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Preface

The development of the railway system faces a number of challenges:

• To improve and demonstrate railway system safety, security and reliability
• To reduce production costs, time to market, and running costs
• To increase system capacity and reduce carbon emissions

In the context of the current digital transformation, it requires integrated envi-
ronments and methods that support different abstraction levels and different views,
including:

• System architecture
• Safety analysis
• Security analysis
• Verification tools and methods

It is more obvious than ever that there is a need for close collaboration of industry
and academia.

The RSSRail conferences do just that: bringing together researchers and engineers
interested in building critical railway applications and systems, as a working conference
in which research advances are discussed and evaluated by both researchers and engi-
neers, focusing on their potential to be industrially deployed, keeping inmind the current
digital transformation. A key goal is helping the development of advanced methods and
tools that will ensure that rail systemsmeet the safety requirements. To foster this collab-
oration is at the heart of the RSSRail conference series. Especially after the pandemic,
we see huge expectations for a fruitful physical event allowing for networking activities
and an informal, but fundamental sharing of knowledge.

The RSSRail conference series started in Paris in 2016 and continued 2017 in Pistoia.
In 2019, the conference took place in Lille. In order to adapt to the Covid context, the
2021’s occurrence was a special issue of the journal of “Formal aspects of computing”,
instead of a physical meeting. In 2022, we were back to where we started, in Paris once
again. The 2023 meeting was held in Berlin, the fifth RSSRail conference, but the sixth
instance of RSSRail, and in a sense we are also back to where the ideas of RSSrail
once had a home: If we assume a heritage from the previous Forms/Format cycle of
conferences which took place many times in Braunschweig, we should say that formal
methods applied to railways is again back in Germany.

This volume contains papers presented at the fifth international conference on Reli-
ability, Safety and Security of Railway Systems: Modelling, Analysis, Verification and
Certification (RSSRail 2023) at 10–12 October 2023, organized by TU Berlin.

This occurrence of RSSRAIL attracted 29 submissions from 11 countries. 13 papers
were selected after a rigorous review process in which every paper received at least
three reviews from committee members or from sub-reviewers of committee members.
3 papers were selected for poster presentation.
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The conference covered topics related to all aspects of reliability, safety and security
engineering for railway systems and networks including:

• Safety in development process and safety management
• Integrated approaches to safety and security
• System safety analysis
• Formal modelling and verification techniques
• System reliability
• Validation according to the standards
• Safety and security argumentation
• Fault and intrusion modelling and analysis
• Evaluation of system capacity, energy consumption, cost and their interplay.
• Tool and model integration, toolchains
• Domain specific language and modelling frameworks
• Model reuse for reliability, safety, and security
• Modelling for maintenance strategy engineering

Three prominent researchers and leading experts working in railway engineering, Dr.
IngLydiaKaiser (TUBerlin), Andreas Freese (DBSYSTEL) andAryldoRusso (GESTE
Engineering) kindly agreed to deliver keynote talks. The corresponding abstracts are
included in the current volume.

Even more so than before, the Berlin RSSRail conference offered different opportu-
nities for discussion and development of ideas, giving room and time to all participants.
We were happy that once again tutorials were offered, covering the topics of human fac-
tors, risk assessment, EULYNX andmodel checking.We verymuch thank the presenters
for sharing their knowledge. The conference was completed by three workshop sessions
on specific research questions as well as a concluding panel, discussing the challenges
and chances of research: How can we get faster, more efficient, more effective, helping
to modernize, digitalise and automate the railway system.

We would like to thank all the committee members and the additional reviewers
for all their efforts. We are indebted to TU Berlin for their involvement in the planning
and organization of this event and administrative tasks. We particularly thank Theodor
Thomas from TU Berlin for his work in preparing the LNCS volume.

We would like to mention the precious advices from Alexander Romanowski and
his huge involvement in the publicity activities.

We are very grateful toRonanNugent fromSpringer for supporting the publication of
these proceedings in theLNCS series. Butmost of all, our thanks go to all the contributors
and those who attended the conference for making this conference a success.

July 2023 Birgit Milius
Simon Collart-Dutilleul

Thierry Lecomte
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Abstracts of Keynotes



Unleashing the Potential of Systems Engineering: From
Theory to Practice

Lydia Kaiser

Technische Universität Berlin, Fakultät V Verkehrs- und Maschinensysteme, Institut
für Werkzeugmaschinen und Fabrikbetrieb (IWF) Chair of Digital Engineering 4.0

lydia.kaiser@tu-berlin.de

Abstract. In an increasingly interconnected and digital world, organiza-
tions are facing ever greater challenges in the development and imple-
mentation of complex systems. Systems engineering offers an approach
to address these challenges and develop innovative solutions. The Inter-
national Council on Systems Engineering (INCOSE) is dedicated to this
topic and brings together actors to develop standards and spread guide-
lines and best practices. In Germany, the Advanced Systems Engineering
(ASE) initiative is addressing the transition of value creation, defining
the focus areas and assessing the status Quo in Germany.

One focus of the keynote is to examine the implementation of systems
engineering in organizations. For that purpose, the INCOSE activities
and the ASE initiative will be presented first. Based on the experiences
in the leading-edge cluster it’s OWL - Intelligent Technical Systems
OstWestfalenLippe, recurring hurdles will be identified and best prac-
tices highlighted. Beyond that, the keynote addresses current trends and
developments in systems engineering and discusses the role of artificial
intelligence and agility for the future of systems engineering.

Thekeynotewill provide the audiencewith a comprehensive overview
of systems engineering and encourage discussion on how systems
engineering can become reality in organizations.



Enterprise IT in a Large Organisation is a Challenge.
Even More Challenging if the “Large Organisation” is

Deutsche Bahn AG in the Middle of the Digital Revolution

Andreas Freese

DB Systel GmbH, Jürgen-Ponto-Platz 1, 60329 Frankfurt am Main, Germany
Andreas.A.Freese@deutschebahn.com

Abstract. DB Systel, the digital partner of Deutsche Bahn, has been
on the pioneering fast track for several years: transforming the entire
organisation with over 6,000 employees into an adaptive network of self-
organising teams. At the same time, IT has beenmigrated from traditional
data centres to the public cloud, and development platforms and DevOps
have established modern, scalable IT production. Last but not least, the
company has focused on IT-OT convergence due to the intense digitali-
sation of operational technology (OT) everywhere and the strong growth
in OT assets through extensive rollouts, for example through Digitale
Schiene Deutschland.

State-of-the-art IT production systems and the regulated, highly rules-
driven world of railway infrastructure and its supervisory and approval
structures come together on this fast track. This raises a number of ques-
tions that today’s processes and rules may not be able to fully answer
— for example, questions about the use of artificial intelligence, cloud
technologies and agile methods in software development for security and
safety-critical systems. But we will certainly be able to answer these
questions using the processes and rules of tomorrow.What will those be?
I would like to take you part on this fast track in my keynote address.



Continuous Research for Innovation

Aryldo Russo

Geste Engineering France Sas, 19 Rue Du 4 Septembre, 75002 Paris, France
aryldo.russo@geste.group

Abstract. In several domains, the inertia that can be seen while taking
the risk and trying new ideas is bigger than what we could wish for,
and tis is stronger as the risk of harming people increases. As we can
imagine, this is the case in the railway domain, where a failure might
lead to a hazard that potentially can cause several deaths. Luckily, this
fear, even if it can slow down the attempts to put in place new ideas,
do not block totally the quest for innovation. These ideas are not only
disruptive technologies, like hyperloops, or fully autonomous vehicles,
but rather new and better ways to do trivial tasks, or even moving some
steps away from the problem to have a view outside the box.

In this keynote we will present a bit of the evolution in the railway
domain in terms of new technologies that were implemented or that will
be, but also in terms of simple measures that could lead to innovation in
terms of energy savings and other cool stuff.
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Modeling for Security



Automating an Analysis of Safety-Security
Interactions for Railway Systems

Ehsan Poorhadi(B) and Elena Troubitsyna

KTH – Royal Institute of Technology, Stockholm, Sweden
{poorhadi,elenatro}@kth.se

Abstract. Over recent years, the number of cyberattacks on safety-
critical systems, including railways has been rapidly increasing. To ana-
lyze the impact of cyberattacks on safety, we need to create methods
supporting a systematic and rigorous analysis of system behavior in the
presence of cyber threats. In this paper, we propose a methodology and
automated tool support for an integrated analysis of the impact of cyber-
attacks on the safety of railway systems. Our approach relies on graphical
modeling in SysML, HAZOP-based analysis of cyber threats and formal
modeling in Event-B. The proposed approach allows the designers to
identify and visualize the safety requirements that become violated as a
result of various cyberattacks.

Keywords: Integrated formal modelling · Safety · Cyberattacks ·
Automated tool support · Railway networked control systems

1 Introduction

Over recent years, the number and scale of cyberattacks on safety-critical systems
have been rapidly growing. Thus it raised a serious concern over the safety
of critical infrastructures such as railway signaling systems. Formal modeling
and verification are often used to verify the safety of railway signaling systems.
Currently, industry practitioners are willing to utilize their expertise and extend
it also to reason about safety in the presence of cyberthreats. This motivated
our research on integrating safety and security modeling to analyze the potential
ways in which cyberattacks could jeopardize system safety.

In this paper, we present a novel extension of our previous work [5] on combin-
ing modeling in SysML and Event-B to support a rigorous integrated analysis of
the impact of cyberattacks on system safety. Our approach allows the designers
to model the system in SysML and then automatically translate it into Event-
B, which formally supports the process of identifying safety requirements that
are violated by cyberattacks. The safety requirements are formalized as model
invariants and the violated requirements are identified via the failed invariant
preservation proof obligations. Such an analysis serves as a basis for the con-
secutive security analysis aiming at defining security control mechanisms and
prioritizing their implementation.

Supported by Trafikverket, Sweden.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
B. Milius et al. (Eds.): RSSRail 2023, LNCS 14198, pp. 3–21, 2023.
https://doi.org/10.1007/978-3-031-43366-5_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-43366-5_1&domain=pdf
https://doi.org/10.1007/978-3-031-43366-5_1
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In this paper, we augment our previous work on formal modeling of safety-
security interaction by incorporating HAZOP-based cyberthreat analysis. We
use HAZOP (Hazard and Operability Study [17]) to systematically analyze and
explicitly model the impact of different types of cyberattacks on the messages
exchanged by the system components. Using HAZOP we can identify which kind
of deviations from the original message the attacker’s actions can cause. They
are then represented in the SysML model to analyze their impact on safety.

To support the incorporation of HAZOP-based analysis, we extend our devel-
oped EBSysMLSec tool to handle the output of HAZOP analysis in SysML mod-
els. EBSysMLSec enables an automatic generation of Event-B models from the
created cyberthreats-explicit SysML models. The Rodin platform [10] is then
used to formally verify whether safety requirements defined as a set of model
invariants are preserved in the presence of cyberattacks.

To validate the proposed approach and usefulness of our EBSysMLSec tool, in
this paper, we present security-explicit modeling of moving block case study [16],
which is developed in cooperation with the railway industry. Our analysis results
in finding necessary and sufficient conditions over the system parameters under
which we can guarantee the safety of the system in the presence of cyberattacks.

2 Safety-Critical NCSs: Architecture and Threat Model

An architecture of a networked control system (NCS) is based on the classical
feedback control loop “sensing-control-actuation”. In NCS, while executing the
control loop, the components should communicate with each other over wired
or wireless network channels, as shown in Fig. 2. Typically, the high-level safety
goal is formulated in terms of some critical parameter Preal, which should be
maintained within a safe interval while the system provides the intended func-
tionality.

Safety : Pmin ≤ Preal ≤ Pmax. (1)

where Pmin and Pmax are the low and high safe thresholds correspondingly.
At each iteration of the control loop, a sensor measures the value of Preal and

sends a message senout to the controlling software (usually called controller). The
controller receives the sensor measurement, calculates the next required state of
the actuator and sends the message contout to it. The state of the actuator affects
the value of Preal that enables the system to provide the required functionality
and maintain safety. In this paper, we consider fail-safe systems, i.e., the systems
that are put in a safe non-operational state if (1) cannot be guaranteed. Railway
NCS are typical examples of those.

Our threat model focuses on Man-in-the-middle attacks resulting in com-
promising messages sent over the communication channels of NCS. Such attacks
constitute the main cyberthreat for railway systems due to the wide geographical
distribution of the control centers and hence, difficulty to protect the assets [23].
Cyberattacks on the sensor-controller channel would result in incorrect contin.
As a consequence, the controller could compute an incorrect, possibly hazardous
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control command. Similarly, an attack on the controller-actuator channel would
result in a discrepancy between actin and contout. It can potentially result in
the direct setting of the actuator to a dangerous state.

3 A Case Study: Moving Block

Our case study – a subsystem of the ERTMS/ETCS Level 3 moving block archi-
tecture [16]– is a typical example of NCS. The system aims at controlling trains’
movement by using as few trackside devices as possible and relying on direct
communication with trains. Radio-block centers (RBC) are deployed to deliver
signals to trains and receive feedback. Each RBC controls the movement of the
trains along a certain area by either authorizing them to move at a certain speed
or stopping them.

The authorization is done by sending movement authority messages contain-
ing among others the end of the movement authority (EoA) and a danger point
to trains. EoA is a position in the track that the train is allowed to reach but
not pass. However, depending on the implementation, the RBC defines EoA
such that passing the point does not lead to a hazardous situation. This is done
by considering a safety margin that defines a danger point to be beyond EoA.
This results in a safety property stating that trains must not pass their danger
points. An RBC could stop the train from moving by sending an emergency stop
message. The message allows the RBC to stop trains from passing the danger
point. In this case study, we consider a scenario in which an RBC is controlling
a train in its controlling area while the communication channel between them
is compromised by an attacker. The goal of the study is to check whether the
attacker’s actions result in the train passing a danger point.

We consider an attacker who performs a two-phase attack. First, she injects
a valid movement authority message to set the value of EoA beyond the danger
point defined by RBC. Such an attack constitutes a direct safety hazard since the
danger point defined by RBC could be at the rear end of another train. Such an
attack is shown to be possible in [19]. The impact of the attack in the first phase
is an assumption of our model. It means we consider the stored EoA in the train
to be beyond the danger point determined by the RBC. In the second phase,
the attacker actively monitors train-RBC communication and takes some actions
e.g., dropping a message to prevent the detection of the attack and stopping the
train before passing the danger point.

In this study, we model and analyze the communication between the RBC
and the train to derive a sufficient and necessary condition to ensure that the
train would not pass the danger point. This condition must be met by the RBC
when calculating EoA and danger points for the train. Indeed, we show that
if the distance between the calculated EoA and the danger point is not large
enough then defense mechanisms deployed on both sides do not detect the attacks
on time, and the train would pass the danger point. To perform our analysis,
we define a control loop including RBC and train subsystems and apply our
approach.
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In this case study, the controller is distributed between RBC and ATP – an
Automatic Train Protection system installed in trains. We define a control loop
that will be executed periodically as follows. ATP receives Odometer measure-
ment and calculates the train position. Then it forms a position report message
to RBC containing positional information. After this, RBC estimates the train
position and then does one of the following actions as a response. The RBC may
decide not to interact with the train. In this case, the train moves according to
its stored movement authority, and the ATP ends the control loop without send-
ing a signal to the train braking system. The RBC may send an Emergency stop
command that results in the train engaging the brake by sending a signal to the
braking system. The RBC might send other messages to the train as a response
to the position report within a control loop. In this case, the train moves again
according to its stored movement and the control loop ends without engaging
the brake. In our modeling, we consider these messages as a heartbeat indicat-
ing to the ATP that the communication with the RBC is alive. In our study,
the odometer corresponds to the sensor of the generic NCS architecture and the
train’s braking system to the actuator. Due to the lack of space, in this section,
we describe the system only briefly. However, more details will be introduced
while demonstrating an application of our approach in the subsequent sections.

4 Integrating HAZOP-Based Analysis of the Impact
of Cyberattacks into SysML Modelling of NCSs

System modeling language (SysML) [9] is a general-purpose modeling language
often used in the development of safety-critical systems. The graphical nature of
SysML models facilitates collaboration between engineers from different domains.
In particular, it can help them to visualize component interactions and dynamic
behavior under different operating conditions as well as cyberattacks.

To model NCS and represent the impact of cyberattacks, we use a subset of
SysML diagrams consisting of the block definition diagram (BDD), the internal
block diagram (IBD), the activity Diagram (AD), the state machine diagram
(SMD), and the sequence diagram (SD).

4.1 Modeling Guidelines

We define certain modeling guidelines prescribing which aspects of system archi-
tecture and behavior should be represented in the corresponding SysML models.
They ensure that the resultant SysML models provide a suitable and sufficient
basis for the security analysis and subsequent formal modeling. Below we briefly
outline them. The detailed description can be found in [5]

Block Definition Diagram. BDD defines the structure of the system model.
BDD uses blocks to represent a system and its components and association to
show how the blocks are related. The following rules should be adopted to create
the BDD. Figure 3 shows the BDD for our railway case study. A block (block
railway) is created for the entire system under modeling. It consists of different
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Fig. 1. IBD of Railway block. Fig. 2. An architecture of an NCS.

Fig. 3. BDD diagram represents the structure.

blocks modeling sub-systems and/or components. In our case, it has RBC as a
component, Train as a subsystem and a composite relation between them. A
sub-system block itself can be decomposed into several components in a similar
way. In Fig. 3, the components are RBC, ATP, Odometer, BRK, and ENV. To
represent safety requirements, as discussed in Sect. 2, we also introduce a block
representing the physical environment (block ENV ). In our case study, block
ENV models the actual position of the train on the track.

At this point, we define internal constants and variables of each component
as the attributes of the corresponding block, e.g., attributes of the ATP shown in
Fig. 3. To model the interfaces between components, we define two ports for each
pair of blocks (one for each) that communicate with each other. The ports are
used to exchange signals that are modeled separately in BDD. In our approach,
the ports assigned to the block ENV are used to send the monitored parameters
and receive the state of the actuator as signals. For the Moving Block system,
the Odometer receives the actual position of the train as a signal from block
ENV and estimates the distance traveled with some imprecision. Block ENV
receives the state of the braking system as a signal sent by block BRK.
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Internal Block Diagram. To simulate the dynamics of component interac-
tions, we need to explicitly show the connections between the ports of the compo-
nents, which is done using the internal block diagram – IBD. An IBD is owned by
a block and shows its encapsulated structural contents such as parts, ports, prop-
erties, etc. We create an IBD for the block representing the system and instanti-
ate different parts of the system including subsystems and components. Then we
connect their ports (interfaces) using connectors. Figure 1 depicts IBD for block
railway. IBD serves as an important tool for validating the created SysML models
via simulation, i.e. checking the consistency of the defined interfaces.

State Machine Diagram and Activity Diagram. An SMD is used to rep-
resent the internal behavior of blocks. It models both the component functional
logic and communication protocols. We create SMD for each block representing
a component. Therefore, we create the following SMDs, RBC, ATP , Odometer,
BRK, and ENV . The SMDs of RBC, ATP , Odometer, and BRK model the
behavior of the corresponding block within a control loop. The SMD ENV mod-
els train movement by updating the actual position of the train at the end of
each control loop.

To create SMDs, we use normal states and transitions that can be guarded
and/or triggered. To specify the guards, we define the corresponding logical
expressions over the block’s attributes in a language supported by SysML (in
our implementation, Python). A transition may have a trigger – a signal the
block receives through one of its ports.

The effect of the transition is described using an activity diagram, which spec-
ifies how the block’s attributes are updated as a result of the transition. In an
AD, we define an opaque action as a basis for implementing the corresponding
script using assignment and if statement. In an AD, we can also model sending
and receiving signals by defining a send signal action or parameter node’s, respec-
tively. In a send signal action, we specify the signal and the port through which
the signal must be sent. To determine the signal parameter, we add a flow of some
variables of the opaque action to the signal parameters by adding output pins to
the opaque action. To flow signal parameters to the opaque action, we define input
pins for the opaque action and connect them to parameter nodes of the AD.

As an example, we provide the SMD of ATP in Fig. 4 as well as its two
ADs in Fig. 5 and 6. We define four states to model ATP behavior. In state
fullSupervision, ATP is waiting to receive the Odometer measurements. When
the signal is received, the transition is triggered and ATP updates the posi-
tional information of the train according to the odometer measurement and
determines the mode of the train. This behavior is modeled in AD estimation
(Fig. 6) assigned to the transition. As can be seen, we define two parameter nodes
to get attributes of the measurement signal and use them in the opaque action
to update the attributes of the ATP. As a result of the transition, we reach state
odo. From state odo, the ATP either reaches TrainTrip state and stops the
train (if mode �= 1) or gets back to fullSupervision (if mode = 1). If the ATP is
back to the fullSupervision state, it sends a position report message, which is
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Fig. 4. The SMD of ATP.

Fig. 5. Sending position report signal Fig. 6. Receiving Odo’s measurement

modeled in the AD with a similar name (Fig. 5). At this moment, ATP could
receive three different signals modeling RBC responses. If RBC sends an emer-
gency stop message, ATP changes its mode modeled in emergencyHandling AD
and goes to the traintrip state. If RBC sends the heartbeat message then ATP
resets its timer showing the connection is alive and back to the fullSupervision
state. In some cases, RBC might not send a message. In order to complete the
control loop and avoid modeling time-constraint behavior, we define an auxiliary
(i.e., used only for modeling purposes) signal to indicate that RBC does not send
a message in the current control loop. In this case, ATP increases its timer and
goes to either fullSupervision or trainTrip depending on whether the timer
passes a threshold (TNV CONTACT ). Indeed, if the timer passes the threshold
then the mode of the train changes to zero. This behavior is modeled in the AD
IncreaseT imer.

4.2 Integrating SysML Model with HAZOP

HAZOP - HAZard and OPerability Analysis [17] systematically identifies the
possible causes and consequences of deviations within the system. The analy-
sis is performed using a set of guidewords and attributes. The original set of
guidewords includes no, more, less, alter, early, late, etc. The guidewords are
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applied to the system attributes. HAZOP has been extensively used in safety-
critical domain and extended to specifically target security vulnerabilities. In

Table 1. Interpretation of standard HAZOP guidewords

Guideword Interpretation

Less/More The signal parameters are less/more than what it is sent
No No signal is received
Late/Early The signal is received late/early
Alter The signal parameter are different from what it is sent

this work, we apply the guidewords to the signals exchanged over the communi-
cation channels to systematically identify the attacker’s actions and model their
impact. Table 1 shows our interpretation of the guidewords. Since we focus on
the man-in-the-middle attack, we single out the guidewords that represent the
possible effects of the attacker’s action of a given signal. Our HAZOP-based
analysis applied to SysML has the following steps:

– creating a sequence diagram to visualize signals according to the SMDs model;
– selecting a signal and identifying relevant guidewords that can be applied over

the signal by human expertise;
– specifying the applied guidewords and their interpretation in every incident

of the signal in the sequence diagram.
– updating state machine diagrams to specify the effect of a deviation or the

detection on the receiver behavior;

The modeler can decide to model all deviations altogether or separately to man-
age the complexity of the model better.

Let us now apply the proposed approach to the moving block case study.
Creating the SD is an essential aspect of our analysis. On the one hand, it
visualizes the communication protocols and allows us to systematically describe
the deviations caused by cyberattacks. On the other hand, it plays a key role in
the translation and creation of the Event-B model.

The first step is to create an SD to show the signal exchange. Indeed, in
our analysis, the SD provides an abstract view of the communication protocols
within a control loop. We create an SD for the block to represent the whole
system (railway block in Figure 3). In the created SD, we define a lifeline for each
component of the system (RBC, ATP , Odometer, BRK, ENV ) and add a loop
fragment to represent the control loop. Inside the loop, we create a message for
each signal that the components exchange. Note that we define a new message
every time that a signal is sent. If there is a conditional interaction within a
control loop, we use an alt fragment.

In the second step, we identify the signals and relevant guidewords. Since the
attacker’s aim is the RBC-ATP channels, we only apply guidewords to signals
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exchanged by ATP and RBC. There are three signals that are exchanged in the
channel. We identify that guidewords less, No, and delay could be applied to
position report signals. Also, the guidewords delay and No could be applied to
emergency stop signals. Due to the large size of the SD, we provide a part of the
diagram in 7 after performing the second step.

At this point, we specify the identified guidewords in SD to visualize the
attacker’s actions. To do so, for every incident of the signal in the SD, we create
an alt fragment with several operand, one for each guideword. We also define an
extra operand to represent normal signal exchange. In each operand, we interpret
the guideword and model the effect of the guidewords on signal parameters.
Figure 7 shows the SD after applying the guidewords.

Fig. 7. The integration of SD with HAZOP.

Finally, we need to specify how the guideword affects the receiver behavior.
To do so, we update the SMD of the receiver. Particularly, we consider an if
statement for each defined operand in the AD that the receiver accepts the
signal. We define guideword = w, where w is the guideword of the operand, to
be the condition of the branch. Then we model the effect of the deviation and the
defense mechanisms inside the branch. Therefore, we update the SMD of ATP
and RBC to model the impact of the attacks on the behavior of the components.
For brevity, we show how we model the guideword No in the SMD of ATP by
modifying the emergencyHandling AD in Fig. 10.

As a result of the systematic analysis of the cyber threats using HAZOP, we
obtain SysML models that explicitly define the deviations cause by an attack
on the system behavior. We use these models as the inputs for translation into
Event-B. Then the Event-B model is verified to check if the attacks result in
safety violations.
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5 Formal Analysis of the Impact of Attacks on Safety

We start by briefly overviewing our formal modeling framework – Event-B and
outlining the main ideas behind the translation methodology described in full
detail in [5] as well as the novel contribution – incorporation of HAZOP with the
generated Event-B model. Then we overview the tool support and validation –
the moving block case study specification in Event-B.

Fig. 8. The workflow and toolchain. Fig. 9. A summary of generated POs.

Fig. 10. The guideword impact on the emergency brake.

5.1 Event-B

Event-B is a state-based formal modeling approach that promotes the correct-
by-construction development paradigm and formal verification by theorem prov-
ing [11]. In Event-B, a system model is specified as an Abstract State Machine,
which encapsulates the model state represented as a collection of variables and
defines operations on the state using a set of atomic events. In general, an event
e is defined using the list of local variables (parameters) a, the guard Ge, and
Re the next-state relation as follows:

e =̂ any a where Ge then Re end,

Usually, a machine has an accompanying component, called context, which may
include user-defined carrier sets, constants, and their properties given as a list
of model axioms. In Event-B, the model variables are strongly typed by the
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constraining predicates. These predicates and the other important properties
that must be preserved by the model constitute model invariants.

Event-B employs a top-down refinement-based approach to system devel-
opment. Development starts from an abstract system specification that non-
deterministically models the most essential functional requirements. In a
sequence of refinement steps, we gradually reduce non-determinism and intro-
duce detailed design decisions. The consistency of Event-B models, i.e., verifi-
cation of well-formedness and invariant preservation as well as the correctness
of refinement steps, is formally demonstrated by discharging the relevant proof
obligations generated by the Rodin platform [10].

5.2 From SysML to Event-B: Translation Methodology

Our translation is incorporated into the Event-B refinement process. This helps
us to distribute the complexity of the model into several machines that are easier
to verify. Once the refinement process is completed, the SysML models become
fully formalized in Event-B and the detailed definition of the impact of cyber
attacks on safety emerges via failed proofs of certain safety invariants.

Our translation methodology defines a context C which can be seen by all
machines, an abstract specification M0 which is our starting point in the refine-
ment process, and a machine Mc for each component c that owns an SMD. We
use machines Mc’s to create the refinement chain discussed later. Therefore, in
our case study, an Event-B context is created as well as the following machines,
M0, MRBC , MATP , MOdometer, MBRK , MENV . In the following, we describe
the translation rules for creating the context and the machines.

The Event-B Context. We start by translating the static information of
diagrams in an Event-B context C, which is seen by all machines. The context
C contains the following information.

The attributes of the blocks that are specified in the SysML model as Read-
Only will be translated as a constant into the context C. The translation creates
an enumeration set,

BStates = {state1, ..., states},
for each block B containing all states defined in the block’s SMD. This set is
later used to type a variable modeling the current state of the block. Indeed, the
state transition is modeled in Event-B by giving different values to the variable.

Regarding the signal exchanges, we define two enumeration sets. We define
sig = {att1, ..., attt} for each signal sig containing the signal’s attributes if there
are any. Indeed, the set shows different fields of the signal. Therefore, sending
a signal requires determining some values for the different fields i.e., assigning
values to members of the set. We also define an enumeration set

Phases = {sX , rX | X is a signal},
containing all interaction phases. Here sX and rx model signal X are sent and
received (or deletion attack performed by the attacker and the signal is dropped),
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respectively. This set is used later to type a variable that models the current
phase of the interaction depicted in the SD.

So far, we translate some static information that we need to specify the
behavior modeled in SD and SMDs. In the following, we describe the translation
rules that capture the behavior of the model and provide the corresponding
Event-B specification.
Abstract specification (M0). The first machine M0 is the translation of the
SD and some parts of BDD that focuses on modeling sending and receiving
signals. The machine models signal exchange according to the SD by defining
sending and receiving events. The machine also models the impact of guidewords
on the signal. Therefore, the machine provides an abstraction of the whole system
without modeling the components in detail.

Fig. 11. Two events in M0 models sending and receiving position report signals.

Table 2. Python to Event-B translation

Pyhton Event-B

and, or ∧,∨
==, <=, >=, <,>, ! = =,≤,≥, >,<, �=
+,−, ∗, / +,−,×,÷
randint(v1, v2) Any par where par ∈ PytoB(v1)..PytoB(v2)

att = e Any par where par=PytoB(e) then att:=par
varlocal = e Any par where par=PytoB(e)
if c : Any par where par = TRUE ⇔ PytoB(c)∧
P par ⇒ PytoB(P ).guard
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We start the translation by defining a variable phase ∈ Phases that points to
the current interaction phase. We define two events sendingsig and receivingsig
for each signal sig modeling sending and receiving the signal. These events
update the variable phase to corresponding values. Figure 11 shows a fragment
of M0 for the case study that depicts two events.

The events model sending and receiving the position report signals. In Event
sendingpositionReport, Guard grd1 specifies the signal can be sent after receiv-
ing the odometer measurement. Action act1 changes the interaction phase such
that the receiving event becomes enabled to fire. Action act2 provides a non-
deterministic assignment to a variable that models the content of the signal
after sending. The variable is of type of function that maps fields of the signal
to values.

In the event receivingpositionReport, we show how the guideword Less is trans-
lated. Indeed, we define a guard for each attribute of the signal and specify the
impact of guidewords (grd2− grd4). As can be seen, it corresponds to receiving
(i.e., assigning) the value to recvPositionReport (which is a variable with the same
type as the PositionReport) that is less than the one that has been sent (act2).

Machine. Mc After the translation of the SD and creating M0, we aim at
specifying the behavior of the system components modeled by the corresponding
SMDs. We do it by translating the SMD of a block (component) c along with
its ADs in a machine called Mc. We aim to specify Mc to mimic the SMD of the
block. In the following, we describe the translation for a component C modeled
by a block B in the SysMl model.

First We start by defining the variables that we need. We define variables for
attributes of B that are not ReadOnly, and a variable BState ∈ BStates, which
designates the current state of the block.

We define an event for each transition of the SMD and specify it according to
the source state, the target state, the guard, and the activity of the transition.
In the following, we describe how we specify an event e modeling a transition t
of the SMD.

We first define a guard BState = t.source and an action BState := t.target
that models state transition. Next is to translate the guard of the transition into
a guard of e. This includes only translating operators which is done according
to Table 2. Finally, We translate the AD of t (if it is defined) as follows.

If AD of t sends a signal sig, then we declare sendingsig (defined in Mo) as an
abstract event for e. In case sig contains some variables, we refine the abstract
assignment to variable sendsig according to the AD of t.

If t has a signal sig as a trigger then we declare the event receivingsig
(defined in M0) as an abstract event for e. To consume the signal contents
in e, we use the parameters of the abstract event (see the parameters of event
receivingPositionReport in Fig. 11).

The final step is to translate the opaque action of the AD, which contains
a script. To do so, we start to translate each line of the script as described
in Table 2. Due to the lack of space, we skip showing the Event-B model after
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translating SMDs. In the next section, we will introduce our tool that automates
the translation process.

5.3 Automated Tool Support: EBSysMLSec

To facilitate the construction of the Event-B model, we develop a tool
EBSysMLSec that provides an automatic translation of the SysML models into
the Event-B specifications according to the principles discussed above. The
implementation can be found in [15]. Figure 8 shows our proposed workflow and
the developed tool-chain.

MSSA: Magic Systems of Systems Architect. The first step of the work-
flow is modeling an NCS in the presence of cyberattacks in Magic Systems of Sys-
tems Architect [12] according to the guidelines described in Sect. 3. MSSA sup-
ports modeling based on SysML 1.5 standard and provides validation and sim-
ulation facilities. Applying model validation and simulation at the early design
of the system helps to validate SysML models before their translation. Once the
SysML modeling is complete, we export the model as the Eclipse UML2.5 xmi
file that will be input to our tool EBSysMLSec.

EBSysMLSec. Our tool is built using ATL – a model transformation language
and toolkit [13]. The ATL IDE, developed on top of the Eclipse platform, pro-
vides an environment to develop ATL transformations. In ATL, a model must
conform to a meta-model. We use Ecore meta-model technology supported by
ATL. A model-to-model transformation involves developing ATL modules that
map the source Ecore meta-model (UML meta-model in EBSysMLSec) elements
to target Ecore meta-model (eventbcore in EBSysMLSec) elements via defining

Fig. 12. A generic matched rule. Fig. 13. A part of a matched rule in
EBSysMLSec.
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transformation rules. In each module execution, rules are called and target ele-
ments will be created. A general structure of a rule is shown in Fig. 12. When a
rule is applied, for each source element of type Type that satisfies Condition the
n target elements of type Type1 to Typen are generated. Then the imperative
code will be executed to initialize the generated elements.

Our tool consists of three ATL modules generating the Event-B context,
the abstract specification (M0), and the refinements (Mc’s). The last module
takes a block’s name as an input and outputs an Event-B machine modeling
the block’s SMD. Figure 13 shows a part of a rule, which we define to create
the events modeling sending and receiving signals in the abstract specification.
As can be seen, The rule is called for any signal. When the rule is applied,
the event receivingsig along with its guards, parameters, and actions that are
defined according to the transition principle mentioned in Sect. 5.2 is generated.
As a result of running EBSysMLSec, we obtain a complete model in Event-B at
different levels of abstraction in xmb files readable by Rodin.

Rodin. The Rodin Platform is an Eclipse-based IDE for Event-B that provides
automated support for modeling and proof-based verification [10]. We use the
Rose editor plugin [14] to open generated xmb files. After importing Event-B
models into Rodin, we manually define the refinement relations between the
machines, i.e., define the desired refinement chain. We then augment the speci-
fications with the safety invariant and verify it.

5.4 Formal Verification of Safety of System Under Attack

Let us now discuss our approach to verifying the impact of cyberattacks on
safety within the translation-driven refinement process in Event-B. The impact
of cyberattacks on safety is analyzed by checking whether a safety property can
be proved to be an invariant of the Event-B model under the modeled effect of
the cyberattacks on the system behavior. We provide a typical safety property 1
in Sect. 2. However, our approach can be applied to verify any safety property
that can be expressed over block attributes using predicate logic.

We follow the relied guarantee style that includes defining some relied condi-
tion (Rc) and some guaranteed condition (Gc) for each component c such that
the functionality of c guarantees Gc by relying on Rc which itself provided by
other components: i.e., other components guaranteed condition satisfy it. We
aim to deduce the safety case (proof of Property 1 for example) from Rc’s and
Gc’s. Therefore, we define the safety property as the guaranteed condition of
ENV (GENV ). In our verification technique, the guaranteed condition of each
component is defined as an invariant of the corresponding machine. Then by
analyzing the machine, we find the relied conditions which lead us to define
other components’ guaranteed conditions. Following this technique require us to
create the following refinement chain,

M0 ⇒ MENV ⇒ MActuator... ⇒ MSensor.
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The above refinement chain allows us to define the safety property as soon as
possible and distribute evenly the difficulty of the proof among all machines.

We demonstrate the verification process using our moving block case study.
EBSysMLSec takes the SysML model and generates Event-B machines ENV,
BrakingSystem, ATP, RBC, and Odometer. They are imported in Rodin and
arranged into the refinement chain in the same order. The detailed model in
Event-B is augmented with the safety property,

realPosition < dP,

where realPosition is an attribute of the block ENV points to the actual position
of the train, and dP is a constant attribute of block RBC modeling the danger
point determined by the RBC. The event-B model including the invariants can
be found in [18]. As a result of the proof-based verification process, we show that
safety is preserved even in the presence of the deviations discussed in Sect. 4.2 if
the RBC meets a condition stating that the safety margin should be large enough.
Figure 9 shows a summary of the invariant and POs that are generated and
discharged in the proving process. As can be seen, a large number of invariants
are generated, but the majority of them are discharged automatically using ProB,
the Event-B model checker, which shows the scalability of our approach.

Discussion. Let us discuss the results of incorporating HAZOP into our
methodology and using our extended EBSysMLSec. As a result of using HAZOP,
we were able to identify how the actions of the attacker can alter the messages
exchanged between the components. This allows us to create a SysML model
that explicitly represents the cyber threats though it does not attempt to ana-
lyze their impact on system safety. Our EBSysMLSec tool has been successfully
used to automatically generate the corresponding Event-B models. Such trans-
lation and tool support reduce the enormous effort to create an understandable
formal model. Since our translation supports a refinement-based approach, the
complexity of the generated models remained manageable with the majority of
proof obligations being discharged automatically. However, the translation has
some limitations discussed during the explanation. Notably, it does not provide
interesting invariants except for the variable types, and only one instance of a
block can be translated.

The moving block case study demonstrated that we can successfully apply
the proposed automated approach in practice. We show that the current moving
block architecture is resistant against the networked attacker we model in this
work if and only if RBC satisfies the proposed condition. In our model, we
consider a safety property stating that trains must not pass danger points while
other safety properties remain to check such as exceeding the maximum speed.
We believe our methodology could be applied to check such properties.
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6 Related Work and Conclusions

Related Work. Several previous works proposed different modeling approaches
to represent the impact of security attacks on safety within Event-B frame-
work [1] [2]. The authors explored different refinement strategies, as well as the
use of HAZOP for requirements elicitation [3]. While our approach adopts the
idea of an incremental unfolding system architecture via refinement, we rely
on SysML models as an intermediate step between the informal requirements
description and formal specification. We have proposed a methodology for using
HAZOP to systematically identify the impact of various cyberattacks on com-
ponent interactions based on SysML model and automate the translation into
Event-B. The work on formal modeling of cyberattacks in the railway domain
is reported in our previous work [4]. In this paper, we have extended the mod-
eling methodology proposed in [4], on the one hand, to support an integration
between SysML and Event-B for generic NCS, and, on the other hand, to include
modeling of deletion and tampering attacks on both channels of NCS.

The work on integrating general-purpose graphical modeling and formal spec-
ification has been carried out by Snook et al. [6]. Currently, there is also a UML-B
plugin available for the Rodin platform that enables an automatic translation
of UML-B into Event-B specification [7]. We have adopted similar techniques in
translating state machine diagrams but focused on explicit modeling and verifi-
cation of safety-security interactions.

UML-B has been used in some works to analyze the safety of NCS. For
example, in [8], UML-B is used to model hybrid ERTMS level 3. However, our
work includes a broader set of SysML diagrams and allows to express a richer
set of properties.

The translation of SysML diagrams into formal languages is considered in
some works. In [20], the gap between textual requirements and formal specifi-
cation is filled by using a requirement diagram. In this work, the requirement
diagram is used to build hierarchical relationships of requirements. This hier-
archical relationship determines the refinement strategy in the translation of
the requirement into the Event-B specification. Although using requirement dia-
grams makes the process of modeling easier, the requirements are still textual.
We believe that a combination of the diagrams that we used and requirement
diagrams to describe systems can enhance both works. Another work provides
an automatic translation of SMDs into Event-B specification for railway applica-
tion [22]. In another work [21], SysML/KAOS domain model has been integrated
into Event-B. They specify a goal model using SysML and KAOS goal language
and then translate the model into Event-B.

Conclusions. In this work, we proposed and automated an integrated app-
roach to modeling the impact of cyberattacks on the safety of railway systems.
We have defined the principles of modeling the system in SysML and proposed
a HAZOP-based methodology for modeling the impact of attacks on compo-
nent interactions. We utilize EBSysMLSec for translating the SysML model into
Event-B.
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Our SysML translation into Event-B has been incorporated into the correct-
by-construction development process. It allowed us to explicitly analyze the
impact of security attacks on the behavior of each component as well as the
overall system safety. The resultant model explicitly demonstrates which safety
invariants become violated as a result of cyberattacks.

By applying our approach, one can verify any safety property that is express-
ible using predicate logic over block attributes. As an example, we model a part
of moving block architecture and derive a sufficient and necessary condition
under which a train would not pass a danger point determined by an RBC in
the presence of an attacker who forges a valid movement authority, tampers with
position report, and drops emergency stop signal.

The work on the integration of SysML and Event-B for modeling safety-
security interactions in NCSs has been motivated by our cooperation with the
railway industry. Since SysML is widely used for system modeling, we believe
that the proposed integration approach can facilitate the understanding of formal
models and the results of modeling the security attacks by industrial engineers.

In the future, we are planning to investigate the modeling of a broader range
of cyberattacks. It would be also interesting to work on visualizing the represen-
tation of the results of formal modeling in SysML, e.g. to visualize the attack
scenarios.
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Abstract. Communication-Based Train Control (CBTC) systems are
automatic train control systems that improve the efficiency and safety
of railway systems. They rely on bidirectional communication between
trains and infrastructural components called wayside units (WSUs).
CBTC components communicate using wireless protocols; therefore, pro-
viding cybersecurity is essential to protect them against cyber attacks.
Securing CBTC systems involves designing attack detection and mitiga-
tion techniques and assessing their performance. However, it is neither
feasible nor practical to perform testing scenarios against real CBTC
networks, which proves the need for simulation frameworks. This work
presents TrainSec, a simulation framework that simulates components
and communications in CBTC networks according to IEEE 1474.1, the
standard for CBTC performance and functional requirements. This sim-
ulator will facilitate research in the area of CBTC security by providing
an environment to model attacks and evaluate defence strategies. Train-
Sec is an open-source and available for free on GitHub.

Keywords: CBTC Networks · Simulation Framework · Cybersecurity

1 Introduction

Communication-Based Train Control (CBTC) systems help meet the increasing
demand for railway services by increasing the capacity of rail lines. Traditional
train control systems use fixed-block technologies that allow only one train to
occupy a block at a time, which results in long headways between trains [1].
However, CBTC systems employ moving block technologies that allow more than
one train to occupy the same block simultaneously. Moving block technologies
thus reduce headways between trains and permit more efficient utilization of the
railway infrastructure. In addition, CBTC systems integrate Automatic Train
Control (ATC) systems [2] and provide continuous safety by ensuring overspeed
protection and safe distance separation between trains.

In CBTC systems, trains and wayside units (WSUs) communicate through
train-to-wayside (T2W) communications. Trains send their status and mobility
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
B. Milius et al. (Eds.): RSSRail 2023, LNCS 14198, pp. 22–39, 2023.
https://doi.org/10.1007/978-3-031-43366-5_2
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information periodically to WSUs. In return, WSUs respond by sending oper-
ational commands. Components and communications in CBTC systems can be
subject to multiple cyber attacks and misbehavior techniques that can disrupt
the networks or risk the safety of operations.

Providing cybersecurity for CBTC networks involves designing and imple-
menting attack detection and mitigation techniques. The levels of success of
such approaches depend on evaluating and assessing their performance in differ-
ent scenarios. However, it is impractical to immobilize railway infrastructure and
rolling stock to utilize them for testing purposes. Building test-specific infrastruc-
ture and vehicles can be too expensive as well. Even by assuming the feasibility
of these approaches, it is challenging to study high-risk scenarios such as cyber
attacks that could cause collisions or derailments of trains. Alternatively, the
availability of datasets from CBTC networks can help evaluate security algo-
rithms. However, obtaining such datasets from railway operators is extremely
unlikely due to confidentiality and security reasons. This analysis explains the
strong demand for a simulation framework that supports research on the security
of CBTC networks.

