
Daniël Paulusma
Bernard Ries (Eds.)

LN
CS

 1
40

93

49th International Workshop, WG 2023
Fribourg, Switzerland, June 28–30, 2023
Revised Selected Papers

Graph-Theoretic Concepts
in Computer Science

Lecture Notes in Computer Science 14093

Founding Editors

Gerhard Goos
Juris Hartmanis

Editorial Board Members

Elisa Bertino, USA
Wen Gao, China

Bernhard Steffen , Germany
Moti Yung , USA

Advanced Research in Computing and Software Science
Subline of Lecture Notes in Computer Science

Subline Series Editors

Giorgio Ausiello, University of Rome ‘La Sapienza’, Italy

Vladimiro Sassone, University of Southampton, UK

Subline Advisory Board

Susanne Albers, TU Munich, Germany
Benjamin C. Pierce, University of Pennsylvania, USA
Bernhard Steffen , University of Dortmund, Germany
Deng Xiaotie, Peking University, Beijing, China
Jeannette M. Wing, Microsoft Research, Redmond, WA, USA

https://orcid.org/0000-0001-9619-1558
https://orcid.org/0000-0003-0848-0873
https://orcid.org/0000-0001-9619-1558

More information about this series at https://link.springer.com/bookseries/558

https://springerlink.bibliotecabuap.elogim.com/bookseries/558

Daniël Paulusma • Bernard Ries
Editors

Graph-Theoretic Concepts
in Computer Science
49th International Workshop, WG 2023
Fribourg, Switzerland, June 28–30, 2023
Revised Selected Papers

123

Editors
Daniël Paulusma
Durham University
Durham, UK

Bernard Ries
University of Fribourg
Fribourg, Switzerland

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-031-43379-5 ISBN 978-3-031-43380-1 (eBook)
https://doi.org/10.1007/978-3-031-43380-1

© The Editor(s) (if applicable) and The Author(s), under exclusive license
to Springer Nature Switzerland AG 2023

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors, and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, expressed or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

Paper in this product is recyclable.

https://orcid.org/0000-0001-5945-9287
https://orcid.org/0000-0003-4395-5547
https://doi.org/10.1007/978-3-031-43380-1

Preface

This volume contains the 33 papers presented at the 49th International Workshop on
Graph-Theoretic Concepts in Computer Science (WG 2023). The conference was held
in Fribourg, Switzerland from 28 June 2023 to 30 June 2023. About 55 participants
from all over the world attended the conference in person, and about 30 participants
registered for the conference on-line.

WG has a long-standing tradition. Since 1975, WG has taken place 25 times in
Germany, five times in The Netherlands, three times in France, twice in Austria, the
Czech Republic, and the UK, and once in Greece, Israel, Italy, Norway, Poland,
Slovakia, Spain and Turkey. This was the second time the conference was held in
Switzerland.

WG aims to merge theory and practice by demonstrating how concepts from graph
theory can be applied to various areas in computer science, or by extracting new graph-
theoretic problems from applications. The conference is well balanced with respect to
established researchers and junior scientists.

We received 116 submissions, sixteen of which were withdrawn before entering the
(single-blind) review process. The Program Committee provided three independent
reviews for each submission. After a careful discussion, the Program Committee
accepted 33 papers, which yields an acceptance ratio of 33%. Due to the high com-
petition and a limited schedule, there were papers that could not be accepted although
they deserved to be.

The program included three inspired invited talks by Flavia Bonomo (University of
Buenos Aires, Argentina) on “Generalized List Matrix Partition Problems on Chordal
Graphs, Parameterized by Leafage”, Eunjung Kim (LAMSADE, Paris-Dauphine
University, France) on “Twin-width, Graph Classes and a Bit of Logic” and Nicolas
Trotignon, (CNRS, École normale supérieure de Lyon, France) on “Triangle-free
Graphs of Large Chromatic Number”.

The third WG Test of Time Award, given for a highly influential paper presented at
a previous WG conference, was given to Alistair Sinclair and Mark Jerrum for their
paper “Approximate Counting, Uniform Generation and Rapidly Mixing Markov
Chains” from WG 1987. An excellent fourth invited talk on “35 Years of Counting,
Sampling and Mixing” was given by Mark Jerrum (Queen Mary University of London,
UK).

The WG 2023 Best Paper award was given to Paul Jungeblut, Samuel Schneider and
Torsten Ueckerdt for their paper “Cops and Robber – When Capturing is not Sur-
rounding”. The WG 2023 Best Student Paper Award was given to Falko Hegerfeld for
his paper “Tight Algorithms for Connectivity Problems Parameterized by Modular-
Treewidth”, co-authored by Stefan Kratsch. Both awards were sponsored by Springer-
Verlag.

We would like to thank the following organisations for their financial support (in
alphabetical order): the Canton of Fribourg, the City of Fribourg, Springer-Verlag, the

Swiss National Science Foundation (SNSF) and the University of Fribourg. We would
also like to thank all the authors, the members of the Program Committee and addi-
tional reviewers, the speakers, session chairs, student helpers and all other participants
for their contribution towards making the conference a successful event. In particular,
we thank Felicia Lucke for all her excellent work on the Organising Committee.

July 2023 Daniël Paulusma
Bernard Ries

vi Preface

Organization

Program Committee

Nick Brettell Victoria University of Wellington, New Zealand
Yixin Cao Hong Kong Polytechnic University, China
Clément Dallard Université d'Orléans, France
Vida Dujmović McGill University, Canada
David Eppstein University of California, Irvine, USA
Bruno Escoffier Sorbonne University, France
Carl Feghali École Normale Supérieure de Lyon, France
Esther Galby Hamburg University of Technology, Germany
Danny Hermelin Ben-Gurion University of the Negev, Israel
Yusuke Kobayashi Kyoto University, Japan
Stephen Kobourov University of Arizona, USA
Daniel Král’ Masaryk University, Czech Republic
Michael Lampis Paris Dauphine University, France
Paloma Lima IT University of Copenhagen, Denmark
Amer Mouawad American University of Beirut, Lebanon
Andrea Munaro University of Parma, Italy
Daniel Paulusma (Chair) Durham University, UK
Irena Penev Charles University, Czech Republic
Bernard Ries (Chair) University of Fribourg, Switzerland
Laura Sanitá Bocconi University, Italy
Roohani Sharma Max Planck Institute for Informatics, Germany
Uéverton Souza Fluminense Federal University, Brazil
Maya Stein University of Chile, Chile
Csaba Tóth California State University Northridge, USA
Virginia Vassilevska

Williams
Massachusetts Institute of Technology, USA

Shira Zerbib Iowa State University, USA

Additional Reviewers

Aboulker, Pierre
Abu-Khzam, Faisal
Ackerman, Eyal
Agrawal, Akanksha
Ahmed, Abu Reyan
Ahn, Jungho
Aigner-Horev, Elad
Akhoondian Amiri, Saeed

Akmal, Shyan
Alecu, Bogdan
Atminas, Aistis
Bampis, Evripidis
Bartier, Valentin
Barát, János
Baste, Julien
Belmonte, Rémy

Benedek, Márton
Bentz, Cédric
Bhore, Sujoy
Bonomo, Flavia
Bouquet, Valentin
Boyar, Joan
Bradshaw, Peter
Brandenburg, Franz
Broersma, Hajo
Burgess, Andrea
Cameron, Kathie
Casel, Katrin
Chakraborty, Dibyayan
Chan, Timothy M.
Chaplick, Steven
Chen, Yong
Chepoi, Victor
Chitnis, Rajesh
Choi, Ilkyoo
Curticapean, Radu
Dalirrooyfard, Mina
Dey, Sanjana
Dibek, Cemil
Dourado, Mitre
Dreier, Jan
Duron, Julien
Dvořák, Pavel
Dósa, György
Eiben, Eduard
El Sabeh, Remy
Faria, Luerbio
Fernau, Henning
Figueiredo, Celina
Focke, Jacob
Friggstad, Zachary
Gajarský, Jakub
Garlet Milani, Marcelo
Gaspers, Serge
Geniet, Colin
Ghahremani, Mani
Ghosh, Anirban
Giroudeau, Rodolphe
Golovach, Petr
Gonzalez, Carolina
Haslegrave, John
Hatzel, Meike

Heeger, Klaus
Huang, Shenwei
Huroyan, Vahan
Huszár, Kristóf
Hörsch, Florian
Itzhaki, Yuval
Jacob, Dalu
Jaffke, Lars
Jain, Pallavi
Jana, Satyabrata
Jin, Ce
Kanj, Iyad
Kaul, Matthias
Kellerhals, Leon
Kloks, Ton
Knop, Dušan
Koana, Tomohiro
Korchemna, Viktoriia
Kratochvil, Jan
Krenn, Mario
Krithika, R.
Kryven, Myroslav
Kumar, Ravi
Kwon, O-Joung
Křišťan, Jan Matyáš
La, Hoang
Lagoutte, Aurélie
Lendl, Stefan
Li, Shaohua
Li, Yanjia
Lidicky, Bernard
Liedloff, Mathieu
Lin, Bingkai
Liu, Yunlong
Lucke, Felicia
Maaz, Stephanie
Madaras, Tomas
Maia, Ana Karolinna
Majewski, Konrad
Mann, Felix
Martin, Barnaby
Masařík, Tomáš
Mathew, Rogers
Mathialagan, Surya
Mazzoleni, María Pía
McGinnis, Daniel

viii Organization

Melissinos, Nikolaos
Miyazaki, Shuichi
Mnich, Matthias
Molter, Hendrik
Moore, Benjamin
Mütze, Torsten
Narayanaswamy, N. S.
Newman, Alantha
Nguyen, Tung
Nisse, Nicolas
Okamoto, Yoshio
Okrasa, Karolina
Oliveira, Fabiano
Oostveen, Jelle
Oum, Sang-il
Paesani, Giacomo
Panolan, Fahad
Picouleau, Christophe
Pierron, Théo
Pollner, Tristan
Rajendran, Goutham
Razgon, Igor
Rong, Guozhen
Roy, Sanjukta
Schindl, David
Schirneck, Martin
Schlotter, Ildikó
Sen, Sagnik
Serna, Maria
Siebertz, Sebastian
Sikora, Florian
Simonov, Kirill

Sivaraman, Vaidy
Smith, Siani
Sokołowski, Marek
Sonmez Turan, Meltem
Spence, Richard
Stamoulis, Giannos
Štorgel, Kenny
Sylvester, John
Takazawa, Kenjiro
Tale, Prafullkumar
Telle, Jan Arne
Thilikos, Dimitrios
Tong, Weitian
Tsur, Dekel
Turcotte, Jèrèmie
Ueckerdt, Torsten
van der Poel, Andrew
van Iersel, Leo
van Leeuwen, Erik Jan
Vasilakis, Manolis
Vaxès, Yann
Vialette, Stéphane
Vu, Tung Anh
Weller, Mathias
Wiederrecht, Sebastian
Wulms, Jules
Xefteris, Michalis
Xu, Yinzhan
Yang, Shizhou
Yang, Yongjie
Zerovnik, Janez

Organization ix

Contents

Proportionally Fair Matching with Multiple Groups . 1
Sayan Bandyapadhyay, Fedor V. Fomin, Tanmay Inamdar,
and Kirill Simonov

Reconstructing Graphs from Connected Triples. 16
Paul Bastide, Linda Cook, Jeff Erickson, Carla Groenland,
Marc van Kreveld, Isja Mannens, and Jordi L. Vermeulen

Parameterized Complexity of Vertex Splitting to Pathwidth at Most 1 30
Jakob Baumann, Matthias Pfretzschner, and Ignaz Rutter

Odd Chromatic Number of Graph Classes . 44
Rémy Belmonte, Ararat Harutyunyan, Noleen Köhler,
and Nikolaos Melissinos

Deciding the Erdős-Pósa Property in 3-Connected Digraphs 59
Julien Bensmail, Victor Campos, Ana Karolinna Maia, Nicolas Nisse,
and Ana Silva

New Width Parameters for Independent Set: One-Sided-Mim-Width
and Neighbor-Depth . 72

Benjamin Bergougnoux, Tuukka Korhonen, and Igor Razgon

Nonplanar Graph Drawings with k Vertices per Face 86
Carla Binucci, Giuseppe Di Battista, Walter Didimo, Seok-Hee Hong,
Michael Kaufmann, Giuseppe Liotta, Pat Morin,
and Alessandra Tappini

Computational Complexity of Covering Colored Mixed Multigraphs
with Degree Partition Equivalence Classes of Size at Most Two (Extended
Abstract) . 101

Jan Bok, Jiří Fiala, Nikola Jedličková, Jan Kratochvíl,
and Michaela Seifrtová

Cutting Barnette Graphs Perfectly is Hard . 116
Édouard Bonnet, Dibyayan Chakraborty, and Julien Duron

Metric Dimension Parameterized by Treewidth in Chordal Graphs 130
Nicolas Bousquet, Quentin Deschamps, and Aline Parreau

Efficient Constructions for the Győri-Lovász Theorem on Almost
Chordal Graphs. 143

Katrin Casel, Tobias Friedrich, Davis Issac, Aikaterini Niklanovits,
and Ziena Zeif

Generating Faster Algorithms for d-Path Vertex Cover 157
Radovan Červený and Ondřej Suchý

A New Width Parameter of Graphs Based on Edge Cuts:
a-Edge-Crossing Width . 172

Yeonsu Chang, O-joung Kwon, and Myounghwan Lee

Snakes and Ladders: A Treewidth Story. 187
Steven Chaplick, Steven Kelk, Ruben Meuwese, Matúš Mihalák,
and Georgios Stamoulis

Parameterized Results on Acyclic Matchings with Implications for Related
Problems . 201

Juhi Chaudhary and Meirav Zehavi

P-Matchings Parameterized by Treewidth . 217
Juhi Chaudhary and Meirav Zehavi

Algorithms and Hardness for Metric Dimension on Digraphs 232
Antoine Dailly, Florent Foucaud, and Anni Hakanen

Degreewidth: A New Parameter for Solving Problems on Tournaments 246
Tom Davot, Lucas Isenmann, Sanjukta Roy, and Jocelyn Thiebaut

Approximating Bin Packing with Conflict Graphs via Maximization
Techniques. 261

Ilan Doron-Arad and Hadas Shachnai

ai-Metric Graphs: Radius, Diameter and all Eccentricities. 276
Feodor F. Dragan and Guillaume Ducoffe

Maximum Edge Colouring Problem On Graphs That Exclude
a Fixed Minor . 291

Zdeněk Dvořák and Abhiruk Lahiri

Bounds on Functionality and Symmetric Difference – Two Intriguing
Graph Parameters . 305

Pavel Dvořák, Lukáš Folwarczný, Michal Opler, Pavel Pudlák,
Robert Šámal, and Tung Anh Vu

xii Contents

Cops and Robbers on Multi-Layer Graphs . 319
Jessica Enright, Kitty Meeks, William Pettersson, and John Sylvester

Parameterized Complexity of Broadcasting in Graphs 334
Fedor V. Fomin, Pierre Fraigniaud, and Petr A. Golovach

Turán’s Theorem Through Algorithmic Lens . 348
Fedor V. Fomin, Petr A. Golovach, Danil Sagunov, and Kirill Simonov

On the Frank Number and Nowhere-Zero Flows on Graphs 363
Jan Goedgebeur, Edita Máčajová, and Jarne Renders

On the Minimum Number of Arcs in 4-Dicritical Oriented Graphs 376
Frédéric Havet, Lucas Picasarri-Arrieta, and Clément Rambaud

Tight Algorithms for Connectivity Problems Parameterized
by Modular-Treewidth . 388

Falko Hegerfeld and Stefan Kratsch

Cops and Robber - When Capturing Is Not Surrounding 403
Paul Jungeblut, Samuel Schneider, and Torsten Ueckerdt

Complexity Results for Matching Cut Problems in Graphs Without Long
Induced Paths . 417

Hoàng-Oanh Le and Van Bang Le

Upper Clique Transversals in Graphs. 432
Martin Milanič and Yushi Uno

Critical Relaxed Stable Matchings with Two-Sided Ties. 447
Meghana Nasre, Prajakta Nimbhorkar, and Keshav Ranjan

Graph Search Trees and Their Leaves . 462
Robert Scheffler

Author Index . 477

Contents xiii

Proportionally Fair Matching
with Multiple Groups

Sayan Bandyapadhyay1 , Fedor V. Fomin2 , Tanmay Inamdar2(B) ,
and Kirill Simonov3

1 Portland State University, Portland, USA
sayanb@pdx.edu

2 University of Bergen, Bergen, Norway
{Fedor.Fomin,Tanmay.Inamdar}@uib.no

3 Hasso Plattner Institute, University of Potsdam, Potsdam, Germany
Kirill.Simonov@hpi.de

Abstract. We study matching problems with the notion of proportional
fairness. Proportional fairness is one of the most popular notions of group
fairness where every group is represented up to an extent proportional
to the final selection size. Matching with proportional fairness or more
commonly, proportionally fair matching, was introduced in [Chierichetti
et al., AISTATS, 2019]. In this problem, we are given a graph G whose
edges are colored with colors from a set C. The task is for given 0 ≤
α ≤ β ≤ 1, to find a maximum (α, β)-balanced matching M in G, that
is a matching where for every color c ∈ C the number of edges in M of
color c is between α|M | and β|M |. Chierichetti et al. initiated the study
of this problem with two colors and in the context of bipartite graphs
only. However, in many practical applications, the number of colors—
although often a small constant—is larger than two. In this work, we
make the first step towards understanding the computational complexity
of proportionally fair matching with more than two colors. We design
exact and approximation algorithms achieving reasonable guarantees on
the quality of the matching as well as on the time complexity, and our
algorithms work in general graphs. Our algorithms are also supported by
suitable hardness bounds.

Keywords: Matching · Fairness · Parameterized Algorithms

1 Introduction

In this paper, we consider the proportionally fair matching problem in general
graphs. Matching is one of the most fundamental notions in graph theory whose

Most of this work was done when all four authors were affiliated with the University
of Bergen, Norway. The research leading to these results has received funding from
the Research Council of Norway via the project BWCA (grant no. 314528), and the
European Research Council (ERC) via grant LOPPRE, reference 819416.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
D. Paulusma and B. Ries (Eds.): WG 2023, LNCS 14093, pp. 1–15, 2023.
https://doi.org/10.1007/978-3-031-43380-1_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-43380-1_1&domain=pdf
http://orcid.org/0000-0001-8875-0102
http://orcid.org/0000-0003-1955-4612
http://orcid.org/0000-0002-0184-5932
http://orcid.org/0000-0001-9436-7310
https://doi.org/10.1007/978-3-031-43380-1_1

2 S. Bandyapadhyay et al.

study can be traced back to the classical theorems of Kőnig [33] and Hall [24].
The first chapter of the book of Lovász and Plummer [37] devoted to matching
contains a nice historical overview of the development of the matching problem.
The problems of finding a maximum size or a perfect matching are the classi-
cal algorithmic problems; an incomplete list of references covering the history
of algorithmic improvements on these problems is [18,25,40,41,44], see also the
book of Schrijver [47] for a historical overview of matching algorithms. Matchings
appear naturally in various applications, e.g., kidney transplant matching [46]
or numerous assignment problems like assigning products to customers [45]; stu-
dents to schools [34]; reviewers to manuscripts [8]; and workers to firms [1]. There
are scores of works that study fair versions of matchings [10,20,21,26,28,31,50].
Among these distinct notions of matchings, our work is most relevant to the
work on (α, β)-balanced matching of Chierichetti et al. [10]. The notion of (α, β)-
balanced matching was formulated in [10] by bringing proportional fairness and
maximum cardinality matching together. Proportional fairness is based on the
concept of disparate impact [19], which in the context of matching is defined as
follows. A matching is (α, β)-balanced or proportionally fair if the ratio between
the number of edges from each group (a color) and the size of the matching is
at least α and at most β.

As a motivating example of proportionally fair matching, consider the prod-
uct recommendation problem in e-commerce. With the advancement of digital
marketing and advertising, nowadays companies are interested in more fine-
tuned approaches that help them reach the target groups of customers. These
groups may be representative of certain underlying demographic categorizations
based on gender, age group, geographic location etc. Thus, the number of groups
is often a small constant. In particular, in this contemporary setting, one is inter-
ested in finding assignments that involve customers from all target groups and
have a balanced impact on all these groups. This assignment problem can be
modeled as the proportionally fair matching problem between customers and
products. In a realistic situation, one might need to assign many products to a
customer and many customers to a product. This can be achieved by computing
multiple matchings in an iterative manner while removing the edges from the
input graph that are already matched.

In a seminal work, Chierichetti et al. [10] obtained a polynomial-time 3/2-
approximation for the size of the matching, when the input graph is bipartite
and the number of groups is 2. However, in many real-world situations, like in the
above example, it is natural to assume that the number of target groups is more
than 2. Unfortunately, the algorithm of [10] strongly exploits the fact that the
number of groups � = 2. It is not clear how to adapt or extend their algorithm
when we have more than two groups. The only known algorithm for � > 2 groups
is an nO(�)-time randomized exact algorithm [10,14], which also works for general
graphs. The running time of this algorithm has a “bad” exponential dependence
on the number of groups, i.e., the running time is not a fixed polynomial in n.
Thus, this algorithm quickly becomes impractical if � grows. Our research on
proportionally fair matching is driven by the following question. Do there exist

Proportionally Fair Matching with Multiple Groups 3

efficient algorithms with guaranteed performance for proportionally fair matching
when the number of groups � is more than two?

1.1 Our Results and Contributions

In this work, we obtain several results on the Proportionally Fair Matching
problem in general graphs with any arbitrary � number of groups.

– First, we show that the problem is extremely hard for any general � number
of groups, in the sense that it is not possible to obtain any approximation
algorithm in 2o(�)nO(1) time even on path graphs, unless the Exponential
Time Hypothesis (ETH) [27] is false.

– To complement our hardness result, we design a 1
4� -approximation algorithm

that runs in 2O(�)nO(1) time. Our algorithm might violate the lower (α) and
upper (β) bounds by at most a multiplicative factor of (1 + 4�

|OPT| if |OPT|
is more than 4�2, where OPT is any optimum solution. Thus, the violation
factor is at most 1 + 1

� , and tends to 1 with asymptotic values of |OPT|.
– We also consider a restricted case of the problem, referred to as the β-limited

case in [10], where we only have the upper bound, i.e., no edges might be
present from some groups. In this case, we could improve the approximation
factor to 1

2� and running time to polynomial.
– Lastly, we show that the parameterized version of the problem where one seeks

for a proportionally fair matching of size k, can be solved exactly in 2O(k)nO(1)

time. Thus the problem is fixed-parameter tractable parameterized by k.

All of our algorithms are based on simple schemes. Our approximation algo-
rithms use an iterative peeling scheme that in each iteration, extracts a rainbow
matching containing at most one edge from every group. The exact algorithm
is based on a non-trivial application of the celebrated color-coding scheme [2].
These algorithms appear in Sects. 3, 4, and 5, respectively. The hardness proof
is given in Sect. 6.

1.2 Related Work

In recent years, researchers have introduced and studied several different notions
of fairness, e.g., disparate impact [19], statistical parity [29,51], individual fair-
ness [15] and group fairness [16]. Kleinberg et al. [32] formulated three notions
of fairness and showed that it is theoretically impossible to satisfy them simul-
taneously. See also [11,12] for similar exposures.

The notion of proportional fairness with multiple protected groups is widely
studied in the literature, which is based on disparate impact [19]. Bei et al. [4]
studied the proportional candidate selection problem, where the goal is to select
a subset of candidates with various attributes from a given set while satisfying
certain proportional fairness constraints. Goel et al. [22] considered the problem
of learning non-discriminatory and proportionally fair classifiers and proposed

4 S. Bandyapadhyay et al.

the weighted sum of logs technique. Proportional fairness has also been consid-
ered in the context of Federated learning [53]. Additionally, proportional fairness
has been studied in the context of numerous optimization problems including
voting [17], scheduling [30,38], kidney exchange [5,48], and Traveling Salesman
Problem [43].

Several different fair matching problems have been studied in the literature.
Huang et al. [26] and Boehmer et al. [7] studied fair b-matching, where matching
preferences for each vertex are given as ranks, and the goal is to avoid assigning
vertices to the highly ranked vertices as much as possible (see [7,26] for a formal
definition). Fair-by-design-matching is studied in [21], where instead of a sin-
gle matching, a probability distribution over all feasible matchings is computed
which guarantees individual fairness. See also [28,31].

Apart from the fair versions of matchings, many constrained versions are also
studied [6,49]. [49] studied the Bounded Color Matching (BCM) problem where
edges are colored and from each color class, only a given number of edges can
be chosen. BCM is a special case of 3-set packing and, hence, admits a 3/4-
approximation [49]. We note that the β-limited case of Proportionally Fair
Matching is a special case of BCM and, thus, a 3/4-approximation follows in
this case where the upper bound might be violated by 3/4 factor. One should
compare this factor with our violation factor, which asymptotically tends to 1.

Finally, we note that when the input graph is bipartite, a matching has a
natural interpretation as an intersection of two matroids. Matroid intersection
has a rich literature containing work on both exact [36,39] and approximation
algorithms [35]. However, these algorithms do not consider fairness constraints.

2 Preliminaries

For an integer � ≥ 1, let [�] := {1, 2, . . . , �}. Consider any undirected n-vertex
graph G = (V,E) such that the edges in E are colored by colors in C = {1, . . . , �}.
The function χ : E → C describes the color assignment. For each color c ∈ C,
let Ec be the set of edges colored by the color c, i.e., Ec = χ−1(c). A subset
E′ ⊆ E is a matching in G if no two edges in E′ share a common vertex.

Definition 1. (α, β)-balanced matching. Given 0 ≤ α ≤ β ≤ 1, a matching
M ⊆ E is called (α, β)-balanced if for each color c ∈ C, we have that α ≤
|M ∩ Ec|

|M | ≤ β.

Thus a matching is (α, β)-balanced if it contains at least α and at most β fraction
of edges from every color. In the Proportionally Fair Matching problem,
the goal is to find a maximum-sized (α, β)-balanced matching. In the restricted
β-limited case of the problem, α = 0, i.e., we only have the upper bound.

For γ ≤ 1 and Δ ≥ 1, a (γ,Δ)-approximation algorithm for Proportion-
ally Fair Matching computes a matching of size at least γ · |OPT|, where
every color appears in at least α/Δ fraction of the edges and in at most β · Δ
fraction. OPT is an optimum (α, β)-balanced matching.

Proportionally Fair Matching with Multiple Groups 5

A matching is called a rainbow matching if all of its edges have distinct colors.
We will need the following result due to Gupta et al. [23].

Theorem 1 (Theorem 2 in [23]). For some integer k > 0, suppose there is
a rainbow matching in G of size k. There is a 2k · nO(1) time algorithm that
computes a rainbow matching of size k.

3 A (1
4�

, 1 + 4�
|OP T |)-Approximation for PROPORTIONALLY

FAIR MATCHING

In this section, we design an approximation algorithm for Proportionally
Fair Matching. Let OPT be an optimum (α, β)-balanced matching (which,
we assume, exists), OPTc = OPT ∩ Ec. We design two algorithms: one for the
case when α > 0 and the other for the complementary β-limited case. In this
section, we slightly abuse the notation, and use OPT (resp. OPTc for some color
c ∈ C) to refer to |OPT| (resp. |OPTc|). The intended meaning should be clear
from the context; however we will disambiguate in case there is a possibility of
confusion.

First, we consider the α > 0 case. Immediately, we have the following obser-
vation.

Observation 1. For any color c ∈ C, OPT contains at least one edge of color
c and, hence, G contains a rainbow matching of size �.

Our algorithm runs in rounds. In the following, we define a round. The input
in each round is a subgraph G′ = (V ′, E′) of G.

Round. Initially M = ∅. For every color 1 ≤ c ≤ �, do the following in an
iterative manner. If there is no edge of color c in G′, go to the next color or
terminate and return (G′,M) if c = �. Otherwise, pick any edge e of color c
from G′ and add e to the already computed matching M . Remove all the edges
(including e) from G′ that share a common vertex with e. Repeat the process for
the next color with the current (or updated) graph G′ or terminate and return
(G′,M) if c = �. Thus in each round, we find a rainbow matching in a greedy
manner.

Next, we describe our algorithm. The most challenging part of our algorithm
is to ensure that the final matching computed is (α, β)-balanced modulo a small
factor, i.e., we need to ensure both the lower and the upper bounds are within a
small factor for each color. Note that just the above greedy way of picking edges
might not even ensure that at least one edge is selected from each color. We use
the algorithm of [23] in the beginning to overcome this barrier. However, the rest
of our algorithm is extremely simple.

The Algorithm. We assume that we know the size of OPT. We describe later
how to remove this assumption. Apply the algorithm in Theorem 1 on G to
compute a rainbow matching M ′ of size �. If OPT ≤ 4�2, return M := M ′ as
the solution and terminate. Otherwise, remove all the edges of M ′ and the edges

6 S. Bandyapadhyay et al.

adjacent to them from G to obtain the graph G0. Initialize M to M ′. Greedily
pick matched edges in rounds using the Round procedure and add them to M
until exactly 	OPT/(4�)
 edges are picked in total. In particular, the graph G0

is the input to the 1-st round and G1 is the output graph of the 1-st round. G1 is
the input to the 2-nd round and G2 is the output graph of the 2-nd round, and
so on. Note that it might be the case that the last round is not completed fully
if the size of M is reached to 	OPT/(4�)
 before the completion of the round.

Note that the above algorithm is oblivious to α and β in the sense that it
never uses these values. Nevertheless, we prove that the computed matching is
(α, β)-balanced modulo a small factor. Now we analyze our algorithm.

3.1 The Analysis

Let Mc = M ∩Ec. Also, let c∗ be a color c ∈ C such that |OPTc| is the minimum
at c = c∗. The proof of the following observation is fairly straightforward and
can be found in the full version [3].

Observation 2. α ≤ 1/� ≤ β.

First we consider the case when OPT ≤ 4�2. In this case the returned matching
M is a rainbow matching of size exactly �. The existence of such a matching
follows by Observation 1. Thus, we immediately obtain a 4�-approximation. As
|Mc|/|M | = 1/� in this case, by Observation 2, α ≤ |Mc|/|M | ≤ β. Thus we
obtain the desired result. In the rest of the proof, we analyze the case when
OPT > 4�2. We start with the following lemma.

Lemma 1. The algorithm successfully computes a matching of size exactly
	OPT/(4�)
. Moreover, for each color c with OPTc > 4� and round i ∈
[1, 	OPTc/(4�)
 − 1], Gi−1 contains an edge of color c.

Proof. Note that by Observation 1, the algorithm in Theorem 1 successfully
computes a rainbow matching M ′ of size �. Now consider any color c such that
OPTc ≤ 4�. For such a color, M already contains at least 1 ≥ 	OPTc/(4�)

edge. Now consider any other color c with |OPTc| > 4�. Consider the rainbow
matching M ′ computed in the beginning. As |M ′| = �, the edges of M ′ can be
adjacent to at most 2� edges from OPT, since it is a matching. In particular, the
edges of M ′ can be adjacent to at most 2� edges from the set OPTc. Hence, G0

contains at least OPTc − 2� edges of the set OPTc. Now consider the execution
of round i ≥ 1. At most � edges are chosen in this round. Hence, these edges
can be adjacent to at most 2� edges of OPTc. It follows that at most 2� fewer
edges of the set OPTc are contained in Gi compared to Gi−1. As G0 has at least
OPTc−2� edges from the set OPTc of color c and OPTc > 4�, for each of the first
	(OPTc−2�)/(2�)
 = 	OPTc/(2�)
−1 rounds, the algorithm will be able to pick
an edge of color c. Thus from such a color c with OPTc > 4�, it can safely pick
at least 	OPTc/(2�)
 ≥ 	OPTc/(4�)
 edges in total. Now, as OPT =

∑
c OPTc,∑

c∈C	OPTc/(4�)
 ≥ 	OPT/(4�)
. It follows that the algorithm can pick at least
	OPT/(4�)
 edges. As we stop the algorithm as soon as the size of M reaches to
	OPT/(4�)
, the lemma follows.

Proportionally Fair Matching with Multiple Groups 7

Note that the claimed approximation factor trivially follows from the above
lemma. Next, we show that M is (α, β)-balanced modulo a small factor that
asymptotically tends to 1 with the size of OPT.

Lemma 2. For each color c ∈ C, |Mc| ≥ |OPTc∗ |/(4�).
Proof. If OPTc∗ ≤ 4�, |Mc| ≥ 1 ≥ OPTc∗/(4�). So, assume that OPTc∗ > 4�.
Now suppose |Mc| < OPTc∗/(4�) for some c. By Lemma 1, for each of the
first 	OPTc/(4�)
 − 1 ≥ 	OPTc∗/(4�)
 − 1 rounds, Gi−1 contains an edge of
color c. It follows that the algorithm was forcibly terminated in some round
i ≤ (OPTc∗/(4�)) − 1. Thus, the number of edges chosen from each color c′ �= c
is at most OPTc∗/(4�). Hence,

|M | =
∑

c′ �=c

|Mc′ | + |Mc| < (� − 1) · (OPTc∗/(4�)) + (OPTc∗/(4�)) ≤ �OPT/(4�)�.

This contradicts Lemma 1, which states that we select exactly 	OPT/(4�)
 edges.

Corollary 1. For each color c ∈ C, (|Mc|/|M |) ≥ α
1+ 4�

OPT
.

Proof. By Lemma 2, |Mc| ≥ OPTc∗/(4�).

|Mc|
|M | ≥ (OPTc∗/(4�))

	OPT/(4�)
 ≥ (OPTc∗/(4�))
(OPT/(4�)) + 1

=
(OPTc∗)/(OPT)

1 + 4�
OPT

≥ α

1 + 4�
OPT

.

The last inequality follows as OPT satisfies the lower bound for all colors.

Now we turn to proving the upper bound. Let α∗ = OPTc∗/OPT.
Lemma 3. For each color c ∈ C, |Mc| ≤ β

α∗ · (OPTc∗/(4�)) + 1.

Proof. Suppose for some c ∈ C, |Mc| > β
α∗ · (OPTc∗/(4�))+1. Then the number

of rounds is strictly greater than β
α∗ · (OPTc∗/(4�)). Now, for any c′, OPTc′ ≥

α∗ · OPT and OPTc′ ≤ β · OPT. Thus, by the definition of α∗, β
α∗ · OPTc∗ ≥

OPTc′ . It follows that, for each c′, the number of rounds is strictly greater than
OPTc′/(4�). Hence, for each c′ ∈ C, more than (OPTc′/(4�)) + 1 edges have
been chosen. Thus, the total number of edges chosen is strictly larger than

∑

c′∈C

((OPTc′/(4�)) + 1) ≥ 	OPT/(4�)
.

This contradicts Lemma 1, which states that we select exactly 	OPT/(4�)
 edges.

Corollary 2. For each color c ∈ C, (|Mc|/|M |) ≤ β · (1 + 4�
OPT).

Proof. By Lemma 3,
|Mc|
|M | ≤ (β/α∗) · (OPTc∗/(4�)) + 1

	OPT/(4�)
 ≤ (β/α∗) · (OPTc∗/(4�)) + (β/α∗)
OPT/(4�)

=
β

α∗ · OPTc∗

OPT
·
(

1 +
4�

OPT

)

=
β

α∗ · α∗
(

1 +
4�

OPT

)

= β ·
(

1 +
4�

OPT

)

.

The second inequality follows, as α∗ ≤ β or β/α∗ ≥ 1.

8 S. Bandyapadhyay et al.

Now let us remove the assumption that we know the size of an optimal
solution. Note that � ≤ OPT ≤ n. We probe all values between � and n, and
for each such value T run our algorithm. For each matching M returned by the
algorithm, we check whether M is (α

(1+4�/T) , β · (1 + 4�
T))-balanced. If this is the

case, then we keep this solution. Otherwise, we discard the solution. Finally, we
select a solution of the largest size among the ones not discarded. By the above
analysis, with T = OPT, the matching returned satisfies the desired lower and
upper bounds, and has size exactly 	OPT/(4�)
. Finally, the running time of
our algorithm is dominated by 2�nO(1) time to compute a rainbow matching
algorithm, as stated in Theorem 1.

Theorem 2. There is a 2� · nO(1) time (1
4� , 1 +

4�
OPT)-approximation algorithm

for Proportionally Fair Matching with α > 0.

4 A Polynomial-Time Approximation in the β-Limited
Case

In the β-limited case, again we make use of the Round procedure. But, the
algorithm is slightly different. Most importantly, we do not apply the algorithm
in Theorem 1 in the beginning. Thus, our algorithm runs in polynomial time.

The Algorithm. Assume that we know the size of OPT. If OPT ≤ 2�, we pick
any edge and return it as the solution. Otherwise, we just greedily pick matched
edges in rounds using the Round procedure with the following two cautions. If
for a color, at least β · OPT/(2�) edges have already been chosen, do not choose
any more edge of that color. If at least OPT

2� − 1 edges have already been chosen,
terminate.

Now we analyze the algorithm. First note that if OPT ≤ 2�, the returned
matching has only one edge. The upper bound is trivially satisfied and also
we obtain a 2�-approximation. Henceforth, we assume that OPT > 2�. Before
showing the correctness and analysis of the approximation factor, we show the
upper bound for each color. Again let M be the computed matching and Mc =
M ∩ Ec. The proof of the following lemma can be found in the full version [3].

Lemma 4. Algorithm always returns a matching of size at least (OPT/2�)− 1.

Assuming this we have the following proposition.

Proposition 1. For each color c ∈ C, |Mc|/|M | ≤ β · (1 + 2�
|OPT|).

Proof. By Lemma 4 and the threshold put on each color in the algorithm, |Mc|
|M | ≤

β·OPT/(2�)
(OPT/(2�))−1 ≤ β · (1 + 2�

OPT) The last inequality follows, as OPT > 2�.

Theorem 3. There is a polynomial time algorithm for Proportionally Fair
Matching in the β-limited case that returns a matching of size at least
(OPT/2�)− 1 where every color appears in at most β · (1+ 2�/OPT) fraction of
the edges.

Proportionally Fair Matching with Multiple Groups 9

5 An Exact Algorithm for PROPORTIONALLY FAIR

MATCHING

Theorem 4. There is a 2O(k)nO(1)-time algorithm that either finds a solution
of size k for a Proportionally Fair Matching instance, or determines that
none exists.

Proof. We present two different algorithms using the well-known technique of
color coding: one for the case α = 0 (β-limited case), and one for the case α > 0.
β-limited case. We aim to reduce the problem to finding a rainbow matching
of size k, which we then solve via Theorem 1. The graph G remains the same,
however the coloring is going to be different. Namely, for each of the original
colors c ∈ C we color the edges in Ec uniformly and independently at random
from a set of k′ new colors, where k′ = �βk. Thus, the new instance I ′ is colored
in � · k′ colors. We use the algorithm of Theorem 1 to find a rainbow matching
of size k in the colored graph in I ′. Clearly, if a rainbow matching M of size
k is found, then the same matching M is a β-limited matching of size k in the
original coloring. This holds since by construction for any original color c ∈ C,
there are k′ new colors in the edge set Ec, and therefore no more than k′ edges
in |M ∩ Ec|.

In the other direction, we show that if there exists a β-limited matching M
of size k with respect to the original coloring, then with good probability M is
a rainbow matching of size k in the new coloring. Assume the original colors c1,
. . . , ct, for some 1 ≤ t ≤ �, have non-empty intersection with M , and for each
j ∈ [t] denote kj = |M ∩ Ecj

|. Observe that
∑t

j=1 kj = k, and for each j ∈ [t],
1 ≤ kj ≤ k′. The proof of the following claim can be found in the full version [3].

Claim. There exists some δ > 0 such that for each j ∈ [t]:

Pr

[

M ∩
(

j⋃

i=1

Eci

)

is a rainbow matching in I ′
]

≥ exp

(

−δ

j∑

i=1

ki

)

, (1)

Applying (1) with j = t, we obtain that M is a rainbow matching with proba-
bility at least 2−δk. By repeating the reduction above 2O(k) times independently,
we achieve that the algorithm succeeds with constant probability.

The case α > 0. We observe that in this case, if a matching is fair it necessarily
contains at least one edge from each of the groups. Thus, if the number of groups
� is greater than k, we immediately conclude there cannot be a fair matching of
size k. Otherwise, we guess how the desired k edges are partitioned between the
� groups C = {c1, . . . , c�}. That is, we guess the numbers kj for j ∈ [�] such that
∑�

j=1 kj = k, and αk ≤ kj ≤ βk for each j ∈ [�]. From now on, the algorithm is
very similar to the β-limited case. For each group cj , we color the edges of Ecj

from a set of kj colors uniformly and independently at random, where the colors
used for each Ecj

are non-overlapping. Now we use the algorithm of Theorem 1
to find a rainbow matching of size k. If there is a rainbow matching M of size k,

10 S. Bandyapadhyay et al.

the same matching is a fair matching of size k for the original instance, since in
each Ecj

exactly kj edges are chosen, which is at least αk and at most βk. In the
other direction, if there is a fair matching M of size k in the original instance, by
(1) the matching M is a rainbow matching in the new instance with probability
at least 2−δk. Again, by repeating the coloring subprocess independently 2O(k)

times, we achieve a constant probability of success. Since there are 2O(k) options
for partitioning k edges into at most � ≤ k groups, the running time of the whole
algorithm is 2O(k)nO(1).

Finally, we note that the coloring part in both cases can be derandomized in
the standard fashion by using perfect hash families [42], leading to a completely
deterministic algorithm.

6 Hardness of Approximation for PROPORTIONALLY FAIR

MATCHING

In this section, we show an inapproximability result for Proportionally Fair
Matching under the Exponential Time Hypothesis (ETH) [27]. ETH states
that 2Ω(n) time is needed to solve any generic 3SAT instance with n variables.
For our purpose, we need the following restricted version of 3SAT.

3SAT-3
INPUT: Set of clauses T = {C1, . . . , Cm} in variables x1, . . . , xn, each clause
being the disjunction of 3 or 2 literals, where a literal is a variable xi or its
negation x̄i. Additionally, each variable appears 3 times.
QUESTION: Is there a truth assignment that simultaneously satisfies all the
clauses?

3SAT-3 is known to be NP-hard [52]. We need the following stronger lower
bound for 3SAT-3 proved in [13].

Proposition 2 ([13]). Under ETH, 3SAT-3 cannot be solved in 2o(n) time.

We reduce 3SAT-3 to Proportionally Fair Matching which rules out
any approximation for the latter problem in 2o(�)nO(1) time. Our reduction is
as follows. For each clause Ci, we have a color i. Also, we have n − 1 additional
colors m + 1, . . . ,m + n − 1. Thus, the set of colors C = {1, . . . , m + n − 1}. For
each variable xi, we construct a gadget, which is a 3-path (a path with 3 edges).
Note that xi can either appear twice in its normal form or in its negated form, as
it appears 3 times in total. Let Ci1 , Ci2 and Ci3 be the clauses where xi appears.
Also, suppose it appears in Ci1 and Ci3 in one form, and in Ci2 in the other form.
We construct a 3-path Pi for xi where the j-th edge has color ij for 1 ≤ j ≤ 3.
Additionally, we construct n − 1 3-paths Qi,i+1 for 1 ≤ i ≤ n − 1. All edges of
Qi,i+1 is of color m + i. Finally, we glue together all the paths in the following
way to obtain a single path. For each 1 ≤ i ≤ n−1, we glue Qi,i+1 in between Pi

and Pi+1 by identifying the last vertex of Pi with the first vertex of Qi,i+1 and
the last vertex of Qi,i+1 with the first vertex of Pi+1. Thus we obtain a path P
with exactly 3(n+n− 1) = 6n− 3 edges. Finally, we set α = β = 1/(m+n− 1).

Proportionally Fair Matching with Multiple Groups 11

Lemma 5. There is a satisfying assignment for the clauses in 3SAT-3 if and
only if there is an (α, β)-balanced matching of size at least m + n − 1.

Proof. Suppose there is a satisfying assignment for all the clauses. For each
clause Cj , consider a variable, say xi, that satisfies Cj . Then there is an edge
of color j on Pi. Add this edge to a set M . Thus, after this step, M contains
exactly one edge of color j for 1 ≤ j ≤ m. Also, note that for each path Pi, if the
middle edge is chosen, then no other edge from Pi can be chosen. This is true,
as the variable xi can either satisfy the clauses where it appears in its normal
form or the clauses where it appears in its negated form, but not both types of
clauses. Hence, M is a matching. Finally, for each path Qi,i+1, we add its middle
edge to M . Note that M still remains a matching. Moreover, M contains exactly
one edge of color j for 1 ≤ j ≤ m + n − 1. As α = β = 1/(m + n − 1), M is an
(α, β)-balanced matching.

Now suppose there is an (α, β)-balanced matching M of size at least m+n−1.
First, we show that |M | = m+n−1. Note that if |M | > m+n−1, then the only
possibility is that |M | = 2(m+n−1), as α = β and at most 2 edges of color j can
be picked in any matching for m+1 ≤ j ≤ m+n−1. Suppose |M | = 2(m+n−1).
Then from each Qi,i+1, M contains the first and the third edge. This implies,
from each Pt, 1 ≤ t ≤ n, we can pick at most one edge. Thus, total number of
edges in M is at most 2(n − 1) + n. It follows that 2m+ 2n − 2 ≤ 2n − 2 + n or
n ≥ 2m. Now, in 3SAT-3 the total number of literals is 3n and at most 3m, as
each variable appears 3 times and each clause contains at most 3 literals. This
implies n ≤ m, and we obtain a contradiction. Thus, |M | = m + n − 1. Now,
consider any Pi. In the first case, the first and third edges of Pi are corresponding
to literal xi and, hence, the middle edge is corresponding to the literal x̄i. If the
middle edge is in M , assign 0 to xi, otherwise, assign 1 to xi. In the other case,
if the middle edge is in M , assign 1 to xi, otherwise, assign 0 to xi. We claim
that the constructed assignment satisfies all the clauses. Consider any clause Cj .
Let e ∈ Pi be the edge in M of color j for 1 ≤ j ≤ m. Note that e can be the
middle edge in Pi or not. In any case, if e is corresponding to x̄i, we assigned 0
to xi, and if e is corresponding to xi, we assigned 1 to xi. Thus, in either case,
Cj is satisfied. This completes the proof of the lemma. �

Note that for a 3SAT-3 instance the total numbers of literals is 3n. As each
clause contains at least 2 literals, m ≤ 3n/2. Now, for the instances constructed
in the above proof, the number of colors � = m+n−1 ≤ 3n/2+n−1 = 5n/2−1.
Thus, the above lemma along with Proposition 2 show that it is not possible to
decide whether there is an (α, β)-balanced matching of a given size in time
2o(�)nO(1). Using this, we also show that even no 2o(�)nO(1) time approximation
algorithm is possible. Suppose there is a 2o(�)nO(1) time γ-approximation algo-
rithm, where γ < 1. For our constructed path instances, we apply this algorithm
to obtain a matching. Note that the γ-approximate solution M must contain at
least one edge of every color, as α = β. By the proof in the above lemma, |M | is
exactly m+n − 1. Hence, using this algorithm, we can decide in 2o(�)nO(1) time
whether there is an (α, β)-balanced matching of size m + n − 1. But, this is a
contradiction, which leads to the following theorem.

12 S. Bandyapadhyay et al.

Theorem 5. For any γ > 1, under ETH, there is no 2o(�)nO(1) time γ-
approxim- ation algorithm for Proportionally Fair Matching, even on
paths.

7 Conclusions

In this paper, we study the notion of proportional fairness in the context of
matchings in graphs, which has been studied by Chierichetti et al. [9]. We
obtained approximation and exact algorithms for the proportionally fair match-
ing problem. We also complement these results by showing hardness results. It
would be interesting to obtain a o(�)- or a true O(�)-approximation for Propor-
tionally Fair Matching improving our result. As evident from our hardness
result, there is a lower bound of 2Ω(�)nO(1) on the running time of such an
algorithm.

References

1. Ahmadi, S., Ahmed, F., Dickerson, J.P., Fuge, M., Khuller, S.: An algorithm for
multi-attribute diverse matching. In: Bessiere, C. (ed.) Proceedings of the Twenty-
Ninth International Joint Conference on Artificial Intelligence, IJCAI 2020, pp.
3–9. ijcai.org (2020)

2. Alon, N., Yuster, R., Zwick, U.: Color-coding. J. ACM (JACM) 42(4), 844–856
(1995)

3. Bandyapadhyay, S., Fomin, F.V., Inamdar, T., Simonov, K.: Proportionally fair
matching with multiple groups. CoRR abs/2301.03862 (2023). https://doi.org/10.
48550/arXiv.2301.03862

4. Bei, X., Liu, S., Poon, C.K., Wang, H.: Candidate selections with proportional
fairness constraints. In: Seghrouchni, A.E.F., Sukthankar, G., An, B., Yorke-
Smith, N. (eds.) Proceedings of the 19th International Conference on Autonomous
Agents and Multiagent Systems, AAMAS 2020, Auckland, New Zealand, 9–13 May
2020, pp. 150–158. International Foundation for Autonomous Agents and Multi-
agent Systems (2020). https://doi.org/10.5555/3398761.3398784, https://dl.acm.
org/doi/10.5555/3398761.3398784

5. Benedek, M., Biró, P., Kern, W., Paulusma, D.: Computing balanced solutions
for large international kidney exchange schemes. In: Faliszewski, P., Mascardi, V.,
Pelachaud, C., Taylor, M.E. (eds.) 21st International Conference on Autonomous
Agents and Multiagent Systems, AAMAS 2022, Auckland, New Zealand, 9–13 May
2022, pp. 82–90. International Foundation for Autonomous Agents and Multiagent
Systems (IFAAMAS) (2022). https://doi.org/10.5555/3535850.3535861, https://
www.ifaamas.org/Proceedings/aamas2022/pdfs/p82.pdf

6. Berger, A., Bonifaci, V., Grandoni, F., Schäfer, G.: Budgeted matching and bud-
geted matroid intersection via the gasoline puzzle. Math. Program. 128(1–2), 355–
372 (2011)

7. Boehmer, N., Koana, T.: The complexity of finding fair many-to-one matchings. In:
Bojanczyk, M., Merelli, E., Woodruff, D.P. (eds.) 49th International Colloquium
on Automata, Languages, and Programming, ICALP 2022, 4–8 July 2022, Paris,
France. LIPIcs, vol. 229, pp. 27:1–27:18. Schloss Dagstuhl - Leibniz-Zentrum für
Informatik (2022). https://doi.org/10.4230/LIPIcs.ICALP.2022.27

https://doi.org/10.48550/arXiv.2301.03862
https://doi.org/10.48550/arXiv.2301.03862
https://doi.org/10.5555/3398761.3398784
https://dl.acm.org/doi/10.5555/3398761.3398784
https://dl.acm.org/doi/10.5555/3398761.3398784
https://doi.org/10.5555/3535850.3535861
https://www.ifaamas.org/Proceedings/aamas2022/pdfs/p82.pdf
https://www.ifaamas.org/Proceedings/aamas2022/pdfs/p82.pdf
https://doi.org/10.4230/LIPIcs.ICALP.2022.27

Proportionally Fair Matching with Multiple Groups 13

8. Charlin, L., Zemel, R.: The toronto paper matching system: an automated paper-
reviewer assignment system (2013)

9. Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through
fairlets. In: Advances in Neural Information Processing Systems, pp. 5029–5037
(2017)

10. Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Matroids, matchings, and
fairness. In: Chaudhuri, K., Sugiyama, M. (eds.) The 22nd International Conference
on Artificial Intelligence and Statistics, AISTATS 2019, 16–18 April 2019, Naha,
Okinawa, Japan. Proceedings of Machine Learning Research, vol. 89, pp. 2212–
2220. PMLR (2019)

11. Chouldechova, A.: Fair prediction with disparate impact: a study of bias in recidi-
vism prediction instruments. Big Data 5(2), 153–163 (2017)

12. Corbett-Davies, S., Pierson, E., Feller, A., Goel, S., Huq, A.: Algorithmic deci-
sion making and the cost of fairness. In: Proceedings of the 23rd ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, Halifax, NS,
Canada, 13–17 August 2017, pp. 797–806. ACM (2017)

13. Cygan, M., Marx, D., Pilipczuk, M., Pilipczuk, M.: Hitting forbidden subgraphs
in graphs of bounded treewidth. Inf. Comput. 256, 62–82 (2017)

14. Czabarka, E., Szekely, L.A., Toroczkai, Z., Walker, S.: An algebraic monte-carlo
algorithm for the bipartite partition adjacency matrix realization problem. arXiv
preprint arXiv:1708.08242 (2017)

15. Dwork, C., Hardt, M., Pitassi, T., Reingold, O., Zemel, R.: Fairness through aware-
ness. In: Proceedings of the 3rd Innovations in Theoretical Computer Science Con-
ference, pp. 214–226 (2012)

16. Dwork, C., Ilvento, C.: Group fairness under composition. In: Proceedings of
the 2018 Conference on Fairness, Accountability, and Transparency (FAT* 2018)
(2018)

17. Ebadian, S., Kahng, A., Peters, D., Shah, N.: Optimized distortion and propor-
tional fairness in voting. In: Proceedings of the 23rd ACM Conference on Economics
and Computation, pp. 563–600 (2022)

18. Edmonds, J.: Paths, trees, and flowers. Can. J. Math. 17(3), 449–467 (1965)
19. Feldman, M., Friedler, S.A., Moeller, J., Scheidegger, C., Venkatasubramanian,

S.: Certifying and removing disparate impact. In: proceedings of the 21th ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining, pp.
259–268 (2015)

20. Freeman, R., Micha, E., Shah, N.: Two-sided matching meets fair division. In: Zhou,
Z. (ed.) Proceedings of the Thirtieth International Joint Conference on Artificial
Intelligence, IJCAI 2021, Virtual Event / Montreal, Canada, 19–27 August 2021,
pp. 203–209. ijcai.org (2021). https://doi.org/10.24963/ijcai.2021/29

21. García-Soriano, D., Bonchi, F.: Fair-by-design matching. Data Min. Knowl. Disc.
34(5), 1291–1335 (2020). https://doi.org/10.1007/s10618-020-00675-y

22. Goel, N., Yaghini, M., Faltings, B.: Non-discriminatory machine learning through
convex fairness criteria. In: Furman, J., Marchant, G.E., Price, H., Rossi, F. (eds.)
Proceedings of the 2018 AAAI/ACM Conference on AI, Ethics, and Society, AIES
2018, New Orleans, LA, USA, 02–03 February 2018, p. 116. ACM (2018). https://
doi.org/10.1145/3278721.3278722

23. Gupta, S., Roy, S., Saurabh, S., Zehavi, M.: Parameterized algorithms and kernels
for rainbow matching. Algorithmica 81(4), 1684–1698 (2019)

24. Hall, P.: On representatives of subsets. J. London Math. Soc. 10, 26–30 (1935)
25. Hopcroft, J.E., Karp, R.M.: An n5/2 algorithm for maximum matchings in bipartite

graphs. SIAM J. Comput. 2, 225–231 (1973)

http://arxiv.org/abs/1708.08242
https://doi.org/10.24963/ijcai.2021/29
https://doi.org/10.1007/s10618-020-00675-y
https://doi.org/10.1145/3278721.3278722
https://doi.org/10.1145/3278721.3278722

14 S. Bandyapadhyay et al.

26. Huang, C., Kavitha, T., Mehlhorn, K., Michail, D.: Fair matchings and related
problems. Algorithmica 74(3), 1184–1203 (2016)

27. Impagliazzo, R., Paturi, R.: On the complexity of k-sat. J. Comput. Syst. Sci.
62(2), 367–375 (2001)

28. Kamada, Y., Kojima, F.: Fair matching under constraints: theory and applications
(2020)

29. Kamishima, T., Akaho, S., Sakuma, J.: Fairness-aware learning through regu-
larization approach. In: Spiliopoulou, M., et al. (eds.) Data Mining Workshops
(ICDMW), 2011 IEEE 11th International Conference on, Vancouver, BC, Canada,
11 December 2011, pp. 643–650. IEEE Computer Society (2011)

30. Kesavan, D., Periyathambi, E., Chokkalingam, A.: A proportional fair scheduling
strategy using multiobjective gradient-based African buffalo optimization algo-
rithm for effective resource allocation and interference minimization. Int. J. Com-
mun Syst 35(1), e5003 (2022)

31. Klaus, B., Klijn, F.: Procedurally fair and stable matching. Econ. Theory 27(2),
431–447 (2006)

32. Kleinberg, J., Mullainathan, S., Raghavan, M.: Inherent trade-offs in the fair deter-
mination of risk scores. In: 8th Innovations in Theoretical Computer Science Con-
ference (ITCS 2017). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik (2017)

33. Kőnig, D.: Über Graphen und ihre Anwendung auf Determinantentheorie und Men-
genlehre. Math. Ann. 77(4), 453–465 (1916)

34. Kurata, R., Hamada, N., Iwasaki, A., Yokoo, M.: Controlled school choice with
soft bounds and overlapping types. J. Artif. Intell. Res. 58, 153–184 (2017)

35. Linhares, A., Olver, N., Swamy, C., Zenklusen, R.: Approximate multi-matroid
intersection via iterative refinement. Math. Program. 183(1), 397–418 (2020).
https://doi.org/10.1007/s10107-020-01524-y

36. Lokshtanov, D., Misra, P., Panolan, F., Saurabh, S.: Deterministic truncation of
linear matroids. ACM Trans. Algorithms 14(2), 14:1-14:20 (2018). https://doi.org/
10.1145/3170444

37. Lovász, L., Plummer, M.D.: Matching Theory. AMS (2009)
38. Lu, Y.: The optimization of automated container terminal scheduling based on

proportional fair priority. Math. Probl. Eng. 2022 (2022)
39. Marx, D.: A parameterized view on matroid optimization problems. Theoret. Com-

put. Sci. 410(44), 4471–4479 (2009)
40. Mądry, A.: Navigating central path with electrical flows: from flows to matchings,

and back. In: FOCS 2013, pp. 253–262. IEEE Computer Society (2013)
41. Mucha, M., Sankowski, P.: Maximum matchings via Gaussian elimination. In:

FOCS 2004, pp. 248–255. IEEE Computer Society (2004)
42. Naor, M., Schulman, L.J., Srinivasan, A.: Splitters and near-optimal derandomiza-

tion. In: Proceedings of the 36th Annual Symposium on Foundations of Computer
Science (FOCS 1995), pp. 182–191. IEEE (1995)

43. Nguyen, M.H., Baiou, M., Nguyen, V.H., Vo, T.Q.T.: Nash fairness solutions for
balanced tsp. In: 10th International Network Optimization Conference (INOC)
(2022)

44. Rabin, M.O., Vazirani, V.V.: Maximum matchings in general graphs through ran-
domization. J. Algorithms 10(4), 557–567 (1989)

45. Ristoski, P., Petrovski, P., Mika, P., Paulheim, H.: A machine learning approach
for product matching and categorization. Semant. web 9(5), 707–728 (2018)

46. Roth, A.E., Sönmez, T., Ünver, M.U.: Efficient kidney exchange: coincidence of
wants in markets with compatibility-based preferences. Am. Econ. Rev. 97(3),
828–851 (2007)

https://doi.org/10.1007/s10107-020-01524-y
https://doi.org/10.1145/3170444
https://doi.org/10.1145/3170444

Proportionally Fair Matching with Multiple Groups 15

47. Schrijver, A.: Combinatorial Optimization. Polyhedra and Efficiency, vol. A.
Springer-Verlag, Berlin (2003)

48. St-Arnaud, W., Carvalho, M., Farnadi, G.: Adaptation, comparison and practical
implementation of fairness schemes in kidney exchange programs. arXiv preprint
arXiv:2207.00241 (2022)

49. Stamoulis, G.: Approximation algorithms for bounded color matchings via convex
decompositions. In: Csuhaj-Varjú, E., Dietzfelbinger, M., Ésik, Z. (eds.) MFCS
2014. LNCS, vol. 8635, pp. 625–636. Springer, Heidelberg (2014). https://doi.org/
10.1007/978-3-662-44465-8_53

50. Sun, Z., Todo, T., Walsh, T.: Fair pairwise exchange among groups. In: IJCAI, pp.
419–425 (2021)

51. Thanh, B.L., Ruggieri, S., Turini, F.: k-NN as an implementation of situation test-
ing for discrimination discovery and prevention. In: Apté, C., Ghosh, J., Smyth, P.
(eds.) Proceedings of the 17th ACM SIGKDD International Conference on Knowl-
edge Discovery and Data Mining, San Diego, CA, USA, 21–24 August 2011, pp.
502–510. ACM (2011)

52. Yannakakis, M.: Node- and edge-deletion np-complete problems. In: Lipton, R.J.,
Burkhard, W.A., Savitch, W.J., Friedman, E.P., Aho, A.V. (eds.) Proceedings of
the 10th Annual ACM Symposium on Theory of Computing, 1–3 May 1978, San
Diego, California, USA, pp. 253–264. ACM (1978)

53. Zhang, G., Malekmohammadi, S., Chen, X., Yu, Y.: Equality is not equity: Pro-
portional fairness in federated learning. arXiv preprint arXiv:2202.01666 (2022)

http://arxiv.org/abs/2207.00241
https://doi.org/10.1007/978-3-662-44465-8_53
https://doi.org/10.1007/978-3-662-44465-8_53
http://arxiv.org/abs/2202.01666

Reconstructing Graphs from Connected
Triples

Paul Bastide1(B), Linda Cook2, Jeff Erickson3, Carla Groenland4,
Marc van Kreveld4, Isja Mannens4, and Jordi L. Vermeulen4

1 LaBRI - Bordeaux University, Bordeaux, France
paul.bastide@ens-rennes.fr

2 Institute for Basic Science, Discrete Math Group, Daejeon, Republic of Korea
linda.cook@ibs.re.kr

3 University of Illinois, Urbana-Champaign, Champaign, USA
jeffe@illinois.edu

4 Utrecht University, Utrecht, The Netherlands
{c.e.groenland,m.j.vankreveld,i.m.e.mannens}@uu.nl

Abstract. We introduce a new model of indeterminacy in graphs:
instead of specifying all the edges of the graph, the input contains all
triples of vertices that form a connected subgraph. In general, different
(labelled) graphs may have the same set of connected triples, making
unique reconstruction of the original graph from the triples impossible.
We identify some families of graphs (including triangle-free graphs) for
which all graphs have a different set of connected triples. We also give
algorithms that reconstruct a graph from a set of triples, and for testing
if this reconstruction is unique. Finally, we study a possible extension of
the model in which the subsets of size k that induce a connected graph
are given for larger (fixed) values of k.

Keywords: Algorithms · Graph reconstruction · Indeterminacy ·
Uncertainty · Connected Subgraphs

1 Introduction

Imagine that we get information about a graph, but not its complete structure
by a list of edges. Does this information uniquely determine the graph? In this
paper we explore the case where the input consists of all triples of vertices whose
induced subgraph is connected. In other words, we know for each given triple of
vertices that two or three of the possible edges are present, but we do not know
which ones. We may be able to deduce the graph fully from all given triples.

LC is supported by the Institute for Basic Science (IBS-R029-C1) and CG by Marie-
Skłodowska Curie grant GRAPHCOSY (number 101063180). MvK and JV are sup-
ported by the Netherlands Organisation for Scientific Research (NWO) under project
no. 612.001.651.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
D. Paulusma and B. Ries (Eds.): WG 2023, LNCS 14093, pp. 16–29, 2023.
https://doi.org/10.1007/978-3-031-43380-1_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-43380-1_2&domain=pdf
https://doi.org/10.1007/978-3-031-43380-1_2

Reconstructing Graphs from Connected Triples 17

Fig. 1. Two different labelled trees that give the same set of connected triples.

As a simple example, assume we are given the (unordered, labelled) triples
abc, bcd, and cde. Then the only (connected) graph that matches this specifica-
tion by triples is the path a—b—c—d—e. On the other hand, if we are given all
possible triples on a set of four vertices a, b, c, d except for abc, then there are
several graphs possible. We must have the edges ad, bd, and cd, and zero or one
of the edges ab, bc, and ca. See Fig. 1 for another example.

This model of indeterminacy of a graph does not use probability and is
perhaps the simplest combinatorial model of partial information. Normally a
graph is determined by pairs of vertices which are the edges; now we are given
triples of vertices with indeterminacy on the edges between them. As such, we
believe this model is interesting to study.

As illustrated in our previous example, there are cases where reconstruction
of the graph from the set T of triples is unique and there are cases where multiple
(labelled) graphs may have the same set of triples. There are also cases where T
is not consistent with any graph, such as T = {abc, cde}. Can we characterize
these cases, and what can we say if we have additional information, for example,
when we know that we are reconstructing a tree or a triangle-free graph?

1.1 Our Results

After preliminaries in Sect. 2, we provide two relatively straightforward, general
algorithms for reconstruction in Sect. 3. One runs in O(n3) time when the triples
use n vertex labels, and the other runs in O(n·|T |) time when there are |T | triples
in the input. These algorithms return a graph that is consistent with the given
triples, if one exists, and decide on uniqueness.

Then, we give an O(|T |) time algorithm to reconstruct trees on at least five
vertices, provided that the unknown graph is known to be a tree, in Sect. 4. In
fact, all triangle-free graphs can be reconstructed, provided we know that the
unknown graph is triangle-free. We give an algorithm running in expected O(|T |)
time for this in Sect. 5. Moreover, we show that 2-connected outerplanar graphs
and triangulated planar graphs can be uniquely reconstructed.

In Sect. 6 we study a natural extension of the model where we are given
the connected k-sets of a graph for some fixed k ≥ 4, rather than the con-
nected triples. We show the largest value of k such that each n-vertex tree is
distinguished from other trees by its set of connected k-sets is �n/2�. A similar
threshold is shown for the random graph. Finally, we show that graphs with girth

18 P. Bastide et al.

strictly larger than k, on at least 2k − 1 vertices, can be uniquely reconstructed,
among the class of thus graphs, by their collection of connected k-sets.

1.2 Related Work

The problem of graph reconstruction arises naturally in many cases where some
unknown graph is observed indirectly. For instance, we may have some (noisy)
measurement of the graph structure, or only have access to an oracle that answers
specific types of queries. Much previous research has been done for specific cases,
such as reconstructing metric graphs from a density function [10], road networks
from a set of trajectories [1], graphs using a shortest path or distance oracle [19],
labelled graphs from all r-neighbourhoods [25], or reconstructing phylogenetic
trees [7]. A lot of research has been devoted to the graph reconstruction conjecture
[21,29], which states that it is possible to reconstruct any graph on at least three
vertices (up to isomorphism) from the multiset of all (unlabeled) subgraphs
obtained through the removal of one vertex. This conjecture is open even for
planar graphs and triangle-free graphs, but has been proved for outerplanar
graphs [15] and maximal planar graphs [22]. We refer the reader to one of the
many surveys (e.g. [5,17,23,28]) for further background. Related to our study of
the random graph in Sect. 6 is a result from Cameron and Martins [8] from 1993,
which implies that for each graph H, with high probability the random graph
G ∼ G(n, 1

2) can be reconstructed from the set of (labelled) subsets that induce
a copy of H (up to complementation if H is self-complementary).

Many types of uncertainty in graphs have been studied. Fuzzy graphs [27]
are a generalisation of fuzzy sets to relations between elements of such sets. In
a fuzzy set, membership of an element is not binary, but a value between zero
and one. Fuzzy graphs extend this notion to the edges, which now also have a
degree of membership in the set of edges. Uncertain graphs are similar to fuzzy
graphs in that each edge has a number between zero and one associated with
it, although here this number is a probability of the edge existing. Much work
has been done on investigating how the usual graph-theoretic concepts can be
generalised or extended to fuzzy and uncertain graphs [20,24].

2 Preliminaries

All graphs in this paper are assumed to be connected, finite, and simple. Let
G be an unknown graph with n vertices and let T be the set of all triples of
vertices that induce a connected subgraph in G. Since the graph is connected,
we can recover the vertex set V of G easily from T . We will use T to denote the
complement of this set T , i.e. T is the set of all triples of vertices for which the
induced subgraph is not connected. Note that

∣
∣T ∪ T

∣
∣ =

(
n
3

) ∈ Θ(n3).
Observe that both the presence and absence of a triple gives important infor-

mation: in the former case, at most one of the three possible edges is absent,
whereas in the latter case, at most one of these edges is present.

Reconstructing Graphs from Connected Triples 19

Fig. 2. Three classes of ambiguous triples: a complete graph minus any independent
set of edges, a star graph plus any (partial) matching of the leaves, and a path of length
four in which all vertices are fully adjacent to some set S. In this last case, we cannot
tell the difference between the red and green path. (Color figure online)

It is possible that graphs that are not the same (as labelled graph) or even not
isomorphic yield the same set of triples, for example, a path on three vertices and
a triangle. We also give examples of larger graphs that cannot be distinguished
from their set of connected triples in Fig. 2.

We will make use of (LSD) radix string sorting (as described in e.g. [9]) to sort
a collection of t sets of cardinality k in time O(tk) in several of the algorithms
presented in this paper.

3 Algorithm for Finding Consistent Graphs from Triples

Given a set of triples T , we can find a graph G consistent with those triples by
solving a 2-SAT formula. The main observation here is that the presence of a
triple abc means that at least two of the edges ab, ac and bc must exist, whereas
the absence of a triple means at most one of the edges can exist. We can then
construct a 2-SAT formula where each variable corresponds to an edge of the
graph, and truth represents presence of that edge. For each triple abc ∈ T , we
add clauses (ab∨ac), (ab∨bc) and (ac∨bc) to the formula. For each triple abc ∈ T ,
we add clauses (¬ab∨¬ac), (¬ab∨¬bc) and (¬ac∨¬bc). A graph consistent with
the set of triples can then be found by solving the resulting 2-SAT formula and
taking our set of edges to be the set of true variables in the satisfying assignment.
If the formula cannot be satisfied, no graph consistent with T exists.

We can solve the 2-SAT formula in linear time with respect to the length of
the formula [2,11]. We add a constant number of clauses for each element of T
and T , so our formula has length O(

∣
∣T ∪ T

∣
∣). As

∣
∣T ∪ T

∣
∣ =

(
n
3

)

, this gives us an
O(n3) time algorithm to reconstruct a graph with n vertices. However, we prefer
an algorithm that depends on the size of T , instead of also on the size of T . We
can eliminate the dependency on the size of T by observing that some clauses
can be excluded from the formula because the variables cannot be true.

Lemma 1. We can find a graph G consistent with T in O(n·|T |) time, or output
that no consistent graph exists.

20 P. Bastide et al.

Proof. The basic observation that allows us to exclude certain clauses from the
formula is that if there is no connected triple containing two vertices a and b,
the variable ab will always be false. Consequently, if we have a triple abc ∈ T for
which at most one of the pairs ab, ac and bc appear in some connected triple, we
do not need to include its clauses in the formula, as at least two of the variables
will be false, making these clauses necessarily satisfied.

We can construct the formula that excludes these unnecessary clauses in
O(n·|T |) time as follows. We build a matrix M(i, j), where i, j ∈ V (G) with each
entry containing a list of all vertices with which i and j appear in a connected
triple, i.e. M(i, j) = {x | ijx ∈ T}. This matrix can be constructed in O(n2+|T |)
time, by first setting every entry to ∅ (this takes n2 time) and then running
through T , adding every triple abc to the entries M(a, b), M(b, c) and M(a, c).
We also sort each list in linear time using e.g. radix sort. As the total length of
all lists is O(|T |), this takes O(n2 + |T |) time in total.

Using this matrix, we can decide which clauses corresponding to triples from
T to include as follows. For all pairs of vertices (a, b) that appear in some con-
nected triple (i.e. M(a, b)
= ∅), we find all x such that abx ∈ T . As M(a, b) is
sorted, we can find all x in O(n) time by simply recording the missing elements
of the list M(a, b). We then check if M(a, x) and M(b, x) are empty. If either one
is not, we include the clause associated with abx ∈ T in our formula. Otherwise,
we can safely ignore this clause, as it is necessarily satisfied by the variables for
ax and bx being false.

Our algorithm takes O(n)-time for each non-empty element of M(i, j), of
which there are O(|T |), plus O(n2) time to traverse the matrix. The total time
to construct the formula is O(n2 + n · |T |). As |T | ∈ Ω(n) for connected graphs,
this simplifies to O(n · |T |) time. The resulting formula also has O(n · |T |) length,
and can be solved in time linear in that length. ��
Observe that this is only an improvement on the naive O(n3) approach if |T | ∈
o(n2). We also note that we can test the uniqueness of the reconstruction in the
same time using Feder’s approach for enumerating 2-SAT solutions [12].

4 Unique Reconstruction of Trees

In this section, we prove the following result.

Theorem 1. Let T be a set of triples, and let it be known that the underlying
graph G = (V,E) is a tree. If n ≥ 5, then G can be uniquely reconstructed in
O(|T |) time.

Let us briefly examine trees with three or four vertices. A tree with three vertices
is always a path and it will always have one triple with all three vertices. We do
not know which of the three edges is absent. A tree with four vertices is either
a path or a star. The path has two triples and the star has three triples. For the
star, the centre is the one vertex that appears in all three triples, and hence the
reconstruction is unique. For the path, we will know that the graph is a path,
but we will not know in what order the middle two vertices appear (see Fig. 1).

Reconstructing Graphs from Connected Triples 21

Fig. 3. All trees on five vertices, and the number of triples each vertex occurs in.

Next we consider trees with at least five vertices. We first show that we can
recognise all leaves and their neighbours from the triples. In the following, we
say that a vertex v dominates a vertex u if v appears in all the triples that
u appears in. If u is a leaf, then it is dominated by its unique neighbour v. It
is possible that u is also dominated by a neighbour of v, but in this case uvw
will be the only triple containing u, and v will be dominated by w. Moreover,
if |V | ≥ 4, there exists a triple vwx for some vertex x different from u. This
can be used to recognise the leaves as long as |V | ≥ 4. Moreover, if |V | ≥ 5,
we can also identify the neighbour v of each leaf u as either the unique vertex
that dominate u or when u is dominated by two vertices v and w, there exits
x, y ∈ V such that wxy is a triple and w dominates v. We can use this to prove
that any tree can be reconstructed from its triples, provided that we know that
the result must be a tree and |V | ≥ 5, since we can iteratively recognise and
remove vertices of degree 1, while recording where to ‘glue them back at the end’
until at most four vertices remain. We can complete the reconstruction via some
closer examination of the connected triples in the original tree that contain the
remaining vertices.

In order to derive an optimal, O(|T |) time reconstruction algorithm, we will
use a further characterisation of vertices of a tree using the triples. The main
idea is that we can recognise not only leaves, but also other vertices where we
can reduce the tree. If a vertex v has degree 2 in a tree, then there are two nodes
w,w′ such that every triple with v also contains w or w′ (or both). The converse
is not true for two reasons: if v is a leaf, it also has the stated property, and if v
has degree 3 where at least one neighbour is a leaf, then it has this property as
well. This brings us to the following characterisation.

Lemma 2. A vertex v of a tree G of at least five vertices with triple set T is:

(i) a leaf if and only if v is dominated by some vertex w and does not dominate
any vertex itself;

(ii) if v is not a leaf, then v is (a) a node of degree 2, or (b) a node of degree
3 with at least one leaf neighbour, if and only if there are two nodes w1, w2

such that all triples with v also contain w1 or w2.

Moreover, both characterisations can be checked in time O(|Tv|), when the set of
triples Tv that include v is given for all v ∈ V (G).

Proof. A leaf v can necessarily only appear in triples with its adjacent vertex
w, as it is not adjacent to any other vertices by definition. A leaf is therefore

22 P. Bastide et al.

always dominated by its neighbour w. Since |V | ≥ 5, v does not dominate any
vertex. Conversely, suppose that v is dominated by some vertex w and does
not dominate any other vertex. It is straightforward to check that v cannot be
dominated if it has three neighbours or if it has two non-leaf neighbours. Since
v does not dominate any vertices, it does not have a leaf neighbour. So v must
be a leaf itself. This proves (i).

The second characterisation can be seen as follows. If v has degree at least 4,
then no w1, w2 as in (ii) exist, which is easily verified by looking at the triples
with v and its neighbours only. Furthermore, if v has degree 3 and none of its
neighbours are leaves, then again there are no such w1, w2. On the other hand,
in case (a) the two neighbours can be taken as w1, w2 and in case (b) w1, w2 can
be chosen to be two neighbours of v so that the unique neighbour of v that is
not in {w1, w2} is a leaf.

For testing (i), take any triple vab ∈ Tv, and test both a and b separately if
they are the sought w. For testing (ii), take any triple vab ∈ Tv. If characterisa-
tion (ii) holds, then w1 must be a or b. We try both as follows: For w ∈ {a, b}
we remove all triples with w from Tv. Then w = w1 if and only if all of the
remaining triples of Tv all contain some w2
= v. We test this by looking at some
remaining triple in vcd ∈ Tv and testing whether either c or d is contained in
every other remaining triple. In total, we get four options to test for w1 and w2;
each option is easily checked in O(|Tv|) time. ��

The vertices of V partition into V ′, V ′′, and V ′′′, where V ′ contains the leaves,
V ′′ contains the vertices that are not leaves but satisfy the second condition of
the lemma, and V ′′′ = V \ (V ′ ∪V ′′). Note that more than half of the vertices of
G are in V ′ ∪ V ′′. We next turn to the proof of Theorem 1. We will assume that
there is a total order on the vertex set of G and that the connected triples uvw
are stored in an ordered tuple with u < v < w. For each triple uvw in T , we
generate vwu and wuv as well. We collect the triples with the same first vertex
to generate Tv for all v ∈ V . We will begin by showing how we recognize whether
each vertex is in V ′, V ′′ or V ′′′.

Then, for all v ∈ V , we use Tv to test if v is dominated by some vertex u.
We can find the vertices that dominate v, in time O(|Tv|), by examining the first
triple vwx and noting that only w and x can dominate v. We then check every
other triple in Tv for the presence of w and x. By labeling dominated/dominating
vertices as we go we can, in time O(|T |), find all leaves as vertices that are
dominated by some vertex and don’t dominate any vertex themselves, i.e. all
vertices that satisfy condition (i) of Lemma 2. We then check Tv for the remaining
vertices, to see if condition (ii) is satisfied and find the vertices w1 and w2 in
a similar fashion. We again start with the first triple vwx and check if there is
some triple vyz that does not contain w or x. If not, then w1 = w and w2 = x.
Otherwise we have four candidates w, x, y, z for w1 and w2 and we check, for
every pair, whether there is a triple that contains neither of them. This can be
done in O(|Tv|) time.

Reconstructing Graphs from Connected Triples 23

After this, we remove all triples containing a leaf from T . Let G′ be the graph
obtained by removing all leaves and incident edges. Then the new triple set is
the set of connected triples for this graph G′, and we can recover G from G′.

For all vertices in V ′′ note that they can no longer be vertices of degree 3
in G′, but they may have become leaves. We test this and consider the subset
W ⊆ V ′′ of vertices that have not become leaves.

The subgraph of G′ induced on W consists of a disjoint union of paths. Let
v ∈ W . Then v has exactly two neighbours in V (G′) and they are the two
vertices w1, w2 satisfying the second condition of the Lemma 2. As mentioned
above, we can find these two vertices w1, w2 for each v ∈ W in time O(|Tv|). In
particular, we know all path components of G′[W], as well as the unique vertices
in V (G′) \ W that the endpoints of any such path are adjacent to. Suppose that
v1—v2—. . .—v�. is one of the path components of G[W]. Let x1, x2 ∈ V (G′)\W ′

such that x1 is the other neighbour of v1, and x2 is the other neighbour of vk

(in G′). We record the edges x1v1 and x2vk, as well as the edges and vertices in
the path v1, . . . , v�. Then we replace each triple ux1v1 by ux1x2 and each triple
vkx2u by x1x2u. Afterwards, we discard all triples that contain any of v1, . . . , v�.
Let G′′ be the graph obtained by deleting v1, . . . , v� and adding the edge {x1, x2}.
The resulting triple set is the triple set for G′′, and we can recover G from G′′.
We repeat this for all path components. Note that G′′ is a tree, if and only if G′

is a tree and thus we maintain throughout that the stored triple set corresponds
to a tree, and that we can reconstruct the original tree G from knowing this tree
and the additional information that we record.

Finally, we also remove all leaves in V ′′\W by discarding more triples, similar
to the first leaf removal. This process takes time linear in |T |, and reduces the
number of vertices occurring in T to half or less. We recurse the process on the
remaining tree until it has size five, at which point we can uniquely identify the
structure of the tree by simply looking at the number of triples each vertex occurs
in (see Fig. 3). We may not remove all vertices of V ′ or V ′′ if the remaining tree
would be smaller than five vertices; in that case, we can simply leave some leaf
or not contract the paths in W completely. A standard recurrence shows that
the total time used is O(|T |). This finishes the proof of Theorem 1.

We note that if the tree contains no leaves that are siblings, then we do not
need to know that the graph is a tree for unique reconstruction.

5 Further Reconstructible Graph Classes

In this section, we give larger classes of graphs for which the graphs that are
determined by their set of connected triples.

Theorem 2. There is an algorithm that reconstructs a graph G on n ≥ 5 ver-
tices that is known to be triangle-free from its set T of triples in deterministic
O(|T | log(|T |)) time or randomized O(|T |) expected time.

Proof. Let T be the given list of connected triples. For every triple abc we create
three ordered copies abc, acb, bca. We then sort the list in lexicographical order

24 P. Bastide et al.

in O(|T |) time using radix sort. For every potential edge ab that appears as the
first two vertices of some triple we test whether it is an edge as follows.

If we find two triples abc and abd for some c, d ∈ V (G), we search for the
triples acd and bcd. If ab /∈ E(G), then we must have that bc, ac, bd, ad ∈ E(G),
and thus both acd and bcd are connected. Therefore, if either triple is not in
the list, we know that ab is an edge. Otherwise, we find that {a, b, c, d} induces
a C4. We then search for another vertex e that appears in a triple with any of
a, b, c, d and reconstruct the labeling of the C4 as follows. Suppose G[{a, b, c, d}]
induces a C4 and we try to retrieve the exact order of the vertices in the cycle.
Assume w.l.o.g. that a has the remaining vertex e as a neighbour, then since
G is triangle-free, e is not adjacent to b and d. This means that bde is known
to be disconnected, whereas abe, ade are connected. If e is not a neighbour of c,
then ace is not connected. Hence, if any of a, b, c, d has a private neighbour (one
not adjacent to other vertices in the cycle), then we get the labeling of our C4

(and find that e is a private neighbour of a). If e is adjacent to c besides a, then
we know the following two vertex sets also induce C4’s: abce, acde. We know e
is adjacent to two out of {a, b, c}, {a, d, c} but not to b and d. So we find e is
adjacent to a and c and also have found our labeling.

Suppose abc is the unique triple we found in our list that begins with ab. We
check for triples starting in ac or bc. Since one of the three vertices involved must
be adjacent to some other vertex d, one of these two potential edges must appear
in at least two triples. We can then use the previous methods to reconstruct some
subgraph containing a, b and c. The result will tell us whether ab is an edge or
not.

Note that we can search our list for a specific triple or a triple starting with
a specific pair of vertices, in time O(log(|T |)) using binary search. This means
that the above checks can be done in O(log(|T |)) time. By handling potential
edges in the order in which they appear in the list, we only need to run through
the list once, and thus we obtain a runtime of O(|T | log(|T |)).

Using a data structure for “perfect-hashing” like the one described by Fred-
man, Komlós and Szemerédi [13], we can query the required triples in O(1) time
and thus reconstruct the graph in O(|T |) time. Given a list S of n distinct items
from a set of m items, [13] describes an algorithm to create a data-structure that
can store n items, and allow for membership in S to be queried in constant time
for all m and n. The construction of the data-structure is a randomized process
that takes O(n) time in expectation. In our case S is the list of triples and our
universe is V (G) × V (G) × V (G) so the process takes time O(T). ��

We also prove the following two results in the full version [3].
Theorem 3. We can reconstruct any graph on n ≥ 6 vertices that is known to
be 2-connected and outerplanar from its list of connected triples.
Our approach is similar to the one for trees: we show that we can identify a
vertex of degree two, and remove it from the graph by ‘merging’ it with one of
its neighbours.

A triangulated planar graph, also called a maximal planar graph, is a planar
graph where every face (including the outer face) is a triangle.

Reconstructing Graphs from Connected Triples 25

Theorem 4. Let T be a set of triples, and let it be known that the underlying
graph G = (V,E) is planar and triangulated. Then G can be uniquely recon-
structed from T if n ≥ 7.

To show this result, we first show that unique reconstruction of such graphs is
possible if they do not contain any separating triangles: A separating triangle is a
triangle in the graph whose removal would result in the graph being disconnected.
We then show we can reduce the problem of reconstructing a triangulated planar
graph that contains a separating triangle to reconstructing triangulated planar
graphs that do not contain a separating triangle.

6 Reconstruction from Connected k-Sets

For k ≥ 2 and a graph G = (V,E), we define the connected k-sets of G as the set
{X ⊆ V | |X| = k and G[X] is connected}. We will denote the set of neighbours
of a vertex v by N(v).

Observation 1. For k′ ≥ k ≥ 2, the connected k′-sets of a graph are determined
by the connected k-sets.

Indeed, a (k + 1)-set X = {x1, . . . , xk+1} ⊆ V induces a connected subgraph of
G if and only if for some y, z ∈ X, both G[X \{y}] and G[X \{z}] are connected.

Given a class C of graphs, we can consider the function k(n), where for any
integer n ≥ 1, we define k(n) to be the largest integer k ≥ 2 such that all
(labelled) n-vertex graphs in C have a different collection of connected k-sets. By
Observation 1, asking for the largest such k is a sensible question: reconstruction
becomes more difficult as k increases. We will always assume that we only have
to differentiate the graph from other graphs in the graph class, and remark
that often the recognition problem (is G ∈ C?) cannot be solved even from the
connected triples.

First, we give an analogue of Theorem 1. The proof is given in the full version
[3].

Theorem 5. If it is known that the input graph is a tree, then the threshold for
reconstructing trees is at �n/2�: we can reconstruct an n-vertex tree from the
connected k-sets if k ≤ �n/2� and we cannot reconstruct the order of the vertices
in an n-vertex path if k ≥ �n/2� + 1.

In the full version [3], using the theorem above, we give examples showing that
for every k ≥ 2, there are infinitely many graphs that are determined by their
connected k-sets but not by their connected (k + 1)-sets.

We next show that a threshold near n/2 that we saw above for trees, holds for
almost every n-vertex graph. The Erdős-Renyi random graph G ∼ G(n, 1

2) has n
vertices and each edge is present with probability 1

2 , independently of the other
edges. This yields the uniform distribution over the collection of (labelled) graphs
on n vertices. If something holds for the random graph with high probability
(that is, with a probability that tends to 1 as n → ∞), then we say that it holds

26 P. Bastide et al.

for almost every graph. The random graph is also interesting since it is often use
to deduce the existence of extremal graphs for many problems. More information
can be found in e.g. [4,14,18].

We say an n-vertex graph G = (V,E) is random-like if the following three
properties hold (with log of base 2).

1. For every vertex v ∈ V ,

n/2 − 3
√

n log n ≤ |N(v)| ≤ n/2 + 3
√

n log n.

2. For every pair of distinct vertices v, w ∈ V ,

n/4 − 3
√

n log n ≤ |N(v) ∩ (V \ N(w))| ≤ n/4 + 3
√

n log n.

3. There are no disjoint subsets A,B ⊆ V with |A|, |B| ≥ 2 log n such that there
are no edges between a vertex in A and a vertex in B.

Lemma 3. For G ∼ G(n, 1
2), with high probability G is random-like.

The claimed properties of the random graph are well-known, nonetheless we
added a proof in full version for the convenience of the reader [3].

Theorem 6. For all sufficiently large n, any n-vertex graph G that is random-
like can be reconstructed from the set of connected k-sets for 2 ≤ k ≤ 1

2n −
4
√

n log n in time O(nk+1). On the other hand, G[S] is connected for all subsets
S of size at least 1

2n + 4
√

n log n.

In particular, for almost every graph (combining Lemma 3 and Theorem 6), the
connectivity of k-tuples for k ≥ 1

2n+4
√

n log n gives no information whatsoever,
whereas for k ≤ 1

2n − 4
√

n log n it completely determines the graph.

Proof (of Theorem 6). Let K be the set of connected k-sets.
We first prove the second part of the statement. Let k ≥ 1

2n+4
√

n log n be an
integer and let S be a subset of V of size at least k. Consider two vertices u, v ∈ S.
We will prove that u and v are in the same connected component of G[S]. By
the first random-like property, there are at most 1

2n + 3
√

n log n vertices non-
adjacent to u, which implies that u has at least

√
n log n−1 ≥ 2 log n neighbours

in S. Note that, for the same reason, this is also true for v. Therefore, we can
apply the third random-like property on A = N(u) ∩ S and B = N(v) ∩ S to
ensure that there is an edge between the two sets. We conclude that there must
exist a path from u to v.

Let us now prove the first part of the statement. Let 2 ≤ k ≤ � 1
2n−4

√
n log n�.

Let u ∈ V (G). We claim that the set of vertices V \ N [v] that are not adjacent
or equal to u, is the largest set S such that G[S] is connected and G[S ∪ {u}]
is not. Note that the two conditions directly imply that S ⊆ V \ N [u]. To
prove equality, it is sufficient to prove that G[V \ N [u]] is connected. Consider
two vertices v, w ∈ G[V \ N [u]]. By the second random-like property, the sets
A = N(v)∩(V \N [u]) and B = N(w)∩(V \N [u]) have size at least n/4−3

√
n log n.

By the third property of random-like, there is therefore an edge between A and B.

Reconstructing Graphs from Connected Triples 27

This proves that there is a path between v and w using vertices in V \N [u], and
so G[V \ N [v]] is connected.

For each vertex u, the set of vertices it is not adjacent to can now be found
by finding the largest set S such that G[S] is connected and G[S ∪ {u}] is not.
Since any such S is a subset of V \ N [u], there is a unique maximal (and unique
maximum) such S. We now give the O(nk+1) time algorithm for this.

We begin by constructing a data structure like the deterministic version
described by Fredman et al. [13], which allows us to query the required k-sets in
O(1). This takes deterministic time of O(|K| log |K|) = O(nkk log n) = O(nk+1).
For a vertex v, we give an algorithm to reconstruct the neighbourhood of v in
time O(nk+1).

1. We first run over the subsets S of size k until we find one for which G[S] is
connected but G[S ∪ {v}] is not. This can be done in time O(knk): if G[S] is
connected, then G[S ∪ {v}] is disconnected if and only if G[S \ {s} ∪ {v}] is
disconnected for all s ∈ S.

2. For each vertex w ∈ V \ (S ∪ {v}), we check whether there is a subset U ⊆ S
of size k − 1 for which U ∪ {w} is connected, and whether for each subset
U ′ ⊆ S of size k − 2, U ′ ∪ {w, v} is not connected. If both are true for the
vertex w, then G[S ∪ {w}] is connected and G[S ∪ {w, v}] is not connected,
so we add w to S and repeat this step.

3. If no vertex can be added anymore, we stop and output V \ (S ∪ {v}) as the
set of neighbours of v.

We repeat step 2 at most n times, and each time we try at most n vertices as
potential w and run over subsets of size at most k − 1. Hence, this part runs in
time O(nk+1). We repeat the algorithm above n times (once per vertex) in order
to reconstruct all edges. ��
We prove the following analogue to Theorem 2 in the full version [3].

Theorem 7. Let k ≥ 4 be an integer. Every graph on at least 2k − 1 vertices
that is known to have no cycles of length at most k is determined by its connected
k-sets.

7 Conclusion

We have presented a new model of uncertainty in graphs, in which we only receive
all triples of vertices that form a connected induced subgraph. In a way, this is the
simplest model of combinatorial indeterminacy in graphs. We have studied some
basic properties of this model, and provided an algorithm for finding a graph
consistent with the given indeterminacies. We also proved that trees, triangle-
free graphs and various other families of graphs are determined by the connected
triples, although we need to know the family the sought graph belongs to. In
order to obtain a full characterisation, it is natural to put conditions on the
way a triangle may connect to the rest of the graph, for instance, it is not too

28 P. Bastide et al.

difficult to recognise that a, b, c induces a triangle if at least two of a, b, c have
private neighbour, whereas it is impossible to distinguish whether a, b, c induce
a triangle or a path if all three vertices have the same neighbours outside of the
triangle. We leave this open for future work.

Similar to what has been done for graph reconstruction (see e.g. [23]), another
natural direction is to loosen the objective of reconstruction, and to see if rather
than determining the (labelled) graph, we can recover some graph property such
as the number of edges or the diameter. A natural question is also how many
connected triples are required (when given a ‘subcollection’, similar to [6,16,26],
or when we may perform adaptive queries, as in [19]).

We gave various results in an extension of our model to larger k-sets, includ-
ing trees and random graphs. There are several other logical extensions to the
concept of reconstructing a graph from connected triples. We could define a (k, �)-
representation T to contain all k-sets that are connected and contain at least �
edges. The definition of connected triples would then be a (3, 2)-representation.
Note that in this case some vertices may not appear in T , or T might even be
empty altogether (e.g. for trees when � ≥ k). Another natural extension would
be to specify the edge count for each k-set, but this gives too much information
even when k = n−2: the existence of any edge {u, v} can be determined from the
number of edges among vertices in the four sets V, V \{u}, V \{v} and V \{u, v}.

Some interesting algorithmic questions remain open as well. In particular,
we presented an efficient algorithm to specify whether a collection of connected
k-sets, for k = 3 uniquely determines a graph, but do not know how to solve
this efficiently for larger values of k. Is the following decision problem solvable
in polynomial time: given a graph G and an integer k, is G determined by its
collection of k-tuples? We note that when k equals 4, membership in coNP is
clear (just give another graph with the same connected 4-sets) whereas even
NP-membership is unclear.

Finally, a natural question is whether the running time of O(n·|T |) for finding
a consistent graph with a set of connected triples (Lemma 1) can be improved
to O(|T |) (or expected time O(|T |)).

References

1. Ahmed, M., Wenk, C.: Constructing street networks from GPS trajectories. In:
Epstein, L., Ferragina, P. (eds.) ESA 2012. LNCS, vol. 7501, pp. 60–71. Springer,
Heidelberg (2012). https://doi.org/10.1007/978-3-642-33090-2_7

2. Aspvall, B., Plass, M.F., Tarjan, R.E.: A linear-time algorithm for testing the truth
of certain quantified Boolean formulas. Inf. Process. Lett. 8(3), 121–123 (1979)

3. Bastide, P., et al.: Reconstructing graphs from connected triples (2023)
4. Bollobás, B.: Random graphs. In: Modern Graph Theory. GTM, vol. 184, pp. 215–

252. Springer, New York (1998). https://doi.org/10.1007/978-1-4612-0619-4_7
5. Bondy, J.A., Hemminger, R.L.: Graph reconstruction - a survey. J. Graph Theory

1(3), 227–268 (1977)
6. Bowler, A., Brown, P., Fenner, T.: Families of pairs of graphs with a large number

of common cards. J. Graph Theory 63(2), 146–163 (2010)

https://doi.org/10.1007/978-3-642-33090-2_7
https://doi.org/10.1007/978-1-4612-0619-4_7

Reconstructing Graphs from Connected Triples 29

7. Brandes, U., Cornelsen, S.: Phylogenetic graph models beyond trees. Discrete Appl.
Math. 157(10), 2361–2369 (2009)

8. Cameron, P.J., Martins, C.: A theorem on reconstruction of random graphs. Comb.
Probab. Comput. 2(1), 1–9 (1993)

9. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms,
pp. 197–200. MIT press (2022)

10. Dey, T.K., Wang, J., Wang, Y.: Graph reconstruction by discrete Morse theory.
In: Proceedings of the 34th International Symposium on Computational Geometry.
Leibniz International Proceedings in Informatics (LIPIcs), vol. 99, pp. 31:1–31:15
(2018)

11. Even, S., Itai, A., Shamir, A.: On the complexity of timetable and multicommodity
flow problems. SIAM J. Comput. 5(4), 691–703 (1976)

12. Feder, T.: Network flow and 2-satisfiability. Algorithmica 11(3), 291–319 (1994)
13. Fredman, M.L., Komlós, J., Szemerédi, E.: Storing a sparse table with 0(1) worst

case access time. J. ACM 31(3), 538–544 (1984)
14. Frieze, A., Karonski, M.: Introduction to Random Graphs. Cambridge University

Press, New York (2015)
15. Giles, W.B.: The reconstruction of outerplanar graphs. J. Comb. Theory Ser. B

16(3), 215–226 (1974)
16. Groenland, C., Guggiari, H., Scott, A.: Size reconstructibility of graphs. J. Graph

Theory 96(2), 326–337 (2021)
17. Harary, F.: A survey of the reconstruction conjecture. In: Bari, R.A., Harary, F.

(eds.) Graphs and Combinatorics. LNCS, vol. 406, pp. 18–28. Springer, Berlin
(1974). https://doi.org/10.1007/BFb0066431

18. Janson, S., Rucinski, A., Luczak, T.: Random Graphs. John Wiley & Sons, Hobo-
ken (2011)

19. Kannan, S., Mathieu, C., Zhou, H.: Graph reconstruction and verification. ACM
Trans. Algorithms 14(4), 1–30 (2018)

20. Kassiano, V., Gounaris, A., Papadopoulos, A.N., Tsichlas, K.: Mining uncertain
graphs: an overview. In: Sellis, T., Oikonomou, K. (eds.) ALGOCLOUD 2016.
LNCS, vol. 10230, pp. 87–116. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-57045-7_6

21. Kelly, P.J.: On Isometric Transformations. Ph.D. thesis, University of Wisconsin
(1942)

22. Lauri, J.: The reconstruction of maximal planar graphs. J. Combi. Theory Ser. B
30(2), 196–214 (1981)

23. Lauri, J., Scapellato, R.: Topics in Graph Automorphisms and Reconstruction.
Cambridge University Press, Cambridge (2016)

24. Mordeson, J.N., Peng, C.S.: Operations on fuzzy graphs. Inf. Sci. 79(3), 159–170
(1994)

25. Mossel, E., Ross, N.: Shotgun assembly of labeled graphs. IEEE Trans. Netw. Sci.
Eng. 6(2), 145–157 (2017)

26. Myrvold, W.: The degree sequence is reconstructible from n − 1 cards. Discrete
Math. 102(2), 187–196 (1992)

27. Rosenfeld, A.: Fuzzy graphs. In: Zadeh, L.A., Fu, K.S., Tanaka, K., Shimura, M.
(eds.) Fuzzy Sets and their Applications to Cognitive and Decision Processes, pp.
77–95. Elsevier (1975)

28. Tutte, W.: All the king’s horses. A guide to reconstruction. Graph Theory Relat.
Top., 15–33 (1979)

29. Ulam, S.M.: A Collection of Mathematical Problems, Interscience Tracts in Pure
and Applied Mathematics, vol. 8. Interscience Publishers (1960)

https://doi.org/10.1007/BFb0066431
https://doi.org/10.1007/978-3-319-57045-7_6
https://doi.org/10.1007/978-3-319-57045-7_6

Parameterized Complexity of Vertex
Splitting to Pathwidth at Most 1

Jakob Baumann , Matthias Pfretzschner(B) , and Ignaz Rutter

Universität Passau, 94032 Passau, Germany
{baumannjak,pfretzschner,rutter}@fim.uni-passau.de

Abstract. Motivated by the planarization of 2-layered straight-line
drawings, we consider the problem of modifying a graph such that the
resulting graph has pathwidth at most 1. The problem Pathwidth-One
Vertex Explosion (POVE) asks whether such a graph can be obtained
using at most k vertex explosions, where a vertex explosion replaces a
vertex v by deg(v) degree-1 vertices, each incident to exactly one edge
that was originally incident to v. For POVE, we give an FPT algorithm
with running time O(4k ·m) and an O(k2) kernel, thereby improving over
the O(k6)-kernel by Ahmed et al. [2] in a more general setting. Similarly,
a vertex split replaces a vertex v by two distinct vertices v1 and v2 and
distributes the edges originally incident to v arbitrarily to v1 and v2.
Analogously to POVE, we define the problem variant Pathwidth-One
Vertex Splitting (POVS) that uses the split operation instead of
vertex explosions. Here we obtain a linear kernel and an algorithm with
running time O((6k+12)k ·m). This answers an open question by Ahmed
et al. [2].

Keywords: Vertex Splitting · Vertex Explosion · Pathwidth 1

1 Introduction

Crossings are one of the main aspects that negatively affect the readability of
drawings [20]. It is therefore natural to try and modify a given graph in such
a way that it can be drawn without crossings while preserving as much of the
information as possible. We consider three different operations.

A deletion operation simply removes a vertex from the graph. A vertex explo-
sion replaces a vertex v by deg(v) degree-1 vertices, each incident to exactly one
edge that was originally incident to v. Finally, a vertex split replaces a vertex v
by two distinct vertices v1 and v2 and distributes the edges originally incident
to v arbitrarily to v1 and v2.

Nöllenburg et al. [18] have recently studied the vertex splitting problem,
which is known to be NP-complete [11]. In particular, they gave a non-uniform
FPT-algorithm for deciding whether a given graph can be planarized with at
most k splits. We observe that, since degree-1 vertices can always be inserted into
a planar drawing, the vertex explosion model and the vertex deletion model are
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
D. Paulusma and B. Ries (Eds.): WG 2023, LNCS 14093, pp. 30–43, 2023.
https://doi.org/10.1007/978-3-031-43380-1_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-43380-1_3&domain=pdf
http://orcid.org/0000-0002-2594-3828
http://orcid.org/0000-0002-5378-1694
http://orcid.org/0000-0002-3794-4406
https://doi.org/10.1007/978-3-031-43380-1_3

Parameterized Complexity of Vertex Splitting to Pathwidth at Most 1 31

Fig. 1. Given the shown bipartite graph, a crossing-free 2-layered drawing can be
obtained using one vertex deletion (a), two vertex explosions (b), or three vertex
splits (c).

equivalent for obtaining planar graphs. Note that this is not necessarily the case
for other target graph classes (see, for example, Fig. 1). The problem of deleting
vertices to obtain a planar graph is also known as Vertex Planarization and
has been studied extensively in the literature [13,15–17]. In particular, Jansen
et al. [13] gave an FPT-algorithm with running time O(2O(k log k) · n).

Ahmed et al. [2] investigated the problem of splitting the vertices of a bipar-
tite graph so that it admits a 2-layered drawing without crossings. They assume
that the input graph is bipartite and only the vertices of one of the two sets
in the bipartition may be split. Under this condition, they give an O(k6)-kernel
for the vertex explosion model, which results in an O(2O(k6)m)-time algorithm.
They ask whether similar results can be obtained in the vertex splitting model.
Figure 1 illustrates the three operations in the context of 2-layered drawings1.

We note that a graph admits a 2-layer drawing without crossings if and
only if it has pathwidth at most 1, i.e., it is a disjoint union of caterpil-
lars [3,9]. Motivated by this, we more generally consider the problem of turning
a graph G = (V,E) into a graph of pathwidth at most 1 by the above operations.
In order to model the restriction of Ahmed et al. [2] that only one side of their
bipartite input graph may be split, we further assume that we are given a sub-
set S ⊆ V , to which we may apply modification operations as part of the input.
We define that the new vertices resulting from an operation are also included
in S.

More formally, we consider the following problems, all of which have been
shown to be NP-hard [1,19].

1 In this context, minimizing the number of vertex explosions is equivalent to mini-
mizing the number of vertices that are split, since it is always best to split a vertex
as often as possible.

32 J. Baumann et al.

Pathwidth-One Vertex Explosion (POVE)
Input: An undirected graph G = (V,E), a set S ⊆ V , and a positive

integer k.
Question: Is there a set W ⊆ S with |W | ≤ k such that the graph resulting

from exploding all vertices in W has pathwidth at most 1?

Pathwidth-One Vertex Splitting (POVS)
Input: An undirected graph G = (V,E), a set S ⊆ V , and a positive

integer k.
Question: Is there a sequence of at most k splits on vertices in S such that

the resulting graph has pathwidth at most 1?

We note that the analogous problem with the deletion operation has been
studied extensively [8,19,23]. Here, a branching algorithm with running time
O(3.888k · nO(1)) [23] and a quadratic kernel [8] are known. Our results are as
follows.

First, in Sect. 3, we show that POVE admits a kernel of size O(k2) and
an algorithm with running time O(4km), thereby improving over the results of
Ahmed et al. [2] in a more general setting.

Second, in Sect. 4, we show that POVS has a kernel of size 16k and it admits
an algorithm with running time O((6k+12)k ·m). This answers the open question
of Ahmed et al. [2].

Finally, in Sect. 5, we consider the problem Π Vertex Splitting(Π-VS),
the generalized version of the splitting problem where the goal is to obtain a
graph of a specific graph class Π using at most k split operations. Eppstein et
al. [10] recently studied the similar problem of deciding whether a given graph
G is k-splittable, i.e., whether it can be turned into a graph of Π by splitting
every vertex of G at most k times. For graph classes Π that can be expressed in
monadic second-order graph logic (MSO2, see [7]), they gave an FPT algorithm
parameterized by the solution size k and the treewidth of the input graph. We
adapt their algorithm for the problem Π-VS, resulting in an FPT algorithm
parameterized by the solution size k for MSO2-definable graph classes Π of
bounded treewidth. Using a similar algorithm, we obtain the same result for the
problem variant using vertex explosions.

2 Preliminaries

A parameterized problem L with parameter k is non-uniformly fixed-parameter
tractable if, for every value of k, there exists an algorithm that decides L in time
f(k) · nO(1) for some computable function f . If there is a single algorithm that
satisfies this property for all values of k, then L is (uniformly) fixed-parameter
tractable.

Given a graph G, we let n and m denote the number of vertices and edges
of G, respectively. Since we can determine the subgraph of G that contains
no isolated vertices in O(m) time, we assume, without loss of generality, that
n ∈ O(m). For a vertex v ∈ V (G), we let N(v) := {u ∈ V (G) | adj(v, u)}
and N [v] := N(v) ∪ {v} denote the open and closed neighborhood of v in G,
respectively.

Parameterized Complexity of Vertex Splitting to Pathwidth at Most 1 33

Fig. 2. (a) The graph T2. (b) Two graphs that do not contain T2 as a subgraph, but
both contain N2 (marked in orange) as a substructure. (Color figure online)

We refer to vertices of degree 1 as pendant vertices. For a vertex v of G, we let
deg∗(v) := |{u ∈ N(v) | deg(u) > 1}| denote the degree of v ignoring its pendant
neighbors. If deg∗(v) = d, we refer to v as a vertex of degree* d. A graph is a
caterpillar (respectively a pseudo-caterpillar), if it consists of a simple path (a
simple cycle) with an arbitrary number of adjacent pendant vertices. The path
(the cycle) is called the spine of the (pseudo-)caterpillar.

Philip et al. [19] mainly characterized the graphs of pathwidth at most 1 as
the graphs containing no cycles and no T2 (three simple paths of length 2 that
all share an endpoint; see Fig. 2a) as a subgraph. We additionally use slightly
different sets of forbidden substructures. An N2 substructure consists of a root
vertex r adjacent to three distinct vertices of degree at least 2. Note that every T2

contains an N2 substructure, however, the existence of an N2 substructure does
not generally imply the existence of a T2 subgraph; see Fig. 2b. In the following
proposition, we state the different characterizations for graphs of pathwidth at
most 1 that we use in this work.

Proposition 1 (�2). For a graph G, the following statements are equivalent.

a) G has pathwidth at most 1
b) every connected component of G is a caterpillar
c) G is acyclic and contains no T2 subgraph
d) G is acyclic and contains no N2 substructure
e) G contains no N2 substructure and no connected component that is a pseudo-

caterpillar.

We define the potential of v ∈ V (G) as μ(v) := max(deg∗(v) − 2, 0). The
global potential μ(G) :=

∑
v∈V (G) μ(v) is defined as the sum of the potentials

of all vertices in G. Observe that μ(G) = 0 if and only if G contains no N2

substructure. The global potential thus indicates how far away we are from
eliminating all N2 substructures from the instance.

Recall that, for the problems POVE and POVS, the set S ⊆ V (G) marks
the vertices of G that may be chosen for the respective operations. We say that a
set W ⊆ S is a pathwidth-one explosion set (POES) of G, if the graph resulting
from exploding all vertices in W has pathwidth at most 1.

2 The proofs of results marked with a star can be found in the full version [4].

34 J. Baumann et al.

3 FPT Algorithms for PATHWIDTH-ONE VERTEX

EXPLOSION

In this section, we first show that POVE can be solved in time O(4k · m) using
bounded search trees. Subsequently, we develop a kernelization algorithm for
POVE that yields a quadratic kernel in linear time.

3.1 Branching Algorithm

We start by giving a simple branching algorithm for POVE, similar to the
algorithm by Philip et al. [19] for the deletion variant of the problem. For an
N2 substructure X, observe that exploding vertices not contained in X cannot
eliminate X, because the degrees of the vertices in X remain the same due to
the new degree-1 vertices resulting from the explosion. To obtain a graph of
pathwidth at most 1, it is therefore always necessary to explode one of the four
vertices of every N2 substructure by Proposition 1. Our branching rule thus
first picks an arbitrary N2 substructure from the instance and then branches on
which of the four vertices of the N2 substructure belongs to the POES. Recall
that S denotes the set of vertices of the input graph that can be exploded.

Branching Rule 1. Let r be the root of an N2 substructure contained in G
and let x, y, and z denote the three neighbors of r in N2. For every vertex
v ∈ {r, x, y, z}∩S, create a branch for the instance (G′, S \ {v}, k − 1), where G′

is obtained from G by exploding v.
If {r, x, y, z} ∩ S = ∅, reduce to a trivial no-instance instead.

Note that an N2 substructure can be found in O(m) time by checking, for every
vertex v in G, whether v has at least three neighbors of degree at least 2. Also
note that vertex explosions do not increase the number of edges of the graph.
Since Branching Rule 1 creates at most four new branches, each of which reduces
the parameter k by 1, exhaustively applying the rule takes O(4k · m) time. By
Proposition 1, it subsequently only remains to eliminate connected components
that are a pseudo-caterpillar. Since a pseudo-caterpillar can (only) be turned
into a caterpillar by exploding a vertex of its spine, the remaining instance can
be solved in linear time.

Theorem 1. The problem Pathwidth-One Vertex Explosion can be solved
in time O(4k · m).

3.2 Quadratic Kernel

We now turn to our kernelization algorithm for POVE. In this section, we
develop a kernel of quadratic size, which can be computed in linear time.

Parameterized Complexity of Vertex Splitting to Pathwidth at Most 1 35

Fig. 3. Examples for Reduction Rules 1 (a), 2 (b), 3 (c), and 4 (d). The vertices of S
are marked in green (Color figure online).

We adopt our first two reduction rules from the kernelization of the deletion
variant by Philip et al. [19] and show that these rules are also safe for the
explosion variant. The first rule reduces the number of pendant neighbors of
each vertex to at most one; see Fig. 3a.

Reduction Rule 1. (�). If G contains a vertex v with at least two pendant
neighbors, remove all pendant neighbors of v except one to obtain the graph G′

and reduce the instance to (G′, S ∩ V (G′), k).

Since a caterpillar has pathwidth at most 1 by Proposition 1, we can safely
remove any connected component of G that forms a caterpillar; see Fig. 3b for
an example.

Reduction Rule 2. If G contains a connected component X that is a caterpil-
lar, remove X from G and reduce the instance to (G − X, S \ V (X), k).

If G contains a connected component that is a pseudo-caterpillar, then
exploding an arbitrary vertex of its spine yields a caterpillar. If the spine con-
tains no vertex of S, the spine is a cycle that cannot be broken by a vertex
explosion. However, by Proposition 1, acyclicity is a necessary condition for a
graph of pathwidth at most 1. Hence we get the following reduction rule; see
Fig. 3c for an illustration.

Reduction Rule 3. Let X denote a connected component of G that is a pseudo-
caterpillar. If the spine of X contains a vertex of S, remove X from G and
reduce the instance to (G − X, S \ V (X), k − 1). Otherwise reduce to a trivial
no-instance.

Recall that the degree* of a vertex is the number of its non-pendant neigh-
bors. Our next goal is to shorten paths of degree*-2 vertices to at most two
vertices. If we have a path x, y, z of degree*-2 vertices, we refer to y as a 2-
enclosed vertex. Note that exploding a 2-enclosed vertex y cannot eliminate any

36 J. Baumann et al.

Fig. 4. A graph G that has no POES, because the highlighted N2 substructure contains
no vertex of S. For the graph G′ resulting from contracting y into x, the set {x} is a
POES. The two instances are therefore not equivalent.

N2 substructures from the instance. By Proposition 1, vertex y can thus only be
part of an optimal solution if exploding y breaks cycles. If we want to shorten
the chain x, y, z by contracting y into one of its neighbors, we therefore need to
ensure that the shortened chain contains a vertex of S if and only if the original
chain contained a vertex of S. If y ∈ S, we cannot simply add one of its neigh-
bors, say x, to S in the reduced instance, because exploding x may additionally
remove an N2 substructure; see Fig. 4 for an example. While shortening paths of
degree*-2 vertices to at most three vertices is simple, shortening them to length
at most 2 (i.e., eliminating all 2-enclosed vertices) is therefore more involved. In
the following, we briefly sketch how this can be achieved in linear time. For the
specific reduction rules and the corresponding correctness proofs, we refer to the
full version of the paper [4].

Lemma 1 (�). Given an instance of POVE, an equivalent instance without
2-enclosed vertices can be computed in O(m) time.

Sketch of Proof. Given a 2-enclosed vertex y, we show that we can decide greed-
ily whether y is contained in an optimal solution or not. This means that we
can either immediately explode y, or we can safely contract it into one of its
degree*-2 neighbors. Since y is 2-enclosed, y is not contained in any N2 sub-
structures and we thus only have to consider cycles containing y. If there exists
a cycle C in G with C ∩ S = {y} (i.e., y is the only splittable vertex of C), then
we can immediately explode y. Otherwise, every cycle containing y contains at
least one additional vertex of S. In this case, we can show that there exists a
minimum POES of G that does not contain y, thus we can remove y from S and
contract it into one of its neighbors, thereby preserving all cycles of the instance.
To achieve linear running time, we can show that the set of 2-enclosed vertices
that should be exploded can be computed globally using a specialized spanning
tree. �	

To simplify the instance even further, the following reduction rule removes all
degree*-2 vertices v that are adjacent to a vertex x of degree* 1; see Fig. 3d for
an illustration. Roughly speaking, since v cannot be contained in a cycle and x
substitutes v in all N2 substructures v is contained in, all forbidden substructures
are preserved.

Parameterized Complexity of Vertex Splitting to Pathwidth at Most 1 37

Reduction Rule 4 (�). Let v be a degree*-2 vertex of G with non-pendant
neighbors x and y, such that x has degree* 1. Remove v from G and add a new
edge xy. If v ∈ S, reduce to (G − v + xy, (S \ {v})∪ {x}, k). Otherwise reduce to
(G − v + xy, S \ {x}, k).

Recall that the global potential μ(G) indicates how far away we are from our
goal of eliminating all N2 substructures from G. With the following lemma, we
show that our reduction rules ensure that the number of vertices in the graph G
is bounded linearly in the global potential of G.

Lemma 2. After exhaustively applying Reduction Rules 1–4 and Lemma 1, it
holds that |V (G)| ≤ 8 · μ(G).

Proof. Reduction Rule 2 ensures that G contains no vertices of degree* 0. For
i ∈ {1, 2}, let Vi denote the set of non-pendant degree*-i vertices of G and let V3

denote the set of vertices with degree* at least 3. Recall that we defined the
global potential as

μ(G) =
∑

v∈V (G)

μ(v) =
∑

v∈V (G)

max(0,deg∗(v) − 2).

Since all vertices of V1 and V2 have degree* at most 2, their potential is 0 and
we get

μ(G) =
∑

v∈V3

(deg∗(v) − 2) =
∑

v∈V3

deg∗(v) − 2 · |V3|.

Note that |V3| ≤ μ(G), because each vertex of degree* at least 3 contributes at
least 1 to the global potential. We therefore get

∑

v∈V3

deg∗(v) ≤ 3 · μ(G). (1)

By Lemma 1, every vertex in v ∈ V2 is adjacent to a vertex of V1 ∪V3, since oth-
erwise, v would be 2-enclosed. However, Reduction Rule 4 additionally ensures
that vertices of V2 cannot be adjacent to vertices of V1, thus every vertex of V2

must be adjacent to a vertex of V3. Note that two adjacent vertices of V1 would
form a caterpillar, which is prohibited by Reduction Rule 2. Therefore, every
vertex of V1 is also adjacent to a vertex of V3.

Overall, every vertex of V1 and V2 is thus adjacent to a vertex of V3. Note
that every vertex v ∈ V1 must additionally have a pendant neighbor, because
otherwise, v itself would be a pendant vertex. Hence every vertex of V1 and V2

has degree at least 2 and thus contributes to the degree* of its neighbor in V3.
We therefore have |V1| + |V2| ≤

∑
v∈V3

deg∗(v), hence |V1| + |V2| ≤ 3 · μ(G) by
Eq. 1. Recall that |V3| ≤ μ(G), thus |V1| + |V2| + |V3| ≤ 4 · μ(G). By Reduction
Rule 1, each of these vertices can have at most one pendant neighbor and thus
|V (G)| ≤ 8 · μ(G).

With Lemma 2, it now only remains to find an upper bound for the global
potential μ(G). We do this using the following two reduction rules.

38 J. Baumann et al.

Reduction Rule 5. Let v be a vertex of G with potential μ(v) > k. If v ∈ S,
explode v to obtain the graph G′ and reduce the instance to (G′, S \ {v}, k −1).
Otherwise reduce to a trivial no-instance.

Proof of Safeness. Since exploding a vertex u ∈ V (G) \ {v} decreases μ(v) by
at most one, after exploding at most k vertices in V (G) \ {v} we still have
μ(v) > 0. Because μ(v) > 0 implies that G contains an N2 substructure, it is
therefore always necessary to explode vertex v by Proposition 1. �	

Reduction Rule 6. If μ(G) > 2k2 + 2k, reduce to a trivial no-instance.

Proof of Safeness. By Reduction Rule 5 we have μ(v) ≤ k and consequently
deg∗(v) ≤ k + 2 for all v ∈ V (G). Hence exploding a vertex v decreases the
potential of v by at most k and the potential of each of its non-pendant neighbors
by at most 1. Overall, k vertex explosions can therefore only decrease the global
potential μ(G) by at most k · (2k + 2). �	

Because Reduction Rule 6 gives us an upper bound for the global poten-
tial μ(G), we can now use Lemma 2 to obtain the kernel.

Theorem 2 (�). The problem Pathwidth-One Vertex Explosion admits
a kernel of size 16k2 + 16k. It can be computed in time O(m).

4 FPT Algorithms for PATHWIDTH-ONE VERTEX SPLITTING

In this section, we briefly outline how the results from Sect. 3 can be adapted
for the split operation. For detailed proofs, we refer to the full version [4].

4.1 Linear Kernel

One can prove that Reduction Rules 1–4 and Lemma 1 we used for POVE are
also safe for the problem POVS. Since only these are needed to establish the
upper bound of |V (G)| ≤ 8·μ(G) in Lemma 2, the lemma also applies for POVS.

The main difference to the kernelization of POVE lies in the way the global
potential changes due to splits. While a vertex explosion can decrease the global
potential linearly in k, we can show that a single vertex split decreases μ(G) by
at most 2. If μ(G) > 2k, we can thus again reduce to a trivial no-instance. Using
Lemma 2 with μ(G) ≤ 2k, we obtain the following result.

Theorem 3 (�). The problem Pathwidth-One Vertex Splitting admits a
kernel of size 16k. It can be computed in time O(m).

Parameterized Complexity of Vertex Splitting to Pathwidth at Most 1 39

Fig. 5. (a) An N2 substructure {r, x, y, z}. (b)-(c) Two possible branches eliminating
the N2 substructure. The former splits off edge rx at x, the latter splits off the edges
rz and ra at r.

4.2 Branching Algorithm

As in Sect. 3.1, our branching algorithm for POVS eliminates every N2 sub-
structure of G by branching on which of its four vertices should be split. In this
case, however, we need to additionally consider the possible ways to split a single
vertex. The following lemma helps us limit the number of suitable splits.

Lemma 3 (�). For every instance of POVS, there exists a minimum sequence
of splits such that every split operation splits off at most two edges.

Theorem 4 (�). The problem POVS can be solved in time O((6k + 12)k · m).

Sketch of Proof. From the kernelization, we use Reduction Rule 1 reducing pen-
dant vertices, and the above rule that yields the bound μ(G) ≤ 2k. Together,
these two rules ensure that each vertex has degree at most 2k+3. We now branch
on the way of splitting an N2 substructure with root r and neighbors {x, y, z} as
above (see Fig. 5). If we split r, then, by Lemma 3, we may assume that we split
off one of the neighbors {x, y, z}, together with at most one other neighbor of r;
these are 3 · (2k+3) choices. If we split a vertex v ∈ {x, y, z}, then it is necessary
that we only split off the edge rv at v, thus there is only one possibility for each
of them. Overall, we thus find a branching vector of size 6k + 12. �	

5 FPT Algorithms for Splitting and Exploding
to MSO2-Definable Graph Classes of Bounded
Treewidth

While Sect. 4 focused on the problem of obtaining graphs of pathwidth at most
1 using at most k vertex splits on the input graph, we now consider the problem
of splitting vertices to obtain other graph classes. With the following problem,
we generalize the problem POVS.

Π Vertex Splitting(Π-VS)
Input: An undirected graph G = (V,E), a set S ⊆ V , and a positive

integer k.
Question: Is there a sequence of at most k splits on vertices in S such that

the resulting graph is contained in Π?

40 J. Baumann et al.

Nöllenburg et al. [18] showed that, for any minor-closed graph class Π, the
graph class Πk containing all graphs that can be modified to a graph in Π using
at most k vertex splits is also minor-closed. Robertson and Seymour [21] showed
that every minor-closed graph class has a constant-size set of forbidden minors
and that it can be tested in cubic time whether a graph contains a given fixed
graph as a minor. Since Πk is minor-closed, this implies the existence of a non-
uniform FPT-algorithm for the problem Π-VS. Because the graphs of pathwidth
at most 1 form a minor-closed graph class, this includes the problem POVS.

Proposition 2 ([18]). For every minor-closed graph class Π, the problem
Π-VS is non-uniformly FPT parameterized by the solution size k.

We say that a graph class Π is MSO2-definable, if there exists an MSO2

(monadic second-order graph logic, see [7]) formula ϕ such that G |= ϕ if and
only if G ∈ Π. In the following, we show that the problem Π-VS is uniformly
FPT parameterized by k if Π is MSO2-definable and has bounded treewidth.
Since every minor-closed graph class is MSO2-definable, this improves the result
from Proposition 2 for graph classes of bounded treewidth.

Eppstein et al. [10] showed that the problem of deciding whether a given
graph G can be turned into a graph of class Π by splitting each vertex of G at
most k times can be expressed as an MSO2 formula on G, if Π itself is MSO2-
definable. Using Courcelle’s Theorem [6], this yields an FPT-algorithm param-
eterized by k and the treewidth of the input graph. Their algorithm exploits
the fact that the split operations create at most k copies of each vertex in the
graph. Since the same also applies for the problem Π-VS, where we may apply
at most k splits overall, their algorithm can be straightforwardly adapted for
Π-VS, thereby implying the following result.

Corollary 1. For every MSO2-definable graph class Π, the problem Π-VS is
FPT parameterized by the solution size k and the treewidth of the input graph.

For a graph class Π of bounded treewidth, we let tw(Π) denote the maximum
treewidth among all graphs in Π. With the following lemma, we show that, if the
target graph class Π has bounded treewidth, then every yes-instance of Π-VS
must also have bounded treewidth.

Proposition 3. For a graph class Π of bounded treewidth, let I = (G,S, k) be
an instance of Π-VS. If tw(G) > k + tw(Π), then I is a no-instance.

Proof. We first show that a single split operation can reduce the treewidth of G
by at most 1. Assume, for the sake of contradiction, that we can obtain a graph
G′ of treewidth less than tw(G)−1 by splitting a single vertex v of G into vertices
v1 and v2 of G′. Let T denote a minimum tree decomposition of G′. Remove all
occurences of v1 and v2 in T and add v to every bag of T . Observe that the
result is a tree decomposition of size less than tw(G) for G, a contradiction. A
single split operation thus decreases the treewidth of the graph by at most 1.
Since every graph G′ ∈ Π has tw(G′) ≤ tw(Π), it is thus impossible to obtain a
graph of Π with at most k vertex splits if tw(G) > k + tw(Π). �	

Parameterized Complexity of Vertex Splitting to Pathwidth at Most 1 41

Fig. 6. (a) An instance (G, S, 2) of Π-VE. (b) The corresponding auxiliary graph G×

obtained by subdividing each edge in G twice. (c) The graph obtained by exploding
{x1, x2} in G is the highlighted minor of G×. Since Π is MSO2-definable, one can
express Π-VE using an MSO2 formula on G×.

Given a graph class Π of bounded treewidth, we first determine in time
f(k + tw(Π)) · n whether the treewidth of G is greater than k + tw(Π) [5]. If
this is the case, then we can immediately report a no-instance by Proposition 3.
Otherwise, we know that tw(G) ≤ k + tw(Π). Since tw(Π) is a constant, we
have tw(G) ∈ O(k), and thus Corollary 1 yields the following result.

Theorem 5. For every MSO2-definable graph class Π of bounded treewidth, the
problem Π-VS is FPT parameterized by the solution size k.

Vertex Explosion. We now briefly sketch how these results extend to the
problem variant Π Vertex Explosion(Π-VE) using vertex explosions instead
of vertex splits. In this case, for minor-closed graph classes Π, the set of yes-
instances of Π-VE is not minor-closed in general, thus the non-uniform FPT
algorithm used to obtain Proposition 2 does not work for Π-VE. Additionally,
the FPT-algorithm by Eppstein et al. [10] for MSO2-definable graph classes
cannot be straightforwardly adapted for Π-VE, since the number of new vertices
resulting from explosions is not bounded by a function in k. However, using the
approach illustrated in Fig. 6, we obtain the following results.

Lemma 4 (�). For every MSO2-definable graph class Π, the problem Π-VE is
FPT parameterized by the treewidth of the input graph.

Theorem 6 (�). For every MSO2-definable graph class Π of bounded treewidth,
the problem Π-VE is FPT parameterized by the solution size k.

We remark that, for arbitrary graph classes Π, the question whether a graph
of Π can be obtained by applying arbitrarily many vertex splits to at most k
vertices in the input graph is not equivalent to Π-VE.

6 Conclusion

In this work, we studied the problems Pathwidth-One Vertex Explosion
and Pathwidth-One Vertex Splitting, obtaining an efficient branching

42 J. Baumann et al.

algorithm and a small kernel for each variant. Subsequently, we more generally
considered the problem of obtaining a graph of a specific graph class Π using at
most k vertex splits (respectively explosions). For MSO2-definable graph classes
Π of bounded treewidth, we obtained an FPT algorithm parameterized by the
solution size k. These graph classes include, for example, the outerplanar graphs,
the pseudoforests, and the graphs of treewidth (respectively pathwidth) at most c
for some constant c.

Instead of splitting vertices to obtain a graph of pathwidth at most 1, one
can also consider obtaining graphs of treewidth at most 1, i.e., forests. Since,
in this context, the degree-1 vertices resulting from an explosion can simply
be reduced, the explosion model is equivalent to the problem Feedback Ver-
tex Set, a well-studied NP-complete [14] problem that admits a quadratic ker-
nel [22]. In the full version of this paper [4], we show that the problem of splitting
vertices of a graph to obtain a forest is equivalent to the problem Feedback
Edge Set, which asks whether a given graph can be made acyclic using at
most k edge deletions; a problem that can be solved by computing an arbitrary
spanning forest of the graph. Firbas [12] independently obtained the same result.

References

1. Ahmed, R., et al.: Splitting vertices in 2-layer graph drawings. IEEE Comput.
Graph. Appl. 43(3), 24–35 (2023). https://doi.org/10.1109/MCG.2023.3264244

2. Ahmed, R., Kobourov, S.G., Kryven, M.: An FPT algorithm for bipartite vertex
splitting. In: Angelini, P., von Hanxleden, R. (eds.) Graph Drawing and Network
Visualization - 30th International Symposium, GD 2022. LNCS, vol. 13764, pp.
261–268. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-22203-0_19

3. Arnborg, S., Proskurowski, A., Seese, D.: Monadic second order logic, tree
automata and forbidden minors. In: Börger, E., Kleine Büning, H., Richter, M.M.,
Schönfeld, W. (eds.) CSL 1990. LNCS, vol. 533, pp. 1–16. Springer, Heidelberg
(1991). https://doi.org/10.1007/3-540-54487-9_49

4. Baumann, J., Pfretzschner, M., Rutter, I.: Parameterized complexity of vertex
splitting to pathwidth at most 1. CoRR abs/2302.14725 (2023). https://doi.org/
10.48550/arXiv.2302.14725

5. Bodlaender, H.L.: A linear time algorithm for finding tree-decompositions of small
treewidth. In: Kosaraju, S.R., Johnson, D.S., Aggarwal, A. (eds.) Proceedings of
the Twenty-Fifth Annual ACM Symposium on Theory of Computing, pp. 226–234.
ACM (1993). https://doi.org/10.1145/167088.167161

6. Courcelle, B.: The monadic second-order logic of graphs. i. recognizable sets of
finite graphs. Inf. Comput. 85(1), 12–75 (1990). https://doi.org/10.1016/0890-
5401(90)90043-H

7. Cygan, M.: Parameterized Algorithms. Springer, Cham (2015). https://doi.org/
10.1007/978-3-319-21275-3

8. Cygan, M., Pilipczuk, M., Pilipczuk, M., Wojtaszczyk, J.O.: An improved FPT
algorithm and a quadratic kernel for pathwidth one vertex deletion. Algorithmica
64(1), 170–188 (2012). https://doi.org/10.1007/s00453-011-9578-2

9. Eades, P., McKay, B.D., Wormald, N.C.: On an edge crossing problem. In: Proceed-
ings of the 9th Australian Computer Science Conference, vol. 327, p. 334 (1986)

https://doi.org/10.1109/MCG.2023.3264244
https://doi.org/10.1007/978-3-031-22203-0_19
https://doi.org/10.1007/3-540-54487-9_49
https://doi.org/10.48550/arXiv.2302.14725
https://doi.org/10.48550/arXiv.2302.14725
https://doi.org/10.1145/167088.167161
https://doi.org/10.1016/0890-5401(90)90043-H
https://doi.org/10.1016/0890-5401(90)90043-H
https://doi.org/10.1007/978-3-319-21275-3
https://doi.org/10.1007/978-3-319-21275-3
https://doi.org/10.1007/s00453-011-9578-2

Parameterized Complexity of Vertex Splitting to Pathwidth at Most 1 43

10. Eppstein, D., et al.: On the planar split thickness of graphs. Algorithmica 80(3),
977–994 (2017). https://doi.org/10.1007/s00453-017-0328-y

11. Faria, L., de Figueiredo, C.M.H., Mendonça, C.F.X.: Splitting number is NP-
complete. In: Hromkovič, J., Sýkora, O. (eds.) WG 1998. LNCS, vol. 1517, pp.
285–297. Springer, Heidelberg (1998). https://doi.org/10.1007/10692760_23

12. Firbas, A.: Establishing Hereditary Graph Properties via Vertex Splitting. Diploma
thesis, Technische Universität Wien (2023). https://doi.org/10.34726/hss.2023.
103864

13. Jansen, B.M.P., Lokshtanov, D., Saurabh, S.: A near-optimal planarization algo-
rithm. In: Chekuri, C. (ed.) Proceedings of the Twenty-Fifth Annual ACM-
SIAM Symposium on Discrete Algorithms (SODA), pp. 1802–1811. SIAM (2014).
https://doi.org/10.1137/1.9781611973402.130

14. Karp, R.M.: Reducibility among combinatorial problems. In: Miller, R.E.,
Thatcher, J.W. (eds.) Proceedings of a Symposium on the Complexity of Com-
puter Computations, pp. 85–103. The IBM Research Symposia Series, Plenum
Press, New York (1972). https://doi.org/10.1007/978-1-4684-2001-2_9

15. Kawarabayashi, K.: Planarity allowing few error vertices in linear time. In: 50th
Annual IEEE Symposium on Foundations of Computer Science, FOCS 2009, pp.
639–648. IEEE Computer Society (2009). https://doi.org/10.1109/FOCS.2009.45

16. Lewis, J.M., Yannakakis, M.: The node-deletion problem for hereditary properties
is NP-complete. J. Comput. Syst. Sci. 20(2), 219–230 (1980). https://doi.org/10.
1016/0022-0000(80)90060-4

17. Marx, D., Schlotter, I.: Obtaining a planar graph by vertex deletion. In: Brand-
städt, A., Kratsch, D., Müller, H. (eds.) WG 2007. LNCS, vol. 4769, pp. 292–303.
Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-74839-7_28

18. Nöllenburg, M., Sorge, M., Terziadis, S., Villedieu, A., Wu, H., Wulms, J.: Planariz-
ing graphs and their drawings by vertex splitting. In: Angelini, P., von Hanxleden,
R. (eds.) GD 2022. LNCS, vol. 13764, pp. 232–246. Springer, Cham (2022). https://
doi.org/10.1007/978-3-031-22203-0_17

19. Philip, G., Raman, V., Villanger, Y.: A quartic kernel for pathwidth-one vertex
deletion. In: Thilikos, D.M. (ed.) WG 2010. LNCS, vol. 6410, pp. 196–207. Springer,
Heidelberg (2010). https://doi.org/10.1007/978-3-642-16926-7_19

20. Purchase, H.C., Cohen, R.F., James, M.: Validating graph drawing aesthetics.
In: Brandenburg, F.J. (ed.) GD 1995. LNCS, vol. 1027, pp. 435–446. Springer,
Heidelberg (1996). https://doi.org/10.1007/BFb0021827

21. Robertson, N., Seymour, P.D.: Graph minors. XIII. The disjoint paths problem.
J. Comb. Theory, Ser. B 63(1), 65–110 (1995). https://doi.org/10.1006/jctb.1995.
1006

22. Thomassé, S.: A 4k2 kernel for feedback vertex set. ACM Trans. Algorithms 6(2),
32:1–32:8 (2010). https://doi.org/10.1145/1721837.1721848

23. Tsur, D.: Faster algorithm for pathwidth one vertex deletion. Theor. Comput. Sci.
921, 63–74 (2022). https://doi.org/10.1016/j.tcs.2022.04.001

https://doi.org/10.1007/s00453-017-0328-y
https://doi.org/10.1007/10692760_23
https://doi.org/10.34726/hss.2023.103864
https://doi.org/10.34726/hss.2023.103864
https://doi.org/10.1137/1.9781611973402.130
https://doi.org/10.1007/978-1-4684-2001-2_9
https://doi.org/10.1109/FOCS.2009.45
https://doi.org/10.1016/0022-0000(80)90060-4
https://doi.org/10.1016/0022-0000(80)90060-4
https://doi.org/10.1007/978-3-540-74839-7_28
https://doi.org/10.1007/978-3-031-22203-0_17
https://doi.org/10.1007/978-3-031-22203-0_17
https://doi.org/10.1007/978-3-642-16926-7_19
https://doi.org/10.1007/BFb0021827
https://doi.org/10.1006/jctb.1995.1006
https://doi.org/10.1006/jctb.1995.1006
https://doi.org/10.1145/1721837.1721848
https://doi.org/10.1016/j.tcs.2022.04.001

Odd Chromatic Number of Graph Classes

Rémy Belmonte1 , Ararat Harutyunyan2, Noleen Köhler2(B) ,
and Nikolaos Melissinos3

1 Université Gustave Eiffel, CNRS, LIGM, 77454 Marne-la-Vallée, France
remy.belmonte@u-pem.fr

2 Université Paris-Dauphine, PSL University, CNRS UMR7243, LAMSADE,
Paris, France

ararat.harutyunyan@lamsade.dauphine.fr, noleen.kohler@dauphine.psl.eu
3 Department of Theoretical Computer Science, Faculty of Information Technology,

Czech Technical University in Prague, Prague, Czech Republic

Abstract. A graph is called odd (respectively, even) if every vertex has
odd (respectively, even) degree. Gallai proved that every graph can be
partitioned into two even induced subgraphs, or into an odd and an even
induced subgraph. We refer to a partition into odd subgraphs as an odd
colouring of G. Scott [Graphs and Combinatorics, 2001] proved that a
graph admits an odd colouring if and only if it has an even number of
vertices. We say that a graph G is k-odd colourable if it can be partitioned
into at most k odd induced subgraphs. We initiate the systematic study of
odd colouring and odd chromatic number of graph classes. In particular,
we consider for a number of classes whether they have bounded odd
chromatic number. Our main results are that interval graphs, graphs
of bounded modular-width and graphs of bounded maximum degree all
have bounded odd chromatic number.

Keywords: Graph classes · Vertex partition problem · Odd
colouring · Colouring variant · Upper bounds

1 Introduction

A graph is called odd (respectively even) if all its degrees are odd (respectively
even). Gallai proved the following theorem (see [8], Problem 5.17 for a proof).

Theorem 1. For every graph G, there exist:

– a partition (V1, V2) of V (G) such that G[V1] and G[V2] are both even;
– a partition (V ′

1 , V ′
2) of V (G) such that G[V ′

1] is odd and G[V ′
2] is even.

Ararat Harutyunyan is supported by the grant from French National Research Agency
under JCJC program (DAGDigDec: ANR-21-CE48-0012).
Noleen Köhler is supported by the grant from French National Research Agency under
JCJC program (ASSK: ANR-18-CE40-0025-01).
Nikolaos Melissinos is partially supported by the CTU Global postdoc fellowship
program.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
D. Paulusma and B. Ries (Eds.): WG 2023, LNCS 14093, pp. 44–58, 2023.
https://doi.org/10.1007/978-3-031-43380-1_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-43380-1_4&domain=pdf
http://orcid.org/0000-0001-8043-5343
http://orcid.org/0000-0002-1023-6530
http://orcid.org/0000-0002-0864-9803
https://doi.org/10.1007/978-3-031-43380-1_4

Odd Chromatic Number of Graph Classes 45

This theorem has two main consequences. The first one is that every graph
contains an induced even subgraph with at least |V (G)|/2 vertices. The second is
that every graph can be even coloured with at most two colours, i.e., partitioned
into two (possibly empty) sets of vertices, each of which induces an even subgraph
of G. In both cases, it is natural to wonder whether similar results hold true when
considering odd subgraphs.

The first question, known as the odd subgraph conjecture and mentioned
already by Caro [3] as part of the graph theory folklore, asks whether there
exists a constant c > 0 such that every graph G contains an odd subgraph
with at least |V (G)|/c vertices. In a recent breakthrough paper, Ferber and
Krivelevich proved that the conjecture is true.

Theorem 2 ([5]). Every graph G with no isolated vertices has an odd induced
subgraph of size at least |V (G)|/10000.

The second question is whether every graph can be partitioned into a
bounded number of odd induced subgraphs. We refer to such a partition as
an odd colouring, and the minimum number of parts required to odd colour a
given graph G, denoted by χodd(G), as its odd chromatic number. This can be
seen as a variant of proper (vertex) colouring, where one seeks to partition the
vertices of a graph into odd subgraphs instead of independent sets. An imme-
diate observation is that in order to be odd colourable, a graph must have all
its connected components be of even order, as an immediate consequence of the
handshake lemma. Scott [11] proved that this necessary condition is also suffi-
cient. Therefore, graphs can generally be assumed to have all their connected
components of even order, unless otherwise specified.

Motivated by this result, it is natural to ask how many colours are necessary
to partition a graph into odd induced subgraphs. As Scott showed [11], there
exist graphs with arbritrarily large odd chormatic number. On the computational
side, Belmonte and Sau [2] proved that the problem of deciding whether a graph
is k-odd colourable is solvable in polynomial time when k ≤ 2, and NP-complete
otherwise, similarly to the case of proper colouring. They also show that the
k-odd colouring problem can be solved in time 2O(k·rw) · nO(1), where k is the
number of colours and rw is the rank-width of the input graphs. They then ask
whether the problem can be solved in FPT time parameterized by rank-width
alone, i.e., whether the dependency on k is necessary. A positive answer would
provide a stark contrast with proper colouring, for which the best algorithms
run in time n2O(rw)2

(see, e.g., [7]), while Fomin et al. [6] proved that there is no
algorithm that runs in time n2o(rw)

, unless the ETH fails.1
On the combinatorial side, Scott showed that there exist graphs that require

Θ(
√

n) colours. In particular, the subdivided clique, i.e., the graph obtained
from a complete graph on n vertices by subdividing2 every edge once requires
1 While Fomin et al. proved the lower bound for clique-width, it also holds for rank-

width, since rank-width is always at most clique-width.
2 Subdividing an edge uv consists in removing uv, adding a new vertex w, and making

it adjacent to exactly u and v.

46 R. Belmonte et al.

exactly n colours, as the vertices obtained by subdividing the edges force their
two neighbours to be given distinct colours. More generally, and by the same
argument, given any graph G, the graph H obtained from G by subdividing
every edge once has χodd(H) = χ(G), and H is odd colourable if and only if
|V (H)| = |V (G)|+|E(G)| is even. Note that a subdivided clique is odd colourable
if and only if the subdivided complete graph Kn satisfies n ∈ {k : k ≡ 0 ∨ k ≡ 3
(mod 4)}. Surprisingly, Scott also showed that only a sublinear number of
colours is necessary to odd colour a graph, i.e., every graph of even order G
has χodd(G) ≤ cn(log log n)−1/2. As Scott observed, this bound is quite weak,
and he instead conjectures that the lower bound obtained from the subdivided
clique is essentially tight:

Conjecture 1 (Scott, 2001) . Every graph G of even order has χodd(G) ≤ (1 +
o(1))c

√
n.

One way of seeing Conjecture 1 is to consider that subdivided cliques appear
to be essentially the graphs that require most colours to be odd coloured. More
specifically, consider the family B of graphs G′ obtained from a graph G by
adding, for every pair of vertices u, v ∈ V (G), a vertex wuv and edges uwuv

and vwuv, and G′ has even order. Note that subdivided cliques of even order
are exactly those graphs in B where graph G is edgeless, and that the graphs
in B have χodd(G′) = |V (G)| ∈ Θ(

√|V (G′)|). A question closely related to
Conjecture 1 is whether if a class of graphs G does not contain arbitrarily large
graphs of B as induced subgraphs, then G has odd chromatic number O(

√
n),

i.e., they satisfy Conjecture 1. This question was already answered positively for
some graph classes. In fact, the bounds provided were constant. It was shown
in [2] that every cograph can be odd coloured using at most three colours, and
that graphs of treewidth at most k can be odd coloured using at most k + 1
colours. In fact, those results can easily be extended to all graphs admitting a
join, and H-minor free graphs, respectively. Using a similar argument, Aashtab
et al. [1] showed that planar graphs are 4-odd colourable, and this is tight due
to subdivided K4 being planar and 4-odd colourable, as explained above. They
also proved that subcubic graphs are 4-odd colourable, which is again tight
due to subdivided K4, and conjecture that this result can be generalized to all
graphs, i.e., χodd(G) ≤ Δ + 1, where Δ denotes the maximum degree of G.
Observe that none of those graph classes contain arbitrarily large graphs from
B as induced subgraphs. On the negative side, bipartite graphs and split graphs
contain arbitrarily large graphs from B, and therefore the bound of Conjecture 1
is best possible. In fact, Scott specifically asked whether the conjecture holds for
the specific case of bipartite graphs.

Our Contribution. Motivated by these first isolated results and Conjecture 1,
we initiate the systematic study of the odd chromatic number in graph classes,
and determine which have bounded odd chromatic number. We focus on graph
classes that do not contain large graphs from B as induced subgraphs. Our main
results are that graphs of bounded maximum degree, interval graphs and graphs
of bounded modular width all have bounded odd chromatic number.

Odd Chromatic Number of Graph Classes 47

In Sect. 3, we prove that every graph G of even order and maximum degree
Δ has χodd(G) ≤ 2Δ − 1, extending the result of Aashtab et al. on subcubic
graphs to graphs of bounded degree. We actually prove a more general result,
which provides additional corollaries for graphs of large girth. In particular, we
obtain that planar graphs of girth 11 are 3-odd colourable. We also obtain that
graphs of girth at least 7 are O(

√
n)-odd colourable. While this bound is not

constant, it is of particular interest as subdivided cliques have girth exactly 6.
In Sect. 4 we prove that every graph with all connected components of even

order satisfies χodd(G) ≤ 3 · mw(G), where mw(G) denotes the modular-width
of G. This significantly generalizes the cographs result from [2] and provides
an important step towards proving that graphs of bounded rank-width have
bounded odd chromatic number, which in turn would imply that the Odd Chro-
matic Number is FPT when parameterized by rank-width alone.

Finally, we prove in Sect. 5 that every interval graph with all components of
even order is 6-odd colourable. Additionally, every proper interval graph with
all components of even order is 3-odd colourable, and this bound is tight.

We would also like to point out that all our proofs are constructive and fur-
thermore a (not necessarily) optimal odd-colouring with the number of colours
matching the upper bound can be computed in polynomial time. In particular,
the proof provided in [8] of Theorem 1, upon which we rely heavily is con-
structive, and both partitions can easily be computed in polynomial time. An
overview of known results and open cases is provided in Fig. 1 below.

Fig. 1. Overview of known and open cases.

2 Preliminaries

For a positive integer i, we denote by [i] the set of integers j such that 1 ≤ j ≤ i.
A partition of a set X is a tuple P = (P1, . . . , Pk) of subsets of X such that X =

48 R. Belmonte et al.

⋃
i∈[k] Pi and Pi ∩ Pj = ∅, i.e., we allow parts to be empty. Let P = (P1, . . . , Pk)

be a partition of X and Y ⊆ X. We let P|Y be the partition of Y obtained from
(P1 ∩ Y, . . . , Pk ∩ Y) by removing all empty parts. A partition (Q1, . . . , Q�) of
X is a coarsening of a partition (P1, . . . , Pk) of X if for every Pi and every Qj

either Pi ∩ Qj = ∅ or Pi ∩ Qj = Pi, i.e., every Qj is the union of Pi’s.
Every graph in this paper is simple, undirected and finite. We use standard

graph-theoretic notation, and refer the reader to [4] for any undefined notation.
For a graph G we denote the set of vertices of G by V (G) and the edge set by
E(G). Let G be a graph and S ⊆ V (G). We denote an edge between u and v
by uv. The order of G is |V (G)|. The degree (respectively, open neighborhood)
of a vertex v ∈ V (G) is denoted by dG(v) (respectively, NG(v)). We denote the
subgraph induced by S by G[S]. G \ S = G[V (G) \ S]. The maximum degree
of any vertex of G is denoted by Δ. We denote paths and cycles by tuples of
vertices. The girth of G is the length of a shortest cycle of G. Given two vertices
u and v lying in the same connected component of G, we say an edge e separates
u and v if they lie in different connected components of G \ {e}.

A graph is called odd (even, respectively) if every vertex has odd (respec-
tively, even) degree. A partition (V1, . . . , Vk) of V (G) is a k-odd colouring3 of
G if G[Vi] induces an odd subgraphs of G for every i ∈ [k]. We say a graph is
k-odd colourable if it admits a k-odd colouring. The odd chromatic number of G,
denoted by χodd(G), is the smallest integer k such that G is k-odd colourable.
The empty graph (i.e., V (G) = ∅) is considered to be both even and odd. Since
every connected component can be odd coloured separately, we only need to
consider connected graphs.

Modular-width. A set S of vertices is called a module if, for all u, v ∈ S,N(u)∩
S = N(v) ∩ S. A partition M = (M1, . . . , Mk) of V (G) is a module partition of
G if every Mi is a module in G. Without loss of generality, we further ask that
any module partition M of G, unless G = K1, is non-trivial, i.e., M has at least
two non-empty parts. Given two sets of vertices X and Y , we say that X and Y
are complete to each other (completely non-adjacent, respectively) if uv ∈ E(G)
(uv
∈ E(G), respectively) for every u ∈ X, v ∈ Y . Note that for any two modules
M and N in G, either M and N are non-adjacent or complete to each other.
We let GM be the module graph of M, i.e., the graph on vertex set M with an
edge between Mi and Mj if and only if Mi and Mj are complete to each other
(non-adjacency between modules Mi, Mj in GM corresponds to Mi and Mj

being non-adjacent in G). We define the modular width of a graph G, denoted
by mw(G), recursively as follows. mw(K1) = 1, the width of a module partition
(M1, . . . , Mk) of G is the maximum over k and mw(G[Mi]) for all i ∈ [k] and
mw(G) is the minimum width of any module partitions of G.

3 This definition of odd colouring is not to be confused with the one introduced by
Petrusevski and Skrekovski [10], which is a specific type of proper colouring.

Odd Chromatic Number of Graph Classes 49

3 Graphs of Bounded Degree and Graphs of Large Girth

In this section, we study Scott’s conjecture (Conjecture 1) as well as the con-
jecture made by Aashtab et al. [1] which states that χodd(G) ≤ Δ + 1 for any
graph G. We settle Conjecture 1 for graphs of girth at least 7, and prove that
χodd(G) ≤ 2Δ − 1 for any graph G, thus obtaining a weaker version of the
conjecture of Aashtab et al. To this end, we prove the following more general
theorem, which implies both of the aforementioned results.

Theorem 3. Let H be a class of graphs such that:

– K2 ∈ H
– H is closed under vertex deletion and
– there is a k ≥ 2 such that any connected graph G ∈ H satisfies at least one of

the following properties:
(I) G has two pendant vertices u, v such that NG(u) = NG(v) or
(II) G has two adjacent vertices u, v such that dG(u) + dG(v) ≤ k.

Then every graph G ∈ H with all components of even order has χodd(G) ≤ k−1.

Proof. First notice that H is well defined as K2 has the desired properties. The
proof is by induction on the number of vertices. Let |V (G)| = 2n.

For n = 1, since G is connected, we have that G = K2 which is odd. Therefore,
χodd(G) = 1 ≤ k − 1 (recall that k ≥ 2). Let G be a graph of order 2n. Notice
that we only need to consider the case where G is connected as, otherwise, we
can apply the inductive hypothesis to each of the components of G. Assume
first that G has two pendant vertices u, v such that NG(u) = NG(v) = {w}.
Then, since G \ {u, v} is connected and belongs to H, by induction, there is an
odd colouring of G \ {u, v} that uses at most k − 1 colours. Let (V1, . . . , Vk−1)
be a partition of V (G) \ {u, v} such that G[Vi] is odd for all i ∈ [k − 1]. We
may assume that w ∈ V1. We give a partition V ′

1 , . . . , V ′
k−1 of V (G) by setting

V ′
1 = V1 ∪ {u, v} and V ′

i = Vi for all i ∈ [k] \ {1}. Notice that for all i ∈ [k − 1],
G[V ′

i] is odd. Therefore, χodd(G) ≤ k − 1.
Thus, we assume that G has an edge uv ∈ E(G) such that dG(u)+dG(v) ≤ k.

We may assume that k ≥ 3 for otherwise the theorem follows. We consider two
cases; G \ {u, v} is connected and G \ {u, v} is disconnected.

Assume that G \ {u, v} is connected. Since G \ {u, v} has |V (G) \ {u, v}| =
2n − 2 and belongs to H, by induction, there is an odd colouring of it that
uses at most k − 1 colours. Let (V1, . . . , Vk−1) be a partition of V (G) \ {u, v},
such that G[Vi] is odd of all i ∈ [k − 1]. We give a partition of G into k − 1
odd graphs as follows. Since |NG({u, v})| ≤ k − 2, there exists � ∈ [k − 1]
such that V� ∩ NG({u, v}) = ∅. We define a partition (U1, . . . , Uk−1) of V (G)
as follows. For all i ∈ [k − 1], if i
= �, we define Ui = Vi, otherwise we set
Ui = Vi ∪ {u, v}. Notice that for all i
= �, G[Ui] is odd since Ui = Vi. Also, since
NG[U�][v] = NG[U�][u] = {u, v} and G[V�] is odd, we conclude that G[U�] is odd.
Thus, χodd(G) ≤ k − 1.

Now, we consider the case where G \ {u, v} is disconnected. First, we assume
that there is at least one component in G \ {u, v} of even order. Let U be

50 R. Belmonte et al.

the set of vertices of this component. By induction, χodd(G[U]) ≤ k − 1 and
χodd(G \ U) ≤ k − 1. Furthermore, |NG({u, v}) ∩ U | ≤ k − 3 because G \ {u, v}
has at least two components. Let (U1, . . . , Uk−1) be a partition of U such that
G[Ui] is odd for all i ∈ [k−1]. Also, let (V1, . . . , Vk−1) be a partition of V (G)\U
such that G[Vi] is odd for all i ∈ [k − 1]. We may assume that Vi ∩ {u, v} = ∅
for all i ∈ [k − 3]. Since |NG({u, v}) ∩ U | ≤ k − 3, there are at least two indices
l, l′ ∈ [k − 1] such that Ul ∩ NG({u, v}) = Ul′ ∩ NG({u, v}) = ∅. We may assume
that l = k − 2 and l′ = k − 1. We define a partition (V ′

1 , . . . , V
′
k−1) of V (G) as

follows. For all i ∈ [k − 1] we define V ′
i = Ui ∪Vi. We claim that G[V ′

i] is odd for
all i ∈ [k − 1]. To show the claim, we consider two cases; either V ′

i ∩ {u, v} = ∅
or not. If V ′

i ∩ {u, v} = ∅, since the only vertices in V (G) \ U that can have
neighbours in U are v and u we have that G[V ′

i] is odd. Indeed, this holds
because Ui ∩ NG(Vi) = ∅ and both G[Ui] and G[Vi] are odd. If V ′

i ∩ {u, v}
= ∅,
then i = k−2 or i = k−1. In both cases, we know that Ui ∩NG(Vi) = ∅ because
the only vertices in V (G) \ U that may have neighbours in U are v and u and
we have assumed that u, v do not have neighbours in Uk−2 ∪ Uk−1. So, G[V ′

i] is
odd because Ui ∩ NG(Vi) = ∅ and both G[Ui] and G[Vi] are odd.

Thus, we can assume that all components of G \ {u, v} are of odd order. Let
� > 0 be the number of components, denoted by V1, . . . , V�, of G \ {u, v} and
note that � must be even. We consider two cases, either for all i ∈ [�], one of
G[Vi ∪ {u}] or G[Vi ∪ {v}] is disconnected, or there is at least one i ∈ [�] such
that both G[Vi ∪ {u}] and G[Vi ∪ {v}] are connected.

In the first case, for each Vi, i ∈ [�] we call wi the vertex in {u, v} such that
G[Vi ∪ {wi}] is connected. Note that wi is uniquely determined, i.e., only one of
u and v can be wi for each i ∈ [�]. Now, by induction, for all i ∈ [�], G[Vi ∪{wi}]
has χodd(G[Vi ∪ {wi}]) ≤ k − 1. Let, for each i ∈ [�], (V i

1 , . . . , V i
k−1) denote a

partition of Vi ∪ {wi} such that G[V i
j] be odd, for all j ∈ [k − 1]. Furthermore,

we may assume that for each i ∈ [�], if v ∈ Vi ∪ {wi}, then v ∈ V i
k−2. Also, we

can assume that for each i ∈ [�], if u ∈ Vi ∪ {wi}, then u ∈ V i
k−1. Finally, let

I = {i ∈ [�] | wi = u} and J = {i ∈ [�] | wi = v}.
We consider two cases. If |I| is odd, then |J | is odd since � = |I| + |J |

is even. Then, we claim that for the partition (U1, . . . , Uk−1) of V (G) where
Ui =

⋃
j∈[�] V

j
i it holds that G[Ui] is odd for all i ∈ [k − 1]. First notice that

(U1, . . . , Uk−1) is indeed a partition of V (G). Indeed, the only vertices that may
belong in more than one set are u and v. However, v belongs only to some sets
V i

k−2, and hence it is no set Ui except Uk−2. Similarly, u belongs to no set Ui

except Uk−1. Therefore, it remains to show that G[Ui] is odd for all i ∈ [k − 1].
We will show that for any i ∈ [k−1] and for any x ∈ Ui, |NG(x)∩Ui| is odd. Let
x ∈ Ui \{u, v}, for some i ∈ [k−1]. Then we know that NG(x)∩Ui = NG(x)∩V j

i

for some j ∈ [�]. Since G[V j
i] is odd for all i ∈ [k − 1] and j ∈ [�] we have that

|NG(x) ∩ Ui| = |NG(x) ∩ V j
i | is odd. Therefore, we only need to consider u and

v. Notice that v ∈ Uk−2 =
⋃

j∈[�] V
j
k−2 (respectively, u ∈ Uk−1 =

⋃
j∈[�] V

j
k−1).

Also, v (respectively, u) is included in V j
k−2 (respectively, V j

k−1) only if j ∈
I (respectively, j ∈ J). Since G[V j

k−2] (respectively, G[V j
k−1]) is odd for any

j ∈ [�] we have that |N(v) ∩ V j
k−2| (respectively, |N(u) ∩ V j

k−1|) is odd for any

Odd Chromatic Number of Graph Classes 51

j ∈ I (respectively, j ∈ J). Finally, since |I| and |J | are odd, we have that
|NG(v)∩Uk−2| =

∑
j∈I |N(v)∩V j

k−2| and |NG(u)∩Uk−1| =
∑

j∈I |N(u)∩V j
k−1|

are both odd. Therefore, for any i ∈ [k − 1], G[Ui] is odd and χodd(G) ≤ k − 1.
Now, suppose that both |I| and |J | are even. We consider the partition

(U1, . . . , Uk−1) of V (G) where, for all i ∈ [k − 3] Ui =
⋃

j∈[�] V
j
i , Uk−2 =

⋃
j∈J V j

k−2 ∪ ⋃
j∈I V j

k−1 and Uk−1 =
⋃

j∈I V j
k−2 ∪ ⋃

j∈J V j
k−1. We claim that

for this partition it holds that G[Ui] is odd for all i ∈ [k − 1]. First notice that
(U1, . . . , Uk−1) is indeed a partition of V (G). Indeed, this is clear for all vertices
except for v and u. However, v only belongs to sets of type V i

k−2 for i ∈ I,
and u only belongs to sets of type V i

k−1 for i ∈ J . Therefore, u or v belong
to no set Ui except Uk−1. We will show that for any i ∈ [k − 1] and x ∈ Ui,
|NG(x)∩Ui| is odd. Let x ∈ Ui \ {u, v}, for some i ∈ [k − 1]. Then we know that
NG(x) ∩ Ui = NG(x) ∩ V j

i for some j ∈ [�]. Since G[V j
i] is odd for all i ∈ [k − 1]

and j ∈ [�] we have that |NG(x) ∩ Ui| = |NG(x) ∩ V j
i | is odd. Therefore, we

only need to consider v and u. Note that u, v ∈ Uk−1. Since both |I| and |J | are
even and Uk−1 =

⋃
j∈I V j

k−2 ∪ ⋃
j∈J V j

k−1, we have that |NG(v) ∩ Uk−1 \ {u}|
and |NG(u) ∩ Uk−1 \ {v}| are both even. Finally, since uv ∈ E(G) we have that
|NG(v) ∩ Uk−1| and |NG(u) ∩ Uk−1| are both odd. Hence, χodd(G) ≤ k − 1.

Now we consider the case where there is at least one i ∈ [�] where both
G[Vi ∪ {v}] and G[Vi ∪ {u}] are connected. We define the following sets I and
J . For each i ∈ [�], (i) i ∈ J , if G[Vi ∪ {v}] is disconnected, and (ii) i ∈ I, if
G[Vi ∪ {u}] is disconnected. Finally, for the rest of the indices, i ∈ [�], which are
not in I ∪ J , it holds that both G[Vi ∪ {v}] and G[Vi ∪ {u}] are connected. Call
this set of indices X and note that by assumption |X| ≥ 1. Since |I|+ |J |+ |X|
is even, it is easy to see that there is a partition of X into two sets X1 and X2

such that both I ′ := I ∪ X1 and J ′ := J ∪ X2 have odd size. Let VI =
⋃

i∈I′ Vi

and VJ =
⋃

i∈J ′ Vi. Now, by induction, we have that χodd(G[VI ∪ {v}]) ≤ k − 1
and χodd(G[VJ ∪ {u}]) ≤ k − 1. Assume that (V I

1 , . . . , V I
k−1) is a partition of

VI and (V J
1 , . . . , V J

k−1) is a partition of VJ such that for any i ∈ [k − 1], G[V I
i]

and G[V J
i] are odd. Without loss of generality, we may assume that v ∈ V I

1 and
u ∈ V J

k−1. Since |X| ≥ 1, note that both dG(u) and dG(v) are at least two, which
implies that dG(u) ≤ k−2 and dG(v) ≤ k−2. Therefore, there exists i0 ∈ [k−2]
such that NG(v) ∩ V J

i0
= ∅ and j0 ∈ [k − 1] \ {1} such that NG(v) ∩ V I

j0
= ∅.

We reorder the sets V J
i , i ∈ [k − 2], so that i0 = 1 and we reorder the sets V I

i ,
i ∈ [k −1]\{1} so that j0 = k −1. Note that this reordering does not change the
fact that v ∈ V I

1 and u ∈ V J
k−1. Consider the partition (U1, . . . , Uk−1) of V (G),

where Ui = V I
i ∪ V J

i . We claim that for all i ∈ [k − 1], G[Ui] is odd. Note that
for any x ∈ Ui, we have NG(x)∩Ui = NG(x)∩V I

i or NG(x)∩Ui = NG(x)∩V J
i .

Since for any i ∈ [k − 1], G[V I
i] and G[V J

i] are odd we conclude that G[Ui] is
odd for any i ∈ [k − 1]. �

Notice that the class of graphs G of maximum degree Δ satisfies the require-
ments of Theorem 3. Indeed, this class is closed under vertex deletions and
any connected graph in the class has least two adjacent vertices u, v such that
dG(u) + dG(v) ≤ 2Δ. Therefore, the following corollary holds.

52 R. Belmonte et al.

Corollary 1. For every graph G with all components of even order, χodd(G) ≤
2Δ − 1.

Next, we prove Conjecture 1 for graphs of girth at least seven.

Corollary 2. For every graph G with all components of even order of girth at

least 7, χodd(G) ≤ 3
√

|V (G)|
2 + 1. (∗)4.

One may wonder if graphs of sufficiently large girth have bounded odd chro-
matic number. In fact, this is far from being true, which we show in the next.

Proposition 1. For every integer g and k, there is a graph G such that every
component of G has even order, G is of girth at least g and χodd(G) ≥ k. (∗)

Next, we obtain the following result for sparse planar graphs.

Corollary 3. For every planar graph G with all components of even order of
girth at least 11, χodd(G) ≤ 3. (∗)

The upper bound in Corollary 3 is tight as C14, the cycle of length 14, has
χodd(C14) = 3.

4 Graphs of Bounded Modular-Width

In this section we consider graphs of bounded modular-width and show that we
can upper bound the odd chromatic number by the modular-width of a graph.

Theorem 4. For every graph G with all components of even order, χodd(G) ≤
3mw(G).

In order to prove Theorem 4 we show that every graph G is 3-colourable for
which we have a module partition M such that the module graph GM exhibits
a particular structure, i.e., is either a star Lemma 1 or a special type of tree
Lemma 2. The following is an easy consequence of Theorem 1 which will be
useful to colour modules and gain control over the parity of parts in case of
modules of even size.

Remark 1. For every non-empty graph G of even order, there exists a partition
(V1, V2, V3) of V (G) with |V2|, |V3| being odd such that V [G1] is odd and G[V2],
G[V3] are even. This can be derived from Theorem 1 by taking an arbitrary
vertex v ∈ V (G), setting V3 := {v} and then using the existence of a partition
(V1, V2) of V (G) \ {v} such that G[V1] is odd and G[V2] is even.

Lemma 1. For every connected graph G of even order with a module partition
M = {M1, . . . , Mk} such that GM is a star, χodd(G) ≤ 3.

4 For every result which is marked by (∗) the proof can be found in the full version of
the paper.

Odd Chromatic Number of Graph Classes 53

Proof of A. ssume that in GM the vertices M2, . . . , Mk have degree 1. We refer
to M1 as the centre and to M2, . . . , Mk as leaves of GM. We further assume that
|M2|, . . . , |M�| are odd and |M�+1|, . . . , |Mk| are even for some � ∈ [k]. We use
the following two claims.

Claim 1. If W ⊆ V (G) with G[W ∩ Mi] is odd for every i ∈ [k], then G[W] is
odd.

Proof. First observe that the degree of any vertex v ∈ W ∩ M1 in G[W] is
dG[W∩M1](v)+

∑k
i=2 |W ∩Mi|. Since dG[W∩M1](v) is odd and |W ∩Mi| is even for

every i ∈ {2, . . . , k} (which follows from G[W ∩Mi] being odd by the handshake
lemma) we get that dG[W](v) is odd. For every i ∈ {2, . . . , k} the degree of any
vertex v ∈ W ∩ Mi in G[W] is dG[W∩Mi](v) + |W ∩ M1| which is odd (again,
because |W ∩ M1| must be even). Hence G[W] is odd. ♦

Claim 2. If W ⊆ V (G) such that G[W ∩Mi] is even for every i ∈ [k], |W ∩M1|
is odd and |{i ∈ {2, . . . , k} : |W ∩ Mi| is odd

}| is odd, then G[W] is odd.

Proof. Since GM is a star and M1 its centre we get that the degree of any
vertex v ∈ W ∩ Mi for any i ∈ {2, . . . , k} is dG[W∩Mi](v) + |W ∩ M1|. Since
|W ∩M1| is odd and dG[W∩Mi](v) is even we get that every v ∈ W ∩Mi for every
i ∈ {2, . . . , k} has odd degree in G[W]. Moreover, the degree of v ∈ W ∩ M1 is
dG[W∩M1](v) +

∑k
i=2 |W ∩ Mi|. Since dG[W∩M1](v) is even and |{i ∈ {2, . . . , k} :

|W ∩ Mi| is odd
}| is odd dG[W](v) is odd. We conclude that G[W] is odd. ♦

First consider the case that |M1| is odd. Since G is of even order this implies
that there must be an odd number of leaves of GM of odd size and hence � is
even. Using Theorem 1 we let (W i

1,W
i
2) be a partition of Mi such that G[W i

1] is
odd and G[W i

2] is even for every i ∈ [k]. Note that since G[W i
1] is odd |W i

1| has
to be even and hence |W i

2| is odd if and only if i ∈ [�]. We define V1 :=
⋃

i∈[k] W
i
1

and V2 :=
⋃

i∈[k] W
i
2. Note that (V1, V2) is a partition of G. Furthermore, G[V1]

is odd by Claim 1 and G[V2] is odd by Claim 2. For an illustration see Fig. 2.

Now consider the case that |M1| is even. We first consider the special case
that � = 1, i.e., there is no i ∈ [k] such that |Mi| is odd. In this case we
let (W i

1,W
i
2,W

i
3) be a partition of Mi for i ∈ {1, 2} such that G[W i

1] is odd,
G[W i

2], G[W i
3] are even and |W i

2|, |W i
3| are odd which exists due to Remark 1.

For i ∈ {3, . . . , k} we let (W i
1,W

i
2) be a partition of Mi such that G[W i

1] is
odd and G[W i

2] is even which exists by Theorem 1. We define V1 :=
⋃

i∈[k] W
i
1,

V2 :=
⋃

i∈[k] W
i
2 and V3 := W 1

3 ∪ W 2
3 . As before we observe that (V1, V2, V3) is a

partition of V (G), G[V1] is odd by Claim 1 and G[V2], G[V3] are even by Claim 2.
For an illustration see Fig. 2.

Lastly, consider the case that |M1| is even and � > 1. By Remark 1 there
is a partition (W 1

1 ,W 1
2 ,W 1

3) of M1 such that G[W 1
1] is odd, G[W 1

2], G[W 1
3] are

even and |W 1
2 |, |W 1

3 | are odd. For i ∈ {2, . . . , k} we let (W i
1,W

i
2) be a partition

of Mi such that G[W i
1] is odd and G[W i

2] is even which exists by Theorem 1.

54 R. Belmonte et al.

We define V1 :=
⋃

i∈[k] W
i
1, V2 := W 1

2 ∪ ⋃k
i=3 W i

2 and V3 := W 1
3 ∪ W 2

2 . Note that
(V1, V2, V3) is a partition of V (G). Furthermore, G[V1] is odd by Claim 1 and
G[V3] is odd by Claim 2. Additionally, since |M1| is even there is an even number
of i ∈ {2, . . . , k} such that |Mi| is odd. Since for each i ∈ {2, . . . , k} for which
|Mi| is odd, |W i

1| must be odd, we get that |{i ∈ {2, . . . , k} : |V1 ∩ Mi| is odd
}|

is odd (note that V1 ∩ M2 = ∅ because W 2
2 ⊆ V3). Hence we can use Claim 2 to

conclude that G[V2] is odd. For an illustration see Fig. 2. �

Fig. 2. Schematic illustration of the three cases in the proof of Lemma 1. Depicted is
the module graph GM along with a partition of the modules into sets V1, V2 and V3

such that G[Vi] is odd for i ∈ [3].

Let G be a connected graph of even order with module partition M =
(M1, . . . , Mk) such that GM is a tree. For an edge e of GM we let Xe and
Ye be the two components of the graph obtained from GM by removing e. We
say that the tree GM is colour propagating if the following properties hold.

(i) |M| ≥ 3.
(ii) Every non-leaf module has size one.
(iii) |⋃M∈V (Xe)

M | is odd for every e ∈ E(GM) not incident to any leaf of
GM.

Lemma 2. For every connected graph G of even order with a module partition
M = (M1, . . . , Mk) such that GM is a colour propagating tree, χodd(G) ≤ 2.

Proof. To find an odd colouring (V1, V2) of G, we first let (W i
1,W

i
2) be a partition

of Mi such that G[W i
1] is odd and G[W i

2] is even for every i ∈ [k]. The partitions

Odd Chromatic Number of Graph Classes 55

(W i
1,W

i
2) exist due to Theorem 1. Note that (ii) implies that for every module

Mi which is not a leaf |W i
2| = 1 and W i

1 = ∅. We define V1 :=
⋃

i∈[k] W
i
1 and

V2 :=
⋃

i∈[k] W
i
2.

To argue that (V1, V2) is an odd colouring of G first consider any v ∈ V (G)
such that v ∈ Mi for some leaf Mi of GM. Condition (i) implies that GM must
have at least three vertices and hence the neighbour Mj of Mi cannot be a
leaf due to GM being a tree. Hence |Mj | = 1 by (ii). Hence, if v ∈ W i

1, then
dG[V1](v) = dG[W i

1]
(v) since W j

1 = ∅ and therefore dG[V1](v) is odd. Further, if
v ∈ W i

2, then dG[V2](v) = dG[W i
2]
(v) + 1 since |W j

2 | = 1 and hence dG[V2](v) is
odd. Hence the degree of any vertex v ∈ Mi is odd in G[V1], G[V2] respectively.

Now consider any vertex v ∈ V (G) such that Mi = {v} for some non-leaf
Mi of GM. Let Mi1 , . . . , Mi�

be the neighbours of Mi in GM. Let ej be the
edge MiMij

∈ E(G) for every j ∈ [�]. Without loss of generality, assume that
Mi /∈ V (Xej

) for every j ∈ [�]. By (iii) we have that |⋃M∈V (Xej
) M | is odd

whenever Mij
is not a leaf in GM. Hence, by (ii), |Xej

| ≡ |Mij
| (mod 2) for

every j ∈ [�] for which Mij
is not a leaf in GM. On the other hand, as a

consequence of the handshake lemma we get that |W ij

2 | is odd if and only if
|Mij

| is odd. Hence the following holds for the parity of the degree of v in G[V2].

dG[V2](v) = |{j ∈ [m] : dGM(Mij
) ≥ 2}| +

⋃

j∈[m]
dGM (Mij

)=1

|W ij

2 | ≡ |V (G) \ Mi| (mod 2).

