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Abstract. Feature interaction networks are crucial for click-through
rate (CTR) prediction in many applications. Extensive studies have been
conducted to boost CTR accuracy by constructing effective structures
of models. However, the performance of feature interaction networks is
greatly influenced by the prior assumptions made by the model designer
regarding its structure. Furthermore, the structures of models are highly
interdependent, and launching models in different scenarios can be ardu-
ous and time-consuming. To address these limitations, we introduce a
novel framework called DTR, which redefines the CTR feature interac-
tion paradigm from a new perspective, allowing for the decoupling of its
structure. Specifically, DTR first decomposes these models into individ-
ual structures and then reconstructs them within a unified model struc-
ture space, consisting of three stages: Mask, Kernel, and Compression.
Each stage of DTR’s exploration of a range of structures is guided by
the characteristics of the dataset or the scenario. Theoretically, we prove
that the structure space of DTR not only incorporates a wide range
of state-of-the-art models but also provides potentials to identify better
models. Experiments on two public real-world datasets demonstrate the
superiority of DTR, which outperforms state-of-the-art models.

Keywords: Recommendation · CTR prediction · Feature interaction

1 Introduction

Click-through rate (CTR) prediction is critical for various applications, includ-
ing recommender systems, online advertising, and product search. Mainstream
CTR prediction models utilize an embedding table to map high-dimensional cat-
egorical features (e.g. user id and item id) to low-dimensional dense real-valued
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vectors, and a feature interaction network to model interactions and make pre-
dictions. Research has focused on optimizing the feature interaction network to
capture beneficial interactions and improve accuracy in CTR prediction.

Existing methods for capturing feature interactions can be divided into two
categories: inner product and outer product. The inner product or Hadamard
product refers to interact on the same elements of pairwise feature embedding
vectors [4,6,10,12,14,16,23], relying on a prior assumption that the embedding
of different features is in the same vector space. The outer product refer to
interact all elements of pairwise feature embedding vectors [14,22] without any
prior assumption. AOANet [7] unifies feature interaction operations by designing
generalized interaction network (GIN).

However, the performance of feature interaction networks is heavily impacted
by the model designer’s prior assumptions, resulting in potential bias in different
scenarios. If a scenario arises that contradicts the prior assumptions, the model’s
performance will deteriorate significantly. For instance, if the embedding vectors
of different features are not located in the same vector space, the inner product
or Hadamard product will perform poorly. It is recommended to let the scenario
or dataset guide the selection of appropriate structures, rather than relying solely
on prior assumptions. Furthermore, the highly interdependent nature of existing
model structures makes it difficult to identify specific components responsible for
observed performance and the process of launching models in different scenarios
can be arduous and time-consuming. One example of such challenges is when
comparing the performance of models such as DCN [21] and FwFM [12], as it is
unclear which aspect of the model contributes to the difference in performance.
Additionally, it is typically necessary to implement DCN and FwFM separately
for different scenarios due to the high coupling.

To effectively tackle these challenges, it is imperative to redefine the CTR
feature interaction paradigm from a new perspective that enables decoupling
of its structure. Therefore, we propose DTR, a novel framework that not only
accommodates the knowledge of prior model structures but also allows better
models to be explored and identified from it. Specifically, DTR first decomposes
these models into individual structures and then reconstructs them within a
unified model structure space, consisting of three stages: Mask, Kernel, and
Compression. The mask stage masks feature interaction information to indicate
which parts of the information model pay attention to. The kernel stage extracts
masked feature interaction information to determine the model’s capacity and
degrees of freedom, such as which dimensions should share information. The
compression stage aims to compress extracted feature interaction information
to balance effectiveness and efficiency. Each stage of DTR’s exploration of a
range of structures, including existing and additional structures, is guided by
the characteristics of the dataset or scenario. Theoretically, we prove that the
structure space of DTR not only incorporates a wide range of state-of-the-art
models but also provides potentials to identify better models. Furthermore, to
inherit benefits from the mixture of experts (MOE) [3,15,17] and Transformer [5,
19], we extend DTR from single channel to multiple channels to explore better
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models in multiple channels. Overall, DTR represents a unified model structure
space that enables efficient exploration and identification of superior models.
The main contributions are summarized as follows.

– We propose a novel framework called DTR, which redefines the CTR feature
interaction paradigm from a new perspective, consisting of three stages: Mask,
Kernel, and Compression. DTR can accommodate knowledge from existing
approaches and provide potential for discovering better models.

– Theoretically, we prove that the structure space of DTR not only incorporates
a wide range of state-of-the-art models but also provides potentials to identify
better models.