This work presents an open-source simulator that simulates components and
communications in CBTC networks according to IEEE 1474.1 [3], the standard
for performance and functional requirements of CBTC systems. We call this
framework “TrainSec” and implemented it as an extension of VEINS1, a well-
known simulator for vehicular networks. We chose VEINS particularly because
it has been used frequently by researchers to study the security of vehicular
networks. Several previous works used VEINS to simulate cyber attacks such as
denial-of-service (DoS), jamming, flooding, and message replay and to evaluate
countermeasures [4,5]. TrainSec provides multiple features that can be summa-
rized as follows:

– Modeling cyber attacks and misbehavior algorithms in CBTC networks.
– Implementing detection and mitigation algorithms.
– Utilizing the provided misbehavior algorithms.
– Evaluating the performance and effectiveness of the implemented algorithms.
– Extracting datasets for data visualization purposes.

The rest of this paper is organized as follows: Sect. 2 presents the related
work, and Sect. 3 introduces CBTC systems. Section 4 defines the system model,
Sect. 5 explains the TrainSec framework, and Sect. 6 discusses some simulation
scenarios. Finally, Sect. 7 concludes the work.

2 Related Work

This section discusses previous approaches to simulate Communication-Based
Train Control (CBTC) Systems and their components. It also discusses some
simulation frameworks that enable studying the impacts of cyber attacks on the
railway and vehicular networks.
1 https://veins.car2x.org/.

https://veins.car2x.org/
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Mera et al. [6] presented a simulation test bench for CBTC trackside. Their
tool helps reduce the efforts of testing and validating signalling equipment while
commissioning or upgrading rail lines. However, it does not implement the essen-
tial functional requirements provided in the IEEE 1474.1 standard [3], such as
automatic train protection (ATP) and automatic train operation (ATO). Chen
et al. [2] introduced a software program that simulates trains’ movement in
CBTC systems and facilitates performance analysis. The main functions of the
simulator are calculating the system headway and the speed profile given a sys-
tem configuration and a block design. However, it does not implement wayside
functionality and train-to-wayside (T2W) communications.

Cho et al. [7] modeled the functionality of the train on-board components.
Their system implemented some of the ATO functions required by IEEE 1474.1.
However, they did not implement the mandatory ATP functions, wayside func-
tionality, and T2W communications. Dandoush et al. [1] implemented a frame-
work for simulating CBTC systems that helps predict performance. The system
implements modules for trains, trackside units, and communications between
them. However, it does not consider the essential standardized functional require-
ments as well.

Xu et al. [8] presented an architecture design for a CBTC simulation platform.
It includes the main components of train and trackside modules according to
IEEE 1474.1, but it does not provide any implementation. Furthermore, none
of the discussed approaches supports security modeling or assessment. None of
them allows for implementing attacks or detection and mitigation techniques.

Soderi et al. [9] studied the cybersecurity of railway systems by surveying
standards, tools, and technologies used to assess and mitigate cybersecurity risks
in railway networks. The survey shows that none of the listed tools is specific to
CBTC systems or can be used to evaluate the security of CBTC communications.

Some simulators considered security in railway and vehicular networks. Teo
et al. [10] developed a simulation platform that analyzes the impacts of cyber-
physical attacks on railway systems. Neema et al. [11] presented a simulation
testbed that assesses the resilience of connected railway systems against cyber
attacks. However, these simulators are not specific to CBTC systems and do not
consider their main requirements.

Kamel et al. [12] introduced a simulation framework known as F2MD that
allows the implementation of cyber attacks and misbehavior techniques against
vehicular networks. It also provides the ability to develop misbehavior detection
algorithms and assess their effectiveness. F2MD is an open-source simulator and
an extension of VEINS [13], the vehicular networks simulator.

This work presents TrainSec, an open-source simulator for CBTC networks
that extends VEINS and supports security modeling and evaluation. TrainSec
also considers the functional requirements of IEEE 1474.1 and implements train
functionality, wayside functionality, and T2W communications.
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3 CBTC Systems

Communication-Based Train Control (CBTC) systems rely on bidirectional and
continuous communication between trains and wayside units (WSUs) through
high-capacity links. The IEEE 1474.1 standard [3] defines the functional require-
ments of CBTC systems. This section gives a brief overview of these requirements
and the CBTC components and communications, then discusses the security of
CBTC systems.

3.1 IEEE 1474.1 Functional Requirements

Functional requirements include automatic train protection (ATP), automatic
train operation (ATO), and automatic train supervision (ATS). ATP performs
several functions to prevent trains from running into hazardous conditions such
as collisions and moving at excessive speeds. ATO controls trains’ operations and
is responsible for speed regulation and programmed stopping, besides other func-
tionalities. ATS functions include monitoring the behavior of trains by providing
schedule and headway regulation, energy optimization, system status informa-
tion, and controlling stopping at stations.

3.2 CBTC Components and Communications

Components in a CBTC system can be divided into three categories, as shown in
Fig. 1. Train-borne components are responsible for computing and fine-tuning a
train’s position and speed. They also send train status information periodically
to the wayside.

Wayside components compute operational messages and send them to their
surrounding trains. These components include: zone controllers (ZCs), computer
interlockings (CIs), and data storage units (DSUs) [14,15]. ZCs generate limits
of movement authority (LMAs) [16]. An LMA determines how far a train can
move safely on the railway. CIs set safe routes for trains. DSUs provide storage
and retrieval functions of the data exchanged over the network.

DCSs consist of wired and wireless communication systems that facilitate
communications between CBTC components. These include IEEE 802.11 for
train-to-wayside (T2W) bidirectional wireless communication and Ethernet-
based solutions for on-board communications [15].

3.3 Security of CBTC Systems

The security of CBTC systems is an active research area that has been studied
from different perspectives [14–20]. A range of attack vectors can affect compo-
nents and communications in CBTC systems. Attackers against the network can
be either insiders or outsiders and disrupt T2W and train on-board communi-
cations.

Attacks can be launched against the availability of communications, such as
Denial of Service (DoS) attacks that disrupt communications between network
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Fig. 1. CBTC components and communications.

entities. They can be achieved by flooding networks, for instance, or jamming
using intentional interference. Launching a jamming attack during handoff can
fail the process and interrupt the network [16,21]. Attackers can also intercept
communications and perform false data injection attacks such as data tamper-
ing and message corruption. Impersonation attacks can take place in which an
attacker steals the identity of a component and acts on its behalf.

In addition, active network entities could misbehave by sending false data
over the network or delaying messages. Misbehavior can be done purposely by
malicious entities or involuntarily by failing entities or victims of cyber attacks
[12]. These attacks can manipulate or delay critical and essential messages trans-
mitted over the network, which risks the safety of operations.
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4 System Model

4.1 CBTC Model

The simulator provides generic modules for trains and wayside units (WSUs) to
perform the functionality of their separate components. Figure 1 depicts these
generic modules and their underlying components.

TrainSec implements the functional requirements defined in IEEE 1474.1 [3]:
automatic train protection (ATP), automatic train operation (ATO), and auto-
matic train supervision (ATS). The simulator implements the functions influ-
enced by T2W communications and directly related to trains’ movement and
safe operations. Following are the functions implemented in the simulator for
each functional requirement.

ATP Functions

– Determining train location and speed: The train-borne ATP unit deter-
mines the location and speed of a train.

– Safe train separation: Wayside ATP ensures that trains remain constantly
separated by a defined safe distance.

– Safe braking model: A train’s safe braking model considers different fac-
tors, including the train’s length, the allowable overspeed permitted, and the
maximum acceleration/deceleration rates.

– Emergency braking: Train-borne ATP applies emergency braking as a fail-
safe mechanism and guides a train to brake to a complete stop whenever it
is under dangerous conditions.

– Overspeed protection and brake assurance: Trains are not allowed to
exceed safety speed limits under any circumstances. If a train exceeds the
optimal guidance profile, train-borne ATP must apply service braking. How-
ever, if a train exceeds the overspeed detection curve, train-borne ATP must
apply emergency braking.

– End-of-track protection: Wayside ATP should prevent trains from over-
traveling the end-of-track or moving beyond the end-of-track terminus.

ATO Functions

– Automatic speed regulation: ATO is responsible for controlling a train’s
movement and regulating its speed to respect speed limits.

– Generating guidance profiles: ATO generates the optimal speed-position
guidance profiles.

ATS Functions

– CBTC train identification and train tracking: Trains in CBTC systems
should be identified along with their specifications.

– Automatic train regulation: It adjusts a train’s performance through
schedule and headway regulation.

– Station stopping: It controls a train’s stops and dwelling time at stations.
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4.2 Train Movement Model

Trains move between stations where they depart, arrive, and stop according
to predetermined schedules. The stopping points of each train are defined dur-
ing its initialization phase. TrainSec adopts the train motion model defined in
[20]. According to this model, a train’s movement is divided into four phases:
(i) an accelerating phase in which a train’s speed increases uniformly to reach
a predefined cruising speed, (ii) a cruising phase in which a train maintains a
constant speed without accelerating, (iii) a coasting phase during which a train
decelerates due to friction only, (iv) a decelerating phase where a train’s speed
decreases uniformly due to service braking until it reaches zero. Figure 2 illus-
trates changes in position, speed, and acceleration, as a function of time, of a
train during normal operation.

Operational messages received from WSUs also influence a train’s movement.
The Limit of Movement Authority (LMA) determines the last point to which a
train can drive safely. WSUs compute an LMA by considering that the train’s
speed will be zero at this point. Under normal operations, an LMA could be the
last safe point before the rear of the preceding train, the station of destination, a
switch, or the end of the track. In some abnormal cases, it could be the entrance of
an unsafe route, a point of accident, or any object that must be protected [17,22].
Train on-board components use the received LMAs to calculate service braking
curves (SBCs) and the emergency braking curves (EBCs). Trains also adjust
their speeds and apply emergency braking according to operational messages, or
due to lacking these messages for a certain time. TrainSec implements emergency
stopping by immobilizing a train for a predefined period.

4.3 Communication Model

Figure 1 represents the communication model considered in TrainSec. T2W com-
munications rely on wireless local area networks (WLANs) and mainly IEEE
802.11 [14,22]. TrainSec thus implements a CBTC network where trains and
WSUs communicate using IEEE 802.11. Each train periodically broadcasts its
status information in TrainStatusMessages (TSMs) to the closest WSU. A WSU
captures TSMs from multiple trains, computes operational commands, and sends
them in WaysideOperationalMessages (WOMs). Each WSU is responsible for
communicating operational messages only with trains in its vicinity. Figure 3
shows the contents of TSMs and WOMs considered in TrainSec.

4.4 Attack Model

Communications in CBTC networks can be a target for different misbehav-
ior and cyber attacks. Misbehaving entities can send false information in the
network or delay sending critical messages. Moreover, the communications can
be attacked using various attacks such as data tampering, flooding, jamming,
denial-of-service (DoS), or distributed DoS (DDoS).
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Fig. 2. Train behavior during normal operation.
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Fig. 3. Contents of TSMs and WOMs.

The IEEE 1474.1 standard [3] states that supporting functional requirements
requires reliable T2W communications and continuous performing of essential
functionality by train-borne and wayside components. In addition, the standard
requires determining the locations and speeds of trains with high resolution.
These requirements convey the criticality of two main security properties in
CBTC networks: availability and integrity. Attacks against confidentiality cause
less risk to CBTC operations because they do not delay or tamper with status
and operational messages critical for trains operations.

TrainSec considers the following misbehavior techniques:

– Sending stale messages: A network entity broadcasts legitimate messages
after adding random delays.

– Sending false messages: An entity adds random offsets to real parameter
values.

The first misbehavior technique delays essential messages, and the second
involves data tampering. A network entity can be a train or a WSU. A parameter
can be position or speed in a TSM or LMA in a WOM. The misbehaving entities
are considered authorized and able to modify transmission rates and parameter
values in the messages they send.

Future extensions or scenarios based on TrainSec can include more complex
misbehavior techniques or cyber attacks such as flooding, jamming, DoS, DDoS,
data tampering, and others. VEINS supports modeling such types of attacks and
evaluating countermeasures [4,5].

5 Framework

TrainSec is an extension of VEINS [13], a simulator for vehicular networks.
This section describes the framework’s building blocks, starting with the base
simulator VEINS and continuing with the system’s components and features.
The simulator and its components are available as an open-source on Github2.
More information about the components and installation are available in the
repository.
2 https://github.com/aminfakhereldine/TrainSec.

https://github.com/aminfakhereldine/TrainSec
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5.1 VEINS

VEINS is an open-source framework commonly used for simulating vehicular net-
works [12]. It consists of two simulators: SUMO3 and OMNET++4. SUMO [23]
is a road traffic simulator that provides the traffic scenario, while OMNET++
[24] is a network simulator that defines the network configuration. VEINS allows
the implementation of various cyber attacks in vehicular networks [4,5].

5.2 Components

Figure 4 presents the framework’s architecture. TrainSec Components represent
the components added as part of the extension. The nodes represent the net-
work entities: trains, stations, and wayside units (WSUs). The modules define the
nodes’ behaviors, such as sending and receiving messages and changing states.
The messages represent the TrainStatusMessages (TSMs) and WaysideOpera-
tionalMessages (WOMs). The simulation manager stores values for parameters
that control the simulation, such as trains’ dwell time at stations and safety
margins.

VEINS Components include a SUMO-ScenarioManager that defines network
data (e.g., roads and infrastructure) and traffic demand (e.g., types, attributes,
routes, and numbers of vehicles). OMNET-NetworkConfigurator sets the char-
acteristics of the wireless network and launches the simulation scenario. In addi-
tion, it defines attacking nodes, attack types, and parameters. Tables 1, 2, and
3 summarize the parameters that can be defined in each component.

In a simulation, trains run between stations and exchange messages with
WSUs. The simulation manager controls the trains’ movement and stopping at
stations. Finally, after the simulation ends, the results component stores the
simulation data. This component provides the ability to extract data sets and
statistical figures.

5.3 System Features

TrainSec can be easily modified or extended because of the modular nature of
VEINS. The simulator allows users to model new attacks on CBTC networks and
customize their characteristics. Users can implement attacks by utilizing multiple
features, such as modifying the beaconing frequency or the transmission rate and
replaying old messages. Security researchers can also evaluate the effects of cyber
attacks and detection and mitigation techniques.

SUMO allows modeling traffic demand by defining new vehicle types and
routes. It also allows using Netconvert5 to import road network data from sources

3 https://www.eclipse.org/sumo/.
4 https://omnetpp.org/.
5 https://sumo.dlr.de/docs/netconvert.html.

https://www.eclipse.org/sumo/
https://omnetpp.org/
https://sumo.dlr.de/docs/netconvert.html
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Fig. 4. TrainSec framework architecture.

Table 1. SUMO ScenarioManager parameters.

Parameter Value

Train length 139.14 m

Maximum speed 24.44 m/s

Acceleration 0.9 m/s2

Service braking −1.35 m/s2

Emergency braking −1.5 m/s2

Headway 90 s
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Table 2. OMNET NetworkConfigurator parameters.

Parameter Value

Simulation time limit 2200 s

Beaconing interval 1 s

Maximum interference 1250 m m

MAC implementation 802.11p

Thermal noise −110 dbm

Transmit power 80 mW

Bit rate 6 mpbs

Table 3. SimulationManager parameters.

Parameter Value

Cruising speed 20 m/s

Safety margin 25 m

Station dwell time 30 s

Emergency stopping time 60 s

like OpenStreetMap6 and using Netedit7 to create and edit custom road net-
works. OMNET++ contains models for the Internet stack and a variety of net-
work protocols. It also includes a model for IEEE 802.11, which is commonly used
in vehicular networks. Finally, TraCI8 can be integrated with VEINS. TraCI [25]
allows controlling the behavior of trains during simulation runtime and retrieving
characteristics of vehicles, lanes, and other components.

6 Simulation Scenarios

6.1 Simulation Setup

For the simulations, we set up a playground that contains nine train stations
and four trains. A train departs from the first station towards the last one and
stops for dwell time at the intermediate stations. Train stations are separated
by 2.5 kilometers (km), and each station embodies a wayside unit (WSU) to
communicate with the surrounding trains. All WSUs are installed in train sta-
tions. To set the stations’ separation distance, we referred to the map of subway
line 1 of the Toronto Transit Commission9 (TTC). This line implements CBTC
systems, and the long distances between its stations range between 2.5 km and
2.7 km.
6 https://sumo.dlr.de/docs/OpenStreetMap file.html.
7 https://sumo.dlr.de/docs/Netedit/index.html.
8 https://sumo.dlr.de/docs/TraCI.html.
9 https://www.ttc.ca/routes-and-schedules/.

https://sumo.dlr.de/docs/OpenStreetMap_file.html
https://sumo.dlr.de/docs/Netedit/index.html
https://sumo.dlr.de/docs/TraCI.html
https://www.ttc.ca/routes-and-schedules/
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All trains are identical and have the same characteristics. Table 1 presents the
adopted values of trains’ mobility attributes, lengths, and headways. The values
were set based on the features of the Toronto Rocket series10,11, the most recent
TTC train series. The Toronto Rocket trains are CBTC-equipped. Table 2 shows
some network configuration parameters, and Table 3 presents some parameters
from the SimulationManager module. For example, the cruising speed represents
the maximum operating speed, and the safety margin represents the mandatory
separation distance between trains.

6.2 Attack Scenarios

Five attack scenarios were implemented to evaluate some misbehavior techniques
based on the attack model in Sect. 4.4. Four attack scenarios involve a misbehav-
ing train, and two scenarios involve a misbehaving WSU. The misbehaving enti-
ties are chosen to be the second train or second WSU. This criterion helps show
the normal behavior of the first entities, demonstrating the malicious behavior
of the attacking nodes and reflecting the impact on the following entities. For
comparison, Fig. 2a depicts changes in the position of a train operating in normal
conditions.

Soderi et al. [9] addressed the aspect of cybersecurity in railway systems
and discussed the relationship between safety and security. By surveying various
attacks against railway systems and reviewing different techniques, the authors
state that disrupting a single train can affect the whole railway schedule and
operations. In this section, we demonstrate the effect of misbehavior attacks by
showing how misbehaving trains and WSUs affect the operations in the rest of
the network.

Figure 5 shows train 1’s misbehavior effect by delaying its TSMs by a random
offset between 0 and 1 s (s). Delaying TSMs caused delaying sending WOMs from
the wayside as well, which resulted in frequent applications of emergency brakes
to protect the safety of train operations. This behavior affected the operations of
train 2 and train 3 that were obliged to stop frequently after train 1 to maintain
safe separation.

Figure 6 reflects the consequences of wsu 1 delaying its WOMs by a random
offset between 0 s and 1 s. The trains moved properly until the second train sta-
tion, where wsu 1 is located. The trains applied emergency braking in the vicinity
of the second station due to the delays in receiving operational commands. After
that, trains resumed normal operations until reaching the last station.

Figure 7 reflects the effect of train 1 sending false position information by
adding a random value between 250 and 500meters (m). Using this attack, the
train fooled some WSUs in its vicinity and got farther LMAs that allowed it
to avoid stopping at the third and fifth stations. Moreover, all the operations
were disrupted after that, and all the trips stopped at the sixth station. Fur-
thermore, Fig. 8 shows the effect of adding a random offset between 2.5m/s and

10 https://www.ttc.ca/transparency-and-accountability/Operating-Statistics.
11 https://www.ttc.ca/about-the-ttc/projects-and-plans/new-subway-trains.

https://www.ttc.ca/transparency-and-accountability/Operating-Statistics
https://www.ttc.ca/about-the-ttc/projects-and-plans/new-subway-trains


TrainSec: A Simulation Framework for CBTC Networks 35

3.5m/s to train 1’s actual speed. This behavior caused frequent applications of
emergency braking due to operational commands to protect the safety of opera-
tions. Consequently, train 2 and train 3 slowed down and stopped to maintain
safe separation from their preceding trains. We can also notice that train 2 was
moving very close to train 1 due to faulty operational commands.

In addition, Fig. 9 represents the impact of wsu 1 adding a random offset
between 250 m and 750 m to the real LMA. All the trains skipped the second
station, where wsu 1 is located, then continued with normal operation.

Fig. 5. Train TSM delay.

Fig. 6. WSU WOM delay.
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Fig. 7. Train false position.

Fig. 8. Train false speed.

Fig. 9. WSU false LMA.
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7 Conclusion

This paper presented TrainSec, a simulation framework that enables security
researchers to model and assess the security of Communication-Based Train
Control (CBTC) networks. It implements the functional requirements defined in
IEEE 1474.1 [3], the standard for CBTC performance and functional require-
ments.

TrainSec solves the problem of the unavailability of datasets and real test-
ing infrastructure to evaluate the resilience of CBTC networks against cyber
attacks. It is an extension of VEINS [13], a vehicular network simulator com-
monly used in the security of vehicular networks. Like VEINS, TrainSec provides
open extensibility due to its modular nature. Users can set their own scenarios
and parameters. In addition, they can extract datasets, plots, charts, and other
visualization materials.

This work showed how critical and dangerous cyber attacks against CBTC
systems could be. The simulator can help find solutions to open challenges in
the area of CBTC security. The main contribution of TrainSec is to provide
a framework that simulates a CBTC network that can be used for security
research. The currently provided scenarios include some misbehavior attacks.
However, future extensions and scenarios based on TrainSec can simulate other
types of cyber attacks and more complex misbehavior techniques.

The current implementation of TrainSec has some limitations and assump-
tions that can be addressed in future work. For example, this implementation
assumes that trains apply emergency braking by stopping for a predetermined
period. In a real-life scenario, a train would wait for a command from the control
center to resume its operations. In addition, automatic train protection (ATP)
checks for overspeed protection only when a train is in the cruising phase. The
rationale is that the speed in the other phases is always less than the cruising
speed, which represents the maximum operating speed.

Furthermore, TrainSec implements an ATP module that ensures the safety
of trains by reducing speeds or applying emergency braking. Safety can also be
achieved by increasing headways as a complementary or supplementary solution.
This implementation does not include increasing headways under the assump-
tion of increasing the utilization of the rail line. However, future extensions of
TrainSec could implement and integrate it into the system.

Finally, IEEE 1474.1 considers the case when trains with different modes,
CBTC-equipped and non-CBTC-equipped, share the same rail line. The scenar-
ios currently provided in TrainSec consider all trains as CBTC-equipped. Future
extensions of TrainSec can consider implementing scenarios that allow trains
with mixed modes to run on the same line. It would be interesting to study
the impact of integrating non-CBTC-equipped trains on the security of CBTC
networks.
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Abstract. In Germany and throughout Europe, train operation using
the European Train Control System (ETCS) is the most common solu-
tion for current trains running on the mainlines. This paper presents a
safety analysis of the Automatic Train Operation (ATO) system. The
System Modeling Language (SysML) is used to visually model the logi-
cal relationships of the mainline ATO system based on ETCS. The Fail-
ure Mode and Effect Analysis (FMEA) is used to perform a qualitative
safety analysis to identify all possible failure modes of the system. State-
space modeling and dynamic quantitative analysis are carried out using
a Markov chain model. In order to verify the degree of safety of the ATO
model, a real data set from a train operator was used for simulation.
We show that using an ETCS-based ATO system to control trains can
achieve higher reliability on the mainline with less maintenance than if
experienced drivers control trains.

Keywords: ATO · ETCS · SysML · Markov chain · safety analysis

1 Introduction

The advanced development of high-speed railways has made rail travel easier
and more popular in both short and long distance trips. Ensuring the consumers’
and operators’ safety and convenience leads to high requirements for train con-
trol as well as railway communication signalling. Existing research and industry
reports [1] have indicated that the driver can no longer rely on manual signal
recognition to operate safely. The speed of the trains increased to a level where
the driver has too short a time to observe and confirm signals on the line side.
In order to ensure safe and efficient train operation each country is developing
its own Automatic Train Operation (ATO) system. This is well-known in urban
railways and receives increasing interest for mainline railways to improve their
capacity and punctuality [2].

However, the application of ATO in the main railway lines has stagnated for
nearly 30 years, and it has not kept up with the corresponding development of
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
B. Milius et al. (Eds.): RSSRail 2023, LNCS 14198, pp. 43–61, 2023.
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technology. One of the main reasons could be that various stakeholders do not
yet trust the safety and security of ATO on the mainline. Analysing the large-
scale safety of ATO on the mainline is not only the direction of the development
of global railway operations, but also demonstrates the maturity of ATO. On the
other hand, the application of ATO technology on mainlines has not progressed
significantly for a long time after the use of GOA2 by the Czech Railways in
1991. For example, it wasn’t until March 2018 that the UK implemented the
first mainline at Thameslink in London, and the degree of automation was still
GOA2 [3].

Even though there are still many open problems academic research on ATO
technology still mainly focuses on algorithm updating, aiming to minimise the
energy consumption and carbon emissions during automatic train operation.
Several papers have discussed simulation studies of automatic train driving sys-
tems [4], including a train model [5,6], train control algorithms [7], an adaptive
algorithm for ATO control parameters [7,8], the control algorithm and multi-
objective optimization of the ATO system of urban rail [9]. In terms of energy
saving optimization control one can find search methods for idling control, artifi-
cial intelligence network and genetic algorithm for idling control, decision control
for energy saving [10,13,14], extreme value control for solving control transfor-
mation point to improve energy efficiency [11] and a locomotive handling guid-
ance system based on optimal train operation [12]. In recent years, some papers
study the safety of train operation. Enrique Castillo et al. [15] used Bayesian
networks to conduct safety analysis on the behavior of drivers and the causes of
accidents. A Markov-Bayesian network is used for safety analysis of the driver’s
attention [16]. A hypothesis and method for analyzing the impact of railway
automation on the capacity of the main railway line [17] has been published.

The safety demand for an ATO system is not only important for passengers,
but also one of the important indicators for the railway industry to consider
its feasibility. For example, after analysing the statistical results of hundreds
of thousands of samples, Dea van Lierop et al. [18] concluded that in public
transportation the requirement for safety of passengers is even higher than the
demand for punctuality.

This paper conducts a detailed safety analysis of the ATO system based on
the European Train Control System (ETCS). Simulations were carried out using
6925 h historical fault operation data from a Train operating company to verify
that trains with ATO systems on European mainlines are safe enough to be fully
driverless.

We use the Unified Modeling Language (UML) to visually model the log-
ical relationship of the ETCS-based ATO system. First, the Block Definition
Diagram (BDD) and Internal Block Diagram (IBD) belonging to the System
Modeling Language (SysML) are used to display the package structure content
of the ATO subsystems and blocks. After the ATO is systematically decom-
posed, the Failure Mode and Effects Analysis (FMEA) is used for qualitative
safety analysis to identify all possible failure modes of the system. Then state
space modeling is performed using a Markov chain to obtain dynamic quantita-
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tive analysis results. The safety study verifies that the ETCS-based ATO system
in the main railway environment is very reliable and safe. Finally, the model is
placed in a simulation environment of multiple sets of fault data for validation
and verification.

The structure of this paper is as follows. The next section introduces our
model of the mainline ATO system based on ETCS, which includes the intro-
duction of the ATO system and the establishment of the structural model. In
Sect. 3 FMEA is used for qualitative safety analysis, and the system failure modes
are decomposed. Section 4 uses a Markov chain to carry out quantitative safety
analysis and determine the reliability of the system. Section 5 shows our vali-
dation and verification, placing the model in a failure environment. Section 6
concludes this paper.

2 Modelling the Mainline ETCS Automatic Train
Operation System

In this section we will introduce the European Train Control System (ETCS)
as well as the functionalities of the Automatic Train Operation (ATO). We will
describe different aspects and versions different models which we have developed
for the ETCS automatic train control.

2.1 Brief Introduction to ATO with ETCS

The ETCS is a unified and open signalling system organised and developed by the
European Railway Authority (ERA) to solve the interconnection and compati-
bility problems of various national railway signalling systems in Europe. While
compatible with the existing signal systems, ETCS realises seamless transition
of trains across various countries in the European railway network.

In 2001, the European Union (EU) legislated ETCS as a mandatory technical
specification to ensure the interconnection of high-speed trains in the European
railway network. With technical innovation and more extensive interconnection
requirements the system specification is also constantly updated and extended.
In 2008 and 2016, the EU officially released the baseline 2 (2.3.0d) version and
the baseline 3 (3.6.0) version of the ETCS system specification, respectively [20].
In recent years, in order to improve the transportation capacity and efficiency
of the lines, the ERA began to organise research on superimposing ATO on
the basis of ETCS. An ATO system based on ETCS uses a wireless channel
independent of ETCS to transmit vehicle-to-ground information.

ETCS is divided into three grades, namely ETCS-Level 1, ETCS-Level 2 and
ETCS-Level 3 (Fig. 1). The top shows the one-way transmission of information
from L1 to the driver using the signals. The middle one shows L2 using RBC to
communicate with the train. The bottom shows L3 using the central controller
to get rid of the block occupation by interlocking.
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Fig. 1. ETCS design of level 1,2 and 3

Figure 2 shows how the various subsystems of an ATO system with an ETCS
system cooperate to complete the entire process of the mission of controlling the
movement of the train. The train reads information from trackside and on-board
sensors and displays it in the train indicator; the ETCS always synchronises the
train’s position and speed with the indicator. The ATO system receives the speed
limit from the indicator and the ETCS’s recommended operating strategy and
generates a speed profile for the train to execute.

Trains on the mainline (especially on cross-border lines) railway sections
are supported by different operators which may implement different levels of
ETCS. Therefore a train may encounter sections of different levels of ETCS on
its travel. Such objective conditions require that the on-board ATO system must
contain the ETCS level 1–3 full coverage equipment to ensure that the train
can switch the communication mode with the lineside facilities anytime and
anywhere during the operation. Of course, this design also implicitly increases
the redundancy of the ATO system and improves safety.

2.2 The Components of ETCS

The ETCS system is divided into two sub-systems: the on-board and the track-
side part. Because different levels of ETCS contain different optional compo-
nents, they will also be described in different structures and they need to be
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Fig. 2. Functional subsystems

distinguished. According to the subset 125 normative specification [19], among
the components that belong to the on-board subsystem are the Euro Vital Com-
puter (EVC), the Driver Machine Interface (DMI), the Train Interface Unit
(TIU), the Juridical Recording Unit (JRU), the Balise Transmission Module
(BTM), the Loop Transmission Module (LTM), the On-board radio communi-
cation system (Euroradio), the Odometry system, and the Specific Transmission
Module (STM). Among them, EVC is the core of on-board sub-system, interacts
with the driver through DMI, controls the powertrain through TIU, and records
data through JRU. BTM and LTM participate in the process of rail-to-train
interaction, and euroradio realises two-way interaction. STM is used to switch
the ETCS level. Odometry system is a combination of sensors.

The components belonging to the trackside sub-system are the Euro-balise,
the Lineside Electronic Unit (LEU), the radio block centre (RBC), interlocking,
Euroloop, and Radio Block Interface Unit (RIU). Among them, RBC is the core
of the trackside sub-system, interacts with interlocking and balise through LEU,
and transmits information to the train through RIU.

Notably, LTM, Euroloop and RIU are equipped in ETCS L1, while RBC is
equipped in L2 and L3.

2.3 The ATO Block Definition Diagram

The block definition diagram of the ATO system based on the above component
information shown in Fig. 3 for the trackside subsystem. Figure 4 illustrates the
components of the on-board system.

The BDD shows the block elements with the corresponding data types and
units. The values shows the block’s restrictions on the value of certain data.
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Fig. 3. Block definition diagram (trackside subsystem)

2.4 The Internal Definitions

After the establishment of BDD, the encapsulated blocks of the ATO system
based on ETCS can be obtained. Different blocks are responsible for independent
tasks, and at the same time they participate in related tasks with different
divisions of labour. In order to understand the connections between subsystems
at a deeper level (components), especially the interfaces between internal parts,
an IBD (internal block diagram) is established as shown in Fig. 5.

According to further deconstructing, the IBD diagram decomposes the ATO
system from the subsystem level to the component level. We decomposed the
ATO subsystem into six relatively independent modules, analysed the interfaces
between the components, and the direction and content of information transmis-
sion. Although the IBD diagram is commonly used for static analysis, since most
of the information transmission in this example is one-way, part of the sequence
of missions can be obtained for the most basic dynamic analysis.

Notably, in order to distinguish the ATO system and the Unattended Train
Operation (UTO) system, we use a dotted line to separate the process of driver
participation from the equipment. In short, after removing all the dotted lines,
the remaining IBD can be used to describe the operation of the UTO system.
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Fig. 4. Block definition diagram (on-board subsystem)

3 Qualitative Safety Analysis by FMEA

After building the structure of the mainline ATO system based on ETCS, the
security of the system will be qualitatively analysed. The complexity of the
ATO system is manifested in the diversity of components and the number of
interfaces. Therefore, in order to be able to review as many components and
subsystems as possible during the analysis process, we use the Failure Mode and
Effects Analysis (FMEA) for qualitative analysis. One feature of FMEA is that
it can examine the potential failure modes in a large number of components and
interfaces and analyse the causes and possible effects of different failure modes.

However, the most difficult point is that due to the multi-threaded redun-
dancy in the system, the failure of the system generally is caused by combined
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Fig. 5. Internal block diagram

failures of different components. FMEA’s is well-suited analyse single-point fail-
ures but investigating combined failures is not straight forward.

In order to solve this problem, we have added the combined failure type to
the column of system failure effects. Please note that the plus sign (+) means
that when the type of failure shown in this line, one of the other failure modes is
added, resulting in a combined failure. For simplicity, we only fill in the number
after the plus sign (+) to represent the serial numbers of other types of failures
listed in this FMEA list.

The main reason why this can be added to the FMEA is that the component
failures of the system do not have cascading failures. Each component is relatively
independent during operation. For example, the failure of Eurobalise will not
cause any failure of EVC. It will only be combined with other single points of
failure to cause EVC’s mission to fail to complete as expected. The qualitative
analysis results are shown in the appendix.

With the FMEA, we identified 29 sets of failure modes for 14 components.
Most of the system-level hazards require successive failures of multiple com-
ponents. This would make the probability of degradation of the ATO system
much higher than the probability of downtime. The time between successive
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maintenance is determined by the probability of degradation or failure. In the
next section we will use the failure modes presented in the FMEA to calculate
the probability of failure and thus develop a maintenance strategy.

4 Quantitative Safety Analysis Using a Markov Chain

The qualitative FMEA analysis provides us with a series of combinations of
component failures leading to system failure. Some of them will lead to the
degradation of the system (the system can complete the set missions, but its level
of redundancy is reduced). Others will lead to the complete failure of the system
(the system can no longer complete any set missions). In order to dynamically
and quantitatively analyse the safety of the system, we have derived a Markov
chain for the ATO system.

A Markov chain is a probabilistic state transition model that can quantita-
tively and probabilistically analyse all the enumerated states. Starting from an
initial state the probability of reaching all other states at a certain time can be
computed. A long-term stationary solution can be obtained if certain conditions
hold. Unfortunately, those conditions are not satisfied in our model and therefore
we stay with transient analysis.

To ensure the validity of the model, the following assumptions are made.
First, the state transition function of the components is constant, hence the fail-
ure rate and the maintenance rate follow the exponential distribution. Second,
only one event (e.g. failure) can happen at each point in time. Multiple events
at the same time are assumed very unlikely and are not considered. The latter
assumption seems realistic for an ATO system. Therefore, the ATO system sat-
isfies the requirements of Markov modelling. However, the model has absorbing
states (states, which are never again left when being reached) and therefore a
stationary solution does not exist.

In order to simplify the model, the quantitative analysis process only analyses
the core task of the ATO system, which is to receive the minimum value of the
required information and complete the entire process of the algorithm to control
the safe operation of the train. It is necessary for the train to receive at least
one movement authority and lineside signal at the same time. This is because
when the train does not receive the movement authority and lineside signal
of the current block, the train must stop immediately to avoid collisions with
other trains or obstacles that may exist. In addition, EVC controls basically
all algorithms, information collection and train control processes of the ATO
system. Therefore, in order to ensure that the ATO system can complete this
series of tasks during operation and ensure the safety of train operation, the
normal operation of at least one EVC is necessary.

Figure 6 indicates that each state in the Markov chain represents a degraded
state of the system in different aspects due to failures of different components.
The arrows in the figure indicate the failure rate and repair rate. The combi-
nation of failure rates comes from the analysis results of the FMEA. The three
states with colors represent the subsystem in a failure state, at which point the
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system stops operating. As for the value of failure and repair rates, we used
existing data from [21], as shown in Table 1.

Table 1. The Reliability Parameter of Components

Name Failure rate/ h-1 Repair rate/ h-1

EVC Internal fault 1.49*10–4 (I9.6) 0.3 (µ9.6)

EVC disconnection 6.00*10–6 (I9.1–I9.4) 0.0625 (µ9)

Interlocking 2.3*10–6 (I2.1, I2.2) 0.3 (µ2)

RBC 1.45*10–8 (I5.2) 0.3 (µ5)

RIU 1.8*10–5 (I6.1) 0.3 (µ6)

Eurobalise 7*10–8 (I1) 0.25 (µ1)

LEU RIU disconnection 1.8*10–5 (I3.2) 0.3 (µ3)

LEU balise&loop disconnection 2.1*10–6 (I3.1, I3.3) 0.3 (µ3)

TIU 2.35*10–5 (I10) 0.3 (µ10)

DMI 5*10–6 (I15) 0.3 (µ15)

OS 2.5*10–9 (I11) 0.25 (µ11)

Euroloop 1*10–6 (I7.1) 0.3 (µ7)

CC 3.4*10–5 (I4.1) 0.3 (µ4)

Notably, the rates in the table have been mapped to the failure modes in the
FMEA and are marked in parentheses after the rates. For example, I9.6 means
the 9.6 failure of FMEA, which is internal fault of EVC. Since the model is a
homogeneous continuous-time Markov chain, to obtain the probability distribu-
tion of each state under stable conditions, the reliability parameter of compo-
nents needs to be brought into the following equation.

π(t) = π(0)eAt = π(0)

(
1 +

∞∑
n=1

Antn

n!

)
(1)

where πx(t) represents the probability that the Markov model is in state x at
time t. The state probability vector π(t) includes 14 elements, π0 to π13, which is
the probability distribution across the states at time t (in hours). Figure 6 shows
the simplified notation of the state transition diagram.

Each number in Fig. 6 represents the status of the ATO system. State 0
means that all components of the ATO system are in a successful state. State
6 means that the train is out of service due to loss of movement authorization.
State 9 means that the ATO system is out of service due to a total failure of the
EVC system. State 13 represents a complete failure of the ATO system and the
train system.
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Fig. 6. Numbering of states of the Markov chain

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Λ0 IA IB IC ID 0 0 0 2IE 0 0 0 0 0
μA Λ1 0 0 0 IB 0 0 0 0 ID 0 0 0
μB 0 Λ2 0 0 IA ID ID 0 0 0 0 0 0
μC 0 0 Λ3 0 IB IB ID 0 0 0 0 0 0
μD 0 0 0 Λ4 0 0 IC 0 0 IA 0 0 0
0 μB μA μA 0 Λ5 IC 0 0 0 0 ID 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 μD μD μC 0 IB Λ7 0 0 0 0 IA 0

μE 0 0 0 0 0 0 0 Λ8 IE 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 μD 0 0 μA 0 0 0 0 0 Λ10 IB IC 0
0 0 0 0 0 μD 0 0 0 0 μB Λ11 0 IC
0 0 0 0 0 0 0 μA 0 0 μC 0 Λ12 IC
0 0 0 0 0 0 0 0 0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (2)

A is a square matrix used to describe the transitions of a continuous-time
Markov chain. It adds up to zero for all elements in each row. And each row in A
represents a state in the Markov model. All states can be collected in the vector
π and the transitions between states form the matrix A. The transition matrix
is a 14 ∗ 14 square matrix as shown in Eq. (2).

Where Λi is the negative sum of all other elements in column i of the matrix.
The values from IA to IE and μA to μD are as follows. Among them, letter

‘I’ represents the failure rate, ‘μ’ represents the repair rate, and the naming of
A to E enumerates the different operational modes. Since the failure factors are
independent of each other, the failure rate required for a failure mode is the sum
of the failure rates of each component in the minimal cut set. The calculation
method of the maintenance rate is not a simple addition. This is because the
unit of the repair rate is h1, so it is necessary to calculate the repair time and
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take the reciprocal.

IA = I7.1 + I3.3 + I9.1

= 1 × 10−6 + 2.1 × 10−6 + 6 × 10−6

= 9.1 × 10−6

(3)

IB = I3.2 + I6.1 + I9.4

= 1.8 × 10−5 + 1.8 × 10−5 + 6 × 10−6

= 4.2 × 10−5

(4)

IC = I5.2 + I4.1 + I9.4

= 1.45 × 10−8 + 3.4 × 10−5 + 6 × 10−6

= 4.00145 × 10−5

(5)

ID = I1 + I2.2 + I3.1 + I9.2

= 7 × 10−8 + 2.3 × 10−6 + 2.1 × 10−6 + 6 × 10−6

= 10.47 × 10−6

(6)

IE = I9.6 = 1.49 × 10−4 (7)

Notably, since the link between the EVC and the on-board module consists
of the bus, when the EVC is disconnected from any of the LTM, BTM, STM
and Euroradio modules, the repair process will take 4 times the time of fixing
a single line. In addition, since system operation stops with system-level failure,
states 6, 9 and 13 are absorbing states.

μA =
1

1/μ3 + 1/μ7 + 4/μ9
= 3/212 (8)

μB =
1

1/μ3 + 1/μ6 + 4/μ9
= 3/212 (9)

μC =
1

1/μ4 + 1/μ5 + 4/μ9
= 3/212 (10)

μD =
1

1/μ1 + 1/μ2 + 1/μ3 + 4/μ9
= 3/224 (11)

The maintenance interval of the current railway system can take on two values
according to whether a small or full maintenance is performed: one week and one
month. ATO failure corresponding to state 9 is subsystem failures and defaults
to a maintenance interval of 28 days. In contrast, train failures corresponding to
state 6 and state 13 result in a complete system shutdown. This is a system level
failure and defaults to a maintenance interval of one week.
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In order to analyse whether the current railway system maintenance strategy
meets the needs of the ATO3 class system, the probabilities of the three different
failure states are calculated.

Ui = [−Q]−1 ∗ Ri, (12)

where Ui represents a vector which contains the probability of absorption in the
i−th absorbing state when starting from a non-absorbing state. Q represents the
transition matrix for the transitions from non-absorbing states to non-absorbing
states. Hence, Q is obtained from A by removing the rows where all entries are
zero, as well as the corresponding columns. Ri denotes the vector of probabilities
of a transition from the non-absorbing states to the absorbing states.

U =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0.1743 0.8257 0.0000
0.1743 0.8257 0.0000
0.1749 0.8251 0.0000
0.1767 0.8233 0.0000
0.1743 0.8257 0.0000
0.1760 0.8239 0.0000
0.1761 0.8239 0.0000
0.1738 0.8262 0.0000
0.1743 0.8257 0.0000
0.1749 0.8237 0.0015
0.1749 0.8237 0.0014

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

U∗ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0.1743 0.8257
0.1743 0.8257
0.1749 0.8251
0.1767 0.8233
0.1743 0.8257
0.1761 0.8239
0.1761 0.8239
0.1738 0.8262
0.1743 0.8257
0.1763 0.8237
0.1763 0.8237

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

P =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

33.1712
33.1700
33.0306
32.6162
33.1699
32.7613
32.7501
33.2670
33.1685
32.6983
32.6943

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(13)

When the ATO system is in state i, the probability of the type of fault being a
train fault, a system fault, or a double fault in the event of failure is shown in
row i of U . Considering that state 13 has the same maintenance needs as state
6, the first and third columns have been combined to the first column of U∗.

