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Abstract. Accurately quantifying and removing submerged underwa-
ter waste plays a crucial role in safeguarding marine life and preserving
the environment. While detecting floating and surface debris is relatively
straightforward, quantifying submerged waste presents significant chal-
lenges due to factors like light refraction, absorption, suspended particles,
and color distortion. This paper addresses these challenges by proposing
the development of a custom dataset and an efficient detection approach
for submerged marine debris. The dataset encompasses diverse under-
water environments and incorporates annotations for precise labeling of
debris instances. Ultimately, the primary objective of this custom dataset
is to enhance the diversity of litter instances and improve their detection
accuracy in deep submerged environments by leveraging state-of-the-art
deep learning architectures. The source code to replicate the results in
this paper can be found at GitHub.

Keywords: Deep Learning · Computer Vision · Visual Object
Detection · Artificial Intelligence · Robotics · Marine Debris · Trash
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1 Introduction

Over the past few years, the increase in underwater debris due to poor
waste management practices, littering, and international industry expansion has
resulted in numerous environmental issues, such as water pollution and harm to
aquatic life [1,2]. The debris, which remains in the epipelagic and mesopelagic
zones (Fig. 1) for years after it is dumped into the water, not only pollutes
the water but also harms aquatic animals [3]. However, removing debris from
beneath the aquatic surface is challenging and expensive. Thus, there is a need
for a cost-effective solution that can operate effectively and efficiently in a wide
range of environments.

Recent advances in robotics, artificial intelligence, and automated driving
[5,6] have made it feasible to use intelligent robots for underwater debris removal.
Nevertheless, existing approaches are costly, and computationally demanding.
Additionally, publicly available datasets are environment-specific, which limits
their ability to produce a generalized and robust model. Therefore, we propose a
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Fig. 1. Zones of the Oceans [4].

new dataset where the main focus is to increase the diversity of litter instances
and enhance the generalization ability of state-of-the-art object detectors.

Autonomous underwater vehicles (AUVs) are a crucial component of a suc-
cessful strategy for removing debris from maritime ecosystems. Therefore, the
primary requirement for Autonomous Underwater Vehicles (AUVs) is the detec-
tion of underwater debris, specifically plastic debris. To address this challenge,
we evaluated the dataset using advanced computer vision techniques to estab-
lish a baseline for litter detection. Our goal is to replace resource-intensive, time
consuming algorithms with more efficient ones that will aid in real-time under-
water debris detection. In this regard, we explore various deep learning based
visual object detection networks that are trained and tested using the proposed
dataset. The effectiveness of these detectors is evaluated using multiple metrics
to validate their performance accurately.

The following are the main contributions of this paper:

– Proposed a new dataset with a focus to increase the diversity of litter instances
under different environments.

– Trash, Rover and Bio are the three classes in the proposed dataset.
– Benchmarked the litter detection by using various deep learning-based object

detectors.

2 Related Work

The literature in underwater robotics has focused on the development of multi-
robot systems for surface and deep water natural aquatic environment applica-
tions such as marine monitoring using learning-based recognition of underwater
biological occurrences by the National Oceanic and Atmospheric Administra-
tion [7]. Underwater robots have also been utilized for environmental monitor-
ing, environmental mapping [8], maritime robotics for guidance and localization
[9–12].

Underwater debris, particularly plastic waste, has become a significant envi-
ronmental concern due to its detrimental effects on marine ecosystems. Plastic
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debris can persist in the marine environment for long periods, posing threats
to marine organisms through entanglement, ingestion, and habitat destruction
[13,14]. It can also disrupt marine food webs and alter the biodiversity of marine
ecosystems.

Efforts have been made to address the issue of underwater debris removal.
Various methods have been employed, including manual clean-up operations,
the use of remotely operated underwater vehicles (ROVs) equipped with grip-
ping arms to physically capture debris, and the development of autonomous
robotic systems specifically designed for marine debris removal. However, these
approaches often face challenges in terms of efficiency, cost-effectiveness, and
the vast scale of the problem. Researchers and organizations continue to explore
innovative strategies and technologies to effectively tackle underwater debris and
minimize its impact on the marine environment [15,16].

