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Abstract. Traffic flow forecasting is an important part of smart city
construction. Accurate traffic flow forecasting helps traffic management
agencies to make timely adjustments, thus improving pedestrian travel
efficiency and road utilization. However, this work is challenging due to
the dynamic stochastic factors affecting the variation of traffic data and
the spatially hidden behavior. Existing approaches generally use atten-
tion mechanism or graph neural networks to model correlation in tem-
poral and spatial terms, and despite some progress in performance, they
still ignore a number of practical situations: (1) Anomalous data due
to traffic accidents or traffic congestion can affect the accuracy of mod-
eling in the current moment and further create potential optimization
problems for model training. (2) According to the directedness of the
road, the hiding behavior between nodes should also be unidirectional
and dynamic. In this paper, we propose a dynamic graph network with a
pyramid structure, named PYNet, and use it for traffic low forecasting
tasks. Specifically, first we propose the Pyramid Constructor for trans-
forming multivariate time series into a pyramid network with a multilevel
structure, where the higher the level, the larger the range of time scales
represented. Second, we perform Trend-Aware Attention top-down in the
pyramid network, which gradually enables the lower-level time series to
learn their long-term dependence in multiples, and effectively reduces
the impact of outliers. Furthermore, to fully capture the hidden behav-
ior in the spatial dimension, we learn an adaptive unidirectional graph
and perform forward and backward diffusion convolution on the graph.
Experimental results on two types of datasets show that PYNet outper-
forms the state-of-the-art baseline.

Keywords: Traffic flow forecasting - Spatio-temporal data + Pyramid
structure

1 Introduction
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In recent years, many countries are focusing on the development of Intelligent
Transportation Systems (ITS). Traffic flow forecasting, route planning and vehi-
cle scheduling are important components of ITS, and they work together to
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improve the transportation service system of cities. In these applications, route
planning and vehicle scheduling are based on the traffic conditions of roads, so
traffic flow forecasting is the cornerstone of ITS. In this paper, we use the his-
torical traffic data of roads to forecast the future traffic conditions. Traffic data
is a time series data, collected by sensors deployed in the traffic network at a
fixed continuous period of time. Early researchers applied the classical time series
models Vector Auto-Regression (VAR) [15], Autoregressive Integrated Moving
Average model (ARIMA) [8] to forecast future traffic conditions, they are lim-
ited by the assumption of linearity and smoothness of the data, and traffic data
are usually unsteady and nonlinear, so these methods perform poorly. Deep
learning methods based on Recurrent Neural Networks (RNN) [3,4,6] are not
subject to these limitations, therefore they are widely used to extract long and
short term dependencies in time series. A limitation of these methods is the
inability to model spatial correlations in traffic networks, and with the deeper
understanding of the problem and the development of graph neural networks
(GNN) [7], researchers have proposed a spatial-temporal forecasting framework
based on graph neural networks [14,23,26], which construct traffic graphs by
taking sensors deployed in traffic networks as nodes and road networks or node
distances as edges, updating node characteristics through information transfer
effects between nodes. The advantage of these GNN-based methods is that they
can handle data with a non Euclidean structure, which makes up for the fact
that CNN-based methods [27] can only handle data with a grid structure. While
having shown the effectiveness of introducing the graph structure of data into a
model, but there is still a lack of satisfactory progress in accurate and long term
traffic forecasting, which is mainly due to the following two challenges:

First, unexpected events in the road such as traffic accidents can cause tran-
sient anomalies in the traffic data, which may pose potential optimization prob-
lems in the training of the model if they are ignored. For instance, most current
studies use attention mechanism or CNN to model temporal correlation. The
attention mechanism obtains the similarity between node pairs in the form of
point-to-point, which will incorrectly update the node features if there exists
anomalous data and further cause error accumulation. CNN updates node fea-
tures by aggregating local contextual information, which can weaken the effect
brought by outliers. Considering the multi-scale nature of time series and the
design of convolution kernel size, it is difficult to solve this problem with a single
convolution layer.