State 9 corresponds to a time interval of 7 days for maintenance of major
failure. Considering that the probability of the system falling into an absorbing
state should be inversely proportional to the maintenance interval, states 6 and
13, which have a lower probability of absorption, could have longer maintenance
intervals. The expected interval of the maintenance of minor failure in each state
is determined as shown in P . It is therefore proposed to adjust the system level
maintenance interval from 28 days to 33 days, which will reduce maintenance
costs.

5 Experimental Validation and Verification

We evaluate the developed Markov chain model for perform safety analysis of
the ETCS-based ATO system. The objective is to compare the reliability of the
ATO system with that of the conventional ETCS system. We have implemented
the model in Python to simulate the Markov chain which represents the oper-
ation of the ATO system. The results are compared with the respective failure
probabilities in the data set.
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Table 2. Frequency statistics by failure mode of ETCS

Sort Times Fault mode

T 4 BC/FC (Battery Charger/Fault Condition): MVB-PD-communication from battery charger faulty

T 1 C: MVB-PD-communication from TCU faulty

E 1 Shutdown profile: battery off after transfer to emergency operation

E 1 BCU (Brake Control Unit)-speed EC (Electronic Control) implausible

E 1 EC: MVB-PD( Multifunction Vehicle Bus- Protocol Data)-communication from TCU faulty

E 2 MCB (Main Circuit Breakers) ETCS accordingly ATP2TCR switched off

E 1 VCB (Vacuum Circuit Breaker) OFF from slave-CCU

E 3 No automatic train protection active

E 3 Emergency brake for 48 h

T&E 1 Automatic train stopping DNRA (Driver’s Notification of Route Acquisition)

T&E 1 Failure CCU (Central Control Unit)

Based on a train operating company’s ETCS fault dataset for a particular
train, a data pattern frequency statistics table was created as shown in Table 2.
The dataset contains 6925 h of train operation fault history. As different systems
have completely different downgrade logic, it is not possible to compare them
in this aspect. Therefore the graphs do not include degradation modes but only
failure modes. Failure modes are classified as T and E. T means that the failure
mode comes from the Traction Control module and E means that the failure
mode comes from the Electronic Control module.

Fig. 7. Diagnostic code example of the MVB Data

The model parameters are estimated based on real-world failure data that has
been collected from 2:25AM 26/10/2017 to 2:12AM 28/10/2017. A severe fault
could be detected at the beginning of the period. The MVB-PD(Multifunction
Vehicle Bus- Protocol Data) communication had a serious failure during the
operation of the train, which prevented the train from receiving the information
of railway authorization and line-side signals from both RBC and RIU (cf. Fig. 7).

The above fault data is represented that the ETCS has lost its movement
authority and lineside signal. Therefore, in order to balance the objective factors
of the ATO system with the ETCS system. We set the initial state in the model
to state 5, which means that the RBC and RIU systems of the ATO system are
lost. In the initial state, the ATO is in the same degraded state as the ETCS.
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The simulation results are shown in Fig. 8. Since the train needs to run a
round trip before the vehicle can enter maintenance, considering the capacity of
the line, it will take at least the next day for the train to reach the depot of
the starting station. Therefore, we have decided to evaluate the model after two
days (48 h) of operational time.

Fig. 8. The ATO system probability of state 0 to 13

After 48 h of operational time the state probabilities are shown in Table 3.
The three states 6, 9 and 13 are the failed states where the systems stops. Hence
all three are absorbing states. The sum of the probabilities that the system is in
states 6, 9 and 13 is the probability that the target ATO system will completely
fail. The results show that the probability that the system is relatively reliable
within the first 48 h is 99.88%.

Table 3. State Probabilities at time t = 48

π0 0.3037 π1 0.1896 π2 0.1899 π3 0.1896 π4 9.519E−5 π5 0.1247 π6 1.202E−3

π7 7.664E−5 π8 8.909E−4 π9 1.968E−6 π10 8.3662E−5 π11 9.614E−5 π12 6.480E−8 π13 1.737E−7

To conduct a reliability comparison between an experienced driver and
the ETCS-based ATO system, the reliability of the driver must be estimated.
According to research results, the reliability R0 of the driver’s operation of the
train is affected by three factors: the received information reliability R1, the
judgment reliability R2 and the execution reliability R3 Their relationship is
shown in the following equation.

R0 = R1 × R2 × R3 (14)
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Table 4. The Reliabilities of R2 AND R3

Category Description R2 R3

Easy Only a few variables, comprehensive consideration of ergonomics 0.9999 0.9995–0.9999

General No more than ten variables 0.9995 0.9950–0.9995

Complex More than 10 variables, incomprehensive ergonomic considerations 0.9900 0.9900–0.9990

The values of R2 and R3 are shown in Table 4 [22].
Considering that there are no more than 10 variables commonly used in train

operation, the operation of the train is relatively simple, so we set R2 to 0.9999,
and R3 to 0.9997. R1, the reliability of the received information reliability from
the system ETCS system. Based on the failure probabilities shown in Table 2,
R1 can be calculated as 0.9973, which means the value of R0 can be calculated
as 0.9969. This is slightly less reliable than with the ATO system that continues
to operate for 48 hours after a serious failure occurs.

It can be seen that the reliability of the ETCS-based ATO system running
on the mainline is almost the same as the reliability of the experienced driver
driving the train in the case of completely unmanned, and it can even show
higher continuous reliability.

6 Conclusion

As of yet, the ETCS-based ATO Level 3 (L3) system, which will operate driver-
less, has not been deployed in the mainline railroad environment. This is due to
the fact that the safety of driverless train systems cannot be effectively guaran-
teed at the operational level. Therefore system-level safety analysis is necessary.
In this paper, we conducted a qualitative and quantitative analysis of the ATO
system on the mainline railway.

We have formulated the system in SysML and FMEA to perform a qualitative
analysis. Since there is no cascading fault environment a combined fault analysis
could be added for analysing the impact of subsystem failures. The results of
the FMEA tables show that avoiding signal loss between subsystems is the best
safety measure to prevent system degradation.

We have developed a continuous-time Markov chain to calculate the failure
mode ratio of the ATO system. We propose to adjust the default maintenance
interval to 33 days, saving 17.86% in maintenance costs.

Using real railway data we have simulated the ATO system. We found that
the probability of failure of the ATO system operating on the mainline railway
is 0.12%, which corresponds to the safety level of the current railway system.
Therefore, we could confirm that in the context of the current ETCS applying
an ATO will maintain the current level of safety on the mainline.

In future work the parameters of the model can be further improved. Due to
time and economic constraints, it is impossible to personally do experiments to
obtain model-related data. All data used in the paper are taken from references.
In addition, we want to extend the model to capture larger topologies as well as
interoperation between trains.
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A FMEA

See Figs. 9 and 10.

Fig. 9. FMEA-1
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Fig. 10. FMEA-2
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Abstract. Gearbox bearing maintenance is one of the major overhaul
cost items for railway electric propulsion systems. They are continu-
ously exposed to challenging working conditions, which compromise their
performance and reliability. Various maintenance strategies have been
introduced over time to improve the operational efficiency of such com-
ponents, while lowering the cost of their maintenance. One of these is
predictive maintenance, which makes use of previous historical data to
estimate a component’s remaining useful life (RUL). This paper intro-
duces a machine learning-based method for calculating the RUL of rail-
way gearbox bearings. The method uses unlabeled mechanical vibration
signals from gearbox bearings to detect patterns of increased bearing
wear and predict the component’s residual life span. We combined a
data smoothing method, a change point algorithm to set thresholds, and
regression models for prediction. The proposed method has been vali-
dated using real-world gearbox data provided by our industrial partner,
Alstom Transport AB in Sweden. The results are promising, particularly
with respect to the predicted failure time. Our model predicted the fail-
ure to occur on day 330, while the gearbox bearing’s actual lifespan was
337 days. The deviation of just 7 days is a significant result, since an
earlier RUL prediction value is usually preferable to avoid unexpected
failure during operations. Additionally, we plan to further enhance the
prediction model by including more data representing failing bearing
patterns.

Keywords: Railway · Gearbox bearing · Predictive maintenance ·
Remaining useful life · Machine learning

1 Introduction

The maintenance of a railway system plays an important role in ensuring its safety,
dependability, and efficiency [1]. Train reliability is a daily requirement for millions
of people, and as such, it is a perpetual challenge for all vehicle manufacturers. The
reliability expectation is met by using electrical and mechanical components such
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
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as robust pantographs, transformers, and an optimized propulsion system. These
components are subject to significantly demanding operation conditions, and to
preserve their operational performance, effective maintenance strategies are essen-
tial. In the context of predictive maintenance, safe and efficient train operation [2]
is relied on accurate estimation of RUL of railway components. In this respect, tra-
ditional methods, like model-based prediction, leverage complex models, such as
non-linear ones [3] or temperature models [4], which can potentially impact the
accuracy of the prediction [5]. Machine learning (ML) techniques, on the other
hand, offer increasingly popular alternatives that provide improved efficiency and
accuracy [2,6,7]. ML models can utilize sensor data and other operational parame-
ters to predict the remaining lifespan of bearings, enabling proactive maintenance
and minimizing downtime. Data analytics, feature extraction, and ML techniques
have shown promising potentials for predicting component failures and estimat-
ing RUL [5,8]. The use of ML techniques for RUL estimation has been explored
in various fields, such as wind turbines [5,9,10], where high operation and mainte-
nance costs make it essential to predict component failures. However, these tech-
niques have been rarely applied to train propulsion systems or their components.
In fact, although there are some similarities between gearbox bearings in differ-
ent contexts, there exist significant differences. Train propulsion systems operate
under specific operational conditions and encounter various environmental vari-
ables, including temperature, vibration levels, humidity, etc. As a result, the wear
patterns and degradation mechanisms exhibited by train propulsion systems dif-
fer from those observed in other domains, influencing the various methods used to
assess them. Typically, vibration data from propulsion system gearbox bearings
are analyzed using techniques such as Fourier or time-frequency analysis to detect
anomalous patterns associated with bearing problems. There data can then be fed
to further steps of anomaly detection system, such as, ML algorithms to classify
and locate bearing problems.

The current study focuses on the challenges presented by train propulsion
system gearbox bearings and their wear. Due to the limitation in obtaining
real-world gearbox bearing data, existing works usually depend on simulated
data or controlled operating condition data in laboratory settings. Instead, this
paper presents a method that has been validated using real data from a train
propulsion system with a maximum speed of 300 km/h given by our industrial
partner Alstom. The approach proposes a preprocessing phase that uses low
pass filtering to reduce oscillations in raw data [11] and increase RUL estimation
accuracy. The obtained data is employed in a regression model to predict RUL.
The proposed techniques also includes a change point algorithm, necessary to
derive thresholds for assessing degradation trends. By going into more details,
the process begins with an analysis of sensor data acquired from a real-world
propulsion system. A combination of one class support vector machine (One-
class SVM) and interpolation is used, allowing signal outlier identification and
trend analysis. In the case of deteriorating trends, a change point technique,
Pruned Exact Linear Time (PELT) is applied to the data to identify the sig-
nal’s variation instances. Based on the variation points thresholds are built. To
develop a prediction model, regression models such as the polynomial and the
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exponential ones are created and trained on the data. The RUL of the bearings
is then determined by using the best-performing model. The obtained prediction
results are promising, as our prediction model is very close to the actual bearing
failure, with only a 7-day difference1. In other words, in real-life condition the
bearing lasted an additional 7 days before failing. In fact, such a margin would
prevent downtime due to in-service failures, while at the same time avoiding
excessive waste of remaining lifespan. Moreover, in contrast to previous research,
the proposed approach enables the provision of explanations about how thresh-
olds for degradation trends are established through the application of a change
point algorithm without the use of domain-specific knowledge. The remainder
of the paper is structured as follows: Sect. 2 provides background information
about the research effort, including railway maintenance, the propulsion system,
and estimation of RUL. Moreover, Sect. 3 discusses existing related works and
the proposed solutions. Section 4 presents an overview of the adopted research
methodology and discusses the data preparation, exploratory data analysis, and
prediction models. A summary of the obtained results and findings is illustrated
in Sect. 5, while Sect. 6 provides conclusive remarks and discusses the possibilities
for further development.

2 Background

2.1 Railway Maintenance

Railway maintenance focuses on boosting operating availability and safety of its
components, while reducing expenses and downtime [12], and detecting poten-
tial issues. To achieve these goals, maintenance should be systematic, with thor-
ough planning and continual monitoring of different components conditions. The
maintenance activities are broadly categorized into: reactive, preventive, predic-
tive [13,14], as further discussed below. Historically, train maintenance has been
reactive, also known as run-to-failure maintenance. This technique entails sim-
ply examining and repairing equipment after it has failed. This is the most
basic but least effective strategy, as the cost of interventions and accompanying
downtime after failure will be prohibitively expensive, including the potential
growth of safety concerns. Preventive maintenance is planned and sched-
uled to reduce the chance of equipment failure while also enhancing production
efficiency; in particular, inspections and replacement of components on specific
pieces of equipment are performed on a regular basis. Even if better than the
reactive approach, preventive maintenance is still more expensive than the pre-
dictive one, since while most failure issues are avoided, there exists a high chance
of carrying out unneeded remedial activities. Predictive maintenance seeks
to estimate the failure time of a system or its components based on experi-
ence and/or historical data and replace them before they fail. By predicting the
need for maintenance in advance, this strategy also helps in improving main-
tenance planning, which takes time and resources. Condition-based main-
tenance (CBM) is a form of predictive maintenance that shifts the scope of
1 Our model forecasts the failure to occur on day 330, and in reality, the gearbox

bearing lasts for 337 days.
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inspections towards changes that could indicate possible failures rather than
performing general inspections at regular intervals. In particular, CBM aims at
detecting early symptoms of oncoming failures and hence predicting the need for
maintenance; typically, it employs sensors measuring variables that may affect
the machine’s efficiency. Moreover, to assess when/if a defect is detected CBM
leverages thresholds to preclude unnecessary replacements and carry out main-
tenance activities only when required.

2.2 The Propulsion System

The propulsion system of a train generates the required power and force to
propel the train, allowing it to move and assuring efficient transportation. The
propulsion mechanism comprises of a traction motor attached to the bogie and a
gearbox linked to the wheel axle. The method proposed in this paper is validated
using data from a train propulsion system provided by the world-leading train
manufacturer Alstom. There are eight carriages on the train where the data is
collected from, four of which are traction cars. Each of these cars has two bogies.
A bogie is a train component that sits beneath the train’s body and holds and
links all of the locomotive’s parts, including axles and wheels. Each bogie has two
axles, each with its own traction motor and gearbox. Figure 1 depicts a simpli-
fied representation of components in the electric propulsion system analyzed in
this study, such as the traction motor, gearbox, and the respective sensor place-
ment. Gearbox bearings have an important role in the functioning of the train
propulsion system. Bearings are key components that facilitate the smooth oper-
ation and transmission of power within the gearbox. They support the rotating
shafts and gears, ensuring proper alignment and reducing friction, thus enabling
efficient power transfer. Bearings must withstand frequent movement, varied
speeds, and severe loads while retaining performance. They are, however, prone
to wear, fatigue, lubrication contamination, and other potential damage. Contact
fatigue is the most common cause of bearing failures [15]. Other factors include
oxidation, fatigue on the rolling elements, and misalignment of bearings during
installation [16]. Many challenges exist in maintaining and ensuring the per-
formance of propulsion system gearbox bearings. Understanding the challenges
is crucial for designing effective maintenance and optimizing their performance
which ensures the train runs efficiently.

2.3 Estimation of Remaining Useful Life (RUL)

RUL estimate plays a pivotal role as an aspect of predictive maintenance, con-
tributing to the effectiveness of maintenance procedures. RUL for gearbox bear-
ings has attracted considerable attention in the literature, not only in the rail-
way industry, but also in other manufacturers who rely on machinery [5,11,17–
19]. Models such as similarity, degradation, and survival models have emerged
as tools for forecasting the remaining lifespan of essential railway components.
These models aim to anticipate the RUL based on criteria such as wear, dete-
rioration patterns, and historical data. Similarity models are based on the RUL
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Fig. 1. Components within the Electric Propulsion System

forecast of a testing machine based on a historical comparison of known behavior
of other similar machines. They use run-to-failure data describing the degrada-
tion profile. Degradation models extrapolate previous behavior to predict future
conditions. If the condition indicator is known to signal failure, regression models
are adopted, and the remaining time calculated till some predetermined thresh-
old is reached. In this paper we leverage a degradation model to estimate the
RUL. Survival analysis is a method for analyzing data based on the time it takes
for an event to occur and estimates the probability distribution of failure.

Machine learning approaches and data-driven techniques like as regression
models, neural networks, and support vector machines can be used to analyse
historical data and trends of bearing degradation. In the following section, we
will discuss some of the prior research done in the aforementioned context.

3 Related Work

Carvalho et al. [20] conducted a systematic literature review on predictive main-
tenance using ML techniques. They explored the equipment types studied and
the ML methods used, concluding that there is an increasing trend in using ML
for predictive maintenanced, which helps reduce the cost of unnecessary equip-
ment replacement in various applications. Based on Carvalho et al.’s work, we
identified related works that explored different ML methods. Amruthnath et al.
[21] focused on early failure identification on vibration data from an exhaust
fan. They evaluated various algorithms such as T 2 statistics, PCA, hierarchical
clustering, K-means, and fuzzy C-means clustering. The authors suggested that
clustering techniques can be a cost-effective solution when maintenance costs
are high. By monitoring machine health regularly using clustering, expenses on
machine maintenance can be saved until a critical level is reached. In another
study [22], the same authors proposed an unsupervised learning approach for
fault class prediction and detection in a predictive maintenance system. They
utilized Gaussian Mixture Models (GMM) and K-means algorithms to forecast
the machine state and achieved an 82.96% accuracy for error prediction. Kundu
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et al. [23] proposed a method for predicting the RUL of rolling bearings using a
combination of K-means clustering and change point detection algorithms. By
identifying failure patterns in the data, the authors improved the accuracy of
their RUL predictions. They suggested that their method could be extended
to other applications of predicting RUL and state interference where changing
a state shows degradation of the bearing. This method is useful for calculat-
ing the probability of shifting from a healthy state to damage by using a state
matrix. Hong et al. [24] proposed a method for predicting the RUL of bear-
ings using Gaussian Process Regression (GPR). They utilized RMS, kurtosis,
and crest factor as input features to construct the minimum quantization error
(MQE) through a self-organizing map (SOM). The authors found that using a
composite kernel improved the prediction accuracy and reduced the variance of
the RUL in comparison to using a single kernel, highlighting the importance
of kernel selection in GPR for RUL prediction in machine health monitoring.
Elasha et al. [11] proposed a bearing prognosis approach that used regression
and back-propagation neural networks to estimate the RUL of high-speed shaft
bearings of a wind turbine. They demonstrated the effectiveness of the regres-
sion model in improving the predictive performance of the neural network model,
with the proposed ANN model exhibiting strong performance in predicting the
remaining useful life of a bearing. Li et al. [25] improved the exponential model
and utilized particle filtering to eliminate random faults in bearing degrada-
tion process. Their method was demonstrated on four tests and outperformed
the original exponential model used in their previous work in predicting RUL
of rolling element bearings. While this study enhanced prediction accuracy of
the exponential model by selecting optimal FPT and minimizing random errors,
failure threshold remains subjective and few studies have been done to deter-
mine them dynamically in RUL prediction. The authors in [26] developed a
method for estimating the RUL of rolling element bearings in induction motors
using dynamic regression models. They used a gradient-based approach to build
failure thresholds and developed the time to start prediction (TSP) metric to
detect the onset of bearing degradation, after which the trend in the bearing
health indicator should be continuously monitored to estimate the RUL. The
proposed methodology was evaluated on run-to-failure data, nevertheless, the
authors state that further study is required to confirm its efficacy since it was
limited to a single dataset.

The studies in this subsection focus on unsupervised learning for fault detec-
tion, RUL prediction, and improving exponential model accuracy. Techniques
like clustering algorithms, change point detection, Gaussian process regression,
adaptive first prediction time selection, and particle filtering can save costs by
reducing equipment replacements and improving machine uptime [27,28]. How-
ever, selecting the appropriate technique depends on the equipment, data, and
maintenance goals [20].
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4 Methodology

This section describes the methodology used in the course of the work. The
approach includes exploratory data analysis, trend analysis, and the use of one-
class SVM and interpolation to identify and handle the outliers. Following the
deployment of the prediction model, PELT is used to detect changes in signal
trend and establish state-definers thresholds. The prediction model is applied
to the signals that are identified as degrading. Using the training data, multi-
ple regression models are trained, and the best model is chosen to forecast the
RUL of gearbox bearings2. The whole procedure is presented in Fig. 2, and the
subsections that follow describe each step.

Fig. 2. Proposed Methodology

4.1 Dataset

Accelerometers are mounted on the motor and gearbox casings to capture vibra-
tion signals. Two sensors are installed in the traction motor, and two more are
installed in the same location in the gearbox, also shown in Fig. 1. The sensors
are programmed to transmit data to a controller unit, which is then analyzed
to determine the prognosis. Data was collected from a train over a 10-month
period, and specifically from the four traction cars on the train, with the goal
of identifying concerning patterns. The prediction model was constructed using

2 While the source code remains proprietary, the GitHub repository includes a pseu-
docode representation https://github.com/lodianabeqiri/BearingRUL-Estimation-
Pseudocode.

https://github.com/lodianabeqiri/BearingRUL-Estimation-Pseudocode
https://github.com/lodianabeqiri/BearingRUL-Estimation-Pseudocode
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Fig. 3. Carpet and Max Values: Damaged
Gearbox Bearing (Color figure online)

Fig. 4. Outlier Detection

data from another train’s damaged gearbox bearing. The gearbox was removed
for inspection by Alstom engineers, and a problem with the transmission’s bear-
ing was discovered. The signals received through the sensors were further filtered
by the engineers to produce two features called as the carpet value and the max-
imum value. The carpet value reflects the energy level of the signal, while the
maximum values represent the signal’s peak values. If there is no damage, the
carpet values can be used to reveal the amount of vibration, or energy inside
the motor and gearbox bearing. Based on domain expertise, when there is bear-
ings deterioration, the carpet value rises as the damage worsens. On the other
hand, the maximum values do not always imply component damage, since they
depend on both external noise and component degradation. For these reasons,
the carpet value is employed as a prediction indication in this paper to uncover
data variation associated to failure.

4.2 Exploratory Data Analysis (Eda)

Eda is a crucial step in comprehending the data, making it easier to spot trends
and anomalies. The data has been partitioned into training and test sets in a
80/20 proportion. The MinMaxScaler normalization technique has been used on
the training set for transforming the numerical values to a common scale with-
out distorting the values range or removing information. The test data has been
used to evaluate the model. Figure 3 depicts the maximum value in green and
the carpet value in pink from the damaged bearing3.

Visualization is a useful tool for understanding the data trends. A time series
trend refers to the pattern or direction of change that can be observed across
time. The moving average and Bollinger Bands were examined in the analysis.
Bollinger Bands are standard deviation envelopes that appear above and below a

3 GitHub repository https://github.com/lodianabeqiri/RULforBearings images con-
tains all the figures presented in this paper.

https://github.com/lodianabeqiri/RULforBearings_images
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Fig. 5. Trend Analysis: Damaged Gearbox
Bearing

Fig. 6. Trend Analysis: Signal 2

simple moving average. A moving average represents the average value of preced-
ing data points without weighting. The trend of the failed bearing is illustrated
in Fig. 5. The moving average with a 30-day time window is represented by the
red line, while the green zone depicts the Bollinger Bands. The signal does not
vary significantly at first, but when the degradation process begins, the values
begin to rise. The signal appears to have a stagnant pattern with consistently
high values as it approaches the failure phase. Figure 6 illustrates another signal,
which shows a slight shift in the trend with a considerable increase in values.

4.3 Outliers

Outliers are observations, also known as abnormalities, that do not fit with
the rest of the data. Summary statistics, including mean and variance, can be
affected by outliers. Traditional deterministic methods are often applied in prac-
tice for outlier identification, such as displays of the distribution and labeling
each observation over or below a specific threshold as an outlier. One-class clas-
sification is a subfield of ML that focuses on identifying outliers. In this paper we
use one-class SVM. It is a SVM variant that captures the density of the major-
ity class and classifies outliers as examples at the density function’s extremes. It
learns the distribution’s bounds referred to as “support” and can thus classify
any points outside the boundary as outliers. The algorithm parameter include
nu that is used to fine-tune the trade-off between overfitting and generaliza-
tion, parameter gamma and the kernel function. The decision boundary will be
increasingly “linear” as the gamma increases, and the more complex the model,
and the greater the risk of overfitting. The kernel function changes the train-
ing set of data so that a non-linear decision surface can be translated into a
linear equation in a larger number of dimension spaces. Figure 4 depicts the out-
liers as red dots discovered by one-class SVM with the optimized parameters:
nu = 0.05, kernel = “rbf”, gamma = 0.01. Data distribution could be drastically
altered by removing outliers. Therefore linear interpolation was chosen to esti-
mate the missing value by directly linking points in the ascending order.
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4.4 Models

This subsection provides an overview of the models used. We examine the ratio-
nale for selecting these models and provide a brief explanation of each.
Regression analysis is a type of curve fitting optimization problem, where the
objective is to find the best line or curve that fits the data in a way that min-
imizes the difference between the predicted and actual values. We investigated
polynomial and exponential regression models and compared their results to
determine the best fit. Polynomial regression is a version of linear regression in
which a polynomial equation is used to describe the data in order to capture the
curvilinear relationship between the independent and dependent variables. The
polynomial equation of degree n is represented as:

y = θ0 + θ1x + θ2x
2 + · · · + θnxn + ε (1)

where y is the dependent variable, x is the independent variable, θ0, θ1, . . . , θn

are the regression coefficients or weights, ε is the error term, and n is the degree
of the polynomial. The 1-degree polynomial is a simple linear regression, there-
fore the degree value must be greater than 1. If the n value is low, the model will
struggle to fit the data properly, and if it is high, the model will easily overfit
the data.

Exponential regression is the process of determining the best exponential
function equation for a set of data. The exponential equation is given as:

y = θ0e
θ1x + ε (2)

where y is the dependent variable, x is the independent variable, θ0 and θ1 are
the exponential regression coefficients, and ε is the error term.
PELT is a change point algorithm that can be used to detect performance
declines [29]. There is no unique definition for the term “change point”. They
can be regarded as time series points with statistical characteristics that differ
from the data distribution. For a given cost function, penalty score, and model,
PELT is used to locate the change points in a data set by computing the seg-
mentation of the data that minimizes the cost function. The algorithm uses the
pruning rule where many indices are deleted, resulting in a significant reduction
in computational cost while maintaining the ability to determine the best seg-
mentation. To find multiple change points, PELT is first applied to the entire
dataset and then iteratively and independently applied to each partition until
no change points are found.

The bearing degradation process due to measurement noise is vulnerable to
a variety of fluctuations, which may affect the model’s ability to evaluate the
degradation trend [11]. In this case, the data is smoothed before being used
as input to the prediction models. The Savitzky-Golay is a low pass filter that
smooths out data with certain oscillations using a polynomial function, resulting
in a signal that is easier to understand and analyze. The technique is repeated
for all data points, yielding a new set of data points that closely resembles the
original data.
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The following paragraphs discuss the practical application of the discussed
models on the data. We investigate the process of optimizing these models to
ensure their effectiveness in capturing data patterns and discuss their outcomes.

4.5 Setting the Thresholds

The PELT algorithm locates the points in the damaged gearbox bearing carpet
value where there is a change or an obvious rising trend. These identified points
are used as reference thresholds to assess the health of other signals. The premise
behind this approach is that if any other signals have degraded or failed, they
may exhibit a similar pattern to the damaged bearing. This assumption was
made due to a paucity of data on different failure behavior, and we relied on
known failures to detect the similar failure trend. The PELT model was fed with
the carpet value and a penalty score and detects the variation point of the sig-
nal to build the thresholds. The best parameters for PELT were the Gaussian
kernel as a model with a penalty score of 10 and as the cost function the con-
strained sum of approximation errors. To enhance the signal, the Savgol filter
was applied using a window size of 51 and a polynomial order of 3. Subsequently,
the filtered signal was passed to PELT. Three vertical lines in Fig. 7 represent the
detected thresholds for illustration reasons. The red line represents the degra-
dation threshold, and the degradation zone extends from the red to the blue
line. When the signal exceed the blue line, it reaches failure. These thresholds
are used to determine whether we proceed to compute the RUL for other signal.
Based on the thresholds, most of the signals that were evaluated for each car
were categorized as healthy. The method was then applied to the damaged bear-
ing signal, the result is that the signal has already failed, and no RUL calculation
is required.

Fig. 7. Thresholds (Color figure online)

However, when compared to signal 2 presented in Sect. 4.2 it is classified
as degraded, and for this signal the RUL can be determined. Figure 8 shows in
green the filtered signal 2. The x-axis represents the time at which the signal was
acquired, while the y-axis represents the carpet value of the signal. The signal
exhibits an increasing pattern that begins after 2000 h and ends before 5000 h.
Unlike the damaged signal in Fig. 3, which has a growing tendency over time
until failure, the signal 2 is susceptible to the “healing phenomenon” [30]. After
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the values increase, possibly due to a defect, the signal returns to low values. For
instance this could happen as a result of newly formed surface defects caused
by the rolling elements of the bearings. Assuming signal 2 will eventually fail
after recovery, we employed extrapolation using numpy polyfit in python to
forecast future data points and observe the potential trend the signal might
follow. Extrapolation is the process of assuming values outside the range of the
currently available data by using data from existing points. It is important to
note that extrapolation might result in inaccurate results, owing to the variety
of gearbox bearing degradation patterns. However, in scenarios with a sufficient
number of samples exhibiting the same failure pattern, or multiple failure cases
for more complex extrapolation tasks, insights into the signal’s future behavior
become possible. We conclude that there is insufficient data to calculate the RUL
for signal 2.

Fig. 8. Signal 2 Extrapolation (Color figure online)

4.6 RUL

To determine the RUL, three main functions were developed: actual or true RUL,
another to estimate the RUL, and yet another to calculate the prediction error.
The actual RUL is defined as the time elapsed between the true failure of the
bearing and the actual time we consider for each point on the training set. The
RUL is calculated in terms of hours. We used the last instance of our provided
data as the time when the bearing failed, which was 8092 h in the training data.
For the estimated RUL, we used the polynomial regression that best fitted the
data, calculating the estimated RUL as the difference between the estimated
time of bearing’s failure and the time determined by our polynomial function
for each data point on training set by projecting the point to the hour axes.
The estimated time is to be around 7928 h in the training set by extrapolating
the data and finding this value when the data exceeded the failure threshold.
Finally, the prediction error is defined to determine how well the prediction
model performed, as the difference between the actual and predicted RULs.
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5 Results

The polynomial and exponential functions applied to the damaged bearing signal
are shown in Figs. 9 and 10, respectively. Figures 11 shows the model constants
and assessment metrics for each regression model. Evaluation tables indicate that
the polynomial function exhibited the lowest Root Mean Square Error (RMSE)
and the highest R squared (R2) value, indicating the best fit to the data. Conse-
quently, we employ polynomial regression to calculate the RUL. Similar results
can be observed when it comes to the test data.

Fig. 9. Exponential Function Fig. 10. Polynomial Function

Fig. 11. Assessment Metrics and Regression Coefficients in Training Data

The graph in Fig. 12 compares the estimated RUL from polynomial regres-
sion, which is visualized in green, to the actual RUL, which is represented by
the diagonal black line. The time at which the fitted carpet value exceeded the
defined threshold as determined by PELT was then used to extrapolate the
expected failure time. Considering only the time the signal entered the degra-
dation phase until it reached the failure threshold (at 8092 h or 337 days), the
actual RUL of the signal is calculated to be 2979 h. As a result, the signal has
2979 h until it fails as soon as it enters the degradation phase. Meanwhile, extrap-
olating the estimated RUL yields 7928 h or 330 days, implying that the signal
has 2812 h left when it enters the degradation phase. The difference between
the actual life and the estimated time left for the bearing to function properly
is 168 h, or 7 days. The green line in Fig. 12 regressing the estimated life time
underestimates the signal’s life by a few hours; however, some time intervals
between 1000 and 1500 h are comparable to the true RUL. The prediction error,
mean square error (MSE) is the distance between estimated line and the actual
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line. Since the estimated values can be less or greater than actual values, a sim-
ple sum of differences can be zero and this lead to the incorrect conclusion that
the forecast is correct. As we square and use RMSE, all errors are positive, and
the mean is positive, indicating that there is some difference between the esti-
mates and the actual. The calculated RMSE is 210. While no RMSE value is
universally correct, a lower mean indicates a more accurate forecast.

5.1 Threats to Validity

As any other experimental work, also this paper needs to take into consideration
threats to validity [31]. Internal and construct validity have to deal with the
set-up of the experiments and the potential bias of the involved researchers. In
this respect, the developed techniques use standard data cleaning and analysis
techniques and no refinement procedure, e.g. for outliers and thresholds, has
been adopted in accordance with (railway) domain experts. When it comes to
conclusion validity, the availability of bearing data is limited to a single failure
case. This limitation does not allow us to make conclusions about the precision
of the estimation algorithm with an adequate level of confidence. Nonetheless,
the approach is generic into distinguishing between healthy and unhealthy states
by utilizing domain knowledge about signal characteristics. While the approach
accurately detects the states, it is worth mentioning that by integrating more
data depicting failure bearing patterns, the precision of the predictions can be
improved.

Fig. 12. Regression Model for Predicting RUL (Color figure online)

6 Conclusion

A RUL prediction method has been developed by leveraging real-world data
from gearbox bearings. Initially, the data was analyzed to identify increasing
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trends, and the one-class SVM was used to eliminate any outliers. Moreover,
the PELT algorithm identified changes in signal properties, allowing the con-
struction of valid degradation thresholds without prior knowledge of them. Two
regression models were trained and compared, with polynomial regression achiev-
ing a higher R2 value of 0.87 compared to exponential regression. RUL predic-
tion utilized the polynomial function and anticipated the failure with 7 days in
advance to the real failure. Furthermore, it was observed that adding data filter-
ing techniques to our model, such as a low pass filter, significantly improves the
performance and helps to smooth out the fluctuations in the gearbox degrada-
tion trend. The method, however, is dependent on a certain known degradation
trend, resulting in restricted data for defining the thresholds. More data on
similar behaviors will allow for the construction of more rigorous degradation
criteria.
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Abstract. In the future, fully automated trains can play a vital role
in improving performance of the railway system. Although technologies
exist that make driverless train operation already possible, certification of
new technology is an open issue. Building on experiences from the auto-
motive domain, we expect that development and certification of future
railway technology will be based on a scenario-driven process supported
by simulation technology. This work identifies a preliminary list of rel-
evant scenario aspects and phenomena that simulators must be able to
virtually recreate in order to completely support this process.

Keywords: Simulation · Scenario-based · Certification · GoA3 · GoA4

1 Introduction

Due to characteristics of the railway domain, operations are safeguarded at vari-
ous levels: On a macroscopic level through the planning of operational processes,
where dispatchers coordinate these processes on the basis of established rules and
regulations. Classically, collisions of trains are avoided at this level by releas-
ing lines centrally (from the regionally responsible interlocking) for individual
train movements. This is supported by a range of technical equipment, gener-
ally referred to as control and safety technology. These include signaling, tech-
niques for locating trains (or detecting occupied track sections), and train control
systems (intermittent automatic train running control (German: Punktförmige
Zugbeeinflussung, PZB), continuous train control (Linienzugbeeinflussung, LZB),
European Train Control System (ETCS)). For GoA-1 (Grade of Automation)
the latter serve as a fallback level, e.g. by automatically triggering emergency
stops when passing stop signals, as well as for communicating information and
instructions (e.g. maximum speed) to the train driver. The train is operated by
the driver, who has a central role in ensuring safe operation, since he or she
must recognize immediate hazards along the route and act accordingly. For this
reason, the driver’s activity is considered as the intermediate level between the
macroscopic and the technical level (see Fig. 1).
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Infrastructure Interlocking,
Signaling Train Communication

Fig. 1. Safeguarding of operations at different hierarchical levels

Currently, GoA-2 can be achieved via automated train operation (ATO)
over ETCS (AoE). Here, ATO is not considered being a safety-critical system1,
because any unsafe action initiated by the ATO will be overridden by ETCS,
which can be seen as a safety envelope [1]. However, a majority of safety related
tasks2 are still in the responsibility of the driver or other railway staff. Examples
include operation of the doors and supervision of passenger change, as well as
observing the track for obstacles and other anomalies. For GoA-3 and GoA-4
these tasks need to be executed by an automated system, with (GoA-3) or with-
out (GoA-4) human supervision. Studies on the potential for automation in the
railway domain see the greatest challenges at precisely this intermediate level
[2,3].

Whereas the AoE itself is no critical system in the full supervision mode,
once the driver no longer exists as a fallback, the system can be characterized as
“high risk”, according to the European AI Act [4, Title III, Chap. 1, Article 6].
This means, specific attention needs to be given to the training, validation and
testing data sets. They “[...] should be sufficiently relevant, representative and
free of errors and complete in view of the intended purpose of the system” [4]. In
the automotive domain this key research topic was lately addressed by scenario-
based development processes [5,6]. Structuring the space of all possible (railway)
scenarios and making sure all properties are covered in the concrete derived test
cases is one of the main motivations to use a scenario-based safety assessment
approach. These methods require support from high-quality simulation frame-
works (this is an observation from automotive domain). Our contribution lies in
identifying the characteristic properties of the railway domain, that need to be

1 Note, that ATO can be safety critical in some ETCS modes, e.g. “Shunting” or “On
Sight”.

2 A task is understood (in the current, not highly automated state) as a requirement
for railroad employees based on the regulations.
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addressed in those scenarios. Here, we understand properties as concepts and
their relations, where a concept is understood as the underlying “thing” that
shall be represented by a symbol. Those symbols are used for capturing scenar-
ios, where scenario is understood as a sequence of situations (cf. [7]).

Because automation in the macroscopic and technical levels are widely cov-
ered by existing technology such as AoE, we thereby focus on the phenomena
that are relevant for automating driver tasks outside the scope of ATO. At some
point in the process of deriving concrete test cases, a more abstract representa-
tion of a scenario (e.g. functional or logical scenario, using the terminology in
[8]), needs to be instantiated. In an outlook, we give an idea how Traffic Sequence
Charts (TSCs) [9] can be used to capture scenarios. Using TSCs immediately
allows to use an ontology (which shall contain our list of concepts) and specify
constraints of allowed and prohibited behavior including how to measure the
criticality. The criticality of a given scenario needs to be rated in order to select
and evaluate appropriate test cases. Therefore, we also give a short overview on
applicable criticality metrics from the automotive domain and how they apply
to the railway domain.

The remainder of this paper is structured as follows. In Sect. 2, the use of
scenario-based processes in railway are motivated in more detail. Section 3 pro-
vides an overview of related research work, including an introduction to scenario-
based methods in the automotive domain. The applied methodology and solution
to get the characteristic properties of railway scenarios are detailed in Sect. 4. In
Sect. 5 we outline planned future work. The final section presents conclusions.

2 A Motivation for Scenario-Based Approaches

The technical systems required for automated operation range from sensor and
data processing systems for environment perception to maneuver planning and
fail-safe communication between trains and control centers. At this level, the
main task is to identify and avert a wide variety of local risks, some of which are
difficult to predict and which, by their very nature, have a very low probability
of occurrence. For example, a statistically sound safety argument for a system
that implements fully automated railway travel (GoA-4), with railway facilities
that are accessible to the public, would require an unrealistically large number
of kilometers traveled in order to observe critical events in sufficient quantity.
In the automotive domain, this problem is well known. Statistically, 440 million
test kilometers are necessary to prove with a confidence level of 95% that a
self-driving car causes less fatalities than a human driver [10]. In the automotive
domain, a scenario-driven development approach is therefore pursued. The above
number of test kilometers results from a statistical argument that assumes 1
fatality per 150 million kilometers (in the USA in the year 2013 [10]). Compared
to that, Evans et al. give an average of 1 fatality per every 79 million train-km
on Europe’s railways, averaging over the years 2000 to 2009, counting fatalities
in collisions and derailments and fatalities in serious level crossing accidents [11,
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Table 5]. So, around 237 million test kilometers would be necessary to prove
safety of an autonomous train3.

With the scenario-based approach [5], one has a tool to generate critical
situations in a targeted manner and thus validate the behavior of the system.
Other factors that make simulations useful are that they can be executed faster
than real-time, and be played out without any risk of harm. There are also
challenges to this approach. Hauer et al. address the question if all scenario
types were tested by applying the coupon collector problem [12]. The second
question is then, if enough instances of those scenario types were tested. This
challenge is not solved yet.

We assume that certification of future autonomous railway systems will hap-
pen in a (scenario-based) simulation-supported safety process, but the open chal-
lenges need to be addressed. Traditionally railway systems are certified based on
the norms DIN EN 50126, 50128, 50129, which are not sufficient for certifying
GoA4 functions. In this paper we argue, that in order to allow for certification
of an autonomous system, we first need to gather evidence for its abilities and
performance, i.e. allowing for assessment of the system. Based on the assessment
results a certification may happen.

It can be assumed that in the railway domain the scenarios are less com-
plex and fewer in number than in the automotive domain, but the scope of
automation is larger. In the former, one can also automate the dispatching, the
configuration of the railway network, the interaction with the passengers, as well
as recommendations to intermodal travel chains, whereas in the latter only the
pure driving task of the ego vehicle is to be automated. At this point it should
be mentioned that in the automotive domain there is an overall set of rules (road
traffic regulations), but compliance with these rules is the responsibility of indi-
vidual road users. A deviation from these rules can often be observed, especially
in urban environments. Such a deviation is not possible on rail, which leads to
a different safety concept. These and other differences are discussed in detail by
Jäger et al. [13].

3 Background and Related Work

There are three major areas of background work related to this paper: State of
practice and related research on certification of highly automated railway sys-
tems, state of practice in railway simulators, and state of the art in the automo-
tive domain related to verification and validation of autonomous driving systems.

3.1 Autonomous Train Operation and Certification

Scenario-based methods per-se are not new to the railway domain. For example,
the ETCS specification contains a large set of standardized test sequences that

3 Using the formula from [10], the number of required test kilometers is n = ln(1−C)
ln(1−F )

with confidence C = 0.95 and failure rate F = 1.3 · 10−8 (fatalities per kilometer).
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are based on typical operational scenarios, called mission profiles (including a
reference infrastructure) [14].

On the road towards autonomous driving, AoE has been specified and also
certified for use in restricted areas. For example, the tram line S21 in Hamburg,
Germany, drives with AoE and allows driverless operation (without passengers)
between the final station and the depot [15]. The development of AoE has been
scenario-driven in the sense that common operation scenarios have been system-
atically analyzed [16]. However, AoE (when in ETCS mode “Full Supervision”)
is deemed not safety critical because it is assumed that ETCS will enforce all
necessary emergency actions (i.e. safe distances and speed limits) to ensure safe
operation. This is a valid safety argument as long as a train driver is present
who can recognize and handle all (manageable) safety critical situations that are
not in the scope of ETCS.

For driverless train operation, the drivers tasks have to be automated as well.
Recent research by Tagiew et al. is concerned with identifying sensor needs for
enabling environment perception that is adequate for safe driving of passenger
trains [17]. Their assumption was, that the perception functionalities of the AoE
system shall be at least as good as the human senses. SIEMENS already pro-
vides vehicles equipped with the necessary sensors for automatic driving that
are similar to the measuring system identified by Tagiew et al. [18].

Albeit train protection systems and infrastructure are highly standardized,
there is no domain-specific normative standard for certifying the sensor systems
and software required for environment perception in the railway domain. One
domain-agnostic safety standard for those systems is the new ANSI/UL 4600
[19]. Peleska et al. evaluated the application of this standard for certification of
a fictive ATO system implementation [20].

Grossmann et al. describe how synthetic images and videos for testing of
artificial intelligence (AI) components are generated from random scenarios using
a 3D simulation and rendering engine [21]. The scenarios are sampled with help of
a railway domain ontology that follows principles (i.e. [22]) from the automotive
domain. The focus is clearly on generating image/video data. In contrast, our
method and results presented in Sect. 4 aim at a more abstract view on relevant
phenomena, that go beyond object detection.