Recently, underwater robotics (ROVs) is considered as a popular alternative
over the harmful manual methods to remove the marine debris. The vision system
of a robot will aid in localising the debris and provide appropriate feedback
to physically control a gripper limb to capture the objects of interest. A non-
profit group for environmental protection and cleaning, Clear Blue Sea [17],
has proposed the FRED (Floating Robot for Eliminating Debris). However, the
FRED platform is not autonomous. In order to find garbage in marine habitats,
another nonprofit, the Rozalia project, has employed underwater ROVs fitted
with multibeam and side-scan sonars [3]. Autonomous garbage identification
and collection for terrestrial settings have also been studied, such as in the case
of Kulkarni et al. [18], who employed ultrasonic devices and applied them to
interior garbage. However, a vision-based system can also be envisioned.

In a study on at-sea tracking of marine detritus by Mare [19], various tactics
and technological possibilities were addressed. Following the 2011 tsunami off
the shore in Japan, researchers have examined the removal of detritus from the
ocean’s top [20] using advanced Deep Visual Detection Models. In the study by
M. Bernstein [21], LIDAR was used to locate and record beach garbage.

In recent research by Valdenegro-Toro[22], it was shown that a deep convo-
lutional neural network (CNN) trained on forward-looking sonar (FLS) images
could identify underwater debris with an accuracy of about 80%. This study
made use of a custom made dataset created by capturing FLS images of items
frequently discovered with marine debris in a water tank. Data from water tanks
were also used in the assessment.

As mentioned above, the majority of the literature which dealt with debris
detection used either sonar or lidar sensors. However, visual sensors have supe-
rior resolution over sensors such as sonars or lidar. A sizable, labeled collection
of underwater detritus is required to allow visual identification of underwater
litter using a deep learning-based model. This collection needs to include infor-
mation gathered from a broad variety of underwater habitats to accurately cap-
ture the various looks across wide-ranging geographic areas. There are very few
datasets that are publicly available and majority of them are unlabeled. The
Monterey Bay Aquarium Research Institute (MBARI) has amassed a dataset
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over 22 years to survey trash strewn across the ocean floor off the western coast
of the United States of America [23], specifically plastic and metal inside and
around the undersea Monterey Canyon, which traps and transports the debris in
the deep oceans. The Global Oceanographic Data Center, a division of the Japan
Agency for Marine-Earth Science and Technology (JAMSTEC), is another exam-
ple of a publicly available large dataset. As part of the larger J-EDI (JAMSTEC
E-Library of Deep-sea Images) collection, JAMSTEC has made a dataset of
deep-sea detritus available online [11]. This dataset provides type-specific debris
data in the form of short video clips and images dating back to 1982. The anno-
tated data was utilized to construct deep learning-based models for the work
discussed in this paper.

In summary, various studies have been conducted on the use of autonomous
robots for underwater monitoring and debris collection. The development of
multi-robot systems for environmental monitoring, environmental mapping, mar-
itime robotics, and other applications have utilized undersea robots. Researchers
have also explored learning-based recognition of underwater biological occur-
rences for marine monitoring. Additionally, the use of remotely operated under-
water vehicles (ROVs) and autonomous garbage identification and collection for
terrestrial settings has been studied. A significant labeled collection of under-
water trash is necessary for accurate identification using deep learning-based
models.

3 Dataset

3.1 Existing Datasets

Although several publicly available datasets, including JAMSTEC, J-ED, Trash-
CAN 1.0, and Trash-ICRA19, exist for automatic waste detection, they are
highly domain-specific and restricted to very limited environmental variations
[24]. Table 1 and 2 shows the statistics of existing detection and classification
datasets, respectively. This limits the generalisation ability for using the vision
based debris detectors across wide variety of water bodies. Also, lack of diver-
sity in the existing datasets can induce bias into the object detection networks.
The main aim of the proposed dataset is to increase the diversity of images in
identifying three classes, namely Trash, Rover, and Bio, which are most useful
for classifying submerged debris.

The Bio class provides an aspect of marine life in the environment and how
much trash has affected it relative to nearby environments which can be used
to further prioritise the trash cleaning. The Rover class helps differentiate the
rover from being misclassified as trash in some input imagery. Finally, the Trash
class helps to detect and quantify the amount of trash present in the input
image/video. The dataset was curated by collecting inputs from various open-
source datasets and videos across different oceans and water bodies with varying
conditions and environments. We manually annotated marine debris in frames
of images, focusing on selecting images with tricky object detection conditions
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Table 1. Comparison of existing litter detection datasets.

