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Abstract. We study the tractability of the maximum independent set
problem from the viewpoint of graph width parameters, with the goal of
defining a width parameter that is as general as possible and allows to
solve independent set in polynomial-time on graphs where the parameter
is bounded. We introduce two new graph width parameters: one-sided
maximum induced matching-width (o-mim-width) and neighbor-depth.
O-mim-width is a graph parameter that is more general than the known
parameters mim-width and tree-independence number, and we show that
independent set and feedback vertex set can be solved in polynomial-
time given a decomposition with bounded o-mim-width. O-mim-width is
the first width parameter that gives a common generalization of chordal
graphs and graphs of bounded clique-width in terms of tractability of
these problems.

The parameter o-mim-width, as well as the related parameters mim-
width and sim-width, have the limitation that no algorithms are known
to compute bounded-width decompositions in polynomial-time. To par-
tially resolve this limitation, we introduce the parameter neighbor-depth.
We show that given a graph of neighbor-depth k, independent set can be
solved in time nO(k) even without knowing a corresponding decomposi-
tion. We also show that neighbor-depth is bounded by a polylogarithmic
function on the number of vertices on large classes of graphs, including
graphs of bounded o-mim-width, and more generally graphs of bounded
sim-width, giving a quasipolynomial-time algorithm for independent set
on these graph classes. This resolves an open problem asked by Kang,
Kwon, Strømme, and Telle [TCS 2017].
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1 Introduction

Graph width parameters have been successful tools for dealing with the
intractability of NP-hard problems over the last decades. While tree-width [25] is
the most prominent width parameter due to its numerous algorithmic and struc-
tural properties, only sparse graphs can have bounded tree-width. To capture
the tractability of many NP-hard problems on well-structured dense graphs,
several graph width parameters, including clique-width [7], mim-width [26],
Boolean-width [6], tree-independence number [9,27], minor-matching hypertree
width [27], and sim-width [20] have been defined. A graph parameter can be
considered to be more general than another parameter if it is bounded whenever
the other parameter is bounded. For a particular graph problem, it is natural to
look for the most general width parameter so that the problem is tractable on
graphs where this parameter is bounded. In this paper, we focus on the maximum
independent set problem (Independent Set).

Let us recall the standard definitions on branch decompositions. Let V be
a finite set and f : 2V → Z≥0 a symmetric set function, i.e., for all X ⊆ V it
holds that f(X) = f(V \X). A branch decomposition of f is a pair (T, δ), where
T is a cubic tree and δ is a bijection mapping the elements of V to the leaves
of T . Each edge e of T naturally induces a partition (Xe, Ye) of the leaves of T
into two non-empty sets, which gives a partition (δ−1(Xe), δ−1(Ye)) of V . We
say that the width of the edge e is f(e) = f(δ−1(Xe)) = f(δ−1(Ye)), the width
of the branch decomposition (T, δ) is the maximum width of its edges, and the
branchwidth of the function f is the minimum width of a branch decomposition
of f. When G is a graph and f : 2V (G) → Z≥0 is a symmetric set function on
V (G), we say that the f-width of G is the branchwidth of f.

Vatshelle [26] defined the maximum induced matching-width (mim-width) of
a graph to be the mim-width where mim(A) for a set of vertices A is defined to be
the size of a maximum induced matching in the bipartite graph G[A,A] given
by edges between A and A, where A = V (G) \ A. He showed that given a graph
together with a branch decomposition of mim-width k, any locally checkable
vertex subset and vertex partitioning problem (LC-VSVP), including Indepen-
dent Set, Dominating Set, and Graph Coloring with a constant number
of colors, can be solved in time nO(k). Mim-width has gained a lot of atten-
tion recently [1,4,5,17–19,22]. While mim-width is more general than clique-
width and bounded mim-width captures many graph classes with unbounded
clique-width (e.g. interval graphs), there are many interesting graph classes with
unbounded mim-width where Independent Set is known to be solvable in
polynomial-time. Most notably, chordal graphs, and even their subclass split
graphs, have unbounded mim-width, but it is a classical result of Gavril [15] that
Independent Set can be solved in polynomial-time on them. More generally,
all width parameters in a general class of parameters that contains mim-width
and was studied by Eiben, Ganian, Hamm, Jaffke, and Kwon [11] are unbounded
on split graphs.

