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Abstract. Node classification is one of the core tasks on attributed
graphs, but successful graph learning solutions require sufficiently labeled
data. To keep annotation costs low, active graph learning focuses on select-
ing the most qualitative subset of nodes that maximizes label efficiency.
However, deciding which heuristic is best suited for an unlabeled graph
to increase label efficiency is a persistent challenge. Existing solutions
either neglect aligning the learned model and the sampling method or focus
only on limited selection aspects. They are thus sometimes worse or only
equally good as random sampling. In this work, we introduce a novel active
graph learning approach called DiffusAL, showing significant robustness
in diverse settings. Toward better transferability between different graph
structures, we combine three independent scoring functions to identify the
most informative node samples for labeling in a parameter-free way: i)
ModelUncertainty, ii)DiversityComponent, and iii)Node Importance com-
puted via graph diffusion heuristics. Most of our calculations for acqui-
sition and training can be pre-processed, making DiffusAL more efficient
compared to approaches combining diverse selection criteria and similarly
fast as simpler heuristics. Our experiments on various benchmark datasets
show that, unlike previous methods, our approach significantly outper-
forms random selection in 100% of all datasets and labeling budgets tested.

Keywords: active learning · node classification · graph neural
networks

1 Introduction

Graph representation learning [17] and, especially, Graph Neural Networks
(GNNs) [2,5,16] have been adopted as a primary approach for solving machine
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learning tasks on graph-structured data, including node classification [18], graph
classification [21], and link prediction [41]. Applications range from quantum
chemistry [16] over traffic forecasting [44] to cyber-security [6].

However, supervised GNN models require sufficient training labels and usu-
ally assume that such labels are freely available. But, in reality, while unlabeled
data is usually abundant, it is laborious and costly to provide annotations. Graph
active learning has emerged as a promising direction to reduce labeling costs by
carefully deciding which data should be labeled to increase label efficiency. Under
a limited budget, e.g., a fixed number of data samples to be labeled or time spent
labeling by a domain expert, active learning aims to annotate an optimized set
of training data iteratively. Hence, a key aspect of graph active learning is iden-
tifying the most informative instances in the abundance of unlabeled data for
labeling. In particular, the goal is to be consistently more label-efficient than ran-
dom labeling. Since random sampling is arguably the fastest and least complex
method, active learning methods that are not significantly better than random
sampling are not worthwhile.

However, since graphs can vary widely, it is very difficult to design an
approach significantly better than random sampling across different labeling
budgets and graph structures. Existing graph-active learning approaches reach
their limits for various reasons: Some approaches focus only on limited selection
aspects [23,28] and outperform random selection only on certain graphs. Oth-
ers focus on one-shot selection without iterative re-training and active selection
and can therefore not exploit model-related uncertainty scores [37,43]. Other
methods try to include various criteria in the selection but are sensitive to user-
defined hyper-parameters or are not deliberately aligned with the used model
architecture [8,15]. Moreover, many methods use a GCN [18] for training and
acquisition. However, GCNs learn latent node features and perform neighbor-
hood aggregation in a coupled fashion, which can negatively influence the time
needed for the active learning procedure. In contrast, Graph diffusion is a promis-
ing direction tackling limitations such as restriction to k -hop neighborhoods [7]
or over-smoothing, where neighborhood aggregation and learning are decoupled.

In this work, we use diffusion-based heuristics to combine graph learning with
active learning. In particular, we propose DiffusAL, a novel graph active learning
method that leverages graph diffusion for highly accurate node classification
and efficiently re-uses the computed diffusion matrix and diffused node feature
vectors in the learning procedure.

We introduce a new scoring function for identifying a node’s utility which
consists of three factors: i) Model Uncertainty, ii) Diversity Component, and iii)
Node Importance. DiffusAL combines these scores in a parameter-free scoring
function that naturally adapts to consecutively learning iterations.

