
Metric Dimension Parameterized
by Treewidth in Chordal Graphs

Nicolas Bousquet, Quentin Deschamps(B), and Aline Parreau

Univ. Lyon, Université Lyon 1, CNRS, LIRIS UMR 5205, 69621 Lyon, France
{nicolas.bousquet,quentin.deschamps,aline.parreau}@univ-lyon1.fr

Abstract. The metric dimension has been introduced independently by
Harary, Melter [11] and Slater [15] in 1975 to identify vertices of a graph
G using its distances to a subset of vertices of G. A resolving set X of a
graph G is a subset of vertices such that, for every pair (u, v) of vertices of
G, there is a vertex x in X such that the distance between x and u and the
distance between x and v are distinct. The metric dimension of the graph
is the minimum size of a resolving set. Computing the metric dimension
of a graph is NP-hard even on split graphs and interval graphs. Bonnet
and Purohit [2] proved that the metric dimension problem is W[1]-hard
parameterized by treewidth. Li and Pilipczuk strengthened this result
by showing that it is NP-hard for graphs of treewidth 24 in [14]. In
this article, we prove that metric dimension is FPT parameterized by
treewidth in chordal graphs.

1 Introduction

Determining the position of an agent on a network is a central problem. One
way to determine its position is to place sensors on nodes of the network and the
agents try to determine their positions using their positions with respect to these
sensors. More formally, assume that agents know the topology of the graph. Can
they, by simply looking at their position with respect to the sensors determine
for sure their position in the network? Conversely, where do sensors have to be
placed to ensure that any agent at any possible position can easily determine for
sure its position? These questions received a considerable attention in the last
decades and have been studied in combinatorics under different names such as
metric dimension, identifying codes, locating dominating sets...

Let G = (V,E) be a graph and s, u, v be three vertices of G. We say that
s resolves the pair (u, v) if the distance between s and u is different from the
distance between s and v. A resolving set of a graph G = (V,E) is a subset S
of vertices of G such that any vertex of G is identified by its distances to the
vertices of the resolving set. In other words, S is a resolving set if for every pair
(u, v) of vertices of G, there is a vertex s of S such that s resolves (u, v). The
metric dimension of G, denoted by dim(G), is the smallest size of a resolving
set of G.

This notion has been introduced in 1975 by Slater [15] for trees and by Harary
and Melter [11] for graphs to simulate the moves of a sonar. The associated
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
D. Paulusma and B. Ries (Eds.): WG 2023, LNCS 14093, pp. 130–142, 2023.
https://doi.org/10.1007/978-3-031-43380-1_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-43380-1_10&domain=pdf
https://doi.org/10.1007/978-3-031-43380-1_10

Metric Dimension Parameterized by Treewidth in Chordal Graphs 131

decision problem, called the Metric Dimension problem, is defined as follows:
given a graph G and an integer k, is the metric dimension of G is at most k?

The Metric Dimension problem is NP-complete [9] even for restricted
classes of graphs like planar graphs [4]. Epstein et al. [6] proved that this problem
is NP-complete on split graphs, bipartite and co-bipartite graphs. The problem
also is NP-complete on interval graphs [8] or sub-cubic graphs [12]. On the pos-
itive side, computing the metric dimension is linear on trees [11,15] and polyno-
mial in outer-planar graphs [4].

Parameterized Algorithms. In this paper, we consider the Metric Dimension
problem from a parameterized point of view. We say a problem Π is fixed param-
eter tractable (FPT) for a parameter k if any instance of size n and parameter
k can be decided in time f(k) · nO(1). Two types of parameters received a con-
siderable attention in the literature: the size of the solution and the “width” of
the graph (for various widths, the most classical being the treewidth).

Hartung and Nichterlein proved in [12] that the Metric Dimension problem
is W[2]-hard parameterized by the size of the solution. Foucaud et al. proved
that it is FPT parameterized by the size of the solution in interval graphs in [8].
This result was extended by Belmonte et al. who proved in [1] that Metric
Dimension is FPT parameterized by the size of the solution plus the tree-length
of the graph. In particular, it implies that computing the metric dimension for
chordal graph is FPT parameterized by the size of the solution.

Metric Dimension is FPT parameterized by the modular width [1]. Using
Courcelle’s theorem, one can also remark that it is FPT parameterized by the
treedepth of the graph as observed in [10]. Metric dimension has been proven
W[1]-hard parameterized by the treewidth by Bonnet and Purohit in [2]. Li
and Pilipczuk strengthened this result by showing that it is NP-complete for
graphs of treewidth, and even pathwidth, 24 in [14]. While Metric dimension
is polynomial on graphs of treewidth 1 (forests), its complexity is unknown for
graphs of treewidth 2 is open (even if it is known to be polynomial for outerplanar
graphs). Our main result is the following:

Theorem 1. Metric Dimension is FPT parameterized by treewidth on
chordal graphs. That is, Metric Dimension can be decided in time O(n3 +
n2 · f(ω)) on chordal graphs of clique number ω.

