
A New Framework for Classifying
Probability Density Functions

Anis Fradi(B) and Chafik Samir

University of Clermont Auvergne, LIMOS CNRS(UMR 6158), 63000
Clermont-Ferrand, France

{anis.fradi,chafik.samir}@uca.fr

Abstract. This paper introduces a new framework for classifying prob-
ability density functions. The proposed method fits in the class of con-
strained Gaussian processes indexed by distribution functions. Firstly,
instead of classifying observations directly, we consider their isometric
transformations which enables us to satisfy both positiveness and unit
integral hard constraints. Secondly, we introduce the theoretical propri-
eties and give numerical details of how to decompose each transformed
observation in an appropriate orthonormal basis. As a result, we show
that the coefficients are belonging to the unit sphere when equipped with
the standard Euclidean metric as a natural metric. Lastly, the proposed
methods are illustrated and successfully evaluated in different configura-
tions and with various dataset.
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1 Introduction

Supervised learning is a powerful tool for solving many real-world problems in
various fields [2]. It has a wide range of applications, including but not limited to,
image recognition, natural language processing, sentiment analysis, fraud detec-
tion, and prediction in finance and health-care. For example, in image recog-
nition [20], supervised learning algorithms can be trained on large datasets of
labeled images to identify objects and classify them into specific categories. In
language processing [16], supervised learning can be used for text classification,
sentiment analysis, and language translation. In finance [26], supervised learning
can be used to predict stock prices. Some popular supervised learning algorithms
include linear regression [14], logistic regression [13], decision trees [6], random
forests [9] and support vector machines [30]. These algorithms have different
strengths and weaknesses and are suitable for different types of problems. The
choice of an algorithm depends on the nature of the problem, the amount of
labeled data available and the desired level of accuracy.

Nowadays, Gaussian processes are powerful methods for modeling complex
data that does not have a simple linear relationship between the input and the
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output variables [28,32]. They are particularly useful when data have a high
degree of noise or/and uncertainty. A Gaussian process (GP) can also be used
for Bayesian optimization and for active learning. In probability and statistics a
standard GP is a stochastic process (a collection of random variables indexed by
time or space), such that every finite collection has a multivariate normal distri-
bution, i.e., every finite linear combination of them is normally distributed [10].
GP regression models have been extensively developed for statistical machine
learning. One of the main advantages of GP regression is that it provides a
measure of uncertainty in the predictions. A Gaussian process classifier (GPc)
is a machine learning method that adapts GPs for the classification task where
the goal is to learn a mapping from input features to a categorical output. The
first step of a GPc is to specify a covariance function that defines the covari-
ance between the input features. The covariance function essentially captures the
similarity between pairs of data points. Once the covariance function is specified
the GPc can be trained on a labeled dataset using a technique called maxi-
mum likelihood estimation. This involves finding the values of the covariance
hyperparameters that maximize the marginal likelihood of the observed data.

However, standard GPs were limited to data in vector spaces. In fields such
as shape analysis [19,31] and diffusion tensor imaging [1] data often lie on a
manifold. Therefore, the standard GP model is not straightforwardly applicable
to a non-Euclidean space due to hard constraints/limitations imposed by the
underlying function [24]. This usually makes the GP model nonviable since the
resulting predictive distribution does not live in the correct geometric space. In
this context, the linear regression was first generalized to solve the problem of
manifold-valued data based on the geodesic regression before being extended
for multidimensional covariates [18]. Furthermore, [22] generalized GPs to Rie-
mannian manifolds as wrapped Gaussian processes. Recently, [4] constructed
covariance functions in order to obtain GPs indexed by probability measures
endowed with the Wasserstein metric. More recently, [29] provided a unified
framework of GPs indexed by non-decreasing distribution functions (SNDF)
endowed with the Fisher-Rao metric. The closest to our work is that of [11] for
which authors have represented functional data by their corresponding probabil-
ity density functions (PDFs). They also benefited from the connection between
the set of PDFs endowed with the Fisher-Rao metric and the set of square-
root density functions (SRDFs) endowed with the L

2 metric resulting to be the
Hilbert upper-hemisphere with many advantageous geometric tools [12].