– Experiments on two public real-world datasets for CTR prediction tasks
demonstrate the superiority of DTR over state-of-the-art algorithms in terms
of CTR prediction performance. In addition, ablation studies provide a deeper
insight into the workings of different stages of the model and their impact on
performance and other stages.

2 Related Work

In this section, we provide an overview of the related work in the literature. Exist-
ing methods for capturing feature interactions can be divided into two categories:
inner product and outer product. The inner product or Hadamard product refers
to the interaction of pairwise feature embedding vectors on the same elements.
FM [16] is an early work in the field of recommendation, which introduces second-
order feature interaction to solve the problem that logistic regression [13] cannot
automatically extract the feature interaction information. Since FM only con-
siders the second-order feature interaction, a series of improved methods based
on FM specify operations have been proposed to extract the feature interaction
information, such as AFM [23], FwFM [12], NFM [6], DeepFM [4] and IPNN [14].
Some of these works, such as AFM and FwFM, focus on the importance of dis-
tinguishing feature interactions. On the other hand, the outer product refers to
the interaction of all elements of pairwise feature embedding vectors without
any prior assumption, as in OPNN [14], DCN-V2 [22]. DCN-V2 represents a
remarkable improvement over the DCN, as it eschews prior assumptions regard-
ing both feature interaction and weight learning, resulting in a significant perfor-
mance boost. AOANet [7] proposed a generalized interaction network (GIN) to
overcome the limitations of artificially specified operations in feature interaction.
However, as discussed in Sect. 1, existing models are designed by model designers
based on prior assumptions. For instance, DCN-V2 and AOANet remove certain
hypotheses from the model structure based on prior assumptions, rather than
specific scenarios or datasets. This means that models may introduce biases in
different scenarios and adversely impact performance.
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Fig. 1. Framework of DTR architecture. The left figure (a) shows the pipeline of
DTR. Raw features are first fed into an embedding layer to compress them into low-
dimensional feature vectors. Then, they are input in parallel to DNN and DTR to
extract feature interaction information, which is finally used for prediction. The right
figure (b) shows the structure of a single layer of DTR, consisting of the Mask, Ker-
nel, and Compression stages. In the mask stage, the feature interaction matrix is
first masked to retain only the relevant information. Next, the kernel stage interacts
the masked feature interaction matrix with the weight matrix to extract feature inter-
action information. This is followed by the Compression stage which compresses the
extracted feature information using pooling, for use as input to the next layer or for
prediction.

3 Methodology

3.1 Framework of DTR Architecture

Overview. To establish a framework of existing model structures, we decom-
pose the model architecture into three distinct stages, i.e., Mask, Kernel, and
Compression, with an integrated DNN in parallel for extracting feature inter-
action information, as illustrated in Fig. 1(a). Specifically, as shown in Fig. 1(b),
the mask stage first masks the matrix of the feature interaction information, and
then the kernel stage extracts information from the masked feature interaction
matrix, which is followed by the compression stage compressing the extracted
feature information.

Embedding. Features of candidate items are usually sparse, discrete, and
highly dimensional in industrial online recommendation scenarios, causing that
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the feature interaction information is hard to extract. To handle this challenge,
existing model architectures usually adopt an embedding function E(·) to trans-
form the input features xi into continuous and low-dimensional vectors ai ∈ R

d:

ai = E(xi) = Vi · xi, ∀i = 1, 2, . . . , n, (1)

where Vi denotes the embedding matrix. For clarity, we denote X =
{x1, x2, ..., xn} by the integrated input features, and A = {a1, a2, ..., an} by
the matrix of embedding vectors of all input features. For simplicity, we use
A = E(X) to denote the embedding operation (1) in the following.

Mask. After obtaining the embedding vectors A = {a1, a2, ..., an}, the outer
product is applied to any two vectors ai, aj ∈ A to extract the feature interaction
information Z ∈ R

nd×nd, as Z(i−1)d+1:id,(j−1)d+1:jd = ai ⊗ aj , where ⊗ denotes
the outer product and Z(i−1)d+1:id,(j−1)d+1:jd ∈ R

d×d denotes the block in the
i-th row and j-th column of Z. For clarity, we denote Z(i−1)d+1:id,(j−1)d+1:jd

by Bij . Considering that inappropriate interaction may even bring interventions
between features, each block B of feature interaction matrix Z is further masked
as

BM = B � M, (2)

where BM denotes the masked result, and � denotes the element-wise product
of two matrixes. After the mask stage, Z is transformed into masked feature
interaction matrix ZM ∈ R

nd×nd.

