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Abstract. Self-supervised learning (SSL) has proven effective in solv-
ing various problems by generating internal supervisory signals. Unsu-
pervised anomaly detection, which faces the high cost of obtaining true
labels, is an area that can greatly benefit from SSL. However, recent lit-
erature suggests that tuning the hyperparameters (HP) of data augmen-
tation functions is crucial to the success of SSL-based anomaly detection
(SSAD), yet a systematic method for doing so remains unknown. In this
work, we propose DSV (Discordance and Separability Validation), an
unsupervised validation loss to select high-performing detection models
with effective augmentation HPs. DSV captures the alignment between
an augmentation function and the anomaly-generating mechanism with
surrogate losses, which approximate the discordance and separability of
test data, respectively. As a result, the evaluation via DSV leads to select-
ing an effective SSAD model exhibiting better alignment, which results
in high detection accuracy. We theoretically derive the degree of approxi-
mation conducted by the surrogate losses and empirically show that DSV
outperforms a wide range of baselines on 21 real-world tasks.

Keywords: Anomaly detection · Self-supervised learning ·
Unsupervised model selection · Data augmentation

1 Introduction

Through the use of carefully annotated data, machine learning (ML) has demon-
strated success in various applications. Nonetheless, the high cost of acquiring
high-quality labeled data poses a huge challenge. A recent alternative, known as
self-supervised learning (SSL), has emerged as a promising solution. Intuitively,
SSL generates a form of internal supervisory signal from the data to solve a task,
thereby transforming an unsupervised task into a supervised problem by produc-
ing (pseudo-)labeled examples. It has achieved remarkable progress in advancing
natural language processing [1,6] and computer vision tasks [4,12].

SSL can be particularly advantageous when dealing with unsupervised prob-
lems such as anomaly detection (AD). The process of labeling for such problems,
such as correctly identifying fraudulent transactions, can be challenging and
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Fig. 1. The performance of self-supervised anomaly detectors on the MVTec AD
dataset with different hyperparameters of augmentation faug. Each line is drawn from
one of the 15 tasks that MVTec AD contains. The AUC changes from 0.242 to 0.815
based on the choice of hyperparameters (in Carpet), where the optimum depends on
the type of faug and true anomalies.

expensive. As a result, a group of SSL-based AD (SSAD) approaches [2,7,13]
have been proposed recently, where the core idea is to inject self-generated pseudo
anomalies into the training data to improve the separability between inliers and
pseudo anomalies. To create such pseudo anomalies, one may transform inliers
via data augmentation function(s) such as rotate, blur, mask, or CutPaste [13],
which are designed to create a systematic change without discarding important
original properties such as texture or color depending on the dataset.

Despite the surge of SSAD methods, how to set the hyperparameters (HPs),
e.g., rotation degrees, remain underexplored, which can significantly affect their
performance [25]. In the supervised ML community, these augmentation HPs are
systematically integrated into the model selection problem to be chosen with a
hold-out/validation set [16,29]. However, choosing the augmentation HPs has
been arbitrary and/or “cherry-picked” in SSAD [2,7] due to the evaluation chal-
lenges. Recent literature shows that the arbitrary choice of SSAD augmentation
has implications [25]. Firstly, due to the no-free-lunch theorem [23], different aug-
mentation techniques perform better on different detection tasks, and arbitrary
selection is thus insufficient. Secondly, in some cases, the arbitrary selection of
augmentation HPs can lead to a biased error distribution [24]. Thus, augmenta-
tion HPs in SSAD should be chosen carefully and systematically.