RailML [23] is an XML-based format for the description of railway systems.
It focuses on the macroscopic level and allows for example to describe rolling
stock, timetables and track schematics.

3.2 Existing Railway Simulators

In the railway domain, commercial simulation platforms are used for training
and educational purposes, similar to the maritime domain. The structure is
essentially quite the similar. There is the driver’s cab, which consists of a visu-
alization that is as realistic as possible with the corresponding control elements
and is ideally provided with a true-to-the-original enclosure. Am image of reality
is created in which the driver performs his tasks.
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The railway simulators we considered include ZUSI Railway Simulator [24],
Simsphere Train [25], MST Traction Simulator [26], DLR RailSiTe [27], Open-
Rails [28], TrainSim [29], and KI-LOK [21] which uses the Air-Sim extension
from Microsoft. In general, however, it can already be stated that none of the
simulation environments mentioned can be used directly in the area of scenario-
based verification and validation, since the original application is different and
not all characteristic properties are covered. For example the subset of the tasks
of the driver (in one man operation) that is concerned with monitoring and con-
trolling passenger movement is not included. For our future work (see Sect. 5),
among the simulators we reviewed, TrainSim is the most promising option, since
it allows for an easy manipulation of scenarios and creates the environment in
a straight-forward way based on a sequence of 3D waypoints [29]. Their main
applications include providing datasets for Visual Odometry and LiDAR Odom-
etry. The authors note, that future work contains “[t]he generation of datasets
for tasks like 2D and 3D object detection”. We see the focus of DLR RailSiTe
[27] in the technical level (see Fig. 1), e.g. covering the test sequences specified
in ETCS Subset-076. Further, human factors studies can be conducted using the
RailSET environment.

3.3 Scenario-Based Methods in the Automotive Domain

The automotive domain is faced with the problem that traditional methods
are not sufficient for the verification and validation of autonomous driving sys-
tems. Especially, basing a safety argument solely on physical testing is infeasible.
Therefore, the use of simulation-based methods in addition to physical proto-
typing and testing is pursued. Simulations are usually driven by scenario spec-
ifications [7]. Together with an increased need for simulations, scenarios have
been identified as a driver in the development and certification process. Men-
zel et al. identified benefits of scenario-based methods in various phases of a
V-development process [30]. In a series of research projects, different methods
have been developed that utilize scenario specifications and simulations. In the
ENABLE-S3 project, many of these have been placed into a scenario-based devel-
opment process [6]. The core idea followed in ENABLE-S3 is to gather relevant
critical scenarios from real world observations, and use them for risk assessment,
requirement specification and testing.

Neurohr et al. worked out fundamental considerations around scenario-based
testing, and show how it can be used to contribute to a safety case [31]. Extensive
scenario specifications form the basis of both system design and validation [32].
One of the fundamental ideas of this approach is to represent relevant phenom-
ena (critical events, operational sequences, driving maneuvers, etc.) through a
collection of abstract scenarios [32]. An abstract scenario is a “formalized, declar-
ative description of a traffic scenario focusing on complex relations [. . . ]” [32].
These can then be used to automatically derive a large set of concrete scenar-
ios, which are ultimately used for validation (e.g., testing and quantification of
risks) [30]. Through the use of simulation tools, a much higher coverage can be
achieved than in pure field and laboratory tests [33].
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Traffic Sequence Charts [9] are a specification language for abstract scenar-
ios that combine the advantages of graphical specification and formal methods:
The used graphical representations convey an intuitive idea about the described
scenario without requiring deep knowledge in formal methods, while its formal
semantics mathematically tell whether a given concrete scenario is covered by
the TSC. Becker et al. describe how concrete scenarios can be sampled from
TSCs using their formal semantics [34].

Using scenario specifications in a larger scope such as in a development,
standardization or certification process requires a common understanding of the
relevant concepts and relations (e.g. types of traffic participants and how they
interact) [35]. Therefore, ASAM has started the OpenXOntology [36] project,
where a formalization of relevant concepts of the automotive domain has been
developed. Similarly, the new/upcoming family of ISO standards ISO/DIS 34501
to 34504 [37–40] define relevant scenario attributes of test scenarios and an
autonomous vehicle’s operational design domain (ODD) specification. Earlier
work organizes environment descriptions for automotive traffic scenarios into
six concept layers being street layer, road infrastructure, temporal modifications
to streets and infrastructure, movable objects (e.g. traffic participants and their
maneuvers), environment conditions (e.g. weather), and digital information (e.g.
vehicle communication) [22].

4 Characteristic Properties of Railway Scenarios

Existing standards do not provide a complete basis for certification of GoA-4.
Thinking about possible approaches and capabilities of future highly automated
systems, we orient ourselves on the current operational procedures in Germany.
As hinted at in Sect. 1, the tasks of the train driver are of special interest. We
assume that these tasks will have to be executed one way or another in highly
automated railway systems as well. Therefore, and because the technology, con-
cepts, and regulations necessary for GoA3/4 are subject to continuous change,
we will list, but not consider some of the current approaches in Sect. 4.3. We
assume that the derived concepts will still be valid in large parts. In this section,
we present the main results of our research so far, which is a list of characteristic
properties of railway scenarios shown to be relevant for automation. This also
includes an initial list of concepts which should be part of a railway domain
ontology used in simulators.

4.1 Method Description

In order to conclude the characteristic known properties of railroad scenarios, we
start with an analysis of the operational processes as they are currently realized
in Germany. It is worth mentioning that we are in the process of automating rail
traffic all over Europe (GoA-2 has already been achieved in large parts), but we
are still in a transitional state. We fall back on the currently valid regulations
for train drivers (RiL 408) [41] and the signal book (RiL 301) [42]. Since these



Towards Scenario-Based Certification of Highly Automated Railway Systems 85

sources are also the basis for the initial list of concepts, the latter also reflects
the current (not highly automated) state and the train driver is prominently
represented.

In addition to the operational procedures, we consider characteristic generic
features of the railway domain. Our main source for documented dangerous
events in the railway domain are the extensive investigation reports (German:
“Un-ter-su-chungs-be-rich-te”) from the federal authority for railway accident
investigation (Bundesstelle für Eisenbahnunfalluntersuchung, BEU) [43], as well
as the open dataset [44], also published by BEU. To a lesser extent, the published
Austrian investigation reports were considered [45]. This approach is similar to
the analysis of the German In-Depth Accident Study (GIDAS) database in the
automotive domain [46]. These sources yield the characteristic known phenomena
of the railway domain, which in turn are a source for the characteristic properties
of the rail scenarios, and the initial list of concepts. We emphasize that these
are known phenomena. In the “scenario discovery process” [47] which is based
on TSCs and a world model WM it is envisaged that experts may discover that
a WM does not reflect all relevant phenomena, and needs to be extended.

Our approach is outlined in Fig. 2. During our research, also RailML has
been considered. However, RailML focuses on the macroscopic level and covers
the operational level only to a small extend (external entities are completely out
of scope), so it is more an addendum to our list of concepts than a source of
information.

Characteristic generic
features and existing

operational
procedures in the
railway domain

Characteristic known
phenomena in the

railway domain

Characteristic
properties of

railway scenarios

Initial list of
concepts

Documented
dangerous events

in the railway
domain

Regulations for train
drivers (RiL 408)

Signal book 
(RiL 301)

Fig. 2. Process to derive the characteristic properties of railway scenarios and the
initial list of concepts

The operational processes change with the particular GoA under considera-
tion. Currently, in Germany, mostly GoA-1 or GoA-2 is implemented. Trackside
safety functions (securing the route and train sequence), as well as monitor-
ing compliance with speed and signaling are already handled by the system.
However, the operational driving task is not yet fully performed. In GoA-3, the
human is still needed as a fallback level, which will no longer be the case in
GoA-4. It is worth noting that a fundamental consideration in implementing
ATO is the overall view of the train-side (ATO-OB (on board)) component, the
track-side (ATO-TS) component, and the air interface between the two [48]. For
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the dispatcher, the tasks and responsibilities also change with the GoA level. For
example, for a long time the technical securing of a level crossing had to be done
by hand with a crank by a barrier guard. This type of safeguarding is still found
very sporadically and in some cases still plays a role in documented dangerous
events that have occurred recently.

4.2 Results

Based on the existing operational procedures, characteristic known phenomena,
and documented dangerous events, we derived a list of characteristic properties
of the railway domain, that scenarios need to be able to address. As stated
above, this list is an initial collection, yet covering only the listed procedures
and regulations. It needs to be extended to also cover concepts in Sect. 4.3,
future developments, and potentially regulations from other countries.

The process is shown in Fig. 2. In order to derive the tasks of the driver, we
oriented ourselves on the main phases of a train journey, which are “preparing
train”, “drive”, “stop”, and “park train”. Note, that we left out “shunting”, where
different regulations apply. Since the tasks of the driver are of special interest
here, they are listed in Fig. 3.

Now we list the derived characteristic properties (P) of the railway domain
in no particular order.

– P1: The spatial, relative arrangement of objects is relevant in rail scenarios.
Here, the rail network can be viewed as a graph, where the position of an
object in this graph can be characterized by the distance along an edge.
Furthermore:

• P1.1: The position, velocity and acceleration of a train is usually given
in the direction of travel.

• P1.2: Branches (switches, crossings, etc.) shall be taken into account.
• P1.3: For non-rail objects (e.g. external traffic participants), the distance,

or relative position, to the track is also relevant.
• P1.3a: A non-rail object can also be located at or behind the end of a

track.
• P1.4: For dynamic rail-bound objects, the affiliation to a sequence of

track section must be unique4.
• P1.5: For static track-side equipment, the affiliation to a track section

must be unique.
– P2: Properties and states of the track system are relevant. These include:

• P2.1: Physical states and properties (e.g., setting of railroad switches).
• P2.2: Logical states and properties (e.g., route).
• P2.3: Links of trains and their route (occupation of which track section

at which time).

4 They can change their sections and can be present in more than one sections at the
same time.
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Fig. 3. Tasks of the train driver. A task is understood as a requirement for railroad
employees based on the regulations. Tasks marked with (*) are only relevant in one-
person operation, i.e. when no train conductor is on board.

Notably, these are not constant, but can change dynamically over the course
of a scenario.

– P3: Signals and other infrastructure (platforms, level crossing, trackside train
control equipment, etc.) are relevant, including:

• P3.1: their logical affiliation to a track.
• P3.2: their logical and physical properties, as well as dynamic states (e.g.,

shown signals or disturbances).
Signals include in particular:

• P3.3: Audible signals and hand signals.
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• P3.4: Markings (e.g., pole signs (German “Mastschild”)) and signal com-
binations.

– P4: Message exchanges (including type, time, content, sender and receiver of
messages) are relevant.

– P5: Environmental characteristics/weather effects are relevant.
– P6: The condition of trains is relevant. This includes ETCS level, speed,

damage/hazards (e.g. fire).
– P7: Train parts and their states are relevant, e.g. doors, pantographs, ETCS

displays.
– P8: External objects (e.g. obstacles, animals) and road users (e.g. pedestri-

ans) are relevant.
– P9: Staff members of the railroad operation are relevant, in particular:

• P9.1: the mental state of staff members.
• P9.2: their physical position (within the scenario).
• P9.3: including remotely working operators (e.g. dispatcher, potentially

remote train operator).
– P10: The timetable is relevant for scenarios.
– P11: The clearance profile is relevant.
– P12: Deviations from planned operations are relevant. In addition to the

representation of the occurred, actual, situation, it must therefore be possible
to represent the planned (but not occurred) situation in scenarios.

– P13: (Virtually) coupled train formations are relevant. In particular, such
formations can be formed, modified, and disbanded during a scenario.

Other relevant objects, environmental phenomena, and communication rela-
tionships are listed in the initial list of concepts in Fig. 4. Despite the extensive
research, this is also not to be considered complete (also due to space limitations,
a complete listing is not feasible). Rather, other relevant objects, properties, envi-
ronmental phenomena, and communication relationships must be determined
separately as part of a risk analysis in the context of a system that shall be
developed and/or secured and taken into account during scenario-driven devel-
opment (see also [32]).

4.3 Potential Adaptions of Concepts

Technologies, regulations, and specifications are in constant flux. Since our anal-
ysis was mainly based on the current operational procedures and standards in
Germany, the concepts will need to be extended and adapted. We give some
examples for this.
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Fig. 4. Initial list of concepts
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As part of the Next Generation Train 3 (NGT3) project, the conceptualiza-
tion of a remote control workstation has been advanced [49]. This would make the
role of the train driver obsolete5, thus requiring an adaptation of the concepts.
This view roughly coincides with that of ERA’s Automatic Train Operation
(ATO) framework, as outlined e.g. in [48]. Trackside signaling can be omitted, if
all trains running on the line are equipped with a train control system. As long
as this is not the case (as currently), the fixed signals must remain in place to
ensure safe mixed operation [51].

In the ETCS driver’s handbook it is stated that automated (Full Supervi-
sion (FS)), partially automated (Limited Supervision (LS)), and non-automated
(Staff Responsible (SR)) modes can be alternated during a journey [52]. Other
relevant modes include the On Sight (OS) mode, which allows the train to enter
a track section that may already be occupied by another train. In this mode it
is the responsibility of the driver to keep the speed limit and to drive on sight.
The OS mode is exited when the front end of the train leaves the OS area.

There are plans for a new concept that would substitute the traditional sig-
naling system. This moving block concept does not rely on fixed track sections.
It requires a continuous two-way digital communication between trains and a
trackside control center [53]. This will be possible from ETCS level 3 onward.

5 Future Work

In the previous section, an initial set of concepts has been derived that shows
what needs to be simulated to support the development of autonomous trains,
with focus on the needed perception chain. The long-term goal is to transfer
and evaluate the simulation and scenario-based methods to the railway domain
that have been studied so far mostly from the automotive perspective. Besides
setting up railway simulators being able to validly incorporate aforementioned
concepts in a virtual environment, other building blocks are needed as well. Two
of them are highlighted in the following.

5.1 Extending TSCs to the Railway Domain

Building on the introduction in Sect. 3.3, future research includes extending
TSCs for use in the railway domain. Figure 5 shows a TSC for a simple test sce-
nario which is relevant, when irregularities are encountered at a level crossings
[41]. We consider the case when the “level crossing (LX) not protected symbol
(LX01)” [52] is displayed on the Driver Machine Interface (DMI). The TSC is to
be read as follows: The rectangular boxes are so called invariant nodes depicting
traffic situations. They may be equipped with mathematical predicate expres-
sions such as distance measures along and perpendicular to the track, or speed
limits. The rounded rectangle is the bulletin board naming special symbols, here
for the main track, the ego train, and a level crossing. A TSC is interpreted by
mapping invariant nodes to time intervals and symbols to objects.
5 Some of the train driver tasks would be taken over by the newly created position of

a train operator (TO), who would not ride on the train [50].
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Fig. 5. Example railway TSC that shows intended behavior at unprotected level cross-
ings

The said scenario is a seamless sequence of the situations depicted in the
invariant nodes. A train driver needs to come to a complete stop, warn potential
entities by giving the signal ZP 1 [42] (sounding the horn) before continuing
the journey over the crossing and vacating the crossing as quickly as possible.
Parallel to that, the driver needs to observe the crossing and make sure that
there are no obstacles on the tracks. Note, that this scenario is also relevant
when reactivating old tracks in areas with little traffic, in an economical way
without technically securing existing level crossings.

Although showing a railway scenario, Fig. 5 does not require any extensions
beyond what has been specified for the automotive domain (TSCs are intention-
ally open with respect to the design domain, so they allow to define the used
symbols in the bulletin board as needed). However, taking the whole list of rel-
evant aspects given in Sect. 4 into account, we see that at least the following
modifications will be necessary.

– So far, used symbols (for vehicles, roads, etc.) in TSCs have not been stan-
dardized. At least in Germany, a wide set of railway concept symbols has
already been standardized by Deutsche Bahn in RiL 819. The symbols for
track and train in Fig. 5 have been adopted from that standard. The defined
symbols are intended to be used in track schematics and are widely known
by domain experts. Therefore, we propose to use these symbols whenever
possible.

– In the automotive domain, scenarios are mostly restricted to a single road
segment or crossing. In railway, especially when targeting scenarios at the
macroscopic level (see Fig. 1), the track layout is more important and a sce-
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nario may span complex layouts. Hence, it must be possible to add track
schematics to TSCs and map invariant nodes to parts of it.

– Reliable and correct communication is key in safe autonomous train opera-
tion, as AoE already shows. Existing and future approaches for ATO widely
rely on message passing between trains and infrastructure. To be able to also
cover this in scenario specifications, TSCs need to be extended with means
to describe communication.

Together with the TSC language, also tool support for TSCs has to be devel-
oped. Here, one important building block is sampling of concrete scenarios from
TSCs, because it is essential for being able to simulate and test with TSCs. A
feasible approach has been shown in [34]. Here, the TSC is translated into a
constraint system whose solutions are translated to concrete scenarios. Because
trains have only 1D movements (opposed to 2D movements considered in the
automotive domain), and no exact dynamics models for other traffic participants
are needed, an even better scalability of the approach can be expected for the
railway domain.

5.2 Testcase Evaluation

Other future work includes setting up a railway simulator that is capable of
executing concrete scenarios sampled from TSCs. The validity of this simulator
shall also be addressed. Out of the existing simulation frameworks that were
reviewed in Sect. 3.2, none is able to cover all characteristic properties.

Concrete test cases for a specific system under test (SUT), e.g. a perception
system or a system that executes other tasks previously allocated to the train
driver, can be derived. A threshold on criticality metrics (CM) as used in the
automotive domain could serve as pass/fail criteria. CM are used to quantify the
criticality of a specific scenario. We give some examples of CM adapted from the
survey by Westhofen et al. that might be applicable in the railway domain [54].

Time to Collision (TTC) [55]. This commonly used CM provides the minimum
time until two entities E1 and E2 collide, if their respective motion model is
taken as given. Since there is no lateral steering for trains, this motion model is
simpler than for cars.

Proportion of Stopping Distance (PSD) [56]. Since a train cannot swerve, it must
come to a complete stop at an obstacle. The Minimal Stopping Distance (MSD)
can be calculated from the maximum negative acceleration a. MSD = v2

2a , where
v is the current speed. If RD (remaining distance) is the distance to the obstacle,
one can calculate PSD according to PSD = RD/MSD. One needs a PSD value
of 1 or greater to stop safely.

Brake Threat Number (BTN) [57]. This CM is defined as the necessary acceler-
ation that is imposed on E1 as a consequence of a movement of another entity
E2, divided by the maximum possible acceleration a1,max of E1.
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BTN(A1, A2, t) =
areq(A1, A2, t)

a1,max(t)

A BTN value of ≥ 1 means that E1 cannot brake safely. This CM seems to
be particularly relevant for train sequences.

Post Encroachment Time (PET) [56]. This CM calculates the time between
leaving a conflict area (CA) of E1 and entering the same CA of E2. This CM is
particularly relevant at level crossings.

PET(E1, E2, CA) = tentry(A2, CA) − texit(A1, CA)

The CMs listed so far have in common that they can be computed without
involving a central coordinating instance. Analyses of descriptions of dangerous
events in the railroad domain show that in many such events the dispatcher was
involved, e.g. when a route was resolved too early, or a barrier was not lowered
in time to give a long truck enough time to maneuver across an overpass. To
account for these situation as well, novel CMs need to be developed.

6 Conclusion

In this paper we gave a summary, how a simulation-based approach fits in an
safety argument which could be used in the future to virtually certify highly
automated railway systems. We legitimized the approach and gave an overview
of the way it is conducted in the automotive domain. Our main contribution
to this topic is a list of 13 characteristic properties of the railway domain that
scenario specifications shall be able to address. As described in Sect. 4.1, this list
is based on existing regulations for train drivers and railway accident reports,
and therefore can only represent the current state of practice and is not yet
complete.

Since scenarios have the ambition to be able to represent all possible situa-
tions [8], this list can serve as a necessary subset of phenomena to be covered.
However, the collections of properties and concepts are a starting point for build-
ing critical railway scenarios, which may be specified as TSCs [9]. This helps to
fulfill the requirements on systems with AI components, especially those related
to completeness and representativeness. Further, the derived list of concepts,
which shall be included in an ontology, can be used to instantiate concrete tests
that shall be simulated. We also give some examples of criticality metrics, which
can serve as pass/fail criteria in those tests, once a target value is given, that
shall not be exceeded.
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Abstract. Continuous power supply in railway systems is vital to guar-
antee dependable accomplishment of energy-supported critical opera-
tions. With reference to the Italian railway infrastructure, this paper
focuses on the railroad signaling system, used to control the movement
of railway traffic, where Uninterruptable Power Supply systems (UPS)
for Safety and Signalling are employed. Fault tolerant UPS architectures
are adopted to cope with unpredictable fault events occurring at UPS
level, potentially resulting in safety/availability violations. This paper
proposes a stochastic model-based analysis to support the comparison
between different UPS redundant architectures in terms of dependability
attributes, primarily reliability and availability indicators. The analysis
results can be fruitfully exploited by a designer to set up the most effec-
tive UPS configuration, able to satisfy dependability requirements, while
also accounting for possible saving in energy consumption.

Keywords: Dependability · Uninterruptable Power Supply system ·
Stochastic model · Railroad Signaling System

1 Acronyms and Symbols

AC Alternate Current
DC Direct Current

MTBF Mean Time Between Failures
MTTF Mean Time To Failure

UPS Uninterruptable Power Supply
A∞ Steady state availability

IMTBF Percentage of improvement in MTBF of UPSCR with respect to UPSSR
λB Battery failure rate
λI Inverter failure rate
λR Rectifier failure rate
λT Transformer failure rate
L Load
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μ Recovery rate of components
r Ratio between lambdas of UPSCR and UPSSR

UPSCR Component redundancy architecture
UPSSR System redundancy architecture

C Critical operation condition
N Normal operation condition
lm UPSCR: load per module
m UPSCR: number of components of a given kind in hot standby
n UPSCR: number of components of a given kind required to serve the

load

2 Introduction

Railroad signaling systems are highly critical components within the railway
infrastructure, being used to control the movement of railway traffic. Reliable sig-
naling systems and accurate transit management are key factors in the profitabil-
ity of a railway system. Therefore, railway operators afford significant investment
in control and signaling systems to maximize the use of rail networks, and lower
the cost of new infrastructure and railway lines. To properly satisfy the requested
uptime capacity, Uninterruptable Power Supply (UPS) systems1 are employed,
to ensure that rail networks deliver efficient and reliable services. UPS is typi-
cally organized in a modular structure to be customizable in accordance with the
specific railway segment. Moreover, redundancy at level of different granularity
of components is adopted for promoting the ability to cope with unpredictable
faults which could affect the UPS, potentially resulting in safety/availability
violations of the signalling system.

In particular, the offered contribution is a study to model and analyze dif-
ferent redundant configurations of UPS, targeting quantitative dependability
assessment. Moving from the currently adopted redundant UPS configuration in
the Italian railway system, where redundancy is applied at level of the whole
system (referred to as UPSSR), the study aims at comparing its dependability
attributes with those of an alternative fault tolerant organization where redun-
dancy is exploited at level of individual UPS components (referred to as UPSCR).
Actually, UPSCR is going to supersede the currently adopted UPSSR, so this
study provides a useful support to sustain this decision or otherwise raise sub-
stantiated criticisms.

The developed evaluation resorts to stochastic model-based analysis, which is
widely recognized as an effective support to system design, being applicable since
the early stage of system design and thus providing prompt and useful feedback
to the system designer in performing optimal design choices. Indicators repre-
sentative of dependability-related attributes (namely, availability, Mean Time To
Failure (MTTF) and Mean Time Between Failures (MTBF)) are considered, for
which markovian models are built, under specified fault assumptions. Numerical
1 In the railway sector UPS is often referred as Integrated Power Supply (IPS). In this

paper we adhere to the most general terminology.
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experiments are then conducted in different scenarios; the obtained results allow
to discuss strengths and weaknesses of the UPSCR and UPSSR architectures,
also taking into account energy consumption aspects.

The paper is structured as follows: Sect. 3 briefly recall the system architec-
ture and its evolution; Sect. 4 describes UPSSR, the UPS architecture currently
in use, and presents UPSCR, the new proposal; Sect. 5 discusses related work,
focusing in particular on UPS architectures that are close to UPSCR; Sect. 6
illustrates the stochastic models employed in the analysis; Sect. 7 shows numeri-
cally the improvements in switching from UPSSR to UPSCR in terms of MTBF,
considering a couple of scenarios, where different parameters’ settings are inves-
tigated; Sect. 8 draws conclusions and discusses future work.

3 Context

Many rail applications, such as traffic management systems and automatic train
protection systems, require uninterrupted power of appropriate quality, as they
cannot tolerate even minimal interruption or disturbances in power flow. In fact,
in these critical contexts power disruptions are not just inconvenient; they are
also serious threats to correct operation, being potentially responsible of major
safety violations. Therefore, they are electrical loads that need protection from
any type of input power interruption or power quality disturbance.

This work makes reference to the Italian railway system, where measures to
guarantee uninterruptable power supply for safety and signalling systems have
been introduced since the early eighties of the last century. In particular, the
apparatus to protect safety and signalling systems we focus on is called SIAP-
Sistema Integrato di Alimentazione e Protezione, conforming to the RFI Specifica-
tions, dated 2010 [9] and currently adopted, and its forthcoming evolution SMAP-
Sistema Modulare di Alimentazione e Protezione, conforming to the RFI (the Ital-
ian railway infrastructure manager) Specifications, dated 2015 [10]. To keep the
terminology simple, the SIAP related architecture will be referred in the following
as UPSSR, while the SMAP related one as UPSCR. Although the focus is on the
Italian railways, for which documents needed for the analysis study were made
available, similar uniterruptable power supply systems are adopted by railways
operators in other Countries, which could likewise get benefit from the outcomes
and considerations made on the SIAP/SMAP architectural solutions.

From an abstract high level point of view, Fig. 1 depicts the overall organi-
zation around the considered UPS system. Electrical power to UPS (AC source)
is provided by either Utility or Diesel Generator, this last being activated upon
problems experienced by the former. In normal (N ) operation mode, where either
Utility or the Diesel Generator are working and provide AC source, UPS ensures
that IT devices (AC and DC loads) receive clean, reliable electricity. Instead, if
the AC input supply is interrupted, UPS enters a critical (C) operation mode,
where it uses the battery it is equipped with to keep supported loads up and
running, and continues to utilize battery power until the AC input returns back
or the battery runs out of power. Finally, should UPS fail, it is disconnected



UPS Architectures in the Railway Sector 101

from the loads and the switch Bypass path is turned on quickly, to support the
output loads. This paper addresses the reliability and availability analysis of the
UPS architectures in Fig. 1, which are presented in the next Sect. 4.

Fig. 1. Abstract, high-level view of the equipment involved in the energy supply for
safety and signalling systems. The box “UPS architecture” is the object targeted by
the conducted analyses.

4 Redundant UPS Architectures

Two redundant UPS architectures based on modular and redundant compo-
nents are considered in this paper: a) the system redundancy-based architecture
UPSSR, that is the currently adopted solution in the Italian railway system2,
where redundancy is applied at level of the whole system as shown in Fig. 2a; b)
the component redundancy-based architecture UPSCR, that is a new proposal3,
where redundancy is exploited at level of individual UPS components as shown
in Fig. 2b.

UPSSR comprises two units in a 1 + 1 configuration: the primary and hot
standby unit. Each unit can cover the entire load and includes a transformer, a
cabinet that encloses a rectifier and an inverter, and a battery bank.

UPSCR exploits higher modularity by considering each individual component,
i.e., the rectifier, the inverter and the battery bank (excluding the transformer),
as a modular and redundant unit deployed in n + m configuration: n primary
units and m hot standby units, for a total of 3(n + m) units (or modules). For
each component, modular and redundant units are deployed in layers and each
is connected to all those in the next one through smart (synchronus) switches.
Each set of n primary units can cover the entire load. If one fails then the switch
2 SIAP, RFI IS732 - Ed. 1999.
3 SMAP [10].
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Fig. 2. Logical architectures of UPS under investigation: UPSSR (a) in a 1 + 1 redun-
dancy configuration with primary and hot standby UPS unit, and UPSCR (b) in n+m
redundancy configuration for each individual component (excluding the transformer),
with n = 3 and m = 1, where n and m are the number of primary and hot standby
units, respectively.

isolates it and closes the circuits with another one; in normal operating condition,
usage is balanced among primary components.

The rectifier (which converts the input utility power from AC to DC and
recharges the batteries) is operational only when the Alternate Current (AC)
source is working, i.e. in the N mode. The inverter converts DC power from bat-
teries back into AC power for load use. So, considering only DC loads, inverters
can be omitted from the diagram of Fig. 2.

In both UPSCR and UPSSR architectures, hot spare units are standing by
until a primary unit fails. A hot spare unit, if any, is then switched into service
to replace the failed primary unit. The UPS fails when there are no redundant
hot spare units left to replace the failed primary units (UPS failure), that is
when there are no longer enough units to cover the loads. When the UPS fails,
then the railroad signaling systems fails, whatever the current operation mode
N or C (both outages and low quality service are considered a failure).

In the case of the UPS system under consideration, n primary units in the
UPSCR perform the same function overall as the corresponding single primary
component in the UPSSR, i.e., they cover the same loads. So a unit in the UPSCR,
e.g., the rectifier, has different characteristics, in terms of failure rate, power
consumption, etc., than the corresponding unit in the UPSSR.
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Usually, in a railway station there is a maintenance team that, whenever
an alert is raised by the UPS monitoring system, substitutes or repairs failed
components. In the following maintenance is modeled but is highly simplified.

Considering that in UPSCR only one transformer is employed, it is immediate
to observe that switching from UPSSR to UPSCR halves the number of trans-
formers, that are the main source of power waste4. A more accurate computation
of the energy consumption incurred by the two architectures would require to
account for detailed consumption by the individual components, which is beyond
the scope of this paper and postponed as future work.

In general, the two architectures present different trade-offs among availabil-
ity, energy efficiency, maintainability and capabilities of dynamic reconfigura-
tion. The analysis results proposed in this paper can be fruitfully exploited by
a designer to set up the most effective UPS architecture configuration in order
to support innovative design of the station power systems, especially in terms
of: 1) identification of critical components (transformers, rectifiers, batteries and
inverters) of the existing configuration; 2) identification of the degree of redun-
dancy of particularly critical components.

5 Related Work

In the literature, several studies have addressed dependability and architectural
solutions for UPS systems, either without reference to specific application con-
texts (e.g., [6,7,11]), or targeting specific areas (e.g., [5,13] where the focus is on
data centers). As already discussed, in this paper the emphasis is on the mod-
ular, redundant architectures adopted for the signalling system by the Italian
railways, presented in Sect. 4. Although similar solutions are implemented also
in other Countries (for example, the architecture in [8] with reference to the
Indian railways), to the best of the authors’ knowledge a dependability analysis
targeting the addressed UPS organizations is not available. The analysis devel-
oped in this paper provides a contribution in the direction to fill this gap. The
obtained results could then be helpful to understand trend behaviours, from the
reliability and availability perspective, of such similar schemes.

To better position the considered UPSSR and UPSCR architectures with
respect to alternative, but rather compatible, solutions already investigated, in
the following a few considerations are drawn with the two generic modular UPS
systems presented and analyzed in [2,3], respectively, and depicted in Fig. 3.

The improvement in availability, MTTF and MTBF switching from the archi-
tecture depicted in Fig. 2a (or very close ones) to the one5 depicted in Fig. 3a
is analyzed in [2]. As in this paper, cabinets structure, connections, operation
control and management electronics are not included in the analysis. Differently
from the analyses performed in this paper, in [2] only the failure of the Direct
4 A typical transformer employed in the considered context can waste about 4% of

the transformed power in heat.
5 Notice that the mentioned standard is EN 62040 VFI, that is not specific for railway

applications.
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Fig. 3. Other UPS logical architectures studied in the literature: (a) is close to UPSCR

depicted in Fig. 2b (n = 3 and m = 1) but each unit is connected only to the corre-
sponding unit of the next layer, while (b) is close to (a) but there is only one large
shared battery.

Current (DC) bus, including the connection with the battery, is considered, not
the failure of the batteries themselves. Two variants of the components switching
mechanism are mentioned for the modular architecture: each unit has a (decen-
tralized) switch vs there is only one (centralized) switch.

In [3] all the units have a (decentralized) bypass switch and four architecture
are investigated: those depicted in Figs. 3a and 3b with m = 0 or m = 1.

The differences, both at architectural level and at modeling assumptions
level, make the dependability analysis conducted in [2,3] different from that
performed in this paper. Among major distinctive aspects characterizing this
work from referred previous studies there are: i) the level of miniaturization and
redundancy. UPSCR is designed considering 10 as a typical value of n, i.e., a
much greater value than in [2,3], and also m can span a larger range of values.
This has also consequences on how to parametrize failure rates, as detailed in
Sect. 6; ii) the analysis performed here explicitly accounts for the failure of the
AC source (utility and diesel generator) through distinguishing the two UPS
operational modes (i.e., N and C), while this distinction is not addressed in
[2,3].
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6 Dependability Models

In this Section Markovian stochastic models [12] are defined to support the
analysis and comparison of the UPS architectures UPSSR and UPSCR in terms
of dependability attributes.

6.1 Assumptions and Measures of Interest

Both UPSSR and UPSCR architectures are modeled and analyzed separately for
each operation mode N (when rectifiers can fail) or C (when rectifiers are not
used and therefore cannot fail).

The failure time of rectifiers, inverters, battery banks and transformers is
an exponentially distributed random variable with rates λR, λI , λB and λT ,
respectively.

Maintenance after a component failure is modeled for both UPSSR and
UPSCR as an atomic action performed by a single maintenance team that is
memoryless, i.e., the recovery time of failed components is an exponentially dis-
tributed random variable with rate μ. In support of this assumption, it needs to
be considered that typically in critical applications there are orders of magni-
tude between components’ time to failure and recovery time, meaning that the
probability distribution shape of the recovery time has a relatively small impact
on the availability measure of interest. In the conducted experiments, μ has been
selected in accordance with the white papers and previous analyses reported in
Sect. 5.

The failure model is based on the following assumptions:

– The failure rate of the transformer is negligible, so it is not considered in the
models.

– The failure rate of each considered component (rectifier, inverter, battery
bank) includes both hardware failures and control software failures (as
reported in the technical reference document6).

– The failure rate of components does not depend on load and is statistically
independent of each other, as typically assumed for hardware components.

– The UPS fails both when it cannot cover the entire load or the quality of
service of the load is not meet (e.g., while the rectifier performs poorly so
that the current is no longer stable).

– The recovery time is the same regardless of the number of failed components,
since it depends substantially on the random availability of the maintenance
team, while the actual maintenance interventions take a negligible time.

Although (some) the above assumptions may appear rather simplistic, it is
reminded that the study has a comparative purpose between two architectures
and, as long as the modeled aspects have the same impact on both of them,
adopting simplifications do not impair validity of the obtained results. Of course,
enhancing accuracy of the analysis is desirable and postponed as future work.
6 SMAP [10].
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For each combination of UPS architecture and operation mode (UPSSR-N ,
(UPSSR-C, (UPSCR-N and (UPSCR-C) two Markovian stochastic models have
been defined: a reliability model, with absorbing states representing the UPS
failure, and an availability model, with all states positive recurrent [12]. Notice
that whereas in the availability model each failed component is always recovered,
in the reliability model each failed component is only recovered if it does not
cause the UPS failure, when the model enters an absorbing state.

Using these models, the following metrics representative of reliability and
availability have been analyzed:

MTTF: the mean time to failure of the UPS, defined as the average amount of
time the UPS operates before it fails; it is computed by solving the reliability
model in which recovery from UPS failure is not considered.

A∞: the steady state UPS availability, defined as the limit of the probability
that the UPS will be operational at a specific time, as time tends to infinity;
it is computed by solving the availability model in which recovery of UPS
takes place after failure.

MTBF: the expected operating time between two consecutive failures of the
UPS, given by

MTBF =
MTTF
A∞

. (1)

IMTBF : percentage of improvement in MTBF of UPSCR (MTBFUPSCR) with
respect to UPSSR (MTBFUPSSR), given by

IMTBF = 100
MTBFUPSCR − MTBFUPSSR

MTBFUPSSR
. (2)

Based on the study reported in [12] for “system vs component redundancy”, it
can be mathematically demonstrated that for the same failure rates, UPSCR has
a better reliability profile than UPSSR. However, as already observed in Sect. 4,
components used to perform the same function have different characteristics
when used in UPSSR architecture rather than in UPSCR. To account for these
specificities, different combinations of failure rates for each component in the
two UPSSR and UPSCR architectures were used in the analysis. For example,
the failure rate λUPSCR

R of the rectifier in UPSCR is defined in terms the failure
rate λUPSSR

R of the rectifier in UPSSR through a multiplier r, i.e.,

λUPSCR
R = r · λUPSSR

R . (3)

Notice that, as the number of components and complexity of a modular
architecture increases, the switches that handle interactions among components
in turn can also become quite complex. In that case, as shown in [12], it becomes
important to model the (failures of the) components switching mechanism.
Because of the complexity of this aspect, in this paper, we have chosen not
to explicitly model the failure of such switch mechanisms, but to account for it
through adopting increased failure rates for components in the UPSCR architec-
ture with respect to those of the UPSSR ones (see discussion in Sect. 7).
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In the following only models limited to DC loads are described (where invert-
ers are not considered), being relatively easy to address AC loads: for UPSSR just
adding λI to λR + λB in UPSSR-N and λB in UPSSR-C; for UPSCR considering
three Kronecker sums instead of two, as will be detailed in Sect. 6.3.

6.2 UPSSR Model

As depicted in Fig. 4a, the model for UPSSR-N is in state 1 when all the compo-
nents (2 batteries and 2 rectifiers) are correctly working and can switch to state
2 if either one of the batteries or one of rectifiers fails. Only state 3, reachable
from state 2 when another battery or rectifier fails, is the system failure state.
From state 2 the system can recover without affecting the service quality; to
study the system availability also the recovery from state 3 is considered.

The model for UPSSR-C, depicted in Fig. 4b, is similar to the model for
UPSSR-N . The only difference is the absence of rectifiers’ failure rate λR.

6.3 UPSCR Model

The model for UPSCR-C, depicted in Fig. 4d, comprises only the batteries layer
of Fig. 2 (since the rectifier is not operational in C mode, as observed in Sect. 4),
for n = 6 and m = 3. In state 1 all the n + m batteries are working, in state
2 all but 1 are working, and so on, until state m + 1 (state 4 in Fig. 4d) where
there are only n working batteries (i.e., just enough to cover the dc loads). All
the remaining combinations (i.e., where there are less than n working batteries)
are collapsed into the final state, that is the system failure state. In general, in
state i there are n + m − i + 1 working batteries. So, the transition rate from
state i to i + 1 is (n + m − i + 1)λB (e.g., 8λB in state 2). Overall, there are
m + 2 states, among which m + 1 states where the service is correctly delivered
and 1 state of system failure. From all the states the system can recover with
rate μ. Notice that recovering from the last state (the system failure state) is
only considered in the availability model.

The model for UPSCR-N , depicted in Fig. 4c, comprises first and second
layers of Fig. 2b, where each rectifier can provide power to each battery (i.e.,
each box within the first layer of Fig. 2b is connected to each box of the second
layer). In order to represent all the relevant dependencies, the Kronecker algebra
[1,4] has been employed: each layer comprises m+2 states and is modeled through
a transition rate matrix Ri similar to the one of UPSCR-C, where i labels the
layer in Fig. 2b; the overall model is defined by the transition rate matrix

RUPSCR−N = R1 ⊕ R2 = R1 ⊗ Im+2 + Im+2 ⊗ R2,

where Im+2 is the identity matrix with m+2 rows and columns. Thus, the over-
all model comprises (m+2)2 states. The association among states in Fig. 4c and
number of working/failed rectifiers and batteries is not reported to improve the
figure readability, but can be easily derived: in Ri the number of failed com-
ponents increases at increasing of the state number (state 1 denotes 0 failed
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Fig. 4. Reliability and availability models of UPSSR-N (a), UPSSR-C (b), UPSCR-N (c)
and UPSCR-C (d) to address DC loads only (for AC loads the models are easily derived
starting from the shown ones), with n = 6 and m = 3 for UPSCR. Black dotted arcs,
denoting recovery from UPS failure, are only considered for the availability models.
Blue nodes represent working states and blue full arcs represent failure or recovery
events between them. Red nodes represent UPS failure states, and red dashed arcs
failure events. In (c) the failure state 5, 10, 15 20, 21, 22, 23, 24 and 25 are collapsed
into the single failure state 25, and rates are not reported for sake of clarity.

components), and the lexicographic ordering is enforced by the Kronecker prod-
ucts in RUPSCR−N . All the combinations of system failure are collapsed into one
state and recovering from that state is only considered in the availability model
(as for UPSCR-C).
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7 Numerical Evaluation

In this Section a numerical comparison7 between UPSSR and UPSCR architec-
tures is presented in terms of IMTBF and MTBF for both N and C operation
modes, considering a couple of scenarios, where different parameters settings are
investigated. The setting for the model parameters considered in the performed
analyses for both scenarios is the following.

Assuming lm = 10 kW as a typical load per module, n = 10 modules are
required to cover 100 kW of load, n = 11 for 110 kW, and so on. In general, n is
given by

n = �L/lm� , (4)

where L is the DC load, that is assumed constant over the time. The DC load
has been fixed to 100 kW, so that n = 10, unless otherwise specified.

Several algorithms for choosing m can be considered. In the presented studies,
a fixed value of m = 3 has been considered. The recovery rate has been fixed at
μ = 0.5h−1, i.e., half an hour.

Realistic values of failure rates for each component in the two UPSSR and
UPSCR architectures, denoted by adding a superscript UPSSR and UPSCR to
the rate symbol, respectively, were used in the analysis. While the values of
λUPSSR
B and λUPSSR

R are known from field investigation, currently there are no
available estimates for λUPSCR

B and λUPSCR
R . However, it can be observed that

UPSCR shows a higher degree of complexity compared to UPSSR, with negative
impact on the failure rate of its components, mainly due to:

– miniaturization of components, meaning reduced physical size of delicate cir-
cuits such as rectifiers or inverters;

– increasing the number of components also the connections among them, and
the related switching mechanisms to isolate/activate components as needed,
become more complex and their failures cannot be neglected.

Therefore, to account for the combined effect of the above aspects resulting in
a more complex UPSCR whose components are characterized by a higher failure
rate than the corresponding ones of UPSSR, a multiplicative factor r has been
introduced:

λUPSSR
B = 11.76 · 10−6 h−1, λUPSSR

R = 16.6 · 10−6 h−1,

λUPSCR
B = r · λUPSSR

B , λUPSCR
R = r · λUPSSR

R , (5)

where r ≥ 1. At growing of r, the failure rate of UPSCR components increases;
in the conducted analyses, a rather high value has been adopted being r fixed
to 17, unless otherwise specified.

7 https://gitea-s2i2s.isti.cnr.it/gmasetti/CompareSRandCRinRailwaySignalingUPS.
git: free code written in MATLAB, but with small changes can also be executed
with Octave. No special programming skills are required.

https://gitea-s2i2s.isti.cnr.it/gmasetti/CompareSRandCRinRailwaySignalingUPS.git
https://gitea-s2i2s.isti.cnr.it/gmasetti/CompareSRandCRinRailwaySignalingUPS.git
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7.1 Study 1: MTBF at Increasing of Load

In this study, the DC load L increases from 40 to 140 kW and the scaling factor
r is set to 17. Results are reported in Figs. 5a and 5b for N operation mode, and
in Figs. 5c and 5d for C operation mode. In UPSSR, the only primary unit covers
the entire load for all load values considered, so that the same configuration is
considered for different values of L. As a result, MTBF for UPSSR is constant as
L changes. In UPSCR, the number n of primary units increases as L increases,
as derived from (4). As a result, IMTBF and MTBF for UPSCR decrease as L
increases due to the larger number n of primary units that can fail, the number
m of hot standby units being constant. It is interesting to observe that, as
L increases, the measure IMTBF varies from values greater than 0, for which
MTBF for UPSCR is greater than MTBF for UPSSR, to values lower than 0, for
which MTBF for UPSCR is less than MTBF for UPSSR.