Kernel. The kernel stage extracts information from the masked feature inter-
action matrix ZM , indicating the capacity and degrees of freedom of the model.
Inspired by the mixture of experts (MOE) [3,15,17] and Transformer [5,19], we
build the framework of DTR with multiple channels to learn the extracted infor-
mation in parallel. Specifically, we consider that there is C channels with kernel
parameters matrix W c ∈ R

nd×nd to learn from the masked feature interaction
matrix ZM as

Zc
k = ZM � W c, ∀c = 1, 2, · · · , C. (3)

where Zc
k ∈ R

nd×nd denotes the result obtained from the c-th channel. Similarly,
we use ZK = {Z1

k , Z2
k , . . . , ZC

k } to denote the result set consisting of Zc
k from all

channels.

Compression. Considering that the feature information obtained from the
multi-channels kernel are highly-dimensional, we adopt the compression tech-
nology to reduce the size of the features for improving the efficiency of the
model. Specifically, we leverage the pooling operation Pool(·) with the matrix P
to make compression, as:

ZC = Pool(ZK , P ), (4)

where ZC denotes the obtained matrix after the compression stage P denotes
the shape of the submatrix of ZK which is aggregated to one scalar element
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in ZC . It is worthwhile to note that the size of P is adaptively determined in
the learning process. Finally, the feature interaction compression matrix ZC is
flattened and delivered to the fully connected layer for CTR prediction.

Deep Network. Like previous studies, we adopt fully connected network to
extract implicit interaction information:

Hl = σ(WlHl−1 + bl), (5)

where Hl is output of lth layer, σ(·) is activation function which is RELU in our
model, Wl and bl are weights and bias of lth respectively.

Table 1. Connection between DTR and related models. n denotes the number of
features, d denotes the size of the embedding vector. Mask matrix M ∈ R

d×d is a zero-
one matrix, where mi,j denotes the element in i-th row and j-th column, ∀i∀j ∈ [d]. All
models using

∑
(sum compression) in CM . Note: Kernel weight sharing description

can be seen in Appendix.

Model Mask matrix Kernel weight sharing Compression matrix

IPNN M = {mij = 1|∀i∀j, i = j} Intra-block Sharing P ∈ R
d×d, ZCi,j =

i+d∑

p=i

j+d∑

q=j

ZKp,q , ∀i∀j ∈ [n]

OPNN M = {mij = 1|∀i∀j} Intra-block Sharing P ∈ R
d×d, ZCi,j =

i+d∑

p=i

j+d∑

q=j

ZKp,q , ∀i∀j ∈ [n]

FwFM M = {mij = 1|∀i∀j, i = j} Intra-block Sharing P ∈ R
d×d, ZCi,j =

i+d∑

p=i

j+d∑

q=j

ZKp,q , ∀i∀j ∈ [n]

AFM M = {mij = 1|∀i∀j, i = j} Non-linear Intra-block Sharing P ∈ R
d×d, ZCi,j =

i+d∑

p=i

j+d∑

q=j

ZKp,q , ∀i∀j ∈ [n]

DCN M = {mij = 1|∀i∀j, i = j} Row Sharing P ∈ R
1×nd, ZCi =

nd∑

j=1

ZKi,j , ∀i ∈ [nd]

DCN-V2 M = {mij = 1|∀i∀j} No Sharing P ∈ R
1×nd, ZCi =

nd∑

j=1

ZKi,j , ∀i ∈ [nd]

xDeepFM M = {mij = 1|∀i∀j} Intra-block Sharing P ∈ R
n×n, ZCi,j =

n∑

p=1

n∑

q=1

ZKi+pd,j+pd , ∀i∀j ∈ [d]

AOANet M = {mij = 1|∀i∀j} Intra-block Sharing & Block Element Sharing P ∈ R
nn×d, ZCi =

n∑

p=1

nd∑

q=1

ZKi+pd,q , ∀i ∈ [d]

3.2 Model Analysis

We dive into connections between DTR and related models, as shown in Table 1.
Theoretically, we show that DTR can be equal to extensive known CTR fea-
ture interaction networks. Due to space constraints, we analyze xDeepFM,
IPNN&OPNN here, and defer other model analyses to the Appendix1. For
Pool(·), all of the CTR feature interaction networks use

∑
(sum compression).

Since multi-layer CTR feature interaction networks are constructed recursively
with the same structure, for simplicity we propose analysis on the first layer.

1 https://github.com/GeekRaw/Decompose-Then-Reconstruct-A-Framework-of-
Network-Structures-for-Click-Through-Rate-Prediction.

https://github.com/GeekRaw/Decompose-Then-Reconstruct-A-Framework-of-Network-Structures-for-Click-Through-Rate-Prediction
https://github.com/GeekRaw/Decompose-Then-Reconstruct-A-Framework-of-Network-Structures-for-Click-Through-Rate-Prediction


428 J. Li et al.

xDeepFM. The first layer of xDeepFM is given by:

X1 =
∑

i,j

ws
i,j(X

j,∗
0 � Xi,∗

0 ) =
∑

i,j

ws
i,j(e

i � ej), (6)

where X1 denotes the first layer output, s is a hyper-parameter that represents
the number of feature vectors. ws is the weight matrix for s-th feature vector.
The main connection lies in the number of feature vectors, where one feature
vector corresponds to one channel of DTR.

