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Abstract. Emotion-Cause Pair Extraction (ECPE) aims to extract all
emotion clauses and their corresponding cause clauses from a document.
Existing approaches tackle this task through multi-task learning (MTL)
framework in which the two subtasks provide indicative clues for ECPE.
However, the previous MTL framework considers only one round of multi-
task reasoning and ignores the reverse feedbacks from ECPE to the sub-
tasks. Besides, its multi-task reasoning only relies on semantics-level inter-
actions, which cannot capture the explicit dependencies, and both the
encoder sharing and multi-task hidden states concatenations can hardly
capture the causalities. To solve these issues, we first put forward a new
MTL framework based on Co-evolving Reasoning. It (1) models the bidi-
rectional feedbacks between ECPE and its subtasks; (2) allows the three
tasks to evolve together and prompt each other recurrently; (3) integrates
prediction-level interactions to capture explicit dependencies. Then we
propose a novel multi-task relational graph (MRG) to sufficiently exploit
the causal relations. Finally, we propose a Co-evolving Graph Reason-
ing Network (CGR-Net) that implements our MTL framework and con-
ducts Co-evolving Reasoning on MRG. Experimental results show that our
model achieves new state-of-the-art performance, and further analysis con-
firms the advantages of our method.

Keywords: Multi-Task Learning · Relational Graph Reasoning ·
Emotion-Cause Extraction · Natural Language Processing

1 Introduction

Emotion-Cause Pair Extraction (ECPE) is a new while challenging task in the
field of natural language processing/artificial intelligence. It aims to automat-
ically extract all emotion clauses and the corresponding cause clauses from a
raw document, which is of great value for real-world application [26]. Consider
a document “ [In the memory of the students]1, [he often paid the tuition fees
for them]2, [which is respectable and touching ]3.”, the third clause expresses an
emotion, which is triggered by the second clause, so these two clauses form an
emotion-cause pair. Intuitively, detecting the clauses that express causes and
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
D. Koutra et al. (Eds.): ECML PKDD 2023, LNAI 14169, pp. 305–322, 2023.
https://doi.org/10.1007/978-3-031-43412-9_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-43412-9_18&domain=pdf
https://doi.org/10.1007/978-3-031-43412-9_18


306 B. Xing and I. W. Tsang

Fig. 1. Comparison of the previous MTL framework and our MTL framework for
ECPE.

emotions, namely cause extraction (CE) and emotion extraction (EE), are two
subtasks of ECPE. Accordingly, recent models [1,10,13,37] implement the multi-
task learning framework shown in Fig. 1(a), introducing CE and EE to provide
indicative clues for ECPE.

Although the previous multi-task learning (MTL) framework has made
promising progress, based on our observation, it still suffers from several issues
which hinder the multi-task reasoning between ECPE and CE/EE. First, previ-
ous works only consider one-way messages from CE/EE to ECPE. The predic-
tions of CE/EE may be incorrect due to their unreliable semantics. In this case,
the false information from CE/EE may mislead ECPE. Second, the single-round
multi-task reasoning process in previous works is not competent, considering that
it is hard for machines to understand emotions, causes, and their causalities like
humans due to the inherent ambiguity and subtlety of emotions and causes [12].
Third, in previous works, the multi-task reasoning between ECPE and CE/EE
is only achieved by implicit semantics-level interactions such as shared encoders.
For one thing, this is inconsistent with human intuition and the causal relations
between ECPE and CE/EE, both of which are based on predictions or labels;
for another, the indicative information conveyed in semantics is implicit and
relatively insufficient compared with prediction information.

On account of the above issues, we propose a new MTL framework based on
Co-evolving Reasoning as shown in Fig. 1(b). Firstly, in addition to the one-way
message from CE/EE to ECPE, our MTL framework also models the reverse
feedbacks from ECPE to CE/EE. If ECPE predicts correctly, the indicative
information transferred to CE/EE can improve them. And the two improved
subtasks can further promote ECPE reversely. If ECPE predicts incorrectly, the
defective information transferred to CE/EE can act as their feedback and make
them rethink to provide better information for ECPE, which thus can further
prompt CE/EE reversely. Secondly, to achieve this virtuous cycle, we design
the recurrent multi-task reasoning mechanism. In this way, the knowledge of
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the three tasks can gradually evolve together and mutually prompt each other.
Thirdly, we propose to exploit the correlations in predictions via introducing
two kinds of prediction-level interactions: prediction-prediction and prediction-
semantics interactions. In this way, explicit correlative information conveyed
by predictions (estimated label distributions) can flow in our MTL framework
then facilitate Co-evolving Reasoning. And the semantics can get straightforward
feedback at each step from the predictions then rethink to improve.