Figure 1 shows how the performance of SSAD methods changes by the choice
of augmentation HPs. The CutOut [5] and CutPaste [13] augmentations are used
for MVTec AD [3], which is a real-world dataset for anomaly detection. In Carpet
of Fig. 1a, for example, the detection AUC changes from 0.242 to 0.815 with the
choice of HPs. The expected accuracy without prior knowledge is severely worse
than its optimum, highlighting the importance of a proper HP choice, which is
not even the same for different augmentation functions and tasks.
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One solution is to select augmentation HPs in SSAD via unsupervised outlier
model selection (UOMS) [26,27], which aims to choose a good AD model and its
HPs for a new dataset without using any labels. Given an underlying AD model,
we may pair it with different augmentation HPs to construct candidate models to
find the best performing one. Existing UOMS approaches can be briefly split into
two groups. The first group solely depends on the model’s output or input data
[15], while it cannot capitalize on the nature of SSAD. The second group uses
learning-based approaches to select a model using the performances on (similar)
historical datasets, while this prior information may be inaccessible.

In this work, we propose DSV (Discordance and Separability Validation), an
unsupervised objective function that enables the search for optimal augmenta-
tion HPs without requiring true labels. The main idea of DSV is to decompose
the alignment between data augmentation and true anomalies, which cannot be
computed without labels but plays an essential role in estimating the detection
performance, into discordance and separability. Since each of them reflects only
a part of the original alignment, the decomposition allows us to devise surrogate
losses which effectively approximate the alignment in combination.

We summarize our key contributions below:

– Unsupervised validation loss for SSAD: We propose DSV, an unsuper-
vised validation loss for the search of best augmentation HPs in SSAD. The
minimization of DSV leads to a high-performing AD model, which exhibits
better alignment between augmentation and true anomalies.

– Theoretical analysis: We theoretically show that DSV is an effective approx-
imation of the alignment between data augmentation and true anomalies, and
its minimization leads to well-aligned augmentation HPs.

– Extensive experiments: We conduct extensive experiments on 21 different
real-world tasks. DSV surpasses 8 baseline approaches, showing up to 12.2%
higher average AUC than the simple average. We also perform diverse types
of ablation and case studies to better understand the success of DSV.

Reproducibility. All of our implementation and datasets are publicly available
at https://github.com/jaeminyoo/DSV.

2 Problem Definition and Related Works

2.1 Problem Definition

Let faug : Rm → R
m be a data augmentation function on m-dimensional data,

such as the rotation of an image, which plays an important role in self-supervised
anomaly detection (SSAD). Then, we aim to solve the unsupervised outlier model
selection (UOMS) problem, focusing on the hyperparameters (HP) of faug, based
on observations that choosing good HPs of faug is as important as selecting the
detector model or faug itself. We formally define the problem as Problem 1.

Problem 1. Let Dtrn be a set of normal data, and Dtest be an unlabeled test set
containing both normal data and anomalies. Given Dtrn, Dtest, and a set {φi}i of

https://github.com/jaeminyoo/DSV


DSV for Self-supervised Outlier Model Selection 257

detector models, each of which is trained on Dtrn with an augmentation function
faug of different hyperparameters, our goal is to find the model φ∗ that produces
the highest detection accuracy on Dtest, without having true labels.

We also assume that every detector model φ = φenc ◦ φdec which we consider
for UOMS consists of an encoder φenc ∈ R

m → R
l and a decoder φdec ∈ R

l → R,
which is typical of most AD models based on deep neural networks.

2.2 Self-supervised Anomaly Detection (SSAD)

With the recent advance in self-supervised learning, SSAD has been widely stud-
ied as a promising alternative to unsupervised AD models. The main idea is to
create pseudo-anomalies and inject them into a training set, which contains only
normal data, to utilize supervised training schemes. For example, a popular way
is to learn a binary classifier that divides normal and augmented data [13] or an
n-way classifier that predicts the type of augmentation used [2,7]. Many SSAD
methods have shown a great performance on real-world tasks [17,19,20,22].

However, most existing works on SSAD are based on arbitrary and/or cherry-
picked choices of an augmentation function and its HPs. This is because AD does
not contain a labeled validation set for a systematic HP search unlike in typical
supervised learning. A recent work [25] pointed out such a limitation of existing
works and showed that augmentation HPs, as well as the augmentation function
itself, work as important hyperparameters that largely affect the performance on
each task. Thus, a systematic approach for unsupervised HP search is essential
to design generalizable and reproducible approaches for SSAD.