Second, roads in the traffic network are unidirectional, which means that the
impacts from traffic conditions on upstream roads are transmitted to downstream
roads in the future and continue to spread dynamically over time. The distance-
based adjacency matrix defines this diffusion relationship based on the distance
of the road network, ignoring the hidden spatial correlation in the traffic network.
Therefore, we propose to learn a dynamic directed graph to maintain the hidden
property of state transfer between nodes, and in addition, if the dataset further
provides information on the structure and distance between nodes, we expect
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the dynamic directed graph to easily incorporate this information to generate a
more comprehensive representation of node embeddings and spatial matrices.

To solve the above challenges, we propose a new pyramid network for spatial-
temporal forecasting, which we call PYNet, which mainly consists of three parts:
Pyramid Constructor, Trend-Aware Attention and Diffusion Graph Convolution
Network. Pyramid Constructor is based on CNN and is used to transform the
input time series into a pyramid network with a multi-leveled structure, and
can customize the time range of trend blocks in different levels (It means that
the features of several consecutive time steps are aggregated). We then per-
form Trend-Aware Attention top-down, computing the similarity between trend
blocks with different time scales in a local context, which allows not only the
lower-level time series to receive several times the perceptual field, but also fur-
ther attenuates the impact of outliers. In addition, we learn a dynamic directed
graph that preserves the one way hidden relationship between nodes in the traffic
network, and further, we describe this hidden relationship as a diffusion process
of nodes over spatially and capture the potential spatial correlation by diffu-
sion convolution. In summary, we summarize the contributions of this paper as
follows:

e We propose a pyramid network for spatial-temporal forecasting tasks, named
PYNet, which initializes the input time series into a pyramid network with a
multi-leveled structure through the Pyramid Constructor. The trend blocks
in the bottom-up levels of the pyramid represent progressively larger time
ranges, and such time ranges are customizable.

e We perform Trend-Aware Attention and Diffusion Graph Convolution Net-
work top-down in a pyramid network. The former computes the similarity
between trend blocks in local context and gives several times the perceptual
field to the lower-level trend blocks, which reduces the impact of outliers. The
latter preserves the hidden spatial directed relations by performing diffusion
GCN on the adaptive directed graph.

e We evaluate the performance of PYNet on four real-world datasets, and the
experiments show that PYNet outperforms all the baseline.

2 Related Work

2.1 Traffic Forecasting

Traffic forecasting is an important component of intelligent transportation sys-
tems and has been widely studied in the last decades [10,14,23,26,27,29]. Earlier
studies mainly used statistical methods, such as VAR [15], ARIMA (8], which rely
on the assumption of linearity of the data and, without doubt, perform poorly
when dealing with nonlinear traffic data. With the development of deep learning,
recurrent neural networks [3,4, 6], which ignore the smoothness assumption, have
been successfully applied to time series modeling. To capture spatial correlations,
[24,25,27,30] used CNNs to model spatial with regular grid structure, but were
powerless for traffic networks with non-Euclidean spatial structure. With the
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evolution of graph neural networks, it has become the best method to model
the spatial correlation of traffic data, for example, DCRNN [14] uses diffusion
GCN to capture the diffusion phenomenon of traffic flow in spatial terms and
applies GRU to capture the temporal correlation. Graph WaveNet [23] modeled
spatial and temporal correlations using GCNs and temporal convolution net-
works (TCNs), respectively, and [10,19,22,26] and other studies modeled spatial
correlations based on GCNs. With the birth of Transformer [21], GMAN [29],
ASTGCN [5], and ST-GRAT [17] introduced attention mechanisms into spatial-
temporal modeling and further improved the forecasting accuracy.

If the spatial correlation of traffic networks is modeled using graph neural
networks, then there is no doubt that the construction of the adjacency matrix is
extremely important. DCRNN [14] computes the road network distance between
sensors and uses it as a weight between nodes by means of a thresholded Gaussian
kernel function. To react to hidden correlations in spatial, some works [16,23]
proposed adaptive adjacency matrix to describe such potential spatial correla-
tions and can be learned by end-to-end. Further, DGCRN [10], MTGNN [22] set
the adaptive adjacency matrix as a directed graph, which means that a change in
the state of one node leads to a change in the state of other nodes, which brings
the learning of adjacency matrix to a new level. In addition, some studies have
proposed a data-driven spatial heterogeneity graph based on adding connections
between functionally similar regions, [9,12] proving its effectiveness, but it is
static and still requires parameters to support training in the training of the
model.

