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Abstract. Anomaly detection aims at detecting examples that do not
conform to normal behavior. Increasingly, anomaly detection is being
approached from a semi-supervised perspective where active learning
is employed to acquire a small number of strategically selected labels.
However, because anomalies are not always well-understood events, the
user may be uncertain about how to label certain instances. Thus, one
can relax this request and allow the user to provide soft labels (i.e.,
probabilistic labels) that represent their belief that a queried example is
anomalous. These labels are naturally noisy due to the user’s inherent
uncertainty in the label and the fact that people are known to be bad at
providing well-calibrated probability instances. To cope with these chal-
lenges, we propose to exploit a Gaussian Process to learn from actively
acquired soft labels in the context of anomaly detection. This enables
leveraging information about nearby examples to smooth out possible
noise. Empirically, we compare our proposed approach to several base-
lines on 21 datasets and show that it outperforms them in the majority
of experiments.
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1 Introduction

Anomaly detection is the task of detecting abnormal behaviour in the data.
These unexpected occurrences are usually related to critical events, such as
machine failure [8], intrusion detection [19] or medical applications [31]. Thus,
detecting anomalies in time allows us to save money, preserve privacy and save
lives.

Because anomalies are, by definition, rare events, obtaining labels (especially
anomalous ones) is often expensive, unethical, or simply time-consuming. Hence,
anomaly detection is usually tackled from an unsupervised perspective [10,12].
However, it has been shown in the literature that providing limited, but specific
labels to the model can have a large impact on its performance [35,45]. Therefore,
one can implement active learning strategies to collect labels strategically, such
as those in regions where the model has high uncertainty [1,11,24].

However, sometimes it can be challenging to provide a correct label for a
given instance. For example, when labeling abnormal water usage, it may happen
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that some normal behaviour (e.g., system maintenance) is infrequent and the
user presumes it is anomalous and labels it as such [44]. More generally, an
instance’s label may be ambiguous, and different annotators may label it in
different ways (e.g., crowdsourcing). When reconciling these inconsistencies to
get a hard decision, selecting the correct label may be a difficult task [21,39]. A
solution to this problem is to relax our request by allowing the user to provide a
soft label (i.e., a probability). Thus, one asks how likely it is that an instance is
anomalous. Previous work has shown that this relaxation increases performance,
especially in highly imbalanced data sets [26,43].

Unfortunately, soft labels that reflect the inherent label probability are hard
to collect [9,15]. For example, a user may be overly confident and annotate
a slightly excessive usage of water as having a very high probability of being
anomalous. Similarly, in crowdsourcing, a group of users may be affected by a
biased selection of instances that ends up producing inaccurate probabilities for
some specific instances [25]. Thus, asking for a user to provide soft labels often
results in examples that are annotated with noisy probabilities. This can have
a negative effect on the detector’s performance as using incorrect soft labels
at training time affects its ability to make accurate predictions at test time.
For example, overly high (low) probabilities would make the model sensitive to
producing false positives (negatives). Therefore, accounting for the (possible)
noise both during training and inference is an important problem.

Additionally, we require a method that has both an unsupervised and super-
vised component. Many, but not all, anomalies are non-repetitive events. These
anomalies are best detected by unsupervised anomaly detectors. However, these
unsupervised detectors have difficulties detecting anomalies that look similar to
normal instances or might detect some normal behavior as anomalous. Labels
can help distinguish these last two cases. Thus, we want to make predictions
such that (1) we fall back to unsupervised scores if instances are distant from
labeled training data and (2) the instances that are closer to the labeled data
receive a score that is mostly based on the soft labels.

Therefore, we fill this gap in the literature by proposing SLADe (Soft Label
Anomaly Detector), the first semi-supervised anomaly detector that learns from
noisy soft labels using active learning. Initially, it uses an unsupervised anomaly
detector as an indication of how anomalous instances are (prior knowledge).
Then, it sets up an active learning loop that (1) measures the uncertainty inher-
ent to dealing with noisy soft labels, (2) uses the uncertainty metric to collect
noisy soft labels, and (3) learns from such labels by training a Gaussian Pro-
cess to model the deviation between the given soft labels and the unsupervised
scores. Finally, at inference time, SLADe removes the noise from the soft labels
by averaging out the GP’s prediction over a Gaussian surface. By summing this
average with the unsupervised score, SLADe computes the probability that a
test instance is anomalous.
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2 Background and Notation

We assume a d-dimensional instance space X ⊆ R
d and a binary output space

Y = {0, 1} where 1 denotes the anomaly class. Moreover, we assume that we are
given an unlabeled dataset U = {xi|xi ∈ X}N

i=1 of size N , an initially empty
(soft) labeled dataset L, and a label budget B ∈ N that indicates how many (soft)
labels the user is willing to provide. We now review the necessary background
on anomaly detection and Gaussian processes.

