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Abstract. Testing for Conditional Independence (CI) is a fundamen-
tal task for causal discovery but is particularly challenging in mixed
discrete-continuous data. In this context, inadequate assumptions or dis-
cretization of continuous variables reduce the CI test’s statistical power,
which yields incorrect learned causal structures. In this work, we present
a non-parametric CI test leveraging k-nearest neighbor (kNN) methods
that are adaptive to mixed discrete-continuous data. In particular, a
kNN-based conditional mutual information estimator serves as the test
statistic, and the p-value is calculated using a kNN-based local permu-
tation scheme. We prove the CI test’s statistical validity and power in
mixed discrete-continuous data, which yields consistency when used in
constraint-based causal discovery. An extensive evaluation of synthetic
and real-world data shows that the proposed CI test outperforms state-
of-the-art approaches in the accuracy of CI testing and causal discovery,
particularly in settings with low sample sizes.

Keywords: Non-Parametric CI Testing · Causal Discovery · Mixed
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1 Introduction

Conditional Independence (CI) testing is at the core of causal discovery
(Sect. 1.1), but particularly challenging in many real-world scenarios (Sect. 1.2).
Therefore, we propose a data-adaptive CI test for mixed discrete-continuous data
(Sect. 1.3).

1.1 Conditional Independence in Causal Discovery

Causal discovery has received widespread attention as the knowledge of underly-
ing causal structures improves decision support within many real-world scenar-
ios [17,46]. For example, in discrete manufacturing, causal discovery is the key
to root cause analysis of failures and quality deviations, cf. [25].
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Causal structures between a finite set of random variables V = {X,Y, . . . }
are encoded in a Causal Graphical Model (CGM) consisting of a Directed Acyclic
Graph (DAG) G, and the joint distribution over the variables V, denoted by
PV, cf. [38,46]. In G, a directed edge X → Y depicts a direct causal mechanism
between the two respective variables X and Y , for X,Y ∈ V. Causal discovery
aims to derive as many underlying causal structures in G from observational data
as possible building upon the coincidence between the causal structures of G and
the CI characteristics of PV [46]. Therefore, constraint-based methods, such as
the well-known PC algorithm, apply CI tests to recover the causal structures,
cf. [8]. For instance, if a CI test states the conditional independence of variables
X and Y given a (possibly empty) set of variables Z ⊆ V \ {X,Y }, denoted by
X ⊥⊥Y | Z, then there is no edge between X and Y . Constraint-based methods
are flexible and exist in various extensions, e.g., to allow for latent variables or
cycles [42,46,47], or are used for causal feature selection [50]. Hence, they are
popular in practice [33].

1.2 Challenges in Practice

In principle, constraint-based methods do not make any assumption on the func-
tional form of causal mechanisms or parameters of the joint distribution. How-
ever, they require access to a CI oracle that captures all CI characteristics such
that selecting an appropriate CI test is fundamental and challenging [17,33].
In practice, the true statistical properties are mostly unknown such that inad-
equate assumptions, e.g., of parametric CI tests, yield incorrect learned causal
structures [46]. For example, the well-known partial Pearson’s correlation-based
CI test via Fisher’s Z transformation assumes that PV is multivariate Gaus-
sian [3,27]. Hence, the underlying causal mechanisms are assumed to be lin-
ear and conditional independence cannot be detected if the mechanisms are
non-linear. Further, the omnipresence of mixed discrete-continuous data, e.g.,
continuous quality measurements and discrete failure messages in discrete man-
ufacturing [20], impedes the selection of appropriate CI tests in real-world sce-
narios [19,33]. In this case, parametric models that allow for mixed discrete-
continuous data usually make further restrictions, such as conditional Gaussian
models assuming that discrete variables have discrete parents only [40]. Hence,
for simplification in practice, continuous variables are often discretized to use
standard CI tests such as Pearson’s χ2 test for discrete data, cf. [20,23,35], to
the detriment of the accuracy of the learned causal structures [12,40].

1.3 Contribution and Structure

In this work, we propose mCMIkNN1, a data-adaptive CI test for mixed discrete-
continuous data and its application to causal discovery. Our contributions are:

– We propose a kNN-based local conditional permutation scheme to derive a
non-parametric CI test using a kNN-based CMI estimator as a test statistic.

– We provide theoretical results on the CI test’s validity and power. In partic-
ular, we prove that mCMIkNN is able to control type I and type II errors.

1 Code and Appendix can be found on https://github.com/hpi-epic/mCMIkNN.

https://github.com/hpi-epic/mCMIkNN
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– We show that mCMIkNN allows for consistent estimation of causal structures
when used in constraint-based causal discovery.

– An extensive evaluation on synthetic and real-world data shows that mCMIkNN
outperforms state-of-the-art competitors, particularly for low sample sizes.

The remainder of this paper is structured as follows. In Sect. 2, we examine the
problem of CI testing and related work. In Sect. 3, we provide background on
kNN-based CMI estimation. In Sect. 4, we introduce mCMIkNN and prove theo-
retical results. In Sect. 5, we empirically evaluate the accuracy of our CI test
mCMIkNN compared to state-of-the-art approaches. In Sect. 6, we conclude our
work.