Specifically, for i) Model Uncertainty, we exploit a state-of-the-art scoring
that has shown an improving impact on the selection of nodes [32]. Next, the
ii) Diversity Component refers to the variability of node features and, there-
fore, their respective labels. For that, we apply a clustering method on the pre-
computed diffusion matrix where diversity is reached by picking samples from
underrepresented communities. Finally, for computing iii) Node Importance, we
exploit the information given by diffusion matrix based on the Personalized
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Fig. 1. DiffusAL pipeline consisting of the original input graph and corresponding
node features (grey box), pre-computed static model-independent scores, such as the
propagated feature matrix and derived node importance (green box), a dynamic, model-
independent score based on the composition of the labeled pool (Diversity/Balance), as
well as a dynamic, model-dependent informativeness score (Uncertainty). These scores
are combined into a final node rating (white box) to select the most useful instances
for annotation. (Color figure online)

PageRank (PPR), which provides information about the relative importance of
nodes in a graph w.r.t. a particular seed node. The high-level key concepts of
DiffusAL are illustrated in Fig. 1.

We evaluate DiffusAL on five real-world benchmark datasets, demonstrating
its superiority over a variety of competitors. Notably, DiffusAL is the only com-
petitor to outperform random selection with statistical significance in 100% of
the evaluated datasets and labeling budgets. In a series of ablation studies, we
show that DiffusAL works consistently well on all benchmark datasets, analyze
which components contribute to its performance, and investigate its efficiency.

In summary, our contributions are as follows:

– Enhancing the selection of influential nodes by using diffusion-based node
importance and utilizing pre-computed clustering on diffused features to pre-
vent oversampling a particular region.

– Combining three complementary node scoring components in a parameter-
free way.

– Achieving high efficiency by propagating statically pre-computed features
stored in a diffusion matrix.

2 Related Work

Early works on graph active learning [3,24] exploit the graph structure for
selecting nodes for querying without graph representation learning. More recent
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approaches [8,15,23,28,38] use GCNs to exploit the graph structure as well as
learned features. FeatProp [38] leverages node feature propagation followed by
K-Medoids clustering for the selection of instances. By defining the pairwise node
distances between the corresponding propagated node features, the model selects
nodes being closest to the cluster representatives yielding a diverse set over the
input space. However, the diversity scoring function in our model puts more
weight on underrepresented clusters yielding a more balanced view of the avail-
able data space and, therefore, is more suitable for imbalanced data. In [43],
the authors proposed GRAIN, a model inspecting social influence maximiza-
tion for data selection. Their objective is a diversified influence maximization
by exploiting novel influence and diversity functions. In contrast to their work,
we focus on an iterative active learning setting [10] since it directly enables
exploiting the uncertainty scores entangled to a model which is known to be
valuable for query selection. The most related work to our approach is presented
in [8] where the authors propose Active Graph Embedding (AGE) using as selec-
tion heuristic a weighted sum of information entropy, information density, and
graph centrality defined on direct neighborhoods. For the latter, they propose
to use PageRank centrality. The time-sensitive coefficients of the weighted sum
are chosen from a beta distribution using the number of training iterations as
input. We overcome these limitations related the restriction on direct neighbor-
hoods aggregations used in standard GNNs [2,5,16] by leveraging continuous
relationships via graph diffusion [7,20]. In [15], ANRMAB is proposed. It uses
a multi-armed bandit mechanism for adaptive decision-making by assigning dif-
ferent weights to different criteria when constructing the score to select the most
informative nodes for labeling. The model LSCALE [23] exploits clustering-
based (K-Medoids) active learning on a designed latent space leveraging two
properties: low label requirements and informative distances. For the latter, the
authors integrate Deep Graph Infomax [36] as an unsupervised model. Therefore,
in contrast to our approach, the model utilizes a purely distance-based selection
heuristic. The method GEEM [29] maximizes the expected error reduction to
select informative nodes to label.

To the best of our knowledge, we are the first to leverage the power of
diffusion-based heuristics for the computation of node importance, being an inte-
gral part of our scoring function, combining three complementary components
to compute the nodes yielding the highest utility scores. Moreover, our novel
scoring function uncouples from any parameter presets, being a critical choice
without any a priori knowledge about the input data.

