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Abstract. A (di)graph H has the Erdős-Pósa (EP) property for (but-
terfly) minors if there exists a function f : N → N such that, for any
k ∈ N and any (di)graph G, either G contains at least k pairwise vertex-
disjoint copies of H as (butterfly) minor, or there exists a subset T of at
most f(k) vertices such that H is not a (butterfly) minor of G − T . It is
a well known result of Robertson and Seymour that an undirected graph
has the EP property if and only if it is planar. This result was trans-
posed to digraphs by Amiri, Kawarabayashi, Kreutzer and Wollan, who
proved that a strong digraph has the EP property for butterfly minors if,
and only if, it is a butterfly minor of a cylindrical grid. Contrary to the
undirected case where a graph is planar if, and only if, it is the minor of
some grid, not all planar digraphs are butterfly minors of a cylindrical
grid. In this work, we characterize the planar digraphs that have a but-
terfly model in a cylindrical grid. In particular, this leads to a linear-time
algorithm that decides whether a weakly 3-connected strong digraph has
the EP property.
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1 Introduction

A classical result by Erdős and Pósa [5] states that there is a function f :
N → N such that, for every k, every graph G contains either k pairwise vertex-
disjoint cycles or a set T of at most f(k) vertices such that G−T is acyclic. The
generalization of Erdős and Pósa’s result for digraphs and directed cycles was
conjectured by Younger [13] and proved by Reed et al. [7].
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Fig. 1. The (4×4)-grid (left), the (3×6)-cylindrical grid C3,6 (middle), and the directed
wall (right) obtained from C3,6 by removing the three red arcs. (Color figure online)

We say that H is a minor of G if H is obtained from a subgraph of G by a
sequence of edge contractions. If H is a digraph and we restrict the contractions
in the previous definition to butterfly contractions [6], we get the definition of
a butterfly minor. We say that a graph H has the Erdős-Pósa (EP) property
for minors if there is a function f : N → N such that, for every k, every graph
G contains either k pairwise vertex-disjoint copies of H as a minor or a set T
of at most f(k) vertices such that H is not a minor of G − T . By changing
graph into digraph and minor into butterfly minor, the previous definition can
be adapted into the EP property for butterfly minors in digraphs. In this view, if
H is the undirected graph with a unique vertex and a unique loop on it and D
is the digraph obtained from H by orienting its loop edge, then Erdős and Pósa
proved that H has the EP property for minors while Reed et al. proved that D
has the EP property for butterfly minors.

The results of Erdős and Pósa and Reed et al. were generalized by Robertson
and Seymour [8] for undirected graphs and by Amiri et al. [1] for digraphs.
Robertson and Seymour [8] proved that an undirected graph G has the EP
property for minors if, and only if, G is planar. Amiri et al. [1] proved that a
strong digraph D has the EP property for butterfly minors if, and only if, D is
a butterfly minor of a cylindrical grid (see Fig. 1). The results of Robertson and
Seymour [8] and Amiri et al. [1] are similar since an undirected graph is planar
if, and only if, it is a minor of some grid [9]. Contrary to the undirected case, not
all planar digraphs are butterfly minors of a cylindrical grid. In this paper, we
provide a structural characterization of planar digraphs that are butterfly minors
of a cylindrical grid. In particular, such characterization leads to a linear-time
algorithm that decides whether a weakly 3-connected strong digraph has the EP
property for butterfly minors.

Although planarity is a necessary condition for a digraph to be a butterfly
minor of a cylindrical grid, it is not sufficient. For example, the two planar
digraphs of Fig. 2 are not butterfly minors of any cylindrical grid. To see this, first
note that they are planar, weakly 3-connected, and have essentially a unique (up
to the outerface) embedding in the plane, according to Whitney’s Theorem [12].
Note also that, in a cylindrical grid, any embedding is such that there is a point
in the plane around which all directed cycles go, and in the same direction.
We refer to this as being concentric and with same orientation. Now, in the
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Fig. 2. Two planar digraphs L (left) and R (right) which are not butterfly minors of
any cylindrical grid.