2.2 Graph Neural Network

The main idea of graph neural networks is to update node states through the
information transfer effect between nodes, which has been a great success in deal-
ing with spatial dependence between entities in a network and is now successfully
applied to various tasks such as node classification [18] and link forecasting [31].
Various types of variants of GNN have been developed, such as GCN, Graph
Attention Network (GAT), and there are two types of GCN, spatial GCN and
spectral GCN. Spatial GCN on the neighboring nodes of the target node directly
perform convolution filters, the spectral GCN defines the convolution in the spec-
tral domain [13], which is firstly introduced in [1]. GAT introduces the attention
mechanism into GNNs and uses node features to autonomously learn the weights
between node pairs. Recently, spatial-temporal graph neural networks [2,28] have
been introduced to traffic forecasting for capturing spatial-temporal correlations
in traffic data, such as the STGNN, DGCRN replacing the fully connected layer
in recurrent neural networks with GCNs, and STJGCN [28] constructing joint
graph convolution layers between any two time steps. In addition, some works
[29] learn the spatial embedding representation of each node by graph embed-
ding methods such as node2Vec and deepWalk to further improve the efficiency
of information transfer between node pairs in spatial.
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Fig. 1. The framework of PYNet.

3 Preliminary

We denote the traffic data recorded by IV sensors at time ¢ as traffic signals, C'
is the number of signals and the signals can be traffic volume, traffic speed, etc.
The traffic forecasting problem aims to learn a function f that maps the traffic
conditions at time step P of history to the next time step Q:

Xi—pi1, Xempgo, -, Xy EiON Xet1, Xego, -+, Xetr) (1)

4 Methodology

In this section, we will introduce our proposed model in detail. The overall
framework of our proposed model is shown in Fig. 1.

PYNet first takes multivariate time series and passes them through the Pyra-
mid Constructor to obtain a pyramid network with a multi-level structure (the
higher the level, the larger the range of time scales), and then adds learnable loca-
tion codes to each level to facilitate labeling level structures with different scale
information. Finally, the top-down stacked Spatial-Temporal Block (ST-Block),
which consists of Trend-Aware Attention and Diffusion GCN, in the pyramid
structure. Trend-Aware Attention uses both low level and high level features
as common inputs, with the aim of enabling each trend block at the low level
(aggregated by multiple time steps) to share the long term horizon represented
at the high level. Diffusion GCN describes the behavior on spatial as a diffu-
sion process of directed graphs and performs diffusion convolution operations on
adaptive directed graphs.

4.1 Pyramid Constructor

Patterns in time series may evolve with time significantly due to various events,
e.g. holidays and extreme weather, so whether an observed point is an anomaly,
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change point or part of the patterns is highly dependent on its surrounding
context. Hence, the independent time steps in the original time series cannot
reflect the anomalous information of the data. In order to make full use of the
contextual information and reduce the loss caused by data anomalies, we use
Pyramid Constructor to obtain a pyramid network with a multi-level structure,
which has two advantages: (1) Different levels of time scales can be customized,
such that, bottom-up each trend block (i.e., features aggregated over several
consecutive time steps) can be considered as hourly, daily and monthly features.
(2) There is better fault tolerance in the face of anomalies. The higher the level
of the hierarchy, the larger the range of time scales of the trend blocks, then the
impact caused by the anomalies is limited.

Given the length 7" multivariate time series and a set of convolution layers
FENN () then each level of the pyramid structure can be defined as:

XL:FLCNN<XL_1,@L) GRTL—l/CLXNXD (2)

We take the time series X;_; € RTt-1XNXD gt the L-1 level and pass it
through the standard convolution layer FEVN(.) to obtain the time series rep-
resentation X; € RTt-1/CoxNxD ot the Lth level, where @ corresponds to
the parameters of the convolution layer and C7p, is the size and step size of the
convolution kernel.

4.2 Trend-Aware Attention

In the traditional attention mechanism, the similarities between queries and
keys are computed based on their point-wise values without fully leveraging
local context information. Query-key matching agnostic of local context may
confuse the self-attention module in terms of whether the observed value is an
anomaly, change point or part of patterns, and bring underlying optimization
issues. Thus, we perform top-down attention mechanisms between adjacent levels
of the pyramid, which has two advantages: (1) Compute the similarity between
query and key in a local context, which reduces the impact caused by anomalies.
(2) Key and value have longer time range information than query, and the top-
down attention mechanism will gradually make the lower-level time series learn
its own C'p-fold long term dependence until the update of the original time series
is completed.

