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Abstract. One of the fundamental challenges in causal inference is to
estimate the causal effect of a treatment on its outcome of interest from
observational data. However, causal effect estimation often suffers from
the impacts of confounding bias caused by unmeasured confounders that
affect both the treatment and the outcome. The instrumental variable
(IV) approach is a powerful way to eliminate the confounding bias from
latent confounders. However, the existing IV-based estimators require a
nominated IV, and for a conditional IV (CIV) the corresponding condi-
tioning set too, for causal effect estimation. This limits the application
of IV-based estimators. In this paper, by leveraging the advantage of
disentangled representation learning, we propose a novel method, named
DVAE.CIV, for learning and disentangling the representations of CIV
and the representations of its conditioning set for causal effect estima-
tions from data with latent confounders. Extensive experimental results
on both synthetic and real-world datasets demonstrate the superiority
of the proposed DVAE.CIV method against the existing causal effect
estimators.

Keywords: Causal Inference · Instrumental Variable · Latent
Confounder

1 Introduction

It is a fundamental task to query or estimate the causal effect of a treatment
(a.k.a. exposure, intervention or action) on an outcome of interest in causal infer-
ence. Causal effect estimation has wide applications across many fields, includ-
ing but not limited to, economics [19], epidemiology [16,28], and computer sci-
ence [30]. The gold standard method for causal effect estimation is randomised
controlled trials (RCT), but they are often impractical or unethical due to cost
restrictions or ethical constraints [19,30]. Instead of conducting an RCT, esti-
mating causal effects from observational data offers an alternative to evaluate
the effect of a treatment on the outcome of interest.
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Fig. 1. Three causal DAGs are utilised to illustrate the problems of causal effect esti-
mation from observational data. In all three DAGs, X, U , W and Y are the set of pre-
treatment variables, latent confounder, treatment and outcome variables, respectively.
(a) indicates the unconfoundedness assumption holding, and (b) shows the causal effect
of W on Y is non-identification since there is a latent confounder U . (c) illustrates the
problem studied in this work, in which the set X is represented by three sets {S,C,F}.

Confounding bias is a major obstacle in estimating causal effects from obser-
vational data. It arises from confounders that affect both the treatment vari-
able W and the outcome variable Y . When all confounders are measured (i.e.,
the unconfoundedness assumption [19,31] is satisfied), adjusting for the set
of all measured confounders is sufficient to obtain an unbiased estimation of
the causal effect from observational data [1,19]. For example, in the causal
graph of Fig. 1(a), the unconfoundedness is satisfied when given X. Neverthe-
less, the unconfoundedness assumption is untestable, and there exists a latent
(a.k.a. unobserved, unmeasured) confounder affecting both W and Y in many
real-world applications, e.g. the latent confounder U affects both W and Y in
the causal graph in Fig. 1(b). In such a situation, the causal effect of W on Y
is non-identification [30]. Most existing data-driven methods rely on the uncon-
foundedness assumption and thus it becomes challenging and questionable for
them to obtain unbiased causal effects from data with latent confounders.

The instrumental variable (IV) approach is a practical and powerful tech-
nique for addressing the challenging problem of causal effect estimation in the
presence of latent confounders. The IV approach requires a valid IV for elimi-
nating the confounding bias caused by latent confounders [2,18]. Valid IVs are
exogenous variables that are associated with W but not directly associated with
Y [16,27]. A valid IV S needs to satisfy three conditions: (1) S is correlated
to W ; (2) S and Y do not share confounders (i.e. unconfounded instrument);
and (3) the effect of S on Y is entirely through W (i.e. exogenous) [16,27].
However, the last two conditions are too strict and not testable in real-world
applications. Therefore, in many existing IV-based methods, an IV is nominated
based on prior or domain knowledge. However, in many real-world applications,
the nominated IVs based on domain knowledge could violate one of the three
conditions, resulting in a biased estimate and potentially leading to incorrect
conclusions [6,16].
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It is a challenging problem to discover a valid IV directly from data. Inves-
tigators usually collect as many covariates as possible, but few of them are
valid IVs that satisfy the three conditions. Instead of discovering a valid IV,
Kang et al. [20] proposed a data-driven method, referred to as sisVIVE, based
on the assumption of some invalid and some valid IVs (i.e. more than half of
candidate IVs are valid IVs ) to provide a bound of causal effect estimations.
Hartford et al. [14] proposed DeepIV, a deep learning based IV approach for
counterfactual predictions, but it requires a nominated IV and the correspond-
ing conditioning set. Kuang et al. [23] developed a method to model a summary
IV as a latent variable based on the statistical dependencies of the set of can-
didate IVs. Yuan et al. [36] proposed a data-driven method to automatically
generate a synthetic IV for counterfactual predictions, but the method does not
consider the confounding bias between the IV and the outcome, and the condi-
tion of unconfounded instrument may be violated in many cases. Therefore, it
is desirable to develop an algorithm for learning a valid IV that considers the
unconfounded instrument for causal effect estimations, especially conditional
average causal effect estimations, from data with latent confounders.