Theorem 1. The structure of DTR is equivalent to xDeepFM when its
mask matrix M = {mij = 1|∀i∀j, i = j}, kernel weight matrix W =
{wij |∀i∀j, wi,j = w�i/d�,�j/d�}, and compression matrix P ∈ R

n×n, ZCi,j
=

n∑

p=1

n∑

q=1
ZKi+pd,j+pd

,∀i, j ∈ [d].

Proof. Interaction of p-th and q-th feature vector in the first layer of DTR is
given by Bp,q = ep ⊗ eq. Give mask matrix M = {mij = 1|∀i∀j, i = j}, we have

Bp,q
M = Bp,q � M = diag(ep1e

q
1, e

p
2e

q
2, . . . , e

p
de

q
d). (7)

Denote W [p, q] ∈ R
d×d by a submatrix of W which equals to Bp,q

M . Considering
that ∀i, ∀j, wi,j = w�i/d�,�j/d�, we conclude that each element in W [p, q] shares
the same value denoted as wp,q. Thereby, we have

ZK =W [p, q]�Bp,q
M =[W [p, q]]d×d�Bp,q

M =wp,qB
p,q
M . (8)

Given P ∈ R
n×n, ZCi,j

=
n∑

p=1

n∑

q=1
ZKi+pd,j+pd

,∀i, j ∈ [d], combining with (7) and

(8), we have
Z1
C =

∑

p,q

wp,qdiag(ep1e
q
1, e

p
2e

q
2, . . . , e

p
de

q
d). (9)

Noting that
ep � eq = [ep1e

q
1, e

p
2e

q
2, . . . , e

p
de

q
d], (10)

we can derive that
X1 = Z1

C [1, . . . , 1]T , (11)

which completes the proof.

IPNN & OPNN. The first layer of IPNN is given by:

X1 = W n
p � p =

n∑

i=1

n∑

j=1

〈
θi
n,θj

n

〉 〈
f i,f j

〉
=

n∑

i=1

n∑

j=1

(θni � θnj )(ei � ej), (12)

where n denotes the number of field feature, θin, θjn ∈ R
n, fi, fj ∈ R

d.
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Theorem 2. The structure of DTR is equivalent to IPNN when its mask matrix
M = {mij = 1|∀i∀j, i = j}, kernel weight matrix W = {wij |∀i∀j, wi,j =

w�i/d�,�j/d�}, and compression matrix P ∈ R
d×d, ZCi,j

=
i+d∑

p=i

j+d∑

q=j

ZKp,q
,∀i∀j ∈

[n].

Proof. For the first layer of IPNN, denote θin, θjn ∈ R
n as wij ∈ R

n×n, we can
derive that

X1 =
n∑

i=1

n∑

j=1

wij(ei � ej), (13)

Interaction of p-th and q-th feature vector in the first layer of DTR is given by
Bp,q = ep ⊗ eq. Give mask matrix M = {mij = 1|∀i∀j, i = j}, we have

Bp,q
M = Bp,q � M = diag(ep1e

q
1, e

p
2e

q
2, . . . , e

p
de

q
d). (14)

Denote W [p, q] ∈ R
d×d by a submatrix of W which equals to Bp,q

M . Considering
that ∀i, ∀j, wi,j = w�i/d�,�j/d�, we conclude that each element in W [p, q] shares
the same value denoted as wp,q. Thereby, we have

ZK =W [p, q]�Bp,q
M =[W [p, q]]d×d�Bp,q

M =wp,qB
p,q
M . (15)

Given P ∈ R
d×d, ZCi,j

=
i+d∑

p=i

j+d∑

q=j

ZKp,q
,∀i∀j ∈ [n], combining with (14) and (15),

we have
Z1
C =

∑

p,q

wp,qdiag(ep1e
q
1, e

p
2e

q
2, . . . , e

p
de

q
d). (16)

Noting that
ep � eq = [ep1e

q
1, e

p
2e

q
2, . . . , e

p
de

q
d], (17)

we can derive that
X1 = Z1

C [1, . . . , 1]T , (18)

which completes the proof.

OPNN has the same kernel and compression structure as IPNN except that the
mask structure is different from IPNN.

4 Evaluations

In this section, we conduct experiments on two public datasets to verify the
effectiveness of the model in a real-world application environment. We aim to
answer the following questions:

– RQ1: How does our proposed model perform as compared to the state-of-the-
art methods?