Recall that, on chordal graphs, the treewidth is equal to the size of a maxi-
mum clique minus one. Our proof is based on a dynamic programming algorithm.
One of the main difficulty to compute the metric dimension is that a pair of ver-
tices might be resolved by a vertex far from them in the graph. This non-locality
implies that it is not simple to use classical algorithmic strategies like divide-
and-conquer, induction or dynamic programming since a single edge or vertex
modification somewhere in the graph might change the whole solution1.

1 The addition of a single edge in a graph might modify the metric dimension by Ω(n),
see e.g. [7].

132 N. Bousquet et al.

The first ingredient of our algorithm consists in proving that, given a chordal
graph, if we are using a clique tree of a desirable form and make some simple
assumptions on the shape of an optimal solution, we can ensure that resolving a
pair of vertices close to a separator implies that we resolve all the pairs of vertices
in the graph. Using this lemma, we build a dynamic programming algorithm that
computes the minimum size of a resolving set containing a given vertex in FPT-
time parameterized by treewdith.

The special type of clique tree used in the paper, inspired from [13], is pre-
sented in Sect. 2.1. We then give some properties of resolving sets in chordal
graphs in Sect. 2.2. These properties will be needed to prove the correctness
and the running time of the algorithm. Then, we present the definition of the
extended problem in Sect. 3.1 and the rules of the dynamic programming in
Sect. 3.2 where we also prove the correction of the algorithm. We end by an
analysis of the complexity of the algorithm in Sect. 4.

Further Work. The function of the treewidth in our algorithm is probably not
optimal and we did not try to optimize it to keep the algorithm as simple as
possible. A first natural question is the existence of an algorithm running in time
2ω · Poly(n) for chordal graphs.

We know that Theorem 1 cannot be extended to bounded treewidth graphs
since Metric Dimension is NP-hard on graphs of treewidth at most 24 [14].
One can nevertheless wonder if our proof technique can be adapted to design
polynomial time algorithms for graphs of treewidth at most 2 on which the
complexity status of Metric Dimension is still open.

Our proof crucially relies on the fact that a separator X of a chordal graph
is a clique and then the way a vertex in a component of G \ X interacting with
vertices in another component of G \ X is simple. One can wonder if there is a
tree decomposition in G where all the bags have diameter at most C, is it true
that Metric Dimension is FPT parameterized by the size of the bags plus
C. Note that, since Metric Dimension is NP-complete on chordal graphs, the
problem is indeed hard parameterized by the diameter of the bags only.

2 Preliminaries

2.1 Nice Clique Trees

Unless otherwise stated, all graphs considered in this paper are undirected, sim-
ple, finite and connected. For standard terminology and notations on graphs, we
refer the reader to [3]. Let us first define some notations we use throughout the
article.

Let G = (V,E) be a graph where V is the set of vertices of G and E the set
of edges; we let n = |V |. For two vertices x and y in G, we denote by d(x, y)
the length of a shortest path between x and y and call it distance between x
and y. For every x ∈ V and U ⊆ V , the distance between x and U , denoted by
d(x,U), is the minimum distance between x and a vertex of U . Two vertices x
and y are adjacent if xy ∈ E. A clique is a graph where all the pairs of vertices

Metric Dimension Parameterized by Treewidth in Chordal Graphs 133

are adjacent. We denote by ω the size of a maximum clique. Let U be a set
of vertices of G. We denote by G \ U the subgraph of G induced by the set of
vertices V \ U . We say that U is a separator of G if G \ U is not connected. If
two vertices x and y of V \ U belong to two different connected components in
G \ U , we say that U separates x and y. If a separator U induces a clique, we
say that U is a clique separator of G.

Definition 1. A tree-decomposition of a graph G is a pair (X,T) where T is
a tree and X = {Xi|i ∈ V (T)} is a collection of subsets (called bags) of V (G)
such that:

–
⋃

i∈V (T) Xi = V (G).
– For each edge xy ∈ E(G), x, y ∈ Xi for some i ∈ V (T).
– For each x ∈ V (G), the set {i|x ∈ Xi} induces a connected sub-tree of T .

Let G be a graph and (X,T) a tree-decomposition of G. The width of the
tree-decomposition (X,T) is the biggest size of a bag minus one. The treewidth
of G is the smallest width of (X,T) amongst all the tree-decompositions (X,T)
of G.

Chordal graphs are graphs with no induced cycle of length at least 4. A
characterization given by Dirac in [5] ensures chordal graphs are graphs where
minimal vertex separators are cliques. Chordal graphs admit tree-decompositions
such that all the bags are cliques. We call such a tree-decomposition a clique tree.

Our dynamic programming algorithm is performed in a bottom-up way on a
clique tree of the graph with more properties than the one given by Definition 1.
These properties permit to simplify the analysis of the algorithm. We adapt the
decomposition of [13, Lemma 13.1.2] to get this tree-decomposition.