Given the time series of two adjacent levels X € RTtXNXD and X, €
RTe+1XN*D “which Tyy = Tr/Cr. The operation of Trend-Aware Attention
can be expressed as follows:

K K K RNT
XPWEH ", W)
V dh
Q;, = MLP(Concat( (Ll)7 (LQ), e (LH))) (4)

where W$)7 W(I?)7 ng ) € RI*dn are learnable parameters. H is the number
of attention heads. In addition, we adjust the inter level attention scores by a
trainable parameter W4, € RTeXTr-1,

(Lh) = Softmax( JFWadp)(X(L}L-s)JWgI)) (3)
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Trend-Aware Attention updates the lower level time series representation by
the higher level time series, which helps to make the lower level time series learn
longer time dependence. One drawback, however, is that time series at lower
levels lose their inherent characteristics, which can make short term forecasting
perform less well. To solve this problem, we compute Trend-Aware Attention
and the self-attention of the current hierarchical time series synchronously in
a parallel manner. The preference of self-attention for global information can
impair the performance of short term forecasting, so we control the proportion
of information flowing to the self-attention module at each time step by means
of a selection gate:

V1, = sigmoid(MLP(Concat(X,PEL))) (5)

X% =V, ®Xy (6)

We take the time series representation of layer L, X, and the spatial-temporal
position encoding PE;, (see Sect. 4.4 for details) of the concatenation as the
input to the selection gate, and automatically learn the gate value of (0, 1)
Vi € RTexNXD by the sigmoid activation function. The symbol ® denotes the
element-wise product, the attention module takes Xf as input and its operation
can be expressed as:

S,(h)11(h S,(h) (AN T
Xz "MUgH ;MU

S = Softmax Xy Mo 7
Iy ( NG )(XT v') (7)
Sy = Concat(S(Ll)7 S(LQ), . S(LH)) (8)

which Ugl), U(I?), Ui,h ) € Rénxdn denotes learnable parameters. Finally, we model
jointly the long-short-term temporal dependence by using the output of the Self-
Attention module as a complement to Trend-Aware Attention:

By = MLP(Concat(Qy,Sr1)) (9)

where the MLP is a two-layer fully connected layer that weights and aggregates
the feature representation of all attention heads. By € RT2XNXD s the final
output representation of Trend-Aware Attention in the corresponding ST-Block.
In the process of forward calculation, in order to avoid high computational cost,
we can set the vector dimension of each of the two parts to D/2, and finally
recover to D by performing concat operation on the channel by Eq. (9).

4.3 Diffusion Graph Convolution Network

In multivariate time series forecasting, the relationships between node pairs are
not negligible, for example, traffic conditions on roads upstream of the traffic net-
work produce impacts that are transmitted to downstream roads in the future,
and weather conditions in adjacent regions are usually similar. Therefore, it is
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necessary to consider these hidden spatial relationships. Existing studies usu-
ally construct the hidden relationships between node pairs through graphs, for
instance, DCRNN computes the road network distance between pairs of nodes
in the adjacency matrix using a threshold Gaussian kernel function. DSTAGNN
calculates the similarity between different time series as the weights among node
pairs by Wasserstein Distance. However, these approaches construct static or
bi-directional graph-based structures, and we propose to learn a directed graph
to preserve the property of state transfer between nodes (that is, a change in
the state of one node leads to a change in the state of other nodes). It should be
noted that the spatial structure in the traffic network includes both static and
dynamic attributes, and for static attributes, it mainly refers to the inherent
apriori knowledge of different correlations due to different road distances.

For dynamic attributes, let’s take an example to help understand: due to the
different attributes of different areas (apartment, school or industrial park), at 7
a.m., the correlation (A,B) between apartment A and school B is much greater
than (B,A) due to students going to school, and at 6 p.m., (B,A) is much greater
than (A,B) due to students leaving school. Therefore, in real traffic networks,
there are hidden and uncertain relationships between different roads. If feature
information is used to participate in the construction of the graph structure,
the accuracy will be degraded during the testing process due to the different
data and the accuracy deviation will be greater with time. Hence, we propose to
learn the hidden graph structure in an adaptive manner and incorporate static
attributes in an efficient way. It does not depend on the feature information
at any moment and the graph structure is determined once the training of the
model is completed.