To provide a practical solution for conditional average causal effect estima-
tions, in this work, we focus on conditional IV (CIV), which can be consid-
ered as an IV with relaxed conditions and a CIV requires a conditioning set to
instrumentalise it to function as an IV (details see Definition 1). We propose to
leverage disentangled representation learning technique to learn from data the
representations of a CIV and its conditioning set.

Specifically, as shown in Fig. 1(c), we assume that the observed covariates
are learned through three representations, S, C and F. Here, S affects both
treatment W and C, C represents the confounding factor affecting both W and
the outcome Y , and F represents the risk factor affecting both C and Y . We then
establish a theorem that S is a valid CIV that is instrumentalised by {C,F},
meaning that {C,F} is the conditioning set of S. Supported by this theorem,
we design and develop a novel disentangled representation learning algorithm
called DVAE.CIV model, which is based on the Variational AutoEncoder (VAE)
model [22]. This model allows us to obtain the representations of the CIV S
and its conditioning set {C,F}, enabling us to use S as a valid IV conditioning
on {C,F} for estimating the conditional average causal effects of W on Y from
data when there are latent confounders. The main contributions of the paper
are summarised as follows.

– We address a challenging problem in conditional average causal effect estima-
tions from data with latent confounders by utilising the CIV approach and
VAE models.

– We propose a novel disentanglement learning model based on the conditional
VAE model to learn and disentangle the representations of covariates into the
representations of a CIV S and its conditioning set {C,F} for conditional
average causal effect estimations from data with latent confounders.
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– We conduct extensive experiments on synthetic and real-world datasets to
show the performance of the DVAE.CIV model, w.r.t. causal effect estima-
tions from data with latent confounders.

2 Preliminaries

In this paper, uppercase and lowercase letters are utilised to represent variables
and their values, respectively. Bold-faced uppercase and lowercase letters indicate
a set of variables and a value assignment of the set, respectively.

A DAG (direct acyclic graph) is a graph that contains directed edges (i.e. →)
without cycles. In a DAG G, the directed edge Xi → Xj represents that Xi is
a cause of Xj , and Xj is an effect of Xi. A DAG is a causal DAG when a
direct edge Xi → Xj represents that Xi is a cause of Xj . In this work, we
assume a causal DAG G = (V,E) to represent the underlying system, where
V = X ∪ U ∪ {W,Y }, and E ⊆ V × V denotes directed edges. In V, we assume
that X is the set of pretreatment variables, U is the set of latent confounders, W
is a binary treatment variable (w = 1 and w = 0 denote the treated sample and
control sample, respectively), and Y (w) is an outcome of interest. Following the
potential outcome model [19,31], we have the potential outcomes Y (w = 1) and
Y (w = 0) relative to the treatment W . Note that we can only measure one of the
two potential outcomes for a given individual xi. Conceptually, the individual
causal effect (ICE) at xi is defined as ICEi = Yi(w = 1)−Yi(w = 0). The average
causal effect of W on Y is defined as ACE(W,Y ) = E[Yi(w = 1) − Yi(w = 0)],
where E is the expectation function.

The conditional average causal effect (CACE) of W on Y is referred to
as CACE(W,Y ), and defined as the form P (Y |do(w),X), where do(·) is do-
operation and indicates an intervention on the treatment (i.e. set the value of
W as per [30]). Conceptually, P (Y |do(w),X) can be obtained as:

CACE(W,Y ) = E[Yi(w = 1) − Yi(w = 0) | xi = x] (1)

In this work, we would like to estimate CACE(W,Y ) from data that there
exists at least a latent confounder U affecting both W and Y . When there is an
IV S and the set of conditioning covariates Z available in data, CACE(W,Y )
can be calculated by the following formula as in [3,19]:

CACE(W,Y ) =
E(Y |W = 1, S = 1,Z) − E(Y |W = 0, S = 1,Z)

E(W |S = 1,Z) − E(W |S = 0,Z)
(2)

The approach of CIV allows a measured covariate to be a valid IV condition-
ing on a set of measured variables. The formal definition of the CIV in a DAG
(Definition 7.4.1 on Page 248 [30]) is introduced as follows.

