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Abstract. Motivated by the planarization of 2-layered straight-line
drawings, we consider the problem of modifying a graph such that the
resulting graph has pathwidth at most 1. The problem Pathwidth-One
Vertex Explosion (POVE) asks whether such a graph can be obtained
using at most k vertex explosions, where a vertex explosion replaces a
vertex v by deg(v) degree-1 vertices, each incident to exactly one edge
that was originally incident to v. For POVE, we give an FPT algorithm
with running time O(4k ·m) and an O(k2) kernel, thereby improving over
the O(k6)-kernel by Ahmed et al. [2] in a more general setting. Similarly,
a vertex split replaces a vertex v by two distinct vertices v1 and v2 and
distributes the edges originally incident to v arbitrarily to v1 and v2.
Analogously to POVE, we define the problem variant Pathwidth-One
Vertex Splitting (POVS) that uses the split operation instead of
vertex explosions. Here we obtain a linear kernel and an algorithm with
running time O((6k+12)k ·m). This answers an open question by Ahmed
et al. [2].
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1 Introduction

Crossings are one of the main aspects that negatively affect the readability of
drawings [20]. It is therefore natural to try and modify a given graph in such
a way that it can be drawn without crossings while preserving as much of the
information as possible. We consider three different operations.

A deletion operation simply removes a vertex from the graph. A vertex explo-
sion replaces a vertex v by deg(v) degree-1 vertices, each incident to exactly one
edge that was originally incident to v. Finally, a vertex split replaces a vertex v
by two distinct vertices v1 and v2 and distributes the edges originally incident
to v arbitrarily to v1 and v2.

Nöllenburg et al. [18] have recently studied the vertex splitting problem,
which is known to be NP-complete [11]. In particular, they gave a non-uniform
FPT-algorithm for deciding whether a given graph can be planarized with at
most k splits. We observe that, since degree-1 vertices can always be inserted into
a planar drawing, the vertex explosion model and the vertex deletion model are
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Fig. 1. Given the shown bipartite graph, a crossing-free 2-layered drawing can be
obtained using one vertex deletion (a), two vertex explosions (b), or three vertex
splits (c).

equivalent for obtaining planar graphs. Note that this is not necessarily the case
for other target graph classes (see, for example, Fig. 1). The problem of deleting
vertices to obtain a planar graph is also known as Vertex Planarization and
has been studied extensively in the literature [13,15–17]. In particular, Jansen
et al. [13] gave an FPT-algorithm with running time O(2O(k log k) · n).

Ahmed et al. [2] investigated the problem of splitting the vertices of a bipar-
tite graph so that it admits a 2-layered drawing without crossings. They assume
that the input graph is bipartite and only the vertices of one of the two sets
in the bipartition may be split. Under this condition, they give an O(k6)-kernel
for the vertex explosion model, which results in an O(2O(k6)m)-time algorithm.
They ask whether similar results can be obtained in the vertex splitting model.
Figure 1 illustrates the three operations in the context of 2-layered drawings1.

We note that a graph admits a 2-layer drawing without crossings if and
only if it has pathwidth at most 1, i.e., it is a disjoint union of caterpil-
lars [3,9]. Motivated by this, we more generally consider the problem of turning
a graph G = (V,E) into a graph of pathwidth at most 1 by the above operations.
In order to model the restriction of Ahmed et al. [2] that only one side of their
bipartite input graph may be split, we further assume that we are given a sub-
set S ⊆ V , to which we may apply modification operations as part of the input.
We define that the new vertices resulting from an operation are also included
in S.

More formally, we consider the following problems, all of which have been
shown to be NP-hard [1,19].

1 In this context, minimizing the number of vertex explosions is equivalent to mini-
mizing the number of vertices that are split, since it is always best to split a vertex
as often as possible.
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Pathwidth-One Vertex Explosion (POVE)
Input: An undirected graph G = (V,E), a set S ⊆ V , and a positive

integer k.
Question: Is there a set W ⊆ S with |W | ≤ k such that the graph resulting

from exploding all vertices in W has pathwidth at most 1?

