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Abstract. A graph is called odd (respectively, even) if every vertex has
odd (respectively, even) degree. Gallai proved that every graph can be
partitioned into two even induced subgraphs, or into an odd and an even
induced subgraph. We refer to a partition into odd subgraphs as an odd
colouring of G. Scott [Graphs and Combinatorics, 2001] proved that a
graph admits an odd colouring if and only if it has an even number of
vertices. We say that a graph G is k-odd colourable if it can be partitioned
into at most k odd induced subgraphs. We initiate the systematic study of
odd colouring and odd chromatic number of graph classes. In particular,
we consider for a number of classes whether they have bounded odd
chromatic number. Our main results are that interval graphs, graphs
of bounded modular-width and graphs of bounded maximum degree all
have bounded odd chromatic number.
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1 Introduction

A graph is called odd (respectively even) if all its degrees are odd (respectively
even). Gallai proved the following theorem (see [8], Problem 5.17 for a proof).

Theorem 1. For every graph G, there exist:

– a partition (V1, V2) of V (G) such that G[V1] and G[V2] are both even;
– a partition (V ′

1 , V ′
2) of V (G) such that G[V ′

1 ] is odd and G[V ′
2 ] is even.
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This theorem has two main consequences. The first one is that every graph
contains an induced even subgraph with at least |V (G)|/2 vertices. The second is
that every graph can be even coloured with at most two colours, i.e., partitioned
into two (possibly empty) sets of vertices, each of which induces an even subgraph
of G. In both cases, it is natural to wonder whether similar results hold true when
considering odd subgraphs.

The first question, known as the odd subgraph conjecture and mentioned
already by Caro [3] as part of the graph theory folklore, asks whether there
exists a constant c > 0 such that every graph G contains an odd subgraph
with at least |V (G)|/c vertices. In a recent breakthrough paper, Ferber and
Krivelevich proved that the conjecture is true.

Theorem 2 ([5]). Every graph G with no isolated vertices has an odd induced
subgraph of size at least |V (G)|/10000.

The second question is whether every graph can be partitioned into a
bounded number of odd induced subgraphs. We refer to such a partition as
an odd colouring, and the minimum number of parts required to odd colour a
given graph G, denoted by χodd(G), as its odd chromatic number. This can be
seen as a variant of proper (vertex) colouring, where one seeks to partition the
vertices of a graph into odd subgraphs instead of independent sets. An imme-
diate observation is that in order to be odd colourable, a graph must have all
its connected components be of even order, as an immediate consequence of the
handshake lemma. Scott [11] proved that this necessary condition is also suffi-
cient. Therefore, graphs can generally be assumed to have all their connected
components of even order, unless otherwise specified.

Motivated by this result, it is natural to ask how many colours are necessary
to partition a graph into odd induced subgraphs. As Scott showed [11], there
exist graphs with arbritrarily large odd chormatic number. On the computational
side, Belmonte and Sau [2] proved that the problem of deciding whether a graph
is k-odd colourable is solvable in polynomial time when k ≤ 2, and NP-complete
otherwise, similarly to the case of proper colouring. They also show that the
k-odd colouring problem can be solved in time 2O(k·rw) · nO(1), where k is the
number of colours and rw is the rank-width of the input graphs. They then ask
whether the problem can be solved in FPT time parameterized by rank-width
alone, i.e., whether the dependency on k is necessary. A positive answer would
provide a stark contrast with proper colouring, for which the best algorithms
run in time n2O(rw)2

(see, e.g., [7]), while Fomin et al. [6] proved that there is no
algorithm that runs in time n2o(rw)

, unless the ETH fails.1
On the combinatorial side, Scott showed that there exist graphs that require

Θ(
√

n) colours. In particular, the subdivided clique, i.e., the graph obtained
from a complete graph on n vertices by subdividing2 every edge once requires
1 While Fomin et al. proved the lower bound for clique-width, it also holds for rank-

width, since rank-width is always at most clique-width.
2 Subdividing an edge uv consists in removing uv, adding a new vertex w, and making

it adjacent to exactly u and v.
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exactly n colours, as the vertices obtained by subdividing the edges force their
two neighbours to be given distinct colours. More generally, and by the same
argument, given any graph G, the graph H obtained from G by subdividing
every edge once has χodd(H) = χ(G), and H is odd colourable if and only if
|V (H)| = |V (G)|+|E(G)| is even. Note that a subdivided clique is odd colourable
if and only if the subdivided complete graph Kn satisfies n ∈ {k : k ≡ 0 ∨ k ≡ 3
(mod 4)}. Surprisingly, Scott also showed that only a sublinear number of
colours is necessary to odd colour a graph, i.e., every graph of even order G
has χodd(G) ≤ cn(log log n)−1/2. As Scott observed, this bound is quite weak,
and he instead conjectures that the lower bound obtained from the subdivided
clique is essentially tight:

Conjecture 1 (Scott, 2001) . Every graph G of even order has χodd(G) ≤ (1 +
o(1))c

√
n.