In general, functional data analysis (FDA) is about the analysis of informa-
tion on univariate functions, multidimensional curves, surfaces, etc [27]. Some
of commonly used techniques in FDA include functional principal component
analysis [33]. A relevant reference on this topic includes the classification of func-
tional data with a segmentation approach [7] and FDA via neural networks [21].
In particular, a PDF is a type of functional data that describes the probabil-
ity distribution of a continuous random variable. In other words, the PDF of
a continuous random variable is a function that maps each realization of the
random variable to the relative probability of that value occurring. The set of
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PDFs is a constrained functional space that has been applied in many real-world
applications [5]. Indeed, PDFs are most commonly preferred as a representa-
tion of functional data thanks to their ability to improve the local distributions
and explore the skewness of original data [15]. Contrariwise, such representations
even their ability to describe functional data prevent the linearity of transformed
data due to both positiveness and unit integral constraints [3]. To overcome such
issue one should define a metric on the set of PDFs which matches the mentioned
constraints. In particular, the consistency of regression and classification with
PDFs as inputs was established in [23,25].

One of the main disadvantages of GPs indexed by Riemannian manifolds is
that they can be computationally expensive especially for large datasets. In fact,
the distance should be evaluated in functional spaces. However, several approx-
imate methods can be used to make this class of GPs more computationally
efficient. Keeping the same idea, in this paper, we will develops GPs indexed
by PDFs as a measure of divergence between them based on the well-defined
covariance function. In contrast to [11] we consider the formal expansion of a
SRDF in terms of a L

2 basis yielding from the convergent orthogonal series
expansion [8]. We then exploit the fact that the set of SRDFs endowed with the
L
2 functional metric resulting to be the Hilbert hemi-sphere is isometric to the

Euclidean sphere endowed with the l2 square-summable metric generated by the
set of coefficients resulting from the expansion at hand. Given a finite set of L2

basis assumed to maintain most information of the SRDF the restriction to the
(uncountably) infinite-dimensional Hilbert sphere translates to a restriction to
the (countably) finite-dimensional sphere endowed with the l2 Euclidean metric.

The rest of the paper is organized as follows. In Sect. 2, we review the GPc
model, inference, learning, and prediction. Section 3 presents how to move from
a PDF to a vector of coefficients belonging to the tangent space of the Euclidean
sphere when dealing with the convergent orthogonal series expansion. Section 4
introduces the GPc indexed by the set of PDFs thanks to the isometry with
the tangent space of the Euclidean sphere. Empirical results are presented and
discussed in Sect. 5. Finally, Sect. 6 concludes the paper.

2 Standard Gaussian Process Classifier

We are given N observations (x1, y1), . . . , (xN , yN ) with xi ∈ R
d are the

d-dimensional inputs (predictors) and yi are the associated responses (i =
1, . . . , N). In this paper, we consider the binary classification where yi takes val-
ues in {−1,+1} for which a GP becomes a GPc. A GPc is a probabilistic model
that makes predictions by learning a mapping from inputs to class probabilities.
In particular, we are interested in finding the probability of the target class “+1”
satisfying: π(x) = P(y = +1|f(x)) = σ(f(x)), depending on an activation func-
tion σ : R → [0, 1] and usually referring to the sigmoid σ(t) = 1/(1+exp(−t)). In
a Bayesian framework, we model f with a zero mean GPc of a covariance func-
tion c(., .) controlling its underlying structure, i.e., f(x) ∼ GP(0, c(x, x′)). Note
that, in this context, our formulation is different from kernel-based methods [17]
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and all predictions are guaranteed to be PDFs. Since yi is of binary values then
yi|f(xi) follows a Bernoulli law ∼ B(σ(f(xi))). The standard GPc model is{

f ∼ GP(0, c)
yi|f(xi) ∼ B(σ(f(xi)))