digraph L of Fig. 2, the matching between the two directed triangles forces that,
in any planar embedding, either the two triangles are not concentric or they have
opposite orientations. On the other hand, the digraph R of Fig. 2 is acyclic but it
is not a minor of any cylindrical grid. To see why, note that, if R was a butterfly
minor of a cylindrical grid, then, because R is acyclic, it would also be a butterfly
minor of a directed wall, which is the digraph obtained by cutting a cylindrical
grid along “parallel” arcs (see Fig. 1). Note that, in an embedding of a directed
wall similar to the one given in Fig. 1, no arc goes down. This means that some
relative positions of the vertices of R in a directed wall are forced. Namely, the
two sources v4 and v5 of R must be below each of their out-neighbors, vertex
v1 must be below its three out-neighbors, and the universal sink v0 must be
above every other vertex. It can then be checked that these positions must lead
to some crossing arcs. This second example shows that sources and sinks may
play an important role in the fact that a planar digraph may or may not be
a butterfly minor of a cylindrical grid. In a way, our main result tells that the
above two examples fully characterize the reasons why a planar digraph cannot
be a butterfly minor of a cylindrical grid.

To formally state our main result, we need a few definitions. Given a digraph
D = (V,A) and ∅ �= X ⊂ V (D), the set of arcs between X and V \X is denoted
by (X,V \X). We say that (X,V \X) is a dicut if there are no arcs from V \X
to X. A dijoin path P of D is a directed path in D whose arc-set intersects the
arc-set of every dicut of D. A plane digraph is a planar digraph together with
a planar embedding. Recall also that, given a plane digraph H, H∗ denotes its
dual. That is, the dual digraph H∗ of H (with a fixed planar embedding) is the
digraph that has a vertex for each face of the embedding of H and H∗ has an arc
e∗ = {u, v} for each two faces u and v in the embedding of H that are separated
from each other by an arc e ∈ E. Moreover, each dual arc e∗ is oriented by a 90◦

clockwise turn from the corresponding primal arc e. For instance, if a face of a
plane digraph H is “surrounded” by a directed cycle oriented clockwise (resp.,
counter-clockwise), then the corresponding vertex of H∗ is a source (resp., a
sink).

We can now state our main result.
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Theorem 1. A digraph D is a butterfly minor of a cylindrical grid if, and only
if, D has a plane spanning supergraph H with neither sources nor sinks such
that H∗ admits a dijoin path.

To get further intuition about Theorem 1, consider the definition of a feedback
arc set F ⊆ A of a digraph D = (V,A), which is any subset of arcs such that
D −F is acyclic. Given a plane digraph D, it is known that every directed cycle
of D is associated to a dicut in D∗. This implies that a set of arcs is a feedback
arc set of D if, and only if, the corresponding set of its dual edges intersects
the arc-set of every dicut of D∗ [2]. Therefore, the fact that D∗ admits a dijoin
path means that such path intersects the arcs of a feedback arc set of D “in the
same direction”, i.e., intersects the drawing of each directed cycle of D, with
each intersection occurring in the same orientation. This is equivalent to being
concentric and with the same orientation. This condition (D∗ admits a dijoin
path) allows avoiding the kind of planar digraphs as exemplified by the digraph
L in Fig. 2. In turn, the difficulties exemplified in digraph R in Fig. 2 are dealt
with by the existence of a supergraph H with neither sources nor sinks.

Structure of the Paper and Algorithmic Applications. We first prove
that if D is a plane digraph with neither sources nor sinks such that D∗ has
a dijoin path, then D is a butterfly minor of a cylindrical grid (Theorem 4).
Observe that this gives us the sufficiency part of Theorem 1. We then show that
if D is a butterfly minor of a cylindrical grid, then D has a planar embedding
such that D∗ admits a dijoin path (Theorem 5). Observe that D might still have
sources and sinks, so the remainder of the proof consists in adding arcs to D in
order kill all sources and sinks (Lemma 2).

Theorems 4 and 5 have the following important corollary:

Corollary 1. Any digraph D without sources or sinks is a butterfly minor of a
cylindrical grid if and only if D admits a planar embedding s.t. D∗ has a dijoin
path.