Definition 1 (Conditional IV). Let G = (V,E) be a DAG with V = X ∪
U ∪ {W,Y }, a variable Q ∈ X is a conditional IV w.r.t. W → Y if there exists
a set of measured variables Z ⊆ X such that (i) Q ⊥�⊥d W | Z, (ii) Q ⊥⊥d Y | Z in
GW , and (iii) ∀Z ∈ Z, Z is not a descendant of Y .
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Here, ⊥⊥d and ⊥�⊥d are d-separation and d-connection for reading the condi-
tioning relationships between nodes in a DAG [30]. The manipulated DAG GW

in Definition 1 is obtained by deleting the direct edge W → Y from the DAG G.
Note that Definition 1 is defined on a single CIV Q that can be generalised to a
set of CIVs Q easily.

With the pretreatment variables assumption, there is not a descendant of
Y in X, i.e. the condition (iii) of Definition 1 is always held. It means that
one needs to check the first two conditions for verifying whether a variable is
a CIV or not. Note that discovering a conditioning set Z from a given DAG is
NP-complete [37]. Under the pretreatment assumption, the time complexity of
discovering a conditioning set is still NP-complete. Instead of discovering a con-
ditioning set from a given causal DAG, in this work, we will utilise disentangled
representation learning to learn the representations of CIVs and the representa-
tions of the conditioning set directly from data with latent confounders.

3 The Proposed DVAE.CIV Model

3.1 The Disentangled Representation Learning Scheme for Causal
Effect Estimation

In this work, we would like to estimate CACE(W,Y ) from observational data
with latent confounders. Note that the causal effect of W on Y is non-identifiable
when there exists a latent confounder U ∈ U affecting both W and Y ,
i.e. W ← U → Y in the underlying DAG [6,30]. It is challenging to recover
CACE(W,Y ) from data with latent confounders due to the effect of U is not
computable. If there is a nominated CIV and its corresponding conditioning set,
CACE(W,Y ) can be obtained unbiasedly from data by using an IV-based esti-
mator. However, a CIV and its conditioning set are usually unknown in many
real-world applications. Furthermore, if an invalid CIV is used, the wrong result
or conclusion may be drawn [9,27].

To estimate the conditional average causal effects and average causal effects
from data with latent confounders, we propose and design the DVAE.CIV model
to learn three representations {S,C,F} as in the scheme of Fig. 1(c). Here S is
the representation of CIVs that only affect W but not Y , F is the represen-
tation of the risk factors that affects Y but not W , and C is the confounding
representation that affecting both W and Y .

Our proposed DVAE.CIV model relies on VAEs: we assume that the mea-
sured covariates factorise conditioning on the latent variables, and use an infer-
ence model [22] which follows a factorisation of the true posterior [15,26]. Based
on our disentanglement setting in Fig. 1(c), we have the following theoretical
result for causal effect estimation from data with latent confounders.

Theorem 1. Let G = (X ∪ U ∪ {W,Y },E) be a causal DAG, in which X is
a set of pretreatment variables, U is a set of latent confounders, W and Y are
treatment and outcome variables, respectively, and W → Y is in E. If we can
learn the three representations as per the scheme in Fig. 1(c), then the quantities
of CACE(W,Y ) can be calculated by using IV-based method.
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Proof. The directed edge W → Y in G is to ensure that W has a causal effect
on Y . In the causal DAG in Fig. 1(c), we first show that the set C ∪ F instru-
mentalists S to be a valid CIV. S is a common cause of W and C, so S ⊥�⊥d W ,
i.e. the first condition of Definition 1 holds. In the causal DAG G in Fig. 1(c),
C is a collider and is a common cause of W and Y . That is, conditioning on C,
the path W ← S → C ← F → Y is open, but F is sufficient to block this path.
For the path S → C → Y , C blocks it. Furthermore, in the manipulated DAG
GW , W is a collider such that the empty set blocks the three paths between S
and Y , i.e. S → W ← U → Y , S → W ← C ← F → Y and S → W ← C → Y .
Hence, the set C ∪ F blocks all paths between S and Y in GW , i.e. the second
condition of Definition 1 holds. Finally, C ∪ F does not contains a descendant
of Y due to the pretreatment variables assumption. Thus, the set C ∪ F instru-
mentalists S. As in Eq.(2), the IV-based estimators, such as DeepIV [14], can
be applied to remove the effect of U by inputting the CIV representation S and
the representations of its conditioning set C ∪ F. Therefore, the quantities of
CACE(W,Y) can be obtained by using the CIV S and its conditioning set C∪F
in an IV-based estimator.

