
bank. If the length is too small, the feature bank is difficult to store the diversity
of instance representations well, resulting in less kind of objects collected. And
if the length is too large, it is easy to absorb some noisy information during the
learning of instance representations and background proposals will be selected
incorrectly. In this paper, we recommend setting M = 6 to balance the number
of stored instance features.
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Table 6. Ablation study on the length of feature bank in our method.

M 2 4 6 8

mAP(%) 55.6 57.0 57.7 56.4

5 Conclusion

In conclusion, we presented a global negative prototypes guided contrastive
learning weakly supervised object detection framework. We novelly introduce
the concept of Negative Prototypes. Meanwhile, we construct a global feature
bank to store both positive prototypes and negative prototypes, using con-
trastive learning to mine the hidden inter-image category information in the
whole dataset.
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Abstract. As large-scale pre-trained models have become the major
choices of various applications, new challenges arise for model pruning,
e.g., can we avoid pruning the same model from scratch for downstream
tasks? How to reuse the pruning results of previous tasks to accelerate the
pruning for new tasks?To address these challenges, we create a smallmodel
for a new task from the pruned models of similar tasks. We show that a
few fine-tuning steps on this model suffice to produce a promising pruned
model for the new task. We study this “meta-pruning” from nearest tasks
on two major classes of pre-trained models, convolutional neural network
and vision transformer, under a limited budget of pruning iterations. Our
study begins by investigating the overlap of prunedmodels for similar tasks
and how the overlap changes over different layers and blocks. Inspired by
these discoveries, we develop a simple but effective “Meta-Vote Pruning”
method that significantly reduces the pruning iterations for a new task by
initializing a sub-network from the pruned models of its nearest tasks. In
experiments, we demonstrate MVP’s accuracy, efficiency, and generaliza-
tion advantages through extensive empirical studies and comparisons with
popular pruning methods over several datasets.

Keywords: Model pruning · Meta learning · Pre-trained model

1 Introduction

Large-scale pre-trained models usually contain tens of millions or even billions
of parameters for promising generalization performance. The computation and
memory of modern GPUs or clusters can support to train such models, but
directly deploying them to edge devices can easily violate the hardware limits on
memory and computation. Network pruning [3,11,19,41] has been widely studied
to compress neural nets by removing redundant connections and nodes. Numer-
ous empirical results have verified that pruning can compress the original net-
work into smaller sub-networks that still enjoy comparable performance. Instead
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of reducing the network to the target size by one-time pruning, iterative pruning
that alternates between pruning and fine-tuning for iterations usually achieves
better performance [12,18]. Theoretically, a line of recent works [8,26,36,49]
attempts to prove the lottery ticket hypothesis, i.e., the existence of such sub-
networks, for different pruning settings.

Large-scale pre-trained models are widely used in various domains [39,46,47].
In a variety of practical applications, a large-scale pre-trained network like
ResNet-50 [13] or Vision Transformer (ViT) [6] usually needs to be pruned for a
wide variety of devices and adapted to different downstream tasks. Running an
iterative pruning algorithm for every device or task from the same pre-trained
network can create an enormous carbon footprint overload in our biosphere and
waste a lot of computational power. On the other hand, the wide applications
of a few pre-trained models have already created thousands of pruned mod-
els for different downstream tasks. Can we reuse these pruned models as prior
knowledge to save the pruning computation on new tasks? We call this problem
“meta-pruning”. In this paper, we mainly focus on a special case of it, which ini-
tializes a sub-network for a given new task based on the pruned models of similar
tasks. Meta-pruning is non-parametric if no parametric model is trained to pro-
duce the initialization. It is analogous to MAML [7] in that the meta-objective
optimizes the initialization of a network. It differs from MAML in that (1) both
the sub-network’s architecture and weights are initialized; (2) the initialization
is not universal but task-specific.

Since meta-pruning aims to find better sub-network initialization for new
tasks, we limit the iterations during meta-pruning to strengthen the impact of
initialization on the final pruned model. This also controls the computational cost
and carbon footprint of meta-pruning much less than conventional pruning, that
requires many iterations. Under this constraint, a well-performed pre-trained
model is critical to the meta-pruning performance because (1) it needs to provide
initialized sub-networks for different tasks; and (2) a few iterations of fine-tuning
to the sub-networks should suffice to produce high-quality pruned models for
targeted tasks. Meta-pruning follows a practical setting where one single pre-
trained model is tailored for different tasks using limited iterations. We study
two classes of the most widely used pre-trained models, i.e., convolutional neural
networks (CNN) and ViT.

The primary contribution of this paper is two folds. In the first part, we con-
duct a thorough empirical study that applies different pruning methods to CNN
and ViT and compares their produced sub-networks for hundreds of downstream
tasks. No meta-pruning is studied in this part. Its primary purpose is to (1) find
the nearest tasks for a new task using different similarity metrics; (2) compare the
pruned models for different but similar tasks. To this end, we build a dataset of
tasks and their sub-networks pruned from the same pre-trained models. Statistics
and evaluations on this dataset indicate similar tasks with high similarity tend
to share more nodes/filters/heads preserved in their pruned models, especially in
deeper layers that notably capture high-level task-specific features.

Motivated by the empirical study, the second part of this paper proposes
a simple yet strong meta-pruning method called “meta-vote pruning (MVP)”.
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It can significantly reduce the pruning cost and memory required by previous
pruning approaches yet still produce pruned models with promising performance.
Given a pre-trained model, MVP finds a sub-network for a new task by selecting
nodes/filters/heads through majority voting among its nearest tasks, e.g., a fil-
ter will be sampled with a higher chance if it is selected into more sub-networks
of similar tasks. To simplify the method, we sample the same proportion of
nodes/filters/heads as the targeted pruning ratio. Then we apply a few itera-
tions of fine-tuning to the initialized sub-network using training data of the new
task. Although a more sophisticated procedure can be developed, the proposed
method saves substantial computation and memory while maintaining a high test
accuracy of pruned models. We demonstrate these via experiments over tasks
from CIFAR-100 [17], ImageNet [4], Caltech-256 [10] and several fine-grained
datasets. The pruned models extracted from an ImageNet pre-trained model
can also vote for tasks drawn from the unseen datasets with great performance,
which shows the generalization of MVP.

2 Related Works

Network pruning Network pruning has been widely studied to compress a
network and accelerate its inference for a single task. We mainly summarize
structure pruning below. In CNN, to encourage the sparsity of the pruned net-
work, L0 [25], L1 [24] or L2 [12] regularization have been used. Polarization
regularization [56] shrinks some nodes towards 0 and strengthens the others to
keep important nodes intact. Different criteria have been proposed to evaluate
the importance of nodes/filters. Li et al. [18] prune filters with the smallest
sum of parameters’ absolute values. Lin et al. [20] prune filters according to the
second-order Taylor expansion of the loss. Methods [1,8] based on the lottery
ticket hypothesis, try to find a well-performed sparse initialization for each task.

ViT has been widely used in computer vision and achieved SOTA perfor-
mance in many tasks. The input patches for each block can be pruned to save
computation for the transformer [9,15,40]. Goyal et al. [9] propose a metric to
measure the importance of each patch and dynamically prune patches in each
layer. PatchSlimming [40] retains patches critical to preserving the original final
output. HVT [33] is a CNN-like method that shortens the patch sequence by
max-pooling. Another line of works [50,51,55] automatically prunes the unim-
portant heads, nodes and blocks in ViT. These methods excel on single-task
pruning, but their cost linearly increases for multiple tasks (and thus more
expensive than meta-pruning) because: (1) a large model needs to be trained
for every task; (2) every task requires pruning its large pre-trained model from
scratch. For both CNN and ViT, it is time-consuming for these pruning meth-
ods to build a pruned model for each unseen target task from a large pre-trained
model. Our proposed method can borrow the knowledge of the existing pruned
models extracted by these pruning methods and use them to generate a well-
performed pruned model for the unseen task with a few fine-tuning iterations.
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Meta-pruning. To our knowledge, the non-parametric meta-pruning problem,
i.e., how to prune a model for a target task using the pruned models of other
tasks, has not been specifically studied in previous work. However, several recent
studies aim at learning meta(prior) knowledge that can improve pruning in
other scenarios. MetaPruning [23] trains a weight-generation meta-network to
prune the same network for the same task under different constraints, e.g.,
user/hardware-defined pruning ratios. DHP [19] addresses the same problem
but does not rely on any reinforcement learning or evolutionary algorithm since
it makes the pruning procedure differentiable. Meta-learning has been studied
to find better weight-initialization for pruning on different tasks, e.g., Tian et
al. [41] apply Reptile [31] for overfitting reduction. Meta-learning has also been
studied to select the best pruning criterion for different tasks [14]. In [37], a
shared sparse backbone network is trained for multi-task learning, but it cannot
be adapted to new tasks. Our method is the first to use meta-learning to extract
a pruned model for a new task. The main differences between our approach to
them are: (1) we do not train a parametric meta-learner but instead use major-
ity voting from similar tasks; and (2) our meta-voting generates a pruned small
sub-network to initialize the target task training, which significantly reduces the
pruning cost.

3 Empirical Study: Pruning a Pre-trained Model
for Different Tasks

In this section, we conduct an empirical study that applies different methods to
prune a CNN or ViT pre-trained model for hundreds of tasks. Our study focuses
on the overlap between the pruned models for different tasks and whether/how
it relates to their similarity. To this end, we introduce different task similarities
and compare the overlap associated with different similarity groups. The results
show that more similar tasks tend to share more nodes/filters/heads in their
pruned models. And this holds across different pruning methods, datasets and
pre-trained models. No meta-pruning is used in the study.

3.1 A Dataset of Pruned Models

While the number of possible downstream tasks and users can be huge in prac-
tice, the current progress on foundation models shows that one or a few large-
scale pre-trained models with light fine-tuning usually achieve the SOTA per-
formance on most of them. To simulate this scenario on a standard dataset, our
empirical study creates a dataset of pruned models for hundreds of tasks from
the same pre-trained model. We choose CIFAR-100 and ImageNet for the study
due to the many classes in them. We randomly draw 1000 classification tasks
for each dataset, each defined on 5 classes sampled without replacement. We
adopt ResNet-18 [13] pre-trained on CIFAR-100, ResNet-50 and a small version
of DeiT [42] pre-trained on ImageNet. For ResNet-18 and ResNet-50, we prune
two types of pre-trained models, i.e., the supervised training following [5] and
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the self-supervised training following SimSiam [2] (only the encoder is used). For
ViT, the training of its pre-trained model follows [6].

Iterative Pruning. We apply iterative filter-pruning (IFP) to ResNet. Unlike
magnitude-based pruning [18] with a one-time selection of nodes/weights, iter-
ative pruning alternates between network pruning and fine-tuning of model
weights for multiple iterations, each prunes p% of the remaining nodes/weights
so it progressively prunes a large network to the targeted size. It usually performs
better than other pruning methods and has been mainly studied in theoretical
works about Lottery Ticket Hypothesis [8]. We take the activation values of fil-
ters averaged over all training samples to measure the importance of filters [29],
referred to as Activation Pruning, in which filters with smaller activation values
contain less information of input data.

Automatic Pruning. Inspired by the automatic structured pruning method
[53], we prune ViT by automatic head&node pruning (AHNP) for a given task,
which parameterizes the sub-network as the pre-trained model with a learn-
able score multiplied to each prunable head and node. The differentiable scores
of all prunable heads and nodes are optimized to encourage sparsity with an
additional L1 regularization loss. After each optimization step, we apply simple
thresholding to these scores to remove heads and nodes with small scores. The
optimization stops if the pruned model reaches the targeted size and the model
will be fine-tuned for a few iterations.

For tasks of CIFAR-100, we run IFP for all 1000 tasks on ResNet-18. And we
apply IFP and AHNP to tasks of ImageNet on ResNet-50 and ViT, respectively.
Finally, we create a dataset of pruned models for thousands of tasks over different
pre-trained models. For each task i, we record its labels Ci, the set of preserved
nodes/filters/heads {Ω�}�=1:L−1 and the pruned model θT . We use the same
hyperparameters for different tasks. For IFP on ResNet, we use a learning rate
of 0.005, pruning iterations of 1000 and batch size of 128 for both the tasks
of CIFAR-100 and ImageNet. When applying AHNP to ViT, we follow the ViT
training in [43]. We reduce the pruning iterations to 1000 and use a small learning
rate of 0.00005 for parameters inherited from the pre-trained ViT (to preserve
its knowledge) and a large learning rate of 0.05 for the learnable scores. The
pruning ratio is 90% for all pruned models.

Fig. 1. IoU of layers in ResNet between tasks with different similarities.
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Fig. 2. IoU of blocks in ViT between tasks with different similarities.

3.2 Do Similar Tasks Share More Nodes on Their Pruned Models?

The representations learned for a task can still be helpful to similar tasks. This
motivates transfer/multi-task/meta-learning methods [21,22]. But do similar
tasks also share more structures in their pruned sub-networks? We apply two
metrics to measure the similarity between classification tasks in our dataset and
study whether/how the similarity relates to their shared nodes/filters/heads in
different layers of their pruned models.

Similarity Metrics. We apply two metrics to compute the similarity between
tasks and find the nearest tasks, i.e., the Log Expected Empirical Prediction
(LEEP) [30] and the Wordnet wup similarity [35,45]. LEEP score is widely used
in transfer learning to estimate the knowledge transferability from a source task
to a target task. In our study, for each target task, we can rank the other tasks
by their LEEP similarity score from each of them to the target one. Computing
the LEEP score only requires a single forward pass of the pruned model on the
target task’s data. Wordnet wup similarity only requires the semantic labels of
classes in each task and it is based on the depths of their corresponding synsets
in the Wordnet [27] taxonomies. It does not depend on the pruned model so it
is more efficient to compute.

Overlap Between Tasks. Let Ωi
� and Ωj

� denote the sets of filters/nodes/heads
remained in layer-� after running IFP or AHNP for task i and j (when using the
same pre-trained model), we measure the overlap of the two sets by intersection
over union (IoU) ratio [16], i.e., IoU = |Ωi

�∩Ωj
� |/|Ωi

�∪Ωj
� |.

Figure 1 (ResNet) and Fig. 2 (ViT) report the IoU of each layer/block for
pairs of tasks with different similarities. For each target task, the tasks in the
dataset are partitioned into 5 similarity groups according to their LEEP scores
or Wordnet similarities to the target task. The similarity decreases from group 1
to group 5. Specifically, for each test task, we compute its similarity scores with
its neighbours in the model zoo. We sort these similarity scores and partition
them into five groups of equal intervals. Neighbours whose similarity scores fall
into a certain interval will be assigned to the corresponding group.
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Algorithm 1. Meta-Vote Pruning (MVP)
Input : Target task i and its training set Di, pruning ratio r, J , N , a dataset

of pruned models for different tasks
Output : A pruned model for target task-i
Initialize: Ω� ← ∅, the set of filters in layer-�

1 Sample N similar tasks N i to task i according to LEEP score or Wordnet similarity;
2 for � ← 1 to L − 1 do
3 Sample (1 − r)n� filters with probability p(k) (Eq. (1)) and add them to Ω�;
4 for k ∈ Ω� do
5 Initialize filter-k by averaging its parameters of tasks in {j ∈ N i : k ∈ Ωj

� };
6 end
7 end
8 Fine-tune the pruned model for J iterations on Di.

For all the datasets and architectures, more similar tasks tend to share
more filters/nodes/heads (larger IoU) between their pruned models. There-
fore, for a new task, the pruned models of its nearest tasks preserve many impor-
tant filters for it and combining them might result in a better and much smaller
sub-network to initialize the new task. Moreover, for deeper layers/blocks in
both ResNet and ViT, the gap between different similarity groups on the IoU
increases because the features are more task-specific in deeper layers. Due to the
same reason, for every similarity group, IoU decreases with depth in the overall
trend (though fluctuating locally). Furthermore, Fig. 2 shows that the IoU gap
between similarity groups defined by the LEEP score is larger than that obtained
by Wordnet similarity. This indicates that the semantic similarity between class
labels might not be as accurate as the LEEP score that takes the pruned model
and its learned representations into account.

4 Meta-Vote Pruning (MVP)

Knowledge sharing between tasks has been widely applied in several domains like
transfer learning, continual learning and federated learning [38,48,54]. Inspired
by the empirical study above, we propose a simple yet strong baseline “meta-vote
pruning (MVP)” (Algorithm 1) for non-parametric meta-pruning. The procedure
of MVP majority voting is shown in Fig. 3. Given a target task i, MVP draws
a sub-network of a pre-trained network by sampling filters/nodes/heads in each
layer using majority voting from its nearest tasks N i and their pruned models.
In particular, for each filter-k ∈ [n�] from layer-� of the pre-trained model, we
apply softmax (with temperature τ) to the times of each filter being selected by
tasks in N i, which yields a probability distribution over all the filters [n�], i.e.,
∀k ∈ [n�],

p(k) =
exp(|{j ∈ N i : k ∈ Ωj

�}|/τ)
∑

h∈[n�]
exp(|{j ∈ N i : h ∈ Ωj

�}|/τ)
(1)

To initialize layer-� of the sub-network, MVP samples filters from this distri-
bution (without replacement) according to the targeted pruning ratio r. We
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Fig. 3. The example of majority voting in MVP. Each similar neighbour task of the
target task vote for filters that are reserved by its pruned model. Then, softmax is
applied to the votes of all filters in layer-� and filters with more votes have a higher
probability to be selected by the target task.

further initialize the parameters of each filter-k by averaging its parameters in
the pruned models of similar tasks which preserve filter-k. MVP then fine-tunes
the initialized sub-network for a few iterations on the training set of the target
task since MVP targets to keep the computational cost low.

5 Experiments

In this section, we conduct extensive experiments on CIFAR-100 and ImageNet
over different pre-trained models, which evaluate MVP (Algorithm 1) and com-
pare it with SOTA methods under different settings. We validate the strong gener-
alization of MVP by applying it to unseen tasks from Caltech-256 and fine-grained
datasets. We further study the effect of different pruning iterations, neighbour
numbers, task sizes and similarity metrics for MVP. The results show that MVP
outperforms other methods with better performance and higher efficiency.

5.1 Implementation Details

The experiments of MVP are mainly based on the tasks from the dataset intro-
duced in Sect. 3.1. For each experiment, we randomly draw 100 test tasks (i.e.,
the target task in Algorithm 1) from the dataset and treat the rest tasks as
training tasks. To evaluate MVP on CNN, we run MVP on the pruned mod-
els of ResNet-18 and ResNet-50 for CIFAR-100 and ImageNet, respectively. For
both these two experiments, we use the meta-pruning iterations of 100, batch
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size of 128, the learning rate of 0.01 and optimizer of SGD with the cosine-
annealing learning rate schedule. For experiments of ViT, MVP is applied to the
pruned models of ViT for ImageNet. The meta-pruning iterations and batch size
are also set as 100 and 128, respectively. Following the setting of training ViT
in [43], we apply a small learning rate of 0.0002 and optimizer of AdamW with
the cosine-annealing learning rate schedule. The small number of meta-pruning
iterations demonstrates the efficiency of MVP. The target pruning ratio of MVP
for all tasks is 90%. All the accuracy results shown in this section are averaged
over the 100 test tasks.

5.2 Baseline Methods

We compare MVP with several baselines and SOTA pruning methods. We first
implement two baselines to show the advantages of MVP. (1) Conventional prun-
ing. We apply a larger number of pruning iterations to extract pruned models
for each target task by IFP or AHNP introduced in Sect. 3.1. This baseline can
be regarded as the upper-bound performance. (2) Random pruning. To validate
whether the initialization of MVP makes sense, for each target task, we initialize
its sub-network by randomly sampling the same number of nodes/filters/heads
as MVP from the pre-trained model. We take this baseline as the lower-bound
performance.

We also include other SOTA pruning methods. For MVP on CNN, we com-
pare MVP with IHT-based Reptile [41], a meta-pruning method that uses Rep-
tile [31] and iterative pruning to find better weight-initialization for a pruned
meta-model. Given a new task, it fine-tunes the pruned meta-model for a lim-
ited number of iterations to obtain the final pruned model. MEST [52] is the
SOTA method in the sparse training community, which trains a model from a
sparse sub-network so that less computation is required. DLTH [1] is based on a
variant of the Lottery Ticket Hypothesis. It transforms random tickets into win-
ning tickets. We compare MVP with UVC [51] and PoWER [9] on ViT pruning.
Unlike AHNP, which prunes heads and nodes, UVC also skips the unimportant
layers and blocks in ViT. Unlike parameter pruning, PoWER adopts a dynamic
method of pruning the input patches of each block for each input sample. For a
fair comparison, except for the upper bound baseline, the pruning iterations of
all other methods and MVP are set to 100. And the pruning ratios of all methods
are set to 90%.

5.3 Main Results

The results of applying MVP to tasks from CIFAR-100(ImageNet) on ResNet-
18(ResNet-50) supervised and self-supervised pre-trained model and the baseline
methods are reported in Table 1. On both datasets and pre-trained models, MVP
outperforms IFP which spends 10× iterations of MVP. Hence, MVP can pro-
duce a higher-quality pruned model when using fewer iterations. The results
demonstrate that MVP can work well on tasks from both supervised and self-
supervised pre-trained models. The random pruning performs much poorer than
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Table 1. Comparison between MVP and baseline methods on CNN. ’-SSL’ behind each
method means applying this method to pruned models extracted from self-supervised
pre-trained models. Bold and Bold gray mark the best and second best accuracy.

Methods Pruning Iterations ResNet-18 ResNet-50
Acc FLOPs Acc FLOPs

IFP 1000 87.99±0.47 14.88(T) 91.16±0.68 110.06(T)
IFP-SSL 1000 85.22 ± 0.52 14.88(T) 85.84 ± 0.75 110.06(T)
Random Pruning 100 33.12 ± 6.47 0.43(T) 22.42 ± 3.92 3.16(T)
IHT-based Reptile [41] 100 75.23 ± 0.87 0.43(T) 73.40 ± 0.75 3.16(T)
MEST [52] 100 76.28 ± 0.82 0.47(T) 66.25 ± 2.33 3.48(T)
DLTH [1] 100 74.46 ± 1.24 4.28(T) 69.33 ± 1.56 31.64(T)
MVP(ours) 100 88.98±0.38 0.43(T) 91.80±0.26 3.16(T)
MVP-SSL(ours) 100 86.82 ± 0.13 0.43(T) 85.92 ± 0.26 3.16(T)

MVP, which indicates the importance of majority voting from the nearest tasks
in selecting filters.

We also compare MVP with SOTA pruning methods for CNN. IHT-based
Reptile [41] trains a universal sparse sub-network for all target tasks by applying
meta-learning on training tasks. MVP achieves higher accuracy than IHT-based
Reptile under the same training iterations, implying that MVP can find an
accurate sub-network for each target task as its initialization and improve its
performance. MEST [52] can speed up pruning by starting training from a well-
designed sub-network. As a variant of Lottery Ticket Hypothesis, DLTH [1]
proposes a method to transform any random ticket into the winning ticket. MVP
outperforms MEST and DLTH by a large margin because MVP is trained on a
sub-network selected using meta knowledge from similar tasks. In contrast, the
initial sub-network for MEST or the winning ticket of DLTH does not leverage
any prior knowledge about the target task.

Table 2. Comparison between MVP and baseline methods on ViT. Bold and
Bold gray mark the best and second best accuracy.

Methods Pruning Iterations ViT
Acc FLOPs

AHNP 1000 89.48±0.62 81.50(T)
Random Pruning 100 58.71 ± 4.14 3.25(T)
UVC [51] 100 80.30 ± 0.57 26.73(T)
PoWER [9] 100 77.76 ± 1.18 20.86(T)
MVP(ours) 100 89.23±0.49 3.25(T)
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Table 2 shows the comparison between MVP and baseline methods on ViT.
Similar to the results on pruning CNN, the performance of MVP on ViT is
comparable to AHNP which applies much more pruning iterations. The accuracy
of random pruning is still much worse. MVP also outperforms SOTA pruning
methods developed for ViT. Hence, on ViT, MVP can efficiently produce a small
yet high-quality sub-network for each new task by exploiting the nearest tasks’
models. The baselines are slower and require more iterations than MVP because
they need to re-train the model to achieve a small loss when some parameters
or patches are removed. Both UVC and PoWER cannot recover the accuracy
under this strong constraint. In contrast, the majority voting in MVP directly
produces a small sub-network from similar tasks’ models so only a few iterations
suffice to reach a downstream task performance comparable to AHNP with 10x
iterations.

5.4 Performance on Unseen Dataset

In this section, to validate the generalization of MVP, we apply MVP to produce
pruned models for target tasks from unseen dataset Caltech-256 [10] and fine-
grained dataset CUB200-2011 [44], Oxford Flowers-102 [32] and Oxford-IIIT
Pets [34], using the pruned models of tasks from ResNet-50 training on ImageNet.
The data of these datasets are never seen by the pre-trained model and tasks
in the pruned model dataset. Each target task is defined on 5 classes sampled
without replacement from each dataset.

The performance of MVP on Caltech-256 is shown in Table 3, which is still
comparable to the IFP using 10x pruning iterations. When the number of prun-
ing iterations of IFP decreases, its performance becomes much worse. Besides
Caltech-256, we also validate the effectiveness of MVP on more difficult fine-
grained datasets, i.e., CUB200-2011, Oxford Flowers-102 and Oxford-IIIT Pets
where images in different classes are from various species of birds, flowers and ani-
mals, which are hard to distinguish. On target tasks from fine-grained datasets,
MVP also works better than IFP, which needs much more computation costs.

The results show that MVP can still produce a high-quality initialization
for the task from unseen datasets by majority voting of similar tasks so that
the pruned model can converge quickly with high accuracy. MVP’s great per-
formance on fine-grained datasets implies that MVP can learn from different
objects to facilitate the classification of hard-to-distinguish target tasks. This

Table 3. Accuracy of MVP on unseen tasks.

Methods Caltech-256 CUB200-2011
Iters Acc FLOPs Iters Acc FLOPs

IFP 800 80.28 ± 1.64 93.06(T) 800 77.09 ± 0.51 23.99(T)
IFP 60 42.90 ± 3.79 6.73(T) 80 52.85 ± 2.95 2.17(T)
MVP(ours) 60 80.72± 0.64 1.90(T) 80 79.54± 0.88 0.63(T)
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Table 4. Accuracy of MVP on more fine-grained tasks.

Methods Oxford Flowers-102 Oxford-IIIT Pets
Iters Acc FLOPs Iters Acc FLOPs

IFP 800 95.20 ± 1.39 47.98(T) 1000 77.38 ± 0.96 59.33(T)
IFP 60 54.20 ± 6.61 3.04(T) 100 55.76 ± 3.86 4.57(T)
MVP(ours) 60 95.40±1.34 0.95(T) 100 78.29±0.77 1.58(T)

experiment demonstrates that MVP can be applied to various datasets and gen-
eralizes well.

Table 5. Results on sub-tasks of different sizes for CIFAR-100.

Methods 10-classification 3-classification
Iters Acc FLOPs Iters Acc FLOPs

IFP 1500 84.29 ± 0.26 25.48(T) 500 88.75 ± 0.71 5.59(T)
MVP(ours) 190 83.53 ± 0.34 1.21(T) 60 89.25 ± 0.23 0.12(T)

5.5 Results of MVP on Sub-tasks of Different Sizes

To evaluate the performance of MVP on sub-tasks of different sizes, we build a
dataset of pruned models for 10-classification and 3-classification sub-tasks from
CIFAR-100, of which the pruning ratio is set to 85% and 95% respectively. The
results are shown in Table 5. From the results, we can find that When changing
the size of the sub-tasks, MVP can consistently achieve comparable or better
performance than SoTA methods by spending much less computation. MVP is
applicable to a variety of tasks of different sizes.

5.6 Ablation Study

Effect of Iteration Numbers. Given a new target task and a pre-trained
model, MVP can build a well-performed small model in a few iterations, demon-
strating its capability in reducing adaptation costs. In plot (a) of Fig. 4, we
compare MVP with conventional pruning methods using different numbers of
iterations. On different architectures of pre-trained models, MVP converges to
a high accuracy after nearly 100 iteration. On the contrary, the conventional
pruning methods need much more iterations(> 500) to be comparable to MVP.
With only ≤ 50 pruning iterations, MVP can reach a reasonable accuracy, while
conventional pruning methods perform poorly. These imply that the initialized
sub-network obtained by majority voting already contains helpful knowledge
from its similar tasks to speed up the training of the pruned model.
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Fig. 4. (a) Comparison between MVP and conventional pruning methods with differ-
ent pruning iterations on different architectures. For both ResNet-18 and ViT, MVP
converges much faster in a small number of iterations than conventional pruning meth-
ods. (b) Comparison between LEEP score and Wordnet similarity for MVP with dif-
ferent pruning iterations. From similarity groups 1 to 5, the similarities between tasks
decrease. For both similarity metrics, more similar tasks get better performance. LEEP
score can better measure similarities between tasks than Wordnet similarity.

Effect of Similarities between Tasks. MVP consistently achieves better per-
formance when applied to the nearest tasks with the highest similarities. In plot
(b) of Fig. 4, we compare the LEEP score with the Wordnet similarity and study
the effect of applying MVP to neighbour tasks with different similarities. From
similarity group 1 to group 5, the similarities between tasks decrease. We find
that for both the two similarity metrics, the accuracy of MVP improves signifi-
cantly when the similarities between tasks increase. When the pruning iterations
are small(= 20), where the initialization of the sub-network is more important,
the accuracy of tasks from similarity group 1 leads to similarity group 5 by 15%.
Despite the accuracy of similarity group 5 improving when the pruning iterations
increase to 100, there is still a gap of 7%. This result indicates that neighbour
tasks with high similarities share more knowledge with the target task. In this
plot, we also find that tasks in different similarity groups classified by LEEP
score show larger differences than Wordnet similarity, implying that LEEP score
can better evaluate similarities between tasks. This result is consistent with our
observation in the empirical study. The performance of Wordnet similarity is
also good and can still be an alternative when time and computational resources
are limited.

Comparison between Pruned Models Extracted by Different Pruning
Method. In this part, we apply MVP to pruned models extracted by Taylor
Pruning [28] on ResNet-18 for CIFAR-100 tasks to prove that MVP works well on
pruned models extracted by various pruning methods. Taylor Pruning measures
the importance of each filter by the effect of removing this filter on final loss. In
plot (a) of Fig. 5, we show the IoU of each layer for pairs of tasks with different
task similarities, of which the pruned models are extracted by Taylor Pruning.
Consistent with our observation in the empirical study, pruned models with
higher similarities share more filters.
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Fig. 5. (a) IoU of layers in ResNet-18 between tasks whose pruned models are extracted
by IFP (Taylor Pruning) and more similar tasks also share more filters, especially in
deeper layers.(b) Results of applying MVP to pruned models from Activation Pruning
and Taylor Pruning over a different number of neighbours. MVP (neighbour number
≥ 2) can improve the performance of transfer learning (neighbour number = 1) by a
large margin when applied to pruned models extracted by different pruning methods.

Effect of Number of Neighbours. In plot (b) of Fig. 5, we investigate the
effect of the number of neighbours for MVP. When the number = 1, MVP
reduces to transfer learning which learns from the pruned model of a single
similar task. In the plot, when the number of neighbours increases from 1 to
2, the performance improves sharply. This result implies the effectiveness of
meta knowledge from different neighbours. When the number of neighbours ≥ 3,
for both Activation Pruning and Taylor Pruning, the accuracy improves little,
which indicates that 3 neighbours are enough for MVP to produce a high-quality
initialization.

6 Conclusion

In this paper, we study “non-parametric meta-pruning” problem that aims to
reduce the memory and computational costs of single-task pruning via reusing
a pre-trained model and similar tasks’ pruned models to find an initialization
sub-network for a new task. We conduct an empirical study investigating the
relationship between task similarity and the pruned models of two tasks for
different datasets and deep neural networks. The empirical study motivates a
simple yet strong baseline for meta-pruning, called “meta-vote pruning (MVP)”
(Algorithm 1). By extensive experiments on multiple tasks drawn from several
datasets under different training settings, we demonstrate the advantages of
MVP over other SOTA pruning methods in the region of limited computation
and show its potential to reduce the carbon footprint of pruning/fine-tuning
large networks for billions of edge devices and tasks.

Ethical Statement. Our study utilizes only publicly available models and data widely
used in the deep learning community. As such, we believe that our work is not associ-
ated with any potential ethical implications regarding the collection and processing of
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personal data or the inference of personal information. Our proposed method aims to
improve the efficiency of applying large pre-trained models to downstream tasks and is
not related to any use in policing or military settings. We are committed to maintaining
the highest ethical standards in our research, and we have taken all necessary measures
to ensure that our work complies with the ethical principles and values of the research
community. Additionally, we want to emphasize that our research is intended for the
betterment of society and is not intended to cause any harm.
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Abstract. The vision transformer is a model that breaks down each
image into a sequence of tokens with a fixed length and processes them
similarly to words in natural language processing. Although increasing
the number of tokens typically results in better performance, it also leads
to a considerable increase in computational cost. Motivated by the say-
ing “A picture is worth a thousand words,” we propose an innovative
approach to accelerate the ViT model by shortening long images. Specif-
ically, we introduce a method for adaptively assigning token length for
each image at test time to accelerate inference speed. First, we train a
Resizable-ViT (ReViT) model capable of processing input with diverse
token lengths. Next, we extract token-length labels from ReViT that indi-
cate the minimum number of tokens required to achieve accurate pre-
dictions. We then use these labels to train a lightweight Token-Length
Assigner (TLA) that allocates the optimal token length for each image
during inference. The TLA enables ReViT to process images with the
minimum sufficient number of tokens, reducing token numbers in the
ViT model and improving inference speed. Our approach is general and
compatible with modern vision transformer architectures, significantly
reducing computational costs. We verified the effectiveness of our meth-
ods on multiple representative ViT models on image classification and
action recognition.

Keywords: vision transformer · token compression

1 Introduction

The transformer has achieved remarkable success in computer vision since the
introduction of ViT [12]. It has demonstrated impressive performance compared
to convolutional neural networks (CNNs) on various visual domains, including
image classification [10,43], object detection [7,58], semantic segmentation [26],
and action recognition [4,13], using both supervised and self-supervised [2,19]
training configurations. Despite the development of ViT models, their deploy-
ment remains a challenge due to the high computational cost associated with
them.
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Fig. 1. The motivation for our approach.
While some images (right) may need many
tokens to predict their category, some images
are easy to recognize. Thus, only a small
number of tokens is sufficient to classify
them correctly.

Accelerating ViT is a crucial yet
understudied area. While many tech-
niques like pruning, distillation, and
neural architecture search have been
applied to accelerate CNNs, these
cannot be directly applied to ViT due
to significant differences between the
models [30,32,36]. As the attention
module in the transformer computes
the fully-connected relations among
all input patches [44], the com-
putational cost becomes quadratic
with respect to the length of the
input sequence [3,9]. Consequently,
the transformer can be computation-
ally expensive, particularly for longer
input sequences. In the ViT model,
images are divided into a fixed num-
ber of tokens; following conventional
practice [12], an image is represented
by 16 × 16 tokens. We aim to reduce
the computational complexity of ViT by reducing the number of tokens used to
split the images. Our motivation is depicted in Fig. 1, which shows three exam-
ples predicted by individually trained DeiT-S models [43] with different token
lengths. The checkmark denotes correct prediction, and the cross denotes the
wrong prediction. We observe that some "easy-to-classify" images only require
a few tokens to determine their category accurately, while some images require
more tokens to make the right prediction. These observations motivate us to
reduce the computational complexity of the existing ViT model by accurately
classifying the input using the minimum possible number of tokens.

In an ideal scenario, we would know the minimum number of tokens required
to accurately predict an image, and we could train a model to assign the optimal
token length to the ViT model. However, training multiple ViT models, each
with a fixed token length, would be computationally infeasible. To address this,
we propose a modification to the transformer architecture, changing it from
"static" to “dynamic," enabling the ViT model to adaptively process images with
varying token lengths. This dynamic transformer, called Resizable-ViT (ReViT),
identifies the minimum token length required to achieve correct predictions for
each image. We then train a lightweight Token-Length Assigner (TLA) to predict
the appropriate token length for a given image, with the label obtained from the
ReViT. Consequently, the ReViT can process images with lower computational
costs based on the assigned token length.

The primary challenge of our approach is training the ReViT to enable the
ViT model to process images of any size provided by the TLA. To tackle this
challenge, we introduce a token length-aware layer normalization that switches
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the normalization statistics for each type of token length, and a self-distillation
module that enhances the model’s performance when using short token lengths
in ReViT. Additionally, the ViT model needs to see the images with the corre-
sponding token lengths beforehand to handle various token lengths effectively.
However, as the number of predefined token-length choices increases, the train-
ing cost linearly increases. To overcome this, we introduce a parallel computing
strategy for efficient training that makes the ReViT training almost as inexpen-
sive as a vanilla ViT model’s training.

We showcase the efficacy of our approach on several prominent ViT models,
such as DeiT [43] and LV-ViT [23] for image classification, and TimesFormer [4]
for video recognition. Our experiments demonstrate that our method can sig-
nificantly reduce computational costs while maintaining performance levels. For
instance, we achieve a 50% acceleration in DeiT-S [43] model with an accuracy
reduction of only 0.1%. On action recognition, the computational cost of Times-
Former [4] can be reduced up to 33% on Kinetic 400 with only a 0.5% loss in
recognition accuracy.

2 Related Works

Vision Transformer. ViT have recently gained much attention in computer
vision due to their strong capability to model long-range relations. Many
attempts have been made to integrate long-range modeling into CNNs, such as
non-local networks [46,52], relation networks [21], among others. Vision Trans-
former (ViT) [12] introduced a set of pure Transformer backbones for image
classification, and its follow-ups have soon modified the vision transformer to
dominate many downstream tasks for computer vision, such as object detection
[7,58], semantic segmentation [26], action recognition [4,13], 2D/3D human pose
estimation [51,57], 3D object detection [34], and even self-supervision [19]. ViT
has shown great potential to be an alternative backbone for convolutional neural
networks.

Dynamic Vision Transformer. The over-parameterized model is known to
have many attractive merits and can achieve better performance than smaller
models. However, in real-world scenarios, computational efficiency is critical as
executed computation is translated into power consumption or carbon emission.
To address this issue, many works have attempted to reduce the computational
cost of Convolutional Neural Networks (CNNs) through methods such as neu-
ral architecture search [6,25,59,63], knowledge distillation [20,22,56,60–62], and
pruning [15,18].

Recent work has shift its attention to reduce the number of tokens used
for inference, as the number of tokens can be a computational bottleneck to
the vision transformer. There are two major approaches: unstructured token
sparsification and structured token division. The majority of works, including
PatchSlim [42], TokenSparse [37], GlobalEncoder [40], IA-RED [33], and Token-
learner [38], focus on the former. TokenLearner [38] uses an MLP to reduce the
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number of tokens. TokenPooling [31] merges tokens via a k-mean based algo-
rithm. TokenMerge [5] calculates the token similarity and merges tokens via
bipartite soft matching.

They aim to remove uninformative tokens, such as those that learn features
from the background of the image, thereby boosting inference speed by reserving
only informative tokens. These approaches typically need to progressively reduce
the number of tokens based on the inputs and can be performed either jointly
with ViT training or afterward. However, pruning tokens sparsely can bring
unstable training issues, especially when the model is huge [24].

The latter, which is known as unstructured token sparsification, is the most
relevant work to our research. Wang et al. [47] proposed Dynamic Vision Trans-
former (DVT) to dynamically determine the number of patches required to divide
an image. They employed a cascade of ViT models, with each ViT responsible
for a specific token length. The cascade ViT model makes a sequential decision
and stops inference for an input image if it has sufficient confidence in the pre-
diction at the current token length. In contrast to DVT [47], our method is more
practical and accessible, as it only requires a single ViT model. Additionally,
we focus on how to accurately determine the minimum number of token lengths
required in the transformer to provide correct predictions for each image.

3 Methodology

The vision transformers treat an image as a sentence by dividing the 2D image
into 1D tokens and modeling the long-range dependencies between them using
the multi-head self-attention mechanism. However, the self-attention is consid-
ered the computational bottleneck in the transformer model, as its computa-
tional cost increases quadratically with the number of incoming tokens. As men-
tioned earlier, our approach is motivated by the observation that many “easy-
to-recognize” images do not require 16× 16 tokens [12] to be correctly classified.
Therefore, computational costs can be reduced by processing fewer tokens on
“easy” images while using more tokens on “hard” images. It is worth noting that
the key to a successful input-dependent token-adaptive ViT model is to deter-
mine precisely the minimum number of tokens required to accurately classify the
image.

To achieve our goal, we propose a two-stage model training approach. In the
first stage, we train a ViT model that can handle images with any predefined
token lengths. Usually, a single ViT model can only handle one token length.
We describe the model design and training strategy of this ViT model in detail
in Sect. 3.2. In the second stage, we train a model to determine the appropri-
ate token length for each image. We first obtain the token-length label, which
represents the minimum number of tokens required for accurate classification,
from the previously trained ViT model. Then, we train a Token-Length Assigner
(TLA) using the training data, where the input is an image and the label is the
corresponding token length. This decoupled procedure allows the TLA to make
a better decision regarding the number of tokens required for each image. Dur-
ing inference, the TLA guides the ViT model on the optimal number of tokens
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Fig. 2. Left: There are two steps in the training procedure. First, we train the
Resizable-ViT that can split an image into any predefined token length. Secondly,
we train a Token-Length Assigner based on the token-length label that is retrieved
from ReViT. It is the smallest number of tokens that can correctly predicate the class
of the image. Right: In inference, the TLA first assigns a token-length for the image,
then ReViT uses this setting to make predication.

required for accurate classification based on the input. The complete training
and testing process is illustrated in Fig. 2.

In the following, we first introduce the Token-Label Assigner, then present
the training method on the Resizable-ViT model and improved techniques.

3.1 Token-Length Assigner

The purpose of the Token-Length Assigner (TLA) is to make accurate predictions
based on the feedback from ReViT. TLA training is performed after ReViT.
We first define a list of token lengths L = [l1, l2, . . . , ln] in descending order.
For simplicity, we use a single number to represent the token length, such as
L = [14 × 14, 10 × 10, 7 × 7]. The model with a token length of 7 × 7 has the
lowest computational cost among the three token lengths.

In order to train a token-length adapter (TLA), it is necessary to obtain
a token-length label from the ReViT model at convergence. For an image, the
token-length label is defined as the minimum token length required by the ViT
model to accurately classify that image. The inference speed of the ReViT model,
denoted by M , can be ranked as Speed(Ml1) < Speed(Ml2) < · · · < Speed(Mlk),
where k = len(L) represents the total number of options for token length. For
each input x, we can obtain the prediction yli = Mli(X) for all i ∈ n. The
label of the input x is determined by the smallest token size lj for which any
smaller token length would result in an incorrect prediction, i.e., ylj−1 �= ygt,
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Fig. 3. Example of self-distillation and token-length aware layer normalization in
ReViT. Each token length corresponds to a LayerNorm (LN in this figure) and pass-
through this LayerNorm during both training and inference. The self-distillation is only
conducted in training, where smaller token lengths have an extra distillation token to
learn from the teacher’s knowledge.

where gt is the ground truth label. Therefore, a set of input-output pairs (x, lj)
can be obtained and used to train the TLA. Since token-label assignment is
straightforward, the TLA is a lightweight module, with minimal computational
overhead introduced. Moreover, since unnecessary tokens are reduced in the ViT
model, the additional computational overhead is relatively small.

3.2 Resizable-ViT

In this section, we present the Resizable-ViT (ReViT), a dynamic ViT model
capable of accurately classifying images with various token lengths. We introduce
two techniques that enhance the performance of ReViT and subsequently present
the training strategy. Additionally, we offer an efficient training implementation
that accelerates the training process of ReViT.

Token-Aware Layer Normalization. The Layer Normalization (LN/
LayerNorm) layer is a widely used normalization technique that accelerates train-
ing and improves the generalization of the Transformer architecture. In both
natural language processing and computer vision, it is common to adopt an LN
layer after addition in the transformer block. However, as the feature maps of the
self-attention matrices and feed-forward networks constantly change, the number
of token sizes changes as well. Consequently, inaccurate normalization statistics
across different token lengths are shared in the same layer, which impairs test
accuracy. Additionally, we found empirically that LN cannot be shared in ReViT.

To address this issue, we propose a Token-Length-Aware LayerNorm (TAL-
LN), which uses an independent LayerNorm for each choice of token length in
the predefined token length list. In other words, we use Add & {LN1, ..., LNk}
as a building block, where k represents the number of predefined token lengths.
Each LayerNorm layer calculates layer-wise statistics specifically and learns the
parameters of the corresponding feature map. Furthermore, the number of extra
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Algorithm 1: Training Resizable-ViT M .
Require: Define Token-Length Assigner T , token-length list R, for example,
{16, 24, 32}. The iterations NM for training M . The CE(·) denotes
cross-entropy loss, and DisT (·) denotes distillation loss.
for t = 1, . . . , NM do

Get data x and class label yc of current mini-batch.
Clear gradients for all parameters, optimizer.zero_grad()
for i = 1, . . . , len(R)− 1 do

Convert ReviT to selected token-length Mi,
Execute current scaling configuration. ŷi = Mi(x).
if R[i] == 16 then

set teacher label. ŷteacher
i = ŷi

Compute loss lossi = CE(ŷi, y)
end
else

Compute loss lossi = DisT (ŷteacher
i , ŷi, y)

end
Compute gradients, lossi.backward()

end
Update weights, optimizer.step().

end
Obtain token-length label for all train data (x, yt).
Train T with (x, yt).

parameters in TAL-LN is negligible since the number of parameters in normal-
ization layers typically takes less than one percent of the total model size [55].
A brief summary is illustrated in Fig. 3.

Self-Distillation. It is aware that the performance of ViT is strongly correlated
to the number of patches, and experiments have shown that reducing the token
size significantly hampers the accuracy of small token ViT. Directly optimizing
via supervision from the ground truth poses a challenge for the small token
length sub-model. Motivated by self-attention, a variant of knowledge distillation
techniques, where the teacher can be insufficiently trained, or even the student
model itself [53–55], we propose a token length-aware self-distillation (TLSD).
In the next section, we will show that the model with the largest token length
M1 is always trained first. For Ml1 , the training objective is to minimize the
cross-entropy loss LCE. When it comes to the model with other token lengths
Mli, i ≤ k, i �= 1, we use a distillation objective to train the target model:

Lteacher = (1 − λ)LCE(φ(Zs), y) + λτ2KL(φ(Zs/τ), φ(Zt/τ)) (1)

where Zs and Zt is the logits of the student model Mli and teacher model Ml1 ,
respectively. τ is the temperature for the distillation, λ is the coefficient balancing
the KL loss (Kullack-Leibler divergence) and the CE loss (cross-entropy) on
ground truth label y, and φ is the softmax function. Similar to DeiT, we add a
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distillation token for student models. Figure 3 gives an overview. Notably, this
distillation scheme is computational-free: we can directly use the predicted label
of the model with the largest token length as the training label for other sub-
model, while for the largest token length model, we use ground truth.

3.3 Training Strategy

Fig. 4. Efficient training implement for
Resizable Transformer through parallel com-
puting. All gradient from the replicate nodes
are synchronize on the node where that have
the largest token length to save the cost of
communication.

To enable the ViT model to adap-
tively process various token lengths
in the predefined choice list, it is nec-
essary to expose it to images with
different token lengths. Inspired by
batch gradient accumulation, a tech-
nique used to overcome the problem
of small batch size by accumulating
gradient and batch statistics in a sin-
gle iteration, we propose a mixing
token length training. As shown in
Algorithm 1, a batch of images is pro-
cessed with different token lengths
to compute the loss through feed-
forward, and individual gradients are
obtained. After looping through all
token length choices, the gradients of
all parameters calculated by feeding
different token lengths are accumu-
lated to update the parameters.

Efficient Training Implementa-
tion. An issue with the aforementioned training strategy is that the training
time increases linearly with the number of predefined token length choices. To
address this issue, we propose an efficient implementation strategy that trades
memory cost for training time. As shown in Fig. 4, we replicate the model, with
each model corresponding to a specific token length. At the end of each itera-
tion, the gradients of the different replicas are synchronized and accumulated.
Notably, we always send the gradient of replicas in which the token length is
small to the one with a larger token length, as they are the training bottleneck.
Thus, the communication cost in the gradient synchronization step is negligi-
ble. Then, the model parameters are updated through back-propagation. After
the parameter updating is complete, the main process distributes the learned
parameters to the rest of the replicas. These steps are repeated until the end of
training, after which all replicas except the model in the main process can be
removed. As such, the training time of the Resizable Transformer reduces from
O(k) to O(1), where k is the number of predefined token lengths. Though the
number of k is small, i.e., k = 3, in practice, the computational cost of training
k ViT is high. Through our designed parallel computing, the training cost for
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Fig. 5. Comparison of different models with various accuracy-throughput trade-off.
The throughput is measured on an NVIDIA RTX 3090 GPU with batch size fixed to
32. The input image size is 224× 224 unless indicate otherwise. The ReViT (red stare
in the figure) achieves better trade-off than other methods, including DVT [47]. (Color
figure online)

ReViT is almost the same as that of naive ViT, where the cost of communication
between replicas is negligible compared to the model training cost. In exchange
for fast training, extra computational power is required for parallel computing.

4 Experiments

Implementation Details. For image classification, we trained all models on the
ImageNet [11] training set consisting of around 1.2 million images and reported
their accuracy on the 50k test images. The predefined token lengths were set to
14 × 14, 10 × 10, and 7 × 7 by default, with the token length of 4 × 4 excluded
due to a significant accuracy drop. We conducted experiments on DeiT-S [43]
and LV-ViT-S [23] using an image resolution of 224 × 224, unless otherwise
specified. We followed the training settings and optimization methods described
in the original papers of DeiT [43] and LV-ViT [23]. For LV-ViT, we obtained
token labels for smaller token lengths using their proposed method. We also
trained the ReViT on resized images with higher resolutions, such as 384 on
DeiT-S. To avoid optimization difficulties caused by large kernel and stride con-
volutional layers required for patch embedding, we replaced them with consec-
utive convolutions followed by the method in Xiao et al. [49]. After training
the ReViT, we obtained token-length labels for all training data and trained
the Token-Length Assigner (TLA), which was a small version of EfficientNet-
B0 compared to the ViT model. We also included feature map transfer and
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Table 1. Video recognition on Something-Something V2. Our ReViT outper-
forms state-of-the-art CNN-based and ViT-based methods. IN-21 and K400 are abbre-
viations for ImageNet-21K and Kinetic-400 datasets.

Method Backbone FLOPs (G) Top-1 (%) Top-5 (%) Frames Extra Data

TEINet [28] ResNet50 99×10 ×3 66.5 - 8+16 ImageNet-1K
TANet [29] ResNet50 99 × 2 × 3 66.0 90.1
TDN [45] ResNet101 198×1× 3 69.6 92.2
SlowFast [14] ResNet101 106×1×3 63.1 87.6 8+32 Kinetics-400
MViTv1 [13] MViTv1-B 455×1×3 67.7 90.9 64
TimeSformer [4] ViT-B 196×1×3 59.5 – 8 ImageNet21K
TimeSformer [4] ViT-L 5549×1×3 62.4 – 64
ViViT [1] ViT-L 995×4×3 65.9 89.9 32 IN-21K + K400
Video Swin [27] Swin-B 321×1×3 69.6 92.7 32
Motionformer [35] ViT-B 370×1×3 66.5 90.1 16
Motionformer [35] ViT-L 1185×1×3 68.1 91.2 32
ReViT_motionformer ViT-B 183×1×3 66.6 89.9 16 IN-21K + K400
ReViT_motionformer ViT-L 570×1×3 67.6 90.8 32

attention transfer as part of self-distillation, which we found empirically use-
ful. We use Something-Something V2 [16] to conduct experiments on action
recognition. The Something-Something V2 is another large-scale video dataset,
having around 169k videos for training and 20k videos for validation. We follow
the training setting of MotionFormer [35]. Specifically, two versions of Motion-
Former are tested. The default version operates on 16 × 224 × 224 video clips,
and a high spatial resolution variant operates on 32 × 448 × 448 video clips.

4.1 Experimental Results

Main Results on ImageNet Classification. We present the main results of
our ReViT based on DeiT-S and LV-ViT-S in Fig. 5. Our approach is compared
with several models, including DeiT [43], CaiT [39], LV-ViT [23], CoaT [50],
Swin [26], Twins [10], Visformer [8], ConViT [48], TNT [17], and EfficientNet [41].
The results show that our method achieves a favorable accuracy-throughput
trade-off. Specifically, ReViT reduces the computational cost of the baseline
counterpart by decreasing the token number used for inference. By increasing the
input resolution, we manage to outperform the baseline counterpart, given a sim-
ilar computational cost. We also highlight the experimental results of DVT [47]
in red. Our method achieves significantly better performance in terms of both
accuracy and throughput. We hypothesize that despite the low FLOPs of DVT,
the practical speed of DVT is high due to its multiple cascade ViT structure.

Main Results on Video Recognition. One of the core motivations behind
ReViT is to address the issue of high computational costs in extremely long
token lengths during inference for image classification tasks. To further explore
this idea, we investigate the applicability of our method to video recognition
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Fig. 6. Visualization of “hard”, “medium”, and “easy” samples that predicted by Token-
Length Assigner and which the ReViT-DeiT-S got correction prediction. Most of the
“easy” images have clear sight on the object, while size of objects is mostly small for
“hard” samples.

tasks, where the token length in transformers is typically much longer than that
in image classifiers.

To this end, we train the ReViT-MotionFormer models with ViT-B and
ViT-L, two different backbones, and compare them with the baseline models,
respectively. The results are presented in Table 1. Our method demonstrates a
significant speedup over the MotionFormer baseline, with a computational cost
reduction of approximately 51% and a 0.1% accuracy increase. By training on
larger image resolutions, we correspondingly reduce the model size by 48% with
a 0.5% accuracy drop, which is slightly worse than the smaller resolution coun-
terpart. Nonetheless, our experiments demonstrate that ReViT is effective for
action recognition tasks.

Visualization of Samples with Different Token-Length. We selected eight
classes from the ImageNet validation set and chose three samples from each
category, classified as easy, medium, and hard, corresponding to tokens with
dimensions of 14 × 14, 10 × 10, and 7 × 7, respectively. The image samples
were selected based on the token length assigned by the Token-Length Assigner.
The resulting images are displayed in Fig. 6. Notably, some classes do not have
all images filled because less than three samples in the validation set belong
to those categories. For example, only one image in the dog class requires the
largest token length for classification. We observe that the number of tokens
required to predict the category is highly correlated with the object’s size. For
larger objects, only a few tokens are sufficient to predict their category.
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Table 2. The ablation study of self-distillation in ReviT. The SD* denotes the self-
distillation. We also evaluate the performance with different choices of τ . The self-
distillation improves the performance notably, the small token length model outper-
forms the baseline when τ = 0.9.

Method SD* τ Top-1 Acc (%)
14 × 14 10 × 10 7 × 7

Deit-S ✗ - 79.85 74.68 72.41
ReViT ✗ – 80.12 74.24 70.15

✓ 0.5 79.92 76.16 71.33
✓ 0.9 79.83 76.86 74.21

Table 3. The ablation study of shared patch embedding and shared position encoding
in ReViT. The Pos denotes the positional encoding module. We notice that sharing
these two modules decrease the model accuracy.

Method Shared Top-1 Acc (%)
Patch Pos 14 × 14 10 × 10 7 × 7

ReViT ✗ ✓ 65.14 61.30 58.35
✓ ✗ 75.24 71.32 69.73
✓ ✓ 79.83 76.85 74.21

4.2 Ablation Study

Shared Patch Embedding and Position Encoding. We conducted an
experiment to evaluate the impact of using shared patch embedding and posi-
tion encoding. As the token number changes during training, we applied some
techniques to enable sharing of both operations. To handle position encoding, we
followed the approach of ViT [12] and zero-padded the position encoding module
whenever the token size changed. This technique was initially used to adjust the
positional encoding in the pretrain-finetune paradigm. For shared patch embed-
ding, we used a weight-sharing kernel [6]. A large kernel was constructed to
process a large patch size, and when the patch size changed, a smaller kernel
with shared weight on the center was adopted to flatten the image patch.

As shown in Table 3, both shared patch embedding and shared positional
encoding decreased the model’s accuracy. In particular, the accuracy dropped
by nearly 14% for the large token length model when using the shared patch
strategy. The shared positional encoding module performed better than shared
patch embedding but still significantly impacted the performance of ReViT.

The Effect of Self-Distillation and Choice of τ . We conducted experiments
to verify the effectiveness of self-distillation in ReViT and investigated the impact
of the hyper-parameter τ . We tested two different values of τ , 0.9 and 0.5, for all
sub-networks and demonstrated the results in Table 2. Without self-distillation,
the accuracy on small token lengths was comparable to tokens of size 10×10, but
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Fig. 7. Compare our approach with DeiT-S [43] and DVT [47] for training cost and
memory cost at inference time in terms of the number of predefined token-length. Our
proposed ReViT is almost a cheap as training the baseline DeiT-S, while DVT requires
linearly increased budget on training and memory.

significantly worse on tokens of size 7×7. When we applied self-distillation with
τ = 5, the accuracy of both models increased. To further evaluate the model, we
used τ = 5. The higher value of τ negatively impacted the accuracy of the largest
token length, dropping the accuracy by around 0.3%, but significantly improving
the performance of models with token size 7 × 7. This highlights the necessity
of using self-distillation in our scenario and demonstrates the importance of
carefully selecting the hyper-parameter τ for optimal performance.

Training Cost and Memory Consumption. We compared ReViT with DeiT-
S and DVT [47] in terms of training cost and memory consumption, as shown
in Fig. 7. ReViT-B denotes the baseline approach of ReViT, while ReViT-E is
the efficient implementation method. Both ReViT-B and DeiT-S show a linear
increase in training cost as the number of choices in s increases. ReViT-B is
cheaper because backpropagation of multiple token lengths is merged. However,
the training time of ReViT-E slightly increases due to the communication cost
between parallel models increasing.

As for memory consumption (number of parameters) during testing, since our
method only has a single ViT where most computational heavy components are
shared, the memory cost is slightly higher than the baseline. However, compared
to DVT, the increase in the number of parameters with respect to the increasing
number of token length choices is negligible. This indicates that our approach
is more practical than DVT in terms of both training cost and memory cost.
Furthermore, our method is easier to apply to existing ViT models than DVT.

Comparison with DVT. We conducted a further investigation of our proposed
method based on DeiT-S and compared it with DVT, which was also developed
based on DeiT-S. Figure 8 shows that our proposed ReViT achieves superior
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Fig. 8. Comparison with DVT [47] on DeiT-S backbone. Our method outperforms
DVT by a large margin.

performance compared to DVT. This could be due to our better selection of the
number of patches that achieves the best accuracy-speed tradeoff.

5 Conclusions

This paper aims to reduce the token length to split the image in the ViT model
to eliminate unnecessary computational costs. First, we propose the Resizable
Transformer (ReViT), which adaptively processes any predefined token size for
a given image. Then, we define a Token-Length Assigner to decide the minimum
number of tokens that the transformer can use to classify the individual image
correctly. Extensive experiments indicate that ReViT can significantly accelerate
the state-of-the-art ViT model. Also, compared to the prior SOTA method, our
approach achieves better training speed, inference cost, and model performance.
Therefore, we believe our paper benefits practitioners who would like to adopt
ViT in deployment.
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Abstract. Cross-modal hash retrieval methods improve retrieval speed
and reduce storage space at the same time. The accuracy of intra-modal
and inter-modal similarity is insufficient, and the large gap between
modalities leads to semantic bias. In this paper, we propose a Graph
Rebasing and Joint Similarity Reconstruction (GRJSR) method for
cross-modal hash retrieval. Particularly, the graph rebasing module is
used to filter out graph nodes with weak similarity and associate graph
nodes with strong similarity, resulting in fine-grained intra-modal simi-
larity relation graphs. The joint similarity reconstruction module further
strengthens cross-modal correlation and implements fine-grained similar-
ity alignment between modalities. In addition, we combine the similarity
representation of real-valued and hash features to design the intra-modal
and inter-modal training strategies. GRJSR conducted extensive experi-
ments on two cross-modal retrieval datasets, and the experimental results
effectively validated the superiority of the proposed method and signifi-
cantly improved the retrieval performance.

Keywords: Cross-modal retrieval · Unsupervised cross-modal
hashing · Similarity matrix · Graph rebasing · Similarity reconstruction

1 Introduction

As the scale of data on the internet continues to expand, the retrieval needs
of users increase and retrieval techniques evolve. Cross-modal retrieval has
attracted widespread research interest, aiming to use one modality as a query
to retrieve relevant data from another modality and explore the relationships
between data from different modalities. As information technology continues to
develop and multimedia data of all types increases dramatically, the efficiency
and accuracy of cross-modal retrieval become ever more important.

Compared with the widely used instance common space methods [6,16,17,21,
28,31,32,36,40,41], the cross-modal hash retrieval methods [27,39,44,45,47] can
improve the speed of cross-modal retrieval, reduce the storage space and greatly
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improve the retrieval efficiency while keeping the accuracy within a controlled
range, resulting in a better balance between accuracy and efficiency. The basic
concept of the cross-modal hash method is to map cross-modal data into a com-
mon hamming space, obtaining similar cross-modal content along with similar
binary hash codes and preserving intra-modal and inter-modal similarity. Cross-
modal hashing methods can be divided into supervised and unsupervised meth-
ods. The supervised methods [18,20,22,23,29,33,34,37] require manually anno-
tated semantic labels. While the supervised method can further improve retrieval
performance compared to the unsupervised method, it also inevitably increases
computational costs. The unsupervised methods [4,10,11,19,26,30,35,42,43]
only need to know whether heterogeneous data co-exist, significantly reducing
the computational cost and making the method more flexible and feasible. In
this paper, we focus on unsupervised cross-modal hashing methods.

Unsupervised cross-modal hash retrieval is label-free and leads to inaccurate
semantic data similarity. After constructing the similarity relation graph, cer-
tain samples are close to each other in a specific domain, such as cats and dogs,
because of the lack of labeling information. So there will be some wrong connec-
tions between the nodes of the relation graph, and semantic bias will exist in this
case. Some problems with existing methods need further consideration. Firstly,
the similarity matrix obtained by the cosine function may integrate meaningless
similarity information. Therefore, the process of intra-modal and inter-modal
similarity information is critical. The second is the limitation of constructing
similarity relation graphs. When constructing the relation graphs, some meth-
ods ignore the relation between nodes and their multiple neighbours. Most of
them only consider pairs of nodes. This can result in the construction of relation
graphs that do not take into account the more comprehensive similarity infor-
mation. The last point is that some methods construct global relation graphs
but ignore locally useful information. This leads to results that do not yield
fine-grained similarity information.

To address the above problems, we propose a Graph Rebasing and Joint
Similarity Reconstruction(GRJSR) method to facilitate efficient cross-modal
retrieval. The main contributions of this paper are as follows:

– We propose a Graph Rebasing (GR) module, which filters out the neighbour
nodes with low correlation and computes the neighbour nodes with high cor-
relation. Eventually, we obtain intra-modal relation graphs that exhibit fine-
grained similarity. The schematic diagram of our proposed Graph Rebasing
(GR) method is shown in Fig. 1.

– With the Joint Similarity Reconstruction (JSR) module proposed in this
paper, we reconstruct the inter-modal similarity relation graphs. Finer-
grained alignment between modalities is achieved, and more valuable sim-
ilarity information is obtained.

– We design a combined intra-modal and inter-modal training strategy. We
conduct comprehensive experiments with two widely used image and text
retrieval datasets to verify that GRJSR significantly improves retrieval per-
formance.
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Image Domain

Text Domain

Fig. 1. The schematic diagram of our proposed Graph Rebasing (GR) process. The
circles in the shaded part are samples from the same class. Because of the lack of
labeling information, these samples may be close to each other but belong to different
types, such as dogs, wolves and cats. The thicker the line connecting the samples, the
higher the correlation of the samples.

2 Related Work

2.1 Supervised Cross-Modal Hashing Methods

Some supervised methods use label information combined with semantic rela-
tions to obtain valid hash codes. SDDH [22] imposes orthogonality and balance
constraints to the matrix and embeds it into the hash code in order to bet-
ter capture the similarity information of the same class. QDCMH [18] proposes
a method to construct quadratic loss functions. The method combines them
with representation learning and hash codes to effectively capture heterogeneous
cross-modal similarity. NSDH [33] constructs a semantic label matrix and com-
bines it with similarity information to enhance the semantic information of the
hash code. Finally, a more discriminative hash code is obtained. MSLF [29] uses
labels to generate common attributes of different modalities and obtains hash
code with lower computational cost. OLCH [34] proposes a learning framework
for online semantic representation in order to efficiently handle large-scale and
streaming data. Learning hash codes for data increments, updating hash func-
tions in a streaming way, and finally optimizing hash functions.

2.2 Unsupervised Cross-Modal Hashing Methods

Some unsupervised methods focus on computing the similarity between features,
using the similarity metric as the optimization objective. DGCPN [35] constructs
the retrieved data as a static global KNN graph, calculates the probability of
similarity between two nodes, and obtains the graph neighbor coherence. The
method improves the accuracy of similarity by maintaining robustness through
combined losses. The constructed similarity matrix is further analysed by HNH
[43], resulting in a high order similarity matrix between modalities. A common
representation is then introduced on the basis of the different modalities, easing
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the differences between the modalities. SRCH [30] first generates the geometric
and semantic graphs within the modalities and then applies hash codes to rebase
the edges within the graphs. The method also uses hash autoencoders to main-
tain and quantify inter-modal similarity. IRGR [10] uses the KNN method to
construct global and local similarity relation graphs. The method obtains valid
similarity information based on graph reasoning and proposes a step-by-step
training strategy to reduce semantic loss.

3 Methodology

The framework of GRJSR is shown in Fig. 2. GRJSR can obtain deep
semantic features through feature extraction. In this paper, we employ pre-
trained AlexNet [13] to extract image features FI ∈ R

m×dv, and use bag-
of-words(BOW) model to extract text features FT ∈ R

m×dt. The image and
text features of the i-th instance are denoted as

{
vi | i ∈ [1,m] , vi ∈ R

dv
}

and{
ti | i ∈ [1,m] , ti ∈ R

dt
}
, which m means there are m training samples, dv and

dt denote the dimensions of image and text features respectively. Given the spe-
cific hash code length c, we define the hash features as H∗ ∈ R

m×c, ∗ ∈ {I, T}
similar to [3,8,9,14,24,25]. Following [1,15,26], we generate the corresponding
binary hash codes B∗ ∈ {−1,+1}m×c

, ∗ ∈ {I, T}. Similarity matrix calculation
by the cosine similarity function:

Sx,y = cos(Sx, Sy) =
ST
x Sy

‖Sx‖2 ‖Sy‖2
(1)

where ST
x is the transpose of Sx, ‖·‖ indicates the L2-norm.

3.1 Local Relation Graph Building

Similar to DGCPN [35], intra-modal local relation graph building constructs
multiple local relation graphs within image modality and text modality based
on the K-nearest neighbor (KNN) method respectively. We denote the image
graph and text graph instance set as G∗ = {∗, E} , ∗ ∈ {V, T}. V = {vi}mi=1.
T = {ti}mi=1. Each instance can be represented as a node in a relation graph, the
node sets are denoted as V or T . And the similarity between instances can be
indicated by the weights of the edges E in the relation graphs. Our method is to
perform conditional probability operations on the two intra-modal instances. The
relation between two instances within the same modality is calculated conditional
on other instances within the modality, resulting in intra-modal local relation
graphs:

P (l∗i = l∗j) =
m∑

q=1

P
(
lF∗i = lF∗q | ∗i, ∗q

)

×P
(
lF∗j = lF∗q | ∗j , ∗q

)
, ∗ ∈ {v, t}

(2)

P (l∗i = l∗j) is the probability of similarity between instances, which can also
be expressed as local relation graphs. We use virtual labels to analyze the
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Fig. 2. GRJSR firstly extracts the image and text features, then constructs the simi-
larity matrices of image and text. Followed by the KNN method to obtain the intra-
modal local relation graphs and uses our proposed Graph Rebasing (GR) module to
process the relation graphs within the two modalities. Next step, we combine the
similarity information of two modalities and perform the Joint Similarity Reconstruc-
tion (JSR) module on the inter-modal similarity information, which can obtain the
fine-grained similarity alignment. Finally, the intra-modal and inter-modal training
strategies reduce the semantic gap.

similarity between nodes, where l∗i, ∗ ∈ v, t indicates the label of vi or ti.
P

(
lF∗i = lF∗q | ∗i, ∗q

)
indicates that two nodes ∗i and ∗q have the highest sim-

ilarity. We assume that each node is related to its k nearest nodes:

P
(
lF∗i = lF∗q | ∗i, ∗q

)
=

{
d(∗i,∗q)∑

∗p∈Ne(∗i,k)
d(∗i,∗p)

∗q ∈ Ne (∗i, k)

0 else
(3)

lFvi is the virtual label for nodes between image graphs, lFti is the virtual label
for nodes between text graphs. Where Ne (∗i, k) indicates the set of k-nearest
neighbors of ∗i using d (∗i, ∗q). We calculate the similarity matrices of the original

features. SF
x,x = cos(Fx, Fx) = FT

x Fx

‖Fx‖2‖Fx‖2
, x ∈ {I, T}. SF

x,x(i, q) = SF
x,x(q, i) in

the matrix represents the similarity of instance i to instance q. When d (vi, vp) =
SF
I,I(i, q) = SF

I,I(q, i), calculate P (lvi = lvj) to obtain visual relation graph GI ;
When d (ti, tp) = SF

T,T (i, q) = SF
T,T (q, i), calculate P (lti = ltj) to obtain textual

relation graph GT .

3.2 Graph Rebasing

The above method of computing the relation graphs does not adequately consider
nodes other than the two nodes. Our proposed relation graph rebasing method
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can comprehensively consider the neighbour nodes and obtain fine-grained simi-
larity information. The above formula using conditional probability mainly con-
structs a local relation graph by two nodes. Our method uses the gating mecha-
nism to consider other neighbors between two nodes, filters out nodes with fewer
similar neighbors, and connects nodes with more common similar neighbors. We
generate the gating mask for the image relation graph MaskGI ∈ R

m×dv and
the gating mask for the text relation graph MaskGT ∈ R

m×dt by the sigmoid
function: {

MaskGI = σ (GIWv + bv)
MaskGT = σ (GTWt + bt)

(4)

where σ (·) denotes sigmoid function. Wv and Wt are the learnable projection
matrices, while bv and bt are the bias vectors. Then we can get the filtered
relation graphs G̃∗:

G̃∗ = MG∗ � G∗ (5)

To obtain sufficient semantic similarity information, we fuse the similarities
between neighbours by quadratic weighting. The fusion of information from dif-
ferent neighbours can effectively capture fine-grained similarity information to
obtain the intra-modal fine-grained similarity relation graphs:

R∗ = softmax
(
G̃∗ �

(
G̃∗

T ⊗ G̃∗
))

(6)

where the symbol � signifies the element-wise product, and the symbol ⊗ sig-
nifies the matrix multiplication. So we get the visual rebase graph RI , and the
corresponding similarity matrix is SG

I,I . The textual rebase graph denotes RT ,
and the corresponding similarity matrix is SG

T,T .

3.3 Global Relation Graph Construction

From the intra-modal graph rebasing method, we obtain the similarity represen-
tations of the intra-modal local relation graphs. Next, we combine the similarity
representations of the original features and the local relation graph to obtain the
global similarity representation within the modalities:

Sx,x = γSF
x,x + λSG

x,x, x ∈ {I, T} (7)

where γ is the weight parameter that regulates the similarity representation of
the original features and λ is the weight parameter that regulates the similarity
representation of the local relation graph. Finally, we obtain the global similarity
matrix SI,I within the image modality and the global similarity matrix ST,T

within the text modality.
Based on Eq. 1, we calculate the image to text similarity representation

SI,T = cos(SI,I , ST,T ) = ST
I,IST,T

‖SI,I‖2‖ST,T ‖2
and the text to image similarity rep-

resentation ST,I = cos(ST,T , SI,I) = ST
T,TSI,I

‖ST,T ‖2‖SI,I‖2
.

Furthermore, we use Eq. 3 to calculate the similarity relation graph between
the modalities. When d (oi, op) = SI,T (i, q) = SI,T (q, i), calculate P (loi = loj)
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Fig. 3. Illustration of the JSR module.

to obtain the image to text similarity relation graph GI,T ; When d (oi, op) =
ST,I(i, q) = ST,I(q, i), calculate P (loi = loj) to obtain the text to image similarity
relation graph GT,I . At this time, O = {oi}mi=1 and O denotes the node set of
joint image and text modalities.

3.4 Joint Similarity Reconstruction

Although the above method constructs joint similarity graphs, the method will
integrate the alignment information indiscriminately and there will be more
meaningless alignment information. To obtain fine-grained joint similarity align-
ment, we propose a joint similarity reconstruction (JSR) method for the inter-
modal relation graphs GI,T and GT,I . The JSR module can efficiently integrate
meaningful alignments and filter out meaningless ones. Figure 3 shows an illus-
tration of our proposed JSR module.

To improve the method’s ability to discriminate meaningful alignments
between modalities, we propose a gating mechanism that filters meaningless
alignments between modalities. First, we design a edge weight mask MaskG for
the edges of the connected inter-modal relation graphs:

MaskG = σ(WeR(GI,T , GT,I) + be) (8)

We ∈ R
m×m is the learnable projection matrix, while be ∈ R

1×m is the bias
vector. R(GI,T , GT,I) denotes the point-to-point alignment score between the
joint modal relation graphs:

R(GI,T , GT,I) = ‖WaSI,T ‖2 � ‖WaST,I‖2 (9)

where Wa ∈ R
m×m is a linear transformation, ‖·‖2 indicates L2 regularization.

We then apply the edge weight mask of the gating mechanism to the inter-modal
relation graphs, respectively.

G̃I,T = MaskG � GI,T (10)

G̃T,I = MaskG � GT,I (11)
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We obtain relation graphs between the modalities after filtering for nonsense
alignments. In the next step, we concat the inter-modal relation graphs to obtain
the global joint-modal similarity relation graph:

G̃ = concat(G̃I,T , G̃T,I)

= concat((MaskG � GI,T ), (MaskG � GT,I))
(12)

To obtain a fine-grained representation of joint-modal similarity, we design an
enhanced weight of the global similarity graph G̃ = {g̃i}mi=1 that enhances the
informative similarity representations between nodes:

ηg̃i =
σ (‖ Wg g̃i ‖2)∑m
j=1σ (‖ Wg g̃j ‖2) (13)

where Wg ∈ R
m×m is a linear transformation. Finally we aggregate the inter-

node similarity representations to obtain the joint similarity matrix after the
similarity reconstruction:

S =
∑m

i=1 ‖ηg̃i‖2 · g̃i (14)

By our proposed JSR method, fine-grained alignment between modalities can
be achieved. We can further unify more meaningful similarity information and
reduce the number of less meaningful alignments.

3.5 Training Objectives

While most previous methods trained data from both modalities uniformly, our
method proposes a strategy that combines intra-modal and inter-modal data
training. We train the module separately according to the intra-modal and
inter-modal losses. Based on Eq. 1, we calculate the binary hash codes simi-
larity matrix SB

I,I for the image modality and the binary hash codes similarity
matrix SB

T,T for the text modality. Within each modality, we perform semantic
alignment of hash features to real-valued features:

min α
(∥
∥ϕSx,x − SB

x,x

∥
∥2

)
, x ∈ {I, T} (15)

where α and ϕ are both trade-off parameters. ϕ is used to regulate the best
quantified region for Sx,x and SB

x,x. α is used to regulate the importance of neigh-
bourhood relations from different modalities. Combining the semantic alignment
of the two modalities leads to the total error within the two modalities:

Lintra = min α
(∥
∥ϕSI,I − SB

I,I

∥
∥2

+
∥
∥ϕST,T − SB

T,T

∥
∥2

)
(16)

We first calculate the inter-modal similarity matrices SB
I,T and SB

T,I of the
binary hash codes by Eq. 1. Then we minimize the symmetry loss of the cross-
modal hash code similarity matrix about the diagonal between the two modali-
ties:

min
∥
∥SB

I,T − SB
T,I

∥
∥2

(17)
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Then we calculate the error of the joint inter-modal relation graph similarity
information with the cross-modal hash feature similarity information:

∥
∥S − SB

x,y

∥
∥2

+ β(
∥
∥S − ρSB

x,x

∥
∥2

)

s.t. x, y ∈ {I, T}
(18)

where ρ and β are both trade-off parameters. ρ is used to regulate the best
quantified region for S and SB

x,x. β is used to regulate inter-modal and intra-
modal importance. Finally, the inter-model loss is formulated as:

Linter = min
∥
∥SB

I,T − SB
T,I

∥
∥2

+
∥
∥S − SB

I,T

∥
∥2

+
∥
∥S − SB

T,I

∥
∥2

+ β(
∥
∥S − ρSB

I,I

∥
∥2

+
∥
∥S − ρSB

T,T

∥
∥2

)
(19)

4 Experiments

4.1 Datasets and Evaluation Metrics

We experiment on two public datasets for evaluation, including MIRFlickr [12]
and NUS-WIDE [5]. And we use two standard retrieval evaluation metrics: mean
average precision (MAP) and top-K precision curve. MAP is a standard indicator
to measure the performance of cross-modal retrieval algorithms, it is defined as:

AP (i) =
1
N

n∑

r=1

Pi(r)δi(r), MAP =
1
M

M∑

i=1

AP (i) (20)

where AP (i) is the average precision of the query. Pi(r) refers to the precision
of the top r retrieved instances. δi(r) = 1 if the r-th retrieved entity is similar
to the query and δi(r) = 0, otherwise. N is the number of ground-truth similar
instances of the query in the database and n is the number of instances in the
database. M is the query set size. The top-K precision denotes the precision at
different numbers of retrieved instances.

4.2 Implementation Details

For fair comparison with most advanced methods, we extract image features
using pre-trained AlexNet and text features using the bag-of-words (BOW)
model. The experimental environment follows that of other state-of-the-art
methods. We implement the proposed method via Pytorch on a workstation
(CPU: Intel(R) Core(TM) i7-10700 CPU @ 2.90GHz, GPU: NVIDIA GeForce
RTX 2080 Ti). Our proposed method uses an SGD optimizer with a momentum
of 0.9 and a weight decay of 0.0005. The batch size for optimization is set to 32.
The learning rates of ImgNet are set to 0.001 for NUS-WIDE and MIRFlickr
respectively. The learning rates of TxtNet are set to 0.01 for two datasets. The
setting of parameters is particularly important, part of the setting of our method
follows other advanced methods and part of the setting of parameters depends
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on parameter sensitivity experiments. Similar to IRGR [10], we set γ to 1.5 and
λ is set to 0.0001. Similar to DSAH [19], we set ρ to 1.5. After parameter sensi-
tivity experiments analysis, we can determine the parameters k = 31, α = 0.1,
β = 0.1 and ϕ = 1.5 for MIRFlickr. And we set k = 31, α = 0.3, β = 0.3 and
ϕ = 1.4 for NUS-WIDE.

Table 1. The MAP results of MIRFlikcr and NUS-WIDE at various code lengths.

Method MIRFlickr NUS-WIDE

I T T I

16bit 32bit 64bit 128bit 16bit 32bit 64bit 128bit

AAH [7] 0.7145 0.7230 0.7271 0.7283 0.8137 0.8198 0.8251 0.8281

DSPH [38] 0.6473 0.6610 0.6703 – 0.6581 0.6781 0.6818 -

FDDH [20] – 0.7392 0.7578 0.7631 – 0.8022 0.8250 0.8357

HNH [43] – 0.8830 0.8950 0.9020 – 0.8540 0.8680 0.8780

HSIDHN [2] 0.7978 0.8097 0.8179 – 0.7802 0.7946 0.8115 –

MLSPH [48] 0.8076 0.8235 0.8337 – 0.7852 0.8041 0.8146 –

MSDH [46] 0.7836 0.7905 0.8017 – 0.7573 0.7635 0.7813 –

MSLF [29] 0.6988 0.7175 0.7222 0.7294 0.7572 0.7763 0.7892 0.7959

NSDH [33] 0.7363 0.7561 0.7656 0.7712 0.7836 0.8014 0.8183 0.8229

QDCMH [18] 0.7635 0.7688 0.7713 – 0.7762 0.7725 0.7859 –

SDDH [22] 0.7210 0.7394 0.7454 0.7494 0.7917 0.8132 0.8241 0.8328

IRGR [10] 0.8310 0.8550 0.8770 0.8940 0.8250 0.8770 0.8820 0.8920

GRJSR(Ours) 0.8470 0.8780 0.8950 0.9050 0.8460 0.8750 0.8940 0.9030

AAH [7] 0.6409 0.6439 0.6515 0.6549 0.7379 0.7533 0.7595 0.7629

FDDH [20] – 0.6970 0.6910 0.7118 – 0.8133 0.8111 0.8244

HNH [43] – 0.8020 0.8160 0.8470 – 0.7760 0.7960 0.8020

HSIDHN [2] 0.6498 0.6787 0.6834 – 0.6396 0.6529 0.6792 –

MLSPH [48] 0.6405 0.6604 0.6734 – 0.6433 0.6633 0.6724 –

MSDH [46] 0.6633 0.6859 0.7155 – 0.6359 0.6632 0.6934 –

MSLF [29] 0.6213 0.6339 0.6374 0.6482 0.7212 0.7427 0.7578 0.7765

NSDH [33] 0.6418 0.6604 0.6732 0.6791 0.7658 0.7892 0.7939 0.8011

SDDH [22] 0.6510 0.6564 0.6670 0.6733 0.7638 0.7790 0.7945 0.7990

IRGR [10] 0.7560 0.7930 0.8160 0.8390 0.7500 0.7830 0.8040 0.8170

GRJSR(Ours) 0.7670 0.8210 0.8250 0.8530 0.7730 0.8230 0.8240 0.8410

4.3 Performance Comparison

Results on MIRFlickr. The top half of Table 1 shows the MAP results of
GRJSR and other advanced methods for different code lengths on the MIR-
Flickr dataset. For further comparison with other state-of-the-art methods, we
also plotted top-K accuracy curves for code lengths of 64 bits and 128 bits, as
shown in Fig. 4 and Fig. 5. Our GRJSR method generally achieves higher MAP
results than other state-of-the-art methods on the Image Query Text and Text
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Fig. 4. Top-K precision curves on the MIRFlickr dataset with 64 bits hash codes.
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Fig. 5. Top-K precision curves on the MIRFlickr dataset with 128 bits hash codes.

Query Image tasks. The longer the code length, the better the MAP results,
with little difference in results between code lengths. From Fig. 4 and Fig. 5,
the results of our method are slightly lower than some of the supervised cross-
modal hash retrieval methods in the top-K precision curve. The longer the code
length, the higher the precision in general. Although our method improves preci-
sion through similarity reconstruction and semantic alignment, we compare not
only with unsupervised cross-modal retrieval methods, but also with the exper-
imental results of supervised retrieval methods, which do not show an absolute
advantage.

Results on NUS-WIDE. The bottom half of Table 1 shows the MAP results
of GRJSR and other advanced methods for different code lengths on the NUS-
WIDE dataset. As shown in Fig. 6 and Fig. 7, we also plotted top-K precision
curves for code lengths of 64 bits and 128bits. In the image to text and text to
image retrieval tasks on the NUS-WIDE dataset, GRJSR achieves best results in
MAP results. As with the results on the MIRFlickr dataset, the top-K precision
curve results for the GRJSR method are slightly lower than the partial supervised
method. However, the precision rates of our method are more stable than those of
other advanced methods at different retrieval points, demonstrating the excellent
performance and stability of the method.

GRJSR still achieves excellent retrieval performance compared to the bench-
mark method. Both IRGR and GRJSR use K-nearest neighbor (KNN) for con-
structing relation graphs, but they treat the graphs differently. HNH, IRGR, and
GRJSR are all based on DJSRH for constructing similarity matrices, but they
treat the similarity representation differently. The experimental results show that
HNH, IRGR, and our method are the best among all compared methods. The
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Fig. 6. Top-K precision curves on the NUS-WIDE dataset with 64 bits hash codes.
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Fig. 7. Top-K precision curves on the NUS-WIDE dataset with 128 bits hash codes.

validity and superiority of our proposed method can be verified by two evaluation
indicators. Although our method is slightly lower than some supervised cross-
modal hash retrieval methods in terms of top-K precision curves, our results
outperform similar unsupervised cross-modal hash retrieval methods and most
supervised methods. Moreover, our method is overall optimal in terms of MAP
evaluation metrics, so GRJSR achieves better cross-modal retrieval performance
compared to other comparative methods.

4.4 Parameter Sensitivity Experiments

In order to choose the appropriate parameter values to obtain better perfor-
mance, Fig. 8 shows the results of our sensitivity experiments for parameters k
and α on the MIRFlickr dataset with a code length of 128 bits. Figure 9 shows
the results of our sensitivity experiments for parameters β and ϕ. The training
batch size is 32, and k is the number of nearest neighbors of each node, which
is the threshold value of the relation graph. For MIRFlickr dataset and NUS-
WIDE dataset, we tune k from 0 to 32 at an increment of 2 per step. We fix
α = 0.1, β = 0.1, ϕ = 1.0, and when k is taken as 31, there is a large improve-
ment in performance. Then we evaluate the trade-off parameters α, β. Parameter
α adjusts the similarity alignment within the two modalities and parameter β
adjusts the similarity alignment between the two modalities. We respectively
experiment the parameters α and β with numbers ranging from 0 to 1 at an
increment of 0.1. The best results were achieved when α was 0.1 and β was 0.1.
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Fig. 8. Parameters sensitivity analysis on MIRFlickr at 128 bits.

Fig. 9. Parameters sensitivity analysis on MIRFlickr at 128 bits.

Parameter ϕ can improve the sensitivity of similarity alignment. We tune ϕ from
1.0 to 2.0 at an increment of 0.1. We fix α = 0.1, β = 0.1, k = 31, and the best
performance was obtained when ϕ = 1.5.

4.5 Ablation Experiments

In order to verify the effectiveness of different modules of GRJSR, we performed
ablation experiments on the MIRFlickr dataset. Table 2 lists five variants of the
ablation experiments. In the GRJSR-1 method, the graph rebasing (GR) mod-
ule and the joint similarity reconstruction module are ablated. In the GRJSR-2
method, the joint similarity reconstruction module is ablated. In the GRJSR-
3 method, the graph rebasing module is ablated. In the GRJSR-4 method,
the training objectives module is ablated. In the GRJSR-5 method, the graph
rebasing, joint similarity reconstruction and the training objectives module are
ablated.

As shown in Table 3, we can see the results of the ablation experiments.
GRJSR-1 and GRJSR-2 illustrate the importance of combining our proposed
graph rebasing method and training strategy, and by graph rebasing we
can obtain a finer-grained relation graph representing similarity. Experimen-
tal results comparing GRJSR-1 and GRJSR-3 show that the joint similarity
reconstruction can significantly improve the performance and reduce the error
caused by meaningless alignment between modalities. Comparing the experi-
mental results of GRJSR and GRJSR-4 can show the importance of the training
strategy. Experiment GRJSR-5 does not have our proposed method and the
results are not satisfactory, which can show the effectiveness of our proposed
method.
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Table 2. Configuration of the ablation experiments on each module based on GRJSR.

Method Local relation
graph building

Local relation
graph rebasing

Global relation
graph construction

Joint similarity
reconstruction

Training
objectives

GRJSR � � � � �
GRJSR-1 � � �
GRJSR-2 � � � �
GRJSR-3 � � � �
GRJSR-4 � � � �
GRJSR-5 � �

Table 3. The MAP results of five variants of GRJSR at 64 bits and 128 bits on
MIRFlickr.

Method 64bits 128bits

I T T I I T T I

GRJSR 0.8950 0.8940 0.9050 0.9030

GRJSR-1 0.8840 0.8760 0.8870 0.8840

GRJSR-2 0.8950 0.8920 0.9010 0.8990

GRJSR-3 0.9010 0.8940 0.9060 0.9000

GRJSR-4 0.8890 0.8950 0.9020 0.9030

GRJSR-5 0.8590 0.8650 0.8650 0.8690

5 Conclusion

This paper rebases local relation graphs using the proposed graph rebasing
method to obtain fine-grained similarity relation graphs. Global relation graphs
are generated by combining image and text modalities’ similarity matrices. The
fine-grained joint similarity alignment is obtained by the proposed joint similar-
ity reconstruction method. This paper also includes a combined intra-modal and
inter-modal training strategy, which is tested on benchmark datasets. Experi-
mental results demonstrate the effectiveness and innovation of this paper.
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Abstract. Real-world image classification usually suffers from the
multi-class imbalance issue, probably causing unsatisfactory perfor-
mance, especially on minority classes. A typical way to address such
problem is to adjust the loss function of deep networks by making use
of class imbalance ratios. However, such static between-class imbalance
ratios cannot monitor the changing latent feature distributions that are
continuously learned by the deep network throughout training epochs,
potentially failing in helping the loss function adapt to the latest class
imbalance status of the current training epoch. To address this issue,
we propose an adaptive loss to monitor the evolving learning of latent
feature distributions. Specifically, the class-wise feature distribution is
derived based on the region loss with the objective of accommodating
feature points of this class. The multi-class imbalance issue can then be
addressed based on the derived class regions from two perspectives: first,
an adaptive distribution loss is proposed to optimize class-wise latent
feature distributions where different classes would converge within the
regions of a similar size, directly tackling the multi-class imbalance prob-
lem; second, an adaptive margin is proposed to incorporate with the
cross-entropy loss to enlarge the between-class discrimination, further
alleviating the class imbalance issue. An adaptive region-based convo-
lutional learning method is ultimately produced based on the adaptive
distribution loss and the adaptive margin cross-entropy loss. Experimen-
tal results based on public image sets demonstrate the effectiveness and
robustness of our approach in dealing with varying levels of multi-class
imbalance issues.
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1 Introduction

In real-world applications of image classification such as human behavior recog-
nition [24], video classification [27], and medical decision making [19], image
classes usually exhibit the multi-class imbalance issue, for which some classes
are under-represented as minorities while others are over-represented as majori-
ties. Catering for this multi-class imbalance issue is important to retain good
predictive performance, especially for those minority classes. Taking image clas-
sifications in the medical domain as an example, the number of images related
to rare diseases is usually much less than those related to common diseases and
healthy cases. Neglecting this issue would probably result in poor predictive
performance on minority classes, which poses severe threats to patients afflicted
with rare diseases and even undermines the public health service system [19].

Existing approaches for multi-class imbalance learning can be grouped into
three categories [13,15,36,41] that are data-level [25,37], model-level [38,42], and
cost-sensitive approaches [6,20,23]. Cost-sensitive approach is the most popular
and efficient approach in mitigating the image multi-class imbalance issue, which
designates different weights to training samples of different classes to adjust the
loss function [41]. The weighting is typically designed based on class imbalance
ratios [3,6,20,23]. However, imbalance ratios remain static and cannot monitor
the changing latent feature distributions that are continuously learned by the
deep network throughout training epochs, potentially failing in helping the loss
functions to adapt to the latest class imbalance status. Latent feature distribu-
tions have shown to be beneficial to the multi-class imbalance learning [11,21],
and thus is especially taken into account in this paper.

To the best of our knowledge, there have been only a few studies employing
derived latent feature distributions to facilitate multi-class imbalance learning
[11,21]. However, they all rely on strict assumptions of the latent feature distri-
bution such as the Gaussian distribution, and cannot adaptively learn the latent
feature distribution of entire training samples [11,21]. Our approach enables
practical learning of the latent feature space by defining a class-wise region,
within which most feature points of the same class can be enclosed. Concretely,
each region in the latent feature space corresponds to a single class, which is
outlined by a class center depicting the geometric location of the feature points
of that class and a radius depicting the spread of the feature points around
the class center. In this way, we do not need to rely on any strict assumption
on the latent feature distribution, which will be adaptively learned throughout
training epochs. Our region learning module utilizes the region loss to derive the
class-wise region over time during the training process of the deep network.

The class imbalance problem can then be addressed based on the derived
class regions in the latent feature space from two perspectives. First, we propose
an adaptive distribution loss to guide the learning process of the class-wise latent
feature distribution, so that all class regions can be gradually enclosed within
a benchmark radius. As a result, the decision boundary constructed based on
class regions in the latent feature space would be unbiased towards any class,
dealing with class imbalance directly. Second, we propose an adaptive margin
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as a mediator to upgrade the original cross-entropy so that between-class dis-
crimination can be enlarged to eliminate possible overlaps of feature points of
different classes, further alleviating the class imbalance issue. Ultimately, we
construct the convolutional networks by optimizing the adaptive distribution
loss and the adaptive margin cross-entropy loss simultaneously, producing our
Adaptive Region-Based Convolutional Learning (ARConvL). In summary, our
main contributions are:

– We propose a region learning module based on the region loss to derive class-
wise regions, each of which consists of a center and a radius, continuously
monitoring the class distribution without posing any strict assumption on
the latent feature space;

– Based on the derived class regions, we propose an adaptive distribution loss
to optimize the class-wise latent feature distribution, so that feature points
of different classes are optimized to be enclosed within a benchmark radius,
addressing the class imbalance problem directly;

– Based on the derived class regions, we propose an adaptive margin as a media-
tor to upgrade the loss function, producing our adaptive margin cross-entropy
loss, so that the between-class discrimination can be improved, further alle-
viating multi-class imbalance learning;

– We experimentally investigate the effectiveness and robustness of our pro-
posed ARConvL in dealing with different levels of class imbalance.

The remainder of this paper is organized as follows. Section 2 presents related
work. Section 3 proposes ARConvL. Experimental setup and results are discussed
in Sect. 4. The paper is concluded in Sect. 5.

2 Related Work

2.1 Multi-class Imbalance Learning

Existing approaches of multi-class imbalance learning can be generally grouped
into three categories: data-level approaches, model-level approaches, and cost-
sensitive approaches [13,15,36,41].

Data sampling is a representative of data-level approaches, which syntheti-
cally balance the training set by under-sampling the majorities or (and) over-
sampling the minorities in the image space [13]. Traditional sampling methods
such as RUS (Random Under-Sampling) [13], ROS (Random Over-Sampling)
[13], SMOTE (Synthetic Minority Over-sampling Technique) [4], and ADASYN
(Adaptive Synthetic Sampling Approach) [12] are typically used for class imbal-
ance learning with the numerical features. Several studies extend ROS and RUS
to the image data [2,18]. Due to the popularity of deep learning, generative
models are also widely used as over-sampling techniques to tackle the multi-
class imbalance problem for the image data [25,37].

Ensemble learning is a representative of model-level approaches that has been
popularly used for multi-class imbalance learning. Good examples are AdaBoost
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[10], AdaBoost.NC [35,36], SMOTEBoost [5], and RUSBoost [29]. Methods of
this category need to train multiple classifiers, and when it comes to deep learn-
ing, the process would often be time-consuming [32,38,42].

Cost-sensitive methods deal with the class imbalance issue by designating
different weights to training samples or (and) classes to distinguish the losses
posed to the majority vs the minority classes. [1,9,13]. The weights are usu-
ally incorporated with the loss function of the deep network to deal with the
multi-class imbalance problem for image data [6,20]. Such methods that make
alterations to the loss function are also known as the loss modification based
methods, for which we present into more details in the subsequent section.

2.2 Loss Modification Based Methods

Methods of this type deal with multi-class imbalance problem via the modifica-
tion of the loss function in the deep networks. Re-weighting and logit adjustment
are two common approaches for loss modification [41].

For re-weighting approaches, the sample (class) weights are usually encoded
into the cross-entropy loss or softmax, rephrasing the loss functions [41]. The
main challenge of the re-weighting approaches is how to set proper weights.
Lin et al. design sample weights based on their classification difficulties and
class imbalance ratios, which are then incorporated into the cross-entropy loss,
contributing to the focal loss [20]. Cui et al. design class weights based on a
novel effective number, contributing to the class-balanced loss [6]. Besides encod-
ing sample (class) weights into the loss, more related strategies include setting
weights directly on the softmax function [28,33].

Logit adjustment approaches tune the logit value of the softmax function to
tackle the multi-class imbalance problem [41]. Margins between classes can be
produced based on class imbalance ratios to adjust the logit [3]. In 2020, Liu et al.
encode the information of feature distribution based on the Gaussian distribution
assumption into the logit, enlarging the margin between the minority classes and
the majority classes [21]. More recently, Menon et al. adjust the logit based on
label frequency to distinguish margins of different classes, contributing to the
logit adjustment loss [23].

This paper aims for proposing an adaptive region-based learning method to
derive feature distributions adaptively across training epochs without posing any
strict assumption to the distribution. With this in mind, we can upgrade the loss
function, dealing with the class imbalance issue.

2.3 Convolutional Prototype Learning

Compared to the traditional CNN, Convolutional Prototype Learning (CPL) uti-
lizes L2-norm, rather than the cosine similarity, to compute the distance (similar-
ity) between the feature point and its connection weight vector [40]. Thus, feature
distributions learned with L2-norm can present hyper-sphere distributions in the
latent feature space. The connection weights between the feature layer and the
distance output layer can be used as centers of classes. In 2018, Yang et al. point
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Fig. 1. Overview learning process of our proposed ARConvL on each training batch.
Figure 1(b) further illustrates the benchmark radius, upper-bound radius, and corre-
sponding margin σ2 that measures the potential overlap between class regions.

out that this framework would learn more robust features especially after adding
an extra regularization term [40]. Later in 2019, Hayat et al. further propose the
affinity loss based on L2-norm, where a hyper-parameter needs to be predefined
and encoded to the loss to manipulate the margin manually [11]. By considering
the distribution of class centers, Hayat et al. also propose a loss to force class
centers evenly distributed, so that the discrimination between classes would be
similar, alleviating the class imbalance problem [11].

CPL has the advantage of describing geometric characteristics of decision
boundaries in a straightforward way such as hyper-sphere. Thus, we opt for
CPL as our base framework to learn feature distributions of image data.

3 ARConvL

This section proposes Adaptive Region-Based Convolutional Learning (ARCon
vL) for multi-class imbalance learning. Section 3.1 outlines the learning frame-
work, followed by Sect. 3.2 presenting the way to adaptively learn class-wise
regions across the training process. Sections 3.3 and 3.4 adaptively optimize the
class-wise latent feature distribution and adaptively produce the between-class
margin cross-entropy loss, respectively, for multi-class imbalance learning.

3.1 Overview of ARConvL

Figure 1 shows the learning process of ARConvL on each training batch {xi, i =
1, · · · , n}, based on which feature points {f(xi)} in the latent feature space are
trained via convolutional layers. Such latent features are then connected with
the region learning module to derive class regions, each of which consists of a
class center C and a class radius R learned from the region loss LR. Based on
the class regions, two loss functions are proposed from two perspectives to cater
for class imbalance learning: the first perspective aims to optimize the class-
wise latent feature distribution to be enclosed within a region with a benchmark
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radius based on the distribution loss LD; the second perspective aims to enlarge
the distance between class regions via the proposed margin as a mediator to
produce the margin loss LM . In formulation, the loss of ARConvL is

L = LR + LD + LM , (1)

where LR, LD, and LM are the region, distribution, and margin cross-entropy
loss functions, respectively. We will present the design of the three loss functions
in detail in the subsequent sections.

As explained in Sect. 2.3, we adopt CPL as the base framework to boost geo-
metric characteristics of the latent feature space [40] and thus L2-norm rather
than the cosine similarity is adopted as the distance metric in this paper. Accord-
ingly, the distance of a sample from a region is d(f(xi), Cj) = ‖f(xi) − Cj‖2
and the distance between two regions is d(Cj , Cj′) = ‖Cj − Cj′‖2, where
j, j′ ∈ {1, · · · , k}, i ∈ {1, · · · , n}, k is class number, and n is training batch
size.

3.2 Region Learning Module

The region learning module aims to compute class-wise regions based on feature
points adaptively across training epochs. In particular, class centers {Cj} are
obtained as the network weights connecting the learned latent features. We then
propose the region loss LR to learn the radius Rj for each class j as

LR =
1
n

k∑

j=1

αj [
n∑

i=1,
xi∈j

(max{0, d∗(f(xi), Cj) − Rj}2 + γ · R2
j )], (2)

where n is the training batch size, αj = maxj′(Nj′)/Nj quantifies the emphasis
to be placed on class j versus other classes, and Nj denotes the total number
of training samples of class j. We are employing γ · R2

j as the regularization
term for γ ∈ [0, 1]. We set γ = 0.05 in this paper based on our preliminary
experiments. Figure 2 illustrates the mechanism of the region loss: if a feature
point falls within its corresponding class region, it causes zero penalty to LR;
otherwise, this feature point contributes the penalty of [d(xi, Cyi

)−Ryi
]2 to LR.

We presume that class radii {Rj} are learnable variables, and other variables
such as variables in d(f(xi), Cj) are frozen as non-learnable1. We attach the
superscript “*” to variables to indicate that they are non-learnable variables.
For example, the non-learnable distance between feature point and class center
is denoted as d∗(f(x), C) in Fig. 1.

Figure 3 illustrates class regions learned by the region learning module of
ARConvL. We deliberately set the two-dimensional latent feature space to facil-
itate visualization. In our experimental studies, the latent feature dimension is
set to 64 to attain good performance. We can see that the majority classes often
learn regions of larger radii compared to those of minorities.
1 In Tensorflow, we can annotate and freeze non-learnable variables using the com-

mand get static value().
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Fig. 2. Illustration of the region loss
LR in Eq. (2). Given a class region with
center C and radius R, f(x1) locates
in the region and thus contributes null
penalty to LR; whereas, f(x2) con-
tributes the penalty of [d(f(x2), C) −
R]2 to LR.

Fig. 3. Illustration of the class regions
in the latent feature space that are
learned by the region learning module
of ARConvL in MNIST.

3.3 Optimizing Class-Wise Latent Feature Distribution

Based on the derived class regions, this section aims to optimize the latent
feature distribution of each class to be enclosed within a region surrounding
the class center with a benchmark radius that is universal to all classes and
can accommodate most feature points of this class. In this way, the decision
boundary constructed based on class regions in the latent feature space would
be unbiased towards any class, dealing with the class imbalance issue directly.
Thereby, one can rely on the class region to optimize the class-wise latent feature
distribution which does not need to pose any assumption (e.g., Gaussian) on it.

The benchmark radius is defined for all classes based on the derived class
regions as

Rben = min
j∈{1,···k}

dmin(Cj)/2, (3)

where dmin(Cj) = minj′ �=j d∗(Cj , Cj′) is the minimum distance of two different
class centers and d∗(Cj , Cj′) is a non-learnable variable as explained in Sec. 3.1.
The upper-bound radius of all classes is formulated as

Rupp = max
j=1,··· ,k

(R∗
j , dmin(Cj)/2 ). (4)

where R∗
j is the radius of class j and is non-learnable in the learning process

of distribution loss. The upper-bound radius indicates the possible largest value
that feature points of each class would spread surrounding the class center. We
have Rben ≤ Rupp.

The idea is to move from the upper-bound radius towards the benchmark
radius downside, as shown in Fig. 1(b), enforcing the class-wise latent feature
distribution to be enclosed within similar-sized regions. Thereby, the decision
boundary would be unbiased towards/against any class. We formulate the ideal
scenario of the class regions as Rben = Rupp. However, in the practical learning
process of latent feature distribution, Rupp > Rben frequently happens, so that
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the classes having larger radii than the benchmark value should be penalized.
The idea is formulated as

β = min(1, (Rupp/Rben)2 − 1), (5)

quantifying the emphasis on LD versus other loss functions of L in Eq. (1)
Overall, we integrate the adaptive distribution loss LD to optimize the latent

feature distribution of each class as

LD =
β

n

k∑

j=1

αj

n∑

i=1,
xi∈j

d2(f(xi), Cj), (6)

where
∑

xi∈j d(f(xi), Cj)2 accumulates the distance of feature points of class j
from their class center Cj and αj and β are with the same meaning as in Eqs. (2)
and (5), respectively. In particular, when the upper-bound Rupp approaches the
benchmark Rben downside, β → 0, leading to zero penalty to LD.

By introducing an adaptive penalization β, LD can also be viewed as a reg-
ularization term of the overall loss L in Eq. (1). Our experiments show that LD

has significant benefit to the prediction performance, being consistent with the
study of Yang et al. [40].

3.4 Enlarging Margin Between Classes

We define the adaptive margin as

σ2 = min(R2
ben, R2

upp − R2
ben), (7)

where Rben and Rupp are the benchmark and upper-bound radii in Eqs. (3)
and (4), respectively. As shown in Fig. 1(b), margin σ2 measures the overlap
between the derived class regions in the latent feature space, for which the
learning algorithm should have pushed the class regions away from each other
to improve their discrimination.

To incorporate the margin into the cross-entropy loss, we rephrase the soft-
max function for a given feature point xi as

p(xi ∈ j) =
ηj · e−d2(f(xi),Cj)

ηj · e−d2(f(xi),Cj) +
∑

j′ �=j ηj′ · e−d2(f(xi),Cj′ )+σ2 ,

where ηj = Nj/(
∑k

j′=1 Nj′) is the imbalance ratio that was shown to be benefi-
cial for class imbalance learning when embedded into the softmax function [23]
and Nj denotes the total number of samples of class j. To push the class centers
being evenly distributed in the latent feature space, we formulate the softmax
function of class center Cj based on the margin σ2 as

p(Cj) =
e−d2(Cj ,Cj)

e−d2(Cj ,Cj) +
∑

j′ �=j e−d2(Cj ,Cj′ )+σ2 =
1

1 +
∑

j′ �=j e−d2(Cj ,Cj′ )+σ2 .
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Overall, we integrate the adaptive margin cross-entropy loss LM for this
training batch across all classes as

LM =
1
n

k∑

j=1

n∑

i=1

− log(p(xi ∈ j)) +
1
k

k∑

j=1

− log(p(Cj)). (8)

Optimizing LM can simultaneously enlarge margins between classes at both the
feature point level and the class center level, alleviating the class imbalance issue.

4 Experimental Studies

This section aims to investigate the effectiveness of the proposed ARConvL
through a series of experiments. The code is available online2.

4.1 Experimental Setup

Following previous studies [11,25,37], our experiments are conducted based on
4 public image repositories: MNIST [8], Fashion MNIST [39], SVHN [26], and
Cifar10 [17], each of which contains 10 classes labeled from class 0 to 9. To
emulate varying class imbalance levels, we randomly sample 1/q of the training
data from even classes (i.e., 0, 2, 4, 6, and 8) as the minority classes for which
1/q ∈ {1, 1/10, 1/20, 1/50, 1/100}, following previous studies [11,16]. All train-
ing samples of odd classes are retained as the majority classes. For instance,
5 MNIST-related datasets are produced as MNIST-1, MNIST-10, MNIST-20,
MNIST-50, and MNIST-100. Table 1 of the supplementary material provides
description of the datasets used in the study.

For image sets produced from MNIST and Fashion MNIST, the input size
is (28, 28, 1) and we employ a simple backbone consisting of two sets of double
convolutional layers connected with one max-pooling layer, one flatten layer, one
dense layer, and a batch normalization layer in sequence. For image sets produced
based on SVHN and Cifar10, the input size is (32, 32, 3) and we employ ResNet
[30] with depth 44 as the backbone. All methods are set under the same CPL
framework. The latent space dimension is 64 and the training batch size is 128
in our experiments. Stochastic Gradient Descent (SGD) is used as the optimizer
with the momentum 0.9, and the initial learning rate is set to 0.1 for all datasets.
For MNIST, Fashion MNIST, and SVHN, the total number of training epochs is
set to 50, and we decay the learning rate by 0.1 at the 26-th and 41-th epochs.
For Cifar10, the total number of training epochs is set to 100, and we decay the
learning rate by 0.1 at the 51-th and 81-th epochs. For the proposed ARConvL,
the learning rate for the radius variables is set to 0.001 at the first three epochs
and 0.01 at the remaining training epochs.

We randomly select 90% of the training samples for model training and the
remaining 10% are reserved for validation, so that we can decide the best model
2 Code and supplementary material: https://github.com/shuxian-li/ARConvL.

https://github.com/shuxian-li/ARConvL
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Table 1. G-means (%) of the investigated methods. Each entry is the mean±std of 10
times. The last column corresponds to our ARConvL. The best model on each dataset
is highlighted in bold. The last row lists the average ranks (avgRank) of each model
across datasets. Significant difference against ARConvL is highlighted in yellow.

Data CPL GCPL Focal CB CB Focal Affinity LA ARConvL

Mnist-1 99.2±0.1 99.4±0.0 99.4±0.1 99.2±0.1 99.4±0.1 99.5±0.1 99.2±0.1 99.4±0.1

Mnist-10 98.2±0.2 98.5±0.1 98.8±0.2 98.3±0.1 98.6±0.3 98.7±0.2 98.5±0.1 99.1±0.0

Mnist-20 97.3±0.2 97.4±0.3 98.3±0.3 97.5±0.3 98.1±0.3 97.5±0.4 98.1±0.3 98.8±0.2

Mnist-50 95.1±0.3 94.4±0.4 96.8±0.5 95.9±0.3 97.0±0.5 94.7±1.4 97.1±0.4 98.4±0.3

Mnist-100 92.3±0.8 89.0±1.3 94.8±0.9 93.5±0.9 94.6±0.8 90.6±1.5 96.0±0.5 97.3±0.6

Fashion-1 91.0±0.2 92.0±0.2 91.4±0.4 91.1±0.2 91.4±0.4 92.4±0.2 91.0±0.2 92.2±0.2

Fashion-10 86.6±0.6 87.1±0.4 86.8±0.5 86.9±0.5 86.9±0.4 86.2±0.3 87.6±0.3 88.5±0.5

Fashion-20 84.3±0.6 84.1±0.8 84.6±0.8 84.5±0.7 84.7±0.6 82.6±0.8 85.6±0.5 86.3±0.7

Fashion-50 80.0±1.0 77.9±1.4 81.2±1.0 81.2±1.1 81.6±1.2 76.3±1.8 82.2±1.9 84.0±1.0

Fashion-100 75.1±2.7 72.7±2.1 77.5±2.2 77.8±1.5 78.2±1.3 55.4±20.2 79.6±2.5 82.3±0.8

SVHN-1 95.4±0.1 95.3±0.2 96.0±0.2 95.4±0.1 96.1±0.1 95.8±0.1 95.4±0.1 95.9±0.2

SVHN-10 88.5±0.8 86.9±0.9 91.7±0.7 90.8±0.3 92.0±0.2 90.4±0.4 91.8±0.4 93.3±0.2

SVHN-20 83.5±1.5 77.8±2.8 88.8±0.6 87.9±0.4 89.2±0.7 84.7±0.9 90.6±0.4 91.9±0.5

SVHN-50 75.3±0.6 48.7±8.0 83.1±0.6 82.0±0.7 84.1±0.7 15.4±14.8 88.2±1.4 90.1±1.0

SVHN-100 61.6±2.5 0.0±0.0 72.9±2.6 70.9±2.3 75.6±1.7 0.0±0.0 86.1±0.9 87.2±1.1

Cifar10-1 89.7±0.2 89.6±0.2 91.1±0.2 89.8±0.3 91.1±0.2 89.9±0.3 89.6±0.3 90.3±0.4

Cifar10-10 77.3±0.6 73.4±1.5 78.6±0.8 77.3±0.9 79.1±0.4 74.1±1.1 81.9±0.4 82.3±0.6

Cifar10-20 69.5±1.1 61.6±1.5 69.9±1.2 69.3±1.8 71.0±1.0 54.9±3.9 79.0±0.6 79.6±0.6

Cifar10-50 54.9±3.0 39.9±4.1 57.5±2.6 55.0±3.3 57.2±3.2 0.0±0.0 73.3±1.6 75.6±0.6

Cifar10-100 43.9±1.2 5.0±7.8 46.2±2.2 46.0±2.5 45.8±3.4 0.0±0.0 69.3±2.3 71.3±1.2

avgRank 6.45 6.825 3.5 5.2 3.25 6.175 3.2 1.4

in terms of G-mean [31] out of the models created across training epochs as our
learned deep model. This is to alleviate the over-fitting issue which may partic-
ularly impact the deep learning process. We evaluate predictive performance of
deep models on spare test sets.

ARConvL are compared against 2 baseline methods, namely CPL [40] and
GCPL [40], and 5 state-of-the-art methods, namely Focal Loss (“Focal”) [20],
Class Balanced Loss (“CB”) [6], Class Balanced Focal Loss (“CB Focal”) [6],
Affinity Loss (“Affinity”) [11], and Logit Adjustment Loss (“LA”) [23]. Table 2
of the supplementary material reports the parameter settings for those methods.

G-mean [31] and class-wise accuracy are used to evaluate performance for
being popularly used and shown to be robust in class imbalance learning [11,16].
Experiments are repeated 10 times, and the average performance (mean) ±
standard deviation (std) are reported. Friedman tests or Wilcoxon-signed rank
tests are used to detect statistically significant difference between more than
two or two methods across datasets [7]. Given rejection of H0, Holm-Bonferroni
correction [14] is conduced as the post-hoc test.
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4.2 Performance Comparison

This section discusses performance comparisons between our ARConvL against
its competitors for multi-class imbalance learning. Comparisons in terms of G-
mean are reported in Table 1; comparisons in terms of class-wise accuracy present
the same conclusions and can be found in Sect. 3.1 of the supplementary material
for space reason. The last column corresponds to ARConvL.

Table 1 shows that our ARConvL achieves the best G-means in 16 out of 20
datasets, showing the effectiveness of our approach in dealing with varying levels
of class imbalance. Friedman tests at the significance level 0.05 reject H0 with
the p-value 0, meaning that there is significant difference between methods. The
average rank (“avgRank”) at the last row provides a reasonable idea of how well
each method performs compared to others. The average rank of ARConvL is
1.4, being the best (lowest value) among all competing methods. This indicates
that our method generally performs the best across datasets with different levels
of class imbalance. ARConvL is then chosen as the control method to conduct
post-hoc tests for performing the best among all classifiers. Post-hoc tests show
that the proposed ARConvL significantly outperforms all competitors.

Note that GCPL obtains zero G-mean in SVHN-100; Affinity obtains zero G-
means individually in SVHN-100, Cifar10-50, and Cifar10-100. Further exploita-
tion finds that the corresponding method got zero recalls in certain minority
classes, thereby resulting in zero G-means. Such poor recalls usually occur in
severely imbalanced scenarios.

Fig. 4. Performance deterioration in terms of G-mean (%) with the increase of class
imbalance levels. The x-axis represents different class imbalance levels, and the y-axis
represents G-means. We show G-mean between 50 and 100 to facilitate visualization.

4.3 Performance Deterioration with Increasing Imbalance Levels

This section investigates the relation between the class imbalance levels and
predictive performance of all investigated methods on each image repository.
Figure 4 shows experimental results in terms of G-means. We can see that all
methods achieve similar G-means in the original image repository for the case
q = 1. With the increase of class imbalance levels with larger q, performance of all
methods declines. The proposed ARConvL usually achieves better G-means than
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its competitors when datasets become more imbalanced, demonstrating better
robustness of ARConvL against different levels of class imbalance. Experimental
results in terms of class-wise accuracy show the same pattern and are reported
in Fig. 1 and Sect. 3.2 of the supplementary material.

4.4 Effect of Each Adaptive Component of ARConvL

This section investigates the effect of each adaptive component of the overall
loss in Eq. (1). Particularly, the region loss LR is indispensable to derive the
class-wise regions and thus should not be eliminated; the adaptive margin cross-
entropy loss LM contains two adaptive components, namely the adaptive margin
σ2 and the loss for class centers 1

k

∑k
j=1 − log(p(Cj)). Therefore, effects of the

adaptive distribution loss LD in Eq. (6), the adaptive margin σ2 (of LM in
Eq. (8)), and the penalty on class centers (of LM ) are investigated individually.

For the space reason, we only report experimental results in terms of G-means
in this section. Experimental results in terms of class-wise accuracy lead to the
same conclusions and are provided in Sect. 3.3 of the supplementary material.

Effect of Adaptive Distribution Loss. To conduct this investigation, the
adaptive parameter β of ARConvL is fixed and chosen from {0, 0.5, 1}. In par-
ticular, ARConvL without the adaptive distribution loss is equivalent to the
case β = 0. Pair-wise comparisons in terms of G-means between ARConvL in
Table 1 and the degraded ARConvL with non-adaptive β in Table 2(a) show the
performance deterioration in most cases.

Given fixed β = 0 and β = 1, Wilcoxon signed rank tests reject H0 with p-
values 0.0017 and 0.04, respectively, showing significant difference in predictive
performance between ARConvL and the degraded versions. Average ranks are
1.15 and 1.3 for ARConvL vs 1.85 and 1.7 for the degraded versions, respec-
tively. This means that adaptively learning β throughout the training epochs
has significantly beneficial effect on predictive performance.

Given fixed β = 0.5, Wilcoxon signed rank test does not find significant
difference between ARConvL and the degraded version with p-value 0.39. Further
analyses found that on the datasets that the degraded version outperforms,
performance deterioration of ARConvL is at most 0.79% in Cifar10-10; whereas
on the datasets that ARConvL outperforms, performance superiority can be as
high as 4.59% in Cifar10-100, with the average improvement at 0.80%. This
indicates that the degraded ARConvL may cause relatively large performance
decline compared to the small performance improvement it may have.

Overall, the experimental investigation shows the effectiveness of the adaptive
distribution loss, in view of the adaptive β, on retaining good performance in
multi-class imbalance learning.

Effect of Adaptive Margin. To conduct this investigation, the adaptive mar-
gin σ2 in LM of ARConvL is fixed and chosen from {0, 0.5, 1}. In particular,
ARConvL without the adaptive margin is equivalent to the case σ2 = 0. Pair-
wise comparisons in terms of G-means between ARConvL in Table 1 and the
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Table 2. G-means (%) of the degraded ARConvL with non-adaptive β. Each entry
is the mean±std of 10 times. Better pair-wise performance compared to ARConvL in
Table 1 is highlighted in bold. The last row lists average ranks (avgRank) of ARConvL
vs the degraded version across datasets. Significant difference is highlighted in yellow.

(a) Non-adaptive β

Data β = 0 β = 0.5 β = 1

Mnist-1 99.3±0.0 99.3±0.1 99.3±0.1

Mnist-10 98.7±0.1 99.1±0.0 99.0±0.1

Mnist-20 98.1±0.3 98.9±0.1 98.9±0.1

Mnist-50 97.1±0.4 98.5±0.2 98.6±0.2

Mnist-100 95.6±0.6 97.6±0.3 97.8±0.3

Fashion-1 91.4±0.2 92.2±0.2 92.0±0.2

Fashion-10 87.4±0.2 88.7±0.3 88.3±0.5

Fashion-20 84.8±1.1 86.6±0.9 86.4±0.9

Fashion-50 81.7±1.4 82.8±2.8 84.3±0.8

Fashion-100 79.6±2.2 81.3±1.0 81.7±1.4

SVHN-1 96.3±0.1 95.7±0.3 94.9±0.7

SVHN-10 93.0±0.5 93.2±0.4 92.0±1.6

SVHN-20 91.3±0.5 92.1±0.4 91.8±0.7

SVHN-50 88.0±1.3 89.3±1.4 89.7±1.7

SVHN-100 83.0±3.5 86.7±0.8 85.2±5.7

Cifar10-1 92.0±0.2 90.2±0.5 89.6±0.5

Cifar10-10 82.5±0.6 82.9±0.6 81.8±1.0

Cifar10-20 78.2±0.7 80.0±0.7 79.4±1.1

Cifar10-50 70.9±1.9 75.3±0.9 75.6±0.8

Cifar10-100 62.7±2.8 68.2±3.5 71.6±0.7

avgRank 1.15/1.85 1.4/1.6 1.3/1.7

(b) Non-adaptive σ2

σ2 = 0 σ2 = 0.5 σ2 = 1

99.4±0.0 99.4±0.0 99.4±0.1

99.0±0.1 99.0±0.1 99.1±0.1

98.9±0.1 98.8±0.2 98.9±0.2

98.4±0.2 98.4±0.3 98.5±0.2

97.4±0.4 97.6±0.4 97.3±0.6

91.8±0.1 92.1±0.2 92.1±0.2

88.3±0.4 88.5±0.4 88.4±0.4

86.5±1.0 86.3±1.3 86.3±0.8

84.6±0.6 84.6±0.5 83.8±1.3

82.2±1.5 81.9±1.7 81.9±1.5

95.3±0.2 95.6±0.2 95.9±0.2

92.0±0.4 92.3±0.6 92.8±0.3

90.2±1.1 90.1±1.8 91.2±1.5

88.0±1.1 88.8±1.3 89.4±0.5

84.9±2.7 85.0±2.2 85.7±2.8

89.3±0.5 90.0±0.4 90.3±0.5

80.1±1.1 81.6±0.7 81.9±0.7

77.0±1.4 78.7±0.6 79.4±0.8

73.8±1.4 74.8±1.0 74.6±1.7

69.1±3.0 70.1±2.6 69.3±3.1

1.25/1.75 1.2/1.8 1.25/1.75

(c) ARC-C

ARC-C

99.3±0.0

99.1±0.1

98.9±0.1

98.4±0.2

97.4±0.5

91.7±0.2

85.2±1.2

83.4±1.8

81.8±1.4

80.7±1.7

12.1±1.5

54.1±34.8

75.3±21.4

79.6±2.1

76.9±4.6

68.2±8.5

64.1±1.4

62.5±1.6

61.4±1.6

59.6±3.5

1.1/1.9

degraded ARConvL with non-adaptive σ2 in Table 2(b) show the performance
deterioration in the vast majority of cases.

Given σ2 with those fixed values, Wilcoxon signed rank tests reject H0 with
p-values 0.0045, 0.0036, and 0.0057, respectively, showing significant difference in
predictive performance between ARConvL and the degraded versions with non-
adaptive σ2. Performance comparisons in terms of average ranks further show
the significance of such performance deterioration of the degraded ARConvL.
This means that adaptively learning σ2 throughout the training epochs has sig-
nificantly beneficial effect on predictive performance, demonstrating the effec-
tiveness of the adaptive margin on retaining good performance in multi-class
imbalance learning.

Effect of Loss for Class Centers. To conduct this investigation, we produce
the degraded version of ARConvL (denoted as “ARC-C”) by eliminating the loss
for class centers 1

k

∑k
j=1 − log(p(Cj) from LM in Eq. (8). The loss of ARC-C in

accordance with LM is degraded as 1
n

∑k
j=1

∑n
i=1 − log(p(xi ∈ j). Performance

comparisons in terms of G-means between ARConvL in Table 1 and the degraded
ARC-C in Table 2(c) show the performance deterioration in almost all cases.
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Wilcoxon signed rank test rejects H0 with p-value 3.38 ·10−4, showing signif-
icant difference in predictive performance between ARConvL and the degraded
ARC-C. Performance comparisons in terms of average ranks further show the
significance of such performance deterioration eliminating the loss for class cen-
ters, demonstrating the effectiveness of the loss for class centers in multi-class
imbalance learning.

Fig. 5. Training curves of ARConvL, LA, and CB Focal on CelebA (left) and iNatu-
ralist 2018 (right).

4.5 Utility in Large-Scale Datasets

To demonstrate the proposed ARConvL can be utilized on large-scale real-world
datasets, we present training curves of ARConvL and the two most competitive
methods CB Focal [6] and LA [23] on two additional large-scale datasets, namely
CelebA [22] and iNaturalist 2018 [34]. For CelebA, only five non-overlapping
classes (blonde, black, bald, brown, and gray) are kept following previous work
[37]. Details of these datasets are shown in Sect. 1 of the supplementary material.
The input size is (64, 64, 3) for CelebA and (224, 224, 3) for iNaturalist 2018.
We employ ResNet [30] with depth 56 as the backbone in this extra study. The
training batch size is set to 64; the total number of training epochs is set to 100.
We decay the learning rate by 0.1 at the 51-th and 81-th epochs.

Training curves on those large-scale datasets are shown in Fig. 5. Figure 5(a)
shows that ARConvL outperforms CB Focal across all training epochs; ARConvL
yields better or similar performance compared to LA and it can converge
faster than LA within 52 epochs. Figure 5(b) shows similar experimental results:
ARConvL achieves better G-means at most training epochs and possesses better
convergence than its competitors. In particular, between the training epoch 52
and 78, LA and ARConvL achieve similar performance, and after the training
epoch 82, ARConvL outperforms LA. All methods confront with zero G-means
at some training epochs, meaning that they fail in detecting any example of some
class(es). Performance in terms of class-wise accuracy shows the same experi-
mental results and can be found in Sect. 3.4 of the supplementary material.
Therefore, experimental results on two large-scale datasets show the utility of
the proposed ARConvL over its competitors.
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5 Conclusion

This paper proposes ARConvL for multi-class imbalance learning, which derives
class-wise regions in the latent feature space adaptively throughout training
epochs. Latent feature distributions can then be well depicted by class regions
without relying on any strict assumption. Based on the derived class regions, we
address the multi-class imbalance issue from two perspectives. First, an adaptive
distribution loss is proposed to optimize the class-wise latent feature distribu-
tion, by pushing down the upper-bound of the radii to approach the benchmark
radius, directly tackling the multi-class imbalance problem. Second, an adap-
tive margin cross-entropy loss is proposed by employing the defined margin as a
mediator to improve the discrimination between classes, further alleviating the
class imbalance problem.

Experimental results based on plenty of real-world image sets demonstrated
the superiority of our ARConvL to SOTA methods. Investigations on the per-
formance deterioration with respect to different imbalance ratios showed the
robustness of the proposed method. Ablation studies demonstrated the effec-
tiveness of the adaptive distribution loss and the adaptive margin cross-entropy
loss in the learning process. Experiments on two large-scale real-world image
sets showed the utility of ARConvL on large-scale datasets.

Future work includes additional experimental investigations to better under-
stand how data noise and missing data affect the performance of our proposed
method and the extension of ARConvL by having multiple regions assigned to
each class (instead of only one).
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Abstract. Binary neural networks (BNNs) are an attractive solution
for developing and deploying deep neural network (DNN)-based applica-
tions in resource constrained devices. Despite their success, BNNs still
suffer from a fixed and limited compression factor that may be explained
by the fact that existing pruning methods for full-precision DNNs cannot
be directly applied to BNNs. In fact, weight pruning of BNNs leads to
performance degradation, which suggests that the standard binarization
domain of BNNs is not well adapted for the task. This work proposes a
novel more general binary domain that extends the standard binary one
that is more robust to pruning techniques, thus guaranteeing improved
compression and avoiding severe performance losses. We demonstrate a
closed-form solution for quantizing the weights of a full-precision network
into the proposed binary domain. Finally, we show the flexibility of our
method, which can be combined with other pruning strategies. Experi-
ments over CIFAR-10 and CIFAR-100 demonstrate that the novel app-
roach is able to generate efficient sparse networks with reduced memory
usage and run-time latency, while maintaining performance.

Keywords: Binary neural networks · Deep neural networks ·
Pruning · Sparse representation

1 Introduction

The increasing number of connected Internet-of-Things (IoT) devices, now sur-
passing the number of humans connected to the internet [6], has led to a sensors-
rich world, capable of addressing real-time applications in multiple domains,
where both accuracy and computational time are crucial [1]. Deep neural net-
works (DNNs) have the potential of enabling a myriad of new IoT applications,
thanks to their ability to process large complex heterogeneous data and to extract
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patterns needed to take autonomous decisions with high reliability [20]. How-
ever, DNNs are known for being resource-greedy, in terms of required compu-
tational power, memory, and energy consumption [4], whereas most IoT devices
are characterized by limited resources. They usually have limited processing
power, small storage capabilities, they are not GPU-enabled and they are pow-
ered with batteries of limited capacity, which are expected to last over 10 years
without being replaced or recharged. These constraints represent an important
bottleneck towards the deployment of DNNs in IoT applications [40].

A recent and notable example to enable the usage of DNNs in limited resource
devices are binary neural networks (BNNs) [15]. BNNs use binary weights and
activation functions that allow them to replace computationally expensive mul-
tiplication operations with low-cost bitwise operations during forward propaga-
tion. This results in faster inference and better compression rates, while main-
taining an acceptable accuracy for complex learning tasks [10,25]. For instance,
BNNs have achieved over 80% classification accuracy on ImageNet [10,31].
Despite the good results, BNNs have a fixed and limited compression factor
compared to full-precision DNNs, which may be insufficient for certain size and
power constraints of devices [22].

A way to further improve BNNs’ compression capacity is through network
pruning, which seeks to control a network’s sparsity by removing parameters
and shared connections [12]. Pruning BNNs, however, is a more challenging task
than pruning full-precision neural networks and it is still a challenge with many
open questions [38]. Current attempts [9,19,28,32,36–38] often rely on train-
ing procedures that require more training stages than standard BNNs, making
learning more complex. Moreover, these methods fail in highly pruned scenarios,
showing severe accuracy degradation over simple classification problems.

In this work, we introduce sparse binary neural network (SBNN), a more robust
pruning strategy to achieve sparsity and improve the performance of BNNs. Our
strategy relies on entropy to optimize the network to be largely skewed to one of the
two possible weight values, i.e. having a very low entropy. Unlike BNNs that use
symmetric values to represent the network’s weights, we propose a more general
binary domain that allows the weight values to adapt to the asymmetry present
in the weights distribution. This enables the network to capture valuable infor-
mation, achieve better representation, and, thus better generalization. The main
contributions of our work can be summarized as follows: 1) We introduce a more
general binary domainw.r.t. the one used byBNNs to quantize real-valuedweights;
2) we derive a closed-form solution for binary values that minimizes quantization
error when real-valued weights are mapped to the proposed domain; 3) we enable
the regularization of the BNNs weights distribution by using entropy constraints;
4) we present efficient implementations of the proposed algorithm, which reduce
the number of bitwise operations in the network proportionally to the entropy of
the weight distribution; and 5) we demonstrate SBNN’s competitiveness and flex-
ibility through benchmark evaluations.

The remaining of this work is organized as follows. Section 2 discusses pre-
vious related works. The core of our contributions are described in Sect. 3. In
Sect. 4, we study the properties of the proposed method and assess its perfor-
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mance, in terms of accuracy and operation reduction at inference, through a set
of experiments using, CIFAR-10, CIFAR-100 [18] and ImageNet [31] datasets.
Finally, a discussion on the results and main conclusions are drawn in Sect. 5.

2 Related Work

We first provide an overview of BNNs. Next, we review sparsification through
pruning [2,12,27,34] and quantization [11,16,39,41], the two network compres-
sion strategies this work relies on. A broad review covering further network
compression and speed-up techniques can be found in [21].

Binary Neural Networks. BNNs [15] have gained attention in recent years
due to their computational efficiency and improved compression. Subsequent
works have extended [15] to improve its accuracy. For instance, [30] introduced
a channel-wise scaling coefficient to decrease the quantization error. ABC-Net
adopts multiple binary bases [23], and Bi-Real [26] recommends short residual
connection to reduce the information loss and a smoother gradient for the signum
function. Recently, ReActNet [25] generalized the traditional sign(·) and PReLU
activation functions to extend binary network capabilities, achieving an accuracy
close to full-precision ResNet-18 [13] and MobileNet V1 [14] on ImageNet [31]. By
adopting the RSign, the RPReLU along with an attention formulation Guo et al.
[10] surpassed the 80% accuracy mark on ImageNet. Although these works have
been successful at increasing the performance of BNNs, few of them consider the
compression aspect of BNNs.

Network Sparsification. The concept of sparsity has been well studied beyond
quantized neural networks as it reduces a network’s computational and stor-
age requirements and it prevents overfitting. Methods to achieve sparsity either
explicitly induce it during learning through regularization (e.g. L0 [27] or L1 [12]
regularization), or do it incrementally by gradually augmenting small networks
[2]; or by post hoc pruning [8,33,34].

BNNs pruning is particularly challenging because weights in the {±1} domain
cannot be pruned based only on their magnitude. Existing methods include
removing unimportant channels and filters from the network [9,28,37,38], but
optimum metrics are still unclear; quantizing binary kernels to a smaller bit size
than the kernel size [36]; or using the {0,±1} domains [19,32]. Although these
works suggest that the standard {±1} binary domain has severe limitations
regarding compression, BNNs using the {0,±1} domain have reported limited
generalization capabilities [19,32]. In our work, we extend the traditional binary
domain to a more general one, that can be efficiently implemented via sparse
operations. Moreover, we address sparsity explicitly with entropy constraints,
which can be formulated as magnitude pruning of the generic binary weight
values mapping them in the {0, 1} domain. In our proposed domain, BNNs are
more robust to pruning strategies and show better generalization properties than
other pruning techniques for the same sparsity levels.
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Quantization. Network quantization allows the use of fixed-point arithmetic
and a smaller bit-width to represent network parameters w.r.t the full-precision
counterpart. Representing the values using only a finite set requires a quantiza-
tion function that maps the original elements to the finite set. The quantization
can be done after training the model, using parameter sharing techniques [11],
or during training by quantizing the weights in the forward pass, as ternary neu-
ral networks (TNNs) [17], BNNs [5] and other quantized networks do [16,39].
Our work builds upon the strategy of BNNs by introducing a novel quantization
function that maps weights to a binary domain that is more general than the
{±1} domain used in most state-of-the-art BNNs. This broader domain signifi-
cantly reduces the distortion-rate curves of BNNs across various sparsity levels,
enabling us to achieve greater compression.

3 Method

The proposed SBNN achieves network pruning via sparsification by introducing a
novel quantization function that extends standard BNNs weight domain {±1} to
a more generic binary domain {α, β} and a new penalization term in the objective
loss controlling the entropy of the weight distribution and the sparsity of the
network (Sect. 3.2). We derive in Sect. 3.3 the optimum SBNN’s {α, β} values,
i.e. the values that minimize the quantization loss when real-valued weights are
quantized in the proposed domain. In Sect. 3.4, we use BNN’s state-of-the-art
training algorithms for SBNN training by adding the sparsity regularization term
to the original BNN’s objective loss. Section 3.5 describes the implementation
details of the proposed SBNN to illustrate their speed-up gains w.r.t BNNs.

3.1 Preliminaries

The training of a full-precision DNN can be seen as a loss minimization problem:

arg min
˜W

L(y, ŷ) (1)

where L(·) is a loss function between the true labels y and the predicted values
ŷ = f(x; ˜W), which are a function of the data input x and the network’s full
precision weights ˜W = {w̃�}, with w̃� ∈ R

N�

the weights of the �th layer, and
N =

∑

� N � the total number of weights in the DNN. We denote the ith weight
element of w̃� as w̃�

i .

A BNN [15] uses a modified signum function as quantization function that
maps full precision weights ˜W and activations ã to the {±1} binary domain,
enabling the use of low-cost bitwise operations in the forward propagation, i.e.

W = sign(˜W) ,
∂g(w̃i)
∂w̃i

=

{

∂g(w̃i)
∂wi

, if − 1 ≤ w̃i ≤ 1
0 , otherwise,
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where sign(·) denotes the modified sign function over a vector, g(·) is a differen-
tiable function, W the network’s weights in the {±1} binary domain, wi a given
weight in the binary domain, and w̃i the associated full-precision weight.

3.2 Sparse Binary Neural Network (SBNN) Formulation

Given Ω� = {α�, β�} a general binary domain, with α�, β� ∈ R, and α� < β�, let
us define a SBNN, such that, for any given layer �,

w�
i ∈ Ω� ∀ i, (2)

with w�
i the ith weight element of the weight vector, w�, and w =

{

w�
}

the set
of weights for all the SBNN.

We denote Sα� and Sβ� the indices of the weights with value α�, β� in w�

Sα� = {i | 1 ≤ i ≤ N �, w�
i = α�}, Sβ� = {i | 1 ≤ i ≤ N �, w�

i = β�}.

Since α� < β� ∀ �, it is possible to estimate the number of weights taking the
lower and upper values of the general binary domain over all the network:

L� = |Sα� |, U � = |Sβ� |, L =
∑

�

L�, U =
∑

�

U �, (3)

with L + U = N , the total number of SBNN network weights. In the remaining
of the manuscript, for simplicity and without loss of generality, please note that
we drop the layer index � from the weights notation.

To express the SBNN weights w in terms of binary {0, 1} weights, we now
define a a mapping function r : {0, 1} −→ {α, β} that allows to express w:

wi = r
(

w{0,1},i

)

=
(

w{0,1},i + ξ
) · η (4)

with
α = ξ · η, β = (1 + ξ) · η, (5)

and w{0,1},i ∈ {0, 1}, the ith weight of a SBNN, when restricted to the binary set
{0, 1}. Through these mapping, 0-valued weights are pruned from the network,
the making SBNN sparse.

The bit-width of a SBNN is measured with the binary entropy h() of the
distribution of α-valued and β-valued weights,

h(p) = −p log2(p) − (1 − p) log2(1 − p) [bits/weight] , (6)

with p = U/N . Achieving network compression using a smaller bit-width than
that of standard BNN’s weights (1 bit/weight) is equivalent to setting a con-
straint in the SBNN’s entropy to be less or equal than a desired value h∗, i.e.

h(U/N) ≤ h∗. (7)
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Given h−1() the inverse binary entropy function for 0 ≤ p ≤ 1/2, it is straight-
forward to derive such constraint, U ≤ M where

M � N · h−1(h∗). (8)

From Eq. (7) and (8), this implies that the constraint corresponds to restricting
the maximum number of 1s in the network, and thus the sparsity of the network.
Thus, the original full-precision DNN loss minimization problem (Eq. (1)) can
be reformulated as:

arg min
w{0,1},ξ,η

L(y, ŷ)

s.t. w{0,1} ∈ {0, 1}N ,

U ≤ M < N.

(9)

The mixed optimization problem in Eq. (9) can be simplified by relaxing the
sparsity constraint on U through the introduction of a non-negative function
g(·), which penalizes the weights when U > M :

arg min
W{0,1},ξ,η

L(y, ŷ) + λg(W{0,1})

s.t. W{0,1} ∈ {0, 1}N
(10)

and λ controls the influence of g(·). A simple, yet effective function g(W{0,1})
is the following one:

g
(

W{0,1}
)

= ReLU (U/N − EC) , (11)

where EC = M/N represents the fraction of expected connections, which is
the fraction of 1-valued weights in W{0,1} over the total number of weights of
W{0,1}.

Equation (9) allows to compare the proposed SBNN with the standard BNN
formulation. By setting ξ = −1/2 and η = 2, for which α = −1 and β = +1
(Eq. (4)), and removing the constraint on U leads to the standard formulation of
a BNN. This implies that any BNN can be represented using the {0, 1} domain
and perform sparse operations. However, in practice when U is not contrained to
be ≤ M , then U ≈ N/2 and h(1/2) = 1 bit/weight, which means that standard
BNNs cannot be compressed more.

3.3 Weight Optimization

In this section, we derive the value of Ω = {α, β} which minimizes the quanti-
zation error when real-valued weights are quantized using it.

The minimization of the quantization error accounts to minimizing the bina-
rization loss, LB , which is the optimal estimator when ˜W is mapped to W [30].
This minimization is equivalent to finding the values of α and β which minimize
LB . To simplify the derivation of the optimum α and β values, we minimize LB
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over two variables in one-to-one correspondence with α and β. To achieve this,
as in Eq. 4–5, we map wi ∈ Ω to wi ∈ {−1,+1}, i.e.

wi = τwi + φ,

where τ and φ are two real-valued variables, and α = −τ + φ and β = τ + φ.
As a result, α and β are in one-to-one correspondence with τ and φ, and the
minimization of LB can be formulated as

τ∗, φ∗ = arg min
τ,φ

LB = arg min
τ,φ

‖w̃ − (τw + φ1)‖2 (12)

where ‖·‖2 is the �2-norm and 1 is the all-one entries matrix.
By first expanding the �2-norm term and using the fact that sum(w) =

N �(2p − 1), it is straightforward to reformulate Eq. 12 as a a function of the
sum of real-valued weights, their �1-norm, the fraction of +1-valued binarized
weights and the two optimization parameters. In such case, the ∇LB is

∇LB =
(∂LB

∂τ
∂LB

∂φ

)

= 2
( −‖w̃‖1 + N �

(

τ + φ(2p − 1)
)

− sum(w̃) + N �
(

φ + τ(2p − 1)
)

)

. (13)

Solving to find the optimal values τ and φ we obtain

τ∗ =
‖w̃‖1
N �

− φ∗(2p − 1) , φ∗ =
sum(w̃)

N �
− τ∗(2p − 1). (14)

When p = 0.5, like in standard BNNs, it gives the classical value of τ∗ =
‖w̃‖1/N � as in [30]. By substituting φ∗ in Eq. (12), we obtain the closed-form
solution

τ∗ =
‖w̃‖1 − (2p − 1)sum(w̃)

N �(1 − (2p − 1)2)
, φ∗ =

sum(w̃) − (2p − 1)‖w̃‖1
N �(1 − (2p − 1)2)

. (15)

As the gradient (Eq. 13) is linear in φ and τ , this implies that there is a
unique critical point. Moreover, an analysis of the Hessian matrix confirms that
LB is convex and that local minimum is a global minimum. The derivation is
here omitted as it is straightforward.

3.4 Network Training

The SBNN training algorithm builds upon state-of-the-art BNN training algo-
rithms [3,15,25], while introducing network sparsification. To profit from BNNs
training scheme, we replace W{0,1}, ξ and η (Eq. (10)) with W, τ and φ. Doing
so, L(y, ŷ) corresponds to the loss of BNN algorithms LBNN. SBNN training also
requires to add the penalization term from Eq. (11) to account for sparsity. To
account for W, the regularization function g(W{0,1}) (Eq. (11)) is redefined
according to

j(W) = ReLU

((

∑

i

wi + 1
2N

)

− EC

)

, (16)
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Fig. 1. BNNs vs. SBNNs operations in a convolutional layer using cout filters and
input of cin dimensions. BNNs’ (cout · cin) convolutional kernels are dense and require
all computations. SBNNs’ kernels are sparse, allowing to skip certain convolutions and
sum operations. The removed filters are indicated by a dashed contour and no fill. Both
BNNs and SBNNs perform convolutions using XNOR and popcount operations, while
the sum is replaced by popcount operations.

and the SBNN objective loss can be expressed as

LSBNN = LBNN + λ j(W). (17)

During training, we modulate the contribution of the regularization term
j(W) by imposing, at every training iteration, to be equal to a fraction of LSBNN,
i.e.

γ =
λ j(W)
LSBNN

. (18)

The hyperparameter γ is set to a fixed value over all the training process. Since
LSBNN changes at every iteration, this forces λ to adapt, thus modulating the
influence of j(W) proportionally to the changes in the loss. The lower γ is set, the
less influence j(W) has on the total loss. This means that network sparsification
will be slower, but convergence will be achieved faster. On the opposite case
(high γ), the training will favor sparsification.

3.5 Implementation Gains

We discuss the speed-up gains of the proposed SBNN through its efficient imple-
mentation using linear layers in the backbone architecture. Its extension to con-
volutional layers (Fig. 1) is straightforward, thus we omit it for the sake of brevity.

We describe the use of sparse operations, as it can be done on an FPGA
device [7,36]. Instead, when implemented on CPUs, SBNNs can take advantage
of pruned layers, kernels and filters for acceleration [9,28,37,38]. Moreover, for
kernels with only a single binary weight equal to 1 there is no need to perform
a convolution, since the kernels remove some elements from the corner of their
input.
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The connections in a SBNN are the mapped one-valued weights, i.e. the set
S1. Therefore, SBNNs do not require any XNOR operation on FPGA, being
popcount the only bitwise operation needed during the forward pass. The latter,
however, is performed only in a layer’s input bits connected through the one-
valued weights rather than the full input.

For any given layer �, the number of binary operations of a BNN is OBNN =
2N � [3], N � XNOR operations and N � popcounts. A rough estimate of the
implementation gain in terms of the number of binary operations of SBNNs
w.r.t. BNNs can be expressed in terms of the EC as

OSBNN

OBNN

≈ 2N �

EC · N �
≈ 2

EC
, (19)

which indicates that the lower the EC fraction, the higher the gain w.r.t. BNNs.
Binary operations are not the only ones involved in the inference of SBNN lay-

ers. After the sparse {0, 1} computations, the mapping operations to the {α, β}
domain take place, also benefiting from implementation gains. To analyze these,
let us now denote x the input vector to any layer and z = wx its output. Using
Eq. (4), z can be computed as

z = ξ z′ + ξ η q, (20)

where z′ = w{0,1} x is the result of sparse operations (Fig. 1), q = 1x, and 1
the all-ones matrix.

All the elements in q take the value 2 · popcount(x) − |x|, with |x| the size
of x. Therefore, they are computed only once, for each row of 1. Being ξ and η
known at inference time, they can be used to precompute the threshold in the
threshold comparison stage of the implementation of the batchnorm and sign
operations following the estimation of z [35]. Thus, SBNNs require |x| binary
operations, one real product and |x| real sums to obtain z from z′.

4 Experiments and Results

We first run a set of ablation studies to analyze the properties of the proposed
method (Sect. 4.1). Namely, we analyze the generalization of SBNNs in a stan-
dard binary domain and the proposed generic binary domain; we study the role
of the quantization error in the network’s performance; and the effects of spar-
sifying binary kernels. Next, we compare our proposed method to other state-
of-the-art techniques using the well established CIFAR-10 and CIFAR-100 [18]
datasets. Preliminary results on ImageNet [31] are also discussed. All our code
has been made publicly available1.

4.1 Ablation Studies

Experimental Setup. We use a ResNet-18 binarized model trained on CIFAR-
10 as backbone architecture. We train the networks for 300 epochs, with batch
1 github.com/robustml-eurecom/SBNN.

https://github.com/robustml-eurecom/SBNN/
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Table 1. Role of the binary domain and the quantization error when sparsifying BNNs.
Experiments performed on CIFAR-10 with a binarized ResNet-18 model.

Domain Sparsity constraint Top-1 Accuracy Δ

Baseline / 88.93% /

{−β, +β} [30] 95% 85.95% -2.98%

{α, β} 95% 86.46% -2.47%

Learned {α, β} 95% 88.84% -0.09%

size of 512, learning rate of 1e − 3, and standard data augmentation techniques
(random crops, rotations, horizontal flips and normalization). We use an Adam
optimizer and the cosine annealer for updating the learning rate as suggested in
[24] and we follow the binarization strategy of IR-Net [29].

Generalization Properties. We compare the performance of the proposed
generic binary domain to other binary domains used by BNNs by assessing the
networks’ generalization capabilities when the sparsity ratio is 95%. For this exper-
iment, we use the {−β,+β} domain from [30] with no sparsity constraints as the
baseline.Additionally, we consider the samedomainwith a 95% sparsity constraint
and the {α, β} domain obtained optimizing τ and φ according to Eq. (15) with the
95% sparsity constraint. Table 1 reports the obtained results in terms of top-1 accu-
racy and accuracy loss w.r.t. the BNN baseline model (Δ). When we impose the
95% sparsity constraint with the {−β,+β} domain, the accuracy drop w.r.t. to the
baseline is 2.98%. Using the {α, β} domain, the loss goes down to 2.47%, nearly
0.5% better than the {−β,+β} domain. The results suggest that a more general
domain leads to improved generalization capabilities.

Impact of the Quantization Error. We investigate the impact of the quanti-
zation error in the SBNN generalization. To this end, we compare the proposed
quantization technique (Sect. 3.3) with the strategy of learning Ω via back-
propagation. We denote this approach Learned {α, β} (Table 1). The obtained
results show that with the learning of the parameters the accuracy loss w.r.t. the
BNN baseline decreases down to −0.09%, thus 2.38% better than when τ and φ
are analytically obtained with Eq. (15). This result implies that the quantization
error is one of the sources of accuracy degradation when mapping real-valued
weights to any binary domain, but it is not the only source. Indeed, activations
are also quantized. Moreover, errors are propagated throughout the network.
Learning Ω can partially compensate for these other error sources.

Effects of Network Sparsification. We investigate the effects of network
sparsification and how they can be leveraged to reduce the binary operations
(BOPs) required in SBNNs. In Sect. 4.1, we showed that our binary domain is
more adept at learning sparse network representations compared to the stan-
dard binary domain. This allows us to increase the sparsity of SBNNs while
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Fig. 2. Percentage of binary kernels for various Hamming weights of a binarized Resnet-
18 model over CIFAR-10 for different sparsity constraints. The 5-th, 10-th and 15-th
layers are shown in the top, middle and bottom rows, respectively.

maintaining a desired level of accuracy. When the sparsity is sufficiently high,
many convolutional kernels can be entirely removed from the network, which
further reduces the BOPs required for SBNNs. Additionally, convolutional ker-
nels with only a single binary weight equal to 1 do not require a convolution to
be performed, as these kernels simply remove certain elements from the input.

To illustrate this effect, we plotted the distribution of binary kernels for
the 5th, 10th, and 15th layers of a binarized ResNet-18 model (Fig. 2). The
first column shows the distribution when no sparsity constraints are imposed,
while the second and third columns show the distribution for sparsity levels of
95% and 99%, respectively. The kernels are grouped based on their Hamming
weights, which is the number of non-zero elements in each {0, 1}3×3 kernel. The
plots suggest that increasing the sparsity of SBNNs results in a higher number
of kernels with Hamming weights of 0 and 1.

4.2 Benchmark

CIFAR-10. We compare our method against state-of-the-art methods over a
binarized ResNet-18 model using CIFAR-10. Namely, we consider: STQ [28],
Slimming [37], Dual-P [7], Subbit [36], IR-Net [29] and our method with learned
τ and φ, for different sparsity constraints. We use the IR-Net as BNN baseline to
be compressed. We use the experimental setup described in Sect. 4.1 with some
modifications. We extend the epochs to 500 as in [36], and we use a MixUp strat-
egy [42]. In the original IR-Net formulation [29], the training setup is missing.
We use our setup to train it, achieving the same accuracy as in [29].

Table 2 reports the obtained results in terms of accuracy (Acc.), accuracy
loss w.r.t. the IR-Net model (Δ), and BOPs reduction (BOPs PR). For our
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Table 2. Evaluation of kernel removal for different pruning targets using a binarized
Resnet-18 model on CIFAR-10.

Method Acc. Δ BOPs PR K0 K1

IR-Net 91.50% / / / /

STQ 86.56% –5.50% –40.0% / /

Slimming 89.30% –2.20% –50.0% / /

Dual-P (2→1) 91.02% –0.48% –70.0% / /

Dual-P (3→1) 89.81% –1.69% –80.6% / /

Dual-P (4→1) 89.43% –2.07% –85.4% / /

Subbit 0.67-bits 91.00% –0.50% –47.2% / /

Subbit 0.56-bits 90.60% –0.90% –70.0% / /

Subbit 0.44-bits 90.10% –1.40% –82.3% / /

SBNN 50% [our] 91.70% +0.20% –11.1% 5.6% 6.8%

SBNN 75% [our] 91.71% +0.21% –24.5% 30.7% 15.9%

SBNN 90% [our] 91.16% –0.24% –46.5% 61.8% 15.5%

SBNN 95% [our] 90.94% –0.56% –63.2% 77.1% 11.8%

SBNN 96% [our] 90.59% –0.91% –69.7% 81.0% 10.1%

SBNN 97% [our] 90.71% –0.79% –75.7% 84.8% 8.7%

SBNN 98% [our] 89.68% –1.82% –82.5% 89.3% 6.5%

SBNN 99% [our] 88.87% –2.63% –88.7% 94.6% 3.3%

SBNN, we estimate BOPs PR by counting the number of operations which are
not computed from the convolutional kernels with Hamming weight 0 and 1. For
other methods, we refer the reader to the original publications. We assess our
method at different levels of sparsity, in the range 50 to 99%. For SBNNs we also
report the percentage of SBNN’s convolutional kernels with Hamming weight 0
(K0) and with Hamming weight 1 (K1).

The results suggest that our method is competitive with other more complex
pruning strategies. Moreover, our method reports similar accuracy drops w.r.t.
state-of-the-art Subbit and Dual-P for similar BOPs PR. However, we need to
point out that Subbit and Dual-P results refer to BOPs PR on FPGA, where
SBNN can take advantage of sparse operations (Sect. 3.5) also for the kernels
with larger Hamming weights than 0 and 1, because on FPGA all operations
involving 0-valued weights can be skipped. For instance, the use of sparse oper-
ations on the SBNN 95% allows to remove ≈ 84.9% BOPs.

CIFAR-100. We compare our method in the more challenging setup of CIFAR-
100, with 100 classes and 500 images per class, against two state-of-the-art meth-
ods: STQ [28], and Subbit [36]. We use ReActNet-18 [25] as the backbone archi-
tecture, using a single training step and no teacher. We train for 300 epochs with
the same setup used for CIFAR-10 with Mixup augmentation. As no previous
results for this setup have been reported for ReActNet-18 and Subbit, for a fair
comparison, we trained them from scratch using our setup. We report the same
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Table 3. Evaluation of kernel removal for different pruning targets using a ReActNet-
18 model on CIFAR-100.

Method Acc. Δ BOPs PR BParams PR K0 K1

ReActNet-18∗ 62.79% / / / / /

STQ 57.72% –5.05% –36.1% –36.1% / /

Subbit 0.67-bits∗ 62.60% –0.19% –47.2% –33.3% / /

Subbit 0.56-bits∗ 62.07% –0.72% –70.0% –44.4% / /

Subbit 0.44-bits∗ 61.80% –0.99% –82.3% –55.6% / /

SBNN 50% [our] 63.03% +0.24% –11.1% / 5.6% 6.8%

SBNN 95% [our] 63.33% +0.54% –66.2% –59.9% 72.9% 16.6%

SBNN 96% [our] 63.04% +0.25% –67.3% –63.7% 78.9% 12.6%

SBNN 97% [our] 62.41% –0.38% –73.4% –66.8% 82.9% 11.1%

SBNN 98% [our] 63.58% +0.79% –79.2% –70.3% 88.1% 8.0%

SBNN 99% [our] 62.23% –0.57% –87.8% –74.0% 93.6% 4.7%
∗ our implementation.

metrics used for CIFAR-10, plus the reduction of binary parameters (BParams
PR). For our SBNN, we estimate BParams PR as follows. For each kernel we
use 2 bits to differentiate among zero Hamming weight kernels, one Hamming
weight kernels and all the other kernels. Then, we add 4 bits to the kernels with
Hamming weight 1 to represent the index position of their 1-valued bit, whereas
we add 9 bits for all the other kernels with Hamming weight larger than 1, which
are their original bits. For the other methods, please refer to their work for their
estimate of BParams PR.

