
Approximating Bin Packing with Conflict
Graphs via Maximization Techniques

Ilan Doron-Arad and Hadas Shachnai(B)

Computer Science Department, Technion, Haifa 3200003, Israel
{idoron-arad,hadas}@cs.technion.ac.il

Abstract. We give a comprehensive study of bin packing with conflicts
(BPC). The input is a set I of items, sizes s : I → [0, 1], and a conflict
graph G = (I, E). The goal is to find a partition of I into a minimum
number of independent sets, each of total size at most 1. Being a gener-
alization of the notoriously hard graph coloring problem, BPC has been
studied mostly on polynomially colorable conflict graphs. An intriguing
open question is whether BPC on such graphs admits the same best
known approximation guarantees as classic bin packing.

We answer this question negatively, by showing that (in contrast
to bin packing) there is no asymptotic polynomial-time approximation
scheme (APTAS) for BPC already on seemingly easy graph classes, such
as bipartite and split graphs. We complement this result with improved
approximation guarantees for BPC on several prominent graph classes.
Most notably, we derive an asymptotic 1.391-approximation for bipar-
tite graphs, a 2.445-approximation for perfect graphs, and a

(
1 + 2

e

)
-

approximation for split graphs. To this end, we introduce a generic frame-
work relying on a novel interpretation of BPC allowing us to solve the
problem via maximization techniques. Our framework may find use in
tackling BPC on other graph classes arising in applications.

1 Introduction

We study the bin packing with conflicts (BPC) problem. We are given a set I of n
items, sizes s : I → [0, 1], and a conflict graph G = (I, E) on the items. A packing
is a partition (A1, . . . , At) of I into independent sets called bins, such that for
all b ∈ {1, . . . , t} it holds that s (Ab) =

∑
�∈Ab

s(�) ≤ 1. The goal is to find a
packing in a minimum number of bins. Let I = (I, s, E) denote a BPC instance.
We note that BPC is a generalization of bin packing (BP) (where E = ∅) as
well as the graph coloring problem (where s(�) = 0 ∀� ∈ I).1 BPC captures
many real-world scenarios such as resource clustering in parallel computing [2],
examination scheduling [21], database storage [16], and product delivery [3]. As
the special case of graph coloring cannot be approximated within a ratio better
than n1−ε [28], most of the research work on BPC has focused on families of

1 See the formal definitions of graph coloring and independent sets in Sect. 2.

A full version of the paper is available in [6].

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
D. Paulusma and B. Ries (Eds.): WG 2023, LNCS 14093, pp. 261–275, 2023.
https://doi.org/10.1007/978-3-031-43380-1_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-43380-1_19&domain=pdf
https://doi.org/10.1007/978-3-031-43380-1_19

262 I. Doron-Arad and H. Shachnai

conflict graphs which can be optimally colored in polynomial time [4,5,8,15–
17,22,23].

Let OPT = OPT(I) be the value of an optimal solution for an instance I
of a minimization problem P. As in the bin packing problem, we distinguish
between absolute and asymptotic approximation. For α ≥ 1, we say that A is
an absolute α-approximation algorithm for P if for any instance I of P we
have A(I)/OPT(I) ≤ α, where A(I) is the value of the solution returned by
A. Algorithm A is an asymptotic α-approximation algorithm for P if for any
instance I it holds that A(I) ≤ αOPT(I) + o(OPT(I)). An APTAS is a family
of algorithms {Aε} such that, for every ε > 0, Aε is a polynomial time asymp-
totic (1+ε)-approximation algorithm for P. An asymptotic fully polynomial-time
approximation scheme (AFPTAS) is an APTAS {Aε} such that Aε(I) runs in
time poly(|I|, 1

ε), where |I| is the encoding length of the instance I.
It is well known that, unless P=NP, BP cannot be approximated within ratio

better than 3
2 [10]. This ratio is achieved by First-Fit Decreasing (FFD) [26].2

Also, BP admits an AFPTAS [19], and an additive approximation algorithm
which packs any instance I in at most OPT(I) + O(log(OPT(I))) bins [14].
Despite the wide interest in BPC on polynomially colorable graphs, the intrigu-
ing question whether BPC on such graphs admits the same best known approx-
imation guarantees as classic bin packing remained open.

Table 1. Known results for Bin Packing with Conflict Graphs

Absolute Asymptotic

Lower Bound Upper Bound Lower Bound Upper Bound

General graphs n1−ε [28] O
(

n(log log n)2

(log n)3

)
[13] n1−ε [28] O

(
n(log log n)2

(log n)3

)
[13]

Perfect graphs · 2.445 (2.5 [8]) c > 1 2.445 (2.5 [8])

Chordal graphs · 7
3

[8] c > 1 7
3

[8]

Cluster graphs · 2 [1] 1 [5]

Cluster complement · 3/2 3/2 3/2

Split graphs · 1 + 2/e (2 [15]) c > 1 1 + 2/e (2 [15])

Bipartite graphs · 5
3

[15] c > 1 1.391 (5
3

[15])

Partial k-trees · 2 + ε [17] 1 [16]

Trees · 5
3

[15] ·
No conflicts 3

2
[10] 3

2
[26] 1 [25]