Pathwidth-One Vertex Splitting (POVS)
Input: An undirected graph G = (V,E), a set S ⊆ V , and a positive

integer k.
Question: Is there a sequence of at most k splits on vertices in S such that

the resulting graph has pathwidth at most 1?

We note that the analogous problem with the deletion operation has been
studied extensively [8,19,23]. Here, a branching algorithm with running time
O(3.888k · nO(1)) [23] and a quadratic kernel [8] are known. Our results are as
follows.

First, in Sect. 3, we show that POVE admits a kernel of size O(k2) and
an algorithm with running time O(4km), thereby improving over the results of
Ahmed et al. [2] in a more general setting.

Second, in Sect. 4, we show that POVS has a kernel of size 16k and it admits
an algorithm with running time O((6k+12)k ·m). This answers the open question
of Ahmed et al. [2].

Finally, in Sect. 5, we consider the problem Π Vertex Splitting(Π-VS),
the generalized version of the splitting problem where the goal is to obtain a
graph of a specific graph class Π using at most k split operations. Eppstein et
al. [10] recently studied the similar problem of deciding whether a given graph
G is k-splittable, i.e., whether it can be turned into a graph of Π by splitting
every vertex of G at most k times. For graph classes Π that can be expressed in
monadic second-order graph logic (MSO2, see [7]), they gave an FPT algorithm
parameterized by the solution size k and the treewidth of the input graph. We
adapt their algorithm for the problem Π-VS, resulting in an FPT algorithm
parameterized by the solution size k for MSO2-definable graph classes Π of
bounded treewidth. Using a similar algorithm, we obtain the same result for the
problem variant using vertex explosions.

2 Preliminaries

A parameterized problem L with parameter k is non-uniformly fixed-parameter
tractable if, for every value of k, there exists an algorithm that decides L in time
f(k) · nO(1) for some computable function f . If there is a single algorithm that
satisfies this property for all values of k, then L is (uniformly) fixed-parameter
tractable.

Given a graph G, we let n and m denote the number of vertices and edges
of G, respectively. Since we can determine the subgraph of G that contains
no isolated vertices in O(m) time, we assume, without loss of generality, that
n ∈ O(m). For a vertex v ∈ V (G), we let N(v) := {u ∈ V (G) | adj(v, u)}
and N [v] := N(v) ∪ {v} denote the open and closed neighborhood of v in G,
respectively.
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Fig. 2. (a) The graph T2. (b) Two graphs that do not contain T2 as a subgraph, but
both contain N2 (marked in orange) as a substructure. (Color figure online)

We refer to vertices of degree 1 as pendant vertices. For a vertex v of G, we let
deg∗(v) := |{u ∈ N(v) | deg(u) > 1}| denote the degree of v ignoring its pendant
neighbors. If deg∗(v) = d, we refer to v as a vertex of degree* d. A graph is a
caterpillar (respectively a pseudo-caterpillar), if it consists of a simple path (a
simple cycle) with an arbitrary number of adjacent pendant vertices. The path
(the cycle) is called the spine of the (pseudo-)caterpillar.

Philip et al. [19] mainly characterized the graphs of pathwidth at most 1 as
the graphs containing no cycles and no T2 (three simple paths of length 2 that
all share an endpoint; see Fig. 2a) as a subgraph. We additionally use slightly
different sets of forbidden substructures. An N2 substructure consists of a root
vertex r adjacent to three distinct vertices of degree at least 2. Note that every T2

contains an N2 substructure, however, the existence of an N2 substructure does
not generally imply the existence of a T2 subgraph; see Fig. 2b. In the following
proposition, we state the different characterizations for graphs of pathwidth at
most 1 that we use in this work.

Proposition 1 (�2). For a graph G, the following statements are equivalent.

a) G has pathwidth at most 1
b) every connected component of G is a caterpillar
c) G is acyclic and contains no T2 subgraph
d) G is acyclic and contains no N2 substructure
e) G contains no N2 substructure and no connected component that is a pseudo-

caterpillar.

