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Abstract. We introduce a cooperative Bayesian optimization problem
for optimizing black-box functions of two variables where two agents
choose together at which points to query the function but have only
control over one variable each. This setting is inspired by human-AI
teamwork, where an AI-assistant helps its human user solve a problem, in
this simplest case, collaborative optimization. We formulate the solution
as sequential decision-making, where the agent we control models the
user as a computationally rational agent with prior knowledge about the
function. We show that strategic planning of the queries enables better
identification of the global maximum of the function as long as the user
avoids excessive exploration. This planning is made possible by using
Bayes Adaptive Monte Carlo planning and by endowing the agent with a
user model that accounts for conservative belief updates and exploratory
sampling of the points to query.

1 Introduction

Human-AI cooperation refers to the collaboration between human and artificial
intelligence (AI) driven agents to achieve a common goal [16]. In the cooperative
scenario, the agents work autonomously but interdependently, each leveraging
their unique skills and abilities to collectively reach the shared objective. The
cooperation between a human and an AI agent can be impaired by limitations
in their information processing abilities and various other factors such as biases,
heuristics, and incomplete knowledge [10]. It has already been established that
any cooperation is more effective when the involved agents have a theory of mind
of the others [7]. It would therefore be helpful if the AI agent could take into
account the human’s information processing capabilities and biases and adapt
to the changing needs and preferences of the human user [19].
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Fig. 1. Interaction scenario between the user and the AI agent in the optimization
task. Unlike a greedy agent (a), the AI agent we propose (b) has a model of the user
and plans its actions by anticipating the user’s behaviour. This results in a more effi-
cient cooperative exploration of the domain, and therefore avoids getting stuck in a
local optimum. This is visible in the right-hand side plots, showing the corresponding
trajectories of queries to the function f .

A specific kind of human-AI cooperation is when the decision is jointly taken
by two agents for a common goal, and each controls only their part of the deci-
sion. An illustrative example is Hand and Brain chess, a team chess variant in
which two players (the Hand and the Brain) play on each side. Each move is
jointly decided by the team, with the Brain calling out a piece and the Hand
being responsible for moving it. In this game, the Brain should essentially con-
sider a move that is understandable for the Hand. Otherwise, the Hand moves
the piece to a strategically bad position, resulting in a disastrous move. If each
player carries out their task without anticipating the other team member, the
team will end up taking a sub-optimal action. The anticipation is done by build-
ing a model of the partner.

To study this setup in a controlled environment, we propose a cooperative
Bayesian optimization task. The AI agent and human user aim to perform a
sequential black-box optimization task in a 2D space. At each step, the human-
AI team chooses a point to query the function. The choice is made by the AI
agent opting for the first coordinate and then the human user selecting the other
one. In this optimization task, the human user and the AI agent, both with
partial information, cooperatively take part in data acquisition. We formulate
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this cooperative data acquisition as a repeated Bayesian game between the user
and the agent played for a finite horizon. The contributions of this paper are:

– We propose a collaborative AI algorithm for settings where the AI agent plans
its action by assessing the user’s knowledge and decision process without any
prior interaction with the user.

– We show empirically that the algorithm is able to learn the user’s behaviour
in an online setting and use it to anticipate the user’s actions.

– We show empirically that the algorithm helps the team in the optimization
task (measured as the team optimization score) compared to various baselines,
such as a greedy algorithm that maximizes its own beliefs. This is done by
helping a better exploration of the domain of the function.

2 Cooperative Bayesian Optimization

2.1 Problem Formulation

We consider a problem where a team of two agents, the human user and the
AI agent, aims to maximize a black-box function f : X × Y of two parameters
(x, y) ∈ X × Y. Note here that the function is not necessarily 2-dimensional.
The team explores the domain X × Y by acquiring new observations of f . The
exploration consists of a sequence of queries of f at points (xt, yt) ∈ X × Y.
The outcomes of the query are noisy and we denote by f̄(x, y) the outcome of
the query at point (x, y). In this respect, the task of the team is similar to a
Bayesian Optimization (BO) task.