2.1 Anomaly Detection

In unsupervised anomaly detection, the goal is to learn a function s : X → R

that assigns real-valued anomaly scores to any instance in X where, without loss
of generality, we assume that higher scores represent more anomalous instances.
Unsupervised detectors are trained by making assumptions about what consti-
tutes an anomaly, which typically results in defining how anomalies are dissimilar
to normal instances. For example, Isolation Forest (IForest) [22] assumes that
anomalies can be easily isolated when randomly splitting the instance space, and
assigns anomaly scores inversely proportional to the number of splits needed to
isolate an instance. The k-NN outlier detector (kNNO) [2] assumes that anoma-
lies are far away from normals with respect to some notion of distance, and uses
the distance to the k-th nearest neighbor as the anomaly score.

A practical issue is how to convert an anomaly score into a hard predic-
tion [32]. One way to do this is to use the contamination factor γ ∈ [0, 1], which
is the fraction of anomalies in a dataset [33,34]. Using γ one can define a thresh-
old λ so that a fraction γ of the training data receives an anomaly score greater
than λ. For an unseen test instance xt,

y(xt) =

{
0 s(xt) ≤ λ

1 s(xt) > λ .
(1)

Recently, there is increasing recognition that incorporating strategically cho-
sen labeled instances is important for improving the performance of anomaly
detectors [35,45]. Active learning (AL) is commonly used to select which
instances to label [17,41]. At a high level, it is possible to distinguish among
three approaches to AL [24]: uncertainty-based strategies aim to select the unla-
beled data samples with the highest uncertainty [11], diversity-based strategies
aim to maximize the diversity among the labeled training data [1] and combined
strategies integrate the advantages of these two [6]. The first category is widely
used due to its simplicity and strong performance. Starting with an unlabeled
dataset U and an empty (soft) labeled dataset L, a detector is learned in an
unsupervised manner. Then, the following steps are repeated until a given label
budget is exhausted. First, query a human annotator to provide a (soft) label
for the strategically chosen instances. In uncertainty sampling, one approach is
to use the probabilistic gap |P (Y = 1|x) − P (Y = 0|x)| where smaller gaps
indicate higher uncertainty. Second, the queried instances and their (soft) labels
are added to L and the model is retrained using this newly expanded dataset.
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2.2 Gaussian Processes

A Gaussian process (GP) is a collection of random variables over the instance
space, such that any finite subset of them have a joint Gaussian distribution [37].
Roughly speaking, a GP can be seen as a distribution over functions f : X → R

such that for any x, x′ ∈ X

f(x) ∼ GP(m(x),K(x, x′)),

where m : X → R is called the mean function, and K : X × X → R is the
covariance function (otherwise known as the kernel). The Gaussian process is
completely characterized by these two functions m and K, which define

E[f(x)] = m(x) and Cov[f(x), f(x′)] = K(x, x′).

Picking an appropriate prior mean and kernel enables encoding prior beliefs
of the data-generating process into the model. More importantly, the GP fully
relies on these prior beliefs to make predictions for an unseen instance that
falls in a region far from any training instance. Given a training set of pairs
R = {(xi, ri)}|R|

i=1, where ri ∈ R, the posterior distribution of a GP for any
x, x′ ∈ X is

f |R ∼ GP(mR,KR)

mR(x) = m(x) + Σx,X (ΣX,X)−1 (r − m(X))

KR(x, x′) = K(x, x′) − Σx,X (ΣX,X)−1
ΣX,x′ ,

(2)

where the elements of Σa,b depend on the kernel (Σa,b)i,j = K(ai, bj), which
makes ΣX,X the training-training covariance matrix, and Σx,X , ΣX,x′ , respec-
tively, 1×|R| and |R|× 1 covariance vectors. Note that the posterior covariance
is always lower than the prior due to the subtraction of a strictly positive term.

Given a test set T = {xt}|T |
t=1, the GP predicts a posterior multivariate normal

distribution (|T |-dimensional) N (mR(T ),KR(T, T )). Note, that each individual
instance has a Gaussian marginal distribution that can be used for instance-
wise predictions. In practice, one can derive the final prediction from the given
distribution by either taking a sample (Bayesian perspective) or extracting the
mean (frequentist perspective). In this work, we use the latter.