Note that the planar digraph R in Fig. 2 is acyclic. So, whatever be its planar
embedding, the dual is strongly connected, i.e., R∗ has no dicuts. Therefore,
every planar embedding of R is such that R∗ has a trivial dijoin path (the
empty path). Therefore, unfortunately, there is no hope that the condition on
sources and sinks can be removed from Corollary 1.

Note that any strongly connected digraph (or strong) D satisfies the conditions
of Corollary 1. Together with the result of Amiri et al. [1], this implies that:

Corollary 2. Any strong digraph D has the EP property for butterfly minors
if, and only if, D admits a planar embedding such that D∗ has a dijoin path.

By Whitney’s Theorem [12], any weakly 3-connected planar digraph D has
a unique (up to the outerface) planar embedding (computable in linear time).
Since deciding whether the dual of a plane digraph admits a dijoin path can be
done in linear time, then our result has the following algorithmic application:
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Corollary 3. Deciding whether a weakly 3-connected strong digraph has the EP
property for butterfly minors can be done in linear time.

Section 2 is devoted to defining the main notions and to present previously
known results used in this paper. Section 3 is devoted to digraphs with neither
sources nor sinks. Section 4 is devoted to obtaining the supergraph with neither
sinks nor sources.

2 Preliminaries

Planar Digraphs and Duality. In this section, we present a number of simple
known facts concerning planar graphs and their duals. The interested reader can
find formal definitions and proofs for such facts in most books on graph theory
(e.g., [11]).

Given a digraph D = (V,A) and e ∈ A, let D\e = (V,A\{e}) and let D/e
be the digraph obtained from D after contracting the arc e.

Observation 1. Let D = (V,A) be a plane digraph, and e ∈ A be any arc of
D. Then, (D\e)∗ = D∗/e∗ and (D/e)∗ = D∗\e∗.

A dicut of a digraph D = (V,A) is a partition (X,V \X) of the vertex-set
such that X is a non empty proper subset of V and there are no arcs from V \X
to X. The arc-set of (X,V \X) is the set of arcs from X to (X,V \X). A dijoin
X ⊆ A(D) of D is a set of arcs intersecting all dicuts’ arc-sets of D. A dijoin
path (resp., dijoin walk) of D is a dijoin inducing a directed path (resp., directed
walk) in D. That is, a dijoin path/walk P of D is a directed path/walk whose
arc-set intersects the arc-set of every dicut of D.

Observation 2. A digraph D admits a dijoin path if, and only if, the decom-
position of D into strongly connected components has a single source component
and a single sink component.

Observation 3. Let D = (V,A) be a digraph with a dijoin path P , and e ∈
A\A(P ). Then, P is a dijoin path of D\e.

Observation 4. Let D = (V,A) be a digraph with a dijoin path P , and e ∈ A.
Let P ′ be obtained from P by contracting e if e ∈ A(P ), and P ′ = P otherwise.
Then, P ′ is a dijoin walk of D/e.

Observation 5. Let D = (V,A) be a digraph with a dijoin path P , and v ∈ V
be an isolated vertex. Then, P is a dijoin path of D\v.

Observation 6. Every digraph with a dijoin walk admits a dijoin path.

Butterfly Models and Cylindrical Grids. We now present the formal defi-
nition of butterfly models. Let G and H be two digraphs. A (butterfly) model of
G in H is a function η : V (G) ∪ A(G) → S(H), where S(H) denotes the set of
all subdigraphs of H, such that:
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– for every v ∈ V (G), η(v) is a subdigraph of H being the orientation of some
tree such that V (η(v)) can be partitioned into ({rv}, Iv, Ov) where

• η(v)[Ov ∪ {rv}] is an out-arborescence rooted in rv (thus in which all
non-root vertices have in-degree 1), called the out-tree of v,

• η(v)[Iv ∪ {rv}] is an in-arborescence rooted in rv (thus in which all non-
root vertices have out-degree 1), called the in-tree of v;

– for every two distinct u, v ∈ V (G), η(u) and η(v) are vertex-disjoint;
– for every (x, y) ∈ A(G), η(xy) is a directed path of H from the out-tree

of x to the in-tree of y, with internal vertices disjoint from every vertex of
η(u) for every u ∈ V (G), and from every internal vertex of η(uv) for every
(u, v) ∈ A(G)\{(x, y)}.