Furthermore, the MTL sequence structures employed in previous works are
simply based on shared encoder and multi-task hidden states concatenations,
which can hardly capture the causal relations. This motivates us to seek a more
effective method to sufficiently exploit the causalities among ECPE and CE/EE.
To this end, we design a novel multi-task relational graph (MRG), in which
there are three groups of nodes derived from the clauses in the document and
corresponding to ECPE, CE, and EE, respectively. Moreover, we design differ-
ent relation types which correspond to the causal relations between ECPE and
CE/EE.

To implement our MTL framework and conduct Co-evolving Reasoning on
MRG, we propose a Co-evolving Graph Reasoning Network (CGR-Net), whose
core is a multi-task relational graph transformation (MRGT) cell. CGR-Net first
generates the task-specific hidden states and produces the initial estimated label
distributions. Then the MRGT cell recurrently takes the hidden states and label
distributions of the three tasks as input and then updates them in three steps:
projection of label distributions, relational local graph transformation, and non-
local self-transformation. Finally, the predictions of ECPE at the final step are
used to extract the potential emotion-cause pairs. And we design a harness loss
based on logical constraints to force the three tasks to gradually promote each
other in the virtuous cycle of Co-evolving Reasoning.

In summary, our contributions are three-fold:

(1) We propose a new MTL framework based on Co-evolving Reasoning and
an MRG to exploit the correlations and causal relations sufficiently. To the
best of our knowledge, our MTL framework is the first one allowing ECPE
and CE/EE to promote each other recurrently, and MRG is the first MTL
graph structure for ECPE.

(2) To implement our MTL framework and conduct Co-evolving Reasoning on
MRG, we propose a novel CGR-Net, whose core is a multi-task relational
graph transformation cell.

(3) Experimental results on the benchmark dataset show that our CGR-Net
significantly outperforms existing state-of-the-art models. And further anal-
ysis proves the effectiveness of different components of CGR-Net and the
superiority of MRG.

2 Related Works

Emotion cause extractions (ECE) [4,9,14–16,18,20,21,36] is a long-standing
task whose objective is to extract the causes of given emotion expressions in the
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document. However, it requires that the emotions must be annotated manually,
which constrains the practical application. Therefore, recently [26] propose the
ECPE task and a two-step solution while the error propagation may occur from
the first step to the second. To this end, recent works propose unified end-to-end
models [2,5,6,10,11,13,23,25] to tackle ECPE in the MTL framework.

[10] propose a model integrating the 2D representation of emotion-cause pair,
the interactions, and predictions. [23] tackle ECPE from a ranking perspective
and adopt kernel-based relative position embedding for ranking. [38] propose
a tagging scheme coding the distance between the emotion clause and cause
clause in an emotion-cause pair. Based on this, [13] propose a tag distribution
refinement method that adjusts the output label distribution of ECPE using the
ones of CE and EE according to a pre-defined rule. However, the refinement
method does not participate in model training, only working on the output of
evaluation.

More recently, Multi-Granularity Semantic Aware Graph model (MGSAG)
[1] incorporates fine-grained and coarse-grained semantic features jointly, aiming
to resolve the distance limitation of clause semantics. And the Matrix Capsule-
based multi-granularity framework (MaCa) [37] introduces the matrix capsule
to obtain more fine-grained features of clause pairs, clustering the relationship
of each clause pair.

Different from previous works, we (1) propose Co-evolving Reasoning, which
allows the three tasks gradually and sufficiently promote each other; (2) intro-
duce prediction-prediction and prediction-semantics interactions to model the
explicit correlations and provide feedback for semantics which can rethink to
improve; (3) effectively exploit the casual relations via designing a novel MRG.

3 Methodology

Before delving into MRG and CGR-Net, we first introduce the task formulation
in our work.