We define the potential of v ∈ V (G) as μ(v) := max(deg∗(v) − 2, 0). The
global potential μ(G) :=

∑
v∈V (G) μ(v) is defined as the sum of the potentials

of all vertices in G. Observe that μ(G) = 0 if and only if G contains no N2

substructure. The global potential thus indicates how far away we are from
eliminating all N2 substructures from the instance.

Recall that, for the problems POVE and POVS, the set S ⊆ V (G) marks
the vertices of G that may be chosen for the respective operations. We say that a
set W ⊆ S is a pathwidth-one explosion set (POES) of G, if the graph resulting
from exploding all vertices in W has pathwidth at most 1.

2 The proofs of results marked with a star can be found in the full version [4].
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3 FPT Algorithms for PATHWIDTH-ONE VERTEX

EXPLOSION

In this section, we first show that POVE can be solved in time O(4k · m) using
bounded search trees. Subsequently, we develop a kernelization algorithm for
POVE that yields a quadratic kernel in linear time.

3.1 Branching Algorithm

We start by giving a simple branching algorithm for POVE, similar to the
algorithm by Philip et al. [19] for the deletion variant of the problem. For an
N2 substructure X, observe that exploding vertices not contained in X cannot
eliminate X, because the degrees of the vertices in X remain the same due to
the new degree-1 vertices resulting from the explosion. To obtain a graph of
pathwidth at most 1, it is therefore always necessary to explode one of the four
vertices of every N2 substructure by Proposition 1. Our branching rule thus
first picks an arbitrary N2 substructure from the instance and then branches on
which of the four vertices of the N2 substructure belongs to the POES. Recall
that S denotes the set of vertices of the input graph that can be exploded.

Branching Rule 1. Let r be the root of an N2 substructure contained in G
and let x, y, and z denote the three neighbors of r in N2. For every vertex
v ∈ {r, x, y, z}∩S, create a branch for the instance (G′, S \ {v}, k − 1), where G′

is obtained from G by exploding v.
If {r, x, y, z} ∩ S = ∅, reduce to a trivial no-instance instead.

Note that an N2 substructure can be found in O(m) time by checking, for every
vertex v in G, whether v has at least three neighbors of degree at least 2. Also
note that vertex explosions do not increase the number of edges of the graph.
Since Branching Rule 1 creates at most four new branches, each of which reduces
the parameter k by 1, exhaustively applying the rule takes O(4k · m) time. By
Proposition 1, it subsequently only remains to eliminate connected components
that are a pseudo-caterpillar. Since a pseudo-caterpillar can (only) be turned
into a caterpillar by exploding a vertex of its spine, the remaining instance can
be solved in linear time.

Theorem 1. The problem Pathwidth-One Vertex Explosion can be solved
in time O(4k · m).

3.2 Quadratic Kernel

We now turn to our kernelization algorithm for POVE. In this section, we
develop a kernel of quadratic size, which can be computed in linear time.
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Fig. 3. Examples for Reduction Rules 1 (a), 2 (b), 3 (c), and 4 (d). The vertices of S
are marked in green (Color figure online).

We adopt our first two reduction rules from the kernelization of the deletion
variant by Philip et al. [19] and show that these rules are also safe for the
explosion variant. The first rule reduces the number of pendant neighbors of
each vertex to at most one; see Fig. 3a.

Reduction Rule 1. (�). If G contains a vertex v with at least two pendant
neighbors, remove all pendant neighbors of v except one to obtain the graph G′

and reduce the instance to (G′, S ∩ V (G′), k).

Since a caterpillar has pathwidth at most 1 by Proposition 1, we can safely
remove any connected component of G that forms a caterpillar; see Fig. 3b for
an example.

Reduction Rule 2. If G contains a connected component X that is a caterpil-
lar, remove X from G and reduce the instance to (G − X, S \ V (X), k).

If G contains a connected component that is a pseudo-caterpillar, then
exploding an arbitrary vertex of its spine yields a caterpillar. If the spine con-
tains no vertex of S, the spine is a cycle that cannot be broken by a vertex
explosion. However, by Proposition 1, acyclicity is a necessary condition for a
graph of pathwidth at most 1. Hence we get the following reduction rule; see
Fig. 3c for an illustration.