In this paper, the covariance function c(., .) is supposed to be homogeneous which
means that it is associated with a stationary parametrized kernel Kθ : R → R

such that c(x, x′) = Kθ(||x − x′||2).
Likelihood. Let x = (x1, ..., xN )T , y = (y1, ..., yN )T and f = (f1, ..., fN )T =
(f(x1), ..., f(xN ))T . The likelihood term is the product of individual likelihoods

P(y|f) =
N∏

i=1

P(yi|fi) =
N∏

i=1

σ(yifi) (1)

Prior. Since f ∼ GP(0, c) then f |x follows a multivariate Gaussian law

P(f |x) = N (f |0,C); C = c(x,x) (2)

Posterior. From the Bayes’ rule we write the posterior distribution as

P(f |x,y) =
P(f |x) × P(y|f)

P(y|x) ∝ P(f |x) × P(y|f) (3)

where P(y|x) refers to the marginal likelihood. The posterior is analytically
intractable and need to be approximated due to the likelihood term. To handle
this issue one can introduce the Laplace approximation by finding the maximum
a posteriori (MAP) estimator of f denoted f̂ = (f̂1, ..., f̂N )T from the Newton-
Raphson method, iteratively

fk+1 =
(
C−1 +Wk

)−1(
Wkfk + ∇ logP(y|f)|f=fk

)
; k = 1, 2, . . . (4)

Wk is the negative Hessian matrix of the likelihood at fk: Wk =
− ∇2 logP(y|f)

∣∣
f=fk

. Once we estimate f̂ and Ŵ = − ∇2 logP(y|f)
∣∣
f=f̂

yields
a posterior approximation from a second order Taylor expansion of logP(f |x,y)
around f̂ as

P̂(f |y,x) = N (f |f̂ , (C−1 + Ŵ)−1) (5)

Given a test input x∗ the predictive distribution at f∗ = f(x∗) is then

P̂(f∗|x,y, x∗) = N (f∗|μ(x∗), σ2(x∗)) (6)

with {
μ(x∗) = CT

∗ C
−1f̂

σ2(x∗) = C∗∗ − CT
∗ (C+ Ŵ−1)−1C∗

(7)
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where C∗ = c(x, x∗) and C∗∗ = c(x∗, x∗). Using the moments of prediction the
predictor of y∗ = +1 satisfies

π̄(x∗) = P(y∗ = 1|x∗) ≈
∫
R

σ(f∗)P̂(f∗|x,y, x∗)df∗ (8)

For some applications, the hyperparameter θ associated to the kernel Kθ is
known a priori and is chosen according to, for example, certain physical prop-
erties. However, in many applied environments the kernel’s hyperparameter is
learned from data for instance when maximizing the approximate log marginal
likelihood satisfying

log P̂(y|x) = −1
2
f̂TC−1f̂ + logP(y|f̂) − 1

2
log

∣∣IN + Ŵ
1
2CŴ

1
2
∣∣ (9)

where IN refers to the N ×N diagonal matrix. At this stage, it becomes possible
to fit the kernel hyperparameters, for instance, by a gradient-descent algorithm.
Inferring the predictive distribution or learning the hyperparameters from the
log approximate marginal likelihood is dominated by the inversion of the N ×N
covariance matrix C, which incurs a computational cost of O(N3). Additionally,
the memory requirements for GPc scale with a computational complexity of
O(N2).

3 Manifold Structure

Let p be a PDF of a real-valued random variable with respect to the Lebesgue
measure. The set of all PDFs defined on I = [0, 1] is a simplex satisfying

P =
{

p : I → R
∣∣ p is nonnegative and

∫
I

p(t)dt = 1
}

(10)

P is a Riemannian manifold when endowed with the Fisher-Rao metric
〈
g1, g2

〉
p
=

∫
I

g1(t)g2(t)
p(t)

dt (11)

where g1, g2 ∈ Tp(P) are two tangent vectors at p belonging to

Tp(P) =
{

g : I → R
∣∣ ∫

I

g(t)dt = 0
}

(12)

As a second representation we introduce the set of SRDFs satisfying

H =
{

ψ : I → R
∣∣ ψ is nonnegative, and ||ψ||L2 =

( ∫
I

ψ(t)2dt
)1/2

= 1
}

(13)