The team proceeds by sequentially querying T points. At each step t, the
team adopts the following protocol for the choice of (xt, yt), presented in Fig. 1.
The AI agent selects xt ∈ X first. The human user observes the value of xt

picked by the AI agent and then selects yt ∈ Y. Finally, both agents observe
the selected tuple (xt, yt) and the value of f(xt, yt). In this paper, we adopt the
point of view of the AI agent and therefore focus on how to optimally select the
first coordinate xt. It is important to mention that X and Y are not necessarily
one-dimensional, but can describe any two sets of variables.

The final performance of the optimization process is measured by the opti-
mization score (described in Sect. 4.2). We view this score as a more under-
standable alternative to the directly related measure of simple regret, defined as
f∗ − f∗

T .

2.2 Mathematical Formalization

We address the problem of the AI agent as a repeated Bayesian game, using
the formalism of model-based reinforcement learning, considering the AI agent
as a decision-making agent interacting with an environment made up of the
function f and the human user. In this environment, the agent takes actions
(choice of a coordinate xt) and gets rewarded depending on the action xt, the
user’s choice yt and the value of the function f(xt, yt).
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We describe the agent’s decision-making problem as Partially Observable
Markov Decision Process (POMDP) M = 〈A,S, T , Ω,O,R〉, where the nota-
tions are explained in what follows.

The space A is the space of the actions available to the agent. In our context,
it corresponds to the set X of points available to the agent. For this reason, we
will use x (instead of the standard notation a usually used in POMDPs) to
designate the coordinate chosen by the agent. A state s ∈ S describes a state
of the agent’s environment, which is made up of the function f and the user. A
state is then defined as a tuple s = (fAI , θ), where fAI : X × Y → R is agent’s
estimation of function f and θ is a parameters set characterizing the user. The
transition T (s, x, s′) measures the probability of a transition from state s to state
s′ after agent’s action x. By definition, the function f is fixed, and consequently
the transition probability T can be written as:

T (s, x, s′) = I(fAI = f ′
AI)p(θ′|s, x) (1)

where s = (fAI , θ), s′ = (f ′
AI , θ

′) and I is the identity function. An observation
ω ∈ Ω corresponds to the user’s choice y and the value of f at point (x, y), i.e.
Ω = Y ×R. The observation prediction O(ω|s, x) ∈ [0, 1] is the probability that
ω ∈ Ω is observed after action x has been played within environment state s.
Unlike some other settings, the observation prediction O in our context does not
depend on the new state, but only on the state before the action. This probability
decomposes as

O(ω = (y, z)|s, x) = p(y|s, x)p(f̄(x, y) = z|s, x, y) (2)

where the probability p(y|s, x) corresponds to user’s decision-making and the
probability p(f̄(x, y) = z|s, x, y) to function sampling. The reward R(x, s, ω)
measures the pay-off of agent’s action x in state s after observing ω. The choice
of the reward function in our implementation will be discussed in Sect. 3.4.

2.3 User Model

In Eqs. 1 and 2, the probabilities p(θ′|s, x) and p(y|s, x) describe the user’s
behaviour, that is, how the user updates their beliefs and how they make deci-
sions. We note that p(θ′|s, x) can be decomposed as

p(θ′|s, x) =
∫

z

∑
y

p(θ′|s, x, y, f(x, y) = z)p(f(x, y) = z|s, x, y)p(y|s, x)dz (3)

where the term p(f(x, y) = z|s, x, y) does not depend on the user. Therefore,
the user’s behaviour is fully defined by p(θ′|s, x, y, f(x, y)) and p(y|s, x).

In the following, we will call the tuple (p(θ′|s, x, y, f(x, y)), p(y|s, x)) the user
model. The user model describes the role played by the user within the environ-
ment of the agent. In practice, it will be used to simulate the behaviour of the
user, which is useful in particular when planning for the action to play. The user
model is not necessarily an accurate description of the user’s behaviour, but is



Cooperative Bayesian Optimization for Imperfect Agents 479

a model used by the agent for making decisions. The choice of this model will
restrict the possibilities of behaviours that the agent will be able to consider. In
the case where the user is human, a useful user model should be able to describe
computationally rational behaviours [8].