With the goal of providing a generalization of mim-width that is bounded
on chordal graphs, Kang, Kwon, Strømme, and Telle [20] defined the parameter
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special induced matching-width (sim-width). Sim-width of a graph G is the sim-
width where sim(A) for a set of vertices A is defined to be the maximum size
of an induced matching in G whose every edge has one endpoint in A and
another in A. The key difference of mim and sim is that mim ignores the edges
in G[A] and G[A] when determining if the matching is induced, while sim takes
them into account, and therefore the sim-width of a graph is always at most
its mim-width. Chordal graphs have sim-width at most one [20]. However, it is
not known if Independent Set can be solved in polynomial-time on graphs
of bounded sim-width, and indeed Kang, Kwon, Strømme, and Telle asked as
an open question if Independent Set is NP-complete on graphs of bounded
sim-width [20].

In this paper, we introduce a width parameter that for the Independent
Set problem, captures the best of both worlds of mim-width and sim-width. Our
parameter is inspired by a parameter introduced by Razgon [24] for classifying
the OBDD size of monotone 2-CNFs. For a set of vertices A, let E(A) denote the
edges of the induced subgraph G[A]. For a set A ⊆ V (G), we define the upper-
induced matching number umim(A) of A to be the maximum size of an induced
matching in G−E(A) whose every edge has one endpoint in A and another in A.
Then, we define the one-sided maximum induced matching-width (o-mim-width)
of a graph to be the omim-width where omim(A) = min(umim(A), umim(A)). In
particular, o-mim-width is like sim-width, but we ignore the edges on one side
of the cut when determining if a matching is induced. Clearly, the o-mim-width
of a graph is between its mim-width and sim-width. Our first result is that
the polynomial-time solvability of Independent Set on graphs of bounded
mim-width generalizes to bounded o-mim-width. Moreover, we show that the
interest of o-mim-width is not limited to Independent Set by proving that
the Feedback Vertex Set problem is also solvable in polynomial time on
graphs of bounded o-mim-width.

Theorem 1. Given an n-vertex graph together with a branch decomposition of
o-mim-width k, Independent Set and Feedback Vertex Set can be solved
in time nO(k).

We also show that o-mim-width is bounded on chordal graphs. In fact,
we show a stronger result that o-mim-width of any graph is at most its tree-
independence number (tree-α), which is a graph width parameter defined by
Dallard, Milanič, and Štorgel [9] and independently by Yolov [27], and is known
to be at most one on chordal graphs.

Theorem 2. Any graph with tree-independence number k has o-mim-width at
most k.

We do not know if there is a polynomial-time algorithm to compute a branch
decomposition of bounded o-mim-width if one exists, and the corresponding
question is notoriously open also for both mim-width and sim-width. Because
of this, it is also open whether Independent Set can be solved in polynomial-
time on graphs of bounded mim-width, and more generally on graphs of bounded
o-mim-width.
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In our second contribution we partially resolve the issue of not having algo-
rithms for computing branch decompositions with bounded mim-width, o-mim-
width, or sim-width. We introduce a graph parameter neighbor-depth.

Definition 3. The neighbor-depth (nd) of a graph G is defined recursively as
follows:

1. nd(G) = 0 if and only if V (G) = ∅,
2. if G is not connected, then nd(G) is the maximum value of nd(G[C]) where

C ⊆ V (G) is a connected component of G,
3. if V (G) is non-empty and G is connected, then nd(G) ≤ k if and only if there

exists a vertex v ∈ V (G) such that nd(G \N [v]) ≤ k − 1 and nd(G \ {v}) ≤ k.

In the case (3) of Definition 3, we call the vertex v the pivot-vertex witnessing
nd(G) ≤ k.

By induction, the neighbor-depth of all graphs is well-defined. We show that
neighbor-depth can be computed in nO(k) time and also Independent Set can
be solved in time nO(k) on graphs of neighbor-depth k.