We answer this question negatively, by showing that (in contrast to bin pack-
ing) there is no APTAS for BPC even on seemingly easy graph classes, such as
bipartite and split graphs. We complement this result with improved approxima-
tion guarantees for BPC on several prominent graph classes. For BPC on bipar-
tite graphs, we obtain an asymptotic 1.391-approximation. We further derive
improved bounds of 2.445 for perfect graphs,

(
1 + 2

e

)
for split graphs, and 5

3 for

2 We give a detailed description of Algorithm FFD in [6].

Approximating Bin Packing with Conflict Graphs 263

bipartite graphs.3 Finally, we obtain a tight 3
2 -asymptotic lower bound and an

absolute 3
2 -upper bound for graphs that are the complements of cluster graphs

(we call these graphs below complete multi-partite).
Table 1 summarizes the known results for BPC on various classes of graphs.

New bounds given in this paper are shown in boldface. Entries that are marked
with · follow by inference, either by using containment of graph classes (trees
are partial k-trees), or since the hardness of BPC on all considered graph classes
follows from the hardness of classic BP. Empty entries for lower bounds follow
from tight upper bounds.

1.1 Related Work

The BPC problem was introduced by Jansen and Öhring [17]. They presented
a general algorithm that initially finds a coloring of the conflict graph, and
then packs each color class separately using the First-Fit Decreasing algorithm.
This approach yields a 2.7-approximation for BPC on perfect graph. The paper
[17] includes also a 2.5-approximation for subclasses of perfect graphs on which
the corresponding precoloring extension problem can be solved in polynomial
time (e.g., interval and chordal graphs). The authors present also a (2 + ε)-
approximation algorithm for BPC on cographs and partial k-trees.

Epstein and Levin [8] present better algorithms for BPC on perfect graphs
(2.5-approximation), graphs on which the precoloring extension problem can
be solved in polynomial time (73 -approximation), and bipartite graphs (74 -
approximation). Their techniques include matching between large items and a
sophisticated use of new item weights. Recently, Huang et al. [15] provided fresh
insights to previous algorithms, leading to 5

3 -approximation for BPC on bipartite
graphs and a 2-approximation on split graphs.

Jansen [16] presented an AFPTAS for BPC on d-inductive conflict graphs,
where d ≥ 1 is some constant. This graph family includes trees, grid graphs, pla-
nar graphs, and graphs with constant treewidth. For a survey of exact algorithms
for BPC see, e.g., [15].

1.2 Techniques

There are several known approaches for tackling BPC instances. One celebrated
technique introduced by Jansen and Öhring [17] relies on finding initially a mini-
mum coloring of the given conflict graph, and then packing each color class using
a bin packing heuristic, such as First-Fit Decreasing. A notable generalization
of this approach is the sophisticated integration of precoloring extension [8,17],
which completes an initial partial coloring of the conflict graph, with no increase
to the number of color classes. Another elegant technique is a matching-based
algorithm, applied by Epstein and Levin [8] and by Huang et al. [15].

3 Recently, Huang et al. [15] obtained a 5
3
-approximation for bipartite graphs, simul-

taneously and independently of our work. We note that the techniques of [15] are
different than ours, and their algorithm is more efficient in terms of running time.

264 I. Doron-Arad and H. Shachnai

The best known algorithms (prior to this work), e.g., for perfect graphs [8]
and split graphs [15] are based on the above techniques. While the analyses
of these algorithms are tight, the approximation guarantees do not match the
existing lower bounds for BPC on these graph classes; thus, obtaining improved
approximations requires new techniques.

In this paper we present a novel point of view of BPC involving the solution
of a maximization problem as a subroutine. We first find an initial packing of
a subset S ⊆ I of items, which serves as a baseline packing with high potential
for adding items (from I \ S) without increasing the number of bins used. The
remaining items are then assigned to extra bins using a simple heuristic. Thus,
given a BPC instance, our framework consists of the following main steps.

1. Find an initial packing A = (A1, . . . , Am) of high potential for S ⊆ I.
2. Maximize the total size of items in A by adding items in I \ S.
3. Assign the remaining (unpacked) items to extra bins using a greedy approach

respecting the conflict graph constraints.

The above generic framework reduces BPC to cleverly finding an initial pack-
ing of high potential, and then efficiently approximating the corresponding max-
imization problem, while exploiting structural properties of the given conflict
graph. One may view classic approaches for solving BP (e.g., [20]), as an appli-
cation of this technique: find an initial packing of high potential containing the
large items; then add the small items using First-Fit. In this setting, the tricky
part is to find an initial high potential packing, while adding the small items is
trivial. However, in the presence of a conflict graph, solving the induced maxi-
mization problem is much more challenging.

Interestingly, we are able to obtain initial packings of high potential for BPC
on several conflict graph classes. To solve the maximization problem, we first
derive efficient approximation for maximizing the total size of items within a
single bin. Our algorithm is based on finding a maximum weight independent set
of bounded total size in the graph, combined with enumeration over items of large
sizes. Using the single bin algorithm, the maximization problem is solved via
application of the separable assignment problem (SAP) [9] framework, adapted
to our setting. Combined with a hybrid of several techniques (to efficiently handle
different types of instances) this leads to improved bounds for BPC on perfect,
split, and bipartite graphs (see Sects. 3, 4, and the full version of the paper [6]).
Our framework may find use in tackling BPC on other graph classes arising in
applications.