2 Conditional Independence Testing Problem

In this section, we provide a formalization of the CI testing problem (Sect. 2.1)
together with existing fundamental limits of CI testing (Sect. 2.2) before consid-
ering related work on CI testing for mixed discrete-continuous data (Sect. 2.3).

2.1 Problem Description

Let (X × Y × Z,B, PXY Z) be a probability space defined on the metric space
X ×Y ×Z with dimensionality dX +dY +dZ , equipped with the Borel σ-algebra
B, and a regular joint probability measure PXY Z . Hence, we assume that the dX ,
dY , and dZ-dimensional random variables X, Y , and Z take values in X , Y, and
Z according to the marginal mixed discrete-continuous probability distributions
PX , PY , and PZ . I.e., single variables in X, Y , or Z may follow a discrete, a
continuous, or a mixture distribution.

We consider the problem of testing the CI of two random vectors X and
Y given a (possibly empty) random vector Z sampled according to the mixed
discrete-continuous probability distribution PXY Z , i.e., testing the null hypoth-
esis of CI H0 : X ⊥⊥ Y |Z against the alternative hypothesis of dependence
H1 : X �⊥⊥Y |Z. Therefore, let (xi, yi, zi)n

i=1 be n i.i.d. observations sampled from
PXY Z such that we aim to derive a CI test Φn : X n × Yn × Zn × [0, 1] → {0, 1}
that rejects H0 if Φn = 1 given a nominal level α ∈ [0, 1].

2.2 Fundamental Limits of CI Testing

The general problem of CI testing is extensively studied, as it is a fundamental
concept beyond its application in constraint-based causal discovery [11]. In this
context, it is necessary to note that Shah and Peters [45] provided a no-free
lunch theorem for CI that, given a continuously distributed conditioning set Z,
it is impossible to derive a CI test that is able to control the type I error, via
for instance a permutation scheme, and has nontrivial power without additional
restrictions. But, under the restriction that the conditional distribution PX|Z is
known or can be approximated sufficiently, conditional permutation (CP) tests
can calibrate a test statistic guaranteeing a controlled type I error [4]. Further,
the recent work of Kim et al. [28] shows that the problem of CI testing is more
generally determined by the probability of observing collisions in Z.
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2.3 Related Work

We consider the problem of CI testing and its application in causal discovery. In
this context, constraint-based methods require CI tests that (R1) yield accurate
CI decisions, and (R2) are computationally feasible as they are applied hundreds
of times. Generally, CI testing for mixed discrete-continuous data can be cate-
gorized into discretization-based, parametric, and non-parametric approaches.

Discretization-Based Approaches: As CI tests for discrete variables are
well-studied, continuous variables are often discretized, cf. [23,35]. In this con-
text, commonly used CI tests for discrete data are Pearson’s X 2 and likelihood
ratio tests [13,39,46]. Although discretization simplifies the testing problem, the
resulting information loss yields a decreased accuracy [12,40], cf. (R1).

Parametric CI Testing: Postulating an underlying parametric functional
model allows for a regression-based characterization of CI that can be used
to construct valid CI tests. Examples are well-known likelihood ratio tests,
e.g., assuming conditional Gaussianity (CG) [1,44] or using multinomial logistic
regression models [48]. Another stream of research focuses on Copula models to
examine CI characteristics in mixed discrete-continuous data, where variables are
assumed to be induced by latent Gaussian variables such that CI can be deter-
mined by examining the correlation matrix of the latent variables model [9,10].
As these approaches require that the postulated parametric models hold, they
may yield invalid CI decisions if assumptions are inaccurate [46], cf. (R1).

Non-Parametric CI Testing: Non-parametric CI testing faces the twofold
challenge to, first, derive a test statistic from observational data without para-
metric assumptions, and second, derive the p-value given that the test statistic’s
distribution under H0 may be unknown. In continuous data, a wide range of
methods is used for non-parametric CI testing, as reviewed by Li and Fan [32].
For example, kernel-based approaches, such as KCIT [52], test for vanishing cor-
relations within Reproducing Kernel Hilbert Spaces (RKHS). Another example
is CMIknn from Runge [43], which uses a kNN-based estimator to test for a van-
ishing Conditional Mutual Information (CMI) in combination with a local per-
mutation scheme. The recent emergence of non-parametric CMI estimators for
mixed discrete-continuous data provides the basis for new approaches to non-
parametric CI testing. For example, the construction of adaptive histograms
derived following the minimum description length (MDL) principle allows for
estimating CMI from mixed discrete-continuous data [6,34,36,51]. In this case,
CMI can be estimated via discrete plug-in estimators as the data is adaptively
discretized according to the histogram with minimal MDL. Hence, the estimated
test statistic follows the common X 2 distribution, which allows for derivation via
Pearson’s X 2 test, aHisχ2, see [36]. However, MDL approaches suffer from their
worst-case computational complexity and weaknesses regarding a low number of
samples, cf. (R2). Another approach for non-parametric CMI estimation builds
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upon kNN methods, which are well-studied in continuous data, cf. [15,29,30],
and have recently been applied to mixed discrete-continuous data [16,37]. As the
asymptotic distribution of kNN-based estimators is unclear, it remains to show
that they can be used as a test statistic for a valid CI. In this context, it is worth
noticing that permutation tests yield more robust constraint-based causal dis-
covery than asymptotic CI tests, particularly for small sample sizes [49], cf. (R1).
Following this, we combine a kNN-based CMI estimator and a kNN based local
CP scheme (similar to Runge [43], which is restricted to the continuous case),
and additionally provide theoretical results on the test’s validity and power.