Throughout this work, given a model of G in H, we will refer to the arcs
e ∈ A(H) ∩ ⋃

f∈A(G) A(η(f)) as the blue arcs of the model, and to the arcs
e ∈ A(H) ∩ ⋃

v∈V (G) A(η(v)) as the black arcs. A vertex of H incident to at
least one black arc will be referred to as a black vertex.

A model of G in H is minimal if, for every v ∈ V (G) and for every leaf w of
η(v), w is incident to some blue arc. Note that, up to removing the leaves that
do not satisfy this property from η(v), we can always assume to be working on
a minimal model.

Butterfly contracting an arc (u, v) ∈ A(D) of some digraph D consists in
contracting the arc (u, v) if d−(v) = 1 or d+(u) = 1. A digraph G is a butterfly
minor of some digraph H if G can be obtained from H by deleting arcs, deleting
vertices, and butterfly contracting arcs. Note that if G is a butterfly minor of
H, then G can be obtained by first removing some arcs, then removing isolated
vertices, and finally performing butterfly contractions.

Observation 7 [1]. A digraph G is a butterfly minor of some digraph H if, and
only if, G has a butterfly model in H.

We now deal with cylindrical grids. Let n,m ∈ N
∗. The cyclindrical grid

Cn,2m can be seen as a set of n concentric directed cycles having the same
direction and linked through 2m directed paths that alternate directions (see
Fig. 3). Formally, Cn,2m is the digraph with vertex-set {(i, j) | 0 ≤ i < n, 0 ≤
j < 2m}, and with the following arc-set. For every 0 ≤ i < n and 0 ≤ j < 2m,
we have ((i, j), (i, j +1 mod m)) ∈ A(Cn,2m), and the directed cycle induced by
{(i, j) | 0 ≤ j < m} is called the ith column of Cn,2m. For every 0 ≤ i < n−1 and
0 ≤ j < m, we have ((i, 2j), (i + 1, 2j)) ∈ A(Cn,2m) and ((i, 2j + 1), (i − 1, 2j +
1)) ∈ A(Cn,2m). Moreover, for every 0 ≤ j < 2m, the directed path induced by
{(i, j) | 0 ≤ i < n} is called the jth row of Cn,2m.

Throughout this work, we consider that any Cn,2m is embedded in the plane
so that its first column coincides with the outerface (see Fig. 3). Hence, we may
naturally refer to left/right and top/bottom such that the first (last) column is
the leftmost (rightmost) and the first (last) row is the bottommost (topmost).
The arcs of a column are referred to as vertical arcs. Note that all vertical arcs
are going up. The arcs of a row are the horizontal arcs. Moreover, the arcs of
even (resp., odd) rows are horizontal to the right (resp., to the left).
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Fig. 3. A planar embedding of the cylindrical grid C6,6. The red directed path Q∗
6,6 is

the dijoin path defined and used in Sect. 4. (Color figure online)

Fig. 4. Green rows and columns are added. Blue arcs belong to the images of some
arcs of G by η. Grey subtrees (with black vertices and arcs) are the images of some
vertices of G by η. (Color figure online)

Since Cn,2m is strong, we get that C∗
n,2m is a DAG. Moreover, C∗

n,2m has a
unique sink t∗, corresponding to the outerface of the given embedding of Cn,2m,
and a unique source s∗, corresponding to the face of Cn,2m bounded by the last
column of Cn,2m. Note that if P ∗ is any directed path from s∗ to t∗ in C∗

n,2m,
then P ∗ is a dijoin path, i.e., it intersects all dicuts of C∗

n,2m (or, equivalently,
P ∗ “crosses” all directed cycles of Cn,2m).

Let η be a butterfly model of a digraph G in Cn,2m. We will deal with η
through a few operations. Due to lack of space, we only present them informally.