3 DiffusAL

3.1 Preliminaries

Notation. We consider the problem of active learning for node classification. We
are given a graph G = (V,E) represented by an adjacency matrix A ∈ {0, 1}n×n

along with a node feature matrix X ∈ R
n×d. Each node v ∈ V belongs to

exactly one class cv ∈ {1, . . . , C}, where C is the number of classes present
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in the dataset. A budget constraint B denotes the maximum number of nodes
for which the active learning algorithm may request the correct labels from the
oracle. The main goal is to select a subset of nodes S ⊂ V such that |S| = B and
the accuracy of a classification model trained on these nodes is maximized. In
a batch setting, b denotes the number of nodes selected within each acquisition
round.

Recap: Feature Diffusion. In contrast to conventional GNN architectures
[18,35,39] that learn latent node features and perform neighborhood aggrega-
tion in a coupled fashion, graph diffusion effectively decouples the two steps
to address certain shortcomings of conventional GNN architectures, includ-
ing the restriction to k -hop neighborhoods [7] and issues related to over-
smoothing[14,22,26,40]. The general effectiveness of diffusion, when paired with
conventional GNN architectures, was shown in [20]. In general, a parametric
diffusion matrix can be defined as

P =
∞∑

k=0

θkT k, (1)

where T is a transition matrix and θ are weighting parameters. A popular choice
is Personalized PageRank (PPR) [4,7,11,12,19], where T = AD−1 is the ran-
dom walk matrix, D is the diagonal degree matrix, and θk = α(1 − α)k. Intu-
itively, Pij corresponds to the probability that a random walk starting at node
i will stop at node j and can be interpreted as the importance of node j for
node i. The restart probability α ∈ [0, 1] controls the effective size of a node’s
PPR-neighborhood. An approximation of the PPR matrix can be pre-computed
in time O(n) using push-based algorithms [7]. This approximation requires a
second hyper-parameter ε > 0 that thresholds small entries and, thus, has a
sparsification and noise reduction effect. Once computed, the PPR matrix can
replace the adjacency matrix used by conventional message-passing networks for
neighborhood aggregation [7,19].

3.2 Model Architecture

For DiffusAL, we propagate the original node features such that the propagated
node features don’t depend on any learned transformations and can be pre-
computed as well. We propose a query-by-committee (QBC) approach [33], where
the propagated node features are connected to an ensemble of MLP classifiers to
robustify uncertainty estimation during the sample selection process compared
to a commonly used single MLP. Additionally, features are diffused over multiple
scales by varying the hyper-parameter α controlling the effective neighborhood
size over which features are aggregated. In particular, the model predictions are
given as

Y = predict

⎛

⎝
∑

j∈{1,...,M}
transformj

⎛

⎝
∑

i∈{1,...,K}
P (αi)X

⎞

⎠

⎞

⎠ , (2)
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where K denotes the number of scales, and M denotes the number of MLPs in
the classification ensemble. The pre-computed diffused features are aggregated
over multiple scales using the sum function and fed to the hidden layer of each
MLP. The learned representations are then aggregated using the sum function
and passed to the shared prediction layer. All ensemble members share the same
architecture and only differ in the random initialization of their weights and
biases. The QBC can be trained very efficiently with gradient descent, and, in
particular, the expensive diffusion step needs to be performed only once as a
pre-processing step.

3.3 Node Ranking and Selection

In addition to facilitating highly effective and efficient prediction, the previously
computed diffusion matrix P =

∑
i∈{1,...,K} P (αi) and diffused features PX are

reused to calculate expressive ranking scores for active node selection.

Model Uncertainty. For measuring model uncertainty, we utilize the QBC
defined above. In particular, we compute the Shannon entropy over the softmax-
ed output distribution to determine the uncertainty score for node i:

sunc(i) = −
∑

j∈{1,...,C}
yij log yij . (3)

The scores are L1-normalized over all unlabeled nodes to [0, 1], so all scoring
functions share the same scale and can be sensibly combined.

While this score is inspired by the classical query-by-committee [33] approach,
it differs in the sense that it doesn’t average the softmax outputs of the individual
committee members but rather considers the softmax output of a single shared
prediction layer applied to aggregated latent representations. Thereby, differing
predictions become more distinct in the softmax output.