We cast ECPE as a tag classification task and use the cause-centric tagging
scheme [38]. Each clause xi has a two-tuples tag yt

i =(yt,c
i , yt,d

i )∈Ct , where yt,c
i ∈

{C, O} denotes whether xi is a cause clause, and yt,d
i ∈{−γ, ...,−1, 0, 1, ..., γ,⊥}

denotes the distance between xi and its triggered emotion clause, while ‘⊥’
always associates with ‘O’, denoting that xi is a non-cause clause. And γ is a
hyperparameter controlling the max span of emotion-cause pairs. Thus ECPE
(tag) totally has |Ct|=2(γ+1) classes.

As for CE (cause) and EE (emotion), they are both formulated as binary
classification tasks: yc

i ∈Cc={1, 0} and ye
i ∈Ce={1, 0}.

3.1 Constructing a MRG from a Document

In this paper, we design a multi-task relational graph (MRG) G = (V, E ,R)
to exploit the causalities via modeling the self- and mutual-interactions of the
three tasks (cause, tag and emotion). Each clause xi in document D derives
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Table 1. Relation types in MRG, w.l.o.g. γ = 2. It(i) indicates node i is a cause (c)
node, tag (t) node or emotion (e) node. ‘-’ denotes the set of [-2, -1, 0, 1, 2].

rij cc tt ee ct tc te:-2 te:-1 te:0 te:1 te:2 et:-2 et:-1 et:0 et:1 et:2

It(i) c t e c t t t t t t e e e e e
It(j) c t e t c e e e e e t t t t e
rdis(i, j) - - - 0 0 -2 -1 0 1 2 -2 -1 0 1 2

Fig. 2. An example of MRG (γ=2). W.L.O.G, only the edges directed into ci, ti and
ei are illustrated. And self-loops are not shown for simplification.

three nodes ci, ti and ei, respectively for cause, tag and emotion, thus |V|=3n.
The edge (i, j, rij) ∈E denotes the information propagation from node i to node
j, and rij ∈R is the relation type of the edge. Note that node i and node j may
correspond to different tasks. We define three kinds of rules to determine the
connection between two nodes in MRG:

Direction: (j, i, rji)∈ E if (i, j, rij)∈ E . In MRG, the information propagation
between two nodes is bidirectional. This guarantees the bidirectional correlations
between tag and cause/emotion. Local Connection: ∀(i, j, rij), |rdis(i, j)|≤ γ,
where rdis(i, j) denotes the relative distance between the clauses of node i and
node j in D. In general, the probability of two distant clauses having causal
relation is relatively small regarding the cohesion and coherence of discourse [7].
Therefore, the edges in MRG are based on local connections, and in this work,
we constrain that the relative distance of two connected nodes’ clauses in D
ranges from −γ to γ, consistent with the span range of the ECPE tag.

Relation Type for Causality: Table 1 lists the relation types in MRG. And
an example of MRG is shown in Fig. 2. To capture the self-task local contextual
dependencies, we define rij = cc, rij = tt and rij = ee to model the local
self-transformation of cause, tag and emotion, respectively. As for inter-task
interactions, first of all, regarding the scheme of tag task, there are two explicit
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causal relations between cause and tag tasks: (1) if yc
i = 1, then yt,c

i = C, and
vice versa; (2) if yc

i = 0, then yt,c
i = O, and vice versa. To model these causalities

in MRG, we define rij = ct and rij = tc to achieve the mutual transformations
between cause and tag. Besides, there are four kinds of causal relations between
tag and emotion tasks. First, if yt,c

i = C, there is at least one emotion clause
among xi−γ ∼ xi+γ : ye

i−γ = 1 or ye
i−γ+1 = 1 or ... or ye

i+γ−1 = 1 or ye
i+γ = 1.

Second, if there is no emotion clause among xi−γ ∼ xi+γ : ye
i−γ = 0 and ye

i−γ+1 =
0 and ... and ye

i+γ−1 = 0 and ye
i+γ = 0, then yt,c

i = O and yt,d
i =⊥. Third,

if yt,d
i = m, then ye

i+m = 1. Reversely, ye
i+m = 1 cannot deduce yt,d

i = m, but
intuitively if p(ye

i+m = 1) increases, p(yt,d
i = m) should also increase. Forth, if

ye
i+m = 0, then yt,d

i �= m. Reversely, although yt,d
i �= m cannot deduce ye

i+m = 0,
intuitively if p(yt,d

i = m) decreases, p(ye
i+m = 0) should increase. To model these

tag-emotion causal relations in MRG, we define a set of relations represented by
rij = It(i)It(j) : rdis(ij), and some instances are shown in Fig. 2. For example,
rij = et : −2 denotes the relation from node i (an emotion node) to node j (a
tag node) and the relative distance between node i and nodej.

