
Critical Relaxed Stable Matchings
with Two-Sided Ties

Meghana Nasre1, Prajakta Nimbhorkar2, and Keshav Ranjan1(B)

1 IIT Madras, Chennai, India
meghana@cse.iitm.ac.in, ranjankeshav08@gmail.com

2 Chennai Mathematical Institute and UMI ReLaX, Chennai, India

prajakta@cmi.ac.in

Abstract. We consider the stable marriage problem in the presence of
ties in preferences and critical vertices. The input to our problem is a
bipartite graph G = (A ∪ B, E) where A and B denote sets of vertices
which need to be matched. Each vertex has a preference ordering over
its neighbours possibly containing ties. In addition, a subset of vertices
in A ∪ B are marked as critical and the goal is to output a matching
that matches as many critical vertices as possible. Such matchings are
called critical matchings in the literature and in our setting, we seek to
compute a matching that is critical as well as optimal with respect to
the preferences of the vertices.

Stability, which is a well-accepted notion of optimality in the presence
of two-sided preferences, is generalized to weak-stability in the presence
of ties. It is well known that in the presence of critical vertices, a match-
ing that is critical as well as weakly stable may not exist. Popularity is
another well-investigated notion of optimality for the two-sided prefer-
ence list setting, however, in the presence of ties (even with no critical
vertices), a popular matching need not exist. We, therefore, consider the
notion of relaxed stability which was introduced and studied by Krish-
naa et. al. (SAGT 2020). We show that in our setting a critical matching
which is relaxed stable always exists although computing a maximum-
sized relaxed stable matching turns out to be NP-hard. Our main contri-
bution is a 3

2
-approximation to the maximum-sized critical relaxed stable

matching for the stable marriage problem where ties as well as critical
vertices are present on both the sides of the bipartition.

Keywords: Stable Matching · Ties in Preferences · Critical · Relaxed
Stable · Approximation Algorithm

1 Introduction

We study the stable marriage problem in the presence of ties in preferences
and critical vertices. Formally, the input to our problem is a bipartite graph
G = (A∪B, E), where A and B are two sets of vertices and E denotes the set of
all the acceptable vertex-pairs. Each vertex u ∈ A ∪ B ranks a subset of vertices
in the other partition (its neighbours in G) in the order of its preference possibly
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involving ties – this ordering is denoted as Pref(u). For a vertex u let v1 and v2
be two of its neighbours in G. The vertex u strictly prefers v1 over v2 (denoted
as v1 �u v2) if the rank of the edge (u, v1) is smaller than the rank of the edge
(u, v2). The vertex u is tied between v1 and v2 (denoted as v1 =u v2) if the ranks
on the edges (u, v1) and (u, v2) are the same. We use v1 �u v2 to denote that
the rank of v1 is at least as good as the rank of v2 in Pref(u). In addition, the
input consists of a set C ⊆ (A ∪ B) of critical vertices. Our goal is to compute
an assignment which minimizes the number of unassigned critical vertices.

Formally, an assignment or a matching M ⊆ E in G is a set of edges that
do not share an end-point. For each vertex u ∈ A ∪ B, we denote by M(u), the
neighbour of u that is assigned to u in M . In the presence of critical vertices, we
consider that the most important attribute of a matching is to match as many
critical vertices as possible. A matching M is critical [11] if there is no matching
that matches more critical vertices than M . In this work, we are interested in
computing a critical matching that is optimal with respect to the preferences of
the vertices in an instance of our setting.

Critical vertices or lower-quota positions naturally arise in applications like
the Hospitals/Residents problem [7], where rural hospitals must be prioritized to
ensure sufficient staffing.Another example is the problemof assigning sailors to bil-
lets [28] in the US Navy, where some critical billets cannot be left vacant [25,29].
Ties in preferences is yet another important practical consideration in matching
problems and has been extensively investigated in the literature [2,8,9,13,18,19,
24]. However, there is a limited investigation (see for example [5]) ofmatching prob-
lems with ties as well critical vertices and ours is the first work that allows ties as
well as critical vertices on both sides of the bipartition.

Stability, which is the de-facto notion of optimality for two-sided preferences,
is defined by the absence of a blocking pair. Informally, an assignment is stable
if no unassigned pair wishes to deviate from it.

Definition 1 (Stable Matchings). Given a matching M , a pair (a, b) ∈ E\M
is called a blocking pair w.r.t. M if (i) either a is unmatched or b �a M(a) and
(ii) either b is unmatched or a �b M(b). A matching M is stable if there is no
blocking pair w.r.t. M .