Diversity Component. For the diversity component, we perform k-Means
clustering on the diffused features with k = b and assign each node a pseudo-
label based on the clustering result. Note that we pre-compute these cluster
assignments such that no re-computations are necessary at query time, in con-
trast to other approaches (e.g., based on GCNs), where updated node features
would change the clustering.

The cluster-based pseudo labels are used to ensure decent coverage of the
feature space. At each iteration, each node i receives a diversity score

sdiv(i) = 1 − |ctrain|
|Vtrain| , (4)

where c ∈ C denotes the cluster node i was assigned to, |ctrain| denotes the
number of nodes in the currently labeled training set belonging to cluster c, and
|Vtrain| is the number of currently labeled training nodes. In short, each node in
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the unlabeled pool is weighted by the relative size of its cluster in the training set,
such that nodes from currently underrepresented clusters receive a higher score.
In contrast to only focusing on avoiding redundancy in the current batch [1],
our diversity score can also be interpreted as a balancing score ensuring that no
region is over-sampled within the labeled pool.

Some existing works on graph active learning [8,15] ignore the limitations
of a randomly initialized labeled pool and ensure class balance. However, this
simplification is rather unrealistic in a real-world active learning setting. To
overcome this limitation, we again exploit the k-Means clustering used for the
diversity score and select nodes closest to centroids for the initial pool, inspired
by clustering-based sampling approaches [23,37] and existing work on initial pool
selection [9].

Node Importance. Graph diffusion allows for a natural way to quantify node
importance. Since the weights Pij used for neighborhood aggregation can be
interpreted as importance scores, summing up the importance of a node i for all
other nodes j yields a measure of the general importance of node i, measuring
its total influence on the predictions for other nodes. Since the columns of S are
stochastic, this procedure yields consistently scaled overall importance scores.
In particular, the importance score of node i is given by the row-wise sum

simp(i) =
∑

j∈V

Pij . (5)

Since the importance scores for all nodes can be computed directly from the
PPR matrix, they can be pre-computed before the active learning cycle starts.
Our node importance score is a proxy for how much influence a node has on
other nodes, where nodes with higher scores are assumed to carry more valu-
able information about many other nodes as well. Node importance could be
interpreted as a novel representativeness measure, which has been quantified
via density- or center-based selection within previous (graph) active learning
approaches [8,15,42]. However, we do not need to recompute a clustering on
learned representations after each selected sample, nor do we require good repre-
sentations since we can extract the information directly from the graph topology.
Further, our importance score of a node directly reflects the influence of that
node on the model’s predictions, since the weights from which we compute the
scores are directly used for neighborhood aggregation. This is not the case for
alternative existing measures.

Score Combination and Node Selection. In summary, the uncertainty score
assigns higher weights to nodes about which the committee is most uncertain,
the diversity score assigns higher weights to nodes belonging to underrepresented
clusters, and the node importance score assigns higher weights to nodes with a
higher influence on the predictions for other nodes. The individual scores for a
node are combined in a multiplicative fashion to determine the node’s utility:

s(i) = sunc(i) · sdiv(i) · simp(i). (6)
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(a) Sum aggregation: Isolines are
straight due to fixed weighting.

(b) Multiplicative aggregation: Iso-
lines are curved, favoring similar values
over diverging ones.

Fig. 2. Score aggregation: for two arbitrary scores on the x and y axes (e.g. uncertainty
and representativeness), the corresponding aggregated score is depicted as an isoline,
i.e., each point on the line corresponds to the same final value.