In MRG, each inter-task relation corresponds to a fine-grained relative dis-
tance, consistent with the definition of the tagging scheme. Therefore, the inter-
task graph transformations along these relations can achieve more sufficient and
explicit multi-task reasoning.

3.2 CGR-Net

The overall architecture of our Co-evolving Graph Reasoning Network (CGR-
Net) is shown in Fig. 3 (1). It consists of three components: Hierarchical Encod-
ing, Initial Estimation, and Co-evolving Reasoning. Next, we depict the proce-
dures of these three components.

Hierarchical Encoding.

Word-level Clause Encoding. The objective of clause encoding is to generate a
representation containing the word-level dependencies for each clause. Following
previous works, each clause is fed into BERT [8] encoder, then the last hidden
state of [CLS] token is taken as the clause representation. Now we obtain the
sequence of clause representation for D: H = (h0, ..., hn).

Multi-task Clause-level Document Encoding. In this paper, we utilize BiLSTM
[17] to generate the context-sensitive clause hidden states via modeling the inter-
clause dependencies. To obtain task-specific clause hidden states for the three
tasks, we separately apply three BiLSTMs over H to obtain the initial clause
hidden states for cause, tag and emotion, respectively: H0

c =
(
h0

c,1, ..., h
0
c,n

)
,

H0
t =

(
h0

t,1, ..., h
0
t,n

)
and H0

e =
(
h0

e,1, ..., h
0
e,n

)
.
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Fig. 3. The architectures of CGR-Net and MRGT cell. NLST denotes Non-Local Self-
Transformation.

Initial Estimation. Since MRGT cell takes the three tasks’ label distributions
predicted in previous step as input, H0

c , H0
t and H0

e are separately fed into Cause
Decoder, Tag Decoder and Emotion Decoder to produce the initial estimated
label distributions:

P 0
c = {P 0

c,i}n
i=1, P

0
t = {P 0

t,i}n
i=1, P

0
e = {P 0

e,i}n
i=1

P 0
c,i=softmax(MLPc(h0

c,i))=
[
p0c,i[1], p

0
c,i[2]

]

P 0
t,i=softmax(MLPt(h0

t,i))=
[
p0t,i[1], ..., p

0
c,i[|Ct|]

]

P 0
e,i=softmax(MLPe(h0

e,i))=
[
p0e,i[1], p

0
e,i[2]

]

(1)

Co-evolving Reasoning. Co-evolving Reasoning is achieved by the recurrent
MRGT cell, whose details are shown in Fig. 3 (2). At step l, MRGT cell takes two
streams of inputs: 1) hidden states of the three tasks: H l−1

c ∈ R
n×d, H l−1

t ∈ R
n×d

and H l−1
e ∈ R

n×d; 2) label distributions of the three tasks: P l−1
c , P l−1

t and P l−1
e .

The procedure of an MRGT cell consists of three steps (1) projecting the input
label distributions into vectors; (2) Relational Local Graph Transformation on
MRG; (3) Non-local Self-Transformation.

Projection of Label Distribution. To achieve the prediction-level interactions,
the input label distributions should be projected into vector form, and thus they
can participate in representation learning. Accordingly, we ues P l−1

c , P l−1
t and
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P l−1
e to respectively multiply the corresponding task-specific label embedding

matrices Me
c ∈R

|Cc|×d, Me
t ∈R|Ct|×d and Me

e ∈R|Ce|×d, which are trained with
the whole model. Specifically, xi’s label representations for the three tasks are
obtained as:

el
t,i =

|Ct|∑

k=1

pl−1
t,i [k] · vk

t ; el
c,i =

|Cc|∑

k′=1

pl−1
c,i [k′] · vk′

c ; el
e,i =

|Ce|∑

k′′=1

pl−1
e,i [k′′] · vk′′

e (2)

where vk
t , vk′

c and vk′′
e denotes the label embeddings of tag, cau and emo, respec-

tively.