2.3 Unsupervised Outlier Model Selection (UOMS)

UOMS aims to select an effective model without using any labels. Clearly, choos-
ing the augmentation hyperparameters (HPs) of an AD algorithm in SSAD can
be considered a UOMS problem. In this case, a candidate model is defined as a
pair of the underlying AD algorithm and augmentation HPs, and the goal is to
choose the one that would achieve high detection rate on test data.

Existing UOMS approaches can be categorized into two groups. The first
group uses internal performance measures (IPMs) that are based solely on
the model’s output and/or input data [15]. We adopt three top-performing
IPMs reported in [15] as baselines (see §4.1). The second group consists of
meta-learning-based approaches [26,27]. In short, they facilitate model selec-
tion for a new unsupervised task by leveraging knowledge from similar historical
tasks/datasets. It is important to note that in this work we do not assume access
to historical training data. Thus, learning-based UOMS approaches do not apply
here.

3 Proposed Method

We introduce DSV (Discordance and Separability Validation), our unsupervised
validation loss for the search of augmentation HPs in SSAD. The minimization of
DSV leads to better alignment between data augmentation and true anomalies,
which in turn results in higher accuracy on anomaly detection.
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3.1 Definitions and Assumptions

We first introduce definitions and assumptions on which DSV is based. We start
by defining set distance and projection functions. Note that by Definition 1, the
set distance d satisfies the triangle inequality between three different sets.

Definition 1. We define a set distance d as the average of all pairwise distances:
d(A,B) = 1

|A||B|
∑

a∈A
∑

b∈B ‖a − b‖. We also represent the vector distance as
d for the brevity of notations: d(a,b) := d({a}, {b}).

Definition 2. We define a projected norm as proj(a,b, c) = (c−a)�(b−a)
‖(b−a)‖ . The

meaning of proj is the norm of c−a projected onto the direction of b−a, using
a as the anchor point. Note that proj(a,b, c) ≤ ‖c − a‖.

Then, we introduce an assumption on data embeddings. Recall that our
detector φ = φenc ◦ φdec contains an encoder function φenc ∈ R

m → R
l. Let

Ztrn and Ztest be sets of embeddings for training and test samples, respectively,
such that Ztrn = {φenc(x) | x ∈ Dtrn} and Ztest = {φenc(x) | x ∈ Dtest}. Let
Z(n)

test and Z(a)
test be the normal and anomalous data in Ztest, respectively. We also

define Zaug = {φenc(faug(x)) | x ∈ Dtrn} as a set of augmented embeddings.

Assumption 1. By convention, we assume that training normal and test nor-
mal data are generated from the same underlying distribution. Let d(Ztrn,Ztrn) =
σ. Then, d(Z(n)

test,Z(n)
test) = σ and d(Ztrn,Z(n)

test) = σ + ε, where ε < σ.

3.2 Main Ideas: Discordance and Separability

Let fgen ∈ R
m → R

m be the underlying (unknown) anomaly-generating function
in Dtest, which transforms a normal data into an anomaly. We aim to find faug
that maximizes the functional similarity between faug and fgen, which we refer
to alignment in this work. There are various ways to measure the alignment, but
we focus on the embedding space, as it allows us to avoid the high dimensionality
of real-world data. We informally define the extent of alignment as follows.

Proposition 1. Data augmentation function faug is aligned with the anomaly-
generating function fgen if Lali = d(Zaug,Z(a)

test) is small.