Lemma 2. Let G = (V,E) be a chordal graph and r a vertex of G. There exists
a clique tree (X,T) such that (i) T contains at most 7n nodes, (ii) T is rooted in
a node that contains only the vertex r, (iii) T contains only four types of nodes,
that are:

– Leaf nodes, |Xi| = 1 which have no child.
– Introduce nodes i which have exactly one child j, and that child satisfies Xi =

Xj ∪ {v} for some vertex v ∈ V (G) \ Xj.
– Forget nodes i which have exactly one child j, and that child satisfies Xi =

Xj \ {v} for some vertex v ∈ Xj.
– Join node i which have exactly two children i1 and i2, and these children

satisfy Xi = Xi1 = Xi2 .

Moreover, such a clique tree can be found in linear time.

In the following, a clique tree with the properties of Lemma 2 will be called
a nice clique tree and we will only consider nice clique trees (X,T) of chordal
graphs G.

Given a rooted clique tree (T,X) of G, for any node i of T , we define the
subgraph of G rooted in Xi, denoted by T (Xi), as the subgraph induced by the
subset of vertices of G contained in at least one of the bags of the sub-tree of T
rooted in i (i.e. in the bag of i or one of its descendants).

134 N. Bousquet et al.

2.2 Clique Separators and Resolving Sets

In this section, we give some technical lemmas that will permit to bound by f(ω)
the amount of information we have to remember in the dynamic programming
algorithm.

Lemma 3. Let K be a clique separator of G and G1 be a connected component
of G \ K. Let Gext be the subgraph of G induced by the vertices of G1 ∪ K and
Gint = G \ Gext. Let x1, x2 ∈ V (Gint) be such that |d(x1,K) − d(x2,K)| ≥ 2.
Then, every vertex s ∈ V (Gext) resolves the pair (x1, x2).

Before proving Lemma 5, let us state a technical lemma.

Lemma 4. Let G be a chordal and T be a nice clique tree of G. Let X,Y be two
bags of T such that X ∩ Y = ∅. Assume that there exist x ∈ X, y ∈ Y such that
d(x, y) ≥ 2 and let z be a neighbour of x that appears in the bag the closest to
Y in T amongst all the bags on the path between X and Y . Then z belongs to a
shortest path between x and y.

Lemma 5. Let S be a subset of vertices of a chordal graph G. Let X, Y and
Z be three bags of a nice tree-decomposition T of G such that Z is on the path
P between X and Y in T . Denote by P = X1, . . . Z . . . Xp the bags of P with
X = X1 and Y = Xp. Let x be a vertex of X and y a vertex of Y with d(x,Z) ≥ 2
and d(y, Z) ≥ 2. Assume that any pair of vertices (u, v) with u ∈ X2 ∪ . . . ∪ Z,
v ∈ Z ∪ . . . ∪ Xp, d(u,Z) < d(x,Z) and d(v, Z) < d(y, Z) is resolved by S. Then
the pair (x, y) is resolved by S.

Proof. Let i1 be such that Xi1 ∩ N [x] �= ∅ and for every j > i1, Xj ∩ N [x] = ∅
and i2 be such that Xi2 ∩ N [y] �= ∅ and for j < i2, Xj ∩ N [y] = ∅. Let x′ be
the only neighbour of x in Xi1 and y′ be the only neighbour of y in Xi2 . They
are unique by definition of nice tree-decomposition. Note that d(x, y) ≥ 4 since
d(x,Z) ≥ 2 and d(y, Z) ≥ 2. So N [x] is not adjacent to N [y] and then i1 < i2. By
Lemma 4, x′ is on a shortest path between x and Z and y′ is on a shortest path
between y and Z. So d(x′, Z) < d(x,Z) and d(y′, Z) < d(y, Z). By hypothesis,
there is a vertex s ∈ S resolving the pair (x′, y′). Let us prove that s resolves
the pair (x, y).

If s belongs to N [x] or to N [y] then s resolves the pair (x, y) since d(x, y) ≥ 4.
So we can assume that d(s, x) ≥ 2 and d(s, y) ≥ 2. Let Xs be a bag of T
containing s and X ′

s be the closest bag to Xs on P between X and Y .
Case 1: s ∈ Xi1 and s ∈ Xi2 . Then, d(s, x′) ≤ 1 and d(s, y′) ≤ 1. The vertex
s resolves the pair (x′, y′) so d(s, x′) �= d(s, y′) so s = x′ or s = y′. Assume by
symmetry that s = x′, then d(s, x) = 1 and d(s, y) ≥ 3 because d(x, y) ≥ 4. So
s resolves the pair (x, y).
Case 2: s belongs to exactly one of Xi1 or Xi2 . By symmetry assume that s ∈ Xi1 .
By Lemma 4, y′ is on a shortest path between y and s. So d(s, y) = d(s, y′) + 1.
As s belongs to Xi1 then d(x′, s) ≤ 1 and d(x, s) ≤ 2. As d(y′, s) �= d(x′, s) we
have d(y′, s) ≥ 2, so d(s, y) ≥ 3. Thus s resolves the pair (x, y).