When all preferences are strict, that is, there are no ties, every instance of
the stable marriage problem admits a stable matching, and it can be computed
using the well-known Gale and Shapley algorithm [3]. In addition, it is also
known [26,27] that all stable matchings have the same size.

Stable Matchings in the Presence of Ties: When preferences are allowed to
have ties, the notion of stability defined above is called as weak stability (referred
to as stability in the rest of the paper). We remark that, for a pair (a, b) to block
a matching M , both a and b prefer each other strictly over their current partners
in M . Every instance of the stable marriage problem with ties admits a stable
matching, and it can be efficiently computed. However, unlike in the case of strict
lists, all the stable matchings need not have the same size, and the problem of
computing a maximum or minimum size stable matching is NP-hard [18] under
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severe restrictions – e.g. when ties occur at the end of preference lists and only
on one side of the bipartition, there is at most one tie per list, and each tie is of
length two.

Stable/Popular Matching in the Presence of Critical Vertices: When
we have critical vertices as a part of the input, a stable matching which is
also critical, may not exist – for example, consider an instance of the stable
matching problem with strict lists obtained by arbitrarily breaking ties in the
preference lists of all agents in the example shown in Fig. 1. Any critical matching
in the instance must match b2 with a1, resulting in the blocking edge (a1, b1).
Since stability and criticality are not simultaneously guaranteed, an alternate
notion of optimality, namely popularity [4], is extensively investigated in the
literature [11,20,22] for the case of strict lists. The goal is to compute a matching
which is popular amongst the set of critical matchings. Informally, a matching
M is popular in a set of matchings if no majority of vertices wish to deviate
from M to any other matching in that set. It is known [11,22] that an instance
with strict preference lists always admits a matching which is popular amongst
critical matchings, and such a matching can be computed efficiently. Hence, it
is natural to consider popularity in the presence of critical vertices and ties.

However, popular matchings are not guaranteed to exist even when ties are
present in the preferences only on one side of the bipartition, without any critical
vertices. Moreover, in the presence of ties, deciding whether a popular matching
exists is NP-hard [1]. In light of this, we explore the notion of relaxed stability.

Relaxed Stability in the Presence of Ties and Critical Vertices: The
notion of relaxed stability was introduced and studied by Krishnaa et al. [14]
for the Hospitals/Residents problem with lower quotas (HRLQ). In their setting,
preferences are assumed to be strict. The HRLQ setting is a many-to-one match-
ing problem where a hospital h can accept at most q+(h) many residents and
has q−(h) ≤ q+(h) many critical positions. To satisfy the critical positions at
a hospital, certain residents may be forced to be matched to the hospital. The
notion of relaxed stability allows only such residents to participate in blocking
pairs. In addition, if a resident matched to h participates in a blocking pair then
the hospital h should not be surplus, that is |M(h)| ≤ q−(h).

In the HRLQ setting, preferences are strict, hospitals have capacities, and
critical positions are allowed only for hospitals. In contrast, we allow ties in
preferences as well as critical vertices to appear on both sides of the bipartition.
However, our setting is one-to-one.

We now define the notion of relaxed stability (RSM) for our setting. Intu-
itively, a matching M is an RSM if every blocking pair (a, b) w.r.t. M is justified
by either a or b or both. A vertex a justifies the blocking pair if M(a) is a critical
vertex. That is, M(a) forces a to be matched to a lower-preferred vertex than b.
Similarly, the vertex b can justify the blocking pair (a, b).

Definition 2 (Relaxed stability in our setting). A matching M is RSM if
for every blocking pair (a, b) w.r.t. M at least one of the following holds:

1. a is matched and b′ = M(a) is critical, or
2. b is matched and a′ = M(b) is critical.
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Fig. 1. Red vertices are critical, black vertices are non-critical. The numbers on the
edges denote the ranks of the respective end-points. The instance does not admit
any critical stable matching because b2 remains unmatched in every stable matching.
M1 = {(a1, b2), (a2, b1), (a3, b3)} is critical but not RSM because the blocking edge
(a2, b4) is not justified. M2 = {(a1, b2), (a2, b4), (a3, b3)} is CRITICAL-RSM because the
only blocking edge (a1, b1) is justified. (Color figure online)

A matching M is called a critical relaxed stable matching (CRITICAL-RSM)
if it is critical as well as relaxed stable. In the instance shown in Fig. 1, the
matching M1 is critical but not RSM whereas M2 is CRITICAL-RSM.