3 Background: KNN-Based CMI Estimation

In this section, we provide information on kNN-based CMI estimation for
mixed discrete-continuous data (Sect. 3.1). Further, we introduce an algorithmic
description of the estimator (Sect. 3.2) and recap theoretical results (Sect. 3.3).

3.1 Introduction to CMI Estimation

A commonly used test statistic is the Conditional Mutual Information (CMI)
I(X;Y |Z) as it provides a general measure of variables’ CI, i.e., I(X;Y |Z) = 0
if and only if X ⊥⊥ Y |Z, see [16,18,43]. Generally, I(X;Y |Z) is defined

as I(X;Y |Z) =
∫

log
(

dPXY |Z
d(PX|Z×PY |Z)

)

dPXY Z , where dPXY |Z
d(PX|Z×PY |Z) is the

Radon-Nikodym derivative of the joint conditional measure, PXY |Z , with
respect to the product of the marginal conditional measures, PX|Z × PY |Z .
Note the non-singularity of PXY Z ensures the existence of a product ref-
erence measure and that the Radon-Nikodym derivative is well-defined [37,
Lem. 2.1, Thm. 2.2]. Although well-defined, estimating CMI I(X;Y |Z) from
mixed discrete-continuous data is a particularly hard challenge [16,36,37]. Gen-
erally, CMI estimation can be tackled by expressing I(X;Y |Z) in terms of
Shannon entropies, i.e., I(X;Y |Z) = H(X,Y,Z) − H(X,Z) − H(Y,Z) + H(Z)
with Shannon entropy H(W ) for all cases W = XY Z,XZ, Y Z,Z, respectively,
cf. [18,36,37]. In the continuous case, the KSG technique from Kraskov et al. [30]
estimates the Shannon entropy H(W ) locally for every sample (wi)n

i=1 where
wi ∼ PW , i.e., estimating H(W ) via Ĥn(W ) = −∑n

i=1 log ̂fW (wi) by consider-
ing the k-nearest neighbors within the �∞-norm for every sample i = 1, ..., n to
locally estimate the density fW density of W = XY Z,XZ, Y Z,Z, respectively,
cf. [18,36,37]. For mixed discrete-continuous data, there is a non-zero probabil-
ity that the kNN distance is zero for some samples. In this case, Gao et al. [16]
extended the KSG technique by fixing the radius and using a plug-in estima-
tor that differentiates between mixed, continuous, and discrete points. Recently,
Mesner and Shalizi [37] extended this idea to derive a consistent CMI estimator
in the mixed discrete-continuous case.
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Algorithm 1. kNN-based CMI Estimator [37]
Input: Samples (x, y, z) := (xi, yi, zi)

n
i=1, and kNN-parameter kCMI

Output: The estimated value În(x; y|z) of the CMI I(X; Y |Z)
1: Let di,j(w) := ‖(wi) − (wj)‖∞ for w ⊆ (x, y, z), i, j = 1, . . . , n
2: for i = 1, . . . , n do
3: ρi := the kCMI-smallest distance in {di,j(x, y, z), j �= i} � Adapt kCMI acc. ρi

4: k̃i := |{(xj , yj , zj) : di,j(x, y, z) ≤ ρi, j �= i}|
5: nxz,i := |{(xj , zj) : di,j(x, z) ≤ ρi, j �= i}| � Local estimates
6: nyz,i := |{(yj , zj) : di,j(y, z) ≤ ρi, j �= i}|
7: nz,i := |{(zj : di,j(z) ≤ ρi, j �= i}|
8: ξi := ψ(k̃i) − ψ(nxz,i) − ψ(nyz,i) + ψ(nz,i)
9: end for

10: În(x; y|z) = 1
n

∑n
i=1 ξi � Global CMI estimation

11: return max(În(x; y|z), 0)

3.2 Algorithm for KNN-Based CMI Estimation

Algorithm 1 provides an algorithmic description of the theoretically examined
estimator În(X;Y |Z) developed by Mesner and Shalizi [37]. The basic idea is to
take the mean of Shannon entropies estimated locally for each sample i = 1, ..., n
considering samples j �= i, j = 1, ..., n, that are close to i according to the
�∞-norm, i.e., under consideration of the respective sample distance di,j(w) :=
‖(wi)− (wj)‖∞, i, j = 1, ..., n, of w = (wi)n

i=1 for all cases w = xyz, xy, yz, z (see
Algorithm 1, line 1). In this context, fixation of a kNN radius ρi used for local
estimation of Shannon entropies yields a consistent global estimator. Therefore,
for each sample i = 1, . . . , n, let ρi be the smallest distance between (xi, yi, zi)
and the kCMI-nearest sample (xj , yj , zj), j �= i, j = 1, . . . , n, and replace kCMI