Metric Dimension Parameterized by Treewidth in Chordal Graphs 135

Case 3: s /∈ Xi1 and s /∈ Xi2 . First, we consider the case where X ′
s is between

Xi1 and Xi2 . Then, d(s, x) = d(s, x′) + 1 and d(s, y) = d(s, y′) + 1 by Lemma 4
as Xi1 separates y and s and Xi2 separates x and s. Thus, s resolves the pair
(x, y).

By symmetry, we can now assume that X ′
s is between X and Xi1 . Since

i1 < i2, Xi2 separates s and y. So d(s, y) = d(s, y′)+1 by Lemma 4. To conclude
we prove that d(s, x′) < d(s, y′). Let Q be a shortest path between s and y′.
The bag Xi1 separates s and y′ so Q ∩ Xi1 �= ∅. Let y1 ∈ Q ∩ Xi1 . By definition
of Q, d(s, y′) = d(s, y1) + d(y1, y′). Since y1, x

′ ∈ Xi1 and Xi1 is a clique, we
have that y1 ∈ N [x′] and so, y1 �= y′. So d(y1, y′) �= 0. We also have d(s, x′) ≤
d(s, y1) + 1 because y1 is a neighbour of x′. As d(s, x′) �= d(s, y′), this ensures
d(s, x′) < d(s, y′). So s resolves the pair (x, y) because d(s, x) ≤ d(s, x′) + 1 <
d(s, y′) + 1 = d(s, y). �

The following lemma is essentially rephrasing Lemma 5 to get the result on
a set of vertices.

Lemma 6. Let G be a chordal graph and S be a subset of vertices of G. Let
T be a nice clique tree of G. Let X be a bag of T and let T1 = (X1, E1) and
T2 = (X2, E2) be two connected components of T \ X. Assume that any pair of
vertices (u, v) of (X1∪X)×(X2∪X) with d(u,X) ≤ 2 and d(v,X) ≤ 2 is resolved
by S. Then any pair of vertices (u, v) of (X1,X2) with |d(u,X) − d(v,X)| ≤ 1
is resolved by S.

3 Algorithm Description

In this section, we fix a vertex v of a chordal graph G and consider a nice clique
tree (T,X) rooted in v which exists by Lemma 2. We present an algorithm
computing the smallest size of a resolving set of G containing v.

3.1 Extension of the Problem

Our dynamic programming algorithm computes the solution of a generalization
of metric dimension which is easier to manipulate when we combine solutions.
In this new problem, we will represent some vertices by vectors of distances. We
define notations to edit vectors.

Definition 7. Given a vector r, the notation ri refers to the i-th coordinate
of r.

– Let r = (r1, . . . , rk) ∈ N
k be a vector of size k and m ∈ N. The vector r′ = r|m

is the vector of size k + 1 with r′
i = ri for 1 ≤ i ≤ k and r′

k+1 = m.
– Let r = (r1, . . . , rk) ∈ N

k be a vector of size k. The vector r− is the vector of
size k − 1 with r−

i = ri for 1 ≤ i ≤ k − 1.

136 N. Bousquet et al.

Definition 8. Let i be a node of T and let Xi = {v1, . . . , vk} be the bag of i.
For a vertex x of G, the distance vector dXi

(x) of x to Xi is the vector of size
k such that, for 1 ≤ j ≤ k, dXi

(x)j = d(x, vj). We define the set d≤2(Xi) as the
set of distance vectors of the vertices of T (Xi) at distance at most 2 of Xi in G
(i.e. one of the coordinate is at most 2).

Definition 9. Let G be a graph and K = {v1, . . . , vk} be a clique of G. Let
x be a vertex of G. The trace of x on K, denoted by TrK(x), is the vector r
of {0, 1}k \ {1, . . . , 1} such that for every 1 ≤ i ≤ k, d(x, vi) = a + ri where
a = d(x,K).

Let S be a subset of vertices of G. The trace TrK(S) of S in K is the set of
vectors {TrK(x), x ∈ S}.

The trace is well-defined because for a vertex x and a clique K, the distance
between x and a vertex of K is either d(x,K) or d(x,K) + 1.

Definition 10. Let r1, r2 and r3 be three vectors of same size k. We say that
r3 resolves the pair (r1, r2) if

min
1≤i≤k

(r1 + r3)i �= min
1≤i≤k

(r2 + r3)i.

Lemma 11. Let K be a clique separator of G and G1 be a connected component
of G \ K. Let (x, y) be a pair of vertices of G \ G1 and let r be a vector of size
|K|. If r resolves the pair (dK(x),dK(y)), then any vertex s ∈ V (G1) with
TrK(s) = r resolves the pair (x, y).

