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Abstract. Can we inject the pocket-ligand complementarity knowledge
into the pre-trained model and jointly learn their chemical space? Pre-
training molecules and proteins have attracted considerable attention
in recent years, while most of these approaches focus on learning one
of the chemical spaces and lack the consideration of their complemen-
tarity. We propose a co-supervised pre-training (CoSP) framework to
learn 3D pocket and ligand representations simultaneously. We use a
gated geometric message passing layer to model 3D pockets and ligands,
where each node’s chemical features, geometric position, and direction
are considered. To learn meaningful biological embeddings, we inject the
pocket-ligand complementarity into the pre-training model via Chem-
InfoNCE loss, cooperating with a chemical similarity-enhanced nega-
tive sampling strategy to improve the representation learning. Through
extensive experiments, we conclude that CoSP can achieve competitive
results in pocket matching, molecule property prediction, and virtual
screening.

Keywords: AI for Science · Bioinformatics · Molecular
Representation Learning · Graph Neural Networks

1 Introduction

Is there a pre-trained model that explores the chemical space of pockets and
ligands while considering their complementarity? Recently, many deep learning
methods have been proposed to understand the chemical space of protein pockets
or drug molecules (or called ligands) and facilitate drug design in many aspects,
e.g., finding hits for a novel target [59], repurposing ancient drugs for new targets
[25,57,67], and searching for similar pockets and molecules [35,46]. While these
models have shown promising potential in learning separate pocket space or
molecular space for specific tasks [17,21,31,47,71], jointly pre-training pockets
and ligands considering their complementarity remains to be explored.

We propose co-supervised pretraining (CoSP) framework for understanding
the joint chemical space of pockets and ligands. Taking the ligand as an example,
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contrastive self-supervised pre-training [17,49,56] has yielded significant achieve-
ments in recent years. By identifying well-defined positive and negative ligand
pairs via contrastive loss, the model can learn the underlying knowledge to facil-
itate downstream tasks. However, these self-supervised methods only capture
data dependencies in the ”self” domain while ignoring additional information
from other complementary fields, such as bindable pockets. Meanwhile, previ-
ous studies [1,5,11,37] have shown that pocket-ligand complementarity play a
crucial role in determining molecular properties, since chemically similar ligands
tend to bind to similar pockets. Inspired by this, we introduce cross-domain
dependencies between pockets and ligands to improve molecular representation
learning.

We propose gated geometric massage passing (GGMP) layer to extract
expressive bio-representations for 3D pockets and ligands. All bio-objects are
treated as 3D graphs [20,24] in that each node contains invariant chemical
features (atomic number, etc.) and equivalent geometric features (position and
direction). For each bio-object, we optimize the pairwise energy function [22],
which considers both chemical features and geometric features via the gated
operation. By minimizing the energy function, we derive the updating rules of
position and direction vectors. Finally, we combine these rules with classical
message passing, resulting in GGMP.

We introduce ChemInfoNCE loss to reduce the negative sampling bias [9,39].
When applying contrastive learning, the false negative pairs that are actually
positive will lead to performance degradation, called negative sampling bias.
Chuang [9] assumes that the label distribution of the classification task is uni-
form and propose DebiasedInfoNCE to alleviate this problem. Considering the
specificity of the molecules and extending the situation to continuous properties
prediction (regression task), we introduce chemical similarity-enhanced negative
ligand sampling. Interestingly, improving the sampling strategy is equivalent to
modifying sample weights; thus, we provide a systematic understanding from
the view of loss functions and propose ChemInfoNCE.

We evaluates our model on several downstream tasks, from pocket matching,
molecule property prediction to virtual screening. Numerous experiments show
that our approach can achieve competitive results on these tasks, suggesting that
the pocket-ligand complementarity could improve biorepresentation learning.