– RQ2: How do different structures and settings influence the performance?
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4.1 Evaluation Setup

Datasets. We conduct offline experiments on two real-world dataset: Criteo2

and Avazu3.

– Criteo dataset consists of user click data for displayed ads over a period of
7 d, which contains 13 numeric fields and 26 categorical fields. To process the
numeric features, we apply a discretization function, which maps each value
x to �log2(x)� if x > 2, and x = 1 otherwise. For the categorical features, we
replace any feature that appears less than 10 times with a default “OOV”
token.

– Avazu dataset contains mobile advertising data that spans a period of 10 d,
and includes 22 feature fields that describe both user characteristics and
advertisement attributes. We extract three new fields from the timestamp
field: hour, weekday, and is weekend. In addition, we handle categorical fea-
tures that appear less than twice by replacing them with a default “OOV”
token.

We randomly split each dataset into 80/10/10% train-test-validation splits.
Criteo x4 and Avazu x4 dataset are used in experiments, and data preprocessing
refers to FuxiCTR [25].

Table 2. Mask structure w.r.t. mask matrix. d denotes the size of the embedding
vector. Mask M ∈ R

d×d is a zero-one matrix, where mi,j denotes the element in i-
th row and j-th column, ∀i∀j ∈ [d]. M5 denotes random mask according to r, which
indicates the random mask ratio (RMR). r=0 indicates all-one matrix, r=1 indicates
all-zero matrix.

Mask Structure Mask Matrix Mask Structure Mask Matrix

M0 {mij = 1} M1 {mij = 1|i ≤ j}
M2 {mij = 1|i ≥ j} M3 {mij = 1|i �= j}
M4 {mij = 1|i + j − 1 �= d} M6 {mij = 1|i = j}

Baselines. We compared our model with eight feature interaction networks
commonly used in the industry, including IPNN [14], OPNN [14], FwFM [12],
AFM [23], DCN [21], DCN-V2 [22], xDeepFM [10], and AOANet [7]. Results of
some models such as FmFM [18], AFN+ [2] and InterHAT [9] are not presented
in this paper, because more recent models like xDeepFM [10] and DCN-V2 [22]
have outperformed these methods significantly as experiments in BARS [24]
shows.

Metrics. We use two widely-used metrics, Logloss and AUC, to evaluate the
performance of all models. Notably, for CTR prediction task, a 0.001-level

2 https://www.kaggle.com/competitions/criteo-display-ad-challenge.
3 https://www.kaggle.com/c/avazu-ctr-prediction.

https://www.kaggle.com/competitions/criteo-display-ad-challenge
https://www.kaggle.com/c/avazu-ctr-prediction
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Table 3. Kernel structure w.r.t. kernel weight sharing. Their constraints can be found
in Appendix.

Kernel Struc Sharing Type of Kernel Weight Kernel Struc Sharing Type of Kernel Weight

K0 Full K1 No

K2 Row K3 Intra-block

K4 Block Row K5 Intra-block Element

K6 Intra-block Dimension K7 Non-linear

K8 Intra-block & Intra-block Element

Table 4. Compression structure w.r.t. matrix. n denotes the number of features. d
denotes the size of embedding vector.

Compression Struc Compression Matrix

P0 P ∈ R
1×1, ZC =

nd∑

p=1

nd∑

p=1

ZKp,q

P1 P ∈ R
nd×nd, ZCi,j = ZKi,j , ∀i∀j ∈ [nd]

P2 P ∈ R
1×nd, ZCi =

nd∑

j=1

ZKi,j , ∀i ∈ [nd]

P3 P ∈ R
d×d, ZCi,j =

i+d∑

p=i

j+d∑

q=j

ZKp,q , ∀i∀j ∈ [n]

P4 P ∈ R
nd×d, ZCi =

nd∑

p=1

d∑

q=1

ZKp,q , ∀i ∈ [n]

P5 P ∈ R
1×d, ZCi =

d∑

j=1

ZKi,j , ∀i ∈ [nd], ∀j ∈ [n]

P6 P ∈ R
n×n, ZCi,j =

n∑

p=1

n∑

q=1

ZKi+pd,j+pd , ∀i∀j ∈ [d]

P7 P ∈ R
nn×d, ZCi =

n∑

p=1

nd∑

q=1

ZKi+pd,q , ∀i ∈ [d]

improvement is considered significant, as has been pointed out in existing
literature [4,21,22].