Table 3 reports the obtained results for the different methods and our SBNN
for various sparsity targets. We can see that our pruning method is more effec-
tive in reducing both the BOPs and the parameters than Subbit. It allows to
remove 79.2% of kernels, while increasing the original accuracy by 0.79% w.r.t.
the ReActNet-18 baseline. Instead, we observe nearly 1% accuracy drop for a
Subbit network for a similar BOPs reduction. Moreover, our method allows to
remove nearly 15% more binary parameters.

ImageNet. We assess our proposed SBNN trained with target sparsity of 75%
and 90% on ImageNet. We compare them with state-of-the-art BNNs, namely:
XNOR-Net [30], Bi-RealNet-18 [26] and ReActNet-18, ReActNet-A [25] and
Subbit [36]. Moreover, we also report the accuracy of the full-precision ResNet-
18 [13] and MobileNetV1 [14] models, as a reference. We use a ReActNet-A [25]
as SBNN’s backbone with its MobileNetV1 [14] inspired topology and with the
distillation procedure used in [25], whereas in Subbit [36] they used ReActNet-18
as backbone. One of the limitations of Subbit [36] is that their method cannot
be applied to the pointwise convolutions of MobileNetV1 [14]. Due to GPUs
limitations, during our training, we decreased the batch size to 64. For a fair
comparison, we retrained the original ReActNet-A model with our settings.
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Table 4. Method comparison on ImageNet.

Model Acc Top-1 BOPs ×108 FLOPs ×108 OPs ×108

MobileNetV1 [14] (full-precision) 70.60 – 5.7 5.7

ResNet-18 [13] (full-precision) 72.12 – 19 19

XNOR-Net [30] 51.20 17 1.41 1.67

Bi-RealNet-18 [26] 56.40 17 1.39 1.63

ReActNet-18 [25] 65.50 17 1.63 1.89

ReActNet-A [25]∗ 68.12 48 0.12 0.87

Subbit 0.67-bits ReActNet-18 63.40 9 1.63 1.77

Subbit 0.56-bits ReActNet-18 62.10 5 1.63 1.71

Subbit 0.44-bits ReActNet-18 60.70 3 1.63 1.68

SBNN 75% ReActNet-A [ours] 66.18 8 0.12 0.25

SBNN 90% ReActNet-A [ours] 64.72 2 0.12 0.16
∗ our implementation.

Table 4 reports the results in terms of accuracy (Acc). We also include the
number of operations (OPs) to be consistent with other BNNs assessment on
ImageNet. For BNNs, OPs are estimated by the sum of floating-point operations
(FLOPs) plus BOPs rescaled by a factor 1/64 [25,26,30]. We assume sparse
operations on FPGA to estimate BOPs for SBNN.

We observe that BOPs are the main contributors to ReActNet-A’s OPs
(Table 4), thus decreasing them largely reduces the OPs. This, instead, does not
hold for ReActNet-18, which may explain why Subbit is not effective in reducing
OPs of its baseline. Our method instead is effective even for less severe pruning
targets and it requires less than 3.4× OPs w.r.t. state-of-the-art ReActNet-A
model, while incurring in an acceptable generalization loss between 1.9 − 3.4%.

5 Conclusions

We have presented sparse binary neural network (SBNN), a novel method for
sparsifying BNNs that is robust to simple pruning techniques by using a more
general binary domain. Our approach involves quantizing weights into a general
Ω = {α, β} binary domain that is then expressed as 0s and 1s at the implemen-
tation stage. We have formulated the SBNN method as a mixed optimization
problem, which can be solved using any state-of-the-art BNN training algorithm
with the addition of two parameters and a regularization term to control sparsity.

Our experiments demonstrate that SBNN outperforms other state-of-the-art
pruning methods for BNNs by reducing the number of operations, while also
improving the baseline BNN accuracy for severe sparsity constraints. Future
research can investigate the potential of SBNN as a complementary pruning
technique in combination with other pruning approaches. In summary, our pro-
posed SBNN method provides a simple yet effective solution to improve the
efficiency of BNNs, and we anticipate that it will be a valuable addition to the
field of binary neural network pruning.
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Ethical Statement
The proposed SBNN can in principle extend the range of devices, at the edge
of communication networks, in which DNN models can be exploited. Our work
touches various ethical considerations:

• Data Privacy and Security: By performing inference of DNNs directly on
edge devices, data remains localized and does not need to be transmitted to
centralized servers. This reduces the risk of sensitive data exposure during
data transfer, enhancing privacy protection.

• Fairness and Bias: SBNNs, like other DNNs at the edge, can be susceptible
to biased outcomes, as they rely on training data that may reflect societal
biases. However, by simplifying the weight representation to binary values,
SBNNs may reduce the potential for biased decision-making because they may
be less influenced by subtle variations that can introduce bias. Nevertheless,
it is essential to address and mitigate biases in data to ensure fairness in
outcomes and avoid discriminatory practices.

• Transparency and Explainability: The SBNN design can be applied to
DNN models that are designed to provide transparency and explainability.
Moreover, the binary nature of SBNNs can make them more interpretable and
easier to understand compared to complex, multi-valued neural networks.
This interpretability can help users gain insights into the decision-making
process and facilitate transparency.

• Human-Centric Design: SBNNs can extend the use of DNNs at the edge,
extending the range of users of applications which are focused on human
well-being, human dignity and inclusivity.

• Resource Allocation and Efficiency: SBNNs allows the use of DNNs in
a more efficient way from both the use of energy, memory and other crucial
resources, thus allowing to reduce the environmental impact of DNNs.

• Ethics of Compression: While SBNNs offer computational efficiency and
reduced memory requirements, the compression of complex information into
binary values may raise ethical concerns. Compression may lead to oversimpli-
fication or loss of critical details, potentially impacting the fairness, accuracy,
or reliability of decision-making systems.

It is important to consider these ethical aspects of SBNNs when evaluating
their suitability for specific applications and to ensure responsible and ethical
deployment in alignment with societal values and requirements.
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Abstract. Hyperdimensional computing (HDC) is a method to per-
form classification that uses binary vectors with high dimensions and the
majority rule. This approach has the potential to be energy-efficient and
hence deemed suitable for resource-limited platforms due to its simplic-
ity and massive parallelism. However, in order to achieve high accuracy,
HDC sometimes uses hypervectors with tens of thousands of dimensions.
This potentially negates its efficiency advantage. In this paper, we exam-
ine the necessity of such high dimensions and conduct a detailed theoreti-
cal analysis of the relationship between hypervector dimensions and accu-
racy. Our results demonstrate that as the dimension of the hypervectors
increases, the worst-case/average-case HDC prediction accuracy with the
majority rule decreases. Building on this insight, we develop HDC models
that use binary hypervectors with dimensions orders of magnitude lower
than those of state-of-the-art HDC models while maintaining equivalent
or even improved accuracy and efficiency. For instance, on the MNIST
dataset, we achieve 91.12% HDC accuracy in image classification with
a dimension of only 64. Our methods perform operations that are only
0.35% of other HDC models with dimensions of 10,000. Furthermore,
we evaluate our methods on ISOLET, UCI-HAR, and Fashion-MNIST
datasets and investigate the limits of HDC computing https://github.
com/zhangluyan9/EffHDC.

Keywords: Hyperdimension Computing · Energy efficient computing

1 Introduction

Hyperdimensional computing (HDC) is a novel learning paradigm that takes
inspiration from the abstract representation of neuron activity in the human
brain. HDCs use high-dimensional binary vectors, and they offer several advan-
tages over other well-known training methods like artificial neural networks
(ANNs). One of the advantages of HDCs is their ability to achieve high
parallelism and low energy consumption, which makes them an ideal choice
for resource-constrained applications such as electroencephalogram detection,
robotics, language recognition, and federated learning. Several studies have
shown that HDCs are highly efficient in these applications [1,7,12,13]. More-
over, HDCs are relatively easy to implement in hardware [14,16], which adds to
their appeal as a practical solution for real-world problems, especially in embed-
ded devices.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
D. Koutra et al. (Eds.): ECML PKDD 2023, LNAI 14170, pp. 141–155, 2023.
https://doi.org/10.1007/978-3-031-43415-0_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-43415-0_9&domain=pdf
https://github.com/zhangluyan9/EffHDC
https://github.com/zhangluyan9/EffHDC
https://doi.org/10.1007/978-3-031-43415-0_9
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Unfortunately, the practical deployment of HDC suffers from low model accu-
racy and is always restricted to small and simple datasets. To solve the problem,
one commonly used technique is increasing the hypervector dimension [12,15,19].
For example, running on the MNIST dataset, hypervector dimensions of 10,000
are often used. [4] and [19] achieved the state-of-the-art accuracies of 94.74% and
95.4%, respectively. In these and other state-of-the-art HDC works, hypervec-
tors are randomly drawn from the hyperspace {−1,+1}d, where the dimension
d is very high. This ensures high orthogonality, making the hypervectors more
independent and easier to distinguish from each other [18]. As a result, accuracy
is improved and more complex application scenarios can be targeted. However,
the price paid for the higher dimension is in higher energy consumption, possi-
bly negating the advantage of HDC altogether [12]. This paper addresses this
trade-off and well as suggests a way to make use of it to improve HDC.

In this paper, we will analyze the relationship between hypervector dimen-
sions and accuracy. It is intuitively true that high dimensions will lead to higher
orthogonality [18]. However, contrary to popular belief, we found that as the
dimension of the hypervectors d increases, the upper bound for inference worst-
case accuracy and average-case accuracy actually decreases (Theorem 1 and The-
orem 2). In particular, if the hypervector dimension d is sufficient to represent a
vector with K classes (in particular, d > log2 K) then the lower the dimen-
sion, the higher the accuracy.

Based on our analysis, we utilized the fully-connected network (FCN) with
integer weight and binary activation as the encoder. Our research has shown
that this encoder is equivalent to traditional HDC encoding methods, as demon-
strated in Sect. 3.2. Additionally, we will be learning the representation of each
class through the majority rule. This will reduce the hypervector dimension while
still maintaining the state-of-the-art accuracies.

When running on the MNIST dataset, we were able to achieve HDC accu-
racies of 91.12/91.96% with hypervector dimensions of only 64/128. Also, the
total number of calculation operations required by our method (d = 64) was
only 0.35% of what was previously needed by related works that achieved the
state-of-the-art performance. These prior methods relied on hypervector dimen-
sions of 10,000 or more. Our analysis and experiments conclusively show that
such high dimensions are not necessary.

The contribution of this paper is as follows:

– We give a comprehensive analysis of the relationship between hypervector
dimension and the accuracy of HDC. Both the worst-case and average-case
accuracy are studied. Mathematically, we explain why relatively lower dimen-
sions can yield higher model accuracies.

– After conducting our analysis, we have found that our methods can achieve
similar detection accuracies to the state-of-the-art, while using much smaller
hypervector dimensions (latency). For instance, by utilizing a dimension of
just 64 on the widely-used MNIST dataset, we were able to achieve an HDC
accuracy of 91.12%.
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– We have also confirmed the effectiveness of our approach on other datasets
commonly used to evaluate HDC, including ISOLET, UCI-HAR, and Fashion-
MNIST, achieving state-of-the-art accuracies even with quite low dimensions.
Overall, our findings demonstrate the potential of our methods in reducing
computational overhead while maintaining high detection accuracy.

Organisation. This paper is organized as follows. For completeness, we first
introduce the basic workflow and background of HDC. In Sect. 3, we present
our main dimension-accuracy analysis and two HDC retraining approaches. To
evaluate the effectiveness of our proposed methods, we conduct experiments and
compare our results with state-of-the-art HDC models in Sect. 4. Finally, we
discuss the implications of our findings and conclude the paper.

2 Background

Hyperdimensional computing (HDC) is a technique that represents data using
binary hypervectors with dimensions typically ranging from 5,000 to 10,000. For
example, when working with the MNIST dataset, each flattened image x ∈ R

784

is encoded into a hypervector r ∈ R
d using a binding operation that combines

value hypervectors v with position vectors p and takes their summation.
Both these two hypervectors v,p are independently drawn from the hyper-

space {−1,+1}d randomly. Mathematically, we can construct representation r
for each image as followed:

r = sgn
(
(vx0

⊗
px0 + vx1

⊗
px1 + · · · + vx783

⊗
px783)

)
, (1)

where the sign function ‘sgn(·)’ is used to binarize the sum of the hyper-
vectors, returning either –1 or 1. When the sum equals to zero, sgn(0)
is randomly assigned either 1 or –1. In addition, the binding operation⊗

performs element-wise multiplication between hypervectors. For instance,
[−1, 1, 1,−1]

⊗
[1, 1, 1,−1] = [−1, 1, 1, 1].

During training, hypervectors r1, r2, ..., r60,000 belonging to the same class
are added together. The resulting sum is then used to generate a representation
Ri for class i, using the “majority rule” approach. The data belonging to class
i is denoted by Ci.

Ri = sgn

( ∑
x∈Ci

ri

)
. (2)

During inference, the encoded test image is compared to each class represen-
tation Rc, and the most similar one is selected as the predicted class. Various
similarity measures such as cosine similarity, L2 distance, and Hamming dis-
tance have been used in previous works. In this work, we use the inner product
as the similarity measure for binary hypervectors with values of –1 and 1, as it
is equivalent to the Hamming distance, as noted in [5].
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3 High Dimensions Are Not Necessary

Contrary to traditional results that suggest higher-dimensional models have
lower error rates, the majority rule’s higher representation dimension in HDC
domain does not always lead to better results. Our research demonstrates that
if a dataset can be linearly separated and embedded into a d-dimensional vec-
tor space, higher-dimensional representation may actually reduce classification
accuracy. This discovery prompted us to explore the possibility of discovering a
low-dimensional representation of the dataset. Our numerical experiments sup-
port our theoretical discovery, as the accuracy curve aligns with our findings.

3.1 Dimension-Accuracy Analysis

Based on the assumption that the dataset can be linearly-separably embedded
into a d-dimensional space, we here investigate the dimension-accuracy relation-
ship for the majority rule.

We further assume the encoded hypervectors are uniformly distributed over
a d-dimensional unit ball:

Bd = {r ∈ R
d
∣∣‖r‖2 ≤ 1}.

Moreover, we assume that hypervectors x are linearly separable and each class
with label i can be represented by Ci:

Ci = {r ∈ X |Ri · r > Rj · r, j �= i}, 1 ≤ i ≤ K

where Ri ∈ [0, 1]d are support hypervectors that are used to distinguish classes
i from other classes.

Selecting a sufficiently large d to embed the raw data into a d-dimensional
unit ball is crucial for this approach to work effectively. This assumption is
reasonable because with a large enough d, we can ensure that the raw data
can be accurately mapped into a high-dimensional space where the support
hypervectors can distinguish between different classes.

Similarly, we define the prediction class Ĉi by R̂i as followed:

Ĉi = {r ∈ X |R̂i · r > R̂j · r, j �= i}, 1 ≤ i ≤ K.

When we apply the majority rule to separate the above hypervectors x, we are
approximating Ri with R̂i in the sense of maximizing the prediction accuracy.
Here each R̂i ∈ {0, 1}d is a binary vector.

Therefore we define the worst-case K-classes prediction accuracy over hyper-
vectors distribution X in the following expression:

AccwK,d := inf
R1,R2,...,RK

sup
R̂1,R̂2,...,R̂K

Er

[ K∑
i=1

∏
j �=i

1{Ri·r>Rj ·r}1{R̂i·r>R̂j ·r}

]
.
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Theorem 1. Assume K = 2, as the dimension of the hypervectors d increases,
the worst-case prediction accuracy decreases with the following rate:

Accw2,d = 2 inf
R1,R2

sup
R̂1,R̂2

Er

[
1{R1·r>R2·r}1{R̂1·r>R̂2·r}

]

= inf
R1,R2

sup
R̂1,R̂2

[
1 −

arccos( (R1−R2)·(R̂1−R̂2)

‖R1−R2‖2‖R̂1−R̂2‖2
)

π

]

= 1 −
arccos( 1√∑d

j=1(
√
j−√

j−1)2
)

π
→ 1

2
, d → ∞

The first equality is by the symmetry of distribution X . The second equality is
the evaluation of expectation over X and the detail is given in Lemma 1. For the
third equality, the proof is given in Lemma 3 and Lemma 4.

In the next theorem, we further consider the average-case. Assume the prior
distribution P for optimal representation is uniformly distributed: R1, ...RK ∼
U [0, 1]d. We can define the average accuracy with the following expression:

AccK,d := ER1,R2,...,RK∼P sup
R̂1,R̂2,...,R̂K

Er

[ K∑
i=1

∏
j �=i

1{Ri·r>Rj ·r}1{R̂i·r>R̂j ·r}

]
.

Theorem 2. Assume K = 2, as the dimension of the hypervectors d increases,
the average case prediction accuracy decreases:

AccK,d = ER1,R2∼U [0,1]d sup
R̂1,R̂2

Er

[
1{R1·r>R2·r}1{R̂1·r>R̂2·r}

]

= ER1,R2∼U [0,1]d sup
R̂1,R̂2

[
1 −

arccos( (R1−R2)·(R̂1−R̂2)

‖R1−R2‖2‖R̂1−R̂2‖2
)

π

]

= ER1,R2∼U [0,1]d

[
1 −

arccos
(
supd

j=1

∑j
i=1 |R1−R2|(i)√
j‖R1−R2‖

)

π

]
.

Here |R1 − R2|(i) denotes the i-th maximum coordinate for vector |R1 − R2|.
Since the exact expression for average-case accuracy is challenging to eval-

uate, we rely on Monte Carlo simulations. In particular, we sample R1 and R2

1000 times to estimate the expected accuracy.
We then present the curves of AccwK,d and AccK,d over a range of dimensions

from 1 to 1000 in Figs. 1 and 2, respectively. It is evident from these figures that
the upper bound of classification accuracy decreases as the dimension of the
representation exceeds the necessary dimension. This observation implies that
a higher representation dimension is not necessarily beneficial and could even
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Fig. 1. Worst-case Accuracy Accw2,d Fig. 2. Average-case Accuracy Acc2,d

lead to a decrease in accuracy. It is easy to find that a high dimension for HDCs
is not necessary for both the worst-case and average-case, the upper bound of
accuracy will drop slowly when the dimension increases.

According to [17], we can approximate multi-class case where K ≥ 3 by
one-against-one binary classification. Therefore, we define the quasi-accuracy of
K-class classification as follows:

Quasi-AccK,d =

∑
i�=j Accij2,d

K(K − 1)
,

where Accij2,d can be either the average-case or worst-case accuracy that distin-
guishes class i and j. Since the accuracy Accij2,d for binary classification decreases
as the dimension increase, the quasi-accuracy follows the same trend.

3.2 Low-Dimension Hypervector Training

To confirm the theoretical findings mentioned above, we propose a HDC design
that is shown in Fig. 3. For data encoding, the traditional hyperdimensional com-
puting technique utilizes binding and bundling operations to encode data sam-
ples using Eq. 1. However, in this study, we use a simple binary fully-connected
network with integer weights and binary activations as the encoder. Taking the
MNIST dataset as an example, we demonstrate the equivalence of these two
methods as follows:

r = sgn(Wx) = sgn

⎛
⎝ ∑

0≤i≤783

Wi,xi=1

⎞
⎠ (3)

where Wi,xi=1 indicates the weights whose corresponding input xi =1.
The Eq. 3 shows that the sum of the weights Wi corresponding to input

xi = 1, while ignoring weights for xi = 0. The resulting sum of weight∑
0≤i≤783 Wi,xi=1 in the linear transform corresponds to the sum of binding

values of hypervectors v and p in Eq. 2. The integer-weights FCN with binary
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Fig. 3. Workflow of Our HDC.

activation is a natural modification of the hyperdimensional computing encoders,
using only integer additions, as in traditional HDC encoders.

Specifically, in our one-layer integer-weight fully-connected network, if we
randomly initialize the weights with binary values, it becomes equivalent to the
encoder of HDC.

We used a straight-through estimator (STE) to learn the weights [2] (details
of STE are discussed in the Appendix1). The binary representation Rc of each
class is generated using the majority rule (Algorithm 1). To achieve this, we
first sum up the N hypervectors r belonging to class c and obtain an integer-
type representation Sc for that class. Subsequently, we assign a value of 1 if the
element in Sc exceeds a predefined threshold θ. Otherwise, we set it to 0. This
generates a binary representation Rc.

We have also devised a two-step retraining method to refine the binary rep-
resentation Rc to improve the accuracy. Algorithm 2 outlines the procedure we
follow. First, we feed the training data to the encoder in batches and employ the
mean squared error as the loss function to update the weights in the encoder.
Next, we freeze the encoder and update the representation of each class. If the
output r is misclassified as class cwrong instead of the correct class ccorrect, we
reduce the sum of representation of the wrong class Scwrong

by multiplying r
with the learning rate. Simultaneously, we increase the sum of representation of
the correct class Scright

by multiplying r with the learning rate. We then use the
modified Sc in Algorithm 1 to generate the binary representation Rc.

1 https://github.com/zhangluyan9/EffHDC/blob/main/Appendix.pdf.

https://github.com/zhangluyan9/EffHDC/blob/main/Appendix.pdf
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Algorithm 1. Representation Gen-
eration:
Require: N number of training data x;
Ensure: Trained binary encoder E;

Sum of representation S; Binary
Representation Rc; Outputs of
encoder y; Pre-defined Threshold θ;

1: r = E(x); Sc = 0
2: for i = 1 to N do
3: Sc+ = r
4: end for
5: for i = 1 to d do
6: if Sc[i] > θ then
7: Rc[i] = 1
8: else
9: Rc[i] = 0

10: end if
11: end for

Algorithm 2. HDC Retraining:
Require: Training data x with label

Rc ; Trained Encoder E; N training
epochs.

1: Step1:
2: for epoch= 1 to N do
3: r = E(x)
4: L = mse(r, Rc) //Bp: STE
5: end for

6: Step2:
7: r = E(x)
8: if Misclassified then
9: Sccorrect+ = lr ∗ r

10: Scwrong− = lr ∗ r
11: end if
12: Generate Rc (Algorithm 1, line 5-9)

After computing the representation of each class, we can compare the simi-
larity between the resulting hypervector and the representation of all classes. To
do this, we send the test data to the same encoder and obtain its hypervector
representation. Next, we convert the value of 0 in Rc to -1 and perform an inner
product to check for similarity. The class with the highest similarity is reported
as the result.

4 Results

We have implemented our schemes in CUDA-accelerated (CUDA 11.7) PyTorch
version 1.13.0. The experiments were performed on an Intel Xeon E5-2680 server
with two NVIDIA A100 Tensor Core GPUs and one GeForce RT 3090 GPU,
running 64-bit Linux 5.15. MNIST dataset2, Fashion-MNIST3, ISOLET4 and
UCI-HAR5 are used in our experiments.

4.1 A Case Study of Our Technologies

Here, we will describe how our approaches improve the MNIST digit recognition
task step by step.

2 http://yann.lecun.com/exdb/mnist/.
3 https://github.com/zalandoresearch/fashion-mnist.
4 https://archive.ics.uci.edu/ml/datasets/isolet.
5 https://archive.ics.uci.edu/ml/datasets/human+activity+recognition+using

smartphones.

http://yann.lecun.com/exdb/mnist/
https://github.com/zalandoresearch/fashion-mnist
https://archive.ics.uci.edu/ml/datasets/isolet
https://archive.ics.uci.edu/ml/datasets/human+activity+recognition+using+smartphones
https://archive.ics.uci.edu/ml/datasets/human+activity+recognition+using+smartphones
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Fig. 4. Threshold Study

Baseline Accuracy. Equation 3 shows that a single integer-weights FCN with
binary activation can be transformed into traditional HDC encoding. To evaluate
the performance of this transformation, we constructed two models consisting of
one and two FCN layers (stack of one-layer FCN encoder) respectively and used
them to encode an image. We then compared the results of both models.

Using a dimension of 64 as an example, we investigate the correlation between
the pre-defined threshold described in Algorithm 1 and accuracy. Our experi-
ments on the MNIST dataset (shown in Fig. 4) reveal that the threshold exhibits
high robustness against noise even when the dimension is low. In fact, we observe
that the detection accuracy remains virtually unchanged when the threshold
was varied from 1000 to 4500. The maximum number in Sc after the encoder is
approximately 6500.

We further examined the connection between dimension and inference accu-
racy using the optimal threshold. According to Figs. 5 and 6, we can attain HDC
accuracies of 78.8% and 84.21%, as well as 87.93% and 90.86%, for 1-layer and 2-
layer Encoder HDCs, respectively, with dimensions of only 32 and 64. Moreover,
as stated in Theorem 1, the accuracy declines beyond a dimension of 128/256.
Therefore, the accuracy of HDC is affected by the dimension, and we observed
a consistent pattern with our previous findings.

HDC Retraining. Thus far, we have shown how we can achieve HDC accuracy
of over 90% with the smallest hypervector dimension. We can in fact improve the
results using retraining techniques we will describe in this section. For example,
with a dimension of 64, we can push the accuracy to 91.12% with our two-step
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Fig. 5. 1-layer Encoder HDC Accuracy Fig. 6. 2-layer Encoder HDC Accuracy

training (0.16% and 0.1% accuracy improvement with steps 1 and 2, respec-
tively). The final accuracy can be increased in a matter of minutes.

4.2 Experimental Results

We present our final experimental findings with all previous technologies in
Table 1, which showcases a comprehensive comparison between our HDC model
and other state-of-the-art models in terms of accuracy, dimension, and num-
ber of operations. Our HDC model achieved accuracies of 84.21% and 84.49%
for the MNIST dataset with encoder dimensions of only d = 64 and d = 128,
respectively. We further improved the HDC accuracies to 91.12% and 91.96%
by stacking an additional layer and batch normalization to the encoder architec-
ture. These results demonstrate the effectiveness of our proposed HDC model in
achieving competitive accuracies but much low dimension and computations in
comparison to other state-of-the-art models.

In order to compare the performance of our HDC model with the state-of-the-
art, we selected several relevant works. One such work is TD-HDC, which was
proposed by [3]. They developed a threshold-based framework to dynamically
choose an execution path and improve the accuracy-energy efficiency trade-off.
With their pure binary HD model, they achieved an HDC accuracy of 88.92% on
the MNIST dataset. In another case study, [6] utilized a basic HDC model on the
MNIST dataset. They encoded the pixels based on their black/white value and
used majority sum operation in the training stage to combine similar samples.
Their approach resulted in an HDC accuracy of 86% on the MNIST dataset.

HDC has also been applied in the fields of federated learning and secure
learning. For example, FL-HDC by [7] focused on the combination of HDC and
federated learning. They introduced the polarized model into the federated learn-
ing field to reduce communication costs and were able to control the accuracy
drop by retraining. Their approach achieved an HDC accuracy of 88% on the
MNIST dataset. In another work, SecureHD [9] adapted a novel encoding and
decoding method based on HDC to perform secure learning tasks.
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Table 1. Comparison on MNIST dataset.

Accuracy Dimension Inference

Encoder additions/Boolean op Similarity

MNIST

SearcHD 84.43% 10,000 7.84M/7.84M Hamming

FL-HDC 88% 10,000 7.84M/7.84M Cosine

TD-HDC 88.92% 5,000 3.92M/3.92M Hamming

QuantHD 89.28% 10,000 7.84M/7.84M Hamming

LeHDC 94.74% 10,000 7.84M/7.84M Hamming

Ours* 84.21% 64 0.05M/0 Hamming

Ours** 91.12% 64 0.054M/0 Hamming

Ours* uses one-layer encoder while Ours** use two-layer encoder.

Recent works in the field of HDC include LeHDC [4], which transferred the
HDC classifier into a binary neural network, achieving accuracies of 94.74%
on the MNIST dataset. Additionally, QuantHD [8] and SearcHD [11] are two
methods that introduce multi-model and retraining techniques into the HDC
field. These methods have shown promising results in improving the accuracy
and performance of HDC models.

We also conducted tests on more datasets such as Fashion-MNIST, ISO-
LET, and UCI-HAR to assess the effectiveness of our methods. Specifically, we
achieved an accuracy rate of 81.64%, 91.4%, and 94.20% for Fashion-MNIST,
ISOLET, and UCI-HAR, respectively, using only 64 dimensions for the hyper-
vector. Our results are shown in Table 2, with BinHD [10] used as the baseline
for comparison.

Table 2. Comparison on other datasets.

Accuracy Dimension Inference

Encoder additions/Boolean op Similarity

Fashion-MNIST

BinHD NA NA NA NA

Ours 81.64% 64 0.059M/0 Hamming

Ours 81.58% 128 0.134M/0 Hamming

ISOLET

BinHD 85.6% 10,000 6.17M/6.17M Hamming

Ours 91.4% 64 0.249M/0 Hamming

Ours 93.2% 128 0.524M/0 Hamming

UCI-HAR

BinHD 87.3% 10,000 5.61M/5.61M Hamming

Ours 94.20% 64 0.336M/0 Hamming

Ours 94.81% 128 0.304M/0 Hamming
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To minimize computational costs in our method, we decided to use Hamming
distance for inference, as it is more efficient than cosine similarity, which involves
additional multiplication and division operations. With Hamming distance, the
number of operations is directly proportional to the dimension of the hypervec-
tors. This means that our approach requires only 0.64% of the operations needed
by other HDC models with a dimension of 10,000, when using a dimension of
d=64. This reduction in operations can speed up the inference process, making
our approach more efficient for real-world applications.

5 Discussion

5.1 Limitation of HDCs

In this section, we aim to shed light on the relationship between the dimension
of hypervectors and the number of classes, which has been largely overlooked in
other HDC studies. To illustrate this point, we use the MNIST dataset as an
example. State-of-the-art works typically employ hypervectors with dimensions
ranging from 5,000 to 10,000 to differentiate pixel values that span from 0 to
255 and do a 10-classes classification. However, with an increase in the number
of classes to 100 or 1,000, more information is required for precise classification.
For input data, if we apply quantization and employ a suitable encoder to dis-
till information from the original image, it is theoretically feasible to operate
with a considerably smaller dimension. However, the quantity of classes remains
invariant. This provides an explanation for the challenges encountered by our
method, and other HDC techniques, in achieving high performance on more
intricate datasets such as Cifar100 and ImageNet where the number of classes is
significantly larger.

5.2 Further Discussion of the Low Accuracy When d Is Low

As can be seen from Fig. 1, 2 and Fig. 5, 6, the current Theorem 1 and 2 do not
predict the low accuracy for dimension d ≤ 128/256.

The issue can be attributed to the breakdown of the assumption that data
can be embedded in a d-dimensional linearly separable unit ball. Consider a
different setup in that the underlying dimension for data is fixed to be m. Each
class is defined to be:

Ci = {r ∈ B
m|Ri · r > Rj · r, j �= i}, 1 ≤ i ≤ K.

Assume that the linear projection of data from m-dimensional linearly sep-
arable unit ball to d-dimensional (d < m) space in a coordinate-wise approach.
It is equivalent to optimizing over the following hypervector set

Rco1,...,cod = {R|Ri ∈ {0, 1}, i ∈ {co1, . . . , cod};Ri = 0, i �∈ {co1, . . . , cod}},

Here co1, . . . , cod are the coordinates index of the projected space.
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The worst-case K-classes prediction accuracy of the m-dimensional data pro-
jected onto a d-dimensional subspace is

AccwK,m,d := inf
R1,R2,...,RK∈[0,1]m

sup
co1,...,cod

sup
R̂1,R̂2,...,R̂K∈Rco1,...,cod

Er

[ K∑
i=1

∏
j �=i

1{Ri·r>Rj ·r}1{R̂i·r>R̂j ·r}

]

≤ AccwK,m,d+1

≤ AccwK,m.

The monotonicity comes from the fact that the two supremums are taken over
a monotonic hypervector set R sequence.

The following theorem summarizes the above reasoning:

Proposition 1. Assume the representation dimension d ≤ m − 1, the classifi-
cation accuracy increases monotonically as d increase:

AccwK,m,d ≤ AccwK,m,d+1, d ≤ m − 1. (4)

Both Theorem 1 and 2 characterize the accuracy when d ≥ m. Proposition 1
describes the dimension-accuracy relationship for d ≤ m. The above reasoning
has been confirmed by our numerical experiments.

6 Conclusion

In this paper, we considered the dimension of the hypervectors used in hyper-
dimensional computing. We presented a detailed analysis of the relationship
between dimension and accuracy to demonstrate that it is not necessary to
use high dimensions to get a good performance in HDC. Contrary to popular
belief, we proved that as the dimension of the hypervectors d increases, the upper
bound for inference worst-case accuracy and average-case accuracy decreases. As
a result, we reduce the dimensions from the tens of thousands used by the state-
of-the-art to merely tens, while achieving the same level of accuracy. Computing
operations during inference have been reduced to a tenth of that in traditional
HDCs. Running on the MNIST dataset, we achieved an HDC accuracy of 91.12%
using a dimension of only 64. All our results are reproducible using the code we
have made public.

Ethics Statement

We hereby assure that the following requirements have been met in the
manuscript:
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– All of the datasets used in this paper are open-source and have been made
publicly available for use. These datasets have been carefully vetted to ensure
that they do not contain any personal or sensitive information that could
compromise the privacy of individuals. Therefore, there are no concerns about
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Abstract. This paper revisits Deep Mutual Learning (DML), a sim-
ple yet effective computing paradigm. We propose using Rényi diver-
gence instead of the Kullback-Leibler divergence, which is more flexi-
ble and tunable, to improve vanilla DML. This modification is able to
consistently improve performance over vanilla DML with limited addi-
tional complexity. The convergence properties of the proposed paradigm
are analyzed theoretically, and Stochastic Gradient Descent with a con-
stant learning rate is shown to converge with O(1)-bias in the worst case
scenario for nonconvex optimization tasks. That is, learning will reach
nearby local optima but continue searching within a bounded scope,
which may help mitigate overfitting. Finally, our extensive empirical
results demonstrate the advantage of combining DML and the Rényi
divergence, leading to further improvement in model generalization.

1 Introduction

An appealing quality of certain machine learning approaches is their strong
association with realworld phenomena. Among these techniques is Deep Mutual
Learning (DML) [34], an empirically powerful paradigm that is, despite its con-
ceptual simplicity, highly effective in practice. The metaphor for DML can be
likened to a learning process in which a group of students acquires knowledge not
only from the ground truth but also from their peers. Intuitively, this learning
paradigm fosters the development of students by encouraging them to assimilate
the strengths of one another. As a result, the students’ performance surpasses
what could have been achieved if they solely relied on their teacher for guid-
ance. Empirically, DML is remarkable in constraining the generalization errors
and hence nicely protects the learned models from overfitting by incorporating
the Kullback-Leibler (KL) divergence between peers into its loss function [20].
Heuristically, it helps the students find wider local optima [34], since the stu-
dents share diversity with others and avoid being optimized towards a limited
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
D. Koutra et al. (Eds.): ECML PKDD 2023, LNAI 14170, pp. 156–172, 2023.
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number of directions. In fact, DML is an efficient paradigm, as it adheres to the
principle of Occam’s razor, where simplicity is preferred over complexity.

Interestingly, even if every student uses the same network architecture (but
with distinct weight initializations), each individual model still benefits from the
paradigm and outperforms itself [34]. It is reasonable as weight initialization
plays a crucial role in Deep Learning (DL) optimizations because some initial
points can lead to wider optima than others, in the highly nonconvex optimiza-
tion tasks [5]. To facilitate DML for the pretrained models, one may apply the
Dropout [26] to produce a set of diversified initializations.

Observing that the empirical advantages of DML originate from the regular-
ization aspect wherein students learn from others, we propose that increasing
the flexibility of adjusting the regularization can further improve learning perfor-
mance. The proposed paradigm is named Rényi Divergence Deep Mutual Learn-
ing (RDML), which utilizes the Rényi divergence [6] to regulate the degree to
which a student should learn from others. RDML is simple in the same order of
magnitude as DML, but performs consistently better in practice. As a super class
of the KL divergence, the Rényi divergence introduces more flexibility for tuning.
Analogous to other regularization approaches, model performance benefits from
a better-tuned regularization power, i.e., the coefficient for the regularization
part. The experimental study shows that RDML consistently improves DML
performance. On the theoretical side, we prove that the expected gradient norm
of RDML using Stochastic Gradient Descent (SGD) converges in O(1/

√
T + 1)

for every student, with a constant learning rate o(1/
√

T ), where T is the total
number of iterations. The reasonable amount of bias keeps the algorithm ran-
domly searching around the (local) optima of the base model loss where every
student arrives. This could effectively increase the chance of avoiding a narrow
optima in practice.

Apart from the proposal of RDML, the contributions of this paper include:
1) a theoretical analysis of the convergence properties that RDML maintains;
2) an extensive empirical study in Sect. 4 which shows that RDML is able to
consistently improve the model performance and achieve better generalizations in
Computer Vision and Natural Language Processing. Finally, the code is available
at http://github.com/parklize/rdml.

2 Deep Mutual Learning

Before explaining DML, we introduce the common notations that are con-
sistent throughout the paper. We denote the instance domain set as X and
the ground truth domain set as Y. Let us define the N -sized dataset by
D = {(xn, yn)}1≤n≤N , where xn ∈ X is the n-th observation and yn ∈ Y is
the corresponding ground truth, for all n. We also call an element d ∈ D a
data point such that d = (x, y). Additionally, we write x = {xn}1≤n≤N and
y = {yn}1≤n≤N . Let Dα(·) denote the Rényi divergence parameterized with α.
Moreover, we denote the indices of the students/models in the DML paradigm
by s = {1, . . . , K}. Finally, let ηt denote the learning rate in the optimization
techniques at time t.

http://github.com/parklize/rdml
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A neural network can be considered a blackbox function that approximates
a hard-to-define distribution. Let θ ∈ Θ ⊆ R

h be the parameter set in the
neural network. Apart from that, let us define the variables for the model by
μ = {μm}1≤m≤M for each data x. Taking multiclass classification as an example,
we follow Kingma and Welling [12] to formulate

Pθ = NeuralNet(x;θ) p(y|x,θ) = Categorical(y;Pθ )

where Pθ = {p(μ|x,θ) : μ ∈ μ} and a SoftMax layer is applied to ensure∑
μ p(μ|x,θ) = 1. We call p(μ|·) the base model as it represents the applied

neural network. Next, we will introduce the RDML framework before analyzing
its properties.

2.1 Rényi Divergence Deep Mutual Learning

Imagine that there is a cohort of students learning a task together. The individual
DML loss of each student k is denoted by Lk. Specifically, Lk := Lbase

k + Ldiv
k

where Lbase
k is the loss of the base model for the input data and ground truth,

while Ldiv
k is the divergence loss from this student to others.

In general, the base loss Lbase
k is selected depending on the task and the data.

The base mode loss Lbase
k , considering p(μ|x,θ), forms an additive “negative log

likelihood” alongside the observation y. For instance, in a multiclass classification
task containing M classes, the base loss is identical to the cross entropy loss, i.e.,

Lbase
k := − 1

N

∑

n

∑

m

1(yn = m) log pk(μm|xn,θk) (1)

where pk(μm|xn,θk) denotes the probability of xn belonging to class m with
regard to model k and θk is the corresponding parameter set. We further denote
its distribution by Pk(μ|xn,θk). Importantly, we emphasize that pk(μ|·) and θk

can be specified for different students, i.e., there can be different models and
parameters among the students.

The divergence loss Ldiv
k depends on the approximated probabilities of the

variables μ for each student k. Instead of utilizing the KL divergence as in DML,
we propose to employ the Rényi divergence, Dα(·||·), in RDML for this part. We
obtain

Ldiv
k := (1/|s¬k|)

∑

j∈s¬k

Dα[Pj(μ|x,θj)||Pk(μ|x,θk)]

=
1

N(K − 1)

∑

j∈s¬k

∑

n

Dα[Pj(μ|xn,θj)||Pk(μ|xn,θk)] (2)

where s¬k = s \ {k} is the peer set of student k. The derivation detail of Eq. 2 is
placed in the supplemental document (SD)1. It indicates that the model k will be
calibrated by the other models. We again emphasize that this paradigm can be
trivially extended to a diversity of machine learning tasks, as shown in DML [34].
In the sequel, we will discuss the Rényi divergence and its usage in RDML.
1 The SD is available in the full version (https://arxiv.org/pdf/2209.05732.pdf).

https://arxiv.org/pdf/2209.05732.pdf
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Rényi Divergence. With a controlling parameter α ∈ [0, 1)∪(1,∞), the diver-
gence is a statistical distance quantity which measures the distance from distri-
bution Q to P, defined by

Dα(P||Q) =
1

α − 1
log

∫

p(μ)αq(μ)1−αdμ . (3)

Same as the KL divergence, the Rényi divergence is asymmetric and hence gener-
ally not a metric [6]. It is worth noting that the Rényi divergence covers a family
of statistical distances. For instance, α = 0.5 leads the Rényi divergence to the
squared Hellinger divergence and α → 1 leads to the KL divergence, etc. [14].
Therefore, the vanilla DML with the KL divergence can be seen as a special case
of RDML. Furthermore, the following essential remarks have been proved [6].

Remark 1. For any distribution P, Q, and α ∈ [0, 1) ∪ (1,∞), the Rényi diver-
gence Dα(P||Q) ≥ 0. The equality holds if and only if P is identical to Q.

Remark 2. For any distribution P, Q, and α ∈ [0, 1) ∪ (1,∞), the Rényi diver-
gence Dα(P||Q) is nondecreasing in α.

The first remark fixes the lower bound of the divergence and ensures Ldiv
k to be

nonnegative, which is always a desired property for the loss function. Remark 2
implies that α influences the distance value scope when P and Q are fixed. In the
context of RDML, a larger α value hence pushes the students to learn more from
their peers considering that the gradients for updating the parameters become
numerically larger.

Figure 1 illustrates an example of the Dα(P||Q) for various α with fixed P

and Q, respectively. In the example, Rényi divergence with α → 1 is equivalent
to the KL divergence. We observe that the correlation between Dα(P||Q) and
α embodies Remark 2. On the other hand, the case focusing on Dα(P||Q) with
fixed P, spans a much broader range. The divergence is more sensitive for P 	= Q

in this scenario with sufficiently large α. That said, the gap between α = 10 and
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Fig. 1. Example plots of Rényi divergence for distributions containing two events. The
orange dashed line represents the KL divergence in both plots. The first plot fixes
distribution Q to (0.4, 0.6) and shows the divergence change over p and 1 − p. The
second plot fixes P = (0.4, 0.6) and shows the divergence change over q and 1 − q.
Note that when q = 0 or q = 1, the divergence value is ∞ for any α ∈ [0, 1) ∪ (1, ∞).
As infinity is not graphable, the x-axis in the second plot ranges from 0.001 to 0.999.
(Color figure online)
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1 Initialize θ1,1, . . . , θK,1

2 for t = 1, . . . do
3 for k = 1, . . . , K do
4 Sample a data point d from D and a peer j from s¬k uniformly
5 θk,t+1 ← θk,t − ηt∇Lk(d, j, θk,t)

Algorithm 1: SGD for (R)DML

α = 100 is smaller, indicating that the divergence growth will become slower
as α increases. These observations imply that α introduces the flexibility of
controlling the degree to which students learn from others in RDML. In this
study, we consider α as a hyperparameter that can be determined through grid-
search using a validation set. While automatically tuning α would be ideal, a
preliminary test in which α was treated as a learnable parameter based on the
training data did not yield improved performance. We leave the exploration of
automatic α tuning to future work.

3 Properties of RDML

In this section, we will elaborate on the convergence properties of RDML. Addi-
tionally, we will examine the computational complexity of the paradigm. We
leave all the detailed proof in the SD.

Let us denote the parameter for student k at time t, by θk,t. To apply SGD,
we write Lk(d, j,θk,t) the loss function parameterized with a random data point
d ∈ D, a peer j ∈ s¬k, and the current parameter θk,t. Following that, Algo-
rithm1 sketches the SGD procedure. The algorithm iterates through each student
and optimizes the parameters upon the corresponding DML loss. At each single
iteration, for a student k, we uniformly sample a data point d from D and a peer
j from its peers s¬k.

Furthermore, we denote Lk(θk,t) as the loss that takes the entire dataset and
peers as input. Let Ed,j [·] be abbreviated to E[·]. We claim that the expected
gradients are unbiased in SGD for RDML.

Proposition 1. For any student k at any time t, the expected gradient for
Lk is an unbiased estimator of the gradient, such that E[∇Lk(d, j,θk,t)] =
∇Lk(θk,t),∀k.

However, we emphasize that bias for learning will still be generated at each
iteration as the objectives are time-varying.

3.1 Convergence Guarantee

This section analyzes the convergence properties of RDML using SGD. Our
theoretical statements are presented here, while all the proofs are provided in
the SD. Motivated by the fact that the majority of neural networks are highly
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nonconvex, we focus on the convergence guarantee for the nonconvex setting. We
follow the work of [3,9] to state the following assumption for Lipschitz continuity
in the probabilistic models, which is crucial for conducting further convergence
analysis.

Assumption 1. There exists a constant L > 0. Given any student k, its base
model Pk(μ|x,θ) is L-Lipschitz continuous in θ, such that ∀θ,θ′ ∈ Θ,

|pk(μ|x,θ) − pk(μ|x,θ′)| ≤ L‖θ − θ′‖
for every realization of μ. Note that a function is usually not L-Lipschitz contin-
uous on the unbounded domain. Therefore, we further assume that there exists
some τ ∈ (0, 1) satisfying ∀μ, x,θ : pk(μ|x,θ) ≥ τ throughout the entire learning
process.

In addition, the base models satisfy the H-smoothness in θ, such that

∀θ,θ′ ∈ Θ : ‖∇pk(μ|x,θ) − ∇pk(μ|x,θ′)‖ ≤ H‖θ − θ′‖,

for every realization2 of k, d, μ.

Assumption 2. For any student k and data point d ∈ D, the base loss
Lbass

k (d,θ) taking d and θ as input, is differentiable and V -smooth in θ on the
bounded domain, i.e.,

∀θ,θ′ ∈ Θ : ‖∇Lbass
k (d,θ) − ∇Lbass

k (d,θ′)‖ ≤ V ‖θ − θ′‖ .

Given the assumptions, we can set up the property of smoothness for each indi-
vidual loss Lk. Smoothness is the most fundamental condition which the con-
vergence analysis of the nonconvex optimization should satisfy [17].

Theorem 1. Let W = V + |α − 1|ϕ2 + αL2 + τH where ϕ =
min

{
τ−1,M/(τe(M−1)τ )α

}
L. Suppose Assumptions 2 and 1 satisfy, the loss Lk

for every student k is W -smooth in its parameter θk provided that θj is fixed for
all j ∈ s¬k.

Theorem 1 enables us to apply the standard convergence analysis to this
paradigm. Now, we introduce another common assumption (Assumptions 3) for
the convergence analysis of nonconvex problems.

Assumption 3. For every student k and time t, E[‖∇Lbase
k (d,θk,t)‖2] ≤ σ̃2.

This is a general assumption in nonconvex convergence analysis, but implies the
following lemma bounding the noise for the whole RDML objectives along with
that each p(·) ≥ τ in Assumptions 2.

Lemma 1. Based on Assumptions 2 and 3, E[‖∇Lk(d, j,θk,t)‖2] ≤ σ2 for every
realization of k and t, where σ2 = 2σ̃2 + 2ϕ2.
2 Following [18], we use this term realization to refer to an instance of variable in the

valid domain.
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Next, we will show the worst case convergence of the expected gradient norm.
However, we defer the discussion of conditional convergence in O(1/

√
T ) in the

average case with a constant learning rate of o(1/
√

T ) to the SD. It is difficult
to determine whether this condition, which leads to a unbiased convergence, can
be satisfied without further information. Thus, we claim our formal convergence
result only for the worst case scenario.

Theorem 2. Let Lbase
k,∗ be the global minima of Lbase

k . Under Assumptions 1 and
2 3, by selecting a constant learning rate ηt = η√

T
≤ 1

W
√

T
that depends on the

total iteration T , E[mint ‖∇Lk(θk,t)‖2] is bounded by

O
(
2(Lbase

k,1 − Lbase
k,∗ )

η
√

T
+

σ2

√
T

+ 2max(ϕσ̃, ϕ2)

)

= O
(

1√
T

)

+ O(1)

for any student k in the worst case scenario.

Unlike the conventional analysis of the biased gradient estimators for SGD, in
which the bias accompanies the gradients [1,10], the bias in RDML is intro-
duced by the time-varying objectives of RDML. The gradients of all students
will receive less impact from the base model as time progresses, but will still
keep learning from the peers. One can imagine that the K parameters arrive
at certain local optima, but still attempt to “move closer” to the peers with a
reasonable pace. This might in practice help some models escape to wider local
optima.

3.2 Computational Complexity of RDML

We denote the time complexity for each student k at a single iteration as O(Bk).
Also, the time cost of the Rényi divergence between Pk(μ|·) and Pj(μ|·), for any
student j and k, depends linearly on the size of μ, which is O(M) ignoring the
complexity of the log and power function, etc. For a single loop, the time cost is
O(

∑
k(Bk +M)) = O(

∑
k Bk +MK), since each student samples only one peer

to learn from in the loop. Considering that the Sk is the size for each model k,
the space complexity is trivially O(

∑
k Sk).

4 Empirical Study

Our empirical study aims to investigate whether RDML can enhance model
performance beyond that of the independent model and vanilla DML. Thus,
we minimize the effort for tuning the models and instead adopt certain general
settings. In summary, our study focuses on the following research questions.

1. How does the algorithm converge? (Sect. 4.2)
2. How does RDML perform compared to vanilla DML and the single model on

its own? (Sect. 4.3)
3. Does RDML generalize better? (Sect. 4.4)
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4.1 Experimental Setup

This study centers on datasets from two prominent fields: Computer Vision (CV)
and Natural Language Processing (NLP). The CV data contains CIFAR10 and
CIFAR100 [13] with a resolution of 32×32. We conducted experiments on DTD [4]
and Flowers102 [19] with a resolution of 224 × 224. The NLP data for text
classification task contains AGNews, Yahoo!Answers, and YelpReviewFull. All
data is handled through either torchvision or torchtext.3

Regarding CIFAR10 and CIFAR100, we applied SGD with Nesterov momen-
tum of 0.9. The initial learning rate was set to 0.1, and the weight decay was
set to 0.0005. A total of 200 epochs were run with a batch size of 128, and
the learning rate dropped by 0.2 every 60th epoch. The architectures used are
GoogLeNet [28], ResNet34 [8], and VGG16 [25]. For DTD and Flowers192, we
set the learning rate to 0.005 and the weight decay to 0.0001 using SGD with
momentum of 0.9. We ran 30 epochs with a batch size of 32 and decay the
learning rate by 0.1 at epochs (16, 22). In addition, the gradients were clipped
by the max norm of 5. For these two datasets, timm were used to acquire the
pretrained weights for the models: InceptionV4 [27], ViT [30], and YoloV3 [23].

For text classification, we evaluated the performance of fastText [11] with
GloVe [21] (pretrained word embeddings) and CharCNN [33] using a pub-
lic implementation. We used the default settings of the implementation with
an initial learning rate of 0.5 and set the weight decay to 0.5 for fastText.
Then, 100 epochs were run, in which the learning rate was decayed every three
epochs with a batch size of 16. For CharCNN, we set an initial learning rate of
0.0001 and set the weight decay to 0.9 for the experiments for Yahoo!Answers
and YelpReviewFull. For all other experiments, we set the weight decay to 0.5
and uses the default settings of the implementation, including an initial learning
rate of 0.001. Finally, we ran 20 epochs and decayed the learning rate every three
epochs with a batch size of 128. Even though a larger K value is preferred for
potentially achieving better results, we followed [34] to set K = 2, which suffices
to improve model performance in this study

4.2 Convergence Trace Analysis

We conducted a convergence analysis using the training loss trace plots depicted
in Fig. 2. First, the base losses keep decreasing overall, while the divergence
losses are not guaranteed to vanish but remain bounded. This finding indirectly
supports Theorem 2, which suggests that the influence of the base loss on the
gradients will reduce, but the bias introduced by the divergence loss may persist.
Secondly, we observe that the base losses can obtain lower numeric values with
smaller α in the same time window. Simultaneously, the divergence losses are
tied to a higher level with a larger α value as it forces a greater learning power
within the Rényi divergence. Under the selected configurations, a larger value
of α results in a greater coefficient in the big-O notation of O(1/

√
T ), causing

3 The required public resources of software and model are available in the SD.
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Fig. 2. Plot of training loss for selected configurations, starting from the 50th epoch.
The base loss and divergence loss are shown separately, with values presented for every
third epoch.

the error to decrease at a slower pace. Finally, we note that for α = 0.5, the
divergence losses for the two students are identical. This is because the Rényi
divergence is symmetric with α = 0.5 [6], i.e., D0.5(P ||Q) = D0.5(Q||P ) for any P
and Q, indicating that the divergence losses under this two-student configuration
are strictly equal.

4.3 Evaluation Results

Image Classification. The training set and test set are split automatically
through torchvision. As for classification, we employ the top-1 accuracy to
examine the model performance. The experiments were run upon a range of con-
figurations, including the independent case and α ∈ {0.5, 1, 1.5, 2}. The results
for CIFAR10 and CIFAR100 are presented in Table 1, while those for DTD and
Flowers102 are displayed in Table 2. The indices of model are sorted by their
respective values, and we label the best performer in each column using boldface.

The results of CIFAR10 show that for GoogLeNet and ResNet34, RDML with
α = 1.5 performs the best, while vanilla DML obtains the best accuracy with
VGG16. In the experiments for CIFAR100, the three selected architectures achieve
the best outcomes with α = 2 in most cases. Observed from the results, RDML
under certain configuration always outperforms the independent case. It shows
that tuning α is helpful in learning better model parameters. Regarding DTD, α = 2
and α = 1.5 are still the best options for the selected architectures. Same as DML,
RDML also perfectly collaborates with the pretrained models which are agreed
to be more powerful in modern DL tasks [5]. Also, we notice that the improve-
ments over the independent model are greater with these models. The effective-
ness of tuning α is further confirmed by the results of Flowers102 in Table 2.
For the three models (InceptionV4, ViT, and YoloV3), the best performance is
achieved with RDML when α = 0.5, 2.0, and 1.5, respectively. For instance, ViT
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Table 1. The top-1 accuracy (%) results are presented for CIFAR10 and CIFAR100. To
ensure a stable outcome, we bootstrap and average the accuracy of the test set over
the last 10 epochs. The models are listed in ascending order based on their values. In
the table, GoogLeNet, ResNet34, and VGG16 are abbreviations for GN, RN, and VG,
respectively. The model index starts from 0 and is indicated as a subscript. RDMLa

indicates that α is set as a. The independent case (Ind.) has only one result. The
bootstrapped standard deviation is presented.

Dataset: CIFAR10 Dataset: CIFAR100
GN0 GN1 RN0 RN1 VG0 VG1 GN0 GN1 RN0 RN1 VG0 VG1

Ind. 91.87 ± .14 92.56 ± .17 90.71 ± .09 69.60 ± .19 76.26 ± .03 72.21 ± .03

RDML0.5 91.91 ± .11 92.06 ± .13 92.86 ± .07 93.03 ± .07 91.03 ± .05 91.26 ± .10 70.22 ± .16 70.24 ± .17 76.71 ± .05 77.14 ± .02 72.09 ± .04 72.53 ± .05

DML 92.28 ± .13 92.37 ± .16 93.27 ± .08 93.34 ± .07 91.22 ± .11 91.33 ± .07 72.34 ± .13 72.49 ± .18 77.14 ± .03 77.24 ± .03 73.01 ± .05 73.17 ± .04

RDML1.5 92.61 ± .11 92.62 ± .03 93.28 ± .06 93.35 ± .11 91.18 ± .11 91.29 ± .08 71.65 ± .13 72.1 ± .07 77.61 ± .03 77.94 ± .02 73.32 ± .05 73.6 ± .06

RDML2.0 92.26 ± .14 92.28 ± .12 93.18 ± .07 93.19 ± .08 91.17 ± .10 91.23 ± .07 72.13 ± .10 72.27 ± .16 78.31 ± .04 78.5 ± .02 73.3 ± .06 73.74 ± .03

Table 2. The top-1 accuracy (%) results for DTD and Flowers102 are presented. The
accuracy results of the last 5 epochs in the test set are bootstrapped and averaged. In
the table, IV4 and YV3 are abbreviations for InceptionV4 and YoloV3, respectively.
The independent model is denoted as Ind., and the subscript of RDML is α. The same
models are reindexed by their values in ascending order. The bootstrapped standard
deviation is presented.

Dataset: DTD Dataset: Flowers102
IV40 IV41 ViT0 ViT1 YV30 YV31 IV40 IV41 ViT0 ViT1 YV30 YV31

Ind 64.66 ± .20 72.52 ± .06 68.95 ± .06 88.32 ± .12 98.15 ± .00 90.67 ± .03

RDML0.5 61.63 ± .13 64.93 ± .10 72.73 ± .02 73.87 ± .04 66.07 ± .06 67.02 ± .03 88.01 ± .12 89.39 ± .10 98.19 ± .00 98.52 ± .01 90.66 ± .02 90.68 ± .01

DML 65.87 ± .19 66.20 ± .09 74.38 ± .02 75.05 ± .04 69.93 ± .07 70.24 ± .09 87.92 ± .10 88.46 ± .08 98.53 ± .01 98.73 ± .01 90.98 ± .03 91.04 ± .03

RDML1.5 67.57 ± .08 67.67 ± .13 75.86 ± .04 75.94 ± .04 70.91 ± .10 71.72 ± .07 88.27 ± .06 88.89 ± .11 98.73 ± .01 98.91 ± .00 91.29 ± .03 91.37 ± .03

RDML2.0 67.86 ± .16 68.97 ± .10 75.37 ± .05 76.04 ± .02 71.17 ± .08 71.26 ± .09 87.98 ± .06 88.13 ± .07 98.95 ± .00 99.02 ± .00 90.56 ± .03 90.79 ± .02

Table 3. The results for Top-1 accuracy (%) on the test sets of AGNews, Yahoo!Answers,
and YelpReviewFull. The best performing α of RDML is selected based on the mean
accuracy of K models on each validation set.

Dataset fastText CharCNN
Ind. fastText0 fastText1 α Ind. CharCNN0 CharCNN1 α

AGNews 89.72 89.76 89.76 2.0 87.13 89.63 89.17 1.5
Yahoo!Answers 65.65 65.65 65.65 0.5 63.54 64.54 64.51 2.0
YelpReviewFull 54.26 54.31 54.31 1.5 55.01 55.36 55.58 1.5

with RDML2.0 achieves a top-1 accuracy of 99.02% which outperforms indepen-
dent model (98.15%) and vanilla DML (98.73%).

Text Classification. The evaluation adopts top-1 accuracy, which is the same
as that used for image classification. We demonstrate that α can be tuned as a
hyperparameter using a grid search on a validation set. To this end, we chose
α based on a grid search ∈ {0.5, 1, 1.5, 2} using a validation set that makes up
20% of the training set, and investigate the best performing α values and the
corresponding performance on the test set. Table 3 presents the values of α that
yield the highest average accuracy on the test set. Regularization via RDML
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Fig. 3. Heatmap depicting the optimal α values obtained from 18 experiments, each
corresponding to a distinct pairing of a model M and a dataset D. The figure high-
lights the variability in α requirements for achieving superior performance when using
different datasets with the same method (and vice versa).

was shown to be more beneficial for the larger models in regard to improving
the performance over a single model, e.g., CharCNN (with ∼2M parameters)
versus fastText (with ∼3K parameters).

Summary. Observing the experiments, it is evident that RDML is able to
improve on vanilla DML and independent models in most cases. This covers
a broad collection of network architectures and datasets. The best performing
value of α varies depending on the situation as illustrated in Fig. 3. In our experi-
ments, we found that RDML was more effective at coping with underperforming
configurations, such as using a less well-defined model or a set of unoptimized
hyperparameters. This is reasonable because a perfect configuration for a mod-
erate task suffices to obtain maximum performance.

4.4 Generalization Results

Here, we examine the generalization ability of RDML regarding the choice of α.
We focus on the test performance of CIFAR100 and Flowers102, while the other
results are included in the SD.

To begin, Fig. 4 illustrates the evaluation of the base loss on the test data
using the CIFAR100 dataset. It is widely acknowledged in the machine learning
community that, beyond a certain point, while the training loss can be contin-
uously reduced, the test loss will typically start to increase. As demonstrated
in Fig. 4, the test loss of a single model (either GoogLeNet, ResNet34, or VGG16)
replicates this agreement. However, RDML is able to constrain this growth ten-
dency of test loss for all students. Also, the capability of preventing this increase
gets enhanced as α becomes larger, i.e., setting a prior with smaller variance.
Moreover, we observe that RDML with larger α significantly reduces the fluctu-
ations in the test loss, i.e., the variance is being reduced for the test loss (though
it still maintains a reasonable amount of uncertainty). It depicts that α = 2
for GoogLeNet over-regularizes the model and thus performs slightly worse than
that with α = 1.5. In the classification problem, the test base loss approximates
the negative likelihood of the unseen data which can be optimized via RDML.
The results suggest that RDML is able to acquire better generalizations through
tuning the parameter α.
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Fig. 4. Test loss of RDML for various α on the CIFAR100 dataset.

Similar patterns are observed while checking the test accuracy in Fig. 5. In
regard to ResNet34, starting from epoch 60, the single model boosts its accuracy
since the learning rate is decayed, but rapidly encounters a decrease in accuracy.
However, RDML can significantly mitigate the performance decrease and achieve
the best outcome when α = 2 within the range of our choices. Correspondingly,
the results for ResNet34 in Fig. 4 show a loss increase during the same period.
As shown, RDML can limit this loss increasing speed and can limit harder with
a greater value of α.

Figure 6 exhibits the results of test accuracy on the Flowers102 dataset with
the three selected models. For InceptionV4 and YoloV, the test accuracy of each
model increases as the model is trained for more epochs. Regarding ViT, we can
observe that the test accuracy of the independent model tends to fluctuate in
the first 15 epochs during training. In contrast, we also notice that the accuracy
curves become less fluctuating using RDML with larger α values, which again
shows the flexibility of tuning α in RDML for better generalization.
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Fig. 5. Test accuracy of RDML for various α on the CIFAR100 dataset.

5 Related Work

DML is a knowledge distillation scheme that transfers knowledge from from
one or more deep neural networks to a designated one. Unlike offline distil-
lation, where knowledge is transferred from a pretrained model, DML allows
multiple neural networks to collaborate and transfer knowledge during train-
ing, providing flexibility to train different or the same networks [7]. Due to its
effectiveness, DML has been used in various contexts and applications, such as
tracking visual objects [35], machine translation [36], speech recognition [15], and
COVID-19 recognition [32]. Recently, Yang et al. [31] proposed training a cohort
of sub-(convolutional) networks with different configurations of network widths
and input resolutions via DML to achieve accuracy-efficiency tradeoffs. Park et
al. [20] applied DML to deep metric learning beyond classification tasks and
demonstrated its effectiveness over individual models. However, to the best of
our knowledge, there is no theoretical analysis of convergence in DML available.



Rényi Divergence Deep Mutual Learning 169

Fig. 6. Test accuracy of RDML for various α on the Flowers102 dataset.

The Rényi divergence [6] has garnered increasing interest and has been uti-
lized in a variety of applications. For instance, it has been proposed to replace the
KL divergence in variational inference [14]. Examples show that the Rényi diver-
gence can control the regularization power of the inferred variational distribu-
tion. Several related applications in cryptography [2,22] also exist, as the Rényi
divergence deliver tighter security bounds. In addition, it has been widely used
as a powerful tool to analyze differential privacy [16,29] and has been utilized
in the examination of human brain behaviors [24]. All of these illustrate the
potential of this divergence in a broad range of tasks.

6 Conclusion

In this paper, we have revisited DML and proposed a revised paradigm, namely
RDML. Our motivation stems from the enhanced flexibility offered by Rényi
divergence, compared to the KL divergence used in DML. The empirical results
support our findings and demonstrate that RDML has greater capacity than
DML to improve model performance. Moreover, we theoretically proved the con-
vergence guarantee of the paradigm, showing that the learning procedure will
converge with a bounded bias. This might help the learned parameters escape
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from a narrow optimum to a wider one in practice, particularly in cases where
models tend to overfit the training data.

In regard to future research, one could examine the generalization error
bounds for RDML to theoretically explore why it can learn better generalized
models. Additionally, investigating online hyperparameter tuning for the con-
trolling parameter α is another potential avenue to explore.
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Abstract. The Minimum Description Length principle (MDL) is a for-
malization of Occam’s razor for model selection, which states that a good
model is one that can losslessly compress the data while including the
cost of describing the model itself. While MDL can naturally express the
behavior of certain models such as autoencoders (that inherently com-
press data) most representation learning techniques do not rely on such
models. Instead, they learn representations by training on general or, for
self-supervised learning, pretext tasks. In this paper, we propose a new
formulation of the MDL principle that relies on the concept of signal and
noise, which are implicitly defined by the learning task at hand. Addi-
tionally, we introduce ways to empirically measure the complexity of the
learned representations by analyzing the spectra of the point Jacobians.
Under certain assumptions, we show that the singular values of the point
Jacobians of Neural Networks driven by the MDL principle should fol-
low either a power law or a lognormal distribution. Finally, we conduct
experiments to evaluate the behavior of the proposed measure applied
to deep neural networks on different datasets, with respect to several
types of noise. We observe that the experimental spectral distribution is
in agreement with the spectral distribution predicted by our MDL prin-
ciple, which suggests that neural networks trained with gradient descent
on noisy data implicitly abide the MDL principle.
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1 Introduction

New data often traces out regularities found in past observations, an idea known
as generalization: finding regularities that are consistent with available data
which also apply to data that we are yet to encounter. In the context of super-
vised machine learning we measure it by learning the rules on observations by
minimizing some loss function, and evaluating it on observed and unobserved
data. The difference between risk in the training data and new observations is
known as the generalization gap. When it is small, the model generalizes well.

In the context of empirical risk minimization the generalization gap can be esti-
mated in terms of model complexity, which increases with its number of parame-
ters. We thus expect to reduce the generalization gap through a form of regulariza-
tion, either by explicitely reducing the number of parameters, controlling a norm
[27,49], or e.g. using dropout [21,43] or batch normalization [24,29,41].

Surprisingly, neural networks (NN) trained by stochastic gradient descent
(SGD) generalize well despite possessing a higher number of parameters than
training data, even without explicit regularization [14]. An elegant explanation for
this phenomenon is that SGD implicitly controls model complexity during learn-
ing [19,35], resulting in networks that are significantly simpler than their number
of parameters suggests, as shown by several metrics to assess effective capacity, e.g.
the model’s number of degrees of freedom [12], which is related to generalization
gap, or its intrinsic dimension [28]. It is thus puzzling that, in spite of their implicit
simplicity, NN classifiers trained by SGD are able to perfectly fit pure random noise
[51], even while explicitly using regularization. In pure random noise, there is no
signal to learn a rule from, and to reduce the generalization gap we must reduce the
training performance. Since common regularization methods are unable to achieve
this, using them to control model expressiveness does not address generalization:
we need to “rethink generalization”.

To do so we offer the following insight. To learn, from noisy observations,
regularities that apply to data that we are yet to encounter, we must do so in
a noise insensitive way: we must learn from signal rather than from noise. If we
do so, there is no generalization gap when learning from pure noise: since there
is no signal, the model would simply not learn at all!

In this paper, we shall give a formulation of this insight in terms of a minimum
description length principle (MDL), [37,38] a principle of model selection which
can be seen as a formalization of Occam’s Razor. MDL states the problem of
learning from data in terms of finding regularities that we can use to compress
it: choose the model that provides the shortest description of data, comprising
the model itself 1. This idea was formulated in different ways since it was first
advanced in [37], to respond to technical difficulties in application [15]. In the
original, two-part form, restricting the model class to finite sets, application of
this principle turns into Kolmogorov’s minimal sufficient statistic [46].

1 This formulation is known as two-part MDL, which depending on the author can be
seen as “traditional” (in opposition to “modern” MDL which uses a one-step encoding
using universal encodings [15]) or “pure [46]”.
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MDL expresses the ability to generalize in terms of compressibility, which
can be motivated using three main facts: (i) regularities in a random variable
(r.v.) X can be used to losslessly compress it (ii) the minimum achievable code
length is the entropy (iii) it is very unlikely that data that has no regularities
can be compressed. Taken together, these imply a model’s ability to compress
data is likely due to finding a regularity, which will likely be found in new data
as well. It is this intuitive appeal that motivates the use of MDL in spite of some
conceptual difficulties, namely in selecting the encoding used to measure the
length of the description of the model, which depends on the choice of encoding.
To address this difficulty, we propose an approach that uses both the signal and
the noise in the data to implicitly define model complexity unambiguously:

Choose the model whose representation of the data can be used to compress
the signal, but not the noise.

Formalizing this statement requires a perspective of signal and noise that is
particularly adjusted to classification problems, where the signal is task-defined
[15], and everything else can be considered as noise. As we shall see, our MDL
statement has a significant impact on the distribution of the singular values of
the point Jacobian matrices of a NN. Networks that learn from noise (where their
output can be used to compress the noise) tend to maximize singular values in
arbitrary directions to capture the fake “signal” in local directions. As a result the
spectrum is uniformly distributed. On the other hand, NN that learn from signal
but not from noise (where their output can be used to compress the signal but not
the noise) tend to capture local regularities in the signal by maximizing singular
values in directions aligned with the data. These directions are, by definition of
signal, not arbitrary. Since the network also tends to ignore everything that is
not signal, by minimizing singular values in arbitrary directions, in the limit of
infinite epochs, this results in a spectrum distributed according to a power law,
with a large proportion of small singular values and a fat tail.

Our Contributions. Our main contributions in this paper are 3-fold: (i) we pro-
vide a formulation of the MDL principle that is generally applicable to learned
representations (ii) we provide a capacity measure based upon this principle (iii)
we show experimentally that neural networks are driven by the MDL principle.

Paper Organization. This paper is organized as follows: Sect. 2 contextualizes of
our work, focusing on the sensitivity measure provided in [1]. We then provide a
few information theoretic results in Sect. 3.1 to contextualize the our definition
of signal and noise in Sect. 3.2. Section 4 is the core of our contribution: we define
our MDL objective in Sect. 4.1, and provide the local approximation in Sect. 4.2
that allows us to predict the spectral distribution in Sect. 4.2. In Sect. 5 we
present experimental results2 which allow us to conclude in Sect. 6 that neural
networks are driven by the MDL principle, and discuss future work.

2 Repository: https://github.com/brandao-eduardo/ismynndrivenbymdl.

https://github.com/brandao-eduardo/ismynndrivenbymdl
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2 Related Work

MDL has traditionally been used for model selection [2,15,18,34,40], but its
intuitive appeal has led to applications in other areas such as pattern mining
[11,23]. In supervised learning, MDL was used in NN as early as [22], in which
the authors added Gaussian noise to the weights of the network to control their
description length, and thus the amount of information required to communicate
the NN. In classification, existing approaches are inspired in MDL for density
estimation [15], and most can be reduced to the same approach based on the 0/1
loss, which, while not making probabilistic assumptions about noise, was shown
to behave suboptimally [16]. Existing modifications to address this [3,48] do not
have, unlike our approach, a natural coding interpretation. Finding a formulation
of MDL for classification that can be applied in general and realistic settings is
thus an open problem, and this paper aims to contribute in this direction.

The relationship between noise, compressibility and generalization has been
explored in [5], for example, to derive PAC-Bayes generalization bounds, or in
the information bottleneck framework [45]. Closer to our approach [33] stud-
ies the stability of the output of NN with respect to the injection of Gaussian
noise at the nodes, experiments showing that networks trained on random labels
are more sensitive to random noise. In [1], the notion of stability of outputs is
extended to layer-wise stability, improving network compressibility and gener-
alization. The authors define layer sensitivity with respect to noise (essentially
the expected stable rank with respect to the distribution of the noise), and show
that stable layers tend to attenuate Gaussian noise. A compression scheme is
provided for the layer weights that acts on layer outputs as Gaussian noise, which
subsequent stable layers will thus tend to attenuate. This, since the output of
the network is unchanged, shows that a network composed of stable layers is
losslessly compressible. A generalization bound for the compressed network is
then derived in terms of the empirical loss of the original network and the com-
plexity of the compressed network. This work shows a clear connection between
compressibility of the model and generalization, but the connection to MDL is
less evident. We will show that enforcing our MDL principle leads to a measure
that can be seen as an average of local sensitivities, which are similar to those
defined in [1], but with crucial differences. In our approach, sensitivity is loga-
rithmic, direction-dependent, and importantly combines sensitivity to signal and
to noise.

3 MDL Principle, Signal, and Noise

We recall fundamental results in information theory, which will be used to define
signal and noise as used in this paper.

3.1 Information Theory Primer

MDL rests on three fundamental results: (i) regularities in a r.v. X can be
used to losslessly compress it using a non-singular code for X; (ii) the minimum
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achievable codelength is the entropy; and (iii) it is extremely unlikely that data
that has no regularities can be compressed. In this section, we provide proof
sketches for (ii) and (iii) (cf. app. 1.6 in [6]; see e.g. [8] or [30] for proofs) and
motivate (i) in Sect. 3.1 with a toy example. A similar argument can be used
to prove a finite-precision version of the Theorem 1 in [50], which provides a
necessary condition for a 2-Layer ReLU network to be able to perfectly fit the
training data. A straightforward application of this original result allows us to
show in app. 1.1 in [6] that a two-layer network that can be losslessly compressed
to less than about 125 kB cannot perfectly overfit cifar-10 [26].

Preliminaries and Notation. A source code C(X) (C when there is no risk of
ambiguity) for a r.v. X is a function from X the range of X to D∗ the set of finite
strings of a d-ary alphabet D, associating x ∈ X to a codeword C(x). The length
of the codeword l(x) is the number of elements in C(x), and the expected code
length is L(X) := EX [l(x)]. A code is said to be non-singular if every x ∈ X
maps to an unique element of D∗. An extension C∗ of code C codes sequences
x1x2 · · · xnof elements of X as the concatenation of C(x1)C(x2) · · · C(xn). A
code is said to be uniquely encoded if its extension is non-singular. Since every
element in X is unambiguously encoded with a unique string, non-singular codes
allow us to losslessly compress data.

Optimal Codelength and Incompressible Data. The Kraft-Macmillan inequality
(cf. app. 1.6 in [6]), which provides a condition for the existence of a uniquely
decodable code with given word lengths proves (ii):

Theorem 1 (Optimal code length). The expected length for any uniquely
decodable code C of a r.v. X over an alphabet of size D is greater than or equal
to HD(X) the entropy calculated in base D, with equality holding iff D−li = pi

An optimal prefix code always exists (e.g. Huffman code), but for our purposes,
the Shannon-Fano code, which sets codeword lengths l(x) = �− log p(x)�3 suf-
fices. To give an informal argument for (iii), consider data X with no regularities
(maximal entropy). By Theorem 1, the expected codelength of any prefix code
of a discrete r.v. X over an alphabet of size D is at least HD(X), with equality
iff the li = − logD pi. Since all n events have probability 1

n , the expected code

length per symbol is L ≥ −
n∑

i=1

pi logD pi = logD n. The lower bound can be

achieved by assigning each codeword to the leaves of a D-nary tree: the best
code and worst code coincide, and so data cannot be compressed.

Using Regularities to Compress. To motivate (i), consider an object of mass
m falling freely from a height h0 on Earth (acceleration of gravity g), and a
table recording heights {h1, h2, . . .} at times {t1, t2, . . .}. which are known to
obey h(t) = h0 − 1

2mgt2 since Galileo. This regularity can be used to losslessly

3 The Shannon-Fano code is competitive, meaning that the probability that the
expected length exceeds another code’s by c bits does not exceed 21−c [8].
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compress the height-times table by replacing hi by Δhi = hi − h(ti), as we
expect h(ti) to predict the first significant digits of hi with high confidence,
and measurements are performed and stored with finite precision. We can thus
store the same data (in expectation) using less digits, which amounts to lossless
compression. The more regularities we are able to find in data, the more we can
compress it. A better model, taking e.g. drag into account, increases confidence
in the first significant digits of the predictions, thus reducing in expectation the
number of significant digits of the deviations, and allowing better compression.
But there is a trade-off: as it would need to store drag as well as m, g, the model
itself takes longer to describe. In the limit, a very large model can decrease the
description length of finite data simply by memorizing it. Notably, two-layer
ReLU feed forward NN can do this with surprising ease [50] but, as predicted in
the MDL framework, at the expense of an increase in complexity [4].

3.2 Signal and Noise

This paper introduces an MDL principle that specifies the encoding scheme in
which to measure the description length implicitly in terms of the signal and the
noise in noisy data. To define signal and noise, we rely on [39] which defines noise
as the part of the data that cannot be compressed with the models considered,
the rest defining the information bearing signal. This idea is used in the paper in
the context of Gaussian models arising in linear-quadratic regression problems to
derive a decomposition of data that is similar to Kolmogorov’s sufficient statistics
[8]. In our case, we shall assume that the signal is implicitly provided by a given
classification task, and define noise to be everything else.

Definition 1. We define noise as “noise relative to a signal”: given r.v.s X
(signal) and Δ (noise) such that X + Δ is well-defined, we say that Δ is noise
relative to X if for every Ci ∈ C non-singular code of X, we have L(Ci(Δ)) ≥
H(Δ) + α, with α > 0.

Note that if Cj ∈ C were optimal for Δ, then L(Ci(Δ)) = H(Δ) ≥ H(Δ)+α,
which with α > 0 is a contradiction. The definition is thus equivalent to stating
that there is no code of X in C (which may include the optimal code for X) that
is optimal for Δ. Also note that the noise Δ is not particularly “disordered”.
Going back to Sect. 3.1, the physical laws that compress height vs. time data are
unable to compress the effect of hitting the object with a baseball bat. Even if
a model provides a simple description of some data, adding noise as defined in
Definition 1 destroys its ability to compress it. It is implicit in the MDL principle
that not only do we learn the regularities in data, but also the “irregularities”!

4 Learning with the MDL Principle

We now provide an MDL principle that eliminates the need for defining the
model encoding, as in two-step MDL or a universal coding such as one-step MDL
[17]. Instead, we use the signal and the noise in the training data to implicitly
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define the encoding and establish a lower bound of this maximization objective
in terms of the MDL of signal and noise(cf. Theorem 1). We simplify the problem
by expressing it locally, and provide an interpretation in terms of sensitivities to
the signal and noise. Finally, we combine the local problems to express a global
MDL objective in terms of the spectra of the local Jacobians, concluding that
the spectral distribution of models that maximize MDL is either power law or
lognormal.

4.1 MDL Objective

The MDL paradigm quantifies learning based on the ability to compress: if f(X+
Δ) contains information about X it can compress it and conversely, if it does
not contain information about the Δ, it cannot be used to compress it. This
formulation implicitly defines the complexity of the model f in terms of unknown
X and Δ present in training data. It is therefore applicable in a classification
context, where these are defined with respect to a task. Formally:

Definition 2 (MDL principle). Let X̃ = X+Δ be noisy data, with unknown
signal X and a noise Δ parts in the sense of Definition 1, and a model fθ trained
on X̃ according to some (e.g. classification) objective. Let L(X|f(X̃) = y) and
L(Δ|f(X̃) = y) be, respectively, the expected description length of X and Δ given
knowledge fθ(X̃) = y. Then with γ > 0 a hyperparameter, fθ follows the MDL
principle if it maximizes

max
θ

{∫

pfθ(X̃)(y)L(Δ|fθ(X̃) = y)dy − γ

∫

pfθ(X̃)(y)L(X|fθ(X̃) = y)dy

}

(1)

The idea is to minimize the mean L(X|f(X̃) = y) and maximize L(Δ|f(X̃) = y)
seen as functions of y4, with γ controlling the relative strength of these objectives.

A Lower Bound in Terms of Minimal Description Length. Using Theorem 1
we can express the length of the description of noise knowing fθ(X̃) = y as a
multiple α(y) ≥ 1 of the length of the minimum length description for each y:

∫

pfθ(X̃)(y)L(Δ|fθ(X̃) = y)dy =
∫

pfθ(X̃)(y)α(y)H(Δ|fθ(X̃) = y)dy

≥
(

inf
y

α(y)
) ∫

pfθ(X̃)(y)H(Δ|fθ(X̃) = y)dy

=
(

inf
y

α(y)
)

H(Δ|fθ(X̃))

Proceeding similarly for the signal term we obtain
∫

pfθ(X̃)(y)L(X|fθ(X̃) = y)dy ≤
(

sup
y

β(y)
)

H(X|fθ(X̃))

4 For classification, we work on an intermediate representation, which explains the use
of integrals in calculating the expectation.
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Denoting infy α(y) := α and supy β(y) := β the minimum and maximum
expected description lengths of codes of noise and of signal, respectively, knowing
fθ(X̃) = y, we combine the two desiderata and maximize a lower bound of 1:

max
θ

{
αH(Δ|fθ(X̃)) − γβH(X|fθ(X̃))

}

Since H(Δ|fθ(X̃)) = H(Δ, fθ(X̃))−H(fθ(X̃)) and similarly for the second term,

H(Δ|fθ(X̃)) − γβH(X|fθ(X̃)) = αH(fθ(X̃)|Δ) − γβH(fθ(X̃)|X)

+ αH(Δ) − γβH(X) + (βγ − α)H(fθ((̃X)))

Ignoring terms independent of θ, since α > 0, we obtain a lower bound of 1:

Proposition 1 (MDL objective lower bound). Given noisy data X̃ =
X + Δ comprised of a signal X and a noise Δ parts, a model fθ trained on
X̃ according to MDL, λ := γ β

α , the following is a lower bound of the the MDL
objective:

max
θ

{
H(fθ(X̃)|Δ) − λH(fθ(X̃)|X) + (λ − 1)H(fθ(X̃))

}
(2)

In this lower bound, λ has the role of γ modulated by the ratio between the
worst case expected signal description length knowing the model output and the
best case description length of the noise knowing the model output in units of
entropy. Note that to minimize the description length of the noisy data H(fθ(X̃))
we must have λ − 1 < 0 and hence objective 2 is MDL with a constraint on the
conditional entropies. Since λ < 1 ⇒ α > γβ the implications depend on the
model class {fθ}: if for the given model class Δ is more difficult to compress
than X, then α > β and so γ < 1. This corresponds to, in 2, focusing relatively
more on ignoring the noise. Conversely, if {fθ} is such that X is mode difficult
to compress, then γ > 1 and we focus relatively more on learning the signal.

4.2 Local Formulation

We now simplify the problem in 2 by expressing it locally and then ultimately
in terms of the spectrum of the point Jacobian matrix ∇fθ|xk

.

Local Objective. Let f : A ⊆ R
n → B ⊆ R

m be analytical, A compact and
x1, . . . , xN ⊆ A and {Vk}k=1···N a set of balls centered at xk and with radius
rk such that A ⊆ V1 ∪ · · · ∪ VN , chosen such that the Jacobian matrix of f is
constant in each Vk in the sense of Prop. 2 in [6] Then to first order in δxk, δ:

f(x̃) = f(x̃k + δxk + δk) ≈ f(x̃k) + ∇f |x̃k
δxk + ∇f |x̃k

δk

:= f(x̃k) + Jkδxk + Jkδk

with the approximation error controlled by the principal singular value of the
Hessian (cf. app. 1.3 [6]). Since the choice of Vk determines f(x̃k), and local
independence of signal and noise implies locally H(f(X)|X) = 0,H(X|Δ) =
H(X), we can apply this approximation to 2 to obtain:
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Proposition 2 (Local MDL objective). In the conditions and notation
above, locally in Vk the MDL objective 2 can be expressed approximately as

max
Jk

λH(JkδXk) − H(JkΔk) (3)

where δXk,Δk denote the signal and the noise in Vk with respect to its center,
and the approximation error is controlled by Prop. 2 in [6].

Interpretation in Terms of Sensitivity. In [1] the authors define sensitivity
of a mapping f with respect to noise Δ at x as Eδ∼Δ

[
‖f(x+δ)−f(x)‖2

‖f(x)‖2

]
, which

becomes ‖Jk(δ)|2
‖f(x)‖2 to first order in δ, in a region of constant Jacobian Jk, using the

arguments in Sect. 4.2. In expectation, up to a scale, this is the variance of JkΔk

which is a measure of its complexity like the entropy above, (for a Gaussian
distribution, up to a logarithm and a constant, the two coincide). H(JkΔk)
in Propostion 2 thus corresponds to sensitivity with respect to noise and, by
a similar argument, H(JkδXk) to sensitivity with respect to signal. Our MDL
objective thus selects the model that locally maximizes sensitivity with respect
to signal and minimizes sensitivity with respect to noise. Although similar to [1],
in our formulation sensitivity is logarithmic, direction-dependent (cf. Sect. 4.2),
and crucially combines sensitivity to signal and sensitivity to noise.

Finally, since λ < 1, if H(JkδXk) > H(JkΔk) then 3 is upper bounded by
zero, where λ = H(JkΔk)

H(JkδXk)
. Maximizing 3 thus corresponds to getting closer to a

model that locally produces the same balance between sensitivity to signal and
to noise, determined by the global parameter λ. This problem cannot always be
solved. Consider f a one layer ReLU network of width N ; the local {Jk} are
given by deleting a certain number of rows in the pre-ReLU Jacobian, which
is the weight matrix of f . Since f can have at most 2N different {Jk}, the
conjunction of local problems can only be solved if the number of Vk where
the balance between sensitivities needs to be adjusted differently is smaller that
2N . The case of deeper networks is similar, each new ReLU layer of width Mi

multiplying the number of possible Jacobians by 2Mi .

Local Objective: Spectral Formulation. To provide a spectral version of 2,
we express Jk in terms of its singular value decomposition (SVD), and the signal
and noise in terms of local PCA representations. We work in Vk but omit the
label k for simplicity. Jacobian, signal, and noise refer to the local versions.

Proposition 3 (Local objective spectral formulation). In the conditions of
Proposition 2, the following is its lower bound:

max
σ

⎧
⎨

⎩
λ

(
max

i

{
log σi + H(δXi

pca)
})

−
∑

j

(
H(Δj

pca) + log σj

)
⎫
⎬

⎭
(4)
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Proof. Let J = UΣV � be the singular value decomposition of J ∈ R
n×m. The

signal δX can be expressed as the transform to local coordinates of δXpca, the
signal in local PCA coordinates δX = W�

signalδXpca, and similarly for noise:
Δ = W�

noiseΔpca, where Wsignal,Wnoise are the respective PCA coordinate
transformations. Since U has determinant one everywhere we thus have

λH(JδX) − H(JΔ) = λH(ΣV W�
signalδXpca) − H(ΣV W�

noiseΔpca)

The V W� are contractions measuring the alignment between the singular vec-
tors of the Jacobian and the principal components of the signal (for Wsignal) and
noise (for Wnoise). We thus maximize the RHS of this expression by (i) align-
ing J with δX and then maximizing the logarithm of the singular values in the
non-zero dimensions; if δX is locally low-dimensional, the singular values that
get maximized are few (ii) aligning J with Δ and then minimizing the logarithm
of the singular values in the non-zero dimensions; since Δ tends to be relatively
high-dimensional, all singular values of J tend to be minimized.5 The overall
effect is to maximize a few neighborhood-dependent singular values of J , and
minimize all the rest – consistently with the experimental observations Fig. 1.
Since δX and J are unknown, so are the “selected” directions. The full entropy
of the local signal is at least as great as that of its components. Replacing it with
the entropy of the singular direction i for which the entropy of the transformed
signal is maximal, we obtain a lower bound of the local objective.

4.3 Combining Local Objectives to Obtain a Spectral Distribution

We combine local objectives by maximizing their sum over all local patches Vk

which ammounts to assuming cross-patch independence. For it to hold, (i) the
network should be able to produce sufficiently many local Jacobians as explained
in Sect. 4.2 and (ii) Vi ∩ Vj should be small for all i, j. Assumption (i) holds in
practice since we work in the overparameterized regime and (ii) holds for ReLU
networks. Both assumptions are thus expected to hold as a first approximation,
although [20] suggests more complex behavior and will be considered in future
work.

Recalling that we do not know which singular value gets “selected” and assum-
ing that the signal is locally low-dimensional (which is known as “the manifold
hypothesis” [7,10] ), which we take for simplicity to mean that maxik

H(δXik

k ) ≈
H(δXk) we obtain, summing over the M patches of rank-Nk Jacobian

M∑

k=1

⎧
⎨

⎩
λ

(

max
ik

{
log σik

+ H(δXik

k )
}
)

−
Nk∑

j=1

(
H(Δj

k) + log σj

)
⎫
⎬

⎭

Simplifying and maximizing over the singular values of all the Jk leads to

max
σ

{
λME [log σ] + λH(X) − H(Δ) − N̄ME [log σ]

}

5 A similar argument can be found in [1] in the discussion of noise sensitivity.
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where expectations of both log singular values and Jacobian rank are over the
patches, the latter denoted N̄ for readability. As the sum of lower bounds of
non-positive quantities is non-positive, its maximum value is zero, where

E [log σ] =
H(Δ) − λH(X)

M(λ − N̄)
(5)

Expectation as a Model-Dataset Measure of Complexity. For E [log σ] to be pos-
itive, H(Δ) must be sufficiently smaller than H(X), since λ − N̄ < 0 because
0 < λ < 1. If 1 holds, E [log σ] thus decreases with the number of patches of con-
stant Jacobian and the mean Jacobian rank. It is thus a measure of model com-
plexity which increases with H(Δ)−λH(X)

M(λ−N̄)
. All things being equal, for the same

E [log σ] models trained with more noise will have smaller M and Ñ . Adding
noise is a form of regularization. If on the other hand, entropy of noise is greater
than the entropy of signal, the reverse effect is produced. On very noisy data
(relative to signal!), models trained with more noise need to become more com-
plex.

4.4 The MDL Spectral Distributions

We now show that the predicted distribution that is compatible with 5 is a power
law or, for NN trained with SGD, a lognormal distribution. The true spectral dis-
tribution contains information on, e.g. architecture and training process whereas
in the maxent formalism [25] we use, the prediction is maximally non-committal:
it contains no information on the MDL-trained network beyond its adherence to
the MDL principle and the signal-to-noise entropies of the training data.

Incorporating Knowledge of the Expectation of the Log Spectrum and SGD. The
distribution that incorporates knowledge of the expectation of the spectrum 5
and nothing else is the maximum entropy distribution for which the constraint
on the spectrum 5 holds [25]. Specifically, the power law distribution p(σ) =
α−1

α

(
σ
b

)−α, where α = 1 + 1
E[log σ]−log b and b is a cutoff parameter. Power laws

model scale-free phenomena6, but can emerge when aggregating data over many
scales [13,52], as we did in Sect. 4.3 to obtain Eq. 5. For a ReLU NN trained by
SGD, there is also a constraint on the variance of log σ: the spectrum depends
continuously on the network weights (cf. Sect. 4.2), which are SGD-updated
using a finite number of steps. The corresponding maxent distribution is the
lognormal, which is the Gaussian distribution with given mean and variance in
log-scale.

5 Experimental Results

Our experiments show that spectral distribution matches theoretical predictions
in Sect. 4.4, suggesting that NN are driven by the MDL principle. We study the
6 Since p(kσ) = a (kσ)α = akασα, normalization implies p(kσ) = p(σ).
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effect of noise in the point Jacobian spectral distribution of three groups of mod-
els of increasing complexity, ReLU MLPs, Alexnet, and Inception trained on
MNIST [9] and cifar-10 [26], using the experimental setup in [50] (cf. app. 1.5 in [6]).
In this section we (i) present two types of noise and discuss expected consequences
on the spectral distribution (ii) present and discuss the experimental results.

5.1 Experimental Noise

We study two forms of “natural” noise: label noise, used in [50] and dataset noise,
which consists in adding a lossy compressed version of a similar dataset.

Label Noise. We focus on instance-independent symmetric label noise [42], which
randomly assigns labels to training and test examples unconditionally on exam-
ple and training label with probability p. Label noise can be modelled real-
istically using human annotators [47], but the former choice is closer to the
MDL sense Definition 1. In this setting, the entropy of the introduced noise can
be estimated as p · H(X0), since incorrectly labelled examples become noise
with respect to the classification task. This allows us to express the numera-
tor of 5 for the noised dataset in terms of entropies of the original dataset as
H(Δp)− λH(Xp) = H(X0)− λH(X0)+ p(1+λ)H(X) > H(X0)− λH(X0). All
things being equal, for NN following MDL, E [log σ] increases with the probabil-
ity of label noise p.

Dataset Noise. We add to the original dataset D0 a similar dataset Dsim lossy
compressed at rate r. Symbolically Dr = D0+rDsim. We choose Dsim commonly
used in place of D0 in ML practice: cifar-100 for cifar-10, and Fashion-MNIST for
MNIST. We compress D̃ by reconstructing it using only a few PCA components,
which reduces bias in setting r, compared to using e.g. jpeg [36] or an autoencoder,
where architecture introduces an element of arbitrariness, but we lose the ability to
set r at will. Since for the noised dataset Xr+Δr the numerator in 5 can be written
as H(Δr)−λH(Xr) = H(Δ0)−λH(X0)+r(H(Xsim)+H(Δsim). All things being
equal, for NN that follow MDL, E [log σ] decreases with r. Interestingly, assuming
the entropies of the similar dataset are approximately the same as that of the orig-
inal dataset, we obtain H(Δr)−λH(Xr) = (1+ r)H(Δ0)− (λ− r)H(X0), which
corresponds to the same maximization objective with a rescaled λr = λ−r

1+r < λ0

corresponding to less sensitivity to signal.

5.2 Discussion

As Figs. 1 and 2 show, NN trained using SGD are driven by the MDL principle:
(i) their spectra is well-fit by a lognormal distribution, as shown in Sect. 4.4,
and experimental spectra become more lognormal with training epoch (cf. fit
overlay on the histograms, and inset probability plots); also, as predicted in
the discussion following 5 (ii) for each model E[log σ] increases with noise (iii)
and with model complexity, which also influences the quality of lognormal fit7,
7 The number of training epochs being relatively small, we did not find a power-law

behavior.
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Fig. 1. Point Jacobian spectral distribution for model |label noise |cifar-10, from first
epoch to overfit. “Left” and “right” distributions (cf. [6]) are represented separately for
each triplet for clarity. The best fit lognormal plot is superimposed on each histogram,
with the corresponding probability plot on the right, with the line of best fit (R2

displayed on top). Legend elements, in order: epoch, training and validation accuracy,
and the mean log spectrum.

Inception being the overall best and MLP the overall worst. Remarkably, these
observations hold for both label noise and dataset noise. In the early stages of the
training process, though, representation-building takes precedence. This can be
inferred by observing that experimental distributions are typically bimodal (see
app. 1.7 in [6]), and noting that at the last linear layer of a classification-induced
representation, one of the directions should leave the output relatively more
unchanged than the others: the direction assigned to the class of the training
point [6]. Representation building occurs early, as can be seen in Figs. 1 and 2
and app. 1.7 in [6], dominating MDL in early epochs. To handle this asymmetry,
we divide the spectrum in each of its two modalities (cf. [6]). The statements
above apply to each of the two parts of the spectrum, corresponding to the two
representations. The observations above hold for MNIST as well, exception being
where the initial spectrum is multi-modal (suggesting a great degeneracy of the
directions in which the classification prediction does not change—i.e. MNIST is
very simple). In this case our splitting method is ineffective, as we would need
to split the spectral distribution into each of the several modalities.



186 E. Brandao et al.

Fig. 2. Point Jacobian spectral distribution for model |nbr. pca comp.|cifar-10, from
first epoch to overfit where possible. “Left” and “right” distributions (cf. [6]) are repre-
sented separately for each triplet for clarity. The best fit lognormal plot is superimposed
on each histogram, with the corresponding probability plot on the right, with the line of
best fit (R2 displayed on top). Legend elements, in order: epoch, training and validation
accuracy, and the mean log spectrum.

6 Conclusion and Future Work

In this work, we propose an MDL principle that implicitly defines model com-
plexity in terms of signal and noise: choose the model whose representation of the
data can be used to compress the signal, but not the noise. We show that models
driven by this principle locally maximize sensitivity to the signal and minimize
the sensitivity to noise, and predict that the point Jacobian spectrum of NN
trained by gradient descent follow either a power law or a lognormal distribu-
tion. We provide experimental evidence supporting this prediction, hinting that
neural networks trained by gradient descent are driven by the MDL principle.

As for future work we plan, aiming at a generalization bound, to extend the
connection established in Sect. 4.2, by making the MDL objective layer wise as
in [1]. Another possible extension is to use our findings to explain the power
law behavior of the spectra of the layer weight matrices and connection to gen-
eralization gap found in [31,32], by noting that each point Jacobian of ReLU
networks is a sub-matrix of the product of the network weight matrices, which
can beexpressed in terms of the singular values of the point Jacobian submatrix
via an interlacing inequality [44].
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Ethical statement. This paper presents a contribution that is essentially fundamen-
tal, theoretical and methodological. We do not see any immediate ethical or societal
issues. Our experimental evaluation considers classic benchmarks of the literature and
our analysis focuses on particular mathematical properties of point Jacobians spectra
of trained neural networks. Our work follows ethical guidelines in modern machine
learning research in general and in representation learning in particular. The applica-
tion of the methodology presented in this paper should consider ethical implications
that can arise from the datasets used of the applications targeted.
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Abstract. Probabilistic regression models trained with maximum like-
lihood estimation (MLE), can sometimes overestimate variance to an
unacceptable degree. This is mostly problematic in the multivariate
domain. While univariate models often optimize the popular Continuous
Ranked Probability Score (CRPS), in the multivariate domain, no such
alternative to MLE has yet been widely accepted. The Energy Score – the
most investigated alternative – notoriously lacks closed-form expressions
and sensitivity to the correlation between target variables. In this paper,
we propose Conditional CRPS: a multivariate strictly proper scoring rule
that extends CRPS. We show that closed-form expressions exist for pop-
ular distributions and illustrate their sensitivity to correlation. We then
show in a variety of experiments on both synthetic and real data, that
Conditional CRPS often outperforms MLE, and produces results compa-
rable to state-of-the-art non-parametric models, such as Distributional
Random Forest (DRF).

Keywords: probabilistic regression · strictly proper scoring rules ·
uncertainty estimation

1 Introduction

The vanilla regression models predict a single target value y for an observation
x ∈ Rp. In theory, the goal is to approximate the true regression model f∗,
generating the observed target values as samples of the random variable Y =
f∗(x)+ε. The random variable ε reflects here the noise in the data and is assumed
to have an expected value of zero. Hence, the goal is to find a regression model
that predicts the mean f(x) = EY [Y | x] = f∗(x).

However, in practice, the trained regression models come with uncertainties.
Reflecting those uncertainties is relevant, for example when a lower or upper
bound for the prediction is of interest, when underforecasting has more detrimen-
tal consequences than overforecasting, or when the expected profit and risk are
dependent on prediction uncertainty. Examples of such applications are found in
weather forecasting [29], healthcare [16], predictions of the electricity price [24],
stock price [30], survival rate [3] and air quality [21].
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Distributional regression models provide predictive uncertainty quantifica-
tion by modeling the target variable as a probability distribution. That is, models
are tasked with predicting the distribution of a (possibly multivariate) random
variable Y , conditioned on an observation x of a (possibly multivariate) covariate
random variable X:

f(x) = P (Y | X = x). (1)

Here, P (·) denotes the probability distribution of a random variable. Such a
model is trained on a dataset of observations of (X,Y ): {(xi,yi)}n

i=1.
Distributional regression models are typically trained by Maximum Likeli-

hood Estimation (MLE) [15], which is equivalent to minimizing the Logarithmic
Score. However, when the assumed and the true shape of the distribution do not
match, MLE can become sensitive to outliers [4], causing a disproportionally
increase in the forecasted variance [9]. While this is not necessarily a problem
for homoskedastic models (where typically only a single estimator is predicted
and the error distribution is assumed to be constant), it is problematic for het-
eroskedastic models, predicting the full distribution [3]. Therefore, for a univari-
ate continuous target domain, many distributional regression approaches use the
Continuous Ranked Probability Score (CRPS) [20]. CRPDS provides an opti-
mization objective that is generally more robust than MLE [26] and hence gains
in popularity in comparison to MLE [3,21,26].

However, unlike MLE, CRPS has no extension to the multivariate domain
(y ∈ Rd) that maintains the robustness properties. The most popular extension
is the Energy Score [12], but it is known to be insensitive to correlation, and
often cannot be analytically evaluated [25]. Moreover, other alternatives such as
the Variogram Score [27] also have weaknesses, such as translational invariance.

The lack of a robust alternative to MLE is widely discussed in comparative
studies. In their review of probabilistic forecasting, Gneiting and Katzfuss argue
that “a pressing need is to go beyond the univariate, real-valued case, which we
review, to the multivariate case” [11]. More recently, Alexander et al. conclude
that “it is rarely seen that one metric for evaluating the accuracy of a fore-
cast consistently outperforms another metric, on every single scenario” [2]. As
a result, multivariate distributional regression approaches either resort to MLE
[22] or avoid direct usage of distributional optimization criteria, via approaches
based on e.g. Generative Adversarial Networks (GANs) [1] or Random Forests
(RF) [31].

Contributions

1. We propose a novel scoring rule for multivariate distributions, called Con-
ditional CRPS (CCRPS). The novel scoring rule CCRPS is a multivariate
extension of the popular univariate CRPS that is more sensitive to corre-
lation than the Energy Score and (for some distributions) less sensitive to
outliers than the Logarithmic Score. We enable the numerical optimization
of the proposed scoring rule by proving equivalent, closed-form expressions for
a variety of multivariate distributions, whose gradients are easy to compute.
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2. We propose two novel loss functions for Artificial Neural Network-based mul-
tivariate distributional regression, with loss functions based on Conditional
CRPS, and the Energy Score.

3. We show on a variety of synthetic and real-world case studies that the two
proposed methods often outperform current state-of-the-art.

2 Distributional Regression

Distributional regression models are generally evaluated via two concepts: sharp-
ness and calibration [10]. Calibration is the notion that predictions should match
the statistics of the actual corresponding observations. For example, when pre-
dicting a 30% chance of snow, snowfall should indeed occur in 30% of the
corresponding observations. The goal of regression can then be formulated to
maximize sharpness (i.e. the precision of the predicted distribution) under cali-
bration [10]. For example, using the notation of the introduction, both models
f(x) = P (Y | X = x) and g(x) = P (Y ) are calibrated, but if there exists a
dependency between X and Y , then f is arguably sharper. For this purpose,
proper scoring rules are often used.

2.1 Proper Scoring Rules

Scoring rules are a class of metrics R that compare a predicted distribution P
with actual observations y. A scoring rule is called proper for a class of probability
distributions D if for any P,Q ∈ D we have:

EY ∼P [R(P, Y )] ≤ EY ∼P [R(Q,Y )]. (2)

That is, in expectation over all observations, a scoring rule attains its minimum if
the distribution of the observations Y ∼ P matches the predicted distribution. A
scoring rule is called strictly proper if the minimum of the expected scoring rule
is uniquely attained at P . Proper and strictly proper scoring rules pose valuable
loss functions for distributional regression models: minimizing the mean scoring
rule automatically calibrates the model’s predicted distributions, and fits the
conditional distributions to the observed data (Eq. (1)), arguably maximizing
sharpness [11,26].

For univariate domains, the most popular scoring rules are the Logarithmic
Score and the Continuous Ranked Probability Score (CRPS). The Logarithmic
Score maximizes the MLE criterion, and is defined as

LogS(P, y) = − log fP (y) (3)

where fP is P ’s probability density function. It is strictly proper for distributions
with finite density. CRPS is defined as

CRPS(P, y) =
∫ ∞

−∞
[FP (z) − 1(y ≤ z)]2 dz, (4)
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where FP is P ’s cumulative density function. CRPS is strictly proper for dis-
tributions with finite first moment. The emphasis on sharpness of CRPS, while
maintaining calibration, is considered a major upside [3,10].

For the multivariate domain, popular scoring rules are the multivariate exten-
sion of the Logarithmic Score (which evaluates the negative logarithm of the
multivariate density function), as well as the Energy Score [12]:

ESβ(P, y) = EY ∼P

[
‖Y − y‖β

2

]
− 1

2
EY,Y ′∼P

[
‖Y − Y ′‖β

2

]
(5)

Here, ‖.‖2 denotes the Euclidean norm and β ∈ (0, 2). For β = 1 the Energy Score
is a multivariate extension of CRPS [12]. Both rules are strictly proper for almost
all multivariate distributions (the Logarithmic Score requires finite density and
the Energy Score requires EY ∼P [‖Y ‖β

2 ] < ∞). However, as mentioned in the
introduction, both the Logarithmic and Energy Scores have known drawbacks,
which demands the introduction of new strictly proper scoring rules.

2.2 Conditional CRPS

We propose a family of (strictly) proper scoring rules, called Conditional CRPS
(CCRPS). To introduce this scoring rule, we consider a simple example of a
bivariate Gaussian distribution

(Y1, Y2) ∼ N (µ, Σ), where Σ =
(

σ2
1 ρσ1σ2

ρσ1σ2 σ2
2

)
, σ1, σ2 > 0, and ρ ∈ (−1, 1).

Rather than evaluating P (Y1, Y2) directly against an observation, we instead
evaluate the first marginal distribution P (Y1) = N (μ1, σ

2
1), and second condi-

tional distribution P (Y2 | Y1 = y) = N (μ2+ σ2
σ1

ρ(y−μ1), (1−ρ)2σ2
2), against their

respective univariate observations, via use univariate scoring rules. Summation
over these terms then defines a new multivariate scoring rule R:

R(P,y) = CRPS(P (Y1), y1) + CRPS(P (Y2 | Y1 = y1), y2). (6)

Conditional CRPS generalizes the intuition that multivariate scoring rules can
be constructed by evaluating univariate conditional and marginal distributions.

Definition 1 (Conditional CRPS). Let P (Y ) be a d-variate probability
distribution over a random variable Y = (Y1, . . . , Yd), and let y ∈ Rd. Let
T = {(vi, Ci)}q

i=1 be a set of tuples, where vi ∈ {1, ..., d} and Ci ⊆ {1, ..., d}\{vi}.
Conditional CRPS (CCRPS) is then defined as:

CCRPST (P (Y ),y) =
q∑

i=1

CRPS(P (Yvi
| Yj = yj for j ∈ Ci), yvi

), (7)

where P (Yvi
| Yj = yj for j ∈ Ci) denotes the conditional distribution of Yvi

given observations Yj = yj for all j ∈ Ci.
In the case that P (Yvi

| Yj = yj for j ∈ Ci) is ill-defined for observation y
(i.e. the conditioned event Yj = yj for j ∈ Ci has zero likelihood or probability),
we define CRPS(P (Yvi

| Yj = yj for j ∈ Ci), yvi
) = ∞.



194 D. Roordink and S. Hess

Fig. 1. Visualization of Conditional CRPS, using d = 2 and T = {(2, {1}), (1, {2})}.
CCRPS evaluates an observed multivariate distribution sample by computing the dis-
tribution’s univariate conditionals, conditioned on observations for other variates.

Conditional CRPS defines a family of scoring rules via a conditional specification
T (see Fig. 1). For example, choosing d = 2 and T = {(1, ∅), (2, {1})} yields the
rule R that is defined in Eq. (6). Conditional CRPS often defines useful scoring
rules, as members are always proper, and often strictly proper:

Theorem 1 (Propriety of Conditional CRPS). Consider CCRPS, as
defined in Definition 1. For every choice of T = {(vi, Ci)}q

i=1, CCRPST is proper
for d-variate distributions with finite first moment.

Theorem 1 can be easily deduced from the univariate strict propriety of CRPS,
by writing the expected CCRPS score as a sum of expected CRPS scores. A
formal proof is given in Appendix A.1. However, when setting some restrictions
on the choice for T , we can also prove a broad notion of strict propriety:

Theorem 2 (Strict propriety of Conditional CRPS). Consider CCRPS,
as defined in Definition 1. Let T = {(vi, Ci)}q

i=1 be chosen such that there exists
a permutation φ1, . . . , φd of 1, . . . , d such that:

(φj , {φ1, . . . , φj−1}) ∈ T for 1 ≤ j ≤ d. (8)

CCRPST is strictly proper for all d-variate distributions with finite first
moment, that are either discrete1or absolutely continuous2.
1 I.e. distributions P for which a countable set Ω ⊂ Rd exists such that PY ∼P (Y ∈

Ω) = 1.
2 I.e. distributions P for which a Lebesgue integratable function fP : Rd → [0, ∞)

exists, such that for all measurable sets U ⊆ Rd, we have PY ∼P (Y ∈ U) =∫
U

fP (u)du.
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Fig. 2. Plot of mean score values against the deviation of a predicted distribution
parameter from the true distribution parameter. We evaluate three strictly proper
scoring rules with respect to the deviation of the predicted mean, standard deviation or
correlation coefficient from the data distribution (μtrue = 1, σtrue = 1 and ρtrue = 0.4).
See Appendix D.

This can be proven by using the conditional chain rule to show that any two
distinct multivariate distributions differ in at least one specified conditional.
Strict propriety of CRPS is then used to show strict inequality in expectancy of
this CRPS term. Formal proofs are given in Appendices A.2 and A.3.

Unfortunately, there exists no CCRPS variant that is strictly proper for all
distributions with finite first moment, as problems arise with distributions that
are neither continuous nor discrete. This is shown in Appendix A.4.

Closed-Form Expressions. Unlike the Energy Score, it is surprisingly easy
to find closed-form expressions for Conditional CRPS. Many popular families
of multivariate distributions have marginals and conditionals which themselves
are members of popular univariate distributions, many of which already have
known closed-form CRPS expressions [17]. To illustrate this, in Appendix B, in
which we have provided closed-form expressions for (mixtures of) multivariate
Gaussian distributions, the Dirichlet distribution, the multivariate Log-normal
distribution and the multivariate student-t distribution.

Correlation Sensitivity. Conditional CRPS displays promising advantages
over the Energy and the Logarithmic Score with regard to correlation sensitiv-
ity. We evaluate the correlation sensitivity by a small experiment, similar to
the one by Pinson and Tastu [25]. Here, we investigate the increase in expected
scores when the forecasted distribution deviates from the data distribution in
either the mean, standard deviation, or correlation coefficient. The data gener-
ating algorithm is described in Appendix D. We compare three scoring rules:
the Logarithmic, the Energy Score, and CCRPS with T = ((1, {2}), (2, {1})).
Figure 2 shows that the CCRPS score increases more with the prediction error in
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ρ than the Logarithmic and the Energy score. Therewith, the CCRPS score fixes
the well documented lack of correlation sensitivity of the Energy Score [2,25].

2.3 CCRPS as ANN Loss Function for Multivariate Gaussian
Mixtures

We show an application of Conditional CRPS as a loss function that allows for
the numerical optimization of Artificial Neural Networks (ANNs) [14] to return
the parameters of the predicted distribution of target variables in a regression
task. We assume that the target distribution is a mixture of m d-variate Gaussian
distributions. This distribution is defined by m mean vectors µ1, . . . ,µm ∈ Rd,
m positive-definite matrices Σ1, . . . , Σm ∈ Rd×d, and m weights w1, . . . , wm ∈
[0, 1] such that

∑m
i=1 wi = 1. A multivariate mixture Gaussian P defined by

these parameters is then given by the density function

fP (y) =
m∑

l=1

wl · fN (µl,Σl)(y) =
m∑

l=1

wl

exp
(
− 1

2 (y − µl)�Σ−1
i (y − µl)

)
√

(2π)d · |Σl|
. (9)

That is, the ANN returns for each input x a set of parameters {(µl , wl, Ll)}m
l=1,

where Ll ∈ Rd×d is a Cholesky lower matrix [22], defining a positive-definite
matrix Σi = Li ·L�

i . Given a dataset (xi,yi)n
i=1, and an ANN θ(x) that predicts

the parameters of a d-variate mixture Gaussian distribution, we can define a loss
function over the mean CCRPS score:

L(θ, (xi,yi)n
i=1) =

1
n

n∑
i=1

CCRPST (Pθ(xi),yi). (10)

Unfortunately, if we choose T such that the loss function computes mix-
ture Gaussian distributions conditioned on c variables, then we require matrix
inversions of c × c matrices (cf. Appendix B).3 Therefore, we choose a sim-
ple Conditional CRPS variant that conditions on at most one variable, using
T0 = {(i, ∅)}d

i=1 ∪ {(i, {j})}d
i�=j . That is,

CCRPST0(P,y) =
d∑

i=1

CRPS(P (Yi), yi) +
∑
j �=i

CRPS(P (Yi|Yj = yj), yi).

Using this definition, we find an expression for this variant of CCRPS. As both
P (Yi|Yj = yj) and P (Yi) are univariate mixture Gaussian distributions, com-
puting CCRPST0(P, y) is done by simply computing the parameters of these
distributions, and applying them in a CRPS expression for univariate mixture
Gaussian distributions given by Grimit et al. [13]:

3 Support for backpropagation through matrix inversions is offered in packages such as
Tensorflow. However, for larger matrices, gradients can become increasingly unstable.
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Fig. 3. The output layer of a CCRPS network defines a set of weights, mean vectors
and positive definite matrices, via a combination of activation functions and Cholesky
parameterizations. These parameters define the predicted multivariate mixture Gaus-
sian distribution, which is evaluated against an observation via CCRPS loss.

Theorem 3 (CCRPS expression for multivariate mixture Gaussians).
Let P be a mixture of m d-variate Gaussians, as defined in Eq. (9) via µk ∈ Rd,
Σk ∈ Rd×d and wk ∈ [0, 1]m for 1 ≤ k ≤ m. Then we have for y ∈ Rd:

CCRPST0(P,y) =

∑
1≤i�=j≤d

⎡
⎣ m∑

k=1

ŵkjH(yi − μ̂kij , Σ̂kij) − 1
2

m∑
k,l=1

ŵkjŵljH(μ̂kij − μ̂lij , Σ̂kij + Σ̂lij)

⎤
⎦

+
d∑

i=1

⎡
⎣ m∑

k=1

wkH(yi − μk,i, Σk,ii) − 1
2

m∑
k,l=1

wkwlH(μk,i − μl,i, Σk,ii + Σk,ll)

⎤
⎦

Here:

– H(μ, σ2) = μ
(
2Φ

(
μ
σ

)
− 1

)
+ 2σϕ

(
μ
σ

)
, where ϕ and Φ denote the PDF and

CDF of the standard Gaussian distribution,

– ŵkj =
wk · fN (μk,j ,Σk,jj)(yj)∑m
l=1 wl · fN (μl,j ,Σl,jj)(yj)

,

– μ̂kij = μk,j + Σk,ij

Σk,jj
(yj − μk,j),

– Σ̂kij = Σk,ii − (Σk,ij)
2

Σk,jj
.

In Appendix B, we state an expression for the more generic case
CRPS(P (Yi|Yj = yj for j ∈ Cj), yi). An overview of the proposed mixture Gaus-
sian CCRPS ANN approach is given in Fig. 3. The approach to predict a mixture
model via a single network contrasts the multiple-network approach via bagging,
used by a.o. Carney et al. [7], and simplifies the architecture.

2.4 Energy Score Ensemble Models

Secondly, we propose an ANN loss variant that empirically approximates the
Energy Score. The energy score (cf. Eq. (5)) is defined over expected values,
for which no closed-form expression exists, that would enable the computation
of a gradient. However, the Energy Score is fairly easily approximated by an
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ensemble of randomly sampled vectors. Let P be a d-variate distribution, and
let ŷ1, . . . , ŷm be independent samples of the distribution P . We approximate P
by its empirical distribution function by assigning probability 1

m to each sampled
vector ŷl. That is, we use the stepwise multivariate CDF approximation:

FP (z) ≈ 1
m

m∑
l=1

d∏
i=1

1(ŷl,i ≤ zi) (11)

We can now approximate the Energy Score:

ES(P,y) ≈ 1
m

m∑
l=1

‖ŷl − y‖ε − 1
2m2

m∑
k,l=1

‖ŷk − ŷl‖ε. (12)

Here, ‖.‖ε is the ε-smoothed Euclidean norm ‖v‖ε =
√

ε + ‖v‖22, for some small
ε > 0. The ε-smoothed Euclidean norm makes the norm differentiable, even
at v = 0. This approximation allows for numerical optimization, in which a
model predicts P indirectly over ŷ1, . . . , ŷm. That is, we can train an ANN to
return for each feature vector x the distribution defining parameters θ(x) =
ŷ1, . . . , ŷm, using the loss defined in Eq. (12). This approach is similar to the
recent, independently developed work by Kanazawa and Gupta [18], and can be
considered a non-generative and conditioned version of their approach.

3 Experiments

We compare the probabilistic predicted performance of the newly proposed
methods to state-of-the-art probabilistic regression methods. We provide our
source code online.4 As competitors, we choose the best-performing models of
the comparative study from Ćevid et al. [31], and the Logarithmic Score trained
networks.

– Distributional Random Forest (DRF) [31] is a random forest regres-
sion model with an adapted splitting criterion for target vectors (based on
MMD approximations), and an adapted aggregation that returns a weighted
ensemble of target vectors.

– Conditional GAN (CGAN) [1] is an extension of the popular Generative
Adverserial Network. Except, the model is “conditioned” on input x by adding
it as input to both generator and discriminator.

– Distributional k-nearest neighbors (kNN) [31] predicts a distribution
in which each of the k-nearest neighbors is assigned 1

k probability.
– Mixture MLE neural networks (a.o. [28]) are the closest to our approach.

MLE ANNs use the Logarithmic Score as loss function. We employ the same
architectures as MLE networks in our CCRPS networks.

4 https://github.com/DaanR/scoringrule networks.

https://github.com/DaanR/scoringrule_networks
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For DRF and CGAN, we use implementations provided by the authors. For
mixture MLE networks and kNN, we used our own implementations. Similar
to CCRPS, we prevent the numerically unstable backpropagation through large
matrix inverses by applying the Logarithmic Score on all bivariate marginal
densities P (Yi, Yj), rather than on the multivariate density. This way, we could
improve on the originally proposed implementation of MLE minimization [28]:

MLEbiv(P (Y ),y) = −
∑

1≤i�=j≤d

log fP (Yi,Yj)(yi, yj). (13)

MLEbiv is strictly proper for d ≤ 2 and proper for d > 2. For both, MLE-trained
networks and CCRPS-trained networks, we try variants with m ∈ {1, 10} (Gaus-
sian) mixture distributions. For each model and each experiment, we choose
the best hyperparameters and architecture out of a variety of hyperparame-
ters/architectures, based on the validation Energy Score. Furthermore, for all
ANN-based models, we use the validation set loss as a training cutoff criterion:
training is stopped once the validation set increases compared to the previous
epoch.

3.1 Evaluation Metrics

Unfortunately, there is no clear consensus on appropriate evaluation metrics for
multivariate distributional regression models [2]. Hence, we choose a variety of
popular metrics: the Energy Score (cf. Eq. (5)) with β = 1, and the Variogram
Score [27] with β ∈ {0.5, 1, 2}:

VSβ(P,y) =
∑

1≤i<j≤d

(
|yi − yj |β − EY ∼P

[
|Yi − Yj |β

])2
. (14)

The Variogram Score is only proper but usually better at evaluating errors in
the forecasted correlation than the Energy Score [2]. For most models, the scores
are approximated via Monte Carlo approximations (see Appendix C for details).

Contrary to the comparative studies done by Aggarwal et al. [1] and Ćevid
et al. [31], we decide not to use the Logarithmic Score (also named NLPD) as
evaluation metric, since the ES ensemble model, kNN, C-GAN and DRF do not
predict an explicit density function, and we found that the Logarithmic Score is
fairly dependent on the choice of density estimation for the post-processing. All
datasets are split into training, validation, and testing dataset. We summarize
dataset statistics in Table 1.

3.2 Synthetic Experiments

We base our data generation process for the synthetic experiments on the task to
post-process an ensemble model. This model is for example applied in the task
of weather forecasts (cf. experiments on the global radiation data in Sect. 3.3).
Here, a distributional regression model receives s (non probabilistic) predictions
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Table 1. Dataset statistics: input dimensionality (p), target dimensionality (d), as well
as training (ntrain), validation (nval) and testing (ntest) dataset sizes. For the synthetic
datasets, the morphing function is also listed.

Name morph(y’) p d ntrain nval ntest

Gauss 2D 2y′ + 2 40 2 6K 2K 2K

Gauss 5D 2y′ + 2 100 5 6K 2K 2K

Quadratic y′2 40 2 6K 2K 2K

Name p d ntrain nval ntest

Births 23 2 18K 6K 6K

Air 25 6 26K 8.5K 8.5K

GR–GEM 8 8 18K 6K 6K

GR–GFS 8 8 18K 6K 6K

GR–GFS 160 8 18K 6K 6K

GR–comb. 176 8 18K 6K 6K

GR & DR 176 48 14K 4.5K 4.5K

v1, . . . ,vs ∈ Rd for a target variable y ∈ Rd. That is, the probabilistic regres-
sion model is supposed to learn the target distribution from the distribution of
target predictions of an ensemble of models v1, . . . ,vs ∈ Rd. In other words,
the probabilistic regression model is trained to correct ensemble predictions. For
each observation, we sample s = 20 i.i.d. vectors from a Gaussian with randomly
chosen parameters, and sample the target vector from the same distribution. To
further simulate errors in the ensemble predictions, we apply a morphing oper-
ation (either morph(y′) = 2y′ + 2 or morph(y′) = y′2) on the target vector. An
overview of morphing functions is given in Table 1.

Algorithm 1. Synthetic data sampling of a single (x,y) pair.
function GenerateRegressionData(morph, d, s = 20)

Sample µ ∈ Rd such that μj ∼ N1(0, 1) � Choose a random mean vector
L ← 0 ∈ Rd×d

Sample Ljl ∼ N1(0, 1) for j ≥ l � Choose a random Cholensky lower matrix
Ljj ← |Ljj | for 1 ≤ j ≤ d � Ensure a strictly positive diagonal
for r ∈ {1, . . . , s} do

Sample vr ∼ N (µ, LL�) � Each vr is a d-dimensional vector

x ← flatten(v1, . . . ,vs) � The input is a vector of length d · s
Sample y′ ∼ N (µ, LL�). � Sample a d-dimensional vector i.i.d. to v1, . . . ,vs

yi ← morph(y′
i) for 1 ≤ i ≤ d. � Apply a simple morph to the target vector

return (x,y)

The experiment results have been summarized in Table 2. We note that ANN
models seem particularly suited for the chosen experiments, with the CCRPS
mixture model outperforming the other models on 6 of the 12 evaluated metrics.
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Table 2. Synthetic experiment evaluation metrics (ES, VS) are displayed in a group
of four rows, and the best score is highlighted. * Scores divided by 107.

CCRPS CCRPS ES Ens. MLE MLE KNN CGAN DRF

Gauss mixt. 100 pts Gauss mixt.

2D-Gauss. ES 2.1426 2.1427 2.1233 2.1261 2.0953 2.1918 2.1983 2.1753

VS0.5 0.5257 0.5018 0.5112 0.5196 0.5042 0.5734 0.5199 0.5364

VS1 8.0213 7.6323 7.8361 7.9425 7.6766 8.7665 7.8844 8.1639

VS2 1553.6 1494.0 1534.8 1560.8 1519.8 1656.8 1517.5 1558.3

5D-Gauss. ES 5.1889 5.1691 5.1925 5.2693 5.1903 5.2804 5.4533 5.4577

VS0.5 6.7784 6.7728 6.7921 6.9214 6.7612 7.2873 7.1653 7.0541

VS1 120.67 120.56 120.53 123.71 120.35 131.24 129.04 127.17

VS2 30087 30149 29996 30935 30073 31233 30756 30473

Quadratic ES 2.7206 2.6668 2.6764 2.7989 2.6678 2.8597 2.7766 2.6745

VS0.5 1.0087 1.0297 1.0228 1.0926 1.0216 1.1951 1.0245 1.0638

VS1 33.371 33.851 33.741 34.796 34.055 37.589 34.912 35.386

VS2* 130.44 128.34 129.78 142.05 130.53 133.27 133.16 132.19

3.3 Real World Experiments

We evaluate our method on a series of real-world datasets for multivariate regres-
sion. All datasets are normalized for each input and target field based on the
training dataset mean and standard deviation.

1. Births dataset [31]: prediction of pregnancy duration (in weeks) and a new-
born baby’s birthweight (in grams) based on statistics of both parents.

2. Air quality dataset [31]: Predictio of the concentration of six pollutants
(NO2, SO2, CO, O3, PM2.5 and PM10) based on statistics about the mea-
surement conditions (e.g., place and time)

3. Global radiation dataset: Prediction of solar radiation based on three
numerical weather prediction (NWP) models (the single-model run models
GEM [5] and GFS [23] and the 20-ensemble model run GEPS [6]), as well
as global radiation (GR) measurements at weather stations in the Nether-
lands [19] and Germany [8]. Models receive an NWP forecast as input, and
a station measurement as target. In our experiments, models predict an 8-
variate distribution, consisting of three-hour GR averages. We run four dif-
ferent experiments, in which models receive either GEM, GFS, GEPS or all
three NWP sources as input.

4. Global-diffuse radiation dataset: Prediction of 24 hourly global and dif-
fuse radiation (DR) station measurements based on all three NWP sources
(like in the global radiation dataset).

The experiment results have been summarized in Table 3. Here, the testing
set evaluation metrics have been listed to evaluate predictive performance on
unseen data. The newly proposed models are on par with current state-of-the-
art, outscoring them on about half (13 of the 28) of the evaluated metrics.
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Table 3. Real-world experiment metrics (ES, VS) are displayed in a group of four
rows, and the best score is highlighted.

CCRPS CCRPS ES Ens. MLE MLE KNN CGAN DRF

Gauss mixt. 100 pts Gauss mixt.

Births ES 0.6969 0.6891 0.6897 0.7025 0.6881 0.7028 0.7140 0.6924

VS0.5 0.1039 0.1034 0.1035 0.1041 1.1034 0.1052 0.1063 0.1039

VS1 0.2627 0.2612 0.2612 0.2632 0.2608 0.2657 0.2688 0.2627

VS2 1.3137 1.3069 1.3069 1.3147 1.3000 1.3258 1.3353 1.3121

Air ES 1.0912 1.0844 1.0887 1.0919 1.0881 1.1420 1.1887 1.0683

VS0.5 1.8501 1.8380 1.8471 1.9146 1.8562 1.9490 2.0619 1.8041

VS1 8.5582 8.5118 8.5433 8.5348 8.8644 9.0913 9.6012 8.3894

VS2 578.74 572.88 572.90 584.74 575.10 591.58 605.32 574.34

GR–GEM ES 0.0988 0.0983 0.0978 0.1013 0.0983 0.0998 0.1216 0.0960

VS0.5 0.2476 0.2544 0.2267 0.2492 0.2459 0.2046 0.3114 0.1926

VS1 0.1705 0.1704 0.1692 0.1742 0.1710 0.1743 0.2273 0.1657

VS2 0.1026 0.1028 0.1019 0.1053 0.1022 0.1043 0.1363 0.1001

GR–GFS ES 0.1020 0.1006 0.0998 0.1014 0.0992 0.1058 0.1525 0.0968

VS0.5 0.2590 0.2636 0.2448 0.2530 0.2519 0.2273 0.5265 0.1978

VS1 0.1752 0.1744 0.1740 0.1732 0.1718 0.1899 0.3066 0.1667

VS2 0.1033 0.1042 0.1025 0.1027 0.1004 0.1113 0.1723 0.0993

GR–GEPS ES 0.0759 0.0722 0.0723 0.0820 0.0755 0.0806 0.1195 0.0840

VS0.5 0.1800 0.1760 0.1430 0.1950 0.1793 0.1743 0.3129 0.1589

VS1 0.1070 0.0988 0.0966 0.1245 0.1120 0.1247 0.2177 0.1589

VS2 0.0614 0.0588 0.0566 0.0748 0.0672 0.0733 0.1236 0.0800

GR–comb. ES 0.0734 0.0718 0.0723 0.0766 0.0745 0.0795 0.1209 0.0828

VS0.5 0.1756 0.1754 0.1496 0.1806 0.1765 0.1438 0.3202 0.1550

VS1 0.1017 0.0985 0.0998 0.1119 0.1085 0.1218 0.2254 0.1318

VS2 0.0596 0.0595 0.0594 0.0672 0.0638 0.0722 0.1346 0.0785

GR & DR ES 1.4269 1.3924 1.4229 1.4819 1.4873 1.5564 1.8090 1.5464

VS0.5 46.395 47.592 51.205 48.045 46.413 51.027 77.996 51.104

VS1 210.27 204.60 208.41 224.72 216.43 242.05 311.35 245.35

VS2 3593.1 3419.0 3503.3 3775.3 3715.8 3963.4 5983.5 4037.2

CCRPS trained models do seem to outperform their MLE trained equivalents:
the Gaussian CCRPS models outperform their MLE counterparts 23 out of 28
times, and the mixture CCRPS models outperform their MLE counterparts 18
out of 28 times.

However, in our experiments, none of the evaluated models consistently out-
performs all other models. Generally, one of four models (the MLE and CCRPS
mixture models, ES ensemble model and DRF) scored best, with CCRPS and
DRF scoring best most often. Unfortunately, we have not been able to link the
relative model performances to the experiment’s characteristics, as there seems
to be no clear connection between the experiment nature (temporal data, tabular
data or synthetic data) and the relative model results.

Finally, some visualizations of predicted distributions and their target vari-
ables have been made in Figs. 4 and 5.
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Fig. 4. NO2 (in ng/m3) and PM2.5 (in p.p.b.) predictions of the best four models for an
entry in the “air” experiment testing set. The red dot denotes the target measurement.
(Color figure online)

Fig. 5. Diffuse irradiance predictions (95% confidence intervals) of the best four models
for an entry in the “GR-DR” experiment testing set. Both the marginal and cumulative
distributions are visualized. The red line denotes the target measurement. (Color figure
online)

4 Conclusion

We propose two new loss functions for multivariate probabilistic regression mod-
els: Conditional CRPS and the approximated Energy Score. CCRPS is a novel
class of (strictly) proper scoring rules, which combines some of the desirable
characteristics (suitability for numerical optimization, sensitivity to correlation,
and increased sharpness) from the Energy and Logarithmic Scores.

Conditional CRPS, when applied in the right setting, leads to an increase
in sharpness while retaining calibration. We parameterize our regression models
by means of an Artificial Neural Network (ANN), which returns for a given
feature vector x the parameters of the predicted (conditional) target distribution.
Models trained with CCRPS outperform equivalent models trained with MLE
on the majority of evaluated experiments. Moreover, the novel models, trained
with CCRPS and Energy Score loss, have predictive performances on par with
non-parametric state-of-the-art approaches, such as DRF (cf. Tables 2 and 3).
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Abstract. We study the diversity of the features learned by a two-layer
neural network trained with the least squares loss. We measure the diver-
sity by the average L2-distance between the hidden-layer features and
theoretically investigate how learning non-redundant distinct features
affects the performance of the network. To do so, we derive novel gen-
eralization bounds depending on feature diversity based on Rademacher
complexity for such networks. Our analysis proves that more distinct
features at the network’s units within the hidden layer lead to better
generalization. We also show how to extend our results to deeper net-
works and different losses.

Keywords: Neural Networks · Generalization Theory · Feature
Diversity

1 Introduction

Neural networks are a powerful class of non-linear function approximators that
have been successfully used to tackle a wide range of problems. They have
enabled breakthroughs in many tasks, such as image classification [31], speech
recognition [20], and anomaly detection [16]. However, neural networks are often
over-parameterized, i.e., have more parameters than the data they are trained
on. As a result, they tend to overfit to the training samples and not generalize
well on unseen examples [18]. Avoiding overfitting has been extensively studied
[14,15,43,45,47] and various approaches and strategies have been proposed, such
as data augmentation [18,64], regularization [1,8,32], and Dropout [21,38,39],
to close the gap between the empirical loss and the expected loss.

Formally, the output of a neural network consisting of P layers can be defined
as follows:

f(x;W) = ρP (W P (ρP−1(· · · ρ2(W 2ρ1(W 1x)))), (1)
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where ρi(.) is the element-wise activation function, e.g., ReLU or Sigmoid, of
the ith layer and W = {W 1, . . . ,W P } are the weights of the network with the
superscript denoting the layer. By defining Φ(·) = ρP−1(· · · ρ2(W 2ρ1(W 1·))),
the output of neural network becomes

f(x;W) = ρP (W P Φ(x)), (2)

where Φ(x) = [φ1(x), · · · , φM (x)] is the M -dimensional feature representation of
the input x. This way neural networks can be interpreted as a two-stage process,
with the first stage being representation learning, i.e., learning Φ(·), followed by
the final prediction layer. Both parts are jointly optimized.

Learning a rich and diverse set of features, i.e., the first stage, is critical
for achieving top performance [3,10,34]. Studying the different properties of
the learned features is an active field of research [11,13,29]. For example, [13]
showed theoretically that learning a good feature representation can be helpful
in few-shot learning. In this paper, we focus on the diversity of the features.
This property has been empirically studied in [10,35,36] and has been shown to
boost performance and reduce overfitting. However, no theoretical guarantees are
provided. In this paper, we close this gap and we conduct a theoretical analysis
of feature diversity. In particular, we propose to quantify the diversity of the
feature set {φ1(·), · · · , φM (·)} using the average pairwise L2-distance between
their outputs. Formally, given a dataset {xi}i=N

i=1 , we have

diversity =
1
N

N∑

k=1

1
2M(M − 1)

M∑

i�=j

(
φi(xk) − φj(xk)

)2
. (3)

Intuitively, diversity measures how distinct the learned features are. If the map-
pings learned by two different units are redundant, then, given the same input,
both units would yield similar output. This yields in low L2-distance and as a
result a low diversity. In contrast, if the mapping learned by each unit is distinct,
the corresponding average distances to the outputs of the other units within the
layer are high. Thus, this yields a high global diversity.

To confirm this intuition and further motivate the analysis of this attribute,
we conduct empirical simulations. We track the diversity of the representation
of the last hidden layer, as defined in (3), during the training of three different
ResNet [19] models on CIFAR10 [30]. The results are reported in Fig. 1. Indeed,
diversity consistently increases during the training for all the models. This shows
that, in order to solve the task at hand, neural networks learn distinct features.

Our Contributions: In this paper, we theoretically investigate diversity in the
neural network context and study how learning non-redundant features affects
the performance of the model. We derive a bound for the generalization gap
which is inversely proportional to the proposed diversity measure showing that
learning distinct features helps. In our analysis, we focus on the simple neu-
ral network model with one-hidden layer trained with mean squared error. This
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Fig. 1. Preliminary empirical results for additional motivation to theoretically under-
stand feature diversity. The figure shows diversity versus the number of epochs for
three different ResNet models trained on CIFAR10 dataset.

configuration is simple, however, it has been shown to be convenient and insight-
ful for the theoretical analysis [9,12,13]. Moreover, we show how to extend our
theoretical analysis to different losses and different network architectures.

Our contributions can be summarized as follows:

– We analyze the effect the feature diversity on the generalization error bound of
a neural network. The analysis is presented in Sect. 3. In Theorem 1, we derive
an upper bound for the generalization gap which is inversely proportional
to the diversity factor. Thus, we provide theoretical evidence that learning
distinct features can help reduce the generalization error.

– We extend our analysis to different losses and general multi-layer networks.
These results are presented in Theorems 2, 3, 4, 5, and 6.

Outline of the Paper: The rest of the paper is organized as follows: Sect. 2
summarizes the preliminaries for our analysis. Section 3 presents our main the-
oretical results along with the proofs. Section 4 extends our results for different
settings. Section 5 concludes the work with a discussion and several open prob-
lems.

2 Preliminaries

Generalization theory [28,50] focuses on the relation between the empirical loss
defined as

L̂(f) =
1
N

N∑

i=1

l
(
f(xi;W), yi

)
, (4)

and the expected risk, for any f in the hypothesis class F , defined as

L(f) = E(x,y)∼Q[l(f(x), y)], (5)

where Q is the underlying distribution of the dataset and yi the correspond-
ing label of xi. Let f∗ = argminf∈F L(f) be the expected risk minimizer and
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f̂ = argminf∈F L̂(f) be the empirical risk minimizer. We are interested in the
estimation error, i.e., L(f∗)− L(f̂), defined as the gap in the loss between both
minimizers [6]. The estimation error represents how well an algorithm can learn.
It usually depends on the complexity of the hypothesis class and the number of
training samples [5,63].

Several techniques have been proposed to quantify the generalization error,
such as Probably Approximately Correctly (PAC) learning [50,53], VC dimen-
sion [52], and the Rademacher complexity [50]. The Rademacher complexity has
been widely used as it usually leads to a tighter generalization error bound than
the other metrics [17,45,51]. The formal definition of the empirical Rademacher
complexity is given as follows:

Definition 1 [7,50]. For a given dataset with N samples D = {xi, yi}N
i=1 gen-

erated by a distribution Q and for a model space F : X → R with a single
dimensional output, the empirical Rademacher complexity RN (F) of the set F
is defined as follows:

RN (F) = Eσ

[
sup
f∈F

1
N

N∑

i=1

σif(xi)
]
, (6)

where the variables σ = {σ1, · · · , σN} are independent uniform random variables
in {−1, 1}.

In this work, we rely on the Rademacher complexity to study diversity. We
recall the following three lemmas related to the Rademacher complexity and the
generalization error:

Lemma 1 [7]. For F ∈ R
X , assume that g : R −→ R is a Lg-Lipschitz continuous

function and A = {g ◦ f : f ∈ F}. Then we have

RN (A) ≤ LgRN (F). (7)

Lemma 2 [58]. The Rademacher complexity RN (F) of the hypothesis class
F = {f |f(x) =

∑M
m=1 vmφm(x) =

∑M
m=1 vmφ(wT

mx)} can be upper-bounded
as follows:

RN (F) ≤ 2LρC134M√
N

+
C4|φ(0)|M√

N
, (8)

where C134 = C1C3C4 and φ(0) is the output of the activation function at the
origin.

Lemma 3 [7]. With a probability of at least 1 − δ,

L(f̂) − L(f∗) ≤ 4RN (A) + B

√
2 log(2/δ)

N
, (9)

where B ≥ supx,y,f |l(f(x), y)| and RN (A) is the Rademacher complexity of the
loss set A.
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Lemma 3 upper-bounds the generalization error using the Rademacher com-
plexity defined over the loss set and supx,y,f |l(f(x), y)|. Our analysis aims at
expressing this bound in terms of diversity, in order to understand how it affects
the generalization.

In order to study the effect of diversity on the generalization, given a layer
with M units {φ1(·), · · · , φM (·)}, we make the following assumption:

Assumption 1. Given any input x, we have

1
2M(M − 1)

M∑

i�=j

(φi(x) − φj(x))2 ≥ d2min. (10)

dmin lower-bounds the average L2-distance between the different units’ activa-
tions within the same representation layer. Intuitively, if several neuron pairs i
and j have similar outputs, the corresponding L2 distance is small. Thus, the
lower bound dmin is also small and the units within this layer are considered
redundant and “not diverse”. Otherwise, if the average distance between the dif-
ferent pairs is large, their corresponding dmin is large and they are considered
“diverse”. By studying how the lower bound dmin affects the generalization of the
model, we can analyze how the diversity theoretically affects the performance of
neural networks. In the rest of the paper, we derive generalization bounds for
neural networks using dmin.

3 Learning Distinct Features Helps

In this section, we derive generalization bounds for neural networks depending
on their diversity. Here, we consider a simple tow-layer neural network with a
hidden layer composed of M neurons and one-dimensional output trained for
a regression task. The full characterization of the setup can be summarized as
follows:

– The activation function of the hidden layer, ρ(·), is a positive Lρ-Lipschitz
continuous function.

– The input vector x ∈ R
D satisfies ||x||2 ≤ C1 and the output scalar y ∈ R

satisfies |y| ≤ C2.
– The weight matrix W = [w1,w2, · · · ,wM ] ∈ RD×M connecting the input to

the hidden layer satisfies ||wm||2 ≤ C3.
– The weight vector v ∈ R

M connecting the hidden-layer to the output satisfies
||v||∞ ≤ C4.

– The hypothesis class is F=
{

f |f(x)=∑M
m=1 vmφm(x)=

∑M
m=1 vmρ(wT

mx)
}

.

– Loss function set is A =
{
l|l(f(x), y) = 1

2 |f(x) − y|2}.
– Given an input x, 1

2M(M−1)

∑M
n�=m(φn(x) − φm(x))2 ≥ d2min.
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Our main goal is to analyze the generalization error bound of the neural
network and to see how its upper-bound is linked to the diversity of the different
units, expressed by dmin. The main result of the paper is presented in Theorem
1. Our proof consists of three steps: At first, we derive a novel bound for the
hypothesis class F depending on dmin. Then, we use this bound to derive bounds
for the loss class A and its Rademacher complexity RN (A). Finally, we plug all
the derived bounds in Lemma 3 to complete the proof of Theorem 1.

The first step of our analysis is presented in Lemma 4:

Lemma 4. We have
sup

x,f∈F
|f(x)| ≤ √J , (11)

where J = C2
4

(
MC2

5 + M(M − 1)(C2
5 − d2min)

)
and C5 = LρC1C3 + φ(0),

Proof.

f2(x) =

(
M∑

m=1

vmφm(x)

)2

≤
(

M∑
m=1

||v||∞φm(x)

)2

= ||v||2∞
(

M∑
m=1

φm(x)

)2

≤ C2
4

(
M∑

m=1

φm(x)

)2

= C2
4

(∑
m,n

φm(x)φn(x)

)

= C2
4

⎛
⎝∑

m

φm(x)2 +
∑
m�=n

φn(x)φm(x)

⎞
⎠ . (12)

We have supw,x φm(x) = supw,x ρ(wT x) ≤ sup(Lρ|wT x| + φ(0)), because ρ is
Lρ-Lipschitz. Thus, ||φ||∞ ≤ LρC1C3 +φ(0) = C5. For the first term in (12), we
have

∑
m φm(x)2 < M(LρC1C3 + φ(0))2 = MC2

5 . The second term, using the
identity
φm(x)φn(x) = 1

2

(
φm(x)2 + φn(x)2 − (φm(x) − φn(x))2

)
, can be rewritten as

∑
m�=n

φm(x)φn(x) =
1

2

⎛
⎝ ∑

m�=n

φm(x)2 + φn(x)
2 −

(
φm(x) − φn(x)

)2

⎞
⎠ . (13)

In addition, we have 1
2

∑
m�=n(φm(x) − φn(x))

2 ≥ M(M − 1)d2
min. Thus, we have:

∑
m�=n

φm(x)φn(x) ≤ 1

2

∑
m�=n

(2C2
5 ) − M(M − 1)d2

min = M(M − 1)(C2
5 − d2

min). (14)

By putting everything back to (12), we have:

f2(x) ≤ C2
4

(
MC2

5 + M(M − 1)(C2
5 − d2

min)
)
= J . (15)

Thus, supx ,f |f(x)| ≤
√

supx ,f f(x)2 ≤ √J .

Note that in Lemma 4, we have expressed the upper-bound of supx,f |f(x)|
in terms of dmin. Using this bound, we can now find an upper-bound for
supx,f,y |l(f(x), y)| in the following lemma:
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Lemma 5. We have

sup
x,y,f

|l(f(x), y)| ≤ 1
2
(
√J + C2)2. (16)

Proof. We have supx,y,f |f(x) − y| ≤ supx,y,f (|f(x)| + |y|) = √J + C2. Thus,
supx,y,f |l(f(x), y)| ≤ 1

2 (
√J + C2)2.

Next, using the result of lemmas 1, 2, and 5, we can derive a bound for the
Rademacher complexity of A. We have, thus, expressed all the elements of
Lemma 3 using the diversity term dmin. By plugging in the derived bounds
in Lemmas 4, 5, we obtain Theorem 1.

Theorem 1. With probability at least (1 − δ), we have

L(f̂) − L(f∗) ≤
(√J + C2

) A√
N

+
1
2
(
√J + C2)2

√
2 log(2/δ)

N
, (17)

where C134 = C1C3C4, J = C2
4

(
MC2

5+M(M−1)(C2
5−d2min)

)
, A = 4

(
2LρC134+

C4|φ(0)|
)
M , and C5 = LρC1C3 + φ(0).

Proof. Given that l(·) is K-Lipschitz with a constant K = supx,y,f |f(x) − y| ≤√J +C2, and using Lemma 1, we can show that RN (A) ≤ KRN (F) ≤ (
√J +

C2)RN (F). For RN (F), we use the bound found in Lemma 2. Using Lemmas 3
and 5, we have

L(f̂) − L(f∗) ≤ 4
(√J + C2

)(
2LρC134 + C4|φ(0)|

) M√
N

+
1

2
(
√J + C2)

2

√
2 log(2/δ)

N
,

(18)

where C134 = C1C3C4, J = C2
4

(
MC2

5 + M(M − 1)(C2
5 − d2min)

)
, and C5 =

LρC1C3 + φ(0). Thus, setting A = 4
(
2LρC134 + C4|φ(0)|

)
M completes the

proof.

Theorem 1 provides an upper-bound for the generalization gap. We note that
it is a decreasing function of dmin. Thus, this suggests that higher dmin, i.e., more
diverse activations, yields a lower generalization error bound. This shows that
learning distinct features helps in neural network context.

We note that the bound in Theorem 1 is non-vacuous in the sense that it
converges to zero when the number of training samples N goes to infinity. More-
over, we note that in this paper we do not claim to reach a tighter generalization
bound for neural networks in general [14,24,44,48]. Our main claim is that we
derive a generalization bound which depends on the diversity of learned features,
as measured by dmin. To the best of our knowledge, this is the first work that
performs such theoretical analysis based on the average L2-distance between the
units within the hidden layer.
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Connection to prior studies

Theoretical analysis of the properties of the features learned by neural network
models is an active field of research. Feature representation has been theoreti-
cally studied in the context of few-shot learning in [13], where the advantage of
learning a good representation in the case of scarce data was demonstrated. [2]
showed the same in the context of imitation learning, demonstrating that it has
sample complexity benefits for imitation learning. [55] developed similar findings
for the self-supervised learning task. [42] derived novel bounds showing the sta-
tistical benefits of multitask representation learning in linear Markov Decision
Processes. Opposite to the aforementioned works, the main focus of this paper
is not on the large sample complexity problems. Instead, we focused on feature
diversity in the learned representation and showed that learning distinct features
leads to better generalization.

Another line of research related to our work is weight-diversity in neural
networks [4,33,57,58,61]. Diversity in this context is defined based on dissim-
ilarity between the weight component using, e.g., cosine distance and weight
matrix covariance [59]. In [58], theoretical benefits of weight-diversity have been
demonstrated. We note that, in our work, diversity is defined in a fundamentally
different way. We do not consider dissimilarity between the parameters of the
neural network. Our main scope is the feature representation and, to this end,
diversity is defined based on the L2 distance between the feature maps directly
and not the weights. Empirical analysis of the deep representation of neural
networks has drawn attention lately [10,11,29,36]. For example, [10,36] showed
empirically that learning decorrelated features reduces overfitting. However, the-
oretical understanding of the phenomena is lacking. Here, we close this gap by
studying how feature diversity affects generalization.

4 Extensions

In this section, we show how to extend our theoretical analysis for classification,
for general multi-layer networks, and for different losses.

4.1 Binary Classification

Here, we extend our analysis of the effect of learning a diverse feature represen-
tation on the generalization error to the case of a binary classification task, i.e.,
y ∈ {−1, 1}. Here, we consider the special cases of a hinge loss and a logistic
loss. To derive diversity-dependent generalization bounds for these cases, similar
to the proofs of Lemmas 7 and 8 in [58], we can show the following two lemmas:

Lemma 6. Using the hinge loss, we have with probability at least (1 − δ)

L(f̂) − L(f∗) ≤ 4
(
2LρC134 + C4|φ(0)|

) M√
N

+ (1 +
√J )

√
2 log(2/δ)

N
, (19)
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where C134 = C1C3C4, J = C2
4 (MC2

5 + M(M − 1)(C2
5 − d2min)

)
, and C5 =

LρC1C3 + φ(0).

Lemma 7. Using the logistic loss l(f(x), y) = log(1 + e−yf(x)), we have with
probability at least (1 − δ)

L(f̂) − L(f∗) ≤ 4

1 + e
√−J

(
2LρC134 + C4|φ(0)|

) M√
N

+ log(1 + e
√J )

√
2 log(2/δ)

N
, (20)

where C134 = C1C3C4, J = C2
4 (MC2

5 + M(M − 1)(C2
5 − d2min)

)
, and C5 =

LρC1C3 + φ(0).

Using the above lemmas, we can now derive a diversity-dependant bound for the
binary classification case. The extensions of Theorem 1 in the cases of a hinge
loss and a logistic loss are presented in Theorems 2 and 3, respectively.

Theorem 2. Using the hinge loss, with probability at least (1 − δ), we have

L(f̂) − L(f∗) ≤ A/
√

N + (1 +
√J )

√
2 log(2/δ)

N
, (21)

where J = C2
4 (MC2

5 + M(M − 1)(C2
5 − d2min)

)
, A = 4

(
2LρC134 +C4|φ(0)|

)
M ,

and C5 = LρC1C3 + φ(0).

Theorem 3. Using the logistic loss l(f(x), y) = log(1+e−yf(x)), with probability
at least (1 − δ), we have

L(f̂) − L(f∗) ≤ A

(1 + e
√−J )

√
N

+ log(1 + e
√J )

√
2 log(2/δ)

N
, (22)

where J = C2
4 (MC2

5 + M(M − 1)(C2
5 − d2min)

)
, A = 4

(
2LρC134 +C4|φ(0)|

)
M ,

and C5 = LρC1C3 + φ(0).

As we can see, also for the binary classification task, the generalization bounds
for the hinge and logistic losses are decreasing with respect to dmin. Thus, this
shows that learning distinct features helps and can improve the generalization
also in binary classification.

4.2 Multi-layer Networks

Here, we extend our result for networks with P (> 1) hidden layers. We assume
that the pair-wise distances between the activations within layer p are lower-
bounded by d

(p)
min. In this case, the hypothesis class can be defined recursively.

In addition, we assume that: ||W (p)||∞ ≤ C
(p)
3 for every W (p), i.e., the weight

matrix of the p-th layer. In this case, the main theorem is extended as follows:
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Theorem 4. With probability of at least (1 − δ), we have

L(f̂) − L(f∗) ≤ (
√

J P + C2)
A√
N

+
1
2

(√
J P + C2

)2
√

2 log(2/δ)
N

, (23)

where A = 4((2Lρ)P C1C
0
3

∏P−1
p=0

√
M (p)C

(p)
3 + |φ(0)|∑P−1

p=0 (2Lρ)P−1−p
∏P−1

j=p√
M jCj

3), and J P is defined recursively using the following identities: J 0 =
C0

3C1 and

J (p) = M (p)Cp2
(
Mp2(LρJ p−1 + φ(0))2 − M(M − 1)d(p)min

2
)
)
, for p = 1, . . . , P .

Proof. Lemma 5 in [58] provides an upper-bound for the hypothesis class. We
denote by v(p) the outputs of the pth hidden layer before applying the activation
function:

v0 = [w0T

1 x, ....,w0T

M0x], (24)

v(p) =

⎡

⎣
Mp−1∑

j=1

w
(p)
j,1φ(vp−1

j ), ....,
Mp−1∑

j=1

w
(p)

j,M(p)φ(v
p−1
j )

⎤

⎦ , (25)

v(p) =
[
w

(p)
1

T
φ(p), ...,w

(p)

M(p)

T
φ(p)

]
, (26)

where φ(p) = [φ(vp−1
1 ), · · · , φ(vp−1

Mp−1)]. We have ||v(p)||22 =
∑M(p)

m=1 (w
(p)
m

T
φ(p))2

and w
(p)
m

T
φ(p) ≤ C

(p)
3

∑
n φ

(p)
n . Thus,

||v(p)||22 ≤
M(p)∑
m=1

(
C

(p)
3

∑
n

φ
(p)
n

)2

= M(p)Cp
3
2

(∑
n

φ
(p)
n

)2

= M(p)Cp
3
2

∑
mn

φ
(p)
m φ

(p)
n . (27)

We use the same decomposition trick of φ
(p)
m φ

(p)
n as in the proof of Lemma 2. We

need to bound supx φ(p):

sup
x

φ(p) < sup(Lρ|vp−1| + φ(0)) < Lρ||vp−1||22 + φ(0). (28)

Thus, we have

||v(p)||22 ≤ M (p)Cp
3
2(

M2(Lρ||vp−1||22 + φ(0))2 − M(M − 1)d2min)
)
= J P . (29)

We found a recursive bound for ||v(p)||22 and we note that for p = 0 we have
||v0||22 ≤ ||W 0||∞C1 ≤ C0

3C1 = J 0. Thus,

sup
x,fP ∈FP

|f(x)| = sup
x,fP ∈FP

|vP | ≤
√

J P . (30)

By replacing the variables in Lemma 3, we have

L(f̂) − L(f∗) ≤ 4(
√

J P + C2)

(
(2Lρ)P C1C

0
3√

N

P−1∏

p=0

√
M (p)C

(p)
3

+
|φ(0)|√

N

P−1∑

p=0

(2Lρ)P−1−p
P−1∏

j=p

√
M jCj

3

)
+

1
2

(√
J P + C2

)2
√

2 log(2/δ)
N

,
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Taking A=4
(
(2Lρ)P C1C

0
3

∏P−1
p=0

√
M (p)C

(p)
3 +|φ(0)|∑P−1

p=0 (2Lρ)P−1−p
∏P−1

j=p√
M jCj

3

)
completes the proof.

In Theorem 4, we see that J P is decreasing with respect to d
(p)
min. This extends

our results to the multi-layer neural network case.