One way of seeing Conjecture 1 is to consider that subdivided cliques appear
to be essentially the graphs that require most colours to be odd coloured. More
specifically, consider the family B of graphs G′ obtained from a graph G by
adding, for every pair of vertices u, v ∈ V (G), a vertex wuv and edges uwuv

and vwuv, and G′ has even order. Note that subdivided cliques of even order
are exactly those graphs in B where graph G is edgeless, and that the graphs
in B have χodd(G′) = |V (G)| ∈ Θ(

√|V (G′)|). A question closely related to
Conjecture 1 is whether if a class of graphs G does not contain arbitrarily large
graphs of B as induced subgraphs, then G has odd chromatic number O(

√
n),

i.e., they satisfy Conjecture 1. This question was already answered positively for
some graph classes. In fact, the bounds provided were constant. It was shown
in [2] that every cograph can be odd coloured using at most three colours, and
that graphs of treewidth at most k can be odd coloured using at most k + 1
colours. In fact, those results can easily be extended to all graphs admitting a
join, and H-minor free graphs, respectively. Using a similar argument, Aashtab
et al. [1] showed that planar graphs are 4-odd colourable, and this is tight due
to subdivided K4 being planar and 4-odd colourable, as explained above. They
also proved that subcubic graphs are 4-odd colourable, which is again tight
due to subdivided K4, and conjecture that this result can be generalized to all
graphs, i.e., χodd(G) ≤ Δ + 1, where Δ denotes the maximum degree of G.
Observe that none of those graph classes contain arbitrarily large graphs from
B as induced subgraphs. On the negative side, bipartite graphs and split graphs
contain arbitrarily large graphs from B, and therefore the bound of Conjecture 1
is best possible. In fact, Scott specifically asked whether the conjecture holds for
the specific case of bipartite graphs.

Our Contribution. Motivated by these first isolated results and Conjecture 1,
we initiate the systematic study of the odd chromatic number in graph classes,
and determine which have bounded odd chromatic number. We focus on graph
classes that do not contain large graphs from B as induced subgraphs. Our main
results are that graphs of bounded maximum degree, interval graphs and graphs
of bounded modular width all have bounded odd chromatic number.
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In Sect. 3, we prove that every graph G of even order and maximum degree
Δ has χodd(G) ≤ 2Δ − 1, extending the result of Aashtab et al. on subcubic
graphs to graphs of bounded degree. We actually prove a more general result,
which provides additional corollaries for graphs of large girth. In particular, we
obtain that planar graphs of girth 11 are 3-odd colourable. We also obtain that
graphs of girth at least 7 are O(

√
n)-odd colourable. While this bound is not

constant, it is of particular interest as subdivided cliques have girth exactly 6.
In Sect. 4 we prove that every graph with all connected components of even

order satisfies χodd(G) ≤ 3 · mw(G), where mw(G) denotes the modular-width
of G. This significantly generalizes the cographs result from [2] and provides
an important step towards proving that graphs of bounded rank-width have
bounded odd chromatic number, which in turn would imply that the Odd Chro-
matic Number is FPT when parameterized by rank-width alone.

Finally, we prove in Sect. 5 that every interval graph with all components of
even order is 6-odd colourable. Additionally, every proper interval graph with
all components of even order is 3-odd colourable, and this bound is tight.

We would also like to point out that all our proofs are constructive and fur-
thermore a (not necessarily) optimal odd-colouring with the number of colours
matching the upper bound can be computed in polynomial time. In particular,
the proof provided in [8] of Theorem 1, upon which we rely heavily is con-
structive, and both partitions can easily be computed in polynomial time. An
overview of known results and open cases is provided in Fig. 1 below.

Fig. 1. Overview of known and open cases.

2 Preliminaries

For a positive integer i, we denote by [i] the set of integers j such that 1 ≤ j ≤ i.
A partition of a set X is a tuple P = (P1, . . . , Pk) of subsets of X such that X =
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⋃
i∈[k] Pi and Pi ∩ Pj = ∅, i.e., we allow parts to be empty. Let P = (P1, . . . , Pk)

be a partition of X and Y ⊆ X. We let P|Y be the partition of Y obtained from
(P1 ∩ Y, . . . , Pk ∩ Y ) by removing all empty parts. A partition (Q1, . . . , Q�) of
X is a coarsening of a partition (P1, . . . , Pk) of X if for every Pi and every Qj

either Pi ∩ Qj = ∅ or Pi ∩ Qj = Pi, i.e., every Qj is the union of Pi’s.
Every graph in this paper is simple, undirected and finite. We use standard

graph-theoretic notation, and refer the reader to [4] for any undefined notation.
For a graph G we denote the set of vertices of G by V (G) and the edge set by
E(G). Let G be a graph and S ⊆ V (G). We denote an edge between u and v
by uv. The order of G is |V (G)|. The degree (respectively, open neighborhood)
of a vertex v ∈ V (G) is denoted by dG(v) (respectively, NG(v)). We denote the
subgraph induced by S by G[S]. G \ S = G[V (G) \ S]. The maximum degree
of any vertex of G is denoted by Δ. We denote paths and cycles by tuples of
vertices. The girth of G is the length of a shortest cycle of G. Given two vertices
u and v lying in the same connected component of G, we say an edge e separates
u and v if they lie in different connected components of G \ {e}.

A graph is called odd (even, respectively) if every vertex has odd (respec-
tively, even) degree. A partition (V1, . . . , Vk) of V (G) is a k-odd colouring3 of
G if G[Vi] induces an odd subgraphs of G for every i ∈ [k]. We say a graph is
k-odd colourable if it admits a k-odd colouring. The odd chromatic number of G,
denoted by χodd(G), is the smallest integer k such that G is k-odd colourable.
The empty graph (i.e., V (G) = ∅) is considered to be both even and odd. Since
every connected component can be odd coloured separately, we only need to
consider connected graphs.