Theorem 1 ensures that a family of data-driven methods can be applied for
causal effect estimation from data with latent confounders.

3.2 Learning the Three Representations

Based on Theorem 1, we have known that the set {C,F} instrumentalists S. In
this section, we present our proposed DVAE.CIV model for obtaining the three
latent representations from data by using the VAE technique [22], and the archi-
tecture of DVAE.CIV is presented in Fig. 2. As shown in Fig. 2, the DVAE.CIV
model is to learn and disentangle the latent representation Φ of X into two
disjoint sets {S,F} by using disentangled variational autoencoder [15,38], and
generate the representation C conditioning on X by jointing the Conditional
Variational AutoEncoder (CVAE) network [32].

The DVAE.CIV model is designed to learn three representations shown in
Fig. 1(c) by utilising the inference model and generative model to approximate
the posterior distribution p(X|S,C,F). The inference model comprises three
independent encoders q(S|X), q(C|X), and q(F|X), which are treated as vari-
ational posteriors over the three latent representations. The generative model
utilises the three latent representations with a decoder model p(X|S,C,F) to
reconstruct the measured distribution X.

Following the standard VAE model [22], the prior distributions p(S) and p(F)
are drawn from the Gaussian distributions as:

p(S) =
DS∏

i=1

N (Si|0, 1); p(F) =
DF∏

i=1

N (Fi|0, 1). (3)
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Fig. 2. The architecture of DVAE.CIV model. A yellow box indicates the drawing
of samples from the respective distributions, a grey box indicates the parameterised
deterministic neural network transitions, and a circle represents switching paths based
on the value of W . (Color figure online)

where DS and DF are the dimensions of S and F, respectively. In the inference
model, the variational approximations of the posteriors are described as:

q(S|X) =
DS∏

i=1

N (μ = μ̂Si
, σ2 = σ̂2

Si
); q(C|X) =

DC∏

i=1

N (μ = μ̂Ci
, σ2 = σ̂2

Ci
);

q(F|X) =
DF∏

i=1

N (μ = μ̂Fi
, σ2 = σ̂2

Fi
),

(4)

where DC is the dimension of C, and μ̂S, μ̂C, μ̂F and σ̂2
S, σ̂2

C, σ̂2
F are the param-

eters of means and variances in the Gaussian distributions parameterised by
neural networks.

In the generative model, we utilise the Monte Carlo (MC) sampling strategy
to sample the distribution C based on the Conditional Variational AutoEncoder
network (CVAE) [32] such that the latent representation of C is generated from
the distribution X:

p(C) � p(C|X). (5)

Furthermore, the generative models for W and X with the three latent rep-
resentations are formalised as:

p(W |S,C) = Bern(σ(ψ1(S,C))); p(X|S,F) =
DX∏

i=1

p(Xi|S,C), (6)

where ψ1(·) is a function parameterised by neural networks, σ(·) is the logistic
function and Bern(·) is the function of Bernoulli distribution.

In our generative model, the latent representation for the outcome Y is based
on the data type of Y . For the outcome Y with continuous values, we use a
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Gaussian distribution with its mean and variance parameterised by a pair of
independent neural networks, i.e. p(Y |w = 0,C,F) and p(Y |w = 1,C,F). Thus,
the continuous Y is modelled by:

p(Y |W,C,F) = N (μ = μ̂Y , σ2 = σ̂2
Y ),

μ̂Y = W · ψ2(C,F) + (1 − W ) · ψ3(C,F);

σ̂2
Y = W · ψ4(C,F) + (1 − W ) · ψ5(C,F),

(7)

where ψ2(·), ψ3(·), ψ4(·) and ψ5(·) are neural networks parameterised by their
own parameters.

For the outcome Y with binary values, a Bernoulli distribution function based
on neural networks is employed to model it and described as:

p(Y |W,C,F) = Bern(σ(ψ6(W,C,F))), (8)

where ψ6(·) is the same with the function ψ1. These parameters of neural net-
works can be approximated by maximising the Evidence lower bound (ELBO)
LELBO:

LELBO(X,W, Y ) = Eq[log p(X|S,C,F)] − DKL[q(S|X)||p(S)]
− DKL[q(C|X)||p(C|X)] − DKL[q(F|X)||p(F)],

(9)

where the decoder p(C|X) is to ensure that the latent representation C captures
as much information of X as possible.