3 SLADE

Our goal is to learn a model to estimate the probability that an instance is
anomalous in an active learning setting where a user provides soft labels. Starting
from an unlabeled dataset U = {xn|xn ∈ X}N

n=1, an empty soft labeled dataset
L, and a label budget B, the algorithm can iteratively query instance x ∈ U .
However, instead of receiving its exact label, the user provides a real value p ∈
[0, 1] indicating the probability that the instance belongs to the anomaly class.
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Designing an approach to learn in this setting has three key challenges. First,
we need an informative unsupervised score about what is and is not likely to be
anomalous. This allows the model to output probabilities even in regions where
no soft labels are given. Second, we need a way to combine the weak supervision
provided by the soft labels with this unsupervised score such that (1) we fall back
to the initial scores if instances are distant from labeled training data and (2)
the instances that are closer to the soft labeled data in L receive a score that is
mostly based on those labels. Third, we need to explicitly model the uncertainty
that is inherent when working with soft labels.

We address these challenges by combining unsupervised anomaly detection
with a Gaussian process. Intuitively, the anomaly detector will provide an infor-
mative prior for the GP. A key question is what the GP should model. One
choice would be to have it directly model the soft labels. However, because the
labels are uncertain and noisy, we want to decouple the noise arising from the
soft labels and the uncertainty of unsupervised scores. Therefore, we model the
deviation of the soft labels from the unsupervised prior. When making a pre-
diction, we propose a novel way to combine the estimated deviation and the
unsupervised score in a noise-robust way. Next, we describe our training and
inference procedures in more detail.

3.1 Training

SLADe constructs the informative prior by taking a completely unsupervised
approach. First, SLADe trains an unsupervised anomaly detector on U that can
compute an anomaly score for any instance x ∈ X , which is denoted as s(x).
SLADe is detector agnostic and we will discuss possible choices in the experi-
mental evaluation. Second, we want to learn the deviation of the soft labels from
these scores. However, working with the raw scores is not possible because scores
provided by different unsupervised models have different meanings. Moreover,
anomaly scores often cannot be interpreted as probabilities (e.g., kNNo assigns
a distance) and thus, in this form they can not be compared with soft labels
(i.e., probabilities). Therefore, we apply the linear unification transformation
(i.e., min-max normalisation) [18]

s̃(x) =
s(x) − min(s)

max(s) − min(s)

to map anomaly scores into [0, 1], where s = {s1, . . . , sN} are the anomaly scores
for U . We opt for linear unification because we do not want to introduce strong
assumptions on the unsupervised scores (which, working as a prior, is supposed
to be flexible [46]).

Our GP models the deviation between the user-provided soft labels and these
prior probabilities and it is initialized as g0 ∼ GP(0,K). The posterior GP is then
defined as

g0|L0 ∼ GP(mL0 ,KL0),
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where L0 = {(xj , pj − s̃(xj)) : (xj , pj) ∈ L} denotes a dataset containing the
difference between the soft labels (i.e., pj) and the unified unsupervised scores
of the training data in L. To gather soft labeled training data and train the
GP, we run an active learning loop. Given a label budget B, we repeat the
following steps until our label budget is exhausted. (1) We query the instance
x∗ ∈ U where the model is the most uncertain. Quantifying uncertainty requires
assigning a prediction to each instance in U . By combining the unsupervised
prior s̃ with the GP’s mean mL0 , we obtain a first probability estimate:

P1(Y = 1|x,L) = s̃(x) + mL0(x) . (3)

Model uncertainty can arise for two reasons: making weak predictions (≈ 0.5)
and a lack of labeled instances in certain regions of the instance space. To capture
both types of uncertainty, we use Kapoor et al. [16]’s strategy to query labels
for

argmin
x∗∈U

|0.5 − P1(Y = 1|x∗, L)|√KL0(x∗, x∗)
.

This formula assigns low scores if (a) the posterior probability is close to 0.5
(small numerator), or (b) if the instance is far from the labeled instances
and hence has high prediction variance (big denominator). (2) Finally, SLADe
updates L = L ∪ {(x∗, p∗)} and U = U \ {x∗}. Subsequently, g0|L0 is updated
with the newly obtained soft labels.

3.2 Inference

Given an unseen test instance xt and a set of soft labels L, computing the poste-
rior probability P (Y = 1|xt, L) is challenging for the following reason. An initial
estimate of the posterior probability can be obtained via Eq. 3. However, this
probability is heavily affected by noisy soft labels. Per definition, the GP pre-
dicts the exact soft labels for each soft-labeled training instance. Consequently,
if xt is in close proximity to a noisy soft label, the predicted posterior probability
would be affected by this noise.