– Adding one column between columns i and i + 1 in η consists in considering
the new model η′ of G in the cylindrical grid Cn+1,2m obtained as follows.
Roughly, the left part of the model (between columns 0 to i) does not change,
one new column is added (with abscissa i+1), and the right part of the model
(between former columns i+1 to n) is translated by one column to the right.
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Fig. 5. Construction of DP∗(s, t). On the left, a dijoin path P ∗ is represented by dashed
red arcs. On the right, the obtained digraph DP∗(s, t) is depicted. (Color figure online)

The horizontal arcs of the model that were going from former columns i to
i + 1 are subdivided once, i.e., they are now directed paths that go from
column i to column i + 2. Note that no vertical arcs of the added column
belong to the new model η′ of D. See Fig. 4 for an illustration.

– Adding two rows between rows j and j + 1 in η consists in considering the
new model η′ of G in the cylindrical grid Cn,2(m+1) defined as follows. All the
elements of the model below row j, or in row j, remain the same, all elements
of the model above row j are translated up from two rows, and all vertical
arcs from former row j to former row j + 1 are subdivided twice, i.e., they
are now vertical directed paths with three arcs from row j to row j + 3. Note
that no horizontal arcs of the two added rows belong to the new model η′ of
D. See Fig. 4 for an illustration.

3 Digraphs with Neither Sources nor Sinks

Let D be a plane digraph such that D∗ has a dijoin path P ∗ with arcs
(e∗

1, · · · , e∗
p). Let DP∗(s, t) be obtained from D as follows (see Fig. 5 to follow

the construction). For every i ∈ {1, · · · , p}, let ei = (ui, wi) be the arc of D cor-
responding to e∗

i . Subdivide ei into three arcs (ui, ti), (ti, si), and (si, wi). Then,
remove (ti, si), and, for every i ∈ {1, · · · , p}, identify the vertices t1, · · · , tp into
one vertex t, and the vertices s1, · · · , sp into one vertex s. Finally, add an arc
from s to t. Note that V (DP∗(s, t)) = V (D) ∪ {s, t} and, for every v ∈ V (D),
the in-degree (resp., out-degree) of v in D is the same as in DP∗(s, t). Since P ∗

is a dijoin path of D∗, the set {ei}i≤m is a feedback arc set of D [2]. Therefore:

Observation 8. Let D be a plane digraph such that D∗ has a dijoin path P ∗.
If D has neither sources nor sinks, then DP∗(s, t) is a planar DAG having s as
unique source and t as unique sink.

A visibility representation of a graph G is a mapping of V (G) into
non-intersecting horizontal segments1 {hu}u∈V (G), together with a mapping
{te}e∈E(G) of the edges into vertical segments such that for every uv ∈ E(G),

1 Here, segment means line segment in the plane.
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we get that tuv has endpoints in hu and hv, and tuv does not cross hw for every
w �= u, v.

Theorem 2 ([4]). Every planar graph admits a visibility representation.

Here, we apply the approach presented in [10] to our context in order to obtain
a butterfly model of a planar digraph D into a cylindrical grid, if one exists. For
this, we slightly adapt their definitions to our purposes.

We consider a visibility representation ({hu}u∈V , {te}e∈A) of D = (V,A) to
be drawn on the plane, and, given two horizontal (vertical) segments s1, s2, we
write s1 ≤ s2 if the y-coordinate (x-coordinate) of s1 is smaller than the one
of s2. Now, given a DAG D = (V,A), we say that a visibility representation
({hu}u∈V , {te}e∈A) of D is increasing if hu ≤ hv for every arc (u, v) ∈ A (in
other words, the arcs are all directed upwards).