Figures 5b and 5d show that the MTBF for both UPSCR and UPSSR in the
C mode is approximately half and one-third, respectively, of the corresponding
MTBF in the N mode. Figures 5a and 5c show that the IMTBF in the C mode is
approximately 1.8 the value of the corresponding in the N mode. This is because
in C mode the rectifier component is not operational, thus reducing the number
of units that can fail in UPSSR and UPSCR by 2 and by n + m, respectively.

7.2 Study 2: MTBF at Increasing of r

In this study, the DC load L has been fixed to 100 (n = 10) or 160 kW (n = 16),
and the scaling factor r increases from 1 to 20. Results are reported in Figs. 6a
and 6b for L = 100 kW, and in Figs. 6c and 6d for L = 160 kW.

The UPSSR architecture does not depend on r or L, so MTBF for UPSSR
remains constant as r or L varies.

In the UPSCR architecture, the failure rate of the units (batteries and rec-
tifiers) increases as r increases, as derived from (5). As a result, IMTBF and
MTBF for UPSCR decrease as r increases due to the larger failure rate of the
primary and hot standby units that can fail.

Figures 6a and 6b show that, for r < 19, UPSCR has a better reliability
profile than UPSSR, being MTTF for UPSCR greater than MTBF for UPSSR,
corresponding to IMTBF > 0. It is interesting to observe that MTBF is very
sensitive to changes in r with a difference between the minimum and maximum
value of about 5 orders of magnitude.

Figures 6b and 6d show that the MTBF for UPSCR in the C mode is approx-
imately one order of magnitude less than the corresponding MTBF in the N
mode, so that the interval of r in which UPSCR has a better reliability profile
than UPSSR is reduced by almost half (r < 12). This is because with L = 160 the
configuration of UPSCR becomes n = 16, thus increasing the number of primary
units that can fail, while the UPSSR configuration does not change.
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Fig. 5. Study 1: percentage of improvement in MTBF of UPSCR with respect to UPSSR

at increasing of DC loads for normal operation condition in (a) and critical condition
in (c). The corresponding MTBF is reported in (b) and (d), respectively. Here r = 17.
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Fig. 6. Study 2: percentage of improvement in MTBF of UPSCR with respect to UPSSR

for normal operation condition at increasing of r for 100 kW DC load in (a) and 160 kW
in (c), respectively. The corresponding MTBF is reported in (b) w and (d), respectively.

8 Conclusion and Future Work

This paper presented a dependability analysis of UPSSR and UPSCR, two alter-
native architectures for uninterruptable power supply equipment for safety and
signalling systems in the railway sector, where redundancy is exploited at system
level and at component level, respectively. The analysis goal was to understand
the advantages and limitations of the two solutions, in terms of reliability and
availability, also with an eye to energy consumption. Stochastic models have
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been developed to represent the two UPS architectures at a level of abstrac-
tion and under failure mode assumptions adequate for conducting comparative
analysis. The obtained results, although limited to the adopted parameter set-
ting, suggest that redundancy at component level brings better dependability
levels than the alternative approach where replication is operated at system
level. Although based on rather simplistic assumptions, also the considerations
from the energy consumption perspective are more favourable to UPSCR than
to UPSSR. These results positively support the planned replacement of the cur-
rently adopted UPSSR with UPSCR in the Italian railway system.

Extensions of the presented study are possible in several directions. Among
them, developing corresponding analyses for AC loads would make the compari-
son more complete, although indications on how to extend the presented models
for DC loads to also account for AC loads have been already briefly discussed.
Moreover, in the current study loads have been kept constant. However, depend-
ing on the specific application, variable loads are possible and the impact of such
variability, especially for the UPSCR architecture, is expected to be significant.

Going deeper in the analysis of energy consumption is another aspect that
would make the comparison between the two UPS approaches more solid.

Of course, investigating comparison with other UPS architectural configu-
rations, within the context of railways or other critical application sectors, as
inspired by related work proposals, is another promising direction.

Finally, extending the models to include also the components and phenomena
around the analysed UPS system (as shown in Fig. 1), as well as considering costs
aspects would allow to better understand the effectiveness of the two energy
supply solutions for safety and signalling systems in the railway sector.
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Abstract. This paper reports on the industrial use of our formal-
method based interlocking verification tool, called SafeCap, and on what
we needed to change in SafeCap as a result of our experience in applying
it to a large number of commercial signalling projects. The substantial
efforts dedicated to tool improvement are caused by the novelty of the
technology and by a substantial gap to be bridged between the academic
prototype, developed initially, and the industry-strength tool SafeCap
has become now. It is our belief that when such innovative tools and
technologies are developed for industrial use it is often impossible to
fully understand and correctly elicit the complete set of requirements for
their development. The paper describes the extensions added and the
modifications made to the functionality of SafeCap after it was demon-
strated to be successful in a number of real signalling projects and, as
a result of this, was formally approved for use in the UK railway. We
believe this experience will be useful for the developers of formal verifi-
cation methods, tools and technologies to be deployed in industry.

Keywords: Safety verification · Railway · Automated theorem
proving · Scalability · Industrial deployment · Solid State Interlocking

1 Introduction

Effective signalling is fundamental to the safe and efficient operation of railway
networks. At the heart of any signalling system there are one or more inter-
lockings. These devices constrain authorisation of train movements as well as
movements of the infrastructure to prevent unsafe situations arising. One of the
earliest forms of computer-based interlocking was the Solid State Interlocking
(SSI) [1,4], developed in the UK in the 1980s. Currently, SSI is the predomi-
nant interlocking technology used on UK mainline railways. It also has applica-
tions overseas, including in Australia, New Zealand, France, India and Belgium.
Running on bespoke hardware, SSI software consists of a generic application
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
B. Milius et al. (Eds.): RSSRail 2023, LNCS 14198, pp. 117–127, 2023.
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(common to all signalling schemes) and site specific geographic data. The latter
configures a signalling area by defining site specific rules, concerning the control
of the signalling equipment as well as internal latches and timers, that the inter-
locking must obey. Despite being referred to as data, a configuration resembles
a program in a procedural programming language and is iteratively executed in
a typical loop controlling the signalling equipment.

This paper discusses the SafeCap tool used for formal verification of geo-
graphical data of SSI and derived (Smartlock and Westlock) interlockings [6,8,9].
It provides scalable and fully-automated verification by mathematical proof. The
tool is now actively used for safety verification of mainline interlockings by several
UK signalling companies. SafeCap is deployed at different phases of SSI prepara-
tion to check the designs and to provide signalling engineers with the diagnostics
to help them to enhance (and, where necessary, to correct) the design data. It
has proven to be successful in improving the safety of the signalling systems
and reducing the rework cycle. SafeCap is extremely efficient, it takes but few
minutes to verify the safety of any UK interlocking on a fairly standard desktop
computer.

The development of SafeCap started in 2013 in a series of public projects led
by Newcastle University. It was originally conceived as an experimental extend-
able Eclipse-based tool for railway simulation and verification.

From 2017 we have focused our work exclusively on developing a fully-
reworked version of SafeCap targeting SSI verification (described in [6]1). Two
main decisions leading to the industrial adoption of the tool were made during
this period, namely,

– to focus on fully-automated scalable verification by mathematical proof;
– to ensure that the tool inputs the data developed by signalling engineers and

outputs the diagnostics reports exclusively presented in terms of these data.

These decisions in effect allowed us to successfully address the majority of the
factors limiting the acceptance of formal methods by industry (see, for example,
Sect. 5.5 of paper [5]).

Since 2019 we have been conducting commercial projects and making sub-
stantial improvements to SafeCap. This has been a period of extensive use,
during which we have verified over 60 interlockings in England, Wales and
Scotland, including those controlling the most complex layouts in London and
Birmingham. We have worked with a mixture of SSI-derived interlocking tech-
nologies and layout complexities, written at different times by different design
offices. In particular, during this time it has been demonstrated that SafeCap is
now fully equipped for conducting formal, scalable and automated verification
of SSI/Smartlock/Westlock interlockings developed for ETCS (European Train
Control System). This has been an important period during which we have been
using the experience gained in the commercial projects to enhance the tool and
to make it more useful and attractive for our customers.

This industrial paper focuses on the changes made to improve SafeCap during
the latter phase of its development and on the industry-driven research that
1 The paper was prepared in 2020 and submitted to the journal in early 2021.
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formed the foundations for these improvements. The experience from commercial
SafeCap applications gained during this phase has been a key for meeting the
needs of the signalling companies that use SafeCap.

The rest of the paper is structured as follows. The next section discussed
the three main categories of SafeCap improvements, providing inside informa-
tion about each improvement implemented. Section 3 reports on the comparative
statistics from the live commercial projects delivered before the improvement
phase and after the improvements were implemented. The last section discusses
some conclusions and future directions of our work on SafeCap.

2 Tool Improvements

SafeCap is a novel technology for which it was not possible to define a full
set of requirements at the time when we started its development. During this
development, there has been a continuous process of eliciting new requirements
and modifying many of the initial ones. The main improvements have necessarily
been based on learning from experience.

SafeCap is a unique tool, based on substantial advances in formal methods
and supporting verification tools, which is actively used by industry. This means
that all its improvements are driven by the industrial needs, and that all research
advances supporting these improvements are driven by these needs.

The three main categories of tool improvements discussed in this paper are
improvements of safety properties (i.e., how SafeCap understands safety), of the
employed proof systems (i.e., how SafeCap verifies safety), and of the produced
diagnostics and reporting (i.e., how SafeCap reports the verification results).

2.1 Improvements of Safety Properties

Safety properties assert the safe behaviour of the interlocking system that Safe-
Cap verifies. When the system is demonstrated to satisfy all these properties,
it is considered to be safe. The properties play a critical role in SafeCap formal
verification, which is why we put substantial efforts in ensuring they are correct,
unambiguous and relevant for signalling engineers.

During the improvement period we have finalised and started using a system-
atic process for property engineering. The process we are applying now guides us
during property identification, modification, documentation, testing and correc-
tion, and allows us to document all these steps to make the property development
accountable.

In the railway signalling domain, opportunities to specify a complete set of
safety properties from scratch are rare and typically only occur on newly built,
stand-alone metro lines. In other cases, interlockings are usually constrained by
legacy considerations.

As SafeCap targets the safety verification of UK mainline interlockings, safety
properties had to be inferred from the railway standards. This required a thor-
ough review of standards catalogues to identify relevant standards followed by
a review of those standards to elicit the specific properties within the scope of
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SafeCap verification. The scope of SafeCap verification, and hence the standards
clauses from which safety properties are derived, is continually expanding: ini-
tially it covered only functionality for which automated verification was explicitly
required in standards; it was then expanded to cover the majority of function-
ality related to internal states within signalling interlockings; it now also covers
processing of inputs and generation of outputs by the interlocking. Nonetheless,
many clauses in standards are likely to remain permanently outside the scope of
SafeCap verification, for example:

– safety integrity of interlocking hardware and generic software;
– accuracy of signalling plans used as inputs into SafeCap;
– correct wiring of physical equipment to the interlocking;
– seldom-used and site-specific functionality for which manual verification is

more cost effective than automated verification.

The argument for the correctness and completeness of these safety properties (in
terms of the scope of SafeCap verification) stems from their traceability to the
standards and the pedigree of those standards, which have evolved over many
decades through design, risk assessment, operational experience and lessons
learnt from accidents.

When defining safety properties, consideration needs to be given not only
to the safety requirements contained in railway standards, but how those are
actually implemented in data. Failure to do this correctly results in many false
positives. The SSI data is effectively a computer program that determines site-
specific functionality of the interlocking system. It includes files defining inter-
locking identities (files of the following types: FLG, PTS, QST, ROU, SIG, TCS)
which define the names of various variables corresponding to trackside equip-
ment, and files which define functionality in terms of those identities (FOP,
IPT, MAP, OPT, PFM, PRR). During the improvement phase, in addition to
identifying the new safety properties from the textual standards, we added a
substantial number of new properties by importing new types of files (including,
IPT/OPT files) which allowed us to formulate new properties in terms on newly
added types of identities from these files and their functionalities.

In the last three years we have increased the number of safety properties
SafeCap verifies from 40 to 136, which substantially improved the coverage and
the quality of SafeCap verification.

Dealing with false positives has became an important part of safety property
development due to the complexity of safety requirements described in standards,
which often allow for many exceptions to general rules and how the properties
are implemented in data. The false positives encountered during the SafeCap
verification process arise for various reasons: over-simplification of the property
expressed in the textual standard; failure to recognise and exclude scenarios
that cannot plausibly happen in the railway domain; the effect of safety over-
approximation in the formal representation of a property due to limited scope
of a mathematical model of railway; and, lastly, due to limitations inherent to
theorem proving in application to inductive safety invariant verification. The
first three types of false positives are dealt with by improving the properties
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(which sometimes can increase their complexity and affect the verification time)
and extending railway model. Dealing with false positives of the last kind is
explained in more detail in Sect. 2.2, which also provides more information about
how the SafeCap prover works.

Another aspect of property engineering is the need to have robust change
management procedures. To this end, SafeCap uses regression testing to check
that previously found, and manually confirmed, violations are still present and
that no new violations appear after a property is revised. To achieve this, SafeCap
reproduces the effect of a source code error seeding by directly manipulating
proof conjectures, generated from interlocking code (without any seeded errors)
and the safety property itself. More details about that are given in Sect. 2.2.

In addition, due to the critical importance of the safety properties for Safe-
Cap verification, traceability to the referred standards of all new and revised
properties are now manually checked by an independent checker from our team.

2.2 Improvements of the Proof System

As its primary means of mathematical proof, SafeCap employs a custom
rewriting-based prover for a language based on first-order logic and set theory.
Since set theory is the preferred modelling mechanism, there is a quite a large
number of predefined simplification rules for it. The prover also relies on decision
procedures for rule selection and hypotheses filtering, which were produced by
analysing a large number of historic proofs and building a SVM-based predictor.

A symbolic transition system, built via symbolic execution of input signalling
data, is used to generated, by instantiation of a schematic axiom of inductive
safety invariant, conjectures called proof obligations. Each such proof obligation
attempts to establish that a particular state transition maintains safety invariant.
A conjecture is a logical sequent, consisting of a list of hypotheses (derived from
state transition pre-conditions) and a goal (derived safety invariant).

Proofs are computations over the conjectures that aim to find a chain of
predefined rewrite steps resulting in a copy of a current goal in hypotheses or
demonstration of falsity of hypotheses. The prover is completely automatic –
it has a procedure for selecting a next rewrite step as well as for ignoring cur-
rently irrelevant hypotheses. In some cases, the prover employs a rule translating
conjecture into a SAT problem to be disproved via a SAT solver.

In addition to a verdict on whether a given conjecture is correct (i.e., a
theorem), the prover also constructs the complete proof script detailing all com-
putations carried out during the proof. It is not designed as a small kernel prover
– we can freely add new rewrite steps without having to prove their correctness.
Instead we rely on a generated proof script and an independent proof checker to
demonstrate proof soundness.

The first-order logic underpinning the SafeCap mathematical notation is both
semi-decidable and undecidable. A general proving procedure exists (thus semi-
decidable), however there is no guarantee that the prover can deliver definite
result within any fixed time (thus still undecidable) It is very rare that the
prover can positively demonstrate that a conjecture is not a theorem; in most
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cases we simply let the prover exhaust all possible venues of proof and, if the
proof is still not completed, declare the conjecture to be unproven. It is also
possible to keep rewriting for an impractically long time because of, e.g., rewrite
cycles emerging during the proof or when the number of options presented to
the prover is simply too large to be explored. One typical case is the presence of
disjunctive clauses with many composite parts (in the region of hundreds).

Proof complexity ranges from a few steps for very simple cases to millions of
steps for a few extreme situations. The median number, measured on a random
sample of five projects, is 802 proof steps with 37 sub goals. The mean, however,
is 2802 proof steps and 386 sub goals; hence, there is a relatively small population
of much harder-to-prove conjectures.

The vast majority of proof conjectures we deal with are shown to be theorems.
For the same sample of five projects, 99.7% of all the generated conjectures are
shown to theorems. Thus, from the efficiency viewpoint, we aim to discharge
simpler cases of provable conjectures in fewer steps and then spend more time
on harder cases. Luckily, proofs of the same safety predicates tend to be very
similar across different projects and this enables us to construct macro-steps that
narrowly target certain patterns reappearing in the generated conjectures. Here
a macro-step is a proof script that computes a sequence of rewrite rules for a
given set of hypotheses and a goal. For most situations, the script simply encodes
pattern matching on conjecture elements to detect certain recurring situations.

In the end, we are able to discharge thousands of proof obligations within
seconds. As a comparison, it takes the Why3 framework [3] (with the Alt-Ergo
backend) around twenty seconds to discharge some simpler proof obligations.

Attempting to prove a conjecture is only the first step in the process of finding
safety violations. A failed conjecture on its own only tells us that a certain safety
property does not hold for given interlocking data. This is not useful to railway
engineers, who expect to see a link to a specific line in the interlocking data as
well as identification of relevant signalling plan elements. There is a world of
difference between saying that one or more points are not deadlocked correctly
somewhere in the data and a statement naming a specific set of points and giving
the precise location in the interlocking data where the violation occurs.

To present a failed conjecture in the manner that is useful to railway engi-
neers, SafeCap uses two techniques: (i) undoing some proof steps (without alter-
ing the overall verdict) to reach a state that is easier to analyse and explain, and
(ii) extracting the context information from a conjecture goal and its hypothe-
ses. The first technique undoes the proof steps in which variables or identifiers
linking the proof to the signalling plan are renamed or removed. The second
technique uses the source code provided by the data parser to locate relevant
data and extract a human-readable summary of a failed proof state from the
conjecture hypotheses (e.g. occupied tracks, locked sub routes, etc.).

The extracted proof state and source code tracing information are combined
to generate a human readable summary of a found safety violation. This is
formatted using the predefined templates to describe the purported violation.
The summary contains, among other things, the location, in interlocking data,
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of the original source code of an offending state transition, highlights of relevant
elements on the signalling plan, and the proof context summarising, in human
readable terms, a set of signalling system states in which the violation occurs.

One common approach to identifying and reporting a property violation is
positing any one example for which the given property does not hold. Our expe-
rience clearly shows that this is not sufficient for industrial scale verification.
The first reason is that the engineers need to have all the contexts, in which the
property does not hold, reported and corrected. The second one is that in large
and complex systems, like railways, there are often a few exceptional cases where
the engineers intentionally violate a general property for operational reasons; for
example, allowing a train to shunt backwards and forwards at low speed on a
non-passenger line without the signaller setting routes for each move. This ren-
ders possible situation where a benign case of a violation is reported and while
serious cases that need corrective actions are not. At the core of our solution
developed during the improvement period and presented earlier [7], lies an app-
roach to name all possible violations in the terms of a unique combination of
signalling assets plus atomic section of signalling code. This makes it impossible
to wrongly combine several distinct violations.

2.3 Improvement of Reporting

The SafeCap diagnostics report is the only information we provide to clients. For
each safety property, it identifies whether the interlocking data complies with
that property and, if not, where violations were found. The improvements in
the properties and proof system, described above, have enabled a step change
improvement in the precision with which violations are reported.

Previously it was only possible to group apparently similar violations based
on where they occurred in the code and the pre-conditions (context) under which
they occurred. This led to occasional misgrouping of distinctly different errors as
well as repetitive reporting of the same error, both of which made reports difficult
and time-consuming to analyse. With the new approach [7], what constitutes an
individual property violation is now clearly defined and thus instances of the
same violation are grouped accordingly. Each individual violation is separately
reported making reports longer than they were, but much easier to analyse.
The approach also makes the reports consistent in the labelling of individual
violations, facilitating comparisons between reports on different versions of the
same interlocking data. This enables enumeration of all potential errors in a
given interlocking data independently from proof obligation generation. This in
turn enables us to detect missing (or extraneous) proof obligations.

Further improvements have been made in the diagnostics information pro-
vided for property violations. The SafeCap philosophy has always been to present
findings in terms understood by signalling designers with no reference to inter-
mediate formal notations or generated prover outputs. Instead property viola-
tions are presented as textual descriptions accompanied by the section of code
and graphical layout to which the violation applies and the failed proof states
(contexts) that led to the violation. This has been further improved upon by
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additionally presenting all sub routines called by the applicable section of code
and using coloured highlighting to identify the path through the code for which
the violation was found. Illustrations of signal aspects have also been added to
facilitate diagnosis of violations of new safety properties pertaining to signals.

3 Statistics from Live Projects

The following tables summarise the scale and verification effort for a random
sample of industrial projects. Table 1 shows the projects sampled from the period
from 2020 to the first half of 2022. These projects were verified for 59 predicates
defining safety properties. At that time we did not formulate any conditions
for SSI logic covering output telegrams (procedures computing messages sent to
various trackside equipment) and thus verification coverage was only partial.

The Routes, Signals, Points, LOC columns characterise a project in terms of
the total number of routes, signals, points and the total number of lines of codes
(LOC) in signalling data (all types of files included).

The POs, total column gives the overall number of non-trivial proof conjec-
tures generated for a project. Simple instantiation of safety property templates
yields many more conjectures, many of which are trivial ones that have a copy
of a goal in their hypotheses. Such trivial cases are detected and dropped during
the generation phase and not included in this figure.

The POs, unf column is the number of conjectures for which proof was
forcibly stopped due to an overrun in the number of generated proof branches or
a predefined time limit rather than simply running out of any applicable rewrite
rules (what we regard as a proper termination). Logically, these are no differ-
ent from failed, but properly terminated conjectures. In practice, their presence
indicates a weakness in the prover or domain axiomatisation as the automated
proof process is tuned to deadlock where successful proof is unlikely (empirically
and drawing from the experience in this particular domain). They are also often
indicative a computationally expensive runaway situation stemming from gener-
ation of proof sub branches, derivation of new hypotheses and possibly cyclical
behaviour of rewrite rules. Finally Proof time, s gives the overall proof time in
seconds. All time measurements are given for an AMD 5950X PC with 128GB
memory using 16 cores; it excludes extra time needed for the construction of a
state transition system from source SSI translation (typically under 5 s).

Table 1. SafeCap statistics from 2020 to mid 2022

Id Routes Signals Points LOC POs, total POs, unf Time, s

P1 164 71 48 13244 12172 108 96
P2 92 45 36 9320 8098 0 60
P3 62 31 28 11002 11711 14 203
P4 47 28 23 8750 6003 0 22
P5 59 30 24 8573 17241 2 129
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Table 2. SafeCap statistics from mid 2022 to 2023

Id Routes Signals Points LOC POs, total POs, unf Time, s

P6 170 56 59 18917 48992 0 72
P7 46 67 25 16200 24002 0 8
P8 164 63 73 16027 172404 0 130
P9 42 48 22 16288 24566 0 2
P10 122 68 60 18745 344072 6 602

One conclusion to draw from Table 1 is that there is no simple correlation
between the size of a railway interlocking and the required proof effort. However,
we can notice that the projects P3 and P5 had complex swinging overlaps with
complex control logic which, in its turn, leads to a higher number of state tran-
sitions. There is also a small number of cases where proof depends on detecting
a contradiction, e.g., in timing conditions expressed as simultaneous inequalities
in hypotheses. Such proofs first exhaust all venues of rewriting and only then
translate a subset of relevant hypotheses into an external SAT solver for a con-
tradiction check. The higher number of proof obligations does normally lead to
longer verification although this is not completely clear cut: much of the proof
time is often spent discharging a small proportion of harder proof obligations.

Table 2 covers the period from the second half of 2022 to the first quar-
ter of 2023, using the current version of SafeCap with all major improvements
implemented. It verifies 136 safety properties with nearly all extra predicates
addressing output telegrams.

One relevant trait of output telegrams associated with signals is that they are
rarely small and simple – it is unusual to have signal output telegram with fewer
than 600 state transitions and some have up to 9000. This means that the output
telegram part of SSI completely dominates the rest in terms of number of state
transitions. Hence, there was a marked increase in the number of generated proof
conjectures when SSI output telegrams were included in the scope of verification.

These required efficiency improvements to the prover were achieved mainly
via addition of macro rewriting steps combining several existing rewrite rules.

4 Discussion and Conclusions

The paper discusses our experience in improving the SafeCap tool since it was
approved by Network Rail for the use by the UK railway industry and started to
be used commercially. Before this, we have used real data of several (developed
earlier) SSI interlockings for demonstrating the tool’s usefulness to signalling
companies in the UK and to prepare for its official approval. Since the approval,
the real work on the live commercial projects with our industrial customers has
led us to conducting substantial targeted improvements of the tool.

Our strong belief is that the improvement phase is now coming to an end
as our substantial and diverse experience in verifying interlockings developed
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by different companies and design offices clearly shows that the SafeCap tool is
sufficiently flexible and scalable.

In the course of this intensive, 3-year long period of interlocking project
verification we have also drawn several lessons about how SSI data could be
developed to make the verification process simpler and to reduce the risk of
errors. It is interesting to note here that our recommendations for achieving
these two goals are very much overlapping, and that following them will make
understanding and maintenance of the SSI code easier as well. We are now
working on summarising this experience and these recommendations.

Our ongoing and future work on SafeCap focuses on a full tool re-development
to streamline its architecture after the period of improvements and to make the
tool more extendable to other verification applications and resilient to obsoles-
cence. This future work additionally includes the following:

– the development of the safety assurance case for use of SafeCap as an alter-
native to established manual checking processes, including:
• re-development of the software for T2 qualification in accordance with

the CENELEC EN 50128 standard [2];
• ensuring traceability and independent verification of safety properties;
• bug reporting, tracking and fixing.

– the adaption of SafeCap to other technologies, including:
• development of a front end to import data in the ladder logic or structured

text formats;
• prototyping using machine readable representations of GB relay signalling

circuits, to which the existing safety properties could be applied;
• future extensions to cover ladder logic interlockings and PLCs in railway

signalling and other industries.
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Abstract. The research project KI-LOK aims to develop a certification
methodology for incorporating AI components into rail vehicles. In this
work, we study how to safely incorporate an AI for obstacle detection into
an ATO (automatic train operation) system for shunting movements. To
analyse the safety of our system we present a formal B model comprising
the steering and AI perceptions subsystems as well as the shunting yard
environment. Classical model checking is applied to ensure that the com-
plete system is safe under certain assumptions. We use SimB to simulate
various scenarios and estimate the likelihood of certain errors when the
AI makes mistakes.

Keywords: Railway System · AI · B method · Validation ·
Verification

1 Introduction and Motivation

Artificial Intelligence (AI) is increasingly being used in safety-critical application
fields, such as automotive [8,17,29], aerospace [21], and medicine. This article is
part of the KI-LOK research project1 which is working on certification strategies
for AI-based railway systems.

Formal methods are of high interest in the railway sector and are recom-
mended by the norm EN50128 for SIL3 and SIL4 systems. About 30% of the
Communication-Based Train Control (CBTC) systems worldwide contain soft-
ware developed using the B formal method. Formal methods also play a role in
safety cases and certification at the system level [4,5,25,26]. For autonomous
systems, however, classical certification approaches have reached a major obsta-
cle [6]. The challenge of certifying AI systems is the focus of many research
activities, and new standards are starting to appear [22].

1 https://ki-lok.itpower.de.
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The KI-LOK research project addresses this challenge for railway applica-
tions. The project provides a variety of measures to ensure safety, and hopefully
enable certification of fully autonomous AI-based railway systems in the future.
These measures include

1. ensuring that the AI training and validation data covers all relevant situations
while avoiding model overfitting [7] and brittleness [30]

2. performing robustness checks of the AI system, both during validation and
at runtime,

3. detecting “out-of-distribution” uses of the AI system, to detect when the AI
system is being used outside of its intended scope,

4. using certificate checking [15] for runtime verification,
5. process the AI output in the scope of a rule-based system that can detect and

correct certain errors made by the AI.

Figure 1 shows these measures in the context of one case study, an obstacle
detection system using an AI-based perception system and a rule-based steering
system.

Fig. 1. Various measures towards certification of AI-based obstacle detection

This article mainly focuses on the last two points for this case study, where
we develop a formal B model of an AI-based system which contains the steering
system and components of the perception system. The purpose of the model is to
study the impact of failures of the AI system and to establish effective counter-
measures of the steering system. We aim to achieve stronger guarantees of the
perception system by using certified control [15]. The study ensures that the
complete KI-LOK system is safe under certain assumptions about the perception
system. Simulation techniques are used to estimate the likelihood of certain
errors.
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2 Case Study: AI-Based Obstacle and Sign Detection

For this project, we consider a case study of an obstacle detection system for
locomotives during shunting movements. It came with a set of requirements and
mission orders devised by Thales (now Ground Transportation Systems).

The system includes an AI-based perception system and a deterministic steer-
ing system (see Fig. 2). The role of the perception system is to detect and classify
obstacles (persons, animals, vehicles, ...) and railway infrastructure elements.
The steering system then makes appropriate decisions about moving the loco-
motive based on that information.

Fig. 2. AI-based Obstacle Detection System

2.1 Verifying the Perception System

The verification of the perception system is crucial in ensuring the safety and reli-
ability of autonomous train systems. In our case, the following property (REC1-
5 extracted from the Thales requirements document) is relevant to the perception
system:

– REC1-5: The perception system must recognise point positioning, signal
status, derailers, wagons, and persons better than a human.

This is a challenging task. Current standardisation attempts [22] focus on
making a safety case for AI-based perception systems by showing good perfor-
mance metrics, comprehensive training data, good test coverage and robustness
against common pitfalls like overfitting. We want to explore the extent to which
more formal approaches can add value to this approach.

While there have also been considerable efforts to formally verify neural net-
works [10,12,13,16,24,27], to our knowledge, none can scale to large networks
or complex high-level properties yet.

Another formal approach to the verification of such systems is the certified
control architecture [15]. The core idea is that, in addition to its regular output,
the AI component generates a certificate that provides a case for the correctness
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of its output. This certificate can then be checked by a trusted monitor com-
ponent, that is formally verified and guarantees the safety requirements. This
makes it possible to leave the AI component unverified, while still providing
confidence in the accuracy of the result.

In its simplest form, our case study only accounts for a single camera sensor.2
In the context of modern multi-sensor perception system architectures, this may
seem limited. However, the focus of this research is not on the complexity or com-
prehensiveness of the perception system, but rather on the application of certified
control to verify the perception system’s ability to classify and detect obstacles.
In the first instance, we have also focused on the detection of shunting signs, as
opposed to geometrically more challenging obstacles like humans or animals.

While the efficacy of the certified control architecture was shown for two tasks
in [15], it is unclear if the approach can be extended to tasks such as obstacle
detection in general or shunting sign classification in particular.

In this context, we provide the following proof-of-concept approach for imple-
menting a certified controller in the perception system for sign classification.

1. For the perception system, we fine-tuned a YOLO model [23] 3, for object-
detection on a small dataset of train signs4 that contains shunting yard signs
from the case study. (Note that YOLO models are actually used in practice
in the automotive and railway industries for object detection.)

2. The YOLO model outputs the bounding box as its certificate (see Fig. 3a),
3. We then implemented a Python program that applies classical feature detec-

tion on the image inside the resulting bounding box (see Fig. 3b; the green
check mark in the bounding box in Fig. 3c shows that the certificate was
successfully checked).

Fig. 3. Yolov8 Object-Detection and Subsequent Certificate Checking via Feature
Detection

For 3) we used OpenCV [14] contour-detection [31] to find the half-circles
of Sh0 and Sh1 signs, which are shunting ground signs like in Figure 3 with
2 But we are also investigating systems with two cameras or with LiDAR sensors.
3 https://github.com/ultralytics/ultralytics.
4 https://universe.roboflow.com/kilok/sign-detection-4oqe4/dataset/2.

https://github.com/ultralytics/ultralytics
https://universe.roboflow.com/kilok/sign-detection-4oqe4/dataset/2
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different angles of half-circle (e.g. horizontal, diagonal). They represent Stop
and Go signals for the locomotive. With the contours, we then used principal
component analysis (PCA) [9] and some basic trigonometry5 to find the angles
of the semi-circles. That makes it possible to differentiate the two classes in the
image by their respective angle values, and thus validate the class assigned from
the model. If the angles do not match the assigned class or the half-circles can
not be detected, the detection is rejected. If they do match our expectations,
this provides additional confidence in the detection.

Figure 3 illustrates the process on an example from the data set. The bound-
ing box found by the YOLO model is put through the angle analysis, to verify
the detection of an Sh1 sign. Using this method, we can likely eliminate most,
if not all, false positive detections, while hopefully not decreasing the accu-
racy too much. Preliminary results on the mentioned dataset show the software
successfully eliminating all false positive detections, i.e., the certificate checker
eliminates all false sign detections of the AI. On the negative side, the certificate
checker unfortunately also flags a significant number of true positive reductions
as erroneous (17 % for Sh0 and 39 % for Sh1 signs). This is due to the small
size of many signs in the dataset, which are unrecognizable even to the human
eye. This shows the importance of image quality for this method and should be
considered in future research. But, to some extent, it is unavoidable that true
positives are flagged by a certificate checker.

In conclusion, we have presented a prototype of certificate checking. It is
promising for sign detection, but it seems unlikely we can extend this to all
classes of objects (such as persons). Also, we can check the certificates in case
a sign was detected, but currently not when no sign is detected by the AI. In
addition, there is a possibility of signs being vandalized, leading to situations
where a sign is misread or even not detected. Our solution is twofold:

1. provide a deterministic steering system which knows the location of signals,
and signs and can thus go into a safe mode when no sign is at positions which
expect one,

2. or accept that the AI can make errors and conduct a probabilistic analysis,
rather than a deductive black-and-white verification.

Note that if solution 1 is not realistic, e.g., because no topology information
is available, we can always fall back to solution 2.

In Sect. 3 we present the formal B model of the system, which enables one to
formalize and verify mitigating measures (solution 1), but also study the impact
of undetected errors of the AI to be able to conduct solution 2 (which we tackle
in Sect. 4). Therefore, we decide to use the formal B method [1] which was also
used for other railway systems [4,5,25,26]. While this work focuses mostly on
formally modelling and verifying the steering system and environment, we plan
to address direct verification of the perception system in future work.

5 https://automaticaddison.com/how-to-determine-the-orientation-of-an-object-
using-opencv/.

https://automaticaddison.com/how-to-determine-the-orientation-of-an-object-using-opencv/
https://automaticaddison.com/how-to-determine-the-orientation-of-an-object-using-opencv/
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3 B Model of Shunting

To help certification of our AI-based system, we are developing a formal system-
wide model of shunting movements and possible error sources to determine their
impact. The formal B model describes the environment, field elements, object
detection, and the deterministic processing of the output of AI within the steer-
ing system.

Usually, formal models must not contain invariant violations, otherwise,
undesired behaviour has occurred which should be avoided. Our model allows
invariant violation as the AI can identify objects incorrectly or even ignore them
which could lead to accidents. This is necessary to reason about the impact of
the AI’s wrong decisions. However, later during the validation process, we will
check that under certain circumstances these errors must not occur.

There are some similarities to the interlocking model as presented by Abrial
in Chap. 17 of [2], but our model has considerably more detail. We are modelling
the system under consideration and the environment. The machine hierarchy of
our formal model is shown in Fig. 4.

Fig. 4. Machine Hierarchy

Environment. Within Environment, we model the general properties of a track
topology. At a later refinement, those environment elements are instantiated with
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a concrete environment which must fulfil those properties. In particular, the envi-
ronment contains a train, derailers, signals, points, the track topology, and posi-
tions of objects and obstacles. Furthermore, Environment includes operations
to change the track occupancy, activate/deactivate derailers, switch signals, and
move points.

Vision contains the perception system which works in an environment. In partic-
ular, Vision contains variables and events for the recognition of signals, points,
and obstacles (within its visual range). For simplicity, those elements are always
recognised either correctly or incorrectly. For example, Vision might detect a
signal which is visible in front of the train. Its application corresponds to the
assumption that the signal sign has been correctly detected by the perception
system. Vision might also detect wrong signal signs at any position. This means
that the perception system has recognised an existing signal sign incorrectly or
one that does not exist. The design of the detection operations for other objects
and obstacles follows the same principle.

Control models decisions of a basic steering system based on the perception
system’s vision. More precisely, Control computes how far the train is allowed
to move (forwards and backwards). The allowed distance for moving forwards
and backwards is computed by respective operations, and stored by respective
variables in the model.

Rangierfahrt (shunting movement in English) models the train movement in an
environment. Therefore, operations are introduced to move the train forwards
and backwards. Rangierfahrt does not yet take any safety restrictions into
account, meaning that both operations do not use the perception system. Thus,
the train movement is only restricted by the environment physically.

Rangierfahrt_KI (KI is the German abbreviation of AI) refines Rangierfahrt
by considering the decisions of Control for movement with safety constraints.

The safety requirement to be considered here is:

– SAF1-5: When point positions, stop signals, derailers, and obstacles are
recognised correctly, the train must not enter a safety-critical state (train
derailing, train entering a blocked session, or collision with an obstacle).

We model the steering system logic to behave safely based on how the AI
recognises the environment (assuming that the detection is correct). An AI might
recognise an obstacle or decide to continue moving. However, the steering system
must not decide to continue driving when an obstacle is detected ahead in the
direction of the train’s movement. This is modelled by additional conditions for
the train’s movements: The train is only allowed to move by a distance smaller
than the maximum allowed distance given by Control. As mentioned before,
the latter depends on the recognition of the perception system. Note that we are
modelling and verifying the steering logic in terms of its perception, and not the
perception itself.
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Rangierfahrt_KI_instantiation. For the case study, we received a specific track
topology with a mission order to achieve which is as follows:

Drive from the current position on track 347 to position B on track 855.
Position B is defined as wagon C55’s position (QR code). Approach the
wagon to the clutch position. Recognise all field elements and people.
The task for the system: Recognise the described field elements (points,
derailers, brake shoes) and signals reliably.

Fig. 5. Domain-Specific VisB Visualisation

Therefore, Rangierfahrt_KI_instantiation extends Rangierfahrt_KI by
creating the concrete instantiation of the environment corresponding to the track
topology. In principle, the model is currently intended to support freely chosen
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topologies. Technically, all constants in the Environment are instantiated with
concrete values which fulfil the properties. We use VisB [33] to create a domain-
specific visualisation that corresponds to the visualisation in the case study doc-
ument which is shown in Fig. 5. VisB is a visualisation component of ProB [20].

4 Simulation with SimB

SimB [32] is a simulation tool which is built on top of ProB. Using SimB, a
modeller can formulate simulations with probabilistic and timing behaviour on
a formal model, trying to capture realistic scenarios precisely. In particular, we
use SimB to simulate how an AI for the train could behave.

We simulate KI-LOK by moving the train and recognizing signals and obsta-
cles. Here, we assign probabilities for recognizing an obstacle (in)correctly and
ignoring them, taking the distance to the obstacle into account. More precisely,
the probabilities for correct detection increase when the train approaches the
obstacle, while those for wrong detection and ignoring decrease. We also assume
that the AI would rather ignore the signal/obstacle than recognise it incorrectly.
An overview of all probabilities is shown in Table 1.

Table 1. Overview of all probabilities for AI’s perception system with distances to field
element or obstacle, CD = Correct Detection, WD = Wrong Detection, I = Ignore

Signal Distance 0-10 11-20 21-30 31-40 41-50 51-60 61-70 71-80 81-90 91-100 101-110
CD 99.9% 99.9% 64.9% 49.9% 39.9% 29.9% 19.9% 14.9% 9.9% 4.9% 0.0%
WD 0.01% 0.01% 3.51% 5.01% 6.01% 7.01% 8.01% 8.51% 9.01% 9.51% 0.0%
I 0.09% 0.09% 31.59% 45.09% 54.09% 63.09% 72.09% 76.59% 81.09% 85.59% 100.00%

Point Positioning Distance 0-10 11-20 21-30 31-40 41-50 51-60 61-70 71-80 81-90 91-100 101-110
CD 99.9% 99.9% 54.9% 34.9% 19.9% 9.9% 4.9% 0.0% 0.0% 0.0% 0.0%
WD 0.01% 0.01% 4.51% 6.51% 8.01% 9.01% 9.41% 0.0% 0.0% 0.0% 0.0%
I 0.09% 0.09% 40.59% 58.59% 72.09% 81.09% 85.59% 100.0% 100.0% 100.0% 100.0%

Derailer Distance 0-10 11-20 21-30 31-40 41-50 51-60 61-70 71-80 81-90 91-100 101-110
CD 99.9% 99.9% 64.9% 49.9% 39.9% 29.9% 19.9% 14.9% 9.9% 4.9% 0.0%
WD 0.01% 0.01% 3.51% 5.01% 6.01% 7.01% 8.01% 8.51% 9.01% 9.51% 0.0%
I 0.09% 0.09% 31.59% 45.09% 54.09% 63.09% 72.09% 76.59% 81.09% 85.59% 100.00%

Wagon Distance 0-10 11-20 21-30 31-40 41-50 51-60 61-70 71-80 81-90 91-100 101-110
CD 99.9% 99.9% 64.9% 49.9% 39.9% 29.9% 24.9% 19.9% 14.9% 9.9% 4.9%
WD - - - - - - - - - - -
I 0.1% 0.1% 35.1% 50.1% 60.1% 70.1% 75.1% 80.1% 85.1% 90.1% 95.1%

Person Distance 0-10 11-20 21-30 31-40 41-50 51-60 61-70 71-80 81-90 91-100 101-110
CD 99.9% 99.9% 64.9% 49.9% 39.9% 29.9% 24.9% 19.9% 14.9% 9.9% 4.9%
WD - - - - - - - - - - -
I 0.1% 0.1% 35.1% 50.1% 60.1% 70.1% 75.1% 80.1% 85.1% 90.1% 95.1%

Note that the values for the probabilities are artificial. Although we can
provide probabilities for possible AI behaviour, we do not know whether those
values are realistic/precise wrt. to the actual AI behaviour.6 Ideally, we would
receive these values from the evaluation of the AI. However, we have decided
to use those artificial values to receive an impression regarding the probability
6 We hope to obtain such precise figures from industrial partners in our project.
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of a safety-critical situation. So, the simulated scenarios can be used to gain
knowledge about possible behaviours, and to communicate with domain experts.

Fig. 6. Example: Simulation in SimB

Figure 6 shows parts from a simulation in SimB. Here, one can see that the
train approaches the signal and the point position at 347a. In this simulation,
the AI recognises the signal correctly and continues moving forwards.

In Sect. 6, we will also present a Monte Carlo simulation with hypothesis
testing and estimation of probability based on the SimB simulation. In par-
ticular, we will compute the probability of accidents when KI-LOK’s detection
fails. There are two (probabilistic) requirements to validate in this context: the
first one is about the probability of a safe drive along the complete track (see
PROP1), and the second one is about the probability of achieving the Mission
Order (see PROP2).

– PROP1: When driving along the route from 347a to 855b, safety-critical
situations (train derailing, train entering a blocked section, collision with
wagon or person) must occur less frequently with KI-LOK than with humans7.

– PROP2: The probability of achieving the mission order by KI-LOK must be
as good as humans8.

5 Verification

The complete model has various operations that lead to a significant blow-up of
the state space. For example, in the current model, there are up to 200 possibili-
ties to move a train in any direction from each position as the distance is provided
as a parameter. Furthermore, the brake shoes can be placed anywhere on the
track which also enlarges the state space. For this reason, a complete verification
of the model with model checking is infeasible. To address this issue, we explored
7 For now, we define that the probability of a safe drive from 347a to 855b must be ≥

99.9%.
8 For now, we define that the probability of achieving the mission order must be ≥

99.9%.
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the state space for some reduced models with additional constraints. These mod-
els can be used to verify certain properties under reasonable constraints, where
we focused on obstacle detection and signal aspects.