To ensure that the treatment W can be recovered from the latent represen-
tations S and C, and the outcome Y can be recovered from the latent represen-
tations C and F, two auxiliary predictors are added and the objective function
of DVAE.CIV can be formalised as:

LDVAE.CIV = − LELBO(X,W, Y ) + αEq[log q(W |S,C)]
+ βEq[log q(Y |W,C,F)],

(10)

where α and β are the weights for the auxiliary predictors.
After training the DVAE.CIV model, we get the CIV representation S and

the conditioning set representations {C,F} based on Theorem 1. For estimating
conditional causal effects, we employ an IV-based prediction, DeepIV [14], to
implement this part, i.e. we feed S and {C,F} into the DeepIV method for
conditional causal effect estimation.

4 Experiments

In this section, we evaluate the performance of the proposed DVAE.IV model
by applying it to a set of synthetic datasets and three real-world datasets for
CACE(W,Y ) and average causal effect (ACE) estimation. The three real-world
datasets include SchoolingReturns [7], Cattaneo [8] and RHC [11] that are usu-
ally utilised in evaluating the methods of causal effect estimation from observa-
tional data. Details of the implementation of DVAE.CIV and the appendix are
provided in the GitHub1.
1 https://github.com/IRON13/DVAE.CIV.

https://github.com/IRON13/DVAE.CIV
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4.1 Experimental Setup

We compare the DVAE.CIV against the famous estimators in conditional causal
effect estimation that are widely utilised in causal inference from observational
data. Note that the ACE can be obtained by averaging the CACE(W,Y ) of
all individuals. These compared causal effect estimators are introduced in the
following.

Compared Causal Effect Estimators. We compare our proposed DVAE.CIV with
two Variational AutoEncoder based (VAE-based) causal effect estimators, three
tree-based causal effect estimators, two machine learning based (ML-based)
causal effect estimators, and three IV-based causal effect estimators. The two
VAE-based causal effect estimators are Causal Effect Variational AutoEncoder
(CEVAE) [26] and Treatment Effect estimation by Disentangled Variational
AutoEncoder (TEDVAE) [38]). The three tree-based causal effect estimators are
the standard Bayesian Additive Regression Trees (BART) [17], causal random
forest (CF) [35] and causal random forest for IV regression (CFIVR) [4]. Note
that CFIVR also belongs to IV-based estimators. The two ML-based causal effect
estimators are double machine learning (DML) [10] and doubly robust learning
(DRL) [12]. The three IV-based causal effect estimators are DeepIV [14], orthog-
onal instrumental variable (OrthIV) [33] and double machine learning based IV
(DMLIV) [10].

Remarks. The five estimators TEDVAE, BART, CF, DML and DRL rely on the
assumption of unconfoundedness [19] (i.e. no latent confounders in data), so the
five estimators cannot deal with the case with the data with latent confounders.
CEVAE can deal with latent confounders, but it requires that all measured
variables are proxy variables of the latent confounders, while our DVAE.CIV
model does not have the restriction. The IV-based estimators CFIVR, DeepIV,
OrthIV and DMLIV require a known IV that is nominated based on domain
knowledge, but the nominated IV usually is not a valid IV and thus may result
in a wrong conclusion as argued in Introduction.

Implementation Details. We use Python and the libraries including pytorch [29],
pyro [5] and econml to implement DVAE.CIV. In our experiments, the dimension
of latent representations is set as |S| = 1, |C| = 5 and |F | = 5, respectively. The
implementation of CEVAE is based on the Python library pyro [5] and the code of
TEDVAE is from the authors’ GitHub2. For BART, we use the implementation
in the R package bartCause [17]. For CF and CFIVR, we use the implementations
in the R functions causal forest and instrumental forest in the R package grf [4],
respectively. The implementations of DML, DRL, DeepIV, OrthIV and DMLIV
are from the Python package encoml.

2 https://github.com/WeijiaZhang24/TEDVAE.

https://github.com/WeijiaZhang24/TEDVAE
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Evaluation Metrics. For performance evaluation, two commonly used metrics
are employed in our experiments. For the synthetic datasets, we use absolute
error of average causal effect [17], i.e. εACE = |ACE − ˆACE| where ACE is the
true causal effect and ˆACE is the estimated causal effect, and Precision of the
Estimation of Heterogeneous Effect (PEHE, it is used to evaluate the CACE esti-
mations.) [17,26]

√
εPEHE =

√
E(((y1 − y0) − (ŷ1 − ŷ0))2) where y1, y0 are the

true outcomes and ŷ1, ŷ0 are the predicted outcomes, to assess the performance
of all methods in terms of the causal effect estimation. Lower values of both met-
rics indicate better performance. For multiple replications, we present the mean
with standard deviation. For the three real-world datasets, we use the reference
causal effect in the literature as the baseline to evaluate the performance of all
estimators since there is no ground truth causal effect available.