2 Related Work

Motivation. Protein and molecule achieve their biological functions by binding
to each other [7], thus exploring the protein-ligand complex help to improve the
understanding of both proteins, molecules, and their interactions. To improve
generalization and reduce complexity, we further consider local patterns about
the protein pocket x and the bindable ligand x̂. Taking (x, x̂) as the positive
pair, while (x, x̂−) as the negative pair, where x̂− cannot bind to x, we aims to
pre-train a pocket model f : x �→ h and a ligand model f̂ : x̂ �→ ĥ, such that the
mutual information between h and ĥ are maximized.
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Table 1. Protein and molecule pre-training methods

Protein Molecule

Method Data Code Year Method Data Code Year

CPCProt [33] sequence PyTorch 2020 FragNet [44] SMILEs – 2021

Profile Prediction [48] sequence – 2020 MoCL [49] graph PyTorch 2021

ONTOPROTEIN [70] sequence PyTorch 2022 MPG [29] graph PyTorch 2021

CARP sequence – 2022 Grover [40] graph PyTorch 2020

GearNet 3D – 2022 MICRO-Graph [71] graph – 2020

CKGNN [17] graph – 2021

MGSSL [73] graph PyTorch 2021

MolCLR [56] graph PyTorch 2022

3DInfomax [47] graph+3D PyTorch 2021

GraphMVP [31] graph+3D – 2022

GEM [16] graph+3D Paddle 2022

Equivalent 3D GNN. Extensive works have shown that 3D structural conforma-
tion can improve the quality of bio-representations with the help of equivalent
massage passing layer [4,6,10,19,41,50]. Inspired by the energy analysis [20,22],
we propose a new gated geometric massage passing (GGMP) layer that consider
not only the node position but also its direction, where the latter could indicate
the location of pocket cavities and the angle of molecular bonds.

InfoNCE. The original InfoNCE is proposed by [36] to contrast semantically
similar (positive) and dissimilar (negative) pairs of data points, such that the
representations of similar pairs (x, x̂) to be close, and those of dissimilar pairs
(x, x̂−) to be more orthogonal. By default, the negative pairs are uniformly sam-
pled from the data distribution. Therefore, false negative pairs will lead to signif-
icant performance drop. To address this issue, DebaisedInfoNCE [9] is proposed,
which assumes that the label distribution of the classification task is uniform.
Although DebaisedInfoNCE has achieved good results on image classification,
it is not suitable for direct transfer to regression tasks, as the uniform distribu-
tion assumption is too strict. For bio-objects, we discard the above assumption,
extend the situation to continuous attribute prediction, use fingerprint similarity
to measure the probability of negative ligands, and propose ChemInfoNCE.

Self Bio Pre-training. Many pre-training methods have been proposed for a sin-
gle protein or ligand domain, which can be classified as sequence-based, graph-
based or structure-based. We summarize the protein pre-training models in
Table.1. As for sequential models, CPCPort [33] maximizes the mutual infor-
mation between predicted residues and context. Profile Prediction [48] suggests
predicting MSA profile as a new pre-training task. OntoProtein [70] integrates
GO (Gene Ontology) knowledge graphs into protein pre-training. While most
of the sequence models rely on the transformer architecture, CARP [66] finds
that CNNs can achieve competitive results with much fewer parameters and
runtime costs. Recently, GearNet [74] explores the potential of 3D structural

https://github.com/amyxlu/CPCProt.git
https://github.com/illidanlab/MoCL-DK.git
https://github.com/zjunlp/OntoProtein
https://github.com/pyli0628/MPG.git
https://github.com/tencent-ailab/grover.git
https://github.com/zaixizhang/MGSSL
https://github.com/yuyangw/MolCLR
https://github.com/HannesStark/3DInfomax.git
https://github.com/PaddlePaddle/PaddleHelix/tree/dev/apps/pre-trained_compound/ChemRL/GEM
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pre-training from the perspective of masked prediction and contrastive learn-
ing. We also summarize the molecule pre-training models in Table.1. As for
sequential models, FragNet [44] combines masked language model and multi-
view contrastive learning to maximize the inner mutual information of the same
SMILEs and the agreement across augmented SMILEs. Beyond SMILEs, more
approaches [17,29,40,49,56,71,73] tend to choose graph representation that can
better model structural information. For example, Grover [40] integrates message
passing and transformer architectures and pre-trains a super-large GNN using 10
million molecules. MICRO-Graph [71] and MGSSL [73] use motifs for contrastive
learning. Considering the domain knowledge, MoCL [49] uses substructure sub-
stitution as a new data augmentation operation and predicts pairwise fingerprint
similarities. Although these pre-training methods show promising results, they
do not consider the 3D molecular conformations. To fill this gap, GraphMVP
[31] and 3DInfomax [47] explore to maximize the mutual information between
3D and 2D views of the same molecule and achieve further performance improve-
ments. Besides, GEM [16] proposes a geometry-enhanced graph neural network
and pre-trains it via geometric tasks. For the pre-training of individual proteins
or molecules, these methods demonstrate promising potential on various down-
stream tasks but ignore their complementarity.