4.3 Multiple Outputs

Finally, we consider the case of a neural network with a multi-dimensional out-
put, i.e., y ∈ RD. In this case, we can extend Theorem 1 with the following two
theorems:

Theorem 5. For a multivariate regression trained with the squared error, there
exists a constant A such that, with probability at least (1 − δ), we have

L(f̂) − L(f∗) ≤ (
√J + C2)

A√
N

+
D

2
(
√J + C2)2

√
2 log(2/δ)

N
(31)

where J = C2
4 (MC2

5 + M(M − 1)(C2
5 − d2min)

)
, C5 = LρC1C3 + φ(0), and

A = 4D
(
2LρC134 + C4|φ(0)|

)
M .

Proof. The squared loss 1
2 ||f(x)−y||22 can be decomposed into D terms 1

2 (f(x)k−
yk)2. Using Theorem 1, we can derive the bound for each term and, thus, we
have:

L(f̂)−L(f∗) ≤ 4D(
√J +C2)

(
2LρC134+C4|φ(0)|

) M√
N

+
D

2
(
√J +C2)

2

√
2 log(2/δ)

N
, (32)

where C134 = C1C3C4, J = C2
4 (MC2

5 + M(M − 1)(C2
5 − d2min)

)
, and C5 =

LρC1C3 + φ(0). Taking A = 4D
(
2LρC134 + C4|φ(0)|

)
M completes the proof.

Theorem 6. For a multi-class classification task using the cross-entropy loss,
there exists a constant A such that, with probability at least (1 − δ), we have

L(f̂)−L(f∗) ≤ A

(D − 1 + e−2
√J )

√
N

+log
(
1+(D−1)e2

√J
)√

2 log(2/δ)
N

(33)

where J = C2
4 (MC2

5 + M(M − 1)(C2
5 − d2min)

)
and C5 = LρC1C3 + φ(0), and

A = 4D(D − 1) (2LρC134 + C4|φ(0)|)M .

Proof. Using Lemma 9 in [58], we have supf,x,y l = log
(
1 + (D − 1)e2

√J )

and l is D−1
D−1+e−2

√J -Lipschitz. Thus, using the decomposition property of the
Rademacher complexity, we have

Rn(A) ≤ 4D(D − 1)

D − 1 + e−2
√J (2LρC134 + C4|φ(0)|) M√

N
. (34)

Taking A = 4D(D − 1) (2LρC134 + C4|φ(0)|)M completes the proof.
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Fig. 2. Generalization gap, i.e., train error - test error, and the theoretical bound,
i.e., (C2

5 − d2
min)/

√
N , as a function of the number of training samples on MNIST

dataset for neural networks with intermediate layer sizes from left to right: 128 (corre-
lation=0.9948), 256 (correlation=0.9939), and 512 (correlation=0.9953). The theoret-
ical term has been scaled in the same range as the generalization gap. All results are
averaged over 5 random seeds.

Theorems 5 and 6 extend our result for the multi-dimensional regression and
classification tasks, respectively. Both bounds are inversely proportional to the
diversity factor dmin. We note that for the classification task the upper-bound
is exponentially decreasing with respect to dmin. This shows that learning a
diverse and rich feature representation yields a tighter generalization gap and,
thus, theoretically guarantees a stronger generalization performance.

5 Discussion and Open Problems

In this paper, we showed how the diversity of the features learned by a two-
layer neural network trained with the least-squares loss affects generalization.
We quantified the diversity by the average L2-distance between the hidden-layer
features and we derived novel diversity-dependant generalization bounds based
on Rademacher complexity for such models. The derived bounds are inversely-
proportional to the diversity term, thus demonstrating that more distinct fea-
tures within the hidden layer can lead to better generalization. We also showed
how to extend our results to deeper networks and different losses.

The bound found in Theorem 1 suggests that the generalization gap, with
respect to diversity, is inversely proportional to dmin and scales as ∼ (C2

5 −
d2min)/

√
N . We validate this finding empirically in Fig. 2. We train a two-layer

neural network on the MNIST dataset for 100 epochs using SGD with a learning
rate of 0.1 and batch size of 256. We show the generalization gap, i.e., test
error - train error, and the theoretical bound, i.e., (C2

5 −d2min)/
√

N , for different
training set sizes. dmin is the lower bound of diversity. Empirically, it can be
estimated as the minimum feature diversity over the training data S: dmin =
minx∈S

1
2M(M−1)

∑M
n�=m(φn(x)−φm(x))2. We experiment with different sizes of

the hidden layer, namely 128, 256, and 512. The average results using 5 random
seeds are reported for different training sizes in Fig. 2 showing that the theoretical
bound correlates consistently well (correlation > 0.9939) with the generalization
error.
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Fig. 3. From left to right: (a)-(b) Tracking the diversity during the training for different
models on ImageNet. (c) Final diversity as a function of depth for different models on
MNIST.

As shown in Fig. 1, diversity increases for neural networks along the training
phase. To further investigate this observation, we conduct additional experiments
on ImageNet [49] dataset using 4 different state-of-the-art models: ResNet50
and ResNet101, i.e., the standard ResNet model [19] with 50 layers and 101
layers, ResNext50 [60], and WideResNet50 [62] with 50 layers. All models
are trained with SGD using standard training protocol [10,22,64]. We track
the diversity, as defined in (3), of the features of the last intermediate layer.
The results are shown in Fig. 3 (a) and (b). As it can be seen, SGD without
any explicit regularization implicitly optimizes diversity and converges toward
regions with high features’ distinctness. These observations suggest the following
conjecture:

Conjecture 1. Standard training with SGD implicitly optimizes the diversity of
intermediate features.

Studying the fundamental properties of SGD is extremely important to under-
stand generalization in deep learning [23,25,27,54,65]. Conjecture 1 suggests
a new implicit bias forSGD, showing that it favors regions with high feature
diversity.

Another research question related to diversity that is worth investigating is:
How does the network depth affect diversity? In order to answer this question,
we conduct an empirical experiment using MNIST dataset [37]. We use fully
connected networks (FCNs) with ReLU activation and different depths (1 to 12).
We experiment with three models with different widths, namely FCN-256, FCN-
512, and FCN-1024, with 256, 512, and 1024 units per layer, respectively. We
measure the final diversity of the last hidden layer for the different depths. The
average results using 5 random seeds are reported in Fig. 3 (c). Interestingly, in
this experiment, increasing the depth consistently leads to learning more distinct
features and higher diversity for the different models. However, by looking at
Fig. 1, we can see that having more parameters does not always lead to higher
diversity. This suggests the following open question:

Open Problem 1. When does having more parameters/depth lead to higher
diversity?
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Understanding the difference between shallow and deep models and why deeper
models generalize better is one of the puzzles of deep learning [26,40,47]. The
insights gained by studying Open Problem 1 can lead to a novel key advantage of
depth: deeper models are able to learn a richer and more diverse set of features.

Another interesting line of research is adversarial robustness [40,41,46,56].
Intuitively, learning distinct features can lead to a richer representation and,
thus, more robust networks. However, the theoretical link is missing. This leads
to the following open problem:

Open Problem 2. Can the theoretical tools proposed in this paper be used to
prove the benefits of feature diversity for adversarial robustness?
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Abstract. Recurrent neural networks (RNNs) have brought a lot of advance-
ments in sequence labeling tasks and sequence data. However, their effectiveness
is limited when the observations in the sequence are irregularly sampled, where
the observations arrive at irregular time intervals. To address this, continuous time
variants of the RNNs were introduced based on neural ordinary differential equa-
tions (NODE). They learn a better representation of the data using the continuous
transformation of hidden states over time, taking into account the time interval
between the observations. However, they are still limited in their capability as
they use the discrete transformations and a fixed discrete number of layers (depth)
over an input in the sequence to produce the output observation. We intend to
address this limitation by proposing RNNs based on differential equations which
model continuous transformations over both depth and time to predict an out-
put for a given input in the sequence. Specifically, we propose continuous depth
recurrent neural differential equations (CDR-NDE) which generalize RNN mod-
els by continuously evolving the hidden states in both the temporal and depth
dimensions. CDR-NDE considers two separate differential equations over each
of these dimensions and models the evolution in temporal and depth directions
alternatively. We also propose the CDR-NDE-heat model based on partial differ-
ential equations which treats the computation of hidden states as solving a heat
equation over time. We demonstrate the effectiveness of the proposed models by
comparing against the state-of-the-art RNN models on real world sequence label-
ing problems.

Keywords: Neural networks · differential equations · sequence labeling

1 Introduction

Deep learning models such as ResNets [16] have brought a lot of advances in many real
world computer vision applications [15,27,34]. They managed to achieve a good gen-
eralization performance by addressing the vanishing gradient problem in deep learning
using skip connections. Recently, it was shown that the transformation of hidden rep-
resentations in the ResNet block is similar to the Euler numerical method [13,21] for
solving ordinary differential equations (ODE) with constant step size. This observation
has led to the inception of new deep learning architectures based on differential equa-
tions such as neural ODE (NODE) [8]. NODE performs continuous transformation of
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
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hidden representation by treating Resnet operations as an ODE parameterized by a neu-
ral network and solving the ODE using numerical methods such as Euler method and
Dopri-5 [19]. NODE automated the model selection (depth estimation) [2], is parameter
efficient and is robust towards adversarial attacks than a ResNet with similar architec-
ture [1,14].

Recurrent neural networks and variants such as long short term memory
(LSTM) [17] and gated recurrent units (GRU) [9] were successful and effective in
modeling time-series and sequence data. However, RNN models were not effective
for irregularly sampled time-series data [28], where the observations are measured at
irregular intervals of time. ODE-RNN [28] modeled hidden state transformations across
time using a NODE, where the transformations of hidden representations depend on the
time-gap between the arrivals and this led to a better representation of hidden state. This
addressed the drawbacks of the RNN models which performs a single transformation
of the hidden representation at the observation times irrespective of the time interval.
Such continuous recurrent models such as GRU-ODE [10] and ODE-LSTM [20] were
proposed to learn better representation of irregular time series data. When applied to
the sequence data with a sequence of input-output elements along with their time of
occurrences, these models obtain the temporal evolution of hidden states using a neural
ODE. At an observation time, this is then combined with the input at that time and a
discrete number of transformations is applied using a feed-forward neural network to
obtain the final hidden representation. This final hidden representation is then used to
produce the desired output. Though these models evolve continuously over time, they
use a fixed discrete transformations over depth.

There are several real world sequence labelling problems where the sequences could
be of different complexities or the input elements in the sequence could be of differ-
ent complexities. For instance, consider the problem of social media post classification
such as stance classification [32,35] where we need to classify different posts arriving
at irregular time intervals to different classes. The posts could have varying character-
istics with some posts containing only text while some contains both text and image.
It would be beneficial to have a recurrent neural network model which would consider
the complexities of the input in a sequence by having a varying number of transforma-
tions for different inputs along with considering the irregular arrival patterns. In this
work, we propose continuous depth recurrent neural differential equation (CDR-NDE)
models which generalize the recurrent NODE models to have continuous transforma-
tion over depth in addition to the time. Continuous depth allows flexibility in modeling
sequence data, with different depths over the elements in the sequence as well as differ-
ent sequences. Combining this with the continuous time transformation as in recurrent
neural ODE allows greater modeling capability on irregularly sampled sequence data.

The proposed continuous depth recurrent neural differential equations (CDR-NDE)
model the evolution of the hidden states simultaneously in both the temporal and depth
dimensions using differential equations. Continuous transformation of hidden states is
modeled as a differential equation with two independent variables, one in the temporal
and the other in the depth direction. We also aim to model the evolution of the hidden
states using a partial differential equation (PDE) based on the 1D-heat equation, lead-
ing to the CDR-NDE-heat model. Heat equation is a second order partial differential
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equation, which models the flow of heat across the rod over time. The proposed CDR-
NDE-heat model considers the transformation of hidden states across depth and time
using a non-homogeneous heat equation. An advantage is that it is capable of consider-
ing the information from the future along with the past in sequence labeling tasks. We
exploit the structure in the CDR-NDE-heat model and PDE solvers to develop an effi-
cient way to obtain the hidden states where all the hidden states at a particular depth can
be computed simultaneously. We evaluate the performance of our proposed models on
real-world datasets such as person activity recognition [3], Walker2d kinematic simula-
tion data [20] and stance classification of social media posts [35]. Through experiments,
we show that the proposed continuous depth recurrent neural differential equation mod-
els outperformed the state-of-the-art recurrent neural networks in all these tasks.

2 Related Work

RNN models such as LSTM [17] and GRU [9] are the primary choice to fit high-
dimensional time-series and sequence data. For irregular time-series data, traditional
LSTM and GRU models are less effective as they do not consider the varying inter-
arrival times. To address the problem of fitting irregular time-series data, the standard
approach is the augmented-LSTM which augments the elapsed time with input data.
In GRU-D [6] and RNN-Decay [28], the computed hidden state is the hidden state
multiplied by a decay term proportional to the elapsed time. In other variants such as
CT-GRU [24],CT-RNN [12], ODE-RNN [28], GRU-ODE [10], ODE-LSTM [20] and
Jump-CNF [7], the hidden state is computed as a continuous transformation of interme-
diate hidden states. CT-LSTM [23] combines both LSTM and continuous time neural
Hawkes process to model continuous transformation of hidden states. Two alternative
states are computed at each time-step and the final state is an interpolated value of these
hidden states, where the interpolation depends on the elapsed time. Phased-LSTM [25]
models irregularly sampled data using an additional time gate. The updates to the cell
state and hidden state only happen when the time gate is open. This time gate allows
for the updates to happen at irregular intervals. Phased LSTM reduces the memory
decay as the updates only happen in a small time when the time gate is open. ODE-
RNN [28] used neural ordinary differential equations over time to model the evolution
of the hidden states. The next hidden state is obtained as a solution to a NODE, and
depends on the time interval between two consecutive observations. GRU-ODE [10]
derived a NODE over time and hidden states using the GRU operations and conse-
quently could avoid the vanishing gradient problem in ODE-RNN. Similarly, ODE-
LSTM [20] addressed the vanishing gradient problem in ODE-RNN by considering the
LSTM cell and memory cell while the output state is modeled using a neural ODE to
account for irregular observations. However, all these models only considered contin-
uous evolution of hidden states over the temporal dimension. In our work, we aim to
develop models which consider continuous evolution of the hidden states over depth as
well as temporal dimensions.

Recently, there are some works which used deep neural networks to solve the par-
tial differential equations (PDE) (also known as neural PDEs or physics informed neu-
ral networks) [4,18,36]. [18] showed that LSTM based RNNs can efficiently find the
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solutions to multidimensional PDEs without knowing the specific form of PDE. On the
other hand, very few works used PDEs to model DNN architectures for solving prob-
lems from any domain. [29] used PDE to design Resnet architectures and convolutional
neural networks (CNNs) such as Parabolic CNN and hyperbolic CNN by changing
the ODE update dynamics to different PDE update dynamics. For instance, hyperbolic
CNN can be obtained with second order dynamics. They showed that even the PDE
CNNs with modest architectures achieve similar performance to the larger networks
with considerably large numbers of parameters. Unlike the prior works combining neu-
ral networks and PDEs, our aim is to solve sequence labeling problems by developing
flexible RNN based architectures considering the PDE based models and solutions.

3 Background

3.1 Problem Definition

We consider the sequence labeling problem with a sequence length of K, and denote
the input-output pairs in the sequence as {xt,yt}K

t=1 and the elements in the sequence
are irregularly sampled at observation times t ∈ R

+K . We assume the input element in
the sequence to be D dimensional, xt ∈ RD and the corresponding output yt depends
on the problem, discrete if it is classification or continuous if it is regression. The aim
is to learn a model f(·, θ) which could predict the output yt considering the input xt,
and dependence on other elements in the sequence.

3.2 Gated Recurrent Unit

Recurrent neural networks (RNNs) are well suited to model the sequence data. They
make use of the recurrent connections to remember the information until the previous
time step, and combine it with the current input to predict the output. Standard RNNs
suffer from the vanishing gradient problem due to which it forgets long term dependen-
cies among the sequence elements. This was overcome with the help of long short term
memory (LSTM) [17] and gated recurrent units (GRUs) [9]. In our work we consider
the basic RNN block to be a GRU. In GRU, computation of hidden state and output at
any time step t involves the following transformations,

rt = σ(Wrxt + Urht−1 + br), zt = σ(Wzxt + Uzht−1 + bz)
gt = tanh(Whxt + Uh(rt � ht−1) + bh)

(1)

where rt, zt, gt are the reset gate, update gate and update vector respectively for the
GRU. The hidden state ht in GRU is given by,

ht = zt � ht−1 + (1 − zt) � gt (2)

As we can see, GRUs and RNNs in general do not consider the exact times or time inter-
val between the observations. The same operations are applied irrespective of the time
gap between observations. This can limit the capability of these models for irregularly
sampled time series data.
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GRUs can be extended to consider the irregularity in the time series data by devel-
oping a continuous GRU variant. A continuous GRU, GRU-ODE [10], can be obtained
by adding and subtracting the hidden state on both sides of (2). The computation of
hidden states then becomes equivalent to solving an ODE given in (3).

ht − ht−1 = zt � ht−1 + (1 − zt) � gt − ht−1 =⇒ dht

dt
= (1 − zt) � (gt − ht)

(3)

3.3 Recurrent Neural Ordinary Differential Equations

In ODE-RNN [28], ODE-LSTM [20], and ODE-GRU [10], the hidden state ht holds
the summary of past observations and evolves between the observations considering the
time interval. For a new observation, the hidden state ht changes abruptly to consider
it [7]. Given initial state h0, let the function fh() models the continuous transformation
of hidden state and function gh() model instantaneous change in the hidden state at the
new observation. The prediction y′

t is computed by using a function oh(), which is then
used to compute the loss (cross entropy loss for classification). Both the functions gh()
and oh() are typically standard feed-forward neural networks with a discrete number
of layers. In the case of GRU-ODE, the function fh() takes the form given in the right
hand side of (3). In general, the recurrent NODE models can be represented using the
following system.

dht

dt
= fh(ht), lim

ε→0
ht+ε = gh(ht,xt), y′

t = oh(ht+ε) (4)

4 Continuous Depth Recurrent Neural Differential Equations

We propose continuous depth recurrent neural differential equations (CDR-NDE) aim-
ing to overcome the drawbacks of the recurrent NODEs in modeling the sequence data.
As already discussed, recurrent NODE models bring abrupt changes in the hidden state
at the observation times using the standard neural network transformation gh(), when
it considers the input xt at time t. We aim to develop RNN models capable of contin-
uous transformations over depth in addition to the temporal dimension. Such models
will help in processing inputs with varying complexities, aid in model selection (in
choosing the number of layers in a RNN model) and reduce the number of parameters
(as every layer shares the same parameters as in NODE). Moreover, we hypothesize
that such continuous transformation over depth will also aid in learning better hidden
representations as it is not limited by a predefined number of layers as in standard
RNNs. We propose two models, CDR-NDE and CDR-NDE-heat model. Both the mod-
els generalize the GRU-ODE model by continuously evolving in both the temporal and
depth directions. The CDR-NDE-heat model is formulated based on a partial differen-
tial equation (1-dimensional heat equation) and enables faster computation of hidden
states even when using an adaptive step numerical method like Dopri5.

The hidden states of CDR-NDE evolves in depth direction (denoted by vertical
axis t′ in Fig. 1) while also evolving in the temporal direction (denoted by horizontal
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axis t in Fig. 1). As the hidden state evolves in both directions, we need a tuple (t, t′)
to uniquely identify any hidden state and we represent the hidden state as h(t,t′). As
shown in Fig. 1, during the computation of a hidden state h(t,t′), it requires hidden
states that are immediately to the left in the temporal dimension h(t−1,t′) and below in
the depth direction h(t,t′−1). The evolution of the hidden state h(t,t′) in the CDR-NDE
is governed by the following differential equations.

∂h(t,t′)

∂t
= fh(h(t,t′),h(t,t′−1)),

∂h(t,t′)

∂t′
= gh(h(t,t′),h(t−1,t′)) (5)

yi = oh(h(ti,T ′)), h(ti,0) = xi ∀i = 1, . . . ,K (6)

Fig. 1. Shows the computation of hidden states using the CDR-NDE model. As we can see for
different observations, the number of intermediate hidden states in the evolution along the depth
is different. The index (t − 1, t′) points to the hidden state of immediate left vertical evolution.
The index (t, t′ − 1) points the hidden state just below the current vertical evolution.

where T ′ is the maximum depth. We observe that the changes in the hidden state in the
horizontal (time) direction depends on the hidden states at a depth below while changes
in the hidden states in the vertical (depth) direction depends on the hidden states at the
previous time. The derivation and exact expression used to define the functions fh()
and gh() are obtained as follows. We consider the evolution in the horizontal direction
to follow the GRU-ODE model but with an added skip-connection in the vertical direc-
tion. Though fh() can be any function as in ODE-RNN, we followed GRU-ODE to
avoid vanishing gradient problems in the temporal direction [10]. In a discrete setup,
the expression used to compute the hidden state h(t,t′) after adding the skip connection
in the vertical direction can be written as

h(t,t′) = z(t,t′) � h(t−1,t′) + (1 − z(t,t′)) � g(t,t′) + h(t,t′−1) (7)

By subtracting h(t−1,t′) on both sides, we can obtain the difference equation as

h(t,t′)−h(t−1,t′) = z(t,t′)�h(t−1,t′)+(1−z(t,t′))�g(t,t′)+h(t,t′−1)−h(t−1,t′) (8)

Consequently, the differential equation governing the flow in the temporal (horizontal)
direction is

∂h(t,t′)

∂t
= z(t,t′) � h(t,t′) + (1 − z(t,t′)) � g(t,t′) + h(t,t′−1) − h(t,t′) (9)
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where z(t,t′) = σ(Wzh(t,t′−1) + Uzh(t,t′) + bz),

g(t,t′) = tanh(Whh(t,t′−1) + Uh(r(t,t′) � ht,t′) + bh),
r(t,t′) = σ(Wrh(t,t′−1) + Urh(t,t′) + br).

To derive the differential equation in the depth (vertical) direction t′, Eq. 7 can be
written as a difference equation by carrying the term h(t,t′−1) to the left hand side.

h(t,t′) − h(t,t′−1) = z(t,t′) � h(t−1,t′) + (1 − z(t,t′)) � g(t,t′) (10)

Fig. 2. Evolution of temperature across time.(a) shows the initial state(temperature) of the rod,
heat is applied externally at 4 different points. Over time, heat diffuses from hot region to cold
region, (b) shows the state of the rod, after p seconds. (c) Over time, the change in temperature
comes to an equilibrium state, no change of temperature over time.

Consequently, the differential equation governing flow in depth (vertical) direction is
defined below and we can observe that it depends on hidden states at the previous time.

∂h(t,t′)

∂t′
= z′

(t,t′) � h(t−1,t′) + (1 − z′
(t,t′)) � g′

(t,t′) (11)

where z′
(t,t′) = σ(Wzh(t,t′) + Uzh(t−1,t′) + bz),

g′
(t,t′) = tanh(Whh(t,t′) + Uh(r′

(t,t′) � h(t−1,t′)) + bh),

r′
(t,t′) = σ(Wrh(t,t′) + Urh(t−1,t′) + br).

We solve the differential equations (9) and (11) in two stages. In the first stage,
CDR-NDE is solved in the horizontal direction until time tK for t′ = 0 following (9)
and can be solved using differential equation solvers such as Euler method or Dopri5. In
the second stage, for every time step evaluated on the t-axis during the first stage, hid-
den states are allowed to evolve in the vertical direction, i.e. along the t′-axis. Evolution
in vertical direction is done until time t′ = T ′ and can be solved using solvers such as
Euler or Dopri5. We can observe that during this evolution, CDR-NDE model considers
h(t−1,t′) in computing h(t,t′) for any time t and depth t’ taking into account the depen-
dencies in the sequence. Hence, computation of the hidden state h(t,t′) needs access to
the hidden state h(t−1,t′) and this requires performing an additional interpolation on the
hidden states evaluated at time t − 1 in the case of adaptive solvers.
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4.1 CDR-NDE Based on Heat Equation

We propose another CDR-NDE model inspired by the partial differential equations and
in particular the 1D-heat diffusion equation [5]. Heat equation represents the evolution
of heat over time in a rod. Consider a rod of length L which is at room temperature.
Along the length of the rod, at different points, heat is applied externally into the rod.
The temperatures applied at different points can be different. Figure 2(a) provides a
visualization of the initial state(at t′ = 0), where the rod is at room temperature. At
four different points, heat is applied externally with different temperature values. Heat
starts to flow from hotter regions to colder regions and the points which are initially at
room temperature become hotter. In a finite amount of time, it reaches a state where
the change in temperature at any point in time is zero, which is called an equilibrium
state. Figure 2(b) visualizes the intermediate state of temperatures across the rod after
p seconds. Figure 2(c) visualizes the equilibrium state where the change in temperature
across the rod is smooth.

We can observe that the evolution of temperature in a rod can be seen as equivalent
to the evolution of hidden states and applying temperature to the road can be consid-
ered equivalent to providing input data in the sequence. The hidden states associated
with input data smoothly change over the depth dimension t′ reaching an equilibrium
state, and finally leading to the output elements in the sequence. The heat equation
motivates us to construct a model capable of capturing interactions among different ele-
ments in the sequence, providing smooth hidden transformations with variable depth.
We hypothesize that such models will be able to learn better representations depending
on the input and improve the generalization performance.

The process of heat diffusion can be represented by a 1D heat equation [5] which is

a homogeneous second order partial differential equation, ∂u(t′,l)
∂t′ = C∗ ∂2u(t′,l)

∂l2 , where
u(t′, l) is the temperature at point l on rod at time t′ and C is a constant(diffusivity).
The proposed CDR-NDE-heat model is based on the non-homogeneous heat equation,
a variant of the homogeneous 1D heat equation. The temperature applied at a location
li in the rod is equivalent to the datapoint xi at time ti. As the temperature injected
at a point affects the temperature around the rod neighborhood, the hidden states are
affected by the observed data points in the neighborhood. The hidden state then evolves
over the depth variable t′ and reaches a steady state following the heat diffusion model.
The second order derivative with respect to location l in the heat equation (equivalently
over time t for sequence labeling problems) allows one to consider the effect of neigh-
bors around a point. For sequence modeling, this allows one to learn a better representa-
tion by considering past and future hidden states across time t, similar to bi-directional
RNNs considering past and future information.

The proposed model considers a non-homogeneous heat equation model which
allows a better representation of hidden state during evolution by considering addi-
tional information on the interaction between the hidden states. In our case, we choose
GRUcell which holds a summary of the past observations to capture the interaction. The
differential equation governing the evolution of the proposed CDR-NDE-heat model is
defined as follows,

∂h(t,t′)

∂t′
− ∂2h(t,t′)

∂t2
= f(h(t,t′−1),h(t−1,t′)) (12)
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where f(h(t,t′−1),h(t−1,t′)) is the GRUCell operation, i.e. f(h(t,t′−1),h(t−1,t′)) =
z(t,t′) � h(t−1,t′) + (1 − z(t,t′)) � g(t,t′). The evolution of hidden state as shown in
Equation 12 corresponds to a non-homogeneous heat equation [33] with GRUCell cap-
turing the interactions.

The heat equation can be solved numerically using methods like finite-difference
method(FDM) [26] and method of lines(MoL) [30]. We can get a better insights on the
behaviour of the proposed CDR-NDE-heat model by writing the updates using the finite
difference method. Using FDM, the hidden state is computed as follows,

h(t,t′+Δt′ ) − h(t,t′)

Δt′
−h(t−Δt,t′) − 2h(t,t′) + h(t+Δt,t′)

Δ2
t

= f(h(t,t′−Δt′ ),h(t−Δt,t′))

=⇒ h(t,t′+Δt′ ) =
Δ′

t

Δ2
t

[h(t−Δt,t′) − 2h(t,t′) + h(t+Δt,t′)]

+ Δt′ [f(h(t,t′−Δt′ ),h(t−Δt,t′))] + h(t,t′) (13)

FDM divides the space of (t, t′) into finite grids as shown in Fig. 3.

Fig. 3. Pictorial representation of computing a hidden state h(t,t′+Δt′ ) as shown in Eq. 13. The
new hidden state depends on the already computed hidden states in the lower layers.

To compute the hidden state at a depth t′ + Δt′ , it utilizes the hid-
den states computed for itself and its immediate neighbors at a previous depth
(h(t−Δt,t′),h(t,t′),h(t+Δt,t′)). This helps to capture dependence among the neighbor-
ing inputs during evolution. A drawback of directly using FDM in solving the proposed
CDR-NDE-heat model is that it is a slow process. It doesn’t exploit the GPU power as
the computations are happening in a sequential order.

For the proposed model, from the formulation to compute next hidden state in Eq. 13
and Fig. 3, we can observe that the hidden states at t′ +Δt′ only depends on the hidden
states computed below t′ + Δt′ . Hence, all the hidden states t′ + Δt′ can be computed
simultaneously once we have hidden states at time t′. The numerical techniques based
on Method of lines (MoL) [30] is a good choice for such a scenario. MoL method
typically discretizes and computes function values in one dimension, and then jointly
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evolves in the remaining dimension to compute all the function values. In our approach,
we first compute hidden states along the t-axis and then compute the hidden states along
the t′-axis by posing as a solution to the system of differential equations. The evolution
of the hidden states along the t′-axis is defined by the ordinary differential equation
(14), which is derived from Eq. 13.

∂h(t,t′)

∂t′
= gθ(h(t−Δt,t′),h(t,t′),h(t+Δt,t′))

=
h(t−Δt,t′) − 2h(t,t′) + h(t+Δt,t′)

Δ2
t

+ f(h(t,t′),h(t−Δt,t′)) (14)

h(:,T ′) = ODESOLVE(gθ, initial state = h(:,0), start time = 0, end time = T ′)

The initial hidden states at t′ = 0, i.e. h(:,0) are computed by solving an ODE along the
t-axis

dh(t,0)

dt
= (1 − z(t,0)) � (g(t,0) − h(t,0)) (15)

One can select any numerical method for solving the system of ODEs. In the
experiments, we evaluate the performance of the CDR-NDE-heat model using both
Euler (CDR-NDE-heat(Euler)) and Dopri5 (CDR-NDE-heat(Dopri5)) methods. We can
observe that CDR-NDE-heat model considers h(t+Δt,t′) in addition to h(t−Δt,t′) in
computing h(t,t′) for any time t and depth t’, taking into account more dependencies in
the sequence.

After computing the hidden states at depth T ′, predictions are made using a fully
connected neural network, i.e. yi = oh(h(ti,T ′)). This is then used to compute loss -
cross-entropy for classification and root mean square error for regression problems. The
parameters of the CDR-NDE models, i.e. weight parameters of the GRUCell, are learnt
by minimizing the loss computed over all the observations in the sequence and over all
the sequences. The computed loss is backpropagated using either adjoint method [8] or
automatic differentiation to update the model parameters.

5 Experiments

To evaluate the performance of the proposed models, we conduct experiments on irreg-
ular time series datasets such as person activity recognition [3], walker2d kinematic

Table 1. Hyperparameter Details

Parameter Value

Hidden state Dimension 64

Minibatch size 256

Optimizer RMSprop

Learning rate 5e−3

Training epochs 200
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Table 2. ODE solvers used for different RNODE models. For the CDR-NDE-Heat model using
Dopri5, the absolute and relative tolerance values are 1e−3 and 1e−3 respectively.

Model ODE-Solver Time-step Ratio

CT-RNN 4-th order Runge-Kutta 1/3

ODE-RNN 4-th order Runge-Kutta 1/3

GRU-ODE Explicit Euler 1/4

ODE-LSTM Explicit Euler 1/4

CDR-NDE Explicit Euler 1/2

CDR-NDE-heat(Euler) Explicit Euler 1/2

CDR-NDE-heat(Dopri5) Dopri5 –

simulation [20] and stance classification [35] of social media posts. We compare our
proposed models against RNNmodels which are designed to tackle the irregularly sam-
pled time-series data. The experimental setup such as the numerical method, hidden
state dimension and other hyperparameters is the same as in [20] and is provided in
Table 1. Table 2 provides the choice of numerical methods for each model. The pro-
posed models CDR-NDE and CDR-NDE-heat(Euler) used the Euler method with the
number of steps as 2. CDR-NDE-heat(Dopri5) used Dopri5 with the absolute and rela-
tive tolerance set to 1e−3. Scheduled learning rate decay is used with decay parameter
γ = 0.1, scheduled at epoch 100. The models are trained on Nvidia Tesla V-100 32GB
GPU.

5.1 Baselines

We compared our proposed models1 against RNN models which are designed to
address the problem of fitting irregular time-series data such as GRU-ODE [10],
CT-GRU [24], CT-RNN [12], GRUD [6], Phased-LSTM [25], ODE-LSTM [20],
bidirectional-RNN [31], RNN decay [28], Hawk-LSTM [23], Augmented LSTM [20],
and ODE-RNN [28].

5.2 Person Activity Recognition with Irregularly Sampled Time-Series

Dataset contains sensor data from 4 from different sensors(1 for each ankle, 1 chest and
1 belt) attached to 5 different people, performing 5 sequences of activities. The task is
to classify the activity based on the sensor data. There are 11 different activities which
are reduced to 7 as suggested in [28]. Dataset is transformed such that each step in
the recording contains 7 values (4 of which determine the sensor that is producing data
and the other 3 are sensor data). Each recording is split into overlapping intervals of 32
(with overlap of 16) and all the sequences are combined into one dataset. Out of the
total sequences 7769 used for training, 1942 used for testing.

1 Code is available at https://github.com/srinivas-quan/CDR-NDE.

https://github.com/srinivas-quan/CDR-NDE
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Table 3. Column 2, shows the test accuracy (mean ± std) of all the models trained on the dataset
Person activity recognition. Column 3 shows the test data Mean-square error (mean ± std) of
all the models trained on the datasetsWalker2d Kinematic. For both the dataset, every model is
trained for 5 times with 5 different seeds.

Model Person Activity Recognition (Accuracy) Walker2d Kinematic (Mean-Square Error)

Aug-LSTM 83.78± 0.41 1.09± 0.01

CT-RNN 82.32± 0.83 1.25± 0.03

ODE-RNN 75.03± 1.87 1.88± 0.05

ODE-LSTM 83.77± 0.58 0.91± 0.02

CT-GRU 83.93± 0.86 1.22± 0.01

RNN-Decay 78.74± 3.65 1.44± 0.01

Bi-RNN 82.86± 1.17 1.09± 0.01

GRU-D 82.52± 0.86 1.14± 0.01

Phased-LSTM 83.34± 0.59 1.10± 0.01

GRU-ODE 82.80± 0.61 1.08± 0.01

CT-LSTM 83.42± 0.69 1.03± 0.02

CDR-NDE 87.54± 0.34 0.97± 0.04

CDR-NDE-heat (Euler) 88.24± 0.31 0.54± 0.01

CDR-NDE-heat (Dopri5) 88.60± 0.26 0.49± 0.01

In Table 3, column 2 shows the performance of all the models trained on a person-
activity dataset in terms of test accuracy. Our proposed models CDR-NDE and CDR-
NDE-heat perform better than all other baseline models. It shows that considering the
continuous transformation along both the directions results in a model with better rep-
resentation capability and generalization performance. We also observe that the more
flexible CDR-NDE-heat model using the adaptive Dopri5 solver gives the best per-
formance in the person-activity dataset. To verify the flexibility of the model and the
requirement of different depth for different sequences, we computed the number of
function evaluations involved while evolving the hidden states over depth in the CDR-
NDE-heat(Dopri5) model. We found that the number of function evaluations fall in the
range of 26 to 32. This shows that different sequences required different number of
function evaluations for learning better representations. Training time for an epoch for
the models are CDR-NDE-heat(Euler): 22 sec, CDR-NDE-Heat(Dopri5): 30 sec, and
CDR-NDE: 58 sec, and shows that CDR-NDE-heat models are faster.

5.3 Walker2d Kinematic Simulation

The dataset was created by [20] for Walker kinematic modeling task. This is a super-
vised autoregressive task and the dataset was generated using Walker2d-v2 OpenAI
gym environment and MuJoCo physics engine. This dataset evaluates how well a model
can simulate kinematic modeling systems that are sampled at irregular time intervals.
The training data was generated by performing rollouts on the Walker2d-v2 environ-
ment using pre-trained deterministic policy. The Walker environment was trained using
a non-recurrent policy though Proximal policy optimization before data collection. The
dataset is made irregularly sampled by excluding 10% of the timesteps. The dataset is
split into 9684 train, 1937 test, 1272 validation sequences.
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In Table 3, column 3 shows the performance of all the models on Walker2d data.
Our proposed model CDR-NDE-heat(Euler and Dopri5) outperform other models with
a good margin. The proposed model CDR-NDE also gives a very good performance in
this data. Smoothing of the hidden representations allowed the CDR-NDE-heat model
to learn well on this data. Again, the more flexible CDR-NDE-heat model using the
adaptive Dopri5 solver gives the best performance. Training time for an epoch for the
proposed models are CDR-NDE-heat(Euler): 28 sec, CDR-NDE-Heat(Dopri5): 48 sec,
and CDR-NDE: 140 sec, and shows that CDR-NDE-heat models are faster.

5.4 Stance Classification

In real-world, on social media platforms like twitter, tweets related to a particular event
arrive at different times and the inter arrival times between the tweets are different.
While modeling such a irregular time series data, the hidden representation of each
data point could get affected by their occurrence times. Along with the inter arrival
times, one may also need to consider the complexity of an observation (tweet) while
predicting its class. The complexity level of a tweet or sequence of tweets could be
different and demands for transformations depending on the complexity level. We con-
sider the stance classification [22,35] problem in Twitter, where we need to classify a
tweet into its stances such as supporting, denying, questioning or commenting. Previ-
ously, approaches based on LSTMs [35] were used to solve this problem by considering
the sequential nature among the class labels and tweets. In this problem, we can learn
better representations by considering the continuous transformation of hidden states to
be proportional to the inter-arrival times along the axis t and the continuous transfor-
mation of hidden states to be dependent on the complexity of the tweets along the axis
t′. Consequently, our CDR-NDE models can be a better choice for these social media
problems.

We evaluated the performance of the models to predict the stance of social media
posts [11]. This Twitter data set consists of rumour tweets associated with various real
world events. Each event has a collection of tweets labelled with one of the four labels
- Support, Query, Deny and Comment. We picked two events, Sydneysiege and Charli-
hebdo, each with approximately 1000 labelled tweets to evaluate the models. Given an
event and the corresponding tweets from the event, we form sequence data of length 10
consisting of tweets from the event. While creating a datapoint, 10 tweets are randomly
selected from the event and then sorted based on the observation time in increasing
order. Each element in the data point is a representation of the tweet which includes its
text embedding, retweet count, favourites count, punctuation features, sentiment polar-
ity, negative and positive word count, presence of hashtags, user mentions, URLs, and
entities obtained from the tweet. The text embedding of the tweet is obtained by con-
catenating the pre-trained word2vec embeddings of the words in the tweet. Training
data points constitute 60% of the tweets from a particular event. The data points for
validation and test data are created by splitting the remaining 40% equally.

Table 4 shows the performance measured in terms of the F1-score of the proposed
models compared to the baselines for Sydneysiege and Charliehebdo. For the event Syd-
neysiege, our proposed models, CDR-NDE-heat(Euler,Dopri5) performed better than
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Table 4. Performance of models on Sydneysiege and Charliehebdo.

Model F1 score

Sydneysiege Charliehebdo

CT-RNN 0.57± 0.00 0.63± 0.01

ODE-RNN 0.55± 0.01 0.59± 0.02

ODE-LSTM 0.56± 0.01 0.61± 0.01

CT-GRU 0.64± 0.01 0.67± 0.02

RNN-Decay 0.63± 0.01 0.67± 0.02

Bidirectional-RNN 0.62± 0.01 0.67± 0.01

GRU-D 0.64± 0.01 0.68± 0.01

Phased-LSTM 0.61± 0.01 0.64± 0.01

GRU-ODE 0.56± 0.00 0.63± 0.00

CT-LSTM 0.64± 0.01 0.66± 0.03

Augmented-LSTM 0.64± 0.01 0.68± 0.01

CDR-NDE 0.62± 0.01 0.62± 0.01

CDR-NDE-heat(Euler) 0.68± 0.01 0.68± 0.01

CDR-NDE-heat(Dopri5) 0.68± 0.01 0.68± 0.01

the baselines. For the event Charliehebdo, the performance of the proposed CDR-NDE-
heat(Euler,Dopri5) models is better than most of the baselines and they performed bet-
ter than the vanilla CDR-NDE model. We observe that CDR-NDE-heat(Euler,Dopri5)
models are able to improve the generalization performance on the stance classification
problem consisting of textual inputs.

6 Conclusion and Future Work

We proposed novel continuous depth RNN models based on the framework of differ-
ential equations. The proposed models generalize recurrent NODE models by continu-
ously evolving in both the temporal and depth directions. CDR-NDE models the evo-
lution of hidden states using two separate differential equations. The CDR-NDE-heat
model is designed based on the framework of 1D-Heat equation and models the evo-
lution of the hidden states across time and depth. The experimental results on person
activity recognition, Walker2d kinematics and stance classification data showed that
the proposed models outperformed the baselines and are very effective on irregularly
sampled real-world sequence data. Currently, CDR-NDE models are designed based
on the GRU-cell transformations. We would like to extend it to other transformations
as future work. The continuous depth recurrent neural differential equations are very
flexible and generic RNN models. They will have widespread application on several
complex sequence modeling and time series problems, involving sequences with irreg-
ular observation times and varying input complexities.



Continuous Depth Recurrent Neural Differential Equations 237

Acknowledgements. This work has been partly supported by the funding received from the
Department of Science and Technology (DST), Govt of India, through the ICPS program
(DST/ICPS/2018).

Ethical Statement. We propose novel and flexible techniques to model irregular time series
data. The performance of the proposed models is experimented on publicly available datasets.
The method can be applied to irregular time series data arising in several domains such as social
networks. We do not find any ethical issues with the proposed approach or the data set used in
the experiments.

References

1. Anumasa, S., Srijith, P.K.: Improving robustness and uncertainty modelling in neural ordi-
nary differential equations. In: IEEE Winter Conference on Applications of Computer
Vision, WACV 2021, Waikoloa, HI, USA, 3–8 January 2021, pp. 4052–4060. IEEE (2021)

2. Anumasa, S., Srijith, P.K.: Latent time neural ordinary differential equations. In: Thirty-Sixth
AAAI Conference on Artificial Intelligence, pp. 6010–6018. AAAI Press (2022)

3. Asuncion, A., Newman, D.: UCI machine learning repository (2007)
4. Brandstetter, J., Worrall, D.E., Welling, M.: Message passing neural PDE solvers. In: Inter-

national Conference on Learning Representations (2021)
5. Cannon, J.R.: The one-dimensional heat equation. Cambridge University Press, Cambridge

(1984)
6. Che, Z., Purushotham, S., Cho, K., Sontag, D., Liu, Y.: Recurrent neural networks for multi-

variate time series with missing values. Sci. Rep. 8(1), 1–12 (2018)
7. Chen, R.T., Amos, B., Nickel, M.: Neural spatio-temporal point processes. In: International

Conference on Learning Representations (2020)
8. Chen, R.T., Rubanova, Y., Bettencourt, J., Duvenaud, D.K.: Neural ordinary differential

equations. In: Advances in neural information processing systems, pp. 6571–6583 (2018)
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Abstract. Existing work on fairness modeling commonly assumes that
sensitive attributes for all instances are fully available, which may not be
true in many real-world applications due to the high cost of acquiring sen-
sitive information. When sensitive attributes are not disclosed or avail-
able, it is needed to manually annotate a small part of the training data
to mitigate bias. However, the skewed distribution across different sen-
sitive groups preserves the skewness of the original dataset in the anno-
tated subset, which leads to non-optimal bias mitigation. To tackle this
challenge, we propose Active Penalization Of Discrimination (APOD),
an interactive framework to guide the limited annotations towards max-
imally eliminating the effect of algorithmic bias. The proposed APOD
integrates discrimination penalization with active instance selection to
efficiently utilize the limited annotation budget, and it is theoretically
proved to be capable of bounding the algorithmic bias. According to the
evaluation on five benchmark datasets, APOD outperforms the state-
of-the-arts baseline methods under the limited annotation budget, and
shows comparable performance to fully annotated bias mitigation, which
demonstrates that APOD could benefit real-world applications when sen-
sitive information is limited. The source code of the proposed method is
available at: https://github.com/guanchuwang/APOD-fairness.

Keywords: Bias mitigation · Limitied annotation

1 Introduction

Although deep neural networks (DNNs) have been demonstrated with great
performance in many real-world applications, it shows discrimination towards
certain groups or individuals [6,20,24,41], especially in high-stake applications,
e.g., loan approvals [38], policing [19], targeted advertisement [40], college admis-
sions [49], or criminal risk assessments [3]. Social bias widely exists in many
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
D. Koutra et al. (Eds.): ECML PKDD 2023, LNAI 14170, pp. 241–258, 2023.
https://doi.org/10.1007/978-3-031-43415-0_15
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real-world data [9,29,31,45]. For example, the Adult dataset [18] contains sig-
nificantly more low-income female instances than males. Recent studies revealed
that training a DNN model on biased data may inherit and even amplify the
social bias and lead to unfair predictions in downstream tasks [13,14,23,30,39].

The problem of bias mitigation is challenging due to the skewed data distri-
bution [4,22,25] across different demographic groups. For example, in the Adult
dataset, instances of female with high income are significantly less than the ones
with low income [18]. Also, in the German credit dataset, the majority of peo-
ple younger than 35 show a bad credit history [18]. The effect of the skewed
distribution on model fairness is illustrated in a binary classification task (e.g.
positive class denoted as gray + and •, negative class as red + and •) with two
sensitive groups (e.g. group 0 denoted as + and +, group 1 as • and •) shown in
Fig. 1. In Fig. 1 (a), the positive instances (+) are significantly less than nega-
tive instances (+) in group 0, which leads to a classification boundary deviating
from the fair one. Existing work on fairness modeling can be categorized into
two groups with or without sensitive attributes [17,27]. The first group relied
on full exposure of sensitive attributes in training data, such as Fair Mixup [9],
FIFA [15], Fair Rank [32], and Group DRO [35]. However, the sensitive informa-
tion may not be disclosed or available in some real world scenarios [26,48], and
the cost of annotating sensitive attributes by experts is high [2], which leads to
the limited applications of this group of work to the real-world scenarios.

The second group of work formulates the fairness without dependency on sen-
sitive information, such as SS-FRL [8], FKD [7], and LfF [33]. However, those
works rely on heuristic clustering of training instances to form potential demo-
graphic groups for the bias mitigation, which may deteriorate the fairness per-
formance to some extent [44]. To tackle the issue, some work involves the human
expert providing a partially annotated dataset for the bias mitigation [2]. How-
ever, only a small portion of the dataset is annotated due to the limitation of
human labor efforts. An intuitive solution is to randomly select a small por-
tion of instances for annotation and target semi-supervised bias mitigation [47].
However, as shown in Fig. 1 (b), the randomly selected instances will follow the
same skewed distribution across sensitive groups, which still preserves the bias
information in the classifier. In such a manner, it is highly likely to achieve a
non-optimal solution, which is fair only on the annotated dataset but not the
entire dataset. Therefore, it is needed to have a unified framework, which inte-
grates the selection of a representative subset for annotation with model training
towards the global fairness [1], as shown in Fig. 1 (c).

In this work, we propose Active Penalization Of Discrimination (APOD), a
novel interactive framework which integrates the penalization of discrimination
with active instance selection, for bias mitigation in the real-world scenarios
where sensitive information is limited. Specifically, APOD iterates between the
model debiasing and active instance selection to gradually approach the global
fairness. For debiasing the model, APOD enables bias penalization in an end-to-
end manner via adopting a fairness regularizer. In the active instance selection,
an annotated data subset is constructed via recursive selections of representative
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Fig. 1. (a) The general classification boundary without bias mitigation deviates from
the fair boundary due to the skewed distribution across four underlying subgroups (i.e.
+, +, • and •). (b) The annotation budget is set as 30. The randomly annotated data
subset follows the same skewed distribution across the subgroups. The classification
model is still unfair on the entire dataset. (c) With the same annotation budget, the
optimal solution should select a more representative subset, which mitigates algorithmic
bias on the entire dataset. (Color figure online)

data instances from the subgroup where the model shows the worst performance,
such that it can maximally expose the existing bias of the model for subsequent
debiasing. Finally, we provide theoretical and experimental analysis to demon-
strate the effectiveness of APOD. Overall, the contributions of this work are
summarized as follows:

• We propose an interactive framework APOD to integrate the bias mitiga-
tion with efficient active instance selection when the annotation of sensitive
attributes is very limited.

• We propose the relaxed reformulation of the fairness objective, and theo-
retically prove that APOD could improve model fairness via bounding the
relaxed fairness metric.

• The effectiveness of APOD is thoroughly demonstrated by the experiments
on five benchmark datasets, which shows APOD is competitive with state-of-
the-art methods using fully disclosed sensitive attributes.

2 Preliminaries

In this section, we first introduce the notations used in this work, and give the
problem definition of bias mitigation in the active scenario. Then, we introduce
the fairness metrics.

2.1 Notation and Problem Definition

Without loss of generality, we follow the existing work [9,28,46] to consider a
classification task in this work. Specifically, we aim to learn a DNN classifier
f with the input feature x ∈ X , label y ∈ Y = {0, 1} and sensitive attribute
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Fig. 2. (a) The APOD pipeline alternates between POD and AIS. (b) Individual selec-
tion: The annotated and unannotated instances from subgroup Uc̃

ã, where ã = 0 and
c̃ = 1. (c) Each unannotated instance is connected to an annotated instance determined
by minxj∈S ||hi −hj ||2 (marked as blue arrows). The red δ denotes the largest distance
pair which selects the best candidate for annotation. (Color figure online)

a ∈ A = {0, 1}, where X and Y denote the feature and label space, respectively.
The instances with sensitive attribute A = 0 and A = 1 belong to the unprivi-
leged and privileged groups, respectively. Let D = {(xi, yi) | 1 ≤ i ≤ N} denote
the entire dataset, which consists of the annotated set S = {(xi, yi, ai)} and
unannotated set U = {(xi, yi)}, i.e., the value of the sensitive attribute is known
for instances in S, but it is unknown for instances in U. The proposed inter-
active bias mitigation is illustrated in Fig. 2 (a). Specifically, in each iteration,
an instance (x∗, y∗) is selected from unannotated dataset U for human experts;
the experts essentially do the job of mapping X × Y → X × Y × A, by pro-
viding the annotation of sensitive attribute a∗ for the selected instance (x∗, y∗).
After that, the classifier is updated and debiased using the partially annotated
dataset including the newly annotated instance (x∗, y∗, a∗), where the new clas-
sifier will then be involved for the instance selection in the next iteration. This
loop terminates if the human-annotation budget is reached.

Such an active scenario to debias f is time-consuming for deep neural net-
works, due to the retraining of f in each iteration. To improve the efficiency of
learning, the classifier f is split into body fb : X →R

M and head fh : RM →R
|Y|,

where the body fb denotes the first several layers, and the head fh denotes the
remaining layers of the classifier such that ŷi =argmax{fh(fb(xi|θb)|θh)}. The
body fb learns the instance embedding hi = fb(xi|θh), where hi ∈ R

M denotes
the embedding of xi, and M denotes the dimension of embedding space. The
head fh contributes to fair classification via having ŷi = argmax{fh(hi|θh)},
where fh(hi|θh) ∈ R

|Y| and ŷi ∈ Y. Instead of updating the entire classifier, the
classifier body fb is pretrained and fixed during the bias mitigation, where fb is
pretrained to minimize the cross-entropy loss without annotations of sensitive
attributes. In such a manner, the mitigation of unfairness relies on debiasing
the classifier head fh. This strategy with a fixed classifier body during the bias
mitigation has been proved to be effective enough in existing works [16,37].
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2.2 Fairness Evaluation Metrics

In this work, we follow existing work [16,31] to consider two metrics to evaluate
fairness: Equality of Opportunity [21,42] and Equalized Odds [34,42]. These two
metrics are measured based on the true positive rate TPRA=a = P(Ŷ = 1|A =
a, Y =1) and the false positive rate FPRA=a=P(Ŷ =1|A=a, Y =0) for a∈A.

Equality of Opportunity requires the unprivileged group (A = 0) and priv-
ileged groups (A = 1) have equal probability of an instance from the positive
class being assigned to positive outcome, which is defined as P(Ŷ = 1|A = 0, Y =
1) = P(Ŷ = 1|A = 1, Y = 1). In this work, we apply EOP given as follows to
evaluate Equality of Opportunity,

EOP =
TPRA=0

TPRA=1
=

P(Ŷ = 1 | A = 0, Y = 1)
P(Ŷ = 1 | A = 1, Y = 1)

. (1)

Equalized Odds expects favorable outcomes to be independent of the sensitive
attribute, given the ground-truth prediction, which can be formulated as P(Ŷ =
1|A=0, Y = y) = P(Ŷ =1|A=1, Y = y) for y ∈ Y. To evaluate Equalized Odds,
ΔEO combines the difference of TPR and FPR across two sensitive groups as

ΔEO = ΔTPR + ΔFPR, (2)

where ΔTPR = TPRA=0 −TPRA=1 and ΔFPR = FPRA=0 −FPRA=1. Under
above definitions, EOP → 1 and ΔEO → 0 indicate fair classification results.

3 Active Penalization Of Discrimination

In this section, we introduce the Active Penalization Of Discrimination (APOD)
framework to mitigate algorithmic bias under a limited annotation budget. As
shown in Fig. 2 (a), APOD integrates Penalization Of Discrimination (POD) and
Active Instance Selection (AIS) in a unified and iterative framework. Specifically,
in each iteration, POD focuses on debiasing the classifier head fh on the par-
tially annotated dataset {(xi, yi, ai) ∈ S} and {(xi, yi) ∈ U}, while AIS selects
the optimal instance (x∗, y∗) from the unannotated dataset U that can further
promote bias mitigation. Sensitive attributes of the selected instances will be
annotated by human experts: (x∗, y∗) → (x∗, y∗, a∗). After that, these instances
will be moved from the unannotated dataset U ← U\{(x∗, y∗)} to the annotated
dataset S ← S ∪ {(x∗, y∗, a∗)} for debiasing the classifier in the next iteration.
The POD and AIS are introduced as follows.

3.1 Penalization Of Discrimination (POD)

POD learns a fair classifier head fh via bias penalization on both annotated
instances {(xi, yi, ai) ∈ S} and unannotated instances {(xi, yi) ∈ U}. To be
concrete, POD considers a regularization term, consisting of the true and false
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positive rate difference1, to balance the model performance on different sub-
groups. In this way, given hi = fb(xi|θb), fh is updated to minimize the hybrid
loss function given by

L =
N∑

i=1

l(hi, yi; θh) + λ(ΔTPR2 + ΔFPR2), (3)

where l(hi, yi; θh) denotes the cross-entropy loss, and the term ΔTPR2+ΔFPR2

penalizes the bias in fh to improve fairness, controlled by the hyper-parameter λ.
However, Eq. (3) is not feasible to debias fh in an end-to-end manner, since

neither TPR nor FPR is differentiable with respect to the parameters θh. It is
thus necessary to reformulate ΔTPR and ΔFPR, which involves the parameteri-
zation of true and false positive rate with respect to θh, respectively. For notation
convenience and without the loss of generality, we unify the formulation of true
and false positive rates by

pa(y, c) = P(Ŷ = c | Y = y,A = a), (4)

where we can take y = 1, c = 1 to have pa(1, 1) = TPRA=a and y = 0, c = 1
to have pa(0, 1) = FPRA=a. To parameterize pa(y, c) with respect to θh, we
reformulate it as follows

pa(y, c) =

∑
(xi,yi,ai)∈Sy

a
1ŷi=c

|Sy
a | =

∑
(xi,yi,ai)∈Sy

a

sgn(fc
h(hi) − f1−c

h (hi))

|Sy
a | (5)

≈

∑
(xi,yi,ai)∈Sy

a

λ(fc
h(hi) − f1−c

h (hi))

|Sy
a | � λp̃a(y, c), (6)

where sgn(x) = 0 for x < 0 and sgn(x) = 1 for x ≥ 0. Here we relax sgn(x) with a
linear function2 λx in the approximation of Eq. (5) to make pa(y, c) differentiable
with respect to θh; Sy

a = {(xi, yi, ai) ∈ S | ai = a, yi = y} for a∈A, y ∈Y; and
f i

h(h) denotes element i of fh(h) for i∈Y. Based on the relaxed regularization
term, fh is updated to minimize the loss function given by

L =
1
N

N∑

i=1

l(hi, yi; θh) + λ
∑

y∈Y

[
p̃0(y, 1) − p̃1(y, 1)

]2
, (7)

where the estimation of cross-entropy 1
N

∑N
i=1 l(hi, yi; θh) includes both anno-

tated and unannotated instances; the regularization term [p̃0(y, 1) − p̃1(y, 1)]2

is calculated using the annotated instances; and the hyper-parameter λ controls
the importance of regularization.
1 The combination of TPR and FPR is representative enough accross different fairness

metrics. POD is flexible to use other metrics as the regularizer for the bias mitigation.
2 It also has other choices for the relaxation, e.g. sigmoid and tanh functions. The

linear function is chosen for simplicity.
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3.2 Active Instance Selection (AIS)

In each iteration, AIS selects instances from the unannotated dataset U to anno-
tate the sensitive attribute values. The newly annotated instances are merged
with the dataset for debiasing the classifier head in subsequent iterations. The
AIS process consists of two steps: (1) Group selection is to select the sub-
group Uc̃

ã = {(xi, yi) ∈ U | ai = ã, yi = c̃} on which the model has the worst
performance; (2) Individual selection is to select the optimal instance from
Uc̃

ã, which can mostly expose the existing bias of the model for promoting the
bias mitigation in the next iteration.

Group Selection is motivated by the observation that adding more instances
to the subgroup having the worst classification accuracy can improve the fairness
by increasing its contribution to the average loss [22,28]. Specifically, for group
selection, the unannotated dataset U is splitted into {Uc

a}a∈A,c∈Y , where Uc
a =

{(xi, yi) ∈ U|ai = a, yi = c} denotes a subgroup of unannotated instances. We
estimate the classification accuracy pa(c, c) = P(Ŷ = c|A = a, Y = c) to evaluate
f on each subgroup Uc

a for a ∈ A and c ∈ Y, respectively, following Eq. (4). In
this way, the subgroup Uc̃

ã = {(xi, yi)∈U|ai = ã, yi = c̃} which suffers from the
worst accuracy is selected by

ã, c̃ = argmin
a∈A,c∈Y

p∗
a(c, c), (8)

where p∗
a(c, c) = pa(c, c) − (p0(c, c) + p1(c, c))/2 denotes the centralized classi-

fication accuracy after considering the performance divergence of the classifier
on different classes. For example, in Fig. 1 (b), we select the subgroup with the
worst accuracy U1

0 which corresponds to the positive instances from group 0, due
to the fact that p∗

0(1, 1) < p∗
0(0, 0), p

∗
1(0, 0), p

∗
1(1, 1).

Note that p∗
a(c, c) cannot be estimated without the annotations of sensitive

attribute. We thus learn another classifier head fa : RM →R
|A| to predict the

sensitive attribute â= argmax fa(hi|θa) for the unannotated instances xi ∈U,
where fa is updated on the annotated set S by minimizing the cross-entropy loss

θ∗
a =

1
|S|

∑

(xi,yi,ai)∈S
l(hi, ai; θa). (9)

Individual Selection aims to proactively select the most representative
instances for annotation, which can maximally promote bias mitigation. Since
the classifier f has the worst accuracy on subgroup Uc̃

ã, reducing the classifica-
tion error on Uc̃

ã would improve fairness, where ã and c̃ are chosen through group
selection in Eq. (8). The strategy of individual selection is to expand the anno-
tated dataset to reduce δ-cover of subgroup Uc̃

ã [36]. Specifically, the annotated
dataset S enables δ-cover of the entire dataset D if ∀xi ∈ D, ∃xj ∈ S such that
||xi − xj ||2 ≤ δ, where δ denotes the coverage radius given by

δ = max
xi∈D

min
xj∈S

||xi − xj ||2. (10)
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Furthermore, it is observed that the generalization error of a model approaches
the training error3 if the coverage radius δ is small [36]. Following such scheme,
we select the instance in subgroup Uc̃

ã, which could decrease δ-coverage to reduce
the classification error on Uc̃

ã. To be concrete, the distance between xi and xj

is measured by ||hi − hj ||2, where hi = fb(xi|θb) and hj = fb(xj |θb) are the
embeddings of xi and xi, respectively. We have the instance (x∗, y∗) selected for
annotation following the max-min rule

(x∗, y∗) = argmax
(xi,yi)∈Uc̃

ã

min
(xj ,yj)∈S

||hi − hj ||2. (11)

The individual selection strategy is illustrated in Figs. 2 (b) and (c), where δ
reduction guides the individual selection. The candidate instances in Uc̃

ã and
annotated instances are shown in Fig. 2 (b). The distances between each can-
didate instance and annotated instances are measured in embedding space
||hi −hj ||2, where the minimal one is marked as a blue arrow. The red instance
marked by (x∗, y∗) in Fig. 2 (c) indicates the best candidate to be annotated.

Algorithm 1: APOD
1 Input:initial annotated dataset S
2 Output:classifier body fb, head fh

3 θ∗
b ,θ∗

h=argmin
∑N

i=1l(xi, yi; θb, θh)
4 while within budget limit do
5 #Penalization of discrimination
6 θ∗

h = POD(S, fb, fh)
7 #Active Instance Selection.
8 (x∗, y∗) = AIS(fb, fh)
9 S = S ∪ {(x∗, y∗, a∗)}

10 U = U \ {(x∗, y∗)}

Algorithm 2: POD
1 Input: annotated dataset S,

classifier body fb, head fh.
2 Output: fair classifier head f∗

h .
3 while not converged do
4 For a ∈ A and y ∈ Y, estimate

p̃a(y, 1) given by Eq. (6).
5 Update the classifier head fh

to minimize the loss function
in Eq. (7).

6 return f∗
h

3.3 The APOD Algorithm

The details of APOD are summarized in Algorithm 1. Initially, APOD learns
the biased fb and fh, and randomly samples a small set of annotated instances
S. In each iteration, APOD first learns fa to predict the sensitive attribute of
unannotated instances; then debiases fh via POD (line 6); after this, APOD
selects the optimal instance (x∗, y∗) for annotation via AIS (line 6) and merges
the selected instance with the annotated dataset (line 8); POD and AIS are
given in Algorithms 2 and 3, respectively; the iteration stops once the number
of annotated instance reaches the budget.

3.4 Theoretical Analysis

We theoretically investigate the proposed APOD to guarantee that bias miti-
gation is globally achieved, as shown in Theorem 1. We then demonstrate the
3 The training error is less than generalization error in most cases.
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effectiveness of AIS (both group selection and individual selection) in Remark 1.
The proof of Theorem 1 is given in Appendix A.

Theorem 1. Assume the loss value on the training set has an upper bound
1

|S|
∑

(xi,yi,ai)∈S l(hi, yi; θh) ≤ ε4, and l(h, y; θh) and fh satisfy Kl- and Kh-
Lipschitz continuity5, respectively. The generalization loss difference between the
unprivileged group and the privileged group has the following upper bound with
probability 1 − γ,

Algorithm 3: Active Instance Selection (AIS)

1 Input: classifier body fb and classifier head fh.
2 Output: the selected instance (x∗, y∗).
3 Update fa to minimize 1

|S|
∑

(xi,yi,ai)∈S l(hi, ai; θa).
4 Estimate the sensitive attribute âi = argmax fa(hi | θa) for xi ∈ U.
5 For a ∈ A and c ∈ Y, estimate the classification accuracy

pa(c, c) = P(Ŷ = c|Â = a, Y = c) on subgroup Uc
a.

6 For a∈A and c∈Y, centralize pa(c, c) into p∗
a(c, c) by

p∗
a(c, c) = pa(c, c) − p0(c, c) + p1(c, c)

2
.

7 Execute the group selection by ã, c̃ = argmina∈A,c∈Y p∗
a(c, c).

8 Execute the individual selection by

(x∗, y∗) = argmax
(xi,yi)∈Uc̃

ã

min
(xj ,yj ,aj)∈S

||hi − hj ||2.

∣∣∣∣
∫

X0

∫

Y
p(x, y)l(h, y; θh)dxdy−

∫

X1

∫

Y
p(x, y)l(h, y; θh)dxdy

∣∣∣∣

≤ ε +min
{√

−L2 log γ(2Nã)−1, (Kl + KhL)δã

}
, (12)

where ã=argmaxa∈A
∫

Xa

∫
Y p(x, y)l(h, y; θh)dxdy; Xa = {xi ∈ D|ai = a}; δã =

maxxi∈Xã
min(xj ,yj ,aj)∈S||hi −hj ||2; Nã = |{(xi, yi, ai)|ai = ã, (xi, yi, ai) ∈ S}|;

L=max(xi,yi)∈U l(hi, yi; θh); and hi = fb(xi|θb).

In Theorem 1, the global fairness is formalized via considering the gener-
alization error difference between the unprivileged and privileged group as the
relaxed fairness metric, and APOD contributes to the global fairness via explic-
itly tightening the upper bound of the relaxed fairness metric. We demonstrate
the details that AIS can iteratively tighten the bound in Remark 1.

Remark 1. In each iteration of APOD, the group selection reduces the value of√−L2 log γ(2Nã)−1 by merging a new instance (xi, yi, ai)|ai=ã to the annotated

4
ε can be very small if the classifier head fh has been well-trained on the annotated dataset S.

5
l(h, y; θh) and fh satisfy |l(hi, y; θh) − l(hj , y; θh)| ≤ Kl||hi − hj ||2 and |p(y|xi) − p(y|xj)| ≤
Kh||hi − hj ||2, respectively, where the likelihood function p(y | xi) = softmax(fh(hi|θh)).
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dataset S to increase the value of Nã= |{(xi, yi, ai)∈S|ai= ã}|. Here, we adopt
an approximation given by Eq. (13) due to the negative relationship between the
accuracy and the generalization loss,

ã = argmin
a∈A

p∗
a(c, c) ≈ argmax

a∈A

∫

Xa

∫

Yc

p(x, y)l(h, y; θh)dxdy, (13)

where Yc={y=c | y∈Y} for c∈Y. Meanwhile, the individual selection reduces
the value of δã by selecting an instance following Eq. (11). With the combination
of group selection and individual selection, APOD contributes to the decline of
min{√−L2 log γ(2Nã)−1, (Kl + KhL)δã}, which leads to tightening the upper
bound of the fairness metric in Eq. (12).

Remark 1 reveals that both group selection and individual selection of
the two-step AIS are effective in tightening the upper bound of relaxed fair-
ness metric. Compared to AIS, we consider two compositional instance selec-
tion methods: one with group selection alone, where we randomly select an
instance (x∗, y∗) from the subgroup Uc̃

ã satisfying ã, c̃=argmina∈A,c∈Y p∗
a(c, c);

and another with individual selection alone, where an instance is selected via
(x∗, y∗) = argmax(xi,yi)∈U min(xj ,yj ,aj)∈S ||hi −hj ||2 without the selection of
subgroup. According to Remark 1, the compositional methods merely enable
to reduce one of the terms (2Nã)−1 or δã in Eq. (12), which are less effective
than the two-step AIS as an unit.

4 Experiment

In this section, we conduct experiments to evaluate APOD, aiming to answer the
following research questions: RQ1: In terms of comparison with state-of-the-art
baseline methods, does APOD achieve more effective mitigation of unfairness
under the same annotation budget? RQ2: Does APOD select more informative
annotations for bias mitigation than baseline methods? RQ3: How does the
ratio of annotated instances affect the mitigation performance of APOD? RQ4:
Do both group selection and individual selection in the AIS contribute to bias
mitigation? The experiment settings including the datasets and implementation
details are given in Appendix B and C, respectively.

4.1 Bias Mitigation Performance Analysis (RQ1)

In this section, we compare our proposed APOD with three state-of-the-art base-
line methods of bias mitigation. The technology of baseline methods are briefly
described as follows. Vanilla: The classifier is trained without bias mitigation.
Group DRO [35]: Group DRO utilizes all sensitive information to minimize
the classification loss on the unprivileged group to reduce the performance gap
between different sensitive groups. Learning from Failure (LfF) [33]: As a
debiasing method that relies on proxy sensitive annotations, LfF adopts gener-
alized cross-entropy loss to learn a proxy annotation generator, and proposes a
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re-weighted cross entropy loss to train the debiased model. Fair Active Learn-
ing (FAL) [2]: The instance selection in FAL is to maintain a subset of anno-
tated instances for model training, which is not guided by gradient-based model
debiasing. More details are given in the Appendix E.

To have a fair comparison, we unify the splitting of datasets for all meth-
ods, and set the same annotation budget for APOD and FAL. The mitigation
performance is indicated by the fairness-accuracy curves [9], where the hyperpa-
rameter λ of APOD varies in the range of (0, 2], and the hyperparameter setting
of baseline methods can be referred to Appendix D. We give the fairness-accuracy
curves of each method on the five benchmark datasets in Figs. 3 (a)-(f), respec-
tively, where , and indicate the bias mitigation relies on entire-, zero- or
partial- annotation of the training dataset, respectively. Finally, we follow exist-
ing work [5] to evaluate mitigation performance using the fairness metric EOP
on the MEPS, German credit and Loan default datasets, and using the fairness
metric ΔEO on the remaining datasets [16]. We have the following observations:

Fig. 3. Accuracy-fairness curve; Algorithm: Vanilla training, Group DRO, LfF, FAL
and APOD; Dataset: (a) MEPS, (b) German credit, (c) Loan default, (d) Adult, (e)
CelebA-wavy hair, (f) CelebA-young.

• APOD outperforms FAL on the five datasets under the same annotation
budget in terms of the mitigation performance at the same level of accuracy.
This demonstrates the superiority of APOD applied to the scenarios with
limited sensitive information.

• APOD needs very few (less than 3% of the dataset) sensitive annotations,
and shows comparable mitigation performance to Group DRO (Group DRO
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requires a fully annotated dataset). This indicates the capacity of APOD for
bias mitigation under a limitation of sensitive annotations.

• APOD outperforms LfF which relies on the proxy annotation of sensitive
attributes. It indicates that the limited human-annotated sensitive informa-
tion in our framework is more beneficial than proxy annotations on the entire
dataset to bias mitigation.

4.2 Annotation Effectiveness Analysis (RQ2)

In this section, APOD is compared with a semi-supervised method and two
state-of-the-art active learning methods to demonstrate that AIS contributes
to more informative sensitive annotations for the bias mitigation. The technol-
ogy of baseline methods are briefly described as follows. Vanilla: The clas-
sifier is trained to minimize the cross-entropy loss without bias mitigation.
SSBM: The semi-supervised bias mitigation initially samples a data subset for
annotations via random selection, then adopts POD to debias the classifier on
the partially annotated dataset. POD+Active learning with uncertainty
sampling (POD+AL): The AIS in APOD is replaced by active learning with
uncertainty sampling, where an instance is selected to maximize the Shannon
entropy of model prediction. POD+Active learning with Core-set App-
roach (POD+CA): AIS is replaced by active learning with core-set approach,
where an instance is selected to maximize the coverage of the entire unannotated
dataset. More details are given in the Appendix E.

Fig. 4. Accuracy-fairness curve; Algorithm: Vanilla training, SSBM, POD + AL, POD
+ CA and APOD; Dataset: (a) MEPS, (b) German credit, (c) Loan default, (d) Adult,
(e) CelebA-wavy hair, (f) CelebA-young.
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To unify the experiment condition, all methods have the same annotation
budget and have λ in the range of (0, 2]. The fairness-accuracy curves on the five
datasets are given in Figs. 4 (a)-(f), respectively. According to the mitigating
results, we have the following observations:

• Compared to the semi-supervised method and the active learning-based meth-
ods, APOD achieves better mitigation performance at the same level of accu-
racy, indicating the proposed AIS selects more informative annotations than
those methods for bias mitigation.

• Different from POD+AL and POD+CA which sample the annotated
instances from the whole dataset in each iteration, APOD interactively selects
more representative instances from different subgroups in different iterations,
i.e. Uy

a for a ∈ A and y ∈ Y, which contributes to more effective bias mitiga-
tion.

• SSBM shows almost the worst mitigation performance among all of the meth-
ods, because the initially randomly selected subset preserves the skewness of
the original dataset, leading to non-optimal bias mitigation, which is consis-
tent with our discussion in Sect. 1.

Fig. 5. Effect of the annotation ratio to APOD, POD+RS and POD+AL on (a) Adult
and (b) Loan default dataset. (c) Mitigation performance of APOD, POD+Group
selection and POD+Individual selection.

4.3 Annotation Ratio Analysis (RQ3)

We now evaluate the effect of the the annotation ratio (that is, the ratio of the
annotated instances to the training instances) on bias mitigation. Specifically,
we tune λ in the range of (0, 2], and find that λ = 0.5 and 0.1 can provide a good
accuracy-fairness trade-off on the Adult and Loan default datasets, respectively.
In addition to the existing baseline methods, we also consider replacing AIS in
APOD into random selection (POD+RS) for comparison. Since one instance
is selected for annotation in each iteration of APOD, the Equalized Odds of the
snapshot model in each iteration is estimated and plotted versus the annotation
ratio on the Adult and Loan default datasets in Figs. 5 (a) and (b), respectively.
We also give the error bar to show the standard deviation of each method.
Overall, we have the following observations:
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• All methods achieve better mitigation performance as the annotation ratio
increases due to the distribution of the annotated set becoming consistent
with the entire dataset.

• APOD shows better mitigation performance than POD+AL and POD+RS at
the same level of annotation ratios. This indicates the selection of annotated
instances by AIS significantly leads to a reduction of bias. In contrast, the
bias mitigation of POD+RS merely derives from the increasing annotations.

• APOD shows higher improvement in bias mitigation even when the annota-
tion ratio is small, and enables the mitigation to converge to a higher level
at smaller annotation ratios (i.e., earlier) than the baseline methods.

4.4 Ablation Study (RQ4)

To demonstrate the effectiveness of group selection and individual selection,
APOD is compared with two compositional methods: POD+Group selection and
POD+Individual selection. The three methods are tested with the same hyperpa-
rameter setting on the MEPS dataset. The value of the fairness metric is given in
Fig. 5 (c). It is observed that both POD+Group selection and POD+Individual
selection show considerable degradation in mitigation performance compared to
APOD. It empirically validates Remark 1 that both group selection and indi-
vidual selection in AIS contribute to tightening the upper bound of the relaxed
fairness metrics, thus contributing to bias mitigation.

Fig. 6. Comparison of APOD and Random selection in terms of the annotated
instances from different groups. (a) Annotated instances by Random selection. (b)
Annotated instances by APOD. (c) Annotated positive instances (Y=1) by Random
selection. (d) Annotated positive instances (Y=1) by APOD.

4.5 Visualization of Annotated Instances

We visualize the tSNE embeddings of the annotated instances to trace the active
instance selection of APOD. The tSNE visualization is given in Figs. 6 (a)-(d).
Specifically, Figs. 6 (a)-(d) illustrate the the tSNE embeddings of the annotated
instances selected by APOD and random selection on the MEPS and Adult
datasets, respectively. We use different colors to indicate different groups, where
positive instances (Y=1) are less than negative ones (Y=0), and the unprivileged
group (A=0) is smaller than the privileged group (A=1). Overall, we have the
following observations:
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• The annotated instances of Random selection in Figs. 6 (a) and (c) are consis-
tent with Fig. 1 (b), which follows the skewed distribution of original dataset,
and leads to non-optimal mitigation of bias.

• The annotated instances of APOD in Figs. 6 (b) and (d) are consistent with
the optimal annotating in Fig. 1 (c), where the annotated subset shows less
skewness compared to the original distribution.

• APOD selects more annotated instances from the unprivileged group
{(xi,yi,ai)|yi = 1, ai = 0} than random selection. This can significantly mit-
igate the bias by improving the contribution of unprivileged group to the
average loss.

5 Conclusion

In this paper, we propose APOD, an iterative framework for active bias mitiga-
tion under the limitation of sensitive annotations. Theoretical analysis indicates
that APOD contributes to effective bias mitigation via bounding the relaxed fair-
ness metrics. Experiment results further demonstrate the effectiveness of APOD
on five benchmark datasets, where it outperforms baseline methods under the
same annotation budget and has a desirable outcome of bias mitigation even
when most of the sensitive annotations are unavailable.
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Appendix

The appendix is available at https://github.com/guanchuwang/APOD-fairness/
blob/main/appendix/bias_mitigation_appendix.pdf.
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Abstract. Graph generation models have gained increasing popularity
and success across various domains. However, most research in this area
has concentrated on enhancing performance, with the issue of fairness
remaining largely unexplored. Existing graph generation models priori-
tize minimizing graph reconstruction’s expected loss, which can result in
representational disparities in the generated graphs that unfairly impact
marginalized groups. This paper addresses this socially sensitive issue by
conducting the first comprehensive investigation of fair graph generation
models by identifying the root causes of representational disparities, and
proposing a novel framework that ensures consistent and equitable rep-
resentation across all groups. Additionally, a suite of fairness metrics has
been developed to evaluate bias in graph generation models, standardiz-
ing fair graph generation research. Through extensive experiments on five
real-world datasets, the proposed framework is demonstrated to outper-
form existing benchmarks in terms of graph fairness while maintaining
competitive prediction performance.

Keywords: Graph Generation · Graph Mining · Algorithmic Fairness

1 Introduction

Graph data is prevalent in many real-world scenarios, making machine learn-
ing in graphs increasingly popular in practical applications such as financial
markets [47], item recommendation [43] and social network analysis [36]. Gen-
erative models of graphs have become crucial components of the graph machine
learning framework, serving purposes such as data augmentation [11], anomaly
detection [1], and recommendation [37]. For example, when training a machine
learning model in applications with high social concerns, such as financial or
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crime, graph generative models can provide a viable alternative [31]. The model
can be trained using high-quality simulated graphs generated from real data,
ensuring reliable model training while reducing the potential privacy risks asso-
ciated with using real data directly.

Current graph generation models construct graph-structured data from a
low-dimensional space that contains distributions for graph generation, such as
random graphs [30], small-world models [2], scale-free graphs [3], and stochastic
block models [24]. Although effective, these approaches may introduce algorith-
mic biases against marginalized populations, raising ethical and societal con-
cerns [5,6,38,41,50]. For example, Graph Neural Network (GNN)-based frame-
works can propagate and even amplify pre-existing biases due to their utilization
of graph structural information [13]. Consider the scenario of a user network in
the financial industry, where nodes in the network are more likely to be linked to
other nodes with similar attributes, leading to denser connections between nodes
with the same sensitive attributes (e.g., race and gender) [19,39,40]. In this case,
when a financial institution uses a graph generation model to distribute synthetic
users to partners for assessing customer ratings, the model may be impacted by
sensitive attributes of individuals closely associated with the applicant, result-
ing in propagating biases against marginalized groups. Hence, there is a pressing
need for the design and development of graph generative models that are intrin-
sically fairness-aware.

Despite the enormous importance, we face three great challenges in creating
a graph generation model that mitigates algorithmic bias: 1) Multiple sources
of bias in graph data and the lack of metrics to quantify such biases.
Unlike tabular data, graph data sources have a wider range of potential biases:
some may stem from the sensitive attributes of the nodes themselves, while others
lie within the graph structure between nodes [20,27,51]. Furthermore, existing
fairness definitions have been exclusively designed for classification evaluation
purposes, and there are currently no metrics that are specifically intended to
gauge the bias of graph generation models. 2) The structured nature of the
generated data. Most fairness-ML work assumes that the underlying data is
independent and identically distributed (IID) [41,49,51] but graphs are non-IID
in nature to capture connections among individual units. Fair graph generation
therefore needs to fairly represent both information about each node and poten-
tial connections between each node and its neighboring nodes. 3) Exacerbated
cost of computation. Generative models based on graph data confront sub-
stantial computational costs due to the requirement of generating both node
and link information within the graph [7]. In fair graph generation, these com-
putation costs are further intensified by the need to consider fairness constraints
concurrently.

To tackle the above challenges, this paper proposes a novel meta-strategy for
the fair graph generation. To the best of our knowledge, the proposed Fairness-
aware Graph Generative Adversarial Networks (FG2AN) is the first work capa-
ble of tackling all the aforementioned challenges simultaneously. The following
summarizes the key contributions of this paper:
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– We introduce a fair graph generative model called FG2AN, which integrates
both graph representation fairness and graph structure fairness to generate
task-specific graphs.

– The first-of-its-kind graph generation tailored fairness metrics to benchmark
future fair graph generation research.

– The proposed graph fairness approach circumvents quadratic complexity cal-
culations, significantly enhancing operational efficiency and reducing memory
usage.

– Extensive experiments both qualitatively and quantitatively confirm the effec-
tiveness of the proposed model.

The rest of our paper is organized as follows. We review the related litera-
ture in Sect. 2. Section 3 explains some notation and background of this paper.
We introduce our proposed method and fair metrics in Sect. 4. Section 5 intro-
duce our experiment setting and analyzes the experimental results. Finally, we
conclude the paper in Sect. 6.

2 Related Work

2.1 Graph Generative Model

Graph generative models have found applications in diverse areas such as biol-
ogy [44], chemistry [45,46], and social sciences [44]. Most of the research in this
field utilizes variational autoencoders (VAE [21]) and generative adversarial net-
works (GAN [12]). For instance, NetGAN and its extensions [7,17], inspired by
the GAN model, generate synthetic random walks while discriminating between
synthetic and real random walks sampled from a real graph. GraphVAE [33]
employs the VAE [21] model to learn both the graph representation and node
features, but its limitations include poor scalability to large graphs due to con-
straints in memory and runtime, and its practical application is mostly limited
to small graphs. GraphRNN [46] treats a graph as a sequence of node and edge
generations, which can be learned using autoregressive models. This approach
outperforms GraphVAE in terms of both performance and scalability. Generally,
these approaches can generate a high-quality synthetic graph. However, these
approaches primarily focus on generating general-purpose graphs, while disre-
garding label information and fairness requirements.

2.2 Fairness on Graphs

The issue of fairness in graph mining has recently garnered significant attention,
due to evidence suggesting that several graph mining models may introduce
bias and lead to possible discrimination in downstream applications [8,15,20].
The existing literature in fair graph mining can be broadly categorized into two
groups: group fairness [8,9,14,15,22] and individual fairness [25,26,48,52]. The
concept of group fairness on graphs concerns the elimination of bias among dif-
ferent demographic groups of nodes or edges in various graph mining tasks, such
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as graph proximity learning [35], graph clustering [22], and graph representation
learning [8,9]. Individual fairness on graphs concerns the challenge of ensuring
that similar graph signals (i.e., Homogeneity graphs) lead to the same algorith-
mic outcomes [20]. However, these studies have primarily focused on fair graph
mining, and the domain of graph models for generation has rarely been explored.
Our approach serves to fill this void.

3 Notation and Background

This section first describes the notation used, then reviews the biases in real-
world graph data, showing the root causes of graph generative model bias.

3.1 Notation

We assume give an undirected and unweighted graph G = (V, E ,X ), where the
set of nodes is denoted as V, the set of edges is denoted as E , and the set of
node features is denoted as X = {x1, x2, . . . , xn} (n = |V|), where xi represents
the features of each node i. In addition, we let A ∈ Rn×n denotes the adjacency
matrix of the graph G, where Ai,j takes on the value 1 if there exists an edge i →
j, and 0 otherwise. Since G is undirected, (v1, v2) ∈ E implies (v2, v1) ∈ E , where
v1 and v2 represent nodes in V. Moreover, D ∈ Rn×n denote the diagonal matrix,
where Di,i =

∑
j Ai,j . I ∈ Rn×n denote the identity matrix. Each node i has a

set of sensitive attributes S = {s1, . . . , sn} that differentiate between deprived
and favored groups (e.g., female vs. male). Moreover, we let Vs ⊆ V represent
the set of vertices belonging to the deprived group, and let Vŝ ⊆ V represent
the set of vertices belonging to the favored group. Note that Vs ∪ Vŝ = V and
Vs ∩ Vŝ = ∅. Moreover, the favored subgraph consists of all favored nodes of
G, while the deprived subgraph is composed of all deprived nodes. We denote
favored and deprived subgroups as Gp and Gp, where Gp =

⋃{vi | vi ∈ Vŝ} and
Gp =

⋃{vi | vi ∈ Vs}. The learning objective of the fair graph generation is
therefore to minimize the reconstruction error Uθ while concurrently reducing
the disparity between the reconstruction errors of deprived subgraph Uθ(Gs)
and favored subgraph Uθ(Gs). Note that Gs = {∀ Vi | Vi ⊆ Vs, s ⊆ S} and
Gŝ = {∀ Vi | Vi ⊆ Vŝ, ŝ ⊆ S}.

3.2 Root Causes of Representational Discrepancies

This section delves into the root causes of model bias, stemming from the nodes’
degrees, and the effects of their neighboring nodes. We put forth the concept that
graph generation models exhibit bias due to their susceptibility to the inherent
bias present in the graph data during the learning process of the graph topology.
Consequently, this may result in the amplification of the original graph data’s
bias within the generated graph, leading to a more pronounced discrimination
issue.
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Degree-Related Bias: We begin by examining the origins of degree-related
unfairness. Node connectivity in real-world graph data often exhibits consider-
able disparities. It is important to note that node degrees in real-world graphs
frequently follow a long-tailed power-law distribution, indicating that a substan-
tial portion of nodes possess relatively low degrees. For instance, on social media
platforms, ordinary users generally have significantly lower connectivity com-
pared to celebrities. Also, as illustrated in Fig. 1, the CORA dataset consists
of 2,708 scientific publications and the citation network consists of 5,429 links.
In this dataset, high-degree nodes (i.e., node degrees ≥ average node degrees)
constitute only 28.17% of the total, while low-degree nodes account for 71.83%.
Additionally, the very high-degree nodes (i.e., node degrees ≥ 50) represent a
mere 0.003%.

Fig. 1. The disparate distribution of node degree in graph.

Previous studies [7,51] have demonstrated that graph generative models con-
structed using the datasets we have used are prone to showing bias in low-
degree nodes. Specifically, during the graph generation process, low-degree nodes
undergo increased reconstruction loss and exhibit a tendency towards reduced
representation. In other words, the overall performance of the graph generative
model may predominantly favor a select group of high-degree nodes (such as
celebrities on a social media platform), while potentially being biased against
a vast majority of low-degree nodes (like grassroots users on the same social
media platform). Hence, it is crucial to ensure fairness for low-degree nodes
when designing graph generation models.

Connectivity-Related Bias: Another source of bias in graph generation mod-
els stems from the influence of adjacency connections. Unlike tabular data, graph
data encompass not only the individual attributes of each data point but also the
relationships between them. Moreover, nodes with similar sensitive attributes in
graph data tend to form stronger connections [27]. For instance, Fig. 2(a) reveals
that the number of intra-group connections (blue and green bars in Fig. 2(a))
significantly exceeds the number of inter-group connections (yellow and purple
bars in Fig. 2(a)) in the Facebook graph dataset. In addition, Fig. 2(b) presents
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the synthetic Facebook graph generated by NetGAN, and it is evident that, com-
pared to the original graph dataset, the intra-group connections have increased,
while the inter-group connections have decreased. This observation indicates that
the bias has been further exacerbated.

Fig. 2. Comparison of the disparate distribution of gender related node connectivity
between the original graph and synthetic graph. (Color figure online)

In fact, strongly intra-connected groups in social network graphs are often dis-
tinguished by factors such as race, gender, or wealth. However, groups segmented
based on these sensitive attributes frequently experience unequal treatment in
various aspects, which is also reflected in their representation in social network.
Existing graph generation methods may unintentionally adopt, or even amplify,
potential biases inherited in such biased graph data. For instance, graph embed-
ding, a prevalent technique in the field, projects each node onto a low-dimensional
vector representing the user’s structural information within the network. How-
ever, the learned representation may capture and even exacerbate the unjusted
social bias encoded in the structural representation, i.e., intra-group connec-
tivity. This can lead to biases being transferred to downstream tasks like loan
approval and credit scoring, thereby exacerbating existing biases.

4 Methodology

This section outlines methodologies for addressing bias in graph genera-
tion models, including: i) methods to tackle the degree-related (Sect. 4.1)
and connectivity-related (Sect. 4.2) root causes of bias in graph generation,
ii) FG2AN integrating the dual debiasing solutions for fair graph genera-
tion (Sect. 4.3), iii) a suite of novel metrics, which serve to comprehensively
reveal the biases present in graph generation (Sect. 4.4).

4.1 Mitigating Degree-Related Bias

In Sect. 3.2, we discussed how the disparities in node degrees create biases in
graph generative models. To mitigate such degree-related unfairness, we pro-
pose incorporating the Rawlsian difference principle [28] into our approach. This
principle, which originated from distributive justice theory by John Rawls [28],
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aims for equity by optimizing the well-being of the most disadvantaged group.
In a state of equilibrium, it ensures that all groups maintain their status quo
since the welfare of the least advantaged group cannot be further maximized,
leading to balanced performance across groups. In the context of graph genera-
tion, the concept of welfare is captured by the representativeness in the model,
which is evaluated through its reconstruction loss. Mathematically, the Rawlsian
difference principle is defined as follows,

minθ

n∑

s=0

V ar(U(Gs, θ)) (1)

where Gs is the subgraph of the input graph G, θ represents the loss function
that aims to minimize the given task, and U(Gs,θ) represents the utility function
that assesses the loss across a group of samples, utilizing the model defined by
parameters θ.

To enforce the Rawlsian difference principle in the graph generation model,
two challenges need to be addressed. The first challenge involves determining
a method to compute the threshold value that distinguishes high-degree and
low-degree nodes. Using the average node degree as a threshold is not feasible
because it can be skewed by nodes with exceptionally high degrees in the graph
data. This would result in significant losses for many relatively low-degree nodes,
even if balanced utility between the two groups is achieved. Therefore, we avoid
using a rigid threshold and instead divide the node set V in the input graph G
into k groups, as shown in Eq. 2, to overcome this issue:

V =
max degree⋃

k=0

{Vk |
j∑

i=0

Ai,j = k} (2)

where Vk signifies the set of nodes with degrees equal to k. This modification
ensures that nodes with different degrees receive an equal opportunity for eval-
uation. We assess each degree set individually, ensuring fair treatment between
any two node degree sets.

The second challenge is then to assess if two sets of node degrees receive
equal treatment. To this end, we utilize the 80% rule [10] to evaluate disparate
impact, which strives to ensure that all subgroups experience the same level of
loss in the loss function. We consider a lower loss in graph reconstruction for
node degrees to be more favorable. Next, we assess whether the proportional
difference in graph reconstruction loss between any two subsets with distinct
node degrees exceeds a fairness threshold, as illustrated in Eq. 3:

argmin
U(∀ {Vi|

∑j
i=0 Ai,j = k}) − U(∀ {Vi|

∑j
i=0 Ai,j 	= k})

U(∀ {Vi|
∑j

i=0 Ai,j = k}) ≤ Ft (3)

where Ft refers the fairness threshold and Ft ∈ [0, 0.2]. The two node degree
subsets are considered being treated fairly if the proportional difference meets
or is below a certain threshold, otherwise there is an disparity in representation
between the two subsets.
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In general, our approach to ensuring fairness across the node set is based on
the fairness guarantee provided by subsets of nodes with varying degrees. By
ensuring fairness within these sub-node sets, we can improve the overall fairness
of the model used to generate the graph. Furthermore, we can customize the
stringency of our fairness standards by adjusting the fairness threshold to meet
specific real-world constraints [4].

4.2 Mitigating Connectivity-Related Bias

This section aims to tackle the bias that arises from the disparate connectivity
between intra- and inter- groups. Existing graph generation models treat each
neighboring node equally, which may seem an intuitive thought, but actually
exacerbate the connection disparity between deprived and favored groups as
most connections in the input graph G are intra-group, leading to amplified inter-
group connection disparity in the topology learned by existing graph generation
models [7,33,46]. Considering the growing practice of using social network for
credit scoring as an example [42], the deprived group users’ credit scores are
unfairly lowered due to most of their neighbors are intra-group with relative lower
credit scores, yielding credit scoring decisions that are discriminatory towards
them. This bias appears in the transfer probability (M) expressed in Eq. 4 during
graph generation, where neighboring nodes are treated equally and assigned the
same transfer probability:

M = (AD−1 + I)/2 (4)

When using this learning approach, there is a greater chance that nodes will
stay within their own groups, which means that there will be less connections
between different groups. This can make it even harder for deprived groups to
be represented in the overall graph. To illustrate, imagine a node that is highly
connected, but all of its connections are with just two types of nodes, one of which
only has one connection. In this scenario, the node with only one connection can
hardly be represented statistically in a fair manner. This further exacerbates the
inequality in how different demographic groups are represented in the graph.

Our proposed solution to tackle bias involves incorporating a fairness con-
straint on transfer probability, which ensures equitable transfer between intra-
and inter- neighbors. We achieve this by categorizing neighbors based on sensi-
tive attributes and ensuring that the total selection probability for each group
is equal during each node transition, instead of randomly selecting a node from
all neighboring nodes:

∑
(Pva

|Ai,a = 1, Sa = s) =
∑

(Pvb
|Ai,b = 1, Sb = s) (5)

Within each sub-sensitive group, the samples will share probabilities equally.
As a result, neighboring nodes belonging to a smaller total number of sub-
sensitive groups will receive a higher transfer probability compared to neighbor
nodes in a larger total number of sub-sensitive groups.
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4.3 FG2AN Assembling

Armed with the solutions for degree-related and connectivity-related biases, we
integrate these dual solutions into the general framework of Generative Adversar-
ial Networks (GAN) [16] to minimize the reconstruction loss of the input graph
G but also across different groups fairly for the fair graph generation. Figure 3
provides an overview of our proposed model.

Fig. 3. Illustrations of the proposed FG2AN for fair graph generation. (Color figure
online)

The FG2AN architecture follows the standard GAN structure, comprising of
a generator and a discriminator. To mitigate connectivity-related bias, FG2AN
first extracts a set of fair random walks of length T from the adjacency matrix
A, following the fair sampling algorithm proposed in Sect. 4.2 (as depicted by
the blue part in Fig. 3). This set of fair random walks serves as the training set
for FG2AN (shown as the yellow part in Fig. 3). Note that fair random walks
apply fairness restrictions to each node transition rather than directly modifying
the transition probability matrix. By doing this, costly computations such as the
quadratic number of node calculations, which were employed in previous graph
generation models [23,34], can be circumvented.

Furthermore, the computation only utilizes the non-zero terms in the transfer
probability matrix, effectively circumventing the massive computational expense
related to the sparsity of real-world graphs. Another significant advantage of
employing fair random walks is the preservation of graph isomorphism learning.
In other words, providing two isomorphic graphs, G1 and G2, as input will yield
identical results. Next, the generator produces synthetic random walks (the pur-
ple portion in Fig. 3) by learning from the real fair random walks present in
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the input graphs. Note that FG2AN produces a significantly greater quantity of
random walks compared to the ones that are sampled, which is advantageous in
maintaining the overall quality and minimizing the randomness of the produced
graphs.

In addition, to mitigate the connectivity-related bias, it is necessary to ensure
that different groups with varying degrees are treated fairly in the graph gen-
eration model. The solution proposed in Sect. 4.1 is followed for this purpose.
This involves constraining the ratio of the loss for reconstructing different groups
with dissimilar degrees to a reasonable threshold. Integrating these two fairness
constraints, the overall reconstruction loss is defined below,

arg min U(θ) = −Ew⊆{G,Gk}[
T∑

t=1

loggθ
(wT |w1,...,T−1)] (6)

where Gk refers to a subgraph in G that is composed of a graph of vertices
∀{vi ∈ V | ∑j

i Ai,j = k}, gθ is the Transformer-based generator, wt represent
the T th node and w1,...,T−1 represent the first (T − 1)th nodes in a sampled
fair random walk. To preserve both the performance and fairness of the model,
our optimization objective is designed to minimize the reconstruction loss based
on input graphs G and degree-wise graph Gk. With this constraint, in terms of
fairness, our approach ensures that nodes with varying degrees Gk experience
similar graph reconstruction loss, thus promoting fair representation for all sub-
groups. With respect to performance, we strive to minimize the reconstruction
loss for nodes with diverse degrees Gk, as well as maintain the lowest possible
total reconstruction loss value for the entire graph G.

In general, at each iteration l, we consider the recently generated fair ran-
dom walks from G as positive samples (yellow area) and the fair random walks
obtained from the previous iteration l generator as negative samples (purple
area). The task of the discriminator is to distinguish between the synthetic and
real samples. By learning from both positive and negative samples, the genera-
tive model gθ is improved, resulting in high-quality synthetic random walks. For
example, in the deep pink region of iteration l, the discriminator can differenti-
ate between the real fair random walks (marked �) and the synthetic random
walks (marked �), while in the light pink region of iteration l+1, the real fair
random walks and synthetic random walks are indistinguishable (both marked
�). Additionally, to avoid isolated nodes, FG2AN ensures that each node has
at least one connected edge. Moreover, each subgroup in the generated graph
should have a comparable degree (e.g., total edge count) to that of the input
graph G.

4.4 Fairness Definitions for Graph Generation

This section introduces the first-of-its-kind fairness metrics designed specifically
for graph generation models, setting a benchmark for future research in fair graph
generation. Consistent with typical fairness notions that evaluate whether there
is a lack of favoritism from one side to another, the proposed fair graph definitions
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measure the disparity between deprived and favored subgraphs, as defined by
sensitive attributes, across various perspectives of topology simulation, and are
formally defined as:

Gfair(Gori,Ggen) =
∣
∣
∣
∣|

Mi(Gorip) − Mi(Ggenp)
Mi(Gorip

)
| − |Mi(Gorip

) − Mi(Ggenp
)

Mi(Gorip
)

|
∣
∣
∣
∣ (7)

where Gori and Ggen represent the original graph and generated graph with
subscript p and p denoting the deprived and favored subgraphs. In addition,
Mi(·) represents one of the topology properties. The lower the Gfair(Gori,Ggen)
the fairer the generated graph.

Equation 7 is then instantiated by introducing the following fairness defini-
tions for graph generation, which consider various aspects of topology simulation:
1) Average Degree Difference (ADD): evaluates the disparity in network cluster-
ing difference between deprived and favored node subgroups. 2) Equal Connected
Accessibility (ECA): measures the difference in the size of the largest connected
components difference between deprived and favored subgroups.

3) Statistical Triangle Difference (STD): evaluates the disparity in cohesive-
ness difference between deprived and favored subgroups. 4) Equal Edge Distribu-
tion Entropy (EEDE): quantifies the disparity between the relative edge distri-
bution entropy of the favored and deprived subgroups. 5) Power Law Exponent
Parity (PLEP): measures the discrepancy between the power law distributions of
the favored and deprived subgroups. 6) Equal Gini (EG): evaluates the disparity
in the Gini coefficient of the degree distribution across different subgroups.

These six metrics provide a comprehensive understanding of whether the
topology of different subgroups is fairly represented in the generated graph.
This reflects the representativeness of different subgroups in the reconstruction
loss, and thus, indicates the fairness of the graph generation model.

Table 1. Statistics of the benchmark datasets.

Dataset CHAR
Nodes# Edges# Sensitive Attribute

Facebook 1,034 26,749 Gender
Oklahoma97 3,111 73,230 Gender
UNC28 4,018 65,287 Gender
Cora 2,708 5,429 Topic
NBA 403 10,621 Country
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5 Experiments

5.1 Experimental Setup

Datasets: We validate our proposed method using five real-world graph
datasets with socially sensitive concerns, including: three social network graph
datasets Facebook [18], Oklahoma97 [29], and UNC28 [29] as well as an aca-
demic graph dataset Cora [32], and a sports graph dataset NBA [13]. The Face-
book dataset originates from a social network within the Facebook app. UNC28
and Oklahoma97 represent social networks of two schools, with links indicat-
ing friendship connections on social media. The Cora dataset contains numerous
machine learning papers, categorized into one of seven classes. The NBA dataset
provides performance statistics for roughly 400 NBA basketball players during
the 2016–2017 season, along with additional information. Table 1 displays the
detailed characteristics.

Baseline: Four graph generative baseline models were compared against
FG2AN: i) NetGan [7], which utilizes the GAN algorithm to train its graph gen-
erative model; ii) GraphRNN [46], which models the creation of graphs sequen-
tially; iii) GraphVAE [33], a trailblazing method for graph generation based on
variational autoencoders, and iv) TagGen [53], which learns the graph represen-
tation in an end-to-end fashion.

Evaluation Metrics: Aside from the previously introduced fairness measures
specifically designed for graph generation, a range of performance metrics are
employed to assess various aspects of generated graph properties [53], including:
i) Mean Degree: the mean value of node degree. ii) Largest Connected Component
(LCC): The size of the largest connected component. iii) Triangle Count (TC):
The count of three mutually connected nodes. iv) Edge Distribution Entropy
(EDE): The relative edge distribution entropy of G. v) Power Law Exponent
(PLE): The exponent of the power law distribution of G. vi) Gini : the Gini
coefficient of the degree distribution. A better performance is indicated by a
smaller discrepancy between the generated graph and the original graph for
these six graph properties, thus the lower the values of these metrics the better
the generated graph.

5.2 Experimental Results

Fairness of the Generated Graphs: We first evaluate the generated graphs
from fairness perspective and the results are shown in Fig. 4. As one can see,
FG2AN significantly outperforms the baseline across all six fairness graph gen-
eration metrics for all datasets. This outcome indicates that the generated graphs
fairly capture the graph properties of both favored and deprived groups, and that
FG2AN effectively addresses the inconsistent expressiveness of existing graph
generation models for these groups. Our findings highlight the importance of
considering the representation of various groups within the graph when evaluat-
ing the performance of graph generation models.
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Fig. 4. Comparison of FG2AN to baseline models using fair graph generation metrics.

Quality of the Generated Graphs: After evaluating the fairness of the graph
generation models, we proceeded to assess the quality of the generated graph.
The results are presented in Fig. 5. Overall, our proposed approach FG2AN
exhibits robust generalization to graph properties and achieves comparable or
superior performance to the baseline methods. We observe, in some instances,
FG2AN marginally sacrifices overall performance, which could be attributed to
the fairness constraint imposed to ensure representational parity across different
groups.

Fig. 5. Comparison of FG2AN to baseline models using graph generation performance
metrics.
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Fig. 6. Comparison of FG2AN and FG2AN− using fair graph generation and perfor-
mance metrics.

Ablation Studies: Ablation studies were conducted to validate the effective-
ness of the proposed fairness regularizers. Specifically, we removed the degree-
and connectivity-related regularizers from FG2AN while keeping other compo-
nents identical. The results, presented in Fig. 6, clearly demonstrate the effec-
tiveness of our proposed bias mitigation solutions. In comparison to FG2AN,
the FG2AN− model, which has the fairness regularizers removed, tends to focus
more on learning the topology of favored groups. As a result, during the learning
process, FG2AN− visits favored group more and may not fully capture the topol-
ogy of the nodes in the deprived group, leading to a higher reconstruction loss
and introducing bias in the deprived group. Additionally, since rmFG2AN−

retains more of the favored group’s topology, it has a slight edge in terms of
overall performance.

6 Conclusion

The ability of graph generation models to learn high-level graph representations
has sparked great interest. Nevertheless, current models do not consider fairness,
which is a crucial social issue. To address this, a new framework for fair graph
generation is introduced in this paper, along with a set of fair graph metrics that
are the first of their kind for benchmarking purposes. Experimental results on
five real-world datasets show that the proposed framework outperforms existing
benchmarks in terms of graph fairness while maintaining competitive perfor-
mance.
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Abstract. Unjustified social stereotypes have lately been found to taint
the predictions of NLP models. Thus, an increasing amount of research
focuses on developing methods to mitigate social bias. Most proposed
approaches update the parameters of models post-hoc, running the risk
of forgetting the predictive task of interest. In this work, we propose
a novel way of debiasing NLP models by debiasing and curating their
training data. To do so, we propose an unsupervised pipeline to identify
which instances in the training data mention stereotypes that tally with
the stereotypes encoded in NLP models. Then we either remove or aug-
ment these problematic instances, and train NLP models on less biased
data. In this pipeline, we propose three methods to excavate stereotypes
encoded in models using likelihoods, attention weights and vector rep-
resentations. Experiments on the tasks of natural language inference,
sentiment analysis and question answering suggest that our methods are
better at debiasing downstream models than existing techniques.

Keywords: Natural Language Processing · Fairness · Debiasing ·
Data Curation

1 Introduction

Despite the significant advances in Natural Language Processing (NLP) mod-
els, there is growing concern about the levels of bias they demonstrate
[4,6,22,31,33,34]. In this paper, bias refers to unjustified and undesired skew
in the predictions of NLP models with respect to various groups, such as social
demographics, sports teams, animals, etc. These biases stem from historical
stereotypes that are embedded in the training data used to train these models
[5]. For example, biases such as men are more skilled than women in math and
engineering [4] and Black people have higher tendencies to crime than other races
[30] can have harmful consequences [2]. Recent research aims to prevent NLP
models from replicating these stereotypes by proposing methods to debias them
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
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[7,14,19,23,27]. However, many of the proposed techniques attempt to modify
the internal parameters of the models in a fine-tuning setting, introducing two
shortcomings. Firstly, they incur a new computational cost in addition to that of
prior training (i.e. first train on the task, then optimize for fairness). Secondly,
they can lead to catastrophic forgetting of the task at hand and/or a significant
reduction in accuracy [21,23,32].

Alternatively, other approaches aim to debias and neutralize training data to
prevent biases from being encoded into the models in the first place. We surveyed
the landscape of data-debiasing techniques in the literature and identified four
different paradigms: (1) Anonymization methods replace explicit mentions
of groups with anonymized entities such as [GRP] [35,46,51].1 (2) Reduction
methods impose fairness by discarding instances from the data corresponding
to over-represented groups until parity is reached [51]. On the downside, these
methods are not suitable when training data is expensive or scarce. To overcome
this issue, (3) Permutation techniques reach parity by swapping mentions of
groups, e.g. replacing he by she until the number of mentions of both groups is
comparable [24,29,35,37,51]. However, blind swapping risks creating implausible
instances such as She shaved her beard. Finally, (4) Augmentation techniques
add new instances to the data corresponding to under-represented groups to
ensure fairness [11,37,38,45,50,52]. Counterfactual Data Augmentation (CDA)
is one of the most celebrated data augmentation techniques due to its simplicity
[50,52]. For example, if the data contains “A man is driving a truck”, CDA adds
another instance to the data by replacing man with woman or a non-binary
gender. This is done to prevent the model from learning spurious associations
between males and driving trucks.

In practice, existing data-debiasing methods are applied on data used to train
task-specific downstream NLP models. So if one was to use such debiasing tech-
niques, the general approach goes like this: (1) eliminate biases from training
data, then (2) finetune a text encoder such as BERT [9] on the task of interest,
using the curated data from Step 1. Following this approach, we notice that
existing data-debiasing techniques assume that training data is the only source
of bias in the finetuning phase. However, text encoders are known to be biased
as well [20,31,33]. Therefore, we presume that bias during finetuning stems from
two separate sources: from training data, and/or from the text encoder used as
a language representation layer. In essence, existing data-debiasing techniques
overlook pre-encoded biases coming from text encoders, and only address biases
of training datasets. This leads us to call into question the effectiveness of exist-
ing data-debiasing methods, since bias from encoders may seep into the final
downstream models and corrupt their predictions with social prejudice, even
when the data is balanced and fair.

To illustrate this flaw, suppose the text encoder under use already believes
that only women prepare soup. Suppose also that the task-specific training data
contains a sentence such as “That woman made a chicken soup”. CDA adds a new
training instance, e.g., “That man made a chicken soup” to try to disassociate

1 e.g., [GRP] are good at math.
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the attribute of preparing soup from the representation of women in the data.
While it is true that the curated data does not introduce new biases (because men
and women are both associated with making soup), the pre-encoded stereotype
linking women to preparing soup is still present in the underlying text encoder,
and risks being propagated onto the final task-specific model. In other words,
although data curation methods prevent models to pick up on biases from the
task-specific data, they do not treat biases that are already lurking within text
encoders before finetuning even starts.

Surprisingly, it appears that data-debiasing methods should not produce
bias-free, completely impartial and unprejudiced training datasets. Instead, they
should tweak the data in such a way to counter the stereotypes present in text
encoders, even if the resulting training datasets would be biased. In other words,
we proclaim in this work that data-debiasing methods should first check which
stereotypes are encoded in text encoders before updating training data in a way
to counteract those exact stereotypes. Returning to the above classification of
data-debiasing paradigms, we introduce a fifth approach in this paper that we
call Data Selection, i.e. select which data instances are likely to cause most bias,
then curate those. Therefore, the main contribution of this paper is a method to
select these problematic data instances.

Specifically, we propose an unsupervised pipeline to quantify how much a
given input text concurs with encoded stereotypes of a text encoder of interest.
We call these quantities bias scores. If the bias score of a given input text is
high, it means that the mentioned stereotype is already strongly encoded in the
text encoder. However, if it is negative, the text introduces a statement that
contradicts what the model is biased toward. If the bias score nears zero, we can
say that the text is relatively stereotype-free. We apply our pipeline to compute
a bias score for every instance in the training data. Then, we rank these instances
according to their bias scores. Finally, we curate the instances having the highest
θ% of bias scores either by discarding them altogether, or augmenting them in
the style of CDA. We believe that finetuning text encoders on such curated data
helps in unlearning biases.

In the remainder of this paper, we describe the important details about the
computation of bias scores. In Sect. 2, we show how we excavate bias information
from three distinct sources: from likelihoods, attention scores and vector repre-
sentations. Then, in Sect. 3, we describe our pipeline to automatically compute
bias scores given an input sentence. Finally, we experiment with three different
downstream NLP tasks: natural language inference using MNLI dataset [48], sen-
timent analysis with SST2 dataset [17,48] and question answering with SQUAD
dataset [40] in Sect. 4. Experiments demonstrate that we outperform CDA and
two other model-level debiasing techniques. We present related research in
Sect. 5. In our experiments, we focus on social groups related to binary gen-
der, race and religion, but nothing in the approach prevents it from being used
with other types of groups. We make our code and data publicly available on
GitHub.2

2 https://github.com/YacineGACI/Model-Aware-Data-Debiasing.

https://github.com/YacineGACI/Model-Aware-Data-Debiasing
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2 Three Sources of Bias in Text Encoders

Social biases infiltrate text encoders at every level. We show that both likeli-
hoods, attention weights and vector representations display significant stereo-
types. In this section, we present three methods to excavate bias information
from text encoders when prompted with a masked sentence. Figure 1 summarises
the mechanics of our methods with an example.

Fig. 1. Different sources of bias in text encoders: (1) Likelihood, (2) Attention, (3)
Representation

2.1 Bias in Likelihoods

Following previous work [22,33,34], a biased language model produces unequal
likelihoods for groups to fill in the blank of a neutral context. In “This [MASK]
is adorable”, Fig. 1 shows that christian is far likelier to replace the mask even
though the text itself does not hint at any notion of religion. Thus, likelihoods
are valuable to study biases of text encoders.

2.2 Bias in Attentions

Attention is the central component in modern transformer-based text encoders
[9,47], and is also a hotbed for social bias [1,14]. In order to get how much
of attention a text encoder bestows on social groups given an input text, we
add a dummy second input to the original text, consisting only of groups of
interest. For example, supposing we want to study religious biases of a text
encoder in “This [MASK] is adorable”, we add “christian, muslim, jew” as a
second input such that the final augmented input becomes “[CLS] This [MASK]
is adorable [SEP] christian, muslim, jew [SEP]”. [CLS] and [SEP] are special
tokens added by text encoders to facilitate encoding. [SEP] is used to separate
the sentences in the case of double-sentence inputs, and [CLS] is a special token
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whose embedding captures the semantics of the whole input [9]. As a final step,
rather than collecting word embeddings, we retrieve the attention of the [CLS]
token on social groups of the second input, essentially examining the allocation
of attention in the input sentence on groups. In Fig. 1, the sentence assigns 12%
of its attention to Christians, while Jews receive only 5.7% and Muslims a mere
0.9% of attention (with the remaining attention distributed among the other
words in the sentence to sum up to 100%) This means that, when using the
input example in Fig. 1, text encoders favor Christians by paying more attention
to them. We believe that the order in which we insert social groups to the input
is important. So in practice, we use all possible permutations of the groups,
and take the average of their attentions. In our experiments, we show that the
attention mechanism is a paramount lens to study stereotypes in transformer-
based text encoders.

2.3 Bias in Representations

The most important function of text encoders is to produce word and/or sentence
embeddings given an input text. We can also use these vector representations to
corroborate text encoders’ guilt at exhibiting stereotypes. Following the exam-
ple of Fig. 1, we replace the mask with social groups one at a time such that in
the example, we end up with three different sentences. Knowing that the vector
of the [CLS] token corresponds to the representation of the whole sentence, we
compute cosine similarity of the masked sentence with every group-related sen-
tence. In Fig. 1, the similarity of “This [MASK] is adorable” and “This christian
is adorable” is 0.89, while that of Muslims is 0.68 and of Jews 0.77. These dif-
ferences in similarity suggest that even vector representations are riddled with
stereotypes.

3 Pipeline for Measuring Bias in Text

We define a bias type (e.g. gender, race, religion, etc.) by a set of social
groups. Each social group is in itself defined by a set of definition words that
characterize it and set it apart from other groups, as is of custom in fairness
literature in NLP [4,18,30]. The dotted box in the top left corner of Fig. 2 pro-
vides examples of the bias types and their social groups that we use in this work.
The full list of definition words can be found in Table 1. We remind readers that
although our design does not include all social groups of the real world, we
follow previous research because most existing evaluation datasets and bench-
marks that we use to validate our methods are limited to binary gender, race
and religion with the same groups that we treated. Further research and data
creation for minorities is increasingly called for, and would constitute a most
welcome addition to current literature. In the following, we describe each step
of our data-level bias quantification pipeline that we illustrate in Fig. 2.



Targeting the Source: Selective Data Curation for Debiasing NLP Models 281

Fig. 2. Pipeline for measuring bias from an input sentence

3.1 Masking

The first step is to mask words that belong to the definitions of bias types under
study. In the example of Fig. 2, mothers is a definition word of the group Woman
in the category of gender. Therefore, we mask it and prepare a corresponding
masked input. Likewise, Asian is also a definition word in the category of race.
Thus, we prepare another masked input for this bias type. Since we do not detect
any word related to religion in this example, nothing is masked in the religion
query.

3.2 Probing

Here, we use the implicit knowledge of stereotypes in text encoders by invoking
one of our methods explained in Sect. 2. Each of the methods provides scores for
every definition word. For example, in Fig. 2, we use the likelihood method to
obtain the likelihood of every word in the definitions to fill in the mask. We notice
that female words are more likely than male terms, and words corresponding
to the White race are more probable than other races because the text encoder
believes women and white people to be warmer than others. This result confirms
the latent stereotype of the text encoder under use (BERT in this case). The
same applies if we utilize one of the remaining two methods, except that instead
of likelihoods, we get either attention weights or cosine similarities for every
definition word. The biased nature of text encoders administers different scores
for different groups regardless of the method. Also, since the input sentence is not
about religion, we bypass the computation of scores related to religious groups.
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3.3 Aggregation and Normalization

We aggregate scores corresponding to the same social group by taking their
mean. For example, we compute the average score of man, boy, father, etc. to
obtain a single score for the group of Man. We do the same for all other social
groups. Then, we normalize the aggregated scores such that groups of the same
bias type make a probability distribution. In Fig. 2, men have a probability of
31% to fill the mask of the gender query, while women have 69%.

3.4 Bias Computation

We declare bias in this work as the differences between the likelihood (or atten-
tion or cosine similarity) of the group mentioned in the original text and the
average of probabilities (or attentions or cosine similarities) for all other groups.
So, if the difference is positive - meaning that the score of the group is higher
than the average - it shows that the text complies with the stereotypes encoded
in the model. However, if it’s negative, then the text contradicts the encoded
stereotype (because the model believes that other groups are more likely to
replace the mask). We give the formula below:

bias score(ŝ, g) = f(ŝ, g) − E
g′∈G\{g}

[f(ŝ, g′)] (1)

where ŝ is the masked text and g is the group of interest (In Fig. 2, it is Woman
for gender and Asian for race). G is the set of all groups and f(ŝ, g) is a function
that returns the score of group g in the masked text according to one of the three
sources of bias, i.e. likelihoods, attention or vector similarities. In Fig. 2, women
are likelier to fill the mask than men. So the bias score for gender in this case
is 38%3, which suggests that the sentence mentions a stereotype that is already
encoded in BERT. As for race, the bias score is -13.33%4, meaning that the text
encoder does not believe Asians to be warm (anti-stereotype since the bias score
is negative). Overall, the formula gives us an intuition about how strongly the
input text concords or contradicts social stereotypes encoded in models.

4 Experiments

4.1 Experimental Setup

Evaluation Tasks and Metrics. To date, two types of bias metrics exist:
intrinsic metrics measuring bias in the encoders themselves [4,31,33,34], and
extrinsic metrics that measure bias in downstream tasks where the encoders
are used [8,25]. Since (1) our work is directed at debiasing downstream task-
oriented NLP models, and (2) that intrinsic metrics have recently been criticized
[3,15,49], we focus on extrinsic evaluations in this paper. We experiment with

3 38 = 69 - Mean({31}).
4 -13.33 = 15 - Mean({62, 13, 10}).
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different θ values (ratios of removal/augmentation): 5%, 10%, 20% and 50%, and
three downstream tasks: sentence inference (on MNLI [48]), sentiment analysis
(on SST2 [48]) and question answering (on SQUAD [40]).

Baselines. We compare our work to various baselines: CDA [50,52] - which
calibrates the number of mentions of all social groups in the entirety of training
data - and to two popular model-level debiasing techniques: Sent-Debias [27]
which extends previous projection-based work on static embeddings, and Kaneko
& Bollegala [19] which adds a fairness objective to their optimization function. In
the remainder of this section, we report our results on the downstream tasks using
all three of our identified bias sources: likelihood, attention and representation.
Also, we add another variant that we call combined where we combine our bias
sources by averaging their scores. As for removal and/or augmentation ratios,
note that we report those with the best scores in the tables.

Implementation Details. We apply our methods on BERT [9]. Since our goal
is not to improve the accuracy of finetuned models on the NLP tasks of interest,
but rather assess the fairness-related impact of our data-level debiasing pipeline,
we do not conduct any form of hyperparameter search in this paper. Following
the rules of thumb in the literature, we set the learning rate of all finetuning
workloads to 2e−5, the number of epochs to 3, weight decay to 0.01, batch
sizes to 8 and maximum length of inputs of BERT to 128. We implemented our
algorithms in Python using PyTorch5 and HuggingFace transformers library6.
All our experiments are run on a Tesla V100 GPU.

Definition of Demographics. While our proposed approach can be used for
most types of groupings, e.g. classification of mammals, sports, furniture styles,
etc., in the experiments presented in this paper, we exclusively focus on human
social groups. Specifically, we study binary gender, race and religion, with the
full list of considered groups and their definition words listed in Table 1.

As can be seen, the definition of groups is flexible and requires a relatively
small bag of words for each group. Besides, the definition words need not be of the
same length. On the other hand, we acknowledge that our definitions of groups
do not reflect the wide complexity of social divisions in the real world, and that
our oversight of the minorities risks being regarded as harmful in its own way.
We chose those specific groups presented in Table 1 to facilitate comparison with
previous works who focused on those widespread groups. Besides, most datasets
that we use to evaluate our work only include binary gender, race and religion.
This is why we stick to these classic bias types and follow previous research, but
nothing in the design or in the approach prevents it from being used with more
inclusive groups.

5 https://github.com/pytorch/pytorch.
6 https://github.com/huggingface/transformers.

https://github.com/pytorch/pytorch
https://github.com/huggingface/transformers
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Table 1. Full list of social groups and their definition words used in this work

Bias Type Groups Definition words...

Gender Man male, man, men, he, himself, his, him, boy, father, grandfather, brother, uncle

Woman female, woman, women, she, herself, her, girl, mother, grandmother, sister, aunt

Race European-white white, caucasian, european, french, english, spanish, german

African-black african, black, nigerian

Arab arab, arabian

Asian asian, chinese, japanese, korean

Hispanic hispanic, latino

Religion Muslim muslim, muslims

Christian christian, christians

Jew jew, jews, jewish

4.2 Question Answering

Task. Given a context and a question, this task is about finding an answer to
the question within the context; i.e. finding the span of text inside the context
that best answers the question, or predict an empty span if no answer can be
found.

Data and Metrics. We use the dataset created and published by [25] consisting
of a set of minimal contexts and underspecified questions. The contexts mention
two different social groups while the questions are about another attribute, not
hinted to in the context. For example, if the context is “The person over the swing
is Angela . Sitting by the side is Patrick” and the question is “Who was an
entrepreneur?”, there is no way to answer the question given that underspecified
context. However, a stereotyped model may associate males with entrepreneur-
ship, and predict the answer to be Patrick. The bias metric for question answer-
ing proposed by [25] builds on this rationale, and is robust against positional
dependence and attribute independence problems usually encountered in QA
models [25], so we use it in this work. Table 2 summarizes the results.

Discussion. We observe that our methods are particularly good at reducing
bias in the task of question answering. The biggest improvement is in gender
where removing 50% of the most biased instances in SQUAD as indicated by
the attention method reduces bias from 7.37 to 3.39. We also point out that
augmenting the top half of most biased instances according to the combined
method nearly eliminates racial biases altogether (with a bias score of 0.03).
Again, our approach outperforms existing debiasing methods, and diminishes
the semantic performance only slightly (F1 score and Exact Match in this case).

4.3 Sentence Inference

Task. The inference task - or also commonly called textual entailment - consists
of predicting whether a hypothesis entails, contradicts or is neutral to a given
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Table 2. Extrinsic Bias Measures and Performance (Exact Match and F1 Score) on
the Task of Question Answering. The closer the scores are to 0 the better.

Models Curation gender race religion

% Bias↓ EM↑ F1↑ % Bias↓ EM↑ F1↑ % Bias↓ EM↑ F1↑
Original / 07.37 71.21 80.91 / 02.79 71.21 80.91 / 03.16 71.21 80.91

CDA / 06.78 70.95 80.91 / 01.99 70.95 80.91 / 02.01 70.95 80.91

Sent-Debias / 05.73 71.52 81.09 / 02.45 71.52 81.09 / 02.95 71.52 81.09

Kaneko / 06.36 71.41 80.90 / 02.93 71.41 80.90 / 04.01 71.41 80.90

Likelihood Removal 50% 03.60 67.92 78.54 10% 02.63 71.04 80.84 50% 02.54 68.18 78.48

Attention Removal 50% 03.39 67.89 78.55 10% 02.06 71.06 80.77 20% 02.37 70.64 80.61

Representation Removal 50% 04.70 68.34 78.86 20% 02.60 70.53 80.45 50% 02.51 68.33 78.84

Combined Removal 50% 03.56 68.16 78.77 10% 02.10 70.94 80.70 20% 02.11 69.85 80.17

Likelihood Augment 50% 04.72 68.64 79.19 20% 00.35 70.52 80.31 10% 02.56 70.60 80.48

Attention Augment 50% 04.68 68.75 79.48 20% 00.16 70.44 80.37 50% 02.39 67.66 78.28

Representation Augment 50% 04.61 68.58 79.21 20% 00.27 70.02 79.93 50% 02.03 67.67 78.46

Combined Augment 50% 04.09 68.91 79.24 50% 00.03 67.76 78.54 50% 01.82 67.82 78.58

premise. For example, say the premise is “Laura rides a bike to school every
morning” and the hypothesis is “Laura can ride a bike”. A textual inference
model should be able to predict an entailment in this case.

Data and Metrics. In order to quantify bias in textual inference models, we
follow the work of [8] who state that a biased model makes invalid inferences,
and that the ratio of such false inferences constitutes a measure of bias. They
build a challenge benchmark where every hypothesis is designed specifically to
be neutral to its premise. For example, if the premise and hypothesis are “The
nurse ate a candy” and “The woman ate a candy” respectively, there is no
information whatsoever in the premise to decide upon the gender of the nurse.
Thus, the prediction should be neutral. However, a biased inference model may
associate nurses with women and wrongly conclude that there is an entailment.
Every sample in the dataset constructed and published by [8] follow the same
structure of the example above. Numerically, if there are M instances in the data,
and the predictor’s probabilities of the ith instance for contradict, entail and
neutral are ci, ei and ni, we follow [8] and use three measures of inference-based
bias: (1) Net Neutral (NN): NN = 1

M

∑M
i=1 ni; (2) Fraction Neutral (FN):

FN = 1
M

∑M
i=1 1ni=max(ei,ci,ni); (3) Threshold τ (T:τ): T : τ = 1

M

∑M
i=1 1ni>τ .

We report the results on Table 3, after transforming them into percentages.

Discussion. The closer the scores are to 100, the less bias is exhibited by infer-
ence models. We notice that the original model (trained on the original MNLI
dataset without debiasing) is heavily biased. It appears that removing the most
biased training samples from MNLI helps in reducing significant amounts of bias.
For example, removing the top 10% of training sentences that show racial bias
as identified by the combined method demonstrate an absolute fairness improve-
ment of 22.66% (according to the FN metric). As for religion, removing the top
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Table 3. Extrinsic Bias Measures on the Task of Natural Language Inference. The
closer the scores are to 100 the better.

Models Curation gender race religion

% NN↑ FN↑ τ :0.5↑ % NN↑ FN↑ τ :0.5↑ % NN↑ FN↑ τ :0.5↑
Original / 02.34 01.64 01.44 / 72.26 72.16 72.08 / 44.43 43.75 43.66

CDA / 02.84 02.08 01.88 / 77.33 77.79 77.78 / 49.00 49.03 48.97

Sent-Debias / 00.94 00.38 00.33 / 59.61 59.28 59.20 / 29.64 29.08 29.02

Kaneko / 00.52 00.12 00.11 / 83.18 83.65 83.60 / 57.83 58.07 58.04

Likelihood Removal 20% 02.01 01.32 01.16 20% 85.20 85.90 85.89 10% 43.60 43.59 43.57

Attention Removal 50% 00.43 00.06 00.05 50% 78.01 78.37 78.33 50% 60.08 60.19 60.08

Representation Removal 50% 00.35 00.09 00.07 50% 89.44 90.62 90.59 20% 70.85 71.19 71.12

Combined Removal 10% 00.94 00.53 00.48 10% 94.43 94.82 94.81 50% 67.75 68.42 68.37

Likelihood Augment 10% 01.15 00.50 00.44 20% 93.76 94.22 94.20 50% 57.63 57.73 57.64

Attention Augment 5% 03.07 02.08 01.80 50% 94.32 94.77 94.71 5% 64.10* 64.44* 64.39*

Representation Augment 50% 01.29 00.85 00.81 50% 80.82 81.43 81.40 20% 52.46 52.76 52.66

Combined Augment 10% 00.64 00.15 00.14 10% 89.19 89.92 89.79 10% 53.01 53.58 53.52

20% as indicated by the representation method increases the FN score from
43.75 to 71.19. It is clear from Table 3 that all our methods succeed in reducing
the amount of bias, without hurting the accuracy. We report the accuracies of
both matched (in-domain) and mismatched (cross-domain) portions of MNLI’s
test set in Table 4. We observe that the accuracy of debiased textual entailment
models are comparable, and sometimes better than the original model, which
indicates that our method is safe with respect to the model’s performance.

Table 4. Accuracy on the Task of Natural Language Inference. The closer the scores
are to 100 the better.

Models Curation gender race religion

% Matched Mismatched % Matched Mismatched % Matched Mismatched

Original / 83.23 85.49 / 83.23 85.49 / 83.23 85.49

CDA / 84.31 83.26 / 84.73 84.21 / 84.15 83.75

Likelihood Removal 20% 83.94 84.70 20% 83.83 85.18 10% 82.80 85.02

Attention Removal 50% 84.01 80.96 50% 83.99 81.06 50% 85.77 82.15

Representation Removal 50% 83.38 81.50 50% 83.01 82.36 20% 82.96 82.09

Combined Removal 10% 83.84 83.03 10% 84.80 82.36 50% 82.85 82.32

Likelihood Augment 10% 83.34 82.75 20% 84.59 81.28 50% 82.20 80.47

Attention Augment 5% 83.27 82.72 50% 83.04 82.22 5% 81.63 82.36

Representation Augment 50% 83.29 82.72 50% 83.17 81.93 20% 83.45 83.70

Combined Augment 10% 85.40 84.21 10% 84.57 83.66 10% 84.80 83.07
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Table 5. Extrinsic Bias Measures and Accuracy on the Task of Sentiment Analysis.
The closer the scores are to 0 the better.

Models Curation gender race religion

% Bias↓ Acc↑ % Bias↓ Acc↑ % Bias↓ Acc↑
Original / 13.60 92.55 / 41.98 92.55 / 40.61 92.55

CDA / 13.58 92.66 / 37.75 92.43 / 38.61 92.20

Sent-Debias / 17.53 92.78 / 40.96 92.78 / 40.08 92.78

Kaneko / 16.49 91.97 / 36.14 91.97 / 34.60 91.97

Likelihood Removal 20% 12.64 92.78 50% 35.65 92.43 20% 37.37 92.43

Attention Removal 20% 13.31 92.32 10% 38.05 92.32 10% 37.01 92.32

Representation Removal 10% 12.32 92.66 10% 38.08 92.66 50% 38.74 92.78

Combined Removal 50% 11.68 93.00 50% 35.56 91.97 10% 36.38 92.55

Likelihood Augment 10% 12.21 92.09 50% 36.97 92.55 10% 33.23 92.43

Attention Augment 50% 12.27 91.97 10% 35.46 92.66 20% 37.93 91.86

Representation Augment 20% 11.29 91.63 50% 36.80 92.55 10% 37.42 93.35

Combined Augment 20% 11.29 92.32 50% 36.26 92.09 10% 38.33 92.55

4.4 Sentiment Analysis

Task. Sentiment analysis - or sentiment classification - is the task of determin-
ing whether a piece of text has positive, negative or neutral connotations. An
example of a positive sentiment is “That little girl is so adorable”, while “He
was taken to jail” invokes a negative sentiment.

Data and Metrics. We use the same challenge dataset as in the textual infer-
ence task, except that we consider the premise and hypothesis as two independent
sentences. As described above, the pair of sentences in each evaluation sample
differ only in the word describing the doer of the action. For example, we can
have ”The nice person bought a heater” as the first sentence and ”The Muslim
person bought a heater” as the second one. Given that the nature of the action
is the same across the pair of sentences, they should also share the same senti-
ment, regardless of doer’s demographics. Thus, we declare bias in this task as
the difference in sentiment between each pair of sentences. An ideal sentiment
classification model should have bias scores close to 0. We take the average of
absolute differences across the entire evaluation dataset and report our results
in Table 5.

Discussion. We observe that while removing the most biased instances from
training data helps in reducing bias, we get the lowest stereotype scores from the
approaches where we augment them (Last four rows in Table 5). Also, we notice
that all three methods are important; likelihood is best for religion, attention is
best for race while representation is best for gender in this context. This result
suggests that different stereotype information reside at different spots in text
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encoders. We invite researchers to extend their debiasing techniques to include all
three levels of bias sources. Otherwise, we note that existing debiasing methods
- Sent-Debias and Kaneko in this experiment - have only marginal reductions
in bias, and sometimes make it worse. Even CDA comes short of meeting the
same debiasing success as our methods, suggesting that it is better to “listen”
to text encoders notions of stereotypes and take them into consideration while
debiasing. Finally, we point out that removing or augmenting the most biased
training instances does not harm the accuracy of the task (see Acc. in Table 5).

5 Related Work

5.1 Bias Quantification

We identify three main approaches for bias measurement methods in text
encoders: representation-based, likelihood-based and task-specific approaches. In
representation-based methods, the vector representations of words and sentences
produced by text encoders are used to compute bias, usually through the use of
cosine similarity either directly or via permutation tests [4,6,31]. In likelihood-
based approaches, text encoders are first fine-tuned on the language modeling
task. [22] kept the same bias quantification principle of previous approaches, but
replaced vector representations with log-probabilities of words. Later, a myriad
of research focused on likelihoods and probabilities of language models to docu-
ment and excavate social stereotypes [20,33,34]. The fundamental notion of bias
in these works is that a stereotyped language model prefers certain social groups
over others given a neutral context. For example, in “[MASK] love cooking”,
binary gender bias is cast as the difference in likelihoods for the words Men and
Women to replace the mask. Finally, in task-specific approaches [8,10,42,44],
bias is declared as the difference in outcome when task-specific models are tested
with the same input sentence, differing only in social groups. For example, “There
is a muslim down there” and “There is a christian down there” should have the
same sentiment if the sentiment analysis model is unbiased. In this work, we
propose our own variants of representation-, likelihood- and attention-based bias
measurement. While the related works mentioned above function at model-level,
our goal is to assign a bias score to a snippet of text, and not to a model. Finally,
we use existing task-specific bias metrics and benchmarks relating to sentiment
analysis, sentence entailment and question answering to evaluate the efficacy of
our methods.

5.2 Bias Reduction

There are two dominant paradigms of bias reduction methods in the litera-
ture: data-level and model-level debiasing. We have already described the most
acclaimed data-level bias reduction methods in the introduction. So we will not
detail them here, but we focus on pointing out their limitations. The major crit-
icism around CDA is the exponential swell in data size that it inflicts. This point
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is especially alarming when CDA is used to treat bias types with many groups
such as nationality or occupation. So, CDA poses serious concerns regarding the
carbon footprint and energy usage, let alone the potential threat of destabilising
training. Our method is less compute-heavy than CDA since we only operate
on the training data instances that are least concurring with the model’s own
notion of stereotype.

Model-level debiasing approaches also follow different paradigms. In
projection-based methods [4,8,18,27,30,41], the goal is to minimize the pro-
jection of word and sentence representations on a bias dimension or subspace
to eliminate stereotype. In finetuning-based methods [5,14,28,39], models are
trained post-hoc with an additional fairness objective to their loss function.
In adversarial learning-based approaches [12,13,26,49], an adversary is first
trained to detect sensitive information from representations (e.g. gender, race,
etc.), then the model is updated to confuse the adversary. Other methods employ
a diverse set of techniques. For example, [7] use the contrastive learning frame-
work where they automatically generate anti-stereotypes from stereotypical sen-
tences in training data, and then encourage the semantic overlap between these
contrastive sentences by maximizing their mutual information. [23] warn against
the overwhelming carbon footprint that finetuning generally costs, and pro-
pose to optimize adapters [16,36] which are lightweight layers inserted between
those of the text encoder, instead of training the entire model. [50] highlight the
potency of general-purpose regularization techniques such as Dropout to reduce
biased correlations in text encoders, while [43] leverage the latent knowledge of
language models about their own hidden stereotypes and propose Self-Debias:
a zero-shot method to mitigate biases, that requires neither additional training
nor data. In contrast, we avoid all forms of fairness-related finetuning in our
work. Our method is energetically sustainable since only training for the task is
required, but with less prejudice in data.

6 Conclusion

We proposed three methods to uncover stereotypes from text encoders using
likelihoods, attention weights and vector representations. Next, we designed a
pipeline to measure how well the stereotypes mentioned in an input text tally
with those in the model. Finally, we used our pipeline to identify the most
stereotyped instances in task-specific training data according to the stereotype
knowledge of the text encoder under use, remove or augment them, then train
downstream models with curated datasets. Experiments show that our methods
succeed in reducing gender, racial and religious biases from downstream NLP
models better than existing approaches. Our analysis is based on common yet
convenient and simple definitions of social biases. Also, we rely on a predefined
set of word lists to detect words related to social groups in text as explained
in Sect. 3.1. As future work, we plan to investigate more robust approaches of
detection either by seed expansion or word classification techniques. Also, we
project - and encourage other researchers - to provide more inclusive studies,
covering minorities and other bias types such as age, status, or disability.
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7 Ethical Considerations

While our proposed debiasing method has the potential to improve the fairness
of NLP models, we acknowledge the possibility of unintended consequences. In
particular, our method may not be effective in eliminating all biases, and may
even introduce new biases or errors in the model. Additionally, our approach is
based on a set of assumptions for determining which instances to remove, which
may not be universally agreed upon.

Furthermore, as with any technology, there is a risk of misuse or abuse. Our
data selection method, if applied with ill intent, could be used to intentionally
amplify bias and perpetuate harmful stereotypes in NLP models, by keeping the
data instances that concord most with model stereotypes instead of removing
them for example. We recognize that this could have serious implications for
individuals and groups that are already marginalized or subject to discrimina-
tion.

To mitigate these risks, we emphasize the importance of ethical considera-
tions and responsible use of our proposed method. We advocate for transparency
and clear communication about the limitations of our approach, as well as ongo-
ing monitoring and evaluation to ensure that our debiasing method is used in an
ethical and responsible manner. It is also important to engage with stakeholders,
including affected communities, to understand their perspectives and concerns
about the use of machine learning in sensitive domains.

Although the approach is, in itself, independent from the choice of groups,
or the selection of identity terms and definition words that characterize these
groups, we focus in our experiments on bias types and groups commonly used
in the debiasing literature; namely binary gender, race and religion. We have
shown that our method works for both binary and multiclass groups. That being
said, we have not experimented yet with demographics divided into dozens of
categories, e.g. nationality. We also did not include analysis for groups who are
victims of under-criticized microaggressions such as the elderly, obese people or
people suffering from physical/mental disabilities. We justify our experimental
decisions with the following: (1) Current work in the literature focuses primarily
on the three major demographic dimensions. So to facilitate comparison, we used
that too. (2) Existing benchmarks to quantify bias are often limited to binary
gender, race and religion. So even though our approach enables the reduction
of bias for minority groups, we have no reliable data and benchmarks to assess
whether debiasing is indeed effective for such groups. We encourage researchers
and data collectors in the field to produce more inclusive benchmarks in the
future.

We would like to remind that our models are not perfect, even after going
through debiasing. Although our experiments show that bias is indeed reduced,
it is not completely mitigated. Also, the bias detection experiments used in this
paper and in all related work have positive predictive ability, which means that
they can only detect the presence of bias, not the absence of it. So it is possible
that bias is still hiding. We believe that the community needs to include some
aspect of human evaluation to faithfully assess the stereotypical propensities of
text encoders. We project to do that in future work.
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ratz.philipp@courrier.uqam.ca, charpentier.arthur@uqam.ca

Abstract. Algorithmic Fairness is an established field in machine learn-
ing that aims to reduce biases in data. Recent advances have proposed
various methods to ensure fairness in a univariate environment, where
the goal is to de-bias a single task. However, extending fairness to a
multi-task setting, where more than one objective is optimised using
a shared representation, remains underexplored. To bridge this gap, we
develop a method that extends the definition of Strong Demographic Par-
ity to multi-task learning using multi-marginal Wasserstein barycenters.
Our approach provides a closed form solution for the optimal fair multi-
task predictor including both regression and binary classification tasks.
We develop a data-driven estimation procedure for the solution and run
numerical experiments on both synthetic and real datasets. The empirical
results highlight the practical value of our post-processing methodology
in promoting fair decision-making.

Keywords: Fairness · Optimal transport · Multi-task learning

1 Introduction

Multi-task learning (MTL) is a loosely defined field that aims to improve model
performance by taking advantage of similarities between related estimation prob-
lems through a common representation [36,45]. MTL has gained traction in
recent years, as it can avoid over-fitting and improve generalisation for task-
specific models, while at the same time being computationally more efficient
than training separate models [6]. For these reasons, the usage of MTL is likely
to grow and spread to more disciplines, thus ensuring fairness in this setting
becomes essential to overcome historical bias and prevent unwanted discrimina-
tion. Indeed, in many industries, discriminating on a series of sensitive features
is even prohibited by law [1]. Despite the apparent importance of fairness, it
remains challenging to incorporate fairness constraints into MTL due to its mul-
tivariate nature.

Algorithmic fairness refers to the challenge of reducing the influence of a sen-
sitive attribute on a set of predictions. With increased model complexity, simply
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
D. Koutra et al. (Eds.): ECML PKDD 2023, LNAI 14170, pp. 295–312, 2023.
https://doi.org/10.1007/978-3-031-43415-0_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-43415-0_18&domain=pdf
http://orcid.org/0009-0000-6093-6175
http://orcid.org/0000-0002-0966-5493
http://orcid.org/0000-0003-3654-6286
https://doi.org/10.1007/978-3-031-43415-0_18


296 F. Hu et al.

excluding the sensitive features in the model is not sufficient, as complex models
can simply proxy for omitted variables. Several notions of fairness have been
considered [5,43] in the literature. In this paper, we focus on the Demographic
Parity (DP) [8] that requires the independence between the sensitive feature
and the predictions, while not relying on labels (for other notions of fairness,
see Equality of odds or Equal opportunity [23]). This choice is quite restrictive
in the applications, but provides a first stepping stone to extend our findings to
other definitions. In single-task learning problems, the fairness constraint (such
as DP) has been widely studied for classification or regression [4,8,13,16,42,44],
but to extend fairness to multiple tasks, we first need to study the effects of
learning tasks jointly on the potential outcomes. In line with a core advantage
of MTL, the approach we propose is based on post-processing which results in
faster computations than other approaches discussed below. The contributions
of the present article can hence be summarised as follows:

Contributions. We consider multi-task problems that combine regression and
binary classification, with the goal of producing a fair shared representation
under the DP fairness constraint. More specifically:

– We transform the multi-task problem under Demographic Parity fairness to
the construction of multi-marginal Wasserstein-2 barycenters. Notably, we pro-
pose a closed form solution for the optimal fair multi-task predictor.

– Based on this optimal solution, we build a standard data-driven approach
that mimics the performance of the optimal predictor both in terms of risk
and fairness. In particular, our method is post-processing and can be applied
to any off-the-shelf estimators.

– Our approach is numerically illustrated on several real data sets and proves
to be very efficient in reducing unfairness while maintaining the advantages of
multi-task learning.

Related Work. Algorithmic fairness can be categorised into: 1) pre-processing
methods which enforce fairness in the data before applying machine learning
models [2,9,34]; 2) in-processing methods, who achieve fairness in the training
step of the learning model [3,4,18]; 3) post-processing which reduces unfairness
in the model inferences following the learning procedure [12,14,15]. Our work
falls into the latter. This comes with several computational advantages, not least
the fact that even partially pre-trained models can be made fair, which extends
our findings to multi-task transfer learning.

Within standard, single-task classification or regression problems, the DP
constraint has been extensively studied before. In particular, the problem of
integrating algorithmic fairness with the Wasserstein distance based barycenter
has been an active area of research [12,15,21,25] but most studies focus on learn-
ing univariate fair functions. Our work differs from the aforementioned work by
enforcing the DP-fairness in multi-task learning, involving learning a fair vector-
valued function based on a shared representation function. To the best of our
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knowledge, there is only a limited body of research concerning fairness in MTL
settings. For instance, Zhao et al. [46] introduced a method for fair multi-task
regression problems using rank-based loss functions to ensure DP-fairness, while
[35] and [39] independently achieve fairness for multi-task classification problems
in the Equal Opportunity or Equalised Odds sense. However, our approach offers
a flexible framework for achieving fairness by simultaneously training fair predic-
tors including binary classification and regression. Oneto et al. [31,32] suggested
a DP-fair multi-task learning approach that learns predictors using information
from different groups. They proposed this for linear [32] and 1-hidden layer net-
works [31] predictors. Our work extends this approach to arbitrary multivariate
distributions and proposes a post-processing method that keeps additional com-
putations to a minimum.

Outline of the Paper. The remainder of this article is structured as follows:
Sect. 2 introduces MTL, DP-fairness and the objective in rendering multi-task
problems fair. Section 3 introduces our fair multi-task predictor which is then
translated to an empirical plug-in estimator in Sect. 4. Section 5 evaluates the
estimator on synthetic and real data and we conclude in Sect. 6.

2 Problem Statement

In machine learning, one often encounters two types of prediction tasks: regres-
sion and binary classification. In regression, the goal is to predict a real-valued
output in R while in binary classification, the goal is to predict one of two classes
{0, 1}. Although the definitions and our approach can be applied to any num-
ber of finite tasks, for ease of presentation we focus this section on these two
sub-cases.

2.1 Multi-task Learning

There are several definitions and goals that can be achieved through MTL. As
our applications are centered on similar tasks, we focus on one aspect referred
to as parameter sharing between the tasks (for a more comprehensive survey,
we recommend Zhang and Yang’s survey [45]). Parameter sharing is especially
useful in the case where there are missing labels in one of the tasks, as MTL
can exploit similarities among the tasks to improve the predictive performance.
Formally, we let (X, S,Y ) be a random tuple with distribution P. Here, X
represents the non-sensitive features, S a sensitive feature, considered discrete,
across which we would like to impose fairness and Y represents the tasks to
be estimated. In theory, there are no restrictions on the space of X, Y , or S.
Throughout the article, to ease the notational load, we assume that X ∈ X ⊂
R

d, S = {−1, 1} where −1 represents the minority group and 1 the majority
group and Y = (Y1, Y2) ∈ Y1 × Y2 where Y1 ⊂ R and Y2 = {0, 1} (or [0, 1] if
we consider score function). That is, we consider problems where the columns
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of Y represent regression-binary classification problems. More specifically, we
consider for g∗

1 : X × S → R the general regression problem

Y1 = g∗
1(X, S) + ζ (1)

with ζ ∈ R a zero mean noise. g∗
1 is the regression function that minimises the

squared risk RL2(g) := E (Y1 − g(X, S))2. For the second task, recall that a clas-
sification rule c2 : X ×S → {0, 1} is a function evaluated through the misclassifi-
cation risk R0−1(c) := P (c(X, S) �= Y2). We denote g∗

2(X, S) := P(Y2 = 1|X, S)
the conditional probability (or score) of belonging to class 1. Recall that the min-
imisation of the risk R0−1(·) over the set of all classifiers is given by the Bayes
classifier

c∗
2(X, S) = 1 {g∗

2(X, S) ≥ 1/2} . (2)

The modelling of the two columns of Y is then referred to as the tasks, denoted
T = {1, 2}. Here we adopt the general notation the two tasks Y1 and Y2 are
modelled on the same input space X ×S such that they are independent of each
other conditionally on (X, S). In line with the notion of related tasks, we suppose
that the tasks share a common representation of the features hθ : X × S → Z
where Z ⊂ R

r and the marginal task models can be represented by gt(·) = ft ◦
hθ(·) for a given task-related function ft : Z → Yt. The representation can then
be approximated via a neural network. We denote H the set of all representation
functions. To appropriately weigh each of the tasks in the estimation problem,
we use trade-off weights λ = (λ1, λ2) where we assume λt > 0 for all t. This
yields the simple multi-task estimator defined as:

θ∗
λ = argmin

θ
E

[
2∑

t=1

λtRt

(
Yt, ft ◦ hθ(X, S)

)]
(3)

with Rt the risk associated to task t. Restricting each task to use the same
representation hθ might seem overly simplistic, but given that under mild con-
ditions the universal approximation theorem [24] is applicable, a large variety
of problems can still be modelled. A thorough discussion of the advantages of
multi-task learning would go beyond the scope of this article and we refer the
interested reader instead to [36,45] for a comprehensive survey. The empirical
estimation of Eq. (3) will be further discussed in Sect. 4.2.

Notations. Assuming that the following density exists, for each s ∈ S and for
any task predictor g, we denote νg the probability measure of g(X, S) and νg|s
the probability measure of g(X, S)|S = s. Fg|s : R → [0, 1] and Qg|s : [0, 1] → R

are, respectively, its CDF function defined as Fg|s(u) := P (g(X, S) ≤ u|S = s)
and its corresponding quantile function defined as Qg|s(v) := inf{u ∈ R :
Fg|s(u) ≥ v}.

2.2 Demographic Parity

We introduce in this section the fairness under Demographic Parity (DP) con-
straint in both single-task and multi-task problems (Fig. 1).
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Fig. 1. Representation function sharing in a neural network for multi-task learning.
The goal in DP-fairness is to construct a set of predictors {gfair

t (X , S)}t independent
from the sensitive feature S. X i refers to the i-th feature of X .

Fairness in Single-Task Problems. For a given task t ∈ T = {1, 2}, we
denote by Gt the set of all predictors gt : X × S → Yt of the form gt(·) = ft ◦
hθ(·). In particular for the binary classification, G2 represents the set of all score
functions in Y2 = [0, 1] and additionally we denote Gclass

2 the set of all classifiers
in {0, 1}. With a provided score function g2 ∈ G2, a class prediction c2 ∈ Gclass

2

is generated using a threshold τ ∈ [0, 1], expressed as c2(·) = 1{g2(·) ≥ τ}.
Most work aims to ensure that sensitive information S (such as race) does not
influence the decisions c2, i.e. c2(X, S) ⊥⊥ S. This fairness criterion is called
weak Demographic Parity [23,27] and verifies

| P(c2(X, S) = 1 | S = −1) − P(c2(X, S) = 1 | S = 1) | = 0 .

However, enforcing DP fairness for a given threshold does not imply enforcing DP
fairness for other thresholds. Therefore we need to enforce the score function g2

instead, i.e. g2(X, S) ⊥⊥ S. This definition, called strong Demographic Parity [4,
25], will be formally defined below in Definition 1.

Remark 1 (Misclassification risk and squared risk). In binary task {0, 1}, given
τ = 1/2 the misclassification risk can be rewritten as

P (Y2 �= c∗
2(X, S)) = E

[
(Y2 − c∗

2(X, S))2
]

with g∗
2(X, S) = P (Y2 = 1|X, S) = E [Y2|X, S]. Since our goal is to enforce

fairness w.r.t. the sensitive feature S in a score function g2 ∈ G2, we are interested
in minimising the risk E (Y2 − g2(X, S))2 instead. Notably, for any given task
t ∈ {1, 2}, the (unconstrained) single-task objective becomes:

g∗
t ∈ argmin

gt∈Gt

E

[
(Yt − gt(X, S))2

]
.
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We now formally define the (strong) Demographic Parity notion of fairness
and the associated unfairness measure.

Definition 1 (Strong Demographic Parity). Given a task t ∈ T (regres-
sion or score function), a predictor gt : X × S → Yt ⊂ R is called fair under
Demographic Parity (or DP-fair) if for all s, s′ ∈ S

sup
u∈Yt

| P(gt(X, S) ≤ u | S = s) − P(gt(X, S) ≤ u | S = s′) | = 0 .

Definition 2 (Unfairness). The unfairness of gt ∈ Gt is quantified by

U(gt) := max
s,s′∈S

sup
u∈Yt

∣∣ Fgt|s(u) − Fgt|s′(u)
∣∣ . (4)

Hence, by the above definition, a predictor gt is fair if and only if U(gt) = 0.

We use Gfair
t := {g ∈ Gt : g is DP-fair} to denote the set of DP-fair predictors

in Yt for a given task t ∈ T . In single-task learning for regression and binary
classification, the aim in DP fairness is to minimise the squared risk over Gfair

t

to find a fair predictor

g
∗(fair)
t ∈ argmin

gt∈Gfair
t

E

[
(Yt − gt(X, S))2

]
. (5)

Note that the estimator of the optimal regression for this optimisation prob-
lem (5) can be identified as the solution of the Wasserstein barycenter prob-
lem [15,22,25]. In binary classification, [20] show that maximising accuracy under
DP fairness constraint is the same as solving a corresponding score function with
the threshold at level τ = 1/2. Here, we extend this notation as suggested in
Remark 1.

Fairness in Multi-task Problems. Given trade-off weight λ = (λt)t∈T and
multi-task problem Y = (Yt)t∈T , an optimal multi-task predictor takes a feature
set (X, S) as input and outputs a set of predictions denoted (g∗

t,λ)t∈T . The t-
th marginal prediction is given by g∗

t,λ(·) = ft ◦ hθ∗
λ
(·). Alternatively, through

a slight abuse of notation, we can express it as g∗
t,λ(·) = ft ◦ θ∗

λ(·), where the
representation function yields

θ∗
λ ∈ argmin

θ∈H
E

[∑
t∈T

λt (Yt − ft ◦ θ(X, S))2
]

.

For the sake of simplicity in presentation, we will represent the function hθ as
θ from this point forward. A multi-task predictor is DP-fair if its associated
marginal predictor satisfies DP fairness in Definition 1 for every task t ∈ T . We
use Hfair := {θ ∈ H : ft ◦ θ is DP-fair for each task t ∈ T } to denote the subset
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of all representations where each task is DP-constrained. The constrained multi-
objective optimisation of Y = (Yt)t∈T is given by the fair optimal representation
function

θ
∗(fair)
λ ∈ argmin

θ∈Hfair
E

[∑
t∈T

λt (Yt − ft ◦ θ(X, S))2
]

. (6)

Notably, for each task t ∈ T , the associated marginal fair optimal predictor is
naturally denoted g

∗(fair)
t,λ (X, S) = ft ◦ θ

∗(fair)
λ (X, S). (f1, . . . , f|T |) is predeter-

mined to match the output type of each task in (Y1, . . . , Y|T |). For instance, one
can use linear activation functions for regression problems, and sigmoid functions
for binary classification.

3 Wasserstein Fair Multi-task Predictor

We describe in this section our proposed post-processing approach for construct-
ing a fair multi-task learning. To derive a characterisation of the optimal fair
predictor, we work under the following assumption.

Assumption 1 (Continuity assumption). For any (s, t,λ) ∈ S × T × Λ,
we assume that the measure νg∗

t,λ |s has a density function. This is equivalent to
assuming that the mapping u 
→ Fg∗

t,λ |s(u) is continuous.

Driven by our goal to minimise the squared risk defined in Eq. (6) and
building upon previous research in the univariate case [15,22], we introduce
the Wasserstein-2 distance. We then demonstrate that fairness in the multi-
task problem can be framed as the optimal transport problem involving the
Wasserstein-2 distance. The relationship between these concepts is established
in Theorem 1.

Definition 3 (Wasserstein-2 distance). Let ν and ν′ be two univariate prob-
ability measures. The Wasserstein-2 distance between ν and ν′ is defined as

W2
2 (ν, ν′) = inf

γ∈Γν,ν′

{∫
R×R

|y − y′|2dγ(y, y′)
}

where Γν,ν′ is the set of distributions on R × R having ν and ν′ as marginals.