Model Settings. The structures of DTR are shown in Table 2, Table 3, Table 4.
In addition, the compression method includes three types: S0, S1, and S2. S0 cor-
responds to the operation of maximum compression, S1 corresponds to average
compression, and S2 adopts accumulation compression. It is worth noting that,
in order to better explore the space of model architectures, we have developed
novel structures that have not been previously identified by existing models.
This approach enables us to more thoroughly investigate the design space and
potentially discover more effective models that were previously undiscovered.

Parameter Setting. For fair comparison, we set the same embedding size,
batch size, and optimizer for all models, which are 8, 8192, and Adam Optimizer
respectively. Specifically, for each dataset of different scenarios, such as Criteo
and Avazu, we utilize the Block Coordinate Descent (BCD) [1,20] method in



432 J. Li et al.

Table 5. Model structure settings. r denotes the random mask ratio. C denotes the
number of channels.

Model Mask structure Kernel structure Compression structure

IPNN M6 K3 P3, S2

OPNN M0 K3 P3, S2

FwFM M6 K3 P3, S2

AFM M6 K7 P3, S2

DCN M6 K2 P2, S2

DCN-V2 M0 K1 P2, S2

xDeepFM M6 K3 P6, S2

AOANet M0 K8 P7, S2

DTRCriteo M5, r = 0.1 K1, C = 1 P3, S2

DTRAvazu M5, r = 0.4 K1, C = 2 P3, S2

combination with Beam Search [8,11] to search for the optimal structure of
DTR in the scenario. Moreover, we use the DTR framework to reproduce each
model, as Table 5 shows. The deep component also keeps the same for all models.
The numbers of hidden units for each layer are [400, 400, 400] from bottom to
top respectively. For other models, we take the optimal settings from original
papers. We conducted three rounds of repeated experiments for each model, and
then recorded the average of metrics as the final results.

4.2 Performance Comparison (RQ1)

Table 6. Overall performance on Criteo and Avazu dataset. (Logloss ×10−2)

Dataset Metrics Model Improv.

IPNN OPNN FwFM AFM DCN DCN-V2 xDeepFM AOANet DTR

Criteo LogLoss 44.59 45.09 44.60 44,59 44.69 44.31 44.51 44.45 44.13 −0.18

AUC(%) 80.57 80.02 80.56 80.56 80.46 80.83 80.65 80.73 81.07 +0.24

Avazu LogLoss 37.79 38.14 37.76 37.79 37.80 37.68 37.77 37.73 37.54 −0.14

AUC(%) 78.33 77.73 78.38 78.32 78.30 78.51 78.35 78.41 78.75 +0.24

In this section, we discuss the experimental results demonstrated in Table 6. The
results demonstrate that DTR outperforms all baselines on Criteo and Avazu
two datasets. In particular, compared to the current SOTA model DCN-V2,
DTR achieves a Logloss reduction of 0.18×10−2 and AUC improvement of 0.24%
on the Criteo dataset, as well as a Logloss reduction of 0.14×10−2 and AUC
improvement of 0.24% on the Avazu dataset. This demonstrates that DTR can
not only implement extensive known CTR feature interaction networks, but also
discover the optimal structure for different stages, which identifies some novel
models that have not been proposed yet.
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In addition, there are also some other interesting observations. We find that
the mask, kernel, and compression structures are not independent, but rather
exhibit a degree of coupling, and that a local optimal structure at any stage
may not be optimal for the entire framework. OPNN has the worst performance
among all models, and the mask structure uses M0, but DCN-V2 and AOANet
have good performance, which also use M0. Another observation is that the per-
formance of AFM ties with FwFM in both datasets. From the perspective of the
DTR framework, the difference between FwFM and AFM lies in the difference
in the kernel structure. FwFM adopts an intra-block weight sharing structure,
while AFM learns the block importance through a shared MLP called atten-
tion network on this basis. It is not critical to establish the connection kennel
between feature interaction terms and their significant coefficients. Furthermore,
The model performance is closely related to the setting of the kernel structure.
The sharing type of kernel weight greatly affects the performance of the model,
such as DTR (r = 0) and OPNN. The biggest difference lies in the kernel struc-
ture. There is a huge gap in its performance, with an improvement of 1.05% on
Criteo dataset and 1.02% on the Avazu dataset in terms of AUC.

4.3 Ablation Study (RQ2)

We conducted several ablation experiments to investigate the effectiveness of
each stage in the DTR framework. During the ablation experiments, we set
other parameters as initial settings to reduce interference and better explore the
performance of each structure of DTR.

(e) Stru. of Mask (f) Stru. of Kernel (g) Stru. of Comp. (h) Method of Comp.