As illustrated in Fig. 2, the intuition behind the multiplicative combination is to
slightly favor nodes displaying a well-rounded distribution of scores over those
with a strong imbalance when the sum of the scores is identical while still allowing
extraordinarily important or uncertain nodes to be selected. Existing works use
slightly different variations of time-sensitive weighted sums, thereby gradually
shifting the focus from representativeness to uncertainty [8,42]. A disadvantage
of time-sensitive weighting is that the performance of the selection algorithm
depends on the choice of good hyper-parameters, which is difficult in a real-world
active learning setting. In contrast, our multiplicative approach is parameter-
free and naturally time-sensitive. In the early stages of training, the classifiers
essentially guess predictions more or less uniformly, leading to roughly similar
uncertainty scores for most nodes. Consequently, the uncertainty score is close
to a constant factor applied equally to all nodes, thus naturally making the
model-free scores the deciding ones in the final score. However, uncertainty scores
become increasingly important once the classifiers become more confident in their
predictions. The combined utility score is determined for each unlabeled node in
each active learning cycle. Afterward, the unlabeled nodes are ranked according
to their utility, and the nodes with the highest utility scores are labeled.

4 Experiments

To demonstrate the effectiveness and efficiency of DiffusAL, we conduct a series
of experiments. In particular, we investigate three research questions:

R1 - How does DiffusAL perform compared to state-of-the-art methods?
R2 - How does each of DiffusAL’s components contribute?
R3 - How is the training and acquisition efficiency?

4.1 Experimental Setup

Datasets. We evaluate DiffusAL on several well-established benchmark datasets
for node classification, namely the citation networks Citeseer [30], Cora [30] and
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Table 1. Dataset statistics (only considering the largest connected component).

Dataset #Nodes #Edges #Features #Classes

Citeseer 2120 3679 3703 6

Cora 2485 5069 1433 5

Pubmed 19717 44324 500 3

Co-author CS 18333 81894 6805 15

Co-author Physics 34493 247962 8415 5

Pubmed [25], as well as the co-author networks Computer Science (CS) [34] and
Physics [34], summarized in Table 1. For each dataset, only the largest connected
component is used, and features are L1-normalized.

Implementation Details. All experiments were implemented using PyTorch
[27] and PyTorch Geometric [13] and run on a single Nvidia Quadro RTX 8000
GPU. For more details, we refer to our publicly available codebase1.

Competitors. We compare DiffusAL with random sampling, entropy sam-
pling [32], and coreset [31] as graph-independent uncertainty-aware and
diversity-aware active learning strategies, respectively. Furthermore, we include
degree sampling as a graph-based representativeness-based baseline, selecting the
highest degree nodes, as well as the state-of-the-art graph-specific active learning
methods AGE [8], FeatProp [37], LSCALE [23] and GRAIN [43].

As proposed in [8,23,37,43], all baselines use GCNs as classifiers, except
LSCALE, which uses the proposed distance-based classifier. Our proposed
method DiffusAL uses the introduced QBC as a classifier, and we provide com-
prehensive experiments showing the influence of the prediction model.

Hyperparameters. We use the same hyper-parameters having a hidden layer
size of 16, a dropout rate of 0.5, a learning rate of 0.01, and L2-regularization
of 5 × 10−4 as proposed in [37]. For DiffusAL, we select α and ε as suggested in
[7]. We follow a batch selection and retrain from scratch after each acquisition
round. However, to ensure more diverse uncertainties (and because the other two
scores are static), we follow the setting of [8] and also incrementally train the
model for one epoch between instance selection within one acquisition round.
The evaluation in Sect. 4.4 shows that this does not impair our efficiency. To
provide a meaningful evaluation without the effects of an under-trained model or
randomness factors, we report test accuracy for all approaches using a validation
set of size 500 and early stopping. However, the validation set is only part of
the evaluation, not the procedure itself. We set the size of the initial pool to 2C
(cf. 3.1) and report results up to a budget of 20C with step sizes also twice the
number of classes. To simulate a fairly realistic active learning scenario, the initial
pool is sampled randomly without guaranteeing class balance for the baseline
approaches without a specific initialization method. All experiments report an
average of ten random seeds.

1 https://github.com/lmu-dbs/diffusal.

https://github.com/lmu-dbs/diffusal
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Fig. 3. Active learning curves with the number of labeled nodes on the x-axis and
average accuracy (over 10 random seeds) on the y-axis.