We propose to mitigate the effect of noisy labels as follows. We distinguish
between two types of test instances: (1) those that are far from the training data
and (2) those that have many training instances nearby. Since the unsupervised
anomaly scores model the proximity to other data points, we can use this as
a measure without introducing any new assumptions (i.e. high anomaly scores
represent distant instances). For the first type of test instances, there is no reason
to try and fix the noise. They are far from the training data and will thus not be
influenced by noise. The second type, on the other hand, is influenced by label
noise. We cope with this problem by smoothing out the estimated deviation over
a Gaussian surface that has xt as the center and a given variance σ2

t . Formally,

P2(Y = 1|xt, L) = s̃(xt) + EV ∼N (xt,σ2
t )

[mL0(V )], (4)
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where V is a normally distributed random variable. Using the surrounding
instances forces the model to use more soft labels when computing the posterior
probability, which clearly averages out the negative effects that the presence of
noise has on the model. σt is dependent on xt and we define it as one-third of the
radius of a hypersphere with center xt that captures q% of the instances in U .
Thus, for every test instance, we average out over the same number of training
data. We then formalize our final probability estimate as

P̂ (Y = 1|xt, L) =

{
P1(Y = 1|xt, L) s(xt) > λ

P2(Y = 1|xt, L) s(xt) ≤ λ ,
(5)

where λ denotes the anomaly score threshold as defined in Eq. 1. A hard predic-
tion is obtained by setting a threshold, typically 0.5, on the probability estimates.

4 Experiments

We address the following two research questions: Q1: How do the methods com-
pare under various noise regimes? Q2: How sensititive is SLADe to the choice
of its hyperparameters?

4.1 Experimental Setup

Methods. We compare SLADe1 against four baselines. Conceptually, these
can be divided into two groups. The first group learns directly from probabilistic
labels: GP [31] simply uses a Gaussian Process to model the soft labels with-
out including the unsupervised prior, while P-SVM [20] uses a Support Vector
Machine (SVM) with class labels that are weighted by the given soft labels. The
second group cannot operate directly on the soft labels. Therefore, we convert
them to hard labels by flipping a weighted coin. Then we apply traditional semi-
supervised models. SSDO [44] is a propagation-based detector that uses the
distance to hard labels to assign anomaly scores. HIF [23] is a semi-supervised
variant of the widely used unsupervised Isolation Forest [22] that improves its
anomaly scores by adding the distance to the anomalous hard labels.

Data. We evaluate our method and the baselines on 21 benchmark datasets that
are widely used in the anomaly detection literature [4,12]. These datasets vary in
size, number of features, and proportion of anomalies. To limit the computational
cost of the experiments, we subsample each dataset to at most 5000 instances
keeping the same proportion between normals and anomalies. See Table 1 for the
characteristics of the datasets.

1 The code and Supplement are available via https://github.com/TimoM99/SLADe.

https://github.com/TimoM99/SLADe
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Table 1. Characteristics (full size, subsampled size, number of features d, contamina-
tion factor γ) of the 21 benchmark datasets used for the experiments.

Dataset Full size Size d γ Dataset Full size Size d γ

ALOI 50,000 5000 27 0.030 Pen 9,868 5000 16 0.002

Annthy 7,200 5000 21 0.075 Pima 555 555 8 0.099

Arrhy 271 271 259 0.100 Shuttle 1,013 1013 9 0.013

Cardio 2,112 2112 21 0.221 Spam 2,661 2661 57 0.050

Glass 213 213 7 0.042 Stamps 340 340 9 0.091

Heart 166 166 13 0.096 Wave 3,443 3443 21 0.029

Hepa 80 80 19 0.163 WBC 223 223 9 0.045

Iono 350 350 32 0.357 WDBC 367 367 30 0.027

KDD 48,113 5000 40 0.040 Wilt 4,819 4819 5 0.053

Page 5,393 5000 10 0.095 WPBC 198 198 33 0.237

Parkin 60 60 22 0.200

Setup. Our setup can be divided into three parts: (1) generating the ground-
truth soft labels, (2) introducing the noise, and (3) evaluating the methods.

The first part requires modeling the human annotator: given an instance x,
a soft label p indicates the proportion of anomalous labels that we would obtain
if we queried x multiple times. Moreover, similar instances are likely to obtain
similar probabilities. We model this aspect by training a Random Forest with
low depth (= 4) on the original dataset and use it to compute the soft labels as
class probabilities. The low depth guarantees that Random Forest does not push
all probabilities to the extremes (0 or 1) but assigns smooth values over [0, 1].