with k̃i, the number of samples whose distance to (xi, yi, zi) is smaller or equal
to ρi (see Algorithm 1, line 3-4). For discrete or mixed discrete-continuous sam-
ples (xi, yi, zi)n

i=1 it holds that ρi = 0, and there may be more samples than
kCMI samples with zero distance. In this case, adapting the number of consid-
ered samples k̃i to all samples with zero distance prevents undercounting, which,
otherwise, yields a bias of the CMI estimator, see [37]. In case of continuous sam-
ples (xi, yi, zi)n

i=1, there are exactly k̃i = kCMI samples within the kCMI-nearest
distance with probability 1. The next step estimates the Shannon entropies
required by the 3H-principle locally for each sample i, i = 1, . . . , n. Therefore, let
nxz,i, nyz,i, and nz,i be the numbers of k̃i-nearest samples within the distance
of ρi in the respective subspace XZ, Y Z, and Z (see Algorithm 1, lines 5-
7). Fixing the local kNN distance ρi, using the �∞-norm, simplifies the local
estimation as most relevant terms for CMI estimation using the 3H-principle
cancel out, i.e., ξi := − ̂fXY Z(xi, yi, zi) + ̂fXZ(xi, zi) + ̂fY Z(yi, zi) − ̂fZ(zi) =
ψ(k̃i)−ψ(nxz,i)−ψ(nyz,i)+ψ(nz,i), with digamma function ψ (see Algorithm 1,
line 8) [16,37]. Then, the global CMI estimate În(x; y|z) is the average of the
local CMI estimates ξi of each sample (xi, yi, zi)n

i=1, and the positive part is
returned, as CMI or MI are non-negative (see Algorithm 1, line 10-11).
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3.3 Properties of KNN-Based CMI Estimation

We recap the theoretic results of În(X,Y |Z) proved by Mesner and Shal-
izi [37]. Under mild assumptions, În(x; y|z) is asymptotically unbiased, see [37,
Thm. 3.1].

Corollary 1 (Asymptotic-Unbiasedness of În(x; y|z) [37, Thm. 3.1])
Let (xi, yi, zi)n

i=1 be i.i.d. samples from PXY Z . Assume

(A1) PXY |Z is non-singular such that f ≡ dPXY |Z
d(PX|Z×PY |Z) is well-defined, and

assume, for some C > 0, f(x, y, z) < C for all (x, y, z) ∈ X × Y × Z;
(A2) {(x, y, z) ∈ X ×Y ×Z : PXY Z((x, y, z)) > 0} countable and nowhere dense

in X × Y × Z;
(A3) kCMI = kCMI,n → ∞ and kCMI,n

n → 0 as n → ∞;

then EPXY Z

[
În(x; y|z)

]
→ I(X;Y |Z) as n → ∞.

While (A1) seems rather technical, checking for non-singularity is helpful for
data analysis by checking sufficient conditions. Given non-singularity, assump-
tions (A2) and (A3) are satisfied whenever PXY Z is (i) (finitely) discrete, (ii)
continuous, (iii) some dimensions are (countably) discrete and some are continu-
ous, and (iv) a mixture of the previous cases, which covers most real-world data.
For more details on the assumptions, see Appendix A.

We prove that the CMI estimator În(X;Y |Z) described in Algorithm 1 is
consistent.

Corollary 2 (Consistency of În(x; y|z))
Let (xi, yi, zi)n

i=1 be i.i.d. samples from PXY Z and assume (A1)-(A3) of Cor. 1
hold. Then, for all ε > 0, limn→∞ PPXY Z

(∣
∣
∣În(x; y|z) − I(X;Y |Z)

∣
∣
∣ > ε

)
= 0.

Proof. Recap that În(x; y|z) has asymptotic vanishing variance [37, Thm. 3.2],
i.e., lim

n→∞ Var(În(x; y|z)) = 0, and is asymptotically unbiased, see Cor. 1 or [37,

Thm. 3.1]. The consistency of În(x; y|z) follows from Chebyshev’s inequality. �

Therefore, the kNN-based estimator described in Algorithm 1 serves as a valid
test statistic for H0 : X ⊥⊥Y |Z vs. H1 : X �⊥⊥Y |Z. Note that, În(x; y|z) is biased
towards zero for high-dimensional data with fixed sample size, i.e., it suffers from
the curse of dimensionality, see [37, Thm. 3.3].

Corollary 3 (Dimensionality-Biasedness of În(x; y|z) [37, Thm. 3.3])
Let (xi, yi, zi)n

i=1 be i.i.d. samples from PXY Z and assume (A1)-(A3) of Cor. 1

hold, if the entropy rate of Z is nonzero, i.e., lim
dZ→∞

1
dZ

H(Z) �= 0, then, for fixed

dimensions dX and dY , PPXY Z

(
În(x; y|z) = 0

)
→ 1 as dZ → ∞.