Cross Bio Pre-training. In parallel with our study, Uni-Mol [76], probably the
first pre-trained model that can handle both protein pockets and molecules,
released the preprinted version. However, they pre-train the pockets and ligands
separately without considering their interactions, whereas our approach differs in
pre-training data, pre-training strategy, model structure and downstream tasks.

3 Methodology

3.1 Co-Supervised Pre-training Framework

We propose the co-supervised pretraining (CoSP) framework, as shown in
Figure.1, to explore the joint chemical space of protein pockets and ligands,
where the methodological innovations include:

1. We propose the gated geometric message passing layer to model 3D pockets
and ligands.

2. We establish a co-supervised pre-training framework to learn pocket and lig-
and representations.

3. We introduce ChemInfoNCE with improved negative sampling guided by
chemical similarity.

4. We evaluate the model on pocket matching, molecule property prediction,
and virtual-screening tasks.
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3.2 Geometric Representation

We introduce the unified data representation and neural network for modeling
3D pockets and ligands. We use structures collected from the BioLip dataset [64]
as pretraining data for developing CoSPbase model. Further, we use augmente the
pretraining data with CrossDock dataset [18], resulting in the CoSPlarge model.
In downstream tasks where ligand conformations are not provided, we generate
3D conformations using MMFF [52] (if successful) or their 2D conformations (if
failed).
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Fig. 1. Overview of CoSP. We contrast bound pocket-ligand pairs with unbound ones
to learn the complementarity-aware chemical embeddings. We extract positive pocket-
ligand pairs (e) from the protein-ligand complexes (d), and augment pos/neg relations
of complexes via ligand similarity (f). We pretrain the model on BioLip dataset (a),
followed by finetuning (b) and evaluation (c) on different tasks.

Pocket and Ligand Graph. We represent bio-object as graph G(X,V, E) , con-
sisting of coordinate matrix X ∈ R

n,3, node features V ∈ R
n,df , and edge

features E ∈ R
n,de , where n, df and de represent the number of node, node
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features dimension and edge features dimension. For pockets, the graph nodes
include amino acids within 10 Å to the ligand, X contrains the position of Cα of
residues, on which we construct E via k-nn algorithm. For molecules, the graph
nodes include all ligand atoms except Hs, X contrains the atom positions, and
we use the molecular bonds as E .

Gated Geometric Massage Passing. From layer t to t + 1, we use the gated
geometric massage passing (GGMP) layer to update 3D graph representations,
i.e., [vt+1

i ,xt+1
i ,nt+1

i ] = GGMP(vt
i ,x

t
i,n

t
i), where ni is the direction vector. For

molecules, ni points to the negative neighborhood center of node i; for pockets,
ni indicates the position of protein caves. Given 3D conformations, we minimize
the pairwise energy function E:

E(X,F, E) =
∑

(i,j)∈E
u(vi,vj ,eij)g(〈ni,nj〉, d2ij) (1)

where d2ij = ||xi − xj ||2, both chemical energy u(·) and geometric energy
g(·) are considered. By calculating the gradients of xi and ni, we obtain their
updating rules:

−∂E(X,F, E)
∂xi

= −
∑

j∈Ni

2uij
∂gij

∂d2ij
(xi − xj)

≈
∑

j∈Ni

u(vi,vj ,eij)φx(d2ij , 〈ni,nj〉)(xi − xj)
(2)

−∂E(X,F, E)
∂ni

= −
∑

j∈Ni

uij
∂gij

∂〈ni,nj〉nj

≈
∑

j∈Ni

u(vi,vj ,eij)φn(d2ij , 〈ni,nj〉)nj

(3)

Note that φx and φn are the approximation of ∂gij

∂d2
ij

and ∂gij

∂〈ni,nj〉 . Combining
graph message passing, we propose the GGMP layer:

mij = φm(vt
i ,v

t
j , eij) (4)

gij = φg(d2ij , 〈nt
i,n

t
j〉) (5)

ht+1
i = φh(ht

i,
∑

j∈Ni

mijgij) (6)

xt+1
i = xt

i + λ
∑

j∈Ni

u(mij)φx(gij)(xt
i − xt

j) (7)

nt+1
i = nt

j + λ
∑

j∈Ni

u(mij)φn(gij)nt
j (8)

where φ∗ and u are approximated by neural networks, λ is a hyperparameter,
and n0

i = −∑
j∈N (i) x

0
j/||∑j∈N (i) x

0
j ||.
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3.3 Contrastive Loss