Theorem 4. There is an algorithm that given a graph G of neighbor-depth k,
determines its neighbor-depth and solves Independent Set in time nO(k).

We show that graphs of bounded sim-width have neighbor-depth bounded
by a polylogarithmic function on the number of vertices.

Theorem 5. Any n-vertex graph of sim-width k has neighbor-depth O(k log2 n).

Theorems 4 and 5 combined show that Independent Set can be solved in
time nO(k log2 n) on graphs of sim-width k, which in particular is quasipolynomial
time for fixed k. This resolves, under the mild assumption that NP �⊆ QP, the
question of Kang, Kwon, Strømme, and Telle, who asked if Independent Set
is NP-complete on graphs of bounded sim-width [20, Question 2].

Neighbor-depth characterizes branching algorithms for Independent Set
in the following sense. We say that an independent set branching tree of a graph
G is a binary tree whose every node is labeled with an induced subgraph of G,
so that (1) the root is labeled with G, (2) every leaf is labeled with the empty
graph, and (3) if a non-leaf node is labeled with a graph G[X], then either (a) its
children are labeled with the graphs G[L] and G[R] where (L,R) is a partition
of X with no edges between L and R, or (b) its children are labeled with the
graphs G[X \N [v]] and G[X \ {v}] for some vertex v ∈ X. Note that such a tree
corresponds naturally to a branching approach for Independent Set, where
we branch on a single vertex and solve connected components independently of
each other. Let β(G) denote the smallest number of nodes in an independent set
branching tree of a graph G. Neighbor-depth gives both lower- and upper-bounds
for β(G).

Theorem 6. For all graphs G, it holds that 2nd(G) ≤ β(G) ≤ nO(nd(G)).
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Fig. 1. Hierarchy of some graph classes with polylogarithmically bounded neighbor-
depth, divided vertically on whether the best known algorithm for Independent Set
on the class is polynomial time, polynomial time given a decomposition (and quasipoly-
nomial without a decomposition), or quasipolynomial time.

By observing that some known algorithms for Independent Set in fact
construct independent set branching trees implicitly, we obtain upper bounds
for neighbor-depth on some graph classes purely by combining the running times
of such algorithms with Theorem 6. In particular, for an integer k, we say that
a graph is C>k-free if it does not contain induced cycles of length more than
k. Gartland, Lokshtanov, Pilipczuk, Pilipczuk and Rzazewski [14] showed that
Independent Set can be solved in time nO(log3 n) on C>k-free graphs for any
fixed k, generalizing a result of Gartland and Lokshtanov on Pk-free graphs [13].
By observing that their algorithm is a branching algorithm that (implicitly)
constructs an independent set branching tree, it follows from Theorem 6 that
the neighbor-depth of C>k-free graphs is bounded by a polylogarithmic function
on the number of vertices.

Proposition 7. For every fixed integer k, C>k-free graphs with n vertices have
neighbor-depth at most O(log4 n).

Along the same lines as Proposition 7, a polylogarithmic upper bound for
neighbor-depth can be also given for graphs with bounded induced cycle pack-
ing number, using the quasipolynomial algorithm of Bonamy, Bonnet, Déprés,
Esperet, Geniet, Hilaire, Thomassé, and Wesolek [3].

In Fig. 1 we show the hierarchy of inclusions between some of the graph
classes discussed in this paper, and the known algorithmic results for Indepen-
dent Set on those classes. All the inclusions shown are proper, and all the
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inclusions between these classes appear in the figure. Some of the inclusions are
proven in Sects. 3 and 4, and some of the non-inclusions in the full version of the
paper [2]. Note that bounded Boolean-width is equivalent to bounded clique-
width [26]. The polynomial-time algorithm for Independent Set on P6-free
graphs is from [16], the definition of tree-μ and polynomial-time algorithm for
Independent Set on graphs of bounded tree-μ is from [27], and the definition
of Boolean-width and a polynomial-time algorithm for Independent Set on
graphs of logarithmic Boolean-width is from [6]. The inclusion of logarithmic
Boolean-width in polylogarithmic neighbor-depth follows from Theorem 5 and
the fact the sim-width of a graph is at most its Boolean-width. Polynomial-time
algorithm for Independent Set on graphs of bounded clique-width follows
from [8,23].