Hence, even with asymptotic consistency, one must pay attention when estimat-
ing În(X;Y |Z) in high-dimensional settings, particularly for low sample sizes.
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4 mCMIkNN: Our Approach on Non-Parametric CI Testing

In this section, we recap the concept of Conditional Permutation (CP) schemes
for CI testing (Sect. 4.1). Then, we introduce our approach for kNN-based CI
testing in mixed discrete-continuous data, called mCMIkNN (Sect. 4.2). We prove
that mCMIkNN is able to control type I and type II errors (Sect. 4.3). Moreover, we
examine mCMIkNN-based causal discovery and prove its consistency (Sect. 4.4).

4.1 Introduction to Conditional Permutation Schemes

Using permutation schemes for non-parametric independence testing between
two variables X and Y has a long history in statistics, cf. [5,22,31]. The
basic idea is to compare an appropriate test statistic for independence calcu-
lated from the original samples (xi, yi)n

i=1 against the test statistics calculated
Mperm times from samples (xπm(i), yi)n

i=1 for a permutation πm of {1, . . . , n},
m = 1, . . . , Mperm, i.e., where samples of X are randomly permuted such that
H0 : X ⊥⊥ Y holds. In the discrete case, a permutation scheme to test for CI,
i.e., for H0 : X ⊥⊥ Y |Z, can be achieved by permuting X for each realization
Z = z to utilize the unconditional X ⊥⊥Y |Z = z. In contrast, testing for CI in
continuous or mixed discrete-continuous data is more challenging [45], as sim-
ply permuting X without considering the confounding effect of Z may yield
very different marginal distributions, hence, suffers in type I error control [4,28].
Therefore, Conditional Permutation (CP) schemes aim to compare a test statis-
tic estimated from the original data (xi, yi, zi)n

i=1, with test statistics estimated
from, conditionally on Z, permuted samples (xπm(i), yi, zi)n

i=1, m = 1, ...,Mperm

to ensure H0 : X ⊥⊥ Y |Z. Then, the Mperm + 1 samples (xi, yi, zi)n
i=1 and

(xπm(i), yi, zi)n
i=1, m = 1, ...,Mperm are exchangeable under H0, i.e., are drawn

with replacement such that the p-value can be calculated in line with com-
mon Monte Carlo simulations [4,28]. This requires either an approximation of
PX|Z either based upon model assumptions to simulate PX|Z [4], or using an
adaptive binning strategy of Z such that permutations can be drawn for each
binned realization Z = z [28] (both focusing on the continuous case). To provide
a data-adaptive approach valid in mixed discrete-continuous data without too
restrictive assumptions, cf. (R1), which is computationally feasible, cf. (R2), we
propose a local CP scheme leveraging ideas of kNN-based methods, cf. Section 3.
In particular, our local CP scheme draws samples (xπm(i), yi, zi)n

i=1 such that (I)
the marginal distributions are preserved, and (II) xi is replaced by xπm(i) only
locally regarding the kperm-nearest distance σi in the space of Z. Intuitively, the
idea is similar to common conditional permutation schemes in the discrete case,
where entries of the variable X are permuted for each realization Z = z, but
considering local permutations regarding the neighborhood of Z = z.

4.2 Algorithm for KNN-Based CI Testing

Algorithm 2 gives an algorithmic description of our kNN-based local CP scheme
for non-parametric CI testing in mixed discrete-continuous data.
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Algorithm 2. mCMIkNN: kNN-based non-parametric CI Test
Input: Samples (x, y, z) := (xi, yi, zi)

n
i=1, and parameters kCMI , kperm, and Mperm

Output: The estimated p-value pperm,n for H0 : X ⊥⊥Y | Z
1: În := În(x; y|z)
2: for i = 1, . . . , n do � Neighbors within kpermNN-distance σi in Z
3: σi := kperm smallest distance in {‖(zi) − (zj)‖∞, j �= i, for i, j = 1, ..., n}
4: z̃i := {j : ‖(zi) − (zj)‖∞ ≤ σi, j �= i}
5: end for
6: for m = 1, . . . , Mperm do � Local CP scheme
7: πi

m := permutation of z̃i, i = 1, . . . , n
8: πm := π1

m ◦ · · · ◦ πn
m;

9: Î
(m)
n := În

(
x(m); y|z

)
where x(m) := (xπm(i))

n
i=1

10: end for
11: pperm,n := 1

1+Mperm

(
1 +

∑Mperm

m=1 1{Î
(m)
n ≥ În}

)
� Monte Carlo p-value

12: return pperm,n

First, the sample CMI În := În(x; y|z) is estimated from the original sam-
ples via Algorithm 1 with parameter kCMI (see Algorithm 2, line 1). To receive
local conditional permutations for each sample (xi, yi, zi)n

i=1, the kperm-nearest
neighbor distance σi w.r.t. the �∞-norm of the subspace of Z is considered.
Hence, z̃i is the respective set of indices j �= i, j = 1, ..., n of points with dis-
tance smaller or equal to σi in the subspace of Z (see Algorithm 2, lines 3-4).
According to a Monte Carlo procedure, samples are permuted Mperm times (see
Algorithm 2, line 6). For each m = 1, . . . , Mperm, the local conditional permu-
tation πi

m, i = 1, . . . , n, is a random permutation of the index set of z̃i such
that the global permutation scheme πm of the samples’ index set {1, . . . , n} is
achieved by concatenating all local permutations, i.e., πm := π1