Modular-width. A set S of vertices is called a module if, for all u, v ∈ S,N(u)∩
S = N(v) ∩ S. A partition M = (M1, . . . , Mk) of V (G) is a module partition of
G if every Mi is a module in G. Without loss of generality, we further ask that
any module partition M of G, unless G = K1, is non-trivial, i.e., M has at least
two non-empty parts. Given two sets of vertices X and Y , we say that X and Y
are complete to each other (completely non-adjacent, respectively) if uv ∈ E(G)
(uv 
∈ E(G), respectively) for every u ∈ X, v ∈ Y . Note that for any two modules
M and N in G, either M and N are non-adjacent or complete to each other.
We let GM be the module graph of M, i.e., the graph on vertex set M with an
edge between Mi and Mj if and only if Mi and Mj are complete to each other
(non-adjacency between modules Mi, Mj in GM corresponds to Mi and Mj

being non-adjacent in G). We define the modular width of a graph G, denoted
by mw(G), recursively as follows. mw(K1) = 1, the width of a module partition
(M1, . . . , Mk) of G is the maximum over k and mw(G[Mi]) for all i ∈ [k] and
mw(G) is the minimum width of any module partitions of G.

3 This definition of odd colouring is not to be confused with the one introduced by
Petrusevski and Skrekovski [10], which is a specific type of proper colouring.
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3 Graphs of Bounded Degree and Graphs of Large Girth

In this section, we study Scott’s conjecture (Conjecture 1) as well as the con-
jecture made by Aashtab et al. [1] which states that χodd(G) ≤ Δ + 1 for any
graph G. We settle Conjecture 1 for graphs of girth at least 7, and prove that
χodd(G) ≤ 2Δ − 1 for any graph G, thus obtaining a weaker version of the
conjecture of Aashtab et al. To this end, we prove the following more general
theorem, which implies both of the aforementioned results.

Theorem 3. Let H be a class of graphs such that:

– K2 ∈ H
– H is closed under vertex deletion and
– there is a k ≥ 2 such that any connected graph G ∈ H satisfies at least one of

the following properties:
(I) G has two pendant vertices u, v such that NG(u) = NG(v) or
(II) G has two adjacent vertices u, v such that dG(u) + dG(v) ≤ k.

Then every graph G ∈ H with all components of even order has χodd(G) ≤ k−1.

Proof. First notice that H is well defined as K2 has the desired properties. The
proof is by induction on the number of vertices. Let |V (G)| = 2n.

For n = 1, since G is connected, we have that G = K2 which is odd. Therefore,
χodd(G) = 1 ≤ k − 1 (recall that k ≥ 2). Let G be a graph of order 2n. Notice
that we only need to consider the case where G is connected as, otherwise, we
can apply the inductive hypothesis to each of the components of G. Assume
first that G has two pendant vertices u, v such that NG(u) = NG(v) = {w}.
Then, since G \ {u, v} is connected and belongs to H, by induction, there is an
odd colouring of G \ {u, v} that uses at most k − 1 colours. Let (V1, . . . , Vk−1)
be a partition of V (G) \ {u, v} such that G[Vi] is odd for all i ∈ [k − 1]. We
may assume that w ∈ V1. We give a partition V ′

1 , . . . , V ′
k−1 of V (G) by setting

V ′
1 = V1 ∪ {u, v} and V ′

i = Vi for all i ∈ [k] \ {1}. Notice that for all i ∈ [k − 1],
G[V ′

i ] is odd. Therefore, χodd(G) ≤ k − 1.
Thus, we assume that G has an edge uv ∈ E(G) such that dG(u)+dG(v) ≤ k.

We may assume that k ≥ 3 for otherwise the theorem follows. We consider two
cases; G \ {u, v} is connected and G \ {u, v} is disconnected.

Assume that G \ {u, v} is connected. Since G \ {u, v} has |V (G) \ {u, v}| =
2n − 2 and belongs to H, by induction, there is an odd colouring of it that
uses at most k − 1 colours. Let (V1, . . . , Vk−1) be a partition of V (G) \ {u, v},
such that G[Vi] is odd of all i ∈ [k − 1]. We give a partition of G into k − 1
odd graphs as follows. Since |NG({u, v})| ≤ k − 2, there exists � ∈ [k − 1]
such that V� ∩ NG({u, v}) = ∅. We define a partition (U1, . . . , Uk−1) of V (G)
as follows. For all i ∈ [k − 1], if i 
= �, we define Ui = Vi, otherwise we set
Ui = Vi ∪ {u, v}. Notice that for all i 
= �, G[Ui] is odd since Ui = Vi. Also, since
NG[U�][v] = NG[U�][u] = {u, v} and G[V�] is odd, we conclude that G[U�] is odd.
Thus, χodd(G) ≤ k − 1.

Now, we consider the case where G \ {u, v} is disconnected. First, we assume
that there is at least one component in G \ {u, v} of even order. Let U be
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the set of vertices of this component. By induction, χodd(G[U ]) ≤ k − 1 and
χodd(G \ U) ≤ k − 1. Furthermore, |NG({u, v}) ∩ U | ≤ k − 3 because G \ {u, v}
has at least two components. Let (U1, . . . , Uk−1) be a partition of U such that
G[Ui] is odd for all i ∈ [k−1]. Also, let (V1, . . . , Vk−1) be a partition of V (G)\U
such that G[Vi] is odd for all i ∈ [k − 1]. We may assume that Vi ∩ {u, v} = ∅
for all i ∈ [k − 3]. Since |NG({u, v}) ∩ U | ≤ k − 3, there are at least two indices
l, l′ ∈ [k − 1] such that Ul ∩ NG({u, v}) = Ul′ ∩ NG({u, v}) = ∅. We may assume
that l = k − 2 and l′ = k − 1. We define a partition (V ′