Our first contribution is to show that a CRITICAL-RSM always exists in
our setting. We remark that when C = ∅, an instance of our setting is the
same as the stable marriage setting with ties but without critical vertices, and
hence the set of CRITICAL-RSM is the same as the set of stable matchings.
This immediately implies that computing a maximum size critical RSM is NP-
hard [18] and hard to approximate within any factor smaller than 21

19 [6]. For the
problem of computing a maximum-sized stable matching when ties appear on
both sides of the bipartition, the current best approximation factor [13,19,24] is
3
2 . The main result (Theorem 1) provides the same approximation size guarantee
for a maximum sized CRITICAL-RSM in our setting.

Theorem 1. Let G = (A ∪ B, E) be an instance of the stable marriage problem
where ties and critical vertices can appear in both the bipartitions of G. Then G
always admits a CRITICAL-RSM M such that |M | ≥ 2

3 |M ′|, where M ′ is a max-
imum size CRITICAL-RSM in G. Moreover, M can be computed in polynomial-
time.

Related Work: As mentioned earlier, the generalizations of the stable mar-
riage problem to allow either ties in preferences or critical vertices/lower-quota
positions has been extensively investigated. Very recently, Goko et al. [5] and
Makino et al. [17] have considered the instances with both ties and critical ver-
tices. They study the Hospitals/Residents problem with lower-quotas where ties
appear on both sides. In their setting, only one side of the bipartition can have
critical vertices. They define a matching with maximum satisfaction ratio, which
for our one-to-one setting, coincides with critical matchings. However, their goal
is to compute a matching that matches the maximum possible critical vertices
amongst all stable matchings.
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For strict preferences and lower-quotas/critical vertices, various notions like
envyfreeness [15,30], popularity [11,20,22,23], and relaxed stability [14,15] have
been studied. Relaxed stability and popularity do not define the same set of
matchings even in the one-to-one strict-list setting and critical vertices restricted
to one side only (see full version [21]) for the details. Hamada et al. [7] consider
the problem of computing a matching with minimum number of blocking pairs
or blocking residents, and give approximation algorithms for the same.

For the stable marriage problem with ties (without critical vertices) there is
a long line of investigation [2,9,10,12,13,19,24] in order to improve the approx-
imation ratio of the maximum size stable matching under various restricted
settings. The best-known approximation algorithm for the case when ties are
allowed only in one bipartition of the graph is by Lam and Plaxton [16] whereas
the best-known for the case where ties are allowed on both sides is by [13,19,24].
We use Király’s algorithm [13] in our work.

2 Preliminaries

Our algorithm described in the next section combines the ideas in (i) Király’s
algorithm [13] for computing a stable matching in instances where ties appear on
both sides and (ii) Multi-level algorithm for computing popular critical match-
ing [23] for strict preferences. We give an overview of the algorithms and also
define terminology useful for our algorithm.

Overview of Király’s Algorithm [13]. Király’s algorithm [13] is a proposal-
based algorithm where vertices in A propose and vertices in B accept or reject.
We need the term uncertain proposal from [13] which is defined below.

Definition 3 (Uncertain Proposal). Let b be some kth rank neighbour of
a in Pref(a). During the course of the algorithm, the proposal from a to b is
uncertain if there exists another kth rank neighbour b′ of a which is unproposed
by a and unmatched in the matching. Once a proposal (a, b) is uncertain, it
remains uncertain until b rejects a.

Each time an a ∈ A proposes to its favourite neighbour b (we define favourite
neighbour formally in Definition 4), the vertex b accepts/rejects as follows:

1. If b is unmatched then b immediately accepts the proposal.
2. If b is matched, say to a′, and (a′, b) is an uncertain proposal, then b rejects

a′ and accepts the proposal from a, irrespective of the ranks of a and a′ in
Pref(b). In this case, b is marked by a′.

3. If b is matched, say to a′, and (a′, b) is not an uncertain proposal, then
(i) if a �b a′ then b rejects a′ and accepts the proposal from a, or
(ii) if a′ �b a then b rejects a.

The reason for a′ marking the vertex b in (2) is as follows: In this case, b
rejects the uncertain proposal from a′ and accepts a irrespective of b’s preference
between a and a′. Later, when a′ gets its chance to propose, and if none of the
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neighbours of a′ at the rank of b accept the proposal from a′, then a′ will propose
to the marked vertex b before proposing to the next lower-ranked neighbours. In
contrast in (3)(i) above, when the proposal (a′, b) is not uncertain and a �b a′

then a′ does not mark b. Note that a vertex b ∈ B can be part of an uncertain
proposal at most once. Once a vertex receives its first proposal, it will remain
matched and thereafter cannot be part of any uncertain proposal. Thus, any
b ∈ B can be marked at most once during the course of the algorithm.