In contrastive learning, the biased negative sampling impairs model performance
by sampling false negative data during training. Previous methods [9,39] address
this problem with the assumption that false-negative samples are uniformly dis-
tributed under the classification setting. We propose chemical knowledge-based
sampling to better address this issue, where fingerprint similarity is used to
measure the probability of negative ligands. Interestingly, the change in sam-
pling distribution is equivalent to the design of a weighted loss, and we provide
a comprehensive understanding from the perspective of contrastive loss.

Uni-contrastive Loss. Given the pocket x ∼ p, we draw positive ligands x̂+

from the distribution p̂+x of bindable molecules and negative ligands {x̂−
i }N

i=1

from the distribution q̂ of non-bindable ones. By default, the positive ligands are
determined by the pocket-ligand complexes, while negative ones are uniformly
sampled from the ligand sets. We use pocket model f and ligand model f̂ to
learn the latent representations h, ĥ+ and {ĥ−

i }N
i=1, where the proxy task is

to maximize the positive similarity s+(h, ĥ+) against the negative similarities
s−

i (h, ĥ−
i ), i = 1, 2, · · · , resulting in:

LUni = E x∼p,x̂+∼p̂
+
x ,

{x̂
−
i

}N
i=1∼q̂

[
log (1 +

Q

N

N∑

i=1

s−
i (h, ĥ−

i )

s+(h, ĥ+)
)

]
(9)

where Q and N are constants. For each data sample x, the gradients con-
tributed to s+ and s−

i are:

∂L

∂s+
=

1

1 +
∑N

i=1 s−
i /s+

N∑

i=1

∂s−
i /s+

∂s+
(10)

∂L

∂s−
i

=
1

1 +
∑N

i=1 s−
i /s+

∂s−
i /s+

∂s−
i

(11)

The LUni provides balanced gradient to positive and negative samples, i.e.,
∂L
∂s+ =

∑
i

∂L
∂s−

i

. One can verify that InfoNCE is the special case of LUni by setting

s+(h, ĥ+) = eγhTh+
and s−

i (h, ĥ−
i ) = eγhTh−

i .

DebiasedInfoNCE. Uniformly sampling negative ligands from the data distri-
bution q̂ could mistaken positive samples as negative ones. Denote h(·) as the
labeling function, [9] suggests to draw negative samples from the real negative
distribution q̂−

x (x̂−) = p(x̂−|h(x̂−) 	= h(x)). To handle the {h(x̂−) 	= h(x)}
event, the joint distribution p(x̂, c) = p(x̂|c)p(c) over data x̂ and label c is con-
sidered. Assume the class probability p(c) = τ+ is uniform, and let τ− = 1 − τ+

be the probability of observing any different class, q̂ could be decomposed as
τ−q̂−

x (x̂−) + τ+q̂+x (x̂−). Therefore, q̂−
x = (q̂ − τ+q̂+x )/τ−, and the DebiasedIn-

foNCE is:
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LDebiased = E x∼p,x̂+∼p̂
+
x ,

{x̂
−
i

}N
i=1∼q̂

−
x

[
log (1 +

Q

N

N∑

i=1

s−
i (h, ĥ−

i )

s+(h, ĥ+)
)

]
(12)

where s+(h, ĥ+) = eh
T ĥ+

, s−
i (h, ĥ−

i ) = eh
T ĥ−

i . With mild assumptions, the
approximated debaised InfoNCE can be written as:

E x∼p,x̂+∼p
+
x ,

{x̂
−
i

}N
i=1∼q̂

[
log (1 +

Q

τ−

N∑

i=1

(eh
Th−

i −hTh+ − τ+))

]
(13)

ChemInfoNCE. Although DebiasedInfoNCE solves the problem of sampling bias
to some extent, it suffers from some shortcomings. Firstly, for classification with
discrete labels, the assumption of uniform class probabilities may be too strong,
especially for the unbalanced dataset. Secondly, when it comes to regression,
molecules have continuous chemical properties and the event {h(x̂) 	= h(x̂−)} can
not describe the validity of negative data. To address these issues, we introduce
a new event {sim(x̂, x̂−) < τ} to measure the validity of negative samples, where
sim(·, ·) is the function of chemical similarity. The underlying assumption is that
molecules with lower chemical similarity to the reference ligand are more likely
to be negative samples.