Organization of this Paper. We prove the part of Theorem 1 on Independent
Set and Theorem 2 in Sect. 3. Theorem 5 is proved in Sect. 4. Proofs omitted in
this version of the paper due to space constraints are provided in the full version
in [2].

2 Preliminaries

The size of a set V is denoted by |V | and its power set is denoted by 2V . We let
max(∅) := −∞. Our graph terminology is standard and we refer to [10].

The subgraph of G induced by a subset X of its vertex set is denoted by
G[X]. We also use the notation G \ X = G[V (G) \ X]. For two disjoint subsets
of vertices X and Y of V (G), we denote by G[X,Y ] the bipartite graph with
vertex set X ∪ Y and edge set {xy ∈ E(G) : x ∈ X and y ∈ Y }. Given two
disjoint set of vertices X,Y , we denote by E(X) the set of edges of G[X] and
by E(X,Y ) the set of edges of G[X,Y ]. For a set of edges E′ of G, we denote
by G − E′ the graph with vertex set V (G) and edge set E(G) \ E′.

An independent set is a set of vertices that induces an edgeless graph. Given
a graph G with a weight function w : V (G) → Z≥0, the problem Independent
Set asks for an independent set of maximum weight, where the weight of a set
X ⊆ V (G) is

∑
x∈X w(x). A feedback vertex set is the complement of a set of

vertices inducing a forest (i.e. acyclic graph). The problem Feedback Vertex
Set asks for a feedback vertex set of minimum weight.

A matching in a graph G is a set M ⊆ E(G) of edges having no common
endpoint. We denote by V (M) the set of vertices incident to M . An induced
matching is a matching M such that G[V (M)] does not contain any other edges
than M . Given two disjoint subsets A,B of V (G), we say that a matching M is
a (A,B)-matching if every edge of M has one endpoint in A and the other in B.

Width Parameters. We refer to the introduction for the definitions of branch-
decomposition and f-width, we recall below the definitions of mim-width, sim-
width and o-mim-width.
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– The maximum induced matching-width (mim-width) [26] of a graph G is the
mim-width where mim(A) is the size of a maximum induced matching of the
graph G[A,A].

– The special induced matching-width (sim-width) [20] of a graph G is the sim-
width where sim(A) is the size of maximum induced (A,A)-matching in the
graph G.

– Given a graph G and A ⊆ V (G), the upper-mim-width umim(A) of A is the size
of maximum induced (A,A)-matching in the graph G − E(A). The one-sided
maximum induced matching-width (o-mim-width) of G is the omim-width
where omim(A) := min(umim(A), umim(A)).

The following is a standard lemma that f-width at most k implies balanced cuts
with f-width at most k.

Lemma 8. Let G be a graph, X ⊆ V (G) a set of vertices with |X| ≥ 2, and
f : 2V (G) → Z≥0 a symmetric set function. If the f-width of G is at most k, then
there exists a bipartition (A,A) of V (G) with f(A) ≤ k, |X ∩ A| ≤ 2

3 |X|, and
|X ∩ A| ≤ 2

3 |X|.
A tree decomposition of a graph G is a pair (T, bag), where T is a tree and

bag : V (T ) → 2V (G) is a function from the nodes of T to subsets of vertices of
G called bags, satisfying that (1) for every edge uv ∈ E(G) there exists a node
t ∈ V (T ) so that {u, v} ⊆ bag(t), and (2) for every vertex v ∈ V (G), the set
of nodes {t ∈ V (T ) : v ∈ bag(t)} induces a non-empty and connected subtree of
T . The width of a tree decomposition is the maximum size of bag(t) minus one,
and the treewidth of a graph is the minimum width of a tree decomposition of
the graph.

For a set of vertices X ⊆ V (G), we denote by α(X) the maximum size of
an independent set in G[X]. The independence number of a tree decomposi-
tion (T, bag) is the maximum of α(bag(t)) over t ∈ V (T ) and it is denoted by
α(T, bag). The tree-independence number of a graph (tree-α) is the minimum
independence number of a tree decomposition of the graph [9,27].