(i) Number of RMR (j) Number of Layers (k) Number of Channels

Fig. 2. Ablation study of model setting on the performance of AUC.
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Structure of Mask. Table 2 presents the mask structures used in our exper-
iments, and the results are shown in Fig. 2(e). For the random mask structure
M5, we experiment with different ratios and selected the final optimal result
for M5. The experimental results for various random mask ratios are shown in
Fig. 2(i). The results indicate that, except M0 and M5 without any assump-
tions, have relatively good and stable performance on both datasets, while other
mask structures vary significantly. Specifically, M6 performs poorly in the Criteo
dataset but performs well in Avazu. This reinforces our previous statement that
prior assumptions regarding the model structure can significantly impact perfor-
mance in different scenarios. Additionally, this further highlights the importance
of the DTR framework, which can optimize the mask structure for each CTR
prediction task to achieve optimal performance. Among all mask structures, M5

performs the optimal in both datasets. Moreover, Fig. 2(i) indicates that the opti-
mal random mask ratios are 10% and 40% for the Criteo and Avazu datasets,
respectively. These results suggest that there exists some redundancy in the fea-
ture interaction information and that appropriate random mask can improve the
performance. However, excessive masking can significantly affect the expression
of feature interaction information, resulting in performance degradation.

Structure of Kernel. The descriptions of kernel structures are shown in
Table 3, and the experimental results are presented in Fig. 2(f). Among all kernel
structures, the optimal kernel structure is K1, indicating that the interaction
between any dimension of any feature embedding vector in the feature inter-
action matrix is different, and that the kernel structure achieves optimal per-
formance without any assumptions. Furthermore, the size of the kernel weight
matrix may also affect the performance. For K0, the entire feature interaction
matrix shares the same weight, resulting in the worst performance. On the other
hand, K1 does not share the weight of the feature interaction matrix, which
leads to the most weight learned and optimal performance achieved. It is worth
noting that different kernel weight sharing structures have a significant impact
on performance. For instance, even though K3 learns much more weight than
K5 and K6, its performance is far worse than K5 and K6 due to the different
weight sharing of structures. Specifically, K3 uses the same weight for each block,
while K5 and K6 adopt the same weight for all blocks of the same element and
dimension, respectively. Consequently, different feature interaction information
between different dimensions of feature embedding vectors and small interac-
tion difference between different feature embedding vectors result. Overall, this
experiment highlights the importance of selecting the appropriate kernel weight
sharing structure for achieving optimal performance.

Structure of Compression. Table 4 describes the compression structures used
in the experiment, while the experimental results are presented in Fig. 2(g).

The results demonstrate that P3, which uses intra-block compression,
achieves the optimal performance in both datasets. This suggests that informa-
tion of the same feature interaction block can more effectively express the entire
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feature interaction matrix information. Furthermore, P1 adopts full compression
and has the worst performance, followed by P0 which does not compress to any
level and retains the entire matrix. Therefore, it is crucial to use an appropriate
compression structure when compressing the feature interaction matrix.

Moreover, we explored a novel question that previous research has not
addressed: which compression method works better. Figure 2(h) presents the
experimental results. Interestingly, the sum compression method, which is com-
monly used, achieves the optimal performance. It is noteworthy that the sum
compression method is a scalar multiple of the average compression method,
with the scalar value equal to the length of the pairwise feature embedding vec-
tors product. However, the average compression method performs much worse
than the sum compression method, which may be due to the fact that it reduces
the amount of feature interaction term information and the difference between
different feature interaction terms, thus affecting the expression of the original
feature interaction term information.

Number of Channels. Figure 2(k) shows that the optimal setting for C is 1
and 3 for Criteo and Avazu dataset, respectively. We can know that the large
dataset contains more feature information, so the number of channels is relatively
less important and does not necessarily boost performance. When working with
a small dataset, increasing parallelism can lead to performance improvements.

Number of Layers. Figure 2(j) shows that the model performance promotes
when L increases from 1 to 2. However, as L continues to increase, the perfor-
mance improves slightly and even starts to decay. In addition, Table 5 shows the
optimal setting of L does not exceed 3, which implies that feature interactions
above third order may provide very little information for the sake that they are
extremely sparse.

5 Conclusions

In this paper, we propose a unified framework called DTR that explores and
optimizes the model structure for CTR prediction tasks. DTR decomposes these
models into individual structures and then reconstructs them within a unified
model structure space, consisting of three stages: Mask, Kernel, and Compres-
sion. Theoretically, we have demonstrated that the structure space of DTR not
only incorporates a wide range of state-of-the-art models but also provides poten-
tials to identify better models. Experimental results on two public real-world
datasets confirm the superiority of DTR over state-of-the-art algorithms.
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8. Lemons, S., López, C.L., Holte, R.C., Ruml, W.: Beam search: faster and mono-
tonic. In: Proceedings of the International Conference on Automated Planning and
Scheduling, vol. 32, pp. 222–230 (2022)