q−
x (x̂−) := q(x̂−|sim(x, x̂−) < τ)

∝ max(1 − sim(x, x̂−) − τ, 0) · p(x̂−)
(14)

By denoting wi = max(1− sim(x, x̂−)− τ, 0), the final ChemInfoNCE can be
simplfied as:

LChem ≈ E x∼p,x̂+∼p
+
x ,

{x̂
−
i

}N
i=1∼q̂

[
log (1 +

N∑

i=1

(ρie
hT ĥ−

i −hT ĥ+
))

]
(15)

where ρi = wi∑N
i=1 wi

.

4 Experiments

In this section, we conduct extensive experiments to verify the effectiveness of
the proposed method from three perspectives:

1. Ligand: Could the ligand model provide competitive results in predicting
molecular properties?

2. Pocket: How does the pre-trained pocket model perform on the pocket
matching tasks?

3. Pocket-ligand: Could the joint model find potential binding pocket-ligand
pairs, i.e., virtual screening?
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Table 2. Molecule property prediction. We compare different methods across 9 bench-
marks. The best and sub-optimum results are highlighted in bold and underline.

Methods Classification (AUC-ROC % ↑ ) Regression (RMSE ↓)

Dataset BBBP BACE ClinTox Tox21 ToxCast SIDER ESOL FreeSolv Lipo

#Molecules 2039 1513 1478 7831 8575 1427 1128 642 4200

#Tasks 1 1 2 12 617 27 1 1 1

D-MPNN 71.0(0.3) 80.9(0.6) 90.6(0.6) 75.9(0.7) 65.5(0.3) 57.0(0.7) 1.050(0.008) 2.082(0.082) 0.683(0.016)

Attentive FP 64.3(1.8) 78.4(0.02) 84.7(0.3) 76.1(0.5) 63.7(0.2) 60.6(3.2) 0.877(0.029) 2.073(0.183) 0.721(0.001)

N-GramRF 69.7(0.6) 77.9(1.5) 77.5(4.0) 74.3(0.4) – 66.8(0.7) 1.074(0.107) 2.688(0.085) 0.812(0.028)

N-GramXGB 69.1(0.8) 79.1(1.3) 87.5(2.7) 75.8(0.9) – 65.5(0.7) 1.083(0.082) 5.061(0.744) 2.072(0.030)

MolCLR 72.2(2.1) 82.4(0.9) 91.2(3.5) 75.0(0.2) – 58.9(1.4) 1.271(0.040) 2.594(0.249) 0.691(0.004)

PretrainGNN 68.7(1.3) 84.2(0.7) 72.6(1.5) 78.1(0.6) 65.7(0.6) 62.7(0.8) 1.100(0.006) 2.764(0.002) 0.739(0.003)

GraphMVP-G 70.8(0.5) 79.3(1.5) 79.1(2.8) 75.9(0.5) 63.1(0.2) 60.2(1.1) – – –

GraphMVP-C 72.4(1.6) 81.2(0.9) 76.3(1.9) 74.4(0.2) 63.1(0.4) 63.9(1.2) – – –

3DInfomax 69.1(1.1) 79.4(1.9) 59.4(3.2) 74.5(0.7) 64.4(0.9) 53.4(3.3) 0.894(0.028) 2.34(0.227) 0.695(0.012)

MICRO-graph 77.2(2.0) 84.4(1.1) 77.0(2.0) 77.0(0.8) 65.2(0.8) 56.7(1.1) – – –

GROVERbase 70.0(0.1) 82.6(0.7) 81.2(3.0) 74.3(0.1) 65.4(0.4) 64.8(0.6) 0.983(0.090) 2.176(0.052) 0.817(0.008)

GROVERlarge 69.5(0.1) 81.0(1.4) 76.2(3.7) 73.5(0.1) 65.3(0.5) 65.4(0.1) 0.895(0.017) 2.272(0.051) 0.823(0.010)

GEM 72.4(0.4) 85.6(1.1) 90.1(1.3) 78.1(0.1) 69.2(0.4) 67.2(0.4) 0.798(0.029) 1.877(0.094) 0.660(0.008)