3 Implementation

In this section, we introduce the practical solution to the Cooperative Bayesian
Optimization problem, considering a minimal user model. This model describes
a user with partial knowledge about the function, able to update their belief and
select their actions in a way that balances exploitation and exploration.

3.1 Bayes Adaptive Monte Carlo Planning

In order to solve the POMDP introduced in Sect. 2.2 and plan the AI agent’s
actions, we rely on a Bayesian model-based Reinforcement learning method.
This method is used to perform a zero-shot planning, where the agent has no
initial information about the user’s behaviour. At each iteration, the model is
updated based on the previous user’s actions, and a zero-shot planning method
is employed to plan for the future.

In order to solve the POMDP, the posterior distribution of the parameters is
estimated using the inference method described in Sect. 3.3 below. This posterior
distribution is used to plan the actions xt by enabling a Monte-Carlo estimation
of the value of each action: At each iteration, we run several simulations with
fixed state st sampled from the posterior distribution. In these conditions, having
a fixed and known state transforms the POMDP into a simple MDP: This makes
it possible to compute the value of the action for this state and, consequently, to
get a Monte-Carlo estimation of the value of an action. Finally, the action that
maximizes the estimated value is chosen. It has been proven that this process
converges to the Bayes-optimal policy with infinite samples [9].

3.2 User Model Specification

We propose a simple user model describing a computationally rational user with
partial knowledge about the function to be optimized. This user model is an
instantiation of the general form of user models as introduced in Sect. 2.3.

User’s Knowledge. We represent the user’s partial knowledge of the function f
using a Gaussian Process [18]. A Gaussian Process (GP) is a stochastic pro-
cess over real-valued functions, such that every finite collection of these random
variables has a multivariate normal distribution. We will denote this GP at
step t as f

(t)
um. We emphasize that fum is not a function, but a prior over func-

tions X × Y → R. This choice is motivated by the observation that Bayesian
Optimization based on GPs provides a surprisingly good framework to explain
active function learning and optimization in humans [2].
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The user’s GP is assumed to have been initialized based on the observa-
tion of a collection of Nu points Du = {(xu

i , yu
i , f̄(xu

i , yu
i ))}i=1,...,Nu

, using GP
regression. For any unseen function value f(x, y), GP regression models this as a
Gaussian random variable with closed-form mean and variance (see [18], Equa-
tions (2.23) and (2.24)). The equations require specifying the covariance (kernel)
function, which in this paper is taken to be the squared exponential kernel [18,
Eq. (2.16)]. The hyperparameters of the kernel function are optimized by maxi-
mizing the marginal likelihood.

Belief Update. The values of the function f sampled during the interaction are
observed by the user and used to sequentially update their GP fum. At time t,
the user’s GP f

(t)
um is updated by observing Dt = {(xt, yt), f̄(xt, yt)}. We denote

by Bbayes(f
(t)
um|{(xt, yt), f̄(xt, yt)}) the GP obtained after Bayes optimal belief

updating, defined as the standard updates (Equations (2.23) and (2.24) in [18]).
However, it has been documented in behavioural studies [6] that humans

deviate from the Bayesian optimal belief update, because of various cognitive
biases [23]. Consequently, in our user model, we consider the conservative belief
updating operator B introduced by Kovach [13]:

f (t+1)
um = αf (t)

um + (1 − α)Bbayes(f (t)
um|{(xt, yt), f̄(xt, yt)}), (4)

where α ∈ [0, 1] represents the degree of conservatism. A low values of α corre-
sponds to an almost Bayes-optimal behaviour, while the case α = 1 corresponds
to the user ignoring the new observations and not updating their belief.

Decision-Making. Motivated by the observation of Borji and Itti [2], we model
the user’s choice of an action yt as the maximization of an acquisition function
y �→ A(xt, y). We consider the UCB acquisition function based on the GP f

(t)
um:

At(y|xt) = E

[
f (t)

um(xt, y)
]

+ β

√
V

[
f
(t)
um(xt, y)

]
(5)

where E[f (t)
um(xt, y)] and V[f (t)

um(xt, y)] are respectively the mean and the variance
of the GP f

(t)
um at point (xt, y), and β ∈ [0, 1] is an exploration-exploitation

trade-off parameter. A low value of β corresponds to less explorative behaviour,
exploiting the current belief over f , while a larger value corresponds to more
explorative behaviour, evaluating f at points with larger uncertainty. Given the
AI’s action xt, a sensible choice of an action yt for the user would consist in
maximizing the acquisition function At(y|xt).