Relational Local Graph Transformation. Since MRG is based on local connec-
tions, we conduct relational local graph transformation inspired from [22,28–
31,33–35] for multi-task reasoning. To achieve the self- and mutual-interactions
between the semantics and predictions of the three tasks, for each node in MRG,
we superimpose its corresponding clause’s label representations of the three tasks
on its hidden state:

el
i =el

c,i + el
t,i + el

e,i,

ĥl
c,i = hl−1

c,i +el
i; ĥl

t,i =hl−1
t,i +el

i; ĥl
e,i = hl−1

e,i +el
i

(3)

Thus each node representation contains the task-specific semantic features as well
as the explicit correlative information conveyed by label representations, which
are then integrated together into the relational local graph transformation to
achieve semantics-level and prediction-level interactions.

Specifically, the relational local graph transformation updates the nodes on
MRG as follows:

h
l

i = W1ĥ
t
i +

∑

r∈R

∑

j∈N r
i

1
|N r

i |W
r
2 ĥl

j (4)

where W1 is the self-message matrix and W r
2 is the relation-specific matrix. N r

i

denotes the neighbors set of node i along corresponding to the relation r. Now
we obtain the updated hidden states: H

l

c, H
l

t and H
l

e.

Non-Local Self-Transformation Despite the advantages of the relational local
graph transformation, it has two potential issues: (1) due to the local self-
transformation, some beneficial contextual dependencies between a node and
its distant same-task nodes may be lost; (2) the information fusion weaken the
task-specificity of the nodes to some extent, which is against predictions. To this
end, inspired by [27,32], we conduct non-local self-transformation (NLST) over
the sequence of nodes of each task, and this is implemented by a task-specific
BiLSTM which can capture long-range dependencies. The final hidden states of
the three tasks at step l are obtained by:

H l
c = NLSTC(H

l

c); H l
t = NLSTT(H

l

t); H l
e = NLSTE(H

l

e) (5)

Then H l
c, H l

t and H l
e are fed to respective decoders to produce P l

c , P l
t and P l

e.
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Optimization with Logical Constraints. In CGR-Net, there are two vital
logic rules. First, the label distributions estimated in the previous step should
be relatively good to provide effective label representations for the current step.
Otherwise, much incorrect and misleading explicit correlations would be intro-
duced, harming multi-task reasoning. Second, ECPE and CE/EE are supposed
to gradually promote each other via capturing more and more beneficial mutual
knowledge and correlations in Co-evolving Reasoning. In other words, the esti-
mated label distributions should be gradually improved along the steps. To sat-
isfy these two rules, we propose a harness loss Lharn that includes two terms:
estimate loss Lest and margin loss Lmarg, corresponding to the two rules, respec-
tively.

Estimate Loss. Formally, Lest is the cross-entropy loss. For ECPE task, Ltag,l
est

is defined as:

Ltag,l
est =

1
n

n∑

i=1

|Ct|∑

k=1

yk
t,ilog

(
pl

t,i[k]
)
, (6)

Margin Loss. Lmarg works on the label distributions output in two adjacent
steps, forcing CGR-Net to produce better predictions at step l than step l − 1.
For ECPE task, Ltag,l

marg is defined as:

Ltag,(l,l−1)
marg =

1
n

n∑

i=1

|Ct|∑

k=1

yk
t,i max(0, pl−1

t,i [k] − pl
s,i[k]) (7)

Harness loss Lharn is the weighted sum of Lest and Lmarg. For ECPE task,
Ltag

harn is defined as:

Ltag
harn =

L−1∑

l=0

Ltag,l
est + β ∗

L∑

l=1

Ltag,(l,l−1)
marg (8)

where β is a hyper-parameter balancing the impact of the two kinds of punish-
ments.