Reduction Rule 3. Let X denote a connected component of G that is a pseudo-
caterpillar. If the spine of X contains a vertex of S, remove X from G and
reduce the instance to (G − X, S \ V (X), k − 1). Otherwise reduce to a trivial
no-instance.

Recall that the degree* of a vertex is the number of its non-pendant neigh-
bors. Our next goal is to shorten paths of degree*-2 vertices to at most two
vertices. If we have a path x, y, z of degree*-2 vertices, we refer to y as a 2-
enclosed vertex. Note that exploding a 2-enclosed vertex y cannot eliminate any
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Fig. 4. A graph G that has no POES, because the highlighted N2 substructure contains
no vertex of S. For the graph G′ resulting from contracting y into x, the set {x} is a
POES. The two instances are therefore not equivalent.

N2 substructures from the instance. By Proposition 1, vertex y can thus only be
part of an optimal solution if exploding y breaks cycles. If we want to shorten
the chain x, y, z by contracting y into one of its neighbors, we therefore need to
ensure that the shortened chain contains a vertex of S if and only if the original
chain contained a vertex of S. If y ∈ S, we cannot simply add one of its neigh-
bors, say x, to S in the reduced instance, because exploding x may additionally
remove an N2 substructure; see Fig. 4 for an example. While shortening paths of
degree*-2 vertices to at most three vertices is simple, shortening them to length
at most 2 (i.e., eliminating all 2-enclosed vertices) is therefore more involved. In
the following, we briefly sketch how this can be achieved in linear time. For the
specific reduction rules and the corresponding correctness proofs, we refer to the
full version of the paper [4].

Lemma 1 (�). Given an instance of POVE, an equivalent instance without
2-enclosed vertices can be computed in O(m) time.

Sketch of Proof. Given a 2-enclosed vertex y, we show that we can decide greed-
ily whether y is contained in an optimal solution or not. This means that we
can either immediately explode y, or we can safely contract it into one of its
degree*-2 neighbors. Since y is 2-enclosed, y is not contained in any N2 sub-
structures and we thus only have to consider cycles containing y. If there exists
a cycle C in G with C ∩ S = {y} (i.e., y is the only splittable vertex of C), then
we can immediately explode y. Otherwise, every cycle containing y contains at
least one additional vertex of S. In this case, we can show that there exists a
minimum POES of G that does not contain y, thus we can remove y from S and
contract it into one of its neighbors, thereby preserving all cycles of the instance.
To achieve linear running time, we can show that the set of 2-enclosed vertices
that should be exploded can be computed globally using a specialized spanning
tree. �	

To simplify the instance even further, the following reduction rule removes all
degree*-2 vertices v that are adjacent to a vertex x of degree* 1; see Fig. 3d for
an illustration. Roughly speaking, since v cannot be contained in a cycle and x
substitutes v in all N2 substructures v is contained in, all forbidden substructures
are preserved.
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Reduction Rule 4 (�). Let v be a degree*-2 vertex of G with non-pendant
neighbors x and y, such that x has degree* 1. Remove v from G and add a new
edge xy. If v ∈ S, reduce to (G − v + xy, (S \ {v})∪ {x}, k). Otherwise reduce to
(G − v + xy, S \ {x}, k).

Recall that the global potential μ(G) indicates how far away we are from our
goal of eliminating all N2 substructures from G. With the following lemma, we
show that our reduction rules ensure that the number of vertices in the graph G
is bounded linearly in the global potential of G.

Lemma 2. After exhaustively applying Reduction Rules 1–4 and Lemma 1, it
holds that |V (G)| ≤ 8 · μ(G).

Proof. Reduction Rule 2 ensures that G contains no vertices of degree* 0. For
i ∈ {1, 2}, let Vi denote the set of non-pendant degree*-i vertices of G and let V3

denote the set of vertices with degree* at least 3. Recall that we defined the
global potential as

μ(G) =
∑

v∈V (G)

μ(v) =
∑

v∈V (G)

max(0,deg∗(v) − 2).

Since all vertices of V1 and V2 have degree* at most 2, their potential is 0 and
we get

μ(G) =
∑

v∈V3

(deg∗(v) − 2) =
∑

v∈V3

deg∗(v) − 2 · |V3|.