This choice of yt by a maximization can be interpreted as an event of many
pairwise comparisons among different actions y ∈ X : Choosing the action yt

means preferring it to all the others y �= yt. Inspired by [15], we build a prob-
abilistic model of user preferences upon Thurstone’s law of comparative judg-
ment [22] by assuming that the user’s action yt given xt is corrupted by Gaussian
noise,

yt = arg max
y

(At(y|xt) + W (y)) , (6)
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where W is a white Gaussian noise with mean E[W (y)] = 0 and auto-correlation
E[W (y)W (y′)] = σ2 if y = y′ and 0 otherwise. The likelihood p(yt|st, xt) of a
single observation yt|xt corresponding to this noise process takes the form

p(yt|st, xt) =
m∏

i=1

(
1 − [Φ ∗ φ]

(
At(yi|xt) − At(yt|xt)

σ

))
, (7)

where Φ and φ are the cumulative and density function of the standard nor-
mal distribution, respectively, ∗ and is the convolution operator. To evaluate
the likelihood, f

(t)
um and At(y|xt) should be computed recursively by using the

aforementioned equations. For fixed α and β, this is possible given the function
sampling data (Dt)T

t=1. The joint likelihood P
(
(yt|xt)T

t=1, (Dt)T
t=1

∣∣α, β
)

is the
product of the single events yt|xt for t = 1, ..., T .

Summary: Definition of the User Model. The introduced user model is charac-
terized by three parameters: the user’s knowledge of the function fum, the degree
of conservatism α and the degree of explorativeness β. Using the notations of
Sect. 2.2, we can write θ = (fum, α, β). We notice that these parameters are
of different natures though: α and β are characteristics of the user, while fum

corresponds to a mental state, i.e. a description of what the user knows.
When defining the belief-updating probability p(θ′|s, a, y, f(a, y)), we assume

that the parameters α and β, as characteristics of the user, are stationary and
therefore are not updated during the interaction. Only the user’s GP is updated,
following Eq. 4. With our definition of this user model, the user’s decision-
making p(y|s, a) is defined in Eq. 7.

3.3 Inference of the User Model Parameters

The parameters θ = (fum, α, β) are not observed and need to be esti-
mated online during the interaction, based on the user’s actions. We adopt
a Bayesian approach and the inference consists of estimating, at each time
step t, the posterior distribution p

(
α, β, fum

∣∣ (yτ |xτ )t
τ=1, (Dτ )t

τ=1

)
given the

interaction data (yτ |xτ )t
τ=1 and the function sampling data (Dτ )t

τ=1 with
Dτ = (xτ , yτ , f̄(xτ , yτ )). For this, we use the following decomposition:

p
(
α, β, fum

∣∣ (yτ |xτ )t
τ=1, (Dτ )t

τ=1

)
= p

(
α, β

∣∣ (yτ |xτ )t
τ=1, (Dτ )t

τ=1

)
p

(
fum

∣∣ (yτ |xτ )t
τ=1, (Dτ )t

τ=1, α, β
)

Estimation of (α, β). The estimation of (α, β) is done using Bayesian belief
update. The initial prior is chosen to be the uniform distribution over the unit
cube. The posterior distribution is approximated using the Laplace approxima-
tion, which consists in the following. The maximum a posteriori (MAP) esti-
mate (αMAP, βMAP) is computed by numerically maximizing the log posterior
with the BFGS algorithm, which also approximates the Hessian. The posterior
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p
(
α, β

∣∣ (yτ |xτ )t
τ=1, (Dτ )t

τ=1

)
is approximated as a Gaussian distribution cen-

tered on (αMAP, βMAP) with the covariance matrix corresponding to the inverse
of the negative Hessian at the MAP estimate.