Now, we define the favourite neighbour of a vertex a, which is an adaptation
of the definition in [13].

Definition 4 (Favourite neighbour of a). Assume that k is the best rank at
which some unproposed or marked neighbours of a exist in Pref(a). Then b is the
favourite neighbour of a if one of the following conditions holds:

(i) there exists at least one unmatched neighbour of a at the kth rank and b has
the lowest index among all such unmatched neighbours, or

(ii) all the kth ranked neighbours of a are matched and b is the lowest index
among all such neighbours which are unproposed by a, or

(iii) all the kth ranked neighbours are already proposed by a and b has the lowest
index among all the vertices which are marked by a.

Király’s algorithm begins with every vertex a ∈ A being active. As long
as there exists an active vertex which is unmatched and has not exhausted its
preference list, the vertex proposes to its favourite neighbour. If a ∈ A remains
unmatched after exhausting its preference list, it achieves a ‘∗’ status and starts
proposing to vertices in Pref(a) with ∗ status. The ∗ status of a vertex a can be
interpreted as improving the rank of a in Pref(b) by 0.5 for any neighbour b of
a. Thus, the ∗ status vertex is used to decide between vertices in a tie, but does
not affect strict preferences. It is shown in [13] that the resulting matching is a
3
2 -approximation of a maximum size stable matching.

Overview of the Popular Critical Matching Algorithm [23]. Now, we
briefly describe the algorithm in [23] for computing the maximum size popular
critical matching in the one-to-one strict list setting. Let s and t denote the
number of critical vertices in A and B, respectively. The algorithm in [23] is
a multi-level algorithm which first matches as many critical vertices from B
as possible. This is achieved by restricting unmatched vertices in A at levels
0, . . . , t − 1 to propose only to critical vertices on the B-side. At the level t, each
vertex a ∈ A is allowed to propose all its neighbours. If a vertex a ∈ A remains
unmatched even after exhausting its preference list at level t, a raises its level
to t + 1 and proposes to its neighbours until it is matched or it exhausts its
preference list at the level t + 1. If a critical vertex a remains unmatched then
a raises its level above t + 1 and continues proposing to all its neighbours until
it is matched, or it exhausts its preference list at the highest level s + t + 1. A
vertex b which receives the proposal always prefers a higher level vertex a over
any lower level vertex a′ irrespective of the ranks of a and a′ in Pref(b). It is
shown in [23] that the resulting matching is a maximum size popular matching
among all the critical matchings.
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3 Algorithm for Computing CRITICAL-RSM

Our algorithm (see Algorithm 1) is a combination of Király’s algorithm and the
popular critical matching algorithm discussed in the previous section. In each
level, vertices in A propose and vertices in B accept or reject. The set of vertices
from B that a ∈ A proposes to depends on the level of a. Furthermore, depending
on the level of a, the preference list at that level may be strict or may contain
ties. Throughout Algorithm 1, b uses its original preference list Pref(b) which
possibly contains ties. For a vertex a ∈ A, let PrefS(a) denote a strict preference
list obtained by breaking ties in Pref(a) in such a way that the vertices in ties are
ordered by increasing order of their indices. Furthermore, let PrefSC(a) be the
strict list obtained from PrefS(a) by omitting all the non-critical vertices from
PrefS(a). For example, assume Pref(a) = (b2, b1), b5, (b3, b4) where b4 and b5 are
critical vertices. Here, a ranks b1 and b2 as rank-1, b5 as rank-2 and b3 and b4 as
rank-3. We have PrefS(a) = b1, b2, b5, b3, b4 and PrefSC(a) = b5, b4 where comma
separated vertices denote a strict ordering.

Initially, all the vertices in A have their levels set to 0. A vertex a at level
� is denoted as a�. At a level less than t, each a ∈ A proposes to vertices in
PrefSC(a) (see Lines 4–8 of Algorithm 1). Each time it remains unmatched, it
proposes to its most preferred neighbour b. The most preferred neighbour in
PrefSC(a) or PrefS(a) is the best-ranked neighbour b to whom a has not yet
proposed at the current level. If a remains unmatched after proposing to all its
neighbours in PrefSC(a) at a level � < t − 1, then a raises its level to � + 1 and
again proposes to vertices in PrefSC(a). In this part of the algorithm, we invoke
CriticalPropose() which encodes the level-based accept/reject by b. A vertex
b ∈ B prefers a�

i over a�′
j if :

(i) either � > �′ (ranks of ai and aj in Pref(b) do not matter) or
(ii) � = �′ and ai �b aj .