Since G has even order, dG[V2](v) is odd and (V1, V2) is an odd colouring of G. �
We now show that, given a graph G with module partition M, we can decompose
the graph in such a way that the module graph of any part of the decomposition
is either a star or a colour propagating tree. Here we consider the module graph
with respect to the module partition M restricted to the part of the decompo-
sition we are considering. To obtain the decomposition we use a spanning tree
GM and inductively find a non-separating star, i.e., a star whose removal does
not disconnect the graph, or a colour propagating tree. In order to handle parity
during this process we might separate a module into two parts.

Lemma 3. For every connected graph G of even order and module partition
M = (M1, . . . , Mk) there is a partition M̂ of V (G) with at most 2k many parts
such that there is a coarsening P of M̂ with the following properties. |P | is even
for every part P of P. Furthermore, for every part P of P we have that M̂|P
is a module partition of G[P] and G[P]

̂M|P is either a star (with at least two
vertices) or a colour propagating tree. (∗)
Proof 1. Without loss of generality assume that G is connected. Furthermore,
let k := mw(G) and M = (M1, . . . , Mk) be a module partition of G. Let M̂ be
a partition of V (G) with at most 2k parts and P be a coarsening of M̂ as in
Lemma 3. First observe that M̂|P must contain at least two parts for every part
P of P as M̂|P is a module partition of G[P]. Since M̂ has at most 2k parts and

56 R. Belmonte et al.

P is a coarsening of P̂ this implies that P has at most k parts. Since G[P]
̂M|P is

either a star or a colour propagating tree we get that χodd(G[P]) ≤ 3 for every
part P of P by Lemma 1 and Lemma 2. Using a partition (WP

1 ,WP
2 ,WP

3) of
G[P] such that G[WP

i] is odd for every i ∈ [3] for every part P we obtain a
global partition of G into at most 3k parts such that each part induces an odd
subgraph. �
Since deciding whether a graph is k-odd colourable can be solved in time
2O(k rw(G)) [2, Theorem 6] and rw(G) ≤ cw(G) ≤ mw(G), where cw(G) denotes
the clique-width of G and rw(G) rank-width, we obtain the following as a corol-
lary.

Corollary 4. Given a graph G and a module partition of G of width m the
problem of deciding whether G can be odd coloured with at most k colours can
be solved in time 2O(m2).

5 Interval Graphs

In this section we study the odd chromatic number of interval graphs and provide
an upper bound in the general case as well as a tight upper bound in the case
of proper interval graphs. We use the following lemma in both proofs.

Lemma 4. Let G be a connected interval graph and P = (p1, . . . , pk) a maximal
induced path in G with the following property.

(Π) �p1 = min{�v : v ∈ V (G)} and for every i ∈ [k − 1] we have that rpi+1 ≥ rv

for every v ∈ NG(pi).

Then every v ∈ V (G) is adjacent to at least one vertex on P . (∗)
To prove that the odd chromatic number of proper interval graphs is bounded

by three we essentially partition the graph into maximal even sized cliques greed-
ily in a left to right fashion.

Theorem 5. For every proper interval graph G with all components of even
order, χodd(G) ≤ 3 and this bound is tight.

Proof. We assume that G is connected. Fix an interval representation of G and
denote the interval representing vertex v ∈ V (G) by Iv = [�v, rv] where �v, rv ∈
R. Let P = (p1, . . . , pk) be a maximal induced path in G as in Lemma 4. For
every vertex v ∈ V (G)\{p1, . . . , pk} let iv ∈ [k] be the index such that piv

is the
first neighbour of v on P . Note that this is well defined by Lemma 4. For i ∈ [k]
we let Yi be the set with the following properties.

(Π)1i {v ∈ V (G) : iv = i} ⊆ Yi ⊆ {v ∈ V (G) : iv = i} ∪ {pi, pi+1} .
(Π)2i pi ∈ Yi if and only if

∣∣{p1, . . . , pi−1} ∪ ⋃
j∈[i−1]{v ∈ V (G) : iv = j}∣∣ is

even.
(Π)3i pi+1 ∈ Yi if and only if

∣∣{p1, . . . , pi} ∪ ⋃
j∈[i]{v ∈ V (G) : iv = j}∣∣ is odd.

Odd Chromatic Number of Graph Classes 57

First observe that (Y1, . . . , Yk) is a partition of V (G) as (Π2)i and (Π3)i imply
that every pi is in exactly one set Yi. Furthermore, |Yi| is even for every i ∈ [k]
since (Π1)i and (Π3)i) imply that

∣
∣Yi ∪ {p1, . . . , pi} ∪ ⋃

j∈[i−1]{v ∈ V (G) :
iv = j}∣∣ is even and (Π2)i implies that

∣∣({p1, . . . , pi}∪⋃
j∈[i−1]{v ∈ V (G) : iv =

j})\Yi

∣∣ is even. Since v ∈ V (G)\{p1, . . . , pk} is not adjacent to piv−1 we get that
�v ∈ Ipiv

. Since G is a proper interval graph this implies that rpiv
≤ rv and hence

v is adjacent to piv+1. Hence (Π1)i implies that G[Yi] must be a clique since
Yi∩{p1, . . . , pk} ⊆ {pi, pi+1} for every i ∈ [k]. Furthermore, NG(Yi) and Yi+3 are
disjoint since rv ≤ rpi+1 for every v ∈ Yi by property (Π) and rpi+1 < �pi+3 ≤ rw

for every w ∈ Yi+3 since P is induced. Hence we can define an odd-colouring
(V1, V2, V3) of G in the following way. We let Vj :=

⋃
i≡j (mod 3) Yi for j ∈ [3].

Note that since NG(Yi)∩Yi+3 we get that dG[Yi](v) = dG[Vj](v) for i ≡ j (mod 3)
which is odd (as Yi is a clique of even size). Hence G[Vj] is odd for every j ∈ [3].

To see that the bound is tight consider the graph G consisting of K4 with
two pendant vertices u,w adjacent to different vertices of K4. Clearly, G is a
proper interval graph and further χodd(G) = 3. �

We use a similar setup (i.e., a path P covering all vertices of the graph G)
as in the proof of Theorem 5 to show our general upper bound for interval
graphs. The major difference is that we are not guaranteed that sets of the form
{pi} ∪ {v ∈ V (G) : iv = i} are cliques. To nevertheless find an odd colouring
with few colours of such sets we use an odd/even colouring as in Theorem 1 of
{v ∈ V (G) : iv = i} and the universality of pi. Hence this introduces a factor
of two on the number of colours. Furthermore, this approach prohibits us from
moving the pi around as in the proof of Theorem 5. As a consequence we get
that the intervals of vertices contained in a set Yi span a larger area of the real
line than in the proof of Theorem 5. This makes the analysis more technical.

Theorem 6. For every interval graph G with all components of even order,
χodd(G) ≤ 6. (∗)
Note that we currently are unaware whether the bound from Theorem 6 is tight
or even whether there is an interval graph G with χodd(G) > 3.

6 Conclusion

We initiated the systematic study of odd colouring on graph classes. Motivated
by Conjecture 1, we considered graph classes that do not contain large graphs
from a given family as induced subgraphs. Put together, these results provide
evidence that Conjecture 1 is indeed correct. Answering it remains a major open
problem, even for the specific case of bipartite graphs.

Several other interesting classes remain to consider, most notably line graphs
and claw-free graphs. Note that odd colouring a line graph L(G) corresponds to
colouring the edges of G in such a way that each colour class induces a bipartite
graph where every vertex in one part of the bipartition has odd degree, and
every vertex in the other colour part has even degree. This is not to be confused

58 R. Belmonte et al.

with the notion of odd k-edge colouring, which is a (not necessarily proper) edge
colouring with at most k colours such that each nonempty colour class induces a
graph in which every vertex is of odd degree. It is known that all simple graphs
can be odd 4-edge coloured, and every loopless multigraph can be odd 6-edge
coloured (see e.g., [9]). While (vertex) odd colouring line graphs is not directly
related to odd edge colouring, this result leads us to believe that line graphs
have bounded odd chromatic number.

Finally, determining whether Theorem 4 can be extended to graphs of
bounded rank-width remains open. We also believe that the bounds in Theo-
rem 6 and Corollary 1 are not tight and can be further improved. In particular,
we believe that the following conjecture, first stated in [1], is true:

Conjecture 2 (Aashtab et al., 2023). Every graph G of even order has χodd(G) ≤
Δ + 1.

References

1. Aashtab, A., Akbari, S., Ghanbari, M., Shidani, A.: Vertex partitioning of graphs
into odd induced subgraphs. Discuss. Math. Graph Theory 43(2), 385–399 (2023)

2. Belmonte, R., Sau, I.: On the complexity of finding large odd induced subgraphs
and odd colorings. Algorithmica 83(8), 2351–2373 (2021)

3. Caro, Y.: On induced subgraphs with odd degrees. Discret. Math. 132(1–3), 23–28
(1994)

4. Diestel, R.: Graph Theory, 4th Edn., vol. 173 of Graduate texts in mathematics.
Springer, Cham (2012)

5. Ferber, A., Krivelevich, M.: Every graph contains a linearly sized induced subgraph
with all degrees odd. Adv. Math. 406, 108534 (2022)

6. Fomin, F.V., Golovach, P.A., Lokshtanov, D., Saurabh, S., Zehavi, M.: Clique-width
III: Hamiltonian cycle and the odd case of graph coloring. ACM Trans. Algorithms
15(1), 9:1-9:27 (2019)

7. Ganian, R., Hlinený, P., Obdrzálek, J.: A unified approach to polynomial algorithms
on graphs of bounded (bi-)rank-width. Eur. J. Comb. 34(3), 680–701 (2013)

8. Lovász, L.: Combinatorial Problems and Exercises. North-Holland (1993)
9. Petrusevski, M.: Odd 4-edge-colorability of graphs. J. Graph Theory 87(4), 460–474

(2018)
10. Petrusevski, M., Skrekovski, R.: Colorings with neighborhood parity condition

(2021)
11. Scott, A.D.: On induced subgraphs with all degrees odd. Graphs Comb. 17(3),

539–553 (2001)

Deciding the Erdős-Pósa Property
in 3-Connected Digraphs

Julien Bensmail1, Victor Campos2, Ana Karolinna Maia2, Nicolas Nisse1(B),
and Ana Silva2

1 Université Côte d’Azur, CNRS, Inria, I3S, Sophia Antipolis, France
{julien.bensmail,nicolas.nisse}@inria.fr

2 ParGO, Universidade Federal do Ceará, Fortaleza, Brazil

Abstract. A (di)graph H has the Erdős-Pósa (EP) property for (but-
terfly) minors if there exists a function f : N → N such that, for any
k ∈ N and any (di)graph G, either G contains at least k pairwise vertex-
disjoint copies of H as (butterfly) minor, or there exists a subset T of at
most f(k) vertices such that H is not a (butterfly) minor of G − T . It is
a well known result of Robertson and Seymour that an undirected graph
has the EP property if and only if it is planar. This result was trans-
posed to digraphs by Amiri, Kawarabayashi, Kreutzer and Wollan, who
proved that a strong digraph has the EP property for butterfly minors if,
and only if, it is a butterfly minor of a cylindrical grid. Contrary to the
undirected case where a graph is planar if, and only if, it is the minor of
some grid, not all planar digraphs are butterfly minors of a cylindrical
grid. In this work, we characterize the planar digraphs that have a but-
terfly model in a cylindrical grid. In particular, this leads to a linear-time
algorithm that decides whether a weakly 3-connected strong digraph has
the EP property.

Keywords: Erdős-Pósa property · Planar digraphs · Butterfly minor

1 Introduction

A classical result by Erdős and Pósa [5] states that there is a function f :
N → N such that, for every k, every graph G contains either k pairwise vertex-
disjoint cycles or a set T of at most f(k) vertices such that G−T is acyclic. The
generalization of Erdős and Pósa’s result for digraphs and directed cycles was
conjectured by Younger [13] and proved by Reed et al. [7].

(Partially) supported by: FUNCAP MLC-0191-00056.01.00/22 and PNE-0112-
00061.01.00/16, and CNPq 303803/2020-7, the CAPES-Cofecub project Ma 1004/23,
by the project UCA JEDI (ANR-15-IDEX-01) and EUR DS4H Investments in the
Future (ANR-17-EURE-004), the ANR Digraphs, the ANR Multimod and the Inria
Associated Team CANOE. The full versions of omitted or sketched proofs can be found
in [3].

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
D. Paulusma and B. Ries (Eds.): WG 2023, LNCS 14093, pp. 59–71, 2023.
https://doi.org/10.1007/978-3-031-43380-1_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-43380-1_5&domain=pdf
https://doi.org/10.1007/978-3-031-43380-1_5

60 J. Bensmail et al.

Fig. 1. The (4×4)-grid (left), the (3×6)-cylindrical grid C3,6 (middle), and the directed
wall (right) obtained from C3,6 by removing the three red arcs. (Color figure online)

We say that H is a minor of G if H is obtained from a subgraph of G by a
sequence of edge contractions. If H is a digraph and we restrict the contractions
in the previous definition to butterfly contractions [6], we get the definition of
a butterfly minor. We say that a graph H has the Erdős-Pósa (EP) property
for minors if there is a function f : N → N such that, for every k, every graph
G contains either k pairwise vertex-disjoint copies of H as a minor or a set T
of at most f(k) vertices such that H is not a minor of G − T . By changing
graph into digraph and minor into butterfly minor, the previous definition can
be adapted into the EP property for butterfly minors in digraphs. In this view, if
H is the undirected graph with a unique vertex and a unique loop on it and D
is the digraph obtained from H by orienting its loop edge, then Erdős and Pósa
proved that H has the EP property for minors while Reed et al. proved that D
has the EP property for butterfly minors.

The results of Erdős and Pósa and Reed et al. were generalized by Robertson
and Seymour [8] for undirected graphs and by Amiri et al. [1] for digraphs.
Robertson and Seymour [8] proved that an undirected graph G has the EP
property for minors if, and only if, G is planar. Amiri et al. [1] proved that a
strong digraph D has the EP property for butterfly minors if, and only if, D is
a butterfly minor of a cylindrical grid (see Fig. 1). The results of Robertson and
Seymour [8] and Amiri et al. [1] are similar since an undirected graph is planar
if, and only if, it is a minor of some grid [9]. Contrary to the undirected case, not
all planar digraphs are butterfly minors of a cylindrical grid. In this paper, we
provide a structural characterization of planar digraphs that are butterfly minors
of a cylindrical grid. In particular, such characterization leads to a linear-time
algorithm that decides whether a weakly 3-connected strong digraph has the EP
property for butterfly minors.

Although planarity is a necessary condition for a digraph to be a butterfly
minor of a cylindrical grid, it is not sufficient. For example, the two planar
digraphs of Fig. 2 are not butterfly minors of any cylindrical grid. To see this, first
note that they are planar, weakly 3-connected, and have essentially a unique (up
to the outerface) embedding in the plane, according to Whitney’s Theorem [12].
Note also that, in a cylindrical grid, any embedding is such that there is a point
in the plane around which all directed cycles go, and in the same direction.
We refer to this as being concentric and with same orientation. Now, in the

Deciding the Erdös-Pósa Property in 3-Connected Digraphs 61

v0

v1

v2 v3

v4 v5

Fig. 2. Two planar digraphs L (left) and R (right) which are not butterfly minors of
any cylindrical grid.

digraph L of Fig. 2, the matching between the two directed triangles forces that,
in any planar embedding, either the two triangles are not concentric or they have
opposite orientations. On the other hand, the digraph R of Fig. 2 is acyclic but it
is not a minor of any cylindrical grid. To see why, note that, if R was a butterfly
minor of a cylindrical grid, then, because R is acyclic, it would also be a butterfly
minor of a directed wall, which is the digraph obtained by cutting a cylindrical
grid along “parallel” arcs (see Fig. 1). Note that, in an embedding of a directed
wall similar to the one given in Fig. 1, no arc goes down. This means that some
relative positions of the vertices of R in a directed wall are forced. Namely, the
two sources v4 and v5 of R must be below each of their out-neighbors, vertex
v1 must be below its three out-neighbors, and the universal sink v0 must be
above every other vertex. It can then be checked that these positions must lead
to some crossing arcs. This second example shows that sources and sinks may
play an important role in the fact that a planar digraph may or may not be
a butterfly minor of a cylindrical grid. In a way, our main result tells that the
above two examples fully characterize the reasons why a planar digraph cannot
be a butterfly minor of a cylindrical grid.

To formally state our main result, we need a few definitions. Given a digraph
D = (V,A) and ∅ �= X ⊂ V (D), the set of arcs between X and V \X is denoted
by (X,V \X). We say that (X,V \X) is a dicut if there are no arcs from V \X
to X. A dijoin path P of D is a directed path in D whose arc-set intersects the
arc-set of every dicut of D. A plane digraph is a planar digraph together with
a planar embedding. Recall also that, given a plane digraph H, H∗ denotes its
dual. That is, the dual digraph H∗ of H (with a fixed planar embedding) is the
digraph that has a vertex for each face of the embedding of H and H∗ has an arc
e∗ = {u, v} for each two faces u and v in the embedding of H that are separated
from each other by an arc e ∈ E. Moreover, each dual arc e∗ is oriented by a 90◦

clockwise turn from the corresponding primal arc e. For instance, if a face of a
plane digraph H is “surrounded” by a directed cycle oriented clockwise (resp.,
counter-clockwise), then the corresponding vertex of H∗ is a source (resp., a
sink).

We can now state our main result.

62 J. Bensmail et al.

Theorem 1. A digraph D is a butterfly minor of a cylindrical grid if, and only
if, D has a plane spanning supergraph H with neither sources nor sinks such
that H∗ admits a dijoin path.

To get further intuition about Theorem 1, consider the definition of a feedback
arc set F ⊆ A of a digraph D = (V,A), which is any subset of arcs such that
D −F is acyclic. Given a plane digraph D, it is known that every directed cycle
of D is associated to a dicut in D∗. This implies that a set of arcs is a feedback
arc set of D if, and only if, the corresponding set of its dual edges intersects
the arc-set of every dicut of D∗ [2]. Therefore, the fact that D∗ admits a dijoin
path means that such path intersects the arcs of a feedback arc set of D “in the
same direction”, i.e., intersects the drawing of each directed cycle of D, with
each intersection occurring in the same orientation. This is equivalent to being
concentric and with the same orientation. This condition (D∗ admits a dijoin
path) allows avoiding the kind of planar digraphs as exemplified by the digraph
L in Fig. 2. In turn, the difficulties exemplified in digraph R in Fig. 2 are dealt
with by the existence of a supergraph H with neither sources nor sinks.

Structure of the Paper and Algorithmic Applications. We first prove
that if D is a plane digraph with neither sources nor sinks such that D∗ has
a dijoin path, then D is a butterfly minor of a cylindrical grid (Theorem 4).
Observe that this gives us the sufficiency part of Theorem 1. We then show that
if D is a butterfly minor of a cylindrical grid, then D has a planar embedding
such that D∗ admits a dijoin path (Theorem 5). Observe that D might still have
sources and sinks, so the remainder of the proof consists in adding arcs to D in
order kill all sources and sinks (Lemma 2).

Theorems 4 and 5 have the following important corollary:

Corollary 1. Any digraph D without sources or sinks is a butterfly minor of a
cylindrical grid if and only if D admits a planar embedding s.t. D∗ has a dijoin
path.

Note that the planar digraph R in Fig. 2 is acyclic. So, whatever be its planar
embedding, the dual is strongly connected, i.e., R∗ has no dicuts. Therefore,
every planar embedding of R is such that R∗ has a trivial dijoin path (the
empty path). Therefore, unfortunately, there is no hope that the condition on
sources and sinks can be removed from Corollary 1.

Note that any strongly connected digraph (or strong) D satisfies the conditions
of Corollary 1. Together with the result of Amiri et al. [1], this implies that:

Corollary 2. Any strong digraph D has the EP property for butterfly minors
if, and only if, D admits a planar embedding such that D∗ has a dijoin path.

By Whitney’s Theorem [12], any weakly 3-connected planar digraph D has
a unique (up to the outerface) planar embedding (computable in linear time).
Since deciding whether the dual of a plane digraph admits a dijoin path can be
done in linear time, then our result has the following algorithmic application:

Deciding the Erdös-Pósa Property in 3-Connected Digraphs 63

Corollary 3. Deciding whether a weakly 3-connected strong digraph has the EP
property for butterfly minors can be done in linear time.

Section 2 is devoted to defining the main notions and to present previously
known results used in this paper. Section 3 is devoted to digraphs with neither
sources nor sinks. Section 4 is devoted to obtaining the supergraph with neither
sinks nor sources.

2 Preliminaries

Planar Digraphs and Duality. In this section, we present a number of simple
known facts concerning planar graphs and their duals. The interested reader can
find formal definitions and proofs for such facts in most books on graph theory
(e.g., [11]).

Given a digraph D = (V,A) and e ∈ A, let D\e = (V,A\{e}) and let D/e
be the digraph obtained from D after contracting the arc e.

Observation 1. Let D = (V,A) be a plane digraph, and e ∈ A be any arc of
D. Then, (D\e)∗ = D∗/e∗ and (D/e)∗ = D∗\e∗.

A dicut of a digraph D = (V,A) is a partition (X,V \X) of the vertex-set
such that X is a non empty proper subset of V and there are no arcs from V \X
to X. The arc-set of (X,V \X) is the set of arcs from X to (X,V \X). A dijoin
X ⊆ A(D) of D is a set of arcs intersecting all dicuts’ arc-sets of D. A dijoin
path (resp., dijoin walk) of D is a dijoin inducing a directed path (resp., directed
walk) in D. That is, a dijoin path/walk P of D is a directed path/walk whose
arc-set intersects the arc-set of every dicut of D.

Observation 2. A digraph D admits a dijoin path if, and only if, the decom-
position of D into strongly connected components has a single source component
and a single sink component.

Observation 3. Let D = (V,A) be a digraph with a dijoin path P , and e ∈
A\A(P). Then, P is a dijoin path of D\e.

Observation 4. Let D = (V,A) be a digraph with a dijoin path P , and e ∈ A.
Let P ′ be obtained from P by contracting e if e ∈ A(P), and P ′ = P otherwise.
Then, P ′ is a dijoin walk of D/e.

Observation 5. Let D = (V,A) be a digraph with a dijoin path P , and v ∈ V
be an isolated vertex. Then, P is a dijoin path of D\v.

Observation 6. Every digraph with a dijoin walk admits a dijoin path.

Butterfly Models and Cylindrical Grids. We now present the formal defi-
nition of butterfly models. Let G and H be two digraphs. A (butterfly) model of
G in H is a function η : V (G) ∪ A(G) → S(H), where S(H) denotes the set of
all subdigraphs of H, such that:

64 J. Bensmail et al.

– for every v ∈ V (G), η(v) is a subdigraph of H being the orientation of some
tree such that V (η(v)) can be partitioned into ({rv}, Iv, Ov) where

• η(v)[Ov ∪ {rv}] is an out-arborescence rooted in rv (thus in which all
non-root vertices have in-degree 1), called the out-tree of v,

• η(v)[Iv ∪ {rv}] is an in-arborescence rooted in rv (thus in which all non-
root vertices have out-degree 1), called the in-tree of v;

– for every two distinct u, v ∈ V (G), η(u) and η(v) are vertex-disjoint;
– for every (x, y) ∈ A(G), η(xy) is a directed path of H from the out-tree

of x to the in-tree of y, with internal vertices disjoint from every vertex of
η(u) for every u ∈ V (G), and from every internal vertex of η(uv) for every
(u, v) ∈ A(G)\{(x, y)}.

Throughout this work, given a model of G in H, we will refer to the arcs
e ∈ A(H) ∩ ⋃

f∈A(G) A(η(f)) as the blue arcs of the model, and to the arcs
e ∈ A(H) ∩ ⋃

v∈V (G) A(η(v)) as the black arcs. A vertex of H incident to at
least one black arc will be referred to as a black vertex.

A model of G in H is minimal if, for every v ∈ V (G) and for every leaf w of
η(v), w is incident to some blue arc. Note that, up to removing the leaves that
do not satisfy this property from η(v), we can always assume to be working on
a minimal model.

Butterfly contracting an arc (u, v) ∈ A(D) of some digraph D consists in
contracting the arc (u, v) if d−(v) = 1 or d+(u) = 1. A digraph G is a butterfly
minor of some digraph H if G can be obtained from H by deleting arcs, deleting
vertices, and butterfly contracting arcs. Note that if G is a butterfly minor of
H, then G can be obtained by first removing some arcs, then removing isolated
vertices, and finally performing butterfly contractions.

Observation 7 [1]. A digraph G is a butterfly minor of some digraph H if, and
only if, G has a butterfly model in H.

We now deal with cylindrical grids. Let n,m ∈ N
∗. The cyclindrical grid

Cn,2m can be seen as a set of n concentric directed cycles having the same
direction and linked through 2m directed paths that alternate directions (see
Fig. 3). Formally, Cn,2m is the digraph with vertex-set {(i, j) | 0 ≤ i < n, 0 ≤
j < 2m}, and with the following arc-set. For every 0 ≤ i < n and 0 ≤ j < 2m,
we have ((i, j), (i, j +1 mod m)) ∈ A(Cn,2m), and the directed cycle induced by
{(i, j) | 0 ≤ j < m} is called the ith column of Cn,2m. For every 0 ≤ i < n−1 and
0 ≤ j < m, we have ((i, 2j), (i + 1, 2j)) ∈ A(Cn,2m) and ((i, 2j + 1), (i − 1, 2j +
1)) ∈ A(Cn,2m). Moreover, for every 0 ≤ j < 2m, the directed path induced by
{(i, j) | 0 ≤ i < n} is called the jth row of Cn,2m.

Throughout this work, we consider that any Cn,2m is embedded in the plane
so that its first column coincides with the outerface (see Fig. 3). Hence, we may
naturally refer to left/right and top/bottom such that the first (last) column is
the leftmost (rightmost) and the first (last) row is the bottommost (topmost).
The arcs of a column are referred to as vertical arcs. Note that all vertical arcs
are going up. The arcs of a row are the horizontal arcs. Moreover, the arcs of
even (resp., odd) rows are horizontal to the right (resp., to the left).

Deciding the Erdös-Pósa Property in 3-Connected Digraphs 65

Fig. 3. A planar embedding of the cylindrical grid C6,6. The red directed path Q∗
6,6 is

the dijoin path defined and used in Sect. 4. (Color figure online)

Fig. 4. Green rows and columns are added. Blue arcs belong to the images of some
arcs of G by η. Grey subtrees (with black vertices and arcs) are the images of some
vertices of G by η. (Color figure online)

Since Cn,2m is strong, we get that C∗
n,2m is a DAG. Moreover, C∗

n,2m has a
unique sink t∗, corresponding to the outerface of the given embedding of Cn,2m,
and a unique source s∗, corresponding to the face of Cn,2m bounded by the last
column of Cn,2m. Note that if P ∗ is any directed path from s∗ to t∗ in C∗

n,2m,
then P ∗ is a dijoin path, i.e., it intersects all dicuts of C∗

n,2m (or, equivalently,
P ∗ “crosses” all directed cycles of Cn,2m).

Let η be a butterfly model of a digraph G in Cn,2m. We will deal with η
through a few operations. Due to lack of space, we only present them informally.

– Adding one column between columns i and i + 1 in η consists in considering
the new model η′ of G in the cylindrical grid Cn+1,2m obtained as follows.
Roughly, the left part of the model (between columns 0 to i) does not change,
one new column is added (with abscissa i+1), and the right part of the model
(between former columns i+1 to n) is translated by one column to the right.

66 J. Bensmail et al.

Fig. 5. Construction of DP∗(s, t). On the left, a dijoin path P ∗ is represented by dashed
red arcs. On the right, the obtained digraph DP∗(s, t) is depicted. (Color figure online)

The horizontal arcs of the model that were going from former columns i to
i + 1 are subdivided once, i.e., they are now directed paths that go from
column i to column i + 2. Note that no vertical arcs of the added column
belong to the new model η′ of D. See Fig. 4 for an illustration.

– Adding two rows between rows j and j + 1 in η consists in considering the
new model η′ of G in the cylindrical grid Cn,2(m+1) defined as follows. All the
elements of the model below row j, or in row j, remain the same, all elements
of the model above row j are translated up from two rows, and all vertical
arcs from former row j to former row j + 1 are subdivided twice, i.e., they
are now vertical directed paths with three arcs from row j to row j + 3. Note
that no horizontal arcs of the two added rows belong to the new model η′ of
D. See Fig. 4 for an illustration.

3 Digraphs with Neither Sources nor Sinks

Let D be a plane digraph such that D∗ has a dijoin path P ∗ with arcs
(e∗

1, · · · , e∗
p). Let DP∗(s, t) be obtained from D as follows (see Fig. 5 to follow

the construction). For every i ∈ {1, · · · , p}, let ei = (ui, wi) be the arc of D cor-
responding to e∗

i . Subdivide ei into three arcs (ui, ti), (ti, si), and (si, wi). Then,
remove (ti, si), and, for every i ∈ {1, · · · , p}, identify the vertices t1, · · · , tp into
one vertex t, and the vertices s1, · · · , sp into one vertex s. Finally, add an arc
from s to t. Note that V (DP∗(s, t)) = V (D) ∪ {s, t} and, for every v ∈ V (D),
the in-degree (resp., out-degree) of v in D is the same as in DP∗(s, t). Since P ∗

is a dijoin path of D∗, the set {ei}i≤m is a feedback arc set of D [2]. Therefore:

Observation 8. Let D be a plane digraph such that D∗ has a dijoin path P ∗.
If D has neither sources nor sinks, then DP∗(s, t) is a planar DAG having s as
unique source and t as unique sink.

A visibility representation of a graph G is a mapping of V (G) into
non-intersecting horizontal segments1 {hu}u∈V (G), together with a mapping
{te}e∈E(G) of the edges into vertical segments such that for every uv ∈ E(G),

1 Here, segment means line segment in the plane.

Deciding the Erdös-Pósa Property in 3-Connected Digraphs 67

we get that tuv has endpoints in hu and hv, and tuv does not cross hw for every
w �= u, v.

Theorem 2 ([4]). Every planar graph admits a visibility representation.

Here, we apply the approach presented in [10] to our context in order to obtain
a butterfly model of a planar digraph D into a cylindrical grid, if one exists. For
this, we slightly adapt their definitions to our purposes.

We consider a visibility representation ({hu}u∈V , {te}e∈A) of D = (V,A) to
be drawn on the plane, and, given two horizontal (vertical) segments s1, s2, we
write s1 ≤ s2 if the y-coordinate (x-coordinate) of s1 is smaller than the one
of s2. Now, given a DAG D = (V,A), we say that a visibility representation
({hu}u∈V , {te}e∈A) of D is increasing if hu ≤ hv for every arc (u, v) ∈ A (in
other words, the arcs are all directed upwards).

In [10], in order to construct a visibility representation, the authors show
that they can obtain an orientation D of a graph G that is acyclic, has exactly
one source s and exactly one sink t, and (s, t) ∈ A(D) (they call such a digraph
a PERT-digraph). After they obtain this orientation, they use a total order
(v1, . . . , vn) of V (G) that meets the orientation D, and then construct a visibility
representation such that s1 < s2 < . . . < sn, where si denotes the y-coordinate
of hvi

, for every i ∈ {1, . . . , n}. Observe that, because the order meets the ori-
entation, we get that this is an increasing visibility representation. Their repre-
sentation also has the property that the x-coordinate of arc (s, t) is smaller than
the x-coordinate of every other edge of G. In short, even though they use a dif-
ferent terminology, the results presented in [10] actually show that the theorem
below holds. The interested reader can check this is true by observing, in their
algorithm W-VISIBILITY, that after they obtain the desired orientation D (line
2), they only work on D itself; also, the increasing order over the y-coordinates
is ensured in line 5.1 of their algorithm.

Theorem 3 ([10]). Let D be a planar DAG with unique source s and unique
sink t, and such that (s, t) ∈ A(D). Then, D admits an increasing visibility
representation such that each horizontal segment has a distinct y-coordinate,
and the x-coordinate of the segment of (s, t) is smaller than the x-coordinate of
the segment of every other arc of D.

Theorem 4. Let D = (V,A) be a digraph without sources or sinks. If D has a
planar embedding such that D∗ admits a dijoin path P ∗, then D has a butterfly
model in Cn,2m for some n,m ∈ N

∗.

Sketch of the Proof. By Observation 8, DP∗(s, t) is a DAG with a unique source s,
a unique sink t, and (s, t) ∈ A(DP∗(s, t)). By Theorem 3, there exists an increas-
ing visibility representation of DP∗(s, t). Let V (DP∗(s, t)) = {s = v1, . . . , t = vn}
be ordered increasingly according to their y-coordinates on the representation
and suppose, without loss of generality, that the y-coordinate of hv1 = hs is 0
and the difference between the y-coordinates of hvi

and hvi−1 is 2 (their value on
the constructed increasing visibility representation are all different, so we just

68 J. Bensmail et al.

need to adjust it). Observe that, in this case, the y-coordinate of hvi
is 2i − 2.

We will build a model of D in some cylindrical grid as follows.
For each vi ∈ V (D) (hence i /∈ {1, n}), let h′

vi
be the segment equivalent

to hvi
, but in the upper row. In other words, h′

vi
has y-coordinate 2i − 1, and

leftmost and rightmost x-coordinates equal to the ones of hvi
. The idea of the

proof is to relate vi with the path formed by the union of paths associated to h′
vi

and hvi
in the cylindrical grid. Since all arcs of D point upwards, we get that

the subpath associated to h′
vi

(i.e., in row 2i − 1) corresponds to the out-tree of
vi, while the subpath associated to hvi

(i.e., in row 2i − 2) corresponds to the
in-tree of vi. �

Note that Theorem 4 allows us to prove the “if” part of Theorem 1.

Theorem 5. If a digraph D = (V,A) has a butterfly model in Cn,2m for some
n,m ∈ N

∗, then D has a planar embedding such that D∗ admits a dijoin path.

Proof. Consider the planar embedding of Cn,2m such that the outerface contains
its first column (see Fig. 3) and let P ∗ be any directed path from the single source
of C∗

n,2m to its single sink. Note that P ∗ is a dijoin path of C∗
n,2m.

By Observation 7, D is a butterfly minor of Cn,2m. Let s1, · · · , sq be the
sequence of operations allowing to get D from Cn,2m where these operations
are ordered in such a way that first arcs are removed, then isolated vertices are
removed and, finally, butterfly contractions are performed. For every 0 ≤ i ≤ q,
let Gi be the digraph obtained after the ith operation (so G0 = Cn,2m and
Gq = D). We show, by induction on 0 ≤ i ≤ q, how to obtain a directed path Pi

which is a dijoin path of G∗
i . In particular, it holds for i = 0 by taking P0 = P ∗.

Let i ≥ 1. If si consists in removing an arc ei of Gi−1 then, if e∗
i ∈ A(Pi−1),

let P ′
i = Pi−1/e∗

i , and let P ′
i = Pi−1 otherwise. By Observations 1 and 4, P ′

i

is a dijoin walk of G∗
i and, by Observation 6, G∗

i admits a dijoin path Pi. If si
consists in removing an isolated vertex, then, by Observation 5, Pi = Pi−1 is a
dijoin path of G∗

i . And if si is a butterfly contraction of the arc ei ∈ A(Gi−1),
where e∗

i /∈ A(Pi−1), then Observations 1 and 3 ensure us that Pi = Pi−1 is a
dijoin path of G∗

i .
Finally, let us consider the case when si consists in butterfly contracting

an arc ei = (u, v) ∈ A(Gi−1) such that e∗
i ∈ A(Pi−1). Let us assume that

d−(v) = 1 (the case when d+(u) = 1 is symmetric). Observe that d+(v) > 0 as
otherwise e∗

i would be a loop, contradicting that Pi−1 is a directed path. Then,
let {f1, · · · , fq} be the set of out-arcs of v ordered clockwise in the embedding
of D in the plane. Then, let P ′

i be the directed walk obtained by replacing e∗
i in

Pi−1 by the directed walk consisting of the arcs f∗
1 , f∗

2 , · · · , f∗
q . Note that P ′

i is a
dijoin walk in G∗

i . Indeed, consider the set of arcs K of a dicut of G∗
i . If K is also

a dicut in G∗
i−1, then e∗

i /∈ K and P ′
i intersects K since Pi−1 is a dijoin path and

so intersects K. Otherwise, e∗
i ∈ K which implies that {f∗

1 , f∗
2 , · · · , f∗

q }∩K �= ∅,
and so P ′

i intersects K. Finally, by Observation 6, G∗
i admits a dijoin path Pi.

�

Deciding the Erdös-Pósa Property in 3-Connected Digraphs 69

Theorems 4 and 5 prove the following corollary which corresponds to Theo-
rem 1 in the case of digraphs with neither sources nor sinks (and in particular,
Corollary 3 is a special case of the following corollary).

Corollary 4. A digraph D without sources or sinks is a butterfly minor of a
cylindrical grid if, and only if, D admits a planar embedding such that D∗ has
a dijoin path. Moreover, if D is weakly 3-connected, then this can be decided in
linear time.

Proof. Due to the weakly 3-connectivity of D, and by Whitney’s Theorem, D
has a unique (up to the outerface) planar embedding (and a unique dual). Given
such an embedding, checking the existence of a dijoin path can be done in linear
time by Observation 2. �

Recall that a strong digraph D has the EP property for butterfly minors if
and only if D is a butterfly minor of a cylindrical grid [1]. Together with our
result, we get:

Corollary 3. Deciding whether a weakly 3-connected strong digraph D has the
EP property for butterfly minors can be done in linear time.

4 Digraphs with Sources and Sinks

We have seen that if D is a butterfly minor of a cylindrical grid, then D has a
planar embedding such that D∗ admits a dijoin path (Theorem 5). As we want
to show that this holds for a spanning supergraph with neither sources nor sinks,
it remains to “kill” sources and sinks in D. This is done in this section.

Given a cylindrical grid Cn,2m with the canonical planar embedding described
previously, let Q∗

n,2m be the directed path of the dual C∗
n,2m whose arcs corre-

spond exactly to all arcs of Cn,2m that go from the last (topmost) row to the
first (bottommost) row. Note that Q∗

n,2m is a dijoin path of C∗
n,2m (see Fig. 3).

The next lemma states that if a digraph D has a model in a cylindrical grid,
then it is possible to get a model such that Q∗

n,2m only crosses blue arcs of this
model.

Lemma 1. If a digraph D has a butterfly model η in Cn,2m, then D has a
butterfly model in Cn′,2m′ for some n′ ≥ n and m′ ≥ m such that no black arcs
of this model are dual of an arc of Q∗

n′,2m′ .

Lemma 2. If a digraph D = (V,A) has a butterfly model in Cn,2m, then D has
a spanning supergraph with neither sources nor sinks that has a butterfly model
in Cn′,2m′ for some n′ ≥ n and m′ ≥ m.

Sketch of the Proof. If D has no sources nor sinks, then we are done, so suppose
otherwise. In what follows, given a source s in D (resp., a sink t), we describe a
process that builds a model for an in-arc that we add to s (resp., an out-arc that
we add to t), so that the obtained supergraph has also a model in a cylindrical

70 J. Bensmail et al.

grid and has one less source (resp., sink). By iteratively applying such process,
we get the desired conclusions.

Let us consider a butterfly model η of D with a dijoin path P ∗ as in Lemma 1,
and suppose that D has a source s (the case of a sink is symmetric). We will
add a new arc (z, s) for some z ∈ V (D), and a directed path Q (finishing in the
in-tree of the model of s) for modelling this arc in the existing model η. The
difficulty is to find the vertex of an out-tree in which we can start Q from. First
let us add two columns between any two consecutive columns and let us add two
rows between any two consecutive rows. We also add one column to the left and
one column to the right of the cylindrical grid.

Let rs be the root of η(s). Note that, by assuming η to be minimal, we get
that the in-tree of the model of s in η is reduced to its root. Let a1 be the vertex
below rs and b1 the vertex below a1. Since we have just added two rows between
any two rows, and because the in-tree of s is reduced to rs, we get that a1, b1
are not part of the model of any vertex nor arc. Let Q initially contain just the
arc (a1, rs) (this will actually be the last arc of Q). Let us assume that Q has
been built up to some vertex ah, i.e., Q = (ah, ah−1, · · · , a1, rs), and additionally
assume that the vertex bh below ah is not part of the model of any vertex nor
arc (this is the case for h = 1). Let w be the vertex below bh.

– If w is not part of the model of any vertex nor arc, then let ah+1 = bh and
let bh+1 = w, and we continue to build Q.

– If w is in the out-tree of some vertex, then add (w, bh), (bh, ah) to the end of
Q to be done.

– If w is part of the in-tree of some vertex a (and not of its out-tree, i.e., w is
not the root of the model of a), then assume that the row of ah goes to the
right (the other case is symmetric). Let x be the left neighbor of ah, y be the
vertex below x (and to the left of bh), and z the vertex below y (and to the
left of w). Note that, since w is part of the model and bh is not, then the rows
of bh and ah are rows that have been added just before starting the process.
In particular, this implies that either both x and y belong to the model of
some e ∈ V (D) ∪ A(D), or neither x nor y is part of any model. We can then
prove that the former case is not possible because it would contradict the fact
that w is part of the in-tree (and not of the out-tree) of the model of a. In
the latter case, we set ah+1 = x and bh+1 = y and go on.

– If w is part of the model of some arc e = (u, v) ∈ A(D). We apply similar
arguments and omit the proof because of space constraints.

The above process is not ensured to finish because if might happen that
vertices ah and bh are already on the outerface of the model η. The next two
cases allow to ensure that our process will actually terminate. For this purpose,
we use the dijoin path P ∗.

– If (bh, ah) crosses the dijoin path P ∗ and P ∗ does not cross any blue arc,
then let us consider the closest row under P ∗ that contains a vertex of the
model. W.l.o.g., let us assume that this row goes to the right and let x be

Deciding the Erdös-Pósa Property in 3-Connected Digraphs 71

the rightmost vertex of this row that is part of the model of some vertex
v∗ of D. By minimality of the model and because x has no out-neigbour in
the model of any vertex or arc, then, x must be the root of η(v∗) (which is
actually an in-tree). Now, we add to η(v∗): the up-going arc (x, y) (y being
the up-neighbor of x), and the horizontal directed path Y starting from y to
the leftmost vertex of this row (then y becomes the new root of η(v∗) and
the path Y will be considered as its out-tree). To conclude this case, add at
the beginning of Q, the directed path from the path Y of η(v∗) (added in
previous paragraph) to bh.

– If (bh, ah) crosses P ∗ which crosses some blue arc, then we apply similar
arguments and omit the proof because of space constraints. �

Further Work. An interesting question is whether there exists a structural
condition on the sources and sinks of a digraph D that corresponds to being a
butterfly minor of a cylindrical grid (avoiding to invoke a supergraph without
sources or sinks). This may help to answer the question of the computational
complexity of deciding if a strong digraph D has the EP property when D is
not weakly 3-connected. Since the class of digraphs that are butterfly minors
of a cylindrical grid is closed under taking butterfly minors, it would also be
interesting to characterize the minimal forbidden butterfly minors for this class.

References

1. Amiri, A., Kawarabayashi, K., Kreutzer, S., Wollan, P.: The Erdos-Pósa property
for directed graphs. arXiv preprint arXiv:1603.02504 (2016)

2. Bang-Jensen, J., Gutin, G.: Digraphs: Theory, Algorithms and Applications, 2nd
edn. Springer, London (2008). https://doi.org/10.1007/978-1-84800-998-1

3. Bensmail, J., Campos, V., Maia, A.K., Nisse, N., Silva, A.: Deciding the Erdös-Pósa
property in 3-connected digraphs (2023). www.inria.hal.science/hal-04084227

4. Duchet, P., Hamidoune, Y., Las Vergnas, M., Meyniel, H.: Representing a planar
graph by vertical lines joining different levels. Discrete Math. 46, 319–321 (1983)

5. Erdős, P., Pósa, L.: On independent circuits contained in a graph. Can. J. Math.
17, 347–352 (1965)

6. Johnson, T., Robertson, N., Seymour, P., Thomas, R.: Directed tree-width. J.
Comb. Theory Ser. B 82(1), 138–154 (2001)

7. Reed, B., Robertson, N., Seymour, P., Thomas, R.: Packing directed circuits. Com-
binatorica 16(4), 535–554 (1996). https://doi.org/10.1007/BF01271272

8. Robertson, N., Seymour, P.: Graph minors. V. Excluding a planar graph. J. Comb.
Theory Ser. B 41, 92–114 (1986)

9. Robertson, N., Seymour, P.: Graph minors. VII. Disjoint paths on a surface. J.
Comb. Theory Ser. B 45(2), 212–254 (1988)

10. Tamassia, R., Tollis, I.G.: A unified approach to visibility representations of pla-
nar graphs. Discrete Comput. Geom. 1, 321–341 (1986). https://doi.org/10.1007/
BF02187705

11. West, D.B.: Introduction to Graph Theory, 2 edn. Prentice Hall (2000)
12. Whitney, H.: 2-isomorphic graphs. Am. J. Math. 55(1), 245–254 (1933)
13. Younger, D.: Graphs with interlinked directed circuits. In: Proceedings of the Mid-

West Symposium on Circuit Theory, vol. 2 (1973)

http://arxiv.org/abs/1603.02504
https://doi.org/10.1007/978-1-84800-998-1
www.inria.hal.science/hal-04084227
https://doi.org/10.1007/BF01271272
https://doi.org/10.1007/BF02187705
https://doi.org/10.1007/BF02187705

New Width Parameters for Independent
Set: One-Sided-Mim-Width

and Neighbor-Depth

Benjamin Bergougnoux1 , Tuukka Korhonen2(B) , and Igor Razgon3

1 University of Warsaw, Warsaw, Poland
benjamin.bergougnoux@mimuw.edu.pl
2 University of Bergen, Bergen, Norway

tuukka.korhonen@uib.no
3 Birkbeck University of London, London, UK

i.razgon@bbk.ac.uk

Abstract. We study the tractability of the maximum independent set
problem from the viewpoint of graph width parameters, with the goal of
defining a width parameter that is as general as possible and allows to
solve independent set in polynomial-time on graphs where the parameter
is bounded. We introduce two new graph width parameters: one-sided
maximum induced matching-width (o-mim-width) and neighbor-depth.
O-mim-width is a graph parameter that is more general than the known
parameters mim-width and tree-independence number, and we show that
independent set and feedback vertex set can be solved in polynomial-
time given a decomposition with bounded o-mim-width. O-mim-width is
the first width parameter that gives a common generalization of chordal
graphs and graphs of bounded clique-width in terms of tractability of
these problems.

The parameter o-mim-width, as well as the related parameters mim-
width and sim-width, have the limitation that no algorithms are known
to compute bounded-width decompositions in polynomial-time. To par-
tially resolve this limitation, we introduce the parameter neighbor-depth.
We show that given a graph of neighbor-depth k, independent set can be
solved in time nO(k) even without knowing a corresponding decomposi-
tion. We also show that neighbor-depth is bounded by a polylogarithmic
function on the number of vertices on large classes of graphs, including
graphs of bounded o-mim-width, and more generally graphs of bounded
sim-width, giving a quasipolynomial-time algorithm for independent set
on these graph classes. This resolves an open problem asked by Kang,
Kwon, Strømme, and Telle [TCS 2017].

Keywords: Graph width parameters · Mim-width · Sim-width ·
Independent set

Due to space limits, most of technicals details are omitted or just sketched. The full
version of the paper is available on arXiv [2]. Tuukka Korhonen was supported by the
Research Council of Norway via the project BWCA (grant no. 314528).

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
D. Paulusma and B. Ries (Eds.): WG 2023, LNCS 14093, pp. 72–85, 2023.
https://doi.org/10.1007/978-3-031-43380-1_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-43380-1_6&domain=pdf
http://orcid.org/0000-0002-6270-3663
http://orcid.org/0000-0003-0861-6515
https://doi.org/10.1007/978-3-031-43380-1_6

New Width Parameters for Independent Set 73

1 Introduction

Graph width parameters have been successful tools for dealing with the
intractability of NP-hard problems over the last decades. While tree-width [25] is
the most prominent width parameter due to its numerous algorithmic and struc-
tural properties, only sparse graphs can have bounded tree-width. To capture
the tractability of many NP-hard problems on well-structured dense graphs,
several graph width parameters, including clique-width [7], mim-width [26],
Boolean-width [6], tree-independence number [9,27], minor-matching hypertree
width [27], and sim-width [20] have been defined. A graph parameter can be
considered to be more general than another parameter if it is bounded whenever
the other parameter is bounded. For a particular graph problem, it is natural to
look for the most general width parameter so that the problem is tractable on
graphs where this parameter is bounded. In this paper, we focus on the maximum
independent set problem (Independent Set).

Let us recall the standard definitions on branch decompositions. Let V be
a finite set and f : 2V → Z≥0 a symmetric set function, i.e., for all X ⊆ V it
holds that f(X) = f(V \X). A branch decomposition of f is a pair (T, δ), where
T is a cubic tree and δ is a bijection mapping the elements of V to the leaves
of T . Each edge e of T naturally induces a partition (Xe, Ye) of the leaves of T
into two non-empty sets, which gives a partition (δ−1(Xe), δ−1(Ye)) of V . We
say that the width of the edge e is f(e) = f(δ−1(Xe)) = f(δ−1(Ye)), the width
of the branch decomposition (T, δ) is the maximum width of its edges, and the
branchwidth of the function f is the minimum width of a branch decomposition
of f. When G is a graph and f : 2V (G) → Z≥0 is a symmetric set function on
V (G), we say that the f-width of G is the branchwidth of f.

Vatshelle [26] defined the maximum induced matching-width (mim-width) of
a graph to be the mim-width where mim(A) for a set of vertices A is defined to be
the size of a maximum induced matching in the bipartite graph G[A,A] given
by edges between A and A, where A = V (G) \ A. He showed that given a graph
together with a branch decomposition of mim-width k, any locally checkable
vertex subset and vertex partitioning problem (LC-VSVP), including Indepen-
dent Set, Dominating Set, and Graph Coloring with a constant number
of colors, can be solved in time nO(k). Mim-width has gained a lot of atten-
tion recently [1,4,5,17–19,22]. While mim-width is more general than clique-
width and bounded mim-width captures many graph classes with unbounded
clique-width (e.g. interval graphs), there are many interesting graph classes with
unbounded mim-width where Independent Set is known to be solvable in
polynomial-time. Most notably, chordal graphs, and even their subclass split
graphs, have unbounded mim-width, but it is a classical result of Gavril [15] that
Independent Set can be solved in polynomial-time on them. More generally,
all width parameters in a general class of parameters that contains mim-width
and was studied by Eiben, Ganian, Hamm, Jaffke, and Kwon [11] are unbounded
on split graphs.

With the goal of providing a generalization of mim-width that is bounded
on chordal graphs, Kang, Kwon, Strømme, and Telle [20] defined the parameter

74 B. Bergougnoux et al.

special induced matching-width (sim-width). Sim-width of a graph G is the sim-
width where sim(A) for a set of vertices A is defined to be the maximum size
of an induced matching in G whose every edge has one endpoint in A and
another in A. The key difference of mim and sim is that mim ignores the edges
in G[A] and G[A] when determining if the matching is induced, while sim takes
them into account, and therefore the sim-width of a graph is always at most
its mim-width. Chordal graphs have sim-width at most one [20]. However, it is
not known if Independent Set can be solved in polynomial-time on graphs
of bounded sim-width, and indeed Kang, Kwon, Strømme, and Telle asked as
an open question if Independent Set is NP-complete on graphs of bounded
sim-width [20].

In this paper, we introduce a width parameter that for the Independent
Set problem, captures the best of both worlds of mim-width and sim-width. Our
parameter is inspired by a parameter introduced by Razgon [24] for classifying
the OBDD size of monotone 2-CNFs. For a set of vertices A, let E(A) denote the
edges of the induced subgraph G[A]. For a set A ⊆ V (G), we define the upper-
induced matching number umim(A) of A to be the maximum size of an induced
matching in G−E(A) whose every edge has one endpoint in A and another in A.
Then, we define the one-sided maximum induced matching-width (o-mim-width)
of a graph to be the omim-width where omim(A) = min(umim(A), umim(A)). In
particular, o-mim-width is like sim-width, but we ignore the edges on one side
of the cut when determining if a matching is induced. Clearly, the o-mim-width
of a graph is between its mim-width and sim-width. Our first result is that
the polynomial-time solvability of Independent Set on graphs of bounded
mim-width generalizes to bounded o-mim-width. Moreover, we show that the
interest of o-mim-width is not limited to Independent Set by proving that
the Feedback Vertex Set problem is also solvable in polynomial time on
graphs of bounded o-mim-width.

Theorem 1. Given an n-vertex graph together with a branch decomposition of
o-mim-width k, Independent Set and Feedback Vertex Set can be solved
in time nO(k).

We also show that o-mim-width is bounded on chordal graphs. In fact,
we show a stronger result that o-mim-width of any graph is at most its tree-
independence number (tree-α), which is a graph width parameter defined by
Dallard, Milanič, and Štorgel [9] and independently by Yolov [27], and is known
to be at most one on chordal graphs.

Theorem 2. Any graph with tree-independence number k has o-mim-width at
most k.

We do not know if there is a polynomial-time algorithm to compute a branch
decomposition of bounded o-mim-width if one exists, and the corresponding
question is notoriously open also for both mim-width and sim-width. Because
of this, it is also open whether Independent Set can be solved in polynomial-
time on graphs of bounded mim-width, and more generally on graphs of bounded
o-mim-width.

New Width Parameters for Independent Set 75

In our second contribution we partially resolve the issue of not having algo-
rithms for computing branch decompositions with bounded mim-width, o-mim-
width, or sim-width. We introduce a graph parameter neighbor-depth.

Definition 3. The neighbor-depth (nd) of a graph G is defined recursively as
follows:

1. nd(G) = 0 if and only if V (G) = ∅,
2. if G is not connected, then nd(G) is the maximum value of nd(G[C]) where

C ⊆ V (G) is a connected component of G,
3. if V (G) is non-empty and G is connected, then nd(G) ≤ k if and only if there

exists a vertex v ∈ V (G) such that nd(G \N [v]) ≤ k − 1 and nd(G \ {v}) ≤ k.

In the case (3) of Definition 3, we call the vertex v the pivot-vertex witnessing
nd(G) ≤ k.

By induction, the neighbor-depth of all graphs is well-defined. We show that
neighbor-depth can be computed in nO(k) time and also Independent Set can
be solved in time nO(k) on graphs of neighbor-depth k.

Theorem 4. There is an algorithm that given a graph G of neighbor-depth k,
determines its neighbor-depth and solves Independent Set in time nO(k).

We show that graphs of bounded sim-width have neighbor-depth bounded
by a polylogarithmic function on the number of vertices.

Theorem 5. Any n-vertex graph of sim-width k has neighbor-depth O(k log2 n).

Theorems 4 and 5 combined show that Independent Set can be solved in
time nO(k log2 n) on graphs of sim-width k, which in particular is quasipolynomial
time for fixed k. This resolves, under the mild assumption that NP �⊆ QP, the
question of Kang, Kwon, Strømme, and Telle, who asked if Independent Set
is NP-complete on graphs of bounded sim-width [20, Question 2].

Neighbor-depth characterizes branching algorithms for Independent Set
in the following sense. We say that an independent set branching tree of a graph
G is a binary tree whose every node is labeled with an induced subgraph of G,
so that (1) the root is labeled with G, (2) every leaf is labeled with the empty
graph, and (3) if a non-leaf node is labeled with a graph G[X], then either (a) its
children are labeled with the graphs G[L] and G[R] where (L,R) is a partition
of X with no edges between L and R, or (b) its children are labeled with the
graphs G[X \N [v]] and G[X \ {v}] for some vertex v ∈ X. Note that such a tree
corresponds naturally to a branching approach for Independent Set, where
we branch on a single vertex and solve connected components independently of
each other. Let β(G) denote the smallest number of nodes in an independent set
branching tree of a graph G. Neighbor-depth gives both lower- and upper-bounds
for β(G).

Theorem 6. For all graphs G, it holds that 2nd(G) ≤ β(G) ≤ nO(nd(G)).

76 B. Bergougnoux et al.

Polylogarithmic neighbor-depth

Bounded
sim-width

Bounded
o-mim-width

Bounded
mim-width

Bounded
clique-width

Bounded
tree-width

Bounded tree-α

Chordal P6-free

Pk-free

C>k-free

Polynomial
time

Polynomial time
given a

decomposition

Quasipolynomial
time

Bounded tree-μ
Logarithmic

Boolean-width

Fig. 1. Hierarchy of some graph classes with polylogarithmically bounded neighbor-
depth, divided vertically on whether the best known algorithm for Independent Set
on the class is polynomial time, polynomial time given a decomposition (and quasipoly-
nomial without a decomposition), or quasipolynomial time.

By observing that some known algorithms for Independent Set in fact
construct independent set branching trees implicitly, we obtain upper bounds
for neighbor-depth on some graph classes purely by combining the running times
of such algorithms with Theorem 6. In particular, for an integer k, we say that
a graph is C>k-free if it does not contain induced cycles of length more than
k. Gartland, Lokshtanov, Pilipczuk, Pilipczuk and Rzazewski [14] showed that
Independent Set can be solved in time nO(log3 n) on C>k-free graphs for any
fixed k, generalizing a result of Gartland and Lokshtanov on Pk-free graphs [13].
By observing that their algorithm is a branching algorithm that (implicitly)
constructs an independent set branching tree, it follows from Theorem 6 that
the neighbor-depth of C>k-free graphs is bounded by a polylogarithmic function
on the number of vertices.

Proposition 7. For every fixed integer k, C>k-free graphs with n vertices have
neighbor-depth at most O(log4 n).

Along the same lines as Proposition 7, a polylogarithmic upper bound for
neighbor-depth can be also given for graphs with bounded induced cycle pack-
ing number, using the quasipolynomial algorithm of Bonamy, Bonnet, Déprés,
Esperet, Geniet, Hilaire, Thomassé, and Wesolek [3].

In Fig. 1 we show the hierarchy of inclusions between some of the graph
classes discussed in this paper, and the known algorithmic results for Indepen-
dent Set on those classes. All the inclusions shown are proper, and all the

New Width Parameters for Independent Set 77

inclusions between these classes appear in the figure. Some of the inclusions are
proven in Sects. 3 and 4, and some of the non-inclusions in the full version of the
paper [2]. Note that bounded Boolean-width is equivalent to bounded clique-
width [26]. The polynomial-time algorithm for Independent Set on P6-free
graphs is from [16], the definition of tree-μ and polynomial-time algorithm for
Independent Set on graphs of bounded tree-μ is from [27], and the definition
of Boolean-width and a polynomial-time algorithm for Independent Set on
graphs of logarithmic Boolean-width is from [6]. The inclusion of logarithmic
Boolean-width in polylogarithmic neighbor-depth follows from Theorem 5 and
the fact the sim-width of a graph is at most its Boolean-width. Polynomial-time
algorithm for Independent Set on graphs of bounded clique-width follows
from [8,23].

Organization of this Paper. We prove the part of Theorem 1 on Independent
Set and Theorem 2 in Sect. 3. Theorem 5 is proved in Sect. 4. Proofs omitted in
this version of the paper due to space constraints are provided in the full version
in [2].

2 Preliminaries

The size of a set V is denoted by |V | and its power set is denoted by 2V . We let
max(∅) := −∞. Our graph terminology is standard and we refer to [10].

The subgraph of G induced by a subset X of its vertex set is denoted by
G[X]. We also use the notation G \ X = G[V (G) \ X]. For two disjoint subsets
of vertices X and Y of V (G), we denote by G[X,Y] the bipartite graph with
vertex set X ∪ Y and edge set {xy ∈ E(G) : x ∈ X and y ∈ Y }. Given two
disjoint set of vertices X,Y , we denote by E(X) the set of edges of G[X] and
by E(X,Y) the set of edges of G[X,Y]. For a set of edges E′ of G, we denote
by G − E′ the graph with vertex set V (G) and edge set E(G) \ E′.

An independent set is a set of vertices that induces an edgeless graph. Given
a graph G with a weight function w : V (G) → Z≥0, the problem Independent
Set asks for an independent set of maximum weight, where the weight of a set
X ⊆ V (G) is

∑
x∈X w(x). A feedback vertex set is the complement of a set of

vertices inducing a forest (i.e. acyclic graph). The problem Feedback Vertex
Set asks for a feedback vertex set of minimum weight.

A matching in a graph G is a set M ⊆ E(G) of edges having no common
endpoint. We denote by V (M) the set of vertices incident to M . An induced
matching is a matching M such that G[V (M)] does not contain any other edges
than M . Given two disjoint subsets A,B of V (G), we say that a matching M is
a (A,B)-matching if every edge of M has one endpoint in A and the other in B.

Width Parameters. We refer to the introduction for the definitions of branch-
decomposition and f-width, we recall below the definitions of mim-width, sim-
width and o-mim-width.

78 B. Bergougnoux et al.

– The maximum induced matching-width (mim-width) [26] of a graph G is the
mim-width where mim(A) is the size of a maximum induced matching of the
graph G[A,A].

– The special induced matching-width (sim-width) [20] of a graph G is the sim-
width where sim(A) is the size of maximum induced (A,A)-matching in the
graph G.

– Given a graph G and A ⊆ V (G), the upper-mim-width umim(A) of A is the size
of maximum induced (A,A)-matching in the graph G − E(A). The one-sided
maximum induced matching-width (o-mim-width) of G is the omim-width
where omim(A) := min(umim(A), umim(A)).

The following is a standard lemma that f-width at most k implies balanced cuts
with f-width at most k.

Lemma 8. Let G be a graph, X ⊆ V (G) a set of vertices with |X| ≥ 2, and
f : 2V (G) → Z≥0 a symmetric set function. If the f-width of G is at most k, then
there exists a bipartition (A,A) of V (G) with f(A) ≤ k, |X ∩ A| ≤ 2

3 |X|, and
|X ∩ A| ≤ 2

3 |X|.
A tree decomposition of a graph G is a pair (T, bag), where T is a tree and

bag : V (T) → 2V (G) is a function from the nodes of T to subsets of vertices of
G called bags, satisfying that (1) for every edge uv ∈ E(G) there exists a node
t ∈ V (T) so that {u, v} ⊆ bag(t), and (2) for every vertex v ∈ V (G), the set
of nodes {t ∈ V (T) : v ∈ bag(t)} induces a non-empty and connected subtree of
T . The width of a tree decomposition is the maximum size of bag(t) minus one,
and the treewidth of a graph is the minimum width of a tree decomposition of
the graph.

For a set of vertices X ⊆ V (G), we denote by α(X) the maximum size of
an independent set in G[X]. The independence number of a tree decomposi-
tion (T, bag) is the maximum of α(bag(t)) over t ∈ V (T) and it is denoted by
α(T, bag). The tree-independence number of a graph (tree-α) is the minimum
independence number of a tree decomposition of the graph [9,27].

For a set of vertices X ⊆ V (G), we denote by μ(X) the maximum size of an
induced matching in G so that for each edge of the matching, at least one of the
endpoints of the edge is in X. For a tree decomposition (T, bag), we denote by
μ(T, bag) the maximum of μ(bag(t)) over t ∈ V (T). Yolov [27] defined the minor-
matching hypertree width (tree-μ) of a graph to be the minimum μ(T, bag) of a
tree decomposition (T, bag) of G.

3 O-Mim-Width

In this section, we prove the part of Theorem 1 on Independent Set and
Theorem 2. We start with some intermediary results. The following reveals an
important property of cuts of bounded upper-mim-width. Razgon proved a simi-
lar statement in [24]. To simplify the statements of this section, we fix an n-vertex
graph G with a weight function w : V (G) → Z≥0.

New Width Parameters for Independent Set 79

Lemma 9. Let A ⊆ V (G). For every X ⊆ A that is the union of t independent
sets, there exists X ′ ⊆ X of size at most t · umim(A) such that N(X) \ A =
N(X ′) \ A. In particular, we have |{N(X) \ A : X ∈ IS(A)}| ≤ numim(A) where
IS(A) is the set of independent sets of G[A].

Proof. It is sufficient to prove the lemma for t = 1, since if X is the union of t
independent sets X1, . . . , Xt, then the case t = 1 implies that, for each i ∈ [1, t],
there exits X ′

i ⊆ Xi such that N(Xi) \ A = N(X ′
i) \ A and |X ′

i| ≤ umim(A). It
follows that X ′ = X ′

1∪· · ·∪X ′
t ⊆ X, N(X)\A = N(X ′)\A and |X ′| ≤ t·umim(A).

Let X be an independent set of G[A]. If for every vertex x ∈ X, there exists
a vertex yx ∈ A such that N(yx) ∩ X = {x}, then {xyx : x ∈ X} is an induced
(A,A)-matching in G − E(A). We deduce that either |X| ≤ umim(A) or there
exists a vertex x ∈ X such that N(X) \ A = N(X \ {x}) \ A. Thus, we can
recursively remove vertices from X to find a set X ′ ⊆ X of size at most umim(A)
and such that N(X) \ A = N(X ′) \ A. In particular, the latter implies that
{N(X) \ A : X ∈ IS(A)} = {N(X) \ A : X ∈ IS(A) ∧ |X| ≤ umim(A)}. We
conclude that |{N(X) \ A : X ∈ IS(A)}| ≤ numim(A). �

To solve Independent Set and Feedback Vertex Set, we use the general
toolkit developed in [1] with a simplified notation adapted to our two problems.
This general toolkit is based on the following notion of representativity between
sets of partial solutions. In the following, the collection S represents the set of
solutions, in our setting S consists of either all the independent sets or all the
set of vertices inducing a forest.

Definition 10. Given S ⊆ 2V (G), for every A ⊆ 2V (G) and Y ⊆ V (G), we
define bestS(A, Y) := max{w(X) : X ∈ A ∧ X ∪ Y ∈ S}. Given A ⊆ V (G)
and A,B ⊆ 2A, we say that B (S, A)-represents A if for every Y ⊆ A, we have
bestS(A, Y) = bestS(B, Y).

Observe that if there is no X ∈ B such that X ∪ Y ∈ S, then bestS(B, Y) =
max(∅) = −∞. It is easy to see that the relation “(S, A)-represents” is an equiv-
alence relation.

The following is an application of Theorem 4.1 from [1]. It proves that a
routine for computing small representative sets can be used to design a dynamic
programming algorithm.

Theorem 11 ([1]). Let S ⊆ 2V (G). Assume that there exists a constant c and an
algorithm that, given A ⊆ V (G) and A ⊆ 2A, computes in time |A|nO(omim(A))

a subset B of A such that |B| ≤ nc·omim(A) and B (S, A)-represents A. Then,
there exists an algorithm, that given a branch decomposition L of G, computes
in time nO(omim(L)) a set of size at most nc·omim(A) that contains an element in S
of maximum weight.

The following lemma provides a routine to compute small representative sets
for Independent Set. We denote by I the set of all independent sets of G.

Lemma 12. Let k = omim(A). Given a collection A ⊆ 2A, we can compute in
time |A|nO(k) a subset B of A such that B (I, A)-represents A and |B| ≤ nk.

80 B. Bergougnoux et al.

Proof. Let A ⊆ 2A. We compute B from the empty set as follows:

– If umim(A) = k, then, for every Y ∈ {N(X) \ A : X is an independent in
A}, we add to B an independent set X ∈ A of maximum weight such that
Y = N(X) \ A.

– If umim(A) > k, then, for each subset Y ⊆ A with |Y | ≤ k, we add to B a set
X ∈ A of maximum weight such that X ∪Y is an independent set (if such X
exists).

It remains to prove the runtime. First, we prove that |B| ≤ nk. This is
straightforward when umim(A) > k. When umim(A) = k, Lemma 9 implies that
|{N(X) \ A : X is an independent in A}| ≤ nk and thus, we have |B| ≤ nk.

Next, we prove that B (I, A)-represents A, i.e. for every Y ⊆ A, we have
that bestI(A, Y) = bestI(B, Y). Let Y ⊆ A. As B is subset of A, we have
bestI(B, Y) ≤ bestI(A, Y). In particular, if there is no X ∈ A such that X ∪ Y
is an independent set, then we have bestI(A, Y) = bestI(B, Y) = −∞.

Suppose from now that bestI(A, Y) �= −∞ and let X ∈ A such that X ∪ Y
is an independent set and w(X) = bestI(A, Y). We distinguish the following
cases:

– If umim(A) = k, then, by construction, there exists an independent set W ∈ B
such that N(X) \ A = N(W) \ A and w(X) ≤ w(W). As X ∪ Y is an
independent set, we deduce that N(X)∩Y = N(W)∩Y = ∅ and thus W ∪Y
is an independent set.

– If umim(A) > k, then umim(A) = k as omim(A) = min(umim(A), umim(A)) = k.
By Lemma 9, there exists an independent set Y ′ ⊆ Y of size at most k such
that N(Y)\A = N(Y ′)\A. As Y ′ ⊆ Y , we know that X∪Y ′ is an independent
set. Thus, by construction there exists a set W ∈ B such that W ∪ Y ′ is an
independent set and w(X) ≤ w(W). Since N(Y) \A = N(Y ′) \A, we deduce
that W ∪ Y is an independent set.

In both cases, there exists W ∈ B such that W ∪ Y is an independent set and
w(X) ≤ w(W) ≤ bestI(B, Y). Since bestI(B, Y) ≤ bestI(A, Y) = w(X), it
follows that w(X) = bestI(A, Y) = bestI(B, Y). As this holds for every Y ⊆ A,
we conclude that B (I, A)-represents A.

It remains to prove the running time. Computing omim(A) = k and checking
whether umim(A) = k can be done by looking at every set of k + 1 edges and
check whether one of these sets is an induced (A,A)-matching in G − E(A)
and in G − E(A). This can be done in time O(

(
n2

k+1

)
n2) = nO(k) time. When

umim(A) > k, it is clear that computing B can be done in time |A|nO(k). This is
also possible when umim(A) = k as Lemma 9 implies that |{N(X) \ A : X is an
independent set in A}| ≤ nk. �

We obtain the following by using Theorem 11 with the routine of Lemma 12.

Theorem 13. Given an n-vertex graph with a branch decomposition of o-mim-
width k, we can solve Independent Set in time nO(k).

New Width Parameters for Independent Set 81

We show that the o-mim-width of a graph is upper bounded by its tree-
independence number.

We say that a branch decomposition is on a set V (G) if it is a branch decom-
position of some function f : 2V (G) → Z≥0. Next we give a general lemma for
turning tree decompositions of G into branch decompositions on V (G).

Lemma 14. Let (T, bag) be a tree decomposition of a graph G. There exists a
branch decomposition (T ′, δ) on the set V (G) so that for every bipartition (A,A)
of V (G) given by an edge of (T ′, δ), there exists a bag of (T, bag) that contains
either N(A) or N(A).

Then we restate Theorem 2 and prove it using Lemma 14.

Theorem 2. Any graph with tree-independence number k has o-mim-width at
most k.

Proof. Let G be a graph with tree-independence number k and (T, bag) a tree
decomposition of G with independence number α(T, bag) = k. By applying
Lemma 14 we turn (T, bag) into a branch decomposition on V (G) so that for
every partition (A,A) of V (G) given by the decomposition, either N(A) or N(A)
has independence number at most k. Now, if N(A) has independence number
at most k, then umim(A) ≤ k, and if N(A) has independence number at most k,
then umim(A) ≤ k, so we have that omim(A) ≤ k, and therefore the o-mim-width
of the branch decomposition is at most k. �

With similar arguments, we also prove the following.

Theorem 15. Any graph with minor-matching hypertreewidth k has sim-width
at most k.

4 Neighbor-Depth of Graphs of Bounded Sim-Width

In this section we show that graphs of bounded sim-width have poly-logarithmic
neighbor-depth, i.e., Theorem 5. The idea of the proof will be that given a cut
of bounded sim-width, we can delete a constant fraction of the edges going over
the cut by deleting the closed neighborhood of a single vertex. This allows to
first fix a balanced cut according to an optimal decomposition for sim-width,
and then delete the edges going over the cut in logarithmic depth.

We say that a vertex v ∈ V (G) neighbor-controls an edge e ∈ E(G) if e
is incident to a vertex in N [v]. In other words, v neighbor-controls e if e /∈
E(G \ N [v]).

Lemma 16. Let G be a graph and A ⊆ V (G) so that sim(A) ≤ k. There exists
a vertex v ∈ V (G) that neighbor-controls at least |E(A,A)|/2k edges in E(A,A).

Proof. Suppose the contradiction, i.e., that all vertices of G neighbor-control less
than |E(A,A)|/2k edges in E(A,A). Let M ⊆ E(A,A) be a maximum induced
(A,A)-matching, having size at most |M | ≤ sim(A) ≤ k, and let V (M) denote
the set of vertices incident to M . Now, an edge in E(A,A) cannot be added

82 B. Bergougnoux et al.

to M if and only if one of its endpoints is in N [V (M)]. In particular, an edge
in E(A,A) cannot be added to M if and only if there is a vertex in V (M)
that neighbor-controls it. However, by our assumption, the vertices in V (M)
neighbor-control strictly less than

|V (M)| · |E(A,A)|/2k = |E(A,A)|
edges of E(A,A), so there exists an edge in E(A,A) that is not neighbor-
controlled by V (M), and therefore we contradict the maximality of M . �

Now, the idea will be to argue that because sim-width is at most k, there
exists a balanced cut (A,A) with sim(A) ≤ k, and then select the vertex v given
by Lemma 16 as the pivot-vertex. Here, we need to be careful to persistently
target the same cut until the graph is disconnected along it.

Theorem 5. Any n-vertex graph of sim-width k has neighbor-depth O(k log2 n)

Proof. For integers n ≥ 2 and k, t ≥ 0, we denote by nd(n, k, t) the maximum
neighbor-depth of a graph that

1. has at most n vertices,
2. has sim-width at most k, and
3. has a cut (A,A) with sim(A) ≤ k, |E(A,A)| ≤ t, |A| ≤ 2n/3, and |A| ≤ 2n/3.

We observe that if a graph G satisfies all of the conditions 1–3, then any
induced subgraph of G also satisfies the conditions. In particular, note that n
can be larger than |V (G)|, and in the condition 3, the cut should be balanced
with respect to n but not necessarily with respect to |V (G)|.

We will prove by induction that

nd(n, k, t) ≤ 1 + 4k(log3/2(n) · log(n2 + 1) + log(t + 1)). (1)

This will then prove the statement, because by Lemma 8 any graph with n
vertices and sim-width k satisfies the conditions with t = n2.

First, when n ≤ 2 this holds because any graph with at most two vertices
has neighbor-depth at most one. We then assume that n ≥ 3 and that Eq. (1)
holds for smaller values of n and first consider the case t = 0.

Let G be a graph that satisfies the conditions 1–3 with t = 0. Because t = 0,
each connected component of G has at most 2n/3 vertices, and therefore satisfies
the conditions with n′ = 2n/3, k′ = k, and t′ = (2n/3)2. Therefore, by induction
each component of G has neighbor-depth at most nd(2n/3, k, (2n/3)2). Because
the neighbor-depth of G is the maximum neighbor-depth over its components,
we get that

nd(G) ≤ nd(2n/3, k, (2n/3)2)

≤ 1 + 4k(log3/2(2n/3) · log((2n/3)2 + 1) + log((2n/3)2 + 1))

≤ 1 + 4k((log3/2(n) − 1) · log((2n/3)2 + 1) + log((2n/3)2 + 1))

≤ 1 + 4k(log3/2(n) · log((2n/3)2 + 1)) ≤ 1 + 4k(log3/2(n) · log(n2 + 1)),

New Width Parameters for Independent Set 83

which proves that Eq. (1) holds when t = 0.
We then consider the case when t ≥ 1. Assume that Eq. (1) does not hold

and let G be a counterexample that is minimal under induced subgraphs. Note
that this implies that G is connected, and every proper induced subgraph G′ of
G has neighbor-depth at most 1+4k(log3/2(n) · log(n2 +1)+ log(t+1)). We can
also assume that t = |E(A,A)|.

Now, by Lemma 16 there exists a vertex v ∈ V (G) that neighbor-controls
at least t/2k edges in E(A,A). We will select v as the pivot-vertex. By the
minimality of G, we have that nd(G \ {v}) ≤ 1 + 4k(log3/2(n) · log(n2 + 1) +
log(t + 1)), so it suffices to prove that nd(G \ N [v]) ≤ 1 + 4k(log3/2(n) · log(n2 +
1) + log(t + 1)) − 1. Because v neighbor-controls at least t/2k edges in E(A,A),
the graph G\N [v] satisfies the conditions with n′ = n, k′ = k, and t′ = t− t/2k.
We denote

α =
t′ + 1
t + 1

= 1 − t/2k

t + 1
≤ 1 − t/2k

2t
≤ 1 − 1

4k
.

Now we have that

nd(G) ≤ nd(n, k, t − t/2k) + 1 ≤ 2 + 4k(log3/2(n) · log(n2 + 1) + log(α · (t + 1)))

≤ 2 + 4k(log3/2(n) · log(n2 + 1) + log(α) + log(t + 1))

≤ 2 + 4k log(α) + 4k(log3/2(n) · log(n2 + 1) + log(t + 1))

≤ 2 − 4k · 1

4k
+ 4k(log3/2(n) · log(n2 + 1) + log(t + 1))

≤ 1 + 4k(log3/2(n) · log(n2 + 1) + log(t + 1)),

which proves that Eq. (1) holds when t ≥ 1, and therefore completes the proof.
�

5 Conclusion

We conclude with some open problems. First, as already discussed, it is still open
if independent set can be solved in polynomial-time on graphs of bounded mim-
width, because it is not known how to construct a decomposition of bounded
mim-width if one exists. It would be very interesting to resolve this problem
by either giving an algorithm for computing decompositions of bounded mim-
width, or by defining an alternative width parameter that is more general than
mim-width and allows to solve Independent Set in polynomial-time when the
parameter is bounded.

The class of graphs of polylogarithmic neighbor-depth generalizes several
classes where Independent Set can be solved in (quasi)polynomial time.
Another interesting class where Independent Set can be solved in polynomial-
time and which, to our knowledge, could have polylogarithmic neighbor-depth
is the class of graphs with polynomial number of minimal separators [12]. It
would be interesting to show that this class has polylogarithmic neighbor-depth.
More generally, Korhonen [21] studied a specific model of dynamic programming

84 B. Bergougnoux et al.

algorithms for Independent Set, in particular, tropical circuits for indepen-
dent set, and it appears plausible that all graphs with polynomial size tropical
circuits for independent set could have polylogarithmic neighbor-depth.

References

1. Bergougnoux, B., Dreier, J., Jaffke, L.: A logic-based algorithmic meta-theorem
for mim-width. In: Proceedings of the 2023 Annual ACM-SIAM Symposium on
Discrete Algorithms (SODA), pp. 3282–3304. SIAM (2023). https://doi.org/10.
1137/1.9781611977554.ch125

2. Bergougnoux, B., Korhonen, T., Razgon, I.: New width parameters for indepen-
dent set: one-sided-mim-width and neighbor-depth. CoRR abs/2302.10643 (2023).
https://doi.org/10.48550/arXiv.2302.10643

3. Bonamy, M., et al.: Sparse graphs with bounded induced cycle packing number
have logarithmic treewidth. In: Bansal, N., Nagarajan, V. (eds.) Proceedings of
the 2023 ACM-SIAM Symposium on Discrete Algorithms, SODA 2023, Florence,
Italy, 22–25 January 2023, pp. 3006–3028. SIAM (2023). https://doi.org/10.1137/
1.9781611977554.ch116

4. Brettell, N., Horsfield, J., Munaro, A., Paesani, G., Paulusma, D.: Bounding the
mim-width of hereditary graph classes. J. Graph Theory 99(1), 117–151 (2022).
https://doi.org/10.1002/jgt.22730

5. Brettell, N., Horsfield, J., Munaro, A., Paulusma, D.: List k-colouring Pt-free
graphs: a mim-width perspective. Inf. Process. Lett. 173, 106168 (2022). https://
doi.org/10.1016/j.ipl.2021.106168

6. Bui-Xuan, B., Telle, J.A., Vatshelle, M.: Boolean-width of graphs. Theor. Comput.
Sci. 412(39), 5187–5204 (2011). https://doi.org/10.1016/j.tcs.2011.05.022

7. Courcelle, B., Engelfriet, J., Rozenberg, G.: Handle-rewriting hypergraph gram-
mars. J. Comput. Syst. Sci. 46(2), 218–270 (1993). https://doi.org/10.1016/0022-
0000(93)90004-G

8. Courcelle, B., Makowsky, J.A., Rotics, U.: Linear time solvable optimization prob-
lems on graphs of bounded clique-width. Theory Comput. Syst. 33(2), 125–150
(2000). https://doi.org/10.1007/s002249910009

9. Dallard, C., Milanič, M., Štorgel, K.: Treewidth versus clique number. II. Tree-
independence number. CoRR abs/2111.04543 (2022). https://doi.org/10.48550/
arXiv.2111.04543

10. Diestel, R.: Graph Theory. Graduate Texts in Mathematics, vol. 173, 4th edn.
Springer, Cham (2012)

11. Eiben, E., Ganian, R., Hamm, T., Jaffke, L., Kwon, O.: A unifying framework
for characterizing and computing width measures. In: Braverman, M. (ed.) 13th
Innovations in Theoretical Computer Science Conference, ITCS 2022, Berke-
ley, CA, USA, 31 January–3 February 2022. LIPIcs, vol. 215, pp. 63:1–63:23.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2022). https://doi.org/10.
4230/LIPIcs.ITCS.2022.63

12. Fomin, F.V., Todinca, I., Villanger, Y.: Large induced subgraphs via triangula-
tions and CMSO. SIAM J. Comput. 44(1), 54–87 (2015). https://doi.org/10.1137/
140964801

13. Gartland, P., Lokshtanov, D.: Independent set on Pk-free graphs in quasi-
polynomial time. In: Irani, S. (ed.) 61st IEEE Annual Symposium on Foundations
of Computer Science, FOCS 2020, Durham, NC, USA, 16–19 November 2020, pp.
613–624. IEEE (2020). https://doi.org/10.1109/FOCS46700.2020.00063

https://doi.org/10.1137/1.9781611977554.ch125
https://doi.org/10.1137/1.9781611977554.ch125
https://doi.org/10.48550/arXiv.2302.10643
https://doi.org/10.1137/1.9781611977554.ch116
https://doi.org/10.1137/1.9781611977554.ch116
https://doi.org/10.1002/jgt.22730
https://doi.org/10.1016/j.ipl.2021.106168
https://doi.org/10.1016/j.ipl.2021.106168
https://doi.org/10.1016/j.tcs.2011.05.022
https://doi.org/10.1016/0022-0000(93)90004-G
https://doi.org/10.1016/0022-0000(93)90004-G
https://doi.org/10.1007/s002249910009
https://doi.org/10.48550/arXiv.2111.04543
https://doi.org/10.48550/arXiv.2111.04543
https://doi.org/10.4230/LIPIcs.ITCS.2022.63
https://doi.org/10.4230/LIPIcs.ITCS.2022.63
https://doi.org/10.1137/140964801
https://doi.org/10.1137/140964801
https://doi.org/10.1109/FOCS46700.2020.00063

New Width Parameters for Independent Set 85

14. Gartland, P., Lokshtanov, D., Pilipczuk, M., Pilipczuk, M., Rzazewski, P.: Find-
ing large induced sparse subgraphs in C>t-free graphs in quasipolynomial time.
In: Khuller, S., Williams, V.V. (eds.) STOC 2021: 53rd Annual ACM SIGACT
Symposium on Theory of Computing, Virtual Event, Italy, 21–25 June 2021, pp.
330–341. ACM (2021). https://doi.org/10.1145/3406325.3451034

15. Gavril, F.: Algorithms for minimum coloring, maximum clique, minimum covering
by cliques, and maximum independent set of a chordal graph. SIAM J. Comput.
1(2), 180–187 (1972). https://doi.org/10.1137/0201013

16. Grzesik, A., Klimosová, T., Pilipczuk, M., Pilipczuk, M.: Polynomial-time algo-
rithm for maximum weight independent set on P6-free graphs. ACM Trans. Algo-
rithms 18(1), 4:1–4:57 (2022). https://doi.org/10.1145/3414473

17. Jaffke, L., Kwon, O., Strømme, T.J.F., Telle, J.A.: Mim-width III. Graph powers
and generalized distance domination problems. Theor. Comput. Sci. 796, 216–236
(2019). https://doi.org/10.1016/j.tcs.2019.09.012

18. Jaffke, L., Kwon, O., Telle, J.A.: Mim-width I. Induced path problems. Discret.
Appl. Math. 278, 153–168 (2020). https://doi.org/10.1016/j.dam.2019.06.026

19. Jaffke, L., Kwon, O., Telle, J.A.: Mim-width II. The feedback vertex set problem.
Algorithmica 82(1), 118–145 (2020). https://doi.org/10.1007/s00453-019-00607-3

20. Kang, D.Y., Kwon, O., Strømme, T.J.F., Telle, J.A.: A width parameter useful
for chordal and co-comparability graphs. Theor. Comput. Sci. 704, 1–17 (2017).
https://doi.org/10.1016/j.tcs.2017.09.006

21. Korhonen, T.: Lower bounds on dynamic programming for maximum weight inde-
pendent set. In: 48th International Colloquium on Automata, Languages, and Pro-
gramming, ICALP 2021, Glasgow, Scotland, 12–16 July 2021 (Virtual Conference),
pp. 87:1–87:14 (2021). https://doi.org/10.4230/LIPIcs.ICALP.2021.87

22. Munaro, A., Yang, S.: On algorithmic applications of sim-width and mim-width
of (H1, H2)-free graphs. CoRR abs/2205.15160 (2022). https://doi.org/10.48550/
arXiv.2205.15160

23. Oum, S., Seymour, P.D.: Approximating clique-width and branch-width. J. Comb.
Theory Ser. B 96(4), 514–528 (2006). https://doi.org/10.1016/j.jctb.2005.10.006

24. Razgon, I.: Classification of OBDD size for monotone 2-CNFs. In: Golovach, P.A.,
Zehavi, M. (eds.) 16th International Symposium on Parameterized and Exact Com-
putation, IPEC 2021, Lisbon, Portugal, 8–10 September 2021. LIPIcs, vol. 214, pp.
25:1–25:15. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2021). https://doi.
org/10.4230/LIPIcs.IPEC.2021.25

25. Robertson, N., Seymour, P.D.: Graph minors. III. Planar tree-width. J. Comb.
Theory Ser. B 36(1), 49–64 (1984). https://doi.org/10.1016/0095-8956(84)90013-
3

26. Vatshelle, M.: New width parameters of graphs. Ph.D. thesis, University of Bergen,
Norway (2012). www.hdl.handle.net/1956/6166

27. Yolov, N.: Minor-matching hypertree width. In: Czumaj, A. (ed.) Proceedings of
the Twenty-Ninth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA
2018, New Orleans, LA, USA, 7–10 January 2018, pp. 219–233. SIAM (2018).
https://doi.org/10.1137/1.9781611975031.16

https://doi.org/10.1145/3406325.3451034
https://doi.org/10.1137/0201013
https://doi.org/10.1145/3414473
https://doi.org/10.1016/j.tcs.2019.09.012
https://doi.org/10.1016/j.dam.2019.06.026
https://doi.org/10.1007/s00453-019-00607-3
https://doi.org/10.1016/j.tcs.2017.09.006
https://doi.org/10.4230/LIPIcs.ICALP.2021.87
https://doi.org/10.48550/arXiv.2205.15160
https://doi.org/10.48550/arXiv.2205.15160
https://doi.org/10.1016/j.jctb.2005.10.006
https://doi.org/10.4230/LIPIcs.IPEC.2021.25
https://doi.org/10.4230/LIPIcs.IPEC.2021.25
https://doi.org/10.1016/0095-8956(84)90013-3
https://doi.org/10.1016/0095-8956(84)90013-3
www.hdl.handle.net/1956/6166
https://doi.org/10.1137/1.9781611975031.16

Nonplanar Graph Drawings
with k Vertices per Face

Carla Binucci1(B) , Giuseppe Di Battista2 , Walter Didimo1 ,
Seok-Hee Hong3 , Michael Kaufmann4 , Giuseppe Liotta1 , Pat Morin5 ,

and Alessandra Tappini1

1 Università degli Studi di Perugia, Perugia, Italy
{carla.binucci,walter.didimo,giuseppe.liotta,alessandra.tappini}@unipg.it

2 Università degli Studi Roma Tre, Rome, Italy
giuseppe.dibattista@uniroma3.it

3 University of Sydney, Camperdown, Australia
seokhee.hong@sydney.edu.au

4 University of Tübingen, Tübingen, Germany
mk@informatik.uni-tuebingen.de

5 Carleton University, Ottawa, Canada
morin@scs.carleton.ca

Abstract. The study of nonplanar graph drawings with forbidden or
desired crossing configurations has a long tradition in geometric graph
theory, and received an increasing attention in the last two decades,
under the name of beyond-planar graph drawing. In this context, we intro-
duce a new hierarchy of graph families, called k+-real face graphs. For
any integer k ≥ 1, a graph G is a k+-real face graph if it admits a
drawing Γ in the plane such that the boundary of each face (formed by
vertices, crossings, and edges) contains at least k vertices of G. We give
tight upper bounds on the maximum number of edges of k+-real face
graphs. In particular, we show that 1+-real face and 2+-real face graphs
with n vertices have at most 5n − 10 and 4n − 8 edges, respectively.
Also, if all vertices are constrained to be on the boundary of the external
face, then 1+-real face and 2+-real face graphs have at most 3n − 6 and
2.5n−4 edges, respectively. We also study relationships between k+-real
face graphs and beyond-planar graph families with hereditary property.

Keywords: beyond-planar graph drawing · k+-real face graphs · edge
density

1 Introduction

The study of nonplanar graph drawings with forbidden substructures has a long
tradition in geometric graph theory (see, e.g., [31]). In the last two decades, this

Research started at the Summer Workshop on Graph Drawing (SWGD) 2022, and
partially supported by: (i) MIUR, grant 20174LF3T8 “AHeAD: efficient Algorithms
for HArnessing networked Data”; (ii) Dipartimento di Ingegneria - Università degli
Studi di Perugia, Ricerca di Base, grants RICBA21LG and RICBA22CB.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
D. Paulusma and B. Ries (Eds.): WG 2023, LNCS 14093, pp. 86–100, 2023.
https://doi.org/10.1007/978-3-031-43380-1_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-43380-1_7&domain=pdf
http://orcid.org/0000-0002-5320-9110
http://orcid.org/0000-0003-4224-1550
http://orcid.org/0000-0002-4379-6059
http://orcid.org/0000-0003-1698-3868
http://orcid.org/0000-0001-9186-3538
http://orcid.org/0000-0002-2886-9694
http://orcid.org/0000-0003-0471-4118
http://orcid.org/0000-0001-9192-2067
https://doi.org/10.1007/978-3-031-43380-1_7

Nonplanar Graph Drawings with k Vertices per Face 87

topic, often recognized as beyond-planar graph drawing, has become increasingly
popular. This growth in interest is due in part to human cognitive experiments
aimed at estimating the impact of crossing configurations on graph visualization
readability. See [22,25,27] for recent surveys or books on the subject.

With a widely-accepted terminology, a beyond-planar graph family is a type
of nonplanar graphs that can be drawn in the plane by avoiding some given edge
crossing configurations or by guaranteeing some properties about edge crossings.
For example, for a given positive integer k, the family of k-planar graphs con-
sists of those graphs that can be drawn in the plane with at most k crossings
per edge [28,34], while k-quasi planar graphs are graphs that can be drawn in
the plane without k mutually crossing edges [1,4,6,33,35]. Again, right-angle-
crossing graphs (also known as RAC graphs) are those graphs that admit a
straight-line drawing in which any two crossing edges form angles of 90◦ at their
crossing point [20,21]; generalizations and variants of RAC drawings have also
been proposed (see, e.g., [3,18,24]). Refer to [22] for other notable beyond-planar
graph families. Given a family F of beyond-planar graphs, one of the most rele-
vant problems is establishing the maximum edge density for the elements of F ,
i.e., the maximum number of edges that an n-vertex graph in F can have with
respect to n. This is a classical Turán-type problem with a long tradition in
extremal graph theory [9,15,29] and represents one of the core research topics
in the literature on graph drawing beyond planarity. For example, it is known
that n-vertex 1-planar graphs and 2-planar graphs have at most 4n − 8 edges
and 5n − 10 edges, respectively, and both these bounds are tight, in the sense
that there are graphs in these families that can actually achieve them [34]. A
graph of F that is maximally dense (i.e., whose number of edges is the maximum
possible over its number of vertices) is usually called an optimal graph of F .

A similar research direction investigates how different beyond-planar graph
families relate to each other in terms of inclusion, partly exploiting edge density
results [22]. For instance, it has been shown that the family of simple k-planar
graphs is a subset of (k + 1)-quasi planar graphs for any k ≥ 2 [7].

Contribution. In this paper, we propose a new hierarchy of graph families,
which we call k+-real face graphs, for any positive integer k. Namely, consider
any drawing Γ of a graph G in the plane, where edge crossing points are regarded
as dummy vertices. The drawing Γ divides the plane into connected regions,
called faces: if no two edges of G cross in Γ , the boundary of each face consists
of vertices (and edges) of G; otherwise, the boundaries of some faces contain
dummy vertices. We say that G is a k+-real face graph if it admits a drawing
such that each face boundary contains at least k real vertices, i.e., k vertices
of G (k+ stands for “k or more”). By definition, for any k ≥ 1, the family of
(k + 1)+-real face graphs is included in the family of k+-real face graphs. From
a theoretical perspective, studying k+-real face graphs generalizes to nonplanar
graphs the study of planar graphs that admit a crossing-free drawing whose
face sizes are above a desired threshold [5,23,30]. Also, finding k+-real face
graphs can be regarded as a generalization to nonplanar graphs of the classical
guarding planar graph problem [16], where the vertices that cover the face set

88 C. Binucci et al.

Table 1. Summary of density results in this paper; n denotes the number of vertices.

Graph Family Crossings (χ ≤) Edges (m ≤) Ref.

k+-real face graphs (k ≥ 3) 2−k
k · m + n − 2 k

k−2 (n − 2) Lemma 1, Theorem 1

2+-real face graphs n − 2 4n − 8 Lemma 1, Theorem 2

1+-real face graphs m + n − 2 5n − 10 Lemma 1, Theorem 3

outer k+-real face graphs (k ≥ 3) 2−k
k · m + k−1

k · n − 1 k−1
k−2 · n − k

k−2 Lemma 2, Theorem 4

outer 2+-real face graphs 1
2n − 1 2.5n − 4 Lemma 2, Theorem 5

outer 1+-real face graphs m − 1 3n − 6 Lemma 2, Theorem 6

are the (real) vertices of G. From a more practical perspective, the interest in
k+-real face graphs is motivated by the intuition that faces that mostly consist
of crossing points could make the graph layout less readable; indeed, the number
of real vertices per face can be regarded as a measure of how much the drawing
is far from being planar; in particular, one would avoid, when possible, faces
formed only by crossing points. Our results can be summarized as follows:

– We provide tight upper bounds on the edge density of k+-real face graphs,
for all values of k, both in the general case (Sect. 3) and in the constrained
scenario in which all vertices of the graph are forced to stay on the external
face (Sect. 4); see Table 1 for a summary of our results. The constrained sce-
nario can be regarded as a generalization of the study of outerplanar graphs
to our graphs, which we call outer k+-real face graphs. We note that similar
constraints have been previously studied in other families of beyond-planar
graphs (see, e.g., [10,12,13,19,26]).

– We establish inclusion relationships between k+-real face graphs and families
of beyond-planar graphs with hereditary property, such as h-planar and h-
quasi planar graphs (Sect. 5). In particular, we show that, for any positive
integer k, the family of k+-real face graphs is not included in any beyond-
planar graph family with hereditary property. However, this is not always the
case if we restrict our attention to optimal graphs.

For space reasons, some proofs have been omitted or sketched.

2 Basic Definitions

Let G be a graph. We assume that G is connected and simple, meaning that it
contains neither multiple edges nor self-loops (if G is not connected we can treat
each connected component of G independently). We denote by V (G) and E(G)
the set of vertices and the set of edges of G, respectively. A drawing Γ of G maps
each vertex v ∈ V (G) to a distinct point in the plane and each edge uv ∈ E(G)
to a simple Jordan arc between the points corresponding to u and v. We assume
that Γ is a simple drawing, that is: (i) adjacent edges do not intersect, except at
their common endpoint; (ii) two independent (i.e., non-adjacent) edges intersect
at most in one of their interior points, called a crossing point ; and (iii) no three
edges intersect at a common crossing point.

Nonplanar Graph Drawings with k Vertices per Face 89

Fig. 1. (a) A nonplanar drawing Γ of a graph G with 5 crossings. White circles are
the real-vertices of Γ (i.e., the vertices of G) and black circles are the crossing-vertices
of Γ . Graph G has n = 10 vertices and m = 14 edges. Drawing Γ has ν = 15 vertices,
μ = 24 edges, and ϕ = 11 faces. Face f0 is the external face. The shaded face is a 0-real
face. Face f2 is a 2-real triangle and f3 is a 2-real quadrilateral. The boundary of f1 is
not a simple cycle as vertex v is traversed twice while walking along its boundary. It
follows that degr

Γ (f1) = 4, degc
Γ (f1) = 3, and degΓ (f1) = 7. (b) A 2+-real face drawing

Γ ′ of G, obtained from the previous one by rerouting two edges of G (the thicker ones).

Refer to Fig. 1 for an illustration of the next definitions. Let Γ be a drawing
of G. A vertex of Γ is either a point corresponding to a vertex of G, called a
real-vertex, or a point corresponding to a crossing point, called a crossing-vertex.
Observe that a crossing-vertex has degree 4. We remark that in the literature a
plane graph obtained by replacing crossing points with dummy vertices is often
referred to as a planarization [17].

We denote by V (Γ) the set of vertices of Γ . An edge of Γ is a curve con-
necting two vertices of Γ ; an edge of Γ whose endpoints are both real-vertices
coincides with an edge of G. We denote by E(Γ) the set of edges of Γ . Drawing
Γ subdivides the plane into topologically connected regions, called faces. The
boundary of each face consists of a circular sequence of vertices and edges of Γ .
We denote by F (Γ) the set of faces of Γ . Exactly one face in F (Γ) corresponds
to an infinite region of the plane, called the external face (or outer face) of Γ ;
the other faces are the internal faces of Γ . When the boundary of a face f of Γ
contains a vertex v (or an edge e), we also say that f contains v (or e).

From now on, we denote by n = |V (G)| and m = |E(G)| the number of
vertices and the number of edges of G, respectively. For a drawing Γ of G, we
denote by ν = |V (Γ)|, μ = |E(Γ)|, and ϕ = |F (Γ)| the number of vertices, edges,
and faces of Γ , respectively. Also, we denote by χ = |V (Γ) \ V (G)| = ν − n the
number of crossing-vertices of Γ .

– Degree of vertices and faces. For a vertex v ∈ V (G), denote by degG(v)
the degree of v in G, i.e., the number of edges incident to v. Analogously,
for a vertex v ∈ V (Γ), denote by degΓ (v) the degree of v in Γ . For a face
f ∈ F (Γ), denote by degΓ (f) the degree of f , i.e., the number of times
we traverse vertices (either real- or crossing-vertices) while walking on the
boundary of f clockwise. Each vertex contributes to degΓ (f) the number of
times we traverse it (possibly more than once if the boundary of f is not a
simple cycle). Also, denote by degr

Γ (f) the real-vertex degree of f , i.e., the

90 C. Binucci et al.

number of times we traverse a real-vertex of Γ while walking on the boundary
of f clockwise. Again, each real-vertex contributes to degr

Γ (f) the number of
times we traverse it. Finally, degc

Γ (f) denotes the number of times we traverse
a crossing-vertex of Γ while walking on the boundary of f clockwise. Clearly,
degΓ (f) = degr

Γ (f) + degc
Γ (f).

– k+-real face drawings and graphs. Given a graph G and a positive inte-
ger k, a k+-real face drawing of G is a drawing Γ of G such that the boundary
of each face of Γ has at least k real-vertices. If G admits a k+-real face draw-
ing, we say that G is a k+-real face graph. An outer k+-real face drawing of
G is a k+-real face drawing Γ of G such that all its real-vertices are on the
boundary of the outer face. If G admits an outer k+-real face drawing we say
that G is an outer k+-real face graph. We say that a face f ∈ F (Γ) is an
h-real face, where h is a non-negative integer, if degr

Γ (f) = h. An h-real face
of degree d is called an h-real d-gon. An h-real 3-gon is also called an h-real
triangle, and an h-real 4-gon is also called an h-real quadrilateral. We say that
an edge e = uv ∈ E(Γ) is an h-real edge (h ∈ {0, 1, 2}) if |{u, v}∩V (G)| = h,
i.e., e contains h real-vertices.

3 Density of k+-Real Face Graphs

In this section, we prove tight upper bounds on the number of edges that a
k+-real face graph can have. We start by proving the following upper bound on
the number χ of crossing-vertices in a k+-real face drawing.

Lemma 1. Let Γ be a k+-real face drawing of a graph G. We have:

χ ≤ 2 − k

k
· m + n − 2 (1)

Proof. By hypothesis, each face f ∈ F (Γ) contains at least k real-vertices (i.e.,
at least k vertices of G). Since each real-vertex v ∈ V (G) can belong to at
most degG(v) faces of Γ and since

∑
v∈V (G) degG(v) = 2m, we have that the

number ϕ of faces of Γ is such that ϕ ≤ 2m
k . Also, the number of edges μ of

Γ is such that μ = m + 2χ. Hence, by Euler’s formula applied to Γ , we have
ϕ = μ + 2 − ν = m + 2χ + 2 − n − χ, and hence ϕ = m + χ + 2 − n. It follows
that χ = ϕ − m + n − 2 ≤ 2m

k − m + n − 2 = 2−k
k · m + n − 2. �

3.1 k+-Real Face Graphs, with k ≥ 2

We first consider the case k ≥ 3 and then the case k = 2.

Theorem 1. Let k be a positive integer such that k ≥ 3. If G is a k+-real face
graph with n vertices and m edges, then m ≤ k

k−2 (n−2), and this bound is tight.
Also, the optimal n-vertex k+-real face drawings are exactly the n-vertex planar
drawings in which each face is a simple k-gon.

Nonplanar Graph Drawings with k Vertices per Face 91

Proof (Sketch). Let Γ be any k+-real face drawing of G. When k ≥ 3, the term
2−k

k is negative and, equivalently, k
k−2 is positive. Since the number χ of crossing-

vertices of Γ cannot be negative, i.e., χ ≥ 0, by Eq. (1) of Lemma 1 we have that
the number of edges m must satisfy the inequality m ≤ k

k−2 (n − 2).
For the tightness of the bound, just consider the family of planar embedded

graphs such that each face has k vertices. Any n-vertex graph in this family has
m = k

k−2 (n−2) edges. Also, one can prove that every k+-real face drawing with
k

k−2 (n − 2) edges is planar and all its faces have degree k. �

Theorem 2. If G is a 2+-real face graph with n vertices and m edges, then
m ≤ 4n − 8, and this bound is tight. Also, the optimal n-vertex 2+-real face
graphs are exactly the optimal 1-planar graphs.

Proof (Sketch). Let Γ be any 2+-real face drawing of G. By Eq. (1) of Lemma
1, with k = 2, we get χ ≤ n − 2. Since μ ≤ 3ν − 6, and since μ = m + 2χ and
ν = n + χ, we have m ≤ χ + 3n − 6, and therefore m ≤ n − 2 + 3n − 6 = 4n − 8.
This proves that 4n − 8 is an upper bound on the number of edges of G.

About the tightness of the bound, consider the family of 1-planar graphs,
i.e., graphs that admit a drawing Γ with at most one crossing per edge. Each
face of Γ has at least two real-vertices (see also [36]), thus Γ is a 2+-real face
drawing. In particular, for n = 8 and for every n ≥ 12, there exists an optimal
1-planar graph with n vertices and 4n − 8 edges [14,34]. Also, it can be proven
that every optimal 2+-real face drawing Γ of G is also a 1-planar drawing of G.
�

3.2 1+-Real Face Graphs

To prove an upper bound on the number of edges in 1+-real face graphs, we use
discharging techniques. See for example [2,4,24] for other papers that use similar
approaches. Following [4], we consider a charging function ch : F (Γ) → R such
that, for each f ∈ F (Γ), we set:

ch(f) = degΓ (f) + degr
Γ (f) − 4 = 2degr

Γ (f) + degc
Γ (f) − 4 (2)

The value ch(f) is called the initial charge of f . By using Euler’s formula, it is
not difficult to prove that the following relationship holds (for details, see [4]):

∑

f∈F (Γ)

ch(f) = 4n − 8 (3)

The idea of a discharging technique is to derive from the initial charging function
ch a new function ch′ that satisfies the next two properties (see also [4]):
C1. ch′(f) ≥ α degr

Γ (f), for some real number α > 0;
C2.

∑
f∈F (Γ) ch′(f) ≤ ∑

f∈F (Γ) ch(f)
If α > 0 is a real number for which a charging function ch′ satisfies C1
and C2, by Eq. (3) we have: 4n − 8 =

∑
f∈F (Γ) ch(f) ≥ ∑

f∈F (Γ) ch′(f) ≥

92 C. Binucci et al.

α
∑

f∈F (Γ) degr
Γ (f). Also, since

∑
f∈F (Γ) degr

Γ (f) =
∑

v∈V (G) degG(v) = 2m,
we get the following:

m ≤ 2
α

(n − 2) (4)

Thus, Eq. (4) can be exploited to prove upper bounds on the edge-density of
a graph for specific values of α, whenever we find a charging function ch′ that
satisfies C1 and C2. We are now ready to present the main result of this section.

Theorem 3. Let G be a 1+-real face graph with n vertices and m edges. We
have that m ≤ 5n − 10, and this bound is tight.

Proof (Sketch). Let Γ be a 1+-real face drawing of G. We first augment Γ and
G as follows. If some face f of Γ contains a pair u and v of real-vertices but
does not contain an edge uv on its boundary, then we augment Γ (and G) with
an edge uv drawn in the interior of f , in such a way that it does not create any
crossing. We then repeat this process until every pair of real-vertices in each face
f is connected by an edge on the boundary of f . Note that, this augmentation is
not unique and may introduce multiple edges in G. However, it does not create
any 0-real faces and any faces of degree two in the drawing; also, the drawing
remains a 1+-real face drawing. If Γ ′ denotes the drawing resulting from the
augmentation on Γ , for each face f ∈ F (Γ ′) we have that: (a) degΓ ′(f) ≥ 3;
and (b) 3 ≥ degr

Γ ′(f) ≥ 1. Also, denoted by G′ the graph resulting from the
augmentation on G, we have V (G′) = V (G) and E(G) ⊆ E(G′); hence, an
upper bound on the number of edges m′ of G′ is also an upper bound on the
number of edges m of G.

Suppose given on Γ ′ the initial charging function ch : F (Γ ′) → R of Eq. (2).
If we are able to define a charging function ch′ : F (Γ ′) → R that satisfies C1
and C2 for α = 2

5 , then by Eq. (4) we get m ≤ m′ ≤ 5n − 10, and we are done.
We show how to define ch′. For every face f ∈ Γ ′, we initially set ch′(f) =

ch(f) = 2 degr
Γ ′(f) + degc

Γ ′(f) − 4. With this choice and with α = 2
5 , function

ch′ satisfies C2. Also, C1 becomes 2 degr
Γ ′(f) + degc

Γ ′ −4 ≥ 2
5 degr

Γ ′(f), that is,
8 degr

Γ ′(f) + 5 degc
Γ ′(f) ≥ 20. Hence, since degΓ ′(f) ≥ 3, C1 is always satisfied

for each face f such that either degr
Γ ′(f) ≥ 2, or degr

Γ ′(f) = 1 and degc
Γ ′(f) ≥ 3.

It follows that, the only faces that do not satisfy C1 are the 1-real triangles, i.e.,
each face t for which degr

Γ ′(t) = 1 and degc
Γ ′(t) = 2. Indeed, for a 1-real triangle

t the initial charge equals 0, thus we need to suitably increase the value of ch′(t).
For each 1-real triangle t, let f be the face incident to the unique 0-real edge

of t; see Fig. 2a. Observe that degΓ ′(f) ≥ 4. Indeed, if it were degΓ ′(f) = 3 then
G would contain two parallel edges (which is impossible because G is simple)
or there would be two adjacent edges of G that cross in Γ (which is impossible
because Γ is simple). Also, since Γ ′ is a 1+-real face drawing, we have degr

Γ ′(f) ≥
1. We apply a discharging operation, by moving a fraction 2

5 of charge from f
to t across their shared 0-real edge. In this way, we set ch′(t) = 2

5 and reduce
ch′(f) by 2

5 . The total charge of Γ ′ determined by ch′ does not change (hence
C2 is still satisfied) but now ch′(t) satisfies C1.

Since for a face f the reduction of ch′(f) by 2
5 occurs across a 0-real edge of f ,

the number of times this happens is at most degc
Γ ′(f) − 1. Therefore, after we

Nonplanar Graph Drawings with k Vertices per Face 93

Fig. 2. Illustration for the proof of Theorem 3: (a) A 1-real triangle t and an adjacent
face f that moves a charge of 2

5
towards t across a 0-real edge. (b) A 1-real quadrilateral

f that moves two charges of 2
5

towards two adjacent 1-real triangles t1 and t2; face f
recovers a charge of 1

5
from a 2-real triangle f ′ that shares a vertex x with f , t1, and t2

have applied a discharging operation for each 1-real triangle, the charge ch′(f)
of each face f of degree at least four is such that:

ch′(f) ≥ 2 degr
Γ ′(f)+degc

Γ ′(f)−4−2
5

degc
Γ ′(f)+

2
5

= 2degr
Γ ′(f)+

3
5

degc
Γ ′(f)−18

5

Hence, f satisfies C1 (i.e., ch′(f) ≥ 2
5 degr

Γ ′(f)) if this relation holds:

8 degr
Γ ′(f) + 3 degc

Γ ′(f) ≥ 18 (5)

It can be easily verified that the above relation is always satisfied for a face f
of degree at least four, except when f is a 1-real quadrilateral (which consists
of one real-vertex and 3 crossing-vertices). Indeed, if f is a 1-real quadrilateral
it could have moved a fraction 2

5 of charge towards a 1-real triangle t1 and a
fraction 2

5 of charge towards another 1-real triangle t2; see Fig. 2b. Both t1 and t2
share a crossing-vertex x with f and with another face f ′. In this case ch′(f) =
ch(f) − 4

5 = 1 − 4
5 = 1

5 = 2
5 degr

Γ ′(f) − 1
5 , thus f has a deficit of 1

5 . Observe that
the boundary of f ′ contains two real-vertices adjacent to x, which are connected
by an edge due to the edge augmentation initially performed on Γ . Hence, f ′ is a
2-real triangle and at this point we have ch′(f ′) = ch(f ′) = 1 = 2

5 degr
Γ ′(f ′) + 1

5 .
It follows that ch′(f ′) has a surplus of 1

5 , and we can move this surplus from f ′

to f , i.e., we increase ch′(f) by 1
5 and decrease ch′(f ′) by 1

5 . Since this reduction
of ch(f ′) can happen at most once for f ′, both f and f ′ satisfy C1 at the end of
this operation. This completes the proof that m ≤ 5n − 10.

As for the tightness of the bound, consider any n-vertex optimal 2-planar
drawing Γ . Such a drawing has 5n − 10 edges and it is composed of a planar
pentangulation (i.e., every face is a simple cycle of degree five) plus five crossing
edges inside each pentagon [11]. A 1+-real face drawing with n′ > n vertices and
5n′ − 10 edges is obtained from Γ by adding a vertex inside each pentagon and
connecting it to all vertices of the pentagon (see Fig. 3 for an illustration). �

94 C. Binucci et al.

Fig. 3. (a) Pentagonal face of an optimal 2-planar drawing. (b) Augmenting each pen-
tagonal face with a vertex and five edges (in gray) to make the drawing 1+-real face.

4 Density of Outer k+-Real Face Graphs

In this section, we provide tight upper bounds on the maximum number of edges
that an outer k+-real face graph can have, depending on k. For an outer k+-real
face drawing Γ of a graph G, we denote by Fint(Γ) ⊂ F (Γ) the subset of internal
faces of Γ . Additionally, we denote by ϕint the number of internal faces of Γ ,
that is ϕint = |Fint(Γ)|. Notice that ϕ = ϕint + 1. As for k+-real face graphs,
we first give an upper bound on the number χ of crossing-vertices in an outer
k+-real face drawing (the proof relies on similar arguments).

Fig. 4. (a) An edge-maximal outer 1+-real face drawing of a graph with 7 vertices
and 14 edges. Face f1 is a 2-real 4-gon; f2, . . . , f7 are 2-real triangles; f8 and f9 are
1-real quadrilaterals; t1, . . . , t5 are 1-real triangles. (b) Arrows show a mapping of the
1-real triangles that satisfies Property (c) of Lemma 3. (c) Another example of an edge-
maximal outer 1+-real face drawing with 8 vertices and 16 edges. Face f is a 3-real
triangle. The shaded faces are the 1-real triangles; a mapping of these triangles that
satisfies Property (c) of Lemma 3 is shown.

Lemma 2. Let G be a graph and let k be a positive integer. If Γ is an outer
k+-real face drawing of G then the following holds:

χ ≤ 2 − k

k
· m +

k − 1
k

· n − 1 (6)

Nonplanar Graph Drawings with k Vertices per Face 95

4.1 Outer k+-Real Face Graphs, with k ≥ 2

We first consider the case k ≥ 3 and then the case k = 2. The proof of the next
theorem is similar to the proof of Theorem 1 and it has been omitted.

Theorem 4. Let k be a positive integer such that k ≥ 3. If G is an outer k+-real
face graph with n vertices and m edges, then m ≤ k−1

k−2 · n − k
k−2 , and this bound

is tight. Also, the optimal n-vertex outer k+-real face drawings are exactly the
n-vertex outerplanar drawings in which each internal face is a simple k-gon.

Theorem 5. Let G be an outer 2+-real face graph with n vertices and m edges.
We have that m ≤ 2.5n − 4, and this bound is tight. Also, the n-vertex optimal
outer 2+-real face graphs are exactly the optimal outer-1-planar graphs.

Proof (Sketch). Let Γ be any outer 2+-real face drawing of G. By Lemma 2,
with k = 2, we get χ ≤ n

2 − 1. If we remove from Γ exactly one edge of G
per crossing-vertex, we get an outerplanar graph with m′ = m − χ edges and n
vertices. Since a maximal outerplanar graph with n vertices has at most 2n − 3
edges, we have m − χ ≤ 2n − 3, and therefore m ≤ 2n − 3 + χ ≤ 2n − 3 + n

2 − 1,
that is, m ≤ 5

2n − 4 = 2.5n − 4. This proves that 2.5n − 4 is an upper bound on
the number of edges of G. Also, it can be proven that the bound is tight and that
every optimal outer 2+-real face drawing Γ is also 1-planar; since optimal outer-
1-planar graphs have at most 2.5n − 4 edges [8,19], this implies that optimal
outer 2+-real face graphs are exactly the optimal outer-1-planar graphs. �

4.2 Outer 1+-Real Face Graphs

As for 1+-real face graphs, we use discharging techniques to prove an upper
bound on the number of edges of outer 1+-real face graphs. An outer 1+-real
face Γ is edge-maximal if the drawing obtained by adding to Γ any new edge
between two of its real-vertices is no longer outer 1+-real face. An example of
edge-maximal outer 1+-real face drawing is illustrated in Fig. 4a; as Theorem 6
will show, this graph is however not optimal, as for any n ≥ 3 there exist outer
1+-real face graphs that contain 3n − 6 edges. Another edge-maximal outer 1+-
real face drawing that is not optimal is shown in Fig. 4c.

We now present a key result about the structure of edge-maximal outer 1+-
real face drawings.

Lemma 3. Let G be an n-vertex outer 1+-real face graph, with n ≥ 4, and let
Γ be an edge-maximal outer 1+-real face drawing of G. The following properties
hold:

a) The boundary of the external face is a simple cycle that consists of exactly
n real-vertices and no crossing-vertices.

b) Each internal face of Γ is either a 3-real triangle, or a 2-real d-gon (d ≥ 3),
or a 1-real triangle, or a 1-real quadrilateral.

96 C. Binucci et al.

c) We can map each 1-real triangle to exactly one face of Γ that is either a
2-real d-gon, for d ≥ 4, or a 1-real quadrilateral, in such a way that: (i) at
most (d − 3) 1-real triangles are mapped to the same 2-real d-gon; and (ii)
at most two 1-real triangles are mapped to the same 1-real quadrilateral.

d) The number of 3-real triangles plus the number of 2-real d-gons is exactly
n, and the number of 1-real quadrilaterals is at most n − 4.

Theorem 6. If G is an outer 1+-real face graph with n vertices and m edges,
then m ≤ 3n − 6, and this bound is tight.

Proof (Sketch). To prove the upper bound, it is enough to concentrate on edge-
maximal outer 1+-real face drawings of G. Let Γ be such a drawing. If G has
three vertices, then Γ is a 3-cycle and the statement trivially holds. Assume that
n ≥ 4. We exploit a discharging technique as for Theorem 3. In this case, we
want to show the existence of a charging function ch′ that satisfies C1 and C2
for α = 2

3 . If such a function exists then, by Eq. (4), we get m ≤ 3n−6. For each
face f ∈ F (Γ), initially set ch′(f) = ch(f), where ch(f) is the charging function
of Eq. (2). Denote by f0 the external face of Γ . Based on Properties (a) and (b)
of Lemma 3, degΓ (f0) = degr

Γ (f0) = n and each internal face of Γ is either a
3-real triangle, or a 2-real d-gon, or a 1-real triangle, or a 1-real quadrilateral.
At this point, we have:

– ch′(f0) = 2 degr
Γ (f0) + degc

Γ (f0) − 4 = 2n − 4; the charge excess of f0 with
respect to 2

3 degr
Γ (f0) is 4

3n − 4;
– If f is a 3-real triangle, then ch′(f) = 2; it has no charge excess/deficit;
– If f is a 2-real d-gon, ch′(f) = d−2; hence, if d = 3 (i.e., f is a 2-real triangle)

f has a charge deficit of 1
3 , while if d ≥ 4 it has an excess of d − 10

3 ;
– If f is a 1-real triangle then ch(f) = 0 and f has a charge deficit of 2

3 ;
– If f is a 1-real quadrilateral then ch(f) = 1 and f has a charge excess of 1

3 .

We modify ch′ by moving charges from faces with an excess to faces with a
deficit, in such a way that C1 is satisfied. Based on the above analysis, the only
faces with a deficit are the 2-real triangles and the 1-real triangles. We map each
1-real triangle to either a 2-real d-gon (with d ≥ 4) or to a 1-real quadrilateral, so
that the mapping satisfies Property (c) of Lemma 3. This mapping tells for each
face with a deficit from which face it will receive charges; see Fig. 4. Property (d)
of Lemma 3 is used to prove that the new charging function satisfies C1. �

5 Inclusion Relationships

In this section, we study inclusion relationships between the families of k+-real
face graphs and other beyond-planar graph families. As already observed, k+-
real face graphs form a hierarchy of families, that is, for each integer k ≥ 1, the
family of (k + 1)+-real face graphs is properly included in the family of k+-real
face graphs.

Nonplanar Graph Drawings with k Vertices per Face 97

1+-real face
2+-real face
1-planar

optimal 1-planar =
optimal 2+-real face

Fig. 5. Inclusion relationships between k+-
real face graphs and k-planar graphs, for k =
1, 2.

Note that the hierarchy of k-
planar graphs has the opposite
behavior, i.e., each k-planar graph is
also a (k + 1)-planar graph (for any
k ≥ 1). The results of Sect. 3 provide
insights about inclusion relationships
between the hierarchies of k-planar
graphs and of k+-real face graphs, for
k ∈ {1, 2}. Namely, Theorem 2 shows
that 1-planar graphs are 2+-real face
graphs and that the families of optimal 1-planar graphs and optimal 2+-real face
graphs coincide. These relationships are summarized in Fig. 5.

We now show a more general result about the relationship between k+-real
face graphs and any other beyond-planar graph family with hereditary property.
This result (Theorem 7) excludes that, for any fixed positive integer k, there
exists some beyond-planar graph families with hereditary property that contain
all k+-real face graphs. In the following, we formalize this concept.

Let F be a family of beyond-planar graphs. We say that F has the hereditary
property if any subgraph of a graph in F also belongs to F . Most of the beyond-
planar graph families studied in the literature (see, e.g., [22]) have the hereditary
property. On the contrary, the family of k+-real face graphs (for any k ≥ 1) does
not necessarily satisfy this property, as removing vertices from a k+-real face
graph makes it impossible in some cases to guarantee at least k real-vertices per
face; for example, if we remove the central vertex in the drawing of Fig. 3b, the
drawing is no longer a 1+-real face drawing. Nonetheless, it is immediate to see
that if we remove from a k+-real face graph any subset of edges but no vertices,
the resulting subgraph is still a k+-real face graph.

Lemma 4. For any integer k > 0 and for any family F of beyond-planar graphs
with hereditary property, there exists a k+-real face graph not belonging to F .

Proof. Let G be any (connected) graph such that G /∈ F . Consider any drawing
Γ of G. If Γ is already a k+-real face drawing, we are done. Otherwise, we
augment Γ into a new drawing by suitably adding new vertices and edges; refer
to Fig. 6 for an example. We first consider the set of 0-real faces of Γ (i.e., faces
whose boundary contains only crossings). If this set is not empty, there must be
a 0-real face f that is adjacent to a face f ′ containing a real-vertex v. Add to
Γ a new real-vertex u in the interior of f and connect u to v with an edge that
crosses exactly one edge shared by f and f ′. In this way, the set of 0-real faces
is decreased by one element. Iterate this procedure until there is no more 0-real
faces in the drawing. Now, consider every face f of Γ that contains 1 ≤ h < k
real-vertices (if any). Arbitrarily select a real-vertex v of f , and attach to v a
chain of k − h vertices in the interior of f . This creates a new face f ′ in place of
f , which contains k real-vertices. Once all those faces have been processed, the
underlying graph G′ of the resulting drawing is a (connected) k+-real face graph.
Also, since G ⊆ G′ and F has the hereditary property, we have that G′ /∈ F . �

98 C. Binucci et al.

Fig. 6. (a) An initial drawing of a graph that is not 1-planar; it has one 0-real face
(shaded). (b) An augmentation that removes the 0-real face; the new elements are red.
(c) A further augmentation that makes the drawing 2+-real face. (Color figure online)

Lemma 4 immediately implies the following.

Theorem 7. For any positive integer k, the family of k+-real face graphs is not
included in any beyond-planar graph family with hereditary property.

A consequence of Theorem 7 is that, for any integer k > 0, the family K of
k+-real face graphs is incomparable with any beyond-planar graph family F with
hereditary property whose edge density is higher than the edge density of K. For
instance, each family of k+-real face graphs is incomparable with the families of
h-planar graphs for h ≥ 3. Indeed, Theorem 7 proves the existence of a 1+-real
face graph that is not h-planar; on the other hand, since the maximum number
of edges of an h-planar graph, for h ≥ 3, can be higher than 5n−10 [32,34], there
exist h-planar graphs that are not 1+-real face graphs. Similarly, each family of
k+-real face graphs is incomparable with the family of h-quasi planar graphs,
for every h ≥ 3, as 3-quasi planar graphs can have up to 6.5n − 20 edges [1].

6 Open Problems

We conclude with two open research questions.

OP(1) The maximum edge density of 2-planar graphs is the same as the one
of 1+-real face graphs, and Theorem 6 implies that there are 1+-real
face graphs that are not 2-planar. An open question is whether there
exist 2-planar graphs that are not 1+-real face graphs. Note that, every
2-planar drawing of an optimal 2-planar graph G is not 1+-real face, as
it contains 0-real faces. However, one cannot exclude in principle that
G admits a 1+-real face drawing that is not 2-planar.

OP(2) Another interesting research direction is to establish the complexity of
testing whether a graph is k+-real face or outer k+-real face for a given k.
In particular, are these problems NP-hard?

Acknowledgments. We thank Vida Dujmović for valuable discussion.

Nonplanar Graph Drawings with k Vertices per Face 99

References

1. Ackerman, E.: On the maximum number of edges in topological graphs with no four
pairwise crossing edges. Discret. Comput. Geom. 41(3), 365–375 (2009). https://
doi.org/10.1007/s00454-009-9143-9

2. Ackerman, E.: On topological graphs with at most four crossings per edge. Comput.
Geom. 85 (2019). https://doi.org/10.1016/j.comgeo.2019.101574

3. Ackerman, E., Fulek, R., Tóth, C.D.: On the size of graphs that admit polyline
drawings with few bends and crossing angles. In: Brandes, U., Cornelsen, S. (eds.)
GD 2010. LNCS, vol. 6502, pp. 1–12. Springer, Heidelberg (2011). https://doi.org/
10.1007/978-3-642-18469-7 1

4. Ackerman, E., Tardos, G.: On the maximum number of edges in quasi-planar
graphs. J. Comb. Theory Ser. A 114(3), 563–571 (2007). https://doi.org/10.1016/
j.jcta.2006.08.002

5. Ali, P., Dankelmann, P., Mukwembi, S.: The radius of k-connected planar graphs
with bounded faces. Discret. Math. 312(24), 3636–3642 (2012). https://doi.org/
10.1016/j.disc.2012.08.019

6. Alon, N., Erdős, P.: Disjoint edges in geometric graphs. Discret. Comput. Geom.
4, 287–290 (1989). https://doi.org/10.1007/BF02187731

7. Angelini, P., et al.: Simple k-planar graphs are simple (k+1)-quasiplanar. J. Comb.
Theory Ser. B 142, 1–35 (2020). https://doi.org/10.1016/j.jctb.2019.08.006

8. Auer, C., et al.: Outer 1-planar graphs. Algorithmica 74(4), 1293–1320 (2016).
https://doi.org/10.1007/s00453-015-0002-1

9. Avital, S., Hanani, H.: Graphs. Gilyonot Lematematika 3, 2–8 (1966)
10. Bekos, M.A., Cornelsen, S., Grilli, L., Hong, S., Kaufmann, M.: On the recognition

of fan-planar and maximal outer-fan-planar graphs. Algorithmica 79(2), 401–427
(2017). https://doi.org/10.1007/s00453-016-0200-5

11. Bekos, M.A., Kaufmann, M., Raftopoulou, C.N.: On optimal 2- and 3-planar
graphs. In: SoCG. LIPIcs, vol. 77, pp. 16:1–16:16. Schloss Dagstuhl - Leibniz-
Zentrum für Informatik (2017). https://doi.org/10.4230/LIPIcs.SoCG.2017.16

12. Binucci, C., et al.: Algorithms and characterizations for 2-layer fan-planarity:
from caterpillar to stegosaurus. J. Graph Algorithms Appl. 21(1), 81–102 (2017).
https://doi.org/10.7155/jgaa.00398

13. Binucci, C., et al.: Fan-planarity: properties and complexity. Theor. Comput. Sci.
589, 76–86 (2015). https://doi.org/10.1016/j.tcs.2015.04.020

14. Bodendiek, R., Schumacher, H., Wagner, K.: Über 1-optimale graphen. Math.
Nachr. 117, 323–339 (1984)

15. Bollobás, B.: Extremal Graph Theory. Academic Press, New York (1978)
16. Bose, P., Kirkpatrick, D.G., Li, Z.: Worst-case-optimal algorithms for guarding

planar graphs and polyhedral surfaces. Comput. Geom. 26(3), 209–219 (2003).
https://doi.org/10.1016/S0925-7721(03)00027-0

17. Di Battista, G., Eades, P., Tamassia, R., Tollis, I.G.: Graph Drawing: Algorithms
for the Visualization of Graphs. Prentice-Hall, Hoboken (1999)

18. Di Giacomo, E., Didimo, W., Liotta, G., Meijer, H.: Area, curve complexity, and
crossing resolution of non-planar graph drawings. Theory Comput. Syst. 49(3),
565–575 (2011). https://doi.org/10.1007/s00224-010-9275-6

19. Didimo, W.: Density of straight-line 1-planar graph drawings. Inf. Process. Lett.
113(7), 236–240 (2013). https://doi.org/10.1016/j.ipl.2013.01.013

20. Didimo, W.: Right angle crossing drawings of graphs. In: Hong, S.-H., Tokuyama,
T. (eds.) Beyond Planar Graphs, pp. 149–169. Springer, Singapore (2020). https://
doi.org/10.1007/978-981-15-6533-5 9

https://doi.org/10.1007/s00454-009-9143-9
https://doi.org/10.1007/s00454-009-9143-9
https://doi.org/10.1016/j.comgeo.2019.101574
https://doi.org/10.1007/978-3-642-18469-7_1
https://doi.org/10.1007/978-3-642-18469-7_1
https://doi.org/10.1016/j.jcta.2006.08.002
https://doi.org/10.1016/j.jcta.2006.08.002
https://doi.org/10.1016/j.disc.2012.08.019
https://doi.org/10.1016/j.disc.2012.08.019
https://doi.org/10.1007/BF02187731
https://doi.org/10.1016/j.jctb.2019.08.006
https://doi.org/10.1007/s00453-015-0002-1
https://doi.org/10.1007/s00453-016-0200-5
https://doi.org/10.4230/LIPIcs.SoCG.2017.16
https://doi.org/10.7155/jgaa.00398
https://doi.org/10.1016/j.tcs.2015.04.020
https://doi.org/10.1016/S0925-7721(03)00027-0
https://doi.org/10.1007/s00224-010-9275-6
https://doi.org/10.1016/j.ipl.2013.01.013
https://doi.org/10.1007/978-981-15-6533-5_9
https://doi.org/10.1007/978-981-15-6533-5_9

100 C. Binucci et al.

21. Didimo, W., Eades, P., Liotta, G.: Drawing graphs with right angle crossings.
Theor. Comput. Sci. 412(39), 5156–5166 (2011). https://doi.org/10.1016/j.tcs.
2011.05.025

22. Didimo, W., Liotta, G., Montecchiani, F.: A survey on graph drawing beyond
planarity. ACM Comput. Surv. 52(1), 4:1–4:37 (2019). https://doi.org/10.1145/
3301281

23. Du Preez, B.: Plane graphs with large faces and small diameter. Australas. J.
Comb. 80(3), 401–418 (2021)

24. Dujmovic, V., Gudmundsson, J., Morin, P., Wolle, T.: Notes on large angle crossing
graphs. Chicago J. Theor. Comput. Sci. 2011 (2011)

25. Hong, S.-H.: Beyond planar graphs: introduction. In: Hong, S.-H., Tokuyama, T.
(eds.) Beyond Planar Graphs, pp. 1–9. Springer, Singapore (2020). https://doi.
org/10.1007/978-981-15-6533-5 1

26. Hong, S., Eades, P., Katoh, N., Liotta, G., Schweitzer, P., Suzuki, Y.: A linear-
time algorithm for testing outer-1-planarity. Algorithmica 72(4), 1033–1054 (2015).
https://doi.org/10.1007/s00453-014-9890-8

27. Hong, S., Kaufmann, M., Kobourov, S.G., Pach, J.: Beyond-planar graphs: algo-
rithmics and combinatorics (Dagstuhl Seminar 16452). Dagstuhl Rep. 6(11), 35–62
(2016). https://doi.org/10.4230/DagRep.6.11.35

28. Kobourov, S.G., Liotta, G., Montecchiani, F.: An annotated bibliography on 1-
planarity. Comput. Sci. Rev. 25, 49–67 (2017). https://doi.org/10.1016/j.cosrev.
2017.06.002

29. Kupitz, Y.S.: Extremal problems in combinatorial geometry. Lecture notes series,
Matematisk institut, Aarhus universitet (1979)

30. Lan, Y., Shi, Y., Song, Z.: Extremal h-free planar graphs. Electron. J. Comb. 26(2),
2 (2019). https://doi.org/10.37236/8255

31. Pach, J.: Geometric graph theory. In: Handbook of Discrete and Computational
Geometry, 2nd edn., pp. 219–238. Chapman and Hall/CRC (2004). https://doi.
org/10.1201/9781420035315.ch10

32. Pach, J., Radoicic, R., Tardos, G., Tóth, G.: Improving the crossing lemma by
finding more crossings in sparse graphs. Discret. Computat. Geom. 36(4), 527–552
(2006). https://doi.org/10.1007/s00454-006-1264-9

33. Pach, J., Töröcsik, J.: Some geometric applications of Dilworth’s theorem. Discret.
Comput. Geom. 12, 1–7 (1994). https://doi.org/10.1007/BF02574361

34. Pach, J., Tóth, G.: Graphs drawn with few crossings per edge. Combinatorica
17(3), 427–439 (1997). https://doi.org/10.1007/BF01215922

35. Suk, A., Walczak, B.: New bounds on the maximum number of edges in k-
quasi-planar graphs. Comput. Geom. 50, 24–33 (2015). https://doi.org/10.1016/j.
comgeo.2015.06.001

36. Suzuki, Y.: 1-planar graphs. In: Hong, S.-H., Tokuyama, T. (eds.) Beyond Planar
Graphs, pp. 47–68. Springer, Singapore (2020). https://doi.org/10.1007/978-981-
15-6533-5 4

https://doi.org/10.1016/j.tcs.2011.05.025
https://doi.org/10.1016/j.tcs.2011.05.025
https://doi.org/10.1145/3301281
https://doi.org/10.1145/3301281
https://doi.org/10.1007/978-981-15-6533-5_1
https://doi.org/10.1007/978-981-15-6533-5_1
https://doi.org/10.1007/s00453-014-9890-8
https://doi.org/10.4230/DagRep.6.11.35
https://doi.org/10.1016/j.cosrev.2017.06.002
https://doi.org/10.1016/j.cosrev.2017.06.002
https://doi.org/10.37236/8255
https://doi.org/10.1201/9781420035315.ch10
https://doi.org/10.1201/9781420035315.ch10
https://doi.org/10.1007/s00454-006-1264-9
https://doi.org/10.1007/BF02574361
https://doi.org/10.1007/BF01215922
https://doi.org/10.1016/j.comgeo.2015.06.001
https://doi.org/10.1016/j.comgeo.2015.06.001
https://doi.org/10.1007/978-981-15-6533-5_4
https://doi.org/10.1007/978-981-15-6533-5_4

Computational Complexity of Covering
Colored Mixed Multigraphs with Degree
Partition Equivalence Classes of Size
at Most Two (Extended Abstract)

Jan Bok1,3(B) , Jǐŕı Fiala2 , Nikola Jedličková2 , Jan Kratochv́ıl2(B) ,
and Michaela Seifrtová2

1 Computer Science Institute, Faculty of Mathematics and Physics,
Charles University, Prague, Czech Republic

2 Department of Applied Mathematics, Faculty of Mathematics and Physics,
Charles University, Prague, Czech Republic

{fiala,jedlickova,honza,mikina}@kam.mff.cuni.cz
3 Université Clermont Auvergne, CNRS, Clermont Auvergne INP,

Mines Saint-Étienne, LIMOS, 63000 Clermont-Ferrand, France
jan.bok@uca.fr

Abstract. The notion of graph covers (also referred to as locally bijec-
tive homomorphisms) plays an important role in topological graph theory
and has found its computer science applications in models of local com-
putation. For a fixed target graph H, the H-Cover problem asks if an
input graph G allows a graph covering projection onto H. Despite the
fact that the quest for characterizing the computational complexity of
H-Cover had been started more than 30 years ago, only a handful of
general results have been known so far.

In this paper, we present a complete characterization of the compu-
tational complexity of covering colored graphs for the case that every
equivalence class in the degree partition of the target graph has at most
two vertices. We prove this result in a very general form. Following the
lines of current development of topological graph theory, we study graphs
in the most relaxed sense of the definition - the graphs are mixed (they
may have both directed and undirected edges), may have multiple edges,
loops, and semi-edges. We show that a strong P/NP-co dichotomy holds
true in the sense that for each such fixed target graph H, the H-Cover
problem is either polynomial time solvable for arbitrary inputs, or NP-
complete even for simple input graphs.

1 Introduction

The notion of graph covers stems from topology and is viewed as a discretization
of the notion of covers of topological spaces. Apart from being used in com-
binatorics as a tool for constructing large highly symmetric graphs [3–6], this
notion has found computer science applications in the theory of local computa-
tion [2,13–15,17,30]. In this paper we aim to contribute to the kaleidoscope of
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
D. Paulusma and B. Ries (Eds.): WG 2023, LNCS 14093, pp. 101–115, 2023.
https://doi.org/10.1007/978-3-031-43380-1_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-43380-1_8&domain=pdf
http://orcid.org/0000-0002-7973-1361
http://orcid.org/0000-0002-8108-567X
http://orcid.org/0000-0001-9518-6386
http://orcid.org/0000-0002-2620-6133
http://orcid.org/0000-0003-0050-480X
https://doi.org/10.1007/978-3-031-43380-1_8

102 J. Bok et al.

results about computational complexity of graph covers. We first briefly com-
ment on the known results and show where our main result is placed among
them. The formal definitions of graphs under consideration (Definition 1) and
of graph covering projections (Definitions 2 and 3) are presented in Sect. 2, as
well as the detailed definition of the so called degree reducing reduction (Def-
inition 4), the concept of the degree partition of a graph (Proposition 1) and
identification of several special graphs which play the key role in our character-
ization in Theorem 2 (Definition 5).

Despite the efforts and attention that graph covers received in the computer
science community, their computational complexity is still far from being fully
understood. Bodlaender [9] proved that deciding if one graph covers another one
is an NP-complete problem, if both graphs are part of the input. Abello et al. [1]
considered the variant when the target graph, say H, is fixed, i.e., a parameter
of the problem, and the question is if an input graph covers H (this decision
problem will be referred to as H-Cover). They showed examples of graphs
H for which the problem is polynomial time solvable as well as examples for
which it is NP-complete, but most importantly, they were the first to formulate
the goal of a complete characterization of the computational complexity of the
H-Cover problem, depending on the target graph H. Some of the explicit ques-
tions of Abello et al. [1] were answered by Kratochv́ıl et al. in [25,27], some of
the NP-hardness results have been strengthened to planar input graphs by B́ılka
et al. [8]. A connection to a generalization of the Frequency Assignment Problem
has been identified through partial covers [7,18,21]. The computationally even
more sophisticated problem of regular covers has been treated in [19]. In a recent
paper [11], the authors initiated the study of the complexity of H-Cover for
graphs that allow multiple edges and loops, and also semi-edges. This is moti-
vated by the recent development of topological graph theory where it has now
become standard to consider this more general model of graphs [29,31–34]. The
graphs with semi-edges were also introduced and used in mathematical physics,
e.g. by Getzler and Karpanov [22]. It should be pointed out right away that con-
sidering loops, multiple edges and directed edges was shown necessary already
in [26], where it is proved that in order to fully understand the computational
complexity of H-Cover for simple undirected graphs H (i.e., undirected graphs
without multiple edges, loops, and semi-edges), it is necessary and sufficient to
understand the complexity of the problem for colored mixed multigraphs of min-
imum degree greater than 2. All papers from that era restrict their attention to
covers of connected graphs. Disconnected target graphs are carefully treated in
detail only in [10], where it is argued that the right way to define covers of dis-
connected graphs is to request that the preimages of all vertices have the same
size. Such covers are called equitable covers in [10], and in the current paper
we adopt this view and require graph covers to be equitable in case of covering
disconnected graphs.

Apart from several isolated results (which also include a complete character-
ization of the complexity of H-Cover for connected simple undirected graphs

Computational Complexity of Covering Colored Mixed Multigraphs 103

H with at most 6 vertices [25]), the following general results have been known
about the complexity of H-Cover for infinite classes of graphs:

1. Polynomial time solvability of H-Cover for connected simple undirected
graphs H which have at most two vertices in every equivalence class of their
degree partitions [25].

2. NP-completeness of H-Cover for regular simple undirected graphs H of
valency at least three [20,27].

3. Complete characterization of the complexity of H-Cover for undirected
(multi)graphs H (without semi-edges) on at most three vertices [28].

4. Complete characterization of the complexity of H-Cover for colored mixed
(multi)graphs H on at most two vertices [26] (for graphs without semi-edges)
and [11] (with semi-edges allowed).

It turns out that so far all the known NP-hard instances of H-Cover remain
NP-hard for simple graphs on input. This has led Bok et al. to formulating the
following conjecture.

Strong Dichotomy Conjecture for Graph Covers [12]. For every graph
H, the H-Cover problem is either polynomial time solvable for arbitrary input
graphs, or it is NP-complete for simple graphs as input.

The main result of our paper is a complete characterization of the computa-
tional complexity of H-Cover for graphs H, each of whose equivalence classes
of the degree partition has at most 2 vertices. This provides a common general-
ization of results 1 and 4.

Theorem 1. The H-Cover problem satisfies Strong Dichotomy for graphs H
such that each equivalence class of the degree partition has at most 2 vertices.

The actual characterization is somewhat technical and it follows from Theorem 2
in Sect. 2, presented after the formal definitions of all the notions and special
graphs that are needed for it. The characterization goes much farther beyond
the motivating results from [25,26]. The main novel points are the following:

– For simple graphs H, the H-Cover problem is always polynomial time solv-
able (if H has all equivalence classes of size at most 2), while for general
graphs, already graphs with 2 vertices may define NP-complete cases (and
even graphs with 1 vertex when semi-edges are allowed).

– For simple graphs H, the polynomial time algorithm is based on 2-
Satisfiability, while in case of general graphs, our polynomial time algo-
rithm is a blend of 2-Satisfiability and Perfect Matching algorithms;
this is somewhat surprising, since these two approaches are known to be
incompatible in some other situations.

– The NP-complete cases are proved for simple input graphs, which is in line
with the Strong Dichotomy Conjecture as stated in [12] (in contrast to many
previous results which allowed multiple edges and loops in the input graphs).

104 J. Bok et al.

2 Preliminaries

2.1 Definitions

Throughout the paper we will be working with the most general notion of a graph
which allows multiple edges, loops, directed edges and also semi-edges and whose
elements – both edges and vertices – are colored. A semi-edge is a pendant edge,
incident to just one vertex (and adding just 1 to the degree of this vertex, unlike
the loop, which adds 2 to the degree). In figures, semi-edges are depicted as lines
with one loose end, the other one being the vertex incident to the semi-edge. To
avoid any possible confusion, we present a formal definition.

Definition 1. A graph is a quadruple G = (V,Λ, ι, c), where V is a (finite)
set of vertices, Λ = E ∪ −→

E ∪ L ∪ −→
L ∪ S is the set of edges of G, ι : Λ −→(

V
2

) ∪ (V × V) ∪ V is the incidence mapping of edges, and c : V ∪ E −→ C is a
coloring of the vertices and edges. The edges of E are called normal undirected
edges and they satisfy ι(e) ∈ (

V
2

)
, the edges of

−→
E are normal directed edges (and

ι(e) ∈ (V × V) \ {(u, u) : u ∈ V }), the edges of L (
−→
L) are undirected (directed,

respectively) loops (and we have ι(e) ∈ V in both cases), and finally the edges of
S are called semi-edges (and again ι(e) ∈ V).

The vertex set and edge set of a graph G will be denoted by V (G) and Λ(G),
respectively, and a similar notation will be used for E(G),

−→
E (G), L(G),

−→
L (G)

and S(G). Since we can distinguish vertices from edges, and directed edges from
the undirected ones, we assume without loss of generality that colors of vertices,
of directed edges and of undirected ones are different. However, we allow directed
loops and directed normal edges to have the same color, as well as undirected
normal edges, undirected loops and semi-edges. Edges with the same incidence
function are called parallel. A graph is called simple if it has no parallel edges,
no pair of opposite directed normal edges, no loops and no semi-edges. When
talking about a disjoint union of graphs, we assume that the graphs are vertex
(and therefore also edge) disjoint. The following definition presents the main
notion of the paper.

Definition 2. Let G and H be connected graphs colored by the same sets of
colors. A covering projection from G to H is a pair of color-preserving mappings
fV : V (G) −→ V (H), fE : Λ(G) −→ Λ(H) such that

– the preimage of an undirected normal edge of H incident with vertices u, v ∈
V (H) is a perfect matching in G spanning f−1(u) ∪ f−1(v), each edge of the
matching being incident with one vertex of f−1(u) and with one vertex of
f−1(v);

– the preimage of a directed normal edge of H leading from a vertex u ∈ V (H)
to a vertex v ∈ V (H) is a perfect matching in G spanning f−1(u) ∪ f−1(v),
each edge of the matching being oriented from a vertex of f−1(u) to a vertex
of f−1(v);

Computational Complexity of Covering Colored Mixed Multigraphs 105

– the preimage of an undirected loop of H incident with a vertex u ∈ V (H) is
a disjoint union of cycles in G spanning f−1(u);

– the preimage of a directed loop of H incident with a vertex u ∈ V (H) is a
disjoint union of directed cycles in G spanning f−1(u); and

– the preimage of a semi-edge of H incident with a vertex u ∈ V (H) is a
disjoint union of semi-edges and normal edges spanning f−1(u) (each vertex
of f−1(u) being incident to exactly one semi-edge and no normal edges, or
exactly one normal edge and no semi-edges, from the preimage).

We say that G covers H, and write G −→ H, if there exists a covering projec-
tion from G to H. Informally speaking, if G covers H via a covering projection
(fV , fE) and if an agent moves along the edges of G and in every moment sees
only the label fV (u) (or fE(e)) of the vertex (edge) he/she is currently visiting,
plus the labels of the incident edges (vertices, respectively), then the agent can-
not distinguish whether he/she is moving through the covering graph G or the
target graph H. Mind the significant difference between undirected loops and
semi-edges. The presence of an undirected loop incident with a vertex, say u,
means that there are two ways how to move from u to u along this loop, while
for a semi-edge, there is just one way. The same holds true for their preimages
in covering projections (undirected cycles, or isolated edges). An example of a
graph and a possible cover is depicted in Fig. 1 right.

In [11], a significant role of semi-edges was noted. A color-preserving vertex-
mapping fV : V (G) −→ V (H) is called degree-obedient if for any edge color α,
any vertex u ∈ V (G) and any vertex x ∈ V (H), the number of edges of color α
that lead from u to a vertex from f−1

V (x) in G is the same as the number of edges
of color α leading from fV (u) to x in H, counting those edges that may map onto
each other in a covering projection (e.g., if x = fV (u) and H has � undirected
loops and s semi-edges incident with x, and u is incident with k loops, n normal
undirected edges with both end-vertices in f−1

V (x) and t semi-edges, then t ≤ s
and 2k +n+ t = 2�+s; analogously for other types of edges). It is proved in [11]
that every degree-obedient vertex-mapping extends to a covering projection if
H has no semi-edges, and also when G has no semi-edges and is bipartite.

It follows straightforwardly from the definition of graph covering that the
preimages of any two vertices have the same size. For disconnected graphs, we
add this requirement to the definition.

Definition 3. Let G and H be graphs and let f = (fV , fE) : G −→ H be a
pair of incidence-compatible color-preserving mappings. Then f is a covering
projection of G to H if for each component Gi of G, the restricted mapping
f |Gi

: Gi −→ H is a covering projection of Gi onto some component of H, and
for every two vertices u, v ∈ V (H), |f−1(u)| = |f−1(v)|.

Another notion we need to recall is that of the degree partition of a graph.
This is a standard notion for simple undirected graphs, cf. [16], and it can be
naturally generalized to graphs in general. A partition of the vertex set of a
graph G is equitable if every two vertices of the same class of the partition a)
have the same color, and b) have the same number of neighbors along edges of

106 J. Bok et al.

the same color in every class (including its own). The degree partition of a graph
is then the coarsest equitable partition. It can be found in polynomial time, and
moreover, a canonical linear ordering of the classes of the degree partition comes
out from the algorithm. Let V (G) =

⋃k
i=1 Vi be the degree partition of G, in

the canonical ordering. The degree refinement matrix of G is a k × k matrix MG

whose entries are vectors indexed by edge colors expressing that every vertex
u ∈ Vi has Mi,j,c neighbors in Vj along edges of color c (if i = j and c is a
color of directed edges, then every vertex u ∈ Vi has Mi,j,c in-neighbors and
Mi,j,c out-neighbors in Vi along edges of color c). The following is proved in
[26] for graphs without semi-edges, the extension to graphs with semi-edges is
straightforward.

Proposition 1. Let G and H be graphs and let V (G) =
⋃k

i=1 Vi and V (H) =
⋃�

i=1 Wi be the degree partitions of their vertex sets, in the canonical orderings.
If G covers H, then k = �, the degree refinement matrices of G and H are equal,
and for any covering projection f : G −→ H, f(Vi) = Wi holds true for every
i = 1, 2, . . . , k.

The classes of the degree partition will be further referred to as blocks. Once
we have determined the degree partition of a graph, we will re-color the vertices
so that vertices in different blocks are distinguished by vertex-colors (represent-
ing the membership to blocks), and recolor and de-orient the edges so that edges
connecting vertices from different blocks are undirected and so that for any edge
color, either all edges of this color belong to the same block, or they are con-
necting vertices from the same pair of blocks. The degree partition will remain
unchanged after such a re-coloring.

A block graph of G is a subgraph G′ of G whose vertex set is the union of
some blocks of G, and such that for every edge color α, G′ either contains all
edges of color α that G contains, or none. A block graph G′ of G is induced if G′

contains all edges of G on the vertices of V (G′). A block graph is monochromatic
if it contains edges of at most one color. A uniblock graph is a block graph whose
vertex set is a single block of G. An interblock graph of G is a block graph whose
vertices belong to two blocks of G, and each of its edges is incident with vertices
from both blocks (i.e., with one vertex from each block).

As a local bijection, any graph covering maintains vertex degrees. In par-
ticular, vertices of degree one are mapped onto vertices of degree one and once
we choose the image of such a vertex, the image of its neighbor is uniquely
determined. Applied inductively, this proves the well known fact that the only
connected cover of a (rooted) tree is an isomorphic copy of the tree itself. (Note
here, that by definition a tree is a connected graph that does not contain cycles,
parallel edges, oppositely oriented directed edges, loops, and semi-edges.) As a
special case, the only connected cover of a path is the path itself. These obser-
vations are the basis of the following degree reducing reduction which has been
introduced in [26] for graphs without semi-edges, and generalized to graphs with
semi-edges in [10].

Computational Complexity of Covering Colored Mixed Multigraphs 107

Definition 4. (Degree reducing reduction) Let G be a non-tree graph.

1. Determine all vertices that belong to cycles in G or that are incident with
semi-edges or that lie on paths connecting aforementioned vertices. Determine
all maximal subtrees pending on these vertices. Determine the isomorphism
types of these subtrees, introduce a new vertex color for each isomorphism
type, delete each subtree and color its root by the color corresponding to the
ismomorphism type of the deleted tree. In this way we obtain a graph with
minimum degree at least 2 (or a single-vertex graph).

2. Determine all maximal paths with at least one end-vertex of degree greater
than 2 and all inner vertices being of degree exactly 2. (For this step, a cycle
is viewed as a path whose end-vertices are equal.) Determine all color patterns
of the sequences of vertex colors, edge colors and edge directions along such
paths, and introduce a new color for each such pattern. Replace each such
path by a new edge of this color as follows:
2.1. If both end-vertices of the path are of degree greater than 2 and the color

pattern, say π, is symmetric, the path gets replaced by an undirected edge
(or loop) of color π.

2.2. If both end-vertices of the path are of degree greater than 2 and the color
pattern π is asymmetric, the path gets replaced by a directed edge (or loop)
of color π.

2.3. If the path ends with a semi-edge (the other end of the path must be a
vertex of degree greater than 2), replace it by a semi-edge incident with
its end-vertex of degree greater than 2, and color it with color πα, where π
is the color pattern along the path without the ending semi-edge, and α is
the color of the semi-edge. In this case, consider the colors corresponding
to πα (on one sided open paths) and παπ−1 on symmetric paths ending
with vertices of degree greater than 2 on both sides, as the same color (this
enables a path of color pattern παπ−1 be mapped on the one sided open
path in a covering projection).

Denote the resulting graph by G. Note that G is a path or a cycle (if Step 2 was
void) or has minimum degree greater than 2.

Fig. 1. An example of the application of the degree reducing reduction. An example
of a graph cover of the reduced graph is depicted in the right.

The reduced graph can be constructed in polynomial time. The usefulness of
this reduction is observed in [26] and [10]:

108 J. Bok et al.

Observation 1. Given graphs G and H, perform the degree reducing reduction
on both of them simultaneously. Then G −→ H if and only if G −→ H.

Finally, for a subset W ⊆ V (G), we denote by G[W] the subgraph induced by
W . If α is an edge color, then Gα denotes the spanning subgraph of G containing
exactly the edges of color α.

2.2 Our Results

In order to describe the results, we introduce the formal notation of certain small
graphs. We denote by

– F (b, c) the one-vertex graph with b semi-edges and c loops;
– FD(c) the one-vertex graph with c directed loops;
– W (k,m, �, p, q) the two-vertex graph with � parallel undirected edges joining

its two vertices and with k (q) semi-edges and m (p) undirected loops incident
with one (the other one, respectively) of its vertices;

– WD(m, �,m) the directed two-vertex graph with m directed loops incident
with each of its vertices, the two vertices being connected by � directed edges
in each direction;

– FF (c) the two-vertex graph connected by c parallel undirected edges, with
the two vertices being distinguishable to belong to different blocks;

– FW (b) the three-vertex graph with bundles of b parallel edges connecting one
vertex to each of the remaining two; and

– WW (b, c) the graph on four vertices obtained from a 4-cycle by replacing the
edges of a perfect matching by bundles of b parallel edges, and replacing the
edges of the complementary matching by bundles of c parallel edges, the two
independent sets of size 2 belonging to different blocks.

Edges of all of these graphs are uncolored (or, equivalently, monochromatic). We
shall only consider W graphs having k + 2m = 2p + q. See the illustration in
Fig. 2 for the graphs defined here.

Fig. 2. Examples of the small graphs we are considering.

Computational Complexity of Covering Colored Mixed Multigraphs 109

Definition 5. For the convenience of the reader, the maximal harmless
monochromatic uniblock and interblock graphs are depicted in Fig. 3. A regular
monochromatic uniblock graph with at most two vertices is called

– harmless if it is isomorphic to F (b, 0), b ≤ 2, F (1, c), F (0, c), FD(c),
W (2, 0, 0, 0, 2), W (2, 0, 0, 1, 0), W (0, c, 0, c, 0), W (1, c, 0, c, 1), W (0, 0, c, 0, 0),
W (1, 0, 1, 0, 1), WD(c, 0, c), WD(0, c, 0), WD(1, 1, 1) (c being an arbitrary
nonnegative integer),

– harmful if it is isomorphic to F (b, c) such that b ≥ 2 and b + c ≥ 3, or to
W (k,m, �, p, q) such that � ≥ 1 and k + 2m + � = q + 2p + � ≥ 3, or to
the disjoint union of F (b, c) and F (b′, c′) such that at least one of them is
harmful, or to WD(c, b, c) such that b ≥ 1, c ≥ 1 and b + c ≥ 3.

A monochromatic interblock graph is called

– harmless if it is isomorphic to FF (c) or WW (0, c) (with c being an arbitrary
nonnegative integer), or to FW (0), FW (1), or WW (1, 1),

– dangerous if it is isomorphic to FW (2), and
– harmful if it is isomorphic to FW (c) for c ≥ 3, or to WW (b, c) such that

b ≥ 1, c ≥ 1 and b + c ≥ 3.

Note that under the assumption that each degree partition equivalence class
has size at most two, every monochromatic uniblock graph as well as every
monochromatic interblock graph fall in exactly one of the above described cat-
egories. The choice of the terminology is explained by the following theorem.

Theorem 2. Suppose all blocks of a graph H have sizes at most 2. Then the
following hold true:

1. If all monochromatic uniblock and interblock graphs of H are harmless, then
the H-Cover problem is solvable in polynomial time (for arbitrary input
graphs).

2. If at least one of the monochromatic uniblock or interblock graphs of H is
harmful, then the H-Cover problem is NP-complete even for simple input
graphs.

3. If the minimum degree of H is greater than 2 and H contains a dangerous
monochromatic interblock graph, then the H-Cover problem is NP-complete
even for simple input graphs.

Observe that Theorem 2 implies that H-Cover is polynomial time solvable
if and only if every monochromatic uniblock graph defines a polynomial time
solvable instance and the monochromatic interblock graphs are such that either
each vertex has at most one neighbor, or each vertex has degree at most two. For
the interblock graphs, this is also very close to saying that each monochromatic
interblock graph itself defines a polynomial time solvable instance, but not quite.
The one and only exception is the graph FW (2). Indeed, FW (2)-Cover is poly-
nomial time solvable (since it reduces to F (2)-Cover), but with the additional
condition that all vertices have degrees greater than 2, the presence of FW (2)
in H leads to NP-completeness of H-Cover (this will be shown in detail in
Sect. 4).

110 J. Bok et al.

3 Proof of Theorem 2 - Polynomial Cases

F(2,0)

FD(c)

W(1,0,1,0,1)

WD(1,1,1)

FF(c) FW(1)

WW(c,0)

F(1,c) W(0,0,c,0,0)

W(1,c,0,c,1) W(2,0,0,1,0) W(2,0,0,0,2)

WD(0,c,0) WD(c,0,c) WW(1,1)

Fig. 3. The maximal harmless monochromatic uniblock (left) and interblock (right)
graphs (c is an arbitrary non-negative integer).

Here we sketch an algorithm that proves Part 1 of Theorem 2. It clearly runs in
polynomial time, the details can be found in the journal version of the paper.

Algorithm

1. Compute the degree partitions of G (the input graph) and H (the target
graph). Reorder the equivalence classes Wi of the degree partition of H so
that W1, . . . ,Ws are singletons and Ws+1, . . . ,Wk contain two vertices each,
and reorder the degree partition equivalence classes Vi of the input graph G
accordingly. Denote further, for every i = 1, . . . , s, by ai the vertex in Wi,
and, for every i = s + 1, . . . , k, by bi, ci the vertices of Wi.

2. Check that the degree refinement matrices of G and H are indeed the same.
3. Decide if the edges within G[Vi] can be mapped onto the edges of H[Wi] to

form a covering projection, for each i = 1, 2, . . . , s. (This step amounts to
checking degrees and the numbers of semi-edges incident with the vertices, as
well as checking that monochromatic subgraphs contain perfect matchings in
case of semi-edges in the target graph).

4. Preprocess the two-vertex equivalence classes Wi, i = s + 1, . . . , k when
H[Wi] contains semi-edges (this may impose conditions on some vertices of
Vi, whether they can map on bi or ci).

5. Using 2-Satisfiability, find a degree-obedient vertex mapping from Vi onto
Wi for each i = s + 1, . . . , k, which fulfills the conditions observed in Step 4.
(For every vertex u ∈ Vi, introduce a variable xu with the interpretation
that xu is true if u is mapped onto bi and it is false when xu is mapped
onto ci. The harmless block graphs are such that either all neighbors of a
vertex u must be mapped onto the same vertex, and thus the value of the
corresponding variables are all the same (e.g., for WW (0, c)), or u has exactly
two neighbors which should map onto different vertices (e.g., for WW (1, 1))

Computational Complexity of Covering Colored Mixed Multigraphs 111

meaning that the corresponding variables must get opposite values. All the
situations that arise from harmless block graphs can be described by clauses
of size 2).

6. Complete the covering projection by defining the mapping on edges in case a
degree-obedient vertex mapping was found in Step 5, or conclude that G does
not cover H otherwise. (The existence and polynomial time constructability of
covering projections from degree-obedient vertex mappings for such instances
have been proven in [11]).

4 Proof of Theorem 2 - NP-Hard Cases

The proof is technical and involves several NP-hardness reductions. We will
provide an overview of its main steps, the details will appear in the full version
of the paper.

Step 1. We first argue that H-Cover restricted to simple input graphs is
NP-complete for every harmful uniblock or interblock graph H. These cases
have been proved previously in [1,10,11,26,28], however, some of them only
for input graphs allowing parallel edges. An extra care was thus needed to
strengthen the NP-hardness results for simple input graphs.
Step 2. Covering the dangerous graph FW (2) itself is polynomial time decid-
able, since redFW (2) = F (2) is harmless. However, if FW (2) is a monochro-
matic interblock graph of H, all vertices of H have degrees greater than 2,
and H does not contain any harmful monochromatic uniblock or interblock
graph, then H contains a block graph which is reducible to one of the graphs
from Fig. 4 (if subscript k is used in the name of a graph from this figure, it
refers to the number of parallel red edges or loops). This can be proven by a
straightforward case analysis.
Step 3. For every graph H from Fig. 4, H-Cover is NP-complete for simple
input graphs (for those graphs indexed by k, we claim the statement for every
k ≥ 3 in case of Hk and H ′

k, for every k ≥ 2 in case of B′
k, for every k ≥ 1

in case of Bk, C ′
k,Dk,D′

k, Lk, L′
k,Mk and M ′

k, and for every k ≥ 0 in case of
Ck). We prove this by reductions from Monotone 2-in-4-Satisfiability
which is known to be NP-complete [23]. The 25 graphs can be grouped into
a few groups which are handled en bloc by unified reductions tailored on the
groups.
Step 4. The last step is to show that H-Cover for simple input graphs
polynomially reduces to H ′-Cover for simple input graphs, when H is a
block graph of H ′, and H is a harmful graph or one of the graphs from Fig. 4.
This is a step which is usually called the garbage collection. We describe a
way how to construct a simple graph G′ from a simple graph G (an input
of H-Cover), so that G′ −→ H ′ if and only if G −→ H. Note that this
is somewhat simpler in case when H is balanced in the sense that in every
two-vertex block and for every edge color, both vertices are incident with the
same number of semi-edges of this color.

112 J. Bok et al.

Fig. 4. Block graphs forced by FW (2).

5 Proof of Theorem 1

Suppose H is a connected graph each of whose equivalence classes of the degree
partition has at most 2 vertices. The H-Cover problem can be solved in con-
stant or linear time if H is a tree or a cycle or a path (possibly ending with
semi-edges). Otherwise, consider the reduced graph H, reduced via the degree
reducing reduction of Definition 4. It is important that H also has at most two
vertices in each equivalence class of its degree partition. If H is a path or a
cycle, then H-Cover is solvable in polynomial time, and so is H-Cover, due
to Observation 1.

If H contains a vertex of degree greater than 2, then all vertices of H have
degrees greater than 2. If all monochromatic uniblock and interblock graphs
of H are harmless, then H-Cover is polynomially solvable for general input

Computational Complexity of Covering Colored Mixed Multigraphs 113

graphs, and so is H-Cover, due to Observation 1. If H contains a harmful or
a dangerous uniblock or interblock graph, then H-Cover is NP-complete for
simple input graphs by Parts 2 and 3 of Theorem 2. If G is a simple graph as
an input to the H-Cover problem, the reverse operation to the degree reducing
reduction gives a simple graph G such that G −→ H if and only if G −→ H.
Hence H-Cover is also NP-complete for simple input graphs.

6 Concluding Remarks

The polynomial algorithm of Sect. 3 combines two approaches - finding perfect
matchings and solving 2-Satisfiability. It is well known that these two prob-
lems are polynomial time solvable. It may be somewhat surprising that so is their
combination, e.g., in comparison with the so called compatible 2-factor prob-
lem [24], whose instances solvable in polynomial time are of two types, one solved
by a reduction to perfect matching, the other one solved by 2-Satisfiability,
but if restrictions of both types are present in the same instance, the problem
becomes NP-complete.

Note further that the polynomiality of the polynomial time solvable case
does not depend on the target graph being fixed. If H is a graph with at most 2
vertices in each block of the degree partition, and all monochromatic block and
interblock graphs are harmless, then the algorithm described in Sect. 3 remains
polynomial time even if H is part of the input.

We believe that the method developed above has a much wider potential and
we conjecture the following:

Conjecture. Let H be a block graph of a graph H ′. Then H-Cover for simple
input graphs polynomially reduces to H ′-Cover for simple input graphs.

And of course, the ultimate goal is to prove (or disprove) the Strong
Dichotomy Conjecture for graph covers parameterized by the target graph, ide-
ally with a complete catalog of the polynomially solvable cases.

Acknowledgments. All co-authors were supported by research grant GAčR 20-
15576S of the Czech Science Foundation, Nikola Jedličková was further supported by
SVV–2020–260578 and GAUK 370122. Jan Bok was partially financed by the ANR
project GRALMECO (ANR-21-CE48-0004) and the French government IDEX-ISITE
initiative 16-IDEX-0001 (CAP 20-25).

References

1. Abello, J., Fellows, M.R., Stillwell, J.C.: On the complexity and combinatorics of
covering finite complexes. Aust. J. Comb. 4, 103–112 (1991)

2. Angluin, D.: Local and global properties in networks of processors. In: Proceedings
of the Twelfth Annual ACM Symposium on Theory of Computing, STOC 1980,
pp. 82–93. Association for Computing Machinery, New York (1980)

3. Biggs, N.: Algebraic Graph Theory. Cambridge University Press, Cambridge (1974)

114 J. Bok et al.

4. Biggs, N.: Covering biplanes. In: The Theory and Applications of Graphs, Fourth
International Conference, Kalamazoo, pp. 73–79. Wiley (1981)

5. Biggs, N.: Constructing 5-arc transitive cubic graphs. J. Lond. Math. Soc. II(26),
193–200 (1982)

6. Biggs, N.: Homological coverings of graphs. J. Lond. Math. Soc. II(30), 1–14 (1984)
7. B́ılka, O., Lidický, B., Tesař, M.: Locally injective homomorphism to the simple

weight graphs. In: Ogihara, M., Tarui, J. (eds.) TAMC 2011. LNCS, vol. 6648, pp.
471–482. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-20877-
5 46

8. B́ılka, O., Jirásek, J., Klav́ık, P., Tancer, M., Volec, J.: On the complexity of planar
covering of small graphs. In: Kolman, P., Kratochv́ıl, J. (eds.) WG 2011. LNCS,
vol. 6986, pp. 83–94. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-
642-25870-1 9

9. Bodlaender, H.L.: The classification of coverings of processor networks. J. Parallel
Distrib. Comput. 6, 166–182 (1989)

10. Bok, J., Fiala, J., Jedličková, N., Kratochv́ıl, J., Seifrtová, M.: Computational
complexity of covering disconnected multigraphs. In: Bampis, E., Pagourtzis, A.
(eds.) FCT 2021. LNCS, vol. 12867, pp. 85–99. Springer, Cham (2021). https://
doi.org/10.1007/978-3-030-86593-1 6

11. Bok, J., Fiala, J., Hliněný, P., Jedličková, N., Kratochv́ıl, J.: Computational com-
plexity of covering multigraphs with semi-edges: small cases. In: Bonchi, F., Puglisi,
S.J. (eds.) 46th International Symposium on Mathematical Foundations of Com-
puter Science, MFCS 2021, Tallinn, Estonia, 23–27 August 2021. LIPIcs, vol. 202,
pp. 21:1–21:15. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2021)

12. Bok, J., Fiala, J., Jedličková, N., Kratochv́ıl, J., Rzażewski, P.: List covering of
regular multigraphs. In: Bazgan, C., Fernau, H. (eds.) IWOCA 2022. LNCS, vol.
13270, pp. 228–242. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-
06678-8 17

13. Chalopin, J.: Local computations on closed unlabelled edges: the election problem
and the naming problem. In: Vojtáš, P., Bieliková, M., Charron-Bost, B., Sýkora,
O. (eds.) SOFSEM 2005. LNCS, vol. 3381, pp. 82–91. Springer, Heidelberg (2005).
https://doi.org/10.1007/978-3-540-30577-4 11

14. Chalopin, J., Métivier, Y., Zielonka, W.: Local computations in graphs: the case
of cellular edge local computations. Fund. Inform. 74(1), 85–114 (2006)

15. Chalopin, J., Paulusma, D.: Graph labelings derived from models in distributed
computing: a complete complexity classification. Networks 58(3), 207–231 (2011)

16. Corneil, D.G., Gotlieb, C.C.: An efficient algorithm for graph isomorphism. J.
Assoc. Comput. Mach. 17, 51–64 (1970)

17. Courcelle, B., Métivier, Y.: Coverings and minors: applications to local computa-
tions in graphs. Eur. J. Comb. 15, 127–138 (1994)

18. Fiala, J., Kratochv́ıl, J.: Complexity of partial covers of graphs. In: Eades, P.,
Takaoka, T. (eds.) ISAAC 2001. LNCS, vol. 2223, pp. 537–549. Springer, Heidelberg
(2001). https://doi.org/10.1007/3-540-45678-3 46

19. Fiala, J., Klav́ık, P., Kratochv́ıl, J., Nedela, R.: Algorithmic aspects of regular
graph covers with applications to planar graphs. CoRR abs/1402.3774 (2014)

20. Fiala, J., Kratochv́ıl, J.: Locally constrained graph homomorphisms – structure,
complexity, and applications. Comput. Sci. Rev. 2(2), 97–111 (2008)

21. Fiala, J., Kratochv́ıl, J., Pór, A.: On the computational complexity of partial covers
of theta graphs. Electron. Notes Discret. Math. 19, 79–85 (2005)

22. Getzler, E., Kapranov, M.M.: Modular operads. Compos. Math. 110(1), 65–125
(1998)

https://doi.org/10.1007/978-3-642-20877-5_46
https://doi.org/10.1007/978-3-642-20877-5_46
https://doi.org/10.1007/978-3-642-25870-1_9
https://doi.org/10.1007/978-3-642-25870-1_9
https://doi.org/10.1007/978-3-030-86593-1_6
https://doi.org/10.1007/978-3-030-86593-1_6
https://doi.org/10.1007/978-3-031-06678-8_17
https://doi.org/10.1007/978-3-031-06678-8_17
https://doi.org/10.1007/978-3-540-30577-4_11
https://doi.org/10.1007/3-540-45678-3_46

Computational Complexity of Covering Colored Mixed Multigraphs 115

23. Kratochv́ıl, J.: Complexity of hypergraph coloring and Seidel’s switching. In: Bod-
laender, H.L. (ed.) WG 2003. LNCS, vol. 2880, pp. 297–308. Springer, Heidelberg
(2003). https://doi.org/10.1007/978-3-540-39890-5 26

24. Kratochv́ıl, J., Poljak, S.: Compatible 2-factors. Discret. Appl. Math. 36(3), 253–
266 (1992)

25. Kratochv́ıl, J., Proskurowski, A., Telle, J.A.: Complexity of graph covering prob-
lems. In: Mayr, E.W., Schmidt, G., Tinhofer, G. (eds.) WG 1994. LNCS, vol. 903,
pp. 93–105. Springer, Heidelberg (1995). https://doi.org/10.1007/3-540-59071-
4 40

26. Kratochv́ıl, J., Proskurowski, A., Telle, J.A.: Complexity of colored graph covers I.
Colored directed multigraphs. In: Möhring, R.H. (ed.) WG 1997. LNCS, vol. 1335,
pp. 242–257. Springer, Heidelberg (1997). https://doi.org/10.1007/BFb0024502

27. Kratochv́ıl, J., Proskurowski, A., Telle, J.A.: Covering regular graphs. J. Comb.
Theory Ser. B 71(1), 1–16 (1997)

28. Kratochv́ıl, J., Telle, J.A., Tesař, M.: Computational complexity of covering three-
vertex multigraphs. Theor. Comput. Sci. 609, 104–117 (2016)

29. Kwak, J.H., Nedela, R.: Graphs and their coverings. Lecture Notes Ser. 17, 118
(2007)

30. Litovsky, I., Métivier, Y., Zielonka, W.: The power and the limitations of local
computations on graphs. In: Mayr, E.W. (ed.) WG 1992. LNCS, vol. 657, pp.
333–345. Springer, Heidelberg (1993). https://doi.org/10.1007/3-540-56402-0 58

31. Malnič, A., Marušič, D., Potočnik, P.: Elementary abelian covers of graphs. J.
Algebraic Combin. 20(1), 71–97 (2004)

32. Malnič, A., Nedela, R., Škoviera, M.: Lifting graph automorphisms by voltage
assignments. Eur. J. Comb. 21(7), 927–947 (2000)

33. Mednykh, A.D., Nedela, R.: Harmonic Morphisms of Graphs: Part I: Graph Cov-
erings. Vydavatelstvo Univerzity Mateja Bela v Banskej Bystrici, 1st edn. (2015)

34. Nedela, R., Škoviera, M.: Regular embeddings of canonical double coverings of
graphs. J. Comb. Theory Ser. B 67(2), 249–277 (1996)

https://doi.org/10.1007/978-3-540-39890-5_26
https://doi.org/10.1007/3-540-59071-4_40
https://doi.org/10.1007/3-540-59071-4_40
https://doi.org/10.1007/BFb0024502
https://doi.org/10.1007/3-540-56402-0_58

Cutting Barnette Graphs Perfectly is
Hard

Édouard Bonnet , Dibyayan Chakraborty(B) , and Julien Duron

Univ Lyon, CNRS, ENS de Lyon, Université Claude Bernard Lyon 1,
LIP UMR5668, Lyon, France

{edouard.bonnet,dibyayan.chakraborty,julien.duron}@ens-lyon.fr

Abstract. A perfect matching cut is a perfect matching that is also
a cutset, or equivalently a perfect matching containing an even number
of edges on every cycle. The corresponding algorithmic problem, Per-
fect Matching Cut, is known to be NP-complete in subcubic bipartite
graphs [Le & Telle, TCS ’22] but its complexity was open in planar graphs
and in cubic graphs. We settle both questions at once by showing that
Perfect Matching Cut is NP-complete in 3-connected cubic bipartite
planar graphs or Barnette graphs. Prior to our work, among problems
whose input is solely an undirected graph, only Distance-2 4-Coloring

was known NP-complete in Barnette graphs. Notably, Hamiltonian

Cycle would only join this private club if Barnette’s conjecture were
refuted.