4.2 R1 - Performance Comparison

Figure 3 depicts the active learning curves for all budgets and datasets. DiffusAL
(blue) is among the best-performing methods on all datasets. Especially on Cora
and Coauthor-CS, we reach the highest mean accuracy for all labeling budgets
and are the only competitor to reach a final accuracy of 83.6% and 92.4%,
respectively. On Pubmed, GRAIN is similarly strong for the first two iterations.
However, afterward, DiffusAL outperforms all methods for the remaining bud-
gets and reaches a final average accuracy of 81.4%. In comparison, LSCALE, the
second-best performing method with respect to the final budget, only reaches
79.9%.

On Citeseer and Physics2, GRAIN and LSCALE are similarly strong as Dif-
fusAL. For both datasets, the learning curves converge to similar accuracies
above a certain labeling budget for some methods such that a clear winner can
no longer be pronounced. Therefore, Fig. 4 provides a comprehensive dueling
matrix indicating how often each strategy has won and lost against the other
strategy in a similar fashion as was proposed in [1]. We apply a two-sided t-test
with a p-value of 0.05 to the classification accuracies over 10 random seeds to
count whether one method outperformed another with statistical significance.

2 On Physics, Degree underperformed considerably and is therefore omitted for better
presentation.
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Fig. 4. Pairwise dueling matrix. Cell ij indicates how
often competitor i won against competitor j with
statistical significance over all datasets and label-
ing budgets (in %). The bottom-most row and right-
most column denote each method’s average losses
and wins, respectively (in %).

In total, we evaluated
50 experimental settings for
each strategy (5 different
datasets, 10 different label-
ing budgets from 2C to 20C).
The values in a column and
row of a method denote the
percentage of losses and wins
against another method, respec-
tively. The bottom row indi-
cates the average losses of
each strategy over all exper-
iments, and the right-most
column indicates the average
wins of a strategy over all
experiments. The losses and
wins in the cells cij and cji

do not necessarily add up to
100%. The margin between
the wins in cell ij and the
losses in cell ji indicates how often the strategy i has performed equally well as
competitor j. Both numbers, the average losses and the average wins, are par-
ticularly interesting when evaluating the success of an active learning method.

In summary, the dueling matrix reveals the following insights:

– DiffusAL has the fewest losses (0.2%, see first column) and the most
wins (71%, see first row).

– DiffusAL wins over random sampling most often (100%).
– Concerning wins over random sampling, GRAIN is the second-best method

(90%). However, DiffusAL statistically never loses against GRAIN.
– The only strategy that can outperform DiffusAL is LSCALE. However, we

beat LSCALE in 62% of experiments and lost only 2% of experiments.

4.3 R2 - Analysis of Contributing Factors

The selected datasets vary widely in terms of the number of nodes, edges, fea-
tures, classes, and class distribution, making it difficult to develop an approach
that can perform well across the spectrum. In the following, we analyze which
components contribute most to DiffusAL’s success and why it is so strong over
a broad range of datasets. Table 2 shows the performance of DiffusAL (bottom
row) and DiffusAL when switching off individual parts of the acquisition func-
tion, i.e., the diversity component (D), the uncertainty score (U) and the impor-
tance score (I) and exchanging the model architecture (middle rows) for 2C, 6C,
and 12C labeling budgets on all datasets where C is the number of classes. Red,
bold numbers indicate the smallest accuracy, indicating the largest influence of a
switched-off component, and blue, bold numbers indicate the highest accuracy.
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We exchange the classifier with a single network variant (MLP) and with a GCN
taking the raw features as input instead of diffused features (GCN). Furthermore,
we report results when using an additive score instead of a multiplicative score.

Table 2. Comparison of DiffusAL with ablated variants. Blue, bold num-
bers indicate the highest, i.e. best, accuracy. Red, bold numbers indicate the
lowest, i.e. worst, accuracy and hence the component with largest influence.