Proof. Let s be a vertex of G1 such that TrK(s) = r. The clique K separates
s and x (resp. y) so d(x, s) = min1≤i≤|K|(dK(x) + TrK(s))i + d(K, s) (resp.
d(y, s) = min1≤i≤|K|(dK(y) + TrK(s))i + d(K, s)). The vector r resolves the
pair (dK(x),dK(y)). So d(x, s) �= d(y, s) and s resolves the pair (x, y). �

Definition 12. Let K be a clique separator of G and G1, G2 be two (non nec-
essarily distinct) connected components of G \ K. Let M be a set of vectors
and let x ∈ V (G1) ∪ K and y ∈ V (G2) ∪ K. If a vector r resolves the pair
(dK(x),dK(y)), we say that r resolves the pair (x, y). We say that the pair of
vertices (x, y) is resolved by M if there exists a vector r ∈ M that resolves the
pair (x, y).

We can now define the generalised problem our dynamic programming algo-
rithm actually solves. We call it the extended metric dimension problem
(EMD for short). We first define the instances of this problem.

Definition 13. Let i be a node of T . An instance for a node i of the EMD
problem is a 5-uplet I = (Xi , SI ,Dint(I),Dext(I),Dpair(I)) composed of the bag
Xi of i, a subset SI of Xi and three sets of vectors satisfying

– Dint(I) ⊆ {0, 1}|Xi| and Dext(I) ⊆ {0, 1}|Xi|,
– Dpair(I) ⊆ {0, 1, 2, 3}|Xi| × {0, 1, 2, 3}|Xi|,

Metric Dimension Parameterized by Treewidth in Chordal Graphs 137

– Dext(I) �= ∅ or SI �= ∅,
– For each pair of vectors (r1, r2) ∈ Dpair(I), there exist two vertices x ∈ T (Xi)

with dXi
(x) = r1 and d(x,Xi) ≤ 2 and y /∈ T (Xi) with dXi

(y) = r2 and
d(y,Xi) ≤ 2.

Definition 14. A set S ⊆ T (Xi) is a solution for an instance I of the EMD
problem if

– (S1) Every pair of vertices of T (Xi) is either resolved by a vertex in S or
resolved by a vector of Dext(I).

– (S2) For each vector r ∈ Dint(I) there exists a vertex s ∈ S such that
TrXi

(s) = r.
– (S3) For each pair of vector (r1, r2) ∈ Dpair(I), for any vertex x ∈ T (Xi)

with dXi
(x) = r1 and any vertex y /∈ T (Xi) with dXi

(y) = r2, if d(x,Xi) ≤ 2
and d(y,Xi) ≤ 2 the pair (x, y) is resolved by S.

– (S4) S ∩ Xi = SI .

In the rest of the paper, for shortness, we will refer to an instance of the EMD
problem only by an instance.

Definition 15. Let I be an instance. We denote by dim(I) the minimum size
of a set S ⊆ T (Xi) which is a solution of I. If such a set does not exist we define
dim(I) = +∞. We call this value the extended metric dimension of I.

We now explain the meaning of each element of I. Firstly, a solution S must
resolve any pair in T (Xi), possibly with a vector of Dext(I) which represents
a vertex of V \ T (Xi) in the resolving set. Secondly, for all r in Dint(I), we
are forced to select a vertex in T (Xi) whose trace is r. This will be useful
to combine solutions since it will be a vector of Dext in other instances. The
elements in Dpair(I) will also be useful for combinations. In some sense Dpair(I)
is the additional gain of S compared to the main goal to resolve T (Xi). The set
SI constrains the intersection between S and Xi by forcing a precise subset of
Xi to be in S.

The following lemma is a consequence of Definition 14. It connects the defi-
nition of the extended metric dimension with the metric dimension.

Lemma 16. Let G be a graph, T be a nice tree-decomposition of G and r be the
root of T . Let I0 be the instance ({r}, {r}, ∅, ∅, ∅), then dim(I0) is the smallest
size of a resolving set of G containing r.

To ensure that our algorithm works well, we will need to use Lemma 3 in some
subgraphs of G. This is possible only if we know that the solution is not included
in the subgraph. This corresponds to the condition Dext(I) �= ∅ or SI �= ∅ and
this is why the algorithm computes the size of a resolving set containing the root
of T .

3.2 Dynamic Programming

We explain how we can compute the extended metric dimension of an instance I
given the extended metric dimension of the instances on the children of Xi in T .
The proof is divided according to the different type of nodes.

138 N. Bousquet et al.

Leaf Node. Computing the extended metric dimension of an instance for a leaf
node can be done easily with the following lemma:

Lemma 17. Let I be an instance for a leaf node i and v be the unique vertex
of Xi. Then,

dim(I) =

⎧
⎨

⎩

0 if SI = ∅, Dint(I) = ∅ and Dpair(I) = ∅
1 if SI = {v} and Dint(I) ⊆ {(0)}
+∞ otherwise

Proof. Let I be an instance for i. If SI = ∅, only the set S = ∅ can be a solution
for I. This set is a solution only if Dint(I) = ∅ and Dpair(I) = ∅. If SI = {v},
only the set S = {v} can be a solution for I. This is a solution only if Dint(I) is
empty or only contains the vector Trxi

(v). �

In the rest of the section, we treat the three other types of nodes. For each
type of nodes we will proceed as follows: define some conditions on the instances
on children to be compatible with I, and prove an equality between the extended
metric dimension on compatible children instances and the extended metric
dimension of the instance of the node.