Final Training Objective The total loss for ECPE task (Ltag) is the sum of Ltag
harn

and Ltag
pred:

Ltag = Ltag
pred + Ltag

harn (9)

where Ltag
pred is the cross-entropy loss of the produced tag label distributions at

the final step L:

Ltag
pred =

1
n

n∑

i=1

|Ct|∑

k=1

yk
t,i log

(
pL

t,i[k]
)

(10)

The total losses of CE (Lcau) and EE (Lemo) can be derivated like Eqs. (6)
to (10).
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The final training objective of CGR-Net is the weighted sum of the total
losses of the three tasks:

L = α ∗ Ltag +
1 − α

2
Lcau +

1 − α

2
Lemo (11)

where α is a hyperparameter balancing the three tasks and it is intuitively set
as 0.5 in this work.

4 Experiments

4.1 Datasets and Evaluation Metrics

The only benchmark dataset for ECPE task is released by [26] who construct it
on an emotion-cause extraction corpus [16]. The dataset totally consists of 1,945
documents, among which 1,746 ones have one emotion-cause pair, 177 ones have
two emotion-cause pairs, and 22 ones have more than two emotion-cause pairs.
The average number of clauses per document is 14.77, and the max number is
73.

Following previous works, we adopt the 10-fold cross-validation for evalua-
tions. And the averages of precision (P), recall (R), and F1-score over ten runs
are adopted as metrics. Besides ECPE, we also report the results of EE and
CE, which are evaluated based on the emotion clauses and cause clauses in the
extracted emotion-cause pairs.

4.2 Implement Details

We adopt the BERTChinese implemented in PyTorch [24] as the clause encoder.
And the three decoders are implemented as three 2-layer MLPs whose hidden
size is set as 256. The AdamW optimizer [19] is used for model training, and the
learning rate is 1e−5 for BERT and 1e−4 for other modules. The dimension d
is 512, the max span γ is 3 and the margin loss coefficient β is 1e−3. The step
number of Co-evolving Reasoning is 3. The dropout rate is 0.1, and the batch
size is 4. The epoch number is 10, and the early stopping strategy is adopted.
All experiments are conducted on a DGX A100 server.

4.3 Compared Baselines

We compare our CGR-Net with the following two groups of baselines.

Group 1: M1: ECPE-2D (BERT) [10]; M2 :Hier-BiLSTM-BERT; M3:
PairGCN-BERT [3]; M4: TransECPE [12]; M5: RankCP+BERT [23]; M6:
UTOS+BERT [5]; M7: ECPE-MLL(BERT) [11]; M8: MGSAG(BERT) [1]; M9:
MaCa(BERT) [37];

Group 2: M8: SLNT + BERT [38]; M9: MTST + Refinement [13].
Our CGR-Net uses the same ECPE tagging scheme with the second group

of baselines.
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Table 2. Results comparison on ECPE task and the two subtasks. All scores are
averages over 10 runs. All models adopt BERT for clause encoding. � denotes the
results are reproduced by us. † and ‡ denote the results are retrieved from [13] and
[5], respectively. ∗ denotes our CGR-Net significantly overpasses M10 and M11 with
p < 0.05 under t-test.

Models Emotion-Cause Pair Ext. Emotion Ext. Cause Ext.
P (%) R (%) F1 (%) P (%) R (%) F1 (%) P (%) R (%) F1 (%)

M1: ECPE-2D(BERT) 72.92 65.44 68.89 86.27 92.21 89.10 73.36 69.34 71.23
M2: Hier-BiLSTM-BERT 75.37 64.34 69.26 88.80 74.70 81.00 78.03 65.35 70.96
M3: PairGCN-BERT 76.92 67.91 72.02 88.57 79.58 83.75 79.07 69.28 73.75
M4: TransECPE† 77.08 65.32 70.72 88.79 83.15 85.88 78.74 66.89 72.33
M5: RankCP+BERT‡ 68.21 74.83 71.21 86.79 89.26 87.97 72.62 76.46 74.37
M6: UTOS+BERT 73.89 70.62 72.03 88.15 83.21 85.56 76.71 73.20 74.71
M7: ECPE-MLL(BERT) 77.00 72.35 74.52 86.08 91.91 88.86 73.82 79.12 76.30
M8: MGSAG(BERT) 77.43 73.21 75.21 92.08 92.11 87.17 79.79 74.68 77.12
M9: MaCa(BERT) 80.47 72.15 73.87 88.19 89.55 87.04 78.41 72.60 74.35
M10: SLNT+BERT� 73.56 68.57 70.85 84.77 80.61 82.51 75.94 70.99 73.25
M11: MTST+Refinement� 77.14 67.81 72.11 88.25 79.01 83.31 79.18 69.79 74.12
CGR-Net (ours) 77.62 75.49∗ 76.48∗ 89.65 86.23∗ 87.75∗ 79.68 77.84∗ 78.75∗