4.2 Simulation Study

It is challenging to evaluate a causal effect estimation method with real-world
data since there is no ground truth in the real-world data. In this section,
we design simulation studies to evaluate the performance of our proposed
DVAE.CIV method in the case that there exists a latent confounder U affecting
both W and Y , and there exists a CIV and its conditioning set in the synthetic
datasets.

We use a causal DAG G provided in the appendix to generate synthetic
datasets with a range of sample sizes: 2k, 6k, 10k, and 20k. In the causal DAG
G, X = {S,X1,X2,X3,X4,X5} is the set of measured covariates and U =
{U,U1, U2, U3, U4} is the set of latent confounders in which U affects both W
and Y . Note that S is a CIV conditioning on the set {X1,X2} for all synthetic
datasets. Moreover, the data generation process allows the synthetic datasets to
have the true individual causal effect. We provide the details of the synthetic data
generating process in the appendix. In our experiments, the IV-based estimators
OrthIV, DMLIV, DeepIV and CFIVR utilise the true CIV S and the conditioning
set {X1,X2} as input for causal effect estimation.

To provide a reliable assessment, we repeatedly generate 30 synthetic datasets
for each sample size setting and utilize the aforementioned metrics to evaluate
the performance of the DVAE.CIV against the compared estimators with respect
to the task of ACE estimation and CACE estimation from data with latent
confounders. For each dataset, we randomly take 70% of samples for training and
30% for testing. The results of all estimators with respect to the ACE estimations
and CACE estimations measured by the metrics εACE and

√
εPEHE in the out-

of-sample set are provided in Tables 1 and 2, respectively. The out-of-sample set
is on testing samples, and the within-sample set is on training samples. The
results of the within-sample set are provided in the appendix.

Results. By analysing the experiment results in Table 1, we have the following
observations: (1) the ML-based and VAE-based estimators, DML, DRL, CEVAE
and TEDVAE have the largest εACE because the confounding bias caused by con-
founders and the latent confounder U is not adjusted at all. (2) the tree-based
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Table 1. The out-of-sample absolute error εACE (mean ± std) over 30 synthetic
datasets. The best results are highlighted in boldface and the runner-up results are
underlined. DVAE.CIV is the runner-up on all synthetic datasets, and it relies on the
least domain knowledge among all estimators compared since it learns and disentangles
the representations of CIV and its conditioning set from data directly.

Samples 2k 6k 10k 20k

Estimators εACE εACE εACE εACE

ML-based DML 5.507 ± 0.387 5.624 ± 0.182 5.619 ± 0.122 5.633 ± 0.096

DRL 5.746 ± 0.404 5.833 ± 0.186 5.825 ± 0.156 5.860 ± 0.106

tree-based BART 3.586 ± 0.179 3.596 ± 0.090 3.613 ± 0.065 3.622 ± 0.060

CF 3.226 ± 0.342 3.246 ± 0.141 3.274 ± 0.127 3.312 ± 0.074

VAE-based CEVAE 5.595 ± 0.455 5.652 ± 0.183 5.631 ± 0.179 5.726 ± 0.123

TEDVAE 5.615 ± 0.455 5.655 ± 0.181 5.634 ± 0.172 5.696 ± 0.112

IV-based OrthIV 2.212 ± 1.260 1.952 ± 0.585 1.792 ± 0.607 1.974 ± 0.419

DMLIV 2.170 ± 1.189 1.888 ± 0.572 1.790 ± 0.626 1.971 ± 0.432

DeepIV 0.352± 0.180 0.632 ± 0.245 0.726 ± 0.315 0.757 ± 0.354

CFIVR 1.228 ± 0.949 0.504± 0.369 0.543± 0.474 0.415± 0.307

DVAE.CIV 0.577 ± 0.117 0.577 ± 0.064 0.561 ± 0.075 0.512 ± 0.091

estimators, BART and CF have the second largest εACE as they fail to deal
with the confounding bias caused by the latent confounder U . (3) the IV-based
estimators including DVAE.CIV significantly outperform the other estimators
including DML, DRL, BART, CF, CEVAE and TEDVAE. (4) DVAE.CIV is the
second best performer on all synthetic datasets and its performance is compa-
rable with CFIVR and DeepIV. (5) as the sample size increases, the standard
deviation of most estimators including DVAE.CIV decreases significantly. It’s
worth mentioning that DVAE.CIV requires the least domain knowledge among
all estimators since it only relies on the assumption that there exists a CIV and
the conditioning set (maybe an empty set). This is very important in practice,
as in many real-world applications, there is rarely sufficient prior knowledge for
nominating a valid IV.