In [10], in order to construct a visibility representation, the authors show
that they can obtain an orientation D of a graph G that is acyclic, has exactly
one source s and exactly one sink t, and (s, t) ∈ A(D) (they call such a digraph
a PERT-digraph). After they obtain this orientation, they use a total order
(v1, . . . , vn) of V (G) that meets the orientation D, and then construct a visibility
representation such that s1 < s2 < . . . < sn, where si denotes the y-coordinate
of hvi

, for every i ∈ {1, . . . , n}. Observe that, because the order meets the ori-
entation, we get that this is an increasing visibility representation. Their repre-
sentation also has the property that the x-coordinate of arc (s, t) is smaller than
the x-coordinate of every other edge of G. In short, even though they use a dif-
ferent terminology, the results presented in [10] actually show that the theorem
below holds. The interested reader can check this is true by observing, in their
algorithm W-VISIBILITY, that after they obtain the desired orientation D (line
2), they only work on D itself; also, the increasing order over the y-coordinates
is ensured in line 5.1 of their algorithm.

Theorem 3 ([10]). Let D be a planar DAG with unique source s and unique
sink t, and such that (s, t) ∈ A(D). Then, D admits an increasing visibility
representation such that each horizontal segment has a distinct y-coordinate,
and the x-coordinate of the segment of (s, t) is smaller than the x-coordinate of
the segment of every other arc of D.

Theorem 4. Let D = (V,A) be a digraph without sources or sinks. If D has a
planar embedding such that D∗ admits a dijoin path P ∗, then D has a butterfly
model in Cn,2m for some n,m ∈ N

∗.

Sketch of the Proof. By Observation 8, DP∗(s, t) is a DAG with a unique source s,
a unique sink t, and (s, t) ∈ A(DP∗(s, t)). By Theorem 3, there exists an increas-
ing visibility representation of DP∗(s, t). Let V (DP∗(s, t)) = {s = v1, . . . , t = vn}
be ordered increasingly according to their y-coordinates on the representation
and suppose, without loss of generality, that the y-coordinate of hv1 = hs is 0
and the difference between the y-coordinates of hvi

and hvi−1 is 2 (their value on
the constructed increasing visibility representation are all different, so we just
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need to adjust it). Observe that, in this case, the y-coordinate of hvi
is 2i − 2.

We will build a model of D in some cylindrical grid as follows.
For each vi ∈ V (D) (hence i /∈ {1, n}), let h′

vi
be the segment equivalent

to hvi
, but in the upper row. In other words, h′

vi
has y-coordinate 2i − 1, and

leftmost and rightmost x-coordinates equal to the ones of hvi
. The idea of the

proof is to relate vi with the path formed by the union of paths associated to h′
vi

and hvi
in the cylindrical grid. Since all arcs of D point upwards, we get that

the subpath associated to h′
vi

(i.e., in row 2i − 1) corresponds to the out-tree of
vi, while the subpath associated to hvi

(i.e., in row 2i − 2) corresponds to the
in-tree of vi. �

Note that Theorem 4 allows us to prove the “if” part of Theorem 1.

Theorem 5. If a digraph D = (V,A) has a butterfly model in Cn,2m for some
n,m ∈ N

∗, then D has a planar embedding such that D∗ admits a dijoin path.

Proof. Consider the planar embedding of Cn,2m such that the outerface contains
its first column (see Fig. 3) and let P ∗ be any directed path from the single source
of C∗

n,2m to its single sink. Note that P ∗ is a dijoin path of C∗
n,2m.

By Observation 7, D is a butterfly minor of Cn,2m. Let s1, · · · , sq be the
sequence of operations allowing to get D from Cn,2m where these operations
are ordered in such a way that first arcs are removed, then isolated vertices are
removed and, finally, butterfly contractions are performed. For every 0 ≤ i ≤ q,
let Gi be the digraph obtained after the ith operation (so G0 = Cn,2m and
Gq = D). We show, by induction on 0 ≤ i ≤ q, how to obtain a directed path Pi

which is a dijoin path of G∗
i . In particular, it holds for i = 0 by taking P0 = P ∗.