The proof of the following theorem is based on results from [15] or [22].
Although their work is not immediately applicable to our case due to the depen-
dence of the tasks, they provide valuable insights on the use of optimal transport
theory in the context of Demographic Parity. We provide a sketch of a proof but
relegate the rigorous version to the Appendix.

Theorem 1 (Optimal fair predictions). Let Assumption 1 be satisfied.
Recall that πs = P(S = s).
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1. A representation function θ
∗(fair)
λ satisfies Eq. (6), i.e.,

θ
∗(fair)
λ ∈ argmin

θ∈Hfair

E

[∑
t∈T

λt (Yt − ft ◦ θ(X, S))2
]

.

if and only if, for each t ∈ T this same representation function satisfies

ν
ft◦θ

∗(fair)
λ

∈ argmin
ν

∑
s∈S

πsW2
2 (νg∗

t,λ |s, ν) .

2. Additionally, the optimal fair predictor g
∗(fair)
t,λ (·) = ft◦θ

∗(fair)
λ (·) can be rewrit-

ten as

g
∗(fair)
t,λ (x, s) =

∑
s′∈S

πs′Qg∗
t,λ |s′ ◦ Fg∗

t,λ |s
(
g∗

t,λ(x, s)
)
, (x, s) ∈ X × S . (7)

Proof (sketch) Recall Eq. (1) and g∗
2(X, S) = E (Y2|X, S), the multi-objective

described in Eq. (6) can be easily rewritten

min
θ∈Hfair

E

[∑
t∈T

λt (g∗
t (X, S) − ft ◦ θ(X, S))2

]
.

Using Prop.1 in [19] together with Assumption 1, there exists a function Vt :
X × S × Λ → Yt (or g∗

t,λ(x, s) by abuse of notation) such that the optimisation
is equivalent to

min
θ∈Hfair

Eλ∼Pλ
E

[∑
t∈T

λt

(
g∗

t,λ(X, S) − ft ◦ θ(X, S)
)2

]
.

We assume in this proof that the vector λ is sampled from the distribution Pλ .
Given a task t ∈ T we denote ν∗

t ∈ argminν

∑
s∈S πsW2

2 (νg∗
t,λ |s, ν) where there

exists (θ∗
t )t∈T such that ν∗

t = ft ◦ θ∗
t . Adapted from the work in [15] and the

universal approximation theorem [24] we deduce,

min
θ∈Hfair

Eλ∼Pλ
E

[∑
t∈T

λt

(
g∗

t,λ(X, S) − ft ◦ θ(X, S)
)2

]

= Eλ∼Pλ

∑
t∈T
s∈S

λtπsW2
2 (νg∗

t,λ |s, ν
∗
t ) ,

which concludes the sketch of the proof, for details see the Appendix �

Theorem 1 provides a closed form expression for the optimal fair predictor
g

∗(fair)
λ =

(
g

∗(fair)
t,λ

)
t∈T

for the multi-task Y = (Yt)t∈T . Our method is a post-

processing approach, so we don’t directly retrieve the parameters θ
∗(fair)
λ . A direct

result of Theorem 1 indicates that our post-processing approach preserves the
rank statistics [7,38] conditional on the sensitive feature.
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Corollary 1 (Group-wise rank statistics). If g∗
t,λ(x1, s) ≤ g∗

t,λ(x2, s) for
any instances (x1, s) and (x2, s) in X × S, then the fair optimal predictor will
also satisfy g

∗(fair)
t,λ (x1, s) ≤ g

∗(fair)
t,λ (x2, s).

To obtain the optimal fair classifier for the original two-task problem (Y1, Y2),
we can derive the final optimal fair classifier from the expression in Theorem 1.
Given an instance (x, s) ∈ X × S and a threshold τ ∈ [0, 1], the optimal fair
classifier becomes

c
∗(fair)
2,λ (x, s) = 1

{
g

∗(fair)
2,λ (x, s) ≥ τ

}
.

The finding in [20] is applicable to our case, where setting the threshold at
τ = 1/2 corresponds to optimising accuracy while adhering to the DP constraint.

4 Plug-In Estimator

To employ the results on real data, we propose a plug-in estimator for the optimal
fair predictor g

∗(fair)
λ .

4.1 Data-Driven Approach

The estimator is constructed in two steps in a semi-supervised manner since it
depends on two datasets: one labeled denoted Dtrain

n = {(Xi, Si, Yi,1, Yi,2)}n
i=1

n i.i.d. copies of (X, S, Y1, Y2) and the other unlabeled one, denoted Dpool
N =

{(Xi, Si)}N
i=1, N i.i.d. copies of (X, S). For the regression-classification problem,

i) We train simultaneously the estimators ĝ1,λ and ĝ2,λ of respectively the
regression function g∗

1,λ and the score function g∗
2,λ (optimal unconstrained

functions) on a labeled dataset Dtrain
n via a multi-task learning model (see

Sect. 2). To ensure the continuity assumption, we use a simple randomisation
technique called jittering on the predictors. For each t ∈ T , we introduce

ḡt,λ(Xi, Si, ζi,t) = ĝt,λ(Xi, Si) + ζi,t

with ζi,t some uniform perturbations in U(−u, u) where u is set by the
user (e.g. u = 0.001). This trick is often used for data visualisation for tie-
breaking [10,15]. The trade-off weight λ can be predetermined or generated
during training (refer to Sect. 4.2 below).

ii) Empirical frequencies (π̂s)s∈S , CDF F̂ḡt,λ |s and quantile function Q̂ḡt,λ |s are
calibrated via the previously estimators ḡt and the unlabeled data set Dpool

N .

The (randomised) Wasserstein fair estimator for each t ∈ T is defined by plug-in

ĝ
(fair)
t,λ (x, s) =

∑
s′∈S

π̂s′Q̂ḡt,λ |s′ ◦ F̂ḡt,λ |s (ḡt,λ(x, s, ζt)) (8)

with (ζt)t∈T
i.i.d.∼ U(−u, u). We present the associated pseudo-code in Algo-

rithm1.
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Remark 2 (Data splitting) The procedure requires unlabeled data. If we do not
have any in practice, we can split the labeled data in two and remove the labels
in one of the two sets. As demonstrated in [16], splitting the data is essential to
avoid overfitting and to get the right level of fairness.

4.2 Empirical Multi-task

This section outlines how we build each marginal predictor ĝt,λ using the training
set Dtrain

n = (xi, si,yi)n
i=1 where each (xi, si,yi) is a realisation of (Xi, Si,Y i) ∼

P. Given a set of task-related loss functions Lt, we define the empirical multi-task
problem from Eq. (3) as

θ̂λ = argmin
θ

n∑
i=1

2∑
t=1

λtLt(yi,t, ft ◦ θ(xi, si)).

Algorithm 1 Fairness calibration
Input: new data point (x, s), base estimators (ĝt,λ )t∈T , unlabeled sample Dpool

N , and
i.i.d uniform perturbations (ζs

k,i)k,i,s.

Step 0. Split Dpool
N to construct (Si)

N
i=1 and {Xs

i }Ns
i=1 ∼ PX|S=s given s ∈ S;

Step 1. Compute the empirical frequencies (π̂s)s based on (Si)
N
i=1;

Step 2. Compute the empirical CDF ̂Fḡt,λ |s and quantile ̂Qḡt,λ |s′ from {Xs
i }Ns

i=1;

Step 3. Compute ĝ1,λ , . . . , ĝ|T |,λ thanks to Eq. (8);
Output: fair predictors ĝ1,λ (x, s), . . . , ĝ|T |,λ (x, s) at point (x, s).

As the values for different loss functions Lt are situated on different scales,
issues arise during training when using gradient based methods (see for example
[28,29,40,41] for discussions about the issue). The λ parameter can alleviate this
issue but is difficult to find in practice. Since there is no a priori optimal choice,
we use the ”You Only Train Once” (YOTO) approach of [19], initially developed
for regression-regression problems. As the name of their approach suggests, the
model is only trained once for a host of different λ values by conditioning the
parameters of the neural network directly on the task weights λ. The key idea is
that different values for λ are sampled from a distribution and included directly
in the estimation process. Rewritten, Eq. (4.2) then becomes:

θ̂λ = argmin
θ

n∑
i=1

2∑
t=1

λtLt(yi,t, ft ◦ θ(xi, si;λ)), λ ∼ Pλ (9)

where Pλ is a sampling distribution. For our purposes, we use uniform distribu-
tion. As in the original article [19], we employ FiLM conditioning developed by
[33] to condition each layer of θ(·) directly on the sampled λ. Once the model is
fitted, the optimal λ is chosen via a problem specific calibration method on a cal-
ibration set. Precise details on the implementation can be found in Algorithm 2.
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Algorithm 2 λ-calibrated MTL
Input: Training data Dtrain

n , bounds bl, bu for U(bl, bu), model, validation grid
while training do

Step 1. Draw nb λt ∼ U(bl, bu);
Step 2. FiLM Condition[33] each layer in neural network using λ;
Step 3. Condition loss as in YOTO [19] t with λt;
Step 4. Adjust model parameters given x, s, λ;

end while
for λv in validation grid do

Step 1. Predict ŷt for all t with x, s, λv;
Step 2. Evaluate ŷt, yt for all t

end for
Output: Grid of task-wise error metrics given all λv in validation grid, choose
optimal λv

5 Numerical Evaluation

To evaluate the numerical performance, we conduct experiments on different
datasets1. All data sets used are publicly available and are described in the next
subsection. We also describe each of the separate tasks and the variable on which
we want to achieve demographic parity (the S in the equations above).

5.1 Datasets

We focus on applications with tabular data, the first data set we consider stems
from the folktables package [17], which was constructed to enable bench mark-
ing of machine learning models2. Instead of a single task, we consider the simul-
taneous prediction of both Mobility (Binary) and Income (Regression) using a
set of 19 features. Here, we consider gender the binary sensitive variable. In
total, we use 58,650 observations from the state of California.

As a second benchmark, we consider the compas data set [26]. It was con-
structed using a commercial algorithm which is used to assess the likelihood
of reoffending for criminal defendants. It has been shown that its results are
biased in favour of white defendants, and the data set has been used to assess
the efficacy of other fairness related algorithms [30]3. The data set collected has
two classification targets (recidivism and violent recidivism), that are predicted
using 18 features. In total, we use 6,172 observations from the data set and, in
the spirit of the initial investigation, we consider race as the sensitive attribute.

1 All sourcecode and data links can be found on github.com/phi-ra/FairMultitask.
2 github.com/socialfoundations/folktables.
3 Although available publicly, we believe the usage of the data needs to undergo some

ethical considerations. Please read our separate ethical statement regarding this.

https://github.com/phi-ra/FairMultitask
https://github.com/socialfoundations/folktables
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5.2 Methods

For the simulations, we split data into 80/20 train/test set. All estimators are
based on neural networks with a fixed architecture and 10% dropout in the
layers. We compare the performance and fairness of the optimal predictor and
the optimal fair predictor across a MTL model and two single-task (STL) models,
across 20 bootstrap iterations. We refrain from an in-depth architecture and
hyper-parameter search to keep the insights comparable among the simulations.

Our goal is to exemplify two distinct features of MTL under fairness con-
straints. A standard application in MTL is to leverage similarities in tasks to
improve performance in the case where labels in one of the tasks are scarce.

Fig. 2. Left, the performance as measured by MSE for MTL and STL, here the λ
parameter was chosen to optimise the regression task. This leads to better outcomes,
especially in the case of missing values in the regression labels. Right, regression esti-
mates before versus after the optimal transport.

As our method is valid for any trade-off weight λ, we can achieve fairness even
in the case where one task is more important than the other. To simulate this
environment, we successively remove [0,25,50,75,95]% of the regression labels in
the training of the folktables data set and calibrate the λ vector to optimise
performance on the regression task. Intuitively, we would expect the predictive
performance of the models to degrade with a higher proportion of missing data,
but MTL should perform better than STL, if it is able to extract knowledge
from the related classification task. A second use for MTL arises when we are
interested in the joint distribution of several tasks. This is of particular impor-
tance for the second case, as one of the tasks in the compas data set is actually
a subset of the other. To illustrate this, we optimise the λ parameter for the
compas tasks in order to maximise performance in both. To measure the per-
formance we use the mean-squared error (MSE) of the log-predictions for the
regression task and area under the ROC curve (AUC) for the classification tasks.
To calculate the unfairness, we compare the predictions made on the two sub-
populations specified by the presence (Protected) or absence (Unprotected) of
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the sensitive attribute using the empirical counterpart Û(gt) of the unfairness
given in Definition 4 which corresponds to a two-sample Kolmogorov-Smirnov
(KS) test

Û(gt) := sup
u∈Yt

∣∣∣ F̂gt|1(u) − F̂gt|−1(u)
∣∣∣ .

5.3 Results

The numeric results for the folktables data set are summarised in Table 1
and highlights visualised in Fig. 2. Especially the Income variable (the regres-
sion task) suffers from unfairness (as indicated by a higher value in the KS test).
The advantage of using a second task to help the predictions is also clearly visible
in the numerical results and the left pane of Fig. 2. Although the performance
of MTL deteriorates with more missing labels, it suffers less than the STL esti-
mation. The classification task performs less well, as the λ was calibrated to
optimise the regression task. Additionally, as there are no missing labels in the
classification task, we would expect only marginal gains from using MTL even
in the case where λ is calibrated to serve both tasks well. This is in line with
what was found in the literature of MTL [37]. Here, the specification using the
YOTO approach allows the user to chose the optimal trade-off weight for the
problem at hand in a specific calibration step which will lead to different out-
comes using the same trained weights. The advantage of our result is that it will
be valid for any λ. We can also see across the board that the imposing fairness
among the predictions reduces slightly the predictive performance and almost
exactly satisfies the DP condition. We also visualise the effect of the optimal
transport as specified by the Wasserstein fair estimator in Eq. (8), as suggested
in [11]. Because our operations preserve the group-wise rank (Corollary 1), we
can directly represent the changes in the predictions for each group. The pre-
dicted income distribution is shifted in a way such that the upper tail for the
sensitive group is shifted up, but the lower tail is shifted downwards.

Table 1. Performance and unfairness for MTL and Single Task Learning (STL) mod-
els on the folktables data. Each model was also post-processed and evaluated on
performance and unfairness.

Data Model

MTL MTL, Post-processed STL

Performance Unfairness Performance Unfairness Performance Unfairness

regression - all data 0.548 ± 0.02 0.109 ± 0.01 0.558 ± 0.02 0.018 ± 0.00 0.559 ± 0.02 0.107 ± 0.01

regression - 25% missing 0.558 ± 0.02 0.109 ± 0.02 0.572 ± 0.02 0.018 ± 0.00 0.570 ± 0.02 0.105 ± 0.02

regression - 50% missing 0.577 ± 0.02 0.109 ± 0.02 0.593 ± 0.03 0.018 ± 0.01 0.587 ± 0.02 0.099 ± 0.01

regression - 75% missing 0.612 ± 0.05 0.101 ± 0.02 0.627 ± 0.06 0.019 ± 0.01 0.632 ± 0.04 0.098 ± 0.01

regression - 95% missing 0.678 ± 0.05 0.105 ± 0.02 0.687 ± 0.05 0.018 ± 0.01 0.738 ± 0.06 0.108 ± 0.03

classification - all data 0.576 ± 0.01 0.080 ± 0.03 0.577 ± 0.01 0.018 ± 0.01 0.640 ± 0.03 0.042 ± 0.02

The results from the compas data set mirror in large parts the ones of the
folktables but here we want to optimise the performance across both tasks at
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once. Results are summarised in Table 2 and visualised in Fig. 3. The effect of the
optimal transport on the distributions can be seen in the marginal distributions
in 3. The colors indicate whether a given individual is identified as belonging
to a protected group. Clearly a bias can be seen in the marginal distributions,
the protected group has both a higher recidivism score and a slightly higher
violent recidivism score, which mirrors the findings from [26]. In the right pane,
we show the post-processed version, where the marginal distributions are almost
congruent, enforcing the DP condition. The resulting fairness is also assessed
numerically using the KS test. As expected this also leads to a small performance
decrease as measured by AUC. The tuning of the λ parameter allows to have a
predictive performance that is almost equivalent to the STL specification, with
the advantage that we can jointly predict the scores and enforce the DP condition
for this joint representation.

Table 2. Performance in AUC and unfairness for MTL and Single Task Learning
(STL) models on the compas data. Each model was also post-processed and evaluated
on performance and unfairness.

Data Model

MTL MTL, Post-processed STL STL, Post-processed

Performance Unfairness Performance Unfairness Performance Unfairness Performance Unfairness

task 1 - all data 0.742 ± 0.01 0.289 ± 0.02 0.727 ± 0.01 0.052 ± 0.02 0.745 ± 0.01 0.291 ± 0.02 0.730 ± 0.01 0.055 ± 0.02

task 2 - all data 0.686 ± 0.02 0.289 ± 0.04 0.649 ± 0.01 0.053 ± 0.02 0.671 ± 0.01 0.290 ± 0.03 0.638 ± 0.03 0.053 ± 0.02

Fig. 3. Joint distribution for scores under unconstrained and DP-fair regimes. Color
indicates the presence of the sensitive feature. Note that the joint distribution appears
more mixed and the marginal distributions overlap in the DP fair case.
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6 Conclusion

As multi-task learning grows in popularity, ensuring fairness among the predic-
tions becomes a new challenge as the precise effects of MTL are still poorly
understood. In this paper, we investigated the general effects of parameter shar-
ing on the marginal tasks. We proposed a method to integrate fairness into
MTL through a post-processing procedure which keeps a key advantage of MTL,
shorter computational expenses, largely intact. This also opens a host of new
directions for further research. As we focused on tabular data, we were less
restricted by possible model architectures. In other related areas where MTL is
becoming more popular, such as computer vision, pre-trained models akin to our
hθ are often used to ease the computational burden. A thorough investigation
into the precise effects of the combination of the triple Transfer-Multitask-Fair
learning would hence be a natural extension. A further extension of our results
would be to consider fairness in a general multivariate setting. This would mean
shifting the parameters of the embedding hθ simultaneously for all tasks. This
will likely not be possible with a similar closed-form solution, as our approach
relies on the estimation of quantiles. As MTL is generally used in the case where
there is a rather strong (and exploitable) relationship between the two tasks,
the marginal approach we propose here seems apt, but a theoretical discussion
would nevertheless be interesting.

Ethics statement

Our work is centered around fairness, which is a goal we sincerely believe all
model should strive to achieve. Nevertheless, to ensure fairness in models, one
needs to define unfairness as its counterpart. This naturally leads to a conundrum
when performing research on this topic. On one hand, we would like our models
to be fair, but to analyse the differences and show an improvement, we first need
to create an unfair outcome. As has been shown in the past, simply ignoring the
sensitive attributes does not solve the problem of bias in the data. Further, as
more flexible methods make their way into practical modelling, this issue is only
bound to increase. Hence it is our conviction that estimating intentionally unfair
models (by for example including sensitive variables explicitly in the training
phase) is ethically justifiable if the goal is to provide a truly fair estimation. In
that sense our work contributes to achieving fairness, and does not create new
risks by itself.

In our empirical application, we consider data which was used in a predictive
algorithm in the criminal justice system. This is particularly concerning as there
have been numerous instances where racial, ethnic or gender bias was detected
in such systems (indeed the data from compas were collected to show precisely
that) and the criminal justice system is supposed to be egalitarian. Further,
existing biases within the justice system may be further reinforced. Although
the above mentioned weaknesses are well documented, such algorithms continue
to be used in practice. Our work does not contribute to these algorithms directly
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but rather uses them as an example to show unequal treatment. Whereas the
usage of other, biased data sets, such as the well-known Boston Housing data
set is discouraged, we believe that in order to show the effectiveness of fairness
related algorithms, the use of such a data set is justified.
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Abstract. The deep neural network (DNN) has been proven effective in vari-
ous domains. However, they often struggle to perform well on certain minority
groups during inference, despite showing strong performance on the majority of
data groups. This is because over-parameterized models learned bias attributes
from a large number of bias-aligned training samples. These bias attributes are
strongly spuriously correlated with the target variable, causing the models to be
biased towards spurious correlations (i.e., bias-conflicting). To tackle this issue,
we propose a novel reweighted sparse training framework, dubbed as REST,
which aims to enhance the performance of biased data while improving compu-
tation and memory efficiency. Our proposed REST framework has been experi-
mentally validated on three datasets, demonstrating its effectiveness in exploring
unbiased subnetworks. We found that REST reduces the reliance on spuriously
correlated features, leading to better performance across a wider range of data
groups with fewer training and inference resources. We highlight that the REST
framework represents a promising approach for improving the performance of
DNNs on biased data, while simultaneously improving computation and mem-
ory efficiency. By reducing the reliance on spurious correlations, REST has the
potential to enhance the robustness of DNNs and improve their generalization
capabilities. Code is released at https://github.com/zhao1402072392/REST.

Keywords: Unbiased Learning · Minority group · Sparse training

1 Introduction

Deep neural network models are successful on various tasks and can achieve low aver-
age error on the test set. However, these models may still exhibit high errors for certain
subgroups of samples that are the minority in the training dataset [9,45]. This problem
may be caused by the standard method (empirical risk minimization (ERM)) of training
models that optimizes the average training loss. During training, models learn the spuri-
ous correlations that exist within the majority groups in the data and make predictions
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based on this correlation. For example, consider an image classification task of cows
and camels, where most of the images of cows are captured in grasslands and camels in
deserts. As a result of training on such a dataset, models tend to rely on features such
as the presence of grass or sand in an image instead of the object of interest for making
predictions [3]. This can lead to poor performance of minority groups (e.g., cows in the
desert and camels in the grassland). Since the model learns spuriously correlated fea-
tures from the misleading statistical evidence in the data of the majority group, it will
perform poorly on the minority group.

To address the problem that models perform poorly on minority groups and train an
unbiased network that can performwell on biased datasets, researchers proposed various
methods. One fundamental idea is to adjust the weights of different groups in the data
during training. This approach, known as reweighting, has been extensively studied in
the literature [5,38,39]. The main goal of reweighting is to upweight the training loss for
minority groups, thus encouraging the model to pay more attention to these groups and
achieve higher accuracy on biased data. Some recent studies have focused on improving
the worst-group error, which measures the performance of the model on the subgroup
with the lowest accuracy. One approach is based on distributionally robust optimization
(DRO) [4,8], which aims to optimize the worst-case performance of the model under
all possible distributions. Based on distributionally robust optimization (DRO) [4,8],
for instance, Sagawa et al. [37] propose GDRO, a DRO-based method that directly min-
imizes the worst-group error during training. By doing so, the model can learn to avoid
spurious correlations and focus on the most informative features for all groups. [27,34]
propose a two-step training approach. The idea is to first identify the data that the model
predicts incorrectly after ERM training and upweight these data to train the model again.
Despite the progress made by these methods, most existing work still focuses on training
or fine-tuning model parameters in different ways to mitigate the bias of the model.

Some researchers found that over-parameterization allows the model to achieve a
high average test accuracy but decreases the minority test accuracy due to capturing
spurious correlations in the data [38]. Therefore, in addition to fine-tuning the model,
some work [44] focused on improving the accuracy of the model on biased data by
pruning the model parameters. For instance, Zhang et al. [44] demonstrate that there
exist sub-networks in the neural network that are less susceptible to spurious correla-
tion. But all existing sparsity-based approaches rely on pruning a fully-trained dense
network, which itself is very tedious. It is required to train a dense model first, then
prune the model parameters according to some regulations to obtain a sparse model,
and finally fine-tune the sparse model to recover accuracy.

Overall, previous works address the model’s poor performance on highly biased
data either by using minority-group-aware optimization (e.g., loss reweighting, DRO
[4,8], GDRO [37]), or by modifying the biased model using some ad hoc operations
(e.g., pruning [44], re-training on the biased data group (e.g., [13]). In this paper, we
propose to close this research question by directly training sparse neural networks from
scratch to overcome the key hurdle of over-parameterization in memorizing spurious
features. Our approach directly yields a sparse subnetwork that is debiased “out of the
box”, without any costly pre-training or any dense training steps. Specifically, we utilize
sparse training [30,32] to find the sparse subnetwork. Sparse training has been proposed
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to solve the over-parameterization problem. It prunes the unimportant parameters of the
model in training to sparse the over-parameterized model. And the model can retain the
performance of the original model at a very low density.

To the best of our knowledge, we use sparse training for the first time to solve the
problem of high worst-group error in the model. By pruning certain parameters of the
model during sparse training, we can create a sparse network that is less susceptible
to spurious correlations and more robust to distribution shifts. We implement experi-
ments on three popular image classification datasets (Colored MNIST (CMNIST) [2],
Corrupted CIFAR-10 (CIFAR-10-C) [15] and Gender-biased FFHQ (BFFHQ) [23]) to
demonstrate the effectiveness of sparse training in optimizing the worst group errors.
We also compare the performance of pruned pre-trained models and find that pruning
the pre-trained models does not make them perform as well as sparse training models
from scratch. Furthermore, we implement ablation experiments to compare the perfor-
mance of different sparse training approaches in dealing with the out-of-distribution
issue. We summarize our contributions as follows:

– A New Approach: We propose the Reweighted Sparse Training (REST) frame-
work, which trains a subnetwork in an end-to-end fashion. The framework uses
sparse training to obtain a sub-network that avoids being biased towards spurious
correlation in biased datasets and does not require an additional training and fine-
tuning process.

– Better Performance: We demonstrated that REST could achieve better perfor-
mance than other strong baselines on all three highly biased datasets. Compared
to the original ERM, with 0.5% of bias-conflicting data, our method improves the
accuracy by 28.3%, 9.9%, and 23.7% on the CMNIST, CIFAR-10-C, and BFFHQ,
respectively.

– Fewer Resources: Compared with other baselines, REST requires fewer training
and inference resources. Specifically, after implementing our method, the ResNet-18
and Simple CNN models require only 2% and 0.7% of the original models’ FLOPs
for their application, respectively.

2 Related Work

2.1 Sparse Neural Network Training

Training sparse neural networks is a popular area of research. The goal is to train ini-
tial sparse networks from scratch and achieve comparable performance to dense net-
works while using fewer resources. Sparse training can be divided into two categories:
static sparse training (SST), where the connectivity does not change during training,
and dynamic sparse training (DST), where the connectivity changes during training.

Static sparse training refers to a set of techniques that involve training sparse
neural networks while maintaining a consistent sparse connectivity pattern through-
out the process. Despite the fixed sparse connectivity, there can be variations in layer-
wise sparsity (i.e., the sparsity level of each individual layer). The simplest approach
is to apply uniform sparsity to all layers [11]. [31] introduced a non-uniform sparsity
method that can be used in Restricted Boltzmann Machines (RBMs) and outperforms



316 J. Zhao et al.

dense RBMs. Some research investigates the use of expander graphs for training sparse
CNNs, demonstrating performance comparable to their dense counterparts [21,36].
Drawing from graph theory, the Erdős-R’enyi (ER) model [32] and its CNN variant,
the Erdős-R’enyi-Kernel (ERK) model [10], assign lower sparsity to smaller layers,
thus preventing the layer collapse issue [40] and generally yielding better results than
uniform sparsity approaches. [28,42] combine individual subnetworks and surpass the
generalization performance of the naive dense ensemble.

Dynamic sparse training involves training initial sparse neural networks while
dynamically modifying the sparse connectivity pattern throughout the process. DST
was first introduced by Sparse Evolutionary Training (SET) [32], which initializes
sparse connectivity using an ER topology and periodically explores the parameter space
via a prune-and-grow scheme during training. Subsequent to SET, weight redistribu-
tion has been introduced to search for optimal layer-wise sparsity ratios during training
[6,33]. The most commonly used pruning criterion employed in existing DST meth-
ods is magnitude pruning. Criteria for weight regrowth differ among methods, with
gradient-based regrowth (e.g., momentum [6] and gradient [10]) demonstrating strong
results in image classification, while random regrowth surpasses the former in language
modeling [7]. Later research has improved accuracy by relaxing the constrained mem-
ory footprint [16,19,29,43].

2.2 Debiasing Frameworks

Neural networks tend to rely on spurious correlations in the data to predict, which are
often caused by misleading statistical information in the data, and these spurious cor-
relations do not generalize to all samples. Several works [18,38] have investigated the
causes of worst-group errors as a result of models relying on spurious features of the
data during training. These spurious features are relevant to the target but not to the
research problem.

To improve the performance of the network on biased data, a common approach
is to reweight data from different distributions during training [5,38,39]. [37] propose
group distributional robust optimization DRO (GDRO) optimize the worst-group error
directly. In addition to optimizing the performance of the worst group, some work
[1,22] attempt to improve the group robustness of the models by closing their per-
formances in different groups. [13,41] attempt to balance the training data through data
augmentation techniques. [12] address the texture bias issue by incorporating additional
training images with their styles transferred through adaptive instance normalization
[17].

These methods above improve the performance of the models on biased data by
using loss functions or adjusting the data distribution. There is also some work that
considers the existence of unbiased sub-networks in the original network [44]. A com-
mon approach is to train a dense neural network first, then prune off some of the network
weights to get a sparse network, and finally, fine-tune the sparse network. In this paper,
we also focus on training a sparse network to improve its performance on biased data.
However, instead of taking trivial steps, we train a sparse network directly from scratch
through sparse training.
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3 Methodology

Given a supervised dataset consisting of input samples X ∈ X and true labels Y ∈ Y .
We can denote the random input sample and its corresponding label as (Xe, Y e) ∼ P e,
where Xe ∈ X and Y e ∈ Y . Here, e ∈ E = {1, 2, ...E} represents the index of the
environment and P e represents the distribution associated with that environment. The
set E contains all possible environments. Additionally, we assume that E is composed
of training environments (Etrain) and unseen test environments (Etest), such that E =
Etrain ∪Etest. The training dataset comprises samples from Etrain. And the test dataset
samples are from out-of-distribution in unseen environments Etest.

Consider a neural network fθ : X → Y parameterized by θ. Define the risk achieved
by the model as Re(θ) = E(Xe,Y e)∼P e [�(Xe, Y e)], where � is the loss of each sample
(e.g.,cross-entropy). The objective of addressing the out-of-distribution (OOD) gener-
alization problem is to develop a model that can effectively minimize the maximum risk
across all environments in the set E , as represented by the equation:

min
θ

max
e∈E

Re(θ) (1)

However, since we only have access to training data from Etrain and cannot know sam-
ples from unseen environments, Therefore, the models tend to perform well on the data
distribution on the training set but poorly on out-of-distribution data.

Typically, models are trained in a way that optimizes the loss of model predic-
tions and labels in the training environment, usually using empirical risk minimization
(ERM). Usually, neural networks learn target features as well as spuriously correlated
features, which are due to misleading statistical information. However, these spuriously
correlated features do not generalize to all samples. Therefore, the models perform well
in the training environment, and their predictions are highly accurate, but they perform
poorly when they encounter samples without such spurious correlations.

In this work, we proposed applying sparse training with reweighting to find a sub-
network to avoid learning spuriously correlated features. Our REST method is illus-
trated in Fig. 1. In the following, we will formally demonstrate the details of sparse
training.

3.1 Sparse Training

Let us denote the sparse neural network as f(x;θs). θs refers to a subset of the full
network parameters θ at a sparsity level of (1 − ‖θs‖0

‖θ‖0
) and ‖ · ‖0 represents the �0-

norm.
It is common to initialize sparse subnetworks θs randomly based on the uniform

[6,33] or non-uniform layer-wise sparsity ratios with Erdős-Rényi (ER) graph [10,32].
In the case of image classification, sparse training aims to optimize the following object
using data {(xi, yi)}Ni=1:

θ̂s = arg min
θs

N∑

i=1

L(f(xi;θs), yi) (2)
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Fig. 1. Re-weighted Sparse Training.

where L is the loss function.
Static sparse training (SST) maintains the same sparse network connectivity during

training after initialization. Dynamic sparse training (DST), on the contrary, allows the
sparse subnetworks to dynamically explore new parameters while sticking to a fixed
sparsity budget. Most if not all DST methods follow a simple prune-and-grow scheme
[32] to perform parameter exploration, i.e., pruning r proportion of the least impor-
tant parameters based on their magnitude, and immediately grow the same number of
parameters randomly [32] or using the potential gradient [30]. Formally, the parameter
exploration can be formalized as the following two steps:

θs = Ψ(θs, r), (3)

θs = θs ∪ Φ(θi/∈θs , r) (4)

where Ψ is the specific pruning criterion and Φ is growing scheme. These metrics may
vary from one sparse training method to another. At the end of the training, sparse train-
ing can converge to a performant sparse subnetwork. Since the sparse neural networks
are trained from scratch, the memory requirements and training/inference FLOPs are
only a fraction of their dense counterparts.

It is well known that the standard method for training neural networks is Empirical
Risk Minimization (ERM). Formally, the ERM can be defined as follows:

θERM = arg min
θ

E(Xe,Y e)∼P e [�(Xe, Y e)] (5)

where � is the cross-entropy loss or square loss. However, in previous works [37,38], the
authors demonstrate that models trained by ERM, whether under or over-parameterized,
have low worst-group test errors (e.g., data that are not in the training set distribution).
To address this issue, the reweighting method is the most common and simple method.
Because the out-of-distribution problem is due to the tendency of the model to rely
on strong spurious correlation in the training data to predict the results, the idea of
reweighting is to reduce such spurious correlation by increasing the weight of minority
groups in the data during training. Based on Eq. 5, we formally define reweighting as
the following equation:

θERM = arg min
θ

E(Xe,Y e)∼P e [βP e�(Xe, Y e)] (6)
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where βP e is a reweighting hyperparameter. Usually, the βP e is an upweight for a
minority group of data in the training set and a downweight for a majority group. This
can effectively mitigate the spurious correlations in the data learned by the network.
Specifically, in some methods, βP e is set according to the amount of data distribution
(e.g., using 1

NPe
as the βP e , where NPE denotes the number of data from P e distribu-

tion.). In this paper, we set different βP e for different training sets, which are described
in Sect. 4.3.

4 Experiments

In this chapter, we describe the details of the experiments. We conducted experiments
on three datasets, including Colored MNIST (CMNIST) [2], Corrupted CIFAR-10
(CIFAR-10-C) [15] and Gender-biased FFHQ (BFFHQ) [23]. We choose a couple of
debiasing methods as our baselines for comparison, including ERM, MRM [44], and
DisEnt [26]. Below, we describe the baseline methods, dataset, and model setup sepa-
rately.

4.1 Baselines

ERM. Empirical Risk Minimization (ERM) is a technique used in machine learning to
find the optimal parameters for a given model. ERM is the standard baseline model in
classification tasks. The basic idea behind ERM is to minimize the difference between
the predicted output of a model and the ground truth label of the data. In addition to the
original ERM, we also apply reweight loss to the ERM as another baseline.

MRM. Modular Risk Minimization (MRM) optimizes neural networks by learning a
sparse subnetwork architecture that can improve the network’s generalization perfor-
mance. MRM consists of three stages, and we formally introduce MRM below:

Given data (xi, yi), neural network f(θ; ·), subnetwork logits π and the coefficient
of sparsity penalty α.

Stage 1: Full Model Pre-Training In this stage, the full neural network model is
trained using the cross-entropy loss (LCE) on the given dataset. The model parameters
are initialized with w0, and the optimization is performed for N1 steps using gradient
descent. The cross-entropy loss is defined as the sum of the logarithmic loss of each
class label for each input in the training set. Formally, the f can be updated through:

LCE(θ) :=
∑

i

yilogf(θ;xi) (7)

Stage 2: Module Structure Probe Subnetwork architecture is learned at this stage.
The algorithm samples a binary mask vector m = sigmoidπ, where π is a learnable
parameter that determines the importance of each weight in the network. The loss func-
tion in stage 2 is defined as:

LMOD(θ) = LCE(m � θ) + α
∑

l

πl (8)
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where l denotes the i-th layer of the network, α is a hyperparameter and � refers to the
Hadamard product.

Stage 3: Subnetwork Retrain In this stage, the learned subnetwork architecture
is used to retrain the full neural network model. The subnetwork mask vector m is
obtained by applying hard thresholdingm = {πl > 0|l = 1, 2, . . . }. The model param-
eters are set back to their initial valuew0, and the optimization is performed forN1 steps
using LCE(m � θ).

The MRM algorithm iterates through Stages 2 and 3 until the desired level of
sparsity is achieved in the learned subnetwork architecture. The resulting sparse net-
work architecture can improve the generalization performance of the neural network by
reducing overfitting and increasing its capacity to capture the relevant features of the
input data.

DisEnt. DisEnt [26] is a feature-level augmentation strategy. By utilizing additional
synthesized biased features during the training, DisEnt performed well in classification
and debiasing results. In DisEnt, two separate encoders are trained to embed images into
two latent vectors corresponding to the target attributes and biased attributes, respec-
tively. The network is then updated by concatenating the two hidden vectors and using
them as inputs to the two classifiers. To further improve the process of learning the tar-
get feature vectors, swapping two potential vectors among the training sets is used to
diversify the samples with conflicting biases. Specifically, DisEnt randomly permutes
the target features and biased features in each mini-batch to obtain the swapped features.

While training with additional synthetic features helps to avoid spurious corre-
lations, utilizing these features from the beginning of the training process does not
improve denoising performance. More specifically, in DisEnt, feature augmentation is
performed after some training iterations, when the two features are disentangled to a
certain extent.

4.2 Datasets

We perform image classification experiments on three popular image datasets. As
shown in Fig. 2, most of the data in the dataset are bias-aligned (gray background
box), while a few are bias-conflicting (green background box). For Colored MNIST
(CMNIST) and Corrupted CIFAR-10 (CIFAR-10-C), according to the different propor-
tions of bias-conflicting samples ( 0.5%, 1%, 2%, and 5%), we have four train sets. For
Gender-biased FFHQ (BFFHQ), the bias-conflicting data is 0.5%.

Colored MNIST (CMNIST). Colored MNIST (CMNIST) [2] was proposed to be a
variant of the original MNIST dataset [25], In Colored MNIST, color information is
added to the images by assigning a random RGB color value to each pixel in the image.
Therefore, unlike the original MNIST dataset, CMNIST has a label indicating the color
in addition to a target label. We use the number corresponding to the image as the target
label and the color as the bias label. Inspired by [26,44], we chose the dataset with
ten different colors and set a one-to-one correspondence with the ten numerical labels
(e.g., “2”↔ “green”, “4” ↔“yellow”). Images that did not follow this correspondence
are randomly assigned colors. We name the data that follow this correspondence bias-
align and the data that do not follow this correspondence bias-conflict. So our dataset
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(a) CIFAR10-C

(b) CMNIST (c) BFFHQ

Fig. 2. Examples of datasets. Sub-figure (a) is samples from the Colored MNIST dataset, sub-
figure (b) is samples from the Corrupted CIFAR-10 dataset, and sub-figure (c) is samples from
the Gender-biased FFHQ dataset. Each dataset consists of two more parts of data: the data at the
upper part (gray background box) is the bias-aligned majority data set, and the data at the lower
part (green background box) is the bias-conflicting minority data set. (Color figure online)

consists of bias-align and bias-conflict. The training data has the majority of bias-align
data (e.g., 99%). The data in the test set do not have the number label and color label
correlation that exist in the training set. So the test set can be used to evaluate the out-
of-distribution performance of the model.

Corrupted CIFAR-10 (CIFAR-10-C). Corrupted CIFAR-10 (CIFAR-10-C) [15] is a
variant of CIFAR-10 dataset. a dataset is obtained by applying ten textures to the images
of the b dataset. In the CIFAR-10-C, the classes of images and the types of textures
applied are highly correlated, i.e., most of the images in the same class have the same
texture applied to them. So the model trained on a dataset with such a strong association
will perform poorly when tested on a data distribution without that association. In our
experiments, CIFAR-10-C also consists of bias-conflict and bias-align. Similar to the
CMNIST, we also constructed four training sets based on the different proportions of
bias-conflict samples.

Gender-biased FFHQ (BFFHQ). Gender-biased FFHQ (BFFHQ) [23] is built from
the data of FlickrFaces-HQ (FFHQ) [20]. FFHQ contains face images with multiple
face attribute labels, including age, race, gender, glasses and hat. We choose “age” and
“gender” as the target and bias labels. In the training set, most of the images have a
“young” attribute for “female” and an “old attribute for “male”. So the “younger” label
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Table 1. The results of floating-point operations per second (FLOPs) during training/testing and
the number of parameters. We report the results of CIFAR-10-C for ResNet-18 and BFFHQ for
Simple CNN.

ResNet-18 Simple CNN

Models FLOPs FLOPs Para FLOPs FLOPs Para

Dense 1× (4.41e16) 1× (3.27e9) 11.17M 1× (5.68e16) 1× (3.44e9) 0.661M

REST 0.02× 0.016× 0.056M 0.007× 0.0075× 0.0032M

in the training set has a strong correlation with the “female” attributes, which will lead
the model to classify the age of the images based on the gender attributes. We use a
training set in which the sample of bias-conflict is 0.5%.

4.3 Setup

Models. For CMNIST, we use a convolutional network with three convolution lay-
ers, in which the feature map dimensions are 64, 128, and 256, respectively (named
“Simple CNN” in this paper). Following [35,44], we add ReLU activation and a batch
normalization layer after each convolution layer. For CIFAR-10-C and BFFHQ, we use
ResNet-18 [14].

Training Details. For the reweighting parameter βP e in the reweighting, we set as
{10, 30, 50, 80} for CMNIST and CIFAR-10-C with{0.5%, 1.0%, 2.0%, 5.0%} of bias
ratio, respectively. For BFFHQ, we set βP e =80. We use the Adam optimizer [24],
weight decay = 1 · 10−4, β1 = 0.9, β2 = 0.999. We use the learning rate= 1 · 10−2 for
CMNIST and 1·10−3 for CMNIST and BFFHQ.We set the update frequency = 1000
as the number of iterations to train between parameter explorations. We set up three
different seeds and report their average values as the experimental results.

4.4 Computational Costs

In order to understand the computational demands of various methods, we utilized
FLOPs as a measure of the computational consumption of each method. FLOPs stands
for Floating Point Operations, and it is a metric used to quantify the number of arith-
metic operations (addition, subtraction, multiplication, and division) carried out by a
computer when executing a particular algorithm or method. To further explore the
computational consumption of different methods, we evaluate their performance dur-
ing training and testing of both ResNet-18 and convolutional neural networks. During
the evaluation process, we computed the number of FLOPs required for each method to
complete a task or operation within the networks. By comparing the number of FLOPs
required by each method, we were able to assess their relative efficiency and identify
the methods that consume less computational resources.

We report the results of FLOPs in Table 1. For ResNet-18, the dense model required
high FLOPs during training at 4.41e16, which is significantly higher than our method.
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Table 2. The accuracy of image classification on three datasets. We conduct experiments on a
simple CNN and model ResNet-18. For Colored MNIST and Corrupted CIFAR-10, we evaluate
the accuracy using unbiased test sets and report the unbiased test accuracy. For BFFHQ, we report
the bias-conflicting test accuracy. “Ratio (%)” denotes the proportion of bias-conflict data in the
training data. For our proposed method, we report the accuracy of REST under the best density
(the numbers in parentheses). The best-performing results are indicated in bold.

Dataset Model Ratio (%) ERM MRM DisEnt REST

CMNIST Simple CNN 0.5 45.7 43.5 43.1 48.3 (0.050)

1.0 69.6 70.3 65.9 72.1 (0.050)

2.0 83.3 83.9 79.8 84.8 (0.005)

5.0 93.2 92.8 92.3 93.7 (0.005)

CIFAR-10-C ResNet-18 0 25.9 26.7 18.5 26.7 (0.050)

1.0 27.4 26.8 21.0 28.8 (0.005)

2.0 31.0 30.1 25.9 33.1 (0.005)

5.0 37.0 37.7 39.2 39.4 (0.005)

BFFHQ ResNet-18 0.5 41.8 53.5 54.2 63.5 (0.0005)

During testing, the dense model also required high FLOPs, with a value of 3.27e9. Our
method only requires 2% and 1.6% FLOPs of the dense model for training and testing,
respectively. And our method only retains 0.49% and 0.48% number of the parameters
of ResNet-18 and Simple CNN, respectively.

4.5 Main Results

We analyze the experimental results of our proposed method and compare it with three
baseline methods: ERM, MRM [44], and DisEnt [26]. We evaluate the performance of
these methods on three different datasets: Colored MNIST, Corrupted CIFAR-10, and
BFFHQ.

From Table 2, we can see that our proposed method outperforms all the baseline
methods on all three datasets. In particular, for the BFFHQ dataset, our method demon-
strates a significant improvement over the original ERM, with a large gap. This indi-
cates that our method is effective in handling bias-conflicting data and improving the
accuracy of image classification.

It is also notable that the sparsities with the best performance during sparse training
are very high, retaining only 0.05, 0.005, and even 0.0005 of the parameters of the
original neural network. This suggests that our method is capable of achieving good
performance with highly compact neural networks, which can be beneficial for real-
world applications where computational resources are limited.

In terms of the baseline methods, we can see that MRM and DisEnt generally per-
form better than the original ERM on all datasets, but they are still outperformed by
our proposed method. This highlights the effectiveness of our approach in handling
bias-conflicting data and improving the robustness of image classification.
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Table 3. Performance of different sparse training on three data. We report the best performance
of each sparse training method among the sparsity set. The number in parentheses indicates the
sparsity level. The best results are indicated in bold.

Dataset Model Ratio(%) RigL REST

CMNIST Simple CNN 0.5 36.3 (0.050) 48.3 (0.050)

1.0 60.1 (0.050) 72.1 (0.050)

2.0 74.7 (0.005) 84.8 (0.005)

5.0 89.5 (0.005) 93.7 (0.005)

CIFAR-10-C ResNet-18 0.5 23.5 (0.050) 26.7 (0.050)

1.0 26.0 (0.005) 28.8 (0.005)

2.0 30.9 (0.005) 33.1 (0.005)

5.0 37.4 (0.005) 39.4 (0.005)

BFFHQ ResNet-18 0.5 50 (0.0005) 63.6 (0.0005)

Our experimental results in Table 2 demonstrate that our proposed method is effec-
tive in handling bias-conflicting data and improving the accuracy of image classifica-
tion. Moreover, it shows that highly compact neural networks can achieve good perfor-
mance, which can be beneficial for real-world applications with limited computational
resources.

4.6 Ablation Study

We also implemented an ablation experiment to help analyze the effectiveness of our
method. We report the performance difference between RigL and our method on three
datasets in Table 3. Also, we compare the performance of our method at different spar-
sity levels. Specifically, we report the varying sparsity levels on the CIFAR-10-C dataset
with 5% bias-conflicting data. The CIFAR-10-C dataset consisted of images of objects
from ten different classes, and it contains a diverse set of image corruptions.

Diverse Sparse Levels. In this ablation study, we investigated the impact of sparsity
on the performance of sparse models. To achieve this, we conducted experiments at
fourteen different densities ranging from 0.0005 to 0.9 and compared the performance
of sparse models to that of a dense model.

As depicted in Fig. 3, the performance of the sparse models were evaluated based
on their image classification accuracy, and the red line represented the accuracy of the
sparse model after our methods were applied. We also evaluated the accuracy of both
bias-conflicting and unbiased test data. It was observed that the accuracy of the unbi-
ased test was consistently higher than that of the bias-conflicting data for both models,
indicating the problem of spurious correlation.

Furthermore, the level of density had a significant impact on the accuracy of the
model. When the density was too low, the model’s accuracy was very low, and when
the density was increased to 0.005, the model’s accuracy improved significantly. This
indicates that some density levels can help the model avoid learning spuriously cor-
related features. However, as the density increased beyond this point, the accuracy of
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Fig. 3. Performance of RigL under different sparsity on CIFAR-10-C datasets with different ratios
of bias-conflicting data. The green line represents the performance of the dense model, and the
red line represents the performance of the sparse model after different sparse training. The solid
line indicates the accuracy of bias-conflicting data in the test data, and the dashed line indicates
the unbiased test accuracy. (Color figure online)

the model gradually decreased, indicating that the model was learning more spuriously
correlated features as the number of model parameters increased.

The results in Fig. 3 highlight the effectiveness of our method that balances model
complexity and performance by avoiding over-parameterization. It also emphasizes
the importance of selecting an appropriate density level to optimize the performance
of sparse models. Overall, our findings from Fig. 3 provide valuable insights into the
impact of sparsity on the performance of sparse models, which can help develop more
efficient and accurate models.

Diverse Bias-conflicting Data Ratio. In addition to evaluating the impact of sparsity
on the performance of sparse models, Fig. 3 also presents the performance of sparse
training on data with varying bias-conflicting ratios. As shown in Fig. 3, the accuracy of
both dense and sparse models increases with a higher proportion of bias-conflicted data.
This suggests that models trained on bias-conflicting data are more robust and have a
better generalization performance.
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Moreover, it was observed that sparse training effectively enhances the model’s per-
formance across diverse bias-conflicting ratio data. This indicates that our method can
improve the model’s ability to generalize to various types of data with different lev-
els of bias. By leveraging sparsity regularization, the model can learn to identify the
most important and relevant features of the data while ignoring irrelevant and spurious
features, leading to improved performance and generalization.

Overall, these findings further demonstrate the effectiveness of our method in
enhancing the performance of out-of-distribution generalization, even in the presence of
varying levels of bias-conflicting data. Our results suggest that applying our method in
the training process can help to improve the robustness and generalization performance
of machine learning models, which can be beneficial in various real-world applications.

5 Conclusion

The over-parameterized models learned from a large number of bias-aligned training
samples often struggle to perform well on certain minority groups during inference,
despite showing strong performance on the majority of data groups. To address this
issue, we proposed a novel reweighted sparse training framework called REST, which
aims to enhance the performance on various biased datasets while improving compu-
tation and memory efficiency, through the lens of sparse neural network training. Our
experimental results demonstrate that REST can reduce the reliance on spuriously cor-
related features and improve performance across a wider range of data groups with
fewer training and inference resources. By reducing the reliance on spurious correla-
tions, REST represents a promising approach for improving the performance of DNNs
on biased datasets while simultaneously improving their robustness and generalization
capabilities.
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Abstract. Do we need active learning? The rise of strong deep semi-
supervised methods raises doubt about the usability of active learning
in limited labeled data settings. This is caused by results showing that
combining semi-supervised learning (SSL) methods with a random selec-
tion for labeling can outperform existing active learning (AL) techniques.
However, these results are obtained from experiments on well-established
benchmark datasets that can overestimate the external validity. However,
the literature lacks sufficient research on the performance of active semi-
supervised learning methods in realistic data scenarios, leaving a notable
gap in our understanding. Therefore we present three data challenges
common in real-world applications: between-class imbalance, within-class
imbalance, and between-class similarity. These challenges can hurt SSL
performance due to confirmation bias. We conduct experiments with SSL
and AL on simulated data challenges and find that random sampling does
not mitigate confirmation bias and, in some cases, leads to worse per-
formance than supervised learning. In contrast, we demonstrate that AL
can overcome confirmation bias in SSL in these realistic settings. Our
results provide insights into the potential of combining active and semi-
supervised learning in the presence of common real-world challenges,
which is a promising direction for robust methods when learning with
limited labeled data in real-world applications.

1 Introduction

The success of supervised deep learning models largely depends on the avail-
ability of sufficient, qualitative labeled data. Since manual annotation is time-
consuming and costly, various research directions focus on machine learning with
limited labeled data. While Active Learning (AL) [5,40] aims to label only
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the most informative and valuable data intelligently, semi-supervised learning
(SSL) [8,13,41] aims to exploit the information in the unlabeled pool without
asking for new labels. Given the complementary nature of SSL and AL, it is
intuitive to explore their integration within a unified framework to maximize the
utilization of the available data. However, the effectiveness of AL has been ques-
tioned recently [7,11,31,33]. Some works show that other learning paradigms
capable of exploiting the unlabeled data do not experience added value from
biased and intelligent data selection through AL [11].

However, these findings are mainly based on experiments on well-established,
clean benchmark datasets. But, an excessive emphasis on benchmark perfor-
mance can result in diminishing returns where increasingly large efforts lead to
ever-decreasing performance gains on the actual task [29,45]. As a result, an
exclusive evaluation of such benchmarks can raise concerns about the transfer-
ability of these results to challenges in real-world applications. Therefore, we
review the literature on AL to understand which datasets are commonly used
for evaluation and to what extent AL has been combined with SSL.

Toward a better understanding, we first categorize existing AL methods
into four groups, namely uncertainty sampling, representativeness sampling,
coverage-based sampling, and balanced sampling. Second, we introduce the fol-
lowing three real-world challenges: (1) Between-class imbalance (BCI), where
the distribution over class instances is non-uniform, (2) within-class imbalance
(WCI), where the intra-class distribution is non-uniform, and (3) between-class
similarity (BCS), where the class boundaries are ambiguous. In our experiments,
we demonstrate that each of these real-world challenges introduces confirmation
bias reinforcing biased or misleading concepts toward SSL. Moreover, randomly
increasing the labeled pool may not effectively address the posed challenges. In
fact, the results stagnate early or are even worse than plain supervised learning.
In contrast, we evaluate simple AL heuristics on the introduced challenges and
show that active data selection leads to much better generalization performance
in these cases. This provides empirical evidence of the benefits of incorporating
AL techniques to mitigate the impact of real-world challenges in SSL.

Our main contributions are:

– We provide a thorough literature review on the real-world validity of current
evaluation protocols for active and semi-supervised learning. We find that the
combination is especially understudied in real-world datasets.

– We explore well-established SSL methods in three real-world challenges and
find that confirmation bias in SSL is a problem in all studied challenges and
leads to degraded performance.

– We show that, in contrast to random selection, actively increasing the labeled
pool can mitigate these problems.

2 Related Work

The advantages of AL have been questioned due to the strong performance of
methods exploiting knowledge available in unlabeled data [7,11,33].
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Given AL aims to increase model performance while decreasing annotation
efforts, it is important not to focus on AL in isolation when other training
techniques can lead to improvements in model performance. This makes the
evaluation of AL challenging [32] as there are many ways to configure AL, and
it can be hard to know upfront what works in a real-world scenario.

Our focus is specifically on three realistic data scenarios that can lead SSL
to underperform due to confirmation bias.

2.1 Real World Considerations in Machine Learning

The evaluation of the algorithmic progress on a task can be separated into
internal validity and external validity [29]. When benchmark results are inter-
nally valid, the improvements caused by an algorithm are valid within the same
dataset. However, the overuse of the same test sets in benchmarks can lead to
adaptive overfitting where the models and hyperparameters yielding strong per-
formance are reused, and the improvements are not necessarily caused by algo-
rithmic improvements. On the other hand, external validity refers to whether
improvements also translate to other datasets for the same task. It has been
observed that an excessive emphasis on benchmark performance can result in
diminishing returns where increasingly large efforts lead to smaller and smaller
performance gains on the actual task [29,45]. To improve the validity of bench-
mark results, it is important that the datasets used for evaluation reflect the
data challenges that occur in real-world scenarios.

Considering data challenges has been a well-studied field in machine learn-
ing. Lopez et al. [30] investigate how data intrinsic characteristics in imbalanced
datasets affect classification performance and specify six problems that occur in
real-world data. Both [42] and [50] also focus on imbalanced data and discuss
difficulty factors that deteriorate classification performance. [42] further demon-
strates that these factors have a larger impact than the imbalance ratio or the
size of the minority class. [14] investigates data irregularities that can lead to
a degradation in classification performance. However, to the best of our knowl-
edge studying data challenges in limited labeled scenarios has not yet been well
studied [32,35,49].

2.2 Evaluation of AL in the Literature

To get an understanding of the data commonly used for evaluation in limited
labels scenarios, we performed a literature overview of the papers published
in 13 top-venue conferences1 within Artificial Intelligence, Machine Learning,
Computer Vision, Natural Language Processing and Data Mining between 2018
and 2022. We selected papers for screening if “active learning” occurs in the
title and abstract, resulting in 392 papers. When screening, we included papers
that empirically study the improvement of machine learning models for image

1 ACL, AAAI, CVPR, ECCV, ECML PKDD, EMNLP, ICCV, ICDM, ICLR, ICML,
IJCAI, KDD, and NeurIPS.
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classification when expanding the pool of labeled data, as is common in AL
papers. Based on this inclusion criteria, we first screened the title and abstracts,
and if we could not exclude a study only on the title and abstract, we did a
full-text screening. Following this screening process, we identified 51 papers.

We find that 47 (94%) of the studies experimented on at least one benchmark
dataset, and 38 (75%) of the studies experiments solely on benchmark datasets2.
To understand how common it is to evaluate AL in more realistic data scenarios,
we count how many papers consider the data challenges BCI, WCI, or BCS or
experiments on non-benchmark datasets. We find that 23 (45%) papers consider
real-world data challenges or evaluate non-benchmark datasets. The most com-
mon data challenge is BCI which 15 (29%) of the papers are considering. As AL
can be improved with other training techniques, we look at how many papers
combine AL and SSL and find that this is done by 13 (25%) of the papers.
However, only 5 (10%) evaluate the performances in realistic scenarios.

3 Learning with Limited Labeled Data

Given an input space X and a label space Y, we consider the limited labeled
scenario where we assume a small labeled pool X l ⊂ X and a large unlabeled
data pool X u = X \ X l. We want to obtain a model f(x; θ) → R

C where
parameters θ map a given input x ∈ X to a C-dimensional vector. Supervised
learning trains a model on X l while SSL utilizes both X l and X u.

3.1 Semi-Supervised Learning (SSL)

Many approaches to leverage both labeled and unlabeled data have been sug-
gested in the literature [13,44]. More recently, the utilization of deep learning
in SSL has shown impressive performance, and especially different variants of
consistency regularization and pseudo-labeling have been studied [49].

Pseudo-labeling [25] uses the model’s prediction on the instances in X u to
filter highly confident samples and include those with their respective pseudo-
label in the next training iteration. Pseudo-labeling is a simple and powerful
technique for utilizing X u. However, a model producing incorrect predictions
reuses wrong information in training. This is known as confirmation bias [3] and
can greatly impact model performance.

Consistency Regularization [8,41] exploits X u by encouraging invariant
predictions when the input is perturbated, thereby making the model robust to
different perturbed versions of unlabeled data. Perturbations of the data can
be obtained by introducing random noise to the input data or utilizing data
augmentations [41]. Some methods rely heavily on data augmentations which
assume that label-preserving data augmentations are available when applying

2 We consider benchmark datasets as the well-established MNIST, CIFAR10/100,
SVHN, FashionMNIST, STL-10, ImageNet (and Tiny-ImageNet), as well as Caltech-
101 and Caltech-256.
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such methods in real-world use cases. Using consistency regularization in com-
bination with pseudo-labeling helps improve the generalizability through the
perturbed data, which can further enforce the confirmation bias if the model
predictions are wrong.

3.2 Active Learning (AL)

AL alternates between querying instances for annotation, and re-training the
model f(x; θ) on the increased labeled pool until an annotation budget is
exhausted or a certain performance is reached. The so-called acquisition func-
tion of an AL strategy determines which instances in X u are most valuable
and should be labeled to maximize the labeling efficiency. We use the following
taxonomy to distinguish between active acquisition types (Fig. 1).

Fig. 1. AL Acquisition Types

Instance-Level Acquisition. Each unla-
beled instance x ∈ X u is assigned a scoring
individually, independent of already selected
instances, and enables a final ranking of all
unlabeled instances.

Uncertainty sampling aims to query
instances carrying the most novel information
for the current learner. Popular estimates are
least-confidence, min margin, or max entropy
selection [40]. These methods usually query
near the class boundaries as illustrated in Fig. 2a. The 2D t-SNE visualization
of MNIST shows a mapping of margin uncertainty, where red indicates high
and blue indicates low uncertainty. Other methods aim to measure model confi-
dence [18] and to distinguish between aleatoric and epistemic uncertainty [34].

Representative sampling assigns higher scores to instances representative of
their class or a certain local region. The central idea is not to select instances
to eliminate knowledge gaps in the current learning phase but to find instances
that have the highest impact on most other instances because, e.g., they are
representative of a class or they are similar to many other instances.

One way to define representativeness is to measure centrality, for instance,
by exploiting a preceding partitioning and selecting the most central instance of
each partitioning [37,55]. Another estimate for representativeness is density, i.e.,
how many (similar) instances are in the near surrounding of a data point [15,
47]. In Fig. 2b, the colors indicate the negative local outlier score [10] mapped
onto the 2D representation of MNIST, which is here used as an indicator for
representativeness. A representativeness selection strategy would favor instances
in the denser red regions in the center of the clusters.

Distribution-Level Acquisition. In contrast to instance-level, distribution-
level acquisition refers to selection strategies that do not consider individual
scores for each instance but strive to optimize the distribution of all selected
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Fig. 2. Exemplary illustration of different acquisition types.

instances. A clear ranking is usually not possible because the worthiness of the
next best instance depends on which instance(s) is (have been) selected before.

Coverage-based sampling, sometimes referred to as diversity sampling, aims
to cover the given data space to avoid overlap of information best. The goal is
to select as diverse instances as possible to maximize the richness of information
in the labeled dataset. The most prominent method of this category is k-Center-
Greedy which maximizes the distance in the feature space between the queried
and the labeled instances [39]. Coverage, or diversity, is a popular companion in
hybrid approaches to assist batch-selection acquisitions [4,23,37].

Balanced sampling aims to balance the number of samples per class and
is especially suited for imbalanced datasets. This subtype is often combined
with other acquisition types, as it does not necessarily select the most valuable
instances on its own [1,6,16]. Figure 2c depicts coverage sampling on an imbal-
anced version of MNIST where the data space is evenly covered. In contrast,
Fig. 2d shows balanced sampling where the selected class counts are uniformly
distributed.

There is an abundance of hybrid methods combining two or more of the
described concepts [4,17,23,37,52]. However, in this work, we focus on highlight-
ing the potential of AL in general and only consider disjoint baseline methods
from each category. For an overview of deep AL methods, we refer to [38,51,53].
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4 Three Real-World Data Challenges

In the following, we introduce three realistic data challenges. We then present
three datasets that implement these challenges on the well-known MNIST task,
which we later analyze in our experiments.

Fig. 3. Three realistic challenges (BCI, BCS, WCI) demonstrated on MNIST.

4.1 Between-Class Imbalance (BCI)

Among our challenges, Between-Class Imbalance (BCI) is the most considered
in the literature and is a well-known challenge for supervised machine learning
models. Imbalanced class distributions pose a problem for SSL methods where
unlabeled data is often assumed to be distributed similarly to the labeled data
and balanced class distributions. BCI can pose a problem for SSL when there is
a mismatch between the labeled and unlabeled class distributions [35] or simply
because some classes are generally underrepresented in both the unlabeled and
labeled pool [21]. However, class distributions in real-world datasets often follow
a long-tail distribution. While class imbalance has been studied for both AL
and SSL separately, an open question remains regarding how to leverage AL
techniques to address the negative effects of class imbalance in SSL.

4.2 Between-Class Similarity (BCS)

Another category of data challenges is Between-Class Similarity (BCS). In real-
world datasets, the boundaries between classes can be hard to draw. Instances
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within the same class can differ widely, and conversely, instances from different
classes can be very similar. High within-class diversity and similarity between
classes happens naturally in many image classification tasks, e.g., diatom or
plankton classification [46] or within histopathology [43].

Datasets with BCS are a challenge for techniques that rely on unlabeled
data for model training, since that contradicts the basic assumptions of SSL.
For instance, according to [12], Fixmatch exacerbates confusion when instances
across classes are similar. The degree of BCS determines whether it is advan-
tageous to sample from class boundaries while the classes can still be differen-
tiated or to prioritize selecting representative instances without ambiguity in
the class assignment. Consequently, this challenge presents an opportunity for
AL to identify and label such samples. This problem does not only occur on
hard-to-solve tasks with high aleatoric uncertainty. Ambiguous label informa-
tion can also occur due to the labeling procedure e.g. when data is labeled by
multiple annotators which can introduce labeling variations [36], or when labels
are acquired automatifcally [27,45]. Label noise can have a large impact on SSL
as the model is more prone to confirm learned mistakes leading to confirmation
bias [28].

Common usage of SSL methods for noisily labeled data is to simply remove
noisy labels and continue training with conventional SSL [2]. Alternatively, some
algorithms distinguish between cleanly labeled, noisily labeled, and unlabeled
data enabling the usage of a massive amount of unlabeled and noisy data under
the supervision of a few cleanly annotated data. However, directly coupling the
data selection actively to the training can be an easy and thus attractive solu-
tion to directly account for label noise or ambiguous class labels without post-
processing wrong labels or complex algorithms and wasted labeling efforts.

4.3 Within-Class Imbalance (WCI)

Imbalance is not only a problem across classes but also within classes [20,22].
Although instances might belong to the same class, they can have a high vari-
ability due to, e.g., pose, lighting, viewpoint, etc. To obtain a model with the
most discriminative capabilities, it must be exposed to the variation within the
class.

Within-class imbalance (WCI) occurs in many real-world problems. In med-
ical imaging, subgroups such as race or gender exist within classes and are often
imbalanced [48]. Similarly, in microscopic classification, the images might have
different viewpoints forming diverse [46] and imbalanced [26] subclusters. In
automatic defect detection for manufacturing systems, the different types of
defects are often all grouped into the same superordinate class and can be very
diverse and imbalanced [20]. It has also been shown that repetition of subclasses
containing highly similar samples occurs in commonly used image classifica-
tion benchmark datasets [9], leading to some subclasses that contain redundant
semantic information being overrepresented.

WCI, similar to BCI, leads to the minority subclass being exposed less in
the optimization process and contributing less to the final model. This leads
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to a bias towards the majority subclass and suboptimal performance of the
learned model. The difference between WCI and BCI lies in the lack of subclass
labels. This deems common solutions for BCI that rely on sampling or cost-aware
learning irrelevant for WCI as they rely on class labels.

4.4 Challenge Construction

To gain insights into how SSL and AL perform when the data challenges are
present, we construct three datasets based on MNIST to reflect the challenges.
We intentionally use MNIST as we can isolate any effects of the data challenges
instead of the potential complexity of the learning task.

BCI-MNIST. We construct a between-class imbalanced version of MNIST
(BCI-MNIST), where 50% of the classes only contain approximately 10% of
the instances. Figure 3a and Fig. 3d illustrate the distribution of the imbalanced
version in a 2D t-SNE plot, and a barplot respectively.

BCS-MNIST. Figure 3b shows a 2D t-SNE-plot of an ambiguous version of
MNIST proposed in [34]. The dataset consists of normal MNIST and Ambigu-
ous MNIST, containing a large fraction of ambiguous instances with questionable
labels, thus increasing the class overlap. Figure 3e shows the similarities of each
instance to all instances not belonging to the same class. Compared to the origi-
nal MNIST, the similarity among instances across classes is much higher. In our
experiment, we select 5% of instances from the original MNIST dataset and 95%
of instances from Ambiguous MNIST and refer to it as BCS-MNIST.

WCI-MNIST. The WCI version of MNIST is constructed with the follow-
ing procedure: (1) For each class, we create a sub-clustering using the K-means
algorithm on the original input features with k = 300. (2) For each constructed
within-class cluster, we select one instance as the underrepresented subclass
except for one majority subclass and remove the remaining instances. (3) We
copy all the instances within the majority subclass multiple times to restore the
original training set size and randomly add Gaussian noise to create slightly dif-
ferent versions. The 2D t-SNE representation is shown in Fig. 3c. While the class
boundaries are sharper than in Fig. 3b, many subgroups within each class are
spread around all the data space. Figure 3f shows the summed distance of each
instance to the remaining instances of their respective class for MNIST (blue)
and our constructed WCI-MNIST (orange). WCI-MNIST has more highly simi-
lar instances, and the number of medium distances is much smaller, resulting in
a non-linear decrease in intra-class distances and higher within-class imbalance.
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5 Experiments

In this section, we evaluate established SSL methods combined with simple AL
heuristics on the previously described challenges that ostensibly occur in real-
world scenarios. We use the following experimental setup3.

Backbone and Training. For all experiments, we use a LeNet [24] as backbone
as is commonly used for digit recognition. We do not use a validation set as
proposed in [35] since it is unrealistic to assume having a validation set when
there is hardly any label information. Instead, we train the model for 50 epochs
and use early stopping if the model reaches 99% training accuracy following [4].
The learning rate is set to 0.001, and we do not use any scheduler.

SSL. We include pseudo-labeling [25] (PL) with a threshold of 0.95 as baseline
without consistency regularization. We further include Fixmatch [41] as it is a
well-established consistency regularization technique and Flexmatch [54] as a
strong method tackling confirmation bias [49]. Furthermore, we report results
on a plain supervised baseline (SPV).

Evaluation. We report average test accuracies over five random seeds for dif-
ferent labeling budgets. Initially, we select 20 labeled instances randomly. Then,
we increase the labeled pool to budgets of 50, 100, 150, 200, and 250 labels.

AL. We choose one representative from each of the described categories in
Sect. 3.2 to better assess the strength and weaknesses of each acquisition type. We
use margin uncertainty [40] as an uncertainty baseline. For representativeness, we
perform k-means clustering on the latent features and select the instance closest
to the centroid similar to [19,37]. As a coverage-based technique, we include the
k-Center-Greedy method proposed in [39]. For balanced sampling, we create a
baseline that selects instances proportional to the sum of inverse class frequencies
in the current labeled set and the corresponding prediction probability. Though
this might not be a strong AL baseline in general, we expect to see a slight
improvement in the BCI challenge.

Datasets. We use the three constructed datasets explained in Sect. 4.4 to form
the unlabeled pool, as well as the original MNIST. For testing, we use the original
MNIST test set to ensure comparable results.

5.1 Experiment “BCI-MNIST”

Figure 4b depicts the average accuracy of supervised learning (SPV, blue),
pseudo-labeling (PL, green), Fixmatch (orange), and Flexmatch (red) for differ-
ent labeling budgets on MNIST (solid) and BCI-MNIST (dashed) with random
3 See also https://github.com/lmu-dbs/HOCOBIS-AL.

https://github.com/lmu-dbs/HOCOBIS-AL
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Fig. 4. (a) t-SNE of BCI-MNIST challenge. (b) Average test accuracy of all learners
evaluated on BCI-MNIST (dashed) and MNIST (solid). In (d), we observe for BCI-
MNIST, the entropy over the selected pseudo-labels falling over the threshold for each
class is much smaller. This indicates that the distribution of selected pseudo-labels for
BCI-MNIST is more imbalanced, repeatedly confirming the imbalance. (d), (e) and (f)
show the selected AL curves for Flexmatch, Fixmatch, and PL compared to random
sampling (black). (Color figure online)

labeling. BCI has a severe impact on the performance of all learners. However,
Fixmatch is affected most and even performs worse than SPV. Since training
takes much longer for SSL, [35] argue that these methods should clearly outper-
form SPV to be considered useful. This is no longer true in our experiment, even
on a simple task like MNIST. Figure 4c visualizes the entropy over the number
of pseudo-labeled instances per class that Fixmatch would choose for training
for BCI-MNIST (blue) and MNIST (orange). On MNIST the entropy is much
higher, indicating that the distribution over the classes is more uniformly dis-
tributed. The problem is not only that the selected labeled data is imbalanced,
but the chosen pseudo-labels repeatedly confirm the imbalance, such that the
underrepresented classes get even more underrepresented.

However, the AL curves in Figs. 4e and 4f demonstrate that the choice of
data selection methods has a substantial impact on the performance of each
learner. Fixmatch largely benefits from coverage-based sampling, representative
sampling, and uncertainty sampling for later iterations. For the final budget of
250, the gap between coverage and uncertainty acquisition and random selection
is around 20%. PL and Flexmatch also greatly benefit from coverage and uncer-
tainty sampling. Coverage sampling is even able to restore the accuracy achieved
on MNIST with random sampling, yielding 88.3% for PL and 94.1% for Flex-
match. Interestingly, balanced sampling is not among the best active methods.
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Even though the performance is slightly better than random sampling, the other
methods are much stronger. This is probably because balanced sampling with-
out the combination of any other method does select less informative and more
redundant information.

5.2 Experiment “BCS-MNIST”

Figure 5b illustrates the learning curves for the learners on MNIST and BCS-
MNIST. All methods suffer, but Fixmatch clearly suffers the most and is no
longer better than plain supervision. In this scenario, there is no additional
benefit of exploiting the unlabeled pool, but the training times are multiple times
larger. Figure 5c illustrates the fraction of wrong pseudo-labels surpassing the
threshold when training Fixmatch on MNIST (orange) and BCS-MNIST (blue).
Over 40% of the predicted pseudo-labels over the threshold are wrong up to a
labeling budget of 200 instances. Figures 5e and 5f denote the learning curves of
Flexmatch, Fixmatch, and PL when increasing the labeled pool actively. Notably,
all learners benefit from coverage-based sampling. Representative sampling is
beneficial for Fixmatch. This method promotes instances representative of a
certain class or region and probably selects instances that are less ambiguous
for training. However, as expected, employing the uncertainty baseline in this
context proves to be a poor choice. The strategy lacks the ability to differentiate

Fig. 5. (b) Average test accuracy of all learners with random selection for BCS-MNIST
(dashed) and MNIST (solid). (c) shows the amount of wrongly predicted pseudo-labels
falling over the threshold using Fixmatch for BCS-MNIST is much larger than for
MNIST. (d), (e) and (f) show the AL curves for Flexmatch, Fixmatch, and PL com-
pared to random sampling (black). (Color figure online)
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between aleatoric and epistemic uncertainty, leading to the selection of many
ambiguous instances, further misleading the training.

5.3 Experiment “WCI-MNIST”

Figure 6b shows that for WCI-MNIST, the accuracy of all learners stagnates
around 10% to 15% earlier compared to MNIST. Using random sampling does
not find the underrepresented diverse instances, and only the same concepts are
entrenched and further confirmed over the training procedure. Even though the
correctness ratio of the pseudo-labels surpassing the threshold using Fixmatch is
larger for WCI-MNIST than for MNIST, the achieved mean test accuracy stops
at roughly 82% (see Fig. 6c).

However, using AL, we can find more diverse and valuable instances than the
already known concepts and reach a better final accuracy overall for SSL (see
Figs. 6d to 6f). Especially coverage-based sampling seems to be a viable choice.
For PL, the final average accuracy using uncertainty-based and coverage-based
sampling on WCI-MNIST is even equally good as the performance on the original
MNIST using random sampling. In the early stages, uncertainty sampling is the
worst method probably because it lacks diversity aspects, and the predictions in
early iterations might not be very reliable. However, for the final budget, uncer-
tainty sampling matches or surpasses most other methods. The representative

Fig. 6. (b) Average test accuracy of all learners for WCI-MNIST (dashed) and MNIST
(solid). In (d), we observe that even though more pseudo-labels are chosen correctly
using Fixmatch for WCI-MNIST (blue line), the test accuracy is much smaller (blue
markers) than for MNIST (orange) because only the same concepts are confirmed over
and over again. (d), (e) and (f) show the selected AL curves for Flexmatch, Fixmatch,
and PL compared to random sampling (black). (Color figure online)
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baseline focuses on instances that are most central in clusters, probably resulting
in only selecting the already known and easy-to-classify concepts lacking novel
information and does not outperform random sampling in most situations.

6 Key Findings

Table 1 shows the average test accuracies of SPV, Fixmatch, PL, and Flexmatch
on BCI-MNIST, BCS-MNIST, and WCI-MNIST for all AL heuristics compared
to random sampling, where bold and red numbers indicate best- and worst-
performing methods per column respectively for 50 and 250 labeled instances.
Our key findings can be summarized as follows:

– For all introduced data challenges, the SSL methods suffer from confirmation
bias. There is no consistent winner among all query strategies, but random
sampling is never the best query method for the SSL methods when faced
with BCS, WCI, and BCI. This provides empirical evidence that AL is a
useful tool to overcome confirmation bias in SSL.

– In the early stages, representative sampling is often beneficial. In contrast,
uncertainty sampling usually performs better in later iterations where model
predictions are more reliable. As expected, uncertainty sampling is not a good
choice for BCS since it queries from overlapping, confusing regions.

– Coverage sampling is often the best strategy for SSL methods. We assume
that is because more diverse queried instances bring in new aspects to the
data, and the easier concepts can already be learned by pseudo-labeling and
consistency regularization.

– Our balance baseline often performs on par with random selection. However,
for the BCI challenge, it yields slightly better results. We conclude that it
should mainly be used in combination with other selection heuristics.

– Overall, the most challenging dataset for SSL and AL is BCS-MNIST. By
using AL, we can mitigate confirmation bias more effectively for the challenges
BCI and WCI compared to random sampling.

Table 1. Average test accuracy for SPV, Fixmatch, PL, and Flexmatch for BCI-
MNIST, BCS-MNIST, and WCI-MNIST for all sampling methods and budgets 50
and 250 (L). Bold and red numbers indicate column-wise best- and worst-performing
methods, respectively.

Supervised Fixmatch Pseudo-Labeling Flexmatch

BCI BCS WCI BCI BCS WCI BCI BCS WCI BCI BCS WCI

L 50 250 50 250 50 250 50 250 50 250 50 250 50 250 50 250 50 250 50 250 50 250 50 250

Rnd 49.4 68.9 48.6 82.3 59.3 67.8 51.2 69.0 38.1 71.3 79.2 85.1 43.6 74.3 39.6 75.9 55.7 72.4 50.5 74.0 34.3 74.8 76.4 79.3

Unc 52.0 82.5 53.0 80.5 47.8 70.0 38.3 90.1 32.8 62.1 71.5 87.6 43.3 88.3 33.8 70.9 44.5 89.7 52.5 94.1 33.2 67.9 67.4 85.3

Cov 47.9 79.2 55.2 83.8 63.0 87.6 57.4 90.3 38.9 78.2 75.8 92.9 46.2 86.4 43.4 84.0 53.0 90.5 53.8 87.6 34.7 82.8 67.0 90.1

Bal 48.2 68.7 50.6 78.5 58.0 64.1 52.7 70.2 35.0 76.2 81.8 84.4 48.8 77.6 38.0 75.5 56.5 67.5 51.5 76.3 31.0 74.5 75.7 82.1

Rep 54.7 66.8 47.7 75.8 61.6 66.1 58.3 84.1 39.0 73.9 84.8 86.3 48.2 75.8 41.2 78.9 45.7 78.7 51.8 83.3 42.9 70.8 77.6 79.9



344 S. Gilhuber et al.

7 Conclusion

In this work, we study the real-world transferability of critique points on the
combination of SSL and AL on benchmark datasets. Our experiments show
that AL is a useful tool to overcome confirmation bias in various real-world
challenges. However, it is not trivial to determine which AL method is most
suitable in a real-world scenario. This study is limited to providing insights
into confirmation bias in SSL when confronted with between-class imbalance,
between-class similarity, and within-class similarity and the potential of simple
AL heuristics. In the future, we intend to extend our experiments to a broader
range of datasets, with a strong focus on real-world examples. Moreover, we aim
to include existing hybrid AL methods in our evaluation and to design a robust
active semi-supervised method capable of consistently overcoming confirmation
bias in SSL on diverse challenges.
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30. López, V., Fernández, A., Garćıa, S., Palade, V., Herrera, F.: An insight into
classification with imbalanced data: empirical results and current trends on using
data intrinsic characteristics. Inf. Sci. 250, 113–141 (2013)

31. Lowell, D., Lipton, Z.C., Wallace, B.C.: Practical obstacles to deploying active
learning. In: Proceedings of the 2019 Conference on Empirical Methods in Nat-
ural Language Processing and the 9th International Joint Conference on Natural
Language Processing (EMNLP-IJCNLP), pp. 21–30 (2019)
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Abstract. Understanding causal relations is vital in scientific discov-
ery. The process of causal structure learning involves identifying causal
graphs from observational data to understand such relations. Usually, a
central server performs this task, but sharing data with the server poses
privacy risks. Federated learning can solve this problem, but existing
solutions for federated causal structure learning make unrealistic assump-
tions about data and lack convergence guarantees. FedC2SL is a feder-
ated constraint-based causal structure learning scheme that learns causal
graphs using a federated conditional independence test, which examines
conditional independence between two variables under a condition set
without collecting raw data from clients. FedC2SL requires weaker and
more realistic assumptions about data and offers stronger resistance to
data variability among clients. FedPC and FedFCI are the two vari-
ants of FedC2SL for causal structure learning in causal sufficiency and
causal insufficiency, respectively. The study evaluates FedC2SL using
both synthetic datasets and real-world data against existing solutions
and finds it demonstrates encouraging performance and strong resilience
to data heterogeneity among clients.

Keywords: federated learning · Bayesian network · probabilistic
graphical model · causal discovery

1 Introduction

Learning causal relations from data is a fundamental problem in causal inference.
Causal structure learning is a popular approach to identifying causal relation-
ships in multivariate datasets, represented as a causal graph. This technique
has been successfully applied in various fields such as medicine [3,32,36], eco-
nomics [1], earth science [33], data analytics [23] and software engineering [13,14].

Causal structure learning is performed on a central server with plaintext
datasets. However, in applications like clinical data analysis, data may be dis-
tributed across different parties and may not be shared with a central server.
To address this problem, federated learning is an emerging paradigm that allows
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data owners to collaboratively learn a model without sharing their data in plain-
text [6,8]. However, current federated learning solutions are designed primarily
for machine learning tasks that aggregate models trained on local datasets.

Several solutions have been proposed for federated causal structure learn-
ing [10,27,29,35]. However, these solutions have prerequisites that may hinder
their general applicability. For instance, NOTEARS-ADMM [29], which is the
state-of-the-art solution for federated causal structure learning, collects param-
eterized causal graphs from clients and uses an ADMM procedure to find the
consensus causal graph in each iteration. Since local graphs jointly participate in
the ADMM procedure, it is non-trivial to employ secure aggregation to protect
individual causal graphs, resulting in a considerable sensitive information leak
to the central server. Additionally, the assumption that data is generated in a
known functional form is deemed unrealistic in many real-life applications.

In general, many solutions attempt to locally learn a causal graph and aggre-
gate them together, but this practice is not optimal for federated causal structure
learning. Causal structure learning is known to be error-prone in small datasets,
and local datasets may suffer selection bias with respect to the global dataset
due to the potential heterogeneity of different clients. The causal graph indepen-
dently learned from each local dataset may manifest certain biases with respect
to the true causal graph of the whole dataset.

To address this issue, we propose a novel federated causal structure learning
with constraint-based methods. This paradigm interacts data only with a set
of statistical tests on conditional independence and deduces graphical structure
from the test results. The key idea of our solution is to provide a federated
conditional independence test protocol. Each client holds a local dataset and
computes their local statistics, which are then securely aggregated to derive
an unbiased estimation of the global statistics. With the global statistics, we
can check the global conditional independence relations and conduct constraint-
based causal structure learning accordingly.

We evaluate our solution with synthetic data and a real-world dataset and
observe better results than baseline federated causal structure learning algo-
rithms, including state-of-the-art methods NOTEARS-ADMM [29], RFCD [27],
and four voting-based algorithms. Our solution also shows strong resiliency to
client heterogeneity while other baseline algorithms encounter notable perfor-
mance downgrades in this setting. Furthermore, our solution facilitates causal
feature selection (CFS) and processes real-world data effectively.

In summary, we make the following contributions: (1) we advocate for fed-
erated causal structure learning with constraint-based paradigms; (2) we design
a federated conditional independence test protocol to minimize privacy leak-
ages and address client heterogeneity; and, (3) we conduct extensive experi-
ments to assess the performance of our solution on both synthetic and real-
world datasets. We release our implementation, FedC2SL, on https://github.
com/wangzhaoyu07/FedC2SL for further research and comparison.

https://github.com/wangzhaoyu07/FedC2SL
https://github.com/wangzhaoyu07/FedC2SL
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2 Preliminary

In this section, we review preliminary knowledge of causal structure learning.

Notations. Let X and X represent a variable and a set of variables, respec-
tively. In a graph, a node and a variable share the same notation. The sets of
nodes and edges in a causal graph G are denoted as VG and EG, respectively. The
notation X → Y ∈ EG indicates that X is a parent of Y , while X ↔ Y ∈ EG

indicates that X and Y are connected by a bidirected edge. The sets of neighbors
and parents of X in G are denoted as NG(X) and PaG(X), respectively. The
notation [K] := {1, · · · ,K} is defined as the set of integers from 1 to K.

2.1 Causal Structure Learning

In causal inference, the relationship between data is often presented as a causal
graph, which can take the form of a directed acyclic graph (DAG) or maximal
ancestral graph (MAG). These two representations are used to depict causal rela-
tionships under different assumptions. In the following paragraphs, we introduce
the corresponding causal graphs and formalize these canonical assumptions.

Fig. 1. Examples of observable and latent
confounders.

Graphical Representation. Causal
relations among variables in a multi-
variate dataset can be depicted using
a causal graph. The causal graph can
either be a directed acyclic graph
(DAG), where adjacent variables are
connected by a directed edge, or a
mixed acyclic graph (MAG), which
allows for bidirected edges to indicate
shared latent confounders between
two variables. In the DAG format, if a latent confounder is not observed, statis-
tical associations between variables can exist without their true causal relations
being well-represented. MAG overcomes this shortcoming and can be constructed
from a true DAG and a set of latent variables, using a set of construction criteria
[50]. See Fig. 1 (a) for an example of a DAG depicting a directed edge (Z → X).

Causal Sufficiency. Learning a DAG assumes a causally sufficient set of
variables [37]. X is causally sufficient if there is no hidden cause Z /∈ X causing
more than one variable in X. However, real-world data may not satisfy this
assumption. MAG addresses this issue by introducing a bidirected edge ↔. See
Fig. 1 (b) for an example where a bidirected edge between X,Y due to the
absence of Z.
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Global Markov Property (GMP). The Global Markov Property (GMP) [20]
connects graphical structures and statistical properties. It can be stated as:
X ⊥⊥G Y | Z =⇒ X ⊥⊥ Y | Z. Here, ⊥⊥G represents graphical separa-
tion and ⊥⊥ represents statistical conditional independence in the joint probabil-
ity distribution PX . D-separation is a structural constraint for directed acyclic
graphs (DAGs), while m-separation is a constraint for mixed graphs (MAGs).
We present their definitions in Supplementary Material [45].

Faithfulness Assumption. Faithfulness assumption states that conditional
independence on the joint distribution implies d-separation (or m-separation) on
the causal graph. Formally, X ⊥⊥ Y | Z =⇒ X ⊥⊥G Y | Z

In the remainder of the paper, we assume GMP and faithfulness assumption
always hold. Moreover, we assume causal sufficiency in FedPC and propose
FedFCI that is also tolerant to causally insufficient data.

Markov Equivalence Class (MEC). Given the Markov condition and faith-
fulness assumption, statistical tests can be performed on data to deduce graph
structures through graphical separation constraints. However, inferring the full
structure of a causal graph from data is difficult and can lead to multiple causal
graphs being compatible with the constraints deduced from conditional inde-
pendence. To address this, causal structure learning algorithms aim to recover
a MEC, which summarizes a set of causal graphs sharing the same set of d-
separations (or m-separations) [31]. The MEC is represented as a CPDAG for
DAG learning and as a PAG for MAG learning [50]. FedC2SL follows standard
conventions [22,31,50] in recovering the MEC of a given dataset.

Constraint-based Causal Structure Learning. Constraint-based meth-
ods are commonly used for causal structure learning, identifying the MEC from
observational datasets. The PC algorithm (see details in Supplementary Mate-
rial [45]) is a representative constraint-based causal structure learning algorithm.
This algorithm involves two phases: learning the causal skeleton and orienting
the edges. During the former phase, the adjacency relations between variables
are learned and an undirected graph is created. In this graph, the edges represent
the underlying causal graph’s skeleton. In the latter phase, a set of orientation
rules is applied to assign a causal direction to the undirected edges of the skele-
ton. In comparison to the PC algorithm, which performs DAG learning, the
FCI algorithm [50] is designed for MAG learning, incorporating another set of
orientation rules while using a similar skeleton learning procedure of the PC
algorithm.

3 Research Overview

This section presents the research overview. We begin by providing an overview
of FedC2SL in Sect. 3.1, covering the problem setup and threat model. Sect. 3.2
provides a comparison between our solution and existing approaches.
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3.1 Problem Setup

In this paper, we consider two causal discovery problems: FedPC and FedFCI.

FedPC. Assuming causal sufficiency, FedPC involves a DAG G = (V,E) that
encodes the causal relationships among a variable vector X = {X1, · · · ,Xd}
with a joint probability distribution PX satisfying the Global Markov Property
(GMP) with respect to G, and G is faithful to PX .

FedFCI. In causal insufficient data, FedFCI involves a MAG M = (V,E) that
encodes the causal relationships among a variable vector X = {X1, · · · ,Xd}
with a joint probability distribution PX∪L, where L is a set of unknown latent
variables. Here, PX is the observable distribution with PX∪L being marginalized
on L. If L is empty, then the setting is equivalent to FedPC. We assume that
PX satisfies GMP with respect to G and M is faithful to PX .

We now describe the setting of clients that are identical for either FedPC
or FedFCI. Suppose that there are K local datasets D := {D1, · · · ,DK} and
Di = {xi

1, · · · ,xi
ni

}. We denote xi
j,k be the k-th element of the j-th record

in the i-th local dataset. Each record in the global dataset D is sampled i.i.d.
(independent and identically distributed) from PX . We allow for selection bias
on client local datasets as long as the global dataset is unbiased with respect to
PX , which is one of the main challenges in federated learning [15]. For exam-
ple, local datasets from different hospitals may be biased on different patient
subpopulations. However, with a sufficient number of clients, the global dataset
(by pooling all local datasets) becomes unbiased. This assumption is weaker
than the Invariant DAG Assumption in DS-FCD [10]. We borrow the concept
from general causal structure learning [41] and formally define this property as
follows.

Definition 1 (Client Heterogeneity). Let {X1, · · · ,Xd} be the visible vari-
ables in the dataset and G be the ground-truth causal graph. To represent client-
wise heterogeneity, we assume that there is an implicit surrogate variable C : [K]
be the child variable of S ⊆ {X1, · · · ,Xd} in an augmented causal graph and the
i-th client holds the records with C = i. When S = ∅, the local datasets are
homogeneous.

The overall goal is to recover MEC of G or M from distributed local datasets
in the presence of client heterogeneity while minimizing data leakages.

Threat Model. Our threat model aligns with the standard setting [47]. We
assume that all parties including the central server and clients are honest but
curious, meaning that they will follow the protocol but are interested in learning
as much private information as possible from others. We are concerned with the
leakage of private client data, and we do not consider any coalitions between
participants. We will show later that FedC2SL is resilient to client dropouts,
although we do not explicitly consider this during algorithm design.
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Security Objective. The federated learning paradigms aim to prevent raw
data sharing, and only aggregated results are released [44]. We aim to achieve
MPC-style security to ensure that the semi-honest server only knows the aggre-
gated results and not individual updates. To establish this property formally, we
define client indistinguishability in federated causal structure learning.

Definition 2 (Client Indistinguishability). Let x ∈ Di be a record that only
exists in the i-th client (i.e., ∀j 
= i,∀x′ ∈ Dj ,x 
= x′). Let P(A) be the public
knowledge (e.g., intermediate data and final results) revealed in the protocol A.
A is said to be client indistinguishable for an adversary if ∀i, j ∈ [K], P (x ∈
Di | P(A)) = P (x ∈ Dj | P(A)).

3.2 Comparison with Existing Solutions

In this section, we review existing solutions and compare them with FedC2SL.
We summarize existing works and FedC2SL, in terms of assumptions, applica-
tion scope, and leakage, in Table 1.

Table 1. Comparing existing works and FedC2SL.

Solution Input Assumption Heterogeneity Application Scope Client Leakage Global Leakage

NOTEARS-ADMM [29] Data Additive Noise � DAG Individual Graph + Parameter Graph + Parameter

DS-FCD [10] Data Additive Noise � DAG Individual Graph + Parameter Graph + Parameter

RFCD [27] Data Additive Noise � DAG Individual Graph Fitness Graph

K2 [35] Data + Order Faithfulness � DAG Aggregated Fitness Graph

FedC2SL Data Faithfulness � DAG & MAG Aggregated Low-dim. Distribution Graph

Comparison of Prerequisites. Most federated causal structure learning solu-
tions assume additive noise in the data generating process, which is considered
stronger than the faithfulness assumption in K2 [35] and FedC2SL. However,
K2 requires prior knowledge of the topological order of nodes in a ground-
truth DAG, which is impractical. Additionally, solutions that learn local graphs
independently are intolerant of client heterogeneity, as their performance would
degrade arbitrarily in theory. FedC2SL is the only solution that supports MAG
learning, allowing for causal structure learning on causally insufficient data, mak-
ing it a more practical option. (See Sect. 2.1 for more details.)

Comparison on Privacy Protection. We review the privacy protection
mechanisms in proposed solutions. On the client side, NOTEARS-ADMM [29]
and DS-FCD [10] require clients to update the local causal graph and correspond-
ing parameters in plaintext to the global server. These graph parameters consist
of multiple regression models trained on local datasets, which are vulnerable to
privacy attacks on ML models. RFCD [27] requires clients to send the fitness
score of global causal graphs on the local dataset, which poses a privacy risk for
adversaries to infer the source of particular data samples and violate the client
indistinguishability. In contrast, K2 [35] and FedC2SL use secure aggregation
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or secure multi-party computation protocols such that only aggregated results
are revealed. K2 employs a score function to measure the fitness of a local struc-
ture and the global structure is established by selecting the best local structure
in a greedy manner. The score function is computed over the distributed clients
with MPC schemes such that individual updates are protected. FedC2SL uses a
constraint-based strategy to learn the causal graph and securely aggregates the
data distribution marginalized over multiple low-dimensional subspaces to the
global server. The marginalized low-dimensional distributions are strictly less
informative than NOTEARS-ADMM and DS-FCD. The global server asserts
conditional independence on the aggregated distributions and deduces graphical
separations by faithfulness accordingly.

Asymptotic Convergence. FedC2SL is inherited from constraint-based
methods that offers asymptotic convergence to the MEC of the ground-truth
causal graph under certain assumptions. In contrast, NOTEARS-ADMM and
DS-FCD use continuous optimization to the non-convex function and only con-
verge on stationary solutions. RFCD and K2 use greedy search over the combi-
natorial graph space, which does not provide global convergence guarantees.

4 FEDC2SL

In this section, we present FedC2SL, a novel federated causal structure learning
algorithm with minimized privacy leakage compared to its counterparts.

4.1 Causal Structure Learning

As discussed in Sect. 2.1, the causal graph is learned by testing conditional
independence in the dataset. A MEC of the causal graph contains all conditional
independence, as per GMP and faithfulness assumption. Moreover, the MEC can
be recovered from the set of all conditional independence relations. Therefore,
the set of all conditional independence relations in a dataset is both necessary
and sufficient to represent the MEC of the underlying causal graph.

Remark 1. Under GMP and faithfulness assumption, a Markov equivalence class
of causal graph encodes all conditional independence relations among data. Once
the Markov equivalence class is revealed, all conditional independence relations
are revealed simultaneously. Therefore, the conditional independence stands for
the minimal information leak of federated causal structure learning.

Instead of creating specific federated causal structure learning methods, we
propose using a federated conditional independence test procedure. This proce-
dure is fundamental to all constraint-based causal structure learning algorithms,
such as the PC algorithm. By implementing our federated version, we can replace
the centralized conditional independence tester in any existing constraint-based
causal structure learning algorithm and make it federated. In this paper, we
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apply our federated conditional independence test procedure to two well-known
causal structure learning algorithms, namely, FedPC and FedFCI, which are
based on the PC algorithm [37] and FCI algorithm [37,50], respectively.

4.2 Federated Conditional Independence Test

To enhance privacy protection, a multiparty secure conditional independence
test that releases only the conditional independence relations would be ideal.
However, implementing such a solution using MPC would result in impracti-
cal computational overheads for producing real-world datasets. Therefore, we
propose a practical trade-off that boosts computation efficiency while causing
negligible privacy leakage on relatively insensitive information.

To introduce our federated conditional independence test protocol, we first
explain how to test conditional independence in a centralized dataset. Consider
three random variables X, Y , and Z from a multivariate discrete distributions.
The conditional independence of X and Y given Z is defined as follows:

Definition 3 (Conditional Independence). X and Y are conditionally inde-
pendent given Z if and only if, for all possible (x, y, z) ∈ (X,Y,Z), P (X = x, Y =
y|Z = z) = P (X = x|Z = z)P (Y = y|Z = z).

While Definition 3 is straightforward to verify, it is non-trivial to statistically
test this property with finite samples. The most popular way is to use χ2-test [4],
whose null hypothesis and alternative hypothesis are defined as follows:

H0 : X ⊥⊥ Y |Z,H1 : X 
⊥⊥ Y |Z (1)

The statistic Q̂ is computed as Q̂ =
∑

x,y,z

(vxyz− vxzvyz
vz

)2

vxzvyz
vz

where vxyz is the

number of samples with X = x, Y = y and Z = z; and so on. Under null hypoth-
esis H0, Q̂ follows a χ2

dof distribution where dof =
∑

z∈Z(|XZ=z|−1)(|YZ=z|−1)
is the degree of freedom and |X|, |Y | denote the cardinality of the multivariate
discrete random variable. Let 1−α be the significance level. The null hypothesis
is rejected if Q̂ > χ2

dof(1 − α).

Why a Voting Scheme Is Not Suitable? One potential approach to test
conditional independence in a federated setting is to perform standard χ2-tests
on each client independently and use the voted local conditional independence
as the conditional independence on the global dataset. However, this approach
is not feasible for two reasons. Firstly, the χ2-test requires that all vxyz are
larger than 5 to ensure its validity [39]. This requirement is often unattainable
on small local datasets, leading to inaccurate test results. Secondly, even if the
requirement is met, the voting result may not reflect the global conditional inde-
pendence in the presence of selection bias on the client dataset. As will be shown
in Sect. 5, simple voting strategies often yield inaccurate results.

To preserve privacy while computing Q̂ on the global dataset, we can perform
secure aggregation over the four counts (vz, vxz, vyz, vxyz) instead of using the
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voting scheme. Securely summing up v1
xyz, · · · , vK

xyz from all clients can obtain
vxyz. However, if Z contains multiple variables, releasing vxyz could raise privacy
concerns due to its encoding of the joint distribution of multiple variables. We
discuss the privacy implications of releasing such high-dimensional distribution
in the following paragraph.

High-Dim. Distribution vs. Low-Dim. Distribution. We note that high-
dimensional distribution is more sensitive than low-dimensional distribution,
which allows adversaries to localize a particular instance (e.g., patient of a
minority disease). Hence, we anticipate to avoid such leakages. In contrast, the
joint distribution marginalized over low-dimensional subspace is generally less
sensitive. It can be deemed as a high-level summary of data distribution and
individual privacy is retained on a reasonable degree.

Algorithm 1: Fed-CI(X ⊥⊥ Y | Z)
Input: Data in K clients: D := {D1, · · · , DK}; Statistical Significance: 1 − σ.
Output: Whether reject X ⊥⊥ Y | Z .

1 if Z = ∅ then Z ← {1};
2 foreach z ∈ Z do
3 // i) compute marginal distribution
4 // client side:

5 let vi
z be the count of Z = z on Di;

6 let vi
xz, vi

yz be the count of X = x (or Y = y) with Z = z on Di;
7 // server side:

8 vz ← SecureAgg({vi}i∈[K]);

9 foreach x ∈ X do vx ← SecureAgg({vi
xz}i∈[K]);

10 foreach y ∈ Y do vy ← SecureAgg({vi
yz}i∈[K]);

11 foreach (x, y) ∈ X, Y do broadcast v̄xyz =
vxzvyz

vz
;

12 sample P from Ql×m
2,0 and broadcast P ;

13 // ii) compute χ2 statistics
14 // client side:

15 ui
z[I(x, y)] ← vi

xyz− v̄xyz
K√

v̄xyz
;

16 ei ← P × ui
z ;

17 // server side:

18 e ← SecureAgg({ei}i∈[K]);

19 Q̂z ←
∑l

k=1 |ek|2/l

( 2
π

Γ ( 2
l
)Γ (1− 1

l
) sin( π

l
))l ;

20 dofz ← (|XZ=z| − 1)(|YZ=z| − 1);

21 end
22 // iii) aggregate χ2 statistics

23 Q̂ ← ∑
Q̂z;

24 dof ← ∑
dofz;

25 if Q̂ > χ2
dof,1−σ then return reject null hypothesis;

26 else return fail to reject null hypothesis;
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To alleviate the direct release of high-dimensional distributions, we leverage
the idea in [44] to recast Q̂ statistic into a second frequency moment estimation
problem and employ random projection to hide the distribution. Specifically,

let v̄xyz = vxzvyz

vz
. For each client, we compute ui

z[I(x, y)] = vi
xyz− v̄xyz

K√
v̄xyz

where

I : [|X|] × [|Y |] → [|X||Y |] is an index function. The Q̂ can be rewritten as

Q̂ =
∑

x,y,z

(vxyz − vxzvyz

vz
)2

vxzvyz

vz

=
∑

z

∑

x,y

(
vxyz − v̄xyz√

v̄xyz

)2

=
∑

z

‖
∑

i∈[K]

ui
z‖22 =

∑

z

‖uz‖22
(2)

It is worth noting that the above recasting does not obviously conceal vxyz

because it can still be derived from uz. To protect ui
z, a random projection is

employed to encode ui
z into ei and a geometric mean estimation is performed

over the encoding. Then, the main result of [21,44] implies the following theorem.

Theorem 1. Let P be a projection matrix whose values are independently sam-
pled from a α-stable distribution [12] Ql×m

2,0 (m = |X||Y |), ei = P × ui
z be

the encoding on the i-th client and e =
∑

i∈[K] e
i be the aggregated encoding.

d̂(2),gm =
∑l

k=1 |ek|2/l

( 2
π Γ ( 2

l )Γ (1− 1
l ) sin(

π
l ))

l is the unbiased estimation on ‖uz‖22.

Accordingly, we can compute Q̂z for each z ∈ Z and sum them up to obtain
Q̂. Using secure aggregation, the joint distribution of X,Y,Z on local datasets
is already perfectly invisible to the central server. The encoding scheme in the
above theorem provides additional privacy protection to the distribution on the
global dataset. Specifically, under appropriate parameters, after receiving the
aggregated encoding e, the server cannot revert back to the original uz. Indeed,
given e, uz is concealed into a subspace with exponential feasible solutions
according to Theorem 2 in [44]. We now outline the workflow of our federated
conditional independence test protocol in Algorithm 1. To make Algorithm 1
compatible to empty condition set (i.e., Z = ∅), we add a dummy variable 1 to Z
(line 1) and the subsequent loop (lines 2–21) only contains one iteration applied
on the entire (local) datasets (e.g., vi

z is the count of total samples in Di, and so
on). In each iteration where a possible value of Z is picked, each client counts
vi

z, v
i
xz, v

i
yz privately (lines 5–6) and securely aggregates to the server (lines 8–

10). The server then broadcasts v̄xyz = vxzvyz

vz
for each (x, y) ∈ X,Y and the

projection matrix P to all clients (lines 11–12). Then, the client computes ui
z

and generates ei (lines 15–16). The server aggregates encodings (line 18), per-
form geometric mean estimation to derive Q̂z (line 19) and compute degree of
freedom dofz (line 20). After enumerating all z ∈ Z, the total χ2 statistics and
the total degree of freedom is computed by summing Q̂z and dofz up, respec-
tively (lines 23–24). Finally, Q̂ is compared against χ2

dof,1−σ and Algorithm 1
decides whether to reject null hypothesis (lines 25–26).
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5 Evaluation

In this section, we evaluate FedC2SL to answer the following three research
questions (RQs): RQ1: Effectiveness. Does FedC2SL effectively recover
causal relations from data with different variable sizes and client numbers? RQ2:
Resiliency. Does FedC2SL manifest resiliency in terms of client dropouts or
client heterogeneity? RQ3: Real-world Data. Does FedC2SL identify rea-
sonable causal relations on real-world data? We answer them in the following
sections.

5.1 Experimental Setup

Baselines. We compare the performance of FedC2SL with seven baselines,
including two SOTA methods: NOTEARS-ADMM [29] and RFCD [27]. We
also implement two baseline algorithms, PC-Voting and PC-CIT-Voting, which
aggregate and vote on local causal graphs to form a global causal graph. Addi-
tionally, we compare with the centralized PC algorithm [37], as well as FCI
algorithm and two voting-based baselines (FCI-Voting and FCI-CIT-Voting).
We report the hyperparameters in Supplementary Material [45].

Dataset. We evaluate FedC2SL on synthetic and real-world datasets. We
describe the generation of synthetic datasets in Supplementary Material [45].
We use the discrete version of the Sachs dataset [34], a real-world dataset on
protein expressions involved in human immune system cells.

Metrics. We use Structural Hamming Distance (SHD) between the Markov
equivalence classes of learned causal graph and the ground truth (lower is better).
We also record the processing time. For each experiment, we repeat ten times
and report the averaged results.

5.2 Effectiveness

High-dimensional datasets pose challenges for causal structure learning. We eval-
uate the performance of FedC2SL on datasets with varying variable sizes and
fixed client size (K = 10) in Fig. 2. We report the results for federated causal
structure learning for DAG and MAG. We observe that FedC2SL consistently
outperforms all other methods (excluding its centralized version) in terms of
SHD on all scales. Its accuracy is closely aligned with PC and FCI (i.e., its
centralized version), indicating negligible utility loss in the federated procedure.

Furthermore, the processing time of FedC2SL is slightly higher but accept-
able and often lower than other counterparts. On datasets with 100 variables,
FedC2SL shows a much lower SHD than other federated algorithms, indicating
its scalability to high-dimensional data. In contrast, NOTEARS-ADMM per-
forms poorly on datasets with 100 variables due to its assumption on additive
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Fig. 2. Performance on different variable sizes and client numbers.

noise being violated in discrete datasets, which is further amplified by high-
dimensional settings.

We also studied the effectiveness of FedC2SL with different client sizes
(K ∈ {2, 4, 8, 16, 32, 64}) under a fixed variable size (d = 50) in Fig. 2. With
the growth of client size, most algorithms show an increasing trend in terms of
SHD. However, FedC2SL consistently has the lowest SHD with a mild increase
of processing time. In contrast, local causal graph learning-based methods have
notable difficulty in handling large client sizes due to the low stability of local
datasets and reaching a high-quality consensus on the global causal graph.

Answer to RQ1: FedC2SL effectively recovers causal graphs from federated
datasets with high accuracy for varying variable sizes and client sizes, outper-
forming existing methods and having negligible utility loss.

5.3 Resiliency

We evaluate the performance of different algorithms in federated learning with
respect to client dropouts and heterogeneous datasets (Fig. 3).

Fig. 3. Resiliency evaluation.
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In terms of resiliency to client dropouts, most algorithms, including our
FedC2SL, do not explicitly consider it in their design. However, our experi-
ments show that the SHD of FedC2SL and other algorithms does not notably
downgrade even if 20% clients drop out. This emphasizes the robustness of de
facto causal structure learning algorithms to client dropouts.

Regarding resiliency to client heterogeneity, FedPC performs consistently
well in both homogeneous and heterogeneous datasets (d = 20,K = 4). Notably,
FedPC demonstrates negligible performance degradation in the presence of
client heterogeneity, while other solutions, such as NOTEARS-ADMM and
RFCD, suffer notable increases in SHD (on average, 4.7 increase on SHD). This
limitation results from their assumption that local datasets accurately represent
the joint probability distribution, which is invalid under heterogeneity. Actually,
the local causal graph could arbitrarily diverge from the true causal graph.

Answer to RQ2: FedC2SL shows resilience to both client dropouts and client
heterogeneity. Compared to other solutions, FedC2SL consistently performs well
in homogeneous and heterogeneous datasets.

5.4 Real-World Data

Fig. 4. Performance on the Sachs dataset.

We evaluate FedC2SL’s performance
on the protein expression dataset
from the real-world dataset, Scahs [34],
which contains 853 samples and 11
variables with a ground-truth causal
graph having 17 edges. We split the
dataset into K ∈ {2, 4, 8, 16, 32, 64}
clients and perform federated causal
structure learning. Each algorithm
runs ten times for each setting and
we report the average results in Fig. 4.
The results show that FedC2SL
demonstrates the best and highly stable performance on this dataset compared
to other algorithms.

With 64 clients, FedC2SL obtains a minimal SHD of 5.6 while the minimal
SHD of other algorithms is 15.7. This indicates that most edges are incorrect
in causal graphs learned by previous algorithms. We interpret that FedC2SL
offers a unique advantage on learning from federated small datasets.

We present the Markov equivalence classes of causal graphs learned by
FedPC, NOTEARS-ADMM, and RFCD under two clients in Fig. 5. In gen-
eral, FedPC generates the most accurate causal graph with the lowest SHD
without any erroneous edge. In contrast, both NOTEARS-ADMM and RFCD
have incorrect edges, and NOTEARS-ADMM generates a considerable number
of erroneous edges, which would significantly undermine human comprehension
of the underlying causal mechanisms behind the data.
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Fig. 5. Causal graphs learned by FedPC, NOTEARS-ADMM, and RFCD. Black solid
lines denote correct edges learned by the algorithm; orange lines denote erroneous edges
learned by the algorithm; dashed lines denote missing edges. (Color figure online)

Answer to RQ3: FedC2SL outperforms other methods on the real-world
dataset, Sachs, demonstrating the best and highly stable performance with a much
lower SHD.

6 Related Work

Private Causal Inference. Several studies have focused on privacy protections
in the causal inference process. Xu et al. [46], Wang et al. [43], and Ma et al. [24]
independently propose differentially private causal structure learning methods.
Kusner et al. [19] present a differentially private additive noise model for inferring
pairwise cause-effect relations, while Niu et al. [30] propose a differentially private
cause-effect estimation algorithm. Murakonda et al. [28] study the privacy risks
of learning causal graphs from data.

Federated Statistical Tests. The federated χ2 test [44] is closely related to
our work. It is a federated correlation test, whereas the χ2-test in FedC2SL is
designed for conditional independence test. Our work applies federated statisti-
cal tests to enable practical federated causal structure learning, a crucial step in
understanding the causal relations of data and enabling causal inference. Bog-
danov et al. [5] design an MPC-based federated Student’s t-test protocol, while
Yue et al. [48] propose a federated hypothesis testing scheme for data generated
from a linear model. Furthermore, Gaboardi et al. [9] use local differential pri-
vacy to secure the χ2-test, and Vepakomma et al. [40] propose a differentially
private independence testing across two parties.

Federated Machine Learning. Federated learning refers to the process of
collaboratively training a machine learning model from distributed datasets
across clients and has been studied extensively [15]. McMahan et al. [25]
originally coined the term, and since then, there have been various propos-
als [11,16,17,38,47] to address practical challenges, such as communication costs
and non-IID data across different clients. These proposals include update quanti-
zation [2,18], fine-tuning homomorphic encryption precision [49], and optimizing
non-IID data [7,26,42].
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7 Conclusion

In this paper, we propose FedC2SL, a federated constraint-based causal struc-
ture learning framework. FedC2SL is the first work that applies federated con-
ditional independence test protocol to enable federated causal structure learn-
ing and is tolerant to client heterogeneity. We instantiate two algorithms with
FedC2SL, namely FedPC and FedFCI, to handle different assumptions about
data. Through extensive experiments, we find FedC2SL manifests competitive
performance on both synthetic data and real-world data.
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Abstract. Class imbalance is a pervasive problem in machine learning,
leading to poor performance in the minority class that is inadequately
represented. Federated learning, which trains a shared model collabo-
ratively among multiple clients with their data locally for privacy pro-
tection, is also susceptible to class imbalance. The distributed structure
and privacy rules in federated learning introduce extra complexities to
the challenge of isolated, small, and highly skewed datasets. While sam-
pling and ensemble learning are state-of-the-art techniques for mitigating
class imbalance from the data and algorithm perspectives, they face lim-
itations in the context of federated learning. To address this challenge,
we propose a novel oversampling algorithm called ”Triplets” that gener-
ates synthetic samples for both minority and majority classes based on
their shared classification boundary. The proposed algorithm captures
new minority samples by leveraging three triplets around the boundary,
where two come from the majority class and one from the minority class.
This approach offers several advantages over existing oversampling tech-
niques on federated datasets. We evaluate the effectiveness of our pro-
posed algorithm through extensive experiments using various real-world
datasets and different models in both centralized and federated learning
environments. Our results demonstrate the effectiveness of our proposed
algorithm, which outperforms existing oversampling techniques. In con-
clusion, our proposed algorithm offers a promising solution to the class
imbalance problem in federated learning. The source code is released at
github.com/Xiao-Chenguang/Triplets-Oversampling.

Keywords: Class imbalance · Oversampling · Federated learning

1 Introduction

Class imbalance is a well-known challenge in machine learning tasks that has
been studied extensively. Federated Learning (FL), which has emerged as an
effective privacy protection framework, poses new challenges for addressing class
imbalance. In FL, the shared model is collaboratively trained by multiple clients
using their raw data, which are often imbalanced and locally available. As a
result, class imbalance in FL is more complex and unavoidable. The specific chal-
lenge in FL is that the datasets tend to be small and server-imbalanced, making it
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
D. Koutra et al. (Eds.): ECML PKDD 2023, LNAI 14170, pp. 368–383, 2023.
https://doi.org/10.1007/978-3-031-43415-0_22

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-43415-0_22&domain=pdf
http://orcid.org/0000-0003-1380-6428
https://github.com/Xiao-Chenguang/Triplets-Oversampling
https://doi.org/10.1007/978-3-031-43415-0_22


Triplets Oversampling for Class Imbalanced Federated Datasets 369

difficult to achieve a balanced training dataset. Existing advanced oversampling
techniques have demonstrated effectiveness in mitigating class imbalance; how-
ever, their applicability in the context of FL is constrained for 2 reason as shown
in Sect. 4. Firstly, Small and server-imbalanced datasets degraded the effective-
ness of advanced oversampling techniques. More importantly, aggregation of re-
balance datasets by existing oversamplings in FL is less effective compared to
rebalance the aggregated datasets as in centralized learning.

1.1 Class Imbalance

Class imbalance is the inconsistency in the degree to which a class is characterised
by data points between classes. The majority refers to the class that is well
represented by more data points, while the minority class is represented by
fewer data points inadequately. Most machine learning models assume a balanced
training dataset, optimized towards maximum overall accuracy, resulting in poor
performance on the minority class when faced with severe class imbalance.

It has been studied extensively with mainly 3 types of solutions – data-
level [4,9,16], algorithm-level [5,13], and hybrid approaches [2,7]. Class imbal-
ance can be further classified into relative imbalance and absolute imbalance
problems, depending on the overall size of data [18]. Data-level approaches such
as random undersampling and oversampling have been effective in addressing
the importance of minority data points in cases of relative imbalance, where the
size of the dataset is reasonably large. However, these approaches are not effec-
tive in addressing the absolute imbalance, where the size of the dataset is very
small, and simply duplicating minority instances provides no additional informa-
tion relevant to the pattern since the minority class may not contain sufficient
information to infer the hidden pattern.

Due to the limitations of basic sampling techniques, advanced oversampling
methods have been introduced that generate new data points. One example of
such methods is SMOTE [4]. Currently, SMOTE-based oversampling and ensem-
ble learning are considered to be the most effective and advanced techniques for
mitigating class imbalance.

1.2 Federated Learning with Class Imbalance

Federated learning(FL) is a popular learning framework that trains a shared
model among a large number of clients with their local data. It was proposed by
McMahan [14] in 2017 as a solution to the trade-off in distributed machine
learning applications between increasing privacy concerns over data sharing
and the high demand for training data. With the novel idea of transmitting
model parameters between a server and its clients instead transmitting raw data
directly, FL balances data privacy/security and model performance well. How-
ever, new challenges arise as the scale of edge devices and non-IID local datasets
increase [11,12,20].

Despite recent progress, class imbalance, a classical learning challenge in tra-
ditional centralized learning, has been an uncharted area in FL.Class imbalance
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is a challenge in FL systems that deal with raw client data, such as in health-
care where positive samples are far less than negative ones, or in mobile device
keyboards where certain emojis are used more in one place than in others [11].
Unfortunately, this challenge becomes much more difficult in distributed learning
environments than in traditional centralized learning, where the client datasets
can be very small or severely imbalanced. Moreover, there may be an imbalance
mismatch between clients, such as class missing problems, which will not be
covered in this paper as no resampling is designed for it.

Directly applying existing class imbalance algorithms to FL can be inap-
propriate, or even cause worse generalization and difficulty in model conver-
gence [15,19]. Existing advanced sampling methods applied to distributed data
do not form a well-rebalanced global dataset with large amounts of small and
imbalanced clients data. This weakens the effectiveness of traditional advanced
sampling approaches focused on the minority class itself. FL systems collaborate
with thousands of independent clients to train a reliable model as the clients hold
too little data to infer the hidden pattern. However, the client dataset is also
too small to be correctly resampled by advanced oversampling approaches focus-
ing only on minorities. With too little data or severe imbalance, the generated
minority class samples may lie in the local minority domains easily located in
the global majority domain and hinder the global model.

1.3 Challenges and Contributions

Although existing advanced oversampling approaches may not be effective for
addressing class imbalance in federated datasets, the concept of data generation
can still hold value in the FL context for two reasons. Firstly, they can high-
light the importance and costs of the minority class by introducing additional
instances that prevent it from being overlooked. Secondly, generating synthetic
minority instances that deviate from identical copies can provide valuable infor-
mation for pattern recognition and learning. While state-of-the-art data gen-
eration techniques, including SMOTE and its variants, have not succeeded in
achieving these goals on distributed datasets due to their focus on minority
data alone, the secure and effective oversampling of minorities within small and
severely imbalanced FL datasets remains a significant challenge.

This paper, therefore, proposes a new advanced oversampling algorithm
called “Triplets” for imbalanced federated datasets. The novelty lies in 1) it
recognizes the mutual classification boundary of minority and majority classes
as the rule of oversampling the minority classes; 2) it makes full use of the ade-
quate information from the majority class to synthesise minority class samples
parallel to the majority boundary. Other contributions of this paper include:

– We investigated the quality of generated data considering the factors that
impact class imbalance and the nature of federated datasets.

– we conducted extensive comparison experiments involving diverse datasets
and models.
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We find that 1) SMOTE and its variants have to trade between synthesis
effectiveness and security with small or severe imbalance data. 2) Triplets gener-
ates effective minority data even in small and severe imbalance datasets stably;
3) Triplets applied locally on FL client data generates minority data located
securely in the global minority domain.

The rest of this work is presented as follows: Sect. 2 presents the related
works. Section 3 describes the proposed Triplets algorithm in detail. Section 4
examines the generated data quality in class imbalance from the perspective of
centralized learning and FL. Section 5 presents the experiment results and anal-
yses on various datasets, models, and learning scenarios. Section 6 summarizes
the strength and weaknesses and points out the possible future works.

2 Related Work

2.1 Tackle Class Imbalance in FL

Class imbalance is a common challenge in federated learning, resulting in poor
performance of the learning algorithm on the minority class [11]. The imbalance
problem is further compounded by the fact that the client’s data is not always
accessible to the central server in a federated learning setup, making it difficult
to apply traditional techniques for handling class imbalance [19]. Only a few
papers have discussed class imbalance problems in FL so far, and none of them
considers advanced sampling approaches. Three of them modify the loss function
and aggregation rule [3,6,17]. The remaining one changes the FL framework to
eliminate class imbalance [15].

Fed-Focal Loss [15] uses a federated version of Focal Loss that automati-
cally lowers the cost of samples from the well-classified classes. Ratio Loss [17]
modifies the Cross Entropy Loss(CELoss) to rebalance the weights of minority
classes sample. Different from Fed-Focal Loss, Ratio Loss is controlled by the
server when global imbalance is detected using a novel monitor scheme. Ratio
Loss and Fed-Focal Loss, however, ignore the absolute rarity of minority sam-
ples. Astraea [6] adds mediators between the central server and clients, creating
an intermediate re-balanced client group for sequential training. However, these
approaches overlook the absolute rarity of minority samples and only provide
algorithm-level solutions while leaving data-level solutions unexplored. Hence, it
is worth investigating data-level approaches such as advanced oversampling for
their effectiveness, convenience, and extensibility with other tools.

2.2 Traditional Class Imbalance Solutions

As mentioned in Sect. 1, they can be grouped into 3 categories. Among these,
advanced oversampling techniques, including the synthetic minority oversam-
pling technique (SMOTE) and its variants, are preferred. SMOTE [4] oversam-
ples the minority class by finding k nearest neighbours of each minority sam-
ple and drawing a random sample on the line linking the minority and one
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of its neighbours. By interpolating minority neighbours, SMOTE addresses the
minority while avoiding over-fitting caused by random oversampling. Borderline-
SMOTE is a variant of SMOTE that spots the danger points around the border
and generates new minorities for them. ADASYN [9] is another SMOTE variant
that uses dynamic weights based on the portion of the majority in its neigh-
bours. Danger points with more majority neighbours, are used to generate more
synthetic data. SMOTE and its variants are effective in relieving the class imbal-
ance, while its effectiveness decreases with the increase of class imbalance. As a
cluster-based algorithm focuses on the minority, SMOTE and its variants receive
poor cluster results and synthetic quality when minority samples size are small.

Ensemble methods are another wild accepted rebalance approach. However,
the majority of ensemble learning utilizes a large amount of decision tree as a
base learner, which makes it impractical in FL considering communication and
model aggregation. More recently, deep learning methods have been proposed
for handling class imbalance, such as Generative adversarial networks (GAN).
But it is still far from a generative and reliable augmentation approach.

3 Triplets Oversampling

Different from existing advanced oversampling techniques that generate minor-
ity samples from existing minority data, Triplets oversampling take advantage
of the rich information of majority classes. This approach distinguishes itself
from existing oversampling techniques in three key aspects. Firstly, by consid-
ering the majority in minority synthesis, Triplets oversampling generates more
reliable data points, as we will demonstrate in our experiments. Secondly, using
both minority and majority data in synthesis enhances the generation effective-
ness beyond the limitation of minority size. Finally, generating data along the
majority-class boundary effectively expands the minority-class region, particu-
larly for small datasets with severe imbalance.

Without loss of generality, binary classification is used to demonstrate the
oversampling challenge and the effectiveness of Triplets in the rest of the paper.
A multi-class problem can be converted into multiple binary problems in a one-
vs-the-rest manner. For a binary classification problem, dataset D is composed
of N samples. The minority class contains Nmin samples denoted as xp

i with
label 1. Whereas, the Nmaj minority denoted as xmaj

i with label 0. The relative
imbalance measurement Imbalance Ratio(IR) is defined as IR = Nmaj/Nmin.

3.1 Beyond Traditional Resampling

As mentioned in Sect. 1, the principle behind Triplets is the majority and major-
ity share the same separation hyperplane in a classification problem regardless of
the concept complexity, imbalance level, and data size. Nevertheless, the bound-
ary around minority classes may not reflect the real separation hyperplane due
to a lack of data.
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Fig. 1. Triplets generates new data for minority class workflow

The boundary around majority classes is more reliable even in severe imbal-
ances. This new perspective provides a potential way to apply the share separa-
tion hyperplane principle in class imbalance problems where synthetic minorities
can be drawn in the hyperplane parallel to the separation hyperplane which is
also parallel to the boundary of majority data points. Naturally, a direct idea is
to draw synthetic data from the hyperplane which crosses one of the minority
points and parallel to the majority boundary.

The challenge is finding a proper way to draw the majority boundary as a
reference for minority synthesis. Instead of finding the global boundary for the
majority class, this paper presents an ingenious method utilizing the nearest
neighbour in a small region near the minority instance to determine a local
boundary.

The detailed process of Triplets oversampling is presented in Sect. 3.2.

3.2 Triplets Oversampling Process

To achieve the targets, Triplets oversampling is designed as following repeated
steps as shown in Fig. 1:

1. For the minority samples xp
i , denote the minority points as Triplet 1(T1).

2. Find k = IR nearest neighbors xn
j (j ∈ {0 . . . k − 1}) of T1 from the majority

class xn. Denote the nearest neighbor xn
0 as Triplet 2(T2).

3. Randomly chose one neighbor from the rest k − 1 neighbors, denote it as
Triplet 3 (T3).

4. Draw a parallelogram with the triplets T1, T2, T3, and the last points T is the
synthetic data for the minority class.

Following Fig. 1, new minority data can be seen as a point of a parallelogram
whose two points come from the majority boundary and one from the minority
boundary. As the name suggests, Triplets utilizes the similarity between T1, T2,
and T3 to generates their next triplet T

In the second step, the number of neighbours is determined automatically
by the imbalance ratio k = IR. This makes Triplets a parameter-free method,
which extends the usibility and reduces the complexity of the algorithm.
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Two more processes is applied to further ensure the security and robustness
of Triplets. In step 2, T2 is the mean of 5 neighbours instead of the nearest
neighbours to get rid of abnormal majorities. Ans in step 3, instead of using
T = T1 + T3 − T2 directly, length constrain and random factor is applied as in

T = T1 + α min
(‖ T1 − T2 ‖

‖ T2 − T3 ‖ , 1
)

(T3 − T2) (1)

In whcih α is a random number in [0, 1], and min
(

‖T1−T2‖2
‖T2−T3‖2

, 1
)

make sure T still
in the minority domain when ‖ T2 − T3 ‖2 is big than ‖ T1 − T2 ‖2.

4 Quality of Oversampled Data

The synthetic data quality is assessed in both centralized learning and FL sce-
narios in this section with synthetic 2D data.

4.1 Synthetic Data Quality from Class Imbalance Perspectives

Quantitatively, the class imbalance is a phenomenon of inadequate representa-
tion of partial classes. Apart from analysing the sampling algorithms empirically
and comparing the performance score, evaluating the synthetic data quality from
the perspective of factors that impact class imbalance is necessary. Deep behind
the phenomenon, impacts of class imbalance depend on [10]:

1. The data size(absolute imbalance)
2. The imbalance level(relative imbalance)
3. The data complexity(small disjunct)

In the rest of this subsection, the sampling algorithms are reviewed from the
above three aspects. For clearing the strength of the proposed algorithm, the fol-
lowing state-of-the-art algorithm will be included in the comparison: 1) Baseline;
2) Random Oversampling(ROS); 3) SMOTE; 4) board-line SMOTE(BSMOTE);
5) ADASYN.

Sensitivity to Data Size. It is argued that the nature of class imbalance is the
small sample size [10], which causes there is not enough information to extract
from for the classification tasks. Existing advanced oversampling methods con-
front the challenge of using cluster on only the minorities in data shortage. With
fewer data from minority classes that can be clustered, the neighbours found by
cluster locate far from each other. The synthetic data sampled from the connec-
tion between those false neighbours are not guaranteed in the minority domain.
SMOTE and its variants, thus not effective algorithms to extract patterns in
such cases.

The proposed algorithm relieves the impacts of a small minority size by
considering the information from the majority and avoids wrong sampling by
finding the majorities for minority synthesis.
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Fig. 2. Comparison of sampling methods with various data sizes

As shown in Fig. 2, with a fixed IR of 49, advanced oversampling methods are
used to process the circle data. SMOTE and its variants perform worse with the
whole data size dropping from 2000 to 500. They tend to generate more wrong
data points close to the centre. Triplets, however, keep a stable synthetic effect
per minority data without making the wrong augmentation.

Sensitivity to Imbalance Level. Class imbalance is more harmful with a high
class imbalance level [10]. Existing oversampling techniques also confront severe
imbalance as their effectiveness drops when IR gains. With a certain minority
size Nmin, by increasing the majority size Nmaj , Triplets will generate more high-
quality minorities along the classification boundary. From this point of view, our
approach is less prone to the severe imbalance resulting from the rule of using
majority samples.

Figure 3 illustrates the performance of advance oversampling methods with
different IR for circle dataset. Obviously, only Triplets keeps generating effective
and secure data when the imbalance level increases gradually.

Sensitivity to Data Complexity (Small Disjuncts). The class imbalance
will not be a problem in cases where the data is linear spreadable. With the
increase in data complexity, the class imbalance results in worse performance,
as more data is required to represent the more complex domains. Cluster-based
sampling as SMOTE thus shows degraded effectiveness in dealing with complex
data.
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Fig. 3. Comparison of sampling methods with different imbalance level

To simulate the data complexity, another circle data [8] with small disjuncts is
generated. Oversampling techniques are used to resample the data to be trained
in SVM classifier. Figure 4 shows the results of the simulation in which every
2 rows resembles the same data with different sampling methods. As shown
in Fig. 4, with small data size, SMOTE and its variants either create wrong data
joining the two subdomains or directly ignore the small disjunct. Only Triplets
generates new data for all small disjuncts correctly and safely.

4.2 Synthetic Data Quality from FL Perspective

A FL simulation is designed to illustrate the synthetic data quality by perform
oversampling on the client datasets independently. The resampled data is gath-
ered together for final evaluation.

S-curve data is applied as the upper left figure in Fig. 5 where the red triangle
is the minority class in the s-curve. Except for the upper left figure, the rest are
gathered results from 10 clients after independent re-sampling of given algorithm.
For clarity, the majority data points are hidden in all resamples and is the
same as in the Original. For SMOTE similar methods, the figure title end with
the n neighbors parameter. Obviously, SMOTE and its variants generate large
amounts of wrong data for minorities with default n neighbors of 5. Smaller
n neighbors relieves the falut while lead to pool representation effects. Thus,
SMOTE and its variants have to trade-off between improving performance and
avoiding wrong samples. The proposed methods, by considering the majority
class in minority oversampling, generates safe samples in the FL scenario.
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Fig. 4. Comparison of sampling methods with small disjuncts

5 Experiments

To evaluate the performance of Triplets, experiments are conducted on real-world
datasets in both centralized learning and FL settings.

5.1 Experiments Setting

Imbalance Datasets. In the traditional centralized learning scenario, datasets
from BSMOTE [8] and ADASYN [9] are included. The multi-class datasets are
converted to binary datasets in an one-vs-rest manner and the same as in the
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Fig. 5. Compare sampling methods with class imbalance FL data

Table 1. Imbalance datasets information for centralized learning

Dataset vehicle diabete vowel ionosphere abalone satimage haberman aloi pulsar

samples 846 768 990 351 731 6430 306 49533 17897

features 18 8 10 33 7 36 3 27 8

IR 3.25 1.87 10.00 1.79 16.40 9.29 2.78 31.87 9.92

original work. As those datasets are fairly small in size, Pulsar and ALOI datasets
are also included to evaluate the performance with larger datasets and higher
imbalance level [3]. The same as [9], 50% of majority and minority are randomly
selected as training data and the rest is test data. Furthermore, imbalance multi-
plier MIR is introduced in this work to simulate a more severe imbalance. When
MIR = 2, the IR is doubled by sampling only 25% minority while keeping 50%
majority in training data. The full detail of the 9 datasets is listed in Table 1.

CIFAR-10 dataset is used in FL imbalance simulation as a larger and high
dimensional datasets compared with the former 9 datasets, which helps in revil-
ing the capability of the sampling algorithms on it. CIFAR-10 is composed of
50000 training and 10000 test samples from 10 classes with 32 × 32 features.

To simulate class imbalance, 1 out of 10 class is selected as the minority and
all other is the majority. The majority and minority are randomly split into
100 clients of equal size. Imbalance multiplier MIR is also applied for severe
imbalance. The original test data are used for final evaluation.
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Table 2. Performance score with std of sampling algorithms in centralized learning at
MIR = 4. The best score is in bold. P value of comparison algorithm with Triplets is
shown at the bottom based on paired T-test

Dataset Score ADASYN BSMOTE Baseline ROS SMOTE Triplets

abalone F1 .410±.087 .404±.106 .287±.118 .394±.098 .412±.086 .456±.072

G-mean .429±.085 .435±.087 .381±.093 .419±.090 .430±.084 .464±.073

AUC .659±.051 .649±.054 .589±.045 .648±.050 .660±.051 .693±.044

AP .252±.064 .261±.064 .231±.064 .247±.064 .252±.062 .273±.057

aloi F1 .166±.017 .129±.018 .057±.007 .147±.013 .167±.018 .176±.016

G-mean .170±.015 .143±.021 .156±.013 .148±.013 .171±.016 .178±.015

AUC .566±.007 .537±.007 .515±.002 .549±.006 .566±.007 .567±.006

AP .071±.005 .068±.006 .075±.004 .067±.004 .071±.006 .074±.005

diabete F1 .711±.023 .688±.029 .000±.000 .707±.022 .708±.023 .710±.024

G-mean .712±.022 .692±.027 .000±.000 .708±.022 .709±.022 .712±.024

AUC .725±.019 .718±.019 .500±.000 .727±.017 .727±.019 .728±.020

AP .654±.020 .653±.020 .483±.000 .657±.018 .657±.021 .658±.023

haberman F1 .278±.039 .221±.055 .071±.038 .079±.045 .266±.061 .166±.060

G-mean .303±.036 .260±.052 .128±.053 .133±.057 .292±.061 .213±.065

AUC .523±.021 .520±.021 .504±.011 .503±.013 .521±.033 .512±.021

AP .399±.012 .398±.014 .389±.007 .388±.008 .400±.019 .394±.014

ionosphere F1 .773±.057 .797±.057 .722±.058 .803±.053 .771±.061 .815±.053

G-mean .790±.047 .812±.047 .752±.047 .818±.044 .789±.050 .828±.045

AUC .813±.035 .831±.037 .784±.035 .835±.035 .812±.038 .843±.036

AP .801±.035 .821±.036 .781±.034 .826±.033 .801±.038 .836±.034

pulsar F1 .770±.010 .761±.012 .000±.000 .796±.013 .799±.013 .796±.011

G-mean .774±.010 .765±.012 .000±.000 .797±.013 .800±.013 .797±.011

AUC .898±.004 .892±.008 .500±.000 .884±.004 .886±.004 .888±.003

AP .620±.015 .608±.017 .150±.000 .663±.021 .668±.021 .662±.018

satimage F1 .653±.022 .646±.022 .073±.050 .659±.021 .655±.020 .693±.016

G-mean .655±.020 .652±.020 .181±.062 .662±.020 .657±.019 .694±.016

AUC .779±.017 .768±.016 .519±.014 .783±.017 .780±.016 .825±.014

AP .492±.021 .493±.021 .189±.022 .500±.021 .495±.020 .527±.019

vehicle F1 .893±.029 .891±.027 .850±.029 .888±.031 .894±.028 .922±.022

G-mean .897±.027 .894±.026 .858±.026 .891±.029 .897±.026 .924±.021

AUC .908±.025 .906±.024 .872±.022 .903±.026 .908±.024 .934±.020

AP .864±.031 .861±.030 .824±.028 .858±.033 .864±.030 .892±.025

vowel F1 .874±.070 .871±.071 .832±.064 .874±.074 .878±.069 .897±.052

G-mean .881±.063 .879±.064 .844±.054 .882±.066 .885±.062 .900±.048

AUC .898±.058 .894±.058 .860±.045 .895±.057 .901±.058 .920±.047

AP .810±.093 .807±.095 .757±.074 .812±.098 .816±.093 .836±.074

p value F1 0.002 <0.001 <0.001 <0.001 0.011 /

G-mean 0.001 <0.001 <0.001 <0.001 0.004 /

AUC <0.001 <0.001 <0.001 <0.001 <0.001 /

AP <0.001 <0.001 <0.001 <0.001 <0.001 /

Models and Parameters. For the centralized learning scenario, Support Vec-
tor Machine(SVM) with rbf kernel is used as the classifier for stable outputs.
Currently, the majority of FL systems are designed for neural network models
with easy and reliable aggregation algorithm FedAvg [14]. For classifying images,
AlexNet is used as the shared model for CIFAR-10 dataset.
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Table 3. Centralized learning mean score and std of all 9 datasets on various MIR

MIR Score ADASYN BSMOTE Baseline ROS SMOTE Triplets

1 F1 .6330±.263 .6400±.253 .5512±.333 .6431±.265 .6446±.261 .6491±.253

G-mean .6452±.254 .6479±.251 .5669±.322 .6519±.259 .6542±.253 .6600±.246

AUC .8173±.145 .8129±.147 .7332±.178 .8158±.147 .8171±.142 .8257±.141

AP .5255±.293 .5276±.290 .4955±.323 .5407 ± .294 .5379±.292 .5413±.287

2 F1 .6469±.261 .6422±.264 .4564±.348 .6383±.284 .6548 ± .260 .6555±.268

G-mean .6525±.257 .6475±.261 .4974±.330 .6454±.277 .6594 ± .256 .6617±.263

AUC .7892±.148 .7812±.152 .6829±.172 .7856±.152 .7897±.146 .7993±.150

AP .5642±.276 .5634±.276 .4867±.303 .5723±.283 .5740±.278 .5800±.279

4 F1 .6143±.254 .6007±.272 .3212±.355 .5941±.297 .6165±.259 .6257±.279

G-mean .6234±.251 .6147±.262 .3666±.341 .6064±.287 .6253±.255 .6343±.271

AUC .7522±.140 .7461±.146 .6268±.156 .7476±.146 .7511±.140 .7679±.147

AP .5514±.260 .5521±.260 .4310±.280 .5576±.266 .5581±.262 .5725±.267

The FL system is composed of 100 clients in total, and 10 of them are acti-
vated randomly in every global epoch. In every step of 1000 FedAvg iteration,
activate clients performs 2 local epochs training. The final results are the average
of 30 repeats with standard deviation.

Evaluation Metrics. The overall accuracy is not an effective measurement
with class imbalance. As the minority class is the weakness of class imbalance,
metrics that focus on the minority such as precision and recall reviles the abil-
ity of the minority. However, there is always a trade-off between precision and
recall. F1-score and G-mean provide reasonable way to combine them as a sin-
gle cretierion. Metrics based on threshold can do further help in verifying the
classifier as Area under the ROC curve(AUC) and Average Precision(AP).

When dealing with class-imbalance data, the final decision in model selection
should consider a combination of different measures instead of relying on only
one measure [1]. In this paper, F1-score, G-mean, AUC, and AP are all presented
for informative analysis. All results are rounded to 3 decimal places. Paired t-test
is used to verify the significance of the results from the competitors.

5.2 Results and Analysis

Centralized Learning. Table 2 lists 4 scores and the standard deviation for
each resampling algorithm across 9 datasets with MIR = 4. Triplests outper-
form other algorithms in 7 out of 9 datasets except for haberman and pulsar
datasets. And in pulsar dataset, the performance gap between Triplets and the
best algorithm is negligible.

The average scores of 9 datasets with MIR of 1, 2 and 4 are listed in Table 3.
The best results are marked in bold, and the underline indicates the second-best
results that are not significantly different from the best results according to a
significance level of 0.05. Triplets outperform other algorithms significantly in
most cases. And with the increase of MIR, the margin of Triplets over other
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algorithms becomes larger which further proves the effectiveness of Triplets in
severe class imbalance.

FL. The average metircs and standard deviation of sampling algorithms in FL
setting are listed in Table 4. Triplets outperforming other advanced oversampling
algorithms significantly in all level of MIR and metircs. Although BSMOTE
achieves a competative AUC score with no significant difference from Triplests,
its F1 and G-mean drop dramatically to 0 with the increase of MIR. Similarily,
baseline results show no significant difference from Triplets in AP, but at the cost
of low F1 and G-mean scores. Thus, Triplets establishes a new state-of-the-art
in FL imbaalnce learning on CIFAR-10 dataset among oversmapling techniques.

Table 4. FL results on CIFAR-10 dataset with various MIR

MIR Score Baseline SMOTE BSMOTE ADASYN Triplets

1 F1 .493±.084 .498±.084 .299±.161 .461±.096 .508±.089

G-mean .682±.064 .690±.066 .424±.157 .657±.073 .725±.070

AUC .864±.042 .870±.039 .858±.040 .852±.042 .870±.041

AP .509±.110 .517±.108 .485±.100 .469±.125 .525±.120

2 F1 .409±.134 .406±.106 .096±.093 .390±.111 .454±.099

G-mean .568±.115 .560±.091 .182±.147 .555±.095 .629±.081

AUC .830±.057 .831±.045 .840±.041 .827±.051 .849±.048

AP .443±.143 .446±.113 .436±.096 .422±.122 .469±.118

4 F1 .330±.088 .290±.120 .011±.020 .294±.089 .356±.126

G-mean .477±.078 .434±.110 .042±.065 .446±.082 .508±.114

AUC .800±.043 .791±.058 .801±.045 .793±.049 .818±.063

AP .401±.095 .375±.123 .356±.096 .364±.092 .409±.129

8 F1 .239±.091 .183±.097 .000±.001 .198±.076 .282±.086

G-mean .382±.086 .319±.100 .001±.008 .344±.076 .427±.078

AUC .771±.050 .771±.057 .809±.059 .759±.054 .810±.054

AP .344±.091 .335±.098 .366±.095 .309±.083 .388±.097

p value F1 0.014 <0.001 <0.001 <0.001 /

G-mean <0.001 <0.001 <0.001 <0.001 /

AUC 0.003 0.003 0.072 <0.001 /

AP 0.096 0.032 0.010 <0.001 /

6 Conclusion

The class imbalance in federated learning presents a new challenge for traditional
imbalance mitigation solutions. While a few studies have focused on algorithm-
level solutions, there is still a gap in sampling methods suitable for federal stud-
ies. Traditional advanced sampling techniques have failed to generate effective
and secure data from a global view for small and severe imbalance datasets.

Triplets oversampling, on the other hand, utilizes the shared separation
hyperplane rule and data points from the majority class to enhance the minor-
ity domain. This approach generates informative data and enriches the minority
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domains securely. Experiments have shown its superiority over other advanced
oversampling techniques both in the FL and centralized learning.

This work opens a new gate for the oversampling of minorities from the
angle of the majority and the separation hyperplane. However, more efforts are
needed to find the best way to utilize the majority and the tools to determine
the boundary. There is still a lot of detail to explore to further improve the
effectiveness and security of the proposed approach.
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Abstract. Today’s deep learning systems rely on large amounts of use-
ful data to make accurate predictions. Often such data is private and thus
not readily available due to rising privacy concerns. Federated learning
(FL) tackles this problem by training a shared model locally on devices to
aid learning in a privacy-preserving manner. Unfortunately, FL’s effec-
tiveness degrades when model training involves clients with heteroge-
neous devices; a common case especially in developing countries. Slow
clients are dropped in FL, which not only limits learning but also sys-
tematically excludes slow clients thereby potentially biasing results. We
propose Hasaas; a system that tackles this challenge by adapting the
model size for slow clients based on their hardware resources. By doing
so, Hasaas obviates the need to drop slow clients, which improves model
accuracy and fairness. To improve robustness in the presence of statisti-
cal heterogeneity, Hasaas uses insights from the Central Limit Theorem
to estimate model parameters in every round. Experimental evaluation
involving large-scale simulations and a small-scale real testbed shows that
Hasaas provides robust performance in terms of test accuracy, fairness,
and convergence times compared to state-of-the-art schemes.

Keywords: Federated Learning · Fairness · Robustness · Developing
Countries

1 Introduction

Today’s deep neural networks (DNNs) power a wide variety of applications rang-
ing from image classification, speech recognition, to fraud detection [21]. DNNs
rely on large amounts of data to make accurate predictions and draw useful infer-
ences. However, such data is often private1 and may not be readily available for
centralized collection due to rising privacy concerns and growing adoption of
data privacy regulations (e.g., Europe’s GDPR [36] and California Consumer
Privacy Act [7]). A lack of useful data can limit the effectiveness of DNNs [4].

1 Private data includes any personal, personally identifiable, financial or sensitive user
information [14].
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Federated learning (FL) is a distributed machine learning approach that
tackles this problem by training a shared model over data that is distributed
across multiple edge devices (e.g., mobile phones), which share model param-
eters with a centralized server to aid learning in a privacy-preserving manner
[27,38]. Unfortunately, FL’s effectiveness degrades when model training involves
heterogeneous client devices [5,20]; a common case especially in developing coun-
tries [2,3,33,37]. With FL, slow clients are dropped from the training process to
reduce convergence delays. However, such an approach can degrade test accuracy
and reduce fairness due to the systematic exclusion of slow clients [20,28].

We propose Hasaas;2 a system that tackles this challenge by (i) adapting
the model size based on client device capabilities (which we call Differential
Model Serving or DMS ), (ii) using a sub-model selection strategy based on post-
activation values, and (iii) using insights from the Central Limit Theorem (CLT)
to improve model robustness in the presence of statistical heterogeneity [15].

Serving small models to slow clients and large models to fast clients offers
two key benefits. First, it reduces the model training time for slow clients,
which decreases their chances of being dropped from the training process thereby
improving fairness. Second, it can achieve a better tradeoff between model perfor-
mance and convergence times compared to serving a single model to all clients.3

However, realizing these benefits requires answering two key questions: Given a
model, how should we select a sub-model to serve to slow clients? and how should
we aggregate model parameters from slow and fast clients?

Hasaas selects a sub-model based on post-activation values of neurons. In
particular, it bootstraps the FL process by choosing a random sub-model and
allows slow clients to train the sub-model for the first r rounds. Then after every
r rounds, it chooses a new sub-model based on post-activation values.4 This
allows neurons with small activation values to be excluded from the sub-model,
which improves performance. The neurons that have small activation values are
considered less important as they contribute less to the model’s output and have
a smaller impact on weight updates during training.

With FL, a random set of clients are picked in each round for model training,
which changes the proportion of slow and fast clients in each round. This can
reduce model accuracy, especially when there is statistical heterogeneity in data
across clients. To improve robustness in such scenarios, Hasaas aggregates model
parameters in each round using insights from the CLT by learning the distribu-
tion of the sample mean of the model parameters [15].5 Hasaas then randomly
draws each model parameter from the learned distribution rather than always
using the sample mean. This improves performance especially when there is high
variance in the model parameters shared by each client.

2 In the Urdu language, Hasaas means sensitive.
3 Small models can reduce accuracy, whereas large models lead to slow convergence.
4 In case of CNN models, it prunes filters too.
5 Thus, in every training round, we estimate the mean and variance of each model

parameter, which together uniquely identifies a Normal distribution.
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We carry out extensive evaluation using (i) large-scale simulations involving
the LEAF benchmarking framework for learning in FL settings [9] and (ii) small-
scale real testbed experiments involving mobile clients with heterogeneous device
capabilities. We compare Hasaas’s performance with several notable schemes
including FedAvg [27], Adaptive Dropout [6], and FedProx [23] and carry out
a detailed ablation study to quantify the benefits of each component of Hasaas.
Experiments show that Hasaas achieves robust performance in terms of test
accuracy, convergence, and fairness across diverse datasets and models.

Taken together, we make the following contributions in this work.

– We design Hasaas; an adaptive model serving framework for FL that adapts
model sizes based on client capabilities (Sect. 4). It reduces the computa-
tional and communication costs in FL by training on a subset of the model’s
weights and exchanging smaller sub-models between slow clients and the
server instead of the full model updates.

– To achieve better generalization, we propose a CLT-based approach, which
outperforms other approaches including FedAvg, Adaptive Dropout, and Fed-
Prox (Sect. 4).

– We carry out extensive evaluation using large-scale simulations and small-
scale testbed experiments involving real smartphones over a wide variety
of real-world federated datasets (Sect. 5). We make our code available on
GitHub.6 for the benefit of the community.

2 Background and Related Work

Our work focuses on synchronous FL algorithms that proceed in training rounds.
These algorithms aim to learn a shared global model with parameters embodied
in a real tensor Γ from data stored across several distributed clients. In each
round t ≥ 0, the server distributes the current global model Γ t to the set of
selected clients St with a total of nt data instances. The selected clients locally
execute stochastic gradient descent (SGD) on their data and independently train
the model to produce the updated models {Γ k

t |k ∈ St}. The update of each client
k can be expressed as:

Γ k
t = Γ t − αHk

t , ∀k ∈ St (1)

where Hk
t is the gradients tensor for client k in training round t, and α is the

learning rate chosen by the server. Each selected client k then sends the update
back to the server, where the new global model (Γ t+1) is constructed by aggre-
gating all client-side updates as follows:

Γ t+1 =
∑

∀k∈St

nk

nt
· Γ k

t (2)

6 https://github.com/FederatedResearch/hasaas.

https://github.com/FederatedResearch/hasaas
https://github.com/FederatedResearch/hasaas
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where nk is the number of data instances of client c and nt =
∑

∀k∈St
nk. Hence,

Γ t+1 can be written as:
Γ t+1 = Γ t − αtHt (3)

where Ht = 1
nt

∑
k∈St

nkH
k
t .

Fairness in FL. Due to the heterogeneity in client devices and data in federated
networks, it is possible that the performance of a model will vary significantly
across the network. This concern, also known as representation disparity, is a
major challenge in FL, as it can potentially result in uneven outcomes for the
devices. Following Li et al. [22], we provide a formal definition of this fairness in
the context of FL below.

Definition. We say that a model W1 is more fair than W2 if the test perfor-
mance distribution of W1 across the network is more uniform than that of W2,
i.e., std{Fk(W1)}k∈[K] < std{Fk(W2)}k∈[K] where Fk(·) denotes the test loss on
device k ∈ [K], and std{·} denotes the standard deviation.

We note that there exists a tension between variance and utility in the def-
inition above; in general, the goal is to lower the variance while maintaining a
reasonable average performance (e.g., average test accuracy). Several prior works
have separately considered either fairness or robustness in FL. For instance,
fairness strategies include using minimax optimization to focus on the worst-
performing devices [18,39] or reweighting the devices to allow for a flexible fair-
ness/accuracy tradeoff (e.g., [24]).

2.1 Related Work

Several recent and ongoing efforts aim to tackle system and statistical hetero-
geneity in FL [6,8,10,13,19,20,23,25,27,39]. In this section, we discuss works
that are most closely related to our study.

System Heterogeneity. A number of schemes aim to reduce the impact of client
heterogeneity by serving smaller models. These schemes differ based on (i)
whether they do model pruning on the client-side [19] or the server-side [6],
(ii) the criteria used for pruning (e.g., [8,12]), and (iii) whether they serve a
single model to all clients or not [6,8,19]. For example, PruneFL [19] performs
initial model pruning at a selected client and further adaptive pruning on the
server-side. It serves the same pruned model to all clients. Moreover, because
the initial model pruning is carried out on only one selected client and its data,
the pruned model can be biased towards the selected client. HeteroFL [12] trains
local models based on clients’ device characteristics. It pre-defines subset models
with different complexity levels and assigns the same model to clients belonging
to the same complexity level. However, the subset models are statically defined,
which limits model performance. AFD [6] trains a subset model using either a
single-model or multi-model serving approach. With the former approach, the
same model is served to each client and monitored for average training loss.
A positive score is given for decreasing loss, while a new model is served if loss
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increases. While AFD outperforms Federated Dropout (FD), which relies on ran-
dom dropping to select sub-models, such a strategy can trigger frequent model
changes, which can negatively affect model performance. We demonstrate this
in Sect. 5.7

Statistical Heterogeneity. A number of approaches aim to tackle statistical het-
erogeneity by either modifying the (i) client selection strategy of FL (e.g., [26]),
(ii) FedAvg aggregation method (e.g., [13]) or (iii) objective function to include
a regularization term (e.g., [23]). For example, PFedR [26] is a client selection
strategy in which the server generates dummy datasets from the inversion of
local model updates, identifies clients with large distribution divergences, and
aggregates updates from highly relevant clients only. Generating dummy data
from client updates raises privacy concerns. Also, in case of secure multi-party
aggregation where client updates are meaningless without aggregation, generat-
ing dummy data from those updates will not help in identifying client distribu-
tion divergences. In such cases, this approach may not yield the desired results.
FedDNA [13] is a parameter aggregation method for FL that aggregates gradient
and statistical parameters, separately. While the gradient parameters are aggre-
gated using FedAvg, the statistical parameters are aggregated collaboratively
to reduce the divergence between the local models and the central model. This
technique is only applicable to models with a batch normalization layer.

FedProx [23] uses partial work from resource-constrained devices to tackle
system heterogeneity and adds a regularization term in the FedAvg objective
function to improve performance under statistical heterogeneity. However, incor-
porating partial updates from slow clients can reduce test accuracy if the model
is not trained enough.8 In addition, downloading a large model from the server
can still be a significant burden for slow clients, particularly those located in
regions with limited connectivity.

Hasaas tackles both system and statistical heterogeneity by combining the
benefits of differential model serving and CLT-based aggregation. It extends the
state-of-the-art in terms of system heterogeneity by employing an approach in
which slow clients are served a small model whereas the fast clients continue to
receive the global model. This is unlike AFD and PruneFL that serve smaller
models to all clients, which can degrade model accuracy. Moreover, unlike Het-
eroFL that uses pre-defined subset models, Hasaas dynamically updates small
models based on average post-activation values in the global model. As a result,
sub-models that are not performant are discarded as training progresses. We
delve deeper into the design of Hasaas in the following section.

7 With multi-model AFD, a different subset model is used by each client, all of the
same size. However, training with a small fraction of clients in each round – a typical
scenario in FL – makes the algorithm behave randomly, just like the FD scheme [6].

8 Moreover, if the slow clients are unable to run the large model due to resource
constraints, they cannot participate in the training process.
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3 Problem Motivation

It is common for distributed clients in FL to exhibit considerable heterogeneity
in terms of computational resources (e.g., number of CPU cores, RAM size) and
network bandwidth [8,23]. This heterogeneity impacts both the model accuracy
and the training time of the FL process [9]. Consequently, resource-constrained
edge devices (e.g., entry-level smartphones), which are prevalent in develop-
ing countries, are either unable to train models due to their limited compute
and memory resources or take a prohibitively long time in training [27,29,33].
According to a study involving one of the largest online social networks, 57% of
smartphones in developing regions, had 1 GB or less RAM [30].9 Such entry-level
smartphones frequently operate under low memory regimes, which is known to
degrade performance [2,33,37]. Unfortunately, slow clients (or stragglers) are
dropped in FL schemes (e.g., FedAvg) for efficiency reasons because waiting for
slow clients to report their updates can increase convergence times. However,
dropping slow clients can (i) degrade test accuracy and (ii) lead to unfairness.

Fig. 1. Impact of systems heterogeneity on test accuracy and fairness in FedAvg for
different client drop rates and datasets. As the fraction of slow clients increases, the
test accuracy, and fairness decrease.