Join Node. Let I be an instance for a join node i and let i1 and i2 be the
children of i.

Definition 18. A pair of instances (I1, I2) for (i1, i2) is compatible with I if

– (J1) SI1 = SI2 = SI ,
– (J2) Dext(I1) ⊆ Dext(I) ∪ Dint(I2) and Dext(I2) ⊆ Dext(I) ∪ Dint(I1),
– (J3) Dint(I) ⊆ Dint(I1) ∪ Dint(I2),
– (J4) Let C1 = {(r, t) ∈ Dpair(I1) such that r /∈ d≤2(Xi1)} and C2 = {(r, t) ∈

Dpair(I2) such that r /∈ d≤2(Xi2)}. Let D1 = {(r, t) ∈ d≤2(Xi1)×d≤2(G\Xi1)
such that there exists u ∈ Dint(I2) resolving the pair (r, t)} and D2 = {(r, t) ∈
d≤2(Xi2) × d≤2(G \ Xi2)) such that there exists u ∈ Dint(I1) resolving the
pair (r, t)} Then Dpair(I) ⊆ (C1 ∪ D1 ∪ Dpair(I1)) ∩ (C2 ∪ D2 ∪ Dpair(I2)),

– (J5) For all r1 ∈ d≤2(Xi1), for all r2 ∈ d≤2(Xi2), (r1, r2) ∈ Dpair(I1) or
(r2, r1) ∈ Dpair(I2) or there exists t ∈ Dext(I) such that t resolves the pair
(r1, r2).

Condition (J4) represents how the pairs of vertices of V (T (Xi1))×V (T (Xi2))
can be resolved. A pair (r, t) is in (C1∪D1∪Dpair(I1)) if all the pairs of vertices
(x, y) with x ∈ V (T (Xi1)) and y ∈ V (T (Xi2)) are resolved. If (r, t) is in C1, no
pair (x, y) with x ∈ V (T (Xi1)) and y ∈ V (T (Xi2)) exists, if (r, t) is in D1 the
pairs of vertices are resolved by a vertex outside of V (T (Xi1)) and if (r, t) is in
Dpair(I1) the pairs of vertices are resolved by a vertex of V (T (Xi1)). So a pair
(r, t) is resolved if the pair is in (C1∪D1∪Dpair(I1)) and in (C2∪D2∪Dpair(I2)).

Let FJ(I) be the set of pairs of instances compatible with I. We want to
prove the following lemma:

Metric Dimension Parameterized by Treewidth in Chordal Graphs 139

Lemma 19. Let I be an instance for a join node i. Then,

dim(I) = min
(I1,I2)∈FJ (I)

(dim(I1) + dim(I2) − |SI |).

We prove the equality by proving the two inequalities in the next lemmas.

Lemma 20. Let (I1, I2) be a pair of instances for (i1, i2) compatible with I with
finite values for dim(I1) and dim(I2). Let S1 ⊆ V (T (Xi1)) be a solution for I1
and S2 ⊆ V (T (Xi2)) be a solution for I2. Then S = S1 ∪ S2 is a solution for I.
In particular,

dim(I) ≤ min
(I1,I2)∈FJ (I)

(dim(I1) + dim(I2) − |SI |).

Proof. Let us prove that the conditions of Definition 14 are satisfied.
(S1) Let (x, y) be a pair of vertices of T (Xi). Assume first that x ∈ V (T (Xi1))
and y ∈ V (T (Xi1)). Either (x, y) is resolved by a vertex of S1 and then by a
vertex of S or (x, y) is resolved by a vector r ∈ Dext(I1). By condition (J2),
r ∈ Dext(I) or r ∈ Dint(I2). If r ∈ Dext(I) then (x, y) is resolved by a vector
of Dext(I1). Otherwise, there exists a vertex t ∈ S2 such that TrXi2

(t) = r. So
t ∈ S and t resolves the pair (x, y). The case x ∈ V (T (Xi2)) and y ∈ V (T (Xi2))
is symmetric. So we can assume that x ∈ V (T (Xi1)) and y ∈ V (T (Xi2)). If
d(x,Xi) ≤ 2 and d(y,Xi) ≤ 2, the condition (J5) ensures that the pair (x, y) is
resolved by S or by a vector of Dext(I). Otherwise, either |d(x,Xi)−d(y,Xi)| ≤ 1
and (x, y) is resolved by Lemma 6 or |d(x,Xi)−d(y,Xi)| ≥ 2 and (x, y) is resolved
by Lemma 3 because Dext(I) �= ∅ or SI �= ∅.
(S2) Let r ∈ Dint(I). By compatibility, the condition (J3) ensures that r ∈
Dint(I1) or r ∈ Dint(I2). As S = S1 ∪ S2, S contains a vertex s such that
TrXi

(s) = r.
(S3) Let (r, t) ∈ Dpair(I) and (x, y) with x ∈ V (T (Xi)) such that dXi

(x) = r
and y /∈ T (Xi) such that dXi

(y) = t. Without loss of generality assume that
x ∈ V (T (Xi1)).