Estimation of fum. The update of fum as given in Equation (4) is determinis-
tic when α is given. Consequently, the term p

(
fum

∣∣ (yτ |xτ )t
τ=1, (Dτ )t

τ=1, α, β
)

is trivial and does not need to be computed during the interaction. Since our
planning algorithm (described in Sect. 3.1) relies on sampling from the parame-
ters (α, β, fum), fum is computed from the whole trajectory (Dτ )t

τ=1 using the
sampled value of α. For the initialization f

(0)
um, we consider that the user has a

uniform prior over the function. This interprets as ignoring the fact that the user
has prior knowledge.

3.4 Choice of the Reward Function

The reward for the agent, as introduced in Sect. 2.2, is designed to be a compro-
mise of two parts, exposed in the following.

The first part is the expectation of the UCB score over the user’s future
action, calculated with fum as estimated in the user model:

R1(x, s, ω) = Ey∼Ausr
[UCB(x, y)] (8)

Intuitively, this first part R1 shows how desirable the point (x, y) is for the user
when the AI selects x. Therefore it values actions x for which the user is able to
find a reasonably good y to query the function. Since R1 is based on the UCB
score, it also guarantees a trade-off between the exploration and exploitation of
the query point.

When the user’s behaviour is almost uniform over actions (e.g. when the
user is more explorative, because of having little knowledge of f or because
of a high β), reward R1 is close to constant and is not enough to make good
choices of xt. We solve this problem by introducing a second part in the reward
definition, that is based on the AI agent’s knowledge of the function. This reward
is defined as the average UCB score over the top K promising y values upon the
AI’s knowledge for a chosen action x:

R2(x, s, ω) =
1
K

∑
y∈topK(Aai)

UCB(x, y) (9)

This reduces the risk of relying too much on the user model, which is not prefect,
especially at the beginning of the interaction.

We define the total reward as a linear combination of these two components:

R(x, s, ω) = R1(x, s, ω) + C R2(x, s, ω) (10)

where C is a compromising factor between the two terms, a hyperparameter of
the proposed method.
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4 Empirical Validation

In this section, we study the performance of our method in the proposed coop-
erative Bayesian game (Sect. 2). We examine scenarios where prior information
is unevenly distributed among agents and when the human user characteristics
vary. In particular, we are interested in how the user’s degree of conservatism
and explorativeness affect the outcome of the Bayesian game.1

4.1 Experimental Setup

Domain. We choose as a function f a 3-modal variant of the Himmelblau func-
tion. It is defined on [0, 1]2 and has 3 minima, located respectively at (0.46, 0.8),
(0.22, 0.44) and (0.74, 0.18). The amplitude of the maxima can be adjusted.

Experimental Protocol. We consider a synthetic user whose characteristics can be
controlled. The agent follows the specification of a computationally rational user
presented in Sect. 3.2: we assume a user who follows a Bayesian optimization rou-
tine based on the UCB acquisition function with an explorativeness parameter
β, and a conservative GP-based belief updating with a conservatism parameter
α. We create 2 × 2 configurations of the human user characteristics by consider-
ing the possible combinations of the values α ∈ {0.1, 0.6} and β ∈ {0.2, 0.7}. For
example, the configuration α = 0.1 and β = 0.7 refers to a human user who is
conservative in belief updating but explorative in decision-making. These values
have been chosen to reflect the extremes, with the user being almost completely
conservative or almost perfectly Bayesian, and the user being almost exclusively
exploitative or almost exclusively explorative.

We study the impact of this prior information by considering 3 × 3 configu-
rations of prior information (see Sect. 2.2) as follows. We provide each of the two
agents with either N = 5 points around local maxima or the global maximum, or
no prior functions evaluations at all. We use the terms “Local”, “Global”, and
“None” to refer to these configurations by considering possible permutations:
(AI’s prior, human’s prior). The points are drawn from a multi-normal distri-
bution centered on the position of the maximum (local or global). For example,
(Global, Local) refers to the configuration, where the AI agent has N = 5 prior
points around the global maximum, while the human user agent has N = 5
points around local maxima of the function.