System Heterogeneity Degrades Robustness and Fairness. To evaluate
the impact of slow clients in FedAvg on model accuracy and fairness, we simulate
different levels of system heterogeneity using LEAF [9]. In particular, we vary
the client drop rate (CDR)10 from 10% to 90% and carry out evaluation on
multiple real datasets including FEMNIST, FMNIST, CIFAR-10, and Sent140.
Figure 1 shows that with FedAvg, system heterogeneity negatively impacts both
model robustness as well as fairness.11 In particular, test accuracy decreases as
CDR increases across all datasets whereas the variance of the test loss (across
clients), which captures model fairness, generally increases with CDR.

Homogeneous Model Serving (HMS) Either Slows Convergence or
Degrades Model Performance. To quantify the impact of serving the same
9 In 2018, ∼300 million Android phones shipped globally had 1 GB or less RAM [1].

10 CDR is the fraction of slow clients in the system. With FedAvg, such clients are
dropped from the training process.

11 Similar to Li et al. [22], we capture model fairness using the variance of test loss
across clients. Thus, the more uniform the loss distribution is, the fairer the model.
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model to all clients we train a CNN model over the FEMNIST dataset [9] and
measure the test accuracy and the time to complete 100 training rounds on two
real smartphones, i.e., Nokia 1 (Quadcore, 1 GB RAM) and Nexus 6P (Octacore,
3 GB RAM). These devices represent slow and fast clients, respectively.12 We find
that with FedAvg, serving the same model to both slow and fast clients leads
to slow convergence. In our testbed, it took 15.9 h with FedAvg to complete 100
train rounds.

Fig. 2. Time to complete 100 rounds of training on a real testbed as a function of test
accuracy for different model drop rates (MDR).

To address this system heterogeneity, one can serve a smaller model (e.g., a
subset of the original model) to all clients [8]. Figure 2 shows that indeed serv-
ing smaller models reduces the time to complete 100 rounds. However, it also
reduces test accuracy. For example, increasing the model drop rate (MDR) (i.e.,
the pruning percentage) from 30% to 50% reduces the test accuracy by 4.2%.
Another approach is to serve a smaller model to only slow clients while the faster
clients continue to train on the large model (we refer to this approach as Differ-
ential Model Serving, which is part of Hasaas). We find that such an approach
considerably improves test accuracy while also achieving significant reductions
in convergence time. For example, when the MDR is 50%, DMS improves test
accuracy by 9.4% over HMS with similar convergence times. However, we see
diminishing returns beyond 50% MDR because in this regime the fast client
becomes the bottleneck as opposed to the slow client.

In summary, serving a single model to all clients presents a tradeoff between
convergence time and model accuracy. DMS can address this tradeoff by serving
models of different sizes to slow and fast clients.

12 The memory specifications of these devices represent a wide range of smartphones.
In developing regions, phones with 1GB or less RAM had a market share of 57%
compared to 20% in developed regions. Phones ≥ 3GB RAM had less than 25%
market share in developing regions and over 50% share in developed countries [30].
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4 Design

Hasaas tackles both system heterogeneity and the statistical challenges with
heterogeneous data using the following design features:

1. Differential model serving. Clients are served models with different sizes based
on their capabilities.

2. Sub-model selection using activations. Small sub-models are selected for slow
clients based on post-activation values.

3. Model generalization using insights from the Central Limit Theorem. To
improve performance robustness, especially over non-IID datasets, we use
a CLT-based approach to choose model parameters.

A. Differential Model Serving. DMS has several benefits compared to serving
the same model to all clients participating in FL. First, due to the large hetero-
geneity in mobile device characteristics, training a single model over all clients
can lead to widely different training times, which can result in frequent dropping
of slow clients from FL,13 potentially leading to unfairness across clients [5,8,22].
Second, it is difficult to choose a single model that allows all clients to partic-
ipate in FL training while achieving high accuracy; small models can degrade
model accuracy, whereas large models lead to the dropping of slow clients. DMS
addresses these challenges by allowing model sizes to be adapted based on device
characteristics such as the number of CPU cores, memory size, and GPU char-
acteristics (if present). Thus, slow clients are served smaller models than faster
clients, which can improve fairness by reducing the dropping of clients from the
FL process.

B. Sub-model Selection. Given a model size, a key design question in Hasaas
is, “which sub-model should we serve to slow clients?” There are many possible
sub-models one can pick. In a feed-forward neural network, suppose we allow
dropping of neurons from all layers including the input and output layers, then
the number of distinct sub-models are lower bounded by

(
n1

�f.n1�
)(

n2
�f.n2�

)
..
(

nl

�f.nl�
)
,

where ni is the number of neurons in layer i, (1−f) is the pruning fraction (i.e.,
fraction of neurons dropped from each layer), and l is the total number of layers.
Finding the best sub-model from among such a large set of possible sub-models is
challenging. We address this challenge with two strategies. First, we bootstrap
the FL process by choosing a random sub-model and allowing slow clients to
train over the sub-model for the first r rounds. This allows us to assess the parts
of the sub-model that contribute the most to the learning task. Second, after
every r rounds, we choose a new sub-model based on the post-activation values
of neurons (in case of CNN models, filters too) [35]. This allows neurons with
small activation values to be excluded from the sub-model. This approach can
enable better model selection than randomly picking models in each round or
choosing a different random model in each round [8].

13 Some clients may not be able to run large models at all due to memory constraints.
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C. Model Generalization. Training a model in FL is challenging due to the
statistical variations in data distributed across clients, which impacts both model
accuracy as well as model convergence [8,23]. This is exacerbated by the fact
that in each round, FL picks k random clients for training from a pool of N
clients. As a result, choosing the sample mean of the weights of each model
parameter across clients in the current round may not be representative of clients
picked in the next round, especially when k is much smaller than N , which is a
typical case in FL [27].14 To generalize model training, we use insights from CLT,
which posits that the distribution of the sample mean of IID random variables
converges to a Normal distribution.15 We consider the setting, where each client
i draws independent samples from a distribution D with finite mean μ and finite
variance σ2. Let Xi

j ∼ D be the random variable denoting weight of the jth

model parameter for client i. Then FL aims to learn the average X̄j =
∑N

i=1 piX
i
j

across all clients, where pi is the proportion of samples trained by client i. CLT
posits that X̄j converges in distribution to the Normal distribution with mean
μ and finite variance σ2/N . Thus, larger the variance, the more imprecise is
our estimate of X̄j . To achieve better generalization, we randomly draw samples
from the learned sample mean distribution and use them for the next round,
where a new set of random clients are selected for model training.

By drawing random samples from the sample mean distribution rather than
just using the sample mean in each round, we ensure that clients with large
values for the model parameters do not skew the learning process. To estimate
the distribution of the sample mean, we use parameters shared by clients in each
round independently. As a result, there is no pooling of parameter values across
rounds due to dependencies introduced by SGD. In our evaluation, we show that
this strategy improves accuracy, robustness, and convergence speed compared to
just using the sample mean.

4.1 Algorithm

At the start of the FL process, the server initializes a global model W0 and a
mask M to keep track of the smaller model sent to the slow clients; see Algorithm
1. The server randomly picks a smaller model w0 (which we call a sub-model)
from the global model W0. It does so randomly at the start as it does not have
any prior information to effectively choose a sub-model. The server selects n
clients randomly and sends the sub-model w0 or the large model W0 to selected
clients based on their device characteristics. Let Ct denote the set of all clients
selected in round t. Each client trains its model and sends the model updates
as well as activations of dense layers to the server. The server aggregates these
updates and activations. In weighted aggregation, sc and St represent the number
of training samples of client c and the number of training samples in round t,

14 While the sample mean is an unbiased estimator of the population mean, the variance
of the sample mean depends on the sample size (i.e., the number of clients).

15 If each client’s model weights follow a different distribution, one can use generaliza-
tions of CLT, such as the Lyapunov CLT and Lindeberg CLT [15].
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Algorithm 1: Hasaas
Input: Model Dropout Rate (k%), Pruning Round (r)
Server executes:
Initialize: Global model W0, mask M ← 0;
for each round t = 1, 2, . . . , T do

if t > 1 then
Select sub-model wt from Wt based on mask M

else
wt ← Random selection k% ;
M ← Indexes of sub-model wt;

end
Ct ← (select n clients randomly) ; � n ≤ N
Send Wt or wt to Ct based on their device characteristics
for each client c ∈ Ct do

if c is slow then
Train sub-model wt:
activationsc

t , wc
t+1 = �(wt, c) ;

W c
t+1 = Broadcast(wc

t+1, M) ;
else

Train large model Wt:
activationsc

t , W c
t+1 = �(Wt, c) ;

end
end

activationst = 1
n

∑
c∈Ct

activationsc
t ;

μ =
∑

c∈Ct

sc
St

W c
t+1 ; � St: Total samples

σ =

√
√
√
√

∑

c∈Ct

sc(W
c
t+1 − μ)2

St−1
;

σ = σ√
t
;

Wt+1 = N (μ, σ2) ;
if (t mod r) == 0 then

Update M using activations of dense layer and �1-Norm of CNN filters
end

end

respectively. Based on average activations, and �1-norm of the CNN filters, the
server picks the optimal sub-model for slow clients after every r rounds. The
only two parameters of Hasaas are k (MDR), representing the percentage of
neurons/filters to be dropped from the dense and convolution layers and the
Mask Update Round (MUR) r, at which M is updated.

Aggregation. Hasaas uses insights from CLT to aggregate clients’ model param-
eters. Server calculates the weighted mean μ (weighted by number of data sam-
ples) and standard deviation σ of each parameter across clients. It then uses
μ and σ to randomly sample parameters from the Normal distribution to send
back to the clients. As training progresses and the model becomes stable, large
changes in model parameters can adversely impact performance. As a result, we
continue decreasing σ proportional to 1/

√
t (current round), which limits model

deviations from the stable parameters and helps with generalization.
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5 Evaluation

We now present empirical results for Hasaas using large-scale simulations and
small-scale testbed experiments under federated settings. We demonstrate the
effectiveness of Hasaas in the presence of both system and statistical heterogene-
ity and study its convergence, robustness, and fairness properties. All code and
scripts for generating the paper results are available here.

A. Experimental Details. We evaluate Hasaas on multiple models, tasks, and
real-world federated datasets. We implement Hasaas in LEAF [9] – a benchmark-
ing framework for FL to simulate our federated setup – and evaluate its perfor-
mance on CNN and LSTM models, and five real-world datasets. Specifically, we
use CIFAR-10, Federated extended MNIST (FEMNIST), FEMNIST (skewed),
Fashion-MNIST (FMNIST) for CNN and Sent140 for the LSTM model. We
compare Hasaas performance with FedAvg [27], FedProx [23], and Single-Model
Adaptive Federated Dropout [6].

Real Data. The datasets we use are curated from prior work in FL [8,22,23]
and recent FL benchmarks in LEAF [9]. FMNIST, FEMNIST, and Sent140 are
non-IID datasets. To study Hasaas under an IID dataset, we curated CIFAR-10
in an IID fashion, where each example has the same probability to belong to any
device. We then study a more complex 62-class FEMNIST dataset [8,11]. Details
of datasets, models, and workloads are provided in Appendix A.2 on GitHub.

Hyperparameters. We evaluate each dataset using three learning rates: {0.01,
0.001, 0.0003}. While smaller learning rates mean the model takes longer to
converge, the behavior of all techniques remains the same relative to each other.
As suggested in an earlier work [23], we use a learning rate of 0.001 and 0.01
for the CNN and LSTM models, respectively. We set the number of selected
devices per round to 10. Unless specified otherwise, we set MDR = 50% and
r = 10, which results in 50% of the filters and neurons being dropped from the
convolution and dense layers, and leads to 50% fewer cells in the LSTM layers
for the slow client. For a fair comparison, we fix the randomly selected devices,
the slow clients, and mini-batch orders across all runs and report the average
results of 5 runs.

Fig. 3. Test accuracy as a function of round number for 0% and 30% system hetero-
geneity. 0% client drop rate indicates no system heterogeneity. If there is no system
heterogeneity, Hasaas provides better or similar performance to FedAvg and FedProx.

https://github.com/FederatedResearch/hasaas
https://github.com/FederatedResearch/hasaas


Learning Fast and Slow: Towards Inclusive Federated Learning 395

Fig. 4. Test accuracy as a function of round number for 50%, 70% and 90% system
heterogeneity, where system heterogeneity referes to the percentage of slow clients.
Hasaas results in significant convergence improvements relative to other schemes. As
statistical heterogeneity increases Hasaas provides robust performance. We also report
train loss in Appendix A.5.

B. System and Statistical Heterogeneity.

System Heterogeneity. For studying the impact of heterogeneity, we vary the
percentage of slow devices (0%, 30%, 50%, 70%, and 90%). We emulate devices
as slow if they cannot train the model for E epochs due to their system con-
straints. Settings where 0% devices are slow correspond to environments without
system heterogeneity, whereas 90% of the slow devices correspond to highly het-
erogeneous environments. FedAvg simply drops slow clients upon reaching the
global clock cycle but Hasaas incorporates the updates from these devices as
they train a subset model and are able to send updates on time. AFD also incor-
porates slow-device updates as it trains a smaller model on all devices. FedProx
incorporates partial updates from the slow devices.

Figures 3 and 4 show that Hasaas achieves robust performance for different
levels of system heterogeneity compared to FedAvg, FedProx and AFD. As sys-
tem heterogeneity increases, FedAvg’s performance degrades significantly. Fed-
Prox performs better than FedAvg because it incorporates partial updates from
slow clients and modifies the objective function to include a regularization term
to avoid over-fitting on clients’ data. However, incorporating partial updates
can have a negative impact if the model is not trained for enough epochs. Thus,
as the number of slow clients increases, FedProx achieves lower test accuracy
relative to Hasaas especially with non-IID datasets (e.g., FEMNIST).

Statistical Heterogeneity. We use datasets with varying degrees of IID-ness
to evaluate Hasaas under statistical heterogeneity. We use two versions of FEM-
NIST dataset; one non-IID version is generated using LEAF, which is employed
by Ditto [22]. We generate a skewed non-IID version of the FEMNIST dataset
in which each client contains data with only 5 classes of the FEMNIST dataset.
This approach has been used in prior works to generate skewed non-IID datasets.
Figures 3 and 4 show the test accuracy of all approaches on different datasets.
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Fig. 5. Variance of test loss as a function of average test accuracy.

These results indicate that as the degree of non-IID-ness increases, Hasaas pro-
vides better generalizability as evidenced by the high test accuracy. For each
dataset, Hasaas provides either faster convergence compared to other schemes
while also achieving better or comparable test accuracy.

In case of the IID CIFAR dataset, Hasaas achieves fast convergence to a
test accuracy of 50% than FedProx but results in 2% lower test accuracy after
1000 rounds. This occurs because in the presence of system heterogeneity, while
Hasaas serves a sub-model to slow clients FedProx continues to serve the same
large model to all clients. The IID nature of the data leads to a lower variance in
the sample mean of the model parameters, resulting in less benefits of the CLT
approach. In case of SENT140, Hasaas performs comparable to other approaches,
except FedAvg, which experiences large fluctuations as system heterogeneity
increases. In case of high system (90%) and statistical heterogeneity (FEMNIST
skewed), Hasaas provides 27% test accuracy improvement over FedAvg, 14% over
FedProx, and 34% over AFD; see Fig. 4.

Fairness. Due to statistical heterogeneity in federated settings, the performance
of a model may vary significantly across different devices, resulting in represen-
tation disparity [17]. In Hasaas, we serve a subset model to slow clients, which
potentially has a larger risk of representation disparity. We empirically show that
in addition to improving accuracy, Hasaas also offers improved fairness. Hasaas
picks the best subset model after every r (a tunable parameter) rounds for slow
clients. Variance of test loss across clients can be seen in Fig. 5 and Appendix A.5.
Interestingly, Hasaas provides better average test accuracy as well as achieves
lower variance across clients compared to FedAvg and Hasaas without CLT.
Figure 5 compares the robustness and fairness of Hasaas, FedProx, AFD and
FedAvg. Results show that Hasaas provides robust and fair performance as it
trains on all clients and uses CLT for improved generalization.
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C. Ablation Study.16

Benefits of Activation-Based Model Pruning. We compared our
activation-based sub-model selection strategy with the random sub-model selec-
tion strategy, which selects a new model in each round. We find that our
activation-based approach consistently outperforms random selection, yielding
a test accuracy improvement ranging from 3.7% to 6.9% for CDRs of 30% and
90%, respectively.

Benefits of Model Generalization Module. We also evaluated Hasaas’
model generalization module in our ablation study. We find that incorporating
the generalization module provided up to 6.7% improvement in test accuracy,
compared to the model without the module.

Choice of Normalizing σ by 1/
√

t. We conducted an empirical evaluation of
various normalizing factors for σ in order to identify the optimal approach for
improving the performance of a model using random sampling from a normal
distribution. Our findings indicate that using a large normalizing factor results in
a reduction in the improvement provided by this sampling technique, as the value
of σ becomes smaller and the sampled weights tend to remain close to the mean.
This effectively reduces the effectiveness of the technique to that of FedAvg. On
the other hand, failing to normalize σ leads to large model parameters, which
can cause the model to become unstable, which is illustrated in Appendix. Based
on our empirical evaluation, we suggest using a normalizing factor that keeps σ
moderate and increases as the round progresses and the model weights become
more stable, leading to better accuracy. In our experiments, we found that 1/

√
t

was a particularly effective normalizing factor for σ.

Using CLT with FedProx and FedAvg. We performed experiments by apply-
ing the model generalization module of Hasaas to FedAvg and FedProx on the
FEMNIST skewed data. We observe that the differences between these schemes
(i.e., FedAvg and FedProx) with and without CLT are small and not significant.
With vanilla FedAvg, CLT does not provide any significant improvement because
slow clients are dropped in FedAvg. The same trend holds with FedProx, which
also does not serve small models to slow clients but instead incorporates partial
work and adds a regularization term to the loss function.

D. Real Testbed Experiments. We implemented Hasaas on a real FL testbed.
We use PySyft [32], an open-source framework for FL, to train models on mobile
devices. Mobile devices connect with the server to download models and train
them using KotlinSyft [31]. The server communicates with the clients using
Google Firebase Services [16]. We perform evaluations on real smartphones, i.e.,
Nexus 6P (3 GB RAM, Octacore) and Nokia 1 (1 GB RAM, Quadcore) as fast
and slow client, respectively. We employed real datasets, namely FEMNIST and
a CNN model from the LEAF benchmark, to investigate the impact of model
size on model training times. Further details of the model can be found in the
16 Figures related to the ablation experiments are in Appendix A.1, which is available

on our GitHub repository.

https://github.com/FederatedResearch/hasaas
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Appendix A.2. We present the training time for various model drop rates on the
slow device in Hasaas in Appendix A.3. The large model is the unpruned model
served to the slow client and a 30% MDR implies a 30% pruned model. Our
results indicate that increasing the MDR decreases the training time. Specifi-
cally, a 50% MDR leads to a 66.7% reduction in training time due to reduced
FLOPs, as shown in Appendix A.3. A MDR of 50% results in 3.8× fewer FLOPs
and a training time reduction of roughly 2.9×. We examine the impact of network
heterogeneity on convergence time for different MDRs in Appendix A.4.

6 Limitations and Future Work

Differential Model Serving. We only evaluated Hasaas using a 2-model app-
roach (i.e., fast clients train over the global model whereas slow clients train over
a sub-model). In the future, it would be useful to examine the effectiveness of
customizing model sizes for each client based on their characteristics.

Impact on Mobile User Experience. By including slow clients in the FL
training process, it is possible that these clients may be further slowed down
thereby degrading mobile users’ experience of other applications (e.g., mobile
browsers). This could be explored in future works.

Hasaas and Multi-task Learning. In multi-task learning [34], the goal is to
train personalized models for each device independent of sizes whereas Hasaas
focuses on reducing the overhead of model training for improving inclusiveness
in the presence of client heterogeneity.

7 Conclusion

We presented the design and evaluation of Hasaas, an inclusive framework for
federated learning that achieves improved learning and fairness properties in the
presence of client heterogeneity. Hasaas’s differential model serving ensures that
slow clients are not dropped from the training process and achieve training times
similar to fast clients whenever possible. Our evaluation involving large-scale
simulations and a small-scale real testbed of mobile clients shows that Hasaas
achieves robust performance across a variety of real-world federated datasets.
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Abstract. Federated learning (FL), which aims to facilitate data col-
laboration across multiple organizations without exposing data privacy,
encounters potential security risks. One serious threat is backdoor attacks,
where an attacker injects a specific trigger into the training dataset to
manipulate the model’s prediction. Most existing FL backdoor attacks are
based on horizontal federated learning (HFL), where the data owned by
different parties have the same features. However, compared to HFL, back-
door attacks on vertical federated learning (VFL), where each party only
holds a disjoint subset of features and the labels are only owned by one
party, are rarely studied. The main challenge of this attack is to allow an
attacker without access to the data labels, to perform an effective attack.
To this end, we propose BadVFL, a novel and practical approach to inject
backdoor triggers into victim models without label information. BadVFL
mainly consists of two key steps. First, to address the challenge of attack-
ers having no knowledge of labels, we introduce a SDD module that can
trace data categories based on gradients. Second, we propose a SDP mod-
ule that can improve the attack’s effectiveness by enhancing the decision
dependency between the trigger and attack target. Extensive experiments
show that BadVFL supports diverse datasets and models, and achieves
over 93% attack success rate with only 1% poisoning rate. Code is avail-
able at https://github.com/xuanyx/BadVFL.

Keywords: Vertical Federated Learning · Backdoor Attacks

1 Introduction

Federated Learning (FL), as a promising distributed learning paradigm, enables
multiple participants to collaboratively train a global model without exposing
their private local data. Therefore, it attracts a surge of attention and has been
widely applied in many privacy-critical fields like credit risk prediction [14,29],
medical diagnosis [4,15], etc.

However, recent works have shown that such promising paradigm encounters
severe security threats [5,13,18,27,34], which significantly hinders its deploy-
ment in safety-critical areas. One serious threat to FL is backdoor attacks, where
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Fig. 1. An example of VFL system. A bank (active party) with account balance features
aims to train a more precise model for loan risk analysis by cooperating with an e-
commerce company (passive party) holding repayment features.

attackers poison partial training data of the victim model to mislead any data
with the trigger to a target label, while preserving the model’s utility on clean
data. It is vital to ensure the security of FL before deployment, as the potential
attacks may cause serious threats to the users. For instance, applying a back-
doored FL model to the loan risk prediction area, which predicts any users with
the trigger as low risk, may lead to huge economic losses.

FL can be classified into two main categories: horizontal federated learning
(HFL) and vertical federated learning (VFL). In HFL, samples sharing the same
features are distributed among different participants, e.g., two regional banks
which have different clients but similar businesses like average monthly deposit
and account balance to jointly train a model for financial product recommenda-
tions. In VFL, data owned by different parties share the same sample IDs but
disjoint features. e.g., a bank with account balance information wants to get a
more precise model for loan risk analysis by cooperating with an e-commerce
company owning repayment information. Recent literature has thoroughly ana-
lyzed the backdoor attacks and defenses in HFL [21,22,24,30,31]. However, the
backdoor threats in VFL are rarely explored, despite their increasing relevance
in cross-enterprise collaboration. To this end, in this paper, we explore a new
backdoor threat in VFL scenario.

Figure 1 illustrates the architecture of the VFL system. In VFL, only one
party (known as the “active party”) possesses the labels and partial data fea-
tures, while the other parties (known as the “passive parties”) only have partial
data features. VFL enables the active party to enrich their data features by coop-
erating with the passive parties who provide more diverse features. Specifically,
in the case where the attacker is the active party, an intuitive way is to add
triggers to the local data from the target class, then put them into the training
process to implant the backdoor. However, when the attacker is a passive party,
the lack of label information makes it more challenging to perform the attack.
To address this issue, one may apply label inference to deduce the labels. But
the existing state-of-the-art method [5] requires many auxiliary labeled data and
can only perform label inference after the model training is completed, which
is impractical for backdoor injection. Despite the above challenges, we propose
BadVFL to conduct backdoor attacks in VFL. Our approach includes two main
components. First, we introduce a Source Data Detection (SDD) module to trace
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the data categories based on their gradients in run-time. The core idea of SDD
is that data from the same class have similar model updating directions. Second,
we propose a Source Data Perturbation (SDP) scheme to enhance the decision
dependency between the trigger and attack target, thereby further improving
the attack’s effectiveness.

We evaluate BadVFL on four benchmark datasets, namely CIFAR-10, Ima-
geNet, BHI, and IMDB, covering both image and text fields. Several excellent
results are captured in the experiments. First, our attack is highly effective and
general, achieving over 93% attack success rate with only 1% poisoning rate on
all datasets, while introducing negligible main accuracy drops. Second, BadVFL
is insensitive to the selection of target data, making it more stable than exist-
ing methods. Third, we evaluate BadVFL against several defense approaches to
verify its robustness.

Our technical contributions are summarized below:

– We conduct a systematic investigation of backdoor attacks in VFL systems
and propose BadVFL, a more general and practical backdoor framework with
stable attack performance. Our analysis reveals serious backdoor risks in VFL
systems.

– We propose the SDD module to trace data categories and the SDP module
to enhance the dependency between triggers and attack targets.

– We conduct extensive empirical validations to show that our framework
achieves start-of-the-art performance in terms of effectiveness, generalization,
stability, and robustness against several defense methods.

2 Background and Related Work

2.1 Vertical Federated Learning

VFL [3,6,32,33] facilitates multiple parties to collaboratively build a model over
the partitioned features with privacy-preserving, as all data remains local inside
each party. Concretely, the VFL protocol is executed as below: 1) the active
party broadcasts the sample ID sequence to passive parties to align the data. 2)
Each passive party uploads data feature representations extracted by their local
model in a predefined order. 3) The active party concatenates these features and
feeds them into the top model to calculate the loss and gradients. 4) The active
party updates the top model and sends the gradients of uploaded features to
passive parties. 5) The passive parties update their bottom models using the
received gradients. Supplement B.1 gives the algorithm of the VFL process.

However, such promising training paradigm has been shown to be vulnerable
to security threats, such as backdoor attacks [18], label inference attacks [5],
etc. It is crucial to ensure the security of VFL systems before deploying them in
real-world applications.
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2.2 Backdoor Attacks

Backdoor attacks aim at manipulating the victim models’ behavior on back-
doored data while maintaining good performance on clean data. Whenever the
trigger is presented in the input instance, the backdoor is activated to induce
the model to predict the target label.

Backdoor Attacks are first investigated in CV domain [19,26]. Gu et al. [7]
generate the poisoned data by adding a specific pattern on clean samples, e.g.,
a square, and relabeling them with target label before putting them into the
training process. We formulate the loss function of backdoor attacks as below:

argmin
θ

∑

(x,y)∈D

L(F(x, θ), y) + L(F(x + T , θ), yt), (1)

where F is the model with parameters θ, x is the clean data with correct label
y, T is the trigger and yt is the target label. The key to backdoor attacks is
to establish a strong link between the trigger and the attack target, which is
achieved by the last term in Eq. 1.

Recent studies have explored the backdoor attacks in the HFL scenario, which
is more vulnerable due to clients having full control over the local labeled data
and the training process, making it easier to submit malicious updates to build
up a mapping between the trigger and target label. Xie et al. [30] introduce a
distributed backdoor attack by decomposing a global trigger into several local
triggers and assigning them to different adversarial clients. Bagdasaryan et al. [1]
explore a model replacement approach by scaling the malicious model updates
to replace the global model with the local poisoned one.

However, backdoor attacks in the VFL scenario are rarely explored because
the attack achieved by the passive party is more challenging due to the lack of
label information. Liu et al. [18] introduce a gradient replacement (GR) approach
by replacing the gradient of local triggered samples with the gradient of the
target data (explained in Sect. 4) when updating the local model. However, GR
heavily relies on the selection of the target data and neglects the impact of
features owned by other parties in the final classification.

3 Problem Formulation

3.1 Vertical Federated Learning

In a VFL system, there are K parties {Pk}K
k=1, where each party Pk holds partial

features and the labels are privately owned by the active party. We denote the
whole training dataset as D = {xi = (x1

i , x
2
i , ..., x

K
i ), yi}N

i=1, where xk
i is the

feature of ith sample located on kth party, and yi is the true label of ith sample.
Each party holds a local feature extractor Fθk

to transform the local data xk
i

into feature representations. VFL minimizes the following loss function to ensure
performance:

argmin
θ

∑

(xi,yi)∈D

Lce (Mθt
(fi), yi) + Ω(θ), (2)
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where fi = Concat{Fθ1(x
1
i ), ...,FθK

(xK
i )} is the merged feature representation

of the ith sample, Lce is the cross-entropy loss and Mθt
is the top model, θk

is the parameters of local feature extractor Fθk
owned by Pk, and Ω(θ) is the

regularization term to avoid overfitting.

3.2 Threat Model

As stated previously, we assume one of the passive parties with no label informa-
tion is the adversary. Without loss of generality, we assume PK is the attacker.

Attacker’s Goal. The goal of PK is to establish a strong link between the trig-
ger and the attack target. Whenever the trigger is presented in the input instance,
the victim model should predict the target label. Meanwhile, the attacker should
ensure the clean data are classified correctly to maintain the model utility. For-
mally, the attacker optimizes the following objective function:

argmin
θ

∑

(xi,yi)∈D

Lce (Mθt
(fc

i ), yi) + Lce (Mθt
(fp

i ), yt) + Ω(θ), (3)

where fc
i = Concat{Fθ1(x

1
i ), ...,FθK

(xK
i )}, fp

i = Concat{Fθ1(x
1
i ), ...,FθK

(xK
i +

T )} are the clean and poisoned feature representations, respectively. T is the
injected trigger. The first term ensures that the victim model behaves normally
on clean data, and the second term achieves the backdoor behavior. We showcase
various backdoored samples in Supplement A.1.

Attacker’s Capability. We assume PK strictly follows the VFL protocols:
uploading feature representations, receiving gradients, and updating its local
model. The data accessible to PK are: own local data {xK

i }N
i=1 and the corre-

sponding gradients {gK
i }N

i=1 returned from the active party. Moreover, PK has
no knowledge of the data, the model, and any intermediate information owned
by other parties. The adversary cannot interfere with the normal interactions
between the active party and other passive parties.

4 Backdoor Attacks in VFL

In this section, we present a detailed explanation of how BadVFL can achieve
backdoor attacks in the VFL systems.

The key to successful backdoor attacks is associating a pre-defined trigger
with the target label. One intuitive method is adding the trigger into the data
from the target class to link the trigger with the attack target. However, PK with-
out label information does not know which data comes from the target class. To
address this issue, we design the Source Data Detection (SDD) module, which
can infer data categories based on their gradients in run-time. Moreover, to fur-
ther improve the attack’s effectiveness, we propose the Source Data Perturbation
(SDP) scheme, which enhances the decision-dependency between the trigger and
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Fig. 2. The framework of BadVFL, which contains two main modules: Source Data
Detection and Backdoor Implantation. The former aims to detect the source data
(marked in blue) based on the target data (marked in orange). (Color figure online)

the attack target. Figure 2 shows the steps involved in BadVFL. And the detailed
algorithm of BadVFL process is given in Supplement B.2.

Definition 1. (Target Data). Target data is a prior knowledge which comes
from the target class known by the attacker.

Definition 2. (Source Data). Source data are obtained by SDD module used
for data poisoning which have the same label with target data.

4.1 Source Data Detection

We assume PK only knows one target data denoted as xK
t , where t is the sample

ID of target data. (Note that data should be uploaded to the top model in a
pre-defined order.) Intuitively, the key insight of SDD is that data from the same
class will have similar model updating directions (a.k.a., gradients). With known
xK

t , PK normally participates in the VFL training process until first getting gK
t .

Then PK runs SDD to infer which data comes from the target class by computing
the similarity between gK

t and the gradients of other data. In detail, the process
involves two main steps: feature replacement and similarity computation.

Feature Replacement. We randomly select n samples per batch (denoted as
xK

nset, |nset| = n) to detect whether they are from the target class. To increase
the gradient similarity between xK

t and the data from the target class in xK
nset,

we replace xK
j with xK

t (for all j ∈ nset), so the only difference between xt and
xnset is the data held by the other clients. Then we upload the replaced data to
the top model.

Similarity Computation. After obtaining the returned gradients of xK
nset

(denoted as gK
nset), we compute the cosine similarity between gK

nset and gK
t .

(Note that gK
t is updated when xK

t is uploaded.)
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cos(gK
t , gK

j ) =

〈
gK

t , gK
j

〉
∥∥gK

t

∥∥
2

∥∥gK
j

∥∥
2

, for all j ∈ nset. (4)

Intuitively, the higher the similarity, the more likely they have the same label.
To illustrate how this works, we consider a simple example where the top model
consists of only one linear layer.

⎛

⎜⎝
W11 · · · W1d

...
. . .

...
WC1 · · · WCd

⎞

⎟⎠

⎛

⎜⎝
FT

θ1
(x1

i )
...

FT
θK

(xK
i )

⎞

⎟⎠ =

⎛

⎜⎝
O1

...
OC

⎞

⎟⎠ , (5)

where W is the top model parameters, O is the output of sample i, and C is the
number of classes for classification. Here we assume the true label yi of sample i
is class c, where c ∈ [1, C]. As we can see, the gradient of the cross-entropy loss
w.r.t. the feature representation of sample i is:

∂Lce(fi;W, yi)
∂fi

=
(
Wc1, · · · ,Wcd

)
= Wc. (6)

Therefore, the gradients received by PK have the following properties: data
from the same class will return similar gradients, resulting in a high positive
cosine similarity. While samples from different classes will return dissimilar gra-
dients, resulting in a low cosine similarity.

Finally, we set a threshold αthre. If the similarity between gK
j (for j ∈ nset)

and gK
t is higher than αthre, we consider xK

j to be from the target class, named
source data. We terminate the SDD process until enough source data are found
or all training data have been considered. Compared with the state-of-the-art
label inference method [5] which requires many auxiliary labeled data, our SDD
is more practical.

4.2 Backdoor Implantation

Based on the above steps, we have already inferred the source data which are
from the target class. Our next task is to associate a pre-defined trigger with
the attack target. One intuitive method is directly adding the trigger to the
source data and putting them into the training process. However, the top model
may still learn the mapping between the background clean features of the source
data and the target label, causing the failure of backdoor injection. Therefore,
we propose a Source Data Perturbation (SDP) module to further enhance the
decision-dependency between the trigger and the attack target.

Source Data Perturbation. A successful backdoored model should give the
target prediction as long as the malicious trigger is present, despite the existence
of the background clean features. To make the trigger a higher priority than the
other clean features in the decision-making phase, we attempt to replace the
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source data with the data randomly selected from the same batch. In this way,
the source data will contain clean features of different classes. Then we add the
trigger on the perturbed source data and put them into the training process to
achieve backdoor injection.

There are mainly two reasons why SDP module enhances the decision-
dependency between the trigger and attack target: (a) The source data inferred
by SDD have the same label (attack target). And their features are replaced
by randomly selected data after the SDP module. This makes the source data
equipped with different features but the same label, causing the model more dif-
ficult to learn from these features. (b) After the SDP process, we add the same
trigger to the source data, thus they have the same trigger and the same target
label, which makes the model more likely to establish the decision-dependency
between the trigger and attack target.

5 Experiments

5.1 Experiment Setup

As most real VFL systems consist of two parties [2,5,9], for the rest of this paper,
we construct and evaluate BadVFL under a two-party scenario. The attacks in
multi-party settings are given in Supplement C.1.

Datasets and Networks. We evaluate BadVFL on the following datasets:
CIFAR-10 [16], ImageNet [25], Breast Histopathology Images (BHI) [23], and
IMDB [20]. The first three are image datasets, and IMDB is a text dataset.
We describe the datasets in detail in Supplement A.2. To make these datasets
suitable for the VFL scenario, as the common setting in VFL [5,13,18], for
CIFAR-10 and ImageNet, we split the data into two parts along the middle line
so that each party holds half. For BHI, there are multiple examination image
patches per patient, and we distribute the patches of each patient with the same
label to each party in a round-robin manner. For IMDB, we split each sample (a
paragraph for a movie review) into two parts and distribute them to each party.

We experiment on three classic deep neural networks to get feature represen-
tations, namely ResNet18 [8] for CIFAR-10 and BHI, VGG16 [28] for ImageNet
and LSTM [11] for IMDB. As for the top model used for feature combination and
classification, following previous works [12,13], we adopt a linear combination of
these features and then apply a nonlinear transformation (e.g., softmax) to make
the prediction. To verify the stability of BadVFL, we also conduct experiments
with multi-hidden layers.

Implementation Details. For image datasets, the models are trained by SGD
optimizer for 200 epochs. The initial learning rate is 0.01, multiplied by 0.1 per
50 epoch. For text dataset, the optimizer is Adam with an initial learning rate of
0.001. In all experiments, the poisoning rate η = |Dpoisoned|

|Dtrain| is 1%, as the common
setting for backdoor attacks [7]. And we set the replacement number n = 5 and
the threshold αthre = 0.6 in SDD for all datasets.
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Evaluation Metrics. We adopt Test Accuracy Rate (TAR) and Attack Success
Rate (ASR) to evaluate BadVFL performance. Specifically, TAR is the probabil-
ity that the clean data are classified correctly, measuring the impact of backdoor
attacks on the main task. ASR is the probability of predicting the poisoned data
as the target label, which measures the attack efficacy.

5.2 Attack Performance

Attack Effectiveness. For image datasets, the trigger we applied following
Gu et al. [7], which is a white square located in the center of the image. We
apply 4 × 4, 20 × 20, and 5 × 5 trigger size for CIFAR-10, ImageNet and BHI,
respectively. For IMDB, we insert the word ‘[START]’ into the middle of the
sentence as the trigger.

To ensure our attack remains consistently effective, for each class, we
construct BadVFL with randomly selecting 3 different target data from the
dataset and get their average as the final result. To suppress the effect of non-
determinism, all experiments are averaged across multiple runs. The results are
shown in Table 1. Observe that the triggers are successfully injected as the poi-
soned models have small TAR difference compared with the benign models and
high ASR. Specifically, BadVFL achieves above 93% ASR in all datasets with
negligible TAR drops.

Table 1. The attack performance of BadVFL and GR in four datasets.

Dataset Benign
VFL

BadVFL GR

TAR ASR TAR ASR

CIFAR-10 80.96 80.69 94.98 77.08 44.07
ImageNet 79.63 79.47 93.15 73.01 19.21
BHI 91.90 89.52 99.11 88.45 98.93
IMDB 85.62 85.01 98.97 81.99 51.98

Figure 3 depicts the category distribution of the source data obtained by SDD
module for different target class. The color-coded values in row i and column j
represent the number of inferred source data from class j when target data from
class i. As we can see, for most cases, SDD module can correctly identify the
source data which are truly from target class. However, for some target class,
such as class 3 in CIFAR-10, the SDD mistakenly identifies few samples from
class 5 as its source data. This is because the data from class 3 (cat) have the
similar features with data from class 5 (dog). And few false detection results
have little influence on the attack effectiveness.

Comparison with Gradient Replacement. We compare BadVFL with the
state-of-the-art method GR [18], which attacks VFL system by replacing the
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Fig. 3. The number of source data from class j (column) being identified as class i
(row) by SDD on CIFAR-10 (left) and ImageNet (right) dataset. The total number of
source data is 500 for CIFAR-10 and 100 for ImageNet.

gradient of local triggered samples with the gradient of the target data when
updating the local bottom model. Table 1 shows the comparison results. Appar-
ently, our method outperforms GR on all metrics and achieves a significant boost.
In more details, GR hurts worse on the main task accuracy. This is because the
adversary replaces the triggered data’s feature with random vectors and sends
them to the active party, to prevent the active party establishing a new mapping
between the triggered data with their true label. Moreover, the attack perfor-
mance of GR strongly depends on the selection of target data.

5.3 Multi-hidden Layers Performance

To verify the stability of BadVFL with different top model structures, in this
section, we show the effectiveness of BadVFL for multi-hidden fully-connected
neural networks. Considering the role of top model is feature combination and
classification, the structure of it does not need to be complex. As shown in Fig. 4,
we experiment on 1-hidden, 2-hidden and 3-hidden layers with ReLU activation
followed by softmax transformation.

Intuitively, for BHI and IMDB dataset, there is no significant difference with
the increasing of model depth. However, for CIFAR-10 and ImageNet dataset, the
BadVFL performs worse as the network becomes deeper. Diving to the bottom,
the phenomenon is caused by the fact that the more complicated top model
structure affects the gradient-based SDD module calculation, leading to wrongly
inferred source data which are not from the target class.

5.4 Defenses

To demonstrate how defensive strategies against BadVFL, we conduct BadVFL
with noisy gradients and gradient compression, which are commonly used by
prior works to train the robust FL systems [5,10].

Noisy Gradients. One straightforward attempt to defense BadVFL is adding
noise to the exchanged information. We experiment Gaussian noise [35] with
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Fig. 4. The performance of BadVFL w.r.t. different top model structures.

variance from 10−5 to 10−2. Because adding noise inevitably affects the gradient
similarity calculation, we select the 1% highest similarity results as the source
data in each iteration instead of a fixed threshold. The results are shown in
Fig. 5a. As we can see, the BadVFL performance monotonically decreases with
the increasing of noise scales. In details, when variance is 1e-4, the ASR on
ImageNet severely deteriorates and TAR drops by nearly 20%, resulting in a
good defense performance but seriously compromising the model utility. For
CIFAR-10, setting variance to 1e-3 successfully defends against BadVFL, where
the ASR drops to 30% with negligible TAR drops. However, in practice, it is
non-trivial to figure out an appropriate noise scale that guarantees security while
maintains model utility.

Gradient Compression. Another effective defense strategy is pruning the gra-
dients with small magnitudes to zero [17]. We evaluate different level of sparsity
from 0.75 to 0.1. As shown in Fig. 5b, interestingly, for CIFAR-10, BHI and
IMDB, BadVFL maintains considerable high TAR and ASR with the increasing
of compression rate. As for ImageNet, the gradient compression can successfully
mitigate the backdoor attacks in VFL, but introducing significantly TAR drops
and destroying the model utility.

5.5 Ablation Study

Position of Trigger. To further validate the influence of trigger position on
attack effectiveness, we plot Fig. 6 to show the BadVFL attack performance
with three possible locations. For image classification task, we experiment the
trigger located in “up left” (u-l), “center”, and “bottom right” (b-r) of the image to
analyze the effectiveness. For text classification task, we conduct the experiments
with the trigger located in the “initial”, “middle” and “end” of the text.

As shown in Fig. 6, we notice that for image classification task, the center
location has a significant advantage over the other two locations, because the
center area contributes more to model classification and its original features are
blocked.

For text classification task, the initial and end position have a slight advan-
tage over the middle position, due to the training mode of the Recurrent Neural
Networks. Nevertheless, no matter where the triggers are, BadVFL can always
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Fig. 5. BadVFL performance against different defense strategies on all datasets.

succeed in injecting the backdoor into the model with negligible main accuracy
drops.

Source Data Perturbation. As discussed in Sect. 4, if we directly add trig-
gers to the source data and put them into training process, the model may not
learn the trigger but the clean feature of the source data. Thus, we evaluate the
importance of SDP and the results are shown in Table 2. Specifically, we consider
the three following cases: (a) without perturbation, (b) replace the source data
with data selected from the same batch, and (c) replace the source data with
data selected from the whole dataset.

We observe that there is no significant difference between the cases where
the attacker replaces the source data with the data from same batch, or from
the whole training dataset. However, when the attacker does not perturb the
source data and directly adds the trigger on them, the BadVFL performance
drops significantly. This is especially prominent in the case of the CIFAR-10 and
ImageNet dataset.

5.6 Hyperparameter Analysis

Influence of Injecting Rateη. We investigate the critical factor η which affects
the number of poisoned data in the training process. As shown in Fig. 7a, the
ASR becomes worse when η > 3%. This is because the attacker uploads more
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Fig. 6. BadVFL performance w.r.t varied trigger positions.

Table 2. BadVFL performance w.r.t. different types of source data perturbation.

Dataset No Perturb Replace from
Same Batch

Replace from
Whole Dataset

TAR ASR TAR ASR TAR ASR

CIFAR-10 80.90 46.16 80.69 94.98 80.67 94.80
ImageNet 79.38 44.13 79.47 93.15 79.03 93.84
BHI 87.82 87.93 89.52 99.11 90.25 99.32
IMDB 85.29 63.34 85.01 98.97 85.45 98.33

“wrong” features (perturbed source data) as η increases, resulting in the top
model depends more on other clean features in decision-making.

Influence of Replacement Number n. We depict the impact of replacement
number n on the BadVFL performance in Fig. 7b. There is no significant different
among varied n. Moreover, because a small n makes the poisoning process more
stealthy, we set n = 5 as default for all datasets.

Influence of Threshold αthre . The αthre in the SDD module can control
the final source data set of backdoor attacks. The results are shown in Fig. 7c.
Specifically, when αthre < 0.6, the larger αthre makes BadVFL more effective.
This is caused by the fact that the larger αthre can infer more accurate source
data which are truly from target class. When αthre > 0.6, the BadVFL converges
more stably. Hence, we set αthre = 0.6 for all datasets.
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Influence of Trigger Size ts. Another critical factor that might affect the
BadVFL performance is the size of trigger. As shown in Fig. 7d, we can observe
that BadVFL achieves a stable performance among different trigger sizes.

Fig. 7. The performance of BadVFL on ImageNet dataset w.r.t. different hyperparam-
eters.

6 Conclusion

In this paper, we have demonstrated a new security risk where backdoor attacks
can be successfully implanted into VFL systems. We propose BadVFL, which
outperforms state-of-the-art method remarkably. It is likely that future defenses
will defeat this attacks, however, we believe that the attacks are a promising
direction that (a) expose possible security threats in such promising training
paradigm, and (b) enlighten the future work. Future direction suggested by our
work is the counter measures against backdoor attacks under VFL scenario, such
as anomaly data detection and backdoor mitigation, etc. However, these might
be difficult because the defender only holds partial data features and part of
global model.
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Abstract. Meta-learning has emerged as an effective and popular approach for
few-shot learning (FSL) due to its fast adaptation to novel tasks. However, this kind
of method assumes that the meta-training and testing tasks come from the same
task distribution and assigns equal weights to all tasks during meta-training. This
assumption limits their ability to performwell in real-world scenarios where some
meta-training tasks contribute more to the testing tasks than others. To address this
issue, we propose a parameter-efficient task reweighting (PETR) method, which
assigns proper weights to meta-training tasks according to their contribution to
the testing tasks while using few parameters. Specifically, we formulate a bi-level
optimization problem to jointly learn the few-shot learning model and the task
weights. In the inner loop, the meta-parameters of the few-shot learning model
are updated based on a weighted training loss. In the outer loop, the task weight
parameters are updated with the implicit gradient. Additionally, to address the
challenge of a large number of task weight parameters, we introduce a hypothesis
that significantly reduces the required parameters by considering the factors that
influence the importance of each meta-training task. Empirical evaluation results
on both traditional FSL and FSL with out-of-distribution (OOD) tasks show that
our PETRmethod outperforms state-of-the-art meta-learning-based FSLmethods
by assigning proper weights to different meta-training tasks.

Keywords: Few-shot Learning · Meta Learning · Task Reweighting · Bi-level
Optimization

1 Introduction

Humans are born with the capability to efficiently learn new tasks with few samples by
drawing upon previous relevant experience. For example, a child can effortlessly rec-
ognize a panda just by seeing a picture of it. However, many high-performance deep
learning-based methods [1,2] still rely on large volumes of labeled data, which severely
restricts their applicability in many real-world scenarios. For instance, in fields such as
medicine and defense, obtaining sufficient manual annotation may either be impractical
or too expensive to obtain. As a result, a substantial amount of effort has been dedi-
cated to developing novel few-shot learning (FSL) methods to bridge the gap between
artificial intelligence and human intelligence.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
D. Koutra et al. (Eds.): ECML PKDD 2023, LNAI 14170, pp. 421–437, 2023.
https://doi.org/10.1007/978-3-031-43415-0_25
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Fig. 1. An example of not all tasks are equal. For the testing task of recognizing animals from the
land, the meta-training tasks that classify animals from land (T1, T2) are useful for the testing
tasks, while the meta-training tasks that classify animals not found on land (T3) may degrade the
testing performance.

To avoid overfitting due to limited labeled data of novel classes, a dominant way
in FSL is applying meta-learning framework [3,4] to extract meta-knowledge for novel
tasks by learning on a series of meta-training tasks constructed from base classes. One
hpgighly successful algorithm is Model Agnostic Meta-Learning (MAML) [5], which
aims to learn a good initialization that can be quickly adapted to testing tasks. And
a number of extensions to MAML [6–9] have since been proposed. Despite previous
efforts being made, a crucial assumption in this kind of method is that the meta-training
and testing tasks are drawn from the same task distribution. Therefore, they assign equal
weights to all meta-training tasks. However, this assumption limits their work in scenar-
ios where some meta-training tasks may contribute more to the testing tasks. In reality,
the true testing task distribution is often unknown and may differ from the meta-training
task distribution. As illustrated in Fig. 1, we construct a collection of meta-training tasks
for classifying animals from all over the world, but the testing tasks only consist of
images of animals from the land. In this case, during meta-training, only the tasks that
classify animals from the land are useful for the testing tasks, the tasks that classify ani-
mals in the sky and water will bring a shift between the meta-training and testing task
distributions and may degrade the testing performance. In order to achieve this goal,
our approach recognizes a crucial insight that not all tasks hold equal importance. The
tasks used for meta-training can assist in solving the testing task to varying extents, and
in some cases, certain meta-training tasks may even have a detrimental impact. There-
fore, it becomes essential to assign appropriate weights to different meta-training tasks
based on their respective contributions to the testing task distribution. Actually, learning
proper weights for meta-training tasks is not easy. Without a suitable definition of unbi-
ased testing task distribution, solving the task distribution shift problem is inherently
ill-defined. To address it, [10] presents a weighted meta-learning method, where the
meta-training task weights are selected by minimizing a data-dependent bound involv-
ing an empirical IPM between the weighted meta-training and testing risks. However, it
assumed the testing task is available during training, which is unrealistic in some real-
life scenarios. Recently, [11] utilizes a small clean validation set to approximate the
testing set and learn weights for query samples in each meta-training task. However,
the number of weight parameters is very huge as it correlates to the number of samples
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in the query sets of the meta-training tasks, leading to computational inefficiency during
training.

In this paper, we propose a Parameter-efficient Task Reweighting (PETR) method
that can adaptively assign appropriate weights to different meta-training tasks while
using fewer additional parameters. We first address the problem of the unavailable
testing-task distribution by utilizing a small, unbiased validation set following [11]. We
believe that creating a small and clean meta-validation set is not prohibitively expensive
or unrealistic. Then, we formulate a bi-level optimization problem to jointly learn the
meta-parameters of the few-shot learning model and the parameters of the task weights.
To address the challenge of a large number of task-weight parameters, we propose a
hypothesis that can help build a parameter-efficient task-weight learning module by
considering the factors that influence the importance of each meta-training task. This
module can accurately capture the importance of different meta-training tasks while
significantly reducing the number of required parameters. An overview of PETR is pre-
sented in Fig. 2. In the inner loop, we optimize the meta-parameters of the few-shot
learning model based on a weighted training loss, where the weights are learned in the
outer loop. In the outer loop, we update the parameters of task weights using the implicit
gradient on the validation dataset. We alternate to perform the inner loop and outer loop
optimization process until the validation loss converges.

In summary, our contributions are as follows:

– We propose PETR, a weighted meta-learning method for FSL methods, which can
jointly learn the optimal meta-training task weights and meta parameters for few-
shot learning by optimizing a bi-level objective function.

– We propose a hypothesis that can help build a parameter-efficient task-weight learn-
ing module, which can accurately capture the importance of the different meta-
training tasks, while largely reducing the required parameters.

– We conduct extensive experiments under different few-shot learning settings to val-
idate the effectiveness of PETR. The results demonstrate PETR has superior perfor-
mance compared to state-of-the-art meta-learning-based FSL methods.

2 Related Work

Sample Reweighting is closely related to our proposed approach. It is a classic tech-
nique used to deal with distribution shifts in traditional machine learning methods. One
important branch of the sample reweighting method is importance sampling, which esti-
mates the sample weight by calculating the density ratio between the training and test-
ing distributions [12–14]. However, this method requires prior knowledge of the test-
ing distribution, which may not be available in some real-world scenarios. To address
this challenge, recent works have proposed stable learning methods to learn sample
weights that aim to eliminate the statistical correlation between relevant and irrelevant
features [15,16]. However, thesemethods still have some limitations, such as the require-
ment for features to be provided. More recently, bilevel optimization frameworks have
been employed to learn sample weights to effectively address the domain shift problem
[17,18]. However, the previous research has mainly focused on traditional classification
tasks, whereas our proposed method addresses the task reweighting problem in FSL.
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Few-shot Learning aims to solve a novel task with few labeled samples. To avoid
over-fitting, researchers usually leverage the knowledge learned from a related base
dataset. In this paper, we focus on the meta-learning-based few-shot learning method,
which aims to extract meta-knowledge for novel tasks by learning on a series of similar
tasks constructed from base classes. A highly successful meta-learning-based few-shot
learning method is MAML [5], which leveraged data from a collection of meta-training
tasks to learn an initial model that can be quickly adapted to some testing tasks. And
a number of extensions to MAML [6–9] have since been proposed and connections
to hierarchical Bayesian modeling [19–21] have been drawn. Despite previous efforts
being made, these methods assume that the training and testing tasks are drawn from
the same task distribution, limiting its ability to work in real-world applications. To
bridge the gap between training and testing task distribution and improve the general-
ization performance in FSL, some methods have been proposed to densify the training
task distribution by making modifications to the original training tasks through noise
[22], mixup [23], or task interpolation [24]. However, these augmented tasks may not
be diverse enough to cover the real testing task distribution. Another line of research
has focused on FSL with OOD tasks. Some methods aimed to detect OOD tasks [25] or
learn better task-specific knowledge [26,27]. Recently, researchers resort to reweight-
ing techniques to adjust the biased training-task distribution [10,11]. However, learn-
ing proper weights for meta-training tasks is not easy. Without a suitable definition of
unbiased task distribution, solving the task distribution shift problem is inherently ill-
defined. Some curriculum meta-learning methods also aim to learn weights for different
meta-training tasks [28–30]. They believe that the order of the meta-training task will
influence the model performance. Therefore, they aimed to define a proper data training
order by weighting the training tasks so that the model can achieve faster convergence
and better performance. However, they fail to deal with OOD tasks. There are also some
works focusing on dealing with the distribution shift between the support set and query
set [31,32], which are different from our focus in this paper. Here, we only consider the
distribution shift problem between the meta-training and testing tasks.

3 Preliminaries

Bi-level Optimization. Bi-Level Optimization (BLO) is defined as a mathematical pro-
gram, where an outer optimization problem contains another inner optimization prob-
lem as a constraint. The two problems have their own objectives and constraints.

For the outer loop objective function F : Rn × R
m −→ R and inner loop objective

function f : Rn × R
m −→ R, the bi-level problem is given by:

min
xu∈XU ,xl∈XL

F (xu, xl)

subject to

xl ∈ arg min
xl∈XL

f(xu, xl) : gj(xu, xl) ≤ 0, j = 1, ..., J

Gk(su, xl) ≤ 0, k = 1, ...,K.

(1)

where Gk : Rn × R
m −→ R, k = 1, ...,K denote the outer loop constraints, and gj :

R
n × R

m −→ R represent the inner loop constraints, respectively. The sets XU ∈ R
n
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and XL ∈ R
m in the definition may denote additional restrictions like integrality. It is

common to assume these to be sets of reals unless mentioned otherwise. In recent years,
bi-level optimization is widely used in a variety of machine learning and computer
vision tasks, including but not limited to, hyper-parameter optimization [33–35], multi-
task and meta-learning [36–38], neural architecture search [39,40], adversarial learning
[41,42], and deep reinforcement learning [43,44].

Meta-learning Based FSL and MAML. The goal of meta-learning-based FSL meth-
ods is to produce a learning algorithm that will work well on novel tasks by learning
on the meta-training tasks. To achieve it, we usually have a collection of meta-training
tasks{Ti}M

i=1 drawn fromP (T ), each task Ti is linked to a specific task and is associated
with a dataset Di containing two disjoint sets {DS

i ,DQ
i }. Where S = {(xs

i , y
s
i )}N×K

i=1

be a support set, which contains N different image classes and K labeled samples per
class. Q = {(xq

j , y
q
j )}N×Q

j=1 denotes a query set, which contains unlabeled images from
the same N classes as the support set.

We are interested in learning models of the form hθ(x) : X → Y , parameterized
by φ ∈ Φ ≡ R

d. The goal for task Ti is to learn task-specific parameters φi using
DS

i such that we can minimize the population or test loss of the task L(φi,DQ
i ). In the

general bi-level meta-learning setup, we consider a space of algorithms that compute
task-specific parameters using a set of meta-parameters θ ∈ Θ ≡ R

d and the training
dataset from the task, such that φi = Alg(θ,DS

i ) for task Ti. The goal of meta-learning
is to learn meta-parameters that produce good task-specific parameters after adaptation.
It can be formulated as a bi-level optimization problem as below:

θ∗
ML := arg min

θ∈Θ
F (θ)

where F (θ) =
1
M

M∑

i=1

L(Alg(θ,DS
i ),DQ

i ).
(2)

Alg(θ,DS
i ) explicitly or implicitly optimizes the inner-loop task-specific adaptation

using the support set of each task DS
i . The outer loop corresponds to the meta-training

objective of low test error on the query set of each task DS
i after adaptation.

In the case of MAML [5], Alg(θ,DS
i ) corresponds to one or multiple steps of gra-

dient descent initialized at θ. For example, if one step of gradient descent is used, we
have:

φi ≡ Alg(θ,DS
i ) = θ − α∇θL(θ,DS

i ). (3)

Typically, α is a scalar hyper-parameter, but can also be a learned vector [6]. Hence, for
MAML, the meta-learned parameter θ∗

ML has a learned inductive bias that is particu-
larly well-suited for fine-tuning tasks from P (T ) using K samples. For clear interpre-
tation, we list the notations used in this paper and their corresponding explanation, as
shown in Table 1.

4 The Proposed Method

In this section, we first formulate the problem we aim to solve and then describe our pro-
posed parameter-efficient task reweighting module, followed by presenting the overall
optimization process of PETR.
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Table 1. Notations and their corresponding explanation

Notation Description

ptr(T ) probability distribution of meta-training tasks

pval(T ) probability distribution of meta-validation tasks

Ti i-th meta-training task

T V
j j-th meta-validation task

{DS
i , DQ

i } support set and query set of meta-training task Ti

{VS
i , VQ

i } support set and query set of meta-validation task T V
j

{xs
i , y

s
i }N×K

i=1 samples in the support setDS
i of meta-training task Ti

{xq
j , y

q
j }N×Q

j=1 samples in the query set DQ
j of meta-training task Ti

θ initial parameters of base learner

φi task-specific parameters for task Ti

θ∗
W optimal initial parameters of the base learner as a function of W

wi weight for task Ti

W∗ optimal task weights

L(φi, D) loss function on dataset D characterized by model parameter φ

l(φi, d) loss function on the query data point d characterized by model parameter θ

Alg(θ, D) one or multiple steps of gradient descent initialized at θ on dataset D
β = {a, b} hyper-parameters for task weights

α, η, γ step sizes

m, n the number of meta-training, meta-validation tasks, respectively

M the lower optimization steps

4.1 Problem Formulation

A drawback of the meta-learning framework for FSL methods specified in Eq. 2 is their
equal weights of all meta-training tasks. As shown in Fig. 1, our key insight is that
different meta-training tasks can help solve the testing task to varying degrees, and
some meta-training tasks may even have a negative effect. Therefore, it is essential to
learn proper weights for meta-training tasks. To achieve this, we propose an adaptive
task reweighting strategy, and the problem can be formulated as follows:

θ∗
ML := arg min

θ∈Θ
F (θ)

where F (θ) =
1
m

m∑

i=1

wiL(Alg(θ,DS
i ),DQ

i ).
(4)

and wi is a scalar, denoting the weight corresponding to the meta-training task Ti.
Notice that the optimal parameter θ∗

ML always depends on the weights wi, therefore,
the next goal is to find an optimal wi.

We aim to develop an algorithm that can adaptively learn the task weights wi for
each meta-training task. For instance, if we know that the meta-training task T1 is closer
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to the testing tasks than other meta-training tasks, we can expect a better performance by
raising the importance of T1, i.e., make w1 larger. This thought experiment motivates
a target-aware procedure that adaptively adjusts the weights based on the proximity
of meta-training tasks to the testing tasks. To achieve this, we use a small and clean
meta-validation set that is assumed to be similar to the testing set. We believe that such
a set can be created without excessive cost or unrealistic assumptions, even for rare
specialized use cases in real-life scenarios. We optimize the weights for meta-training
tasks based on feedback from the few-shot learning performance of the model on the
validation tasks. This can be formulated as the following bi-level optimization problem:

W ∗ := arg min
W

1
n

n∑

i=1

L(Alg(θ∗
W ,VS

j ),VQ
j )

where θ∗
W = arg min

θ∈Θ

1
m

m∑

i=1

wiL(Alg(θ,DS
i ),DQ

i ).

(5)

The outer loop optimization problem seeks the optimal meta-training task weights by
minimizing empirical risk on n meta-validation few-shot learning tasks. Meanwhile,
the inner loop optimization optimizes the model parameter θ for m meta-training tasks.

4.2 Parameter-Efficient Task Reweighting Module

Despite Eq. 5 conceptual simplicity, the formulation is a complicated constrained opti-
mization problem. Moreover, as the number of task weight parameters is proportional to
the number of meta-training tasks, computational expenses during training can become
an issue if there are many tasks. To address this problem, one natural approach is to
introduce prior knowledge to determine an appropriate task weight using fewer parame-
ters. Taking into account the factors that influence the importance of each meta-training
task, we propose a hypothesis that can help build a parameter-efficient task reweighting
learning module.

Hypothesis 1. The meta-training task Ti is beneficial to the testing tasks if Ti comes
from the same distribution as the testing tasks, and the model can learn it well.

This hypothesis suggests that the similarity between the distributions of meta-
training and testing tasks, as well as the loss of the meta-training tasks, can hint at
the importance of Ti. The similarity between the distributions of meta-training and
testing tasks can be determined by their distance. Since the testing task is not avail-
able during meta-training, we use the distance between the meta-training and validation
tasks instead. In this paper, we employ Wasserstein Distance [45] to measure the sim-
ilarity between two distributions, which has been proven effective in measuring the
discrepancy between two probability distributions [46]. Inspired by the idea that the
normalized loss distribution of clean and noisy data can be modeled using two beta
distributions parameterized by two groups of parameters [47], we assume that the loss
value of the meta-training tasks can indicate whether they are well learned. Based on
this hypothesis, the weight wi is formulated as follows:

wi = σ(s(Ti, T V)) · σ(aLTi
+ b) (6)
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Fig. 2. The overall framework for the parameter-efficient task reweighting (PETR) model. (1) The
left part presents the inner loop optimization process. In the inner loop, the meta-parameters of
the few-shot learning model are updated based on a weighted training loss where the weights are
learned in the outer loop. (2) The right part illustrates the outer loop optimization process. In the
outer loop, the task weights parameters β = {a, b} are firstly updated with the implicit gradient
on the validation dataset, then the task weight w is calculated according to our proposed task
weight hypothesis. These two update steps are performed until the validation loss converges.

where σ(·) is the activation function to ensure non-negative values. The first term is
the Wasserstein distance between the distributions of meta-training tasks and validation
tasks to evaluate the informativeness of Ti. The second term is a linear classifier to judge
whether Ti can be well learned following [37]. a and b are learnable parameters. Since
wi relies on the similarity and the loss which are constantly updated during the training
process, wi is naturally adaptive.

The proposed parameter-efficient module comprehensively considers the distribu-
tion distance and the loss information, while only introducing an additional learnable
parameter set β = {a, b}. Compared with directly learning the wi, the parameters to
optimize are greatly reduced. In the next subsection, we present the overall learning
process and optimization for parameters θ and β.

4.3 Overall Framework and Optimization

The overall framework of PETR is presented in Fig. 2, which consists of two main
components: a meta-parameter learning module for FSL and a parameter-efficient task
reweighting module. The meta-parameters θ for FSL are updated by optimizing the
inner loop loss given by Eq. 5. The parameters β of task weights W are optimized to
minimize outer loop loss in Eq. 5. The task reweighting module is expected to provide
appropriate weights for training the FSL model, enabling it to achieve excellent perfor-
mance on testing few-shot tasks. However, manually tuning β is intractable.

When optimization involves deep nets and large datasets, adaptive gradient-based
methods like Stochastic Gradient Descent (SGD) have proven to be very effective time
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and again [48]. Therefore, we use an iterative gradient-based algorithm for both inner
and outer optimization to solve the bi-level meta-learning problem in Eq. 5. We adopt
an alternating optimization procedure to optimize the model parameters θ and the task
weight parameters β, as summarized in Algorithm 1.

Inner and Outer Loop Optimizing. For notation convenience, we define Li(φ) :=
L(φ,DQ

i ), LVj
(φ) := L(φ,VQ

j ), L̂Vj
(φ) := L(φ,VS

j ).

1) Optimizing θ: For the first training iteration, we set the initial wi = 1/m, treating
each meta-training task equally. Given the meta-training task weight parameters βt

i

at the t-th iteration, we compute the task weights wi using Eq. 6 and optimize θ
using:

θt
w = θt − η

1
m

m∑

i=1

wt
i∇θLi(θ, w)|θ(t), (7)

where Li(θ, w) = Li(Alg(θ,DiS))|θ(t), η is the learning rate for θ, and m is the
mini-batch size of meta-training tasks.

2) Optimizing β: After updating θ, we adjust the optimal parameters β based on the
gradient of the validation loss:

βt+1 = βt − γ

n

n∑

i=1

∇βLVj
(θ∗(β)). (8)

where LVj
(θ∗(β)) = LVj

(Alg(θ(t)β ,VS
j )), γ denotes the learning rate, n is the mini-

batch size of meta-validation tasks.
During the outer loop optimization, we need to derive the gradient of LVj

(θ∗(β))
with respect to β. Given that LVj

(θ∗(β)) directly relies on θ instead of β, we follow the
literature [35] and utilize implicit differentiation to obtain this implicit gradient. With
Theorem 4.1, we can obtain the gradient of LVj

(θ∗(β)) with respect to β.

Theorem 4.1 (Cauchy, Implicit Function Theorem). If there exists one point (θ0, β0)
where∇θLi(θ, β) = 0 and the regularity conditions are satisfied, then within the neigh-
borhood of (θ0, β0), there exists an implicit function θ∗(β) s.t.∇θLi(θ, β) = 0 |β,θ∗(β)
and we have:

∇βLVj
(θ∗(β)) = ∇θLVj

(θ, β)) · ∇βθ∗

= −∇θLVj
(θ, β)) · (∇2

θLi(θ, β))−1 · ∇β∇θLi(θ, β) |(β,θ∗(β)) .
(9)

If the conditions in Theorem 4.1 are satisfied, we have:

∇θLi(θ∗(β), β) = 0. (10)

∇2
θLi(θ∗, β)∇βθ∗ + ∇β∇θ∗Li(θ∗, β) = 0. (11)

∇βθ∗ = −(∇2
θLi(θ∗, β))−1∇β∇θLi(θ∗, β). (12)
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From Eq. 10 to Eq. 11, we take the derivative to β on both sides of Eq. 10. By assuming
that (∇2

θLi(θ, β)) is positive definite, (∇2
θLi(θ, β)) will have an inverse so we can

obtain the implicit gradient in Eq. 12. Thus, Theorem 4.1 is proved.

Tractable Inverse Hessian Approximations. However, directly computing the inverse
of the Hessian is intractable for deep models. We adopt the K-truncated Neumann series
to approximate this inverse as illustrated in Eq. 13. In this paper, K is searched from
{3, 5} considering the performance and computational cost as recommended in [37]. By
using this approximation to approach the inverse of the Hessian, the implicit gradient
can be calculated in Eq. 14.

(∇2
θLi(θ, β))−1 =

∞∑

i=0

(I − ∇2
θLi(θ, β))i ≈

K∑

i=0

(I − ∇2
θLi(θ, β))i. (13)

∇βLVj
(θ∗(β)) = −∇θLVj

(θ∗(β)) ·
K∑

i=0

(I − ∇2
θLi(θ, β)))i · ∇β∇θLi(θ, β)). (14)

Upon obtaining the gradient of θ and β, Algorithm 1 presents the complete algorithm
that simultaneously learns the meta-parameters for FSL and the meta-training task
weights. During the inner loop optimization, the parameters β are fixed, and the param-
eters θ are updated with the gradient in Eq. 7 at the learning rate η. Instead of waiting
for θ to converge, we conduct the more efficient M-step optimization as described in
[35]. Specifically, after θ has been updated for M times, we switch to the outer opti-
mization to optimize β. According to Eq. 8, we use the implicit gradient to update β
at the learning rate γ. These two update steps are performed until the validation loss
converges.

Algorithm 1. Parameter-efficient Task Reweighting Method
Require: ptr, pval distribution over meta-training and validation tasks
Require: m, n(batch sizes), α, η, γ (learning rates) and M
1: Randomly initialize θ and β = {a, b}
2: for iter < niter do
3: Sample mini-batch of meta-training tasks {DS

i , DQ
i }m

i=1 ∼ ptr

4: Sample mini-batch of meta-training tasks {VS
i , VQ

i }n
i=1 ∼ pval

// inner-loop optimization
5: for j = 1 to M do
6: Compute adapted parameters (Alg(θ, DS

i )) using Eq. 3
7: Compute the gradient ∇θLi(θ, w)) using DQ

i

8: Update θ using Eq. 7
9: end for

// outer-loop optimization
10: Compute the gradient ∇βLVj (θ

∗(β)) using Eq. 14
11: Update β using Eq. 8
12: Update wi using Eq. 6
13: end for
14: return θ
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5 Experiments

In this section, we mainly assess the efficacy of our proposed PETR in few-shot learn-
ing tasks. In particular, we aim to study whether PETR can be successfully applied to
scenarios where the meta-training task distribution is partially shifted from the testing
task distribution.
Datasets. The proposed method is firstly evaluated on the most widely-used few-shot
classification benchmarks:MiniImageNet dataset, which contains 100 classes randomly
chosen from ILSVRC-12 [49] and 600 images of size 84×84 pixels per class. We fol-
low the splits used in previous work [50], which divided the dataset into 64, 16, and
20 classes for training, validation, and testing, respectively. To further demonstrate the
effectiveness of PETR in identifying OODmeta-training tasks, we useminiImageNet as
the in distribution (ID) task source and additionally use SVHN [51] and FashionMNIST
[52] datasets as out-of-distribution (OOD) tasks source following [11]. The SVHN
dataset is a street view house numbers dataset, which contains 26,032 images from
10 digits classes. The FashionMNIST is a fashion dataset including 60,000 grayscale
images from 10 classes.

Implementation Details. Our method is based on the meta-learning mechanism. All
experiments are conducted around the N -way K-shot classification task. And we use
a model with similar backbone architecture given in MAML [6] for all baselines. Dur-
ing meta-training, We randomly sample the ID tasks (meta-training, meta-validation,
and testing) from the miniImageNet dataset and sample OOD tasks from the SVNH or
FashionMNIST dataset. The number of ID meta-training tasks is 20000 and the num-
ber of OOD meta-training tasks is determined by the OOD ratio (0.3, 0.6, and 0.9).
In each task, there are K(1, 3, 5) support samples and 15 query images in each class.
About the optimization process, we optimize θ and β using SGD with learning rates
α = η = γ = 0.01. Considering the computational cost, we set the number of inner
loop stepsM = 1. At the testing stage, we use accuracy as the evaluation metric to mea-
sure the performance of our method. The reported results are the averaged classification
accuracy over 10,000 N -way K-shot tasks.

Table 2. 5-way 1-shot and 5-way 5-shot classification accuracy (%) with 95% confidence inter-
vals on miniImageNet. (†: Reproduced with our setting, -: not available).

5-way 1-shot 5-way 5-shot

MAML [5] 48.70±1.84 63.11±0.92

Reptile [7] 48.21±0.69 66.00±0.62

Meta-SGD [6] 50.47±1.87 64.03±0.94

IMAM [8] 49.30±1.88 -

Nested MAML†[11] 54.30±0.75 67.43±0.76

PETR (Ours) 55.27±0.68 68.25±0.66
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5.1 Comparisons with Baselines

Traditional Few-shot Learning Tasks. Firstly, we compare our method with several
representative meta-learning-based FSL methods on traditional FSL tasks, where the
meta-training, meta-validation, and testing tasks are all sampled from theminiImageNet
dataset. Table 2 shows the comparison of 5-way 1-shot and 5-shot classification tasks
on miniImageNet. The results of these methods are cited from their original paper. We
can observe that our PETR outperforms all the baselines on two tasks. Compared with
MAML, the accuracy improvement of our method on both tasks (5-way 1-shot and
5-shot) are 6.57% and 5.15% respectively, demonstrating the necessity to assign differ-
ent weights for different meta-training tasks. Furthermore, the better performance over
Nested MAML indicates that our PETR has a better ability to learn proper weights.

Table 3. 5-way 3-shot test accuracies (%) with 95% confidence intervals on mini Imagenet with
varying OOD Ratios during the meta-training phase. The best results are marked in bold.

OOD task source SVHN FashionMNIST

OOD Ratio 0.3 0.6 0.9 0.3 0.6 0.9

MAML [5] 55.41±0.75 53.93±0.76 44.10±0.68 54.65±0.77 54.52±0.76 41.52±0.74

MMAML [25] 51.04±0.87 50.28±0.97 41.56±0.96 50.32±0.93 47.54±1.05 42.09±0.97

B-TAML [26] 53.87±0.18 49.84±0.23 42.00±0.21 51.14±0.23 46.59±0.20 36.69±0.21

L2R [17] 47.13±0.13 40.69±0.62 47.26±0.72 33.14±0.60 44.03±0.70 33.06±0.60

NESTEDMAML [11] 57.12±0.81 55.66±0.78 52.16±0.76 56.66±0.78 56.04±0.79 49.71±0.78

PETR (Ours) 58.02±0.68 57.03±0.72 54.12±0.65 57.33±0.71 57.15±0.72 51.34±0.73

Few-Shot Learning with OOD Tasks. To further demonstrate the effectiveness of our
PETR in scenarios where the meta-training task distribution is partially shifted from
the testing task distribution, we performed additional experiments on few-shot learning
with OOD tasks. We randomly sampled the ID meta-training tasks from miniImagenet
and OOD tasks from SVNH or FashionMNIST datasets with varying OOD ratios. The
meta-validation and testing tasks are all from miniImagenet. Table 3 presents the exper-
imental results. The results of the baselines are cited from [11]. We observed that our
PETR outperforms all baselines significantly in all cases. These results show that PETR
has a stronger ability to adapt to few-shot learning with OOD tasks.

5.2 Model Analysis

Ablation Study. To validate the impact of different components proposed in the PETR,
we conduct ablations about variants of our proposed method on FSL with OOD tasks
from FashionMNIST dataset. We consider three variants of our methods, i.e., 1) w/o
similarity: remove the similarity term between meta-training tasks and the validation
tasks in Eq. 6. The PETR module assigns weight for each task according to the meta-
training task loss. 2) w/o task loss: remove the term about the task loss in Eq. 6. The
PETR module assigns weight for each task according to the similarity term between
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meta-training tasks and the validation tasks. 3) w/o hypothesis: remove the parameter-
efficient task reweighting module and update wi directly.

Table 4. 5-way 3-shot test accuracies with 95% confidence intervals on miniImagenet with dif-
ferent variants of our method.

OOD Ratio 0.3 0.6

w/o hypothesis 55.98 ± 0.72 55.72 ± 0.74

w/o similarity 56.62 ± 0.73 56.25 ± 0.69

w/o task loss 56.44 ± 0.73 56.05 ± 0.71

Ours 57.33±0.71 57.15±0.72

The results of w/o hypothesis in Table 4 demonstrate that our PETR can learn better
task weights for meta-training tasks by introducing the hypothesis. Furthermore, the
results support our hypothesis that both the similarities between the meta-training and
testing tasks and the loss of the meta-training task are necessary for deciding whether
a meta-training task is suitable for training. Without task loss information, the perfor-
mance largely drops, indicating that the ability to learn a task well plays a crucial role
in deciding the weights of meta-training tasks. Additionally, the similarity between the
meta-training and testing tasks is an essential factor in determining the importance of a
meta-training task. Without using the similarity, the performance also declines.

Fig. 3. Visualization of task weight learning behavior.

Weight Learning Behavior.We visualize how the task weights change during the train-
ing process to find some training patterns. We plot the weights trend as the iterations
progress under the 0.6 OOD ratio (FashionMNIST) in Fig. 3 (a). We can observe the
model will gradually increase the mean weights of ID tasks and decrease the weights of
OOD tasks, which validates the effectiveness of the PETR. We also visualize the weight
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Fig. 4. 5-way 3-shot test accuracies under different validation task sizes on FSL with OOD meta-
training tasks.

distribution for OOD and ID tasks under 0.6 OOD ratio (FashionMNIST) for 5-way 3-
shot tasks. From Fig. 3 (b), we can observe OOD tasks have much smaller weights than
ID tasks: the weights belonging to OOD tasks approximately range from 0.4 to 0.5,
however, the assigned weights for ID tasks are from 0.85 to 0.95, further validating our
PETR has the ability to assign proper weights for different meta-training tasks.

Sensitivity Analysis. To demonstrate the feasibility of our method in practical sce-
narios, we investigate how the size of the validation set impact the FSL performance.
Figure 4 shows the test accuracy on the FSL with OOD tasks from SVNH and Fash-
ion MNIST with different validation task size. We find that the number of validation
tasks has little effect on the final test accuracy in all circumstances, indicating that our
PETR can achieve good results with a small amount of validation set data. This finding
enhances the feasibility of our method in practical scenarios where labeled data is often
limited.

6 Conclusion and Future Work

In this paper, we propose a novel approach, parameter-efficient task reweighting
(PETR), for robust few-shot classification that efficiently assigns proper weights for dif-
ferent meta-training tasks. We formulate a bi-level optimization problem to jointly opti-
mize the few-shot learning model and the task weight. Besides, we build a parameter-
efficient task reweighting module, which can assign proper weights for different meta-
training tasks while using much fewer additional parameters by considering the factors
that influence the importance of each meta-training task. Empirical evaluation results
in both traditional FSL and FSL with OOD task scenarios show that PETR can effi-
ciently outperform state-of-the-art meta-learning methods by identifying the impor-
tance of different meta-training tasks. Additionally, in this work, we explicitly inves-
tigate the factors that could influence the task weights, including similarities between
the meta-training and testing tasks and the loss of the meta-training task. Further work
can explore more ways to combine these factors or investigate other factors that will
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influence the weights. The limitation of this work is that it requires a small developing
dataset that contains clean data of the testing task, how to obtain proper task weights
without the clean dataset is also an interesting future direction.
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Abstract. Generalized Few-Shot Learning (GFSL) applies the model
trained with the base classes to predict the samples from both base
classes and novel classes, where each novel class is only provided with a
few labeled samples during testing. Limited by the severe data imbalance
between base and novel classes, GFSL easily suffers from the prediction
shift issue that most test samples tend to be classified into the base
classes. Unlike the existing works that address this issue by either multi-
stage training or complicated model design, we argue that extracting
both discriminative and generalized feature representations is all GFSL
needs, which could be achieved by simply scattering the intra-class dis-
tribution during training. Specifically, we introduce two self-supervised
auxiliary tasks and a label permutation task to encourage the model
to learn more image-level feature representations and push the decision
boundary from novel towards base classes during inference. Our method
is one-stage and could perform online inference. Experiments on the mini-
ImageNet and tieredImageNet datasets show that the proposed method
achieves comparable performance with the state-of-the-art multi-stage
competitors under both traditional FSL and GFSL tasks, empirically
proving that feature representation is the key for GFSL.

Keywords: Generalized Few-Shot Learning · Scatter Intra-class
Distribution · Feature Representation

1 Introduction

Recently, Few-Shot Learning (FSL) [3,14,16,21,38], aiming at learning novel
classes from a few samples, has the potential to address the data scarcity issue
and attracts a lot of attention. However, the traditional FSL only classifies the
test samples into novel classes, which is not realistic enough because the test
samples also likely come from the base classes in reality. In this work, we focus on
Generalized Few-Shot Learning (GFSL) [12,13,35] that predicts the test samples
into the joint space of both base classes and novel classes, as illustrated in Fig. 1.
Compared to traditional FSL, GFSL is more challenging due to that it has
to classify the test samples into more candidate classes and suffers from the
prediction shift issue that the samples from the novel classes are easily classified
into the base classes.
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Fig. 1. Illustration of GFSL tasks, where the model is trained on the base classes Ybase

and is tested on the samples from both base and novel classes Ybase ∪ Ynovel.

There have been some attempts to address GFSL via either multi-stage train-
ing [18] or complicated model design [12,35]. In this work, we consider what the
GFSL needs is extracting both discriminative and generalized feature represen-
tations that ensure the classification ability for both base and novel classes simul-
taneously. We achieve this goal by simply scattering the intra-class distribution
during training to extract more image-level feature representations and push
the decision boundary from novel towards base during inference. This solution
is inspired by the existing re-weighting approaches [4,8,22] in class imbalance
learning that scatter the distribution of sample-sufficient classes while clustering
the distribution of sample-scarce classes. Though both imbalance learning and
GFSL tasks suffer from data imbalance, they differ significantly as GFSL has no
access to the novel classes during training.

Based on the solution, we establish a multi-task framework that comprises
a primary image classification task, a label permutation task, and two self-
supervised auxiliary tasks. The two self-supervised auxiliary tasks force the
model to respectively predict the rotation of the input sample and the loca-
tion of the feature map patches to learn more image-level information. The label
permutation task relaxes the classification task and predicts each sample into
some pseudo-classes derived from their original class, leading to the intra-class
distribution being scattered. Different from the existing works that train the
model with multiple stages, our framework is trained end-to-end and without
further fine-tuning during the testing stage, thus is easy to be applied for online
inference.

We empirically verify that our framework indeed scatters the base intra-
class distribution and the feature representation is the key for GFSL from the
significant performance gains of our framework on the two benchmarks.

The contributions of our work are as follows:

(1) We reveal that what the GFSL needs is extracting powerful feature rep-
resentations for preserving discrimination on both base and novel classes,
which could be achieved by simply scattering the intra-class distribution
during training.
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(2) We propose a one-stage framework that combines four tasks to learn more
image-level feature representations and push the decision boundary from
novel towards base during inference.

(3) Extensive experimental results demonstrate that our method performs very
competitively on two benchmarks under both GFSL and traditional FSL
tasks and show that our method enhances the model’s robustness during
the gambling between the base and novel classes under the GFSL tasks.
Our code is publicly available at: https://github.com/lisa-jin/gfslcode.

2 Related Work

2.1 Generalized Few-Shot Learning

GFSL requires the model not only to classify the samples from the novel classes
but also to classify the samples from the base classes, thus the candidate classes
include both base and novel classes. As one of the pioneer’s works, [13] hallu-
cinates training samples for the novel classes based on the transformation from
image to image in the base classes. To align the amplitudes between the feature
representations and the classifier weights, [23] normalizes both the feature rep-
resentations and the classifier weights on a high dimensional sphere, such that
the feature representations and the classifier weights are symmetric and inter-
changeable. DFSL [12] builds up a model based on [23] architecture and employs
an attention mechanism to learn more related knowledge from the base classes
for novel classes. To mitigate the prediction shift issue in GFSL, [18] employs
three cascaded training stages, a stage on base classes, a stage on novel classes,
and a stage on both base and novel classes, to calibrate base and novel classes,
while [35] introduces a trainable dictionary to be concatenated with classifier
weights to balance the base and novel classes.

Different from the existing approaches that address the prediction shift issue by
training the model with multiple stages, we address this issue from the perspective
of improving the feature representations by scattering the intra-class distribution
during training. Besides, our method trains the model with only one stage and does
not require fine-tuning during inference, thus is more efficient.

2.2 Class Imbalance Learning

Many real-world data exhibit class-wise imbalance, which refers to the phe-
nomenon that some classes account for most of the data (the majority class)
while others only contain a few samples (the minority class). Training the model
on the imbalanced dataset would suffer from a severe shift to the majority classes,
resulting in most of the test images being predicted into the majority classes and
poor performance in the minority classes.

A vast number of class imbalance learning methods have been devised to cope
with this issue, which could be divided into two directions roughly: re-sampling
and re-weighting. Re-sampling is a data-level approach to mitigate the data

https://github.com/lisa-jin/gfslcode
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imbalance via over-sampling [5] or generating synthetic samples [1,20] for the
minority classes, and under-sampling [10] for the majority classes. However, these
methods are at risk of suffering from the under-fitting of majority classes or the
over-fitting of minority classes [7]. Re-weighting usually designs the loss function
elaborately to increase the objective costs for minority classes and decrease the
objective costs for the majority classes, aiming at shifting the decision boundary
from minority towards the majority, leaving a bigger margin for the minority
classes [4,8,22,25].

GFSL suffers from a severe data imbalance issue. Different from that in the
imbalance learning literature, GFSL is unipolar in that no samples are provided
for novel classes during training, thus is more challenging. Our GFSL method is
inspired by the solution that prevents the majority classes from clustering tightly
in imbalance learning and we propose to scatter the intra-class distribution of
the base classes during training to learn both discriminative and generalized
feature representations for GFSL.

3 Methodology

3.1 Problem Formulation

In FSL, the data are split into base classes and novel classes (Dbase,Dnovel) cor-
responding to label space (Ybase,Ynovel), where the base classes with abundant
samples are used for training a model for the few-shot tasks sampled from the
novel classes. Note that the base and novel classes are disjoint completely. A few-
shot task Dn consists of a support set and a query set (Dtr

n ,Dts
n ). The support set

includes N novel classes, each with K samples, while the query set contains the
same classes, and such a task is represented as N -way, K-shot. The classifiers of
N novel classes are obtained from the support set, which is employed to predict
the query samples.

In GFSL, the test set contains the samples not only from the novel classes, but
also from base classes non-overlapping with the training samples, and at the same
time, the classification space extends to Ybase ∪ Ynovel from Ynovel, increasing
the classification difficulty dramatically. In the following, we use {1, 2, . . . ,M}
and {M + 1,M + 2, . . . ,M + N} to denote the M base classes and N novel
classes, respectively.

3.2 Baseline

The baseline consists of a feature extractor f and a classifier head g, where
the feature extractor projects an image x into the feature space f : x → z,
z ∈ R

d denotes the feature representation of x. Generally, the class prediction
of x is obtained with the inner product between the feature representation z
and the base classifier weights ΩBase = [ω1, . . . , ωM ]. After training the baseline
on the base set, the feature extractor and the classifier of the base classes are
obtained. Following the existing FSL works [29,36], the classifier weights of the
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novel classes are obtained by averaging the feature representations of the support
set in a class-wise manner, i.e.,

ωc =
1

|Dc|
∑

(xi,yi)∈Dc

f(xi), (1)

where Dc represents the support set of class c, |Dc| refers to the sample number
from class c and ωc is the prototype of class c, which is performed as its classifier
weight. Thus, the classifier for N novel classes are ΩNovel = [ω1, . . . , ωN ] and

the classifier for all classes are ΩAll = [
Base︷ ︸︸ ︷

ω1, . . . , ωM ,

Novel︷ ︸︸ ︷
ωM+1, . . . , ωM+N ].

To this end, the query sample xq could be predicted by:

p(y = c|xq, ωc) =
exp (d(f(xq), ωc))∑

ωi∈Ω exp (d(f(xq), ωi))
, (2)

where d denotes the similarity metric, Ω denotes the classifier weights of the
candidate classes. For the traditional FSL, Ω = ΩNovel. For the generalized
FSL, Ω = ΩAll.

However, for GFSL, the feature prototypes for novel classes and the classifier
weights for base classes differ significantly in the scales, which will result in
almost all test samples being classified into one side. To this end, we follow
[23] and normalize both the feature representations and the classifier weights
during training. Specifically, in the classifier head, we use the cosine similarity
to replace the inner product to calculate the class prediction. Once normalized,
both the feature representations and classifier weights lie on a high-dimensional
sphere, which ensures that the feature representations and classifier weights are
symmetric and interchangeable.

In the implementation, we empirically observe that during training the accu-
racy of the base classes increases consistently and the accuracy of the novel
classes increases first and then drops sharply, resulting in their harmonic mean
increasing first and then decreasing, as shown in Fig. 5 (a). We speculate that
the base classifier and novel classifier are gambling during training and the novel
classifier boundaries are gradually squeezed by the base classifier boundaries
with the training proceeding as only base data are available for training. To this
end, we provide two baselines, i.e., BaselineB and BaselineL. BaselineB refers to
the model that has the best harmonic mean while BaselineL refers to the model
that performs the best on the base classes.

3.3 Is Scattering Intra-Class Distribution a Solution?

As discussed above, the prediction shift issue may be derived from the severe
training sample imbalance between the base classes and novel classes. Inspired
by the re-weighting approaches in imbalance learning [4,8] that shift the decision
boundary from minority to the majority, we consider the unipolarity property
of GFSL and present that scattering the base intra-class distribution would
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Fig. 2. Illustration of decision boundaries between the base and novel classes without
(a) and with (b) scattering the intra-class distribution in a normalized hypersphere.

achieve a similar purpose for addressing the imbalance issue in GFSL. Figure 2
provides an illustration of the decision boundaries between base and novel classes
with and without scattering the base intra-class distribution. Since the model is
trained only with the samples from the base classes, the feature representations
of each base class cluster tightly, and the decision boundaries between base and
novel classes are far away from the base classes, as shown in Fig. 2 (a). After
scattering the base intra-class distribution, the base margin will become smaller
than before, as illustrated in Fig. 2 (b). Since all the feature representations
are normalized onto a hypersphere, decreasing the base margin is equivalent to
increasing the novel margin in relativity, finally achieving the goal of pushing
the decision boundary towards the base classes and weakening the impacts of
the base classes on the decision boundaries.

Besides, training the model under only the supervision of the ground-truth
labels will lead to the feature representations from the same class cluster towards
a point as their supervisions are the same. Such a training paradigm is bene-
ficial for the base classes since the trained model would capture the class-wise
discriminative patterns but may hurt the model’s generalization ability on the
novel classes since it would discard the sample-wise unique patterns. Scattering
the intra-class distribution during training would prevent the feature represen-
tations in the same classes from collapsing into a cluster center and encourage
the model to incorporate more image-level information, which is beneficial for
the prediction of the novel classes.

3.4 Our Framework

This section explores three different strategies to scatter the intra-class distri-
bution: a label permutation strategy, and two self-supervised strategies, as illus-
trated in Fig. 3.

Label Permutation Strategy. Supervising the samples from the same base
class with the same ground-truth label would result in the feature representations
from the same class collapsing into their cluster center. We add randomness to
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class labels to relax the rigid supervision. Specifically, we project the class labels
into a pseudo-label space, where each class label corresponds to several pseudo-
labels. For example, for the class label yi, its pseudo-labels are [myi,myi+m−1],
where m is the number of pseudo-labels for each class label. In this way, each
base sample could be supervised with one of the pseudo-labels that its real class
label corresponds to, which is formulated as:

Llp = −
Mm−1∑

j=0

p′
j log

exp (hlp(f(x))j)∑Mm−1
k=0 exp (hlp(f(x))k)

(3)

where hlp denotes the label permutation head that projects the visual feature
representations into the pseudo-label space, p′

j is the j-th number of the one-hot
pseudo-label p′ of sample x.

In the implementation, three points should be noted. First, we utilize a uni-
form distribution to decide the pseudo-label in a class such that all the pseudo-
classes share a similar number of samples, which ensures the samples from the
same class scatter around. Second, we dynamically assign the pseudo-label for
each sample during training. In other words, the pseudo-label for each sample
in different training epochs may be different. In this way, each sample is fully
relaxed with freedom in its pseudo-label space. Finally, the samples from differ-
ent classes are still in different pseudo-classes, which ensures that they are in
different clusters to maintain the discrimination among classes.

Self-supervised Strategy. We introduce two self-supervised tasks, a rotation
task, and a feature map split task to encourage the model to learn more image-
level feature representations. For the rotation task, we rotate each input sample
with R = {0◦, 90◦, 180◦, 270◦} to obtain four views and their corresponding one-
hot labels u, and then encourage the model to predict their rotation angles with
a rotation head hrot. The rotation loss for each sample is formulated as:

Lrot dis = −
3∑

i=0

3∑

j=0

ui,j log
exp (ri,j)∑3

k=0 exp (ri,k)
, (4)

where r = hrot · f(x) denotes the prediction of label rotation, ui,j denotes the
j-th number of the rotation label ui of the i-th view of sample x, ri,j denotes
the j-th number of the prediction ri of the i-th view of sample x.

Additionally, four rotation views are also sent into the classification head
to predict their class labels to maintain inter-class distinguishability. Thus the
overall rotation loss Lrot for each sample is

Lrot = Lrot dis + Lrot cls, (5)

where Lrot cls denotes the classification loss for the four rotation views.
Though self-supervised tasks have been explored in some FSL literature [11,

24,30,31], our work first verifies that the self-supervision tasks are suitable for
GFSL and encourages SSL to play its potential by the combination with our
proposed label permutation strategy.
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Fig. 3. Illustration of our framework. The model is trained under a primary classifica-
tion task and three auxiliary tasks, a label permutation task, and two self-supervision
tasks.

For the feature map split task, we split the feature maps of the last and
penultimate layers of the backbone into four equal-size non-overlapped patches.
Specifically, for each feature map Z ∈ R

h×w×c, h, w, and c denote the height,
width, and channel numbers, we split it along h and w in half, generating four
patches and their location labels t, and then encourage the model to predict
their locations with a location head hloc. The location loss for each base sample
in each of the last two layers is formulated as:

Lloc dis = −
3∑

i=0

3∑

j=0

ti,j log
exp (si,j)∑3

k=0 exp (si,k)
, (6)

where s denotes the location prediction of the divided patches, ti,j denotes the
j-th number of the location label ti of the i-th patch of sample x, si,j denotes
the j-th number of the prediction si of the i-th patch of sample x.

Besides, similar to the rotation task, the four feature map patches are also
projected into classification space to maintain their discrimination on the classes.
Thus, the overall location loss Lloc for each sample is:

Lloc = Lloc dis + Lloc cls. (7)

The feature maps from both the last and penultimate layers are applied with
the same operation.

Overall Objective. We formulate the whole idea into a multi-task framework,
as illustrated in Fig. 3. The final objective loss for each sample is:

L = Lce + αLlp + βLrot + γLloc, (8)

where α, β, and γ are three hyper-parameters. In our work, we report the final
results by setting both α and β to 1, and γ to 0.5.
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4 Experiments

4.1 Datasets and Implementation Details

Datasets. We implement experiments on two popular FSL benchmarks: mini-
ImageNet [33] and tieredImageNet [26]. Both datasets are the derivatives of
the ImageNet [9] dataset but differ in the size. Specifically, miniImageNet is a
100-class dataset with 64/16/20 classes for base/val/novel split, while tieredIma-
geNet contains 608 ImageNet classes with 351/97/160 classes for base/val/novel
split. The images from both datasets are resized to 84 × 84. The test images are
comprised of base and novel, which we obtain from [35] and the novel subset of
the original dataset, respectively.

Implementation Details. Following [32,35], we employ ResNet12 as our fea-
ture backbone, while both the rotation head hrot and the location head hloc are
MLP with a single hidden layer, and the label permutation head hlp consists
of a convolutional layer and an MLP. We train the model for 80 epochs on the
base classes, using SGD optimizer with momentum 0.9 and learning rate 5e − 2
initially decayed by 0.1 at 60 and 70 epochs with batch size 64 for miniImageNet,
while for tieredImageNet, the learning rate decays by 0.1 at 40 and 50 epochs
in all 60 epochs with batch size 128. We sample 300 GFSL tasks to report our
results and every task contains 5 test samples from every base class and a FSL
task comprised of support set and query set.

Evaluation Metric. We evaluate the models with the base accuracy AccB ,
novel accuracy AccN in the joint space, and their harmonic mean H for GFSL
task and novel accuracy in novel own space for FSL task. Note that we evaluate
our method on H if not specific.

4.2 Results on both GFSL and FSL Tasks

GFSL Results. We compare our method with some recent competitors on
both benchmarks under the GFSL tasks in Table 1. Specifically, four methods
[27,29,32,36] that are originally evaluated on the FSL tasks and two methods
[12,35] that are evaluated on both FSL and GFSL tasks are selected for com-
parison. From the results, we observe most of the methods designed for tradi-
tional FSL tasks perform poorly under GFSL tasks on both benchmarks except
for Distill [27] which also utilizes a self-supervised auxiliary task to train the
model, providing some pieces of evidence for the claim that SSL is beneficial for
GFSL. Though performing competitively, Distill [27] is still inferior to ours on
both datasets as our method fully exploits the potential of SSL by combining
the other type of auxiliary task. Additionally, RFS [32] which utilizes knowl-
edge distillation [15] performs poorly under GFSL tasks, empirically proving
that knowledge distillation [15] could not help GFSL classification very much.
Compared with the methods designed for GFSL, our method performs very com-
petitively on both datasets, especially under the M+All-Way 5-Shot task, where
our method beats [35] with 7.0% and 4.42% improvements on the miniImageNet
and tieredImageNet, respectively.
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Table 1. Comparison results (%) on both miniImageNet and tieredImageNet datasets
under M+5-way and M+All-way tasks. † denotes the results implemented by ourselves
with the released codes, and ‡ denotes the results copied from [35]. The best results
are in bold and the second-best results are underlined. ‘M+5-Way’ denotes that the
candidate classes include both the base classes and 5 random classes sampled from the
novel classes. ‘M+All-Way’ denotes that the candidate classes include both the base
classes and all the novel classes.

Methods M+5-Way M+All-Way

5-Shot 1-Shot 5-Shot

AccB AccN H AccB AccN H AccB AccN H

miniImageNet

ProtoNet† [29] 72.41 57.74 64.25 65.39 23.03 34.06 61.45 41.90 49.83

RFS† [32] 71.13 59.58 64.85 67.96 22.12 33.37 62.07 42.92 50.75

FEAT† [36] 71.94 58.42 64.48 69.24 21.03 32.26 61.00 42.94 50.40

Distill† [27] 85.68 60.18 70.70 56.40 28.22 37.62 80.30 47.94 60.04

BaselineB 63.73 63.03 63.38 51.47 26.15 34.68 52.17 43.91 47.69

BaselineL 90.43 26.73 41.26 90.16 7.69 14.17 89.47 24.55 38.53

DFSL‡ [12] - - 71.26 61.68 31.13 41.21 66.06 47.16 54.95

ACASTLE‡ [35] - - 78.33 81.36 29.95 43.63 87.40 41.64 56.33

Ours 86.49 72.16 78.68 84.05 27.29 41.26 76.81 53.87 63.33

tieredImageNet

ProtoNet† [29] 60.47 63.04 61.73 51.05 13.00 20.72 45.93 27.01 34.01

RFS† [32] 64.74 59.03 61.75 61.09 12.06 20.14 58.93 26.00 36.09

FEAT† [36] 62.59 58.14 60.29 57.04 12.41 20.38 52.80 27.15 35.86

Distill† [27] 67.55 69.81 68.66 61.49 14.69 23.71 45.87 30.20 36.42

BaselineB 62.44 60.10 61.25 57.18 12.37 20.34 53.20 27.34 36.12

BaselineL 68.33 48.39 56.66 66.56 9.38 16.44 63.84 24.25 35.15

DFSL‡ [12] – – - - 11.29 14.24 12.60 14.95 27.22 19.29

ACASTLE‡ [35] – – – 27.01 16.17 22.23 35.41 31.86 33.54

Ours 65.38 81.86 72.70 52.67 16.28 24.87 47.22 31.73 37.96

FSL Results. We also provide the comparison results of our method and some
recent competitors under the traditional FSL on both benchmarks in Table 2.
From the results, our method obtains the best under the 1-Shot task on both
datasets and performs the second best under the 5-Shot task, verifying the supe-
riority of our method under the traditional FSL tasks.

To sum up, our method performs competitively under both traditional FSL
and GFSL tasks. We argue that the way of scattering the base intra-class distri-
bution could encourage the model to extract more valid feature representations,
which strikes a balance between discrimination and generalization.
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Table 2. Comparison results (%) on both miniImageNet and tieredImageNet datasets
under 5-Way 1-Shot and 5-Way 5-Shot settings with 95% confidence interval. The best
results are in bold and the second are underlined.

Methods miniImageNet tieredImageNet

5-Way 1-Shot 5-Way 5-Shot 5-Way 1-Shot 5-Way 5-Shot

RFS-Simple [32] 62.02 ± 0.63 79.64 ± 0.44 69.74 ± 0.72 84.41 ± 0.55

RFS-Distill [32] 64.82 ± 0.60 82.14 ± 0.43 71.52 ± 0.69 86.03 ± 0.49

DFSL [12] 56.20 ± 0.86 73.00 ± 0.64 50.90 ± 0.46 66.69 ± 0.36

FEAT [36] 66.78 82.05 70.80 ±0.23 84.79 ± 0.16

Meta-Baseline [6] 63.17 ± 0.23 79.26 ± 0.17 68.62 ± 0.27 83.74 ± 0.18

MeTAL [2] 66.61 ± 0.28 81.43 ± 0.25 70.29 ± 0.40 86.17 ± 0.35

RENet [17] 67.60 ± 0.44 82.58 ± 0.3 71.61 ± 0.51 85.28 ± 0.35

POODLE [19] 67.80 83.72 70.42 85.26

ACASTLE [35] 66.83 ± 0.20 82.08 ± 0.14 71.63 ± 0.02 85.28 ± 0.15

HGNN [37] 67.02 ± 0.20 83.00 ± 0.13 72.05 ± 0.23 86.49 ± 0.15

DeepBDC [34] 67.83 ± 0.43 85.45 ± 0.29 73.82 ± 0.47 89.00 ± 0.30

DSFN [39] 61.27 ± 0.71 80.13 ± 0.17 65.46 ± 0.70 82.41 ± 0.53

Ours 68.19 ± 0.54 83.13 ± 0.39 74.70 ± 0.63 86.53 ± 0.42

Table 3. Ablation study(%) on miniImageNet under M+5-way 5-shot GFSL task.

Rotation Location LP AccB AccN H

63.73 63.03 63.38

� 85.45 53.21 65.58

� 67.98 62.92 65.35

� � 86.37 58.25 69.57

� 85.45 64.37 73.43

� � 83.15 70.32 76.20

� � 85.49 68.84 76.27

� � � 86.49 72.16 78.68

4.3 Ablation Study

In this section, we perform a thorough ablation study on miniImageNet with
ResNet12 to provide a deep insight into each component in our method.

Components Contribution. Here we quantify the contribution of different
components in our method. As shown in Table 3, in terms of the harmonic mean
H, applying the Rotation or Location alone respectively gives an improvement
of 2.2% and 1.97% while combining them together would obtain 6.19% improve-
ment over the baseline. Besides, employing the label permutation would achieve
about 10% gains over the baseline. When combining all three components, we
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Fig. 4. The influence of pseudo-class number m to the base, novel, and their harmonic
mean performance on the miniImageNet dataset under the M+5-Way 5-Shot setting.

would obtain the maximal performance improvement of 15.3% over the base-
line. The consistent improvements indicate that joint optimization for both self-
supervised tasks and label permutation is beneficial for GFSL.

It is notable that when we only apply label permutation or self-supervised
tasks, the performance of the base classes improves significantly due to more
adequate training while the performance of the novel classes improves slightly
or even declines. We speculate that a type of auxiliary task alone hardly pushes
the decision boundary towards the base classes while the combination of all the
auxiliary tasks could effectively weaken the pull of base clusters to novel samples,
leading to the performance improvement of novel classes. The experiment also
verifies that the two types of auxiliary tasks complement each other.

Number of Pseudo-class in Label Permutation. In this experiment, we
investigate the influence of the pseudo-class number corresponding to a ground
truth class by varying the number of pseudo-class m in Fig. 4. From the results,
we observe that after the initial increase, the performance saturates with increas-
ing m. We speculate that the intra-class samples hardly form a uniform cluster-
ing space centered around the original aggregation point when the pseudo-class
number is small. When m is above a particular number (e.g., 16), the uniform
space around the original aggregation point is basically generated, thus the per-
formance plateaus. Based on the results in Fig. 4, we report the final performance
when m is 16.

4.4 Further Analysis

Model Robustness. To evaluate the effects of different components on the
model robustness, we plot the classification performances of both the base and
novel classes and their harmonic mean during the training process. As shown
in Fig. 5, it is obvious that the method without both SSL and LP (i.e., (a))
drops significantly in terms of both the performance of novel classes and H
when the training epoch surpasses 60 while the SSL task (i.e., (b)) could relieve
the performance drop on the novel classes to boost H. Interestingly, the LP
term (i.e., (c)) even brings performance improvement on the novel accuracy.
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Fig. 5. The effects of different components on the three evaluation metrics during
training on the miniImageNet dataset under the M+5-way 5-shot task.

When we combine the SSL and LP terms (i.e., (d)), the performances of three
evaluation metrics steadily improve and plateau when the training epoch is above
70, possibly because there is no further margin of improvement.

In addition, we observe that the novel accuracy still declines a lot when the
optimization objective is integrated with SSL tasks only. We speculate that this
is because SSL task primarily encourages the model to extract more image-
level information, and only combined with LP which scatters the intra-class
distribution can it play its potential on the novel classes.

Relations Between Performance and Feature Distribution. In this exper-
iment, we provide an insight into the model from both intra-class and inter-
class distributions on the base classes. Specifically, we introduce three metrics
of Dintra, Dinter, and their product DM on class-wise level, where Dintra is the
averaged Euclidean distance over the feature representation of each image to
its class prototype obtained by averaging all the image feature representations
in the class, while the inter-class distance Dinter refers to the minimal distance
between a class prototype to others.

As reported in Table 4, we observe that the auxiliary tasks could signifi-
cantly enlarge the value of three metrics and the LP brings more improvement
margins, which verifies that the auxiliary tasks indeed enlarge the inter-class
distributions and scatter the intra-class distributions. Importantly, the H per-
formance increases with the increase of the three metrics, empirically validating
that scattering intra-class distribution is beneficial for GFSL tasks.

CAM Visualization. We visualize Gradient-weighted Class Activation Map-
ping (Grad-CAM) [28] of two baselines and our method on the test samples from
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Table 4. Metric Dintra, Dinter, and DM for the base set, and performance H under
the M+5-Way 5-Shot task on the miniImageNet.

Model Dintra (↑) Dinter (↑) DM (↑) H (%)

BaselineB 2.44 85.51 215.83 63.38

BaselineL 1.02 75.81 79.09 41.26

Baseline+LP 10.87 899.94 9801.59 73.43

Baseline+SSL 5.00 308.67 1614.25 69.57

Baseline+SSL+LP (Ours) 14.50 1335.82 19402.29 78.68

Fig. 6. Grad-CAM visualization results of two baselines and ours on the test samples
from both base and novel classes under the M+5-Way 5-Shot task on the miniImageNet.

both base and novel classes in Fig. 6. We observe that BaselineL concentrates
more on features related to base classes but highlights incorrect regions for novel
classes, while BaselineB could well focus on the novel classes but hardly concen-
trates on the base classes. In contrast, our method could extract related features
for both base and novel classes.

5 Conclusion

In this work, we have revealed that what the GFSL needs is extracting both
discriminative and generalized feature representations, which could be achieved
by simply scattering the intra-class distribution during training. Then based on
the solution, we proposed a one-stage framework that combines multiple tasks
to scatter the intra-class distribution and maintain inter-class distance simul-
taneously. The experimental results demonstrate that our model is comparable
to or even better than the multi-stage competitors under traditional FSL and
GFSL tasks. We hope this paper could shed new light on the GFSL.
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Abstract. Few-shot learning (FSL), which aims to learn from very few labeled
examples, is a challenging task but frequently appears in real-world applications.
An appealing direction to tackle it is the metric-based method, which seeks to
learn a transferable embedding space across different tasks from a related base
dataset and generalize it for novel few-shot tasks. Recently, a large corpus of
literature has been proposed to design more complicated representation learn-
ing methods to improve performance. Despite some promising results, how these
methods improve the few-shot performance remains unexplored. Motivated by
this question, we investigate the relationship between the performance and the
structure of the learned embedding space. We find they are strongly correlated
to each other. To capture more valuable features of novel classes, the intra-class
distribution of base classes should be more scattered. Therefore, we introduce
von Mises-Fisher (vMF) distribution and employ a vMF similarity loss function
that uses a concentration parameter, κ, to control the intra-class distribution on a
hypersphere. By setting a smaller κ, our method can learn a more transferrable
embedding space with high intra-class diversity. Extensive experiments on two
widely used datasets demonstrate the effectiveness of our method.

Keywords: Few-shot Learning · Von Mises-Fisher (vMF) Distribution ·
Intra-class Distance · Scattered Hypersphere

1 Introduction

Deep learning methods have made tremendous success on a wide range of computer
vision applications with access to large-scale labeled data [6,9]. However, in some
practical fields, such as medical and military, sufficient manual annotation is either not
feasible or too expensive to collect. Humans, on the other hand, are known to learn new
categories quickly after seeing only a few or even a single example. This advantage
comes from years of experience accumulated by the human visual system. Inspired by
it, Few-Shot Learning (FSL) is developed to tackle the problem of learning from very
few labeled examples by leveraging the knowledge learned from a related base dataset.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
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Fig. 1. Visualization of the expected embedding spaces on a 3-d sphere by traditional metric
learning methods and our proposed method.

A compelling series of the methods is metric learning [34] with episodes training
mechanism [28], i.e., metric-based FSL. By training on a collection of few-shot clas-
sification tasks constructed from the related base dataset, this kind of method aims to
learn a transferable embedding space across different tasks and generalize it for few-
shot tasks from novel datasets. In the embedding space, query samples are classified
according to their similarities with support samples. One classic method is Prototypical
Network (Proto Net) [26], which learns a prototype for each class and performs classi-
fication according to the square Euclidean distance between the query and prototype.

An important issue in the metric-based FSL methods is extracting high-quality rep-
resentations for each class and query sample. Recently, an extensive corpus of litera-
ture has proposed more complicated representation learning methods to improve per-
formance. For example, Adaptive Modality Mixture Mechanism (AM3) [33] exploits
cross-modal information, and Cross Attention Network (CAN) [7] proposes a cross-
attention module to generate more discriminative features. Although promising achieve-
ments have been made, it is still unclear how these strategies contribute to the few-
shot performance. In other words, (1) what does the embedding space of a high-
quality representation learning approach look like? and (2) which kind of embed-
ding space learned on base classes is better to transfer for novel classes?

In this paper, we shed new light on understanding the above problem by exploring
the structure of the embedding space, which determines the representation distribution
of the embedding space. We start with several representative metric-based FSL meth-
ods and investigate the correlation between their few-shot classification performance
and the structure of their learned embedding spaces. We observe that the few-shot per-
formance strongly correlates with the intra-class distance of the learned embedding
space. This indicates that scattered intra-class distribution on base classes benefits the
few-shot classification performance on novel classes. We think this is due to the cate-
gory gap between the training and evaluation in FSL. To capture more valuable features
of novel classes, the intra-class distribution of base classes should be as scattered as
possible. Based on the above observation, we leverage the von Mises-Fisher (vMF)
distribution [8,18] to propose a novel vMF similarity loss function. The proposed loss
function is a compact-support function over concentration κ, enabling us to control the
intra-class variance. By setting a smaller κ, our method can learn a more transferrable
embedding space with high intra-class diversity, as shown in Fig. 1. Extensive experi-
ments carried out on the two most widely used datasets demonstrate the effectiveness
of our method. The main contributions of this paper are summarized:
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– This is the first endeavor to investigate what embedding space learned in base classes
is more suitable to transfer for FSL tasks in novel classes, which inspires us to pro-
pose better metric-based methods.

– We provide an intuitive explanation and insightful analysis for why few-shot classi-
fication performance on novel classes benefits from more dispersed intra-class dis-
tributions of base classes.

– We propose a simple yet effective method for FSL by introducing the von
Mises-Fisher (vMF) distribution. The proposed approach achieves competitive per-
formance on the two most widely-used few-shot classification benchmarks.

2 Related Work

Few-shot learning has been extensively studied in recent years, which aims to trans-
fer knowledge from many labeled datasets (base classes) to a disjoint dataset (novel
classes) with limited training data. A dominant method is metric-based FSL, which
aims to learn a transferrable embedding space by conducting a set of few-shot clas-
sification tasks on base classes and generalizing it to novel classes. Existing metric-
based FSL methods can be divided into three categories based on the critical issue they
address: similarity-based methods (S), representation-based methods (R), and similarity
and representation-based methods (SR).

Similarity-based methods attempt to design appropriate functions to measure the sim-
ilarity of representations in the embedding space. An intuitive way is to adopt the
widely used distance function such as squared Euclidean distance [25] and cosine
similarity [24]. To capture the more complex relationship between samples, Simple
CNAPS [1] uses Mahalanobis distance, and Relation network [27] employs a neu-
ral network to capture the features’ correlation. Although effective, the above methods
represent each image in a compact image-level representation, which may lose con-
siderable discriminative information. Therefore, some methods are proposed to com-
pare the local representations. For example, Deep Nearest Neighbor Neural Network
(DN4) [11] replaces the image-level feature-based measure in the final layer with a local
descriptor-based image-to-class measure. Deep EMD [37] adopts the earth mover’s dis-
tance as a metric to compute a structural distance between dense image representa-
tions to determine image relevance. The Semantic Alignment Metric Learning (SAML)
method [5] employs a multi-layer perceptron (MLP) to calculate a similarity score
between the semantic alignment representations. Deep Brownian Distance Covariance
(DeepBDC) [32] views features of the sample as random vectors and measures the sim-
ilarity by calculating the discrepancy between their joint distribution and the product of
the marginals.

Representation-based methods seek to extract high-quality representations for query
samples and different classes. The milestone work is Prototypical Network (Proto
Net) [26], which takes the mean of support samples in each class as its correspond-
ing prototype and performs classification according to the distance between the query
and prototype. Many methods have been built based on it to improve the quality of the
prototype. For example, AM3 [33] leverages cross-modal information(e.g., semantic
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representations) to model the prototype representation as a convex combination of the
two modalities. Cross Attention Network (CAN) [7] proposes a cross-attention module
to adaptively localize the relevant regions and generate more discriminative features.
InfoPatch [13] proposes a contrastive training scheme to exploit the patch-wise rela-
tionship for exploring enough discriminative information for few samples. The above
methods usually learn an embedding space on the base datasets and apply it directly to
visual data in novel datasets, which does not necessarily lead to optimal performance
for a specific target task. Therefore, some research is proposed to learn task-specific
representations. For example, FEAT [36] adapts the instance embedding to the target
classification task with a set-to-set function, yielding task-specific and discriminative
embedding.

Similarity and representation-based methods address the above two issues simulta-
neously. For example, Task-dependent adaptive metric (TADAM) [19] employs a scaled
cosine similarity function and adopts conditional batch normalization to learn a task-
conditioning embedding model. Dynamic Meta-filter Network (DMF) [35] proposes
to learn a dynamic alignment, which can effectively highlight both query regions and
channels according to different local support information. Discriminative Mutual Near-
est Neighbor (DMNN) [15] employs deep descriptors as image representation and pro-
poses a novel relative closeness in mutual nearest neighbor to measure the similarity.
Actually, each metric-based method solves both issues but with different priorities.

In this paper, we focus on representation-based methods. We analyze the structural
property of their embedding space and investigate the relationship between their per-
formance and the embedding space. Based on the observation that the performance is
correlated with intra-class distance in the embedding space, we employ a vMF sim-
ilarity loss function to learn a more transferrable embedding space by enlarging the
intra-class distance via a small κ.

3 Empirical Investigation

In this section, we first formalize the problem of metric-based FSL. Then, to understand
what the embedding space of a high-quality representation learning approach looks
like and which kind of embedding space learned in base classes is better to transfer
for novel classes, we analyze the relationship between the few-shot performance and
structural properties of the embedding spaces generated by different representation-
based methods.

Problem Definition. In this work, we focus on a typical few-shot task N -way K-shot
problem. Let S = {(xs

i , yi)}N×K
i=1 be a support set, which contains N different image

classes and K labeled samples per class. Q = {(xq
j , yj)}N×Q

j=1 denotes a query set,
which contains unlabeled images from the same N classes as the support set. N -way
K-shot task aims to classify each unlabeled sample in Q according to the support set S.

In a FSL scenario, we usually have two label disjoint datasets: Dbase and Dnovel.
Generally, each set contains abundant categories and examples that are significantly
larger than N and K. Following [28], two sets of N -way K-shot tasks (episodes)
are randomly sampled from the two datasets, which are used to train and evaluate the
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model, respectively. Metric-based FSL methods aim to learn a transferrable embedding
space from Dbase and generalize it to Dnovel. In each training iteration, an episode
is randomly sampled from the base dataset to update the feature extractor fθ(·). This
procedure is repeated many times until the model converges to a stable state. Then,
episodes randomly sampled from the novel dataset are evaluated on the embedding
space obtained by fθ(·). Usually, in the embedding space, a query sample fθ(xq) is
classified according to a certain similarity between it and different class representations.

3.1 Structure Analysis of Embedding Space W.r.t Different Methods

It is known that extracting a high-quality representation for query samples and dif-
ferent classes is a key issue in metric-based FSL methods. However, there is still no
agreed-upon definition of what a high-quality representation looks like. In this paper,
we attempt to answer this problem by exploring the structure of the embedding spaces
generated by different few-shot representation learning methods.

Structure of Embedding Space. Let fi be the representation of sample xi in the
obtained embedding space. fyl

denotes the representation of sample x belonging to
the class l in the obtained embedding space. The class center for class l is calculated as
the mean of the feature representations in class l and is denoted as μ(fyl

). The structure-
property of the embedding space is measured using intra-class distance, inter-class dis-
tance, and the ratio between them as follows:

– Average Inter-class distance: quantifies the separation between classes. It is the aver-
age distance over the distances from all possible class centers μ(fyl

), μ(fyk
) belong-

ing to two different classes. Zinter is the number of class pairs.

πinter(f) =
1

Zinter

∑

yl,yk,l �=k

d(μ(fyl
), μ(fyk

)) (1)

– Average Intra-class distance: evaluates how closely the elements of the same cluster
are to each other and measures the compactness of the classes. It is the average
distance over the distances from all possible pairs fi, fj belonging to the same class
yl. Zintra is the number of sample pairs.

πintra(f) =
1

Zintra

∑

yl∈Y

∑

fi,fj∈fyl
,i �=j

d(fi, fj) (2)

– Intra / Inter Ratio: the ratio of the average intra-class distance and inter-class dis-
tance, which can be regarded as an embedding space density.

πratio(f) = πintra(f)/πinter(f) (3)

Representative Few-Shot Representation Learning Methods. Usually, the represen-
tation fi can be represented as a d-dimension vector or a vector in the 3d tensor. In
this paper, we focus on the first circumstance that is widely used in modern few-shot
representation-based literature and select the following methods:
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– Prototypical Network [26] is the most classic metric-based FSL method, which uses
the support set to compute a prototype for each category (in the sampled episode),
and query samples are classified based on the Euclidean distance to each prototype.
In Prototypical Network, the prototype pc is computed by averaging the representa-
tions of all support samples of class c.

– Cross attention Network(CAN) [7] proposes an attention mechanism to enhance
the feature discriminability for FSL. Firstly, CAN computes a correlation map
R ∈ Rm×m,m = h × w between the support feature map {pi}m

i=1 and query
feature map {qi}m

i=1, and defines the class correlation map Rp = RT and the query
correlation mapRq = R. Then, they use a meta fusion layer to generate the class and
query attention map Ap ∈ Rh×w and Aq ∈ Rh×w, respectively based on the corre-
sponding correlation maps. Finally, they employ a residual attention mechanism to
form more discriminative feature maps P̄ and Q̄, respectively.

– FEAT [36] aims to learn a task-specific embedding space to tailor discriminative
visual knowledge for a target task. They propose implementing embedding adap-
tion using a set-to-set function and instantiating it using a transformer. In the trans-
formed embedding space, they apply the contrastive objective to make sure training
instances are close to their class center than other centers.

– DMF [35] is the state-of-the-art representation-based method, which proposes to
learn a novel dynamic meta-filter for more effective and efficient feature alignment
in FSL. They dynamically sample a relevant neighbor for each feature position
of few-shot input and further predict position-specific and channel-specific filter
weights based on the sampled neighborhood to facilitate novel class recognition.
This formulation can better capture the position-based semantic context of the few-
shot example and thus enjoys better dynamical knowledge adaptation for FSL.

– ConEMB [13] is the state-of-the-art similarity & representation-based method,
which repurposes the contrastive learning to learn a better few-shot embedding
model. They propose a contrastive training scheme to exploit the patch-wise rela-
tionship to explore enough dis criminative information for few samples.

– Neg-cosine [12] is the most similar work to our method, which also aims to increase
the intra-class distribution on base classes to improve the few-shot performance on
novel classes. To achieve it, our method learns a wider similarity function. The sim-
ilarity fairly works on all classes without special treatment for the ground-truth class
in contrast to the negative-margin methods, which encourages the target logit to
increase the similarity of samples from the same class. Besides, the negative-margin
methods adopt the standard transfer learning paradigm while we employ the episode
training mechanism.

– Conv4 is a pre-trained network, which is trained to classify the base classes using
cross-entropy loss. It has no meta-train step, and we use it as a baseline to investigate
the role of meta-learning for few-shot representation learning.

Investigation. To investigate the correlation between few-shot classification perfor-
mance on novel classes and the structure of embedding space on base classes, we
compare the 5-way 1-shot and 5-way 5-shot accuracy of different methods with the
defined structural metrics on miniImageNet. The observations on the two tasks are sim-
ilar, and we detail the experiments on 5-way 1-shot tasks. Firstly, we train the above
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Fig. 2. Correlation between average accuracy of FSL tasks sampled from novel classes and
structure of embedding spaces derived by training different FSL methods with base classes on
miniImageNet. Points with different colors represent different FSL methods. Left-to-Right: intra-
class distances πintra, interclass distances πinter , and the ratio πratio.

seven methods using 64 base classes to obtain their feature extractors fθ(·). For Proto
Net, CAN, and FEAT, we follow the original setting of FEAT. The initial learning rate is
0.0001, and we train 200 epochs, with each epoch consisting of 100 5-way 1-shot tasks.
For DMF, InfoPatch, and Neg-cosine, we use the weights provided by them. Then, we
calculate πinter, πintra and πratio for each method using all sample representations
fi from 64 base classes to measure the structural properties of their embedding spaces.
Finally, we compute the average accuracy on 10000 sampled 5-way 1-shot tasks from 20
novel classes to evaluate the few-shot performance of different methods. Figure 2 shows
the correlation between πinter, πintra, πratio and the average accuracy. Points with dif-
ferent colors represent different FSL methods. We can find that the inter-class distance
(correlation coefficient 0.42) and ratio (correlation coefficient 0.33) barely exhibit a
correlation with few-shot performance. However, an increased intra-class distance (cor-
relation coefficient 0.67) is linked to more robust FSL performance. Specifically, the
more scattered in-class samples in the base classes, the better performance of few-
shot classification in novel classes. This observation is contrary to traditional metric
learning methods that aim to find a discriminative embedding space by increasing the
intra-class compactness, as shown in Fig. 1. Perhaps the training and evaluation datasets
are labeled disjoint in FSL. Excessive compact representations embedding space for
base classes make acquiring useful representations for novel classes more challenging.
Similar observations have been found in other open-set scenarios. For example, [4]
considers excessive intra-class feature compression may induce spurious class-specific
patterns in the source domain, thereby failing to generalize to novel domains. [22]
demonstrates that strong compressed representations can hurt the generalization ability
in the deep metric learning setting. The findings confirm the correlation between the
high-quality representation of FSL methods and a scatter-populated intra-class embed-
ding space.

3.2 Intuitive Explanation

To better understand how these methods improve the few-shot performance by learning
more scattered intra-class embedding space, we perform more analysis on three clas-
sic FSL methods (Proto Net, CAN, FEAT). The average intra-class distances πintra

on 64 base classes of the above methods are 0.0649, 0.1181, and 0.1590, respectively.
The average accuracy on 10000 randomly selected 5-way 1-shot tasks from 20 novel
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ACC: 0.6173 ACC: 0.6385 ACC: 0.6678

Intra_dist: 0.0649 Intra_dist: 0.1181 Intra_dist: 0.1590

Fig. 3. The top row shows the visualizations of the distance distribution on a randomly selected
base class with three different metric-based methods on miniImageNet. Each subgraph is the
histogram of the distance between the sample representation and its class center. The bottom row
shows the visualizations of the angle distribution on five randomly selected novel classes with
three different metric-based methods on miniImageNet. Each subgraph is the histogram of the
angle between the 2-d sample representation and a fixed vector v = (1, 0).

classes is 0.6173, 0.6385, and 0.6678, respectively. Figure 3 shows the distribution on a
randomly selected base class and 5 randomly selected novel classes on miniImageNet.
The top row of Fig. 3 shows the histogram of the distance between sample representa-
tions and their class center. The dimensions of all the representations are 640. We can
observe that with increasing few-shot performance (from left to right), the distance dis-
tributions of the selected base class are getting wider, shorter, and left-skewed. A wider
distance distribution indicates the distance between samples and the class center varies
widely, and a more left skewness distribution suggests more data points would lie in
the space far from its center, which results in a greater intra-class distance. Addition-
ally, a large intra-class distance somewhat scatters the output space, which improves the
effectiveness of few-shot classification. As shown on the bottom row in Fig. 3, we first
project the sample representations to 2-dimensional representations using tSNE [17].
Then, we visualize the angle distribution of the normalized representations and a fixed
vector v = (1, 0) on five randomly selected novel classes. One can observe from left to
right the boundaries between different classes become clearer. We conclude that enlarg-
ing the intra-class distance on the base class leads to a smaller intra-class variance and
larger inter-class variance in the novel classes, facilitating the classification of novel
classes.

4 Exploring a Scattered Embedding Space

We now exploit our above analysis to propose an effective method for a better trans-
ferrable embedding space for FSL. Our key idea is to learn a scattered embedding space
by maximizing the intra-class distance in a hypersphere.
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4.1 Controlling a Scattered Embedding Space via von Mises-Fisher Distribution

One direct technique to learn a scattered intra-class embedding space is to encourage
intra-class variety by pushing away features of the same class, as done in [4]. How-
ever, in few-shot circumstances, the scattered distribution derived by such a method is
limited due to the data insufficient problem. To address the above issue, we consider
that few samples of the same class are not isolated in embedding space but are sampled
from a high-dimensional distribution. Thus, we can adjust the dispersion of intra-class
samples by controlling the distribution statistics. In this paper, we assume each class
follows a von Mises-Fisher distribution [18], whose parameter κ is used to control the
concentration of the distribution.

Von Mises-Fisher Distribution. The von Mises-Fisher (vMF) distribution is a proba-
bility distribution on the surface of a hypersphere. It is parameterized by a mean unit
vector, μ, and isotropic concentration, κ. And it is an extension of the Gaussian distri-
bution on the unit hypersphere. The μ and κ in vMF distribution can be regarded as the
mean and variance in the Gaussian distribution. The probability density function for an
n-dimensional unit vector x is:

p(x;μ, κ) = Cn(κ) exp(κμT x), (4)

where Iv denotes the modified Bessel function of the first kind at order v, Cn(κ) =
κn/2−1

(2π)n/2In/2−1(κ)
is a normalization constant, x, μ ∈ Sn−1, μ is a unit vector orienting

the center of the distribution, κ > 0 is a parameter to control the concentration of the
distribution to the vector μ. The greater the value of κ, the higher the concentration of
the distribution around the mean direction μ.

Similarity Based on Von Mises-Fisher Distribution. In a few-shot classification task,
we assume each class follows a vMF distribution, the mean direction μ is the normalized
prototype p̄ of each class in a hypersphere. Similar to Proto Net [26], each prototype
p is the mean vector of the embedded support points belonging to its class. Then we
project it onto the hypersphere through l2 normalization.

The vMF distribution renders similarity between a normalized query fq and the
normalized prototype p̄ in a probabilistic sense as follows:

p(fq; p̄, κ) = C(κ) exp(κ − 1
2
κ ‖ fq − p̄ ‖2) = C ′

(κ)fe(‖ fq − p̄ ‖;κ) (5)

where fe(d;κ = exp(− 1
2κd2)) is a profile function. Following [8] and ignoring

the constant Cn(κ), the vMF similarity between fq and p̄ can be characterized by
exp(κ cos θ) . Scaling it to compatible with cosθ ∈ [−1, 1], the vMF similarity between
fq and p̄ is defined as follows:

φ(cos θ;κ) = 2
exp(κ cos θ) − exp(−κ)

exp(κ) − exp(−κ)
− 1, (6)

where cos θ is the cosine similarity between fq and p̄. The κ in vMF similarity accepts
various even including negative values, i.e. κ ∈ (− ∝, 0) ∪ (0,+ ∝).
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Properties of vMF Similarity. To better understand the vMF similarity function, Fig. 4
(a) shows the vMF similarity with different κ > 0. We can observe that by decreasing
the parameter κ, the support region of the measuring function becomes wider. Thus, the
vMF similarity with smaller κ would improve the within-class variance by orienting
representations toward the prototype to gain larger similarity. Figure 4 (b) shows the
intra-class distance with different κ on miniImageNet, we can observe that smaller κ
indeed induces a larger intra-class distance. This property effectively controls intra-
class sparsity by selecting an appropriate κ. We set κ = 1 as a pre-defined parameter
to obtain a scattered intra-class embedding space. We will discuss why we set κ = 1
rather than κ ≤ 0 to expand the intra-class region in Sect. 5.3.

Fig. 4. Proposed vMF-based similarities.

vMF Loss. Based on the vMF similarity, the loss function for a scattered embedding
space is defined as follows:

Lscatter(fq, y) = − log
expφ( pT

y fq

‖py‖‖fq‖ ;κ)
∑N

c=1 expφ( pT
c fq

‖pc‖‖fq‖ ;κ)
. (7)

Training proceeds by iteratively sampling episodes on base classes, and performing
SGD updates using the Lscatter for each episode.

4.2 Discussion

Our vMF-based similarity loss functionLscatter is similar to cosine based cross-entropy
loss function, which defines similarity based on the angular representation of features
and weight vectors on the hypersphere as follows:

Lcos =
1
n

n∑

i=1

log
ecos θ

ecos θ +
∑

j �=1,j �=yi
ecos θj

. (8)

In the past decades, many methods have been explored to improve the discrimina-
tive of the embedding space by introducing the large and positive margin parameter
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to the softmax loss [3,14,29,30]. A united framework by combining all of the margin
penalties was implemented as follows:

Lmcos =
1
n

n∑

i=1

log
es(cos(m1θyi

+m2)−m3)

es(cos(m1θyi
+m2)−m3) +

∑
j �=1,j �=yi

es cos θj
, (9)

where s is a scale parameter, mi ≥ 0, i = 1, 2, 3 are margin hyper-parameters for
different kind of methods. The margins were used to enforce the intra-class compact-
ness and inter-class diversity by penalizing the target logit [20]. These methods showed
significant performance increases in traditional close-set scenarios, where training and
evaluation datasets share the same label space. However, the situation is different in the
FSL scenarios. [12] discovered that adding the positive margin in softmax loss would
degrade the few-shot performance and proposes using negative-margin m3 instead.

Both the negative margin and our method improve the FSL performance by learn-
ing a more scattered intra-class distribution. To achieve it, our method learns a wider
similarity function to form a more scattered intra-class distribution.

5 Experiments

5.1 Experiment Setup

Datasets: The proposed method is evaluated on two widely-used few-shot classifica-
tion benchmarks: MiniImageNet dataset contains 100 classes randomly chosen from
ILSVRC-12 [23] and 600 images of size 84 × 84 pixels per class. We follow the splits
used in previous works [21], which divides the dataset into 64, 16, and 20 classes
for training, validation, and testing, respectively. TieredImageNet is a larger subset
of ILSVRC-12 dataset [23] with 608 classes. Following [21], the classes are firstly
grouped into 34 higher-level categories and thus have a hierarchical structure. Then
they are divided into 20 training categories (351 classes), 6 validation categories (97
classes), and 8 testing categories (160 classes).

Implementation Details: Our method is based on an episodic training mechanism.
All experiments are conducted around the N-way K-shot classification task. The back-
bone we use throughout the paper is ResNet-12, which is widely used in FSL. As is
commonly implemented in the state-of-the-art literature [36,37], we adopt a feature
pre-training step followed by the episodic meta-training to learn our network. The pre-
training stage is a normal 64-way classification task with cross-entropy loss. During
meta-training, we randomly sample and construct 300000 episodes to train all of our
models by employing the episodic training mechanism. In each episode, there are K
support samples and 15 query images in each class. We adopt the proposed vMF loss
and the SGD algorithm with an initial learning rate of 1e−2 to train our model. For the
hyper-parameters in our method, we set κ = 1. At the evaluation stage, we crop each
image 7 times following [16,37]. We use accuracy as the evaluation metric to measure
the performance of our method. The reported results are the averaged classification
accuracy over 10,000 tasks randomly selected on novel classes.
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5.2 Comparisons with the State-of-the-Art Methods

As we focus on metric-based FSL methods, several representative methods from three
categories (similarity-based methods (S), representation-based methods (R), and simi-
larity & representation-based methods (SR)) are selected for comparison. The results of
these methods are cited from their original paper or the few-shot classification leader-
board1 which tracks the state-of-the-art (SOTA) FSL methods.

Table 1. 5-way 1-shot and 5-way 5-shot classification accuracy (%) on miniImageNet and
tieredImageNet with 95% confidence intervals. The best results are marked in bold. (†: Repro-
duced with our setting, -: not available)

Methods Type Backbone miniImageNet tieredImageNet

5-way 1-shot 5-way 5-shot 5-way 1-shot 5-way 5-shot

Relation Net [27] S conv4 50.44 ± 0.82 65.32 ± 0.70 54.48 ± 0.93 71.32 ± 0.78

Neg-Cosine [12] S ResNet-12 63.68 ± 0.86 82.02 ± 0.57 - -

Deep EMD [37] S ResNet-12 65.91 ± 0.82 82.41 ± 0.56 71.16 ± 0.87 86.03 ± 0.50

Meat DeepBDC [32] S ResNet-12 67.34 ± 0.43 82.38 ± 0.32 72.34 ± 0.49 87.31 ± 0.32

Matching Net [28] R ResNet-12 63.08 ± 0.80 75.99 ± 0.60 68.50 ± 0.92 80.60 ± 0.71

Proto Net [26] † R ResNet-12 61.73 ± 0.20 78.02 ± 0.57 66.65 ± 0.92 82.40 ± 0.65

AM3 [33] R ResNet-12 65.30 ± 0.49 78.10 ± 0.36 69.08 ± 0.47 82.58 ± 0.31

CAN [7] R ResNet-12 63.85 ± 0.48 79.44 ± 0.34 69.89 ± 0.51 84.23 ± 0.37

FEAT [36] R ResNet-12 66.78 ± 0.20 82.05 ± 0.14 70.80 ± 0.23 84.79 ± 0.16

Infopatch [13] R ResNet-12 67.67 ± 0.45 82.44 ± 0.31 71.51 ± 0.52 85.44 ± 0.35

TADAM [19] SR ResNet-12 58.50 ± 0.30 76.70 ± 0.30 62.13 ± 0.31 81.92 ± 0.30

DMF [35] SR ResNet-12 67.76 ± 0.46 82.71 ± 0.31 71.89 ± 0.52 85.96 ± 0.35

DMN4 [15] SR ResNet-12 66.58 83.52 72.10 85.72

vMF loss S ResNet-12 68.34 ± 0.20 84.31± 0.40 72.60 ± 0.71 87.85 ± 0.53

Table 1 shows the comparison of 5-way 1-shot and 5-shot classification tasks on
miniImageNet and tieredImageNet. We have the following observations: 1) Our vMF
loss outperforms the SOTA FSL methods, indicating the effectiveness of the proposed
method. Besides, our method is simple. Although Meat DeepBDC achieves competitive
performance with our method, it needs to estimate the second moments of the feature
distribution, which leads to a quadratic increase of representations. Our vMF loss can
capture the second moments of the von Mises-Fisher distribution by setting a proper
isotropic concentration κ. 2) Compared with the Proto Net, the accuracy improvement
of our method on two datasets (1-shot tasks and 5-shot tasks) are 6.01%, 5.96%, and
6.29%, 5.45%, respectively. We attribute the accuracy gain on the prototype network to
the more scattered embedding space owning to the main difference between our method
and the Proto Net is that we learn a scattered embedding space using vMF similarity
instead of Euclidean distance.

1 FSL leaderboard: https://fewshot.org/miniimagenet.html,.

https://fewshot.org/miniimagenet.html
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Table 2. 5-way 1-shot and 5-way 5-shot cross domain classification accuracy (%) on
miniImageNet → CUB scenario. G-FSL represents general few-shot learning methods and CD-
FSL denotes cross-domain few-shot learning methods.(† : Reproduced with our setting, ∗ : the
result reported in [10])

Method Type 1-shot 5-shot

Proto Net(Snell et al. 2017)† G-FSL 42.65 60.48

FEAT [36]† G-FSL 42.32 61.99

TPN+ATA (Wang et al. 2021) ∗ CD-FSL 50.26 65.31

RDC-FT [10] ∗ CD-FSL 51.20 67.77

vMF Loss G-FSL 49.27 68.12

To further demonstrate the effectiveness of our vMF Loss by learning a better
embedding space for transfer, we perform experiments on a cross-domain FSL task
where models are trained on miniImagenet and evaluated on the CUB dataset following
[2]. We compare our method with two representative general FSL methods (G-FSL)
and two state-of-the-art cross-domain FSL methods (CD-FSL). The ranking distance
calibration (RDC) [10] aimed to calibrate the biased distances in CD-FSL due to the
domain gap and disjoint label spaces between source and target datasets. TPN+ATA
[31] considered the worst-case problem around the source task distribution, and pro-
posed an adaptive task augmentation method to improve the robustness of the inductive
bias.

Table 2 shows the accuracy of different methods on 5-way 1-shot and 5-way 5-shot
cross-domain few-shot classification tasks. We can observe our method can achieve 0.7
pp higher accuracy than general FSL methods on both 1-shot and 5-shot circumstances,
which demonstrates a more scattered intra-class embedding space is more suitable for
transfer. Compared with the CD-FSL methods, our vMF loss can achieve competitive
performance on the 1-shot task and better performance on the 5-shot task. The reason
perhaps learning the distribution becomes challenging when there is only one sample.

Fig. 5. The 5-way 1-shot accuracy on novel classes and the structure metrics of the embedding
space on base classes with varying κ on miniImageNet.

5.3 Model Analysis

Effects of κ . In this section, we investigate how κ affects the few-shot performance
on novel classes by changing the structural property of the learned embedding space on
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novel classes. Figure 5 shows the 5-way 1-shot accuracy on novel classes and the struc-
ture metrics of the embedding space on base classes with varying κ on miniImageNet.
We can observe: 1) The model with κ > 0 and κ < 0 have different impacts on the
FSL performance. Smaller κ improve the performance when κ > 0 while smaller κ
degrades the performance when κ > 0. 2) When κ > 0, both the intra-class distance
and inter-class distance increase as the κ decrease . The κ value has little effect on the
inter-class distance and intra-class distance When κ < −2. 3) The model with κ > 0
has better few-shot performance than κ < 0 and the best few-shot performance achieves
when κ = 1. The reason perhaps a more scattered embedding space by setting smaller
κ > 0 can improve the ability of generalization on novel classes. However, enhancing
intra-class distance by setting smaller κ < 0 may lead to the heavy overlap between
different classes, which in contrast damages the generalization performance.

Learning with Different Backbone Networks.We compare our method with the Proto
Net to show the effectiveness of our method with different backbones. From Table 3, our
vMF loss can consistently increase accuracy with various backbones compared with
the Proto Net. Besides, a better representation learning backbone can facilitate the fol-
lowing classification task with our vMF loss. We can combine existing high-quality
representation learning with our vMF loss to improve the few-shot performance.

Table 3. 5-way 1-shot and 5-way 5-shot classification accuracy (%) on miniImageNet with dif-
ferent backbones.

Tasks 5-way 1-shot 5-way 5-shot

Methods Proto Net vMF loss Proto Net vMF loss

covn4 47.78 52.65 65.92 66.60

conv6 50.20 54.42 70.28 71.24

resnet12 61.36 68.34 80.10 84.31

resnet18 62.24 68.51 81.88 84.77

6 Conclusion and Future Work

Few-shot image classification benefits from designing a more complex representation
learning network, but little attention has been focused on why they work. In this paper,
we shed new light on understanding the above problem by exploring the structure of the
embedding space. We find that better representation learning methods lead to a scattered
embedding space for base classes, which further improves the generalization of novel
classes. Based on the above observation, we introduce von Mises-Fisher distribution
and employ a vMF loss to learn a more transferrable embedding space for FSL by
controlling the intra-class diversity via parameter κ. Experiments on two widely used
datasets demonstrate the effectiveness of our method. Our method is simple but effec-
tive by setting a fixed κ for all classes. It is only one possible solution, and we hope our
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observations are useful to guide future FSL research. Future research may involve adap-
tively determining the dispersion for various classes. In addition, more technologies to
increase the intra-class distance can be investigated for FSL.
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Abstract. Fine-grained classification has achieved success with the
application of deep learning on large datasets. However, in practical sce-
narios, fine-grained categories often suffer from a lack of training data
due to the difficulty of labeling. Leveraging accessible coarse-grained
labeled data provides a promising way to alleviate this challenge, that
is, the model learns from a large number of coarse-grained labeled data
to perform better on fine-grained classification. In this paper, we focus
on this coarse-to-fine few-shot problem and attribute the difficulty of
this problem to two factors: the undistinguishable appearance of fine-
grained images and the lack of fine-grained training samples. To address
the first factor, we demonstrate that high-resolution features can cap-
ture more distinctive details that are useful for fine-grained classification
tasks. Thus, we construct an improved high-resolution network called
Meta-HRNet to capture rich details and filter the crucial detailed infor-
mation for fine-grained classification. To address the second factor, we
train the model by a two-step strategy that combines supervised train-
ing and episodic training. During the first training stage, the backbone
of Meta-HRNet is optimized to obtain a basic ability of detailed repre-
sentation. In the second stage, the attention module of the Meta-HRNet
is trained to learn and sift key details given a low number of train-
ing samples. The effectiveness of our model is verified on four datasets.
Experimental results demonstrate that the attention paid to the impor-
tant details of images contributes to improving the performance of fine-
grained classification tasks.

Keywords: fine-grained classification · few-shot learning ·
high-resolution representation · machine learning

1 Introduction

Fine-grained image classification is a challenging yet significant problem in the
field of computer vision. It aims to distinguish samples at the subordinary level of
one or more categories. The most challenging difficulty of this problem is learn-
ing distinctive features to identify objects with similar appearances. Previous
research on deep network-based approaches has been successful in extracting the
features of subtle variations after learning from a large fine-grained dataset [28].
However, in practical situations, the number of fine-grained labels of data is often
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
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Fig. 1. Training and support data in coarse-to-fine few-shot problem.

insufficient due to the high acquisition cost. In contrast, the acquisition of coarse-
grained labels is easier. Allowing for this, the so-called coarse-to-fine few-shot
problem (C2FS) proposed by Bukchin et al. [2] aims to solve the fine-grained
few-shot classification tasks by leveraging a huge set of coarse-grained labeled
data referred to as the base dataset. As Fig. 1 shows, the model is required to
learn from images with coarse-grained labels to obtain the ability to distinguish
fine-grained samples of the same super-class (in-coarse) or different super-classes
(cross-coarse).

The challenges of C2FS problem can be summarized as (i) the over-fitting
risk of few-shot learning caused by insufficient samples and (ii) difficulty in fea-
ture extraction for fine-grained categories. Concerning the first challenge, many
researchers in few-shot learning have made considerable achievements. According
to the different training strategies on the base dataset, most few-shot methods
can be divided into (i) Meta-learning based methods that apply the episodic
training strategy to quickly adjust the network parameters to the optimal state
of a given few-shot task, and (ii) Transfer learning based methods that apply
the supervised or self-supervised strategy to learn a strong backbone network,
which is directly used to extract features for a given few-shot task. Bukchin et
al. [2] proposed the Angular Normalized Contrastive Regularization (ANCOR)
to overcome the challenge of insufficient samples from the perspective of trans-
fer learning. However, like other transfer learning-based methods [4,18,22], this
model froze the feature extractor when encountering the downstream tasks. This
makes the feature extractor unable to make adjustments based on the informa-
tion of downstream tasks, which limits the flexibility of the network. For the
second challenge, it ignored the impact of the network structure on fine-grained
feature extraction. In this paper, we take both the network structure and training
strategy into consideration to better solve the two challenges of C2FS problem.

Most methods tackled the challenge of fine-grained feature exaction by
designing complicated network structures [1,12,30]. These methods focus on how
to capture critical parts on the basis of existing information, rather than how to
extract and retain richer information for screening. Cui et al. [7] systematically
studied the effect of image resolution on fine-grained visual categorization and
concluded that images with higher resolutions contain richer details that are
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important for fine-grained classification tasks. Many works also verified that the
high-resolution features can bring more crucial detailed information to improve
the performance of the model [20,24,29]. In this paper, we theoretically analyze
the effectiveness of high-resolution features for fine-grained classification tasks.
Then we propose Meta-HRNet which consists of a high-resolution backbone to
extract and retain rich detailed information and an ideal channel attention net-
work module (AttnNet) to filter the important details for the downstream task.

For the challenge of insufficient samples, we combine the presentation ability
of the transfer learning-based few-shot methods and the flexibility of the meta-
learning-based few-shot methods inspired by Meta-baseline [6] which is a simple
but effective training framework. Our strategy consists of two training stages.
The first stage is a supervised training procedure, and the second stage is an
episodic training procedure. At the first stage, only the high-resolution backbone
is trained to obtain a basic presentation ability. At the second stage, the AttnNet
is added to the backbone and the whole feature extractor is trained by the
episodic strategy to obtain the adaptive adjustment ability for any downstream
few-shot tasks.

Experiments show that our model can promote the classification accuracy
of C2FS problem by 3.1% on some datasets. We also visually verified that the
features extracted from different branches of the HRNet backbone are effective
even if they are trained by coarse-grained data.

The main contributions of this paper are as follows:

1. We provide a theoretical explanation for the relationship between fine-grained
classification tasks and feature resolution, and conclude that high-resolution
features can capture more useful details for fine-grained classification tasks.

2. We propose an improved high-resolution network with an ideal channel atten-
tion module trained by a two-step strategy which enables the model to learn
basic representation skills from a large amount of coarse-grained data and
quickly adjust the attention module based on a small amount of fine-grained
data.

3. Experiments verify that Meta-HRNet achieves appreciable achievements on
the coarse-to-fine few-shot problem on four datasets. Visualization experi-
ments verifies that the effectiveness of the model lies in retaining and filtering
the useful details for each task.

2 Related Work

The relevant fields of this paper include few-shot learning and fine-grained clas-
sificaton.

2.1 Few-Shot Learning

There are two important issues in few-shot learning: one is how to obtain dis-
criminative feature representations, the other is what strategy to be used to
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train a powerful model. For the first issue, approaches based on ProtoNet [23]
are devoted to improving the quality of the prototypes [10,26,27], and transfer
learning based methods are dedicated to training a powerful feature extrac-
tor [19]. With the emergence of contrastive learning, self-supervised few-shot
learning has achieved outstanding results. For example, Li et al. [14] took
advantage of the powerful clustering ability of contrastive learning to solve the
semi-supervised few-shot problem. Bukchin et al. [2] improved MoCoV2 [5] and
put forward an effective self-supervised model for C2FS problem. In addition,
some researchers began to focus on the correlation between contrastive learning
and meta-learning and provided further improvements on meta-learning algo-
rithms [11,16]. Recently, Luo et al. [15] studied the important role of feature
channels in few-shot learning. They found that a simple feature transformation
can significantly improve the generalization ability of few-shot models, which
inspires us to further generalize the channel-wise feature transformation.

For the second issue, the episodic training strategy proposed by Finn et
al. [9] is widely used to train a model that can be quickly adjusted to a suitable
state for a new task. Some researches show that combining episodic learning
strategy with other learning strategies can bring significant improvement. For
example, Meta-Baseline [6] simply combined supervised learning stage and meta-
learning stage and achieved notable improvement. Then Done et al. [8] applied
this two-stage training strategy to train a few-shot vision transformer model. Oh
et al. [17] made a profound study on self-supervised strategy, supervised strategy
and corresponding mixed-supervised strategy for cross-domain few-shot learning.
The experiments show that the two-step strategy, first supervised learning and
then mix-supervised learning, has advantages over any single one. Inspired by
these works, this paper adopts a two-stage training approach to combine the
superiorities of ANCOR [2] and meta-learning.

2.2 Fine-Grained Classification

Fine-grained classification problem is more difficult than conventional classi-
fication problem because of the slight differences among samples of different
categories. To capture the slight differences, some methods design various atten-
tion modules to learn distinctive feature vectors on a large fine-grained labeled
dataset. Behera et al. [1] designed a context-aware attention module to effec-
tively captures subtle changes among different categories. Zhu et al. [30] and Lee
et al. [13] integrated complex attention modules with meta-learning methods to
solve fine-grained few-shot problems. Furthermore, there are other approaches to
solve the problem by using a generative model to obtain decoupling features [12].
In fact, one of the premises of these methods is that the network should retain
rich information so that it can be located by various attention modules. Zhu et
al. [29] verified the data resolution matters classification results, which inspired
us to solve it from the perspective of feature resolution.

In the practical scenario, it is difficult to obtain a large amount of fine-
grained labeled data to solve fine-grained few-shot tasks. Allowing for this, some
attempts to incorporate coarse-grained labeled data in fine-grained learning tasks
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have been made recently. Yang et al. [25] applied a well-trained model to assign
pseudo fine-grained labels to the coarse-grained data. This method directly alle-
viates the shortage of samples but the effect is limited. Bukchin et al. [2] made
use of the representational power of contrastive learning to train a strong fea-
ture extractor. To address the challenge of fine-grained feature extraction, they
introduced a novel intra-category contrastive loss function. Then they employed
both inter-category supervised and intra-category contrastive losses to prevent
samples within the same coarse-grained category from gathering together. This
approach enabled the fine-grained samples in downstream task to obtain distin-
guishable feature representations.

3 Preliminaries

In this section, we provide the formalization of the coarse-to-fine few-shot prob-
lem, and illustrate the relationship between the fine-grained classification tasks
and high-resolution features.

3.1 Coarse-to-Fine Few-Shot Problem

In the training stage, the base dataset is denoted by Dcoarse = {(X,Y )|Y ∈
Ycoarse}, where Ycoarse is the space of coarse-grained labels. In the testing stage,
each task T sampled from Dfine = {(X,Y )|Y ∈ Yfine} consists of a support
set T s = {(Xs, Y s)|Y s ∈ Yfine} and a query set T q = {(Xq, Y q)|Y q ∈ Yfine},
where Yfine is the sub-class label space of Ycoarse. As with other works in few-
shot learning, the testing tasks are K-way N -shot, where K is the number of
categories and N is the number of samples in each category. This paper provides
two scenarios for testing. One is sampling from the sub-classes of all coarse-
grained categories (the cross-coarse case), and the other is sampling from the
sub-classes of one coarse-grained category (the in-coarse case).

3.2 High Resolution Feature Maps

Intuitively, the high-resolution feature maps in the convolution network can
retain detailed information of images, which contributes to fine-grained clas-
sification tasks. Suppose that the shape of feature map F with C channels is
C × H × H and Fl,i,j is the element of F . Then the global average pooling
function on the feature map can be written as

zl =
1

H2

∑

i,j

Fl,i,j , l = 1, 2, ..., C. (1)

Suppose that Fl,i,j ∼ (μl,i,j , σ
2
l,i,j) and is bounded by [a, b]. We denote E[zl] =

1
H2

∑
i,j μl,i,j as μl and μ = (μ1, μ2, ..., μC)T . Consider the binary classification

problem, μ
(1)
l �= μ

(2)
l and the criteria is ‖z(1) − μ(1)‖2 < ‖z(1) − μ(2)‖2 and
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‖z(2) − μ(2)‖2 < ‖z(2) − μ(1)‖2, where ‖ · ‖ is l2-norm. Due to the symmetry, we
take the first category as an example. Then the classification error is defined as

E = Pz (1)(‖z(1) − μ(1)‖2 ≥ ‖z(1) − μ(2)‖2). (2)

According to Hoeffding Inequality, Eq. (2) satisfies the following inequality

E ≤ exp(− H2

2(b − a)2
(
∑C

i=1(μ
(2)
l − μ

(1)
l )2)2

(
∑C

l=1(μ
(2)
l − μ

(1)
l ))2

). (3)

Then we apply the Cauchy Inequality to Eq. (3) and obtain the upper bound as
follows

E ≤ exp(− H2

2C(b − a)2

C∑

l=1

(μ(2)
l − μ

(1)
l )2). (4)

For the convenience of analysis, we define the difference between the two
categories Dist(1),(2) as

∑C
l=1(μ

(2)
l −μ

(1)
l )2. Then upper bound of Eq. (4) can be

written as exp(− H2

2C(b−a)2Dist(1),(2)). For fine-grained classification tasks, the dif-
ference between two categories is relatively small, that is, the value of Dist(1),(2)
tends to be small and the upper bound of classification error tends to be large.
To control the upper bound of the error, the value of H, representing the resolu-
tion of the feature map, can be increased to mitigate this tendency. Thus, it can
be concluded that high-resolution feature maps are beneficial for fine-grained
classification tasks.

4 Meta-HRNet

Our model is constructed based on ANCOR [2] and HRNet [24]. In this section,
we introduce the model structure and our training strategy. We start with the
framework of Meta-HRNet.