1 Introduction

Deciding if an input graph admits a perfect matching, i.e., a subset of its edges
touching each of its vertices exactly once, notoriously is a tractable task. There
is indeed a vast literature, starting arguably in 1947 with Tutte’s characteri-
zation via determinants [38], of polynomial-time algorithms deciding Perfect

Matching (or returning actual solutions) and its optimization generalization
Maximum Matching.

In this paper, we are interested in another containment of a spanning set of
disjoint edges –perfect matching– than as a subgraph. As containing such a set
of edges as an induced subgraph is a trivial property1 (only shared by graphs
that are themselves disjoint unions of edges), the meaningful other containment
is as a semi-induced subgraph. By that we mean that we look for a bipartition of
the vertex set or cut such that the edges of the perfect matching are “induced”
in the corresponding cutset (i.e., the edges going from one side of the bipartition
to the other), while we do not set any requirement on the presence or absence
of edges within each side of the bipartition.

1 Note however that the induced variant of Maximum Matching is an interesting
problem that happens to be NP-complete [36].

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
D. Paulusma and B. Ries (Eds.): WG 2023, LNCS 14093, pp. 116–129, 2023.
https://doi.org/10.1007/978-3-031-43380-1_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-43380-1_9&domain=pdf
http://orcid.org/0000-0002-1653-5822
http://orcid.org/0000-0003-0534-6417
https://doi.org/10.1007/978-3-031-43380-1_9

Cutting Barnette Graphs Perfectly is Hard 117

This problem was in fact introduced as the Perfect Matching Cut (PMC

for short) problem2 by Heggernes and Telle who show that it is NP-complete [18].
As the name Perfect Matching Cut suggests, we indeed look for a perfect
matching that is also a cutset. Le and Telle further show that PMC remains
NP-complete in subcubic bipartite graphs of arbitrarily large girth, whereas it
is polynomial-time solvable in a superclass of chordal graphs, and in graphs
without a particular subdivided claw as an induced subgraph [26]. An in-depth
study of the complexity of PMC when forbidding a single induced subgraph or
a finite set of subgraphs has been carried out [14,28].

We look at Le and Telle’s hardness constructions and wonder what other
properties could make PMC tractable (aside from chordality, and forbidding
a finite list of subgraphs or induced subgraphs). A simpler reduction for bipartite
graphs is first presented. Let us briefly sketch their reduction (without thinking
about its correctness) from Monotone Not-All-Equal 3-SAT, where given
a negation-free 3-CNF formula, one seeks a truth assignment that sets in each
clause a variable to true and a variable to false. Every variable is represented by
an edge, and each 3-clause, by a (3-dimensional) cube with three anchor points
at three pairwise non-adjacent vertices of the cube. One endpoint of the variable
gadget is linked to the anchor points corresponding to this variable among the
clause gadgets. Note that this construction creates three vertices of degree 4 in
each clause gadget, and vertices of possibly large degree in the variable gadgets.
Le and Telle then reduce the maximum degree to at most 3, by appropriately
subdividing the cubes and tweaking the anchor points, and replacing the variable
gadgets by cycles.

Notably the edge subdivision of the clause gadgets creates degree 2-vertices,
which are not easy to “pad” with a third neighbor (even more so while keep-
ing the construction bipartite). And indeed, prior to our work, the complexity
of PMC in cubic graphs was open. Let us observe that on cubic graphs, the
problem becomes equivalent to partitioning the vertex set into two sets each
inducing a disjoint union of (independent) cycles. The close relative, Match-

ing Cut, where one looks for a mere matching that is also a cutset, while NP-
complete in general [5], is polynomial-time solvable in subcubic graphs [2,33]. The
complexity of Matching Cut has further been examined in subclasses of pla-
nar graphs [2,35], when forbidding some (induced) subgraphs [13,14,28,29], on
graphs of bounded diameter [25,29], and on graphs of large minimum degree [4].
Matching Cut has also been investigated with respect to parameterized com-
plexity, exact exponential algorithms [21,24], and enumeration [16].

It was also open if PMC is tractable on planar graphs. Note that Bou-
quet and Picouleau [3] show that a related problem, Disconnected Perfect

Matching, where one looks for a perfect matching that contains a cutset, is NP-

2 The authors consider the framework of (k, σ, ρ)-partition problem, where k is a pos-
itive integer, and σ, ρ are sets of non-negative integers, and one looks for a vertex-
partition into k parts such that each vertex of each part has a number of neighbors
in its own part in σ, and a number of other neighbors in ρ; hence, PMC is then the
(2,N, {1})-partition problem.

118 É. Bonnet et al.

complete on planar graphs of maximum degree 4, on planar graphs of girth 5,
and on 5-regular bipartite graphs [3]. They incidentally call this related prob-
lem Perfect Matching Cut but subsequent references [14,26] use the name
Disconnected Perfect Matching to avoid confusion. We will observe that
PMC is equivalent to asking for a perfect matching containing an even number
of edges from every cycle of the input graph (See Lemma 1 and 2). The sum
of even numbers being even, it is in fact sufficient that the perfect matching
contains an even number of edges from every element of a cycle basis. There is
a canonical cycle basis for planar graphs: the bounded faces. This gives rise to
the following neat reformulation of PMC in planar graphs: is there a perfect
matching containing an even number of edges along each face?

While Matching Cut is known to be NP-complete on planar graphs [2,
35], it could have gone differently for PMC for the following “reasons.” Not-

All-Equal 3-SAT, which appears as the right starting point to reduce to
PMC, is tractable on planar instances [32]. In planar graphs, perfect matchings
are simpler than arbitrary matchings in that they alone [39] can be counted
efficiently [20,37]. Let us finally observe that Maximum Cut can be solved in
polynomial time in planar graphs [17].

In fact, we show that the reformulations for cubic and planar graphs cannot
help algorithmically, by simultaneously settling the complexity of PMC in cubic
and in planar graphs, with the following stronger statement.

Theorem 1. Perfect Matching Cut is NP-hard in 3-connected cubic bipar-
tite planar graphs.

Not very many problems are known to be NP-complete in cubic bipar-
tite planar graphs. Of the seven problems defined on mere undirected graphs
from Karp’s list of 21 NP-complete problems [19], only Hamiltonian Path is
known to remain NP-complete in this class, while the other six problems admit
a polynomial-time algorithm. Restricting ourselves to problems where the input
is purely an undirected graph3, besides Hamiltonian Path/Cycle [1,34],
Minimum Independent Dominating Set was also shown NP-complete in
cubic bipartite planar graphs [27], as well as P3-Packing [23] (hence, an equiva-
lent problem phrased in terms of disjoint dominating and 2-dominating sets [31]),
and Distance-2 4-Coloring [11]. To our knowledge, Minimum Dominating

Set is only known NP-complete in subcubic bipartite planar graphs [15,22].
It is interesting to note that the reductions for Hamiltonian Path, Hamil-

tonian Cycle, Minimum Independent Dominating Set, and P3-Packing
all produce cubic bipartite planar graphs that are not 3-connected. Notori-
ously, lifting the NP-hardness of Hamiltonian Cycle to the 3-connected case
would require to disprove Barnette’s conjecture4 (and that would be indeed suffi-
3 Among problems with edge orientations, vertex or edge weights, or prescribed sub-

sets of vertices or edges, the list is significantly longer, and also includes Minimum

Weighted Edge Coloring [7], List Edge Coloring and Precoloring Exten-

sion [30], k-In-A-Tree [8], etc.
4 Which precisely states that every polyhedral (that is, 3-connected planar) cubic

bipartite graphs admits a hamiltonian cycle.

Cutting Barnette Graphs Perfectly is Hard 119

cient [12]). Note that hamiltonicity in cubic graphs is equivalent to the existence
of a perfect matching that is not an edge cut (i.e., whose removal is not discon-
necting the graph). We wonder whether there is something inherently simpler
about 3-connected cubic bipartite planar graphs, which would go beyond hamil-
tonicity (assuming that Barnette’s conjecture is true).

Let us call Barnette a 3-connected cubic bipartite planar graph. It appears
that, prior to our work, Distance-2 4-Coloring was the only vanilla graph
problem shown NP-complete in Barnette graphs [11]. Arguing that Distance-2

4-Coloring is a problem on squares of Barnette graphs more than it is on
Barnette graphs, a case can be made for Perfect Matching Cut to be the
first natural problem proven NP-complete in Barnette graphs.

Outline of the Proof. We reduce the NP-complete problem Monotone Not-

All-Equal 3-SAT with exactly 4 occurrences of each variable [6] to PMC.
Observe that flipping the value of every variable of a satisfying assignment results
in another satisfying assignment. We thus see a solution to Monotone Not-

All-Equal 3-SAT simply as a bipartition of the set of variables.
As we already mentioned, Not-All-Equal 3-SAT restricted to planar

instances (i.e., where the variable-clause incidence graph is planar) is in P. We
thus have to design crossing gadgets in addition to variable and clause gadgets.
Naturally our gadgets are bipartite graphs with vertices of degree 3, except for
some special anchors, vertices of degree 2 with one incident edge leaving the
gadget.

The variable gadget is designed so that there is a unique way a perfect match-
ing cut can intersect it. It might seem odd that no “binary choice” happens
within it. The role of this gadget is only to serve as a baseline for which side of
the bipartition the variable lands in, while the “truth assignments” take place in
the clause gadgets. (Actually the same happens with Le and Telle’s first reduc-
tion [26], where the variable gadget is a single edge, which has to be in any
solution).

Our variable gadget consists of 36 vertices, including 8 anchor points;
see Fig. 1. (We will later explain why we have 8 anchor points and not sim-
ply 4, that is, one for each occurrence of the variable.) Note that in all the
figures, we adopt the following convention:

– black edges cannot (or can no longer) be part of a perfect matching cut,
– red edges are in every perfect matching cut,
– each blue edge e is such that at least one perfect matching cut within its

gadget includes e, and at least one excludes e, and
– brown edges are blue edges that were indeed chosen in the solution.

Let us recall that PMC consists of finding a perfect matching containing an even
number of edges from each cycle. Thus we look for a perfect matching M such
that every path (or walk) between v and w contains a number of edges of M
whose parity only depends on v and w. If this parity is even v and w are on the
same side, and if it is odd, v and w are on opposite sides. The 8 anchor points of
each variable gadget are forced on the same side. This is the side of the variable.

120 É. Bonnet et al.

At the core of the clause gadget is a subdivided cube of blue edges; see
Fig. 2. There are three vertices (u1, u8, u14 on the picture) of the subdivided
cube that are forced on the same side as the corresponding three variables.
Three perfect matching cuts are available in the clause gadget, each separating
(i.e., putting on opposite sides) a different vertex of {u1, u8, u14} from the other
two. Note that this is exactly the semantics of a not-all-equal 3-clause. We in
fact need two copies of the subdivided cube, partly to increase the degree of
some subdivided vertices, partly for the same reason we duplicated the anchor
vertices in the variable gadgets. (The latter will be explained when we present the
crossing gadgets.) Increasing the degree of all the subdivided vertices complicate
further the gadget and create two odd faces. Fortunately these two odd faces
have a common neighboring even face. We can thus “fix” the parity of the two
odd faces by plugging the sub-gadget Dj in the even face. We eventually need a
total of 112 vertices, including 6 anchor points.

Let us now describe the crossing gadgets. Basically we want to replace every
intersection point of two edges by a 4-vertex cycle. This indeed propagates black
edges (those that cannot be in any solution). The issue is that going through
such a crossing gadget flips one’s side. As we cannot guarantee that a variable
“wire” has the same parity of intersection points towards each clause gadget it
is linked to, we duplicate these wires. At a previous intersection point, we now
have two parallel wires crossing two other parallel wires, making four crossings.
The gadget simply consists of four 4-vertex cycles; see Fig. 3. This explains why
we have 8 anchor points (not 4) in each variable gadget, and 6 anchor points
(not 3) in each clause gadget.

2 Preliminaries

For a graph G, we denote by V (G) its set of vertices and by E(G) its set of
edges. For U ⊆ V (G), the subgraph of G induced by U , denoted as G[U], is
the graph obtained from G by removing the vertices not in U . We shall use
EG(U) (or E(U) when G is clear) as a shorthand for E(G[U]). For M ⊂ E(G),
G − M is the spanning subgraph of G obtained by removing the edges in M
(while preserving their endpoints). We may use k-cycle as a short-hand for the
k-vertex cycle.

Given two disjoint sets X,Y ⊆ V (G) we denote by E(X,Y) the set of edges
between X and Y . A set M ⊆ E(G) is a cutset5 of G if there is a proper
bipartition X � Y = V (G), called cut, such that M = E(X,Y). Note that a cut
fully determines a cutset, and among connected graphs a cutset fully determines
a cut. When dealing with connected graphs, we may speak of the cut of a cutset.
For X ⊆ V (G) the set of outgoing edges of X is E(X,V (G) \ X). For a cutset
M of a connected graph G, and u, v ∈ V (G), we say that u and v are on the

5 We avoid using the term “edge cut” since, for some authors, an edge cut is, more
generally, a subset of edges whose deletion increases the number of connected com-
ponents.

Cutting Barnette Graphs Perfectly is Hard 121

same side (resp. on opposite sides) of M if u and v are on the same part (resp.
on different parts) of the cut of M .

A matching (resp. perfect matching) of G is a set M ⊂ E(G) such that
each vertex of G is incident to at most (resp. exactly) one edge of M . A perfect
matching cut is a perfect matching that is also a cutset. For M ⊆ E(G) and
U ⊆ V (G), we say that M is a perfect matching cut of G[U] if M ∩ E(U) is so.

Due to space constraints, the proof of statements marked with (�) are deferred
to the long version [10].

3 Proof of Theorem 1

Before we give our reduction, we start with a handful of useful lemmas and
observations, which we will later need.

3.1 Preparatory Lemmas

Lemma 1 (�). Let G be a graph, and M ⊆ E(G). Then M is a cutset if and
only if for every cycle C of G, |E(C) ∩ M | is even.

Lemma 2. Let G be a plane graph, and M ⊆ E(G). Then M is a cutset if and
only if for any facial cycle C of G, |E(C) ∩ M | is even.

Proof. The forward implication is a direct consequence of Lemma 1. The converse
comes from the known fact that the bounded faces form a cycle basis; see for
instance [9]. If H is a subgraph of G, let H̃ be the vector of FE(G)

2 with 1 entries
at the positions corresponding to edges of H. Thus, for any cycle C of G, we
have C̃ = Σ1�i�kF̃i where Fi are facial cycles of G. And |M ∩ E(C)| has the
same parity as Σ1�i�k|M ∩ E(Fi)|, a sum of even numbers. �

Lemma 3. Let M be a perfect matching cut of a cubic graph G. Let C be an
induced 4-vertex cycle of G. Then, exactly one of the following holds:

(a) E(C) ∩ M = ∅ and the four outgoing edges of V (C) belong to M .
(b) |E(C) ∩ M | = 2, the two edges of E(C) ∩ M are disjoint, and none of the

outgoing edges of V (C) belongs to M .

Proof. The number of edges of M within E(C) is even by Lemma 2. Thus
|E(C) ∩ M | ∈ {0, 2}, as all four edges of E(C) do not make a matching.

Suppose that E(C)∩M = ∅. As M is a perfect matching, for every v ∈ V (C)
there is an edge in M incident to v and not in E(C). As G is cubic, every outgoing
edge of V (C) is in M .

Suppose instead that |E(C) ∩ M | = 2. As M is a matching, the two edges
of E(C) ∩ M do not share an endpoint. It implies that all the four vertices of C
are touched by these two edges. Thus no outgoing edge of V (C) can be in M . �

Corollary 1 (�). Let M be a perfect matching of a cubic graph G. Let C1,
C2 two vertex-disjoint induced 4-vertex cycles of G such that there is an edge
between V (C1) and V (C2). Then E(C1) ∩ M �= ∅ if and only if E(C2) ∩ M �= ∅.

122 É. Bonnet et al.

Lemma 4. Let M be a perfect matching cut of a cubic graph G. If a 6-cycle has
three outgoing edges in M , then all six outgoing edges are in M .

Proof. Let C be a 6-cycle. Since M is a perfect matching cut, |E(C) ∩ M | is
even. Hence, |E(C) ∩ M | is either 0 or 2. If |E(C) ∩ M | = 2, four vertices of C
are touched by E(C) ∩ M , which rules out that three outgoing edges of V (C)
are in M . Thus E(C) ∩ M = ∅ and, G being cubic, all outgoing edges of V (C)
are in M . �

Lemma 5. Let M a perfect matching cut of a cubic bipartite graph G. Suppose
C is a 6-cycle v1v2 . . . v6 of G, such that v2v3, v3v4, v5v6 and v6v1 are in some
induced 4-cycles. Then M ∩ E(C) = ∅.
Proof. By applying Lemma 3 on the 4-cycle containing v2v3, and the one con-
taining v6v1, it holds that v1v2 ∈ M ⇔ v3v4 ∈ M ⇔ v5v6 ∈ M . Thus none of
these three edges can be in M , because C would have an odd number of edges
in M . Symmetrically, no edge among v2v3, v4v5 and v6v1 can be in M . Thus no
edge of C is in M . �

Observation 1. Let G be a graph and M be a perfect matching cut of G. Let
u, v be two vertices of G. Then for any path P between u and v, |E(P) ∩ M | is
even if and only if u and v are on the same side of M . Note that implies that
for any paths P,Q from u to v, |E(P) ∩ M | and |E(Q) ∩ M | have same parity.

3.2 Reduction

We will prove Theorem 1 by reduction from the NP-complete Monotone Not-

All-Equal 3SAT-E4 [6]. In Monotone Not-All-Equal 3SAT-E4, the
input is a 3-CNF formula where each variable occurs exactly four times, each
clause contains exactly three distinct literals, and no clause contains a negated
literal. Here we say that a truth assignment on the variables satisfies a clause
C if at least one literal of C is true and at least least one literal of C is false.
The objective is to decide whether there is a truth assignment that satisfies all
clauses. We can safely assume (and we will) that the variable-clause incidence
graph inc(I) of I has no cutvertex among its “variable” vertices; see long version.

Let I be an instance of Monotone Not-All-Equal 3SAT-E4 with vari-
ables x1, x2, . . . , xn and clauses m = 4n/3 clauses C1, C2, . . . , Cm. We shall con-
struct, in polynomial time, an equivalent PMC-instance G(I) that is Barnette.

Our reduction consists of three steps. First we construct a cubic graph H(I)
by introducing variable gadgets and clause gadgets. Then we draw H(I) on the
plane, i.e., we map the vertices of H(I) to a set of points on the plane, and
the edges of H(I) to a set of simple curves on the plane. We shall refer to
this drawing as R. Note that, this drawing may not be planar, i.e., two simple
curves (or analogously the corresponding edges) might intersect at a point which
is not their endpoints. Finally, we eliminate the crossing points by introducing
crossing gadgets. (Recall that if the clause-variable graph of an Monotone

Not-All-Equal 3SAT-E4 instance is planar, then its satisfiability can be

Cutting Barnette Graphs Perfectly is Hard 123

tested in polynomial time; hence, we do need crossing gadgets.) The resulting
graph G(I) is Barnette, and we shall prove that G(I) has a perfect matching if
and only if I is a positive instance of Monotone Not-All-Equal 3SAT-E4.
Below we formally describe the above steps.

Fig. 1. Variable Gadget Xi corresponding to the variable xi appearing in the clauses
Cj , Ck, Cp, Cq with j < k < p < q.

1. For each variable xi, let Xi denote a fresh copy of the graph shown in Fig. 1.
Note that the variable xi appears in exactly four clauses, say, Cj , Ck, Cp, Cq

with j < k < p < q. The variable gadget Xi contains the special vertices ti,j ,
bi,j , ti,k, bi,k, ti,p, bi,p, ti,q, bi,q as shown in the figure. We recall that red edges
are those forced in any perfect matching cut, while black edges cannot be in
any solution. An essential part of the proof will consist of justifying the edge
colors in our figures.
For each clause Cj = (xa, xb, xc) with a < b < c let Cj denote a new copy of the
graph shown in Fig. 2. The clause gadget Cj contains the special vertices t′a,j ,
b′
a,j , t′b,j , b′

b,j , t′c,j , b′
c,j , as shown in the figure. Then for each variable xi that

appears in the clause Cj , introduce two new edges Eij =
{
ti,jt

′
i,j , bi,jb

′
i,j

}
.

Let H(I) denote the graph defined as follows.

V (H(I)) =
n⋃

i=1

V (Xi) ∪
m⋃

j=1

V (Cj)

E(H(I)) =
n⋃

i=1

E(Xi) ∪
m⋃

j=1

E(Cj) ∪
⋃

xi∈Cj

Eij .

We assign to each edge e ∈ Ei,j its variable as var(e) = i. Note that, for a
variable gadget Xi, there are exactly eight edges that have one endpoint in
V (Xi) and the other endpoint not in V (Xi).

2. In the next step, we generate a drawing R of H(I) on the plane according to
the following procedure.
(a) For each variable xi, we embed Xi as a translate of the variable gadget of

Fig. 1 into [0, 1] × [2i, 2i + 1].
(b) For each clause Cj , we embed Cj as a translate of the clause gadget of

Fig. 2 into [2, 3] × [2j, 2j + 1].

124 É. Bonnet et al.

Fig. 2. Clause gadget Cj = (xa, xb, xc) with a < b < c. A red edge is selected in any
perfect matching cut. A blue edge is selected in some perfect matching cut. A black
edge is never selected in any perfect matching cut. (Color figure online)

(c) Two edges incident to vertices in the same variable gadget or same clause
gadget do not intersect in R. For two variables xi, xi′ and clauses Cj , Cj′

with xi ∈ Cj , xi′ ∈ Cj′ , exactly one of the following holds:
i For each pair of edges (e, e′) ∈ Eij × Ei′j′ , e and e′ intersect exactly

once in R. When this condition is satisfied, we call (Eij , Ei′j′) a cross-
ing quadruple. Moreover, we ensure that the interior of the subsegment
of e ∈ Eij between its two intersection points with edges of Ei′j′ is
not crossed by any edge;

ii There is no pair of edges (e, e′) ∈ Eij × Ei′j′ such that e and e′

intersect in R;
3. For each crossing quadruples (Eij , Ei′j′) replace the four crossing points

shown in Fig. 3a by the crossing gadget shown in Fig. 3b.

Let G(I) denote the resulting graph. We shall need the following definitions.

Cutting Barnette Graphs Perfectly is Hard 125

Fig. 3. Replacement of a crossing by a crossing gadget.

Definition 1. Any edge of G(I) whose both endpoints are not contained withing
the same gadget (variable, clause, or crossing) is a connector edge. Any endpoint
of a connector edge is called a connector vertex. For a connector edge e incident
to a crossing gadget, var(e) is the index of the variable gadget it was originally
going to. To each connector edge uv, we associate the variable var(uv) to both u
and v, denoted var(u), var(v).

Now we shall distinguish some 4-cycles of G(I).

Definition 2. An (induced) 4-cycle C of G(I) is a crossover 4-cycle if it belongs
to some crossing gadget.

Definition 3. An induced 4-cycle C of G(I) is special if C is identical to Fi or
F ′
i of some Cj.

The special 4-cycles of a particular clause gadget Cj are highlighted in Fig. 2.
In the next section, we show that G(I) is indeed a 3-connected cubic bipartite
planar graph.

3.3 G(I) Is Barnette

Lemma 6 (�). The graph G(I) is 3-connected.

Lemma 7 (�). The graph G(I) is Barnette.

126 É. Bonnet et al.

3.4 Properties of Variable and Crossing Gadgets

Lemma 8. Let M be a perfect matching cut of G(I). Then for any variable
gadget Xi, M ∩ V (Xi) is the matching formed by the red edges in Fig. 1. In
particular, M does not contain any connector edge incident to a variable gadget.

Proof. Consider the variable gadget Xi. By applying Lemma 5 on the 6-cycle S2
i

(which satisfies the requirement of having four particular edges in some 4-cycles),
we get that all outgoing edges of V (S2

i) are in M . We can thus apply Lemma
4 on the 6-cycles S1

i and S3
i , and obtain that all outgoing edges of these cycles

are in M . Now there is an outgoing edge of the 4-cycle S4
i that is in M , hence

by Lemma 3, all of them are. We can finally apply Lemma 4 on the 6-cycle S5
i ,

and get that all the red edges of Fig. 1 should indeed be in M . In particular, as
all the vertices of Xi are touched by red edges, the connector edges incident to
a variable gadget cannot be in M . �

Now we prove a property of the crossover 4-cycles.

Lemma 9 (�). Let M be a perfect matching cut of G(I) and F be a crossover
4-cycle. Then |E(F)| = 2.

Corollary 2 (�). For any perfect matching M of G(I), M contains no connec-
tor edges.

3.5 Properties of Clause Gadgets

Observe that Dj is an induced subgraph of the variable gadget Cj .

Lemma 10 (�). Any perfect matching cut of G(I) contains the edges of Dj

drawn in red in Fig. 2.

Lemma 11 (�). Let M be a perfect matching cut of G(I) and F be a special
4-cycle of Cj. Then |E(F) ∩ M | = 2, and no outgoing edge of V (F) is in M .

Lemma 12 (�). Let M be a perfect matching cut of G(I) and Cj be a clause
gadget. Let Uj = {u1, . . . , u20}, and Vj = {v1, . . . , v20}. Then no outgoing edge
of Uj or of Vj is in M .

See the definition of Li
j (and the symmetric Ri

j in Vj) in Fig. 4.

Definition 4. We say that a perfect matching cut M of G(I) is of type i in Cj

with i ∈ {1, 2, 3}, if M ∩ E(Uj ∪ Vj) = Li
j ∪ Ri

j.

Lemma 13 (�). Let M be a perfect matching cut of G(I) and Cj be a clause
gadget. Then there exists exactly one integer i ∈ {1, 2, 3} such that M is of type
i in Cj.

As a direct consequence of Lemma 13, we get the following.

Cutting Barnette Graphs Perfectly is Hard 127

Fig. 4. The three types of perfect matching cuts within a clause gadget.

Lemma 14. Let M be a perfect matching cut of G(I) and (A,B) be the cut of
M . The vertices u1, u8, u14 of a clause gadget Cj cannot all be on the same side
of M . More precisely:

1. L1
j sets u1 to one side of M , and u8, u14 to the other;

2. L2
j sets u14 to one side of M , and u1, u8 to the other;

3. L3
j sets u8 to one side of M , and u1, u14 to the other.

3.6 Existence of Perfect Matching Cut Implies Satisfiability

Lemma 15 (�). If G(I) has a perfect matching cut then I is a positive instance.

3.7 Satisfiability Implies the Existence of a Perfect Matching Cut

Lemma 16 (�). If I has a satisfying assignment then G(I) has a perfect match-
ing cut.

We finally get Theorem 1, due to Lemmas 15, 16, 7.

Acknowledgments. We are much indebted to Carl Feghali for introducing us to the
topic of (perfect) matching cuts, and presenting us with open problems that led to the
current paper. We also wish to thank him and Kristóf Huszár for helpful discussions
on an early stage of the project.

128 É. Bonnet et al.

References

1. Akiyama, T., Nishizeki, T., Saito, N.: NP-completeness of the Hamiltonian cycle
problem for bipartite graphs. J. Inf. Process. 3(2), 73–76 (1980)

2. Bonsma, P.S.: The complexity of the matching-cut problem for planar graphs and
other graph classes. J. Graph Theory 62(2), 109–126 (2009)

3. Bouquet, V., Picouleau, C.: The complexity of the perfect matching-cut problem.
arXiv preprint arXiv:2011.03318 (2020)

4. Chen, C.-Y., Hsieh, S.-Y., Le, H.-O., Le, V.B., Peng, S.-L.: Matching cut in graphs
with large minimum degree. Algorithmica 83(5), 1238–1255 (2021)

5. Chvátal, V.: Recognizing decomposable graphs. J. Graph Theory 8(1), 51–53
(1984)

6. Darmann, A., Döcker, J.: On a simple hard variant of not-all-equal 3-SAT. Theor.
Comput. Sci. 815, 147–152 (2020)

7. De Werra, D., Demange, M., Escoffier, B., Monnot, J., Paschos, V.T.: Weighted
coloring on planar, bipartite and split graphs: complexity and approximation. Dis-
cret. Appl. Math. 157(4), 819–832 (2009)

8. Derhy, N., Picouleau, C.: Finding induced trees. Discret. Appl. Math. 157(17),
3552–3557 (2009)

9. Diestel, R.: Graph Theory. Graduate Texts in Mathematics, vol. 173, 4th edn.
Springer, Heidelberg (2012)

10. Bonnet, É., Chakraborty, D., Duron, J.: Cutting Barnette graphs perfectly is hard.
arXiv:2302.11667 (2023)

11. Feder, T., Hell, P., Subi, C.S.: Distance-two colourings of Barnette graphs. Eur. J.
Comb. 91, 103210 (2021)

12. Feder, T., Subi, C.S.: On Barnette’s conjecture. Electron. Colloquium Comput.
Complex. TR06-015 (2006)

13. Feghali, C.: A note on matching-cut in Pt-free graphs. Inf. Process. Lett. 179,
106294 (2023)

14. Feghali, C., Lucke, F., Paulusma, D., Ries, B.: New hardness results for (perfect)
matching cut and disconnected perfect matching. CoRR, abs/2212.12317 (2022)

15. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory
of NP-Completeness. W. H. Freeman (1979)

16. Golovach, P.A., Komusiewicz, C., Kratsch, D., Le, V.B.: Refined notions of param-
eterized enumeration kernels with applications to matching cut enumeration. J.
Comput. Syst. Sci. 123, 76–102 (2022)

17. Hadlock, F.: Finding a maximum cut of a planar graph in polynomial time. SIAM
J. Comput. 4(3), 221–225 (1975)

18. Heggernes, P., Telle, J.A.: Partitioning graphs into generalized dominating sets.
Nord. J. Comput. 5(2), 128–142 (1998)

19. Karp, R.M.: Reducibility among combinatorial problems. In: Miller, R.E.,
Thatcher, J.W. (eds.) Proceedings of a Symposium on the Complexity of Com-
puter Computations. The IBM Research Symposia Series, IBM Thomas J. Watson
Research Center, Yorktown Heights, New York, USA, 20–22 March 1972, pp. 85–
103. Plenum Press, New York (1972)

20. Kasteleyn, P.: Graph theory and crystal physics. Graph Theory Theor. Phys. 43–
110 (1967)

21. Komusiewicz, C., Kratsch, D., Le, V.B.: Matching cut: kernelization, single-
exponential time FPT, and exact exponential algorithms. Discret. Appl. Math
283, 44–58 (2020)

http://arxiv.org/abs/2011.03318
http://arxiv.org/abs/2302.11667

Cutting Barnette Graphs Perfectly is Hard 129

22. Korobitsin, D.V.: On the complexity of domination number determination in mono-
genic classes of graphs (1992)

23. Kosowski, A., Ma�lafiejski, M., Żyliński, P.: Parallel processing subsystems with
redundancy in a distributed environment. In: Wyrzykowski, R., Dongarra, J.,
Meyer, N., Waśniewski, J. (eds.) PPAM 2005. LNCS, vol. 3911, pp. 1002–1009.
Springer, Heidelberg (2006). https://doi.org/10.1007/11752578 121

24. Kratsch, D., Le, V.B.: Algorithms solving the matching cut problem. Theor. Com-
put. Sci. 609, 328–335 (2016)

25. Le, H.-O., Le, V.B.: A complexity dichotomy for matching cut in (bipartite) graphs
of fixed diameter. Theor. Comput. Sci. 770, 69–78 (2019)

26. Le, V.B., Telle, J.A.: The perfect matching cut problem revisited. Theor. Comput.
Sci. 931, 117–130 (2022)

27. Loverov, Ya.A., Orlovich, Y.L.: NP-completeness of the independent dominating
set problem in the class of cubic planar bipartite graphs. J. Appl. Ind. Math. 14,
353–368 (2020)

28. Lucke, F., Paulusma, D., Ries, B.: Finding matching cuts in H-free graphs. In: Bae,
S.W., Park, H. (eds.) 33rd International Symposium on Algorithms and Compu-
tation, ISAAC 2022. LIPIcs, Seoul, Korea, 19–21 December 2022, vol. 248, pp.
22:1–22:16. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2022)

29. Lucke, F., Paulusma, D., Ries, B.: On the complexity of matching cut for graphs
of bounded radius and H-free graphs. Theor. Comput. Sci. 936, 33–42 (2022)

30. Marx, D.: NP-completeness of list coloring and precoloring extension on the edges
of planar graphs. J. Graph Theory 49(4), 313–324 (2005)

31. Miotk, M., Topp, J., Żyliński, P.: Disjoint dominating and 2-dominating sets in
graphs. Discret. Optim. 35, 100553 (2020)

32. Moret, B.M.E.: Planar NAE3SAT is in P. SIGACT News 19(2), 51–54 (1988)
33. Moshi, A.M.: Matching cutsets in graphs. J. Graph Theory 13(5), 527–536 (1989)
34. Munaro, A.: On line graphs of subcubic triangle-free graphs. Discret. Math. 340(6),

1210–1226 (2017)
35. Patrignani, M., Pizzonia, M.: The complexity of the matching-cut problem. In:

Brandstädt, A., Le, V.B. (eds.) WG 2001. LNCS, vol. 2204, pp. 284–295. Springer,
Heidelberg (2001). https://doi.org/10.1007/3-540-45477-2 26

36. Stockmeyer, L.J., Vazirani, V.V.: NP-completeness of some generalizations of the
maximum matching problem. Inf. Process. Lett. 15(1), 14–19 (1982)

37. Temperley, H.N.V., Fisher, M.E.: Dimer problem in statistical mechanics-an exact
result. Philos. Mag. 6(68), 1061–1063 (1961)

38. Tutte, W.T.: The factorization of linear graphs. J. Lond. Math. Soc. 1(2), 107–111
(1947)

39. Vadhan, S.P.: The complexity of counting in sparse, regular, and planar graphs.
SIAM J. Comput. 31(2), 398–427 (2001)

https://doi.org/10.1007/11752578_121
https://doi.org/10.1007/3-540-45477-2_26

Metric Dimension Parameterized
by Treewidth in Chordal Graphs

Nicolas Bousquet, Quentin Deschamps(B), and Aline Parreau

Univ. Lyon, Université Lyon 1, CNRS, LIRIS UMR 5205, 69621 Lyon, France
{nicolas.bousquet,quentin.deschamps,aline.parreau}@univ-lyon1.fr

Abstract. The metric dimension has been introduced independently by
Harary, Melter [11] and Slater [15] in 1975 to identify vertices of a graph
G using its distances to a subset of vertices of G. A resolving set X of a
graph G is a subset of vertices such that, for every pair (u, v) of vertices of
G, there is a vertex x in X such that the distance between x and u and the
distance between x and v are distinct. The metric dimension of the graph
is the minimum size of a resolving set. Computing the metric dimension
of a graph is NP-hard even on split graphs and interval graphs. Bonnet
and Purohit [2] proved that the metric dimension problem is W[1]-hard
parameterized by treewidth. Li and Pilipczuk strengthened this result
by showing that it is NP-hard for graphs of treewidth 24 in [14]. In
this article, we prove that metric dimension is FPT parameterized by
treewidth in chordal graphs.

1 Introduction

Determining the position of an agent on a network is a central problem. One
way to determine its position is to place sensors on nodes of the network and the
agents try to determine their positions using their positions with respect to these
sensors. More formally, assume that agents know the topology of the graph. Can
they, by simply looking at their position with respect to the sensors determine
for sure their position in the network? Conversely, where do sensors have to be
placed to ensure that any agent at any possible position can easily determine for
sure its position? These questions received a considerable attention in the last
decades and have been studied in combinatorics under different names such as
metric dimension, identifying codes, locating dominating sets...

Let G = (V,E) be a graph and s, u, v be three vertices of G. We say that
s resolves the pair (u, v) if the distance between s and u is different from the
distance between s and v. A resolving set of a graph G = (V,E) is a subset S
of vertices of G such that any vertex of G is identified by its distances to the
vertices of the resolving set. In other words, S is a resolving set if for every pair
(u, v) of vertices of G, there is a vertex s of S such that s resolves (u, v). The
metric dimension of G, denoted by dim(G), is the smallest size of a resolving
set of G.

This notion has been introduced in 1975 by Slater [15] for trees and by Harary
and Melter [11] for graphs to simulate the moves of a sonar. The associated
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
D. Paulusma and B. Ries (Eds.): WG 2023, LNCS 14093, pp. 130–142, 2023.
https://doi.org/10.1007/978-3-031-43380-1_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-43380-1_10&domain=pdf
https://doi.org/10.1007/978-3-031-43380-1_10

Metric Dimension Parameterized by Treewidth in Chordal Graphs 131

decision problem, called the Metric Dimension problem, is defined as follows:
given a graph G and an integer k, is the metric dimension of G is at most k?

The Metric Dimension problem is NP-complete [9] even for restricted
classes of graphs like planar graphs [4]. Epstein et al. [6] proved that this problem
is NP-complete on split graphs, bipartite and co-bipartite graphs. The problem
also is NP-complete on interval graphs [8] or sub-cubic graphs [12]. On the pos-
itive side, computing the metric dimension is linear on trees [11,15] and polyno-
mial in outer-planar graphs [4].

Parameterized Algorithms. In this paper, we consider the Metric Dimension
problem from a parameterized point of view. We say a problem Π is fixed param-
eter tractable (FPT) for a parameter k if any instance of size n and parameter
k can be decided in time f(k) · nO(1). Two types of parameters received a con-
siderable attention in the literature: the size of the solution and the “width” of
the graph (for various widths, the most classical being the treewidth).

Hartung and Nichterlein proved in [12] that the Metric Dimension problem
is W[2]-hard parameterized by the size of the solution. Foucaud et al. proved
that it is FPT parameterized by the size of the solution in interval graphs in [8].
This result was extended by Belmonte et al. who proved in [1] that Metric
Dimension is FPT parameterized by the size of the solution plus the tree-length
of the graph. In particular, it implies that computing the metric dimension for
chordal graph is FPT parameterized by the size of the solution.

Metric Dimension is FPT parameterized by the modular width [1]. Using
Courcelle’s theorem, one can also remark that it is FPT parameterized by the
treedepth of the graph as observed in [10]. Metric dimension has been proven
W[1]-hard parameterized by the treewidth by Bonnet and Purohit in [2]. Li
and Pilipczuk strengthened this result by showing that it is NP-complete for
graphs of treewidth, and even pathwidth, 24 in [14]. While Metric dimension
is polynomial on graphs of treewidth 1 (forests), its complexity is unknown for
graphs of treewidth 2 is open (even if it is known to be polynomial for outerplanar
graphs). Our main result is the following:

Theorem 1. Metric Dimension is FPT parameterized by treewidth on
chordal graphs. That is, Metric Dimension can be decided in time O(n3 +
n2 · f(ω)) on chordal graphs of clique number ω.

Recall that, on chordal graphs, the treewidth is equal to the size of a maxi-
mum clique minus one. Our proof is based on a dynamic programming algorithm.
One of the main difficulty to compute the metric dimension is that a pair of ver-
tices might be resolved by a vertex far from them in the graph. This non-locality
implies that it is not simple to use classical algorithmic strategies like divide-
and-conquer, induction or dynamic programming since a single edge or vertex
modification somewhere in the graph might change the whole solution1.

1 The addition of a single edge in a graph might modify the metric dimension by Ω(n),
see e.g. [7].

132 N. Bousquet et al.

The first ingredient of our algorithm consists in proving that, given a chordal
graph, if we are using a clique tree of a desirable form and make some simple
assumptions on the shape of an optimal solution, we can ensure that resolving a
pair of vertices close to a separator implies that we resolve all the pairs of vertices
in the graph. Using this lemma, we build a dynamic programming algorithm that
computes the minimum size of a resolving set containing a given vertex in FPT-
time parameterized by treewdith.

The special type of clique tree used in the paper, inspired from [13], is pre-
sented in Sect. 2.1. We then give some properties of resolving sets in chordal
graphs in Sect. 2.2. These properties will be needed to prove the correctness
and the running time of the algorithm. Then, we present the definition of the
extended problem in Sect. 3.1 and the rules of the dynamic programming in
Sect. 3.2 where we also prove the correction of the algorithm. We end by an
analysis of the complexity of the algorithm in Sect. 4.

Further Work. The function of the treewidth in our algorithm is probably not
optimal and we did not try to optimize it to keep the algorithm as simple as
possible. A first natural question is the existence of an algorithm running in time
2ω · Poly(n) for chordal graphs.

We know that Theorem 1 cannot be extended to bounded treewidth graphs
since Metric Dimension is NP-hard on graphs of treewidth at most 24 [14].
One can nevertheless wonder if our proof technique can be adapted to design
polynomial time algorithms for graphs of treewidth at most 2 on which the
complexity status of Metric Dimension is still open.

Our proof crucially relies on the fact that a separator X of a chordal graph
is a clique and then the way a vertex in a component of G \ X interacting with
vertices in another component of G \ X is simple. One can wonder if there is a
tree decomposition in G where all the bags have diameter at most C, is it true
that Metric Dimension is FPT parameterized by the size of the bags plus
C. Note that, since Metric Dimension is NP-complete on chordal graphs, the
problem is indeed hard parameterized by the diameter of the bags only.

2 Preliminaries

2.1 Nice Clique Trees

Unless otherwise stated, all graphs considered in this paper are undirected, sim-
ple, finite and connected. For standard terminology and notations on graphs, we
refer the reader to [3]. Let us first define some notations we use throughout the
article.

Let G = (V,E) be a graph where V is the set of vertices of G and E the set
of edges; we let n = |V |. For two vertices x and y in G, we denote by d(x, y)
the length of a shortest path between x and y and call it distance between x
and y. For every x ∈ V and U ⊆ V , the distance between x and U , denoted by
d(x,U), is the minimum distance between x and a vertex of U . Two vertices x
and y are adjacent if xy ∈ E. A clique is a graph where all the pairs of vertices

Metric Dimension Parameterized by Treewidth in Chordal Graphs 133

are adjacent. We denote by ω the size of a maximum clique. Let U be a set
of vertices of G. We denote by G \ U the subgraph of G induced by the set of
vertices V \ U . We say that U is a separator of G if G \ U is not connected. If
two vertices x and y of V \ U belong to two different connected components in
G \ U , we say that U separates x and y. If a separator U induces a clique, we
say that U is a clique separator of G.

Definition 1. A tree-decomposition of a graph G is a pair (X,T) where T is
a tree and X = {Xi|i ∈ V (T)} is a collection of subsets (called bags) of V (G)
such that:

–
⋃

i∈V (T) Xi = V (G).
– For each edge xy ∈ E(G), x, y ∈ Xi for some i ∈ V (T).
– For each x ∈ V (G), the set {i|x ∈ Xi} induces a connected sub-tree of T .

Let G be a graph and (X,T) a tree-decomposition of G. The width of the
tree-decomposition (X,T) is the biggest size of a bag minus one. The treewidth
of G is the smallest width of (X,T) amongst all the tree-decompositions (X,T)
of G.

Chordal graphs are graphs with no induced cycle of length at least 4. A
characterization given by Dirac in [5] ensures chordal graphs are graphs where
minimal vertex separators are cliques. Chordal graphs admit tree-decompositions
such that all the bags are cliques. We call such a tree-decomposition a clique tree.

Our dynamic programming algorithm is performed in a bottom-up way on a
clique tree of the graph with more properties than the one given by Definition 1.
These properties permit to simplify the analysis of the algorithm. We adapt the
decomposition of [13, Lemma 13.1.2] to get this tree-decomposition.

Lemma 2. Let G = (V,E) be a chordal graph and r a vertex of G. There exists
a clique tree (X,T) such that (i) T contains at most 7n nodes, (ii) T is rooted in
a node that contains only the vertex r, (iii) T contains only four types of nodes,
that are:

– Leaf nodes, |Xi| = 1 which have no child.
– Introduce nodes i which have exactly one child j, and that child satisfies Xi =

Xj ∪ {v} for some vertex v ∈ V (G) \ Xj.
– Forget nodes i which have exactly one child j, and that child satisfies Xi =

Xj \ {v} for some vertex v ∈ Xj.
– Join node i which have exactly two children i1 and i2, and these children

satisfy Xi = Xi1 = Xi2 .

Moreover, such a clique tree can be found in linear time.

In the following, a clique tree with the properties of Lemma 2 will be called
a nice clique tree and we will only consider nice clique trees (X,T) of chordal
graphs G.

Given a rooted clique tree (T,X) of G, for any node i of T , we define the
subgraph of G rooted in Xi, denoted by T (Xi), as the subgraph induced by the
subset of vertices of G contained in at least one of the bags of the sub-tree of T
rooted in i (i.e. in the bag of i or one of its descendants).

134 N. Bousquet et al.

2.2 Clique Separators and Resolving Sets

In this section, we give some technical lemmas that will permit to bound by f(ω)
the amount of information we have to remember in the dynamic programming
algorithm.

Lemma 3. Let K be a clique separator of G and G1 be a connected component
of G \ K. Let Gext be the subgraph of G induced by the vertices of G1 ∪ K and
Gint = G \ Gext. Let x1, x2 ∈ V (Gint) be such that |d(x1,K) − d(x2,K)| ≥ 2.
Then, every vertex s ∈ V (Gext) resolves the pair (x1, x2).

Before proving Lemma 5, let us state a technical lemma.

Lemma 4. Let G be a chordal and T be a nice clique tree of G. Let X,Y be two
bags of T such that X ∩ Y = ∅. Assume that there exist x ∈ X, y ∈ Y such that
d(x, y) ≥ 2 and let z be a neighbour of x that appears in the bag the closest to
Y in T amongst all the bags on the path between X and Y . Then z belongs to a
shortest path between x and y.

Lemma 5. Let S be a subset of vertices of a chordal graph G. Let X, Y and
Z be three bags of a nice tree-decomposition T of G such that Z is on the path
P between X and Y in T . Denote by P = X1, . . . Z . . . Xp the bags of P with
X = X1 and Y = Xp. Let x be a vertex of X and y a vertex of Y with d(x,Z) ≥ 2
and d(y, Z) ≥ 2. Assume that any pair of vertices (u, v) with u ∈ X2 ∪ . . . ∪ Z,
v ∈ Z ∪ . . . ∪ Xp, d(u,Z) < d(x,Z) and d(v, Z) < d(y, Z) is resolved by S. Then
the pair (x, y) is resolved by S.

Proof. Let i1 be such that Xi1 ∩ N [x] �= ∅ and for every j > i1, Xj ∩ N [x] = ∅
and i2 be such that Xi2 ∩ N [y] �= ∅ and for j < i2, Xj ∩ N [y] = ∅. Let x′ be
the only neighbour of x in Xi1 and y′ be the only neighbour of y in Xi2 . They
are unique by definition of nice tree-decomposition. Note that d(x, y) ≥ 4 since
d(x,Z) ≥ 2 and d(y, Z) ≥ 2. So N [x] is not adjacent to N [y] and then i1 < i2. By
Lemma 4, x′ is on a shortest path between x and Z and y′ is on a shortest path
between y and Z. So d(x′, Z) < d(x,Z) and d(y′, Z) < d(y, Z). By hypothesis,
there is a vertex s ∈ S resolving the pair (x′, y′). Let us prove that s resolves
the pair (x, y).

If s belongs to N [x] or to N [y] then s resolves the pair (x, y) since d(x, y) ≥ 4.
So we can assume that d(s, x) ≥ 2 and d(s, y) ≥ 2. Let Xs be a bag of T
containing s and X ′

s be the closest bag to Xs on P between X and Y .
Case 1: s ∈ Xi1 and s ∈ Xi2 . Then, d(s, x′) ≤ 1 and d(s, y′) ≤ 1. The vertex
s resolves the pair (x′, y′) so d(s, x′) �= d(s, y′) so s = x′ or s = y′. Assume by
symmetry that s = x′, then d(s, x) = 1 and d(s, y) ≥ 3 because d(x, y) ≥ 4. So
s resolves the pair (x, y).
Case 2: s belongs to exactly one of Xi1 or Xi2 . By symmetry assume that s ∈ Xi1 .
By Lemma 4, y′ is on a shortest path between y and s. So d(s, y) = d(s, y′) + 1.
As s belongs to Xi1 then d(x′, s) ≤ 1 and d(x, s) ≤ 2. As d(y′, s) �= d(x′, s) we
have d(y′, s) ≥ 2, so d(s, y) ≥ 3. Thus s resolves the pair (x, y).

Metric Dimension Parameterized by Treewidth in Chordal Graphs 135

Case 3: s /∈ Xi1 and s /∈ Xi2 . First, we consider the case where X ′
s is between

Xi1 and Xi2 . Then, d(s, x) = d(s, x′) + 1 and d(s, y) = d(s, y′) + 1 by Lemma 4
as Xi1 separates y and s and Xi2 separates x and s. Thus, s resolves the pair
(x, y).

By symmetry, we can now assume that X ′
s is between X and Xi1 . Since

i1 < i2, Xi2 separates s and y. So d(s, y) = d(s, y′)+1 by Lemma 4. To conclude
we prove that d(s, x′) < d(s, y′). Let Q be a shortest path between s and y′.
The bag Xi1 separates s and y′ so Q ∩ Xi1 �= ∅. Let y1 ∈ Q ∩ Xi1 . By definition
of Q, d(s, y′) = d(s, y1) + d(y1, y′). Since y1, x

′ ∈ Xi1 and Xi1 is a clique, we
have that y1 ∈ N [x′] and so, y1 �= y′. So d(y1, y′) �= 0. We also have d(s, x′) ≤
d(s, y1) + 1 because y1 is a neighbour of x′. As d(s, x′) �= d(s, y′), this ensures
d(s, x′) < d(s, y′). So s resolves the pair (x, y) because d(s, x) ≤ d(s, x′) + 1 <
d(s, y′) + 1 = d(s, y). �

The following lemma is essentially rephrasing Lemma 5 to get the result on
a set of vertices.

Lemma 6. Let G be a chordal graph and S be a subset of vertices of G. Let
T be a nice clique tree of G. Let X be a bag of T and let T1 = (X1, E1) and
T2 = (X2, E2) be two connected components of T \ X. Assume that any pair of
vertices (u, v) of (X1∪X)×(X2∪X) with d(u,X) ≤ 2 and d(v,X) ≤ 2 is resolved
by S. Then any pair of vertices (u, v) of (X1,X2) with |d(u,X) − d(v,X)| ≤ 1
is resolved by S.

3 Algorithm Description

In this section, we fix a vertex v of a chordal graph G and consider a nice clique
tree (T,X) rooted in v which exists by Lemma 2. We present an algorithm
computing the smallest size of a resolving set of G containing v.

3.1 Extension of the Problem

Our dynamic programming algorithm computes the solution of a generalization
of metric dimension which is easier to manipulate when we combine solutions.
In this new problem, we will represent some vertices by vectors of distances. We
define notations to edit vectors.

Definition 7. Given a vector r, the notation ri refers to the i-th coordinate
of r.

– Let r = (r1, . . . , rk) ∈ N
k be a vector of size k and m ∈ N. The vector r′ = r|m

is the vector of size k + 1 with r′
i = ri for 1 ≤ i ≤ k and r′

k+1 = m.
– Let r = (r1, . . . , rk) ∈ N

k be a vector of size k. The vector r− is the vector of
size k − 1 with r−

i = ri for 1 ≤ i ≤ k − 1.

136 N. Bousquet et al.

Definition 8. Let i be a node of T and let Xi = {v1, . . . , vk} be the bag of i.
For a vertex x of G, the distance vector dXi

(x) of x to Xi is the vector of size
k such that, for 1 ≤ j ≤ k, dXi

(x)j = d(x, vj). We define the set d≤2(Xi) as the
set of distance vectors of the vertices of T (Xi) at distance at most 2 of Xi in G
(i.e. one of the coordinate is at most 2).

Definition 9. Let G be a graph and K = {v1, . . . , vk} be a clique of G. Let
x be a vertex of G. The trace of x on K, denoted by TrK(x), is the vector r
of {0, 1}k \ {1, . . . , 1} such that for every 1 ≤ i ≤ k, d(x, vi) = a + ri where
a = d(x,K).

Let S be a subset of vertices of G. The trace TrK(S) of S in K is the set of
vectors {TrK(x), x ∈ S}.

The trace is well-defined because for a vertex x and a clique K, the distance
between x and a vertex of K is either d(x,K) or d(x,K) + 1.

Definition 10. Let r1, r2 and r3 be three vectors of same size k. We say that
r3 resolves the pair (r1, r2) if

min
1≤i≤k

(r1 + r3)i �= min
1≤i≤k

(r2 + r3)i.

Lemma 11. Let K be a clique separator of G and G1 be a connected component
of G \ K. Let (x, y) be a pair of vertices of G \ G1 and let r be a vector of size
|K|. If r resolves the pair (dK(x),dK(y)), then any vertex s ∈ V (G1) with
TrK(s) = r resolves the pair (x, y).

Proof. Let s be a vertex of G1 such that TrK(s) = r. The clique K separates
s and x (resp. y) so d(x, s) = min1≤i≤|K|(dK(x) + TrK(s))i + d(K, s) (resp.
d(y, s) = min1≤i≤|K|(dK(y) + TrK(s))i + d(K, s)). The vector r resolves the
pair (dK(x),dK(y)). So d(x, s) �= d(y, s) and s resolves the pair (x, y). �

Definition 12. Let K be a clique separator of G and G1, G2 be two (non nec-
essarily distinct) connected components of G \ K. Let M be a set of vectors
and let x ∈ V (G1) ∪ K and y ∈ V (G2) ∪ K. If a vector r resolves the pair
(dK(x),dK(y)), we say that r resolves the pair (x, y). We say that the pair of
vertices (x, y) is resolved by M if there exists a vector r ∈ M that resolves the
pair (x, y).

We can now define the generalised problem our dynamic programming algo-
rithm actually solves. We call it the extended metric dimension problem
(EMD for short). We first define the instances of this problem.

Definition 13. Let i be a node of T . An instance for a node i of the EMD
problem is a 5-uplet I = (Xi , SI ,Dint(I),Dext(I),Dpair(I)) composed of the bag
Xi of i, a subset SI of Xi and three sets of vectors satisfying

– Dint(I) ⊆ {0, 1}|Xi| and Dext(I) ⊆ {0, 1}|Xi|,
– Dpair(I) ⊆ {0, 1, 2, 3}|Xi| × {0, 1, 2, 3}|Xi|,

Metric Dimension Parameterized by Treewidth in Chordal Graphs 137

– Dext(I) �= ∅ or SI �= ∅,
– For each pair of vectors (r1, r2) ∈ Dpair(I), there exist two vertices x ∈ T (Xi)

with dXi
(x) = r1 and d(x,Xi) ≤ 2 and y /∈ T (Xi) with dXi

(y) = r2 and
d(y,Xi) ≤ 2.

Definition 14. A set S ⊆ T (Xi) is a solution for an instance I of the EMD
problem if

– (S1) Every pair of vertices of T (Xi) is either resolved by a vertex in S or
resolved by a vector of Dext(I).

– (S2) For each vector r ∈ Dint(I) there exists a vertex s ∈ S such that
TrXi

(s) = r.
– (S3) For each pair of vector (r1, r2) ∈ Dpair(I), for any vertex x ∈ T (Xi)

with dXi
(x) = r1 and any vertex y /∈ T (Xi) with dXi

(y) = r2, if d(x,Xi) ≤ 2
and d(y,Xi) ≤ 2 the pair (x, y) is resolved by S.

– (S4) S ∩ Xi = SI .

In the rest of the paper, for shortness, we will refer to an instance of the EMD
problem only by an instance.

Definition 15. Let I be an instance. We denote by dim(I) the minimum size
of a set S ⊆ T (Xi) which is a solution of I. If such a set does not exist we define
dim(I) = +∞. We call this value the extended metric dimension of I.

We now explain the meaning of each element of I. Firstly, a solution S must
resolve any pair in T (Xi), possibly with a vector of Dext(I) which represents
a vertex of V \ T (Xi) in the resolving set. Secondly, for all r in Dint(I), we
are forced to select a vertex in T (Xi) whose trace is r. This will be useful
to combine solutions since it will be a vector of Dext in other instances. The
elements in Dpair(I) will also be useful for combinations. In some sense Dpair(I)
is the additional gain of S compared to the main goal to resolve T (Xi). The set
SI constrains the intersection between S and Xi by forcing a precise subset of
Xi to be in S.

The following lemma is a consequence of Definition 14. It connects the defi-
nition of the extended metric dimension with the metric dimension.

Lemma 16. Let G be a graph, T be a nice tree-decomposition of G and r be the
root of T . Let I0 be the instance ({r}, {r}, ∅, ∅, ∅), then dim(I0) is the smallest
size of a resolving set of G containing r.

To ensure that our algorithm works well, we will need to use Lemma 3 in some
subgraphs of G. This is possible only if we know that the solution is not included
in the subgraph. This corresponds to the condition Dext(I) �= ∅ or SI �= ∅ and
this is why the algorithm computes the size of a resolving set containing the root
of T .

3.2 Dynamic Programming

We explain how we can compute the extended metric dimension of an instance I
given the extended metric dimension of the instances on the children of Xi in T .
The proof is divided according to the different type of nodes.

138 N. Bousquet et al.

Leaf Node. Computing the extended metric dimension of an instance for a leaf
node can be done easily with the following lemma:

Lemma 17. Let I be an instance for a leaf node i and v be the unique vertex
of Xi. Then,

dim(I) =

⎧
⎨

⎩

0 if SI = ∅, Dint(I) = ∅ and Dpair(I) = ∅
1 if SI = {v} and Dint(I) ⊆ {(0)}
+∞ otherwise

Proof. Let I be an instance for i. If SI = ∅, only the set S = ∅ can be a solution
for I. This set is a solution only if Dint(I) = ∅ and Dpair(I) = ∅. If SI = {v},
only the set S = {v} can be a solution for I. This is a solution only if Dint(I) is
empty or only contains the vector Trxi

(v). �

In the rest of the section, we treat the three other types of nodes. For each
type of nodes we will proceed as follows: define some conditions on the instances
on children to be compatible with I, and prove an equality between the extended
metric dimension on compatible children instances and the extended metric
dimension of the instance of the node.

Join Node. Let I be an instance for a join node i and let i1 and i2 be the
children of i.

Definition 18. A pair of instances (I1, I2) for (i1, i2) is compatible with I if

– (J1) SI1 = SI2 = SI ,
– (J2) Dext(I1) ⊆ Dext(I) ∪ Dint(I2) and Dext(I2) ⊆ Dext(I) ∪ Dint(I1),
– (J3) Dint(I) ⊆ Dint(I1) ∪ Dint(I2),
– (J4) Let C1 = {(r, t) ∈ Dpair(I1) such that r /∈ d≤2(Xi1)} and C2 = {(r, t) ∈

Dpair(I2) such that r /∈ d≤2(Xi2)}. Let D1 = {(r, t) ∈ d≤2(Xi1)×d≤2(G\Xi1)
such that there exists u ∈ Dint(I2) resolving the pair (r, t)} and D2 = {(r, t) ∈
d≤2(Xi2) × d≤2(G \ Xi2)) such that there exists u ∈ Dint(I1) resolving the
pair (r, t)} Then Dpair(I) ⊆ (C1 ∪ D1 ∪ Dpair(I1)) ∩ (C2 ∪ D2 ∪ Dpair(I2)),

– (J5) For all r1 ∈ d≤2(Xi1), for all r2 ∈ d≤2(Xi2), (r1, r2) ∈ Dpair(I1) or
(r2, r1) ∈ Dpair(I2) or there exists t ∈ Dext(I) such that t resolves the pair
(r1, r2).

Condition (J4) represents how the pairs of vertices of V (T (Xi1))×V (T (Xi2))
can be resolved. A pair (r, t) is in (C1∪D1∪Dpair(I1)) if all the pairs of vertices
(x, y) with x ∈ V (T (Xi1)) and y ∈ V (T (Xi2)) are resolved. If (r, t) is in C1, no
pair (x, y) with x ∈ V (T (Xi1)) and y ∈ V (T (Xi2)) exists, if (r, t) is in D1 the
pairs of vertices are resolved by a vertex outside of V (T (Xi1)) and if (r, t) is in
Dpair(I1) the pairs of vertices are resolved by a vertex of V (T (Xi1)). So a pair
(r, t) is resolved if the pair is in (C1∪D1∪Dpair(I1)) and in (C2∪D2∪Dpair(I2)).

Let FJ(I) be the set of pairs of instances compatible with I. We want to
prove the following lemma:

Metric Dimension Parameterized by Treewidth in Chordal Graphs 139

Lemma 19. Let I be an instance for a join node i. Then,

dim(I) = min
(I1,I2)∈FJ (I)

(dim(I1) + dim(I2) − |SI |).

We prove the equality by proving the two inequalities in the next lemmas.

Lemma 20. Let (I1, I2) be a pair of instances for (i1, i2) compatible with I with
finite values for dim(I1) and dim(I2). Let S1 ⊆ V (T (Xi1)) be a solution for I1
and S2 ⊆ V (T (Xi2)) be a solution for I2. Then S = S1 ∪ S2 is a solution for I.
In particular,

dim(I) ≤ min
(I1,I2)∈FJ (I)

(dim(I1) + dim(I2) − |SI |).

Proof. Let us prove that the conditions of Definition 14 are satisfied.
(S1) Let (x, y) be a pair of vertices of T (Xi). Assume first that x ∈ V (T (Xi1))
and y ∈ V (T (Xi1)). Either (x, y) is resolved by a vertex of S1 and then by a
vertex of S or (x, y) is resolved by a vector r ∈ Dext(I1). By condition (J2),
r ∈ Dext(I) or r ∈ Dint(I2). If r ∈ Dext(I) then (x, y) is resolved by a vector
of Dext(I1). Otherwise, there exists a vertex t ∈ S2 such that TrXi2

(t) = r. So
t ∈ S and t resolves the pair (x, y). The case x ∈ V (T (Xi2)) and y ∈ V (T (Xi2))
is symmetric. So we can assume that x ∈ V (T (Xi1)) and y ∈ V (T (Xi2)). If
d(x,Xi) ≤ 2 and d(y,Xi) ≤ 2, the condition (J5) ensures that the pair (x, y) is
resolved by S or by a vector of Dext(I). Otherwise, either |d(x,Xi)−d(y,Xi)| ≤ 1
and (x, y) is resolved by Lemma 6 or |d(x,Xi)−d(y,Xi)| ≥ 2 and (x, y) is resolved
by Lemma 3 because Dext(I) �= ∅ or SI �= ∅.
(S2) Let r ∈ Dint(I). By compatibility, the condition (J3) ensures that r ∈
Dint(I1) or r ∈ Dint(I2). As S = S1 ∪ S2, S contains a vertex s such that
TrXi

(s) = r.
(S3) Let (r, t) ∈ Dpair(I) and (x, y) with x ∈ V (T (Xi)) such that dXi

(x) = r
and y /∈ T (Xi) such that dXi

(y) = t. Without loss of generality assume that
x ∈ V (T (Xi1)).

By compatibility, (r, t) ∈ (C1 ∪ D1 ∪ Dpair(I1)) ∩ (C2 ∪ D2 ∪ Dpair(I2)) so in
C1 ∪ D1 ∪ Dpair(I1). If (r, t) ∈ Dpair(I)1, then there exists s ∈ S1 that resolves
the pair (x, y) so the pair is resolved by S. If (r, t) ∈ D1, there exists u ∈ Dint(I2)
such that u resolves the pair (r, t). By compatibility, there exists s ∈ S2 such
that TrXi

(s) = u. So s resolves the pair (x, y). And (r, t) /∈ C1 since x belongs
to T (Xi1) with vector distance r.
(S4) is clear since Xi1 = Xi2 = Xi.

Thus, dim(I) ≤ dim(I1) + dim(I2) − |SI | is true for any pair of compatible
instances (I1, I2) so dim(I) ≤ min(I1,I2)∈FJ (I)(dim(I1) + dim(I2) − |SI |). �

Lemma 21. Let I be an instance for a join node i and let i1 and i2 be the
children of i. Then,

dim(I) ≥ min
(I1,I2)∈FJ (I)

(dim(I1) + dim(I2) − |SI |).

140 N. Bousquet et al.

Proof. If dim(I) = +∞ then the result indeed holds. So we can assume that
dim(I) is finite. Let S be a solution for I of minimal size. Let S1 = S ∩ T (Xi1)
and S2 = S ∩ T (Xi2). We define now two instances I1 and I2 for i1 and i2.
Let SI1 = SI2 = SI , Dint(I1) = TrXi

(S1), Dint(I2) = TrXi
(S2), Dext(I1) =

Dext(I)∪Dint(I2) and Dext(I2) = Dext(I)∪Dint(I1). To build the sets Dpair(I1)
and Dpair(I2) we make the following process that we explain for Dpair(I1). For all
pairs of vectors (r, t) of (d≤2(Xi1), d≤2(G\Xi1)), consider all the pairs of vertices
(x, y) with x ∈ V (T (Xi1)), y ∈ V (G \ T (Xi1)), r ∈ d≤2(Xi), t ∈ d≤2(G \ Xi1)),
dXi

(x) = r and dXi
(y) = t. If all the pairs are resolved by vertices of S1 (that is

for each pair, there exists a vertex of S1 that resolves the pair), then add (r, t)
to Dpair(I1).

Checking that (I1, I2) is compatible with I, that S1 is a solution of I1, and
that S2 is a solution of I2 is straightforward. It consists of checking conditions
of respectively Definition 18 and Definition 14.

Finally we prove the announced inequality. Since S is a minimal solution
for I, we have dim(I) = |S|. The sets S1 and S2 are solutions for S1 and S2

so dim(I1) ≤ |S1| and dim(I2) ≤ |S2|. Since |S| = |S1| + |S2| − |SI |, dim(I) ≥
dim(I1) + dim(I2) − |SI |, giving the result. �

Lemma 19 is a direct consequence of Lemma 20 and Lemma 21.

Introduce Node. We now consider an instance I for an introduce node i. Let
j be the child of i and v ∈ V be such that Xi = Xj ∪ {v}. Let Xi = {v1, . . . , vk}
with v = vk. The tree T (Xi) contains one more vertex than its child. The
definition of the compatibility is slightly different if we consider the same set as
a solution (type 1) or if we add this vertex to the resolving set (type 2).

Definition 22. An instance I1 is compatible with I of type 1 (resp. 2) if

– (I1) SI = SI1 (resp. = SI1 ∪ {v}).
– (I2) For all r ∈ Dext(I), r− ∈ Dext(I1) (resp. or r = (0, . . . , 0)).
– (I3) For all r ∈ Dint(I), rk = 1 and r− ∈ Dint(I1) (resp. or r = (1, . . . , 1, 0)).
– (I4) For all (r, t) ∈ Dpair(I), (r−, t−) ∈ Dpair(I1).
– (I5) If I1 is of type 1, for all (r, t) with t = (0, . . . , 0), (r, t) ∈ Dpair(I1).

Lemma 23. Let I be an instance for an introduce node i. Let F1(I) be the set of
instances I1 for i1 compatible with I of type 1 and F2(I) be the set of instances
I2 for i1 compatible with I of type 2. Then,

dim(I) = min { min
I1∈F1(I)

{dim(I1)}; min
I2∈F2(I)

{dim(I2) + 1}}.

The proof of Lemma 23 consists in proving both inequalities similarly to
Lemma 19. One inequality comes from the fact that we can get a solution of
I from any compatible instance. The other consists in building a solution for a
compatible instance from a minimal solution for I.

Metric Dimension Parameterized by Treewidth in Chordal Graphs 141

Forget Node. The construction for the forget nodes is similar to the one for
introduce nodes. The main difference is that a vertex is removed from the bag so
we have to keep the information about this vertex. The full construction leads
to a similar equality between the extended metric dimension of an instance and
the extended metric dimension of the compatible instances of its child.

3.3 Algorithm

Given as input a nice clique tree, the algorithm computes the extended metric
dimension bottom up from the leaves. The algorithm computes the extended
metric dimension for leaves using Lemma 17, for join nodes using Lemma 19, for
introduce nodes using Lemma 23 and forget nodes using a similar lemma. The
correction of the algorithm is straightforward by these lemmas.

We denote this algorithm by IMD in the following which takes as input a
nice clique tree T and outputs the minimal size of a resolving set of G containing
the root of T .

4 Proof of Theorem 1

Let us finally explain how we can compute the metric dimension of G. The
following lemma is a consequence of Lemma 16.

Lemma 24. The metric dimension of G is minv∈V (G){IMD(T (v))} where T (v)
is a nice clique tree of G rooted in v.

So, n executions of the IMD algorithm with different inputs are enough to
compute the metric dimension. Lemma 2 ensures that we can find for any vertex
v of G a nice clique tree in linear time, the last part is to compute the complexity
of the IMD algorithm.

Lemma 25. The algorithm for IMD runs in time O(n(T)2+n(T)·f(ω)) where
n(T) is the number of vertices of the input tree T and f = O(ω2 · 2O(42

ω
)) is a

function that only depends on the size of a maximum clique ω.

We now have all the ingredients to prove Theorem 1:

Proof. For each vertex v of G, one can compute a nice clique tree of size at
most 7n according to Lemma 2. Given this clique tree, the IMD algorithm
outputs the size of a smallest resolving set containing v by Lemma 16 in time
O(n(T)2 + n(T) · f(ω)) for a computable function f according to Corollary 25.
Repeat this for all vertices of G permits to compute the metric dimension of G
by Lemma 24 in time O(n3 + n2 · f(ω)). �

142 N. Bousquet et al.

References

1. Belmonte, R., Fomin, F.V., Golovach, P.A., Ramanujan, M.S.: Metric dimension
of bounded tree-length graphs. CoRR abs/1602.02610 (2016)

2. Bonnet, É., Purohit, N.: Metric dimension parameterized by treewidth. Algorith-
mica 83(8), 2606–2633 (2021)

3. Chartrand, G., Lesniak, L., Zhang, P.: Graphs and Digraphs, 6th edn. Chapman
and Hall/CRC (2015)

4. Dı́az, J., Pottonen, O., Serna, M., van Leeuwen, E.J.: On the complexity of metric
dimension. In: Epstein, L., Ferragina, P. (eds.) Algorithms - ESA 2012 (2012)

5. Dirac, G.A.: On rigid circuit graphs. Abh. Math. Semin. Univ. Hambg. 25, 71–76
(1961). https://doi.org/10.1007/BF02992776

6. Epstein, L., Levin, A., Woeginger, G.J.: The (weighted) metric dimension of graphs:
hard and easy cases. Algorithmica 72(4), 1130–1171 (2015)

7. Eroh, L., Feit, P., Kang, C.X., Yi, E.: The effect of vertex or edge deletion on the
metric dimension of graphs. J. Comb 6(4), 433–444 (2015)

8. Foucaud, F., Mertzios, G.B., Naserasr, R., Parreau, A., Valicov, P.: Identification,
location-domination and metric dimension on interval and permutation graphs. II.
Algorithms and complexity. Algorithmica 78(3), 914–944 (2017)

9. Garey, J.: A guide to the theory of NP-completeness. J. Algorithms (1979)
10. Gima, T., Hanaka, T., Kiyomi, M., Kobayashi, Y., Otachi, Y.: Exploring the gap

between treedepth and vertex cover through vertex integrity. Theor. Comput. Sci.
918, 60–76 (2022)

11. Harary, F., Melter, R.A.: On the metric dimension of a graph. Ars Combinatoria
2, 191–195 (1975)

12. Hartung, S., Nichterlein, A.: On the parameterized and approximation hardness of
metric dimension. In: 2013 IEEE Conference on Computational Complexity, pp.
266–276. IEEE (2013)

13. Kloks, T.: Treewidth: Computations and Approximations. Springer, Heidelberg
(1994)

14. Li, S., Pilipczuk, M.: Hardness of metric dimension in graphs of constant treewidth.
Algorithmica 84(11), 3110–3155 (2022)

15. Slater, P.J.: Leaves of trees. Congressus Numerantium 14 (1975)

https://doi.org/10.1007/BF02992776

Efficient Constructions
for the Győri-Lovász Theorem on Almost

Chordal Graphs

Katrin Casel(B) , Tobias Friedrich , Davis Issac ,
Aikaterini Niklanovits(B) , and Ziena Zeif

Hasso Plattner Institute, University of Potsdam, 14482 Potsdam, Germany
{Katrin.Casel,Tobias.Friedrich,Davis.Issac,Aikaterini.Niklanovits,

Ziena.Zeif}@hpi.de

Abstract. In the 1970s, Győri and Lovász showed that for a k-
connected n-vertex graph, a given set of terminal vertices t1, . . . , tk and
natural numbers n1, . . . , nk satisfying

∑k
i=1 ni = n, a connected vertex

partition S1, . . . , Sk satisfying ti ∈ Si and |Si| = ni exists. However, poly-
nomial time algorithms to actually compute such partitions are known
so far only for k ≤ 4. This motivates us to take a new approach and
constrain this problem to particular graph classes instead of restricting
the values of k. More precisely, we consider k-connected chordal graphs
and a broader class of graphs related to them. For the first class, we give
an algorithm with O(n2) running time that solves the problem exactly,
and for the second, an algorithm with O(n4) running time that deviates
on at most one vertex from the required vertex partition sizes.

Keywords: Győri-Lovász theorem · chordal graphs · HHD-free graphs

1 Introduction

Partitioning a graph into connected subgraphs is a fundamental task in graph
algorithms. Such connected partitions occur as desirable structures in many
application areas such as image processing [8], road network decomposition [9],
and robotics [17].

From a theoretical point of view, the existence of a partition into connected
components with certain properties also gives insights into the graph structure.
In theory as well as in many applications, one is interested in a connected parti-
tion that has a given number of subgraphs of chosen respective sizes. With the
simple example of a star-graph, it is observed that not every graph admits a con-
nected partition for any such choice of subgraph sizes. More generally speaking,
if there exists a small set of t vertices whose removal disconnects a graph (sepa-
rator), then any connected partition into k > t subgraphs has limited choice of
subgraph sizes. Graphs that do not contain such a separator of size less than k
are called k-connected.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
D. Paulusma and B. Ries (Eds.): WG 2023, LNCS 14093, pp. 143–156, 2023.
https://doi.org/10.1007/978-3-031-43380-1_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-43380-1_11&domain=pdf
http://orcid.org/0000-0001-6146-8684
http://orcid.org/0000-0003-0076-6308
http://orcid.org/0000-0001-5559-7471
http://orcid.org/0000-0002-4911-4493
http://orcid.org/0000-0003-0378-1458
https://doi.org/10.1007/978-3-031-43380-1_11

144 K. Casel et al.

On the other hand, Győri and Lovász independently showed that k-
connectivity is not just necessary but also sufficient to enable a connected par-
titioning into k subgraphs of required sizes, formally stated by the following
result.
Győri-Lovász Theorem ([4,7]). Let k ≥ 2 be an integer, G = (V,E) a k-
connected graph, t1, . . . , tk ∈ V distinct vertices and n1, . . . , nk ∈ N such that∑k

i=1 ni = |V |. Then G has disjoint connected subgraphs G1, . . . Gk such that
|V (Gi)| = ni and ti ∈ V (Gi) for all i ∈ [k].

The caveat of this famous theorem is that the constructive proof of it yields
an exponential time algorithm. Despite this result being known since 1976, to this
day we only know polynomial constructions for restricted values of k. Specifically,
in 1990 Suzuki et al. [15] provided such an algorithm for k = 2 and also for
k = 3 [14]. Moreover in 1994 Wada et al. [16] also provided an extended result for
k = 3. Nakano et al. [10] gave a linear time algorithm for the case where k = 4,
G is planar and the given terminals are located on the same face of a plane
embedding of G, while in 2016 Hoyer and Thomas [5] provided a polynomial
time algorithm for the general case of k = 4. And so far, this is where the list
ends, thus for k ≥ 5 it remains open whether there even exists a polynomial time
construction.

Towards a construction for general k, we consider restricting the class of
k-connected graphs instead of the values of k. More precisely, we consider (gen-
eralizations of) chordal k-connected graphs. A graph is called chordal, if it does
not contain an induced cycle of length more than three. The restriction to chordal
graphs is known to often yield tractability for otherwise NP-hard problems, for
example chromatic number, clique number, independence number, clique cover-
ing number and treewidth decomposition [13]. Apart from the interest chordal
graphs have from a graph theoretic point of view, their structural properties
have also been proven useful in biology when it comes to studying multidomain
proteins and network motifs (see e.g. [11,12]).

Our Contribution. To the best of our knowledge, this paper is the first to pursue
the route of restricting the Győri-Lovász Theorem to special graph classes in
order to develop a polynomial construction for general values of k on a non-
trivial subclass of k-connected graphs. We believe that in general considering
the structure of the minimal separators of a graph is promising when it comes
to developing efficient algorithms for the Győri-Lovász Theorem.

We give a constructive version of the Győri-Lovász Theorem for chordal k-
connected graphs with a running time in O(|V |2). Observe here that this con-
struction works for all values of k. Then we show how this result can be gener-
alized in two directions.

First, we generalize our result to the vertex weighted version of the Győri-
Lovász Theorem (as proven independently by Chandran et al. [2], Chen et al. [3]
and Hoyer [5]), specifically deriving the following theorem.

Theorem 1. Let k ≥ 2 be an integer, G = (V,E,w) a vertex-weighted k-
connected chordal graph with w : V → N and wmax := maxu∈V w(u), t1, . . . , tk ∈

Győri-Lovász Theorem on Almost Chordal Graphs 145

V distinct vertices, and w1, . . . , wk ∈ N with wi ≥ w(ti) for all i ∈ [k] and
∑k

i=1 wi = w(V). A partition S1, . . . , Sk of V , such that G[Si] is connected,
ti ∈ Si and wi − wmax < w(Si) < wi + wmax , for all i ∈ [k], can be computed in
time O(|V |2).

We further use this weighted version to derive an approximate version of
the Győri-Lovász Theorem for a larger graph class. Specifically we define Iij
to contain all graphs that occur from two distinct chordless Cj ’s that have at
least i vertices in common. We focus on I24-free combined with HH-free graphs.
More specifically, we consider the subclass of k-connected graphs that contain
no hole or house as an induced subgraph (see preliminaries for the definitions
of structures such as hole, house etc.) and that does not contain two distinct
induced C4 that share more than one vertex. We call this class of graphs HHI24-
free . Note that HHI24-free , apart from being a strict superclass of chordal graphs,
is also a subclass of HHD-free graphs (that is house, hole, domino-free graphs),
a graph class studied and being used in a similar manner as chordal graphs as
it is also a class where the minimum fill-in set is proven to be polynomially
time solvable [1] (see also [6] for NP-hard problems solved in polynomial time on
HHD-free graphs). Taking advantage of the fact that given an HHI24-free graph,
the subgraph formed by its induced C4 has a treelike structure, we are able to
derive the following result.

Theorem 2. Let k ≥ 2 be an integer, G = (V,E,w) a vertex-weighted k-
connected HHI24-free graph with w : V → N and wmax := maxu∈V w(u),
t1, . . . , tk ∈ V distinct vertices, and w1, . . . , wk ∈ N with wi ≥ w(ti) for all
i ∈ [k] and

∑k
i=1 wi = w(V). A partition S1, . . . , Sk of V , such that G[Si] is

connected, ti ∈ Si and wi − 2wmax < w(Si) < wi + 2wmax , for all i ∈ [k], can be
computed in time O(|V |4).
Notice that the above theorem implies a polynomial time algorithm with an
additive error of 1 for the unweighted case.

2 Preliminaries

All graphs mentioned in this paper are undirected, finite and simple. Given a
graph G and a vertex v ∈ V (G) we denote its open neighborhood by NG(v) :=
{u ∈ V (G) | uv ∈ E(G)} and by NG[v] its closed neighborhood, which is N(v) ∪
{v}. Similarly we denote by NG(S) :=

⋃
v∈S NG(v)\S the open neighborhood

of a vertex set S ⊆ V (G) and by NG[S] := NG(S) ∪ S its closed neighborhood.
We omit the subscript G when the graph we refer to is clear from the context.
A vertex v ∈ V (G) is universal to a vertex set S ⊂ V (G) if S ⊆ N(v). Let G be
a graph and S ⊆ V (G). The induced subgraph from S, denoted by G[S], is the
graph with vertex set S and all edges of E(G) with both endpoints in S.

A graph G is chordal if any cycle of G of size at least 4 has a chord (i.e.,
an edge linking two non-consecutive vertices of the cycle). A vertex v ∈ V (G)
is called simplicial if N [v] induces a clique. Based on the existence of simplicial

146 K. Casel et al.

vertices in chordal graphs, the following notion of vertex ordering was given.
Given a graph G, an ordering of its vertices (v1, . . . , vn) is called perfect elimi-
nation ordering (p.e.o.) if vi is simplicial in G[{vi, vi+1, . . . , vn}] for all i ∈ [n].
Given such an ordering σ : V (G) → {1, . . . , n} and a vertex v ∈ V (G) we call
σ(v) the p.e.o. value of v. Rose et al. [13] proved that a p.e.o. of any chordal
graph can be computed in linear time.

Let e = {u, v} be an edge of G. We denote by G/e the graph G′, that occurs
from G by the contraction of e, that is, by removing u and v from G and replacing
it by a new vertex z whose neighborhood is (N(u) ∪ N(v)) \{u, v}.

A graph G is connected if there exists a path between any pair of distinct
vertices. Moreover, a graph is k-connected for some k ∈ N if after the removal of
any set of at most k − 1 distinct vertices G remains connected. Given a graph
G and a vertex set S ⊆ V (G), we say that S is a separator of G if its removal
disconnects G. We call S a minimal separator of G if the removal of any subset
S′ ⊆ V (G) with |S′| < |S| results in a connected graph.

We now define some useful subgraphs, see also Fig. 1 for illustrations. An
induced chordless cycle of length at least 5 is called a hole. The graph that
occurs from an induced chordless C4 where exactly two of its adjacent vertices
have a common neighbor is called a house. When referring to the induced C3 part
of a house we call it roof while the induced C4 is called body. Two induced C4

sharing exactly one edge form a domino. A graph that contains no hole, house or
domino as an induced subgraph is called HHD-free. We call a graph that consists
of two C4 sharing a vertex, and an edge that connects the two neighbors of the
common vertex in a way that no other C4 exists a double house.

Lastly, let G = (V,E) be a k-connected graph, let t1, . . . , tk ∈ V be k distinct
vertices, and let n1, . . . , nk be natural numbers satisfying

∑k
i=1 ni = |V |. We

call S1, . . . Sk ⊆ V (G) a GL-Partition of G if S1, . . . Sk forms a partition of
V (G), such that for all i ∈ [k] we have that G[Si] is connected, ti ∈ Si and
|Si| = ni. When there exists an l ∈ N, such that for such a partition only
ni − l ≤ |Si| ≤ ni + l holds instead of |Si| = ni, we say that S1, . . . , Sk is a
GL-Partition of G with deviation l.

Fig. 1. Specific subgraphs used throughout the paper, from left to right: house, double
house, domino and hole example

3 GL-Partition for Chordal Graphs

We present a simple, implementable algorithm with quadratic running time
that computes GL-Partitions in chordal graphs. We then show that a slight

Győri-Lovász Theorem on Almost Chordal Graphs 147

modification of our algorithm is sufficient to compute a GL-Partition on a ver-
tex weighted graph, thus proving Theorem 1.

3.1 GL-Partition for Unweighted Chordal Graphs

For simplicity, we first prove the restricted version of Theorem 1 to unweighted
graphs. We use a p.e.o. to compute a vertex partition, as described formally
in Algorithm 1. This algorithm receives as input a k-connected chordal graph
G = (V,E), terminal vertices t1, . . . , tk ∈ V , and natural numbers n1, . . . , nk sat-
isfying

∑k
i=1 ni = n, and outputs connected vertex sets S1, . . . , Sk ⊆ V such that

|Si| = ni and ti ∈ Si. In the beginning of the algorithm we initialize each set Si

to contain only the corresponding terminal vertex ti, and add vertices iteratively
to the non-full sets (Si’s that have not reached their demanded size). We say a
vertex v is assigned if it is already part of some Si and unassigned otherwise. At
each iteration, the unassigned neighborhood of the union of the previously non-
full sets is considered, and the vertex with the minimum p.e.o. value is selected
to be added to a non-full set. In case there is more than one non-full set in the
neighborhood of this vertex, it is added to the one with lowest priority, where
the priority of each set is defined to be the largest p.e.o. value of its vertices so
far. The algorithm terminates once all vertices are assigned, in O(|V |2) time.

Algorithm 1: ChordalGL
Input: k-connected chordal graph G = (V, E), terminal vertices t1, . . . , tk ∈ V ,

and natural numbers n1, . . . , nk satisfying
∑k

i=1 ni = n
Output: Connected vertex sets S1, . . . , Sk ⊆ V such that |Si| = ni and ti ∈ Si

1 σ ← Compute p.e.o. of G as function σ : V → [|V |]
2 Si ← {ti}, for all i ∈ [k]
3 while

⋃
i∈[k] Si �= V (G) do

4 I ← {i ∈ [k] | |Si| < ni}
5 V ′ ← N(

⋃
i∈I Si)\ ⋃

i∈[k] Si

6 v′ ← arg minv∈V ′σ(v)
7 J ← {i ∈ I | v′ ∈ N(Si)}
8 j′ ← arg minj∈J max(σ(Sj))
9 Sj′ ← Sj′ ∪ {v′}

10 end
11 return S1, . . . , Sk

For the correctness of Algorithm 1 it is enough to show that the unassigned
neighborhood V ′ of all non-full sets is not empty in each iteration of the while-
loop, since this implies that we enlarge a non-full set (in the algorithm denoted
by Sj′) by one vertex (in the algorithm denoted by v′) while maintaining the size
of all remaining sets. That is, in each iteration we make progress in the sense
that |⋃i∈[k] Si| increases while maintaining the invariant |Si| ≤ ni for all Si’s.
Note that v′ ∈ N(Sj′) which in turn implies that G[Si] is always connected for

148 K. Casel et al.

all i ∈ [k]. Finally, by
∑k

i=1 ni = n and through the way we update I we ensure
that the algorithm (or while-loop) terminates as

⋃
i∈[k] Si = V only if we have

|Si| = ni for all Si’s.
Towards proving the required Lemmata for the correctness of Algorithm 1

we make the following observation for the p.e.o. of a graph.

Lemma 1. Let σ be a p.e.o of a graph G = (V,E) and P = {v1, v2, . . . , vk}
a vertex set of G that induces a simple path with endpoints v1 and vk. Then
σ(vi) > min{σ(v1), σ(vk)} for all i = 2, . . . , k − 1.

Lemma 2. In each iteration of the while-loop in Algorithm 1 we have V ′ 	= ∅.

Proof. We first define the z-connecting neighborhood of a vertex v to be the
neighbors of v that are included in some induced path connecting v to z.

We prove that every non-full set Si contains a vertex in its neighborhood
N(Si) that is unassigned, which implies that V ′ 	= ∅. Assume for a contradic-
tion that at some iteration of our algorithm there is an non-full set Si whose
neighborhood is already assigned to other sets. Let v be the vertex of Si of maxi-
mum σ value among its vertices and z be the vertex of maximum σ value among
the unassigned vertices. Note that vz 	∈ E(G). Let P be the set of all simple
induced paths of G with endpoints z and v. Consider now the following cases:

1. If σ(z) > σ(v), we get from Lemma 1 that every internal vertex of each path
in P has higher σ value than v. Note that no vertex of Si is an internal
vertex of some path in P, since all of them have smaller σ value than v by
the selection of v. Denote the z-connecting neighborhood of v by C.
Let a, b be two vertices in C and assume that a, b ∈ Sj for some j. Assume
also that during our algorithm, a is added to Sj before b. Since all vertices
of Si have smaller σ value than both a and b, and a is added to Sj before b,
the moment b is added to Sj , Si has already been formed. Consider now the
iteration that this happens. Since b ∈ N(v), G[Si∪{b}] is connected. Moreover
since σ(a) > σ(v) and Si is not full, b should be added to Si instead of Sj .
As a result each set apart from Si contains at most one such neighbor of v,
and hence |C| < k.
Observe that G\C has no induced path connecting z and v which in turn
implies that G\C has no z − v path in general. However, this contradicts the
k-connectivity of G.

2. If σ(z) < σ(v), since z is the unassigned vertex of the highest σ value among
all unassigned vertices, and by Lemma 1 all vertices in P have greater σ value
than z, all of its v-connecting neighbors in P are already assigned in some
set. Denote the set of v-connecting neighbors of z by C.
Assume now that there are two vertices of C, a and b, that are contained
in some Sj and assume also without loss of generality that a was added to
Sj before b. Note that since σ(z) < σ(b) at each iteration of our algorithm z
is considered before b to be added to some set if the induced graph remains
connected. As a result, after a is added to Sj , the induced subgraph G[Sj∪{z}]
is connected and hence z should be added to Sj before b.

Győri-Lovász Theorem on Almost Chordal Graphs 149

This means that each set contains at most one v-connecting neighbor of z
and therefore |C| < k. Since G\C has no induced path connecting z and v,
there is no z-v-path in G\C, which contradicts the k-connectivity.

Corollary 1. At each iteration of Algorithm 1, unless all vertices are assigned,
the neighborhood of each non-full set contains at least one unassigned vertex.

In the weighted case we use the above corollary of Lemma 2. In particular, it
follows from Corollary 1 that as long as we do not declare a set to be full, we
ensure that we are able to extend it by a vertex in its neighborhood that is
unassigned. Note that in the weighted case we do not know in advance how
many vertices are in each part.

3.2 GL-Partition for Weighted Chordal Graphs

With a slight modification of Algorithm 1 we can compute the weighted version
of a GL-Partition . In particular, we prove Theorem 1.

The input of our algorithm differs from the unweighted case by having a
positive vertex-weighted graph G = (V,E,w) and instead of demanded sizes
n1, . . . , nk we have demanded weights w1, . . . , wk for our desired vertex sets
S1, . . . , Sk, where

∑k
i=1 wi = w(V). Note also that w(Si) is not allowed to deviate

more than wmax = maxv∈V w(v) from wi, i.e. wi − wmax < w(Si) < wi + wmax .
Again we set each terminal vertex ti to a corresponding set Si, and enlarge

iteratively the non-full weighted sets (Si’s that are not declared as full). One
difference to the previous algorithm is that we declare a set Si as full weighted
set, if together with the next vertex to be potentially added its weight would
exceed wi. After that, we decide whether to add the vertex with respect to the
currently full weighted sets. Similar to Algorithm 1 we interrupt the while-loop if
S1, . . . , Sk forms a vertex partition of V and the algorithm terminates. However,
to ensure that we get a vertex partition in every case, we break the while-loop
when only one non-full weighted set is left and assign all remaining unassigned
vertices to it.

Observe that we can make use of Corollary 1, since Algorithm 2 follows the
same priorities concerning the p.e.o. as Algorithm 1. Basically, it implies that as
long we do not declare a set as full weighted set and there are still unassigned
vertices then those sets have unassigned vertices in their neighborhood.

We conclude this section by extending the above algorithms to graphs having
distance k/2 from being chordal. In particular this corollary is based on the
observation that an edge added to a graph does not participate in any of the
parts those algorithms output if both of its endpoints are terminal vertices.

Corollary 2. Let G be a k-connected graph which becomes chordal after adding
k/2 edges. Given this set of edges, a GL-Partition (also its weighted version)
can be computed in polynomial time but without fixed terminals.

150 K. Casel et al.

Algorithm 2: WeightedChordalGL
Input: k-connected vertex-weighted chordal graph G(V, E, w), terminal vertices

t1, . . . , tk ∈ V , and positive weights w1, . . . , wk satisfying∑k
i=1 wi = w(V)

Output: Connected vertex sets S1, . . . , Sk ⊆ V such that
wi − wmax < w(Si) < wi + wmax and ti ∈ Si

1 σ ← Compute p.e.o. of G as function σ : V → [|V |]
2 Si ← {ti}, for all i ∈ [k]
3 I ← {i ∈ [k] | w(Si) < wi}
4 while |I| �= 1 and

⋃
i∈[k] Si �= V (G) do

5 V ′ ← N(
⋃

i∈I Si)\ ⋃
i∈[k] Si

6 v′ ← arg minv∈V ′σ(v)
7 J ← {i ∈ I | v′ ∈ N(Si)}
8 j′ ← arg minj∈J max(σ(Sj))
9 if w(Sj′) + w(v′) < wj′ then

10 Sj′ ← Sj′ ∪ {v′}
11 end
12 else
13 I ← I\{j′}
14 if

∑
i∈[k]\I(wi − w(Si)) ≥ 0 or w(Sj′) + w(v′) = wj′ then

15 Sj′ ← Sj′ ∪ {v′}
16 end

17 end

18 end
19 If |I| = 1, assign all vertices V \ ⋃

i∈[k] Si (possibly empty) to Sj with j ∈ I.

4 GL-Partition for HHI24-free

This section is dedicated to the proof of Theorem 2. The underlying idea for this
result is to carefully contract edges to turn a k-connected HHI24-free graph into
a chordal graph that is still k-connected. Note that we indeed have to be very
careful here to find a set of contractions, as we need it to satisfy three seemingly
contradicting properties: removing all induced C4, preserving k-connectivity, and
contracting at most one edge adjacent to each vertex. The last property is needed
to bound the maximum weight of the vertices in the contracted graph. Further,
we have to be careful not to contract terminal vertices.

The computation for the unweighted case of the partition for Theorem 2 is
given in Algorithm 3 below, which is later extended to the weighted case as well.
Note that we can assume that ni ≥ 2 since if ni = 1 for some i ∈ [k] we simply
declare the terminal vertex to be the required set and remove it from G. This
gives us a (k − 1)-connected graph and k − 1 terminal vertices.

Before starting to prove the Lemmata required for the correctness of Algo-
rithm 3 we give a structural insight which is used in almost all proofs of the
following Lemmata.

Győri-Lovász Theorem on Almost Chordal Graphs 151

Lemma 3. Given an HHI24-free graph G and an induced C4, C ⊆ V (G), then
any vertex in V (G)\C that is adjacent to two vertices of C is universal to C.
Moreover, the set of vertices that are universal to C induces a clique.

Algorithm 3: HHI24-free GL

Input: k-connected HHI24-free graph G(V,E), terminal vertices
t1, . . . , tk ∈ V , and positive integers n1, . . . , nk ≥ 2 satisfying∑k

i=1 ni = n
Output: Connected vertex sets S1, . . . , Sk ⊆ V such that

ni − 1 ≤ |Si| ≤ ni + 1 and ti ∈ Si

1 Add an edge between each pair of non-adjacent terminals that are part of
an induced C4

2 C ← Set of all induced C4 in G.
3 G′ ← (

⋃
C∈C V (C),

⋃
C∈C E(C))

4 E′ ← ∅

5 while C 	= ∅ do
6 Select three vertices v1, v2, v3 in G′ and the corresponding cycle C ∈ C

that satisfies that for all C ′ ∈ C\{C} we have V (C ′) ∩ {v1, v2, v3} = ∅.
7 Pick a vertex v from v1, v2, v3 that is not a terminal vertex and add an

incident edge of v in G′[{v1, v2, v3}] to E′.
8 Remove the cycle C from C and the vertices v1, v2, v3 from G′.
9 end

10 Transform G to a weighted graph G′′ by contracting each edge of E′ in G,
assigning to each resulting vertex as weight the number of original
vertices it corresponds to.

11 S1, . . . Sk ← Run Algorithm 2 with G′′, the given set of terminals
t1, . . . , tk, and the size (or weight) demands n1, . . . , nk as input.

12 Reverse the edge contraction of E′ in the sets S1, . . . , Sk accordingly.

Lemma 4. Let G be an HHI24-free graph. If G contains a double house as a
subgraph then at least one of the two C4 in it has a chord.

u13 u11

u3 u1 u21

u2 u22

C1

C2

z2

z1z3

z4

u w
u1

u3

u2 w2

w3

w1 v2 v3

v1 v4

u w

u1

u2

w1

w2

Fig. 2. Illustrations for the vertex namings used in proofs, from left to right: Lemma
4, Lemma 7 and Lemma 8

The following lemma captures the essence of why the algorithm provided
in this section cannot be applied also on HHD-free graphs, since it holds for

152 K. Casel et al.

HHI24-free graphs but not for HHD-free graphs. Think for example of a simple
path P of length 5 and a vertex disjoint induced chordless C4, C. Consider also
each vertex of P being universal to C. Observe that this graph is HHD- but not
HHI24-free . Every two non adjacent vertices of C together with the endpoints of
P create an induced chordless C4. Adding a chord connecting the two endpoints
of P creates a hole and hence the resulting graph is not HHD-free.

Lemma 5. Let G be an HHI24-free graph and C = {v1, v2, v3, v4} an induced C4

in G. Then the graph G′ created by adding the chord v1v3 to G is HHI24-free and
has one less induced C4 than G.

An essential property of the graph class we work on is being closed under
contraction, since our algorithm is based on contracting edges iteratively until the
resulting graph becomes chordal. Before proving this property though, although
“after an edge contraction a new cycle is created” is intuitively clear, we formally
define what it means for a C4 to be “new”.

Definition 1. Let G be a graph, uv ∈ E(G) and G′ = G/uv. Let also w be the
vertex of G′ that is created by the contraction of uv. We say that an induced
cycle C containing w in G′ is new if NC(w) 	⊆ NG(v) and NC(w) 	⊆ NG(u).

Lemma 6. HHI24-free graphs are closed under contraction of an edge of an
induced C4.

In order to prove that the contractions of our algorithm do not affect the
connectivity, we first study the possible role of vertices on an induced C4 in
minimal separators in HHI24-free graphs.

Lemma 7. Let G be a k-connected HHI24-free graph for k ≥ 5. Then no three
vertices of an induced C4 belong in the same minimal separator.

Proof. Let G be a k-connected HHI24-free graph for k ≥ 5 and v1, v2, v3, v4 ver-
tices that induce a C4, C. Assume that v1, v2, v3 belong in the a same minimal
separator S and hence, (G\{v1, v2, v3}) is only k − 3 connected. Let also u and
w be two distinct vertices belonging in different connected components of G\S.

Consider now the chordal graph G′ created, by adding v2v4 to C and one
chord to each other induced C4 of G. By Lemma 5 this is possible by adding
exactly one chord to each induced C4 of G - in particular each addition does
not create new induced C4. Since G′ is chordal each minimal separator induces
a clique, and hence v1, v2, v3 cannot be part of the same minimal separator in
G′ because they do not induce a triangle in G′. Thus G′\S remains connected.

Let P1 be a u − w path in G′\S that contains a minimal number of added
edges. Let z1z3 ∈ E(P1) be one of the added edges, such that z3 is closer to u on
P1 than z1. Note that z1 and z3 are part of some induced C4, C ′ = {z1, z2, z3, z4}
in G. Since z1z3 cannot be replaced by neither z1z2, z2z3, nor z1z4, z4z3 (oth-
erwise we get a path with strictly less added edges than P1) it follows that
z2, z4 ∈ S.

Győri-Lovász Theorem on Almost Chordal Graphs 153

We will use the u−w paths through S in G to reach a contradiction. Since S
is a minimal u−w separator in G, there are two internally vertex disjoint u−w
paths P2 and P3, with P2∩S = {z2} and P3∩S = {z4}. Let w2 be the neighbor of
z2 on P2 closer to w, w1 the respective neighbor of z1 on P1 and w3 the respective
neighbor of z4 on P3. Let also u1, u2, u3 be the corresponding neighbors of these
paths closer to u. See the illustration in Fig. 2 for these namings, keeping in mind
that it could be w1 ∈ {w2, w3} or u1 ∈ {u2, u3} or also w1 = w2 = w3 = w or
u1 = u2 = u3 = u.

We claim that, in G, z3 is adjacent to a vertex on P
[w2,w]
2 or P

[w3,w]
3 . Assume

otherwise, and assume that P
[w2,w]
2 , P

[w3,w]
3 are induced paths in G (shortcut

them otherwise). If w2 = w3 then notice that w2 = w = w3. In order for
z3, z2, z4, w not to induce a C4 with three common vertices to C, z3 has to be
adjacent to w which is on P

[w2,w]
2 . If w2 	= w3 then assume without loss of

generality that w2 	= w. In order to not be a hole, there has to be a chord in the
cycle build by P

[w2,w]
2 , P

[w3,w]
3 with z4, z3, z2. By assumption, this chord cannot

be from z3, so it has to involve z4 or z2. Since P
[w2,w]
2 and P

[w3,w]
3 are induced

and w2 	= w, either w2 is adjacent to z4, or w3 	= w is adjacent to z2. Both
cases create a C4 that has three vertices in common with C, (w2, z2, z3, z4, and
w3, z2, z3, z4, resp.) and since z4z2 /∈ E(G), the added chord for these C4 has to
be w2z3, resp. w3z3, leading again to z3 being adjacent to some vertex on P

[w2,w]
2

or P
[w3,w]
3 .

Thus we conclude that z3 is adjacent to a vertex x on P
[w2,w]
2 or P

[w3,w]
3 in G.

This however allows to create a path from u to w with (at least) one added edge
less than P1 in G (since P2, P3 do not contain any added edges). Specifically, if
x is on P2 we get P ′

1 = P
[u,z3]
1 xP

[x,w]
2 and if x ∈ P3, P ′

1 = P
[u,z3]
1 xP

[x,w]
3 .

Since C ′ was an arbitrary cycle we conclude that v1, v2, v3 cannot be part of
the same minimal separator in G.

Lemma 8. Let G be an HHI24-free k-connected graph and C = {v1, v2, v3, v4} be
an induced C4. The graph G′ = G/v1v2 is still k-connected.

Now, we finally look specifically at Algorithm 3, and first show that its sub-
routine creating G′′ works correctly.

Lemma 9. Given an HHI24-free graph G, the vertices selected in line 6 of Algo-
rithm 3 indeed exist as long as an induced C4 exists.

Proof. Let G be an HHI24-free graph and C the set of all induced C4 in G, consider
the bipartite graph T constructed through the following procedure: Its vertices
are partitioned into two sets B, and S referred to as big and small vertices of
T , respectively. Each big vertex represents an induced C4 of C while each small
vertex represents a vertex of G participating in at least two induced C4. Each
small vertex is adjacent to the big vertices which represent a C4 this vertex
participates in. We claim that with this definition T is indeed a tree (actually
a forest). Assume now for a contradiction that T contains a cycle and let C be
one of the shortest such cycles in T .

154 K. Casel et al.

First, consider the case that C has length l ≥ 6. Since T is bipartite, due
to its construction, l is even and the vertices of C = {s1, b1, s2, b2, . . . , sl/2, bl/2}
alternate between big and small. We denote by P sw,sz

bi
a shortest path containing

edges from the C4 represented by the big vertex bi with endpoints the vertices
represented by sw and sz. Due to C, the cycle P

s1,sl/2
b1

. . . P
sl/2−1,sl/2
bl/2

exists in G

as a subgraph. Note that since we have assumed that C is a minimal length cycle
of T it is also chordless. Hence, in order for a hole not to be an induced subgraph
of G at least one chord must exist connecting two vertices corresponding to two
small ones of T . This however would create a double house as a subgraph with
the two C4 forming it being the two that correspond to big vertices of T . By
Lemma 4 this means that one of the C4 is not induced, a contradiction to the
construction of T . Notice also that in the case where l = 6 we directly find a
double house and reach a contradiction using the same arguments.

Moreover the assumption that l = 4, leads us to a contradiction to the fact
that two C4 have at most one vertex in common. Hence, T is a forest and the
vertices mentioned in line 6 are the ones belonging only to a cycle represented
by one leaf belonging in B.

Lemma 10. Given an HHI24-free graph G, lines 1–10 of Algorithm 3 transforms
G into a weighted chordal graph G′′, with the same connectivity as G and such
that each vertex from G is involved in at most one edge contraction to create G′′.

At last, notice that we can easily alter Algorithm 3 to also work for weighted
graphs, with the simple change of setting the weights of a vertex in G′′ in line 10
to the sum of the weights of the original vertices it was contracted from. With
this alteration, we can conclude now the proof of Theorem 2 with the following.

Lemma 11. Algorithm 3 works correctly and runs in time O(|V |4).
Proof. By Lemma 10, G′′ is a chordal graph with maximum vertex weight 2wmax .
Further, observe that we did not merge terminal vertices with each other, thus
we can properly run Algorithm 2 on it. By the correctness of this algorithm
(Theorem 1), we know that S1, . . . , Sk in line 11 is a GL-partition for G′′ with
deviation 2wmax . Since reversing edge-contraction does not disconnect these sets,
the unfolded sets S1, . . . , Sk are thus also a GL-partition for G with deviation
2wmax ; note here that the only edges we added to create G′′ are between terminal
vertices, which are in separate sets Si by definition.

The most time consuming part of Algorithm 3 is the preprocessing to trans-
form the input graph into a weighted chordal graph which requires O(|V |4) time
in order to find all the induced C4 (note that the induced C4 are at most (n−4)/3
since they induce a tree).

Moreover, as is the case for chordal graphs, we can sacrifice terminals to
enlarge the considered graph class.

Győri-Lovász Theorem on Almost Chordal Graphs 155

Corollary 3. Let G be a k-connected graph which becomes HHI24-free after
adding k/2 edges. Then, given those edges, a GL-Partition of G with devia-
tion 1 (also its weighted version with deviation 2wmax − 1) can be computed in
polynomial time but without fixed terminals.

References

1. Broersma, H., Dahlhaus, E., Kloks, T.: Algorithms for the treewidth and minimum
fill-in of HHD-free graphs. In: International Workshop on Graph-Theoretic Con-
cepts in Computer Science (WG), pp. 109–117 (1997). https://doi.org/10.1007/
BFb0024492

2. Chandran, L.S., Cheung, Y.K., Issac, D.: Spanning tree congestion and com-
putation of generalized Györi-Lovász partition. In: International Colloquium on
Automata, Languages, and Programming, (ICALP). LIPIcs, vol. 107, pp. 32:1–
32:14 (2018). https://doi.org/10.4230/LIPIcs.ICALP.2018.32

3. Chen, J., Kleinberg, R.D., Lovász, L., Rajaraman, R., Sundaram, R., Vetta, A.:
(Almost) tight bounds and existence theorems for single-commodity confluent
flows. J. ACM 54(4), 16 (2007). https://doi.org/10.1145/1255443.1255444

4. Győri, E.: On division of graphs to connected subgraphs, combinatorics. In: Colloq.
Math. Soc. Janos Bolyai, 1976 (1976)

5. Hoyer, A.: On the independent spanning tree conjectures and related problems.
Ph.D. thesis, Georgia Institute of Technology (2019)

6. Jamison, B., Olariu, S.: On the semi-perfect elimination. Adv. Appl. Math. 9(3),
364–376 (1988)

7. Lovász, L.: A homology theory for spanning tress of a graph. Acta Math. Hungar.
30(3–4), 241–251 (1977)

8. Lucertini, M., Perl, Y., Simeone, B.: Most uniform path partitioning and its use
in image processing. Discrete Appl. Math. 42(2), 227–256 (1993). https://doi.org/
10.1016/0166-218X(93)90048-S

9. Möhring, R.H., Schilling, H., Schütz, B., Wagner, D., Willhalm, T.: Partitioning
graphs to speedup Dijkstra’s algorithm. ACM J. Exp. Algorithmics 11, 2–8 (2006).
https://doi.org/10.1145/1187436.1216585

10. Nakano, S., Rahman, M.S., Nishizeki, T.: A linear-time algorithm for four-
partitioning four-connected planar graphs. Inf. Process. Lett. 62(6), 315–322
(1997). https://doi.org/10.1016/S0020-0190(97)00083-5

11. Przytycka, T.M.: An important connection between network motifs and parsimony
models. In: Apostolico, A., Guerra, C., Istrail, S., Pevzner, P.A., Waterman, M.
(eds.) RECOMB 2006. LNCS, vol. 3909, pp. 321–335. Springer, Heidelberg (2006).
https://doi.org/10.1007/11732990 27

12. Przytycka, T.M., Davis, G.B., Song, N., Durand, D.: Graph theoretical insights
into evolution of multidomain proteins. J. Comput. Biol. 13(2), 351–363 (2006).
https://doi.org/10.1089/cmb.2006.13.351

13. Rose, D.J., Tarjan, R.E., Lueker, G.S.: Algorithmic aspects of vertex elimination on
graphs. SIAM J. Comput. 5(2), 266–283 (1976). https://doi.org/10.1137/0205021

14. Suzuki, H., Takahashi, N., Nishizeki, T., Miyano, H., Ueno, S.: An algorithm for tri-
partitioning 3-connected graphs. J. Inf. Process. Soc. Japan 31(5), 584–592 (1990)

15. Suzuki, H., Takahashi, N., Nishizeki, T.: A linear algorithm for bipartition of bicon-
nected graphs. Inf. Process. Lett. 33(5), 227–231 (1990). https://doi.org/10.1016/
0020-0190(90)90189-5

https://doi.org/10.1007/BFb0024492
https://doi.org/10.1007/BFb0024492
https://doi.org/10.4230/LIPIcs.ICALP.2018.32
https://doi.org/10.1145/1255443.1255444
https://doi.org/10.1016/0166-218X(93)90048-S
https://doi.org/10.1016/0166-218X(93)90048-S
https://doi.org/10.1145/1187436.1216585
https://doi.org/10.1016/S0020-0190(97)00083-5
https://doi.org/10.1007/11732990_27
https://doi.org/10.1089/cmb.2006.13.351
https://doi.org/10.1137/0205021
https://doi.org/10.1016/0020-0190(90)90189-5
https://doi.org/10.1016/0020-0190(90)90189-5

156 K. Casel et al.

16. Wada, K., Kawaguchi, K.: Efficient algorithms for tripartitioning triconnected
graphs and 3-edge-connected graphs. In: van Leeuwen, J. (ed.) WG 1993. LNCS,
vol. 790, pp. 132–143. Springer, Heidelberg (1994). https://doi.org/10.1007/3-540-
57899-4 47

17. Zhou, X., Wang, H., Ding, B., Hu, T., Shang, S.: Balanced connected task alloca-
tions for multi-robot systems: an exact flow-based integer program and an approxi-
mate tree-based genetic algorithm. Expert Syst. Appl. 116, 10–20 (2019). https://
doi.org/10.1016/j.eswa.2018.09.001

https://doi.org/10.1007/3-540-57899-4_47
https://doi.org/10.1007/3-540-57899-4_47
https://doi.org/10.1016/j.eswa.2018.09.001
https://doi.org/10.1016/j.eswa.2018.09.001

Generating Faster Algorithms for d-Path
Vertex Cover

Radovan Červený(B) and Ondřej Suchý(B)

Department of Theoretical Computer Science, Faculty of Information Technology,
Czech Technical University in Prague, Prague, Czech Republic

{radovan.cerveny,ondrej.suchy}@fit.cvut.cz

Abstract. Many algorithms which exactly solve hard problems require
branching on more or less complex structures in order to do their job.
Those who design such algorithms often find themselves doing a meticu-
lous analysis of numerous different cases in order to identify these struc-
tures and design suitable branching rules, all done by hand. This process
tends to be error prone and often the resulting algorithm may be difficult
to implement in practice.

In this work, we aim to automate a part of this process and focus on
the simplicity of the resulting implementation.

We showcase our approach on the following problem. For a constant
d, the d-Path Vertex Cover problem (d-PVC) is as follows: Given an
undirected graph and an integer k, find a subset of at most k vertices
of the graph, such that their deletion results in a graph not contain-
ing a path on d vertices as a subgraph. We develop a fully automated
framework to generate parameterized branching algorithms for the prob-
lem and obtain algorithms outperforming those previously known for
3 ≤ d ≤ 8, e.g., we show that 5-PVC can be solved in O(2.7k∗nO(1))
time.

1 Introduction

The motivation behind this paper is to renew the interest in computer aided
design of graph algorithms which was initiated by Gramm et al. [22]. Many
parameterized branching algorithms follow roughly the same pattern: 1) perform
a meticulous case analysis; 2) based on the analysis, construct branching and
reduction rules; 3) argue that once the rules cannot be applied, some specific
structure is achieved. Also, depending on how “deeply” you perform the case
analysis, you may slightly improve the running time of the algorithm, but bring
nothing new to the table.

This paper aims to provide a framework which could help in the first two
steps of the pattern at least for some problems. We phrase the framework for
a rather general problem which is as follows. For any nonempty finite set of

*The authors acknowledge the support of the OP VVV MEYS funded project
CZ.02.1.01/0.0/0.0/16 019/0000765 “Research Center for Informatics” and the Grant
Agency of the CTU in Prague funded grant No. SGS20/208/OHK3/3T/18.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
D. Paulusma and B. Ries (Eds.): WG 2023, LNCS 14093, pp. 157–171, 2023.
https://doi.org/10.1007/978-3-031-43380-1_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-43380-1_12&domain=pdf
http://orcid.org/0000-0003-4528-9525
http://orcid.org/0000-0002-7236-8336
https://doi.org/10.1007/978-3-031-43380-1_12

158 R. Červený and O. Suchý

connected graphs F we define the problem F-Subgraph Vertex Deletion,
F-SVD, where, given a graph G = (V,E) and an integer k, the task is to decide
whether there is a subset S of at most k vertices of G such that G\S does
not contain any graph from F as a subgraph (not even as a non-induced one).
While we only apply the framework to the problem of d-PVC defined later, the
advantage of phrasing the framework for F-SVD is twofold. First, it makes it
easier to apply it to other problems. Second, the general notation introduced
makes the description less cluttered.

Since the problem is NP-complete for most reasonable choices of F , as follows
from the meta-theorem of Lewis and Yannakakis [27], any algorithm solving the
problem exactly is expected to have exponential running time. In this paper we
aim on the parameterized analysis of the problem, that is, to confine the expo-
nential part of the running time to a specific parameter of the input, presumably
much smaller than the input size. In particular, we only use the most standard
parameter, which is the desired size of the solution k, also called the budget.
Algorithms achieving running time f(k)nO(1) are called parameterized, fixed-
parameter tractable, or FPT. See Cygan et al. [12] for a broader introduction to
parameterized algorithms.

To understand how parameterized branching algorithms typically work, con-
sider the following simple recursive algorithm for F-SVD. We find in the input
graph G an occurrence F ′ of graph F from F . We know that at least one of
the vertices of F ′ must be in any solution. Hence, for each vertex of F ′ we try
adding it to a prospective solution, decreasing the remaining budget by one, and
recursing. The recursion is stopped when the budget is exhausted, or there are
no more occurrences of graphs from F in G, i.e., we found a solution. It is easy
to analyze that this algorithm has running time1 O∗(dk), where d is the number
of vertices of the largest graph in F . Many parameterized branching problems
follow a similar scheme, branching into a constant number of alternatives in each
step, for each alternative making a recursive call with the budget (or some other
parameter) decreased by some constant.

One can improve upon this trivial algorithm by looking at F ′ together with its
surroundings. Working with this larger graph F ′′ often allows for more efficient
branching as now multiple overlapping occurences of graphs from F may appear
in F ′′ instead of just one. Our framework and that of Gramm et al. [22] rely
upon this observation, as they iteratively take larger and larger graphs into
consideration—similarly to what a human would do, but on a much larger scale.

The fundamental novelty of our framework in comparison to that of Gramm
et al. [22] is that we are able to identify which vertices of the graph F ′′ under
consideration can still have outside neighbors and which do not. We call the
latter “red”. This way we are able to say that if you find an occurrence of F ′′ in
the input graph, you can be sure that the red vertices do not have neighbors in
the input graph apart from those that are in F ′′.

This additional information allows us to eliminate some branches of the con-
structed branching rules, rapidly improving their efficiency. It also reduces the

1 The O∗() notation suppresses all factors polynomial in the input size.

Generating Faster Algorithms for d-Path Vertex Cover 159

number of graphs we need to consider and also allows us to design better reduc-
tion rules to aid our framework.

We apply the general framework to the problem of d-Path Vertex Cover
(d-PVC). The problem lies in determining a subset S of vertices of a given
graph G = (V,E) of at most a given size k such that G\S does not contain
a path on d vertices (even not a non-induced one). It was first introduced by
Brešar et al. [2], but its NP-completeness for any d ≥ 2 follows already from
the above-mentioned meta-theorem of Lewis and Yannakakis [27]. The 2-PVC
problem corresponds to the well known Vertex Cover problem and the 3-PVC
problem is also known as Maximum Dissociation Set or Bounded Degree-
One Deletion. The d-PVC problem is motivated by the field of designing
secure wireless communication protocols [31] or route planning and speeding up
shortest path queries [20].

As mentioned above, d-PVC is directly solvable by a trivial FPT algorithm
that runs in O∗(dk) time. However, since d-PVC is a special case of d-Hitting
Set, it follows from the results of Fomin et al. [17] that for any d ≥ 4 we have
an algorithm solving d-PVC in O∗((d − 0.9245)k) time. For d ≥ 6 algorithms
with even better running times are presented in the work of Fernau [15].

In order to find more efficient solutions, the problem has been extensively
studied in a setting where d is a small constant. This is in particular the case for
the 2-PVC (Vertex Cover) problem [1,3,6,8,11,13,29,30], where the algo-
rithm of Chen, Kanj, and Xia [10] for a long time held the best known running
time of O∗(1.2738k), but recently Harris and Narayanaswamy [23] claimed the
running time of O∗(1.25288k). For 3-PVC, Tu [37] used iterative compression
to achieve a running time of O∗(2k). This was later improved by Katrenič [24] to
O∗(1.8127k), by Xiao and Kou [40] to O∗(1.7485k) by using a branch-and-reduce
approach and finally by Tsur [34] to O∗(1.713k). For the 4-PVC problem, Tu
and Jin [38] again used iterative compression and achieved a running time of
O∗(3k) and Tsur [35] gave the current best algorithm that runs in O∗(2.619k)
time. The authors of this paper developed an O∗(4k) algorithm for 5-PVC [4].
For d = 5, 6, and 7 Tsur [36] discovered algorithms for d-PVC with running
times O∗(3.945k), O∗(4.947k), and O∗(5.951k), respectively.

Using our automated framework, we are able to present algorithms with
improved running times for some d-PVC problems when parameterized by the
size of the solution k. The results are summarized in Table 1.

Further Related Work. The only other approach to generating algorithms with
provable worst-case running time upper bounds we are aware of is limited to
algorithms for SAT [14,25,26].

Several moderately exponential exact algorithms are known for 2-PVC and
3-PVC [7,39,41].

Full Version of the Paper. Due to space constraints, we omit most technical
details from this extended abstract. We refer the kind reader to the full version
of the paper [5].

160 R. Červený and O. Suchý

Table 1. Improved running times of some d-PVC problems.

d-PVC Previously known Our result Our # of rules

2-PVC O∗(1.25288k) [23] O∗(1.3294k) 9,345,243

3-PVC O∗(1.713k) [34] O∗(1.708k) 1,226,384

4-PVC O∗(2.619k) [35] O∗(2.138k) 911,193

5-PVC O∗(3.945k) [36] O∗(2.636k) 739,542

6-PVC O∗(4.947k) [36] O∗(3.334k) 414,247

7-PVC O∗(5.951k) [36] O∗(3.959k) 5,916,297

8-PVC O∗(7.0237k) [15] O∗(5.654k) 296,044

2 Fundamental Definitions and Basic Observations

In this paper we are going to assume that vertex sets of all graphs are finite
subsets of N, the set of all non-negative integers, i.e., we have a set of all graphs.
Furthermore, when adding a graph into a set of graphs, we only add the graph
if none of the graphs already in the set is isomorphic to it. Similarly, when
forming a set of graphs we only add one representative for each isomorphism
class. Finally, when subtracting a graph from a set, we remove from the set all
graphs isomorphic to it.

For any nonempty finite set of connected graphs F we define the problem:

F-Subgraph Vertex Deletion, F-SVD

Input: A graph G = (V, E), an integer k ∈ N

Output: A set S ⊆ V , such that |S| ≤ k and no subgraph of G\S is isomorphic to
a graph in F

We call F of F-SVD a bump-inducing set. We call a graph G bumpy if it
contains some graph from the bump-inducing set F as a subgraph. We call a
vertex subset S a solution (for a graph G = (V,E)), if the graph G\S is not
bumpy. Since F is finite, checking if G is bumpy is polynomial in the size of G.

Next we define a variant of a supergraph with a restriction that the original
graph has to be an induced subgraph of the supergraph.

Definition 1 (expansion, i-expansion, σ, σi, σ∗). Let H be a connected
graph. A graph G is an expansion of H, if G is connected, V (H) ⊆ V (G) and
G[V (H)] = H. It is an i-expansion for i ∈ N if furthermore |V (G)| = |V (H)| + i.
For i ∈ N let σi(H) denote the set of all i-expansions of H (note again that we
take only one representative for each isomorphism class). As shorthand, we will
use σ(H) = σ1(H). Let σ∗(H) =

⋃
i∈N

σi(H) denote the set of all expansions
of H.

The following (restricted) variant of a branching rule is the building block of
our algorithm.

Generating Faster Algorithms for d-Path Vertex Cover 161

Definition 2 (Subgraph branching rule). A subgraph branching rule is a
triple (H,R,B), where H is a connected bumpy graph, R ⊆ V (H) is a set of red
vertices (representing the vertices supposed not to have neighbors outside H),
and B ⊆ (

2V (H)\{∅})
is a non-empty set of branches.

Definition 3 (An application of a subgraph branching rule). We say that
a subgraph branching rule (H,R,B) applies to graph G, if G contains an induced
subgraph H ′ isomorphic to H by isomorphism φ : V (H) → V (H ′) (witnessing
isomorphism) and for every r ∈ R we have NG(φ(r)) ⊆ V (H ′). In other words,
the vertices of H ′ corresponding to red vertices only have neighbors inside the
subgraph H ′. If the rule applies and the current instance is (G, k), then the
algorithm makes for each B ∈ B a recursive call with instance (G\φ(B), k−|B|).

Note that we do not allow ∅ ∈ B. Therefore the budget gets reduced and we
are making progress in every branch.

Definition 4 (Correctness of a subgraph branching rule). A subgraph
branching rule (H,R,B) is correct, if for every G and every solution S for G
such that (H,R,B) applies to G and φ : V (H) → V (H ′) is the witnessing
isomorphism, there exists a solution S′ for G with |S′| ≤ |S| and a branch
B ∈ B such that φ(B) ⊆ S′.

Definition 5 (Branching factor of a subgraph branching rule). For any
subgraph branching rule (H,R,B) let bf ((H,R,B)) be the branching factor of
the branches in B, i.e., the unique positive real solution of the equation: 1 =∑

B∈B x−|B| (see [19, Chapter 2.1 and Theorem 2.1] for more information on
(computing) branching factors).

Observation 1. For any connected bumpy graph H and any R ⊆ V (H) we can
always construct at least one correct subgraph branching rule.

The following definition formalizes a function that, given a graph H and a
set of vertices R, computes a set B of branches such that (H,R,B) is a correct
subgraph branching rule.

Definition 6 (Brancher). A brancher is a function which assigns to any con-
nected bumpy graph H and R ⊆ V (H) a correct branching rule τ(H,R) =
(H,R,B) for some non-empty set B ⊆ (

2V (H)\{∅}). For a brancher τ as a
shorthand let τ(H) = τ(H, ∅). For a set of graphs {H1,H2, . . . , Hr} we will have
τ({H1,H2, . . . , Hr}) = {τ(H1), τ(H2), . . . , τ(Hr)}.

The above observation shows that at least one brancher exists.

Definition 7. For a set of subgraph branching rules L = (�1, �2, . . . , �r) where
�i = (Hi, Ri,Bi) we will denote Ψ(L) = max{|V (Hi)| | (Hi, Ri,Bi) ∈ L} the
maximum number of vertices among the graphs of the subgraph branching rules
in L.

162 R. Červený and O. Suchý

The framework makes possible to introduce a number of handmade reduc-
tion2 or branching rules, denoted as A, to help the generating algorithm steer it
away from some difficult corner cases. Typically, their purpose is to ensure some
substructures no longer appear in the input graph.

Next we define the crucial property of a set of subgraph branching rules
which forms a base for the proof of correctness of the generated algorithm.

Definition 8. A set of subgraph branching rules L = (�1, �2, . . . , �r) is called
exhaustive with respect to A if every rule �i is correct and for every connected
bumpy graph G to which no handmade rule in A applies and which has at least
Ψ(L) vertices there is a subgraph branching rule �i in L that applies to G. If the
set is exhaustive with respect to ∅, that is, even without any handmade rules, we
will omit the “with respect to A” clause.

In the process of generating the algorithm, we aim to maintain an exhaustive
set of subgraph branching rules at all times.

The following observation identifies our starting set of graphs.

Observation 2. Let F be the bump-inducing set of some F-SVD problem. Let
f = maxH∈F |V (H)|. Let L = {F1, F2, . . . , Fr} be the set of all connected bumpy
graphs with f vertices. Let τ be a brancher. Then the set of subgraph branching
rules L = τ(L) is exhaustive.

3 The Output Algorithm and Its Correctness

Our goal will be to obtain a set L of subgraph branching rules with good branch-
ing factors which is exhaustive with respect to A. This section summarizes how
we use the set to design an algorithm for F-SVD once we obtain such a set. We
call the algorithm (A,L)-Algorithm for F-SVD and its pseudocode is available
in Algorithm 1.

The algorithm first applies some trivial stopping conditions (lines 3 to 5).
Then it applies the rules from A (lines 6 to 7). Next, if every connected com-
ponent is small, it finds a solution for each of them separately by a brute force
(lines 8 to 12). Finally, it takes a component which is large enough and finds a
subgraph branching rule from L that applies to the component and applies it by
making the appropriate recursive calls (lines 13 to 18).

The following theorem states that this algorithm is indeed correct.

Theorem 1. Let A be a list of handmade rules and L be a set of subgraph
branching rules. If L is exhaustive with respect to A, all rules in A are correct
and can be applied in polynomial time, and each branching rule in A ∪ L has
branching factor at most β, then the (A,L)-Algorithm for F-SVD is correct and
runs in O∗(βk) time.

2 Roughly speaking, a reduction rule is a polynomial-time procedure that replaces the
input instance with another one, preserving the answer.

Generating Faster Algorithms for d-Path Vertex Cover 163

Implementation Considerations. We want to emphasize, that the effort needed
to implement the algorithm does not grow with the number of generated rules
in L as the code that implements the mechanic on line 14 remains the same
regardless of the number of rules. Further, the generated list L is given encoded
in a machine-readable format, which further simplifies the implementation.

Algorithm 1. (A,L)-Algorithm for F-SVD

1: Let A be a list of handmade rules and L be a set of subgraph branching rules.
2: function SolveRecursively(G, k)
3: if k < 0 then Return NO.

4: if G is not bumpy then Return YES.

5: if k = 0 then Return NO.
6: if Some rule from A can be applied to G then
7: Find the first rule �A from A that can be applied to G. Apply �A to G and

return the corresponding answer (might involve recursive calls to SolveRecursively).

8: if Each bumpy connected component of G has less than Ψ(L) vertices then
9: Find the optimal solution for each component separately by brute-force.

10: Let the solutions be S1, S2, . . . , Sc.
11: if

∑c
i=1 |Si| ≤ k then Return YES.

12: else Return NO.
13: Let C be the vertices of the bumpy connected component of G with at least

Ψ(L) vertices.
14: Find a branching rule (H, R, B) from the set L that can be applied to G[C].
15: Let φ be the corresponding isomorphism.
16: for B ∈ B do
17: if SolveRecursively(G\φ(B), k − |B|) outputs YES then Return YES.

18: Return NO.

4 The Generating Algorithm

In this section we describe the algorithm to generate a suitable list of subgraph
branching rules.

For a fixed F-SVD problem the input of the algorithm are the bump-inducing
set F , a function HandledA which can identify the situations handled by the
handmade branching and reduction rules in A, and the target branching factor
β ∈ R. We assume that the handmade rules in A are correct in the context of
the given F-SVD problem, they can be applied in polynomial time, and that the
branching rules have branching factors at most β. The output of the algorithm is
an ordered list of subgraph branching rules L, exhaustive with respect to A, such
that every rule in L has branching factor at most β. The algorithm will be called
the (F ,A, β)-Algorithm and its output satisfies the assumptions of Theorem 1.

4.1 Overview of the Algorithm

The algorithm maintains an ordered list and a set of connected bumpy graphs
named Lgood and Lbad, respectively. The list Lgood stores graphs that already

164 R. Červený and O. Suchý

give rise to good subgraph branching rules, whereas the set Lbad represents the
substructures for which the algorithm did not find any effective way to tackle
them yet. The algorithm starts with Lgood empty and Lbad being the set from
Observation 2.

The algorithm works in rounds and in each round it tries to move as many
graphs currently in Lbad to Lgood. Firstly, for each graph in Lbad, the algorithm
“colors red” the vertices that cannot have any outside neighbors. This process
is done by the Color function introduced below. Secondly, for each now colored
graph in Lbad, it checks whether the substructure can be handled by some hand-
made rule in A. If it does, the graph is moved from Lbad to the end of Lgood.
Otherwise, it designs a subgraph branching rule for it with the smallest branching
factor it can achieve and if the branching factor of the produced rule is at most β,
it again moves the graph from Lbad to the end of Lgood. In one round, the
algorithm repeats the above steps as long as possible. Once no graph from Lbad

can be moved to Lgood this way, the algorithm replaces all graphs in Lbad by all
their 1-expansions and starts a next round. This corresponds to deepening the
analysis, i.e., considering larger parts of the input graph at once.

4.2 Color function

Let H be a connected graph and F be a set of connected graphs. The vertex
v ∈ V (H) will be colored red, i.e., we put v into R, if all 1-expansions of H,
where the vertex v has more neighbors in the 1-expansion of H than in H itself,
are already also expansions of some graphs in F .

In our algorithm, H is some graph from Lbad and F is the list Lgood (see
Fig. 1 for an example).

Fig. 1. Illustration of the Color function.

5 Generating Subgraph Branching Rules

Once we have a graph H together with its red vertices R ⊆ V (H), we want to
generate a correct subgraph branching rule for it with as small branching factor
as possible.

Generating Faster Algorithms for d-Path Vertex Cover 165

5.1 Overview of the Approach

We start by brute forcing all the local solutions for the graph H, we keep only
those that are inclusion-wise minimal, and we use them to get our initial set
of branches Bmin . It is easy to see, that the resulting subgraph branching rule
(H,R,Bmin) is correct, but not very efficient.

To improve this rule, we employ a function called DominanceFree (described
below) which uses the red vertices R to filter out some unnecessary branches.
Let us label the result as Bdf .

Finally, we further optimize Bdf with the following observation.

Observation 3. Let (H,R,B) be a correct subgraph branching rule. For any
A ⊆ V (H), A 	= ∅ construct the branches BA = {B | B ∈ B ∧ A 	⊆ B} ∪ {A}.
The subgraph branching rule (H,R,BA) is correct.

We greedily improve the branches Bdf by repeatedly trying all possible
replacements and picking those that minimize the branching factor the most.
Let us label the result Badj .

The final generated subgraph branching rule is then (H,R,Badj).

5.2 DominanceFree function

The input of the function is a connected bumpy graph H, R ⊆ V (H), and B
such that (H,R,B) is a correct subgraph branching rule.

The point is that if a vertex v has no neighbors outside H (the red vertices),
then it might be more beneficial to have a different vertex in the solution instead
of v. We call this the dominance between branches.

The basic idea is to take a subset R∗ of the red vertices and replace all
vertices of the solution in this set by the open neighborhood NH(R∗)\R∗. We
only want to do that if this does not increase the size of the solution and if
H[R∗] is not bumpy. To increase the power of this notion, we do this in a graph
H ′ = H\Bdel , where Bdel is a set of vertices shared by both the branches.

Definition 9 (Dominated branch). Let (H,R,B) be a correct subgraph
branching rule. We say that branch B ∈ B is dominated by branch Bd ∈ B
if Bd 	= B and there exists a subset Bdel

� B such that for H ′ = H\Bdel ,
R′ = R\Bdel there exists a subset R∗ ⊆ R′, R∗ 	= ∅ such that the following holds:

1. H[R∗] is not bumpy,
2. |R∗ ∩ B| ≥ |NH′(R∗)\R∗| ≥ 1,
3. Bd ⊆ (B ∪ NH′(R∗))\R∗.

Note that if NH′(R∗)\R∗ = ∅, then Bd ⊆ B, a case that cannot appear in Bmin .

Lemma 1. If (H,R,B) is a correct subgraph branching rule and branch B ∈ B is
dominated by branch Bd ∈ B, then (H,R,B\{B}) is a correct subgraph branching
rule.

The purpose of the DominanceFree function is to remove branches that are
dominated by other branches. However, as there might be cycles of dominance,

166 R. Červený and O. Suchý

we have to be a little bit more careful. Consider directed graph GB = (B, EB)
such that (Bi, Bj) ∈ EB if and only if Bi is dominated by Bj . Let C1, C2, . . . , Cc

be the strongly connected components of GB. By rep(Ci) we denote an arbitrary,
but fixed, branch B ∈ Ci. A component Ci is called a sink component if there
is no other component Cj , i 	= j such that there exists an edge (Bi, Bj) ∈ EB
where Bi ∈ Ci and Bj ∈ Cj . The DominanceFree function returns the branches
Bdf = {rep(Ci) | i ∈ {1, 2, . . . , c} ∧ Ci is a sink component}.

6 Applying (F ,A, β)-Algorithm to d-PVC

We are now going to show the specifics of applying the (F ,A, β)-Algorithm
to the d-Path Vertex Cover problem. It is easy to see that d-PVC equals
F-SVD for F = {Pd}.

6.1 Handmade Rules

For the (F ,A, β)-Algorithm to work for interesting values of β, we provide two
handmade polynomial time reduction rules to A that are correct for d-PVC.

Reduction Rule 1 (Red component reduction for d-PVC.) Let (G, k) be an
instance of d-PVC. Let v ∈ V (G) be a vertex such that there are at least
two Pd-free connected components C1, C2 in G\v. If there is a Pd in G[{v} ∪
V (C1)∪V (C2)], reduce (G, k) to instance (G\({v}∪V (C1)∪V (C2)), k−1) which
corresponds to taking v into a solution. Otherwise, let P 1

i be the longest path in
G[{v} ∪ V (C1)] starting in v and let P 2

j be the longest path in G[{v} ∪ V (C2)]
starting in v. Assume, without loss of generality, that i ≤ j. Then, reduce the
instance (G, k) to (G\V (C1), k).
Reduction Rule 2 (Red star reduction for d-PVC, d ≥ 4) Let (G, k) be the
instance of d-PVC. Suppose there exists a subset C ⊆ V (G), |C| ≤ ⌊

d
2

⌋ − 1 for
which there is a subset L ⊆ V (G) such that ∀v ∈ L,N(v) = C and |L| ≥ 2|C|.
Let x ∈ L. Then reduce instance (G, k) to instance (G\{x}, k).
We now discuss how to incorporate these reduction rules into the (F ,A, β)-
Algorithm. Note that as a part of A, if the rule applies, we would make a call of
SolveRecursively(G\({v}∪V (C1)∪V (C2)), k−1), SolveRecursively(G\V (C1), k),
or SolveRecursively(G\{x}, k), respectively, and return the answer obtained. The
following two lemmata describe the function HandledA.

Lemma 2. For the case of the red component reduction rule, let H be a con-
nected bumpy graph and R ⊆ V (H) be its red vertices. If there is a vertex
v ∈ V (H) for which there are at least two d-path free connected components
C1, C2 in H\v with V (C1), V (C2) ⊆ R then the pair H,R is handled by the red
component reduction rule, i.e., whenever any subgraph branching rule (H,R,B)
would apply to a graph G, the red component reduction rule would also apply
to G.

Lemma 3. For the case of d-PVC, d ≥ 4. Let H be a connected bumpy graph
and R ⊆ V (H) be its red vertices. If there is a subset C ⊆ V (H), |C| ≤ ⌊

d
2

⌋ − 1
for which there is a subset L ⊆ R such that ∀v ∈ L,N(v) = C and 2|C| ≤ |L|,
then the pair H,R is handled by the red star reduction rule.

Generating Faster Algorithms for d-Path Vertex Cover 167

6.2 Obtained Results

With careful implementation the (F ,A, β)-Algorithm together with our hand-
made reduction rules is able to achieve the results as summarized in Table 1. Note
that F is fixed to {Pd}, A is as described in the previous subsection and the only
parameter that varies is β. The question is then whether the algorithm finishes
with the given β or not. The table contains, for each d, the least values of β
for which our implementation of the algorithm finished. The full source code of
the implementation is available at https://github.com/generating-algorithms/
generating-dpvc. We also provide a separate repository https://github.com/
generating-algorithms/generating-dpvc-data with annotated descriptions of the
obtained algorithms. These are basically logs of the successful computation paths
taken by the algorithm and are, to some extent, verifiable by hand. Sadly, we
were not able to improve the running time of 2-PVC, but we do not know
whether it is a limitation of the algorithm itself or a limitation of time, space,
and resources.

To better understand the behavior of the generating algorithm, we provide
plots of the number of branching rules and time it takes to achieve target branch-
ing factor. The runs depicted in the plots were performed on a virtual computer
with 255 CPU cores and 128 GB of RAM.

The main point we would like to emphasize is that for the cases of d-PVC,
d ≥ 4, the first algorithms outperforming the state of the art were found in a
matter of seconds and minutes.

https://github.com/generating-algorithms/generating-dpvc
https://github.com/generating-algorithms/generating-dpvc
https://github.com/generating-algorithms/generating-dpvc-data
https://github.com/generating-algorithms/generating-dpvc-data

168 R. Červený and O. Suchý

7 Future Research Directions

We provided a framework to generate parameterized branching algorithms tai-
lored for specific vertex deletion problems. In comparison, the framework of
Gramm et al. [22] is also suited for problems where the task is to either delete
or even add edges to the graph. We wonder whether some of our ideas can be
translated to the edge setting.

While there are rather few studies on computer generated algorithms with
provable worst-case running time upper bounds, there are quite some papers
that use computer aided analysis of algorithms. In particular, the Measure &
Conquer approach, introduced by Fomin et al. [18], is popular especially for
moderately exponential algorithms [28,32,33,41]. Here the idea is to use simple
rules, while measuring the progress not only based on the number of vertices
resolved, but also on how favorably the remaining graph is structured, e.g., how
many vertices of rather low degree are present. The hope is to capture that some
unfavorable branching significantly improves the structure so that a favorable
branching appears subsequently. To accomplish this, the analysis of a single rule
is often split into many cases, based, e.g., on the degrees of the vertices involved.
The computer is then used to optimize the values assigned to favorable structures
so as to prove the lowest possible worst-case running time upper bound. Other
approaches trying to amortize between the rules with bad branching factors and
those with good branching factors include branching potential [21] or labeled
search trees [9]. See also Fernau and Raible [16] for an older survey of the topic.

It may seem interesting to combine the automated generation framework with
a computer assisted analysis of the algorithm. However, first, it seems that the
computer assisted analysis still requires a non-trivial amount of human interven-
tion, e.g., in design of the measure and cases to be distinguished by the computer.
Therefore it seems to be limited to algorithms with few branching rules and does
not scale to thousands of rules. Second, the favorable structure we gain, if it can
be captured in an automated manner at all, is then exploited in the immediate
neighborhood of the finished branching to gain the advantage. Hence, we might
possibly as well create a single branching rule encompassing both the structures
and “amortize within the rule”. Of course, many variants of such a rule would
be necessary. This is the approach already prevalent in our framework. However,
the sizes of the rules necessary might be beyond the reach of our implementation.
The question is whether some transfer of “branching potential” or some other
kind of advantage can be explicitly included in the construction of the rules in
order to enable this advanced analysis.

Finally, an obvious open question is whether there are, e.g., some handmade
rules that would help our algorithm generate a faster algorithm for Vertex
Cover (2-PVC). The fastest known algorithms of Chen, Kanj, and Xia [10] and
Harris and Narayanaswamy [23] are rather complex to both analyze (both from
the running time and correctness perspective) and implement. We made some
experiments with the struction and vertex-domination rules from [10], but these
did not seem to improve the performance of the generating algorithm.

Generating Faster Algorithms for d-Path Vertex Cover 169

References

1. Balasubramanian, R., Fellows, M.R., Raman, V.: An improved fixed-parameter
algorithm for vertex cover. Inf. Process. Lett. 65(3), 163–168 (1998). https://doi.
org/10.1016/S0020-0190(97)00213-5

2. Brešar, B., Kardoš, F., Katrenič, J., Semanǐsin, G.: Minimum k-path vertex cover.
Discret. Appl. Math. 159(12), 1189–1195 (2011). https://doi.org/10.1016/j.dam.
2011.04.008

3. Buss, J.F., Goldsmith, J.: Nondeterminism within P. SIAM J. Comput. 22(3),
560–572 (1993). https://doi.org/10.1137/0222038

4. Červený, R., Suchý, O.: Faster FPT algorithm for 5-path vertex cover. In: Ross-
manith, P., Heggernes, P., Katoen, J. (eds.) 44th International Symposium on
Mathematical Foundations of Computer Science, MFCS 2019, August 26–30, 2019,
Aachen, Germany. LIPIcs, vol. 138, pp. 32:1–32:13. Schloss Dagstuhl - Leibniz-
Zentrum für Informatik (2019). https://doi.org/10.4230/LIPIcs.MFCS.2019.32

5. Červený, R., Suchý, O.: Generating faster algorithms for d-path vertex cover
(2021). arxiv.org/abs/2111.05896

6. Chandran, L.S., Grandoni, F.: Refined memorization for vertex cover. Inf. Process.
Lett. 93(3), 123–131 (2005). https://doi.org/10.1016/j.ipl.2004.10.003

7. Chang, M., Chen, L., Hung, L., Liu, Y., Rossmanith, P., Sikdar, S.: Moderately
exponential time algorithms for the maximum bounded-degree-1 set problem. Dis-
cret. Appl. Math. 251, 114–125 (2018). https://doi.org/10.1016/j.dam.2018.05.032

8. Chen, J., Kanj, I.A., Jia, W.: Vertex cover: Further observations and further
improvements. J. Algorithms 41(2), 280–301 (2001). https://doi.org/10.1006/
jagm.2001.1186

9. Chen, J., Kanj, I.A., Xia, G.: Labeled search trees and amortized analysis: improved
upper bounds for NP-hard problems. Algorithmica 43(4), 245–273 (2005). https://
doi.org/10.1007/s00453-004-1145-7

10. Chen, J., Kanj, I.A., Xia, G.: Improved upper bounds for vertex cover. Theor.
Comput. Sci. 411(40–42), 3736–3756 (2010). https://doi.org/10.1016/j.tcs.2010.
06.026

11. Chen, J., Liu, L., Jia, W.: Improvement on vertex cover for low-degree graphs.
Networks 35(4), 253–259 (2000)

12. Cygan, M., et al.: Parameterized Algorithms. Springer, Cham (2015). https://doi.
org/10.1007/978-3-319-21275-3

13. Downey, R.G., Fellows, M.R.: Fixed parameter tractability and completeness. In:
Ambos-Spies, K., Homer, S., Schöning, U. (eds.) Complexity Theory: Current
Research, Dagstuhl Workshop, February 2–8, 1992, pp. 191–225. Cambridge Uni-
versity Press (1992)

14. Fedin, S.S., Kulikov, A.S.: Automated proofs of upper bounds on the running
time of splitting algorithms. In: Downey, R., Fellows, M., Dehne, F. (eds.) IWPEC
2004. LNCS, vol. 3162, pp. 248–259. Springer, Heidelberg (2004). https://doi.org/
10.1007/978-3-540-28639-4 22

15. Fernau, H.: Parameterized algorithmics for d-Hitting Set. Int. J. Comput. Math.
87(14), 3157–3174 (2010). https://doi.org/10.1080/00207160903176868

16. Fernau, H., Raible, D.: Searching trees: an essay. In: Chen, J., Cooper, S.B. (eds.)
TAMC 2009. LNCS, vol. 5532, pp. 59–70. Springer, Heidelberg (2009). https://
doi.org/10.1007/978-3-642-02017-9 9

17. Fomin, F.V., Gaspers, S., Kratsch, D., Liedloff, M., Saurabh, S.: Iterative com-
pression and exact algorithms. Theor. Comput. Sci. 411(7–9), 1045–1053 (2010).
https://doi.org/10.1016/j.tcs.2009.11.012

https://doi.org/10.1016/S0020-0190(97)00213-5
https://doi.org/10.1016/S0020-0190(97)00213-5
https://doi.org/10.1016/j.dam.2011.04.008
https://doi.org/10.1016/j.dam.2011.04.008
https://doi.org/10.1137/0222038
https://doi.org/10.4230/LIPIcs.MFCS.2019.32
http://arxiv.org/2111.05896
https://doi.org/10.1016/j.ipl.2004.10.003
https://doi.org/10.1016/j.dam.2018.05.032
https://doi.org/10.1006/jagm.2001.1186
https://doi.org/10.1006/jagm.2001.1186
https://doi.org/10.1007/s00453-004-1145-7
https://doi.org/10.1007/s00453-004-1145-7
https://doi.org/10.1016/j.tcs.2010.06.026
https://doi.org/10.1016/j.tcs.2010.06.026
https://doi.org/10.1007/978-3-319-21275-3
https://doi.org/10.1007/978-3-319-21275-3
https://doi.org/10.1007/978-3-540-28639-4_22
https://doi.org/10.1007/978-3-540-28639-4_22
https://doi.org/10.1080/00207160903176868
https://doi.org/10.1007/978-3-642-02017-9_9
https://doi.org/10.1007/978-3-642-02017-9_9
https://doi.org/10.1016/j.tcs.2009.11.012

170 R. Červený and O. Suchý

18. Fomin, F.V., Grandoni, F., Kratsch, D.: A measure & conquer approach for the
analysis of exact algorithms. J. ACM 56(5), 25:1–25:32 (2009). https://doi.org/10.
1145/1552285.1552286

19. Fomin, F.V., Kratsch, D.: Exact Exponential Algorithms. Springer, Heidelberg
(2010). https://doi.org/10.1007/978-3-642-16533-7

20. Funke, S., Nusser, A., Storandt, S.: On k-path covers and their applications. VLDB
J. 25(1), 103–123 (2016). https://doi.org/10.1007/s00778-015-0392-3

21. Gaspers, S.: Exponential Time Algorithms - Structures, Measures, and Bounds.
VDM Verlag Dr. Mueller e.K. (2010). https://www.cse.unsw.edu.au/sergeg/
SergeBookETA2010 print.pdf

22. Gramm, J., Guo, J., Hüffner, F., Niedermeier, R.: Automated generation of search
tree algorithms for hard graph modification problems. Algorithmica 39(4), 321–347
(2004). https://doi.org/10.1007/s00453-004-1090-5

23. Harris, D.G., Narayanaswamy, N.S.: A faster algorithm for vertex cover parame-
terized by solution size. CoRR abs/2205.08022 (2022), https://arxiv.org/abs/2205.
08022

24. Katrenič, J.: A faster FPT algorithm for 3-path vertex cover. Inf. Process. Lett.
116(4), 273–278 (2016). https://doi.org/10.1016/j.ipl.2015.12.002

25. Kojevnikov, A., Kulikov, A.S.: A new approach to proving upper bounds for MAX-
2-SAT. In: Proceedings of the Seventeenth Annual ACM-SIAM Symposium on
Discrete Algorithms, SODA 2006, Miami, Florida, USA, January 22–26, 2006, pp.
11–17. ACM Press (2006). http://dl.acm.org/citation.cfm?id=1109557.1109559

26. Kulikov, A.S.: Automated generation of simplification rules for SAT and MAXSAT.
In: Bacchus, F., Walsh, T. (eds.) SAT 2005. LNCS, vol. 3569, pp. 430–436. Springer,
Heidelberg (2005). https://doi.org/10.1007/11499107 35

27. Lewis, J.M., Yannakakis, M.: The node-deletion problem for hereditary properties
is NP-complete. J. Comput. Syst. Sci. 20(2), 219–230 (1980). https://doi.org/10.
1016/0022-0000(80)90060-4

28. Lokshtanov, Daniel, Saurabh, Saket, Suchý, Ondřej: Solving multicut faster than
2n . In: Schulz, Andreas S.., Wagner, Dorothea (eds.) ESA 2014. LNCS, vol.
8737, pp. 666–676. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-
662-44777-2 55

29. Niedermeier, R., Rossmanith, P.: Upper bounds for vertex cover further improved.
In: Meinel, C., Tison, S. (eds.) STACS 1999. LNCS, vol. 1563, pp. 561–570.
Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-49116-3 53

30. Niedermeier, R., Rossmanith, P.: An efficient fixed-parameter algorithm for 3-
hitting set. J. Discrete Algorithms 1(1), 89–102 (2003). https://doi.org/10.1016/
S1570-8667(03)00009-1

31. Novotný, M.: Design and analysis of a generalized canvas protocol. In: Samarati, P.,
Tunstall, M., Posegga, J., Markantonakis, K., Sauveron, D. (eds.) WISTP 2010.
LNCS, vol. 6033, pp. 106–121. Springer, Heidelberg (2010). https://doi.org/10.
1007/978-3-642-12368-9 8

32. van Rooij, J.M.M., Bodlaender, H.L.: Exact algorithms for dominating set. Discret.
Appl. Math. 159(17), 2147–2164 (2011). https://doi.org/10.1016/j.dam.2011.07.
001

33. van Rooij, J.M.M., Bodlaender, H.L.: Exact algorithms for edge domination. Algo-
rithmica 64(4), 535–563 (2012). https://doi.org/10.1007/s00453-011-9546-x

34. Tsur, D.: Parameterized algorithm for 3-path vertex cover. Theor. Comput. Sci.
783, 1–8 (2019). https://doi.org/10.1016/j.tcs.2019.03.013

35. Tsur, D.: An O∗(2.619k) algorithm for 4-path vertex cover. Discret. Appl. Math.
291, 1–14 (2021). https://doi.org/10.1016/j.dam.2020.11.019

https://doi.org/10.1145/1552285.1552286
https://doi.org/10.1145/1552285.1552286
https://doi.org/10.1007/978-3-642-16533-7
https://doi.org/10.1007/s00778-015-0392-3
https://www.cse.unsw.edu.au/sergeg/SergeBookETA2010_print.pdf
https://www.cse.unsw.edu.au/sergeg/SergeBookETA2010_print.pdf
https://doi.org/10.1007/s00453-004-1090-5
https://doi.org/10.1016/j.ipl.2015.12.002
http://dl.acm.org/citation.cfm?id=1109557.1109559
https://doi.org/10.1007/11499107_35
https://doi.org/10.1016/0022-0000(80)90060-4
https://doi.org/10.1016/0022-0000(80)90060-4
https://doi.org/10.1007/978-3-662-44777-2_55
https://doi.org/10.1007/978-3-662-44777-2_55
https://doi.org/10.1007/3-540-49116-3_53
https://doi.org/10.1016/S1570-8667(03)00009-1
https://doi.org/10.1016/S1570-8667(03)00009-1
https://doi.org/10.1007/978-3-642-12368-9_8
https://doi.org/10.1007/978-3-642-12368-9_8
https://doi.org/10.1016/j.dam.2011.07.001
https://doi.org/10.1016/j.dam.2011.07.001
https://doi.org/10.1007/s00453-011-9546-x
https://doi.org/10.1016/j.tcs.2019.03.013
https://doi.org/10.1016/j.dam.2020.11.019

Generating Faster Algorithms for d-Path Vertex Cover 171

36. Tsur, D.: Faster parameterized algorithms for two vertex deletion problems. Theor.
Comput. Sci. 940(Part), 112–123 (2023). https://doi.org/10.1016/j.tcs.2022.10.044

37. Tu, J.: A fixed-parameter algorithm for the vertex cover P3 problem. Inf. Process.
Lett. 115(2), 96–99 (2015). https://doi.org/10.1016/j.ipl.2014.06.018

38. Tu, J., Jin, Z.: An FPT algorithm for the vertex cover P4 problem. Discret. Appl.
Math. 200, 186–190 (2016). https://doi.org/10.1016/j.dam.2015.06.032

39. Xiao, M., Kou, S.: Exact algorithms for the maximum dissociation set and min-
imum 3-path vertex cover problems. Theor. Comput. Sci. 657, 86–97 (2017).
https://doi.org/10.1016/j.tcs.2016.04.043

40. Xiao, M., Kou, S.: Kernelization and parameterized algorithms for 3-path vertex
cover. In: Proc. TAMC 2017, pp. 654–668 (2017). https://doi.org/10.1007/978-3-
319-55911-7 47

41. Xiao, M., Nagamochi, H.: Exact algorithms for maximum independent set. Inf.
Comput. 255, 126–146 (2017). https://doi.org/10.1016/j.ic.2017.06.001

https://doi.org/10.1016/j.tcs.2022.10.044
https://doi.org/10.1016/j.ipl.2014.06.018
https://doi.org/10.1016/j.dam.2015.06.032
https://doi.org/10.1016/j.tcs.2016.04.043
https://doi.org/10.1007/978-3-319-55911-7_47
https://doi.org/10.1007/978-3-319-55911-7_47
https://doi.org/10.1016/j.ic.2017.06.001

A New Width Parameter of Graphs
Based on Edge Cuts: α-Edge-Crossing

Width

Yeonsu Chang1, O-joung Kwon1,2(B) , and Myounghwan Lee1

1 Department of Mathematics, Hanyang University, Seoul, South Korea
{yeonsu,ojoungkwon,sycuel}@hanyang.ac.kr

2 Discrete Mathematics Group, Institute for Basic Science (IBS),
Daejeon, South Korea

Abstract. We introduce graph width parameters, called α-edge-
crossing width and edge-crossing width. These are defined in terms
of the number of edges crossing a bag of a tree-cut decomposition.
They are motivated by edge-cut width, recently introduced by Brand
et al. (WG 2022). We show that edge-crossing width is equivalent to
the known parameter tree-partition-width. On the other hand, α-edge-
crossing width is a new parameter; tree-cut width and α-edge-crossing
width are incomparable, and they both lie between tree-partition-width
and edge-cut width.

We provide an algorithm that, for a given n-vertex graph G and
integers k and α, in time 2O((α`k) log(α`k))n2 either outputs a tree-cut
decomposition certifying that the α-edge-crossing width of G is at most
2α2 `5k or confirms that the α-edge-crossing width of G is more than k.
As applications, for every fixed α, we obtain FPT algorithms for the
List Coloring and Precoloring Extension problems parameterized
by α-edge-crossing width. They were known to be W[1]-hard parameter-
ized by tree-partition-width, and FPT parameterized by edge-cut width,
and we close the complexity gap between these two parameters.

Keywords: α-edge-crossing width · List Coloring · FPT algorithm

1 Introduction

Tree-width is one of the basic parameters in structural and algorithmic graph
theory, which measures how well a graph accommodates a decomposition into a
tree-like structure. It has an important role in the graph minor theory developed
by Robertson and Seymour [14–16]. For algorithmic aspects, there are various

A full version of the paper is available at https://arxiv.org/abs/2302.04624.
Y. Chang, O. Kwon, and M. Lee are supported by the National Research Founda-
tion of Korea (NRF) grant funded by the Ministry of Science and ICT (No. NRF-
2021K2A9A2A11101617 and RS-2023-00211670). O. Kwon is also supported by Insti-
tute for Basic Science (IBS-R029-C1).

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
D. Paulusma and B. Ries (Eds.): WG 2023, LNCS 14093, pp. 172–186, 2023.
https://doi.org/10.1007/978-3-031-43380-1_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-43380-1_13&domain=pdf
http://orcid.org/0000-0003-1820-1962
https://arxiv.org/abs/2302.04624.
https://doi.org/10.1007/978-3-031-43380-1_13

A New Width Parameter of Graphs Based on Edge Cuts 173

Fig. 1. The hierarchy of the mentioned width parameters. For two width parameters
A and B, A Ñ B means that every graph class of bounded A has bounded B, but
there is a graph class of bounded B and unbounded A. Also, A ∼ B means that two
parameters A and B are equivalent. fen, carvw, ecw, tcw, stcw, ecrwα, ecrw, tpw, and
tw denote feedback edge set number, carving-width, edge-cut width, tree-cut width,
slim tree-cut width, α-edge-crossing width, edge-crossing width, tree-partition-width,
and tree-width, respectively.

fundamental problems that are NP-hard on general graphs, but fixed parameter
tractable (FPT) parameterized by tree-width, that is, that can be solved in time
f(k)nO(1) on n-vertex graphs of tree-width k for some computable function f .
However, various problems are still W[1]-hard parameterized by tree-width. For
example, List Coloring is W[1]-hard parameterized by tree-width [6].

Recently, edge counterparts of tree-width have been considered. One of such
parameters is the tree-cut width of a graph introduced by Wollan [17]. Similar
to the relationship between tree-width and graph minors, Wollan established a
relationship between tree-cut width and weak immersions, and discussed struc-
tural properties. Since tree-cut width is a weaker parameter than tree-width,
one could expect that some problems that are W[1]-hard parameterized by tree-
width, are fixed parameter tractable parameterized by tree-cut width. But still
several problems, including List Coloring, remain W[1]-hard parameterized
by tree-cut width [3,7,8,10,11].

This motivates Brand et al. [2] to consider a more restricted parameter called
the edge-cut width of a graph. For the edge-cut width of a graph G, a maximal
spanning forest F of G is considered as a decomposition tree. For each vertex
v of F , the local feedback edge set of v is the number of edges e P E(G)zE(F)
where the unique cycle of the graph obtained from F by adding e contains v, and
the edge-cut width of F is the maximum local feedback edge set plus one over all
vertices of G. The edge-cut width of G is the minimum edge-cut width among all
maximal spanning forests of G. The edge-cut width with respect to a maximal

174 Y. Chang et al.

spanning forest was also considered by Bodlaender [1] to bound the tree-width
of certain graphs, with a different name called vertex remember number. Brand
et al. showed that the tree-cut width of a graph is at most its edge-cut width.
Furthermore, they showed that several problems including List Coloring are
fixed parameter tractable parameterized by edge-cut width.

A natural question is to find a width parameter f such that graph classes of
bounded f strictly generalize graph classes of bounded edge-cut width, and also
List Coloring admits a fixed parameter tractable algorithm parameterized by
f . This motivates us to define a new parameter called α-edge-crossing width. By
relaxing the condition, we also define a parameter called edge-crossing width,
but it turns out that this parameter is equivalent to tree-partition-width [5].
Recently, Ganian and Korchemna [9] introduced slim tree-cut width which also
generalizes edge-cut width. See Fig. 1 for the hierarchy of new parameters and
known parameters.

We define the α-edge-crossing width and edge-crossing width of a graph. For
a graph G, a pair T “ (T,X) of a tree T and a collection X “ {Xt Ď V (G) :
t P V (T)} of disjoint sets of vertices in G, called bags (allowing empty bags),
with the property

⋃
tPV (T) Xt “ V (G) is called the tree-cut decomposition of

G. For a node t P V (T), let T1, T2, · · · , Tm be the connected components of
T ´ t, and let crossT (t) be the number of edges incident with two distinct sets
in {

⋃
tPV (Ti)

Xt : 1 ď i ď m}. We say that such an edge crosses Xt. The crossing
number of T is maxtPV (T) crossT (t), and the thickness of T is maxtPV (T)|Xt|.
For a positive integer α, the α-edge-crossing width of a graph G, denoted by
ecrwα(G), is the minimum crossing number over all tree-cut decompositions
of G whose thicknesses are at most α. The edge-crossing width of T is the
maximum of the crossing number and the thickness of T . The edge-crossing
width of G, denoted by ecrw(G), is the minimum edge-crossing width over all
tree-cut decompositions of G.

It is not difficult to see that the 1-edge-crossing width of a graph is at most its
edge-cut width minus one, as we can take the completion of its optimal maximal
spanning forest for edge-cut width into a tree as a tree-cut decomposition with
small crossing number.

We provide an FPT approximation algorithm for α-edge-crossing width. We
adapt an idea for obtaining an FPT approximation algorithm for tree-cut width
due to Kim et al. [12].

Theorem 1. Given an n-vertex graph G and two positive integers α and k, one
can in time 2O((α`k) log(α`k))n2 either

– output a tree-cut decomposition of G with thickness at most α and crossing
number at most 2α2 ` 5k, or

– correctly report that ecrwα(G) ą k.

As applications of α-edge-crossing width, we show that List Coloring and
Precoloring Extension are FPT parameterized by α-edge-crossing width.
They were known to be W[1]-hard parameterized by tree-cut width (and so by

A New Width Parameter of Graphs Based on Edge Cuts 175

tree-partition-width) [7], and FPT parameterized by edge-cut width [2] and by
slim tree-cut width [9]. We close the complexity gap between these parameters.

Theorem 2. For a fixed positive integer α, the List Coloring and Precol-
oring Extension problems are FPT parameterized by α-edge-crossing width.

We remark that the Edge-Disjoint Paths problem is one of the W[1]-hard
problems parameterized by tree-width that motivates to study width parame-
ters based on edge cuts. Ganian and Ordyniak [10] recently proved that Edge-
Disjoint Paths is NP-hard on graphs admitting a vertex cover of size 3. This
implies that for every α ě 3, this problem is NP-hard on graphs of α-edge-
crossing width 0.

This paper is organized as follows. In Sect. 2, we give basic definitions and
notations. In Sect. 3, we establish the relationship between width parameters as
presented in Fig. 1. We present an FPT approximation algorithm for α-edge-
crossing width in Sect. 4 and discuss algorithmic applications in Sect. 5. We con-
clude and present some open problems in Sect. 6.

Proofs of statements marked with “‹” are deferred to the full version.

2 Preliminaries

For a set X and a positive integer n, we call
(
X
n

)
the set of all subsets of X of

size exactly n. Let N be the set of all non-negative integers, and for a positive
integer n, let [n] “ {1, 2, · · · , n}.

For a graph G, we denote by V (G) and E(G) the vertex set and the edge
set of G, respectively. Let G be a graph. For a set S of vertices in G, let G[S]
denote the subgraph of G induced by S, and let G´S denote the subgraph of G
obtained by removing all the vertices in S. For v P V (G), let G ´ v :“ G ´ {v}.
For an edge e of G, let G ´ e denote the graph obtained from G by deleting
e. The set of neighbors of a vertex v is denoted by NG(v), and the degree of v
is the size of NG(v). For two disjoint sets S1, S2 of vertices in G, we denote by
δG(S1, S2) the set of edges incident with both S1 and S2 in G.

An edge e of a connected graph G is a cut edge if G ´ e is disconnected. A
connected graph is 2-edge-connected if it has no cut edges.

For two graphs G and H, we say that G is a subdivision of H if G can be
obtained from H by subsequently subdividing edges.

A tree-decomposition of a graph G is a pair of a tree T and a family of sets
{Bt}tPV (T) of vertices in G such that (1) V (G) “ ⋃

tPV (T) Bt, (2) for every edge
uv of G, there exists a node t of T such that u, v P Bt, and (3) for every vertex
v of G, the set {t P V (T) : v P Bt} induces a subtree of T . The width of a
tree-decomposition is maxtPV (T) |Bt| ´ 1, and the tree-width of a graph, denoted
by tw(G), is the maximum width over all its tree-decompositions.

A tree-decomposition (T, {Bt}tPV (T)) is called rooted if T is a rooted tree. A
rooted tree-decomposition (T, {Bt}tPV (T)) with a root r is called nice if (1) for
a non-root leaf t of T , |Bt| “ 1, and (2) if a node t is not a non-root leaf of T ,
then it is one of the following;

176 Y. Chang et al.

– (Forget node) t has one child t′ and Bt “ Bt′z{v} for some v P Bt′ .
– (Introduce node) t has one child t′ and Bt “ Bt′ Y{v} for some v P V (G)zBt′ .
– (Join node) t has exactly two children t1 and t2 and Bt “ Bt1 “ Bt2 .

Theorem 3 (Korhonen [13]). There is an algorithm running in 2O(w)n time,
that given an n-vertex graph G and an integer w, either outputs a tree-
decomposition of G of width at most 2w ` 1 or reports that the tree-width of
G is more than w.

By applying the following lemma, we can find a nice tree-decomposition.

Lemma 1 (folklore; see Lemma 7.4 in [4]). Given a tree-decomposition of
an n-vertex graph G of width w, one can construct a nice tree-decomposition
(T,B) of width w with |V (T)| “ O(wn) in O(w2 · max(|V (T)|, n)) time.

3 Relationships Between Width Parameters

We compare width parameters as presented in Fig. 1 in the full version. Among
the relations, we prove the following inequality. This will be mainly used in our
approximation algorithm for α-edge-crossing width in Sect. 4.

Lemma 2. For every graph G and every positive integer α, tw(G) ď
5 ecrw(G) ´ 1 and tw(G) ď 3 ecrwα(G) ` 2α ´ 1.

Proof. We show the first inequality. Let k “ ecrw(G). Let T “ (T, {Xt}tPV (T))
be a tree-cut decomposition of G of edge-crossing width ecrw(G). We consider
T as a rooted tree-cut decomposition with root node r. Let σ : V (G) Ñ V (T)
be the function where v is contained in Xσ(v).

We construct a rooted tree-decomposition (T, {Bt}tPV (T)) as follows. For each
node t of T , let Ft be the set of edges ab of G satisfying that either

– (type 1) the path between σ(a) and σ(b) in T contains t as an internal node,
or

– (type 2) the path between σ(a) and σ(b) in T has length at least 1, and
contains t as an end node, and the subtree of T rooted at t does not contain
the end node of this path other than t.

Let Bt be the union of Xt and the set of vertices of G incident with an edge
in Ft.

Since crossT (t) ď k, the number of the edges of type 1 is at most k. So,
because of this type, we put at most 2k vertices into Bt. If t is the root node,
then there is no edge of type 2. Assume that t is not the root node, and let
t′ be its parent. For type 2, σ(a) “ t or σ(b) “ t, and either the vertex in
{a, b} that is not contained in Xt is contained in Bt′ or ab crosses Xt′ . Since
the number of edges ab of type 2 crossing Xt′ is at most k, we may add at
most k vertices other than Xt Y Xt′ . As |Xt Y Xt′ | ď 2k, in total, we have that
|Bt| ď (2k) ` (2k) ` k “ 5k.

A New Width Parameter of Graphs Based on Edge Cuts 177

We now verify that (T, {Bt}tPV (T)) is a tree-decomposition. Since Xt Ď Bt

for each t P V (T), every vertex of G appears in some bag. Let ab P E(G) and
assume that there is no bag of T containing both a and b. If the path between
σ(a) and σ(b) in T contains some node t of T as an internal node, then by the
construction, Bt contains both a and b. Assume that there is no node in T that
is an internal node of the path between σ(a) and σ(b) in T . This means that
σ(a) is adjacent to σ(b) in T . By symmetry, we assume that σ(a) is the parent of
σ(b). Then ab is an edge of type 2 for the node t “ σ(b), and thus, {a, b} Ď Bσ(b).
Thus, (T, {Bt}tPV (T)) satisfies the second condition.

Lastly, to see that (T, {Bt}tPV (T)) satisfies the third condition, let a P V (G).
For every vertex b P V (G) adjacent to a in G, let Pab be the path between σ(a)
and σ(b) in T . We add a to Bx for all x P V (Pab ´ {a, b}). This is the only
procedure to add a to some Bx. Since Bσ(a) contains a, the subtree of T induced
by the union of all t where a P Bt is connected. This implies that (T, {Bt})tPV (T)

satisfies the third condition.
It is straightforward to verify the second inequality with the same argument.

We show that stcw ď ecrwα and ecrwα ę stcw. We also show that ecrwα ę
tcw and tcw ę ecrwα. For positive integers k and n, let Sk,n be the graph
obtained from K1,n by replacing each edge with k internally vertex-disjoint paths
of length 2.

Lemma 3 (Ganian and Korchemna [9]). The set {S2,n : n P N} has
unbounded slim tree-cut width.

Lemma 4 (‹). (1) {S3,n : n P N} has 1-edge-crossing width at most 2.
(2) {S3,n : n P N} has unbounded tree-cut width.

Lemma 5. For every positive integer α, ecrwα ę stcw and ecrwα ę tcw.

Proof. Note that S2,n is isomorphic to an induced subgraph of S3,n. So, by (1) of
Lemma 4, S2,n has 1-edge crossing width at most 2. On the other hand, Lemma 3
shows that {S2,n : n P N} has unbounded slim tree-cut width. This shows that
ecrw1 ę stcw. Since ecrw1 ď ecrwα, we have ecrwα ę stcw.

By (1) and (2) of Lemma 4, {S3,n : n P N} has 1-edge crossing width at most
2, but unbounded tree-cut width. Therefore, ecrw1 ę tcw. Since ecrw1 ď ecrwα,
we have ecrwα ę tcw.

We now show that tcw ę ecrwα. For all positive integers k and n, we con-
struct a graph Gn

k as follows. Let A :“ {ai : i P [n]}, B “ (
A
2

)
, and Bk “ {(W, �) :

W P B and � P [k]}. Let Gn
k be the graph such that V (Gn

k) “ A Y Bk, and for
a P A and (W, �) P Bk, a is adjacent to (W, �) in E(Gn

k) if and only if a P W .

Lemma 6. For every positive integer α, tcw ę ecrwα.

Proof. Observe that {Gα`1
k : k P N} has unbounded α-edge-crossing width.

We claim that for every k, Gα`1
k has tree-cut width at most α`1. Let (A,Bk)

be the bipartition of Gα`1
k given by the definition. Let T be a star with center t

178 Y. Chang et al.

and leaves t1, . . . , tk(α`1
2). Let Xt “ A and each Xti

consists of a vertex of Bk.
Let T “ (T, {Xv}vPV (T)). Note that the 3-center of Ht has only vertices of A.
Thus, it has at most α ` 1 vertices. Also, for every edge e of T , adhT (e) ď 2.
So, T is a tree-cut decomposition of tree-cut width at most α ` 1.

To show stcw ď ecrwα, we use another equivalent parameter called super
edge-cut width introduced by Ganian and Korchemna [9]. The super edge-cut
width sec(G) of a graph G is defined as the minimum edge-cut width of (H,T)
over all supergraphs H of G and maximal spanning forests T of H.

Lemma 7 (‹). For every positive integer α, sec ď ecrwα.

4 An FPT Approximation Algorithm for α-Edge-Crossing
Width

We present an FPT approximation algorithm for α-edge-crossing width. We simi-
larly follow the strategy to obtain a 2-approximation algorithm for tree-cut width
designed by Kim et al. [12]. We formulate a new problem called Constrained
Star-Cut Decomposition, which corresponds to decomposing a large leaf bag
in a tree-cut decomposition, and we want to apply this subalgorithm recursively.
By Lemma 2, we can assume that a given graph admits a tree-decomposition of
bounded width, and we design a dynamic programming to solve Constrained
Star-Cut Decomposition on graphs of bounded tree-width.

For a weight function γ : V (G) Ñ N and a non-empty vertex subset S Ď
V (G), we define γ(S) :“ ∑

vPS γ(v) and γ(H) :“ 0.