First, we use thresholded Gaussian kernel function to measuring the proxim-
ity between different road pairs:

dist(v;, vj)2

Hi,j = exp(— 0_2

) (10)
where dist(v;,v;) represents the road network distance from node v; to node v;,
o is the standard deviation of distances, H; ; denotes the edge weight between
node v; and node v;.

Then, we obtain the embedding representation of each node by node2Vec:

N = node2Vec(H) (11)

N € R¥*P is the embedding representation of the nodes in the spatial, tak-
ing the distance-based adjacency matrix H as input. The node2Vec algorithm
makes nodes within the same region or nodes that have similar structural fea-
tures represent similar. In particular, we randomly initialize two learnable node
embedding matrices E1,E5 € RV*P and concate them with N on the channel:

M; = tanh(a(linear(Concat(E;,N)))) (12)

M; = tanh(a(linear(Concat(Ez, N)))) (13)
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M; and My are the new node embedding representation containing learnable
and static spatial information. Then, we regularize the adjacency matrix by
subtraction terms and the ReLU activation function:

A = ReLU(tanh(a(M;M; —MyM7))) (14)

which 01,0, € RP*P are learnable parameters, a is a hyper-parameter for
controlling the saturation rate of the activation function, Eq. (14) implements
the asymmetric nature of the adjacency matrix.

We characterize the state transfer between nodes as a spatial diffusion process
of nodes, and this Markovian stochastic process converges to a smooth distri-
bution after K time steps by performing a random wander on the graph. Given
the graph signal X;, € RTeXN*D and adjacency matrix A € RV*N at the Lth
level, we describe the diffusion graph convolution as:

K
_ k _ k
Zr, =Y (D5'A) X Wort+(Dr 'AT) X Wy (15)
k=0

In the case of directed graphs, the diffusion process has two directions, outflow
and inflow, and the corresponding state transfer matrix for both are DalA and
Dl_lAT, respectively. Where Do and D are the degree matrix of the correspond-
ing matrix, Woy, W, € RP*P are the learnable parameter, and Zj, € RTtxNxD
is the output of the diffusion graph convolution layer in the ST-Block correspond-
ing to the Lth level.

Then, we aggregate the outputs of the Trend-Aware Attention and diffusion
graph convolution layer, either by summing or concatting over the channels. We
select SUM(-) as the aggregator function which is differentiable and maintains
high representational capacity:

Yo = Agg(Qr,ZL)=Qr +7Zt (16)

Finally, we add residual connectivity and BatchNorm to Y and obtain the
output of ST-Block by an MLP containing two layers of fully connected neural
networks:

Y9 = MLP(BatchNorm(Agg(Yr,X1))) (17)

YUt ¢ RTexNXD is the output of the ST-Block corresponding to the Lth level.

4.4 Position Encoding

Considering that the pyramid performs Trend-Aware Attention between adjacent
levels, and that the sequential relationships of adjacent levels lose their relevance
to each other. To solve this problem, we add location codes for the different levels,
which are aggregations of temporal and spatial codes (the aggregation function
uses SUM(+)). Temporal encoding is one-hot encoding and concat separately for
day-of-week and time-of-day of each time step. In spatial, we randomly initialize
a vector representation for each node, both of which have the same number of
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channels after passing through the fully connected neural network. For example,
for node v; on time step t;, its position encoding is defined as:

PEY""' = Agg(MLP (onehot(t;)), MLP (emb(v;))) (18)
For the Lth level in the pyramid, the position encoding is defined as:

u=(j+1)xpr—1
PE;"" = Agg(MLP( Y onehot(t,)), MLP(emb(v;))) (19)

u=jXxpr

In the Lth (L > 1) level, each trend block (aggregated by multiple consecutive
time steps) represents a time horizon, as exemplified by Eq. (12), L; is the jth
trend block in the Lth hierarchy, py is the length of time of each trend block
in the Lth level. We sum the one-hot encoding corresponding to successive time
steps and set the maximum value to 1.

The position encoding preserves the correlation between level, effectively
modeling long term dependence while better preserving similar information when
performing Trend-Aware Attention.