If vertex a remains unmatched after exhausting PrefSC(a) at level t − 1, a
attains level t where it uses its original preference list Pref(a) which may contain
ties. At level t our algorithm executes Király’s algorithm [13]. This corresponds
to Lines 10–13 of Algorithm 1. Király’s algorithm is encoded in the procedure
TiesPropose(). Since we have ties on both sides of the graph, at this level,
we need the notion of a favourite neighbour and uncertain proposal defined in
Sect. 2. If the vertex a remains unmatched after exhausting Pref(a) at level t, it
attains the ∗ status, and for this, we have the sub-level t∗. The interpretation of
the ∗ status is the same as discussed in Sect. 2.

If a critical vertex a remains unmatched after exhausting its preference list
Pref(a) at level t∗, a raises its level to t + 1, and starts proposing to vertices in
PrefS(a) (see Lines 16–20 of Algorithm 1). It continues to do so until either it is
matched or it has exhausted PrefS(a) at level s + t. In contrast, if a non-critical
vertex a remains unmatched after exhausting its preference list Pref(a) at level
t∗, a does not propose any further. Recall that PrefS(a) is a strict preference
list containing all the neighbours (not restricted to critical vertices). Here, Algo-
rithm 1, again invokes CriticalPropose() for the level-based accept/reject by
b. The algorithm terminates when either (i) all the vertices in A are matched or
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Algorithm 1: Critical relaxed stable matching in G = (A ∪ B, E)
1 Set M = ∅, Initialize a queue Q = {a0 : a ∈ A}
2 while Q is not empty do

3 Let a� = dequeue(Q) // a is unmatched

4 if � < t then

5 if a� has not exhausted PrefSC(a) then
6 CriticalPropose(a�,PrefSC(a), M, Q)

7 else

8 � = � + 1 and add a� to Q

9 else if � == t or � == t∗ then

10 if ∃ b′ ∈ Pref(a) which is marked or unproposed by a� then

11 TiesPropose(a�,Pref(a), M, Q)

12 else

13 if � == t then � = t∗ and add a� to Q

14 if � == t∗ and a is critical then � = t + 1 and add a� to Q

15 else
// a is critical

16 if a� has not exhausted PrefS(a) then

17 CriticalPropose(a�,PrefS(a), M, Q)

18 else
19 if � < s + t and a is critical then

20 � = � + 1 and add a� to Q

21 return M

(ii) all unmatched critical a ∈ A have exhausted PrefS(a) at level s + t and all
unmatched non-critical a ∈ A have exhausted Pref(a) at level t∗. We note that
s + t = |C| = O(n), where n = |A ∪ B| and each edge of G is explored at most
s + t + 3 times (at most three times at level t, the Király’s step, and at most
once at every other level). Thus, the running time of our algorithm is O(n · |E|).

It is worth noting that in our algorithm, not all vertices in A propose at all
levels. Similarly, not all vertices in B receive proposals from vertices at all levels.
In other words, only critical vertices in B are allowed to receive proposals from
vertices in A at levels at most t − 1, and only critical vertices in A are allowed
to propose at levels above t. Also, note that when a vertex in A transitions to a
higher level, it proposes to possibly a superset of vertices that it proposes to in
the lower level (recall that Pref(a) and its strict counterpart PrefS(a) are both
a superset of PrefSC(a)). Therefore, we have the following useful observation.

Observation 1. If a vertex b ∈ B receives a proposal from some a′ ∈ A at
a level z then b receives proposals from all its neighbours who exhausted their
preference list at level z.

4 Correctness of Our Algorithm

We prove that the matching M output by Algorithm 1 is
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Procedure CriticalPropose(a�, List(a),M,Q)

1 Let b be the most preferred unproposed vertex by a� in List(a)
2 if b is unmatched in M then

3 M = M ∪ {(a�, b)}
4 else
5 Let ay

j = M(b)

6 if (� > y) or (� == y and a �b aj) then

7 M = M \ {(ay
j , b)} ∪ {(a�, b)} and add ay

j to Q

8 else add a� to Q

Procedure TiesPropose(a�, List(a),M,Q)

1 Let b be the favourite neighbour of a� in List(a) at rank k

2 if b was marked by a� then a� unmarks b
3 if b is unmatched then

4 M = M ∪ {(a�, b)}
5 if there exists an unmatched b′′ at rank k in Pref(a) then
6 Set (a�, b) as uncertain proposal // � = t as b′′ is unmatched

7 else if b is part of an uncertain proposal (ay
j , b) then

8 M = (M \ {(ay
j , b)}) ∪ {(a�, b)} // Here, y = t

9 ay
j marks b and add ay

j to Q

10 else if b is not part of an uncertain proposal then
11 Let ay

j = M(b)

12 if � == t then
13 if (y < t) or ((y == t or y == t∗) and a �b aj) then

14 M = M \ {(ay
j , b)} ∪ {(a�, b)} and add ay

j to Q

15 else add a� to Q

16 if � == t∗ then
17 if (y < t) or (y == t and a �b aj) or (y == t∗ and a �b aj) then

18 M = M \ {(ay
j , b)} ∪ {(a�, b)} and add ay

j to Q

19 else add a� to Q

(I) Critical as well as relaxed stable (RSM) and
(II) A 3

2 approximation to the maximum size CRITICAL-RSM in G.