Endowed with the L
2 metric H results to be the Hilbert upper-hemisphere (non-

negative part). In addition, the tangent space of H locally at ψ is

Tψ(H) =
{

f : I → R
∣∣ 〈

ψ, f
〉
L2 =

∫
I

ψ(t)f(t)dt = 0
}

(14)
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Associated with any p ∈ P is a unique ψ ∈ H (isometrically) expressed as

ψ(t) =
√

p(t); t ∈ I (15)

The advantage of representing a PDF p ∈ P with ψ ≡ √
p ∈ H is that it greatly

simplifies the underlying geometry of P with some nice tools on the Hilbert
sphere. Since ψ is an element of L2(I,R), it can be represented as a convergent
orthogonal series expansion

ψ(t) =
∞∑

l=1

alφl(t) (16)

where (φl)l is a complete orthonormal basis in L
2(I,R). Note that ψ(t) can be

re-written as

ψ(t) = Φ(t)T A (17)

for A = (a1, a2, . . . )T and Φ(t) = (φ1(t), φ2(t), . . . )T . Consequently, ψ(t) is a
SRDF if and only if, in addition to the non-negativity constraint, A ∈ S∞ from
the following equality

||ψ||2
L2 =

∫
I

ψ(t)2dt =
∞∑

l=1

a2
l

∫
I

φl(t)2dt =
∞∑

l=1

a2
l = ||A||22 (18)

Here, S∞ refers to the unit infinite-dimensional Euclidean (square-summable)
sphere satisfying

S∞ =
{

A ∈ l2
∣∣ ||A||2 =

( ∞∑
l=1

a2
l

)1/2

= 1
}

(19)

with the corresponding tangent space locally at A as

TA(S∞) =
{

B ∈ l2
∣∣ 〈

A,B
〉
2
=

∞∑
l=1

albl = 0
}

(20)

Exponential Map. Let A be an element of S∞ and B ∈ TA(S∞). We define
the exponential map as

expA(B) = cos
(
||B||2

)
A + sin

(
||B||2

) B

||B|| 2
(21)

The exponential map is a diffeomorphism between the tangent space and the
unit finite-dimensional sphere if we restrict B so that ||B||2 ∈ [0, π[.
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Log Map. For A1, A2 ∈ S∞ such that A1 does not belong to the cut locus of
A2. We define B ∈ TA2(S∞) to be the inverse exponential (log) map of A1 if
expA2

(B) = A1. We then use the notation

B = logA2
(A1) (22)

where B = α
||α|| 2dS∞

(
A1, A2

)
and α = A2 −

〈
A1, A2

〉
2
A1. Here, dS∞

(
., .

)
refers

to the geodesic distance on the sphere (the angle of the shortest arc), i.e.,
dS∞

(
A1, A2

)
= arccos(

〈
A1, A2

〉
2
).

4 Gaussian Process Classifier on PDFs

In this section, we focus on constructing a GPc on P based on the connection to
the tangent space of the finite-dimensional sphere. A GPc Z on P is a random
field indexed by P so that (Z(p1), . . . , Z(pN ))T is a multivariate Gaussian vector
for p1, . . . , pN ∈ P. A zero mean GPc Z is completely specified by its covariance
function cP : P × P → R defined as

cP(pi, pj) =cov(Z(pi), Z(pj)) (23)

A covariance function cP(., .) on P should satisfy the following condition: for
any N ≥ 1 and p = (p1, . . . , pN )T the matrix CP = cP(p,p) is symmetric
nonnegative definite.

Lemma 1. Given an orthonormal basis for L
2, the set of PDFs equipped with

the Fisher-Rao metric (P,
〈
., .

〉
p
) is isometric to the sphere with its natural

Euclidean metric (S∞,
〈
., .

〉
2
).