The problem is Lali cannot be computed without test labels. To extract Z(a)
test

from Ztest is as difficult as solving the anomaly detection problem itself. Then,
how can we approximate Lali without test labels? We propose to decompose
the alignment geometrically into discordance hd and separability hs as shown in
Fig. 2. For an intuitive illustration, we assume that only one data exists in each
set, e.g., Ztrn = {ztrn}. Then, the simplified definitions of hd and hs are given as

hd(ztrn, zaug, z
(a)
test) =

d(ztrn, z
(a)
test) + d(zaug, z

(a)
test)

d(ztrn, zaug)
− 1 (1)

hs(ztrn, zaug, z
(a)
test) =

proj(ztrn, zaug, z
(a)
test)

d(ztrn, zaug)
. (2)
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Fig. 2. Simplified illustrations of discordance and separability. We assume that all sets
are of size one, e.g., Ztrn = {ztrn}. Blue is better than red in (b) and (c). To minimize
Lali = d(zaug, z

(a)
test) as in (a), we propose the (b) discordance hd, which is the distance

between z
(a)
test and the line segment �, and the (c) separability hs, which is the distance

between ztrn and z
(a)
test projected onto �. (Color figure online)

In combination, hd and hs allow us to minimize Lali = d(zaug, z
(a)
test) without

actually computing it. Let � = ztrn + t(zaug − ztrn) be a line segment between
ztrn and zaug, where t ranges over [0, 1]. Then, hd represents a distance between
z(a)test and �, which is minimized when z(a)test is exactly on �. On the other hand, hs

means the distance between z(a)test and ztrn when z(a)test is projected onto �. Thus,
Lali is minimized as zero if hd = 0 and hs = 1.

A difference between hd and hs is that hd becomes a more accurate approx-
imation of Lali if z(a)test is far from both ztrn and zaug. Thus, we consider hd as a
coarse-grained measure, while we bound the range of hs into [0, 1] and consider
it as a fine-grained measure to address the incapability of hd to locate z(a)test on
�. Then, hd is lower the better (alignment), while hs is higher the better.

The exact definitions of hd and hs are direct generalization of Eq. (1) and (2)
from vectors to sets. The idea is to compute the average of all possible distances
by replacing the vector distance with the set distance in Definition 1:

hd(Ztrn,Zaug,Z(a)
test) =

d(Ztrn,Z(a)
test) + d(Zaug,Z(a)

test)
d(Ztrn,Zaug)

− 1 (3)

hs(Ztrn,Zaug,Z(a)
test) =

∑
ztrn,zaug,z

(a)
test∈Ztrn,Zaug,Z(a)

test
proj(ztrn, zaug, z

(a)
test)

d(Ztrn,Zaug)|Ztrn||Zaug||Z(a)
test|

. (4)
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Surrogate Losses. Based on our decomposition of the alignment, we pro-
pose surrogate losses Ldis and Lsep to approximate hd and hs, respectively, which
have the term Z(a)

test (unknown at test time) in their definitions. Our final vali-
dation loss LDSV is given as

LDSV(Ztrn,Zaug,Ztest) = Ldis(·) − max(Lsep(·), 1/2)
Ldis(·) , (5)

where Ztrn, Zaug, and Ztest are inputs also to the right-hand side terms. The
minus sign is used since higher Lsep means better alignment until it reaches the
optimum, which is 1/2 in Lsep, while it is 1 for hs. We divide Lsep by Ldis, since we
want Lsep to have an effect especially when Lsep is small. Then, we use LDSV to
perform unsupervised model selection by choosing the hyperparameters of faug
that yields the smallest LDSV, which indicates the model with best alignment.

3.3 Discordance Surrogate Loss

We now describe how our surrogate losses Ldis and Lsep effectively approximate
the discordance hd and separability hs, respectively. Ldis is defined as

Ldis(Ztrn,Zaug,Ztest) =
d(Ztrn ∪ Zaug,Ztest)

d(Ztrn,Zaug)
. (6)

The idea is that d(Ztrn∪Zaug,Ztest) can approximate hd based on the triangle
inequality. To show the exact relation between Ldis and hd, we first derive the
lower and upper bounds of Ldis with respect to hd in Lemma 1. Then, we show in
Corollary 1 that Ldis is represented as a linear function of hd if some constraints
are met, which makes Ldis an effective approximation of hd.