From the results in Table 2, we can conclude that (1) the ML-based, tree-
based, and VAE-based estimators have the worst performance with respect
to conditional causal effect estimations. (2) Among the IV-based estimators,
DeepIV achieves the best performance on the first two groups of synthetic
datasets and the second-best performance on the other datasets, and CFIVR
obtains the best performance on the last four groups of synthetic datasets and
the second-best performance on the first two groups of synthetic datasets. (3)
DVAE.CIV obtains the second-best performance on all synthetic datasets. (4)
The standard deviation of DVAE.CIV is the smallest on all datasets, and as the
sample size increases, the standard deviation of DVAE.CIV reduces significantly.
These conclusions demonstrate that DVAE.CIV can learn and disentangle the
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Table 2. The out-of-sample
√

εPEHE (mean ± std) over 30 synthetic datasets. The
lowest

√
εPEHE are highlighted in boldface and the runner-up results are underlined.

DVAE.CIV is in the runner-up results on the first two groups of synthetic datasets
and achieves the third smallest

√
εPEHE on the last four groups of synthetic datasets.

It’s worth mentioning that DVAE.CIV obtains the lowest standard deviation on all
synthetic datasets.

Samples 2k 6k 10k 20k

Estimators
√

εPEHE
√

εPEHE
√

εPEHE
√

εPEHE

ML-based DML 5.484 ± 0.382 5.584 ± 0.167 5.580 ± 0.128 5.609 ± 0.105

DRL 5.701 ± 0.408 5.773 ± 0.179 5.767 ± 0.156 5.815 ± 0.112

tree-based BART 4.791 ± 0.205 4.790 ± 0.083 4.789 ± 0.072 4.790 ± 0.060

CF 3.483 ± 0.319 3.500 ± 0.134 3.523 ± 0.120 3.554 ± 0.070

VAE-based CEVAE 6.093 ± 0.396 6.138 ± 0.175 6.107 ± 0.160 6.192 ± 0.112

TEDVAE 6.111 ± 0.392 6.138 ± 0.177 6.110 ± 0.158 6.167 ± 0.103

IV-based OrthIV 3.070 ± 0.718 2.798 ± 0.299 2.734 ± 0.256 2.795 ± 0.218

DMLIV 3.027 ± 0.682 2.767 ± 0.278 2.736±.0.268 2.794 ± 0.221

DeepIV 2.396± 0.054 2.412 ± 0.042 2.418± 0.060 2.425 ± 0.065

CFIVR 3.016 ± 0.658 2.421± 0.235 2.423 ± 0.351 2.203± 0.145

DVAE.CIV 2.448 ± 0.044 2.460 ± 0.037 2.452 ± 0.024 2.442 ± 0.025

representations of the CIV and its conditioning set for CACE estimation from
data with latent confounders.

In conclusion, DVAE.CIV achieves competitive performance compared to
state-of-the-art causal effect estimators while requiring the least prior knowledge
in ACE and CACE estimations from observational data with latent confounders.

4.3 Experiments on Three Real-World Datasets

We selected three real-world datasets with their empirical causal effect values
available and commonly used in the literature to assess the performance of
DVAE.CIV in ACE estimations. We did not conduct experiments on CACE
estimation on the three datasets since there were no ground truth or empirical
estimates of CACEs available for these datasets. The three real-world datasets
are SchoolingReturns [7], Cattaneo [8], and RHC [11]. These datasets are widely
utilized in the evaluation of either IV estimators or data-driven causal effect
estimators [13]. Note that SchoolingReturns has a nominated CIV, and the last
two datasets do not have a nominated IV for causal effect estimation. Thus, we
only compared the DVAE.CIV model with all the aforementioned estimators on
SchoolingReturns and the ML-based, tree-based, and VAE-based estimators on
both Cattaneo and RHC datasets.

SchoolingReturns. The dataset is from the national longitudinal survey of youth
(NLSY), a well-known dataset of US young employees, aged range from 24 to
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Table 3. Estimated ACEs by all methods on the three real-world datasets. We highlight
the estimated causal effects within the empirical interval on SchoolingReturns and
Cattaneo. We use ‘-’ to indicate that an IV-based estimator does not work on Cattaneo
and RHC since there is not a nominated IV. Note that all estimators on RHC obtain
a consistent result.