Constrained Star-Cut Decomposition
Input : A graph G, two positive integers α, k, and a weight function
γ : V (G) Ñ N

Question : Determine whether there is a tree-cut decomposition T “
(T, {Xt}tPV (T)) of G such that

– T is a star with center tc and it has at least one leaf,
– |Xtc

| ď α and crossT (tc) ď k,
– for each leaf t of T , γ(Xt) ď α2 ` 2k and |δG(Xt,Xtc

)| ď α2 ` k, and
– there is no leaf q of T such that Xq “ V (G).

The following lemma explains how we will adapt an algorithm for Con-
straint Star-Cut Decomposition.

Lemma 8. Let G be a graph, let α, k be positive integers, and let S be a set of
vertices in G. Assume that |S| ě α ` 1 and |δG(S, V (G)zS)| ď 2α2 ` 4k. For
each vertex v P S, let γS(v) “ |δG({v}, V (G)zS)|.

If ecrwα(G) ď k, then (G[S], α, k, γS) is a Yes-instance of Constraint
Star-Cut Decomposition.

A New Width Parameter of Graphs Based on Edge Cuts 179

Proof. Let T “ (T, {Xt}tPV (T)) be a tree-cut decomposition of G of thicknesses
at most α and crossing number at most k. For an edge e “ uv of T , let Te,u and
Te,v be two subtrees of T ´ uv which contain u and v, respectively.

We want to identify a node tc of T that will correspond to the central node
of the resulting star decomposition. First, we define an extension γ on V (G)
of the weight function γS on S as γ(v) “ γS(v) if v P S and γ(v) “ 0, other-
wise. We orient an edge e “ xy P E(T) from x to y if the edge e satisfies at
least one of the following rules; (Rule 1) S X (

⋃
tPV (Te,x)

Xt) “ ∅ and (Rule 2)
γ(

⋃
tPV (Te,y)

Xt) ą α2 ` 2k. Note that an edge may have no direction.

Claim (‹). Every edge has at most one direction.

So, T has a node whose incident edges have no direction or a direction to the
node. Take such a node as a central node tc. Let T1, . . . , Tm be the connected
components of T ´ tc such that for every i P [m],

⋃
tPV (Ti)

Xt X S �“ H. Note
that there is at least one such component, because |S| ą α and |Xtc

| ď α.
Let (T ′, {X ′

t}tPV (T ′)) be a tree-cut decomposition of G[S] such that (1) T ′ is a
star with the central node tc and leaves t1, . . . , tm, (2) X ′

tc
“ Xtc

XS, and (3) for

every i P [m], X ′
ti

“
(⋃

tPV (Ti)
Xt

)
X S. We claim that (T ′, {X ′

t}tPV (T ′)) satisfies
the conditions of answer of Constrained Star-Cut Decomposition. By the
construction of decomposition, the first condition holds. Since X ′

tc
“ Xtc

XS and
the crossing number of tc in (T, {Xt}tPV (T)) is at most k, the second condition
also holds.

Let ti be a leaf of T ′ and let Vi “
(⋃

tPV (Ti)
Xt

)
. By Rule 2 of the orienta-

tion, we have that γ(X ′
ti

) ď α2 ` 2k. Let t′ be the node in Ti that is adjacent
to tc in T . Since |Xtc

| ď α and |Xt′ | ď α, we have |δG(Xtc
,Xt′)| ď α2. Fur-

thermore, because crossT (t′) ď k, we have |δG(Xtc
, VizXt′)| ď k. Thus, we have

|δG[S](X ′
tc

,X ′
ti

)| ď |δG(Xtc
, Vi)| ď α2 ` k.

Lastly, we claim that there is no leaf q of T ′ such that X ′
q “ S. Suppose that

there is a leaf q of T ′ such that X ′
q “ S. This means that there is no other leaf

in T ′ and X ′
tc

“ H. Let T ∗ be the connected component of T ´ tc for which⋃
tPV (T ∗) Xt X S “ X ′

q. Then for other connected component T ∗∗ of T ´ tc,⋃
tPV (T ∗∗) Xt X S “ H, and therefore the edge of T between T ∗∗ and the node tc

is oriented towards tc. Then the edge of T between T ∗ and tc should be oriented
towards T ∗, because Xtc

X S “ H. This contradicts the choice of tc.
This proves the lemma.
We now devise an algorithm for Constraint Star-Cut Decomposition

on graphs of bounded tree-width.

Lemma 9. Let (G,α, k, γ) be an instance of Constrained Star-Cut
Decomposition and let (T, {Bt}tPV (T)) be a nice tree-decomposition of width
at most w. In 2O((k`w) log(w(α`k)))|V (T)| time, one can either output a solution
of (G,α, k, γ), or correctly report that (G,α, k, γ) is a No-instance.

180 Y. Chang et al.

Proof. Let r be the root of T . We design a dynamic programming to compute a
solution of Constrained Star-Cut Decomposition. For each node t of T ,
let At be the union of all bags Bt′ where t′ is a descendant of t in T .

Let Z Ď V (G) be a set. A pair (X ,P) of a sequence X “ (X0,X1, . . . , X2k, Y)
and a partition P of Y is legitimate with respect to Z if

– X0,X1, . . . , X2k, Y are pairwise disjoint subsets of Z that are possibly empty,
– (

⋃
iP{0,1,...,2k} Xi) Y Y “ Z,

– |X0| ď α,
– for each i P [2k], |δG(Xi,X0)| ď α2 ` k and γ(Xi) ď α2 ` 2k,
–

∑
{i,j}P([2k]

2)|δG(Xi,Xj)| ď k,

– for each i P [2k] and each P P P, |δG(X0, P)| ď α2 ` k, and |δG(Xi, P)| “ 0,
– for any distinct sets Pi, Pj P P, |δG(Pi, Pj)| “ 0.

Claim (‹). (G,α, k, γ) is a Yes-instance if and only if there is a legitimate pair
(X ,P) with respect to V (G) with X “ (X0,X1, . . . , X2k, Y) such that any set
of X1, . . . , X2k or a set of P is not the whole set V (G).

For a legitimate pair (X ,P) with respect to Z and Z ′ Ď Z, let X|Z′ “ (X0 X
Z ′,X1 XZ ′, . . . , X2k XZ ′, Y XZ ′) and P|Z′ “ {P XZ ′ : P P P, P XZ ′ �“ H}. We
can see that (X|Z′ ,P|Z′) is legitimate with respect to Z ′, because the constraints
are the number of vertices in a set, the number of edges between two sets, and
the sum of γ-values. Based on this fact, we will recursively store information
about all legitimate pairs with respect to At for nodes t.

Let t P V (T). A tuple (I,Q, C1, C2,D1,D2, a, b) is a valid tuple at t if

– I : Bt Ñ {0, 1, . . . , 2k, 2k ` 1},
– Q is a partition of I´1(2k ` 1),
– C1 : [2k] Ñ {0, 1 . . . , α2 ` 2k},
– C2 : Q Ñ {0, 1 . . . , α2 ` 2k},
– D1 : [2k] Ñ {0, 1 . . . , α2 ` k},
– D2 : Q Ñ {0, 1 . . . , α2 ` k}, and
– a, b are two integers with 0 ď a ď α and 0 ď b ď k.

A valid tuple (I,Q, C1, C2,D1,D2, a, b) at a node t represents a legitimate pair
(X ,P) “ ((X0,X1, . . . , X2k, Y),P) with respect to At if

– for every v P Bt, I(v) “ i if and only if v P
{

Xi if 0 ď i ď 2k
Y if i “ 2k ` 1

– Q “ P|Bt
,

– for each i P [2k], C1(i) “ γ(Xi),
– for each Q P Q, C2(Q) “ γ(Q),
– for each i P [2k], D1(i) “ |δG(Xi X At,X0 X At)|,
– for each Q P Q, D2(Q) “ |δG(Q X At,X0 X At)|,
– a “ |X0 X At|,
– b “ ∑

{i,j}Ď([2k]
2)|δG(Xi,Xj)|.

A New Width Parameter of Graphs Based on Edge Cuts 181

We say that a valid tuple is a record at t if it represents some legitimate pair
with respect to At. Let R(t) be the set of all records at t. It is not difficult to
verify that there is a legitimate pair with respect to At if and only if there is a
record at t. So, R(r) �“ H if and only if (G,α, k, γ) is a Yes-instance.

It is known that there is a constant d such that the number of partitions of
a set of m elements is at most dmm. We define a function

ζ(x) “ (2k ` 2)x(dxx)(α2 ` 2k ` 1)2(x´1)`4k(α ` 1)(k ` 1).

Observe that if Bt has size q, then the number of all possible valid tuples at t is
at most ζ(q). Note that ζ(q) “ 2O((q`k) log(q(α`k))). We describe how to store all
records in R(t) for each node t of T . Due to the space constraint, we only deal
with an introduction node.

(Case. t is an introduce node with child t′ such that Bt “ Bt′ Y {v}.)
We construct a set R∗ from R(t′) as follows. Let

J ′ “ (I ′,Q′, C ′
1, C

′
2,D

′
1,D

′
2, a

′, b′) P R(t′).

For every i P {0, 1, . . . , 2k, 2k ` 1} and Q∗ P Q′ Y {H} when i “ 2k ` 1, we
construct a new tuple J “ (I,Q, C1, C2,D1,D2, a, b) as follows:

– I(w) “
{

I ′(w) if w P Bt′

i if w “ v
,

– Q “
{

Q′ if 0 ď I(v) ď 2k
(Q′z{Q∗}) Y {Q∗ Y {v}} if I(v) “ 2k ` 1 ,

– for every j P [2k], C1(j) “ C ′
1(j) ` γ(I´1(j)),

– for every Q P Q, C2(Q) “
{

C ′
2(Q) if Q �“ Q∗ Y {v}

C ′
2(Q

∗) ` γ(v) if Q “ Q∗ Y {v} ,

– for every j P [2k], D1(j) “ D′
1(j) ` |δG(I´1(j2),X0 X Bt′)|,

– for every Q P Q, D2(Q) “
{

D′
2(Q) if Q �“ Q∗ Y {v}

D′
2(Q

∗) ` |δG({v},X0 X Bt′)| if Q “ Q∗ Y {v} ,

– a “
{

a′ ` 1 if I(v) “ 0
a′ otherwise ,

– b “
{

b′ ` |δG

(
{v}, I´1([2k]z{I(v)})

)
| if 1 ď I(v) ď 2k

b′ otherwise .

We add this tuple to R∗ whenever it is valid and

– if 1 ď I(v) ď 2k, then there is no edge between v and I´1(2k ` 1) in G,
– if I(v) “ 2k ` 1, then there is no edge between v and I´1({1, . . . , 2k}) in G

and there is no edge between v and I´1(2k ` 1)z(Q∗ Y {v}) in G.

We claim that R∗ “ R(t). First we show that R∗ Ď R(t). Let J be a
valid tuple constructed as above from J ′ P R(t′). We have to show that J
represents some legitimate pair with respect to At. Since J ′ P R(t′), it represents
a legitimate pair (X ′ “ (X ′

0, . . . , X
′
2k, Y ′),P ′) with respect to At′ .

If 0 ď i ď 2k, then we obtain X from X ′ by replacing X ′
i with X ′

i Y {v}
and set P “ P ′. If i “ 2k ` 1, then we obtain X from X ′ by replacing Y ′ with

182 Y. Chang et al.

Y ′ Y {v} and adding v to the part P ∗ P P ′ with P ∗ X Bt “ Q∗ when Q∗ P Q′ or
adding a single part {v} when Q∗ “ H, to obtain a new partition P of Y ′ Y{v}.
Then it is straightforward to verify that (X ,P) is a legitimate pair with respect
to At and J represents it. This shows that J P R(t).

To show R(t) Ď R∗, suppose J “ (I,Q, C1, C2,D1,D2, a, b) P R(t). Then
there is a legitimate pair (X ,P) represented by J . Since a pair (X|Bt′ ,P|Bt′)
is legitimate, there is a record J ′ P R(t′) which represents the pair. By the
construction, J is computed from J ′. Hence R(t) Ď R∗.

We take one record in R(t′) and construct a new tuple as explained above.
After then, we check its validity. Note that |R(t′)| ď ζ(w). Checking the validity
takes time O(w ` k). Hence, R(t) is computed in 2O((w`k) log(w(α`k))) time.

For other nodes t, we can also compute R(t) in time 2O((w`k) log(w(α`k))).
Overall, the algorithm runs in 2O((w`k) log(w(α`k)))|V (T)| time.

Theorem 4. Given an n-vertex graph G and two positive integers α and k, one
can in time 2O((α`k) log(α`k))n2 either

– output a tree-cut decomposition of G with thickness at most α and crossing
number at most 2α2 ` 5k, or

– correctly report that ecrwα(G) ą k.

Proof. We recursively apply the algorithm for Constrained Star-Cut
Decomposition as follows. At the beginning, we consider a trivial tree-
decomposition with one bag containing all the vertices. In the recursive steps,
we assume that we have a tree-cut decomposition T “ (T, {Xt}tPV (T)) such that

(i) for every internal node t of T , |Xt| ď α and crossT (t) ď 2α2 ` 5k,
(ii) for every leaf node t of T , |δG(Xt, V (G)zXt)| ď 2α2 ` 4k.

If all leaf bags have size at most α, then this decomposition has thickness at
most α and crossing number at most 2α2 ` 5k. Thus, we may assume that there
is a leaf bag X� having at least α ` 1 vertices.

We apply Theorem 3 for G[X�] with w “ 3k`2α´1. Then in time 2O(k`α)n,
either we have a tree-decomposition of width at most 2(3k ` 2α ´ 1) ` 1 “
6k ` 4α ´ 1 or we report that tw(G) ě tw(G[X�]) ą 3k ` 2α ´ 1. In the latter
case, by Lemma 2, we have ecrwα(G) ą k. Thus, we may assume that we have a
tree-decomposition of G[X�] of width at most 6k`4α´1. By applying Lemma 1,
we can find a nice tree-decomposition (F, {Bt}tPV (F)) of G[X�] of width at most
6k ` 4α ´ 1 with |V (F)| “ O((k ` α)n).

We define γ on X� so that γ(v) “ |δG({v}, V (G)zX�)|. We run the
algorithm in Lemma 9 for the instance (G[X�], α, k, γ). Then in time
2O((α`k) log(α`k))|V (F)|, one can either output a solution of (G[X�], α, k, γ), or
correctly report that (G[X�], α, k, γ) is a No-instance. In the latter case, we have
ecrwα(G) ą k, by Lemma 8. In the former case, let T ∗ “ (T ∗, {Yt}tPV (T ∗)) be
the outcome, where qc is the center of T ∗ and q1, . . . , qm are the leaves of T ∗.
Then we modify the tree-cut decomposition T by replacing X� with Yqc

and

A New Width Parameter of Graphs Based on Edge Cuts 183

then attaching bags Yqi
to Yqc

, where corresponding nodes are qc and q1, . . . , qm.
Let T ′ be the resulting tree-cut decomposition.

Observe that |Yqc
| ď α and crossT ∗(qc) ď k. So, we have crossT ′(qc) ď

k ` (2α2 ` 4k) “ 2α2 ` 5k. Also, for each i P [m], we have

|δG(Yqi
, V (G)zYqi

)| ď |δG(Yqi
, V (G)zX�)| ` |δG(Yqi

, Yqc
)| ` crossT ∗(qc)

ď (α2 ` 2k) ` (α2 ` k) ` k “ 2α2 ` 4k.

Therefore, we obtain a refined tree-cut decomposition with properties (i) and
(ii). Note that by the last condition of the solution for Constraint Star-Cut
Decomposition, new leaf bags have size less than X�. Thus, the algorithm
will terminate in at most n recursive steps. When this procedure terminates, we
either obtain a tree-cut decomposition of G of thickness at most α and crossing
number at most 2α2 ` 5k or, conclude that ecrwα(G) ą k.

The total running time is (2O((α`k) log(α`k))n) · n “ 2O((α`k) log(α`k))n2.

5 Algorithmic Applications on Coloring Problems

We show that List Coloring and Precoloring Extension are fixed param-
eter tractable parameterized by α-edge-crossing width for every fixed α.

A vertex-coloring f : V (G) Ñ N on a graph G is said to be proper if f(u) �“
f(v) for all edges uv P E(G). For a given set {L(v) Ď N : v P V (G)}, a coloring
c : V (G) Ñ N is called an L-coloring if c(v) P L(v) for all v P V (G).

List Coloring
Input : A graph G and a set of lists L “ {L(v) Ď N : v P V (G)}
Question : Does G admit a proper L-coloring c : V (G) Ñ ⋃

L?

Assume that a tree-cut decomposition of the input graph G of thickness at
most α and crossing number w is given. In the dynamic programming, we need
to store colorings on w ` α boundaried vertices. Using Lemma 10 the number of
colorings to store can be reduced to g(w ` α) for some function g. For V P N

q,
W P N

t, B Ď [q] ˆ [t], we say that (V,W) is B-compatible if V [i] �“ W [j] for
all (i, j) P B. When we have a vertex partition (X,Y) of a graph G, possible
colorings on boundaried vertices in X and Y will be related to vectors V and W .

Lemma 10 (‹). Let q and t be positive integers, and let B Ď [q] ˆ [t]. For
every set P of distinct vectors in N

q, there is a subset P∗ of P of size at most
q!2

q(q`1)
2 tq´1(t ` 1) satisfying that for every W P N

t, if there is V P P where
(V,W) is B-compatible, then there is V ∗ P P∗ where (V ∗,W) is B-compatible.
Furthermore, such a set P∗ can be computed in time O(|P|2q2

tq`2).

Let G be a graph. For disjoint sets S, T of vertices in G and functions g : S Ñ
N and h : T Ñ N, we say that (S, g) is compatible with (T, h) if for every edge
vw with v P S and w P T , g(v) �“ h(w). If g and h are clear from the context,
we simply say that S and T are compatible.

184 Y. Chang et al.

Proof. (of Theorem 2). We describe the algorithm for connected graphs. If a
given graph is disconnected, then we can apply the algorithm for each compo-
nent. We assume that G is connected. We may assume that each list L(v) has
size at most the degree of v; otherwise, we can freely color v after coloring G´v.

Let ecrwα(G) “ k. Using the algorithm in Theorem 4, we obtain a tree-
cut decomposition T “ (T,X “ {Xt}tPV (T)) of the input graph G of thickness
at most α and crossing number w ď 2α2 ` 5k. We consider it as a rooted
decomposition by choosing a root node r with Xr �“ H.

For every node t P V (T), we denote by Tt the subtree of T rooted at t,
and let Gt “ G[

⋃
vPV (Tt)

Xv]. For every t P V (T), let ∂(t) be the graph H

where E(H) is the set of edges incident with both V (Gt) and V (G)zV (Gt), and
V (H) is the set of vertices in G incident with an edge in E(H). Let ∂̂(t) :“
(V (∂(t)) X V (Gt)) Y Xt. Note that |∂̂(t)| ď α ` w for any node t of T .

Let t P V (T). A coloring g on ∂̂(t) is valid at t if there is a proper L-coloring
f of Gt for which f |∂̂(t) “ g. Clearly, the problem is a Yes-instance if and only
if there is a valid coloring at the root node.

Let ζ “ max{(α ` w ` 1)!2
(α`w)(α`w`1)

2 (α ` w)α`w´1, (w ` 2α ´ 1)α}.
For each node t P V (T), let Q[t] be the set of all valid colorings at t. We will

recursively construct a subset Q∗[t] Ď Q[t] of size at most ζ such that

(�) for every proper L-coloring h on G ´ V (Gt), if there is a valid coloring
g P Q[t] compatible with h, then there is g∗ P Q∗[t] compatible with h.

We describe how to construct Q∗[t] depending on whether t is a non-root leaf.
This is easy when t is a leaf. Let tp be the parent of t when t is not the root.

We classify the children of t into two types. Let A1 be the set of all children
p of t such that ∂(p)z∂̂(p) Ď Xt, and let A2 be the set of all other children of t.
Note that |A2| ď 2w because (T,X) has crossing number at most w. Let C[t] be
the set of all proper L-colorings on Xt. Clearly, |C[t]| ď nα.

(Step 1.) We first find the set C ′[t] of all proper L-colorings f such that for
each x P A1, there exists gx P Q∗[x] that is compatible with f . This can be
checked by recursively choosing x P A1, and comparing each coloring in C[t]
with a coloring in Q∗[x], and then remaining one that has a compatible coloring
in Q∗[x]. The whole procedure runs in time O(|A1| · |Q∗[x]| · nα · (α ` w)2) “
O(ζ · nα`1 · (α ` w)2), because each Q∗[x] has the size at most ζ and |A1| ď n.

(Step 2.) Next, we compute the set I[t] of all tuples U in
∏

xPA2
Q∗[x] such

that for all distinct x, y P A2, U(x) and U(y) are compatible, where U(x)
denotes the coordinate of U that comes from Q∗[x]. Since |A2| ď 2w, we have
|
∏

xPA2
Q∗[x]| ď ζ2w. The set I[t] can be computed in time O(ζ2w ·w2 ·(α`w)2).

(Step 3.) Lastly, we construct Q′[t] from I[t] and C ′[t] as follows. For every
U P I[t] and every g P C ′[t] where U(x) and g are compatible for all x P A2, we
obtain a new function g′ on ∂̂(t) such that g′(v) “ (U(x))(v) if v P ∂̂(x) for some
x P A2, and g′(v) “ g(v) if v P Xt, and add it to Q′[t]. This can be done in time
O(|I[t]| · |C ′[t]| · (α(α ` w))2w) “ O(ζ2w · nα · (α(α ` w))2w). This stores valid
colorings at t and the size of Q′[t] is at most |I[t]| ˆ |C ′[t]|. Using Lemma 10,
we find a subset Q∗[t] of Q′[t] of size at most ζ. This can be computed in time

A New Width Parameter of Graphs Based on Edge Cuts 185

O(|Q′[t]| · 2(α`w)2 · (α ` w)α`w`2) “ O(ζ2w · nα · 2(α`w)2 · (α ` w)α`w`2). The
total running time for this case is O(ζ2w · nα`1 · 2(α`w)2 · (α ` w)α`4w`2).

For the correctness, we prove that (‹) Q∗[t] satisfies the property (�).
As |V (T)| “ O(n), the algorithm runs in time O(ζ2w · nα`2 · 2(α`w)2 · (α `

w)α`4w`2) “ 2O((α2`k)3)nα`2.
Precoloring Extension asks whether a precoloring on a vertex set S can

be extended to a k-coloring of G. By making a list for a vertex S to the assigned
color, and making a list for a neighbor of v P S which avoids the assigned color
of v, we can reduce to List Coloring.

6 Conclusion

In this paper, we introduced a width parameter called α-edge-crossing width,
which lies between edge-cut width and tree-partition-width, and which is incom-
parable with tree-cut width. We showed that List Coloring and Precol-
oring Extension are FPT parameterized by α-edge-crossing width. It would
be interesting to find more problems that are W[1]-hard parameterized by tree-
partition-width, but FPT by α-edge-crossing width for any fixed α. There are six
more problems that are known to admit FPT algorithms parameterized by slim
tree-cut width, but W[1]-hard parameterized by tree-cut width [9], and these
problems are candidates for the next research.

We also introduced edge-crossing width, that is equivalent to tree-partition-
width. However, our proof is based on the characterization of graphs of bounded
tree-partition-width due to Ding and Oporowski [5], and finding an elementary
upper bound of tree-partition-width in terms of edge-crossing width is an inter-
esting problem. More specifically, we ask whether there is a constant c such that
for every graph G, tpw(G) ď c · ecrw(G).

References

1. Bodlaender, H.L.: A partial k-arboretum of graphs with bounded treewidth.
Theor. Comput. Sci. 209(1–2), 1–45 (1998). https://doi.org/10.1016/S0304-
3975(97)00228-4

2. Brand, C., Ceylan, E., Hatschka, C., Ganian, R., Korchemna, V.: Edge-cut width:
an algorithmically driven analogue of treewidth based on edge cuts (2022). WG2022
accepted. arXiv:2202.13661

3. Bredereck, R., Heeger, K., Knop, D., Niedermeier, R.: Parameterized complexity of
stable roommates with ties and incomplete lists through the lens of graph param-
eters. Inf. Comput. 289(part A) (2022). Paper No. 104943, 41. https://doi.org/10.
1016/j.ic.2022.104943

4. Cygan, M., et al.: Parameterized Algorithms, 1st edn. Springer, Heidelberg (2015).
https://doi.org/10.1007/978-3-319-21275-3

5. Ding, G., Oporowski, B.: On tree-partitions of graphs. Discrete Math. 149(1),
45–58 (1996). https://doi.org/10.1016/0012-365X(94)00337-I. www.sciencedirect.
com/science/article/pii/0012365X9400337I

https://doi.org/10.1016/S0304-3975(97)00228-4
https://doi.org/10.1016/S0304-3975(97)00228-4
http://arxiv.org/abs/2202.13661
https://doi.org/10.1016/j.ic.2022.104943
https://doi.org/10.1016/j.ic.2022.104943
https://doi.org/10.1007/978-3-319-21275-3
https://doi.org/10.1016/0012-365X(94)00337-I
www.sciencedirect.com/science/article/pii/0012365X9400337I
www.sciencedirect.com/science/article/pii/0012365X9400337I

186 Y. Chang et al.

6. Fellows, M.R., et al.: On the complexity of some colorful problems parameterized
by treewidth. Inf. Comput. 209(2), 143–153 (2011). https://doi.org/10.1016/j.ic.
2010.11.026

7. Ganian, R., Kim, E.J., Szeider, S.: Algorithmic applications of tree-cut width.
SIAM J. Discrete Math. 36(4), 2635–2666 (2022). https://doi.org/10.1137/
20M137478X

8. Ganian, R., Korchemna, V.: The complexity of Bayesian network learning: revisit-
ing the superstructure. In: Ranzato, M., Beygelzimer, A., Dauphin, Y., Liang, P.,
Vaughan, J.W. (eds.) Advances in Neural Information Processing Systems, vol. 34,
pp. 430–442. Curran Associates, Inc. (2021). www.proceedings.neurips.cc/paper/
2021/file/040a99f23e8960763e680041c601acab-Paper.pdf

9. Ganian, R., Korchemna, V.: Slim tree-cut width (2022). arXiv:2206.15091
10. Ganian, R., Ordyniak, S.: The power of cut-based parameters for computing

edge-disjoint paths. Algorithmica 83(2), 726–752 (2021). https://doi.org/10.1007/
s00453-020-00772-w

11. Gözüpek, D., Özkan, S., Paul, C., Sau, I., Shalom, M.: Parameterized complexity
of the MINCCA problem on graphs of bounded decomposability. Theor. Comput.
Sci. 690, 91–103 (2017). https://doi.org/10.1016/j.tcs.2017.06.013

12. Kim, E.J., Oum, S.I., Paul, C., Sau, I., Thilikos, D.M.: An FPT 2-approximation
for tree-cut decomposition. Algorithmica 80(1), 116–135 (2018). https://doi.org/
10.1007/s00453-016-0245-5

13. Korhonen, T.: A single-exponential time 2-approximation algorithm for treewidth.
In: 2021 IEEE 62nd Annual Symposium on Foundations of Computer Science–
FOCS 2021, Los Alamitos, CA, pp. 184–192. IEEE Computer Society (2022)

14. Robertson, N., Seymour, P.D.: Graph minors. V. Excluding a planar graph.
J. Comb. Theory Ser. B 41(1), 92–114 (1986). https://doi.org/10.1016/0095-
8956(86)90030-4

15. Robertson, N., Seymour, P.D.: Graph minors. XX. Wagner’s conjecture. J. Comb.
Theory Ser. B 92(2), 325–357 (2004). https://doi.org/10.1016/j.jctb.2004.08.001

16. Robertson, N., Seymour, P.: Graph minors. X. Obstructions to tree-decomposition.
J. Comb. Theory Ser. B 52(2), 153–190 (1991)

17. Wollan, P.: The structure of graphs not admitting a fixed immersion. J. Comb.
Theory Ser. B 110, 47–66 (2015). https://doi.org/10.1016/j.jctb.2014.07.003

https://doi.org/10.1016/j.ic.2010.11.026
https://doi.org/10.1016/j.ic.2010.11.026
https://doi.org/10.1137/20M137478X
https://doi.org/10.1137/20M137478X
www.proceedings.neurips.cc/paper/2021/file/040a99f23e8960763e680041c601acab-Paper.pdf
www.proceedings.neurips.cc/paper/2021/file/040a99f23e8960763e680041c601acab-Paper.pdf
http://arxiv.org/abs/2206.15091
https://doi.org/10.1007/s00453-020-00772-w
https://doi.org/10.1007/s00453-020-00772-w
https://doi.org/10.1016/j.tcs.2017.06.013
https://doi.org/10.1007/s00453-016-0245-5
https://doi.org/10.1007/s00453-016-0245-5
https://doi.org/10.1016/0095-8956(86)90030-4
https://doi.org/10.1016/0095-8956(86)90030-4
https://doi.org/10.1016/j.jctb.2004.08.001
https://doi.org/10.1016/j.jctb.2014.07.003

Snakes and Ladders: A Treewidth Story

Steven Chaplick, Steven Kelk(B), Ruben Meuwese, Matúš Mihalák,
and Georgios Stamoulis

Department of Advanced Computing Sciences, Maastricht University,
Maastricht, The Netherlands

{s.chaplick,steven.kelk,r.meuwese,matus.mihalak,
georgios.stamoulis}@maastrichtuniversity.nl

Abstract. Let G be an undirected graph. We say that G contains a
ladder of length k if the 2 × (k + 1) grid graph is an induced subgraph
of G that is only connected to the rest of G via its four cornerpoints.
We prove that if all the ladders contained in G are reduced to length
4, the treewidth remains unchanged (and that this bound is tight). Our
result indicates that, when computing the treewidth of a graph, long
ladders can simply be reduced, and that minimal forbidden minors for
bounded treewidth graphs cannot contain long ladders. Our result also
settles an open problem from algorithmic phylogenetics: the common
chain reduction rule, used to simplify the comparison of two evolutionary
trees, is treewidth-preserving in the display graph of the two trees.

Keywords: Treewidth · Reduction rules · Phylogenetics

1 Introduction

This is a story about treewidth, but it starts in the world of biology. A phylo-
genetic tree on a set of leaf labels X is a binary tree representing the evolution
of X. These are studied extensively in computational biology [16]. Given two
such trees a natural aim is to quantify their topological dissimilarity [12]. Many
such dissimilarity measures have been devised and they are often NP-hard to
compute, stimulating the application of techniques from parameterized complex-
ity [7]. Recently there has been a growing focus on treewidth. This is because, if
one takes two phylogenetic trees on X and identifies leaves with the same label,
we obtain an auxiliary graph structure known as the display graph [6]. Crucially,
the treewidth of this graph is often bounded by a function of the dissimilarity
measure that we wish to compute [13]. This has led to the use of Courcelle’s The-
orem within phylogenetics (see e.g. [11,13]) and explicit dynamic programs run-
ning over tree decompositions; see [10] and references therein. In [14] the spin-off
question was posed: is the treewidth of the display graph actually a meaningful
measure of phylogenetic dissimilarity in itself - as opposed to purely being a

R. Meuwese was supported by the Dutch Research Council (NWO) KLEIN 1 grant
Deep kernelization for phylogenetic discordance, project number OCENW.KLEIN.305.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
D. Paulusma and B. Ries (Eds.): WG 2023, LNCS 14093, pp. 187–200, 2023.
https://doi.org/10.1007/978-3-031-43380-1_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-43380-1_14&domain=pdf
https://doi.org/10.1007/978-3-031-43380-1_14

188 S. Chaplick et al.

route to efficient algorithms? A closely-related question was whether parameter-
preserving reduction rules, applied to two phylogenetic trees to shrink them
in size, also preserve the treewidth of the display graph? The well-known sub-
tree reduction rule is certainly treewidth preserving [14]. However, the question
remained whether the common chain reduction rule [2] is treewidth-preserving.
A common chain is, informally, a sequence of leaf labels x1, . . . , xk that has
the same order in both trees. Concretely, the question arose [14]: is it possible
to truncate a common chain to constant length such that the treewidth of the
display graph is preserved? Common chains form ladder-like structures in the
display graph, i.e., this question is about how far ladders can be reduced in
length without causing the treewidth to decrease.

In this article we answer this question affirmatively, and more generally.
Namely, we do not restrict ourselves to display graphs, but consider arbitrary
graphs. A ladder L of length k ≥ 1 of a graph G is a 2 × (k + 1) grid graph
such that L induces (only) itself and that L is only connected to the rest of the
graph by its four cornerpoints. First, we prove that a ladder L can be reduced to
length 4 without causing the treewidth to decrease, and that this is best possible:
reducing to length 3 sometimes causes the treewidth to decrease. We also show
that if tw(G) ≥ 4 then reduction to length 3 is safe and, again, best possible.
These tight examples are also shown to exist for higher treewidths. Returning to
phylogenetics, and thus when G is a display graph, we leverage the extra struc-
ture in these graphs to show that common chains can be reduced to 4 leaf labels
(and thus the underlying ladder to length 3) without altering the treewidth: this
result is thus slightly stronger than on general G.

Our proofs are based on first principles: we directly modify a tree decompo-
sition to get what we need. In doing so we come across the problem that, unless
otherwise brought under control, the set of bags that contain a given ladder ver-
tex of G can wind and twist through the tree decomposition in very pathological
ways. Getting these snakes under control is where much of the hard work and
creativity lies, and is the inspiration for the title of this paper.

From a graph-theoretic perspective our results have the following significance.
First, it is standard folklore that shortening paths (i.e. suppressing vertices of
degree 2) is treewidth-preserving, but there is seemingly little in the literature
about shortening recursive structures that are slightly more complex than paths,
such as ladders. (Note that Sanders [15] did consider ladders, but only for rec-
ognizing graphs of treewidth at most 4, and in such a way that the reduction
destroys the ladder topology). Second, our results imply a new safe reduction rule
for the computation of treewidth; a survey of other reduction rules for treewidth
can be found in [1]. Third, we were unable to find sufficiently precise machinery,
characterisations of treewidth or restricted classes of tree decomposition in the
literature that would facilitate our results. Perhaps most closely related to our
ladders are the more general protrusions: low treewidth subgraphs that “hang”
from a small boundary [9, Ch. 15-16]. There are general (algorithmic) results [5]
wherein one can safely cut out a protrusion and replace it with a graph of
parameter-proportional size instead – these are based on a problem having finite

Snakes and Ladders: A Treewidth Story 189

integer index [4]. Such techniques might plausibly be used to prove that there is
some constant to which ladders might safely be shortened, but our tight bounds
seem out of their reach. Finally, the results imply that minimal forbidden minors
for bounded treewidth cannot have long ladders.

Due to space limitations a number of proofs have been deferred to an
appendix, which can be found in the arXiv version of this article [8].

2 Preliminaries

We follow [14] for notation. A tree decomposition of an undirected graph G =
(V,E) is a pair (B,T) where B = {B1, . . . , Bq}, Bi ⊆ V (G), is a multiset of bags
and T is a tree whose q nodes are in bijection with B, and

(tw1) ∪q
i=1Bi = V (G);

(tw2) ∀e = {u, v} ∈ E(G),∃Bi ∈ B s.t. {u, v} ⊆ Bi;
(tw3) ∀v ∈ V (G), all the bags Bi that contain v form a connected subtree of T.

The width of (B,T) is equal to maxq
i=1 |Bi| − 1. The treewidth of G, denoted

tw(G), is the smallest width among all tree decompositions of G. Given a tree
decomposition T of a graph G, we denote by V (T) the (multi)set of its bags and
by E(T) the set of its edges. Property (tw3) is also known as running intersection
property. Without loss of generality, we consider only connected graphs G.

Note that subdividing an edge {u, v} of G with a new degree-2 vertex uv does
not change the treewidth of G. In the other direction, suppression of degree-2
vertices is also treewidth preserving unless it causes the only cycle in a graph to
disappear (e.g. if G is a triangle); unlike [14] we will never encounter this bound-
ary case. An equivalent definition of treewidth is based on chordal graphs. Recall
that a graph G is chordal if every induced cycle in G has exactly three vertices.
The treewidth of G is the minimum, ranging over all chordal completions c(G)
of G (we add edges until G becomes chordal), of the size of the maximum clique
in c(G) minus one. Under this definition, each bag of a tree decomposition of G
naturally corresponds to a maximal clique in a chordal completion of G [3].

We say that a graph H is a minor of another graph G if H can be obtained
from G by deleting edges and vertices and by contracting edges.

A ladder L of length k ≥ 1 is a 2 × (k + 1) grid graph. A square of L is a set
of vertices of L that induce a 4-cycle in L. We call the endpoints of L, i.e., the
degree-2 vertices of L, the cornerpoints of L. We say that a graph G contains L
if the following holds (see Fig. 1 for illustration):

1. The subgraph induced by vertices of L is L itself.
2. Only cornerpoints of L can be incident to an edge with an endpoint outside L.

Observe that a ladder of length k is a minor of the ladder of length (k + 1).
Treewidth is non-increasing under the action of taking minors, so reducing the
length of a ladder in a graph cannot increase the treewidth of the graph.

Suppose G contains a ladder L. We say that L disconnects G if L contains
a square {u, v, w, x} such that the two horizontal edges of the square (following

190 S. Chaplick et al.

Fig. 1, these are the edges {u,w} and {v, x}) form an edge cut of the entire
graph G. Note that a square of L has this property if and only if all squares
of L do. Also, if we reduce the length of a ladder L to obtain a shorter ladder
L′, L′ disconnects G if and only if L does. We recall a number of results from
Section 5.2 of [14]; these will form the starting point for our work.

Lemma 1 ([14]). Suppose G contains a disconnecting ladder L. The ladder L
can be increased arbitrarily in length without increasing the treewidth of G.

For the more general case, the following weaker result is known.

Lemma 2 ([14]). Suppose G has tw(G) ≥ 3 and contains a ladder. If the ladder
is increased arbitrarily in length, the treewidth of G increases by at most one.

We now make the following (new) observation; the proof is in the appendix.

Observation 1. Suppose G contains a ladder L of length 2 or longer. If L is
not disconnecting, then tw(G) ≥ 3.

We can leverage Observation 1 to reformulate Lemma 2 without the tw(G) ≥
3 assumption. However it then only applies to ladders of size at least two.

Lemma 3. Suppose G contains a ladder L with length at least 2. If L is
increased arbitrarily in length, the treewidth of the graph increases by at most
one.

If we start from a sufficiently long ladder, can the ladder be increased in
length without increasing the treewidth? Past research has the following partial
result.

Theorem 1 ([14]). Let G be a graph with tw(G) = k. There is a value f(k) such
that if G contains a ladder of length f(k) or longer, the ladder can be increased
in length arbitrarily without altering (in particular: increasing) the treewidth.

Ideally we would like a single, universal value that does not depend on k. In this
article we will show that such a single, universal constant does exist.

3 Results

We first consider graphs of treewidth at least 4; we later remove this restriction.

Theorem 2. Let G be a graph with tw(G) ≥ 4. If G has a ladder L of length 3
or higher, the ladder can be lengthened arbitrarily without changing the treewidth.

Proof. Due to Lemma 1 we can assume that L is not disconnecting. Our general
strategy is to show that if G contains the ladder L shown in Fig. 1, we can insert
an extra ‘rung’ in the ladder without increasing the treewidth, thus obtaining
a ladder with one extra square (see Fig. 2). The extension of the ladder by one
square can then be iterated to obtain an arbitrary length ladder.

Snakes and Ladders: A Treewidth Story 191

Fig. 1. A ladder L of length 3 with cor-
ner points a, b, c, d.

Fig. 2. Inserting a new edge {u′, v′}
into ladder L results in ladder L′ of
length 4.

Let L be the ladder shown in Fig. 1, and assume that G contains L. Let (B,T)
be a minimum-width tree decomposition for G. We proceed with a case analysis.
The cases are cumulative: we will assume that earlier cases do not hold.
Case 1. Suppose that B contains a bag B such that all four vertices
from one of the squares of L are in B. Let {u, v, w, x}, say, be the square
of L contained in bag B, where the position of the vertices is as in Fig. 1. We
prolong the ladder as in Fig. 2 and create a valid tree decomposition for the
new graph as follows: we introduce a new size-5 bag B′ = {u′, u, v, w, x} which
we attach pendant to B in the tree decomposition, and a new size-5 bag B′′ =
{u′, v′, v, w, x} which we attach pendant to B′. Observe that this is a valid tree
decomposition for the new graph. Due to the fact that tw(G) ≥ 4, the treewidth
does not increase, and the statement follows. Note that in this construction
B′′ contains all four of {u′, w, v′, x}, which is a square of the new ladder, so
the construction can be applied iteratively many times as desired to produce a
ladder of arbitrary length.
Case 2. Suppose that B contains a bag B such that |B ∩ {a, u, w, c}| ≥ 2
and |B∩{b, v, x, d}| ≥ 2. Let h1, h2 be two distinct vertices from B∩{a, u, w, c}
and l1, l2 be two distinct vertices from B ∩ {b, v, x, d}.

Observe that it is possible to partition the sequence a, u, w, c into two disjoint
intervals H1,H2, and the sequence b, v, x, d into two disjoint intervals L1, L2 such
that h1 ∈ H1, h2 ∈ H2, l1 ∈ L1 and l2 ∈ L2. If we contract the edges and vertices
in each of H1,H2, L1, L2 we obtain a new graph G′ which is a minor of G. Note
that G′ is similar to G except that the ladder now has two fewer squares – the
three original squares have been replaced by a square whose corners correspond
to H1,H2, L1, L2. This square might contain a diagonal but we simply delete
this. We have tw(G′) ≤ tw(G) because treewidth is non-increasing under taking
minors. Now, by projecting the contraction operations onto (B,T) in the usual
way1, we obtain a tree decomposition (B′,T′) for G′ such that the width of T′

is less than or equal to the width of T. The bag in (B′,T′) corresponding to B,
let us call this B′, contains all four vertices H1,H2, L1, L2. Clearly, T′ is a valid
tree decomposition for G′. We distinguish two subcases.

1 In every bag of the decomposition vertices from H1 all receive the vertex label H1,
and similarly for the other subsets H2, L1, L2.

192 S. Chaplick et al.

1. If T′ has width at least 4, we can repeatedly apply the Case 1 transformation
to B′ to produce an arbitrarily long ladder without raising the width of T′.
The resulting decomposition will thus have width no larger than T.

2. Suppose T
′ has width strictly less than 4, and thus strictly less than the

width of T. The width of T
′ is at least 3 because of the bag containing

H1,H2, L1, L2. Case 1 introduces size-5 bags and can thus raise the width
of the decomposition by at most 1. Hence we again obtain a decomposition
whose width is no larger than T for a graph with an arbitrarily long ladder.

This concludes Case 2. Moving on, any chordalization of G must add the diagonal
{w, v} and/or the diagonal {u, x}. Hence we can assume that there is a bag
containing {u,w, v} and another bag containing {v, w, x}. (If the other diagonal
is added we can simply flip the labelling of the vertices in the horizontal axis i.e.
a ⇔ b, u ⇔ v and so on). As Case 1 does not hold we can assume that the bag
containing {u,w, v} is distinct from the bag containing {v, w, x}.

For the benefit of later cases we impose extra structure on our choice of
minimum-width tree decomposition of G. The distance of decomposition (B,T)
is the minimum, ranging over all pairs of bags B1, B2 such that B1 contains
{u,w, v} and B2 contains {v, w, x}, of the length of the path in T from B1 to B2.

We henceforth let (B,T) be a minimum-width tree decomposition of
G such that, ranging over all minimum-width tree decompositions,
the distance is minimized. Clearly such a tree decomposition exists.

Let B1, B2 be two bags from B with {u,w, v} ⊆ B1, {v, w, x} ⊆ B2 which achieve
this minimum distance. Let P be the path of bags from B1 to B2, including B1

and B2. We assume that P is oriented left to right, with B1 at the left end and
B2 on the right. As Case 2 does not hold, we obtain the following.

Observation 2. B1 does not contain b, x or d, and B2 does not contain a, u, c.

Case 3. B1 and B2 are adjacent in P . Although this could be subsumed into
a later case it introduces important machinery; we therefore treat it separately.

Subcase 3.1: Suppose a ∈ B1 (or, completely symmetrically, d ∈ B2). Note
that in this case all the edges in G incident to u are covered by B1. Hence,
we can safely delete u from all bags except B1. Next, we create a new bag
B∗ = {a, u, w, v} and attach it pendant to B1, and finally we replace u with x in
B1. It can be easily verified that this is a valid tree decomposition for G and that
the width is not increased, so it is still a minimum-width tree decomposition.
However, B1 is now a candidate for Case 2, and we are done. Note that replacing
u with x in B1 is only possible because B1 is next to B2 in P .

Subcase 3.2: Suppose Subcase 3.1 does not hold. Then a �∈ B1 (and, symmet-
rically, d �∈ B2). Putting all earlier insights together, we see a, b, x, d �∈ B1 and
a, u, c, d �∈ B2. Observe that a, which is not in B2, is not in any bag to the right
of B2. If it was, then the fact that some bag contains the edge {a, u}, and the

Snakes and Ladders: A Treewidth Story 193

running intersection property, entails that B2 would contain at least one of a and
u, neither of which is permitted. Hence, if a appears in bags other than B1, they
are all in the left part of the decomposition. Completely symmetrically, if d is in
bags other than B2, they are all in the right part of the decomposition. Because
of this, b can only appear on the left of the decomposition (because the edge
{a, b} has to be covered) and c can only be on the right of the decomposition
(because of the edge {c, d}). Summarising, B1 (respectively, B2) does not contain
a or b (respectively, c or d) and all bags containing a or b (respectively, c or d)
are in the left (respectively, right) part of the decomposition. Note that c �∈ B1.
This is because edge {c, d} has to be in some bag, and this must necessarily be
to the right of B2: but then running intersection puts at least one of c, d in B2,
contradiction. Symmetrically, b �∈ B2. So a, b, c, d, x �∈ B1 and a, b, c, d, u �∈ B2.

We now describe a construction that we will use extensively: reeling in (the
snakes) a and b. Observe that, due to coverage of the edge {a, u}, and running
intersection, there is a simple path of bags pua starting at B1 that all contain u
such that the endpoint of the path also contains a. The path will necessarily be
entirely on the left of the decomposition. Due to coverage of the edge {b, v} there
is an analogously-defined simple path pvb. (Note that pua and pvb both exit B1

via the same bag B′. If they exited via different bags, coverage of the edge {a, b}
would force at least one of a, b to be in B1, yielding a contradiction). Now, in the
bags along pua, except B1, we relabel u to be a, and in the bags along pvb, except
B1, we relabel v to be b. This is no longer necessarily a valid tree decomposition,
because coverage of the edges {u, a} and {v, b} is no longer guaranteed, but we
shall address this in due course. Next we delete the vertices u,w, v from all bags
on the left of the decomposition, except B1; they will not be needed. (The only
reason that w would be in a bag on the left, would be to meet c, since B1 and
B2 already cover the edges {u,w} and {w, x}. But then, due to coverage of the
edge {c, d} and the fact that d only appears on the right of the decomposition,
running intersection would put at least one of c, d in B1, contradiction.) Observe
that B′ contains {a, b}. We replace B1 with 5 copies of itself, and place these
bags in a path such that the leftmost copy is adjacent to B′, the rightmost copy
is adjacent to B2, and all other bags that were originally adjacent to B1 can
(arbitrarily) be made adjacent to the leftmost copy. In the 5 copied bags we
replace {u,w, v} respectively with: {a, u′, b}, {u′, b, v′}, {u′, u, v′}, {v′, u, v} and
{u,w, v}. It can be verified that this is a valid tree decomposition for G′, and our
construction did not inflate the treewidth - we either deleted vertices from bags
or relabelled vertices that were already in bags - so we are done. The operation
can easily be telescoped, if desired, to achieve an arbitrarily long ladder.
Case 4. P contains at least one bag other than B1 and B2.

Observation 3. All bags in P contain v, w, by the running intersection prop-
erty.

We partition the bags of the decomposition into (i) B1, (ii) bags left of B1,
(iii) B2, (iv) bags right of B2, (v) all other bags (which we call the interior).

Recall that b, d, x �∈ B1, a, c, u �∈ B2 (because Case 2 does not hold). The
proofs of the following two observations are in the appendix.

194 S. Chaplick et al.

Observation 4. No bag in the interior contains u or x. B1 does not contain x,
and no bag on the left contains x. Symmetrically, B2 does not contain u, and no
bag on the right contains u.

Observation 5. At least one of the following is true: a ∈ B1, a is in a bag on
the left. Symmetrically, at least one of the following is true: d ∈ B2, d is in a
bag on the right.

Now, suppose w is somewhere on the left. We will show that then either w can
be deleted from the bags on the left, or Case 2 holds. A symmetrical analysis
will hold if v is somewhere on the right. Specifically, the only possible reason for
w to be on the left would be to cover the edge {w, c} – all other edges incident
to w are already covered by B1 and B2. If no bags on the left contain c, we can
simply delete w from all bags on the left. On the other hand, if some bag on the
left contains c, then c ∈ B1, because: d �∈ B1, the need to cover the edge {c, d},
the presence of d on the other ‘side’ of the decomposition (Observation 5), and
running intersection. So we have that c, u, w, v ∈ B1. This bag already covers all
edges incident to w, except possibly the edge {w, x}. To address this, we replace
w everywhere in the tree decomposition with x - this is a legal tree decomposition
because some bag contains {w, x} - and then add a bag B′ = {u,w, x, c} pendant
to B. This new bag serves to cover all edges incident to w. But B1 now contains
u, v, c, x, so Case 2 applies, and we are done! Hence, we can assume that w is
nowhere on the left, and, symmetrically, that v is nowhere on the right. In fact,
the above argument can, independently of w, be used to trigger Case 2 whenever
c ∈ B1 or b ∈ B2. So at this stage of the proof we know: b, c, d, x �∈ B1 (and c is
not on the left) and a, b, c, u �∈ B2 (and b is not on the right).

Subcase 4.1: Suppose a �∈ B1. Then, a must only be on the left. It cannot be
in the interior (or on the right) because the edge {u, a} must be covered, a �∈ B1,
u ∈ B1, and u is not in the interior (Observation 4). Because a is on the left,
and because some bag must contain the edge {a, b}, b must also be on the left.
In fact b is only on the left. The presence of b both on the left and in the interior
(or on the right) would force b into B1 by running intersection, contradicting the
fact that b �∈ B1. So a, b are only on the left. We are now in a situation similar to
Subcase 3.2. We use the same reeling in a and b construction and we are done.

Subcase 4.2: Suppose a ∈ B1. Note that here u has all its incident edges
covered by B1, so u can be deleted from all other bags. Recall that b �∈ B1. Due
to edge {b, v} some bag must contain both v and b. Suppose there is such a bag
on the left. We attach a new bag {a, u, w, v} pendant to B1 and delete u from
B1. We put x in B1 and to ensure running intersection we replace v with x in
all bags anywhere to the right of B1. This is safe, because in the part of the
decomposition right of B1, v only needs to meet x (and not b, because v meets
b on the left). Thus, B1 now contains {a, v, w, x} and Case 2 can be applied.

Hence, we conclude that {v, b} is not in a bag on the left. Because of this
v can safely be deleted from all bags on the left. That is because any path pvb
that starts at B1 and finishes at a bag containing b must go via the interior. In
fact, such a path must avoid B2, and is thus entirely contained in the interior.

Snakes and Ladders: A Treewidth Story 195

Fig. 3. Path pab goes via the interior, but it cannot be relabelled to b because it is
used by other paths paz to some neighbour z of a that does not lie on the ladder.

It avoids B2 because a, b �∈ B2 and {v, b} cannot be in a bag to the right: if it
was, coverage of edge {a, b}, the fact that a ∈ B1 and running intersection would
mean that at least one of a and b is in B2, yielding a contradiction.

The only case that remains is a ∈ B1, {v, b} is not in a bag on the left and
thus pvb is in the interior. By symmetry, we assume that d ∈ B2, {w, c} is not in
a bag on the right and thus pwc is in the interior. Consider any path pab starting
at B1, defined in the now familiar way. Note that no bag on the left of B1 can
contain b. This is because {v, b} is in a bag in the interior: hence if b was also on
the left, b would then by running intersection be in B1 and we would be in an
earlier case. This means that pab must go via the interior. Suppose the following
operation gives a valid tree decomposition: delete u from B1, attach a new bag
B∗ = {a, u, w, v} pendant to B1, and relabel all occurrences of a along the path
pab (except in B1) with b. Then we are done, because we are back in Case 2. A
symmetrical situation holds for the path pdc.

Assume therefore that this transformation does not give a valid tree decom-
position. This is the most complicated case to deal with. It is depicted in Fig. 3.
The issue here is that the path pab (respectively, pdc) necessarily goes via the
interior, but cannot be relabelled with b (respectively, c) because the path is also
part of paz (respectively, pdz) where z is some non-ladder vertex that is adjacent
to a (respectively d). We deal with this as follows. We argue that some bag in
the decomposition must contain a, b, v (and possibly other vertices). Suppose
this is not the case. By standard chordalization arguments, every chordalization
adds at least one diagonal edge to every square of the ladder. If {a, b, v} are
not together in a bag, then this is because the corresponding chordalization did
not add the diagonal {a, v} to square {a, u, b, v}. Hence, the chordalization must
have added the diagonal {u, b}. This would in turn mean that some bag contains
{a, u, b}. Such a bag must be on the interior, because this is the only place that
b can be found. However, no bags in the interior contain u – contradiction.

Hence, some bag B′ indeed contains {a, b, v}. Again, because b is only on
the interior, B′ must be in the interior. There could be multiple such bags, but
this does not harm us. Let Bv-done be the rightmost bag on the path P that is
part of a path, starting from B1, from a to some bag B′ containing {a, b, v}. Let
Ba-done be the rightmost bag on P that contains a. Note that Bv-done contains

196 S. Chaplick et al.

Fig. 4. The bags B′, Bv-done and Ba-done illustrated. Note that Ba-done cannot be the
penultimate bag on the path P from B1 to B2, due to the presence of d in that bag.

a (because of running intersection: a ∈ B1 and a ∈ B′) and v, w (because it lies
on P). We also have a, v, w ∈ Ba-done. By construction, Bv-done is either equal
to Ba-done or left of it. This is important because it means that the only reason
v might need to be in bags to the right of Ba-done is to reach a bag containing x
(i.e. to cover the edge {v, x}) – all other edges are already covered elsewhere in
the decomposition; in particular, edge {v, b} is covered by the bag B′ containing
{a, b, v}. See Fig. 4 for clarification.

Recall that none of the bags on the path P contain both a and d. (If they
did, there would be a bag containing {a, d, v, w} and we would be in Case 2,
done.) We also know that some path pdc goes via the interior and thus that the
penultimate bag on P (i.e. the one before B2) thus definitely contains d. (To
clarify: c �∈ B2, d ∈ B2, the edge {c, d} must be covered, and c is only in the
interior). Combining these insights tells us that this penultimate bag definitely
does not contain a, and hence Ba-done is not equal to the penultimate bag; it is
further left. This fact is crucial. Consider Ba-done and the bag immediately to
its right on P . Between these two bags we insert a copy of Ba-done, call it Br,
remove a from Br (i.e. forget it), and add the element x to it instead. Finally,
we switch v to x in all bags on P right of Br, including B2 itself, and delete v
from all bags in the tree decomposition that are anywhere to the right of Br;
there is no point having them there. It requires some careful checking but this
is a valid (minimum-width) tree decomposition. Moreover, Br contains w, v, x.
The fact that Ba-done was not the penultimate bag of P , means that the length
of the path from B1 to Br is strictly less than the length of the path from B1 to
B2: contradiction on the assumption that these were the closest bags containing
{u,w, v} and {w, v, x} respectively. We are done. �

We now deal with the situation when the tw(G) ≥ 4 assumption is removed.

Lemma 4. If G has a ladder L of length 5 or longer, the ladder can be increased
in length arbitrarily without altering (in particular: increasing) the treewidth.
This holds irrespective of the treewidth of G.

Proof. Let L be a ladder of length 5 or longer. We can assume that L is not
disconnecting and tw(G) ≤ 3. We select the three most central squares and
label these as in Fig. 1. These are flanked on both sides by at least one other

Snakes and Ladders: A Treewidth Story 197

square. Hence, a, b, c, d each has exactly one neighbour outside the 3 squares,
let us call these a′, b′, c′, d′ respectively, where {a′, b′} is an edge and {c′, d′} is
an edge. Now, tw(G) = 3 because L is not disconnecting. The only part of the
proof of Theorem 2 that does not work for tw(G) = 3 is Case 1 and (indirectly)
Case 2 because these create size-5 bags. We show that neither case can hold.

Consider Case 1. Let B be a bag containing one of the three most central
squares S of the ladder (these are the only squares to which Case 1 is ever
applied). A small tree decomposition is one where no bag is a subset of another.
If a tree decomposition is not small, then by running intersection it must contain
two adjacent bags B†, B‡ such that B† ⊆ B‡. The two bags can then be safely
merged into B‡. By repeating this a small tree decomposition can be obtained
without raising the width of the original minimum-width decomposition. Fur-
thermore, some bag B will still exist containing S. If B has five or more vertices
we immediately have tw(G) ≥ 4 and we are done. Otherwise, let B′ be any bag
adjacent to B; such a bag must exist because G has more than 4 vertices. Due
to the smallness of the decomposition we have B �⊆ B′ and B′ �⊆ B. Hence,
B ∩ B′ ⊂ B and B ∩ B′ ⊂ B′. A separator is a subset of vertices whose dele-
tion disconnects the graph. Now, B ∩ B′ is by construction, and the definition
of tree decompositions a separator of G. However, due to our use of the three
central squares, S is not a separator, and no subset of it is a separator either;
the inclusion of a′, b′, c′, d′ and the edges {a′, b′} and {c′, d}, alongside the fact
that L is not disconnecting, ensure this. This yields a contradiction. Hence Case
1 implies tw(G) ≥ 4 i.e. it cannot happen when tw(G) = 3.

We are left with Case 2. This case replaces the three centremost squares
with a single square, and deletes any diagonals that this single square might
have, to obtain a new graph G′. We have tw(G′) ≤ tw(G), by minors. Note that
tw(G′) ≥ 3 because the shorter ladder in G′ (which has length at least 3) is still
disconnecting. Hence, tw(G′) = tw(G) = 3. The decomposition T

′ of G′ obtained
by projecting the contraction operations onto the tree decomposition T of G, is a
valid tree decomposition (as argued in Case 2) with the property that the width
of T′ is less than or equal to the width of T. T′ cannot have width less than 3,
so it must have width 3. Hence it is a tree decomposition of G′ in which all bags
have at most four vertices. We then transform T

′ into a small tree composition:
this does not raise the width of the decomposition, and every bag prior to the
transformation either survives or is absorbed into another. Consider the bag B′

containing H1,H2, L1, L2. The presence of a′, b′, c,′ , d′ in G′ and the fact that the
ladder in G′ is not disconnecting, means that H1,H2, L1, L2 is not a separator
for G′, and neither is any subset of those four vertices. But the intersection of
B′ with any neighbouring bag must be a separator. Hence B′ must contain a
fifth vertex, contradiction. So Case 2 cannot happen when tw(G) = 3. �

We can, however, still do better. The following proof is in the appendix.

Theorem 3. If G has a ladder L of length 4 or longer, the ladder can be
increased in length arbitrarily without altering (in particular: increasing) the
treewidth. This holds irrespective of the treewidth of G.

198 S. Chaplick et al.

Fig. 5. A graph of treewidth 3 that contains a ladder with 3 squares, shown in red.
Increasing the length of the ladder by 1 square increases the treewidth to 4. (Color
figure online)

1

2

3

6

5

4

1

2

3

6

5

4

Fig. 6. These graphs have treewidth 4 (left) and 5 (right) and each one has a length 2
ladder, induced by {1, 2, 3, 4, 5, 6}. In each case increasing the length of the ladder to
length 3 increases the treewidth of the graph by one.

Tightness. The constant 4 in the statement of Theorem 3 is equal to the con-
stant obtained for the ‘bottleneck’ case tw(G) = 3. An improved constant 3
for this case is not possible, as Fig. 5 shows. It is natural to ask whether, when
tw(G) ≥ 4, we can start from ladders of length 2, rather than 3. This is also not
possible. See Fig. 6. In fact, we have examples up to treewidth 20. These can be
found at https://github.com/skelk2001/snakes and ladders. We conjecture that
this holds for all treewidths, but defer this to future work.

Implications for Phylogenetics. A phylogenetic tree is a binary tree whose
leaves are bijectively labelled by a set X. The display graph of T1, T2 on X is
obtained by identifying leaves with the same label. In [14] it was asked whether
common chains could be truncated to constant length without lowering the
treewidth of the display graph. Theorem 3 establishes that the answer is yes. In
fact, due to the restricted structure of display graphs, we can prove a stronger
result: truncation to 4 leaves (i.e. 3 squares) is safe, and this is best possible.
Theorem 4 summarizes this. We provide full details in the appendix.

Theorem 4. Let T1, T2 be two unrooted binary phylogenetic trees on the same
set of taxa X, where |X| ≥ 4 and T1 �= T2. Then exhaustive application of the
subtree reduction and the common chain reduction (where common chains are
reduced to 4 leaf labels) does not alter the treewidth of the display graph. This is
best possible, because there exist tree pairs where truncation of common chains
to length 3 does reduce the treewidth of the display graph (see Fig 7).

https://github.com/skelk2001/snakes_and_ladders

Snakes and Ladders: A Treewidth Story 199

Fig. 7. Lengthening the common chain {a, b, c} to {a, b, c, d} in these phylogenetic trees
causes the treewidth of the display graph to increase. Equivalently: shortening common
chains to 3 leaf labels is not guaranteed to preserve treewidth in the display graph.

4 Future Work

A number of interesting open questions remain. First, can the results in this
paper be made constructive? That is, given a minimum-width tree decomposi-
tion for a graph with a short ladder, but not necessarily the special distance-
minimizing one assumed in our proofs, can we manipulate it to obtain a tree
decomposition of the same width after the ladder is lengthened? Second, can we
prove that for every starting treewidth, not just tw(G) ≤ 20, extending a ladder
of length 2 sometimes causes the treewidth to increase? Third, can our results
be (elegantly) generalized to more complex recursive structures than ladders?
This requires careful analysis of which parts of our proof are specific to ladders.
Finally, if our results are generalized to more general structures, the question
arises of how to implement these results as reduction rules: this requires efficient
algorithmic recognition of “long” structures in order to produce the “short”
variant.

Acknowledgements. We thank Hans Bodlaender and Bart Jansen for insightful feed-
back. We also thank the members of our department for useful discussions.

References

1. Abu-Khzam, F.N., Lamm, S., Mnich, M., Noe, A., Schulz, C., Strash, D.: Recent
advances in practical data reduction. In: Bast, H., Korzen, C., Meyer, U., Pen-
schuck, M. (eds.) Algorithms for Big Data. LNCS, vol. 13201, pp. 97–133. Springer,
Cham (2022). https://doi.org/10.1007/978-3-031-21534-6 6

2. Allen, B., Steel, M.: Subtree transfer operations and their induced metrics on
evolutionary trees. Ann. Comb. 5, 1–15 (2001)

3. Blair, J., Peyton, B.: Graph Theory and Sparse Matrix Computation, chap. An
Introduction to Chordal Graphs and Clique Trees. In: George, A., Gilbert, J.R.,
Liu, J.W.H. (eds.) Graph Theory and Sparse Matrix Computation. The IMA Vol-
umes in Mathematics and its Applications, vol. 56, pp. 1–29. Springer, New York
(1993). https://doi.org/10.1007/978-1-4613-8369-7 1

4. Bodlaender, H.L., van Antwerpen-de Fluiter, B.: Reduction algorithms for graphs
of small treewidth. Inf. Comput. 167(2), 86–119 (2001)

5. Bodlaender, H.L., Fomin, F.V., Lokshtanov, D., Penninkx, E., Saurabh, S., Thi-
likos, D.M.: (meta) kernelization. J. ACM 63(5), 44:1–44:69 (2016)

6. Bryant, D., Lagergren, J.: Compatibility of unrooted phylogenetic trees is FPT.
Theoret. Comput. Sci. 351(3), 296–302 (2006)

https://doi.org/10.1007/978-3-031-21534-6_6
https://doi.org/10.1007/978-1-4613-8369-7_1

200 S. Chaplick et al.

7. Bulteau, L., Weller, M.: Parameterized algorithms in bioinformatics: an overview.
Algorithms 12(12), 256 (2019)

8. Chaplick, S., Kelk, S., Meuwese, R., Mihalak, M., Stamoulis, G.: Snakes and lad-
ders: a treewidth story. arXiv preprint arXiv:2302.10662 (2023)

9. Fomin, F.V., Lokshtanov, D., Saurabh, S., Zehavi, M.: Kernelization: Theory of
Parameterized Preprocessing. Cambridge University Press, Cambridge (2019)

10. van Iersel, L., Jones, M., Weller, M.: Embedding phylogenetic trees in networks of
low treewidth. In: Chechik, S., Navarro, G., Rotenberg, E., Herman, G. (eds.) 30th
Annual European Symposium on Algorithms, ESA 2022, September 5–9, 2022,
Berlin/Potsdam, Germany. LIPIcs, vol. 244, pp. 69:1–69:14. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik (2022). arXiv preprint arXiv:2207.00574

11. Janssen, R., Jones, M., Kelk, S., Stamoulis, G., Wu, T.: Treewidth of display
graphs: bounds, brambles and applications. J. Graph Algorithms Appl. 23(4),
715–743 (2019)

12. John, K.S.: The shape of phylogenetic treespace. Syst. Biol. 66(1), e83 (2017)
13. Kelk, S., van Iersel, L., Scornavacca, C., Weller, M.: Phylogenetic incongruence

through the lens of monadic second order logic. J. Graph Algorithms Appl. 20(2),
189–215 (2016)

14. Kelk, S., Stamoulis, G., Wu, T.: Treewidth distance on phylogenetic trees. Theoret.
Comput. Sci. 731, 99–117 (2018)

15. Sanders, D.: On linear recognition of tree-width at most four. SIAM J. Discret.
Math. 9(1), 101–117 (1996)

16. Steel, M.: Phylogeny: Discrete and Random Processes in Evolution. SIAM (2016)

http://arxiv.org/abs/2302.10662
http://arxiv.org/abs/2207.00574

Parameterized Results on Acyclic
Matchings with Implications for Related

Problems

Juhi Chaudhary(B) and Meirav Zehavi

Department of Computer Science, Ben-Gurion University of the Negev,
Beersheba, Israel

juhic@post.bgu.ac.il, meiravze@bgu.ac.il

Abstract. A matching M in a graph G is an acyclic matching if the sub-
graph of G induced by the endpoints of the edges of M is a forest. Given
a graph G and a positive integer �, Acyclic Matching asks whether G
has an acyclic matching of size (i.e., the number of edges) at least �. In
this paper, we first prove that assuming W[1] � FPT, there does not exist
any FPT-approximation algorithm for Acyclic Matching that approx-
imates it within a constant factor when parameterized by �. Our reduc-
tion is general in the sense that it also asserts FPT-inapproximability for
Induced Matching and Uniquely Restricted Matching. We also
consider three below-guarantee parameters for Acyclic Matching, viz.
n
2

− �, MM(G)− �, and IS(G)− �, where n is the number of vertices in G,
MM(G) is the matching number of G, and IS(G) is the independence num-
ber of G. We note that the result concerning the below-guarantee param-
eter n

2
− � is the most technical part of our paper. Also, we show that

Acyclic Matching does not exhibit a polynomial kernel with respect
to vertex cover number (or vertex deletion distance to clique) plus the
size of the matching unless NP ⊆ coNP/poly.

Keywords: Acyclic Matching · Parameterized Algorithms ·
Kernelization Lower Bounds · Induced Matching · Uniquely Restricted
Matching

1 Introduction

Matchings form a central topic in graph theory and combinatorial optimization
[31]. In addition to their theoretical fruitfulness, matchings have various practical
applications, such as assigning new physicians to hospitals, students to high
schools, clients to server clusters, kidney donors to recipients [32], and so on.
Moreover, matchings can be associated with the concept of edge colorings [3,
6,40], and they are a useful tool for finding optimal solutions or bounds in

The authors are supported by the European Research Council (ERC) project titled
PARAPATH (101039913).

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
D. Paulusma and B. Ries (Eds.): WG 2023, LNCS 14093, pp. 201–216, 2023.
https://doi.org/10.1007/978-3-031-43380-1_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-43380-1_15&domain=pdf
https://doi.org/10.1007/978-3-031-43380-1_15

202 J. Chaudhary and M. Zehavi

competitive optimization games on graphs [2,21]. Matchings have also found
applications in Parameterized Complexity and Approximation Algorithms. For
example, Crown Decomposition, a construction widely used for kernelization, is
based on classical matching theorems [12], and matchings are one of the oldest
tools in designing approximation algorithms for graph problems (e.g., consider
the classical 2-approximation algorithm for Vertex Cover [1]).

A matching M is a P-matching if G[VM] (the subgraph induced by the
endpoints of edges in M) has the property P, where P is some graph prop-
erty. The problem of deciding whether a graph admits a P-matching of a
given size (number of edges) has been investigated for several graph properties
[17,20,22,36,38,39]. If the property P is that of being a graph, a disjoint union
of edges, a forest, or having a unique perfect matching, then a P-matching is a
matching [33], an induced matching [39], an acyclic matching [20], and a uniquely
restricted matching [22], respectively. In this paper, we focus on the parameter-
ized complexity of acyclic matchings, but also discuss implications for the cases
of induced matchings and uniquely restricted matchings. In particular, we study
the parameterized complexity of these problems.

Problem Definitions and Related Works. Given a graph G and a posi-
tive integer �, Acyclic Matching asks whether G has an acyclic matching
of size at least �. Goddard et al. [20] introduced the concept of acyclic match-
ing, and since then, it has gained significant popularity [3,4,18,36,38]. Acyclic

Matching is known to be NP-complete for perfect elimination bipartite graphs
[38], star-convex bipartite graphs [36], and dually chordal graphs [36]. On the
positive side, Acyclic Matching is known to be polynomial-time solvable for
chordal graphs [4] and bipartite permutation graphs [38]. Fürst and Rautenbach
[18] characterized the graphs for which every maximum matching is acyclic and
gave linear-time algorithms to compute a maximum acyclic matching in graph
classes such as P4-free graphs and 2P3-free graphs. With respect to approxi-
mation, Panda and Chaudhary [36] showed that Acyclic Matching is hard
to approximate within factor n1−ε for every ε > 0 unless P = NP. Apart from
that, Baste et al. [4] showed that finding a maximum cardinality 1-degenerate
matching in a graph G is equivalent to finding a maximum acyclic matching
in G.

From the viewpoint of Parameterized Complexity, Hajebi and Javadi [24]
studied Acyclic Matching. See Table 1 for a tabular view of known parame-
terized results concerning acyclic matchings.

Recall that a matching M is an induced matching if G[VM] is a disjoint
union of K ′

2s. In fact, note that every induced matching is an acyclic matching,
but the converse need not be true. Given a graph G and � ∈ N, Induced

Matching asks whether G has an induced matching of size at least �. Induced
Matching has been studied extensively due to its various applications and
relations with other graph problems [7,11,15,25–27,29,34,37,39,42]. Given a
graph G and a positive integer �, Induced Matching Below Triviality

(IMBT) asks whether G has an induced matching of size at least � with the
parameter k = n

2 −�, where n = |V (G)|. IMBT has been studied in the literature,

Parameterized Results on Acyclic Matchings 203

Table 1. Overview of parameterized results for Acyclic Matching. Here, c4 and tw
denote the number of cycles with length four and the treewidth of the input graph,
respectively.

Parameter Result

1 size of the matching W[1]-hard on bipartite graphs [24]

2 size of the matching FPT on line graphs [24]

3 size of the matching FPT on every proper minor-closed class of graphs [24]

4 size of the matching plus c4 FPT [24]

5 tw FPT [9,24]

albeit under different names: Moser and Thilikos [35] gave an algorithm to solve
IMBT in O(9k · nO(1)) time. Subsequently, Xiao and Kou [41] developed an
algorithm running in O(3.1845k ·nO(1)) time. Induced Matching with respect
to some new below guarantee parameters have also been studied recently [28].

Next, recall that a matching M is a uniquely restricted matching if G[VM]
has exactly one perfect matching. Note by definition that an acyclic matching is
always a uniquely restricted matching, but the converse need not be true. Given
a graph G and a positive integer �, Uniquely Restricted Matching asks
whether G has a uniquely restricted matching of size at least �. The concept
of uniquely restricted matching, motivated by a problem in Linear Algebra,
was introduced by Golumbic et al. [22]. Some more results related to uniquely
restricted matchings can be found in [5,6,8,17,20,22].

Our Contributions and Methods. Proofs of the results marked with a (∗)
are omitted due to lack of space and can be found in the full version (see [10]).

In Sect. 3, we show that it is very unlikely that there exists any FPT-
approximation algorithm for Acyclic Matching that approximates it to a
constant factor. Our simple reduction also asserts the FPT-inapproximability of
Induced Matching and Uniquely Restricted Matching. In particular,
we have the following theorem.

Theorem 1. Assuming W[1] � FPT, there is no FPT algorithm that approxi-
mates any of the following to any constant when the parameter is the size of the
matching: (1) Acyclic Matching; (2) Induced matching; (3) Uniquely

Restricted Matching.

If R ∈ {acyclic, induced, uniquely restricted}, then the R matching num-
ber of G is the maximum cardinality of an R matching among all R matchings
in G. We denote by AM(G), IM(G), and URM(G), the acyclic matching num-
ber, the induced matching number, and the uniquely restricted matching number,
respectively, of G. Also, we denote by IS(G) the independence number of G.

In order to prove Theorem 1, we exploit the relationship of IS(G) with the
following: AM(G), IM(G), and URM(G). While the relationship of AM(G) and
IM(G) with IS(G) is straightforward, extra efforts are needed to state a similar
relation between URM(G) and IS(G), which may be of independent interest as

204 J. Chaudhary and M. Zehavi

well. Also, we note that Induced Matching is already known to be W[1]-hard,
even for bipartite graphs [34]. However, for Uniquely Restricted Matching,
Theorem 1 is the first to establish the W[1]-hardness of the problem.

In Sect. 4, we consider below-guarantee parameters for Acyclic Matching,
i.e., parameterizations of the form UB− � for an upper bound UB on the size of
any acyclic matching in G. Since the inception of below-guarantee (and above-
guarantee) parameters, there has been significant progress in the area concerning
graph problems parameterized by such parameters (see a recent survey paper by
Gutin and Mnich [23]). It is easy to observe that in a graph G, the size of any
acyclic matching is at most n

2 , where n = |V (G)|. This observation yields the
definition of Acyclic Matching Below Triviality, which, given a graph G
with |V (G)| = n and a positive integer �, asks whether G has an acyclic matching
of size at least �. Here, the parameter is k = n − 2�.

Note that for ease of exposition, we are using the parameter n − 2� instead
of n

2 − �. Next, we have the following theorem.

Theorem 2. There exists a randomized algorithm that solves AMBT with suc-
cess probability at least 1 − 1

e in 10k · nO(1) time.

The proof of Theorem 2 is the most technical part of our paper. The initial
intuition in proving Theorem 2 was to take a cue from the existing literature
on similar problems (which are quite a few) like Induced Matching Below

Triviality. However, induced matchings have many nice properties, which do
not hold for acyclic matchings in general, and thus make it more difficult to char-
acterize edges or vertices that should necessarily belong to an optimal solution of
Acyclic Matching Below Triviality. However, there is one nice property
about Acyclic Matching, and it is that it is closely related to the Feedback

Vertex Set problem as follows. Given an instance (G, �) of Acyclic Match-

ing, where n = |V (G)|, G has an acyclic matching of size � if and only if there
exists a (not necessarily minimal) feedback vertex set, say, X, of size n − 2�
such that G − X has a perfect matching. We use randomization techniques to
find a (specific) feedback vertex set of the input graph and then check whether
the remaining graph (which is a forest) has a matching of the desired size or
not. Note that the classical randomized algorithm for Feedback Vertex Set

(which is a classroom problem now) [12] cannot be applied “as it is” here. In
other words, since our ultimate goal is to find a matching, we cannot get rid of
the vertices or edges of the input graph by applying some reduction rules “as
they are”. Instead, we can do something meaningful if we store the informa-
tion about everything we delete or modify, and maintain some specific property
(called Property R by us) in our graph. We also use our own lemma (Lemma 7)
to pick a vertex in our desired feedback vertex set with high probability. Then,
using an algorithm for Max Weight Matching (see Sect. 2), we compute an
acyclic matching of size at least �, if such a matching exists.

In light of Theorem 2, for AMBT, we ask if Acyclic Matching is FPT for
natural parameters smaller than n

2 − �. Here, an obvious upper bound on AM(G)
is the matching number of G. Thus, we consider the below-guarantee parameter

Parameterized Results on Acyclic Matchings 205

MM(G) − �, where MM(G) denotes the matching number of G, which yields
Acyclic Matching Below Maximum Matching (AMBMM). Given a graph
G and a positive integer �, AMBMM asks whether G has an acyclic matching of
size at least �. Note that the parameter in AMBMM is k = MM(G) − �.

In [18], Fürst and Rautenbach showed that deciding whether a given bipartite
graph of maximum degree at most 4 has a maximum matching that is also an
acyclic matching is NP-hard. Thus, for k = 0, the AMBMM problem is NP-hard,
and we have the following result.

Corollary 1. AMBMM is para-NP-hard even for bipartite graphs of maximum
degree at most 4.

Next, consider the following lemma.

Lemma 1. (∗) If G has an acyclic matching M of size �, then G has an inde-
pendent set of size at least �. Moreover, given M , the independent set is com-
putable in polynomial time.

By Lemma 1, for any graph G, IS(G) ≥ AM(G), which yields the Acyclic

Matching Below Independent Set (AMBIS) problem. Given a graph G and
a positive integer �, AMBIS asks whether G has an acyclic matching of size at
least �. Note that the parameter in AMBIS is k = IS(G) − �.

In [36], Panda and Chaudhary showed that Acyclic Matching is hard
to approximate within factor n1−ε for any ε > 0 unless P = NP by giving
a polynomial-time reduction from Independent Set. We notice that with a
more careful analysis of the proof, the reduction given in [36] can be used to
show that AMBIS is NP-hard for k = 0. Therefore, we have the following result.

Corollary 2. AMBIS is para-NP-hard.

We note that Hajebi and Javadi [24] showed that Acyclic Matching

parameterized by treewidth (tw) is FPT by using Courcelle’s theorem. Since
tw(G) ≤ vc(G)1, this result immediately implies that Acyclic Matching is
FPT with respect to the parameter vc. We complement this result by showing
that it is unlikely for Acyclic Matching to admit a polynomial kernel when
parameterized not only by vc, but also when parameterized jointly by vc plus
the size of the acyclic matching. In particular, we have the following.

Theorem 3. Acyclic Matching does not admit a polynomial kernel when
parameterized by vertex cover number plus the size of the matching unless NP ⊆
coNP/poly.

Parameterization by the size of a modulator (a set of vertices in a graph whose
deletion results in a graph that belongs to a well-known and easy-to-handle
graph class) is another natural choice of investigation. We observe that with
only a minor modification in our construction (in the proof of Theorem 3), we
derive the following result.
1 We denote by vc(G), the vertex cover number of a graph G.

206 J. Chaudhary and M. Zehavi

Theorem 4. Acyclic Matching does not admit a polynomial kernel when
parameterized by the vertex deletion distance to clique plus the size of the match-
ing unless NP ⊆ coNP/poly.

Due to space constraints, the section concerning negative kernelization results
has been deferred to the full version of the paper (see [10]).

2 Preliminaries

For k ∈ N, let [k] = {1, 2, . . . , k}. We consider only simple and undirected graphs
unless stated otherwise. For a graph G, let V (G) denote its vertex set, and E(G)
denote its edge set. For a graph G, the subgraph of G induced by S ⊆ V (G) is
denoted by G[S], where G[S] = (S,ES) and ES = {xy ∈ E(G) : x, y ∈ S}. Given
a matching M , a vertex v ∈ V (G) is M -saturated if v is incident on an edge of M .
Given a graph G and a matching M , we use the notation VM to denote the set
of M -saturated vertices. The matching number of G is the maximum cardinality
of a matching among all matchings in G, and we denote it by MM(G). The edges
in a matching M are matched edges. A matching that saturates all the vertices
of a graph is a perfect matching. If uv ∈ M , then v is the M -mate of u and
vice versa. Given a weighted graph G with a weight function w : E(G) → R
and a weight W ∈ R, Max Weight Matching asks whether G has a matching
with weight at least W in G, and can be solved in O(m

√
n log(N)) time, where

m = |E(G)|, n = |V (G)|, and the weights are integers lying in [0, N] [14].
The degree of a vertex v, denoted by dG(v), is |NG(v)|. When there is no

ambiguity, we do not use the subscript G. The minimum degree of graph G is
denoted by δ(G). We use the notation ̂d(u, v) to represent the distance between
two vertices u and v in a graph G. We denote by IS(G), the independence number
of a graph G. Given a (multi)graph G and a positive integer �, Feedback

Vertex Set asks whether there exists a feedback vertex set in G of size at
most �. A factor of a graph G is a spanning subgraph of G (a subgraph with
vertex set V (G)). A k-factor of a graph is a k-regular subgraph of order n. In
particular, a 1-factor is a perfect matching. Let Kn denote a complete graph
with n vertices. The size of a clique modulator of minimum size is known as the
vertex deletion distance to a clique. For a graph G and a set X ⊆ V (G), we use
G − X to denote G[V (G)\X].

Standard notions in Parameterized Complexity not explicitly defined here can
be found in [12,13]. In the framework of Parameterized Complexity, each instance
of a problem Π is associated with a positive integer parameter k. A parameterized
problem Π is fixed-parameter tractable (FPT) if there is an algorithm that, given
an instance (I, k) of Π, solves it in time f(k) · |I|O(1), for some computable
function f(·). Due to space constraints, the definition of FPT-approximation
algorithm has been deferred to the full version (see [10]).

3 FPT-Inapproximation Results

To obtain our result, we need the following proposition.

Parameterized Results on Acyclic Matchings 207

Proposition 1 ([30]). Assuming W[1] � FPT, there is no FPT-algorithm that
approximates Clique to any constant.

From Proposition 1, we derive the following corollary.

Corollary 3. Assuming W[1] � FPT, there is no FPT-algorithm that approxi-
mates Independent Set to any constant.

Before presenting our reduction from Independent Set, we establish the
relationship of IS(G) with the following: AM(G), IM(G), and URM(G), which will
be critical for the arguments in the proof of our main theorem in this section.

Relation of IS(G) with AM(G), IM(G) and URM(G).

Lemma 1. (∗) If G has an acyclic matching M of size �, then G has an indepen-
dent set of size at least �. Moreover, given M , the independent set is computable
in polynomial time.

Since every induced matching is also an acyclic matching, the next lemma
directly follows from Lemma 1.

Lemma 2. If G has an induced matching M of size �, then G has an indepen-
dent set of size at least �. Moreover, given M , the independent set is computable
in polynomial time.

Proving a similar lemma for uniquely restricted matching is more compli-
cated. To this end, we need the following notation. Given a graph G, an even
cycle (i.e., a cycle with an even number of edges) in G is said to be an alternating
cycle with respect to a matching M if every second edge of the cycle belongs
to M . The following proposition characterizes uniquely restricted matchings in
terms of alternating cycles.

Proposition 2 ([22]). Let G be a graph. A matching M in G is uniquely
restricted if and only if there is no alternating cycle with respect to M in G.

Our proof will also identify some bridges based on the following proposition.

Proposition 3 ([19]). A graph with a unique 1-factor has a bridge that is
matched.

Lemma 3. If G has a uniquely restricted matching M of size �, then G has an
independent set of size at least �+1

2 . Moreover, given M , the independent set is
computable in polynomial time.

Proof. Let M be a uniquely restricted matching in G of size �. By the definition of
a uniquely restricted matching, G[VM] has a unique perfect matching (1-factor).
Let H and I be two sets. Initialize H = G[VM] and I = ∅. Next, we design an
iterative algorithm, say, Algorithm Find, to compute an independent set in H
with the help of Proposition 3. Algorithm Find does the following:

While H has a connected component of size at least four, go to 1.

208 J. Chaudhary and M. Zehavi

1. Pick a bridge, say, e, in H that belongs to M , and go to 2. (The existence of
e follows from Proposition 3.)

2. If e is a pendant edge, then remove e along with its endpoints from H, and
store the pendant vertex incident on e to I. Else, go to 3.

3. Remove e along with its endpoints from H.

After recursively applying 1–3, Algorithm Find arbitrarily picks exactly one
vertex from each of the remaining connected components and adds them to I.

Now, it remains to show that I is an independent set of H (and therefore
also of G) of size at least �+1

2 . For this purpose, we note that Algorithm Find

gives rise to a recursive formula (defined below).
Let Rh denote a lower bound on the maximum size of an independent set in

H of a maximum matching of size h. First, observe that if H has a matching of
size one, then it is clear that H has an independent set of size at least 1 (we can
pick one of the endpoints of the matched edge). Thus, R1 = 1. Now, we define
how to compute Rh recursively.

Rh = min{Rh−1 + 1, min
1 ≤ i ≤ h − 2

Ri + Rh−i−1}. (1)

The first term in (1) corresponds to the case where the matched bridge is a
pendant edge. On the other hand, the second term in (1) corresponds to the case
where the matched bridge is not a pendant edge. In this case, all the connected
components have at least one of the matched edges. Next, we claim the following,

Rh ≥ h + 1
2

. (2)

We prove our claim by applying induction on the maximum size of a matching
in H. Recall that R1 = 1. Next, by the induction hypothesis, assume that (2)
is true for all k < h. Note that since h − 1 < h, (2) is true for k = h − 1, i.e.,
Rh−1 ≥ h

2 . To prove that (2) is true for k = h, we first assume that the first
term, i.e., Rh−1 +1 gives the minimum in (1). In this case, Rh ≥ h

2 +1 = h+2
2 ≥

h+1
2 . Next, assume that the second term gives the minimum in (1) for some

i′, 1 ≤ i′ ≤ h − 2. In this case, note that i′ < h and h − i′ − 1 ≤ h − 2 < h, and
thus, by the induction hypothesis, (2) holds for both Ri′ and Rh−i′−1. Therefore,
Rh ≥ i′+1

2 + h−i′
2 = h+1

2 . �

Remark 1. Throughout this section, let Restricted ∈ {Acyclic, Induced,
Uniquely Restricted} and R ∈ {acyclic, induced, uniquely restricted}.

By Lemmas 1–3, we have the following corollary.

Corollary 4. If a graph G has an R matching M of size �, then G has an
independent set of size at least �+1

2 . Moreover, given M , the independent set is
computable in polynomial time.

Now, consider the following construction.

Parameterized Results on Acyclic Matchings 209

Construction. Given a graph G, where V (G) = {v1, . . . , vn}, we construct
a graph H = reduce(G) as follows. Let G1 and G2 be two copies of G. Let
V 1 = {v1

1 , . . . , v
1
n} and V 2 = {v2

1 , . . . , v
2
n} denote the vertex sets of G1 and G2,

respectively. Let V (H) = V (G1) ∪ V (G2) and E(H) = E(G1) ∪ E(G2) ∪ {v1
i v2

i :
i ∈ [n]}. Let us call the edges between G1 and G2 vertical edges.

Lemma 4. (∗) Let G and H be as defined above. If H has R matching of the
form M = {v1

1v
2
1 , . . . , v

1
pv2

p}, then IM = {v1, . . . , vp} is an independent set of G.

Hardness of Approximation Proof. To prove Theorem 1, we first suppose
that Restricted Matching can be approximated within a ratio of α > 1,
where α ∈ R+ is a constant, by some FPT-approximation algorithm, say, Algo-
rithm A. By the definition of A, the following is true:

i) If H does not have an R matching of size �, then the output of A is arbitrary
(indicating that (H, �) is a No-instance).

ii) If H has an R matching of size �, then A returns an R matching, say, X,
such that |X| ≥ �

α and |X| ≤ opt(H), where opt(H) denotes the optimal size
of an R matching in H.

Next, we propose an FPT-approximation algorithm, say, Algorithm B, to
compute an FPT-approximate solution for Independent Set as follows. Given
an instance (G, �) of Independent Set, Algorithm B first constructs an
instance (H, �) of Restricted Matching, where H = reduce(G). Algorithm B
then solves (H, �) by using Algorithm A. If Algorithm A returns an R matching
X, then Algorithm B returns an independent set of size at least |X|

8 (≥ �
8α). Else,

the output is arbitrary.
Now, it remains to show that Algorithm B is an FPT-approximation algo-

rithm for Independent Set with an approximation factor of β > 1, where
β ∈ R+, which we will show with the help of the following two lemmas.

Lemma 5. (∗) Algorithm B approximates Independent Set within a con-
stant factor β > 1, where β ∈ R+.

Lemma 6. (∗) Algorithm B runs in FPT time.

By Corollary 4 and Lemmas 5 and 6, we have Theorem 1.

4 FPT Algorithm for AMBT

In this section, we prove that AMBT is FPT by giving a randomized algorithm
that runs in time 10k · nO(1), where n = |V (G)| and k = n − 2�.

First, we define some terminology that is crucial for proceeding further in
this section. A graph G has property R if δ(G) ≥ 2 and no two adjacent vertices
of G have degree exactly 2. A path P is a maximal degree-2 path in G if: (i)
it has at least two vertices, (ii) the degree of each vertex in P (including the
endpoints) is exactly 2, and (iii) it is not contained in any other degree-2 path.

210 J. Chaudhary and M. Zehavi

If we replace a maximal degree-2 path P with a single vertex, say, vP , of degree
exactly 2 (in G), then we call this operation Path-Replacement(P ,vP) (note
that the neighbors of vP are the neighbors of the endpoints of P that do not
belong to P). Furthermore, we call the newly introduced vertex (that replaces
a maximal degree-2 path in G) virtual vertex. Note that if both endpoints of
P have a common neighbor, then this gives rise to multiple edges in G. Next,
if there exists a cycle, say, C, of length p ≥ 2 such that the degree of each
vertex in C is exactly 2 (in G), then the Path-Replacement operation also
identifies such cycles and replaces each of them with a virtual vertex having a
self-loop, and the corresponding maximal degree-2 path, in this case, consists of
all the vertices of C. Therefore, it is required for us to consider AMBT in the
more general setting of multigraphs, where the graph obtained after applying
the Path-Replacement operation may contain multiple edges and self-loops.
We also note that multiple edges and self-loops are cycles.

We first present a lemma (Lemma 7) that is crucial to prove Theorem 2.

Lemma 7. (∗) Let G be a graph on n vertices with the property R. Then, for
every feedback vertex set X of G, more than |E(G)|

5 of the edges of G have at
least one endpoint in X.

Now, consider Algorithm 1.

Observe that the task of Algorithm 1 is first to modify an input graph G to
a graph that has property R. By abuse of notation, we call this modified graph
G. Since G is non-empty and G has property R, then G definitely has a cycle,
and by Lemma 7, with probability at least 1

10 , we pick one vertex, say v, that
belongs to a specific feedback vertex set of G. We store this vertex in a set ̂X.
After removing v from G, we also decrease k by 1. We again repeat the process
until either the graph becomes empty or k becomes non-positive while there are
still some cycles left in the graph; we return No in the latter case, and the sets
A, Z, and ̂X in the former case.

Given an input graph G and a positive integer k, let ̂X be a virtual feedback
vertex set returned by Algorithm 1. Note that the set ̂X contains a combination
of virtual vertices and the vertices from the set V (G). Let ̂V ⊆ ̂X be the set of
virtual vertices. If vP ∈ ̂V , then there exists some maximal degree-2 path P such
that (vP , P) ∈ A. If all the vertices in P are from V (G), then we say that the set
of vertices in P is safe for vP . On the other hand, if the path P contains some
virtual vertices, then note that there exist maximal degree-2 paths corresponding
to these virtual vertices as well. In this case, we recursively replace the virtual
vertices present in P with their corresponding maximal degree-2 paths until we
obtain a set that contains vertices from V (G) only, and we say that these vertices
are safe for vP . The process of obtaining a set of safe vertices corresponding to
virtual vertices is shown in Fig. 1. Note that, for the graph shown in Fig. 1 (i),
if ̂X = {vP3 , vP4 , vP6} is a virtual feedback vertex set returned by Algorithm 1
corresponding to X = {i, k, a}, then the safe set corresponding to vP3 is {i, j},
corresponding to vP4 is {k, l}, and corresponding to vP6 is {a, b, c, d, e, f, g, h}.

Parameterized Results on Acyclic Matchings 211

Algorithm 1
Input: A graph G and a positive integer k;
Output: A set ̂X of size at most k, a set Z, and a set A or No;
Initialize Z ← ∅, A ← ∅, ̂X ← ∅;
while (V (G) �= ∅) do

while (δ(G) ≤ 1) do
Pick a vertex v ∈ V (G) such that d(v) ≤ 1;
Z ← Z ∪ {v};
V (G) ← V (G)\{v};

while (there exists a maximal degree-2 path P in G) do
Path-Replacement(P ,vP);
A ← A ∪ {(P, vP)};

if (k > 0 and G has a cycle) then
if (G has a self-loop at some v) then

̂X ← ̂X ∪ {v};
V (G) ← V (G)\{v};
k ← k − 1;

else
Pick an edge e ∈ E(G);
Pick an endpoint v of e;
̂X ← ̂X ∪ {v};
V (G) ← V (G)\{v};
k ← k − 1;

else if (k ≤ 0 and G has a cycle) then
return No;

return ̂X, Z, A;

Remark 2. Throughout this section, if ̂X is a virtual feedback vertex set returned
by Algorithm 1, then let ̂V ⊆ ̂X denote the set of virtual vertices.

Definition 1. Let ̂X be a virtual feedback vertex set returned by Algorithm 1 if
given as input a graph G and a positive integer k. A set X ⊆ V (G) is compatible
with ̂X if the following hold: (1) For every vP ∈ ̂V , X contains at least one
vertex from the set of safe vertices corresponding to vP ; (2) For every v ∈ ̂X\̂V ,
v belongs to X; (3) |X| ≤ k.

Lemma 8. (∗) Given a graph G and a positive integer k, if ̂X is a virtual
feedback vertex set returned by Algorithm 1, then any set X ⊆ V (G) compatible
with ̂X is a feedback vertex set of G.

Lemma 9. (∗) Let G be a graph and k ∈ N. Then, for any feedback vertex set
X of G of size at most k, with probability at least 10−k, Algorithm 1 returns a
virtual feedback vertex set ̂X such that X is compatible with ̂X.

Remark 3. Let Algorithm A be any algorithm that solves Max Weight

Matching in polynomial time.

212 J. Chaudhary and M. Zehavi

Fig. 1. After applying Path-Replacement to paths P1-P4 in (i), we obtain the graph

in (ii), which has property R. We assume that Algorithm 1 picks vP3 in ̂X. After
removing vP3 , we obtain the graph shown in (iii) that has a maximal degree-2 path
P5. After applying Path-Replacement to P5, we obtain the graph in (iv). We assume

that Algorithm 1 picks vP4 in ̂X. After removing vP4 , we obtain the graph shown in
(v). Note that the Path-Replacement operation identifies the cycle shown in (v) as
a maximal degree-2 path and replaces it with vP6 with a self-loop, as shown in (vi).

Algorithm 1 then picks vP6 in ̂X.

Next, consider Algorithm 2.

Lemma 10. (∗) Let G, �, ̂X, GW , MW , and M be as defined in Algorithm 2.
If MW is of weight at least � + |̂V | · c, then M is an acyclic matching in G of
size at least �.

Lemma 11. (∗) Let (G, �) be a Yes-instance of Acyclic Matching with n =
|V (G)|. Then, with probability at least 102�−n, Algorithm 2 returns an acyclic
matching M in G of size at least �.

Lemma 12. (∗) Let (G, �) be a No-instance of Acyclic Matching with n =
|V (G)|. Then, with probability 1, Algorithm 2 returns No.

We can improve the success probability of Algorithm 1 and thus Algorithm
2, by repeating it, say, t times, and returning a No only if we are not able to find
a virtual feedback vertex set of size at most k in each of the repetitions. Clearly,
due to Lemma 12, given a No-instance, even after repeating the procedure t
times, we will necessarily get No as an answer. However, given a Yes-instance,

Parameterized Results on Acyclic Matchings 213

Algorithm 2
Input: An instance (G, �) of Acyclic Matching with n = |V (G)|;
Output: An acyclic matching M in G of size at least � or No;
Call Algorithm 1 with input (G, n − 2�);
if (Algorithm 1 returns No) then

return No;

else if (Algorithm 1 returns a virtual feedback vertex set ̂X) then
Initialize GW = G;
For every vP ∈ ̂V , add a vertex wP to GW and make it adjacent to every vertex
in the safe set corresponding to vP . Call all edges introduced here new edges.
Remove all v ∈ ̂X\\̂V from GW ;
Assign weight c = |E(G)| + 1 to all new edges of GW and weight 1 to all the
remaining edges of GW ;
Call Algorithm A with input (GW , � + |̂V | · c);

if (Algorithm A returns a matching MW of weight at least � + |̂V | · c) then
M = {e ∈ MW : weight of e is 1};
return M ;

else
return No;

we return a No only if all t repetitions return an incorrect No, which, by Lemma
11, has probability at most

(1 − 10−k)t ≤ (e−10−k

)t ≤ 1
e10−kt

. (3)

Note that we are using the identity 1 + x ≤ ex in (3). In order to obtain
a constant failure probability, we take t = 10k. By taking t = 10k, the success
probability becomes at least 1 − 1

e . Thus, we have the following theorem.

Theorem 1. There exists a randomized algorithm that solves AMBT with suc-
cess probability at least 1 − 1

e in 10k · nO(1) time.

5 Conclusion and Future Research

Based on the results given by Moser and Sikdar [34], we note that both Acyclic

Matching and Uniquely Restricted Matching admit quadratic kernels
(with respect to the maximum degree of the input graph) for bounded degree
graphs. In fact, for Uniquely Restricted Matching, the quadratic kernel can
be further improved to a linear kernel. The following is true for any maximum
uniquely restricted matching.

Property ̂P: If M is a maximum uniquely restricted matching in a graph G, then
for each vertex v ∈ V (G), there exists a vertex u ∈ VM such that ̂d(u, v) ≤ 1.

One possible direction for future research is to seek a below-guarantee param-
eter smaller than the parameter n

2 − �, so that Acyclic Matching remains

214 J. Chaudhary and M. Zehavi

FPT. Also, it would be interesting to see if the running time in Theorem 2 can
be substantially improved. Apart from that, we strongly believe that the argu-
ments presented in this work (in Sect. 4) will be useful for other future works
concerning problems where one seeks a solution that, among other properties,
satisfies that it is itself, or its complement, a feedback vertex set, or, much more
generally, an alpha-cover (see [16]). A more detailed conclusion can be found in
the full version (see [10]).

References

1. Ausiello, G., Crescenzi, P., Gambosi, G., Kann, V., Marchetti-Spaccamela, A., Pro-
tasi, M.: Complexity and Approximation: Combinatorial Optimization Problems
and their Approximability properties. Springer, Heidelberg (2012)

2. Bachstein, A., Goddard, W., Lehmacher, C.: The generalized matcher game. Dis-
cret. Appl. Math. 284, 444–453 (2020)

3. Baste, J., Fürst, M., Rautenbach, D.: Approximating maximum acyclic matchings
by greedy and local search strategies. In: Kim, D., Uma, R.N., Cai, Z., Lee, D.H.
(eds.) COCOON 2020. LNCS, vol. 12273, pp. 542–553. Springer, Cham (2020).
https://doi.org/10.1007/978-3-030-58150-3 44

4. Baste, J., Rautenbach, D.: Degenerate matchings and edge colorings. Discret. Appl.
Math. 239, 38–44 (2018)

5. Baste, J., Rautenbach, D., Sau, I.: Uniquely restricted matchings and edge color-
ings. In: Bodlaender, H.L., Woeginger, G.J. (eds.) WG 2017. LNCS, vol. 10520, pp.
100–112. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-68705-6 8

6. Baste, J., Rautenbach, D., Sau, I.: Upper bounds on the uniquely restricted chro-
matic index. J. Graph Theory 91(3), 251–258 (2019)

7. Cameron, K.: Induced matchings. Discret. Appl. Math. 24(1–3), 97–102 (1989)
8. Chaudhary, J., Panda, B.S.: On the complexity of minimum maximal uniquely

restricted matching. Theoret. Comput. Sci. 882, 15–28 (2021)
9. Chaudhary, J., Zehavi, M.: P-matchings parameterized by treewidth. In:

Paulusma, D., Ries, B. (eds.) WG 2023. LNCS, vol. 14093, pp. 217–231. Springer,
Cham (2023)

10. Chaudhary, J., Zehavi, M.: Parameterized results on acyclic matchings with impli-
cations for related problems. arXiv preprint arXiv:2307.05446v1 (2023)

11. Cooley, O., Draganic, N., Kang, M., Sudakov, B.: Large induced matchings in
random graphs. SIAM J. Discret. Math. 35(1), 267–280 (2021)

12. Cygan, M., et al.: Parameterized Algorithms, vol. 5. Springer, Cham (2015)
13. Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity, vol. 4.

Springer, London (2013)
14. Duan, R., Su, H.-H.: A scaling algorithm for maximum weight matching in bipartite

graphs. In Proceedings of the Twenty-third Annual ACM-SIAM Symposium on
Discrete Algorithms. SIAM, pp. 1413–1424 (2012)

15. Erman, R., Kowalik, �L, Krnc, M., Waleń, T.: Improved induced matchings in sparse
graphs. Discret. Appl. Math. 158(18), 1994–2003 (2010)

16. Fomin, F.V., Lokshtanov, D., Misra, N., Saurabh, S.: Planar f-deletion: approxima-
tion, kernelization and optimal FPT algorithms. In: 2012 53rd Annual Symposium
on Foundations of Computer Science. IEEE, pp. 470–479 (2012)

17. Francis, M.C., Jacob, D., Jana, S.: Uniquely restricted matchings in interval graphs.
SIAM J. Discret. Math. 32(1), 148–172 (2018)

https://doi.org/10.1007/978-3-030-58150-3_44
https://doi.org/10.1007/978-3-319-68705-6_8
http://arxiv.org/abs/2307.05446v1

Parameterized Results on Acyclic Matchings 215

18. Fürst, M., Rautenbach, D.: On some hard and some tractable cases of the maximum
acyclic matching problem. Ann. Oper. Res. 279, 291–300 (2019)

19. Gabow, H.N.: Algorithmic proofs of two relations between connectivity and the
1-factors of a graph. Discret. Math. 26(1), 33–40 (1979)

20. Goddard, W., Hedetniemi, S.M., Hedetniemi, S.T., Laskar, R.: Generalized
subgraph-restricted matchings in graphs. Discret. Math. 293(1–3), 129–138 (2005)

21. Goddard, W., Henning, M.A.: The matcher game played in graphs. Discret. Appl.
Math. 237, 82–88 (2018)

22. Golumbic, M.C., Hirst, T., Lewenstein, M.: Uniquely restricted matchings. Algo-
rithmica 31, 139–154 (2001)

23. Gutin, G., Mnich, M.: A survey on graph problems parameterized above and below
guaranteed values. arXiv preprint arXiv:2207.12278 (2022)

24. Hajebi, S., Javadi, R.: On the parameterized complexity of the acyclic matching
problem. Theoret. Comput. Sci. 958, 113862 (2023)

25. Kanj, I., Pelsmajer, M.J., Schaefer, M., Xia, G.: On the induced matching problem.
J. Comput. Syst. Sci. 77(6), 1058–1070 (2011)

26. Klemz, B., Rote, G.: Linear-time algorithms for maximum-weight induced match-
ings and minimum chain covers in convex bipartite graphs. Algorithmica 84(4),
1064–1080 (2022)

27. Ko, C., Shepherd, F.B.: Bipartite domination and simultaneous matroid covers.
SIAM J. Discret. Math. 16(4), 517–523 (2003)

28. Koana, T.: Induced matching below guarantees: average paves the way for fixed-
parameter tractability. In: Proceedings of the 40th International Symposium on
Theoretical Aspects of Computer Science (STACS), pp. 39:1–39:21 (2023)

29. Kowalik, L., Luzar, B., Skrekovski, R.: An improved bound on the largest induced
forests for triangle-free planar graphs. Discrete Math. Theor. Comput. Sci. 12(1),
87–100 (2010)

30. Lin, B.: Constant approximating k-clique is w [1]-hard. In: Proceedings of the 53rd
Annual ACM SIGACT Symposium on Theory of Computing, pp. 1749–1756 (2021)

31. Lovász, L., Plummer, M.D.: Matching Theory. Annals of Discrete Mathematics,
vol. 29. North-Holland, Amsterdam (1986)

32. Manlove, D.: Algorithmics of Matching Under Preferences, vol. 2. World Scientific,
Singapore (2013)

33. Micali, S., Vazirani, V.V.: An o(
√|V ||e|) algoithm for finding maximum matching

in general graphs. In 21st Annual Symposium on Foundations of Computer Science
(sfcs 1980). IEEE, pp. 17–27 (1980)

34. Moser, H., Sikdar, S.: The parameterized complexity of the induced matching prob-
lem. Discret. Appl. Math. 157(4), 715–727 (2009)

35. Moser, H., Thilikos, D.M.: Parameterized complexity of finding regular induced
subgraphs. J. Discrete Algorithms 7(2), 181–190 (2009)

36. Panda, B.S., Chaudhary, J.: Acyclic matching in some subclasses of graphs. The-
oret. Comput. Sci. 943, 36–49 (2023)

37. Panda, B.S., Pandey, A., Chaudhary, J., Dane, P., Kashyap, M.: Maximum weight
induced matching in some subclasses of bipartite graphs. J. Comb. Optim. 40(3),
713–732 (2020)

38. Panda, B.S., Pradhan, D.: Acyclic matchings in subclasses of bipartite graphs.
Discrete Math. Algorithms Appl. 4(04), 1250050 (2012)

39. Stockmeyer, L.J., Vazirani, V.V.: Np-completeness of some generalizations of the
maximum matching problem. Inf. Process. Lett. 15(1), 14–19 (1982)

40. Vizing, V.G.: On an estimate of the chromatic class of a p-graph. Diskret Analiz
3, 25–30 (1964)

http://arxiv.org/abs/2207.12278

216 J. Chaudhary and M. Zehavi

41. Xiao, M., Kou, S.: Parameterized algorithms and kernels for almost induced match-
ing. Theoret. Comput. Sci. 846, 103–113 (2020)

42. Zito, M.: Induced matchings in regular graphs and trees. In: Widmayer, P., Neyer,
G., Eidenbenz, S. (eds.) WG 1999. LNCS, vol. 1665, pp. 89–101. Springer, Heidel-
berg (1999). https://doi.org/10.1007/3-540-46784-X 10

https://doi.org/10.1007/3-540-46784-X_10

P-Matchings Parameterized by Treewidth

Juhi Chaudhary(B) and Meirav Zehavi

Department of Computer Science, Ben-Gurion University of the Negev,
BeerSheba, Israel

juhic@post.bgu.ac.il, meiravze@bgu.ac.il

Abstract. A matching is a subset of edges in a graph G that do not
share an endpoint. A matching M is a P-matching if the subgraph of
G induced by the endpoints of the edges of M satisfies property P. For
example, if the property P is that of being a matching, being acyclic,
or being disconnected, then we obtain an induced matching, an acyclic
matching, and a disconnected matching, respectively. In this paper, we
analyze the problems of the computation of these matchings from the
viewpoint of Parameterized Complexity with respect to the parameter
treewidth.

Keywords: Matching · Treewidth · Parameterized Algorithms ·
Exponential Time Hypothesis

1 Introduction

Matching in graphs is a central topic of Graph Theory and Combinatorial Opti-
mization [28]. Matchings possess both theoretical significance and practical appli-
cations, such as the assignment of new physicians to hospitals, students to high
schools, clients to server clusters, kidney donors to recipients [29], and so on.
Additionally, the field of competitive optimization games on graphs has wit-
nessed substantial growth in recent years, where matching serves as a valuable
tool for determining optimal solutions or bounds in such games [1,19]. The study
of matchings is closely related to the concept of edge colorings as well [2,5,38],
and the minimum number of matchings into which the edge set of a graph G
can be partitioned is known as the chromatic index of G [38].

Given a graph G, Maximum Matching is the problem of finding a match-
ing of maximum size (number of edges) in G. A matching M is said to be a
P-matching if G[VM] (the subgraph of G induced by the endpoints of edges in
M) has property P, where P is some graph property. The problem of deciding
whether a graph admits a P-matching of a given size has been investigated for
many different properties [4,16,18,20,34,37]. If the property P is that of being a
graph, a disjoint union of K ′

2s, a forest, a connected graph, a disconnected graph,
or having a unique perfect matching, then a P-matching is a matching [30], an

The authors are supported by the European Research Council (ERC) project titled
PARAPATH (101039913).

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
D. Paulusma and B. Ries (Eds.): WG 2023, LNCS 14093, pp. 217–231, 2023.
https://doi.org/10.1007/978-3-031-43380-1_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-43380-1_16&domain=pdf
https://doi.org/10.1007/978-3-031-43380-1_16

218 J. Chaudhary and M. Zehavi

induced matching [37], an acyclic matching [18], a connected matching1 [18],
a disconnected matching2 [18], and a uniquely restricted matching [20], respec-
tively. Notably, only the optimization problem corresponding to matching [30]
and connected matching [18] are polynomial-time solvable for a general graph,
while the decision problems corresponding to other above-mentioned variants of
matching are NP-complete [18,20,37].

Given a graph G and a positive integer �, the Induced Matching problem
asks whether G has an induced matching of size at least �. The concept of
induced matching was introduced by Stockmeyer and Vazirani as the “risk-free”
marriage problem in 1982 [37]. Since then, this concept, and the corresponding
Induced Matching problem, have been studied extensively due to their wide
range of applications and connections to other graph problems [8,12,23,25,31,
37]. Similarly, the Acyclic Matching problem considers a graph G and a
positive integer �, and asks whether G contains an acyclic matching of size at
least �. Goddard et al. [18] introduced the concept of acyclic matching, and
since then, it has gained significant popularity in the literature [2,3,17,34]. For
a fixed c ∈ N, a matching M is c-disconnected if G[VM] has at least c connected
components. In the c-Disconnected Matching problem, given a graph G
and a positive integer �, we seek to determine if G contains a c-disconnected
matching of size at least �. In the c-Disconnected Matching problem, if c is
a part of the input, then the problem that arises is known as the Disconnected
Matching problem. Goddard et al. [18] introduced the concept of disconnected
matching and asked about the complexity of determining the maximum size of
a matching whose vertex set induces a disconnected graph, which is a restricted
version of c-disconnected matching studied in this paper.

The parameter considered in this paper is treewidth, a structural parameter
that indicates how much a graph resembles a tree. Robertson and Seymour
introduced the notion of treewidth in their celebrated work on graph minors
[35], and since then, over 4260 papers on google scholar consider treewidth as a
parameter in the context of Parameterized Complexity. In practice also, graphs
of bounded treewidth appear in many different contexts; for example, many
probabilistic networks appear to have small treewidth [7]. Thus, concerning the
problems studied in this paper, after the solution size, treewidth is one of the
most natural parameters. In fact, many of the problems investigated in this
paper have already been analyzed with respect to treewidth as the parameter.

Related Work. In what follows, we present a brief survey of algorithmic results
concerning the variants of matchings discussed in this paper.

Induced Matching: From the viewpoint of Parameterized Complexity, in
[31], Moser and Sikdar showed that Induced Matching is fixed-parameter
tractable (FPT) when parameterized by treewidth by developing an O(4tw · n)-
time dynamic programming algorithm. In the same paper, when the parameter
1 This name is also used for a different problem where we are asked to find a matching
M such that every pair of edges in M has a common edge [9].

2 In this paper, we are using a different (more general) definition for disconnected
matching than the one mentioned in [18].

P-Matchings Parameterized by Treewidth 219

is the size of the matching �, Induced Matching was shown to be FPT for
line graphs, planar graphs, bounded-degree graphs, and graphs of girth at least
6 that include C4-free graphs3. On the other hand, for the same parameter, that
is, �, the problem is W[1]-hard for bipartite graphs [31]. Song [36] showed that
given a Hamiltonian cycle in a Hamiltonian bipartite graph, Induced Match-

ing is W[1]-hard with respect to � and cannot be solved in time no(
√

�) unless
W[1] = FPT, where n = |V (G)|. Induced Matching with respect to below
guarantee parameterizations have also been studied [26,32,39].

Acyclic Matching: From the viewpoint of Parameterized Complexity, Hajebi
and Javadi [22] showed that Acyclic Matching is FPT when parameterized by
treewidth using Courcelle’s theorem. Furthermore, they showed that the problem
is W[1]-hard on bipartite graphs when parameterized �. However, under the same
parameter, the authors showed that the problem is FPT for line graphs, C4-
free graphs, and every proper minor-closed class of graphs. In the same paper,
Acyclic Matching was shown to be FPT when parameterized by the size of
the matching plus the number of cycles of length four in the given graph. Some
more results concerning acyclic matchings can be found in [2,11,17,34].

c-Disconnected Matching and Disconnected Matching: For every fixed
integer c ≥ 2, c-Disconnected Matching is known to be NP-complete even
for bounded diameter bipartite graphs [21]. On the other hand, for c = 1, c-
Disconnected Matching is the same as Maximum Matching, which is
known to be polynomial-time solvable [30]. Regarding disconnected match-
ings, Disconnected Matching is NP-complete for chordal graphs [21] and
polynomial-time solvable for interval graphs [21]. Also, since Induced Match-
ing is a special case of Disconnected Matching, we note that Discon-
nected Matching is NP-hard for every graph class for which Induced Match-
ing is NP-hard [21].

From the viewpoint of Parameterized Complexity, Gomes et al. [21] proved
that for graphs with a polynomial number of minimal separators, Discon-
nected Matching parameterized by the number of connected components,
belongs to XP. Furthermore, unless NP ⊆ coNP/poly, Disconnected Match-
ing does not admit a polynomial kernel when parameterized by vertex cover (vc)
plus � nor when parameterized by the vertex deletion distance to clique plus �. In
the same paper, the authors also proved that Disconnected Matching is FPT
when parameterized by treewidth (tw). They used the standard dynamic pro-
gramming technique, and the running time of their algorithm is O(8tw ·η3

tw+1·n2),
where ηi is the i-th Bell number (the Bell number ηi counts the number of dif-
ferent ways to partition a set that has exactly i elements).

Our Contribution and Methods. In this paper, we consider the parameter to
be the treewidth of the input graph, and as is customary in the field, we suppose
that the input also consists of a tree decomposition T = (T, {Bx}x∈V (T)) of
width tw of the input graph. Proofs of the results marked with a (∗) are omitted
and can be found in the full version (see [10]).
3 Here, Cn denotes a cycle on n vertices.

220 J. Chaudhary and M. Zehavi

First, we present a 3tw · twO(1) · n time algorithm for Induced Matching
in graphs with n vertices, improving upon the O(4tw · n) time bound by Moser
and Sikdar [31]. For this purpose, we use a nice tree decomposition that satisfies
the “deferred edge property” (defined in Sect. 2) and the fast subset convolution
(see Sect. 2) for the join nodes. Due to space constraints, this section has been
deferred to the full version of the paper (see [10]).

Theorem 1. Induced Matching can be solved in 3tw · twO(1) · n time by a
deterministic algorithm.

In Sect. 3, we present a 6tw · nO(1) time algorithm for Acyclic Match-
ing in graphs with n vertices, improving the result by Hajebi and Javadi [22],
who proved that Acyclic Matching parameterized by tw is FPT. They used
Courcelle’s theorem, which is purely theoretical, and thus the hidden parameter
dependency in the running time is huge (a tower of exponents). To develop our
algorithm, we use the Cut & Count method introduced by Cygan et al. [13] in
addition to the fast subset convolution. The Cut & Count method allows us to
deal with connectivity-type problems through randomization; here, randomiza-
tion arises from the usage of the Isolation Lemma (see Sect. 2).

Theorem 2. Acyclic Matching can be solved in 6tw · nO(1) time by a ran-
domized algorithm. The algorithm cannot give false positives and may give false
negatives with probability at most 1

3 .

In Sect. 4, we present a (3c)tw ·twO(1) ·n time algorithm for c-Disconnected
Matching in graphs with n vertices. We use dynamic programming along with
the fast subset convolution for the join nodes. This resolves an open question
by Gomes et al. [21], who asked whether c-Disconnected Matching can be
solved in a single exponential time with vertex cover (vc) as the parameter. Since
for any graph G, tw(G) ≤ vc(G), we answer their question in the affirmative.

Theorem 3. For a fixed positive integer c ≥ 2, c-Disconnected Matching
can be solved in (3c)tw · twO(1) · n time by a deterministic algorithm.

In Sect. 5, we present a lower bound for the time complexity of Discon-
nected Matching, proving that for any choice of a constant c, an O(ctw · n)-
time algorithm for Disconnected Matching is unlikely. In fact, we prove that
even an O(cpw · n)-time algorithm is not possible, where pw is the pathwidth of
the graph which is bounded from below by the treewidth.

Theorem 4. Assuming the Exponential Time Hypothesis, there is no
2o(pw log pw) · nO(1)-time algorithm for Disconnected Matching.

2 Preliminaries

Graph-Theoretic Notations and Definitions. For a graph G, let V (G)
denote its vertex set and E(G) denote its edge set. Given a matching M , a

P-Matchings Parameterized by Treewidth 221

vertex v ∈ V (G) is M -saturated if v is incident on an edge of M . Given a graph
G and a matching M , let VM denote the set of M -saturated vertices and G[VM]
denote the subgraph of G induced by VM . A matching that saturates all the
vertices of a graph is a perfect matching. If uv ∈ M , then v is the M -mate of u,
and vice versa. Standard graph-theoretic terms not defined here can be found in
[15].

A cut of a set X ⊆ V (G) is a pair (Xl,Xr) with Xl ∩ Xr = ∅ and Xl ∪ Xr =
X, where X is an arbitrary subset of V (G). When X is immaterial, we do not
mention it explicitly. A cut (Xl,Xr) is consistent in a subgraph H of G if u ∈ Xl

and v ∈ Xr implies uv /∈ E(H). For a graph G, let cc(G) denote the number of
connected components of G. For a graph G, a coloring on a set X ⊆ V (G) is a
function f : X → S, where S is any set and the elements of S are called colors.

Algebraic Definitions. For a set X, let 2X denote the set of all subsets of X.
For a positive integer k, let [k] denote the set {1, . . . , k}. In the set [k] × [k], a
row is a set {i} × [k] and a column is a set [k] × {i} for some i ∈ [k]. For two
integers, a and b, we use a ≡ b to indicate that a is even if and only if b is even.
If w : U → {1, . . . , N}, then for S ⊆ U , w(S) =

∑

e∈S

w(e). For definitions of ring

and semiring, we refer the readers to any elementary book on abstract algebra.
Given an integer n > 1, called a modulus, two integers a and b are congruent
modulo n if there is an integer k such that a − b = kn. Note that two integers
are said to be congruent modulo 2 if they have the same parity (that is, either
both are odd or both are even). For a set S, we use the notation |S|2 to denote
the number of elements in set S congruent modulo 2.

Subset Convolution

Definition 1. Let B be a finite set and R be a semiring. Then, the subset
convolution of two functions f, g : 2B → R is the function (f ∗ g) : 2B → R such
that for every Y ⊆ B, (f ∗g)(Y) =

∑

X⊆Y

f(X)g(Y \X). (1)

Equivalently, (1) can be written as (f ∗ g)(Y) =
∑

A∪B=Y
A∩B=∅

f(A)g(B).

Given f and g, a direct evaluation of f ∗ g for all X ⊆ Y requires Ω(3n)
semiring operations, where n = |B|. However, we have the following results.

Proposition 5 ([6,13]). For two functions f, g : 2B → Z, where n = |B| and Z

is a ring, given all the 2n values of f and g in the input, all the 2n values of the
subset convolution of f ∗ g can be computed in O(2n · n3) arithmetic operations.

Proposition 6 ([13]). For two functions f, g : 2B → {−P, . . . , P}, where n =
|B|, given all the 2n values of f and g in the input, all the 2n values of the subset
convolution of f ∗ g over the integer max-sum semiring can be computed in time
2n · nO(1) · O(P log P log log P).

222 J. Chaudhary and M. Zehavi

Treewidth. Due to space constraints, the definitions of tree decomposition, nice
tree decomposition, path decomposition, treewidth, and pathwidth have been
deferred to the full version (see [10]). We denote the treewidth and pathwidth of a
graph by tw and pw, respectively. Standard notions in Parameterized Complexity
not explicitly defined here can be found in [13].

For our problems, we want the standard nice tree decomposition to satisfy
an additional property, and that is, among the vertices present in the bag of a
join node, no edges have been introduced yet. To achieve this, we use another
known type of node, an introduce edge node, which is defined as follows:

Introduce Edge Node: x has exactly one child y, and x is labeled with an
edge uv ∈ E(G) such that u, v ∈ Bx and Bx = By. We say that uv is introduced
at x.

The use of introduce edge nodes enables us to add edges one by one in our
nice tree decomposition. We additionally require that every edge is introduced
exactly once. For every vertex v ∈ V (G), there exists a unique highest node
t(v) such that v ∈ Bt(v). Further, without loss of generality, assume t(v) is an
ancestor of t(u). Our nice tree decomposition will insert the introduce edge bags
(introducing edges of the form uv) between t(u) and its parent in an arbitrary
order. If a nice tree decomposition having introduce edge nodes satisfies these
additional conditions, then we say that it exhibits the deferred edge property.
Note that, given a tree decomposition of a graph G, where n = |V (G)|, a nice
tree decomposition satisfying the deferred edge property of equal width, at most
O(tw ·n) nodes, and at most tw ·n edges can be found in twO(1) ·n time [13,24].
Furthermore, for each node x of the tree decomposition, let Vx be the union of
all the bags present in the subtree of T rooted at x, including Bx. Then, for each
node x of the tree decomposition, define the subgraph Gx of G as follows:

Gx = (Vx, Ex = {e : e is introduced in the subtree of T rooted at x}).
Now, consider the following two definitions.

Definition 2 (Valid Coloring). Given a node x of T, a coloring d : Bx →
{0, 1, 2} is valid on Bx if there exists a coloring d̂ : Vx → {0, 1, 2} in Gx, called
a valid extension of d, such that the following hold: (i) d̂ restricted to Bx is
exactly d, (ii) The subgraph induced by the vertices colored 1 under d̂ has a
perfect matching, (iii) Vertices colored 2 under d̂ must all belong to Bx.

Definition 3 (Correct Coloring). Given a graph G and a set X ⊆ V (G),
two colorings f1, f2 : X → {0, 1, 2} are correct for a coloring f : X → {0, 1, 2}
if the following conditions hold: (i) f(v) = 0 if and only if f1(v) = f2(v) = 0,
(ii) f(v) = 1 if and only if (f1(v), f2(v)) ∈ {(1, 2), (2, 1)}, (iii) f(v) = 2 if and
only if f1(v) = f2(v) = 2.

In Sects. 3 and 4, we use different colors to represent the possible states of a
vertex in a bag Bx of T with respect to a matching M as follows:

– white(0): A vertex colored 0 is not saturated by M .
– black(1): A vertex colored 1 is saturated by M , and the edge between the

vertex and its M -mate has also been introduced in Gx.

P-Matchings Parameterized by Treewidth 223

– gray(2): A vertex colored 2 is saturated by M , and either its M -mate has not
yet been introduced in Gx, or the edge between the vertex and its M -mate
has not yet been introduced in Gx.

Definition 4 (Monte Carlo Algorithms with False Negatives). An algo-
rithm is Monte Carlo with false negatives if when queried about the existence
of an object: If it answers yes, then it is true, and if it answers no, then it is
correct with probability at least 2

3 (here, the constant 2
3 is chosen arbitrarily).

Cut & Count Method. The Cut & Count method was introduced by Cygan
et al. [14]. It is a tool for designing algorithms with a single exponential running
time for problems with certain connectivity requirements. The method is mainly
divided into the following two parts:

The Cut part: Let S denote the set of feasible solutions. Here, we relax the
connectivity requirement by considering a set R ⊇ S of possibly connected
candidate solutions. Furthermore, we consider a set C of pairs (X,C), where
X ∈ R and C is a consistent cut of X.

The Count part: Here, we compute the cardinality of |C|2 using a sub-
procedure. Non-connected candidate solutions X ∈ R \ S cancel since they are
consistent with an even number of cuts and the connected candidates x ∈ S
remain.

More information on the Cut & Count method can be found in [13,14].

Isolation Lemma. Let U be a universe. A function w : U → Z isolates a set
family F ⊆ 2U if there is a unique S′ ∈ F with w(S′) = min

S∈F
w(S). Let F ⊆ 2U

be a set family over a universe U with |F| > 0. For each u ∈ U , choose a weight
w(u) ∈ {1, 2, . . . , N} uniformly and independently at random. Then, isolation
lemma states that prob(w isolates F) ≥ 1 − |U |

N [33].

3 Algorithm for Acyclic Matching

We use the Cut & Count technique along with a concept called markers (see
[14]). Given that the Acyclic Matching problem does not impose an explicit
connectivity requirement, we can proceed by selecting the (presumed) forest
obtained after choosing the vertices saturated by an acyclic matching M and
using the following result:

Proposition 7 ([14]). A graph G with n vertices and m edges is a forest if and
only if it has at most n − m connected components.

Our solution set contains pairs (X,P), where X ⊆ V (G) is a set of M -
saturated vertices and P ⊆ V (G) is a set of marked vertices (markers) such
that each connected component in G[X] contains at least one marked vertex.
Markers will be helpful in bounding the number of connected components in
G[X] by n′ − m′, where n′ = |X| and m′ is the number of edges in G[X]

224 J. Chaudhary and M. Zehavi

(so that Proposition 7 can be applied). Since we will use the Isolation lemma,
we will be assigning random weights to the vertices of X. Furthermore, note
that two pairs from our solution set with different sets of marked vertices are
necessarily considered to be two different solutions. For this reason, we assign
random weights both to the vertices of X and vertices of P .

Throughout this section, as the universe, we take the set U = V (G)×{F,P},
where V (G) × {F} is used to assign weights to vertices of the chosen forest
and V (G) × {P} is used to assign weights to vertices chosen as markers. Also,
throughout this section, we assume that we are given a weight function w : U →
{1, 2, . . . , N}, where N = 3|U | = 6|V (G)|.

Let us first consider the Cut part and define the objects we will count.

Definition 5. Let G be a graph with n vertices and m edges. For integers 0 ≤
A ≤ n, 0 ≤ B ≤ m, 0 ≤ C ≤ n, and 0 ≤ W ≤ 2Nn, we define the following:

1. RA,B,C
W = {(X,P) : X ⊆ V (G) ∧ |X| = A ∧ G[X] contains exactly B edges ∧

G[X] has a perfect matching ∧ P ⊆ X ∧ |P | = C ∧ w(X × {F}) + w(P ×
{P}) = W}.

2. SA,B,C
W = {(X,P) ∈ RA,B,C

W : G[X] is a forest containing at least one marker
from the set P in each connected component}.

3. CA,B,C
W = {((X,P), (Xl,Xr)) : (X,P) ∈ RA,B,C

W ∧ P ⊆ Xl ∧ (Xl,Xr) is a
consistent cut of G[X]}.

We call R =
⋃

A,B,C,W RA,B,C
W the family of candidate solutions, S =

⋃
A,B,C,W SA,B,C

W the family of solutions, and C =
⋃

A,B,C,W CA,B,C
W the fam-

ily of cuts.
Let us now define the count part.

Lemma 8 (∗). Let G,A,B,C,W, CA,B,C
W , and SA,B,C

W be as defined in Definition
5. Then, for every A,B,C,W satisfying C ≤ A − B,

∣∣CA,B,C
W

∣∣
2

≡
∣∣SA,B,C

W

∣∣.

Remark 1. Condition C ≤ A − B is necessary for Lemma 8 as otherwise (if
A − B < C), it is not possible to bound the number of connected components
in G[X] by A − B. As a result, the elements of SA,B,C

W could not be identified,
and Proposition 7 could not be applied.

By Isolation Lemma [33], we have the following lemma.

Lemma 9. Let G and SA,B,C
W be as defined in Definition 5. For each u ∈ U ,

where U is the universe, choose a weight w(u) ∈ {1, 2, . . . , 3|U |} uniformly
and independently at random. For some A,B,C,W satisfying C ≤ A − B, if
|SA,B,C

W | > 0, then prob
(
w isolates SA,B,C

W

)
≥ 2

3 .

The following observation helps us in proving Theorem 2.

Observation 10 (∗). G admits an acyclic matching of size �
2 if and only if

there exist integers B and W such that the set S�,B,�−B
W is nonempty.

P-Matchings Parameterized by Treewidth 225

Now we describe a procedure that, given a nice tree decomposition T with
the deferred edge property, a weight function w : U → {1, 2, . . . , N}, and inte-
gers A,B,C,W as defined in Definition 5 and satisfying C ≤ A − B, computes∣∣CA,B,C

W

∣∣
2

using dynamic programming. For this purpose, consider the following.

Definition 6. For every bag Bx of the tree decomposition T , for every integer
0 ≤ a ≤ n, 0 ≤ b < n, 0 ≤ c ≤ n, 0 ≤ w ≤ 12n2, for every coloring d : Bx →
{0, 1, 2}, for every coloring s : Bx → {0, l, r}, we define the following:

1. Rx[a, b, c, d, w] = {(X,P) : d is a valid coloring of Bx ∧ X is the set of

vertices colored 1 or 2 under some valid extension d̂ of d in Gx ∧ |X| =
a ∧|Ex∩E(G[X])| = b ∧P ⊆ X\Bx ∧|P | = c∧w(X×{F})+w(P×{P}) = w}.

2. Cx[a, b, c, d, w] = {((X,P), (Xl,Xr)) : (X,P) ∈ Rx[a, b, c, d, w] ∧ P ⊆ Xl ∧
(X, (Xl,Xr)) is a consistently cut subgraph of Gx}.

3. Ãx[a, b, c, d, w, s] = |{((X,P), (Xl,Xr)) ∈ Cx[a, b, c, d, w] : (s(v) = l ⇒ v ∈
Xl) ∧ (s(v) = r ⇒ v ∈ Xr) ∧ (s(v) = 0 ⇒ v /∈ X)}|.

Remark 2. In Definition 6, we assume b < n because otherwise, an induced
subgraph containing b edges is definitely not a forest.

The intuition behind Definition 6 is that the set Rx[a, b, c, d, w] contains all
pairs (X,P) that could potentially be extended to a candidate solution from R
(with cardinality and weight restrictions as prescribed by a, b, c, and w), and the
set Cx[a, b, c, d, w] contains all consistently cut subgraphs of Gx that could poten-
tially be extended to elements of C (with cardinality and weight restrictions as
prescribed by a, b, c, and w). The number Ãx[a, b, c, d, w, s] counts precisely those
elements of Cx[a, b, c, d, w] for which s(v) describes whether for every v ∈ Bx, v
lies in Xl,Xr, or outside X depending on whether s(v) is l, r, or 0, respectively.

We have a table A with an entry Ax[a, b, c, d, w, s] for each bag Bx of T, for
integers 0 ≤ a ≤ n, 0 ≤ b < n, 0 ≤ c ≤ n, 0 ≤ w ≤ 12n2, for every coloring
d : Bx → {0, 1, 2}, and for every coloring s : Bx → {0, l, r}. We say that s and
d are compatible if for every v ∈ Bx, the following hold: d(v) = 0 if and only
if s(v) = 0. Note that we have at most O(tw · n) many choices for x, at most
n choices for a, b, and c, at most 12n2 choices for w, and at most 5tw many
compatible choices for d and s. Whenever s is not compatible with d, we do not
store the entry Ax[a, b, c, d, w, s] and assume that the access to such an entry
returns 0. Therefore, the size of table A is bounded by O(5tw · tw · n). We will
show how to compute the table A so that the following will be satisfied.

Lemma 11. If d is valid and d is compatible with s, then Ax[a, b, c, d, w, s] stores
the value Ãx[a, b, c, d, w, s]. Else, the entry Ax[a, b, c, d, w, s] stores the value 0.

By Lemma 8, we seek values
∣∣CA,B,C

W

∣∣
2
. By Observation 10, Definition 6, and

Lemma 11, it suffices to compute values Ar[�,B, � − B, ∅,W, ∅] for all B and W ,
where r is the root of the decomposition T . (Note that Ar[�,B, � − B, ∅,W, ∅] =∣∣C�,B,�−B

W

∣∣, and we will calculate the modulo 2 separately.) Further, to achieve
the time complexity we aim to achieve, we decide whether to mark a vertex

226 J. Chaudhary and M. Zehavi

or not in its forget bag. Our algorithm computes Ax[a, b, c, d, w, s] for all bags
Bx ∈ T in a bottom-up manner for all integers 0 ≤ a ≤ n, 0 ≤ b < n, 0 ≤
c ≤ n, 0 ≤ w ≤ 12n2, and for all compatible colorings d : Bx → {0, 1, 2} and
s : Bx → {0, l, r}. Further details are deferred to the full version (see [10]).

We note that, by the naive method, the evaluation of all leaf nodes, introduce
vertex and edge nodes, and forget nodes can be done in 5tw ·nO(1) time, but the
evaluation of all join nodes altogether can be done in 7tw · nO(1) time. However,
the fast subset convolution can be used to handle join nodes more efficiently, and
therefore the evaluation of all join nodes altogether can be done in 6tw · nO(1)

time, and hence we have Theorem 2.

4 Algorithm for c-Disconnected Matching

We first define the following notion.

Definition 7 (Fine Coloring). Given a node x of T and a fixed integer c ≥ 2,
a coloring f : Bx → {0, 1, . . . , c} is a fine coloring if there exists a coloring
f̂ : Vx → {0, 1, . . . , c} in Gx, a fine extension of f , such that the following hold:
(i) f̂ restricted to Bx is f , (ii) If uv ∈ Ex, f̂(u) �= 0, f̂(v) �= 0, then f̂(u) = f̂(v).

Note that point (ii) in Definition 7 implies that whenever two vertices in Gx

have an edge between them, then they should get the same color under a fine
extension except possibly when either of them is colored 0.

Before we begin the formal description of the algorithm, let us briefly
discuss the idea that yields us a single exponential running time for the c-
Disconnected Matching problem rather than a slightly exponential running
time4 (which is common for most of the naive dynamic programming algorithms
for connectivity type problems). We will use Definition 7 to partition the vertices
of Vx into color classes (at most c). Note that we do not require in Definition 7
that Gx[f̂−1(i)] for any i ∈ [c] is a connected graph. This is the crux of our effi-
ciency. Specifically, this means that we do not keep track of the precise connected
components of G[VM] in Gx for a matching M , yet Definition 7 is sufficient for
us.

Now, let us discuss our ideas more formally. We have a table A with an
entry Ax[d, f, ĉ] for each bag Bx, for every coloring d : Bx → {0, 1, 2}, for every
coloring f : Bx → {0, 1, . . . , c}, and for every set ĉ ⊆ {1, 2, . . . , c}. We say that
d and f are compatible if for every v ∈ Bx, the following hold: d(v) = 0 if and
only if f(v) = 0. We say that f and ĉ are compatible if for any v ∈ Bx, f(v) ∈ ĉ.
Note that we have at most O(tw · n) many choices for x, at most (2c + 1)tw

many choices for compatible d and f , and at most 2c choices for ĉ. Furthermore,
whenever f is not compatible with d or ĉ, we do not store the entry Ax[d, f, ĉ]
and assume that the access to such an entry returns −∞. Therefore, the size of
table A is bounded by O((2c + 1)tw · tw · n). The following definition specifies
the value each entry Ax[d, f, ĉ] of A is supposed to store.

4 That is, running time 2O(tw) · nO(1) rather than twO(tw) · nO(1)..

P-Matchings Parameterized by Treewidth 227

Definition 8. If d is valid, f is fine, f is compatible with d and ĉ, and there
exists a fine extension f̂ of f such that ĉ equals the set of distinct non-zero colors
assigned by f̂ , then the entry Ax[d, f, ĉ] stores the maximum number of vertices
that are colored 1 or 2 under some valid extension d̂ of d in Gx such that for
every v ∈ Vx, d̂(v) = 0 if and only if f̂(v) = 0. Otherwise, the entry Ax[d, f, ĉ]
stores the value −∞.

Since the root of T is an empty node, note that the maximum number of ver-
tices saturated by any c-disconnected matching is exactly Ar[∅, ∅, {1, 2, . . . , c}],
where r is the root of T. We now provide recursive formulas to compute the
entries of table A.

Leaf Node: For a leaf node x, we have that Bx = ∅. Hence there is only
one possible coloring on Bx, that is, the empty coloring (for both d and f).
Since f and Gx are empty, the only compatible choice for ĉ is {}, and we have
Ax[∅, ∅, {}] = 0.

Introduce Vertex Node: Suppose that x is an introduce vertex node with child
node y such that Bx = By ∪ {v} for some v /∈ By. For every coloring d : Bx →
{0, 1, 2}, every set ĉ ⊆ {1, 2, . . . , c}, and every coloring f : Bx → {0, 1, . . . , c}
such that f is compatible with d and ĉ, we have the following recursive formula:

Ax[d, f, ĉ] =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Ay[d|By
, f |By

, ĉ] if d(v) = 0,
−∞ if d(v) = 1,
max{Ay[d|By

, f |By
, ĉ \ {f(v)}] + 1,

Ay[d|By
, f |By

, ĉ] + 1} if d(v) = 2.

Introduce Edge Node: Suppose that x is an introduce edge node that intro-
duces an edge uv, and let y be the child of x. For every coloring d : Bx → {0, 1, 2},
every set ĉ ⊆ {1, 2, . . . , c}, and every coloring f : Bx → {0, 1, . . . , c} such that f
is compatible with d and ĉ, we consider the following cases:

If at least one of d(u) or d(v) is 0, then

Ax[d, f, ĉ] = Ay[d, f, ĉ].

Else, if at least one of d(u) or d(v) is 2, and f(u) = f(v), then

Ax[d, f, ĉ] = Ay[d, f, ĉ].

Else, if both d(u) and d(v) are 1, and f(u) = f(v), then

Ax[d, f, ĉ] = max{Ay[d, f, ĉ],Ay[d{u,v}→2, f, ĉ]}.

Else, Ax[d, f, ĉ] = −∞.

Forget Node: Suppose that x is a forget vertex node with a child y such that
Bx = By \ {u} for some u ∈ By. For every coloring d : Bx → {0, 1, 2}, every

228 J. Chaudhary and M. Zehavi

Fig. 1. An illustration of the construction of G from H. Here, we assume that Ss =
{(2, 1), (k, 2)}.

set ĉ ⊆ {1, 2, . . . , c}, and every coloring f : Bx → {0, 1, . . . , c} such that f is
compatible with d and ĉ, we have

Ax[d, f, ĉ] = max{Ay[du→0, fu→0, ĉ],max
c∈ĉ

{Ay[du→1, fu→c, ĉ]}}.

Join Node: Let x be a join node with children y1 and y2. For every coloring
d : Bx → {0, 1, 2}, every set ĉ ⊆ {1, 2, . . . , c}, and for every coloring f : Bx →
{0, 1, . . . , c} such that f is compatible with d and ĉ, we have

Ax[d, f, ĉ] = max
d1,d2

{ max
ĉy1 ,ĉy2

ĉy1∪ĉy2=ĉ

{Ay1 [d1, f, ĉy1]+Ay2 [d2, f, ĉy2]−|d−1(1)|−|d−1(2)|}},

where d1 : By1 → {0, 1, 2}, d2 : By2 → {0, 1, 2}, ĉy1 , ĉy2 ⊆ {1, 2, . . . , c} such that
f is compatible with d1, d2, ĉy1 , and ĉy2 , and d1, d2 are correct for d.

Further details are deferred to the full version (see [10]). We note that, by
the naive method, the evaluation of all leaf nodes, introduce vertex and edge
nodes, and forget nodes can be done in (2c + 1)tw · twO(1) · n time, but the
evaluation of all join nodes altogether can be done in (4c+2)tw · twO(1) ·n time.
However, the fast subset convolution can be used to handle join nodes more
efficiently, and therefore the evaluation of all join nodes altogether can be done
in (3c)tw · twO(1) · n time, and hence we have Theorem 3.

5 Lower Bound for Disconnected Matching

We give a reduction from k × k Hitting Set. The input of k × k Hitting Set
consists of a family of sets S1, . . . , Sm ⊆ [k] × [k] such that each set contains at
most one element from each row of [k] × [k], and the question is to determine
if there exists a set Ŝ containing exactly one element from each row such that
Ŝ ∩ Si �= ∅ for every i ∈ [m]? Here, the parameter is k.

P-Matchings Parameterized by Treewidth 229

Proposition 12 ([27]). Assuming Exponential Time Hypothesis, there is no
2o(k log k) · nO(1)-time algorithm for k × k Hitting Set.

Our reduction is inspired by the reduction given by Cygan et al. in [14] to
prove that there is no 2o(pw log pw) · nO(1)-time algorithm for Maximally Dis-
connected Dominating Set unless the Exponential Time Hypothesis fails.
Given an instance (k, S1, . . . , Sm) of k ×k Hitting Set, we construct an equiv-
alent instance (G, 3k +m, k) of Disconnected Matching in polynomial time.
First, we define a simple gadget that will be used in our construction.

Definition 9 (Star Gadget). By adding a star gadget to a vertex set X ⊆
V (G), we mean the following construction: We introduce a new vertex of degree
|X| and connect it to all vertices in X.

If we attach a star gadget to multiple vertex disjoint subsets of H, then we
have the following lemma.

Lemma 13 (∗). Let H be a graph and let G be the graph constructed from H
by adding star gadgets to vertex disjoint subsets X1, . . . , Xl of V (H). Assume we
are given a path decomposition P̃ of H of width pw with the following property:
For each Xi, i ∈ [l], there exists a bag in P̃ that contains Xi. Then, in polynomial
time, we can construct a path decomposition of G of width at most pw + 1.

Now, consider the following construction (see Fig. 1 for an illustration).

Construction D. Let Pi = {i} × [k] be a set containing all elements in the i-th
row in the set [k] × [k]. We define S = {Ss : s ∈ [m]} ∪ {Pi : i ∈ [k]}. Note
that for each X ∈ S, we have |X| ≤ k, as each Ss, s ∈ [m] contains at most one
element from each row and |Pi| = k for each i ∈ [k].

First, let us define a graph H. We start by introducing vertices vL
i for each

i ∈ [k] and vertices vR
j for each j ∈ [k]. Then, for each set X ∈ S, we introduce

vertices vX
i,j for every (i, j) ∈ X. Let V X = {vX

i,j : (i, j) ∈ X}. We also introduce
the edge set {vL

i vX
i,j} ∪ {vX

i,jv
R
j } for each X ∈ S and i, j ∈ [k]. This ends the

construction of H. Now, we construct a graph G from the graph H as follows:
For each i ∈ [k] and j ∈ [k], we attach star gadgets to vertices vL

i and vR
j .

Furthermore, for each X ∈ S, we attach star gadgets to X. For each i ∈ [k]
(resp. j ∈ [k]), let uL

i (resp. uR
j) denote the unique vertex in the star gadget

corresponding to vL
i (resp. vR

j). For each X ∈ S, let uX denote the unique
vertex in the star gadget corresponding to X. Let EX = {vX

i,ju
X : (i, j) ∈ X}.

We now provide a pathwidth bound on G.

Lemma 14 (∗). Let H and G be as defined in Construction D. Then, the
pathwidth of G is at most 3k.

Lemma 15 (∗). Let G be as defined in Construction D. If the initial k × k
Hitting Set instance is a Yes-instance, then there exists a matching M in G
such that |M | = 3k + m and G[VM] has exactly k connected components.

230 J. Chaudhary and M. Zehavi

Lemma 16 (∗). Let G be as defined in Construction D. If there exists a match-
ing M in G such that |M | ≥ 3k + m and G[VM] has at least k connected compo-
nents, then the initial k × k Hitting Set instance is a Yes-instance.

By Proposition 12 and Lemmas 14, 15 and 16, we have Theorem 4.

6 Conclusion

A detailed conclusion (where we briefly discuss the SETH lower bounds) can be
found in the full version (see [10]).

References

1. Bachstein, A., Goddard, W., Lehmacher, C.: The generalized matcher game. Dis-
cret. Appl. Math. 284, 444–453 (2020)

2. Baste, J., Fürst, M., Rautenbach, D.: Approximating maximum acyclic matchings
by greedy and local search strategies. In: Kim, D., Uma, R.N., Cai, Z., Lee, D.H.
(eds.) COCOON 2020. LNCS, vol. 12273, pp. 542–553. Springer, Cham (2020).
https://doi.org/10.1007/978-3-030-58150-3 44

3. Baste, J., Rautenbach, D.: Degenerate matchings and edge colorings. Discret. Appl.
Math. 239, 38–44 (2018)

4. Baste, J., Rautenbach, D., Sau, I.: Uniquely restricted matchings and edge color-
ings. In: Bodlaender, H.L., Woeginger, G.J. (eds.) WG 2017. LNCS, vol. 10520, pp.
100–112. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-68705-6 8

5. Baste, J., Rautenbach, D., Sau, I.: Upper bounds on the uniquely restricted chro-
matic index. J. Graph Theory 91(3), 251–258 (2019)

6. Björklund, A., Husfeldt, T., Kaski, P., Koivisto, M.: Fourier meets möbius: fast
subset convolution. In: Proceedings of the Thirty-Ninth Annual ACM Symposium
on Theory of Computing, pp. 67–74 (2007)

7. Bodlaender, H.L., et al.: A tourist guide through treewidth (1992)
8. Cameron, K.: Induced matchings. Discret. Appl. Math. 24(1–3), 97–102 (1989)
9. Cameron, K.: Connected matchings. In: Jünger, M., Reinelt, G., Rinaldi, G. (eds.)

Combinatorial Optimization—Eureka, You Shrink! LNCS, vol. 2570, pp. 34–38.
Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-36478-1 5

10. Chaudhary, J., Zehavi, M.: P-matchings parameterized by treewidth. arXiv
preprint arXiv:2307.09333v1 (2023)

11. Chaudhary, J., Zehavi, M.: Parameterized results on acyclic matchings with impli-
cations for related problems. In: Paulusma, D., Ries, B. (eds.) WG 2023. LNCS,
vol. 14093, pp. 201–216. Springer, Heidelberg (2023)

12. Cooley, O., Draganic, N., Kang, M., Sudakov, B.: Large induced matchings in
random graphs. SIAM J. Discret. Math. 35(1), 267–280 (2021)

13. Cygan, M., et al.: Parameterized Algorithms, vol. 5. Springer, Heidelberg (2015).
https://doi.org/10.1007/978-3-319-21275-3

14. Cygan, M., Nederlof, J., Pilipczuk, M., Pilipczuk, M., Van Rooij, J.M., Woj-
taszczyk, J.O.: Solving connectivity problems parameterized by treewidth in single
exponential time. ACM Trans. Algorithms (TALG) 18(2), 1–31 (2022)

15. Diestel, R.: Graph Theory. Graduate Text GTM, vol. 173. Springer, Heidelberg
(2012)

https://doi.org/10.1007/978-3-030-58150-3_44
https://doi.org/10.1007/978-3-319-68705-6_8
https://doi.org/10.1007/3-540-36478-1_5
http://arxiv.org/abs/2307.09333v1
https://doi.org/10.1007/978-3-319-21275-3

P-Matchings Parameterized by Treewidth 231

16. Francis, M.C., Jacob, D., Jana, S.: Uniquely restricted matchings in interval graphs.
SIAM J. Discret. Math. 32(1), 148–172 (2018)

17. Fürst, M., Rautenbach, D.: On some hard and some tractable cases of the maximum
acyclic matching problem. Ann. Oper. Res. 279, 291–300 (2019)

18. Goddard, W., Hedetniemi, S.M., Hedetniemi, S.T., Laskar, R.: Generalized
subgraph-restricted matchings in graphs. Discret. Math. 293(1–3), 129–138 (2005)

19. Goddard, W., Henning, M.A.: The matcher game played in graphs. Discret. Appl.
Math. 237, 82–88 (2018)

20. Golumbic, M.C., Hirst, T., Lewenstein, M.: Uniquely restricted matchings. Algo-
rithmica 31, 139–154 (2001)

21. Gomes, G.C., Masquio, B.P., Pinto, P.E., dos Santos, V.F., Szwarcfiter, J.L.: Dis-
connected matchings. Theoret. Comput. Sci. 956, 113821 (2023)

22. Hajebi, S., Javadi, R.: On the parameterized complexity of the acyclic matching
problem. Theoret. Comput. Sci. 958, 113862 (2023)

23. Klemz, B., Rote, G.: Linear-time algorithms for maximum-weight induced match-
ings and minimum chain covers in convex bipartite graphs. Algorithmica 84(4),
1064–1080 (2022)

24. Kloks, T.: Treewidth: Computations and Approximations. Springer, Heidelberg
(1994). https://doi.org/10.1007/BFb0045375

25. Ko, C., Shepherd, F.B.: Bipartite domination and simultaneous matroid covers.
SIAM J. Discret. Math. 16(4), 517–523 (2003)

26. Koana, T. Induced matching below guarantees: average paves the way for fixed-
parameter tractability. arXiv preprint arXiv:2212.13962 (2022)

27. Lokshtanov, D., Marx, D., Saurabh, S.: Slightly superexponential parameterized
problems. SIAM J. Comput. 47(3), 675–702 (2018)

28. Lovász, L., Plummer, M.D.: Matching Theory. Annals of Discrete Mathematics,
vol. 29. North-Holland, Amsterdam (1986)

29. Manlove, D.: Algorithmics of Matching Under Preferences, vol. 2. World Scientific,
Singapore (2013)

30. Micali, S., Vazirani, V.V.: An o(
√|V ||e|) algorithm for finding maximum matching

in general graphs. In: 21st Annual Symposium on Foundations of Computer Science
(SFCS 1980), pp. 17–27. IEEE (1980)

31. Moser, H., Sikdar, S.: The parameterized complexity of the induced matching prob-
lem. Discret. Appl. Math. 157(4), 715–727 (2009)

32. Moser, H., Thilikos, D.M.: Parameterized complexity of finding regular induced
subgraphs. J. Discret. Algorithms 7(2), 181–190 (2009)

33. Mulmuley, K., Vazirani, U.V., Vazirani, V.V.: Matching is as easy as matrix inver-
sion. In Proceedings of the Nineteenth Annual ACM Symposium on Theory of
Computing, pp. 345–354 (1987)

34. Panda, B., Chaudhary, J.: Acyclic matching in some subclasses of graphs. Theoret.
Comput. Sci. 943, 36–49 (2023)

35. Robertson, N., Seymour, P.D.: Graph minors. II. Algorithmic aspects of tree-width.
J. Algorithms 7(3), 309–322 (1986)

36. Song, Y.: On the induced matching problem in Hamiltonian bipartite graphs. Geor.
Math. J. 28(6), 957–970 (2021)

37. Stockmeyer, L.J., Vazirani, V.V.: Np-completeness of some generalizations of the
maximum matching problem. Inf. Process. Lett. 15(1), 14–19 (1982)

38. Vizing, V.G.: On an estimate of the chromatic class of a P-graph. Diskret analiz
3, 25–30 (1964)

39. Xiao, M., Kou, S.: Parameterized algorithms and kernels for almost induced match-
ing. Theoret. Comput. Sci. 846, 103–113 (2020)

https://doi.org/10.1007/BFb0045375
http://arxiv.org/abs/2212.13962

Algorithms and Hardness for Metric
Dimension on Digraphs

Antoine Dailly1(B), Florent Foucaud1, and Anni Hakanen1,2

1 Université Clermont Auvergne, CNRS, Clermont Auvergne INP, Mines
Saint-Étienne, LIMOS, 63000 Clermont-Ferrand, France

{antoine.dailly,florent.foucaud,anni.hakanen}@uca.fr
2 Department of Mathematics and Statistics, University of Turku,

20014 Turku, Finland

Abstract. In the Metric Dimension problem, one asks for a
minimum-size set R of vertices such that for any pair of vertices of the
graph, there is a vertex from R whose two distances to the vertices of the
pair are distinct. This problem has mainly been studied on undirected
graphs and has gained a lot of attention in the recent years. We focus
on directed graphs, and show how to solve the problem in linear-time on
digraphs whose underlying undirected graph (ignoring multiple edges)
is a tree. This (nontrivially) extends a previous algorithm for oriented
trees. We then extend the method to unicyclic digraphs (understood
as the digraphs whose underlying undirected multigraph has a unique
cycle). We also give a fixed-parameter-tractable algorithm for digraphs
when parameterized by the directed modular-width, extending a known
result for undirected graphs. Finally, we show that Metric Dimension
is NP-hard even on planar triangle-free acyclic digraphs of maximum
degree 6.

1 Introduction

The metric dimension of a (di)graph G is the smallest size of a set of vertices
that distinguishes all vertices of G by their vectors of distances from the vertices
of the set. This concept was introduced in the 1970s by Harary and Melter [14]
and by Slater [30] independently. Due to its interesting nature and numerous
applications (such as robot navigation [18], detection in sensor networks [30]
or image processing [22], to name a few), it has enjoyed a lot of attention. It
also has been studied in the more general setting of metric spaces [3], and is
generally part of the rich area of identification problems of graphs and other
discrete structures [20].

More formally, let us denote by dist(x, y) the distance from x to y in a
digraph. Here, the distance dist(x, y) is taken as the length of a shortest directed

Research funded by the French government IDEX-ISITE initiative 16-IDEX-0001 (CAP
20–25) and by the ANR project GRALMECO (ANR-21-CE48-0004).
A. Hakanen—Research supported by the Jenny and Antti Wihuri Foundation and
partially by Academy of Finland grant number 338797.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
D. Paulusma and B. Ries (Eds.): WG 2023, LNCS 14093, pp. 232–245, 2023.
https://doi.org/10.1007/978-3-031-43380-1_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-43380-1_17&domain=pdf
https://doi.org/10.1007/978-3-031-43380-1_17

Metric Dimension on Digraphs 233

path from x to y; if no such path exists, dist(x, y) is infinite, and we say that y is
not reachable from x. We say that a set S is a resolving set of a digraph G if for
any pair of distinct vertices v, w from G, there is a vertex x in S with dist(x, v) �=
dist(x,w). Furthermore, we require that every vertex of G is reachable from at
least one vertex of S. The metric dimension of G is the smallest size of a resolving
set of G, and a minimum-size resolving set of G is called a metric basis of G.1

We denote by Metric Dimension the computational version of the problem:
given a (di)graph G, determine its metric dimension.

For undirected graphs, Metric Dimension has been extensively studied,
and its non-local nature makes it highly nontrivial from an algorithmic point
of view. On the hardness side, Metric Dimension was shown to be NP-hard
for planar graphs of bounded degree [7], split, bipartite and line graphs [9], unit
disk graphs [17], interval and permutation graphs of diameter 2 [11], and graphs
of pathwidth 24 [19]. On the positive side, it can easily be solved in linear time
on trees [4,14,18,30]. More involved polynomial-time algorithms exist for uni-
cyclic graphs [29] and, more generally, graphs of bounded cyclomatic number [9];
outerplanar graphs [7]; cographs [9]; chain graphs [10]; cactus-block graphs [16];
bipartite distance-hereditary graphs [24]. There are fixed parameter tractable
(FPT) algorithms for the undirected graph parameters max leaf number [8],
tree-depth [13], modular-width [2] and distance to cluster [12], but FPT algo-
rithms are highly unlikely to exist for parameters solution size [15] and feedback
vertex set [12].

Due to the interest for Metric Dimension on undirected graphs, it is natu-
ral to ask what can be said in the context of digraphs. The metric dimension of
digraphs was first studied in [5] under a somewhat restrictive definition; for our
definitions, we follow the recent paper [1], in which the algorithmic aspects of
Metric Dimension on digraphs have been addressed. We call oriented graph
a digraph without directed 2-cycles. A directed acyclic digraph (DAG for short)
has no directed cycles at all. The underlying multigraph of a digraph is the one
obtained by ignoring the arc orientations; its underlying graph is obtained from
it by ignoring multiple edges. In a digraph, a strongly connected component is a
subgraph where every vertex is reachable from all other vertices. Note that for
the Metric Dimension problem, undirected graphs can be seen as a special
type of digraphs where each arc has a symmetric arc.

The NP-hardness of Metric Dimension was proven for oriented graphs
in [27] and, more recently, for bipartite DAGs of maximum degree 8 and maxi-
mum distance 4 [1] (the maximum distance being the length of a longest directed
path without shortcuts). A linear-time algorithm for Metric Dimension on ori-
ented trees was given in [1].

1 The definition that we use has been called strong metric dimension in [1], as opposed
to weak metric dimension, where one single vertex may be unreachable from any
resolving set vertex. The former definition seems more natural to us. However, the
term strong metric dimension is already used for a different concept, see [25]. Thus,
to prevent confusion, we avoid the prefix strong in this paper.

234 A. Dailly et al.

Our Results. We generalize the linear-time algorithm for Metric Dimension on
oriented trees from [1] to all digraphs whose underlying graph is a tree. In other
words, here we allow 2-cycles. This makes a significant difference with oriented
trees, and as a result our algorithm is nontrivial. We then extend the used meth-
ods to solve Metric Dimension in linear time for unicyclic digraphs (digraphs
with a unique cycle). Then, we prove that Metric Dimension can be solved
in time f(t)nO(1) for digraphs of order n and modular-width t (a parameter
recently introduced for digraphs in [31]). This extends the same result for undi-
rected graphs from [2], and is the first FPT algorithm for Metric Dimension
on digraphs. Finally, we complement the hardness result from [1] by showing that
Metric Dimension is NP-hard even for planar triangle-free DAGs of maximum
degree 6 and maximum distance 4. For results marked with (∗), we omit the full
proof due to space constraints; those can be found in [6].

2 Digraphs Whose Underlying Graph is a Tree

For the sake of convenience, we call di-tree a digraph whose underlying graph is
a tree. Trees are often the first non-trivial class to study for a graph problem.
Metric Dimension is no exception to this, having been studied in the first
papers for the undirected [4,14,18,30] and the oriented [1] cases. In the undi-
rected case, a minimum-size resolving set can be found by taking, for each vertex
of degree at least 3 spanning k legs, the endpoint of k − 1 of its legs (a leg is
an induced path spanning from a vertex of degree at least 3, having its inner
vertices of degree 2, and ending in a leaf). In the case of oriented trees, taking all
the sources (a source is a vertex with no in-neighbour) and k−1 vertices in each
set of k in-twins yields a metric basis (two vertices are in-twins if they have the
same in-neighbourhood). Our algorithm, being on di-trees (which include both
undirected trees and oriented trees), will reuse those strategies, but we will need
to refine them in order to obtain a metric basis. The first refinement is of the
notion of in-twins:

Definition 1. A strongly connected component E of a di-tree is an escalator if
it satisfies the following conditions:

1. its underlying graph is a path with vertices e1, . . . , ek (k ≥ 2);
2. there is a unique vertex y �∈ E such that the arc −→ye1 (resp. −→yek) exists;
3. there can be any number (possibly, zero) of vertices z �∈ E such that the arc−→ekz (resp. −→e1z) exists; for every i ∈ {1, . . . , k − 1} (resp. i ∈ {2, . . . , k}), no

arc −→eiz with z �∈ E exists.

Definition 2. In a di-tree, a set of vertices A = {a1, . . . , ak} is a set of almost-
in-twins if there is a vertex x such that:

1. for every i ∈ {1, . . . , k}, the arc −→xai exists and the arc −→aix does not exist;
2. for every i ∈ {1, . . . , k}, either ai is a trivial strongly connected component

and N−(ai) = {x}, or ai is the endpoint of an escalator and N−(ai) = {x, y}
where y is its neighbour in the escalator.

Metric Dimension on Digraphs 235

Note that regular in-twins are also almost-in-twins. The second refinement
is the following (for a given vertex x in a strongly connected component with C
as an underlying graph, we call dC(x) the degree of x in C):

Definition 3. Given the underlying graph C of a strongly connected component
of a di-tree and a set D of vertices, we call a set S of vertices inducing a path
of order at least 2 in C a special leg if it verifies the four following properties:

1. S has a unique vertex v such that v ∈ D or dC(v) ≥ 3;
2. S has a unique vertex w such that dC(w) = 1, furthermore w �∈ D: w is called

the endpoint of S;
3. all of the other vertices x of S verify dC(x) = 2 and x �∈ D;
4. at least one of the vertices y ∈ S \ {w} has an out-arc −→yz with z /∈ C.

Note that several special legs can span from the same vertex, from which
regular legs can also span. Algorithm 1, illustrated in Fig. 1, computes a metric
basis of a di-tree.

Explanation of Algorithm 1. The algorithm will compute a metric basis B
of a di-tree T in linear-time. The first thing we do is to add every source in T
to B (line 1). Then, for every set of almost-in-twins, we add all of them but one
to B (lines 2–3). Those two first steps, depicted in Fig. 1a, are the ones used to
compute the metric basis of an orientation of a tree [1], and as such they are still
necessary for managing the non-strongly connected components of the di-tree.
Note that we are specifically managing sets of almost-in-twins, which include sets
of in-twins, since it is necessary to resolve the specific case of escalators. The
rest of the algorithm consists in managing the strongly connected components.

For each strongly connected component having C as an underlying graph,
we first identify each vertex x of C that has an in-arc coming from outside
C. Indeed, since x is the “last” vertex of a path coming from outside C, there
are vertices of B “behind” this in-arc (or they can themselves be a vertex in
B), which we will call Bx. However, the vertices in Bx can be “projected” on
x since, T being a di-tree, x is on every shortest path from the vertices of B
“behind”the in-arc to the vertices of C. Hence, we will mark x as a dummy
vertex (lines 5–7, depicted in Figure 1b): we will consider that it is in B for the
rest of this step, and acts as a representative of the set Bx with respect to C.

We then have to manage some specific cases whenever C is a path (lines 8–
17). Indeed, the last two steps of the algorithm do not always work under some
conditions. Those specific conditions are highlighted in the proof.

The last two steps are then applied. First, we have to consider the special
legs defined in Definition 3. The idea behind those special legs is the following:
for every out-arc −→yz with y in the special leg and z outside of C, any vertex in
the metric basis “before” the start of the special leg will not distinguish z and
the next neighbour of y in the special leg. Hence, we have to add at least one
vertex to B for each special leg, and we choose the endpoint of the special leg
(lines 18–19, depicted in Fig. 1c). Finally, we apply the well-known algorithm for

236 A. Dailly et al.

Algorithm 1: An algorithm computing the metric basis of a di-tree.
Input : A di-tree T .
Output: A metric basis B of T .

1 B ← Every source of T
2 foreach set I of almost-in-twins do
3 Add |I| − 1 vertices of I to B
4 foreach strongly connected component with C as an underlying graph do
5 D ← ∅
6 foreach arc −→uv with v ∈ C and u �∈ C do
7 Add v to D

8 if C is a path with endpoints x and y then
9 if there is no vertex in C ∩ D then

10 if there is no out-arc from C to outside of C then
11 Add x to B
12 else if there is an out-arc from x (resp. y) to outside of C and no

other out-arc from C to outside of C then
13 Add y (resp. x) to B
14 else
15 Add x and y to B
16 else if there is exactly one vertex w in C ∩D, w is neither x nor y, and

there is no out-arc from w to outside of C then
17 Add x to B
18 foreach special leg L of C do
19 Add the endpoint of L to B
20 foreach vertex of degree ≥ 3 in C from which span k ≥ 2 legs of C that do

not have a vertex in B or in D do
21 Add the endpoint of k − 1 such legs to B
22 return B

computing the metric basis of a tree to the remaining parts of C (lines 20–21,
depicted in Fig. 1d). The special legs and the legs containing a dummy vertex,
being already resolved, are not considered in this part.

Theorem 4 (∗). Algorithm 1 computes a metric basis of a di-tree in linear
time.

3 Orientations of Unicyclic Graphs

A unicyclic graph U is constituted of a cycle C with vertices c1, . . . , cn, and
each vertex ci is the root of a tree Ti (we can have Ti be simply the isolated ci
itself). The metric dimension of an undirected unicyclic graph has been studied
in [26,28,29]. In [26], Poisson and Zhang proved bounds for the metric dimension

Metric Dimension on Digraphs 237

Fig. 1. Illustration of Algorithm 1. For the sake of simplicity, there are only two strongly
connected components, for which we only represent the underlying graph with bolded
edges, so every bolded edge is a 2-cycle. One of the two strongly connected components
is a simple path that does not require any action. Vertices in the metric basis are colored
in red. (Color figure online)

of a unicyclic graph in terms of the metric dimension of a tree we obtain by
removing one edge from the cycle. Sedlar and Škrekovski showed more recently
that the metric dimension of a unicyclic graph is one of two values in [28], and
then the exact value of the metric dimension based on the structure of the graph
in [29]. In this section, we will show that one can compute a metric basis of an
orientation of a unicyclic graph in linear time. The algorithm mostly consists in
using sources and in-twins, with a few specific edge cases to consider.

In this section, an induced directed path
−→
P is the orientation of an induced

path with only one source and one sink which are its two endpoints. It is said
to be spanning from u if u is its source endpoint, and its length is its number of
edges. We also need the following definition:

238 A. Dailly et al.

Definition 5. Let
−→
U be the orientation of a unicyclic graph. Given an orienta-

tion of a cycle
−→
C of even length n = 2k with two sources, if its sources are ci

and ci+2, its sinks are ci+1 and ci+1+k, and there are, in
−→
C \ {ci, ci+2}, neither

in-twins nor in-arcs coming from outside of
−→
C , we call an induced directed path−→

P an concerning path if it verifies the three following properties:

1.
−→
P spans from ci+1;

2.
−→
P has length k − 2;

3.
−→
P has no in-arc coming from outside of

−→
P ∪ −→

C ;

Furthermore, if, for every vertex in
−→
P belonging to a nonempty set I of in-twins,

every vertex in I belongs to a concerning path, then, we call
−→
P an unfixable path.

A path that is a concerning path, but not an unfixable path, will be called a
fixable path.

Finally, a vertex might belong both to an unfixable path and to a fixable path;
in this case, the fixable path takes precedence (i.e., we will consider that the
vertex belongs to the fixable path).

Algorithm 2: An algorithm computing the metric basis of an orientation
of a unicyclic graph.

Input : An orientation
−→
U of a unicyclic graph U .

Output: A metric basis B of
−→
U .

1 Add to B every source of
−→
U

2 Apply the special cases in Algorithm 3

3 foreach set I of in-twins in
−→
U that are not already in B do

4 if all the vertices of I are in concerning paths then
5 Add |I| − 1 vertices of I to B, prioritizing vertices in unfixable paths
6 else

7 Add |I| − 1 vertices of I to B, prioritizing vertices in the cycle
−→
C or in

concerning paths, if there are any

8 return B

Explanation of Algorithm 2. The algorithm will compute a metric basis B of
an orientation

−→
U of a unicyclic graph U in linear-time. The first thing we do is

to add every source in
−→
U to B (line 1). We will also manage the sets of in-twins

in
−→
U (lines 3–7), which we need to do after taking care of some special cases that

might influence the choice of in-twins. When we have the choice, we prioritize
taking in-twins that are in the cycle to guarantee reachability of vertices in the
cycle. Note that those two sets (along with the right priority) are enough in most
cases.

Metric Dimension on Digraphs 239

Algorithm 3: Special cases of Algorithm 2.

1 if the cycle
−→
C has no sink, there is no in-arc coming from outside of C, and no

vertex of C is in a set of in-twin then
2 Add c1 to B
3 if the cycle

−→
C has no sink, there is exactly one in-arc −→uci with u �∈ −→

C , no vertex

cj with j �= i is an in-twin or has in-arc coming from outside of
−→
C , and u has

an out-neighbour v with N−(v) = {u} then
4 Add ci to B
5 if the cycle

−→
C has exactly one source ci then

6 if the one sink is either ci−1 or ci+1, and no vertex cj with j �= i is an

in-twin or has an in-arc coming from outside of
−→
C then

7 Add ci−1 to B
8 else if the one sink is ci+k with k > 1, |−→C | ≥ 2k, ci+k−1 (resp. ci+k+1) has

an out-neighbour v such that N−(v) = {ci+k−1} (resp. N−(v) = {ci+k+1}),
no vertex in {ci−1, ci−2, . . . , ci+k} (resp. {ci+1, ci+2, . . . , ci+k}) has an
in-arc, and no vertex in {ci−2, ci−3, . . . , ci+k+1} (resp.
{ci+2, ci+3, . . . , ci+k−1}) is an in-twin then

9 Add ci−1 (resp. ci+1) to B
10 else if the one sink is ci+k with k > 1, |−→C | = 2k, ci+k−1 has an

out-neighbour v− such that N−(v−) = {ci+k−1}, ci+k+1 has an

out-neighbour v+ such that N−(v+) = {ci+k+1}, no vertex in
−→
C except ci

has an in-arc, no vertex in
−→
C \ {ci, ci−1, ci+1} is an in-twin, and ci−1 and

ci+1 are not in a set I of in-twins verifying |I| ≥ 3 then
11 Add ci+k to B

12 if the cycle
−→
C has exactly two sources ci and ci+2, |−→C | = 2k with k > 2, the two

sinks are ci+1 and ci+1+k, no vertex from
−→
C except ci and ci+2 is an in-twin or

has an in-arc coming from outside of
−→
C , there is at least one unfixable path, and

there is no fixable path then
13 Add ci+1 to B

We then have to manage six specific cases (line 2). Those special cases
are handled in Algorithm 3. The first two special cases occur when the cycle
has no sink. First, if the cycle has no sink, no in-twin, and no arc coming from
outside, then, we have to add one vertex of the cycle to B in order to maintain
reachability (lines 1–2). Then, if the cycle has no sink, only one in-arc −→uci is
coming from outside of it, and there is a vertex v with N−(v) = {u}, then, we
have to add either ci or v to B in order to resolve them (lines 3–4).

The next three special cases occur when the cycle has one sink. First, if there
is only one sink in the cycle, it is an out-neighbour of the source, and no vertex
from the cycle apart from the source is an in-twin or has an in-arc coming from
outside of the cycle, then we need to add one of the out-neighbours of the source
in the cycle to B in order to resolve them (lines 6–7).

240 A. Dailly et al.

Then, there are two specific cases when the cycle has one sink, both based
on the same principle. Both happen when the source is ci, the sink is ci+k, it
has no in-arc, and the cycle contains at least 2k vertices. In the fourth special
case (lines 8–9), the vertex ci+k−1 has an out-neighbour v verifying N−(v) =
{ci+k−1}. We can see that, if no vertex in the other path from ci to ci+k (the
path going through ci−1, ci−2, . . . , ci+k+1) is in B, then, v and ci+k will not be
resolved. Those vertices can be added to B if they have an in-arc or if they are
an in-twin (they will have priority). However, note that ci−1 might be an in-twin
of ci+1, in which case it should be added to B, resolving the conflict. Hence, if
none of ci−1, ci−2, . . . , ci+k+1 has an in-arc or is an in-twin, then, we can add
ci−1 to B in order to resolve v and ci+k. Note that, in this case, in comparison
to just the sources and the resolution of sets of in-twins, we add one more vertex
to B if ci−1 is the only in-twin of ci+1. The same reasoning can be made with
the symmetric case.

The fifth special case (lines 10–11) occurs when the cycle contains exactly 2k
vertices and both ci+k−1 and ci+k+1 have an out-neighbour (respectively v− and
v+) with in-degree 1: the pairs of vertices (v−, ci+k) and (v+, ci+k) might not
be resolved. We can see that any in-arc or in-twin along a path from ci to ci+k

will resolve ci+k and the v pendant on the other path (thus either fully resolving
those two pairs, or bringing us back to the previous special case), except if ci−1

and ci+1 are the only in-twins in the cycle and if they do not have another in-
twin. Hence, if no vertex from the cycle except ci has an in-arc, no vertex from
the cycle except ci, ci−1 and ci+1 is an in-twin, and ci−1 and ci+1 do not have
another in-twin, then, we need to add at least one more vertex to B in order to
resolve the two pairs of vertices, and adding ci+k does exactly that.