Proof. The proof yields by composing two isometric maps in (15) and (18). ��

Since A1 → logA2
(A1) is an isometry between S∞ and TA2(S∞) for A2 ∈ S∞

then from Lemma 1 we get an isometry between P and TA2(S∞); p(.) ≡
(Φ(.)T A1)2 → logA2

(A1) by composition of two isometries. As a special case,
let E = T1(S∞) be the tangent space of S∞ at the infinite unity pole 1 =
(0, . . . , 0, 1). The strategy that we adopt to construct covariance functions is to
exploit the isometric map log1 based on the linear tangent space E . That is, we
construct covariance functions with (i, j) component as

cP(pi, pj) = Kθ(‖ log1(Ai) − log1(Aj)‖2) (24)

It seems natural to consider a truncated version of ψ at order d expressed as
ψd(t) =

∑d
l=1 alφl(t) and consider the rest of the sum as an error approximation:

ed(t) =
∑∞

l=d+1 alφl(t). The truncation ψd(t) is then re-written as ψd(t) =
Φd(t)T Ad for Ad = (a1 . . . , ad)T ∈ Sd−1 and Φd(t) = (φ1(t), . . . , φd)T . The
covariance on P approximately becomes

cP(pi, pj) ≈ Kθ(‖ log1d(Ad
i ) − log1d(Ad

j )‖2) (25)

where 1d is the d-dimensional unity pole of Sd−1.
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Proposition 1. Let Kθ : R → R be a kernel associated to a homogeneous covari-
ance function c(xi, xj) defined on R

d × R
d, i.e., c(xi, xj) = Kθ(‖xi − xj‖2) and

cP(., .) be defined like in (25). Then, cP(., .) is approximately a covariance func-
tion.

Proof. Let pi (i = 1, . . . , N) be a sample of i.i.d. observations on the PDF p
depending on the corresponding finite-dimensional spherical coefficients Ad

i ∈
Sd−1 and Bd

i = log1d(Ad
i ). Consider the matrix C̃ with entries C̃ij ≈

〈
Bd

i , Bd
j

〉
2
.

Then C̃ is approximately a Gram matrix in R
N×N . Therefore, there exists a d×d

nonnegative diagonal matrix D and a N ×d orthogonal matrix P such that C̃ ≈
PDPT . If e1, . . . , eN denote the canonical basis of RN then eT

i C̃ej ≈ xT
i xj with

xi = D1/2PT ei ∈ R
d depending on p1, . . . , pN . This implies that

〈
Bd

i , Bd
j

〉
2

≈
xT

i xj and consequently || log1d(Ad
i ) − log1d(Ad

j )||2 ≈ ||xi − xj ||2. Finally, any
matrix with entries Kθ(‖ log1d(Ad

i )− log1d(Ad
j )‖2) can be approximately seen as

a covariance matrix with entries Kθ(||xi − xj ||2) and inherits its properties. ��

Let pi (i = 1, . . . , N) be a sample of i.i.d. observations on the PDF p depending
on the corresponding spherical coefficients Ad

i ∈ Sd−1, respectively.

Corollary 1. If Z is a GPc indexed by PDFs such that{
Z ∼ GP(0, cP)

yi|Z(pi) ∼ B(σ(Z(pi)))

then there is an approximated standard GPc f on Ed = T1d(Sd−1) satisfying⎧⎪⎨
⎪⎩

f ∼ GP(0, c)

yi|f(Bd
i ) ∼ B(σ(f(Bd

i )))

Bd
i = log1d(Ad

i )

5 Experimental Results

In this section, we evaluate the proposed model on various datasets and compare
it to other state-of-the-art methods. We consider the squared exponential (SE)
kernel satisfying

K(τ) = σ2 exp(−0.5τ2/γ2); τ = ||x − x′||2 (26)

Functions drawn from a GP with this kernel are infinitely differentiable, and can
display long-range trends. GPs with a SE kernel are well-suited for modeling
functions that exhibit smoothness and continuity properties, such as classifica-
tion problems. The covariance structures that can be learned from data are the
variance σ2 and the length-scale γ. The orthonormal basis in L

2(I,R) is set to
φl(t) =

√
2 sin(lπt) and the truncation order is fixed to d = 30, see more details

in [12]. Note that all the methods tested in this section have been carefully
implemented in Python programming language on a standard desktop machine
running linux.
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5.1 Illustrative and Challenging Datasets