Uni-Mol 72.9(0.6) 85.7(0.2) 91.9(1.8) 79.6(0.5) 69.6(0.1) 65.9(1.3) 0.788(0.029) 1.620(0.035) 0.603(0.010)

CoSPbase(w/o pre-train) 71.1(0.5) 82.2(1.4) 89.3(1.5) 73.8(0.4) 62.6(0.7) 61.7(1.2) 1.243(0.045) 2.135(0.045) 0.864(0.023)

CoSPbase(DebaisedInfoNCE) 72.3(0.4) 83.5(1.2) 90.2(1.3) 75.4(0.6) 64.7(0.4) 62.9(1.3) 0.843(0.038) 1.857(0.043) 0.748(0.029)

CoSPbase(ChemInfoNCE) 73.1(0.3) 84.3(1.1) 91.3(1.5) 78.5(0.1) 69.3(0.2) 64.7(1.5) 0.785(0.029) 1.752(0.042) 0.621(0.012)

CoSPlarge 73.6(0.4) 85.9(0.9) 91.2(1.2) 79.3(0.1) 70.0(0.2) 66.4(1.2) 0.783(0.023) 1.715(0.017) 0.598(0.011)

4.1 Pre-training Setup

Pre-training Dataset. We adopt BioLip [64] dataset for pre-training CoSPbase,
where the original BioLip contains 573,225 entries up to 2022.04.01. Compared
to PDBBind [54] with 23,496 complexes, BioLip contains more complexes that
lack binding affinity, thus could provide a more comprehensive view of binding
mode analysis. To focus on the drug-like molecules and their binding pockets, we
filtered out other unrelated complexes that contain peptides, DNA, RNA, single
ions, etc. In addition, we augment the pretraining data with the CrossDock
dataset [18] to develop CoSPlarge.

Experimental Setting. We pre-train CoSPbase with 6 layer GGMPs via ChemIn-
foNCE loss, where the hidden feature dimension is 128. We train the model for 50
epochs using Adam optimizer on NVIDIA A100s, where the initial learning rate
is 0.01 and the batch size is 100. The chemical ligand similarity is calculated by
RDKit [28]. To achieve better performance, CoSPlarge extends the 6-layer GNN
to 12 layers, with hidden dimensions from 128 to 1024, and uses augmentated
dataset (BioLip+CrossDock).

4.2 Downstream Task 1: Molecule Property Prediction

Experimental Setup. Could the model learn expressive features for molecule
classification and regression tasks? We evaluate CoSP on 9 benchmarks collected
by MoleculeNet [61]. Following previous researches, we use scaffold splitting to
generate train/validation/test set with a ratio of 8:1:1. We report AUC-ROC and
RMSE metrics for classification and regression tasks, respectively. The mean and
standard deviations of results over three random seeds are provided by default.
We finetune the model using the similar code of MGSSL [73].
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Baselines. We evaluate CoSP against a broad of baselines, including D-
MPNN [65], Attentive FP [63], N-GramRF, N-GramXGB [30], MolCLR [56],
PretrainGNN [23], GraphMVP-G, GraphMVP-C [32], 3DInfomax [47], MICRO-
graph [71], GROVERbase, GROVERlarge [40], GEM [16], and Uni-Mol [76]. Most
these baselines are pre-training methods, except for N-GramRF and N-GramXGB.
Some of the methods mentioned in the related works are not included because
the experimental setup, e.g., data spliting, may be different.

Results and Analysis. We show results in Table.2. The main observations are:
(1) CoSPlarge could achieve the best results on 4/9 downstream tasks, and top-3
results on 9/9 downstream tasks. (2) Pre-training techniques help improve the
model’s generalization ability, and the model could learn expressive molecular
features via co-supervised pre-training. By extending the model size and pre-
training data volumn, CoSPlarge achieves non-trivial performance gains com-
pared to CoSPbase. (3) Through ablation studies, we further identified the supe-
riority of ChemInfoNCE over DebaisedInfoNCE by achieving consistent perfor-
mance gains on various datasets.

Table 3. Pocket matching results. We compare different methods across 10 bench-
marks.