For the experiments, we consider a discretization of the domain X ×Y into a
50 × 50 grid. Given a simulated user, each experiment consists of 20 interaction
steps. The results are averaged over a sample of 3 different functions f , generated
as described above, and 10 different prior samples (initial points available to each
agent before the interaction, see Sect. 2.3). For our agent, we use the reward
defined in Eq. 10 with C = 1.

1 Implementation of our method and source code for the experiments are available at
https://github.com/ChessGeek95/AI-assisted-Bayesian-optimization/.

https://github.com/ChessGeek95/AI-assisted-Bayesian-optimization/
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All experiments were run on a private cluster consisting of a mixture of Intel R©

Xeon R© Gold 6248, Xeon R© Gold 6148, Xeon R© E5-2690 v3 and Xeon R© E5-2680
v3 processors.

Baselines. To investigate the strengths of our method, we compare it to four
baselines, two of which correspond to a single-agent Bayesian Optimization.

The single-agent BO baselines correspond to one single agent making the
decision, i.e., opting for both coordinates of the point to query, and therefore
correspond to the standard BO problem. The baselines illustrate empirical lower
and upper bounds of the optimization performance:

– VanillaBO (random): Single-agent baseline, querying points (x, y) uniformly
at random on the domain X × Y. This is equivalent to two agents querying
coordinates randomly, which is a lower bound on the performance that any
team should at least achieve.

– VanillaBO (GP-UCB): Single-agent baseline, querying points (x, y) using an
upper confidence bound [4] score upon a Gaussian processes pre-trained on
the prior points. Since the agent has access to all prior data and absolute
control over both coordinates, this is an upper bound on the performance.
The value of β for this agent is chosen to be β = 0.05: it has been chosen
because it gives optimal results compared to other β.

We also compare the performance of our method to two other comparable
multi-agent BO algorithms, corresponding to different strategies for solving the
Cooperative Bayesian Optimization task:

– RandomAI: The AI agent chooses x uniformly at random on the domain X .
– GreedyAI: The AI chooses x by picking the first coordinate of the UCB score

maximizer. It maximizes its own utility function (UCB score) without con-
sidering the other agent, hence the name. As for the GP-UCB agent, the value
of β for this agent is also chosen to be β = 0.05,

4.2 Experiments

Experiment 1: Evolution of the Optimization Performance. We first
study the efficiency of our algorithm in helping the team in the optimization
task. To do so, we introduce, as a metric, the optimization score. We define
this score as the maximum function value f∗

t queried during the cooperative
game of t rounds. Since the objective function is normalized between 0 and
100, an optimization score of 100 denotes maximum performance (also note that
simple regret = 100 − optimization score).

The evolution of the optimization performance over the optimization rounds
is presented in Fig. 2. It can be seen that our method indeed reaches better
performance compared to the GreedyAI and RandomAI baselines. However, in
the initial rounds, GreedyAI displays much better performances (even better
than the VanillaBO (GP-UCB) agent): this is because GreedyAI exploits prior
information and therefore is quickly able to guide the user toward finding a local
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Fig. 2. Evolution of the optimization performance during the interaction. At the end
of the interaction, our agent (StragicAI) gets better performance than other baselines.
It performs slightly worse than the VanillaBO (GP-UCB), because, unlike this baseline,
the StrategicAI does not have control over the full domain X × Y.

maximum. However, once the optimum is found, it does not explore further and
does not find any global optimum, unlike our method, which is more explorative
from the beginning. We also notice that the RandomAI has initial performance
close to the random VanillaBO baseline, but keeps improving: this is due to the
fact that this agent keeps exploring, but in a sub-optimal way. Finally, we still
notice that the VanillaBO (GP-UCB) baseline is indeed a valuable upper-bound
in the long-term: even though our StrategicAI has similar performances on the
first rounds, the AI not having total control over the exploration ends up making
slightly less optimal decisions.