Note that |V3| ≤ μ(G), because each vertex of degree* at least 3 contributes at
least 1 to the global potential. We therefore get

∑

v∈V3

deg∗(v) ≤ 3 · μ(G). (1)

By Lemma 1, every vertex in v ∈ V2 is adjacent to a vertex of V1 ∪V3, since oth-
erwise, v would be 2-enclosed. However, Reduction Rule 4 additionally ensures
that vertices of V2 cannot be adjacent to vertices of V1, thus every vertex of V2

must be adjacent to a vertex of V3. Note that two adjacent vertices of V1 would
form a caterpillar, which is prohibited by Reduction Rule 2. Therefore, every
vertex of V1 is also adjacent to a vertex of V3.

Overall, every vertex of V1 and V2 is thus adjacent to a vertex of V3. Note
that every vertex v ∈ V1 must additionally have a pendant neighbor, because
otherwise, v itself would be a pendant vertex. Hence every vertex of V1 and V2

has degree at least 2 and thus contributes to the degree* of its neighbor in V3.
We therefore have |V1| + |V2| ≤

∑
v∈V3

deg∗(v), hence |V1| + |V2| ≤ 3 · μ(G) by
Eq. 1. Recall that |V3| ≤ μ(G), thus |V1| + |V2| + |V3| ≤ 4 · μ(G). By Reduction
Rule 1, each of these vertices can have at most one pendant neighbor and thus
|V (G)| ≤ 8 · μ(G).

With Lemma 2, it now only remains to find an upper bound for the global
potential μ(G). We do this using the following two reduction rules.
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Reduction Rule 5. Let v be a vertex of G with potential μ(v) > k. If v ∈ S,
explode v to obtain the graph G′ and reduce the instance to (G′, S \ {v}, k −1).
Otherwise reduce to a trivial no-instance.

Proof of Safeness. Since exploding a vertex u ∈ V (G) \ {v} decreases μ(v) by
at most one, after exploding at most k vertices in V (G) \ {v} we still have
μ(v) > 0. Because μ(v) > 0 implies that G contains an N2 substructure, it is
therefore always necessary to explode vertex v by Proposition 1. �	

Reduction Rule 6. If μ(G) > 2k2 + 2k, reduce to a trivial no-instance.

Proof of Safeness. By Reduction Rule 5 we have μ(v) ≤ k and consequently
deg∗(v) ≤ k + 2 for all v ∈ V (G). Hence exploding a vertex v decreases the
potential of v by at most k and the potential of each of its non-pendant neighbors
by at most 1. Overall, k vertex explosions can therefore only decrease the global
potential μ(G) by at most k · (2k + 2). �	

Because Reduction Rule 6 gives us an upper bound for the global poten-
tial μ(G), we can now use Lemma 2 to obtain the kernel.

Theorem 2 (�). The problem Pathwidth-One Vertex Explosion admits
a kernel of size 16k2 + 16k. It can be computed in time O(m).

4 FPT Algorithms for PATHWIDTH-ONE VERTEX SPLITTING

In this section, we briefly outline how the results from Sect. 3 can be adapted
for the split operation. For detailed proofs, we refer to the full version [4].

4.1 Linear Kernel

One can prove that Reduction Rules 1–4 and Lemma 1 we used for POVE are
also safe for the problem POVS. Since only these are needed to establish the
upper bound of |V (G)| ≤ 8·μ(G) in Lemma 2, the lemma also applies for POVS.

The main difference to the kernelization of POVE lies in the way the global
potential changes due to splits. While a vertex explosion can decrease the global
potential linearly in k, we can show that a single vertex split decreases μ(G) by
at most 2. If μ(G) > 2k, we can thus again reduce to a trivial no-instance. Using
Lemma 2 with μ(G) ≤ 2k, we obtain the following result.

Theorem 3 (�). The problem Pathwidth-One Vertex Splitting admits a
kernel of size 16k. It can be computed in time O(m).
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Fig. 5. (a) An N2 substructure {r, x, y, z}. (b)-(c) Two possible branches eliminating
the N2 substructure. The former splits off edge rx at x, the latter splits off the edges
rz and ra at r.