The reduced models9 exclude the backward movement of the train and specify
a fixed distance for the forward movement. Fixing the distance of movement
corresponds to travelling at a constant speed in a fixed direction of travel. To
focus on the detection of obstacles and signal aspects, we also excluded border
signs and brake shoes to reduce the state space. It is also assumed that the
positions of signals and points are known to the train.

The first model (CD) is restricted to the correct detection of signal aspects
and point positions, provided that one of these objects is detected. Except for
the placement of brake shoes, the modelling of the environmental behaviour is
the same as that of the complete model, which includes the activation of derailers
and the switching of points. Note that “correct” only refers to the correctness of
the detected signal aspect or point position and does not guarantee the detection
of all signals and points. This means that the train could pass a closed signal
because it did not recognise it at all. The assumption that all signals are correctly
recognised before passing them can be implemented using temporal properties
as described in Sect. 6.

The CD model is then extended to detect wrong signal aspects (+WS), leaving
the other properties unchanged. In the next step, the wrong detection of point
positions (+WP) is added. There are two cases to be distinguished here. The +WP
model only considers the detected point positions to determine if they cannot be
passed over because the point is not in an end position. As a further extension,
the train in the +WP_DT model also updates its detected track based on the
incorrectly detected switch position.

Table 2. Model Checking Results for Selected Reduced Models

Model Operations Variables/
Constants States Transitions Time

(min)
Memory

(GB)
CD 13 34 269 153 2 240 046 6.8 1.3
+ WS 14 34 480 409 5 403 158 12.3 2.6
+ WP 15 34 807 001 10 733 462 23.4 4.8
+ WP_DT 15 34 >16 785 959 >185 250 252 >530 >80
complete 22 46 n/a n/a n/a n/a

We used the ProB model checker10 [19] in combination with opera-
tion caching and state compression [18] (-p COMPRESSION true -p OPERATION

9 The models can be found at https://github.com/hhu-stups/kilok_shunting_model/
tree/14c2ecdb6e32ba593cac64e5868c94773139b391.

10 Version: 1.12.0-final (fef4b935b59d76e353ab67230f6206b15f903f4b, 05.04.2023).

https://github.com/hhu-stups/kilok_shunting_model/tree/14c2ecdb6e32ba593cac64e5868c94773139b391
https://github.com/hhu-stups/kilok_shunting_model/tree/14c2ecdb6e32ba593cac64e5868c94773139b391


A Formal Model of Train Control with AI-Based Obstacle Detection 139

_REUSE full). All benchmarks are executed on the high-performance cluster
“HILBERT” at the University of Düsseldorf. The results are shown in Table 2.

The first three models (CD, WS, WP) can be model checked with reasonable
performance (time and memory). We stopped model checking WP_DT after it
exceeded a memory limit of 80 GB when about three-quarters of the current
queue had been explored. This shows that the slight changes from WP to WP_DT
lead to a considerable increase in the state space, which also indicates that the
state space of the complete model must be even larger.

These experiments have shown that model checking is feasible for some
reduced models with reasonable restrictions, so that further properties such as
LTL formulas can be checked on these models, which is described in the following
Sect. 6. Since the capabilities of the reduced models are limited, the validation
of the entire model will focus on simulations using SimB as described in Sects. 4
and 6.

In the future, we plan to invest more effort to make the B model easier to
verify. Here, we would like to evaluate whether abstraction techniques, e.g., as
presented by Stock et al. [28] can help us to tackle the state space explosion
problem. Currently, the model is not designed for mathematical proofs; but in
the future, we aim to rewrite/refactor the model to make provers such as AtelierB
[3] feasible. This could also enable verifying the model’s behaviour across various
topologies, and not only a specific case study.

6 Validation

This section describes the validation of the requirements for the AI-based steering
system. (The requirements and the mission orders were set out by Thales for
the case study.) Here, we make use of various validation techniques including
animation/trace replay, (LTL) model checking and simulation.

Scenario: Mission Order. For easier reasoning about the environment, the steer-
ing system and the perception system, we have split the Mission Order into a
high-level scenario with six steps as shown below:

– Mission Order (Scenario):
1. Drive from the current position on track 347a to the stop signal and point
2. Recognise stop signal and point position
3. Enter 855a and drive to the derailer
4. Recognise derailer
5. Enter 855b and approach the wagon to the clutch position
6. Recognise the person and the waggon

Steps (2), (4) and (6) must recognise field elements or people correctly, oth-
erwise, the Mission Order might not be achieved.
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However, the mission order might not be accomplished if steps (2), (4), and
(6) fail. To validate the mission order, we animated 24 traces11 with different
variations of steps (2), (4), and (6).

The correct execution of the mission order (as desired in the description)
is validated by a single trace. The other 23 traces represent variations of steps
(2), (4), and (6), and cover scenarios where signals and objects may be ignored
or recognised incorrectly. In particular, these traces were used to test potential
consequences in safety-critical or dangerous situations that could arise:

– Neither wagon nor person recognised correctly — leads to collision with both
– Person recognised correctly, but not wagon — leads to collision with wagon
– Active derailer not recognised correctly — leads to the train entering a section

where collision is possible
– Neither stop signal nor moving point position recognised correctly — leads

to the train derailing
– Point position recognised correctly, but not stop signal — leads to the train

entering a section where collision is possible

If the AI detects the stop signal but not the point position, then there is no
dangerous situation. This is caused by the fact that when the point is moving,
then the stop signal is always active.

Temporal Properties: SAF1-SAF5. As analysed in Sect. 5, model checking is
feasible for application on reduced models, but not on the complete model due
to the state space explosion problem. On the reduced models, we were able to
check the safety properties SAF1-SAF5 with LTL model checking. Since they
assume correct detection, it follows that the train must not derail or collide with
other objects. One of the temporal properties we checked assumes that whenever
the train moves, the control unit must have updated its decision for the allowed
movement range, and all signals, points, and objects must have been correctly
detected before. The high-level formulation of the LTL formula is as follows:

G({“train moves forwards” ⇒
Y (“control unit updates decision to move train forwards” ∧

“train detected all signals correctly” ∧
“train detected points correctly” ∧
“train detected obstacles correctly” ∧
“train detected track correctly”})

⇒ G({“train does not reach safety-critical situation”})

The formula could be successfully verified for the first three models in Table 2.
Since the assumptions of this formula are very strict and probably not realizable
by an AI system, we investigate other formulas with less stringent assumptions.

11 Some of the traces can be accessed as an interactive HTML document at
https://stups.hhu-hosting.de/models/kilok/HTML_Traces.

https://stups.hhu-hosting.de/models/kilok/HTML_Traces
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Probabilistic Properties: PROP1, PROP2. Based on the simulation in Sect. 4,
we compute the probability of a safe drive along the complete route. Referring to
PROP1, it is desired that the safety-critical situation occurs less often than with
a human driver. For now, we define the occurrence of an accident at 1 out of 1000
runs. More precisely, we apply a hypothesis test to check that the probability of
a safe drive is ≥ 99.9% with a significance level of 0.1%. In particular, we define
the end condition of the simulation as follows: the train has either reached the
end of the route, or a safety-critical has occurred (see ending). Furthermore, it
is desired that a safety-critical situation never occurs so that a drive is safe (see
prop). As a result, the formulated hypothesis test is accepted.

SIM(ending: “train reaches the end of 855b” ∨
“train reaches the end of 347c” ∨
“train reaches a safety-critical situation”

prop: “train never reaches a safety-critical situation”
check: HYPOTHESIS
procedure: LEFT_TAILED
probability: 0.999
α: 0.001)

To check PROP2, we formulate another hypothesis test with the same ending
condition for the simulation. Here, we check that the Mission Order is achieved
with a probability of ≥ 99.9%. This hypothesis is accepted as well.

SIM(ending: “train reaches the end of 855b” ∨
“train reaches the end of 347c” ∨
“train reaches a safety-critical situation”

prop: “train reaches the end of 855b safely”
check: HYPOTHESIS
procedure: LEFT_TAILED
probability: 0.999
α: 0.001)

7 More Related Work, Conclusion, and Future Work

In the following, we compare this work with other related work including stan-
dardisation approaches, the verification of AI systems, and other railway systems.

Standardisation. Peleska et al. propose a method of making a safety case accord-
ing to the UL4600 standard [22]. It relies on the statistical independence of
different input channels to make a case for the reliability of identified hazard
mitigation pipelines.

In the future, the project could attempt to apply this procedure to the case
study. This would require the implementation of a full multi-sensor perception
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system with a multi-channel plus voting design and subsequent training and
evaluation of AI models on a multi-channel dataset like the Open Sensor Data
for Rail12.

Formal Verification of AI Systems. Ensuring the safety of AI systems with
machine learning is challenging. Several approaches have been presented to for-
mally verify AI systems with neural networks [10,12,13,16,24,27], but to our
knowledge, they do not scale to the kind of properties and kind of neural net-
work model we require here.

Railway Systems. Formal methods, especially the B method have been used to
model several railway systems such as Abrial’s interlocking system [2], CBTC
systems [4,5,25,26], and the Hybrid Level 3 system [11]. Similar to our approach,
the main goal is to formally describe all behaviours in the railway system, and
to verify/validate certain properties. However, we also incorporate the AI per-
ceptions system which relies on the visual recognition of objects and elements
to make decisions. Here, we checked that all safety properties are fulfilled under
the condition of correct recognition. Additionally, we also evaluated the impact
when the AI makes mistakes.

Conclusion. In this work, we aim to study how to certify railway systems using
AI components. We illustrated this in a case study ensuring the safety of an AI
which controls train movements in a shunting yard.

Therefore, we first implemented a prototype for a certificate checker of the
perception system. Although certificate checking seems promising for signs, it
seems unlikely that it can be used to classify all classes of objects. In our pre-
liminary results, we were able to reduce most false positives detections at the
cost of reduced true positives. On the other hand, false negatives can be tackled
if the positions of signs are known. In particular, KI-LOK activates safe mode
when no signs are detected where one is expected.

Using the formal B method, we encode the shunting movements and possible
behaviours of the AI. Based on the model, we can check certain safety require-
ments provided the AI’s detection is done correctly. Due to the complexity of the
complete model, it was necessary to reduce/abstract some details in the model
to make model checking feasible in a reasonable time. Applying techniques like
trace replay and simulation, we can study the impact of certain errors of the
AI. In particular, we utilize SimB to estimate the likelihood of accidents. Still,
more work is required so that simulation captures the AI’s trained behaviour
with precision.

Future Work. Although we have made progress towards certification, our work
is not yet ready for certification. To achieve this goal, it is necessary to further
verify the system to ensure stronger safety guarantees. This may also require
rewriting the model to make it feasible for mathematical proof. In the end, we

12 https://data.fid-move.de/dataset/osdar23.
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hope that we can obtain a proof that the system is safe under certain conditions,
e.g., when the location of signals and points is known and when some of the AI’s
perception decisions can be cross-checked by the certifying control technique.

Runtime monitoring and verification approaches, e.g., safety shielding is also
an important aspect in the future. Furthermore, one could implement a virtual
environment for KI-LOK to link the simulation with the AI more actively, sim-
ilar to [17] for autonomous cars. This could make it possible for the AI to run
simulations directly instead of trying to capture the AI’s behaviour in a SimB
simulation. Finally, the resulting traces could then still be validated by SimB’s
validation techniques.
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Abstract. Model checking techniques have often been applied to the
verification of railway interlocking systems. However, these techniques
may fail to scale to interlockings controlling large railway networks, com-
posed by hundreds of controlled entities, due to the state space explosion
problem. We have previously proposed a compositional method to reduce
the size of networks to be model checked: the idea is to divide the net-
work of the system to be verified into two sub-networks and then model
check the model instances for these sub-networks instead of that for the
full network. If given well-formedness conditions are satisfied by the net-
work and the kind of division performed, it is proved that model checking
safety properties of all such sub-networks guarantees safety properties of
the full network. In this paper we observe that such a network division
can be repeated, so that in the end, the full network has been divided
into a number of sub-networks of minimal size, each being an instance
of one of a limited set of “elementary networks”, for which safety proofs
have easily been given by model checking once for all. The paper defines
a division algorithm, and shows how, applying it to some examples of
different complexity, a network can be automatically decomposed into a
set of elementary networks, hence proving its safety. The execution time
for such a verification turns out to be a very small fraction of the time
needed for a model checker to verify safety of the full network.

Keywords: Formal Methods · Model Checking · Compositional
Verification · Interlocking Systems

1 Introduction

Formal methods have successfully been applied to development and verification
of railway systems [3,5,6]. In particular, model checking techniques have often
been applied to the verification of railway interlocking systems. However, model
checking is subject to state space explosion, which limits scalability of the app-
roach, so that automatic verification of interlocking systems for large networks
is demanding in terms of computing resources, and may even fail [4].
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Abstraction techniques have typically been adopted to limit state space explo-
sion in model checking. Abstraction should preserve the desired properties and
the adopted abstraction technique should be defined specifically for the kind of
system and properties under examination. For interlocking systems, a convenient
abstraction can be based on the locality principle [9,21]: properties concerning
the safe allocation of a route to a train are typically not influenced by other
train movements over networks elements that are distant from, and not interfer-
ing with, the considered route. Locality of a safety property can be used to limit
the state space by abstracting away such “distant movements”.

In our previous work, the locality principle is at the base of a compositional
approach to the verification of interlockings for large networks: the network is
divided into two (or more) sub-networks, to which model checking is applied,
with a substantial reduction of state space explosion [2,8,13,14]. The soundness
result for compositional safety verification given in [8] guarantees that, when
properly cutting a network, proving safety for the sub-networks suffices to prove
safety for the full network. In this way, the task of proving safety for a large
network can be reduced to the task of verifying safety for sub-networks of a size
manageable by the model checker.

We have based our compositional approach on the RobustRailS verification
framework [20], that exploits the powerful SMT-based RT-Tester bounded model
checker1, although it can be adapted to other verification frameworks: the idea
of compositional verification is also shared by the approach described in [10–
12]. The two approaches are compared in [1], where it turns out that the latter
is grounded on pragmatic domain-related criteria for the definition of how and
where to perform the cut into two sub-networks.

The discussion about criteria for localisation of cuts has actually triggered
the contribution of this paper, in which a novel iterative decomposition strategy
is proposed, to achieve a fine granularity decomposition of a network into a num-
ber of small sub-networks, that under certain conditions belong to a library of
pre-verified elementary networks. The soundness result for compositional safety
verification guarantees that safety for the full network is given by the pre-verified
safety of sub-networks. Therefore, to verify a network, it is in principle no more
needed to run a model checker, independently of the size of the network, if spe-
cific network conditions are met. To the best of our knowledge, we are the first
to propose and explore this idea.

The paper formally specifies and implements a division algorithm, and
reports on some experiments in which the executable specification as well as
the implementation have been applied to some networks of different complexity.
In all these experiments, the considered networks were automatically divided
into a set of elementary sub-networks, hence proving their safety. In each experi-
ment, the execution time for the algorithm turned out to be a very small fraction
of the time needed for a model checker to verify safety of the full network.

After a short description of the RobustRailS verification method in Sect. 2
and a summary of the compositional verification method in Sect. 3, Sect. 4

1 https://www.verified.de/products/rt-tester/.
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introduces the possible types of elementary networks, and describes the pro-
posed strategy for performing decomposition into elementary networks. The
strategy had been preliminarily sketched in [7]: we now fully formalise it using
RSL in Sect. 5, and the executable RSL specification of the division algorithm
and its C++ implementation are then applied to some case studies, for which
the gains in verification time are shown (Sect. 6). Section 7 draws conclusions
and states ideas for future work.

2 The RobustRailS Verification Method and Tools

In the RobustRailS research project2 that was accompanying the Danish re-
signalling programme on a scientific level in 2012–2017, a formal method with
tools support for automated, formal verification of railway interlocking systems
was developed [17–20].

About the Considered Interlocking Systems. An interlocking system is a
signalling system component that is responsible for safe routing of trains through
(a fraction of) a railway network under its control.

In Fig. 1 an example of a railway network layout for a small station is given.
As it can be seen, it consists of (1) train detection sections that are either linear
sections (like t10) or switchable points (like t11) having a stem side and two
branching sides (e.g. t11 has its stem next to t10 and its branches next to t20
and t12, respectively); (2) markerboards3 (like mb10) placed at the ends of linear
sections and only visible in one direction (e.g. mb10 is visible in direction UP).
As general rules for the networks considered in this paper, (1) there is at most
one markerboard in each end of a linear section, that can only be seen when
leaving the section; (2) at the borders of a network, there are always two linear
sections (like b10 and t10) with a signal configuration having an entry signal on
the border section and an exit signal on the section next to the border section.
Furthermore, networks are assumed to be loop-free4.

About the Tool. The RobustRailS tool, RR-T, can be used to verify that an
interlocking system instance controlling a certain railway network is safe by giv-
ing the tool the following as input: (1) a generic, formal, behavioural model of the
interlocking system and generic safety properties, as well as (2) a specification of
the network under its control5. The tool then checks that the input is wellformed,
2 http://robustrails.man.dtu.dk.
3 We are considering modern ERTMS level 2 based interlocking systems for which

there are no physical signals. They are replaced by markerboards, and in the control
system there are virtual signals associated with the markerboards. Throughout the
paper we use the term signal as a synonym for markerboard.

4 A network is loop-free, if there are no physically possible path through the network
containing the same section more than once.

5 Throughout this paper, as generic model and safety properties, we are using those
from [20]. The properties are the no collision and no derailment properties, shared by
the vast literature on interlocking verification.

http://robustrails.man.dtu.dk
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Fig. 1. A railway network layout example. From [18].

it instantiates the generic model and generic safety properties with the network
description, and finally it verifies that the instantiated model satisfies the instan-
tiated safety properties, by means of a bounded model checker performing a k-
induction proof.

3 A Method for Compositional Verification

To introduce the compositional method, we first need to define what is a cut of
a network, and how the sub-networks should be generated by the cut.

3.1 Cut Specifications

A single cut is a cut that can be performed between any two neighbouring, non-
border sections t1 and t2 in a network N . An example of a single cut is shown in
Fig. 2. The specification of that single cut is the pair (t1, t2). To divide a network
into two parts, it is not always enough to perform a single cut, but a cluster cut
consisting of several single cuts may be needed. An example of a cluster cut is
shown in Fig. 3. The specification of a cluster cut is the set of specifications of
each of its single cuts. A cut is legal, if it divides the network into exactly two

Fig. 2. An example of a single cut. From [8].

Fig. 3. An example of a cluster cut. From [8].
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parts, no route is cut by more than one single cut, and no flank/front protecting
elements6 are separated by the cut from the sections they protect. In this paper
we assume that flank/front protection is not adopted.

3.2 Decomposing a Network According to a Cut Specification

Fig. 4. An example of a decomposition of a network into two networks. From
[8].

Given a net N and a legal cut specification, the network can be decomposed
into two networks as follows:

– if a single cut is between linear sections t1 and t2, first divide the network N
between t1 and t2, obtaining two sub-networks N−1 and N−2, and then add
to N−1 and N−2 at the respective cut a border section, and also an entry and
an exit signal at that border, if there were not already signals placed around
the cut. By doing so, two well-formed networks are obtained: N1 and N2.
Figure 4 shows how a network is decomposed into two networks by a single
cut (t1, t2). It can be seen how N1 is obtained from the sub-network N−1

on the left-hand side of the cut by adding a border section b1 and border
signals sentry1 and sexit1 . N2 is obtained in a similar way. When it is clear
from the context, sometimes we also call the resulting networks N1 and N2

sub-networks;
– if a single cut is between a linear section t1 and a point p, the decomposition

is treated as if there was an additional linear section t2 between t1 and p, and
the cut specification was (t1, t2);

6 The notion of flank protection is explained in the end of Sect. 4.2.
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– if a single cut is between two points p1 and p2, the decomposition is treated
as if there were two additional linear sections t1 and t2 between p1 and p2,
and the cut specification was (t1, t2).

– if the cut is a cluster cut, the above rules are simultaneously applied to each
of its single cuts.

3.3 Method Steps

Using a legal cut allows to perform compositional verification in these steps:

1. Decompose a network N according to a legal cut specification, achieving two
networks N1 and N2.

2. For i = 1, 2, apply the RobustRailS tool (RR-T) to Ni to instantiate the
chosen generic model and generic safety properties and verify that the instan-
tiated model satisfies the instantiated safety properties.

In [8] it is proved that this method is sound and complete. Soundness means,
that in order to prove safety of the model instance for the whole network, it
is sufficient to verify safety for the model instances for the two sub-networks
formed by a legal cut. Completeness means, that if the safety proof for one of
the sub-networks fails, then one can conclude that safety also fails for the full
network.

4 A Decomposition Strategy

Using the presented compositional verification method leaves the question: which
cuts should be made in order to decompose a network into small networks that
are fast to verify? In this section we will exploit the idea of providing a library
of pre-verified, elementary networks and a strategy for dividing a given network
into sub-networks of which as many as possible are elementary.

4.1 Elementary Networks

As elementary networks we allow the network patterns shown in Fig. 5: (a)–(b)
an elementary linear network, that is, a sequence of linear sections having only
the required signals at the two borders; (c)–(d) an elementary point network,
that is, one point surrounded by at least two linear sections on each of its three
sides, the required signals at the three borders and optionally zero, one, two or
three signals directly facing the point. All patterns admit an unbounded number
of linear elements at specific positions. In (c) there is only one linear section
between the point and each of the three border sections, while in (d), there are
two (or more) linear sections between the point and each of the three border
sections.
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Fig. 5. Patterns for elementary networks.

Model instances of the networks of Fig. 5 have been model checked to be
safe, for all the admitted combinations of presence of markerboards, but without
the presence of the admitted extra linear sections. Moreover, a result from [8]
allows us to add an unbounded number of linear sections at the indicated specific
positions without impacting safety. Hence, we can conclude that model instances
for all elementary networks are safe.

4.2 Decomposing a Network

Given a network, now the idea is to search for places to make legal cuts, one by
one, such that the network can be divided into parts that are either elementary
networks or non-decomposable networks (that is, non-elementary networks that
cannot be decomposed by any cut(s) without breaking the rules for legal cuts). In
the ideal case that the decomposition leads to networks that are all elementary,
no additional model checking is needed for verifying the safety of the whole
network.

As an example, consider the network shown in Fig. 6. By making the three
cuts (two single cuts (083, PM02U) and (PM02U,PM03U) and the cluster cut
{(802, PM04U), (801, PM04U)}) shown by green lines, one by one, one achieves
the four elementary networks N1

1 , N2
1 , N3

1 , and N3
2 shown in Fig. 7.
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Fig. 6. Cuts shown on a network (LVR1).

Fig. 7. Decomposition of the LVR1 network in three steps according to the three
cuts shown in Fig. 6. The four resulting green sub-networks N1

1 , N2
1 , N3

1 , and
N3

2 are elementary.
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In practice, a possible process of finding such cuts for a loop-free network N
is as follows, provided that there are no flank/front protecting elements:

1. Start searching from the neighbour (linear section) l of some border section
b of N . The search direction is from l towards the next adjacent element in
the direction opposite to b.

2. Follow the sections from l one by one as long as they are linear and do not
have any signals attached until one of the following happens:
(a) If a linear section next to a border is reached, no cut should be made, as

the considered network is an elementary linear network.
(b) If two consecutive, linear sections l1 and l2 are found, and at least one

of them has a signal facing the other, then a decomposition using the
cut (l1, l2) should be made. As a consequence, the generated sub-network
containing l1 will by construction be an elementary linear network. The
search for further cuts should then continue from l2 in the other sub-
network.

(c) If a point p is found, then we should continue to search for cuts on the two
other sides of p. This search depends on from which side p was found: the
stem or one of the branching sides. In both cases the search also depends
on whether the two other sides are connected or not7.
i. If coming from the stem side of p, and the two other sides are not

connected, then we should search for cuts in each of the two other
sides. The search here is similar to the search starting from a border,
except that if a second point is found, a single cut must be made just
before that point. The two searches may hence lead to totally zero,
one or two single cuts, dividing the network into (1) an elementary
point network containing p and (2) zero, one or two additional sub-
networks in which a search for cuts must be performed. For instance,
when searching for a cut in network N1

2 in Fig. 7(a), starting from
PM02U_ex_stem, a single cut, cut2 = (PM02U,PM03U), will be
found in the lower branch, while no cuts are found in the upper branch
(as a border is met before any further points or non-border signals),
so it results in two sub-networks.

ii. If coming from the stem, and the two branching sides are connected,
then a similar search is made in each of the branches. In this case
two single cuts (one in each branch) will be found and these must be
combined in a cluster cut (in order to divide the network into two
parts) leading to an elementary point network containing p and one
additional sub-network to which the search for cuts must be recur-
sively applied. That is e.g. the case when searching for a cut (cut3 )
in network N2

2 in Fig. 7(b), starting from PM03U_ex_stem.
iii. If coming from a branching side of p, and the stem and the other

branching side are not connected, searches for cuts in the other branch
and on the stem side must be performed in a similar way to case i

7 By connected we mean that by navigating the graph of the not yet visited part of
the network starting from the two sides we eventually reach a common point.
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above. That happens e.g. when searching for the first cut in Fig. 6
starting from linear section 533.

iv. If coming from a branching side of p, and the stem and the other
branching side are connected, the search to be performed is similar
to case ii, except that in some cases it is not possible to find a legal
cluster cut: that happens if a potential cluster cut divides a route into
three parts8, as shown in Fig. 8, where the cluster cut shown by a red,
dotted line is found when searching from L1 on the upper branching
side of point P1. In such a case we say that N is unbreakable from
the border b from where the search started, and we should then start
a search from another border to see if a cut can be found from there.
If N is unbreakable from all borders, it is non-decomposable. It is
our conjecture that it is always possible to find a border from which
it is possible to find a legal cluster cut through the connected sub-
component, provided that the network is loop-free. For instance, in
Fig. 8, the legal cluster cut {(P2, P1), (L24, P4)} shown by a dashed,
green line can be found when searching from L2. Figure 9 gives an
example of a network that cannot be decomposed into elementary
networks as the network is not loop-free.

Fig. 8. The cluster cut {(P1, P2), (L13, P3)} shown by a red, dotted line is
illegal as it divides the route shown as a blue, solid arrow in three parts. The
cluster cut {(P2, P1), (L24, P4)} shown by a green, dashed line is legal. (Color
figure online)

In railway interlocking systems, specific additional mechanisms may be
included to enforce safety also in the case in which trains do not strictly respect
signals, due to a driver’s misbehaviour or accidental inability to brake. In the
Flank Protection mechanism, points and signals not belonging to the route are
properly set in order to avoid hostile train movements into the route at an inci-
dent point. In the example of Fig. 10 locking of route r requires the point t20
to be in the straight position in order to protect the flank of route r by a train
accidentally missing the closed mb20 signal. If both point t20 and route r lie in
the same sub-network when a cut is operated, the extra condition on the point

8 Note that when coming from the stem, we do not have such a problem, as a route
cannot pass through a point via its two branches.
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Fig. 9. An example of a non-decomposable network containing a loop.

position has no impact on compositionality: but this is not the case for the drawn
cut, which separates the protecting and the protected points. As discussed in [8],
in this case compositional verification results do not fully hold, so we consider
such a cut as not legal: both elements should instead be in the same sub-network,
which is therefore not elementary, since it contains two points. In the presen-
tation of our approach, we have assumed that there is no flank protection. If
flank protection was adopted, legal cuts would not be allowed to separate the
protecting and the protected points. However, then we would no longer be able
to decompose a loop-free network into networks that are all elementary. This
also holds for similar protection mechanisms like front protection that we do not
consider here.

Fig. 10. Cut through a flank protection.

5 Formalisation

The decomposing strategy informally explained in Sect. 4.2 has been for-
malised as a collection of functions in the formal RAISE Specification Language
(RSL) [16]. Below we show sketches of selected parts of that specification.

The specification consists of definitions of the functions and needed data
types. There are e.g. data types for representing entities like network layouts
and cluster cuts:
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1 type
2 NetworkLayout = ..., −− network layouts composed of sections and markerboards
3 SecId = Text, −− unique ids for network sections
4 MarkerboardId = Text, −− unique ids for markerboards
5 ClusterCut = SingleCut-set, −− a cluster cut is a set of single cuts
6 SingleCut = SecId × SecId, −− a single cut is a pair of SecIds
7 Direction = UP | DOWN, −− two possible search directions
8 ...

Fig. 11. Specification of the decompose function.

The decomposer has been specified as a recursive function named decompose
listed in Fig. 11. This function takes as input a network N , a border section b in N
(from where a search for cuts should start), and a subset bs of the border sections
in N , b /∈ bs. The set bs is the (current) subset of border sections of N from
where there has not yet been made a search. In the first invocation of decompose,
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bs should be the set of all borders, except b. The function returns the set of
elementary sub-networks and the set of non-decomposable sub-networks that
N can be divided into by following the stepwise process described in Sect. 4.2.
Below we will explain the chosen division algorithm for that.

The overall idea of the division algorithm is as follows: in each recursive call of
decompose, the current network N is divided into two (or three) sub-networks,
if possible, of which one is elementary, and then it makes recursive call(s) of
decompose on the one or two other obtained sub-networks. It will not divide N ,
if N is already elementary or N is unbreakable from b. In the latter case it will
make a recursive call decompose(N, b2, bs \ {b2}), where it starts from another
border b2 ∈ bs, if bs is not empty.

The decompose function uses an auxiliary function named find_cuts
(listed in Fig. 12 and explained further below) to find the cluster cut(s) that
decompose should use (in the current iteration) for cutting the network into some
sub-networks. Furthermore, it uses another auxiliary function divide(N, ccut)
(see [15], where it is named decompose) to divide a network N into two sub-
networks N1 and N2, according to a found cluster cut ccut. This division is done
as informally explained in Sect. 3.2.

When decompose(N, b, bs) is invoked, (in line 4) it invokes find_cuts(N, b) to
find a set cutset of next cluster cuts that should be used for cutting the network
into sub-networks. Then, depending on the returned set (which by construction
will contain zero, one, or two cluster cuts), it will take various actions:

(1) If cutset contains one cluster cut which is empty (line 5), it is because N is
elementary and the function will (in line 6) return N as the only elementary
network and it will return no non-decomposable networks.

(2) If cutset is empty (line 7), it is because N is unbreakable from b. In that
case, (in line 11) a new search (made by a recursive call of decompose) is
started from one of the other borders b2 of N , from where there has not yet
been made a search, and b2 is removed from bs. If there was no such other
border b2, it means that N was unbreakable from any border of N , and the
function will (in line 9) return N as the only non-decomposable network
and it will return no elementary networks.

(3) If cutset contains one non-empty cluster cut ccut, it will use divide(N, ccut)
(in line 18) to divide N into two networks N1 and N2, where N1 will be
elementary due to the definition of findcuts and divide. Then, (in line 23),
it will continue making a recursive call of decompose on N2 from one of
N2’s added borders b2, obtaining a set of elementary networks e_ns and
set of non-decomposable networks u_ns. Finally (in line 25), it will add N1
to e_ns.

(4) In a similar way, if cutset contains two cluster cuts (line 26), it will make
two consecutive calls of divide using these cluster cuts to divide N into
three networks N1, N2, and N3, of which N1 will, by construction, be
elementary. Then it will make two recursive calls of decompose on N2 and
N3, respectively, obtaining two sets of elementary networks, e_ns2 and
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e_ns3, and two sets of non-decomposable networks, u_ns2 and u_ns3.
Finally, it will return ({N1} ∪ e_ns2 ∪ e_ns3, u_ns2 ∪ u_ns3).

The termination of decompose is guaranteed by the fact that each time it is
invoked in cases (3) and (4), it is called with smaller networks, and in case (2)
the bs parameter becomes smaller.

Fig. 12. Specification of the find_cuts function.

find_cuts(N, b) (listed in Fig. 12) takes as input a network N and a border
section b of N (from where the search should start) and searches for cuts that
can be used to divide the network such that one of the resulting sub-networks
is an elementary network containing b. This search is done by invoking (in line
7) another auxiliary function find_cuts_from_linear(l, dir,N) (also listed in
Fig. 12) to search for cuts from the linear section l next to b in the search direction
dir going from b towards l. This formalises step 1 in Sect. 4.2.

find_cuts_from_linear(l, dir,N) (listed in Fig. 12) takes as input a net-
work N , a linear section l of N (from where the search should start), and a
search direction dir. It returns a set of “next” cluster cuts that can be found
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when searching from l in direction dir. This set will by construction contain
zero, one, or two cluster cuts. The search is made as described under step 2
in Sect. 4.2, and the returned set of cluster cuts, will contain the cuts found as
explained informally for each of the cases 2(a), 2(b), 2(c)i - 2(c)iv in Sect. 4.2.

The function uses two auxiliary functions, find_cuts_from_stem and
find_cuts_from_branch, to specify the search for case 2(c). They are defined
in a similar way as find_cuts_from_linear, but not shown here due to space
limitations.

6 Experiments

The formal RSL specification of the decompose function is executable and has
hence been used as an early prototype for a decomposer tool. It has been thor-
oughly tested to be functionally correct. After that the specification was trans-
lated to C++ achieving a second prototype which was also tested. The tests have
shown a full agreement between the two prototypes, and have therefore given
some confidence in the correctness of the algorithm and of its implementation,
although we have not attempted a formal proof thereof.

Furthermore, we have used first the RSL executable and later the C++ exe-
cutable for making some experiments: for networks of various complexity, we
measured the time it takes to automatically decompose a network into elemen-
tary networks and we compared this with the time it takes to verify the full
network using the RobustRails Tool (RR-T).

Table 1. Verification metrics for the RobustRails Tool (RR-T) and the decom-
poser prototypes (in RSL and C++) applied to some interlocking examples.
Time is measured in seconds.
Example Linears Points Signals Routes RR-T Time RSL Time C++ Time Sub-networks

EDL 111 39 126 179 22863 219 1,5 68

LVR1 11 4 18 18 91 7 0,5 4

LVR7 26 12 42 48 49813 9 0,5 13

Tramway line 22 12 20 62 43184 8 0,5 12

Flying junction 24 16 16 40 62172 9 0,7 16

Table 1 shows the metrics for these experiments using the RobustRails Tool
(RR-T) and the decomposer prototypes (both the RSL specification and the
C++ implementation). The tools have been applied on a benchmark of network
layouts considered in some other, past experiments (using the RobustRailS Tool
only), some of which were published in previous conference papers [1,2,12,14].
The EDL network is a line in Denmark comprising 8 stations, LVR1 is Binche
station in Belgium, LVR7 is Piéton station in Belgium, and the two last net-
works are inspired by real networks [7]. In the table, columns 2–5 give for each
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network example its number of linear sections, points, signals, and routes, respec-
tively. Column 6 shows for each network the verification time using the Robus-
tRails Tool and columns 7 and 8 show the average time9 needed to divide the
network into sub-networks using the decomposer prototypes. The last column
contains the number of elementary sub-networks obtained. In all cases no non-
decomposable sub-networks were obtained. All the experiments were executed
on an Intel Core i5 CPU 750 (-MPC-) at 1.20GHz, 16GB RAM, Ubuntu 14.04,
Linux 3.19.0-25-generic x86 64 (64 bit, gcc: 4.8.2) kernel.

The experiments show a dramatic reduction of the time needed for the veri-
fication of a network using our decomposer prototypes compared to time needed
when using the traditional monolithic verification by the RobustRails Tool. The
considered networks have all been successfully decomposed into elementary net-
works, in most cases in as many as there were points in the network, that is, in
elementary point networks of type (c) or (d) in Fig. 5.

7 Conclusions and Future Work

In this paper, we have exploited a previously defined compositional method for
model checking the safety of interlocking systems, by pushing it to the finest
granularity level. The said compositional method guarantees that, under given
conditions, dividing into two parts a network expressing the interlocking over
a complex network layout and then proving safety of the two parts equates to
proving safety of the whole network. This provides significant advantages in
terms of reduction of state space explosion.

In this paper, we have formally specified in RSL and implemented in C++ an
algorithm which automatically divides a network into a number of sub-networks
of minimal size by repeatedly applying the above mentioned network division. In
the ideal case each of the resulting sub-networks is an instance of one of a limited
set of “elementary networks”, for which safety proofs have already been given (in
less than 3 s) by model checking, once for all. That means, in such a case no model
checking is needed. We have successfully applied first the fully automated RSL
executable and later also the C++ implementation to decompose into elementary
networks several network examples of different complexity, hence proving their
safety. In all cases the execution time was a very small fraction of the time needed
by a model checker to verify the full network.

Our suggested verification approach will be the subject of further work: For
all the case studies, the algorithm succeeded to divide the network into sub-
networks that were all elementary. In principle, the algorithm could return one
or more sub-networks that cannot be decomposed into elementary networks, but

9 The decompose function was repeatedly invoked with each of the network’s borders
as the border parameter b of decompose, and then the average execution time was
computed. Note that the invocations with different b on the same network sometimes
produce slightly different sets of networks: the cardinalities of the sets of networks
returned by two different invocations are the same and networks are usually the same,
except that sometimes a linear section may be included in a different sub-network.
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we have not found any loop-free networks for which this is the case, provided that
there is no flank/front protecting elements. We conjecture that the algorithm
is always capable to divide any loop-free network into elementary networks,
provided that there is no flank/front protecting elements, but we need to formally
prove this conjecture.

A proof of correctness of the algorithm could be a topic for future work: if
the conjecture above is proved to hold, the algorithm should be demonstrated
to produce a consistent set of elementary networks.

For future work, it could also be interesting to investigate how the topology
and the choice of the border from where the search should start impact the
execution time of the decomposer prototypes.

We conjecture that the proposed decomposition method can be instantiated
with similar benefits in other compositional frameworks, as the one described in
[1]: this is another future research direction.
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Abstract. In modern railway systems, verification of system and soft-
ware are usually performed independently, even though the refinement
from system to software level is covered. However, experience shows that
this conventional approach is error-prone and inadequate for complex
functions that are increasingly common. Bugs resulting from the gap
between system and software levels often go undetected until late in
the development process, making corrections costly and raising concerns
about other bugs that may have been missed. In an ideal scenario, com-
prehensive verification would identify such bugs early on, regardless of
the gap. This paper introduces a verification approach that intends to
bridge the gap between system and software levels through the formal
verification of system level safety properties on a model of the software.
Its application on a pilot project revealed several safety critical bugs that
would not have been detected using the aforementioned activities.

Keywords: Formal verification · System level properties · System of
Systems · Environment Model · CBTC

1 Introduction

RATP (Regie Autonome des Transports Parisiens) deploys and operates all
metro lines of the Paris area, in addition to other commuting services trans-
porting millions of commuters every day. Passengers safety has always been a
high priority for RATP, starting from the early planning phases to the oper-
ation and maintenance phases. This attachment to safety has materialised in
the establishment of dedicated safety activities and teams having the main task
of performing a second independent safety verification of all deployed systems.
For this purpose, RATP has developed a verification methodology called PERF
to apply formal verification against the deployed software. This methodology
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allowed RATP and its suppliers to guarantee higher safety levels by discovering
unsafe software behaviours before deployment.

The increasing complexity of modern railway systems makes the verification
activities more and more tedious. The, usually V-shaped, development process
defines rigorous and extensive verification activities from one level to its follow-
ing level. The refinement of requirements from System level to Software level
(through subsystem levels) may introduce some gaps that go undetected by
the traceability activities. One of the main reasons of these gaps is the incom-
pleteness of the requirements apportioning. In other words, the composition
of subsystem or software requirements is not always equivalent to the refined
requirements. This might be due to the fact that requirements (even the vital
ones) are described in a functional, i.e. they only describe how the system should
behave and rarely explicit how it shouldn’t (safety-wise). The behavior might be
correctly decomposed functionally, but loopholes are injected in the safety cov-
erage. Another reason of the gap introduced by the refinement is the bias caused
by implicit assumptions made during the development and verification activities.
These assumptions related to the interfaces of the system and its environment
narrow the space of considered behaviors.

RATP deployed several modern signaling systems in the recent years and one
common observation is that no matter how perfect verification activities can be
at different levels, gaps that exist between levels can be missed. It is well known
that early detection of bugs is always better than a later detection, one can
emphasize that late detection of problems raises concerns about the presence of
other undetected bugs. This kind of issues is unacceptable regarding the high
safety expectations at RATP, so a new methodology has been developed in the
recent years to close this verification gap. The core idea is to expand the scope
of PERF verification, to cover not only the software but subsystem and system
levels as well. This paper presents this new verification approach that intends
to bridge the gap between system and software levels through the formal verifi-
cation of system level safety properties on a model of the software. Rather than
focusing on one level, this approach is based on the definition of a formalization
of the system under verification, along with its interfacing systems, and perform
formal verification of high-level safety properties against this model. The most
important contribution was probably to find the right balance of abstraction
levels to produce a sufficiently complex yet verifiable model. This approach is
now being extended to cover all new CBTC projects at RATP.

This paper is organised as follows: next section provides a brief overview of
the context and related works. Section 3 introduces the proposed approach more
in detail. A real case study is presented in Sect. 4 to illustrate how the approach
works. Finally, Sect. 5 concludes this paper with the main results and limitation
of the approach.
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2 Context

For each deployed system, RATP conducts evaluation activities independent
of those of its suppliers to ensure overall system safety. These activities are
performed for the system, hardware and software. The system-level assessment
activities involves the analysis of the documentation produced by the supplier
(responsible for supplying the system and software). This assessment is con-
ducted manually through critical review in order to determine the conformity
and completeness of the system specification.

Software assessment is based on formal methods, using the PERF (Proof
Executed over a Retro engineered Formal model) approach together with its
associated workshop [1,6]. This methodology has been successfully applied to
several projects and has consistently produced results that guarantee the cor-
rectness of software safety requirements. PERF enables the formal verification
of properties on existing software, regardless of the development and verifica-
tion methods employed by the supplier. This is accomplished by applying formal
proof techniques after the design and development phase, even when the software
was not meant to be formally verified. HLL [9], the pivot language of PERF, is
an asynchronous data-flow language, allowing to specify both system behaviour
and safety properties together. This approach strengthens the demonstration of
safety objectives and provides a framework for integrated model and program
verification developed by different stakeholders using different modelling and
programming languages.

At present, software analyses are performed on individual software compo-
nents, without considering the constraints of the system in which they operate.
However, the current methodology and safety properties verified at the software
level fail to effectively detect complex anti-safety scenarios that may arise at the
system level or as a result of errors when refining the system specification into
the software specification.

Taking system constraints into account when doing software validation would
allow to integrate the environment in which the software evolves and to identify
the properties resulting from this environment that must be satisfied by the
software. Therefore, the development of a methodology that allows for higher-
level validation at the system level is essential.

Currently, system-level analyses are insufficiently equipped and rely heavily
on manual methods. This approach does not effectively identify malfunctions
that may be introduced during the production of software specifications from
system specifications. Two factors may account for these malfunctions. In a
top-down development scenario, the software specification may be accurately
summarized from the system specification, but the system specification may
contain errors. On the other hand, in a bottom-up development scenario, the
system specification may not contain any errors, but the synthesis of the software
specification may not be performed correctly.

In order to achieve the overall proof objective, it is essential to use a verifica-
tion approach that integrates both the system and software levels, thus demon-
strating the preservation of safety properties identified at the system level on
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the software level. Such an approach enables the identification of anomalies and
constraints at the system level and ensures that the specified safety requirements
of the overall system are met.

However, this combined approach presents unique challenges due to the inher-
ent differences between the system and software levels. At the system level, we
often abstract the actual computations, while at the software level, we lack a
comprehensive global understanding of the overall system objectives. The lim-
ited perspective of the software makes it difficult to verify global abstract safety
properties, such as the prevention of train collisions. Similarly, on the system
side, ensuring that the detailed implementation of the software guarantees the
safety property is hard to achieve. Combining both approaches requires to bridge
the gap between the system and software by formalizing all necessary mapping
concepts to obtain an integrated model.

2.1 Related Works

The modelling and safety verification of railway systems is an important and
active research topic. The most interesting success stories about formal verifica-
tion cover railway systems, from conventional interlocking to modern signalling
systems. The application of formal methods at an integrated level with both
system and software models was the target of several initiatives. Unfortunately,
the state-space explosion problem has always been a major common obstacle
limiting the scalability of these verification techniques. It also impacts the scope
of the analysis, which leads to different solutions and trade-offs.