1.3 Organization

In Sect. 2 we give some definitions and preliminary results. Section 3 presents an
approximation algorithm for BPC on perfect graphs and an asymptotic approx-
imation on bipartite graphs. In Sect. 4 we give an algorithm for split graphs.
We present our hardness results in Sect. 5 and conclude in Sect. 6. Due to space
constraints, some of our results and proofs are given in the full version of the
paper [6].

Approximating Bin Packing with Conflict Graphs 265

2 Preliminaries

For any k ∈ R, let [k] = {1, 2, . . . , 	k
}. Also, for a function f : A → R≥0 and a
subset of elements C ⊆ A, we define f(C) =

∑
e∈C f(e).

2.1 Coloring and Independent Sets

Given a graph G = (V,E), an independent set in G is a subset of vertices
S ⊆ V such that for all u, v ∈ S it holds that (u, v) /∈ E. Let IS(G) be the
collection of all independent sets in G. Given weight function w : V → R≥0, a
maximum independent set w.r.t. w is an independent set S ∈ IS(G) such that
w(S) is maximized. A coloring of G is a partition (V1, . . . , Vt) of V such that
∀i ∈ [t] : Vi ∈ IS(G); we call each subset of vertices Vi color class i. Let χ(G) be
the minimum number of colors required for a coloring of G. A graph G is perfect
if for every induced subgraph G′ of G the cardinality of the maximum clique
of G′ is equal to χ(G′); note that G′ is also a perfect graph. The following well
known result is due to [12].

Lemma 2.1. Given a perfect graph G = (V,E), a minimum coloring of G and
a maximum weight independent set of G can be computed in polynomial time.

2.2 Bin Packing with Conflicts

Given a BPC instance I, let GI = (I, E) denote the conflict graph of I. A
packing of a subset of items S ⊆ I is a partition B = (B1, . . . , Bt) of S such that,
for all i ∈ [t], Bi is an independent set in GI , and s(Bi) ≤ 1. Let #B be the
number of bins (i.e., entries) in B.

In this paper we consider BPC on several well studied classes of perfect
graphs and the acronym BPC refers from now on to perfect conflict graphs. For
bin packing with bipartite conflicts (BPB), where the conflict graph is bipartite,
we assume a bipartition of V is known and given by XV and YV . Recall that
G = (V,E) is a split graph if there is a partition K,S of V into a clique and an
independent set, respectively. We call this variant of BPC bin packing with split
graph conflicts (BPS).

The following notation will be useful while enhancing a partial packing by
new items. For two packings B = (B1, . . . , Bt) and C = (C1, . . . , Cr), let B ⊕C =
(B1, . . . , Bt, C1, . . . , Cr) be the concatenation of B and C; also, for t = r let
B + C = (B1 ∪ C1, . . . , Bt ∪ Ct) be the union of the two packings; note that
the latter is not necessarily a packing. We denote by items(B) =

⋃
i∈[t] Bi the

set of items in the packing B. Finally, let I = (I, s, E) be a BPC instance
and T ⊆ I a subset of items. Define the BPC instances I ∩ T = (T, s, ET) and
I \T = (I \T, s, EI\T) where for all X ∈ {T, I \T} EX = {(u, v) ∈ E | u, v ∈ X}.

2.3 Bin Packing Algorithms

We use I = (I, s) to denote a BP instance, where I is a set of n items for some
n ≥ 1, and s : I → [0, 1] is the size function. Let LI = {� ∈ I | s(�) > 1

2} be the

266 I. Doron-Arad and H. Shachnai

set of large items, MI = {� ∈ I | 1
3 < s(�) ≤ 1

2} the set of medium items, and
SI = {� ∈ I | s(�) ≤ 1

3} the set of small items. Our algorithms use as building
blocks also algorithms for BP. The results in the next two lemmas are tailored
for our purposes. We give the detailed proofs in [6].4

Lemma 2.2. Given a BP instance I = (I, s), there is a polynomial-time algo-
rithm First-Fit Decreasing (FFD) which returns a packing B = (B1, . . . , Bt) of
I where #B ≤ (1 + 2 · max�∈I s(�)) · s(I) + 1. Moreover, it also holds that
#B ≤ |LI | + 3

2 · s(MI) + 4
3 · s(SI) + 1.

Lemma 2.3. Given a BP instance I = (I, s), there is a polynomial-time algo-
rithm AsymptoticBP which returns a packing B = (B1, . . . , Bt) of I such that
t = OPT(I) + o(OPT(I)). Moreover, if OPT(I) ≥ 100 then t ≤ 1.02 · OPT(I).

3 Approximations for Perfect and Bipartite Graphs

In this section we consider the bin packing problem with a perfect or bipartite
conflict graph. Previous works (e.g., [8,17]) showed the usefulness of the approach
based on finding first a minimum coloring of the given conflict graph, and then
packing each color class as a separate bin packing instance (using, e.g., algorithm
FFD). Indeed, this approach yields efficient approximations for BPC; however,
it does reach a certain limit. To enhance the performance of this coloring based
approach, we design several subroutines. Combined, they cover the problematic
cases and lead to improved approximation guarantees (see Table 1).