In the second part, we introduce noise into the soft labels. We use a standard
transformation [7] that changes the label p into 1−p for a fixed percentage of the
soft labels. The noisy instances are picked uniformly at random. The percentage
of swapped labels is the noise level of the dataset.

Finally, for each of the 21 datasets, we run the following experiment: (i) We
randomly split the dataset into 80% training and 20% test set; (ii) We compute
the ground-truth soft labels and add the given level of noise to the training soft
labels; (iii) We run the active learning loop with a label budget B = 60% of
the training set size N , which we split into 12 rounds of 5% each. We choose a
label budget of 60% for completeness reasons. All baseline methods also employ
uncertainty sampling. (iv) We evaluate the Area Under the Receiving Operating
Curve (AUROC) [14] of each method at every iteration of the loop. As the test
set also has soft labels, we sample a hard label to make the evaluation consistent
within our probabilistic setting. To average out the randomness introduced by
sampling labels, we repeat the active learning loop 20 times. All four steps are
then repeated five times. We carry out a total of 5×20×21 = 2100 experiments.

Hyperparameters. SLADe has three hyperparameters. We choose IFor-
est [22] as the unsupervised method. We use the Matèrn kernel with ν = 1

2
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in the GP as it is widely used in the literature [36]. Moreover, we optimize
the length scale hyperparameter of the Gaussian Process by maximizing the log
marginal likelihood [37]. Finally, we set q = 2. SSDO uses the same prior model
as SLADe and the default values for α and k. HIF has two hyperparameters:
α1 and α2. Since the paper does not suggest any values, we set both to 0.5,
which makes a fair weighting between the different parts of the score. P-SVM
utilizes an RBF kernel with the default parameters [20]. Finally, GP relies on a
Gaussian Process that has the same hyperparameters as for SLADe.

4.2 Experimental Results

Q1. Comparing the Methods. We want to evaluate SLADe on two aspects:
(1) its robustness against noise and (2) its ability to rank anomalies. Therefore, we
compare SLADe against the baselines on three different noise levels and compare
both their noise-robustness and performance at different label percentages.

First, we compare SLADe against the baselines for each label frequency of
the active learning loop under the three noise levels (0%, 10%, 20%). For this
task, we plot the learning curve, which has on the x-axis the label percentage
as a proportion of the dataset’s size, and, on the y-axis, the methods’ AUROC.
Figure 1 shows the results on five representative datasets, while the Supplement
includes the plots for all the remaining datasets. Regardless of the noise, SLADe
clearly outperforms all the baselines on Shuttle (left plot), while it performs
similarly to the baselines on Pima and Heart (second and third plots). On
the other hand, on Page and Iono (right plots), SLADe obtains competitive
AUROC values with no noise present while outperforming all the baselines at
higher noise levels (10% and 20%). Overall, the major strength of SLADe is the
ability to improve its performance when acquiring (possibly noisy) soft labels:
on Shuttle, SLADe’s learning curve is steeper than all the baselines’ for all
noise levels. On the other hand, looking at Page and Iono, all methods’ learning
curves are flat, but SLADe’s does not deteriorate as hard as the baselines when
introducing higher noise levels.

Second, we dive deeper into the noise-robustness of the methods. Therefore,
we aggregate the results on a per-dataset basis and measure how their perfor-
mance decreases when moving from a setting with no noise to a setting with (a)
10% and (b) 20% of noise. Figure 2 reports the methods’ mean AUROC drop
aggregated over all of the label percentages for the two scenarios. The star (cross)
markers indicate the mean AUROC with no noise (the given level of noise), while
the length of the segment is indicative of how robust each model is against noise:
the shorter the segment, the smaller the change of AUROC, and the more robust
the model. The results show that SLADe obtains the lowest/similar (i.e., within
a gap of 0.01) drop in performance in 13 out of 21 datasets when the noise goes
from 0% to 10%, while it does so on six datasets when increasing the noise to
20%. Unsurprisingly, the second-best baseline is HIF, which is naturally noise-
robust because it only leverages anomalous labels to assign scores, which hides
the negative effect of noisy negative labels provided by the user. In fact, HIF
obtains the lowest drop in performance on six datasets under 10% noise, and
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Table 2. Wins (W), Draws (D), and Losses (L) of SLADe against each baseline in
terms of average AUROC per dataset, for each label percentage, under 20% of noise.
A draw means that the absolute difference in AUROC is ≤ 0.01.