For a set of vertices X ⊆ V (G), we denote by μ(X) the maximum size of an
induced matching in G so that for each edge of the matching, at least one of the
endpoints of the edge is in X. For a tree decomposition (T, bag), we denote by
μ(T, bag) the maximum of μ(bag(t)) over t ∈ V (T ). Yolov [27] defined the minor-
matching hypertree width (tree-μ) of a graph to be the minimum μ(T, bag) of a
tree decomposition (T, bag) of G.

3 O-Mim-Width

In this section, we prove the part of Theorem 1 on Independent Set and
Theorem 2. We start with some intermediary results. The following reveals an
important property of cuts of bounded upper-mim-width. Razgon proved a simi-
lar statement in [24]. To simplify the statements of this section, we fix an n-vertex
graph G with a weight function w : V (G) → Z≥0.
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Lemma 9. Let A ⊆ V (G). For every X ⊆ A that is the union of t independent
sets, there exists X ′ ⊆ X of size at most t · umim(A) such that N(X) \ A =
N(X ′) \ A. In particular, we have |{N(X) \ A : X ∈ IS(A)}| ≤ numim(A) where
IS(A) is the set of independent sets of G[A].

Proof. It is sufficient to prove the lemma for t = 1, since if X is the union of t
independent sets X1, . . . , Xt, then the case t = 1 implies that, for each i ∈ [1, t],
there exits X ′

i ⊆ Xi such that N(Xi) \ A = N(X ′
i) \ A and |X ′

i| ≤ umim(A). It
follows that X ′ = X ′

1∪· · ·∪X ′
t ⊆ X, N(X)\A = N(X ′)\A and |X ′| ≤ t·umim(A).

Let X be an independent set of G[A]. If for every vertex x ∈ X, there exists
a vertex yx ∈ A such that N(yx) ∩ X = {x}, then {xyx : x ∈ X} is an induced
(A,A)-matching in G − E(A). We deduce that either |X| ≤ umim(A) or there
exists a vertex x ∈ X such that N(X) \ A = N(X \ {x}) \ A. Thus, we can
recursively remove vertices from X to find a set X ′ ⊆ X of size at most umim(A)
and such that N(X) \ A = N(X ′) \ A. In particular, the latter implies that
{N(X) \ A : X ∈ IS(A)} = {N(X) \ A : X ∈ IS(A) ∧ |X| ≤ umim(A)}. We
conclude that |{N(X) \ A : X ∈ IS(A)}| ≤ numim(A). �

To solve Independent Set and Feedback Vertex Set, we use the general
toolkit developed in [1] with a simplified notation adapted to our two problems.
This general toolkit is based on the following notion of representativity between
sets of partial solutions. In the following, the collection S represents the set of
solutions, in our setting S consists of either all the independent sets or all the
set of vertices inducing a forest.

Definition 10. Given S ⊆ 2V (G), for every A ⊆ 2V (G) and Y ⊆ V (G), we
define bestS(A, Y ) := max{w(X) : X ∈ A ∧ X ∪ Y ∈ S}. Given A ⊆ V (G)
and A,B ⊆ 2A, we say that B (S, A)-represents A if for every Y ⊆ A, we have
bestS(A, Y ) = bestS(B, Y ).

Observe that if there is no X ∈ B such that X ∪ Y ∈ S, then bestS(B, Y ) =
max(∅) = −∞. It is easy to see that the relation “(S, A)-represents” is an equiv-
alence relation.

The following is an application of Theorem 4.1 from [1]. It proves that a
routine for computing small representative sets can be used to design a dynamic
programming algorithm.

Theorem 11 ([1]). Let S ⊆ 2V (G). Assume that there exists a constant c and an
algorithm that, given A ⊆ V (G) and A ⊆ 2A, computes in time |A|nO(omim(A))

a subset B of A such that |B| ≤ nc·omim(A) and B (S, A)-represents A. Then,
there exists an algorithm, that given a branch decomposition L of G, computes
in time nO(omim(L)) a set of size at most nc·omim(A) that contains an element in S
of maximum weight.