Our first subroutine is the coloring based approach, with a simple modifica-
tion to improve the asymptotic performance. For each color class Ci, i = 1, . . . , k
in a minimum coloring of the given conflict graph, we find a packing of Ci using
FFD, and another packing using AsymptoticBP (see Lemma 2.3). We choose the
packing which has smaller number of bins. Finally, the returned packing is the
concatenation of the packings of all color classes. The pseudocode of Algorithm
Color Sets is given in Algorithm 1.

Algorithm 1. Color Sets(I = (I, s, E))
1: Compute a minimum coloring C = (C1, . . . , Ck) of GI .
2: Initialize an empty packing B ← ().
3: for i ∈ [k] do
4: Compute A1 ← FFD((Ci, s)) and A2 ← AsymptoticBP((Ci, s)).
5: B ← B ⊕ arg minA∈{A1,A2} #A.
6: end for
7: Return B.

For the remainder of this section, fix a BPC instance I = (I, s, E). The
performance guarantees of Algorithm Color Sets are stated in the next lemma.
4 For more details on algorithms FFD and AsymptoticBP see, e.g., [27].

Approximating Bin Packing with Conflict Graphs 267

Lemma 3.1. Given a BPC instance I = (I, s, E), Algorithm Color Sets returns
in polynomial time in |I| a packing B of I such that #B ≤ χ(GI) + |LI | + 3

2 ·
s(MI) + 4

3 · s(SI). Moreover, if I is a BPB instance then #B ≤ 3
2 · |LI | + 4

3 ·
(OPT(I) − |LI |) + o(OPT(I)).

Note that the bounds may not be tight for instances with many large items.
Specifically, if |LI | ≈ OPT(I) then a variant of Algorithm Color Sets was shown
to yield a packing of at least 2.5 · OPT(I) bins [8]. To overcome this, we use an
approach based on the simple yet crucial observation that there can be at most
one large item in a bin. Therefore, we view the large items as bins and assign
items to these bins to maximize the total size packed in bins including large
items. We formalize the problem initially on a single bin.

Definition 3.2. In the bounded independent set problem (BIS) we are given a
graph G = (V,E), a weight function w : V → R≥0, and a budget β ∈ R≥0. The
goal is to find an independent set S ⊆ V in G such that w(S) is maximized and
w(S) ≤ β. Let I = (V,E,w, β) be a BIS instance.

Towards solving BIS, we need the following definitions. For α ∈ (0, 1], A is
an α-approximation algorithm for a maximization problem P if, for any instance
I of P, A outputs a solution of value at least α · OPT (I). A polynomial-time
approximation scheme (PTAS) for P is a family of algorithms {Aε} such that,
for any ε > 0, Aε is a polynomial-time (1 − ε)-approximation algorithm for P.
A fully PTAS (FPTAS) is a PTAS {Aε} where, for all ε > 0, Aε is polynomial
also in 1

ε . We now describe a PTAS for BIS. Fix a BIS instance I = (V,E,w, β)
and ε > 0. As there can be at most ε−1 items with weight at least ε · β in some
optimal solution OPT for I, we can guess this set F of items via enumeration.
Then, to add smaller items to F , we define a residual graph GF of items with
weights at most ε · β which are not adjacent to any item in F . Formally, define
GF = (VF , EF), where

VF = {v ∈ V \F | w(v) ≤ ε·β,∀u ∈ F : (v, u) /∈ E}, EF = {(u, v) ∈ E | u, v ∈ VF }

Now, we find a maximum weight independent set S in GF . Note that this can
be done in polynomial time for perfect and bipartite graphs. If w(F ∪S) ≤ β then
we have an optimal solution; otherwise, we discard iteratively items from S until
the remaining items form a feasible solution for I. Since we discard only items
with relatively small weights, we lose only an ε-fraction of the weight relative to
the optimum. The pseudocode for the scheme is given in Algorithm 2.

Lemma 3.3. Algorithm 2 is a PTAS for BIS.

We note that by a result of [7], unless P=NP, BIS does not admit an efficient
PTAS, even on bipartite graphs.5 Thus, our PTAS for this problem is of an
independent interest.

5 An efficient PTAS is a PTAS {Aε} where, for all ε > 0, the running time of Aε is
given by f(1/ε) times a polynomial of the input size.

268 I. Doron-Arad and H. Shachnai

Algorithm 2. PTAS((V,E,w, β), ε)
1: Initialize A ← ∅.
2: for all independent sets F ⊆ V in (V, E) s.t. |F | ≤ ε−1, w(F) ≤ β do
3: Define the residual graph GF = (VF , EF).
4: Find a maximum independent set S of GF w.r.t. w.
5: while w(F ∪ S) > β do
6: Choose arbitrary z ∈ S.
7: Update S ← S \ {z}.
8: end while
9: if w(A) < w(F ∪ S) then

10: Update A ← F ∪ S.
11: end if
12: end for
13: Return A.