Finally, the sixth special case is more complex (lines 12–13 and consideration
in the choice of in-twins). Assume that the cycle

−→
C is of even length n, has

neither in-twin nor in-arc coming from outside (except the sources), and that
there are two sinks in the

−→
C : one at distance 1 from the sources, and the other

at the opposite end of
−→
C . Now, if the first sink has spanning concerning paths,

then, the second cycle and the endpoints of those concerning paths might not
be resolved, since they are at the same distance (n2 − 1) of both sources of

−→
C .

Thus, we need to apply a strategy in order to resolve those vertices while trying
to not add a supplementary vertex to B. This is done by considering the two
kinds of concerning paths, and having a priority in the selection of in-twins.

All the other cases of the cycle are already resolved through the sources and
in-twins steps.

Theorem 6 (∗). Algorithm 2 computes a metric basis of an orientation of a
unicyclic graph in linear time.

4 Modular Width

In a digraph G, a set X ⊆ V (G) is a module if every vertex not in X ’sees’ all
vertices of X in the same way. More precisely, for each v ∈ V (G) \ X one of the

Metric Dimension on Digraphs 241

following holds: (i) (v, x), (x, v) ∈ E(G) for all x ∈ X, (ii) (v, x), (x, v) /∈ E(G) for
all x ∈ X, (iii) (v, x) ∈ E(G) and (x, v) /∈ E(G) for all x ∈ X, (iv) (v, x) /∈ E(G)
and (x, v) ∈ E(G) for all x ∈ X. The singleton sets, ∅, and V (G) are trivially
modules of G. We call the singleton sets the trivial modules of G.

The graph G[X] where X is a module of G is called a factor of G. A family
X = {X1, . . . , Xs} is a factorization of G if X is a partition of V (G), and each
Xi is a module of G. If X and Y are two non-intersecting modules, then the
relationship between x ∈ X and y ∈ Y is one of (i)-(iv) and always the same no
matter which vertices x and y are exactly. Thus, given a factorization X , we can
identify each module with a vertex, and connect them to each other according to
the arcs between the modules. More formally, we define the quotient G/X with
respect to the factorization X as the graph with the vertex set X = {X1, . . . , Xs}
and (Xi,Xj) ∈ E(G/X) if and only if (xi, xj) ∈ E(G) where xi ∈ Xi and xj ∈
Xj . A quotient depicts the connections of the different modules of a factorization
to each other while omitting the internal structure of the factors. Each factor
itself can be factorized further (as long as it is nontrivial, i.e. not a single vertex).
By factorizing the graph G and its factors until no further factorization can be
done, we obtain a modular decomposition of G. The width of a decomposition is
the maximum number of sets in a factorization (or equivalently, the maximum
number of vertices in a quotient) in the decomposition. The modular width of G
is defined as the minimum width over all possible modular decompositions of G,
and we denote it by mw(G). An optimal modular decomposition of a digraph can
be computed in linear time [21]. Metric Dimension for undirected graphs was
shown to be fixed parameter tractable when parameterized by modular width
by Belmonte et al. [2]. We will generalize their algorithm to directed graphs.

The following result lists several useful observations.

Proposition 7 (∗). Let X = {X1, . . . , Xs} be a factorization of G, and let
W ⊆ V (G) be a resolving set of G.

(i) For all x, y ∈ Xi and z ∈ Xj, i �= j, we have distG(x, z) = distG(y, z) and
distG(z, x) = distG(z, y).

(ii) For all x ∈ Xi and y ∈ Xj, i �= j, we have distG(x, y) = distG/X (Xi,Xj).
(iii) For all x, y ∈ V (G) we have either distG(x, y) ≤ mw(G) or distG(x, y) = ∞.
(iv) The set {Xi ∈ X |W ∩ Xi �= ∅} is a resolving set of the quotient G/X .
(v) For all distinct x, y ∈ Xi, where Xi ∈ X is nontrivial, we have distG(w, x) �=

distG(w, y) for some w ∈ W ∩ Xi.
(vi) Let w1, w2 ∈ Xi. If distG(w1, x) �= distG(w2, x), then x ∈ Xi and

distG(w1, x) �= distG(w1, y) or distG(w2, x) �= distG(w2, y) for each y /∈ Xi.

The basic idea of our algorithm (and that of [2]) is to compute metric bases
that satisfy certain conditions for the factors and combine these local solutions
into a global solution. We know that nontrivial modules must contain elements
of a resolving set, as modules must be resolved locally (Proposition 7 (i)). While
combining the local solutions of nontrivial modules, we need to make sure that a
vertex x ∈ Xi, where Xi is nontrivial, is resolved from all y /∈ Xi. If x and y are
resolved as described in Proposition 7 (vi), then we need to do nothing special.

242 A. Dailly et al.

However, if x ∈ Xi is such that distG(w, x) = d for all w ∈ Wi and a fixed
d ∈ {1, . . . ,mw(G),∞}, there might exist a vertex y /∈ Xi such that Wi does not
resolve x and y. We call such a vertex x d-constant (with respect to Wi). We
need to keep track of d-constant vertices and make sure they are resolved when
we combine the local solutions. There are at most mw(G)+1 d-constant vertices
in each factor due to Proposition 7 (iii). We need to also make sure vertices in
different modules that contain no elements of the solution set are resolved. To do
this, we might need to include some vertices from the trivial modules in addition
to the vertices we have included from the nontrivial modules.

In the algorithm presented in [2], the problems described above are dealt
with by computing values w(H, p, q) for every factor H, where w(H, p, q) is the
minimum cardinality of a resolving set of H (with respect to the distance in G)
where some vertex is 1-constant iff p = true and some vertex is 2-constant iff
q = true (for undirected graphs these are the only two relevant cases). The same
values are then computed for the larger graph by combining different solutions
of the factors and taking their minimum. Our generalization of this algorithm is
along the same lines as the original, however, we have more boolean values to
keep track of. One difference to the techniques of the original algorithm is that
we do not use the auxiliary graphs Belmonte et al. use. These auxiliary graphs
were needed to simulate the distances of the vertices of a factor in G as opposed
to only within the factor. In our approach, we simply use the distances in G.

Theorem 8 (∗). The metric dimension of a digraph G with mw(G) ≤ t can be
computed in time O(t52t

2
n + n3 + m) where n = |V (G)| and m = |E(G)|.

Proof (sketch). Let us consider one level of an optimal modular decomposition of
G. Let H be a factor somewhere in the decomposition, and let X = {X1, . . . , Xs}
be the factorization of H according to the modular decomposition. For the graph
H (and its nontrivial factors H[Xi]) we denote by w(H,p) the minimum cardi-
nality of a set W ⊆ V (H) such that

(i) W resolves V (H) in G,
(ii) p = (p1, . . . , pmw(G), p∞) where pd = true if and only if H contains a d-

constant vertex with respect to W .

If such a set does not exist, then w(H,p) = ∞. In order to compute the
values w(H,p), we next introduce the auxiliary values ω(p, I, P). The values
w(H[Xi],p) are assumed to be known for all p and nontrivial modules Xi. Let
the factorization X be labeled so that the modules Xi are trivial for i ∈ {1, . . . , h}
and nontrivial for i ∈ {h+1, . . . , s}. Let I ⊆ {1, . . . , h} and P =

(
ph+1, . . .ps

)T .
We define ω(p, I, P) = |I| +

∑s
i=h+1 w(H[Xi],pi) if the conditions (a)–(d)

hold. In what follows, a representative of a module Xi is denoted by xi.

(a) The set Z = {Xi ∈ X | i ∈ I ∪ {h + 1, . . . , s}} resolves the quotient H/X
with respect to the distances in G.

(b) For d ∈ {1, . . . ,mw(G),∞} and i ∈ {h + 1, . . . , s}, if pid = true, then for
each trivial module Xj = {xj} where j /∈ I we have distG(xi, xj) �= d or
there exists Xk ∈ Z \ {Xi} such that distG(xk, xi) �= distG(xk, xj).

Metric Dimension on Digraphs 243

(c) For d1, d2 ∈ {1, . . . ,mw(G),∞} and distinct i, j ∈ {h + 1, . . . , s}, if pid1
=

pjd2
= true, then distG(xi, xj) �= d1, or distG(xj , xi) �= d2, or there exists

Xk ∈ Z \ {Xi,Xj} such that distG(xk, xi) �= distG(xk, xj).
(d) For all d ∈ {1, . . . ,mw(G),∞}, we have pd = true (in p) if and only if for

some i ∈ {1, . . . , h} \ I we have distG(xj , xi) = d for all Xj ∈ Z, or for
some i ∈ {h + 1, . . . , s} we have pid = true and distG(xj , xi) = d for all
Xj ∈ Z \ {Xi}.

If these conditions cannot be met, then we set ω(p, I, P) = ∞.
When we know all the values ω(p, I, P), we can easily calculate w(H,p) since

w(H,p) = minI,P ω(p, I, P) (proof omitted due to lack of space).
To conclude the proof, we note that w(G,p) is the minimum cardinality of a

resolving set that gives some vertices the specific distance combinations accord-
ing to p. Thus, the metric dimension of G is min w(G,p) where the minimum is
taken over all p such that p∞ = false. �

5 NP-Hardness for Restricted DAGs

We now complement the hardness result from [1], which was for bipartite DAGs
of maximum degree 8 and maximum distance 4.

Theorem 9 (∗). Metric Dimension is NP-complete, even on planar triangle-
free DAGs of maximum degree 6 and maximum distance 4.

Proof (sketch). We reduce from Vertex Cover on 2-connected planar cubic
graphs, which is known to be NP-complete [23, Theorem 4.1].

Given a 2-connected planar cubic graph G, we construct a DAG G′ as follows.
First of all, note that by Petersen’s theorem, G contains a perfect matching
M ⊂ E(G), that can be constructed in polynomial time. A planar embedding
of G can also be constructed in polynomial time, so we fix one. We let V (G′) =
V (G)

⋃
e=uv∈E(G){ae, be, ce, d

u
e , dve}

⋃
e=uv∈M{fe, ge, he}. For every edge e = uv

of G, we add the arcs {−−→aebe,
−−→
bece,

−−→
ced

u
e ,

−−→
ced

v
e ,

−−→
udue ,

−→
vdve}. For every edge e = uv of

the perfect matching M of G, assuming the neighbours of u (in the clockwise
cyclic order with respect to the planar embedding of G) are v, x, y and those of
v are u, s, t, we arbitrarily fix one side of the edge uv to place the vertices fe, ge
and he (say, on the side that is close to the edges ux and vt). We add the arcs
{−−→
fege,

−−→gece,
−−→
gehe,

−−→
heu,

−→
hev,−−−→cecuy,

−−−→cecvs,
−−−→
hecux,

−−−→
hecvt}.

Using the embedding of G, G′ can also be drawn in a planar way, it has
maximum degree 6 (the vertices of type ce are of degree 6), has no triangles, and
no shortest directed path of length 4.

We claim that G has a vertex cover of size at most k if and only if G′ has
metric dimension at most k + |E(G)|+ |M | (proof omitted due to lack of space).

�

244 A. Dailly et al.

6 Conclusion

Metric Dimension can be solved in polynomial time on outerplanar graphs,
using an involved algorithm [7]. Can one generalize our algorithms for trees
and unicyclic graphs to solve Metric Dimension for directed (or at least,
oriented) outerplanar graphs in polynomial time? Extending our algorithm to
cactus graphs already seems nontrivial.

Is Metric Dimension NP-hard on planar bipartite subcubic DAGs?
Also, it would be interesting to see which hardness results known for Metric

Dimension of undirected graphs also hold for DAGs, or for oriented graphs.

References

1. Araujo, J., et al.: On finding the best and worst orientations for the metric dimen-
sion. Algorithmica 1–41 (2023)

2. Belmonte, R., Fomin, F.V., Golovach, P.A., Ramanujan, M.S.: Metric dimension
of bounded tree-length graphs. SIAM J. Discret. Math. 31(2), 1217–1243 (2017)

3. Blumenthal, L.M.: Theory and Applications of Distance Geometry. Oxford Uni-
versity Press, Oxford (1953)

4. Chartrand, G., Eroh, L., Johnson, M.A., Oellermann, O.R.: Resolvability in graphs
and the metric dimension of a graph. Discret. Appl. Math. 105(1), 99–113 (2000)

5. Chartrand, G., Raines, M., Zhang, P.: The directed distance dimension of oriented
graphs. Math. Bohem. 125, 155–168 (2000)

6. Dailly, A., Foucaud, F., Hakanen, A.: Algorithms and hardness for metric dimen-
sion on digraphs. arXiv preprint arXiv:2307.09389 (2023)

7. Dı́az, J., Pottonen, O., Serna, M.J., van Leeuwen, E.J.: Complexity of metric
dimension on planar graphs. J. Comput. Syst. Sci. 83(1), 132–158 (2017)

8. Eppstein, D.: Metric dimension parameterized by max leaf number. J. Graph Algo-
rithms Appl. 19(1), 313–323 (2015)

9. Epstein, L., Levin, A., Woeginger, G.J.: The (weighted) metric dimension of graphs:
hard and easy cases. Algorithmica 72(4), 1130–1171 (2015)

10. Fernau, H., Heggernes, P., van’t Hof, P., Meister, D., Saei, R.: Computing the
metric dimension for chain graphs. Inf. Process. Lett. 115(9), 671–676 (2015)

11. Foucaud, F., Mertzios, G.B., Naserasr, R., Parreau, A., Valicov, P.: Identification,
location-domination and metric dimension on interval and permutation graphs. II.
Algorithms and complexity. Algorithmica 78(3), 914–944 (2017)

12. Galby, E., Khazaliya, L., Inerney, F.M., Sharma, R., Tale, P.: Metric dimen-
sion parameterized by feedback vertex set and other structural parameters. In:
47th International Symposium on Mathematical Foundations of Computer Science,
MFCS 2022, 22–26 August 2022, Vienna, Austria. LIPIcs, vol. 241, pp. 51:1–51:15.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2022)

13. Gima, T., Hanaka, T., Kiyomi, M., Kobayashi, Y., Otachi, Y.: Exploring the gap
between treedepth and vertex cover through vertex integrity. Theoret. Comput.
Sci. 918, 60–76 (2022)

14. Harary, F., Melter, R.A.: On the metric dimension of a graph. Ars Combin. 2,
191–195 (1976)

15. Hartung, S., Nichterlein, A.: On the parameterized and approximation hardness
of metric dimension. In: Proceedings of the 28th Conference on Computational
Complexity, CCC 2013, K.lo Alto, California, USA, 5–7 June 2013, pp. 266–276.
IEEE Computer Society (2013)

http://arxiv.org/abs/2307.09389

Metric Dimension on Digraphs 245

16. Hoffmann, S., Elterman, A., Wanke, E.: A linear time algorithm for metric dimen-
sion of cactus block graphs. Theoret. Comput. Sci. 630, 43–62 (2016)

17. Hoffmann, S., Wanke, E.: Metric Dimension for gabriel unit disk graphs Is NP-
complete. In: Bar-Noy, A., Halldórsson, M.M. (eds.) ALGOSENSORS 2012. LNCS,
vol. 7718, pp. 90–92. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-
642-36092-3 10

18. Khuller, S., Raghavachari, B., Rosenfeld, A.: Landmarks in graphs. Discret. Appl.
Math. 70(3), 217–229 (1996)

19. Li, S., Pilipczuk, M.: Hardness of metric dimension in graphs of constant treewidth.
Algorithmica 84(11), 3110–3155 (2022)

20. Lobstein, A.: Watching systems, identifying, locating-dominating and discrim-
inating codes in graphs: a bibliography (2022). https://www.lri.fr/∼lobstein/
debutBIBidetlocdom.pdf

21. McConnell, R.M., de Montgolfier, F.: Linear-time modular decomposition of
directed graphs. Discret. Appl. Math. 145(2), 198–209 (2005)

22. Melter, R.A., Tomescu, I.: Metric bases in digital geometry. Comput. Vision Graph.
Image Process. 25(1), 113–121 (1984)

23. Mohar, B.: Face covers and the genus problem for apex graphs. J. Combin. Theory
Ser. B 82(1), 102–117 (2001)

24. Moscarini, M.: Computing a metric basis of a bipartite distance-hereditary graph.
Theoret. Comput. Sci. 900, 20–24 (2022)

25. Oellermann, O.R., Peters-Fransen, J.: The strong metric dimension of graphs and
digraphs. Discret. Appl. Math. 155(3), 356–364 (2007)

26. Poisson, C., Zhang, P.: The metric dimension of unicyclic graphs. J. Combin. Math.
Combin. Comput. 40, 17–32 (2002)

27. Rajan, B., Rajasingh, I., Cynthia, J.A., Manuel, P.: Metric dimension of directed
graphs. Int. J. Comput. Math. 91(7), 1397–1406 (2014)

28. Sedlar, J., Škrekovski, R.: Bounds on metric dimensions of graphs with edge disjoint
cycles. Appl. Math. Comput. 396, 125908 (2021)

29. Sedlar, J., Škrekovski, R.: Vertex and edge metric dimensions of unicyclic graphs.
Discret. Appl. Math. 314, 81–92 (2022)

30. Slater, P.J.: Leaves of trees. Congressius Numer. 14, 549–559 (1975)
31. Steiner, R., Wiederrecht, S.: Parameterized algorithms for directed modular width.

In: Changat, M., Das, S. (eds.) CALDAM 2020. LNCS, vol. 12016, pp. 415–426.
Springer, Cham (2020). https://doi.org/10.1007/978-3-030-39219-2 33

https://doi.org/10.1007/978-3-642-36092-3_10
https://doi.org/10.1007/978-3-642-36092-3_10
https://www.lri.fr/~lobstein/debutBIBidetlocdom.pdf
https://www.lri.fr/~lobstein/debutBIBidetlocdom.pdf
https://doi.org/10.1007/978-3-030-39219-2_33

Degreewidth: A New Parameter
for Solving Problems on Tournaments

Tom Davot1(B) , Lucas Isenmann2 , Sanjukta Roy3 ,
and Jocelyn Thiebaut4

1 Université de Technologie de Compiègne, CNRS, Heudiasyc, Compiègne, France
tom.davot@hds.utc.fr

2 Université de Montpellier, Montpellier, France
lucas.isenmann@umontpellier.fr

3 Pennsylvania State University, State College, USA
sanjukta@psu.edu

4 Faculty of Information Technology, Czech Technical University in Prague,
Prague, Czech Republic

jocelyn.thiebaut@cvut.cz

Abstract. In the paper, we define a new parameter for tournaments
called degreewidth which can be seen as a measure of how far is the tour-
nament from being acyclic. The degreewidth of a tournament T denoted
by Δ(T) is the minimum value k for which we can find an ordering
〈v1, . . . , vn〉 of the vertices of T such that every vertex is incident to at
most k backward arcs (i.e. an arc (vi, vj) such that j < i). Thus, a tour-
nament is acyclic if and only if its degreewidth is zero. Additionally, the
class of sparse tournaments defined by Bessy et al. [ESA 2017] is exactly
the class of tournaments with degreewidth one.

We study computational complexity of finding degreewidth. We show
it is NP-hard and complement this result with a 3-approximation algo-
rithm. We provide a O(n3)-time algorithm to decide if a tournament is
sparse, where n is its number of vertices.

Finally, we study classical graph problems Dominating Set and
Feedback Vertex Set parameterized by degreewidth. We show the
former is fixed-parameter tractable whereas the latter is NP-hard even
on sparse tournaments. Additionally, we show polynomial time algorithm
for Feedback Arc Set on sparse tournaments.

Keywords: Tournaments · NP-hardness · graph-parameter · feedback
arc set · approximation algorithm · parameterized algorithms

1 Introduction

A tournament is a directed graph such that there is exactly one arc between
each pair of vertices. Tournaments form a very rich subclass of digraphs which

Sanjukta Roy was affiliated to Faculty of Information Technology, Czech Technical
University in Prague when majority of this work was done. Jocelyn Thiebaut was
supported by the CTU Global postdoc fellowship program.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
D. Paulusma and B. Ries (Eds.): WG 2023, LNCS 14093, pp. 246–260, 2023.
https://doi.org/10.1007/978-3-031-43380-1_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-43380-1_18&domain=pdf
http://orcid.org/0000-0003-4203-5140
http://orcid.org/0000-0002-1460-269X
http://orcid.org/0000-0003-3633-542X
http://orcid.org/0000-0002-4550-8399
https://doi.org/10.1007/978-3-031-43380-1_18

Degreewidth: A New Parameter for Solving Problems on Tournaments 247

has been widely studied both from structural and algorithmic point of view [4].
Unlike for complete graphs, a number of classical problems remain difficult in
tournaments and therefore interesting to study. These problems include Dom-

inating Set [14], Winner Determination [22], or maximum cycle packing
problems. For example, Dominating Set is W[2]-hard on tournaments with
respect to solution size [14]. However, many of these problems become easy on
acyclic tournaments (i.e. without directed cycle). Therefore, a natural question
that arises is whether these problems are easy to solve on tournaments that are
close to being acyclic. The phenomenon of a tournament being “close to acyclic”
can be captured by minimum size of a feedback arc set (fas). A fas is a collection
of arcs that, when removed from the digraph (or, equivalently, reversed) makes
it acyclic. This parameter has been widely studied, for numerous applications in
many fields, such as circuit design [19], or artificial intelligence [5,13]. However,
the problem of finding a minimum fas on tournaments (the problem is then called
FAST for Feedback Arc Set in Tournaments), remained opened for over a
decade before being proven NP-complete [3,10]. From the approximability point
of view, van Zuylen and Williamson [25] provided a 2-approximation of FAST,
and Kenyon-Mathieu and Schudy [21] a PTAS algorithm. On the parameterized-
complexity side, Feige [15] as well as Karpinski and Schudy [20] independently
proved an 2O(

√
k) + nO(1) running-time algorithm. Another way to define FAST

is to consider the problem of finding an ordering of the vertices 〈v1, . . . , vn〉 min-
imising the number of arcs (vi, vj) with j < i; such arcs are called backward
arcs. Then, it is easy to see that a tournament is acyclic if and only if it admits
an ordering with no backward arcs. Several parameters exploiting an ordering
with specific properties have been studied in this sense [18] such as the cutwidth.
Given an ordering of vertices, for each prefix of the ordering we associate a cut
defined as the set of backward arcs with head in the prefix and tail outside of it.
Then cutwidth is the minimum value, among all the orderings, of the maximum
size of any possible cut w.r.t the ordering (a formal definition is introduced in
next section). It is well-known that computing cutwidth is NP-complete [17], and
has an O(log2(n))-approximation on general graphs [23]. Specifically on tourna-
ments, one can compute an optimal ordering for the cutwidth by sorting the
degrees according to the in-degrees [16].

In this paper, we propose a new parameter called degreewidth using the con-
cept of backward arcs in an ordering of vertices. Degreewidth of a tournament
is the minimum value, among all the orderings, of the maximum number of
backward arcs incident to a vertex. Hence, an acyclic tournament is a tour-
nament with degreewidth zero. Furthermore, one can notice that tournaments
with degreewidth at most one are the same as the sparse tournaments intro-
duced in [8,24]. A tournament is sparse if there exists an ordering of vertices
such that the backward arcs form a matching. It is known that computing a
maximum sized arc-disjoint packing of triangles and computing a maximum
sized arc-disjoint packing of cycles can be done in polynomial time [7] on sparse
tournaments.

To the best of our knowledge this paper is the first to study the parameter
degreewidth. As we will see in the next part, although having similarities with the

248 T. Davot et al.

cutwidth, this new parameter differs in certain aspects. We first study structural
and computational aspects of degreewidth. Then, we show how it can be used
to solve efficiently some classical problems on tournaments.

Our Contributions and Organization of the Paper. Next section pro-
vides the formal definition of degreewidth and some preliminary observations.
In Sect. 3, we first study the degreewidth of a special class of tournaments, called
regular tournaments, of order 2k+1 and prove they have degreewidth k. We then
prove that it is NP-hard to compute the degreewidth in general tournaments.
We finally give a 3-approximation algorithm to compute this parameter which
is tight in the sense that it cannot produce better than 3-approximation for a
class of tournaments.

Then in Sect. 4, we focus on tournaments with degreewidth one, i.e., the
sparse tournaments. Note that it is claimed in [8] that there exists a polynomial-
time algorithm for finding such ordering, but the only available algorithm appear-
ing in [24, Lemma 35.1, p.97] seems to be incomplete (see discussion Subsect.
4.2). We first define a special class of tournaments that we call U -tournaments.
We prove there are only two possible sparse orderings for such tournaments.
Then, we give a polynomial time algorithm to decide if a tournament is sparse
by carefully decomposing it into U -tournaments.

Finally, in Sect. 5 we study degreewidth as a parameter for some classical
graph problems. First, we show an FPT algorithm for Dominating Set w.r.t
degreewidth. Then, we focus on tournaments with degreewidth one. We design
an algorithm running in time O(n3) to compute a Feedback Arc Set on tour-
naments on n vertices with degreewidth one. However, we show that Feedback
Vertex Set remains NP-complete on this class of tournaments.

Due to paucity of space the missing proofs are deferred to full version [12].

2 Preliminaries

2.1 Notations

In the following, all the digraphs are simple, that is without self-loop and multiple
arcs sharing the same head and tail, and all cycles are directed cycles. The
underlying graph of a digraph D is an undirected graph obtained by replacing
every arc of D by an edge. Furthermore, we use [n] to denote the set {1, 2, . . . , n}.

A tournament is a digraph where there is exactly one arc between each pair
of vertices. It can alternatively be seen as an orientation of the complete graph.
Let T be a tournament with vertex set {v1, . . . , vn}. We denote N+(v) the out-
neighbourhood of a vertex v, that is the set {u | (v, u) ∈ A(T)}. Then, T being
a tournament, the in-neighbourhood of the vertex v denoted N−(v) corresponds
to V (T) \ (N+(v) ∪ {v}). The out-degree (resp. in-degree) of v denoted d+(v)
(resp. d−(v)) is the size of its out-neighbourhood (resp. in-neighbourhood).

A tournament T of order 2k + 1 is regular if for any vertex v, we have
d+(v) = d−(v) = k. Let X be a subset of V (T). We denote by T − X the
subtournament induced by the vertices V (T)\X. Furthermore, when X contains

Degreewidth: A New Parameter for Solving Problems on Tournaments 249

only one vertex {v} we simply write T − v instead of T − {v}. We also denote
by T [X] the tournament induced by the vertices of X. Finally, we say that T [X]
dominates T if, for every x ∈ X and every y ∈ V (T) \X, we have (x, y) ∈ A(T).
For more definitions on directed graphs, please refer to [4].

Given a tournament T , we equip the vertices of T with is a strict total order
≺σ. This operation also defines an ordering of the set of vertices denoted by
σ := 〈v1, . . . , vn〉 such that vi ≺σ vj if and only if i < j. Given two distinct
vertices u and v, if u ≺σ v we say that u is before v in σ; otherwise, u is after v
in σ. Additionally, an arc (u, v) is said to be forward (resp. backward) if u ≺σ v
(resp. v ≺σ u). A topological ordering is an ordering without any backward
arcs. A tournament that admits a topological ordering does not contain a cycle.
Hence, it is said to be acyclic.

A pattern p1 := 〈v1, . . . , vk〉 is a sequence of vertices that are consecutive
in an ordering. Furthermore, considering a second pattern p2 := 〈u1, . . . , uk′〉
where {v1, . . . , vk} and {u1, . . . , uk′} are disjoint, the pattern 〈p1, p2〉 is defined
by 〈v1, . . . , vk, u1, . . . , uk′〉.
Degreewidth. Given a tournament T , an ordering σ of its vertices V (T) and a
vertex v ∈ V (T), we denote dσ(v) to be the number of backward arcs incident
to v in σ, that is dσ(v) := |{u | u ≺σ v, u ∈ N+(v)} ∪ {u | v ≺σ u, u ∈ N−(v)}|.
Then, we define the degreewidth of a tournament with respect to the ordering
σ, denoted by Δσ(T) := max{dσ(v) | v ∈ V (T)}. Note that Δσ(T) is also the
maximum degree of the underlying graph induced by the backward arcs of σ.
Finally, we define the degreewidth Δ(T) of the tournament T as follows.

Definition 1. The degreewidth of a tournament T , denoted Δ(T), is defined as
Δ(T) := minσ∈Σ(T) Δσ(T), where Σ(T) is the set of possible orderings for V (T).

As mentioned before, this new parameter tries to measure how far a tour-
nament is from being acyclic. Indeed, it is easy to see that a tournament T is
acyclic if and only if Δ(T) = 0. Additionally, when degreewidth of a tournament
is one, it coincides with the notion of sparse tournaments, introduced in [8].

Remark. The definition of degreewidth naturally extends to directed graphs
and we hope it will be an exciting parameter for problems on directed graphs.
However, in this article we study this as a parameter for tournaments which
is well-studied in various domains [2,9,22]. Moreover, degreewidth also gives a
succinct representation of a tournament. Informally, sparse graphs1 are graphs
with a low density of edges. Hence, it may be surprising to talk about sparsity
in tournaments. However, if a tournament on n vertices admits an ordering σ
where the backward arcs form a matching, then it can be encoded by σ and
the set of backward arcs (at most n/2). Thus, the size of the encoding for such
tournament is O(n), instead of O(n2). For a tournament with degreewidth k,
the same reasoning implies that it can be encoded in O(kn) space.

1 Not to be confused with sparse tournaments that has an arc between every pair of
vertices, hence, is not a sparse graph.

250 T. Davot et al.

2.2 Links to Other Parameters

Feedback Arc/Vertex Set. A feedback arc set (fas) is a collection of arcs that,
when removed from the digraph (or, equivalently, reversed) makes it acyclic. The
size of a minimum fas is considered for measuring how far the digraph is from
being acyclic. In this context, degreewidth comes as a promising alternative.
Finding a small subset of arcs hitting all substructures (in this case, directed
cycles) of a digraph is one of the fundamental problems in graph theory. Note
that we can easily bound the degreewidth of a tournament by its minimum fas f .

Observation 1. For any tournament T , we have Δ(T) ≤ |f |.
Note however that the opposite is not true; it is possible to construct tour-

naments with small degreewidth but large fas, see Fig. 1(a).

v1 v2 v3 v4 v5 v6 v7 v8 v9

(a) Example of a tournament with de-
greewidth one but fas (resp. fvs) |V (T)|

3 .

v1 v4 v5 v7 v2 v3 v6

(b) Example of a tournament T with
fvs one (v7) but degreewidth |V (T)|−3

2 .
The topological ordering of T − v7 is
v1, v2, v3, v4, v5, v6 .

1

v1

2

v2

3

v3

3

v4

4

v5

5

v6

6

v7

(c) Example of a tournament with de-
greewidth one but cutwidth |V (T)|−1

2 .
Since the vertices are sorted by increasing
in-degrees (values inside the vertices), this
is an optimal ordering for the cutwidth.

Fig. 1. Link between degreewidth and other parameters. All the non-depicted arcs are
forward.

Similarly, a feedback vertex set (fvs) consists of a collection of vertices that,
when removed from the digraph makes it acyclic. However, – unlike the feedback
arc set – the link between feedback vertex set and degreewidth seems less clear;
we can easily construct tournaments with low degreewidth and large fvs (see
Fig. 1(a)) as well as large degreewidth and small fvs (see Fig. 1(b)).

Cutwidth. Let us first recall the definition of the cutwidth of a digraph. Given
an ordering σ := 〈v1, . . . , vn〉 of the vertices of a digraph D, we say that a
prefix of σ is a sequence of consecutive vertices 〈v1, . . . , vk〉 for some k ∈ [n]. We
associate for each prefix of σ a cut defined as the set of backward arcs with head
in the prefix and tail outside of it. The width of the ordering σ is defined as the
size of a maximum cut among all the possible prefixes of σ. The cutwidth of D,
ctw(D), is the minimum width among all orderings of the vertex set of D.

Intuitively, the difference between the cutwidth and the degreewidth is that
the former focuses on the backward arcs going “above” the intervals between
the vertices while the latter focuses on the backward arcs coming from and to
the vertices themselves. Observe that for any tournament T , the degreewidth is
bounded by a function of the cutwidth. Formally, we have the following

Degreewidth: A New Parameter for Solving Problems on Tournaments 251

Observation 2. For any tournament T , we have Δ(T) ≤ 2ctw(T).

Note however that the opposite is not true; it is possible to construct tour-
naments with small degreewidth but large cutwidth, see Fig. 1(c). We remark
that the graph problems that we study parameterized by degreewidth, namely,
minimising fas, fvs, and dominating set are FPT w.r.t cutwidth [1,11].

3 Degreewidth

In this section, we present some structural and algorithmical results for the com-
putation of degreewidth. We first introduce the following lemma that provides
a lower bound on the degreewith.

Lemma 1. Let T be a tournament. Then Δ(T) ≥ minv∈V (T) d−(v) and Δ(T) ≥
minv∈V (T) d+(v).

3.1 Degreewidth of Regular Tournaments

Theorem 1. Let T be a regular tournament of order 2k + 1. Then Δ(T) = k.
Furthermore, for any ordering σ, by denoting u and v respectively the first and
last vertices in σ, we have dσ(u) = dσ(v) = k.

Note that regular tournaments contain many cycles; therefore it is not sur-
prising that their degreewidth is large. This corroborates the idea that this
parameter measures how far a tournament is from being acyclic.

3.2 Computational Complexity

We now show that computing the degreewidth of a tournament is NP-hard by
defining a reduction from Balanced 3-SAT(4), proven NP-complete [6] where
each clause contains exactly three unique literals and each variable occurs two
times positively and two times negatively.

Let ϕ be a Balanced 3-SAT(4) formula with m clauses c1, . . . , cm and n
variables x1, . . . , xn. In the construction, we introduce several regular tourna-
ments of size W or W+1

2 + n + m, where W is value greater than n3 + m3. Note
that n + m is necessarily odd since 4n = 3m. By taking a value W = 3 mod 4,
we ensure that every regular tournament of size W or W+1

2 + n + m has an odd
number of vertices.

Construction 1. Let ϕ be a Balanced 3-SAT(4) formula with m clauses
c1, . . . , cm clauses and n variables x1, . . . , xn such that n is odd and m is even. Let
W = 3 mod 4 be an integer greater than n3 + m3. We construct a tournament
T as follows.

– Create two regular tournaments A and D of order W+1
2 + m + n such that D

dominates A.
– Create two regular tournaments B and C of order W such that A dominates

B ∪ C, B dominates C and B ∪ C dominates D.

252 T. Davot et al.

A true zone B U Y C false zone D H

Fig. 2. Example of a nice ordering. A rectangle represents an acyclic tournament, while
a rectangle with rounded corners represents a regular tournament. A plain arc between
two patterns P and P ′ represents the fact that there is a backward arc between every
pair of vertices v ∈ P and v′ ∈ P ′. A dashed arc means some backward arcs may exist
between the patterns.

– Create an acyclic tournament X of order 2n with topological ordering
〈v1, v′

1, . . . , vn, v′
n〉 such that A ∪ C dominates X and X dominates B ∪ D.

– Create an acyclic tournament Y of order 2m with topological ordering
〈q1, q′

1, . . . , qm, q′
m〉 such that B ∪ D dominates Y and Y dominates A ∪ C.

– For each clause c� and each variable xi of ϕ,
• if xi occurs positively in c�, then {vi, v

′
i} dominates {q�, q

′
�},

• if xi occurs negatively in c�, then {q�, q
′
�} dominates {vi, v

′
i},

• if xi does not occur in c�, then introduce the paths (vi, q�, v
′
i) and

(v′
i, q

′
�, vi).

– Introduce an acyclic tournament U = {up
i , ū

p
i | i ≤ n, p ≤ 2} of order 4n such

that U dominates A ∪ Y ∪ C and B ∪ D dominates U . For each variable xi,
add the following paths,

• for all variable xk 	= xi and all p ≤ 2, introduce the paths (vk, up
i , v

′
k) and

(v′
k, ūp

i , vk),
• introduce the paths (vi, u

1
i , v

′
i), (v′

i, u
2
i , vi), (vi, ū

1
i , v

′
i) and (v′

i, ū
2
i , vi).

– Finally, introduce an acyclic tournament H = {h1, h2} with topological order-
ing 〈h1, h2〉 and such that A ∪ B ∪ C ∪ X ∪ Y ∪ D dominates H and H
dominates U .

We call a vertex of X a variable vertex and a vertex of Y a clause vertex.
Furthermore, we say that the vertices (vi, v

′
i) (resp. (q�, q

′
�)) is a pair of variable

vertices (resp. pair of clause vertices).

Definition 2. Let T be a tournament resulting from Construction 1. An order-
ing σ of T is nice if:

– Δσ(A) = |A|−1
2 , Δσ(B) = |B|−1

2 , Δσ(C) = |C|−1
2 , and Δσ(D) = |D|−1

2 ,
– σ respects the topological ordering of U ∪ Y ,
– A ≺σ B ≺σ U ≺σ Y ≺σ C ≺σ D ≺σ H, and
– for any variable xi, either A ≺σ vi ≺σ v′

i ≺σ B or C ≺σ vi ≺σ v′
i ≺σ D.

An example of a nice ordering is depicted in Fig. 2. Let σ be a nice ordering,
we call the pattern corresponding to the vertices between A and B, the true
zone and the pattern after the vertices of C the false zone. Let (q�, q

′
�) be a

pair of clause vertices and let (vi, v
′
i) be a pair of variable vertices such that

Degreewidth: A New Parameter for Solving Problems on Tournaments 253

Fig. 3. Example of a tournament where the approximate algorithm can return an
ordering σapp (on the left) with degreewidth three while the optimal solution is one in
σopt (on the right). Coloured vertices are the ones incident to the maximum number
of backward arcs. all non-depicted arcs are forward arcs.

xi occurs positively (resp. negatively) in c� in ϕ. We say that the pair (vi, v
′
i)

satisfies (q�, q
′
�) if vi and v′

i both belong to the true zone (resp. false zone). Note
that there is no backward arc between {q�, q

′
�} and {vi, v

′
i} if and only if (vi, v

′
i)

satisfies (q�, q
′
�). Notice also that for any pair of variable vertices (vi, v

′
i) such

that xi does not appear in c� and (vi, v
′
i) is either in the true zone or in the false

zone, then there is exactly two backward arcs between {q�, q
′
�} and {vj , v

′
j}.

Let ϕ be an instance of Balanced 3-SAT(4) and T its tournament resulting
from Construction 1. We show that ϕ is satisfiable if and only if there exists an
ordering σ of T such that Δσ(T) < W +2m+3n+4, which yields the following.

Theorem 2. Given a tournament T and an integer k, it is NP-complete to
compute an ordering σ of T such that Δσ(T) ≤ k.

3.3 An Approximation Algorithm to Compute Degreewidth

In this subsection, we prove that sorting the vertices by increasing in-degree is a
tight 3-approximation algorithm to compute the degreewidth of a tournament.
Intuitively, the reasons why it returns a solution not too far from the optimal are
twofold. Firstly, observe that the only optimal ordering for acyclic tournaments
(i.e. with degreewidth 0) is an ordering with increasing in-degrees. Secondly, this
strategy also gives an optimal solution for cutwidth in tournaments.

Theorem 3. Ordering the vertices by increasing order of in-degree is a tight
3-approximation algorithm to compute the degreewidth of a tournament (see
Fig. 3).

4 Results on Sparse Tournaments

In this section, we focus on tournaments with degreewidth one, called sparse
tournaments. The main result of this section is that unlike in the general case,
it is possible to compute in polynomial time a sparse ordering of a tournament
(if it exists). We begin with an observation about sparse orderings (if it exists).

Lemma 2. Let T be a sparse tournament of order n > 4 and σ be an ordering of
its vertices. If σ is a sparse ordering, then for any vertex v such that d−(v) = i,
the only possible positions of v in σ are {i, i + 1, i + 2} ∩ [n].

254 T. Davot et al.

Note that Lemma 2 gives immediately an exponential running-time algorithm
to decide if a tournament is sparse. However, we give in Subsect. 4.2 a polynomial
running-time algorithm for this problem. Before that we study a useful subclass
of sparse tournaments, we call the U -tournaments.

4.1 U-Tournaments

In this subsection, we study one specific type of tournaments called U -
tournaments. Informally, they correspond to the acyclic tournaments where we
reversed all the arcs of its Hamiltonian path.

Definition 3. For any integer n ≥ 1, we define Un as the tournament on n
vertices with V (Un) = {v1, v2, . . . , vn} and A(Un) = {(vi+1, vi) | ∀i ∈ [n − 1]} ∪
{(vi, vj) | 1 ≤ i < n, i + 1 < j ≤ n}. We say that a tournament of order n is a
U -tournament if it is isomorphic to Un.

Figures 4(a) and 4(d) depict respectively the tournaments U7 and U8. This
family of tournaments seems somehow strongly related to sparse tournaments
and the following results will be useful later for both the polynomial algorithm to
decide if a tournament is sparse and the polynomial algorithm for minimum feed-
back arc set in sparse tournaments. To do so, we prove that each U -tournament
of order n > 4 has exactly two sparse orderings of its vertices that we formally
define.

Definition 4. Let P (k) = 〈vk+1, vk〉 be a pattern of two vertices of Un for some
integer k ∈ [n − 1]. For any integer n ≥ 2, we define the following special
orderings of Un:

– if n is even:
• Π(Un) is the ordering given by 〈v1, P (2), P (4), . . . , P (n − 2), vn〉.
• Π1,n(Un) is the ordering given by 〈P (1), P (3), . . . , P (n − 2), P (n)〉.

– if n is odd:
• Π1(Un) is the ordering given by 〈P (1), P (3), . . . , P (n − 2), vn〉.
• Πn(Un) is the ordering given by 〈v1, P (2), P (4), . . . , P (n − 3), P (n − 1)〉.

Figures 4(b) and 4(c) (and Figs. 4(e) and 4(f)) depict the orderings Π1(U7)
and Π7(U7) (resp. Π(U8) and Π1,8(U8)) of the tournament U7 (resp. U8). One
can notice that these orderings are sparse and the subscript of Π indicates the
vertex (or vertices) without a backward arc incident to it in this ordering. In
the following, we prove that when n > 4 there are no other sparse orderings of
Un. However, note that there are three possible sparse orderings of U3 (namely,
Π1(U3) and Π3(U3) defined previously, as well as Π2(U3) := 〈v3, v2, v1〉) and
three sparse orderings of U4 (namely, Π(U4), Π1,4(U4) as defined before, and
Π ′(U4) := 〈v2, v4, v1, v3〉).
Theorem 4. For each integer n > 4 there are exactly two sparse orderings of
Un. Specifically, if n is even, these two sparse orderings are Π(Un) and Π1,n(Un);
otherwise, the two sparse orderings are Π1(Un) and Πn(Un).

Degreewidth: A New Parameter for Solving Problems on Tournaments 255

Fig. 4. The tournaments U7 and U8 and their sparse orderings. The non-depicted arcs
are forward arcs.

4.2 A Polynomial Time Algorithm for Sparse Tournaments

We give here a polynomial algorithm to compute a sparse ordering of a tour-
nament (if any). First of all, let us recall a classical algorithm to compute a
topological ordering of a tournament (if any): we look for the vertex v with the
smallest in-degree; if v has in-degree one or more, we have a certificate that the
tournament is not acyclic. Otherwise, we add v at the beginning of the ordering,
and we repeat the reasoning on T − v, until V (T) is empty.

The idea of the original “proof” in [24, Lemma 35.1, p.97] was similar: con-
sidering the set of vertices X of smallest in-degrees, put X at the beginning of
the ordering, and remove X from the tournament. However, potential backward
arcs from the remaining vertices of V \ X to X may have been forgotten. For
example, consider a tournament over 9 vertices consisting of a U5 (with ver-
tex set {v1, . . . , v5}) that dominates a U4 (with vertex set {u1, ..., u4}) except
for the backward arc (u4, v5). It is sparse (〈Π5(U5),Π1,4(U4)〉) but the algo-
rithm returns the (non-sparse) ordering 〈Π1(U5),Π1,4(U4)〉 (v5 is incident to
two backward arcs). The problem is that this algorithm is too “local”; it will
always prefer the sparse ordering Π1(U2k+1) over Π2k+1(U2k+1), but it may be
necessary to take the latter. Therefore, to correct this, we needed a much more
involved algorithm, requiring the study of the U-tournaments and the notion of
quasi-domination (see Definition 6). Indeed, unlike the algorithm for the topo-
logical ordering, we may have to look more carefully how the vertices with low
in-degrees are connected to the rest of the digraph. These correspond to the case
where there exists a U -sub-tournament of T which either dominates or “quasi-
dominates” (see Definition 6) the tournament T . Because of the latter possibility
(where a backward arc (a, b) is forced to appear), we need to look for specific
sparse orderings, called M -sparse orderings (where a or b should not be end-

256 T. Davot et al.

Fig. 5. An example where X (b, a)-quasi-dominates T . Non-depicted arcs are forward.
The vertex a′ is an out-neighbour of a in X, and b′, b′′ are in-neighbours of b in T −X.

vertices of other backward arcs). As all the sparse orderings for U -tournaments
have been described, we can derive a recursive algorithm.

Definition 5. Let T be a tournament, X be a subset of vertices of T , and M
be a subset of X. We say T [X] is M -sparse if there exists an ordering σ of X
such that Δσ(T [X])(X) ≤ 1 and dσ(v) = 0 for all v ∈ M . In that case, σ is said
to be an M -sparse ordering of T [X].

For example, U4[{v1, v2, v3}] is {v2}-sparse, because there exists a sparse
ordering σ := 〈v3, v2, v1〉 of U4[{v1, v2, v3}] such that dσ(v2) = 0. We remark
that T is sparse if and only if T is ∅-sparse. In fact, the algorithm described in
this section computes a ∅-sparse ordering of the given tournament (if any).

Definition 6 (see Fig. 5). Given a tournament T and two of its vertices a
and b, we say that a subset of vertices X quasi-dominates T if:

– there exists an arc (b, a) ∈ A(T) such that a ∈ X and b 	∈ X,
– (u, v) ∈ A(T) for every (u, v) ∈ (X × (V (T) \ X)) \ {(a, b)},
– d−(b) ≥ |X| + 1, and
– the vertex a has an out-neighbour in X.

In this case, we also say X (b, a)-quasi-dominates T .

We can create the algorithm isUkMsparse which given (v1, . . . , vk) a U -
tournament and M a subset of these vertices, returns a boolean which is True
if and only if this tournament is M -sparse. We can also create the algorithm
getUsubtournament which given T a tournament, and X = (u1, . . . , uk) a list
of vertices such that d−(u1) = 1 and d−(ui) = i − 1 and (ui, ui−1) ∈ A(T) for
all i ∈ {2, . . . , k}, returns a U -subtournament dominating or quasi-dominating
T . With these two previous algorithms, we can derive Algorithm 3 isMsparse.

Algorithm 1: getUsubtournament
Data: T a tournament, and X = (u1, . . . , uk) a list of vertices such that d−(u1) = 1 and

d−(ui) = i − 1 and (ui, ui−1) ∈ A(T) for all i ∈ {2, . . . , k}.
Result: A U-subtournament dominating or quasi-dominating T .

1 w ←− a vertex of N−(uk) \ X;

2 if d−(w) = d−(uk) then return X ∪ {w} /* this set dominates T */ ;

3 else if d−(w) = d−(uk) + 1 then return getUsubtournament(T, X ∪ {w}) ;
4 else return X /* this set (w, uk)-quasi-dominates T */ ;

Algorithm 2: isUkMsparse
Data: (v1, . . . , vk) a Uk tournament, M a subset of the vertices of Uk

Result: True if Uk is M-sparse and False otherwise
1 if k ≤ 2 then return True ;
2 else if k = 3 then return |M | ≤ 1 ;
3 else if k is even then return |M \ {v1, vk}| = 0 ;
4 else if k is odd then return (v1 	∈ M or vk 	∈ M) and |M \ {v1, vk}| = 0 ;

Degreewidth: A New Parameter for Solving Problems on Tournaments 257

Algorithm 3: isMsparse
Data: T a tournament, M a subset of the vertices of T
Result: True if T is M-sparse and False otherwise

1 if |V (T)| ≤ 1 then return True ;

2 else if minv∈V (T) d−(v) ≥ 2 then return False ;

3 else if minv∈V (T) d−(v) = 0 then
4 v ←− the vertex of in-degree 0;
5 return isMsparse(T − v, M \ {v});
6 else if |{v ∈ V (T) : d−(v) = 1}| = 1 then
7 v, w ←− two vertices such that d−(v) = 1 and (w, v) ∈ A(T);
8 return v 	∈ M and isMsparse(T − v, (M ∪ {w}) \ {v});
9 else

10 v, w ←− two vertices of in-degree 1 such that (w, v) ∈ A(T);
11 X ←− getUsubtournament(T ,(v, w));
12 if X dominates T then
13 return (isUkMsparse(X,M ∩ X) and isMsparse(T − X, M \ X));
14 else
15 a, b ←− the vertices such that X (b, a)-quasi-dominates T ;
16 return (isUkMsparse(X,(M ∪ {a}) ∩ X) and isMsparse(T − X, (M ∪ {b}) \ X));

Theorem 5. Algorithm 3 is correct. Hence, it is possible to decide if a tourna-
ment T with n vertices is sparse in O(n3) by calling isMsparse(T ,∅).
Observe that we can easily modify Algorithm 3 to obtain a sparse ordering (if
exists). Next corollary follows from the above algorithm.

Corollary 1. The vertex set of a sparse tournament on n vertices can be decom-
posed into a sequence Un1 , Un2 , . . . , Un�

for some � ≤ n such that each T [Uni
]

dominates or quasi-dominates T [∪
i<j≤�

Unj
] and

∑
i∈[�] ni = n.

5 Degreewidth as a Parameter

5.1 Dominating Set Parameterized by Degreewidth

A set of vertices X of a directed graph G is a dominating set (DS) if for
each vertex v ∈ V (G) \ X, we have N+(v) ∩ X 	= ∅. Observe that in graphs
where degreewidth is zero, DS is of size one. Similarly, for tournaments with
degreewidth equals to one, the DS is of size at most two. That is, we have trivial
solutions for DS for acyclic and sparse tournaments. This motivates us to look
for FPT algorithm parameterized by degreewidth. In the following, we develop
an FPT algorithm for Dominating Set using universal families. Before that we
observe that size of a dominating is always bounded by the size of degreewidth.

Observation 3. The size of a minimum dominating set of a tournament T is
at most Δ(T) + 1.

Theorem 6. Dominating Set is FPT in tournaments with respect to
degreewidth.

258 T. Davot et al.

5.2 FAST and FVST in Sparse Tournaments

A forbidden pattern corresponds to the patterns Π(U2k) for any k ≥ 1 as well as
Π ′(U4) := 〈v2, v4, v1, v3〉. An example of the forbidden pattern Π(U8) is depicted
in Fig. 4(e). We say a sparse ordering has forbidden pattern if a contiguous sub-
sequence of the ordering is a forbidden pattern. Intuitively, the problem of such
patterns is that the set of their backward arcs is not a minimum fas. Hopefully,
we can use Theorem 4 in such a way that if the pattern Π(U2k) appears, we can
restructure it into Π1,2k(U2k).

If a sparse ordering does not contain a forbidden pattern then its set of
backward arcs is a fas. Hence, we obtain the following result.

Theorem 7. FAST is solvable in time O(n3) in sparse tournaments on n ver-
tices.

For FVST, we show that the problem is difficult to solve on sparse tournaments.

Theorem 8. FVST is NP-complete on sparse tournaments.

6 Conclusion

In this paper, we studied a new parameter for tournaments, called degreewidth.
We showed that it is NP-hard to decide if degreewidth is at most k, for some natu-
ral number k and we proceeded to design a 3-approximation for the degreewidth.
One may ask if there is a PTAS for this problem. Then, we investigated sparse
tournaments, i.e., tournaments with degreewidth one and developed a polyno-
mial time algorithm to compute a sparse ordering. Is it possible to generalise
this result by providing an FPT algorithm to compute the degreewidth? We
also showed that FAST can be solved in polynomial time in sparse tournaments,
matching with the known result that Arc-Disjoint Triangles Packing and
Arc-Disjoint Cycle Packing are both polynomial in sparse tournaments [7].
Therefore, the question arise: can this parameter be used to provide an FPT
algorithm for FAST in the general case?

Furthermore, we showed an FPT algorithm for DS w.r.t degreewidth. Are
there other domination problems e.g., perfect code, partial dominating set, or
connected dominating set that is FPT w.r.t degreewidth? Lastly, we also can
wonder if this parameter is useful for general digraphs.

Acknowledgements. We would like to thank Frédéric Havet for pointing us a
counter-example to the polynomial running-time algorithm in [24, Lemma 35.1, p.
97].

References

1. Alber, J., Bodlaender, H.L., Fernau, H., Kloks, T., Niedermeier, R.: Fixed param-
eter algorithms for dominating set and related problems on planar graphs. Algo-
rithmica 33(4), 461–493 (2002)

Degreewidth: A New Parameter for Solving Problems on Tournaments 259

2. Allesina, S., Levine, J.M.: A competitive network theory of species diversity. Proc.
Natl. Acad. Sci. 108(14), 5638–5642 (2011)

3. Alon, N.: Ranking tournaments. SIAM J. Discret. Math. 20(1), 137–142 (2006).
https://doi.org/10.1137/050623905

4. Bang-Jensen, J., Gutin, G.Z.: Digraphs - Theory, Algorithms and Applications.
Springer Monographs in Mathematics, 2nd edn. Springer, Heidelberg (2009).
https://doi.org/10.1007/978-1-84800-998-1

5. Bar-Yehuda, R., Geiger, D., Naor, J., Roth, R.M.: Approximation algorithms for
the feedback vertex set problem with applications to constraint satisfaction and
Bayesian inference. SIAM J. Comput. 27(4), 942–959 (1998). https://doi.org/10.
1137/S0097539796305109

6. Berman, P., Karpinski, M., Scott, A.D.: Approximation hardness of short sym-
metric instances of MAX-3SAT. Electron. Colloquium Comput. Complex. (049)
(2003). http://eccc.hpi-web.de/eccc-reports/2003/TR03-049/index.html

7. Bessy, S., et al.: Packing arc-disjoint cycles in tournaments. In: Rossmanith, P.,
Heggernes, P., Katoen, J. (eds.) 44th International Symposium on Mathematical
Foundations of Computer Science, MFCS 2019, 26–30 August 2019, Aachen, Ger-
many. LIPIcs, vol. 138, pp. 27:1–27:14. Schloss Dagstuhl - Leibniz-Zentrum für
Informatik (2019). https://doi.org/10.4230/LIPIcs.MFCS.2019.27

8. Bessy, S., Bougeret, M., Thiebaut, J.: Triangle packing in (sparse) tournaments:
approximation and kernelization. In: Pruhs, K., Sohler, C. (eds.) 25th Annual
European Symposium on Algorithms, ESA 2017, 4–6 September 2017, Vienna,
Austria. LIPIcs, vol. 87, pp. 14:1–14:13. Schloss Dagstuhl - Leibniz-Zentrum für
Informatik (2017). https://doi.org/10.4230/LIPIcs.ESA.2017.14

9. Brandt, F., Fischer, F.: PageRank as a weak tournament solution. In: Deng, X.,
Graham, F.C. (eds.) WINE 2007. LNCS, vol. 4858, pp. 300–305. Springer, Heidel-
berg (2007). https://doi.org/10.1007/978-3-540-77105-0 30

10. Charbit, P., Thomassé, S., Yeo, A.: The minimum feedback arc set problem is NP-
hard for tournaments. Comb. Probab. Comput. 16(1), 1–4 (2007). https://doi.org/
10.1017/S0963548306007887

11. Chen, J., Liu, Y., Lu, S., O’sullivan, B., Razgon, I.: A fixed-parameter algorithm for
the directed feedback vertex set problem. In: Proceedings of the Fortieth Annual
ACM Symposium on Theory of Computing, pp. 177–186 (2008)

12. Davot, T., Isenmann, L., Roy, S., Thiebaut, J.: DegreeWidth: a new parameter for
solving problems on tournaments. CoRR abs/2212.06007 (2022). https://doi.org/
10.48550/arXiv.2212.06007

13. Dechter, R.: Enhancement schemes for constraint processing: backjumping, learn-
ing, and cutset decomposition. Artif. Intell. 41(3), 273–312 (1990). https://doi.
org/10.1016/0004-3702(90)90046-3

14. Downey, R.G., Fellows, M.R.: Parameterized computational feasibility. In: Clote,
P., Remmel, J.B. (eds.) Feasible Mathematics II. Progress in Computer Science
and Applied Logic, vol. 13, pp. 219–244. Springer, Boston (1995). https://doi.org/
10.1007/978-1-4612-2566-9 7

15. Feige, U.: Faster fast (feedback arc set in tournaments). CoRR abs/0911.5094
(2009). http://arxiv.org/abs/0911.5094

16. Fradkin, A.O.: Forbidden structures and algorithms in graphs and digraphs. Ph.D.
thesis, USA (2011). aAI3463323

17. Gavril, F.: Some NP-complete problems on graphs. In: Proceedings of the 11th
Conference on Information Sciences and Systems. Johns Hopkins University, Bal-
timore (1977)

https://doi.org/10.1137/050623905
https://doi.org/10.1007/978-1-84800-998-1
https://doi.org/10.1137/S0097539796305109
https://doi.org/10.1137/S0097539796305109
http://eccc.hpi-web.de/eccc-reports/2003/TR03-049/index.html
https://doi.org/10.4230/LIPIcs.MFCS.2019.27
https://doi.org/10.4230/LIPIcs.ESA.2017.14
https://doi.org/10.1007/978-3-540-77105-0_30
https://doi.org/10.1017/S0963548306007887
https://doi.org/10.1017/S0963548306007887
https://doi.org/10.48550/arXiv.2212.06007
https://doi.org/10.48550/arXiv.2212.06007
https://doi.org/10.1016/0004-3702(90)90046-3
https://doi.org/10.1016/0004-3702(90)90046-3
https://doi.org/10.1007/978-1-4612-2566-9_7
https://doi.org/10.1007/978-1-4612-2566-9_7
http://arxiv.org/abs/0911.5094

260 T. Davot et al.

18. Gurski, F., Rehs, C.: Comparing linear width parameters for directed graphs. The-
ory Comput. Syst. 63(6), 1358–1387 (2019). https://doi.org/10.1007/s00224-019-
09919-x

19. Johnson, D.B.: Finding all the elementary circuits of a directed graph. SIAM J.
Comput. 4(1), 77–84 (1975). https://doi.org/10.1137/0204007

20. Karpinski, M., Schudy, W.: Faster algorithms for feedback arc set tournament,
Kemeny rank aggregation and betweenness tournament. In: Cheong, O., Chwa, K.-
Y., Park, K. (eds.) ISAAC 2010. LNCS, vol. 6506, pp. 3–14. Springer, Heidelberg
(2010). https://doi.org/10.1007/978-3-642-17517-6 3

21. Kenyon-Mathieu, C., Schudy, W.: How to rank with few errors. In: Johnson, D.S.,
Feige, U. (eds.) Proceedings of the 39th Annual ACM Symposium on Theory
of Computing, San Diego, California, USA, 11–13 June 2007, pp. 95–103. ACM
(2007). https://doi.org/10.1145/1250790.1250806

22. Laslier, J.F.: Tournament Solutions and Majority Voting, vol. 7. Springer, Heidel-
berg (1997)

23. Leighton, T., Rao, S.: Multicommodity max-flow min-cut theorems and their use
in designing approximation algorithms. J. ACM (JACM) 46(6), 787–832 (1999)

24. Thiebaut, J.: Algorithmic and structural results on directed cycles in dense
digraphs. (Résultats algorithmiques et structurels sur les cycles orientés dans les
digraphes denses). Ph.D. thesis, University of Montpellier, France (2019). https://
tel.archives-ouvertes.fr/tel-02491420

25. van Zuylen, A., Williamson, D.P.: Deterministic pivoting algorithms for con-
strained ranking and clustering problems. Math. Oper. Res. 34(3), 594–620 (2009).
https://doi.org/10.1287/moor.1090.0385

https://doi.org/10.1007/s00224-019-09919-x
https://doi.org/10.1007/s00224-019-09919-x
https://doi.org/10.1137/0204007
https://doi.org/10.1007/978-3-642-17517-6_3
https://doi.org/10.1145/1250790.1250806
https://tel.archives-ouvertes.fr/tel-02491420
https://tel.archives-ouvertes.fr/tel-02491420
https://doi.org/10.1287/moor.1090.0385

Approximating Bin Packing with Conflict
Graphs via Maximization Techniques

Ilan Doron-Arad and Hadas Shachnai(B)

Computer Science Department, Technion, Haifa 3200003, Israel
{idoron-arad,hadas}@cs.technion.ac.il

Abstract. We give a comprehensive study of bin packing with conflicts
(BPC). The input is a set I of items, sizes s : I → [0, 1], and a conflict
graph G = (I, E). The goal is to find a partition of I into a minimum
number of independent sets, each of total size at most 1. Being a gener-
alization of the notoriously hard graph coloring problem, BPC has been
studied mostly on polynomially colorable conflict graphs. An intriguing
open question is whether BPC on such graphs admits the same best
known approximation guarantees as classic bin packing.

We answer this question negatively, by showing that (in contrast
to bin packing) there is no asymptotic polynomial-time approximation
scheme (APTAS) for BPC already on seemingly easy graph classes, such
as bipartite and split graphs. We complement this result with improved
approximation guarantees for BPC on several prominent graph classes.
Most notably, we derive an asymptotic 1.391-approximation for bipar-
tite graphs, a 2.445-approximation for perfect graphs, and a

(
1 + 2

e

)
-

approximation for split graphs. To this end, we introduce a generic frame-
work relying on a novel interpretation of BPC allowing us to solve the
problem via maximization techniques. Our framework may find use in
tackling BPC on other graph classes arising in applications.

1 Introduction

We study the bin packing with conflicts (BPC) problem. We are given a set I of n
items, sizes s : I → [0, 1], and a conflict graph G = (I, E) on the items. A packing
is a partition (A1, . . . , At) of I into independent sets called bins, such that for
all b ∈ {1, . . . , t} it holds that s (Ab) =

∑
�∈Ab

s(�) ≤ 1. The goal is to find a
packing in a minimum number of bins. Let I = (I, s, E) denote a BPC instance.
We note that BPC is a generalization of bin packing (BP) (where E = ∅) as
well as the graph coloring problem (where s(�) = 0 ∀� ∈ I).1 BPC captures
many real-world scenarios such as resource clustering in parallel computing [2],
examination scheduling [21], database storage [16], and product delivery [3]. As
the special case of graph coloring cannot be approximated within a ratio better
than n1−ε [28], most of the research work on BPC has focused on families of

1 See the formal definitions of graph coloring and independent sets in Sect. 2.

A full version of the paper is available in [6].

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
D. Paulusma and B. Ries (Eds.): WG 2023, LNCS 14093, pp. 261–275, 2023.
https://doi.org/10.1007/978-3-031-43380-1_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-43380-1_19&domain=pdf
https://doi.org/10.1007/978-3-031-43380-1_19

262 I. Doron-Arad and H. Shachnai

conflict graphs which can be optimally colored in polynomial time [4,5,8,15–
17,22,23].

Let OPT = OPT(I) be the value of an optimal solution for an instance I
of a minimization problem P. As in the bin packing problem, we distinguish
between absolute and asymptotic approximation. For α ≥ 1, we say that A is
an absolute α-approximation algorithm for P if for any instance I of P we
have A(I)/OPT(I) ≤ α, where A(I) is the value of the solution returned by
A. Algorithm A is an asymptotic α-approximation algorithm for P if for any
instance I it holds that A(I) ≤ αOPT(I) + o(OPT(I)). An APTAS is a family
of algorithms {Aε} such that, for every ε > 0, Aε is a polynomial time asymp-
totic (1+ε)-approximation algorithm for P. An asymptotic fully polynomial-time
approximation scheme (AFPTAS) is an APTAS {Aε} such that Aε(I) runs in
time poly(|I|, 1

ε), where |I| is the encoding length of the instance I.
It is well known that, unless P=NP, BP cannot be approximated within ratio

better than 3
2 [10]. This ratio is achieved by First-Fit Decreasing (FFD) [26].2

Also, BP admits an AFPTAS [19], and an additive approximation algorithm
which packs any instance I in at most OPT(I) + O(log(OPT(I))) bins [14].
Despite the wide interest in BPC on polynomially colorable graphs, the intrigu-
ing question whether BPC on such graphs admits the same best known approx-
imation guarantees as classic bin packing remained open.

Table 1. Known results for Bin Packing with Conflict Graphs

Absolute Asymptotic

Lower Bound Upper Bound Lower Bound Upper Bound

General graphs n1−ε [28] O
(

n(log log n)2

(log n)3

)
[13] n1−ε [28] O

(
n(log log n)2

(log n)3

)
[13]

Perfect graphs · 2.445 (2.5 [8]) c > 1 2.445 (2.5 [8])

Chordal graphs · 7
3

[8] c > 1 7
3

[8]

Cluster graphs · 2 [1] 1 [5]

Cluster complement · 3/2 3/2 3/2

Split graphs · 1 + 2/e (2 [15]) c > 1 1 + 2/e (2 [15])

Bipartite graphs · 5
3

[15] c > 1 1.391 (5
3

[15])

Partial k-trees · 2 + ε [17] 1 [16]

Trees · 5
3

[15] ·
No conflicts 3

2
[10] 3

2
[26] 1 [25]

We answer this question negatively, by showing that (in contrast to bin pack-
ing) there is no APTAS for BPC even on seemingly easy graph classes, such as
bipartite and split graphs. We complement this result with improved approxima-
tion guarantees for BPC on several prominent graph classes. For BPC on bipar-
tite graphs, we obtain an asymptotic 1.391-approximation. We further derive
improved bounds of 2.445 for perfect graphs,

(
1 + 2

e

)
for split graphs, and 5

3 for

2 We give a detailed description of Algorithm FFD in [6].

Approximating Bin Packing with Conflict Graphs 263

bipartite graphs.3 Finally, we obtain a tight 3
2 -asymptotic lower bound and an

absolute 3
2 -upper bound for graphs that are the complements of cluster graphs

(we call these graphs below complete multi-partite).
Table 1 summarizes the known results for BPC on various classes of graphs.

New bounds given in this paper are shown in boldface. Entries that are marked
with · follow by inference, either by using containment of graph classes (trees
are partial k-trees), or since the hardness of BPC on all considered graph classes
follows from the hardness of classic BP. Empty entries for lower bounds follow
from tight upper bounds.

1.1 Related Work

The BPC problem was introduced by Jansen and Öhring [17]. They presented
a general algorithm that initially finds a coloring of the conflict graph, and
then packs each color class separately using the First-Fit Decreasing algorithm.
This approach yields a 2.7-approximation for BPC on perfect graph. The paper
[17] includes also a 2.5-approximation for subclasses of perfect graphs on which
the corresponding precoloring extension problem can be solved in polynomial
time (e.g., interval and chordal graphs). The authors present also a (2 + ε)-
approximation algorithm for BPC on cographs and partial k-trees.

Epstein and Levin [8] present better algorithms for BPC on perfect graphs
(2.5-approximation), graphs on which the precoloring extension problem can
be solved in polynomial time (73 -approximation), and bipartite graphs (74 -
approximation). Their techniques include matching between large items and a
sophisticated use of new item weights. Recently, Huang et al. [15] provided fresh
insights to previous algorithms, leading to 5

3 -approximation for BPC on bipartite
graphs and a 2-approximation on split graphs.

Jansen [16] presented an AFPTAS for BPC on d-inductive conflict graphs,
where d ≥ 1 is some constant. This graph family includes trees, grid graphs, pla-
nar graphs, and graphs with constant treewidth. For a survey of exact algorithms
for BPC see, e.g., [15].

1.2 Techniques

There are several known approaches for tackling BPC instances. One celebrated
technique introduced by Jansen and Öhring [17] relies on finding initially a mini-
mum coloring of the given conflict graph, and then packing each color class using
a bin packing heuristic, such as First-Fit Decreasing. A notable generalization
of this approach is the sophisticated integration of precoloring extension [8,17],
which completes an initial partial coloring of the conflict graph, with no increase
to the number of color classes. Another elegant technique is a matching-based
algorithm, applied by Epstein and Levin [8] and by Huang et al. [15].

3 Recently, Huang et al. [15] obtained a 5
3
-approximation for bipartite graphs, simul-

taneously and independently of our work. We note that the techniques of [15] are
different than ours, and their algorithm is more efficient in terms of running time.

264 I. Doron-Arad and H. Shachnai

The best known algorithms (prior to this work), e.g., for perfect graphs [8]
and split graphs [15] are based on the above techniques. While the analyses
of these algorithms are tight, the approximation guarantees do not match the
existing lower bounds for BPC on these graph classes; thus, obtaining improved
approximations requires new techniques.

In this paper we present a novel point of view of BPC involving the solution
of a maximization problem as a subroutine. We first find an initial packing of
a subset S ⊆ I of items, which serves as a baseline packing with high potential
for adding items (from I \ S) without increasing the number of bins used. The
remaining items are then assigned to extra bins using a simple heuristic. Thus,
given a BPC instance, our framework consists of the following main steps.

1. Find an initial packing A = (A1, . . . , Am) of high potential for S ⊆ I.
2. Maximize the total size of items in A by adding items in I \ S.
3. Assign the remaining (unpacked) items to extra bins using a greedy approach

respecting the conflict graph constraints.

The above generic framework reduces BPC to cleverly finding an initial pack-
ing of high potential, and then efficiently approximating the corresponding max-
imization problem, while exploiting structural properties of the given conflict
graph. One may view classic approaches for solving BP (e.g., [20]), as an appli-
cation of this technique: find an initial packing of high potential containing the
large items; then add the small items using First-Fit. In this setting, the tricky
part is to find an initial high potential packing, while adding the small items is
trivial. However, in the presence of a conflict graph, solving the induced maxi-
mization problem is much more challenging.

Interestingly, we are able to obtain initial packings of high potential for BPC
on several conflict graph classes. To solve the maximization problem, we first
derive efficient approximation for maximizing the total size of items within a
single bin. Our algorithm is based on finding a maximum weight independent set
of bounded total size in the graph, combined with enumeration over items of large
sizes. Using the single bin algorithm, the maximization problem is solved via
application of the separable assignment problem (SAP) [9] framework, adapted
to our setting. Combined with a hybrid of several techniques (to efficiently handle
different types of instances) this leads to improved bounds for BPC on perfect,
split, and bipartite graphs (see Sects. 3, 4, and the full version of the paper [6]).
Our framework may find use in tackling BPC on other graph classes arising in
applications.

1.3 Organization

In Sect. 2 we give some definitions and preliminary results. Section 3 presents an
approximation algorithm for BPC on perfect graphs and an asymptotic approx-
imation on bipartite graphs. In Sect. 4 we give an algorithm for split graphs.
We present our hardness results in Sect. 5 and conclude in Sect. 6. Due to space
constraints, some of our results and proofs are given in the full version of the
paper [6].

Approximating Bin Packing with Conflict Graphs 265

2 Preliminaries

For any k ∈ R, let [k] = {1, 2, . . . , 	k
}. Also, for a function f : A → R≥0 and a
subset of elements C ⊆ A, we define f(C) =

∑
e∈C f(e).

2.1 Coloring and Independent Sets

Given a graph G = (V,E), an independent set in G is a subset of vertices
S ⊆ V such that for all u, v ∈ S it holds that (u, v) /∈ E. Let IS(G) be the
collection of all independent sets in G. Given weight function w : V → R≥0, a
maximum independent set w.r.t. w is an independent set S ∈ IS(G) such that
w(S) is maximized. A coloring of G is a partition (V1, . . . , Vt) of V such that
∀i ∈ [t] : Vi ∈ IS(G); we call each subset of vertices Vi color class i. Let χ(G) be
the minimum number of colors required for a coloring of G. A graph G is perfect
if for every induced subgraph G′ of G the cardinality of the maximum clique
of G′ is equal to χ(G′); note that G′ is also a perfect graph. The following well
known result is due to [12].

Lemma 2.1. Given a perfect graph G = (V,E), a minimum coloring of G and
a maximum weight independent set of G can be computed in polynomial time.

2.2 Bin Packing with Conflicts

Given a BPC instance I, let GI = (I, E) denote the conflict graph of I. A
packing of a subset of items S ⊆ I is a partition B = (B1, . . . , Bt) of S such that,
for all i ∈ [t], Bi is an independent set in GI , and s(Bi) ≤ 1. Let #B be the
number of bins (i.e., entries) in B.

In this paper we consider BPC on several well studied classes of perfect
graphs and the acronym BPC refers from now on to perfect conflict graphs. For
bin packing with bipartite conflicts (BPB), where the conflict graph is bipartite,
we assume a bipartition of V is known and given by XV and YV . Recall that
G = (V,E) is a split graph if there is a partition K,S of V into a clique and an
independent set, respectively. We call this variant of BPC bin packing with split
graph conflicts (BPS).

The following notation will be useful while enhancing a partial packing by
new items. For two packings B = (B1, . . . , Bt) and C = (C1, . . . , Cr), let B ⊕C =
(B1, . . . , Bt, C1, . . . , Cr) be the concatenation of B and C; also, for t = r let
B + C = (B1 ∪ C1, . . . , Bt ∪ Ct) be the union of the two packings; note that
the latter is not necessarily a packing. We denote by items(B) =

⋃
i∈[t] Bi the

set of items in the packing B. Finally, let I = (I, s, E) be a BPC instance
and T ⊆ I a subset of items. Define the BPC instances I ∩ T = (T, s, ET) and
I \T = (I \T, s, EI\T) where for all X ∈ {T, I \T} EX = {(u, v) ∈ E | u, v ∈ X}.

2.3 Bin Packing Algorithms

We use I = (I, s) to denote a BP instance, where I is a set of n items for some
n ≥ 1, and s : I → [0, 1] is the size function. Let LI = {� ∈ I | s(�) > 1

2} be the

266 I. Doron-Arad and H. Shachnai

set of large items, MI = {� ∈ I | 1
3 < s(�) ≤ 1

2} the set of medium items, and
SI = {� ∈ I | s(�) ≤ 1

3} the set of small items. Our algorithms use as building
blocks also algorithms for BP. The results in the next two lemmas are tailored
for our purposes. We give the detailed proofs in [6].4

Lemma 2.2. Given a BP instance I = (I, s), there is a polynomial-time algo-
rithm First-Fit Decreasing (FFD) which returns a packing B = (B1, . . . , Bt) of
I where #B ≤ (1 + 2 · max�∈I s(�)) · s(I) + 1. Moreover, it also holds that
#B ≤ |LI | + 3

2 · s(MI) + 4
3 · s(SI) + 1.

Lemma 2.3. Given a BP instance I = (I, s), there is a polynomial-time algo-
rithm AsymptoticBP which returns a packing B = (B1, . . . , Bt) of I such that
t = OPT(I) + o(OPT(I)). Moreover, if OPT(I) ≥ 100 then t ≤ 1.02 · OPT(I).

3 Approximations for Perfect and Bipartite Graphs

In this section we consider the bin packing problem with a perfect or bipartite
conflict graph. Previous works (e.g., [8,17]) showed the usefulness of the approach
based on finding first a minimum coloring of the given conflict graph, and then
packing each color class as a separate bin packing instance (using, e.g., algorithm
FFD). Indeed, this approach yields efficient approximations for BPC; however,
it does reach a certain limit. To enhance the performance of this coloring based
approach, we design several subroutines. Combined, they cover the problematic
cases and lead to improved approximation guarantees (see Table 1).

Our first subroutine is the coloring based approach, with a simple modifica-
tion to improve the asymptotic performance. For each color class Ci, i = 1, . . . , k
in a minimum coloring of the given conflict graph, we find a packing of Ci using
FFD, and another packing using AsymptoticBP (see Lemma 2.3). We choose the
packing which has smaller number of bins. Finally, the returned packing is the
concatenation of the packings of all color classes. The pseudocode of Algorithm
Color Sets is given in Algorithm 1.

Algorithm 1. Color Sets(I = (I, s, E))
1: Compute a minimum coloring C = (C1, . . . , Ck) of GI .
2: Initialize an empty packing B ← ().
3: for i ∈ [k] do
4: Compute A1 ← FFD((Ci, s)) and A2 ← AsymptoticBP((Ci, s)).
5: B ← B ⊕ arg minA∈{A1,A2} #A.
6: end for
7: Return B.

For the remainder of this section, fix a BPC instance I = (I, s, E). The
performance guarantees of Algorithm Color Sets are stated in the next lemma.
4 For more details on algorithms FFD and AsymptoticBP see, e.g., [27].

Approximating Bin Packing with Conflict Graphs 267

Lemma 3.1. Given a BPC instance I = (I, s, E), Algorithm Color Sets returns
in polynomial time in |I| a packing B of I such that #B ≤ χ(GI) + |LI | + 3

2 ·
s(MI) + 4

3 · s(SI). Moreover, if I is a BPB instance then #B ≤ 3
2 · |LI | + 4

3 ·
(OPT(I) − |LI |) + o(OPT(I)).

Note that the bounds may not be tight for instances with many large items.
Specifically, if |LI | ≈ OPT(I) then a variant of Algorithm Color Sets was shown
to yield a packing of at least 2.5 · OPT(I) bins [8]. To overcome this, we use an
approach based on the simple yet crucial observation that there can be at most
one large item in a bin. Therefore, we view the large items as bins and assign
items to these bins to maximize the total size packed in bins including large
items. We formalize the problem initially on a single bin.

Definition 3.2. In the bounded independent set problem (BIS) we are given a
graph G = (V,E), a weight function w : V → R≥0, and a budget β ∈ R≥0. The
goal is to find an independent set S ⊆ V in G such that w(S) is maximized and
w(S) ≤ β. Let I = (V,E,w, β) be a BIS instance.

Towards solving BIS, we need the following definitions. For α ∈ (0, 1], A is
an α-approximation algorithm for a maximization problem P if, for any instance
I of P, A outputs a solution of value at least α · OPT (I). A polynomial-time
approximation scheme (PTAS) for P is a family of algorithms {Aε} such that,
for any ε > 0, Aε is a polynomial-time (1 − ε)-approximation algorithm for P.
A fully PTAS (FPTAS) is a PTAS {Aε} where, for all ε > 0, Aε is polynomial
also in 1

ε . We now describe a PTAS for BIS. Fix a BIS instance I = (V,E,w, β)
and ε > 0. As there can be at most ε−1 items with weight at least ε · β in some
optimal solution OPT for I, we can guess this set F of items via enumeration.
Then, to add smaller items to F , we define a residual graph GF of items with
weights at most ε · β which are not adjacent to any item in F . Formally, define
GF = (VF , EF), where

VF = {v ∈ V \F | w(v) ≤ ε·β,∀u ∈ F : (v, u) /∈ E}, EF = {(u, v) ∈ E | u, v ∈ VF }

Now, we find a maximum weight independent set S in GF . Note that this can
be done in polynomial time for perfect and bipartite graphs. If w(F ∪S) ≤ β then
we have an optimal solution; otherwise, we discard iteratively items from S until
the remaining items form a feasible solution for I. Since we discard only items
with relatively small weights, we lose only an ε-fraction of the weight relative to
the optimum. The pseudocode for the scheme is given in Algorithm 2.

Lemma 3.3. Algorithm 2 is a PTAS for BIS.

We note that by a result of [7], unless P=NP, BIS does not admit an efficient
PTAS, even on bipartite graphs.5 Thus, our PTAS for this problem is of an
independent interest.

5 An efficient PTAS is a PTAS {Aε} where, for all ε > 0, the running time of Aε is
given by f(1/ε) times a polynomial of the input size.

268 I. Doron-Arad and H. Shachnai

Algorithm 2. PTAS((V,E,w, β), ε)
1: Initialize A ← ∅.
2: for all independent sets F ⊆ V in (V, E) s.t. |F | ≤ ε−1, w(F) ≤ β do
3: Define the residual graph GF = (VF , EF).
4: Find a maximum independent set S of GF w.r.t. w.
5: while w(F ∪ S) > β do
6: Choose arbitrary z ∈ S.
7: Update S ← S \ {z}.
8: end while
9: if w(A) < w(F ∪ S) then

10: Update A ← F ∪ S.
11: end if
12: end for
13: Return A.

We now define our maximization problem for multiple bins. We solve a
slightly generalized problem in which we have an initial partial packing in t
bins. Our goal is to add to these bins (from unpacked items) a subset of items
of maximum total size. Formally,

Definition 3.4. Given a BPC instance I = (I, s, E), S ⊆ I, and a packing
B = (B1, . . . , Bt) of S, define the maximization problem of I and B as the
problem of finding a packing B+C of S∪T , where T ⊆ I \S and C = (C1, . . . , Ct)
is a packing of T , such that s(T) is maximized.

Our solution for BIS is used to obtain a (1− 1
e −ε)-approximation for the max-

imization problem described in Definition 3.4. This is done using the approach
of [9] for the more general separable assignment problem (SAP).

Lemma 3.5. Given a BPC instance I = (I, s, E), S ⊆ I, a packing B =
(B1, . . . , Bt) of S, and a constant ε > 0, there is an algorithm MaxSize which
returns in time polynomial in |I| a (1− 1

e −ε)-approximation for the maximization
problem of I and B. Moreover, given an FPTAS for BIS on the graph (I, E),
the weight function s, and the budget β = 1, MaxSize is a (1− 1

e)-approximation
algorithm for the maximization problem of I and B.

We use the above to obtain a feasible solution for the instance. This is done
via a reduction to the maximization problem of the instance with a singleton
packing of the large items and packing the remaining items in extra bins. Specif-
ically, in the subroutine MaxSolve, we initially put each item in LI in a separate
bin. Then, additional items from SI and MI are added to the bins using Algo-
rithm MaxSize (defined in Lemma 3.5). The remaining items are packed using
Algorithm Color Sets. The pseudocode of the subroutine MaxSolve is given in
Algorithm 3.

The proof of Lemma 3.6 uses Lemmas 3.1, 3.3, and 3.5.

Lemma 3.6. Given a BPC instance I = (I, s, E) and an ε > 0, Algorithm
MaxSolve returns in polynomial time in |I| a packing C of I such that there are
0 ≤ x ≤ s(MI) and 0 ≤ y ≤ s(SI) such that the following holds.

Approximating Bin Packing with Conflict Graphs 269

Algorithm 3. MaxSolve(I = (I, s, E), ε)
1: Define T ← ({�} | � ∈ LI).
2: A ← MaxSize(I, LI , T, ε).
3: B ← Color Sets(I \ items(A)).
4: Return A ⊕ B.

1. x + y ≤ OPT(I) − |LI | +
(
1
e + ε

) · |LI |
2 .

2. #C ≤ χ(GI) + |LI | + 3
2 · x + 4

3 · y.

Lemma 3.6 improves significantly the performance of Algorithm Color Sets for
instances with many large items. However, Algorithm MaxSize may prefer small
over medium items; the latter items will be packed by Algorithm Color Sets (see
Algorithm 3). The packing of these medium items may harm the approximation
guarantee. Thus, to tackle instances with many medium items, we use a reduction
to a maximum matching problem for packing the large and medium items in at
most OPT(I) bins.6 Then, the remaining items can be packed using Algorithm
Color Sets. The graph used for the following subroutine Matching contains all
large and medium items; there is an edge between any two items which can be
assigned to the same bin in a packing of the instance I. Formally,

Definition 3.7. Given a BPC instance I = (I, s, E), the auxiliary graph of
I is HI = (LI ∪ MI , EH), where EH = {(u, v) | u, v ∈ LI ∪ MI , s({u, v}) ≤
1, (u, v) /∈ E}.
Algorithm Matching finds a maximum matching in HI and outputs a packing
of the large and medium items where pairs of items taken to the matching
are packed together, and the remaining items are packed in extra bins using
Algorithm Color Sets. The pseudocode of the subroutine Matching is given in
Algorithm 4.

Algorithm 4. Matching(I = (I, s, E))
1: Find a maximum matching M in HI .
2: B ← ({u, v} | (u, v) ∈ M) ⊕ ({v} | v ∈ MI ∪ LI , ∀u ∈ MI ∪ LI : (u, v) /∈ M).
3: Return B ⊕ Color Sets(I \ (MI ∪ LI)).

The proof of Lemma 3.8 follows by noting that the cardinality of a maximum
matching in HI in addition to the number of unmatched vertices in LI ∪ MI is
at most OPT(I).

Lemma 3.8. Given a BPC instance I = (I, s, E), Algorithm Matching returns
in polynomial time in |I| a packing A of I such that #A ≤ OPT(I) + χ(GI) +
4
3 · s(SI).

6 We note that a maximum matching based technique for BPC is used also in [8,15].

270 I. Doron-Arad and H. Shachnai

We now have the required components for the approximation algorithm for
BPC and the asymptotic approximation for BPB. Our algorithm, ApproxBPC,
applies all of the above subroutines and returns the packing which uses the
smallest number of bins. We use ε = 0.0001 for the error parameter in MaxSolve.
The pseudocode of ApproxBPC is given in Algorithm 5.

Algorithm 5. ApproxBPC(I)
1: Let ε = 0.0001.
2: Compute A1 ← Color Sets(I), A2 ← MaxSolve(I, ε), A3 ← Matching(I).
3: Return arg minA∈{A1,A2,A3} #A.

We give below the main result of this section. The proof follows by the argu-
ment that the subroutines Color Sets, MaxSolve, and Matching handle together
most of the difficult cases. Specifically, if the instance contains many large items,
then MaxSolve produces the best approximation. If there are many large and
medium items, then Matching improves the approximation guarantee. Finally,
for any other case, our analysis of the Color Sets algorithm gives us the desired
ratio. We summarize with the next result.

Theorem 3.9. Algorithm 5 is a 2.445-approximation for BPC and an asymp-
totic 1.391-approximation for BPB.

4 Split Graphs

In this section we enhance the use of maximization techniques for BPC to obtain
an absolute approximation algorithm for BPS. In particular, we improve upon
the recent result of Huang et al. [15]. We use as a subroutine the maximization
technique as outlined in Lemma 3.5. Specifically, we start by obtaining an FPTAS
for the BIS problem on split graphs. For the following, fix a BPS instance I =
(I, s, E). It is well known (see, e.g., [11]) that a partition of the vertices of a
split graph into a clique and an independent set can be found in polynomial
time. Thus, for simplicity we assume that such a partition of the split graph G
is known and given by KG, SG. We note that an FPTAS for the BIS problem on
split graphs follows from a result of Pferschy and Schauer [24] for knapsack with
conflicts, since split graphs are a subclass of chordal graphs. We give a simpler
FPTAS for our problem in [6].

Lemma 4.1. There is an algorithm FPTAS-BIS that is an FPTAS for the BIS
problem on split graphs.

Our next goal is to find a suitable initial packing B to which we apply MaxSize.
Clearly, the vertices KGI must be assigned to different bins. Therefore, our initial
packing contains the vertices of KGI distributed to |KGI | bins as {{v} | v ∈
KGI }. In addition, let α ∈ {0, 1, . . . , �2 · s(I)� + 1} be a guess of OPT(I)−|KGI |;

Approximating Bin Packing with Conflict Graphs 271

then, (∅)i∈[α] is a packing of α bins that do not contain items. Together, the
two above packings form the initial packing Bα. Our algorithm uses MaxSize
to add items to the existing bins of Bα and packs the remaining items using
FFD. Note that we do not need an error parameter ε, since we use MaxSize
with an FPTAS (see Lemma 3.5). For simplicity, we assume that OPT(I) ≥ 2
(else we can trivially pack the instance in a single bin) and omit the case where
OPT(I) = 1 from the pseudocode. We give the pseudocode of our algorithm for
BPS in Algorithm 6.

Algorithm 6. Split-Approx(I = (I, s, E))
1: for α ∈ {0, 1, . . . , �2 · s(I)� + 1} do
2: Define Bα = {{v} | v ∈ KGI } ⊕ (∅)i∈[α]

3: Aα ← MaxSize(I, KGI , Bα).
4: A∗

α ← Aα ⊕ FFD(I \ items(Aα)).
5: end for
6: Return arg minα∈{0,1,...,�2·s(I)�+1} #A∗

α.

By Lemmas 4.1 and 3.5 we have a
(
1 − 1

e

)
-approximation for the maximiza-

tion problem of the BPS instance I and an initial partial packing B. Hence, for
a correct guess α = OPT(I) − |KGI |, the remaining items to be packed by FFD

are of total size at most s(I)
e and can be packed in 2·OPT(I)

e bins. Thus, we have

Theorem 4.2. Algorithm 6 is a
(
1 + 2

e

)
-approximation for BPS.

5 Asymptotic Hardness for Bipartite and Split Graphs

In this section we show that there is no APTAS for BPB and BPS, unless
P = NP . We use a reduction from the Bounded 3-dimensional matching (B3DM)
problem, that is known to be MAX SNP-complete [18].

For the remainder of this section, let c > 2 be some constant. A B3DM
instance is a four-tuple J = (X,Y,Z, T), where X,Y,Z are three disjoint finite
sets and T ⊆ X × Y × Z; also, for each u ∈ X ∪ Y ∪ Z there are at most c
triples in T to which u belongs. A solution for J is M ⊆ T such that for all
u ∈ X ∪Y ∪Z it holds that u appears in at most one triple of M . The objective
is to find a solution M of maximum cardinality. Let OPT(J) be the value of an
optimal solution for J . We use in our reduction a restricted instance of B3DM
defined as follows.

Definition 5.1. For k ∈ N, a B3DM instance J is k-restricted if OPT(J) ≥ k.

In the next lemma we show the hardness of k-restricted B3DM. Intuitively,
since B3DM instances J with OPT(J) ≤ k are polynomially solvable for a fixed
k (e.g., by exhaustive enumeration), it follows that restricted-B3DM must be
hard to approximate, by the hardness result of Kann [18].

272 I. Doron-Arad and H. Shachnai

Lemma 5.2. There is a constant α < 1 such that for any k ∈ N there is no
α-approximation for the k-restricted B3DM problem unless P=NP.

We give below the main idea of our reduction, showing the asymptotic hard-
ness of BPB and BPS. A more formal description and the proof of Lemma 5.2
are given in [6]. For a sufficiently large n ∈ N, let J = (X,Y,Z, T) be an
n-restricted instance of B3DM, and let the components of J , together with
appropriate indexing, be U = X ∪ Y ∪ Z and T , where

X = {x1, . . . , xx̃}, Y = {y1, . . . , yỹ}, Z = {z1, . . . , zz̃}, T = {t1, . . . , tt̃}.

We outline our reduction for BPB and later show how it can be modified
to yield the hardness result for BPS. Given an n-restricted B3DM instance, we
construct a sequence of BPB instances. Each BPB instance contains an item for
each element u ∈ U , and an item for each triple t ∈ T . There is an edge (u, t) if
u ∈ U and t ∈ T , and u does not appear in t, i.e., we forbid packing an element
u in the same bin with a triple not containing u, for any u ∈ U . Since we do not
know the exact value of OPT(J), we define a family of instances with different
number of filler items; these items are packed in the optimum of our constructed
BPB instance together with elements not taken to the solution for J .

Specifically, for a guess i ∈ {n, n + 1, . . . , |T |} of OPT(J), we define a BPB
instance Ii = (Ii, s, E). The set of items in Ii is Ii = U ∪ Pi ∪ T ∪ Qi, where
Pi, Qi are a set of t̃ − i (filler) items and a set of x̃ + ỹ + z̃ − 3 · i (filler) items,
respectively, such that Pi ∩U = ∅ and Qi ∩U = ∅. The bipartite (conflict) graph
of Ii is Gi = (Ii, E), where E = EX ∪ EY ∪ EZ is defined as follows.

EX = {(x, t) | x ∈ X, t = (x′, y, z) ∈ T, x �= x′}
EY = {(y, t) | y ∈ Y, t = (x, y′, z) ∈ T, y �= y′}
EZ = {(z, t) | z ∈ Z, t = (x, y, z′) ∈ T, z �= z′}

Finally, define the sizes of items in Ii to be

∀u ∈ U, p ∈ Pi, q ∈ Qi, t ∈ T : s(u) = 0.15, s(p) = 0.45, s(q) = 0.85, s(t) = 0.55.

By the above, the only way to pack three items from x, y, z ∈ U with a triple
t ∈ T is if (x, y, z) = t; also, s ({x, y, z, t}) = 1. For an illustration of the reduction
see Fig. 1.

Given a packing (A1, . . . , Aq) for the BPB instance Ii, we consider all useful
bins Ab in the packing, i.e., Ab = {x, y, z, t}, where x ∈ X, y ∈ Y, z ∈ Z and
t = (x, y, z). The triple t from bin Ab is taken to our solution for the original
n-restricted B3DM instance J . Note that taking all triples as described above
forms a feasible solution for J , since each element is packed only once. Thus, our
goal becomes to find a packing for the reduced BPB instance with a maximum
number of useful bins. Indeed, since s(Ab) = 1 for any useful bin Ab, finding
a packing with many useful bins coincides with an efficient approximation for
BPB.

For the optimal guess i∗ = OPT(J), it is not hard to see that the optimum for
the BPB instance Ii∗ satisfies s(Ii∗) = OPT(Ii∗); that is, all bins in the optimum

Approximating Bin Packing with Conflict Graphs 273

Fig. 1. An illustration of the BPB instance Ii = (Ii, s, E), where i = OPT(J) = 2. The
optimal solution for Ii contains the bins {x1, y1, z1, (x1, y1, z1)}, {x2, y2, z2, (x2, y2, z2)},
and {p, (x1, y2, z1)}; this corresponds to an optimal solution (x1, y1, z1), (x2, y2, z2) for
the original B3DM instance. Note that in this example Qi = ∅.

are fully packed. For a sufficiently large n, and assuming there is an APTAS for
BPB, we can find a packing of Ii∗ with a large number of bins that are fully
packed. A majority of these bins are useful, giving an efficient approximation for
the original B3DM instance. A similar reduction to BPS is obtained by adding
to the bipartite conflict graph of the BPB instance an edge between any pair
of vertices in T ; thus, we have a split conflict graph. We summarize the above
discussion in the next result (the proof is given in [6]).

Theorem 5.3. There is no APTAS for BPB and BPS, unless P=NP.

6 Discussion

In this work we presented the first theoretical evidence that BPC on polynomially
colorable graphs is harder than classic bin packing, even in the special cases of
bipartite and split graphs. Furthermore, we introduced a new generic framework
for tackling BPC instances, based on a reduction to a maximization problem.
Using this framework, we improve the state-of-the-art approximations for BPC
on several well studied graph classes.

We note that better bounds for the maximization problems solved within our
framework will imply improved approximation guarantees for BPC on perfect,
bipartite, and split graphs. It would be interesting to apply our techniques to
improve the known results for other graph classes, such as chordal graphs or
partial k-trees.

References

1. Adany, R., et al.: All-or-nothing generalized assignment with application to
scheduling advertising campaigns. ACM Trans. Algorithms 12(3), 38:1–38:25
(2016)

274 I. Doron-Arad and H. Shachnai

2. Beaumont, O., Bonichon, N., Duchon, P., Larchevêque, H.: Distributed approxi-
mation algorithm for resource clustering. In: Shvartsman, A.A., Felber, P. (eds.)
SIROCCO 2008. LNCS, vol. 5058, pp. 61–73. Springer, Heidelberg (2008). https://
doi.org/10.1007/978-3-540-69355-0 7

3. Christofides, N.: The vehicle routing problem. Combinatorial optimization (1979)
4. Doron-Arad, I., Kulik, A., Shachnai, H.: An APTAS for bin packing with clique-

graph conflicts. In: Lubiw, A., Salavatipour, M. (eds.) WADS 2021. LNCS, vol.
12808, pp. 286–299. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-
83508-8 21

5. Doron-Arad, I., Kulik, A., Shachnai, H.: An AFPTAS for bin packing with partition
matroid via a new method for LP rounding. In: Proceedings of APPROX (2023)

6. Doron-Arad, I., Shachnai, H.: Approximating bin packing with conflict graphs via
maximization techniques. arXiv preprint arXiv:2302.10613 (2023)

7. Doron-Arad, I., Shachnai, H.: Tight bounds for budgeted maximum weight inde-
pendent set in bipartite and perfect graphs. arXiv preprint arXiv:2307.08592 (2023)

8. Epstein, L., Levin, A.: On bin packing with conflicts. SIAM J. Optim. 19(3), 1270–
1298 (2008)

9. Fleischer, L., Goemans, M.X., Mirrokni, V.S., Sviridenko, M.: Tight approximation
algorithms for maximum separable assignment problems. Math. Oper. Res. 36(3),
416–431 (2011)

10. Garey, M.R., Johnson, D.S.: Computers and intractability. A Guide to the (1979)
11. Golumbic, M.C.: Algorithmic Graph Theory and Perfect Graphs. Elsevier, Ams-

terdam (2004)
12. Grötschel, M., Lovász, L., Schrijver, A.: Geometric Algorithms and Combinatorial

Optimization, vol. 2. Springer, Berlin (2012)
13. Halldórsson, M.M.: A still better performance guarantee for approximate graph

coloring. Inf. Process. Lett. 45(1), 19–23 (1993)
14. Hoberg, R., Rothvoß, T.: A logarithmic additive integrality gap for bin packing.

In: Proceedings of the Twenty-Eighth Annual ACM-SIAM Symposium on Discrete
Algorithms, pp. 2616–2625. SIAM (2017)

15. Huang, Z., Zhang, A., Dósa, G., Chen, Y., Xiong, C.: Improved approximation
algorithms for bin packing with conflicts. Int. J. Found. Comput. Sci. 1–16 (2023)

16. Jansen, K.: An approximation scheme for bin packing with conflicts. J. Comb.
Optim. 3(4), 363–377 (1999)

17. Jansen, K., Öhring, S.R.: Approximation algorithms for time constrained schedul-
ing. Inf. Comput. 132(2), 85–108 (1997)

18. Kann, V.: Maximum bounded 3-dimensional matching is MAX SNP-complete. Inf.
Process. Lett. 37(1), 27–35 (1991)

19. Karmarkar, N., Karp, R.M.: An efficient approximation scheme for the one-
dimensional bin-packing problem. In: 23rd Annual Symposium on Foundations
of Computer Science, pp. 312–320. IEEE (1982)

20. de La Vega, W.F., Lueker, G.S.: Bin packing can be solved within 1+ ε in linear
time. Combinatorica 1(4), 349–355 (1981)

21. Laporte, G., Desroches, S.: Examination timetabling by computer. Comput. Oper.
Res. 11(4), 351–360 (1984)

22. McCloskey, B., Shankar, A.: Approaches to bin packing with clique-graph conflicts.
University of California, Computer Science Division (2005)

23. Oh, Y., Son, S.: On a constrained bin-packing problem. Technical Report CS-95-14
(1995)

24. Pferschy, U., Schauer, J.: The knapsack problem with conflict graphs. J. Graph
Algorithms Appl. 13(2), 233–249 (2009)

https://doi.org/10.1007/978-3-540-69355-0_7
https://doi.org/10.1007/978-3-540-69355-0_7
https://doi.org/10.1007/978-3-030-83508-8_21
https://doi.org/10.1007/978-3-030-83508-8_21
http://arxiv.org/abs/2302.10613
http://arxiv.org/abs/2307.08592

Approximating Bin Packing with Conflict Graphs 275

25. Rothvoß, T.: Approximating bin packing within O(log OPT * log log OPT) bins.
In: 54th Annual IEEE Symposium on Foundations of Computer Science, pp. 20–29.
IEEE Computer Society (2013)

26. Simchi-Levi, D.: New worst-case results for the bin-packing problem. Naval Res.
Logist. (NRL) 41(4), 579–585 (1994)

27. Vazirani, V.V.: Approximation Algorithms. Springer, Berlin, Heidelberg (2001)
28. Zuckerman, D.: Linear degree extractors and the inapproximability of max clique

and chromatic number. In: Proceedings of the Thirty-Eighth Annual ACM Sym-
posium on Theory of Computing, pp. 681–690 (2006)

αi-Metric Graphs: Radius, Diameter
and all Eccentricities

Feodor F. Dragan1 and Guillaume Ducoffe2(B)

1 Computer Science Department, Kent State University, Kent, USA
dragan@cs.kent.edu

2 National Institute for Research and Development in Informatics and University
of Bucharest, Bucharest, Romania

guillaume.ducoffe@ici.ro

Abstract. We extend known results on chordal graphs and distance-
hereditary graphs to much larger graph classes by using only a common
metric property of these graphs. Specifically, a graph is called αi-metric
(i ∈ N) if it satisfies the following αi-metric property for every ver-
tices u, w, v and x: if a shortest path between u and w and a short-
est path between x and v share a terminal edge vw, then d(u, x) ≥
d(u, v) + d(v, x) − i. Roughly, gluing together any two shortest paths
along a common terminal edge may not necessarily result in a shortest
path but yields a “near-shortest” path with defect at most i. It is known
that α0-metric graphs are exactly ptolemaic graphs, and that chordal
graphs and distance-hereditary graphs are αi-metric for i = 1 and i = 2,
respectively. We show that an additive O(i)-approximation of the radius,
of the diameter, and in fact of all vertex eccentricities of an αi-metric
graph can be computed in total linear time. Our strongest results are
obtained for α1-metric graphs, for which we prove that a central vertex
can be computed in subquadratic time, and even better in linear time
for so-called (α1, Δ)-metric graphs (a superclass of chordal graphs and of
plane triangulations with inner vertices of degree at least 7). The latter
answers a question raised in (Dragan, IPL, 2020). Our algorithms follow
from new results on centers and metric intervals of αi-metric graphs. In
particular, we prove that the diameter of the center is at most 3i + 2
(at most 3, if i = 1). The latter partly answers a question raised in
(Yushmanov & Chepoi, Mathematical Problems in Cybernetics, 1991).

Keywords: metric graph classes · chordal graphs · αi-metric ·
radius · diameter · vertex eccentricity · eccentricity approximating
trees · approximation algorithms

1 Introduction

Euclidean spaces have the following nice property: if the geodesic between u
and w contains v, and the geodesic between v and x contains w, then their

This work was supported by a grant of the Romanian Ministry of Research, Innova-
tion and Digitalization, CCCDI - UEFISCDI, proect number PN-III-P2-2.1-PED-2021-
2142, within PNCDI III.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
D. Paulusma and B. Ries (Eds.): WG 2023, LNCS 14093, pp. 276–290, 2023.
https://doi.org/10.1007/978-3-031-43380-1_20

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-43380-1_20&domain=pdf
https://doi.org/10.1007/978-3-031-43380-1_20

αi-Metric Graphs: Radius, Diameter and all Eccentricities 277

union must be the geodesic between u and x. In 1991, Chepoi and Yushmanov
introduced αi-metric properties (i ∈ N), as a way to quantify by how much a
graph is close to satisfy this above requirement [39] (see also [10,11] for earlier
use of α1-metric property). All graphs G = (V,E) occurring in this paper are
connected, finite, unweighted, undirected, loopless and without multiple edges.
The length of a path between two vertices u and v is the number of edges in
the path. The distance dG(u, v) is the length of a shortest path connecting u
and v in G. The interval IG(u, v) between u and v consists of all vertices on
shortest (u, v)-paths, that is, it consists of all vertices (metrically) between u
and v: IG(u, v) = {x ∈ V : dG(u, x) + dG(x, v) = dG(u, v)}. Let also Io

G(u, v) =
IG(u, v) \ {u, v}. If no confusion arises, we will omit subindex G.

αi-metric property: if v ∈ I(u,w) and w ∈ I(v, x) are adjacent, then
d(u, x) ≥ d(u, v) + d(v, x) − i = d(u, v) + 1 + d(w, x) − i.

Roughly, gluing together any two shortest paths along a common terminal edge
may not necessarily result in a shortest path (unlike in the Euclidean space)
but yields a “near-shortest” path with defect at most i. A graph is called αi-
metric if it satisfies the αi-metric property. αi-Metric graphs were investigated
in [10,11,39]. In particular, it is known that α0-metric graphs are exactly the
distance-hereditary chordal graphs, also known as ptolemaic graphs [32]. Fur-
thermore, α1-metric graphs contain all chordal graphs [10] and all plane trian-
gulations with inner vertices of degree at least 7 [25]. α2-Metric graphs con-
tain all distance-hereditary graphs [39] and, even more strongly, all HHD-free
graphs [13]. Evidently, every graph is an αi-metric graph for some i. Chepoi
and Yushmanov in [39] also provided a characterization of all α1-metric graphs:
They are exactly the graphs where all disks are convex and the graph W++

6

from Fig. 1 is forbidden as an isometric subgraph (see [39] or Theorem 5). This
nice characterization was heavily used in [3] in order to characterize δ-hyperbolic
graphs with δ ≤ 1/2.

Let the eccentricity of a vertex v in G be defined as eG(v) = maxu∈V dG(u, v).
The diameter and the radius of a graph are defined as diam(G) = maxu∈V eG(u)
and rad(G) = minu∈V eG(u), respectively. Let the center of a graph G be defined
as C(G) = {u ∈ V : eG(u) = rad(G)}. Each vertex from C(G) is called a central
vertex. In this paper, we investigate the radius, diameter, and all eccentricities
computation problems in αi-metric graphs. Understanding the eccentricity func-
tion of a graph and being able to efficiently compute or estimate the diameter,
the radius, and all vertex eccentricities is of great importance. For example, in the
analysis of complex networks, the eccentricity of a vertex is used to measure its
importance: the eccentricity centrality index of v [33] is defined as 1

e(v) . Further-
more, the problem of finding a central vertex is one of the most famous facility
location problems. In [39], the following nice relation between the diameter and
the radius of an αi-metric graph G was established: diam(G) ≥ 2rad(G)− i− 1.
Recall that for every graph G, diam(G) ≤ 2rad(G) holds. Authors of [39] also
raised a question1 whether the diameter of the center of an αi-metric graph can
1 It is conjectured in [39] that diam(C(G)) ≤ i + 2 for every αi-metric graph G.

278 F. F. Dragan and G. Ducoffe

be bounded by a linear function of i. It is known that the diameters of the centers
of chordal graphs or of distance-hereditary graphs are at most 3 [11,39].

Related Work. There is a naive algorithm which runs a BFS from each vertex
in order to compute all eccentricities. It has running time O(nm) on an n-vertex
m-edge graph. Interestingly, this is conditionally optimal for general graphs as
well as for some restricted families of graphs [1,5,15,36] since, under plausible
complexity assumptions, neither the diameter nor the radius can be computed
in truly subquadratic time (i.e., in O(namb) time, for some positive a, b such
that a+ b < 2). In a quest to break this quadratic barrier, there has been a long
line of work presenting more efficient algorithms for computing the diameter
and/or the radius, or even better all eccentricities, on some special graph classes.
For example, linear-time algorithms are known for computing all eccentricities
of interval graphs [26,34]. Extensions of these results to several superclasses of
interval graphs are also known [6,7,16,17,21,28–31]. Chordal graphs are another
well-known generalization of interval graphs, for which the diameter can unlikely
be computed in subquadratic time [5]. For all that, there is an elegant linear-
time algorithm for computing the radius and a central vertex of a chordal graph
[12]. Until this work there has been little insight about how to extend this nice
result to larger graph classes (a notable exception being the work in [13]). This
intriguing question is partly addressed in our paper.

Since the existence of subquadratic time algorithm for exact diameter or
radius computation is unlikely, even for simple families of graphs, a large vol-
ume of work was also devoted to approximation algorithms [1,2,9,36,38].
Authors of [9] additionally address a more challenging question of obtaining
an additive c-approximation for the diameter, i.e., an estimate D such that
diam(G) − c ≤ D ≤ diam(G). A simple Õ(mn1−ε) time algorithm achieves
an additive nε-approximation and, for any ε > 0, getting an additive nε-
approximation algorithm for the diameter running in O(n2−ε′

) time for any
ε′ > 2ε would falsify the Strong Exponential Time Hypothesis (SETH). How-
ever, much better additive approximations can be achieved for graphs with
bounded (metric) parameters. For example, a vertex furthest from an arbitrary
vertex has eccentricity at least diam(G) − 2 for chordal graphs [12] and at least
diam(G)−�k/2� for k-chordal graphs [8]. Later, those results were generalized to
all δ-hyperbolic graphs [14,15,23,24]. In [20], we also introduce a natural gener-
alization of αi-metric and hyperbolic graphs, which we call a (λ, μ)-bow metric:
namely, if two shortest paths P (u,w) and P (v, x) share a common shortest sub-
path P (v, w) of length more than λ (that is, they overlap by more than λ),
then the distance between u and x is at least d(u, v) + d(v, w) + d(w, x) − μ.
δ-Hyperbolic graphs are (δ, 2δ)-bow metric and αi-metric graphs are (0, i)-bow
metric. (α1,Δ)-Metric graphs form an important subclass of α1-metric graphs
and contain all chordal graphs and all plane triangulations with inner vertices of
degree at least 7. In [25], it was shown that every (α1,Δ)-metric graph admits
an eccentricity 2-approximating spanning tree, i.e., a spanning tree T such that
eT (v)−eG(v) ≤ 2 for every vertex v. Finding similar results for general α1-metric
graphs was left as an open problem in [25].

αi-Metric Graphs: Radius, Diameter and all Eccentricities 279

Our Contribution. We prove several new results on intervals, eccentricity and
centers in αi-metric graphs, and their algorithmic applications, thus answering
open questions in the literature [18,25,39]. To list our contributions, we need to
introduce on our way some additional notations and terminology.

Section 2 is devoted to general αi-metric graphs (i ≥ 0). The set Sk(u, v) =
{x ∈ I(u, v) : d(u, x) = k} is called a slice of the interval I(u, v) where 0 ≤ k ≤
d(u, v). An interval I(u, v) is said to be λ-thin if d(x, y) ≤ λ for all x, y ∈ Sk(u, v),
0 < k < d(u, v). The smallest integer λ for which all intervals of G are λ-thin is
called the interval thinness of G. The disk of radius r and center v is defined
as {u ∈ V : d(u, v) ≤ r}, and denoted by D(v, r). In particular, N [v] = D(v, 1)
and N(v) = N [v] \ {v} denote the closed and open neighbourhoods of a vertex
v, respectively. More generally, for any vertex-subset S and a vertex u, we define
d(u, S) = minv∈S d(u, v), D(S, r) =

⋃
v∈S D(v, r), N [S] = D(S, 1) and N(S) =

N [S]\S. We say that a set of vertices S ⊆ V of a graph G = (V,E) is dk-convex
if for every two vertices x, y ∈ S with d(x, y) ≥ k ≥ 0, the entire interval I(x, y)
is in S. For k ≤ 2, this definition coincides with the usual definition of convex
sets in graphs [4,10,37]. We show first that, in αi-metric graphs G, the intervals
are (i + 1)-thin, and the disks (and, hence, the centers C(G)) are d2i−1-convex.
The main result of Sect. 2.1 states that the diameter of the center C(G) of G is
at most 3i + 2, thus answering a question raised in [39].

Let FG(v) be the set of all vertices of G that are most distant from v. A
pair x, y is called a pair of mutually distant vertices if x ∈ FG(y), y ∈ FG(x). In
Sect. 2.2, we show that an additive O(i)-approximation of the radius and of the
diameter of an αi-metric graph G with m edges can be computed in O(m) time.
For that, we carefully analyze the eccentricities of most distant vertices from an
arbitrary vertex and of mutually distant vertices. In Sect. 2.3, we present three
approximation algorithms for all eccentricities, with various trade-offs between
their running time and the quality of their approximation. Hence, an additive
O(i)-approximation of all vertex eccentricities of an αi-metric graph G with m
edges can be computed in O(m) time.

Section 3 is devoted to α1-metric graphs. The eccentricity function e(v) of
a graph G is said to be unimodal, if for every non-central vertex v of G there
is a neighbor u ∈ N(v) such that e(u) < e(v) (that is, every local minimum of
the eccentricity function is a global minimum). We show in Sect. 3.1 that the
eccentricity function on α1-metric graphs is almost unimodal and we charac-
terize non-central vertices that violate the unimodality (that is, do not have a
neighbor with smaller eccentricity). Such behavior of the eccentricity function
was observed earlier in chordal graphs [25], in distance-hereditary graphs [22]
and in all (α1,Δ)-metric graphs [25]. In Sect. 3.2, we show that the diameter
of C(G) is at most 3. This generalizes known results for chordal graphs [11]
and for (α1,Δ)-metric graphs [25]. Finally, based on these results we present in
Sect. 3.3 a local-search algorithm for finding a central vertex of an arbitrary α1-
metric graph in subquadratic time. Our algorithm even achieves linear runtime
on (α1,Δ)-metric graphs, thus answering an open question from [25].

All omitted proofs can be found in our technical report [19].

280 F. F. Dragan and G. Ducoffe

2 General Case of αi-Metric Graphs for Arbitrary i ≥ 0

First we present two important lemmas for what follows.

Lemma 1. Let G be an αi-metric graph, and let u, v, x, y be vertices such that
x ∈ I(u, v), d(u, x) = d(u, y), and d(v, y) ≤ d(v, x)+k. Then, d(x, y) ≤ k+ i+2.

Lemma 2. If G is an αi-metric graph, then its interval thinness is at most i+1.

2.1 Centers of αi-Metric Graphs

We provide an answer to a question raised in [39] whether the diameter of the
center of an αi-metric graph can be bounded by a linear function of i. For that,
we show first that every disk must be d2i−1-convex.

Lemma 3. Every disk of an αi-metric graph G is d2i−1-convex. In particular,
the center C(G) of an αi-metric graph G is d2i−1-convex.

Next auxiliary lemma is crucial in obtaining many results of this section.

Lemma 4. Let G be an αi-metric graph. For any x, y, v ∈ V and any
integer k ∈ {0, . . . , d(x, y)}, there is a vertex c ∈ Sk(x, y) such that
d(v, c) ≤ max{d(v, x), d(v, y)} − min{d(x, c), d(y, c)} + i and d(v, c) ≤
max{d(v, x), d(v, y)} + i/2. For an arbitrary vertex z ∈ I(x, y), we have
d(z, v) ≤ max{d(x, v), d(y, v)} − min{d(x, z), d(y, z)} + 2i + 1 and d(z, v) ≤
max{d(x, v), d(y, v)} + 3i/2 + 1. Furthermore, e(z) ≤ max{e(x), e(y)} −
min{d(x, z), d(y, z)} + 2i + 1 and e(z) ≤ max{e(x), e(y)} + 3i/2 + 1 when
v ∈ F (z).

Using Lemma 4, one can easily prove that the diameter of the center C(G)
of an αi-metric graph G is at most 4i + 3. Below we improve the bound.

Theorem 1. If G is an αi-metric graph, then diam(C(G)) ≤ 3i + 2.

Proof. Let r = rad(G). Suppose by contradiction diam(C(G)) > 3i + 2. Since
C(G) is d2i−1-convex, there exist x, y ∈ C(G) such that d(x, y) = 3i + 3 and
I(x, y) ⊆ C(G). Furthermore, for every u ∈ V such that max{d(u, x), d(u, y)} <
r, I(x, y) ⊆ D(u, r−1) because the latter disk is also d2i−1-convex. Therefore, for
every z ∈ I(x, y), F (z) ⊆ F (x) ∪ F (y). Let ab be an edge on a shortest xy-path
such that d(a, x) < d(b, x). Assume F (b) 	⊆ F (a). Let v ∈ F (b)\F (a). Since G is
αi-metric, d(v, y) ≥ d(v, b)+ d(b, y)− i = r +(d(b, y) − i). Therefore, d(b, y) ≤ i.
In the same way, if F (a) 	⊆ F (b), then d(a, x) ≤ i. By induction, F (z) ⊆ F (x)
(F (z) ⊆ F (y), respectively) for every z ∈ I(x, y) such that d(y, z) ≥ i + 1
(d(x, z) ≥ i + 1, respectively). In particular, if i + 1 ≤ t ≤ d(x, y) − i − 1,
then F (z) ⊆ F (x) ∩ F (y) for every z ∈ St(x, y). Note that the above properties
are also true for every x′, y′ ∈ C(G) with d(x′, y′) ≥ 2i − 1, as d2i−1-convexity
argument can still be used.

αi-Metric Graphs: Radius, Diameter and all Eccentricities 281

Let c ∈ I(x, y) be such that F (c) ⊆ F (x)∩F (y) and k := |F (c)| is minimized.
We claim that k < |F (x) ∩ F (y)|. Indeed, let v ∈ F (x) ∩ F (y) be arbitrary.
By Lemma 4, some vertex cv ∈ Si+1(x, y) satisfies d(cv, v) ≤ r − 1. Then,
F (cv) ⊆ (F (x) ∩ F (y)) \ {v}, and k ≤ |F (cv)| ≤ |F (x)∩F (y)| − 1 by minimality
of c. Let yc ∈ I(x, y) be such that F (yc) ∩ F (x) ∩ F (y) ⊆ F (c) and d(x, yc)
is maximized. We have yc 	= y because F (x) ∩ F (y) 	⊆ F (c). Therefore, the
maximality of d(x, yc) implies the existence of some v ∈ (F (x) ∩ F (y)) \ F (c)
such that d(v, yc) = r −1. Since G is αi-metric, d(v, y) ≥ d(v, yc)+d(yc, y)− i =
r+(d(yc, y) − i − 1). As a result, d(yc, y) ≤ i+1. Then, for every z ∈ Si+1(x, yc),
since we have d(z, yc) = d(x, y) − i − 1 − d(yc, y) ≥ d(x, y) − 2i − 2 = i + 1,
F (z) ⊆ F (x)∩F (y)∩F (yc) ⊆ F (c). By minimality of k, F (z) = F (c). However,
let v ∈ F (c) be arbitrary. By Lemma 4, there exists some c′ ∈ Si+1(x, yc) such
that d(c′, v) ≤ r − 1, thus contradicting F (c′) = F (c). ��

2.2 Approximating Radii and Diameters of αi-Metric Graphs

In this subsection, we show that a vertex with eccentricity at most rad(G)+O(i)
and a vertex with eccentricity at least diam(G) − O(i) of an αi-metric graph G
can be found in parameterized linear time. We summarize algorithmic results of
this section in the following theorem.

Theorem 2. There is a linear (O(m)) time algorithm which finds vertices v
and c of an m-edge αi-metric graph G such that e(v) ≥ diam(G) − 5i − 2,
e(c) ≤ rad(G)+4i+(i+1)/2+2 and C(G) ⊆ D(c, 4i+(i+1)/2+2). Furthermore,
there is an almost linear (O(im)) time algorithm which finds vertices v and c of G
such that e(v) ≥ diam(G)−3i−2, e(c) ≤ rad(G)+2i+1 and C(G) ⊆ D(c, 4i+3).

Our algorithms are derived from the following new properties of an αi-metric
graph G, whose proofs are omitted due to lack of space.

– Let x, y be a pair of mutually distant vertices. Then, d(x, y) ≥ 2rad(G) −
4i − 3 and d(x, y) ≥ diam(G) − 3i − 2. Furthermore, any middle vertex z of a
shortest path between x and y satisfies e(z) ≤ d(x, y)/2�+2i+1 ≤ rad(G)+
2i + 1, and C(G) ⊆ D(z, 4i + 3). There is also a vertex c in S�d(x,y)/2�(x, y)
with e(c) ≤ rad(G) + i.

– Let v ∈ V , x ∈ F (v) and y ∈ F (x). Then, e(x) = d(x, y) ≥ 2rad(G) − 2i −
diam(C(G)) ≥ 2rad(G)−5i−2 ≥ diam(G)−5i−2. Furthermore, any middle
vertex z of a shortest path between x and y satisfies e(z) ≤ min{rad(G) +
4i + (i + 1)/2 + 2, d(x, y)/2� + 7i + 3} and C(G) ⊆ D(z, 4i + (i + 1)/2 + 2).

In particular, using at most O(i) breadth-first-searches, one can generate a
sequence of vertices v := v0, x := v1, y := v2, v3, . . . vk with k ≤ 5i + 4 such
that each vi is most distant from vi−1 and vk, vk−1 are mutually distant vertices
(because the initial value d(x, y) ≥ diam(G) − 5i − 2 can be improved at most
5i+2 times). Therefore, a pair of mutually distant vertices of an αi-metric graph
can be computed in O(im) total time, thus proving Theorem 2.

282 F. F. Dragan and G. Ducoffe

For every vertex v ∈ V \ C(G) of a graph G we can define a parameter
loc(v) = min{d(v, x) : x ∈ V, e(x) < e(v)} and call it the locality of v. It shows
how far from v a vertex with a smaller eccentricity than that one of v exists. In
αi-metric graphs, the locality of each vertex is at most i + 1.

Lemma 5. Let G be an αi-metric graph. Then, for every vertex v, loc(v) ≤ i+1.

In αi-metric graphs, the difference between the eccentricity of a vertex v and
the radius of G shows how far vertex v can be from the center C(G) of G.

Lemma 6. Let G be an αi-metric graph and k be a positive integer. Then, for
every vertex v of G with e(v) ≤ rad(G) + k, d(v, C(G)) ≤ k + i.

Proof. Let x be a vertex from C(G) closest to v. Consider a neighbor z of x on an
arbitrary shortest path from x to v. Necessarily, e(z) = e(x) + 1 = rad(G) + 1.
Consider a vertex u ∈ F (z). We have d(u, x) = rad(G) and x ∈ I(z, u), z ∈
I(x, v). By the αi-metric property, d(v, u) ≥ d(v, x) + d(x, u) − i = d(v, x) − i +
rad(G). As e(v) ≥ d(v, u) and e(v) ≤ rad(G) + k, we get rad(G) + k ≥ e(v) ≥
d(v, x) − i + rad(G), i.e., d(v, x) ≤ i + k. ��

As an immediate corollary of Lemma 6 we get.

Corollary 1. Let G be an αi-metric graph. Then, for every vertex v of G,
d(v, C(G)) + rad(G) ≥ e(v) ≥ d(v, C(G)) + rad(G) − i.

So, in αi-metric graphs, to approximate the eccentricity of a vertex v up-to
an additive one-sided error i, one needs to know only rad(G) and the distance
from v to the center C(G) of G.

2.3 Approximating all Eccentricities in αi-Metric Graphs

In this subsection, we show that the eccentricities of all vertices of an αi-metric
graph G can be approximated with an additive one-sided error at most O(i) in
(almost) linear total time. The following first result is derived from the interesting
property that the distances from any vertex v to two mutually distant vertices
give a very good estimation on the eccentricity of v.

Theorem 3. Let G be an αi-metric graph with m-edges. There is an algorithm
which in total almost linear (O(im)) time outputs for every vertex v ∈ V an
estimate ê(v) of its eccentricity e(v) such that e(v) − 3i − 2 ≤ ê(v) ≤ e(v).

A spanning tree T of a graph G is called an eccentricity k-approximating
spanning tree if for every vertex v of G eT (v) ≤ eG(v)+k holds [35]. All (α1,�)-
metric graphs (including chordal graphs and the underlying graphs of 7-systolic
complexes) admit eccentricity 2-approximating spanning trees [25]. An eccen-
tricity 2-approximating spanning tree of a chordal graph can be computed in
linear time [18]. An eccentricity k-approximating spanning tree with minimum
k can be found in O(nm) time for any n-vertex, m-edge graph G [27]. It is also
known [15,23] that if G is a δ-hyperbolic graph, then G admits an eccentric-
ity (4δ + 1)-approximating spanning tree constructible in O(δm) time and an
eccentricity (6δ)-approximating spanning tree constructible in O(m) time.

αi-Metric Graphs: Radius, Diameter and all Eccentricities 283

Lemma 7. Let G be an αi-metric graph with m edges. If c is a middle vertex
of any shortest path between a pair x, y of mutually distant vertices of G and T
is a BFS(c)-tree of G, then, for every vertex v of G, eG(v) ≤ eT (v) ≤ eG(v) +
4i + 2. That is, G admits an eccentricity (4i + 2)-approximating spanning tree
constructible in O(im) time.

Lemma 8. Let G be an αi-metric graph with m edges, and let z ∈ V , x ∈ F (z)
and y ∈ F (x). If c is a middle vertex of any shortest path between x and y
and T is a BFS(c)-tree of G, then, for every vertex v of G, eG(v) ≤ eT (v) ≤
eG(v)+9i+5. That is, G admits an eccentricity (9i+5)-approximating spanning
tree constructible in O(m) time.

It is a folklore by now that the eccentricities of all vertices in any tree
T = (V,U) can be computed in O(|V |) total time. Consequently, by Lemma 7
and Lemma 8, we get the following additive approximations for the vertex eccen-
tricities in αi-metric graphs.

Theorem 4. Let G be an αi-metric graph with m edges. There is an algorithm
which in total linear (O(m)) time outputs for every vertex v ∈ V an estimate
ê(v) of its eccentricity e(v) such that e(v) ≤ ê(v) ≤ e(v) + 9i + 5. Furthermore,
there is an algorithm which in total almost linear (O(im)) time outputs for every
vertex v ∈ V an estimate ê(v) of its eccentricity e(v) such that e(v) ≤ ê(v) ≤
e(v) + 4i + 2.

3 Graphs with α1-Metric

Now we concentrate on α1-metric graphs, which contain all chordal graphs and
all plane triangulations with inner vertices of degree at least 7 (see [10,11,25,39]).
For them we get much sharper bounds. First we recall some known results.

Theorem 5 ([39]). G is an α1-metric graph if and only if all disks D(v, k)
(v ∈ V , k ≥ 1) of G are convex and G does not contain the graph W++

6 from
Fig. 1 as an isometric subgraph.

Fig. 1. Forbidden isometric subgraph W++
6 .

Lemma 9 ([37]). All disks D(v, k) (v ∈ V , k ≥ 1) of a graph G are con-
vex if and only if for every vertices x, y, z ∈ V and v ∈ I(x, y), d(v, z) ≤
max{d(x, z), d(y, z)}.

Letting z to be from F (v), we get:

Corollary 2. If all disks D(v, k) (v ∈ V , k ≥ 1) of a graph G are convex then
for every vertices x, y ∈ V and v ∈ I(x, y), e(v) ≤ max{e(x), e(y)}.

284 F. F. Dragan and G. Ducoffe

Lemma 10 ([25]). Let G be an α1-metric graph and x be its arbitrary vertex
with e(x) ≥ rad(G) + 1. Then, for every vertex z ∈ F (x) and every neighbor v
of x in I(x, z), e(v) ≤ e(x) holds.

3.1 The Eccentricity Function on α1-Metric Graphs is Almost
Unimodal

We prove the following theorem.

Theorem 6. Let G be an α1-metric graph and v be an arbitrary vertex of G. If

(i) e(v) > rad(G) + 1 or
(ii) e(v) = rad(G) + 1 and diam(G) < 2 rad(G) − 1,

then there must exist a neighbor w of v with e(w) < e(v).

Theorem 6 says that if a vertex v with loc(v) > 1 exists in an α1-metric
graph G then diam(G) ≥ 2rad(G) − 1, e(v) = rad(G) + 1 and d(v, C(G)) = 2.
Two α1-metric graphs depicted in Fig. 2 show that this result is sharp.

Fig. 2. Sharpness of the result of Theorem 6. (a) An α1-metric graph G with diam(G) =
2rad(G) − 1 and a vertex (topmost) with locality 2. (b) A chordal graph (and hence
an α1-metric graph) G with diam(G) = 2rad(G) and a vertex (topmost) with locality
2. The number next to each vertex indicates its eccentricity.

We formulate three interesting corollaries of Theorem 6.

Corollary 3. Let G be an α1-metric graph. Then,

(i) if diam(G) < 2rad(G) − 1 (i.e., diam(G) = 2rad(G) − 2) then every local
minimum of the eccentricity function on G is a global minimum.

(ii) if diam(G) ≥ 2rad(G)−1 then every local minimum of the eccentricity func-
tion on G is a global minimum or is at distance 2 from a global minimum.

Corollary 4. For every α1-metric graph G and any vertex v, the following for-
mula is true: d(v, C(G))+rad(G) ≥ e(v) ≥ d(v, C(G))+rad(G)−ε, where ε ≤ 1,
if diam(G) ≥ 2rad(G) − 1, and ε = 0, otherwise.

A path (v = v0, . . . , vk = x) of a graph G from a vertex v to a vertex x is
called strictly decreasing (with respect to the eccentricity function) if for every i
(0 ≤ i ≤ k−1), e(vi) > e(vi+1). It is called decreasing if for every i (0 ≤ i ≤ k−1),
e(vi) ≥ e(vi+1). An edge ab ∈ E of a graph G is called horizontal (with respect
to the eccentricity function) if e(a) = e(b).

αi-Metric Graphs: Radius, Diameter and all Eccentricities 285

Corollary 5. Let G be an α1-metric graph and v be an arbitrary vertex. Then,
there is a shortest path P (v, x) from v to a closest vertex x in C(G) such that:

(i) if diam(G) < 2rad(G) − 1 (i.e., diam(G) = 2rad(G) − 2) then P (v, x) is
strictly decreasing;

(ii) if diam(G) ≥ 2rad(G) − 1 then P (v, x) is decreasing and can have only one
horizontal edge, with an end-vertex adjacent to x.

3.2 Diameters of Centers of α1-Metric Graphs

In this section, we provide sharp bounds on the diameter and the radius of the
center of an α1-metric graph. Previously, it was known that the diameter (the
radius) of the center of a chordal graph is at most 3 (at most 2, respectively) [11].
To prove our result, we will need a few technical lemmas.

Lemma 11. Let G be an α1-metric graph. Then, for every shortest path P =
(x1, x2, x3, x4, x5) and a vertex u of G with d(u, xi) = k for all i ∈ {1, . . . , 5},
there exist vertices t, w, s such that d(t, u) = d(s, u) = k − 1, k − 2 ≤ d(w, u) ≤
k − 1, and t is adjacent to x1, x2, w and s is adjacent to x4, x5, w.

Lemma 12. Let G be an α1-metric graph. Then, for every shortest path P =
(x1, x2, x3, x4, x5) and a vertex u of G with d(u, xi) = k for all i ∈ {1, . . . , 5},
there exists a shortest path Q = (y1, y2, y3) such that d(u, yi) = k − 1, for each
i ∈ {1, . . . , 3}, and N(y1) ∩ P = {x1, x2}, N(y2) ∩ P = {x2, x3, x4} and N(y3) ∩
P = {x4, x5}.
Theorem 7. Let G be an α1-metric graph. For every pair of vertices s, t of G
with d(s, t) ≥ 4 there exists a vertex c ∈ Io(s, t) such that e(c) < max{e(s), e(t)}.
Proof. It is sufficient to prove the statement for vertices s, t with d(s, t) = 4.
We know, by Corollary 2, that e(c) ≤ max{e(s), e(t)} for every c ∈ I(s, t).
Assume, by way of contradiction, that there is no vertex c ∈ Io(s, t) such that
e(c) < max{e(s), e(t)}. Let, without loss of generality, e(s) ≤ e(t). Then, for
every c ∈ Io(s, t), e(c) = e(t). Consider a vertex c ∈ S1(s, t). If e(c) > e(s),
then e(c) = e(s) + 1. Consider a vertex z from F (c). Necessarily, z ∈ F (s).
Applying the α1-metric property to c ∈ I(s, t), s ∈ I(c, z), we get e(c) = e(t) ≥
d(t, z) ≥ d(c, t) + d(s, z) = 3 + e(s) = 2 + e(c), which is impossible. So, e(s) =
e(c) = e(t) for every c ∈ Io(s, t). Consider an arbitrary shortest path P =
(s = x1, x2, x3, x4, x5 = t) connecting vertices s and t. We claim that for any
vertex u ∈ F (x3) all vertices of P are at distance k := d(u, x3) = e(x3) from
u. As e(xi) = e(x3), we know that d(u, xi) ≤ k (1 ≤ i ≤ 5). Assume d(u, xi) =
k − 1, d(u, xi+1) = k, and i ≤ 2. Then, the α1-metric property applied to
xi ∈ I(u, xi+1) and xi+1 ∈ I(xi, xi+3) gives d(xi+3, u) ≥ k − 1 + 2 = k + 1,
which is a contradiction with d(u, xi+3) ≤ k. So, d(u, x1) = d(u, x2) = k. By
symmetry, also d(u, x4) = d(u, x5) = k. Hence, by Lemma 12, for the path
P = (x1, x2, x3, x4, x5), there exists a shortest path Q = (y1, y2, y3) such that
d(u, yi) = k − 1, for each i ∈ {1, . . . , 3}, and N(y1) ∩ P = {x1, x2}, N(y2) ∩ P =

286 F. F. Dragan and G. Ducoffe

{x2, x3, x4} and N(y3) ∩ P = {x4, x5}. As yi ∈ Io(x1, x5) = Io(s, t) for each
i ∈ {1, . . . , 3}, we have e(yi) = e(x3) = k.

All the above holds for every shortest path P = (s = x1, x2, x3, x4, x5 = t)
connecting vertices s and t. Now, assume that P is chosen in such a way that,
among all vertices in S2(s, t), the vertex x3 has the minimum number of furthest
vertices, i.e., |F (x3)| is as small as possible. As y2 also belongs to S2(s, t) and
has u at distance k − 1, by the choice of x3, there must exist a vertex u′ ∈ F (y2)
which is at distance k − 1 from x3. Applying the previous arguments to the
path P ′ := (s = x1, x2, y2, x4, x5 = t), we will have d(xi, u

′) = d(y2, u′) = k
for i = 1, 2, 4, 5 and, by Lemma 12, get two more vertices v and w at distance
k − 1 from u′ such that vx1, vx2, wx4, wx5 ∈ E and vy2, wy2 /∈ E. By convexity
of disk D(u′, k − 1), also vx3, wx3 ∈ E. Now consider the disk D(x2, 2). Since
y3, w are in the disk and x5 is not, vertices w and y3 must be adjacent. But then
vertices y2, x3, w, y3 form an induced cycle C4, which is forbidden because disks
in G must be convex.

Thus, a vertex c ∈ Io(s, t) with e(c) < max{e(s), e(t)} must exist. ��
Corollary 6. Let G be an α1-metric graph. Then, diam(C(G)) ≤ 3 and
rad(C(G)) ≤ 2.

Corollary 6 generalizes an old result on chordal graphs [11]. Finally, note that
results of Theorem 7 and Corollary 6 are sharp.

3.3 Finding a Central Vertex of an α1-Metric Graph

We present a local-search algorithm for computing a central vertex of an arbi-
trary α1-metric graph in subquadratic time (Theorem 8). Our algorithm even
achieves linear runtime on an important subclass of α1-metric graphs, namely,
(α1,Δ)-metric graphs (Theorem 9), thus answering an open question from [25]
where this subclass was introduced. The (α1,Δ)-metric graphs are exactly the
α1-metric graphs that further satisfy the so-called triangle condition: for every
vertices u, v, w such that u and v are adjacent, and d(u,w) = d(v, w) = k, there
must exist some common neighbour x ∈ N(u) ∩ N(v) such that d(x,w) = k − 1.
Chordal graphs, and plane triangulations with inner vertices of degree at least
7, are (α1,Δ)-metric graphs (see [10,11,25,39]).

We first introduce the required new notations and terminology for this part.
In what follows, let proj(v,A) = {a ∈ A : d(v, a) = d(v,A)} denote the metric
projection of a vertex v to a vertex subset A. For every k such that 0 ≤ k ≤
d(v,A), we define Sk(A, v) =

⋃{Sk(a, v) : a ∈ proj(v,A)}. A distance-k gate of
v with respect to A is a vertex v∗ such that v∗ ∈ ⋂{I(a, v) : a ∈ proj(v,A)}
and d(v∗, A) ≤ k. If k = 1, then following [12] we simply call it a gate. Note that
every vertex v such that d(v,A) ≤ k is its own distance-k gate. A cornerstone of
our main algorithms is that, in α1-metric graphs, for every closed neighbourhood
(for every clique, resp.), every vertex has a gate (a distance-two gate, resp.).
Proofs are omitted due to lack of space.

The problem of computing gates has already attracted some attention, e.g.,
see [12]. We use this routine in the design of our main algorithms.

αi-Metric Graphs: Radius, Diameter and all Eccentricities 287

Lemma 13 ([30]). Let A be an arbitrary subset of vertices in some graph G with
m edges. In total O(m) time, we can map every vertex v /∈ A to some vertex
v∗ ∈ D(v, d(v,A)− 1)∩N(A) such that |N(v∗)∩A| is maximized. Furthermore,
if v has a gate with respect to A, then v∗ is a gate of v.

The efficient computation of distance-two gates is more challenging. We
present a subquadratic-time procedure that only works in our special setting.

Lemma 14. Let K be a clique in some α1-metric graph G with m edges. In
total O(m1.41) time, we can map every vertex v /∈ K to some distance-two gate
v∗ with respect to K. Furthermore, in doing so we can also map v∗ to some
independent set JK(v∗) ⊆ D(v∗, 1) such that proj(v∗,K) is the disjoint union
of neighbour-sets N(w) ∩ K, for every w ∈ JK(v∗).

Then, we turn our attention to the following subproblem: being given a vertex
x in an α1-metric graph G, either compute a neighbour y such that e(y) <
e(x), or assert that x is a local minimum for the eccentricity function (but not
necessarily a central vertex). Our analysis of the next algorithms essentially
follows from the results of Sect. 3.1. We first present the following special case,
for which we obtain a better runtime than for the more general Lemma 16.

Lemma 15. Let x be an arbitrary vertex in an α1-metric graph G with m edges.
If e(x) ≥ rad(G) + 2, then

⋂{N(x) ∩ I(x, z) : z ∈ F (x)} 	= ∅, and every
neighbour y in this subset satisfies e(y) < e(x). In particular, there is an O(m)-
time algorithm that either outputs a y ∈ N(x) such that e(y) < e(x), or asserts
that e(x) ≤ rad(G) + 1.

Note that Lemma 15 relies on the existence of gates for every vertex with
respect to D(x, 1), and that it uses Lemma 13 as a subroutine. We can strengthen
Lemma 15 as follows, at the expenses of a higher runtime.

Lemma 16. Let x be an arbitrary vertex in an α1-metric graph G with m edges.
There is an O(m1.41)-time algorithm that either outputs a y ∈ N(x) such that
e(y) < e(x), or asserts that x is a local minimum for the eccentricity function.
If G is (α1,Δ)-metric, then its runtime can be lowered down to O(m).

The improved runtime for (α1,Δ)-metric graphs comes from the property
that for every clique in such a graph, every vertex has a gate [25], and that gates
are easier to compute than distance-two gates.

Theorem 8. If G is an α1-metric graph with m edges, then a vertex x0 such
that e(x0) ≤ rad(G) + 1 can be computed in O(m) time. Furthermore, a central
vertex can be computed in O(m1.71) time.

Let us sketch our algorithm for general α1-metric graphs. By Theorem 2,
we can compute in O(m) time a vertex x0 such that e(x0) ≤ rad(G) + 3. We
repeatedly apply Lemma 15 until we can further assert that e(x0) ≤ rad(G) + 1
(and, hence, by Theorem 6, d(x0, C(G)) ≤ 2). Since there are at most two

288 F. F. Dragan and G. Ducoffe

calls to this local-search procedure, the runtime is in O(m). Now, if x0 has
small enough degree (≤ m.29), then we can apply Lemma 16 to every vertex
of D(x0, 1) in order to compute a minimum eccentricity vertex within D(x0, 2),
which must be central. Otherwise, we further restrict our search for a central
vertex to X1 := D(x0, 5) ∩ D(z0, e(x0) − 1), for some arbitrary z0 ∈ F (x0),
which must be a superset of C(G) provided that x0 is non-central. Starting
from an arbitrary vertex of X1, if we apply Lemma 15 at most five times, then
we can either extract some x1 ∈ X1 such that e(x1) ≤ e(x0), or assert that
x0 is central. If e(x1) < e(x0), then x1 is central. Otherwise, we repeat our
above procedure for x1. Doing so, we compute a decreasing chain of subsets
X0 = V ⊃ X1 ⊃ . . . ⊃ Xi ⊃ . . . XT , and vertices x0, x1, . . . , xi, . . . , xT such that
xi ∈ Xi \ Xi+1 for every i, 0 ≤ i ≤ T . We continue until we compute a vertex of
smaller eccentricity than x0, or we reach XT+1 = ∅ (in which case, x0 is central).

To lower the runtime to O(m) for the (α1,Δ)-metric graphs, we use a different
approach that is based on additional properties of these graphs. Unfortunately,
these properties crucially depend on the triangle condition.

Theorem 9. If G is an (α1,Δ)-metric graph with m edges, then a central vertex
can be computed in O(m) time.

Roughly, the algorithm starts from a vertex x which is a local minimum for
the eccentricity function of G. We run a core procedure which either outputs two
adjacent vertices u, v ∈ D(x, 1) such that e(u) = e(v) = e(x) and F (u), F (v) are
not comparable by inclusion, or outputs a central vertex. In the former case, we
can either assert that x is central, or extract a central vertex from Se(x)−1(y, z)
for some arbitrary y ∈ F (u) \ F (v), z ∈ F (v) \ F (u). Indeed, we can apply
Lemma 16 to the latter slice because Se(x)−1(y, z) ⊆ D(w, 1) for some w [25].

References

1. Abboud, A., Vassilevska Williams, V., Wang, J.: Approximation and fixed param-
eter subquadratic algorithms for radius and diameter in sparse graphs. In: SODA,
pp. 377–391. SIAM (2016)

2. Backurs, A., Roditty, L., Segal, G., Vassilevska Williams, V., Wein, N.: Towards
tight approximation bounds for graph diameter and eccentricities. In: STOC 2018,
pp. 267–280 (2018)

3. Bandelt, H.-J., Chepoi, V.: 1-hyperbolic graphs. SIAM J. Discr. Math. 16, 323–334
(2003)

4. Boltyanskii, V.G., Soltan, P.S.: Combinatorial geometry of various classes of convex
sets [in Russian]. S̆tiinţa, Kishinev (1978)

5. Borassi, M., Crescenzi, P., Habib, M.: Into the square: on the complexity of some
quadratic-time solvable problems. Electron. Notes TCS 322, 51–67 (2016)

6. Brandstädt, A., Chepoi, V., Dragan, F.F.: The algorithmic use of hypertree struc-
ture and maximum neighbourhood orderings. DAM 82, 43–77 (1998)

7. Corneil, D., Dragan, F.F., Habib, M., Paul, C.: Diameter determination on
restricted graph families. DAM 113, 143–166 (2001)

αi-Metric Graphs: Radius, Diameter and all Eccentricities 289

8. Corneil, D.G., Dragan, F.F., Köhler, E.: On the power of BFS to determine a
graph’s diameter. Networks 42, 209–222 (2003)

9. Chechik, S., Larkin, D.H., Roditty, L., Schoenebeck, G., Tarjan, R.E., Vassilevska
Williams, V.: Better approximation algorithms for the graph diameter. In: SODA
2014, pp. 1041–1052 (2014)

10. Chepoi, V.: Some d-convexity properties in triangulated graphs. In: Mathematical
Research, vol. 87, pp. 164–177. Ştiinţa, Chişinău (1986). (Russian)

11. Chepoi, V.: Centers of triangulated graphs. Math. Notes 43, 143–151 (1988)
12. Chepoi, V., Dragan, F.: A linear-time algorithm for finding a central vertex of a

chordal graph. In: van Leeuwen, J. (ed.) ESA 1994. LNCS, vol. 855, pp. 159–170.
Springer, Heidelberg (1994). https://doi.org/10.1007/BFb0049406

13. Chepoi, V., Dragan, F.F.: Finding a central vertex in an HHD-free graph. DAM
131(1), 93–111 (2003)

14. Chepoi, V.D., Dragan, F.F., Estellon, B., Habib, M., Vaxès, Y.: Diameters, centers,
and approximating trees of δ-hyperbolic geodesic spaces and graphs. In: Proceed-
ings of the 24th Annual ACM Symposium on Computational Geometry (SoCG
2008), 9–11 June 2008, College Park, Maryland, USA, pp. 59–68 (2008)

15. Chepoi, V., Dragan, F.F., Habib, M., Vaxès, Y., Alrasheed, H.: Fast approximation
of eccentricities and distances in hyperbolic graphs. J. Graph Algorithms Appl. 23,
393–433 (2019)

16. Dragan, F.F.: Centers of graphs and the Helly property (in Russian). Ph.D. thesis,
Moldava State University, Chişinău (1989)

17. Dragan, F.F.: HT-graphs: centers, connected R-domination and Steiner trees. Com-
put. Sci. J. Moldova (Kishinev) 1, 64–83 (1993)

18. Dragan, F.F.: An eccentricity 2-approximating spanning tree of a chordal graph is
computable in linear time. Inf. Process. Lett. 154, 105873 (2020)

19. Dragan, F.F., Ducoffe, G.: αi-metric graphs: radius, diameter and all eccentricities.
CoRR, abs/2305.02545 (2023)

20. Dragan, F.F., Ducoffe, G.: αi-metric graphs: hyperbolicity. In: Preparation (2022–
2023)

21. Dragan, F.F., Ducoffe, G., Guarnera, H.M.: Fast deterministic algorithms for com-
puting all eccentricities in (hyperbolic) Helly graphs. In: Lubiw, A., Salavatipour,
M. (eds.) WADS 2021. LNCS, vol. 12808, pp. 300–314. Springer, Cham (2021).
https://doi.org/10.1007/978-3-030-83508-8 22

22. Dragan, F.F., Guarnera, H.M.: Eccentricity function in distance-hereditary graphs.
Theor. Comput. Sci. 833, 26–40 (2020)

23. Dragan, F.F., Guarnera, H.M.: Eccentricity terrain of δ-hyperbolic graphs. J. Com-
put. Syst. Sci. 112, 50–65 (2020)

24. Dragan, F.F., Habib, M., Viennot, L.: Revisiting radius, diameter, and all eccen-
tricity computation in graphs through certificates. CoRR, abs/1803.04660 (2018)

25. Dragan, F.F., Köhler, E., Alrasheed, H.: Eccentricity approximating trees. Discret.
Appl. Math. 232, 142–156 (2017)

26. Dragan, F.F., Nicolai, F., Brandstädt, A.: LexBFS-orderings and powers of graphs.
In: d’Amore, F., Franciosa, P.G., Marchetti-Spaccamela, A. (eds.) WG 1996. LNCS,
vol. 1197, pp. 166–180. Springer, Heidelberg (1997). https://doi.org/10.1007/3-
540-62559-3 15

27. Ducoffe, G.: Easy computation of eccentricity approximating trees. DAM 260,
267–271 (2019)

28. Ducoffe, G.: Around the diameter of AT-free graphs. JGT 99(4), 594–614 (2022)

https://doi.org/10.1007/BFb0049406
https://doi.org/10.1007/978-3-030-83508-8_22
https://doi.org/10.1007/3-540-62559-3_15
https://doi.org/10.1007/3-540-62559-3_15

290 F. F. Dragan and G. Ducoffe

29. Ducoffe, G.: Beyond Helly graphs: the diameter problem on absolute retracts. In:
Kowalik, �L, Pilipczuk, M., Rz ↪ażewski, P. (eds.) WG 2021. LNCS, vol. 12911, pp.
321–335. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-86838-3 25

30. Ducoffe, G.: Distance problems within Helly graphs and k-Helly graphs. Theor.
Comput. Sci. 946, 113690 (2023)

31. Ducoffe, G., Dragan, F.F.: A story of diameter, radius, and (almost) Helly property.
Networks 77, 435–453 (2021)

32. Howorka, E.: A characterization of distance-hereditary graphs. Quart. J. Math.
Oxford Ser. 28, 417–420 (1977)

33. Koschützki, D., Lehmann, K.A., Peeters, L., Richter, S., Tenfelde-Podehl, D., Zlo-
towski, O.: Centrality indices. In: Brandes, U., Erlebach, T. (eds.) Network Anal-
ysis. LNCS, vol. 3418, pp. 16–61. Springer, Heidelberg (2005). https://doi.org/10.
1007/978-3-540-31955-9 3

34. Olariu, S.: A simple linear-time algorithm for computing the center of an interval
graph. Int. J. Comput. Math. 34, 121–128 (1990)

35. Prisner, E.: Eccentricity-approximating trees in chordal graphs. Discret. Math.
220, 263–269 (2000)

36. Roditty, L., Vassilevska Williams, V.: Fast approximation algorithms for the diam-
eter and radius of sparse graphs. In: STOC, pp. 515–524. ACM (2013)

37. Soltan, V.P., Chepoi, V.D.: Conditions for invariance of set diameters under d-
convexification in a graph. Cybernetics 19, 750–756 (1983). (Russian, English
transl.)

38. Weimann, O., Yuster, R.: Approximating the diameter of planar graphs in near
linear time. ACM Trans. Algorithms 12(1), 12:1–12:13 (2016)

39. Yushmanov, S.V., Chepoi, V.: A general method of investigation of metric graph
properties related to the eccentricity. In: Mathematical Problems in Cybernetics,
vol. 3, pp. 217–232. Nauka, Moscow (1991). (Russian)

https://doi.org/10.1007/978-3-030-86838-3_25
https://doi.org/10.1007/978-3-540-31955-9_3
https://doi.org/10.1007/978-3-540-31955-9_3

Maximum Edge Colouring Problem
On Graphs That Exclude a Fixed Minor

Zdeněk Dvořák1 and Abhiruk Lahiri2(B)

1 Charles University, 11800 Prague, Czech Republic
rakdver@iuuk.mff.cuni.cz

2 Heinrich Heine University, 40225 Düsseldorf, Germany

abhiruk@hhu.de

Abstract. The maximum edge colouring problem considers the max-
imum colour assignment to edges of a graph under the condition that
every vertex has at most a fixed number of distinct coloured edges inci-
dent on it. If that fixed number is q we call the colouring a maximum
edge q-colouring. The problem models a non-overlapping frequency chan-
nel assignment question on wireless networks. The problem has also been
studied from a purely combinatorial perspective in the graph theory lit-
erature.

We study the question when the input graph is sparse. We show the
problem remains NP-hard on 1-apex graphs. We also show that there
exists PTAS for the problem on minor-free graphs. The PTAS is based on a
recently developed Baker game technique for proper minor-closed classes,
thus avoiding the need to use any involved structural results. This fur-
ther pushes the Baker game technique beyond the problems expressible
in the first-order logic.

Keywords: Polynomial-time approximation scheme · Edge colouring ·
Minor-free graphs

1 Introduction

For a graph G = (V,E), an edge q-colouring of G is a mapping f : E(G) → Z
+

such that the number of distinct colours incident on any vertex v ∈ V (G) is
bounded by q, and the spread of f is the total number of distinct colours it uses.
The maximum edge q-chromatic number χ′

q(G) of G is the maximum spread of
an edge q-colouring of G.

A more general notion has been studied in the combinatorics and graph
theory communities in the context of extremal problems, called anti-Ramsey
number. For given graphs G and H, the anti-Ramsey number ar(G,H) denotes
the maximum number of colours that can be assigned to edges of G so that there
does not exist any subgraph isomorphic to H which is rainbow, i.e., all the edges

Supported by project 22-17398S (Flows and cycles in graphs on surfaces) of Czech
Science Foundation

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
D. Paulusma and B. Ries (Eds.): WG 2023, LNCS 14093, pp. 291–304, 2023.
https://doi.org/10.1007/978-3-031-43380-1_21

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-43380-1_21&domain=pdf
https://doi.org/10.1007/978-3-031-43380-1_21

292 Z. Dvořák and A. Lahiri

of the subgraph receive distinct colours under the colouring. The maximum edge
q-chromatic number of G is clearly equal to ar(G,K1,q+1), where K1,q+1 is a star
with q + 1 edges.

The notion of anti-Ramsey number was introduced by Erdős and Simonovits
in 1973 [14]. The initial studies focused on determining tight bounds for ar(G,H).
A lot of research has been done on the case when G = Kn, the complete graph,
and H is a specific type of a graph (a path, a complete graph, . . .) [26,29,31].
For a comprehensive overview of known results in this area, we refer interested
readers to [17]. Bounds on ar(Kn,H) where H is a star graph are reported
in [21,24]. Gorgol and Lazuka computed the exact value of ar(Kn,H) when H is
K1,4 with an edge added to it [18]. For general graph G, Montellano-Ballesteros
studied ar(G,K1,q) and reported an upper bound [25].

The algorithmic aspects of this problem started gaining attention from
researchers around fifteen years ago, due to its application to wireless net-
works [27]. At that time there was a great interest to increase the capacity
of wireless mesh networks (which are commonly called wireless broadband nowa-
days). The solution that became the industry standard is to use multiple chan-
nels and transceivers with the ability to simultaneously communicate with many
neighbours using multiple radios over the channels [27]. Wireless networks based
on the IEEE 802.11a/b/g and 802.16 standards are examples of such systems.
But, there is a physical bottleneck in deploying this solution. Enabling every
wireless node to have multiple radios can possibly create an interface and thus
reduce reliability. To circumvent that, there is a limit on the number of channels
simultaneously used by any wireless node. In the IEEE 802.11 b/g standard and
IEEE 802.11a standard, the numbers of permittable simultaneous channels are
3 and 12, respectively [34].

If we model a wireless network as a graph where each wireless node cor-
responds to a vertex of the graph, then the problem can be formulated as a
maximum edge colouring problem. The nonoverlapping channels can be associ-
ated with distinct colours. On each vertex of the graph, the number of distinctly
coloured edges allowed to be incident on it captures the limit on the number of
channels that can be used simultaneously at each wireless node. The question
of how many channels can be used simultaneously by a given network translates
into the number of colours that can be used in a maximum edge colouring.

Devising an efficient algorithm for the maximum edge q-colouring problem
is not an easy task. In [1], the problem is reported NP-hard for every q ≥ 2.
The authors further showed that the problem is hard to approximate within a
factor of (1 + 1

q) for every q ≥ 2, assuming the unique games conjecture [2]. A
simple 2-approximation algorithm for the maximum edge 2-colouring problem
is reported in [15]. The same algorithm from [15] has an approximation ratio of
5/3 with the additional assumption that the graph has a perfect matching [2].
It is also known that the approximation ratio can be improved to 8/5 if the
input graph is assumed to be triangle-free [7]. An almost tight analysis of the
algorithm is known for the maximum edge q-colouring problem (q ≥ 3) when
the input graph satisfies certain degree constraints [6]. The q = 2 case is also
known to be fixed-parameter tractable [19].

Maximum Edge Colouring Problem On Graphs That Exclude a Fixed Minor 293

In spite of several negative theoretical results, the wireless network question
continued drawing the attention of researchers due to its relevance in appli-
cations. There are several studies focusing on improving approximation under
further assumptions on constraints that are meaningful in practical applica-
tions [23,30,33,34]. This motivates us to study the more general question on
a graph class that captures the essence of wireless mesh networks. Typically,
disk graphs and unit disk graphs are well-accepted abstract models for wireless
networks. But they can capture more complex networks than what a real-life
network looks like [30]. By definition, both unit disk graphs and disk graphs
can have arbitrary size cliques. In a practical arrangement of a wireless mesh
network, it is quite unlikely to place too many wireless routers in a small area.
In other words, a real-life wireless mesh network can be expected to be fairly
sparse and avoid large cliques. In this paper, we focus on a popular special case
of sparse networks, those avoiding a fixed graph as a minor. In particular, this
includes the graphs that can be made planar by deletion of a bounded number
k of vertices (the k-apex graphs).

From a purely theoretical perspective, the graphs avoiding a fixed minor are
interesting on their own merit. Famously, they admit the structural decompo-
sition devised by Robertson and Seymour [28], but also have many interesting
properties that can be shown directly, such as the existence of sublinear sep-
arators [3] and admitting layered decomposition into pieces of bounded weak
diameter [22]. They have been also intensively studied from the algorithmic per-
spective, including the PTAS design. Several techniques for this purpose have been
developed over the last few decades. The bidimensionality technique bounds the
treewidth of the graph in terms of the size of the optimal solution and uses the
balanced separators to obtain the approximation factor [10,16]. A completely dif-
ferent approach based on local search is known for unweighted problems [5,20].
Dvořák used thin systems of overlays [12] and a generalization of Baker’s layer-
ing approach [4,13] to obtain PTASes for a wide class of optimization problems
expressible in the first-order logic and its variations.

1.1 Our results

Our contribution is twofold. First, we show that the maximum edge q-colouring
problem is NP-hard on 1-apex graphs. Our approach is similar in spirit to the
approximation hardness reduction for the problem on general graphs [1].

Secondly, we show that there exists a PTAS for the maximum edge q-colouring
problem for graphs avoiding a fixed minor. The result uses the Baker game
approach devised in [13], avoiding the use of involved structural results. The
technique was developed to strengthen and simplify the results of [9] giving
PTASes for monotone optimization problems expressible in the first-order logic.
Our work demonstrates the wider applicability of this technique to problems not
falling into this framework.

294 Z. Dvořák and A. Lahiri

2 Preliminaries

A graph H is a minor of a graph G if a graph isomorphic to H can be obtained
from a subgraph of G by a series of edge contractions. We say that G is H-minor-
free if G does not contain H as a minor. A graph is called planar if it can be
drawn in the plane without crossings. A graph G is a k-apex graph if there exists
a set A ⊆ V (G) of size at most k such that G − A is planar. The k-apex graphs
are one of the standard examples of graphs avoiding a fixed minor; indeed, they
are Kk+5-minor-free.

Given a function f assigning colours to edges of a graph G and a vertex
v ∈ V (G), we write f(v) to denote the set {f(e) : e is adjacent to v}, and
f(G) = {f(e) : e ∈ E(G)}. Recall that f is an edge q-colouring of G if and only
if |f(v)| ≤ q for every v ∈ V (G), and the maximum edge q-chromatic number of
G is

χ′
q(G) = max{|f(G)| : f is an edge q-colouring of G}.

A matching in a graph G is a set of edges of G where no two are incident
with the same vertex. A matching M is maximal if it is not a proper subset
of any other matching. Note that a maximal matching is not necessarily the
largest possible. Let |G| denote |V (G)|+ |E(G)|. For all other definitions related
to graphs not defined in this article, we refer readers to any standard graph
theory textbook, such as [11].

3 PTAS for Minor-Free Graphs

Roughly speaking, we employ a divide-and-conquer approach to approximate
χ′

q(G), splitting G into vertex disjoint parts G1, . . . , Gm in a suitable way,
solving the problem for each part recursively, and combining the solutions. An
issue that we need to overcome is that it may be impossible to compose the edge
q-colourings, e.g., if an edge (v1, v2) joins distinct parts and disjoint sets of q
colours are used on the neighbourhoods of v1 and v2 already. To overcome this
issue, we reserve the colour 0 to be used to join the “boundary” vertices. This
motivates the following definition.

For a set S of vertices of a graph G, an edge q-colouring f is S-composable if
|f(v)\{0}| ≤ q−1 for every v ∈ S. Let χ′

q(G,S) denote the maximum number of
non-zero colours that can be used by an S-composable edge q-colouring of G. Let
us remark that G has an S-composable edge q-colouring using any non-negative
number k′ ≤ χ′

q(G,S) of non-zero colours, as all edges of any colour c �= 0 can
be recoloured to 0.

Observation 1 For any graph G, we have χ′
q(G) = χ′

q(G, ∅), and χ′
q(G, S) ≤

χ′
q(G) for any S ⊆ V (G).

We need the following approximation for χ′
q(G,S) in terms of the size of a

maximal matching, analogous to one for edge 2-colouring given in [15]. Let us
remark that the S-composable edge q-colouring problem is easy to solve for q = 1,

Maximum Edge Colouring Problem On Graphs That Exclude a Fixed Minor 295

since we have to use colour 0 on all edges of each component intersecting S and
we can use a distinct colour for all edges of any other component. Consequently,
in all further claims, we assume q ≥ 2.

Observation 2 For any graph G, any S ⊆ V (G), any maximal matching M in
G, and any q ≥ 2,

|M | ≤ χ′
q(G,S) ≤ χ′

q(G) ≤ 2q|M |.
Proof. We can assign to each edge of M a distinct positive colour and to all
other edges (if any) the colour 0, obtaining an S-composable edge 2-colouring
using |M | non-zero colours. On the other hand, consider the set X of vertices
incident with the edges of M . By the maximality of M , the set X is a vertex
cover of G, i.e., each edge of G is incident with a vertex of X, and thus at most
q|X| = 2q|M | colours can be used by any edge q-colouring of G.

In particular, as we show next, the lower bound implies that the S-
composable edge q-colouring problem is fixed-parameter tractable when param-
eterized by the value of the solution (a similar observation on the maximum edge
2-colouring is reported in [19]).

Observation 3 There exists an algorithm that, given a graph G, a set S ⊆
V (G), and integers q ≥ 2 and s, in time Oq,s(|G|) returns an S-composable edge
q-colouring of G using at least min(χ′

q(G,S), s) colours.

Proof. We can in linear time find a maximal matching M in G. If |M | ≥ s, we
return the colouring that gives each edge of M a distinct non-zero colour and
all other edges colour 0. Otherwise, the set X of vertices incident with M is a
vertex cover of G of size at most 2s−2, and thus G has treewidth at most 2s−2.
Note also that for any s′, there exists a formula ϕs′,q in monadic second-order
logic such that G,S,E0, . . . , Es′ |= ϕs′,q if and only if E0, . . . , Es′ is a partition
of the edges of G with all parts except possibly for E0 non-empty such that the
function f defined by letting f(e) = i for each i ∈ {0, . . . , s′} and e ∈ Ei is an
S-composable edge q-colouring of G. Therefore, we can find an S-composable
edge q-colouring of G with the maximum number s′ ≤ s of non-zero colours
using Courcelle’s theorem [8] in time Oq,s(|G|).

A layering of a graph G is a function λ : V (G) → Z
+ such that |λ(u)−λ(v)| ≤

1 for every edge (u, v) ∈ E(G). In other words, the graph is partitioned into layers
λ−1(i) for i ∈ Z

+ such that edges of G only appear within the layers and between
the consecutive layers. Baker [4] gave a number of PTASes for planar graphs
based on the fact that in a layering of a connected planar graph according to
the distance from a fixed vertex, the union of a constant number of consecutive
layers induces a subgraph of bounded treewidth. This is not the case for graphs
avoiding a fixed minor in general, however, a weaker statement expressed in
terms of Baker game holds. We are going to describe that result in more detail
in the following subsection. Here, let us state the key observation that makes
layering useful for approximating the edge q-chromatic number.

296 Z. Dvořák and A. Lahiri

For integers r ≥ 2 and m such that 0 ≤ m ≤ r −1, the (λ, r,m)-stratification
of a graph G is the pair (G′, S′) such that

– G′ is obtained from G by deleting all edges uv such that λ(u) ≡ m (mod r)
and λ(v) ≡ m + 1 (mod r), and

– S′ is the set of vertices of G incident with the edges of E(G) \ E(G′).

Lemma 1. Let G be a graph, S a subset of its vertices, and q, r ≥ 2 integers.
Let λ be a layering of G. For m ∈ {0, . . . , r − 1}, let (Gm, Sm) be the (λ, r,m)-
stratification of G.

– χ′
q(Gm, S ∪ Sm) ≤ χ′

q(G,S) for every m ∈ {0, . . . , r − 1}.
– There exists m ∈ {0, . . . , r−1} such that χ′

q(Gm, S∪Sm) ≥
(
1− 6q

r

)
χ′

q(G,S).

Proof. Given an (S ∪ Sm)-composable edge q-colouring of Gm, we can assign
the colour 0 to all edges of E(G) \ E(Gm) and obtain an S-composable edge
q-colouring of G using the same number of non-zero colours, which implies that
χ′

q(Gm, S ∪ Sm) ≤ χ′
q(G,S).

Conversely, consider an S-composable edge q-colouring f of G using k =
χ′

q(G,S) non-zero colours. For m ∈ {0, . . . , r −1}, let Bm be the bipartite graph
with vertex set Sm and edge set E(G) \ E(Gm) and let Mm be a maximal
matching in Bm. Let P be a partition of the set {0, . . . , r − 1} into at most
three disjoint parts such that none of the parts contains two integers that are
consecutive modulo r. For each P ∈ P, let MP =

⋃
m∈P Mm, and observe that

MP is a matching in G. By Observation 2, it follows that k ≥ |MP |, and thus

3k ≥ |P |k ≥
∑
P∈P

|MP | =
r−1∑
m=0

|Mm|.

Hence, we can fix m ∈ {0, . . . , r − 1} such that |Mm| ≤ 3
r k. By Observation 2,

any edge q-colouring of Bm, and in particular the restriction of f to the edges
of Bm, uses at most 2q|Mm| ≤ 6q

r k distinct colours.
Let f ′ be the edge q-colouring of G obtained from f by recolouring all edges

whose colour appears on the edges of Bm to colour 0. Clearly f ′ uses at least(
1 − 6q

r

)
k non-zero colours. Moreover, each vertex v ∈ Sm is now incident with

an edge of colour 0, and thus |f ′(v) \ {0}| ≤ q − 1. Therefore, the restriction of
f ′ to E(Gm) is an (S ∪ Sm)-composable edge q-colouring, implying that

χ′
q(Gm, S ∪ Sm) ≥

(
1 − 6q

r

)
k =

(
1 − 6q

r

)
χ′

q(G,S).

Hence, if r � q, then a good approximation of χ′
q(Gm, S ∪ Sm) for all m ∈

{0, . . . , r−1} gives a good approximation for χ′
q(G,S). We will also need a similar

observation for vertex deletion; here we only get an additive approximation in
general, but as long as the edge q-chromatic number is large enough, this suffices
(and if it is not, we can determine it exactly using Observation 3).

Maximum Edge Colouring Problem On Graphs That Exclude a Fixed Minor 297

Lemma 2. Let G be a graph, S a set of its vertices, and v a vertex of G. Let
S′ = (S \ {v}) ∪ N(v). For any integer q ≥ 2, we have

χ′
q(G,S) ≥ χ′

q(G − v, S′) ≥ χ′
q(G,S) − q,

and in particular if ε > 0 and χ′
q(G,S) ≥ q/ε, then

χ′
q(G − v, S′) ≥ (1 − ε)χ′

q(G,S).

Proof. Any S′-composable edge q-colouring of G−v extends to an S-composable
edge q-colouring of G by giving all edges incident on v colour 0, implying that
χ′

q(G,S) ≥ χ′
q(G − v, S′). Conversely, any S-composable edge q-colouring of G

can be turned into an S′-composable edge q-colouring of G − v by recolouring
all edges whose colour appears on the neighbourhood of v to 0 and restricting
it to the edges of G − v. This loses at most q non-zero colours (those appearing
on the neighborhood of v), and thus χ′

q(G − v, S′) ≥ χ′
q(G,S) − q. �

3.1 Baker game

For an infinite sequence r = r1, r2, . . . and an integer s ≥ 0, let tail(r) denote the
sequence r2, r3, . . . and let head(r) = r1. Baker game is played by two players
Destroyer and Preserver on a pair (G, r), where G is a graph and r is a sequence
of positive integers. The game stops when V (G) = ∅, and Destroyer’s objective
is to minimise the number of rounds required to make the graph empty. In each
round of the game, either

– Destroyer chooses a vertex v ∈ V (G), Preserver does nothing and the game
moves to the state (G \ {v}, tail(r)), or

– Destroyer selects a layering λ of G, Preserver selects an interval I of head(r)
consecutive integers and the game moves to the state (G[λ−1(I)], tail(r)). In
other words, Preserver selects head(r) consecutive layers and the rest of the
graph is deleted.

Destroyer wins in k rounds on the state (G, r) if regardless of Preserver’s strat-
egy, the game stops after at most k rounds. As we mentioned earlier Destroyer’s
objective is to minimise the number of rounds of this game and it is known that
they will succeed if the game is played on a graph that forbids a fixed minor
(the upper bound on the number of rounds depends only on the sequence r and
the forbidden minor, not on G).

Theorem 1 (Dvořák [13]). For every graph F and every sequence r =
r1, r2, . . . of positive integers, there exists a positive integer k such that for every
graph G avoiding F as a minor, Destroyer wins Baker game from the state (G, r)
in at most k rounds. Moreover, letting n = |V (G)|, there exists an algorithm that
preprocesses G in time OF (n2) and then in each round determines a move for
Destroyer (leading to winning in at most k rounds in total) in time OF,r(n).

Let us now give the algorithm for approximating the edge q-chromatic num-
ber on graphs for which we can quickly win Baker game.

298 Z. Dvořák and A. Lahiri

Lemma 3. There exists an algorithm that, given

– a graph G, a set S ⊆ V (G), an integer q ≥ 2, and
– a sequence r = r1, r2, . . . of positive integers such that Destroyer wins Baker

game from the state (G, r) in at most k rounds, and in each state that arises
in the game is able to determine the move that achieves this in time T ,

returns an S-composable edge q-colouring of G using at least
(∏k

i=1

(
1 − 6q

ri

)) ·
χ′

q(G,S) non-zero colours, in time Or,k,q(|G|T).

Proof. First, we run the algorithm from Observation 3 with s = �r1/3�. If the
obtained colouring uses less than s non-zero colours, it is optimal and we return
it. Otherwise, we know that χ′

q(G,S) ≥ s. In particular, E(G) �= ∅, and thus
Destroyer have not won the game yet.

Let R =
(∏k

i=2

(
1 − 6q

ri

))
. Let us now consider two cases depending on

Destroyer’s move from the state (G, r).

– Suppose that Destroyer decides to delete a vertex v ∈ V (G). We apply the
algorithm recursively for the graph G − v, set S′ = (S \ {v}) ∪ N(v), and
the sequence tail(r), obtaining an S′-composable edge q-colouring f of G − v
using at least R · χ′

q(G − v, S′) non-zero colours. By Lemma 2 with ε = q
s , we

conclude that f uses at least

R · χ′
q(G − v, S′) ≥ R(1 − ε)χ′

q(G,S) ≥ R
(
1 − 6q

r1

)
χ′

q(G,S)

non-zero colours. We turn f into an S-composable edge q-colouring of G by
giving all edges incident on v colour 0 and return it.

– Suppose that Destroyer chooses a layering λ. We now recurse into several
subgraphs, each corresponding to a valid move of Preserver. For each m ∈
{0, . . . , r1 − 1}, let (Gm, Sm) be the (λ, r1,m)-stratification of Gm. Note that
Gm is divided into parts Gm,1, . . . , Gm,tm , each contained in the union of r1
consecutive layers of λ. For each m ∈ {0, . . . , r1−1} and each i ∈ {1, . . . , tm},
we apply the algorithm recursively for the graph Gm,i, set Sm,i = (Sm ∪
S) ∩ V (Gm,i), and the sequence tail(r), obtaining an Sm,i-composable edge
q-colouring fm,i of Gm,i using at least R · χ′

q(Gm,i, Sm,i) non-zero colours.
Let fm be the union of the colourings fm,i for i ∈ {1, . . . , tm} and observe
that fm is an (S ∪ Sm)-composable edge q-colouring of Gm using at least
R ·χ′

q(Gm, S ∪Sm) non-zero colours. We choose m ∈ {0, . . . , r1 −1} such that
fm uses the largest number of non-zero colours, extend it to an S-composable
edge q-colouring of G by giving all edges of E(G)\E(Gm) colour 0, and return
it. By Lemma 1, the colouring uses at least

R · χ′
q(Gm, S ∪ Sm) ≥ R

(
1 − 6q

r1

)
χ′

q(G,S)

non-zero colours, as required.

Maximum Edge Colouring Problem On Graphs That Exclude a Fixed Minor 299

For the time complexity, note that each vertex and edge of G belongs to at most∏d
i=1 ri subgraphs processed at depth d of the recursion, and since the depth of

the recursion is bounded by k, the sum of the sizes of the processed subgraphs is
Or,k,q(|G|). Excluding the recursion and time needed to select Destroyer’s moves,
the actions described above can be performed in linear time. Consequently, the
total time complexity is Or,k,q(|G|T).

Our main result is then just a simple combination of this lemma with Theo-
rem 1.

Theorem 2. There exists an algorithm that given an F -minor-free graph G and
integers q, p ≥ 2, returns in time OF,p,q(|G|2) an edge q-colouring of G using at
least (1 − 1/p)χ′

q(G) colours.

Proof. Let r be the infinite sequence such that ri = 10pqi2 for each positive
integer i, and let k be the number of rounds in which Destroyer wins Baker game
from the state (G′, r) for any F -minor-free graph G′, using the strategy given
by Theorem 1. Note that

R =
k∏

i=1

(
1 − 6q

ri

) ≥ 1 −
∞∑

i=1

6q

ri

= 1 − 3
5p

∞∑
i=1

1
i2

= 1 − 3
5p

· π2

6
≥ 1 − 1

p
.