Synthetic PDFs. We consider two datasets of simulated PDFs: beta and
inverse gamma distributions. They have been applied to model randomness on
intervals of finite length and have been widely used in simulation studies for a
variety of disciplines. We performed this experiment by simulating 1000 PDFs
slightly different for two classes in each dataset. Each observation pi represents
a PDF when we add a random uniform noise to initial parameters. For beta
dataset we take P(pi|yi = +1) = B(2 + εi; 2) for the first class and P(pi|yi =
−1) = B(1.8+εi; 2) for the second one where εi ∼ U([−0.2; 0.2]) is a realization of
the uniform law. For inverse gamma dataset we take P(pi|yi = +1) = IG(3+ εi)
for the first class and P(pi|yi = −1) = IG(2.8+ εi) for the second one. We show
some examples of pi in Fig. 1 (top) with different colors (blue and red) for the
two classes.

Real PDFs. In this part, a real study was conducted with two datasets of PDFs.
The first dataset consists of 1500 observations giving the segmented and prepro-
cessed electrocardiogram (ECG) signals for Heartbeat (500 normal and 1000
abnormal) ECG Heartbeat Categorization Dataset. This dataset contains a col-
lection of ECG recordings with a sampling frequency: 125Hz, where the goal is to
classify each heartbeat into normal or abnormal when the human was affected by
different arrhythmias and myocardial infarction. Each signal includes informa-
tion about the symptoms during a short period. The information in this dataset

Beta Invgamma

Heartbeat Growth

Fig. 1. Some examples of PDFs with first class (blue) and second class (red). For
Growth: boys (blue) and girls (red) and Heartbeat: normal (blue) and abnormal (red).
(Color figure online)

https://www.kaggle.com/shayanfazeli/heartbeat
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could be used to develop strategies to control this problem. It could also be used
to develop better treatments for other similar problems. We display some exam-
ples of signals represented by their PDFs registered on I = [0, 1] and normalized
to admit an unit integral in Fig. 1 (bottom-left). Moreover, the second dataset
used in this analysis consists of monthly clinical growth charts for children from 1
to 12 years (100 girls and 100 boys) National Center for Health Statistics. It is a
typical example of biological dynamics observed over months. Each growth chart
represents the size (the increase in centimeters) of a child during 132 months. In
this context, all growth charts were represented by PDFs of child sizes registered
on I = [0, 1], see some examples in Fig. 1 (bottom-right) for which we make the
use of nonparametric kernel method with an automatic bandwidth.

Beta Invgamma

Heartbeat Growth

Fig. 2. Top: TPCA of projected coefficients into the tangent space of the sphere with
first class (blue) and second class (red). Bottom: The predicted class “1” probabilities
are shown in the contour plots. The black dashed line represents the decision boundary
at π̄(Colorfigureonline)(Cd,k

i ) = 1
2
.

5.2 Tangent Principal Component Analysis

Tangent principal component analysis (TPCA) is a mathematical technique, also
called Geodesic Component Analysis, used for dimensionality reduction and fea-
ture extraction in machine learning and data analysis. It is particularly useful
for data embedded on curved manifolds. According to our case, this technique
involves first computing the tangent space at each point on the finite-dimensional
sphere Sd−1 then performs to obtain a set of orthogonal basis vectors that cap-
ture the most important variations in data. If some point movements Bd

i were
to be totally correlated manifold learning methods including: t-SNE, Isomap,

https://www.cdc.gov/growthcharts/clinical_charts.htm
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LLE, and MDS are useful for nonlinear dimensionality reduction. Since our vec-
tor data Bd

i are not of high-dimension (d = 30) and belong to the Euclidean
tangent space we establish the TPCA. The central idea of TPCA is to reduce
the dimensionality of projected vectors into the tangent space of Sd−1 belonging
to a linear sub-space of Rd by keeping one (k = 1), two (k = 2) or three (k = 3)
dimensions in R