By compatibility, (r, t) ∈ (C1 ∪ D1 ∪ Dpair(I1)) ∩ (C2 ∪ D2 ∪ Dpair(I2)) so in
C1 ∪ D1 ∪ Dpair(I1). If (r, t) ∈ Dpair(I)1, then there exists s ∈ S1 that resolves
the pair (x, y) so the pair is resolved by S. If (r, t) ∈ D1, there exists u ∈ Dint(I2)
such that u resolves the pair (r, t). By compatibility, there exists s ∈ S2 such
that TrXi

(s) = u. So s resolves the pair (x, y). And (r, t) /∈ C1 since x belongs
to T (Xi1) with vector distance r.
(S4) is clear since Xi1 = Xi2 = Xi.

Thus, dim(I) ≤ dim(I1) + dim(I2) − |SI | is true for any pair of compatible
instances (I1, I2) so dim(I) ≤ min(I1,I2)∈FJ (I)(dim(I1) + dim(I2) − |SI |). �

Lemma 21. Let I be an instance for a join node i and let i1 and i2 be the
children of i. Then,

dim(I) ≥ min
(I1,I2)∈FJ (I)

(dim(I1) + dim(I2) − |SI |).

140 N. Bousquet et al.

Proof. If dim(I) = +∞ then the result indeed holds. So we can assume that
dim(I) is finite. Let S be a solution for I of minimal size. Let S1 = S ∩ T (Xi1)
and S2 = S ∩ T (Xi2). We define now two instances I1 and I2 for i1 and i2.
Let SI1 = SI2 = SI , Dint(I1) = TrXi

(S1), Dint(I2) = TrXi
(S2), Dext(I1) =

Dext(I)∪Dint(I2) and Dext(I2) = Dext(I)∪Dint(I1). To build the sets Dpair(I1)
and Dpair(I2) we make the following process that we explain for Dpair(I1). For all
pairs of vectors (r, t) of (d≤2(Xi1), d≤2(G\Xi1)), consider all the pairs of vertices
(x, y) with x ∈ V (T (Xi1)), y ∈ V (G \ T (Xi1)), r ∈ d≤2(Xi), t ∈ d≤2(G \ Xi1)),
dXi

(x) = r and dXi
(y) = t. If all the pairs are resolved by vertices of S1 (that is

for each pair, there exists a vertex of S1 that resolves the pair), then add (r, t)
to Dpair(I1).

Checking that (I1, I2) is compatible with I, that S1 is a solution of I1, and
that S2 is a solution of I2 is straightforward. It consists of checking conditions
of respectively Definition 18 and Definition 14.

Finally we prove the announced inequality. Since S is a minimal solution
for I, we have dim(I) = |S|. The sets S1 and S2 are solutions for S1 and S2

so dim(I1) ≤ |S1| and dim(I2) ≤ |S2|. Since |S| = |S1| + |S2| − |SI |, dim(I) ≥
dim(I1) + dim(I2) − |SI |, giving the result. �

Lemma 19 is a direct consequence of Lemma 20 and Lemma 21.

Introduce Node. We now consider an instance I for an introduce node i. Let
j be the child of i and v ∈ V be such that Xi = Xj ∪ {v}. Let Xi = {v1, . . . , vk}
with v = vk. The tree T (Xi) contains one more vertex than its child. The
definition of the compatibility is slightly different if we consider the same set as
a solution (type 1) or if we add this vertex to the resolving set (type 2).

Definition 22. An instance I1 is compatible with I of type 1 (resp. 2) if

– (I1) SI = SI1 (resp. = SI1 ∪ {v}).
– (I2) For all r ∈ Dext(I), r− ∈ Dext(I1) (resp. or r = (0, . . . , 0)).
– (I3) For all r ∈ Dint(I), rk = 1 and r− ∈ Dint(I1) (resp. or r = (1, . . . , 1, 0)).
– (I4) For all (r, t) ∈ Dpair(I), (r−, t−) ∈ Dpair(I1).
– (I5) If I1 is of type 1, for all (r, t) with t = (0, . . . , 0), (r, t) ∈ Dpair(I1).

Lemma 23. Let I be an instance for an introduce node i. Let F1(I) be the set of
instances I1 for i1 compatible with I of type 1 and F2(I) be the set of instances
I2 for i1 compatible with I of type 2. Then,

dim(I) = min { min
I1∈F1(I)

{dim(I1)}; min
I2∈F2(I)

{dim(I2) + 1}}.

The proof of Lemma 23 consists in proving both inequalities similarly to
Lemma 19. One inequality comes from the fact that we can get a solution of
I from any compatible instance. The other consists in building a solution for a
compatible instance from a minimal solution for I.