Let n = |G|. After running the preprocessing algorithm from Theorem 1, we
apply the algorithm from Lemma 3 with S = ∅ and T = OF,r(n) = OF,p,q(n),
obtaining an edge q-colouring of G using at least R · χ′

q(G, ∅) = R · χ′
q(G) ≥

(1 − 1/p)χ′
q(G) colours, in time OF,p,q(n2). �

4 Hardness on 1-apex graphs

In this section, we study the complexity of the maximum edge 2-colouring prob-
lem on 1-apex graphs. We present a reduction from Planar (≤3, 3)-SAT which
is known to be NP-hard [32].

The incidence graph G(ϕ) of a Boolean formula ϕ in conjunctive normal
form is the bipartite graph whose vertices are the variables appearing in ϕ and
the clauses of ϕ, and each variable is adjacent exactly to the clauses in which
it appears. A Boolean formula ϕ in conjunctive normal form is called Planar
(≤3, 3)-SAT if

– each clause of ϕ contains at most three distinct literals,
– each variable of ϕ appears in exactly three clauses,
– the incidence graph G(ϕ) is planar.

300 Z. Dvořák and A. Lahiri

In Planar (≤3, 3)-SAT problem, we ask whether such a formula ϕ has a satis-
fying assignment.

We follow the strategy used in [1], using an intermediate maximum edge 1, 2-
colouring problem. The instance of this problem consists of a graph G, a function
g : V (G) → {1, 2}, and a number t. An edge g-colouring of G is an edge colouring
f such that |f(v)| ≤ g(v) for each v ∈ V (G). The objective is to decide whether
there exists an edge g-colouring of G using at least t distinct colours. We show
the maximum edge {1, 2}-colouring problem is NP-hard on 1-apex graphs by
establishing a reduction from Planar (≤ 3, 3)-SAT problem. We then use this
result to show that the maximum edge q-colouring problem on planar graphs is
NP-hard when q ≥ 2. Let us start by establishing the intermediate result.

Lemma 4. The maximum edge {1, 2}-colouring problem is NP-hard even when
restricted on the class of 1-apex graphs.

Proof. Consider a given Planar (≤3, 3)-SAT formula ϕ with m clauses and n
variables and a plane drawing of its incidence graph G(ϕ). Let the clauses of ϕ
be c1, . . . , cm and the variables x1, . . . , xn; we use the same symbols for the
corresponding vertices of G(ϕ).

Let H be a graph obtained from G(ϕ) as follows. For all j ∈ {1, 2, . . . , n},
if the clauses in which xj appears are c�j,1 , c�j,2 , and c�j,3 , split xj to three
vertices xj,1, xj,2, and xj,3, where xj,a is adjacent to c�j,a for a ∈ {1, 2, 3}. For
1 ≤ a < b ≤ 3, add a vertex nj,a,b and if xj appears positively in c�j,a and
negatively in c�j,b or vice versa, make it adjacent to xj,a and xj,b (otherwise
leave it as an isolated vertex). Finally, we add a new vertex u adjacent to ci for
i ∈ {1, . . . , m} and to nj,a,b for j ∈ {1, . . . , n} and 1 ≤ a < b ≤ 3. Clearly, H is
a 1-apex graph, since H − u is planar.

Let us define the function g : V (H) → {1, 2} as follows:

– g(u) = 1,
– g(ci) = 2 for all i ∈ {1, 2, . . . ,m},
– g(xj,a) = 1 for all j ∈ {1, 2, . . . , n} and a ∈ {1, 2, 3}, and
– g(nj,a,b) = 2 for all j ∈ {1, 2, . . . , n} and 1 ≤ a < b ≤ 3.

First, we show if there exists a satisfying assignment for the formula ϕ, then
H has an edge g-colouring using n+1 colours. For i ∈ {1, . . . , n}, choose a vertex
xj,a adjacent to ci such that the (positive or negative) literal of ci containing
the variable xj is true in the assignment, and give colour i to the edge (ci, xj,a)
and all other edges incident on xj,a (if any). All other edges receive colour 0.

Clearly, u is only incident with edges of colour 0, for each j ∈ {1, . . . , n}
and a ∈ {1, . . . , 3} all edges incident on xj,a have the same colour, and for each
i ∈ {1, . . . , m}, the edges incident on ci have colours 0 and i. Finally, consider
a vertex nj,a,b for some j ∈ {1, . . . , n} and 1 ≤ a < b ≤ 3 adjacent to xj,a

and xj,b. By the construction of H, the variable xj appears positively in c�j,a

and negatively in c�j,b or vice versa, and thus at most one of the corresponding
literals is true in the assignment. Hence, nj,a,b is incident with edges of colour 0
and of at most one of the colours �j,a and �j,b.

Maximum Edge Colouring Problem On Graphs That Exclude a Fixed Minor 301

Conversely, suppose that there exists an edge g-colouring f of H using at
least m+1 distinct colours, and let us argue that there exists a satisfying assign-
ment for ϕ. Since g(u) = 1, we can without loss of generality assume that each
edge incident with u has colour 0. If a colour c �= 0 is used to colour the edge
(nj,a,b, xj,k) for some j ∈ {1, . . . , n}, 1 ≤ a < b ≤ 3, and k ∈ {a, b}, then since
g(xj,k) = 1, this colour is also used on the edge (xj,k, c�j,k). Hence, every non-
zero colour appears on an edge incident with a clause. Since each clause is also
joined to u by an edge of colour 0, it can be only incident with edges of one
other colour. Since f uses at least m + 1 colours, we can without loss of gen-
erality assume that for i ∈ {1, . . . , m}, there exists an edge (ci, xj,a) for some
j ∈ {1, . . . , n} and a ∈ {1, . . . , 3} of colour i. Assign to xj the truth value that
makes the literal of ci in which it appears true.

We only need to argue that this rule does not cause us to assign to xj both
values true and false. If that were the case, then there would exist 1 ≤ a < b ≤ 3
such that the variable xj appears positively in clause c�j,a and negatively in
clause c�j,b or vice versa, the edge corresponding to the variable xj,a has colour
�j,a and the edge corresponding to the variable xj,b has colour �j,b. However,
since g(xj,a) = g(xj,b) = 1, this would imply that nj,a,b is incident with the
edge (nj,a,b, xj,a) of colour �j,a, the edge (nj,a,b, xj,b) of colour �j,b, and the edge
(nj,a,b, u) of colour 0, which is a contradiction.

Therefore, we described how to transform in polynomial time a Planar
(≤3, 3)-SAT instance ϕ to an equivalent instance H, g, t = m+1 of the maximum
edge {1, 2}-colouring problem. �

Now we are ready to prove the main theorem of this section. The proof
strategy is similar to the APX-hardness proof in [1]. We include the details for
completeness.

Theorem 3. For an arbitrary integer q ≥ 2 the maximum edge q-colouring
problem is NP-hard even when the input instance is restricted to 1-apex graphs.

Proof. We construct a reduction from the maximum edge {1, 2}-colouring prob-
lem on 1-apex graphs. Let G, g, t be an instance of this problem, and let
n = |V (G)| and r = |{v ∈ V (G) : g(v) = 1}|. We create a graph G′ from G
by adding for each vertex v ∈ V (G) exactly q − g(v) pendant vertices adjacent
to v. Clearly, G′ is an 1-apex graph. We show that G has an edge g-colouring
using at least t distinct colours if and only if G′ has an edge q-colouring using
at least t + r + (q − 2)n colours.

In one direction, given an edge g-colouring of G using at least t colours, we
colour each of the added pendant edges using a new colour, obtaining an edge
q-colouring of G using at least t + r + (q − 2)n colours.

Conversely, let f be an edge q-colouring of G′ using at least t + r + (q − 2)n
colours. Process the vertices v ∈ V (G) one by one, performing for each of them
the following operation: For each added pendant vertex u adjacent to v in order,
let c′ be the colour of the edge (u, v), delete u, and if v is incident with an edge e
of colour c �= c′, then recolour all remaining edges of colour c′ to c. Note that the
number of eliminated colours is bounded by the number r + (q − 2)n of pendant

302 Z. Dvořák and A. Lahiri

vertices, and thus the resulting colouring still uses at least t colours. Moreover,
at each vertex v ∈ V (G), we either end up with all edges incident on v having the
same colour or we eliminated one colour from the neighbourhood of v for each
adjacent pendant vertex; in the latter case, since |f(v)| ≤ q and v is adjacent to
q − g(v) pendant vertices, at most g(v) colours remain on the edges incident on
v. Hence, we indeed obtain an edge g-colouring of G using at least t colours. �

5 Future directions

We conclude with some possible directions for future research. The maximum
edge 2-colouring problem on 1-apex graphs is NP-hard. But the complexity of the
problem is unknown when the input is restricted to planar graphs. We consider
this an interesting question left unanswered. The best-known approximation
ratio is known to be 2, without any restriction on the input instances. Whereas,
a lower bound of (1+q

q), for q ≥ 2 is known assuming unique games conjecture.
There are not many new results reported in the last decade that bridge this gap.
We think, even a (2−ε) algorithm, for any ε > 0, will be a huge progress towards
that direction. The Baker game technique can yield PTASes for monotone opti-
mization problems beyond problems expressible in the first-order logic. Clearly,
the technique can’t be extended to the entire class of problems expressible in
the monadic second-order logic. It will be interesting to characterise the prob-
lems expressible in the monadic second-order logic where the Baker game yield
PTASes.

Acknowledgement. The second author likes to thank Benjamin Moore, Jatin Batra,
Sandip Banerjee and Siddharth Gupta for helpful discussions on this project. He also
likes to thank the organisers of Homonolo for providing a nice and stimulating research
environment.

References

1. Adamaszek, A., Popa, A.: Approximation and hardness results for the maximum
edge q-coloring problem. In: Cheong, O., Chwa, K.-Y., Park, K. (eds.) ISAAC
2010, Part II. LNCS, vol. 6507, pp. 132–143. Springer, Heidelberg (2010). https://
doi.org/10.1007/978-3-642-17514-5 12

2. Adamaszek, A., Popa, A.: Approximation and hardness results for the maximum
edge Q-coloring problem. J. Discret. Algorithms 38-41, 1–8 (2016). https://doi.
org/10.1016/j.jda.2016.09.003

3. Alon, N., Seymour, P.D., Thomas, R.: A separator theorem for graphs with an
excluded minor and its applications. In: Proceedings of the 22nd Annual ACM
Symposium on Theory of Computing, 13–17 May 1990, Baltimore, Maryland, USA,
pp. 293–299. ACM (1990). https://doi.org/10.1145/100216.100254

4. Baker, B.S.: Approximation algorithms for NP-complete problems on planar
graphs. J. ACM 41(1), 153–180 (1994). https://doi.org/10.1145/174644.174650

5. Cabello, S., Gajser, D.: Simple PTAS’s for families of graphs excluding a minor.
Discret. Appl. Math. 189, 41–48 (2015). https://doi.org/10.1016/j.dam.2015.03.
004

https://doi.org/10.1007/978-3-642-17514-5_12
https://doi.org/10.1007/978-3-642-17514-5_12
https://doi.org/10.1016/j.jda.2016.09.003
https://doi.org/10.1016/j.jda.2016.09.003
https://doi.org/10.1145/100216.100254
https://doi.org/10.1145/174644.174650
https://doi.org/10.1016/j.dam.2015.03.004
https://doi.org/10.1016/j.dam.2015.03.004

Maximum Edge Colouring Problem On Graphs That Exclude a Fixed Minor 303

6. Chandran, L.S., Hashim, T., Jacob, D., Mathew, R., Rajendraprasad, D., Singh,
N.: New bounds on the anti-Ramsey numbers of star graphs. CoRR abs/1810.00624
(2018). https://arxiv.org/abs/1810.00624

7. Chandran, L.S., Lahiri, A., Singh, N.: Improved approximation for maximum edge
colouring problem. Discrete Appl. Math. 319, 42–52 (2022). https://doi.org/10.
1016/j.dam.2021.05.017

8. Courcelle, B.: The monadic second-order logic of graphs. I. Recognizable sets of
finite graphs. Inf. Comput. 85(1), 12–75 (1990). https://doi.org/10.1016/0890-
5401(90)90043-H

9. Dawar, A., Grohe, M., Kreutzer, S., Schweikardt, N.: Approximation schemes for
first-order definable optimisation problems. In: 21th IEEE Symposium on Logic in
Computer Science (LICS 2006), 12–15 August 2006, Seattle, WA, USA, Proceed-
ings, pp. 411–420. IEEE Computer Society (2006). https://doi.org/10.1109/LICS.
2006.13

10. Demaine, E.D., Hajiaghayi, M.T.: Bidimensionality: new connections between FPT
algorithms and PTASs. In: Proceedings of the Sixteenth Annual ACM-SIAM
Symposium on Discrete Algorithms, SODA 2005, Vancouver, British Columbia,
Canada, 23–25 January 2005, pp. 590–601. SIAM (2005). https://dl.acm.org/
citation.cfm?id=1070432.1070514

11. Diestel, R.: Graph Theory. Graduate Texts in Mathematics, vol. 173, 4th edn.
Springer, Heidelberg (2012)

12. Dvorák, Z.: Thin graph classes and polynomial-time approximation schemes. In:
Proceedings of the Twenty-Ninth Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA 2018, New Orleans, LA, USA, 7–10 January 2018, pp. 1685–
1701. SIAM (2018). https://doi.org/10.1137/1.9781611975031.110

13. Dvorák, Z.: Baker game and polynomial-time approximation schemes. In: Proceed-
ings of the 2020 ACM-SIAM Symposium on Discrete Algorithms, SODA 2020, Salt
Lake City, UT, USA, 5–8 January 2020, pp. 2227–2240. SIAM (2020). https://doi.
org/10.1137/1.9781611975994.137

14. Erdös, P., Simonovits, M., Sós, V.T.: Anti-Ramsey theorems. Infinite Finite Sets
(Colloquium, Keszthely, 1973; dedicated to P. Erdös on his 60th birthday) 10(II),
633–643 (1975)

15. Feng, W., Zhang, L., Wang, H.: Approximation algorithm for maximum edge col-
oring. Theor. Comput. Sci. 410(11), 1022–1029 (2009). https://doi.org/10.1016/j.
tcs.2008.10.035

16. Fomin, F.V., Lokshtanov, D., Raman, V., Saurabh, S.: Bidimensionality and
EPTAS. In: Proceedings of the Twenty-Second Annual ACM-SIAM Symposium
on Discrete Algorithms, SODA 2011, San Francisco, California, USA, 23–25 Jan-
uary 2011, pp. 748–759. SIAM (2011). https://doi.org/10.1137/1.9781611973082.
59

17. Fujita, S., Magnant, C., Ozeki, K.: Rainbow generalizations of Ramsey theory: a
survey. Graphs Combin. 26(1), 1–30 (2010). https://doi.org/10.1007/s00373-010-
0891-3

18. Gorgol, I., Lazuka, E.: Rainbow numbers for small stars with one edge added. Dis-
cuss. Math. Graph Theory 30(4), 555–562 (2010). https://doi.org/10.7151/dmgt.
1513

19. Goyal, P., Kamat, V., Misra, N.: On the parameterized complexity of the maxi-
mum edge 2-coloring problem. In: Mathematical Foundations of Computer Science
2013–38th International Symposium, MFCS 2013, Klosterneuburg, Austria, 26–30
August 2013, pp. 492–503 (2013). https://doi.org/10.1007/978-3-642-40313-2 44

https://arxiv.org/abs/1810.00624
https://doi.org/10.1016/j.dam.2021.05.017
https://doi.org/10.1016/j.dam.2021.05.017
https://doi.org/10.1016/0890-5401(90)90043-H
https://doi.org/10.1016/0890-5401(90)90043-H
https://doi.org/10.1109/LICS.2006.13
https://doi.org/10.1109/LICS.2006.13
https://dl.acm.org/citation.cfm?id=1070432.1070514
https://dl.acm.org/citation.cfm?id=1070432.1070514
https://doi.org/10.1137/1.9781611975031.110
https://doi.org/10.1137/1.9781611975994.137
https://doi.org/10.1137/1.9781611975994.137
https://doi.org/10.1016/j.tcs.2008.10.035
https://doi.org/10.1016/j.tcs.2008.10.035
https://doi.org/10.1137/1.9781611973082.59
https://doi.org/10.1137/1.9781611973082.59
https://doi.org/10.1007/s00373-010-0891-3
https://doi.org/10.1007/s00373-010-0891-3
https://doi.org/10.7151/dmgt.1513
https://doi.org/10.7151/dmgt.1513
https://doi.org/10.1007/978-3-642-40313-2_44

304 Z. Dvořák and A. Lahiri

20. Har-Peled, S., Quanrud, K.: Approximation algorithms for polynomial-expansion
and low-density graphs. SIAM J. Comput. 46(6), 1712–1744 (2017). https://doi.
org/10.1137/16M1079336

21. Jiang, T.: Edge-colorings with no large polychromatic stars. Graphs Combin.
18(2), 303–308 (2002). https://doi.org/10.1007/s003730200022

22. Klein, P.N., Plotkin, S.A., Rao, S.: Excluded minors, network decomposition, and
multicommodity flow. In: Proceedings of the Twenty-Fifth Annual ACM Sympo-
sium on Theory of Computing, 16–18 May 1993, San Diego, CA, USA, pp. 682–690.
ACM (1993). https://doi.org/10.1145/167088.167261

23. Kodialam, M.S., Nandagopal, T.: Characterizing the capacity region in multi-radio
multi-channel wireless mesh networks. In: Proceedings of the 11th Annual Inter-
national Conference on Mobile Computing and Networking, MOBICOM 2005,
Cologne, Germany, 28 August–2 September 2005, pp. 73–87. ACM (2005), https://
doi.org/10.1145/1080829.1080837

24. Manoussakis, Y., Spyratos, M., Tuza, Z., Voigt, M.: Minimal colorings for properly
colored subgraphs. Graphs Combin. 12(1), 345–360 (1996). https://doi.org/10.
1007/BF01858468

25. Montellano-Ballesteros, J.J.: On totally multicolored stars. J. Graph Theory 51(3),
225–243 (2006). https://doi.org/10.1002/jgt.20140

26. Montellano-Ballesteros, J.J., Neumann-Lara, V.: An anti-Ramsey theorem. Com-
binatorica 22(3), 445–449 (2002). https://doi.org/10.1007/s004930200023

27. Raniwala, A., Chiueh, T.: Architecture and algorithms for an IEEE 802.11-based
multi-channel wireless mesh network. In: INFOCOM 2005. 24th Annual Joint Con-
ference of the IEEE Computer and Communications Societies, 13–17 March 2005,
Miami, FL, USA, pp. 2223–2234 (2005). https://doi.org/10.1109/INFCOM.2005.
1498497

28. Robertson, N., Seymour, P.D.: Graph minors. XVI. Excluding a non-planar graph.
J. Combin. Theory Ser. B 89(1), 43–76 (2003). https://doi.org/10.1016/S0095-
8956(03)00042-X

29. Schiermeyer, I.: Rainbow numbers for matchings and complete graphs. Discret.
Math. 286(1–2), 157–162 (2004). https://doi.org/10.1016/j.disc.2003.11.057

30. Sen, A., Murthy, S., Ganguly, S., Bhatnagar, S.: An interference-aware channel
assignment scheme for wireless mesh networks. In: Proceedings of IEEE Interna-
tional Conference on Communications, ICC 2007, Glasgow, Scotland, UK, 24–28
June 2007, pp. 3471–3476. IEEE (2007). https://doi.org/10.1109/ICC.2007.574

31. Simonovits, M., Sós, V.: On restricted colourings of Kn. Combinatorica 4(1), 101–
110 (1984). https://doi.org/10.1007/BF02579162

32. Tovey, C.A.: A simplified NP-complete satisfiability problem. Discret. Appl. Math.
8(1), 85–89 (1984). https://doi.org/10.1016/0166-218X(84)90081-7

33. Wan, P., Al-dhelaan, F., Jia, X., Wang, B., Xing, G.: Maximizing network capacity
of MPR-capable wireless networks. In: 2015 IEEE Conference on Computer Com-
munications, INFOCOM 2015, Kowloon, Hong Kong, 26 April–1 May 2015, pp.
1805–1813. IEEE (2015). https://doi.org/10.1109/INFOCOM.2015.7218562

34. Wan, P., Cheng, Y., Wang, Z., Yao, F.F.: Multiflows in multi-channel multi-radio
multihop wireless networks. In: INFOCOM 2011. 30th IEEE International Con-
ference on Computer Communications, 10–15 April 2011, Shanghai, China, pp.
846–854. IEEE (2011). https://doi.org/10.1109/INFCOM.2011.5935308

https://doi.org/10.1137/16M1079336
https://doi.org/10.1137/16M1079336
https://doi.org/10.1007/s003730200022
https://doi.org/10.1145/167088.167261
https://doi.org/10.1145/1080829.1080837
https://doi.org/10.1145/1080829.1080837
https://doi.org/10.1007/BF01858468
https://doi.org/10.1007/BF01858468
https://doi.org/10.1002/jgt.20140
https://doi.org/10.1007/s004930200023
https://doi.org/10.1109/INFCOM.2005.1498497
https://doi.org/10.1109/INFCOM.2005.1498497
https://doi.org/10.1016/S0095-8956(03)00042-X
https://doi.org/10.1016/S0095-8956(03)00042-X
https://doi.org/10.1016/j.disc.2003.11.057
https://doi.org/10.1109/ICC.2007.574
https://doi.org/10.1007/BF02579162
https://doi.org/10.1016/0166-218X(84)90081-7
https://doi.org/10.1109/INFOCOM.2015.7218562
https://doi.org/10.1109/INFCOM.2011.5935308

Bounds on Functionality and Symmetric
Difference – Two Intriguing Graph

Parameters

Pavel Dvořák1,2(B), Lukáš Folwarczný1,3, Michal Opler4, Pavel Pudlák3,
Robert Šámal1, and Tung Anh Vu1

1 Faculty of Mathematics and Physics, Charles University, Prague, Czech Republic
{koblich,samal}@iuuk.mff.cuni.cz, tung@kam.mff.cuni.cz

2 Tata Institute of Fundamental Research, Mumbai, India
3 Institute of Mathematics, Czech Academy of Sciences, Prague, Czech Republic

{folwarczny,pudlak}@math.cas.cz
4 Faculty of Information Technology, Czech Technical University,

Prague, Czech Republic
michal.opler@fit.cvut.cz

Abstract. [Alecu et al.: Graph functionality, JCTB2021] define func-
tionality, a graph parameter that generalizes graph degeneracy. They
research the relation of functionality to many other graph param-
eters (tree-width, clique-width, VC-dimension, etc.). Extending their
research, we prove a logarithmic lower bound for functionality of ran-
dom graph G(n, p) for large range of p. Previously known graphs have
functionality logarithmic in number of vertices. We show that for every
graph G on n vertices we have fun(G) ≤ O(

√
n log n) and we give a

nearly matching Ω(
√

n)-lower bound provided by projective planes.
Further, we study a related graph parameter symmetric difference, the

minimum of |N(u)ΔN(v)| over all pairs of vertices of the “worst possible”
induced subgraph. It was observed by Alecu et al. that fun(G) ≤ sd(G)+1
for every graph G. We compare fun and sd for the class INT of interval
graphs and CA of circular-arc graphs. We let INTn denote the n-vertex
interval graphs, similarly for CAn.

Alecu et al. ask, whether fun(INT) is bounded. Dallard et al. answer
this positively in a recent preprint. On the other hand, we show that
Ω(4

√
n) ≤ sd(INTn) ≤ O(3

√
n). For the related class CA we show that

sd(CAn) = Θ(
√

n).
We propose a follow-up question: is fun(CA) bounded?

P. Dvořák—Supported by Czech Science Foundation GAČR grant #22-14872O.
L. Folwarczný—Supported by Czech Science Foundation GAČR grant 19-27871X.
M. Opler—Supported by Czech Science Foundation GAČR grant 22-19557S.
P. Pudlák—Supported by Czech Science Foundation GAČR grant 19-27871X.
R. Šámal—Partially supported by grant 22-17398S of the Czech Science Foundation.
This project has received funding from the European Research Council (ERC) under the
European Union’s Horizon 2020 research and innovation programme (grant agreement
No 810115).
T. A. Vu—Supported by Czech Science Foundation GAČR grant 22-22997S.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
D. Paulusma and B. Ries (Eds.): WG 2023, LNCS 14093, pp. 305–318, 2023.
https://doi.org/10.1007/978-3-031-43380-1_22

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-43380-1_22&domain=pdf
https://doi.org/10.1007/978-3-031-43380-1_22

306 P. Dvořák et al.

Keywords: Functionality · Finite Projective Plane · Symmetric
Difference · Intersection Graphs

1 Introduction

Let G = (V,E) be a graph and v ∈ V be a vertex. The set of neighbors of v in G
is denoted by NG(v), we omit the subscript if the graph is clear from the context.
An adjacency matrix AG of G is 0-1 matrix such that its rows and columns are
indexed by vertices of G and A[u, v] = 1 if and only if u and v are connected by
an edge. Now, we define the functionality and symmetric difference of a graph
– two principle notion of this papers – as introduced by Alecu et al. [1], and
implicitly also by Atminas et al. [3].

A vertex v of a graph G = (V,E) is a function of vertices u1, . . . , uk ∈ V (dif-
ferent from v) if there exists a boolean function f of k variables such that for any
vertex w ∈ V \ {v, u1, . . . , uk} it holds that A[v, w] = f

(
A[v, u1], . . . , A[v, uk]

)
.

Informally, we can determine if v and w are connected from the adjacencies of
v with the ui’s. The functionality funG(v) of a vertex v in G is the minimum k
such that v is a function of k vertices of G. We drop the subscript and write just
fun(v) if the graph G is clear from the context. Then, the functionality fun(G)
of a graph G is defined as

fun(G) = max
H⊆G

min
v∈V (H)

funH(v),

where the maximum is taken over all induced subgraphs H of G.
It is observed in [3] that if fun(G) ≤ k then we can encode G using

n(2k + (k + 1) log n) bits, where n is the number of vertices of G. Thus, if every
graph G in some graph class G has bounded functionality then G contains at most
2O(n log n) graphs on n vertices. Such classes are said to be of factorial growth [4]
and include diverse classes of practical importance (interval graphs, line graphs,
forests, planar graphs, more generally all proper minor-closed classes). Thus,
Alecu et al. [1] introduce functionality as a tool to study graph classes of facto-
rial growth, and the related Implicit graph conjecture (although this conjecture
was recently disproved [6]). This was also our original motivation. Moreover,
functionality is a natural generalization of the graph degeneracy, as the degree
of a vertex v is a trivial upper bound for the functionality of v. Thus, it deserves
a study for its own sake.

Alecu et al. [1] research the relation of functionality to many other graph
parameters: in particular they provide a linear upper bound in terms of clique-
width and a lower bound in terms of some function of VC-dimension. They also
give a lower bound for the functionality of the hypercube that is linear in the
dimension (i.e., logarithmic in the number of vertices).

Another parameter related to functionality is the so-called symmetric differ-
ence. Given two vertices u, v of G, let sdG(u, v) (or just sd(u, v) when the graph
is clear from the context) be the number of vertices different from u and v that

Bounds on Functionality and Symmetric Difference 307

are adjacent to exactly one of u and v. The symmetric difference sd(G) of a
graph G is defined as

max
H⊆G

min
u,v∈V (H)

sdH(u, v),

where the maximum is again taken over all induced subgraphs. We may view
sd(u, v) as the size of the set (N(u)ΔN(v)) \ {u, v}, which explains the term
“symmetric difference”. It is noted by Alecu et al. [1] that fun(G) ≤ sd(G) + 1.
However, there is no lower bound in terms of sd as there are graphs of constant
functionality and polynomial symmetric difference – for example the interval
graphs. This was shown by Theorem 3.2 of Dallard et al. [5] and by our The-
orem 7, while Corollary 5.3 of [5] shows that sd(INT) is unbounded, without
providing explicit lower bounds.

The intersection graph of a family of sets F is a graph G = (V,E) where
V = {v1, . . . , vn} and two vertices vi and vj are connected if and only if the
corresponding sets Si and Sj of F intersect. An interval graph is an intersection
graph of n intervals on a real line. A circular arc graph is an intersection graph
of n arcs of a circle. We let INTn denote the family of all intersection graphs
with n vertices, INT the family of all interval graphs. In the same vein, we define
CAn and CA for circular arc graphs.

1.1 Our Results

In this paper, we show several lower and upper bounds for functionality and
symmetric difference of various graph classes. As far as we know, there were
only logarithmic lower bounds for functionality [1,3,5]. Thus, it would have
been possible that the functionality is at most logarithmic (similarly to the VC-
dimension [7]). However, we show that the functionality of the incidence graph
of a finite projective plane of order k is exactly k + 1, i.e., roughly

√
n. We

complement this result with an almost matching upper bound that functionality
of any graph is at most O(

√
n log n). Further, we show for 3 log2 n

n ≤ p ≤ 1 −
3 log2 n

n that a random graph G(n, p) has at least logarithmic functionality with

probability 1− o(1). Note that if p ≤ o
(

log n
n

)
then fun(G(n, p)) ≤ o(log n) with

high probability because the minimum degree of G(n, p) for such p is o(log n)
with high probability and fun(G) is bounded by the minimum degree of the
graph G. Similarly for p ≥ 1 − o

(
log n

n

)
, as the functionality of a graph G and

its complement Ḡ is the same, and complement of G(n, p) is G(n, 1 − p). Thus,
our range of p is almost optimal – up to a logarithmic factor. Further, we prove
that any vertex of G(n, 1

2) is a function of at most O(log n) vertices with high
probability. Unfortunately, it does not imply that functionality of G(n, 1

2) is
logarithmic as it still can contain an induced subgraph of higher functionality.
Overall, it suggests that graphs with polynomial functionality are quite rare and
should be very structured (like the case of finite projective plane).

Further, we study symmetric difference of interval and circular arc graphs.
We show that symmetric difference of circular arc graph is Θ(

√
n), i.e., we prove

that any circular arc graph has symmetric difference at most O(
√

n) and we

308 P. Dvořák et al.

present a circular arc graph of symmetric difference Ω(
√

n). Recently, it was
shown that interval graphs have bounded functionality and unbounded symmet-
ric difference [5]. Even though it was not explicitly mentioned, the construction
given by Dallard et al. [5] leads to the lower bound Ω(4

√
n) for the symmetric

difference of interval graphs. We independently came up with a different con-
struction leading to the same lower bound, however analysis of our construction
is simpler than the one from the previous work. For interval graphs, we also
present the upper bound O(3

√
n) for symmetric difference. Thus, we are leaving

a gap between the lower and upper bound. However, we show the symmetric
difference of interval graphs is polynomial and strictly smaller than symmetric
difference of circular arc graphs.

2 Functionality

2.1 Finite Projective Planes

Recall that a finite projective plane is a pair (X,L), where X is a finite set and
L ⊆ 2X , satisfying the following axioms [8]:

1. For every p �= q ∈ X, there is exactly one subset of L containing p and q.
2. For every L �= M ∈ L, we have |L ∩ M | = 1.
3. There exists a subset Y ⊆ X of size 4 such that |L ∩ Y | ≤ 2 for every L ∈ L.

Elements of X are called points and elements of L are called lines. We note
that for every k which is a power of a prime, a finite projective plane with the
following properties can be constructed. Each line contains exactly k + 1 points.
Each point is incident to exactly k + 1 lines. The total number of points is
k2 + k + 1. The total number of lines is also k2 + k + 1. The number k is called
the order of the finite projective plane.

The incidence graph of a finite projective plane is a bipartite graph with
one part X and the second part L. In this graph, x ∈ X is adjacent to � ∈ L
iff x is incident to �. The following theorem shows that the incidence graph
of a finite projective plane has functionality approximately

√
n, where n is the

number of vertices. Alecu et al. [1] have shown that there exists a function f such
that for every graph G we have vc(G) ≤ f(fun(G)). Our result complements this
inequality by showing that the functionality of a graph cannot be upper bounded
by its VC-dimension as it is known that the VC-dimension of a finite projective
plane of any order is 2 [2].

Theorem 1. Consider a finite projective plane of order k and its incidence
graph G. Then, fun(G) = k + 1. Moreover, for any proper induced subgraph
G′ ⊂ G we have fun(G′) ≤ k.

Proof. First, note that G is a (k + 1)-regular graph, thus fun(G) ≤ k + 1. Since
G is connected, every proper subgraph G′ ⊂ G contains a vertex of degree at
most k. Thus, fun(G′) ≤ k.

It remains to prove that the functionality of every vertex v ∈ V (G) is at least
k + 1. Let � be a line of the projective plane. Because of the point-line duality

Bounds on Functionality and Symmetric Difference 309

of finite projective planes [8], it is enough to show that the functionality of �
is at least k + 1. Let S = {p1, . . . , pa, �1, . . . , �b} be a set of points pi and lines
�j (distinct from �) such that |S| = a + b ≤ k. We will prove that there exist
vertices u and w satisfying:

1. The vertices u and w are not in S and they are not adjacent to any vertices
in S. They are also different from �.

2. The vertex u is adjacent to �, i.e., u is a point incident to �.
3. The vertex w is not adjacent to �, i.e., w is a point not incident to � or it is

a line.

Once we prove the existence of these two vertices, we are done as their existence
implies that � is not a function of S.

There are k+1 points on each line and every two lines intersect in one point.
It follows that there is a point q on � which is distinct from each pi and it is not
incident with any �i. Thus, the vertex q is not adjacent to any vertex in S and
it is adjacent to �. We set u = q.

Let L = {�, �1, . . . , �b}. We will prove the existence of the vertex w by con-
sidering two cases. The first case is b = k, i.e., the set S consists of k lines and
no points. We may consider any line �′ �∈ L as the vertex w. The vertex w is not
adjacent to any vertex in S as it contains only lines and it is not adjacent to the
line � either. Thus, the vertex w satisfies the sought properties.

The second case is b ≤ k − 1. Let P be the set of points p1, . . . , pa together
with all the points that are incident to some line from L. We will show that
|P | ≤ k2 + k, which implies existence of a vertex w ∈ V (G) \ P satisfying the
sought properties. First, note that if b = 0 (i.e., S contains only points), then
|P | ≤ k + 1 + a = 2k + 1. Next, we suppose that b ≥ 1 which means that L
contains at least two lines. Recall that each pair of line intersects in a point.
Thus, there are at most (b + 1)(k + 1) − 1 points incident to the lines in L (the
−1 comes from the fact that we have at least two lines). Moreover, we have a
points p1, . . . , pa. Thus, |P | ≤ (b + 1)(k + 1) − 1 + a. Since a + b ≤ k, we have
a ≤ k − b. Therefore,

|P | ≤ (b + 1)(k + 1) − 1 + k − b = bk + 2k ≤ k2 + k.

This concludes the second case and also the whole proof.
�

2.2 Upper Bound for General Graphs

Theorem 2. If G is a graph with n vertices, then fun(G) ≤ √
c · n ln n for any

c > 3, if n is big enough.

Proof. We show that there is v ∈ V (G) such that funG(v) ≤ d(n) :=
√

c · n ln n.
As d(n) is increasing, this suffices to show existence of such vertex also in a
subgraph of G. We will write d = d(n).

First, suppose that |sd(u, v)| < d for some u, v of G. Since sd(u, v) =
(N(u)ΔN(v)) \ {u, v}, the vertex v is a function of the set sd(u, v) ∪ {u}. Next,

310 P. Dvořák et al.

suppose all sets sd(u, v) have at least d vertices. In this case we choose an arbi-
trary vertex v ∈ V (G). We also choose a random set S ⊆ V (G) by independently
putting each vertex of G different from v to S with probability p = d/n. Suppose
v is not a function of S. Then, there exists u1 ∈ N(v)\S and u2 /∈ N(v)∪S∪{v}
such that neighbors of u1 and u2 in S are the same, that happens if and only if
sd(u1, u2) ∩ S = ∅. We bound the probability of this event by the union bound

Pr
[∃u1 ∈ N(v) \ S, u2 /∈ N(v) ∪ S ∪ {v} : S ∩ sd(u1, u2) = ∅]

≤
∑

u1,u2

(1 − p)|sd(u1,u2)|−1 ≤ n2(1 − p)d−1.

The −1 in the exponent is caused by v ∈ sd(u1, u2), but v cannot be chosen
to belong to S. Thus, the probability that v is not a function of S is at most
n2e−p(d−1), which is strictly smaller than 1

n whenever c > 3 and n is big enough.
Clearly, the expected size of S is p(n − 1) = n−1

n d. Thus by Markov inequality,
Pr[|S| > d] ≤ n−1

n = 1− 1
n . This means that with the positive probability |S| ≤ d

and v is function of S and we can conclude that funG(v) ≤ d.
�

2.3 Random Graphs

In this section, we prove our results about functionality of random graphs.

Theorem 3. The functionality of the random graph G = G(n, p) is Ω(log n)
with probability at least 1 − 1

nlog n for any 3 log2 n
n ≤ p ≤ 1 − 3 log2 n

n .

Proof. Note that fun(G) = fun(Ḡ), where Ḡ is the complement of G. Since
G(n, 1 − p) is the complement of G(n, p), we can suppose that p ≤ 1

2 . We will
prove that functionality of G is larger than k = 1

2 log n (w.h.p.). Let v, u1, . . . , uk

be vertices of G. We will show that v is function of u1, . . . , uk only with small
probability.

First suppose that 3 log2 n√
n

≤ p ≤ 1
2 . We divide the rest of vertices V ′ =

V (G)\{v, u1, . . . , uk} into buckets according to the adjacency to u1, . . . , uk, i.e.,
for each subset S ⊆ {u1, . . . , uk} we create a bucket BS consisting of vertices
that are adjacent to all vertices in S and are not adjacent to any vertex in
{u1, . . . , uk} \ S. There are at most 2k buckets and therefore, there is a bucket
B containing at least |V ′|

2k
≥

√
n
2 vertices. However by definition of functionality,

that means v is connected to all vertices in B or to none of them. This event
occurs only with a probability

p|B| + (1 − p)|B| ≤ 2 · (1 − p)
√

n
2 ≤ 2 · e−p·

√
n
2 ≤ 2− 3

2 ·log2 n.

We have n · (n−1
k

)
< n

log n
2 possibilities how to choose v, u1, . . . , uk. Thus by the

union bound, we have that fun(G) ≤ k with probability at most 1
nlog n .

Now, suppose that 3 log2 n
n ≤ p ≤ 3 log2 n√

n
. Let E′ be edges between u1, . . . , uk

and V ′ = V \ {v, u1, . . . , uk}. We bound the expected size of E′ as follows.

E[|E′|] = p · k · |V ′| ≤ 3
2
√

n · log3 n

Bounds on Functionality and Symmetric Difference 311

By the Chernoff bound, we have that probability that |E′| ≥ 3
√

n · log3 n = � is
at most e−√

n log3 n. Thus with high probability, there are at least |V ′| − � ≥ 2n
3

vertices in V ′ such that there is no edge between them and u1, . . . , uk. Denote
such vertices as B0. Now, we proceed similarly as in the previous case. Again,
the vertex v has to be connected to all vertices in B0 or none of them, which
occurs only with the following probability.

p|B0| + (1 − p)|B0| ≤ 2 · (1 − p)
2n
3 ≤ 2 · e−p· 2n3 ≤ 2−2·log2 n.

Thus, the probability that v is function of u1, . . . , uk is at most

e−√
n log3 n + 2−2·log2 n ≤ 2− 3

2 ·log2 n.

By the same union bound as before, we have that fun(G) ≤ k with probability
at most 1

nlog n .
�

Proposition 1. Each vertex of the random graphs G = G(n, 1
2) is a function of

at most 3 log n vertices with probability at least 1 − 1
n .

Proof. Let k = 3 log n and V ′ be a set of k vertices. We will show that with
high probability there are no two vertices v1, v2 �∈ V ′ such that N(v1) ∩ V ′ =
N(v2) ∩ V ′, i.e., they have the same neighborhood in V ′. Let v1, v2 �∈ V ′, then

Pr[v1, v2 : N(v1) ∩ V ′ = N(v2) ∩ V ′] = 2−k.

By the union bound, we have:

Pr[∃v1, v2 �∈ V ′ : N(v1) ∩ V ′ = N(v2) ∩ V ′] ≤ n2

2k
=

1
n

. (1)

Thus, each vertex outside of V ′ has a unique neighborhood to V ′. Therefore,
V ′ determines adjacency for any vertex not in V ′.
�

3 Symmetric Difference

In this section, we will prove our lower and upper bounds for symmetric difference
of interval and circular arc graphs.

3.1 Circular Arc Graphs

In this section, we prove that symmetric difference of circular arc graphs1 is
Θ(

√
n). More formally, we prove the following two theorems.

Theorem 4. Any circular arc graph G ∈ CAn has symmetric difference at most
O(

√
n).

1 Intersection graphs of arcs of a cycle, see Sect. 1 for the proper definition.

312 P. Dvořák et al.

Theorem 5. There is a circular arc graph G ∈ CAn of symmetric difference at
least Ω(

√
n).

First, we prove the upper bound, i.e., that every circular arc graph has symmetric
difference at most O(

√
n). We use the following notations for arcs. Let a, b be

two points of a circle. Then, an arc r = [a, b] is an arc beginning in a and going
in clockwise direction to b. We call a as the starting point of r and b as the
ending point of a.

Proof (Proof of Theorem 4). Let circle arc graph G = (V,E) be an intersection
graph of a set of arcs R = {r1, . . . , rn} of a circle C. Without loss of generality,
we can suppose that the circumference of C is 2n, endpoints of all arcs ri ∈
R are integer points and are different for all arcs. Thus, each integer point
{0, . . . , 2n − 1} of C is an endpoint of exactly one arc in R.

Consider an arc r = [a, b] ∈ R. We again suppose that the points a and b
are in clockwise order and the arc r starts in a and goes clockwise to b. We
represent the arc r as a point (a, b) in the plane R

2. Note that all these points
are in the square S with corners in the points (0, 0) and (2n − 1, 2n − 1) (some
points maybe on the border of S). We divide the square S into subsquares of
size k×k for k = 2n−1

�√
n�−1

. Note that we have strictly less than n such subsquares
and k = Θ(

√
n). Thus, there is at least one subsquare that contains two points

representing arcs, say r = [a, b] and r′ = [a′, b′]. It follows that |a−a′|, |b−b′| ≤ k.
Suppose that a′ > a and b′ > b, other cases are analogous. Then, each arc counted
in sd(r, r′) has to start or end in an integer point from the interval [a, a′ − 1] or
[b, b′ − 1]. Since there are at most 2k integer points in these two intervals and
each integer point of C is an endpoint of exactly one arc of R, we conclude that
sd(r, r′) ≤ 2k ≤ O(

√
n).
�

Now, we give a construction of a circular arc graph of symmetric difference
at least Ω(

√
n). Let n be a square of an integer, i.e., n = d2 for some d ∈ N.

We consider a circle C of circumference n and a set P of integer points of C,
i.e., P = {0, . . . , n − 1} ordered in clockwise direction. The length |r| of an arc
r = [a, b] is equal to b−a (mod n). We say the arc [a, b] is integral if both a and
b are integers.

We will represent each point p ∈ P as two integer indices 0 ≤ i, j < d =
√

n
such that p = i · d + j. Note that each point p has a unique such representation
and we denote it as (i, j)d. Let R be a set of arcs

[
(i, j)d, (j, i)d

]
for all possible

i �= j such that length of each arc in R is at most n
4 . Note that we require that

i �= j, thus we do not consider zero-length arcs consisting only of a point of
a form (i, i)d. See Fig. 1 for an illustration. Let G be the intersection graph of
arcs in R. We we will prove that sd(G) ≥ Ω(

√
n). First, we prove two auxiliary

lemmas, Lemma 1 and 2. Lemma 1 asserts that each sufficiently long arc of C
contains a lot of starting and ending points of arcs in R. Lemma 2 states that
for any two arcs r and r′ we will find a long arc s that is a subarc of only one of
the arcs r and r′ (say r). Thus by Lemma 1, the arc r intersects many arcs that
go “away” from the arc r′ and that is enough to imply Theorem 5.

Bounds on Functionality and Symmetric Difference 313

0

2
1

3

4

6

5

7
8

10

9

11

12

14

13

15

[6, 9]

[11, 14]
[1, 4]

Fig. 1. An example of the circular arc graph lower bound construction for n = 16 and
d = 4. This graph contains three arcs corresponding to points 1 = (0, 1)d, 6 = (1, 2)d,
and 11 = (2, 3)d. For an example, the arc corresponding to point 3 = (0, 3)d is omitted
since 12 − 3 = 9 > 4 = n

4
where 12 = (3, 0)d.

Lemma 1. Let s be an integral arc of C of length at least d−1. Then, it contains
at least d

5 integer points such that they are starting points of arcs in R. Similarly,
it contains at least d

5 integer points such that they are ending points of arcs in R.

Proof. Since s is integral and its length is at least d − 1, it contains at least d
consecutive integer points. Thus, there is an integer j such that s contains all
points of the set {(j, t)d, . . . , (j, d − 1)d, (j + 1, 0)d, . . . , (j + 1, t − 1)d} for some
t ∈ [d]. For any � ∈ [d], we define j� = j if � ≥ t and j� = j + 1 otherwise. It
follows that s contains the point (j�, �)d for every � ∈ [d]. Consider a subset of
these points S =

{(
jk, k

)
d

| 1 ≤ (k − j mod d) ≤ d
5

}
. Observe that |S| = d

5 . We
claim that each point of S is a starting point of an arc in R. Let r be an arc[
(jk, k)d, (k, jk)d

]
where 1 ≤ (k − j mod d) ≤ d

5 .

|r| = k · d + jk − jk · d − k mod n

≤ (k − jk) · d + d ≤ d

5
· d + d ≤ n

4
for sufficiently large n

Thus, r ∈ R. Analogously, the set E =
{(

jk, k
)
d

| 1 ≤ (j + 1 − k mod d) ≤ d
5

}

of size d
5 contains ending points of arcs in R.
�

Lemma 2. Let r = [(i, j)d, (j, i)d] and r′ = [(i′, j′)d, (j′, i′)d] be two arcs in R.
Then, at least one of the arcs r and r′ contains an integral subarc s of length
d − 2 that is disjoint from the other arc.

Proof. If the arcs r and r′ are disjoint then the existence of s is trivial as each
arc in R has length at least d− 1 (the arcs in R of length exactly d− 1 are those
of the form [(k, k + 1)d, (k + 1, k)d]).

Thus, suppose that r and r′ intersect and without loss of generality suppose
that the ending point of r lies inside r′, i.e. we read in clockwise order the points

314 P. Dvořák et al.

(i′, j′)d, (j, i)d and (j′, i′)d. Consider an arc s′ = [(j, i)d, (j′, i′)d]. Note that arc s′

is a subarc of r′ and intersects r only in the point (j, i)d. Thus, if |s′| ≥ d−1, the
arc r′ would contain the sought integral subarc s. We have |s′| = (j′−j) ·d+i′−i
(mod n). Since 0 ≤ i, i′, j, j′ ≤ d−1, it holds that |(j′−j) ·d+i′−i| ≤ d2−1 < n.
Thus, if |s′| ≤ d − 2 then j = j′ or j′ − j = 1 (mod n) and i − i′ ≥ 2 (note that
this holds even when j = n − 1 and j′ = 0).

First, suppose that j′ − j = 1 (mod n) (and i− i′ ≥ 2). Then, the start point
of r also belongs to r′ and the arc s′ = [(i′, j′)d, (i, j)d] has length at least d − 1
and again it is a subarc of r′ and intersects the arc r only in the single point
(i, j)d.

The last case is when j′ = j. This implies that i �= i′ as all endpoints are
unique. Moreover, since the point (j, i)d precedes the point (j′, i′)d in clockwise
order, we get that i < i′. Then, the arc s′ = [(i, j)d, (i′, j′)d] = [(i, j)d, (i′, j)d]
has length at least d and is a subarc of only the arc r with the exception of its
ending point (i′, j′)d.
�

Now, we are ready to prove Theorem 5.

Proof (Proof of Theorem 5). Consider two arcs r = [(i, j)d, (j, i)d] and r′ =
[(i′, j′)d, (j′, i′)d] in R. Recall that all arcs in R have length at most n

4 . Thus, we
can suppose that the arc s′ = [(j′, i′)d, (i, j)d] has length at least n

4 and is disjoint
from r and r′, except for the endpoints (j′, i′)d and (i, j)d. Note that, this implies
that the endpoints (j, i)d and (j′, i′)d of r and r′, respectively, are in clockwise
order. By Lemma 2, we suppose that r contains a subarc s of length d − 2 that
is disjoint with r′ (the other case when s is a subarc of r′ is analogous). Let L
be a set of points in s such that they are ending points of arcs in R (distinct
from r). By Lemma 1, we have that |L| ≥ d

5 − 1.
Let t = [a, b] be an arc with the ending point b in L. The arc t intersects the

arc r as the ending point b is a point of s ⊆ r. Since the arc s′ has length at
least n

4 and t ∈ R, the starting point a has to be a point of s′ and thus, the arc
t is disjoint from r′. Therefore, sd(r, r′) ≥ |L| ≥ Ω(

√
n).
�

3.2 Interval Graphs

In this section, we will prove that symmetric difference of interval graphs2 is still
fixed power of n but strictly less than the symmetric difference of circular arc
graphs. In particular, we will prove the following two theorems.

Theorem 6. Any interval graph G ∈ INTn has symmetric difference at most
O(3

√
n).

Theorem 7. There is an interval graph G ∈ INTn of symmetric difference at
least Ω(4

√
n).

2 Intersection graphs of intervals of the real line, see Sect. 1 for the proper definition.

Bounds on Functionality and Symmetric Difference 315

Note that the existence of interval graphs of arbitrarily high symmetric dif-
ference is proved in Corollary 5.3 of Dallard et al. [5]. While they do not provide
explicit bounds, their proof gives the same Ω(4

√
n) bound as ours. However, our

proof of the lower bound is self-contained and we believe it to be simpler. We
start with a proof of the upper bound.

Proof (Proof of Theorem 6). Let G = (V,E) be an intersection graph of intervals
R = {r1, . . . , rn} with ri = [ai, bi] and let V = {1, . . . , n}. Without loss of
generality, we suppose for clarity that all ai’s and bi’s are different points. The
intervals are numbered in the order given by their starting points, i.e., for every
two indices i, j ∈ [n] we have i < j if and only if ai < aj . For an interval ri, we
define two sets:

1. Ai = {j | ai < bj}, i.e., it contains the indices of intervals in R that end after
the interval ri starts.

2. Bi = {j | aj < bi}, i.e., it contains the indices of intervals in R that start
before the interval ri ends.

Note that N(i) = Ai ∩ Bi. Moreover, sd(i, j) ≤ |N(i)ΔN(j)| ≤ |AiΔAj | +
|BiΔBj |. Note that for each pair i, j, it holds that Ai ⊆ Aj or Aj ⊆ Ai, thus
AiΔAj is Ai \Aj or Aj \Ai and analogously with Bi and Bj . We will prove that
there are two intervals ri and rj such that |AiΔAj | + |BiΔBj | ≤ O(3

√
n).

Let d ∈ N be a parameter. We will find two vertices i, j ∈ V such that
sd(i, j) ≤ O(max{d, d + n

d2 }). Thus, if we set d = 3
√

n we would get sd(i, j) ≤
O(3

√
n). Since any subgraph of an interval graph is again an interval graph, the

upper bound for sd(G) will follow. Let D� = A� \ A�+1. In other words, the set
D� contains intervals of R that end after the interval r� starts but before the
interval r�+1 starts. Note that Bi = {1, . . . , �} where � is the unique index such
that i ∈ D�. Let k be the largest index such that

∑
�≤k |D�| ≤ d + 2. Note that

for any two indices i, j ≤ k, it holds that |AiΔAj | ≤ ∑
�≤k |D�|.

First, we prove that if k ≤ d2, then sd(i, j) ≤ 2d + 2. Suppose that actually∑
�≤k |D�| ≤ d. Then, |Dk+1| ≥ 3. Let i, j ∈ Dk+1 such that i, j ≤ k. Then,

Bi = Bj and |AiΔAj | ≤ d, therefore sd(i, j) ≤ d.
From now, we suppose that d ≤ ∑

�≤k |D�| ≤ d + 2. Let p ≤ k be an index
such that |Dp| ≥ 2 (if such p exists) and i, j ∈ Dp = Ap \ Ap+1. Thus, Bi = Bj .
Since i, j ≤ p ≤ k, then |AiΔAj | ≤ d + 2 and sd(i, j) ≤ d + 2. Note that so far,
we did not use the assumption that k ≤ d2.

Now, suppose that for all � ≤ k it holds that |D�| ≤ 1. Since k ≤ d2 there
exists two indices p < q ≤ k such that Dp,Dq �= ∅ and q − p ≤ d (there are
at least d indices � ≤ k such that |D�| = 1). Let i ∈ Dp and j ∈ Dq. Since
Bi = {1, . . . , p}, Bj = {1, . . . , q}, we have |Bj \ Bi| ≤ d. Further, since i, j ≤ k,
we have |AiΔAj | ≤ d + 2. Thus, sd(i, j) ≤ 2d + 2.

Now, we suppose that k > d2. It follows there are two indices i, j ≤ k such
that i ∈ Dp and j ∈ Dq such that |p − q| ≤ n

d2 . Therefore, |AiΔAj | ≤ d + 2 and
|BiΔBj | = |p − q| = n

d2 and sd(i, j) ≤ d + 2 + n
d2 .
�

Now, we give a construction of an interval graph with symmetric difference
Ω(4

√
n). Let d ∈ N sufficiently large. We construct Θ(d4) intervals on a line

316 P. Dvořák et al.

segment [0, t] for t = 20d3 such that the corresponding intersection graph G will
have sd(G) ≥ d. There will be intervals of two types – short and long. See Fig. 2
for an illustration. Short intervals have length d and they start in each point
0, . . . , t − d, i.e.,

S =
{
[i, i + d] | i ∈ {0, . . . , t − d}}

.

Long intervals will have various lengths. For i ≥ 0, let �i = 4d2 · (i + 1). For
0 ≤ i ≤ 2d − 1, we define the i-th class of long intervals as

Li =
{
[a, b] | a, b ≡ i (mod 2d); �i ≤ b − a ≤ �i + 2d2

}
,

i.e., the set Li contains intervals such that they start and end in points con-
gruent to i modulo 2d and their length is between �i and �i + 2d2. Let
I = S ∪ ⋃

0≤i≤2d−1 Li be the set of all constructed intervals. We start with
two observations about I.

0 5 10 2015 25 30 35 40 45 50 55 60 65

} S

} L0

} L1

} L2

} L3

5 65 70 75 80

Fig. 2. An example of the interval graph lower bound construction for d = 2. For
clarity, only the first three intervals are displayed from each set Li.

Observation 8. Any interval [a, b] (for a, b ∈ N) of the line segment [0, t] of
length 2d contains d short intervals.

Observation 9. There are at most O(d4) intervals in I.

Proof. Clearly, there are t − d + 1 = O(d3) intervals in S. Note that for any
a ≤ t

2 , a ≡ i (mod 2d), there are exactly d + 1 intervals of a form [a, b] in
Li because of the length constraints of the long interval. Analogously, for any
b ≥ t

2 , b ≡ i (mod 2d), there are exactly d + 1 intervals of a form [a, b] in Li. We
remark this indeed holds even for L2d−1 as we set t to be large enough. There
are no other intervals in Li. Since there are O(d2) points p ∈ [0, t] such that
p ≡ i (mod 2d), it follows that |Li| ≤ O(d3). Therefore, there are at most O(d4)
long intervals as there are O(d) classes of long intervals.
�

The graph G is an intersection graph of I. Now, we are ready to prove
Theorem 7, i.e., sd(G) ≥ Ω(4

√
n).

Proof (Proof of Theorem 7). Let r = [a, b] and r′ = [a′, b′] be two intervals in I.
Without loss of generality let a ≤ a′. First, suppose that the r, r′ ∈ S, i.e.,
both of them are short. In this case it holds that a < a′ and b < b′. First, if

Bounds on Functionality and Symmetric Difference 317

a′ > a + 2d, then all d short interval of form [i, i + d] for i ∈ r do not intersect
r′. Thus, |N(r)ΔN(r′)| ≥ d.

Now, suppose that a′ ≤ a+2d. Further, suppose that b′ ≤ t
2 . Then as already

observed, there are d intervals of the form [b′, c] in Li for b′ ≡ i (mod 2d). Since
b′ is not in r, we have that |N(r)ΔN(r′)| ≥ d.

If b′ > t
2 , then a > t

2 − 3d, as b′ − d = a′ ≤ a + 2d. Analogously, it holds
there are d intervals of the form [c, a] in Li for a ≡ i (mod 2d) as d and t is large
enough.

Now, suppose that r, r′ ∈ Li for some i. In this case a, b, a′, b′ ≡ i (mod 2d).
Since r �= r′, it follows that |a − a′| ≥ 2d or |b − b′| ≥ 2d. Thus, at least one
of the intervals r and r′ has a private subinterval of length at least 2d and by
Observation 8, we have that |N(r)ΔN(r′)| ≥ d.

Let k be the difference of length of r and r′. For the remaining cases we
will prove that k ≥ 4d. Then, at least one of the intervals r and r′ contains a
private subinterval of length at least 2d and again by Observation 8, we have
that |N(r)ΔN(r′)| ≥ d. There are two remaining cases:

1. r ∈ S, r′ ∈ Li : Then, |r| = d and |r′| ≥ 4d2.
2. r ∈ Li, r

′ ∈ Lj for i < j: Then, |r| ≤ 4d2 · (i+1)+2d2 and |r′| ≥ 4d2 · (j +1).
It follows that k = 4d2 · (j − i) − 2d2 ≥ 2d2.

Thus, in both cases we have that k ≥ 4d for d ≥ 2. We have showed that
|N(r)ΔN(r′)| ≥ d for all cases. Thus by Observation 9, we conclude that sd(G) ≥
Ω(4

√
n).
�

Acknowledgements. The research presented in this paper has been started during
the KAMAK workshop in 2021. We are grateful to the organizers of this wonderful
event.

References

1. Alecu, B., Atminas, A., Lozin, V.V.: Graph functionality. J. Comb. Theory Ser. B
147, 139–158 (2021). https://doi.org/10.1016/j.jctb.2020.11.002

2. Alon, N., Haussler, D., Welzl, E.: Partitioning and geometric embedding of range
spaces of finite Vapnik-Chervonenkis dimension. In: Soule, D. (ed.) Proceedings
of the Third Annual Symposium on Computational Geometry, Waterloo, Ontario,
Canada, 8–10 June 1987, pp. 331–340. ACM (1987)

3. Atminas, A., Collins, A., Lozin, V., Zamaraev, V.: Implicit representations and
factorial properties of graphs. Discret. Math. 338(2), 164–179 (2015). https://doi.
org/10.1016/j.disc.2014.09.008

4. Balogh, J., Bollobás, B., Weinreich, D.: The speed of hereditary properties of graphs.
J. Comb. Theory Ser. B 79(2), 131–156 (2000). https://doi.org/10.1006/jctb.2000.
1952, https://www.sciencedirect.com/science/article/pii/S009589560091952X

5. Dallard, C., Lozin, V., Milanič, M., Štorgel, K., Zamaraev, V.: Functionality of box
intersection graphs (2023). https://doi.org/10.48550/ARXIV.2301.09493

6. Hatami, H., Hatami, P.: The implicit graph conjecture is false. In: 63rd IEEE Annual
Symposium on Foundations of Computer Science, FOCS 2022, Denver, CO, USA,
October 31–3 November 2022, pp. 1134–1137. IEEE (2022)

https://doi.org/10.1016/j.jctb.2020.11.002
https://doi.org/10.1016/j.disc.2014.09.008
https://doi.org/10.1016/j.disc.2014.09.008
https://doi.org/10.1006/jctb.2000.1952
https://doi.org/10.1006/jctb.2000.1952
https://www.sciencedirect.com/science/article/pii/S009589560091952X
https://doi.org/10.48550/ARXIV.2301.09493

318 P. Dvořák et al.

7. Kranakis, E., Krizanc, D., Ruf, B., Urrutia, J., Woeginger, G.: The VC-dimension of
set systems defined by graphs. Discret. Appl. Math. 77(3), 237–257 (1997). https://
doi.org/10.1016/S0166-218X(96)00137-0

8. Matoušek, J., Nešetřil, J.: Invitation to Discrete Mathematics, 2 ed. Oxford Univer-
sity Press, Oxford (2009)

https://doi.org/10.1016/S0166-218X(96)00137-0
https://doi.org/10.1016/S0166-218X(96)00137-0

Cops and Robbers on Multi-Layer Graphs

Jessica Enright1 , Kitty Meeks1 , William Pettersson1(B) ,
and John Sylvester1,2

1 School of Computing Science, University of Glasgow, Glasgow, UK
{jessica.enright,kitty.meeks,william.pettersson}@glasgow.ac.uk,

john.sylvester@liverpool.ac.uk
2 Department of Computer Science, University of Liverpool, Liverpool, UK

Abstract. We generalise the popular cops and robbers game to multi-
layer graphs, where each cop and the robber are restricted to a single
layer (or set of edges). We show that initial intuition about the best
way to allocate cops to layers is not always correct, and prove that the
multi-layer cop number is neither bounded from above nor below by any
function of the cop numbers of the individual layers. We determine that
it is NP-hard to decide if k cops are sufficient to catch the robber, even
if each layer is a tree plus some isolated vertices. However, we give a
polynomial time algorithm to determine if k cops can win when the rob-
ber layer is a tree. Additionally, we investigate a question of worst-case
division of a simple graph into layers: given a simple graph G, what is
the maximum number of cops required to catch a robber over all multi-
layer graphs where each edge of G is in at least one layer and all layers
are connected? For cliques, suitably dense random graphs, and graphs
of bounded treewidth, we determine this parameter up to multiplicative
constants. Lastly we consider a multi-layer variant of Meyniel’s conjec-
ture, and show the existence of an infinite family of graphs whose multi-
layer cop number is bounded from below by a constant times n/ logn,
where n is the number of vertices in the graph.

Keywords: Cops and robbers · multi-layer graphs · pursuit-evasion
games · Meyniel’s conjecture

1 Introduction

We investigate the game of cops and robbers played on multi-layer graphs. Cops
and robbers is a 2-player adversarial game played on a graph introduced inde-
pendently by Nowakowski and Winkler [22], and Quilliot [25]. At the start of the
game, the cop player chooses a starting vertex position for each of a specified
number of cops, and the robber player then chooses a starting vertex position for
the robber. Then in subsequent rounds, the cop player first chooses none, some,
or all cops and moves them along exactly one edge to a new vertex. The robber
player then either moves the robber along an edge, or leaves the robber on its
current vertex. The cop player wins if after some finite number of rounds a cop
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
D. Paulusma and B. Ries (Eds.): WG 2023, LNCS 14093, pp. 319–333, 2023.
https://doi.org/10.1007/978-3-031-43380-1_23

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-43380-1_23&domain=pdf
http://orcid.org/0000-0002-0266-3292
http://orcid.org/0000-0001-5299-3073
http://orcid.org/0000-0003-0040-2088
http://orcid.org/0000-0002-6543-2934
https://doi.org/10.1007/978-3-031-43380-1_23

320 J. Enright et al.

occupies the same vertex as the robber, and the robber wins otherwise. Both
players have perfect information about the graph and the locations of cops and
robbers. Initially, research focussed on games with only one cop and one robber,
and graphs on which the cop could win were classed as copwin graphs. Aigner
and Fromme [1] introduced the idea of playing with multiple cops, and defined
the cop number of a graph as the minimum number of cops required for the cop
player to win on that graph. Many variants of the game have been studied, and
for an in-depth background on cops and robbers, we direct the reader to [5].

In this paper, we play cops and robbers on multi-layer graphs where each
cop and the robber will be associated with exactly one layer, and during their
respective turns, will move only over the edges in their own layer. While we define
multi-layer graphs formally in upcoming sections, roughly speaking, here a multi-
layer graph is a single set of vertices with each layer being a different (though
possibly overlapping) set of edges on those vertices. The variants we study could
intuitively be based on the premise that the cops are assigned different modes
of transport. For instance, a cop in a car may be able to move quickly down
streets, while a cop on foot may be slower down a street, but be able to quickly
cut between streets by moving through buildings or down narrow alleys.

Extending cops and robbers to multi-layer graphs creates some new variants,
and generalises some existing variants. Fitzpatrick [14] introduced the precinct
variant, which assigns to each cop a subset of the vertices (called their beat).
In the precinct variant, a cop can never leave their beat. This can be mod-
elled as multi-layer cops and robbers by restricting each layer to a given beat.
Fitzpatrick [14] mainly considers the case were a beat is an isometric path,
we allow more arbitrary (though usually spanning and connected) beats/layers.
Clarke [11] studies the problem of covering a graph with a number of cop-win
subgraphs to upper bound the cop number of a graph — again such construc-
tions can be modelled as multi-layer graphs with the edges of each layer forming
a cop-win graph. Another commonly studied variant of cops and robbers defines
a speed s (which may be infinite) such that the robber can move along a path
of up to s edges on their turn [6, Section 3.2]. These can also be modelled as
multi-layer graphs by adding edges between any pair of vertices of distance at
most s that only belong to the layer the robber is occupying.

1.1 Further Related Work

Temporal graphs, in which edges are active only at certain time steps, are some-
times modelled as multi-layered graphs. There has been some work on cops and
robbers on temporal graphs, though generally yielding quite a different game to
the ones we consider here as a cop is not restricted to one layer. In particular,
[3] considers cops and robbers on temporal graphs and when the full temporal
graph is known they give a O(n3T) algorithm to determine the outcome of the
game where T is the number of timesteps.

Variants of cops and robbers are also studied for their relationships to other
parameters of graphs. For instance, the cop number of a graph G is at most one
plus half the treewidth of G [17]. And if one considers the “helicopter” variant

Cops and Robbers on Multi-Layer Graphs 321

of cops and robbers, the treewidth of a graph is strictly less than the helicopter
cop number of the graph [29]. Toruńczyk [32] generalises many graph parame-
ters, including treewidth, clique-width, degeneracy, rank-width, and twin-width,
through the use of variants of cops and robbers. We introduce our multi-layer
variants of cops and robbers partially in the hopes of spurring research towards
multi-layer graph parameters using similar techniques.

Recently Lehner, resolving a conjecture by Schröeder [27], showed the cop
number of a toroidal graph is at most three [19]. There is also an interesting
connection between cop number and the genus of the host graph [1,8,26,27].
It remains open whether any such connection can be made in the multi-layer
setting.

1.2 Outline and Contributions

In Sect. 2 we define multi-layer graphs and multi-layer cops and robbers.
In Sect. 3 we develop several examples which highlight several counter-

intuitive facts and properties of the multi-layer cops and robbers game. In par-
ticular, we show the multi-layer cop number is not bounded from above or below
by a non-trivial function of the cop numbers of the individual cop layers.

In Sect. 4 we study the computational complexity of some multi-layer cops
and robbers problems. We show that deciding if a given number of cops can
catch a robber is NP-hard even if each layer is a tree plus some isolated vertices,
but that if only the robber layer is required to be a tree the problem is FPT in
the number of cops and the number of layers of the graph.

In Sect. 5 we consider an extremal version of multi-layer cop number over all
divisions into layers of a single-layer graph. In particular, for a given single-layer
graph G what is the maximum multi-layer cop number of any multi-layer graph
G when all edges of G are present in at least one layer of G.

In Sect. 6 we consider Meyniel’s conjecture, which states that the single-layer
cop number is O(

√|V |) and is a central open question in cops and robbers. We
investigate whether a multi-layer analogue of Meyniel’s conjecture can hold and,
determine the worst case multi-layer cop number up to a multiplicative O(log n)
factor. This contrasts with the situation on simple graphs, where the worst-case
is only known up to a multiplicative n1/2−o(1) factor.

Finally in Sect. 7 we reflect and conclude with some open problems.
Due to space limitations, most proofs have been omitted. For a complete

version with all proofs, please refer to [13].

2 Definitions and Notation

We write [n] to mean the set of integers {1, . . . , n}, and given a set V we write(
V
2

)
to mean all possible 2-element subsets (i.e., edges) of V . A simple graph is

then defined as G := (V,E) where E ⊆ (
V
2

)
. For a vertex v ∈ V we let dG(v) :=

|{u : uv ∈ E}| be the degree of vertex v in G, and δ(G) := minv∈V (G) dG(v)
denote the minimum degree in a graph G. If, for all v ∈ V , dG(v) = r for some

322 J. Enright et al.

integer r, we say that G is r-regular. If the exact value of r is not important,
we may just say that G is regular. If, instead, for all v ∈ V , dG(v) ∈ {r, r + 1}
for some integer r, we say that G is almost-regular. The distance between two
vertices u and v in a graph is the length of a shortest path between u and v.

A multi-layer graph (V, {E1, . . . , Eτ}) consists of a vertex set V and a col-
lection {E1, . . . , Eτ}, for some integer τ � 1, of edge sets (or layers), where for
each i, Ei ⊆ (

V
2

)
. We often slightly abuse terminology and refer to a layer Ei

as a graph; when we do this, we specifically refer to the graph (V,Ei) (i.e., we
always include every vertex in the original multi-layer graph, even if such a ver-
tex is isolated in (V,Ei)). For instance, we often restrict ourselves to multi-layer
graphs where, for each i ∈ [τ], the simple graph (V,Ei) is connected. We will say
that each layer is connected to represent this notion. Given a multi-layer graph
(V, {E1, . . . Eτ}) let the flattened version of a multi-layer graph, written as fl(G),
be the simple graph G = (V,E1 ∪ · · · ∪ Eτ).

Cops and robbers is typically played on a simple graph, with one player
controlling some number of cops and the other player controlling the robber.
On each turn, the cop player can move none, some, or all of the cops, however
each cop can only move along a single edge incident to their current vertex. The
robber player can then choose to move the robber along one edge, or have the
robber stay still. The goal for the cop player is to end their turn with the robber
on the same vertex as at least one cop, while the aim for the robber is to avoid
capture indefinitely. If a cop player has a winning strategy on a graph G with k
cops but not with k−1 cops, we say that the graph G has cop number k, denoted
c(G) = k, and that G is k-copwin. Given a multi-layer graph (V, {E1, . . . , Eτ}),
we will say the cop number of layer Ei to mean the cop number of the graph
(V,Ei).

As this paper deals with both simple and multi-layer graphs, as well as cops
and robbers variants played on these graphs, we will use single-layer as an adjec-
tive to denote when we are referring to either specifically a simple graph, or to
cops and robbers played on a single-layer (i.e., simple) graph. This extends to
parameters such as the cop number as well.

In this paper we consider the cops and robbers game on multi-layer graphs
and so it will be convenient to define multi-layer graphs with a distinguished
layer for the robber. More formally, for an integer τ � 1, we use the notation
G = (V, {C1, . . . , Cτ}, R) to denote a multi-layer graph with vertex set V and
collection {C1, . . . , Cτ , R} of layers, where {C1, . . . , Cτ} are the cop layers and
R is the robber layer. In the cops and robber game on G each cop is allocated
to a single-layer from {C1, . . . , Cτ}, and the robber to R, and each cop (and
the robber) will then only move along edges in their respective layer. We do not
allow any cop or the robber to move between layers. We note that this is a slight
abuse of notation, and that both (V, {C1, . . . , Cτ , R}) and (V, {C1, . . . , Cτ}, R)
both denote a multi-layer graphs with the the same collection {C1, . . . , Cτ}∪{R}
of edge sets, the latter has designated layers for the robber/cops whereas the
former does not. We will use Ei to denote edge sets in multi-layer graphs that
do not have a cop or robber labels.

Cops and Robbers on Multi-Layer Graphs 323

A setting that appears often is R = C1 ∪ · · · ∪ Cτ , where the robber can
use any edge that exists in a cop layer. This setting is given by the multi-layer
graph G := (V, {C1, . . . , Cτ}, C1 ∪ · · · ∪ Cτ), but for readability we will instead
use G := (V, {C1, . . . , Cτ}, ∗) to denote this.

We define several variants of cops and robbers on multi-layer graphs, however
in each of them we have an allocation k := (k1, . . . , kτ) of cops to layers, such
that there are ki cops on layer Ci. We will often use k :=

∑
i ki to refer to the

total number of cops in a game.
We now define multi-layer cops and robbers: a two player game played with an

allocation k on a multi-layer graph G = (V, {C1, . . . , Cτ}, R). The two players are
the cop player and the robber player. Each cop is assigned a layer such that there
are exactly ki cops in layer Ci. The game begins with the cop player assigning
each cop to some vertex, and then the robber player assigns the robber to some
vertex. The game then continues with each player taking turns in sequence,
beginning with the cop player. On the cop player’s turn, the cop player may
move each cop along one edge in that cop’s layer. The cop player is allowed to
move none, some, or all of the cops. The robber player then takes their turn,
either moving the robber along one edge in the robber layer or letting the robber
stay on its current vertex. This game ends as a victory for the cop player if, at
any point during the game, the robber is on a vertex that is also occupied by
one or more cops. The robber wins if they can evade capture indefinitely.

We can now begin defining our problems, starting with Allocated multi-
layer cops and robber.

Allocated multi-layer cops and robber
Input: A tuple (G,k) where G = (V, {C1, . . . , Cτ}, R) is a multi-layer graph
and k is an allocation of cops to layers.
Question: Does the cop player have a winning strategy when playing multi-
layer cops and robbers on G with allocation k?

We also consider a variant in which the cop player has a given number k of
cops, but gets to choose the layers to which the cops are allocated.

Multi-layer cops and robber
Input: A tuple (G, k) where G = (V, {C1, . . . , Cτ}, R) is a multi-layer graph
and k � 1 is an integer.
Question: Is there an allocation k with

∑
i ki = k such that (G,k) is yes-

instance for Allocated multi-layer cops and robber?

Lastly we consider Multi-layer cops and robber with free layer
choice, a variant of Multi-layer cops and robber in which, before the
game is played, the layers in the multi-layer graph are not assigned to being
either cop layers or robber layers. Instead the layers are simply labelled E1

through Eτ , and in this variant the cop player first allocates each cop to one
layer, and then the robber player is free to allocate the robber to any layer.

324 J. Enright et al.

Multi-layer cops and robber with free layer choice
Input: A tuple (G, k) where G = (V, {E1, . . . , Eτ}) is a multi-layer graph and
k � 1 is an integer.
Question: Is there an allocation k with

∑
i ki = k such that for every j,

((V, {E1, . . . , Eτ}, Ej),k) is a yes-instance for Multi-layer cops and rob-
ber?

We say that the multi-layer cop number of a multi-layer graph G is k if (G, k)
is a yes-instance for Multi-layer cops and robber but (G, k − 1) is a no-
instance for Multi-layer cops and robber. We will denote this with mc(G).
We round out this section with a number of basic observations.

Proposition 1. Let G = (V, {C1, . . . , Cτ}, R) and G′ = (V, {C1, . . . , Cτ}, R′) be
any two multi-layer graphs where R ⊆ R′ ⊆ (

V
2

)
. If (G, k) is a no-instance to

Multi-layer cops and robber, then (G′, k) is a no-instance to Multi-layer
cops and robber. Consequently, mc(G) � mc(G′).

Proof. To win, the robber on G′ uses the strategy from G. The robber can execute
this strategy as any edge in R′ is in R. Since the cop layers have no added edges,
the strategy must be robber-win as else the cops would win on G. ��
Proposition 2. Let G = (V, {C1, . . . , Cτ}, R) and G′ = (V, {C ′

1, . . . , C
′
τ}, R) be

any two multi-layer graphs that satisfy Ci ⊆ C ′
i for every i ∈ [τ]. If (G, k) is

a yes-instance to Multi-layer cops and robber, then (G′, k) is also a yes-
instance to Multi-layer cops and robber.

Proof. To win, the cops on G′ use the strategy from G. As no edge has been
removed from G to create G′, this must still result in the cops winning. ��
Proposition 3. Let G = (V, {C1, . . . , Cτ}, ∗) be a multi-layer graph. If (G, k)
is a yes-instance for Multi-layer cops and robber, then, letting Ei = Ci

for each i ∈ [τ], ((V, {E1, . . . , Eτ}), k) is a yes-instance for Multi-layer cops
and robber with free layer choice.

Proof. Immediate from the problem definitions and Proposition 1. ��

3 Counter Examples and Anti-Monotonicity Results

In this section we provide some concrete examples of cops and robbers on multi-
layer graphs illustrating some peculiarities of the game that may seem counter-
intuitive. We begin with the following that states that it is sometimes beneficial
to put multiple cops on the same layer, and leave other layers empty.

Theorem 1. For any n � 4 there exists a multi-layer graph (V, {CH , CV }, ∗)
on n vertices such that a cop player can win with two cops if both cops are on
CH , or if both cops are on CV , but the robber player can win if one cop is on
CV and the other is on CH .

Cops and Robbers on Multi-Layer Graphs 325

It is natural to ask if, given some multi-layer graph G = (V, {C1, . . . , Cτ}, R),
the multi-cop number of G is bounded from below by the minimum cop-number
of a single cop layer; namely, does mc(G) � mini c((V,Ci)) hold? Observe that,
if |V | = n and we let Sn denote the star graph on n vertices, any multi-layer
graph G = (V, {E(Sn), C2, . . . , Cτ}, R) has cop number 1, as the cop can start
on the centre of the star and reach any other vertex in one move. This is not
enough resolve the question directly, however in the next result we build on this
idea to show a general bound of the form mc(G) = Ω(mini c((V,Ci))) does not
hold.

Proposition 4. For any c � 2 there exist graphs G1 = (V,E1) and G2 = (V,E2)
such that c(G1) , c(G2) � c and mc((V, {E1, E2}, ∗)) = 2.

The idea of the proof is to take two n-vertex graphs with cop number c and
add a n − 1 pendent vertices from a single vertex in each graph (un and vn

respectively). The graphs are then identified as cop layers in such a way that a
cop at un can police half the vertices, and a cop at vn can cover the other half.
See Fig. 1 for an illustration. In fact, in such a construction the two cops will
catch the robber after at most one cop move. As a result, the edges present in
the robber layer are irrelevant and we have the following corollary.

Corollary 1. For any c � 2 there exist graphs G1 = (V,E1) and G2 = (V,E2)
such that c(G1) , c(G2) � c, and for any set of edges R ⊆ (

V
2

)
,

mc((V, {E1, E2}, R)) � 2.

un

G2vn

G1

Fig. 1. Illustration of the construction in the proof of Proposition 4. The dotted edges
signify an identification of the two end points of that edge.

We now consider the reverse inequality: is the multi-layer cop number
bounded from above by a function of the cop numbers of the individual layers?
If, in a multi-layer graph G = (V, {C1, . . . , Cτ}, R), the robber layer is a subset
of one of the cop layers, i.e. R ⊂ Ci for some i ∈ [τ], then mc(G) � c((V,Ci))
as the cop player can allocate c((V,Ci)) cops to layer i, ignoring all other cop
layers. The same reasoning gives an upper bound of

∑
i∈[τ] c((V,Ci)) on the cop

number in the ‘free choice layer’ variant of the game. Thus, in this special case
an upper bound that depends only on the cop numbers of individual layers does
exist. However the next result shows that this is not the case in general.

326 J. Enright et al.

Theorem 2. For any positive integer k, there exists a multi-layer graph G =
(V, {C1, C2}, R) on O(k3) vertices such that each of (V,R), (V,C1), and (V,C2)
are connected, c((V,R)) � 3, c((V,Ci)) � 2 for i ∈ {1, 2}, and mc(G) � k.

4 Complexity Results

In this section we will examine multi-layer cops and robbers from a computa-
tional complexity viewpoint. For a background on computational complexity, we
point the reader to [30]. First note that as determining the cop-number of a
simple graph is EXPTIME-complete [18], Multi-layer cops and robber with
free layer choice is also EXPTIME-complete by the obvious reduction that cre-
ates a multi-layer graph with one layer from a simple graph. The same reduction,
and the fact that, unless the strong exponential time hypothesis fails1, determin-
ing if a graph is k-copwin requires Ω(nk−o(1)) time [9], we also get that Multi-
layer cops and robber with free layer choice requires Ω(nk−o(1)) time.

An algorithm that determines whether a simple graph G is k-copwin in
O(knk+2) time is given in [23]. Petr, Portier, and Versteegen show this by first
constructing a state graph — a directed graph H wherein each vertex of H cor-
responds to a state of a game of cops and robbers played on the original graph
G. They then give an O(knk+2) algorithm for finding all cop-win vertices of H,
where a vertex is cop-win if the corresponding state either is a winning state
for the cops, or can only lead to a winning state for the cops. We adapt their
construction by only creating arcs of H where the move of a given cop or robber
is allowed (i.e., the edge in the multi-layer graph exists in the same layer as the
cop or robber that is moving). By doing this we obtain the following.

Theorem 3. Allocated multi-layer cops and robber can be solved in
O(k2n2k+2).

Note that τ , the number of layers, does not appear in the above as if τ � k
then any dependence on τ is absorbed by the dependence on k, and if k < τ then
at least τ − k layers must have zero cops allocated to them and can be ignored.

By taking an instance of dominating set G = (V,E), and creating for each
vertex v ∈ V a layer Ev containing every edge incident to v, we create an
instance of Multi-layer cops and robber with free layer choice that
has a winning strategy for k cops if and only if G has a dominating set of size
k, leading to the following.

Theorem 4. Multi-layer cops and robber with free layer choice is
NP-hard, even if each layer is a tree plus some isolated vertices.

Note that the input size to Multi-layer cops and robber with free
layer choice is the number of bits required to represent both the underlying
graph and each of the layers.

1 See [12, Chapter 14] for background on the strong exponential time hypothesis.

Cops and Robbers on Multi-Layer Graphs 327

If it is only the robber that is limited to a tree, however, then determining if
k cops can win is FPT in the number of cops and number of layers in the graph.
In particular, this result applies even if the layers are not connected. We obtain
this result by characterising whether the robber can win based on the existence
of edges in the robber layer that cops can easily patrol.

Theorem 5. Given a multi-layer graph G = (V, {C1, . . . , Cτ}, R), if R is a tree,
then Multi-layer cops and robber on G can be solved in time O(f(k, τ) ·
poly(n)), where k is the number of cops, τ is the number of layers of G, f is a
computable function independent of n, and poly(n) is a fixed polynomial in n.

The next result follows immediately from the proof technique used to prove
Theorem 5.

Corollary 2. Given a multi-layer graph G = (V, {C1, . . . , Cτ}, R), if R is a tree,
and each cop layer is connected, then mc(G) � 2.

5 Extremal Multi-Layer Cop-Number

In this section we study, for a given simple connected graph G = (V,E), the
extremal multi-layer cop number of G. This is the multi-layer cop number max-
imised over the set of all multi-layer graphs with connected cop-layers, which
when flattened give G. More formally, for given connected graph G = (V,E), if
we define the set

L(G) = {(V, {C1, . . . , Cτ}, ∗) : E = C1 ∪ · · · ∪ Cτ

and for each i ∈ [τ], (V,Ci) is connected},

then the extremal multi-layer cop-number of G is given by

emcτ (G) = max
G∈L

mc(G) .

We generalise two tools for bounding the cop number of graphs to the set-
ting of multi-layer graphs; (1, k)-existentially closed graphs [7] and bounds by
domination number. See the arXiv version of this paper [13] for more details on
the former method; here we will now outline our use of dominating sets.

Let G = (V, {E1, . . . , Eτ}) be a multi-layer graph (without designated layers).
A multi-layer dominating set in G is a set D ⊆ V ×{1, . . . , τ} of vertex-layer pairs
such that for every v ∈ V , either (v, i) ∈ D for some i, or there is a (w, i) ∈ D
such that w ∈ V and vw ∈ Ei. We define the domination number γ(G) of G
to be the size of a smallest multi-layer dominating set in G. Note that if G has
a single-layer this definition aligns with the traditional notion of dominating
set, which justifies the overloaded notation. It is a folklore result that the cop
number is at most the size of any dominating set in the graph, this also holds in
the multi-layer setting.

Theorem 6. Let G := (V, {E1, . . . , Eτ}) be any multi-layer graph and G′ :=
(V, {E1, . . . , Eτ},

(
V
2

)
). Then, mc(G′) � γ(G).

328 J. Enright et al.

Proof. Let D be any multi-layer dominating set of size |D| = γ(G) and for each
(v, i) ∈ D place one cop in layer i at the vertex v. The result now follows as if
the robber is at an any vertex then they are adjacent to a cop in some layer and
so the robber will be caught after the cops first move. ��

We now introduce the parameter δ(G) which is an analogue of minimum
degree for a multi-layer graph G = (V, {E1, . . . , Eτ}). This is given by

δ(G) := min
v∈V

∑

i∈[τ]

d(V,Ei)(v). (1)

Using this notion we prove a bound on the domination number of a multi-
layer graph, the proof is based on a classic application of the probabilistic method
[2, Theorem 1.2.2].

Theorem 7. Let G = (V, {E1, . . . , Eτ}) be any multi-layer graph. Then,

γ(G) � nτ

τ + δ(G)
·
(

ln
(

τ + δ(G)
τ

)
+ 1

)
.

Note that there are least two other sensible definitions of ‘multi-
layer minimum degree’, namely the minimum degree of each layer
mini∈[τ] minv∈V d(V,Ei)(v), and minimum number of neighbours within any layer
δ(fl(G)). Our definition of δ(G) above in (1) can be thought of as the ‘minimum
number of edges incident in any layer’, this is arguably a less natural notion
than δ(fl(G)) however it gives a better bound in our application (Theorem 7), in
particular.

Proposition 5. For any multi-layer graph G we have δ(fl(G)) � δ(G).

Returning to extremal multi-layer cop numbers, for a complete graph we
obtain Theorem 8. The upper bound we arrive at by placing all τ cops on a
single vertex v; as each edge of Kn must be in some layer, there is no vertex that
is not incident with v in some layer. The lower bound requires more work and
relies on constructing cop layers with no overlap by combining colour classes of
an edge colouring of the clique due to Sofier [31].

Theorem 8. Let n � 1, 1 � τ < 	n
2
 be integers. Then, � τ

10� � emcτ (Kn) � τ .

We now consider the extremal multi-layer cop number of the binomial random
graph Gn,p. For any integer n � 1, this is the probability distribution over all
n-vertex simple graphs generated by sampling each possible edge independently
with probability 0 < p = p(n) < 1, see [4] for more details. The following result
shows that, for a suitably dense binomial random graph Gn,p, with probability
tending to 1 as n → ∞, emcτ (Gn,p) = Θ(τ log(n)/p). The single-layer cop
number of Gn,p in the same range is known to be Θ(log(n)/p) [7], so in some
sense our result generalises this result.

Cops and Robbers on Multi-Layer Graphs 329

Theorem 9. For ε > 0, if n1/2+ε � np = o(n), and 1 � τ � nε then,

P

(
ε

10
· τ · ln n

p
� emcτ (Gn,p) � 10 · τ · ln n

p

)
� 1 − e−Ω(

√
n).

The upper bound in the proof of Theorem 9 follows from Theorems 6 and 7,
whereas the lower bound follows by independently choosing cop layers which
are each distributed as a random graph with edge probability Θ(p/τ) and then
applying a generalised form of the existential closure technique developed in [7].
See [24] for results on the cop number of Gn,p for other ranges of p.

The extremal multi-layer cop number of a graph G is also bounded from
above by the treewidth of G.

Theorem 10. For any graph G := (V,E), emcτ (G) � tw(G). Furthermore,
these cops can placed in any layers and still capture the robber.

6 Multi-Layer Analogue of Meyniel’s Conjecture

For the classical cop number, Meyniel’s Conjecture [15] states that O(
√

n) cops
are sufficient to win cops and robbers on any graph G. After a sequence of results
[10,15,16,20,28] the current best bound stands at n · 2−(1−o(1))

√
log2 n, see [5,

Chapter 3] for a more detailed overview.
It is natural to explore analogues of Meyniel’s Conjecture for the multi-layer

cop number. Namely, what is the minimum number of cops needed to patrol any
multi-layer graph with τ connected layers? Our results for the clique show that
if τ is allowed to be arbitrary then no bound better than O(n) can hold. We
conjecture that this is not the case when the number of layers is bounded.

Conjecture 1. For any fixed integer τ � 1 and collection (V,E1), . . . , (V,Eτ) of
connected graphs where |V | = n, we have

mc((V, {E1, . . . , Eτ}, ∗)) = o(n).

Observe that the connected assumption is necessary in Conjecture 1 if we do
not have divergent minimum degree, as shown by the example with two cop
layers given by two edge disjoint matchings who’s union forms an even cycle.
This conjecture might seem very modest in comparison to Meyniel’s conjecture,
however the following result shows that it would be almost tight.

Theorem 11. For any positive integer n there is a n-vertex multi-layer graph
G = (V, {C1, C2, C3}, ∗) such that |V | = Θ(n), each cop layer is connected and
has cop-number 2, and

mc(G) = Ω

(
n

log n

)
.

The construction in Theorem 11 starts with a 3-edge coloured cubic expander
graph X on N vertices, where each color class is a cop layer. The vertices of X
are then connected to the leaves of a star that has been subdivided Θ(log N)

330 J. Enright et al.

many times — these can be used by all cops. The idea is that k cops can police
at most 2k vertices of X within Θ(log N) steps as it takes each cop this long to
change location in X (via the arms of the star). If k = Θ(N) is chosen to be a
suitably small but constant fraction of N , then even with the vertices policed by
the cops removed there is still an expander subgraph of X not adjacent to any
cops. The robber can then use this expander subgraph to change position before
any cop can threaten them.

Many of the current approaches to Meyniel’s Conjecture use some variation
the fact that a single cop can guard any shortest path between any two vertices.
For example the first step of the approach in [28] is to iteratively remove long
geodesics until the graph has small diameter (following this a more sophisti-
cated argument matching randomly placed cops to possible robber trajectories
is applied). What makes Conjecture 1 difficult to approach is that, even for two
layers, a shortest path in the flattened graph fl(G) may not live within a single
cop layer. We note that [16] use a different approach based on expansion, their
approach is more versatile however the authors were unable to apply it in the
multi-layer setting.

This suggests a new or more refined approach is needed. However, by a direct
application of Theorems 6 and 7, using a simple dominating set approach we can
prove Conjecture 1 for multi-layer graphs with diverging minimum degree.

Proposition 6. For any n-vertex multi-layer graph G = (V, {E1, . . . , Eτ}) sat-
isfying δ(G)/τ → ∞ as n → ∞, we have mc

((
V, {E1, . . . , Eτ},

(
V
2

)))
= o(n).

7 Conclusion and Open Problems

We studied the game of cops and robbers on multi-layer graphs, via several
different approaches, including concrete strategies for certain graphs, the con-
struction of counter-intuitive examples, algorithmic and hardness results, and
the use of probabilistic methods and expanders for extremal constructions. We
find that the multi-layer cop number cannot be bound from above or below by
(non-constant) functions of the cop numbers of the individual layers. We bound
an extremal variant for cliques and dense binomial random graphs (extending
some tools from the single layer case along the way). We also find that a naive
transfer of Meyniel’s conjecture to the multi-layer setting is not true: there are
multi-layer graphs which have multi-layer cop number in Ω(n/ log n). Algorith-
mically, we find that even if each layer is a tree plus some isolated vertices, the
free layer choice variant of the problem remains NP-hard. Positively, we find
that the problem can be resolved by an algorithm that is FPT in the number of
cops and layers if the layer the robber resides in is a tree.

We are hopeful that our contribution will spark future work in multi-layer
variants of cops and robbers, and suggest a number of possible open questions:

We were not able to generalise some frequently used tools from single-layer
cops and robbers: for example, we have no useful notion of a corner, or a retract,
nor dismantleability - we are hopeful that such tools may exist.

Cops and Robbers on Multi-Layer Graphs 331

We have made some progress on the parameterised complexity of our prob-
lems, but have only considered a limited set of parameters and have not con-
sidered any parameter that constraints the nature of interaction between the
layers: if we, for example, require that the layers are very similar alongside other
restrictions does that impact the computational complexity of our problems?

Single-layer cops and robbers has been very successful as a tool for defining
useful graph parameters of simple graphs, and we ask whether multi-layer cops
and robbers could be used to define algorithmically useful graph parameters.

Some of our bounds and extremal results are unlikely to be tight in number
of layers or with respect to other graph characteristics: can they be improved?

Is the extremal multi-layer cop number of Gn,p always Θ(τ ·c(Gn,p)) w.h.p. for
any p? Of particular is whether this holds even in the ‘zig-zag’ regime [21]?

While we showed that a naive adaptation of Meyniel’s conjecture to our
multi-layer setting fails, it is still possible that o(|V |) cops are sufficient for a
bounded number of connected layers. We have shown this for a special case
related to degree: is it true in general?

Finally, while we introduced a particular notion of multi-layer dominating
set for our use in proving other results (inspired by similar ideas in single-layer
cops and robbers), we suggest that this multi-layer graph characteristic may also
be interesting in its own right, in particular for algorithms for other problems
on multi-layer graphs.

Acknowledgements. This work was supported by the Engineering and Physical Sci-
ences Research Council [EP/T004878/1].

References

1. Aigner, M., Fromme, M.: A game of cops and robbers. Discret. Appl. Math. 8(1),
1–12 (1984)

2. Alon, N., Spencer, J.H.: The Probabilistic Method, Third Edition. Wiley-
Interscience series in discrete mathematics and optimization. Wiley, Hoboken
(2008)

3. Balev, S., Laredo Jiménez, J.L., Lamprou, I., Pigné, Y., Sanlaville, E.: Cops and
robbers on dynamic graphs: offline and online case. In: Richa, A.W., Scheideler,
C. (eds.) SIROCCO 2020. LNCS, vol. 12156, pp. 203–219. Springer, Cham (2020).
https://doi.org/10.1007/978-3-030-54921-3 12

4. Bollobás, B.: Random graphs, volume 73 of Cambridge Studies in Advanced Math-
ematics, second edition. Cambridge University Press, Cambridge (2001)

5. Bonato, A., Nowakowski, R.J.: The Game of Cops and Robbers on Graphs. Student
Mathematical Library. American Mathematical Society, New York (2011)

6. Bonato, A., Pralat, P.: Graph Searching Games and Probabilistic Methods. Dis-
crete Mathematics and Its Applications. CRC Press, London, England, December
2017

https://doi.org/10.1007/978-3-030-54921-3_12

332 J. Enright et al.

7. Bonato, A., Pralat, P., Wang, C.: Pursuit-evasion in models of complex networks.
Internet Math. 4(4), 419–436 (2007)

8. Bowler, N.J., Erde, J., Lehner, F., Pitz, M.: Bounding the cop number of a graph
by its genus. SIAM J. Discret. Math. 35(4), 2459–2489 (2021)

9. Brandt, S., Pettie, S., Uitto, J.: Fine-grained lower bounds on cops and robbers.
In: Azar, Y., Bast, H., Herman, G. (eds.), 26th Annual European Symposium
on Algorithms (ESA 2018), volume 112 of Leibniz International Proceedings in
Informatics (LIPIcs), pp. 9:1–9:12, Dagstuhl, Germany, 2018. Schloss Dagstuhl-
Leibniz-Zentrum fuer Informatik (2018)

10. Chiniforooshan, E.: A better bound for the cop number of general graphs. J. Graph
Theory 58(1), 45–48 (2008)

11. Clarke, N.E.B.: Constrained cops and robber. ProQuest LLC, Ann Arbor, MI,
2002. Thesis (Ph.D.)-Dalhousie University (Canada) (2002)

12. Cygan, M., et al.: Parameterized Algorithms. Springer, Cham (2015). https://doi.
org/10.1007/978-3-319-21275-3

13. Enright, J., Meeks, K., Pettersson, W., Sylvester, J.: Cops and robbers on multi-
layer graphs. arXiv:2303.03962 (2023)

14. Fitzpatrick, S.L.: Aspects of domination and dynamic domination. ProQuest LLC,
Ann Arbor, MI, 1997. Thesis (Ph.D.)-Dalhousie University (Canada) (1997)

15. Frankl, P.: Cops and robbers in graphs with large girth and Cayley graphs. Discret.
Appl. Math. 17(3), 301–305 (1987)

16. Frieze, A.M., Krivelevich, M., Loh, P.-S.: Variations on cops and robbers. J. Graph
Theory 69(4), 383–402 (2012)

17. Joret, G., Kaminski, M., Theis, D.O.: The cops and robber game on graphs with
forbidden (induced) subgraphs. Contrib. Discret. Math. 5(2) (2010)

18. Kinnersley, W.B.: Cops and robbers is exptime-complete. J. Comb. Theory Ser. B
111, 201–220 (2015)

19. Lehner, F.: On the cop number of toroidal graphs. J. Comb. Theory, Ser. B 151,
250–262 (2021)

20. Linyuan, L., Peng, X.: On Meyniel’s conjecture of the cop number. J. Graph Theory
71(2), 192–205 (2012)

21. Luczak, T., Pralat, P.: Chasing robbers on random graphs: zigzag theorem. Ran-
dom Struct. Algorithms 37(4), 516–524 (2010)

22. Nowakowski, R.J., Winkler, P.: Vertex-to-vertex pursuit in a graph. Discret. Math.
43(2–3), 235–239 (1983)

23. Petr, J., Portier, J., Versteegen, L.: A faster algorithm for cops and robbers. Discret.
Appl. Math. 320, 11–14 (2022)

24. Pralat, P., Wormald, N.C.: Meyniel’s conjecture holds for random graphs. Random
Struct. Algorithms 48(2), 396–421 (2016)

25. Quilliot, A.: Jeux et pointes fixes sur les graphes. PhD thesis, Ph. D. Dissertation,
Université de Paris VI (1978)

26. Quilliot, A.: A short note about pursuit games played on a graph with a given
genus. J. Comb. Theory Ser. B 38(1), 89–92 (1985)

27. Schroeder, B.S.W.: The copnumber of a graph is bounded by � 3
2

genus (G)�+3. In:
Categorical perspectives (Kent, OH, 1998), Trends Math., pp. 243–263. Birkhäuser
Boston, Boston, MA (2001)

28. Scott, A., Sudakov, B.: A bound for the cops and robbers problem. SIAM J. Discret.
Math. 25(3), 1438–1442 (2011)

29. Seymour, P.D., Thomas, R.: Graph searching and a min-max theorem for tree-
width. J. Comb. Theory Ser. B 58(1), 22–33 (1993)

https://doi.org/10.1007/978-3-319-21275-3
https://doi.org/10.1007/978-3-319-21275-3
http://arxiv.org/abs/2303.03962

Cops and Robbers on Multi-Layer Graphs 333

30. Sipser, M.: Introduction to the Theory of Computation. Cengage Learning, Boston
(2012)

31. Soifer, A.: The Mathematical Coloring Book. Springer, New York (2009). https://
doi.org/10.1007/978-0-387-74642-5

32. Toruńczyk, S.: Flip-width: cops and robber on dense graphs. In: 2023 IEEE 64th
Annual Symposium on Foundations of Computer Science (FOCS 2023), page to
appear. IEEE (2023)

https://doi.org/10.1007/978-0-387-74642-5
https://doi.org/10.1007/978-0-387-74642-5

Parameterized Complexity
of Broadcasting in Graphs

Fedor V. Fomin1, Pierre Fraigniaud2, and Petr A. Golovach1(B)

1 Department of Informatics, University of Bergen, Bergen, Norway
{Fedor.Fomin,Petr.Golovach}@uib.no

2 Institut de Recherche en Informatique Fondamentale,
Université Paris Cité and CNRS, Paris, France

pierre.fraigniaud@irif.fr

Abstract. The task of the broadcast problem is, given a graph G and a
source vertex s, to compute the minimum number of rounds required to
disseminate a piece of information from s to all vertices in the graph. It is
assumed that, at each round, an informed vertex can transmit the infor-
mation to at most one of its neighbors. The broadcast problem is known
to be NP-hard. We show that the problem is FPT when parametrized
by the size k of a feedback edge set, or by the size k of a vertex cover,
or by k = n− t, where t is the input deadline for the broadcast protocol
to complete.

Keywords: broadcasting · telephone model · parameterized
complexity

1 Introduction

The aim of broadcasting in a network is to transmit a message from a given
source node of the network to all the other nodes. Let G = (V,E) be a connected
simple graph modeling the network, and let s ∈ V be the source of a message M .
The standard telephone model [21] assumes that the communication proceeds in
synchronous rounds. At any given round, any node u ∈ V aware of M can
forward M to at most one neighbor v of u. The minimum number of rounds for
broadcasting a message from s in G to all other vertices is denoted by b(G, s),
and we let b(G) = maxs∈V b(G, s) be the broadcast time of graph G. As the
number of informed nodes (i.e., nodes aware of the message) can at most double
at each round, b(G, s) ≥ �log2 n� in n-node networks. On the other hand, since
G is connected, at least one uninformed node receives the message at any given
round, and thus b(G) ≤ n − 1. Both bounds are tight, as witnessed by the
complete graph Kn and the path Pn, respectively. The problem of computing

The research leading to these results has received funding from the Research Council of
Norway via the project BWCA (grant no. 314528) and from the ANR project DUCAT.
The full version of the paper is available in [12].

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
D. Paulusma and B. Ries (Eds.): WG 2023, LNCS 14093, pp. 334–347, 2023.
https://doi.org/10.1007/978-3-031-43380-1_24

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-43380-1_24&domain=pdf
https://doi.org/10.1007/978-3-031-43380-1_24

Parameterized Complexity of Broadcasting in Graphs 335

the broadcast time b(G, s) for a given graph G and a given source s ∈ V is
NP-hard [30]. Also, the results of [27] imply that it is NP-complete to decide
whether b(G, s) ≤ t for graphs with n = 2t vertices.

Three lines of research have emerged since the early days of studying broad-
casting in the telephone model. One line is devoted to determining the broadcast
time of specific classes of graphs judged important for their desirable properties
as interconnection networks (e.g., hypercubes, de Bruijn graphs, Cube Connected
Cycles, etc.). We refer to the surveys [15,22] for this matter. Another line of
research takes inspiration from extremal graph theory. It aims at constructing
n-node graphs G with optimal broadcast time b(G) = �log2 n� and minimiz-
ing the number of edges sufficient to guarantee this property. Let B(n) be the
minimum number of edges of n-node graphs with broadcast time �log2 n�. It is
known [18] that B(n) = Θ(nL(n)) where L(n) denotes the number of consec-
utive leading 1 s in the binary representation of n − 1. On the other hand, it
is still not known whether B(·) is non-decreasing for 2t ≤ n < 2t+1, for every
t ∈ N. We are interested in a third, more recent line of research, namely the
design of algorithms computing efficient broadcast protocols. Note that a proto-
col for broadcasting from a source s in a graph G can merely be represented as
a spanning tree T rooted at s, with an ordering of all the children of each node
in the tree.

Polynomial-time algorithms are known for trees [30] and some classes of tree-
like graphs [4,17,20]. Several (polynomial-time) approximation algorithms have
been designed for the broadcast problem. In particular, the algorithm in [25]
computes, for every graph G and every source s, a broadcast protocol from s
performing in 2 b(G, s)+O(

√
n) rounds, hence this algorithm has approximation

ratio 2+o(1) for graphs with broadcast time � √
n, but Θ̃(

√
n) in general. Later,

a series of papers tighten the approximation ratio, from O(log2 n/ log log n) [29],
to O(log n) [1], and eventually O(log n/ log log n) [10], which is, up to our knowl-
edge the current best approximation ratio for the broadcast problem. Better
approximation ratios can be obtained for specific classes of graphs [2,3,19].

Despite all the achievements obtained on the broadcast problem, it has not
yet been approached from the parameterized complexity viewpoint [8]. There
might be a good reason for that. Since at most 2t vertices can have received the
message after t communication rounds, an instance of the broadcast problem
with time-bound t in an n-vertex graph is a no-instance whenever n > 2t. It
follows that the broadcast problem has a trivial kernel when parameterized by
the broadcast time. This makes the natural parameterization by the broadcast
time not very significant. Nevertheless, as we shall show in this paper, there is a
parameterization below the natural upper bound for the number of rounds that
leads to interesting conclusions.

Our Results. Let Telephone Broadcast be the following problem: given a
connected graph G = (V,E), a source vertex s ∈ V , and a nonnegative integer t,
decide whether there is a broadcast protocol from s in G that ensures that all the
vertices of G get the message in at most t rounds. We first show that Telephone
Broadcast can be solved in a single-exponential time by an exact algorithm.
Our algorithm is based on the dynamic programming over subsets [13].

336 F. V. Fomin et al.

Theorem 1 (�1). Telephone Broadcast can be solved in 3n ·nO(1) time for
n-vertex graphs.

Motivated by the fact that the complexity of Telephone Broadcast
remains open in pretty simple tree-like graphs (e.g., cactus graphs, and therefore
outerplanar graphs), we first consider the cyclomatic number as a parameter, i.e.,
the minimum size of a feedback edge set, that is, the size of the smallest set of
edges whose deletion results to an acyclic graph. We show that Telephone
Broadcast is FPT when parameterized by this parameter.

Theorem 2. Telephone Broadcast can be solved in 2O(k log k) · nO(1) time
for n-vertex graphs with cyclomatic number at most k.

As far as we know, no NP-hardness result is known on graphs of treewidth at
most k ≥ 2. While we did not progress in that direction, we provide an interesting
result for a stronger parameterization, namely the vertex cover number of a
graph. (Note that, for all graphs, the treewidth never exceeds the vertex cover
number.) As for the cyclomatic number, we do not only show that, for every
fixed k, the broadcast time can be found in polynomial time on graphs with
vertex cover at most k, but we prove a stronger result: the problem is FPT.

Theorem 3. Telephone Broadcast can be solved in 2O(k2k) ·nO(1) time for
n-vertex graphs with a vertex cover of size at most k.

Finally, we focus on graphs with very large broadcast time, for which the
algorithm in [25] provides hope to derive very efficient broadcast protocols as
this algorithm constructs a broadcast protocol performing in 2 b(G) + O(

√
n)

rounds. While we were not able to address the problem over the whole range√
n 	 t ≤ n − 1, we were able to provide answers for the range n − O(1) ≤

t ≤ n − 1. More specifically, we consider the parameter k = n − t and study the
kernelization for the problem under such parametrization.

Theorem 4. Telephone Broadcast admits a kernel with O(k) vertices in
n-vertex graphs when parameterized by k = n − t.

As a direct consequence of Theorem 4, Telephone Broadcast is FPT for
the parameterization by k = n − t. Specifically the problem can be solved in
2O(k) · nO(1) time.

Related Work. A classical generalization of the broadcast problem is the multi-
cast problem, in which the message should only reach a given subset of target
vertices in the input graph. Many of the previously mentioned approximation
algorithms for the broadcast problem extend to the multicast problem, and, in
particular, the algorithm in [10] is an O(log k/ log log k)-approximation algorithm
for the multicast problem with k target nodes.

1 The proofs of the statements labeled by (�) are omitted and can be found in the full
version of the paper [12].

Parameterized Complexity of Broadcasting in Graphs 337

Many variants of the telephone model have been considered in the litera-
ture, motivated by different network technologies. One typical example is the
line model [11], in which a call between a vertex u and a vertex v is imple-
mented by a path between u and v in the graph, with the constraint that
all calls performed at the same round must be performed along edge-disjoint
paths. (The intermediate nodes along the path do not receive the message,
which “cut through” them.) Interestingly, the broadcast time of every n-node
graph is exactly �log2 n�. The result extends to networks in which the paths are
constructed by an underlying routing function [6]. The vertex-disjoint variant
of the line model, i.e., the line model in which the calls performed at the same
round must take place along vertex-disjoint paths, is significantly more complex.
There is an O(log n/ log log n)-approximation algorithm for the vertex-disjoint
line model [25], which naturally extend to an O(log n/ log OPT)-approximation
algorithm — see also [14] where an explicit O(log n/ log OPT)-approximation
algorithm is provided. It is also worth mentioning that the broadcast model has
been also extensively studied in models aiming at capturing any type of node- or
link-latencies, e.g., the message takes λe units of time to traverse edge e, and the
algorithm in [1] also handles such constraints. Other variants take into account
the size of the message, e.g., a message of L bits takes time α + β · L to traverse
an edge (see [23]). Under such a model, it might be efficient to split the original
message into smaller packets and pipeline the broadcast of these packets through
disjoint spanning trees [23,31].

2 Preliminaries

We refer to the book of Cygan et al. [8] for a detailed introduction to Parame-
terized Complexity. We consider only finite undirected graphs and refer to the
textbook of Diestel [9] for basic notation. We always assume that the considered
graphs are connected if it is not explicitly said to be otherwise. We use n and
m to denote the number of vertices and edges if this does not create confusion.
A set of edges S of a graph G is a feedback edge set if G − S has no cycle. The
cyclomatic number of a graph G is the minimum size of a feedback edge set. It
is well-known, that for a connected graph G, the cyclomatic number is m−n+1
and a feedback edge set can be found in linear time by constructing a spanning
tree (see, e.g., [7,9]). A set of vertices S of a graph G is a vertex cover if each
edge of G has at least one of its endpoints in G. The vertex cover number of G
is the minimum size of a vertex cover. Note that for a vertex cover S, the set
I = V (G) \ S is an independent set, that is, any two distinct vertices of I are
not adjacent.

Broadcasting. Let G be a graph and let s ∈ V (G) be a source vertex from which
a message is broadcasted. In general, a broadcasting protocol is a mapping that
for each round i ≥ 1, assigns to each vertex v ∈ V (G) that is either a source or
has received the message in rounds 1, . . . , i − 1, a neighbor u to which v sends
the message in the i-th round. However, it is convenient to note that it can be

338 F. V. Fomin et al.

assumed that each vertex v that got the message, in the next d ≤ dG(v) rounds,
transmits the message to some neighbors in a certain order in such a way that
each vertex receives the message only once. This allows us to formally define a
broadcasting protocol as a pair (T, {C(v) | v ∈ V (T)}), where T is a spanning
tree of G rooted in s and for each v ∈ V (T), C(v) is an ordered set of children
of v in T . As soon as v gets the message, v starts to send it to the children in
T in the order defined by C(v). For G and s ∈ V (G), we use b(G, s) to denote
the minimum integer t ≥ 0 such that there is a broadcasting protocol such that
every vertex of G gets the message after t rounds. We say that a broadcasting
protocol ensuring that every vertex gets a message in b(s,G) rounds is optimal.

As it was proved by Proskurowski [28] and Slater, Cockayne, and Hedet-
niemi [30], b(G, s) can be computed in linear time for trees by dynamic pro-
gramming.

Lemma 1 ([28,30]). For an n-vertex tree T and s ∈ V (T), b(T, s) can be com-
puted in O(n) time.

3 Telephone Broadcast Parameterized by the Cyclomatic
Number

In this section, we sketch the proof of Theorem 2. We need some auxiliary results.
Let T be a tree and let x and y be distinct leaves, that is, vertices of degree one
in T . For an integer h ≥ 0, we use bh(T, x, y) to denote the minimum number
of rounds needed to broadcast the message from the source x to y in such a
way that every vertex of T gets the message in at most h rounds. We assume
that bh(T, x, y) = +∞ if b(T, x) > h. We prove that bh(T, x, y) can be computed
in linear time similarly to b(T, s) (see [28,30]). The difference is that it is more
convenient to use recursion instead of dynamic programming.

Lemma 2 (�). For an n-vertex tree T with given distinct leaves x and y of T
and an integer h ≥ 0, bh(T, x, y) can be computed in O(n) time.

We also need a subroutine computing the minimum number of rounds for
broadcasting from two sources with the additional constraint that the second
source starts sending the message with a delay. Let T be a tree and let x and
y be distinct leaves of T . Let also h ≥ 0 be an integer. We use dh(T, x, y) to
denote the minimum rounds needed to broadcast the message from x and y to
every vertex of T − y in such a way that y can send the message starting from
the (h + 1)-th round (that is, we assume that y gets the message from outside
in the h-th round).

Lemma 3 (�). For an n-vertex tree T with given distinct leaves x and y of T
and an integer h ≥ 0, dh(T, x, y) can be computed in O(n2) time.

Sketch of the Proof of Theorem 2. Let (G, s, t) be an instance of Telephone
Broadcast. If G is a tree, then we can compute b(G, s) in linear time using

Parameterized Complexity of Broadcasting in Graphs 339

Lemma 1. Assume that this is not the case, and let k = m − n + 1 ≥ 1 be the
cyclomatic number of G. We find in linear time a feedback edge set S of size k
by finding an arbitrary spanning tree F of G and setting S = E(G) \ E(F).

We iteratively construct the set U as follows. Initially, we set U := W =
{s} ∪ {v ∈ V (G) | v is an endpoint of an edge of S}. Then while G − U has a
vertex v such that G has three internally vertex-disjoint paths joining v and U ,
we set U := U ∪{v}. The properties of U are summarized in the following claims.

Claim 1. We have that |U | ≤ 4k, and for each connected component F of G−U ,
F is a tree such that each vertex x ∈ U has at most one neighbor in F and

(i) either U has a unique vertex x that has a neighbor in F ,
(ii) or U contain exactly two vertices x and y having neighbors in F .

If F is a connected component of G−U satisfying (i) of Claim 1, then we say
that F is a x-tree and x is its anchor. For a connected component F of G − U
satisfying (ii), we say that F is an (x, y)-tree and call x and y anchors of F . We
also say that F is anchored in x (x and y, respectively). Because G − S is a tree
and |U | ≤ 4k − 1, we immediately obtain the next property.

Claim 2. For every distinct x, y ∈ U , G − U has at most one (x, y)-tree. Fur-
thermore, the graph H with V (H) = U such that xy ∈ E(H) if and only if G−U
has an (x, y)-tree is a forest. In particular, the total number of (x, y)-trees is at
most 4k − 1.

To prove the theorem, we have to verify the existence of a broadcasting
protocol P = (T, {C(v) | v ∈ V (T)}) that ensures that every vertex receives the
message after at most t rounds. To do it, we guess the scheme of P restricted
to U . Namely, we consider the graph G′ obtained from G by the deletion of the
vertices of x-trees for all x ∈ U and for each vertex x ∈ U , we guess how the
message is broadcasted to x and from x to the neighbors of x in G′. Notice that
T ′ = T [V (G′)] is a tree by the definition of G′. Observe also that for each x-tree
F for x ∈ U , the message is broadcasted to the vertices of F from x, because
s ∈ U . In particular, this means that the parents of the vertices of U in T are in
G′. For each v ∈ U distinct from s, we guess its parent p(v) ∈ V (G′) in T ′ and
assume that p(s) = s. Then for each v ∈ V (G), we guess the ordered subset R(v)
of vertices of NG′(v)\{p(v)} such that R(v) = C(v)∩NG′(v). We guess p(v) and
R(v) for v ∈ U by considering all possible choices. To guess R(v) for each v ∈ U ,
we first guess the (unordered) set S(v) and then consider all possible orderings
of the elements of S(v). The selection of p(v) and S(v) is done by brute force.
However, we are only interested in choices, where the selection of the neighbors
p(v) and S(v) of v for v ∈ U can be extended to a spanning tree T ′ of G′.

Let T ′ be an arbitrary spanning tree of G′ rooted in s. Let T ′′ be the tree
obtained from T ′ by the iterative deletion of leaves not included in U . Observe
that T ′′ is a tree such that U ⊆ V (T ′′) and each leaf of T ′′ is a vertex of U . By
Claim 1, each edge of T ′′ is either an edge of G[U] or is an edge of an (x, y)-path
Q for distinct x, y ∈ U such that the internal vertices of Q are the vertices of

340 F. V. Fomin et al.

the (x, y)-tree F ; in the second case, each edge of Q is in T ′′. Notice also that
s ∈ V (T ′′) and for each v ∈ U distinct from s, the parent of v in T is the
parent of v in T ′′ with respect to the source vertex s. Hence, our first step in
constructing p(v) and S(v), is to consider all possible choices of T ′′. Observe
that G[U] has at most

(
4k
2

)
edges and the total number of (x, y)-trees is at most

4k − 1 by Claim 2. Because T ′′ is a tree, it contains |U | − 1 edges of G[U] and
(x, y)-paths Q in total. We obtain that we have kO(k) possibilities to choose T ′′.
From now, we assume that T ′′ is fixed.

The choice of T ′′ defines p(v) for v ∈ U \ {s}. For each v ∈ U , we initiate
the construction of S(v) by including in the set the neighbors of v in T ′′ distinct
from p(v). We proceed with guessing of S(v) by considering (x, y)-trees F for
x, y ∈ U such that the (x, y)-path with the internal vertices in F is not included
in T ′′. Clearly, the vertices of every F of such a type should receive the message
either via x, or via y, or via both x and y. Let F be an (x, y)-tree of this type.
Denote by x′ and y′ the neighbors of x and y, respectively. We have that either
x′ ∈ S(x) and y′ /∈ S(y), or x /∈ S(x) and y ∈ S(Y), or x′ ∈ S(x), y′ ∈ S(y)
and x′ �= y′. Thus, we have three choices for F . By Claim 2, the total number of
choices is 2O(k). We go over all the choices and include the vertices to the sets
S(v) for v ∈ U with respect to them. By Claim 1, this concludes the construction
of the sets S(v). From now, we assume that S(v) for v ∈ U are fixed.

We construct the ordered sets R(v) by considering all possible orderings of
the elements of S(v). The number of these orderings is Πv∈U (|S(v)|!). Recall that
the sets S(v) are sets of neighbors of v in a spanning tree of G′. This and Claims 1
and 2 imply that

∑
v∈U |S(v)| ≤ 2(|U |−1)+2(4k−1) ≤ 16k. Therefore, the total

number of orderings is Πv∈U (|S(v)|!) = kO(k). This completes the construction
of R(v). Now we can assume that p(v) for each v ∈ U \ {s} and R(v) for each
v ∈ U are given.

The final part of our algorithm is checking whether the guessed scheme for
a broadcasting protocol can be extended to the protocol itself. This is done in
two stages.

In the first stage, we compute for each v ∈ U , the minimum number r(v) of
a round in which v can receive the message and the ordered set C(v). Initially,
we set r(s) = 0 and set X := {s}. Then we iteratively either compute C(v) for
v ∈ X or extend X by including a new vertex v ∈ U \ X and computing r(v).
We proceed until we get X = U and compute C(v) for every v ∈ U . We also
stop and discard the current choice of the scheme if we conclude that the choice
cannot be extended to a broadcasting protocol terminating in at most t steps.

Suppose that there is v ∈ X such that C(v) is not constructed yet. Notice
that r(v) is already computed. To construct C(v), we observe that for each v-tree
F anchored in v, the vertices of F should receive the message via v. Hence, to
construct C(v), we extend R(v) by inserting the neighbors of v in the v-trees. If
there is no v-tree anchored in v, then we simply set C(v) = R(v). Assume that
this is not the case and let F1, . . . , Fk be the v-trees anchored in v. Denote by
u1, . . . , uk the neighbors of v in T1, . . . , Tk, respectively. Because the message is
broadcasted from u to each ui, we can assume that to broadcast the message

Parameterized Complexity of Broadcasting in Graphs 341

from ui to the other vertices of Ti, an optimal protocol requiring b(Ti, ui) rounds
is used. We compute the values b(Ti, ui) for all i ∈ {1, . . . , k} and assume that
b(T1, u1) ≥ · · · ≥ b(Tk, uk).

If r(v)+ |R(v)|+ k > t, we discard the current choice of the scheme, because
we cannot transmit the message to the neighbors of v in t rounds. Notice also
that r(v) + max{b(Ti, ui) + i | i ∈ {1, . . . , k}} rounds are needed to transmit
the message to the vertices of all v-trees. Hence, if r(v) + max{b(Ti, ui) + i |
i ∈ {1, . . . , k}} > t, we discard the considered scheme. From now on, we assume
that r(v) + |R(v)| + k ≤ t and r(v) + max{b(Ti, ui) + i | i{1 ∈, . . . , k}} ≤ t.

The main idea for constructing C(v) is to ensure that the message is sent to
the vertices of R(v) as early as possible. To achieve this, we put u1, . . . , uk in
C(v) in such a way, that the message is sent to each ui as late as possible. Since
|C(v)| = |R(v)| + k, we represent C(v) as an |R(v)| + k-element array whose
elements are indexed 1, 2, . . . , |R(v)|+ k. Because b(T1, u1) ≥ · · · ≥ b(Tk, uk), we
can assume that the ordering of the vertices u1, . . . , uk in C(v) is (u1, . . . , uk).
Therefore, we insert ui in C(v) consecutively for i = k, k − 1, . . . , 1.

Suppose that i ∈ {1, . . . , k} and ui+1, . . . , uk are in C(v). Denote by hi+1 the
index of ui+1 assuming that hk+1 = |R(v)| + k + 1. We find maximum positive
integer h < hi+1 such that r(v) + h + b(Ti, ui) ≤ t and set the index hi = h
for ui. In words, we find the maximum index that is prior to the index of ui+1

such that if we transmit the message from v to ui in the h-th round after v
got aware of the message, then the vertices of Ti still may get the message in
t rounds. After placing u1, . . . , uk into the array, we place the vertices of R(v)
in the remaining |R(v)| places following the order in R(v). This completes the
construction of C(v).

Suppose that U \ X �= ∅ and for each v ∈ X, C(v) is given. We assume that
for each v ∈ X, the elements of C(v) are indexed 1, . . . , |C(v)| according to the
order. By the constriction of the schemes, there is y ∈ U \X such that y receives
the message from some vertex x ∈ X either directly or via some (x, y)-tree F
anchored in x and y. We find such a vertex y, compute r(y), and include y in X.

If there is y ∈ U \ X such that p(y) = x ∈ X, then we set r(y) = r(x) + h,
where h is the index of y in C(v) and set X := X ∪ {y}. Since r(x) is the
minimum number of a round when x gets the message, r(y) is the minimum
number of a round in which y gets the message. Suppose that such a vertex y
does not exist. Then by the construction of the considered scheme, there are
x ∈ X and y ∈ U \ X such that the tree T ′′ which was used to construct the
scheme contains an (x, y)-path whose internal vertices are in the (x, y)-tree F
anchored in x and y. This means that the neighbor x′ of x in F is included in
C(v). Let h be the index of x′ in C(v). We also have that y′ = p(y) is the unique
neighbor of y in F . In other words, we have to transmit the message from x to
y according to the scheme. To compute r(y), we have to transmit the message
as fast as possible. For this, we use Lemma 2. Notice that the vertices of F
should receive the message in at most t′ = t − r(x) − h + 1 rounds because x
receives the message in the round r(v) and h−1 vertices of C(v) get the message
before x′. Let F ′ be the tree obtained from F by adding the vertices x, y and the

342 F. V. Fomin et al.

edges xx′, yy′. We compute bt′(F ′, x, y) using the algorithm from Lemma 2. If
bt′(F ′, x, y) = +∞, we discard the considered scheme because y cannot receive
the message in t rounds. Otherwise, we set r(y) = r(x) + (h − 1) + bt′(F ′, x, y)
and set X := X ∪ {y}.

This completes the first stage where we compute r(v) and C(v) for v ∈ U .
Observe that if we completed this stage without discarding the considered choice
of the scheme, we already have a partially constructed broadcasting protocol
that ensures that (i) the vertices of v-trees for v ∈ U get the message in at
most t rounds, (ii) the vertices of (x, y)-trees that are assigned by the scheme to
transmit the message from x to y receive the message in at most t rounds, and
(iii) for each v ∈ U , r(v) is the minimum number of a round when v can receive
the message according to the scheme. By Claim 1, it remains to check whether
the vertices of (x, y)-trees F that are not assigned by the scheme to transmit the
message from x to y or vice versa can receive the message in at most t rounds.
We do it using Lemmas 1 and 3.

Suppose that F is a (x, y)-tree anchored in x, y ∈ U such that p(x), p(y) /∈
V (F), that is, F is not assigned by the scheme to transmit the message from x
to y or vice versa. Let x′ and y′ be the neighbors in F of x and y, respectively.
By the construction of the schemes, we have three cases: (i) x′ ∈ C(x) and
y′ /∈ C(y), (ii) x′ /∈ C(x), y′ ∈ C(y), and (iii) x′ ∈ C(x), y′ ∈ C(y), and x′ �= y′.

In case (i), the vertices of F should receive the message via x. Clearly, we
can use an optimal protocol for F with the source x′ to transmit the message
from x′. Let h be the index of x′ in C(x). We use Lemma 1, to verify whether
t − r(x) − h ≥ b(F, x). If the inequality holds, we conclude that the message can
be transmitted to the vertices of F in at most t rounds. Otherwise, we conclude
that this is impossible and discard the scheme. Case (ii) is symmetric and the
arguments are the same.

Suppose that x′ ∈ C(x), y′ ∈ C(y), and x′ �= y′. Then the vertices of F are
receiving the message from both x and y. Denote by i and j the indexes of x′

and y′ in C(x) and C(y), respectively. By symmetry, we assume without loss of
generality that r(x)+ i ≤ r(y)+ j and let h = (r(y)+ j)− (r(x)+ i). Notice that
the vertices of F start to get the message after the round r(v)+ i−1. Denote by
F ′ the tree obtained from F by adding the vertices x, y and the edges xx′, yy′.
We use Lemma 3 and compute dh(F ′, x, y). If dh(F ′, x, y) ≤ t−r(v)− i+1, then
we obtain that the message can be transmitted to the vertices of F in at most t
rounds. Otherwise, we cannot do it and discard the scheme.

This completes the description of the second stage of the verification of
whether the considered scheme can be extended to a broadcasting protocol ter-
minating in at most t rounds.

If we find a scheme that allows us to conclude that the message can be
broadcasted in at most t rounds, we conclude that (G, s, t) is a yes-instance.
Otherwise, if every scheme gets discarded, we return that (G, s, t) is a no-instance
of Telephone Broadcast. This concludes the description of the algorithm. ��

Parameterized Complexity of Broadcasting in Graphs 343

4 Telephone Broadcast Parameterized by the Vertex
Cover Number

In this section, we briefly sketch the proof of Theorem 3. Recall that we aim
to show that Telephone Broadcast is FPT on graphs with the vertex cover
number at most k when the problem is parameterized by k. We start with some
auxiliary claims about the broadcasting on a graph with a given vertex cover S.

Lemma 4 (�). Let G be a graph with at least one edge and s ∈ V (G). Let also S
be a vertex cover of G. Then there is an optimal broadcasting protocol for G with
the source s such that the vertices of S receive the message in at most 2|S| − 1
rounds.

We also use the bound for the number of vertices of I = V (G) \ S getting
the message in the first p rounds.

Lemma 5 (�). Let G be a graph with at least one edge and s ∈ V (G). Let also
S be a vertex cover of G and p ≥ 1 be an integer. Then for any broadcasting
protocol for G with the source s, at most p|S| vertices of I = V (G) \ S receive
the message in the first p rounds.

Sketch of the Proof of Theorem 3. Let (G, s, t) be an instance of Telephone
Broadcast and let k ≥ 0 be an integer. We use the algorithm of Chen, Kanj,
and Xia [5] to find in 1.2738k · nO(1) time a vertex cover S of G of size at most
k. If the algorithm fails to find such a set, then we stop and return the answer
that G has no vertex cover of size at most k. From now on, we assume that S
is given and I = V (G) \ S. We use the well-known fact that I has a partition
{L1, . . . , Lp} into classes of false twins with p ≤ 2k. By Lemma 4, we can assume
that the vertices of S receive the message in the first 2k − 1 rounds. Then we
apply Lemma 5 and guess the vertices of I which receive the message in the first
2k − 1 rounds using the fact that the vertices of each Li are indistinguishable.
Our task boils down to deciding whether the remaining vertices of I can receive
the message in the following t − 2k + 1 rounds. The crucial observation is that
these vertices can get the message only from S. This allows us to encode a
broadcasting protocol as a system of linear inequalities over Z. For every v ∈ S
and every i ∈ {1, . . . , p}, we introduce an integer-valued variable xvi meaning
that exactly xvi neighbors of v in Li \ Yi receive the message from v in the last
t − 2k + 1 rounds. Notice that the number of variables is upper bounded by
k2k. Thus, we obtain the system of integer linear inequalities with at most k2k

variables, which can be solved in 2O(k2k) ·nO(1) time by the results of Lenstra [26]
and Kannan [24] (see also [16]). ��

5 Kernelization for the Parameterization by k = n − t

In this section, we sketch the proof of Theorem 4. Recall that we parameter-
ize Telephone Broadcast by k = n − t. Hence, it is convenient for us to

344 F. V. Fomin et al.

denote the considered instances as triples (G, s, k) throughout the section instead
of (G, s, n − k). Let (G, s, k) be an instance of Telephone Broadcast. We
exhaustively apply the following reduction rules in the order in which they are
stated. The first rule is straightforward because b(G, s) ≤ n − 1 and (G, s, k) is
a yes-instance if k ≤ 1. Also if k > n, then (G, s, k) is a no-instance.

Reduction Rule 1. If k ≤ 1, then return a trivial yes-instance, e.g., the
instance with G = ({s}, ∅) and k = 0, and stop. If k > n, then return a trivial
no-instance, e.g., the instance with G = ({s, v}, {sv}) and k = 1, and stop.

Observe that after applying Reduction Rule 1, n ≥ 2, because if n = 1, then
either k ≤ 1 of k > n and we would stop. Notice that if dG(s) = 1, then the
source s sends the message to its unique neighbor in the first round. This allows
us to delete s and define a new source.

Reduction Rule 2. If dG(s) = 1, then let v be the neighbor of s, set G := G−s
and define s := v.

Now we can assume that dG(s) ≥ 2. By the next rule, we delete certain
pendent vertices.

Reduction Rule 3. If there is a vertex v ∈ V (G) such that for the set of
vertices of degree one W ⊆ NG(v), it holds that |W | ≥ |V (G) \ W |, then select
an arbitrary w ∈ W and set G := G − w.

To state the following rule, we introduce an auxiliary notation. For a vertex
v of a graph H, we define ρH(v) = max{distH(v, u) | u ∈ V (H)}.

Reduction Rule 4. If G has a bridge e = uv such that G − e has two con-
nected components G1 and G2, where s, u ∈ V (G1), v ∈ V (G2), dG(u) = 2, and
|V (G1)| < distG1(s, u) + ρG2(v), then set G := G/e.

From now, we can assume that Reduction Rules 1–4 are not applicable. We
run the standard breadth-first search (BFS) algorithm on G from s (see, e.g., [7]
for the description). The algorithm produces a spanning tree B of G of shortest
paths and the partition of V (G) into BFS-levels L0, . . . , Lr, where Li is the set
of vertices at distance i from s for every i ∈ {1, . . . , r}.

Using the observation that b(B, s) ≥ b(G, s) and Lemma 1, we apply the
following rule.

Reduction Rule 5. Compute b(B, s) and if b(B, s) ≤ n − k, then return a
trivial yes-instance and stop.

Then we apply the final rule.

Reduction Rule 6. If there is v ∈ Li for some i ∈ {0, . . . , r − 1} such that for
X = NG(v)∩Li+1 and for the (s, v)-path P in B, it holds that (i) |X| ≥ 2k+1 and
(ii) the total number of vertices in nontrivial, i.e., having at least two vertices,
connected components of G − V (P) containing vertices of X is at least 4k − 2,
then return a trivial yes-instance and stop.

Parameterized Complexity of Broadcasting in Graphs 345

The crucial property of the instance obtained by applying Reduction Rules 1–
6 is given in the following lemma.

Lemma 6 (�). Suppose that Reduction Rules 1–6 are not applicable to (G, s, k).
Then |V (G)| ≤ 18k − 12.

By Lemma 6, if we do not stop during the exhaustive applications of Reduc-
tion Rules 1–6, then for the obtained instance (G, s, k), |V (G)| ≤ 18k − 12.
Hence, to complete the kernelization algorithm, we return (G, s, k).

It is straightforward to see that Reduction Rules 1–6 can be applied in poly-
nomial time. In particular, BFS and finding bridges can be done in linear time by
classical graph algorithms (see, e.g., the textbook [7]). Thus, the total running
time of the kernelization algorithm is polynomial. This completes the the sketch
of the proof of Theorem 4.

6 Conclusion

In our paper, we initiated the study of Telephone Broadcast from the param-
eterized complexity viewpoint. In this section, we discuss further directions of
research.

We observed that Telephone Broadcast is trivially FPT when parame-
terized by t and Theorem 1 implies that the problem can be solved in 32

t ·nO(1)

time. Is it possible to get a better running time for the parameterization by t?
In Theorem 4, we obtained a polynomial kernel for the parameterization

by k = n − t, that is, for the parameterization below the trivial upper bound
for b(G, s). This naturally leads to the question about parameterization below
some other bounds for this parameter. We note that the parameterization of
Telephone Broadcast above the natural lower bound b(G, s) ≥ log n leads
to a para-NP-complete problem. To see this, observe that for graphs with n = 2t

vertices, b(G, s) ≤ t if and only if G has a binomial spanning tree rooted in s,
and it is NP-complete to decide whether G contains such a spanning tree [27].

In Theorems 2 and 3, we considered structural parameterizations of Tele-
phone Broadcast by the cyclomatic and vertex cover numbers, respectively.
It is interesting to consider other structural parameterizations. In particular, is
Telephone Broadcast FPT when parameterized by the feedback vertex num-
ber and treewidth (we refer to [8] for the definitions)? For the parameterization
by treewidth, the complexity status of Telephone Broadcast is open even
for the case when the treewidth of the input graphs is at most two, that is, for
series-parallel graphs.

References

1. Bar-Noy, A., Guha, S., Naor, J., Schieber, B.: Message multicasting in heteroge-
neous networks. SIAM J. Comput. 30(2), 347–358 (2000)

346 F. V. Fomin et al.

2. Bhabak, P., Harutyunyan, H.A.: Constant approximation for broadcasting in k -
cycle graph. In: Ganguly, S., Krishnamurti, R. (eds.) CALDAM 2015. LNCS,
vol. 8959, pp. 21–32. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-
14974-5 3

3. Bhabak, P., Harutyunyan, H.A.: Approximation algorithm for the broadcast time
in k-path graph. J. Interconnect. Netw. 19(4), 1950006:1–1950006:22 (2019).
https://doi.org/10.1142/S0219265919500063

4. Cevnik, M., Zerovnik, J.: Broadcasting on cactus graphs. J. Comb. Optim. 33(1),
292–316 (2017)

5. Chen, J., Kanj, I.A., Xia, G.: Improved upper bounds for vertex cover. Theor.
Comput. Sci. 411(40–42), 3736–3756 (2010). https://doi.org/10.1016/j.tcs.2010.
06.026

6. Cohen, J., Fraigniaud, P., König, J., Raspaud, A.: Optimized broadcasting and
multicasting protocols in cut-through routed networks. IEEE Trans. Parallel Dis-
trib. Syst. 9(8), 788–802 (1998)

7. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algo-
rithms. 3rd edn. MIT Press, Cambridge (2009). https://mitpress.mit.edu/books/
introduction-algorithms

8. Cygan, M., et al.: Parameterized Algorithms. Springer, Cham (2015). https://doi.
org/10.1007/978-3-319-21275-3

9. Diestel, R.: Graph Theory. GTM, vol. 173. Springer, Heidelberg (2017). https://
doi.org/10.1007/978-3-662-53622-3

10. Elkin, M., Kortsarz, G.: Sublogarithmic approximation for telephone multicast. J.
Comput. Syst. Sci. 72(4), 648–659 (2006)

11. Farley, A.M.: Minimum-time line broadcast networks. Networks 10(1), 59–70
(1980)

12. Fomin, F.V., Fraigniaud, P., Golovach, P.A.: Parameterized complexity of broad-
casting in graphs. CoRR abs/2306.01536 (2023). https://doi.org/10.48550/arXiv.
2306.01536

13. Fomin, F.V., Kratsch, D.: Exact Exponential Algorithms. TTCSAES, Springer,
Heidelberg (2010). https://doi.org/10.1007/978-3-642-16533-7

14. Fraigniaud, P.: Approximation algorithms for minimum-time broadcast under the
vertex-disjoint paths mode. In: auf der Heide, F.M. (ed.) ESA 2001. LNCS, vol.
2161, pp. 440–451. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-
44676-1 37

15. Fraigniaud, P., Lazard, E.: Methods and problems of communication in usual net-
works. Discret. Appl. Math. 53(1–3), 79–133 (1994)

16. Frank, A., Tardos, É.: An application of simultaneous diophantine approximation
in combinatorial optimization. Comb. 7(1), 49–65 (1987). https://doi.org/10.1007/
BF02579200

17. Gholami, M.S., Harutyunyan, H.A., Maraachlian, E.: Optimal broadcasting in
fully connected trees. J. Interconnect. Netw. 23(1), 2150037:1–2150037:20 (2023).
https://doi.org/10.1142/S0219265921500377

18. Grigni, M., Peleg, D.: Tight bounds on minimum broadcast networks. SIAM J.
Discret. Math. 4(2), 207–222 (1991)

19. Harutyunyan, H.A., Hovhannisyan, N.: Broadcasting in split graphs. In: Mavroni-
colas, M. (ed.) CIAC 2023. LNCS, vol. 13898, pp. 278–292. Springer, Cham (2023).
https://doi.org/10.1007/978-3-031-30448-4 20

20. Harutyunyan, H.A., Maraachlian, E.: On broadcasting in unicyclic graphs. J.
Comb. Optim. 16(3), 307–322 (2008). https://doi.org/10.1007/s10878-008-9160-
2

https://doi.org/10.1007/978-3-319-14974-5_3
https://doi.org/10.1007/978-3-319-14974-5_3
https://doi.org/10.1142/S0219265919500063
https://doi.org/10.1016/j.tcs.2010.06.026
https://doi.org/10.1016/j.tcs.2010.06.026
https://mitpress.mit.edu/books/introduction-algorithms
https://mitpress.mit.edu/books/introduction-algorithms
https://doi.org/10.1007/978-3-319-21275-3
https://doi.org/10.1007/978-3-319-21275-3
https://doi.org/10.1007/978-3-662-53622-3
https://doi.org/10.1007/978-3-662-53622-3
https://doi.org/10.48550/arXiv.2306.01536
https://doi.org/10.48550/arXiv.2306.01536
https://doi.org/10.1007/978-3-642-16533-7
https://doi.org/10.1007/3-540-44676-1_37
https://doi.org/10.1007/3-540-44676-1_37
https://doi.org/10.1007/BF02579200
https://doi.org/10.1007/BF02579200
https://doi.org/10.1142/S0219265921500377
https://doi.org/10.1007/978-3-031-30448-4_20
https://doi.org/10.1007/s10878-008-9160-2
https://doi.org/10.1007/s10878-008-9160-2

Parameterized Complexity of Broadcasting in Graphs 347

21. Hedetniemi, S.M., Hedetniemi, S.T., Liestman, A.L.: A survey of gossiping
and broadcasting in communication networks. Networks 18(4), 319–349 (1988).
https://doi.org/10.1002/net.3230180406

22. Hromkovic, J., Klasing, R., Pelc, A., Ruzicka, P., Unger, W.: Dissemination of
Information in Communication Networks - Broadcasting, Gossiping, Leader Elec-
tion, and Fault-Tolerance. Texts in Theoretical Computer Science. An EATCS
Series, Springer, Heidelberg (2005). https://doi.org/10.1007/b137871

23. Johnsson, S.L., Ho, C.: Optimum broadcasting and personalized communication
in hypercubes. IEEE Trans. Comput. 38(9), 1249–1268 (1989)

24. Kannan, R.: Minkowski’s convex body theorem and integer programming. Math.
Oper. Res. 12(3), 415–440 (1987). https://doi.org/10.1287/moor.12.3.415

25. Kortsarz, G., Peleg, D.: Approximation algorithms for minimum-time broadcast.
SIAM J. Discret. Math. 8(3), 401–427 (1995)

26. Lenstra, H.W., Jr.: Integer programming with a fixed number of variables. Math.
Oper. Res. 8(4), 538–548 (1983). https://doi.org/10.1287/moor.8.4.538

27. Papadimitriou, C.H., Yannakakis, M.: The complexity of restricted spanning tree
problems. J. ACM 29(2), 285–309 (1982). https://doi.org/10.1145/322307.322309

28. Proskurowski, A.: Minimum broadcast trees. IEEE Trans. Comput. 30(5), 363–366
(1981). https://doi.org/10.1109/TC.1981.1675796

29. Ravi, R.: Rapid rumor ramification: approximating the minimum broadcast time.
In: 35th IEEE Symposium on Foundations of Computer Science (FOCS), pp. 202–
213 (1994)

30. Slater, P.J., Cockayne, E.J., Hedetniemi, S.T.: Information dissemination in trees.
SIAM J. Comput. 10(4), 692–701 (1981). https://doi.org/10.1137/0210052

31. Stout, Q.F., Wagar, B.: Intensive hypercube communication prearranged communi-
cation in link-bound machines. J. Parallel Distrib. Comput. 10(2), 167–181 (1990)

https://doi.org/10.1002/net.3230180406
https://doi.org/10.1007/b137871
https://doi.org/10.1287/moor.12.3.415
https://doi.org/10.1287/moor.8.4.538
https://doi.org/10.1145/322307.322309
https://doi.org/10.1109/TC.1981.1675796
https://doi.org/10.1137/0210052

Turán’s Theorem Through Algorithmic
Lens

Fedor V. Fomin1, Petr A. Golovach1, Danil Sagunov2, and Kirill Simonov3(B)

1 Department of Informatics, University of Bergen, Bergen, Norway
{fomin,petr.golovach}@ii.uib.no

2 St. Petersburg Department of V.A. Steklov Institute of Mathematics,
St. Petersburg, Russia

3 Hasso Plattner Institute, University of Potsdam, Potsdam, Germany
kirillsimonov@gmail.com

Abstract. The fundamental theorem of Turán from Extremal Graph
Theory determines the exact bound on the number of edges tr(n) in an
n-vertex graph that does not contain a clique of size r + 1. We establish
an interesting link between Extremal Graph Theory and Algorithms by
providing a simple compression algorithm that in linear time reduces
the problem of finding a clique of size � in an n-vertex graph G with
m ≥ tr(n) − k edges, where � ≤ r + 1, to the problem of finding a
maximum clique in a graph on at most 5k vertices. This also gives us
an algorithm deciding in time 2.49k · (n + m) whether G has a clique
of size �. As a byproduct of the new compression algorithm, we give an

algorithm that in time 2O(td2) · n2 decides whether a graph contains an
independent set of size at least n/(d+1)+ t. Here d is the average vertex
degree of the graph G. The multivariate complexity analysis based on
ETH indicates that the asymptotical dependence on several parameters
in the running times of our algorithms is tight.

Keywords: Parameterized algorithms · Extremal graph theory ·
Turan’s theorem · Above guarantee · Kernelization · Exponential time
hypothesis

1 Introduction

In 1941, Pál Turán published a theorem that became one of the central results
in extremal graph theory. The theorem bounds the number of edges in an undi-
rected graph that does not contain a complete subgraph of a given size. For
positive integers r ≤ n, the Turán’s graph Tr(n) is the unique complete r-partite
n-vertex graph where each part consists of �n

r � or �n
r � vertices. In other words,

Tr(n) is isomorphic to Ka1,a2,...,ar
, where ai = �n

r � if i is less than or equal to n
modulo r and ai = �n

r � otherwise. We use tr(n) to denote the number of edges
in Tr(n).

The research leading to these results has received funding from the Research Council
of Norway via the project BWCA (grant no. 314528) and DFG Research Group ADYN
via grant DFG 411362735.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
D. Paulusma and B. Ries (Eds.): WG 2023, LNCS 14093, pp. 348–362, 2023.
https://doi.org/10.1007/978-3-031-43380-1_25

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-43380-1_25&domain=pdf
https://doi.org/10.1007/978-3-031-43380-1_25

Turan’s Theorem Through Algorithmic Lens 349

Theorem 1 (Turán’s Theorem [29]). Let r ≤ n. Then any Kr+1-free n-
vertex graph has at most tr(n) edges. The only Kr+1-free n-vertex graph with
exactly tr(n) edges is Tr(n).

The theorem yields a polynomial time algorithm that for a given n-vertex
graph G with at least tr(n) edges decides whether G contains a clique Kr+1.
Indeed, if a graph G is isomorphic to Tr(n), which is easily checkable in polyno-
mial time, then it has no clique of size r + 1. Otherwise, by Turán’s theorem, G
contains Kr+1. There are constructive proofs of Turán’s theorem that also allow
to find a clique of size r + 1 in a graph with at least tr(n) edges.

The fascinating question is whether Turán’s theorem could help to find effi-
ciently larger cliques in sparser graphs. There are two natural approaches to
defining a “sparser” graph and a “larger” clique. These approaches bring us to
the following questions; addressing these questions is the primary motivation of
our work.

First, what happens when the input graph has a bit less edges than the
Turán’s graph? More precisely,

Is there an efficient algorithm that for some k ≥ 1, decides whether an
n-vertex graph with at least tr(n)−k edges contains a clique of size r+1?

Second, could Turán’s theorem be useful in finding a clique of size larger than
r + 1 in an n-vertex graph with tr(n) edges? That is,

Is there an efficient algorithm that for some � > r decides whether an
n-vertex graph with at least tr(n) edges contains a clique of size �?

We provide answers to both questions, and more. We resolve the first ques-
tion by showing a simple fixed-parameter tractable (FPT) algorithm where the
parameter is k, the “distance” to the Turán’s graph. Our algorithm builds on the
cute ideas used by Erdős in his proof of Turán’s theorem [11]. Viewing these ideas
through algorithmic lens leads us to a simple preprocessing procedure, formally
a linear-time polynomial compression. For the second question, unfortunately,
the answer is negative.

Our Contribution. To explain our results, it is convenient to state the above
questions in terms of the computational complexity of the following problem.

Turán’s Clique
Input: An n-vertex graph G, positive integers r, � ≤ n, and k such that
|E(G)| ≥ tr(n) − k.
Question: Is there a clique of size at least � in G?

Our first result is the following theorem (Theorem 2). Let G be an n-vertex
graph with m ≥ tr(n)−k edges. Then there is an algorithm that for any � ≤ r+1,
in time 2.49k·(n+m) either finds a clique of size at least � in G or correctly reports
that G does not have a clique of size �. Thus for � ≤ r + 1, Turán’s Clique is
FPT parameterized by k. More generally, we prove that the problem admits a

350 F. V. Fomin et al.

compression of size linear in k. That is, we provide a linear-time procedure that
reduces an instance (G, r, �, k) of Turán’s Clique to an equivalent instance
(G′, p) of the Clique problem with at most 5k vertices. The difference between
Clique and Turán’s Clique is that we do not impose any bound on the
number of edges in the input graph of Clique. This is why we use the term
compression rather than kernelization,1 and we argue that stating our reduction
in terms of compression is far more natural and helpful. Indeed, after reducing
the instance to the size linear in the parameter k, the difference between Clique
and Turán’s Clique vanes, as even the total number of edges in the instance
is automatically bounded by a function of the parameter. On the other hand,
Clique is a more general and well-studied problem than Turán’s Clique.

Pipelined with the fastest known exact algorithm for Maximum Indepen-
dent Set of running time O(1.1996n) [30], our reduction provides the FPT
algorithm for Turán’s Clique parameterized by k. This algorithm is single-
exponential in k and linear in n + m, and we also show that the existence of an
algorithm subexponential in k would contradict Exponential Time Hypothesis
(Corollary 5). Thus the running time of our algorithm is essentially tight, up to
the constant in the base of the exponent.

The condition � ≤ r+1 required by our algorithm is, unfortunately, unavoid-
able. We prove (Theorem 4) that for any fixed p ≥ 2, the problem of deciding
whether an n-vertex graph with at least tr(n) edges contains a clique of size
� = r + p is NP-complete. Thus for any p ≥ 2, Turán’s Clique parameter-
ized by k is para-NP-hard. (We refer to the book of Cygan et al. [6] for an
introduction to parameterized complexity.)

While our hardness result rules out finding cliques of size � > r +1 in graphs
with tr(n) edges in FPT time, an interesting situation arises when the ratio
ξ := �n

r � is small. In the extreme case, when n = r, the n-vertex graph G with
tr(n) = n(n−1)/2 is a complete graph. In this case the problem becomes trivial.

To capture how far the desired clique is from the Turán’s bound, we introduce
the parameter

τ =

{
0, if � ≤ r,

� − r, otherwise.

The above-mentioned compression algorithm into Clique with at most 5k ver-
tices yields almost “for free” a compression of Turán’s Clique into Clique
with O(τξ2 + k) vertices. Hence for any �, one can decide whether an n-
vertex graph with m ≥ tr(n) − k edges contains a clique of size � in time
2O(τξ2+k) · (n + m). Thus the problem is FPT parameterized by τ + ξ + k.
This result has an interesting interpretation when we look for a large indepen-
dent set in the complement of a graph. Turán’s theorem, when applied to the
complement G of a graph G, yields a bound

α(G) ≥ n

d + 1
,

1 A kernel is by definition a reduction to an instance of the same problem. See the
book [14] for an introduction to kernelization.

Turan’s Theorem Through Algorithmic Lens 351

where α(G) is the size of the largest independent set in G (the independence
number of G), and d is the average vertex degree of G. This motivates us to
define the following problem.

Turán’s Independent Set
Input: An n-vertex graph G with average degree d, a positive integer t.
Question: Is there an independent set of size at least n

d+1 + t in G?

By Theorem 3, we have a simple algorithm (Corollary 3) that compresses
an instance of Turán’s Independent Set into an instance of Independent
Set with O(td2) vertices. Pipelined with an exact algorithm computing a maxi-
mum independent set, the compression results in the algorithm solving Turán’s
Independent Set in time 2O(td2) · n2.

As we already mentioned, Turán’s Clique is NP-complete for any fixed τ ≥
2 and k = 0. We prove that the problem remains intractable being parameterized
by any pair of the parameters from the triple {τ, ξ, k}. More precisely, Turán’s
Clique is also NP-complete for any fixed ξ ≥ 1 and τ = 0, as well as for any
fixed ξ ≥ 1 and k = 0. These lower bounds are given in Theorem 4.

Given the algorithm of running time 2O(τξ2+k) ·(n+m) and the lower bounds
for parameterization by any pair of the parameters from {τ, ξ, k}, a natural
question is, what is the optimal dependence of a Turán’s Clique algorithm
on {τ, ξ, k}? We use the Exponential Time Hypothesis (ETH) of Impagliazzo,
Paturi, and Zane [21] to address this question. Assuming ETH, we rule out the
existence of algorithms solving Turán’s Clique in time f(ξ, τ)o(k) · nf(ξ,τ),
f(ξ, k)o(τ) · nf(ξ,k), and f(k, τ)o(

√
ξ) · nf(k,τ), for any function f of the respective

parameters.

Related Work. Clique is a notoriously difficult computational problem. It is
one of Karp’s 21 NP-complete problems [23] and by the work of H̊astad, it is hard
to approximate Clique within a factor of n1−ε [20]. Clique parameterized by
the solution size is W[1]-complete [8]. The problem plays the fundamental role in
the W-hierarchy of Downey and Fellows, and serves as the starting point in the
majority of parameterized hardness reductions. From the viewpoint of structural
parameterized kernelization, Clique does not admit a polynomial kernel when
parameterized by the size of the vertex cover [3]. A notable portion of works in
parameterized algorithms and kernelization is devoted to solving Independent
Set (equivalent to Clique on the graph’s complement) on specific graph classes
like planar, H-minor-free graphs and nowhere-dense graphs [2,7,10,28].

Our algorithmic study of Turán’s theorem fits into the paradigm of the “above
guarantee” parameterization [26]. This approach was successfully applied to var-
ious problems, see e.g. [1,5,12,15–19,22,25,27].

Most relevant to our work is the work of Dvorak and Lidicky on independent
set “above Brooks’ theorem” [9]. By Brooks’ theorem [4], every n-vertex graph
of maximum degree at most Δ ≥ 3 and clique number at most Δ has an inde-
pendent set of size at least n/Δ. Then the Independent Set over Brook’s
bound problem is to decide whether an input graph G has an independent set
of size at least n

Δ +p. Dvorak and Lidicky [9, Corollary 3] proved that Indepen-

352 F. V. Fomin et al.

dent Set over Brook’s bound admits a kernel with at most 114pΔ3 vertices.
This kernel also implies an algorithm of running time 2O(pΔ3) ·nO(1). When aver-
age degree d is at most Δ − 1, by Corollary 3, we have that Independent Set
over Brook’s bound admits a compression into an instance of Independent
Set with O(pΔ2) vertices. Similarly, by Corollary 4, for d ≤ Δ − 1, Indepen-
dent Set over Brook’s bound is solvable in time 2O(pΔ2) · nO(1). When
d > Δ − 1, for example, on regular graphs, the result of Dvorak and Lidicky is
non-comparable with our results.

2 Algorithms

While in the literature it is common to present Turán’s theorem under the
implicit assumption that n is divisible by r, here we make no such assumption.
For that, it is useful to recall the precise value of tr(n) in the general setting, as
observed by Turán [29].

Proposition 1 (Turán [29]). For positive integers r ≤ n,

tr(n) =
(

1 − 1
r

)
· n2

2
− s

2
·
(
1 − s

r

)

where s = n − r · �n
r � is the remainder in the division of n by r.

Note that [29] uses the expression tr(n) = r−1
2r · (n2 − s2) +

(
s
2

)
, however it can

be easily seen to be equivalent to the above.
We start with our main problem, where we look for a Kr+1 in a graph that

has slightly less than tr(n) edges. Later in this section, we show how to derive
our other algorithmic results from the compression routine developed next.

2.1 Compression Algorithm for � ≤ r + 1

First, we make a crucial observation on the structure of a Turán’s Clique
instance that will be the key part of our compression argument. Take a vertex
v of maximum degree in G, partition V (G) on S = NG(v) and T = V (G) \ S,
and add all edges between S and T while removing all edges inside T . It can be
argued that this operation does not decrease the number of edges in G while also
preserving the property of being Kr+1-free. Performing this recursively yields
that Tr(n) has indeed the maximum number of edges for a Kr+1-free graph,
and this is the gist of Erdős’ proof of Turán’s Theorem [11]. Now, we want to
extend this argument to cover our above-guarantee case. Again, we start with
the graph G and perform exactly the same recursive procedure to obtain the
graph G′. While we cannot say that G′ is equal to G, since the latter has slightly
less than tr(n) edges, we can argue that every edge that gets changed from G
to G′ can be attributed to the “budget” k. Thus we arrive to the conclusion
that G is different from G′ at only O(k) places. The following lemma makes this
intuition formal.

Turan’s Theorem Through Algorithmic Lens 353

Lemma 1. There is an O(m+ k)-time algorithm that for non-negative integers
k ≥ 1, r ≥ 2 and an n-vertex graph G with m ≥ tr(n)−k edges, finds a partition
V1, V2, . . . , Vp of V (G) with the following properties

(i) p ≥ r − k;
(ii) For each i ∈ {1, . . . , p}, there is a vertex vi ∈ Vi with NG(vi) ⊃ Vi+1 ∪

Vi+2 ∪ · · · ∪ Vp;
(iii) If p ≤ r, then for the complete p-partite graph G′ with parts V1, V2, . . . , Vp,

we have |E(G′)| ≥ |E(G)| and |E(G)�E(G′)| ≤ 3k. Moreover, all vertices
covered by E(G)\E(G′) are covered by E(G′)\E(G) and |E(G′)\E(G)| ≤
2k.

Let us clarify this technical definition. The lemma basically states that if a
graph G has at least tr(n) − k edges, then it either has a clique of size r + 1, or
it has at most 3k edit distance to a complete multipartite graph G′ consisting
of p ∈ [r − k, r] parts. Moreover, G has a clique of size p untouched by the edit,
i.e. this clique is present in the complete p-partite graph G′ as well.

We should also note that Lemma 1 is close to the concept of stability of
Turán’s theorem. This concept received much attention in extremal graph the-
ory (see e.g. recent work of Korándi et al. [24]), and appeals the structural
properties of graphs having number of edges close to the Turán’s number tr(n).
Lemma 1 can also be seen as a stability version of Turán’s theorem, but from
the algorithmic point of view. We move on to the proof of the lemma.

Proof (of Lemma 1). First, we state the algorithm, which follows from the
Erdős’ proof of Turán’s Theorem from [11]. We start with an empty graph
G′ defined on the same vertex set as G, and set G1 = G. Then we select
the vertex v1 ∈ V (G1) as an arbitrary maximum-degree vertex in G1, i.e.
degG1

(v1) = maxu∈V (G1) degG1
(u). We put V1 = V (G1) \ NG1(v1) and add

to G′ all edges between V1 and V (G1) \ V1.
We then put G2 := G1 − V1 and, unless G2 is empty, apply the same process

to G2. That is, we select v2 ∈ V (G2) with degG2
(v2) = maxu∈V (G2) degG2

(u)
and put V2 = V (G2) \ NG2(v2) and add all edges between V2 and V (G2) \ V2 to
G′. We repeat this process with Gi+1 := Gi−Vi until Gi+1 is empty. The process
has to stop eventually as each Vi is not empty. In this way three sequences are
produced: G = G1, G2, . . . , Gp, Gp+1, where G1 is G and Gp+1 is the empty
graph; v1, v2, . . . , vp, and V1, V2, . . . , Vp. Note that the sequences {vi} and {Vi}
satisfy property (ii) by construction. Observe that this procedure can be clearly
performed in time O(n2), and for any r ≥ 2, m + k = tr(n) = Θ(n2), thus the
algorithm takes time O(m + k).

Clearly, G′ is a complete p-partite graph with parts V1, V2, . . . , Vp as in G′

we added all edges between Vi and V (Gi) \ Vi = (Vi+1 ∪ Vi+2 ∪ . . . ∪ Vp) for each
i ∈ {1, . . . , p} and never added an edge between two vertices in the same Vi.
Since a p-partite graph is always Kp+1-free, by Theorem 1 |E(G′)| ≤ tp(n).

Claim. |E(G′)| − |E(G)| ≥ ∑p
i=1 |E(G[Vi])| and for each u ∈ V (G), degG(u) ≤

degG′(u).

354 F. V. Fomin et al.

Proof (of Claim). For each i ∈ {1, . . . , p}, denote by Ei the edges of G′ added in
the i-th step of the construction. Formally, Ei = Vi × (Vi+1 ∪ Vi+2 ∪ . . . ∪ Vp) for
i < p and Ep = ∅. We aim to show that |Ei| − |E(Gi) \ E(Gi+1)| ≥ |E(G[Vi])|.
The first part of the claim will follow as |E(G′)| =

∑p
i=1 |Ei| and |E(G)| =∑p

i=1 |E(Gi) \ E(Gi+1)|.
Denote by di the degree of vi in Gi. Since NGi

(vi) = (Vi+1 ∪ Vi+2 ∪ . . . ∪ Vp),
|Ei| = di|Vi|. As vi is a maximum-degree vertex in Gi, di ≥ degGi

(u) for every
u ∈ Vi, so |Ei| ≥ ∑

u∈Vi
degGi

(u). Recall that Gi+1 = Gi − Vi. Then

|E(Gi) \ E(Gi+1)| =
∑
u∈Vi

degGi
(u) − |E(Gi[Vi])| =

∑
u∈Vi

degGi
(u) − |E(G[Vi])|

≤|Ei| − |E(G[Vi])|,

and the first part of the claim follows.
To show the second part, note that for a vertex u ∈ Vi, degG(u) ≤ ∑i−1

j=1 |Vj |+
degGi

(u). On the other hand, u is adjacent to every vertex in V1∪V2∪· · ·∪Vi−1∪
Vi+1 ∪ · · · ∪ Vp in G′. We have already seen that |Vi+1 ∪ · · · ∪ Vp| ≥ degGi

(u).
Thus, degG(u) ≤ degG′(u). Proof of the claim is complete. �

The claim yields that |E(G)| ≤ tp(n), so tp(n) ≥ tr(n)−k. By Theorem 1, we
have that ti(n) > ti−1(n), as Ti−1(n) is distinct from Ti(n), so ti(n) ≥ ti−1(n)+1
for every i ∈ [n]. Hence if r ≥ p then k ≥ tr(n) − tp(n) ≥ r − p. It concludes the
proof of (i).

It is left to prove (iii), i.e. that |E(G)�E(G′)| ≤ 3k under assumption p ≤ r.
First note that E(G) \ E(G′) =

⋃
E(G[Vi]). Second, since |E(G′)| ≤ tp(n) ≤

tr(n) and |E(G)| ≥ tr(n) − k, |E(G′)| − |E(G)| ≤ k. By Claim, we have that
|E(G′)| − |E(G)| ≥ ∑ |E(G[Vi])|. Finally

|E(G)�E(G′)| =|E(G′)| − |E(G)| + 2|E(G) \ E(G′)|
=|E(G′)| − |E(G)| + 2

∑
|E(G[Vi])| ≤ 3k.

By Claim, each vertex covered by E(G) \ E(G′) is covered by E(G′) \ E(G).
The total size of these edge sets is at most 3k, while |E(G′) \ E(G)| − |E(G) \
E(G′)| = |E(G′)| − |E(G)| ≤ k. Hence, the size of |E(G) \ E(G′)| is at most 2k.
This concludes the proof of (iii) and of the lemma. �

We are ready to prove our main algorithmic result. Let us recall that we
seek a clique of size � in an n-vertex graph with tr(n) − k edges, and that
τ = max{� − r, 0}.

Theorem 2. Turán’s Clique with τ ∈ {0, 1} admits an O(n + m)-time com-
pression into Clique on at most 5k vertices.

Proof. Let (G, r, k, �) be the input instance of Turán’s Clique. If r < 2 or
n ≤ 5k, a trivial compression is returned. Apply the algorithm of Lemma 1 to
(G, r, k, �) and obtain the partition V1, V2, . . . , Vp. Observe that this takes time
O(m + k) = O(n + m) since n > 5k. By the second property of Lemma 1,

Turan’s Theorem Through Algorithmic Lens 355

v1, v2, . . . , vp induce a clique in G, so if p ≥ � we conclude that (G, r, k, �) is a
yes-instance. Formally, the compression returns a trivial yes-instance of Clique
in this case.

We now have that r − k ≤ p ≤ r. Then the edit distance between G and the
complete p-partite graph G′ with parts V1, V2, . . . , Vp is at most 3k. Denote by
X the set of vertices covered by E(G)�E(G′). Denote R = E(G′) \ E(G) and
A = E(G) \ E(G′). We know that |R| + |A| ≤ 3k, |R| ≤ 2k and |R| ≥ |A|. By
Lemma 1, R covers all vertices in X, so |X| ≤ 2|R|.

Clearly, (G, r, k, �) as an instance of Turán’s Clique is equivalent to an
instance (G, �) of Clique. We now apply the following two reduction rules
exhaustively to (G, �). Note that these rules are an adaption of the well-known
two reduction rules for the general case of Clique (see, e.g., [30]). Here the
adapted rules employ the partition V1, V2, . . . , Vp explicitly.

Reduction rule 1. If there is i ∈ [p] such that Vi �⊆ X and Vi is independent
in G, remove Vi from G and reduce � by one.

Reduction rule 2. For each i ∈ [p] with |Vi \ X| > 1, remove all but one
vertices in Vi \ X from G.

Since the reduction rules are applied independently to parts V1, V2, . . . , Vp,
and each rule is applied to each part at most once, clearly this can be per-
formed in linear time. We now argue that these reduction rules always produce
an equivalent instance of Clique.

Claim. Reduction rule 1 and Reduction rule 2 are safe.

Proof. For Reduction rule 1, note that there is a vertex v ∈ Vi \ X such that
NG(v) = NG(Vi) = V (G)\Vi. Since Vi is independent, for any vertex set C that
induces a clique in G, we have |C ∩ Vi| ≤ 1. On the other hand, if C ∩ Vi = ∅,
C ∪ {v} also induces a clique in G as C ⊆ NG(v). Hence, any maximal clique in
G contains exactly one vertex from Vi, so Reduction rule 1 is safe.

To see that Reduction rule 2 is safe, observe that NG(u) = NG(v) for any
two vertices u, v ∈ Vi \ X. Then no clique contains both u and v, and if C � v
induces a clique in G, C \ {v} ∪ {u} also induces a clique in G of the same size.
Hence, v can be safely removed from G so Reduction rule 2 is safe. �

It is left to upperbound the size of G after the exhaustive application of
reduction rules. In this process, some parts among V1, V2, . . . , Vp are removed
from G. W.l.o.g. assume that the remaining parts are V1, V2, . . . , Vt for some
t ≤ p. Note that parts that have no common vertex with X are eliminated by
Reduction rule 1, so t ≤ |X|. On the other hand, by Reduction rule 2, we have
|Vi \ X| ≤ 1 for each i ∈ [t].

Consider i ∈ [t] with |Vi \ X| = 1. By Reduction rule 1, G[Vi] contains at
least one edge. Since Vi is independent in G′, E(G[Vi]) ⊆ A. Hence, the number

356 F. V. Fomin et al.

of i ∈ [t] with |Vi \ X| = 1 is at most |A|. We obtain

|V (G)| =
t∑

i=1

|Vi| =
t∑

i=1

|Vi ∩ X| +
t∑

i=1

|Vi \ X|

≤|X| + |A| ≤ 2|R| + |A| ≤ |R| + (|R| + |A|) ≤ 5k.

We obtained an instance of Clique that is equivalent to (G, r, k, �) and contains
at most 5k vertices. The proof is complete. �

Combining the polynomial compression of Theorem 2 with the algorithm
of Xiao and Nagamochi [30] for Independent Set running in O(1.1996n), we
obtain the following.

Corollary 1. Turán’s Clique with τ ≤ 1 is solvable in time 2.49k · (n + m).

Proof. Take a given instance of Turán’s Clique and compress it into an equiv-
alent instance (G, �) of Clique with |V (G)| ≤ 5k. Clearly, (G, |V (G)| − �) is an
instance of Independent Set equivalent to (G, �). Use the algorithm from [30]
to solve this instance in O(1.1996|V (G)|) running time. Since 1.19965 < 2.49, the
running time of the whole algorithm is bounded by 2.49k · nO(1). �

2.2 Looking for Larger Cliques

In this subsection we consider the situation when τ > 1. As we will see in
Theorem 4, an FPT algorithm is unlikely in this case, unless we take a stronger
parameterization. Here we show that Turán’s Clique is FPT parameterized
by τ + ξ + k. Recall that ξ = �n

r �. Theorem 4 argues that this particular choice
of the parameter is necessary.

First, we show that the difference between t�(n) and tr(n) can be bounded
in terms of τ and ξ. This will allow us to employ Theorem 2 for the new FPT
algorithm by a simple change of the parameter. The proof of the next lemma is
done via a careful counting argument.

Lemma 2. Let n, r, � be three positive integers with r < � ≤ n. Let ξ = �n
r � and

τ = � − r. Then for τ = O(r), t�(n) − tr(n) = Θ(τξ2).

Proof. Throughout the proof, we assume ξ = n
r since this does not influence the

desired Θ estimation. Let sr be the remainder in the division of n by r and s�

be the remainder in the division of n by �. By Lemma 1,

t�(n) − tr(n) =
τn2

2r�
+

(sr

2
·
(
1 − sr

r

)
− s�

2
·
(
1 − s�

�

))
. (1)

The first summand in (1) is Θ(ξ2τ). Indeed, since τ = O(r) we have

τn2

2r�
=

τ

2
· n

r
· n

r + τ
=

ξ2τ

2
· r

r + τ
= Θ(ξ2τ). (2)

Turan’s Theorem Through Algorithmic Lens 357

For the second summand,
sr

2
·
(
1 − sr

r

)
− s�

2
·
(
1 − s�

�

)
=

�sr(r − sr) − rs�(� − s�)

2r�
=

(rs2� − �s2r) + r�(sr − s�)

2r�

=
(rs2� − rs2r − τs2r) + r�(sr − s�)

2r�
(3)

=
r(s� − sr)(s� + sr) + r�(sr − s�)

2r�
− τs2r

2r�

=
(sr − s�)(� − (s� + sr))

2�
− τs2r

2r�
. (4)

Since n = �n
� � · � + s�, we have that

sr ≡
⌊n

�

⌋
· � + s� (mod r),

and
sr ≡

⌊n

�

⌋
· (r + τ) + s� (mod r).

Hence,
sr − s� ≡

⌊n

�

⌋
· τ (mod r).

By definition sr < r, thus we get from the above that sr − s� ≤ �n
� � · τ ≤ ξτ.

Analogously,
s� − sr ≡

⌊n

r

⌋
· (−τ) (mod �)

Since s� − sr > −r > −�, we have that s� − sr ≥ �n
r � · (−τ) ≥ −ξτ. Therefore

|s� − sr| ≤ ξτ . It is easy to see that |� − (s� + sr)| ≤ � + (s� + sr) ≤ 3�. Finally,
τs2

r

2r� is non-negative and is upper bounded by τr2

2r� ≤ τ
2 . Thus, the absolute value

of (4), is at most
ξτ · 3�

2�
+

τ

2
= O(ξτ).

By putting together (2) and (4), we conclude that t�(n) − tr(n) = Θ(ξ2τ) +
O(ξτ) = Θ(ξ2τ). �

The following compression algorithm is a corollary of Lemma 2 and Theo-
rem 2. It provides a compression of size linear in k and τ .

Theorem 3. Turán’s Clique admits a compression into Clique on O(τξ2+
k) vertices.

Proof. Let (G, k, r, �) be the given instance of Turán’s Clique. If � ≤ r+1, then
the proof follows from Theorem 2. Otherwise, reduce (G, k, r, �) to an equivalent
instance (G, k + t�(n) − tr(n), �, �) of Turán’s Clique just by modifying the
parameters. This is a valid instance since |E(G)| ≥ tr(n) − k ≥ t�(n) − (t�(n) +
tr(n)+k). Denote k′ = k+(t�(n)− tr(n)). By Lemma 2, k′ = k+O(τξ2). Apply
polynomial compression of Theorem 2 to (G, k′, �, �) into Clique with O(k′),
i.e. O(τξ2 + k), vertices. �

Pipelined with a brute-force algorithm computing a maximum independent
set in time O(2n), Theorem 3 yields the following corollary.

Corollary 2. Turán’s Clique is solvable in time 2O(τξ2+k) · (n + m).

358 F. V. Fomin et al.

2.3 Independent Set above Turán’s Bound

Another interesting application of Theorem 3 concerns computing Independent
Set in graphs of small average degree. Recall that Turán’s theorem, when applied
to the complement G of a graph G, yields a bound

α(G) ≥ n

d + 1
.

Here α(G) is the size of the largest independent set in G (the independence
number of G), and d is the average vertex degree of G. Then in Turán’s Inde-
pendent Set, the task is for an n-vertex graph G and positive integer t to
decide whether there is an independent set of size at least n

d+1 + t in G.
Theorem 3 implies a compression of Turán’s Independent Set into Inde-

pendent Set. In other words, we give a polynomial time algorithm that for an
instance (G, t) of Turán’s Independent Set constructs an equivalent instance
(G′, p) of Independent Set with at most O(td2) vertices. That is, the graph G
has an independent set of size at least n

d+1+t if and only if G′ has an independent
set of size p.

Corollary 3. Turán’s Independent Set admits a compression into Inde-
pendent Set on O(td2) vertices.

Proof. For simplicity, let us assume that n is divisible by d + 1. (For arguments
here this assumption does not make an essential difference.) We select r = n

d+1 ,
τ = t, and k = 0. Then d = n

r − 1 = ξ − 1. The graph G has at most nd/2
edges, hence G has at least n(n−1)

2 − nd/2 = n(n−1)
2 − n(ξ − 1)/2 ≥ tr(n) edges,

see Lemma 1. An independent set of size n
d+1 + t in graph G, corresponds in

graph G to a clique of size r + t. Since Theorem 3 provides compression into a
Clique with O(τξ2 + k) = O(τξ2) vertices, for independent set and graph G
this corresponds to a compression into an instance of Independent Set with
O(td2) vertices. �

By Corollary 3, we obtain the following corollary.

Corollary 4. Turán’s Independent Set is solvable in time 2O(td2) · n2.

3 Lower Bounds

In this section, we investigate how the algorithms above are complemented
by hardness results. First, observe that k has to be restricted, otherwise the
Turán’s Clique problem is not any different from Clique. In fact, reducing
from Independent Set on sparse graphs, one can show that there is no 2o(k)-
time algorithm for Turán’s Clique even when τ ≤ 1. (The formal argument
is presented in Theorem 5.) This implies that the 2O(k)-time algorithm given by
Corollary 1 is essentially tight.