Cora Citeseer Pubmed CS Physics

D U I 2C 6C 12C 2C 6C 12C 2C 6C 12C 2C 6C 12C 2C 6C 12C

� 45.5 77.8 80.6 43.3 63.8 69.7 56.3 68.0 69.8 71.9 81.7 82.2 71.9 89.8 93.8

� 45.5 76.1 80.1 43.3 65.5 70.0 56.3 70.6 75.4 71.9 83.3 90.8 71.9 89.6 93.1

� � 45.5 78.5 81.7 43.3 69.8 71.3 56.3 75.3 80.0 71.9 89.3 91.4 71.9 92.4 93.9

� - 74.5 76.0 - 67.6 71.1 - 64.6 76.5 - 89.4 90.4 - 86.4 87.1

� � - 76.4 80.5 - 67.7 71.0 - 77.2 79.9 - 87.5 87.3 - 91.5 92.4

� � - 78.6 81.9 - 69.1 71.0 - 74.9 77.1 - 90.5 91.6 - 88.3 90.9

Additive - 78.8 81.3 - 70.8 71.3 - 79.1 80.2 - 91.0 92.1 - 91.7 92.7

MLP 62.0 78.8 81.8 52.7 70.6 71.8 64.1 78.8 79.9 87.8 90.4 91.2 80.4 91.4 93.6

GCN 61.8 77.5 80.7 49.8 69.3 71.3 64.5 76.5 78.5 83.3 89.6 91.2 82.7 91.6 93.1

DiffusAL 68.0 79.9 82.3 58.2 69.9 71.8 65.9 80.0 81.4 88.5 90.8 91.8 82.3 92.6 94.1

The importance, uncertainty, and additive scoring have no influence on the
initial pool selection, so we leave out numbers there. Our QBC robustifies the
accuracy, especially in the first iteration, compared to the other two variants
(MLP, GCN). The performance difference between the models gets smaller with
increasing label information. In particular, when label information is sparse,
the committee stabilizes the prediction. However, the diversity component has
the largest impact on the initial set for all datasets. When switching off diversity
(first three rows), the accuracy drops between 9.6% (Pubmed) and 22.5% (Cora).
Other approaches, such as FeatProp or LSCALE, also use clustering in the first
iteration. However, our sampling directly operates on the diffused features, which
subsequently directly influence the training and thus results in a very strong
initial performance.

In general, switching off two scores yields worse results than only switching
off one score, which indicates that the other two scores stabilize the results. But
there is not one most important score over all datasets, supporting our claim that
a robust selection benefits from diverse criteria. For instance, the accuracy drops
the most when switching off uncertainty and diversity on Citeseer (by 2.1%)
and especially on Coauthor-CS (by 9.6%). However, the performance on Cora
and Physics primarily needs uncertainty and importance. In contrast, Pubmed
benefits most from diversity and importance. Interestingly, some of our findings
might give an indication of the performance of other methods. For instance, we
found that importance, i.e., representativeness, is not beneficial on Coauthor-
CS. LSCALE, which mainly focuses on representativeness sampling, yields the
worst performance on this dataset. On Pubmed, however, uncertainty seems
not to work well. Entropy and AGE both include uncertainty sampling and
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Fig. 5. Average time in seconds (x-axis) required for one active learning round com-
pared to the average final accuracy (y-axis) for all methods (color). (Color figure online)

Table 3. Average time in seconds required for acquisition (acq), training (train), and
in total (

∑
) within one active learning iteration. Bold and underlined numbers indicate

the fastest and second fastest methods, respectively. In total, DiffusAL is the fastest
method on Physics and Pubmed, and the second fastest method on Cora and Citeseer.

CS Citeseer Cora Physics Pubmed

acq train
∑

acq train
∑

acq train
∑

acq train
∑

acq train
∑

AGE 41.271 1.849 43.120 1.177 0.665 1.842 1.409 0.544 1.953 4.506 3.366 7.873 0.952 0.679 1.631

Coreset 5.191 1.797 6.988 0.344 0.615 0.960 0.537 0.616 1.154 0.572 3.258 3.830 0.138 0.675 0.813

Entropy 0.005 1.831 1.836 0.002 0.605 0.607 0.002 0.665 0.667 0.011 3.358 3.369 0.002 0.674 0.676

LSCALE 2.649 0.317 2.966 0.019 0.249 0.269 0.042 0.250 0.292 12.722 0.258 12.980 4.121 0.247 4.368

DiffusAL 2.567 1.282 3.849 0.183 0.356 0.539 0.268 0.339 0.608 0.357 2.863 3.220 0.043 0.361 0.404

yield worse results. On Cora, where uncertainty and representativeness seem
effective, Coreset and FeatProp, which mainly focus on diversity, are among the
worst-performing methods.