Lemma 1. If |Ztrn| = |Zaug|, then the lower and upper bounds of Ldis are given
as functions of hd and d(Ztrn,Zaug):

c2hd + c2 + c3 ≤ Ldis(·) ≤ c2hd + c2 + c3 +
(c1 + c3)(σ + ε)
d(Ztrn,Zaug)

,

where ci = ĉi/
∑4

k=1 ĉk are data size-based constants such that ĉ1 = |Ztrn|·|Z(n)
test|,

ĉ2 = |Ztrn| · |Z(a)
test|, ĉ3 = |Zaug| · |Z(n)

test|, and ĉ4 = |Zaug| · |Z(a)
test|.

Proof. The proof is in Appendix A.1. �

Corollary 1. If |Ztrn| = |Zaug|, σ � d(Ztrn,Zaug), and ε � d(Ztrn,Zaug), then
Ldis is a linear function of hd: Ldis(Ztrn,Zaug,Ztest) ≈ c2hd + c2 + c3.

3.4 Separability Surrogate Loss

The separability surrogate loss Lsep for approximating hs is defined as follows:

Lsep(·) =
std({proj(μtrn, zaug, ztest) | zaug, ztest ∈ Zaug,Ztest})

d(Ztrn,Zaug)
, (7)
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Table 1. Average AUC (top) and rank (bottom) across 21 different tasks in the two
datasets. The best is in bold, and the second best is underlined. Our DSV achieves the
best in six, and the second-best in two out of the 8 cases.

faug Avg. Rand. Base MMD STD MC SEL HITS DSV

CutOut 0.739 0.776 0.741 0.735 0.739 0.749 0.727 0.757 0.813

CutAvg 0.739 0.817 0.721 0.692 0.745 0.751 0.744 0.742 0.806

CutDiff 0.743 0.711 0.739 0.730 0.744 0.747 0.741 0.777 0.811

CutPaste 0.788 0.841 0.694 0.756 0.818 0.862 0.830 0.850 0.884

faug Avg Rand Base MMD STD MC SEL HITS DSV

CutOut 7.33 6.10 6.62 6.93 6.29 6.50 7.10 5.43 3.79

CutAvg 7.00 5.02 7.64 8.36 5.52 5.48 5.98 5.60 4.19

CutDiff 6.43 7.24 6.45 7.38 6.00 5.64 6.24 6.21 3.60

CutPaste 7.67 6.29 8.67 7.21 5.60 4.33 5.17 4.64 4.57

where std(A) =
√|A|−1

∑
a∈A(a − mean(A)) is the standard variation of a set,

and μtrn is the mean vector of Ztrn. One notable difference from Eq. (4) is that
only the mean μtrn is used in the numerator, instead of whole Ztrn, based on the
observation that Ztrn is usually densely clustered as a result of training.

Intuitively, Lsep measures how much Ztest is scattered along the direction of
zaug − μtrn. The amount of scatteredness is directly related to the value of hs,
since we assume by convention that Z(n)

test is close to Ztrn. In Lemma 2, we show
that Lsep is a linear function of hs if some constraints are met, and its optimum
is 1/2 in the ideal case, which corresponds to hs = 1, if σ̄test � ‖zaug − ztrn‖.

Lemma 2. We assume that Ztrn = {ztrn}, Zaug = {zaug}, and z(n)test = ztrn for
all z(n)test ∈ Z(n)

test. Let γ = |Z(a)
test|/|Ztest|, and σ̄test be the standard deviation of the

projected norms Z(p)
test = {proj(ztrn, zaug, z) | z ∈ Z(a)

test}. Then, the separability
surrogate loss Lsep is rewritten as a function of hs as follows:

Lsep(Ztrn,Zaug,Ztest) =
√

γ(1 − γ)hs +
√

γσ̄test

‖zaug − ztrn‖ .