m ◦ ... ◦ πn
m (see

Algorithm 2, lines 7-8). In the case of discrete data, z̃i contains all indices of
samples j with distance ρi = 0 to zi, i.e., the permutation scheme coincides
with discrete permutation tests where permutations are considered according to
Z = zi. In the continuous case, z̃i contains exactly the, in space Z, kperm-nearest
neighbors’ indices and the global permutation scheme approximates PX|Z=zi

locally within kperm-NN distance σi of zi. Therefore, local conditional permuted
samples (xπm(i), yi, zi) are drawn by shuffling the values of xi according to πm

and respective CMI values Î
(m)
n := În

(
x(m); y|z)

are estimated using Algorithm1
(see Algorithm 2, line 9). Hence, by construction, (xπm(i), yi, zi) are drawn under
H0 : X⊥⊥Y |Z such that the p-value pperm,n can be calculated according to a
Monte Carlo scheme comparing the samples’ CMI value În with the H0 CMI
values Î

(m)
n (see Algorithm 2, line 11).

We define the CI test mCMIkNN as Φperm,n := 1{pperm,n ≤ α} for the pperm,n

returned by Algorithm 2 and, hence, reject H0 : X ⊥⊥ Y |Z if Φn = 1. The
computational complexity of mCMIkNN is determined by the kNN searches in
Algorithms 1 and 2, which is implemented in O(n × log(n)) using k-d-trees. For
more details on assumptions, parameters, and computational complexity, see
Appendix A.
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4.3 Properties of mCMIkNN

The following two theorems show that mCMIkNN is valid, i.e., is able to control
type I errors, and has non-trivial power, i.e., is able to control type II errors.

Theorem 1 (Validity: Type I Error Control of Φperm,n)
Let (xi, yi, zi)n

i=1 be i.i.d. samples from PXY Z , and assume (A1), (A2), and

(A4) kperm = kperm,n → ∞ and kperm,n

n → 0 as n → ∞,

hold, then Φperm,n with p-value estimated according to Algorithm 2 is able to
control type I error, i.e., for any desired nominal value α ∈ [0, 1], when H0 is
true, then

lim
n→∞ EPXY Z

[Φperm,n] ≤ α. (1)

Note that this holds true independent of the test statistic Tn : X n × Yn ×
Zn → R. The idea of the proof is to bound the type I error using the total
variation distance between the samples’ conditional distribution Pn

X|Z and the

conditional distribution P̃n
X|Z , approximated by the local CP scheme to simulate

H0 and show that it vanishes for n → ∞. For a detailed proof, see Appendix B.

Theorem 2 (Power: Type II Error Control of Φperm,n)
Let (xi, yi, zi)n

i=1 be i.i.d. samples from PXY Z , and assume (A1) - (A4) hold.
Then Φperm,n, with p-value estimated according to Algorithm 2, is able to control

type II error, i.e., for any desired nominal value β ∈
[

1
1+Mperm

, 1
]
, when H1 is

true, then
lim

n→∞ EPXY Z
[1 − Φperm,n] = 0. (2)

Hence, mCMIkNN’s power is naturally bounded according to Mperm, i.e., 1 − β ≤
1− 1

1+Mperm
. The proof follows from the asymptotic consistency of În(x; y|z) and

that the local CP scheme allows asymptotic consistent approximating PX|Z . For
a detailed proof, see Appendix B. Therefore, our work is in line with the result of
Shah and Peters [45] and Kim et al. [28] by demonstrating that, under the mild
assumptions (A1) and (A2) which allow approximating PX|Z , one can derive a
CI test that is valid (see Thm. 1), and has non-trivial power (see Thm. 2).

4.4 mCMIkNN-based Constraint-based Causal Discovery

We examine the asymptotic consistency of mCMIkNN-based causal discovery, in
particular, using the well-known PC algorithm [46]. Note that constraint-based
methods for causal discovery cannot distinguish between different DAGs G in
the same equivalence class. Hence, the PC algorithm aims to find the Completed
Partially Directed Acyclic Graph (CPDAG), denoted with GCPDAG, that repre-
sents the Markov equivalence class of the true DAG G. Constraint-based methods
apply CI tests to test whether X ⊥⊥Y |Z for X,Y ∈ V with dX = dY = 1, and
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Z ∈ V \ {X,Y } iteratively with increasing dZ given a nominal value α to esti-
mate the undirected skeleton of G and corresponding separation sets in the first
step. In a second step, orienting as many of the undirected edges through the
repeated application of deterministic orientation rules yields ĜCPDAG(α) [26,46].

Theorem 3 (Consistency of mCMIkNN-based Causal Discovery)
Let V be a finite set of variables with joint distribution PV and assume (A1) -
(A4) hold. Further, assume the general assumptions of the PC algorithm hold,
i.e., causal faithfulness and causal Markov condition, see [46]. Let ĜCPDAG,n(αn)
be the estimated CPDAG of the PC algorithm and GCPDAG the CPDAG of the
true underlying DAG G. Then, for αn = 1

1+Mperm,n
with Mperm,n → ∞ as n→ ∞,

lim
n→∞ PPV

(
ĜCPDAG,n(αn) = GCPDAG

)
= 1. (3)

The idea of the proof is to consider wrongly detected edges due to incorrect
CI decisions and show that they can be controlled asymptotically. For detailed
proof and more information on causal discovery, see Appendix C. As the upper
bound on the errors is general for constraint-based methods, the consistency
statement of Thm. 3 holds for modified versions of the PC algorithm, e.g., its
order-independent version PC-stable [8], too. Hence, mCMIkNN for constraint-
based causal discovery allows consistently estimating the GCPDAG for n→∞.