1 , . . . , V
′
k−1) of V (G) as

follows. For all i ∈ [k − 1] we define V ′
i = Ui ∪Vi. We claim that G[V ′

i ] is odd for
all i ∈ [k − 1]. To show the claim, we consider two cases; either V ′

i ∩ {u, v} = ∅
or not. If V ′

i ∩ {u, v} = ∅, since the only vertices in V (G) \ U that can have
neighbours in U are v and u we have that G[V ′

i ] is odd. Indeed, this holds
because Ui ∩ NG(Vi) = ∅ and both G[Ui] and G[Vi] are odd. If V ′

i ∩ {u, v} 
= ∅,
then i = k−2 or i = k−1. In both cases, we know that Ui ∩NG(Vi) = ∅ because
the only vertices in V (G) \ U that may have neighbours in U are v and u and
we have assumed that u, v do not have neighbours in Uk−2 ∪ Uk−1. So, G[V ′

i ] is
odd because Ui ∩ NG(Vi) = ∅ and both G[Ui] and G[Vi] are odd.

Thus, we can assume that all components of G \ {u, v} are of odd order. Let
� > 0 be the number of components, denoted by V1, . . . , V�, of G \ {u, v} and
note that � must be even. We consider two cases, either for all i ∈ [�], one of
G[Vi ∪ {u}] or G[Vi ∪ {v}] is disconnected, or there is at least one i ∈ [�] such
that both G[Vi ∪ {u}] and G[Vi ∪ {v}] are connected.

In the first case, for each Vi, i ∈ [�] we call wi the vertex in {u, v} such that
G[Vi ∪ {wi}] is connected. Note that wi is uniquely determined, i.e., only one of
u and v can be wi for each i ∈ [�]. Now, by induction, for all i ∈ [�], G[Vi ∪{wi}]
has χodd(G[Vi ∪ {wi}]) ≤ k − 1. Let, for each i ∈ [�], (V i

1 , . . . , V i
k−1) denote a

partition of Vi ∪ {wi} such that G[V i
j ] be odd, for all j ∈ [k − 1]. Furthermore,

we may assume that for each i ∈ [�], if v ∈ Vi ∪ {wi}, then v ∈ V i
k−2. Also, we

can assume that for each i ∈ [�], if u ∈ Vi ∪ {wi}, then u ∈ V i
k−1. Finally, let

I = {i ∈ [�] | wi = u} and J = {i ∈ [�] | wi = v}.
We consider two cases. If |I| is odd, then |J | is odd since � = |I| + |J |

is even. Then, we claim that for the partition (U1, . . . , Uk−1) of V (G) where
Ui =

⋃
j∈[�] V

j
i it holds that G[Ui] is odd for all i ∈ [k − 1]. First notice that

(U1, . . . , Uk−1) is indeed a partition of V (G). Indeed, the only vertices that may
belong in more than one set are u and v. However, v belongs only to some sets
V i

k−2, and hence it is no set Ui except Uk−2. Similarly, u belongs to no set Ui

except Uk−1. Therefore, it remains to show that G[Ui] is odd for all i ∈ [k − 1].
We will show that for any i ∈ [k−1] and for any x ∈ Ui, |NG(x)∩Ui| is odd. Let
x ∈ Ui \{u, v}, for some i ∈ [k−1]. Then we know that NG(x)∩Ui = NG(x)∩V j

i

for some j ∈ [�]. Since G[V j
i ] is odd for all i ∈ [k − 1] and j ∈ [�] we have that

|NG(x) ∩ Ui| = |NG(x) ∩ V j
i | is odd. Therefore, we only need to consider u and

v. Notice that v ∈ Uk−2 =
⋃

j∈[�] V
j
k−2 (respectively, u ∈ Uk−1 =

⋃
j∈[�] V

j
k−1).

Also, v (respectively, u) is included in V j
k−2 (respectively, V j

k−1) only if j ∈
I (respectively, j ∈ J). Since G[V j

k−2] (respectively, G[V j
k−1]) is odd for any

j ∈ [�] we have that |N(v) ∩ V j
k−2| (respectively, |N(u) ∩ V j

k−1|) is odd for any
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j ∈ I (respectively, j ∈ J). Finally, since |I| and |J | are odd, we have that
|NG(v)∩Uk−2| =

∑
j∈I |N(v)∩V j

k−2| and |NG(u)∩Uk−1| =
∑

j∈I |N(u)∩V j
k−1|

are both odd. Therefore, for any i ∈ [k − 1], G[Ui] is odd and χodd(G) ≤ k − 1.
Now, suppose that both |I| and |J | are even. We consider the partition

(U1, . . . , Uk−1) of V (G) where, for all i ∈ [k − 3] Ui =
⋃

j∈[�] V
j
i , Uk−2 =

⋃
j∈J V j

k−2 ∪ ⋃
j∈I V j

k−1 and Uk−1 =
⋃

j∈I V j
k−2 ∪ ⋃

j∈J V j
k−1. We claim that

for this partition it holds that G[Ui] is odd for all i ∈ [k − 1]. First notice that
(U1, . . . , Uk−1) is indeed a partition of V (G). Indeed, this is clear for all vertices
except for v and u. However, v only belongs to sets of type V i

k−2 for i ∈ I,
and u only belongs to sets of type V i

k−1 for i ∈ J . Therefore, u or v belong
to no set Ui except Uk−1. We will show that for any i ∈ [k − 1] and x ∈ Ui,
|NG(x)∩Ui| is odd. Let x ∈ Ui \ {u, v}, for some i ∈ [k − 1]. Then we know that
NG(x) ∩ Ui = NG(x) ∩ V j

i for some j ∈ [�]. Since G[V j
i ] is odd for all i ∈ [k − 1]

and j ∈ [�] we have that |NG(x) ∩ Ui| = |NG(x) ∩ V j
i | is odd. Therefore, we

only need to consider v and u. Note that u, v ∈ Uk−1. Since both |I| and |J | are
even and Uk−1 =

⋃
j∈I V j

k−2 ∪ ⋃
j∈J V j

k−1, we have that |NG(v) ∩ Uk−1 \ {u}|
and |NG(u) ∩ Uk−1 \ {v}| are both even. Finally, since uv ∈ E(G) we have that
|NG(v) ∩ Uk−1| and |NG(u) ∩ Uk−1| are both odd. Hence, χodd(G) ≤ k − 1.