The following lemma provides a routine to compute small representative sets
for Independent Set. We denote by I the set of all independent sets of G.

Lemma 12. Let k = omim(A). Given a collection A ⊆ 2A, we can compute in
time |A|nO(k) a subset B of A such that B (I, A)-represents A and |B| ≤ nk.
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Proof. Let A ⊆ 2A. We compute B from the empty set as follows:

– If umim(A) = k, then, for every Y ∈ {N(X) \ A : X is an independent in
A}, we add to B an independent set X ∈ A of maximum weight such that
Y = N(X) \ A.

– If umim(A) > k, then, for each subset Y ⊆ A with |Y | ≤ k, we add to B a set
X ∈ A of maximum weight such that X ∪Y is an independent set (if such X
exists).

It remains to prove the runtime. First, we prove that |B| ≤ nk. This is
straightforward when umim(A) > k. When umim(A) = k, Lemma 9 implies that
|{N(X) \ A : X is an independent in A}| ≤ nk and thus, we have |B| ≤ nk.

Next, we prove that B (I, A)-represents A, i.e. for every Y ⊆ A, we have
that bestI(A, Y ) = bestI(B, Y ). Let Y ⊆ A. As B is subset of A, we have
bestI(B, Y ) ≤ bestI(A, Y ). In particular, if there is no X ∈ A such that X ∪ Y
is an independent set, then we have bestI(A, Y ) = bestI(B, Y ) = −∞.

Suppose from now that bestI(A, Y ) �= −∞ and let X ∈ A such that X ∪ Y
is an independent set and w(X) = bestI(A, Y ). We distinguish the following
cases:

– If umim(A) = k, then, by construction, there exists an independent set W ∈ B
such that N(X) \ A = N(W ) \ A and w(X) ≤ w(W ). As X ∪ Y is an
independent set, we deduce that N(X)∩Y = N(W )∩Y = ∅ and thus W ∪Y
is an independent set.

– If umim(A) > k, then umim(A) = k as omim(A) = min(umim(A), umim(A)) = k.
By Lemma 9, there exists an independent set Y ′ ⊆ Y of size at most k such
that N(Y )\A = N(Y ′)\A. As Y ′ ⊆ Y , we know that X∪Y ′ is an independent
set. Thus, by construction there exists a set W ∈ B such that W ∪ Y ′ is an
independent set and w(X) ≤ w(W ). Since N(Y ) \A = N(Y ′) \A, we deduce
that W ∪ Y is an independent set.

In both cases, there exists W ∈ B such that W ∪ Y is an independent set and
w(X) ≤ w(W ) ≤ bestI(B, Y ). Since bestI(B, Y ) ≤ bestI(A, Y ) = w(X), it
follows that w(X) = bestI(A, Y ) = bestI(B, Y ). As this holds for every Y ⊆ A,
we conclude that B (I, A)-represents A.

It remains to prove the running time. Computing omim(A) = k and checking
whether umim(A) = k can be done by looking at every set of k + 1 edges and
check whether one of these sets is an induced (A,A)-matching in G − E(A)
and in G − E(A). This can be done in time O(

(
n2

k+1

)
n2) = nO(k) time. When

umim(A) > k, it is clear that computing B can be done in time |A|nO(k). This is
also possible when umim(A) = k as Lemma 9 implies that |{N(X) \ A : X is an
independent set in A}| ≤ nk. �

We obtain the following by using Theorem 11 with the routine of Lemma 12.

Theorem 13. Given an n-vertex graph with a branch decomposition of o-mim-
width k, we can solve Independent Set in time nO(k).



New Width Parameters for Independent Set 81

We show that the o-mim-width of a graph is upper bounded by its tree-
independence number.

We say that a branch decomposition is on a set V (G) if it is a branch decom-
position of some function f : 2V (G) → Z≥0. Next we give a general lemma for
turning tree decompositions of G into branch decompositions on V (G).