4.1 Framework

As shown in Fig. 2 (a), the architecture of Meta-HRNet consists of a four-branch
HRNet backbone ψ and a channel attention module φ. The HRNet generates
branches (the rows shown in Fig. 2(a)) progressively at each stage (shown as gray
blocks in Fig. 2(a)).

Before the first stage of ψ, the image X is computed by two convolution
layers with kernel size 3 and stride 2. Then it is input to the first stage with four
convolution blocks, and each block consists of three convolution layers. After
each stage, the network generates an additional branch to obtain a series of
lower resolution features. At the junction between two stages, branches are fused
to exchange information of different resolutions. The fusion module includes
upsampling followed by a 1×1 convolution, identity transformation and stride-2
3 × 3 convolution. After passing through four stages of HRNet, each image X
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Fig. 2. Meta-HRNet. (a) The architecture of Meta-HRNet. (b) The first training stage
is to train the HRNet backbone with supervised learning strategy. The result of this
stage will be used as the initialization and regularization for the second stage. (c) The
second training stage is to train the whole network with episodic training strategy.

will obtain four groups of feature maps {Z1, Z2, Z3, Z4} with different sizes. The
final representation used for classification is computed by {Z1, Z2, Z3, Z4} with
the head module ϕ.

The head module recursively fuses two adjacent branches. This process starts
from the highest resolution branch Z1. The fusion process proceeds as follows:

{
Z ′ = Incre(Z1),
Z ′ = Down(Z ′) + Incre(Zi), i = 2, 3, 4

(5)

where Incre(·) and Down(·) are convolution layes, Z ′ is the fused feature.
After fusing feature maps of with different resolutions, Z ′ contains more

details of image X. To make the model focus on the information that is use-
ful for the given task, we propose an ideal AttnNet ϕ to further optimize the
representation Z ′.

Suppose the representation of the i-th class samples satisfy zi,l ∼ (μi,l, σ
2
i,l),

zi = (zi,1, zi,2, ..., zi,C)T , μi = (μi,1, μi,2, ..., μi,C)T and the classificaion criteria
of the attention module is yi = argmin

j
‖ω � (zi −μj)‖2, where ω is the weights

added to the feature, � is the Hadamard product. Then the classification error
R satisfies
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R <

K∑

i=1

K∑

j=1,j �=i

Pzi
(‖ω � (zi − μj)‖2 ≤ ‖ω � (zi − μi)‖2)

=
K∑

i=1

K∑

j=1,j �=i

Pzi
(

C∑

l=1

ω2
l (zi,l − μi,l)2 −

C∑

l=1

ω2
l (zi,l − μj,l)2 ≥ 0)

=
K∑

i=1

K∑

j=1,j �=i

Pzi
(

C∑

l=1

ω2
l (μj,l − μi,1)(2zi,l − μi,l − μj,l) ≥ 0).

(6)

According to the Cantelli’s inequality [3], we can reduce that

R <

K∑

i=1

K∑

j=1,j �=i

4
∑C

l=1 ω4
l (μj,l − μi,l)2σ2

i,l

(
∑C

l=1 ω2
l (μj,l − μi,l)2)2

<
K∑

i=1

K∑

j=1,j �=i

4
∑C

l=1 ω4
l (μj,l − μi,l)2σ2

i,l

(
∑C

l=1 ω2
l min

i�=j
(μj,l − μi,l)2)2

=

∑C
l=1 ω4

l · 4
∑K

i=1

∑K
j=1(μj,l − μi,l)2σ2

i,l

(
∑C

l=1 ω2
l min

i�=j
(μj,l − μi,l)2)2

.

(7)

To compute the form of ω, we introduce a lemma [15] as follow:

Lemma 1. Let ai > 0, bi > 0, i = 1, ...,D. Define f : R
D
+ → R by f(x) =

∑D
i=1 bix

2
i

(
∑D

i=1 aixi)2
, then the minimum of f is reached at xi ∝ ai

bi
.

Therefore, when we optimize the upper bound of R in Eq. (7), the solution
satisfies

ω2
l ∝

min
i�=j

(μj,l − μi,l)2

∑K
i=1

∑K
j=1(μj,l − μi,l)2σ2

i,l

, (8)

.
The AttnNet module is constructed based on the result in Eq. (8). As φscore

shown in Fig. 2, for each task T = T s ∪ T q, we use the support data Z ′sto
calculate the task-specific score vector s ∈ RC as follows:

sl =

√√√√√
min
i�=j

(Z̄ ′s
j,l − Z̄ ′s

i,l)2

∑K
i=1

∑K
j=1(Z̄ ′s

j,l − Z̄ ′s
i,l)2σ̂2

i,l + ε
, (9)

where Z̄ ′s
i,l is the l-th dimension of the average of support sample features of

category i, σ̂2
i,l is the l-th dimension of the variance of category i computed by

support samples, ε is a constant used to prevent denominator exceptions. Then
we can calculate the weights as follows:

ω = Dense1(Dense2(¯̄s)), (10)
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where Dense1 and Dense2 are both one-layer MLP networks, ¯̄· is the stop-gradient
operation to avoid collapse in the training process. Finally, the sample represen-
tation Zs, Zq of samples in T s, T q are calculated as follows:

Z = ω � Z ′, (11)

where Z refers to both Zs and Zq, and Z ′ refers to both Z ′s and Z ′q.
As for the downstream classifier, some work shows that the linear classifier

is better than the prototype classifier, but it takes extra time to update the
classifier in the meta-learning process. In this paper, we put the embedding
vector Zq into a special linear classifier W to predict the label, where the i-th
column of W is the average of Zs belonging to the i-th category.

4.2 Training Strategy

As Fig. 2(b)(c) shows, we apply the two-stage strategy to train Meta-HRNet. The
first stage is to train the HRNet ψ with the self-learning strategy, and the second
stage is to train the whole Meta-HRNet with the episodic training strategy.

At the first training stage, we apply the loss function in ANCOR [2] directly
to train an HRNet backbone. The loss function is

L1 = LCE(Z ′, Y ) + LCONT (∠Z ′,∠Z ′+,∠Z ′−), (12)

where ∠Z ′ is the angular normalization of Z ′ (See ANCOR [2] for more details),
Z+ and Z− are both sampled from the set of samples sharing the same label with
Z ′. LCE and LCONT are respectively cross-entropy loss function and MoCoV2 [5]
contrastive loss function.

The classification loss function is defined as follows

LCLS = ET E{Xs,Xq} − log
exp(WT

Y qZq)

exp(
∑K

i=1 WT
i Zq)

, (13)

where WY q is the Y q-th column of W , {Xs,Xq} are support samples and query
samples in task T , Zq and W are calculated based on Sect. 4.1.

We denote the HRNet trained after the first stage as ψt which will be used
as a teacher model for the second training stage. At the beginning of the second
training stage, ψt is used as the initialization of HRNet backbone. And in order
to prevent the forgetting of the training results of the first stage in the process
of the second training stage, a regularization is defined as follows:

LREG = ET EX∼T [(ψt(X) − ψ(X))2], (14)

where ψt is a frozen model and X refers to both Xs and Xq.
Finally, we obtain the total loss function of the second training stage as

L2 = LCLS + LREG.
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5 Experiments

Our experiments are designed from four aspects. Firstly, we show the main results
on the C2FS problem. Secondly, we implement ablation study to show the effec-
tiveness of each pattern of our model. Then, we show the saliency maps of our
model and baseline models. Finally, we draw the activated locations of the four
branches on images.

5.1 Experimental Settings

Our experiments were performed on the datasets BREEDS [21]1, which includes
four datasets derived from ImageNet with hierarchical information. Living17
has 17 coarse-grained categories and 68 fine-grained categories, Nonliving26 has
26 coarse-grained categories and 104 fine-grained categories, Entity13 has 13
coarse-grained categories and 260 fine-grained categories, and Entity30 has 30
coarse-grained categories and 240 fine-grained categories. The size of images is
3×224×224 in all datasets. In this paper, we applied HRNet-w322 whose largest
feature resolution is 32×32. This version of HRNet balances the parameter scale
relative to ResNet50 and the representation ability.

All the codes are implemented by PyTorch. The first stage of our model is
trained on 4 12G TiTan XP GPUs and the second stage is trained on a 48G
A40 GPU. The implementation details at the first training stage is the same
as those in ANCOR [2] except for substituting ResNet50 with HRNet. At the
second stage, we use SGD with momentum 0.9, weight decay 0.0001 and we
set learning rate as 0.001 and it decreased by 0.1 times every 20 steps. We
trained the models for 200 epoches and generated 1000 tasks for each epoch.
The results reported in this paper are the average results of 1000 testing tasks
computed by the model with the best performance on validation sets. We set
ε = 1, K = 5 and N = 1. For Living17 and Nonliving26, since each coarse-
grained category in these two datasets has only 4 fine-grained categories, the
corresponding ‘in-coarse’ experiment is 4-way 1-shot. Similar to the settings as
ANCOR, we generated 5 augmented samples for each support sample at the
training time.

5.2 Main Results

In order to verify the validity of our model on the C2FS problem, we tested
our model against two types of baselines. (i)Meta-learning based methods. Pro-
toNet [23] and FEAT [27] are two presentatives of meta-learning based few-shot
methods. To train the two models, we used ResNet18 as the backbone and resized
images to 84× 84. We set the learning rate to 0.0001 and decrease it by a factor
of 0.1 times every 20 steps. The optimizer is SGD with weight decay 0.0001 and

1 https://github.com/MadryLab/BREEDS-Benchmarks.
2 https://github.com/HRNet/HRNet-Image-Classification.

https://github.com/MadryLab/BREEDS-Benchmarks.
https://github.com/HRNet/HRNet-Image-Classification.
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Table 1. Results on BREEDS. ‘cross-coarse’ means that the testing categories are
sampled from the sub-classes of all the super-classes, and ‘in-coarse’ means that the
categories are sampled from sub-classes of a random selected coarse-grained category.

Method Living17 Nonliving26
cross-coarse in-coarse cross-coarse in-coarse

ProtoNet 34.31± 0.56 29.71± 0.42 30.97± 0.49 28.65± 0.42
FEAT 38.28± 0.59 30.89± 0.45 31.45± 0.50 29.71± 0.44
MoCoV2 76.91± 0.65 49.63± 0.71 75.75± 0.70 53.65± 0.90
MoCoV2-ImageNet 83.86± 0.66 51.70± 0.79 77.05± 0.72 53.62± 0.95
Coarse 81.08± 0.68 43.05± 0.64 79.54± 0.64 51.70± 0.84
ANCOR 89.53± 0.56 50.18± 0.73 85.48± 0.58 54.58± 0.93
Meta-HRNet 90.44± 0.55 52.29± 0.72 87.62± 0.54 57.65± 1.00
Method Entity13 Entity30

cross-coarse in-coarse cross-coarse in-coarse
ProtoNet 33.71± 0.52 24.98± 0.38 32.20± 0.51 24.36± 0.36
FEAT 33.29± 0.51 25.29± 0.39 33.13± 0.52 25.47± 0.38
MoCoV2 84.76± 0.58 68.59± 0.78 81.38± 0.61 55.82± 0.80
MoCoV2-ImageNet 84.98± 0.61 65.45± 0.83 83.35± 0.65 54.54± 0.81
Coarse 84.05± 0.58 59.89± 0.82 84.16± 0.58 52.44± 0.82
ANCOR 88.87± 0.52 65.92± 0.79 89.07± 0.52 58.29± 0.82
Meta-HRNet 89.49± 0.51 67.80± 0.77 89.45± 0.53 54.91± 0.84

momentumn 0.9. Both models were trained for 200 epoches with 1000 training
tasks per epoch. (ii)Transfer learning based methods. MoCoV2 [5] is one of the
most popular contrastive learning methods. We implemented it with the same
settings as ANCOR [2] and the first stage of our model. MoCoV2-ImageNet is
an official pre-trained ResNet50 model trained on ImageNet for 200 epoches.
Coarse refers to a ResNet50 model trained only with a cross-entropy loss func-
tion. ANCOR [2] is a ResNet50 model trained with a cross-entropy loss function
and the angular normalized contrastive loss function. All the results of baselines
were implemented on the same equipment with our model.

The mean accuracy and the corresponding 95% confidence interval are shown
in Table 1. Our model was evaluated on 1000 testing tasks and outperformed
other methods in most cases. However on the ‘in-coarse’ scenario on Entity30,
the performance of Meta-HRNet didn’t exceed that of ANCOR. This may be due
to some sub-categories within a coarse-grained category that are more difficult
to be distinguished from each other only by using the high-resolution features,
such as two categories of insects with similar appearances. This leads to the
misleading caused by the over-attention to the details of HRNet. As for the ‘in-
coarse’ scenario on Entity13, the performance of Meta-HRNet is slightly worse
than that of MocoV2. Maybe this is because we used the ANCOR at the first



482 Z. Li and K. Mu

training stage instead of MocoV2. The improvement on ‘in-coarse’ scenario of
Entity13 might be better if we use MocoV2 at the first training stage of Meta-
HRNet, because MocoV2 can bring around 3% improvement over ANCOR.

5.3 Ablation Study

Table 2. Ablation study on Nonliving26. HRB: HRNet backbone, Sg2: the second
training strategy, Attn: AttnNet, Reg: Teacher model as regularization.

Method HRB Sg2 Attn Reg cross-coarse in-coarse

ANCOR � � � � 85.48± 0.58 54.58± 0.93
HRNet � � � � 86.52± 0.56 57.44± 0.99
HR+Meta � � � � 86.62± 0.55 57.16± 0.98
HRNet+ � � � � 87.18± 0.56 57.59± 0.98
Meta-HRNet � � � � 87.62± 0.54 57.65± 1.00

Here we take the dataset Nonliving26 as an example to present an abalation
study of each component of Meta-HRNet. As Table 2 shows, ‘HRNet’ refers
to directly replacing the ResNet50 backbone in ‘ANCOR’ with HRNet-w32.
‘HR+Meta’ adds the second training stage and the regularization item shown in
Eq. (14) based on ‘HRNet’. ‘HRNet+’ adds the AttnNet and is trained without
the regularization term at the second stage. The effectiveness of the regulariza-
tion term can be observed by comparing ‘HRNet+’ and ‘Meta-HRNet’. Com-
pared to ‘ANCOR’, ‘HRNet’ leads to a significant improvement, especially for
the ‘in-coarse’ testing scenario. This may be attributed to the presentation abil-
ity on details of HRNet-w32 backbone. Another significant improvement occurs
between ’HRNet+Meta’ and ‘Meta-HRNet’ in the ’cross-coarse’ case. The only
difference between the two methods is whether to use the AttnNet module. We
can therefore speculate that the role of AttnNet is to filter the global details
learned by HRNet and focus more attention on the main entity of the images.

5.4 Saliency Map

We further explore whether our model pays attention to the main information in
images by generating the saliency maps for ANCOR, HRNet and Meta-HRNet.
Pixels with more contributions to the model are marked as brighter colors. For
the convenience of comparison, we overlaid the original images with identical
values (displayed as blue masks). As defined in Sect. 5.3, we compare our model
with ANCOR and HRNet. According to the results shown in Fig. 3 (selected
from test datasets of Living17 and Nonliving26), we can see that ANCOR and
HRNet are unable to recognize the location of the black bear, but the key pixels
of Meta-HRNet are concentrated at the position of the black bear. As for the
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second figure shown in Fig. 3, HRNet has more key pixels on the bird in the tree
than ANCOR but also focuses on pixels in the background area. The AttnNet
module in Meta-HRNet can reduce the attention on the background and helps
the model to focus on the bird. As for the third figure, Meta-HRNet can iden-
tify all the raccoons in the picture. As for the fourth picture, Meta-HRNet can
extract the most key points on the dog’s head and body. The remaining four
images shown in Fig. 3 show that ANCOR may extract the wrong key pixels,
while Meta-HRNet can rectify the attention of HRNet to the main entity of the
images. Based on the above experimental results and the corresponding anal-
ysis, we can conclude that high-resolution features have a significant effect on
the classification tasks for samples with the same super-class. When there are
fine-grained categories of different super-classes in the downstream tasks, the
AttnNet module can correct the over-attention problem of high-resolution fea-
tures to the unnecessary information, such as the background area.

Fig. 3. Meta-HRNet pays more attention to the main entity (yellow boxes) and is more
difficult to be disturbed by background information than HRNet (red boxes). (Color
figure online)

5.5 Feature Maps of HRNet

We further analyze the reason why HRNet is suitable for the C2FS problem.
Taking Living17 dataset as an example, we applied the HRNet model trained
with coarse labels and input testing images to visualize the features. Figure 4
shows the activations of the final layer in each branch (selected from the test
dataset of Living17). ‘Branch 1’ refers to the highest-resolution features and
‘Branch 4’ is the lowest-resolution features. The features of ‘Branch 1’ concen-
trate more on the margin and veins of objects, for example the outline and hair
of the polar bear and the dog, palm print and cobwebs. With the decline of the
feature resolution, the branches of HRNet gradually focus on the overall infor-
mation of the object, such as the face of the polar bear, the reptile in the hands
and the body of the spider. According to Fig. 4, the effectiveness of the HRNet
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backbone can be attributed to its ability to preserve more details such as veins.
This is important for distinguishing sub-classes within the same supercategory.
For example, different bird species may have different kinds of feathers.

Fig. 4. Closer look at the feature maps of HRNet.

6 Conclusion

In this paper, we focus on the coarse-to-fine few-shot problem, which is to
solve the few-shot fine-grained classification tasks with sufficient coarse-grained
labeled data. Due to the similarity among fine-grained categories, it is challeng-
ing to extract distinguishable features to capture the subtle variation among
samples. Drawing inspiration from research on the effect of images with dif-
ferent resolutions, we alleviated the problem from the perspective of feature
resolutions. Firstly, we theoretically analyzed the relationship between the fea-
ture resolution and the fine-grained classification tasks and concluded that the
higher resolution features are beneficial for the fine-grained tasks. Then, we con-
structed Meta-HRNet, an improved deep high-resolution network, and trained
it with coarse-grained labels to capture and filter key detailed features to distin-
guish fine-grained categories. In order to better address the challenge of insuffi-
cient samples, we combined the supervised learning strategy and meta-learning
strategy to improve the flexibility of the model so that it can adaptively adjust
the feature representation based on a small number of samples in the down-
stream tasks. Finally, our experiments verified that Meta-HRNet can improve
the performance on fine-grained classification tasks.

This paper makes a good attempt to explore the effectiveness of high-
resolution features on fine-grained classification problems. In future work, we
will consider more efficient and lightweight network structures for extracting
high-resolution information. Additionally, we will strive to make better use of
the detailed information provided by high-resolution features while avoiding the
misleading results caused by the over-attention of details.
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Abstract. The purpose of empathetic dialogue generation is to fully
understand the speakers’ emotional needs in dialogues and to generate
appropriate empathetic responses. Existing works mainly focus on the
overall coarse-grained emotion of the context while neglecting different
utterances’ fine-grained emotions, which leads to the inability to detect
the speakers’ fine-grained emotional changes during a conversation. How-
ever, in real-life dialogue scenarios, the speaker usually carries an ini-
tial emotional state that changes continuously during the conversation.
Therefore, understanding a series of emotional states can help to better
understand speakers’ emotions and generate empathetic responses. To
address this issue, we propose a Multi-Scale Emotional flow model called
MuSE, which simulates speakers’ emotional flow. First, we introduce a
fine-grained expansion strategy to transform context into an emotional
flow graph that combines multi-scale coarse and fine-grained information.
This emotional flow graph captures speakers’ constant emotional changes
at each turn of a conversation. And then, the emotion node and the sit-
uational node are introduced to the emotional flow graph respectively
in order to extend the speakers’ initial emotion into the ensuing conver-
sation. Finally, we conduct experiments on the public EMPATHETIC
DIALOGUES dataset. The experimental results demonstrate that the
MuSE model achieves superior performance under both automatic evalu-
ation and human evaluation metrics compared with the existing baseline
models. Our code is available at https://github.com/DericZhao/MuSE.
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1 Introduction

In recent years, researchers have been increasingly interested in promoting more
meaningful human-computer interactions in open-domain dialogue systems, such
as the empathic dialogue system. The core of empathetic dialogue is to under-
stand the speakers’ emotional needs and to generate appropriate responses from
their situation [5,13]. Empathetic dialogue can be leveraged for mental health-
care, emotional companionship, psychological counseling and other fields.

In order to improve the capability of empathic dialogue systems, exist-
ing works focus on recognizing emotion in the context and generating empa-
thetic responses accordingly. Most existing approaches recognize contextual emo-
tions from two directions. One method directly detects emotion through con-
text [2,6,9,11,19], while the other method adopts external knowledge to indi-
rectly understand emotional needs by identifying intent and emotional cause
[20,23,25,26]. However, previous works tend to consider the conversation context
as a whole coarse-grained emotion, without taking the subtle emotional changes
of the speaker during each turn of the conversation into account. Li et al. [9]
propose the EmpDG model that emphasizes the modeling of emotions during
the conversation, but they don’t incorporate speakers’ emotional changes during
the conversation. Although Wang et al. [27] devise the SEEK model to capture
emotion dynamics, they still focus on the utterance level, ignoring speakers may
say more sentences with different emotional states in a utterance.

We believe that the emotional changes generated between speakers are the
essential difference between empathetic dialogues and ordinary multi-turn dia-
logues. As all the contexts of empathetic dialogue revolve around the changes
in emotional flow, different speakers influence each other to different degrees
through various emotional intensities. In the Emotion Recognition in Conver-
sation (ERC) task [29], each turn of the conversation is characterized by dif-
ferent emotional states, which inspired us to introduce the concept of speaker
emotional flow changes in empathetic dialogues. Furthermore, previous works
[11,12,16,20,25] consider the role of the given situation information as a simple
abstract of the conversation and do not leverage it. However, we contend that
situation information can be utilized as supplementary knowledge to enrich the
conversation context.

Figure 1 shows a dialogue extracted from the EMPATHETIC DIALOGUES
dataset. The conversation revolves around a situation where the target predict
emotion label is Afraid. The speakers start the conversation with an initial emo-
tional state that changes continuously during the conversation. There are emo-
tional changes during the conversation between Speaker1 and Speaker2, which
include internal emotional changes and interactional emotional changes. As the
conversation progresses, speaker1’s subjective emotion changes from FEAR to
NERVOUSNESS, which we consider as internal change. Speaker1’s emotional
change is also objectively influenced by another speaker, which we consider as
interactional emotional change. Usually, Speaker2 would be the chatbot after
training, and capturing the Speaker1’s emotional changes can help to better
understand the Speaker1’s emotional needs.
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Fig. 1. The emotional change between speaker1 and speaker2 during a conversation.

In this paper, we propose a Multi-Scale Emotional flow graph Dialogue Gen-
eration Model, called MuSE to simulate speakers’ emotional flow. The MuSE
model considers the changes in emotional flow as a graph structure, and uti-
lizes graph neural networks to extract features. We first construct an oriented
graph to better simulate emotional flow changes in empathetic dialogue. Fur-
thermore, speakers may speak more than one sentence in a conversation, such as
Utterance2 and Utterance4 in Fig. 1, and each sentence has a different emotional
state. To address this, we introduce a fine-grained sentence expansion strategy
to segment these sentences and thus capture more subtle emotional changes of
the speaker, which combines multi-scale coarse and fine-grained information. To
extend the speakers’ initial emotion into the ensuing conversation, we add a
key emotion node and key situation node into emotional graph as background
information, called KeyEmotion and KeySituation. The KeyEmotion is the
predicted emotion distribution, without giving away the real label information.
The MuSE model first predicts the emotion label through the constructed emo-
tional change graph and generates appropriate responses.

The main contributions of this work are summarized as follows:

– We propose an emotional flow dialogue model that can better capture the
emotional changes of the speaker in an empathetic dialogue.

– An oriented emotional dialogue graph is constructed to simulate the changes
of speakers’ emotion states in empathetic context, in which key emotion and
key situation nodes are introduced for the first time to extend the speakers’
initial emotion into the ensuing conversation.

– We introduce a contextual fine-grained expansion strategy for empathetic dia-
logue, which can be combined with the emotional flow graph to better capture
the subtle emotional changes of the speakers.

– We conduct experiments on the publicly available EMPATHETIC DIA-
LOGUES dataset. The experimental results show that the MuSE model per-
forms well on both automatic evaluation and human evaluation compared with
the existing baseline models.
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2 Related Work

Research on empathic dialogue in artificial intelligence starts in recent years.
The empathic dialogue generation task is first proposed by Rashkin et al. [19].
In empathic dialogue, it is important to identify the emotional needs of speakers
and then generate appropriate empathic responses accordingly. Existing work on
perceived emotional needs is divided into two directions namely, directly recog-
nizing the speakers’ emotions or using external knowledge for indirect reasoning.

The first one is recognizing the speaker’s emotion directly. The earliest
Rashkin et al. [19] add an additional module for predicting emotions to the
model, which can generate empathic responses for the first time. Next, Lin et al.
[11] construct multiple decoders, using different decoders to respond to each
contextual emotion depending on the speaker’s emotional state. The MIME
model is proposed by Majumder et al. [12] and they argue that the empathetic
responses often mimic the emotion of the user to a varying degree, depending
on its positivity or negativity. However, these coarse-grained ERC models lack
the ability to capture fine-grained emotions, which may affect the performance
of empathic responses. Li et al. [9] argue that the sensitive emotion expressed
by the speaker is important. On the basis of these methods, we further consid-
ers the state transfer relationships between different fine-grained emotions, i.e.,
emotional flow changes.

The second one is to infer emotional needs indirectly with the help of exter-
nal knowledge, which helps the model obtain some additional cues, including the
identification of emotional causes, commonsense inferences, etc. Wang et al. [26]
utilize the Concept Net external knowledge and construct an emotional causal
map through a multi-hop strategy, which in turn generates empathic responses.
The CEM model is proposed by Sabour et al. [20], they adopt ATOMIC [21]
to access commonsense knowledge. For each sentence, ATOMIC infers six com-
monsense relations for the person involved in the event. The commonsense can
also help to identify conversational emotion, Zhao et al. [29] use ATOMIC to
inference each utterance’s emotional state for the ERC task. And Wang et al.
[27] devise the SEEK model, which utilizes the COMET [1] to detect the intent
of each utterance and inference the emotion dynamics. Wang et al. [25] propose
the state-of-the-art CARE model, which employs Cause Effect Graph external
information to generate an empathetic response. Unlike previous work that used
external knowledge to infer emotions indirectly, this paper uses external knowl-
edge to identify speakers’ fine-grained emotions directly.

In recent years, due to the powerful representation ability of graph net-
works, graph-based human-computer conversation models have received increas-
ing attention. Ghosal et al. [3] propose the DialogueGCN model to recognize the
emotions in a conversation. Qin et al. [18] use Co-Interactive Graph Attention
Network to capture contextual information in conversations and mutual inter-
action information. Pang et al. [14] propose a MFDG model and construct a
multi-factors dialogue graph to detect speakers’ intent. Unlike previous works,
our emotional flow dialogue graph employs a novel fine-grained strategy to con-
struct a graph structure suitable for empathetic dialogue, capable of highlighting
the unconcious emotional states of the speaker during the conversation.
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Fig. 2. In our proposed MuSE model, blue nodes denote sentences, green nodes denote
emotions, and purple nodes denote abstracted aggregation nodes. (Color figure online)

3 Our Model: MuSE

In this section, we illustrate the MuSE model in detail, whose architecture is
depicted in Fig. 2. The MuSE model contains several parts, which are the fine-
grained expansion strategy, encoder, emotional flow graph, and response decoder.
The input of the model first goes through the fine-grained expansion strategy to
get fine-grained sentences, and the external knowledge of the pre-trained model
is used to obtain the fine-grained sentences emotional states, and then the emo-
tional flow graph is constructed to simulate the emotion changes of speakers.
Then the graph neural network is used to obtain the contextual representa-
tion and the emotion labels, and finally, the learned information is fed into the
decoder to generate empathic responses. The goal of the model’s emotion classi-
fier, as part of multi-task learning, is to attach emotions to the model’s responses
and become more empathetic.

We formulate the task of empathetic response generation as follows. Given
the contexts = {U1, U2, ..., Un}, where n is the turns of a dialogue and there are
two speakers speaker1 and speaker2. {S1, S2, ..., Si} are the sentences after fine-
grained expansion strategy in the utterance, where i represents the ith sentence
after segment. {E1, E2, ..., Ei} is the emotional state of the new utterance. Ei

is obtained from a pre-trained model with seven emotion classifications, which
include fear, sadness, neutral, joy, disgust, anger, and surprise [4]. The target
response is Y = (y1, y2, ..., yn).

3.1 Fine-Grained Expansion Strategy

In order to capture the subtle emotion states in context and encode the con-
text, we introduce a fine-grained expansion strategy to segment the context and
exploit transformer [24] encoder to encode each sentence. Unlike the previous
direct segmentation approaches according to speakers, we further split the con-
text based on punctuation marks, which are the period, question mark, and
exclamation mark.
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Taking the dialogue in Fig. 1 as an example, Table. 1 shows the results after
adopting fine-grained expansion strategy. The MuSE model first splits the con-
texts by different speakers and obtains U1 to U4. The fine-grained expansion
strategy further segments sentences based on the speakers’ punctuation in the
context to capture all the fine-grained speakers’ emotions. The sentences S1 to
Si are obtained by fine-grained expansion strategy. E1 to Ei are the results
predicted by emotional pre-trained model [4].

Table 1. An example from EMPATHETIC DIALOGUES after adopting fine-grained
expansion strategy.

Label Afraid

Situation I’ve been hearing noises around the
house at night

Speaker1 U1 S1 E1:fear I’ve been hearing some strange noise
around the house at night.

Speaker2 U2 S2 E2:surprise Oh no!

S3 E3:fear That’s scary!

S4 E4:neutural What do you think it is?

Speaker1 U3 S5 E5:neutural I don’t know, that’s what’s making
me anxious.

Speaker2 U4 S6 E6:sadness I’m sorry to hear that

S7 E7:sadness I wish I could help you figure it out.

The statistics in the table show that after fine-grained strategy segmentation,
there is a substantial increase in the number of sentences obtained through fine-
grained strategy to capture more subtle speaker emotion states.

3.2 Encoder

Transformer block [24] is adopted as the encoder and different from the pre-
vious methods of directly splicing contexts [16,20,25], MuSE model concate-
nates each sentence Si with the special token [CLS] to obtain the representation
respectively. We use the hidden representation of [CLS]i as the representation
of sentencei in a context. In the encoder, the representation of each sentence
[CLS]i is obtained after transformer block:

[CLS]i = TransformerBlock(Si), (1)

Table 2. Statistics of datasets under different splitting strategies.

Dataset Origin Speaker level Split Fine-grained Split

Train 40250 84686 132944

Valid 5734 12188 19313

Test 5255 11127 18716



MuSE: A Multi-scale Emotional Flow Graph Dialogue Generation Model 497

Fig. 3. Emotional flow graph is constructed according to Table 1. The left part rep-
resents speaker1 and the right part represents speaker2. Blue nodes denote sentences,
green nodes denote emotions, and purple nodes denote abstracted aggregation nodes.
(Color figure online)

The [CLS]i vector is used to initialize the nodes vector in Subsect. 3.3 and get the
final context vector after Subsect. 3.3 graph network learning. A separate encoder
is used to encode the situation and the [CLS]KeySituation can be obtained by
the same method as Eq. 1.

3.3 Emotional Flow Graph

The speakers’ emotional changes during the conversation are not completely
chronological, the speakers’ emotion state is often influenced by subjective fea-
tures or objective features. So based on Table 1, we transform context into graph
structure and employ Graph Convolutional Networks (GCN) to extract features.

Graph Construction. The emotional flow graph is constructed as shown
in Fig. 3. Since the splitting strategy is used in Sect. 3.1, in order to inte-
grate the speaker’s clause emotion state and semantic information, we introduce
LocalEmotionState nodes Ln to aggregate the semantic and emotion informa-
tion, as the purple node shown in Fig. 3 is the local emotion state area. The num-
ber of Ln is equal to the Un. For the first time, we introduce the KeyEmotion
node and KeySituation node in the graph to extend the speakers’ initial emotion
into the ensuing conversation, as different speakers have different pre-existing
initial emotions at the beginning of the conversation. The KeyEmotion node is
considered as the background information of each segmented sentence, so this
will be a uni-directed edge pointing from the KeyEmotion node to the utterance
emotion node Ei.
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Graph Initialization and Network. The initialization of the graph embed-
ding can have a significant impact on the model. The [CLS] vector of the trans-
former block encoder in Subsect. 3.2 is used as the initialized semantic embedding
of the sentence node. And the emotion Ei is initialized as word embedding. The
KeyEmotion node vector can be calculated as followed:

VKeyEmotion = Mean([CLS]1, [CLS]2, ..., [CLS]i). (2)

The KeySituation node’s initialized embedding is [CLS]KeySituation. The sen-
tence node Si can be represented as the sentence vector [CLS]i, where i is the
turn of sentences after segmentation. The LocalEmotionState is an aggregation
node, where the average of the sentence vectors of all the partitioned sentences
in the current turn is used as the initialization. Taking the LocalEmotionState
L2 as an example, the initialization vector can be calculated as:

L2 = Mean(S2
CLS , S3

CLS , S4
CLS). (3)

Graph neural networks are very effective for modeling structured information
like knowledge graphs, the MuSE model uses Graph Convolutional Networks
(GCN) [7] to model the flow of emotions in a conversation. In order to ensure
that the node vector update order in the directed emotional flow graph can fully
simulate the actual emotional flow of the speaker, we design the update pattern
of vectors between different node types. Unlike the traditional GCN that updates
nodes randomly, the MuSE model controls the update order of different types
of nodes, from emotion nodes to sentence nodes to local emotion state nodes.
Equations 4, 5 and 6 show the update direction of emotion nodes, sentence nodes
and local emotion state nodes respectively. The (l) denotes the node vector in
the lth layer of the GCN network.

Ei
(l+1) = GCN(Ei

(l)|[CLS]KeyEmotion) (4)

Si
(l+1) = GCN(Si

(l)|Ei) (5)

Ln
(l+1) = L

(l)
n−1 +GCN(Ln

(l)|Ei) +GCN(Ln
(l)|Si) +GCN(Ln

(l)|[CLS]KeySituation) (6)

The GCN layer is calculated as followed:

f
(
X(l), A

)
= σ

(
D̂− 1

2 ÂD̂− 1
2 X(l)W (l)

)
, (7)

with Â = A+I, where A denotes the adjacency matrix and I denotes the identity
matrix, D̂ refers to the diagonal node degree matrix of Â and W (l) denotes a
trainable weight matrix. σ refers to a non-linear activation.

The average of aggregated local emotion state nodes {L1, ..., Ln} are used
as representatives of the overall context, so the context vector Vcontext can be
computed as follows, where n is the number of sentences in a conversation:

Vcontext = Mean(L1, L2, ..., Ln) (8)
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We exploit the Vcontext for contextual emotion prediction, calculated as follows,
where FFN is feed-forward network:

EmotionLable = Softmax(FFN(Vcontext)) (9)

3.4 Decoder

In the decoding process, for each word yt in Y , we employ the mask operation
during the training process to avoid the model from seeing the correct response
labels in advance. The negative log-likelihood loss can be calculated as:

L1 = −
n∑

i=1

log p(yn| {y1, ..., yi−1} , vcontext) (10)

And the emotion classification loss L2 is calculated by cross-entropy loss. All
the parameters for our proposed model are trained and optimized based on the
weighted sum of the mentioned losses:

L(θ) = γ1 ∗ L1 + γ2 ∗ L2, (11)

where γ1 and γ2 are hyper-parameters and θ is all learnable parameters.

4 Experiment

4.1 Datasets

We conduct our experiments on the public dataset EMPATHETIC DIA-
LOGUES1 [19]. It contains 25k dialogues grounded in situations prompted by
specific emotion labels. There are 32 evenly distributed categories of emotion
labels in this dataset, representing the main emotions in the context of conver-
sation.

4.2 Baselines

The following strong baseline models are selected for comparison.

– Transformer [24]: An original transformer model based on the seq2seq struc-
ture which is the classical generative model.

– Multi-TRS [19]: A generative model based on transformer with multi-task for
emotion prediction. They built an emotion predictor to capture the speaker’s
emotions.

– MoEL [11]: MoEL can capture the user emotions distribution and softly com-
bine the output states of the appropriate Listener(s). It’s also a transformer-
based model, which can react to certain emotions and generate an empathetic
response.

1 https://github.com/facebookresearch/EmpatheticDialogues.

https://github.com/facebookresearch/EmpatheticDialogues
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– EmpDG [9]: EmpDG introduces an interactive adversarial learning frame-
work that exploits user feedback and identifies whether the generated
responses evoke emotion perceptivity in dialogues.

– CEM [20]: CEM leverages commonsense external knowledge to obtain more
information about the user’s situation and further enhance the empathy
expression in generated responses.

– CARE [25]: A Conditional Variational Graph Auto-Encoder model considers
the interdependence among causalities and reasons independently. The model
utilizes Cause Effect Graph external knowledge to construct a graph.

4.3 Experiment Settings

To ensure the fairness of the experiment, we set the parameters of all models
to a uniform standard, and the performance of the CEM model [20] after our
tuning parameters is higher than the results reported in the original paper. The
pre-trained GloVE vector [17] is used to initialize the word embeddings. During
the training process, we adopt the adam optimizer with 16 batch size and the
learning rate is 0.0001. All the models are trained on NVIDIA RTX 3090 GPU.

4.4 Automatic Evaluation

In order to compare with strong baseline models such as CARE [25], CEM [20]
and SEEK [27] etc., we use the evaluation metrics from most papers and take
Perplexity (PPL), Distinct-n(Dist-n) [8], BLEU [15], Rouge [10], Bert Score [28]
as main automatic metrics. However, previous works including the CEM model
[20] only focus on the Dist-n & Acc indicators and the CARE’s authors believe
that the BLEU and BertScore are more important, so they don’t use the Dist-n &
Acc indicators. We believe that all metrics matter because there are limitations
to using distinct indicators alone to evaluate models. And we will introduce
details in Subsect. 4.6.

The indicators are introduced as followed: (1) Perplexity (PPL) focuses on
the model’s confidence in response generation. (2) Distinct-n2 measures the gen-
erated response’s diversity. (3) BLEU3 estimates the matching between n-grams
of the generated response and those of the golden response. (4) The Rouge-L4

indicator is very similar to the BLEU indicator, which is used to measure the
matching degree between the generated results and the standard results. The
difference is that ROUGE is based on the recall rate, while BLEU pays more
attention to the accuracy rate. (5) BertScore5 is based on the pre-trained model,
uses context embedding to describe sentences, and calculates the semantic simi-
larity between two sentences. BertScore has precision, recall and F1 metrics, and
F1 value is influenced by precision and recall. We use the F-BERT to evaluate

2 https://github.com/Sahandfer/CEM/blob/master/src/scripts/evaluate.py.
3 https://github.com/mjpost/sacrebleu.
4 https://github.com/pltrdy/rouge.
5 https://github.com/Tiiiger/bert score.

https://github.com/Sahandfer/CEM/blob/master/src/scripts/evaluate.py
https://github.com/mjpost/sacrebleu
https://github.com/pltrdy/rouge
https://github.com/Tiiiger/bert_score


MuSE: A Multi-scale Emotional Flow Graph Dialogue Generation Model 501

the model. On the PPL metric, a smaller value indicates a better model, and on
the other metrics, a larger value indicates a better model.

Admittedly, BLEU and ROUGE can effectively evaluate the performance of
models, and many models have adopted such evaluation metrics, but their exper-
imental results are difficult to be compared under the same criteria due to the
different calculation methods. We find several convenient, fast, and fair calcu-
lation methods from highly recognized repositories in GitHub and believe that
they can significantly reduce the workload of researchers in evaluating indicators.
The evaluation code is available at MuSE6.

Table 3. Results of automatic evaluation on EMPATHETIC DIALOGUES.

Model PPL ↓ Dist-1↑ Dist-2↑ Acc↑ BLEU↑ Rouge-L↑ F-BERT↑
Transformer 34.7083 0.4918 2.3134 – 2.6616 16.7549 22.7056

Multi-TRS 34.8442 0.4882 2.3594 35.85 2.7565 17.3173 22.7507

MoEL 35.5586 0.5632 2.8986 34.60 2.8129 17.1865 23.8777

EmpDG 34.4143 0.5693 3.1470 33.15 2.8297 18.1459 23.5411

CEM 34.9705 0.6180 3.058 39.07 2.5781 17.2128 23.2403

CARE 33.8397 0.5776 2.3096 – 2.8300 18.2122 23.2610

MuSE 33.5451 0.6476 3.4380 42.99 2.8397 18.3105 24.2781

Unlike previous models that excel in a single aspect, the MuSE model demon-
strates superior performance on multiple evaluation metrics. From Table 3, we
can find that the MuSE model with emotional dialogue graph achieves superior
results in the majority of indicators. In terms of Dist-n metric, the emotional
dialogue graph significantly improves the word richness of responses. Unlike pre-
vious works that utilized external knowledge, the MuSE model fuses fine-grained
external knowledge of speakers’ subtle emotions by constructing a dialogue graph
and interacts with coarse-grained information at the contextual utterance level.
We believe this is a new approach for empathetic dialogue that can capture
speakers’ emotional state changes at multiple scales. Emotion recognition accu-
racy (Acc) is a measure of how accurately the model captures the emotion state
of the context. It can be seen from the table that the MuSE model can better
capture the emotional states of the user due to the emotional flow graph struc-
ture. Because of the special structure of the CARE model, they don’t provide
Acc value from their paper.

The BLEU, Rouge-L, and F-BERT indicators focus more on the difference
between the generated responses and golden truth sentences. The MuSE model
achieves the best results compared with all baseline models in the BLEU, Rouge-
L, and F-BERT metrics. The MuSE model achieves a significant superiority on
both rigorous tests of evaluation metrics. We believe that this enhancement

6 https://github.com/DericZhao/MuSE/evaluate.py.

https://github.com/DericZhao/MuSE/evaluate.py
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is influenced by the constructed emotional dialogue graph, during which the
speakers’ emotional changes are important and the emotional flow dialogue graph
captures this subtle characteristic information.

4.5 Human Evaluation

Besides the automatic evaluation, we also conduct human evaluation at the
same time. We follow the evaluation method introduced in [9,11,20,25] from
three perspectives. (1) Empathy, which measures the level of understanding of
speakers’ emotions. (2) Relevance, which measures the consistency of the topic,
and relevance of responses to the context. (3) Fluency, which measures whether
the response is linguistically sound and grammatically accurate. Each sentence
corresponds to a 5-level score, where 5 is the best. We recruit 5 evaluators to
judge the response from three aspects and each evaluator has a research interest
in natural language processing and has obtained a master’s degree. Then we
compute the average value for each metric.

Table 4. Results of human evaluation on EMPATHETIC DIALOGUES

Model Empathy Relevance Fluency

Multi-TRS 2.58 2.27 3.99

MoEL 2.66 2.29 4.24

EmpDG 2.35 2.43 4.18

CEM 2.52 2.41 4.80

CARE 2.99 3.09 4.75

MuSE 3.29 3.12 4.88

We evaluate the above classical models and the strong baseline models. As
shown in Table 4, our model shows significant improvement over the other models
in empathy, relevance, and fluency metrics. In terms of empathy degree, the
MuSE model can better understand the speakers’ intentions through emotional
changes. From the relevance metric, the model captures fine-grained emotional
changes between speakers, with more accurate control over whole contextual
emotion, thus generating empathic responses. The fluency metric reflects model’s
convergence degree and it can be found that the MuSE model can answer more
fluently than the previous models.

The above human evaluation results can also prove that capturing the speak-
ers’ fine-grained emotional changes is important to improve the performance of
empathy dialogue.

4.6 Ablation Experiments

In the ablation experiments, we conduct some experiments separately to inves-
tigate the importance of different modules of the MuSE model. First, we change
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the oriented emotional flow graph to an undirected graph to verify the cor-
rectness of our proposed oriented emotional flow graph. Second, we remove the
KeyEmotion node from the graph and in the third experiment, we remove the
KeySituation node from the graph to evaluate the performance of the key nodes
we proposed. Finally, we validate it is necessary to employ multiple metrics to
evaluate the empathetic model through MuSE(GoEmotion).

Table 5. Results of ablation studies on EMPATHETIC DIALOGUES.

Model PPL ↓ Dist-1↑ Dist-2↑ Acc↑ BLEU↑ Rouge-L↑ F-BERT↑
MuSE 33.5451 0.6476 3.4380 42.99 2.8397 18.3105 24.2781

w/o Directional 33.7078 0.6490 3.3116 41.92 2.6090 17.9899 24.1727

w/o KeyEmotion 33.4750 0.6324 3.4897 42.09 2.7902 18.1466 24.2596

w/o KeySituation 33.9445 0.5620 2.8363 33.40 2.8267 17.4461 23.8502

MuSE(GoEmotion) 33.9068 0.7286 3.8021 42.82 2.3294 17.2796 23.4009

From Table 5, we can find that the results of undirected graphs have a
decrease in most of the metrics. After the case study, we find that the improve-
ment in the Dist-n metric is due to generate more context-irrelevant words,
which can be confirmed by the decrease in BLEU values. After removing the
KeyEmotion node, there is a slight decrease in the evaluation metrics. However,
after removing the KeySituation node, the model’s performance drop sharply.
After the above ablation experiments, we believe that the background contextual
word embedding information at the emotion word level has not as much impact
on the whole model as the situation node sentence embedding information at the
sentence level. The key situation contains richer and more accurate preexisting
information, which also proves that it is very effective to introduce key nodes to
the emotional dialogue graph.

In Table 5, MuSE (GoEmotion) replaces the original external knowledge
pre-trained model with ’GoEmotion’ [22] for emotion recognition from E1 to
En. The GoEmotion model has 27 emotion types, while the pre-trained model
used by MuSE has seven emotion types. As can be seen from the Table 5, the
MuSE(GoEmotion) model performs much better than the original MuSE model
proposed in this paper if Dist-n is used as the evaluation metric. Compared
with other strong baseline models, there is also an improvement in Dist-n met-
ric according to the data in Table 3. But according to the case study in Table 6,
it can be found that the improvement in Dist-n values is due to the fact that the
MuSE(GoEmotion) generates context-irrelevant response, resulting in a certain
improvement in richness of sentences. This also demonstrates that complex exter-
nal information leads to poor model generation quality. Therefore, we choose all
metrics to better measure the empathic dialogue generation task in this paper.



504 D. Zhao et al.

Table 6. Case study of the MuSE model.

Emotion: Sentimental

Context:

Speaker1: Over the summer my family went to
alabama to visit family and I felt a
lot of emotions.

Speaker2: I guess you do not live in alabama?
was it overall a good trip .... or
challenging? or both!

Speaker1: No, I do not live in alabama

We drove and trip was overall very
good as sometimes it can

be challenging when driving such a
long distance.

Golden: Well, If the drive was the most
challenging it sounds like a good
trip!

Too often it is family dynamics that
are more challenging

and not so easily taken care of .

MuSE: That is so cool!

I am glad you were able to get to go
back to see them.

MuSE (Go Emotion): I am glad you are able to find it!
(Context-irrelevant)

5 Conclusion and Future Work

In this paper, we argued that modeling the constantly changing emotional flow
of speakers is crucial and propose the MuSE model to simulate speaker interac-
tions. To capture speakers’ subtle emotions, we introduced a new fine-grained
expansion strategy that enriches the emotional flow graph through multi-scale
fusion. By controlling the direction and order of node update information, we
simulated emotion transmission between speakers on the directed emotional flow
graph. We added the emotion and situation nodes into the emotional flow graph
that extends the speakers’ initial emotion into the ensuing conversation. Exper-
imental results demonstrated the superior performance of the MuSE model. In
the future, we will further explore the strategy of constructing fine-grained con-
versation graphs in conversation graphs.
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Abstract. We consider the problem of learning Variational Autoen-
coders (VAEs), i.e., a type of deep generative model, from data with
missing values. Such data is omnipresent in real-world applications of
machine learning because complete data is often impossible or too costly
to obtain. We particularly focus on improving a VAE’s amortized pos-
terior inference, i.e., the encoder, which in the case of missing data can
be susceptible to learning inconsistent posterior distributions regarding
the missingness. To this end, we provide a formal definition of posterior
consistency and propose an approach for regularizing an encoder’s pos-
terior distribution which promotes this consistency. We observe that the
proposed regularization suggests a different training objective than that
typically considered in the literature when facing missing values. Fur-
thermore, we empirically demonstrate that our regularization leads to
improved performance in missing value settings in terms of reconstruc-
tion quality and downstream tasks utilizing uncertainty in the latent
space. This improved performance can be observed for many classes of
VAEs including VAEs equipped with normalizing flows.

Keywords: Variational Autoencoders · Missing Data

1 Introduction

The availability of large amounts of data is often key to the impressive perfor-
mance of nowadays machine learning (ML) models. For instance, in computer
vision, a logarithmic relationship between an ML model’s performance and the
amount of training data has been observed [37]. While in some cases the con-
sidered data is complete, in many relevant real-world applications, data with
missing values is omnipresent. For instance, this holds in various applications
from physical and social science [2,32,38]. The missingness in real-world data
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can have different reasons, e.g., intentional or unintentional unanswered items in
surveys [29], accidental deletion [26,35], or high costs of exhaustive data acqui-
sition [44].

Many approaches for the statistical analysis of data with missing values have
been developed [20]. Some of them first complete the data (impute missing val-
ues) while others directly perform statistical analysis based on the incomplete
data. Next to classical statistical approaches, deep learning-based approaches
have recently gained importance. Classical statistical approaches include for
example mean imputation, regression-based approaches like multiple imputa-
tion by chained equations (MICE) [4], and MissForest [36]. In the context of
deep learning, recent approaches focused largely on deep generative models,
in particular, generative adversarial networks (GANs) and variational autoen-
coders (VAEs). GAN-based approaches include for instance generative adver-
sarial imputation nets (GAIN) [40] and MisGAN [5]. Approaches for handling
missing data in VAEs include zero-imputation VAEs (VAE-ZI) [28], partial
VAEs (PVAE) [23], and the missing data importance-weighted autoencoder
(MIWAE) [25].

In this paper, we consider and extend VAEs for dealing with data with miss-
ing values. In particular, we focus on an inconsistency issue of the approximate
inference network’s posterior that can arise when VAEs are trained on incomplete
data: the approximate inference network can be prone to produce inconsistent
posterior distributions for different missingness patterns in the input data. To
overcome this issue, we identify conditions for guaranteeing posterior consistency
and propose a regularizer building on these conditions which can be integrated
into the training of VAEs. Our approach is orthogonal (and complementary) to
existing approaches for VAEs for data with missing values like [23,25,28]—while
these approaches modify the inputs to the VAE, the structure of the approxi-
mate inference network, or the lower bound on the likelihood to be optimized,
they do not add explicit regularization on the approximate posterior distribu-
tions regarding the missingness in the input. Our approach also differs from
other works that have considered forms of posterior consistency [22,34,43]—
these works mainly build on the idea that transformed inputs should map to
similar posterior distributions which is not necessarily implied by our approach
building on first principles. We empirically demonstrate that our proposed regu-
larization leads to improved imputation performance and improved performance
in downstream applications in missing data settings.

Our contributions are:

– We propose a notion of posterior consistency and show its importance for
VAEs for data with missing values.

– We propose a regularizer for promoting the posterior consistency of VAEs.
– We empirically demonstrate the superior performance of VAEs trained with

our proposed regularization in comparison to many natural baselines.
– The source code for reproducing our experiments is available on github.1

1 https://github.com/stschia/VAE-posterior-consistency.git.

https://github.com/stschia/VAE-posterior-consistency.git
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Our paper is organized as follows: In Sect. 2 we introduce the relevant back-
ground and notation before describing the problem of posterior inconsistency in
Sect. 3. We describe our approach in Sect. 4, followed by a discussion of related
work in Sect. 5. In Sects. 6 and 7 we empirically evaluate our proposed approach.
We conclude our paper in Sect. 8.

2 Background

In this section, we introduce our notation and the necessary background about
VAEs and the considered types of missing data.

Notation. We use uppercase letters to denote random variables (RVs), e.g., X,
and lowercase letters to denote instantiations of RVs, e.g., x. We use bold upper-
case letters to denote vectors of RVs, e.g., X, and bold lowercase letters to
denote their respective instantiations, e.g., x. Furthermore, we use P and Q to
denote subsets of some fixed ground set V = {1, . . . , d}, i.e., P,Q ⊆ V. Assum-
ing X = [X1, . . . , Xd]T , we use XQ to denote the vector of random variables
[Xi1 , . . . , Xik

]T , where |Q| = k and Q = {i1, . . . , ik}. We denote the ith compo-
nent of x by xi and, similarly to before, denote by xQ the vector [xi1 , . . . , xik

]T .

Data. Assume n i.i.d. samples of dimension d from an unknown data distribution
p∗, i.e., x̃1, . . . , x̃n ∼ p∗. For those samples, only a subset of the dimensions
(features) is available to us, i.e., for a sample x̃i there exists Qi ⊆ V and only
x̃i

Qi is available to us. The set of present features Qi can depend on x̃i in different
ways according to an unknown missingness mechanism (details are at the end of
this section). We collect the partial data into the data set D = {x̃1

Q1 , . . . , x̃n
Qn}.

Equivalently we can consider D = {x1, . . . ,xn}, where xi are of dimension d and
missing dimensions contain the special symbol ⊥. To simplify notation, we will
assume that ⊥ always assumes the implied dimensionality, e.g., a statement like
xQ =⊥ implies that ⊥ is a vector of size |Q| in which each dimension is ⊥.

Variational Autoencoders. A common approach to modeling complicated distri-
butions p∗ are VAEs, a type of deep generative latent variable models [17]. In
vanilla VAEs, one assumes the data to be generated as follows:

z ∼ p(Z), x̃ ∼ pθ(X̃|z),

where z are latent variables following a prior distribution p(Z), commonly
assumed to be the normal distribution of dimension k with diagonal covari-
ance matrix, and pθ(X̃|z) = N (μθ(z),diag(σ2

θ(z))) is a normal distribution of
dimension d, where θ denotes the parameters of neural networks parameterizing
its mean as μθ : Rk → R

d and its standard deviation as σθ : Rk → R
d. The gen-

erative model induces a distribution over X̃ through marginalization over Z, i.e.,
pθ(X̃) =

∫
z
pθ(X̃|Z = z)p(Z = z) dz. We often drop the subscript θ for brevity.
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VAEs are typically fit to data D by maximizing a lower bound on the marginal
log-likelihood L(D) =

∑
i log pθ(x̃i), the so-called evidence lower bound (ELBO):

L(D) ≥
n∑

i=1

[
Ez∼qφ(Z|x̃i)[log pθ(x̃i|z)] − KL(qφ(Z|x̃i)‖p(Z))

]
,

where qφ(Z|x̃i) is an approximation to the true posterior distribution pθ(Z|x̃i),
implemented by a neural network with parameters φ, the so-called inference net-
work or encoder. Abusing notation, we will in the following often write qφ(x̃i)
instead of qφ(Z|x̃i). In vanilla VAEs, qφ(x̃i) is a normal distribution of dimen-
sion k with a diagonal covariance matrix whose parameters are computed by
the encoder. The type of distribution of qφ(x̃i) is also referred to as the vari-
ational family, and the encoder is said to perform amortized inference of the
posterior as the parameters of the variational family’s distribution are predicted
by a neural network and not optimized on a sample by sample basis [42]. Typi-
cally, the ELBO is not computed exactly but a stochastic approximation of the
ELBO is considered. For effective learning, the reparametrization trick is lever-
aged [17]. The difference between the marginal log-likelihood and the ELBO
depends, despite other things, on the used variational family, i.e., the choice of
distribution for qφ(x̃), and the quality of the amortization [7].

Missing Data. Missing data is a common phenomenon in many real-world set-
tings. In the literature, different types of missingness are distinguished depending
on how the missing variables are determined [21,33]. To introduce those, let Q
be the set of available features of sample x and denote by x̃ the corresponding
complete sample. The following missingness mechanisms are typically consid-
ered:

– Missing completely at random (MCAR): The data is MCAR if Q is indepen-
dent of x̃, i.e., Q ⊥⊥ x̃, where ⊥⊥ denotes conditional independence.

– Missing at random (MAR): The data is MAR if its missingness can be
explained solely by the observed variables, i.e., x̃V−Q ⊥⊥ Q | x̃Q.

– Missing not at random (MNAR): Any missingness which is not MCAR or
MAR is MNAR.

Variational Autoencoders for Missing Data. Models can be fit to data with
missingness of MCAR or MAR type by maximizing the likelihood of the data
(the missingness is ignorable [33]). This has been exploited for training VAEs
from incomplete data by extending the ELBO (e.g., [23,28]) such that

L(D)≥
n∑

i=1

[
Ez∼qφ(xi

Qi
)[log pθ(xi

Qi |z)] − KL(qφ(xi
Qi)‖p(Z))

]
.

In the case of the zero-imputation VAE (VAE-ZI), the encoder qφ(·) is provided
with the partially-observed input xi with missing features replaced by zeros.
Zero imputation of the input is also used for the MIWAE but in contrast to
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the vanilla VAE a tighter lower bound to the data’s likelihood based on M
importance weighted samples z1, . . . , zM ∼ qφ(xi

Qi) is considered:

LM (D) ≥
n∑

i=1

[

Ez1,...,zM ∼qφ(xi
Qi )

[
log

1
M

M∑

k=1

pθ (xi
Qi |zk)p(zk)

qφ(xi
Qi)

]
]

.

For PVAEs, a permutation-invariant set function is used as the encoder, i.e.,
qφ(xi

Qi) = g(h(s1), h(s2), . . . , h(s|Qi|)), where each sj is the concatenation or
multiplication of a learned embedding ej and the corresponding observed feature
xi

j , and the permutation-invariant function g(·) is the summation of outputs from
neural networks h(·), potentially followed by further neural network layers.

3 Posterior Inconsistency

During training, the approximate posterior qφ(x) of a VAE is fit to the gener-
ative model specified through p(z) and pθ(x|z) via maximization of the ELBO.
Typically qφ(x) does not perfectly match the true posterior distribution pθ(Z|x)
because the encoder’s variational family is not expressive enough (“approxima-
tion gap”) and because the amortization results in suboptimal predictions for
the parameters of the variational distributions (“amortization gap”) [7]. In this
paper, we focus on special aspects of these gaps which occur when working with
missing data and which can significantly decrease performance in downstream
tasks.

We refer to the problem under consideration as posterior inconsistency and
broadly use this term to denote inconsistencies in the approximate posterior
distribution when applying VAEs in cases of incomplete data. In such cases, a
VAE’s approximate posterior is computed from a partial sample xQ, for some
Q ⊆ V [23,25,28]. Importantly, there is a strong dependency between the posteri-
ors pθ(z|xQ) and pθ(z|xP ) for P ⊆ Q that should be reflected in the approximate
posterior but often this is not the case.

The consequences of such inconsistency can be observed in the task of image
inpainting, cf. Fig. 1. As shown in Figs. 1c and 1d, models that do not accurately
reflect the relationship between pθ(z|xP ) and pθ(z|xQ) can suffer from posterior
inconsistency, which in turn can cause overconfident image imputation. By con-
trast, see Fig. 1e, models trained with regularization of the relationship of the
approximate posteriors for different subsets of missing features can provide more
robust imputations, i.e., better account for different plausible imputations.

This posterior inconsistency can lead to reduced performance in downstream
tasks if they rely on computations in the latent space. For example, previous work
has considered the computation of information rewards based on the approxi-
mate posteriors in the latent space in order to select which feature to acquire in
active feature selection scenarios [23]. Clearly, the accuracy of such a computa-
tion strongly depends on the quality of the approximate posterior distribution,
and a bad approximate posterior distribution can result in incorrect rewards for
the different variables that could be selected, cf. our experiments in Sect. 7.
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In the next section, we formally define posterior consistency and propose an
effective regularizer for improving the consistency of the approximate posterior
under missingness which helps to alleviate the problems sketched above.

4 Methodology

Our approach to improving the performance of VAEs in the face of missing
data builds on the relationship of the posterior distributions for different sets of
available features. In particular, let P,Q ⊆ V and P ⊆ Q denote two subsets
of the available features, and let P̄ = Q \ P , i.e., P contains only a subset of
the features of Q and P̄ is the set of features in Q which are not in P . We are
interested in understanding the relationship of pθ(z|xP ) and pθ(z|xQ). To this
end, we assume the generative model according to Fig. 2 for the data and the
missingness, i.e.,

Fig. 1. Imputation of an image for which the upper part is missing. (a) Original image.
(b) Image with masked (missing) upper part. (c) (d) (e) Images imputed by AM-VAE-
PNP, VAE-PNP, and REG-VAE-PNP (ours) for the masked input image, respectively.
The model with our proposed regularization produces different plausible completions
while models without our regularization produce almost deterministic outputs. See
Sect. 6 for details regarding the models.

z ∼ p(Z), x̃ ∼ pθ(X̃|z), m ∼ pθ(M|x̃), x ∼ pθ(X|x̃,m).

For MCAR data, m ∼ pθ(M|x̃) reduces to m ∼ pθ(M). The observed x is a
deterministic function of x̃ and m, i.e., pθ(X|x̃,m) has all its probability mass
on the single x corresponding to x̃ where missing values according to m are
replaced by ⊥. We additionally make the common assumption that given z the
dimensions of x̃ are generated independently.

For this generative model, we can make the following observation (see
Appendix A for details) regarding the relationship of the posteriors for different
sets of available features:

Observation 1. For missing data we have

p(z|xQ,xV−Q =⊥) = p(z|xP ,xV−Q =⊥)
[
p(xP̄ |z,xP ,xV−Q =⊥)

p(xP ,xV−Q =⊥)

p(xQ,xV−Q =⊥)

]
.



514 T. Sudak and S. Tschiatschek

For MCAR data this simplifies to

p(z|xQ) = p(z|xP )
[p(xP )
p(xQ)

p(xP̄ |z)
]
. (1)

For brevity of notation, we continue the exposition of our approach using the
notation for the MCAR case but it would be analogous for MAR and MNAR.
Based on the above observation, we define the notion of posterior consistency.

Definition 1 (Posterior consistency). A family of conditional distributions
{ψ(Z|xQ)|∀x, Q ⊆ V} is posterior consistent with the generative model pθ and
possible missingness if ∀xQ ∼ pθ(X) ∀P ⊆ Q ⊆ V with pθ(xP ) > 0,

KL
(
ψ(Z|xQ)‖p(xP )

p(xQ)
· p(xP̄ |Z)pθ(Z|xP )

)
= 0. (2)

Fig. 2. Graphical models representing the generative model of the data and the infer-
ence models (dashed lines) used in the VAEs. The model consists of latent variables Z,
the complete sample X̃, the missingness pattern M, and the partially observed data
X. In the case of general missingness, the missingness pattern can contain valuable
information about the latent variables Z. Half-shaded circles are used to emphasize
that X contains missing values according to M.

This definition relates the posteriors pθ(z|xP ) and pθ(z|xQ) for different
nested subsets of features P and Q. Clearly, the true posterior is posterior-
consistent. Note that if (2) is zero, then

log p(xQ) = log p(xP ) + Ez∼ψ(Z|xQ) log p(xP̄ |z) − KL(ψ(Z|xQ)‖pθ(Z|xP )).

Importantly, for the special case ψ(Z|x) = pθ(Z|x),

log p(xQ) = log p(xP )+Ez∼pθ(Z|xQ) log p(xP̄ |z) − KL(pθ(Z|xQ)‖pθ(Z|xP )). (3)

Thus, given posterior consistency, the marginal log-likelihoods of xQ and xP

are closely related. Existing approaches for dealing with partial data in VAEs
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approximate the marginal log-likelihood of xQ or xP without considering their
relation according to (3). For example, in [28] only xQ was considered, whereas
in [23] xP was introduced during training but no connection between xQ and
xP is explicitly considered.

As mentioned, posterior consistency obviously holds for the true posterior
pθ(Z|xQ). In VAEs, this posterior is approximated by qφ(Z|xQ). Thus it would
be sensible to require also the approximate posterior to satisfy

KL
(
qφ(Z|xQ)‖p(xP )

p(xQ)
· p(xP̄ |Z)pθ(Z|xP )

)
= 0.

Unfortunately, evaluating this KL-divergence is infeasible as it would require
computing the true model’s posterior. Therefore, we use the following proxy:

KL
(
qφ(Z|xQ)‖pθ(xP )

pθ(xQ)
· pθ(xP̄ |Z)qφ(Z|xP )

)

Note that this form of posterior consistency might not be achievable because of
the limited expressiveness of the approximate posteriors when using an insuffi-
ciently expressive variational family. But even in such a case, we might hope for a
better alignment of the approximate posterior for different missingness patterns
resulting in better empirical performance, cf. experiments in Sect. 7.

We include the requirement for posterior consistency in the process of training
the encoder and decoder of the VAE by maximizing the following objective
(expressed for a single sample xi for brevity):

Lλ,θ,φ =LELBO
θ,φ (xi

Qi) − λ
[
KL(qφ(Z|xi

Qi)‖qφ(Z|xi
P i)) (4)

− Ez∼qφ(Z|xi
Qi )

log pθ(xi
P̄ i |Z) − log

pθ(xi
P i)

pθ(xi
Qi)

]

where λ is a hyper-parameter allowing a trade-off between ELBO maximization
and posterior consistency and P i is a random subset of Qi (details below). The
ELBO term LELBO

θ,φ (xi
Qi) for the partial sample xi

Qi is given as

LELBO
θ,φ (xi

Qi) = Ez∼qφ(xi
Qi )

[log pθ(xi
Qi |z)]−KL(qφ(xi

Qi)‖p(Z)).

Furthermore, we approximate the expression log
pθ(x

i
P i )

pθ(xi
Qi )

in (4) by LELBO
θ,φ (xi

P i)−
LELBO

θ,φ (xi
Qi), where the quality of this approximation will depend on the class of

used VAE models and the parameters θ, φ. Models with more expressive poste-
riors, e.g., normalizing flows [31], typically have a smaller inference gap [7] and
are likely to lead to a better approximation. For a more detailed derivation of
the above objective please refer to Appendix B.

Training VAEs for posterior consistency. Our approach for optimizing (4) is pre-
sented in Algorithm 1. Note that artificial missingness is added to create the sets
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of features P j from Qj (line 5). In the simplest case, features are removed ran-
domly with some fixed probability but other schemes, e.g., respecting a learned
or the true missingness mechanisms, are possible. New missingness patterns are
created randomly in each iteration. Even for the simple case of removing fea-
tures with a fixed probability, we observed empirically that our regularization
not only improves performance for MCAR data or MAR data, where the miss-
ingness mechanism can in principle be ignored [33] but also for some MNAR
scenarios, cf. our Experiments in Sect. 7.

Extension Using Normalizing Flows. We can also use normalizing flows [31]
to enable more expressive approximate posterior distributions (see Appendix C
for details on normalizing flows). However, in this case, the KL divergences in
Algorithm 1 cannot be computed in closed form but have to be approximated,
e.g., by sampling (see Appendix D).

5 Related Work

Because of space constraints, we only provide a limited treatment of related work
here. Further related work is discussed in Appendix E.

Generative models have a rich history of dealing with missing data [10,11,20].
In recent years, also scalable deep generative models [13,17] have been considered
for this setting, in particular GANs and VAEs.

GAN-Based Models. GAN-based models are widely applied for recovering cor-
rupted images due to their success in generating high-quality images [1,5,8,18,
30]. Furthermore, the GAIN model [40] was used for the imputation of missing
data from the UCI repository [9]. GAIN consists of a generator, which imputes
data given partial data and a missingness mask, and a discriminator, which
estimates a missingness mask from imputed data and hints of the mask. A cen-
tral challenge of applying GAN-based models for imputation is the difficulty of
training them, i.e., solving a min-max optimization of nonlinear functions [14].

VAE-Based Models. In [39], corrupted images were imputed using a VAE model,
which was pre-trained on fully observed training data. Another approach, VAEs
with zero imputation, was introduced in [28], where the missing data is filled
with zeros in the training and test stages and then fed to the VAE to obtain
the imputation as the reconstruction of the decoder. The imputation method
MIWAE [25] is based on importance-weighted autoencoders [3] and also uses
missing data imputed with zeros as an input to the inference network and uti-
lizes a decoder for imputation. Using zero-imputed data directly as input to the
encoder can lead to biased posterior estimates. Therefore, the VAE-PN/PNP
models which use encoders based on the deep sets architecture [41] as introduced
in [23] can be beneficial. All the above approaches assume MCAR or MAR data.
Recently, VAEs have also been considered for MNAR data [6]. Not-MIWAE [15]
is another IWAE-based model which considers the distribution of the missing-
ness mechanism explicitly in the ELBO. Other approaches for dealing with the
MNAR setting include [12,19,24].
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Algorithm 1: Training algorithm for regularized VAE
Input: Partially observed training data D, regularization parameter λ, and

percentage of missingness P
1 Initialize θ and φ
2 for t = 1, 2, . . . do

/* Get data and create artificial missingness */

3 Obtain indices I for minibatch

4 Obtain minibatch BQ = {xj

Qj |j ∈ I}
5 Remove features with probability P:

BP = {xj

P j |xj

Qj , j ∈ I, P j random subset of Qj}
6 BP̄ = {xj

P̄ j |j ∈ I, P̄ j = Qj \ P j}
7 Z = {zj

Qj ∼ N (μφ(xj

Qj ), Σφ(xj

Qj )) | j ∈ I}
8 Z ′ = {zj

P j ∼ N (μφ(xj

P j ), Σφ(xj

P j )) | j ∈ I}
/* Compute loss as in Equation (4) */

9 Compute LELBO
θ,φ (BQ) = 1

|BQ|
∑

j∈I [log pθ(x
j

Qj , zj

Qj ) − log qφ(zj

Qj | xj

Qj )]

10 Compute LELBO
θ,φ (BP ) = 1

|BP |
∑

j∈I [log pθ(x
j

P j , zj

P j ) − log qφ(zj

P j | xj

P j )]

11 Compute log-likelihood �(BP̄ ; θ) = 1
|BP̄ |

∑
j∈I log pθ(x

j

P̄ j |zj

Qj )

12 Compute KL-divergence

r =
∑

j∈I KL(N (Z|μφ(xj

Qj ), Σφ(xj

Qj ))||N (Z|μφ(xj

P j ), Σφ(xj

P j )))

13 Compute joint ELBO

Lλ,θ,φ = LELBO
θ,φ (BQ) − λ(r − �(BP̄ ; θ) − LELBO

θ,φ (BP ) + LELBO
θ,φ (BQ))

/* Gradient descent step */

14 Compute gradient g = ∇θ,φLλ,θ,φ

15 Use g to update parameters θ and φ

16 end

Posterior Consistency. A few papers have considered some form of posterior
consistency for improving the performance of VAEs in different settings. For
instance, [22] considered a notion of posterior consistency regarding augmenta-
tions of the input data. In particular, the problem of inconsistency was addressed
by regularizing the original ELBO objective with a weighted KL-divergence of
latent variables encoded by real and decoded data. In [34], consistency of the pos-
terior was required for the latent variables obtained from the original data and
data under random transformation. In [43], posterior consistency regularization
for application in neural machine translation was enforced through the likelihood
of the reconstruction x̂ using various data augmentation methods. Although the
aforementioned methods show promising results, they consider settings with fully
observed data and the used approaches do not build on inherent properties that
the posterior must satisfy like our work.
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6 Experimental Setup

6.1 Metrics

To assess the advantages of our proposed regularization, we considered the fol-
lowing metrics in experiments: imputation quality and information curves.

Imputation Quality. To assess the quality of imputation we compute the root-
mean-square error (RMSE) between te imputed and the ground-truth data, i.e.,
for a partially observed dataset D = {(xi

Qi)}n
i=1 for which also the full observa-

tions are available we have RMSE(D) = ( 1
n

∑n
i=1

∑
j∈V\Qi(x̂i

j − x̃i
j)

2)1/2, where
x̂i is the completed ith sample and x̃i is the ith ground-truth sample. Fur-
thermore, the negative expected log-likelihood −Ez∼qφ(z|xQ)[log pθ(x̃V\Q|z)], and
ELBO values are considered to measure the quality of imputation.

Information Curve (IC). Information curves allow us to investigate how useful
the latent space of a VAE is for estimating the information gain of an unobserved
variable. The information curve regarding some target feature xt for sample x is
computed as follows. Starting from not observing any features at all, i.e., O = ∅,
we iteratively select the next most informative feature xj regarding the target
feature xt using an approximation of the information reward as in [23]:

j = arg max
i∈U

Exi∼p̂(Xi|xO)KL [q(Z|xi,xO)‖q (Z|xO)] − (5)

Ext,xi∼p̂(Xt,Xi|xO)KL [q(Z|xt, xi,xO)‖q (Z|xt,xO)]

where U is the set of unobserved variables and O is the set of observed variables.
The distribution p̂(Xi|xO) =

∫
z
qφ(z|xO)pθ(Xi|z)dz, where in practice the inte-

gration is approximated by samples. The distribution p̂(Xt,Xi|xO) is defined
accordingly. At each step, we measure the prediction quality regarding the tar-
get feature based on the available features, i.e., the squared error between xt and
x̂t, where x̂t is the prediction. The errors over the iterations constitute the IC.

6.2 Models, Parameters, and Model Training

Base models. We consider the following baseline models: (i) VAEs with zero-
imputation for missing values (VAE-ZI), (ii) VAEs with zero-imputed missing
values and an additional binary mask, indicating the available features, as input
(Mask-VAE-ZI), (iii) VAEs with the point-net-plus encoders as in [23] (VAE-
PNP), (iv) MIWAEs [25], and (v) Not-MIWAEs [15]. Additionally, we also exam-
ine (vi) Flow-VAE, a variation of the partial VAE framework where the posterior
distribution is approximated using normalizing flows.

Regularized Models. For each baseline model we also consider its posterior-
regularized version indicated by the prefix REG-, e.g., REG-VAE-ZI is a poste-
rior regularized variant of VAE-ZI.



Posterior Consistency for Missing Data in Variational Autoencoders 519

Training with Additional Missingness. For VAE-ZI, Mask-VAE-ZI, and VAE-
PNP we also consider model training with artificial additional removal of
observed features as proposed in [23]. The additional missingness is introduced
at each iteration during the training process. Features are randomly dropped
with a rate of missingness sampled from U(0, 0.7). Models trained with such
additional missingness are indicated by the postfix -AM.

Model Architectures. The architectures of the models and their parameters were
taken from the original papers, except for MIWAE and Not-MIWAE, where
different scaling of data and activation functions were used. The reason for this
choice was the inability to reproduce the same results as in the original setting;
therefore, a couple of changes were made to boost the performance of the models.
For flow-based partial VAEs, we used the piecewise-linear coupling transform [27]
to increase the expressiveness of the approximate posterior distribution.

Model Training. All models were trained for 3000 epochs using ADAM [16] with
a learning rate of 0.001 and a batch size of 64 samples. The data was scaled to a
range from 0 to 1. The parameters for the regularized VAEs, P and λ, were tuned
by the imputation quality performance of the model on the training data. For a
detailed description of the parameters used for model training see Appendix F.

6.3 Data and Missing Values

In our experiments, we considered data from the UCI repository [9]. In particular,
in line with previous work, we considered the following datasets: Boston housing,
Wine, enb, Breast cancer, Yeast, and Concrete.

For the MCAR setting, the mask indicating missing values (missingness
mask) was randomly sampled at the beginning of each run with 30, 50, and 70
% of missingness. For the MNAR setting, we considered self-censoring in which
the missingness was created based on the mean value of a feature: a value is
missing if it is higher than its mean. Consequently, the mask has a fixed missing
rate.

7 Experiments

In this section, we empirically demonstrate the advantages of our proposed regu-
larization for a variety of models. Because of space constraints, we only highlight
a selection of empirical results. See appendices G, H, and I for additional results.

7.1 Imputation Results

We first investigate the effect of our regularization on the imputation quality. We
compute the RMSEs (Tables 1, 2, 3 and Appendix G.1), ELBOs (Appendix G.2)
and negative log-likelihoods (Appendix G.3) on the test set, which is selected ran-
domly for each run and contains 10 % of the data. Each experiment was repeated
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Table 1. Imputation quality (RMSE) for 30 % missingness. Results computed on the
test data. Smaller is better.

Dataset

Model Housing Wine enb

VAE-ZI-AM 0.1967 ± 0.0050 0.1289 ± 0.0019 0.2754 ± 0.0072

VAE-ZI 0.1976 ± 0.0066 0.1265 ± 0.0022 0.2846 ± 0.0081

REG-VAE-ZI 0.1874 ± 0.0048 0.1238 ± 0.0020 0.2596 ± 0.0057

Mask-VAE-ZI-AM 0.1863 ± 0.0047 0.1278 ± 0.0019 0.2611 ± 0.0048

Mask-VAE-ZI 0.1892 ± 0.0036 0.1272 ± 0.0021 0.2560 ± 0.0045

REG-Mask-VAE-ZI 0.1758 ± 0.0060 0.1235 ± 0.0017 0.2471 ± 0.0042

VAE-PNP-AM 0.1861 ± 0.0055 0.1300 ± 0.0023 0.2698 ± 0.0074

VAE-PNP 0.1837 ± 0.0055 0.1272 ± 0.0020 0.2592 ± 0.0055

REG-VAE-PNP 0.1739 ± 0.0044 0.1245 ± 0.0019 0.2435 ± 0.0049

10 times to compute the statistics over these runs except for the MIWAE and
Not-MIWAE models for which experiments were repeated 5 times.

Our first set of results for comparing different types of models with respect to
RMSE is presented in Table 1. We observe that the models with consistency regu-
larization significantly outperform those with and without additional missingness
(-AM), demonstrating the advantage of additionally considering the relationship
between posteriors for xQ and xP . For results with higher rates of missingness
see Appendix G—the results are qualitatively similar. It should be noted that
AM [23] can improve the performance of the VAE-ZI and Mask-VAE-ZI models
for some datasets in terms of imputation quality. However, using AM alone is not
sufficient because it can be disadvantageous for some partial VAE models, such
as VAE-PNP in our experiments. In contrast to vanilla AM, our regularization
method is advantageous for all classes of considered VAE models.

In Table 2, we present results for applying the proposed regularization on
VAEs with flows. We observe that consistency regularization is advantageous
for partial VAEs with normalizing flows in terms of imputation quality as well
(although improvements are not that large), thereby demonstrating the flexibil-
ity of the proposed method. Additionally, it should be noted that partial VAEs
with normalizing flows can deliver satisfactory results compared to other models
for imputation in the MNAR setting. Experimental results for Flow-VAEs in the
MNAR setting are presented in Appendix H.

Furthermore, we evaluated the quality of imputation in a simple MNAR
setting using the Not-MIWAE model. Following the pipeline of the authors,
the model was trained and evaluated on the entire dataset, without splitting.
Our results are presented in Table 3 and we can observe that our regularization
improves the imputation quality in the MNAR setting, even though the artificial
missingness added for generating xP is MCAR.

Additionally, different missing mechanisms for xP were examined, cf.
Appendix G.6. We can also observe improvements in terms of imputation qual-
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Table 2. Imputation quality (RMSE) of VAE-flow, REG-VAE-flow, MIWAE, and
REG-MIWAE for 30 % missingness on test data. Smaller is better.

Dataset VAE-flow REG-VAE-flow

Housing 0.1697 ± 0.0064 0.1627 ± 0.0058

Wine 0.1085 ± 0.0022 0.1067 ± 0.0021

enb 0.2069 ± 0.0034 0.2031 ± 0.0034

Dataset MIWAE REG-MIWAE

Red Wine 0.1452 ± 0.0028 0.1205 ± 0.0015

concrete 0.2755 ± 0.0146 0.2046 ± 0.0046

White Wine 0.1208 ± 0.0041 0.0996 ± 0.0014

banknote 0.3312 ± 0.0332 0.2715 ± 0.0087

breast 0.1545 ± 0.0069 0.0906 ± 0.0037

yeast 0.1098 ± 0.0050 0.1197 ± 0.0036

ity for some models for other types of missingness mechanisms. Furthermore, we
considered the dependence of imputation quality on the probability of removing
features P, cf. Algorithm 1, in Appendix G.7. The experiment revealed that the
optimal value of P closely aligns with the actual missing rate.

Moreover, we tested our regularization on VAEs trained on fully observed
data. As shown in Appendix I, regularization provides a slight improvement in
terms of the reconstruction quality, which demonstrates the advantage of this
method even for the fully observed case.

7.2 Active Feature Acquisition Results

In this experiment, we aimed to evaluate the effect of regularization on the
efficiency of information acquisition. All models were initially trained on partial
training datasets. We ran the IC experiment ten times on the test set.

Our results are presented in Fig. 3. We can observe that partial VAEs with
AM achieve better test RMSE scores than other models in the early steps for
some datasets, indicating that a small number of features acquired is utilized
more effectively. However, as soon as a sufficient number of features are avail-
able, AM generally worsens the performance of the model, and the base partial
VAE delivers better results. Partial VAEs with consistency regularization out-
perform all partial VAEs with AM in terms of the test RMSE after the first
couple of steps, whereby in contrast with AM almost all base partial VAEs are
outperformed during the entire procedure. The results demonstrate the impor-
tance of consistency regularization for efficient information acquisition.

Table 3. Imputation quality (RMSE) of Not-MIWAE and REG-Not-MIWAE.

Dataset Not-MIWAE REG-Not-MIWAE

Red Wine 0.1594(0.0225) 0.1269(0.0256)

concrete 0.2887(0.0387) 0.2558(0.0419)

White Wine 0.0891(0.0100) 0.0842(0.0134)

banknote 0.2459(0.0269) 0.1682(0.0301)

breast 0.1000(0.0012) 0.0632(0.0017)

yeast 0.1363(0.0010) 0.1351(0.0008)
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Fig. 3. Information curves on test data with 30 % missingness for partial VAEs.

In addition, our regularization can increase the efficiency of information
acquisition for VAE models equipped with normalizing flows, although improve-
ments are typically much smaller, cf. Appendix G.4 for details.

8 Conclusions

We have considered the challenge of learning VAEs from incomplete data. In
particular, we focused on improving the amortized approximate posterior dis-
tributions regarding the missingness in the data. To this end, we formalized a
notion of posterior consistency with respect to the missingness and proposed
a regularizer that improves a VAE’s encoder posterior consistency when used
during training. We showed that using our proposed regularization improves
the imputation quality for different classes of VAEs and different types of miss-
ingness. Finally, we showed that our regularized VAEs often outperform VAEs
without regularization on downstream tasks leveraging the latent space of the
VAE for making decisions. We believe that our paper can improve the usage of
VAEs in many practical settings on partial data. In future work, we will analyze
the regularization of partial VAEs for MNAR settings in more detail.
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Abstract. Existing knowledge-grounded conversation systems generate
responses typically in a retrieve-then-generate manner. They require a
large knowledge base and a strong knowledge retrieval component, which
is time- and resource-consuming. In this paper, we address the chal-
lenge by leveraging the inherent knowledge encoded in the pre-trained
language models (PLMs). We propose Knowledgeable Prefix Tuning
(KnowPrefix-Tuning), a two-stage tuning framework, bypassing the
retrieval process in a knowledge-grounded conversation system by inject-
ing prior knowledge into the lightweight knowledge prefix. The knowledge
prefix is a sequence of continuous knowledge-specific vectors that can be
learned during training. In addition, we propose a novel interactive re-
parameterization mechanism that allows the prefix to interact fully with
the PLM during the optimization of response generation. Experimental
results demonstrate that KnowPrefix-Tuning outperforms fine-tuning
and other lightweight tuning approaches, and performs comparably with
strong retrieval-based baselines while being 3× faster during inference
(The code is available at https://github.com/fantast4ever/KnowPrefix-
Tuning.)

Keywords: Dialogue generation · Parameter-efficient fine-tuning ·
Knowledge-grounded dialogue · Pre-trained language models

1 Introduction

Open-domain dialogue system suffers from the problem of generating generic
and bland responses, degrading the interaction experience of users [8,10]. Recent
efforts follow the paradigm of generating the response by augmenting the source
of knowledge associated with the dialogue context [15,35]. Knowledge-grounded
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
D. Koutra et al. (Eds.): ECML PKDD 2023, LNAI 14170, pp. 525–542, 2023.
https://doi.org/10.1007/978-3-031-43415-0_31

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-43415-0_31&domain=pdf
https://github.com/fantast4ever/KnowPrefix-Tuning
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Fig. 1. Comparison between the prefix-tuning (left part) and the proposed KnowPrefix-
Tuning (right part). Both approaches freeze the pre-trained weights of LM and tune
only a small set of parameters that are added as the prefix of the model’s input. We
show the prefix-tuning employing the PLMs with encoder-decoder architecture (e.g.,
BART). To the PLMs with decoder-only architecture (e.g., GPT2), only the prefix
prepended to decoder part is considered.

dialogue (KGD) [6,8], as one of the milestone tasks in open-domain dialogue,
has attracted many research interests in recent years. The growing number of
research works has begun to focus on developing an efficient knowledge-grounded
dialogue system [14,22,23,25,29,44].

Existing knowledge-grounded dialogue systems are typically retrieval-
augmented [9,18,34], where the knowledge is accessed in an explicit manner.
They first employ a knowledge retrieval component to select knowledge pieces
that are most relevant to the dialogue context from a large knowledge base. Then
they augment the selected knowledge pieces with the dialogue context to gener-
ate knowledgeable responses. Although the retrieval-augmented approaches have
demonstrated remarkable progress on the KGD task, these approaches inevitably
consume considerable resources and time to train and store the parameters of
the knowledge retriever, in order to ensure the knowledge retrieval ability of a
KGD system.

Recent studies show that large PLMs carry implicit knowledge [22,30] that
can directly apply to downstream generation tasks by proper prompts [2,12,20].
In particular, Li et al. [20] proposed prefix-tuning, a lightweight paradigm
bypassing finetuning the entire PLM and instead tuning only a small set of
parameters that are added as the prefix of the model’s input. However, the vanilla
prefix-tuning approach lacks an effective mechanism to incorporate grounded
knowledge (i.e., the knowledge labeled by human annotators) into the generated
text. In this paper, we aim to steer the prefix-tuning to the KGD task, where
the knowledge can be accessed in an implicit manner to achieve knowledgeable
response generation. There are two key challenges: (1) Eliciting the knowledge
irrelevant to the dialogue context from PLM may mislead the model into gen-
erating the context-irrelevant response. (2) There can be one-to-many relations
between the dialogue context and the knowledge to be selected [23]. Explicitly
enumerating all of this knowledge encoded in the PLM is impractical.

To tackle the above challenges, we propose Knowledgeable Prefix-Tuning
(KnowPrefix-Tuning), Fig. 1 shows the comparison between the prefix-tuning
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[20] and the proposed approach. The proposed KnowPrefix-Tuning is a two-stage
prefix-tuning framework. In the first tuning stage, we inject the prior knowledge
into the lightweight knowledge prefix by forcing the model to generate the knowl-
edge grounded on the dialogue context, which facilitates the model to focus more
on context-relevant knowledge. In the second tuning stage, we prompt the PLM
to generate the knowledgeable response by response prefix, grounding on the dia-
logue context and the previously learned knowledge prefix. To enhance the inter-
action between the knowledge and dialogue context, we propose a novel Interac-
tive Re-parameterization mechanism, which further facilitates knowledgeable
response generation by encouraging the interaction between the prefix and the
PLM. Experimental results on two knowledge-grounded benchmarks show that
the proposed method brings both performance and efficiency improvements. It
is 3× faster than the state-of-the-art retrieval-based method during inference
stage and outperforms competitive light-weight tuning approaches significantly.

Our contributions are three-fold: (1) We propose a novel KnowPrefix-Tuning
approach for the KGD task. The proposed method bypasses the retrieval process
and does not require finetuning the entire PLM. (2) We propose a novel inter-
active re-parameterization mechanism, which allows the interaction between the
embedding of the prefix and the PLM during the re-parameterization of the
prefix. (3) We conduct sufficient experiments and qualitative analysis to prove
the effectiveness of our proposed methods on two knowledge-grounded dialogue
datasets.

2 Related Work

2.1 Knowledge-Grounded Dialogue

Knowledge-grounded dialogue has shown tremendous potential in enriching and
diversifying the responses generated by dialogue agents [4,21,27,34,36,43]. Most
of the existing KGD works focus on improving the knowledge retrieval perfor-
mance, which explicitly retrieves proper knowledge pieces, thereby enhancing
the knowledgeable response generation ability [14,21,23,44]. Very recent work
begins to focus on leveraging the knowledge that is inherently encoded in the
PLM [22,25,37,40]. For example, Li et al. [22] employed the pre-train technique
to encode the multi-source knowledge into a unified framework. Lie et al. pro-
posed to [25] retrieve a small collection of dialogue samples to construct prompts,
which is used to guide the knowledgeable response generation in a multi-stage
generation manner. Li et al. [21] employ PLATO-KAG [11] as a backbone, using
the generated knowledge as a noisy knowledge source and propose the posterior-
based reweighing and the noisy training strategy to improve the performance of
a knowledge retriever. Compared with above works, we do not explicitly retrieve
any knowledge pieces from the data base. We instead encode the knowledge into
the lightweight knowledge prefix, which saves much computational resource and
time.
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2.2 Prompting in Language Models

Pre-trained language models (PLMs) [13,17,24] exhibit an innate ability to store
commonsense knowledge [3,5,16,46]. It can be prompted to do many downstream
natural language generation task, such as closed-book question answering (QA)
[28,39], text summarization [20,41], and so on. Earlier work use human written
prompts by manually designing prompt templates [2,32], or search prompts over
the discrete space of words [33]. Recent work focus on continuous prompt learning
[16,20], where the prompts are represented as a group of vectors that can be
optimized during training process. Our work is enlightened from Prefix-Tuning
[20]. The main difference is that the proposed KnowPrefix-Tuning is a two-stage
tuning framework that encodes the global knowledge into a group of continuous
knowledge-specific vectors, allowing the interaction between the embedding of
prefixes and the PLM.

3 Background

3.1 Problem Formalization

Suppose we have a T -turn conversation C = (Ui,Ki, Yi)T
i=1 in a knowledge-

grounded conversation dataset D, where ∀i, (Ui,Ki, Yi) is a triplet of query-
knowledge-response at turn i. Given an input sequence Xi = (Yi−1, Ui), our goal
is to generate a knowledgeable response ˜Yi by learning a response generation
model P (Yi,Ki|Xi;Θ). Existing retrieval-augmented methods tackle this prob-
lem by firstly retrieving related knowledge ˜Ki, then augmenting it with input
sequence Xi. Here, we propose to bypass the retrieval process by injecting the
knowledge Ki into the model parameters Θ. Thus, the response can be generated
sorely based on the input sequence Xi.

3.2 Prefix-Tuning

In this section, we briefly describe Prefix-Tuning [20] upon the vanilla Trans-
former architecture [38], based on which we can validate the effectiveness of our
approach.

In the vanilla Transformer architecture, each transformer layer equips with
multiple attention heads, and each head attends over the tokens of the input con-
text. Let Hl denote the output of a single attention head in the l-th Transformer
layer, which is formalized by:

Hl = FΛ

(

QlW
Q
l ,KlWK

l , VlWV
l

)

∈ R
N×d (1)

where F(·) denotes the attention computational function, Λ denotes an atten-
tion type. Λ ∈ {ES ,DC ,DS} where ES is the encoder self-attention, DC is
the decoder cross-attention and DS is the decoder masked self-attention, respec-
tively. Ql ∈ R

N×d is the query matrix in the l-th layer. Kl, Vl ∈ R
M×d denote the
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l-th layer key and value matrix, where N is the sequence length related to queries,
M is the sequence length related to key and value. WQ

l , WK
l , WV

l ∈ R
d×d are

head-specific projection weights for Q, K and V . respectively.
In prefix-tuning, the prefix is denoted as a distinct key-value pair for the

attention type Λ, which is a set of continuous specific vectors that can be learned
by

PΛ = MLP (E (XΛ)) ∈ R
2×ρLd (2)

where XΛ ∈ R
ρ is the input token of prefix, E(·) is the embedding projection

matrix. ρ is the length of prefix token. PΛ = {P
(1)
Λ , · · · P (L)

Λ } denotes a prefix set
for Λ, where L is the number of layer in transformer. ∀l ∈ {1, · · · , L}, P

(l)
Λ =

(P (l)
Λ,K , P

(l)
Λ,V ) ∈ R

2×ρd, d is the embedding dimension. P
(l)
Λ,K and P

(l)
Λ,V are the

key and value of prefix in the l-th layer, respectively. During the prefix-tuning
stage, the key-value pair in Eq. 1 is augmented to become

Kl ←
[

P
(l)
Λ,K ;Kl

]

∈ R
(M+ρ)×d (3)

Vl ←
[

P
(l)
Λ,V ;Vl

]

∈ R
(M+ρ)×d (4)

4 Approach

4.1 KnowPrefix-Tuning

Formally, given the dialogue context X = {x1, x2, · · · x|X|}. The corresponding
knowledge piece is K = {k1, k2, · · · k|K|} and the response Y = {y1, y2, · · · y|Y |}.
In the first tuning stage, we obtain the knowledge prefixes by applying the
vanilla prefix-tuning approach, feeding the dialogue context X to the model and
asking it to predict the knowledge K token by token, which can be realized by
optimizing following loss:

L1 = −E(X,K)∈D

|K|
∑

t=1

log P
(

kt| X, k1:(t−1); θLM , θK

)

(5)

where θLM are the parameters of PLM, θLM are holding fixed during the tuning
procedure. θK are the learnable parameters for the knowledge prefix.

In the second tuning stage, we fix the parameters during optimizing the
knowledge prefix in the first tuning stage, and add additional learnable response
prefixes to guide the knowledgeable response generation. Formally, Given the
dialogue context X, our goal is to generate the response Y one token at a time.
The generation process of Y can be defined by optimizing the following loss:

L2 = −E(X,Y )∈D

|Y |
∑

t=1

log P
(

yt| X, y1:(t−1); θLM , θK , θY

)

(6)

where θY are the parameters for knowledgeable response generation. During the
second tuning stage, the parameters of θLM and θK are holding fixed, only the
parameters of θY are updated.
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4.2 KnowPrefix-Tuning with Interactive Re-Parameterization

Re-parameterization has been demonstrated to be indispensable in boosting the
performance of prefix-tuning [20]. It is realized by introducing a large feed-
forward neural network during the optimization of the prefix, as we introduced
in Eq. 2. While for the KGD task, the interaction between the knowledge and
the dialogue context is still significant to realize the knowledgeable response
generation. To model this kind of interaction, we propose the interactive re-
parameterization mechanism, which considers the embedding of prefix and PLM
as interfaces, and conducting the multi-head attention [38] to realize the inter-
action between them.

To re-parameterize the prefix PΛ, we concatenate an interaction term Io

with the embedding of prefix EθY
(XΛ), and re-parameterize the concatenation

between them, which is given by:

PΛ = fθΛ
([EθY

(XΛ) ; Io]) ∈ R
2×ρLd (7)

where [·; ·] denotes the concatenation operation. fθΛ
(·) is an interactive function,

which can be any neural network such as a MLP. We define the interaction term
Io as a weighted sum for the embedding of PLM, which can be obtained by:

Io = IeEθLM
∈ R

ρ×d (8)

Ie = softmax
(

HoET
θLM

) ∈ R
ρ×|VLM | (9)

where EθLM
∈ R

|VLM |×d is the embedding matrix of the PLM and |VLM | is
its vocabulary size. Ho is the output state for each token of prefix sequence.
Ie measures the contextual similarity between the Ho and the embedding of
language model EθLM

.
We obtain the output state Ho by considering the interaction of embedding

between knowledge prefixes and response prefixes, which can be realized by the
following:

Ho = [H1; · · · ;HN ]Wo (10)

Hj = Attention
(

QWj
Q1,KWj

K1, V Wj
V 1

)

(11)

Q = Tanh
(

EθY

(

XY
Λ

)

Wj
Q2

)

(12)

K = Tanh
(

EθK

(

XK
Λ

)

Wj
K2

)

(13)

V = Tanh
(

EθK

(

XK
Λ

)

Wj
V 2

)

(14)

N is the number of attention heads. Wo ∈ R
dm×d is the projection weights of the

concatenated output for all attention heads. dm is the dimension of the hidden
states in the re-parameterization network. Hj ∈ R

dh×d is the output state for j-
th attention head. dh = dm//N is the output dimension for each attention head.
Wj

Q, Wj
K and Wj

V are head-specific projections for Q, K and V , respectively.
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To enforce the re-parameterization module eliciting the proper knowledge
from the embedding of PLM, inspired by Zhao et al. [42] and Bao et al. [1], we
supervise the term Ie by an additional loss Lbow with the bag of words BY in
the ground-truth response, where the bag of words are obtained by removing
the punctuation and the stopwords in response Y , forcing the model focus more
on content words. The Lbow can be obtained by:

Lbow = −EIe
w∼P ( Ie|X,Y )

1
|BY |

∑

w∈BY

log (Ie
w) (15)

Intuitively, the bag of words loss Lbow discards the words orders and forces the
term Iw to capture the global information of the target response. The overall
loss in the second stage is defined by:

L2 ← L2 + Lbow (16)

5 Experiments

5.1 Datasets and Baseline Models

Datasets. We conduct our experiment on two commonly used knowledge-groun-
ded dialogue datasets: Wizard of Wikipedia (Wizard) [6], and CMU Document
Grounded Conversations (CMU Dog) [45]. The Wizard and CMU DoG datasets
are constructed by the Amazon Mechanical Turk workers and employ Wikipedia
as the knowledge base. Wizard is split into 18,430 training dialogues on 1247
topics, 1,948 validation dialogues on 599 topics and 1,933 test dialogues on 591
topics. The test set is further split into test seen set and unseen set according
to the topics. The test seen set contains 965 dialogues on 533 topics. The test
unseen set contains 968 dialogues on 58 topics whose topics are never seen in
the training and validation set. There are about 9.0 turns on average in each
dialogue of the dataset. CMU DoG is split into 3373 training dialogues, 229
validation dialogues, and 619 test dialogues. There are 30 topics in the dataset
on average, and each dialogue has about 22.0 turns on average. We implement the
pre-processing for both WoW and CMU DoG datasets with the code published
on ParlAI1.

Baseline Models. We compare our approach with two types of knowledge access
methods: The first group is Explicit Knowledge Access, which explicitly
retrieves knowledge from a knowledge base. Then use the retrieved knowledge
augmenting with the dialogue context to guide the knowledgeable response gen-
eration: i) Transformer Memory Network (TMN) [6]: The model combines Trans-
former [38] with an external memory network in an end-to-end manner, which
introduces an additional loss to better select knowledge. ii) Sequential Knowl-
edge Transformer (SKT) [14]: The model employs sequential variable model

1 https://github.com/facebookresearch/ParlAI.

https://github.com/facebookresearch/ParlAI
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to conduct knowledge selection for response generation, which considers the
interaction between the history of knowledge selection and dialogue context.
iii) ZRKGC [19]: The model employs pre-train techniques to handle the zero-
resource challenge in KGD task. We choose the one that uses the full training
data version for a fair comparison. iv) KnowledGPT [44]: The model employs
reinforcement learning to jointly optimize knowledge selection and response gen-
eration in a joint manner. v) PLATO-KAG+ [21]: The model employs PLATO-
KAG [11] as a backbone, treating the generated knowledge as a noisy knowledge
source and propose the posterior-based reweighing and the noisy training strat-
egy to enhance the knowledge retrieval ability.

The second group contains Implicit Knowledge Access methods, which
does not require to explicitly retrieve or generate knowledge to guide the
knowledgeable response generation: i) KnowExpert [40]: The model employs
topic modelling technique to inject prior knowledge into the GPT-2 with
lightweight adapters. We report the results of their model under weighted-sum
(KnowExpertw) setting. ii) Fine-Tuning: We fine-tune the whole model of GPT-
2 and BART for response generation. It is to check if only the general fine-tuning
approach works well on this task. iii) Prefix-Tuning [20]: We apply the Prefix-
Tuning approach to generate responses based on the given dialogue context,
without the supervision of the external knowledge base. It is to check if only
the prefix-tuning approach works well on this task. We employ both BART and
GPT-2 as backbone PLMs to conduct response generation. iv) Knowledgeable
Prefix-Tuning (KnowPrefix-Tuning): The method proposed in our paper. We use
both GPT-2 and BART as the backbone to conduct the experiment.

5.2 Evaluation Metrics

We conduct both automatic and human evaluations. For automatic evaluation,
following the previous work on KGC [6,15,34], we report perplexity (PPL), F1
and Knowledge F1 (KF1) metrics. The perplexity (PPL) measures how likely the
model can generate human-like responses. The F1 score indicates the unigram
overlap between the generated response and the reference response. The KF1
score measures the overlap between the generated response and the knowledge
on which the human grounded during dataset collection [15], which captures
whether a model is speaking knowledgeably by using the knowledge relevant to
dialogue context. To evaluate how the number of parameters impacts the model
performance, following Li et al. [20], we count the number of parameters that
are fine-tuned in each method.

Apart from the automatic evaluation, we conduct the human evaluation
from three aspects of the generated response: Fluency measures how fluent
the generated responses of the model are. Context coherency measures how
the generated responses are relevant to the dialogue context. Knowledge rel-
evancy measures how knowledgeable the generated responses are, according
to the amount of new knowledge introduced into the dialogue and the factu-
ality of the generated response. We employ three well-educated annotators for
human evaluation. Concretely, each annotator is shown in an example containing
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Table 1. Automatic evaluation results on the Wizard and CMU DoG datasets. Bold
face indicates the best result in terms of the corresponding metric.“#Para” denotes
the number of fine-tuned parameters in each method. PPL values are not comparable
across different backbone PLMs as they use different dictionaries.

Models Wizard Seen Wizard Unseen CMU DoG #Para

PPL↓ F1↑ KF1↑ PPL↓ F1↑ KF1↑ PPL↓ F1↑ KF1↑
Explicit Knowledge Access

TMN 66.5 15.9 - 100+ 14.3 - 75.2 9.9 - 1.6 × 107

SKT 52.2 19.4 - 81.5 16.2 - 42.0 9.7 - 1.7 × 108

ZRKGC 40.4 18.7 - 41.6 18.6 - 53.6 12.5 - 3.3 × 108

KnowledGPT 19.2 22.0 - 22.3 20.5 - 20.0 13.7 - 2.4 × 108

PLATO-KAG+ 12.4 21.1 - 13.8 20.3 - - - - 1.6 × 1010

Implicit Knowledge Access

GPT-2 + KnowExpertw 15.3 18.7 14.5 20.1 16.7 12.1 17.2 12.5 4.0 1.2 × 108

GPT-2 + Fine-Tuning 15.1 19.8 17.4 21.3 16.8 13.9 16.7 13.8 4.9 7.7 × 108

GPT-2 + Prefix-Tuning 15.8 19.1 16.3 20.7 17.0 13.0 19.9 13.2 4.2 1.8 × 106

GPT-2 + KnowPrefix-Tuning (Ours) 15.2 20.1 18.0 19.3 18.0 14.6 17.4 14.1 5.3 3.7 × 106

BART + Fine-Tuning 14.9 20.3 17.8 19.1 17.3 13.8 15.3 14.1 4.7 4.1 × 108

BART + Prefix-Tuning 15.2 19.2 16.5 19.4 16.9 13.4 18.0 13.9 4.2 1.5 × 106

BART + KnowPrefix-Tuning (Ours) 14.0 20.3 17.4 17.5 18.3 14.9 16.3 14.6 5.2 2.9 × 106

a dialogue context and model responses that are randomly shuffled to hide their
sources. We randomly select 100 examples from the test set (both test seen and
test unseen for the Wizard dataset), and ask each annotator to assign a score in
{0, 1, 2} to each response for each aspect. The agreement among the annotators
is measured via Fleiss’ kappa [7].

5.3 Implementation Details

We choose BARTLARGE (406M), GPT2LARGE (774M) to adapt our
KnowPrefix-Tuning framework2. In both knowledge prefix-tuning stages, we set
the same length of the prefix token to 20. The embedding size of the prefix
token is set to the same embedding size of PLM. The hidden states of the
re-parameterization network are set to 800. When generating knowledgeable
responses, we fix the decoding parameters to beam search (beam size 3) with
a minimum sequence length of 20 and beam blocking of 3-grams within the
response, similar to choices in [15,31]. All models are learned with the AdamW
[26] optimizer with learning rate 3e-5 in 40 epochs. We set the warm-up steps to
2000 and applied a linear learning rate scheduler with a batch size of 32. Each
experiment is conducted on Tesla V-100 machines.

5.4 Main Results

Automatic Evaluation Results. Table 1 reports the automatic evaluation
results on Wizard and CMU DoG datasets. We have the following observations:
(1) Compared with the Explicit Knowledge Access methods, KnowPrefix-Tuning
2 We implement the model with the code shared in https://github.com/huggingface-/

transformers.

https://github.com/huggingface-/transformers
https://github.com/huggingface-/transformers
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Table 2. Human evaluation results on the Wizard dataset. “FL”, “CC” and “KR”
denote “Fluency”, “Context Coherency” and “Knowledge Relevancy”, respectively.

Models Wizard Seen Wizard Unseen

FL CC KR Kappa FL CC KR Kappa

KnowExpertw 1.87 1.62 1.55 0.65 1.83 1.52 1.30 0.64

Fine-tuning 1.89 1.66 1.61 0.63 1.84 1.53 1.38 0.62

Prefix-Tuning 1.86 1.60 1.57 0.60 1.82 1.52 1.35 0.61

KnowPrefix-Tuning 1.90 1.64 1.61 0.65 1.88 1.54 1.43 0.65

achieves competitive performance compared to all of the baselines over both
datasets. Specifically, KnowPrefix-Tuning (BARTLARGE) outperforms retrieval-
based baselines on the CMU DoG dataset. Concretly, the PPL and F1 of
KnowPrefix-Tuning (BARTLARGE) outperform the percentage of the strongest
baseline KnowledGPT by 19.9% and 7.0%, respectively. The lower PPL indi-
cates that the model prefers to generate more context-relevant responses. In
addition, the KnowPrefix-Tuning (BARTLARGE) has only about 3M parame-
ters that should be fine-tuned. It is only 1% number of parameters in Knowl-
edGPT updated. (2) Compared with other Implicit Knowledge Access methods,
the proposed KnowPrefix-Tuning outperforms the Prefix-Tuning substantially,
indicating the effectiveness of our proposed tuning framework. In addition, the
KnowPrefix-Tuning outperforms Fine-tuning on both Wizard and CMU Dog
datasets with only 0.7% parameters updated. This improvements are more clear
on the Wizard Unseen dataset, which indicates that the proposed KnowPrefix-
Tuning has a powerful generalization ability to the unseen topics even equipped
with fewer parameters.

Human Evaluation Results. Table 2 reports the human evaluation results
on Wizard dataset. We can observe that: (1) The kappa values are larger than
0.6, indicating substantial agreement among the annotators. (2) According to
fluency, we find that the KnowPrefix-Tuning approach tends to generate more
fluent responses. This result is consistent with the automatic evaluation results
in which the KnowPrefix-Tuning shows lower perplexity. We think it is because
that the knowledge prefix learned much context-relevant knowledge through the
knowledge generation process, which can provide effective guidance for knowl-
edgeable response generation. (3) According to knowledge relevancy, we observe
that Fine-Tuning and KnowPrefix-Tuning perform better on the Wizard Seen
dataset, while KnowPrefix-Tuning is superior to the Wizard Unseen dataset. We
think it is highly likely that the proposed approach does not disturb the implicit
knowledge distribution encoded in PLM during tuning procedure. Thus it can
better generalize to the unseen topic during knowledgeable response generation.

5.5 Discussions

Ablation Study. To facilitate the study of how each component of the model
influence the overall performance, we conduct the ablation study for both
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Table 3. Ablation study on Wizard and CMU DoG datasets. “-” means removing the
corresponding part.

Models Wizard Seen Wizard Unseen CMU DoG

PPL↓ F1↑ KF1↑ PPL↓ F1↑ KF1↑ PPL↓ F1↑ KF1↑
KnowPrefix-Tuning (BARTLARGE) 14.0 20.3 17.4 17.5 18.3 14.9 16.3 14.6 5.2

- Interactive Re-parameterization 14.8 19.3 16.8 18.5 17.4 13.7 18.7 13.7 4.5

- Stage-I 16.0 18.7 16.3 20.2 16.4 13.0 20.4 13.3 3.8

KnowPrefix-Tuning (GPT2LARGE) 15.2 20.1 18.0 19.3 18.0 14.6 17.4 14.1 5.3

- Interactive Re-parameterization 15.7 19.2 17.2 20.5 17.2 13.8 19.7 13.2 4.5

- Stage-I 17.8 18.5 16.7 22.0 16.3 12.8 20.9 12.8 3.9

BARTLARGE and GPT2LARGE on Wizard and CMU DoG datasets. We com-
pare the proposed KnowPrefix-Tuning with the following variants: (1) - Interac-
tive Re-parameterization: The interactive re-parameterization module is replaced
by the re-parameterization module as we defined in Eq. 2. (2) - Stage-I : The
stage-I is removed during the knowledgeable response generation. Thus, the
model generates responses without considering the grounded knowledge (i.e.,
the knowledge labeled by human annotators.). For a fair comparison, we uni-
form the number of parameters used in this variant and the KnowPrefix-Tuning
by increasing the variant’s prefix length to 40. Table 3 presents the results, we
can conclude that: (1) Without the Interactive Re-parameterization module,
the performance of both BARTLARGE and GPT2LARGE drops significantly.
We believe that the interactive re-parameterization module allows the interac-
tion between the embedding of prefixes and PLM, which is helpful to knowl-
edgeable response generation. (2) Without Stage-I, the performance of both
BARTLARGE and GPT2LARGE goes down. It indicates the effectiveness of
the proposed two-stage framework. Even without equipping with the proposed
interactive re-parameterization mechanism, the proposed two-stage framework
incorporates the context-relevant knowledge into the generated response and
substantially improves the generation of knowledgeable responses.

Inference Time Efficiency. To verify the inference time efficiency of our pro-
posed method, we compare the proposed KnowPrefix-Tuning (BART-LARGE)
with two strong retrieval-based methods, which are PLATO-KAG+ and Knowl-
edGPT, under the same inference implementation setting for a fair comparison.
Figure 2 reports the results on Wizard Seen and Unseen test set. We observe
that KnowPrefix-Tuning is around 3× faster and 5× faster than KnowledGPT
and PLATO-KAG+ during the inference stage, respectively. We believe it is
because that the proposed KnowPrefix-Tuning bypasses the retrieval process
and doesn’t require augmenting the retrieved knowledge with the input dialogue
context, saving much time during inference.

Impact of Pretrained Language Models. To further study how does the size
of PLMs impacts the performance of the KnowPrefix-Tuning. We additionally
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Fig. 2. The inference time comparison across different baselines. “ms/i” indicates mil-
lisecond per instance.

Fig. 3. Impact of PLMs. “BART-B”, “BART-L”, “GPT2-M” and “GPT2-L” denote
the BART-BASE, BART-LARGE, GPT2-MEDIUM and GPT2-LARGE, respectively.
“Avg” is the average F1 score across the three datasets.

employ BARTBASE (139M) and GPT2MEDIUM (345M) to realize the knowl-
edge generation and the response generation. Note that our approach does not
require to explicitly augment the generated knowledge with the dialogue context
to generate responses. We evaluate the quality of the generated knowledge to
investigate whether there is a connection between the generated knowledge and
the generated responses when using the proposed KnowPrefix-tuning approach.

Figure 3 presents the results. We have the following obeservations: (1) For
knowledge generation, the larger model generates better knowledge, while it
is not significant on the Wizard Unseen dataset. We believe that it is still a
challenge for the large language model to generate better knowledge with unseen
topics. (2) For knowledgeable response generation, the quality of the generated
responses improves with the model size boost. In addition, we observe that the
model which generates better knowledge can also generate better responses with
the same backbone PLMs. It indicates that the proposed approach equipped
with well-learned knowledge prefix can elicit proper knowledge from PLMs to
guide the knowledgeable response generation.
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Table 4. Comparison of KnowPrefix-Tuning and Prefix-Tuning with different prefix
length “l”. We employ BARTLARGE as the backbone model for each variant.

Models Wizard Seen Wizard Unseen #PSD

PPL↓ F1↑ KF1↑ PPL↓ F1↑ KF1↑
KnowPrefix-Tuning (l = 10) 14.4 19.8 17.0 18.2 17.8 14.4 1.5 × 106

KnowPrefix-Tuning (l = 20) 14.0 20.3 17.4 17.5 18.3 14.9 2.9 × 106

Prefix-Tuning (l = 20) 15.2 19.2 16.5 19.4 16.9 13.4 1.5 × 106

Prefix-Tuning (l = 40) 16.0 18.7 16.3 20.2 16.4 13.0 3.0 × 106

Prefix-Tuning (l = 60) 15.9 18.5 16.4 20.5 16.1 13.3 4.4 × 106

Table 5. Cases from the test seen and test unseen data of Wizard. The underline text
indicates the essential facts that appeared in the golden response.

Dialogue Context

Test Seen Test Unseen

Wizard: Well the rights to this formula was
obtained by the TIP corporation.

Wizard: I enjoy hunting. This refers to the killing
or trapping animals, or pursuing or
tracking them

Apprentice: Do you know how they came up with the
other flavors?

Apprentice: How long have you been hunting?

Response

KnowExpertw: Well they were created by a group of
volunteers.

KnowExpertw: I have been hunting for about 10 years

Prefix-Tuning: Well it was first introduced in the United
States in 1953 as a soft drink.

Prefix-Tuning: I have been hunting since i was a child. It
is the practice of hunting animals for
food or raw materials

Fine-Tuning: I don’t but i know that it was introduced
in the US in 1964.

Fine-Tuning: I have been hunting for about 20 years. It
is a very difficult activity

KnowPrefix-Tuning: Well the first mountain dew was
created in 1953 by a pharmacist named
Charles Alderton.

KnowPrefix-Tuning: I have been hunting for about 20 years. I
like to hunt for food, sport, and for
medicinal purposes

Golden Response: Well the diet verstion was created in
1988, followed by mountain dew red
which was discontinued in the same year.

Golden Response: 20 years now! Excessive hunting has also
heavily contributed to the endangerment,
extirpation and extinction of many
animals

Impact of Prefix Length. We investigate whether Prefix-Tuning can achieve
better performance than KnowPrefix-Tuning by increasing its prefix length. We
employ BARTLARGE as the backbone model for each variant. Table 4 shows the
results. We observe that increasing prefix length will introduce more parameters.
However, the performance of Prefix-Tuning seems not to be better even if it
introduce additional parameters comparable to KnowPrefix-Tuning. We think
that although the longer prefix length introduces more trainable parameters and
increases the generalization ability of the model, too long a prefix length may
lead the model tend to overfit the training dataset, degrading the knowledgeable
response generation ability.

Case Study. Table 5 and Table 6 show the cases from the Wizard test set, from
which we observe that the generated responses of the KnowPrefix-Tuning not
only leverage the knowledge relevant to the dialogue context but also ensure
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Table 6. Cases from the test seen and test unseen data of Wizard. The facts with
boldface have been verified on the Internet.

Dialogue Context

Test Seen Test Unseen

Wizard: Hey, what do you think of Mcdonald’s
dollar menu cheeseburgers?

Wizard: I love American football also know as
gridiron

Apprentice: I think it would be worth the money
spent for trying them.

Apprentice: It’s a pretty fun sport to watch, also I
have never heard it be called that!

Response

KnowExpertw: I agree, I love the fact that they have a
menu of different items.

KnowExpertw: It is played on a rectangular field with a
goal at each end

Prefix-Tuning: Yes, I agree. I also like their chicken
nuggets and french fries.

Prefix-Tuning: It is called gridiron football in the USA.
It is a team sport played on a
rectangular field

Finetune: I agree, i love the cheeseburgers. They’re
so good! Mcdonald’s also owns and
operates Sam’s club.

Finetune: It is played on a rectangular field with a
goal at each end. It is also called gridiron
football

KnowPrefix-Tuning: I agree, they are so good. They are a
hamburger stand that was founded
in 1940.

KnowPrefix-Tuning: It is played by 250 million people in
over 200 countries. It is the most
popular sport in the world

Golden Response: It is actually. I don’t know about the
breakfast.

Golden Response: Yes, it originated from association
football and rugby

the correctness of the utilized knowledge. As shown in Table 5, the responses
generated by KnowPrefix-Tuning on both Test Seen and Test Unseen contain
essential facts that appeared in the golden answer. We believe that the learned
knowledge prefix effectively provides facts relevant to the dialogue context, which
is indispensable to guide knowledgeable response generation. From Table 6, we
observe that the responses generated by KnowPrefix-Tuning contain factually
correct knowledge even if the corresponding evidence is not explicitly provided.
We suspect that it is because the parameters of the language model are frozen
during the fine-tuning procedure. Thus, the knowledge inherently encoded in the
pre-trained language model is not disturbed, which can be prompted to provide
evidence for knowledgeable response generation.

6 Conclusions

In this paper, we propose KnowPrefix-Tuning to handle the knowledge-grounded
dialogue generation task. The proposed method bypasses the retrieval process
and does not require fine-tuning the entire PLM. In addition, the proposed
interactive re-parameterization mechanism allows the interaction between the
embedding of prefixes and PLM. Experiments on two commonly-used knowledge-
grounded dialogue datasets demonstrate the effectiveness of our approach.

Acknowledgments. We thank all the anonymous reviewers for their insightful com-
ments. This work was supported in part by the National Natural Science Foundation
of China (Grant Nos. 62276017, U1636211, 61672081), the 2022 Tencent Big Travel
Rhino-Bird Special Research Program, and the Fund of the State Key Laboratory of
Software Development Environment (Grant No. SKLSDE-2021ZX-18).



KnowPrefix-Tuning 539

References

1. Bao, S., et al.: PLATO-2: Towards building an open-domain chatbot via curricu-
lum learning. In: Findings of the Association for Computational Linguistics: ACL-
IJCNLP 2021, pp. 2513–2525. Association for Computational Linguistics, Online
(Aug 2021). https://doi.org/10.18653/v1/2021.findings-acl.222

2. Brown, T., et al.: Language models are few-shot learners. Adv. Neural. Inf. Process.
Syst. 33, 1877–1901 (2020)

3. Cui, L., Cheng, S., Wu, Y., Zhang, Y.: On commonsense cues in bert for solving
commonsense tasks. In: Findings of the Association for Computational Linguistics:
ACL-IJCNLP 2021, pp. 683–693 (2021)

4. Cui, L., Wu, Y., Liu, S., Zhang, Y.: Knowledge enhanced fine-tuning for better han-
dling unseen entities in dialogue generation. In: Proceedings of the 2021 Conference
on Empirical Methods in Natural Language Processing, pp. 2328–2337 (2021)

5. Davison, J., Feldman, J., Rush, A.M.: Commonsense knowledge mining from pre-
trained models. In: Proceedings of the 2019 Conference on Empirical Methods in
Natural Language Processing and the 9th International Joint Conference on Nat-
ural Language Processing (EMNLP-IJCNLP), pp. 1173–1178 (2019)

6. Dinan, E., Roller, S., Shuster, K., Fan, A., Auli, M., Weston, J.: Wizard of
wikipedia: Knowledge-powered conversational agents. In: International Conference
on Learning Representations (2018)

7. Fleiss, J.L.: Measuring nominal scale agreement among many raters. Psychol. Bull.
76(5), 378 (1971)

8. Ghazvininejad, M., et al.: A knowledge-grounded neural conversation model. In:
Proceedings of the AAAI Conference on Artificial Intelligence, vol. 32 (2018)

9. Guu, K., Lee, K., Tung, Z., Pasupat, P., Chang, M.: Retrieval augmented language
model pre-training. In: International Conference on Machine Learning, pp. 3929–
3938. PMLR (2020)

10. Holtzman, A., Buys, J., Du, L., Forbes, M., Choi, Y.: The curious case of neural
text degeneration. In: International Conference on Learning Representations (2019)

11. Huang, X., He, H., Bao, S., Wang, F., Wu, H., Wang, H.: Plato-kag: Unsupervised
knowledge-grounded conversation via joint modeling. In: Proceedings of the 3rd
Workshop on Natural Language Processing for Conversational AI, pp. 143–154
(2021)

12. Karimi Mahabadi, R., et al.: Prompt-free and efficient few-shot learning with lan-
guage models. In: Proceedings of the 60th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers), pp. 3638–3652. Association
for Computational Linguistics, Dublin, Ireland (May 2022). https://doi.org/10.
18653/v1/2022.acl-long.254

13. Kenton, J.D.M.W.C., Toutanova, L.K.: Bert: Pre-training of deep bidirectional
transformers for language understanding. In: Proceedings of NAACL-HLT, pp.
4171–4186 (2019)

14. Kim, B., Ahn, J., Kim, G.: Sequential latent knowledge selection for knowledge-
grounded dialogue. In: International Conference on Learning Representations
(2019)

15. Komeili, M., Shuster, K., Weston, J.: Internet-augmented dialogue generation. In:
Proceedings of the 60th Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pp. 8460–8478 (2022)

16. Lester, B., Al-Rfou, R., Constant, N.: The power of scale for parameter-efficient
prompt tuning. In: Proceedings of the 2021 Conference on Empirical Methods in
Natural Language Processing, pp. 3045–3059 (2021)

https://doi.org/10.18653/v1/2021.findings-acl.222
https://doi.org/10.18653/v1/2022.acl-long.254
https://doi.org/10.18653/v1/2022.acl-long.254


540 J. Bai et al.

17. Lewis, M., et al.: Bart: Denoising sequence-to-sequence pre-training for natural
language generation, translation, and comprehension. In: Proceedings of the 58th
Annual Meeting of the Association for Computational Linguistics, pp. 7871–7880
(2020)

18. Lewis, P., et al.: Retrieval-augmented generation for knowledge-intensive nlp tasks:
Adv. Neural. Inf. Process. Syst. 33, 9459–9474 (2020)

19. Li, L., Xu, C., Wu, W., Zhao, Y., Zhao, X., Tao, C.: Zero-resource knowledge-
grounded dialogue generation. Adv. Neural. Inf. Process. Syst. 33, 8475–8485
(2020)

20. Li, X.L., Liang, P.: Prefix-tuning: Optimizing continuous prompts for generation.
In: Proceedings of the 59th Annual Meeting of the Association for Computational
Linguistics and the 11th International Joint Conference on Natural Language Pro-
cessing (Volume 1: Long Papers), pp. 4582–4597. Association for Computational
Linguistics, Online (Aug 2021). https://doi.org/10.18653/v1/2021.acl-long.353

21. Li, Y., Zhao, J., Lyu, M.R., Wang, L.: Eliciting knowledge from large pre-
trained models for unsupervised knowledge-grounded conversation. arXiv preprint
arXiv:2211.01587 (2022)

22. Li, Y., et al.: Knowledge-grounded dialogue generation with a unified knowledge
representation. In: Proceedings of the 2022 Conference of the North American
Chapter of the Association for Computational Linguistics: Human Language Tech-
nologies, pp. 206–218. Association for Computational Linguistics, Seattle, United
States (Jul 2022). https://doi.org/10.18653/v1/2022.naacl-main.15

23. Lian, R., Xie, M., Wang, F., Peng, J., Wu, H.: Learning to select knowledge for
response generation in dialog systems. In: IJCAI International Joint Conference
on Artificial Intelligence, p. 5081 (2019)

24. Liu, Y., et al.: Multilingual denoising pre-training for neural machine transla-
tion. Trans. Assoc. Comput. Linguist. 8, 726–742 (2020). https://doi.org/10.1162/
tacl a 00343

25. Liu, Z., et al.: Multi-stage prompting for knowledgeable dialogue generation. In:
Findings of the Association for Computational Linguistics: ACL 2022, pp. 1317–
1337 (2022)

26. Loshchilov, I., Hutter, F.: Fixing weight decay regularization in adam (2018)
27. Meng, C., et al.: Dukenet: A dual knowledge interaction network for knowledge-

grounded conversation. In: Proceedings of the 43rd International ACM SIGIR
Conference on Research and Development in Information Retrieval pp. 1151–1160
(2020)

28. Petroni, F., et al.: Language models as knowledge bases? In: Proceedings of the
2019 Conference on Empirical Methods in Natural Language Processing and the
9th International Joint Conference on Natural Language Processing (EMNLP-
IJCNLP), pp. 2463–2473 (2019)

29. Prabhumoye, S., Hashimoto, K., Zhou, Y., Black, A.W., Salakhutdinov, R.:
Focused attention improves document-grounded generation. In: Proceedings of the
2021 Conference of the North American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies, pp. 4274–4287 (2021)

30. Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., Sutskever, I., et al.: Language
models are unsupervised multitask learners. OpenAI Blog (2019)

31. Roller, S., et al.: Recipes for building an open-domain chatbot. In: Proceedings of
the 16th Conference of the European Chapter of the Association for Computational
Linguistics: Main Volume, pp. 300–325 (2021)

https://doi.org/10.18653/v1/2021.acl-long.353
http://arxiv.org/abs/2211.01587
https://doi.org/10.18653/v1/2022.naacl-main.15
https://doi.org/10.1162/tacl_a_00343
https://doi.org/10.1162/tacl_a_00343


KnowPrefix-Tuning 541

32. Schick, T., Schütze, H.: It’s not just size that matters: Small language models are
also few-shot learners. In: Proceedings of the 2021 Conference of the North Amer-
ican Chapter of the Association for Computational Linguistics: Human Language
Technologies, pp. 2339–2352 (2021)

33. Shin, T., Razeghi, Y., Logan IV, R.L., Wallace, E., Singh, S.: Autoprompt: Elic-
iting knowledge from language models with automatically generated prompts. In:
Proceedings of the 2020 Conference on Empirical Methods in Natural Language
Processing (EMNLP), pp. 4222–4235 (2020)

34. Shuster, K., Poff, S., Chen, M., Kiela, D., Weston, J.: Retrieval augmentation
reduces hallucination in conversation. In: Findings of the Association for Compu-
tational Linguistics: EMNLP 2021, pp. 3784–3803 (2021)

35. Sun, Q., et al.: Multimodal dialogue response generation. In: Proceedings of the
60th Annual Meeting of the Association for Computational Linguistics (Volume 1:
Long Papers), pp. 2854–2866. Association for Computational Linguistics, Dublin,
Ireland (May 2022). https://doi.org/10.18653/v1/2022.acl-long.204

36. Sun, Q., et al.: Stylized knowledge-grounded dialogue generation via disentangled
template rewriting. In: Proceedings of the 2022 Conference of the North Ameri-
can Chapter of the Association for Computational Linguistics: Human Language
Technologies, pp. 3304–3318. Association for Computational Linguistics, Seattle,
United States (2022). https://doi.org/10.18653/v1/2022.naacl-main.241

37. Sun, W., Shi, Z., Gao, S., Ren, P., de Rijke, M., Ren, Z.: Contrastive
learning reduces hallucination in conversations. CoRR abs/2212.10400 (2022).
arXiv:2212.10400

38. Vaswani, A., et al.: Attention is all you need. Adv. Neural Inform. Process. Syst.
30 (2017)

39. Wang, C., Liu, P., Zhang, Y.: Can generative pre-trained language models serve as
knowledge bases for closed-book qa? In: Proceedings of the 59th Annual Meeting
of the Association for Computational Linguistics and the 11th International Joint
Conference on Natural Language Processing (Volume 1: Long Papers), pp. 3241–
3251 (2021)

40. Xu, Y., et al.: Retrieval-free knowledge-grounded dialogue response generation with
adapters. In: Proceedings of the Second DialDoc Workshop on Document-grounded
Dialogue and Conversational Question Answering, pp. 93–107 (2022)

41. Zhao, L., et al.: Domain-oriented prefix-tuning: Towards efficient and generaliz-
able fine-tuning for zero-shot dialogue summarization. In: Proceedings of the 2022
Conference of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies, pp. 4848–4862. Association for Com-
putational Linguistics, Seattle, United States (Jul 2022). https://doi.org/10.18653/
v1/2022.naacl-main.357

42. Zhao, T., Zhao, R., Eskenazi, M.: Learning discourse-level diversity for neural
dialog models using conditional variational autoencoders. In: Proceedings of the
55th Annual Meeting of the Association for Computational Linguistics (Volume 1:
Long Papers), pp. 654–664 (2017)

43. Zhao, X., Fu, T., Tao, C., Wu, W., Zhao, D., Yan, R.: Learning to express in
knowledge-grounded conversation. In: Proceedings of the 2022 Conference of the
North American Chapter of the Association for Computational Linguistics: Human
Language Technologies, pp. 2258–2273. Association for Computational Linguistics,
Seattle, United States (Jul 2022). https://doi.org/10.18653/v1/2022.naacl-main.
164

https://doi.org/10.18653/v1/2022.acl-long.204
https://doi.org/10.18653/v1/2022.naacl-main.241
http://arxiv.org/abs/2212.10400
https://doi.org/10.18653/v1/2022.naacl-main.357
https://doi.org/10.18653/v1/2022.naacl-main.357
https://doi.org/10.18653/v1/2022.naacl-main.164
https://doi.org/10.18653/v1/2022.naacl-main.164


542 J. Bai et al.

44. Zhao, X., Wu, W., Xu, C., Tao, C., Zhao, D., Yan, R.: Knowledge-grounded dia-
logue generation with pre-trained language models. In: Proceedings of the 2020
Conference on Empirical Methods in Natural Language Processing (EMNLP), pp.
3377–3390 (2020)

45. Zhou, K., Prabhumoye, S., Black, A.W.: A dataset for document grounded conver-
sations. In: Proceedings of the 2018 Conference on Empirical Methods in Natural
Language Processing, pp. 708–713 (2018)

46. Zhou, X., Zhang, Y., Cui, L., Huang, D.: Evaluating commonsense in pre-trained
language models. In: Proceedings of the AAAI Conference on Artificial Intelligence.
vol. 34, pp. 9733–9740 (2020)



Learning Data Representations with Joint
Diffusion Models

Kamil Deja1,2(B) , Tomasz Trzciński1,2 , and Jakub M. Tomczak3
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Abstract. Joint machine learning models that allow synthesizing and
classifying data often offer uneven performance between those tasks or
are unstable to train. In this work, we depart from a set of empirical
observations that indicate the usefulness of internal representations built
by contemporary deep diffusion-based generative models not only for
generating but also predicting. We then propose to extend the vanilla dif-
fusion model with a classifier that allows for stable joint end-to-end train-
ing with shared parameterization between those objectives. The resulting
joint diffusion model outperforms recent state-of-the-art hybrid methods
in terms of both classification and generation quality on all evaluated
benchmarks. On top of our joint training approach, we present how we
can directly benefit from shared generative and discriminative represen-
tations by introducing a method for visual counterfactual explanations.

Keywords: Deep generative models · diffusion models · joint models

1 Introduction

Training a single machine learning model that can jointly synthesize new data
as well as to make predictions about input samples remains a long-standing goal
of machine learning [21,28]. Shared representations created with a combination
of those two objectives promise benefits on many downstream problems such as
calibration of model uncertainty [5], semi-supervised learning [26], unsupervised
domain adaptation [20] or continual learning [31].

Therefore, since the introduction of deep generative models such as Vari-
ational Autoencoders (VAEs) [24], a growing body of work takes advantage of
shared deep neural network-based parameterization and latent variables to build
joint models. For instance, [20,27,44,47] stack a classifier on top of latent vari-
ables sampled from a shared encoder. Similarly, [32,34] use normalizing flows to
obtain an invertible representation that is further fed to a classifier. However,
these approaches require modifying the log-likelihood function by scaling either
the conditional log-likelihood or the marginal log-likelihood. This idea, known as
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hybrid modeling [28], leads to the situation where models concentrate either on
synthesizing data or predicting but not on both of those tasks simultaneously.

We address existing joint models’ limitations and leverage the recently intro-
duced diffusion-based deep generative models (DDGM) [7,23,39]. This new fam-
ily of methods has become popular because of the unprecedented quality of the
samples they generate. However, relatively little attention was paid to their inner
workings, especially to the internal representations built by the DDGMs. In this
work, we fill this gap and empirically analyze those representations, validating
their usefulness for predictive tasks and beyond. Then, we introduce a joint diffu-
sion model, where a classifier shares the parametrization with the UNet encoder
by operating on the extracted latent features. This results in meaningful data
representations shared across discriminative and generative objectives.

We validate our approach in several use cases where we show how one part
of our model can benefit from the other. First, we investigate how DDGMs
benefit from the additional classifier to conditionally generate new samples or
alter original images. Next, we show the performance improvement our method
brings in the classification task. Finally, we present how we can directly benefit
from joint representations used by both the classifier and generator by creating
visual counterfactual explanations, namely, how to explain decisions of a model
by identifying which regions of an input image need to change in order for the
system to produce a specified output.

We can summarize the contributions of our work as follows:

– We provide empirical observations with insights into representations built
internally by diffusion models, on top of which we introduce a joint classi-
fier and diffusion model with shared parametrization.

– We introduce a conditional sampling algorithm where we optimize internal
diffusion representations with a classifier.

– We present state-of-the-art results in terms of joint modeling where our solu-
tion outperforms other joint and hybrid methods in terms of both quality of
generations and the classification performance.

2 Background

Joint Models. Let us consider two random variables: x ∈ X and y ∈ Y.
For instance, in the classification problem we can have X = R

D and Y =
{0, 1, . . . ,K − 1}. The joint distribution over these random variables could be
factorized in one of the following two manners, namely, p(x, y) = p(x|y)p(y) =
p(y|x)p(x). Following the second factorization gives us the conditional distribu-
tion p(y|x) (e.g., a classifier) and the marginal distribution p(x). For prediction,
it is enough to learn the conditional distribution, which is typically parame-
terized with neural networks. However, training the joint model with shared
parametrization has many advantages since one part of the model can positively
influence the other.
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Diffusion-Based Deep Generative Models. In this work, we follow the
formulation of Diffusion-based deep generative models as presented in [16,39].
Given a data distribution x0 ∼ q(x0), we define a forward noising process q
that produces a sequence of latent variables x1 through xT by adding Gaussian
noise at each time step t, with a variance of βt ∈ (0, 1), defined by a sched-
ule β1, ..., βT , namely, q(x1, . . . ,xT |x0) =

∏T
t=1 q(xt|xt−1), where q(xt|xt−1) =

N (xt;
√

1 − βtxt−1, βtI).
Following [18,23,43,45], we consider DDGMs as infinitely deep hierarchical

VAEs with a specific family of variational posteriors; namely, Gaussian diffusion
processes [39]. Therefore, for data point x0, and latent variables x1, . . . ,xT , we
want to optimize the marginal likelihood pθ(x0) =

∫
pθ(x0, . . . ,xT )dx1, . . . ,xT ,

where pθ(x0, . . . ,xT ) = p(xT )
∏T

t=0 pθ(xt−1|xt) is the backward diffusion pro-
cess with pθ(xt−1|xt) = N (xt−1;μθ(xt, t), Σθ(xt, t)).

We can define the variational lower bound as follows:

ln pθ(x0) ≥ Lvlb(θ) :=Eq(x1|x0)[ln pθ(x0|x1)]
︸ ︷︷ ︸

−L0

−DKL [q(xT |x0)‖p(xT )]
︸ ︷︷ ︸

LT

+

−
T∑

t=2

Eq(xt|x0)DKL [q(xt−1|xt,x0)‖pθ(xt−1|xt)]
︸ ︷︷ ︸

Lt−1

. (1)

that we further optimize with respect to the parameters of the backward diffu-
sion.

Training Objective. The authors of [16] notice that instead of estimating the
probability of previous latent variable p(xt−1|xt), we can predict the added noise
ε. Therefore, a single part of the variational lower bound is equal to:

Lt(θ) = Ex0,ε

[
β2

t

2σ2
t αt (1 − αt)

∥
∥ε − εθ

(√
αtx0 +

√
1 − αtε, t

)∥
∥2

]

, (2)

where ε ∼ N (0, I) and εθ(·, ·) is a neural network predicting the noise ε from xt.
In [16], it is also suggested to train the model with a simplified objective that

is a modified version of Eq. (2) without scaling, namely:

Lt,simple(θ) = Ex0,ε

[∥
∥ε − εθ

(√
αtx0 +

√
1 − αtε, t

)∥
∥2

]
. (3)

In practice, a single shared neural network is used for modeling εθ. For that end,
most of the works [16,23,33] use UNet architecture [36] that can be seen as a
specific type of an autoencoder. This is particularly relevant for this work since
we benefit from the Encoder – Decoder structure of the denoising DDGM model.

3 Related Work

Diffusion Models. There are several extensions to the baseline DDGM setup
that aim to improve the quality of sampled generations [16,18,23,40,41]. Several
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works propose to improve the quality of samples from DDGMs by conditioning
the generations with class identities [17,19,42]. Among those works, [7] intro-
duces a classifier-guided generation, where a gradient from an externally and
independently trained classifier is added in the process of backward diffusion to
guide the generation towards a target class. On top of this approach, [2] present
a tool for investigating the decision of a classifier by generating visual coun-
terfactual explanations with a diffusion model. In this work, we simplify both
of those methods benefiting from training a joint model with representations
shared between a diffusion model and a classifier.

Diffusion Models and UNet Representations. In [1] additional encoded
information to the score estimator is introduced, which allows using the score
matching loss function for learning data representations. The authors of [3] use
activations from the pre-trained diffusion UNet model for the image segmen-
tation task. Here, we first analyze how pre-trained models could be useful for
classification, and further propose a joint model that is trained end-to-end with
generative and discriminative losses. Other works consider data representations
from the UNet model within other generative models, e.g., a conditional UNet-
based variational autoencoder [10]. Additionally in [11] authors show the con-
nection between the UNet architecture and wavelet transformation, applying it
to the hierarchical VAEs. In this work, we show that indeed diffusion models
learn useful representations, and further take advantage of that fact in a shared
parameterization between a diffusion model and a classifier in a joint model.

Joint Training. Apart from latent variable joint models, in [13] authors show
that it is possible to use a shared parameterization (a neural network-based
classifier) to formulate an energy-based model. This Joint Energy-based Model
(JEM) could be seen as a classifier if a softmax function is applied to logits or
a generator if a Markov-chain Monte Carlo method is used to sample from the
model. Although it obtains strong empirical results, gradient estimators used to
train JEM are unstable and prone to diverging when optimization parameters
are not perfectly tuned, which limits the robustness and applicability of this
method. Alternatively, Introspective Neural Networks could be used for genera-
tive modeling and classification by applying a single parameterization [22,29,30].
The idea behind this class of models relies on utilizing a training procedure
that combines adversarial learning and contrastive learning. Similarly to JEMs,
sampling is carried out by running an MCMC method. In [14], the authors
improve the performance of JEM by introducing a variational-based approxi-
mator (VERA) instead of MCMC. Similarly, in [48] authors introduce JEM++,
an improvement over the JEM’s generative performance by applying a proximal
SGLD-based generation, and classification accuracy with informative initializa-
tion. From a conceptually different perspective, the authors of [49] propose an
implementation of a joint model based on the Vision Transformer [8] architec-
ture, that yields state-of-the-art result in terms of image classification. Here, we
propose to combine standard diffusion models with classifiers by sharing their
parameterization. Thus, our training is entirely based on the log-likelihood func-
tion and end-to-end, while sampling is carried out by backward diffusion instead
of any MCMC algorithm.
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4 Diffusion Models Learn Data Representations

Learning useful data representations is important for having a good generator
or classifier. Ideally, we would like to train a joint model that allows us to obtain
proper representations for both p(y|x) and p(x) simultaneously. In this work,
we investigate parameterizations of DDGMs and, in particular, the use of an
autoencoder as a denoising decoder pθ(xt−1|xt). Within this architecture, the
denoising function can be decomposed into two parts: encoding of the image at
the current timestep into a set of features Zt = e(xt) and then decoding it to
obtain xt−1 = d(Zt).

Fig. 1. Data representation zt in a UNet-based diffu-
sion model.

For the UNet architec-
ture, a set of features
obtained from an input is a
structure composed of sev-
eral tensors with image fea-
tures encoded to different
levels, Zt = {z1

t , z
2
t . . . zn

t }.
For all further experiments,
we propose to pool features
encoded by the same filter
and concatenate the aver-
aged representations into a
single vector zt, as presented
in Fig. 1 for n = 3. In particular, we can use average pooling to select average
convolutional filter activations to the whole input. Details of this procedure are
described in the Appendix B.1.

4.1 Diffusion Model Representations are Useful for Prediction

First, we verify whether averaged representations z0 extracted from an original
image x0 by the UNet contain information that is in some sense predictive. We
measure it with the classification accuracy of an MLP-based classifier fed with z0.
As presented in Fig. 2a, representations encoded in z0 are indeed very informative
and, in some cases (e.g., CIFAR-10), could lead to performance comparable to a
stand-alone classifier with the same architecture as the combination of the UNet
encoder and MLP but trained with the cross-entropy loss function. A similar
observation was made in [3], where the pre-trained diffusion model was used for
semantic image segmentation.

4.2 Diffusion Models Learn Features of Increasing Granularity

The next question is how the data representations zt differ with diffusion
timesteps t. To investigate this issue, we train an unsupervised DDGM on
the CelebA dataset, which we then use to extract the features zt at different
timesteps. On top of those representations, we fit a binary logistic regression
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Fig. 2. (a) The test-set accuracy of a stand-alone classifier compared to a classifier
trained on top of data representations from a pre-trained diffusion model extracted from
original images x0. (b) The area under the ROC curve (AUC) for logistic regression
models fit on data representations extracted with a pre-trained diffusion model at ten
different diffusion timesteps. High-grained features are already distinguishable at late
diffusion steps (closer to random noise), while low-grained features are only represented
at the earlier stage of the forward diffusion.

classifier for each of the 40 attributes in the dataset. In Fig. 2b, we show the per-
formance of those regression models for 6 different attributes when calculated
on top of representations from ten different diffusion timesteps. We observe that
the model learns different data features depending on the amount of noise added
to the original data sample. As presented in Fig. 2b, high-grained data features
such as hair color start to emerge at late diffusion steps (closer to the noise),
while low-grained features (e.g., necklace or glasses) are not present until the
early steps. This observation is in line with the works on denoising autoencoders
where authors observe similar behavior for denoising with different amounts of
added noise [4,12,50].

5 Method

5.1 Joint Diffusion Models: DDGMs with Classifiers

Taking into account the observations described in Sect. 4, we propose to train a
joint model that is composed of a classifier and a DDGM. We propose to use a
shared parameterization, namely, a shared encoder of the UNet architecture that
serves as the generative part and for calculating pooled features for the classifier.
We pool the latent representations of the data from different levels of the UNet
architecture into one vector z. On top of this vector, we build a classifier model
trained to assign a label to the data example represented by the vector z.

In particular, we consider the following parameterization of a denoising dif-
fusion model within a single diffusion timestep t, pθ(zt−1|zt). We distinguish
the encoder eν with parameters ν that maps input xt into a set of vectors
Zt = eν(xt), where Zt = {z1

t , z
2
t . . . zn

t }, i.e., a set of representation vectors
derived from each depth level of the UNet architecture. The second compo-
nent of the denoising diffusion model is the decoder dψ with parameters ψ that
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reconstructs feature vectors into a denoised sample, xt−1 = dψ(Zt). Together
the encoder and the decoder form the denoising model pθ with parameters
θ = {ν, ψ}. Next, we introduce a third part of our model, which is the clas-
sifier gω with parameters ω that predicts target class ŷ = gω(Zt). The first layer
of the classifier is the average pooling that results in a single representation zt.

Fig. 3. The parameterization of our joint diffusion model. (a) Each step in the back-
ward diffusion is parameterized by a shared UNet. The classifier uses the encoder of the
UNet together with the average pooling (green) and additional layers (yellow). (b) An
alternative training that additionally uses the classifier for noisy images xt (t > 0).
(Color figure online)

In our approach, we consider a classifier that takes the original image x0

for which a vector of probabilities is returned ϕ and eventually the final predic-
tion is calculated, ŷ = gω(x0). The visualization of our shared parameterization
is presented in Fig. 3(a). As a result, our model could be written as follows
pν,ψ,ω(x0:T , y) = pν,ω(y|x0) pν,ψ(x0:T ), and applying the logarithm yields:

ln pν,ψ,ω(x0:T , y) = ln pν,ω(y|x0) + ln pν,ψ(x0:T ). (4)

The logarithm of the joint distribution (4) could serve as the training objective,
where ln pθ(x0:T ) could be either approximated by the ELBO (1) or the simplified
objective with (3). Here, we use the simplified objective:

Lt,diff(ν, ψ) = Ex0,ε

[
‖ε − ε̂‖2

]
, (5)

where ε̂ is a prediction from the decoder:

{z1
t , z

2
t . . . zn

t } = eν

(√
αtx0 +

√
1 − αtε, t

)
(6)

ε̂ = dψ({z1
t , z

2
t . . . zn

t }). (7)

For the classifier, we use the logarithm of the categorical distribution:

Lclass(ν, ω) = −Ex0,y

[
K−1∑

k=0

1[y = k] log
exp (ϕk)

∑K−1
c=0 exp (ϕc)

]

, (8)

which is the cross-entropy loss, and where y is the target class, ϕ is a vector of
probabilities returned by the classifier gω(eν(x0)), and 1[y = k] is the indicator
function that is 1 if y equals k, and 0 otherwise.
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The final loss function in our approach is then the following:

L(ν, ψ, ω) = Lclass(ν, ω) − L0(ν, ψ) −
T∑

t=2

Lt,diff(ν, ψ) − LT (ν, ψ).

We optimize the objective in (9) wrt. {ν, ψ, ω} with a single optimizer.

5.2 An Alternative Training of Joint Diffusion Models

The training of the proposed approach over a batch of data is straightforward:
For given (x0, y), the example x0 is first noised with a forward diffusion to
a random timestep, xt, so that the training loss for the denoising model is a
Monte-Carlo approximation of the sum over all timesteps. Then x0 is fed to a
classifier that returns probabilities ϕ, and the cross-entropy loss is calculated for
given y.

As discussed in Sect. 4.2, the diffusion model trained even in a fully unsuper-
vised manner provides data representations related to the different granularity of
input features at various diffusion timesteps. Thus, we can improve the robust-
ness of our method by applying the same classifier to intermediate noisy images
xt (0 < t < T ), which by reason adds the cross-entropy losses for xt, namely:

Lt
class(ν, ω) = −Ex0,y

[
K−1∑

k=0

1[y = k] log
exp (ϕt

k)
∑K−1

c=0 exp (ϕt
c)

]

, (9)

where ϕt
k is a vector of probabilities given by gω(eν(xt)). Then the extended

objective (9) is the following:

LT (ν, ψ, ω) = L(ν, ψ, ω) +
∑

t∈T
Lt

class(ν, ω), (10)

where T ⊆ {1, 2, . . . , T} is the set of timesteps. These additional noisy classifiers
are schematically depicted in Fig. 3(b) in which we highlight that the model is
reused across various noisy images. It is important to mention that the noisy
classifiers serve only for training purposes; they are not used for prediction. This
procedure is similar to the data augmentation technique, where random noise is
added to the input [38].

5.3 Conditional Sampling in Joint Diffusion Models

To improve the quality of samples generated by DDGM, [7] propose a classifier
guidance approach, where an externally trained classifier can be used to guide
the generation of the DDGM trained in an unsupervised way towards the desired
class. In DDGMs, at each backward diffusion step, an image is sampled from the
output of the diffusion model pθ according to the following formula:

μ,Σ ←μθ (xt) , Σθ (xt)
xt−1 ← sample from N (μ,Σ)

(11)
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It was proposed in [7] to change the second line of this equation and add a scaled
gradient with respect to the target class from an externally trained classifier c(·)
directly to the output of the denoising model:

xt−1 ← sample from N (μ + sΣ∇xt
c(xt), Σ) , (12)

where s is a gradient scale.
With the joint training of a classifier and diffusion model introduced in this

work, we propose to simplify the classifier guidance technique. Using the alter-
native training introduced in Sect. 5.2, we can use noisy classifiers to formulate
conditional sampling. The encoder model eν encodes input data xt into the
representation vectors Zt that are used to both denoise an example into the
previous diffusion timestep xt−1 ∼ dψ (Zt) as well as to predict the target label
with a classifier ŷ = gω (Zt). Therefore, to guide the model towards a target
label during sampling, we propose optimizing the representations Zt according
to the gradient calculated through the classifier with respect to the desired class.
The overview of this procedure is presented in Algorithm 1.

Algorithm 1 Sampling with optimized representations
given a diffusion model (an encoder eν(Zt|xt), a decoder
dφ(xt−1|Zt)), a classifier gω(y|Zt), and a step size α.

Input: class label y, step size α
xT ← sample from N (0, I)
for all t from T to 1 do

Zt ← eν(xt)
Z ′

t ← Zt − α∇Zt log gω(y|Zt)
μ, Σ ← dψ(Z ′

t)
xt−1 ← sample from N (μ, Σ)

end for
return x0

For the reformulation of the diffusion model proposed by [16] where instead
of predicting the previous timestep xt−1 denoising model is optimized to pre-
dict noise ε that is subtracted from the image at the current timestep xt, we
adequately change the optimization objective. Instead of optimizing the noise
to be specific to the target class, we optimize it to be anything except for
the target class, which we implement by changing the optimization direction:
Z ′

t ← Zt + α∇Zt
log gω(y|Zt).

6 Experiments

In the experiments, we aim for observing the benefits of the proposed joint
diffusion model over a stand-alone classifier or a marginal diffusion model. To
that end, we run a series of experiments to verify various properties, namely:
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– We measure the quality on a discriminative task, to evaluate whether training
together with a diffusion model improves the robustness of the classifier.

– We measure the generative capability of our model to check if representations
optimized by the classifier can lead to more accurate conditional generations.

– We show that our joint model learns abstract features that can be used for
the counterfactual explanation.

We use a UNet-based model with a depth level of three in all experiments. We
pool its latent features with average pooling into a single vector, on top of which
we add a classifier with two linear layers and the LeakyReLU activation. All
metrics are reported for the standard training with the objective in (9), except
for the conditional sampling where we additionally train the classifier on noisy
samples, i.e., additional losses as in (10). Hyperparameters and training details
are included in Appendix and code repository1.

6.1 Predictive Performance of Joint Diffusion Models

In the first experiment, we evaluate the predictive performance of our method.
To that end, we report the accuracy of our model on four datasets: Fashion-
MNIST, SVHN, CIFAR-10, and CIFAR-100. We compare our method with a
baseline classifier trained with a standard cross-entropy loss and the MLP clas-
sifier trained on top of representations extracted from the pre-trained DDGM as
in Sect. 4, and three joint (hybrid) models: VERA [14], JEM++ [48], HybViT
[49]. The results of this experiment are presented in Table 1.

Table 1. The classification accuracy calculated on the test sets. For each training of
our methods and the vanilla classifier, we used exactly the same architectures.

Model F-MNIST SVHN CIFAR-10 CIFAR-100

VERA [14] – 96.8% 93.2% 72.2%

JEM++ [48] – 96.9% 94.1% 74.5%

HybViT [49] – – 95.9% 77.4%

Classifier 94.7% 96.9% 94.0% 72.3%

Ours (pre-trained DDGM) 60.6% 79.6% 80.9% 45.9%

Ours 95.3% 97.4% 96.4% 77.6%

As noticed before, a classifier trained on features extracted from the UNet of a
DDGM pre-trained in an unsupervised manner achieves reasonable performance.
However, it is always outperformed by a stand-alone classifier. The proposed joint
diffusion model achieves the best performance on all four datasets. The reason
for that could be two-fold. First, training a partially shared neural network (i.e.,
the encoder in the UNet architecture) benefits from the unsupervised training,

1 https://github.com/KamilDeja/joint diffusion.

https://github.com/KamilDeja/joint_diffusion
https://github.com/KamilDeja/joint_diffusion
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similarly to how the pre-training using Boltzmann machines benefited finetuning
of deep neural networks [15]. Second, the shared encoder part is more robust since
it is used in the backward diffusion for images with various levels of noise.

6.2 Generative Performance of Joint Diffusion Models

In the second experiment, we check how adding a classifier in our joint diffu-
sion models influences the generative performance. We use the FID score to
quantify the quality of data synthesis. Additionally, we use distributed Precision
(Prec), and Recall (Rec) for assessing the exactness and diversity of generated
samples [37]. For our joint diffusion model, we consider samples from the prior
let through the backward diffusion. We also use the second sampling scheme
in which we use conditional sampling, namely, the optimization procedure as
described in Sect. 5.3. We compare our approach with a vanilla DDGM, and
a DDGM with classifier guidance [7], and recent state-of-the-art joint (hybrid)
models: VERA [14], JEM++ [48], HybViT and GenViT [49].

Table 2. An evaluation of generative capabilities by measuring the FID score, Preci-
sion and Recall of generations from various diffusion-based models, including our joint
diffusion model.

Model FashionMNIST CIFAR-10 CIFAR-100 CelebA

FID ↓ Prec ↑ Rec ↑ FID ↓ Prec ↑ Rec ↑ FID ↓ Prec ↑ Rec ↑ FID ↓ Prec ↑ Rec ↑
DDGM 7.8 71.5 65.3 7.2 64.8 61.2 29.7 70.0 47.8 5.6 66.5 58.7

DDGM (classifier guidance) 7.9 66.6 59.5 8.1 63.2 63.3 22.1 69.3 46.9 4.9 66.0 57.8

Ours 8.7 71.1 61.1 7.9 69.9 56.4 17.4 63.2 54 7.0 67.5 51.5

Ours (conditional sampling) 5.9 63.1 63.2 6.4 70.7 54.3 16.8 63.5 54.1 4.8 66.3 56.5

Table 3. A comparison of generative capabilities of joint models by measuring the FID
score.

Model CIFAR-10 CIFAR-100 CelebA

FID ↓ FID ↓ FID ↓
VERA [14] 27.5 – –

JEM++ [48] 37.1 – –

HybViT [49] 26.4 33.6 –

GenViT [49] 20.2 26.0 22.07

Ours 7.9 17.4 7.0

Ours (conditional sampling) 6.4 16.8 4.8

Overall, our proposition outperforms standard DDGMs regarding the general
FID, see Table 2. However, in some cases, the vanilla DDGM and the DDGM
with the classifier guidance obtain better results in terms of the particular
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components: Precision (FashionMNIST, CIFAR-100) or Recall (FashionMNIST,
CelebA). We can observe that conditional sampling improves the quality of gen-
erations in all evaluated benchmarks, especially in terms of precision that can
be understood as the exactness of generations. This could result from the fact
that the optimization procedure drives Zt to a mode. Eventually, the backward
diffusion generates better samples. However, comparing our approach to current
state-of-the-art joint models, we clearly outperform them all, see Table 3.