Metric Dimension Parameterized by Treewidth in Chordal Graphs 141

Forget Node. The construction for the forget nodes is similar to the one for
introduce nodes. The main difference is that a vertex is removed from the bag so
we have to keep the information about this vertex. The full construction leads
to a similar equality between the extended metric dimension of an instance and
the extended metric dimension of the compatible instances of its child.

3.3 Algorithm

Given as input a nice clique tree, the algorithm computes the extended metric
dimension bottom up from the leaves. The algorithm computes the extended
metric dimension for leaves using Lemma 17, for join nodes using Lemma 19, for
introduce nodes using Lemma 23 and forget nodes using a similar lemma. The
correction of the algorithm is straightforward by these lemmas.

We denote this algorithm by IMD in the following which takes as input a
nice clique tree T and outputs the minimal size of a resolving set of G containing
the root of T .

4 Proof of Theorem 1

Let us finally explain how we can compute the metric dimension of G. The
following lemma is a consequence of Lemma 16.

Lemma 24. The metric dimension of G is minv∈V (G){IMD(T (v))} where T (v)
is a nice clique tree of G rooted in v.

So, n executions of the IMD algorithm with different inputs are enough to
compute the metric dimension. Lemma 2 ensures that we can find for any vertex
v of G a nice clique tree in linear time, the last part is to compute the complexity
of the IMD algorithm.

Lemma 25. The algorithm for IMD runs in time O(n(T)2+n(T)·f(ω)) where
n(T) is the number of vertices of the input tree T and f = O(ω2 · 2O(42

ω
)) is a

function that only depends on the size of a maximum clique ω.

We now have all the ingredients to prove Theorem 1:

Proof. For each vertex v of G, one can compute a nice clique tree of size at
most 7n according to Lemma 2. Given this clique tree, the IMD algorithm
outputs the size of a smallest resolving set containing v by Lemma 16 in time
O(n(T)2 + n(T) · f(ω)) for a computable function f according to Corollary 25.
Repeat this for all vertices of G permits to compute the metric dimension of G
by Lemma 24 in time O(n3 + n2 · f(ω)). �

142 N. Bousquet et al.

References

1. Belmonte, R., Fomin, F.V., Golovach, P.A., Ramanujan, M.S.: Metric dimension
of bounded tree-length graphs. CoRR abs/1602.02610 (2016)

2. Bonnet, É., Purohit, N.: Metric dimension parameterized by treewidth. Algorith-
mica 83(8), 2606–2633 (2021)

3. Chartrand, G., Lesniak, L., Zhang, P.: Graphs and Digraphs, 6th edn. Chapman
and Hall/CRC (2015)

4. Dı́az, J., Pottonen, O., Serna, M., van Leeuwen, E.J.: On the complexity of metric
dimension. In: Epstein, L., Ferragina, P. (eds.) Algorithms - ESA 2012 (2012)

5. Dirac, G.A.: On rigid circuit graphs. Abh. Math. Semin. Univ. Hambg. 25, 71–76
(1961). https://doi.org/10.1007/BF02992776

6. Epstein, L., Levin, A., Woeginger, G.J.: The (weighted) metric dimension of graphs:
hard and easy cases. Algorithmica 72(4), 1130–1171 (2015)

7. Eroh, L., Feit, P., Kang, C.X., Yi, E.: The effect of vertex or edge deletion on the
metric dimension of graphs. J. Comb 6(4), 433–444 (2015)

8. Foucaud, F., Mertzios, G.B., Naserasr, R., Parreau, A., Valicov, P.: Identification,
location-domination and metric dimension on interval and permutation graphs. II.
Algorithms and complexity. Algorithmica 78(3), 914–944 (2017)

9. Garey, J.: A guide to the theory of NP-completeness. J. Algorithms (1979)
10. Gima, T., Hanaka, T., Kiyomi, M., Kobayashi, Y., Otachi, Y.: Exploring the gap

between treedepth and vertex cover through vertex integrity. Theor. Comput. Sci.
918, 60–76 (2022)

11. Harary, F., Melter, R.A.: On the metric dimension of a graph. Ars Combinatoria
2, 191–195 (1975)

12. Hartung, S., Nichterlein, A.: On the parameterized and approximation hardness of
metric dimension. In: 2013 IEEE Conference on Computational Complexity, pp.
266–276. IEEE (2013)

13. Kloks, T.: Treewidth: Computations and Approximations. Springer, Heidelberg
(1994)

14. Li, S., Pilipczuk, M.: Hardness of metric dimension in graphs of constant treewidth.
Algorithmica 84(11), 3110–3155 (2022)

15. Slater, P.J.: Leaves of trees. Congressus Numerantium 14 (1975)

https://doi.org/10.1007/BF02992776

	Metric Dimension Parameterized by Treewidth in Chordal Graphs
	1 Introduction
	2 Preliminaries
	2.1 Nice Clique Trees
	2.2 Clique Separators and Resolving Sets

	3 Algorithm Description
	3.1 Extension of the Problem
	3.2 Dynamic Programming
	3.3 Algorithm

	4 Proof of Theorem 1
	References