9. Li, Z., Cheng, W., Chen, Y., Chen, H., Wang, W.: Interpretable click-through rate
prediction through hierarchical attention. In: Proceedings of the 13th International
Conference on Web Search and Data Mining, pp. 313–321 (2020)

10. Lian, J., Zhou, X., Zhang, F., Chen, Z., Xie, X., Sun, G.: xDeepFM: combining
explicit and implicit feature interactions for recommender systems. In: Proceedings
of the 24th ACM SIGKDD International Conference on Knowledge Discovery &
Data Mining, pp. 1754–1763 (2018)

https://doi.org/10.24963/ijcai.2017/239


Decompose, Then Reconstruct 437

11. Libralesso, L., Focke, P.A., Secardin, A., Jost, V.: Iterative beam search algorithms
for the permutation flowshop. Eur. J. Oper. Res. 301(1), 217–234 (2022)

12. Pan, J., Xu, J., Ruiz, A.L., Zhao, W., Pan, S., Sun, Y., Lu, Q.: Field-weighted
factorization machines for click-through rate prediction in display advertising. In:
Proceedings of the 2018 World Wide Web Conference, pp. 1349–1357 (2018)

13. Peng, C.Y.J., Lee, K.L., Ingersoll, G.M.: An introduction to logistic regression
analysis and reporting. J. Educ. Res. 96(1), 3–14 (2002)

14. Qu, Y., Cai, H., Ren, K., Zhang, W., Yu, Y., Wen, Y., Wang, J.: Product-based
neural networks for user response prediction. In: 2016 IEEE 16th International
Conference on Data Mining (ICDM), pp. 1149–1154. IEEE (2016)

15. Rajbhandari, S., et al.: DeepSpeed-MoE: advancing mixture-of-experts inference
and training to power next-generation AI scale. In: International Conference on
Machine Learning, pp. 18332–18346. PMLR (2022)

16. Rendle, S., Gantner, Z., Freudenthaler, C., Schmidt-Thieme, L.: Fast context-aware
recommendations with factorization machines. In: Proceedings of the 34th Inter-
national ACM SIGIR Conference on Research and Development in Information
Retrieval, pp. 635–644 (2011)

17. Riquelme, C., et al.: Scaling vision with sparse mixture of experts. Adv. Neural.
Inf. Process. Syst. 34, 8583–8595 (2021)

18. Sun, Y., Pan, J., Zhang, A., Flores, A.: FM2: field-matrixed factorization machines
for recommender systems. In: Proceedings of the Web Conference 2021, pp. 2828–
2837 (2021)

19. Tay, Y., Dehghani, M., Bahri, D., Metzler, D.: Efficient transformers: a survey.
ACM Comput. Surv. 55(6), 1–28 (2022)

20. Tseng, P.: Convergence of a block coordinate descent method for nondifferentiable
minimization. J. Optim. Theory Appl. 109(3), 475 (2001)

21. Wang, R., Fu, B., Fu, G., Wang, M.: Deep & cross network for ad click predictions.
In: Proceedings of the ADKDD’17, pp. 1–7 (2017)

22. Wang, R., Shivanna, R., Cheng, D., Jain, S., Lin, D., Hong, L., Chi, E.: DCN V2:
improved deep & cross network and practical lessons for web-scale learning to rank
systems. In: Proceedings of the web conference 2021, pp. 1785–1797 (2021)

23. Xiao, J., Ye, H., He, X., Zhang, H., Wu, F., Chua, T.S.: Attentional factoriza-
tion machines: learning the weight of feature interactions via attention networks.
In: Proceedings of the Twenty-Sixth International Joint Conference on Artificial
Intelligence, IJCAI-17, pp. 3119–3125 (2017). https://doi.org/10.24963/ijcai.2017/
435

24. Zhu, J., et al.: BARS: towards open benchmarking for recommender systems. In:
The 45th International ACM SIGIR Conference on Research and Development in
Information Retrieval (SIGIR’22) (2022)

25. Zhu, J., Liu, J., Yang, S., Zhang, Q., He, X.: Open benchmarking for click-through
rate prediction. In: The 30th ACM International Conference on Information and
Knowledge Management (CIKM’21), pp. 2759–2769 (2021)

https://doi.org/10.24963/ijcai.2017/435
https://doi.org/10.24963/ijcai.2017/435

	Decompose, Then Reconstruct: A Framework of Network Structures for Click-Through Rate Prediction
	1 Introduction
	2 Related Work
	3 Methodology
	3.1 Framework of DTR Architecture
	3.2 Model Analysis

	4 Evaluations
	4.1 Evaluation Setup
	4.2 Performance Comparison (RQ1)
	4.3 Ablation Study (RQ2)

	5 Conclusions
	References