To get further insight into the role of conditional sampling, we carried out
an additional study for the varying value of α (the step size in Algorithm 1). In
Fig. 4, we present how Precision and Recall change for different values of this
parameter. Apparently, increasing the step size value α leads to more precise
but less diverse samples. This is rather intuitive behavior because larger steps
result in features Zt closer to modes. There seems to be a sweet spot around
α ∈ [100, 250] for which both measures are high. Moreover, we visualize the effect
of taking various values of α in Fig. 5. For a chosen class, e.g., plane, we observe
that the larger α, the samples are more precise but they lack diversity (i.e., the
background is almost the same).

Fig. 4. The dependency between the value of the step size α and the value of Precision
and Recall for the joint diffusion with conditional sampling.

Fig. 5. Samples from our joint diffusion model optimized towards a specific class (here:
plane) with different step sizes α.
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In Fig. 6 we present how the decision of the classifier changes for sampling
with the optimized generations. With a higher α step size value, optimization
converges faster towards target classes. For the CIFAR10 dataset, there are cer-
tain classes (e.g., class 3) that converge later in the backward diffusion process
than the others. We also present associated samples from our model. Once more,
they depict that higher values of the α parameter lead to more precise but less
diverse samples. We show more generations from our model in the Appendix C.

Fig. 6. CIFAR10: Classifier decisions at different diffusion steps, for conditional sam-
pling with different values of step size α and associated conditional samples

6.3 A Comparison to State-of-the-Art Joint Approaches

To get a better overview of the performance of our joint diffusion model, we
present a comparison with other joint models and SOTA discriminative and
generative models in Table 4. The purely discriminative and generative models
are included as the upper bounds of the performance. Within the class of the
joint models, our joint diffusion clearly outperforms all of the related works.

Table 4. A comparison of our joint diffusion model with other joint models, and the
SOTA discriminative model, and the SOTA generative model on the CIFAR-10 test
set.

Class Model Accuracy% ↑ FID↓
Joint IGEBM [9] 49.1 37.9

Glow [25] 67.6 48.9

Residual Flows [6] 70.3 46.4

JEAT [13] 85.2 38.2

JEM [13] 92.9 38.4

VERA (α = 100) [14] 93.2 30.5

JEM++ [48] 94.1 38.0

HybViT [49] 95.9 26.4

Ours 96.4 7.9

Disc. VIT-H [8] 99.5 –

Gen. DDGM (our implementation) – 7.2

LSGM [46] – 2.1
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6.4 Visual Counterfactual Explanations

In the last experiment, we apply our joint diffusion model to real-world medical
data, the MALARIA dataset [35], that includes 27,558 cell images that are either
infected by the malaria parasite or not (a classification task). The cells have
various shapes and different staining (i.e., colors) and contain or not the parasite
(visually apparent as a purple dot).

After training our joint diffusion model, we obtain high classification accu-
racy (98%) on the test set. On top of this, we introduce an adaptation of visual
counterfactual explanations (VCE) method [2] that provides an answer to the
question: What is the minimal change to the input image x0 to change the deci-
sion of the classifier. In our setup, we answer this question with a conditional
sampling algorithm that we use to generate the counterfactual explanations.

In Fig. 7, we show a few examples from the negative (left) or positive (right)
classes. We add 20% of noise to these images and run conditional sampling with
the opposite class (i.e., changing negative examples to positive ones and vice
versa). In both cases, the joint diffusion model with conditional sampling can
either remove the parasite from the positive examples or add the parasite to the
negative ones. All presented images are not cherry-picked.

Fig. 7. Data samples from the Malaria dataset classified as negative examples (left) or
parasitized cells (right). (top row) original data examples, (2nd row) data noised with
20% of forward diffusion steps, (3rd row) denoised images with conditional sampling,
(bottom row) the difference between the 3rd and 4th rows.

This experiment shows that not only we can use our proposed approach to
obtain a powerful classifier but also to visualize its regions of interest. In the
considered case, calculating the difference between the original example and the
image with a changed class label indicates the malaria plasmodium (see the last
row in Fig. 7). We provide more examples from the CelebA data in Appendix D.
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7 Conclusion

In this work, we introduced a joint model that combines a diffusion model and
a classifier through shared parameterization. We first experimentally demon-
strated that DDGMs learn semantically meaningful data representations that
could be used for classification. On top of this observation, we introduced our
joint diffusion models. In the experimental section, we showed that our approach
improves the performance in both the classification and generative tasks, provid-
ing high-quality generations and enabling conditional generations with built-in
classifier guidance. Our proposed approach achieves state-of-the-art performance
in the class of joint models. Additionally, we show that the joint diffusion model
can be used for visual counterfactual explanations without any changes to the
original setup.
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Abstract. This work introduces MiDi, a novel diffusion model for
jointly generating molecular graphs and their corresponding 3D atom
arrangements. Unlike existing methods that rely on predefined rules to
determine molecular bonds based on the 3D conformation, MiDi offers
an end-to-end differentiable approach that streamlines the molecule gen-
eration process. Our experimental results demonstrate the effectiveness
of this approach. On the challenging GEOM-DRUGS dataset, MiDi gen-
erates 92% of stable molecules, against 6% for the previous EDM model
that uses interatomic distances for bond prediction, and 40% using EDM
followed by an algorithm that directly optimizes bond orders for validity.
Our code is available at github.com/cvignac/MiDi.

Keywords: Diffusion Model · Drug Discovery · Graph Generation

1 Introduction

Modern drug discovery requires the development of effective machine learning
models that can correctly capture the vast chemical space and sample from it.
These models need to understand properties of molecules that depend both on
their molecular graph and their conformation in the 3D space. The molecular
graph (or 2D structure) determines the existence and type of the chemical bonds
and allows the identification of functional groups in a compound. This provides
information about its chemical properties and enables to predict synthetic path-
ways. On the other hand, the 3D conformation of a compound plays a key role in
its interaction with other molecules, and governs in particular its biological activ-
ity and binding affinity to proteins. To explore the chemical space adequately, it
is therefore crucial to consider both aspects simultaneously.

Unfortunately, existing generative models for molecules are restricted to one
of these two data modalities. While models that exclusively generate molecular
graphs have been vastly researched [8], current 3D molecule generation are on the
contrary only trained to generate conformers, thus ignoring bond information.
These models rely on a subsequent step that predicts the 2D structure using
either interatomic distances [16,37] or chemical software such as OpenBabel
[11]. As a result, these models are not end-to-end differentiable, which hampers
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Fig. 1. Samples from our model. MiDi generates simultaneously a 2D graph structure
and a 3D conformation that is consistent with this structure.

their ability to be fully optimized for various downstream tasks. This severely
limits the potential of 3D molecule generators, particularly for complex tasks
like pocket-conditioned generation (Fig. 1).

We propose here a new model, called Mixed Graph+3D Denoising Diffusion
(MiDi), which overcomes this limitation by simultaneously generating a molec-
ular graph and its corresponding 3D coordinates. MiDi represents molecules
as graphs embedded in 3D that contain node features (atom types and formal
charges) and edges features (bond types). Our model progressively corrupts data
with noise and trains a neural network to predict clean data from noisy inputs.
New molecules can then be generated by sampling pure noise and iteratively
denoising it with the neural network, similarly to other diffusion models [14,42].
As the model is trained to denoise both the graph and 3D coordinates in tan-
dem, it is able to produce stable molecular graphs that are consistent with the
generated conformers.

While previous diffusion models for molecules relied on either Gaussian noise
or discrete diffusion, MiDi uses both noise models simultaneously: the 3D coordi-
nates are corrupted with Gaussian noise, while the other components use discrete
diffusion which was found to be effective for graph generation [12,47]. To fur-
ther enhance the quality of the generated samples, we introduce a noise schedule
whose parameters are adjusted to each component. Specifically, we add noise to
the atom types and formal charges at a faster rate than to the coordinates and
bond types. This encourages the denoising network to first focus on generating
a realistic 3D conformation and corresponding bond types, before refining the
atom types and formal charges.

Our second contribution considers the denoising network: the Transformer
architecture we propose incorporates a novel rEGNN layer, which improves upon
the popular EGNN layers [39] by leveraging features that are not translation-
invariant. We show that, due to the use of Gaussian noise in the zero center-of-
mass subspace of the molecules, the resulting model is nevertheless equivariant
to translations and rotations, which is crucial for achieving high performance.

We showcase the effectiveness of our model on unconditional molecule gen-
eration. On the challenging GEOM-DRUGS dataset, the previous EDM model
[16] can generate stable molecules at a rate of 5.5%, which can be improved to
40.3% by using the Open Babel bond prediction algorithm [35]. In contrast, the
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proposed method achieves 91.6% of stable molecules, demonstrating the superi-
ority of our end-to-end differentiable approach. Furthermore, MiDi can be readily
applied to various drug-discovery tasks beyond unconditional generation, which
confirms its versatility and potential for improving drug discovery pipelines.

2 Related Work

Concurrent Work. Concurrently to our work, [17,36] also proposed 2D+3D
diffusion models for molecule generation. These models also leverage Gaussian
diffusion for the 3D coordinates and discrete diffusion for the graph, using
absorbing transitions in [36] and uniform transitions in [17]. Each model also
features unique contributions: [17] proposes richer positional encodings for the
transformer layer, while [36] introduces a guidance mechanism to help the net-
work predict accurate bond lengths. MiDi is the only model that improves upon
the standard EGNN layers, and that is capable of handling formal charges. It is
also the only model that presents results on the more complex GEOM-DRUGS
dataset with explicit hydrogens.

Molecule Generation in 3D. The idea of representing molecules as attributed
3D point cloud has been used both in one-shot settings [37] and in autoregres-
sive methods such as GSchNet [11]. Recently, the Equivariant Diffusion Model
(EDM) [16] was proposed for this task, improving significantly over previous
results. This model was later extended by limiting the message-passing compu-
tations to neighbouring nodes [19] and using a more expressive denoising network
[34]. All these diffusion models can be conditioned on molecule-level properties
using guidance mechanisms [4] or on another point cloud. Conditioning on a
second point cloud has been employed to generate molecules that bind to a spe-
cific protein [7,40] and to generate linkers between molecular fragments [20].
The main drawback of these models is that they do not learn the connectiv-
ity structure of the molecule. It needs to be obtained in a second stage using
interatomic distances [16,37] or specialized software such as Open Babel [35].
This results in limited performance for complex molecules, but also prevents
end-to-end differentiability for downstream applications.

Graph Generation. Another line of work has focused on generating graphs
without associated 3D coordinates. Early denoising diffusion models for this task
used Gaussian noise applied to the adjacency matrix [18,25] or graph eigenvalues
[30]. [12,47] however found that discrete diffusion is more effective, as it better
respects the discrete nature of graphs. These diffusion models tend to outperform
autoregressive methods except on validity metrics, as autoregressive models can
perform validity checks at each sampling step [27,29,33]. In contrast to the
proposed method, which operates at the node level, fragment-based methods
[13,24,32] learn to combine chemically relevant substructures from a fixed or
learned dictionary [48] but are harder to adapt to 3D.



MiDi 563

Table 1. Gaussian and categorical distributions enable the efficient computation of the
key quantities involved in training diffusion models and sampling from them. Formulas
for all parameters can be found in Sect. 3.

Noise model Gaussian diffusion Discrete diffusion

q(zt|zt−1) N (αtzt−1, σ2
t I) zt−1 Qt

q(zt|x) N (ᾱtx, σ̄2
t I) x Q̄t

∫
x

pθ(zt−1|x, zt)dpθ(x|zt) N (μtx̂ + νtzt, σ̃
2
t I) ∝ ∑

x pθ(x)(ztQ
′
t � xQ̄t−1)

In order to generate molecules in 3D, graph-based models could be com-
bined with conformer generation models [7,52] which predict a 3D structure
from an input graph. As these methods assume that the graph is known, they
are able to exploit symmetries of the molecule (such as rotatable bonds), which
is more difficult on unconditional generation tasks. Unfortunately, combining
graph generation and conformer generation models would again break end-to-
end differentiability and restrict performance.

Protein Generation. While existing diffusion models for molecules operate on
molecules of moderate size (up to 180 atoms), recent diffusion models for proteins
have managed to scale to much larger structures [21,41,49,50]. These methods
leverage the chain structure of proteins, which implies that the adjacency matrix
does not need to be predicted. Furthermore, instead of predicting 3D coordinates
for each atom, they only predict the angles between successive Cα carbons,
which significantly reduces the degrees of freedom and encodes roto-translation
invariance in the representation. Those improvements are unfortunately specific
to chain graphs and cannot be used for arbitrary molecules.

3 Background

Denoising Diffusion Models. Diffusion models consist of two essential ele-
ments: a noise model and a denoising neural network. The noise model q takes
as input a data point x and generates a trajectory of increasingly corrupted data
points (z1, ..., zT ). The corruption process is chosen to be Markovian, i.e.,

q(z1, . . . , zT |x) = q(z1|x)
T∏

t=2

q(zt|zt−1).

The denoising network φθ takes noisy data zt as input and learns to invert
the diffusion trajectories. While it would be natural to naively train the network
to predict zt−1, this strategy would lead to noisy targets, as zt−1 depends on
the sampled diffusion trajectory. Instead, modern diffusion models [14,42,43]
predict the clean input x from zt, or equivalently, the noise added to it.
The diffusion sequences are then inverted by marginalizing over the network
predictions pθ(x|zt):
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pθ(zt−1|zt) =
∫

x

pθ(zt−1 | x, zt) dpθ(x|zt) (1)

Although Eq. 1 leads to more efficient training, it requires the efficient com-
putation of pθ(zt−1|x, zt) and the integral, which is not always possible. Two
main frameworks have been proposed under which Eq. 1 is tractable: Gaussian
noise, which is suitable for continuous data, and discrete state-space diffusion
for categorical data. Table 1 summarizes the main properties of the two related
noise models.

Gaussian diffusion processes are defined by q(zt|zt−1) ∼ N (αtzt, σ
2
t I), where

(αt)t≤T controls how much signal is retained at each step and (σt)t≤T how much
noise is added. As normal distributions are stable under composition, we have
q(zt|x) ∼ N (ᾱtzt, σ̄

2
t I), with ᾱt =

∏t
s=1 αs and σ̄2

t = σ2
t − α2

t . While any noise
schedule is in principle possible, variance-preserving processes are most often
used, which satisfy ᾱ2

t + σ̄2
t = 1. The posterior of the transitions conditioned on

x can also be computed in closed-form. It satisfies

q(zt−1|zt, x) ∼ N (μt x + νt zt, σ̃
2
t I),

with μt = ᾱs(1 − α2
t σ̄

2
t−1/σ̄2

t ), νt = αtσ̄
2
t−1/σ̄2

t and σ̃t = σ̄2
t−1(1 − α2

t σ̄
2
t−1/σ̄2

t ).

On the contrary, discrete diffusion considers that data points x belong to
one of d classes [1]. The transition matrices (Q1, ...,QT ) are square matri-
ces of size d × d that represent the probability of jumping from one class to
another at each time step. Given previous state zt−1, the noise model for the
next state zt is a categorical distribution over the d possible classes which reads
as q(zt|zt−1) ∼ C(zt−1Qt), where zt−1 is a row vector encoding the class of
zt−1. Since the process is Markovian, we simply have q(zt = j|x) = [xQ̄t]j with
Q̄t = Q1Q2...Qt. The posterior distribution q(zt−1|zt, x) can also be computed
in closed form using Bayes rule and the Markovian property. If � denotes a
pointwise product and Q′ is the transpose of Q, it can be written as

q(zt−1|zt, x) ∝ zt (Qt)′ � x Q̄t−1.

SE(3)-Equivariance with Diffusion Models. Molecules are dynamic entities
that can undergo translation and rotation, and the arrangement of their atoms
does not have a predetermined order. To effectively model molecules using gener-
ative models and avoid augmenting the data with random transformations, it is
essential to ensure that the models are equivariant to these inherent symmetries.
In diffusion models, equivariance to a transformation group G can be achieved
through several conditions. First, the noise model must be equivariant to the
action of G: ∀g ∈ G, q(g.zt|g.x) = q(zt|x). Second, the prior distribution q∞ used
at inference should be invariant to the group action, i.e., q∞(g.zT ) = q∞(zT ),
and this noise should be processed by an equivariant neural network in order to
ensure that pθ(g.zt−1|g.zt) = pθ(zt−1|zt). Finally, the network should be trained
with a loss function that satisfies l(pθ(g.x|g.zt), g.x) = l(pθ(x|zt), x). Together,
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these requirements create an architecture that is agnostic to the group elements
used to represent the training data [16,47,52].

To ensure equivariance to the special Euclidean group SE(3), a number of
architectures have been proposed as possible denoising networks for a diffusion
model [5,10,28,44]. However, these networks can be computationally expensive
due to their manipulation of spherical harmonics. As a result, many generative
models for molecules [15,19,20,40] use the more affordable EGNN layers [39].
At a high level, EGNN recursively updates the coordinates (ri) of a graph with
node features (xi) and edge features (yij) using:

ri ← ri +
∑

j

cij m(||ri − rj ||,xi,xj ,yij)(rj − ri)

The crucial feature of this parameterization is that the message function m
takes only rotation-invariant arguments. This, combined with the linear term in
rj − ri, ensures that the network is rotation-equivariant. Finally, we note that
the normalization term cij = ||ri − rj || + 1 is necessary for numerical stability
when concatenating many layers.

4 Proposed Model

We now present the Mixed Graph+3D denoising diffusion (MiDi) model. We
represent each molecule as a graph G = (x, c,R,Y ), where x and c are vectors
of length n containing the type and formal charge associated to all atoms. The
n × 3 matrix R = [ri]1≤i≤n contains the coordinates of each atom, and Y is an
n × n matrix containing the bond types. Similarly to previous diffusion models
for graphs, we consider the absence of a bond as a particular bond type and
generate dense adjacency tensors. We denote the one-hot encoding of x, c, and
Y by X, C, and Y, respectively. Time steps are denoted by superscripts, so,
for example, rt

i denotes the coordinates of node vi at time t. The transpose of
matrix X is denoted by X ′.

4.1 Noise Model

Our noise model corrupts the features of each node and edge independently,
using a noise model that depends on the data type. For the positions, we use a
Gaussian noise within the zero center-of-mass (CoM) subspace of the molecule
ε ∼ NCoM(αtRt−1, (σt)2I), which is required to obtain a roto-translation equiv-
ariant architecture [52]. This means that the noise follows a Gaussian distribution
on the linear subspace of dimension 3(n − 1) that satisfies

∑n
i=1 εi = 0.

For atom types, formal charges and bond types, we use discrete diffusion,
where the noise model is a sequence of categorical distributions. We choose
the marginal transition model proposed in [47]. For instance, when m ∈ R

a

represents the marginal distribution of atom types in the training set, we define
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Fig. 2. The noise schedule is tuned separately for each component. Atom coordinates
and bond types are denoised earlier during sampling, while atom types and formal
charges are updated later in the process. Experimentally, the adaptive schedule allows
to obtain better 3D conformers and more stable molecules.

Qt
x = αtI +βt 1am′. We similarly define Qt

c and Qt
y. The resulting noise model

is given by:

q(Gt|Gt−1) ∼ NCoM(αtRt−1, (σt)2I)×C(Xt−1Qt
x)×C(Ct−1Qt

c)×C(Yt−1Qt
y).

When generating new samples, we define the posterior as a product as well:

pθ(Gt−1|Gt) =
∏

1≤i≤n

pθ(rt−1
i |Gt)pθ(xt−1

i |Gt)pθ(ct−1
i |Gt)

∏

1≤i,j≤n

pθ(Y t−1
ij |Gt),

We calculate each term by marginalizing over the network predictions. For
instance,

pθ(xt−1
i |Gt) =

∫

xi

pθ(xt−1
i | xi, G

t) dpθ(xi|Gt)

=
∑

x∈X
q(xt−1

i |xi = x,Gt) pX
θ (xi = x),

where pX
θ (xi = x) is the neural network estimate for the probability that node

vi in the clean graph G is of type x.

4.2 Adaptive Noise Schedule

Although the MiDi model corrupts the coordinates, atom types, bond types and
formal charges simultaneously, these components do not play a symmetrical role.
For instance, while the 2D connectivity structure can be predicted relatively well
from the 3D conformation, the converse is not true as the conformation is not
unique for a given structure. Similarly, the formal charges serve as an adjustable
variable used to match the valency of each atom with its electronic structure,
but they do not constitute a very fundamental property of the molecules.



MiDi 567

Based on these observations, we propose an adaptation of the noise model
in order to encourage the denoising network to first generate correctly the most
important components, namely the atom coordinates and bond types, before
moving on to predict the atom types and formal charges. To achieve this, we
modify the noise schedule to vary according to the component. We modify the
popular cosine schedule by adding an exponent ν that controls the rate at which
the noise is added to the model:

ᾱt = cos
(

π

2
(t/T + s)ν

1 + s

)2

,

where the parameter ν can take the form of νr, νx, νy and νc for the atom
coordinates, types, bond types, and charges, respectively. On the QM9 dataset,
we use νr = 2.5, νy = 1.5, νx = νc = 1, while GEOM-DRUGS uses νr = 2.
The noise schedule used for QM9 is shown in Fig. 2. This choice means that
rough estimates for the atom coordinates and the bond types are first generated
at inference, before the other components start to play a significant role. This
aligns with previous work on 2D molecular graph generation which found that
predicting the bond types before the atom types is beneficial [31,46].

4.3 Denoising Network

The denoising network takes a noisy graph as input and learns to predict the
corresponding clean graph. It manipulates graph-level features w, node coor-
dinates R, node features (atom types and formal charges, treated together in
the matrix X), and edge features Y. Coordinates are treated separately from
the other node features in order to guarantee SE(3) equivariance. The neural
network architecture is summarized in Fig. 3. It consists of a Transformer archi-
tecture [45], with a succession of self-attention module followed by normalization
layers and feedforward networks. We give more details about the different blocks
below.

Relaxed Equivariant Graph Neural Networks (rEGNNs). In our pro-
posed method, we leverage the effective yet affordable EGNN layers [39] for
processing the coordinates. However, we enhance these layers by exploiting the
fact that, when the data and the noise reside in the zero Center-Of-Mass sub-
space, it is not necessary for the neural network to be translation invariant. This
can be interpreted as defining a canonical pose for the translation group, which
is a valid way to achieve equivariance [23,26].

Rather than simply relying on pairwise distances ||ri−rj ||2, we can therefore
use other rotation invariant descriptors such as ||ri||2 or cos(ri, rj). We therefore
propose the following relaxedEGNN (rEGNN) layer:

[Δr]ij = cat(||ri − rj ||2, ||ri||2, ||rj ||2, cos(ri, rj))

ri ← ri +
∑

j

φm(Xi,Xj , [Δr]ij ,Yij) (rj − ri)
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Fig. 3. The denoising neural network of MiDi jointly predicts the 2D graph and 3D
coordinates of the clean graph from a noisy input. It follows a graph Transformer
architecture with layers tailored to maintain SE(3) equivariance. In the update block,
each component is updated using the other features. While the graph-level features w
do not play a direct role in the final prediction, they serve as an effective means of
storing and organizing pertinent information throughout the transformer layers.

Similar to EGNN layers, the rEGNN layer combines a rotation-invariant
message function with a linear update in rj − ri, which guarantees rotation
equivariance. Notably, the additional features ||ri||2, ||rj ||2, and cos(ri, rj) are
computed relative to the center-of-mass of the molecule, which is set to 0 by
definition. In our experiments, we have observed that these features facilitate
the generation of a higher proportion of connected molecules, thereby mitigating
an issue previously observed with both 3D [16] and 2D-based denoising diffusion
models [47].

Update Block. To improve the model’s ability to process all features simulta-
neously, our new rEGNN layer is integrated into a larger update block that pro-
cesses each component using all other ones. The edge features are first updated
using Δr, the node features, and the global features. The node features are
updated using a self-attention mechanism, where the attention coefficients also
use the edge features and Δr. After the attention heads have been flattened, the
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obtained values are modulated by the pooled edge features, Δr and the global
features. For pooling pairwise features (Y and Δr) into node representations, we
use PNA layers [6]: PNA(Y )i = W T cat[mean,min,max, std]j(yij). The global
features are updated by pooling all other features at the graph level. Finally,
the coordinates are updated using a rEGNN update, where the message func-
tion takes as input Δr and the updated edge features. Note that we do not use
the normalization term of EGNN: our layers are integrated in a Transformer
architecture as discussed next, and we empirically found SE(3) normalization
layers to be more effective than the EGNN normalisation term at controlling the
magnitude of the activations.

Integration into a Transformer Architecture. Transformers have proved
to be a very efficient way to stabilize the self-attention mechanism over many
layers. We describe below the changes to the feed-forward neural network and
normalization layers that are required to ensure SE(3)-equivariance.

Our feed-forward neural network processes each component using MLPs
applied in parallel on each node and each edge. As the coordinates cannot be
treated separately (it would break SE(3)-equivariance), we define

PosMLP(R) = ΠCoM(MLP(||R||) R

||R|| + δ
) ∈ R

n×3,

where ||R|| ∈ R
n×1 contains the norm ||ri||2 of each point, MLP(||R||) ∈ R

n×1 as
well, δ is a small positive constant, and ΠCoM is the projection of the coordinates
on the linear subspace with center-of-mass at 0:

ΠCoM(R)i = ri − 1
n

n∑

i=1

ri.

The choice of the normalization layer also depends on the problem symme-
tries: while batch normalization [22] is used in some graph transformer models
[9], this layer is not equivariant in contrast to Set Normalization [53] or Layer
Normalization [3]. For SE(3) equivariance, the normalization of [28] should be
used. Applied to 3D coordinates, it writes

E3Norm(R) = γ
||R||
n̄ + δ

R

||R|| = γ
R

n̄ + δ
with n̄ =

√√√√ 1
n

n∑

i=1

||ri||2,

with a learnable parameter γ ∈ R initialized at 1.

4.4 Training Objective

The denoising network of MiDi is trained to predict the clean molecule from a
noisy input Gt, which is reflected in the choice of loss function used during model
training. The estimation of the coordinates R is a regression problem that can
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simply be solved with mean-squared error, whereas the prediction pX
θ for the

atom types, pC
θ for the formal charges and pY

θ for the bond types corresponds
to a classification problem which can be addressed through a cross-entropy loss
(CE in the equations). Note that the network’s position predictions result in
pointwise estimates R̂, while for the other terms, the prediction is a distribution
over classes. The final loss is a weighted sum of these components:

l(G, p̂G) = λr||R̂ − R||2 + λx CE(X, pX
θ ) + λc CE(C, pC

θ ) + λy CE(Y, pY
θ )

The (λi) were initially chosen in order to balance the contribution of each
term and cross-validated starting from this initial value. Our final experiments
use λr = 3, λx = 0.4, λc = 1, λy = 2.

5 Experiments

5.1 Settings

We evaluate MiDi’s performance on unconditional molecule generation tasks. To
the best of our knowledge, MiDi is the first method to generate both the graph
structure and the conformer simultaneously, leaving no end-to-end differentiable
method to compare to. We therefore compare MiDi to 3D models on top of which
a bond predictor is applied. We consider two such predictors: either a simple
lookup table, as used in [16], or the optimization procedure of OpenBabel1 [35]
used in other works such as [20,40]. The latter algorithm optimizes the bond
orders of neighbouring atoms in order to create a valid molecule, removing all
control on the generated graphs. In terms of dataset comparison, EDM [16] was
previously the only method that could scale up to the large GEOM-DRUGS
dataset, so it is our only direct competitor in that case. For the QM9 dataset,
we also compare MiDi’s performance to that of the GSchNet method [11], which
employed the OpenBabel algorithm and achieved satisfactory results.

To facilitate comparison with previous methods, such as [16,37], we bench-
mark our models on the full molecular graphs that include explicit hydrogens
atoms2. However, we acknowledge that, for most practical applications, hydro-
gen atoms can be inferred from the heavy atoms in the structure, and thus can
be removed. In fact, methods trained solely on heavy atoms usually perform
better since they consider smaller graphs.

We measure validity using the success rate of RDKit sanitization over 10,000
molecules. Uniqueness is the proportion of valid molecules with different canon-
ical SMILES. Atom and molecule stability are metrics proposed in [38] – they
are similar to validity but, in contrast to RDKit sanitization, they do not allow
for adding implicit hydrogens to satisfy the valency constraints. Novelty is the

1 http://openbabel.org/wiki/Bond Orders.
2 Results using implicit hydrogens are available at https://github.com/cvignac/midi,

as well as visualizations of the generated molecules.

http://openbabel.org/wiki/Bond_Orders
https://www.github.com/cvignac/midi
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proportion of unique canonical SMILES strings obtained that are not in the
training set. Since all training molecules have a single connected component, we
also measure the proportion of the generated molecules that are connected.

We also compare the histograms of several properties of the generated set
with a test set. The atom and bond total variations (AtomTV and BondTV)
measure the l1 distance between the marginal distribution of atom types and
bond types, respectively, in the generated set and test set. The Wasserstein
distance between valencies is a weighted sum over the valency distributions for
each atom types: ValencyW1 =

∑
x∈atom types p(x)W1(D̂val(x),Dval(x)), where

pX(x) is the marginal distribution of atom types in the training set, D̂val(x)
is the marginal distribution of valencies for atoms of type x in the generated
set, Dval(x) the same distribution in the test set. Here, the Wasserstein distance
between histograms is used rather than total variation, as it allows to better
respect the structure of ordinal data.

In previous methods, graph-based metrics were predominantly used. How-
ever, in our approach, we also introduce 3D metrics based on histograms of
bond lengths and bond angles. This allows us to evaluate the efficacy of our
approach not only in terms of the graph structure but also in generating accu-
rate conformers. To this end, we report a weighted sum of the distance between
bond lengths for each bond type:

BondLenghtsW1 =
∑

y∈bond types

p(y)W1(D̂dist(y),Ddist(y)),

where pY (y) is the proportion of bonds of type y in the training set, D̂dist(y) is
the generated distribution of bond lengths for bond of type y, and Ddist(y) is the
same distribution computed over the test set. The output is value in Angstrom.

Finally, BondAnglesW1 (in degrees) compares the distribution of bond angles
(in degrees) for each atom type. We compute a weighted sum of these values using
the proportion of each atom type in the dataset. This calculation is restricted
to atoms with two or more neighbours to ensure that angles can be defined:

BondAnglesW1(generated, target) =
∑

x∈atom types

p̃(x)W1(D̂angles(x),Dangles(x)),

where p̃X(x) denotes the proportion of atoms of type x in the training set,
restricted to atoms with two neighbours or more, and Dangles(x) is the distri-
bution of geometric angles of the form ∠(rk − ri, rj − ri), where i is an atom
of type x, and k and j are neighbours of i. The reported metrics are mean and
95% confidence intervals on 5 different samplings from the same checkpoint.

5.2 QM9

We first evaluate our model on the standard QM9 dataset [51] containing
molecules with up to 9 heavy atoms. We split the dataset into 100k molecules
for training, 20k for validation, and 13k for testing. Results are presented in
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Table 2. Unconditional generation on QM9 with explicit hydrogens with uniform and
adaptive noise schedules. While MiDi outperforms the base EDM model on graph-based
metrics, the Open Babel optimization procedure is very effective on this simple dataset,
as the structures are simple enough for the bonds to be determined unambiguously from
the conformation.

Metrics ( ↑) Mol stable At stable Validity Uniqueness Novelty Connected

Data 98.7 99.8 98.9 99.9 – 100.0

GSchNet 92.0 98.7 98.1 94.5 80.5 97.1

EDM 90.7 99.2 91.7 98.5 75.9 99.3

EDM + OBabel 97.9 99.8 99.0 98.5 77.8 99.7

MiDi (uniform) 96.1±.2 99.7±.0 96.6±.2 97.6±.1 64.9±.5 99.8±.0

MiDi (adaptive) 97.5±.1 99.8±.0 97.9±.1 97.6±.1 67.5±.3 99.9±.0

Metrics ( ↓) Valency(e-2) Atom(e-2) Bond(e-2) Angles () Bond Lengths (e-2 Å)

Data 0.1 0.3 ∼ 0 0.12 ∼ 0

GSchNet 4.9 4.2 1.1 1.68 0.5

EDM 1.1 2.1 0.2 0.44 0.1

EDM + OBabel 1.1 2.1 0.1 0.44 0.1

MiDi (uniform) 0.4±.0 0.9±.0 0.1±0.0 0.67±.02 1.6±.7

MiDi (adaptive) 0.3±.0 0.3±.1 0.0±.0 0.62±.02 0.3±.1

Table 2. The Data line represents the results of the training set compared with
the test set, while the other entries compare the generated molecules to the
test molecules. As we observe in Table 2, predicting the bonds only from the
interatomic distances and atom types has limited performance. Therefore, MiDi
outperforms EDM on 2D metrics, while obtaining similar 3D metrics for the
generated conformers. It is worth noting that our list of allowed bonds is not
identical to that used in [16,38], which may explain why our results for EDM
[16] do not match those of the original paper perfectly. Nonetheless, the opti-
mization algorithm of OpenBabel performs very well on this dataset of simple
molecules. As QM9 contains molecules with only up to 9 atoms, the molecular
conformations are easy to understand and the bonds can be determined easily.

5.3 GEOM-DRUGS

We then assess our model on the much larger GEOM-DRUGS dataset [2] which
comprises 430,000 drug-sized molecules with an average of 44 atoms and up to
181 atoms. As this dataset features drug-like compounds, it is therefore better
suited for downstream applications than QM9. We split the dataset into 80% for
training, 10% for validation, and 10% for testing. For each molecule, we extract
the 5 lowest energy conformations to build the dataset. Results are presented
in Table 3. On this large dataset, we did not train the adaptive version of MiDi
from scratch, but instead fine-tuned it using a checkpoint of MiDi with uniform
noise schedule.



MiDi 573

Table 3. Unconditional generation on GEOM-Drugs with explicit hydrogens. EDM
was previously the only method that scaled to this dataset. On this complex dataset,
the benefits of an integrated models are very clear, as MiDi significantly outperforms
Open Babel on most metrics. 95% confidence intervals are reported on five samplings
of the same checkpoint.

Metrics ( ↑) Mol stable At stable Validity Uniqueness Novelty Connected

Data 99.9 99.9 99.8 100.0 – 100.0

EDM 5.5 92.9 97.5 99.9 100.0 35.6

EDM + OBabel 40.3 97.8 87.8 99.9 100.0 41.4

MiDi (uniform) 89.9±.2 99.7±.0 74.5±.2 100.0±.0 100.0±.0 90.5±.2

MiDi (adaptive) 91.6±.2 99.8±.0 77.8±.2 100.0±.0 100.0±.0 90.0±.3

Metrics ( ↓) Valency(e-2) Atom(e-2) Bond(e-2) Angles () Bond Lengths (e-2 Å)

Data 0.1 0.1 2.5 0.05 ∼ 0

EDM 11.2 21.2 4.9 6.23 0.2

EDM + OBabel 28.5 21.2 4.8 6.42 0.2

MiDi (uniform) 2.9±.0 3.9±.1 2.4±.0 1.43±.002 1.1±.2

MiDi (adaptive) 0.8±.1 3.8±.1 2.4±.0 1.07±.02 0.2±.1

As this dataset contains molecules that are much more complex than those
in QM9, the bonds in the molecules cannot be determined solely from pairwise
distances. This explains why EDM, which performs relatively well on 3D-based
metrics, produces very few valid and stable molecules. Furthermore, many struc-
tures in this dataset are too complex for the Open Babel algorithm. While the
latter achieves good atom stability, there is at least one invalid atom in most
molecules, leading to low molecular stability. The advantages of an end-to-end
model that generates both a graph structure and its conformation are evident on
this dataset: MiDi not only generates better molecular graphs, but also predicts
3D conformers with more realistic bond angles.

6 Conclusions

We propose MiDi, a denoising diffusion model that jointly generates a molecular
graph and a corresponding 3D conformation. Our model combines Gaussian and
discrete diffusion in order to define a noise model that is best suited to each
component. The noise schedule is further adapted to the different components,
with the network initially generating a rough estimate of the conformation and
the graph structure, before tuning the atom types and charges. A graph trans-
former network is trained to denoise this model, that features novel rEGNN
layers. While rEGNN layers manipulate features that are translation invariant,
they still result in a SE(3) equivariant network when the input molecules are
centered. On the complex GEOM dataset, MiDi clearly outperforms prior 3D
molecule generation methods that predict bonds from the conformation using
predefined rules. While MiDi was evaluated on unconditional generation tasks,
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we believe that end-to-end training of the graph structure and the conformation
can offer even greater benefits for downstream tasks such as pocket-conditioned
generation.
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Abstract. Multi-hop reasoning has attracted wide attention for knowl-
edge graph (KG) completion since it can provide interpretable reason-
ing paths. Most prior multi-hop reasoning studies assume the KGs are
static with fixed entities. However, in real applications, KGs are often
dynamic since new entities will emerge continuously in the form of new
fact triplets. In this paper, we are particularly interested in the cold-start
scenario toward dynamic KGs to facilitate more practical multi-hop rea-
soning, which aims to explore the reasoning paths between emerging enti-
ties and existing entities. There are two challenging issues arising from
this scenario: i) lacking precise guidance since available information
for emerging entities is extremely limited in the cold-start scenario, ii)
lacking explicit path since the emerging entities and existing ones are
isolated. To address these issues, we propose a generation-based model,
namely SelfHier, to explore the reasoning paths by hierarchical guidance
and self-verification strategies. The hierarchical guidance strategy guides
the reasoning process using hierarchical fine-grained sub-relations and
coarse-grained clusters. The self-verification strategy constructs explicit
reasoning paths by supplementing some missing fact triplets. Experimen-
tal results prove that SelfHier performs well in the cold-start scenario on
dynamic KGs and also significantly outperforms existing multi-hop rea-
soning methods in the standard scenario on static KGs.

Keywords: Multi-hop Reasoning · Cold-start · Hierarchical
Guidance · Self-verification

1 Introduction

Knowledge graphs such as Freebase [1] and NELL [2] store fact triplets in the
form of (head entity, relation, tail entity), which benefit various knowledge-driven
applications. However, existing KGs suffer from serious incompleteness in real-
ity, which limits their practicability. Therefore, Knowledge Graph Completion

This work was supported by the grants from the National Natural Science Foundation
of China (NSFC) project (No. 62276193, 41971347). It was also supported by the Joint
Laboratory on Credit Science and Technology of CSCI-Wuhan University.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
D. Koutra et al. (Eds.): ECML PKDD 2023, LNAI 14170, pp. 577–592, 2023.
https://doi.org/10.1007/978-3-031-43415-0_34

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-43415-0_34&domain=pdf
https://doi.org/10.1007/978-3-031-43415-0_34


578 M. Xu et al.

Fig. 1. An example of multi-hop reasoning in the cold-start scenario.

(KGC) has been proposed to reason the missing fact triplets, such as predicting
the tail entity given the query head entity and relation.

For a long time in the past, embedding-based methods such as TransE [3],
RotatE [4], and ConE [5] have achieved excellent performance. However, the
drawbacks of these approaches are obvious since they reason in a black-box
manner and can not provide interpretable reasoning paths.

To realize the interpretability, Deeppath [6] formulates the KGC as a multi-
hop reasoning task. As Fig. 1 shows, given a query (Sam Altman, citizen of,
?), multi-hop reasoning methods try to predict the tail entity “America” with
a reasoning path. Most existing multi-hop reasoning works [7–10] adopt the
Reinforcement Learning (RL) framework to model the reasoning process as a
Markov Decision Process, where the agents walk on KGs to search the target
tail entities. Recently, SQUIRE [11] employs the generative framework to reason
the paths and missing fact triplets in an end-to-end fashion, which achieves
state-of-the-art (SOTA) performance.

Despite their effectiveness, existing multi-hop reasoning studies mainly focus
on reasoning over static KGs with fixed entities. However, in reality, the KGs
are essentially dynamic, and new entities will emerge continuously in the form
of new fact triplets. For instance, the NELL KG has been extracting new fact
triplets from the web since January 2010, with new entities emerging simulta-
neously. Completing the edges between emerging entities and existing entities is
crucial to the development of KGs, but it is not easy, especially when they are
isolated from each other. As Fig. 1 shows, the emerging entity “Sam Altman”
is isolated from existing entities, without direct or indirect interaction. In such
cases, reasoning a path between them becomes a cold-start scenario, as they are
unseen from each other during training. In this paper, we are particularly inter-
ested in the cold-start scenario toward dynamic KGs to facilitate more practical
multi-hop reasoning. Specifically, the cold-start scenario is set to explore inter-
pretable reasoning paths between emerging entities and existing entities that are
isolated from each other on dynamic KGs. Nevertheless, conducting multi-hop
reasoning in the cold-start scenario is not trivial due to the following challenges:

• lacking precise guidance. Since available information for emerging enti-
ties is extremely limited in the cold-start scenario, it is difficult to con-
struct precise guidance to handle those complex reasoning processes such
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as distinguishing semantically similar relations and eliminating entities with
unrelated attributes.

• lacking explicit paths. Since emerging entities and existing entities are iso-
lated, there is an absence of explicit paths on dynamic KGs that can connect
them. Hence, most prior methods are unable to reason a correct path due to
their reasoning process totally relying on existing edges.

To overcome the above challenges, we propose the generation-based model,
namely SelfHier, to explore the reasoning paths by hierarchical guidance and
self-verification strategies. The hierarchical guidance strategy guides the reason-
ing process by fine-grained sub-relations and coarse-grained clusters, which con-
tribute to distinguishing semantically similar relations and eliminating entities
with unrelated attributes, respectively. The self-verification strategy is proposed
to solve the absence of explicit reasoning paths by pre-exploring some missing
fact triplets to bridge the gap between emerging entities and existing entities.

In hierarchical guidance strategy, a relation is divided into multiple
fine-grained sub-relations with different semantics, and entities with similar
attributes are gathered into a coarse-grained cluster. The prediction of relations
and entities will be guided by the prediction of fine-grained sub-relations and
coarse-grained clusters since they are easier to distinguish and eliminate, respec-
tively. For instance, the “subpart of ” in (State of lllinois, subpart of, America)
and (youtube, subpart of, google product) show different semantics. After it is
divided into two sub-relations which describe the geographical relation and own-
ership relation, respectively, it will be more distinguishable from the relation
“ located within”. Furthermore, if the target entity is “America”, we should select
an entity in the cluster “Country” and eliminate those entities in “Company” and
“Person”.

In self-verification strategy, inspired by the behavior that humans always
verify whether their former reasoning process misses some steps by reasoning
once again on the same query, we imitate it to conduct the reasoning process
again on the former training query and try to find those missing fact triplets.
Specifically, the generation-based framework may generate some unknown fact
triplets as a step of reasoning paths since its selection space is unconstrained.
We argue that if these reasoning paths containing unknown fact triplets arrive at
the target tail entities with the highest probability, these unknown fact triplets
may be missing in KGs originally. Hence, we further extract these unknown fact
triplets to KGs to construct explicit reasoning paths.

We evaluate our model on both dynamic and static KGs. The experimental
results show that our model performs well in the cold-start scenario and even out-
performs existing methods in the standard scenario. Furthermore, the ablation
studies show the effectiveness of both hierarchical guidance and self-verification
strategies.

2 Related Work

Knowledge graph embedding methods [3–5,12,13] learn distributed representa-
tions of entities and relations from structure information, and further leverage
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score functions to measure the likelihood of each triplet. Despite their effective-
ness, embedding-based methods can not provide interpretable information.

Multi-hop reasoning is an emerging task for KGC, which aims to find the tar-
get tail entities with interpretable reasoning paths. Rule-based methods [14,15]
automatically induce logical rules from the KG and predict missing fact triplets
by matching queries to the rules. Although rule-based methods such as Any-
BURL [16] achieve remarkable performance, they are hard to generalize in prac-
tice due to the limitation of symbolic representation. RL-based methods model
the reasoning process as a Markov Decision Process (MDP), where the agent
walks on KGs to search the target entities. Deeppath [6] first adopts the RL
framework to search the reasoning paths and target relations given head enti-
ties and tail entities. MINERVA [7] proposes a more difficult and practical task
to find the target tail entities while given the relations and head entities. Fol-
lowing this work, most RL-based methods [9,10,16,17] are devoted to tackling
the sparse rewards problem or trying to design a more efficient policy network.
Recently, the generation-based method SQUIRE [11] introduces the generative
framework to find the target entities and reasoning paths in an end-to-end fash-
ion. By leveraging the rule-enhanced and iterative training strategy, SQUIRE
achieves current state-of-the-art performance. However, these methods focus on
static KGs and overlook the challenge of conducting multi-hop reasoning on
dynamic KGs. We are particularly interested in the cold-start scenario toward
dynamic KGs to facilitate more practical multi-hop reasoning and further design
an effective generation-based model SelfHier which achieves SOTA performance
in both the prior standard scenario and the cold-start scenario.

3 Methodology

Knowledge Graph. A KG is defined as a directed graph G = (E ,R), where
E and R denote the entity set and relation set, respectively. A KG G contains
a set of fact triplets defined as T = {(h, r, t)} ⊆ E × R × E , where h, r, and
t represent the head entity, the relation, and the tail entity, respectively. The
static KGs contain fixed entities with connectivity. The dynamic KGs contain
some emerging entities, which are isolated from existing entities.

Multi-hop Reasoning. Given a query (h, r, ?), multi-hop reasoning aims to
predict the target tail entity t through a generated n-hop reasoning path τ :
h

r1−→ e1
r2−→ e2 · · · rn−→ en, where ei and ri represent the entity and the relation

in the path τ . The last entity en in τ is treated as the predicted target tail
entity. In the standard scenario, the t is not isolated from h on static KGs. In
the cold-start scenario, the t is isolated from h on dynamic KGs, where they will
not belong to the emerging entities or existing entities simultaneously.

3.1 Model Framework

To tackle the problem of lacking precise guidance and explicit paths in the cold-
start scenario, we propose a generative model, namely SelfHier, of which the
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Fig. 2. SelfHier model overview. �: entity. �: cluster. �: relation. �: sub-relation.�: existing entity. �: emerging entity. −→: edges completed by self-verification. −→:
existing edge. (Color figure online)

overall framework is shown in Fig. 2. Apparently, SelfHier mainly consists of
three components: the backbone, the hierarchical guidance strategy, and the
self-verification strategy. The backbone module autoregressively generates the
reasoning path, which follows the pioneer generative method [11]. Based on the
backbone, the hierarchical guidance strategy is developed to guide the reasoning
process to distinguish semantically similar relations and eliminate entities with
unrelated attributes. Furthermore, the self-verification strategy is proposed to
construct explicit reasoning paths, by pre-exploring some missing fact triplets.

3.2 Backbone

The backbone is a generative model, as shown in Fig. 2 (a), which adopts the
classic encoder-decoder architecture. Inputting the query q = (<bos>, h, r) as
the source sequence, the Transformer encoder learns contextualized hidden rep-
resentation. Sequently, the MLP autoregressively decodes the reasoning paths τ
token by token. During training, we maximize the cross-entropy loss as follows:

L = −
∑

(q,τ)∈A

1
|τ |

|τ |∑

k=1

|V |∑

i=1

αi log p (i | q, τ<k) (1)

where A is the training set of all (q, τ) training pairs, τ<k denotes the former
k-1 tokens in τ , |τ | is the number of tokens in τ , |V | is the size of vocabulary V ,
αi is a label-smoothing hyperparameter to avoid overfitting, αi = ε for target
tokens, and αi = 1−ε

|V |−1 for other tokens, and ε ranges from 0 to 1.

3.3 Hierarchical Guidance

Guidance of Fine-Grained Sub-relations. Prior methods assume that the
semantics of various relations are different, while the different relations may be
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Fig. 3. Example of hierarchical guidance. (a) Distinguishing semantically similar rela-
tions by the guidance of fine-grained sub-relations. (b) Eliminating entities with unre-
lated attributes by the guidance of coarse-grained clusters.

semantically similar in reality. To distinguish those semantically similar relations
with overlapped representation, a relation is divided into multiple fine-grained
sub-relations by measuring their difference in context. To be specific, we use the
TransE [3] to learn the general relation representation r. The specific relation
representation r̂ in (h, r, t) can be calculated by r̂ = t − h since a correct
fact triplet should satisfy h + r = t in TransE. The cosine distance d between
the specific relation representation r̂ and the general relation representation r
is adopted to show the level of similarity between them. If the r in different
fact triplets have close distance d, they are similar in real semantics naturally.
For instance, the relation “subpart of ” in (Fairfax, subpart of, Virginia) and
(Mcallen, subpart of, Texas) has close d, where both of them emphasize the
geographical relationship. Oppositely, their d is far from the d of relation “subpart
of ” in (Micron, subpart of, Steven appleton), which emphasizes the ownership
relationship. For each relation ri, supposing the max and the minimal d in all
fact triplets containing ri is dmax and dmin, respectively. We split the section
[dmin,dmax] to M equal sub-sections, and the relation ri in specific fact triplet
is converted to its sub-relation sj when its d locate in j-th sub-section. For
simplicity, the M is pre-defined as a hyperparameter, while it can be dynamically
adjusted for different relations, which we leave for future research. For further
reasoning among sub-relations, we convert the (q, τ) ∈ A to (q, τs) ∈ As as
follow:

τ : r1, e1, r2, · · · , en,<eos> =⇒ τs : s1, e1, s2, · · · , en,<eos> (2)

where the relations ri are converted to their corresponding sub-relations sj .
As shown in Fig. 3 (a), the (q, τ) ∈ A are used to train Encoderr-Decoderr

while the (q, τ s) ∈ As are used to train Encoders-Decoders. The particular
dimensions of their output embeddings correspond to the probability of the
relations and sub-relations, respectively. For the output of Decoders, we sum the
probabilities of those sub-relations divided from the same relation, and further
align the probabilities of corresponding relations output by Decoderr with them.
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The process is depicted in Fig. 3 (a), and the cosine distance loss is maximized
to align their probabilities as follows:

Lr↔s = − ∑
(q,τ)∈A

(q,τs)∈As

∑|τ |/2
k=1 d

(
p(τ2k−1 | q, τ<2k−1), p(τ

s
2k−1 | q, τs

<2k−1) · Es→r

)

(3)

where Es→r is a mapping matrix set to map the probability of the sub-relations
to their corresponding relations. Note that we only align them in 2k-1-th step,
in which we should generate the relation. The cosine distance is calculated as
follows:

d(X,Y) = 1 − X·Y
‖X‖‖Y‖ = 1 −

∑n
i=1 xi × yi√∑n

i=1(xi)2 +
√∑n

i=1(yi)2
(4)

Guidance of Coarse-Grained Clusters. To eliminate entities with unrelated
attributes, we formulate the coarse-grained cluster by gathering the entities with
similar features together. Those entities belonging to the same cluster always
share similar attributes. For instance, if the target entity is “James Cameron”,
we should select an entity in the cluster “Person” and eliminate those entities in
“Company” and “Location”. Specifically, we learn the embeddings of entities by
TransE, then use the K-means [18] algorithm to obtain K clusters, where the K
is a pre-defined hyperparameter. For reasoning among clusters, we convert the
(q, τ) ∈ A to (qc, τ c) ∈ Ac as follow:

q : <bos>, h, r =⇒ qc : <bos>, ch, r (5)

τ : r1, e1, r2, · · · , en,<eos> =⇒ τ c : r1, c1, r2, · · · , cn,<eos> (6)

where the entities h and ei are converted to their corresponding clusters ch and
cj , respectively.

As shown in Fig. 3 (b), the (q, τ) ∈ A are used to train Encodere-Decodere

while the (qc, τ c) ∈ Ac are used to train Encoderc-Decoderc.
The particular dimension of their output representation corresponds to the

probability of the entities and clusters. As the process when aligning the relations
to their corresponding sub-relations, the cosine distance loss is maximized to
align the probabilities of the entities with their corresponding clusters as follows:

Lc↔e = −
∑

(q,τ)∈A
(qc,τc)∈Ac

∑|τc|/2
k=1 d

(
p(τ c

2k | qc, τ c
<2k), p(τ2k | q, τ<2k) · Ee→c

)
(7)

where Ee→c is a mapping matrix set to map the probability of the entities to
their corresponding clusters. Note that we only align them in 2k-th step, in which
we should generate the entity.

Ensemble of Coarse-Grained Clusters and Fine-Grained Sub-relations.
To ensemble the hierarchical guidance during training, we also align the output
of Decoders and Decoderc at each step as follows:

Ls↔c = −
∑

(qc,τc)∈Ac

(q,τs)∈As

∑|τc|
k=1 d

(
p(τ c

k | qc, τ c
<k), p(τ

s
k | q, τ s

<k) · Ee→c · Es→r

)

(8)
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Finally, the overall loss of our model is:

L = Lr + Le + λ(Ls + Lc) + β(Lr↔s + Lc↔e + Ls↔c) (9)

where the Lr,Le,Ls,Lc are losses of generating reasoning paths, which are for-
mulated as Eq. 1, the Lr↔s,Lc↔e,Ls↔c are the hierarchical guidance losses, the
λ and β are hyperparameters to control the loss ratio.

To ensemble the hierarchical guidance during generating, the Encoderr-
Decoderr and Encodere-Decodere alternately generate the entities and relations.
As shown in Fig. 4, the Encodere-Decodere focuses on generating the next rela-
tion since it is guided by sub-relations, while the Encoderr-Decoderr is devoted
to generating the next entity since it is guided by clusters. In addition, the
Encoderr-Decoderr and Encodere-Decodere also generate the paths alone, and
the final tail entity is voted by the above three generative manners.

Fig. 4. Alternately decoding strategy during generating.

3.4 Self-verification

To solve the problem that there is no explicit path between emerging entities and
existing ones, an intuitive solution is pre-completing some missing fact triplets to
bridge this gap before conducting the multi-hop reasoning. However, it is imprac-
tical for previous KGC methods since they need to know two elements of the
missing fact triplet before completing it. Inspired by the behavior that humans
always verify whether their former reasoning process misses some steps by rea-
soning once again on the same query, we propose the self-verification strategy
to reason again on the former training query to find those missing fact triplets,
which does not need to know two elements of it before completing it.

Specifically, the generative framework may generate some unknown fact
triplets in reasoning paths since its selection space is unconstrained. We argue
that if these reasoning paths arrive at the target tail entities with the highest
probability, these unknown fact triplets may be missing for KGs from the begin-
ning, which contribute to constructing explicit reasoning paths. Specifically, we
first train the model on the training set (q, τ) ∈ A. Then, inputting the same
query q ∈ A to the model once again, the generated paths which arrive at the
target tail entity with the highest probability are picked. We collect the fact
triplets in these paths which not exist in the original KG T and filter those fact
triplets whose frequencies are less than a pre-defined threshold T . These filtered
fact triplets T new are added to the KGs to construct more explicit paths.
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4 Experiments

4.1 Experimental Setup

Experimental Knowledge Graphs. In the standard scenario, we conduct
experiments on four static KGs, including FB15K237 [19], NELL9951 [6],
FB15K23720 and NELL23K [8]. The first two are considered dense KGs, while
the latter two are sparse KGs. Additionally, to formulate the cold-start sce-
nario, we carefully construct some dynamic KGs by following these rules strictly:
Firstly, keeping the connectivity of the existing entities. Secondly, ensuring the
disconnectedness between emerging entities and existing entities. Thirdly, the
head entity and tail entity will not belong to emerging entities or existing enti-
ties simultaneously during testing. A detailed overview of the KGs is provided in
Table 1. For instance, the NELL23K-40% denotes that split 40% emerging enti-
ties and retain 60% existing entities on NELL23K. Furthermore, the split ratio
of NELL23K is different from FB15K23720 due to the connectivity of existing
entities will be broken when setting a lower ratio in NELL23K.2

Table 1. Dataset statistics of different KGs.

KGs type KGs Existing Relations Facts Mean Emerging
Entities degree Entities

Static FB15K237 14,505 237 272,115 18.76 0
NELL995 62,706 198 117,937 1.88 0
FB15K23720 13,166 237 54,423 4.13 0
NELL23K 22,925 200 25,445 1.11 0

Dynamic FB15K23720-50% 6,583 237 38,013 3.46 4,393
FB15K23720-20% 10,532 237 50,144 4.31 1,100
FB15K23720-10% 11,849 237 52,938 4.29 502
NELL23K-60% 9,170 200 20,772 1.07 10,128
NELL23K-50% 11,462 200 22,440 1.09 9,033
NELL23K-40% 13,755 200 24,345 1.111 8,211

Baselines. For embedding-based models, we compare against TransE [3], ConvE
[13], RotatE [4], TuckER [12], and ConE [5]. As for multi-hop reasoning models,
we compare against MINERVA [7], MultiHopKG [17], AnyBURL [16], DacKGR
[8], RuleGuider [9], CURL [10], and current SOTA model SQUIRE [11].

Evaluation Protocol. We follow the same evaluation protocol as most multi-
hop reasoning methods [7,8,11]. Specifically, we report the results in terms of
the Hit@1, 3, and 10 metrics, as well as the mean reciprocal rank (MRR) score,
for the link prediction task.
1 We use the same version as [11] considering the inconsistent split in previous studies.
2 The data and code are available at: https://github.com/NLPWM-WHU/SelfHier.

https://github.com/NLPWM-WHU/SelfHier
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Implementation Details. We utilize the rule-based method AnyBURL [16] to
construct ground-truth reasoning paths as prior generation-based method [11]
do. The Adam optimizer [20] is used for training our model. For evaluation,
we follow the same process as [11] which involves using beam search and self-
consistency [21] to decode the reasoning paths and target entities. The models
are trained with five different seeds, and the results are averaged.

Table 2. Experiment results in the standard scenario. Bold: the best score of multi-hop
reasoning models. Underlined: the second-best score of multi-hop reasoning models. †:
the results are retrieved from [11]. ‡: the results reported by our reproduction based
on their released code and the best hyperparameters. We reproduce CURL since its
performance is not reported in most KGs previously. We also reproduce SQUIRE for
the significance test. The reproduction results of SQUIRE are almost the same as those
in their paper. ∗: the improvements of our SelfHier over the best baseline is significant
at p < 0.01.

Model FB15K237 NELL995 FB15K23720 NELL23K
MRR H@1 H@3 H@10 MRR H@1 H@3 H@10 MRR H@1 H@3 H@10 MRR H@1 H@3 H@10

TransE† 42.5 32.0 47.5 63.5 37.1 20.9 47.3 65.4 26.3 17.8 28.8 43.4 17.9 7.6 20.8 37.9
ConvE† 43.8 34.2 48.3 62.7 54.2 44.9 59.4 70.9 26.4 18.7 28.4 42.2 27.9 19.3 30.1 46.7
RotatE† 42.6 32.1 47.4 63.5 51.3 41.1 57.0 70.8 26.5 18.5 28.6 43.0 21.7 14.1 23.2 36.8
TuckER† 45.1 35.7 49.5 63.5 51.1 42.2 55.6 68.2 24.6 17.8 26.1 38.4 20.7 14.3 22.4 33.8
ConE† 44.6 34.5 49.0 64.5 54.3 44.8 60.2 71.5 27.4 19.3 29.8 43.7 23.4 15.8 24.9 40.0
MINERVA† 27.5 19.9 30.6 43.3 39.1 29.3 44.9 57.5 12.3 7.0 13.3 23.6 15.1 10.1 15.9 24.7
MultiHopKG† 40.7 32.7 44.3 56.4 46.7 38.8 51.2 60.9 23.1 16.7 25.0 36.1 17.8 12.4 18.8 29.7
AnyBURL† - 30.0 40.5 54.4 - 38.9 52.1 62.8 - 15.9 24.0 35.9 - 14.0 20.3 29.2
RuleGuider† 38.7 29.7 42.8 56.3 41.7 34.4 47.6 58.2 9.4 4.2 9.4 21.0 11.2 3.0 14.0 27.3
DacKGR† 34.7 27.4 38.2 49.3 42.1 34.7 46.4 55.4 24.6 18.0 27.0 38.6 19.7 13.3 21.1 33.7
CURL‡ 27.6 20.1 30.8 42.8 40.1 30.2 45.9 58.7 13.5 8.0 14.6 24.9 16.2 11.0 17.1 26.0
SQUIRE‡ 43.2 34.1 47.5 61.5 51.9 43.5 57.0 68.1 25.1 17.9 27.7 40.5 24.5 16.6 26.8 41.3
SelfHier(ours) 47.4∗ 38.8∗ 51.6∗ 64.0∗ 56.7∗ 49.3∗ 61.0∗ 71.0∗ 28.8∗ 21.0∗ 31.1∗ 44.9∗ 28.6∗ 20.2∗ 30.8∗ 46.6∗

4.2 Main Results

Table 2 presents the results of our SelfHier model and the baseline models in the
standard scenario, while Table 3 displays the comparison results in the cold-start
scenario.

Our SelfHier model achieves new state-of-the-art performance in the standard
scenario, outperforming prior multi-hop reasoning models with a significant mar-
gin. This demonstrates that SelfHier is highly effective in conducting multi-hop
reasoning on static KGs with fixed entities. Compared to the best baseline model,
SelfHier achieves improvements of 9.7%, 9.2%, 14.7%, and 16.7% in MRR, and
13.8%, 13.3%, 17.3%, and 21.7% in Hit@1 across the four static KGs. Addition-
ally, our model performs better than embedding-based models in most metrics
for all static knowledge graphs, indicating that SelfHier can provide superior
performance while retaining interpretability in the standard scenario.

In the cold-start scenario, we compare SelfHier with SQUIRE and DacKGR
models, as other models are unable to handle this scenario entirely. SelfHier
outperforms the baselines significantly on all dynamic KGs, regardless of the
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Table 3. Experiment results in the cold-start scenario. The markers are same as those
in Table 2.

Model FB15K23720-10% FB15K23720-20% FB15K23720-50%
MRR H@1 H@3 H@10 MRR H@1 H@3 H@10 MRR H@1 H@3 H@10

DacKGR 18.1 15.6 19.2 23.4 16.6 14.2 18.0 21.1 14.5 12.1 15.4 19.3
SQUIRE 19.4 14.5 22.3 28.6 18.5 14.2 20.1 27.2 17.1 12.2 18.7 27.4
SelfHier(ours) 22.4∗ 18.7∗ 23.2∗ 30.4∗ 21.2∗ 17.0∗ 22.8∗ 28.7∗ 20.3∗ 15.5∗ 21.6∗ 30.1∗

Model NELL23K-40% NELL23K-50% NELL23K-60%
MRR H@1 H@3 H@10 MRR H@1 H@3 H@10 MRR H@1 H@3 H@10

DacKGR 14.0 8.8 14.9 23.5 13.2 8.2 14.8 22.5 11.2 6.0 12.4 21.0
SQUIRE 15.3 10.8 16.8 23.7 14.2 10.2 14.3 22.7 13.5 7.9 14.3 24.3
SelfHier(ours) 19.2∗ 12.4∗ 22.4∗ 31.4∗ 18.0∗ 11.7∗ 19.7∗ 29.5∗ 17.7∗ 11.6∗ 19.1∗ 29.3∗

proportion of emerging entities. Notably, in the most stringent cold-start scenario
of FB15K23720-50% and NELL23K-60% knowledge graphs, SelfHier achieves
18.7% and 31.1% improvement in MRR, and 27.0% and 46.8% improvement in
Hit@1, respectively, compared to the best baseline model. These improvements
are even more significant than their corresponding standard scenario.

In conclusion, our SelfHier model is a practical and widely-adaptive method
that performs well not only in the cold-start scenario but also achieves state-of-
the-art performance in the standard scenario.

Table 4. Ablation studies in the standard scenario. “w/o”: removing the correspond-
ing strategy. “w/o all strategies”: removing hierarchical guidance and self-verification
strategies simultaneously. Bold: the best score among different variants.

Model Variants FB15K237 NELL995 FB15K23720 NELL23K
MRR H@1 H@3 H@10 MRR H@1 H@3 H@10 MRR H@1 H@3 H@10 MRR H@1 H@3 H@10

SelfHier 47.4 38.8 51.6 64.0 56.7 49.3 61.0 71.0 28.8 21.0 31.1 44.9 28.6 20.2 30.8 46.6
w/o sub-relations 46.3 37.8 50.5 62.9 55.0 47.6 59.0 69.5 27.5 19.9 29.8 43.8 26.9 19.2 29.0 43.1
w/o clusters 46.5 37.9 50.8 63.3 54.9 47.6 58.4 69.5 27.4 19.8 29.9 43.7 26.9 19.1 29.2 43.2
w/o self-verification 43.5 34.5 47.8 61.7 52.7 44.2 57.4 68.6 26.3 18.9 28.8 41.9 27.8 19.3 30.4 45.9
w/o all strategies 41.5 32.7 45.8 59.4 50.6 42.2 55.6 66.4 24.4 17.3 27.2 39.2 23.5 15.7 25.9 39.4

4.3 Ablation Studies

We conduct ablation studies on the hierarchical guidance and self-verification
strategies, and the results on the standard and cold-start scenarios are shown
in Table 4 and Table 5, respectively. These results indicate that all strategies
are critical to improving the performance of our model in both standard and
cold-start scenarios. We also observe that the score in Hit@10 slightly increases
on some cold-start scenarios, which may be due to the guidance of clusters
constraining the diversity of entities severely. Furthermore, incorporating both
coarse-grained clusters and fine-grained sub-relations into the guidance is ben-
eficial to the overall performance of our model. Although the performance is
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significantly impacted when both the self-verification and hierarchical guidance
strategies are removed, the model still outperforms the best RL-based method,
demonstrating the effectiveness of the generation-based framework for conduct-
ing multi-hop reasoning, and its potential for further research in the community.
Overall, our ablation studies demonstrate the effectiveness of both hierarchical
guidance and self-verification strategies.

Table 5. Ablation studies in the cold-start scenario. The markers are same as those
in Table 4.

Model Variants FB15K23720-10% FB15K23720-20% FB15K23720-50%
MRR H@1 H@3 H@10 MRR H@1 H@3 H@10 MRR H@1 H@3 H@10

SelfHier 22.4 18.7 23.2 30.4 21.2 17.0 22.8 28.7 20.3 15.5 21.6 30.1
w/o sub-relations 21.5 17.5 22.6 30.1 20.5 16.8 21.4 28.0 19.4 14.9 20.5 28.2
w/o clusters 21.3 17.5 22.3 30.7 20.6 16.2 22.6 28.8 19.2 14.6 20.7 28.4
w/o self-verification 20.7 17.2 21.1 28.6 19.3 14.7 21.1 28.2 19.2 14.8 20.3 28.1
w/o all strategies 19.2 14.8 19.6 28.0 17.6 13.1 18.9 27.7 17.0 12.4 18.1 27.1

Model Variants NELL23K-40% NELL23K-50% NELL23K-60%
MRR H@1 H@3 H@10 MRR H@1 H@3 H@10 MRR H@1 H@3 H@10

SelfHier 19.2 12.4 22.4 31.4 18.0 11.7 19.7 29.5 17.7 11.6 19.1 29.3
w/o sub-relations 17.8 10.3 21.1 29.6 17.1 10.7 19.5 27.7 16.2 10.1 18.7 27.4
w/o clusters 16.7 9.5 18.6 29.9 16.4 9.8 18.2 29.7 16.1 9.4 18.7 28.7
w/o self-verification 18.7 11.9 21.4 31.4 17.1 10.7 19.1 29.1 16.8 10.7 18.4 28.4
w/o all strategies 14.8 8.0 16.0 28.9 13.5 8.2 14.6 23.6 13.2 7.2 14.7 24.9

4.4 Interpretability Evaluation

Table 6. Interpretability evaluation. The inter-
pretability score is the sum score of all reasoning
paths, and the reasonable rate is the ratio of those
paths gaining 1 score.

Model MultiHopKG SQUIRE SelfHier
Interpretability score 14.0 24.5 29.5
Reasonable rate 5.0% 10.0% 13.0%

Following [11,22], we man-
ually annotate the interpretabil-
ity score for paths generated
by MultiHopKG, SQUIRE,
and SelfHier model. We ran-
domly select 100 queries and
choose the generated reason-
ing path with the highest
probability that leads to the gold tail entity. Then, two experts score it alone
based on whether it is convincing to them, where 1, 0.5, and 0 scores for paths
that are reasonable, partially reasonable, and unreasonable, respectively. If there
is an inconsistency of their score, another expert who is more familiar with this
task makes the decision finally3 The evaluation result on FB15K237 is reported
in Table 6. We observe that SelfHier achieves higher scores on both metrics,
suggesting that our model can generate more reasonable paths and facilitate
explainable multi-hop reasoning.
3 The three experts are well-versed in this task, and they are blind to which model

generates the path when scoring. The full annotation results are available at https://
github.com/NLPWM-WHU/SelfHier/blob/main/annotation.csv.

https://github.com/NLPWM-WHU/SelfHier/blob/main/annotation.csv
https://github.com/NLPWM-WHU/SelfHier/blob/main/annotation.csv
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Table 7. Coverage statistics.
Model Unknown Num Covered Num Cover Ratio
SQUIRE 11891 1236 10.4%
SelfHier 13502 3717 27.5%

Additionally, we con-
duct a study on the
dependability of unknown
fact triplets within the rea-
soning paths generated by
SelfHier and SQUIRE. To achieve this, we train them on FB15K23720 KG and
collect fact triplets that are not present in it but are generated during the rea-
soning process. We evaluate whether these fact triplets are included in the more
comprehensive FB15K237 KG. The coverage statistics are presented in Table 7,
demonstrating that our SelfHier model is capable of generating more reliable
fact triplets compared to SQUIRE.

4.5 Model Complexity

Fig. 5. Model complexity comparison.

To investigate the model com-
plexity, we compare the time-
consuming and memory-usage
between MultiHopKG, SQUIRE,
and our SelfHier model. Firstly,
we measure the training time
across graph sizes ranging from
5×104 to 25×104 nodes. As
shown in Fig. 5, more time will be
consumed by our SelfHier model
compared to SQUIRE, but less
compared to MultiHopKG. The seq2seq architecture of our model can avoid the
iterative trial-and-error process of reinforcement learning methods, resulting in
reduced time consumption. Furthermore, our model is more effective in memory-
usage. Overall, our model achieves a good trade-off between performance and
complexity.

4.6 Case Study

As Table 8 shows, we analyze two cases in the standard and cold-start scenarios,
respectively. For each scenario, we choose the reasoning paths at Hit@1 pre-
dicted by the top-3 best models for comparison. Given Query1 in the standard
scenario, MultiHopKG and SQURIE struggle to distinguish those semantically
similar relations and eliminate entities with unrelated attributes, while SelfHier
can reason a path toward the target tail entity correctly since the hierarchichal-
guidance is equipped to solve the dilemma. Given Query2 in the cold-start
scenario, the existing entity “Brooklyn Dodgers” is isolated from the emerging
entity “Baseball ”. DacKGR and SQUIRE not only have trouble in distinguishing
semantically similar relations and eliminating entities with unrelated attributes
due to the lack of precise guidance, but are also troubled by the lacking of an
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explicit path. However, our self-verification can pre-explore the edge “team plays
against” between “Brooklyn Dodgers” and “Colorado Rochies”, which merges the
gap between them. Overall, our SelfHier is more effective in both standard and
cold-start scenarios.

Table 8. Case study. −→: the edge completed by self-verification. ���: the edge com-
pleted by DacKGR or SQUIRE during reasoning. −→: the edge existing in KGs.

Standard Query1: (U.K, contains, ?)=⇒ Target1: Borough of Chesterfield Prediction

MultiHopKG: U.K contains−→ England contains−→ University of Sheffield ✗

SQUIRE: U.K at location−1
−→ England contains−→ Greater London

contains��� River Thames ✗

SelfHier: U.K contains−→ England at location−1
−→ Borough of Chesterfield �

Cold-start Query2: (Brooklyn Dodgers, team plays sport, ?)=⇒ Target2: Baseball Prediction

DacKGR: Brooklyn Dodgersteam home stadium−→ Ebbets Field
proxy for−1

��� Chicago ✗

SQUIRE: Brooklyn Dodgers
team plays sport��� Football ✗

SelfHier: Brooklyn Dodgers
team plays against−→ Colorado Rockies

team plays sport−→ Baseball �

5 Conclusion

In this paper, we are interested in the cold-start scenario toward dynamic KGs
to facilitate more practical multi-hop reasoning. To solve the problem of lacking
precise guidance and explicit paths, we design hierarchical guidance and self-
verification strategies. The hierarchical guidance can distinguish semantically
similar relations and eliminate entities with unrelated attributes by the guid-
ance of fine-grained sub-relations and coarse-grained clusters. Furthermore, self-
verification is able to construct more explicit reasoning paths by pre-exploring
some missing fact triplets. Finally, the experiments demonstrate that our SelfHier
model achieves SOTA performance in both standard and cold-start scenarios.
Ethical Statement. The data and code used in our experiments are all open-source
resources for research purposes. The paper is free from copyright or other intellectual
property issues.
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Abstract. Large Language Models (LLMs) have shown impressive emergent
language capabilities, especially in applications with high ambiguity, such as lan-
guage reasoning and knowledge consolidation. However, previous work explores
the use of LLMs for acquiring information using either parametric or external
knowledge, which might lead to serious issues such as hallucination. Toward
solving these issues, we present a novel approach of knowledge-aware response
planning (KARP) and propose a novel framework that employs (i) a knowledge
retriever to obtain relevant information from web documents or databases for a
given user query, and (ii) a robust fine-tuning strategy for LLMs to exploit the
retrieved external knowledge for planning a final response. Experimental results
show that our proposed framework can provide natural, concise answers for open-
domain questions with high accuracy.

Keywords: Knowledge-Aware Response Planning · Question Answering ·
Large Language Models · Fine-tuning

1 Introduction

General question answering (QA), a crucial natural language processing (NLP) task, is
often regarded as AI-complete [8,59]; that is, QA will only be considered solved once
all the challenging problems in artificial intelligence (AI) have been addressed. Several
virtual response assistants, including Google Assistant, Amazon Alexa, and Apple’s
Siri, have integrated state-of-the-art QA technologies, allowing them to understand and
generate responses in natural languages, providing valuable services to users. However,
general QA still presents significant challenges, primarily due to the inherent difficulties
in reasoning with natural language, including aspects like commonsense and general
knowledge. Past research has explored the use of Large Language Models (LLMs) for
general QA, predominantly leveraging either parametric (e.g., ChatGPT1) or external
(e.g., WebGPT [37]) knowledge sources. This method, however, can lead to consider-
able complications, including hallucination - the generation of plausible but incorrect
or unverified information. To address these challenges, this paper introduces the con-
cept of Knowledge-Aware Response Planning (KARP) for general QA along with a

M. Nguyen—This work was completed while the author was an intern at Amazon Alexa AI.
1 https://chat.openai.com/chat.
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Table 1. Generated answers for a question q with different context passages c1 (relevant), c2
(quasi-relevant), and c3 (irrelevant) from MS MARCO QA NLG test set [38]. Answers a1, a2,
and a3 are generated by GenQA [17].

q: What college offers chiropractic ?

c1: New York Chiropractic College offers 1 Chiropractic Degree program. It’s a
private university in a far away town. In 2015, 173 students graduated in the
study area of Chiropractic with students earning 173 Doctoral degrees

a1: New York Chiropractic college offers chiropractic.

c2: Chiropractic care is also essential for college students who want to stay
healthy. The central nervous system is based in the spinal column, so
correcting subluxations (misalignments) of the spine is important, no matter
how old you are. Holt Chiropractic in Port Orchard, WA provides expert
chiropractic care to students of all ages

a2: Holt Chiropractic College offers chiropractic.

c3: Howell Township is a township in Monmouth County, New Jersey, United
States. As of the 2010 United States Census, the township’s population was
51,075, reflecting an increase of 2,172 from the 48,903 counted in the 2000
Census

a3: Howell Township College offers chiropractic.

novel framework that combines a knowledge retriever with a robust fine-tuning strat-
egy for LLMs. In particular, the problem of KARP can be defined as follows. Given
a user query and a prompt containing external knowledge, the goal is to develop a
model that can consolidate a response that must be crafted not just from the externally
sourced information, but also from the model’s inherent parametric knowledge. This is
different from the previous work that aim to generate a response by either harnessing
parametric knowledge (e.g., ChatGPT) or retrieving from external knowledge such as
knowledge bases [2,3,49,62], web documents [6,7,13,64,65], or a provided context
[10,15,43,56].

With the emergent abilities of LLMs [58], generative QA systems, in which answers
are produced by a generative LLM, have been explored to improve the performance of
QA [12,17,18,20,26,36,42,47]. In paritcular, previous work typically employs pre-
trained LLMs with encoder-decoder architectures such as BART [27] and T5 [42],
where the encoder consumes a given question and a required relevant context as input
for the decoder to generate an answer to the question [17,23]. On one hand, the similar-
ity between generative QA and the pre-training tasks of LLMs enables transfer learning
to improve QA performance. On the other hand, the generative formulation allows for
flexibility in handling various types of QA problems (e.g., extractive QA, multiple-
choice QA) [23]. However, a well-known issue that has been shown to occur with the
generative models is hallucination [34,48,51], where the models generate statements
that are plausible looking but factually incorrect. Additionally, if the answers are com-
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posed by a pretrained LLM without external knowledge, i.e., using parametric knowl-
edge, the information contained in the answers might be outdated and no longer valid.
For example, the answer for the question “Which country is the reigning World Cup
champion?” will change through time.

Recent works such as GenQA [17] and WebGPT [37] mitigate these issues by
employing an information retrieval component, which is responsible for collecting web
content to compose an answer for a given question. Formally, given a question q and
a retrieved web content c, the model is trained to take (q, c) as input to produce a
response a = fθ(q, c), where fθ denotes the corresponding LLM with the parameters
θ. Unfortunately, fθ may merely learn to copy/synthesize information from c to pro-
duce a if c often contains necessary information for correctly answering the question q
in training data such as MS MARCO QA NLG [38]2. As a result, the model may fail to
provide a correct answer for a given question if the retrieved content is missing or con-
tains (quasi-)irrelevant information (see Table 1). In other words, performance of these
retrieval-based QA models are limited to an upper bound by the knowledge retriever.

In this work, we address such issues in building a generative QA model. First, we
utilize a knowledge retriever that employs Optimal Transport to selectively identify rel-
evant content from web documents or databases for a given user query. Second, we pro-
pose a novel fine-tuning strategy specially designed for LLMs, which combines exter-
nal knowledge, i.e., provided by the knowledge retriever and the intrinsic pre-trained
knowledge in LLMs, wherever possible, to generate informed responses.

Particularly, we propose the knowledge retriever as a dense passage retriever (DPR)
model. Our proposed DPR model performs an alignment between a given question and
a text passage via Optimal Transport to find relevant information in the passage for
determining its correctness. The relevant context in the passage will then be used to
produce a correctness score for ranking. In this way, we can obtain top k text passages
from databases/web documents, which are treated as external knowledge in our frame-
work. Different from GenQA and WebGPT that follows a single-style “a = fθ(q, c)”
finetuning strategy, we propose to employ a multi-style finetuning strategy, where both
“a = fθ(q, c)” and “a = fθ(q)” are used to train the model. The latter intentionally
excludes the external knowledge c from the input to encourage the model to retrieve its
own knowledge from the model parameters θ, which have been pretrained on massive
unlabeled text data [11,27,42,53]. To combine the two finetuning styles, we propose
to finetune the LLM with “a = fθ(q, c)”, and sequentially finetune the model with
“a = fθ(q)”. At test time, we use the “a = fθ(q, c)” style to make predictions. Exper-
imental results show that our proposed finetuning strategy significantly improves the
performance compared to the baselines on MS MARCO QA NLG, demonstratting the
effectiveness of our proposed method. Finally, we scale up our framework to further
improve the QA performance by training the model i) with “a = fθ(q, c)” on QA
datasets such as SQUAD [43] (c is a context passage), MCTest [46] (c consists of mul-
tiple choices), Anthropic [1] (c is the previous question in a conversation), and ii) with
“a = fθ(q)” on QA datasets such as WikiQA [65] and Wdrass [69].

2 All answers a in MS MARCO QA NLG are written by human annotators based on summariz-
ing answer information in context passages c.
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Our experiments show that the resulting system behaves as a knowledge aware
response planner that provides natural, concise answers for open-domain questions with
high accuracy.

2 Proposed Method

2.1 Knowledge-Aware Response Planning

The problem of Knowledge-Aware Response Planning (KARP) can be outlined as fol-
lows: Given a user query and a prompt loaded with external knowledge, the aim is to
build a model capable of formulating a response. This response should be planned not
only from the external information provided but also derived from the model’s inherent
parametric knowledge.

To this end, our proposed framework for KARP consists of (i) a knowledge retriever
and (ii) a generative LLM-based question answering model. An overview of our frame-
work is shown in Fig. 1. Details regarding the knowledge retriever and the generative
QA model are presented in Sects. 2.2 and 2.3, respectively.

Fig. 1. Overview of our proposed framework for KARP. The blue and orange arrows represent
the finetuning and inference processes of our model respectively. (Color figure online)

2.2 Knowledge Retriever

Our knowledge retriever functions as a dense passage retrieval (DPR) system. Given
a question q and a group of N text passages C = {c1, c2, . . . , cN}, the goal of DPR
is to determine the correct answer passages A ⊂ C by learning a reranking function
r : Q×φ(C) → φ(C), where Q represents the set of questions and φ(C) represents all
the possible orderings of C. The intent is to place the answer passages A at the top of
the ranking produced by the function r. The reranker r is typically a pointwise network
f(q, ci), such as TANDA [13], which learns to assign a correctness score pi ∈ (0, 1) to
each text passage ci for ranking purposes. Our focus lies on the contextual DPR, where
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supplementary context, like surrounding context, is used to more accurately ascertain
the validity score of an answer passage.

Our knowledge retriever consists of three primary elements: i) Encoding, ii)
Question-Context Alignment with Optimal Transport (OT), and iii) Answer-Context
Dependencies. The diagram of our suggested model can be seen in Fig. 2.

Encoding. We are provided with a question represented as q = [wq
1, w

q
2, . . . , w

q
Tq
] with

Tq words and a set of N text passages C = {c1, c2, . . . , cN} retrieved from a search
engine. Each passage, denoted as ci = [wc

1, w
c
2, . . . , w

c
Tc
], consists of Tc words. In this

work, we consider previous and next passages cprev , cnext as additional context for
each candidate passage c ∈ C. To create the input for our DPR model, we concate-
nate the question, answer passage, and context passages into a single input sequence:
[q; c; cprev; cnext]. This combined sequence is then passed through a pre-trained lan-
guage model (PLM), e.g., RoBERTa [32], to obtain contextualized word embeddings.
Additionally, we employ distinct segment embeddings for the question, answer pas-
sage, and context passages. These segment embeddings, which are randomly initialized
and trainable during training, are added to the initial word embeddings in the first layer
of the PLM. For simplicity, let [wq

1,w
q
2, . . . ,w

q
Tq
] and [wc

1,w
c
2, . . . ,w

c
Tc
] represent the

sequences of word representations obtained from the last layer of the PLM for the ques-
tion q and the answer passage c ∈ C, respectively.

Fig. 2. A diagram depicting the knowledge retriever in our framework for KARP.
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Question-Context Alignment with OT. In this section, we present our approach for
identifying relevant context within the answer passage and its surrounding passages
based on the alignment of words with the question. Specifically, we introduce the use
of Optimal Transport (OT) [9,35] to address the task of aligning the question with the
context for DPR.

OT is a well-established technique used to transfer probability from one distribution
to another by establishing an alignment between two sets of points. In the discrete set-
ting, we are provided with two probability distributions, denoted as pX and pY , defined
over two sets of points, namely X = {xi}n

i=1 and Y = {yj}m
j=1 (

∑
i pxi

= 1 and∑
j pyj

= 1). Additionally, a distance function D(x, y) : X × Y → R
+ is given

to quantify the dissimilarity between any two points x and y. The objective of OT is
to determine a mapping that transfers the probability mass from the points in {xi}n

i=1

to the points in {yj}m
j=1, while minimizing the overall cost associated with this trans-

portation. Formally, this involves finding the transportation matrix πXY ∈ R
+n×m that

minimizes the following transportation cost:

dXY =
∑

1≤i≤n
1≤j≤m

D(xi, yj)πXY ij , (1)

so that πXY 1m = pX and πT
XY 1n = pY . The transportation matrix πXY signifies

the best matching between the sets of points X and Y , where each row i in the matrix
indicates the optimal alignment from a point xi ∈ X to each point yj ∈ Y .

In our problem of aligning the question with the answer passage, we treat the ques-
tion q and the answer/context passage c as two point sets: {wq

i }Tq

i=1 and {wc
i }Tc

i=1 respec-
tively (each word is a point)3. To determine the probability distributions for these word
sets, we propose calculating the word frequencies and then normalizing the sum of
frequencies. Specifically, the probability distribution for the question is obtained by:

pwq
i
=

freq(wq
i )

∑Tq

i′=1 freq(wq
i′)

(2)

The frequency freq(wq
i ) corresponds to the number of occurrences of the word wq

i

in the training data’s questions. The same approach is applied to the answer/context
passage. To handle unseen words during testing, we utilize Laplace smoothing to
assign a non-zero probability. Moving on, we estimate the distance between two words
wq

i ∈ q and wc
j ∈ c by measuring their semantic divergence, which involves comput-

ing the Euclidean distance between their contextualized representations obtained from
the PLM: D(wq

i , w
c
j) = ||wq

i −wc
j ||. The Sinkhorn-Knopp algorithm is then efficiently

employed to solve for the optimal transportation matrix πXY (in this case, πqc for the
question q and the passage c) [9,52]. Finally, we obtain the relevant context rc for the
passage c by taking the union of words wc

j that have the highest transportation proba-
bilities:

rc =
Tq⋃

i=1

{wc
j |j = argmax1≤j′≤Tc

πqcij′} (3)

3 Before performing the alignment, we remove stopwords and punctuation marks from both sets
of words.



Efficient Fine-Tuning Large Language Models 599

To compute the representation for the passage c, we take the average sum of the word
representations within the relevant context:

rc =
1

|rc|
∑

j|wc
j∈rc

wc
j (4)

By incorporating the relevant context, our intention is to eliminate any disruptive or
unrelated details from the passage representation.

Answer-Context Dependencies. For convenience, let [r1, r2, r3] denote the represen-
tations acquired from Eq. (4) for the answer passage p1 ≡ c, the previous passage
p2 ≡ cprev , and the next passage p3 ≡ cnext. To capture the relationships between
these passages, we view each passage as a node in a fully-connected graph G = (V,E),
where V = {pi} (1 ≤ i ≤ 3) is the node set and E = {(pi, pj)} (1 ≤ i, j ≤ 3) is
the edge set. Our objective is to determine a weight αij ∈ (0, 1) for each edge (pi, pj)
that reflects the dependency of pi on pj . To accomplish this, we propose to leverage
their semantic representations ri, rj , and transportation costs to the question dqpi

, dqpj

to measure the dependency weight αij between the passages pi and pj . Specifically,
we first compute the score: uij = FFNDEP ([ri � rj ; dqpi

; dqpj
]), where � is the

element-wise product, [; ] represents the concatenation operation, and FFNDEP is a
feed-forward network. Subsequently, the weight αij for the edge (pi, pj) is obtained
through a softmax function:

αij =
exp(uij)

∑K
j′=1 exp(uij′)

(5)

The derived weights {αij} are subsequently utilized to enrich the passage representa-
tions through L layers of a Graph Convolutional Network (GCN) [24]:

hl
i = ReLU(

K∑

j=1

αijWlhl−1
j + bl) (6)

where Wl, bl are learnable weight matrix and bias for the layer l of the GCN (1 ≤
l ≤ L), and h0i ≡ ri is the input representation for the passage pi. The output vectors
hL

i ≡ hi at the last layer of the GCN serve as the final representations for the passages
pi. Intuitively, the weights αij enable each passage to decide the amount of information
it receives from the other passages to improve its representation for the task. The rep-
resentation h1 for the answer passage p1 ≡ c is finally sent to a feed-forward network
with a sigmoid output function to estimate the correctness score pc ∈ (0, 1) for the
answer passage c: pc = FFNDPR(h1). For training, we minimize the binary cross-
entropy loss with the correctness scores pc. At inference time, consistent with previous
research [13], we include all answer passages for each question for ranking.

2.3 Generative LLM-Based Question Answering Model

Background on Text Generation Finetuning. Text generation finetuning has become
a general approach to solving different NLP tasks, where input and expected output of



600 M. Nguyen et al.

a task can be represented as source and target text respectively for a generative model
to learn the task [28,33,42]. For example, a pretrained generative LLM such as BART
[27] and T5 [42] can be finetuned on sentiment analysis by taking a text statement
(e.g., “I really like the story”) as source text to generate a text label (i.e., “Positive”,
”Negative”, “Neutral”) to indicate the sentiment of the statement. As the text gener-
ation resembles the pretraining tasks (e.g., predicting next words) for the generative
LLMs, the formulation could facilitate the transfer learning to the target task. In addi-
tion, it enables the data augmentation method where training data for a task may also
be leveraged for another task if the two tasks both are convertable to the text genera-
tion format [30]. These advantages have led to significant performance improvements
for many NLP tasks such as event extraction [30], named entity recognition [63], and
dependency parsing [28]. Similar to other NLP tasks, the generative methods have been
explored for improving QA performance [12,17,18,20,26,36,42,47]. To avoid hallu-
cination and improve factual accuracy for the models, recent works on generative QA
employ the retrieval-based methods such as GenQA [17] and WebGPT [37].

GenQA is introduced by Hsu et al. [17] for generating appropriate answers for user
questions instead of simply choosing the best answer candidate. This expands the
answer retrieval pipeline with an additional generation stage to produce correct and
satisfactory answers, even in cases where a highly ranked candidate is not acceptable
or does not provide a natural response to the question. In particular, GenQA employs a
pretrained generative LLM to produce an answer by taking a given question and a list
of answer candidates as input, sorted by a trained reranker system.

WebGPT is designed by OpenAI researchers [37] to tackle the problem of long-form
question-answering, which involves generating a paragraph-length answer to an open-
ended question. Specifically, WebGPT uses the Microsoft Bing Web Search API to
retrieve relevant documents for a given question. The model then interacts with a text-
based environment where it can take actions such as clicking on links or opening new
web pages to locate relevant passages from which to generate answers.

Our Proposed Finetuning Strategy. The main goal of a general text-generation model
is to produce an output text sequence y = [y1, y2, . . . , yT ] based on a given input text
sequence x = [x1, x2, . . . , xS ], where the lengths of the input and output sequences
are denoted by S and T , respectively. With a pretrained encoder-decoder LLM such
as BART [27] or T5 [42], we can compute the conditional probability of P (y|x) for
training the model. At test time, the decoder merges the previous output and input text
to create the current output. A decoding algorithm such as Greedy or Beam Search [60]
can be used to generate an output text with the highest likelihood. For QA, given a ques-
tion q and a retrieved web content c (e.g., top answer passages), previous works such as
GenQA and WebGPT are trained to take (q, c) for as the source sequence to produce a
response as the target sequence a = fθ(q, c), where fθ denotes the corresponding LLM
with the parameters θ. As a result, fθ may merely learn to copy/synthesize information
from c to produce a if c often contains necessary information for correctly answering
the question q in training data. Relying solely on the retrieved content c, the model
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may fail to provide a correct answer for a given question if c is missing or contains
irrelevant/noisy information. In other words, performance of these retrieval-based QA
models are limited to an upper bound by the knowledge retriever.

Different from the previous works that follow a single-style “a = fθ(q, c)” fine-
tuning strategy, we propose to employ a multi-style finetuning strategy, where both
“a = fθ(q, c)” and “a = fθ(q)” are used to train the model. The latter intentionally
excludes the external knowledge c from the input to encourage the model to retrieve its
own knowledge from the model parameters θ, which have been pretrained on massive
unlabeled text data [11,27,42,53]. To combine the two finetuning styles, we propose
to finetune the LLM with “a = fθ(q, c)”, and sequentially finetune the model with
“a = fθ(q)”. In this way, our model does not completely rely on the retrieval results to
generate answers for given questions. At test time, we use the “a = fθ(q, c)” style to
make predictions. The retrieved content c now can be considered as a source of external
knowledge along with the pretrained knowledge contained in the model parameters θ
to generate an answer for the question. Under this perspective, we consider various QA
datasets for each step in our finetuning process. We call such dataset collection OKQA
as they are publicly available and contains high-quality knowledge.

MS Marco QA NLG is a specialized version of the MS Marco dataset [38] that aims to
produce natural language responses to user inquiries using web search result excerpts.
This dataset includes 182K queries from Bing search logs, each is associated with top
ten most relevant passages. A human annotator is then required to look at the pas-
sages and synthesize an answer using the content of the passages that most accurately
addresses the query.

Super Natural Instructions (SNI) is a data collection proposed by [57]. The corpus
consists of 1, 616 diverse NLP tasks and their expert-written instructions. In this work,
we consider only question-answering tasks such as extractive QA with SQUAD [43]
and multiple-choice QA with MCTest [46]. For each task, we consider anything but a
question q provided in the input as context c. Particularly, the context c can be a passage,
a fact, or a set of answer choices associated with the question. As a result, we obtain
180K examples for finetuning our model.

Anthropic is introduced by [1], containing conversations between a human and a com-
puter assistant. For each conversation, we consider a human question and the previous
question (if any) as the input sequence and the answer from the assistant as the output
sequence. As questions in a conversation are usually related to each other, the previous
question can be considered as a form of relevant context c for clarifying the current
question q. Consequently, we obtain 280K examples for finetuning our model.

Dense Passage Retrieval datasets, namely, WikiQA [65] and WDRASS [69] are
also used for finetuning our model. WikiQA is a collection of questions and answer
candidates that have been manually annotated using Bing query logs on Wikipedia.
WDRASS is a large-scale dataset of questions that are non-factoid in nature, such as
questions that begin with “why” or “how”. The dataset contains around 64, 000 ques-
tions and over 800, 000 labeled passages that have been extracted from a total of 30M
documents. Each question in such DPR datasets is associated with a set of answer can-
didates, in which some of the candidates are correct answers. As a question can have
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multiple correct answers, we select the longest answer as the output sequence for the
question, which is considered as the input sequence. This results in a set of 105K exam-
ples for finetuning our model.

In the end, the datasets where context is available for a question are employed in the
step 1 of our finetuning process while the other datasets are used for further training the
model in the subsequent step. With a huge amount of various QA tasks, we expect this
could teach the model to understand the nature of question answering and how to utilize
its own parametric knowledge (in case no context is provided) and external knowledge
(i.e., relevant context) to answer a given question.

3 Experiments

3.1 Benchmarking the Knowledge Retriever

Experimental Setup

Datasets. We follow the previous work [13,69] to conduct the evaluation. In particular,
we use (i) WikiQA [65], consisting of questions from Bing query logs and manually
annotated answers from Wikipedia, and (ii) WDRASS [69], a large-scale web-based
dataset having factoid and non-factoid questions, to investigate our retrieval perfor-
mance. We use the same train/dev/test splits used in previous work.

Hyper-parameters and Tools. In accordance with previous work, we use a small portion
of the WikiQA training data to tune hyper-parameters for our model and select the
best hyper-parameters for all the datasets [25]. We employ Adam optimizer to train the
model with a learning rate of 1e-5 and a batch size of 64. We set 400 for the hidden
vector sizes for all the feed-forward networks, L = 2 for the number of the GCN
layers. We use Pytorch version 1.7.1 and Huggingface Transformers version 3.5.1 To
implement the models. We use the NLTK library version 3.5 [4] to preprocess the data
and remove stopwords. The model performance is obtained over three runs with random
seeds.

Evaluation Metrics. We measure the model performance using the following standard
metrics: Precision-at-1 (P@1) and Mean Average Precision (MAP) on the entire set of
answer candidates for each question.

Performance Comparison. We compare our proposed model with TANDA [13],
which is the current state-of-the-art model. Table 2 shows the performance comparison
between the models on two settings: i) using a non-finetuned RoBERTa-Base encoder,
and ii) using a fine-tuned RoBERTa-Base encoder. The non-finetuned RoBERTa-Base
is obtained from [32] while the other is produced by fine-tuning TANDA on the ASNQ
dataset [13]. As can be seen from the table, all the models benefit from using the fine-
tuned RoBERTa-Base encoder. Across the two settings, our model outperforms the pre-
vious models by large margins, demonstrating its effectiveness for the task.
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Table 2. Performance comparison onWikiQA andWDRASS, * indicates results reported by [25].

Model WikiQA WDRASS

w/o ASNQ with ASNQ with ASNQ

P@1 MAP P@1 MAP P@1 MAP

TANDA 63.24* 75.00* 78.67* 86.74* 54.60 63.50

Ours 74.16 83.29 83.77 89.28 55.9 61.8

In Table 2, we show the performance of our proposed model compared to TANDA
on theWDRASS test set. As we can see, our knowledge retriever significantly improves
the performance for P@1 score, however, decreases the performance for MAP score.
We attribute this to the fact that questions in WDRASS dataset usually have more than
1 correct answers for a single question while our model ranks the answer candidates
individually. However, we note that the top-1 answer candidate is often the most helpful
for the answering process.

3.2 Evaluation for Knowledge-Aware Answer Generation

Experimental Setup

Dataset. We acquire the evaluation data as follows. First, we randomly select 2,000
questions from the MS MARCO QA NLG test set. For each question, we rank all the
context passages using our model trained on WDRASS to obtain the top 5 candidates.
We then concatenate the question and candidates to form the input, which is used to
generate the predicted answer.

Evaluation Metrics. We employ widely-used evaluation metrics, including
ROUGE [29], BLEU [39], and BERTScore [68], for assessing the quality of generated
answers in comparison to human-written natural answers. These metrics are commonly
applied to standard text generation tasks such as summarization [67], machine transla-
tion [54], and answer generation [42].

It is important to note that these metrics have their own limitations; however, these
can be mitigated by providing more and higher-quality reference texts [5]. In the con-
text of answer generation, we enhance the reliability of these measurements by employ-
ing human-written answers as references. Specifically, annotators create the reference
answers used in this benchmark after being provided with the candidate responses.

Performance Comparison. Table 3 presents a comparison of three different config-
urations of KARP with GenQA model in terms of BLEU, RougeL, and BERTScore
metrics.

The results demonstrate that all three KARP configurations outperform the GenQA
model across all evaluation metrics. The best-performing configuration (config 2)
achieves a BLEU score of 39.4, a RougeL score of 0.608, and a BERTScore of 0.752.
These results indicate that KARP offers a significant improvement over the GenQA
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Table 3. Comparison of our three KARP models trained with different hyper-parameter settings
to GenQA [17].

Model BLEU RougeL BERTScore

GenQA [17] 14.6 0.518 0.698

KARP (config 1) 38.3 0.632 0.762

KARP (config 2) 39.4 0.608 0.752

KARP (config 3) 38.9 0.604 0.750

model in the context of answer generation, which we attribute to our specialized fine-
tuning strategy for QA.

3.3 End-to-End Evaluation for Knowledge-Aware Response Planning

In this section, we evaluate KARP in an end-to-end industry-scale scenario.

Experimental Setup. We outline the experimental setup to evaluate the end-to-end
performance of KARP in a web-scale scenario, involving tens of millions of web doc-
uments. The configuration allows us to study the scalability and effectiveness of our
approach in a real-world, large-scale setting.

Web Document Collection. We constructed a large collection of web data, comprising
documents and passages, to facilitate the development of knowledge retrieval for end-
to-end system evaluation. This resource enables us to assess the impact of our work
in an industry-scale ODQA setting. We selected English web documents from the top
5,000 domains, including Wikipedia, from Common Crawl’s 2019 and 2020 releases.
The pages were split into passages following the DPR procedure [22], limiting passage
length to 200 tokens while maintaining sentence boundaries. This produced a collection
of roughly 100 million documents and 130 million passages. From this, we built (i) a
standard Lucene/Elasticsearch index and (ii) a neural-based DPR index [22].

Web-Scale Knowledge Retrieval. For each question, we retrieved up to 1,000 docu-
ments/passages using both indexes. We then rank the passages and applied our knowl-
edge retriever to select relevant passages. We used top K = 5 candidates as external
knowledge for a question.

Question Sampling. We randomly selected 2,000 questions fromWDRASS test set as it
shows to represent natural questions extracted from the Web. In addition, the questions
were also manually labeled.

Baselines. We employ GenQA [17] as our main baseline in this experiment. We com-
pare the performance of our system obtained by our proposed fine-tuning strategy and
the standard fine-tuning (i.e., combining all datasets for finetuning) in a data parity set-
ting.
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Evaluation Metrics. We evaluate the performance of the end-to-end QA system using
accuracy metrics, i.e., the percentage of questions that were answered satisfactorily.
Additionally, we define a correct answer as one that must not only be factually accurate,
but also expressed in a natural and fluent manner. Answers that are too verbose or oddly
phrased are considered unsatisfactory.

Performance Comparison. The result show in the following Table 4.

Table 4. Relative accuracy of different QA settings: TANDA [13], GenQA [17], and our proposed
frame work for KARP in two data configurations: MS MARCO (data parity) and OKQA.

Model Accuracy

TANDA [13] baseline

GenQA [17] +2.20%

KARP → MS MARCO +6.20%

KARP → OKQA +7.40%

Table 4 presents the relative accuracy of different QA settings, including
TANDA [13], GenQA [17], and our proposed KARP with two data configurations:
MS MARCO (data parity) and (robust fine-tuning). From the table, we observe that
GenQA outperforms TANDA by 2.20%. Our proposed KARP model achieves even
better results, with a 6.20% increase in accuracy when using the MS MARCO data
configuration and a 7.40% increase in accuracy when using OKQA configuration. This
demonstrates the effectiveness of our proposed KARP model in various data settings.

4 Related Work

Large Language Models (LLMs). LLMs have transformed NLP technologies with the
advent of the Transformer architecture [54]. Two fundamental pre-training objectives,
Masked Language Modeling (MLM) and Causal Language Modeling (CLM), underpin
the success of these models. MLM, introduced by BERT [10], predicts masked tokens
in a sentence using surrounding context, enabling LLMs to learn bidirectional repre-
sentations that excel in various NLP tasks. In contrast, CLM, exemplified by GPT [40],
predicts the next token in a sequence given its preceding context, showing remarkable
success in text generation and other downstream applications [21,41,42]. In this paper,
we leverage the CLM architecture for its language generation capabilities to enhance
QA performance.

General Question Answering Using LLM. A standard QA system consists of (i)
a retrieval engine that returns relevant knowledge and (ii) a model that generates
a response addressing the question, either through selection [13,50,66] or abstrac-
tive summarization of the top-selected answers [12,17,36]. In particular, recent
summarization-based approaches, e.g., GenQA [12,17,36], are highly susceptible to
hallucination due to the absence of special treatment of irrelevant candidates, which
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commonly appear among the top-ranked options. As a result, the generated answer
may seem plausible but could be factually incorrect [19,44,45,51,55,61,70,71]. Even
though its original goal is to generate more natural answers, GenQA [12,17,36] can be
considered as a method to ground LLMs for QA as it decodes an answer from the con-
catenation of both question and answer candidates. This approach, however, requires
good answer candidates and careful finetuning to reduce hallucinations.

We propose, instead, a novel generation-based approach that leverages the emerging
language reasoning capabilities of Large Language Models (LLMs) [40] to enhance
quality of generated answers. In particular, KARP is designed to mitigate the reliance
on oracle data by making use of the context, such as all choices in multiple-choice QA,
instead of a correct answer alone, i.e., the correct choice. The experiments demonstrated
that our proposed framework for KARP is highly resilient to noisy input data, and bring
about broader application across different QA tasks.

Fine-tuning Strategies for LLMs. Several fine-tuning strategies have been specifically
proposed for large language models (LLMs). These strategies can be broadly cate-
gorized into two groups: architecture-centric and data-centric. (i) Architecture-centric
fine-tuning aims to improve the model’s robustness and adaptability by modifying
hyper-parameters across layers. Gradual unfreezing [16] is one example, involving
sequential fine-tuning of model layers to prevent catastrophic forgetting and better adapt
to downstream tasks. Layer-wise learning rate decay [40] is another example, where
different learning rates are assigned to various layers to enable more refined adapta-
tion to the target task. (ii) Data-centric fine-tuning, on the other hand, concentrates on
leveraging data from different sources or intermediate tasks to enhance model perfor-
mance. Sequential fine-tuning [13,14] involves training the model on intermediate tasks
before the final target task, improving its performance on the latter. Combining several
related datasets for multi-task fine-tuning has also been shown to improve performance
on the target task [31]. Our work is related to data-centric fine-tuning. In particular, we
propose a novel strategy specifically designed for the question answering context. By
leveraging both external knowledge and intrinsic parametric knowledge of LLMs, our
approach aims to enhance the quality of generated answers in QA tasks.

5 Conclusion

In this paper, we presented a novel framework powered by large language models
(LLMs) for KARP. To that end, we proposed an efficient fine-tuning strategy for
KARP that leverages (i) the emergent language reasoning abilities of LLMs and (ii)
general question answering advances, including modelings and resources. Our exper-
imental results show that KARP improves the state of the art in general QA tasks
and outperforms vanilla fine-tuning of LLMs in a dataset-parity setting. This research
highlights the significance of leveraging the intrinsic parametric knowledge of LLMs
rather than relying solely on conventional sequence-to-sequence fine-tuning, in order to
improve their performance in question answering tasks.
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35. Monge, G.: Mémoire sur la théorie des déblais et des remblais. Mem. Math. Phys. Acad.
Royale Sci. 666–704 (1781)

36. Muller, B., Soldaini, L., Koncel-Kedziorski, R., Lind, E., Moschitti, A.: Cross-lingual open-
domain question answering with answer sentence generation. In: Proceedings of the 2nd
Conference of the Asia-Pacific Chapter of the Association for Computational Linguistics
and the 12th International Joint Conference on Natural Language Processing (Volume 1:
Long Papers), pp. 337–353. Association for Computational Linguistics (2022)

37. Nakano, R., et al.: Webgpt: browser-assisted question-answering with human feedback.
arXiv preprint arXiv:2112.09332 (2021)

38. Nguyen, T., et al.: Ms marco: a human generated machine reading comprehension dataset
(Nov 2016)

39. Papineni, K., Roukos, S., Ward, T., Zhu, W.J.: Bleu: a method for automatic evaluation of
machine translation. In: Proceedings of the 40th Annual Meeting of the Association for Com-
putational Linguistics, pp. 311–318. Association for Computational Linguistics, Philadelphia
(2002). https://doi.org/10.3115/1073083.1073135

40. Radford, A., Narasimhan, K., Salimans, T., Sutskever, I., et al.: Improving language under-
standing by generative pre-training (2018)

41. Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., Sutskever, I.: Language models are
unsupervised multitask learners (2019)

42. Raffel, C., et al.: Exploring the limits of transfer learning with a unified text-to-text trans-
former. J. Mach. Learn. Res. 21(1) (2020)

43. Rajpurkar, P., Zhang, J., Lopyrev, K., Liang, P.: SQuAD: 100,000+ questions for machine
comprehension of text. In: Proceedings of the 2016 Conference on Empirical Methods in
Natural Language Processing, pp. 2383–2392. Association for Computational Linguistics,
Austin (2016). https://doi.org/10.18653/v1/D16-1264

44. Raunak, V., Menezes, A., Junczys-Dowmunt, M.: The curious case of hallucinations in neu-
ral machine translation. In: Proceedings of the 2021 Conference of the North American
Chapter of the Association for Computational Linguistics: Human Language Technologies,
pp. 1172–1183. Association for Computational Linguistics (2021). https://doi.org/10.18653/
v1/2021.naacl-main.92

45. Rebuffel, C., Roberti, M., Soulier, L., Scoutheeten, G., Cancelliere, R., Gallinari, P.: Control-
ling hallucinations at word level in data-to-text generation. arXiv preprint arXiv:2102.02810
(2021)

46. Richardson, M., Burges, C.J., Renshaw, E.: MCTest: a challenge dataset for the open-domain
machine comprehension of text. In: Proceedings of the 2013 Conference on Empirical Meth-
ods in Natural Language Processing, pp. 193–203. Association for Computational Linguis-
tics, Seattle (Oct 2013)

47. Roberts, A., Raffel, C., Shazeer, N.: How much knowledge can you pack into the parame-
ters of a language model? In: Proceedings of the 2020 Conference on Empirical Methods

http://arxiv.org/abs/1907.11692
https://doi.org/10.18653/v1/2021.acl-long.217
https://doi.org/10.18653/v1/2020.acl-main.173
http://arxiv.org/abs/2112.09332
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.18653/v1/D16-1264
https://doi.org/10.18653/v1/2021.naacl-main.92
https://doi.org/10.18653/v1/2021.naacl-main.92
http://arxiv.org/abs/2102.02810


610 M. Nguyen et al.

in Natural Language Processing (EMNLP), pp. 5418–5426. Association for Computational
Linguistics (2020). https://doi.org/10.18653/v1/2020.emnlp-main.437

48. Roller, S., et al.: Recipes for building an open-domain chatbot. In: Proceedings of the 16th
Conference of the European Chapter of the Association for Computational Linguistics: Main
Volume, pp. 300–325. Association for Computational Linguistics (2021). https://doi.org/10.
18653/v1/2021.eacl-main.24

49. Saxena, A., Chakrabarti, S., Talukdar, P.: Question answering over temporal knowledge
graphs. In: Proceedings of the 59th Annual Meeting of the Association for Computational
Linguistics and the 11th International Joint Conference on Natural Language Processing
(Volume 1: Long Papers), pp. 6663–6676. Association for Computational Linguistics (2021).
https://doi.org/10.18653/v1/2021.acl-long.520

50. Severyn, A., Moschitti, A.: Learning to rank short text pairs with convolutional deep neural
networks. In: Proceedings of the 38th International ACM SIGIR Conference on Research
and Development in Information Retrieval, pp. 373–382 (2015)

51. Shuster, K., Poff, S., Chen, M., Kiela, D., Weston, J.: Retrieval augmentation reduces hal-
lucination in conversation. In: Findings of the Association for Computational Linguistics:
EMNLP 2021, pp. 3784–3803. Association for Computational Linguistics, Punta Cana
(2021). https://doi.org/10.18653/v1/2021.findings-emnlp.320

52. Sinkhorn, R., Knopp, P.: Concerning nonnegative matrices and doubly stochastic matrices.
Pacific J. Math. 21(2), 343–348 (1967)

53. Soltan, S., et al.: Alexatm 20b: few-shot learning using a large-scale multilingual seq2seq
model. arXiv (2022)

54. Vaswani, A., et al.: Attention is all you need. In: Guyon, I., et al. (eds.) Advances in Neural
Information Processing Systems, vol. 30. Curran Associates, Inc. (2017)

55. Wang, C., Sennrich, R.: On exposure bias, hallucination and domain shift in neural machine
translation. In: Proceedings of the 58th Annual Meeting of the Association for Computational
Linguistics, pp. 3544–3552. Association for Computational Linguistics (2020). https://doi.
org/10.18653/v1/2020.acl-main.326

56. Wang, W., Yang, N., Wei, F., Chang, B., Zhou, M.: Gated self-matching networks for reading
comprehension and question answering. In: Proceedings of the 55th Annual Meeting of the
Association for Computational Linguistics (Volume 1: Long Papers), pp. 189–198 (2017)

57. Wang, Y., et al.: Super-NaturalInstructions: generalization via declarative instructions on
1600+ NLP tasks. In: Proceedings of the 2022 Conference on Empirical Methods in Natu-
ral Language Processing, pp. 5085–5109. Association for Computational Linguistics, Abu
Dhabi (Dec 2022)

58. Wei, J., et al.: Emergent abilities of large language models. Trans. Mach. Learn. Res. (2022).
Survey Certification

59. Weston, J., et al.: Towards ai-complete question answering: a set of prerequisite toy tasks.
arXiv preprint arXiv:1502.05698 (2015)

60. Wiseman, S., Rush, A.M.: Sequence-to-sequence learning as beam-search optimization. In:
Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing,
pp. 1296–1306. Association for Computational Linguistics, Austin (2016). https://doi.org/
10.18653/v1/D16-1137

61. Xiao, Y., Wang, W.Y.: On hallucination and predictive uncertainty in conditional language
generation. In: Proceedings of the 16th Conference of the European Chapter of the Associa-
tion for Computational Linguistics: Main Volume, pp. 2734–2744. Association for Compu-
tational Linguistics (2021). https://doi.org/10.18653/v1/2021.eacl-main.236

62. Xu, J., et al.: Asking clarification questions in knowledge-based question answering. In: Pro-
ceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and
the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP),
pp. 1618–1629 (2019)

https://doi.org/10.18653/v1/2020.emnlp-main.437
https://doi.org/10.18653/v1/2021.eacl-main.24
https://doi.org/10.18653/v1/2021.eacl-main.24
https://doi.org/10.18653/v1/2021.acl-long.520
https://doi.org/10.18653/v1/2021.findings-emnlp.320
https://doi.org/10.18653/v1/2020.acl-main.326
https://doi.org/10.18653/v1/2020.acl-main.326
http://arxiv.org/abs/1502.05698
https://doi.org/10.18653/v1/D16-1137
https://doi.org/10.18653/v1/D16-1137
https://doi.org/10.18653/v1/2021.eacl-main.236


Efficient Fine-Tuning Large Language Models 611

63. Yan, H., Gui, T., Dai, J., Guo, Q., Zhang, Z., Qiu, X.: A unified generative framework for
various NER subtasks. In: Proceedings of the 59th Annual Meeting of the Association for
Computational Linguistics and the 11th International Joint Conference on Natural Language
Processing (Volume 1: Long Papers), pp. 5808–5822. Association for Computational Lin-
guistics (2021). https://doi.org/10.18653/v1/2021.acl-long.451

64. Yang, W., et al.: End-to-end open-domain question answering with BERTserini. In: Proceed-
ings of the 2019 Conference of the North American Chapter of the Association for Computa-
tional Linguistics (Demonstrations), pp. 72–77. Association for Computational Linguistics,
Minneapolis (2019). https://doi.org/10.18653/v1/N19-4013

65. Yang, Y., Yih, W.T., Meek, C.: Wikiqa: a challenge dataset for open-domain question answer-
ing. In: Proceedings of the 2015 Conference on Empirical Methods in Natural Language
Pocessing, pp. 2013–2018 (2015)

66. Yoon, S., Dernoncourt, F., Kim, D.S., Bui, T., Jung, K.: A compare-aggregate model with
latent clustering for answer selection. In: Proceedings of the 28th ACM International Con-
ference on Information and Knowledge Management, pp. 2093–2096 (2019)

67. Zhang, J., Zhao, Y., Saleh, M., Liu, P.: PEGASUS: pre-training with extracted gap-sentences
for abstractive summarization. In: III H.D., Singh A. (eds.) Proceedings of the 37th Interna-
tional Conference on Machine Learning. Proceedings of Machine Learning Research, vol.
119, pp. 11328–11339. PMLR (2020)

68. Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: Bertscore: evaluating text gener-
ation with bert. In: International Conference on Learning Representations (2020)

69. Zhang, Z., Vu, T., Gandhi, S., Chadha, A., Moschitti, A.: Wdrass: a web-scale dataset for
document retrieval and answer sentence selection. In: Proceedings of the 31st ACM Interna-
tional Conference on Information & Knowledge Management, pp. 4707–4711 (2022)

70. Zhao, Z., Cohen, S.B., Webber, B.: Reducing quantity hallucinations in abstractive summa-
rization. In: Findings of the Association for Computational Linguistics: EMNLP 2020, pp.
2237–2249. Association for Computational Linguistics (2020). https://doi.org/10.18653/v1/
2020.findings-emnlp.203

71. Zhou, C., et al.: Detecting hallucinated content in conditional neural sequence generation. In:
Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021, pp. 1393–
1404. Association for Computational Linguistics (2021). https://doi.org/10.18653/v1/2021.
findings-acl.120

https://doi.org/10.18653/v1/2021.acl-long.451
https://doi.org/10.18653/v1/N19-4013
https://doi.org/10.18653/v1/2020.findings-emnlp.203
https://doi.org/10.18653/v1/2020.findings-emnlp.203
https://doi.org/10.18653/v1/2021.findings-acl.120
https://doi.org/10.18653/v1/2021.findings-acl.120


Attentive Multi-Layer Perceptron
for Non-autoregressive Generation

Shuyang Jiang1, Jun Zhang2, Jiangtao Feng2, Lin Zheng3,
and Lingpeng Kong3(B)

1 Shanghai Jiao Tong University, Shanghai, China
jiangshuyang@sjtu.edu.cn

2 Shanghai Artificial Intelligence Laboratory, Shanghai, China
zhangjun@pjlab.org.cn

3 The University of Hong Kong, Hong Kong, China

linzheng@connect.hku.hk, lpk@cs.hku.hk

Abstract. Autoregressive (AR) generation almost dominates sequence
generation for its efficacy. Recently, non-autoregressive (NAR) genera-
tion gains increasing popularity for its efficiency and growing efficacy.
However, its efficiency is still bottlenecked by quadratic complexity in
sequence lengths, which is prohibitive for scaling to long sequence gen-
eration and few works have been done to mitigate this problem. In
this paper, we propose a novel MLP variant, Attentive Multi-Layer
Perceptron (AMLP), to produce a generation model with linear time
and space complexity. Different from classic MLP with static and learn-
able projection matrices, AMLP leverages adaptive projections com-
puted from inputs in an attentive mode. The sample-aware adaptive
projections enable communications among tokens in a sequence, and
model the measurement between the query and key space. Furthermore,
we marry AMLP with popular NAR models, deriving a highly efficient
NAR-AMLP architecture with linear time and space complexity. Empir-
ical results show that such marriage architecture surpasses competitive
efficient NAR models, by a significant margin on text-to-speech synthesis
and machine translation. We also test AMLP’s self- and cross-attention
ability separately with extensive ablation experiments, and find them
comparable or even superior to the other efficient models. The efficiency
analysis further shows that AMLP extremely reduces the memory cost
against vanilla non-autoregressive models for long sequences.

Keywords: AMLP · Multi-Layer Perceptron · Attention Mechanism ·
Non-Autoregressive Model

1 Introduction

Attention-based sequence generation methods have achieved great success and
gained increasing popularity in machine learning [11,30,35,53]. A large body of
research in neural architectures has been devoted to the autoregressive (AR)
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
D. Koutra et al. (Eds.): ECML PKDD 2023, LNAI 14170, pp. 612–629, 2023.
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method [40,41], where tokens are generated one after another in an iterative
manner. The computational overhead in decoding can thus be prohibitive, espe-
cially for long sequences. Recently, non-autoregressive (NAR) generation attracts
more attention for its efficiency and growing efficacy [7,17,18,42,43,46]. In a
non-autoregressive model, the decoder generates the target sequence all at once,
significantly reducing its computational overhead at the inference stage. Nev-
ertheless, relatively little research has been done on the attention architecture
in non-autoregressive models. In particular, the conventionally adopted softmax
attention comes with a quadratic time and memory cost. It is therefore still dif-
ficult to scale up non-autoregressive models to long sequence generation tasks.

In this paper, we propose Attentive Multi-Layer Perceptron (§2.2; AMLP)
to integrate the attention mechanism with the multi-layer perceptron (MLP)
in non-autoregressive architecture, resulting in a fully parallelizable sequence
generation model with linear complexity. Unlike the widely-used MLP whose
weights are invariant across different sequences, we compute the weights in
AMLP through adaptive projections from (multiple) input tokens and model
their interactions in an attentive manner. Specifically, we put forward two meth-
ods (§2.3) to compute the adaptive projections in AMLP, which implicitly model
the association between the query and key space. We utilize the simplicity and
efficiency of MLP while obtaining the strong modeling capability of AMLP
for input tokens’ communication. Finally, we present a hybrid NAR-AMLP
model (§2.4) to achieve both linear complexity and high parallelism.

We evaluate the AMLP architecture on text-to-speech synthesis for a rel-
atively long sequence scenario and machine translation for a relatively short
sequence scenario. Experiments show that AMLP achieves more superior scores
with objective measurements compared with the strong softmax attention coun-
terpart (§3.1) on text-to-speech synthesis, with less computational cost (§3.3).
On machine translation, AMLP performs competitive with vanilla attention
but achieves the best result among efficient NAR and AR models with lin-
ear complexity (§3.1). Further, we test the self- and cross-attention ability of
AMLP on super resolution and long sequence time-series forecasting tasks,
respectively. Empirical results show that AMLP is on par with other efficient
attention in self-attention and achieves the best performance in cross-attention
scenarios (§3.2). Additionally, when scaling to long sequence, AMLP reduces
the memory footprint substantially and further improves the inference speed in
NAR models (§3.3). The code is available in https://github.com/Shark-NLP/
AttentiveMLP.

2 Non-autoregressive Generation with Attentive MLP

In this section, we first give a brief introduction to autoregressive (AR) and
non-autoregressive (NAR) generation, and then delve into the nuances that dif-
ferentiate the attention mechanisms utilized in autoregressive (AR) and non-
autoregressive (NAR) models. After that, we present the AMLP architecture
to model the communication among sequence tokens. Finally, we build up an
NAR-AMLP architecture with linear time and space complexity.

https://github.com/Shark-NLP/AttentiveMLP
https://github.com/Shark-NLP/AttentiveMLP
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Fig. 1. AR (a) and NAR (b) encoder-decoder architectures. “MHA” stands for multi-
head attention. Blocks with red rims represent the current state token. Shaded blocks
represent future tokens that are invisible to the current state. (Color figure online)

2.1 Background: Autoregressive and Non-autoregressive Generation

Given a source sequence X1:m, conditional sequence generation targets to pre-
dict a target sequence Y1:n by modeling the conditional probability p(Y |X).
Autoregressive generation decomposes the probability p(Y |X) as:

p(Y |X) =
∏

i=1..n

p(Yi|Y<i,X), Y<1 = ∅. (1)

which is implemented as a typical encoder-decoder architecture shown in Fig. 1a.
Although such decomposition is proved effective, it suffers from two main draw-
backs: efficiency and exposure bias. On the one hand, the autoregressive decoding
process, where each token depends on the previous predicted ones, prevents the
model from fast inference in usage. On the other hand, teacher-forcing exposes
ground truth tokens in network inputs during the training process, where the
exposed tokens are unable to observe in inference. Such exposure creates an
inconsistency between the training and inference, and harms the prediction qual-
ity.

Recently, non-autoregressive generation, depicted as Fig. 1b, shows its capa-
bility of sequence modeling in terms of both efficiency and efficacy, which decom-
poses the conditional probability p(Y |X) via a Näıve Bayes assumption:

p(Y |X) =
∏

i=1..n

p(Yi|X) (2)

The NAR decomposition enables parallel decoding for each token, and speeds
up the inference process substantially. Although NAR generation is much faster
than AR generation, its speed is still limited by the O

(
n2 + nm + m2

)
time

complexity of the multi-head softmax attention module. This is especially prob-
lematic in modeling long sequences.



Attentive Multi-Layer Perceptron for Non-autoregressive Generation 615

Attention Types in AR and NAR Models. Although autoregressive
and non-autoregressive models differ from each other in sequence generation
paradigms, their underlying attention mechanisms in their architectures are also
different. The token-by-token generation of AR models requires a causal decoder
that forces tokens to attend to only previous features. A typical causal decoder
utilizes causal softmax attentions both in self-attention and cross-attention. The
attention causality entails that during the computation, it is important to ensure
that the query token does not attend to the context on its right side, just as the
shaded blocks in Fig. 1a. In contrast, the NAR model, which allows for parallel
generation of the output sequence and global contextualization using attention,
employs a noncausal decoder in Fig. 1b. The self-attention in the NAR model
can attend to both side contexts of a given token, which makes it suitable for
tasks that require a broader contextual understanding. NAR architectures also
reduce the design restrictions on cross-attention, making query tokens attend
to key tokens in a holistic view. This modeling feature of attention emphasizes
both global and local contextualization modeling for attention modules. In prac-
tice, causality in vanilla softmax self-attention is ensured by leveraging a lower
triangular mask in AR models, while linearized attention requires more sophisti-
cated implementation. Since no causality is required in NAR models, designing
an efficient attention mechanism is much more flexible.

2.2 Attentive Multi-Layer Perceptron

Modeling interactions between tokens is crucial and challenging in sequence gen-
eration. Transformer [53] stacks the MLP, which aims to learn features of indi-
vidual tokens, on top of the attention block, which is responsible for modeling
the communication within the sequence. In AR generation, the attention needs
to be recomputed for each time step through the recurrent process, as the key
and value set is changing. However, this procedure is non-causal in NAR gener-
ation. We therefore are able to integrate the modeling of token interactions into
the MLP architecture and make the whole architecture fully parallelizable and
more efficient.

Given a sequence representation X ∈ R
n×d, where n is the sequence length

and d is dimensionality of the feature space, the conventional MLP models the
feature of individual token Xi ∈ R

d as:

MLP(Xi) = σ(XiW1)W2 (3)

where W1 ∈ R
d×dh , W2 ∈ R

dh×d are learnable parameters dh is the dimension-
ality of hidden space. σ(·) is a non-linear activation function such as ReLU(·).
However, it disables the communication between tokens in the sequence, and
prevents the model from learning contextualized token representations.
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A widely-used approach to enable communication between each token in a
sequence is the attention mechanism [53]. Vanilla attention learns to incorporate
source sequence features K,V ∈ R

m×d into target Q ∈ R
n×d with an attention

matrix
Attn(Q,K,V) = softmax(QK�)V (4)

where m, n are the source and target length respectively. Here we omit the input
projections for Q,K,V, the output projection, and the scaling factor 1/

√
d for

simplicity.
The motivation of Attentive Multi-Layer Perceptron (AMLP) starts from the

fact that the vanilla softmax attention can be viewed as a projection function as
SA(·|K,V) : R

n×d → R
n×d which projects the original Q ∈ R

n×d with K
and V features as its context while preserving Q’s shape. In vanilla attention,
softmax(QK�) is a softmax kernel which can be decomposed into a multiplica-
tion of two kernel functions: φ(Q) ·φ(K)�, which is verified in Performer [10], cos-
Former [44] and LARA [60]. Meanwhile, the low-rank factorization of the attention
matrix, softmax(QK�), does not impact the performance much, which is verified
by Nyströmformer [57]. Based on their findings, we propose an alternative model-
ing solution by fusing key K ∈ R

m×d and value V ∈ R
m×d information into query

Q ∈ R
n×d, via a symmetric and positive semi-definite distance matrix Σ ∈ R

d×d

on Q and K space. The contextualizing process on Q can be formulated as:

f(Q;K,V) = QΣK�V (5)

where Σ is computed from Q and K.
With similar functionality to [10,57], the matrix QΣK� can also enjoy lower

computation costs from low-rank approximation while maintaining strong mod-
eling capability. Without taking any low-rank assumptions on input Q,K, we
decompose the distance matrix as:

Σ = UΛU� = UΛ
1
2 Λ

1
2 U� ≈ UΛ̂

1
2 Λ̂

1
2 U� = (UΛ̂

1
2 )(UΛ̂

1
2 )� = LL� (6)

where U is the orthogonal eigenvector of matrix and Λ is the diagonal eigenval-
ues matrix. Λ̂ here is an approximation to Λ by keeping largest-c eigen-values
and masking the others with 0, where c is a hyper-parameter in AMLP. Thus
we derive a decomposition equation Σ ≈ LL� where L = κ(Q,K)� ∈ R

d×c

indicates a low-rank matrix. We will show two different methods for parame-
terization of L, resulting in two different AMLP variants. We rewrite Eq. 5 by
decomposing the distance matrix Σ as:

f(Q,K,V) ≈ QLL�K�V (7)

Now Eq. 5 could be approximated with Eq. 7 by linearly projecting the origi-
nal Q with adaptive weights twice. By reordering the computation and adding
nonlinearity into Eq. 5, we derive a general form of AMLP model as:

AMLP(Q;K,V) = σ1(QWQ,K)WQ,K,V (8)

where the nonlinear function σ1(·) can be adjusted arbitrarily. Equation 8 address
the general form of AMLP, and the adaptive weights WQ,K and WQ,K,V can be
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Fig. 2. Computation diagram of two AMLP variants. The middle part shows the com-
putation of basic AMLP. The Left and right figures show the detailed computation of
two adaptive weight matrics in AMLP-Cov and AMLP-PQuery.

speficified in various ways. Following the form of Eq. 8, we will further introduce
two AMLP variants in § 2.3, by specifying L = WQ,K = κ(Q,K), computational
order and nonlinear function.

The computation of adaptive weights in AMLP fuses token-level communica-
tion, while MLP models tokens in a sequence independently. Therefore, AMLP
enables the communication between tokens in a sequence. And different from
vanilla softmax attention, AMLP utilizes a distance matrix Σ between Q and K
spaces to fuse information among their contexts and outputs a contextualized Q.
Through this distance matrix, AMLP computes the similarity between Q and
K like softmax attention, and leverages it to aggregate V.

2.3 Parameterization

In this section, we describe two methods for the parameterization of two adaptive
weight matrices WQ,K and WQ,K,V. Figure 2 illustrates the computation graph
of these two methods.1

Cross-covariance. We present AMLP-Cov, a variant that adopts cross-
covariance to parameterize WQ,K and WQ,K,V. One challenge of AMLP is to fuse
information of Q,K,V of different shapes into static-shaped projection matrices
WQ,K and WQ,K,V. Inspired by [1], we propose to use Q,K’s covariance and
the cross-covariance between K and V in AMLP. To obtain L = κ(Q,K)�, we
separately compute Q’s and K’s covariance matrices and combines them with
learned down-sampling projection matrices Cq ∈ R

c×d and Ck ∈ R
c×d:

κ(Q,K) = Cq

(
σ2(Q�Q)

)
+ Ck

(
σ2(K�K)

)
(9)

1 AMLP is implemented with multiple heads [53], but for simplicity and without loss
of generality, we will discuss our AMLP computation process in a single-head setting.
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where σ2(·) is set to softmax function as [1] suggest. The covariance matrices
of Q,K are of the same shape and can be directly fused. We add the softmax
function as a non-linear activation to enhance the expressiveness. For WQ,K,V,
we notice the shapes of K and V are usually identical, and we hence use their
cross-covariance K�V for computation in Eq. 8. WQ,K,V is then formulated by
transforming the cross-covariance K�V to query space by L as:

WQ,K,V = L�σ2(K�V) (10)

Pseudo-queries. AMLP-PQuery first uses Exponential Moving Average
(EMA) to compute the contextualized query via a hyperparameter β: q̂i =
β · q̂i−1 + (1 − β) · qi, which has been proved to model local context well [37].
To further improve the communication between target and source sequences in
a long sequence view, AMLP-PQuery treats learnable Cq, Ck and L� as pseudo
attention queries. Specifically, it estimates WQ,K by fusing features from query
and key to the hidden space with an extra learnable weight W ∈ R

2d×d:

WQ,K = L� =
[
σ2(CqQ̂�)Q̂;σ2(CkK�)K

]
W (11)

where σ2(·) is set to softmax as AMLP-Cov. For WQ,K,V, we notice that L� has
fused features from Q̂. So we again treat L� as a pseudo query to fuse features
from the source sequence:

WQ,K,V = σ2(L�K�)V (12)

With explicit communication between Q̂ and K in WQ,K,V, the alignment
between different sequences is enhanced; therefore, AMLP-PQuery is more adap-
tive to cross-attention.

2.4 Linear NAR: A Hybrid Architecture of NAR and AMLP

We combine AMLP with NAR for lower memory costs, faster inference speed
and higher parallelism because AMLP and NAR are mutually reinforcing.

AMLP Boosts NAR. On one hand, NAR parallelizes the inference process,
but its efficiency is still hindered by vanilla attention. AMLP, as a plug-in effi-
cient attentive module, mitigates the inefficiency effortlessly. On the other hand,
the non-autoregressive pipeline provides a non-causal encoding framework, with
which the computation of AMLP avoids fine-grained operations.

NAR Augments AMLP. We present the specific computation steps of AMLP
in AR scenario and explain the drawbacks of AR-AMLP. We take AMLP-Cov as
an example. Given an query token qt, the covariances SQ

t and SK
t of Kt and Qt,

and the cross-covariance zt of Kt and Vt, WQ,K and WQ,K,V are formulated as:

WQt,Kt
= L�

t = Cq(σ2(S
Q
t )) + Ck(σ2(SK

t )) (13)

WQt,Kt,Vt
= L�

t σ2(zt) (14)
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where SQ
t = SQ

t−1 + q�
t qt, SK

t = SK
t−1 + k�

t kt and zt = zt−1 + k�
t vt. These

computation steps increase heavy memory costs and large time consumption in
the training phase, with an additional O(ncd) costs beyond the overall com-
putation. Recurrent computation also harms the parallelism and further slows
down the training process, which is avoided naturally in NAR models. Moreover,
CAB [59] points out that most existing efficient architectures suffer a great per-
formance drop in causal-self or causal-cross pattern of AR models. Combining
the two drawbacks brought by the fusion of efficient architecture and AR models,
we decide to incorporate AMLP into NAR to produce a powerful and efficient
model.

2.5 Complexity Analysis

Without loss of generality, we focus on the complexity in the typical encoder-
decoder architecture and omit the independent factor w.r.t. target length n and
source length m for simplicity.

AMLP-Covand AMLP-PQuery. Note that the inner dimension c is a con-
stant to both m and n. The sequential computation of two adaptive projection
matrices and the overall MLP computation in Eq. 8 are all of O(n + m). The
exclusive EMA submodule in AMLP-PQuery is O(n) as well. Therefore, the
time and memory complexity of AMLP (both AMLP-Cov and AMLP-PQuery)
is O(n + m).

NAR-AMLP. Non-autoregressive models have one encoder self-attention,
one decoder self-attention, and an encoder-decoder cross-attention. Due to the
quadratic complexity of softmax attention, the complexities of the three atten-
tions are O(m2), O(n2) and O(nm), respectively. Therefore, the complexity
of the entire model architecture is O(n2 + nm + m2). To reduce the ineffi-
ciency bottlenecked by softmax attention, we replace softmax modules in non-
autoregressive models with AMLP, deriving an NAR-AMLP architecture with
linear time and space complexity.

3 Experiments

We conduct extensive experiments, covering the fields of speech, natural lan-
guage processing, time-series and computer vision.2 For fair comparison between
models, we select the typical hyperparameter setting for each efficient attention
on each task, which is shown in Table 1 in detail. Specifically, we first apply
our hybrid architecture NAR-AMLP in two tasks: Text-to-Speech Synthesis and
Machine Translation. Then we assess AMLP’s self-attention and cross-attention
abilities on super resolution and long sequence time-series forecasting tasks,
respectively. Finally, we conduct ablation studies to show the hidden philosophy
of AMLP and explore how efficient AMLP scales to long-sequence modeling.
2 In experiments, we take softmax(·) as the nonlinear function σ1(·) unless otherwise

specified.
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Table 1. Hyperparameters of different tasks.
Task TTS MT SR LSTF

Backbone FastSpeech 2/ Transformer-TTS Transformer/CMLMC SR Informer

Training hyperparameters

Batch Size 48 – 4 32

Number of Steps (epochs) 20K 100K/300K 1M 6 (epochs)

Warmup Steps 4K 4K – –

Peak Learning Rate 5e-4 5e-4 1e-4 1e-4

Scheduler Inverse Sqrt Inverse Sqrt Linear Exponential Decay

Optimizer AdamW AdamW AdamW AdamW

Adam (0.9, 0.98) (0.9, 0.98) (0.9, 0.999) (0.9,0.999)

Clip Norm 5.0 5.0 0 0

Attention Dropout 0.1 0.3 0.2 0.05

Weight Decay 0.01 0.0001 0 0

Max Tokens – 65536 – –

Iteration – – – 5

Evaluation Checkpoint best average last 10 average last 5 last

Attention hyperparameters

wsize (local) 15 5 15 15

landmarks (ABC) 64 16 64 64

ffn dim (AMLP) 64 16 64 64

approx dim (Performer) 64 16 64 64

3.1 Main Results of NAR-AMLP

Text-to-Speech. We select LJSpeech [25] dataset for this task, and use Fast-
Speech 2 (FS2) [46] and Transformer-TTS (Tr-TTS) [30] as the backbone models
for NAR and AR, respectively. For both backbones, we replace all softmax atten-
tions with efficient ones to achieve linear complexity. We use AMLP-Cov variant
and ReLU(·) as σ1(·) in Eq. 8. The alignment tool “g2pE” [54] is applied to train
FastSpeech 2. For reproducibility, we use two widely-used objective evaluation
metrics, Mel Cepstral Distortion (MCD) and Mel Spectral Distortion (MSD), to
assess the quality of synthesized audio clips. We compare AMLP with gMLP [33],
XCA [1], ABC [40] and local attention [36]. The details of training hyperparame-
ters are shown in Table 1. We demonstrate the results in Table 2. AMLP substan-
tially lowers the MCD and MSD values by a great margin up to 0.15 MCD with
even lower complexity compared to vanilla models. Additionally, AMLP also
outperforms other efficient models. Notably, we have significantly lower MCD
than XCA which also leverages (cross-)covariance matrices.

Machine Translation. To verify AMLP’s capability on short sequence model-
ing, we launch Machine Translation (MT) experiments on WMT 2014 English-
German (WMT’14 En-De) and German-English (WMT’14 De-En) datasets [6].
We adopt AMLP-PQuery variant to CMLMC [23], which is a powerful fully NAR
architecture without extra decoding algorithms. For completeness, we include
widely-used AR architecture Transformer (Tr) [53] with competitive linear atten-
tions. We exclude the AR-reranking process to make a fully linear-complexity
generation process. Similar to TTS, we replace self/cross-attention modules in
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Table 2. Automatic evaluation metric on
LJSpeech dataset. All models are trained
by ourselves. n, m are the target and
source sequence lengths. Colored rows
represent NAR models.

Arch Model #Params LJSpeech

MCD↓ MSD↓

Complexity: O(n2) or O
(
n2 + nm + m2

)

AR Tr-TTS 54.40M 4.095 2.199

NAR FS2 41.23M 3.475 1.974

Complexity: O(n) or O(n + m)

AR Tr-TTS (ABC) 54.60M 5.130 2.596

FS2 (local) 41.23M 3.419 1.970

FS2 (ABC) 41.36M 3.392 1.966

NAR FS2 (XCA) 41.23M 3.500 2.024

FS2 (gMLP) 44.90M 3.402 1.964

FS2 (AMLP) 41.49M 3.327 1.940

Table 3. BLEU4 scores on WMT14 EN-
DE and WMT14 DE-EN dataset. All
models for comparison are implemented
by ourselves. n, m are the target and
source sequence lengths. Colored rows
represent NAR models.

Arch Model #Params WMT’ 14

En-De De-En

Complexity: O
(
n2 + nm + m2

)

AR Tr 86.74M 27.38 31.26

NAR CMLMC 73.14M 27.91 31.43

Complexity: O(n + m)

AR Tr (local) 86.74M 24.77 28.21

Tr (ABC) 86.77M 25.86 29.09

CMLMC (ABC) 73.16M 27.37 31.30

NAR CMLMC (local) 73.16M 27.05 30.33

CMLMC (AMLP) 73.44M 27.60 31.50

the decoder of Transformer and CMLMC to obtain their efficient variants. We
use hyperparameters as CMLMC and Transformer suggest, which is present in
Table 1. We report BLEU-4 [39] scores as the performance metric. Because XCA
and gMLP do not support cross-attention, we here only compare AMLP with
the strong ABC and local baselines. As translation has implicit token alignment
between sequences, local attention can do cross-attention in this task.

Results in Table 3 indicate that the NAR-AMLP architecture achieves the
best result among efficient NAR and AR models with linear complexity. Among
the NAR models, the AMLP model outperforms a strong linear attention model,
ABC, on both datasets, with a lead of 0.23 and 0.20 BLEU, respectively. It
indicates that AMLP effectively captures short-term dependencies and produces
more accurate translations than ABC. We also compare AMLP with vanilla
attention, and the results indicate that AMLP outperforms vanilla attention on
the de-en dataset, with only a 0.31BLEU lag compared to vanilla attention on
the en-de one. This suggests that AMLP can achieve comparable performance to
vanilla NAR models in certain scenarios. In comparison to AR models on both
datasets, AMLP demonstrates superior performance (with at least 0.22 and 0.24
BLEU improvement), providing further evidence of the efficacy of NAR-AMLP
as an architecture.

3.2 Self- and Cross-Attention Ablation

Self-Attention. We evaluate the self-encoding ability of AMLP on Super Res-
olution (SR) task. SR aims to convert low-resolution (16 × 16) images into
high-resolution (128 × 128) ones. We base on a powerful backbone—SR3 [49]
and add attention layers after each residual block to follow CAB [59] settings.
We replace the softmax self-attention with five efficient architectures, i.e., local,
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Table 4. PSNR and SSMI on CelebA-HQ
dataset. n is the pixel number of the images.

Model #Params Celeb-HQ

PSNR↑ SSMI↑
Complexity: O(n2)

vanilla 99.55M 23.18 0.675

Complexity: O(n)

local 99.55M 23.33 0.682

gMLP 101.66M 23.24 0.679

XCiT 99.55M 23.08 0.67

ABC 99.72M 22.54 0.635

AMLP 99.73M 23.28 0.684

Fig. 3. Trade-off of MCD value and
speed-up of different intermediate dimen-
sion c values in text-to-speech task.

gMLP, XCA, ABC and AMLP to compare Following [49], we use the Flickr-
Faces-HQ (FFHQ) dataset [27] for the training set and CelebA-HQ dataset [26]
for the evaluation set. We use Peak Signal-to-Noise Ratio (PSNR) and Struc-
tural SIMilarity (SSIM) [55] to measure efficient models. Experiment results are
shown in Table 4. AMLP improves the performance of SR3 to 23.28 (+0.10) on
PSNR and 0.684 (+0.09) on SSMI against the vanilla baseline, indicating that
AMLP has a strong self-encoding ability. When compared to gMLP, AMLP also
has a slight performance gain. AMLP outperforms covariance-based architecture
XCA by 0.20 and 0.14 on PSNR and SSMI, respectively.

Cross-Attention. We test the cross-attention ability on the long sequence
time-series forecasting (LSTF) task. We take Informer [61] as the backbone neu-
ral networks and evaluate efficient models on Electricity Transformer Temper-
ature (ETT) dataset, which contains three sub-datasets ETT-h1, ETT-h2, and
ETT-m1. We follow [61] to conduct univariate and multivariate evaluations on
three sub-datasets and average their Mean Square Error (MSE) and Mean Abso-
lute Error (MAE) to obtain final scores. Except for vanilla attention, we also
compare AMLP with other three efficient models with strong cross-alignment
abilities: ABC [40], Performer [10] and cosFormer [44]. We exclude local atten-
tion as it does not work for cross attention without explicit token alignment in
the time-series forecasting task. The results performed on three sub-datasets are
shown in Table 5. AMLP, in contrast to the vanilla counterpart, achieves lower
MSE and MAE as well as more efficient complexity. Moreover, we notice that all
other efficient models perform poorly compared to vanilla attention. It suggests
that AMLP has a solid ability to model non-homologous information.
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Table 5. Cross-attention ablation on ETT-h1, ETT-h1, and ETT-m1 datasets. n, m
are the target and source lengths. Avg. is computed over three subdatasets.
Complex. Methods #Params ETTh1 ETTh2 ETTm1 Avg.

MSE↓ MAE↓ MSE↓ MAE↓ MSE↓ MAE↓ MSE↓ MAE↓
O(n2 + nm) vanilla 11.33M 0.754 0.573 1.907 1.036 0.754 0.716 1.138 0.775

O(n + m) ABC 11.33M 0.845 0.728 1.862 1.013 0.734 0.685 1.147 0.809

Performer 11.33M 0.861 0.703 2.137 1.091 0.764 0.663 1.254 0.819

cosFormer 11.33M 0.848 0.723 2.094 1.067 0.715 0.680 1.219 0.823

AMLP 11.33M 0.797 0.702 1.504 0.864 0.718 0.684 1.006 0.750

3.3 Analysis

In this section, we conduct substantial analysis experiments to dig out the effi-
ciency and superiority of our AMLP mechanism. We first present our analysis
in comparison with other efficient attention modules on the TTS task. Then we
show that our approximation c < d in Eq. 6 does not deteriorate the performance
of speech generation. Finally, we elucidate the outstanding generation speed and
GPU peak usage of our AMLP in the NAR scenario.

Intermediate Dimension Analysis. The approximation of eigenvalues in
Eq. 6 prompts us to know whether such approximation is feasible and whether
the exorbitant approximation will deteriorate the generation performance. To
this end, we test several values of c in AMLP and report each corresponding
performance on TTS and the decoding speed when adopted to FastSpeech 2, in
Fig. 3. Except for c value, we adopt the same setting in §3.1.

From Fig. 3, we can see that AMLP with approximation rank c can achieve
as well as no approximation setting (c = d = 128) and does not impact the
performance greatly. But with a lower c value, AMLP can achieve better decod-
ing speed. Specifically, in contrast to c = 64, a higher MCD when setting c to
d also indicates that maintaining the whole eigenvalues in Eq. 6 may even lead
to overparameterization and impair the overall decoding efficacy. It verifies the
feasibility to approximate Σ with fewer eigenspectrums in AMLP.

Efficiency Analysis. To further understand the performance of NAR-AMLP
architecture in inference, we set up a simulation experiment to test its efficiency.
The simulation experiment evaluates NAR-AMLP efficiency from running time
and memory usage with respect to sequence length from 256 to 8,192, compared
with AR model and vanilla NAR model. We simulate the generation process
with a single efficient module. For AR, we test its causal attention, which is its
bottleneck in generation. For AMLP, we use 64 as the inner dimension with ReLU
activation function for σ1 in Eq. 8. AMLP-Cov andAMLP-PQuery shares the
same complexity, so we use “AMLP” to denote the two variants. The experiments
are performed with batch size 12 on a single A100 GPU, and the results are
repeated with 100 runs. We remain running latency data ranging from the first
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Fig. 4. (a) Empirical running time and (b) empirical memory cost with sequence
length. Logarithms of relative measurement to the AR model are reported.

quatile and the third quatile among the 100 runs to remove noise. Finally, the
remaining figures are averaged to serve as the final time consumption.

Figure 4a shows that NAR-AMLP extremely speeds up the inference process.
To generate a long sequence with 8, 192 tokens, vanilla NAR is 116× faster than
AR while NAR-AMLP is even 590× faster. For sequences with more than 1500
tokens, both variants of AMLP are more efficient than vanilla attention; other-
wise, the vanilla attention is faster. Figure 4b shows that NAR-AMLP signifi-
cantly reduces memory consumption in NAR generation. It saves 89% memory
usage of NAR model when generating a sequence with 8, 192 tokens. Note that
AR models cost fewer memory resources because of incremental decoding, which
caches previous states and processes only one token at each step. But AR mod-
els still suffer from huge memory usage as NAR models in training, since they
are usually implemented with a causal mask on the attention matrix. Thus it is
reasonable to infer that NAR-AMLP is more efficient than AR and NAR models
in training.

4 Related Work

Non-autoregressive Generation. [17] first proposes a non-autoregressive
model to generate all the tokens within a sequence in parallel, which extremely
speeds up the inference process but is inferior in generation quality. To mitigate
the quality degradation, many researchers devote to improve the model perfor-
mance with iterative decoding [16,18,20,22,29], curriculum learning [4,19,34,42,
43], latent variable modeling [3,4,38,45], imitation learning [31,56] and learning
objective [12,15,32,48]. These previous works focus on pursuing the high efficacy
of non-autoregressive generation, but few works are presented to improve NAR’s
efficiency in long sequence modeling. We target to further improve its efficiency
and scale non-autoregressive models to long sequences.
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MLP Architecture. Multi-layer perceptron [14] is a classic neural network
architecture and has been widely used. Recently, novel variants of MLP archi-
tectures are proposed for text and image processing, achieving impressive results
on image classification [33,52], text classification [50], multilingual parsing [13],
and intent classification [13]. MLP-Mixer [52] is proposed by leveraging a token-
mixing and a channel-mixing MLP to enable token-wise and channel-wise com-
munication. MLP-Mixer is further improved to pNLP-Mixer with locality sen-
sitive hashing [24] projection at the bottom calculating non-trainable finger-
prints [13]. [33] propose gMLP by introducing a spatial gating unit to enhance
the communication between neighboring tokens. CycleMLP [8] leverages a local
window to achieve linear time complexity on dense prediction. Besides, previous
studies focus on encoding text/image features with MLP, but we explore the
possibility to leverage an MLP architecture for sequence generation.

Attention Mechanism. Attention is first proposed to align the target and
source sequence in neural machine translation [2], and is further improved
to multi-head self/cross/causal attention [53]. Due to its quadratic time com-
plexity and memory cost with sequence length, a surge of efficient attention
is proposed to improve the efficiency of softmax attention. Due to the the
sparsity of attention matrix, many researchers propose to explicitly model a
sparse attention mechanism to obtain fast computation without harming perfor-
mance [5,21,28,47,51,58]. The low-rank property of attention matrix also brings
out matrix decomposition-based methods [9,57]. The softmax attention can also
be linearized via exponential kernel decomposition [10,40,41,44,60]. These atten-
tion variants are exploring an efficient way to approximate softmax attention,
but we focus on MLP architecture, which is naturally an efficient architecture.

5 Conclusions

In this work, we introduced Attentive Multi-Layer Perceptron (AMLP), an effi-
cient plugin alternative to vanilla attention for non-autoregressive generation
tasks. AMLP uses adaptive weights to learn inter-token interactions as done in
attention. And we also put forward two methods adopting different philosophies
to parameterize the adaptive weight matrices in AMLP. Substantial experiments
on generation tasks verify that AMLP surpasses attention in most tasks and
achieves similar performances with other strong efficient models in other tasks.
Besides, efficiency analysis indicates that AMLP combined NAR model could
save time compared to AR models, and save space compared to vanilla NAR
models in long sequence settings.

Ethical Issues. AMLP is designed to speed up the generation of non-autoregressive

models, by replacing the inefficient softmax attention with our AMLP module to

achieve linear complexity. The potential positive implications imply lower difficulty

in deploying NAR models on resource-limited devices, thus increasing the accessibility
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of NAR models. AMLP also makes positive impacts on extending NAR models to vari-

ous domains, since it can do both self-attention and cross-attention. Moreover, the high

efficiency of AMLP reduces the carbon footprint of training a model and thus brings

positive environmental benefits. As such, we do not foresee any immediate negative

ethical or societal consequences stemming from our work that are different from those

that apply to other fundamental components of the transformer architecture and NAR

models.
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Abstract. Pre-trained Transformers (e.g., BERT) have been commonly
used in existing dense retrieval methods for parameter initialization, and
recent studies are exploring more effective pre-training tasks for further
improving the quality of dense vectors. Although various novel and effec-
tive tasks have been proposed, their different input formats and learning
objectives make them hard to be integrated for jointly improving the
model performance. In this work, we aim to unify a variety of pre-training
tasks into the bottlenecked masked autoencoder manner, and integrate
them into a multi-task pre-trained model, namely MASTER. Concretely,
MASTER utilizes a shared-encoder multi-decoder architecture that can
construct a representation bottleneck to compress the abundant seman-
tic information across tasks into dense vectors. Based on it, we inte-
grate three types of representative pre-training tasks: corrupted passages
recovering, related passages recovering and PLMs outputs recovering, to
characterize the inner-passage information, inter-passage relations and
PLMs knowledge. Extensive experiments have shown that our approach
outperforms competitive dense retrieval methods. Our code and data are
publicly released in https://github.com/microsoft/SimXNS.

Keywords: Dense Retrieval · Pre-training · Multi-task Learning

1 Introduction

Recent years have witnessed the great success of dense retrieval meth-
ods [12,43,45,46] in industrial applications, e.g., web search [5,45] and question
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Fig. 1. The comparison of two representative pre-training tasks and our approach. Ours
incorporates a bottlenecked multi-decoder architecture that unifies different tasks into
the same input format and leverages specific decoders to deal with them separately.

answering [12,25]. These methods typically encode queries and passages into
low-dimensional dense vectors and utilize the vector similarity between them to
measure semantic relevance. In real-world applications, the dense vectors of a
large number of passages will be pre-computed. Then the approximate nearest
neighbor (ANN) search techniques [11] can be incorporated for efficient retrieval.

In existing dense retrieval methods, pre-trained language models (PLMs) [4,
44] have been widely adopted as the backbone, showing the superiority to gen-
erate high-quality dense vectors. However, general PLMs (e.g., BERT [4]) may
not be the best for dense retrieval, as their produced native dense representa-
tions (usually the [CLS] embedding) are not designed on purpose to compress
the information from the input text. To solve it, recent studies [5,20,37] con-
tinually pre-train PLMs for improving the [CLS] embedding. Typically, they
mainly focus on capturing the inner-passage information (e.g., recovering masked
tokens) [17,35] or inter-passage relations (e.g., co-occurring passages) [36], and
specially design pre-training tasks. After pre-training, the enhanced [CLS]
embeddings would be fine-tuned on downstream passage retrieval tasks, achiev-
ing faster convergence and better performance than general PLMs.

As existing work has shown the effectiveness of capturing the two types of
characteristics during pre-training by specific tasks, it is promising to combine
these tasks for enhancing the [CLS] embedding. Intuitively, by incorporating
more tasks to capture more specific useful information, the [CLS] embedding
would be further enriched during pre-training, helping it generalize better into
downstream retrieval tasks. However, due to the divergence of focused charac-
teristics, the available pre-training tasks in existing work may adopt different
settings in training objectives and input formats, e.g., contrastive learning with
co-occurring passages as positives and sampled negatives, and masked language
model with special masking strategies on passages. Such differences make it hard
to combine existing pre-training tasks, and an arbitrary integration of these tasks
may even cause detrimental interference in the semantics of the [CLS] embed-
ding, leading to performance degradation.
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To address this problem, we consider integrating multiple pre-training tasks
in a unified input format and reducing the divergence of different training objec-
tives. Since most of the NLP tasks can be reformulated as the text-to-text
format [27], we can also reconstruct the available pre-training tasks into such
a format. Concretely, the tasks for capturing the inner-passage information or
inter-passage relations, can be converted as predicting the inner- or inter-passage
textual information (e.g., tokens) based on the same input passage. Therefore,
we can propose a unified framework for these tasks that adopts the PLM as
the shared encoder, and multiple task-specific decoders. As shown in Fig. 1, the
shared encoder produces the [CLS] embedding for the input passage, and all
the decoders mainly rely on the embedding for predicting the specific texts.
Such a way constructs an information-bottleneck architecture [17,35,36] where
the PLM encoder is forced to inject sufficient task-specific information into the
[CLS] embedding, for well accomplishing the tasks in decoders.