k. This is achieved when transforming to a new set of variables,
known as principal components (PCs) so that the first directions retain most of
the variation presented in the original variables. First, we find the eigenvectors
of the covariance matrix of the whole dataset Bd

i . Second, we sort the eigen-
vectors by decreasing the corresponding eigenvalues and choose k eigenvectors
of the largest eigenvalues to be the principal directions. Finally, we transform
the original data Bd

i into the new sub-space of reduced dimension R
k. Let Cd,k

i

(i = 1, . . . , N) be the resulting coefficients in R
k. Generally, the variance ratio

indicates the proportion of the total variance that is accounted by each princi-
pal component. Specifically, principal components with high variance ratios are
considered to be more important and should be retained, while those with low
variance ratios may be discarded. In Fig. 2 (top) we show results of the coeffi-
cients projected into one principal direction for Beta and Invgamma datasets.
Indeed, only one principal component (k = 1) accounts for the largest proportion
of the variance, with a variance ratio of 0.99 for both. Figure 2 (bottom) shows
a scatter plot of the data with the first two principal components (k = 2) for the
Heartbeat and Growth datasets. The first principal component (which explains
67% of the variance for Heartbeat and 38% for Growth) separates the two classes
along the x-axis, while the second principal component (which explains 19% of
the variance for Heartbeat and 15% for Growth) separates the classes along the
y-axis. Although the action of TPCA is not by isometry but only a dimension-
ality reduction technique that finds the directions of maximum variance we add
the contour plot in each region associated with the predicted class “1” probability
that shows how GPc can be successfully performed in low-dimensional tangent
spaces mainly when real data are not linearly separable.

5.3 Results and Comparison

To evaluate the performance of the proposed method, we split the labeled dataset
into two subsets: training and test. The training set (75% of the dataset: 50%
for training and 25% for validation) is used to train the model, while the test set
(25% of the dataset) is used to evaluate its performance. Some commonly used
metrics for evaluating the performance of a classification model include:

– Accuracy: The proportion of correctly classified instances in the test set.
– AUC: The measure of the overall performance of the model based on the ROC

curve.
– LOSS: The measure of the logarithmic (also known as cross-entropy loss)

between the predicted probability distribution and the true label.

In order to get an accurate estimate of the model’s performance, we perform
multiple random splits of the dataset into training and test sets, and train and
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Fig. 3. The classification results with first class (label 1) and second class (label 0).

Fig. 4. The boxplots of different metrics: Accuracy score (top), AUC score (middle),
and LOSS measure (bottom).
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test the model on each split which could reduce the variance in the performance
metrics obtained from a single split. The predicted class probabilities in our
model provide a measure of uncertainty in the model’s predictions and used
to make informed decisions based on the level of confidence in the classification
result. Now, we show results of the predicted class “1” probabilities of one among
100 runs in Fig. 3. The observed values involve computing the mean and variance
of the conditional distribution of the output labels given the input data and
the model parameters, and then using them to compute the predicted class
probabilities. We state that most well classified test data are far from the decision
boundary at π̄(Bd

i ) =
1
2 , which gives a good precision to our method.

At this stage, we will compare the results of our approach with some base-
line methods: i) GPs indexed by PDFs (GPP), ii) GPs based on the Wasserstein
distance (GPW), and iii) neural network (NN) model for classifying univariate
functional data to determine whether the differences in performance are signifi-
cant. We remind that standard classification models are not suitable for curved
spaces and can not be applied in this context. For an attempt to show it is
different, we provide some details about the NN model architecture. We first
define the NN model using Keras’ Sequential function in Python. The model has
an input layer equal to the number of time instances of each observation. The
first hidden layer a fully connected layer with 32 neurons and a ReLU activation
function, followed by a dropout (regularization) layer that randomly sets 50% of
the input units to 0 during training to prevent overfitting. Then, we add a second
hidden layer with 16 neurons and ReLU activation, followed by another dropout
layer with a dropout rate of 50%. Finally, the model has an output layer with
one neuron and sigmoid activation. This produces a scalar output between 0 and
1, representing the model’s prediction for the binary classification problem. We
compile the model with binary cross-entropy loss and Adam optimizer.