Turan’s Theorem Through Algorithmic Lens 359

Also, the difference between r and � has to be restricted, as it can be
easily seen that Turán’s Clique admits no no(�)-time algorithm even when
k = 0, assuming ETH. This is observed simply by considering the special case
of Turán’s Clique where r = 1, there the only restriction on G is that
|E(G)| ≥ tr(n) − k = 0, meaning that the problem is as hard as Clique.
However, Theorem 4 shows that even for any fixed τ ≥ 2 and k = 0 Turán’s
Clique is NP-complete. This motivates Theorem 3, where the exponential part
of the running time has shape 2O(τξ2k). In the rest of this section, we further
motivate the running time of Theorem 3. First, in Theorem 4 we show that not
only setting τ and k to constants is not sufficient to overcome NP-hardness, but
also that the same holds for any choice of two parameters out of {τ, ξ, k}.

Theorem 4. Turán’s Clique is NP-complete. Moreover, it remains NP-
complete in each of the following cases

(i) for any fixed ξ ≥ 1 and τ = 0;
(ii) for any fixed ξ ≥ 1 and k = 0;

(iii) for any fixed τ ≥ 2 and k = 0.

Proof. Towards proving (i) and (ii), we provide a reduction from Clique. Let
ξ ≥ 1 be a fixed constant. Let (G, �) be a given instance of Clique and let
n = |V (G)|. We assume that � ≥ ξ, otherwise we can solve (G, �) in polynomial
time. Construct a graph G′ from G as follows. Start from G′ = G and �′ = �.
Then add max{ξ� − n, 0} isolated vertices to G′. Note that (G, k) and (G′, k′)
are equivalent and |V (G′)| ≥ ξ�′. If we have ξ�′ ≤ |V (G′)| < (ξ + 1)�′, we are
done with the construction of G′. Otherwise, repeatedly add a universal vertex
to G′, increasing �′ by one, so |V (G′)| − (ξ + 1)�′ decreases by ξ each time. We
repeat this until |V (G′)| becomes less than (ξ + 1)�′. Since the gap between ξ�′

and (ξ+1)�′ is at least ξ at any moment, we derive that ξ�′ ≤ |V (G′)| < (ξ+1)�′.
The construction of G′ is complete. Note that(G′, �′) is an instance of Clique
equivalent to (G, �). We added at most max{n, ξ�} vertices to G′, hence this is
a polynomial-time reduction.

By the above, �V (G′)/�′� = ξ, so we can reduce (G′, �′) to an equivalent
instance (G′, �′,

(|V (G′)|
2

)
, �′) of Turán’s Clique. Clearly, this instance has the

required fixed value of ξ and τ = 0. This proves (i). For (ii), we use the fact that
t1(n) = 0 for every n > 0 and reduce (G′, �′) to (G′, 1, 0, �′).

To show (iii), we need another reduction from Clique. Let τ ≥ 2 be a fixed
integer constant. Take an instance (G, �) of Clique with � ≥ 2τ . We denote
n = |V (G)|. To construct G′ from G, we start from a large complete (�−1)-partite
graph with equal-sized parts. The size of each part equals x, so |V (G′)| = (�−1)x.
We denote N = |V (G′)| and choose the value of x later, for now we only need
that N ≥ n. Clearly, |E(G′)| = t�−1(N) at this point. To embed G into G′, we
select arbitrary n vertices in G′ and make them isolated. This removes at most
n(� − 2)x edges from G′. Then we identify these n isolated vertices with V (G)
and add edges of G between these vertices in G′ correspondingly. This operation
does not decrease |E(G′)|. This completes the construction of G′. Since G′ is

360 F. V. Fomin et al.

isomorphic to a complete (�−1)-partite graph united disjointly with G, we have
that (G, �) and (G′, �) are equivalent instances of Clique.

We now want to reduce (G′, �) to an instance (G′, � − τ, 0, �) of Turán’s
Clique. To do so, we need |E(G′)| ≥ t�−τ (N). By Lemma 2, t�−1(N) −
t�−τ (N) ≥ C · (τ − 1) ·

(
N

�−τ

)2

for some constant C > 0. Since |E(G′)| ≥
t�−1(N) − n(� − 2)x, we want to choose x such that

n(� − 2)x ≤ C · (τ − 1) ·
(

N

� − τ

)2

.

By substituting N = (� − 1)x, we derive that x should satisfy

n

C
· (� − 2)(� − τ)

(� − 1)2
· � − τ

τ − 1
≤ x.

Now simply pick as x the smallest integer that satisfies the above. Then
(G′, � − τ, 0, �) is an instance of Turán’s Clique that is equivalent to the
instance (G, k) of Clique and is constructed in polynomial time. �

Now, recall that Theorem 3 gives an FPT-algorithm for Turán’s
Clique that is single-exponential in τξ2 + k. The previous theorem argues that
all three of τ , ξ, k have to be in the exponential part of the running time. How-
ever, that result does not say anything about what can be the best possible
dependency on these parameters. The next Theorem 5 aims to give more precise
lower bounds based on ETH, in particular it turns out that the dependency on
τ and k cannot be subexponential unless ETH fails. First, we need to show the
relation between the parameter ξ and the average degree of G. The proof of the
following proposition is available in the full version of the paper [13].

Proposition 2. Let G be an n-vertex graph, r ≤ n be an integer, and denote
ξ = �n

r �. Let G denote the complement of G and d denote the average degree of
G. Then d ≤ ξ if |E(G)| ≥ tr(n) and |E(G)| ≥ tr(n) if d ≤ ξ − 1.

We are ready to give lower bounds for algorithms solving Turán’s Clique
in terms of the parameters τ , ξ, and k.

Theorem 5. Unless the Exponential Time Hypothesis fails, for any function f
there is no f(ξ, τ)o(k)·nf(ξ,τ), f(ξ, k)o(τ)·nf(ξ,k), or f(k, τ)o(

√
ξ)·nf(k,τ) algorithm

for Turán’s Clique.

The proof of this result is available in the full version of the paper [13]. It
is based on the proof of Theorem 4, but is much more careful to details and
contains some new ideas. Moreover, the proof of the first point of the theorem
lets us observe that our 2.49k · (n + m)-time algorithm for Turán’s Clique
with τ ≤ 1 is essentially tight.

Corollary 5. Assuming ETH, there is no 2o(k) · nO(1) algorithm for Turán’s
Clique with � ≤ r + 1.

Turan’s Theorem Through Algorithmic Lens 361

4 Conclusion

We conclude by summarizing natural questions left open by our work. Theorem 5
rules out (unless ETH fails) algorithms with running times subexponential in τ
and k. However, when it comes to ξ, the dependency in the upper bound of
Corollary 2 is 2O(τξ2+k) · nO(1), while Theorem 5 only rules out the running
time of f(k, τ)o(

√
ξ) · nf(k,τ) under ETH. Thus, whether the correct dependence

in ξ is single-exponential or subexponential, is left open. Similarly, the question
whether Turán’s Clique admits a compression into Clique whose size is linear
in ξ, τ , and k, is open. A weaker variant of this question (for the case k = 0) for
Turán’s Independent Set, whether it admits a compression or kernel linear
in d and in t, is also open.

References

1. Alon, N., Gutin, G., Kim, E.J., Szeider, S., Yeo, A.: Solving MAX-r-SAT above a
tight lower bound. Algorithmica 61(3), 638–655 (2011)

2. Bodlaender, H.L., Fomin, F.V., Lokshtanov, D., Penninkx, E., Saurabh, S., Thi-
likos, D.M.: (Meta) kernelization. J. ACM 63(5), 44:1–44:69 (2016). https://doi.
org/10.1145/2973749

3. Bodlaender, H.L., Jansen, B.M.P., Kratsch, S.: Kernelization lower bounds by
cross-composition. SIAM J. Discret. Math. 28(1), 277–305 (2014). https://doi.
org/10.1137/120880240

4. Brooks, L.R.: On colouring the nodes of a network. Proc. Camb. Philos. Soc. 37,
194–197 (1941)

5. Crowston, R., Jones, M., Muciaccia, G., Philip, G., Rai, A., Saurabh, S.: Poly-
nomial kernels for lambda-extendible properties parameterized above the Poljak-
Turzik bound. In: IARCS Annual Conference on Foundations of Software Technol-
ogy and Theoretical Computer Science (FSTTCS). Leibniz International Proceed-
ings in Informatics (LIPIcs), vol. 24, pp. 43–54. Schloss Dagstuhl-Leibniz-Zentrum
fuer Informatik, Dagstuhl, Germany (2013)

6. Cygan, M., et al.: Parameterized Algorithms. Springer, Cham (2015). https://doi.
org/10.1007/978-3-319-21275-3

7. Demaine, E.D., Fomin, F.V., Hajiaghayi, M., Thilikos, D.M.: Subexponential
parameterized algorithms on graphs of bounded genus and H-minor-free graphs.
J. ACM 52(6), 866–893 (2005)

8. Downey, R.G., Fellows, M.R.: Parameterized Complexity. Springer-Verlag, New
York (1999)

9. Dvorák, Z., Lidický, B.: Independent sets near the lower bound in bounded
degree graphs. In: Proceedings of the 34th International Symposium on Theoret-
ical Aspects of Computer Science (STACS). Leibniz International Proceedings in
Informatics (LIPIcs), vol. 66, pp. 28:1–28:13. Schloss Dagstuhl - Leibniz-Zentrum
fuer Informatik (2017). https://doi.org/10.4230/LIPIcs.STACS.2017.28

10. Dvorák, Z., Mnich, M.: Large independent sets in triangle-free planar graphs. SIAM
J. Discret. Math. 31(2), 1355–1373 (2017). https://doi.org/10.1137/16M1061862

11. Erdős, P.: On the graph theorem of Turán. Mat. Lapok 21, 249–251 (1970)
12. Fomin, F.V., Golovach, P.A., Lokshtanov, D., Panolan, F., Saurabh, S., Zehavi,

M.: Going far from degeneracy. SIAM J. Discret. Math. 34(3), 1587–1601 (2020).
https://doi.org/10.1137/19M1290577

https://doi.org/10.1145/2973749
https://doi.org/10.1145/2973749
https://doi.org/10.1137/120880240
https://doi.org/10.1137/120880240
https://doi.org/10.1007/978-3-319-21275-3
https://doi.org/10.1007/978-3-319-21275-3
https://doi.org/10.4230/LIPIcs.STACS.2017.28
https://doi.org/10.1137/16M1061862
https://doi.org/10.1137/19M1290577

362 F. V. Fomin et al.

13. Fomin, F.V., Golovach, P.A., Sagunov, D., Simonov, K.: Turán’s theorem through
algorithmic lens (2023)

14. Fomin, F.V., Lokshtanov, D., Saurabh, S., Zehavi, M.: Kernelization: Theory of
Parameterized Preprocessing. Cambridge University Press, Cambridge (2019)

15. Garg, S., Philip, G.: Raising the bar for vertex cover: fixed-parameter tractability
above a higher guarantee. In: Proceedings of the Twenty-Seventh Annual ACM-
SIAM Symposium on Discrete Algorithms (SODA), pp. 1152–1166. SIAM (2016).
https://doi.org/10.1137/1.9781611974331.ch80

16. Gutin, G., van Iersel, L., Mnich, M., Yeo, A.: Every ternary permutation constraint
satisfaction problem parameterized above average has a kernel with a quadratic
number of variables. J. Comput. Syst. Sci. 78(1), 151–163 (2012)

17. Gutin, G., Kim, E.J., Lampis, M., Mitsou, V.: Vertex cover problem parameterized
above and below tight bounds. Theory Comput. Syst. 48(2), 402–410 (2011)

18. Gutin, G.Z., Patel, V.: Parameterized traveling salesman problem: beating the
average. SIAM J. Discret. Math. 30(1), 220–238 (2016)

19. Gutin, G.Z., Rafiey, A., Szeider, S., Yeo, A.: The linear arrangement problem
parameterized above guaranteed value. Theory Comput. Syst. 41(3), 521–538
(2007). https://doi.org/10.1007/s00224-007-1330-6

20. H̊astad, J.: Clique is hard to approximate within n1−ε. Acta Math. 182(1), 105–142
(1999). https://doi.org/10.1007/BF02392825

21. Impagliazzo, R., Paturi, R., Zane, F.: Which problems have strongly exponential
complexity. J. Comput. Syst. Sci. 63(4), 512–530 (2001)

22. Jansen, B.M.P., Kozma, L., Nederlof, J.: Hamiltonicity below Dirac’s condition.
In: Sau, I., Thilikos, D.M. (eds.) WG 2019. LNCS, vol. 11789, pp. 27–39. Springer,
Cham (2019). https://doi.org/10.1007/978-3-030-30786-8 3

23. Karp, R.M.: Reducibility among combinatorial problems. In: Complexity of Com-
puter Computations, pp. 85–103. Plenum Press, New York (1972)

24. Korándi, D., Roberts, A., Scott, A.: Exact stability for turán’s theorem. Adv.
Comb. 31079 (2021)

25. Lokshtanov, D., Narayanaswamy, N.S., Raman, V., Ramanujan, M.S., Saurabh,
S.: Faster parameterized algorithms using linear programming. ACM Trans. Algo-
rithms 11(2), 15:1–15:31 (2014). https://doi.org/10.1145/2566616

26. Mahajan, M., Raman, V.: Parameterizing above guaranteed values: MaxSat and
MaxCut. J. Algorithms 31(2), 335–354 (1999)

27. Mahajan, M., Raman, V., Sikdar, S.: Parameterizing above or below guaranteed
values. J. Comput. Syst. Sci. 75(2), 137–153 (2009)

28. Pilipczuk, M., Siebertz, S.: Kernelization and approximation of distance-r inde-
pendent sets on nowhere dense graphs. Eur. J. Comb. 94, 103309 (2021). https://
doi.org/10.1016/j.ejc.2021.103309

29. Turán, P.: Eine Extremalaufgabe aus der Graphentheorie. Mat. Fiz. Lapok 48,
436–452 (1941)

30. Xiao, M., Nagamochi, H.: Exact algorithms for maximum independent set. Inf.
Comput. 255, 126–146 (2017). https://doi.org/10.1016/j.ic.2017.06.001

https://doi.org/10.1137/1.9781611974331.ch80
https://doi.org/10.1007/s00224-007-1330-6
https://doi.org/10.1007/BF02392825
https://doi.org/10.1007/978-3-030-30786-8_3
https://doi.org/10.1145/2566616
https://doi.org/10.1016/j.ejc.2021.103309
https://doi.org/10.1016/j.ejc.2021.103309
https://doi.org/10.1016/j.ic.2017.06.001

On the Frank Number and Nowhere-Zero
Flows on Graphs

Jan Goedgebeur1,2 , Edita Máčajová3 , and Jarne Renders1(B)

1 Department of Computer Science, KU Leuven Kulak, 8500 Kortrijk, Belgium
{jan.goedgebeur,jarne.renders}@kuleuven.be

2 Department of Applied Mathematics, Computer Science and Statistics,
Ghent University, 9000 Ghent, Belgium

3 Comenius University, Mlynská dolina, 842 48 Bratislava, Slovakia
macajova@dcs.fmph.uniba.sk

Abstract. An edge e of a graph G is called deletable for some ori-
entation o if the restriction of o to G − e is a strong orientation. In
2021, Hörsch and Szigeti proposed a new parameter for 3-edge-connected
graphs, called the Frank number, which refines k-edge-connectivity. The
Frank number is defined as the minimum number of orientations of G
for which every edge of G is deletable in at least one of them. They
showed that every 3-edge-connected graph has Frank number at most
7 and that in case these graphs are also 3-edge-colourable graphs the
parameter is at most 3. Here we strengthen the latter result by showing
that such graphs have Frank number 2, which also confirms a conjecture
by Barát and Blázsik. Furthermore, we prove two sufficient conditions
for cubic graphs to have Frank number 2 and use them in an algorithm
to computationally show that the Petersen graph is the only cyclically
4-edge-connected cubic graph up to 36 vertices having Frank number
greater than 2.

Keywords: Frank number · Connectivity · Orientation · Snark ·
Nowhere-zero flows

1 Introduction

An orientation o of a graph G is a directed graph with vertices V (G) such that
each edge uv ∈ E(G) is replaced by exactly one of the arcs u → v or v → u. An
orientation is called strong if for every two distinct vertices u and v there exists
an oriented uv-path, i.e. an oriented path with endpoints u and v. An edge e is
deletable in a strong orientation o of G if the restriction of o to E(G) − {e} is a
strong orientation of G−e. The cyclic edge connectivity of a graph is the smallest
number of edges k whose removal separates the graph into two components, each
of which contains a cycle. Such a graph is called cyclically k-edge-connected.

In 2021, Hörsch and Szigeti [9] proposed a new parameter for 3-edge-
connected graphs called the Frank number, which can be seen as a generalisation

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
D. Paulusma and B. Ries (Eds.): WG 2023, LNCS 14093, pp. 363–375, 2023.
https://doi.org/10.1007/978-3-031-43380-1_26

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-43380-1_26&domain=pdf
http://orcid.org/0000-0001-8984-2463
http://orcid.org/0000-0001-5735-5513
http://orcid.org/0000-0002-1147-1460
https://doi.org/10.1007/978-3-031-43380-1_26

364 J. Goedgebeur et al.

of a theorem by Nash-Williams [11] stating that a graph has a k-arc-connected
orientation if it is 2k-edge-connected. For a 3-edge-connected graph G, the Frank
number – denoted by fn(G) – is defined to be the minimum number k for which
G admits k orientations such that every edge e ∈ E(G) is deletable in at least
one of them.

Hörsch and Szigeti proved in [9] that every 3-edge-connected graph G has
fn(G) ≤ 7 and that the Berge-Fulkerson conjecture [12] implies that fn(G) ≤ 5.
They conjectured that every 3-edge-connected graph G has fn(G) ≤ 3 and
showed that the Petersen graph has Frank number equal to 3. In this paper
we will mainly investigate the following stronger problem: Is it true that the
Petersen graph is the only cyclically 4-edge-connected cubic graph with Frank
number greater than 2? Let G1 and G2 be cubic graphs. Create a new graph G
by removing a vertex from each of G1 and G2 and adding three edges between
the resulting 2-valent vertices in such a way that the edges have one vertex in
G1 and one vertex in G2 and the result is cubic. We call G the 3-join of G1 and
G2. We can equivalently formulate the problem as follows.

Problem 1. Can every 3-edge-connected cubic graph G with fn(G) > 2 be cre-
ated by a sequence of 3-joins from the Petersen graph?

Note that a cyclically 3-edge-connected graph uniquely decomposes into cycli-
cally 4-edge connected graphs and that a 3-join of a graph with Frank number
3 with any other graph has Frank number at least 3.

Barát and Blázsik showed in [1] that for any 3-edge-connected graph G,
there exists a 3-edge-connected cubic graph H with fn(H) ≥ fn(G). Hence, it
is sufficient to study this problem in the cubic case.

Hörsch and Szigeti proved in [9] that every 3-edge-connected 3-edge-
colourable graph has Frank number at most 3. In Sect. 2 we strengthen this
result by showing that these graphs have Frank number equal to 2. Note that
such graphs are always cubic.

Barát and Blázsik also verified that several well-known infinite families of 3-
edge-connected graphs have Frank number 2. This includes wheel graphs, Möbius
ladders, prisms, flower snarks and an infinite subset of the generalised Petersen
graphs. Note that except for the wheel graphs and flower snarks, these families
all consist of 3-edge-colourable graphs. They also conjectured that every 3-edge-
connected hamiltonian cubic graph has Frank number 2. Since every hamiltonian
cubic graph is 3-edge-colourable, our result that every 3-edge-connected 3-edge-
colourable graph has Frank number 2 also proves this conjecture.

Our proof of this result uses nowhere-zero integer flows. We give a sufficient
condition for an edge to be deletable in an orientation which is the underlying
orientation of some all-positive nowhere-zero k-flow and construct two specific
nowhere-zero 4-flows that show that the Frank number is 2.

Moreover, in Sect. 2 we give two sufficient conditions for cyclically 4-edge-
connected cubic graphs to have Frank number 2. In Sect. 3 we propose a heuristic
algorithm and an exact algorithm for determining whether the Frank number of
a 3-edge-connected cubic graph is 2. The heuristic algorithm makes use of the

On the Frank Number and Nowhere-Zero Flows on Graphs 365

sufficient conditions for cyclically 4-edge-connected graphs shown in the previous
section. Using an implementation of these algorithms we show that the Petersen
graph is the only cyclically 4-edge-connected snark, i.e. cubic graph which does
not admit a 3-edge-colouring, up to and including 36 vertices with Frank number
greater than 2.

Due to space constraints we had to omit several proofs. A full-length version
of this article containing all proofs can be found on arXiv [6].

1.1 Preliminaries

For some integer k, a k-flow (o, f) on a graph consists of an orientation o of
the edges of G and a valuation f : E(G) → {0,±1,±2 . . . ,±(k − 1)} such that
at every vertex the sum of the values on incoming edges equals the sum on the
outgoing edges. A k-flow (o, f) is said to be nowhere-zero if the value of f is not
0 for any edge of E(G). A nowhere-zero k-flow on G is said to be all-positive if
the value f(e) is positive for every edge e of G. Every nowhere-zero k-flow can be
transformed to an all-positive nowhere-zero k-flow by changing the orientation
of the edges with negative f(e) and changing negative values of f(e) to −f(e).

Let (G, o) be a graph with orientation o. Let H be a subgraph of G. If the
context is clear we write (H, o) to be the graph H with the orientation of o
restricted to H. We define the set D(G, o) ⊂ E(G) to be the set of all edges of
G which are deletable in o. Let u, v ∈ V (G), if the edge uv is oriented from u to
v, we write u → v.

2 Theoretical Results

Let (o, f) be an all-positive nowhere-zero k-flow on a cubic graph G. An edge e
with f(e) = 2 is called a strong 2-edge if there is no 3-edge-cut containing the
edge e (cycle-separating or not) such that the remaining edges of the cut have
value 1 in f .

Lemma 1. Let G be a 3-edge-connected graph and let (o, f) be an all-positive
nowhere-zero k-flow on G. Then all edges of G which receive value 1 and all
strong 2-edges in (o, f) are deletable in o.

For the proof we make use of the fact that if (o, f) is a k-flow on G, then in
every edge-cut the sum of the flow values on the edges oriented in one direction
equals the sum of the flow values on the edges oriented in the other direction.
Due to page limits we omit the full proof.

The following theorem can be shown using Lemma 1 and careful application
of the fact that every nowhere-zero 4-flow can be expressed as a combination of
two 2-flows.

Theorem 1. If G is a graph admitting a nowhere-zero 4-flow, then fn(G) = 2.

Due to page limits we omit the proof.
It is known that a cubic graph is 3-edge-colourable if and only if it admits a

nowhere-zero 4-flow. Therefore we have the following corollary.

366 J. Goedgebeur et al.

Corollary 1. IfG is a 3-edge-connected 3-edge-colourable graph, then fn(G) = 2.

Since every hamiltonian cubic graph is 3-edge-colourable, we have also shown
the following conjecture by Barát and Blázsik [1].

Corollary 2. If G is a 3-edge-connected cubic graph admitting a hamiltonian
cycle, then fn(G) = 2.

The following lemmas and theorems give two sufficient conditions for a cycli-
cally 4-edge-connected cubic graph to have Frank number 2. These will be used
in the algorithm in Sect. 3.

Lemma 2. Let o be a strong orientation of a cubic graph G. Let e1 = u1v1
and e2 = u2v2 be two nonadjacent edges in G such that o contains u1 → v1
and u2 → v2. Assume that both e1 and e2 are deletable in o. Create a cubic
graph G′ from G by subdividing the edges e1 and e2 with vertices x1 and x2,
respectively, and adding a new edge between x1 and x2. Let o′ be the orientation
of G′ containing u1 → x1, x1 → v1, x1 → x2, u2 → x2, x2 → v2 and such that
o′(e) = o(e) for all the remaining edges of G′. Then

D(G′, o′) ⊇ (D(G, o) − {e1, e2}) ∪ {x1v1, x1x2, u2x2}.

Due to page limits we omit the proof.
Let C be a 2-factor of G with exactly two odd circuits, say N1 and N2, (and

possibly some even circuits). Let x1x2 be an edge of G such that xi ∈ Ni for
i ∈ {1, 2}. Let F = G − C. Let M be a maximum matching in C − {x1, x2}.
For i ∈ {1, 2} denote by ui and vi the vertices of Ni which are adjacent to xi.
Denote by zi the edge of Ni incident with ui and not incident with xi, denote
by yi the edge of Ni incident with vi and not incident with xi. The vertices of
the graph F − {x1x2} ∪ M have degree 2, so the components of this graph are
circuits. An orientation of these circuits is consistent on Ni if the edges zi and
yi are oriented in the same direction with regards to Ni, see Fig. 1.

x1 x2

u1 u2

v1 v2

z1

y1

z2

y2

N1 N2

Fig. 1. Consistent orientation of the circuits from F − {x1x2} ∪ M .

On the Frank Number and Nowhere-Zero Flows on Graphs 367

Theorem 2. Let G be a cyclically 4-edge-connected cubic graph. Let C be a 2-
factor of G with exactly two odd circuits, say N1 and N2, (and possibly some
even circuits). Let e = x1x2 be an edge of G such that x1 ∈ N1 and x2 ∈ N2.
For i ∈ {1, 2} denote by ui and vi the vertices of Ni which are adjacent to xi.
Let F = G − C. Let M be a maximum matching in C − {x1, x2}. If there exists
an orientation of the circuits in F − {x1x2} ∪M such that the edges of Ni ∩M
incident with ui and vi are consistent on Ni for i ∈ {1, 2}, then fn(G) = 2.

Due to space constains we omit the full proof.
The proof of the following Lemma is similar to that of Lemma 2, but is also

omitted due to the page limit.

Lemma 3. Let o be a strong orientation of a cubic graph G. Let e1 = u1v1,
e2 = u2v2, and f = w2w1 be pairwise nonadjacent edges in G such that o
contains u1 → v1, u2 → v2, and w2 → w1. Let a cubic graph G′ be created from
G by performing the following steps:

– subdivide the edges e1 and e2 with the vertices x1 and x2, respectively,
– subdivide the edge w1w2 with the vertices y1 and y2 (in this order), and
– add the edges x1y1 and x2y2.

Let o′ be the orientation of G′ containing u1 → x1, x1 → v1, y1 → w1, y2 → y1,
w2 → y2, u2 → x2, x2 → v2 and such that o′(e) = o(e) for all the remaining
edges of G′ except for x1y1 and x2y2. Then

(a) if o′ contains y1 → x1 and x2 → y2, o′ will be a strong orientation of G′

and D(G′, o′) ⊇ D(G, o) − {e1, e2, f} ∪ {u1x1, x1y1, y1w1, y2w2, x2y2, x2v2}
(Fig. 2(left));

(b) if o′ contains x1 → y1 and y2 → x2, o′ will be a strong orientation of G′

and D(G′, o′) ⊇ D(G, o) − {e1, e2, f} ∪ {x1v1, y1y2, u2x2} (Fig. 2(right)).

x1 x2

u1 u2

v1 v2

y1 y2w1 w2

N1 N2

W

x1 x2

u1 u2

v1 v2

y1 y2w1 w2

N1 N2

W

Fig. 2. A part of G′ and orientation o′ as defined in Lemma 3. The left-hand-side
corresponds with the orientation of (a) and the right-hand-side corresponds with the
orientation of (b). If the conditions of Lemma 3 are met the thick, blue edges will be
deletable. (Color figure online)

Let C be a 2-factor of G with exactly two odd circuits, say N1 and N2 and
at least one even circuit W . Let x1y1, y1y2 and y2x2 be edges of G such that

368 J. Goedgebeur et al.

xi ∈ Ni and yi ∈ W for i ∈ {1, 2}. Let F = G − C and let M be a maximum
matching in C−{x1, x2, y1, y2}. For i ∈ {1, 2} denote by ui and vi the vertices of
Ni incident with xi and by wi the vertex of W − {y1, y2} adjacent to yi. Denote
by zi the edge of Ni ∩ M incident with ui, by z′

i the edge of Ni ∩ M incident
with vi, by z the edge of W ∩M incident with y1 and by z′ the edge of W ∩M
incident with y2. The vertices of the graph F − {x1y1, y2x2} ∪M have degree 2,
so the components are circuits. An orientation of these circuits is consistent on
Ni and W if the edges zi and z′

i are oriented in the same direction with regards
to Ni and the edges z and z′ are oriented in the same direction with regards to
W , see Fig. 3.

x1 x2

u1 u2

v1 v2

y1 y2w1 w2

z1

z1

z2

z2

z z

N1 N2

W

Fig. 3. Consistent orientation of the circuits from F − {x1y1, y2x2} ∪ M .

Theorem 3. Let G be a cyclically 4-edge-connected cubic graph with a 2-factor
C containing precisely two odd circuits N1 and N2 and at least one even circuit
W . Let x1y1, y1y2 and y2x2 be edges of G such that x1 ∈ V (N1), x2 ∈ V (N2) and
y1, y2 ∈ V (W). For i ∈ {1, 2} denote by ui and vi the vertices of Ni which are
adjacent to xi and by wi the neighbour of yi in W −{y1, y2}. Let F = G−C. Let
M be a maximum matching in C −{x1, y1, y2, x2}. If there exists an orientation
of the circuits in F − {x1y1, x2y2} ∪ M such that the edges of Ni ∩ M incident
with ui and vi are consistent on Ni for i ∈ {1, 2} and the edges of W ∩ M
incident with y1 and y2 are consistent on W and G ∼ x1y1 ∼ x2y2 has no
cycle-separating set of three edges {e1, e2, e3} with e1 ∈ {u1v1, u2v2, w1w2} and
e2, e3 ∈ E(F − {x1y1, x2y2} ∪ M), then fn(G) ≤ 2.

Due to page limits we omit the full proof.

On the Frank Number and Nowhere-Zero Flows on Graphs 369

3 Algorithm

We propose two algorithms for computationally verifying whether or not a given
3-edge-connected cubic graph has Frank number 2, i.e. a heuristic and an exact
algorithm. Note that the Frank number for 3-edge-connected cubic graphs is
always at least 2. Our algorithms are intended for graphs which are not 3-edge-
colourable, since 3-edge-colourable graphs have Frank number 2 (cf. Corollary 1).

The first algorithm is a heuristic algorithm, which makes use of Theorem 2
and Theorem 3. Hence, it can only be used for cyclically 4-edge-connected cubic
graphs. For every 2-factor in the input graph G, we verify if one of the config-
urations of these theorems is present. If that is the case, the graph has Frank
number 2. The pseudocode of this algorithm can be found in Algorithm 1. In
this algorithm we look at every 2-factor of G by generating every perfect match-
ing and looking at its complement. We then count how many odd cycles there
are in the 2-factor under investigation. If there are precisely two odd cycles,
then we check for every edge connecting the two odd cycles whether or not the
conditions of Theorem 2 hold. If they hold for one of these edges, we stop the
algorithm and return that the graph has Frank number 2. If these conditions do
not hold for any of these edges or if there are none, we check for all triples of
edges x1y1, y1y2, y2x2, where x1 and x2 lie on the two odd cycles and y1 and y2
lie on some even cycle, whether the conditions of Theorem 3 hold. If they do,
then G has Frank number 2 and we stop the algorithm.

The second algorithm is an exact algorithm for determining whether or not
a 3-edge-connected cubic graph has Frank number 2. The pseudocode of this
algorithm can be found in Algorithm 2. Due to space constraints, we omitted
some technical subroutines from the pseudocode and focused on the main rou-
tines. These subroutines can be found in [6]. For a graph G, we start by looking
at each of its strong orientations o and try to find a complementary orientation
o′ such that every edge is deletable in either o or o′. If there is a vertex in G for
which none of its adjacent edges are deletable in o, then there exists no com-
plementary orientation as no orientation of a cubic graph has three deletable
edges incident to the same vertex. If o is suitable, we look for a complementary
orientation using some tricks to reduce the search space. More precisely, we first
we start with an empty partial orientation, i.e. a directed spanning subgraph
of some orientation of G, and orient some edge. Note that we do not need to
consider the opposite orientation of this edge, since an orientation of a graph in
which all arcs are reversed has the same deletable edges as the original orienta-
tion. We then recursively orient edges of G that have not yet been oriented. After
orienting an edge, the rules of Lemma 4 may enforce the orientation of edges
which are not yet oriented. We orient them in this way before proceeding with
the next edge. This heavily restricts the number edges which need to be added.
As soon as a complementary orientation is found, we can stop the algorithm and
return that the graph G has Frank number 2. If for all strong orientations of
G no such complementary orientation is found, then the Frank number of G is
higher than 2.

370 J. Goedgebeur et al.

Since the heuristic algorithm is much faster than the exact algorithm, we will
first apply the heuristic algorithm. After this we will apply the exact algorithm
for those graphs for which the heuristic algorithm was unable to decide whether
or not the Frank number is 2. In Sect. 3.1 we give more details on how many
graphs pass this heuristic algorithm.

An implementation of these algorithms can be found on GitHub [5]. Our
implementation uses bitvectors to store adjacency lists and lists of edges and
bitoperations to efficiently manipulate these lists.

Theorem 4. Let G be a cyclically 4-edge-connected cubic graph. If Algorithm 1
is applied to G and returns True, G has Frank number 2.

Proof. Suppose the algorithm returns True for G. This happens in a specific
iteration of the outer for loop corresponding to a perfect matching F . The com-
plement of F is a 2-factor, say C, and since the algorithm returns True, C has
precisely two odd cycles, say N1 and N2, and possibly some even cycles.

Suppose first that the algorithm returns True on Line 16. Then there is an
edge x1x2 in G with x1 ∈ V (N1) and x2 ∈ V (N2), a maximal matching M of
C − {x1, x2} and an orientation o of the cycles in F − {x1x2} ∪ M such that
o is consistent on N1 and N2. Now by Theorem 2 it follows that G has Frank
number 2.

Now suppose that the algorithm returns True on Line 35. Then there are
edges x1y1, y1y2 and y2x2 such that x1 ∈ V (N1), x2 ∈ V (N2) and y1, y2 ∈ V (W)
where W is some even cycle in C. Since the algorithm returns True, there is a
maximal matching M of C − {x1, y1, y2, x2} and an orientation o of the cycles
in F − {x1y1, x2y2} ∪M such that o is consistent on N1, N2 and W . Denote the
neighbours of x1 and x2 in C by u1, v1 and u2, v2, respectively and denote the
neighbour of y1 in C−y2 by w1 and the neighbour of y2 in C−y1 by w2. Since no
triple e, e1, e2, where e ∈ {u1x1, w1y1, u2x2}, e1, e2 ∈ E(F − {x1y1, x2y2} ∪ M),
is a cycle-separating edge-set of G − {x1y1, x2y2}, G ∼ x1y1 ∼ x2y2 has no
cycle-separating edge-set {e, e1, e2}, where e ∈ {u1v1, u2v2, w1w2} and e1, e2 ∈
E(F −{x1y1, x2y2}∪M). Now by Theorem 3 it follows that G has Frank number
2. ��

We will use the following Lemma for the proof of the exact algorithm’s cor-
rectness.

Lemma 4. Let G be a cubic graph with fn(G) = 2 and let o and o′ be two
orientations of G such that every edge e ∈ E(G) is deletable in either o or o′.
Then the following hold for o′:

1. every vertex has at least one incoming and one outgoing edge in o′,
2. let uv ∈ D(G, o), then the remaining edges incident to u are one incoming

and one outgoing in o′,
3. let uv, vw ∈ D(G, o), then both are incoming to v or both are outgoing from

v in o′.

Due to page limits we omit the full proof.

On the Frank Number and Nowhere-Zero Flows on Graphs 371

Theorem 5. Let G be a cubic graph. Algorithm 2 applied to G returns True if
and only if G has Frank number 2.

Algorithm 1. heuristicForFrankNumber2(Graph G)
1: for each perfect matching F do
2: Store odd cycles of C := G − F in O = {N1, . . . , Nk}
3: if |O| is not 2 then
4: Continue with the next perfect matching

5: for all vertices x1 in N1 do
6: if x1 has a neighbour x2 in N2 then
7: // Test if Theorem 2 can be applied
8: Store a maximal matching of C − {x1, x2} in M
9: Denote the neighbours of x1 and x2 in C by u1, v1 and u2, v2, respectively

10: Create an empty partial orientation o of the cycles in F − {x1, x2} ∪ M
11: for all x ∈ {u1, v1, u2, v2} do
12: if the cycle in F −{x1, x2}∪M containing x is not yet oriented then
13: Orient the cycle in F − {x1x2} ∪ M containing x
14: Store this in o
15: if o is consistent on N1 and on N2 then
16: return True // Theorem 2 applies

17: else if x1 has a neighbour y1 on an even cycle W of C then
18: for each neighbour y2 of y1 in C do
19: if y2 has a neighbour x2 in N2 then
20: // Test if Theorem 3 can be applied
21: Store a maximal matching of C − {x1, y1, y2, x2} in M
22: Denote the neighbours of x1 and x2 in C by u1, v1 and u2, v2
23: Denote the neighbour of y1 in C − y2 by w1

24: Denote the neighbour of y2 in C − y1 by w2

25: Create an empty partial orientation o of the cycles in
F − {x1, y1, y2, x2} ∪ M

26: for all x ∈ {u1, v1, u2, v2, w1, w2} do
27: if the cycle in F − {x1, y1, y2, x2} ∪ M containing x is not

oriented in o then
28: Orient the cycle in F − {x1, y1, y2, x2} ∪ M containing x
29: Store this in o
30: if o is consistent on N1, N2 and W then
31: // Check cycle-separating edge-set condition
32: for all pairs of edges e1, e2 in F − {x1, y1, y2, x2} ∪ M do
33: for all e ∈ {u1x1, w1y1, u2x2} do
34: if {e, e1, e2} is a cyclic edge-cut in G − x1y1 − x2y2

then
35: return True // Theorem 3 applies

36: return False

372 J. Goedgebeur et al.

Algorithm 2. frankNumberIs2(Graph G)
1: for all orientations o of G do
2: if o is not strong then
3: Continue with next orientation
4: Store deletable edges of o in a set D
5: for all v ∈ V (G) do
6: if no edge incident to v is deletable then
7: Continue with next orientation
8: Create empty partial orientation o′ of G
9: Choose an edge xy in G and its orientation x → y

10: if not canAddArcsRecursively(G, D, o′, x → y) then // Algorithm 3
11: Continue loop with next orientation

12: while not all edges are oriented in o′ do
13: Store a copy of o′ in o′′

14: Take an edge uv of G which is unoriented in o′

15: if not canAddArcsRecursively(G, D, o′, u → v) then
16: Reset o′ using o′′

17: if not canAddArcsRecursively(G, D, o′, v → u) then
18: Continue outer loop with next orientation

19: if D(G, o) ∪ D(G, o′) = E(G) then
20: return True
21: return False

Proof. Suppose that frankNumberIs2(G) returns True. Then there exist two ori-
entations o and o′ for which D(G, o) ∪ D(G, o′) = E(G). Hence, fn(G) = 2.
Conversely, let fn(G) = 2. We will show that Algorithm 2 returns True. Let o1
and o2 be orientations of G such that every edge of G is deletable in either o1
or o2. If the algorithm returns True before we consider o1 in the loop of Line 1,
we are done. So, suppose we are in the iteration where o1 is considered in the
loop of Line 1. Without loss of generality assume that the orientation of xy we
choose in Line 9 is in o2. (If not, reverse all edges of o2 to get an orientation with
the same set of deletable edges.) Let o′ be a partial orientation of G and assume
that all oriented edges correspond to o2. Let u → v be an arc of o2. If u → v is
present in o′, then canAddArcsRecursively(G, D(G, o), o′, u → v) (Algorithm 3)
returns True and no extra edges become oriented in o′. If u → v is not present
in o′, it gets added on Line 8 of Algorithm 3, since the if-statement on Line 6
of Algorithm 3 will return True by Lemma 4. Note that this is the only place
where an arc is added to o′ in Algorithm 3. Hence, if we only call Algorithm 3
on arcs present in o2, then all oriented edges of o′ will always be oriented in the
same way as in o2. Now we will show that we only perform this call on arcs in
o2.

Again, suppose u → v is an arc in o2, that it is not yet present in o′ and
that every oriented edge of o′ has the same orientation as in o2. Let u have two
outgoing and no incoming arcs in o′. Let ux be the final unoriented edge incident
to u. Then o2 must have arc x → u, otherwise it has three outgoing arcs from
the same vertex. Let v have two incoming and no outgoing arcs in o′. Let vx be

On the Frank Number and Nowhere-Zero Flows on Graphs 373

the final unoriented edge incident to v. Then o2 must have arc v → x, otherwise
it has three incoming arcs to the same vertex.

Suppose uv is deletable in o1. Let ux also be deletable in o1. Denote the
final edge incident to u by uy. Clearly, uy cannot be deletable in o1, hence it
is deletable in o2. If o2 contains u → x, then uy is not deletable in o2, hence,
o2 contains x → u. Let vx be a deletable edge of o1 and denote the final edge
incident to v by vy. Since vy cannot be deletable in o1, o2 must contain arc
v → x. Suppose that the edges incident with u which are not uv are both not
in D(G, o1). Then they must be oriented incoming to u in o2. Similarly, if the
edges incident with v which are not uv are both not in D(G, o1), they must both
be outgoing from v in o2.

Finally, suppose that uv is not a deletable edge in o1. Suppose that o′ still
has one unoriented edge incident to u, say ux. If the other incident edges are one
incoming and one outgoing from u, then o2 contains the arc u → x. Otherwise,
uv cannot be deletable in o2. Similarly, if o′ still has one unoriented edge incident
to v, say vx and the remaining incident edges are one incoming and one outgoing,
then the arc x → v must be present in o2. Otherwise, uv cannot be deletable in
o2. If ux is not deletable in o1 x = v. Then o2 contains the arc u → x. Otherwise,
not both of uv and ux can be deletable in o2. Similarly, if vy is not deletable in
o1 and y = u, then o2 must contain the arc y → v. Otherwise, not both of uv
and vy can be deletable in o2.

It now inductively follows that during the execution of Algorithm 2 in the
iteration of orientation o1 on Line 19 that o′ = o2. Hence, the if-statement passes
and the algorithm returns True. ��

Algorithm 3. canAddArcsRecursively(Graph G, Set D, Partial Orientation o′,
Arc u → v)
1: // Check if u → v can be added and recursively orient edges for which the orien-

tation is enforced by the rules of Lemma 4
2: if u → v is present in o′ then
3: return True
4: if v → u is present in o′ then
5: return False
6: if adding u → v violates rules of Lemma 4 then // Algorithm 4 in Appendix of [6]
7: return False
8: Add u → v to o′

9: if the orientation of edges enforced by Lemma 4 yields a contradiction then //
Algorithm 5 in Appendix of [6]

10: return False
11: return True

374 J. Goedgebeur et al.

3.1 Results

Since by Corollary 1 all 3-edge-connected 3-edge-colourable (cubic) graphs have
Frank number 2, we will focus in this section on cubic graphs which are not
3-edge-colourable.

In [3] Brinkmann et al. determined all cyclically 4-edge-connected snarks up
to order 34 and of girth at least 5 up to order 36. This was later extended with
all cyclically 4-edge-connected snarks on 36 vertices as well [7]. These lists of
snarks can be obtained from the House of Graphs [4] at: https://houseofgraphs.
org/meta-directory/snarks. Using our implementation of Algorithms 1 and 2,
we tested for all cyclically 4-edge-connected snarks up to 36 vertices if they have
Frank number 2 or not. This led to the following result.

Proposition 1. The Petersen graph is the only cyclically 4-edge-connected
snark up to and including order 36 which has Frank number not equal to 2.

This was done by first running our heuristic Algorithm 1 on these graphs. It turns
out that there are few snarks in which neither the configuration of Theorem 2
nor the configuration of Theorem 3 are present. For example: for more than
99.97% of the cyclically 4-edge-connected snarks of order 36, Algorithm 1 is
sufficient to determine that their Frank number is 2. Thus we only had to run
our exact Algorithm 2 (which is significantly slower than the heuristic) on the
graphs for which our heuristic algorithm failed. In total about 214 CPU days of
computation time was required to prove Proposition 1 using Algorithm 1 and 2.

In [10] Jaeger defines a snark G to be a strong snark if for every edge e ∈
E(G), G ∼ e, i.e. the unique cubic graph such that G − e is a subdivision of
G ∼ e, is not 3-edge-colourable. Hence, a strong snark containing a 2-factor
which has precisely two odd cycles, has no edge e connecting those two odd
cycles, i.e. the configuration of Theorem 2 cannot be present. Therefore, they
might be good candidates for having Frank number greater than 2.

In [3] it was determined that there are 7 strong snarks on 34 vertices having
girth at least 5, 25 strong snarks on 36 vertices having girth at least 5 and no
strong snarks of girth at least 5 of smaller order. By Proposition 1, their Frank
number is 2. In [2] it was determined that there are at least 298 strong snarks
on 38 vertices having girth at least 5 and the authors of [2] speculate that this
is the complete set. We found the following.

Observation 6. The 298 strong snarks of order 38 determined in [2] have Frank
number 2.

These snarks can be obtained from the House of Graphs [4] by searching for the
keywords “strong snark”.

The configurations of Theorem 2 and Theorem 3 also cannot occur in snarks
of oddness 4, i.e. the smallest number of odd cycles in a 2-factor of the graph is
4. Hence, these may also seem to be good candidates for having Frank number
greater than 2. In [7,8] it was determined that the smallest snarks of girth at
least 5 with oddness 4 and cyclic edge-connectivity 4 have order 44 and that

https://houseofgraphs.org/meta-directory/snarks
https://houseofgraphs.org/meta-directory/snarks

On the Frank Number and Nowhere-Zero Flows on Graphs 375

there are precisely 31 such graphs of this order. We tested each of these and
found the following.

Observation 7. Let G be a snark of girth at least 5, oddness 4, cyclic edge-
connectivity 4 and order 44. Then fn(G) = 2.

These snarks of oddness 4 can be obtained from the House of Graphs [4] at
https://houseofgraphs.org/meta-directory/snarks.

The correctness of our algorithm was shown in Theorem 4 and Theorem 5.
We also performed several tests to verify that our implementations are correct.
However, due to space constraints this had to be omitted. These tests can be
found in [6].

References

1. Barát, J., Blázsik, Z.: Quest for graphs of Frank number 3 (2022). https://doi.org/
10.48550/arXiv.2209.08804

2. Brinkmann, G., Goedgebeur, J.: Generation of cubic graphs and snarks with large
girth. J. Graph Theory 86(2), 255–272 (2017). https://doi.org/10.1002/jgt.22125

3. Brinkmann, G., Goedgebeur, J., Hägglund, J., Markström, K.: Generation and
properties of snarks. J. Comb. Theory. Ser. B 103(4), 468–488 (2013). https://doi.
org/10.1016/j.jctb.2013.05.001

4. Coolsaet, K., D’hondt, S., Goedgebeur, J.: House of graphs 2.0: a database of
interesting graphs and more. Discret. Appl. Math. 325, 97–107 (2023). https://
doi.org/10.1016/j.dam.2022.10.013

5. Goedgebeur, J., Máčajová, E., Renders, J.: Frank-Number (2023). https://github.
com/JarneRenders/Frank-Number

6. Goedgebeur, J., Máčajová, E., Renders, J.: Frank number and nowhere-zero flows
on graphs (2023). arXiv:2305.02133 [math.CO]

7. Goedgebeur, J., Máčajová, E., Škoviera, M.: Smallest snarks with oddness 4 and
cyclic connectivity 4 have order 44. ARS Math. Contemp. 16(2), 277–298 (2019).
https://doi.org/10.26493/1855-3974.1601.e75

8. Goedgebeur, J., Máčajová, E., Škoviera, M.: The smallest nontrivial snarks of
oddness 4. Discret. Appl. Math. 277, 139–162 (2020). https://doi.org/10.1016/j.
dam.2019.09.020

9. Hörsch, F., Szigeti, Z.: Connectivity of orientations of 3-edge-connected graphs.
Eur. J. Comb. 94, 103292 (2021). https://doi.org/10.1016/j.ejc.2020.103292

10. Jaeger, F.: A survey of the cycle double cover conjecture. In: Alspach, B.R., Godsil,
C.D. (eds.) North-Holland mathematics studies, annals of discrete mathematics
(27): cycles in graphs, vol. 115, pp. 1–12. North-Holland (1985). https://doi.org/
10.1016/S0304-0208(08)72993-1

11. Nash-Williams, C.S.J.A.: On orientations, connectivity and odd-vertex-pairings in
finite graphs. Canad. J. Math. 12, 555–567 (1960). https://doi.org/10.4153/CJM-
1960-049-6. publisher: Cambridge University Press

12. Seymour, P.D.: On multi-colourings of cubic graphs, and conjectures of Fulkerson
and Tutte. Proc. London Math. Soc. 3(3), 423–460 (1979). https://doi.org/10.
1112/plms/s3-38.3.423

https://houseofgraphs.org/meta-directory/snarks
https://doi.org/10.48550/arXiv.2209.08804
https://doi.org/10.48550/arXiv.2209.08804
https://doi.org/10.1002/jgt.22125
https://doi.org/10.1016/j.jctb.2013.05.001
https://doi.org/10.1016/j.jctb.2013.05.001
https://doi.org/10.1016/j.dam.2022.10.013
https://doi.org/10.1016/j.dam.2022.10.013
https://github.com/JarneRenders/Frank-Number
https://github.com/JarneRenders/Frank-Number
http://arxiv.org/abs/2305.02133
https://doi.org/10.26493/1855-3974.1601.e75
https://doi.org/10.1016/j.dam.2019.09.020
https://doi.org/10.1016/j.dam.2019.09.020
https://doi.org/10.1016/j.ejc.2020.103292
https://doi.org/10.1016/S0304-0208(08)72993-1
https://doi.org/10.1016/S0304-0208(08)72993-1
https://doi.org/10.4153/CJM-1960-049-6
https://doi.org/10.4153/CJM-1960-049-6
https://doi.org/10.1112/plms/s3-38.3.423
https://doi.org/10.1112/plms/s3-38.3.423

On the Minimum Number of Arcs
in 4-Dicritical Oriented Graphs

Frédéric Havet1, Lucas Picasarri-Arrieta1(B), and Clément Rambaud1,2

1 Université Côte d’Azur, CNRS, Inria, I3S, Sophia Antipolis, France
{frederic.havet,lucas.picasarri-arrieta}@inria.fr

2 DIENS, École Normale Supérieure, CNRS, PSL University, Paris, France
clement.rambaud@ens.psl.eu

Abstract. We prove that every 4-dicritical oriented graph on n vertices
has at least (10

3
+ 1

51
)n − 1 arcs.

Keywords: dichromatic number · oriented graphs · directed graphs ·
dicritical · density

1 Introduction

Let G be a graph. We denote by V (G) its vertex set and by E(G) its edge set;
we set n(G) = |V (G)| and m(G) = |E(G)|. A k-colouring of G is a function
ϕ : V (G) → [k]. It is proper if for every edge uv ∈ E(G), ϕ(u) �= ϕ(v).
The smallest integer k such that G has a proper k-colouring is the chromatic
number, and is denoted by χ(G). Since χ is non decreasing with respect to the
subgraph relation, it is natural to consider the minimal graphs (for this relation)
which are not (k − 1)-colourable. Following this idea, Dirac defined k-critical
graphs as the graphs G with χ(G) = k and χ(H) < k for every proper subgraph
H of G. A first property of k-critical graph is that their minimum degree is at
least k−1. Indeed, if a vertex v has degree at most k−2, then a (k−1)-colouring
of G − v can be easily extended to G, contradicting the fact that χ(G) = k. As
a consequence, the number of edges in a k-critical graph is at least k−1

2 n. This
bound is tight for complete graphs and odd cycles, but Dirac [3] proved an
inequality of the form m ≥ k−1+εk

2 n − ck for every n-vertex k-critical graph
with m edges, for some ck and εk > 0. This shows that, for n sufficiently large,
the average degree of a k-critical graph is at least k − 1 + εk. This initiated the
quest after the best lower bound on the number of edges in n-vertex k-critical
graphs. This problem was almost completely solved by Kostochka and Yancey
in 2014 [11].

Theorem 1 (Kostochka and Yancey [11]). Every k-critical graph on n ver-
tices has at least 1

2 (k − 2
k−1)n− k(k−3)

2(k−1) edges. For every k, this bound is tight for
infinitely many values of n.

Kostochka and Yancey [12] also characterised k-critical graphs for which this
inequality is an equality, and all of them contain a copy of Kk−2, the complete
graph on k − 2 vertices. This motivated the following conjecture of Postle [13].
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
D. Paulusma and B. Ries (Eds.): WG 2023, LNCS 14093, pp. 376–387, 2023.
https://doi.org/10.1007/978-3-031-43380-1_27

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-43380-1_27&domain=pdf
https://doi.org/10.1007/978-3-031-43380-1_27

On the Minimum Number of Arcs in 4-Dicritical Oriented Graphs 377

Conjecture 2 (Postle [13]). For every integer k ≥ 4, there exists εk > 0 such that
every k-critical Kk−2-free graph G on n vertices has at least 1

2

(
k − 2

k−1 + εk

)
n−

k(k−3)
2(k−1) edges.

For k = 4, the conjecture trivially holds as there is no K2-free 4-critical
graph. Moreover, this conjecture has been confirmed for k = 5 by Postle [13], for
k = 6 by Gao and Postle [5], and for k ≥ 33 by Gould, Larsen, and Postle [6].

Let D be a digraph. We denote by V (D) its vertex set and by A(D) its arc set;
we set n(D) = |V (D)| and m(D) = |E(D)|. A k-colouring of D is a function
ϕ : V (D) → [k]. It is a k-dicolouring if every directed cycle C in D is not
monochromatic for ϕ (that is |ϕ(V (C))| > 1). Equivalently, it is a k-dicolouring
if every colour class induces an acyclic subdigraph. The smallest integer k such
that D has a k-dicolouring is the dichromatic number of D and is denoted
by �χ(D).

A digon in D is a pair of opposite arcs between two vertices. Such a pair
of arcs {uv, vu} is denoted by [u, v]. We say that D is a bidirected graph if
every pair of adjacent vertices forms a digon. In this case, D can be viewed as
obtained from an undirected graph G by replacing each edge {u, v} of G by the
digon [u, v]. We say that D is a bidirected G, and we denote it by

←→
G . Observe

that χ(G) = �χ(
←→
G). Thus every statement on proper colouring of undirected

graphs can be seen as a statement on dicolouring of bidirected graphs.
Exactly as in the undirected case, one can define k-dicritical digraphs to

be digraphs D with �χ(D) = k and �χ(H) < k for every proper subdigraph H

of D. It is easy to check that if G is a k-critical graph, then
←→
G is k-dicritical.

Kostochka and Stiebitz [10] conjectured that the k-dicritical digraphs with the
minimum number of arcs are bidirected graphs. Thus they conjectured the fol-
lowing generalisation of Theorem 1 to digraphs.

Conjecture 3 (Kostochka and Stiebitz [10]). Let k ≥ 2. Every k-dicritical digraph
on n vertices has at least (k− 2

k−1)n− k(k−3)
k−1 arcs. Moreover, equality holds only

if D is bidirected.

In the case k = 2, this conjecture is easy and weak as it states that a 2-dicritical
digraph on n vertices has at least two arcs, while, for all n ≥ 2, the unique
2-dicritical digraph of order n is the directed n-cycle which has n arcs. The case
k = 3 of the conjecture has been confirmed by Kostochka and Stiebitz [10].
Using a Brooks-type result for digraphs due to Harutyunyan and Mohar [7],
they proved the following: if D is a 3-dicritical digraph of order n ≥ 3, then
m(D) ≥ 2n and equality holds if and only if n is odd and D is a bidirected
odd cycle. The conjecture has also been proved for k = 4 by Kostochka and
Stiebitz [10]. However, the conjecture is open for every k ≥ 5. Recently, this
problem has been investigated by Aboulker and Vermande [2] who proved the
weaker bound (k − 1

2 − 2
k−1)n − k(k−3)

k−1 for the number of arcs in an n-vertex
k-dicritical digraph.

For integers k and n, let dk(n) denote the minimum number of arcs in a k-
dicritical digraph of order n. By the above observations, d2(n) = n for all n ≥ 2,

378 F. Havet et al.

and d3(n) ≥ 2n for all possible n, and equality holds if and only if n is odd and
n ≥ 3. Moreover, if n is even then d3(n) = 2n + 1 (see [1]).

Kostochka and Stiebitz [9] showed that if a k-critical graph G is triangle-free
(that is has no cycle of length 3), then m(G)/n(G) ≥ k − o(k) as k → +∞.
Informally, this means that the minimum average degree of a k-critical triangle-
free graph is (asymptotically) twice the minimum average degree of a k-critical
graph. Similarly to this undirected case, it is expected that the minimum number
of arcs in a k-dicritical digraph of order n is larger than dk(n) if we impose this
digraph to have no short directed cycles, and in particular if the digraph is
an oriented graph, that is a digraph with no digon. Let ok(n) denote the
minimum number of arcs in a k-dicritical oriented graph of order n (with the
convention ok(n) = +∞ if there is no k-dicritical oriented graph of order n).
Clearly ok(n) ≥ dk(n).

Conjecture 4 (Kostochka and Stiebitz [10]). For any k ≥ 3, there is a constant
αk > 0 such that ok(n) > (1 + αk)dk(n) for n sufficiently large.

For k = 3, this conjecture has been recently confirmed by Aboulker, Bellitto,
Havet, and Rambaud [1] who proved that o3(n) ≥ (2 + 1

3)n + 2
3 .

In view of Conjecture 2, Conjecture 4 can be generalized to
←−−→
Kk−2-free

digraphs.

Conjecture 5. For any k ≥ 4, there is a constant βk > 0 such that every k-
dicritical

←−−→
Kk−2-free digraph D on n vertices has at least (1 + βk)dk(n) arcs.

Together with Conjecture 3, this conjecture would imply the following gen-
eralisation of Conjecture 2.

Conjecture 6. For every integer k ≥ 4, there exists εk > 0 such that every k-
dicritical

←−−→
Kk−2-free digraph D on n vertices has at least (k− 2

k−1 +εk)n− k(k−3)
k−1

arcs.

A
←→
K2-free digraph is an oriented graph, and there are infinitely many 4-

dicritical oriented graphs. Thus, while Conjecture 2 holds vacuously for k = 4,
this is not the case for Conjecture 6. In this paper, we prove that Conjectures 4,
5, and 6 hold for k = 4.

Theorem 7. If �G is a 4-dicritical oriented graph, then

m(�G) ≥
(

10
3

+
1
51

)
n(�G) − 1.

To prove Theorem 7, we use an approach similar to the proof of the case
k = 5 of Conjecture 2 by Postle [13]. This proof is based on the potential
method, which was first popularised by Kostochka and Yancey [11] when they
proved Theorem 1. The idea is to prove a more general result on every 4-dicritical
digraphs that takes into account the digons.

On the Minimum Number of Arcs in 4-Dicritical Oriented Graphs 379

With a slight abuse, we call digon a subdigraph isomorphic to
←→
K2, the bidi-

rected complete graph on two vertices. We also call bidirected triangle a
subdigraph isomorphic to

←→
K3, the bidirected complete graph on three vertices.

A packing of digons and bidirected triangles is a set of vertex-disjoint digons
and bidirected triangles. To take into account the digons, we define a parameter
T (D) as follows.

T (D) = max{d + 2t | there exists a packing of d digons and t bidirected triangles}
Clearly, T (D) = 0 if and only if D is an oriented graph.

Let ε, δ be fixed non-negative real numbers. We define the potential (with
respect to ε and δ) of a digraph D to be

ρ(D) =
(

10
3

+ ε

)
n(D) − m(D) − δT (D).

Thus Theorem 7 can be rephrased as follows.

Theorem 7. Set ε = 1
51 and δ = 6ε = 2

17 . If �G is a 4-dicritical oriented graph,
then ρ(�G) ≤ 1.

In fact, we prove a more general statement which holds for every 4-dicritical
digraph (with or without digons), except for some exceptions called the 4-Ore
digraphs. Those digraphs, which are formally defined in Sect. 2, are the bidi-
rected graphs whose underlying graph is one of the 4-critical graphs reaching
equality in Theorem 1. In particular, every 4-Ore digraph D has 10

3 n(D) − 4
3

arcs. Moreover, the statement holds for all non-negative constants ε and δ sat-
isfying the following inequalities:

– δ ≥ 6ε;
– 3δ − ε ≤ 1

3 ;

Theorem 8. Let ε, δ ≥ 0 be constants satisfying the aforementioned inequali-
ties. If D is a 4-dicritical digraph with n vertices, then

(i) ρ(D) ≤ 4
3 + εn − δ 2(n−1)

3 if D is 4-Ore, and
(ii) ρ(D) ≤ 1 otherwise.

In order to provide some intuition to the reader, let us briefly describe the
main ideas of our proof. We will consider a minimum counterexample D to
Theorem 8, and show that every subdigraph of D must have large potential.
To do so, we need to construct some smaller 4-dicritical digraphs to leverage
the minimality of D. These smaller 4-dicritical digraphs will be constructed by
identifying some vertices of D. This is why, in the definition of the potential,
we consider T (D) instead of the number of digons: when identifying a set of
vertices, the number of digons may be arbitrary larger in the resulting digraph,
but T (D) increases at most by 1. Using the fact that every subdigraph of D has
large potential, we will prove that some subdigraphs are forbidden in D. Using
this, we get the final contradiction by a discharging argument.

In addition to Theorem 7, Theorem 8 has also the following consequence
when we take ε = δ = 0.

380 F. Havet et al.

Corollary 9. If D is a 4-dicritical digraph, then m(D) ≥ 10
3 n(D)− 4

3 . Moreover,
equality holds if and only if D is 4-Ore, otherwise m(D) ≥ 10

3 n(D) − 1.

This is a slight improvement on a result of Kostochka and Stiebitz [10] who
proved the inequality m(D) ≥ 10

3 n(D) − 4
3 without characterising the equality

case.
Another interesting consequence of our result is the following bound on the

number of vertices in a 4-dicritical oriented graph embedded on a fixed surface.
Since a graph on n vertices embedded on a surface of Euler characteristic c has
at most 3n − 3c edges, we immediately deduce the following from Theorem 7.

Corollary 10. If �G is a 4-dicritical oriented graph embedded on a surface of
Euler characteristic c, then n(�G) ≤ 17

6 (1 − 3c).

The previous best upper bound was n(�G) ≤ 4 − 9c [10].
In Sect. 2 we prove some first preliminary results on 4-Ore digraphs, before

proving Theorem 8 in Sect. 3. For the sake of brevity, we skip the proofs of
lemmas and claims. All the detailed proofs can be found in [8].

2 The 4-Ore Digraphs and Their Properties

We start with a few notations. We denote by �x1, . . . , xn� the bidirected path
with vertex set {x1, . . . , xn} in this order. If x1 = xn, �x1, . . . , xn� denotes the
bidirected cycle of order n with cyclic order x1, . . . , xn. If D is a digraph, for
any X ⊆ V (D), D − X is the subdigraph induced by V (D) \ X. We abbreviate
D−{x} into D−x. Moreover, for any F ⊆ V (D)×V (D), D\F is the subdigraph
(V (D), A(D) \ F) and D ∪ F is the digraph (V (D), A(D) ∪ F).

Let D1,D2 be two bidirected graphs, [x, y] ⊆ A(D1), and z ∈ V (D2). An
Ore-composition D of D1 and D2 with replaced digon [x, y] and split ver-
tex z is a digraph obtained by removing [x, y] of D1 and z of D2, and adding the
set of arcs {xz1 | zz1 ∈ A(D2) and z1 ∈ Z1}, {z1x | z1z ∈ A(D2) and z1 ∈ Z1},
{yz2 | zz2 ∈ A(D2) and z2 ∈ Z2}, {z2y | z2z ∈ A(D2) and z2 ∈ Z2}, where
(Z1, Z2) is a partition of ND2(z) into non-empty sets. We call D1 the digon side
and D2 the split side of the Ore-composition. The class of the 4-Ore digraphs
is the smallest class containing

←→
K4 which is stable under Ore-composition. See

Fig. 1 for an example of a 4-Ore digraph. Observe that all the 4-Ore-digraphs
are bidirected.

Proposition 11 (Dirac [4]). 4-Ore digraphs are 4-dicritical.

Proof. One can easily show that a bidirected digraph is 4-dicritical if and only
if its undirected underlying graph is 4-critical. Then the result follows from
Theorem 1 in [4]. ��
Lemma 12. Let D be a 4-dicritical bidirected digraph and v ∈ V (D). Let
(N+

1 , N+
2) and (N−

1 , N−
2) be two partitions of N(v). Consider D′ the digraph

with vertex set V (D) \ {v} ∪ {v1, v2} with N+(vi) = N+
i , N−(vi) = N−

i for
i = 1, 2 and D′〈V (D) \ {v}〉 = D − v. Then D′ has a 3-dicolouring with v1 and
v2 coloured the same except if N+

1 = N−
1 (that is D′ is bidirected).

On the Minimum Number of Arcs in 4-Dicritical Oriented Graphs 381

x

y

z

z2

z1

Fig. 1. An example of a 4-Ore digraph obtained by an Ore-composition of two smaller
4-Ore digraphs, with replaced digon [x, y] and split vertex z.

Lemma 13. Let D be a digraph. If v is a vertex of D, then T (D−v) ≥ T (D)−1.

Lemma 14. If D1,D2 are two digraphs, and D is an Ore-composition of D1

and D2, then T (D) ≥ T (D1) + T (D2) − 2. Moreover, if D1 or D2 is isomorphic
to

←→
K4, then T (D) ≥ T (D1) + T (D2) − 1.

Lemma 15. If D is 4-Ore, then T (D) ≥ 2
3 (n(D) − 1).

Let D be a digraph. A diamond in D is a subdigraph isomorphic to
←→
K4

minus a digon [u, v], with vertices different from u and v having degree 6 in D.
An emerald in D is a subdigraph isomorphic to

←→
K3 whose vertices have degree

6 in D.
Let R be an induced subdigraph of D with n(R) < n(D). The boundary of

R in D, denoted by ∂D(R), or simply ∂(R) when D is clear from the context,
is the set of vertices of R having a neighbour in V (D) \ R. We say that R is
Ore-collapsible if the boundary of R contains exactly two vertices u and v and
R ∪ [u, v] is 4-Ore.

Lemma 16. If D is 4-Ore and v ∈ V (D), then there exists either an Ore-
collapsible subdigraph of D disjoint from v or an emerald of D disjoint from v.

Lemma 17. If D �= ←→
K4 is 4-Ore and T is a copy of

←→
K3 in D, then there exists

either an Ore-collapsible subdigraph of D disjoint from T or an emerald of D
disjoint from T .

Lemma 18. If R is an Ore-collapsible induced subdigraph of a 4-Ore digraph
D, then there exists a diamond or an emerald of D whose vertices lie in V (R).

Lemma 19. If D is a 4-Ore digraph and v is a vertex in D, then D contains a
diamond or an emerald disjoint from v.

Proof. Follows from Lemmas 16 and 18.

382 F. Havet et al.

Lemma 20. If D is a 4-Ore digraph and T is a bidirected triangle in D, then
either D =

←→
K4 or D contains a diamond or an emerald disjoint from T .

Proof. Follows from Lemmas 17 and 18.

The following theorem was formulated for undirected graphs, but by replacing
every edge by a digon, it can be restated as follows:

Theorem 21 (Kostochka and Yancey [12]). Let D be a 4-dicritical bidirected
digraph.

If 10
3 n(D) − m(D) > 1, then D is 4-Ore and 10

3 n(D) − m(D) = 4
3 .

Lemma 22. If D is a 4-Ore digraph with n vertices, then ρ(D) ≤ 4
3 + εn −

δ 2(n−1)
3 .

Proof. Follows from Theorem 21 and Lemma 15.

Lemma 23 (Kostochka and Yancey [[12], Claim 16). Let D be a 4-Ore
digraph. If R ⊆ D and 5 ≤ n(R) < n(D), then 10

3 n(R) − m(R) ≥ 10
3 .

Lemma 24. Let D be a 4-Ore digraph obtained from a copy J of
←→
K4 by succes-

sive Ore-compositions with 4-Ore digraphs, vertices and digons in J being always
on the digon side. Let [u, v] be a digon in D〈V (J)〉. For every 3-dicolouring ϕ
of D \ [u, v], vertices in V (J) receives distinct colours except u and v.

Lemma 25. Let D be a 4-Ore digraph obtained from a copy J of
←→
K4 by succes-

sive Ore-compositions with 4-Ore digraphs, vertices and digons in J being always
on the digon side. Let v be a vertex in V (J). For every 3-dicolouring ϕ of D−v,
vertices in J receives distinct colours.

3 Proof of Theorem 8

Let D be a 4-dicritical digraph, R be an induced subdigraph of D with 4 ≤
n(R) < n(D) and ϕ a 3-dicolouring of R. The ϕ-identification of R in D,
denoted by Dϕ(R) is the digraph obtained from D by identifying for each i ∈ [3]
the vertices coloured i in V (R) to a vertex xi, adding the digons [xi, xj] for all
i, j ∈ [3] and then deleting loops and parallel arcs. Observe that Dϕ(R) is not 3-
dicolourable. Indeed, assume for a contradiction that Dϕ(R) has a 3-dicolouring
ϕ′. Since V (R) induces a

←→
K3, we may assume without loss of generality that

ϕ′(xi) = i for i ∈ [3]. Consider the 3-colouring ϕ′′ of D defined by ϕ′′(v) = ϕ′(v)
if v �∈ R and ϕ′′(v) = ϕ(v) if v ∈ R. One easily checks that ϕ′′ is a 3-dicolouring
of D, a contradiction to the fact that �χ(D) ≥ 4.

Now let W be a 4-dicritical subdigraph of Dϕ(R) and X = {x1, x2, x3}. Then
we say that R′ = D〈(V (W) \ X) ∪ R〉 is the dicritical extension of R with
extender W . We call XW = X ∩ V (W) the core of the extension. Note that
XW is not empty, because W is not a subdigraph of D. Thus 1 ≤ |XW | ≤ 3. See
Fig. 2 for an example of a ϕ-identification and a dicritical extension.

Let D be a counterexample to Theorem 8 with minimum number of vertices.
By Lemma 22, D is not 4-Ore. Thus ρ(D) > 1.

On the Minimum Number of Arcs in 4-Dicritical Oriented Graphs 383

R

D

X

XW

W

Dϕ(R) R′

Fig. 2. A 4-dicritical digraph D together with an induced subdigraph R of D and ϕ a
3-dicolouring of R, the ϕ-identification Dϕ(R) of R in D and the dicritical extension
R′ of R with extender W and core XW . For clarity, the digons are represented by
undirected edges.

Claim 1. If D̃ is a 4-dicritical digraph with n(D̃) < n(D), then ρ(D̃) ≤ 4
3 +

4ε − 2δ.

Claim 2. Let R be a subdigraph of D with 4 ≤ n(R) < n(D). If R′ is a dicritical
extension of R with extender W and core XW , then

ρ(R′) ≤ ρ(W) + ρ(R) −
(
ρ(

←−−→
K|XW |) + δ · T (

←−−→
K|XW |)

)
+ δ · (T (W) − T (W − XW))

and in particular

ρ(R′) ≤ ρ(W) + ρ(R) − 10
3

− ε + δ.

Claim 3. If R is a subdigraph of D with 4 ≤ n(R) < n(D), then ρ(R) ≥
ρ(D) + 2 − 3ε + δ > 3 − 3ε + δ.

As a consequence of Claim 3, any subdigraph (proper or not) of size at least
4 has potential at least ρ(D).

We say that an induced subdigraph R of D is collapsible if, for every 3-
dicolouring ϕ of R, its dicritical extension R′ (with extender W and core XW) is
D, has core of size 1 (i.e. |XW | = 1), and the border ∂D(R) of R is monochromatic
in ϕ.

Claim 4. Let R be an induced subdigraph of D and ϕ a 3-dicolouring of R
such that ∂(R) is not monochromatic in ϕ. If D is a dicritical extension of R
dicoloured by ϕ with extender W and core XW with |XW | = 1, then

ρ(R) ≥ ρ(D) + 3 − 3ε + δ.

Claim 5. If R is a subdigraph of D with 4 ≤ n(R) < n(D) and R is not
collapsible, then ρ(R) ≥ ρ(D) + 8

3 − ε − δ > 11
3 − ε − δ.

384 F. Havet et al.

Recall that a k-cutset in a graph G is a set S of k vertices such that G − S
is not connected. A graph is k-connected if it has more than k vertices and has
no (k − 1)-cutset. A k-cutset in a digraph is a k-cutset in its underlying graph,
and a digraph is k-connected if its underlying graph is k-connected.

Claim 6. D is 2-connected.

Claim 7. D is 3-connected. In particular, D contains no diamond.

Claim 8. If R is a collapsible subdigraph of D, u, v are in the boundary of R
and D〈R〉 ∪ [u, v] is 4-Ore, then there exists R′ ⊆ R such that

(i) either R′ is an Ore-collapsible subdigraph of D, or
(ii) R′ is an induced subdigraph of R, n(R′) < n(R), and there exist u′, v′ in

∂D(R′) such that R′ ∪ [u′, v′] is 4-Ore.

Claim 9. If R is a subdigraph of D with n(R) < n(D) and u, v ∈ V (R), then
R ∪ [u, v] is 3-dicolourable. As a consequence, there is no collapsible subdigraph
in D.

Claim 10. If R is a subdigraph of D with n(R) < n(D) and u, v, u′, v′ ∈ R,
then R ∪ {uv, u′v′} is 3-dicolourable. In particular, D contains no copy of

←→
K4

minus two arcs.

For any v ∈ V (D), we denote by n(v) its number of neighbours, that is
n(v) = |N+(u)∪N−(v)|, and by d(v) its number of incident arcs, that is d(v) =
d+(v) + d−(v).

Claim 11. Vertices of degree 6 in D have either three or six neighbours.

Claim 12. There is no bidirected triangle containing two vertices of degree 6.
In particular, D contains no emerald.

So now we know that D contains no emerald, and no diamond by Claim 7.

Claim 13. If R is an induced subdigraph of D with 4 ≤ n(R) < n(D), then
ρ(R) ≥ ρ(D) + 3 + 3ε − 3δ, except if D − R contains a single vertex which has
degree 6 in D.

In D, we say that a vertex v is a simple in-neighbour (resp. simple out-
neighbour) if v is a in-neighbour (resp. out-neighbour) of u and [u, v] is not a
digon in D. If v is a simple in-neighbour or simple out-neighbour of u, we simply
say that v is a simple neighbour of u.

Claim 14. Vertices of degree 7 have seven neighbours. In other words, every
vertex of degree 7 has only simple neighbours.

On the Minimum Number of Arcs in 4-Dicritical Oriented Graphs 385

The 8+-valency of a vertex v, denoted by ν(v), is the number of arcs incident
to v and a vertex of degree at least 8.

Let D6 be the subdigraph of D induced by the vertices of degree 6 incident
to digons. Let us describe the connected components of D6 and their neighbour-
hoods. Remember that vertices of degree 7 are incident to no digon by Claim 14,
and so they do not have neighbours in V (D6). If v is a vertex in D6, we define
its neighbourhood valency to be the sum of the 8+-valency of its neighbours
of degree at least 8. We denote the neighbourhood valency of v by νN (v).

Claim 15. If [x, y] is a digon and both x and y have degree 6, then either

(i) the two neighbours of y distinct from x have degree at least 8, or
(ii) the two neighbours of x distinct from y have degree at least 8 and νN (x) ≥ 4.

Claim 16. Let C be a connected component of D6. It is either

(i) a single vertex, or
(ii) a bidirected path on two vertices, or
(iii) a bidirected path on three vertices, whose extremities have neighbourhood

valency at least 4, or
(iv) a star on four vertices, whose non-central vertices have neighbourhood

valency at least 4.

An arc xy is said to be out-chelou if

(i) yx �∈ A(D), and
(ii) d+(x) = 3, and
(iii) d−(y) = 3, and
(iv) there exists z ∈ N−(y) \ N+(y) distinct from x.

Symmetrically, we say that an arc xy is in-chelou if yx is out-chelou in the
digraph obtained from D by reversing every arc. See Fig. 3 for an example of an
out-chelou arc.

x y

z

N−(x) N+(y)

Fig. 3. An example of an out-chelou arc xy.

Claim 17. There is no out-chelou arc and no in-chelou arc in D.

386 F. Havet et al.

We now use the discharging method. For every vertex v, let σ(v) = δ
|C| if

v has degree 6 and is in a component C of D6 of size at least 2, and σ(v) = 0
otherwise. Clearly T (D) is at least the number of connected components of size
at least 2 of D6 so

∑
v∈V (D) σ(v) ≤ δT (D). We define the initial charge of v

to be w(v) = 10
3 + ε − d(v)

2 − σ(v). We have

ρ(D) ≤
∑

v∈V (D)

w(v).

We now redistribute this total charge according to the following rules:

(R1) A vertex of degree 6 incident to no digon sends 1
12 − ε

8 to each of its
neighbours.

(R2) A vertex of degree 6 incident to digons sends 2
d(v)−ν(v) (− 10

3 + d(v)
2 − ε)

to each neighbour v of degree at least 8 (so 1
d(v)−ν(v) (− 10

3 + d(v)
2 − ε) via

each arc of the digon).
(R3) A vertex of degree 7 with d−(v) = 3 (resp. d+(v) = 3) sends 1

12 − ε
8 to

each of its in-neighbours (resp. out-neighbours).

For every vertex v, let w∗(v) be the final charge of v.

Claim 18. If v has degree at least 8, then w∗(v) ≤ 0.

Claim 19. If v has degree 7, then w∗(v) ≤ 0.

Claim 20. If v is a vertex of degree 6 incident to no digon, then w∗(v) ≤ 0.

Claim 21. Let v be a vertex in D6 having at least two neighbours of degree
at least 8. Then w∗(v) ≤ 0. Moreover, if v is not an isolated vertex in D6 and
νN (v) ≥ 4, then w∗(v) ≤ − 1

9 + 5
3ε − δ

4 .

Claim 22. If C is a connected component of D6, then
∑

v∈V (C) w∗(v) ≤ 0.

As a consequence of these last claims, we have ρ(D) ≤ ∑
v∈V (D) w(v) =∑

v∈V (D) w∗(v) ≤ 0 ≤ 1, a contradiction. This proves Theorem 8. ��

References

1. Aboulker, P., Bellitto, T., Havet, F., Rambaud, C.: On the minimum number of
arcs in k-dicritical oriented graphs. arXiv preprint arXiv:2207.01051 (2022)

2. Aboulker, P., Vermande, Q.: Various bounds on the minimum number of arcs in a
k-dicritical digraph. arXiv preprint arXiv:2208.02112 (2022)

3. Dirac, G.A.: A theorem of R. L. Brooks and a conjecture of H. Hadwiger. Proc.
London Math. Soc. 3(1), 161–195 (1957)

4. Dirac, G.A.: On the structure of 5-and 6-chromatic abstract graphs. J. für die reine
und angew. Math. (Crelles J.) 1964(214–215), 43–52 (1964)

5. Gao, W., Postle, L.: On the minimal edge density of K4-free 6-critical graphs.
arXiv:1811.02940 [math] (2018)

http://arxiv.org/abs/2207.01051
http://arxiv.org/abs/2208.02112
http://arxiv.org/abs/1811.02940

On the Minimum Number of Arcs in 4-Dicritical Oriented Graphs 387

6. Gould, R.J., Larsen, V., Postle, L.: Structure in sparse k-critical graphs. J. Comb.
Theory Ser. B 156, 194–222 (2022)

7. Harutyunyan, A., Mohar, B.: Gallai’s theorem for list coloring of digraphs. SIAM
J. Discret. Math. 25(1), 170–180 (2011)

8. Havet, F., Picasarri-Arrieta, L., Rambaud, C.: On the minimum number of arcs in
4-dicritical oriented graphs. arXiv preprint arXiv:2306.10784 (2023)

9. Kostochka, A., Stiebitz, M.: On the number of edges in colour-critical graphs and
hypergraphs. Combinatorica 20(4), 521–530 (2000)

10. Kostochka, A., Stiebitz, M.: The minimum number of edges in 4-critical digraphs
of given order. Graphs Comb. 36(3), 703–718 (2020)

11. Kostochka, A., Yancey, M.: Ore’s conjecture on color-critical graphs is almost true.
J. Comb. Theory, Ser. B 109, 73–101 (2014)

12. Kostochka, A., Yancey, M.: A Brooks-type result for sparse critical graphs. Com-
binatorica 38(4), 887–934 (2018)

13. Postle, L.: On the minimum number of edges in triangle-free 5-critical graphs. Eur.
J. Comb. 66, 264–280 (2017). selected papers of EuroComb15

http://arxiv.org/abs/2306.10784

Tight Algorithms for Connectivity
Problems Parameterized
by Modular-Treewidth

Falko Hegerfeld and Stefan Kratsch(B)

Institut für Informatik, Humboldt-Universität zu Berlin, Berlin, Germany
{hegerfeld,kratsch}@informatik.hu-berlin.de

Abstract. We study connectivity problems from a fine-grained param-
eterized perspective. Cygan et al. (TALG 2022) first obtained algorithms
with single-exponential running time αtwnO(1) for connectivity prob-
lems parameterized by treewidth (tw) by introducing the cut-and-count-
technique, which reduces the connectivity problems to locally checkable
counting problems. In addition, the obtained bases α were proven to be
optimal assuming the Strong Exponential-Time Hypothesis (SETH).

As only sparse graphs may admit small treewidth, these results are not
applicable to graphs with dense structure. A well-known tool to capture
dense structure is the modular decomposition, which recursively parti-
tions the graph into modules whose members have the same neighbor-
hood outside of the module. Contracting the modules, we obtain a quo-
tient graph describing the adjacencies between modules. Measuring the
treewidth of the quotient graph yields the parameter modular-treewidth,
a natural intermediate step between treewidth and clique-width. While
less general than clique-width, modular-treewidth has the advantage that
it can be computed as easily as treewidth.

We obtain the first tight running times for connectivity problems
parameterized by modular-treewidth. For some problems the obtained
bounds are the same as relative to treewidth, showing that we can deal
with a greater generality in input structure at no cost in complexity.
We obtain the following randomized algorithms for graphs of modular-
treewidth k, given an appropriate decomposition:

– Steiner Tree can be solved in time 3knO(1),
– Connected Dominating Set can be solved in time 4knO(1),
– Connected Vertex Cover can be solved in time 5knO(1),
– Feedback Vertex Set can be solved in time 5knO(1).

The first two algorithms are tight due to known results and the last two
algorithms are complemented by new tight lower bounds under SETH.

Keywords: connectivity · modular-treewidth · tight algorithms

The first author was partially supported by DFG Emmy Noether-grant (KR 4286/1).

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
D. Paulusma and B. Ries (Eds.): WG 2023, LNCS 14093, pp. 388–402, 2023.
https://doi.org/10.1007/978-3-031-43380-1_28

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-43380-1_28&domain=pdf
http://orcid.org/0000-0003-2125-5048
http://orcid.org/0000-0002-0193-7239
https://doi.org/10.1007/978-3-031-43380-1_28

Connectivity Problems Parameterized by Modular-Treewidth 389

1 Introduction

Connectivity constraints are a very natural form of global constraints in the
realm of graph problems. We study connectivity problems from a fine-grained
parameterized perspective. The starting point is an influential paper of Cygan et
al. [11] introducing the cut-and-count-technique which yields randomized algo-
rithms with running time1 O∗(αtw), for some constant base α > 1, for connectiv-
ity problems parameterized by treewidth (tw). The obtained bases α were proven
to be optimal assuming the Strong Exponential-Time Hypothesis2 (SETH) [10].

Since dense graphs cannot have small treewidth, the results for treewidth
do not help for graphs with dense structure. A well-known tool to capture
dense structure is the modular decomposition of a graph, which recursively
partitions the graph into modules whose members have the same neighbor-
hood outside of the module. Contracting these modules, we obtain a quotient
graph describing the adjacencies between the modules. Having isolated the dense
part to the modules, measuring the complexity of the quotient graph by stan-
dard graph parameters such as treewidth yields e.g. the parameter modular-
treewidth (mod-tw), a natural intermediate step between treewidth and clique-
width. While modular-treewidth is not as general as clique-width, the algorithms
for computing treewidth transfer to modular-treewidth, yielding e.g. reason-
able constant-factor approximations for modular-treewidth in single-exponential
time, whereas for clique-width we are currently only able to obtain approxima-
tions with exponential error.

We obtain the first tight running times for connectivity problems parameter-
ized by modular-treewidth. To do so, we lift the algorithms using the cut-and-
count-technique from treewidth to modular-treewidth. A crucial observation is
that all vertices inside a module will be connected by choosing a single vertex
from a neighboring module. In some cases, this observation is strong enough to
lift the treewidth-based algorithms to modular-treewidth for free, i.e., the base
α of the running time does not increase, showing that we can deal with a greater
generality in input structure at no cost in complexity for these problems.

Theorem 1 (informal). There are one-sided error Monte-Carlo algorithms
that, given a decomposition witnessing modular-treewidth k, can solve

– Steiner Tree in time O∗(3k),
– Connected Dominating Set in time O∗(4k).

These bases are optimal under SETH, by known results of Cygan et al. [10].
However, in other cases the interplay of the connectivity constraint and

the remaining problem constraints does increase the complexity for modular-
treewidth compared to treewidth. In these cases, we provide new algorithms
adapting the cut-and-count-technique to this more intricate setting.

1 The O∗-notation hides polynomial factors in the input size.
2 The hypothesis that for every δ < 1, there is some q such that q-Satisfiability

cannot be solved in time O(2δn), where n is the number of variables.

390 F. Hegerfeld and S. Kratsch

Theorem 2 (informal). There are one-sided error Monte-Carlo algorithms
that, given a decomposition witnessing modular-treewidth k, can solve Con-

nected Vertex Cover and Feedback Vertex Set in time O∗(5k).

Both problems can be solved in time O∗(3k) parameterized by treewidth [11].
In contrast, Vertex Cover (without the connectivity constraint) has complex-
ity O∗(2k) with respect to treewidth [22] and modular-treewidth simultaneously.

For these latter two problems, we provide new lower bounds to show that the
bases are optimal under SETH. However, we do not need the full power of the
modular decomposition to prove the lower bounds. The modular decomposition
allows for recursive partitioning. When instead allowing for only a single level of
partitioning and limited complexity inside the modules, we obtain parameters
called twinclass-pathwidth (tc-pw) and twinclass-treewidth.

Theorem 3. Unless SETH fails, Connected Vertex Cover and Feedback

Vertex Set cannot be solved in time O∗((5 − ε)tc-pw) for any ε > 0.

As twinclass-pathwidth is a larger parameter than modular-treewidth, the
lower bounds of Theorem 3 transfer to modular-treewidth.

The obtained results on connectivity problems parameterized by modular-
treewidth are situated in the larger context of a research program aimed at
determining the optimal running times for connectivity problems relative to
width-parameters of differing generality, thus quantifying the price of generality
in this setting. The known results are summarized in Table 1. Beyond the results
for treewidth by Cygan et al. [10,11], Bojikian et al. [8] obtain tight results for
the more restrictive cutwidth by either providing faster algorithms resulting from
combining cut-and-count with the rank-based approach or by showing that the
same lower bounds already hold for cutwidth. Hegerfeld and Kratsch [16] con-
sider clique-width and obtain tight results for Connected Vertex Cover

and Connected Dominating Set. Their algorithms combine cut-and-count
with several nontrivial techniques to speed up dynamic programming on clique-
expressions, where the interaction between cut-and-count and clique-width can
yield more involved states compared to modular-treewidth, as clique-width is
more general. These algorithms are complemented by new lower bound con-
structions following similar high-level principles as for modular-treewidth, but
allow for more flexibility in the gadget design due to the mentioned generality.
However, the techniques of Hegerfeld and Kratsch [16] for clique-width yield
tight results for fewer problems compared to the present work; in particular, the
optimal bases for Steiner Tree and Feedback Vertex Set parameterized
by clique-width are currently not known.

Related Work. We survey some more of the literature on parameterized algo-
rithms for connectivity problems relative to dense width-parameters. Bergoug-
noux [2] has applied cut-and-count to several width-parameters based on struc-
tured neighborhoods such as clique-width, rank-width, or mim-width. Build-
ing upon the rank-based approach of Bodlaender et al. [6], Bergougnoux
and Kanté [4] obtain single-exponential running times O∗(αcw) for a large

Connectivity Problems Parameterized by Modular-Treewidth 391

Table 1. Optimal running times of connectivity problems with respect to various
width-parameters listed in increasing generality. The results in the penultimate column
are obtained in this paper. The “?” denotes cases, where an algorithm with single-
exponential running time is known by Bergougnoux and Kanté [4], but a gap between
the lower bound and algorithm remains.

Parameters cutwidth treewidth modular-tw clique-width

Connected Vertex Cover O∗(2k) O∗(3k) O∗(5k) O∗(6k)

Connected Dominating Set O∗(3k) O∗(4k) O∗(4k) O∗(5k)

Steiner Tree O∗(3k) O∗(3k) O∗(3k) ?

Feedback Vertex Set O∗(2k) O∗(3k) O∗(5k) ?

References [8] [10,11] here [16]

class of connectivity problems parameterized by clique-width (cw). The same
authors [5] also generalize this approach to other dense width-parameters via
structured neighborhoods. All these works deal with general Connected (σ, ρ)-
Dominating Set problems capturing a wide range of problems; this generality
of problems (and parameters) comes at the cost of yielding running times that
are far from optimal for specific problem-parameter combinations, e.g., the first
article [2] is the most optimized for clique-width and obtains the running time
O∗((24+ω)cw) ≥ O∗(64cw), where ω is the matrix multiplication exponent [1], for
Connected Dominating Set. Bergougnoux et al. [3] obtain XP algorithms
parameterized by mim-width for problems expressible in a logic that can also
capture connectivity constraints. Beyond dense width-parameters, cut-and-count
has also been applied to the parameters branchwidth [28] and treedepth [14,26].

Our version of modular-treewidth was first used by Bodlaender and Jansen
for Maximum Cut [7]. Several papers [21,24,27] also use the name modular-
treewidth, but use it to refer to what we call twinclass-treewidth. In par-
ticular, Lampis [21] obtains tight results under SETH for q-Coloring with
respect to twinclass-treewidth and clique-width. Hegerfeld and Kratsch [15]
obtain tight results for Odd Cycle Transversal parameterized by twinclass-
pathwidth and clique-width and for Dominating Set parameterized by
twinclass-cutwidth. Kratsch and Nelles [20] combine modular decompositions
with tree-depth in various ways and obtain parameterized algorithms for various
efficiently solvable problems.

Organization. In Sect. 2 we discuss the general preliminaries and in Sect. 3
the cut-and-count-technique. We sketch Theorem 1 in Sect. 4 and Theorem 2 in
Sect. 5. Everything marked with � has a more detailed version in the full ver-
sion [17]; in particular, the lower bounds of Theorem 3 are completely contained
in the full version due to space constraints.

2 Preliminaries

For two integers a, b we write a ≡c b to indicate equality modulo c ∈ N. We use
Iverson’s bracket notation: for a boolean predicate p, we have that [p] is 1 if p

392 F. Hegerfeld and S. Kratsch

is true and 0 otherwise. For a function f we denote by f [v �→ α] the function
(f \ {(v, f(v))}) ∪ {(v, α)}, viewing f as a set. By F2 we denote the field of
two elements. For n1, n2 ∈ Z, we write [n1, n2] = {x ∈ Z : n1 ≤ x ≤ n2} and
[n2] = [1, n2]. For a function f : V → Z and a subset W ⊆ V , we write f(W) =∑

v∈W f(v). Note that for functions g : A → B, where B
⊆ Z, and a subset
A′ ⊆ A, we still denote the image of A′ under g by g(A′) = {g(v) : v ∈ A′}.
If f : A → B is a function and A′ ⊆ A, then f

∣
∣
A′ denotes the restriction of

f to A′ and for a subset B′ ⊆ B, we denote the preimage of B′ under f by
f−1(B′) = {a ∈ A : f(a) ∈ B′}. The power set of a set A is denoted by P(A).

We use common graph-theoretic notation and the essentials of parameterized
complexity. For two disjoint vertex subsets A,B ⊆ V , we define EG(A,B) =
{{a, b} ∈ E(G) : a ∈ A, b ∈ B} and adding a join between A and B means
adding an edge between every vertex in A and every vertex in B. We denote
the number of connected components of G by cc(G). A cut of G is a partition
V = VL ∪ VR, VL ∩ VR = ∅, of its vertices into two parts.

Quotients and Twinclasses. Let Π be a partition of V (G). The quotient
graph G/Π is given by V (G/Π) = Π and E(G/Π) = {{B1, B2} ⊆ Π : B1
=
B2,∃u ∈ B1, v ∈ B2 : {u, v} ∈ E(G)}. We say that two vertices u, v are twins
if N(u) \ {v} = N(v) \ {u}. The equivalence classes of this relation are called
twinclasses and we let Πtc(G) denote the partition of V (G) into twinclasses. A
twinclass of size at least 2 either induces an independent set (false twins) or a
clique (true twins). We define the twinclass-treewidth and twinclass-pathwidth of
G by tc-tw(G) = tw(G/Πtc(G)) and tc-pw(G) = pw(G/Πtc(G)), respectively.
The parameters twinclass-treewidth and twinclass-pathwidth were considered
before under the name modular treewidth and modular pathwidth [21,24,27].
We use the prefix twinclass instead of modular to distinguish from the quotient
graph arising from a modular partition of G.

Modular Decomposition. A vertex set M ⊆ V (G) is a module of G if N(v) \
M = N(w) \ M for every pair v, w ∈ M of vertices in M . The modules ∅,
V (G), and all singletons are called trivial ; A graph is prime if it only admits
trivial modules. A module M is proper if M
= V (G). For two disjoint modules
M1,M2 ∈ M(G), either {{v, w} : v ∈ M1, w ∈ M2} ⊆ E(G) or {{v, w} :
v ∈ M1, w ∈ M2} ∩ E(G) = ∅; in the first case, M1 and M2 are adjacent
and in the second case, they are nonadjacent. A module M is strong if for
every module M ′ of G we have M ∩ M ′ = ∅, M ⊆ M ′, or M ′ ⊆ M . The
family of nonempty strong modules is denoted Mtree(G), which can be arranged
as the modular decomposition tree via the inclusion-relation. We freely switch
between viewing Mtree(G) as a set family or as the modular decomposition tree
of G; in the latter case, we refer also to the modules as nodes. Every graph
G containing at least two vertices can be uniquely partitioned into a set of
inclusion-maximal nonempty strong modules Πmod(G) = {M1, . . . ,M�}, with
	 ≥ 2, called canonical modular partition; Πmod(G) is undefined for |V (G)| ≤ 1.
For M ∈ Mtree(G) with |M | ≥ 2, we write children(M) = Πmod(G[M]) as the

Connectivity Problems Parameterized by Modular-Treewidth 393

sets in Πmod(G[M]) are precisely the children of M in the modular decomposition
tree; if |M | = 1, then children(M) = ∅. Forming the quotient graph Gq

M =
G[M]/Πmod(G[M]) at M , there are three possible cases:

Theorem 4 ([12]). If |M | ≥ 2, then exactly one of the following holds:

– Parallel node: G[M] is not connected and Gq
M is an independent set,

– Series node: the complement G[M] is not connected and Gq
M is a clique,

– Prime node: Πmod(G[M]) consists of the inclusion-maximal proper modules
of G[M] and Gq

M is prime.

We define the family Hp(G) = {Gq
M : M ∈ Mtree(G), |M | ≥ 2, Gq

M is prime}
and the modular-pathwidth by mod-pw(G) = max(2,maxH∈Hp(G) pw(H)) and
the modular-treewidth by mod-tw(G) = max(2,maxH∈Hp(G) tw(H)). The mod-
ular decomposition tree can be computed in time O(n + m), see e.g. Tedder et
al. [29] or the survey by Habib and Paul [13]. Running a treewidth-algorithm,
such as the approximation algorithm of Korhonen [19], on every graph in Hp(G)
and observing that3 |Mtree(G)| ≤ 2n, which also bounds the total number of
vertices appearing in quotient graphs, we obtain the following.

Theorem 5. There is an algorithm, that given an n-vertex graph G and an inte-
ger k, in time 2O(k)n either outputs a tree decomposition of width at most 2k+1
for every prime quotient graph Gq

M ∈ Hp(G) or determines that mod-tw(G) > k.

Let M ∈ Mtree(G) \ {V } and M↑ ∈ Mtree(G) be its parent module.
We have M ∈ children(M↑) = Πmod(G[M↑]), hence M appears as a ver-
tex of the quotient graph Gq

M↑ ; we also denote this vertex by vq
M . We define

the projection at M↑ by πM↑ : M↑ → V (Gq
M↑) with πM↑(v) = vq

M whenever
v ∈ M ∈ Πmod(G[M↑]).

Tree Decompositions (�). The definition of (very nice) tree decompositions
and treewidth is given in the full version of the paper. The very nice tree decom-
positions of Cygan et al. [11] augment the nice tree decompositions of Kloks [18]
by empty root and leaf bags and every edge is introduced exactly once in an
introduce edge bag.

Lemma 6 ([11]). Any tree decomposition of G can be converted into a very nice
tree decomposition of G with the same width in polynomial time.

Given a very nice tree decomposition (T q
M↑ , (Bq

t)t∈V (T q

M↑)
) of the quotient graph

Gq
M↑ , we associate to every node t ∈ V (T q

M↑) a subgraph Gq
t = (V q

t , Eq
t) of Gq

M↑
in the standard way. Based on the vertex subsets of the quotient graph Gq

M↑ , we
define vertex subsets of the original graph G[M↑] as follows: Bt = π−1

M↑(Bq
t) =

3 The modular decomposition tree has n leaves and every internal node has at least
two children, hence |Mtree(G)| ≤ 2n.

394 F. Hegerfeld and S. Kratsch

⋃
vq
M∈B

q
t
M and Vt = π−1

M↑(V q
t) =

⋃
vq
M∈V q

t
M . We also transfer the edge set as

follows

Et =
⋃

vq
M∈V q

t

E(G[M]) ∪
⋃

{vq
M1

,vq
M2

}∈Eq
t

{{u1, u2} : u1 ∈ M1 ∧ u2 ∈ M2},

allowing us to define the graph Gt = (Vt, Et) associated to any node t ∈ V (T q
M↑).

Parameter Relationships (�). The standard definitions of clique-width,
cw(G), and linear clique-width, lin-cw(G), can be found in the full version. We
have the following relationships between the considered parameters.

Lemma 7 (�). We have cw(G) ≤ mod-pw(G) + 2 ≤ max(2, tc-pw(G)) + 2 and
mod-tw(G) ≤ max(2, tc-tw(G)) for every graph G.

Note that Theorem 7 can only hold for modular-pathwidth and not modular-
treewidth, as already for treewidth, Corneil and Rotics [9] show that for every
k there exists a graph Gk with treewidth k and clique-width exponential in k.

Theorem 8 ([15]). We have cw(G) ≤ lin-cw(G) ≤ tc-pw(G) + 4 ≤ pw(G) + 4.

Problem Definitions

Connected Vertex Cover

Input: An undirected graph G = (V,E), a cost function c : V → N \ {0} and
an integer b.
Question: Is there a set X ⊆ V , c(X) ≤ b, such that G − X contains no
edges and G[X] is connected?

Connected Dominating Set

Input: An undirected graph G = (V,E), a cost function c : V → N \ {0} and
an integer b.
Question: Is there a set X ⊆ V , c(X) ≤ b, such that N [X] = V and G[X]
is connected?

(Node) Steiner Tree

Input: An undirected graph G = (V,E), a set of terminals K ⊆ V , a cost
function c : V → N \ {0} and an integer b.
Question: Is there a set X ⊆ V , c(X) ≤ b, such that K ⊆ X and G[X] is
connected?

Feedback Vertex Set

Input: An undirected graph G = (V,E), a cost function c : V → N \ {0} and
an integer b.
Question: Is there a set X ⊆ V , c(X) ≤ b, such that G − X contains no
cycles?

Connectivity Problems Parameterized by Modular-Treewidth 395

3 Cut and Count for Modular-Treewidth

Let G = (V,E) denote a connected graph. For easy reference, we repeat the key
definition and lemmas of the cut-and-count-technique [11] here. A cut (VL, VR)
of an undirected graph G = (V,E) is consistent if u ∈ VL and v ∈ VR implies
{u, v} /∈ E, i.e., EG(VL, VR) = ∅. A consistently cut subgraph of G is a pair
(X, (XL,XR)) such that X ⊆ V and (XL,XR) is a consistent cut of G[X]. We
denote the set of consistently cut subgraphs of G by C(G).

Lemma 9 ([11]). Let X ⊆ V be a subset of vertices. The number of consistently
cut subgraphs (X, (XL,XR)) is equal to 2cc(G[X]).

Fix some M↑ ∈ Mtree(G) with |M↑| ≥ 2 and X ⊆ M↑ with |πM↑(X)| ≥ 2,
i.e., X intersects at least two child modules of M↑, for this section. A simple
exchange argument shows that the connectivity of G[X] is not affected by the
precise intersection X ∩ M , M ∈ children(M↑), but only whether X ∩ M is
empty or not. This observation allows us to reduce checking the connectivity
of G[X] to the quotient graph at M↑, as Gq

M↑ is isomorphic to the induced
subgraph of G obtained by picking one vertex from each child module of M↑.

Lemma 10 (�). If G[X] is connected, then for any vq
M ∈ πM↑(X) and ∅
= Y ⊆

M , the graph G[(X \ M) ∪ Y] is connected. Furthermore, G[X] is connected if
and only if Gq

M↑ [πM↑(X)] is connected.

Theorem 10 shows that we do not need to consider heterogeneous cuts, i.e.,
(X, (XL,XR)) ∈ C(G) with XL ∩ M
= ∅ and XR ∩ M
= ∅ for some module
M ∈ Πmod(G), since we can assume that |X ∩ M | ≤ 1.

Definition 11. Let M↑ ∈ Mtree(G). We say that a cut (XL,XR), with XL ∪
XR ⊆ M↑, is M↑-homogeneous if XL ∩ M = ∅ or XR ∩ M = ∅ for every
M ∈ children(M↑). We may just say that (XL,XR) is homogeneous when
M↑ is clear from the context. We define for every subgraph G′ of G the set
Chom

M↑ (G′) = {(X, (XL,XR)) ∈ C(G′) : (XL,XR) is M↑-homogeneous}.

Combining Theorem 9 with Theorem 10, the connectivity of G[X] can be
determined by counting M↑-homogeneous consistent cuts of G[X] modulo 4.

Lemma 12 (�). We have

|{(XL,XR) : (X, (XL,XR)) ∈ Chom
M↑ (G)}| = 2cc(G

q

M↑ [πM↑ (X)])
.

Furthermore, G[X] is connected if and only if |{(XL,XR) : (X, (XL,XR)) ∈
Chom

M↑ (G)}|
= 0 mod 4.

With the isolation lemma we avoid unwanted cancellations in the cut-and-
count-technique at the cost of introducing randomization.

Definition 13. A function w : U → Z isolates a set family F ⊆ P(U) if there
is a unique S′ ∈ F with w(S′) = minS∈F w(S), where for subsets X of U we
define w(X) =

∑
u∈X w(u).

396 F. Hegerfeld and S. Kratsch

Lemma 14 (Isolation Lemma, [25]). Let ∅
= F ⊆ P(U) be a set family over
a universe U . Let N ∈ N and for each u ∈ U choose a weight w(u) ∈ [N]
uniformly and independently at random. Then P[w isolates F] ≥ 1 − |U |/N .

4 Reduction to Treewidth (�)

We sketch the ideas behind Theorem 1. For both problems, Steiner Tree and
Connected Dominating Set, we use Theorem 10 to reduce the problems to
a quotient graph and apply the treewidth-algorithms of Cygan et al. [11]. As
Theorem 10 only applies to sets intersecting at least two modules, we separately
search for solutions contained in a single module. We also handle the special cases
of series and parallel nodes via special polynomial-time algorithms or recursing
in the modular decomposition tree depending on the node type and problem.

Assuming that the topmost quotient graph Gq
V = G/Πmod(G) is prime

and we are searching for solutions X intersecting at least two modules, i.e.,
|πV (X)| ≥ 2, we provide more details. First, consider such a Steiner Tree

instance (G,K, c, b). Theorem 10 implies that the only sensible intersections
are X ∩ M ∈ {∅, {vM},K ∩ M} for M ∈ Πmod(G), where vM is a vertex of
minimum cost inside M . In particular, we distinguish whether K ∩ M = ∅ or
K ∩ M
= ∅; in the former case, we can assume X ∩ M ∈ {∅, {vM}} and in the
latter X ∩M ∈ {∅,K ∩M}. This motivates the reduction to the quotient graph:
we set Kq = πV (K) and cq(vq

M) = c(K ∩ M) =
∑

v∈K∩M c(v) if K ∩ M
= ∅
and cq(vq

M) = c(vM) otherwise, compressing the cost of K ∩ M into a single
vertex or choosing a vertex of minimum cost respectively. Then, the instance
(G,K, c, b) is equivalent to (Gq

V ,Kq, cq, b) and we can run a weighted variant of
the Steiner Tree algorithm of Cygan et al. [11] on the latter instance.

The reduction for Connected Dominating Set uses a very similar prin-
ciple by considering the cheapest vertex inside each module, which works as a
module is completely dominated as soon as we take at least one vertex in an
adjacent module. However, for Connected Dominating Set we might need to
call the treewidth-algorithm due to more complicated recursions several times
and not only once. This makes the algorithm more technical, as we have to
be careful with the randomization to avoid increasing the error probability. By
observing that an isolating weight function induces an isolating weight function
for appropriate subinstances, we are able to maintain the error probability.

In the context of kernelization, Luo [23] uses similar reductions for Steiner

Tree and Connected Dominating Set parameterized by modular-width,
however, these reductions do not consider the weighted setting and do not have
to contend with randomization.

5 Dynamic Programming Algorithms

In this section, we prove Theorem 2, by presenting novel algorithms using the cut-
and-count-technique for Connected Vertex Cover and Feedback Vertex

Set.

Connectivity Problems Parameterized by Modular-Treewidth 397

5.1 Connected Vertex Cover

We assume that G = (V,E) is connected and contains at least two vertices,
hence V cannot be a parallel node. We only consider cost functions c that are
polynomially bounded in |V |. To solve Connected Vertex Cover, we begin
by computing some optimum (possibly nonconnected) vertex cover YM with
respect to c

∣
∣
M

for every module M ∈ Πmod(G) such that G[M] contains an edge.
If G[M] contains no edges, then we set YM = {v∗

M}, where v∗
M ∈ M is a vertex

minimizing the cost inside M , i.e., v∗
M := arg minv∈M c(v). The vertex covers

can be computed in time O∗(2mod-tw(G)) by using a straightforward algorithm
presented in the full version.

Definition 15. Let X ⊆ V be a vertex subset. We say that X is nice if for
every module M ∈ Πmod(G) it holds that X ∩ M ∈ {∅, YM ,M}.

Via exchange arguments, in particular Theorem 10, we show that it is suffi-
cient to only consider nice vertex covers. This shows that only a constant number
of states per module in the dynamic programming algorithm are necessary.

Lemma 16 (�). If there exists a connected vertex cover X of G with |πV (X)| ≥
2, then there exists a connected vertex cover X ′ of G that is nice with |πV (X ′)| ≥
2 and c(X ′) ≤ c(X).

Some simple observations allow us to handle the edge case of connected
vertex covers contained in a single module M ∈ Πmod(G) and series nodes.
We proceed by looking for connected vertex covers X with |πV (X)| ≥ 2 when
Gq := Gq

V = G/Πmod(G) is prime. We are given a very nice tree decomposi-
tion (T q, (Bq

t)t∈V (T q)) of Gq := Gq
V = G/Πmod(G) of width k. Making use of

Theorem 16 and Theorem 12, we can employ the cut-and-count-technique and
perform dynamic programming along the tree decomposition T q and extend
our partial solutions module by module. The cut-and-count-formulation of the
problem is as follows. For any subgraph G′ of G, we define the relaxed solu-
tions R(G′) = {X ⊆ V (G′) : X is a nice vertex cover of G′} and the cut solu-
tions Q(G′) = {(X, (XL,XR)) ∈ Chom

V (G′) : X ∈ R(G′)}. For the isolation
lemma, cf. Theorem 14, we sample a weight function w : V → [2n] uniformly at
random. We track the cost c(X), the weight w(X), and the number of inter-
sected modules |πV (X)| of each partial solution (X, (XL,XR)). Accordingly,
we define Rc,w,m(G′) = {X ∈ R(G′) : c(X) = c,w(X) = w, |πV (X)| = m}
and Qc,w,m(G′) = {(X, (XL,XR)) ∈ Q(G′) : X ∈ Rc,w,m(G′)} for all c ∈
[0, c(V)], w ∈ [0,w(V)],m ∈ [0, |Πmod(G)|].

As discussed, to every node t ∈ V (T q) we associate a subgraph Gq
t = (V q

t , Eq
t)

of Gq in the standard way, which in turn gives rise to a subgraph Gt = (Vt, Et) of
G. The subgraphs Gt grow module by module and are considered by the dynamic
program, hence we define Rc,w,m

t = Rc,w,m(Gt) and Qc,w,m
t = Qc,w,m(Gt) for

all c, w, and m. We will compute the sizes of the sets Qc,w,m
t by dynamic pro-

gramming over the tree decomposition T q, but to do so we need to parameterize
the partial solutions by their state on the current bag.

398 F. Hegerfeld and S. Kratsch

Disregarding the side of the cut, Theorem 16 tells us that each module
M ∈ Πmod(G) has one of three states for some X ∈ Rc,w,m

t , namely X ∩ M ∈
{∅, YM ,M}. Since we are considering homogeneous cuts there are two possibili-
ties if X ∩ M
= ∅; X ∩ M is contained in the left side of the cut or in the right
side. Thus, there are five total choices. We define states = {0,1L,1R,AL,AR}
with 1 denoting that the partial solution contains at least one vertex, but not
all, of the module and with A denoting that the partial solution contains all
vertices of the module; the subscript denotes the side of the cut.

A function of the form f : Bq
t → states is called t-signature. For every node

t ∈ V (T q), cost c, weight w, number of modules m, and t-signature f , the family
Ac,w,m

t (f) consists of all (X, (XL,XR)) ∈ Qc,w,m
t that satisfy for all vq

M ∈ B
q
t :

f(vq
M) = 0 ↔ X ∩ M = ∅,

f(vq
M) = 1L ↔ XL ∩ M = YM
= M, f(vq

M) = 1R ↔ XR ∩ M = YM
= M,

f(vq
M) = AL ↔ XL ∩ M = M, f(vq

M) = AR ↔ XR ∩ M = M.

Recall that by considering homogeneous cuts, we have that XL ∩ M = ∅ or
XR ∩M = ∅ for every module M ∈ Πmod(G). We use the condition YM
= M for
the states 1L and 1R to ensure a well-defined state for modules of size 1. Note
that the sets Ac,w,m

t (f), ranging over f , partition Qc,w,m
t due to the consideration

of nice vertex covers and homogeneous cuts.
Our goal is to compute the size of Ac,w,m

r̂ (∅) = Qc,w,m
r̂ = Qc,w,m(G), where

r̂ is the root vertex of the tree decomposition T q, modulo 4 for all c, w, m.
By Theorem 12, there is a connected vertex cover X of G with c(X) = c and
w(X) = w if the result is nonzero. We present the recurrences for the various
bag types to compute Ac,w,m

t (f) = |Ac,w,m
t (f)|; if not stated otherwise, then

t ∈ V (T q), c ∈ [0, c(V)], w ∈ [0,w(V)], m ∈ [0, |Πmod(G)|], and f is a t-
signature. We set Ac,w,m

t (f) = 0 whenever at least one of c, w, or m is negative.

Leaf Bag: We have that B
q
t = Bt = ∅ and t has no children. The only possible

t-signature is ∅ and the only possible partial solution is (∅, (∅, ∅)). Hence, we
only need to check the tracker values: Ac,w,m

t (∅) = 1 if c = w = m = 0 and 0
otherwise.

Introduce Vertex Bag: We have that Bq
t = B

q
s ∪{vq

M}, where s ∈ V (T q) is the
only child of t and vq

M /∈ B
q
s. Hence, Bt = Bs∪M . We have to consider all possible

interactions of a partial solution with M , though since we are considering nice
vertex covers these interactions are quite restricted. To formulate the recurrence,
we let, as an exceptional case, f be an s-signature and not a t-signature. Since
no edges of the quotient graph Gq incident to vq

M are introduced yet, we only
have to check some edge cases and update the trackers when introducing vq

M :

Ac,w,m
t (f [vq

M �→ s]) =

⎧
⎪⎨

⎪⎩

[G[M] is edgeless]Ac,w,m
s (f), s = 0,

[|M | > 1]Ac−c(YM),w−w(YM),m−1
s (f), s ∈ {1L,1R},

A
c−c(M),w−w(M),m−1
s (f), s ∈ {AL,AR}.

Connectivity Problems Parameterized by Modular-Treewidth 399

Introduce Edge Bag: Let {vq
M1

, vq
M2

} denote the introduced edge. We have
that {vq

M1
, vq

M2
} ⊆ B

q
t = B

q
s. The edge {vq

M1
, vq

M2
} corresponds to adding

a join between the modules M1 and M2. We need to filter all solutions
whose states at M1 and M2 are not consistent with M1 and M2 being adja-
cent. There are two possible reasons: either not all edges between M1 and
M2 are covered, or the introduced edges go across the homogeneous cut.
We implement this via the helper function cons : states × states → {0, 1}
defined by cons(s1, s2) = [{s1, s2} ∩ {AL,AR}
= ∅][s1 ∈ {1L,AL} → s2 /∈
{1R,AR}][s1 ∈ {1R,AR} → s2 /∈ {1L,AL}]. The recurrence is given by
Ac,w,m

t (f) = cons(f(vq
M1

), f(vq
M2

))Ac,w,m
s (f).

Forget Vertex Bag: We have that B
q
t = B

q
s \ {vq

M}, where vq
M ∈ B

q
s and s ∈

V (T q) is the only child of t. Here, we only need to forget the state at vq
M and accu-

mulate the contributions from the different states vq
M could assume. As the states

are disjoint no overcounting happens: Ac,w,m
t (f) =

∑
s∈states Ac,w,m

s (f [v �→ s]).

Join Bag: We have B
q
t = B

q
s1

= B
q
s2

, where s1, s2 ∈ V (T q) are the children
of t. Two partial solutions, one at s1, and the other at s2, can be combined
when the states agree on all vq

M ∈ B
q
t . Since we update the trackers already at

introduce vertex bags, we need to take care that the values of the modules in the
bag are not counted twice. For this sake, define Sf =

⋃
vq
M∈f−1({1L,1R}) YM ∪

⋃
vq
M∈f−1({AL,AR}) M for all t-signatures f . This definition satisfies X ∩Bt = Sf

for all (X, (XL,XR)) ∈ Ac,w,m(f). Then, the recurrence is given by

Ac,w,m
t (f) =

∑

c1+c2=c+c(Sf)

w1+w2=w+w(Sf)

∑

m1+m2=m+(|Bq
t |−f−1(0))

Ac1,w1,m1
s1

(f)Ac2,w2,m2
s2

(f).

Theorem 17 (�). There exists a Monte-Carlo algorithm that given a tree
decomposition of width at most k for every prime quotient graph H ∈ Hp(G),
solves Connected Vertex Cover in time O∗(5k). The algorithm cannot give
false positives and may give false negatives with probability at most 1/2.

Proof (sketch). We compute the sets YM for all M ∈ Πmod(G) in time
O∗(2k) using a straightforward algorithm described in the full version [17].
For the remainder, we only need to consider the topmost quotient graph
Gq

V = G/Πmod(G). In polynomial time, we can find an optimum connected
vertex cover that is contained in a single module and also deal with the case
where V is a parallel or series node. It remains to handle the case that Gq

V

is prime. In that case, we run the presented dynamic programming algorithm
along the very nice tree decomposition of Gq

V with the sampled weight function
w : V → [2n]. The algorithm returns true if there are c ∈ [0, b], w ∈ [0,w(V)],
m ∈ [2, |Πmod(G)|] such that Ac,w,m

r̂ (∅)
≡4 0, where r̂ is the root of the tree
decomposition, otherwise the algorithm returns false.

We skip the correctness proofs of the recurrences here. Setting Sc,w,m =
{X ∈ Rc,w,m(G) : G[X] is connected}, we have that Ac,w,m

r̂ (∅) = |Qc,w,m(G)| =∑
X∈Rc,w,m(G) 2cc(G[X]) ≡4 2|Sc,w,m| by Theorem 12, so the algorithm cannot

400 F. Hegerfeld and S. Kratsch

return false negatives. Common isolation lemma arguments and Theorem 16
show that we return correctly with probability at least 1/2.

By assumption the cost function c is polynomially bounded, hence there are
O∗(5k) table entries to compute. Furthermore, every recurrence can be computed
in polynomial time, hence the running time of the algorithm follows. ��

5.2 Feedback Vertex Set (�)

The algorithm for Feedback Vertex Set is the most technical part of this
work; we give a summary of the main ideas. The first step is to solve the com-
plementary problem Induced Forest instead of Feedback Vertex Set as
that matches the usage of the cut-and-count-technique better. By analyzing the
structure of an induced forest X with respect to a module M , we see that there
are four sensible possibilities for the intersection X ∩ M : it is empty, a single
vertex, an independent set, or an induced forest containing an edge.

In particular, the last possibility leads to many technical issues, as we must
solve Induced Forest for every module M ∈ Mtree(G), whereas for Con-

nected Vertex Cover only problems without connectivity constraints needed
to be solved for all modules. Due to the randomization of cut-and-count, some
subproblems might be solved incorrectly. We have to ensure that this does not
cause an issue and that the error probability stays constant. In particular, we
need to carefully define the subproblems as they rely on the output of the previ-
ous subproblems. We sample a global weight function once and, assuming that
the weight function is isolating, we analyze where the restricted weight function
remains isolating and hence which subproblems are solved correctly.

For the independent set state we distinguish whether a neighboring module
is intersected (degree-1) or not (degree-0), as degree-2 or higher leads to a cycle.
The degree-1 independent set state and the induced forest state behave the same
with respect to any future neighboring module, as the intersection of X with this
module has to be empty, otherwise X would contain a cycle. Hence, we would
like to collapse these two states into a single one, this however causes issues
in the join nodes. Instead we allow the induced forest state only for modules
that are already forgotten; to be precise, when a degree-0 independent set is
forgotten, we can safely exchange the independent set with an induced forest
without introducing any cycles. Hence, the induced forest state will not affect
the table sizes of the dynamic program.

Until now, we have not specified the cut sides of the modules. Since we can
work with homogeneous cuts, any non-empty state naively turns into two states,
one for the left side and one for the right side; this would yield 7 states in total.
However, we can avoid specifying the cut side for the independent set states;
in the degree-0 case, the cut side is independent of any other modules; in the
degree-1 case, we can inherit the cut side from the unique non-empty neighboring
module. Therefore, we obtain only the desired 5 states in total.

Connectivity Problems Parameterized by Modular-Treewidth 401

References

1. Alman, J., Williams, V.V.: A refined laser method and faster matrix multiplication.
In: Marx, D. (ed.) Proceedings of the 2021 ACM-SIAM Symposium on Discrete
Algorithms, SODA 2021, Virtual Conference, 10–13 January 2021, pp. 522–539.
SIAM (2021). https://doi.org/10.1137/1.9781611976465.32

2. Bergougnoux, B.: Matrix decompositions and algorithmic applications to
(hyper)graphs. Ph.D. thesis, University of Clermont Auvergne, Clermont-Ferrand,
France (2019). https://tel.archives-ouvertes.fr/tel-02388683

3. Bergougnoux, B., Dreier, J., Jaffke, L.: A logic-based algorithmic meta-theorem
for mim-width, pp. 3282–3304 (2023). https://doi.org/10.1137/1.9781611977554.
ch125

4. Bergougnoux, B., Kanté, M.M.: Fast exact algorithms for some connectivity prob-
lems parameterized by clique-width. Theor. Comput. Sci. 782, 30–53 (2019).
https://doi.org/10.1016/j.tcs.2019.02.030

5. Bergougnoux, B., Kanté, M.M.: More applications of the d-neighbor equivalence:
acyclicity and connectivity constraints. SIAM J. Discret. Math. 35(3), 1881–1926
(2021). https://doi.org/10.1137/20M1350571

6. Bodlaender, H.L., Cygan, M., Kratsch, S., Nederlof, J.: Deterministic single expo-
nential time algorithms for connectivity problems parameterized by treewidth. Inf.
Comput. 243, 86–111 (2015). https://doi.org/10.1016/j.ic.2014.12.008

7. Bodlaender, H.L., Jansen, K.: On the complexity of the maximum cut problem.
Nord. J. Comput. 7(1), 14–31 (2000)

8. Bojikian, N., Chekan, V., Hegerfeld, F., Kratsch, S.: Tight bounds for connectivity
problems parameterized by cutwidth. In: Berenbrink, P., Bouyer, P., Dawar, A.,
Kanté, M.M. (eds.) 40th International Symposium on Theoretical Aspects of Com-
puter Science, STACS 2023, 7–9 March 2023, Hamburg, Germany. LIPIcs, vol. 254,
pp. 14:1–14:16. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2023). https://
doi.org/10.4230/LIPIcs.STACS.2023.14

9. Corneil, D.G., Rotics, U.: On the relationship between clique-width and
treewidth. SIAM J. Comput. 34(4), 825–847 (2005). https://doi.org/10.1137/
S0097539701385351

10. Cygan, M., Nederlof, J., Pilipczuk, M., Pilipczuk, M., van Rooij, J.M.M., Woj-
taszczyk, J.O.: Solving connectivity problems parameterized by treewidth in single
exponential time. CoRR abs/1103.0534 (2011)

11. Cygan, M., Nederlof, J., Pilipczuk, M., Pilipczuk, M., van Rooij, J.M.M., Woj-
taszczyk, J.O.: Solving connectivity problems parameterized by treewidth in single
exponential time. ACM Trans. Algorithms 18(2), 17:1–17:31 (2022). https://doi.
org/10.1145/3506707

12. Gallai, T.: Transitiv orientierbare graphen. Acta Math. Hungar. 18(1–2), 25–66
(1967)

13. Habib, M., Paul, C.: A survey of the algorithmic aspects of modular decomposition.
Comput. Sci. Rev. 4(1), 41–59 (2010). https://doi.org/10.1016/j.cosrev.2010.01.
001

14. Hegerfeld, F., Kratsch, S.: Solving connectivity problems parameterized by
treedepth in single-exponential time and polynomial space. In: Paul, C., Bläser, M.
(eds.) 37th International Symposium on Theoretical Aspects of Computer Science,
STACS 2020, 10–13 March 2020, Montpellier, France. LIPIcs, vol. 154, pp. 29:1–
29:16. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2020). https://doi.org/
10.4230/LIPIcs.STACS.2020.29

https://doi.org/10.1137/1.9781611976465.32
https://tel.archives-ouvertes.fr/tel-02388683
https://doi.org/10.1137/1.9781611977554.ch125
https://doi.org/10.1137/1.9781611977554.ch125
https://doi.org/10.1016/j.tcs.2019.02.030
https://doi.org/10.1137/20M1350571
https://doi.org/10.1016/j.ic.2014.12.008
https://doi.org/10.4230/LIPIcs.STACS.2023.14
https://doi.org/10.4230/LIPIcs.STACS.2023.14
https://doi.org/10.1137/S0097539701385351
https://doi.org/10.1137/S0097539701385351
https://doi.org/10.1145/3506707
https://doi.org/10.1145/3506707
https://doi.org/10.1016/j.cosrev.2010.01.001
https://doi.org/10.1016/j.cosrev.2010.01.001
https://doi.org/10.4230/LIPIcs.STACS.2020.29
https://doi.org/10.4230/LIPIcs.STACS.2020.29

402 F. Hegerfeld and S. Kratsch

15. Hegerfeld, F., Kratsch, S.: Towards exact structural thresholds for parameter-
ized complexity. In: Dell, H., Nederlof, J. (eds.) 17th International Symposium on
Parameterized and Exact Computation, IPEC 2022, 7–9 September 2022, Potsdam,
Germany. LIPIcs, vol. 249, pp. 17:1–17:20. Schloss Dagstuhl - Leibniz-Zentrum für
Informatik (2022). https://doi.org/10.4230/LIPIcs.IPEC.2022.17

16. Hegerfeld, F., Kratsch, S.: Tight algorithms for connectivity problems parame-
terized by clique-width. CoRR abs/2302.03627 (2023). https://doi.org/10.48550/
arXiv.2302.03627, accepted at ESA 2023

17. Hegerfeld, F., Kratsch, S.: Tight algorithms for connectivity problems parame-
terized by modular-treewidth. CoRR abs/2302.14128 (2023). https://doi.org/10.
48550/arXiv.2302.14128

18. Kloks, T. (ed.): Treewidth. LNCS, vol. 842. Springer, Heidelberg (1994). https://
doi.org/10.1007/BFb0045375

19. Korhonen, T.: A single-exponential time 2-approximation algorithm for treewidth.
In: 62nd IEEE Annual Symposium on Foundations of Computer Science, FOCS
2021, Denver, CO, USA, 7–10 February 2022, pp. 184–192. IEEE (2021). https://
doi.org/10.1109/FOCS52979.2021.00026

20. Kratsch, S., Nelles, F.: Efficient parameterized algorithms on graphs with heteroge-
neous structure: combining tree-depth and modular-width. CoRR abs/2209.14429
(2022). https://doi.org/10.48550/arXiv.2209.14429

21. Lampis, M.: Finer tight bounds for coloring on clique-width. SIAM J. Discret.
Math. 34(3), 1538–1558 (2020). https://doi.org/10.1137/19M1280326

22. Lokshtanov, D., Marx, D., Saurabh, S.: Known algorithms on graphs of bounded
treewidth are probably optimal. ACM Trans. Algorithms 14(2), 13:1–13:30 (2018).
https://doi.org/10.1145/3170442

23. Luo, W.: Polynomial turing compressions for some graph problems parameterized
by modular-width. CoRR abs/2201.04678 (2022)

24. Mengel, S.: Parameterized compilation lower bounds for restricted CNF-formulas.
In: Creignou, N., Le Berre, D. (eds.) SAT 2016. LNCS, vol. 9710, pp. 3–12. Springer,
Cham (2016). https://doi.org/10.1007/978-3-319-40970-2 1

25. Mulmuley, K., Vazirani, U.V., Vazirani, V.V.: Matching is as easy as matrix inver-
sion. Combinatorica 7(1), 105–113 (1987). https://doi.org/10.1007/BF02579206

26. Nederlof, J., Pilipczuk, M., Swennenhuis, C.M.F., W ↪egrzycki, K.: Hamiltonian
cycle parameterized by Treedepth in single exponential time and polynomial space.
In: Adler, I., Müller, H. (eds.) WG 2020. LNCS, vol. 12301, pp. 27–39. Springer,
Cham (2020). https://doi.org/10.1007/978-3-030-60440-0 3

27. Paulusma, D., Slivovsky, F., Szeider, S.: Model counting for CNF formulas of
bounded modular treewidth. Algorithmica 76(1), 168–194 (2016). https://doi.org/
10.1007/s00453-015-0030-x

28. Pino, W.J.A., Bodlaender, H.L., van Rooij, J.M.M.: Cut and count and represen-
tative sets on branch decompositions. In: Guo, J., Hermelin, D. (eds.) 11th Inter-
national Symposium on Parameterized and Exact Computation, IPEC 2016, 24–26
August 2016, Aarhus, Denmark. LIPIcs, vol. 63, pp. 27:1–27:12. Schloss Dagstuhl
- Leibniz-Zentrum fuer Informatik (2016). https://doi.org/10.4230/LIPIcs.IPEC.
2016.27

29. Tedder, M., Corneil, D., Habib, M., Paul, C.: Simpler linear-time modular decom-
position via recursive factorizing permutations. In: Aceto, L., Damg̊ard, I., Gold-
berg, L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP
2008. LNCS, vol. 5125, pp. 634–645. Springer, Heidelberg (2008). https://doi.org/
10.1007/978-3-540-70575-8 52

https://doi.org/10.4230/LIPIcs.IPEC.2022.17
https://doi.org/10.48550/arXiv.
https://doi.org/10.48550/arXiv.
https://doi.org/10.48550/arXiv.2302.14128
https://doi.org/10.48550/arXiv.2302.14128
https://doi.org/10.1007/BFb0045375
https://doi.org/10.1007/BFb0045375
https://doi.org/10.1109/FOCS52979.2021.00026
https://doi.org/10.1109/FOCS52979.2021.00026
https://doi.org/10.48550/arXiv.2209.14429
https://doi.org/10.1137/19M1280326
https://doi.org/10.1145/3170442
https://doi.org/10.1007/978-3-319-40970-2_1
https://doi.org/10.1007/BF02579206
https://doi.org/10.1007/978-3-030-60440-0_3
https://doi.org/10.1007/s00453-015-0030-x
https://doi.org/10.1007/s00453-015-0030-x
https://doi.org/10.4230/LIPIcs.IPEC.2016.27
https://doi.org/10.4230/LIPIcs.IPEC.2016.27
https://doi.org/10.1007/978-3-540-70575-8_52
https://doi.org/10.1007/978-3-540-70575-8_52

Cops and Robber - When Capturing Is
Not Surrounding

Paul Jungeblut , Samuel Schneider, and Torsten Ueckerdt(B)

Karlsruhe Institute of Technology, Karlsruhe, Germany
{paul.jungeblut,torsten.ueckerdt}@kit.edu,

samuel.schneider@student.kit.edu

Abstract. We consider “surrounding” versions of the classic Cops and
Robber game. The game is played on a connected graph in which two
players, one controlling a number of cops and the other controlling a rob-
ber, take alternating turns. In a turn, each player may move each of their
pieces. The robber always moves between adjacent vertices. Regarding
the moves of the cops we distinguish four versions that differ in whether
the cops are on the vertices or the edges of the graph and whether the
robber may move on/through them. The goal of the cops is to surround
the robber, i.e., occupying all neighbors (vertex version) or incident edges
(edge version) of the robber’s current vertex. In contrast, the robber tries
to avoid being surrounded indefinitely. Given a graph, the so-called cop
number denotes the minimum number of cops required to eventually sur-
round the robber.

We relate the different cop numbers of these versions and prove that
none of them is bounded by a function of the classical cop number and the
maximum degree of the graph, thereby refuting a conjecture by Crytser,
Komarov and Mackey [Graphs and Combinatorics, 2020].

1 Introduction

Cops and Robber is a well-known combinatorial game played by two players on
a graph G = (V,E). The robber player controls a single robber, which we shall
denote by r, whereas the cop player controls k cops, denoted c1, . . . , ck, for some
specified integer k ≥ 1. The players take alternating turns, and in each turn may
perform one move with each of their pieces (the single robber or the k cops).
In the classical game (and also many of its variants) the vertices of G are the
possible positions for the pieces, while the edges of G model the possible moves.
Let us remark that no piece is forced to move, i.e., there is no zugzwang. On
each vertex there can be any number of pieces.

The game begins with the cop player choosing vertices as the starting posi-
tions for the k cops c1, . . . , ck. Then (seeing the cops’ positions) the robber player
places r on a vertex of G as well. The cop player wins if the cops capture the
robber, which in the classical version means that at least one cop stands on the
same vertex as the robber. On the other hand, the robber player wins if the
robber can avoid being captured indefinitely.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
D. Paulusma and B. Ries (Eds.): WG 2023, LNCS 14093, pp. 403–416, 2023.
https://doi.org/10.1007/978-3-031-43380-1_29

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-43380-1_29&domain=pdf
http://orcid.org/0000-0001-8241-2102
https://doi.org/10.1007/978-3-031-43380-1_29

404 P. Jungeblut et al.

The cop number denoted by c(G) of a given connected1 graph G = (V,E)
is the smallest k for which k cops can capture the robber in a finite number of
turns. Clearly, every graph satisfies 1 ≤ c(G) ≤ |V |.

We consider several versions of the classical Cops and Robber game. In some
of these the cops are placed on the edges of G and allowed to move to an adjacent
edge (that is an edge sharing an endpoint) during their turn. In all our versions
the robber acts as in the original game but loses the game if he is surrounded2

by the cops, meaning that they have to occupy all adjacent vertices or incident
edges. At all times, let us denote by vr the vertex currently occupied by the
robber. Specifically, we define the following versions of the game, each specifying
the possible positions for the cops and the exact surrounding condition:

Vertex Version Cops are positioned on vertices of G (like the robber). They
surround the robber if there is a cop on each neighbor of vr. Let cV (G) denote
the smallest number of cops needed to eventually surround the robber.

Edge Version Cops are positioned on edges of G. A cop on an edge e can move
to any edge e′ sharing an endpoint with e during its turn. The cops surround
the robber if there is a cop on each edge incident to vr. Let cE(G) denote the
smallest number of cops needed to eventually surround the robber.

In both versions above, the robber sits on the vertices of G and moves along
the edges of G. Due to the winning condition for the cops being a full surround,
the robber may come very close to, say, a single cop without being threatened.
As this can feel counterintuitive, let us additionally consider a restrictive version
of each game where we constrain the possible moves for the robber when cops
are close by. These restrictive versions are given by the following rules:

Restrictive Vertex Version After the robber’s turn, there may not be any
cop on vr. In particular, the robber may not move onto a vertex occupied by
a cop. Additionally, if a cop moves onto vr, then in his next turn the robber
must leave that vertex.

Restrictive Edge Version. The robber may not move along an edge that is
currently occupied by a cop.

We denote the cop numbers of the restrictive versions by putting an addi-
tional “r” in the subscript, i.e., the smallest number of cops needed to eventually
surround the robber in these versions is cV,r(G) and cE,r(G), respectively.

Clearly, the restrictive versions are favorable for cops as they only restrict
the robber. Consequently, the corresponding cop numbers are always at most
their non-restrictive counterparts. Thus, for every connected graph G we have

cV,r(G) ≤ cV (G) and cE,r(G) ≤ cE(G). (1)

1 Cops cannot move between different connected components, so the cop number of
any graph is the sum over all components. We thus consider connected graphs only.

2 To distinguish between the classical and our versions, we use the term capture to
express that a cop occupies the same vertex as the robber. In contrast, a surround
always means that all neighbors, respectively incident edges, are occupied.

Cops and Robber - When Capturing Is Not Surrounding 405

A recent conjecture by Crytser, Komarov and Mackey [7] states that the
cop number in the restrictive edge version can be bounded from above by the
classical cop number and the maximum degree of the graph:

Conjecture 1 ([7]). For every connected graph G we have cE,r(G) ≤ c(G) ·Δ(G).

Pra�lat [14] verified Conjecture 1 for the random graph G(n, p), i.e., the graph
on n vertices where each possible edge is chosen independently with probability p,
for some ranges of p. Let us note that Conjecture 1, if true, would strengthen a
theorem by Crytser, Komarov and Mackey [7] stating that cE,r(G) ≤ γ(G)·Δ(G),
where γ(G) denotes the size of a smallest dominating set in G.

1.1 Our Results

Our main contribution is to disprove Conjecture 1. In fact, we prove that there
are graphs G for which none of the surrounding cop numbers can be bounded by
any function of c(G) and Δ(G). This proves that the classical game of Cops and
Robber is sometimes fundamentally different from all its surrounding versions.

Theorem 2. There is an infinite family of connected graphs G with classical cop
number c(G) = 2 and Δ(G) = 3 while neither cV (G), cV,r(G), cE(G) nor cE,r(G)
can be bounded by any function of c(G) and the maximum degree Δ(G).

Additionally, we relate the different surrounding versions to each other. Equa-
tion (1) already gives an upper bound for the cop numbers in the restrictive
versions in terms of their corresponding unrestrictive cop numbers. To complete
the picture, our second contribution is to prove several lower and upper bounds
for different combinations:

Theorem 3. Each of the following holds (assuming G to be connected):

1. ∀G : cV (G) ≤ Δ(G) · cV,r(G) and ∃G : cV (G) ≥ Δ(G) · cV,r(G)
2. ∀G : cE(G) ≤ Δ(G) · cE,r(G) and ∃G : cE(G) ≥ Δ(G)/4 · cE,r(G)
3. ∀G : cV (G) ≤ 2 · cE(G) and ∃G : cV (G) ≥ 2 · (cE(G) − 1)
4. ∀G : cV,r(G) ≤ 2 · cE,r(G) and ∃G : cV,r(G) ≥ cE,r(G)
5. ∀G : cE(G) ≤ Δ(G) · cV (G) and ∃G : cE(G) ≥ Δ(G)/12 · cV (G)
6. ∀G : cE,r(G) ≤ Δ(G) · cV,r(G) and ∃G : cE,r(G) ≥ Δ(G)/48 · cV,r(G)

Note that all lower and upper bounds from Theorem 3 are tight up to a small
additive or multiplicative constant. We prove the upper bounds in Sect. 2. The
main idea is the same for all six inequalities: Given a winning strategy for a set
of cops in one version we can simulate the strategy in any other version. After-
wards, in Sect. 3, we consider the lower bounds by constructing explicit families
of graphs with the desired surrounding cop numbers. While some lower bounds
already follow from standard graph families (like complete bipartite graphs),
others need significantly more involved constructions. For example we construct
a family of graphs from a set of k − 1 mutually orthogonal Latin squares (see
Sect. 3.3 for a definition).

406 P. Jungeblut et al.

Trivial Bounds. Clearly, for the robber to be surrounded at a vertex vr, at
least deg(vr) cops are required in all considered versions. This already gives that
the minimum degree δ(G) of G is a lower bound on the cop numbers of G in
these cases (stated in [6] for cV,r(G)). In fact, the robber could restrict himself
to a subgraph H of G of highest minimum degree, which gives the lower bound
of d(G) := max{δ(H) | H ⊆ G}, also called the degeneracy of G. Moreover,
in those versions in which the robber could simply start at a vertex of highest
degree and never move, that is in all but the restrictive vertex version, we get
the maximum degree Δ(G) of G as a lower bound (stated in [7] for cE,r(G)):

Observation 4. For every connected graph G = (V,E) we have

– cV,r(G) ≥ d(G) as well as
– cV (G) ≥ Δ(G), cE(G) ≥ Δ(G) and cE,r(G) ≥ Δ(G).

1.2 Related Work

The game of Cops and Robber was introduced by Nowakowski and Winkler [13]
as well as Quilliot [15] almost forty years ago. Both consider the case where a
single cop chases the robber. The version with many cops and therefore also
the notion of the cop number c(G) was introduced shortly after by Aigner and
Fromme [1], already proving that c(G) ≤ 3 for all connected planar graphs G.
Their version is nowadays considered the standard version of the game and we
refer to it as the classical version throughout the paper. The most important
open question regarding c(G) is Meyniel’s conjecture stating that a connected n-
vertex graph G has c(G) ∈ O(

√
n) [2,8]. It is known to be EXPTIME-complete

to decide whether c(G) ≤ k (for k being part of the input) [12].
By now, countless different versions of the game with their own cop numbers

have been considered, see for example these books on the topic [3,4].
The restrictive vertex version was introduced by Burgess et al. [6]. They

prove bounds for cV,r(G) in terms of the clique number ω(G), the independence
number α(G) and the treewidth tw(G), as well as considering several interesting
graph families. They also show that deciding whether cV,r(G) ≤ k can be decided
in polynomial time for every fixed value of k. The complexity is unknown for k
being part of the input. Bradshaw and Hosseini [5] extend the study of cV,r(G)
to graphs of bounded genus, proving (among other results) that cV,r(G) ≤ 7 for
every connected planar graph G. See the bachelor’s thesis of Schneider [16] for
several further results on cV,r(G) (including a version with zugzwang).

The restrictive edge version was introduced even more recently by Crytser,
Komarov and Mackey [7] (under the name containment variant). Besides stating
Conjecture 1, which is verified for some graphs by Pra�lat [14], they give several
bounds on cE,r(G) for different families of graphs.

To the best of our knowledge, cV (G) and cE(G) were not considered before.
In the light of the (restrictive) vertex and edge versions one might also define

a face version for embedded planar graphs. Here the cops would occupy the faces
and surround the robber if they occupy all faces incident to vr. A restrictive face

Cops and Robber - When Capturing Is Not Surrounding 407

version could be that the robber must not move along an edge with either one
or both incident faces being occupied by a cop. This version was introduced
recently by Ha, Jungeblut and Ueckerdt [9]. Despite their similar motivation,
the face versions seem to behave differently than the vertex or edge versions.

In each version, one might also add zugzwang, i.e., the obligation to actu-
ally move during one’s turn. We are not aware of any results about this in the
literature.

1.3 Outline of the Paper

Section 2 proves the upper bounds from Theorem 3. Then, in Sect. 3 we give
constructions implying the corresponding lower bounds. Finally, in Sect. 4, we
disprove Conjecture 1. Proofs of statements marked with (�) are in the full
version [10].

2 Relating the Different Versions

In this section we prove the upper bounds from Theorem 3. The main idea is
always that a sufficiently large group of cops in one version can simulate a single
cop in another version. We denote by NG(v) and NG[v] the open and closed
neighborhood of vertex v in G, respectively.

Proof (only Item 1 of Theorem 3, others in the full version [10]). Let G be an
arbitrary connected graph.

1. cV (G) ≤ Δ(G)·cV,r(G): Let SV,r(G) be a winning strategy for k ∈ N restrictive
vertex cops c1, . . . , ck in G. For i ∈ {1, . . . , k}, replace ci by a group of Δ(G)
non-restrictive vertex cops Ci := {c1i , . . . , c

Δ(G)
i }. Initially all cops in Ci start

at the same vertex as ci and whenever ci moves to an adjacent vertex, all
cops in Ci copy its move.
If the restrictive cops c1, . . . , ck arrive in a position where they surround
the robber, then he is also surrounded by the groups of cops C1, . . . , Ck. It
remains to consider the case that the robber ends their turn on vertex v
currently occupied by some group Ci (a move that would be forbidden in
the restrictive version). Then the cops in Ci can spread to the up to Δ(G)
neighbors of v in G, thereby surrounding the robber. 	

Corollary 5. For every graph G the surrounding cop numbers cV (G), cE(G),
cV,r(G) and cE,r(G) are always within a factor of 2Δ(G) of each other.

Proof. In each of the six upper bounds stated in Theorem 3 the number of cops
increases by at most a factor of Δ(G). In all cases this is obtained by simulating
a winning strategy of one surrounding variant by (groups of) cops in another
variant. The only cases where two such simulations need to be combined is when
changing both, the cop type (vertex-cops/edge-cops) and the restrictiveness. It
is easy to check that in all but one combination the number of cops increases by

408 P. Jungeblut et al.

at most a factor of 2Δ(G). The only exception is when a winning strategy for
restricted vertex-cops is simulated by unrestricted edge-cops, where the number
of cops would increase by a factor of Δ(G)2. However, looking at the proof of
Theorem 3, we can see that both simulations replace a single cop by a group
of Δ(G) cops. In this particular case it suffices to do this replacement just once.

We remark that all upper bounds proven above in Theorem 3 result from
simulating a winning strategy of another surrounding version. In the next section
we show that, surprisingly, these are indeed (asymptotically) tight. After all,
it would seem natural that every version comes with its own unique winning
strategy (more involved than just simulating one from a different version).

3 Explicit Graphs and Constructions

In this section we shall mention or construct several families of graphs with
some extremal behavior for their corresponding classical and surrounding cop
numbers. Together, these graphs prove all lower bounds stated in Theorem 3.

3.1 Complete Bipartite Graphs

We start by considering complete bipartite graphs. They already serve to directly
prove two of the lower bounds from Theorem 3 and also appear again in proofs
in the subsequent subsections.

Proposition 6 (�). For any complete bipartite graph G it holds that c(G) =
min{2, δ(G)}, cV,r(G) = δ(G) and cV (G) = cE,r(G) = cE(G) = Δ(G).

Let us consider two special cases of Proposition 6 for all Δ ∈ N: First, the
star KΔ,1 has cV,r(KΔ,1) = 1 while cV (KΔ,1) = Δ, thus proving the lower
bound in Item 1 of Theorem 3. Second, the complete bipartite graph KΔ,Δ

has cV,r(KΔ,Δ) = cE,r(KΔ,Δ) = Δ, thus proving the lower bound in Item 4 of
Theorem 3.

3.2 Regular Graphs with Leaves

Our first construction takes a connected k-regular graph H and attaches a set
of � new degree-1-vertices (leaves) to each vertex. Depending on H, k and � we
can give several bounds on the surrounding cop numbers of the resulting graph.

Lemma 7. Let H = (VH , EH) be a k-regular connected graph and let G =
(VG, EG) be the graph obtained from H by attaching to each vertex v ∈ VH a set
of � new leaves for some � ≥ 0. Then each of the following holds:

1. cV (G) ≥
{

k(k + � − 1) if girth(H) ≥ 7
(k + 1)� always

2. cV,r(G) = max{cV,r(H), k + 1}

Cops and Robber - When Capturing Is Not Surrounding 409

3. cE(G) ≥
⎧⎨
⎩

k(k + � − 1) if girth(H) ≥ 6
k� if girth(H) ≥ 4
1
2 (k + 1)� always

4. cE,r(G) = max{cE,r(H), k + �}
Proof (only Item 1, others in the full version [10]). Note that most claimed
inequalities hold trivially for the case that � = 0 (many lower bounds become 0
while others follow from G = H in this case). Only the two cases requir-
ing girth(H) ≥ 6, respectively girth(H) ≥ 7, are not directly clear. However,
their proofs below hold for � = 0 as well. In all other cases, we implicitly
assume � ≥ 1 to avoid having to handle additional corner cases.

1. To prove the lower bounds on cV (G), consider any configuration of cops on
the vertices of G. For a vertex v ∈ VH of G, let Av be the set consisting of v
and all leaves that are attached to it, i.e., Av = {v} ∪ (NG[v] \ VH). We call
a vertex v ∈ VH safe if there are fewer than � cops on Av in G. Note that
if the robber ends his turn on a safe vertex, then the cops cannot surround
him in their next turn. Let vr be the current position of the robber. If the
total number of cops is less than (k + 1)�, then at least one of the k + 1
vertices in the closed neighborhood NH [vr] of vr is safe, as no cop can be
in Av and Aw for v �= w. Thus, the robber always has a safe vertex to move
to (or to remain on), giving him a strategy to avoid being surrounded. It
follows that cV (G) ≥ (k + 1)�.
Now, if girth(H) ≥ 7 and the robber is on vr ∈ VH , then we consider for each
neighbor v of vr in VH additionally the set Bv = NG[NG(v) \ {vr}], i.e., all
vertices w with dist(w, v) ≤ 2 except from NG[vr] \ {v}. Since girth(H) ≥ 7,
we have that Bv ∩ Bw = ∅ for distinct v, w ∈ NH(vr). Similar to above, we
call v ∈ NH(vr) safe if Bv contains fewer than k + � − 1 cops. Again, if the
robber ends his turn on a safe vertex, the cops cannot surround him in their
next turn. If the total number of cops is less than k(k + � − 1), then at least
one of the k neighbors of vr in H is safe. This would give the robber a strategy
to avoid being surrounded. It follows that cV (G) ≥ k(k + � − 1) in the case
that girth(H) ≥ 7. 	

Applied to different host graphs H above Lemma 7 yields several interesting

bounds. In particular, considering Theorem 3, Corollary 8 proves the lower bound
in Item 2 for even Δ and Corollary 9 proves the lower bound in Item 3.

Corollary 8 (�). For every Δ ≥ 2 there is a connected graph G with Δ(G) = Δ
such that cV,r(G) =

⌊
Δ
2

⌋
+ 1, cV (G) =

(⌊
Δ
2

⌋
+ 1

)⌈
Δ
2

⌉
, cE,r(G) = Δ(G) and

cE(G) =
⌊

Δ
2

⌋⌈
Δ
2

⌉
.

The host graph H in Corollary 8 is the complete bipartite graph Kk,k with
k =

⌊
Δ
2

⌋
with h =

⌈
Δ
2

⌉
leaves attached to each vertex.

Corollary 9 (�). For every Δ ≥ 2 there is a connected graph G with Δ(G) = Δ
such that cV (G) = 2(Δ − 1) and cE(G) = Δ.

The host graph H in Corollary 9 is a single edge, i.e., the graph K2 (there-
fore k = 1) with h = Δ − 1 leaves attached to both vertices.

410 P. Jungeblut et al.

...
...

R A = [k]× [k]

...

...

...

...

...

...

L1(1)

L1(k)

Lk−1(1)

Lk−1(k)

...

...

...

L

...

...

...

1 4 2 3
1

1
1

2
2

2

3
3

3

4
4

4

1
1

1
1

2
2

2
2

3
3

3
3

4
4

4
4

(1, 1)
(1, 2)

(1, 3)
(1, 4)

(4, 4)
(4, 3) (3, 4)
(2, 4)

(4, 1)
(4, 2)

(2, 2) (3, 3)
(2, 1)

(3, 1)
(3, 2) (2, 3)

Fig. 1. Left: Two Latin squares and their juxtaposition, proving that they are orthog-
onal. Right: The graph Gk created from k − 1 MOLS of order k. The vertices in R
correspond to the rows of A, the middle vertices correspond to the cells of A (ordered
row by row in the drawing) and the vertices in L correspond to the parts of the MOLS.

3.3 Graphs from Mutually Orthogonal Latin Squares

A Latin square of order k ≥ 1 is a k × k array filled with numbers from [k] =
{1, . . . , k} such that each row and each column contains each number from [k]
exactly once. Formally, a Latin square L is a partition L(1) ∪ · · · ∪ L(k) of
A = [k] × [k] such that for the i-th row (i ∈ [k]) A[i, ·] = {(i, j) ∈ A | j ∈ [k]}
and every number n ∈ [k] we have |A[i, ·]∩L(n)| = 1, and symmetrically for the
columns. See the left of Fig. 1 for two different Latin squares.

Let L1 and L2 be two Latin squares of order k. Their juxtaposition L1 ⊗ L2

is the Latin square of order k that contains in each cell the ordered pair of
the entries of L1 and L2 in that cell. We say that L1 and L2 are orthogonal if
each ordered pair appears exactly once in L1 ⊗ L2, i.e., if for every two distinct
n1, n2 ∈ [k] we have |L1(n1) ∩ L2(n2)| = 1. It is well-known that k − 1 mutually
orthogonal Latin squares (MOLS) L1, . . . , Lk−1 (meaning that Ls and Lt are
orthogonal whenever s �= t) exist if and only if k is a prime power [11]. The
two Latin squares in Fig. 1 (left) are indeed orthogonal, as can be seen by their
juxtaposition below.

Construction of Gk. Let k be a prime power and L1, . . . , Lk−1 a set of k − 1
mutually orthogonal Latin squares of order k. Let A = [k] × [k] denote the set
of all positions, R = {A[i, ·] | i ∈ [k]} denote the set of all rows in A, and
L = {Ls(n) | s ∈ [k−1]∧n ∈ [k]} denote the set of all parts of the Latin squares
L1, . . . , Lk−1. Let Gk = (V,E) be the graph with

V = A ∪ R ∪ L and E = {pS | p ∈ A,S ∈ R ∪ L, p ∈ S}.

We observe that Gk is a k-regular bipartite graph with |A| + |R ∪ L| = k2 +
(k + k(k − 1)) = 2k2 vertices with an edge between position p ∈ A and a set
S ∈ R ∪ L if and only if p is in set S. See also the right of Fig. 1 for a schematic
drawing.

Cops and Robber - When Capturing Is Not Surrounding 411

Lemma 10 (�). For a prime power k graph Gk has girth(Gk) ≥ 6.

Lemma 11 (�). For a prime power k graph Gk has c(Gk) = k, cV,r(Gk) ≤ k+1
and cE(Gk) ≥ k(k − 1).

Remark 12. Burgess et al. [6] notice that for graphs G of many different families
with a “large” value of cV,r(G) the classical cop number c(G) was “low” (often
even constant). In fact, they only provide a single family of graphs (constructed
from finite projective planes) where c(G) ≈ cV,r(G). They ask (Question 7 in [6])
whether graphs with large cV,r(G) inherently possess some property that implies
that c(G) is low. Our graph Gk from k − 1 MOLS satisfies c(Gk), cV,r(Gk) ∈
{k, k + 1}. We interpret this as evidence that there is no such property.

3.4 Line Graphs of Complete Graphs

The line graph L(G) of a given graph G = (V,E) is the graph whose vertex
set consists of the edges E of G and two vertices of L(G) are connected if their
corresponding edges in G share an endpoint. For n ≥ 3, let Kn denote the
complete graph on the set [n] = {1, . . . , n}. For distinct x, y ∈ [n], we denote
by {x, y} the vertex of L(Kn) corresponding to the edge between x and y in Kn.
Burgess et al. [6] showed that cV,r(L(Kn)) = 2(n − 2) = δ(L(Kn)). This is
obtained by placing the cops on all vertices {1, x} for x ∈ {2, . . . n} and {2, y}
for y ∈ {3, . . . , n − 1}. The cops can surround the robber in their first move.

Lemma 13 (�). For every n ≥ 3 we have cV (L(Kn)) = 2(n− 2), cE(L(Kn)) ≥
n(n − 2)/3, and cE,r(L(Kn)) ≥ n2/12.

Stating the above bounds in terms of their maximum degree Δ :=
Δ(L(Kn)) = 2(n − 2), we obtain the claimed lower bounds in Items 5 and 6
of Theorem 3.

cV (L(Kn)) = Δ cE(L(Kn)) ≥ Δ2 + 4Δ

12

cV,r(L(Kn)) = Δ cE,r(L(Kn)) ≥ Δ2 + 8Δ + 16
48

4 When Capturing Is Not Surrounding

This section is devoted to the proof of Theorem 2, i.e., that none of the four
surrounding cop numbers can be bounded by any function of the classical cop
number and the maximum degree of the graph. In particular, we shall construct
for infinitely many integers k ≥ 1 a graph Gk with c(Gk) = 2 and Δ(Gk) = 3,
but cV,r(Gk) ≥ k. Theorem 3 then implies that also cV (Gk), cE(Gk) and cE,r(Gk)
are unbounded for growing k.

The construction of Gk is quite intricate and we divide it into several steps.

The Graph H[s]. Let s ≥ 1 be an integer and let k = 2s−1. We start with a
graph H[s], which we call the base graph, with the following properties:

412 P. Jungeblut et al.

Fig. 2. Iterating C6 = H2 to obtain r-regular (bipartite) graphs Hr with girth(Hr) ≥ 5.

Fig. 3. Construction of H[s, �] based on H[s]. A directed edge ab in H[s] and the
corresponding trees T out(a), T in(b), and path P (ab) with middle edge e(ab) in H[s, �].

– H[s] is 2k-regular, i.e., every vertex of H[s] has degree 2k.
– H[s] has girth at least 5.

There are many ways to construct such graphs H[s], one being our graphs in
Sect. 3.3 constructed from 2s −1 mutually orthogonal Latin squares. An alterna-
tive construction (not relying on non-trivial tools) is an iteration of the 6-cycle
as illustrated in Fig. 2. We additionally endow H[s] with an orientation such
that each vertex has exactly k = 2s−1 outgoing and exactly k = 2s−1 incoming
edges. (For example, orient the edges according to an Eulerian tour in H[s].)

The Graph H[s,�] . Let � ≥ 1 be another integer3. We define a graph H[s, �] on
the basis of H[s] and its orientation. See Fig. 3 for an illustration with s = 3 and
� = 4. For each vertex a in H[s] take a complete balanced binary tree T (a) of
height s = log2(k) + 1 with root r(a) and 2s = 2k leaves. Let rin(a) and rout(a)
denote the two children of r(a) in T (a), and let T in(a) and T out(a) denote
the subtrees rooted at rin(a) and rout(a), respectively. We associate each of
the k = 2s−1 leaves in T in(a) with one of the k incoming edges at a in H[s], and
each of the k leaves in T out(a) with one of the k outgoing edges at a in H[s].
Finally, for each edge ab in H[s] oriented from a to b, connect the associated leaf
in T out(a) with the associated leaf in T in(b) by a path P (ab) of length 2� + 1,
i.e., on 2� new inner vertices. This completes the construction of H[s, �].

3 We shall choose � � s later. So you may think of s as “short” and of � as “long”.

Cops and Robber - When Capturing Is Not Surrounding 413

Fig. 4. Construction of H[s, �, m] based on two copies of H[s, �]. A directed edge ab in
H[s] and the corresponding sets S(a), S(b), F2(a), etc. and edge e(ab) in H[s, �, m].

For each edge ab in H[s], let e(ab) denote the unique middle edge of P (ab)
in H[s, �]. I.e., e(ab) connects a vertex in B(r(a)) which we denote by v(a, b)
with a vertex in B(r(b)) which we denote by v(b, a); see Fig. 3.

The Graph H[s,�,m] . Let m ≥ 1 be yet another integer4. We start with two
vertex-disjoint copies H1 and H2 of H[s, �] and transfer our notation (such as R,
r(a), v(a, b), etc.) for H[s, �] to Hi for i ∈ {1, 2} by putting on the subscript i,
e.g., R1, r2(a), or v1(a, b). We connect H1 and H2 as follows: For each edge ab
in H[s] we identify the edge e1(ab) in H1 with the edge e2(ab) in H2 such that
v1(a, b) = v2(a, b) and v1(b, a) = v2(b, a). Next, for each vertex a of H[s] use
the vertex r1(a) in H1 as an endpoint for a new path Q(a) of length m, and
denote the other endpoint of Q(a) by q(a). Note that we do this only for the
roots in H1.

Finally, we connect the vertices {q(a) | a ∈ V (H[s])} by a cycle C of length
|V (H[s])|. This completes the construction of H[s, �,m]. See Fig. 4 for an illus-
tration. Note that H[s, �,m] has maximum degree 3 and degeneracy 2.

Lemma 14 (�). For every s ≥ 1, m ≥ 1, and � > |V (H[s])| + m + s, it holds
that c(H[s, �,m]) ≤ 2.

Let us give a vague idea of the winning strategy for two cops. Two cops
could easily capture the robber on cycle C (including the attached paths Q(a)
for a ∈ V (H[s])). Thus they force him to “flee” to H1 at some point. In a second
phase they can even force him to H2. Loosely speaking, cop c1 stays on C to
prevent the robber from getting back on C, while cop c2 always goes towards
the robber in H[s, �,m] − E(C). Whenever the robber traverses one of the long
paths P1(ab) for some ab ∈ E(H[s]), say from T1(a) towards T1(b), then c1 can
4 We shall choose � � m � s later. So you may think of m as “medium”.

414 P. Jungeblut et al.

go in |V (C)| + m + s < � steps along C to q(b) and along Q(b) and T1(b) to
arrive at the other end of P1(ab) before the robber. However, to escape cop c2
the robber must traverse a path P1(ab) eventually, with the only way to escape
being to turn into H2 at the middle edge e(ab). This forces at some point the
situation that the robber occupies some vertex v of H2 and one of the cops,
say c1, occupies the corresponding copy of v in H1. Now in a third phase the
robber moves in H2 and c1 always copies these moves in H1. This prohibits
the robber to ever walk along a middle edge e(ab) for some ab ∈ E(H[s]). But
without these edges H2 is a forest and thus cop c2 can capture the robber in the
tree component in which the robber is located.

Lemma 15 (�). For every s ≥ 1, m > 2 s + 1, and � > 3 s + 1, it holds that
cV,r(H[s, �,m]) ≥ k = 2s−1.

Again, we give a vague idea for a strategy for the robber to avoid getting
surrounded against k−1 vertex cops. To this end, the robber always stays in H2

and moves from a root r2(a) to the next r2(b) for which the edge ab in H[s] is
directed from a to b. In H[s], vertex a has k outgoing neighbors and we show
that at least one such neighbor b is always safe for the robber to escape to,
meaning that the region labeled F2(b) in Fig. 4 is free of cops when the robber
reaches r2(b). However, it is quite tricky to identify this safe neighbor. Indeed, the
robber has to start moving in the “right” direction down the tree T2(a) always
observing the cops’ response, before he can be absolutely sure which outgoing
neighbor b of a is safe. With suitable choices of s, � and m, the robber is fast
enough at r2(b) to then choose his next destination from there. The crucial point
is that the cops can “join” the robber when he traverses the middle edge e(ab),
but can never ensure being on any vertex of P2(ab) one step before the robber;
and thus never surround him.

Finally, Lemmas 14 and 15 and Theorem 3 immediately give the following
corollary, which proves Theorem 2.

Corollary 16. For any s ≥ 1, k = 2s−1, m ≥ 2 s+1, and � ≥ |V (H[s])|+m+s,
the graph Gk = H[s, �,m] has Δ(Gk) = 3 and

c(Gk) ≤ 2, cV (Gk) ≥ k, cV,r(Gk) ≥ k, cE,r(Gk) ≥ k

2
and cE(Gk) ≥ k

2
.

5 Conclusion

We considered the cop numbers of four different surrounding versions of the well-
known Cops and Robber game on a graph G, namely cV (G), cV,r(G), cE(G) and
cE,r(G). Here index “V ” denotes the vertex versions while index “E” denotes
the edge versions, i.e., whether the cops occupy the vertices or the edges of the
graph (recall that the robber always occupies a vertex). An additional index “r”
stands for the corresponding restrictive versions, meaning that the robber must
not end his turn on a cop or move along an edge occupied by a cop.

Cops and Robber - When Capturing Is Not Surrounding 415

Only the two restrictive cop numbers have recently been considered in the
literature, the vertex version cV,r(G) in [5,6] (denoted by σ(G) and s(G)) and
the edge version cE,r(G) in [7,14] (denoted by ξ(G)).

In this paper we related the four different versions to each other, showing
that all of them lie (at most) within a factor of 2Δ(G) of each other. For all
combinations we presented explicit graph families showing that this is tight (up
to small additive or multiplicative constants). It is an interesting open question
to find out the exact constant factors for the lower and upper bounds in Theo-
rem 3. We conjecture that all six presented upper bounds are tight (up to small
additive constants). This would mean that optimal strategies for the cops in
one surrounding version can indeed be obtained by simulating strategies from
different surrounding versions.

As a second main result, we disproved a conjecture by Crytser, Komarov
and Mackey [7] by constructing a family of graphs of maximum degree 3 and
where the classical cop number is bounded whereas the cop number in all four
surrounding versions is unbounded. It remains open to find other parameters that
can be used to bound the surrounding cop numbers from above in combination
with the classical cop number.

References

1. Aigner, M.S., Fromme, M.: A game of cops and robbers. Discret. Appl. Math. 8(1),
1–12 (1984). https://doi.org/10.1016/0166-218X(84)90073-8

2. Baird, W., Bonato, A.: Meyniel’s conjecture on the cop number: a survey (2013).
https://arxiv.org/abs/1308.3385

3. Bonato, A.: An Invitation to Pursuit-Evasion Games and Graph Theory. American
Mathematical Society, Providence (2022)

4. Bonato, A., Nowakowski, R.J.: The Game of Cops and Robbers on Graphs. Amer-
ican Mathematical Society, Providence (2011). https://doi.org/10.1090/stml/061

5. Bradshaw, P., Hosseini, S.A.: Surrounding cops and robbers on graphs of bounded
genus (2019). https://arxiv.org/abs/1909.09916

6. Burgess, A.C., et al.: Cops that surround a robber. Discret. Appl. Math. 285,
552–566 (2020). https://doi.org/10.1016/j.dam.2020.06.019

7. Crytser, D., Komarov, N., Mackey, J.: Containment: a variation of cops and rob-
bers. Graphs Comb. 36(3), 591–605 (2020). https://doi.org/10.1007/s00373-020-
02140-5

8. Frankl, P.: Cops and robbers in graphs with large girth and Cayley graphs. Discret.
Appl. Math. 17(3), 301–305 (1987). https://doi.org/10.1016/0166-218X(87)90033-
3

9. Ha, M.T., Jungeblut, P., Ueckerdt, T.: Primal-dual cops and robber. In: Seara, C.,
Huemer, C. (eds.) Proceedings of the 39th European Workshop on Computational
Geometry (EuroCG) (2023). https://arxiv.org/abs/2301.05514

10. Jungeblut, P., Schneider, S., Ueckerdt, T.: Cops and Robber - When Capturing is
not Surrounding (2023). https://doi.org/10.48550/arXiv.2302.10577

11. Keedwell, D.A., Dénes, J.: Latin Squares and their Applications. 2nd edn. Elsevier,
Amsterdam (2015). https://doi.org/10.1016/C2014-0-03412-0

12. Kinnersley, W.B.: Cops and Robbers is EXPTIME-complete. J. Comb. Theory Ser.
B 111, 201–220 (2015). https://doi.org/10.1016/j.jctb.2014.11.002

https://doi.org/10.1016/0166-218X(84)90073-8
https://arxiv.org/abs/1308.3385
https://doi.org/10.1090/stml/061
https://arxiv.org/abs/1909.09916
https://doi.org/10.1016/j.dam.2020.06.019
https://doi.org/10.1007/s00373-020-02140-5
https://doi.org/10.1007/s00373-020-02140-5
https://doi.org/10.1016/0166-218X(87)90033-3
https://doi.org/10.1016/0166-218X(87)90033-3
https://arxiv.org/abs/2301.05514
https://doi.org/10.48550/arXiv.2302.10577
https://doi.org/10.1016/C2014-0-03412-0
https://doi.org/10.1016/j.jctb.2014.11.002

416 P. Jungeblut et al.

13. Nowakowski, R.J., Winkler, P.: Vertex-to-vertex pursuit in a graph. Discret. Math.
43(2–3), 235–239 (1983). https://doi.org/10.1016/0012-365X(83)90160-7

14. Pra�lat, P.: Containment game played on random graphs: another zig-zag theorem.
Electron. J. Comb. 22(2) (2015). https://doi.org/10.37236/4777

15. Quilliot, A.: Jeux et pointes fixes sur les graphes. Ph.D. thesis, Université de Paris
VI (1978)

16. Schneider, S.: Surrounding cops and robbers. Bachelor’s thesis, Karlsruhe Insti-
tute of Technology (2022). https://i11www.iti.kit.edu/ media/teaching/theses/ba
schneider22.pdf

https://doi.org/10.1016/0012-365X(83)90160-7
https://doi.org/10.37236/4777
https://i11www.iti.kit.edu/_media/teaching/theses/ba_schneider22.pdf
https://i11www.iti.kit.edu/_media/teaching/theses/ba_schneider22.pdf

Complexity Results for Matching Cut
Problems in Graphs Without Long

Induced Paths

Hoàng-Oanh Le1 and Van Bang Le2(B)

1 Independent Researcher, Berlin, Germany
HoangOanhLe@outlook.com

2 Institut für Informatik, Universität Rostock, Rostock, Germany

van-bang.le@uni-rostock.de

Abstract. In a graph, a (perfect) matching cut is an edge cut that is a
(perfect) matching. matching cut (mc), respectively, perfect match-
ing cut (pmc), is the problem of deciding whether a given graph has a
matching cut, respectively, a perfect matching cut. The disconnected
perfect matching problem (dpm) is to decide if a graph has a per-
fect matching that contains a matching cut. Solving an open problem
recently posed in [Lucke, Paulusma, Ries (ISAAC 2022) & Feghali, Lucke,
Paulusma, Ries (arXiv:2212.12317)], we show that pmc is NP-complete
in graphs without induced 14-vertex path P14. Our reduction also works
simultaneously for mc and dpm, improving the previous hardness results
of mc on P19-free graphs and of dpm on P23-free graphs to P14-free graphs
for both problems.

Actually, we prove a slightly stronger result: within P14-free graphs,
it is hard to distinguish between
(i) those without matching cuts and those in which every matching cut

is a perfect matching cut;
(ii) those without perfect matching cuts and those in which every match-

ing cut is a perfect matching cut;
(iii) those without disconnected perfect matchings and those in which

every matching cut is a perfect matching cut.
Moreover, assuming the Exponential Time Hypothesis, none of these
problems can be solved in time 2o(n) for n-vertex P14-free input graphs.
As a corollary from (i), computing a matching cut with a maximum num-
ber of edges is hard, even when restricted to P14-free graphs. This answers
a question asked in [Lucke, Paulusma & Ries (arXiv:2207.07095)]. We
also consider the problems in graphs without long induced cycles. It is
known that mc is polynomially solvable in graphs without induced cycles
of length at least 5 [Moshi (JGT 1989)]. We point out that the same holds
for dpm.

Keywords: Matching cut · Maximum matching cut · Perfect
matching cut · Disconnected perfect matching · H-free graph ·
Computational complexity

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
D. Paulusma and B. Ries (Eds.): WG 2023, LNCS 14093, pp. 417–431, 2023.
https://doi.org/10.1007/978-3-031-43380-1_30

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-43380-1_30&domain=pdf
https://doi.org/10.1007/978-3-031-43380-1_30

418 H.-O. Le and V. B. Le

1 Introduction and Results

In a graph G = (V,E), a cut is a partition V = X ∪ Y of the vertex set into
disjoint, non-empty sets X and Y . The set of all edges in G having an endvertex
in X and the other endvertex in Y , written E(X,Y), is called the edge cut of the
cut (X,Y). A matching cut is an edge cut that is a (possibly empty) matching.
Another way to define matching cuts is as follows; see [3,7]: a cut (X,Y) is a
matching cut if and only if each vertex in X has at most one neighbor in Y
and each vertex in Y has at most one neighbor in X. The classical NP-complete
problem matching cut (mc) [3] asks if a given graph admits a matching cut.

An interesting special case, where the edge cut E(X,Y) is a perfect matching
of G, was considered in [8]. Such a matching cut is called a perfect matching cut
and the perfect matching cut (pmc) problem asks whether a given graph
admits a perfect matching cut. It was shown in [8] that this special case pmc of
mc remains NP-complete.

A notion related to matching cut is disconnected perfect matching which
has been considered recently in [1]: a disconnected perfect matching is a per-
fect matching that contains a matching cut. Observe that any perfect matching
cut is a disconnected perfect matching but not the converse. Figure 1 provides
some small examples for matching cuts, perfect matching cuts and disconnected
perfect matchings.

(a) (b) (c) (d)

Fig. 1. Some example graphs; bold edges indicate a matching in question. (a): a match-
ing cut. (b): a perfect matching that is neither a matching cut nor a disconnected
perfect matching; this graph has no disconnected perfect matching, hence no perfect
matching cut. (c): a perfect matching cut, hence a disconnected perfect matching. (d):
a disconnected perfect matching that is not a perfect matching cut.

The related problem to mc and pmc, disconnected perfect matching
(dpm), asks if a given graph has a disconnected perfect matching; equivalently:
if a given graph has a matching cut that is extendable to a perfect matching.
It was shown in [1] that dpm is NP-complete. All these three problems have
received much attention lately; see, e.g., [1,2,4,6,13–16] for recent results.

In this paper, we focus on the complexity of these three problems restricted to
graphs without long induced paths and cycles. The current best known hardness
results for mc and dpm in graphs without long induced paths are:

Theorem 1 ([14,15]). mc remains NP-complete in {4P5, P19}-free graphs.1

1 Meanwhile the result has been improved to {3P5, P15}-free graphs [18].

Complexity Results for Matching Cut Problems 419

Theorem 2 ([14,15]). dpm remains NP-complete in {4P7, P23}-free graphs.2

Prior to the present paper, no similar hardness result for pmc was known. Indeed,
it was asked in [4,14,15], whether there is an integer t such that pmc is NP-
complete in Pt-free graphs. Polynomial-time algorithms exist for mc and pmc in
P6-free graphs [14,15] and for dpm in P5-free graphs [1].

For graphs without long induced cycles (including chordal graphs and chordal
bipartite graphs), the only result we are aware of is that mc is polynomially
solvable:

Theorem 3 ([21]). There is a polynomial-time algorithm solving mc in graphs
without induced cycles of length five and more.

Previously, no similar polynomial-time results for dpm and pmc in long-hole-
free graphs were known.

Our Contributions. We prove that pmc is NP-complete in graphs without
induced path P14, solving the open problem posed in [4,14,15]. For mc and
dpm we improve the hardness results in Theorems 1 and 2 in graphs without
induced path P19, respectively, P23, to graphs without induced path P14. It is
remarkable that all these hardness results for three problems will be obtained
simultaneously by only one reduction, and can be stated in more details as
follows.