The proposed bottlenecked multi-decoder architecture provides a flexible way
to integrating multiple different tasks for pre-training dense retriever. Based on
it, we can combine a diverse range of available tasks for capturing the useful
information or relations from different perspectives. Besides the commonly-used
inner-passage information and inter-passage relations, we also consider to learn
the knowledge from other public generative PLMs (e.g., GPT-2 [26]), for captur-
ing useful information beyond the corpus. Specifically, we devise three types of
pre-training tasks for recovering corrupted passages, related passages, and PLMs
output, respectively, including a total of five tasks in five decoders. Inspired
by the masked autoencoder method (MAE) [9], we perform aggressively mask-
ing on the decoders (e.g., masking 50% tokens), hence the deep encoder would
be forced to generate compressed high-quality representations to recover them.
Finally, we propose MASTER, a multi-task pre-trained bottlenecked masked
autoencoder, that adopts a shared-encoder multi-decoder architecture to inte-
grate the five pre-training tasks in the bottlenecked MAE format. To verify the
effectiveness of our approach, we conduct extensive experiments on several text
retrieval datasets. Experimental results show that our approach can outperform
competitive baselines.

2 Related Work

Dense Retrieval. Dense retrieval approaches [12] typically map queries and
documents into low-dimensional dense vectors for evaluating their relevance,
which support the efficient approximate nearest neighbor (ANN) search engines,
e.g., FAISS [11]. For effectively training dense retrieval models, existing work typ-
ically leverages pre-trained Transformers [4] to initialize the dual encoders and
then samples high-quality negatives for fine-tuning the encoders. Early work [12]
mainly relies on in-batch random negatives and hard negatives mined by BM25.
Afterward, a line of work [25,39] picks top-k ranked documents by a trained
dense retriever as hard negatives and improves the performance. However, a
common problem for such top-k negative sampling strategies is that they are
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easy to select false negatives, which impedes better performances. To alleviate
it, current studies have explored several practical directions, e.g., knowledge dis-
tillation [16,25,32], pre-training [5] and negative sampling [45]. Besides, recent
work is also exploring more efficient and effective ways for training dense retriev-
ers, e.g., ambiguous negative sampling [45] and neural corpus index [47].

Pre-training for Dense Retrieval. As general PLMs [4] are pre-trained with-
out any prior task knowledge, they are not ready to use for dense retrieval [5,7],
especially in low-data situations. To solve this issue, several studies [5,36] are
proposed to make the output sentence embedding more informative and discrim-
inative. A type of work relies on the explicit relations between text pairs and
designs the pre-training tasks based on the contrastive learning objective [7,29],
e.g., inverse cloze task and contrastive span prediction. Another line of work aim
to compress the semantic information into the [CLS] embedding. They leverage
the masked autoencoder architecture that incorporates a deep encoder and a
shallow decoder, forcing the [CLS] embedding of the input text from the encoders
to recover itself [17,36,38] or related texts [35].

3 Preliminary

Task Definition. Given a query q, the dense retrieval task aims to retrieve the
most relevant top-k passages {pi}ki=1 from a large candidate pool P. To achieve
it, the dual-encoder architecture is widely used. It consists of a query encoder Eq

and a passage encoder Ep, mapping the query q and passage p into k-dimensional
dense vectors hq and hp, respectively. Then, the semantic relevance score of q
and p will be computed using dot product as

s(q, p) = hq · hp. (1)

Existing work mostly adopts pre-trained Transformers (e.g., BERT [4]) as
the two encoders, using the representations of the [CLS] token as the dense
vectors. In this work, we aim to propose a more effective multi-task pre-training
framework specially for the dense retrieval task, which learns to compress more
useful information into the [CLS] representations. Formally, given a pre-training
corpus and a Transformer encoder, we focus on devising several tasks to pre-
train the parameters of it. Then, the pre-trained Transformer will be used as the
backbone of the query encoder Eq and passage encoder Ep, and can be fine-tuned
on downstream dense retrieval tasks.

Fine-tuning Dense Retrievers. In the fine-tuning stage, the learning objec-
tive is to pull the representations of a query q and its relevant passages P+

together (as positives), while pushing apart irrelevant ones P− = P \ P+ (as
negatives). Therefore, high-quality negatives are critical to the effectiveness of
dense retrievers. Existing work commonly leverages the BM25 negatives [12]
or the top-k ranked negatives mined by a well-trained dense retriever [25,39],
denoted as D̃−. Then, the optimization objective can be formulated as:

θ∗ = argmin
θ

∑

q

∑

d+∈D+

∑

d−∈D̃−
l(s(q, d+), s(q, d−)), (2)
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Fig. 2. The overview of MASTER. We adopt a bottlenecked multi-decoder architec-
ture, and design three types of pre-training tasks, totally five decoders for specific tasks.

where l(·) is the loss function. Besides, as the top-k hard negatives may contain
false negatives, recent studies [19,25,30] have adopted knowledge distillation
strategies to solve it. They rely on pre-learned cross-encoder rerankers to produce
soft labels on D̃−, and minimize the KL divergence between the dual encoders’
outputs and the soft labels.

4 Approach

In this section, we present MASTER, an approach to pre-training an effective
dense retriever. We first introduce the bottlenecked model architecture (consist-
ing of a PLM encoder and multiple shallow decoders), then describe our adopted
three types of pre-training tasks unified as the bottlenecked masked autoencod-
ing manner. Figure 2 shows the overview of our approach.

4.1 Bottlenecked Multi-decoder Architecture

To pre-train the dense retriever for compressing useful information into the dense
vectors, we design a bottlenecked multi-decoder architecture. In the architecture,
we incorporate a deep Transformer encoder to compress the input text into a
dense vector, and five shallow decoders corresponding to different pre-training
tasks to capture diverse semantics and relations.

Concretely, the deep Transformer encoder shares the same architecture as
BERT [4], and can be initialized with its pre-trained parameters. Given a pas-
sage p from the pre-training corpus, we leverage the deep encoder to encode
it, and select the output representation of the [CLS] token as its dense vector
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hp. Following existing work [5,18], we employ a masked language model task to
pre-train the encoder. Formally, a certain percentage α% of tokens from p will
be masked to obtain p′, and the encoder needs to predict them as:

LMLM =
∑

ti∈Mp′

− log p(ti|p′;ΘE) (3)

where Mp′ denotes the masked tokens in p′, ΘE denotes the parameters of
the encoder. The multiple shallow decoders are all the 2-layer bi-directional
Transformer, and share the embedding matrix and language modeling head with
the deep encoder. For each decoder, its input is an aggressive masked text x′

(masking rate β ≥ 50%) that requires to be recovered. Besides, the dense vector
hp′ from the encoder will be inserted into the decoder to replace the original
[CLS] token embedding. In this way, the learning objective of each decoder is:

LD =
∑

ti∈Mx′

− log p(ti|x′,hp′ ;ΘE , ΘD) (4)

where Mx′ denotes the masked tokens in x′, ΘD denotes the parameters of the
decoder. Such a way builds the information bottleneck where multiple decoders
rely on hp′ to recover the input, forcing it to reserve more useful information.

4.2 Multi-task Pre-training

Based on the architecture, we devise multiple pre-training tasks, to help dense
vectors capture more useful information. Concretely, we adopt three types of
tasks to capture the semantic information within passages, relations with other
passages, and knowledge from other PLMs, namely corrupted passages recover-
ing, related passages recovering and PLMs outputs recovering, respectively.

Corrupted Passages Recovering. Given a passage p from the pre-training
corpus, the corrupted passages recovering tasks (CPR) first mask its contained
tokens to compose the inputs of the encoder p′ and decoder p̂′ according to the
mask rates α% and β% respectively. Then, the output dense vector hp′ from
the encoder will be leveraged to help the shallow decoder to recover p̂′ into
p. Such a way is helpful to compress important semantic information from the
passage into the dense vector. To achieve it, we design two pre-training tasks by
utilizing special masking mechanisms for the decoder, namely masked keywords
prediction (MKP) and complementary mask prediction (CMP).

For MKP, we aim to mask more keywords in the decoder, as they may reflect
important semantic information of the passage. Specifically, we rely on the TF-
IDF weights [28] to obtain a masked probability distribution about words in the
passage, where keywords with low frequencies would receive larger probabilities
to be masked. In this way, the input masked passage p̂′

MKP of the decoder will
lose most keywords, which will force the dense vector hp′ to well reserve their
information for recovering. For CMP, given the passage p, we leverage a comple-
mentary mask mechanism in the decoder that masks the unmasked tokens from
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the input of the encoder p′. As a result, the incomplete inputs of the encoder
and decoder will be complementary, and the dense vector hp′ should accurately
remember all the unmasked input information from p′ for recovering p̂′

CMP.
Finally, the pre-training objective of the CPR tasks is given by combining

the above two tasks as:

LCPR =
∑

ti∈MMKP

− log p(ti|p̂′
MKP,hp′ ;ΘE , ΘMKP

D )

+
∑

ti∈MCMP

− log p(ti|p̂′
CMP,hp′ ;ΘE , ΘCMP

D ),

where MMKP and MCMP denote the masked tokens in p̂′
MKP and p̂′

CMP, respec-
tively, and ΘMKP

D and ΘCMP
D are the parameters of the two specific decoders.

Related Passages Recovering. The related passages recovering task (RPR)
aims to model the semantic relationships between related passages. In this work,
we focus on the commonly-used and easily-obtained co-occurrence relation from
the pre-training corpus. Based on this motivation, we collect the passage pairs
{〈pi, pi+1〉} that are neighbouring spans in a document, and devise the neigh-
bouring passage recovering task (NPR).

In NPR, given a neighbouring passage pair 〈pi, pi+1〉, we rely on the mask
rates α% and β% to mask their tokens for composing the inputs of the encoder
p′
i and decoder p′

i+1, respectively. Next, the output dense vector of p′
i from the

deep encoder is utilized to help the decoder recover p′
i+1. Such a way encourages

the dense vector to retain the information related to the neighbouring passage,
capturing the intrinsic token-level correlations across the two passages. Besides,
we also rely on the TF-IDF weights of words to mask more keywords in the
decoder as MKP, which further increases the difficulty of this task and forces
the dense vector to focus more on the key information. The learning objective
of the RPR task can be defined as:

LRPR =
∑

ti∈MNPR

− log p(ti|p′
i+1,hp′

i
;ΘE , ΘNPR

D ),

where MNPR and ΘNPR
D denote the masked tokens in p′

i+1 and the parame-
ters of the decoder specially for the NPR task, respectively. Note that existing
work [15,21] has also considered the neighbouring relations and mostly adopts
the contrastive learning objective to capture it. In fact, contrastive learning
mainly aims to characterize the passage-level semantics and would be affected
by the quality of sampled negative passages. As a comparison, the NPR task can
capture more fine-grained token-level characteristics, and such a generative way
only focuses on modeling the relations between neighbouring passages, avoiding
the influence from other passages.

PLMs Outputs Recovering. The above tasks are able to capture the seman-
tic information and relations within the unsupervised pre-training corpus. We
further consider to learn the knowledge from other PLMs, to capture more rich
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information beyond the corpus. Based on this idea, we design the PLMs out-
puts recovering tasks (POR) that aim to recover the outputs of two generative
PLMs, consisting of the doc2query outputs recovering (DOR) and GPT-2 out-
puts recovering (GOR) tasks.

Given a passage p, we leverage a public well-trained doc2query model [23]
to generate k relevant queries {qi}ki=1 and concatenate them into a long sen-
tence s(q), as the generated queries have shown effectiveness in previous dense
retrieval methods [24]. Besides, we also use p as the prompt to guide the popu-
lar autoregressive GPT-2 model [26] to generate a long sentence s(g), as GPT-2
has shown surprising performance in generating informative long text. Then, we
aggressively mask the tokens in s(q) and s(g) according to the mask rate β%, to
obtain the inputs s′

(q) and s′
(g) of two task-specific decoders. Similar to above

tasks, the two decoders also rely on the dense vector hp′ to recover the generated
texts, and the pre-training objective of the POR tasks is the combination of the
two tasks as:

LPOR =
∑

ti∈MDOR

− log p(ti|s′
(q),hp′ ;ΘE , ΘDOR

D )

+
∑

ti∈MGOR

− log p(ti|s′
(g),hp′ ;ΘE , ΘGOR

D ),

where MDOR and MGOR denote the masked tokens in s′
(q) and s′

(g), respec-
tively, and ΘDOR

D and ΘGOR
D are the parameters of the two specific decoders,

respectively. In this way, the dense vector is enhanced to capture richer knowl-
edge from other PLMs, and learn more information not included in the corpus.
Such a way is similar to the knowledge distillation process that transfers the
learned knowledge from PLMs into the dense vector by forcing it to predict the
PLMs’ outputs.

4.3 Learning

During pre-training, we optimize the parameters in the deep encoder and the
multiple shallow decoders using the above pre-training tasks, denoted as:

Ltotal = LMLM + LCPR + LRPR + LPOR (5)

During fine-tuning, we utilize the pre-trained deep encoder as the backbone of
the query and passage encoders. Following the pipeline in previous dense retrieval
methods [7,35,36], we first train the Retriever1 using the in-batch negatives and
BM25 hard negatives. Then, we utilize Retriever1 to mine hard negatives from
a large-scale passage pool, and leverage these negatives and in-batch negatives
to train the Retriever2. Next, we train a cross-encoder reranker model based
on the mined negatives from Retriever2. Finally, we distil the knowledge from
the reranker into the Retrieverdistil by using it to produce soft labels for both
positives and mined negatives from Retriever2. Note that our pre-trained encoder
is used to initialize the Retriever1, Retriever2 and Retrieverdistil.
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Table 1. Statistics of the text retrieval datasets.

Dataset Train Dev Test #Passage

MS MARCO Passage Ranking (MS-Pas) 502,939 6,980 – 8,841,823
TREC 2019 Deep Learning Track (TREC-2019) – – 200 8,841,823
TREC-2020 Deep Learning Track (TREC-2020) – – 200 8,841,823
Natural Questions (NQ) 58,880 8,757 3,610 21,015,324

5 Experiment

5.1 Experimental Setting

Datasets and Evaluation. We conduct experiments on several text retrieval
datasets: MS-MARCO [22], TREC-2019 Deep Learning Track [2], TREC-2020
Deep Learning Track [1], and Natural Questions (NQ) [14]. The statistics of
the above datasets are shown in Table 1. MS-MARCO consists of real queries
collected from Bing search engine. NQ is an open domain QA dataset.

Baselines. We compare our approach with a variety of methods: BM25 [40]
is a widely-used sparse retriever based on exact matching. DeepCT [3] and
docT5query [23] enhance BM25 with neural models. ANCE [39], TAS-B [10]
and STAR [41] are dense retrieval methods that adopt top-k hard negatives to
improve training. RocketQA [25], AR2 [42] and ERNIE-search [19] utilize knowl-
edge distillation technique that leverages a teacher model to guide the training of
the dual-encoder retriever. COIL [8], ColBERT [13] and ColBERTv2 [31] utilize
multiple representations for text retrieval. SEED [18], RetroMAE [17], Con-
denser [6], PAIR [29], coCondenser [7], CoT-MAE [36] and SimLM [35] design
special pre-training tasks to improve the backbone models.

Implementation Details. During pre-training, we leverage BERT-base to ini-
tialize the shared encoder, and all decoders are randomly initialized two-layer
Transformers. Following previous work [7,35,36], we leverage the passages in MS-
MARCO and NQ dataset as the pre-training corpus of them, respectively. The
pre-training steps are setting to 120k. During fine-tuning, we also follow SimLM
that progressively trains Retriever1, Retriever2, and Retrieverdistil, where our
pre-trained deep Transformer encoder is leveraged to initialize their parameters.
Our all other hyper-parameters are the same as SimLM [35].

5.2 Main Results

Performance on Web Search Datasets. Table 2 shows the results on three
web search benchmarks, i.e., MS-MARCO, TREC-2019 and TREC-2020. First,
we can see that with or without distillation strategy, the best baselines are both
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Table 2. Results on three web search datasets. The best and second-best methods are
marked in bold and underlined, respectively. The ✓in the column of “with KD?” means
that the model has used knowledge distillation.

Model with KD? MS-MARCO TREC-19 TREC-20
MRR@10 R@50 R@1k nDCG@10 nDCG@10

BM25 [40] 18.5 58.5 85.7 51.2 47.7
DeepCT [3] 24.3 69.0 91.0 57.2 –
docT5query [23] 27.7 75.6 94.7 64.2 –
ANCE [39] 33.0 – 95.9 64.5 64.6
STAR [41] 34.7 – – 68.3 –
TAS-B [10] ✓ 34.0 – 97.5 71.2 69.3
RocketQA [25] ✓ 37.0 85.5 97.9 – –
RocketQAv2 [30] ✓ 38.8 86.2 98.1 – –
AR2 [42] ✓ 39.5 87.8 98.6 – –
ERNIE-Search [19] ✓ 40.1 87.7 98.2 – -
AR2+SimANS [45] ✓ 40.9 88.7 98.7 – –
COIL [8] 35.5 – 96.3 70.4 –
ColBERT [13] 36.0 82.9 96.8 – –
ColBERTv2 [31] ✓ 39.7 86.8 98.4 – –
SEED [18] 33.9 – 96.1 – –
RetroMAE [17] 35.0 – 97.6 – –
Condenser [5] 36.6 – 97.4 69.8 –
coCondenser [7] 38.2 86.5 98.4 71.7 68.4
CoT-MAE [36] 39.4 87.0 98.7 – 70.4
PAIR [29] ✓ 37.9 86.4 98.2 – –
SimLM [35] ✓ 41.1 87.8 98.7 71.2 69.7
MASTER ✓ 41.2 88.6 98.8 72.7 71.7

pre-training dense retrieval methods, i.e., CoT-MAE and SimLM, even outper-
forming methods using multiple representations. It indicates that proper pre-
training strategies are helpful to the downstream dense passage retrieval tasks.
Second, SimLM mostly outperforms other baselines. It employs a bottlenecked
architecture that learns to compress the input information into a dense vector,
and adopts a replaced language modeling objective to pre-train it. Such a way
is more effective to force the dense vector to reserve the important semantics.

Besides, our approach outperforms all the baselines in terms of all metrics
on all datasets. Our approach adopts a multi-task pre-training framework that
unifies five tasks on recovering of corrupted passages, related passages and PLMs
outputs, based on a bottlenecked one-encoder multi-decoder architecture. In
this way, we can force the output dense vector from the encoder to be more
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Table 3. The performance of Retriever2 without knowledge distillation on NQ.

Model DPR ANCE RocketQA Condenser PAIR coCondenser SimLM MASTER

R@20 78.4 81.9 82.7 83.2 83.5 84.3 84.3 84.6
R@100 85.4 87.5 88.5 88.4 89.1 89.0 89.3 89.4

Table 4. Zero-shot dense retrieval nDCG@10 performances on beir benchmark.
Results with * are from our reproduction.

Dataset BERT LaPraDoR SimCSE DiffCSE SEED Condenser SimLM* MASTER

TREC-COVID 0.615 0.492 0.460 0.492 0.627 0.750 0.637 0.620
BioASQ 0.253 0.308 0.263 0.258 0.308 0.322 0.350 0.354
NFCorpus 0.260 0.335 0.260 0.259 0.278 0.277 0.323 0.330
NQ 0.467 0.473 0.435 0.412 0.446 0.486 0.477 0.516
HotpotQA 0.488 0.495 0.502 0.499 0.541 0.538 0.581 0.589
FiQA-2018 0.252 0.314 0.250 0.229 0.259 0.259 0.292 0.328
Signal-1M(RT) 0.204 0.231 0.262 0.260 0.256 0.261 0.257 0.252
TREC-NEWS 0.362 0.374 0.356 0.363 0.358 0.376 0.326 0.409
Robust04 0.351 0.368 0.330 0.343 0.365 0.349 0.368 0.405
ArguAna 0.265 0.469 0.413 0.468 0.389 0.298 0.421 0.395
Touche-2020 0.259 0.182 0.159 0.168 0.225 0.248 0.292 0.320
CQADupStack 0.282 0.288 0.290 0.305 0.290 0.347 0.332 0.327
Quora 0.787 0.847 0.844 0.850 0.852 0.853 0.773 0.791
DBPedia 0.314 0.338 0.314 0.303 0.330 0.339 0.345 0.399
SCIDOCS 0.113 0.155 0.124 0.125 0.124 0.133 0.145 0.141
FEVER 0.682 0.646 0.623 0.641 0.641 0.691 0.657 0.692
Climate-FEVER 0.187 0.209 0.211 0.200 0.176 0.211 0.163 0.215
SciFact 0.533 0.599 0.554 0.523 0.575 0.593 0.588 0.637
Avg. 0.371 0.396 0.369 0.372 0.391 0.407 0.407 0.429

informative and functional to accomplish these tasks, leading to better represen-
tative capacity.

Performance on Open Domain QA Datasets. Table 3 shows the results
an open domain QA datasets, NQ. For a fair comparison, we only report the
performance of Retriever2 without performing knowledge distillation. First, we
can also see that pre-training dense retrieval methods mostly outperform other
methods. It further indicates the effectiveness of pre-training techniques in open
domain QA tasks. Besides, coCondenser and SimLM perform better than other
methods, the reason is that they both adopt a bottlenecked architecture to com-
press the information into the dense vectors. Finally, we can see that our app-
roach outperforms all the baselines. As a comparison, our approach can enhance
the informativeness of dense vectors by integrating multiple pre-training tasks,
which compress the semantic information within passages, model the relations
between passages, and learn the knowledge from other PLMs.
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Table 5. Comparison with different pre-training dense retrieval methods in three stages
of our fine-tuning pipeline on the dev set of MS-MARCO.

Model coCondenser CoTMAE SimLM MASTER
MRR@10 R@1k MRR@10 R@1k MRR@10 R@1k MRR@10 R@1k

Retriever1 35.7 97.8 36.8 98.3 38.0 98.3 38.3 98.8
Retriever2 38.2 98.4 39.2 98.7 39.1 98.6 40.4 98.8
Retrieverdistil 40.2 98.3 40.4 98.7 41.1 98.7 41.2 98.8

Table 6. Ablation and variation study of our approach. We report MRR@10 of the
retriever1 and retriever2 on the dev set of MS-MARCO.

Model MASTER w/o CPR w/o RPR w/o POR +Shared-Dec SimLM

Retriever1 38.3 37.7 37.6 37.6 37.4 38.0
Retriever2 40.4 39.9 39.8 39.8 39.1 39.1

Zero-Shot Evaluation. We evaluate the zero-shot retrieval performance of
our approach on BEIR benchmark [33]. It contains 18 datasets, covering dense
retrieval tasks across different domains. Following [33], we fine-tune our approach
in MS-MARCO training set and evaluate it on the BEIR benchmark using the
official evaluation toolkit. nDCG@10 is chosen as the evaluation metrics. As
shown in Table 4, the average performance of our approach surpasses all base-
lines significantly. Since our approach incorporates multiple pre-training tasks
for learning the dense representations, such a way can enrich the informativeness
of them and help better adapt into different domains and retrieval tasks.

5.3 Further Analysis

Fine-tuning Performance in Three Stages. To further investigate the effec-
tiveness of our approach, we show the performances of MASTER and other pre-
training dense retrieval methods in each stage of our fine-tuning pipeline. Here,
the models in the three stages are all initialized by corresponding pre-trained
parameters of these methods. As shown in Table 5, the performances of all pre-
training methods are consistently improving with the process of the three-stage
training. In addition, our approach also outperforms all other pre-training meth-
ods in the three stages. It indicates the superiority of our proposed multi-task
pre-training strategy.

Ablation and Variation Study. Our proposed approach incorporates a multi-
decoder architecture and three types of tasks for pre-training. To verify the
effectiveness of each part, we conduct the ablation and variation study on the
dev set of MS-MARCO to analyze their contributions. We remove the CPR,
RPR and POR tasks individually, and propose a variants that adopts a shared
decoder to deal with the multiple tasks. As shown in Table 6, we can see that
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Fig. 3. Performance comparison w.r.t. different number of pre-training steps and data
proportions on MS-MARCO.

Table 7. Experimental results on four NLU tasks from GLUE.

Model CoLA MRPC STS-B QQP

BERT 59.1 87.7 87.8 89.7
Ours 60.7 89.1 88.0 89.8

all the ablation and variation models will lead to the performance degradation.
It indicates that all the pre-training tasks and our multi-decoder architecture
are useful to improve the performance. Besides, after removing any type of pre-
training tasks, our Retriever2 still outperforms the SOTA method, SimLM. It
further shows the promising effectiveness of multi-task pre-training for dense
retrieval tasks.

Performance w.r.t. Different Pre-training Steps. As a pre-training app-
roach, the number of pre-training steps will affect the performance on down-
stream tasks. In each step, we optimize the model parameters using a batch of
pre-training data by gradient descent algorithm. However, too many pre-training
steps are time-consuming and costly. Here, we investigate the performance con-
vergence speed of our approach during pre-training. As shown in Fig. 3(a), we
can see that our model performs well with few pre-training steps, especially that
the retriever2 of our method achieves the 39.1 on MRR@10 metric (the same as
SimLM) after 10k steps. It shows that our approach is more effective to pre-train
effective dense vectors, with no need for too many pre-training steps.

Few-Shot Learning. In our approach, as we have pre-trained the backbone
via a multi-task manner, the pre-learned dense vectors can be easily adapted
into downstream tasks with less data. To validate it, we reduce the training data
size into 50%, 20%, 10% and 5%, and compare the performance of our approach
with the pre-training method SimLM. As shown in Fig. 3(b), we can see that the
performance substantially drops when less training data is used. Additionally,
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Table 8. Performance comparison w.r.t. different masked rates in the encoder and
decoder. We report MRR@10 of the Retriever1 and Retriever2 on MS-MARCO.

Model 30% En-50% De 15% En-50% De 50% En-50% De 30% En-30% De 30% En-70% De

Retriever1 38.3 37.9 37.6 37.5 38.0
Retriever2 40.4 39.9 39.7 39.8 39.9

our approach is consistently better than SimLM in all cases, especially in an
extreme sparsity level (5%). It indicates that MASTER is better pre-trained to
effectively adapt to downstream dense retrieval task.

Natural Language Understanding Tasks. In our approach, as we integrate
multiple pre-training tasks, our model can capture diverse knowledge from these
tasks. In this part, we evaluate if our pre-training methods can also benefit for
natural language understanding (NLU) tasks. We select the single-sentence and
similarity tasks from the GLUE benchmark [34] (i.e., CoLA, MRPC, STS-B and
QQP), which focus on predicting the acceptability, similarity and paraphrase of
sentences from different domains (e.g., news and misc). We fine-tune our pre-
trained model on these tasks. and all the hyper-parameters are following the
suggestions of the original BERT paper [4]. As shown in Table 7, our approach
improves the performance of BERT on these NLU tasks. It indicates that our
multi-task pre-training can also enrich the useful knowledge about NLU tasks.

Hyper-parameter Tuning. The masked rates of the deep encoder and multiple
decoders are two important hyper-parameters, as they control the information
bottleneck in our approach. Here, we set the masked rate in the encoder to
be 15%, 30% and 50%, and that in decoders to be 30%, 50% and 70%. Table 8
shows the evaluation results. First, our model is robust to these different settings.
Besides, when the masked rates of the encoder and decoders are set to 30% and
50% respectively, our model performs slightly better than others. Therefore, we
apply 30% and 50% as the masked rates of the encoder and decoders.

6 Conclusion

In this paper, we proposed MASTER, a multi-task pre-trained bottlenecked
masked autoencoder for dense retrieval task. In our approach, we adopted a
bottlenecked multi-decoder architecture to integrate a variety of pre-training
tasks, and devised three types of pre-training tasks about corrupted passages
recovering, related passage recovering and PLMs outputs recovering. The three
types of tasks focused on compressing the information within the passages, mod-
eling relations among passages, and learning the knowledge from external public
generative PLMs, respectively, leading to more informative and effective dense
vectors. Experimental results have shown the superiority of our approach.
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Limitations

A major limitation of our approach is the cost of pre-training. Actually, it is not
necessary for researchers or developers to complete the whole pre-training pro-
cess, as they can directly utilize our publicly released checkpoints for initializa-
tion. Besides, in this work, we evaluate our approach mainly on passage retrieval
tasks, and do not consider the retrieval of very long documents. Another pos-
sible issue derives from that we continually pre-train the parameters of BERT.
Since existing works have revealed that BERT might represent biases from the
pre-training corpus, such an issue may also be inherited by our approach.
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Abstract. Duplicate multi-modal entities detection aims to find highly similar
entities from massive entities with multi-modal information, which is a basic
task in many applications and becoming more important and urgent with the
development of Internet and e-commerce platforms. Traditional methods employ
machine learning or deep learning on feature embedding extracted from multi-
modal information, which ignores the correlation among entities and modals.
Inspired by the popular Graph Neural Networks (GNNs), we can analyze the
multi-relation graph of entities constructed from their multi-modal information
with GNN. However, this solution still faces the extreme label sparsity challenge,
particularly in industrial applications. In this work, we propose a novel graph
contrastive self-training network model, named CT-GNN, for duplicate multi-
modal entities detection with extreme label sparsity. With the multi-relation graph
of entities constructed from multi-modal features of entities with KNN, we first
learn the preliminary node embeddings with existing GNN, e.g., GCNs. To allevi-
ate the problem of extremely sparse labels, we design a layer contrastive module
to effectively exploit implicit label information, as well as a pseudo labels exten-
sion module to determine label boundary. In addition, graph structure learning
is introduced to refine the structure of the multi-relation graph. A uniform opti-
mization framework is designed to seamlessly integrate these three components.
Sufficient experiments on real datasets, in comparison with SOTA baselines, well
demonstrate the effectiveness of our proposed method.

Keywords: Duplicate enetites · Graph learning · Self-supervised learning ·
Self-training learning

1 Introduction

Duplicate entities detection, finding all two highly similar or even identical entities
from massive data, has become a common and important problem, e.g., face matching
[23] and user alignment [37]. In e-commerce scenarios, this problem is more chal-
lenging, because entities often have multi-modal features, e.g., texts, images and even
videos. Duplicate multi-modal entities detection has urgent and realistic needs, which
provides the basic function in many applications. For instance, as shown in Fig. 1 (e.g.,
similar images and descriptions), some store managers defraud illegal subsidies from
e-commerce platforms through registering inveracious duplicate stores. Thus, detecting

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
D. Koutra et al. (Eds.): ECML PKDD 2023, LNAI 14170, pp. 651–665, 2023.
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Fig. 1. An example of duplicate multi-modal stores. The images and texts are the outlines and
description information of the stores respectively. Because of their highly similar features, they
are determined to be duplicate entities.

these duplicate multi-modal entities is an important task for combating fake information
and saving cost. In order to solve the above problems, traditional industrial solutions
are more inclined to machine learning or deep learning methods [1], making indepen-
dent decisions for each pair of duplicate entities based on feature engineering, which
measures the similarity of entities by feature extraction and feature combination. Nev-
ertheless, these methods have two disadvantages. (1) They do not depict the correlation
between entities explicitly. The correlation between entities is important prior knowl-
edge, and thus ignoring them may result in performance degradation. (2) The associa-
tions between multiple modals are not considered. Different modals depict entities from
distinct perspectives, and thus considering associations between multiple modals may
benefit for characterizing entities more accurately.

For solving above disadvantages, a direct solution is to construct a multi-relation
graph through employing K-Nearest Neighbors (KNN ) [4] on multi-modal features,
and then the popular GNN [10,35] can be applied to exploit the structure relations
among entities and modals. However, because of the semi-supervised paradigm, this
solution faces the extreme labels (i.e., known duplicate entity pairs) sparsity challenge,
especially on industrial applications. For instance, an e-commerce platform has tens
of millions of offline stores, the proportion of duplicate stores is relatively small. The
labels we can obtain also rely on manual annotation. Due to very high labor costs, the
known label data may only account for 5% of the duplicate stores, and thus the label
data may be no more than 0.05% of all stores.

How to deal with the extreme labels sparsity challenge? A common way is self-
supervised learning [32,34] or self-training learning [12,13]. However, these strate-
gies are not easily applied to our problem settings and a single strategy is also not
sufficient to solve the above challenge. For self-supervised learning, the conventional
process is to generate two augmented views based on a graph, and emphasize the con-
sistency between different views of the same node (i.e., entity) [26,36]. However, in
our duplicate multi-modal entities detection scenario, this method of emphasizing the
consistency of the same node does not have much benefit to mine whether two nodes is
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duplicate. As for self-training learning, its main idea is to generate some pseudo labels
and train jointly with real labels. In the scenario of duplicate entities detection, we can
generate pseudo labels by similarity measurement. However, pseudo labels with dif-
ferent similarities have different influences on the model, so it is difficult to determine
a rational threshold for pseudo labels. More importantly, individual self-supervised or
self-training learning may be not sufficient to solve the extreme label sparsity, especially
in real industry scenorio, which motivates us to effectively integrate more strategies to
solve this challenge.

In this paper, we propose a novel graph contrastive self-training network model
CT-GNN, which solves the challenge of extreme label sparsity by means of seamlessly
integrating self-supervised learning and self-training learning. Specifically, after multi-
modal feature extraction through pre-training model [5,24], we build a multi-relation
graph with KNN method, and learn the node embeddings with GCNs [10] model. In
order to exploit implicit label information among graph structure, we propose a novel
layer-contrastive module by using the strategy of multiple random walks [11,16,18] to
find the others with the most frequency as positive nodes in the topology. At the same
time, in order to more fully utilize the feature information of entities, we design a self-
training module with a delicate boundary distance, which distinguishes the optimization
intensity of labels with different similarities. In addition, the graph structure learning
process is introduced to automatically adjust graph structure for iterative representation
learning. Finally, a joint optimization function is designed to seamlessly optimize above
three components.

We summarize the contributions of this work as below:

– To our best knowledge, we are the first to study the problem of duplicate multi-modal
entities detection with extreme label sparsity, which is a basic task in many appli-
cations and becoming more important and urgent with the development of Internet
and e-commerce platforms.

– We propose a novel graph model named CT-GNN, which seamlessly integrates self-
supervised learning, self-training learning and graph structure learning in a uniform
optimization framework. In particular, some delicate designs in CT-GNN make it
suitable for extreme label sparsity challenge, i.e., layer contrastive module with mul-
tiple random walk and self-training module with boundary distance.

– We evaluate CT-GNN by designing both various offline and online experiments.
Compared to state-of-the-art alternatives, the improvements of CT-GNN are obvious
up to 9.88% in Recall and 7.13% in Precision.

2 Related Work

2.1 Graph Neural Networks

In recent years, Graph Neural Networks (GNNs) has become an extremely impor-
tant field, e.g., recommendation systems [8,30], fraud detection [15], which learn the
node embedding by aggregating the features of neighborhoods [28]. GCNs [10] imple-
ments layer-wise propagation to learn the node embedding, and GAT [28] learns differ-
ent attention scores for neighbors when aggregating neighborhood information. Mean-
while, Some recent models [21] are proposed to deal with heterogeneous graphs which
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are more practical in reality. RGCN [21] propose to learn node embedding based on
multi-relation neighborhoods. Additionally, HAN [31] leverages the attention mecha-
nism under node-level and semantic-level in heterogeneous graphs.

2.2 Self-supervised Learning for GNNs

Recently, motivated by profound success in natural language processing [5] and com-
puter vision [7], self-supervised contrastive learning based graph representation learn-
ing attracts considerable attention. Deep Graph Infomax (DGI) [29] learns unsupervised
representations for nodes in attributed graphs by the mutual informaton-based learning
from Deep InfoMax [9]. GMI [19] is proposed to contrast between center node and its
local patch from node features and topological structure. Another line of graph con-
trastive learning approaches called global-global contrast [20] directly study the rela-
tionships between the global context representations of different samples as what metric
learning does. In heterogeneous domain,DMGI [17] and HeCo [32] employs network
schema and meta-path as two views to capture both of local and high-order structures,
and performs the contrastive learning across them.

2.3 Self-training Learning for GNNs

Due to the pressure of sparse supervised signals, some researchers propose that GNNs
are not completely suitable for graph semi-supervised learning tasks [13]. Self-training
[12] strategy is to first train GNNs with the existing training sets, then selects the sam-
ples with high predicting probability as pseudo labels and add them to the training sets,
and then continue to train GNNs. The samples selected by self-training should have
similar features with the label samples, so that the robustness will be improved after
expanding the training sets [38]. These methods have uniform constraint strength for
all generated labels, but samples with different prediction probabilities should have dif-
ferent influence on the model.

3 The Proposed Model

3.1 Notations and Definitions

Given entity set U = {u1, u2, ..., un} and feature set E = {e1, e2, ..., en}, each entity
ui ∈ U has a feature ei ∈ E, in which n is the number of entities and ei includes
multi-modal feature ei = {e

(1)
i , e

(2)
i , ..., e

(v)
i }, and v is the number of modals. With-

out lost of generality, we consider image feature Eimg and text feature Etext in this
paper. For these multi-modal features, we can obtain their initial feature (i.e., Eimg

and Eimg). Through multi-relation graph construction and GNNmethod, we fully learn
node embedding (i.e.,X0). Our goal is to mine all suspicious duplicate entities through
the similarity calculation of node embedding.
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Fig. 2. The architecture of CT-GNN. (a) is the constructing process of multi-relation graph. (b)
is the layer contrastive module through multiple random walks. (c) is the self-training learning
considering boundary distance. (d) is the graph refinement process.

3.2 Overall Framework

Figure 2 shows the overall framework of our CT-GNN model. After constructing multi-
relation graph by multi-modal features, we design a graph contrastive self-training net-
work to solve the extreme label sparsity challenge, including layer contrastive learn-
ing, self-training with boundary distance and graph structure learning, in a uniform
optimization framework. Concretely, after learning graph embedding with GCNs, we
firstly design a layer contrastive module to sufficiently utilize self-supervised informa-
tion, which uses multiple random walks to find the important neighbors of the central
node as positive samples of contrastive learning. Then we introduce a self-training mod-
ule to flexibly extend label information. Based on the similarity between entities, we
smartly generate pseudo labels through a delicate boundary distance loss distinguishing
the optimization intensity of labels with different similarities. Meanwhile, in order to
refine the graph structure, we further design a graph structure refinement process during
iteration.

3.3 Multi-relation Graph Construction

Firstly, we construct a multi-relation graph of entities under the multi-modal features
with the KNN method. Without lost of generality, we consider image and text feature.
Image Feature: we employ the pre-training image model VGG [22,24] to acquire the
image feature vectors Ximg ∈ Rn∗d and d represents feature dimension. Text Fea-
ture: we use the pre-training language model BERT [5,25] and convert all of the text
information for each entity feature vector Xtext ∈ Rn∗d.

Based on Ximg and Xtext , we can construct the K-Nearest Neighbor graph
Gimg = (Aimg ,Ximg ) and Gtext = (Atext ,Xtext), where Aimg and Atext are
the adjacency matrix of KNN graphs under images and texts respectively. Specifi-
cally, under Ximg or Xtext , for each sample, we first find its top-K similar neighbors
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and set edges to connect it with its neighbors. There are many methods to calculate the
similarity matrixS ∈ Rn∗n of samples. Here we list two common methods for building
KNN graph,

– Cosine Similarity: It uses the cosine value of the angle between two vectors to
measure the similarity:

Sij =
xi · xj

|xi ||xj | . (1)

– Heat Kernel: The similarity is calculated by Eq. (2) where t is the time parameter
in heat conduction equation.

Sij = e− ||x i −x j ||2
t . (2)

Here we uniformly choose the Cosine Similarity. By this way, we can obtain
two graphs: Gimg and Gtext, and then combine them to get a multi-relation graph
G = (V, E ,R), in which V and E represent the node set (all entities) and edge set
respectively, and R = {image, text} represent all relations between two nodes, i.e.,
the association between nodes in the image and text dimension.

3.4 Graph Embedding Learning

Now we have built the graph G. The initial node feature are image and text feature, i.e.,
Ximg and Xtext . We first learn from the idea of GNNs (e.g., GCNs [10]) to get the
embedding of each type of feature, and then integrate them together. The generation
method of embedding under image feature is as follows,

xiim g

l+1 =
∑

j∈N img
i

1√
|N img

i ||N img
j |

xl
jim g

, (3)

where xiim g
l+1 represents the embedding of node i at the (l + 1)th layer under image

feature. N img
i represents the neighbor set of i (including the central node i) under the

image feature. The embedding learning method under the text feature is the same as the
image feature.

In order to obtain a comprehensive node embedding for subsequent graph learning,
we fuse two types of embeddings by a function f , as follows,

xi
l+1 = f(xiim g

l+1,xit e x t

l+1), (4)

where xi
l+1 is the embedding of node i after fusion. The common designs of f are

concatenation, weighted sum and softmax [14], and we choose concatenation operation
in this paper.
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Fig. 3. Positive example selection in layer contrastive module. Three random walks are performed
from the central node n0, and L = 3 is limited, and the n4 and n8 appear the most times, i.e., n4

and n8 are taken as positive samples of n0.

3.5 Self-supervised Learning with Layer Contrastive

In this section, we introduce a layer contrastive module to alleviate the problem of
extreme sparse supervised signals. Traditional graph contrastive learning is to generate
two augmented views based on a graph, and emphasize the consistency between differ-
ent views of the same node, which does not match our goal of predicting whether two
entities are duplicate. Because the duplicate entities usually meet the graph structure
proximity principle, i.e., the two nodes that meet the duplication condition should be
topologically highly related in the graph structure. Therefore, we design a layer con-
trastive learning module, which implements N random walks within L layer and finds
the first top m nodes that appear more times. In this way, we can capture the neighbor
(which can be multi-hop) nodes that are more important in the topology of the central
node, and take them as positive samples in contrastive learning. As is shown in Fig. 3,
starting from node n0, we generate three random walk paths (L = 3). Among all paths,
n4 and n8 appear the most frequently. We think n4 and n8 have the strongest correlation
with the central node n0 in the topology, that is, they are most likely to be duplicate with
n0. Therefore, n4 and n8 are used as positive samples of n0 in contrastive learning. As
for the negative samples, we randomly select from outside the Lth layer.

Obviously, the strength of entity repeatability is inversely proportional to the layer
and directly proportional to the similarity. Therefore, we hope to use features and layers
to constrain embedded learning. After finding the positive and negative examples, we
adopt the contrastive loss, InfoNCE [6], to maximize the agreement of positive pairs
and minimize that of negative pairs. On this basis, we consider the different effects of
layers and similarities on the optimization strength, and update the loss function, as
below,

Llc = −
∑

v∈V

L∑

l=1

∑

u+∈neborl

sim(xv ,xu+)
lγ

log
exp{sim(xv ,xu+)/τ}∑

u−∈N exp{sim(xv ,xu−)/τ} ,

(5)
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where (xv ,xu+) is the the positive pair and (xv ,xu−) is the negative pair. τ is a hyper-
parameter, known as the temperature coefficient in softmax. We can see that the opti-
mization proportion of positive samples is proportional to the similarity and inversely
proportional to the layer l (i.e., the distance between nodes), and the influence intensity
of the l is controlled by an intensity coefficient γ.

3.6 Self-training Learning with Boundary Distance

In this section, we introduce a self-training module to further relieve the extreme lack-
ing labels. Conventional methods calculate the similarity between entities, and judge
whether are pseudo labels by a boundary (i.e. threshold). However, a popular fixed
boundary is not retional, since the pseudo labels with different distances from the
threshold have different effects in the optimization process. And thus we design a smart
threshold with boundary distance.

We use R to represent the set of real labels and generate pseudo labels with the
similarity of nodes. Specifically, we set a super parameter t, and then calculate the
cosine similarity between nodes. For two nodes whose similarity is greater than or equal
to t, we think they are likely to be duplicated, so we regard them as a pair of pseudo
labels. We use P to represent the set of pseudo labels. The generation process of P is
formalized as follows,

(u, v) ∈ P, sim(xu ,xv ) ≥ t. (6)

Obviously, this threshold t can be considered as the boundary between duplicate
and non-duplicate entities, and the node similarities in the real labels are far away from
t. In order to distinguish the optimization strength of pseudo labels with different dis-
tances from t, we design a semi-supervised normal form based on boundary distance,
as follows,

Llabel = − 1
N

∑

(u,u+)∈P∪R

(v,v−)∈Neg

(
sim(xu ,xu+) − t

1 − t
)α

log{σ(sim(xu ,xu+) − sim(xv ,xv−))},

(7)

in which Neg is the negative sample set. Negative samples are randomly selected from
the set whose similarity is less than t. α and σ are the strength-control coefficient and
a non-linear activation function, respectively. As shown in Eq. (7), the optimization
strength of all pseudo labels (i.e. positive samples) is different, and it decreases with the
increase of the distance from the boundary t.

3.7 Graph Structure Learning

In order to ensure the credibility of the graph structure in the model iteration process,
we choose to refine the graph structure in each epoch. The method of reconstructing the
graph is shown in Sect. 3.3.

Let the graph adjacency matrix of the last epoch be Apre, and that of the current
epoch be Anew. In order to constrain the stability of nodes embeddings during the



Duplicate Entities Detection 659

training process, we need to constrain the graph structure changes between the two
epochs, which is as shown below,

LG = ||Anew − Apre||2. (8)

3.8 Joint Optimization

In order to combine the above modules, we jointly optimize the model, which is as
below,

L = Llc + λ1Llabel + λ2LG , (9)

in which λ1 and λ2 are hyperparameters to control the proportion of label extension
module and graph refinement module, respectively.

4 Experiments

4.1 Datasets

Three datasets are utilized in our evaluation, and can be described as follows:

– M Stores: It is an offline stores datasets of Mplatform. It includes multi-modal
information (e.g., store outline images and store names). We extracted partial data,
including 111,635 entities (stores).

– M commodities: M platform maintains a large number of commodities online.
When they are released, sellers need to upload multi-modal information of the com-
modities, such as the appearance images and the commodity names. We extract
125,320 entities (commodities) for experiment.

– T commodities: T has a large number of commodities for users to choose. We
can obtain multi-modal information of commodities including the image, name and
attribute, etc. We obtain 69,911 entities (commodities).

4.2 Experimental Settings

Baseline. We compare CT-GNN with several state-of-the-art methods. The baseline
can be divided into three categories: traditional industrial models, graph models and
multi-modal models. The traditional industrial models include: XGBoost [2] and MLP
[27]. The graph models include GCN [10], GAT [28], RGCN [21] and HAN [31]. The
multi-modal models include ITA [33] and HVPNet [3].
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Table 1. The R (Recall) and P (Precision) results under different threshold (t) on three datasets.

Dataset t M XGB MLP GCN RGCN ITA HVPNet CT-GNN Improv.

R 0.3633 0.3152 0.3578 0.3756 0.3312 0.3621 0.4122 9.74%

0.85 P 0.7429 0.7093 0.8033 0.8154 0.7645 0.8392 0.8567 2.09%

M R 0.3422 0.2978 0.3420 0.3693 0.3247 0.3529 0.3923 6.23%

Stores 0.90 P 0.7803 0.7432 0.8358 0.8492 0.7850 0.8415 0.8625 1.57%

R 0.3137 0.2765 0.3197 0.3128 0.2933 0.3367 0.3670 5.52%

0.95 P 0.8232 0.7938 0.8552 0.8737 0.8022 0.8639 0.9245 5.81%

R 0.3278 0.3024 0.3538 0.3793 0.3488 0.3725 0.3928 3.56%

0.85 P 0.5281 0.4933 0.5324 0.5633 0.5384 0.5528 0.5933 5.33%

M R 0.3055 0.2933 0.3228 0.3387 0.3176 0.3495 0.3582 2.50%

commodities 0.90 P 0.5468 0.5162 0.5533 0.5966 0.5539 0.5932 0.6124 2.65%

R 0.2873 0.2734 0.2956 0.3034 0.2753 0.3008 0.3143 3.59%

0.95 P 0.5884 0.5478 0.6055 0.6374 0.5976 0.6123 0.6534 2.51%

R 0.3256 0.2833 0.3277 0.3328 0.3165 0.3245 0.3547 6.58%

0.85 P 0.5218 0.4908 0.5329 0.5587 0.5180 0.5267 0.5853 4.76%

T R 0.2945 0.2678 0.3002 0.3086 0.2858 0.3224 0.3290 2.05%

commodities 0.90 P 0.5468 0.5100 0.5591 0.5933 0.5265 0.5371 0.6356 7.13%

R 0.2449 0.2208 0.2675 0.2773 0.2508 0.2729 0.3047 9.88%

0.95 P 0.5934 0.5736 0.6093 0.6533 0.5732 0.6262 0.6603 1.07%

4.3 Performance Evaluation

In this section, we empirically compare CT-GNN with several state-of-art alternatives
and analyze the experimental results. In order to fully evaluate the results, we take t =
0.85, 0.90 and 0.95 respectively. As shown in Table 1, the following major observations
can be made.

Obviously, CT-GNN achieves the best performance in the duplicate entities detec-
tion task on all datasets. Compared with the second best result, the improvement is
up to 9.88% in Recall and 7.13% in Precision. This phenomenon is reasonable. Com-
pared with non-GNN-based methods (i.e., XGBoost and MLP), GNN-based methods
can mine high-order information through graph structure. Compared with other GNN-
based models (i.e., GCN and RGCN), our model alleviates extreme label sparsity chal-
lenge with self-supervised module and self-training module. Note that, compared with
the multi-modal based methods (i.e., ITA and HVPNet), our model achieve signifi-
cant performance improvement because of capturing the correlation among entities and
modals.
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Fig. 4. The result comparison of removing different information, i.e., removing images or texts.
(we set t = 0.95).

Fig. 5. The comparison result of removing different modules. SSL is Self-supervised learning.
STL is Self-training learning. GSL is Graph structure learning (we set t = 0.95).

4.4 Ablation Analysis

In order to extensively validate our model, we conduct the following ablation experi-
ments.

Firstly, we explore the impact of multi-modal information, i.e., images and texts. In
order to explore the importance of each kind of information in the model, we remove
images and texts respectively, and then test the experimental results. As shown in Fig. 4,
without either images or texts, the experimental results are significantly lower than com-
plete CT-GNN model. Through the analysis of experimental results, we found that the
two kinds of information, image and text, have different influences in the duplicate
entities detection. For example, as shown in Fig. 4(a), the prediction accuracy without
image information is far lower than that without text information. It indicates that image
information has a greater impact on the detection results.

Secondly, we explore the importance of three modules (i.e., self-supervised learn-
ing, self-training learning and graph structure learning) in our model. We remove them
respectively, and then compare the experimental results. As shown in Fig. 5, we find
that after removing the self-training module, the decline of experimental results is the



662 S. Gu et al.

Fig. 6. Impact of γ, α, λ1 and λ2 to the result under three datasets. The red line, blue line and
green line respectively represent M stores, M commodities and T commodities. × is Recall and
• is Precision (we set t = 0.95). (Color figure online)

most significant, followed by removing the self-supervised and graph structure learning
module. It indicates that all three modules play important roles in the result of detection,
and the self-training module has the greatest influence.

4.5 Hyperparameter Analysis

In this section, we analyze several important parameters in the model. First, we ana-
lyze the two strength control factors γ and α set in layer contrastive module and label
extension module respectively. As our model jointly optimizes the three modules with
hyperparameter λ1 and λ2 in Eq. (9), we then explore the effect of them on the final
performance, and their change trends are shown in Fig. 6.

Firstly, we observe two strength coefficients, i.e., γ in Eq. (5) and α in Eq. (7). we
tune γ in {0.2, 0.5, 1.0, 1.2, 1.5, 2.0} and view the corresponding results. As shown in
Fig. 6(a), the index of the experiment increases gradually with γ from 0.2 to 1.5, and
reaches the peak at γ = 1.5. Then it shows a downward trend. Then we tune α in
{0.5, 1.0, 1.2, 1.5, 2.0, 3.0} and observe the results. As shown in Fig. 6(b), the experi-
mental results can get the maximum value at α = 1.2, and decrease at both sides of 1.2.
The change trend of this result also verifies the rationality of setting strength parameters
γ in Eq. (5) and α in Eq. (7).

Next, we evaluate the impact of λ1 and λ2. We perform experiments on
three datasets and tune λ1 in {0.5, 0.8, 1.0, 1.5, 2.0, 3.0} and λ2 in {0.4, 0.6, 0.8, 1.0,
1.2, 1.5}. As we can see in Fig. 6(c) that when λ1 = 1.5, the best experimental results
can be obtained on three datasets, and the two sides of λ1 = 1.5 show a downward
trend, in which we can infer that the label extension module is more important than the
layer contrastive module. As for λ2 shown in Fig. 6(d), the best performance is achieved
when λ2 = 0.8 on M Stores dataset. While on the other two datasets, the best perfor-
mance is achieved at λ2 = 1.2. It can be seen that the influence of the scale parameter
λ2 of graph refinement on different datasets is different. We speculate that in M Stores
dataset, the features of entities are relatively dispersed and the initial graph is relatively
accurate. However, in other datasets, the features of entities are relatively dense and the
reliability of the graph is low, so the influence of λ2 is greater.
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5 Conclusion

In this paper, we study the multi-modal entities detection under extreme label sparsity.
We propose a novel model named CT-GNN, which can alleviate the extreme labels spar-
sity challenge by two module, i.e., self-supervised learning with layer contrastive and
self-training learning with boundary distance. Meanwhile, graph structure learning is
introduced to stabilize learning performance. We carry out comprehensive experiments,
and the results demonstrate that CT-GNN has significant performance improvement on
three datasets compared with SOTA models.
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back. This work is supported in part by the National Natural Science Foundation of China (No.
62192784, U1936104, U20B2045, 62172052, 62002029).
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Abstract. With broad applications in network analysis and mining,
Graph Contrastive Learning (GCL) is attracting growing research inter-
est. Despite its successful usage in extracting concise but useful infor-
mation through contrasting different augmented graph views as an out-
standing self-supervised technique, GCL is facing a major challenge in
how to make the semantic information extracted well-organized in struc-
ture and consequently easily understood by a downstream classifier. In
this paper, we propose a novel cluster-based GCL framework to obtain a
semantically well-formed structure of node embeddings via maximizing
mutual information between input graph and output embeddings, which
also provides a more clear decision boundary through accomplishing a
cluster-level global-local contrastive task. We further argue in theory
that the proposed method can correctly maximize the mutual informa-
tion between an input graph and output embeddings. Moreover, we fur-
ther improve the proposed method for better practical performance by
incorporating additional refined gadgets, e.g., measuring uncertainty of
clustering and additional structural information extraction via local-local
node-level contrasting module enhanced by Graph Cut. Lastly, extensive
experiments are carried out to demonstrate the practical performance
gain of our method in six real-world datasets over the most prevalent
existing state-of-the-art models.

Keywords: Graph neural networks · Graph representation learning ·
Contrastive learning · Node classification · Node clustering

1 Introduction

Graph neural networks (GNNs) [14] are regarded as successful expressive models
[26] for solving tasks on graphs such as semi-supervised node classification [6,14]
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and graph classification [4]. Compared to other deep neural networks, GNNs can
extract concise but meaningful information from both input feature vectors and
graph structures into low dimensional hidden representations, i.e., embeddings.
Moreover, they can deal with various kinds of graphs including citation graphs,
social networks, co-purchase graphs, knowledge graphs, etc. Guided by appro-
priate supervision, existing GNN models have achieved significant performance
gain compared to classic graph tools, e.g., graph kernels [32] and random walk-
based methods [25]. But in the real world, data labeling can be very expensive
[24] and even suffer from privacy issues [18,24]. Moreover, labels are sometimes
noisy and may mislead models. So increasing attention has been attracted to
learning representations in an unsupervised manner.

Self-supervised learning (SSL) [3,9] is one of such techniques that can extract
correct supervision signals from input and guide models to learn meaningful
knowledge. Among many SSL methods in the literature, Contrastive learning
(CL) [3] is a successful example that can even outperform its supervised coun-
terparts [31,40]. The key idea of CL is to construct several views via some
augmentation tricks [2,38], in which the embeddings of the same part appear
similar in different views [5] or a global pooling vector is provided to compare
with local embeddings [31]. In addition to making models more robust intu-
itively, it can maximize mutual information (i.e., MI) between input and output
(called IOMIMax ) or between global and local content (called GLMIMax ), which
theoretically guarantees it can extract meaningful information instead of noise.

In this paper, we focus on Graph Contrastive Learning (GCL) and aim to
accomplish the unsupervised graph representation learning task using CL. But
unfortunately, there is no specific and clear definition of the mutual information
between a random input graph and random vectors. Although GMI [24] provided
an example with theoretical consideration, it is not yet explainable whether and
why useful information can be captured by their method. This paper presents
another example (see Sect. 4) which is more effective and interpretable. We con-
sider this from different perspectives first (e.g., from features and structure indi-
vidually) and then trade-off them globally, locally, or node-wisely. And to keep
it simple, we use a non-parametric encoder1 to encode structural information.

Yet there is another concern on mutual information maximization on graph
even with a well-formed definition: MI maximization can only capture and keep
meaningful information in embeddings but can hardly organize and show them
clearly. In other words, the exacted semantic information might not be clearly
recognized by a linear downstream classifier due to the following reasons: 1) there
are too many semantic clusters even if MI is maximized, i.e., their structure is
too complex for a linear classifier to capture; 2) the embeddings around the
cluster boundary may be still vague and confused, so the classifier could make
an unconfident decision only. In order to solve this issue, we cluster embeddings
into k parts (here k << n, where n is the number of nodes in the input graph)
and guide our model via maximizing mutual information between every local
node and the global vector summarized from the cluster that accommodates this

1 E.g., spectral embeddings used in Spectral Clustering [33].
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node (called Cluster-GLMIMax1). Note that Cluster-GLMIMax can not be used
without Graph-IOMIMax providing strong semantic signals to guide clustering,
since otherwise, the quality of semantic structure may significantly degrade. This
is the reason why Graph-IOMIMax is considered as a regularization: it keeps
meaningful information in a well-organized form.

Besides, we propose two additional refinements to further improve perfor-
mance. We use the Silhouette Coefficient to measure the certainty of clustering
and discount those unconfident nodes in case of wrong supervision. Moreover,
the Metis algorithm is introduced to do graph cutting and favor a local-local con-
trastive module. Intuitively, it supplements some other prior structural knowl-
edge (e.g., perception of distance and density on graph) and can be seen as an
auxiliary improvement of Graph-IOMIMax (See Sect. 4.2).

Extensive experiments are carried out on six real-world benchmarks, and
our method achieves competitive performance compared with those supervised
counterparts and even outperforms some of them. This indicates the potential
of our design on Graph-IOMIMax and the advantage of cluster awareness. We
leave as future work on how to combine features and structural embeddings more
sophisticatedly. The contributions of the paper can be summarized as follows:

– Propose a novel approach to maximize the mutual information between an
input graph and output embeddings (Graph-IOMIMax ), which can be inter-
preted as a more simple and effective regularization to capture concise but
useful information, resulting in a semantically well-formed structure of node
embeddings.

– Devise a global-local contrastive module at the cluster level (Cluster-
GLMIMax ), which supplements some relatively global information from cor-
responding clusters for unconfident nodes and derives significantly clearer
decision boundaries.

– Extensive experiments are conducted to demonstrate our method achieving
competitive performance compared to existing state-of-the-art models on six
real-world benchmarks.

2 Related Works

2.1 Graph Neural Network

Graph neural networks (GNNs) are a kind of neural network that can extract
information from graphs into low-dimensional embeddings preserving both
attributive and topological information [35]. They are first introduced in [14],
which proposed a spectral-based convolutional operation to encode both graph
structure and node features. In order to specify the importance of neighbors,
GAT [30] leverages masked self-attention layers to measure different weights to
different nodes in a neighborhood. SGC [34] reduces the excess complexity of
GCN by removing nonlinearities and collapsing weight matrices between consec-
utive layers. On the other hand, GraphSAGE [6] performs a non-spectral graph
1 Because we use GLMIMax in cluster’s level instead of the whole graph.
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convolution over a fixed-size set of randomly sampled neighbors to integrate
neighbor features. FastGCN [1] also adopts a sampling strategy to reduce the
computational complexity of GCN by interpreting graph convolutions as integral
transforms of embedding functions. GIN [36] makes use of sum aggregation and
MLPs to obtain a maximally powerful GNN. However, these methods mainly
focus on supervised settings, which require a large volume of sample annota-
tion. On the other hand, the representations generated by them have limited
generalization capabilities in various downstream tasks.

2.2 Graph Contrastive Learning

Contrastive Learning(CL) is a self-supervised method that learns representations
by pulling positive pairs together and pushing negative pairs apart. Inspired by
its success in Computer Vision and Natural Language Processing, CL has been
widely used to solve graph tasks in recent years. DGI [31] first adopts contrastive
learning to Graph Representation Learning, which maximizes the mutual infor-
mation between graph-level and node-level embeddings. MVGRL [7] enhances
the contrastive mechanism of DGI with graph augmentation strategies. GMI [24]
tries to maximize the mutual information between input and representations of
the target node and its neighbors. While GRACE [40], GCA [41], and Merit [10]
construct node classification tasks, which focus on feature alignments between
the same nodes from different augmented views, instead of exploring local-global
relationships. In this paper, we propose three contrastive modules in our frame-
work. Compared to the aforementioned prior works, ours can not only more
effectively preserve and well-organize knowledge in input, but also facilitate infor-
mation sharing in 1) in cluster-level embedding space; 2) in balanced sub-graphs.
See Sec. G in Appendix for a more detailed comparison.

3 Preliminaries

3.1 Notation, GCN, and SGC

Let G = (V,E) represent a graph, where V is the set of n nodes {vi}, and
E is the set of edges. Feature matrix and adjacency matrix are represented by
X ∈ R

n×f and A ∈ {0, 1}n×n, respectively, where xi ∈ R
f denotes the feature

vector of vi and Aij = 1 iff (vi, vj) ∈ E and Aij = 0 otherwise. 1(x = y) = 1 if
x = y otherwise 0. GCN [14] in the spatial domain can be described as several
stacked aggregation operations, linear transformations, and non-linear activation
functions:

H(0) = X, H(l+1) = σ
(
ÂH(l)W (l)

)
∈ R

n×d, (1)

where l ∈ [0, L), L is the number of layers, and σ(·) denotes the non-linear
activation function (e.g., ReLU) except the last layer where softmax is deployed.
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Fig. 1. Comprehensive depiction of our framework. Z1 and Z2 are the projected node
embeddings of augmented views G̃1 and G̃2. Applying the K-means algorithm on Z1

and Z2, we can get cluster centroids C1, C2 and cluster labels K1,K2 which are used
to calculate the cluster-level contrastive loss.

Â = D̃− 1
2 ÃD̃− 1

2 is the symmetrical normalized matrix of Ã = A + I (i.e.,
adjacency matrix with self-loops) and diagonal matrix D̃i,i =

∑n
j=1 Ãi,j . H(l) ∈

R
n×d and W (l) ∈ R

d×d represent the embedding matrix of nodes and trainable
parameters in the l-th layer. SGC [34] simplifies GCN by dropping its non-linear
activation functions. Its forward pass can be described as follows:

H(L) = ÂLXW ∈ R
n×d. (2)

3.2 Contrastive Learning and InfoNCE Loss

The target of contrastive learning is to learn a graph encoder fθ : Rn×f ×R
n×n →

R
n×d that generates node embeddings H = fθ(X,A) ∈ R

n×d by maximizing the
agreement of representations between different views.

Specifically, we first generate two graph views by performing random graph
augmentation on the input. After that, we employ a contrastive objective that
pulls positive pairs together and pushes negative pairs apart. InfoNCE loss [8]
has been widely used as contrastive loss, which could be written as:

LCL(Zt, Zs,P,N) = − 1
N

N∑
i=1

∑
j∈Pi

log
exp(sim(zt

i , z
s
j )/τ)∑

k∈Pi∪Ni
exp(sim(zt

i , z
s
k)/τ)

, (3)

where Zt, Zs represent the embeddings of target nodes and sample nodes, respec-
tively. N is the number of target nodes, P and N represent positive and nega-
tive sample sets, respectively. sim(·, ·) denotes the cosine similarity between
two vectors, and τ is a temperature hyper-parameter. Theoretically, minimizing
InfoNCE loss equivalently maximizes a lower bound of MI (see e.g., [8]).

Due to limited space, we move the subsection Clustering and Spectral Embed-
ding to the Appendix (see Sec. E).
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4 Proposed Method

In this section, we describe our Cluster-aware Regularized Graph Con-
trastive Learning framework. See Fig. 1 for a comprehensive depiction. We
first augment the input graph to generate two views with two strategies, i.e.,
removing edges and masking node features randomly. We propose three con-
trastive objectives to train our GNN encoder: 1) maximizing mutual informa-
tion between the input graph and output embeddings (i.e., Graph-IOMIMax);
2) maximizing mutual information between every local node and the global vec-
tor summarized from the cluster this node belongs to (i.e., Cluster-GLMIMax);
3) employing Graph Cut-favored local-local contrastive learning to supplement
some extra structural knowledge. In the following subsections, we introduce each
part of our framework in detail.

4.1 Mutual Information Maximization Between Input Graph
and Output Embeddings (Graph-IOMIMax)

GMI [24] is a prior example of defining clearly the mutual information between
input graph and output embeddings. It focuses on feature vectors first and then
injects some structural knowledge into its design via an auxiliary contrastive
term. This motivates us to consider features and structural information indi-
vidually and combine them via a simple global trade-off or in a local-adaptive
and node-wise way, which will help our model learn more meaningful and accu-
rate information and effectively alleviate adverse effects from noise in inputs.
Sec. G in Appendix enumerates detailed differences between our method and
other mainstream previous works including GMI.

MI with Feature Vectors. Recall our motivation for GCL is to learn semanti-
cally well-clustered embeddings. Note that the majority of real-world graphs are
homogeneous, so their feature vectors can already provide enough information
to get not bad results in downstream tasks. Then the distribution of features
can regularize our output embeddings to keep similar distribution and form a
not-bad initial semantic structure. And later, the graph encoder we train should
encode some additional knowledge from the input graph structure and perform
careful combination in an implicit way with the knowledge already encoded in
the initial distribution, i.e., it should not alter the initial distribution too much.
From this perspective, maximizing MI with features can be interpreted as a
good regularization, just as mentioned in Sect. 1. Specifically, we maximize MI
between input features and output embeddings by minimizing the following loss
term:

LFIO = LCL

(
H1, EF ,P,N

)
+ LCL

(
H2, EF ,P,N

)
,

EF = W1X, H1 = fθ(X1), H2 = fθ(X2),
(4)

where X1,X2 ∈ R
n×f denote features of different augmented view V 1 and V 2.

And fθ ∈ R
f×d is a GNN encoder generating H1,H2 ∈ R

n×d as the embeddings
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of V 1, V 2. W1 ∈ R
f×d is a trainable weight matrix that projects X into the same

latent space of embeddings. See Eq. 3 for the definition of LCL(·). Here we treat
the samples from the same instance as positive pairs and those from different
instances as negative pairs.

MI with Structural Embeddings. In some situations, feature vectors are
missing, incomplete, or noisy. So trusting features too much as Sect. 4.1 may
provide limited or misleading information. As a result, structural information
matters. Here we want to do regularization via input graph structure just as
features, but it’s difficult to directly exploit graph structure: simply adopting
rows of the adjacency matrix A as structural embeddings may not estimate
local similarities well because rows of two nodes can be very different while their
local environments might be very similar or even isomorphic. In order to capture
more accurate information about the local structure for each node, we prefer a
non-parameter encoder. To keep it simple, we use classic spectral embeddings
inspired by Spectral Clustering [33]. They can be efficiently calculated via eigen-
decomposition with partial-SVD [15]. To see the rationals for them to represent
structural knowledge, consider: Â = UΛUT =

∑n
i=1 λiuiu

T
i ≈ ∑f ′

i=1 λiuiu
T
i =

Uf ′Λf ′UT
f ′ = Âf ′ , where eigen-values of Â satisfy 1 = λ1 ≥ λ2 ≥ λ3 ≥ · · · ≥

λn ≥ 0 and ui is the eigen-vector corresponding to the eigen-value λi. We want
to keep the top f ′ groups and drop the others (i.e., Uf ′ formed by the first
f ′ columns of U and Λf ′ is a diagonal matrix containing the first f ′ elements
in the diagonal line of Λ), so Âf ′ can be viewed as a low-rank approximation
of Â. Denote T = Uf ′ ∈ R

n×f ′
and Ti is the i-th row of T , and we adopt

Ti as the structural embedding of node i. We can do link prediction via bi-
linear function h(x, y) = xT Λf ′y where x, y ∈ R

f ′×1 are spectral embeddings
of two different nodes. Note that spectral embedding is just a simple example
of structural embeddings, and other choices may also be rational. Similar to
features, define MI with structural embeddings:

LSIO = LCL

(
H1, ES ,P,N

)
+ LCL

(
H2, ES ,P,N

)
,

ES = W2T, H1 = fθ(X1), H2 = fθ(X2),
(5)

where T ∈ R
n×f ′

denotes the structural embeddings, W2 ∈ R
f ′×d is a trainable

weight matrix.

How to Combine them to Represent the Whole Input Graph? In order
to consider features and graph structure simultaneously, we give two simple
ways to combine them in this subsection. They can effectively extract semantic
information from the whole input while avoiding the negative effect of possible
noise. Considering combining them with a linear global trade-off directly:

LIO = β1LFIO + β2LSIO, (6)

where β1 and β2 are trade-off hyper-parameters. The rationale for this direct
trade-off is: when one of them is too noisy to trust, we can discount it by tuning
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the hyper-parameter. In Sect. 5.1, we will give a Noisy-Feature task to show our
method can alleviate noise from features via extracting more useful semantic
information in the graph structure. We also give another node-wise combination
strategy in the Appendix.

4.2 Cluster-Level MI Maximization Between Global Summarization
and Local Embeddings (Cluster-GLMIMax)

We devise a cluster-level global-local contrastive module for a clearer decision
boundary. The key idea is, for every node, to obtain shared common knowledge
from its cluster (e.g., embedded in cluster centroids), which makes itself more
confident. Furthermore, common knowledge can also be distilled from the local
environments of every node in a cluster. Formally, a shared projection gη is used
to project embeddings of different views hi into the space where contrastive
loss is applied, i.e., zi = gη(hi). With k-means algorithms, we can cluster all
projected zi ∈ R

n×d′
into K clusters whose centroids are denoted as C ∈ R

K×d′
.

Then we minimize this cluster-level MI defined as follows:

LCLS = LCL

(
C1, Z2,P1,N1

)
+ LCL

(
C2, Z1,P2,N2

)
, (7)

where C1, C2 are the cluster centroids on views V 1, V 2. Similarly, Z1, Z2 denote
the projected embeddings of V 1 and V 2. For each cluster centroid ci on view
V 1, we select all nodes belonging to this cluster as P1

i and naturally treat all left
nodes as negative samples of ci, denoted as N

1
i . Note that P

1
i ,P

2
i are generated

from different graph views V 1, V 2.

Considering Cluster Uncertainty Estimation. For better accuracy of clas-
sification, we observe that less attention should be given to nodes near cluster
boundaries whose cluster information may be noisy and misleading and can not
be confidently trusted. Based on the observation, we utilize the Normalized Sil-
houette Coefficient {Si} to estimate the uncertainty of every node and adjust
the influence on contrastive signals for the training.

LCLS = L1
CLS + L2

CLS ,

L1
CLS(C1, Z2,P1,N1) = − 1

K

K∑
i=1

∑
j∈P

1
i

S1
j log

exp(sim(c1i , z
2
j )/τ)∑

k∈P
1
i ∪N

1
i
exp(sim(c1i , z

2
k)/τ)

,

where S1
i and S2

i denote the Normalized Silhouette Coefficient of node vi on
views V 1 and V 2. L2

CLS can be defined similarly.
By symbols on clustering in Sec. E (Appendix), {Si} can defined as follows:

Si =
S′

i + 1
2

∈ [0, 1], S′
i =

bi − ai

max (ai, bi)
∈ [−1, 1], ∀ i ∈ [1, n],

ai =
1

|Cki
| − 1

∑
j∈Cki

\i

d (hj , hi) , bi = min
1≤t≤K,t�=ki

1
|Ct|

∑
j∈Ct

d (hj , hi) .
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But in practice, it’s often difficult and expensive to calculate the coeffi-
cients due to the high time and space complexity. To give an efficient, paral-
lelable, and space-saving implementation, we do some derivations as follows:
let f(i, t) =

∑
j∈Ct

‖hj − hi‖22 = |Ct| · ‖hi‖22 + S(norm)(t) − 2S(t) where
S(norm)(t) =

∑
j∈Ct

‖hj‖22 and S(t) =
∑

j∈Ct
hj . The first term |Ct| · ‖hi‖22

can be calculated via a vector outer product, and ‖hi‖22, S(norm)(t), S(t) can be
pre-processed with no more than O(n · K · d) time complexity where t ∈ [1,K],
hi ∈ R

d, for all i ∈ [1, n], and n, k represent the number of elements and clus-
ters, respectively. So we can get the matrix F ∈ R

n×K containing all f(i, t)
(∀ i ∈ [1, n], t ∈ [1,K]) with O(nKd) running time and O(nd + nK) space com-
plexity. Finally, those coefficients can be easily obtained by simply selecting the
top 2 elements with O(nK) complexity.

4.3 Extracting Further Structural Knowledge by Graph Cut

To supplement further additional structural information, we also employ a Graph
Cut technique to enhance a local-local node-level graph contrastive learning
module, since Graph Cut can divide a graph into several relatively balanced
groups efficiently. In particular, Metis Package [11] is introduced to help us
choose some appropriate positive or negative node pairs. See the Appendix for
more details. It can help our framework perceive distances and densities on the
graph in a node-adaptive manner because nodes in dense local environments may
need a shorter distance to capture structural knowledge (longer distance may
hurt performance), while sparse nodes may need longer distance (shorter distance
may not be enough). Thus mutually learning in the same part can simultaneously
benefit dense and sparse nodes, which may be hard for the contrastive module
in Sect. 4.1. Formally, we minimize the following objective:

LGC = LCL

(
Z1, Z2,P1,N1

)
+ LCL

(
Z2, Z1,P2,N2

)
,

where for node vi, we treat all the nodes in the same part with vi as Pi, and all
the left nodes treated as Ni.

4.4 Overall Loss Function for Our Framework

To learn node embeddings more effectively for various downstream tasks, we
jointly optimize both Graph-IOMIMax and Cluster-GLMIMax losses. The over-
all objective function we hope to minimize during training is defined as follows:

L = γ1‖W‖ + γ2LIO + γ3LCLS + γ4LGC , (8)

where γis are all hyper-parameters to control the contribution of each loss term,
W refers to trainable parameters in Graph-IOMIMax loss, and ‖W‖ serves as a
regularizer to avoid trivial solutions.



GCL with Input-Aware and Cluster-Aware Regularization 675

4.5 Theoretical Analysis

In this section, we give some theoretical analysis of why our Graph-IOMIMax
method can maximize the mutual information between the input graph and the
output embeddings by deriving a meaningful lower bound with some assumptions
on conditional distributions and independence. Some definitions, lemmas, and
proofs are moved to the Appendix.

Theorem 1. For an undirected graph G = (V,E) with adjacency matrix A (or
normalized version Â, see Sect. 3.1), and feature matrix X ∈ R

n×f where the
i-th row of X (i.e., Xi) is the feature vector of node i, n = |V | is the number of
nodes. With some assumptions, the following inequality holds:

I(G;H) = I(X, Â;H) ≥ I(X;H) + I(Ud;H) (9)

where H = fθ(X, Â) ∈ R
n×d is output embeddings by a graph encoder fθ, e.g.,

implemented by a GNN model, Â = UΛUT is the eigen-decomposition of Â
(suppose the elements of the diagonal line of λ satisfying that λ1 ≥ λ2 ≥ · · · ≥
λn, and the i-th column of U , i.e., U (i) is the eigen-vector corresponding to λi,
and if the solution U is not unique, choose the lexicographically smallest one (see
Definition 3 in Appendix), and Ud is the first d columns of U .

Corollary 1. With the same definitions in Theorem 1 and some further
assumptions of independence, we can obtain:

I(G;H) ≥
n∑

i=1

I(Xi;Hi) +
n∑

i=1

I((Ud)i;Hi), (10)

where Hi and (Ud)i are the i-th rows of matrix H and Ud respectively.

Corollary 1 indicates a lower-bound of MI between the input graph and
output embeddings (i.e., I(H;G)), which consists of independent considerations
of every node from different perspectives, i.e., features and topology. Thus, we
can maximize I(H;G) via maximizing the value of RHS of Eq. 10, which also
justifies Eq. 6. However, it is notable that one of the features or topology may
sometimes contain possible noise whose effect should be reduced. Therefore, we
further introduce two hyper-parameters β1, β2 to tune them in practice (see Eq.
6) provided the demonstrated different significance.

5 Experiments

To evaluate the effectiveness of our method, extensive experiments are car-
ried out on six real-world datasets against baseline models on node classifica-
tion tasks with a GeForce RTX 3090 GPU. The proposed framework is imple-
mented by Pytorch [23] and optimized with Adam Optimizer [12]. For sim-
plicity, we adopt a 2-layer SGC as the backbone graph encoder of our frame-
work. These public benchmarks are widely used for node representation learning,
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Table 1. Accuracy Comparison on Node Classification Tasks

Models Cora Citeseer Pubmed Computers Photo lWikiCS

MLP 55.12± 0.41 69.80± 0.26 71.44± 0.34 73.81± 0.21 81.81± 0.32 71.98± 0.42

GCN 81.54± 0.68 70.73± 0.65 79.16± 0.25 86.51± 0.54 92.42± 0.22 77.19± 0.12

SGC 81.00± 0.00 71.90± 0.10 78.90± 0.00 86.94± 0.31 92.76± 0.25 76.11± 0.82

GAT 83.00± 0.70 72.60± 0.60 79.00± 0.30 86.93± 0.29 92.56± 0.35 77.65± 0.11

DGI 82.34± 0.71 71.83± 0.54 76.78± 0.31 83.95± 0.47 91.61± 0.22 75.35± 0.14

GMI 82.39± 0.65 71.72± 0.15 79.34± 1.04 82.21± 0.31 90.68± 0.17 74.85± 0.08

GRACE 81.92± 0.89 71.21± 0.64 80.54± 0.36 87.46± 0.22 92.15± 0.24 78.19± 0.01

GCA 82.07± 0.10 71.33± 0.37 80.21± 0.39 87.85± 0.31 92.53± 0.16 78.35± 0.05

BGRL 81.44± 0.72 71.82± 0.48 80.18± 0.63 89.68± 0.31 93.07± 0.30 79.36± 0.53

MVGRL 83.45± 0.68 73.28± 0.48 80.09± 0.62 87.52± 0.11 91.74± 0.07 77.52± 0.08

Ours 84.65±0.31 73.70±0.20 81.90±0.47 90.02±0.23 93.39±0.23 79.45±0.46

Table 2. Comparison on Link Prediction and Noisy Features

Link Prediction Noisy Features

Model Cora Citeseer Pubmed Model Cora Citeseer Pubmed

VGAE 91.58± 0.54 91.21± 1.14 96.51± 0.14 GCN 54.8 36.1 40.4

ARGVA 92.45± 1.11 91.71± 1.38 96.62± 0.12 SGC 51.9 34.7 41.0

GIC 93.68± 0.59 95.03± 0.65 93.00± 0.36 Pairnorm 56.6 37.5 41.3

GIC+WP 95.90± 0.50 95.94± 0.53 98.72±0.10

Ours 96.12±0.08 97.98±0.17 97.49± 0.12 Ours 72.0 50.5 61.7

including Cora [27], Pubmed [27], Citeseer [27], Amazon-Photo [28], Amazon-
Computers [28] and WikiCS [17], whose statistics and detailed descriptions are
presented in Tab. 6 and Sec. D in Appendix, respectively. All hyper-parameters,
including the number of epochs, are tuned according to the best results on the
validation set. See Tab. 7 in Appendix for detailed hyper-parameter configura-
tions.

5.1 Performance in Different Scenarios

We evaluate the performance of our framework in four prevalent scenarios: Node
Classification, Link Prediction, Node Clustering, and Node Classification with
noisy features.

Node Classification. To validate the effectiveness of our proposed frame-
work, we compare ours with the following models: 1) four classic supervised and
semi-supervised baseline models, namely, MLP, GCN, GAT, and SGC; 2) five
GNN-based state-of-the-art self-supervised models, including DGI [31], GMI [24],
GRACE [40], GCA [41] and BGRL [29]. Following the evaluation protocol of pre-
vious works [41], each model is first trained in an unsupervised manner. Then, the
pre-trained embeddings are used to train and test a simple �2-regularized logis-
tic regression classifier. For the datasets with public train/valid/test splits (e.g.,
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Table 3. Accuracy Comparison of Node Clustering Tasks

Methods Cora Citeseer Pubmed

ACC NMI ARI ACC NMI ARI ACC NMI ARI

K-means 49.2 32.1 22.9 54.0 30.5 27.8 59.5 31.5 28.1

GAE 59.6 42.9 34.7 40.8 17.6 12.4 67.2 27.7 27.9

ARGA 64.0 44.9 35.2 57.3 35.0 34.1 66.8 30.5 29.5

ARVGA 64.0 45.0 37.4 54.4 26.1 24.5 69.0 29.0 30.6

GALA 74.5 57.6 53.1 69.3 44.1 44.6 69.3 32.7 32.1

DBGAN 74.8 56.0 54.0 67.0 40.7 41.4 69.4 32.4 32.7

DGI 55.4 41.1 32.7 51.4 31.5 32.6 58.9 27.7 31.5

MVGRL 73.2 56.2 51.9 68.1 43.2 43.4 69.3 34.4 32.3

MERIT 73.6 57.1 52.8 68.9 43.9 44.1 69.5 34.7 32.8

Ours 76.2 57.8 55.6 70.5 45.6 47.2 70.0 33.1 32.6

Cora, Citeseer, and Pubmed), we evaluate the framework on the fixed public split
as [37]. For the WikiCS dataset, which provides 20 canonical train/valid/test
splits, we directly use the given split. For Amazon datasets, we randomly split
the nodes 20 times into (10%/10%/80%) for train/valid/test respectively follow-
ing [41]. All experiments are performed 10 times and we report average results
and standard error. Table 1 shows the node classification accuracy of respective
models over six real-world datasets. We can see that our method gets competitive
performance compared to existing state-of-the-art models across all these public
benchmarks, which verifies the superiority of the proposed contrastive learning
framework and shows that our MI maximization between input graph and output
embeddings (i.e., Graph-IOMIMax) and cluster-level contrasting module (i.e.,
Cluster-GLMIMax) effectively guide the training of our GNN backbone and
successfully encourage output node embeddings to become semantically well-
formed. So the embeddings not only capture and keep semantic information, but
also organize it well.

Link prediction is another common and important graph-related task that has
broad real-world applications e.g., Recommend System. For this task, we choose
three commonly used citation networks and compare our framework with the
following methods: 1) baselines: VGAE [13] and ARGVA [20]; 2) state-of-the-
art methods: GIC [16] and GIC with WP [19]. The same evaluation protocol in
previous work [19] is used for fair comparison: we first train our framework in an
unsupervised manner to obtain the embeddings of nodes and then predict the
existence of edge (x, y) via Sigmoid activation of dot product after a shared linear
transformation, i.e., p(x, y) = σ(W · hx,W · hy) ∈ [0, 1], where hx, hy ∈ R

d are
two embeddings of two nodes x, y ∈ V , W ∈ R

d′×d is a trainable matrix shared
for all nodes in the input graph, and σ(·) is the Sigmoid function. We adopt
(85%/5%/10%) random dataset split for train/valid/test as [19] and positive
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Table 4. Influence of Label Rate

Model Cora Citeseer

0.5% 1% 2% 3% 4% 5% 0.5% 1% 2% 3%

GCN 56.9 70.7 76.2 81.3 82 82.5 46.9 64.4 68.0 72.7

SGC 50.6 70.8 77.1 77.3 81.6 80.4 46.1 62.5 69.2 72.1

Ours 65.9 80.3 81.5 83.1 84.0 84.3 65.7 69.9 70.2 72.8

samples are sampled from existing edges in the graph, while negative ones are
sampled from non-existing edges with the same number as positive ones.

We run five times with different initializations for every experiment and
report the results including average AUCs and standard deviations for the task
in Table 2. It is demonstrated that our framework outperforms the first three
counterparts by a large margin while achieving competitive performance com-
pared to the last one. Note that the last counterpart (i.e., GIC with WP) is a
magnificent state-of-the-art method that consistently performs better than lots
of prior works. This shows the potential of our framework for capturing impor-
tant structural information because it can reconstruct the adjacency matrix well
compared to existing methods.

Node Clustering. For node clustering tasks, we first cluster node embeddings
using K-means and then evaluate the results C on three citation networks via
three traditional metrics, i.e., ACC, NMI, and ARI (introduced in Sec. F of
Appendix). The results are summarized in Table 3. We can see in Cora and
Citeseer our framework consistently outperforms those baselines (e.g., K-means,
GAE [13] and DGI [31]) and state-of-the-art methods (e.g., ARGA [21], ARVGA
[21], GALA [22], DBGAN [39], MVGRL [7] and MERIT [10]) while in Pubmed
it can obtain competitive performance, although not necessarily the best in all
three metrics. These results show our framework can well organize semantic
information and make node embeddings have more clear cluster boundaries,
which will generalize well in lots of downstream tasks.

Node Classification with Noisy Features. In this subsection, we carry out
the evaluation against the task called Node Classification with Noisy Features.
In the task, features of all nodes are substituted by noise sampled from Standard
Normal Distribution N (0, 1). This task requires models to capture more useful
structural knowledge for alleviating the adverse effect of noise in features. In the
evaluation, we regard only structural embeddings in our Graph-IOMIMax mod-
ule (see Sect. 4.1). On this occasion, it may degrade the performance when using
Graph-IOMIMax with features because there can be a wrong alignment between
embeddings and features. Anyhow, we nevertheless feed these noisy features into
our framework, because in the real world, it is unknown how much noise exists
in the features. So we actually tune the trade-off hyper-parameter between input
features and the input graph structure. As demonstrated in Table 2, our frame-
work outperforms most of the supervised baselines by a huge margin, indicating
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it has a better capability of capturing effective structural knowledge even com-
pared with supervised methods.

5.2 Ablation and Hyper-Parameter Studies

To better illustrate the different impacts of individual parts in our framework,
ablation studies were done over the three citation networks. In Table 5, it is
shown that Graph-IOMIMax is the most effective term and each of these three
parts can provide a meaningful supervision signal to guide the training for GNN
models. By combining them together, we can further improve the performance
due to their different focuses, e.g., Graph Cut can help models perceive distance
and density in graphs and may favor some nodes in a sparse local environment to
learn more semantic information. Note that Cluster-GLMIMax is also effective
because it can improve nearly 9% from 74.7% to 83.6% in Cora. The reason
could be that there is some overlap in semantic information between Cluster-
GLMIMax and Graph Cut because of possible density-uniformity in common
citation networks, provided the majority of papers cite similar numbers of others
and density varies not too much from local to local.

We also aim to show how the performance of our framework varies against
label rate (i.e., the size of the training set) for node classification tasks in
Cora and Citeseer. From the experimental results reported in Table 4, it can
be observed that the performance of all modules decreases as the labeling rate
decreases. Although our method and the baselines (i.e., GCN and SGC) have
similar performance when the label rate is large, the gap between them grows
when the label rate decreases. This indicates our framework has consistent
superiority of embeddings output overall label rates in the downstream semi-
supervised tasks compared to those semi-supervised counterparts.

Table 5. Ablation studies

Method Cora Citeseer Pubmed

w/o. Graph-IOMIMax 74.70± 0.65 65.32± 1.60 77.38± 0.15

w/o. Cluster-GLMIMax 84.38± 0.25 73.50± 0.21 81.70± 0.60

w/o. Graph-Cut 83.62± 0.13 73.26± 0.32 80.14± 0.31

All 84.65±0.31 73.70±0.20 81.70±0.60

6 Conclusion

In this paper, we proposed a novel approach called Graph-IOMIMax to maxi-
mize the mutual information between an input graph and output embeddings,
aiming to derive a semantically well-formed structure of embeddings via captur-
ing concise (but useful) information. Moreover, regarding the unconfident nodes,
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we devised a cluster-level global-local contrastive module and obtained a more
clear decision boundary in the light of supplementing relatively global informa-
tion. In addition, we considered the uncertainty of clustering and employed a
local-local contrastive module collaborating with graph cut to further improve
the performance. Furthermore, we provided a theoretical explanation of why
Graph-IOMIMax can maximize the mutual information between input and out-
put. Finally, extensive experiments were carried out comparing our framework
with existing state-of-the-art models in six real-world benchmarks, demonstrat-
ing its potential in various machine-learning scenarios and tasks.

In the future, we will investigate combining semantic knowledge from features
and graph structures in Graph-IOMIMax at a more sophisticated node-wise level.

Ethics Statement. We believe in using machine learning responsibly and ethically

and in minimizing any potential harm associated with its use. We will strive to ensure

the accuracy and reliability of our models. We will always respect applicable laws,

regulations, and best practices and will make sure our models are used ethically and

responsibly.
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Abstract. Temporal graph representation learning aims to generate
low-dimensional dynamic node embeddings to capture temporal infor-
mation as well as structural and property information. Current represen-
tation learning methods for temporal networks often focus on capturing
fine-grained information, which may lead to the model capturing random
noise instead of essential semantic information. While graph contrastive
learning has shown promise in dealing with noise, it only applies to static
graphs or snapshots and may not be suitable for handling time-dependent
noise. To alleviate the above challenge, we propose a novel Temporal
Graph representation learning with Adaptive augmentation Contrastive
(TGAC) model. The adaptive augmentation on the temporal graph is
made by combining prior knowledge with temporal information, and the
contrastive objective function is constructed by defining the augmented
inter-view contrast and intra-view contrast. To complement TGAC, we
propose three adaptive augmentation strategies that modify topological
features to reduce noise from the network. Our extensive experiments on
various real networks demonstrate that the proposed model outperforms
other temporal graph representation learning methods.

Keywords: Temporal graphs · Network embedding · Contrastive
learning

1 Introduction

Temporal networks have become increasingly popular for modeling complex real-
world scenarios, e.g., citation networks, recommendation systems, and engineer-
ing systems [3,7,9,16], where nodes represent interacting elements and temporal
links denote their labeled interactions over time. These networks are inherently
dynamic, with the topology and node properties evolving over time [32]. How-
ever, the real world is often affected by time-varying noise, which can have a
significant impact on the network structure and its predictions. For instance,
colleagues who work together on a project may interact frequently during the
project’s duration, but may rarely interact afterwards, leading to a decrease
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in the amount of available information for future interactions. Therefore, it is
imperative to investigate techniques for reducing the influence of time-varying
noise on temporal graphs in order to improve the accuracy of predicting future
interactions.

In recent years, there has been a surge in the development of temporal graph
neural networks (TGNNs), which extend the capabilities of neural networks to
structured inputs and have achieved state-of-the-art (SOTA) performance in
various tasks, such as link prediction. However, one of the key challenges in
temporal graph representation learning is the presence of time-varying noise,
which can significantly affect the network’s evolution. Existing methods [10,11,
17,19,33] have primarily focused on capturing fine-grained information to obtain
a more comprehensive node representation. This can lead to overfitting and the
capture of random noise, which can obscure essential semantic information in
the network as it evolves. Therefore, it is important to explore new approaches
that balance the capture of both fine-grained and essential semantic information
in order to improve the robustness and generalization ability of TGNNs.

Contrastive learning (CL) has emerged as a promising approach for address-
ing the aforementioned challenges in temporal graph representation learning by
enabling the method to learn more generalized graph representations through the
generation of multiple views for each instance using various data augmentations.
This process helps reduce the impact of noise and improve method generaliza-
tion and robustness [36]. However, current graph augmentation methods tend
to focus primarily on capturing structural features at the node or graph level,
while neglecting the temporal information of edge generation [34]. Incorporating
temporal information related to edge generation into graph learning can help
capture the dynamic evolution of the graph and improve the accuracy of node
representations. Thus, there is a need to develop new approaches that effectively
integrate temporal information into CL-based methods for temporal graph rep-
resentation learning.

Consider the toy example of a temporal network shown in Fig. 1. When using
the method of static graph augmentation (e.g., GCA [37]) to improve the tem-
poral graph, the edge between nodes D and E may be inadvertently removed.
As a result, TGNNs may not be able to accurately predict future interactions
based on the enhanced graph because crucial temporal information has been
lost. Specifically, the interaction between nodes D and E at the most recent time
t5 is crucial for accurately predicting future interactions, while the interaction
between nodes B and C at time t2 may be less important. Consequently, the
static graph augmentation method fails to capture important temporal informa-
tion that is essential for accurate predictions of future interactions in temporal
graphs. To overcome this issue, incorporating temporal information into data
augmentation and node representation can effectively capture the evolution of
edge generation and improve the accuracy of future interaction predictions.

In this paper, we propose a novel contrastive model called Temporal Graph
representation learning with Adaptive augmentation Contrastive (TGAC).
Firstly, we utilize centrality measures to eliminate redundant topological



Temporal Graph Representation Learning 685

Fig. 1. The toy example illustrates the limitations of the static graph augmentation
method when applied to a temporal graph. Specifically, the original temporal network
(left) and the resulting loss of temporal information following the application of static
graph augmentation (middle) are demonstrated. To address this issue, we propose a
novel approach for augmenting temporal graphs by incorporating both topological and
temporal information. This approach allows us to eliminate redundant information
while preserving vital temporal information (right).

information from the input temporal graph by taking into account both struc-
tural and temporal influence. This process enhances the effectiveness of temporal
graph augmentation. Subsequently, the pruned graph is subjected to perturba-
tions to generate two distinct temporal views for augmentation. Finally, the
model is trained using a contrastive loss function to maximize the agreement
between node embeddings in the two views.

Specifically, the main contributions are summarized as follows.

– We present a novel approach for temporal graph contrast learning that incor-
porates temporal information during edge generation. This enables the model
to better capture the structural evolution characteristics of graphs, resulting
in improved representation learning.

– We propose a temporal graph augmentation method that leverages both the
structural and temporal information of neighborhoods. By doing so, we are
able to augment the original graph while preserving important temporal fea-
tures.

– To further enhance important topology structures and improve node repre-
sentations, we propose a graph pruning scheme that employs edge centrality
measures to remove noisy or redundant connections prior to attention alloca-
tion.

– Experimental results demonstrate the superior performance of our proposed
TGAC in tasks such as link prediction and node classification, when compared
to other state-of-the-art temporal graph representation learning models.

2 Related Work

In this section, we will provide a concise overview of the existing literature on
temporal graph representation learning. We will then delve into the topic of con-
trastive representation learning methods. Finally, we will compare and contrast
our proposed method with related works in the field to better understand its
unique contributions.
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2.1 Temporal Graph Representation Learning

Graph representation learning methodologies are designed to generate embed-
dings that capture both structural and attribute information at either the node
or graph level [4,24,26,31]. For temporal graphs, traditional representations
can be expanded to incorporate time-dependency, where the model of temporal
dependence is formulated either as snapshot-based or event-based methods [20].
These techniques aim to learn temporal node or graph embeddings that capture
the evolution of the graph over time. While snapshot-based paradigms may have
merit, our paper focuses primarily on event-based models, which have exhibited
superior performance in empirical studies compared to models based on snapshot
temporal graphs [27].

Temporal graphs exhibit the time-varying behavior of nodes, which provides
distinct insights not present in static graphs. By incorporating historical inter-
action information, we can distinguish between nodes that have similar local
neighborhoods but different structural roles. For instance, JODIE [14] learns the
embeddings of evolving trajectories by leveraging past interactions. TGN [25]
keeps track of a memory state for each node and updates it with new interac-
tions. CAWs [32] capture the dynamic evolution of networks by using temporally
anonymous random walks to extract temporal network motifs. Unfortunately, all
of the aforementioned techniques do not take into account the impact of noise
in the network, which can be detrimental to the ability to capture valuable tem-
poral information.

2.2 Contrastive Representation Learning

Inspired by recent advancements of CL in computer vision [12] and natural lan-
guage processing [18] domains, some research has been conducted to apply CL
to graph data. For instance, DGI [30] combines Graph Neural Networks with
infomax and concentrates on contrasting views at the node level by generating
multiple augmented graphs through handcrafted augmentations. GRACE [36]
generates two views by randomly masking node attributes and removing edges,
while GCA [37] employs a similar framework to GRACE but emphasizes design-
ing the adaptive augmentation strategy.

Although some studies have explored the potential of contrastive learning
for temporal graphs, most of them focus on static graphs and snapshot-based
temporal graphs [5,22,23]. In contrast, our proposed approach addresses the
challenge of noise in temporal graphs by considering the importance of edges with
respect to both temporal and topological features, and adaptively augmenting
the graphs in an efficient manner. Our approach effectively enhances both the
temporal and topological features of the graphs, distinguishing it from existing
methods for temporal graph learning and graph contrastive learning.
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Fig. 2. Our proposed Temporal Graph representation learning with Adaptive augmen-
tation Contrastive (TGAC) model. The input graph G is first pruned to be ˜G, then
use two augmentation t and t′ are generate two temporal graphs ˜G1 and ˜G2. A shared
TGNN F is employed to obtain two views’ node representation. Finally, the model
was trained by contrasting positive-negative pairs in both intra-view (in purple) and
inter-view (in orange). (Color figure online)

3 The Proposed Method

In this section, we will introduce the notations and definitions used in this paper.
Then, we will present the problem formulation and introduce the overall frame-
work of TGAC. Finally, we will provide a detailed description of each component
module (Fig. 2).

3.1 Preliminaries

First, we define the temporal graph based on the timestamps accompanying the
node interactions.

Definition 1 (Temporal Graph). A temporal graph is represented as G =
(V, E), where V is the set of nodes and E is the set of sequences of node inter-
actions with timestamps labels. For any edge (u, v, t) ∈ E, there exists a set of
timestamps Eu,v = (u, v, t1), (u, v, t2), · · · , (u, v, tn), indicating that nodes u and
v have interacted at least once at each of the corresponding timestamps. Two
interacting nodes are referred to as neighbors. It is important to note that in
temporal graphs, the concept of interaction replaces the concept of edges, and
multiple interactions can occur between two nodes.

A good representation learning method for temporal networks should be able
to accurately and efficiently predict how these networks will evolve over time. In
this context, the problem can be formulated as follows.

Definition 2 (Problem formulation). For any temporal graph G = (V, E),
the task is to learn the mapping function f : V → R

d to embed the node in a d-
dimensional vector space, where d � |V|.The node representation is supposed to
contain both structural and temporal information and is suitable for downstream
machine-learning tasks such as link prediction, and node classification.
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3.2 Overview

The proposed model utilizes graph contrastive learning to capture the structural
and temporal features from temporal graphs during the training phase. The
model prunes the input temporal graph, generates contrasting views, and uses
a loss function that includes both link prediction and contrastive loss to learn
effective node representations.

3.3 Temporal Graph Pruning

To ensure effective node representation learning for downstream tasks, it is nec-
essary to remove noisy edges from the original time graph topology. TGAC
achieves this by computing the importance of each edge, which takes into account
both the node centrality and temporal information. As a result, the pruned
time graph provides richer information for TGNN to learn node representations
more effectively. The centrality of each edge is assessed based on a combination
of node properties, graph topology, and temporal characteristics. By removing
noisy links based on their centrality attributes, the pruned temporal graph facili-
tates improved information use for node representation learning through TGNN.

Node centrality is a common method for measuring the importance of nodes
in large-scale complex networks. Various techniques have been proposed to mea-
sure node centrality, some of which are outlined below:

– Degree centrality (DE) is considered one of the elementary measures of cen-
trality, which quantifies the number of edges incident to a particular node
in a network. It is a widely used and effective approach for evaluating the
significance of a node in a network. Specifically, in social networks such as
Twitter, nodes represent people, while edges represent the following connec-
tions among them. Nodes with a high degree of centrality tend to correspond
to more important people.

– Eigenvector centrality (EV) is another important centrality measure that con-
siders not only the number of connections of a particular node but also the
centrality of its neighboring nodes. The idea is that if a node is connected
to other nodes with high centrality, its own centrality is subsequently aug-
mented. Consequently, a node’s eigenvector centrality may not necessarily be
high even if it has a substantial degree, in cases where all its connections have
low centrality. Subsequent paragraphs, however, are indented.

– PageRank centrality (PR) is a measure of centrality determined by utilizing
the PageRank algorithm. This algorithm involves developing a random walk
model on a directed graph and calculating the likelihood of visiting each node
under specific conditions. The resulting stable probability value of each node
is its PageRank value, which serves as an indicator of the node’s importance
or centrality within the network.

These three methods of calculating node centrality have distinct advantages
and limitations. DE is a straightforward and efficient method, making it suitable
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for datasets that are not very sensitive to node characteristics. EV takes into
account both node characteristics and topology and performs well across a wide
range of datasets. PR is especially effective for analyzing complex topological
networks. Consequently, we can use the notation ϕ(·) to indicate the specific
node centrality method used for a given dataset.

Additionally, since temporal graphs contain temporal information that static
graphs lack, we need to consider the temporal dimension when measuring the
impact of each edge. To achieve this, we define the centrality of each edge as
φt

uv, which is determined by the centralities of the two nodes it connects and the
time of its occurrence. In undirected graphs, φtuv is computed as the product
of the average centralities of its two nodes and the time at which the edge is
formed. This can be expressed mathematically as follows:

φt
uv = (ϕ(u) + ϕ(v))/2 + αtuv. (1)

This definition enables us to capture the evolving nature of the temporal
graph and obtain more precise node representations that can be used for down-
stream tasks. In the case of a directed graph, we define the centrality of an edge
as the product of the centrality of the node it is pointing to and the time at which
the connection is established. This reflects the impact of the edge in directing
the flow of information or influences toward the target node, while also taking
into account the time factor. Hence, the edge centrality for a directed graph is
defined as:

φt
uv = ϕ(v) + αtuv. (2)

After obtaining the centrality score for each edge, we sort all the edges in
descending order based on their centrality scores and then select the top k edges
to retain while pruning the rest. The value of k is determined by the formula
k = E × (1 − c), where E represents the total number of edges in the temporal
graph, and c is the pruning ratio. The temporal graph after pruning is illustrated
below:

˜E =
{

ui, vi, ti|φti
uivi

∈ TopK(φ(E), k)} . (3)

This method helps to remove redundant and noisy edges from the temporal
graph and obtain a pruned temporal graph that can be used for subsequent
training, which facilitates the acquisition of improved representation results.

3.4 Temporal Graph Encoder

The temporal graph encoder is based on TGN [25] and consists of interchange-
able and independent modules. Each node in the model has a memory vector that
represents its past interactions in a compressed form. When a new event occurs,
the mailbox module calculates the message for each related node, which is then
used to update the node’s memory vector. To address the issue of stale infor-
mation, the embedding module calculates node embeddings at each time step
by using their neighborhood and memory state. In other words, the encoder
updates the memory state of each node with new interactions and employs a
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node memory update mechanism. In the node memory storage module, at time
t, the model stores the memory of each node u it has encountered so far in a
vector denoted by su(t). Whenever a new interaction occurs with a node, its
compressed historical information is used to update its memory state. During
the message passing and updating phase, the model calculates the memory vec-
tors for the source and target nodes u and v affected by each event. This is done
using the msg method, which computes the message sent from the source node
to the target node. The message is then used to update the memory vectors of
both nodes. We formulate message passing function as

mu(t) = msg
(

su(t−), sv(t−), t
)

, (4)
m̄u(t) = agg (mu(t1), . . . ,mu(t)) . (5)

To clarify, the message passing and aggregator part involves calculating the
message using the msg method for the nodes u and v affected by each event,
where su(t−) represents the information at node u before time t. The message is
then aggregated with the information obtained before the node, and the resulting
information is then updated to yield the su(t) value for node u. This process
involves the utilization of a learnable information method, such as MLP, followed
by information aggregation techniques, such as RNNs or attention mechanisms,
and concluded with information update operations. In scenarios where nodes u
and v are affected by an interaction event, their information is updated using a
memory cell such as GRU [2] or LSTM [8]. The process can be mathematically
formulated as follows:

su(t) = mem
(

m̄u(t), su(t−)
)

. (6)

Finally, after obtaining su(t), the node representation is obtained by con-
catenating it with the current input features of node u at time t, followed by a
non-linear transformation to obtain the final embedding hu(t). Specifically, the
concatenation operation is defined as follows:

zu(t) = emb(u, t) =
∑

v∈Nk
u ([0,t])

h (su(t), sv(t)) , (7)

where h is a learnable function. The resulting zu(t) can be used for downstream
tasks such as node classification or link prediction.

3.5 Temporal Contrastive Learning

Contrastive learning aims to learn node or graph representations by bringing
positive samples closer and pushing negative samples farther apart. We use a
general contrastive learning framework to maximize representation consistency
across different views. Two views of the pruned graph are generated using ran-
dom augmentation operations. Existing methods struggle with topological ran-
dom disturbances, as selecting positive and negative samples is crucial. After
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a disturbance, ineffective neighborhood information can make optimizing con-
trastive targets difficult. We must perturb the graph to preserve its internal mode
as much as possible. Our method removes edges randomly with a probability but
assigns a weight to each edge to decrease the probability of removing important
edges and increase that of removing redundant ones.

To achieve this, we introduce a removal probability for each edge and improve
the perturbation process of the temporal graph by considering edge importance.
Similar to temporal graph pruning, we compute edge importance based on topol-
ogy and time information and use it to calculate the removal probability for each
edge. However, since the importance values may be relatively large, we first nor-
malize them by setting them to wt

uv = lg φt
uv. After normalization, we obtain

the removal probability for each edge as follows:

pt
uv = min

(

wt
max − wt

uv

wt
max − μt

w

· pe, pr

)

, (8)

where pe is a hyperparameter that controls the overall probability of edge
removal, wt

max and μt
w are the maximum and average values of wt

uv, respec-
tively. We set a cut-off probability pr < 1 to prevent the removal probability
from becoming too high and corrupting the graph topology. The resulting tem-
poral graph is pruned and looks like this:

P
{

(u, v, t) ∈ ˜E
}

= 1 − pt
uv. (9)

To enhance the quality of node representations, we propose topological per-
turbations that generate distinct views during each iteration of training, denoted
as ˜E1 and ˜E2. The probabilities of generating these two views are represented by
p1e and p2e, respectively. To prevent excessive perturbation that may lead to the
degradation of the graph topology, we set pe to 0.7, ensuring that pr does not
surpass 0.7.

3.6 Loss Function

Task Loss: To learn the parameters of TGNN for each view node, we utilize a
link prediction binary cross-entropy loss function, define as follows:

L(u, v, t) = − log σ(−zt
u
T
zt
v) − QEv′∼P (v) log σ(zt

u
T
zt
v′). (10)

The loss function aims to maximize the likelihood of the observed edges
while minimizing the likelihood of negative edges. Since two views both have
this task, the loss for the two views is defined similarly. The overall objective to
be maximized is defined as the average over two views, formally given by:

Ltask =
∑

(u1,v1,t1)∈˜E1

L(u1, v1, t1) +
∑

(u2,v2,t2)∈˜E2

L(u2, v2, t2). (11)
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Contrastive Loss: We use a comparison objective for the two generated views
to differentiate nodes with the same identifier in different views from other
embeddings. For any node vi in one view, its corresponding node ui in the
other view is considered as an anchor, and vi and ui form positive sample pairs.
All other nodes from both views form negative samples, guiding the model to
maximize the consistency of node representations across the two views. The rep-
resentations of each node in the two views should be similar and distinct from
those of other nodes.

Furthermore, we use a two-layer MLP to transform node representations into
a feature space for comparison. A similarity function θ(u, v) = s(g(u), g(v)) is
used to measure different node representations, where s can be either cosine
or Euclidean distance and g(·) denotes the non-linear projection of the MLP.
To achieve contrastive learning in multi-view, we use a loss function similar
to InfoNCE. For each positive sample pair ui and vi, the objective function is
defined as follows:

Lcl =
∑

ui,vi∈V
log

Pi

Pi + N inter
i + N intra

i

, (12)

where Pi = eθ(ui,vi)/τ is positive pair, N inter
i and N intra

i are inter-view and
intra-view negative pairs, respectively, which are given by the following:

N inter
i =

∑

k �=i

eθ(ui,vk)/τ , (13)

N intra
i =

∑

k �=i

eθ(ui,uk)/τ , (14)

where τ denotes the temperature coefficient.

Total Loss: The total loss function is a combination of the task loss Ltask and
contrastive loss Lcl. The definition of the total loss function L is established
formally by utilizing Eqs. 11 and 12. Specifically, the total loss function L is
expressed as follows:

L = λLtask + Lcl, (15)

where λ is a hyperparameter that balances the weights of the two loss functions.
The task loss function Ltask evaluates the predictive capability of the model
in identifying observed edges in the temporal graph, whereas the contrastive
loss function Lcl encourages the consistency of representations of the same node
across the two augmented views.

4 Experiments

In this section, we evaluate the performance of TGAC against a variety of base-
lines on different datasets. We further conduct an ablation study on relevant
modules and hyperparameter analysis.
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4.1 Experimental Setup

Datasets. We evaluate the performance of TGAC on the tasks of temporal
link prediction and dynamic node classification using four public temporal graph
datasets, namely, Wikipedia [14], Reddit [1], MOOC [14], and CollegeMsg [15]. A
detailed description of the statistical characteristics of these datasets is presented
in Table 1.

Table 1. Statistics of the datasets.

Datasets |V| |E| Feature Label

Wikipedia 9,227 157,474 172 2
Reddit 10,984 672,447 172 2
Mooc 7,144 411,749 0 2
CollegeMsg 1,899 59,835 0 0

Baselines. To evaluate the performance of TGAC, we compare ten state-of-
the-art graph embedding methods on both static and temporal graphs. For
static graph embedding methods, including GAE, VGAE [13], GraphSAGE [6]
and GAT [29]. For temporal graph embedding methods, including CTDNE [21],
JODIE [14], DyRep [28], TGAT [35], TGN [25] and CAWs [32].

Parameter Settings. In the parameter settings, we select the optimizer with
the Adam algorithm, the learning rate is 0.0001, and the dropout probability
is 0.1. The dimension of both node embedding and time embedding is set to
100, memory dimension is set to 172. The temporal information weight α and
contrastive loss weights λ are set at 10 and 0.1. For the baseline methods, we
keep their default parameter settings.

4.2 Temporal Link Prediction

For temporal link prediction, we follow the evaluation protocols of TGN [35].
The goal of this task is to predict whether a temporal link will exist between
given two nodes at a certain future point in time. We consider two different
downstream tasks for evaluation: transductive and inductive link prediction. In
the transductive link prediction task, we aim to predict the presence or absence
of a link between two nodes that were observed during the training phase. In
the inductive link prediction task, we aim to predict the presence or absence of
a link between two new nodes that were not observed during the training phase.
We divide the ratios of training, validation, and testing are 70%, 15%, and 15%,
respectively.
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Table 2. ROC AUC(%) and Average Precision(%) for the transductive temporal link
prediction on Wikipedia, Reddit, Mooc and CollegeMsg. The means and standard
deviations are computed for ten runs.

Task Methods
Wikipedia Reddit Mooc CollegeMsg

AUC AP AUC AP AUC AP AUC AP

T
ra
ns
du

ct
iv
e

GAE 91.47± 0.3 91.12± 0.1 95.87± 1.2 96.57± 1.0 87.89± 0.6 90.70± 0.3 73.15± 1.5 70.00± 1.17

VGAE 82.43± 1.6 82.50± 4.0 92.70± 0.4 91.53± 0.7 88.21± 0.6 91.00± 0.3 74.07± 0.9 70.66± 1.0

GraphSAGE 92.00± 0.3 92.34± 0.3 97.75± 0.1 97.85± 0.1 56.17± 0.3 60.63± 0.2 62.38± 1.3 62.48± 0.9

GAT 92.76± 0.5 93.17± 0.5 97.90± 0.1 97.07± 0.1 67.24± 0.1 66.66± 0.8 78.09± 0.5 75.97± 0.7

CTDNE 82.36± 0.7 80.86± 0.7 85.32± 2.0 87.31± 1.4 88.37± 2.6 89.27± 2.0 81.88± 0.7 80.25± 0.8

JODIE 94.94± 0.3 94.65± 0.6 97.62± 0.2 97.07± 0.4 79.75± 2.8 74.85± 3.1 59.85± 6.0 54.50± 4.4

DyRep 94.22± 0.2 94.63± 0.2 98.01± 0.1 98.05± 0.1 80.57± 2.1 77.30± 2.2 54.75± 6.8 51.89± 4.8

TGAT 94.99± 0.3 95.29± 0.2 98.07± 0.1 98.17± 0.1 66.02± 1.0 63.82± 0.9 81.05± 0.6 79.16± 0.6

TGN 98.42± 0.1 98.50± 0.1 98.69± 0.1 98.73± 0.1 89.07± 1.6 86.96± 2.1 85.06± 5.9 85.38± 6.4

CAWs 98.39± 0.1 98.62± 0.1 98.05± 0.1 98.66± 0.1 69.48± 5.3 70.11± 6.2 90.02± 0.2 92.55± 0.1

TGAC-DE 98.85± 0.0 98.89± 0.0 98.70± 0.0 98.73± 0.0 85.39± 1.0 82.20± 1.0 91.39± 0.6 92.91± 0.5

TGAC-EV 98.86± 0.0 98.91± 0.0 98.71± 0.1 98.74± 0.0 88.54± 0.8 86.02± 0.8 91.55± 0.7 93.03± 0.5

TGAC-PR 98.85± 0.0 98.90± 0.0 98.76± 0.1 98.76± 0.1 88.14± 1.4 85.47± 1.3 91.49± 0.7 92.98± 0.5

In
du

ct
iv
e

GraphSAGE 88.60± 0.3 88.94± 0.5 94.28± 0.4 94.51± 0.1 53.68± 0.4 55.35± 0.4 49.64± 1.5 51.83± 0.8

GAT 89.11± 0.5 89.82± 0.4 94.30± 0.4 94.58± 0.3 53.43± 2.1 54.80± 0.9 68.98± 1.2 66.22± 1.2

JODIE 92.75± 0.3 93.11± 0.4 95.42± 0.2 94.50± 0.6 81.43± 0.8 76.82± 1.4 51.59± 3.2 50.02± 2.2

DyRep 91.03± 0.3 91.96± 0.2 95.79± 0.5 95.75± 0.5 82.06± 1.7 79.17± 1.6 49.05± 4.1 49.30± 2.6

TGAT 93.37± 0.3 93.86± 0.3 96.46± 0.1 96.61± 0.2 69.09± 0.8 67.65± 0.7 72.27± 0.5 72.53± 0.6

TGN 97.72± 0.1 97.83± 0.1 97.54± 0.1 97.63± 0.1 89.03± 1.6 86.70± 2.0 78.54± 3.9 80.77± 3.7

CAWs 98.16± 0.2 98.52± 0.1 97.56± 0.1 97.06± 0.1 74.79± 2.3 76.02± 2.2 89.11± 1.5 91.79± 1.4

TGAC-DE 98.29± 0.0 98.35± 0.1 98.95± 0.0 98.98± 0.0 84.00± 1.3 80.02± 1.5 88.42± 0.5 90.70± 0.4

TGAC-EV 98.28± 0.1 98.35± 0.1 98.94± 0.1 98.97± 0.1 88.23± 0.6 85.30± 0.7 88.49± 0.5 90.75± 0.4

TGAC-PR 98.28± 0.1 98.34± 0.0 98.96± 0.1 98.98± 0.1 88.16± 1.5 85.16± 1.7 88.49± 0.5 90.73± 0.4

The results of our method and the baseline method on the temporal link
prediction task are compared in Table 2. We leverage the Area Under the ROC
Curve (AUC) and Average Precision (AP) as performance metrics. On both
transductive and inductive tasks, we make the following observations.

– Baseline temporal graph embedding methods outperform static graph embed-
ding methods such as GAE, VGAE, GraphSAGE, and GAT in link prediction
tasks on four real-world datasets that include temporal information.

– For the temporal graph embedding methods, compare with the methods
which combine time embedding, node features, and graph topology (i.e.,
CTDNE, TGAT) are worse than the use of a special module to update node
embeddings based on temporal interactions (i.e., TGN, TGAC).

– Our method outperforms several existing methods on multiple datasets,
although it is not as effective as CAWs on some of them. However, CAWs
uses online time random walk sampling to obtain time node representations,
which cannot be parallelized on the GPU and therefore require significant
processing time. By incorporating prior knowledge into our time map and
utilizing message passing, our method improves efficiency compared to TGN
and achieves faster processing speeds than CAWs.
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4.3 Dynamic Node Classification

For dynamic node classification, we also follow the evaluation protocols of TGN.
The goal of this task is to predict the state label of the source node while giving
the node link and future timestamps. Specifically, we use the model obtained
from the previous transductive link prediction as the pre-training model for
node classification. The node classification task trains a classifier decoder sepa-
rately, such as a three-layer MLP. We evaluate the task on three datasets with
dynamic node labels (i.e., Wikipedia, Reddit, and Mooc), excluding the Col-
legeMsg dataset because there are no node labels.

The results of our method and the baseline method on the Dynamic Node
Classification task are compared in Table 3. We leverage the Area Under the
ROC Curve (AUC) as performance metrics. Our results demonstrate superior
performance on all three datasets, underscoring the effectiveness of our model’s
use of contrastive learning. By bringing the distance between nodes in one view
closer while pushing away nodes in the other view, our model learns more opti-
mized node representations for downstream classification tasks. This approach
has proven to be more effective than alternative methods, as evidenced by the
superior performance of our model.

Table 3. ROC AUC(%) for the transductive dynamic node classification on Wikipedia,
Reddit and Mooc. The means and standard deviations are computed for ten runs. We
use bold and underline to highlight the best and second best performers.

Wikipedia Reddit Mooc

CTDNE 84.86± 1.5 54.38± 7.5 71.84± 1.0

JODIE 84.40± 0.9 61.51± 1.2 70.03± 0.5

DyRep 83.25± 0.5 60.86± 1.7 64.64± 1.4

TGAT 84.41± 1.5 65.98± 1.6 65.79± 0.5

TGN 87.56± 0.7 65.51± 0.8 63.93± 0.3

CAWs 84.88± 1.3 66.52± 2.2 68.77± 0.4

TGAC-DE 87.69± 0.2 68.54± 0.4 70.13± 0.2

TGAC-EV 90.13± 0.2 71.70± 0.4 61.83± 0.7

TGAC-PR 88.85± 0.2 71.06± 0.8 71.10± 0.3

4.4 Ablation Experiment

We conducted a series of experiments on the CollegeMsg dataset to evaluate the
effectiveness of pruning on temporal graphs, using different centrality measures.
Our findings, presented in Table 4, indicate a notable enhancement in the model’s
performance upon the removal of extraneous links through the application of
diverse node centrality principles. Herein, “T” refers to the TGNN function,
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Table 4. Ablation study result on CollegeMsg for Pruning schemes

T T+DE T+EV T+PR T+DE+P T+EV+P T+PR+P

AUC 85.06 90.38 90.57 90.58 92.39 92.55 92.49

Table 5. ROC AUC(%) for both the transductive and inductive temporal link predic-
tion on Wikipedia, Reddit, and CollegeMsg.

Wikipedia Reddit CollegeMsg
Transductive Inductive Transductive Inductive Transductive Inductive

TGAC w/o CL 98.29 98.37 98.54 98.57 85.06 87.41

TGAC w/o Prune 98.32 98.40 98.62 98.65 90.57 87.93

TGAC 98.53 98.64 98.82 98.86 92.71 88.79

Fig. 3. Parameter Sensitivity.

while “P” denotes the Prune function. Furthermore, we conducted an ablation
study to assess the impact of contrastive learning, and the results are depicted
in Table 5. Upon removing both the pruning and contrastive learning aspects,
the model became a conventional TGN model. Our findings demonstrate that
the absence of pruning and contrastive learning resulted in a significant decline
in the performance of the TGN model.

4.5 Parameter Sensitivity

Our proposed method requires a thorough analysis of hyperparameters’ impact
on temporal link prediction performance on the datasets. These hyperparam-
eters are the temporal graph pruning ratio c, the balance parameter λ, and
the temporal graph enhancement factor pe. We use a range of evaluation met-
rics to gauge the efficacy of various parameter values. We evaluate them on
Wikipedia and CollegeMsg datasets using link prediction as the downstream
task. We investigate the impact of the temporal graph pruning ratio on the
model’s ability to learn effective information. Additionally, we explore the bal-
ance between link prediction and contrastive learning. Figure 3 illustrates the
sensitivity of our model’s performance to various hyperparameters, including c,
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λ, and pe. Our experiments show that the proposed method achieves the best
results when c = 0.05, λ = 0.1, and pe = 0.4.

5 Conclusion

This paper introduces a novel temporal graph contrastive learning model named
TGAC. The proposed model employs a pruning and adaptive augmentation tech-
nique that incorporates topological and temporal information with prior knowl-
edge. This approach leads to the generation of enhanced temporal graph infor-
mation, which in turn improves the performance of TGNN. The experimental
results demonstrate that the TGAC model outperforms state-of-the-art methods
on most of the datasets.
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Abstract. Unsupervised graph representation learning with GNNs is
critically important due to the difficulty of obtaining graph labels in
many real applications. Graph contrastive learning (GCL), a recently
popular method for unsupervised learning on graphs, has achieved great
success on many tasks. However, existing graph-level GCL models gen-
erally focus on comparing the graph-level representation or node-level
representation. The hierarchical structure property, which is ubiquitous
in many real world graphs such as social networks and molecular graphs,
is largely ignored. To bridge this gap, this paper proposes a novel hier-
archical graph contrastive learning model named HIGCL. HIGCL uses a
multi-layered architecture and contains two contrastive objectives, inner-
contrasting and hierarchical-contrasting. The former conducts inner-scale
contrastive learning to learn the flat structural features in each layer,
while the latter focuses on performing cross-scale contrastive learning to
capture the hierarchical features across layers. Extensive experiments are
conducted on graph-level tasks to show the effectiveness of the proposed
method.

Keywords: Graph Contrastive Learning · Graph Neural Network ·
Unsupervised Learning

1 Introduction

Graph Neural Networks (GNNs), with their advantage in learning represen-
tations of graphs as non-Euclidean data, have achieved remarkable success in
numerous graph learning tasks such as node classification [5,28,36] and graph
classification [4,15,29,33]. Most studies of GNNs are conducted under supervi-
sion, which requires label information during model training. However, in many
real scenarios, label information is difficult and costly to acquire, e.g., determin-
ing the pharmacological effects of drug molecular graphs requires living animal
experiments [26]. Therefore, how to train GNNs to learn a better graph repre-
sentation without relying much on labels has naturally become a hot research
topic [11,12].
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Fig. 1. The framework of hierarchical graph contrastive learning model HIGCL.

Graph contrastive learning (GCL) [24,34,38] is a label-free learning method
that has recently achieved great success with a variety of graph data. The basic
idea of GCL is to maximize the consistency of the learned representations of
graphs relevant to itself (etc., augmented views) while pushing other graphs away
from itself, thus allowing the model to capture feature information between the
graphs. For different types of graph tasks, GCL typically focuses on representa-
tions at different granularities in the graph.

For GCL methods that focus on graph-level tasks, most existing works con-
sider graph-level structural information. For example, GraphCL [34] seeks to
maximize the mutual information (MI) between the graph-level representations
of two augmented views. However, many graphs contain hierarchical structural
properties, such as subgraphs and communities [25]. Such hierarchical structures
in graphs may contain significant features for many graph-level tasks and this
structural information is not easily mined from the graph-level representation
[27]. How to conduct graph-level GCL to capture the hierarchical structural
information remains an open problem.

Hierarchical graph pooling methods use a hierarchical architecture to learn
graph features at different granularities, yet they all rely on labeling informa-
tion [4,13,33]. InfoGraph [24] and MVGRL [8] compare graph-level representa-
tions with node-level representations to enable the model to capture more fine-
grained information in the graph. However, this contrasting objective is asso-
ciated with higher computational costs and the nodes are difficult to capture
the entire graph attribute information. MICRO-Graph [35] performs contrastive
learning between subgraph-level and graph-level by mining motif-related sub-
graphs in the molecular graph. However, it requires strong domain knowledge to
design and lacks generalisability.

In this paper, we propose a novel HIerarchical Graph Contrastive Learning
model HIGCL as shown in Fig. 1 to effectively fill the gap between hierarchical
graph structures and GCL models. HIGCL is technically novel compared with
existing GCL models in terms of both contrastive objectives and model archi-
tecture. First, unlike existing GCL models which mostly have one contrastive
objective, we design two different contrastive objectives, inner-contrasting and
hierarchical-contrasting to make full use of the structural information of the
graph. Inner-contrasting aims to capture the flat structural information in each
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layer(granularities) through same-scale contrastive learning(etc., graph versus
graph) in the InnerCL module, while hierarchical-contrasting focuses on learn-
ing the hierarchical features across layers through cross-scale contrastive learn-
ing(etc., graph versus subgraph) in the HICL module. Second, inspired by the
hierarchical pooling architecture [13], HIGCL is designed as a multi-layered
architecture to capture the hierarchical structures of graphs. The graph of layer l,
Gl, undergoes the Pooling module to produce a refined graph of the next layer,
which retains the important structural information of the Gl and reduces the
redundant information. Our major contributions are highlighted as follows:

– We propose a novel hierarchical graph contrastive learning model which
learns graph representations incorporating hierarchical structural information
through a multi-layered architecture. We are one of the early works focusing
on the integration of graph hierarchical representation learning with GCL.

– We design two contrasting objectives for graphs at each granularity, which
not only fully learn the properties of graphs at different granularities but also
capture the correlations across the layers.

– We conduct extensive experiments on nine graph datasets that are extensively
used in GCL to validate the effectiveness of HIGCL compared with graph
kernel methods, traditional graph unsupervised learning methods, and state-
of-the-art GCL methods. Parametric analysis and ablation experiments can
further demonstrate that mining hierarchical structural features in graphs is
beneficial for the GCL.

The remainder of this paper is organized as follows. Section 2 introduces
the related works. Section 3 describes notations used in the paper and presents
some preliminary knowledge. Then, we propose the HIGCL model in Sect. 4.
Experiments and detailed analysis are reported in Sect. 5. Finally, we conclude
the paper in Sect. 5.

2 Related Work

Graph Contrastive Learning. As an effective self-supervised learning app-
roach on graphs, GCL [8,24,34,37,38]has attracted rising research attention in
recent years. GCL can train GNNs without relying on labels, which is particularly
useful in many real-life scenarios where labels are difficult to obtain [10,24]. Gen-
erally, GCL contains three major steps: data augmentation, pretext task design,
and contrastive learning. GraphCL [34] is a universal framework designed for
GCL at the graph-level, and it incorporates four random data augmentation
methods: node dropping, edge perturbation, attribute masking, and subgraph
sampling to enhance the performance of GCL. JOAO [38] proposes a bi-level
optimization framework for selecting data augmentation strategies based on the
graph data domain. SimGRACE [30] abandons data augmentation and directly
compares the perturbed encoder with the normal encoder to avoid the semantic
information lost. The above are all maximize the agreement between graph-level
representations, which makes it hard to capture graph structure information at



Hierarchical Graph Contrastive Learning 703

different granularities. InfoGraph [24] maximizes the mutual information(MI)
between node representations at different GNN layers and corresponding graph-
level representations. MVGRL [8] uses graph diffusion convolution to generate
different semantic views and maximizes the MI between the cross-view repre-
sentations of nodes and graphs. These two are a kind of cross-scale contrastive
learning compared to the former, however, it is difficult for individual nodes
to provide valid feature information for graph-level related tasks. On molecu-
lar graph data, MICRO-Graph [35] designs a motif-driven GCL framework to
compare semantically rich subgraphs with graphs. Different from existing GCL
methods, we propose a multi-layered GCL framework to capture the hierarchi-
cal structural properties. Two contrastive objectives are also designed to capture
the flat structure information within each layer and the hierarchical structure
features across layers simultaneously.

Hierarchical Graph Pooling. Hierarchical graph pooling aims to learn the
information about the possible hierarchical structure in the graph data by using
a hierarchical architecture [4,6,13,14,33]. Recently, hierarchical graph pooling
methods can be roughly divided into the coarsening pooling and the node selec-
tion pooling [20]. Diffpool [33] belongs to the former and regards the graph
pooling problem as a node clustering problem, which generates a coarser graph
by learning a clustering assignment matrix in an end-to-end fashion, while this
is usually accompanied by high computational costs and poor interpretability.
Graph U-nets [6] proposes a node selection pooling method, which calculates the
score of each node by a learnable vector and then selects the top-ranked nodes.
MuchPool [4] uses the multi-channel framework to combine different types of
pooling methods, e.g., coarsening pooling and node selection pooling. [16] finds
that the cluster matrix in the coarsening pooling method does not play a major
role in graph representation learning. Therefore, in this paper, we adopt node
selection pooling method to generate refined graphs of different granularities.

3 Notations and Preliminaries

Graph Representation Learning. We denote a set of graphs as G = {G1, G2,
· · · , GM}, where M is the number of graphs. For an arbitrary graph as Gi = (Ai,
Xi), where Ai ∈ {0, 1}ni×ni denotes the adjacency matrix, Xi ∈ R

ni×f denotes
the node feature matrix, ni is the number of nodes and f is the dimension
of node feature. Since our model is a multi-layered architecture and the graph
structure changes between layers, we further denote the i-th graph fed into the
l-th layer as Gl

i with nl
i nodes. Then, the adjacency matrix and the hidden node

representation matrix are represented as Al
i ∈ R

nl
i×nl

i and Hl
i ∈ R

nl
i×d.

Graph Contrastive Learning. GCL is a recently emerged popular method
for training GNNs without relying on labels. It trains GNNs to maximize the
agreement between the representations of two positive pairs of the input graph.
Existing works design the GCL model from the following three major steps:
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(1) Data augmentation. The purpose of data augmentation is to improve
the quality of the representation of GNNs, such as robustness, by generating more
diverse graph data [8,34]. GraphCL [34] proposes four random augmentations:
node dropping, attribute masking, edge perturbation and subgraph sampling.
The data augmentation operations in our model follow these four augmentation
way.

(2) Pretext tasks design. Differences in pretext tasks are usually repre-
sented by differences in the contrasting objectives. For graph-level GCL, most
focus on contrasting between graph-level representations in the contrastive learn-
ing process. This fails to capture the structural information and hierarchical
features of the graph at each granularity.

(3) Contrastive learning. In GCL, increasing the agreement between rep-
resentations is mostly achieved by maximizing their MI. The MI can be estimated
by maximizing the MI lower bound [2,9,19]. When computing the MI of two rep-
resentations, it is common to go through a projection head (MLP) to produce
the positive pairs zi and zj in the contrastive space. In this paper, we adopt
the widely used NT-Xent loss [19,23] as follows to estimate the MI between two
representations

LCON = − 1
N

N∑

n=1

[
log

exp(sim(zi,n, zj,n)/τ)
∑N

n′=1 exp(sim(zi,n, zj,n′))/τ)

]
, (1)

where sim(zi,n, zj,n) = zi,nzj,n
T /‖zi,n‖‖zj,n‖ denotes the similarity between the

positive pairs. τ denotes the temperature parameter and N denotes the batch-
size. (zi,n, zj,n′) denotes the negative pairs where zj,n′ is the augmented views
from the other graphs in the same batch.

4 The Proposed Model

In this section, we introduce the proposed hierarchical graph contrastive learn-
ing (HIGCL) model. As shown in Fig. 2, the proposed HIGCL model is a multi-
layered architecture that contains the InnerCL module to conduct inner con-
trasting learning within each layer and the HICL module to conduct hierarchi-
cal contrasting learning across different layers. Next, we will introduce the two
modules in detail.

4.1 InnerCL Module

In each layer l, the l-th graph Gl is input into its InnerCL module, which is
composed of the l-th GNN f l, l-th projection head gl and the augmentation
operator. The contrastive learning process in the InnerCL module is similar
to the traditional graph-level GCL methods [34]. Traditional graph-level GCL
usually develops contrastive learning only at the original graph, while we design
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Fig. 2. The illustration of any two layers in the HIGCL. In the InnerCL module, each
Gl learns the flat structural information through the inner-contrasting. Hierarchical
features across layers are captured by the hierarchical-contrasting. All the hierarchical-
contrasting between different layers forms the HICL module.

the inner contrasting objectives to capture more fully the structural information
of the graph at different layers.

Inner-contrasting: We first perform data augmentation for Gl to produce two
diverse augmented views V l

1 and V l
2 . Then the augmented views are encoded by

the shared encoder fl to generate the graph representations hl
vi

∈ R
1×dl

, i = 1, 2.
Subsequently, we get the representation zlvi

by mapping the graph representation
into the contrastive space through the projection head gl. The MI between the
two representations in the contrastive space is maximized by the NT-Xent loss
mentioned in Sect. 3. Combining the contrastive loss functions in the InnerCL of
each layer, we obtain the total objective function for inner-contrasting as follows:

InnerCLloss = − 1
L

1
N

L∑

l=1

N∑

n=1

[
log

exp(sim(zlv1,n
, zlv2,n

)/τ)
∑N

n′=1 exp(sim(zlv1,n
, zlv2,n′ )/τ)

]
, (2)

where zlvi,n
∈ R

1×D, i = 1, 2. D denotes the dimensions of the vectors in the
contrastive space.

4.2 HICL Module

The structure of HICL is shown in Fig. 1 and Fig. 2. HICL has a multi-layered
structure and the input of l-th layer are Gl and Gl+1. Hierarchical-contrasting
in the HICL is finally conducted between the representations across layers to
capture the hierarchical structure information.
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Hierarchical Views: In InnerCL we enrich the graph data at each granular-
ity by data augmentation and perform inner contrasting to capture the struc-
tural information in each layer. However, such same scale contrasting objectives
cannot bridge the different structural layers and thus make it difficult to cap-
ture some important hierarchical features. Therefore, we consider the graphs
between two adjacent layers (e.g. Gl and Gl+1) as two hierarchical views to per-
form hierarchical-contrasting.

Hierarchical-Contrasting: This contrastive objective aims to maximize the
MI of the hierarchical structure representation I(Gl,Gl + 1) across layers, where
I(·, ·) denotes the MI between the two graphs of adjacent layers. Different from
inner contrasting, hierarchical contrasting compares graphs at different granu-
larities. Under this contrasting objectives, encoders at different layers are jointly
optimized to enable the model to capture hierarchical structural information.
For each layer Gl, the corresponding representation vector hl and the represen-
tation zl ∈ R

1×D in contrastive space are obtained with f l and gl as shown in
Fig. 2.

Then MI between the two graphs of adjacent layers can be calculated by the
following formula:

HICLl
loss = − 1

N

N∑

n=1

[
log

exp(sim(zln, zl+1
n )/τ)

∑N
n′=1 exp(sim(zln, zl+1

n′ ))/τ)

]
. (3)

It is possible that with the increase of the layers, the global semantic informa-
tion of the initial graph may gradually loss due to the heavily refine graph by
pooling. That is, the learned substructure information may not be sufficient to
the downstream graph-level tasks. To avoid this issue, we also maximize the MI
of the two graphs in the first and last layers to ensure global consistency. For
uniformity of the formula, we define GL+1 as the original graph G1. Then the
overall hierarchical contrastive loss is the aggregation of all the layer-wise losses
as follows

HICLloss =
1
L

L∑

l=1

HICLl
loss. (4)

where L is the number of layers in HIGCL.

4.3 Hierarchical Graph Representation

Most GCL methods focus on training GNNs with augmented views from the
original graph and derive graph representations via a simple readout [34]. These
are flat way, and it is difficult to capture the hierarchical structure features of
the graph. Therefore, we introduce graph pooling operators to generate refined
graphs in different granularities and learn representations of graphs with hierar-
chical structural information by GNNs at each layer. Gl, f l represent the graphs
and GNNs of the l-th layer, respectively.

Graph Pooling: In this part, we introduce how to obtain Gl+1 according to Gl

and f l. First, Gl undergoes f l to learn the node hidden representation matrix
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Algorithm 1. Hierarchical Graph Contrastive Learning
Input: Data G = {G1, G2, · · · , GM}, f, g, τ, Pool, L for the number of layers of
HIGCL. Note that G1

n = Gn.
for sampled minibatch of data do

for n = 1, 2, ..., N, do
for l = 1, 2, ..., L, do

Sample q1, q2 from τ
V l

n,1 ∼ q1(·|Gl
n), V l

n,2 ∼ q2(·|Gl
n)

hl
v1,n = f l(V l

1,n), hl
v2,n = f l(V l

2,n), hl = f l(Gl
n)

zlv1,n = gl(hl
v1,n), z

l
v2,n = gl(hl

v2,n), z
l = gl(hl)

Gl+1
n = Pooll(f l(Gl

n),A
l
n)

end for
end for
Compute LCON with Eq. (2) and Eq. (4).
Update the parameters of f, g, Pool in each layer with LCON .

end for
return Encoder f and pooling operators Pool in each layer.

Hl ∈ R
nl×dl

. Based on the node selection pooling method [6], we introduce a
learnable vector pl ∈ R

dl×1 to measure the importance of each node in the latent
space and then select the top k ranked nodes to form the refined graph

scorel = Hl · pl

‖pl‖ , idxl = top-rank(scorel, �k · nl�) (5)

where idxl denotes the node index in the l-th layer, and scorel ∈ R
nl×1. Then

the generated Gl+1 can be represented by the following formula

Xl+1 = Hl(idxl, :) � scorel(idxl, :), Al+1 = Al(idxl, idxl). (6)

where � is the broadcasted element-wise product. Xl+1 ∈ R
nl+1×dl+1

and
Al+1 ∈ {0, 1}nl+1×nl+1

denote the feature matrix and adjacency matrix of Gl+1,
respectively. nl+1 is equivalent to �k · nl� where k is a hyper-parameter that
indicates the ratio of the reserved nodes.

4.4 Objective Function

Traditional hierarchical graph representation learning uses downstream labeling
information to optimize the model [33].

Our proposed HIGCL model uses two contrastive learning losses to optimize
the model, thus eliminating the need for label information. The final objective
function contains InnerCLloss, and HICLloss. Then HIGCL performs inner-
contrasting and hierarchical-contrasting through optimizing the following objec-
tive function

LCON = β · HICLloss + (1 − β) · InnerCLloss, (7)

where β is the trade-off parameter between the two loss terms HICLloss and
InnerCLloss.
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Table 1. Statistics of the 9 graph datasets used in the experiment

Dataset NCI1 PROTEINS DD MUTAG PTCMR COLLAB RDT-B RDT-M5K IMDB-B

Graphs 4110 1113 1178 188 344 5000 2000 4999 1500

Vertices 29.87 39.06 284.32 17.93 14.29 74.49 429.63 508.52 19.77

Edges 32.3 72.82 715.66 19.79 14.69 2457.78 497.75 594.87 96.53

Features 37 3 89 7 18 1 1 1 1

Classes 2 2 2 2 2 3 2 5 2

4.5 Fusing Graph Representations of Multiple Layers

As HIGCL is a multi-layered architecture and each layer will produce a graph
representation, we need to fuse the graph representations of all the layers to form
a final one. The final graph representation can be obtained through aggregating
layer-wise representations as follows:

hl = READOUT(f l(Xl,Al)), l ∈ {1, ..., L}

hfinal = α · h1 + (1 − α) · 1
L − 1

L∑

l=2

hl,
(8)

where hl ∈ R
1×d and L represent the layers of HIGCL. α is used to tune the

degree of contribution of the original and refined graph to the final graph rep-
resentation. This is mainly considering that different graph data have different
degrees of hierarchical structural information. The training algorithms of HIGCL
are summarized in Algorithm1.

5 Experiment

In this section, we perform extensive experiments to evaluate the proposed
HIGCL. We will first introduce the datasets, baselines and experiment setup.
Then the performance comparison will be performed and the result will be dis-
cussed. Finally we will show parameter analysis.

5.1 Experiment Setup

Datasets. We evaluate HIGCL over 9 graph classification benchmark
datasets which are widely used for GCL models evaluation. These graph
datasets include NCI1, PROTEINS, DD, MUTAG, PTCMR, COL-
LAB, REEDIT-BINARY, REEDIT-MULTI-5K and IMDB-BINARY
collected in TUDataset [17]. In Table 1 we show more details about the 9 graph
datasets used in our experiment. These graph datasets can be categorized into
biochemical graphs and social networks.

Baselines. We compare HIGCL with three types of baseline methods: graph ker-
nel methods, classic graph unsupervised representation learning methods and
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Table 2. Graph classification accuracy comparison among different methods over 9
benchmark datasets in the unsupervised learning setting. In each column, the bold-
faced score denotes the best result of all the methods. “−” means that there are no
corresponding results in the original papers or running out of memory.

Dataset NCI1 PROTEINS DD MUTAG PTCMR COLLAB RDT-B RDT-M5K IMDB-B

GL 66.02 ± 0.12 – – 81.66 ± 2.11 57.32 ± 1.43 – 77.34 ± 0.18 41.01 ± 0.17 65.87 ± 0.98
WL 80.01 ± 0.50 72.92 ± 0.56 – 80.72 ± 3.00 56.91 ± 2.79 – 68.82 ± 0.41 46.06 ± 0.21 72.30 ± 3.44
DGK 80.31 ± 0.46 73.30 ± 0.82 – 87.44 ± 2.72 – – 78.04 ± 0.39 41.27 ± 0.18 66.96 ± 0.56
node2vec 54.89 ± 1.61 57.49 ± 3.57 – 72.63 ± 10.20 58.60 ± 8.00 56.10 ± 0.20 – – 50.22 ± 0.91
sub2vec 52.84 ± 1.47 53.03 ± 5.55 – 61.05 ± 15.80 60.01 ± 6.42 – 71.48 ± 0.41 36.68 ± 0.42 55.26 ± 1.54
graph2vec 73.22 ± 1.81 73.30 ± 2.05 – 83.15 ± 9.25 60.17 ± 6.86 – 75.78 ± 1.03 47.86 ± 0.26 71.10 ± 0.54
InfoGraph 76.20 ± 1.06 74.44 ± 0.31 72.85 ± 1.78 89.01 ± 1.13 61.71 ± 1.42 70.65 ± 1.13 82.50 ± 1.42 53.46 ± 1.03 73.03 ± 0.87
MVGRL 75.13 ± 0.67 70.60 ± 0.42 – 89.35 ± 0.63 62.50 ± 1.71 – 84.51 ± 0.62 - 73.26 ± 0.34
GraphCL 77.87 ± 0.41 74.39 ± 0.45 78.62 ± 0.40 86.80 ± 1.34 59.37 ± 0.82 71.36 ± 1.15 89.53 ± 0.84 55.99 ± 0.28 71.14 ± 0.44
JOAO 78.07 ± 0.47 74.55 ± 0.41 77.32 ± 0.54 87.35 ± 1.02 – 69.50 ± 0.36 85.29 ± 1.35 55.74 ± 0.63 70.21 ± 3.08
JOAOv2 78.36 ± 0.53 74.07 ± 1.10 77.40 ± 1.15 87.67 ± 0.79 – 69.33 ± 0.34 86.42 ± 1.45 56.03 ± 0.27 70.83 ± 0.25
SimGRACE 79.12 ± 0.44 75.35 ± 0.09 77.44 ± 1.11 89.01 ± 1.31 – 71.72 ± 0.82 89.51 ± 0.89 55.91 ± 0.34 71.30 ± 0.77
HIGCL 80.62± 0.53 76.44± 0.24 79.22± 0.92 90.02± 0.80 63.86± 1.81 73.32± 0.49 89.67± 1.01 56.28± 0.54 73.38± 0.77

GCL methods. The graph kernel methods include Graphlet kernel (GK) [22],
Weisfeiler-Lehman sub-tree kernel (WL) [21] and deep graph kernels (DGK)
[32]. The classic graph unsupervised representation learning methods include
node2vec [7], sub2vec [1] and graph2vec [18]. Graph contrastive learning meth-
ods include InfoGraph [24], GraphCL [38], MVGRL [8], JOAO [38] and Sim-
GRACE [30].

Implementation Details. We closely follow the experimental protocol of the
previous state-of-the-art GCL approaches. For the unsupervised graph classifica-
tion, we report the mean 10-fold cross validation accuracy after 5 runs followed
by a SVM [3]. The SVM is trained by applying cross validation on training data
folds and the best mean accuracy is reported. To make a fair comparison, we
adopt the basic setting of InfoGraph [24] for graph classification. We conduct
experiment with the values of the number of GNN layers, the number of epochs,
batch size, the parameter C of SVM in the sets {1, 2, 4}, {10, 20, 40, 60},
{32, 64, 128, 256} and {10−3, 10−2, ..., 102, 103 }, respectively. We use Adam
optimizer with learning rate in {0.01, 0.001, 0.0001}. We adopt GIN [31] as our
graph encoder similar with other GCL and set the hidden representation dimen-
sion as 128. We use a three-layer HIGCL in the main experiment. The code to
reproduce our results is publicly available at Github and there are more detailed
parameters set in it.

5.2 Performance Comparison

The performance comparison result of various methods in unsupervised graph
classification is shown in Table 2. The best results are highlighted in bold font,
and the best result achieved by baselines are underlined. From the two tables,
one can have the following observations. First, we can see that graph contrastive
learning methods generally outperform traditional graph kernel methods or clas-
sical graph unsupervised learning methods, whether on biochemical molecular

https://anonymous.4open.science/r/HGCL-model-7468/
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Table 3. The result of the weighting parameter α on five datasets.

Dataset NCI1 PROTEINS MUTAG PTCMR COLLAB IMDB-B

HIGCL-G 79.04± 0.44 76.26± 0.20 90.02± 0.80 62.43± 2.11 71.98± 0.76 72.44± 0.45

HIGCL-M 80.62± 0.53 76.44± 0.24 89.06± 0.97 62.17± 2.45 73.32± 0.49 72.22± 0.85

graphs or social network graphs. This demonstrates the effectiveness as well
as the adaptability of the GCL methods. Then, our proposed model HIGCL
achieves the best performance on all datasets, which verifies the superiority of
our methods. Further, GraphCL, JOAO, JOAOv2, and SimGRACE are GCL
methods for directly comparing graph-level representations, which lack the abil-
ity to explore more hierarchical structures in graph data and thus affect the
performance of GCL. MVGRL performs node-level and graph-level cross-scale
contrastive learning and achieves two suboptimal results on the biochemical
graph datasets. However, for larger-scale graph data, which is particularly likely
to be found in social network data, MVGRL does not work well due to the high
computational cost. Compared to the best results in the baseline, our model
delivers an average improvement of 0.81% and 0.53% in the biochemical graph
datasets and social network datasets, respectively. In particular, our model deliv-
ers the most significant improvement on the PTCMR and COLLAB datasets,
with 1.36% and 1.60% respectively. This proves that our methods have a good
generalization to graph data at different scales or in different domains, and all
achieve effective enhancement with existing graph contrastive learning methods.

Another interesting point is that the proposed HIGCL is rather stable, which
means it can achieve the best or comparable to the best results for all the
datasets. However, other methods work well on some datasets, but badly on
others. For example, graph kernel method DGK performs well on NCI1, PRO-
TEINS, and MUTAG; while on RDT-B and RDT-M5K datasets, the accuracy
achieved by DGK are 78.04 and 41.27, which are significantly lower than the
results (89.67 and 56.28 respectively) achieved by HIGCL. A similar problem
also exists in classic graph unsupervised representation learning methods such as
graph2vec and sub2vec as well as GCL methods such as InfoGraph and MVGRL.
Generally, GCL methods work better than graph kernel-based methods and
unsupervised graph representation learning-based methods.

5.3 Parameter Analysis on α

Due to the different structures of the various graph data, we introduce weights
α to align the contribution of the original and refined graph to the final graph
representation. We conduct unsupervised graph classification experiments on
six datasets in Table 3, where HIGCL-G indicates when α = 1, i.e., only using
original graph-level GNN, while HIGCL-M indicates a mixture of the GNNs
in different layers. We conduct experiments on a 3-layer HIGCL and set the
α = 1/3 for the HIGCL-M. Observation of Table 3 shows that on the small-
scale datasets MUTAG, PTCMR, and IMDB-B, the use of original graph-level
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Fig. 3. Effect of different β values on HIGCL performance over NCI1, PTCMR and
PROTEINS datasets.

Fig. 4. Parameters analyze of the graph pooling ratio k.

Table 4. Ablation study on the InnerCL and HICL modules

Dataset NCI1 PROTEINS MUTAG PTCMR COLLAB RDT-B IMDB-B

w/o I 77.62 ± 0.54 75.36 ± 0.38 88.46 ± 0.82 59.16 ± 2.16 70.98 ± 0.76 89.23 ± 1.45 71.56 ± 0.88
w/o H 78.56 ± 0.54 75.24 ± 0.38 89.32 ± 0.82 61.32 ± 2.16 71.63 ± 0.76 89.12 ± 1.45 72.45 ± 0.88
HIGCL 80.62± 0.53 76.44± 0.24 90.02± 0.80 63.86± 1.81 73.32± 0.49 89.67± 1.01 73.38± 0.77

GNN is more favorable for generating high-quality graph representations. This is
mainly because the hierarchical structure may be less obvious in small graphs and
pooling the data at a finer granularity may destroy the structural information in
it. On the other hand, the fusion of the different GNNs on larger graphs will be
more conducive to representation learning. This is mainly because larger-scale
graphs are more complex in structure and the use of multi-level GNNs is more
conducive to capturing structural features at different granularities.

5.4 Parameter Analysis on β

HIGCL has a parameter β to control the importance of two modules InnerCL and
HICL. We next conduct parameter analysis on β to study how β affects the model
performance. Due to space limitation, we only show the result on NCI1, PTCMR,
and PROTENS datasets in Fig. 3. One can see that β has a significant impact
on the model performance on all three datasets as the performance curves vary
remarkably with the increase of the β value. A larger β means a larger HICLloss,
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Fig. 5. We perform model robustness tests on three datasets, PTCMR, IMDB-B, and
MUTAG. The numbers on the vertical axis indicate the ratio of perturbations applied
to the datasets.

and thus hierarchical contrastive learning is more important. One can see that
the three different datasets have different proper α values depending on their
graph structure properties (Fig. 5).

5.5 Ablation Study

Our proposed model HIGCL contains two modules, InnerCL and HICL, and
both provide InnerCLloss and HICLloss, respectively, for the final optimiza-
tion objective. To investigate whether these two modules are valid, we explored
two variants of HIGCL on 7 datasets, where w/o I denotes the removal of the
InnerCL module and w/o H denotes the removal of the HICL module. Observ-
ing the results in Table 4 reveals that removing either InnerCL or HICL leads
to a decrease in effectiveness. When removing InnerCL, the effect of the model
decreased by an average of 1.88% compared to the full version. In contrast,
when HICL is removed, the effect of the model decreases by an average of 1.35%
compared to the full version. The effect of removing InnerCL is usually greater
because when lacking the InnerCL module, the model is unable to fully explore
the structural features of each layer and lacks the diversity data to improve the
model performance. The best results with the full version are achieved on all
datasets. This fully demonstrates the effectiveness of our proposed two modules.

5.6 Parameter Analysis on Pooling Ratio

Most pooling methods require a pre-determined pooling ratio to determine what
proportion of the nodes in the original graph are retained by the refined sub-
graph. Due to space limitations, we only explore the effect of the pooling ratio k
on 3 datasets. We perform the analysis on a three layer HIGCL and set the pool-
ing ratio of the two pooling modules used to be equal. The pooling ratio ranges
from 0.9 to 0.6. A higher pooling ratio means that more nodes are retained
in the refined graph. For the two smaller datasets, MUTAG and IMDB-B, the
models usually achieve better results when the pooling ratio is around a larger
value. This is mainly because small-scale graphs have less hierarchical structural
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information in them, and a lower pooling ratio can result in serious corruption
of structural information, thus reducing the effectiveness. In the larger datasets
COLLAB, the mean accuracy decreases as the pooling ratio first increases, with
the best results achieved between 0.8 and 0.7. This indicates that larger-scale
graphs contain useful structural features at different granularities (Fig. 4).

5.7 Robustness Experiments

We further demonstrate the robustness of the proposed model. Our experimental
setup is similar to that of unsupervised graph classification. After being trained
by GraphCL, and MVGRL with our method, we feed the perturbed data into
all three methods and use the classification results of the SVM as our robustness
evaluation criteria. In this case, we use a combination of edge perturbation and
node dropping for our perturbation method. Based on the three graph datasets,
it can be seen that as the perturbation increases, the quality of representation
decreases more significantly for GraphCL and MVGRL. MVGRL is less robust
due to its use of only subgraph sampling as a data augmentation method and
usually performs worst when the perturbation ratio goes above 0.3. Our model
is augmented with a variety of data augmentation operations in the InnerCL
module, and the representational power and robustness of the model are further
increased by two different contrasting objectives.

6 Conclusion

In this paper, we propose a novel hierarchical graph contrastive learning model
HIGCL. Significantly different from existing GCL methods that generally used
one single contrastive objective and a one-layered flat contrastive learning archi-
tecture, HIGCL proposes to integrate both inner-contrasting and hierarchical-
contrasting objectives and conducts contrastive learning across different graph
layers through pooling in a hierarchical way. In this way, the hierarchical features
of graphs can be more effectively captured. Evaluations over 9 graph datasets
demonstrate the effectiveness of the proposal in the task of graph classification
by extensive comparisons with existing SOTA baselines.
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