We now define our maximization problem for multiple bins. We solve a
slightly generalized problem in which we have an initial partial packing in t
bins. Our goal is to add to these bins (from unpacked items) a subset of items
of maximum total size. Formally,

Definition 3.4. Given a BPC instance I = (I, s, E), S ⊆ I, and a packing
B = (B1, . . . , Bt) of S, define the maximization problem of I and B as the
problem of finding a packing B+C of S∪T , where T ⊆ I \S and C = (C1, . . . , Ct)
is a packing of T , such that s(T) is maximized.

Our solution for BIS is used to obtain a (1− 1
e −ε)-approximation for the max-

imization problem described in Definition 3.4. This is done using the approach
of [9] for the more general separable assignment problem (SAP).

Lemma 3.5. Given a BPC instance I = (I, s, E), S ⊆ I, a packing B =
(B1, . . . , Bt) of S, and a constant ε > 0, there is an algorithm MaxSize which
returns in time polynomial in |I| a (1− 1

e −ε)-approximation for the maximization
problem of I and B. Moreover, given an FPTAS for BIS on the graph (I, E),
the weight function s, and the budget β = 1, MaxSize is a (1− 1

e)-approximation
algorithm for the maximization problem of I and B.

We use the above to obtain a feasible solution for the instance. This is done
via a reduction to the maximization problem of the instance with a singleton
packing of the large items and packing the remaining items in extra bins. Specif-
ically, in the subroutine MaxSolve, we initially put each item in LI in a separate
bin. Then, additional items from SI and MI are added to the bins using Algo-
rithm MaxSize (defined in Lemma 3.5). The remaining items are packed using
Algorithm Color Sets. The pseudocode of the subroutine MaxSolve is given in
Algorithm 3.

The proof of Lemma 3.6 uses Lemmas 3.1, 3.3, and 3.5.

Lemma 3.6. Given a BPC instance I = (I, s, E) and an ε > 0, Algorithm
MaxSolve returns in polynomial time in |I| a packing C of I such that there are
0 ≤ x ≤ s(MI) and 0 ≤ y ≤ s(SI) such that the following holds.

Approximating Bin Packing with Conflict Graphs 269

Algorithm 3. MaxSolve(I = (I, s, E), ε)
1: Define T ← ({�} | � ∈ LI).
2: A ← MaxSize(I, LI , T, ε).
3: B ← Color Sets(I \ items(A)).
4: Return A ⊕ B.

1. x + y ≤ OPT(I) − |LI | +
(
1
e + ε

) · |LI |
2 .

2. #C ≤ χ(GI) + |LI | + 3
2 · x + 4

3 · y.

Lemma 3.6 improves significantly the performance of Algorithm Color Sets for
instances with many large items. However, Algorithm MaxSize may prefer small
over medium items; the latter items will be packed by Algorithm Color Sets (see
Algorithm 3). The packing of these medium items may harm the approximation
guarantee. Thus, to tackle instances with many medium items, we use a reduction
to a maximum matching problem for packing the large and medium items in at
most OPT(I) bins.6 Then, the remaining items can be packed using Algorithm
Color Sets. The graph used for the following subroutine Matching contains all
large and medium items; there is an edge between any two items which can be
assigned to the same bin in a packing of the instance I. Formally,

Definition 3.7. Given a BPC instance I = (I, s, E), the auxiliary graph of
I is HI = (LI ∪ MI , EH), where EH = {(u, v) | u, v ∈ LI ∪ MI , s({u, v}) ≤
1, (u, v) /∈ E}.
Algorithm Matching finds a maximum matching in HI and outputs a packing
of the large and medium items where pairs of items taken to the matching
are packed together, and the remaining items are packed in extra bins using
Algorithm Color Sets. The pseudocode of the subroutine Matching is given in
Algorithm 4.

Algorithm 4. Matching(I = (I, s, E))
1: Find a maximum matching M in HI .
2: B ← ({u, v} | (u, v) ∈ M) ⊕ ({v} | v ∈ MI ∪ LI , ∀u ∈ MI ∪ LI : (u, v) /∈ M).
3: Return B ⊕ Color Sets(I \ (MI ∪ LI)).

The proof of Lemma 3.8 follows by noting that the cardinality of a maximum
matching in HI in addition to the number of unmatched vertices in LI ∪ MI is
at most OPT(I).

Lemma 3.8. Given a BPC instance I = (I, s, E), Algorithm Matching returns
in polynomial time in |I| a packing A of I such that #A ≤ OPT(I) + χ(GI) +
4
3 · s(SI).

6 We note that a maximum matching based technique for BPC is used also in [8,15].

270 I. Doron-Arad and H. Shachnai

We now have the required components for the approximation algorithm for
BPC and the asymptotic approximation for BPB. Our algorithm, ApproxBPC,
applies all of the above subroutines and returns the packing which uses the
smallest number of bins. We use ε = 0.0001 for the error parameter in MaxSolve.
The pseudocode of ApproxBPC is given in Algorithm 5.

Algorithm 5. ApproxBPC(I)
1: Let ε = 0.0001.
2: Compute A1 ← Color Sets(I), A2 ← MaxSolve(I, ε), A3 ← Matching(I).
3: Return arg minA∈{A1,A2,A3} #A.