Proof. The proof is in Appendix A.2. �

4 Experiments

We answer the following questions through experiments on real datasets:

Q1. Performance. Are the models selected by DSV better than those selected
by baseline measures for unsupervised model selection? Is the improvement
statistically significant across different tasks and datasets?
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Q2. Ablation study. Are the two main components of DSV for the discor-
dance and separability, respectively, meaningful to performance? How do
they complement each other across different augmentation functions and
tasks?

Q3. Case studies. How does DSV work on individual cases with respect to the
distribution of embedding vectors or anomaly scores?

Fig. 3. Ablation study to compare Ldis, Lsep, and LDSV on 21 different tasks and on
average when faug = CutPaste. DSV shows a dramatic improvement in a few cases,
such as tasks T2 (both fail), T4 (Lsep fails), T11 and T14 (Ldis fails).

4.1 Experimental Settings

Datasets. We include two datasets for anomaly detection in natural images:
MVTec AD [3] and MPDD [10], which contain 21 different tasks in total. MVTec
AD mimics real-world industrial inspection scenarios and contains 15 different
tasks: five unique textures and ten unique objects from different domains. MPDD
focuses on defect detection during painted metal parts fabrication and contains
6 different object types with a non-homogeneous background. The evaluation is
done by AUC (the area under the ROC curve) scores on test data.

Detector Models. We use a classifier-based anomaly detector model used in
a previous work [13], which first learns data embeddings and then computes
anomaly scores on the space. The model structure is based on ResNet18 [9]. All
model hyperparameters are set to the default setting, except for the number of
training updates, which we changed for MPDD since the model converged much
faster due to the smaller data size; we set the number of updates to 10,000 in
MVTec AD, while to 1,000 in MPDD.
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Fig. 4. The AUC and loss values Ldis, Lsep, and LDSV with CutOut or CutPaste as
faug. We preprocessed Lsep so that it can be directly added to Ldis for creating LDSV.
We have two main observations from the figures. First, LDSV is negatively correlated
with the actual AUC. Second, Lsep and Ldis work in a complementary way, which is
shown especially well on (a) and (b).

Augmentation Functions. We use four different augmentation functions in
experiments: CutOut [5], CutAvg, CutDiff, and CutPaste [13]. CutOut replaces
a random patch from an image with black pixels. CutAvg is similar to CutOut,
but it replaces a patch with the average color of the patch, instead of the black.
CutDiff is a smooth version of CutOut, and it makes a smooth boundary when
selecting a patch. The resulting image has the black at the center of the original
position of the patch, and it becomes brighter as it goes close to the boundary.
CutPaste copies a patch and pastes it into a random location of the image.

We use the patch size as the target augmentation hyperparameter to search
for all these functions, since it directly controls the amount of modification by
faug. We consider 17 settings in the range from 10−5 to 0.64 in the log scale. For
example, 0.1 represents we select a patch whose size is 10% of the image.

Baselines. We compare our DSV with eight baseline methods for unsuper-
vised model selection. Average is the simplest one, which is to take the average
performance of all settings we consider. Random means we change the hyperpa-
rameter for each inference during training and test. Base is to use the distance
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Ldis(Ztrn,Zaug,Ztest) as the simplest approximation of Lali. MMD replaces the
distance function in Base with the maximum mean discrepancy [21]. STD mea-
sures standard deviation of the all-pair distances between Ztrn and Ztest.

MC, SEL, and HITS were proposed in a previous work [15] for unsupervised
outlier model selection (see §2.3). They are top-performing baselines based on
internal performance measures. MC [14,15] combines different models based on
outlier score similarities, assuming that good models have similar outputs as the
optimal model, and thus are close to each other. HITS uses the HITS algorithm
originally designed for web graphs [11] to compute the importance of each model.
SELECT (SEL in short) originates from model ensembles [18,28], and calculates
the similarity between the output of each model and the “pseudo ground truth”
which is initialized to the average of all candidate models.