5 Experiment

5.1 Dataset

To evaluate the model performance, we conducted extensive experiments on four
traffic flow datasets [18], namely PEMS03, PEMS04, PEMS07 and PEMS08
datasets, which were collected on California freeways.

5.2 Baseline Methods

(1) VAR [15] which is a traditional time series model that captures the pair-
wise relationship of time series; (2) ARIMA [8] which is a classical time series
model; (3) STGCN that models spatial and temporal correlations using GCN
and CNN; respectively; (4) DCRNN [14] that captures spatial-temporal correla-
tion using GRU and diffusion graph convolution network, respectively; (5) Graph
WaveNet [23] that combines adaptive graph convolution and dilated casual con-
volution to capture spatial-temporal correlations; (6) ASTGCN [5] that is based
on spatial-temporal attention and model spatial and temporal correlations by
GCN and CNN; (7) STSGCN [19] that constructs a local spatio-temporal graph
and captures local spatio-temporal correlations by spatio-temporal synchronous
graph convolution; (8) AGCRN [20] that uses adaptive graphs to describe spatial
correlation and GRU to model temporal correlation; (9) Z-GCNETS [11] that
models spatial and temporal correlation using graph convolution and GRU; (10)
GMAN [29] that captures spatio-temporal correlations by attention and designs
a transformation layer to reduce error propagation; (11) DSTAGNN [9] that was
designed to describe regions with similar functions.
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5.3 Experimental Settings

The dataset is divided into training, validation and test sets in the ratio of
6:2:2, and they are normalized with Z-Score. Following the standard benchmark
setting for the domain, we use data from 12 consecutive historical time steps to
forecast traffic data from 12 consecutive future time steps, with an interval of
5 min between two consecutive time steps. We use Adam optimizer as the models’
optimizer with initial learning rate set to 0.01, BathSize to 128, attention head
to 8, vector dimension to 64, and Pyramid Constructor with convolution kernel
and three convolution layers with step size [2, 2, 3]. We use mean absolute error
(MAE), root mean squared error (RMSE), and mean absolute percentage error
(MAPE) as the evaluation metric and MAE as the loss function.

Table 1. .

Model PEMS03 PEMS04 PEMS07 PEMS08

MAE |RMSE |MAPE |MAE |RMSE |MAPE |MAE |RMSE |MAPE |MAE |RMSE | MAPE
VAR 23.65 |38.26 |24.51% |24.54 |38.61 |17.24% | 50.22 |75.63 |32.22% 19.19 |29.81 |13.10%
ARIMA 35.41 |47.59 |33.78% |33.73 |48.80 |24.18% |38.17 |59.27 |19.46% 31.09 |44.32 |22.73%
FC-LSTM 21.33 [35.11 |23.33% |26.77 |40.65 |18.23% |29.98 |45.94 |13.20% 23.09 |35.17 |14.99%
STGCN 17.55 |30.42 |17.34% |21.16 |34.89 |13.83% |25.33 |39.34 |11.21% 17.50 |27.09 |11.29%
DCRNN 17.99 |30.31 |18.34% |21.22 |33.44 |14.17% |25.22 |38.61 |11.82% 16.82 |26.36 |10.92%
GraphWaveNet | 19.12 | 32.77 |18.89% |24.89 |39.66 |17.29% |26.39 |41.50 |11.97% 18.28 |30.05 |12.15%
ASTGCN 17.34 |29.56 |17.21% |22.93 |35.22 |16.56% | 24.01 |37.87 |10.73% 18.25 |28.06 |11.64%
STSGCN 1748 129.21 |16.78% |21.19 |33.65 |13.90% |24.26 |39.03 |10.21% |17.13 |26.80 |10.96%
AGCRN 15.98 |28.25 |15.23% |19.83 |32.26 |12.97% |22.37 |36.55 |9.12% |15.95 |25.22 |10.09%
STFGNN 16.77 |28.34 | 16.30% |20.48 |32.51 |16.77% (2346 |36.60 |9.21% [16.94 |26.25 |10.60%
Z-GCNETS  |16.64 |28.15 |16.39% |19.50 |31.61 |12.78% | 21.77 |35.17 |9.25% |15.76 |25.11 |10.01%
GMAN 1552 |26.53 | 15.19% | 19.25 |30.85 |13.00% |20.68 |33.56 |9.31% |14.87 |24.06 |9.77%
DSTAGNN 1557 |27.21 | 14.68% 19.30 |31.46 |12.70% |21.42 3451 |9.01% |15.67 |24.77 |9.94%
PYNet 14.94 |25.27 14.94% |18.46  30.36 |12.46% 19.61 32.85 8.36% |14.03  23.84 9.39%
improve 3.73% | 3.62% | - 4.10% | 1.59% | 1.89% |5.17% | 2.11% | 7.21% | 5.65%  0.91% | 3.89%