SSDO P-SVM HIF GP

Labels W D L W D L W D L W D L

5% 13 5 3 16 1 4 10 5 6 17 2 2

10% 15 3 3 16 1 4 12 5 4 16 2 3

15% 17 3 1 17 0 4 12 8 1 15 2 4

20% 16 5 0 17 0 4 17 4 0 15 0 6

25% 17 4 0 18 0 3 15 6 0 15 0 6

30% 14 6 1 18 0 3 18 3 0 14 2 5

35% 13 5 3 17 1 3 17 3 1 15 1 5

40% 13 6 2 17 1 3 17 2 2 15 1 5

45% 12 6 3 17 1 3 17 2 2 14 3 4

50% 12 4 5 17 0 4 17 2 2 14 2 5

55% 12 3 6 17 1 3 17 2 2 14 2 5

60% 12 3 6 16 2 3 16 2 3 11 6 4

nine datasets under 20% noise. Furthermore, GP is the most affected by the
noise: because it only learns from the given soft labels, incorrect probabilities
have a strong impact on the surrounding test instances.

Finally, because our task is to develop a noise-resistant model, we zoom in
on the high noise scenario (20%) and analyze how often SLADe outperforms
each baseline.2 Table 2 shows the number of times (out of 21) SLADe’s aver-
age AUROC is higher (Win), within a margin of 0.01 (Draw) or lower (Loss)
than that of the baselines at every label percentage. For any label percent-
age SLADe never loses more than six times against any baseline. As expected,
SLADe outperforms HIF more often at higher label percentages because HIF
only uses positive labels. Moreover, against GP, SLADe wins more in the lower
label percentage settings (which are more realistic in Active Learning) because
SLADe needs less data to learn effectively.

Q2. Sensitivity Analysis. We evaluate the effect of varying SLADe’s three
hyperparameters: the unsupervised anomaly detector, the GP’s kernel, and the
percentage of training instances inside the hypersphere, q, used to fix the noise
at inference time. We assume a default level of noise equal to 10% and vary one
hyperparameter at a time while keeping the other two as specified in Sect. 4.1.
We subsample the datasets to at most 500 instances for computational reasons.

Table 3 shows SLADe’s AUROC averaged over all datasets for different
label percentages when using Isolation Forest (IForest) [22], One-Class SVM

2 Results for 0% and 10% noise are, for completeness, in the Supplement.
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Fig. 1. Learning curves for all methods on five representative datasets for three different
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Table 3. AUROC (avg ± std) of SLADe for different unsupervised detectors.

Unsupervised detector

Labels IForest LOF kNNO OCSVM

0% 0.730 ± 0.181 0.669 ± 0.180 0.707 ± 0.173 0.664 ± 0.223

5% 0.745 ± 0.178 0.724 ± 0.175 0.750 ± 0.167 0.725 ± 0.204

10% 0.776 ± 0.174 0.763 ± 0.180 0.787 ± 0.165 0.744 ± 0.201

15% 0.800 ± 0.168 0.780 ± 0.177 0.798 ± 0.166 0.776 ± 0.183

20% 0.817 ± 0.163 0.791 ± 0.174 0.808 ± 0.160 0.794 ± 0.179

25% 0.826 ± 0.160 0.793 ± 0.179 0.816 ± 0.155 0.800 ± 0.173

30% 0.833 ± 0.154 0.805 ± 0.169 0.818 ± 0.153 0.816 ± 0.163

35% 0.839 ± 0.150 0.807 ± 0.161 0.825 ± 0.145 0.821 ± 0.159

40% 0.841 ± 0.148 0.816 ± 0.158 0.830 ± 0.137 0.822 ± 0.159

45% 0.843 ± 0.146 0.817 ± 0.156 0.832 ± 0.136 0.823 ± 0.158

50% 0.843 ± 0.143 0.821 ± 0.148 0.834 ± 0.133 0.828 ± 0.154

55% 0.844 ± 0.141 0.819 ± 0.148 0.835 ± 0.131 0.827 ± 0.152

60% 0.844 ± 0.140 0.819 ± 0.146 0.833 ± 0.134 0.826 ± 0.152

(OCSVM) [42], Local Outlier Factor (LOF) [13] and the k-NN outlier detec-
tor (kNNO) [2] as unsupervised detectors to assign the anomaly scores. SLADe
seems to be robust to the selected anomaly detector as all approaches perform
similarly. There are small differences for the three lowest label budgets, where
using IForest offers some performance gains. This happens because IForest
assigns better rankings to the anomalies, as confirmed by [12] as well. A bad
unsupervised model will thus require a certain number of labels before it is able
to accurately detect anomalies. Therefore, selecting the correct unsupervised
model is an important decision.