Category Methods Classification (AUC-ROC ↑ )

D1 D1.2 D2 D3 D4 D5 D5.2 D6 D6.2 D7

Classical baselines Cavbase 0.98 0.91 0.87 0.65 0.64 0.60 0.57 0.55 0.55 0.82

FuzCav 0.94 0.99 0.99 0.69 0.58 0.55 0.54 0.67 0.73 0.77

FuzCav (PDB) 0.94 0.99 0.98 0.69 0.58 0.56 0.54 0.65 0.72 0.77

grim 0.69 0.97 0.92 0.55 0.56 0.69 0.61 0.45 0.65 0.70

grim (PDB) 0.62 0.83 0.85 0.57 0.56 0.61 0.58 0.45 0.50 0.64

IsoMIF 0.77 0.97 0.70 0.59 0.59 0.75 0.81 0.62 0.62 0.87

KRIPO 0.91 1.00 0.96 0.60 0.61 0.76 0.77 0.73 0.74 0.85

PocketMatch 0.82 0.98 0.96 0.59 0.57 0.66 0.60 0.51 0.51 0.82

ProBiS 1.00 1.00 1.00 0.47 0.46 0.54 0.55 0.50 0.50 0.85

RAPMAD 0.85 0.83 0.82 0.61 0.63 0.55 0.52 0.60 0.60 0.74

shaper 0.96 0.93 0.93 0.71 0.76 0.65 0.65 0.54 0.65 0.75

shaper (PDB) 0.96 0.93 0.93 0.71 0.76 0.66 0.64 0.54 0.65 0.75

VolSite/shaper 0.93 0.99 0.78 0.68 0.76 0.56 0.58 0.71 0.76 0.77

VolSite/shaper (PDB) 0.94 1.00 0.76 0.68 0.76 0.57 0.56 0.50 0.57 0.72

SiteAlign 0.97 1.00 1.00 0.85 0.80 0.59 0.57 0.44 0.56 0.87

SiteEngine 0.96 1.00 1.00 0.82 0.79 0.64 0.57 0.55 0.55 0.86

SiteHopper 0.98 0.94 1.00 0.75 0.75 0.72 0.81 0.56 0.54 0.77

SMAP 1.00 1.00 1.00 0.76 0.65 0.62 0.54 0.68 0.68 0.86

TIFP 0.66 0.90 0.91 0.66 0.66 0.71 0.63 0.55 0.60 0.71

TIFP (PDB) 0.55 0.74 0.78 0.56 0.57 0.54 0.53 0.56 0.61 0.66

TM-align 1.00 1.00 1.00 0.49 0.49 0.66 0.62 0.59 0.59 0.88

Deeplearning baseline DeeplyTough 0.95 0.98 0.90 0.76 0.75 0.67 0.63 0.54 0.54 0.83

Our methods CoSPbase (w/o direction) 0.95 0.95 0.92 0.55 0.58 0.56 0.56 0.53 0.54 0.76

CoSPbase 1.00 1.00 0.99 0.79 0.81 0.62 0.63 0.61 0.62 0.81

CoSPlarge 1.00 1.00 1.00 0.87 0.85 0.75 0.74 0.72 0.74 0.90
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4.3 Downstream Task 2: Pocket Matching

Experimental Setup. Could the pre-trained model identify chemically similar
pockets? We explore the discriminative ability of the pocket model with the
pocket matching tasks. To comprehensively understand the potential of the
proposed method, we evaluated it on 10 benchmarks recently collected in the
ProSPECCTs dataset [15]. For each sub-dataset, the positive and negative pairs
of pockets are defined differently according to the research objectives. We sum-
marize five research objectives as O1: Whether the model is robust to the pocket
definition? O2: Whether the model is robust to the pocket flexibility? O3: Can
the model distinguish between pockets with different properties? O4: Whether
the model can distinguish dissimilar proteins binding to identical ligands and
cofactors? O5: How about the performance on real applications? We report the
AUC-ROC scores on all benchmarks.

Baselines. We compare CoSP with both classical and deeplearning baselines.
The classical methods can be divided into profile-based, graph-based and grid-
based ones. The profile-based methods encode topological, physicochemical
and statistical properties in a unified way for comparing various pockets, e.g.,
SiteAlign [42], RAPMAD [27], TIFP [13], FuzCav [58], PocketMatch [69], SMAP
[62], TM-align [72], KRIPO [60] and Grim [13]. The graph-based methods
adopt isomorphism detection algorithm to find common motifs, e.g., Cavbase
[43], IsoMIF [8], ProBiS [26]. Grid-based methods represent pockets by regu-
larly spaced pharmacophoric grid points, e.g.,VolSite/Shaper [12]. Another tools
include SiteEngines [45] and SiteHopper [3]. We also compare with the recent
deeplearning model–DeeplyTough [46].