4.2 Branching Algorithm

As in Sect. 3.1, our branching algorithm for POVS eliminates every N2 sub-
structure of G by branching on which of its four vertices should be split. In this
case, however, we need to additionally consider the possible ways to split a single
vertex. The following lemma helps us limit the number of suitable splits.

Lemma 3 (�). For every instance of POVS, there exists a minimum sequence
of splits such that every split operation splits off at most two edges.

Theorem 4 (�). The problem POVS can be solved in time O((6k + 12)k · m).

Sketch of Proof. From the kernelization, we use Reduction Rule 1 reducing pen-
dant vertices, and the above rule that yields the bound μ(G) ≤ 2k. Together,
these two rules ensure that each vertex has degree at most 2k+3. We now branch
on the way of splitting an N2 substructure with root r and neighbors {x, y, z} as
above (see Fig. 5). If we split r, then, by Lemma 3, we may assume that we split
off one of the neighbors {x, y, z}, together with at most one other neighbor of r;
these are 3 · (2k+3) choices. If we split a vertex v ∈ {x, y, z}, then it is necessary
that we only split off the edge rv at v, thus there is only one possibility for each
of them. Overall, we thus find a branching vector of size 6k + 12. �	

5 FPT Algorithms for Splitting and Exploding
to MSO2-Definable Graph Classes of Bounded
Treewidth

While Sect. 4 focused on the problem of obtaining graphs of pathwidth at most
1 using at most k vertex splits on the input graph, we now consider the problem
of splitting vertices to obtain other graph classes. With the following problem,
we generalize the problem POVS.

Π Vertex Splitting(Π-VS)
Input: An undirected graph G = (V,E), a set S ⊆ V , and a positive

integer k.
Question: Is there a sequence of at most k splits on vertices in S such that

the resulting graph is contained in Π?
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Nöllenburg et al. [18] showed that, for any minor-closed graph class Π, the
graph class Πk containing all graphs that can be modified to a graph in Π using
at most k vertex splits is also minor-closed. Robertson and Seymour [21] showed
that every minor-closed graph class has a constant-size set of forbidden minors
and that it can be tested in cubic time whether a graph contains a given fixed
graph as a minor. Since Πk is minor-closed, this implies the existence of a non-
uniform FPT-algorithm for the problem Π-VS. Because the graphs of pathwidth
at most 1 form a minor-closed graph class, this includes the problem POVS.

Proposition 2 ([18]). For every minor-closed graph class Π, the problem
Π-VS is non-uniformly FPT parameterized by the solution size k.

We say that a graph class Π is MSO2-definable, if there exists an MSO2

(monadic second-order graph logic, see [7]) formula ϕ such that G |= ϕ if and
only if G ∈ Π. In the following, we show that the problem Π-VS is uniformly
FPT parameterized by k if Π is MSO2-definable and has bounded treewidth.
Since every minor-closed graph class is MSO2-definable, this improves the result
from Proposition 2 for graph classes of bounded treewidth.

Eppstein et al. [10] showed that the problem of deciding whether a given
graph G can be turned into a graph of class Π by splitting each vertex of G at
most k times can be expressed as an MSO2 formula on G, if Π itself is MSO2-
definable. Using Courcelle’s Theorem [6], this yields an FPT-algorithm param-
eterized by k and the treewidth of the input graph. Their algorithm exploits
the fact that the split operations create at most k copies of each vertex in the
graph. Since the same also applies for the problem Π-VS, where we may apply
at most k splits overall, their algorithm can be straightforwardly adapted for
Π-VS, thereby implying the following result.

Corollary 1. For every MSO2-definable graph class Π, the problem Π-VS is
FPT parameterized by the solution size k and the treewidth of the input graph.

For a graph class Π of bounded treewidth, we let tw(Π) denote the maximum
treewidth among all graphs in Π. With the following lemma, we show that, if the
target graph class Π has bounded treewidth, then every yes-instance of Π-VS
must also have bounded treewidth.

Proposition 3. For a graph class Π of bounded treewidth, let I = (G,S, k) be
an instance of Π-VS. If tw(G) > k + tw(Π), then I is a no-instance.