Let i ≥ 1. If si consists in removing an arc ei of Gi−1 then, if e∗
i ∈ A(Pi−1),

let P ′
i = Pi−1/e∗

i , and let P ′
i = Pi−1 otherwise. By Observations 1 and 4, P ′

i

is a dijoin walk of G∗
i and, by Observation 6, G∗

i admits a dijoin path Pi. If si
consists in removing an isolated vertex, then, by Observation 5, Pi = Pi−1 is a
dijoin path of G∗

i . And if si is a butterfly contraction of the arc ei ∈ A(Gi−1),
where e∗

i /∈ A(Pi−1), then Observations 1 and 3 ensure us that Pi = Pi−1 is a
dijoin path of G∗

i .
Finally, let us consider the case when si consists in butterfly contracting

an arc ei = (u, v) ∈ A(Gi−1) such that e∗
i ∈ A(Pi−1). Let us assume that

d−(v) = 1 (the case when d+(u) = 1 is symmetric). Observe that d+(v) > 0 as
otherwise e∗

i would be a loop, contradicting that Pi−1 is a directed path. Then,
let {f1, · · · , fq} be the set of out-arcs of v ordered clockwise in the embedding
of D in the plane. Then, let P ′

i be the directed walk obtained by replacing e∗
i in

Pi−1 by the directed walk consisting of the arcs f∗
1 , f∗

2 , · · · , f∗
q . Note that P ′

i is a
dijoin walk in G∗

i . Indeed, consider the set of arcs K of a dicut of G∗
i . If K is also

a dicut in G∗
i−1, then e∗

i /∈ K and P ′
i intersects K since Pi−1 is a dijoin path and

so intersects K. Otherwise, e∗
i ∈ K which implies that {f∗

1 , f∗
2 , · · · , f∗

q }∩K �= ∅,
and so P ′

i intersects K. Finally, by Observation 6, G∗
i admits a dijoin path Pi.

�
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Theorems 4 and 5 prove the following corollary which corresponds to Theo-
rem 1 in the case of digraphs with neither sources nor sinks (and in particular,
Corollary 3 is a special case of the following corollary).

Corollary 4. A digraph D without sources or sinks is a butterfly minor of a
cylindrical grid if, and only if, D admits a planar embedding such that D∗ has
a dijoin path. Moreover, if D is weakly 3-connected, then this can be decided in
linear time.

Proof. Due to the weakly 3-connectivity of D, and by Whitney’s Theorem, D
has a unique (up to the outerface) planar embedding (and a unique dual). Given
such an embedding, checking the existence of a dijoin path can be done in linear
time by Observation 2. �

Recall that a strong digraph D has the EP property for butterfly minors if
and only if D is a butterfly minor of a cylindrical grid [1]. Together with our
result, we get:

Corollary 3. Deciding whether a weakly 3-connected strong digraph D has the
EP property for butterfly minors can be done in linear time.

4 Digraphs with Sources and Sinks

We have seen that if D is a butterfly minor of a cylindrical grid, then D has a
planar embedding such that D∗ admits a dijoin path (Theorem 5). As we want
to show that this holds for a spanning supergraph with neither sources nor sinks,
it remains to “kill” sources and sinks in D. This is done in this section.

Given a cylindrical grid Cn,2m with the canonical planar embedding described
previously, let Q∗

n,2m be the directed path of the dual C∗
n,2m whose arcs corre-

spond exactly to all arcs of Cn,2m that go from the last (topmost) row to the
first (bottommost) row. Note that Q∗

n,2m is a dijoin path of C∗
n,2m (see Fig. 3).

The next lemma states that if a digraph D has a model in a cylindrical grid,
then it is possible to get a model such that Q∗

n,2m only crosses blue arcs of this
model.

Lemma 1. If a digraph D has a butterfly model η in Cn,2m, then D has a
butterfly model in Cn′,2m′ for some n′ ≥ n and m′ ≥ m such that no black arcs
of this model are dual of an arc of Q∗

n′,2m′ .

Lemma 2. If a digraph D = (V,A) has a butterfly model in Cn,2m, then D has
a spanning supergraph with neither sources nor sinks that has a butterfly model
in Cn′,2m′ for some n′ ≥ n and m′ ≥ m.

Sketch of the Proof. If D has no sources nor sinks, then we are done, so suppose
otherwise. In what follows, given a source s in D (resp., a sink t), we describe a
process that builds a model for an in-arc that we add to s (resp., an out-arc that
we add to t), so that the obtained supergraph has also a model in a cylindrical



70 J. Bensmail et al.

grid and has one less source (resp., sink). By iteratively applying such process,
we get the desired conclusions.