4.4 Main Results

The overall results on ECPE and the two subtasks are shown in Table 2. We
can observe that CE is much harder than EE, and CE determines the result of
ECPE to a large extent. The reason is that CE plays a key role in identifying the
causalities, which is difficult for machines. Our CGR-Net significantly outper-
forms the previous best-performing model M8 by 1.7%, 0.7%, and 2.1% in terms
of F1 on ECPE, EE and CE, respectively. Using the same tagging scheme, our
CGR-Net overpasses M10 and M11 by 6.1%, 5.3%, and 6.2% in F1 on the three
tasks. In particular, we can find that the superior F1 of CGR-Net comes from
the high recall and competitive precision. In contrast, previous models generally
obtain low recalls because their single-round multi-task reasoning process and
the one-way message only from CE/EE to ECPE are not competent enough to
discover the emotion cause pairs sufficiently. Moreover, their implicit semantics
interactions cannot effectively exploit the causal relations. We can find that our
CGR-Net overpasses M10 and M11 by 10.1%, 7.0%, and 9.6% in terms of recall on
the three tasks. This demonstrates that through Co-evolving Reasoning, CGR-
Net can discover much more ground-truth emotion-cause pairs than baselines,
while there are not many wrong-extracted pairs at the same time. CGR-Net’s
satisfying results come from the advantages of MRG, the well-designed supervi-
sion signals, and the advanced architecture of MRGT.

4.5 Variants of MRG Structure

In this section, we investigate how the structure of MRG would affect our CGR-
Net’s performance by applying different structures to MRG. Except for the orig-
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Table 3. Results on different variants of MRG.

Variants ECPE EE CE
F1 (%) F1 (%) F1 (%)

MRG(γ = 3) 76.48 87.75 78.75
MRG(γ = 1) 75.15 (↓ 1.33) 86.31 (↓ 1.44) 77.32 (↓ 1.43)
MRG(γ = 2) 75.49 (↓ 0.99) 87.55 (↓ 0.20) 77.79 (↓ 0.96)
MRG(γ = 4) 74.87 (↓ 1.61) 86.78 (↓ 0.97) 77.21 (↓ 1.54)
OWM 74.71 (↓ 1.77 86.30 (↓ 1.45) 77.22(↓ 1.53))
NoRel 74.63 (↓ 1.85) 85.33 (↓ 2.42) 77.10 (↓ 1.65)
FCG 73.65 (↓ 2.83) 84.89 (↓ 2.86) 76.56 (↓ 2.19)

inal MRG(γ = 3), we design four variants: (1) MRG(γ = 1), MRG(γ = 2) and
MRG(γ = 4), which have different span limitation; (2) OWM (one-way message),
in which the edges from tag nodes to emotion nodes and cause nodes are deleted,
thus there is only one-way message from EE/CE to ECPE, like previous works;
(3) NoRel, in which there is no relation on edges; (4) FCG (fully-connected
graph), in which all tag nodes are fully connected with all emotion nodes and
all cause nodes, while there is no relation. The results over these variants are
listed in Table 3.

Several instructive observations can be made from the results. Firstly, with
γ varying from 1 to 4, the results first increase and then decrease. The reason
is that too small γ cannot capture all emotion-pairs, while too large γ makes it
much harder to predict correctly because |Ct| is directly proportional to γ. More
than 95% emotion-cause pairs’ spans in the dataset do not exceed 3, so intuitively
γ = 3 performs best, and the results prove this. And this is consistent with the
report of [13]. Secondly, compared with the original MRG, OWM’s performances
on all tasks drop significantly. This proves that the reverse feedbacks from ECPE
to EE/CE is crucial, while previous works ignore them. In this paper, we pro-
pose a new MTL framework based on the novel Co-evolving Reasoning mechanism
to solve this issue. Thirdly, without relations, NoRel performs much worse than
the original MRG. The distinct decrease of results proves that our designed rela-
tions are indispensable for capturing the casualties between ECPE and EE/CE
and significantly improve the performances. Finally, FCG performs even worse
than NoRel. This is because causalities often exist between close clauses. In FCG,
useless information from distant nodes is integrated into the current node, making
the crucial information diluted and discarded, resulting in poor results. And this
proves the validity of the local connection rule in MRG.