Now we consider the case where there is at least one i ∈ [�] where both
G[Vi ∪ {v}] and G[Vi ∪ {u}] are connected. We define the following sets I and
J . For each i ∈ [�], (i) i ∈ J , if G[Vi ∪ {v}] is disconnected, and (ii) i ∈ I, if
G[Vi ∪ {u}] is disconnected. Finally, for the rest of the indices, i ∈ [�], which are
not in I ∪ J , it holds that both G[Vi ∪ {v}] and G[Vi ∪ {u}] are connected. Call
this set of indices X and note that by assumption |X| ≥ 1. Since |I|+ |J |+ |X|
is even, it is easy to see that there is a partition of X into two sets X1 and X2

such that both I ′ := I ∪ X1 and J ′ := J ∪ X2 have odd size. Let VI =
⋃

i∈I′ Vi

and VJ =
⋃

i∈J ′ Vi. Now, by induction, we have that χodd(G[VI ∪ {v}]) ≤ k − 1
and χodd(G[VJ ∪ {u}]) ≤ k − 1. Assume that (V I

1 , . . . , V I
k−1) is a partition of

VI and (V J
1 , . . . , V J

k−1) is a partition of VJ such that for any i ∈ [k − 1], G[V I
i ]

and G[V J
i ] are odd. Without loss of generality, we may assume that v ∈ V I

1 and
u ∈ V J

k−1. Since |X| ≥ 1, note that both dG(u) and dG(v) are at least two, which
implies that dG(u) ≤ k−2 and dG(v) ≤ k−2. Therefore, there exists i0 ∈ [k−2]
such that NG(v) ∩ V J

i0
= ∅ and j0 ∈ [k − 1] \ {1} such that NG(v) ∩ V I

j0
= ∅.

We reorder the sets V J
i , i ∈ [k − 2], so that i0 = 1 and we reorder the sets V I

i ,
i ∈ [k −1]\{1} so that j0 = k −1. Note that this reordering does not change the
fact that v ∈ V I

1 and u ∈ V J
k−1. Consider the partition (U1, . . . , Uk−1) of V (G),

where Ui = V I
i ∪ V J

i . We claim that for all i ∈ [k − 1], G[Ui] is odd. Note that
for any x ∈ Ui, we have NG(x)∩Ui = NG(x)∩V I

i or NG(x)∩Ui = NG(x)∩V J
i .

Since for any i ∈ [k − 1], G[V I
i ] and G[V J

i ] are odd we conclude that G[Ui] is
odd for any i ∈ [k − 1]. 
�

Notice that the class of graphs G of maximum degree Δ satisfies the require-
ments of Theorem 3. Indeed, this class is closed under vertex deletions and
any connected graph in the class has least two adjacent vertices u, v such that
dG(u) + dG(v) ≤ 2Δ. Therefore, the following corollary holds.
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Corollary 1. For every graph G with all components of even order, χodd(G) ≤
2Δ − 1.

Next, we prove Conjecture 1 for graphs of girth at least seven.

Corollary 2. For every graph G with all components of even order of girth at

least 7, χodd(G) ≤ 3
√

|V (G)|
2 + 1. (∗)4.

One may wonder if graphs of sufficiently large girth have bounded odd chro-
matic number. In fact, this is far from being true, which we show in the next.

Proposition 1. For every integer g and k, there is a graph G such that every
component of G has even order, G is of girth at least g and χodd(G) ≥ k. (∗)

Next, we obtain the following result for sparse planar graphs.

Corollary 3. For every planar graph G with all components of even order of
girth at least 11, χodd(G) ≤ 3. (∗)

The upper bound in Corollary 3 is tight as C14, the cycle of length 14, has
χodd(C14) = 3.

4 Graphs of Bounded Modular-Width

In this section we consider graphs of bounded modular-width and show that we
can upper bound the odd chromatic number by the modular-width of a graph.

Theorem 4. For every graph G with all components of even order, χodd(G) ≤
3mw(G).

In order to prove Theorem 4 we show that every graph G is 3-colourable for
which we have a module partition M such that the module graph GM exhibits
a particular structure, i.e., is either a star Lemma 1 or a special type of tree
Lemma 2. The following is an easy consequence of Theorem 1 which will be
useful to colour modules and gain control over the parity of parts in case of
modules of even size.

Remark 1. For every non-empty graph G of even order, there exists a partition
(V1, V2, V3) of V (G) with |V2|, |V3| being odd such that V [G1] is odd and G[V2],
G[V3] are even. This can be derived from Theorem 1 by taking an arbitrary
vertex v ∈ V (G), setting V3 := {v} and then using the existence of a partition
(V1, V2) of V (G) \ {v} such that G[V1] is odd and G[V2] is even.

Lemma 1. For every connected graph G of even order with a module partition
M = {M1, . . . , Mk} such that GM is a star, χodd(G) ≤ 3.