Table 4 shows the AUROC averaged over all datasets for different label per-
centages when using four variants of the Matérn kernel [36] as the covariance
function of the GP. We vary its hyperparameter ν ∈ {1

2 , 3
2 , 5

2 ,+∞}, where
ν = +∞ represents the Radial Basis Function (RBF) kernel [3]. The results
illustrate that SLADe has the highest performance for ν = 1

2 , in agreement
with the existing literature on Gaussian Processes [36]. Unsurprisingly, results
show that SLADe’s performance deteriorates when increasing the hyperparam-
eter ν: because ν indicates the smoothness of the GP’s kernel (i.e., high differ-
entiability), high values of ν underpin the assumption that the class probability
function is smooth, which is not true in several real-world datasets. Moreover,
the effect of changing ν increases with the number of soft labels, which ends up
being > 0.06 against ν = +∞ with 60% of soft labels.

Table 5 shows the AUROC averaged over all datasets for varying label bud-
gets for q ∈ [0.5, 1, 2, 5, 10]. The results show that the value of this hyperpa-
rameter has a negligible impact on SLADe’s performance. Therefore, we set
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q’s default value to 2, as it is an in-between value that avoids averaging over
too many instances, which might slightly decrease the performance with little
noise, and averaging over almost no instance, which would make the model too
sensitive to noise.

Table 4. AUROC (avg ± std) of SLADe for different values of the Matérn kernel’s
hyperparameter ν.

Matérn Kernel

Labels ν = 0.5 ν = 1.5 ν = 2.5 ν = +∞
0% 0.728 ± 0.183 0.728 ± 0.183 0.728 ± 0.183 0.728 ± 0.183

5% 0.742 ± 0.182 0.733 ± 0.182 0.727 ± 0.184 0.719 ± 0.186

10% 0.770 ± 0.180 0.758 ± 0.180 0.753 ± 0.179 0.745 ± 0.177

15% 0.794 ± 0.176 0.779 ± 0.175 0.771 ± 0.177 0.759 ± 0.178

20% 0.809 ± 0.175 0.791 ± 0.174 0.783 ± 0.175 0.765 ± 0.178

25% 0.820 ± 0.167 0.798 ± 0.171 0.789 ± 0.174 0.770 ± 0.178

30% 0.827 ± 0.162 0.804 ± 0.168 0.795 ± 0.170 0.774 ± 0.174

35% 0.832 ± 0.157 0.808 ± 0.165 0.798 ± 0.166 0.776 ± 0.174

40% 0.836 ± 0.152 0.812 ± 0.160 0.798 ± 0.166 0.776 ± 0.174

45% 0.837 ± 0.151 0.812 ± 0.159 0.799 ± 0.164 0.776 ± 0.173

50% 0.839 ± 0.147 0.814 ± 0.156 0.799 ± 0.161 0.778 ± 0.171

55% 0.839 ± 0.145 0.813 ± 0.154 0.799 ± 0.159 0.775 ± 0.169

60% 0.841 ± 0.143 0.813 ± 0.152 0.798 ± 0.158 0.775 ± 0.168

5 Related Work

There is, to our knowledge, no work that tackles learning from active noisy soft
labels in anomaly detection. However, three related research lines exist that are
of interest, of which the first two relate to traditional binary classification tasks.

Learning from Soft Labels. The literature on learning from soft labels consists
of three common approaches: ranking methods, regression methods and tradi-
tional methods adapted for soft labels. (1) Ranking methods solve a constrained
optimization problem where the constraints are pairwise rankings between the
soft labels [26,27,38]. (2) Regression methods use soft labels as target values in
their learning mechanism [31]. (3) Probabilistic Support Vector Machines (P-
SVM) use soft labels to micro-steer the obtained margin [20,28]. Empirical eval-
uation [26] shows that this third category performs best. However, in Sect. 4.2
we showed that SLADe outperforms P-SVM.

Learning from Noisy Hard Labels. The existing work on models that are
designed to be noise-robust mostly takes a supervised approach [5,7,48]. These
make strong assumptions that do not hold in our setting. For instance, there is
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no correctly labeled subset of data available [48]. A strictly weaker assumption
is the availability of a large set of noisy data [5]. It is non-trivial how to adapt
these methods for small sets of noisy labels.