We give below the main result of this section. The proof follows by the argu-
ment that the subroutines Color Sets, MaxSolve, and Matching handle together
most of the difficult cases. Specifically, if the instance contains many large items,
then MaxSolve produces the best approximation. If there are many large and
medium items, then Matching improves the approximation guarantee. Finally,
for any other case, our analysis of the Color Sets algorithm gives us the desired
ratio. We summarize with the next result.

Theorem 3.9. Algorithm 5 is a 2.445-approximation for BPC and an asymp-
totic 1.391-approximation for BPB.

4 Split Graphs

In this section we enhance the use of maximization techniques for BPC to obtain
an absolute approximation algorithm for BPS. In particular, we improve upon
the recent result of Huang et al. [15]. We use as a subroutine the maximization
technique as outlined in Lemma 3.5. Specifically, we start by obtaining an FPTAS
for the BIS problem on split graphs. For the following, fix a BPS instance I =
(I, s, E). It is well known (see, e.g., [11]) that a partition of the vertices of a
split graph into a clique and an independent set can be found in polynomial
time. Thus, for simplicity we assume that such a partition of the split graph G
is known and given by KG, SG. We note that an FPTAS for the BIS problem on
split graphs follows from a result of Pferschy and Schauer [24] for knapsack with
conflicts, since split graphs are a subclass of chordal graphs. We give a simpler
FPTAS for our problem in [6].

Lemma 4.1. There is an algorithm FPTAS-BIS that is an FPTAS for the BIS
problem on split graphs.

Our next goal is to find a suitable initial packing B to which we apply MaxSize.
Clearly, the vertices KGI must be assigned to different bins. Therefore, our initial
packing contains the vertices of KGI distributed to |KGI | bins as {{v} | v ∈
KGI }. In addition, let α ∈ {0, 1, . . . , �2 · s(I)� + 1} be a guess of OPT(I)−|KGI |;

Approximating Bin Packing with Conflict Graphs 271

then, (∅)i∈[α] is a packing of α bins that do not contain items. Together, the
two above packings form the initial packing Bα. Our algorithm uses MaxSize
to add items to the existing bins of Bα and packs the remaining items using
FFD. Note that we do not need an error parameter ε, since we use MaxSize
with an FPTAS (see Lemma 3.5). For simplicity, we assume that OPT(I) ≥ 2
(else we can trivially pack the instance in a single bin) and omit the case where
OPT(I) = 1 from the pseudocode. We give the pseudocode of our algorithm for
BPS in Algorithm 6.

Algorithm 6. Split-Approx(I = (I, s, E))
1: for α ∈ {0, 1, . . . , �2 · s(I)� + 1} do
2: Define Bα = {{v} | v ∈ KGI } ⊕ (∅)i∈[α]

3: Aα ← MaxSize(I, KGI , Bα).
4: A∗

α ← Aα ⊕ FFD(I \ items(Aα)).
5: end for
6: Return arg minα∈{0,1,...,�2·s(I)�+1} #A∗

α.

By Lemmas 4.1 and 3.5 we have a
(
1 − 1

e

)
-approximation for the maximiza-

tion problem of the BPS instance I and an initial partial packing B. Hence, for
a correct guess α = OPT(I) − |KGI |, the remaining items to be packed by FFD

are of total size at most s(I)
e and can be packed in 2·OPT(I)

e bins. Thus, we have

Theorem 4.2. Algorithm 6 is a
(
1 + 2

e

)
-approximation for BPS.

5 Asymptotic Hardness for Bipartite and Split Graphs

In this section we show that there is no APTAS for BPB and BPS, unless
P = NP . We use a reduction from the Bounded 3-dimensional matching (B3DM)
problem, that is known to be MAX SNP-complete [18].

For the remainder of this section, let c > 2 be some constant. A B3DM
instance is a four-tuple J = (X,Y,Z, T), where X,Y,Z are three disjoint finite
sets and T ⊆ X × Y × Z; also, for each u ∈ X ∪ Y ∪ Z there are at most c
triples in T to which u belongs. A solution for J is M ⊆ T such that for all
u ∈ X ∪Y ∪Z it holds that u appears in at most one triple of M . The objective
is to find a solution M of maximum cardinality. Let OPT(J) be the value of an
optimal solution for J . We use in our reduction a restricted instance of B3DM
defined as follows.

Definition 5.1. For k ∈ N, a B3DM instance J is k-restricted if OPT(J) ≥ k.

In the next lemma we show the hardness of k-restricted B3DM. Intuitively,
since B3DM instances J with OPT(J) ≤ k are polynomially solvable for a fixed
k (e.g., by exhaustive enumeration), it follows that restricted-B3DM must be
hard to approximate, by the hardness result of Kann [18].

272 I. Doron-Arad and H. Shachnai

Lemma 5.2. There is a constant α < 1 such that for any k ∈ N there is no
α-approximation for the k-restricted B3DM problem unless P=NP.

We give below the main idea of our reduction, showing the asymptotic hard-
ness of BPB and BPS. A more formal description and the proof of Lemma 5.2
are given in [6]. For a sufficiently large n ∈ N, let J = (X,Y,Z, T) be an
n-restricted instance of B3DM, and let the components of J , together with
appropriate indexing, be U = X ∪ Y ∪ Z and T , where

X = {x1, . . . , xx̃}, Y = {y1, . . . , yỹ}, Z = {z1, . . . , zz̃}, T = {t1, . . . , tt̃}.