Authors in [7] and [8] have explored the compositional approach to divide the
verified scope into smaller pieces that can be analyzed efficiently. However, this
approach is only possible if the system and the verified properties can be divided
without any information loss. In our scope of CBTC function with system-level
safety properties, it appears impossible to define a decomposition that preserves
safety.

Another direction was adopted by [2,11] and [12] and others where the formal
verification is applied at software level using refined safety properties, usually
extracted from software requirements. The limited scope of this verification and
its modularity can solve the state-explosion problem. This approach is a good
software verification choice, but it does not cover the gap that can be introduced
when refining the safety properties or the software requirements.

Finally, some studies such as [3] and [10] already identified the need of safety
verification at system level. The verification being conducted on a wider scope,
covers the gap that is introduced at subsystem or lower levels. Some directions
are provided to close the verification distance to the target software but no con-
crete application was performed to confirm their feasibility. A high abstraction
level is required to avoid the state-space explosion problem, but can introduce
new gaps of its own.

Regarding our target of system level verification on a signalling software, the
closest work that could be found in the literature was described in [4]. In this
work, the authors cover a similar function than the one covered in Sect. 4. The
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proposed approach can cover most of the gaps that are targeted in our scope of
work. However, the paper did not mention any formalization of other real world
systems that may interact with the analyzed system. As explained throughout
this paper, some unsafe scenarios are hidden during verification because of strong
assumptions that can be made on the environment. For example, the paper did
not make a clear difference between the real position of a train and its perceived
position at ZC level which can lead to considerable mismatches. In other words,
the communication between the onboard and the wayside subsystems is supposed
to be ideal, with no delays or message loss, which is not the case in real life.
In fact, most of the errors our approach captured were related to this kind of
asynchronous behaviour.

3 Proposed Methodology

The aim of this work is to verify system level safety properties on the software
model to discover hidden and complex scenarios through exhaustive exploration
of input domains. In order to avoid obvious state space explosion problems, the
proposed methodology relies on a combination of refinement and abstraction to
reach an appropriate level of details. The properties are first derived by analyzing
system level specifications and are proved to be sufficient for the safety of the
target system. Then, they are refined and formalized at subsystem level with
software interfaces to enable their verification on the software model.

This verification is done using an environment model that bridges the gap
between the system and software levels as well as between the system and its
interfaced systems. A first attempt to verify system level properties on CBTC
software at RATP was presented in [5]. However, due to the absence of an envi-
ronment model, the verification scope was significantly limited, even though
high-level properties were identified. Indeed, the verification focused on software
inputs rather than system-level observables (eg. received location of a train vs
its actual position).

Combining the software model with such an environment model has sev-
eral advantages. First, it prevents from having a high number of false counter-
examples that would be time consuming to analyze and discard. Second, this
feeds the software with relevant data that correspond to the occurrence of real
world or system events and analyze its behaviour when verifying the properties.

For instance, in a software level verification approach, it is common to treat
different software inputs as independent which can lead to unrealistic scenarios
and generate false counterexamples. To address this issue, constraints are intro-
duced to establish connections between inputs and eliminate these false coun-
terexamples. However, identifying the appropriate set of constraints is often a
tedious task and carries the risk of under- or over-abstraction.

In an integrated approach, software inputs are directly linked to the realis-
tic environment model, enabling the abstraction of different equipment behav-
ior. This allows to describe complex inputs sets by accurately capturing asyn-
chronism, temporal considerations, and interactions between equipment. Con-
sequently, it offers a comprehensive understanding of equipment interactions,
enhancing comprehension of the system and thus its overall validation.
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3.1 System Level Properties Identification and Refinement

The properties are derived from hazard analyses of the target function. This is
done at system level by analyzing the feared events of the function and defining a
set of properties that catch their occurrence. The aim of this activity is to cover
the security needs of the function and ensure the detection of any dangerous
situation that may lead to a feared event. For this purpose, it is important to
ensure the sufficiency of the properties regarding to the safety of the function.

Performing the analysis at system level has several advantages. This limits
the number of properties, shortens the activity related to their formalization
and simplifies the counter-examples analysis. Indeed, in most cases, one or two
system level properties are enough to catch the security needs of a function.
Moreover, when such a property is falsified, the counter-example given by the
proof engine can be directly linked to a dangerous situation. This prevents from
states where a property is falsified but the safety impact is difficult to figure out.

Once identified, the properties and the system notions on which they rely
on are first expressed with software notions. This is done through the software
specification and its design principles. For instance, let us consider the following
system level safety property: each train must be represented. The refinement
activity consists in concretely defining the notion of train representative using
notions and objects that are defined by the software. Then, the properties are for-
malized in HLL and the correctness of this formalization is checked, for instance
through critical reviews, before their verification on the software model.

3.2 Software Model

To ensure the correctness of the proof process implemented at the software level
with PERF workshop, it is necessary to formalize and prove the software. The
PERF verification process consists of transforming the system’s source code into
a formal HLL model. This involves obtaining a model of the software being
studied, either through the use of available translators in the PERF toolkit or
by manually modeling the software in HLL. After obtaining the software model,
it is important to verify its correctness with respect to the initial source code.
This can be achieved by certifying the translator [6] or through validation. In the
case of manual formalization, there are several options available, such as critical
reviews. It is crucial to minimize the introduction of bugs at each step of the
overall method.

3.3 Designing a Real World Environment Model

One of the key aspects of this methodology is the definition of a realistic envi-
ronment model. This model includes an abstraction of all real world objects,
functions, subsystems and systems interacting with the function under study or
impacting the safety properties. It serves as a linking “glue” between the soft-
ware model and the identified system level properties. Indeed, the properties
are expressed in terms of real world objects (e.g. trains should never collide,
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a representation of these objects is crucial) and must be to the transcribed in
the software level. As stated earlier, the most notable contribution of this work
was find the right balance between complexity and abstraction when defining
the environment model. Models that are too complex can hardly be used for
exhaustive exploration because of state-space explosion problems. Models that
are too abstract scale much better but will very often fail to find any hidden
safety issues.

The overall environment model introduced can be divided in four categories:

– Systems intended to model external systems that interact with the CBTC
system. This includes for instance, the trains, the track-side objects and exter-
nal interlocking systems.

– Subsystems covering and abstraction of CBTC subsystems that are not
directly under study but interact with the studied function. For example,
when studying a CC function that uses inputs from a ZC, the ZC part pro-
ducing these inputs is abstracted in a ZC model.

– Functions similar to the subsystems but for functions of the subsystem under
study that are not part of the studied function. For example, when studying
a CC function, we might abstract other CC functions that contribute to the
inputs of this studied function.

– Transversal including global notions that may affect multiple models. This
covers asynchronous communications between CBTC subsystems, cyclic exe-
cution of subsystems, continuous evolution of real-world systems as well as
continuous interactions between objects. Verification activities either overlook
these aspects or analyse them separately from the whole system which can
lead to undetected errors. The challenge is of course, to control the complexity
of the model while capturing the most important notions.

3.4 Integrating Data

To perform the proof activity, data of the real line is extracted and integrated to
the rest of the models (software and environment models). For this purpose, the
data is first formalized in HLL. This can be done by a script that takes as input
the data provided by the supplier and generates the required HLL format. This
data consists of constants and invariants that are used by either by the software
or the environment model. Some data required by the environment model cannot
be directly extracted from the supplier files. They need to be designed by the
teams members and built from other available data. For instance, an invariant
that translates abscissas from on segment to another cannot be extracted.

Using real data prevents from finding and analyzing counter-examples that
cannot occur in the line due to its configuration. However, real line data is usually
voluminous, which can lead to state-space explosion and scaling problems. To be
able to find scenarios quicker, simpler virtual layouts are introduced. The idea
is to identify particular configurations that will most probably lead to counter-
examples. For instance, layouts containing switches, multiple paths between two
points or rail loops are considered. Once the system was analyzed on simple
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layouts and all possible counter-examples were identified, the verification is then
performed on the real data to confirm that no additional counter-examples can
be found. If not, new simple layouts are introduced to isolated the configuration
that led to the counter-example in order to ease the analysis.

3.5 Global Model Integration and Verification

After obtaining the software model, safety properties, environment, and data
in HLL language, the components are integrated to validate the system safety
properties on the software model. The correctness of properties is proved by
using model checking and SAT solving verification techniques.

Safety-related properties are modeled as observers in HLL models. Observers
provide a higher level of assurance for software correctness when they are valid,
or valuable counterexamples when they are not, enabling further analysis and
design corrections. The proof is accomplished using different proof strategies,
including lemma writing and counter-example analysis. However, one must be
cautious during this activity as distinguishing real counter-examples that may
lead to dangerous situations from those obtained due to certain modeling choices
can be very tricky.

In the proof activity, it is important to consider the limitation of the model
checking technique due to state space explosion, when dealing with large systems.
This is a limitation of model checking technique because the state space increases
drastically with the number of system variables. To overcome this issue, there are
several solutions available, such as abstraction and decomposition of the system
into subsystems, which can be applied during the proof process.

4 Application

The first complete application of this new methodology was performed on the
train tracking function of a CBTC system deployed by RATP. After a short
introduction of the context, this Section will provide some details about the
application of different activities introduced in Sect. 3.

4.1 Case Study Description

CBTC (Communications-Based Train Control) is a complex system that ensures
a safe and efficient train service through two-way communication between on-
board (Carborne Controller) and wayside equipment (Zone Controller).

One critical role of CBTC is Automatic Train Protection (ATP), realized by
the safe train separation function, which ensures that trains never collide. Some
of the main functions of a CBTC system are train localization, train tracking
and MAL (Movement Authority Limit) computation. Localization determines
the precise position of trains on the track, while tracking uses this information to
create a comprehensive cartography of train movements throughout the network.
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The MAL computation uses the cartography to compute the limits within which
the train is authorized to operate safely.

In our particular application, the train tracking function is fully implemented
in the ZC (Zone Controller) through fixed virtual blocks. This function receives
inputs from multiple sources, including Carborne Controllers (CCs), Input/Out-
put Controllers (IOCs), and neighboring ZCs. Using these inputs, it determines
the occupancy status of all virtual blocks based on reported train locations (train
envelope) and track circuits occupancy (Fig. 1).

Fig. 1. CBTC notions related to train tracking function

4.2 Identification and Refinement of the Safety Properties

The initial step of this study involves identifying high-level properties that ensure
the prevention of safety hazards resulting from errors in the train tracking func-
tion. These properties are then refined at the software level and further formal-
ized in HLL to enable their verification.

At system level, the safety properties for train separation functions are con-
cerned with preventing different types of collisions between trains, including
head-on, rear-end, and side collisions. In this particular application, the cartog-
raphy computed by the train tracking function can only lead to potential rear-end
collisions. All the other hazards are covered by other functions or subsystems.
The system level safety property can be defined as:

Property. There should be no rear-end collision between trains.

This property is then refined for the train tracking function level, by iden-
tifying all potential mismatches that would lead to the hazard. This was done
by analyzing how the cartography is used within the MAL computation func-
tion that starts from the estimated rear position of a train and looks for the
first obstacle in the direction of travel (see Fig. 1). One possible unsafe situation
occurs if the MAL of a following train goes beyond the actual position of the
leading train. The reason of such situation can be, for example, that the virtual
block under the leading train is wrongly identified as free by the train tracking
function. The system level property can be refined for the tracking function to
check the absence of this unsafe situation as follows:
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Property. Every train should be represented in the cartography by an occupied
virtual block located behind the train’s real position.

This property is then further refined using the different software and system
notions leading to the HLL formalisation in Listing 1. This property mixes sys-
tem notions such as real train position and software notions such as virtual
blocks statuses(is occupied vb()) and localisation report.

property :=
ALL t : TRAINS (

SOME vb : VIRTUAL_BLOCKS (
is_vb_behind_train(vb , t)
->
is_occupied_vb (vb)

) );

Listing 1. Property Formalization in HLL

4.3 Integration of Software Model

This activity is directly inherited from the PERF approach, that is based on a
model of the software under verification. The model is either translated directly
from the source code of the software or abstractedmanually from the software spec-
ification. For some cases, complex code portions were abstracted with an optimised
version and the equivalence between both representations was demonstrated.

4.4 Definition of the Environment Model

After defining the properties and the software models, an environment model
was developed to link the different parts together. All ZC functions that provide
inputs to the train tracking function were abstracted from the corresponding
subsystem or software specifications. Then impacting subsystems were intro-
duced, which included a CC model, an IOC model and a neighboring ZC model.
The CC model provides train estimated locations and the IOC model provides
track-related information. Both systems were abstracted from their subsystem
specification. For the neighboring ZC there were two options, either using the
translated software model or using a separated optimized abstract model.

In order to provide real word information to the different models, trains,
track-side objects and external interlocking models were defined. Train positions
are used in the properties as well as in the inputs of the CC model. Train speed
constrains the movement of trains in the track. The interaction between trains
and wayside objects provides inputs to the interlocking and IOC models (e.g.
TC occupancy). The asynchronous communication model defines how messages
are exchanged between CBTC subsystems. This model supports message loss
and deprecation and guarantees that a received message is consistent with the
past system state at the time the message was issued.
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Since the environment model is a key element of the verification, it was
important to ensure that it was correct and that it reveals all possible behaviors
of the real system. A validation of the whole environment model was performed
by means of cross-reading, intermediate lemmas verification, vivacity checking
and specific scenarios exploration.

4.5 Integration of Specific Data

To perform formal verification, the designed models (software, environment and
properties) were instantiated with the actual track data extracted from the
project database, describing the track objects and their connections. The formal
verification was then performed on 3 virtual models and on 8 real instantiated
models. The models varied in size and complexity including all relevant track
configurations of a metro line.

4.6 Application Outcomes

A number of counter-examples were spotted both on the real and simple layouts.
These counter-examples are the reproduction of the known issues on the model
but also the discovery of some new complex (but possible) unsafe scenarios. Not
all identified scenarios correspond to a bug in the software, three possible reasons
were observed:

– Some of the scenarios are confirmed by the supplier as bugs and some changes
in the code or in the system specification are done to correct them.

– Some scenarios showed a lack of constraints on the data spotted on simple
layouts but not on the real ones. More constraints over the layout data can
be added to avoid encountering these issues in a future project.

– Some scenarios involved simultaneous defects from different subsystems with
communication delays/messages loss. These scenarios were considered unre-
alistic by the supplier as there probability was sufficiently low.

5 Conclusion

The approach described in this paper is seen as a promising and successful
attempt for system-level verification of safety properties against the target soft-
ware. In addition to the discovery of complex bugs that were overlooked by
conventional verification approaches, this approach led to the identification and
discharging of some implicit hypotheses that could lead to an over-constrained
system. Similar hypotheses are usually the reason test approaches missing some
critical bugs. The approach helped increase the understanding of both the sys-
tem and software under study and increased the collaboration between system
and software verification teams.

Although this study is a successful attempt to perform counter-example
exploration of CBTC Systems with a realistic environment, a number of lim-
itations and challenges were identified. Some of them were already addressed in
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the scope of the first application and will be fed-back to the generic approach.
The remaining challenges are currently under analysis for possible solutions and
optimizations.

The major obstacle that we usually face in this type of applications is the
state-space explosion during the exploration of real layout data. A first solution
was to introduce simple layouts representing small but complex configurations.
The challenge of course is to find a good trade-off between a sufficiently detailed
model and an abstract one. A second solution consisted of using decomposition
and abstraction to reduce the complexity of the software model. Other optimi-
sations are currently under consideration, focusing mainly on the proof process.

The second difficulty that emerged from the complexity of the system is
the counter-example analysis. The use of system concepts together with soft-
ware variables makes it difficult to identify the causes leading to the unwanted
behaviour. A graphical visualisation tool is being developed in order to make
the analysis less tedious and also to make the presentation of scenarios easier.
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Abstract. Formal verification of railway control systems, particularly Generic
Applications (GAs) and Specific Applications (SAs), is crucial due to their com-
plexity and safety-critical nature. This paper presents a novel framework, Halfway
Generic Verification (HGV), applying Software Product Line (SPL) principles for
formal verification of railway control systems. The HGV method offers a bal-
anced approach that can verify a broad set of systems derived from the same
Generic Design Specification (GDS) in a single computational sweep, retaining
feasibility. It also highlights the potential benefits of implementing SPL analysis
in modeling and verification of railway control systems, which include enhancing
the process of configuration data generation and ensuring the correctness of the
GDS and Generic Safety Specification. The effectiveness of the HGV approach
is demonstrated with a prototype implementation utilizing the Prover iLock tool.

Keywords: Formal Verification · Generic Application · Software Product Line ·
Railway Control System · Interlocking · Metaproduct · Variability Encoding

1 Introduction

1.1 Formal Verification of Railway Control Systems

Railway control systems, such as interlockings, are safety critical and complex. There-
fore, they require rigorous verification to ensure safe and reliable operation. Formal
methods provide cost-effective and safety enhancing means for such verification activi-
ties. Consequently, a plethora of formalmethods, e.g., Alloy [1], Petri Nets [2], Bmethod
[3], etc., are used extensively for verification of railway control systems [4]. The impor-
tance of these methods to the railway industry is also reflected by the fact that they are
recommended by the CENELEC standards [5].

1.2 Classification of Railway Control Systems

Traditionally, safety critical signaling systems, as well as their related tools and speci-
fications, are classified in terms of the generality of their application domain. In falling
order of generality, the corresponding categories are: Generic Product (GP), Generic
Application (GA) and Specific Application (SA) [6]. In this paper we will be concerned
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with formal verification of GAs and SAs. For sake of clarity and simplicity of the exposi-
tion, we will in this paper use the following rather restrictive and specialized definitions
of GA and SA:

By a GA we here mean a collection of generic formal specifications for a family
of railway control systems that share common signaling principles. More precisely, we
assume that a GA consists of:

1. An Object Model (OM). The OM defines the model ontology in terms of the available
classes of objects. This includes declarations of classes representing physical objects
(e.g., signals, track circuits and switches) as well as virtual objects (e.g., routes and
protection areas), along with their inputs, outputs, internal states, and static relations.

2. A Generic Design Specification (GDS). The GDS, which is only relevant for code
generation projects, specifies how each component of a system should operate. More
precisely it specifies the temporal first-order logic expressions that define how the
internal states are updated. Coupled with configuration data, and an appropriate exe-
cution model, the specification should be precise enough to allow for generation of
executable code.

3. A Generic Safety Specification (GSS). The GSS specifies static constraints as well
as static- and dynamic requirements that are to follow from the constraints. The GSS
is assumed to consist of a finite number of first-order temporal logic formulas.

By a SA we mean an individual system that is associated with a combination of
a GA and some compatible configuration data. This is the level at which most of the
verification and validation work is performed in signaling projects.

1.3 Computerized Railway Control Systems as Software Product Lines

ASoftware Product Line (SPL) is a family of similar software products [7]. The variabil-
ity among family members is typically expressed in terms of a set of optional elements,
or features. Each feature is present in some subset of the SPL. Principles of SPL engi-
neering have previously been applied in the railway industry e.g., for management of
rolling stock variability at Alstom, to promote efficient component re-use processes [8].
Another such example presents a method for generating and verifying UPPAAL models
based on configuration data and applies it to verification of switch motor controllers [9].

Additionally, and of central importance to this paper, a family of computerized sys-
tems corresponding to a givenGAmaybe considered as a SPL [10]. Indeed, following the
generative programming paradigm, each SA associated to the GA is typically obtained
automatically from a family-wide GDS that prescribe its temporal behavior, together
with interlocking-specific configuration data (such as the railyard layout, route tables,
etc.).

Formally verifying an entire GA – in the sense of verifying that any executable code
generated from the GDS meets the corresponding requirements instantiated from the
GSS – is attractive from a business perspective since it may lead to savings in costs
and time. Moreover, it increases confidence in the quality of the GDS and facilitates
debugging and validating the GSS.

However, it comes with certain computational challenges. Firstly, in the absence of
any prior assumptions on the layout, a GA in principle represents an infinite number of
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SAs, since there is an infinite number of conceivable configurations. Thus, one is faced
with the problem of verifying infinitely many systems against the GSS. Secondly, even
if one considers only a finite subfamily of the GA, it typically has a very large number
of members. Indeed, the number of systems is generally exponential in the number
of optional configuration components. Therefore, the naïve verification approach, i.e.,
generating and verifying each SA separately, fails in most cases.

In order to overcome these difficulties, alternative verification methods that analyze
the SPL as a whole has been put forward in the SPL community [7, 11]. In particular,
some of these methods are centered around using feature variables to create and analyze
metaproducts and metaspecifications for the SPL under investigation [12, 13]. In this
paper we apply these concepts, which will be discussed in greater detail below, to formal
verification of families of railway control systems.

1.4 Contributions

Our main contributions are as follows:

1. We present a new application of SPL analysis to formal verification of a family of
railway control systems, themembers ofwhich originate from the sameGDSbut differ
in their configurations. The resulting framework, which we call Halfway Generic
Verification (HGV), enables formal verification of large collections of systems in one
sweep, while still retaining computational feasibility. The approach is demonstrated
with a prototype implementation based on the Prover iLock tool.

2. We highlight the various uses and benefits offered by the adoption of SPL analysis in
modelling and verification of railway control systems:
a. Verification of a GDS against a GSS for a large family of systems

(1) This may increase confidence in the correctness of the GDS and GSS.
b. It supports the configuration data generation process, including:

(1) Automatic verification of constraint consistency,
(2) Interactive feedback during manual railyard layout planning.

1.5 Organization of Paper

The rest of the paper is organized as follows: Sect. 2 begins with a general overview
of formal methods and their use within the railway industry, with a particular focus on
generic system verification. This is followed by a discussion of formal verification of
SPLs and an introduction to Prover iLock. In Sect. 3, the proposed approach is described,
and a prototype implementation is presented. Finally, in Sect. 4, we provide a conclusion.

2 Background

2.1 Survey of Formal Methods

This section contains a brief, non-exhaustive survey of formal methods relevant for
verification of rail systems of various degrees of generality.

Alloy [14] arguably supports both application types (GA and SA), and it comes
with a toolset for modeling and analyzing complex systems, such as railway systems.
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The Alloy Analyzer tool provides a graphical representation of the model, allowing the
visualization of the system behavior and identification of potential issues. Once con-
straints and assertions have been specified in relational logic, the Alloy Analyzer finds
and visualizes valid instances that satisfy the constraints, as well as counterexamples
to the assertions. This language has been used for modelling interlockings [15] and in
railway case studies such as the hybrid ERTMS/ETCS Level 3 study [16]. Alloy is not
primarily developed for code generation or verifying a fixed, given, executable code, but
rather for testing designs, analyzing, and verifying (potentially non-deterministic) spec-
ifications. Also, this language has limited support for real-time modeling and complex
state transitions.

Based on graphical representation of transition systems in the form of graphs, a
Petri net [2, 17] is a mathematical modelling technique that allows for simulation of
system behavior to identify potential issues. It can also be used for the visualization of
issues such as requirement counterexamples, which helps to identify design flaws and
understand why a requirement was not fulfilled. Petri nets have also been applied to
railway systems [18]. However, once a system grows in complexity and size, Petri nets
may become difficult to understand.

B [3] and Event-B [19] are based on theorem proving and model checking. These
methods can be combined with tools such as Atelier B [20], Rodin [21] and ProB [22]
that are useful for specification, verification, and animation of models. These tools give
support for graphical visualization of the system structure, execution trace, behavior
animation and identification of errors and inconsistencies. However, they lack support
for real-time and concurrent systems. In addition, formal verification may require that
several of these tools are used in conjunction, which may in turn necessitate time-costly
configuration efforts.

2.2 Formal Verification of SPLs using Configuration Lifting

Formal methods have been used for analysis of SPLs in several contexts [7, 11–13,
23, 24]. Here we focus on a particular kind of formal SPL analysis that is based on
configuration lifting [12], also known as variability encoding [13]. This is the process by
which, for each optional feature of an SPL, a free Boolean variable - a feature variable
- is added to the code base as well as to the specifications. The intended semantics of
a feature variable is that its value equals True if the corresponding feature is present
in some possible product. The end result is a metaproduct capable of simultaneously
simulating all products of the SPL. Hence, by formally verifying themetaproduct against
the corresponding metaspecifications, in effect one verifies all products of the SPL.

2.3 Prover iLock and PiSPEC

Prover has developed a tool, called Prover iLock [25], specifically designed for design-
ing, testing, verifying and visualizing railway control systems. This tool uses the PiS-
PEC language [26], an object-oriented Domain-Specific Language [27] that is based
on many-sorted first-order logic complemented with a notion of discrete time. Prover
iLock automatically analyses PiSPEC models and verifies that a system meets its safety
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requirements using various proof strategies, such as model checking. In Prover iLock,
verification and simulation are usually done at the individual system (SA) level.

A GA captures a set of signaling principles and is implemented as a Prover iLock
package [28]. A SA, on the other hand, is developed in a Prover iLock project and
represents an individual control system. The most common SA configuration setup
involves drawing the railyard in the layout editor based on the schematic plan and
reading any relations and parameters that are not computable based on the geography
from configuration files.

3 Halfway Generic Verification

3.1 Overview of Proposed Method

The proposed method assumes as input a GA, denoted GAi, consisting of OMi, GDSi,
and GSSi, together with some configuration data Ci. Following metaproduct principles
and taking inspiration from some capabilities of the Alloy language and associated tools
(see Sect. 2.1 above), the core of the HGV method is the following three-step recipe for
transforming the given input, i.e., GAi and Ci to a new GA and new configuration data,
denoted GAo and Co respectively.

1. Introduce new “potential” object classes to the OM. Each such potential object class
inherits properties from some object class already present in OMi, but additionally
has a special Boolean feature variable Exists. The semantics of this variable is that
its value equals True if and only if its owner object instance is present in the system.
During formal verification, the Exists variable is free in the initial time step but is
then forced to be constant in time.

2. Align the OM, GDS and GSS with the modifications introduced in the first two steps.
This is accomplished by restricting the scope of any quantification that appears in
any expression in the GA to existent objects. Here “expression” refers to temporal
first-order logic expressions that define static relations (OM), internal states (GDS)
and requirements (GSS).

3. Replace some (user specified) object instances in Ci with corresponding potential
object instances.

The simple but powerful observation that underlies the HGV method is that: Veri-
fying an SA that results from this procedure is equivalent to verifying the collection of
systems it encodes. In principle the method is applicable to any finite family of con-
figurations, however in practice it may become cumbersome to formulate appropriate
constraints on the valid configurations if the track layout varies a lot between the family
members. Moreover, if a very large number of feature variables is added to the model,
the verification will become computationally infeasible.

Additionally, onemay also add new static (i.e., time independent) constraints, involv-
ing theExists variables, to theGA. This can be used to specify the valid configurations
by disallowing certain combinations of objects from existing. Furthermore, when cou-
pled with visualization of counterexamples to those constraints, it enables real-time
user-friendly support for SA configuration. Similarly, it can be useful to add new static
requirements that can be formally verified to follow from the constraints.
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3.2 Prototype Implementation of HGV using Prover iLock

We have implemented a prototype of the HGV method for an interlocking system
using PiSPEC and Prover iLock. Although, as mentioned above, we have been tak-
ing inspiration from some capabilities of Alloy, our implementation relies solely on
Prover iLock.

As input GA, denoted by GAi in the above, we used specifications for a toy inter-
locking system. The input object model OMi included basic interlocking object classes
such as SIGNAL, ROUTE, PROTECTION_AREA, SWITCH, BALISE, etc. The input
data Ci was similarly based on a toy railyard drawn in the layout editor of Prover iLock;
the latter is depicted in Fig. 1. This layout illustrates tracks T (continuous lines separated
with brackets), switches sw, balises (black squares) and signals.

Fig. 1. Schematic drawing of the railyard used in the prototype.

In Prover iLock, some objects such as signals and balises are placed manually on the
railyard layout by the user, while other objects such as routes and protection areas are
generated according to user-specified rules or input data (e.g., tables). In the prototype
discussed here, routes were automatically generated for all pairs of co-directed signals
with no other co-directed signal in between them, and a single, minimal, protection area
was generated for each “switch-position pair” (normal and reverse) and for each signal.

As an example of a Boolean variable from the GDSi representing an internal state
that is updated in each time cycle, consider the following PiSPEC definition of the
CommandedProceed variable that belongs to the SIGNAL type:

CommandedProceed := 
  SOME rt ( 
    start_signal(rt, SELF) & 
   ready_to_proceed(rt) 
 ); 

This generic definition states that, at each time step in the system execution or
verification, a signal is commanded by the interlocking to display the proceed aspect if
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and only if it is the start signal of a route that is ready to proceed. The “rt” keyword is
declared as a “quantifier variable” in the ROUTE class, hence the scope of the “SOME”
quantifier is the set of routes. The GSSi consisted of dynamic (i.e., time-dependent)
requirements on the behavior of the interlocking. The following is an example of such
a requirement:

GSS_04 := 
  ALL si 
  ALL rt 
  ALL rts ( 
    CommandedProceed(si)& 

    start_signal(rt, si) & 
    set(rt) & 
    route_sections(rt, rts) -> 
      ALL tc ( 
        tracks(rts, tc) -> 
          Clear(tc) 
    ) 
 ); 

The PiSPEC requirement above formalizes the natural language requirement: “If a
signal, that is the start of a set route, is commanded to proceed then all tracks in this
route are clear from occupancy.”

In the prototype VAR_SIGNAL, VAR_BALISE, VAR_ROUTE and VAR_ PRO-
TECTION_AREA were introduced as potential object classes, inheriting from SIG-
NAL, BALISE, ROUTE and PROTECTION_AREA, respectively. An auxiliary function
exists (note the lower case “e”) was introduced to the SIGNAL, BALISE, ROUTE
and PROTECTION_AREA classes, with definition X.exists= X.Exists, if X is an
instance of potential object class and X.exists= True otherwise. The GA specifi-
cations were processed by a Python script that restricted the scope of all quantifications
to existent objects, by inserting exists functions at propriate places. The updated generic
definition of the CommandedProceed variable reads:

CommandedProceed := 
  SOME rt ( 
    rt.exists & 
    start_signal(rt, SELF) &    
    ready_to_proceed(rt) 
  ); 

Similarly, the updated definition for generic requirement GSS_04 reads:
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GSS_04 := 
  ALL si ( 
    si.exists ->  
       ALL rt ( 
         rt.exists ->  
            ALL rts ( 
              CommandedProceed(si) & 
          start_signal(rt, si) & 
              set(rt) &  
           route_sections(rt, rts) -> 
                ALL tc ( 
                  tracks(rts, tc) -> 
                    Clear(tc) 
         ) 

            ) 

       ) 
  ); 

Next, Ci was modified by replacing some instances of SIGNAL with an instance of
VAR_SIGNAL, and analogously for BALISE (c.f. Fig. 2.). Using Prover iLock we then
formally verified the operational logic of the resulting SA against GSSo. No constraints
were put on the feature variables corresponding to VAR_SIGNAL and VAR_BALISE.
Contrarily, no independent feature variables were used for instances ofVAR_ROUTE and
VAR_PROTECTION_AREA. Instead, their existence was defined in terms of existence
ofVAR_SIGNAL instances. Thereby, in effect, the original generic design GDSi was
formally verified against the GSSi for all SAs that may be obtained by including or not
including each instance of VAR_SIGNAL and VAR_BALISE. The prototype layout had
29 instances of those two object classes (marked in red in Fig. 2.), which corresponds
to the simultaneous verification of 229 ≈ 5 × 108 systems.

Fig. 2. Schematic drawing of the HGV-adapted railyard. Potential objects are depicted in red.
(Color figure online)
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In order to demonstrate another application area of theHGV framework, in a separate
experimentwe also introduced completely new static properties (constraints and require-
ments) to the GA. These involved the feature variables and expressed time-independent
properties and relations of the system, such as the relative location of wayside objects in
the railyard.We then verified that certain sets of constraints were consistent, and that, for
all configurations covered by the HGV-adapted SA, certain sets of static requirements
follow from some set of constraints.

For an example of this, consider the following three static properties (two constraints
and one requirement) from the prototype (to save spacewe provide only natural language
versions):

• C1: All switches have a balise.
• C2: All routes that do not contain any switch contain a track circuit with a balise.
• Req0: All routes pass over some balise.

With C1, C2 and Req0 as starting points, we considered the following “derived
requirements”:

• Req1: There is no configuration satisfying C1 and C2.
• Req2: C1 implies Req0.
• Req3: C1 and C2 together imply Req0.

Req1 was falsified and a counterexample was generated, c.f. Figure 3. Note that this
counterexample is a witness of the consistency of the conjunction of C1 and C2.

Fig. 3. Counterexample to Req1. Existent- and non-existent objects in red and shaded grey,
respectively. (Color figure online)

Req2was also falsified; the generated counterexample is shown in Fig. 4. Finally, Req3
was found valid, meaning that all configurations of signals and balises belonging to the
family of configurations encoded by the SA that satisfy both C1 and C2, also satisfy
Req0.
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Fig. 4. Counterexample to Req2. Existent- and non-existent objects in red and shaded grey,
respectively. The route that does not pass over a balise is shown in purple. (Color figure online)

4 Conclusion

The application of formal verification techniques to railway control systems is a critical
and demanding field that can benefit from the integration of various approaches and
disciplines, such as SPL engineering, formal verification methods, and the specifics of
railway system operation and design.

In this paper, we have proposed and elucidated the HGV method, an approach
that merges principles of SPL engineering and formal verification methods to create
a comprehensive framework for the rigorous evaluation of railway control systems.

The main strengths of our proposed method are the ability to verify large collec-
tions of systems in one pass, maintaining computational feasibility, and its flexibility
in accommodating the particular requirements and configurations of different railway
control systems. This innovative approach extends the capabilities of SPL analysis into
the realm of railway control system verification, expanding its application and showing
potential for further research and practical applications in this domain.

Our primary aimwith theHGVmethod is to enhance the verification process’s overall
effectiveness and robustness, leading to a significant increase in confidence regarding the
correctness of the GDS and GSS of railway control systems. Furthermore, our method
offers support in generating configuration data and provides interactive feedback during
the manual railyard layout planning process, thus ensuring that the resulting systems
perform as intended in real-world scenarios.

A prototype implementation of the HGVmethod demonstrated its efficacy and prac-
tical applicability. The prototype was based on the Prover iLock tool; however, the HGV
framework can be adopted by other object oriented signaling tools that adhere to the
SPL paradigm. The method was able to effectively handle a toy model for interlocking
systems, illustrating its potential for real-world use cases. However, it’s important to
recognize that the HGV method represents just one step towards efficient large-scale
GA verification. As with any new method, further development and refinement will be
necessary to fully realize its potential.
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In conclusion, the HGV method presents a promising advance in the field of formal
verification for railway signaling systems. It provides a means to bridge the gap between
GA and SA verification, enabling more efficient and comprehensive verification pro-
cesses. As the complexity and scale of railway signaling systems continue to grow, the
need for sophisticated verification tools and methods such as the HGVwill only become
more pressing.
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Abstract. This work aims to formally ensure the safety of modern mov-
ing block systems. For this a proof model was developed in Event-B which
captures several safety critical aspects. The new model identifies several
key concepts, that are at the heart of the mathematical safety proof and
which should later be at the heart of the safety case for a moving block
system with trackside train detection. Some of the key concepts were
inspired by earlier CBTC models and adapted for ETCS moving block,
and a few novel key concepts were developed to deal safely with delays
of train position reports and trackside train detection.

The invariants of the proof model have proven mathematically with
the Rodin toolset, thereby establishing safety properties of the modelled
system. The proof model can also be animated and visualised using the
ProB validation tool. By necessity, the proof model abstracts away from
irrelevant details and still has some restrictions in scope (such as linear
topology). Nonetheless, even with current restrictions, the key concepts
already proved valuable when reasoning about safety of moving block
systems. In the article we also present our modelling and tooling method-
ology, outlining the importance of complementing proof with animation.
We also explain the importance of inductive properties and argue that
a train-centric approach is more promising for proof of a moving block
system than a track-centric approach.

1 Introduction

B was originally developed by Jean-Raymond Abrial in the 1990s and has now
been used for over 25 years in the railway sector [9] (see also [19,36]). Currently
the B Method is used in three distinct ways for safety critical systems:

– B for software (classical B [2]): here an abstract specification of a component
is successively refined until one reaches an implementation level (called B0),
where automatic code generators can be applied. Examples of this are the
Paris Métro Line 14 [16], the New York Canarsie Line [17] and around 95
installations of Alstom’s U400 CBTC (Communication-Based Train Control)
system, which contain code generated from verified classical B models.
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– B for system modelling (Event-B [3]): here B is used to model an entire sys-
tem, not just an individual component. The goal is to verify critical properties
at the system level and understand why a system behaves correctly.

– B for data validation: here properties about data and system configurations
are specified in B. These properties can then be checked automatically (and
reliably) on concrete data, resulting in validation reports.

For this work, we focus on the second application, using Event-B for safety
cases for railway applications. Several railway examples can be found using
Event-B for system modelling, notably the academic interlocking model in
Chapter 17 of Abrial’s book [3] on Event-B, and a much more detailed model [8]
including feature management. On the industrial side, ClearSy has used Event-B
in at least two previous projects [13,35] (Flushing Line for New York City Tran-
sit Authority and Octys for the Parisian Autonomous Transport Administration
RATP) to perform a safety analysis of CBTC metro systems. Safety analyses of
Alstom’s U400 Zone Controller have also been carried out [14]. ClearSy is using
this approach also for mainline systems, namely the new Hybrid ERTMS Level
3 signalling on the Marseille to Ventimiglia line.1

Within Thalesthe approach was previously used for Hybrid Level 3 [1] fixed
virtual block systems [22]. There a formal model was developed that helped
uncover over 30 errors in the original EUG specification and to various real-life
demonstration by running the model in real-time using ProB [30]. The formal
model was used as a demonstrator and presented at the 2018 Innotrans trade
fair.However, the purpose of the model was not to conduct a formal proof; the
errors were uncovered using animation and model checking. Other models for
Hybrid Level 3 with Event-B were developed [15,20,33], within the scope of
the ABZ 2018 case study [25]. While [33] was able to prove several properties
using Event-B, some important aspects were not proven. Indeed, we believe that
the Hybrid Level 3 [1] specification is not well suited for a formal correctness
proof in general, nor for an inductive correctness proof within the B-method
in particular (we return to this in Sect. 3 below). In this article, we focus on
modelling a European Train Control System (ETCS) level 3 full moving block
system with Trackside Train Detection (TTD), as specified in [38]. The modelling
is done in Event-B, inspired by the previous successful applications of Event-B
to CBTC systems in [13,14,35]. Motivated by the successful use of animation
and visualisation in [22], we also strive to make the formal models amenable to
animation. One goal of this work is to answer these key questions:

– Can we develop Event-B models for both proof and animation and is it ben-
eficial to do so? Which methodology should be used to develop such models?

– Can the CBTC knowledge and insights be transferred to a moving block
ETCS system?

1 https://www.clearsy.com/en/ertms-en/.

https://www.clearsy.com/en/ertms-en/
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2 Modelling Methodology

Before explaining specifics of the formal proof model, we elaborate on a few
general principles we have employed in this and other projects.

2.1 Verification Techniques: Proof Is Essential

Verification of formal models can be done in three ways: 1) formal proof (e.g.,
[3]), 2) explicit model checking [26], or 3) symbolic model checking [5,11].

While model checking can scale for verifying concrete instances of interlocking
systems, (see, e.g., [6,7,23]), it does not yet scale for moving block systems. One
reason is that train positions need to be modelled much more precisely, leading to
a considerably larger state space that has to be verified. Setting aside scalability,
ideally one wants to establish a safety case independent of the topology. This can
only be done with proof. As such we see proof to be essential for establishing
the safety of moving block systems in particular and safety critical systems in
general.

2.2 Complementing Proof with Model Checking

Proof is rarely fully automatic and it is easy to make mistakes either in the
proof itself or in the formulation of the properties in the model. Even experienced
formal methods practitioners take time to analyse a failed proof, trying to decide
whether the model needs changing or whether it is just the proof that needs to
be done differently.

Hence model checking is a good complement to automatically check a
system on small instances and find issues quickly. Indeed, if the model checker
finds an error we know the model needs to be changed and we also obtain a
counterexample that can be used to diagnose the problem.

2.3 Combining Proof and Animation

When doing mathematical proof it is essential that the axioms from which proof
starts are consistent. Otherwise anything can be proven and a proof is worthless.

In classical B for software, an inconsistency in the axioms (aka PROPER-
TIES clause of B) would eventually be detected when implementing a system
or checking the axioms during data validation [31]. While this is quite late (and
can thus be expensive), at least the issue would be uncovered. In system mod-
elling, however, there is not necessarily a refinement chain from the high-level
specification to some concrete implementation. As such, inconsistencies in the
axiomatisation may not be detected at all!

Hence, particularly for systems modelling, animation is essential for its role
in ensuring that the axioms are consistent. Indeed, an animator like ProB will
check the axioms in the initial setup phase, before performing the first animation
steps. In our experience, this check has detected numerous inconsistencies in the
axioms both in academic and industrial models.
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Fig. 1. Tooling Methodology

Animation is also a good complement to model checking, which may give false
confidence (one should be skeptical when the model checker reports that your
model is correct too quickly) and will only look for the very specific errors you
have thought of. In fact, an animator will allow a user to interactively explore the
behaviour of a model (i.e., controlling the non-determinism in the user interface).
A such one can check that the model dynamics meet expectations, and one often
uncovers issues that one did not think of before (and hasn’t expressed formally
yet as invariants or temporal logic formulas).

Adapting a quote from Leslie Lamport (“Formal mathematics is nature’s way
of letting you know how sloppy your mathematics is” [28, page 2]) we state that:

Animation is nature’s way of letting you know how sloppy your formal
mathematics is.

2.4 Challenges in Combining Proof, Animation and Model
Checking

There are also considerable challenges when combining proof and animation.
Formulas that help conducting proof (e.g., universal quantifications over large
or infinite domains) can make animation difficult or impossible. Still, thus far
we have always managed to overcome these issues. Complicated formulas can
be moved to the theorems (aka ASSERTIONS) section, which are not checked
during constant setup. We have also added a feature to mark some properties
with a “prob-ignore” pragma. The ProB animator will skip such properties,
but it will mark them as “not fully checked”. One should thus still use the tool



Modelling, Visualisation and Proof of an ETCS 197

to validate such properties for a finite subset of parameters. In our experience,
there are only a few of those “difficult” properties.

There used to be a considerable debate in the formal methods community
whether specifications should be executable [21] or not [24]. While [24] is cer-
tainly right to point out the tension between proving and execution, some of
the examples and arguments in [24] relate to imperative or functional languages,
not to the constraint-logic programming foundation of tools such as ProB. E.g.,
ProB executes the “non-executable” perfect square example from [24] with
ease, finding all perfect squares in 1..10000 in about 0.002 s. While the article
[24] makes the plea that “the positive advantages of specification should not be
sacrificed to the separable objective of prototyping” our plea is that “the posi-
tive advantages of animation should not be sacrificed to the separable objective
of proving”. One could argue that sometimes it is impossible to write a nat-
ural model that is amenable to proof and animation. For example, sometimes
a proof model may use an infinite or very large domain (e.g., for positions of
the train). This means that the model per se may not be animatable, but one
can often reduce the size for animation by providing an instance or refinement
of the model. This is what we did for our model, by providing several concrete
track topologies for animation (see Fig. 1). Thus far we have never encountered
a situation that was not “fixable”.

3 Principles of the Moving Block Model

Scope. The aim of this model is to establish the safety principles of a full moving
block train control system for ETCS. We are thus not aiming for hybrid level 3
in the middle of Fig. 2, where track sections are divided into virtual subsections
of fixed size and location. We are aiming to analyse a full moving block system,
where there is no fixed granularity of zones that can be allocated to trains. We
still want to cater for the possible existence of trackside train detection devices
(TTDs), which can detect the presence of trains on certain fixed sections of
track, see [38, page 10]. We, however, assume that our trackside system called
TrackSide, encompasses both train protection and route protection functions
as in traditional signalling systems. It should be pointed out that no routes are
modelled.