4.6 Investigation of Supervision Signals

To investigate the necessities of different supervision signals, we remove different
loss terms, and the results are listed in Table 4. Firstly, we can observe that
removing Lemo or Lcau both lead to obvious result decreases on all tasks. This
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Table 4. Results of removing different loss terms.

Variants EE CE ECPE
F1 (%) F1 (%) F1 (%)

CGR-Net 76.48 87.75 78.75
−Lemo 74.51 (↓ 1.97) 86.21 (↓ 1.54) 77.03 (↓ 1.72)
−Lcau 74.28 (↓ 2.20) 86.25(↓ 1.50) 76.94 (↓ 1.81)
−Lemo − Lcau 73.76 (↓ 2.72) 85.05 (↓ 2.70) 76.13 (↓ 2.62)
−Lest 75.43 (↓ 1.05) 87.54 (↓ 0.21) 77.97(↓ 0.78)
−Lmarg 74.22 (↓ 2.26) 86.51(↓ 1.24) 76.64 (↓ 2.11)
−Lharn 74.89 (↓ 1.59) 85.61 (↓ 2.14) 77.60 (↓ 1.15)

Fig. 4. Ablation results of MRGT cell.

is because our model exploits the beneficial mutual correlations between ECPE
and the two subtasks. So removing the supervision signal of a subtask harms not
only the performance of itself but also the performances of ECPE and another
subtask. If both subtasks do not have supervision signals, the performances of
all tasks drop dramatically. Then we can find that the performances decrease
remarkably if Lharn or any of its two terms is removed. This is because without
Lharn CGR-Net is hard to achieve the virtuous cycle of Co-evolving Reasoning.

4.7 Ablation Study of MRGT Cell

We conduct ablation experiments to study the efficacies of the components in
MRGT cell, and the results are listed in Fig. 4. When removing prediction-level
interactions (PredInt), the performances drop significantly. This proves that only
relying on semantics-level interactions is insufficient for multi-task reasoning. An
essential advantage of our model is achieving prediction-level interactions that
convey explicit correlations and provide feedback for semantics that can then
rethink to improve. Without RLGT, Co-evolving Reasoning cannot be achieved,
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Fig. 5. CGR-Net’s performances on different L.

causing the worst results. Removing NLST also leads to sharp decreases in
results. This is because without NLST the hidden states cannot obtain long-
range crucial contextual information, and the three streams of hidden states
output at each step are not task-specific enough, which both harm the predic-
tions.

4.8 Step Number of Co-evolving Reasoning

We plot the performance (F1) trends of CGR-Net on the three tasks over differ-
ent Co-evolving Reasoning step numbers, as presented in Fig. 5. The best overall
performances are achieved when L = 3, which justifies the step number setting
in Sec. 4.2. Generally, the performances of ECPE and the two subtasks steadily
increase until L = 3, while then having dropping trends or fluctuate in a rela-
tively narrow range when L continues increasing. This indicates that ECPE and
CE/EE can gradually promote each other in the process of Co-evolving Reason-
ing, whose advantage is validated. However, after the performance reaches its
peak, more steps lead to decreasing. We speculate the possible reason is that
too many Co-evolving Reasoning steps may cause redundant information and
over-fitting.

5 Conclusion and Prospect

In this paper, we improve ECPE on three aspects. First, we propose a new MTL
based on Co-evolving Reasoning, allowing ECPE and its two subtasks to pro-
mote each other gradually. Besides, prediction-level interactions are integrated
to model the explicit correlations. Second, we design a novel multi-task relational
graph (MRG) to sufficiently exploit the causal relations. Finally, we propose a
Co-evolving Graph Reasoning Network (CGR-Net) to implement our framework
and conduct Co-evolving Reasoning on MRG. Experiment results demonstrate
the superiority of our method, and detailed analyses further validate the advan-
tages.
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This work contributes a new paradigm not only for ECPE but also for a group
of scenarios in which different tasks share the same input sequence. Future works
include improving our method on ECPE and applying our paradigm to other
MTL tasks.
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