Lemma 14. Let (T, bag) be a tree decomposition of a graph G. There exists a
branch decomposition (T ′, δ) on the set V (G) so that for every bipartition (A,A)
of V (G) given by an edge of (T ′, δ), there exists a bag of (T, bag) that contains
either N(A) or N(A).

Then we restate Theorem 2 and prove it using Lemma 14.

Theorem 2. Any graph with tree-independence number k has o-mim-width at
most k.

Proof. Let G be a graph with tree-independence number k and (T, bag) a tree
decomposition of G with independence number α(T, bag) = k. By applying
Lemma 14 we turn (T, bag) into a branch decomposition on V (G) so that for
every partition (A,A) of V (G) given by the decomposition, either N(A) or N(A)
has independence number at most k. Now, if N(A) has independence number
at most k, then umim(A) ≤ k, and if N(A) has independence number at most k,
then umim(A) ≤ k, so we have that omim(A) ≤ k, and therefore the o-mim-width
of the branch decomposition is at most k. �

With similar arguments, we also prove the following.

Theorem 15. Any graph with minor-matching hypertreewidth k has sim-width
at most k.

4 Neighbor-Depth of Graphs of Bounded Sim-Width

In this section we show that graphs of bounded sim-width have poly-logarithmic
neighbor-depth, i.e., Theorem 5. The idea of the proof will be that given a cut
of bounded sim-width, we can delete a constant fraction of the edges going over
the cut by deleting the closed neighborhood of a single vertex. This allows to
first fix a balanced cut according to an optimal decomposition for sim-width,
and then delete the edges going over the cut in logarithmic depth.

We say that a vertex v ∈ V (G) neighbor-controls an edge e ∈ E(G) if e
is incident to a vertex in N [v]. In other words, v neighbor-controls e if e /∈
E(G \ N [v]).

Lemma 16. Let G be a graph and A ⊆ V (G) so that sim(A) ≤ k. There exists
a vertex v ∈ V (G) that neighbor-controls at least |E(A,A)|/2k edges in E(A,A).

Proof. Suppose the contradiction, i.e., that all vertices of G neighbor-control less
than |E(A,A)|/2k edges in E(A,A). Let M ⊆ E(A,A) be a maximum induced
(A,A)-matching, having size at most |M | ≤ sim(A) ≤ k, and let V (M) denote
the set of vertices incident to M . Now, an edge in E(A,A) cannot be added
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to M if and only if one of its endpoints is in N [V (M)]. In particular, an edge
in E(A,A) cannot be added to M if and only if there is a vertex in V (M)
that neighbor-controls it. However, by our assumption, the vertices in V (M)
neighbor-control strictly less than

|V (M)| · |E(A,A)|/2k = |E(A,A)|
edges of E(A,A), so there exists an edge in E(A,A) that is not neighbor-
controlled by V (M), and therefore we contradict the maximality of M . �

Now, the idea will be to argue that because sim-width is at most k, there
exists a balanced cut (A,A) with sim(A) ≤ k, and then select the vertex v given
by Lemma 16 as the pivot-vertex. Here, we need to be careful to persistently
target the same cut until the graph is disconnected along it.

Theorem 5. Any n-vertex graph of sim-width k has neighbor-depth O(k log2 n)

Proof. For integers n ≥ 2 and k, t ≥ 0, we denote by nd(n, k, t) the maximum
neighbor-depth of a graph that

1. has at most n vertices,
2. has sim-width at most k, and
3. has a cut (A,A) with sim(A) ≤ k, |E(A,A)| ≤ t, |A| ≤ 2n/3, and |A| ≤ 2n/3.

We observe that if a graph G satisfies all of the conditions 1–3, then any
induced subgraph of G also satisfies the conditions. In particular, note that n
can be larger than |V (G)|, and in the condition 3, the cut should be balanced
with respect to n but not necessarily with respect to |V (G)|.

We will prove by induction that

nd(n, k, t) ≤ 1 + 4k(log3/2(n) · log(n2 + 1) + log(t + 1)). (1)

This will then prove the statement, because by Lemma 8 any graph with n
vertices and sim-width k satisfies the conditions with t = n2.