Theorem 4. mc, pmc and dpm are NP-complete in {3P6, 2P7, P14}-free graphs.
Moreover, under the ETH, no algorithm with runtime 2o(n) can solve any of these
problems for n-vertex {3P6, 2P7, P14}-free input graphs.

Actually, we prove the following slightly stronger result: within
{3P6, 2P7, P14}-free graphs, it is hard to distinguish between those without
matching cuts (respectively perfect matching cuts, disconnected perfect match-
ings) and those in which every matching cut is a perfect matching cut. Moreover,
under the ETH, this task cannot be solved in subexponential time in the vertex
number of the input graph.

An interesting problem interposed between mc and pmc, called maximum
matching cut (maxmc), has recently been proposed in [15]. Here, given a
graph G, we want to compute a matching cut of G (if any) with maximum
number of edges. Formally, maxmc in its decision version is as follows.

maximum matching cut (maxmc)

Instance: A graph G and an integer k.
Question: Does G have a matching cut with k or more edges ?

It has been asked in [15] what is the complexity of maxmc on Pt-free graphs.
Our next result answers this question.3

2 Meanwhile the result has been improved to {3P7, P19}-free graphs [18].
3 Meanwhile the complexity of maxmc in H-free graphs has been completely deter-
mined [17].

420 H.-O. Le and V. B. Le

Theorem 5. maxmc is NP-complete in {3P6, 2P7, P14}-free graphs. Moreover,
under the ETH, no algorithm with runtime 2o(n) can solve maxmc for n-vertex
{3P6, 2P7, P14}-free input graphs.

On the positive side, we prove the following.

Theorem 6. There is a polynomial-time algorithm solving dpm in graphs with-
out induced cycle of length five and more.

The paper is organized as follows. We recall some notion and notations in
Sect. 2 which will be used. Then, we prove a slightly stronger result than Theo-
rem 4 in Sect. 3 which then implies Theorem 5. The proof of Theorem 6 will be
given in Sect. 4. Section 5 concludes the paper.

2 Preliminaries

For a set H of graphs, H-free graphs are those in which no induced subgraph
is isomorphic to a graph in H. We denote by Pt the t-vertex path with t − 1
edges and by Ct the t-vertex cycle with t edges. C3 is also called a triangle, and
a hole is a Ct for some t ≥ 4; Ct with t ≥ 5 are long holes. The union G + H of
two vertex-disjoint graphs G and H is the graph with vertex set V (G) ∪ V (H)
and edge set E(G) ∪ E(H); we write pG for the union of p copies of G. For a
subset S ⊆ V (G), let G[S] denote the subgraph of G induced by S; G−S stands
for G[V (G) \ S]. By ‘G contains an H’ we mean G contains H as an induced
subgraph.

Given a matching cut M = (X,Y) of a graph G, a vertex set S ⊆ V (G) is
monochromatic if S belongs to the same part of M , i.e., S ⊆ X or else S ⊆ Y .
Notice that every clique different from the P2 is monochromatic with respect to
any matching cut.

Algorithmic lower bounds in this paper are conditional, based on the Expo-
nential Time Hypothesis (ETH) [9]. The ETH asserts that no algorithm can solve
3sat in subexponential time 2o(n) for n-variable 3-cnf formulas. As shown by
the Sparsification Lemma in [10], the hard cases of 3sat already consist of sparse
formulas with m = O(n) clauses. Hence, the ETH implies that 3sat cannot be
solved in time 2o(n+m).

Recall that an instance for 1-in-3sat is a 3-cnf formula φ = C1∧C2∧· · ·∧Cm

over n variables, in which each clause Cj consists of three distinct literals. The
problem asks whether there is a truth assignment of the variables such that
every clause in φ has exactly one true literal. We call such an assignment an 1-
in-3 assignment. There is a polynomial reduction from 3sat to 1-in-3sat ([20,
Theorem 7.2]), which transforms an instance for 3sat with n variables and m
clauses to an equivalent instance for 1-in-3sat with n + 4m variables and 3m
clauses. Thus, assuming ETH, 1-in-3sat cannot be solved in time 2o(n+m) on
inputs with n variables and m clauses. We will need a restriction of 1-in-3sat,
positive 1-in-3sat, in which each variable occurs positively. There is a well-
known reduction from 1-in-3sat to positive 1-in-3sat, which transforms an

Complexity Results for Matching Cut Problems 421

instance for 1-in-3sat to an equivalent instance for positive 1-in-3sat, linear in
the number of variables and clauses. Hence, we obtain: assuming ETH, positive
1-in-3sat cannot be solved in time 2o(n+m) for inputs with n variables and m
clauses.

3 Proof of Theorem 4 and Theorem 5

Recall that a perfect matching cut is in particular a matching cut, as well as a
disconnected perfect matching. This observation leads to the following promise
versions of mc, pmc and dpm. (We refer to [5] for background on promise prob-
lems.)

promise-pmc mc
Instance: A graph G that either has no matching cut, or every

matching cut is a perfect matching cut.
Question: Does G have a matching cut ?

promise-pmc pmc
Instance: A graph G that either has no perfect matching cut, or every

matching cut is a perfect matching cut.
Question: Does G have a perfect matching cut ?

promise-pmc dpm
Instance: A graph G that either has no disconnected perfect matching, or

every matching cut is a perfect matching cut.
Question: Does G have a disconnected perfect matching ?

In all the promise versions above, we are allowed not to consider certain input
graphs. In promise-pmc mc, promise-pmc pmc and promise-pmc dpm, we
are allowed to ignore graphs having a matching cut that is not a perfect matching
cut, for which mc must answer ‘yes’, and pmc and dpm may answer ‘yes’ or ‘no’.

We slightly improve Theorem 4 by showing the following result.

Theorem 7. promise-pmc mc, promise-pmc pmc and promise-pmc dpm
are NP-complete, even when restricted to {3P6, 2P7, P14}-free graphs. Moreover,
under the ETH, no algorithm with runtime 2o(n) can solve any of these problems
for n-vertex {3P6, 2P7, P14}-free input graphs.

Clearly, Theorem 7 implies Theorem 4. Theorem 7 shows in particular that
distinguishing between graphs without matching cuts and graphs in which every
matching cut is a perfect matching cut is hard, and not only between those
without matching cuts and those with matching cuts which is implied by the
NP-completeness of mc. Similar implications of Theorem 7 can be derived for
pmc and dpm.

Also, Theorem 7 implies Theorem 5. Indeed, if mc or pmc is NP-hard in a
graph class then maxmc is NP-hard in the same class as well.

422 H.-O. Le and V. B. Le

3.1 The Reduction

We give a polynomial-time reduction from positive 1-in-3sat to promise-pmc
pmc (and to promise-pmc mc, promise-pmc dpm at the same time).

Let φ be a 3-cnf formula with m clauses Cj , 1 ≤ j ≤ m, and n variables xi,
1 ≤ i ≤ n, in which each clause Cj consists of three distinct variables. We will
construct a {3P6, 2P7, P14}-free graph G such that G has a perfect matching cut
if and only if φ admits an 1-in-3 assignment. Moreover, every matching cut of G,
if any, is a perfect matching cut.

For each clause Cj consisting of three variables cj1, cj2 and cj3, let G(Cj) be the
graph depicted in Fig. 2. We call cj and c′

j the clause vertices, and cj1, cj2 and cj3
the variable vertices. Then, the graph G is obtained from all G(Cj) by adding

cj

cj1 cj2 cj3

aj1

aj2

aj3

bj1 bj2 bj3

cj1 cj2 cj3

cj

Fig. 2. The gadget G(Cj).

– all possible edges between variable vertices cjk
and cj′k′ of the same variable. Thus, for each
variable x,

Q(x) = {cjk | 1 ≤ j ≤ m, 1 ≤ k ≤ 3, x occurs
in clause Cj as cjk}

is a clique in G,
– all possible edges between the 2m clause ver-

tices cj and c′
j . Thus,

F = {cj | 1 ≤ j ≤ m} ∪ {c′
j | 1 ≤ j ≤ m}

is a clique in G,
– all possible edges between the 3m vertices ajk.

Thus,

T = {ajk | 1 ≤ j ≤ m, 1 ≤ k ≤ 3}

is a clique in G.

The description of G is complete. As an example, the graph G from the
formula φ with three clauses C1 = {x, y, z}, C2 = {u, z, y} and C3 = {z, v, w} is
depicted in Fig. 3.

Notice that no edge exists between the two cliques F and T . Notice also that
G − F − T has exactly m + n components:

– For each 1 ≤ j ≤ m, the 6-cycle Dj : bj1, c
′
j1, bj2, c

′
j3, bj3, c

′
j2 is a component

of G − F − T , call it the clause 6-cycle (of clause Cj),
– For each variable x, the clique Q(x) is a component of G − F − T , call it the

variable clique (of variable x).

Lemma 1. G is {3P6, 2P7, P14}-free.

Complexity Results for Matching Cut Problems 423

Fig. 3. The graph G from the formula φ with three clauses C1 = {x, y, z}, C2 =
{u, z, y} and C3 = {z, v, w}. The 6 flax vertices c1, c2, c3, c

′
1, c

′
2, c

′
3 and the 9 teal vertices

a11, a12, a13, a21, a22, a23, a31, a32, a33 form the clique F and T , respectively.

Proof. First, observe that each component of G − F − T is a clause 6-cycle Dj

or a variable clique Q(x). Hence,

G − F − T is P6-free. (1)

Therefore, every induced P6 in G must contain a vertex from the clique F or
from the clique T . This shows that G is 3P6-free.

Observe next that, for each j, c′
j ∈ F is the cut-vertex in G−T separating the

clause 6-cycle Dj and F , and N(c′
j)∩Dj = {c′

j1, c
′
j2, c

′
j3}. Observe also that, for

each x, (G−T)[Q(x)∪F] is a co-bipartite graph, the complement of a bipartite
graph. Hence, it can be verified immediately that

G − T is P7-free. (2)

Fact (2) implies that every induced P7 in G must contain a vertex from the
clique T . This shows that G is 2P7-free.

We now are ready to argue that G is P14-free. Suppose not and let P : v1, v2,
. . . , v14 be an induced P14 in G, with edges vivi+1, 1 ≤ i < 14. For i < j, write
P [vi, vj] for the subpath of P between (and including) vi and vj . Then, by (2),
each of P [v1, v7] and P [v8, v14] contains a vertex from the clique T . Since P
has no chords, P [v1, v7] has only the vertex v7 in T and P [v8, v14] has only the
vertex v8 in T . By (1), therefore, both P [v1, v6] and P [v9, v14] contain some
vertex in the clique F , and thus P has a chord. This contradiction shows that G
is P14-free, as claimed. 	

We remark that there are many induced P13 in G; we briefly discuss the limit
of our construction in the appendix.

424 H.-O. Le and V. B. Le

Lemma 2. For any matching cut M = (X,Y) of G,

(i) F and T are contained in different parts of M ;
(ii) if F ⊆ X, then |{cj1, cj2, cj3} ∩ Y | = 1, and if F ⊆ Y , then |{cj1, cj2,

cj3} ∩ X| = 1;
(iii) for any variable x, Q(x) is monochromatic;
(iv) if F ⊆ X, then |{bj1, bj2, bj3} ∩ Y | = 2 and |{c′

j1, c
′
j2, c

′
j3} ∩ Y | = 1, and if

F ⊆ Y , then |{bj1, bj2, bj3} ∩ X| = 2 and |{c′
j1, c

′
j2, c

′
j3} ∩ X| = 1.

Proof. Notice that F and T are cliques with at least three vertices, hence F
and T are monochromatic.

(i): Suppose not, and let F and T both be contained in X, say. Then all
variable vertices cjk, 1 ≤ j ≤ m, 1 ≤ k ≤ 3, also belong to X because each of
them has two neighbors in F ∪ T ⊆ X. Now, if all bjk are in X, then also all
c′
jk are in X because in this case each of them has two neighbors in X, and thus

X = V (G). Thus some bjk is in Y , and so are its two neighbors in {c′
j1, c

′
j2, c

′
j3}.

But then c′
j , which is in X, has two neighbors in Y . This contradiction shows

that F and T must belong to different parts of M , hence (i).
(ii): By (i), let F ⊆ X and T ⊆ Y , say. (The case F ⊆ Y is symmetric.)

Then, for any j, at most one of cj1, cj2 and cj3 can be outside X. Assume that,
for some j, all cj1, cj2, cj3 are in X. The assumption implies that all bj1, bj2, bj3
belong to Y , and then all c′

j1, c
′
j2, c

′
j3 belong to Y , too. But then c′

j , which is in
X, has three neighbors in Y . This contradiction shows (ii).

(iii): Suppose that two variable vertices cjk and cj′k′ in some clique Q(x)
are in different parts of M . Then, as cjk and cj′k′ have neighbor cj and cj′ ,
respectively, in the monochromatic clique F , cjk has two neighbors in the part
of cj′k′ or cj′k′ has two neighbors in the part of cjk. This contradiction shows
(iii).

(iv): This fact can be derived from (i) and (ii). 	

Lemma 3. Every matching cut of G, if any, is a perfect matching cut.

Proof. Let M = (X,Y) be a matching cut of G. By Lemma 2 (i), let F ⊆ X
and T ⊆ Y , say. We argue that every vertex in X has a neighbor (hence exactly
one) in Y . Indeed, for each j,

– cj ∈ F ⊆ X has a neighbor cjk ∈ Y (by Lemma 2 (ii)),
– c′

j ∈ F ⊆ X has a neighbor c′
jk ∈ Y (by Lemma 2 (iv)),

– each cjk ∈ X has a neighbor ajk ∈ T ⊆ Y (by construction of G),
– each bjk ∈ X has a neighbor ajk ∈ T ⊆ Y (by construction of G),
– each c′

jk ∈ X has a neighbor in {bj1, bj2, bj3} ∩ Y (by Lemma 2 (iv)).

Similarly, it can be seen that every vertex in Y has a neighbor in X. 	

Lemma 4. If φ has an 1-in-3 assignment, then G has a perfect matching cut.

Proof. Partition V (G) into disjoint subsets X and Y as follows. (Figure 4 shows
the partition for the example graph in Fig. 3 given the assignment y = v = True,
x = z = u = w = False.) First,

Complexity Results for Matching Cut Problems 425

– put F into X, and for all variables x which are assigned with False, put Q(x)
into X;

– for each 1 ≤ j ≤ m, let cjk with k = k(j) ∈ {1, 2, 3} be the variable vertex,
for which the variable x of cjk is assigned with True. Then put bjk and its
two neighbors in {c′

j1, c
′
j2, c

′
j3} into X.

Let Y = V (G)\X. Then, it is not difficult to verify that M = (X,Y) is a perfect
matching cut of G. 	

Fig. 4. The perfect matching cut (X, Y) of the example graph G in Fig. 3 given the
assignment y = v = True, x = z = u = w = False. X and Y consist of the flax and
teal vertices, respectively.

We now are ready to prove Theorem 7: First note that by Lemmas 1 and 3, G
is {3P6, 2P7, P14}-free and every matching cut of G (if any) is a perfect matching
cut. In particular, every matching cut of G is extendable to a perfect matching.

Now, suppose φ has an 1-in-3 assignment. Then, by Lemma 4, G has a perfect
matching cut. In particular, G has a disconnected perfect matching and, actually,
a matching cut.

Conversely, let G have a matching cut M = (X,Y), possibly a perfect match-
ing cut or one that is contained in a perfect matching of G. Then, by Lemma 2 (i),
we may assume that F ⊆ X, and set variable x to True if the corressponding
variable clique Q(x) is contained in Y and False if Q(x) is contained in X. By
Lemma 2 (iii), this assignment is well defined. Moreover, it is an 1-in-3 assign-
ment for φ: consider a clause Cj = {x, y, z} with cj1 = x, cj2 = y and cj3 = z.
By Lemma 2 (ii) and (iii), exactly one of Q(x), Q(y) and Q(z) is contained in Y ,
hence exactly one of x, y and z is assigned True.

Finally, note that G has N = 14m vertices and recall that, assuming ETH,
positive 1-in-3sat cannot be solved in 2o(m) time. Thus, the ETH implies that

426 H.-O. Le and V. B. Le

no algorithm with runtime 2o(N) exists for promise-pmc mc, promise-pmc pmc
and promise-pmc dpm, even when restricted to N -vertex {3P6, 2P7, P14}-free
graphs.

The proof of Theorem 7 is complete.

4 Proof of Theorem 6

Recall Theorem 3, mc is polynomially solvable for long-hole-free graphs (also
called quadrangulated graphs). In this section, we point out that dpm is
polynomially solvable for long-hole-free graphs, too, by following known app-
roach [11,12,21].

Given a connected graph G = (V,E) and two disjoint, non-empty vertex sets
A,B ⊂ V such that each vertex in A is adjacent to exactly one vertex of B
and each vertex in B is adjacent to exactly one vertex of A. We say a matching
cut of G is an A,B-matching cut (or a matching cut separating A, B) if A is
contained in one side and B is contained in the other side of the matching cut.
Observe that G has a matching cut if and only if G has an {a}, {b}-matching cut
for some edge ab, and G has a disconnected perfect matching if and only if G
has a perfect matching containing an {a}, {b}-matching cut for some edge ab.

For each edge ab of a long-hole-free graph G, we will be able to decide if G has
a disconnected perfect matching containing a matching cut separating A = {a}
and B = {b}. This is done by applying known propagation rules ([11,12]), which
are given below. Initially, set X := A, Y := B and write F = V (G)\ (X ∪Y) for
the set of ‘free’ vertices. The sets A,B,X and Y will be extended, if possible, by
adding vertices from F according to the following rules. The first three rules will
detect certain vertices that ensure that G cannot have an A,B-matching cut.

(R1) Let v ∈ F be adjacent to a vertex in A. If v is
– adjacent to a vertex in B, or
– adjacent to (at least) two vertices in Y \ B,

then G has no A,B-matching cut.
(R2) Let v ∈ F be adjacent to a vertex in B. If v is

– adjacent to a vertex in A, or
– adjacent to (at least) two vertices in X \ A,

then G has no A,B-matching cut.
(R3) If v ∈ F is adjacent to (at least) two vertices in X \ A and to (at least)
two vertices in Y \ B, then G has no A,B-matching cut.

The correctness of (R1), (R2) and (R3) is quite obvious. We assume that,
before each application of the rules (R4) and (R5) below, none of (R1), (R2)
and (R3) is applicable.

(R4) Let v ∈ F be adjacent to a vertex in A or to (at least) two vertices
in X \ A. Then X := X ∪ {v}, F := F \ {v}. If, moreover, v has a unique
neighbor w ∈ Y \ B then A := A ∪ {v}, B := B ∪ {w}.

Complexity Results for Matching Cut Problems 427

(R5) Let v ∈ F be adjacent to a vertex in B or to (at least) two vertices
in Y \ B. Then Y := Y ∪ {v}, F := F \ {v}. If, moreover, v has a unique
neighbor w ∈ X \ A then B := B ∪ {v}, A := A ∪ {w}.

We refer to [12] for the correctness of rules (R4) and (R5), and for the fol-
lowing facts.

Fact 1. The total runtime for applying (R1) – (R5) until none of the rules is
applicable is bounded by O(nm).

Fact 2. Suppose none of (R1) – (R5) is applicable. Then

– (X,Y) is an A,B-matching cut of G[X ∪Y], and any A,B-matching cut of G
must contain X in one side and Y in the other side;

– for any vertex v ∈ F ,

N(v) ∩ A = ∅, N(v) ∩ B = ∅ and |N(v) ∩ X| ≤ 1, |N(v) ∩ Y | ≤ 1.

We now are ready to prove Theorem 6: Let G be a connected, long-hole-free
graph, and let ab be an edge of G. Set A = {a} and B = {b}, and assume
that none of (R1) – (R5) is applicable. Then, denoting N(S) the set of vertices
outside S adjacent to some vertex in S,

for any connected component S of G[F], |N(S) ∩ X| = 0 or |N(S) ∩ Y | = 0.

For, otherwise choose two vertices s, s′ ∈ S with a neighbor x ∈ N(s) ∩ X and
a neighbor y ∈ N(s′) ∩ Y such that the distance between s and s′ in S is as
small as possible. Then s, s′, x and y and a shortest s, s′-path in S, a chordless
x, y-path in G[X ∪Y] together would induce a long hole in G. (Observe that, by
the definition of X and Y , G[X ∪ Y] is connected.)

Partition F into disjoint subsets FX and FY as follows:

FX =
⋃

{S : S is a connected component of G[F]with N(S) ∩ X = ∅},

FY =
⋃

{T : T is a connected component of G[F] with N(T) ∩ Y = ∅}.

Then, by the facts above and recall that G is connected,

F = FX ∪ FY and FX ∩ FY = ∅.

Thus,

(X ∪ FX , Y ∪ FY) is an A,B- matching cut of G,

and it follows, that

G has a disconnected perfect matching containing an A,B-matching
cut if and only if G − A − B has a perfect matching.

Therefore, with Fact 1, in time O(nm) we can decide whether G has a matching
cut containing a given edge. Moreover, as a maximum matching can be com-
puted in O(

√
nm) time [19], we can decide in time O(n

√
nm2) whether G has a

disconnected perfect matching containing an {a}, {b}-matching cut for a given
edge ab. Since there are at most m edges to check, Theorem 6 follows.

428 H.-O. Le and V. B. Le

5 Conclusion

We have shown that all three problems mc, pmc and dpm are NP-complete
in P14-free graphs. The hardness result for pmc solves an open problem posed
in [4,14,15]. For mc and dpm, the hardness result improves the previously known
one in P19-free graphs, respectively, in P23-free graphs, to P14-free graphs. An
obvious question is whether one of these problems remains NP-complete in Pt-
free graphs for some t < 14.

We also pointed out that, like mc [21], dpm can be solved in polynomial
time when restricted to long-hole-free graphs. We leave open the complexity
of pmc restricted to long-hole-free graphs. More general, the chordality of a
graph G is the length of a longest induced cycle in G. Chordal graphs and
long-hole-free graphs (including weakly chordal and chordal bipartite graphs)
have chordality 3 and 4, respectively. Notice that Pt-free graphs have chordality
bounded by t, hence Theorem 4 implies that mc, pmc and dpm are NP-complete
when restricted to graphs of chordality ≤ 14. We remark, however, that the
graph constructed in the proof of Theorem 4 has chordality 8, and thus mc,
pmc and dpm are NP-complete when restricted to graphs of chordality ≤ 8.
Does there exist any class of graphs of chordality < 8 in which mc, pmc or dpm
is NP-complete?

Acknowledgment. We thank the anonymous reviewers of WG 2023 for their very
carefull reading. In particular, we thank all three reviewers for pointing out a small
mistake in the earlier proof of Theorem 6.

A Limits of Our Reduction in the Proof of Theorem 4

As remarked, the graph G constructed from an instance of positive 1-in-3sat
contains many induced paths P13. For example, refer to Fig. 3; see also Fig. 5–7:

– b11, c
′
11, b12, c

′
13, b13, a13, a22, c22 = z, c31 = z, c3, c1, c12 = y, c23 = y;

– b11, c
′
11, b12, c

′
13, b13, a13, a21, b21, c

′
21, c

′
2, c

′
3, c

′
33, b33;

– b11, c
′
11, b12, c

′
13, b13, a13, a21, b21, c

′
21, c

′
2, c2, c23 = y, c12 = y.

It can be seen that all P13 in G contain a P5 from a 6-cycle Dj :
bj1, c

′
j1, bj2, c

′
j3, bj3, c

′
j2. We now are going to describe how the gadget G(Cj)

used in the construction of G depicted in Fig. 2 was found. This could be useful
when one is trying to improve the construction with shorter induced paths.

A general idea in constructing a graph without long induced paths from a
given cnf-formula is to ensure that long induced paths must go through some,
say at most three, cliques. Assuming we want to reduce positive 1-in-3sat
(or nae 3sat) to pmc, the following observation gives a hint how to get such a
clique: Let G be a graph, in which the seven vertices c, ck, ak, 1 ≤ k ≤ 3, induce a
tree with leaves a1, a2, a3 and degree-2 vertices c1, c2, c3 and the degree-3 vertex
c. If G has a perfect matching cut, then a1, a2, a3 must belong to the same part
of the cut. Therefore, we can make {a1, a2, a3} adjacent to a clique and the
resulting graph still has a perfect matching cut.

Complexity Results for Matching Cut Problems 429

Now, a gadget G(H; v) may be obtained from a suitable graph H with v ∈
V (H) as follows. Let H be a graph having a vertex v of degree 3. Let b1, b2, b3
be the neighbors of v in H. Let G(H; v) be the graph obtained from H − v
by adding 7 new vertices a1, a2, a3, c1, c2, c3 and c, and edges cck, ckak, akbk,
1 ≤ k ≤ 3, and a1a2, a1a3 and a2a3. (Thus, contracting the triangle a1a2a3 from
G(H; v) \ {c, c1, c2, c3} we obtain the graph H.)

Observation 1. Assuming, for any neighbor w of v in H, H has a perfect
matching cut (X,Y) such that v ∈ X and w ∈ Y . Then, for any neighbor d of
c in G(H; v), the graph G(H; v) has a perfect matching cut (X ′, Y ′) such that
c ∈ X ′ and d ∈ Y ′.

Examples of graphs H in Observation 1 include the cube, the Petersen
graph and the 10-vertex Heggernes-Telle graph in [8, Fig. 3.1]. Our gadget G(Cj)
depicted in Fig. 2 is obtained by taking the cube. Take the Petersen graph or
the Heggernes-Telle graph will produce induced Pt for some t ≥ 15. If there
exists another graph H ‘better’ than the cube, then our construction will yield
a Pt-free graph for some 10 ≤ t ≤ 13.

Fig. 5. The graph G from Fig. 3. The bold edges show the induced path P13:
b11, c

′
11, b12, c

′
13, b13, a13, a22, c22 = z, c31 = z, c3, c1, c12 = y, c23 = y.

430 H.-O. Le and V. B. Le

Fig. 6. The graph G from Fig. 3. The bold edges show the induced path P13:
b11, c

′
11, b12, c

′
13, b13, a13, a21, b21, c

′
21, c

′
2, c

′
3, c

′
33, b33.

Fig. 7. The graph G from Fig. 3. The bold edges show the induced path P13:
b11, c

′
11, b12, c

′
13, b13, a13, a21, b21, c

′
21, c

′
2, c2, c23 = y, c12 = y.

References

1. Bouquet, V., Picouleau, C.: The complexity of the perfect matching-cut problem.
CoRR, abs/2011.03318v2 (2021). https://doi.org/10.48550/arXiv.2011.03318

2. Chen, C.-Y., Hsieh, S.-Y., Le, H.-O., Le, V.B., Peng, S.-L.: Matching cut in graphs
with large minimum degree. Algorithmica 83(5), 1238–1255 (2020). https://doi.
org/10.1007/s00453-020-00782-8

3. Chvátal, V.: Recognizing decomposable graphs. J. Graph Theory 8(1), 51–53
(1984). https://doi.org/10.1002/jgt.3190080106

https://doi.org/10.48550/arXiv.2011.03318
https://doi.org/10.1007/s00453-020-00782-8
https://doi.org/10.1007/s00453-020-00782-8
https://doi.org/10.1002/jgt.3190080106

Complexity Results for Matching Cut Problems 431

4. Feghali, C., Lucke, F., Paulusma, D., Ries, B.: New hardness results for matching
cut and disconnected perfect matching. CoRR, abs/2212.12317 (2022). https://
doi.org/10.48550/arXiv.2212.12317

5. Goldreich, O.: On promise problems: a survey. In: Goldreich, O., Rosenberg, A.L.,
Selman, A.L. (eds.) Theoretical Computer Science. LNCS, vol. 3895, pp. 254–290.
Springer, Heidelberg (2006). https://doi.org/10.1007/11685654 12

6. Golovach, P.A., Komusiewicz, C., Kratsch, D., Le, V.B.: Refined notions of param-
eterized enumeration kernels with applications to matching cut enumeration.
STACS 2021, LIPIcs 187, 37:1–37:18 (2021). also. J. Comput. Syst. Sci., 123,
76–102 (2022). https://doi.org/10.1016/j.jcss.2021.07.005

7. Graham, R.L.: On primitive graphs and optimal vertex assignments. Ann. N. Y.
Acad. Sci. 175(1), 170–186 (1970)

8. Pinar Heggernes and Jan Arne Telle: Partitioning graphs into generalized domi-
nating sets. Nord. J. Comput. 5(2), 128–142 (1998)

9. Impagliazzo, R., Paturi, R.: On the complexity of k-sat. J. Comput. Syst. Sci.
62(2), 367–375 (2001). https://doi.org/10.1006/jcss.2000.1727

10. Impagliazzo, R., Paturi, R., Zane, F.: Which problems have strongly exponential
complexity? J. Comput. Syst. Sci. 63(4), 512–530 (2001). https://doi.org/10.1006/
jcss.2001.1774

11. Dieter Kratsch and Van Bang Le: Algorithms solving the matching cut problem.
Theor. Comput. Sci. 609, 328–335 (2016). https://doi.org/10.1016/j.tcs.2015.10.
016

12. Le, H.O., Le, V.B.: A complexity dichotomy for matching cut in (bipartite) graphs
of fixed diameter. Theor. Comput. Sci. 770, 69–78 (2019). https://doi.org/10.1016/
j.tcs.2018.10.029

13. Le , V.B., Telle, J.A.: The perfect matching cut problem revisited. In: Proceedings
of the WG 2021, LNCS, vol. 12911, pp. 182–194 (2021). Also, Theor. Comput. Sci.
931, 117–130 (2022). https://doi.org/10.1016/j.tcs.2022.07.035

14. Lucke, F., Paulusma, D., Ries, B.: Finding matching cuts in H-free graphs. In: Bae,
S.W., Park, H. (eds.) 33rd International Symposium on Algorithms and Compu-
tation, ISAAC (2022), volume 248 of LIPIcs, pp. 22:1–22:16 (2022). https://doi.
org/10.4230/LIPIcs.ISAAC.2022.22

15. Lucke, F., Paulusma, D., Ries, B.: Finding matching cuts in H-free graphs. CoRR,
abs/2207.07095 (2022). https://doi.org/10.48550/arXiv.2207.07095

16. Lucke, F., Paulusma, D., Ries, B.: On the complexity of matching cut for graphs
of bounded radius and H-free graphs. Theor. Comput. Sci. 936, 33–42 (2022).
https://doi.org/10.1016/j.tcs.2022.09.014

17. Lucke, F., Paulusma, D., Ries, B.: Dichotomies for maximum matching
cut: H-freeness, bounded diameter, bounded radius. In: MFCS 2023. CoRR,
abs/2304.01099 (2023). https://doi.org/10.48550/arXiv.2304.01099

18. Lucke, F., Paulusma, D., Ries, B.: Finding matching cuts in H-free graphs. Algo-
rithmica (2023). https://doi.org/10.1007/s00453-023-01137-9

19. Micali, S., Vazirani, V.V.: An O(
√|V |·|E|) algorithm for finding maximum match-

ing in general graphs. In: 21st Annual Symposium on Foundations of Computer
Science, Syracuse, New York, USA, 13–15 October 1980, pp. 17–27. IEEE Com-
puter Society (1980). https://doi.org/10.1109/SFCS.1980.12

20. Bernard, M., Moret, E.: Theory of Computation. Addison-Wesley-Longman,
Boston (1998)

21. Moshi, A.M.: Matching cutsets in graphs. J. Graph Theory 13(5), 527–536 (1989).
https://doi.org/10.1002/jgt.3190130502

https://doi.org/10.48550/arXiv.2212.12317
https://doi.org/10.48550/arXiv.2212.12317
https://doi.org/10.1007/11685654_12
https://doi.org/10.1016/j.jcss.2021.07.005
https://doi.org/10.1006/jcss.2000.1727
https://doi.org/10.1006/jcss.2001.1774
https://doi.org/10.1006/jcss.2001.1774
https://doi.org/10.1016/j.tcs.2015.10.016
https://doi.org/10.1016/j.tcs.2015.10.016
https://doi.org/10.1016/j.tcs.2018.10.029
https://doi.org/10.1016/j.tcs.2018.10.029
https://doi.org/10.1016/j.tcs.2022.07.035
https://doi.org/10.4230/LIPIcs.ISAAC.2022.22
https://doi.org/10.4230/LIPIcs.ISAAC.2022.22
https://doi.org/10.48550/arXiv.2207.07095
https://doi.org/10.1016/j.tcs.2022.09.014
https://doi.org/10.48550/arXiv.2304.01099
https://doi.org/10.1007/s00453-023-01137-9
https://doi.org/10.1109/SFCS.1980.12
https://doi.org/10.1002/jgt.3190130502

Upper Clique Transversals in Graphs

Martin Milanič1(B) and Yushi Uno2

1 FAMNIT and IAM, University of Primorska, Koper, Slovenia
martin.milanic@upr.si

2 Graduate School of Informatics, Osaka Metropolitan University, Sakai, Japan

yushi.uno@omu.ac.jp

Abstract. A clique transversal in a graph is a set of vertices intersecting
all maximal cliques. The problem of determining the minimum size of a
clique transversal has received considerable attention in the literature. In
this paper, we initiate the study of the “upper” variant of this parameter,
the upper clique transversal number, defined as the maximum size of
a minimal clique transversal. We investigate this parameter from the
algorithmic and complexity points of view, with a focus on various graph
classes. We show that the corresponding decision problem is NP-complete
in the classes of chordal graphs, chordal bipartite graphs, and line graphs
of bipartite graphs, but solvable in linear time in the classes of split
graphs and proper interval graphs.

Keywords: Clique transversal · Upper clique transversal number ·
Vertex cover

1 Introduction

A set of vertices of a graph G that meets all maximal cliques of G is called a
clique transversal in G. Clique transversals in graphs have been studied by Payan
in 1979 [36], by Andreae, Schughart, and Tuza in 1991 [4], by Erdős, Gallai, and
Tuza in 1992 [20], and also extensively researched in the more recent literature
(see, e.g., [3,5,10,13,15,19,23,28–31,37]). What most of these papers have in
common is that they are interested in questions regarding the clique transversal
number of a graph, that is, the minimum size of a clique transversal of the
graph. For example, Chang, Farber, and Tuza showed in [13] that computing
the clique transversal number for split graphs is NP-hard, and Guruswami and
Pandu Rangan showed in [23] that the problem is NP-hard for cocomparability,
planar, line, and total graphs, and solvable in polynomial time for Helly circular-
arc graphs, strongly chordal graphs, chordal graphs of bounded clique size, and
cographs.

In this paper, we initiate the study of the “upper” version of this graph
invariant, the upper clique transversal number, denoted by τ+

c (G) and defined as
the maximum size of a minimal clique transversal, where a clique transversal in a
graph G is said to be minimal if it does not contain any other clique transversal.
The corresponding decision problem is defined as follows.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
D. Paulusma and B. Ries (Eds.): WG 2023, LNCS 14093, pp. 432–446, 2023.
https://doi.org/10.1007/978-3-031-43380-1_31

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-43380-1_31&domain=pdf
http://orcid.org/0000-0002-8222-8097
https://doi.org/10.1007/978-3-031-43380-1_31

Upper Clique Transversals in Graphs 433

Upper Clique Transversal (UCT)

Input: A graph G and an integer k.
Question: Does G contain a minimal clique transversal S such that |S| ≥ k?

Our study contributes to the literature on upper variants of graph minimiza-
tion problems, which already includes the upper vertex cover (also known as
maximum minimal vertex cover; see [11,16,41]), upper feedback vertex set (also
known as maximum minimal feedback vertex set; see [18,27]), upper edge cover
(see [26]), upper domination (see [2,6,25]), and upper edge domination (see [33]).

Our Results. We provide a first set of results on the algorithmic complexity
of Upper Clique Transversal. Since clique transversals have been mostly
studied in the class of chordal graphs and related classes, we also find it natural
to first focus on this interesting graph class and its subclasses. In this respect,
we provide an NP-completeness result as well as two very different linear-time
algorithms. We show that UCT is NP-complete in the class of chordal graphs, but
solvable in linear time in the classes of split graphs and proper interval graphs.
Note that the result for split graphs is in contrast with the aforementioned NP-
hardness result for computing the clique transversal number in the same class
of graphs [13]. In addition, we provide NP-completeness proofs for two more
subclasses of the class of perfect graphs, namely for chordal bipartite graphs,
and for line graphs of bipartite graphs.

The diagram in Fig. 1 summarizes the relationships between various graph
classes studied in this paper and indicates some boundaries of tractability of the
UCT problem. We define those graph classes in the corresponding later sections
in the paper. For further background and references on graph classes, we refer
to [12].

chordal

interval

proper interval

weakly chordal

perfect

bipartite

chordal bipartite

split

line graphs
of bipartite

polynomial-time solvable

NP-hard

OPEN

trees

Fig. 1. The complexity of UCT in various graph classes studied in this paper.

Our Approach. Our approach is based on connections with a number of graph
parameters. For example, the NP-completeness proofs for the classes of chordal

434 M. Milanič and Y. Uno

bipartite graphs and of line graphs of bipartite graphs are based on the fact that
for triangle-free graphs without isolated vertices, minimal clique transversals are
exactly the minimal vertex covers, and they are closely related with minimal
edge covers via the line graph operator. In particular, if G is a triangle-free
graph without isolated vertices, then the upper clique transversal number of
G equals the upper vertex cover number of G, that is, the maximum size of a
minimal vertex cover. Since the upper vertex cover number of a graph G plus
the independent domination number of G equals the order of G, there is also
a connection with the independent dominating set problem. Let us note that,
along with a linear-time algorithm for computing a minimum independent set in
a tree [9], the above observations suffice to justify the polynomial-time solvability
of the upper clique transversal problem on trees, as indicated in Fig. 1. The NP-
completeness proof for the class of chordal graphs is based on a reduction from
Spanning Star Forest, the problem of computing a spanning subgraph with
as many edges as possible that consists of disjoint stars; this problem, in turn,
is known to be closely related to the dominating set problem.

The linear-time algorithm for computing the upper clique transversal number
of proper interval graphs relies on a linear-time algorithm for the maximum
induced matching problem in bipartite permutation graphs due to Chang [14].
More precisely, we prove that the upper clique transversal number of a given
graph cannot exceed the maximum size of an induced matching of a derived
bipartite graph, the vertex-clique incidence graph, and show, using new insights
on the properties of the matching computed by Chang’s algorithm, that for
proper interval graphs, the two quantities are the same.

The linear-time algorithm for computing the upper clique transversal number
of a split graph is based on a characterization of minimal clique transversals of
split graphs. A clique transversal that is an independent set is also called a strong
independent set (or strong stable set ; see [32] for a survey). It is not difficult to see
that every strong independent set is a minimal clique transversal. We show that
every split graph has a maximum minimal clique transversal that is independent
(and hence, a strong independent set).

Structure of the Paper. In Sect. 2 we introduce the relevant graph theoretic
background. Hardness results are presented in Sect. 3. Linear-time algorithms
for UCT in the classes of split graphs and proper interval graphs are developed
in Sects. 4 and 5, respectively. We conclude the paper in Sect. 6. Some proofs are
omitted due to lack of space.

2 Preliminaries

Throughout the paper, graphs are assumed to be finite, simple, and undirected.
We use standard graph theory terminology, following West [39]. A graph G with
vertex set V and edge set E is often denoted by G = (V,E); we write V (G) and
E(G) for V and E, respectively. The set of vertices adjacent to a vertex v ∈ V
is the neighborhood of v, denoted N(v); its cardinality is the degree of v. The
closed neighborhood is the set N [v], defined as N(v) ∪ {v}. An independent set

Upper Clique Transversals in Graphs 435

in a graph is a set of pairwise non-adjacent vertices; a clique is a set of pairwise
adjacent vertices. An independent set (resp., clique) in a graph G is maximal if it
is not contained in any other independent set (resp., clique). A clique transversal
in a graph is a subset of vertices that intersects all the maximal cliques of the
graph. A dominating set in a graph G = (V,E) is a set S of vertices such that
every vertex not in S has a neighbor in S. An independent dominating set is a
dominating set that is also an independent set. The (independent) domination
number of a graph G is the minimum size of an (independent) dominating set
in G. Note that a set S of vertices in a graph G is an independent dominating
set if and only if S is a maximal independent set. In particular, the independent
domination number of a graph is a well-defined invariant leading to a decision
problem called Independent Dominating Set.

The clique number of G is denoted by ω(G) and defined as the maximum size
of a clique in G. An upper clique transversal of a graph G is a minimal clique
transversal of maximum size. The upper clique transversal number of a graph
G is denoted by τ+

c (G) and defined as the maximum size of a minimal clique
transversal in G. A vertex cover in G is a set S ⊆ V (G) such that every edge
e ∈ E(G) has at least one endpoint in S. A vertex cover in G is minimal if it
does not contain any other vertex cover. These notions are illustrated in Fig. 2.
Note that if G is a triangle-free graph without isolated vertices, then the maximal
cliques of G are exactly its edges, and hence the clique transversals of G coincide
with its vertex covers.

Fig. 2. Upper clique transversal and related notions.

436 M. Milanič and Y. Uno

3 Intractability of UCT for Some Graph Classes

In this section we prove that Upper Clique Transversal is NP-complete
in the classes of chordal graphs, chordal bipartite graphs, and line graphs of
bipartite graphs. First, let us note that for the class of all graphs, we do not
know whether the problem is in NP. If S is a minimal clique transversal in G such
that |S| ≥ k, then a natural way to verify this fact would be to certify separately
that S is a clique transversal and that it is a minimal one. Assuming that S is
a clique transversal, one can certify minimality simply by exhibiting for each
vertex u ∈ S a maximal clique C in G such that C ∩ S = {u}. However, unless
P = NP, we cannot verify the fact that S is a clique transversal in polynomial
time. This follows from a result of Zang [40], showing that it is co-NP-complete
to check, given a weakly chordal graph G and an independent set S, whether
S is a clique transversal in G. A graph G is weakly chordal if neither G nor its
complement contain an induced cycle of length at least five.

We do not know whether Upper Clique Transversal is in NP when
restricted to the class of weakly chordal graphs. However, for their subclasses
chordal graphs and chordal bipartite graphs, membership of UCT in NP is a
consequence of the following proposition.

Proposition 1. Let G be a graph class such that every graph G ∈ G has at most
polynomially many maximal cliques. Then, Upper Clique Transversal is in
NP for graphs in G.

A star is a graph that has a vertex that is adjacent to all other vertices,
and there are no other edges. A spanning star forest in a graph G = (V,E)
is a spanning subgraph (V, F) consisting of vertex-disjoint stars. Some of our
hardness results will make use of a reduction from Spanning Star Forest,
the problem that takes as input a graph G and an integer �, and the task is to
determine whether G contains a spanning star forest (V, F) such that |F | ≥ �.
This problem is NP-complete due to its close relationship with Dominating

Set, the problem that takes as input a graph G and an integer k, and the task
is to determine whether G contains a dominating set S such that |S| ≤ k. The
connection between the spanning star forests and dominating sets is as follows:
a graph G has a spanning star forest with at least � edges if and only if G has a
dominating set with at most |V | − � vertices (see [21,35]). Dominating Set is
known to be NP-complete in the class of bipartite graphs (see, e.g., [8]) and even
in the class of chordal bipartite graphs, as shown by Müller and Brandstädt [34].
The graphs constructed in the NP-hardness reduction from [34] do not contain
any vertices of degree zero or one. Using the above-mentioned connection with
Spanning Star Forest, we obtain the following.

Theorem 1. Spanning Star Forest is NP-complete in the class of bipartite
graphs with minimum degree at least 2.

We present the hardness results in increasing order of difficulty of the proofs,
starting with the class of chordal bipartite graphs. A chordal bipartite graph

Upper Clique Transversals in Graphs 437

is a bipartite graph in which all induced cycles are of length four. Clearly, any
chordal bipartite graph is triangle-free. Recall also that in any triangle-free graph
G without isolated vertices, a set S ⊆ V (G) is a minimal vertex cover if and only
if it is a minimal clique transversal. Furthermore, in any graph G a set S ⊆ V (G)
is a minimal vertex cover if and only its complement V (G)\S is an independent
dominating set. Using a reduction from the Independent Dominating Set

in chordal bipartite graphs (which is NP-complete [17]), we thus obtain the
following.

Theorem 2. Upper Clique Transversal is NP-complete in the class of
chordal bipartite graphs.

We next consider the class of line graphs of bipartite graphs. The line graph
of a graph G is the graph H with V (H) = E(G) in which two distinct vertices
are adjacent if and only if they share an endpoint as edges in G.

Lemma 1. Let G be a triangle-free graph with minimum degree at least 2 and
let H be the line graph of G. Then, the maximal cliques in H are exactly the sets
Ev for v ∈ V (G), where Ev is the set of edges in G that are incident with v.

An edge cover of a graph G is a set F of edges such that every vertex of G
is incident with some edge of F . Immediately from the definitions and Lemma 1
we obtain the following.

Lemma 2. Let G be a triangle-free graph with minimum degree at least 2 and
let H be the line graph of G. Then, a set F ⊆ E(G) is a clique transversal in
H if and only if F is an edge cover in G. Consequently, a set F ⊆ E(G) is a
minimal clique transversal in H if and only if F is a minimal edge cover in G.

As shown by Hedetniemi [24], the maximum size of a minimal edge cover
equals to the maximum number of edges in a spanning star forest, which is the
number of vertices minus the domination number. Thus, using Proposition 1,
Lemma 2, and a reduction from Spanning Star Forest in the class of bipartite
graphs with minimum degree at least 2 we obtain the following.

Theorem 3. Upper Clique Transversal is NP-complete in the class of line
graphs of bipartite graphs.

We now prove intractability of UCT in the class of chordal graphs. A graph
is chordal if it does not contain any induced cycles on at least four vertices.

Theorem 4. Upper Clique Transversal is NP-complete in the class of
chordal graphs.

Proof (sketch). We reduce from Spanning Star Forest. Let G = (V,E) and �
be an input instance of Spanning Star Forest. We may assume without loss
of generality that G has an edge and that � ≥ 2, since if any of these assumptions
is violated, then it is trivial to verify if G has a spanning star forest with at least
� edges. We construct a chordal graph G′ as follows. We start with a complete

438 M. Milanič and Y. Uno

graph with vertex set V . For each edge e = {u, v} ∈ E, we introduce two new
vertices xe and ye, and make xe adjacent to u, to v, and to ye. The obtained
graph is G′. We thus have V (G′) = V ∪ X ∪ Y , where X = {xe : e ∈ E} and
Y = {ye : e ∈ E}. See Fig. 3 for an example. Clearly, G′ is chordal. Furthermore,
let k = � + |E|.

Fig. 3. Transforming G to G′.

To complete the proof, we show that G has a spanning star forest of size at
least � if and only if G′ has a minimal clique transversal of size at least k.

First, assume that G has a spanning star forest (V, F) such that |F | ≥ �.
Since (V, F) is a spanning forest in which each component is a star, each edge
of F is incident with a vertex of degree one in (V, F). Let S be a set obtained
by selecting from each edge in F one vertex of degree one in (V, F). Then, every
edge of F has one endpoint in S and the other one in V \ S. In particular,
|S| = |F | ≥ �. Let S′ = S ∪ {xe : e ∈ E \ F} ∪ {yf : f ∈ F} (see Fig. 4 for an
example). The size of S′ is at least � + |E| = k and it can be shown that S′ is a
minimal clique transversal of G′.

Fig. 4. Transforming a spanning star forest (V, F) inG into a minimal clique transversal
S′ in G′.

For the converse direction, let S′ be a minimal clique transversal of G′ such
that |S′| ≥ k. Let S = S′∩V . It can be shown that we can associate to each vertex

Upper Clique Transversals in Graphs 439

u ∈ S a vertex v(u) ∈ V such that e = {u, v(u)} ∈ E and S′∩{u, v(u), xe} = {u}.
For each u ∈ S, let us denote by e(u) the corresponding edge {u, v(u)}, and let
F = {e(u) : u ∈ S} (see Fig. 5). It can be shown that the set F satisfies |F | = |S|
and every vertex in S has degree one in (V, F). Therefore, the graph (V, F) is a
spanning star forest of G.

Fig. 5. Transforming a minimal clique transversal S′ in G′ into a spanning star forest
(V, F) in G.

Since S′ is a minimal clique transversal of G′, for each edge e ∈ E exactly
one of xe and ye belongs to S′. Therefore, |F | = |S| = |S′| − |E| ≥ k − |E| = �,
and G has a spanning star forest of size at least �. �	

4 A Linear-Time Algorithm for UCT in Split Graphs

A split graph is a graph that has a split partition, that is, a partition of its vertex
set into a clique and an independent set. We denote a split partition of a split
graph G as (K, I) where K is a clique, I is an independent set, K ∩ I = ∅, and
K ∪ I = V (G). We may assume without loss of generality that I is a maximal
independent set. In what follows, we repeatedly use the structure of maximal
cliques of split graphs. If G is a split graph with a split partition (K, I), then the
maximal cliques of G are as follows: the closed neighborhoods N [v], for all v ∈ I,
and the clique K, provided that it is a maximal clique, that is, every vertex in
I has a non-neighbor in K.

Given a graph G and a set of vertices S ⊆ V (G), we denote by N(S) the set of
all vertices in V (G)\S that have a neighbor in S. Moreover, given a vertex v ∈ S,
an S-private neighbor of v is any vertex w ∈ N(S) such that N(w)∩S = {v}. The
following proposition characterizes minimal clique transversals of split graphs.

Proposition 2. Let G be a split graph with a split partition (K, I) such that
I is a maximal independent set and let S ⊆ V (G). Let K ′ = K ∩ S and I ′ =
I ∩ S. Then, S is a minimal clique transversal of G if and only if the following
conditions hold:

440 M. Milanič and Y. Uno

(i) K ′ �= ∅ if K is a maximal clique.
(ii) I ′ = I \ N(K ′).
(iii) Every vertex in K ′ has a K ′-private neighbor in I.

Proposition 2 leads to the following result about maximum minimal clique
transversals in split graphs. We denote by α(G) the independence number of a
graph G, that is, the maximum size of an independent set in G.

Theorem 5. Let G be a split graph with a split partition (K, I) such that I is
a maximal independent set. Then:

1. If K is not a maximal clique in G, then I is a maximum minimal clique
transversal in G; in particular, we have τ+

c (G) = α(G) in this case.
2. If K is a maximal clique in G, then for every vertex v ∈ K with the smallest

number of neighbors in I, the set {v} ∪ (I \ N(v)) is a maximum minimal
clique transversal in G; in particular, we have τ+

c (G) = α(G) − δG(I,K) + 1
in this case, where δG(I,K) = min{|N(v) ∩ I| : v ∈ K}.

Proof (sketch). Let S be a minimal clique transversal of G that is of maximum
possible size and, subject to this condition, contains as few vertices from K as
possible. Let K ′ = K ∩ S and I ′ = I ∩ S. If K ′ = ∅, then K is not a maximal
clique in G, and we have S = I, implying τ+

c (G) = |S| = α(G). Suppose now
that K ′ �= ∅. We first show that |K ′| = 1. Suppose for a contradiction that
|K ′| ≥ 2 and let v ∈ K ′. Let Iv denote the set of K ′-private neighbors of v in
I and let S′ = (S \ {v}) ∪ Iv. Using Proposition 2, it can be verified that S′

is a minimal clique transversal in G. Furthermore, since v ∈ K ′, the set Iv is
nonempty. This implies that |S′| ≥ |S|; in particular, S′ is a maximum minimal
clique transversal in G. However, S′ contains strictly fewer vertices from K than
S, contradicting the choice of S. This shows that |K ′| = 1, as claimed.

Let w be the unique vertex in K ′. Since Condition (ii) from Proposition 2
holds for S, we have I ′ = I \ N(w). Hence S = {w} ∪ (I \ N(w)) and |S| =
1 + |I| − |N(w) ∩ I|. Since w ∈ K, we have |N(w) ∩ I| ≥ δG(I,K) and hence
τ+
c (G) = |S| ≤ α(G)−δG(I,K)+1. It can be verified that for every vertex z ∈ K

the set Xz := {z} ∪ (I \ N(z)) satisfies Conditions (i)–(iii) from Proposition 2,
and hence is a minimal clique transversal in G. Choosing z to be a vertex in K
with the smallest number of neighbors in I, we obtain a set Xz of size α(G) −
δG(I,K) + 1. Thus τ+

c (G) ≥ |Xz| = α(G) − δG(I,K) + 1 and since we already
proved that τ+

c (G) ≤ α(G) − δG(I,K) + 1, any such Xz is optimal.
Since I is a maximal independent set and K is nonempty, we have δG(I,K) ≥

1. Thus, τ+
c (G) ≤ α(G). Suppose that K is not a maximal clique in G. Then

I is a minimal clique transversal in G and therefore τ+
c (G) ≥ |I| = α(G) ≥

τ+
c (G). Hence equalities must hold throughout and I is a maximum minimal

clique transversal. Finally, suppose that K is a maximal clique in G. Then every
minimal clique transversal S in G satisfies S ∩ K �= ∅. In this case, the above
analysis shows that for every vertex v ∈ K with the smallest number of neighbors
in I, the set {v} ∪ (I \ N(v)) is a maximum minimal clique transversal in G. �	
Corollary 1. Upper Clique Transversal can be solved in linear time in the
class of split graphs.

Upper Clique Transversals in Graphs 441

5 A Linear-Time Algorithm for UCT in Proper Interval
Graphs

A graph G = (V,E) is an interval graph if it has an interval representation,
that is, if its vertices can be put in a one-to-one correspondence with a family
(Iv : v ∈ V) of closed intervals on the real line such that two distinct vertices u
and v are adjacent if and only if the corresponding intervals Iu and Iv intersect.
If G has a proper interval representation, that is, an interval representation in
which no interval contains another, then G is said to be a proper interval graph.

Our approach towards a linear-time algorithm for Upper Clique

Transversal in the class of proper interval graphs is based on a relation
between clique transversals in G and induced matchings in the so-called vertex-
clique incidence graph of G. This relation is valid for arbitrary graphs.

UCT via Induced Matchings in the Vertex-Clique Incidence Graph

Given a graph G = (V,E), we denote by BG the vertex-clique incidence graph
of G, a bipartite graph defined as follows. The vertex set of BG consists of two
disjoint sets X and Y such that X = V and Y = CG, where CG is the set of
maximal cliques in G. The edge set of BG consists of all pairs x ∈ X and C ∈ CG

that satisfy x ∈ C. An induced matching in a graph G is a set M of pairwise
disjoint edges such that the set of endpoints of edges in M induces no edges
other than those in M . Given two disjoint sets of vertices A and B in a graph G,
we say that A dominates B in G if every vertex in B has a neighbor in A. Given
a matching M in a graph G and a vertex v ∈ V (G), we say that v is M-saturated
if it is an endpoint of an edge in M .

Clique transversals and minimal clique transversals of a graph G can be
expressed in terms of the vertex-clique incidence graph as follows.

Lemma 3. Let G be a graph, let BG = (X,Y ;E) be its vertex-clique incidence
graph, and let S ⊆ V (G). Then:

1. S is a clique transversal in G if and only if S dominates Y in BG.
2. S is a minimal clique transversal in G if and only if S dominates Y in BG

and there exists an induced matching M in BG such that S is exactly the set
of M-saturated vertices in X.

The induced matching number of a graph G is the maximum size of an
induced matching in G.

Corollary 2. For every graph G, the upper clique transversal number of G is
at most the induced matching number of BG.

As another consequence of Lemma 3, we obtain a sufficient condition for a
set of vertices in a graph to be a minimal clique transversal of maximum size.

442 M. Milanič and Y. Uno

Corollary 3. Let G be a graph, let BG = (X,Y ;E) be its vertex-clique inci-
dence graph, and let S ⊆ V (G). Suppose that S dominates Y in BG and there
exists a maximum induced matching M in BG such that S is exactly the set
of M-saturated vertices in X. Then, S is a minimal clique transversal in G of
maximum size.

To apply Corollary 3 to proper interval graphs, we first state several char-
acterizations of proper interval graphs in terms of their vertex-clique inci-
dence graphs, establishing in particular a connection with bipartite permutation
graphs.

Characterizing Proper Interval Graphs via Their Vertex-Clique
Incidence Graphs

A bipartite graph G = (X,Y ;E) is said to be biconvex if there exists a biconvex
ordering of (the vertex set of) G, that is, a pair (<X , <Y) where <X is a linear
ordering of X and <Y is a linear ordering of Y such that for every x ∈ X, the
vertices in Y adjacent to x appear consecutively with respect to the ordering
<Y , and, similarly, for every y ∈ Y , the vertices in X adjacent to y appear
consecutively with respect to the ordering <X . Let (<X , <Y) be a biconvex
ordering of a biconvex graph G = (X,Y ;E). Two edges e and f of G are said
to cross (each other) if there exist vertices x1, x2 ∈ X and y1, y2 ∈ Y such that
{e, f} = {{x1, y2}, {x2, y1}}, x1 <X x2, and y1 <Y y2. A biconvex ordering
(<X , <Y) of a biconvex graph G = (X,Y ;E) is said to be induced-crossing-free
if for any two crossing edges e = {x1, y2} and f = {x2, y1}, either x1 is adjacent
to y1 or x2 is adjacent to y2.

A strongly induced-crossing-free ordering (or simply a strong ordering) of G
is a pair (<X , <Y) of linear orderings of X and Y such that for any two crossing
edges e = {x1, y2} and f = {x2, y1}, vertex x1 is adjacent to y1 and vertex x2

is adjacent to y2. A permutation graph is a graph G = (V,E) that admits a
permutation model, that is, vertices of G can be ordered v1, . . . , vn such that
there exists a permutation (a1, . . . , an) of the set {1, . . . , n} such that for all
1 ≤ i < j ≤ n, vertices vi and vj are adjacent in G if and only if ai > aj .
A bipartite permutation graph is a graph that is both a bipartite graph and a
permutation graph.

Theorem 6. Let G be a graph. Then, the following statements are equivalent:

1. G is a proper interval graph.
2. BG is a biconvex graph.
3. BG is a bipartite permutation graph.
4. BG has a strong ordering.
5. BG has a strong biconvex ordering.
6. BG has an induced-crossing-free biconvex ordering.

The proof is based on showing that the vertex-clique incidence graph of
every proper interval graph has a strong ordering, on characterizations of proper
interval graphs and bipartite permutation graphs from [22] and [38], respectively,
and on properties of biconvex graphs [1].

Upper Clique Transversals in Graphs 443

Maximum Induced Matchings in Bipartite Permutation Graphs,
Revisited

Our goal is to show that the sufficient condition given by Corollary 3 is satisfied
if G is a proper interval graph, namely, that there exists a maximum induced
matching M in BG such that the set S of M-saturated vertices in X dominates
Y in BG. We show the claimed property of BG as follows. First, by applying
Theorem 6, we infer that the graph BG is a bipartite permutation graph. Second,
by construction, no two distinct vertices in Y have comparable neighborhoods
in X. It turns out that these two properties are already enough to guarantee
the desired conclusion. We show this by a careful analysis of the linear-time
algorithm due to Chang from [14] for computing a maximum induced matching
in bipartite permutation graphs.

Theorem 7. Given a bipartite permutation graph G = (X,Y ;E), there is a
linear-time algorithm that computes a maximum induced matching M in G such
that, if no two vertices in Y have comparable neighborhoods in G, then the set
of M-saturated vertices in X dominates Y .

Solving UCT in Proper Interval Graphs in Linear Time

We now have everything ready to prove the announced result.

Theorem 8. Upper Clique Transversal can be solved in linear time in the
class of proper interval graphs.

Proof. The algorithm proceeds in three steps. In the first step, we compute from
the input graph G = (V,E) its vertex-clique incidence graph BG, with parts
X = V and Y = CG. By Theorem 6, the graph BG is a bipartite permutation
graph. In the second step of the algorithm, we compute a maximum induced
matching M of BG using Theorem 7. Finally, the algorithm returns the set of
M -saturated vertices in X.

By construction, the set MX returned by the algorithm is a subset of X, and
thus a set of vertices of G. Since the vertices of Y are precisely the maximal
cliques of G, no two vertices in Y have comparable neighborhoods in BG. There-
fore, by Theorem 7, the set MX dominates Y . By Corollary 3, MX is a maximum
minimal clique transversal in G. Computing the vertex-clique incidence graph
BG can be done in linear time (see [7]). Since BG is a bipartite permutation
graph, a maximum induced matching of BG can be computed in linear time
(see Theorem 7). The set of M -saturated vertices in X can also be computed in
linear time. Thus, the overall time complexity of the algorithm is linear. �	

The above proof also shows the following.

Theorem 9. For every proper interval graph G, the upper clique transversal
number of G is equal to the induced matching number of BG.

444 M. Milanič and Y. Uno

It can be shown that the result of Theorem 9 does not generalize to the
class of interval graphs. In fact, there exist interval graphs with arbitrarily large
difference between the induced matching number of their vertex-clique incidence
graph and the upper clique transversal number of the graph (for example, the
double stars).

6 Conclusion

We performed a systematic study of the complexity of Upper Clique

Transversal in various graph classes, showing, on the one hand, NP-
completeness of the problem in the classes of chordal graphs, chordal bipartite
graphs, and line graphs of bipartite graphs, and, on the other hand, linear-time
solvability in the classes of split graphs and proper interval graphs. Our work
leaves open several questions:

– What is the complexity of computing a minimal clique transversal in a given
graph?

– What is the complexity of Upper Clique Transversal in the class of
interval graphs?

– For what graphs G does the upper clique transversal number equal to the
induced matching number of the vertex-clique incidence graph? While not all
interval graphs have the stated property, Theorem 9 shows that the property
is satisfied by every proper interval graph. But there is more; for example, all
cycles have the property.

– The upper clique transversal number is a trivial upper bound for the clique
transversal number; however, the ratio between these two parameters can be
arbitrarily large in general. For instance, in the complete bipartite graph K1,q

the former one has value q while the latter one has value 1. For which graph
classes is the ratio (or even the difference) between the clique transversal
number and the upper clique transversal number bounded?

Acknowledgements. We are grateful to Nikolaos Melissinos, Haiko Müller, and the
anonymous reviewers for their helpful comments. The work of the first named author
is supported in part by the Slovenian Research Agency (I0-0035, research program P1-
0285 and research projects N1-0102, N1-0160, J1-3001, J1-3002, J1-3003, J1-4008, and
J1-4084). Part of the work was done while the author was visiting Osaka Prefecture
University in Japan, under the operation Mobility of Slovene higher education teachers
2018–2021, co-financed by the Republic of Slovenia and the European Union under
the European Social Fund. The second named author is partially supported by JSPS
KAKENHI Grant Number JP17K00017, 20H05964, and 21K11757, Japan.

References

1. Abbas, N., Stewart, L.K.: Biconvex graphs: ordering and algorithms. Discrete Appl.
Math. 103(1–3), 1–19 (2000)

Upper Clique Transversals in Graphs 445

2. AbouEisha, H., Hussain, S., Lozin, V., Monnot, J., Ries, B., Zamaraev, V.: Upper
domination: towards a dichotomy through boundary properties. Algorithmica
80(10), 2799–2817 (2018)

3. Andreae, T., Flotow, C.: On covering all cliques of a chordal graph. Discrete Math.
149(1–3), 299–302 (1996)

4. Andreae, T., Schughart, M., Tuza, Z.: Clique-transversal sets of line graphs and
complements of line graphs. Discrete Math. 88(1), 11–20 (1991)

5. Balachandran, V., Nagavamsi, P., Rangan, C.P.: Clique transversal and clique inde-
pendence on comparability graphs. Inform. Process. Lett. 58(4), 181–184 (1996)

6. Bazgan, C., et al.: The many facets of upper domination. Theoret. Comput. Sci.
717, 2–25 (2018)

7. Berry, A., Pogorelcnik, R.: A simple algorithm to generate the minimal separators
and the maximal cliques of a chordal graph. Inform. Process. Lett. 111(11), 508–
511 (2011)

8. Bertossi, A.A.: Dominating sets for split and bipartite graphs. Inform. Process.
Lett. 19(1), 37–40 (1984)

9. Beyer, T., Proskurowski, A., Hedetniemi, S., Mitchell, S.: Independent domination
in trees. In: Proceedings of the Eighth Southeastern Conference on Combinatorics,
Graph Theory and Computing (Louisiana State Univ., Baton Rouge, La., 1977),
pp. 321–328. Congressus Numerantium, No. XIX (1977)

10. Bonomo, F., Durán, G., Safe, M.D., Wagler, A.K.: Clique-perfectness of comple-
ments of line graphs. Discrete Appl. Math. 186, 19–44 (2015)

11. Boria, N., Della Croce, F., Paschos, V.T.: On the MAX MIN VERTEX COVER
problem. Discrete Appl. Math. 196, 62–71 (2015)

12. Brandstädt, A., Le, V.B., Spinrad, J.P.: Graph classes: a survey. In: Society for
Industrial and Applied Mathematics (SIAM), Philadelphia, PA, SIAMMonographs
on Discrete Mathematics and Applications (1999)

13. Chang, G.J., Farber, M., Tuza, Z.: Algorithmic aspects of neighborhood numbers.
SIAM J. Discrete Math. 6(1), 24–29 (1993)

14. Chang, J.M.: Induced matchings in asteroidal triple-free graphs. Discrete Appl.
Math. 132(1–3), 67–78 (2003)

15. Cooper, J.W., Grzesik, A., Král, D.: Optimal-size clique transversals in chordal
graphs. J. Graph Theory 89(4), 479–493 (2018)

16. Damaschke, P.: Parameterized algorithms for double hypergraph dualization with
rank limitation and maximum minimal vertex cover. Discrete Optim. 8(1), 18–24
(2011)

17. Damaschke, P., Müller, H., Kratsch, D.: Domination in convex and chordal bipar-
tite graphs. Inform. Process. Lett. 36(5), 231–236 (1990)

18. Dublois, L., Hanaka, T., Khosravian Ghadikolaei, M., Lampis, M., Melissinos, N.:
(In) approximability of maximum minimal FVS. J. Comput. System Sci. 124,
26–40 (2022)

19. Eades, P., Keil, M., Manuel, P.D., Miller, M.: Two minimum dominating sets with
minimum intersection in chordal graphs. Nordic J. Comput. 3(3), 220–237 (1996)

20. Erdős, P., Gallai, T., Tuza, Z.: Covering the cliques of a graph with vertices. Dis-
crete Math. 108, 279–289 (1992)

21. Ferneyhough, S., Haas, R., Hanson, D., MacGillivray, G.: Star forests, dominating
sets and Ramsey-type problems. Discrete Math. 245(1–3), 255–262 (2002)

22. Gardi, F.: The Roberts characterization of proper and unit interval graphs. Discrete
Math. 307(22), 2906–2908 (2007)

23. Guruswami, V., Pandu Rangan, C.: Algorithmic aspects of clique-transversal and
clique-independent sets. Discrete Appl. Math. 100(3), 183–202 (2000)

446 M. Milanič and Y. Uno

24. Hedetniemi, S.T.: A max-min relationship between matchings and domination in
graphs. Congr. Numer. 40, 23–34 (1983)

25. Jacobson, M.S., Peters, K.: Chordal graphs and upper irredundance, upper domi-
nation and independence. Discrete Math. 86(1–3), 59–69 (1990)

26. Khoshkhah, K., Ghadikolaei, M.K., Monnot, J., Sikora, F.: Weighted upper edge
cover: complexity and approximability. J. Graph Algorithms Appl. 24(2), 65–88
(2020)

27. Lampis, M., Melissinos, N., Vasilakis, M.: Parameterized max min feedback vertex
set. In: Proceedings of 48th International Symposium on Mathematical Founda-
tions of Computer Science (MFCS 2023) (2023). arXiv:2302.09604

28. Lee, C.M.: Algorithmic aspects of some variations of clique transversal and clique
independent sets on graphs. Algorithms (Basel) 14(1), 22 (2021)

29. Lee, C.M., Chang, M.S.: Distance-hereditary graphs are clique-perfect. Discrete
Appl. Math. 154(3), 525–536 (2006)

30. Lin, M.C., Vasiliev, S.: Approximation algorithms for clique transversals on some
graph classes. Inform. Process. Lett. 115(9), 667–670 (2015)

31. Liu, K., Lu, M.: Complete-subgraph-transversal-sets problem on bounded
treewidth graphs. J. Comb. Optim. 41(4), 923–933 (2021)

32. Milanič, M.: Strong cliques and stable sets. In: Topics in algorithmic graph theory,
Encyclopedia of Mathematics and its Applications, vol. 178, pp. 207–227. Cam-
bridge University Press, Cambridge (2021)

33. Monnot, J., Fernau, H., Manlove, D.: Algorithmic aspects of upper edge domina-
tion. Theoret. Comput. Sci. 877, 46–57 (2021)

34. Müller, H., Brandstädt, A.: The NP-completeness of Steiner tree and dominating
set for chordal bipartite graphs. Theoret. Comput. Sci. 53(2–3), 257–265 (1987)

35. Nguyen, C.T., Shen, J., Hou, M., Sheng, L., Miller, W., Zhang, L.: Approximating
the spanning star forest problem and its application to genomic sequence align-
ment. SIAM J. Comput. 38(3), 946–962 (2008)

36. Payan, C.: Remarks on cliques and dominating sets in graphs. Ars Combin. 7,
181–189 (1979)

37. Shan, E., Liang, Z., Kang, L.: Clique-transversal sets and clique-coloring in planar
graphs. Eur. J. Combin. 36, 367–376 (2014)

38. Spinrad, J., Brandstädt, A., Stewart, L.: Bipartite permutation graphs. Discrete
Appl. Math. 18(3), 279–292 (1987)

39. West, D.B.: Introduction to graph theory. Prentice Hall Inc, Upper Saddle River,
NJ (1996)

40. Zang, W.: Generalizations of Grillet’s theorem on maximal stable sets and maximal
cliques in graphs. Discrete Math. 143(1–3), 259–268 (1995)

41. Zehavi, M.: Maximum minimal vertex cover parameterized by vertex cover. SIAM
J. Discrete Math. 31(4), 2440–2456 (2017)

http://arxiv.org/abs/2302.09604

Critical Relaxed Stable Matchings
with Two-Sided Ties

Meghana Nasre1, Prajakta Nimbhorkar2, and Keshav Ranjan1(B)

1 IIT Madras, Chennai, India
meghana@cse.iitm.ac.in, ranjankeshav08@gmail.com

2 Chennai Mathematical Institute and UMI ReLaX, Chennai, India

prajakta@cmi.ac.in

Abstract. We consider the stable marriage problem in the presence of
ties in preferences and critical vertices. The input to our problem is a
bipartite graph G = (A ∪ B, E) where A and B denote sets of vertices
which need to be matched. Each vertex has a preference ordering over
its neighbours possibly containing ties. In addition, a subset of vertices
in A ∪ B are marked as critical and the goal is to output a matching
that matches as many critical vertices as possible. Such matchings are
called critical matchings in the literature and in our setting, we seek to
compute a matching that is critical as well as optimal with respect to
the preferences of the vertices.

Stability, which is a well-accepted notion of optimality in the presence
of two-sided preferences, is generalized to weak-stability in the presence
of ties. It is well known that in the presence of critical vertices, a match-
ing that is critical as well as weakly stable may not exist. Popularity is
another well-investigated notion of optimality for the two-sided prefer-
ence list setting, however, in the presence of ties (even with no critical
vertices), a popular matching need not exist. We, therefore, consider the
notion of relaxed stability which was introduced and studied by Krish-
naa et. al. (SAGT 2020). We show that in our setting a critical matching
which is relaxed stable always exists although computing a maximum-
sized relaxed stable matching turns out to be NP-hard. Our main contri-
bution is a 3

2
-approximation to the maximum-sized critical relaxed stable

matching for the stable marriage problem where ties as well as critical
vertices are present on both the sides of the bipartition.

Keywords: Stable Matching · Ties in Preferences · Critical · Relaxed
Stable · Approximation Algorithm

1 Introduction

We study the stable marriage problem in the presence of ties in preferences
and critical vertices. Formally, the input to our problem is a bipartite graph
G = (A∪B, E), where A and B are two sets of vertices and E denotes the set of
all the acceptable vertex-pairs. Each vertex u ∈ A ∪ B ranks a subset of vertices
in the other partition (its neighbours in G) in the order of its preference possibly
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
D. Paulusma and B. Ries (Eds.): WG 2023, LNCS 14093, pp. 447–461, 2023.
https://doi.org/10.1007/978-3-031-43380-1_32

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-43380-1_32&domain=pdf
https://doi.org/10.1007/978-3-031-43380-1_32

448 M. Nasre et al.

involving ties – this ordering is denoted as Pref(u). For a vertex u let v1 and v2
be two of its neighbours in G. The vertex u strictly prefers v1 over v2 (denoted
as v1 �u v2) if the rank of the edge (u, v1) is smaller than the rank of the edge
(u, v2). The vertex u is tied between v1 and v2 (denoted as v1 =u v2) if the ranks
on the edges (u, v1) and (u, v2) are the same. We use v1 �u v2 to denote that
the rank of v1 is at least as good as the rank of v2 in Pref(u). In addition, the
input consists of a set C ⊆ (A ∪ B) of critical vertices. Our goal is to compute
an assignment which minimizes the number of unassigned critical vertices.

Formally, an assignment or a matching M ⊆ E in G is a set of edges that
do not share an end-point. For each vertex u ∈ A ∪ B, we denote by M(u), the
neighbour of u that is assigned to u in M . In the presence of critical vertices, we
consider that the most important attribute of a matching is to match as many
critical vertices as possible. A matching M is critical [11] if there is no matching
that matches more critical vertices than M . In this work, we are interested in
computing a critical matching that is optimal with respect to the preferences of
the vertices in an instance of our setting.

Critical vertices or lower-quota positions naturally arise in applications like
the Hospitals/Residents problem [7], where rural hospitals must be prioritized to
ensure sufficient staffing.Another example is the problemof assigning sailors to bil-
lets [28] in the US Navy, where some critical billets cannot be left vacant [25,29].
Ties in preferences is yet another important practical consideration in matching
problems and has been extensively investigated in the literature [2,8,9,13,18,19,
24]. However, there is a limited investigation (see for example [5]) ofmatching prob-
lems with ties as well critical vertices and ours is the first work that allows ties as
well as critical vertices on both sides of the bipartition.

Stability, which is the de-facto notion of optimality for two-sided preferences,
is defined by the absence of a blocking pair. Informally, an assignment is stable
if no unassigned pair wishes to deviate from it.

Definition 1 (Stable Matchings). Given a matching M , a pair (a, b) ∈ E\M
is called a blocking pair w.r.t. M if (i) either a is unmatched or b �a M(a) and
(ii) either b is unmatched or a �b M(b). A matching M is stable if there is no
blocking pair w.r.t. M .

When all preferences are strict, that is, there are no ties, every instance of
the stable marriage problem admits a stable matching, and it can be computed
using the well-known Gale and Shapley algorithm [3]. In addition, it is also
known [26,27] that all stable matchings have the same size.

Stable Matchings in the Presence of Ties: When preferences are allowed to
have ties, the notion of stability defined above is called as weak stability (referred
to as stability in the rest of the paper). We remark that, for a pair (a, b) to block
a matching M , both a and b prefer each other strictly over their current partners
in M . Every instance of the stable marriage problem with ties admits a stable
matching, and it can be efficiently computed. However, unlike in the case of strict
lists, all the stable matchings need not have the same size, and the problem of
computing a maximum or minimum size stable matching is NP-hard [18] under

Critical Relaxed Stable Matchings with Two-Sided Ties 449

severe restrictions – e.g. when ties occur at the end of preference lists and only
on one side of the bipartition, there is at most one tie per list, and each tie is of
length two.

Stable/Popular Matching in the Presence of Critical Vertices: When
we have critical vertices as a part of the input, a stable matching which is
also critical, may not exist – for example, consider an instance of the stable
matching problem with strict lists obtained by arbitrarily breaking ties in the
preference lists of all agents in the example shown in Fig. 1. Any critical matching
in the instance must match b2 with a1, resulting in the blocking edge (a1, b1).
Since stability and criticality are not simultaneously guaranteed, an alternate
notion of optimality, namely popularity [4], is extensively investigated in the
literature [11,20,22] for the case of strict lists. The goal is to compute a matching
which is popular amongst the set of critical matchings. Informally, a matching
M is popular in a set of matchings if no majority of vertices wish to deviate
from M to any other matching in that set. It is known [11,22] that an instance
with strict preference lists always admits a matching which is popular amongst
critical matchings, and such a matching can be computed efficiently. Hence, it
is natural to consider popularity in the presence of critical vertices and ties.

However, popular matchings are not guaranteed to exist even when ties are
present in the preferences only on one side of the bipartition, without any critical
vertices. Moreover, in the presence of ties, deciding whether a popular matching
exists is NP-hard [1]. In light of this, we explore the notion of relaxed stability.

Relaxed Stability in the Presence of Ties and Critical Vertices: The
notion of relaxed stability was introduced and studied by Krishnaa et al. [14]
for the Hospitals/Residents problem with lower quotas (HRLQ). In their setting,
preferences are assumed to be strict. The HRLQ setting is a many-to-one match-
ing problem where a hospital h can accept at most q+(h) many residents and
has q−(h) ≤ q+(h) many critical positions. To satisfy the critical positions at
a hospital, certain residents may be forced to be matched to the hospital. The
notion of relaxed stability allows only such residents to participate in blocking
pairs. In addition, if a resident matched to h participates in a blocking pair then
the hospital h should not be surplus, that is |M(h)| ≤ q−(h).

In the HRLQ setting, preferences are strict, hospitals have capacities, and
critical positions are allowed only for hospitals. In contrast, we allow ties in
preferences as well as critical vertices to appear on both sides of the bipartition.
However, our setting is one-to-one.

We now define the notion of relaxed stability (RSM) for our setting. Intu-
itively, a matching M is an RSM if every blocking pair (a, b) w.r.t. M is justified
by either a or b or both. A vertex a justifies the blocking pair if M(a) is a critical
vertex. That is, M(a) forces a to be matched to a lower-preferred vertex than b.
Similarly, the vertex b can justify the blocking pair (a, b).

Definition 2 (Relaxed stability in our setting). A matching M is RSM if
for every blocking pair (a, b) w.r.t. M at least one of the following holds:

1. a is matched and b′ = M(a) is critical, or
2. b is matched and a′ = M(b) is critical.

450 M. Nasre et al.

Fig. 1. Red vertices are critical, black vertices are non-critical. The numbers on the
edges denote the ranks of the respective end-points. The instance does not admit
any critical stable matching because b2 remains unmatched in every stable matching.
M1 = {(a1, b2), (a2, b1), (a3, b3)} is critical but not RSM because the blocking edge
(a2, b4) is not justified. M2 = {(a1, b2), (a2, b4), (a3, b3)} is CRITICAL-RSM because the
only blocking edge (a1, b1) is justified. (Color figure online)

A matching M is called a critical relaxed stable matching (CRITICAL-RSM)
if it is critical as well as relaxed stable. In the instance shown in Fig. 1, the
matching M1 is critical but not RSM whereas M2 is CRITICAL-RSM.

Our first contribution is to show that a CRITICAL-RSM always exists in
our setting. We remark that when C = ∅, an instance of our setting is the
same as the stable marriage setting with ties but without critical vertices, and
hence the set of CRITICAL-RSM is the same as the set of stable matchings.
This immediately implies that computing a maximum size critical RSM is NP-
hard [18] and hard to approximate within any factor smaller than 21

19 [6]. For the
problem of computing a maximum-sized stable matching when ties appear on
both sides of the bipartition, the current best approximation factor [13,19,24] is
3
2 . The main result (Theorem 1) provides the same approximation size guarantee
for a maximum sized CRITICAL-RSM in our setting.

Theorem 1. Let G = (A ∪ B, E) be an instance of the stable marriage problem
where ties and critical vertices can appear in both the bipartitions of G. Then G
always admits a CRITICAL-RSM M such that |M | ≥ 2

3 |M ′|, where M ′ is a max-
imum size CRITICAL-RSM in G. Moreover, M can be computed in polynomial-
time.

Related Work: As mentioned earlier, the generalizations of the stable mar-
riage problem to allow either ties in preferences or critical vertices/lower-quota
positions has been extensively investigated. Very recently, Goko et al. [5] and
Makino et al. [17] have considered the instances with both ties and critical ver-
tices. They study the Hospitals/Residents problem with lower-quotas where ties
appear on both sides. In their setting, only one side of the bipartition can have
critical vertices. They define a matching with maximum satisfaction ratio, which
for our one-to-one setting, coincides with critical matchings. However, their goal
is to compute a matching that matches the maximum possible critical vertices
amongst all stable matchings.

Critical Relaxed Stable Matchings with Two-Sided Ties 451

For strict preferences and lower-quotas/critical vertices, various notions like
envyfreeness [15,30], popularity [11,20,22,23], and relaxed stability [14,15] have
been studied. Relaxed stability and popularity do not define the same set of
matchings even in the one-to-one strict-list setting and critical vertices restricted
to one side only (see full version [21]) for the details. Hamada et al. [7] consider
the problem of computing a matching with minimum number of blocking pairs
or blocking residents, and give approximation algorithms for the same.

For the stable marriage problem with ties (without critical vertices) there is
a long line of investigation [2,9,10,12,13,19,24] in order to improve the approx-
imation ratio of the maximum size stable matching under various restricted
settings. The best-known approximation algorithm for the case when ties are
allowed only in one bipartition of the graph is by Lam and Plaxton [16] whereas
the best-known for the case where ties are allowed on both sides is by [13,19,24].
We use Király’s algorithm [13] in our work.

2 Preliminaries

Our algorithm described in the next section combines the ideas in (i) Király’s
algorithm [13] for computing a stable matching in instances where ties appear on
both sides and (ii) Multi-level algorithm for computing popular critical match-
ing [23] for strict preferences. We give an overview of the algorithms and also
define terminology useful for our algorithm.

Overview of Király’s Algorithm [13]. Király’s algorithm [13] is a proposal-
based algorithm where vertices in A propose and vertices in B accept or reject.
We need the term uncertain proposal from [13] which is defined below.

Definition 3 (Uncertain Proposal). Let b be some kth rank neighbour of
a in Pref(a). During the course of the algorithm, the proposal from a to b is
uncertain if there exists another kth rank neighbour b′ of a which is unproposed
by a and unmatched in the matching. Once a proposal (a, b) is uncertain, it
remains uncertain until b rejects a.

Each time an a ∈ A proposes to its favourite neighbour b (we define favourite
neighbour formally in Definition 4), the vertex b accepts/rejects as follows:

1. If b is unmatched then b immediately accepts the proposal.
2. If b is matched, say to a′, and (a′, b) is an uncertain proposal, then b rejects

a′ and accepts the proposal from a, irrespective of the ranks of a and a′ in
Pref(b). In this case, b is marked by a′.

3. If b is matched, say to a′, and (a′, b) is not an uncertain proposal, then
(i) if a �b a′ then b rejects a′ and accepts the proposal from a, or
(ii) if a′ �b a then b rejects a.

The reason for a′ marking the vertex b in (2) is as follows: In this case, b
rejects the uncertain proposal from a′ and accepts a irrespective of b’s preference
between a and a′. Later, when a′ gets its chance to propose, and if none of the

452 M. Nasre et al.

neighbours of a′ at the rank of b accept the proposal from a′, then a′ will propose
to the marked vertex b before proposing to the next lower-ranked neighbours. In
contrast in (3)(i) above, when the proposal (a′, b) is not uncertain and a �b a′

then a′ does not mark b. Note that a vertex b ∈ B can be part of an uncertain
proposal at most once. Once a vertex receives its first proposal, it will remain
matched and thereafter cannot be part of any uncertain proposal. Thus, any
b ∈ B can be marked at most once during the course of the algorithm.

Now, we define the favourite neighbour of a vertex a, which is an adaptation
of the definition in [13].

Definition 4 (Favourite neighbour of a). Assume that k is the best rank at
which some unproposed or marked neighbours of a exist in Pref(a). Then b is the
favourite neighbour of a if one of the following conditions holds:

(i) there exists at least one unmatched neighbour of a at the kth rank and b has
the lowest index among all such unmatched neighbours, or

(ii) all the kth ranked neighbours of a are matched and b is the lowest index
among all such neighbours which are unproposed by a, or

(iii) all the kth ranked neighbours are already proposed by a and b has the lowest
index among all the vertices which are marked by a.

Király’s algorithm begins with every vertex a ∈ A being active. As long
as there exists an active vertex which is unmatched and has not exhausted its
preference list, the vertex proposes to its favourite neighbour. If a ∈ A remains
unmatched after exhausting its preference list, it achieves a ‘∗’ status and starts
proposing to vertices in Pref(a) with ∗ status. The ∗ status of a vertex a can be
interpreted as improving the rank of a in Pref(b) by 0.5 for any neighbour b of
a. Thus, the ∗ status vertex is used to decide between vertices in a tie, but does
not affect strict preferences. It is shown in [13] that the resulting matching is a
3
2 -approximation of a maximum size stable matching.

Overview of the Popular Critical Matching Algorithm [23]. Now, we
briefly describe the algorithm in [23] for computing the maximum size popular
critical matching in the one-to-one strict list setting. Let s and t denote the
number of critical vertices in A and B, respectively. The algorithm in [23] is
a multi-level algorithm which first matches as many critical vertices from B
as possible. This is achieved by restricting unmatched vertices in A at levels
0, . . . , t − 1 to propose only to critical vertices on the B-side. At the level t, each
vertex a ∈ A is allowed to propose all its neighbours. If a vertex a ∈ A remains
unmatched even after exhausting its preference list at level t, a raises its level
to t + 1 and proposes to its neighbours until it is matched or it exhausts its
preference list at the level t + 1. If a critical vertex a remains unmatched then
a raises its level above t + 1 and continues proposing to all its neighbours until
it is matched, or it exhausts its preference list at the highest level s + t + 1. A
vertex b which receives the proposal always prefers a higher level vertex a over
any lower level vertex a′ irrespective of the ranks of a and a′ in Pref(b). It is
shown in [23] that the resulting matching is a maximum size popular matching
among all the critical matchings.

Critical Relaxed Stable Matchings with Two-Sided Ties 453

3 Algorithm for Computing CRITICAL-RSM

Our algorithm (see Algorithm 1) is a combination of Király’s algorithm and the
popular critical matching algorithm discussed in the previous section. In each
level, vertices in A propose and vertices in B accept or reject. The set of vertices
from B that a ∈ A proposes to depends on the level of a. Furthermore, depending
on the level of a, the preference list at that level may be strict or may contain
ties. Throughout Algorithm 1, b uses its original preference list Pref(b) which
possibly contains ties. For a vertex a ∈ A, let PrefS(a) denote a strict preference
list obtained by breaking ties in Pref(a) in such a way that the vertices in ties are
ordered by increasing order of their indices. Furthermore, let PrefSC(a) be the
strict list obtained from PrefS(a) by omitting all the non-critical vertices from
PrefS(a). For example, assume Pref(a) = (b2, b1), b5, (b3, b4) where b4 and b5 are
critical vertices. Here, a ranks b1 and b2 as rank-1, b5 as rank-2 and b3 and b4 as
rank-3. We have PrefS(a) = b1, b2, b5, b3, b4 and PrefSC(a) = b5, b4 where comma
separated vertices denote a strict ordering.

Initially, all the vertices in A have their levels set to 0. A vertex a at level
� is denoted as a�. At a level less than t, each a ∈ A proposes to vertices in
PrefSC(a) (see Lines 4–8 of Algorithm 1). Each time it remains unmatched, it
proposes to its most preferred neighbour b. The most preferred neighbour in
PrefSC(a) or PrefS(a) is the best-ranked neighbour b to whom a has not yet
proposed at the current level. If a remains unmatched after proposing to all its
neighbours in PrefSC(a) at a level � < t − 1, then a raises its level to � + 1 and
again proposes to vertices in PrefSC(a). In this part of the algorithm, we invoke
CriticalPropose() which encodes the level-based accept/reject by b. A vertex
b ∈ B prefers a�

i over a�′
j if :

(i) either � > �′ (ranks of ai and aj in Pref(b) do not matter) or
(ii) � = �′ and ai �b aj .

If vertex a remains unmatched after exhausting PrefSC(a) at level t − 1, a
attains level t where it uses its original preference list Pref(a) which may contain
ties. At level t our algorithm executes Király’s algorithm [13]. This corresponds
to Lines 10–13 of Algorithm 1. Király’s algorithm is encoded in the procedure
TiesPropose(). Since we have ties on both sides of the graph, at this level,
we need the notion of a favourite neighbour and uncertain proposal defined in
Sect. 2. If the vertex a remains unmatched after exhausting Pref(a) at level t, it
attains the ∗ status, and for this, we have the sub-level t∗. The interpretation of
the ∗ status is the same as discussed in Sect. 2.

If a critical vertex a remains unmatched after exhausting its preference list
Pref(a) at level t∗, a raises its level to t + 1, and starts proposing to vertices in
PrefS(a) (see Lines 16–20 of Algorithm 1). It continues to do so until either it is
matched or it has exhausted PrefS(a) at level s + t. In contrast, if a non-critical
vertex a remains unmatched after exhausting its preference list Pref(a) at level
t∗, a does not propose any further. Recall that PrefS(a) is a strict preference
list containing all the neighbours (not restricted to critical vertices). Here, Algo-
rithm 1, again invokes CriticalPropose() for the level-based accept/reject by
b. The algorithm terminates when either (i) all the vertices in A are matched or

454 M. Nasre et al.

Algorithm 1: Critical relaxed stable matching in G = (A ∪ B, E)
1 Set M = ∅, Initialize a queue Q = {a0 : a ∈ A}
2 while Q is not empty do

3 Let a� = dequeue(Q) // a is unmatched

4 if � < t then

5 if a� has not exhausted PrefSC(a) then
6 CriticalPropose(a�,PrefSC(a), M, Q)

7 else

8 � = � + 1 and add a� to Q

9 else if � == t or � == t∗ then

10 if ∃ b′ ∈ Pref(a) which is marked or unproposed by a� then

11 TiesPropose(a�,Pref(a), M, Q)

12 else

13 if � == t then � = t∗ and add a� to Q

14 if � == t∗ and a is critical then � = t + 1 and add a� to Q

15 else
// a is critical

16 if a� has not exhausted PrefS(a) then

17 CriticalPropose(a�,PrefS(a), M, Q)

18 else
19 if � < s + t and a is critical then

20 � = � + 1 and add a� to Q

21 return M

(ii) all unmatched critical a ∈ A have exhausted PrefS(a) at level s + t and all
unmatched non-critical a ∈ A have exhausted Pref(a) at level t∗. We note that
s + t = |C| = O(n), where n = |A ∪ B| and each edge of G is explored at most
s + t + 3 times (at most three times at level t, the Király’s step, and at most
once at every other level). Thus, the running time of our algorithm is O(n · |E|).

It is worth noting that in our algorithm, not all vertices in A propose at all
levels. Similarly, not all vertices in B receive proposals from vertices at all levels.
In other words, only critical vertices in B are allowed to receive proposals from
vertices in A at levels at most t − 1, and only critical vertices in A are allowed
to propose at levels above t. Also, note that when a vertex in A transitions to a
higher level, it proposes to possibly a superset of vertices that it proposes to in
the lower level (recall that Pref(a) and its strict counterpart PrefS(a) are both
a superset of PrefSC(a)). Therefore, we have the following useful observation.

Observation 1. If a vertex b ∈ B receives a proposal from some a′ ∈ A at
a level z then b receives proposals from all its neighbours who exhausted their
preference list at level z.

4 Correctness of Our Algorithm

We prove that the matching M output by Algorithm 1 is

Critical Relaxed Stable Matchings with Two-Sided Ties 455

Procedure CriticalPropose(a�, List(a),M,Q)

1 Let b be the most preferred unproposed vertex by a� in List(a)
2 if b is unmatched in M then

3 M = M ∪ {(a�, b)}
4 else
5 Let ay

j = M(b)

6 if (� > y) or (� == y and a �b aj) then

7 M = M \ {(ay
j , b)} ∪ {(a�, b)} and add ay

j to Q

8 else add a� to Q

Procedure TiesPropose(a�, List(a),M,Q)

1 Let b be the favourite neighbour of a� in List(a) at rank k

2 if b was marked by a� then a� unmarks b
3 if b is unmatched then

4 M = M ∪ {(a�, b)}
5 if there exists an unmatched b′′ at rank k in Pref(a) then
6 Set (a�, b) as uncertain proposal // � = t as b′′ is unmatched

7 else if b is part of an uncertain proposal (ay
j , b) then

8 M = (M \ {(ay
j , b)}) ∪ {(a�, b)} // Here, y = t

9 ay
j marks b and add ay

j to Q

10 else if b is not part of an uncertain proposal then
11 Let ay

j = M(b)

12 if � == t then
13 if (y < t) or ((y == t or y == t∗) and a �b aj) then

14 M = M \ {(ay
j , b)} ∪ {(a�, b)} and add ay

j to Q

15 else add a� to Q

16 if � == t∗ then
17 if (y < t) or (y == t and a �b aj) or (y == t∗ and a �b aj) then

18 M = M \ {(ay
j , b)} ∪ {(a�, b)} and add ay

j to Q

19 else add a� to Q

(I) Critical as well as relaxed stable (RSM) and
(II) A 3

2 approximation to the maximum size CRITICAL-RSM in G.

We define a partition of the vertices in A ∪ B based on the levels of vertices
in A and the matching M . This partition is useful to establish the correctness
of our algorithm.

Partition of Vertices: The vertex set A is partitioned into A0 ∪A1 ∪ . . .∪At ∪
. . .∪As+t, and the vertex set B is partitioned into B0∪B1∪. . .∪Bt∪. . .∪Bs+t. For
every matched vertex a ∈ A there exists x ∈ {0, . . . , s+t} such that (ax, b) ∈ M .
We use x to partition the vertex set. Note that if (at∗

, b) ∈ M then for the purpose
of partitioning we consider t∗ = t as t∗ is a sub-level of the level t.

456 M. Nasre et al.

– Matched vertices in A ∪ B: Let a ∈ A, b ∈ B and (ax, b) ∈ M for some
x ∈ {0, . . . , s + t}. We add a to Ax and b to Bx.

– Unmatched vertices in A ∪ B:
• If a non-critical vertex a ∈ A is unmatched in M then we add a to At.
• If a critical vertex a ∈ A is unmatched in M then we add a to As+t.
• If a non-critical vertex b ∈ B is unmatched in M then we add b to Bt.
• If a critical vertex b ∈ B is unmatched in M then we add b to B0.

It is convenient to visualize the partitions as shown in Fig. 2. This particular
drawing of the graph G is denoted by GM throughout the rest of the section. It
is useful to assume that the edges in GM are implicitly directed from A to B.
By construction, the edges of M (shown in blue colour) are horizontal whereas
the unmatched edges (shown as solid black edges) can be horizontal, upwards
or downwards. We state the properties of the vertices and edges in GM with
respect to this partition in Property 1 (see the full version [21] for justification).

Fig. 2. The graph GM . Red vertices are critical and black vertices are non-critical.
Matched vertices are represented by circles, and unmatched vertices are represented
by squares. The blue horizontal lines represent matched edges in M . Solid black lines
represent edges which are not matched in M . Note that no edge in GM is of the form
Ax × Ay for y ≤ x − 2. (Color figure online)

Property 1. Let a ∈ A and b ∈ B. Then the following hold in graph GM .

1. If a ∈ ⋃s+t
x=t+1 Ax then a is critical. Thus, |⋃s+t

x=t+1 Ax| ≤ s.
2. If b ∈ ⋃t−1

x=0 Bx then b is critical. Thus, |⋃t−1
x=0 Bx| ≤ t.

3. If a is critical and is unmatched in M then a ∈ As+t and all the neighbours
of a are matched and present in Bs+t only.

4. If a is not critical and is unmatched in M then a ∈ At and all the neighbours
of a are matched and present in Bx for x ≥ t.

Critical Relaxed Stable Matchings with Two-Sided Ties 457

5. If b is critical and is unmatched in M then b ∈ B0 and all the neighbours of
b are present in A0 only.

6. If b is not critical and is unmatched in M then b ∈ Bt and all the neighbours
of b are present in Ax for x ≤ t.

Let (a, b) ∈ E be an edge such that a ∈ Ax and b ∈ By. We say that such an
edge is of the form Ax ×By. Lemma 1 below gives an important property about
the edges which cannot be present in GM . An edge of the form Ax × By with
x > y + 1 is referred to as a steep downward edge.

Lemma 1. The graph GM does not contain steep downward edges. That is,
there is no edge in GM of the form Ax × By such that x > y + 1.

Proof. Let (a, b) be any edge in GM such that a ∈ Ax and b ∈ By. If b is
unmatched, then irrespective of whether b is critical or not by Property 1(5) and
Property 1(6), we have x ≤ y. Now suppose that b is matched and (a′, b) ∈ M .
If a = a′ then by construction of GM , (a, b) ∈ Ax × Bx. If a �= a′, then we use
Claim 1, which is given below. It is immediate from this claim that b is in By

for y ≥ x − 1. �
Claim 1. Let (a, b) ∈ E \ M and b be matched in M to ã at level y, that is,
M(b) = ãy. If the level x of a is at least 2 then y ≥ x − 1.

Proof. Suppose for contradiction that there exists ã ∈ A such that (ãy, b) ∈ M
for y < x − 1. The fact that (a, b) ∈ E and a achieves the level x implies that a
remains unmatched after ax−1 exhausted its preference list Pref(a), PrefS(a) or
PrefSC(a) as appropriate. Since b is matched to a vertex at level y < x − 1, and
ax−1 exhausted its preference list, by Observation 1, b received a proposal from
ax−1. At this time, b must accept this proposal by rejecting ãy because y < x−1.
This implies (ãy, b) /∈ M which contradicts our assumption that (ãy, b) ∈ M for
y < x − 1. �
Lemma 2. Let (a, b) be a blocking pair w.r.t. M . Then the corresponding edge
in GM is an upward edge.

Proof. For the blocking pair (a, b) let a and b be at levels x and y, respectively.
First, suppose that b is a critical vertex. Since (a, b) is a blocking pair, irre-
spective of whether a is matched or unmatched, ax must have proposed to the
critical vertex b. Thus, b cannot remain unmatched. This implies M(b) exists.
We consider the following two cases:

1. The proposal by a to b results in (a, b) to be uncertain: Note that ax is rejected
by b because b receives another proposal, and hence ax marks b. Since (a, b)
is a blocking pair, M(a) is ranked lower than b. However, before proposing
to any vertex ranked strictly lower than b, ax must propose to the marked
vertex b. At this point, either b is matched to a better preferred partner than
a which contradicts that (a, b) blocks M , otherwise, b accepts the proposal
from ax. Thus, ax is matched to either b or to some other vertex on the same
rank as b. This implies (a, b) is not a blocking edge.

458 M. Nasre et al.

2. The proposal by a to b does not result in (a, b) to be uncertain: The fact that
a �b M(b) implies M(b) must be at a level y such that y > x. Thus, (a, b)
edge is an upward edge in GM .

Now, suppose that b is a non-critical vertex. Then by Property 1(2), b ∈ By

for y ≥ t. If x < t, then (a, b) is an upward edge, and we are done. Hence, assume
that x ≥ t. Since x ≥ t, ax is proposes to all of its neighbours. Again, since (a, b)
is a blocking pair, irrespective of whether a is matched or unmatched, ax must
have proposed to b. Thus, b cannot be unmatched. Now, either b is matched to a
better-preferred partner than a, which contradicts that (a, b) is a blocking pair
or M(b) is at a higher level than a and hence (a, b) is an upward edge. �

Lemma 3 below shows that the matching M output by Algorithm 1 is critical.

Lemma 3. The output matching M is critical for G.

Proof sketch: We prove the criticality of M by using the level structure of the
graph GM . The idea is to show that there is no alternating path ρ in GM with
respect to M such that the number of critical vertices matched in M ⊕ρ is more
than the number of critical vertices matched in M . We prove the criticality for
the individual parts, that is, for A-part and for B-part. In other words, we show
that M matches maximum possible critical nodes from A-side, and maximum
possible critical nodes from the B-side. This immediately implies that M matches
the maximum possible critical nodes that can be matched in any matching.
Hence, M is critical. For the A-part we show that the path ρ = 〈u0, v1, u1, . . .〉
begins at the highest level s+ t with an unmatched critical vertex u0 ∈ A. Using
Property 1(5), we also show that at least the first two vertices on the A-side
(u0 and u1) on ρ are at the same level s + t. Then we argue that the other end
of ρ must be at a level below t + 1. Since there are no steep downward edges
(Lemma 1), the path contains at least one vertex from each level t+1, . . . , s+t−1.
Thus, we have at least s+1 many vertices in At+1 ∪ . . .∪As+t. This contradicts
Property 1(1). Proof for the B-part is analogous. See full version [21] for the
complete proof. �
Lemma 4. The output matching M of Algorithm 1 is RSM for G.

Proof. If there is no blocking pair w.r.t. M then we are done. Hence, assume
that (a, b) is a blocking pair w.r.t. M . By Lemma 2, (a, b) is an upward edge.
We consider two cases based on the level of b.
Case 1: b ∈ By for y ≤ t. Clearly, a ∈ Ax for x ≤ t−1. Thus, by the construction
of GM , a is matched, and hence M(a) exists. Clearly, M(a) is at level at most
t−1. By Property 1(2), M(a) is critical. Hence, the blocking pair (a, b) is justified
by Condition 1 of Definition 2.
Case 2: b ∈ By for y > t. By construction of GM , b is matched. Thus, M(b)
exists and M(b) ∈ Ax for x ≥ t + 1. By Property 1(1), M(b) is critical. Hence,
the blocking pair (a, b) is justified by Condition 2 of Definition 2. �
Lemma 5. Let M ′ be any maximum size CRITICAL-RSM and M be the output
of Algorithm 1 for an instance of our problem. Then |M | ≥ 2

3 · |M ′|.

Critical Relaxed Stable Matchings with Two-Sided Ties 459

Proof. We prove that M ⊕M ′ does not admit any 1-length or 3-length augment-
ing path w.r.t. M . This immediately implies that |M | ≥ 2

3 ·|M ′|. If a is unmatched
(critical or otherwise), we know from Property 1(3) and Property 1(4) that no
neighbour b of a is unmatched in M . Thus, M is a maximal matching.

For contradiction assume that M ⊕ M ′ contains a 3-length augmenting path
ρ = 〈a1, b, a, b1〉 w.r.t. M . Here (a, b) ∈ M and the other two edges are in M ′.
We show that (a, b) blocks M ′ and the blocking pair is not justified. This will
contradict relaxed stability of M ′. We first establish the levels of the vertices.

Levels of Vertices: The fact that a1 remains unmatched in M implies that at∗
1

exhausted Pref(a1). Thus, a1 is at level at least t∗. Since b1 remains unmatched
in M , a did not exhaust Pref(a) at the level t. Thus, a is at level at most t. We
claim that a1 is not at level t + 1 or higher. If a1 is at level x ≥ t + 1 then ax

1

must have proposed to b as a1 is unmatched in M . Since a is at level at most t,
b must reject a and accept a1 – a contradiction to (a, b) ∈ M . Thus, we conclude
that a1 is at level t∗. Now, if a is at level y < t then b must reject a and accept
a1 as a1 at level t∗ proposed to it. Recall that t∗ is a sub-level of t used in the
algorithm, and t∗ does not appear as a separate level in GM . Thus, the vertices
a, a1 ∈ At.

The Pair (a, b) Blocks M ′: If a1 �b a, then b would have accepted the proposal
of at

1 by rejecting at. Thus, a �b a1. Since at∗
1 was rejected by b, it implies

M(b) = a and a1 cannot be in tie for b, otherwise b would not have rejected
a ∗ status vertex over a non ∗ status vertex. Thus, a �b a1. Now, we show
that b �a b1. Suppose not. Then, if b1 �a b, then at must have proposed to b1
before b and got matched to it – a contradiction that b1 is unmatched. Hence,
assume that b =a b1. In this case, when at proposes to b, the vertex b must also
be unmatched; otherwise, b cannot be a favourite neighbour of at. This implies
that a1 proposes to b only after a proposes to b. Since b1 was unmatched when a
proposed to b, the proposal from a to b was uncertain. We claim that b must reject
the proposal by a after the proposal (a, b) becomes uncertain due to a proposal
by some vertex, possibly at

1. Such a vertex must exist because at
1 proposed to

b after (a, b) becomes uncertain. Since a has an unmatched neighbour b1 at the
same rank, a must have proposed b1 before proposing to b again. This implies
b1 is matched, a contradiction. Thus, b �a b1; hence (a, b) blocks M ′.

The Blocking Pair (a, b) is not Justified: In order to prove this, we show
b1 = M ′(a) and a1 = M ′(b) are both non-critical. Note that b1 is unmatched
in M , hence if it is critical then b1 ∈ B0 and the number of critical vertices on
B-side is at least 1 (that is t ≥ 1). This implies that a cannot be at a level ≥ 1
since it has not yet proposed to at least one critical neighbour, namely b1. Thus,
b1 is not critical. We finish the proof by showing that a1 is also not critical. Note
that a1 is unmatched in M , hence, if it is critical then a1 ∈ As+t and s > 0.
This is a contradiction that a1 ∈ At. Thus, a1 is not critical.

This finishes the proof that the claimed 3-length augmenting path w.r.t. M
does not exist establishing the size guarantee. �

Using Lemma 3, Lemma 4 and Lemma 5, we establish Theorem 1.

460 M. Nasre et al.

5 Conclusion

In this work, we consider the problem of computing a matching in the stable
marriage problem where ties and critical vertices can appear on both sides of
the bipartition. We investigate a recently introduced notion of optimality called
relaxed stability for our setting. We show that every instance of our problem
admits a Relaxed Stable Matching (RSM) which is also critical. It follows from
the known results [6,18] that computing a maximum size critical RSM is NP-
hard and hard to approximate within any factor smaller than 21

19 . We present a
polynomial-time algorithm to compute a 3

2 -approximation of the maximum size
critical RSM.

References

1. Biró, P., Irving, R.W., Manlove, D.F.: Popular matchings in the marriage and
roommates problems. In: Calamoneri, T., Diaz, J. (eds.) CIAC 2010. LNCS, vol.
6078, pp. 97–108. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-
13073-1 10

2. Dean, B., Jalasutram, R.: Factor revealing LPs and stable matching with ties and
incomplete lists. In: Proceedings of the 3rd International Workshop on Matching
Under Preferences, pp. 42–53 (2015)

3. Gale, D., Shapley, L.S.: College admissions and the stability of marriage. Am.
Math. Mon. 69(1), 9–15 (1962)

4. Gärdenfors, P.: Match making: assignments based on bilateral preferences. Behav.
Sci. 20(3), 166–173 (1975)

5. Goko, H., Makino, K., Miyazaki, S., Yokoi, Y.: Maximally satisfying lower quotas
in the hospitals/residents problem with ties. In: 39th International Symposium on
Theoretical Aspects of Computer Science (2022)

6. Halldórsson, M.M., Iwama, K., Miyazaki, S., Yanagisawa, H.: Improved approxi-
mation results for the stable marriage problem. ACM Trans. Algorithm (TALG)
3(3), 30-es (2007)

7. Hamada, K., Iwama, K., Miyazaki, S.: The hospitals/residents problem with lower
quotas. Algorithmica 74(1), 440–465 (2016)

8. Hamada, K., Miyazaki, S., Yanagisawa, H.: Strategy-proof approximation algo-
rithms for the stable marriage problem with ties and incomplete lists. In: Interna-
tional Symposium on Algorithms and Computation (2019)

9. Huang, C.C., Kavitha, T.: Improved approximation algorithms for two variants of
the stable marriage problem with ties. Math. Program. 154, 353–380 (2015)

10. Iwama, K., Miyazaki, S., Yanagisawa, H.: A 25/17-approximation algorithm for the
stable marriage problem with one-sided ties. Algorithmica 68(3), 758–775 (2014)

11. Kavitha, T.: Matchings, critical nodes, and popular solutions. In: 41st IARCS
Annual Conference on Foundations of Software Technology and Theoretical Com-
puter Science (FSTTCS 2021) (2021)

12. Király, Z.: Better and simpler approximation algorithms for the stable marriage
problem. Algorithmica 60(1), 3–20 (2011)

13. Király, Z.: Linear time local approximation algorithm for maximum stable mar-
riage. Algorithms 6(3), 471–484 (2013)

https://doi.org/10.1007/978-3-642-13073-1_10
https://doi.org/10.1007/978-3-642-13073-1_10

Critical Relaxed Stable Matchings with Two-Sided Ties 461

14. Krishnaa, P., Limaye, G., Nasre, M., Nimbhorkar, P.: Envy-freeness and relaxed
stability: hardness and approximation algorithms. In: Harks, T., Klimm, M. (eds.)
SAGT 2020. LNCS, vol. 12283, pp. 193–208. Springer, Cham (2020). https://doi.
org/10.1007/978-3-030-57980-7 13

15. Krishnaa, P., Limaye, G., Nasre, M., Nimbhorkar, P.: Envy-freeness and relaxed
stability: hardness and approximation algorithms. J. Comb. Optim. 45(1), 1–30
(2023)

16. Lam, C.K., Plaxton, C.G.: A (1+ 1/e)-approximation algorithm for maximum
stable matching with one-sided ties and incomplete lists. In: Proceedings of the
Thirtieth Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 2823–2840.
SIAM (2019)

17. Makino, K., Miyazaki, S., Yokoi, Y.: Incomplete list setting of the hospi-
tals/residents problem with maximally satisfying lower quotas. In: Kanellopoulos,
P., Kyropoulou, M., Voudouris, A. (eds.) SAGT 2022. Lecture Notes in Computer
Science, vol. 13584, pp. 544–561. Springer, Cham (2022). https://doi.org/10.1007/
978-3-031-15714-1 31

18. Manlove, D.F., Irving, R.W., Iwama, K., Miyazaki, S., Morita, Y.: Hard variants
of stable marriage. Theoret. Comput. Sci. 276(1–2), 261–279 (2002)

19. McDermid, E.: A 3/2-approximation algorithm for general stable marriage. In:
Albers, S., Marchetti-Spaccamela, A., Matias, Y., Nikoletseas, S., Thomas, W.
(eds.) ICALP 2009. LNCS, vol. 5555, pp. 689–700. Springer, Heidelberg (2009).
https://doi.org/10.1007/978-3-642-02927-1 57

20. Nasre, M., Nimbhorkar, P.: Popular matchings with lower quotas. In: 37th IARCS
Annual Conference on Foundations of Software Technology and Theoretical Com-
puter Science (FSTTCS 2017), pp. 44:1–44:15 (2017)

21. Nasre, M., Nimbhorkar, P., Ranjan, K.: Critical relaxed stable matchings with
two-sided ties. arXiv preprint arXiv:2303.12325 (2023)

22. Nasre, M., Nimbhorkar, P., Ranjan, K., Sarkar, A.: Popular matchings in the
hospital-residents problem with two-sided lower quotas. In: 41st IARCS Annual
Conference on Foundations of Software Technology and Theoretical Computer Sci-
ence (FSTTCS 2021), vol. 213, pp. 30:1–30:21 (2021)

23. Nasre, M., Nimbhorkar, P., Ranjan, K., Sarkar, A.: Popular critical matchings in
the many-to-many setting. arXiv:2206.12394 (2023)

24. Paluch, K.: Faster and simpler approximation of stable matchings. Algorithms
7(2), 189–202 (2014)

25. Robards, P.A.: Applying two-sided matching processes to the united states
navy enlisted assignment process. Technical report, NAVAL POSTGRADUATE
SCHOOL MONTEREY CA (2001)

26. Roth, A.E.: Stability and polarization of interests in job matching. Econometrica:
J. Econometric Soc. 52, 47–57 (1984)

27. Roth, A.E.: On the allocation of residents to rural hospitals: a general property
of two-sided matching markets. Econometrica: J. Econometric Soc. 54, 425–427
(1986)

28. Tan, S.J., Yeong, C.M.: Designing economics experiments to demonstrate the
advantages of an electronic employment market in a large military organization.
Technical report, NAVAL POSTGRADUATE SCHOOL MONTEREY CA (2001)

29. Yang, W., Sycara, K.: Two-sided matching for the us navy detailing process
with market complication. Technical report, Technical Report CMU-RI-TR-03-49,
Robotics Institute, Carnegie-Mellon University (2003)

30. Yokoi, Y.: Envy-free matchings with lower quotas. Algorithmica 82(2), 188–211
(2020)

https://doi.org/10.1007/978-3-030-57980-7_13
https://doi.org/10.1007/978-3-030-57980-7_13
https://doi.org/10.1007/978-3-031-15714-1_31
https://doi.org/10.1007/978-3-031-15714-1_31
https://doi.org/10.1007/978-3-642-02927-1_57
http://arxiv.org/abs/2303.12325
http://arxiv.org/abs/2206.12394

Graph Search Trees and Their Leaves

Robert Scheffler(B)

Institute of Mathematics, Brandenburg University of Technology, Cottbus, Germany
robert.scheffler@b-tu.de

Abstract. Graph searches and their respective search trees are widely
used in algorithmic graph theory. The problem whether a given spanning
tree can be a graph search tree has been considered for different searches,
graph classes and search tree paradigms. Similarly, the question whether
a particular vertex can be visited last by some search has been studied
extensively in recent years. We combine these two problems by consider-
ing the question whether a vertex can be a leaf of a graph search tree. We
show that for particular search trees, including DFS trees, this problem
is easy if we allow the leaf to be the first vertex of the search ordering.
We contrast this result by showing that the problem becomes hard for
many searches, including DFS and BFS, if we forbid the leaf to be the
first vertex. Additionally, we present several structural and algorithmic
results for search tree leaves of chordal graphs.

Keywords: Graph search · Graph search trees · Leaves

1 Introduction

Graph searches are an extensively used concept in algorithmic graph theory. The
searches BFS and DFS belong to the most basic algorithms and are used in a
wide range of applications as subroutines. The same holds for more sophisticated
searches as LBFS, LDFS, and MCS (see, e.g., [4,8,14]).

An important structure closely related to a graph search is the corresponding
search tree. Such a tree contains all the vertices of the graph and for every vertex
different from the start vertex exactly one edge to a vertex preceding it in the
search ordering. Those trees can be of particular interest as for instance the tree
obtained by a BFS contains the shortest paths from the root to all other vertices
in the graph and DFS trees are used for fast planarity testing [19]. Furthermore,
trees generated by LBFS were used to design a linear-time implementation of
the search LDFS for chordal graphs [3].

The problem of deciding whether a given spanning tree of a graph can be
obtained by a particular search was introduced by Hagerup [17] in 1985, who
presented a linear-time algorithm that recognizes DFS trees. In the same year,
Hagerup and Nowak [18] gave a similar result for the BFS tree recognition. In
2021, Beisegel et al. [2] presented a more general framework for the search tree
recognition problem. They introduced the term F-tree for search trees where a
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
D. Paulusma and B. Ries (Eds.): WG 2023, LNCS 14093, pp. 462–476, 2023.
https://doi.org/10.1007/978-3-031-43380-1_33

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-43380-1_33&domain=pdf
http://orcid.org/0000-0001-6007-4202
https://doi.org/10.1007/978-3-031-43380-1_33

Graph Search Trees and Their Leaves 463

vertex is connected to its first visited neighbor, i.e., BFS-like trees, and L-trees
for search trees where a vertex is connected to its most recently visited neighbor,
i.e., DFS-like trees. They showed, among other things, that F-tree recognition is
NP-hard for LBFS, LDFS, and MCS on weakly chordal graphs, while the problem
can be solved in polynomial time for all three searches on chordal graphs. These
results are complemented in [29], where it is shown that the recognition of F-
trees of DFS and L-trees of BFS is NP-hard, a strong contrast to the polynomial
results for F-trees of BFS and L-trees of DFS.

Another feature of a graph search that was used several times within algo-
rithms are its end-vertices, i.e., the vertices that can be visited last by the search.
Some of these end-vertices have nice properties. One example are the end-vertices
of LBFS on chordal graphs. These vertices are simplicial, a fact that was used by
Rose et al. [27] to design a linear-time recognition algorithm for chordal graphs.
Furthermore, the end-vertices of LBFS are strongly related to dominating pairs
of AT-free graphs [13] and transitive orientations of comparability graphs [16].
Thus, it is well motivated to consider the end-vertex problem, i.e., the question
whether a given vertex of a graph is an end-vertex of a particular search. Intro-
duced in 2010 by Corneil et al. [11], the problem has gained much attention by
several researchers, leading to a wide range of hardness results and algorithms
for different searches on different graph classes (see, e.g., [1,6,15,22,25,33]).

If we compare the known complexity results for the end-vertex problem and
the recognition problem of F-trees, we notice strong similarities between these
two problems. Motivated by that fact, a generalization of both problems, called
Partial Search Order Problem, was introduced in [28]. This problem asks whether
a given partial order on a graph’s vertex set can be linearly extended by a search
ordering. Another way to combine the end-vertex problem with the search tree
recognition problems is motivated by the following observation: If a vertex is
the end-vertex of some search ordering, then it is a leaf in the respective search
tree, no matter whether we consider the F-tree or the L-tree. Therefore, we
ask whether a given vertex can be a leaf of a search tree constructed by a
particular search. Note that this problem was first suggested in 2020 by Michel
Habib. Here, we study its complexity for F-trees and L-trees of several searches,
including BFS, DFS, LBFS, LDFS, and MCS.

Our Contribution. We consider two different types of leaves of search trees. A
leaf is a root leaf of a search tree if it is the start vertex of the respective search
ordering. All other leaves of a search tree are called branch leaves. We show that
it is easy for all the searches considered here to identify the possible root leaves
both for F-trees and for L-trees. For some searches, including DFS, these results
imply directly that the general problem of recognizing leaves of L-trees is easy.
This is contrasted by the result that, at least for DFS, the recognition of branch
leaves of L-trees is NP-hard. We show that the same holds for F-tree branch
leaves of several searches, including DFS and BFS. In contrast, the leaves of
L-trees of BFS can be recognized in polynomial time for bipartite graphs. This

464 R. Scheffler

is quite surprising since the L-tree recognition problem of BFS is NP-hard on
bipartite graphs [29] while F-trees of BFS can be recognized efficiently on general
graphs [18]. In the final section we consider chordal graphs and show that on this
graph class the branch leaves of almost all considered searches can be recognized
in linear time.

Due to lack of space, the proofs of some results are omitted here. They can
be found in the full version [30].

2 Preliminaries

General Notation. The graphs considered in this paper are finite, undirected,
simple and connected. Given a graph G, we denote by V (G) the set of vertices
and by E(G) the set of edges. The terms n(G) and m(G) describe the number
of vertices and edges of G, respectively, i.e., n(G) = |V (G)| and m(G) = |E(G)|.
For a vertex v ∈ V (G), we denote by NG(v) the (open) neighborhood of v in G,
i.e., the set NG(v) = {u ∈ V | uv ∈ E} where uv denotes an edge between u and
v. The closed neighborhood of a vertex v is the union of the open neighborhood
of v with the set {v} and is denoted by NG[v]. Given a set S ⊆ V (G), the term
G[S] describes the subgraph of G that is induced by S.

The distance distG(v, w) of two vertices v and w in G is the length (i.e., the
number of edges) of the shortest v-w-path in G. The eccentricity eccG(v) of a
vertex v in G is the largest distance of v to any other vertex in G. The diameter
diam(G) of G is the largest eccentricity of a vertex in G and the radius rad(G) of
G is the smallest eccentricity of a vertex in G. A vertex v with eccG(v) = rad(G)
is called central vertex of G. The set N �

G(v) contains all vertices whose distance
to the vertex v in G is equal to �.

A vertex ordering of G is a bijection σ : {1, 2, . . . , |V (G)|} → V (G). We
denote by σ−1(v) the position of vertex v ∈ V (G). Given two vertices u and v in
G we say that u is to the left (resp. to the right) of v if σ−1(u) < σ−1(v) (resp.
σ−1(u) > σ−1(v)) and we denote this by u ≺σ v (resp. u �σ v).

A clique in a graph G is a set of pairwise adjacent vertices and an independent
set in G is a set of pairwise nonadjacent vertices. A clique C is dominating if
any vertex of G is either in C or has a neighbor in C. A vertex v is simplicial
if its neighborhood induces a clique. A vertex v of a connected graph G is a cut
vertex if G − v is not connected. Two vertices u and w form a two-pair if any
induced path between u and w has length two.

A graph is bipartite if its vertex set can be partitioned into two independent
sets X and Y . A graph is weakly chordal if G contains neither an induced cycle of
the length ≥ 5 nor the complement of such an induced cycle. A graph is chordal
if it does not contain an induced cycle of length ≥ 4. A vertex ordering σ of
a graph G is a perfect elimination ordering if any vertex v is simplicial in the
graph G[S(v)] with S(v) := {w | w ≺σ v}. A graph G has a PEO if and only if
G is chordal [26]. A split graph G is a graph whose vertex set can be partitioned
into sets C and I, such that C is a clique in G and I is an independent set in
G. It is easy to see that any split graph is chordal.

Graph Search Trees and Their Leaves 465

Algorithm 1: Label Search(≺A)
Input: A graph G
Output: A search ordering σ of G

1 begin
2 foreach v ∈ V (G) do label(v) ← ∅ for i ← 1 to n(G) do
3 Eligible ← {x ∈ V (G) | x unnumbered and � unnumbered y ∈ V (G)
4 such that label(x) ≺A label(y)};
5 let v be an arbitrary vertex in Eligible;
6 σ(i) ← v; /* assigns to v the number i */

7 foreach unnumbered vertex w ∈ N(v) do label(w) ← label(w) ∪ {i}

A tree is an acyclic connected graph. A spanning tree of a graph G is an
acyclic connected subgraph of G which contains all vertices of G. A tree together
with a distinguished root vertex r is said to be rooted. In such a rooted tree T ,
a vertex v is the parent of vertex w if v is an element of the unique path from w
to the root r and the edge vw is contained in T . A vertex w is called the child
of v if v is the parent of w.

Searches, Search Trees and Their Leaves. In the most general sense, a graph
search A is a function that maps every graph G to a set A(G) of vertex orderings
of G. The elements of the set A(G) are the A-orderings of G. The graph searches
considered in this paper can be formalized adapting a framework introduced by
Corneil et al. [10] (a similar framework is given in [23]). This framework uses
subsets of N+ as vertex labels. Whenever a vertex is numbered, its index in
the search ordering is added to the labels of its unnumbered neighbors. The
search A is defined via a strict partial order ≺A on the elements of P(N+) (see
Algorithm 1). The respective A-orderings are exactly those vertex orderings that
can be found by this framework using the partial label order ≺A.

In the following, we define the searches considered in this paper by presenting
suitable partial orders ≺A (see [10]). The Generic Search (GS) is equal to the
Label Search(≺GS) where A ≺GS B if and only if A = ∅ and B 	= ∅. Thus, any
vertex with a numbered neighbor can be numbered next.

The partial label order ≺BFS for Breadth First Search (BFS) is defined as
follows: A ≺BFS B if and only if A = ∅ and B 	= ∅ or min(A) > min(B). For
the Lexicographic Breadth First Search (LBFS) [27] we consider the partial order
≺LBFS with A ≺LBFS B if and only if A � B or min(A\B) > min(B \A). Both
BFS and LBFS are layered, i.e., the sets N �

G(r) are consecutive within orderings
starting in r. We sometimes use the term layer if we refer to a set N �

G(r).
The partial label order ≺DFS for Depth First Search (DFS) is defined as

follows: A ≺DFS B if and only if A = ∅ and B 	= ∅ or max(A) < max(B). For
the Lexicographic Depth First Search [12] we use the strict partial order ≺LDFS

where A ≺LDFS B if and only if A � B or max(A \ B) < max(B \ A).

466 R. Scheffler

The Maximum Cardinality Search (MCS) [32] uses the partial order ≺MCS

with A ≺MCS B if and only if |A| < |B|. The Maximal Neighborhood Search
(MNS) [12] is defined using ≺MNS with A ≺MNS B if and only if A � B. It
follows directly from these partial label orders, that any LBFS, LDFS, and MCS
ordering is also an MNS ordering. Furthermore, the orderings of all presented
searches are GS orderings.

Searches as BFS and DFS are often used to compute corresponding graph
search trees. Beisegel et al. [2] formalized the different concepts of search trees
as follows.

Definition 2.1 (Beisegel et al. [2]). Let σ be a GS ordering of a connected
graph G. The F-tree of σ is the spanning tree of G containing the edge from
each vertex v with σ−1(v) > 1 to its leftmost neighbor in σ.

The L-tree of σ is the spanning tree containing the edge from each vertex v
with σ−1(v) > 1 to its rightmost neighbor w in σ with w ≺σ v.

In this paper, we consider the leaves of these search trees. For both F-trees
and L-trees, we distinguish two different types of leaves.

Definition 2.2. Let σ be a GS ordering of a connected graph G. A vertex v ∈
V (G) is an F-leaf (L-leaf) of σ if v is a leaf in the F-tree (L-tree) of σ. If v is
the first vertex of σ, then it is the F-root leaf (L-root leaf) of σ, otherwise it is
an F-branch leaf (L-branch leaf) of σ.

As the graph with exactly one vertex has no leaf in its spanning tree, we will
consider only graphs with at least two vertices.

3 Root Leaves

We start this section with the simple observation that F-root leaves of GS order-
ings of a graph G are quite boring as they are exactly the leaves of G.

Observation 3.1. Let G be a connected graph with n(G) ≥ 2. The following
conditions are equivalent for a vertex v ∈ V (G).

(i) Vertex v is the F-root leaf of some GS ordering of G.
(ii) Vertex v is the F-root leaf of every GS ordering of G starting in v.
(iii) Vertex v is a leaf of G.

Next we consider the L-root leaves of GS, DFS, and MCS. They are exactly
those vertices of the graph that are not cut vertices. The same even holds for
F-branch leaves and L-branch leaves of GS.

Theorem 3.2. Let G be a connected graph with n(G) ≥ 2. The following con-
ditions are equivalent for a vertex v ∈ V (G).

(i) Vertex v is the L-root leaf of some DFS ordering of G starting in v.
(ii) Vertex v is the L-root leaf of every DFS ordering of G starting in v.

Graph Search Trees and Their Leaves 467

(iii) Vertex v is the L-root leaf of some MCS ordering of G.
(iv) Vertex v is the L-root leaf of some GS ordering of G.
(v) Vertex v is an L-branch leaf of some GS ordering of G.
(vi) Vertex v is an F-branch leaf of some GS ordering of G.
(vii) Vertex v is the end-vertex of some GS ordering of G.
(viii) Vertex v is not a cut vertex of G.

Note that DFS differs from GS and MCS in this result. While for the latter
three searches it is possible that a vertex is not the L-root leaf of a search
ordering starting with that vertex, this is not possible for DFS.

Since DFS, LDFS, MCS, and MNS orderings are also GS orderings, Theo-
rem 3.2 directly implies that we can characterize the L-leaves of these orderings.

Theorem 3.3. For any search A ∈ {GS, DFS, LDFS, MCS, MNS} and any
vertex v of a connected graph G with n(G) ≥ 2, the following statements are
equivalent.

(i) Vertex v is the L-root leaf of some A-ordering of G.
(ii) Vertex v is an L-leaf of some A-ordering of G.
(iii) Vertex v is not a cut vertex of G.

As we can check in linear time whether a vertex is a cut vertex, we can also
recognize L-leaves of GS, DFS, LDFS, MCS, and MNS within this time bound.
However, we will see in Corollary 4.2 that at least for DFS the recognition of
L-branch leaves is NP-complete.

The characterization of L-root leaves given in Theorem 3.2 does not work for
BFS as the following theorem shows.

Theorem 3.4. Let G be a connected graph with n(G) ≥ 2. A vertex v ∈ V (G) is
the L-root leaf of some BFS ordering of G if and only if G[NG(v)] is connected.

4 NP-Hardness of Branch Leaf Recognition

Branch Leaves of DFS. DFS L-trees can be recognized in linear time [17,20].
As we have seen in Theorem 3.3, this also holds for DFS L-leaves. In contrast,
recognizing DFS L-branch leaves of a graph is as hard as the recognition of DFS
end-vertices since the two concepts are equivalent.

Theorem 4.1. A vertex v ∈ V (G) of a graph G is an L-branch leaf of some
DFS ordering of G if and only if v is the end-vertex of some DFS ordering of G.

Charbit et al. [6] gave sufficient conditions on a graph class G such that the
end-vertex problem of DFS is NP-complete on G. Due to Theorem 4.1, we can
replace the term end-vertex in their result by the term L-branch leaf.

468 R. Scheffler

Corollary 4.2. Let G be a graph class that is closed under the insertion of
universal vertices. If the Hamiltonian path problem is NP-complete on G, then
the problem of deciding whether a vertex of a graph G ∈ G is an L-branch leaf
of some DFS ordering of G is NP-complete. In particular, the problem is NP-
complete on split graphs.

A similar result can be given for F-branch leaves of DFS. By adapting the
proof given in [29] that F-trees of DFS are hard to recognize, we can show that
the same holds for F-branch leaves of DFS.

Theorem 4.3. Let G be a graph class that is closed under the insertion of uni-
versal vertices and leaves. If the Hamiltonian path problem is NP-complete on G,
then the problem of deciding whether a vertex of a graph G ∈ G is an F-branch
leaf of some DFS ordering of G is NP-complete. In particular, the problem is
NP-complete on chordal graphs.

If we compare Corollary 4.2 and Theorem 4.3, then we see that for L-branch
leaves it is sufficient that the graph class G is closed under the addition of
universal vertices while for F-branch leaves we have the additional condition
that G is closed under the addition of leaves. We cannot omit this constraint
(unless P = NP) as the F-branch leaf recognition problem of DFS can be solved
in polynomial time on split graphs (see Corollary 5.13).

Branch Leaves of BFS. The end-vertex problem of BFS is NP-complete, even
if the graph is bipartite and the start vertex of the BFS ordering is fixed [6].
This fact can be used to show that recognizing BFS F-branch leaves is also
NP-complete.

Theorem 4.4. It is NP-complete to decide whether a vertex of a bipartite graph
G is an F-branch leaf of some BFS ordering of G.

In contrast to this result, there is a simple characterization of BFS L-branch
leaves of bipartite graphs.

Theorem 4.5. Let G be a connected bipartite graph with n(G) ≥ 2. A vertex
v ∈ V (G) is an L-branch leaf of some BFS ordering of G if and only if there is
an r ∈ V (G) \ {v} such that distG(r, w) = distG−v(r, w) for all w ∈ V (G) \ {v}.
Proof. Assume that there is a vertex r ∈ V (G) \ {v} such that distG(r, w) =
distG−v(r, w) for all w ∈ V (G) \ {v}. Let (r = w0, . . . , wk = v) be a shortest
path from r to v, i.e., v has distance k to r. It is easy to see that there is a BFS
ordering σ of G in which every vertex wi is the first vertex of the i-th layer.
Let T be the L-tree of σ and let x be a vertex in the (k + 1)-th layer. Due to
the condition on r, there is a shortest path from r to x in G that does not use
vertex v. Therefore, x has a neighbor y in the k-th layer that is not v. Since
v ≺σ y ≺σ x, vertex v is not the parent of x in T . Since G is bipartite, the layers
of σ are independent sets and, thus, v is neither the parent of any vertex in the
k-th layer. Hence, v is a leaf of T .

Graph Search Trees and Their Leaves 469

Now assume that v is a branch leaf of the L-tree T of the BFS ordering σ.
Let r be the start vertex of σ. Let w be a vertex different from v and r. Consider
the r-w-path P in T . Since G is bipartite, the edges of G and, thus, the edges
of T only connect vertices of consecutive layers. Furthermore, every vertex has
a neighbor in its preceding layer. Thus, P has distG(r, w) edges. Since v is a
leaf of T , P does not contain v. Therefore, P is also contained in G − v and
distG−v(r, w) = distG(r, w).
�

To check whether the condition of Theorem 4.5 is fulfilled, we simply make
two all-pair-shortest paths computations and compare the results. This can be
done in O(n(G) · m(G)) by using O(n(G)) many BFS computations.

Corollary 4.6. Given a connected bipartite graph G and a vertex v ∈ V (G), we
can decide in time O(n(G) · m(G)) whether v is the L-branch leaf of some BFS
ordering of G.

The results of Theorem 4.4 and Corollary 4.6 are quite surprising since the
L-tree recognition problem of BFS is NP-hard on bipartite graphs [29] while the
F-tree recognition problem of BFS can be solved in linear time [18,24].

Branch Leaves of MNS-like Searches. For several subsearches of MNS, the recog-
nition problem of F-branch leaves is NP-complete on weakly chordal graphs.

Theorem 4.7. Let A be one of the following searches: LBFS, LDFS, MCS,
MNS. It is NP-complete to decide whether a vertex of a weakly chordal graph G
is an F-branch leaf of some A-ordering.

Proof. The proof of the theorem is inspired by the NP-completeness proof of
the F-tree recognition problem of MNS given by Beisegel et al. [2]. We con-
struct a polynomial-time reduction from 3-SAT. Let I be an instance of 3-SAT.
W.l.o.g. we may assume that I contains at least two clauses. We construct the
corresponding graph G(I) as follows. Let X = {x1, . . . , xk, x1, . . . , xk} be the set
of vertices representing the literals of I. The graph G(I)[X] forms the comple-
ment of the matching in which xi is matched to xi for every i ∈ {1, . . . , k}. Let
C = {c1, . . . , c�} be the set of vertices representing the clauses of I. The set C
forms an independent set in G(I) and every clause vertex ci is adjacent to each
vertex of X whose corresponding literal is contained in the clause associated
with ci. Additionally, we add a universal vertex t.

Assume G(I) has a fulfilling assignment B. Then we create the following
A-ordering σ. We first number all literal vertices of literals that are set to true
in B and then we number t. Since these vertices form a clique, this ordering is a
prefix of an A-ordering. We number the remaining vertices following an arbitrary
A-ordering. As B is fulfilling, all clause vertices and all literal vertices have a
neighbor that is to the left of t in σ. Thus, t is an F-branch leaf of σ.

Now assume that t is an F-branch leaf of the A-ordering σ of G(I). Let S
be the set of literal vertices that are to the left of t in σ. Since t is universal
and the edges xixi are missing, the set S contains at most one literal vertex for

470 R. Scheffler

every variable. Thus, we can define an assignment B by giving all literals whose
vertices are contained in S the value true. If some variable value is not fixed,
then we choose an arbitrary value for the variable. If a clause vertex has a parent
in the F-tree T of σ, then this parent is an element of S since t is a leaf in T . If
the clause vertex ci does not have a parent in T , then ci is the first vertex of σ.
Since there are at least two clause vertices, the second vertex of σ is not t but a
literal vertex adjacent to ci. Therefore, every clause vertex has a neighbor in S
and, thus, B is a fulfilling assignment.

To see that G(I) is weakly chordal, we first observe that every pair (xi, xi)
forms a two-pair in G(I). Spinrad and Sritharan [31] showed that the graph that
results from the addition of an edge between a two-pair is weakly chordal if and
only if the initial graph is weakly chordal. If we add all the edges xixi, then the
resulting graph is a split graphs and, thus, G(I) is weakly chordal.
�

5 Branch Leaves and Chordal Graphs

Branch Leaves of MNS-Like Searches. MNS and all of its subsearches compute
PEOs of chordal graphs [12,32]. Thus, any F-tree or L-tree of an MNS ordering
is also an F-tree or L-tree of some PEO. Beisegel et al. [2] showed that this
also holds the other way around for a large family of graph searches including
LBFS, LDFS, MCS, and MNS, i.e., the rooted F-trees and rooted L-trees of
these searches on chordal graphs are exactly the rooted F-trees and rooted L-
trees of PEOs, respectively. Therefore, we will only characterize F-branch leaves
and L-branch leaves of PEOs.

We start by showing that the L-branch leaves of PEOs of a chordal graph
are exactly the graph’s simplicial vertices.

Theorem 5.1. Let G be a connected chordal graph with n(G) ≥ 2. A vertex
v ∈ V (G) is an L-branch leaf of some PEO of G if and only if v is simplicial.

Proof. If v is a simplicial vertex, then there is a PEO σ that ends with v. Vertex
v is an L-branch leaf of σ.

For the other direction, let σ be a PEO and let v be a non-simplicial vertex
of G. Hence, not all neighbors of v are to the left of v in σ. Let w be the leftmost
neighbor of v in σ that is to the right of v in σ. Let x be the parent of w in the
L-tree T of σ. If x is not equal v, then it holds v ≺σ x ≺σ w. As σ is a PEO and
vw, xw ∈ E(G), the edge vx is also in E(G); a contradiction to the choice of w.
Hence, v is the parent of w in T and v is not an L-branch leaf of σ.
�

Since we can decide in linear time whether a vertex is simplicial [1], we can
recognize L-branch leaves of PEOs in linear time.

Corollary 5.2. Given a connected chordal graph G and a vertex v ∈ V (G), we
can decide in time O(n(G)+m(G)) whether v is the L-branch leaf of some PEO
of G. Therefore, we can also decide in time O(n(G) + m(G)) whether v is the
L-branch leaf of some LBFS, LDFS, MCS, or MNS ordering.

Graph Search Trees and Their Leaves 471

Obviously, simplicial vertices are also F-branch leaves of PEOs. However,
there are further F-branch leaves.

Theorem 5.3. Let G be a connected chordal graph with n(G) ≥ 2. A vertex
v ∈ V (G) is an F-branch leaf of some PEO of G if and only if the graph G[NG(v)]
has a dominating clique.

Proof. First assume that G[NG(v)] has a dominating clique C. It is obvious that
there is an LBFS ordering σ of G that starts with the vertices of C. The ordering
σ is a PEO. Since all neighbors of v have a neighbor in C or are elements of C,
v is an F-branch leaf of σ.

Now let v be an F-branch leaf of the PEO σ. Let S be the set of neighbors
of v that are to the left of v in σ. The set S induces a clique of G. Thus, if
S = NG(v), then G[NG(v)] is a clique and we are done. Hence, we may assume
that there is a vertex w ∈ NG(v) \ S. As w is not a child of v in the F-tree of
σ, there is a vertex x ∈ NG(w) with x ≺σ v. Since σ is a PEO, vertex x is a
neighbor of v and, thus, x ∈ S. Thus, any neighbor of v that is not in S has a
neighbor in S and, hence, S induces a dominating clique of G[NG(v)].
�

To decide the complexity of the F-branch leaf recognition problem of PEOs,
we examine the complexity of deciding the existence of a dominating clique in a
chordal graph. Kratsch et al. [21] showed that such a clique exists if and only if
the diameter of the graph is at most three.

Theorem 5.4 (Kratsch et al. [21]). A chordal graph G has a dominating
clique if and only if the diameter of G is at most three.

As the diameter of a graph can be determined by computing n(G) many
BFS orderings, we can decide the existence of a dominating clique in a chordal
graph in polynomial time. Although it is unlikely that the diameter of a chordal
graph can be computed in linear time,1 we can improve our algorithm to decide
the existence of a dominating clique in linear time. To this end, we can use the
following result of Corneil et al. [9].

Theorem 5.5 (Corneil et al. [9]). Let G be a chordal graph and let v ∈ V (G)
be the end-vertex of some LBFS ordering of G. If ecc(v) < diam(G), then ecc(v)
is even and ecc(v) = diam(G) − 1.

Combining Theorems 5.3 to 5.5, we can give a linear-time recognition algo-
rithm for F-branch leaves of PEOs.

Corollary 5.6. Given a chordal graph G and a vertex v ∈ V (G), we can decide
in time O(n(G) + m(G)) whether v is an F-branch leaf of some PEO of G.
Therefore, we can also decide in time O(n(G) + m(G)), whether v is the F-
branch leaf of some LBFS, LDFS, MCS, or MNS ordering.

1 Even on split graphs, the diameter cannot be computed in subquadratic time unless
the Strong Exponential Time Hypothesis fails [5].

472 R. Scheffler

u v w x y

z

Fig. 1. The given graph G is chordal. There is no dominating clique in the graph
G[NG(z)]. However, the given spanning tree is the F-tree of the BFS ordering
(w, v, x, z, u, y) and, thus, z is a F-branch leaf of BFS.

Proof. Due to Theorems 5.3 and 5.4, it is sufficient to check whether G′ =
G[NG(v)] has diameter 3. We compute an LBFS ordering σ of G′ in linear time.
Let v be the end-vertex of σ. We compute the eccentricity of v in G′ in linear
time by starting a BFS in v. If eccG′(v) > 3, then the diameter of G′ is larger
than 3. If eccG′(v) = 3, then, by Theorem 5.5, diam(G′) = 3. If eccG′(v) < 3,
then diam(G′) ≤ eccG′(v) + 1 ≤ 3, due to Theorem 5.5.
�

Branch Leaves of BFS. The condition given in Theorem 5.3 is also sufficient for
a vertex to be a BFS F-branch leaf since every LBFS ordering is also a BFS
ordering. However, it is not necessary as can be seen in Fig. 1. To characterize
BFS F-branch leaves of chordal graphs, we start with the following two lemmas.

Lemma 5.7. Let G be a chordal graph and let r be a vertex in V (G). Let x and
y be two vertices in N i

G(r). If there is a vertex z ∈ N i+1
G (r) which is adjacent to

both x and y, then xy ∈ E(G).

Lemma 5.8. Let G be a chordal graph and let r be a vertex in V (G). Let x and
y be two vertices in N i

G(r). If xy ∈ E(G), then NG(x) ∩ N i−1
G (r) ⊆ NG(y) or

NG(y) ∩ N i−1
G (r) ⊆ NG(x).

The next lemma makes a statement about the distances of neighbors of a
vertex in a chordal graph.

Lemma 5.9. Let G be a connected chordal graph and let v ∈ V (G). For any
x, y ∈ NG(v), the distance between x and y in G − v is equal to the distance
between x and y in G[NG(v)].

Using Lemmas 5.7 to 5.9, we characterize BFS F-branch leaves of chordal
graphs.

Theorem 5.10. Let G be a connected chordal graph with n(G) ≥ 2. A vertex
v ∈ V (G) is an F-branch leaf of some BFS ordering of G if and only if the
radius of G[NG(v)] is at most two.

Proof. First assume that G[NG(v)] has radius two and let w be a central vertex of
G[NG(v)]. There is a BFS ordering σ that starts with w followed by all neighbors
of w that are not v. Vertex v is an F-branch leaf of σ since all neighbors of v
have some neighbor in NG[w] \ {v} or are equal to w.

Graph Search Trees and Their Leaves 473

v w

v w

v

w

v

w

w

Fig. 2. Two cases of the proof of Theorem 5.10. The vertical arrangement of the vertices
represent their layers. Thick edges are edges of the F-tree. Dotted edges are not present.
Dashed edges are implied by either Lemma 5.7 or Lemma 5.8.

Now assume that v ∈ N i
G(r) is an F-branch leaf of some BFS ordering σ of

G starting with r. Let T be the F-tree of σ rooted in r and let v′ be the parent
of v in T . Since T is an BFS F-tree rooted in r, it holds that v′ ∈ N i−1

G (r).
We claim that in G−v vertex v′ has a distance of at most two to every element

of NG(v). Let w ∈ NG(v) \ {v′}. If v′w ∈ E(G), then v′ and w have distance
one in G−v. Therefore, we may assume in the following that v′w /∈ E(G). Then
Lemma 5.7 implies that w /∈ N i−1

G (r). Furthermore, the parent of w in T , say
w′, is different from v and v′. If v′w′ ∈ E(G), then v′ and w have distance two
in G − v via the path (v′, w′, w). Thus, we may also assume that v′w′ /∈ E(G).

First assume that w ∈ N i
G(r) (see left part of Fig. 2). Then w′ ∈ N i−1

G (r).
Lemma 5.8 implies that w′ is adjacent to v because vw, vv′, and ww′ ∈ E(G)
but v′w /∈ E(G). Now the non-existence of v′w′ contradicts Lemma 5.7.

Now assume that w ∈ N i+1
G (r) (see right part of Fig. 2). Then, due to

Lemma 5.7, vw′ ∈ E(G). Since v′w′ /∈ E(G), the parent of w′, say w′′, is different
from v′. Since w′ is the parent of w, it holds that w′ ≺σ v. This implies that
w′′ ≺σ v′. Therefore, w′′ is not adjacent to v since, otherwise, v′ would not be
the parent of v. The non-existence of both v′w′ and vw′′ contradicts Lemma 5.8.

Summarizing, v′ has distance at most two in G − v to any neighbor of v. By
Lemma 5.9, v′ has distance at most two in G[NG(v)] to any neighbor of v in G
and, thus, G[NG(v)] has radius at most two.
�

Chepoi and Dragan [7] presented a linear-time algorithm that computes a
central vertex of a chordal graph. As the eccentricity of such a vertex can be
computed in linear time using BFS, we can compute the radius of a chordal
graph and, in particular, of G[NG(v)] in linear time. Thus, Theorem 5.10 implies
a linear-time algorithm for the BFS F-branch leaf recognition on chordal graphs.

Corollary 5.11. Given a connected chordal graph G and a vertex v ∈ V (G),
we can decide in time O(n(G) + m(G)) whether v is an F-branch leaf of some
BFS ordering of G.

Branch Leaves of DFS. As we have seen in Theorem 4.3, the F-branch leaf
recognition problem of DFS is NP-complete on chordal graphs. However, there
is a simple characterization of DFS F-branch leaves of split graphs.

Theorem 5.12. Let G be a connected split graph with n(G) ≥ 2. A vertex
v ∈ V (G) is an F-branch leaf of some DFS ordering if and only if v is not a cut
vertex of G.

474 R. Scheffler

As cut vertices can be identified in linear time, Theorem 5.12 leads directly
to a linear-time algorithm for the DFS F-branch leaf recognition on split graphs.

Corollary 5.13. Given a connected split graph G and a vertex v ∈ V (G), we
can decide in time O(n(G)+m(G)) whether v is an F-branch leaf of some DFS
ordering of G.

In contrast to this result, it is NP-hard to decide whether a vertex of a
split graph is a DFS L-branch leaf (see Corollary 4.2). Thus, the L-branch leaf
recognition of DFS seems to be harder than the F-branch leaf recognition of DFS,
a surprising contrast to the hardness of the DFS F-tree recognition problem [29]
and the easiness of the DFS L-tree recognition problem [17,20]. Recall that we
have made a similar observation for the complexity of the branch leaf and tree
recognition of BFS (see Theorem 4.4 and Corollary 4.6).

References

1. Beisegel, J., et al.: On the end-vertex problem of graph searches. Discret. Math.
Theor. Comput. Sci. 21(1) (2019). https://doi.org/10.23638/DMTCS-21-1-13

2. Beisegel, J., et al.: The recognition problem of graph search trees. SIAM J. Discret.
Math. 35(2), 1418–1446 (2021). https://doi.org/10.1137/20M1313301

3. Beisegel, J., Köhler, E., Scheffler, R., Strehler, M.: Linear time LexDFS on chordal
graphs. In: Grandoni, F., Herman, G., Sanders, P. (eds.) 28th Annual European
Symposium on Algorithms (ESA 2020). LIPIcs, vol. 173, pp. 13:1–13:13. Schloss
Dagstuhl-Leibniz-Zentrum für Informatik, Dagstuhl (2020). https://doi.org/10.
4230/LIPIcs.ESA.2020.13

4. Berry, A., Blair, J.R., Heggernes, P., Peyton, B.W.: Maximum cardinality search for
computing minimal triangulations of graphs. Algorithmica 39(4), 287–298 (2004).
https://doi.org/10.1007/s00453-004-1084-3

5. Borassi, M., Crescenzi, P., Habib, M.: Into the square: On the complexity of some
quadratic-time solvable problems. In: Crescenzi, P., Loreti, M. (eds.) Proceedings
of ICTCS 2015, the 16th Italian Conference on Theoretical Computer Science,
ENTCS, vol. 322, pp. 51–67 (2016). https://doi.org/10.1016/j.entcs.2016.03.005

6. Charbit, P., Habib, M., Mamcarz, A.: Influence of the tie-break rule on the end-
vertex problem. Discrete Math. Theor. Comput. Sci. 16(2), 57 (2014). https://doi.
org/10.46298/dmtcs.2081

7. Chepoi, V., Dragan, F.: A linear-time algorithm for finding a central vertex of a
chordal graph. In: van Leeuwen, J. (ed.) ESA 1994. LNCS, vol. 855, pp. 159–170.
Springer, Heidelberg (1994). https://doi.org/10.1007/BFb0049406

8. Corneil, D.G., Dalton, B., Habib, M.: LDFS-based certifying algorithm for the
minimum path cover problem on cocomparability graphs. SIAM J. Comput. 42(3),
792–807 (2013). https://doi.org/10.1137/11083856X

9. Corneil, D.G., Dragan, F.F., Habib, M., Paul, C.: Diameter determination on
restricted graph families. Discret. Appl. Math. 113(2), 143–166 (2001). https://
doi.org/10.1016/S0166-218X(00)00281-X

10. Corneil, D.G., Dusart, J., Habib, M., Mamcarz, A., De Montgolfier, F.: A tie-break
model for graph search. Discret. Appl. Math. 199, 89–100 (2016). https://doi.org/
10.1016/j.dam.2015.06.011

https://doi.org/10.23638/DMTCS-21-1-13
https://doi.org/10.1137/20M1313301
https://doi.org/10.4230/LIPIcs.ESA.2020.13
https://doi.org/10.4230/LIPIcs.ESA.2020.13
https://doi.org/10.1007/s00453-004-1084-3
https://doi.org/10.1016/j.entcs.2016.03.005
https://doi.org/10.46298/dmtcs.2081
https://doi.org/10.46298/dmtcs.2081
https://doi.org/10.1007/BFb0049406
https://doi.org/10.1137/11083856X
https://doi.org/10.1016/S0166-218X(00)00281-X
https://doi.org/10.1016/S0166-218X(00)00281-X
https://doi.org/10.1016/j.dam.2015.06.011
https://doi.org/10.1016/j.dam.2015.06.011

Graph Search Trees and Their Leaves 475

11. Corneil, D.G., Köhler, E., Lanlignel, J.M.: On end-vertices of lexicographic breadth
first searches. Discret. Appl. Math. 158(5), 434–443 (2010). https://doi.org/10.
1016/j.dam.2009.10.001

12. Corneil, D.G., Krueger, R.M.: A unified view of graph searching. SIAM J. Discret.
Math. 22(4), 1259–1276 (2008). https://doi.org/10.1137/050623498

13. Corneil, D.G., Olariu, S., Stewart, L.: Linear time algorithms for dominating
pairs in asteroidal triple-free graphs. SIAM J. Comput. 28(4), 1284–1297 (1999).
https://doi.org/10.1137/S0097539795282377

14. Corneil, D.G., Olariu, S., Stewart, L.: The LBFS structure and recognition of
interval graphs. SIAM J. Discret. Math. 23(4), 1905–1953 (2009). https://doi.org/
10.1137/S0895480100373455

15. Gorzny, J., Huang, J.: End-vertices of LBFS of (AT-free) bigraphs. Discret. Appl.
Math. 225, 87–94 (2017). https://doi.org/10.1016/j.dam.2017.02.027

16. Habib, M., McConnell, R., Paul, C., Viennot, L.: Lex-BFS and partition refine-
ment, with applications to transitive orientation, interval graph recognition and
consecutive ones testing. Theoret. Comput. Sci. 234(1–2), 59–84 (2000). https://
doi.org/10.1016/S0304-3975(97)00241-7

17. Hagerup, T.: Biconnected graph assembly and recognition of DFS trees. Techni-
cal Report, A 85/03, Universität des Saarlandes (1985). https://doi.org/10.22028/
D291-26437

18. Hagerup, T., Nowak, M.: Recognition of spanning trees defined by graph searches.
Technical Report, A 85/08, Universität des Saarlandes (1985)

19. Hopcroft, J., Tarjan, R.E.: Efficient planarity testing. J. ACM 21(4), 549–568
(1974). https://doi.org/10.1145/321850.321852

20. Korach, E., Ostfeld, Z.: DFS tree construction: algorithms and characterizations.
In: van Leeuwen, J. (ed.) WG 1988. LNCS, vol. 344, pp. 87–106. Springer, Heidel-
berg (1989). https://doi.org/10.1007/3-540-50728-0 37

21. Kratsch, D., Damaschke, P., Lubiw, A.: Dominating cliques in chordal graphs. Dis-
cret. Math. 128(1), 269–275 (1994). https://doi.org/10.1016/0012-365X(94)90118-
X

22. Kratsch, D., Liedloff, M., Meister, D.: End-vertices of graph search algorithms. In:
Paschos, V.T., Widmayer, P. (eds.) CIAC 2015. LNCS, vol. 9079, pp. 300–312.
Springer, Cham (2015). https://doi.org/10.1007/978-3-319-18173-8 22

23. Krueger, R., Simonet, G., Berry, A.: A general label search to investigate classical
graph search algorithms. Discret. Appl. Math. 159(2–3), 128–142 (2011). https://
doi.org/10.1016/j.dam.2010.02.011

24. Manber, U.: Recognizing breadth-first search trees in linear time. Inf. Process.
Lett. 34(4), 167–171 (1990). https://doi.org/10.1016/0020-0190(90)90155-Q

25. Rong, G., Cao, Y., Wang, J., Wang, Z.: Graph searches and their end vertices.
Algorithmica 84, 2642–2666 (2022). https://doi.org/10.1007/s00453-022-00981-5

26. Rose, D.J.: Triangulated graphs and the elimination process. J. Math. Anal. Appl.
32(3), 597–609 (1970). https://doi.org/10.1016/0022-247X(70)90282-9

27. Rose, D.J., Tarjan, R.E., Lueker, G.S.: Algorithmic aspects of vertex elimination on
graphs. SIAM J. Comput. 5(2), 266–283 (1976). https://doi.org/10.1137/0205021

28. Scheffler, R.: Linearizing partial search orders. In: Bekos, M.A., Kaufmann, M.
(eds.) WG 2022. LNCS, vol. 13453, pp. 425–438. Springer, Cham (2022). https://
doi.org/10.1007/978-3-031-15914-5 31

29. Scheffler, R.: On the recognition of search trees generated by BFS and DFS. The-
oret. Comput. Sci. 936, 116–128 (2022). https://doi.org/10.1016/j.tcs.2022.09.018

30. Scheffler, R.: Graph search trees and their leaves. Preprint on arXiv (2023). https://
doi.org/10.48550/arXiv.2307.07279

https://doi.org/10.1016/j.dam.2009.10.001
https://doi.org/10.1016/j.dam.2009.10.001
https://doi.org/10.1137/050623498
https://doi.org/10.1137/S0097539795282377
https://doi.org/10.1137/S0895480100373455
https://doi.org/10.1137/S0895480100373455
https://doi.org/10.1016/j.dam.2017.02.027
https://doi.org/10.1016/S0304-3975(97)00241-7
https://doi.org/10.1016/S0304-3975(97)00241-7
https://doi.org/10.22028/D291-26437
https://doi.org/10.22028/D291-26437
https://doi.org/10.1145/321850.321852
https://doi.org/10.1007/3-540-50728-0_37
https://doi.org/10.1016/0012-365X(94)90118-X
https://doi.org/10.1016/0012-365X(94)90118-X
https://doi.org/10.1007/978-3-319-18173-8_22
https://doi.org/10.1016/j.dam.2010.02.011
https://doi.org/10.1016/j.dam.2010.02.011
https://doi.org/10.1016/0020-0190(90)90155-Q
https://doi.org/10.1007/s00453-022-00981-5
https://doi.org/10.1016/0022-247X(70)90282-9
https://doi.org/10.1137/0205021
https://doi.org/10.1007/978-3-031-15914-5_31
https://doi.org/10.1007/978-3-031-15914-5_31
https://doi.org/10.1016/j.tcs.2022.09.018
https://doi.org/10.48550/arXiv.2307.07279
https://doi.org/10.48550/arXiv.2307.07279

476 R. Scheffler

31. Spinrad, J., Sritharan, R.: Algorithms for weakly triangulated graphs.
Discret. Appl. Math. 59(2), 181–191 (1995). https://doi.org/10.1016/0166-
218X(93)E0161-Q

32. Tarjan, R.E., Yannakakis, M.: Simple linear-time algorithms to test chordality of
graphs, test acyclicity of hypergraphs, and selectively reduce acyclic hypergraphs.
SIAM J. Comput. 13(3), 566–579 (1984). https://doi.org/10.1137/0213035

33. Zou, M., Wang, Z., Wang, J., Cao, Y.: End vertices of graph searches on bipartite
graphs. Inf. Proc. Lett. 173, 106176 (2022). https://doi.org/10.1016/j.ipl.2021.
106176

https://doi.org/10.1016/0166-218X(93)E0161-Q
https://doi.org/10.1016/0166-218X(93)E0161-Q
https://doi.org/10.1137/0213035
https://doi.org/10.1016/j.ipl.2021.106176
https://doi.org/10.1016/j.ipl.2021.106176

Author Index

B
Bandyapadhyay, Sayan 1
Bastide, Paul 16
Baumann, Jakob 30
Belmonte, Rémy 44
Bensmail, Julien 59
Bergougnoux, Benjamin 72
Binucci, Carla 86
Bok, Jan 101
Bonnet, Édouard 116
Bousquet, Nicolas 130

C
Campos, Victor 59
Casel, Katrin 143
Červený, Radovan 157
Chakraborty, Dibyayan 116
Chang, Yeonsu 172
Chaplick, Steven 187
Chaudhary, Juhi 201, 217
Cook, Linda 16

D
Dailly, Antoine 232
Davot, Tom 246
Deschamps, Quentin 130
Di Battista, Giuseppe 86
Didimo, Walter 86
Doron-Arad, Ilan 261
Dragan, Feodor F. 276
Ducoffe, Guillaume 276
Duron, Julien 116
Dvořák, Pavel 305
Dvořák, Zdeněk 291

E
Enright, Jessica 319
Erickson, Jeff 16

F
Fiala, Jiří 101
Folwarczný, Lukáš 305
Fomin, Fedor V. 1, 334, 348
Foucaud, Florent 232
Fraigniaud, Pierre 334
Friedrich, Tobias 143

G
Goedgebeur, Jan 363
Golovach, Petr A. 334, 348
Groenland, Carla 16

H
Hakanen, Anni 232
Harutyunyan, Ararat 44
Havet, Frédéric 376
Hegerfeld, Falko 388
Hong, Seok-Hee 86

I
Inamdar, Tanmay 1
Isenmann, Lucas 246
Issac, Davis 143

J
Jedličková, Nikola 101
Jungeblut, Paul 403

K
Kaufmann, Michael 86
Kelk, Steven 187
Köhler, Noleen 44
Korhonen, Tuukka 72
Kratochvíl, Jan 101
Kratsch, Stefan 388
Kreveld, Marc van 16
Kwon, O-joung 172

© The Editor(s) (if applicable) and The Author(s), under exclusive license
to Springer Nature Switzerland AG 2023
D. Paulusma and B. Ries (Eds.): WG 2023, LNCS 14093, pp. 477–478, 2023.
https://doi.org/10.1007/978-3-031-43380-1

https://doi.org/10.1007/978-3-031-43380-1

478 Author Index

L
Lahiri, Abhiruk 291
Le, Hoàng-Oanh 417
Le, Van Bang 417
Lee, Myounghwan 172
Liotta, Giuseppe 86

M
Máčajová, Edita 363
Maia, Ana Karolinna 59
Mannens, Isja 16
Meeks, Kitty 319
Melissinos, Nikolaos 44
Meuwese, Ruben 187
Mihalák, Matúš 187
Milanič, Martin 432
Morin, Pat 86

N
Nasre, Meghana 447
Niklanovits, Aikaterini 143
Nimbhorkar, Prajakta 447
Nisse, Nicolas 59

O
Opler, Michal 305

P
Parreau, Aline 130
Pettersson, William 319
Pfretzschner, Matthias 30
Picasarri-Arrieta, Lucas 376
Pudlák, Pavel 305

R
Rambaud, Clément 376
Ranjan, Keshav 447
Razgon, Igor 72
Renders, Jarne 363
Roy, Sanjukta 246
Rutter, Ignaz 30

S
Sagunov, Danil 348
Šámal, Robert 305
Scheffler, Robert 462
Schneider, Samuel 403
Seifrtová, Michaela 101
Shachnai, Hadas 261
Silva, Ana 59
Simonov, Kirill 1, 348
Stamoulis, Georgios 187
Suchý, Ondřej 157
Sylvester, John 319

T
Tappini, Alessandra 86
Thiebaut, Jocelyn 246

U
Ueckerdt, Torsten 403
Uno, Yushi 432

V
Vermeulen, Jordi L. 16
Vu, Tung Anh 305

Z
Zehavi, Meirav 201, 217
Zeif, Ziena 143

	Preface
	Organization
	Contents
	Proportionally Fair Matching with Multiple Groups
	1 Introduction
	1.1 Our Results and Contributions
	1.2 Related Work

	2 Preliminaries
	3 A (14,1+4|OPT|)-Approximation for Proportionally Fair Matching
	3.1 The Analysis

	4 A Polynomial-Time Approximation in the -Limited Case
	5 An Exact Algorithm for Proportionally Fair Matching
	6 Hardness of Approximation for Proportionally Fair Matching
	7 Conclusions
	References

	Reconstructing Graphs from Connected Triples
	1 Introduction
	1.1 Our Results
	1.2 Related Work

	2 Preliminaries
	3 Algorithm for Finding Consistent Graphs from Triples
	4 Unique Reconstruction of Trees
	5 Further Reconstructible Graph Classes
	6 Reconstruction from Connected k-Sets
	7 Conclusion
	References

	Parameterized Complexity of Vertex Splitting to Pathwidth at Most 1
	1 Introduction
	2 Preliminaries
	3 FPT Algorithms for Pathwidth-One Vertex Explosion
	3.1 Branching Algorithm
	3.2 Quadratic Kernel

	4 FPT Algorithms for Pathwidth-One Vertex Splitting
	4.1 Linear Kernel
	4.2 Branching Algorithm

	5 FPT Algorithms for Splitting and Exploding to MSO2-Definable Graph Classes of Bounded Treewidth
	6 Conclusion
	References

	Odd Chromatic Number of Graph Classes
	1 Introduction
	2 Preliminaries
	3 Graphs of Bounded Degree and Graphs of Large Girth
	4 Graphs of Bounded Modular-Width
	5 Interval Graphs
	6 Conclusion
	References

	Deciding the Erdős-Pósa Property in 3-Connected Digraphs
	1 Introduction
	2 Preliminaries
	3 Digraphs with Neither Sources nor Sinks
	4 Digraphs with Sources and Sinks
	References

	New Width Parameters for Independent Set: One-Sided-Mim-Width and Neighbor-Depth
	1 Introduction
	2 Preliminaries
	3 O-Mim-Width
	4 Neighbor-Depth of Graphs of Bounded Sim-Width
	5 Conclusion
	References

	Nonplanar Graph Drawings with k Vertices per Face
	1 Introduction
	2 Basic Definitions
	3 Density of k+-Real Face Graphs
	3.1 k+-Real Face Graphs, with k 2
	3.2 1+-Real Face Graphs

	4 Density of Outer k+-Real Face Graphs
	4.1 Outer k+-Real Face Graphs, with k 2
	4.2 Outer 1+-Real Face Graphs

	5 Inclusion Relationships
	6 Open Problems
	References

	Computational Complexity of Covering Colored Mixed Multigraphs with Degree Partition Equivalence Classes of Size at Most Two (Extended Abstract)
	1 Introduction
	2 Preliminaries
	2.1 Definitions
	2.2 Our Results

	3 Proof of Theorem 2 - Polynomial Cases
	4 Proof of Theorem 2 - NP-Hard Cases
	5 Proof of Theorem 1
	6 Concluding Remarks
	References

	Cutting Barnette Graphs Perfectly is Hard
	1 Introduction
	2 Preliminaries
	3 Proof of Theorem 1
	3.1 Preparatory Lemmas
	3.2 Reduction
	3.3 G(I) Is Barnette
	3.4 Properties of Variable and Crossing Gadgets
	3.5 Properties of Clause Gadgets
	3.6 Existence of Perfect Matching Cut Implies Satisfiability
	3.7 Satisfiability Implies the Existence of a Perfect Matching Cut

	References

	Metric Dimension Parameterized by Treewidth in Chordal Graphs
	1 Introduction
	2 Preliminaries
	2.1 Nice Clique Trees
	2.2 Clique Separators and Resolving Sets

	3 Algorithm Description
	3.1 Extension of the Problem
	3.2 Dynamic Programming
	3.3 Algorithm

	4 Proof of Theorem 1
	References

	Efficient Constructions for the Győri-Lovász Theorem on Almost Chordal Graphs
	1 Introduction
	2 Preliminaries
	3 GL-Partition for Chordal Graphs
	3.1 GL-Partition for Unweighted Chordal Graphs
	3.2 GL-Partition for Weighted Chordal Graphs

	4 GL-Partition for HHI42-free
	References

	Generating Faster Algorithms for d-Path Vertex Cover
	1 Introduction
	2 Fundamental Definitions and Basic Observations
	3 The Output Algorithm and Its Correctness
	4 The Generating Algorithm
	4.1 Overview of the Algorithm
	4.2 Color function

	5 Generating Subgraph Branching Rules
	5.1 Overview of the Approach
	5.2 DominanceFree function

	6 Applying (F,A,)-Algorithm to d-PVC
	6.1 Handmade Rules
	6.2 Obtained Results

	7 Future Research Directions
	References

	A New Width Parameter of Graphs Based on Edge Cuts: -Edge-Crossing Width
	1 Introduction
	2 Preliminaries
	3 Relationships Between Width Parameters
	4 An FPT Approximation Algorithm for -Edge-Crossing Width
	5 Algorithmic Applications on Coloring Problems
	6 Conclusion
	References

	Snakes and Ladders: A Treewidth Story
	1 Introduction
	2 Preliminaries
	3 Results
	4 Future Work
	References

	Parameterized Results on Acyclic Matchings with Implications for Related Problems
	1 Introduction
	2 Preliminaries
	3 FPT-Inapproximation Results
	4 FPT Algorithm for AMBT
	5 Conclusion and Future Research
	References

	P-Matchings Parameterized by Treewidth
	1 Introduction
	2 Preliminaries
	3 Algorithm for Acyclic Matching
	4 Algorithm for c-Disconnected Matching
	5 Lower Bound for Disconnected Matching
	6 Conclusion
	References

	Algorithms and Hardness for Metric Dimension on Digraphs
	1 Introduction
	2 Digraphs Whose Underlying Graph is a Tree
	3 Orientations of Unicyclic Graphs
	4 Modular Width
	5 NP-Hardness for Restricted DAGs
	6 Conclusion
	References

	Degreewidth: A New Parameter for Solving Problems on Tournaments
	1 Introduction
	2 Preliminaries
	2.1 Notations
	2.2 Links to Other Parameters

	3 Degreewidth
	3.1 Degreewidth of Regular Tournaments
	3.2 Computational Complexity
	3.3 An Approximation Algorithm to Compute Degreewidth

	4 Results on Sparse Tournaments
	4.1 U-Tournaments
	4.2 A Polynomial Time Algorithm for Sparse Tournaments

	5 Degreewidth as a Parameter
	5.1 Dominating Set Parameterized by Degreewidth
	5.2 FAST and FVST in Sparse Tournaments

	6 Conclusion
	References

	Approximating Bin Packing with Conflict Graphs via Maximization Techniques
	1 Introduction
	1.1 Related Work
	1.2 Techniques
	1.3 Organization

	2 Preliminaries
	2.1 Coloring and Independent Sets
	2.2 Bin Packing with Conflicts
	2.3 Bin Packing Algorithms

	3 Approximations for Perfect and Bipartite Graphs
	4 Split Graphs
	5 Asymptotic Hardness for Bipartite and Split Graphs
	6 Discussion
	References

	i-Metric Graphs: Radius, Diameter and all Eccentricities
	1 Introduction
	2 General Case of i-Metric Graphs for Arbitrary i0
	2.1 Centers of i-Metric Graphs
	2.2 Approximating Radii and Diameters of i-Metric Graphs
	2.3 Approximating all Eccentricities in i-Metric Graphs

	3 Graphs with 1-Metric
	3.1 The Eccentricity Function on 1-Metric Graphs is Almost Unimodal
	3.2 Diameters of Centers of 1-Metric Graphs
	3.3 Finding a Central Vertex of an 1-Metric Graph

	References

	Maximum Edge Colouring Problem On Graphs That Exclude a Fixed Minor
	1 Introduction
	1.1 Our results

	2 Preliminaries
	3 PTAS for Minor-Free Graphs
	3.1 Baker game

	4 Hardness on 1-apex graphs
	5 Future directions
	References

	Bounds on Functionality and Symmetric Difference – Two Intriguing Graph Parameters
	1 Introduction
	1.1 Our Results

	2 Functionality
	2.1 Finite Projective Planes
	2.2 Upper Bound for General Graphs
	2.3 Random Graphs

	3 Symmetric Difference
	3.1 Circular Arc Graphs
	3.2 Interval Graphs

	References

	Cops and Robbers on Multi-Layer Graphs
	1 Introduction
	1.1 Further Related Work
	1.2 Outline and Contributions

	2 Definitions and Notation
	3 Counter Examples and Anti-Monotonicity Results
	4 Complexity Results
	5 Extremal Multi-Layer Cop-Number
	6 Multi-Layer Analogue of Meyniel's Conjecture
	7 Conclusion and Open Problems
	References

	Parameterized Complexity of Broadcasting in Graphs
	1 Introduction
	2 Preliminaries
	3 Telephone Broadcast Parameterized by the Cyclomatic Number
	4 Telephone Broadcast Parameterized by the Vertex Cover Number
	5 Kernelization for the Parameterization by k=n-t
	6 Conclusion
	References

	Turán's Theorem Through Algorithmic Lens
	1 Introduction
	2 Algorithms
	2.1 Compression Algorithm for r + 1
	2.2 Looking for Larger Cliques
	2.3 Independent Set above Turán's Bound

	3 Lower Bounds
	4 Conclusion
	References

	On the Frank Number and Nowhere-Zero Flows on Graphs
	1 Introduction
	1.1 Preliminaries

	2 Theoretical Results
	3 Algorithm
	3.1 Results

	References

	On the Minimum Number of Arcs in 4-Dicritical Oriented Graphs
	1 Introduction
	2 The 4-Ore Digraphs and Their Properties
	3 Proof of Theorem 8
	References

	Tight Algorithms for Connectivity Problems Parameterized by Modular-Treewidth
	1 Introduction
	2 Preliminaries
	3 Cut and Count for Modular-Treewidth
	4 Reduction to Treewidth ()
	5 Dynamic Programming Algorithms
	5.1 Connected Vertex Cover
	5.2 Feedback Vertex Set ()

	References

	Cops and Robber - When Capturing Is Not Surrounding
	1 Introduction
	1.1 Our Results
	1.2 Related Work
	1.3 Outline of the Paper

	2 Relating the Different Versions
	3 Explicit Graphs and Constructions
	3.1 Complete Bipartite Graphs
	3.2 Regular Graphs with Leaves
	3.3 Graphs from Mutually Orthogonal Latin Squares
	3.4 Line Graphs of Complete Graphs

	4 When Capturing Is Not Surrounding
	5 Conclusion
	References

	Complexity Results for Matching Cut Problems in Graphs Without Long Induced Paths
	1 Introduction and Results
	2 Preliminaries
	3 Proof of Theorem 4 and Theorem 5
	3.1 The Reduction

	4 Proof of Theorem 6
	5 Conclusion
	A Limits of Our Reduction in the Proof of Theorem 4
	References

	Upper Clique Transversals in Graphs
	1 Introduction
	2 Preliminaries
	3 Intractability of UCT for Some Graph Classes
	4 A Linear-Time Algorithm for UCT in Split Graphs
	5 A Linear-Time Algorithm for UCT in Proper Interval Graphs
	6 Conclusion
	References

	Critical Relaxed Stable Matchings with Two-Sided Ties
	1 Introduction
	2 Preliminaries
	3 Algorithm for Computing CRITICAL-RSM
	4 Correctness of Our Algorithm
	5 Conclusion
	References

	Graph Search Trees and Their Leaves
	1 Introduction
	2 Preliminaries
	3 Root Leaves
	4 NP-Hardness of Branch Leaf Recognition
	5 Branch Leaves and Chordal Graphs
	References

	Author Index