5.4 Experiment Results

Table1 shows the performance of PYNet and the thirteen baselines on the
four datasets, and we report the average error of the one-hour ahead fore-
casting. As can be seen, PYNet achieves state-of-the-art performance on four
datasets, and in terms of MAE, PYNet improves the state-of-the-art results by
2.51%, 4.16%, 5.08% and 5.51%, respectively. In addition, we observed that:
(1) The performance of VAR and ARIMA is poor; they rely on the assump-
tion of linearity in the data, while traffic data has dynamic non-linear feature.
(2) GNN-based deep learning methods (STGCN, DCRNN, AGCRN, Graph-
WaveNet, DSTAGNN) take spatial correlation into account and usually have
better forecasting performance. However, the semantic information contained in
the graph structure may be imperfect or even biased, which limits the expressive
power of the graph model. (3) The models based on the attention mechanism,
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Fig. 2. Forecasting performance comparison at each horizon on the PEMS04 dataset.

ASTGCN and GMAN, perform better in long-term forecasting, but the insen-
sitivity of attention to local information leads to poorer short-term forecasting
performance.

Compared with the above methods, PYNet introduces a pyramid structure
to learn the multi-scale representation of time series, which can effectively model
long and short term dependence. In moreover, we add corresponding scale posi-
tion encoding for each level in the pyramid to record the relative position rela-
tionship and retain the correlation between levels. We perform Trend-Aware
Attention and diffusion GCN top-down in a pyramid network, where the former
gradually causes the lower-level time series to learn several times their own long
term dependence until the update of the initial time series is completed. The lat-
ter performs diffusion convolution operations on directed graphs to preserve the
properties of state transfer between nodes. Considering these features, PYNet
consistently outperforms other methods.

To investigate the specific performance of PYNet on short-medium term and
medium-long term forecasting, we plot the error curves of the seven models
on one-hour ahead forecasting in Fig.2. We observe that STGCN and Graph
WaveNet have the best short term (Omin-10min) forecasting performance, and
PYNet performs best when there is a medium-long term (>10min) forecasting
demand, and the error curve of PYNet grows the slowest with increasing time
step, while the gap with other models gradually increases, which indicates that
PYNet has strong stability while maintaining high performance.

5.5 Ablation Study

To verify the effectiveness of the individual components in PYNet, we made the
following variants of PYNet: (1) PYNet-NC: We use the average pooling layer to
construct the pyramid network. (2) PYNet-NT: We removed the Trend-Aware
Attention from ST-Block. (3) PYNet-NS: We removed the self attention. (4)
PYNet-ND: We remove the diffusion GCN from the ST-Block.
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Fig. 3. Ablation study on PEMS04.

Figure 3 shows the average performance of PYNet and the four variants on the
PEMS04 dataset. We observe that (1) The pyramid network constructed by CNN
has better results compared to the average pooling layer because the convolution
layer can weigh the importance of each time step in the window better than the
pooling layer. (2) The performance of PYNet-NT decreases dramatically after
removing the Trend-Aware Attention. This is because the Trend-Aware Attenion
acts as a connection between two levels, and after removing it, the model cannot
learn the correlation between the pyramid levels. (3) The self attention module
complements the trend attention module with the aim of improving short term
forecasting performance. When self attention is removed, PYNet-NS has the
worst short term forecasting performance, which implies that self attention, as a
complement to Trend-Aware Attenion, can effectively improve the performance
of forecasting. (4) After removing the diffusion GCN, the model cannot capture
the spatial correlation in the traffic network, and therefore the performance of
PYNet-NS decreases.