Proof. We first show that a single split operation can reduce the treewidth of G
by at most 1. Assume, for the sake of contradiction, that we can obtain a graph
G′ of treewidth less than tw(G)−1 by splitting a single vertex v of G into vertices
v1 and v2 of G′. Let T denote a minimum tree decomposition of G′. Remove all
occurences of v1 and v2 in T and add v to every bag of T . Observe that the
result is a tree decomposition of size less than tw(G) for G, a contradiction. A
single split operation thus decreases the treewidth of the graph by at most 1.
Since every graph G′ ∈ Π has tw(G′) ≤ tw(Π), it is thus impossible to obtain a
graph of Π with at most k vertex splits if tw(G) > k + tw(Π). �	
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Fig. 6. (a) An instance (G, S, 2) of Π-VE. (b) The corresponding auxiliary graph G×

obtained by subdividing each edge in G twice. (c) The graph obtained by exploding
{x1, x2} in G is the highlighted minor of G×. Since Π is MSO2-definable, one can
express Π-VE using an MSO2 formula on G×.

Given a graph class Π of bounded treewidth, we first determine in time
f(k + tw(Π)) · n whether the treewidth of G is greater than k + tw(Π) [5]. If
this is the case, then we can immediately report a no-instance by Proposition 3.
Otherwise, we know that tw(G) ≤ k + tw(Π). Since tw(Π) is a constant, we
have tw(G) ∈ O(k), and thus Corollary 1 yields the following result.

Theorem 5. For every MSO2-definable graph class Π of bounded treewidth, the
problem Π-VS is FPT parameterized by the solution size k.

Vertex Explosion. We now briefly sketch how these results extend to the
problem variant Π Vertex Explosion(Π-VE) using vertex explosions instead
of vertex splits. In this case, for minor-closed graph classes Π, the set of yes-
instances of Π-VE is not minor-closed in general, thus the non-uniform FPT
algorithm used to obtain Proposition 2 does not work for Π-VE. Additionally,
the FPT-algorithm by Eppstein et al. [10] for MSO2-definable graph classes
cannot be straightforwardly adapted for Π-VE, since the number of new vertices
resulting from explosions is not bounded by a function in k. However, using the
approach illustrated in Fig. 6, we obtain the following results.

Lemma 4 (�). For every MSO2-definable graph class Π, the problem Π-VE is
FPT parameterized by the treewidth of the input graph.

Theorem 6 (�). For every MSO2-definable graph class Π of bounded treewidth,
the problem Π-VE is FPT parameterized by the solution size k.

We remark that, for arbitrary graph classes Π, the question whether a graph
of Π can be obtained by applying arbitrarily many vertex splits to at most k
vertices in the input graph is not equivalent to Π-VE.

6 Conclusion

In this work, we studied the problems Pathwidth-One Vertex Explosion
and Pathwidth-One Vertex Splitting, obtaining an efficient branching
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algorithm and a small kernel for each variant. Subsequently, we more generally
considered the problem of obtaining a graph of a specific graph class Π using at
most k vertex splits (respectively explosions). For MSO2-definable graph classes
Π of bounded treewidth, we obtained an FPT algorithm parameterized by the
solution size k. These graph classes include, for example, the outerplanar graphs,
the pseudoforests, and the graphs of treewidth (respectively pathwidth) at most c
for some constant c.

Instead of splitting vertices to obtain a graph of pathwidth at most 1, one
can also consider obtaining graphs of treewidth at most 1, i.e., forests. Since,
in this context, the degree-1 vertices resulting from an explosion can simply
be reduced, the explosion model is equivalent to the problem Feedback Ver-
tex Set, a well-studied NP-complete [14] problem that admits a quadratic ker-
nel [22]. In the full version of this paper [4], we show that the problem of splitting
vertices of a graph to obtain a forest is equivalent to the problem Feedback
Edge Set, which asks whether a given graph can be made acyclic using at
most k edge deletions; a problem that can be solved by computing an arbitrary
spanning forest of the graph. Firbas [12] independently obtained the same result.
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