Samples SchoolingReturns Cattaneo RHC

ML-based DML –0.0227 –150.21 0.0244

DRL –0.0154 –164.32 0.0447

tree-based BART –0.0384 –172.53 0.0381

CF 0.1400 –232.33 0.0278

VAE-based CEVAE 0.02617 –221.23 0.0322

TEDVAE 0.0029 –228.65 0.0293

IV-based OrthIV 1.3180 – –

DMLIV 1.2806 – –

DeepIV 0.0328 – –

CFIVR 1.1510 – –

DVAE.CIV 0.1855 –224.79 0.0414

34 [7]. The dataset has 3,010 samples and 19 variables [7]. The variable of the
education of employees is the treatment variable, and the variable of the raw
wages in 1976 (in cents per hour) is the outcome variable. The dataset was
collected to study the causal effect of education on earnings. Note that the
variable of geographical proximity to a college, i.e. nearcollege is nominated to
be an IV by Card [7]. The empirical estimate ACE(W,Y ) = 0.1329 with 95%
confidence interval (0.0484, 0.2175) is from [34] and used as the reference value.

Cattaneo. The dataset has the birth weights of 4,642 singleton births with 20
variables ( [8]) that were collected from Pennsylvania, USA for the study of the
average of maternal smoking status during pregnancy (W ) on a baby’s birth
weight (Y , in grams). The dataset contains several covariates: mother’s age,
mother’s marital status, an indicator for the previous infant where the newborn
died, mother’s race, mother’s education, father’s education, number of prenatal
care visits, months since last birth, an indicator of firstborn infant and indicator
of alcohol consumption during pregnancy. The authors [8] found a strong nega-
tive effect of maternal smoking on the weights of babies, i.e., about 200g to 250g
lighter for a baby with a mother smoking during pregnancy.

Right Heart Catheterization (RHC). RHC is a real-world dataset obtained from
an observational study regarding a diagnostic procedure for the management
of critically ill patients [11]. The RHC dataset can be downloaded from the R
package Hmisc3. The dataset contains 2,707 samples with 72 covariates [11,25].

3 https://CRAN.R-project.org/package=Hmisc.

https://CRAN.R-project.org/package=Hmisc
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RHC was for investigating the adult patients who participated in the Study to
Understand Prognoses and Preferences for Outcomes and Risks of Treatments
(SUPPORT). The treatment variable W is whether a patient received an RHC
within 24 h of admission, and the outcome variable Y is whether a patient died
at any time up to 180 d after admission. Note that the empirical conclusion is
that applying RHC leads to higher mortality within 180 d than not applying
RHC [11].

Results. All results on the three real-world datasets are reported in Table 3. From
Table 3, we make the following observations: (1) the estimated causal effects by
DVAE.CIV and CF on SchoolingReturns and Cattaneo fall within the empiri-
cal intervals, while DML, DRL, and BART provide an opposite estimate to the
empirical value on SchoolingReturns; (2) as there is no nominated IV on Cat-
taneo and RHC, the estimators OrthIV, DMLIV, DeepIV, and CFIVR do not
work on both datasets; (3) all estimators, including DVAE.CIV, obtain a con-
sistent estimation on the RHC data, and they reach the same conclusion as the
empirical conclusion [11]. These observations further confirm that DVAE.CIV is
capable of removing the bias between W and Y in real-world datasets.

In conclusion, our simulation studies show the high performance of
DVAE.CIV in ACE and CACE estimations from data with latent confounders,
and our experiments on three real-world datasets further confirm the capability
of DVAE.CIV in ACE estimation from observational data.

Limitations. The performance of DVAE.CIV relies on the assumptions made
in this work and the assumptions on the VAE model. Note that the identifica-
tion of the VAE model [21] is an important issue for our proposed DVAE.CIV
model. When some of the assumptions or the VAE identification do not hold,
DVAE.CIV may obtain an inconsistent conclusion. To obtain a consistent con-
clusion, it would be better to conduct a sensitivity analysis [19,30] together with
DVAE.CIV to achieve a reliable conclusion in real-world applications.

5 Conclusion

It is a crucial challenge to deal with the bias caused by latent confounders in
conditional causal effect estimations from observational data. IV-based methods
allow us to remove such confounding bias in an effective way, but it relies on
a nominated IV/CIV based on domain knowledge. In this paper, we propose
an efficient approach, DVAE.CIV for conditional causal effect estimations from
observational data with latent confounders. The DVAE.CIV utilizes the advan-
tages of deep generative models for learning the representations of a CIV and
its conditioning set from data with latent confounders. We theoretically show
the soundness of the DVAE.CIV model. The effectiveness and potential of the
DVAE.CIV are demonstrated by extensive experiments. In simulation studies,
DVAE.CIV achieves competitive performance against state-of-the-art estimators
that require extra prior knowledge in ACE and CACE estimation from data with
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latent confounders. The experimental results on three real-world datasets show
the superiority of the DVAE.CIV model on ACE estimation over the existing
estimators.
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