In Fig. 4 we illustrate boxplots of the accuracy, AUC and LOSS metrics for
the binary classification problem across the 100 runs of the model. The boxplots
of most dataset are relatively narrow for the Accuracy and AUC scores, indicat-
ing that these metrics are consistent across different runs. However, we also see
a few outliers with other datasets that are in somewhat lower/higher than the
rest, which may indicate that there are some runs where the model is perform-
ing poorly or exceptionally well. Since most criteria values are sometimes very
close for different methods which rends comparison nontrivial we also summarize
the mean and the standard deviations (std) values in Table 1. Accordingly, our
proposed method achieved a mean accuracy of 0.761, 0.779, 0.849 and 0.847 for
Beta, InvGamma, Heartbeat and Growth, which is significantly better than the
baseline GPP, GPW and NN. However, our proposed method outperformed the
same methods in terms of AUC, achieving a score of 0.885, 0.891, 0.918 and
0.938, respectively, see Table 2. Regarding the LOSS measure in Table 3, our
proposed method achieves a lower value for three among four datasets: Beta,
Heartbeat and Growth. Overall, our proposed method showed promising results
and outperformed the baseline methods on all datasets in terms of accuracy and
AUC, while it still competitive in terms of LOSS measure. Our method, on the
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other hand, is designed to be computationally efficient. This is because it consid-
ers some coefficients instead of PDFs directly that are optimized for an efficient
training. This allows our method to achieve comparable or better accuracy than
traditional methods, while requiring less computational resources. To illustrate
this, let’s compare the computational time of our method against the baseline
methods, particularly for the Beta dataset. We assume that all programs run on
a desktop machine with 32 GB memory and CPU Xeon(R) 3.60GHz. Note that
the elapsed times for predicting all the Beta test set are 10−3, 8.9 × 10−4 and
3×10−2 seconds using GPW, GPP, and NN respectively while it takes 5.7×10−4

seconds for our proposal.

Table 1. Accuracy score.

Dataset Proposal GPP GPW NN
mean std mean std mean std mean std

Beta 0.761 0.027 0.757 0.025 0.757 0.026 0.755 0.025
InvGamma 0.779 0.023 0.773 0.024 0.77 0.024 0.757 0.025
Heartbeat 0.849 0.017 0.666 0.022 0.802 0.018 0.837 0.015
Growth 0.847 0.046 0.841 0.047 0.844 0.036 0.825 0.025

Table 2. AUC score.

Dataset Proposal GPP GPW NN
mean std mean std mean std mean std

Beta 0.885 0.018 0.882 0.018 0.884 0.018 0.878 0.017
InvGamma 0.891 0.016 0.887 0.017 0.888 0.016 0.878 0.016
Heartbeat 0.918 0.004 0.768 0.024 0.853 0.018 0.89 0.014
Growth 0.938 0.03 0.923 0.029 0.901 0.037 0.923 0.017

Table 3. LOSS measure.

Dataset Proposal GPP GPW NN
mean std mean std mean std mean std

Beta 0.368 0.021 0.371 0.021 0.41 0.024 0.393 0.035
InvGamma 0.387 0.017 0.388 0.021 0.406 0.022 0.378 0.038
Heartbeat 0.367 0.018 0.638 0.015 0.689 0.001 0.919 0.343
Growth 0.334 0.058 0.337 0.056 0.563 0.014 0.464 0.063
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6 Conclusion

In this paper, we have introduced a novel approach for classifying probability den-
sity functions with a Gaussian process classifier model. Our methodology benefits
from the use of functions decomposed with coefficients projected into the tangent
space of the sphere, which can perform inference on PDFs. The theoretical founda-
tion detailed in this paper exploits the simple geometry implied the nonparametric
Fisher-Rao metric. The experimental evaluation has demonstrated that this new
model is competitive on several challenging datasets. Furthermore, the problem
formulation can be extended to many other supervised and unsupervised areas of
statistical machine learning. Nevertheless, it would be very interesting to further
investigate substantial impacts on the computational costs.
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