Weakly Supervised Models. Some existing literature in anomaly detection
deals with weak supervision. For example, some semi-supervised methods need
access only to a small set of clean labels [29,30,40,47]. However, it is unclear
how to extend them to deal with soft labels.

Table 5. AUROC (avg ± std) of SLADe for different values of q (% of training
instances inside the hypersphere).

q

Labels 0.5 1 2 5 10

5% 0.739 ± 0.183 0.740 ± 0.183 0.740 ± 0.184 0.740 ± 0.184 0.741 ± 0.184

10% 0.769 ± 0.183 0.768 ± 0.184 0.768 ± 0.185 0.767 ± 0.185 0.768 ± 0.185

15% 0.794 ± 0.175 0.793 ± 0.176 0.792 ± 0.177 0.791 ± 0.177 0.790 ± 0.178

20% 0.810 ± 0.169 0.810 ± 0.170 0.809 ± 0.170 0.806 ± 0.172 0.805 ± 0.172

25% 0.821 ± 0.163 0.820 ± 0.163 0.819 ± 0.166 0.816 ± 0.168 0.815 ± 0.167

30% 0.829 ± 0.156 0.828 ± 0.157 0.827 ± 0.159 0.824 ± 0.162 0.823 ± 0.162

35% 0.835 ± 0.152 0.834 ± 0.154 0.833 ± 0.155 0.830 ± 0.157 0.828 ± 0.157

40% 0.836 ± 0.150 0.836 ± 0.151 0.834 ± 0.152 0.832 ± 0.154 0.830 ± 0.155

45% 0.838 ± 0.147 0.837 ± 0.148 0.836 ± 0.149 0.833 ± 0.152 0.831 ± 0.153

50% 0.840 ± 0.144 0.839 ± 0.145 0.838 ± 0.146 0.835 ± 0.149 0.833 ± 0.150

55% 0.840 ± 0.141 0.839 ± 0.142 0.838 ± 0.143 0.836 ± 0.146 0.832 ± 0.148

60% 0.840 ± 0.139 0.840 ± 0.141 0.839 ± 0.142 0.836 ± 0.145 0.833 ± 0.146

6 Conclusion

This paper tackled the challenge of learning a model that estimates the prob-
ability of an instance being anomalous in an active learning setting where the
user provides noisy soft labels. The soft labels indicate the probability that
the instance belongs to the anomaly class. The key challenges were how to (1)
have an initial indication of how likely instances are anomalous without having
access to labels, (2) combine the obtained soft labels with the initial unsuper-
vised scores, (3) model the uncertainty when learning from soft labels, and (4)
develop a noise-robust approach that smooths out the noisy probabilities. We
proposed SLADe, the first semi-supervised anomaly detector that leverages the
noisy soft labels by (1) computing the anomaly scores using an unsupervised
anomaly detector, and (2) fixing the scores by modeling their deviation from
the given soft labels through a GP. In the active learning loop, it queries the
most informative instances by quantifying the model uncertainty that arises from
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(a) receiving weak soft labels (e.g., 0.5) and (b) the lack of labels. Finally, at
inference time, it smooths out the noise by averaging the GP prediction over
a Gaussian surface with adaptive variance. Experimentally on 21 datasets, we
showed that SLADe is noise-robust and that it performs better than several
baselines on the majority of cases.

Ethical Statement. In general, any work on anomaly detection is beneficial
to society. In many applications, it is important to detect anomalies in due time
as they are often related to critical events, such as machine failure [8], intrusion
detection [19] or medical applications [31]. Being able to detect anomalies in
time, thus allows us to save money, preserve privacy and save lives. However,
the use of anomaly detection and soft labels in certain settings raises some eth-
ical concerns that need to be considered. One of the primary concerns is the
potential for discrimination against some minorities. As anomaly detection tech-
niques are designed to identify instances that deviate from “normal behavior”, it
is possible that someone with malicious intentions misuses anomaly detectors to
discriminate against specific groups by labeling their behavior as “anomalous”.
Another due ethical consideration relates to the potential violation of privacy
that may result from failing to detect anomalies in particular applications. For
example, in intrusion detection, the failure to detect anomalous hacker activ-
ity could compromise some people’s privacy. Finally, the traditional labeling
approaches for anomaly detection usually involve the use of an expert. However,
collecting soft labels instead of hard labels allows for the use of multiple cheap
labor forces instead of a single domain expert. While this may lower the cost of
labeling data, it raises ethical concerns regarding the exploitation of cheap labor
and the potential for unfair practices.
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