4 For every result which is marked by (∗) the proof can be found in the full version of
the paper.
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Proof of A. ssume that in GM the vertices M2, . . . , Mk have degree 1. We refer
to M1 as the centre and to M2, . . . , Mk as leaves of GM. We further assume that
|M2|, . . . , |M�| are odd and |M�+1|, . . . , |Mk| are even for some � ∈ [k]. We use
the following two claims.

Claim 1. If W ⊆ V (G) with G[W ∩ Mi] is odd for every i ∈ [k], then G[W ] is
odd.

Proof. First observe that the degree of any vertex v ∈ W ∩ M1 in G[W ] is
dG[W∩M1](v)+

∑k
i=2 |W ∩Mi|. Since dG[W∩M1](v) is odd and |W ∩Mi| is even for

every i ∈ {2, . . . , k} (which follows from G[W ∩Mi] being odd by the handshake
lemma) we get that dG[W ](v) is odd. For every i ∈ {2, . . . , k} the degree of any
vertex v ∈ W ∩ Mi in G[W ] is dG[W∩Mi](v) + |W ∩ M1| which is odd (again,
because |W ∩ M1| must be even). Hence G[W ] is odd. ♦

Claim 2. If W ⊆ V (G) such that G[W ∩Mi] is even for every i ∈ [k], |W ∩M1|
is odd and |{i ∈ {2, . . . , k} : |W ∩ Mi| is odd

}| is odd, then G[W ] is odd.

Proof. Since GM is a star and M1 its centre we get that the degree of any
vertex v ∈ W ∩ Mi for any i ∈ {2, . . . , k} is dG[W∩Mi](v) + |W ∩ M1|. Since
|W ∩M1| is odd and dG[W∩Mi](v) is even we get that every v ∈ W ∩Mi for every
i ∈ {2, . . . , k} has odd degree in G[W ]. Moreover, the degree of v ∈ W ∩ M1 is
dG[W∩M1](v) +

∑k
i=2 |W ∩ Mi|. Since dG[W∩M1](v) is even and |{i ∈ {2, . . . , k} :

|W ∩ Mi| is odd
}| is odd dG[W ](v) is odd. We conclude that G[W ] is odd. ♦

First consider the case that |M1| is odd. Since G is of even order this implies
that there must be an odd number of leaves of GM of odd size and hence � is
even. Using Theorem 1 we let (W i

1,W
i
2) be a partition of Mi such that G[W i

1] is
odd and G[W i

2] is even for every i ∈ [k]. Note that since G[W i
1] is odd |W i

1| has
to be even and hence |W i

2| is odd if and only if i ∈ [�]. We define V1 :=
⋃

i∈[k] W
i
1

and V2 :=
⋃

i∈[k] W
i
2. Note that (V1, V2) is a partition of G. Furthermore, G[V1]

is odd by Claim 1 and G[V2] is odd by Claim 2. For an illustration see Fig. 2.

Now consider the case that |M1| is even. We first consider the special case
that � = 1, i.e., there is no i ∈ [k] such that |Mi| is odd. In this case we
let (W i

1,W
i
2,W

i
3) be a partition of Mi for i ∈ {1, 2} such that G[W i

1] is odd,
G[W i

2], G[W i
3] are even and |W i

2|, |W i
3| are odd which exists due to Remark 1.

For i ∈ {3, . . . , k} we let (W i
1,W

i
2) be a partition of Mi such that G[W i

1] is
odd and G[W i

2] is even which exists by Theorem 1. We define V1 :=
⋃

i∈[k] W
i
1,

V2 :=
⋃

i∈[k] W
i
2 and V3 := W 1

3 ∪ W 2
3 . As before we observe that (V1, V2, V3) is a

partition of V (G), G[V1] is odd by Claim 1 and G[V2], G[V3] are even by Claim 2.
For an illustration see Fig. 2.

Lastly, consider the case that |M1| is even and � > 1. By Remark 1 there
is a partition (W 1

1 ,W 1
2 ,W 1

3 ) of M1 such that G[W 1
1 ] is odd, G[W 1

2 ], G[W 1
3 ] are

even and |W 1
2 |, |W 1

3 | are odd. For i ∈ {2, . . . , k} we let (W i
1,W

i
2) be a partition

of Mi such that G[W i
1] is odd and G[W i

2] is even which exists by Theorem 1.
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We define V1 :=
⋃

i∈[k] W
i
1, V2 := W 1

2 ∪ ⋃k
i=3 W i

2 and V3 := W 1
3 ∪ W 2

2 . Note that
(V1, V2, V3) is a partition of V (G). Furthermore, G[V1] is odd by Claim 1 and
G[V3] is odd by Claim 2. Additionally, since |M1| is even there is an even number
of i ∈ {2, . . . , k} such that |Mi| is odd. Since for each i ∈ {2, . . . , k} for which
|Mi| is odd, |W i

1| must be odd, we get that |{i ∈ {2, . . . , k} : |V1 ∩ Mi| is odd
}|

is odd (note that V1 ∩ M2 = ∅ because W 2
2 ⊆ V3). Hence we can use Claim 2 to

conclude that G[V2] is odd. For an illustration see Fig. 2. 
�

Fig. 2. Schematic illustration of the three cases in the proof of Lemma 1. Depicted is
the module graph GM along with a partition of the modules into sets V1, V2 and V3

such that G[Vi] is odd for i ∈ [3].

Let G be a connected graph of even order with module partition M =
(M1, . . . , Mk) such that GM is a tree. For an edge e of GM we let Xe and
Ye be the two components of the graph obtained from GM by removing e. We
say that the tree GM is colour propagating if the following properties hold.