5 Empirical Evaluation

We consider the mixed additive noise model (MANM) (Sect. 5.1) to synthetically
examine mCMIkNN’s robustness (Sect. 5.2). Further, we compare mCMIkNN’s empir-
ical performance against state-of-the-art competitors regarding CI decisions
(Sect. 5.3), causal discovery (Sect. 5.4), and in a real-world scenario (Sect. 5.5).

5.1 Synthetic Data Generating

We generate synthetic data according to the MANM [24]. Hence, for all
X ∈ V, let X be generated from its J discrete parents Pdis(X) ⊆ V \ X,
where J := #Pdis(X), its K continuous parents Pcon(X) ⊆ V \ X, where
K := #Pcon(X), and (continuous or discrete) noise term NX according to
X = 1

J

∑
j=1,...,J fj(Zj) + (

∑
k=1,...,K fk(Zk)) mod dX + NX with appropriately

defined functions fj , fk between Z and R. Hence, by construction (A1) and (A2)
hold true for all combinations of X,Y,Z ⊆ V. For experimental evaluation, we
generate CGMs that either directly induce CI characteristics between variables
X and Y conditioned on Z = {Z1, . . . , ZdZ

}, dZ between 1 and 7, (see Sect. 5.2
- 5.3) or are randomly generated with between 10 to 30 variables and varying
densities between 0.1 and 0.4 (see Sect. 5.4). Moreover, we consider different
ratios of discrete variables between 0 and 1. We consider the cyclic model with
dX ∈ {2, 3, 4} for discrete X, and continuous functions that are equally drawn
from {id(·), (·)2, cos(·)}. Note that we scale the parents’ signals to reduce the
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noise for subsequent variables avoiding high varsortability [41], and max-min
normalize all continuous variables. For more information on the MANM and all
parameters used for synthetic data generation, see Appendix D.1.

5.2 Calibration and Robustness of mCMIkNN

We provide recommendations for calibrating mCMIkNN and show its robustness,
i.e., the ability to control type I and II errors in the finite case. Therefore,
we restrict our attention to two simple CGMs G with variables V = (X,Y,
Z1, . . . , ZdZ

}, where first, X and Y have common parents Z = {Z1, . . . , ZdZ
} in

G, i.e., H0 : X ⊥⊥ Y |Z, and second, there exists an additional edge connecting
X and Y in G, i.e., H1 : X �⊥⊥Y |Z. Accordingly, we generate the data using the
MANM model with parameters described in Sect. 5.1.

Fig. 1. Type I and II error rates of mCMIkNN for different dimensions dZ ∈ {1,3,5,7}
of Z (smaller better) given varying sample sizes n for settings with different discrete
variable ratios from dvr=0.0, i.e., continuous (left), to dvr=1.0, i.e., discrete (right).

Calibration: We evaluate the accuracy of CI decisions for different combina-
tions of kCMI and kperm by comparing the area under the receiver operating curve
(ROC AUC), as it provides a balanced measure of type I and type II errors. In
particular, we examine different combinations of kCMI and kperm in settings with
varying dZ ∈ {1, 3, 5, 7}, discrete variable ratios dvr ∈ {0.0, 0.25, 0.5, 0.75, 1.0}
and sample sizes n ranging from 50 to 1 000. Note, we set α = 0.05 and
Mperm = 100, cf. [14]. We find that small values of kCMI and kperm are suf-
ficient to calibrate the CI test while not affecting accuracy much for the finite
case, such that we set kCMI = 25 and kperm = 5 in the subsequent experiments.
Note that Appendix D.2 provides detailed evaluation results. Moreover, for more
information on all parameters, see Appendix A.

Robustness: We evaluate mCMIkNN’s robustness regarding validity and power
in the finite case by examining the type I and II error rates as depicted in Fig. 1.
In particular, we see that mCMIkNN is able to control type I errors for all discrete
variable ratios dvr and sizes of the conditioning sets dZ (cf. Appendix D.3).
Moreover, the type II error rates decrease for an increasing number of samples
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n. Hence, mCMIkNN achieves non-trivial power, particularly for small sizes of the
conditioning sets dZ . In this context, higher type II errors in the case of higher
dimensions dZ point out that mCMIkNN suffers from the curse of dimensionality,
cf. Cor. 3. In summary, the empirical results are in line with the theoretical
results on the asymptotic type I and II error control, cp. Thm. 1 and Thm. 2.