First, when n ≤ 2 this holds because any graph with at most two vertices
has neighbor-depth at most one. We then assume that n ≥ 3 and that Eq. (1)
holds for smaller values of n and first consider the case t = 0.

Let G be a graph that satisfies the conditions 1–3 with t = 0. Because t = 0,
each connected component of G has at most 2n/3 vertices, and therefore satisfies
the conditions with n′ = 2n/3, k′ = k, and t′ = (2n/3)2. Therefore, by induction
each component of G has neighbor-depth at most nd(2n/3, k, (2n/3)2). Because
the neighbor-depth of G is the maximum neighbor-depth over its components,
we get that

nd(G) ≤ nd(2n/3, k, (2n/3)2)

≤ 1 + 4k(log3/2(2n/3) · log((2n/3)2 + 1) + log((2n/3)2 + 1))

≤ 1 + 4k((log3/2(n) − 1) · log((2n/3)2 + 1) + log((2n/3)2 + 1))

≤ 1 + 4k(log3/2(n) · log((2n/3)2 + 1)) ≤ 1 + 4k(log3/2(n) · log(n2 + 1)),
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which proves that Eq. (1) holds when t = 0.
We then consider the case when t ≥ 1. Assume that Eq. (1) does not hold

and let G be a counterexample that is minimal under induced subgraphs. Note
that this implies that G is connected, and every proper induced subgraph G′ of
G has neighbor-depth at most 1+4k(log3/2(n) · log(n2 +1)+ log(t+1)). We can
also assume that t = |E(A,A)|.

Now, by Lemma 16 there exists a vertex v ∈ V (G) that neighbor-controls
at least t/2k edges in E(A,A). We will select v as the pivot-vertex. By the
minimality of G, we have that nd(G \ {v}) ≤ 1 + 4k(log3/2(n) · log(n2 + 1) +
log(t + 1)), so it suffices to prove that nd(G \ N [v]) ≤ 1 + 4k(log3/2(n) · log(n2 +
1) + log(t + 1)) − 1. Because v neighbor-controls at least t/2k edges in E(A,A),
the graph G\N [v] satisfies the conditions with n′ = n, k′ = k, and t′ = t− t/2k.
We denote

α =
t′ + 1
t + 1

= 1 − t/2k

t + 1
≤ 1 − t/2k

2t
≤ 1 − 1

4k
.

Now we have that

nd(G) ≤ nd(n, k, t − t/2k) + 1 ≤ 2 + 4k(log3/2(n) · log(n2 + 1) + log(α · (t + 1)))

≤ 2 + 4k(log3/2(n) · log(n2 + 1) + log(α) + log(t + 1))

≤ 2 + 4k log(α) + 4k(log3/2(n) · log(n2 + 1) + log(t + 1))

≤ 2 − 4k · 1

4k
+ 4k(log3/2(n) · log(n2 + 1) + log(t + 1))

≤ 1 + 4k(log3/2(n) · log(n2 + 1) + log(t + 1)),

which proves that Eq. (1) holds when t ≥ 1, and therefore completes the proof.
�

5 Conclusion

We conclude with some open problems. First, as already discussed, it is still open
if independent set can be solved in polynomial-time on graphs of bounded mim-
width, because it is not known how to construct a decomposition of bounded
mim-width if one exists. It would be very interesting to resolve this problem
by either giving an algorithm for computing decompositions of bounded mim-
width, or by defining an alternative width parameter that is more general than
mim-width and allows to solve Independent Set in polynomial-time when the
parameter is bounded.

The class of graphs of polylogarithmic neighbor-depth generalizes several
classes where Independent Set can be solved in (quasi)polynomial time.
Another interesting class where Independent Set can be solved in polynomial-
time and which, to our knowledge, could have polylogarithmic neighbor-depth
is the class of graphs with polynomial number of minimal separators [12]. It
would be interesting to show that this class has polylogarithmic neighbor-depth.
More generally, Korhonen [21] studied a specific model of dynamic programming
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algorithms for Independent Set, in particular, tropical circuits for indepen-
dent set, and it appears plausible that all graphs with polynomial size tropical
circuits for independent set could have polylogarithmic neighbor-depth.
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