We define a partition of the vertices in A ∪ B based on the levels of vertices
in A and the matching M . This partition is useful to establish the correctness
of our algorithm.

Partition of Vertices: The vertex set A is partitioned into A0 ∪A1 ∪ . . .∪At ∪
. . .∪As+t, and the vertex set B is partitioned into B0∪B1∪. . .∪Bt∪. . .∪Bs+t. For
every matched vertex a ∈ A there exists x ∈ {0, . . . , s+t} such that (ax, b) ∈ M .
We use x to partition the vertex set. Note that if (at∗

, b) ∈ M then for the purpose
of partitioning we consider t∗ = t as t∗ is a sub-level of the level t.
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– Matched vertices in A ∪ B: Let a ∈ A, b ∈ B and (ax, b) ∈ M for some
x ∈ {0, . . . , s + t}. We add a to Ax and b to Bx.

– Unmatched vertices in A ∪ B:
• If a non-critical vertex a ∈ A is unmatched in M then we add a to At.
• If a critical vertex a ∈ A is unmatched in M then we add a to As+t.
• If a non-critical vertex b ∈ B is unmatched in M then we add b to Bt.
• If a critical vertex b ∈ B is unmatched in M then we add b to B0.

It is convenient to visualize the partitions as shown in Fig. 2. This particular
drawing of the graph G is denoted by GM throughout the rest of the section. It
is useful to assume that the edges in GM are implicitly directed from A to B.
By construction, the edges of M (shown in blue colour) are horizontal whereas
the unmatched edges (shown as solid black edges) can be horizontal, upwards
or downwards. We state the properties of the vertices and edges in GM with
respect to this partition in Property 1 (see the full version [21] for justification).

Fig. 2. The graph GM . Red vertices are critical and black vertices are non-critical.
Matched vertices are represented by circles, and unmatched vertices are represented
by squares. The blue horizontal lines represent matched edges in M . Solid black lines
represent edges which are not matched in M . Note that no edge in GM is of the form
Ax × Ay for y ≤ x − 2. (Color figure online)

Property 1. Let a ∈ A and b ∈ B. Then the following hold in graph GM .

1. If a ∈ ⋃s+t
x=t+1 Ax then a is critical. Thus, |⋃s+t

x=t+1 Ax| ≤ s.
2. If b ∈ ⋃t−1

x=0 Bx then b is critical. Thus, |⋃t−1
x=0 Bx| ≤ t.

3. If a is critical and is unmatched in M then a ∈ As+t and all the neighbours
of a are matched and present in Bs+t only.

4. If a is not critical and is unmatched in M then a ∈ At and all the neighbours
of a are matched and present in Bx for x ≥ t.
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5. If b is critical and is unmatched in M then b ∈ B0 and all the neighbours of
b are present in A0 only.

6. If b is not critical and is unmatched in M then b ∈ Bt and all the neighbours
of b are present in Ax for x ≤ t.

Let (a, b) ∈ E be an edge such that a ∈ Ax and b ∈ By. We say that such an
edge is of the form Ax ×By. Lemma 1 below gives an important property about
the edges which cannot be present in GM . An edge of the form Ax × By with
x > y + 1 is referred to as a steep downward edge.

Lemma 1. The graph GM does not contain steep downward edges. That is,
there is no edge in GM of the form Ax × By such that x > y + 1.

Proof. Let (a, b) be any edge in GM such that a ∈ Ax and b ∈ By. If b is
unmatched, then irrespective of whether b is critical or not by Property 1(5) and
Property 1(6), we have x ≤ y. Now suppose that b is matched and (a′, b) ∈ M .
If a = a′ then by construction of GM , (a, b) ∈ Ax × Bx. If a �= a′, then we use
Claim 1, which is given below. It is immediate from this claim that b is in By

for y ≥ x − 1. �
Claim 1. Let (a, b) ∈ E \ M and b be matched in M to ã at level y, that is,
M(b) = ãy. If the level x of a is at least 2 then y ≥ x − 1.