Experiment 2: Impact of the User’s Parameters. The results presented
in Fig. 2 are averaged over all user parameters. To study the impact of the
user’s conservatism and explorativeness on the optimization performance, we
exploit the possibility offered by a controlled synthetic user to directly inter-
pret the performance of our method in the case of various user profiles. The
final optimization score for different (α, β) configurations is reported in Table 1.
The scores are averaged over all combined prior knowledge configurations. These
results confirm that the AI’s strategic planning significantly improves optimiza-
tion performance in all scenarios when compared to greedy or random strategies,
but with the highest margin for conservative users. This suggests that strategic
planning is more crucial when users update their beliefs conservatively. In con-
trast, the level of user exploration does not significantly affect the size of the
margin.

As an addition to this experiment, we performed an ablation study to check
the role played by the choice of the reward (Eq. 10), comparing the cases where
C = 1 (used in all other reported experiments) and where C = 0 (which cor-
responds to reward R1 introduced in Eq. 8). The results reveal that the perfor-
mance of strategic AI deteriorates with an explorative user, by using R1 instead
of the full reward R (which corresponds to the case C = 0).
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Table 1. Impact of the user’s conservativeness (α) and explorativeness (β) onto the
optimization score.

β = 0.2 β = 0.7

α = 0.1 α = 0.6 α = 0.1 α = 0.6

GP-UCB 88.9 ± 21.4

StrategicAI, C = 1 (ours) 77.5 ± 24.8 76.2 ± 23.6 79.3± 24.7 73.5± 23.2

StrategicAI, C = 0 (ours) 79.6± 24.3 77.6± 24.7 75.5 ± 25.2 66.6 ± 23.3

GreedyAI 71.0 ± 22.6 69.4 ± 22.5 69.5 ± 22.6 67.5 ± 21.6

RandomAI 71.0 ± 20.8 64.2 ± 20.3 62.0 ± 21.2 58.7 ± 20.0

Random 52.3 ± 9.1

Experiment 3: Impact of the Prior Knowledge Allocation. Table 2 shows
the impact of the prior knowledge allocation on the optimization score when all
the (α, β) configurations are combined. The results reveal that the AI’s strategic
planning improves the optimization performance regardless of the agent and the
quality of prior knowledge they possess about the function. The only exception
occurs when both agents lack prior knowledge. This may harm the initialization
of the AI’s own Gaussian process belief. In such cases, early-round planning
becomes ineffective. It is worth mentioning that the performance gap between
the strategic AI agent and the greedy AI agent is usually most significant when
the AI agent possesses high-quality prior information, as demonstrated by the
results in rows 1-3 of Table 2.

Experiment 4: User Certainty About the Global Maximum. The opti-
mization score alone may not provide a complete picture of the performance of
collaboration, as the team may achieve a high function value but not “know”
whether it is indeed close to the global maximum. Such certainty requires knowl-
edge of the overall domain, which in turn necessitates exploration. To assess the

Table 2. Impact of the agents’ prior knowledge onto the optimization score. The
tested priors are: knowledge around the global optimum (G), knowledge around a local
optimum (L) and no prior knowledge (N). Each prior condition is indicated with a
subscript: AI for the AI agent, u for the user.

Prior StrategicAI (ours) GreedyAI

GAI & Gu 76.3± 23.3 63.6 ± 18.6

GAI & Lu 75.4± 23.7 67.4 ± 23.2

GAI & Nu 74.0± 25.1 61.3 ± 18.6

LAI & Gu 79.0± 23.0 75.8 ± 22.7

LAI & Lu 82.1± 23.8 70.1 ± 25.5

LAI & Nu 80.0± 23.5 75.1 ± 23.6

NAI & Nu 69.5 ± 23.3 72.1± 20.4
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level of exploration and knowledge, we examine the flatness of the distribution
of the maximum based on the agent’s belief over the function, represented as
p(z∗|fbelief) := p(z∗ = max(x,y) fbelief(x, y)). The degree of flatness is measured
by differential entropy. Specifically, we are interested in how effectively the AI
agent can increase the user’s certainty about the maximum, which we refer to as
the user certainty, H(p(z∗|fu)), where H is the differential entropy and fu is the
human user’s belief over the objective function. A higher user certainty value
means that the human user has a better understanding of the global maximum.