5.6 Long Term Forecasting Performance

Long term (i.e., one hour or more) forecasting of traffic flow or traffic speed
in a traffic network is challenging. The number of sensors deployed in a traffic
network as nodes on a graph is usually huge, and if the model includes similarity
calculation of nodes, the time complexity grows quadratically with the number
of nodes, and secondly, the long term traffic conditions are difficult to forecast
accurately due to the non-stationarity factor in the time series.

PYNet is based on a pyramid structure, which can effectively model cor-
relations between time series with different time scales and has advantages in
modeling long term temporal dependence. Therefore, to evaluate the perfor-
mance of PYNet in long term forecasting, we forecast the future traffic data for
30, 60, 90 and 120 min on the PEMSO04, and the results are shown in Table 2. We
observe that PYNet improves the state-of-the-art baseline from 3.10% to 7.13%
in MAE on the PEMS04 dataset, and as the time step, the gap further increases,
which further demonstrates the performance of PYNet on long term traffic flow
forecasting.
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Table 2. Long term forecasting performance of different models on PEMS04.
Model Metrics 30 min 60 min 90 min 120 min Average
ASTGCN |MAE 22.08+0.28 | 25.51+0.69 |29.324+1.17 34.04+1.42 |26.01£0.75

RMSE 34.47+042 39.35+1.10 |44.954+1.87 |51.60+2.20 |40.64+1.28
MAPE (%) | 14.70+0.10 |16.84+0.19 | 19.28+0.28 |22.49+0.31 |17.22+£0.19
STSGCN | MAE 21.66£0.36 |24.04+£0.41 |26.70£0.52 |29.07+0.64 |24.35+£0.47
RMSE 3456 £0.75 |[37.98+0.72 |41.91£0.75 |45.45+0.90 |38.46=£0.79
MAPE (%) | 14.44+0.13 |15.76+0.11 | 17.50+£0.18 |18.92+0.15 |16.13£0.20
GMAN MAE 20.50+£0.01 | 21.02£0.04 |21.554+0.08 |22.29+£0.05 |21.08£0.05
RMSE 33.21+£042 | 34.18£0.48 |35.094+0.56 |36.13+£0.54 |34.24£0.49
MAPE (%) | 15.06+0.52 |15.37+0.57 | 15.78 £0.66 |16.54+0.76 |15.48 +0.60
DSTAGNN | MAE 19.36 £0.04 |20.694+0.08 | 21.69+£0.03 |22.91£0.15 |20.6040.02
RMSE 31.36£0.17 | 33.65+£0.27 |35.294+0.22 |36.81+£0.04 |33.47£0.15
MAPE (%) | 12.884+0.02 |13.54+0.03 | 14.22+0.01 |15.04+0.05 |13.58 £0.02
PYNet MAE 18.76 £0.02 | 19.35+0.03 | 19.88 £0.03 | 20.70 +0.04 | 19.38 + 0.02
RMSE 30.72+0.08 | 31.86 +£0.07 | 32.79+0.08 | 33.91+0.07 | 31.84 £ 0.07
MAPE (%) |12.46 £0.24|12.79+0.29 | 13.15+0.26 | 13.82+0.31 | 12.86 +0.25
Improve MAE 3.10% 6.48% 7.75% 7.13% 5.92%
RMSE 2.04% 5.32% 6.55% 6.14% 4.87%
MAPE 3.26% 5.54% 7.52% 8.11% 5.30%

6 Conclusion

In this paper, we propose a pyramid network for traffic forecasting tasks, namely
PYNet, where the Pyramid Constructor initialize a pyramid network with a
multi-level structure through a set of convolution layers. Then we perform Trend-
Aware Attention in the pyramid network top-down between adjacent levels to
compute the attention matrix in local context, which not only reduces the impact
of anomalies in the data, but also allows the trend blocks in the lower levels
of the time series to benefit from their own multiplicity of perceptual fields.
In spatial dimension, we learn an adaptive unidirection graph that maintains
the properties of state transfer between nodes by a random walk process over
spatially. Finally the effectiveness of PYNet was verified by experiments on four
traffic flow datasets.
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people to save time and, on an environmental level, to save energy. This research is

primarily based on a Pyramid learning structure to more effectively and deeply mine

the underlying features of traffic data. This prediction model also addresses to some

extent the prediction problems of other spatio-temporal series, such as water quality

prediction and weather prediction. There are no ethical implications for this work such

as possible use in policing or military related applications.
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