Proof. Suppose for contradiction that there exists ã ∈ A such that (ãy, b) ∈ M
for y < x − 1. The fact that (a, b) ∈ E and a achieves the level x implies that a
remains unmatched after ax−1 exhausted its preference list Pref(a), PrefS(a) or
PrefSC(a) as appropriate. Since b is matched to a vertex at level y < x − 1, and
ax−1 exhausted its preference list, by Observation 1, b received a proposal from
ax−1. At this time, b must accept this proposal by rejecting ãy because y < x−1.
This implies (ãy, b) /∈ M which contradicts our assumption that (ãy, b) ∈ M for
y < x − 1. �
Lemma 2. Let (a, b) be a blocking pair w.r.t. M . Then the corresponding edge
in GM is an upward edge.

Proof. For the blocking pair (a, b) let a and b be at levels x and y, respectively.
First, suppose that b is a critical vertex. Since (a, b) is a blocking pair, irre-
spective of whether a is matched or unmatched, ax must have proposed to the
critical vertex b. Thus, b cannot remain unmatched. This implies M(b) exists.
We consider the following two cases:

1. The proposal by a to b results in (a, b) to be uncertain: Note that ax is rejected
by b because b receives another proposal, and hence ax marks b. Since (a, b)
is a blocking pair, M(a) is ranked lower than b. However, before proposing
to any vertex ranked strictly lower than b, ax must propose to the marked
vertex b. At this point, either b is matched to a better preferred partner than
a which contradicts that (a, b) blocks M , otherwise, b accepts the proposal
from ax. Thus, ax is matched to either b or to some other vertex on the same
rank as b. This implies (a, b) is not a blocking edge.
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2. The proposal by a to b does not result in (a, b) to be uncertain: The fact that
a �b M(b) implies M(b) must be at a level y such that y > x. Thus, (a, b)
edge is an upward edge in GM .

Now, suppose that b is a non-critical vertex. Then by Property 1(2), b ∈ By

for y ≥ t. If x < t, then (a, b) is an upward edge, and we are done. Hence, assume
that x ≥ t. Since x ≥ t, ax is proposes to all of its neighbours. Again, since (a, b)
is a blocking pair, irrespective of whether a is matched or unmatched, ax must
have proposed to b. Thus, b cannot be unmatched. Now, either b is matched to a
better-preferred partner than a, which contradicts that (a, b) is a blocking pair
or M(b) is at a higher level than a and hence (a, b) is an upward edge. �

Lemma 3 below shows that the matching M output by Algorithm 1 is critical.

Lemma 3. The output matching M is critical for G.

Proof sketch: We prove the criticality of M by using the level structure of the
graph GM . The idea is to show that there is no alternating path ρ in GM with
respect to M such that the number of critical vertices matched in M ⊕ρ is more
than the number of critical vertices matched in M . We prove the criticality for
the individual parts, that is, for A-part and for B-part. In other words, we show
that M matches maximum possible critical nodes from A-side, and maximum
possible critical nodes from the B-side. This immediately implies that M matches
the maximum possible critical nodes that can be matched in any matching.
Hence, M is critical. For the A-part we show that the path ρ = 〈u0, v1, u1, . . .〉
begins at the highest level s+ t with an unmatched critical vertex u0 ∈ A. Using
Property 1(5), we also show that at least the first two vertices on the A-side
(u0 and u1) on ρ are at the same level s + t. Then we argue that the other end
of ρ must be at a level below t + 1. Since there are no steep downward edges
(Lemma 1), the path contains at least one vertex from each level t+1, . . . , s+t−1.
Thus, we have at least s+1 many vertices in At+1 ∪ . . .∪As+t. This contradicts
Property 1(1). Proof for the B-part is analogous. See full version [21] for the
complete proof. �
Lemma 4. The output matching M of Algorithm 1 is RSM for G.

Proof. If there is no blocking pair w.r.t. M then we are done. Hence, assume
that (a, b) is a blocking pair w.r.t. M . By Lemma 2, (a, b) is an upward edge.
We consider two cases based on the level of b.
Case 1: b ∈ By for y ≤ t. Clearly, a ∈ Ax for x ≤ t−1. Thus, by the construction
of GM , a is matched, and hence M(a) exists. Clearly, M(a) is at level at most
t−1. By Property 1(2), M(a) is critical. Hence, the blocking pair (a, b) is justified
by Condition 1 of Definition 2.
Case 2: b ∈ By for y > t. By construction of GM , b is matched. Thus, M(b)
exists and M(b) ∈ Ax for x ≥ t + 1. By Property 1(1), M(b) is critical. Hence,
the blocking pair (a, b) is justified by Condition 2 of Definition 2. �
Lemma 5. Let M ′ be any maximum size CRITICAL-RSM and M be the output
of Algorithm 1 for an instance of our problem. Then |M | ≥ 2

3 · |M ′|.
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Proof. We prove that M ⊕M ′ does not admit any 1-length or 3-length augment-
ing path w.r.t. M . This immediately implies that |M | ≥ 2

3 ·|M ′|. If a is unmatched
(critical or otherwise), we know from Property 1(3) and Property 1(4) that no
neighbour b of a is unmatched in M . Thus, M is a maximal matching.