Let us consider a butterfly model η of D with a dijoin path P ∗ as in Lemma 1,
and suppose that D has a source s (the case of a sink is symmetric). We will
add a new arc (z, s) for some z ∈ V (D), and a directed path Q (finishing in the
in-tree of the model of s) for modelling this arc in the existing model η. The
difficulty is to find the vertex of an out-tree in which we can start Q from. First
let us add two columns between any two consecutive columns and let us add two
rows between any two consecutive rows. We also add one column to the left and
one column to the right of the cylindrical grid.

Let rs be the root of η(s). Note that, by assuming η to be minimal, we get
that the in-tree of the model of s in η is reduced to its root. Let a1 be the vertex
below rs and b1 the vertex below a1. Since we have just added two rows between
any two rows, and because the in-tree of s is reduced to rs, we get that a1, b1
are not part of the model of any vertex nor arc. Let Q initially contain just the
arc (a1, rs) (this will actually be the last arc of Q). Let us assume that Q has
been built up to some vertex ah, i.e., Q = (ah, ah−1, · · · , a1, rs), and additionally
assume that the vertex bh below ah is not part of the model of any vertex nor
arc (this is the case for h = 1). Let w be the vertex below bh.

– If w is not part of the model of any vertex nor arc, then let ah+1 = bh and
let bh+1 = w, and we continue to build Q.

– If w is in the out-tree of some vertex, then add (w, bh), (bh, ah) to the end of
Q to be done.

– If w is part of the in-tree of some vertex a (and not of its out-tree, i.e., w is
not the root of the model of a), then assume that the row of ah goes to the
right (the other case is symmetric). Let x be the left neighbor of ah, y be the
vertex below x (and to the left of bh), and z the vertex below y (and to the
left of w). Note that, since w is part of the model and bh is not, then the rows
of bh and ah are rows that have been added just before starting the process.
In particular, this implies that either both x and y belong to the model of
some e ∈ V (D) ∪ A(D), or neither x nor y is part of any model. We can then
prove that the former case is not possible because it would contradict the fact
that w is part of the in-tree (and not of the out-tree) of the model of a. In
the latter case, we set ah+1 = x and bh+1 = y and go on.

– If w is part of the model of some arc e = (u, v) ∈ A(D). We apply similar
arguments and omit the proof because of space constraints.

The above process is not ensured to finish because if might happen that
vertices ah and bh are already on the outerface of the model η. The next two
cases allow to ensure that our process will actually terminate. For this purpose,
we use the dijoin path P ∗.

– If (bh, ah) crosses the dijoin path P ∗ and P ∗ does not cross any blue arc,
then let us consider the closest row under P ∗ that contains a vertex of the
model. W.l.o.g., let us assume that this row goes to the right and let x be
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the rightmost vertex of this row that is part of the model of some vertex
v∗ of D. By minimality of the model and because x has no out-neigbour in
the model of any vertex or arc, then, x must be the root of η(v∗) (which is
actually an in-tree). Now, we add to η(v∗): the up-going arc (x, y) (y being
the up-neighbor of x), and the horizontal directed path Y starting from y to
the leftmost vertex of this row (then y becomes the new root of η(v∗) and
the path Y will be considered as its out-tree). To conclude this case, add at
the beginning of Q, the directed path from the path Y of η(v∗) (added in
previous paragraph) to bh.

– If (bh, ah) crosses P ∗ which crosses some blue arc, then we apply similar
arguments and omit the proof because of space constraints. �

Further Work. An interesting question is whether there exists a structural
condition on the sources and sinks of a digraph D that corresponds to being a
butterfly minor of a cylindrical grid (avoiding to invoke a supergraph without
sources or sinks). This may help to answer the question of the computational
complexity of deciding if a strong digraph D has the EP property when D is
not weakly 3-connected. Since the class of digraphs that are butterfly minors
of a cylindrical grid is closed under taking butterfly minors, it would also be
interesting to characterize the minimal forbidden butterfly minors for this class.
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