We outline our reduction for BPB and later show how it can be modified
to yield the hardness result for BPS. Given an n-restricted B3DM instance, we
construct a sequence of BPB instances. Each BPB instance contains an item for
each element u ∈ U , and an item for each triple t ∈ T . There is an edge (u, t) if
u ∈ U and t ∈ T , and u does not appear in t, i.e., we forbid packing an element
u in the same bin with a triple not containing u, for any u ∈ U . Since we do not
know the exact value of OPT(J), we define a family of instances with different
number of filler items; these items are packed in the optimum of our constructed
BPB instance together with elements not taken to the solution for J .

Specifically, for a guess i ∈ {n, n + 1, . . . , |T |} of OPT(J), we define a BPB
instance Ii = (Ii, s, E). The set of items in Ii is Ii = U ∪ Pi ∪ T ∪ Qi, where
Pi, Qi are a set of t̃ − i (filler) items and a set of x̃ + ỹ + z̃ − 3 · i (filler) items,
respectively, such that Pi ∩U = ∅ and Qi ∩U = ∅. The bipartite (conflict) graph
of Ii is Gi = (Ii, E), where E = EX ∪ EY ∪ EZ is defined as follows.

EX = {(x, t) | x ∈ X, t = (x′, y, z) ∈ T, x �= x′}
EY = {(y, t) | y ∈ Y, t = (x, y′, z) ∈ T, y �= y′}
EZ = {(z, t) | z ∈ Z, t = (x, y, z′) ∈ T, z �= z′}

Finally, define the sizes of items in Ii to be

∀u ∈ U, p ∈ Pi, q ∈ Qi, t ∈ T : s(u) = 0.15, s(p) = 0.45, s(q) = 0.85, s(t) = 0.55.

By the above, the only way to pack three items from x, y, z ∈ U with a triple
t ∈ T is if (x, y, z) = t; also, s ({x, y, z, t}) = 1. For an illustration of the reduction
see Fig. 1.

Given a packing (A1, . . . , Aq) for the BPB instance Ii, we consider all useful
bins Ab in the packing, i.e., Ab = {x, y, z, t}, where x ∈ X, y ∈ Y, z ∈ Z and
t = (x, y, z). The triple t from bin Ab is taken to our solution for the original
n-restricted B3DM instance J . Note that taking all triples as described above
forms a feasible solution for J , since each element is packed only once. Thus, our
goal becomes to find a packing for the reduced BPB instance with a maximum
number of useful bins. Indeed, since s(Ab) = 1 for any useful bin Ab, finding
a packing with many useful bins coincides with an efficient approximation for
BPB.

For the optimal guess i∗ = OPT(J), it is not hard to see that the optimum for
the BPB instance Ii∗ satisfies s(Ii∗) = OPT(Ii∗); that is, all bins in the optimum

Approximating Bin Packing with Conflict Graphs 273

Fig. 1. An illustration of the BPB instance Ii = (Ii, s, E), where i = OPT(J) = 2. The
optimal solution for Ii contains the bins {x1, y1, z1, (x1, y1, z1)}, {x2, y2, z2, (x2, y2, z2)},
and {p, (x1, y2, z1)}; this corresponds to an optimal solution (x1, y1, z1), (x2, y2, z2) for
the original B3DM instance. Note that in this example Qi = ∅.

are fully packed. For a sufficiently large n, and assuming there is an APTAS for
BPB, we can find a packing of Ii∗ with a large number of bins that are fully
packed. A majority of these bins are useful, giving an efficient approximation for
the original B3DM instance. A similar reduction to BPS is obtained by adding
to the bipartite conflict graph of the BPB instance an edge between any pair
of vertices in T ; thus, we have a split conflict graph. We summarize the above
discussion in the next result (the proof is given in [6]).

Theorem 5.3. There is no APTAS for BPB and BPS, unless P=NP.

6 Discussion

In this work we presented the first theoretical evidence that BPC on polynomially
colorable graphs is harder than classic bin packing, even in the special cases of
bipartite and split graphs. Furthermore, we introduced a new generic framework
for tackling BPC instances, based on a reduction to a maximization problem.
Using this framework, we improve the state-of-the-art approximations for BPC
on several well studied graph classes.

We note that better bounds for the maximization problems solved within our
framework will imply improved approximation guarantees for BPC on perfect,
bipartite, and split graphs. It would be interesting to apply our techniques to
improve the known results for other graph classes, such as chordal graphs or
partial k-trees.