For contradiction assume that M ⊕ M ′ contains a 3-length augmenting path
ρ = 〈a1, b, a, b1〉 w.r.t. M . Here (a, b) ∈ M and the other two edges are in M ′.
We show that (a, b) blocks M ′ and the blocking pair is not justified. This will
contradict relaxed stability of M ′. We first establish the levels of the vertices.

Levels of Vertices: The fact that a1 remains unmatched in M implies that at∗
1

exhausted Pref(a1). Thus, a1 is at level at least t∗. Since b1 remains unmatched
in M , a did not exhaust Pref(a) at the level t. Thus, a is at level at most t. We
claim that a1 is not at level t + 1 or higher. If a1 is at level x ≥ t + 1 then ax

1

must have proposed to b as a1 is unmatched in M . Since a is at level at most t,
b must reject a and accept a1 – a contradiction to (a, b) ∈ M . Thus, we conclude
that a1 is at level t∗. Now, if a is at level y < t then b must reject a and accept
a1 as a1 at level t∗ proposed to it. Recall that t∗ is a sub-level of t used in the
algorithm, and t∗ does not appear as a separate level in GM . Thus, the vertices
a, a1 ∈ At.

The Pair (a, b) Blocks M ′: If a1 �b a, then b would have accepted the proposal
of at

1 by rejecting at. Thus, a �b a1. Since at∗
1 was rejected by b, it implies

M(b) = a and a1 cannot be in tie for b, otherwise b would not have rejected
a ∗ status vertex over a non ∗ status vertex. Thus, a �b a1. Now, we show
that b �a b1. Suppose not. Then, if b1 �a b, then at must have proposed to b1
before b and got matched to it – a contradiction that b1 is unmatched. Hence,
assume that b =a b1. In this case, when at proposes to b, the vertex b must also
be unmatched; otherwise, b cannot be a favourite neighbour of at. This implies
that a1 proposes to b only after a proposes to b. Since b1 was unmatched when a
proposed to b, the proposal from a to b was uncertain. We claim that b must reject
the proposal by a after the proposal (a, b) becomes uncertain due to a proposal
by some vertex, possibly at

1. Such a vertex must exist because at
1 proposed to

b after (a, b) becomes uncertain. Since a has an unmatched neighbour b1 at the
same rank, a must have proposed b1 before proposing to b again. This implies
b1 is matched, a contradiction. Thus, b �a b1; hence (a, b) blocks M ′.

The Blocking Pair (a, b) is not Justified: In order to prove this, we show
b1 = M ′(a) and a1 = M ′(b) are both non-critical. Note that b1 is unmatched
in M , hence if it is critical then b1 ∈ B0 and the number of critical vertices on
B-side is at least 1 (that is t ≥ 1). This implies that a cannot be at a level ≥ 1
since it has not yet proposed to at least one critical neighbour, namely b1. Thus,
b1 is not critical. We finish the proof by showing that a1 is also not critical. Note
that a1 is unmatched in M , hence, if it is critical then a1 ∈ As+t and s > 0.
This is a contradiction that a1 ∈ At. Thus, a1 is not critical.

This finishes the proof that the claimed 3-length augmenting path w.r.t. M
does not exist establishing the size guarantee. �

Using Lemma 3, Lemma 4 and Lemma 5, we establish Theorem 1.
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5 Conclusion

In this work, we consider the problem of computing a matching in the stable
marriage problem where ties and critical vertices can appear on both sides of
the bipartition. We investigate a recently introduced notion of optimality called
relaxed stability for our setting. We show that every instance of our problem
admits a Relaxed Stable Matching (RSM) which is also critical. It follows from
the known results [6,18] that computing a maximum size critical RSM is NP-
hard and hard to approximate within any factor smaller than 21

19 . We present a
polynomial-time algorithm to compute a 3

2 -approximation of the maximum size
critical RSM.
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12. Király, Z.: Better and simpler approximation algorithms for the stable marriage
problem. Algorithmica 60(1), 3–20 (2011)
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