Results and Analysis. We present the pocket matching results in Table. 3, where
the pre-trained model achieves competitive results in most cases. Specifically,
CoSP is robust to pocket definition (O1) and achieves the highest AUC scores
in D1 and D1.2. The robustness also remains when considering conformational
variability (O2), where CoSPlarge achieves 1.00 AUC score in D2. It should be
noted that robustness to homogeneous pockets does not mean that the model
has poor discrimination; on the contrary, the model could identify pockets with
different physicochemical and shape properties (O3) in D3 and D4. Compared
with previous deep learning methods (DeeplyTough), CoSPlarge provides better
performance in distinguishing different pockets bound to the same ligands and
cofactors (Q4), refer to the results of D5, D5.2, D6 and D6.2. Last but not least,
CoSPlarge showed good potential for practical applications (O5) with 0.90 AUC
score. In addition, we found that pocket direction plays a key role in extracting
pocket features, which is helpful to indicate the location of the pocket cavity. As
shown in Table. 3, the performance of pocket matching will be degraded if the
directional feature n is removed.
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Table 4. Virtual screening results on DUD-E.

DUD-E

AUC-ROC ↑ 0.5% RE ↑ 1.0% RE ↑ 2.0% RE ↑ 5.0% RE ↑
Vina 0.716 9.139 7.321 5.881 4.444

RF-score 0.622 5.628 4.274 3.499 2.678

NNScore 0.584 4.166 2.980 2.460 1.891

Graph CNN 0.886 44.406 29.748 19.408 10.735

3DCNN 0.868 42.559 29. 654 19.363 10.710

DrugVQA 0.972 88.17 58.71 35.06 17.39

GanDTi 0.997 71.13 68.78 49.40 19.79

AttentionSiteDTI 0.971 101.74 59.92 35.07 16.74

CoSPlarge 0.996 111.764 78.426 55.535 22.318

4.4 Downstream Task 3: Virtual Screening

Experimental Setup. Could the model distinguish molecules most likely to bind
to the given pocket? We evaluate CoSP on the DUD-E [34] dataset which consists
of 102 targets across different protein families. For each target, DUD-E provides
224 actives (positive examples) and 10,000 decoy ligands (negative examples) in
average. The decoys were calculated by choosing them to be physically similar
but topologically different from the actives. During finetuning, we use the same
data splitting as GraphCNN [51], and report the AUC-ROC and ROC enrich-
ment (RE) scores. Note that x%RE indicates the ratio of the true positive rate
(TPR) to the false positive rate (FPR) at x% FPR value.

Baselines. We compare CoSPlarge with AutoDock Vina [53], RF-score [2],
NNScore [14], 3DCNN [38], GraphCNN [51], DrugVQA [75], GanDTi [55], and
AttentionSiteDTI [68]. AutoDock Vina is an commonly used open-source pro-
gram for doing molecular docking. RF-score use random forest capture protein-
ligand binding effects. Other methods use deeplearning models to learn the
protein-ligand binding.

Results and Analysis. We present results in Table.4, and observe that: (1) Ran-
dom forest and MLP-based RF-score and NNScore achieve competitive results
to Vina, indicating the potential of machine learning in virtual screening. (2)
Deeplearning-based Graph CNN, 3DCNN, DrugVQA, GanDTi, and Attention-
SiteDTI significantly outperforms both RF-score and NNScore. (3) CoSPlarge

achieves competitive AUC score and outperforms all baselines in RE scores. The
improvement of CoSPlarge suggests that the model can effectively learn protein-
ligand interactions from the pre-training data. (4) In addition, we select Top 1%
ligands identified by the model as actives for the given pocket and use AutoDock
Vina to validate the docking results. In Fig. 2, the visual results show that our
model can identify high-affinity ligands, which is helpful for drug discovery.
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Fig. 2. Two examples of virtual screening. For each pocket, we choose two ligands that
are Top 1% active molecules as identified by the model. We use AutoDock Vina to
generate molecular binding pose and compute the affinity score.

5 Conclusion

This paper proposes a co-supervised pre-training framework to learn the joint
pocket and ligand spaces via chemically inspired contrastive loss. The pre-trained
model could achieve competitive results on molecule property predictions, pocket
matching, and virtual screening. We hope the unified modeling framework could
further advance the development of AI-guided drug discovery.
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