(i) |M| ≥ 3.
(ii) Every non-leaf module has size one.
(iii) |⋃M∈V (Xe)

M | is odd for every e ∈ E(GM) not incident to any leaf of
GM.

Lemma 2. For every connected graph G of even order with a module partition
M = (M1, . . . , Mk) such that GM is a colour propagating tree, χodd(G) ≤ 2.

Proof. To find an odd colouring (V1, V2) of G, we first let (W i
1,W

i
2) be a partition

of Mi such that G[W i
1] is odd and G[W i

2] is even for every i ∈ [k]. The partitions
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(W i
1,W

i
2) exist due to Theorem 1. Note that (ii) implies that for every module

Mi which is not a leaf |W i
2| = 1 and W i

1 = ∅. We define V1 :=
⋃

i∈[k] W
i
1 and

V2 :=
⋃

i∈[k] W
i
2.

To argue that (V1, V2) is an odd colouring of G first consider any v ∈ V (G)
such that v ∈ Mi for some leaf Mi of GM. Condition (i) implies that GM must
have at least three vertices and hence the neighbour Mj of Mi cannot be a
leaf due to GM being a tree. Hence |Mj | = 1 by (ii). Hence, if v ∈ W i

1, then
dG[V1](v) = dG[W i

1 ]
(v) since W j

1 = ∅ and therefore dG[V1](v) is odd. Further, if
v ∈ W i

2, then dG[V2](v) = dG[W i
2 ]
(v) + 1 since |W j

2 | = 1 and hence dG[V2](v) is
odd. Hence the degree of any vertex v ∈ Mi is odd in G[V1], G[V2] respectively.

Now consider any vertex v ∈ V (G) such that Mi = {v} for some non-leaf
Mi of GM. Let Mi1 , . . . , Mi�

be the neighbours of Mi in GM. Let ej be the
edge MiMij

∈ E(G) for every j ∈ [�]. Without loss of generality, assume that
Mi /∈ V (Xej

) for every j ∈ [�]. By (iii) we have that |⋃M∈V (Xej
) M | is odd

whenever Mij
is not a leaf in GM. Hence, by (ii), |Xej

| ≡ |Mij
| (mod 2) for

every j ∈ [�] for which Mij
is not a leaf in GM. On the other hand, as a

consequence of the handshake lemma we get that |W ij

2 | is odd if and only if
|Mij

| is odd. Hence the following holds for the parity of the degree of v in G[V2].

dG[V2](v) = |{j ∈ [m] : dGM(Mij
) ≥ 2}| +

⋃

j∈[m]
dGM (Mij

)=1

|W ij

2 | ≡ |V (G) \ Mi| (mod 2).

Since G has even order, dG[V2](v) is odd and (V1, V2) is an odd colouring of G. 
�
We now show that, given a graph G with module partition M, we can decompose
the graph in such a way that the module graph of any part of the decomposition
is either a star or a colour propagating tree. Here we consider the module graph
with respect to the module partition M restricted to the part of the decompo-
sition we are considering. To obtain the decomposition we use a spanning tree
GM and inductively find a non-separating star, i.e., a star whose removal does
not disconnect the graph, or a colour propagating tree. In order to handle parity
during this process we might separate a module into two parts.

Lemma 3. For every connected graph G of even order and module partition
M = (M1, . . . , Mk) there is a partition M̂ of V (G) with at most 2k many parts
such that there is a coarsening P of M̂ with the following properties. |P | is even
for every part P of P. Furthermore, for every part P of P we have that M̂|P
is a module partition of G[P ] and G[P ]

̂M|P is either a star (with at least two
vertices) or a colour propagating tree. (∗)
Proof 1. Without loss of generality assume that G is connected. Furthermore,
let k := mw(G) and M = (M1, . . . , Mk) be a module partition of G. Let M̂ be
a partition of V (G) with at most 2k parts and P be a coarsening of M̂ as in
Lemma 3. First observe that M̂|P must contain at least two parts for every part
P of P as M̂|P is a module partition of G[P ]. Since M̂ has at most 2k parts and
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P is a coarsening of P̂ this implies that P has at most k parts. Since G[P ]
̂M|P is

either a star or a colour propagating tree we get that χodd(G[P ]) ≤ 3 for every
part P of P by Lemma 1 and Lemma 2. Using a partition (WP

1 ,WP
2 ,WP

3 ) of
G[P ] such that G[WP

i ] is odd for every i ∈ [3] for every part P we obtain a
global partition of G into at most 3k parts such that each part induces an odd
subgraph. 
�
Since deciding whether a graph is k-odd colourable can be solved in time
2O(k rw(G)) [2, Theorem 6] and rw(G) ≤ cw(G) ≤ mw(G), where cw(G) denotes
the clique-width of G and rw(G) rank-width, we obtain the following as a corol-
lary.

Corollary 4. Given a graph G and a module partition of G of width m the
problem of deciding whether G can be odd coloured with at most k colours can
be solved in time 2O(m2).

5 Interval Graphs

In this section we study the odd chromatic number of interval graphs and provide
an upper bound in the general case as well as a tight upper bound in the case
of proper interval graphs. We use the following lemma in both proofs.

Lemma 4. Let G be a connected interval graph and P = (p1, . . . , pk) a maximal
induced path in G with the following property.

(Π) �p1 = min{�v : v ∈ V (G)} and for every i ∈ [k − 1] we have that rpi+1 ≥ rv

for every v ∈ NG(pi).

Then every v ∈ V (G) is adjacent to at least one vertex on P . (∗)
To prove that the odd chromatic number of proper interval graphs is bounded

by three we essentially partition the graph into maximal even sized cliques greed-
ily in a left to right fashion.