Fig. 2. ETCS Level 2, Hybrid Level 3 and Level 3
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Finding Key Properties. Conducting a formal proof of a system often relies
on finding and formulating certain key properties of the system.

These key properties must be strong enough to establish safety of the system,
but weak enough so that they can be proven. Such proofs tend to be done by
induction (see, e.g., Sect. 3.2 of [13]):

– we have to establish that the property holds initially
– we have to prove that when the property holds for some time point, that it

holds after any possible next event.

We call a property that satisfies these two points inductive. Note that typical
safety properties themselves do not satisfy the latter requirement and are thus
not inductive: i.e., the fact that two trains are not in collision at time t does in
no way guarantee that they will not collide immediately thereafter.

HL3 VSS Status Is Not Inductive. Finding the key properties is thus diffi-
cult and often requires many iterations of modelling and proof. Maybe surpris-
ingly, the key concepts in the hybrid level 3 [1] specification are not inductive.
[1] has a “track-centric” approach and relies on four different kinds of status
(free, occupied, unknown, ambiguous) for the various virtual subsections (VSSs)
of the track. For example, [1] contains these two possible track statuses:

– “unknown” when there is no certainty about whether the VSS is “occupied”
or not.

– “ambiguous” when the VSS is known to be occupied by a (connected) train,
but when it is unsure whether another (not connected) train is also present
on the same VSS.

However, the knowledge about the status of each subsection of the track is
not sufficient to always correctly determine the status in the next cycle of the
system. For example, given the knowledge that a VSS is “ambiguous” and the
knowledge that a connected train leaves the VSS, we do not know whether the
VSS stays “ambiguous” (if another connected train is on the section) or switches
to “unknown”. The track status knowledge is not amenable to an inductive
correctness proof; the VSS status information is too weak to allow to preserve
it upon updates.

The hybrid level 3 specification [1] solves these issues by additional timers,
the value of those timers contains additional knowledge and help determining
the correct updates of the status of a VSS. Dealing with such timers is very
error-prone, and it is difficult to provide a completely formal description of the
meaning of a status value of a VSS in terms of possible train positions. We
believe this explains the number of issues found by formal modelling [22].

3.1 Key Concepts Explained

Thus, in our model we do not use track-centric key concepts based on track
status, but a train-centric approach. In other words, our model (and Track-

Side) keeps track of a variety of protection zones which are associated with
individual trains and not with track sections.
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The overall safety of the system follows from the fact that the TrackSide

keeps safe train images covering at all time points the real train position of all
trains.

The last point is very important: an essential safety concept is the train
image, and not the status of track sections. As such the modelling is quite dif-
ferent than, e.g., the one performed in the hybrid level 3 principles paper [1].

Key Concept 1: trainPZ At the heart of the modelling is the train protec-
tion zone (trainPZ) concept. Every train, registered or not, has an associated
trainPZ. However, this is a virtual proof concept as the trackside does not
directly know the trainPZ of the trains. The TrackSide only knows of the
existence of registered trains and does not know how many unregistered trains
there are.

The trainPZ always encompasses the associated train’s physical location
on the track. This is captured in these safety invariants in Table 1. However,
the trainPZ covers more than just the current location of the train: it covers
all the controlled or uncontrolled movements that the train can make in the
future, without any further communication between train and TrackSide. In
other words, the TrackSide cannot prevent the train from moving backwards
or forwards within its trainPZ. These movements cover the following practical
events:

– shortening or lengthening of trains due to acceleration, deceleration or slopes,
– rollback and roll forward,
– controlled moving forward to the movement authority (ma).

Fig. 3. Movement of a registered train within its trainPZ

On the one hand, the proof model assumes that a train will never leave its
trainPZ. On the other hand, the proof model allows a train to freely move
within its trainPZ. The proof model makes some assumptions about these pos-
sible movements of a train within its trainPZ. More precisely, we assume that
rollback and roll forward are bounded by a maximal value. These assumptions
are important, e.g., to adequately treat trackside train detection (ttd) devices,
as we explain below. Indeed, these assumptions are also used in practice by the
TrackSide to infer upper and lower bounds for the trainPZ (even though the
TrackSide does not know the precise trainPZ of trains). Indeed,
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Table 1. Some invariants related to trainPZ

@safetyPZ

∀t1, t2.t1 ∈ activeTrains ∧ t2 ∈ activeTrains ∧ t1 �= t2 ⇒
trainPZ(t1) ∩ trainPZ(t2) = ∅

All trainPZs are pairwise disjoint.

@trainPZ_safe_rear

∀tr.tr ∈ activeTrains ⇒ trainPZ rear(tr) ≤ train rear(tr)

@trainPZ_safe_front

∀tr.tr ∈ activeTrains ⇒ train front(tr) ≤ trainPZ front(tr)

All trains are always fully contained in their trainPZs.

– knowing that the train location lies within some interval is not an inductive
property (i.e., without further knowledge about the train’s speed, acceleration,
movement authority, etc., we have no way of knowing where the train will be
located next),

– while knowing that the trainPZ lies within some interval is an inductive
property, and the extensions of the trainPZ can be monitored by the Track-

Side.

The proof model also distinguishes between unregistered and registered (con-
nected) trains. For registered trains the trainPZ can change as follows:

– the trainPZ of a registered train can be extended at the front, this corre-
sponds to receiving an ma. This is illustrated in the middle of Fig. 3.

– the trainPZ of a registered train is reduced at the back when a train moves
forward. Note that the proof model contains a constant RollbackDistance for
the “maximum rollback” and roll forward. The model enforces that the train’s
back location stays within that distance of the back of the trainPZ. This is
illustrated on the right in Fig. 3.

Figure 4 illustrates the interplay of the trainPZ and the maximum rollback
when TrackSide processes ttd freeness. In Fig. 4 the TTD1 is marked as free
(e.g., detected by axle counters or a track circuit). This, however, does not mean
that the entire area of TTD1 is guaranteed to remain free, as the trainPZ of
train 1 could still reach back into the area of TTD1; TrackSide thus cannot
prevent train 1 from rolling back onto TTD1 within its trainPZ. Howevever,
TrackSide does know that there is a maximum rollback and hence does know
that there is a maximum reach of the trainPZ back onto TTD1. In other words,
the gray area on the left in Fig. 4 is guaranteed not to contain the trainPZ of
train 1.

Key Concept 2: regPZ The next important concept is the TrackSide pro-
tection zone regPZ for every registered train. This is a zone managed and known
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Fig. 4. TTD freeness in relation to trainPZ and maximum rollback

by the TrackSide. This zone completely covers the trainPZ of the associated
train, and not just its current position. This is very important: as Fig. 4 shows,
just requiring that a regPZ covers the train’s current position would not be an
inductive property necessary for a successful proof.

Fig. 5. The regPZ for registered trains in relation to the trainPZ

As Fig. 5 shows the regPZ is split into two parts:

– the non-exclusive area (nea), where the train is allowed to move at its own
“risk”, this area is not guaranteed to be free of other trains. This concept
covers OS (On-Sight) and SR (Staff Responsible) modes. This area is neces-
sary to cater for splitting or joining trains and also directly after registering
of trains, when it is unclear whether other unregistered trains can be close to
the train (e.g., on the same TTD).

– the FS (Full Supervision) area where the train can move forward without
risking encountering any other train or obstacle.

A regPZ is always non-empty and must always fully cover the trainPZ of
the associated registered train. The FS part, however, can be empty. The nea

part contains at least one “unit” of measurement; this also enables joining two
registered trains (the train behind can obtain an OS ma for the last “unit of
measurement” to connect the trains).

An regPZ can be reduced at the back, based, e.g., either on TTD freeness
or train position reports. The model requires to prove that such reduction still
safely covers the train’s trainPZ. A regPZ can extended at the front, either
in an nea or a FS fashion.

There are also events that allow to extend the trainPZ of registered trains
within the regPZ. These events correspond to the train receiving an ma from
the TrackSide.
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Fig. 6. The extension of a trainPZ due to an ma issued within the regPZ. On the
left the TrackSide issues an ma, on the right the train actually receives the ma.

Fig. 7. The reduction of a regPZ due to a train position report or a free TTD report

Key Concept 3: Zones for Unregistered Trains. The next important con-
cept are the non-identified protection zone niPZ. These zones are managed by
TrackSide and are meant to cater for unregistered trains or other obstacles.
Such zones are similar to the zones described in Fig. 1 of [13].

The TrackSide, by the invariants, knows that any part of the track not
covered by a niPZ is free of unregistered trains. Together with the regPZ

zones, the TrackSide can thus safely detect parts of the track are free, and
that unless it issues mas, these zones will stay free.

3.2 Major Challenge: Proving Preservation of Invariants
in the Presence of Delays

We first concentrate on the reduction of zones at the back by the TrackSide

when receiving new information. This information can either come from ttd’s
or from trains. The reduction at the back corresponds to the train having moved
forward and we can free an associated zone (niPZ or regPZ) at the back. In
our approach the actual duration of the delay is actually irrelevant, as long as
the information can still be safely applied:

– if the information is still applicable, we simply reduce the zone at the back
for niPZ and regPZ.

– if the information is no longer applicable it is discarded.

Below we show, how we decide whether information is still applicable and how
we have formally proven that the zone reductions are safe.

Figure 8 shows two scenarios. At the start (on the left) TTD1 has become
free in the physical reality but the message has not yet arrived at TrackSide. In
scenario 1 the train rolls back and occupies TTD1 again and the free message is
now processed by TrackSide: TrackSide reduces the regPZ, taking the roll-
back into account (see Fig. 4). In scenario 2 the train is moving forward towards
its ma (end of trainPZ). Even if the freeness information arrives very late,
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the action taken by the TrackSide is identical: the same safe reduction of the
regPZ occurs as in scenario 1. Also note that if the TTD freeness information
gets lost, the TrackSide information remains safe.

Fig. 8. The safe reduction of regPZ due to a free TTD report with two different delays

To conduct the successful proof in the model it is crucial that between a) the
TTD freeness occurring and c) the arrival of the message the affected protection
zone (regPZ or niPZ) was not modified. Figure 9 shows one scenario where a
regPZ has been modified between the point that the physical freeness occurred
and the TTD freeness message is processed. This leads to an erroneous reduction
at the bottom of the figure, where the train is no longer covered by its regPZ.

The proof model uses this approach to dealing with delays:

– when a physical event like TTD freeness or sending of a TPR (train position
report) occurs, the model executes a “virtual” event which marks existing
zones (regPZ or niPZ) as safe for reduction

– the invariants of the model ensure that the potential reduction remains safe,
as long as the message is in transit and the affected zone has not been
modified,

– when the TTD freeness or TPR report arrives, the TrackSide can safely
reduce the affected zones which have not been modified. This event contains
in its guard a check that the zone is safe. Later implementations (aka refine-
ments) of this event will have to prove that this guard holds. The guard is
thus a documentation of the condition that ensures safety of any implemen-
tation. There are various ways this guard can be satisfied in practice, e.g., by
remembering how long ago a zone was changed and by having time stamps
for the TTD free and TPR events.

Thus in essence, a safe implementation of a TrackSide will need to ensure
that a TTD freeness or TPR event occurred physically after the last time an
affected zone was changed.
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Fig. 9. Erroneous reduction of regPZ due to delay in TTD2 arrival

3.3 Visualisation

Also, it is usually worthwhile to add visualisation to animation. While this
adds some initial effort, it is quickly recovered by much more quickly spotting
mistakes. For example, in the picture on the right of Fig. 2 one can immedi-
ately spot that train 2 is preceding train 1 and both are located on the same
track section. This situation would be far from obvious when looking at a tex-
tual representation of the model’s state (e.g., trainFront = {tr1 �→ 25, tr2 �→
44}, trainRear = {tr1 �→ 22, tr2 �→ 39}, ..., ttdLeft = {ttd1 �→ 0, ttd2 �→
20, ttd3 �→ 48}, ttdRight = {ttd1 �→ 19, ttd2 �→ 47, ttd3 �→ 69}).

Visualisation also makes the models amenable to validation by domain
experts, unfamiliar with the formal notation used. This was the case for the
HL3 models [22] that could be animated and inspected by domain experts.

In our case the visualisations were done with the VisB [37] plugin of ProB
in a generic way. For examples trains and zones (protection zones, movement
authorities, ...) were drawn using SVG (scalable vector graphics) polygons with
coordinates derived from the formal model.
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3.4 Tooling Decisions: Proof and Platform

For Event-B one can either use the commercial Atelier-B tool or the Rodin
toolset [4]. The former has a textual syntax and more powerful proof interface,
e.g., allowing the addition of new proof rules. On the other hand, the Atelier-B
proving interface is more difficult to master. Rodin provides a more intuitive
proof interface, where many actions can be carried out by clicking on symbols
in the hypotheses or goals. On the downside, the modelling language of Rodin
is more restricted as far as statements and components are concerned.

We have conducted initial modelling efforts in the more flexible Atelier-
B/ProB syntax, and once the components and concepts had stabilised, we
translated the model to a linear refinement chain in Rodin (see also [32]). Note
that we could build on the experience of a preceding project, where we had
developed a first moving block model.

The proof effort was reasonable. We constructed 10 iterations of the Rodin
model over the course of 14 months. Iteration 5 for example had 271 proof obliga-
tions, 197 proven automatically, 71 manually. Three proof obligations related to
initialisation were not proven but checked by ProB by starting the animation.
Iteration 8 had 380 proof obligations, iteration 10 had 423. The last iteration
has 7 refinement levels (i.e., one abstract machine and 6 refinements), as well as
one additional refinement containing instantiations for animation, see Fig. 1.

The provers were sometimes a bit weak for expressions using intervals in
combination with minimum and maximum values. Here we used ProB’s Dis-
prover [27] to uncover required hypotheses for proof to go through. We actu-
ally developed a new improved exportof proof obligations from Rodin so that
the counterexamples can be inspected and visualised in detail (see bottom of
Fig. 1). One sees the counterexample which invalidates the proof goal, satisfies
all selected hypotheses but violates at least one global hypothesis.

4 Scope, Uses, Future and More Related Work

The proof model aims to formally analyse and ensure the safety of moving block
systems. The model was developed in Event-B and its scope covers these aspects:

– Movement of multiple trains on a linear track section, including rollback and
forward (Sect. 3.1).

– Joining and splitting of trains.
– Train registering and deregistering with TrackSide.
– TrackSide issueing movement authorities to registered trains
– TrackSide maintaining a safe image of the track’s occupation using:

• Identified zones for registered trains (Sect. 3.1),
• Non-identified zones for unregistered trains and obstacles,
• Safe processing of updates from trackside train detection (TTDs) and

train position reports (TPRs), safely dealing with delays.
• Invariants to guarantee that the image is a safe over-approximation of the

real occupation at any time.
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Thus far our Event-B model has been used internally for

– uncovering and visualisation of tricky danger scenarios and communication
with domain experts in ETCS railway systems.

– The derived key properties provide guidelines for later implementation of
moving block systems,

– the guards of the TrackSide events in the model contain the necessary
operational conditions to ensure safety.

4.1 Possible Future Extensions

Below is a summary of possible ways to extend and improve our proof model.

– Integrity loss can be considered a special case of splitting a train. A cor-
responding event (to provoke integrity loss) is present in the current model,
but is disabled. Correct processing of integrity loss will require adapting some
invariants and adding train integrity status information to TPR messages.

– To support non-linear topologies new events and invariants will need to be
added at higher refinement level. To be generic, we should also model that
trains can appear at points and that trains can disappear at points (moving
to and from other parts of the topology). This is already prepared in the
latest version of our model by its support for joining and splitting trains, but
will require updating invariants and proofs for niPZ zones.

– Allowing bi-directional movement is feasible and one would have to add a
direction for every train and a direction for every zone.

In the future it would also be interesting to check whether we can produce a
provably correct variation of Hybrid Level 3 [1] virtual fixed blocks by a form of
data refinement, i.e. projecting our protection zones on the virtual sub sections.

4.2 Changes Compared to Previous Models

The proof model was inspired by an earlier CBTC proof model [35] developed by
ClearSy for Thales Toronto, as well as a moving block model developed by the
authors. Some of the key concepts were taken from [35], but there are significant
changes:

– There is a single model for all proof aspects (not a union of various sub-models
as in [35]),

– The model can be animated and visualised, avoiding inconsistencies or errors
in the safety proofs,

– The TrackSide has no separate interlocking component,
– There are no complex physical movement functions for trains (the new proof

model uses a simpler modeling approach, allowing trains to move freely in
their trainPZ, see Sect. 3.1). We decided to try a simpler model of the train
movement, to ease proof and maintenance of the model. The approach is more
general and turned out to be sufficient for establishing safety. (It is, however,
always possible to add more detailed movement descriptions as B refinements
later.)
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– There is a non-exclusive (nea) area where safety invariants are relaxed to
allow joining and splitting of trains (joining and splitting is probably not
catered for in the CBTC models).

– The new proof model has, however, a more principled way of dealing with
delays.

5 Conclusion

The essential goal of the proof model is to ensure that the moving block Track-

Side computes a safe internal image of the external world. It is secondary what
this safe image is used for, be it collision freeness, derailment or other safety
hazards.

– The formal model contains a gluing invariant, which formulates very precisely
the meaning of the image inside of TrackSide. It provides the exact rela-
tionship between the internal information and the physical position of trains
and the physical status of the infrastructure.

– The model is very precise about the time points for which the internal infor-
mation is valid. Delays between the image and the physical world are not
“swept under the carpet”. The formal model provides conditions under which
the safety of the image is maintained by any update and action.

The proof model uses a new refinement technique to deal with arbitrary
delays, by adding virtual events and temporary invariants that are preserved
until the end of the delay. In summary, we have achieved the following:

– We have ported some of the ideas and concepts from CBTC models to a
(simplified) generic moving block model.

– We were able to create a formal model suited for rigorous formal proof and
animation and visualization.

– We successfully combined sub-models into a single overall model, that can be
used as demonstrator or shown to domain experts.

– We established the absence of collisions (despite delays in position reports).
– Parts of the model were formally proven for all topologies. Train image and

protection zones are vital concepts and scale to inductive formal proof.

The take away conclusions of this work are:

– We are confident that a proven formal model for moving block can be devel-
oped with sufficient precision for ETCS.

– Reusing experience from CBTC (and also HL3) is possible, key concepts
and components are now known. We argue for a train-centric approach with
inductive key properties rather than the track-centric approach of [1].

– The key to a good design and good safety case are inductive concepts, which
have a clear and precise link to the physical reality, are robust wrt delays and
which can be understood by stakeholders and (future) engineers alike.
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– It is important to complement formal proof with animation and it is possi-
ble, given current tooling, to develop a formal Event-B model that can serve
multiple purposes: as safety proof, as an executable reference specification
understandable by domain experts, and as a demonstrator for experimenta-
tion and field tests.
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5. Biere, A., Kröning, D.: SAT-based model checking. In: Handbook of Model
Checking, pp. 277–303. Springer, Cham (2018). https://doi.org/10.1007/978-3-
319-10575-8 10

6. Borälv, A.: Case study: formal verification of a computerized railway interlocking.
Formal Aspects Comput. 10(4), 338–360 (1998)

7. Breton, N., Fonteneau, Y.: S3: proving the safety of critical systems. In: Lecomte,
T., Pinger, R., Romanovsky, A. (eds.) RSSRail 2016. LNCS, vol. 9707, pp. 231–242.
Springer, Cham (2016). https://doi.org/10.1007/978-3-319-33951-1 17

8. Butler, M., et al.: Formal modelling techniques for efficient development of railway
control products. In: Fantechi, A., Lecomte, T., Romanovsky, A. (eds.) RSSRail
2017. Lecture Notes in Computer Science, vol. 10598, pp. 71–86. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-68499-4 5

9. Butler, M., et al.: The first twenty-five years of industrial use of the B-method. In:
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Abstract. The Engineering Data Preparation System (E-DPS) is a
tool-chain produced by Siemens Mobility Limited for digital railway
scheme design. This paper is concerned with the creation of a tool able
to formally verify that the scheme plans follow the design rules required
for correct European Train Control System (ETCS) operation. The E-
DPS Checker encodes the scheme plan and signalling design rules as an
attributed graph and logical constraints over that graph, respectively.
Logical constraints are verified by the E-DPS Checker using the satisfia-
bility modulo theories solver Z3. This approach verifies the configuration
of ETCS for a particular scheme and reduces the amount of principles
testing and manual checking required. The E-DPS Checker is currently
being developed to EN50128 basic integrity and has been applied to ver-
ify the correctness of a number of real-world scheme plans as part of the
development process.

1 Introduction

Railway verification with formal methods has a long history [8]. Often, verifi-
cation concerns the dynamic aspects of rail movement. However, there are also
verification challenges with regards to the static design of railways. Given the
topological track layout in form of a track plan, a scheme plan provides a sig-
nalling design (that can include elements of conceptual nature, e.g., routes, as
well as where to place track side equipment, e.g., balises). In this paper, we con-
sider the question of how to verify if scheme plans follow a set of design rules,
which arise from railway standards and safety concerns. We formally represent
both, scheme plans and design rules, and implement a tool chain to automati-
cally verify if a scheme plan complies with the desired properties. As a speciality,
we also represent counterexamples in a visual way, with a view to bridge the gap
between the shape of the formal verification result as a logical formula and the
domain specific language of railways.
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Scheme plans were originally created by survey with engineers measuring
the track layout and the location of equipment by hand. Modern surveys are
performed using a LIDAR scanning train which generates a highly accurate
digital map of the railway. The detailed map is encoded in a file format that is
easy for both humans and machines to process. The existing process for checking
is laborious, the data and changes are manually reviewed by inspecting the files.
This is made worse by the fact that the scheme design follows an iterative process,
in which a human reviewer may end up checking the same files repeatedly. As
human beings are weak at performing repetitive tasks with subtle differences
between each required check, fatigue can set in and the possibility for human
error increases.

Modern railway signalling systems, such as the European Train Control Sys-
tem (ETCS), are designed using accurate geographical maps of the railway
derived from scheme plans. The maps contain the topology of the tracks, posi-
tions of signalling equipment, and conceptual constructs such as train routes.
The safe operation of the signalling systems requires that the geographic maps,
and the signalling schemes that they represent, reflect the safety principles of
the system. The combined safety target for the system under discussion in this
paper is SIL 2. Our formal method tool forms part of the safety argument for
this level. It serves as an independent and diverse check at reasonable cost.

In this paper we will consider two, medium-size, real world examples of
scheme plans, one which is an extension to an existing development, and one
which is a new development. One of these plans has about 300 passive position
beacons (so-called balises). If one was to naively checking if all pairs of balises
would fulfil one layout criterion, one would have to perform nearly one hundred
thousand checks. The challenge is to design a tool-chain which is capable of
automatically verifying such number of checks within an acceptable time, say,
within less than one hour per scheme plan. Figure 1 presents our tool-chain.

Our tool-chain takes as an input a scheme plan and formally represents it as
a labelled graph in SMT-Lib2 [4]. The next step is to identify for which elements
of the scheme plan a specific design rule applies: a design rule can be seen as
a pattern, which can be instantiated using these elements. Each instantiation
yields a check which is passed on to a verification process with the SMT Solver
Z3 [15] at its heart. After possibly several calls to Z3, this process produces a
three-valued output of Fail/Pass/Unknown. In case the check fails, we produce
a visualisation of a counter example. The final output is a report comprising of
all results of the checks for one rule.

As SMT solving is Siemens’ chosen proof technology for many verification
tasks, it was natural to utilise SMT solving also for geographic scheme data
verification. With the prover Z3 there is a tool available that has been developed
up to industrial standards.
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Fig. 1. Geographic Scheme Data Verification Tool-Chain

As a multitude of properties shall be encoded, the decision was to build a
human-readable domain specific language on top of SMT-Lib2 rather than hav-
ing a possibly easier to solve Constraint Satisfaction Encoding for each property.
Here, we are (perhaps) trading the possibility to validate property encodings for
verification speed. The same holds for the possibility to rely on Z3’s graph search
as underlying proof method.

1.1 Related Work

Formal methods have been applied to verify both traditional and more mod-
ern signalling systems. For instance, the specification of ETCS has been verified
in [16], and the European Rail Traffic Management System in [6]. [9] investi-
gates how static checking of interlocking control tables can complement model-
checking approaches. In [10], Idani et al. developed an approach to modelling
railway topologies and signalling systems. Similarly to them, our work involves
both graphical DSLs and formal methods, but they check dynamic properties
while our work verifies static properties of the infrastructure.

In [3,13], the authors perform data validation using the OVADO tool, based
on the B-method. For data description, they rely heavily on the B-method’s set
theory and first-order logic. However, as they perform static validation, the B-
method’s abstract machine notation plays less of a role. They model a scheme
plan as a one-dimensional Cartesian coordinate system, in which balises, sig-
nals, points, track circuits, blocks, etc. are placed. They are modelling informal
requirements such as “each zone must be connected”. Depending on the CBTC
equipment investigated, its multiplicity in the design, and the number of proper-
ties to be verified, the validation times range from minutes to several hours. The
OVADO tool might be capable of validating the properties we are interested in,
however as discussed above, it would not fit into the Siemens ecosystem of veri-
fication tools. The verification times we achieve appear to be better, as they are
in the range of minutes only, however we achieved them on hardware advanced
over a decade.
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In [14], Luteberget developed a tool suite named Junction, which features
verification of infrastructure data for consistency and compliance with rules and
regulations encoded in a knowledge base. Runtime for verification tasks is in the
order of seconds. This is for a workflow in which one new element is placed into
a scheme plan, and it is verified if the placement of this element complies with
the rules. We took inspiration from this work for visualising counterexamples.
One difference is that, like the OVADO tool [3], we are using first order logic
to express properties, while Luteberget is restricted to Horn clauses. In our
verification practice we found some design rules that appear to require existential
quantification and thus require first order logic. The workflow to be supported
at Siemens differs from the one by [14]. There is a need to verify a whole scheme
plan after its design rather than to verify ‘on the fly’ when adding a new element.
Again, our choice of technology is driven by the need to have a uniform formal
methods framework: Siemens Mobility has started to build several tools around
SMT solving.

1.2 The Paper’s Scientific Contributions

In our paper, we provide a holistic view of how to bring together different tech-
niques (DSLs, SMT solving, transformations, counter example visualisation) for
efficient data verification. In particular, we

– formulate a DSL on top of SMT-Lib2, utilising type classes capturing the
signalling elements and mapping them to topological constructs;

– define an iterative process calling unsat-checks based on proof generation
capabilities of the underlying SMT solver;

– report on a unique process on how to ensure that safety properties have been
faithfully encoded in FOL; and

– design a counterexample display chosen by the instrument of a focus group
and integrated it into the Siemens Engineering Data Preparation System
(E-DPS).

1.3 Organisation of the Paper

In Sect. 2 we briefly discuss the topics of scheme plan representation and SMT
solving. In Sect. 3 we give some example design rules and detail the formalisation
process that represents them in first order logic. In Sect. 4 we describe rule
instantiation for a scheme plan and how to address our verification challenge
using SMT solving. In Sect. 5 we present how counterexamples found in the
verification process can be visualised for rail engineers. In Sect. 6 we provide
performance results.

2 Background

The E-DPS system utilises several representations for processing scheme plan
data. The model on which we perform automated reasoning (cf. Scheme Plan
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Data of Fig. 1) is the so-called node edge model (NEM, cf. Definition 1) which
allows for automated translation to SMT-Lib2 (see Sect. 2.1). An NEM is an
attributed graph, where generic attributes store data associated with the various
scheme plan elements. Figure 2 shows such an NEM with two balises placed
on a passing loop. The balises are represented as position objects, which have
a location within the topology. All objects in the model are attributed with
additional information, including the type of the signalling object, its identifier,
and any other data that would be contained within the scheme plan.

Fig. 2. Example of an NEM containing nodes attributed with balise information.

Definition 1 (Node Edge Model). A node edge model is a triple (N, E, P )
where N , E, and P are sets of nodes, edges and positions, respectively. Edges
have a weight length(e). Every position p has an associated node(p). Nodes, edges
and positions are referred to as object types in the model and can be attributed
with additional information.

2.1 SMT Solving

The Boolean satisfiability problem (SAT) [7] is foundational to theoretical com-
puter science. It can be stated as follows: given a Boolean formula ϕ does there
exist a model M assigning truth values to the variables of ϕ such that ϕ evaluates
to true? Tools to solve this problem are commonly referred to as SAT solvers.
Typically, SAT solvers produce either a satisfying assignment in the case that ϕ
is satisfiable or a derivation demonstrating that ϕ is unsatisfiable.

Satisfiability modulo theories (SMT) is a generalization of SAT to solve addi-
tional types of problems. In SMT solving, the Boolean formula ϕ is replaced with
a many-sorted first order logic formula over a set of theories T , e.g., for numbers,
arrays, and strings. The result of SMT solving is three valued: satisfiable, if the
solver could find a model, unsatisfiable, if the solver could show that there is no
model, and unknown, if the solver’s proof procedures were unable to come to a
decision within the user-defined timeframe.

E-DPS Checker uses the SMT-Lib2 [4] standard to encode scheme plans and
desirable properties. SMT-Lib2 is tool independent. For SMT solving, E-DPS
Checker currently uses Z3 [15] developed by Microsoft Research. As an industrial
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user we want to use tools that are widely adopted and offer a degree of stability.
For performance reasons, in the E-DPS Checker we disable the ability of Z3 to
generate a model, i.e., a satisfiable result, and can only obtain either unsatisfiable
or unknown from an instance check with of Z3 (cf. Fig. 1).

3 Design Rules and Their Formalization

The Radio Block Centre (RBC) is one of the many safety-critical components of
ETCS level 2. Data preparation for the RBC includes the provision of a scheme
plan, detailing, e.g., the specific locations of balises. The placement of track
equipment must meet strict layout requirements to ensure safe operation. There
are various sources of these layout requirements. For example, the Futur series
of RBC designed by Siemens comes with vendor-specific requirements. These
ensure the correctness of product-specific implementation of ETCS functions.
Other examples are project or area specific requirements that are determined by
local infrastructure managers or standard bodies. In the following we provide two
example rules concerning the placement of balises. The BG-03 design rule1 states
that design placement of balises should avoid points and crossings. Designed
spacing shall be constrained by:

1. 1.0 m between balise and point toes.
2. 1.0 m between balise and point frog.
3. 1.4 m lateral separation between a balise on one path and the centre line of

the other path.
4. No balises between the toe and frog of set of points.

The rationale for this rule is as follows. If a balise is present very near to a
point node or a diamond node, then the metal in the point may interfere with
the reading of the balise. Also, the lateral separation between two balises should
be greater than 1.4 m. As, if the two balises are placed too close to each other,
then the train can read the information from the wrong balise which can lead to
wrong-side failure and in turn could also lead to collision between trains.

The BG-05 design rule2 states that the designed minimum spacing between
adjacent balise groups shall be constrained by: MIN BG SEPARATION between
adjacent end balises, one at each end of the two groups. MIN BG SEPARATION
is a numeric value which describes the minimum distance which must be present
between adjacent end balises, one at each end of the two groups. This rule shall
prevent trains from missing a reading, as could happen if adjacent end balises
of two balise groups are placed too close to each other. Additionally, balises are
expensive and there is an engineering trade off to be made between the accuracy
of train positioning and cost.

1 The lateral separation part is derived from [2] Subset-036 v3.1.0 Table 1 ‘One Balise
and one Antenna Unit’. The other parts are derived from [2] section 5.7.10.

2 This requirement originates from subset-040 (Dimensioning and Engineering rules)
[1] section 4.1.1.from the ETCS specification documents.
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Our process of formalising properties consists of several steps, that finally
lead to an XML file of design rules, see Fig. 1. In the first step, railway engineers
perform a refinement of the source requirements, which usually come in the
form of text documents. In this step, they re-describe the desired behaviours or
restrictions in terms of the data structures or functions of the target RBC or
interlocking. This yields an intermediate document.

In the second step, software engineers provide a clear mapping between
the terms of the intermediate document and NEM elements. Using the BG-
05 requirement as an example, the terms ‘balise group’ and ‘balise’ correlate to
the ‘BaliseGroup’ and ‘Balise’ object types of the NEM.

The requirements of the intermediate document are still given as natural
language descriptions, which – for the sake of formal verification – need to be
captured in an unambiguous mathematical notation. Here, we chose many-sorted
first order logic which enables us to define operators over the generic sorts of the
NEM. These operators include, e.g., distance which is a function representing
the distance between two positions or nodes; and adjacent, which is a predicate
that indicates that there is a path between two objects with no other objects of
the same type on that path.

To determine which balise pairs should be checked for BG-05, we need to
consider several conditions: balises b, b′ should not be in the same balise group;
b, b′ should be at the ends of their respective balise groups; and b, b′ should be
adjacent. These considerations finally lead to our formalisation of BG-05:3
∀b, b′ ∈ SetBalise.adjacent(b, b′) → balise group id(b) �= balise group id(b′) →

distance(b, b′) ≥ MIN BG SEPARATION

Such design rule formulae are stored as an XML file for use by the checker
tool, cf. Fig. 1. Modelling assumptions and mappings are recorded in an accom-
panying document. In a final step, the railway engineers who authored the
intermediate document review the formalisation. This includes checking example
schemes plans that are expected to pass or fail the design rules.

4 Verification Approach

The verification process starts by encoding both the scheme plan and the design
rule into SMT-Lib2 internally inside the checker. Each element of the scheme
plan is encoded as an NEM object in SMT-Lib2 representation. The transfor-
mation process is complex with several stages and additional entities. Here, we
provide the core constructions. Once encoded, the design rules are instantiated
for a particular scheme plan, removing the quantifiers and constructing a num-
ber of design rule instances. Following the instantiation, the checker performs
an iterative deepening search to analyse the instances with reachability axioms,
cf. Fig. 1.

3 Due to our definition of adjacency (no intermediate balise objects), we do not need
a specific ‘end balise’ relation in the formalisation of this design rule.
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4.1 Quantifier Instantiation and Sub-formulae Elimination

Our E-DPS Checker carries out a number of pre-processing steps in C# prior to
executing the SMT solver, see step “Instantiate the design rule” in Fig. 1. Quanti-
fiers fall into the semi-decidable fragment of first order logic and therefore in gen-
eral are hard to reason about for SMT solvers. When the value of the quantified
variable is from some finite domain like a finite set then it is possible to iterate
over all concrete values of the variable and write an equivalent logical expression
without the quantifier: ∀x(x ∈ S → P (x)) can equivalently be replaced by ∧t∈S

P [t/x]. Formulae with false premises are trivially true and can be eliminated
from any conjunction: P1 ∧ . . . ∧ Pn−1 ∧ (⊥ → Pn) can equivalently be replaced
by P1 ∧ . . . ∧ Pn−1. In practice, our E-DPS Checker generates a set of formulae
referred to as assumptions during model translation. These are used during the
false premise elimination phase to reduce the number of checks required from
the order of hundreds of thousands to thousands of checks.

4.2 Reachability

A large number of the design rules formalized as part of the checker development
require that signalling elements have either a minimum or maximum separation
and are referred to as reachability constraints. The standard way to reason about
reachability is to use a breadth-first search algorithm to find the shortest path
between two nodes. The E-DPS Checker takes a declarative approach that sim-
ulates the performance benefits of breadth-first search. It uses SMT solving to
construct a traversal tree starting from the source node of the search and incre-
mentally deepens the tree until it can infer the required information. This has
taken inspiration from iterative deepening depth-first search [11] which is an
approach to simulate the behaviour of breadth-first search with a depth-first
search algorithm. It has as an additional benefit that Z3 computes a witness to
the design rule in the form of a traversal tree or path, which would be missing
if an imperative algorithm was used.

Definition 2 (Traversal Tree). A k-traversal tree traversal treek(n0, nend)
from a source node n0 to a destination node nend is the set of all path seg-
ments up to length k. A path segment in this context may end on the destination
node or earlier.

In our first attempt, we naively formalized the standard definition of reachability,
however, this caused the SMT solver to blindly generate all paths from a source
node to the destination and was highly inefficient. The initial focus of the checker
was to prove reachability constraints with minimal separation with other kinds of
properties being in scope over the longer term. To this end, we have developed
an axiomatisation of reachability that could infer minimal separation by only
analysing the immediate vicinity around the source node.
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Definition 3 (Reachability). We define a k-shortest segment in a k-traversal
tree as:

∀k. ∀n0, ne. ∀p ∈ traversal treek(n0, ne). ∀q ∈ traversal treek(n0, ne)
(length(p) ≤ length(q)) → p ∈ shortest segk(n0, ne)

Distance is defined using 3 axioms, here we only present the axiom for validat-
ing minimum separation, the other axioms follow a similar pattern. The axiom
states that if we have a k-shortest segment p and the end of the segment is
not the destination node, then we can infer that the distance between n0 and
ne is at least length(p): ∀k.∀n0, ne.∀p ∈ shortest segk(n0, ne) (end(p) �= ne →
distance(n0, ne) ≥ length(p)).

The impact of this axiomatisation is that the majority of checks can be achieved
through a low-bound in less than a second per instance.

Lemma 1 (Monotonicity of Minimum Separation). The minimum sepa-
ration axiom is monotonic: if the two nodes are inferred to be minimally sepa-
rated at k then minimum separation would also hold at all subsequent k′ > k:

∀k, n0, ne.∃p ∈ shortest segk(n0, ne)(end(p) �= ne ∧ distance(n0, ne) ≥ length(p))
→ ∃q ∈ shortest segk+1(n0, ne) (distance(n0, ne) ≥ length(q))

The other reachability axioms have similar correctness arguments.

4.3 Instance Checking Process

The E-DPS Checker runs an iterative process of quantifier instantiation as shown
in Fig. 3 to infer whether a given design rule instance holds, resulting in one of
three overall results for a design rule Manual Check Required/Pass/Fail.
A result of Manual Check Required indicates that the solver was unable to
decide one or more instances, however the rest of the instances complied with
the design rule. A Pass requires that all design rule instances were successfully
validated, whereas a Fail indicates that there were one or more instances where
a counter example was produced demonstrating that the design rule does not
hold. Checking the individual instances one at a time increases the performance,
the model axioms are only instantiated with the instances being checked and
the topological constructs under the bound of the search. The process starts by
assigning 1 to the bound k and takes as input the SMT-Lib2 representation of
the NEM model and design rule instances. Then up to three runs of Z3 are made:

Bug-finding Pass: Checks whether the design rule instance is incompatible
with the encoded node edge model. If the SMT solver returns unsat then there
exists a counter example which can be discovered by the counter example pass.
The checker has inferred that the instance does not comply with the design
rule.
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Fig. 3. Instance Checking Process

Validating Pass: Checks whether the negated design rule instance is incom-
patible with the encoded node edge model. If the SMT solver returns unsat
then the design rule instance and the model are compatible. The checker has
inferred that the instance complies with the design rule.

Counter Example Pass: Generates an unsat core which forms a counter exam-
ple indicating which model elements caused the violation of the design rule.

If the bound has not been reached, then all the validated instances are removed,
the current value of the bound k is incremented, and the process is rerun. The
maximum bound is a user configurable constant.

5 Counterexample Visualisation

Our tool-chain has the capability to visualise counterexamples, see the box “Add
counterexample data” in Fig. 1. The instance checking process, see Fig. 3, triggers
construction of a counter example if an inconsistency has been found. Here, we
instantiate the quantifiers as much as necessary to produce the first counterex-
ample. In principle, the unsat core produced as witness might consist of many
clauses. However, as we are focusing on constants only, experience suggests that
its size does not pose a problem.

Through a focus group study [12] with the intended user group of railway
engineers, we determined of how to visualise counterexamples and accompany
them with an explanatory text, see Fig. 4 for a typical example of our final design:
on the left, it shows a scheme plan with a wrongly placed balise (4 3), in the
middle it shows the visualisation of the counter example highlighting in NEM
the nodes involved (in blue) and the distance that needs changing (in yellow),
on the right a text provides an explanation of the mistake.
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Fig. 4. Counterexample Visualisation for a violation of the BG-03 design rule

In case the algorithm in Fig. 3 returns that a design rule is incompatible with
a given scheme plan, the Counter Example Pass generates a so-called unsat
core4 from which we extract information about the found counterexample. For
instance, the unsat core for the violation shown in Fig. 4 looks as follows:

(distance_to_distancebound_2 def_edge_T1_node_4_3_PointsNode5
def_pointsnode_PointsNode5 def_position_Balise_4_3 rule2)

The transformation from such an unsat core to its visualisation involves sev-
eral steps. Thanks to a consistent naming scheme of the axioms in SMT-Lib2 it is
possible to identify which elements of the NEM are violating a rule. For instance,
labelled elements of the scheme plan have axioms names with the prefix def .
Thus, by parsing the above unsat core, we know that the violating elements are
PointsNode5 and the balise 4 3, and that the violating distance involves the edge
called T1 node 4 3 PointsNode5.5 This allows us to produce explanatory text.
This information is also stored in an XML report, which is read and rendered by
the E-DPS Editor. Here, an XAML file contains a specification of how to display
the various elements contained in such a report.

6 Analysis of Performance on Real World Examples

To analyse performance of the automated checks, we have applied balise group
placement rules BG-03 and BG-05 against real-world example railway scheme
plans.6 Our real-world railway scheme plans include all the physical compo-
nents (tracks, signals, points etc.) as well as the logical components like routes,
subroutes and locking conditions. For the performance analysis we have consid-
ered two real-world railway scheme plans, one example from new development
(ND) and another an extension to an existing development (ED). Below are
the features of the example railway scheme plan considered for the performance
analysis:
4 Given an unsatisfiable Boolean propositional formula in conjunctive normal form, a

subset of clauses whose conjunction is unsatisfiable is called an unsatisfiable core.
5 In more complex scheme plans, the connection between the violating elements can

consist of several edges, in our example it involves only one edge.
6 The following is the configuration of the machine used to run the automated tests:

ZBook Fury 15 G7 Mobile Workstation, Microsoft Windows 10 Enterprise OS, x64-
based PC, Intel R©CoreTM i7-10850H CPU @ 2.7GHz with 6 cores.
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Railway Scheme Plan Tracks Signals Block Markers Points Balises
ND 10 27 21 12 72
ED 42 44 0 32 237

The following table documents the run-tine of automated testing for checking
of the design rules for real-world railway scheme plans. Timing is provided in
seconds.

Railway Scheme Plan Design Rule Automated Check (s)
ND BG-03 (part 1) 32
ND BG-03 (part 2) 64
ND BG-05 192
ED BG-03 (part 1) 34
ED BG-03 (part 2) 85
ED BG-05 208

These times are sufficiently small to make the tool useful in the context of
the envisioned workflow at Siemens, where verification shall run as a background
service rather than live during editing. There is room for improvement on veri-
fication times, in particular quantifier instantiation is not optimal yet.

One benefit with automated checking is that it reduces the time to perform
the checks compared to a manual approach. A further benefit is that it is guaran-
teed that all the faults will be found by automated checking. A human checker
might overlook a combination. Also, human errors due to repetitive work are
eliminated. Furthermore, automated checks cater for re-design of scheme plans.
Though in the examples of ED and ND, the automated checking did not reveal
any new mistakes, it is often the case that errors in scheme plans are found at
later stages of the scheme design and were costly to resolve. Automated checking
guarantees that errors are found early on.

7 Summary and Future Work

We have presented a tool-chain that scales to the verification of static properties
of real-world scheme plans. The tool-chain is based on SMT solving and utilizes
the Z3 solver. Thanks to optimisations of properties and the strategy of which
properties to check first, verification time is kept small. The formal method is
made applicable by counterexample visualisation, developed involving railway
engineers as end users.

Parallel deployment with the manual process is future work. We plan to
utilize satisfiability modulo monotonic theories [5] for model generation, cur-
rently Z3 is unable to generate such models. This will extend our approach
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to automated test data generation and automatic scheme plan design. Design
rule instantiation currently relies on the trustworthiness of the C# code, fur-
ther investigation of the interplay between pre-computing solutions and checking
solutions is desirable. Another approach to further increase integrity will be to
pursue proof checking and proof reconstruction.
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