Table 3 replicates Experiment 4.2, but instead of presenting the optimiza-
tion score, it shows the user certainty about the global maximum. The results
reveal that the AI using a random strategy is the most effective approach to
reducing the user’s uncertainty about the global maximum, and that there is a
considerable amount of unexplored space left after T = 20 rounds when AI acts
strategically or greedily. However, the results also indicate that with strategic
planning, the user’s understanding of the global maximum is slightly improved,
regardless of whether they are conservative or Bayesian users and whether they
are explorative or exploitative. In addition, the observation that strategic plan-
ning enables users to explore more space is also supported by a visual inspection
of some of the experimental trials, which can be found in the appendix.

Table 3. User certainty about the global maximum at the end of the game.

β = 0.2 β = 0.7

α = 0.1 α = 0.6 α = 0.1 α = 0.6

StrategicAI 1.54 ± 0.13 1.59 ± 0.15 1.56 ± 0.17 1.56 ± 0.19

GreedyAI 1.66 ± 0.05 1.67 ± 0.06 1.68 ± 0.06 1.68 ± 0.06

RandomAI 1.27± 0.17 1.22± 0.19 1.16± 0.22 1.17± 0.22

5 Related Work

Decomposition-based Optimization. The proposed cooperative BO game resem-
bles a decomposition-based optimizer. Decomposed optimization partitions the
dimensions of the optimized function into disjoint subsets and optimizes sepa-
rately over these partitions [5]. Two popular families of decomposition-based
optimizers are coordinate descent based methods [11] and cooperative co-
evolutionary algorithms [17]. Recently, [12] proposed a decomposition-based
optimization algorithm for large-scale optimization problems, which is based
on Bayesian optimization. However, this literature is focused on algorithmic
optimization and does not address the problem from the multi-agent learning
perspective.

Multi-Agent Bayesian Optimization. The closest to our work is collaborative BO
which considers multiple parties optimizing the same objective function. Still,
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the utility from evaluating the function is individual, as [20], where a trusted
mediator selects an input query to be assigned to each party who then evaluates
the objective function at the assigned input. The main difference with our work
is the absence of this mediator. In other words, in our setting, the parties have
autonomy over their own decisions.

Human-Agent Teaming. The autonomy mentioned above is a crucial charac-
teristic of human-autonomy teams (HATs), where autonomous agents with a
partial or high degree of self-governance work toward a common goal [14,16].
The HAT literature offers numerous testbeds that enable researchers to design
algorithms and evaluate performance; a selection of these is presented in [16].
One such testbed is the game of Hanabi, which is a cooperative card game of
imperfect information for two to five players [1]. Although the proposed coop-
erative BO game is similar to Hanabi, the crucial difference is that we do not
allow direct communication, which would make collaboration easier and focus
the solution on designing the communication aspects. By contrast, in Hanabi,
players can exchange hints as a means of communication. This idea of commu-
nication is inherent to the whole field of Cooperative Game Theory [3], in which
cooperation is made possible by using binding agreements. However, this domain
mainly focuses on matrix games and not sequential repeated games in extensive
form. Recently, Sundin et al. [21] considered a similar problem for an applica-
tion to molecular design. In this work, the first agent’s action corresponds to a
restriction of a search space, and the second agent’s action to picking within the
restricted space. This differs from our work in that the function they optimize is
known by the second agent but not observed by the first agent, while we consider
a function unknown by both agents and the samples of which are observed.

6 Conclusion

We introduced a cooperative setup for Bayesian optimization of a function of two
parameters, where a user and an AI agent sequentially select one coordinate each.
The case where the AI agent chooses first is difficult because the agent cannot
know the user’s action. Therefore, we endow the AI agent with a model of the
user, i.e. a probabilistic description of the user’s behaviour and decision-making.
We use this model within a Bayes Adaptive Monte Carlo Planning algorithm
to simulate the user’s behaviour. The AI agent’s strategic planning of actions
enables making choices adapted to the user’s biases and current knowledge of
the domain. We showed empirically that our method, based on a simple user
model, leads to better optimization scores than a non-strategic planner. Even
though our algorithm is, in principle, adapted to be used with human users, the
current implementation is yet too computationally expensive to work in real-time
(calculation time of the order of a minute per action). Alleviating this issue is
an important future work to make our method usable in real-world applications
with real users.
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