Theorem 5. For every proper interval graph G with all components of even
order, χodd(G) ≤ 3 and this bound is tight.

Proof. We assume that G is connected. Fix an interval representation of G and
denote the interval representing vertex v ∈ V (G) by Iv = [�v, rv] where �v, rv ∈
R. Let P = (p1, . . . , pk) be a maximal induced path in G as in Lemma 4. For
every vertex v ∈ V (G)\{p1, . . . , pk} let iv ∈ [k] be the index such that piv

is the
first neighbour of v on P . Note that this is well defined by Lemma 4. For i ∈ [k]
we let Yi be the set with the following properties.

(Π)1i {v ∈ V (G) : iv = i} ⊆ Yi ⊆ {v ∈ V (G) : iv = i} ∪ {pi, pi+1} .
(Π)2i pi ∈ Yi if and only if

∣∣{p1, . . . , pi−1} ∪ ⋃
j∈[i−1]{v ∈ V (G) : iv = j}∣∣ is

even.
(Π)3i pi+1 ∈ Yi if and only if

∣∣{p1, . . . , pi} ∪ ⋃
j∈[i]{v ∈ V (G) : iv = j}∣∣ is odd.



Odd Chromatic Number of Graph Classes 57

First observe that (Y1, . . . , Yk) is a partition of V (G) as (Π2)i and (Π3)i imply
that every pi is in exactly one set Yi. Furthermore, |Yi| is even for every i ∈ [k]
since (Π1)i and (Π3)i) imply that

∣
∣Yi ∪ {p1, . . . , pi} ∪ ⋃

j∈[i−1]{v ∈ V (G) :
iv = j}∣∣ is even and (Π2)i implies that

∣∣({p1, . . . , pi}∪⋃
j∈[i−1]{v ∈ V (G) : iv =

j})\Yi

∣∣ is even. Since v ∈ V (G)\{p1, . . . , pk} is not adjacent to piv−1 we get that
�v ∈ Ipiv

. Since G is a proper interval graph this implies that rpiv
≤ rv and hence

v is adjacent to piv+1. Hence (Π1)i implies that G[Yi] must be a clique since
Yi∩{p1, . . . , pk} ⊆ {pi, pi+1} for every i ∈ [k]. Furthermore, NG(Yi) and Yi+3 are
disjoint since rv ≤ rpi+1 for every v ∈ Yi by property (Π) and rpi+1 < �pi+3 ≤ rw

for every w ∈ Yi+3 since P is induced. Hence we can define an odd-colouring
(V1, V2, V3) of G in the following way. We let Vj :=

⋃
i≡j (mod 3) Yi for j ∈ [3].

Note that since NG(Yi)∩Yi+3 we get that dG[Yi](v) = dG[Vj ](v) for i ≡ j (mod 3)
which is odd (as Yi is a clique of even size). Hence G[Vj ] is odd for every j ∈ [3].

To see that the bound is tight consider the graph G consisting of K4 with
two pendant vertices u,w adjacent to different vertices of K4. Clearly, G is a
proper interval graph and further χodd(G) = 3. 
�

We use a similar setup (i.e., a path P covering all vertices of the graph G)
as in the proof of Theorem 5 to show our general upper bound for interval
graphs. The major difference is that we are not guaranteed that sets of the form
{pi} ∪ {v ∈ V (G) : iv = i} are cliques. To nevertheless find an odd colouring
with few colours of such sets we use an odd/even colouring as in Theorem 1 of
{v ∈ V (G) : iv = i} and the universality of pi. Hence this introduces a factor
of two on the number of colours. Furthermore, this approach prohibits us from
moving the pi around as in the proof of Theorem 5. As a consequence we get
that the intervals of vertices contained in a set Yi span a larger area of the real
line than in the proof of Theorem 5. This makes the analysis more technical.

Theorem 6. For every interval graph G with all components of even order,
χodd(G) ≤ 6. (∗)
Note that we currently are unaware whether the bound from Theorem 6 is tight
or even whether there is an interval graph G with χodd(G) > 3.

6 Conclusion

We initiated the systematic study of odd colouring on graph classes. Motivated
by Conjecture 1, we considered graph classes that do not contain large graphs
from a given family as induced subgraphs. Put together, these results provide
evidence that Conjecture 1 is indeed correct. Answering it remains a major open
problem, even for the specific case of bipartite graphs.

Several other interesting classes remain to consider, most notably line graphs
and claw-free graphs. Note that odd colouring a line graph L(G) corresponds to
colouring the edges of G in such a way that each colour class induces a bipartite
graph where every vertex in one part of the bipartition has odd degree, and
every vertex in the other colour part has even degree. This is not to be confused
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with the notion of odd k-edge colouring, which is a (not necessarily proper) edge
colouring with at most k colours such that each nonempty colour class induces a
graph in which every vertex is of odd degree. It is known that all simple graphs
can be odd 4-edge coloured, and every loopless multigraph can be odd 6-edge
coloured (see e.g., [9]). While (vertex) odd colouring line graphs is not directly
related to odd edge colouring, this result leads us to believe that line graphs
have bounded odd chromatic number.

Finally, determining whether Theorem 4 can be extended to graphs of
bounded rank-width remains open. We also believe that the bounds in Theo-
rem 6 and Corollary 1 are not tight and can be further improved. In particular,
we believe that the following conjecture, first stated in [1], is true:

Conjecture 2 (Aashtab et al., 2023). Every graph G of even order has χodd(G) ≤
Δ + 1.
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