5.3 Conditional Independence Testing

Next, we compare mCMIkNN’s empirical performance to state-of-the-art CI tests
valid for mixed discrete-continuous data. We chose a likelihood ratio test assum-
ing conditional Gaussianity (CG) [1], a discretization-based approach, where we
discretize continuous variables before applying Pearson’s χ2 test (discχ2), a
non-parametric CI test based upon adaptive histograms (aHistχ2) [36], and a
non-parametric kernel-based CI test (KCIT) [52]. In this experiment, we again
consider the two CGMs used for the calibration in Sect. 5.2 and examine the
respective ROC AUC scores from 20 000 CI decisions (α = 0.01) in Fig. 2.

Fig. 2. ROC AUC scores (higher better) of 20 000 CI decisions of the CI tests mCMIkNN,
CG, KCIT, discχ2, and aHistχ2 with varying sample sizes n (left), dimensions of the
conditioning sets dZ (center), and ratios of discrete variables dvr (right) (Note, we lim-
ited the execution time to 10 min per CI test (Approx. 4 900 runs of aHistχ2 exceeded
this time. Thus, aHistχ2 is excluded for causal discovery).).

We compare the CI test’s performance for various sample sizes (Fig. 2 left),
sizes of conditioning sets dZ (center), and ratios of discrete variables (right).
While the ROC AUC scores of all CI tests increase as n grows (left), mCMIkNN
outperforms all competitors, particularly for small sizes, e.g., n ≤ 500. With
increasing sample sizes, the performance of KCIT catches up to ROC AUC scores
of mCMIkNN, cf. n = 1000. For an increasing size of the conditioning sets dZ

(center), we observe that all methods suffer from the curse of dimensionality,
while mCMIkNN achieves higher ROC AUC scores than the competitors. More-
over, mCMIkNN achieves the highest ROC AUC independent of the ratio of dis-
crete variables dvr (right), only beaten by KCIT for some dvr’s. For a detailed
evaluation and an examination of type I and II errors, see Appendix D.4.
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5.4 Causal Discovery

We evaluate the consistency of causal discovery using the PC-stable algorithm
from [8] (α = 0.05 with Mperm = 100) to estimate GCPDAG of the DAG G gener-
ated according to Sect. 5.1. We examine the F1 scores [7] of erroneously detected
edges in the skeletons of ĜCPDAG,n(0.05) estimated with PC-stable using the
respective CI tests in comparison to the true skeleton of G, see Fig. 3. While
F1 grows for all methods as n increases, mCMIkNN outperforms the competitors
(left). Further, mCMIkNN achieves the highest F1 scores for high discrete variables
ratios (center left). In this context, F1 scores are balanced towards type I errors,
crucial in causal discovery. Further, constraint-based causal discovery requires
higher sample sizes for consistency due to the multiple testing problem [17,46].
All methods suffer from the curse of dimensionality, i.e., a decreasing F1 score for
increasing densities (center right) and numbers of variables (right) which yields
larger conditioning sizes dZ . For more information, see Appendix D.6.

Fig. 3. F1 scores (higher better) of PC-stable with CI tests mCMIkNN, CG, KCIT, and
discχ2 computed over 3 000 CGMs for varying the sample sizes n, discrete variable
ratios dvr, densities of CGMs, and numbers of variables N (left to right)2.

5.5 Real-World Scenario: Discrete Manufacturing

Finally, we apply mCMIkNN in causal discovery on real-world manufacturing data.
Therefore, we consider a simplified discrete manufacturing process whose under-
lying causal structures are confirmed by domain experts. In particular, we con-
sider quality measurements Qcon and rejections Rcon within a configuration
phase used for adjustment of the processing speed Scon to reduce the num-
ber of rejected goods Rprod within a production phase. Besides these causal
structures for configuration, rejections within the production phase Rprod vary
given the corresponding locality within one of nine existing units U . In contrast
to commonly applied discretization-based approaches, cf. [20], an experimental
evaluation shows that mCMIkNN covers more of the CI characteristics present in
the mixed discrete-continuous real-world data, hence, yields better estimates of
causal structures when used in constraint-based causal discovery, F1 = 0.57 for
mCMIkNN vs. F1 = 0.4 for discχ2. For additional details, see Appendix E.
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6 Conclusion

We addressed the problem of testing CI in mixed discrete-continuous data and
its application in causal discovery. We introduced the non-parametric CI test
mCMIkNN, and showed its validity and power theoretically and empirically. We
demonstrated that mCMIkNN outperforms state-of-the-art approaches in the accu-
racy of CI decisions, particularly for low sample sizes.

While mild assumptions simplify the application of mCMIkNN in practice, we
cannot derive bounds on type I and II error control for the finite case as provided
in [28], but the empirical results show that mCMIkNN is robust in the finite case,
too. These bounds can be achieved by considering stronger assumptions, such
as lower bounds on probabilities for discrete values, cf. [2,28], or smoothness
assumptions for continuous variables, cf. [4,53]. Further, the current implemen-
tation of mCMIkNN is restricted to metric spaces. To extend the implementation to
categorical variables, an isometric mapping into the metric space can be exam-
ined, cf. [37]. Note that kNN methods are not invariant regarding the scaling of
variables, and their computational complexity yields long runtimes, particularly
for large sample sizes. For an evaluation of runtimes, see Appendix D.5. We
consider parallel execution strategies to speed up the computation, e.g., paral-
lelizing the execution of Mperm permutations in Algorithm 2, cf. [43], or using
GPUs [21].
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