Using an additive score instead of a multiplicative score yields slightly worse
results in general. From 10 comparisons, summing up the scores only yields three
times slightly better results. However, the maximum difference is 0.9% (Citeseer
6C), whereas using the multiplicative in DiffusAL, the additive score is up to
1.4% (Physics 12C) better.

4.4 R3-Acquisition and Training Efficiency

Figure 5 shows the total average time (in seconds) for one active learning step
on the x-axis (smaller is better) and the final accuracy after all 20C labels are
selected on the y-axis (larger is better) for all methods (color).

We focus on an iterative AL selection where re-training between acquisition
steps is necessary to get new uncertainty scores. In contrast, GRAIN, FeatProp,
degree sampling, and random sampling select all instances for labeling at once
and do not require re-training. Therefore, their average time is set to zero, and
their accuracy is plotted for comparison. However, these methods are generally
less label-efficient since they are not directly coupled to the current learning
model. Except for Citeseer, DiffusAL is always on the Pareto-front, yielding the
best final average accuracy while still being fairly time-efficient. In Table 3, we
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split the total time into the acquisition and the training time for the iterative
methods. All GCN-based methods (Coreset, AGE, Entropy) denote fairly similar
training times. Despite using an ensemble, DiffusAL is slightly faster than the
GCN-based methods since the features are pre-computed. AGE and Coreset both
require a longer time for acquisition. AGE can exploit pre-calculated centrality
scores. However, the uncertainty score and especially the density score must be
freshly calculated in each round. Especially for the very large graph data CS,
AGE requires over 40 s for one active learning iteration. Coreset extracts the
latent representations from the current model and requires the computation of
a pairwise distance matrix. Compared to that, DiffusAL only needs to calculate
the uncertainty scores derived from the QBC model since the other scores are
pre-computed. Only the entropy-based selection scheme has a faster acquisition
time since it only needs one forward pass through the network.

LSCALE, which also defined a dedicated network towards a unified learn-
ing and selection framework, has the fastest training times out of all methods.
However, depending on the dataset, the acquisition time is much larger than
DiffusAL’s acquisition time. As such, the overall time needed for one active
learning round varies considerably between datasets. For instance, on Citeseer
and Cora, LSCALE is the fastest method out of all iterative methods. Still, on
the much larger graphs Pubmed and Physics, it is the slowest method due to
larger acquisition times (4.4 s and 12.7 s, respectively). Overall, even though we
use an ensemble method, our training and acquisition times are fairly stable
across datasets and, in total, comparably good as plain uncertainty sampling
with a GCN.

5 Conclusion

The annotation of unlabeled nodes in graphs is a time-consuming and costly
task and, accordingly, it is of great interest to advance label-efficient methods.
Motivated by the success of diffusion-based graph learning approaches, we pro-
pose DiffusAL, a novel active learning strategy for node classification. DiffusAL
uses diffusion to predict node labels accurately and compute meaningful utility
scores consisting of model uncertainty, diffused feature diversity, and node impor-
tance for active node selection, such that training and data selection cooperate
toward label-efficient node classification. DiffusAL is significantly better gener-
alizable over a wide range of datasets and is, in terms of statistical significance,
not beaten by any other method in 99.8% of all experiments. Moreover, it is the
only method that significantly outperforms random selection in 100% of the eval-
uated settings. Due to pre-computed features stored in a diffusion matrix, our
model can efficiently compute a node’s utility for training and acquisition. Our
extensive ablation study shows that each component of DiffusAL contributes to
different datasets and active learning stages, making it robust in diverse graph
settings.
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network evaluation. In: NeurIPS Relational Representation Learning Workshop
(2018)
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