4.2 Detection Performance (Q1)

Fig. 5. Wilcoxon signed rank test for
all pairs of approaches. DSV is supe-
rior to all other approaches with p-values
smaller than 0.001.

Table 1 shows the average AUC and rank
of various methods on 21 different tasks.
Due to the lack of space, we include the
full results on individual tasks in the
supplementary material. DSV shows the
best performance on 6 out of the 8 cases,
and the second-best on the remaining
two cases. MC and HITS perform well
compared to the other baselines, but
their performances are not consistent
across different augmentation functions
and tasks.

In Fig. 5, we perform the Wilcoxon
signed rank test [8] to check if the dif-
ferences between models are statistically
significant. Each number in the (i, j)-
th cell represents the p-value comparing
models i and j, and it represents model
i is significantly better than model j if
the p-value is smaller than 0.05. DSV is significantly better than all of the other
approaches in the figure, demonstrating its superiority in unsupervised model
selection.
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Fig. 6. t-SNE visualizations of embeddings in (top) faug = CutOut and (bottom)
faug = CutPaste, where values in parentheses represent different HPs. LDSV is the
smallest in (b) and (e), where the anomalies are in between Ztrn and Zaug. Detection
fails in (a), (c) & (d), (f), showing larger LDSV than in (b) & (e), resp.

Fig. 7. Anomaly scores for the three different HPs of faug = CutOut in Fig. 6. The
distributions of embeddings are clearly observed also in the scores: (a) No separation
in test data, (b) reasonable separation with as high AUC as 0.815, and (c) drastic
separation between augmented points and all other sets.



266 J. Yoo et al.

4.3 Ablation Studies (Q2)

We perform an ablation study in Fig. 3, comparing LDSV with its two surrogate
losses Ldis and Lsep on faug = CutPaste. The difference between the three models
is more significant in individual cases, rather than on average, as denoted by the
red arrows in the figure. This is because each of Ldis and Lsep is incomplete by
its design. For example, hd surpasses hs on average, but it shows some dramatic
failure cases as in T11 and T14. Our proposed LDSV avoids such failures, achieving
the best performance by effectively combining the two terms.

The complementary roles of the two losses is also shown in Fig. 4, where we
draw actual AUC and three different losses together for various combinations
of faug and tasks. Overall, the value of LDSV is negatively correlated with the
true AUC, which is exactly the purpose of introducing LDSV for unsupervised
model selection. In detail, we observe complementary interactions between Ldis

and Lsep from the figures; for example, in Fig. 4a, Lsep makes the overall loss
decrease when AUC peaks the top, although Ldis makes only negligible changes.
In Fig. 4b, in contrast, the two losses change drastically in small patch sizes,
while their sums remain similar, allowing us to avoid HPs with low AUC.

4.4 Case Studies (Q3)

In Fig. 6, we visualize the embeddings when faug = CutOut (the task is Carpet)
and faug = CutPaste (the task is Metal Nut). In Figs. 6b and 6e, which show
the smallest LDSV, test anomalies Z(a)

test are scattered in between Ztrn and Zaug.
Although some of Z(a)

test are mixed with Z(n)
test in Fig. 6b, the AUC is as high as

0.815. On the other hand, in Figs. 6a and 6c, the AUC is lower than even 0.5,
while LDSV is large. In Fig. 6a, Z(n)

test and Z(a)
test are mixed completely, since the

amount of modification through augmentation is too small. In Fig. 6c, Zaug are
separated from all other sets, due to the drastic augmentation. Figures 6d and
6f show similar patterns, although the AUC is generally higher than in CutOut.

In Fig. 7, we visualize the anomaly scores generated by our detector model,
following the same scenarios as in Fig. 6 when faug = CutOut. Since the detector
model in our experiments computes an anomaly score based on the likelihood of
a Gaussian mixture model in the embedding space, the scores are related to the
actual distances. The scores represent the difference between different HPs well,
leading to the observations consistent with the t-SNE visualization.