References

1. Adany, R., et al.: All-or-nothing generalized assignment with application to
scheduling advertising campaigns. ACM Trans. Algorithms 12(3), 38:1–38:25
(2016)

274 I. Doron-Arad and H. Shachnai

2. Beaumont, O., Bonichon, N., Duchon, P., Larchevêque, H.: Distributed approxi-
mation algorithm for resource clustering. In: Shvartsman, A.A., Felber, P. (eds.)
SIROCCO 2008. LNCS, vol. 5058, pp. 61–73. Springer, Heidelberg (2008). https://
doi.org/10.1007/978-3-540-69355-0 7

3. Christofides, N.: The vehicle routing problem. Combinatorial optimization (1979)
4. Doron-Arad, I., Kulik, A., Shachnai, H.: An APTAS for bin packing with clique-

graph conflicts. In: Lubiw, A., Salavatipour, M. (eds.) WADS 2021. LNCS, vol.
12808, pp. 286–299. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-
83508-8 21

5. Doron-Arad, I., Kulik, A., Shachnai, H.: An AFPTAS for bin packing with partition
matroid via a new method for LP rounding. In: Proceedings of APPROX (2023)

6. Doron-Arad, I., Shachnai, H.: Approximating bin packing with conflict graphs via
maximization techniques. arXiv preprint arXiv:2302.10613 (2023)

7. Doron-Arad, I., Shachnai, H.: Tight bounds for budgeted maximum weight inde-
pendent set in bipartite and perfect graphs. arXiv preprint arXiv:2307.08592 (2023)

8. Epstein, L., Levin, A.: On bin packing with conflicts. SIAM J. Optim. 19(3), 1270–
1298 (2008)

9. Fleischer, L., Goemans, M.X., Mirrokni, V.S., Sviridenko, M.: Tight approximation
algorithms for maximum separable assignment problems. Math. Oper. Res. 36(3),
416–431 (2011)

10. Garey, M.R., Johnson, D.S.: Computers and intractability. A Guide to the (1979)
11. Golumbic, M.C.: Algorithmic Graph Theory and Perfect Graphs. Elsevier, Ams-

terdam (2004)
12. Grötschel, M., Lovász, L., Schrijver, A.: Geometric Algorithms and Combinatorial

Optimization, vol. 2. Springer, Berlin (2012)
13. Halldórsson, M.M.: A still better performance guarantee for approximate graph

coloring. Inf. Process. Lett. 45(1), 19–23 (1993)
14. Hoberg, R., Rothvoß, T.: A logarithmic additive integrality gap for bin packing.

In: Proceedings of the Twenty-Eighth Annual ACM-SIAM Symposium on Discrete
Algorithms, pp. 2616–2625. SIAM (2017)

15. Huang, Z., Zhang, A., Dósa, G., Chen, Y., Xiong, C.: Improved approximation
algorithms for bin packing with conflicts. Int. J. Found. Comput. Sci. 1–16 (2023)

16. Jansen, K.: An approximation scheme for bin packing with conflicts. J. Comb.
Optim. 3(4), 363–377 (1999)

17. Jansen, K., Öhring, S.R.: Approximation algorithms for time constrained schedul-
ing. Inf. Comput. 132(2), 85–108 (1997)

18. Kann, V.: Maximum bounded 3-dimensional matching is MAX SNP-complete. Inf.
Process. Lett. 37(1), 27–35 (1991)

19. Karmarkar, N., Karp, R.M.: An efficient approximation scheme for the one-
dimensional bin-packing problem. In: 23rd Annual Symposium on Foundations
of Computer Science, pp. 312–320. IEEE (1982)

20. de La Vega, W.F., Lueker, G.S.: Bin packing can be solved within 1+ ε in linear
time. Combinatorica 1(4), 349–355 (1981)

21. Laporte, G., Desroches, S.: Examination timetabling by computer. Comput. Oper.
Res. 11(4), 351–360 (1984)

22. McCloskey, B., Shankar, A.: Approaches to bin packing with clique-graph conflicts.
University of California, Computer Science Division (2005)

23. Oh, Y., Son, S.: On a constrained bin-packing problem. Technical Report CS-95-14
(1995)

24. Pferschy, U., Schauer, J.: The knapsack problem with conflict graphs. J. Graph
Algorithms Appl. 13(2), 233–249 (2009)

https://doi.org/10.1007/978-3-540-69355-0_7
https://doi.org/10.1007/978-3-540-69355-0_7
https://doi.org/10.1007/978-3-030-83508-8_21
https://doi.org/10.1007/978-3-030-83508-8_21
http://arxiv.org/abs/2302.10613
http://arxiv.org/abs/2307.08592

Approximating Bin Packing with Conflict Graphs 275

25. Rothvoß, T.: Approximating bin packing within O(log OPT * log log OPT) bins.
In: 54th Annual IEEE Symposium on Foundations of Computer Science, pp. 20–29.
IEEE Computer Society (2013)

26. Simchi-Levi, D.: New worst-case results for the bin-packing problem. Naval Res.
Logist. (NRL) 41(4), 579–585 (1994)

27. Vazirani, V.V.: Approximation Algorithms. Springer, Berlin, Heidelberg (2001)
28. Zuckerman, D.: Linear degree extractors and the inapproximability of max clique

and chromatic number. In: Proceedings of the Thirty-Eighth Annual ACM Sym-
posium on Theory of Computing, pp. 681–690 (2006)

	Approximating Bin Packing with Conflict Graphs via Maximization Techniques
	1 Introduction
	1.1 Related Work
	1.2 Techniques
	1.3 Organization

	2 Preliminaries
	2.1 Coloring and Independent Sets
	2.2 Bin Packing with Conflicts
	2.3 Bin Packing Algorithms

	3 Approximations for Perfect and Bipartite Graphs
	4 Split Graphs
	5 Asymptotic Hardness for Bipartite and Split Graphs
	6 Discussion
	References