5 Conclusion

There has been a recent surge of self-supervised learning methods for anomaly
detection (SSAD), but how to systematically choose the augmentation hyperpa-
rameters here remains vastly understudied. To address this, we introduce DSV,
an unsupervised validation loss for selecting optimal SSAD models with effec-
tive augmentation hyperparameters. The main idea is to maximize the alignment
between augmentation and unknown anomalies with surrogate losses that esti-
mate the discordance and separability of test data. Our experiments demonstrate
that DSV outperforms a broad range of baselines. Future work involves extend-
ing it to incorporate other distance measures such as the Chebyshev distance.
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A Proofs of Lemmas

A.1 Proof of Lemma 1

Proof. Let σ̂ = σ + ε. We rewrite the numerator of Ldis based on the definition
of h and Assumption 1.

d(Ztrn ∪ Zaug,Ztest) = c1σ̂ + c2((1 + h)d(Ztrn,Zaug) − d(Zaug,Z(a)
test))

+ c3d(Zaug,Z(n)
test) + c4d(Zaug,Z(a)

test)

Then, we derive the lower bound as follows:

d(Ztrn ∪ Zaug,Ztest)

≥ c2((1 + h)d(Ztrn,Zaug) − d(Zaug,Z(a)
test))

+ c3d(Ztrn,Zaug) + c4d(Zaug,Z(a)
test) + (c1 − c3)σ̂

= (c4 − c2)d(Zaug,Z(a)
test) + (c2 + c2h + c3)d(Ztrn,Zaug) + (c1 − c3)σ̂

Similarly, the upper bound is given as follows:

d(Ztrn ∪ Zaug,Ztest)

≤ c2((1 + h)d(Ztrn,Zaug) − d(Zaug,Z(a)
test))

+ c3d(Ztrn,Zaug) + c4d(Zaug,Z(a)
test) + (c1 + c3)σ̂

= (c4 − c2)d(Zaug,Z(a)
test) + (c2 + c2h + c3)d(Ztrn,Zaug) + (c1 + c3)σ̂

If we apply the assumption |Ztrn| = |Zaug|, which results in c2 = c4, the
first term from both bounds disappears. We get the inequalities in the lemma
by dividing both bounds by d(Ztrn,Zaug). �

A.2 Proof of Lemma 2

Proof. Let μtest = mean({proj(ztrn, zaug, z) | z ∈ Z(a)
test}) be the average of pro-

jected norms. We first rewrite hs as follows:

hs =

∑
ztrn,zaug,z

(a)
test∈Ztrn,Zaug,Z(a)

test
proj(ztrn, zaug, z

(a)
test)

d(Ztrn,Zaug)|Ztrn||Zaug||Z(a)
test|

=

∑
z
(a)
test∈Z(a)

test
proj(ztrn, zaug, z

(a)
test)

‖zaug − ztrn‖|Z(a)
test|

=
|Z(a)

test|μtest

‖zaug − ztrn‖|Z(a)
test|

=
μtest

‖zaug − ztrn‖
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We rewrite the squared numerator of Lsep:

std2({proj(μtrn, zaug, ztest) | zaug, ztest ∈ Zaug,Ztest})

= std2({proj(μtrn, zaug, ztest) | ztest ∈ Ztest})

=
1

|Ztest|
∑

ztest

(proj(μtrn, zaug, ztest) − γμtest)2

=
1

|Ztest|
(
|Z(n)

test|γ2μ2
test + |Z(a)

test|(σ̄2
test + (1 − γ)2μ2

test)
)

= (1 − γ)γ2μ2
test + γ(σ̄2

test + (1 − γ)2μ2
test)

= γ(1 − γ)μ2
test + γσ̄2

test.

Then, Lsep is rewritten as follows:

Lsep =

√
γ(1 − γ)μ2

test + γσ̄2
test

d(Ztrn,Zaug)
=

√
γ(1 − γ)hs +

√
γσ̄test

‖zaug − ztrn‖ ,

which is the equation in the lemma. �
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