Type Dataset # classes # images Annotation type Environment

Detection Wade-AI 1 1396 instance masks outdoor
Detection Extended TACO 7 4562 bounding box outdoor
Detection UAVVaste 1 772 instance masks outdoor
Detection TrashCan 8 7212 instance masks underwater
Detection Trash-ICRA 7 7668 bounding box underwater
Detection Drinking waste 4 4810 bounding box indoor
Detection MJU-Waste 1 2475 instance masks indoor
Detection MJU-Waste 1 2475 instance masks indoor

Table 2. Comparison of existing litter classification datasets.

Type Dataset Images Classes Instances Environment Annotation type

Classification Open Litter Map > 100k > 100 > 100k outdoor multilabels
Classification Waste pictures 23633 34 23633 outdoor labels
Classification TrashNet 2194 5 2194 indoor labels

like occlusion, noise, and illumination. We used an annotation tool [25] to create
the final dataset, which comprises of 9625 images.

3.2 Data Preparation

The first step to create this dataset is to collect inputs from various open-source
datasets and videos with varying ocean environments from different countries.
We manually annotated the marine debris in frames of images, focusing on select-
ing images with difficult object detection conditions such as occlusion, noise,
and illumination. The annotations were done using a free annotation tool [25],
resulting in 9,625 images in the dataset. A few of the sample images from our
dataset are shown in Fig. 2. It can be seen that the diversity of objects and the
environments that were considered in this paper.

Fig. 2. Representative images from proposed dataset.
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A Deep learning analysis was also performed on the pre-existing datasets,
which can be viewed on our paper’s source repository. While the models per-
formed well on training, they failed to accurately detect classes when tested
on unseen data from a slightly varying environment. Our dataset comprises of
bounding box labels and image annotations and is available in more than ten
different formats, making it readily importable for use with different algorithms.
The dataset was prepared using the following steps.

1. Data collection: The input images were selectively picked manually, com-
prising of varying environments across different regions of the world.

2. Annotation: The unlabelled raw images were annotated and the annotations
of labelled images were merged and renamed into three final categories, Trash,
Rov and Bio which stands for underwater debris, rover (autonomous vehicle)
and biological marine life respectively.

3. Pre-processing: These images were then rescaled to 416 × 416. A total
of 26 classes were dropped and mapped into the final three classes. Clear
water images that comprised of no annotations were also added to make the
model more robust towards different environments. The dataset was further
improved by randomly distorting the brightness and saturation of the images
using PyTorch’s built-in Transforms augmentation tool. This was done in
order to mitigate the effects of spurious correlations on the model and to
replicate variable underwater conditions such as illumination, occlusion, and
coloring.

The total dataset consisted of 9625 images which were split into approxi-
mately 7300 for training, 1800 for validation and 473 for test. The Labels of the
dataset were as follows:

– Trash: All sorts of marine debris (plastics, metals, etc.).
– Bio: All naturally occurring biological material, marine life, plants, etc.
– Rover: Parts of the rover such as a robotic arm, sensors, or any part of the

AUV to avoid misclassification.
The main objective behind choosing these three particular classes is that the
trash class will contain all forms of trash, this increases the model’s robust-
ness when encountering unseen/new form of trash. The Bio class provides
an aspect of current marine life in the environment and how much trash has
affected it relative to nearby environments which can be used to prioritise
the trash cleaning based on the quality of the marine life present. The Rover
class helps the rover’s components from being misclassified as trash in some
input imagery.

4 Benchmarking

This section presents the latest trash detection and classification models, followed
by benchmarks for the proposed dataset and statistical evaluation of the training
metrics.
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4.1 Object Detection Algorithms

The various architectures selected for this project were chosen from the most
recent, efficient, and successful object detection networks currently in use. Each
has its advantages and disadvantages, with different levels of accuracy, execution
speeds, and other metrics. We utilized several state-of-the-art neural network
architectures, including YOLOv7, YOLOv6s, YOLOv5s, and YOLOv4 Darknet,
using their respective repositories. We also trained a custom FasterR-CNN and
Mask R-CNN.

4.2 GPU Hardware

In this project, we utilized an Nvidia K80 GPU with a memory of 12 GB and
a memory clock rate of 0.82GHz. This GPU was released in 2014 and has two
CPU cores with 358 GB of disk space.

4.3 Models

In this section, we discuss the latest models used and the results produced.

You Only Look Once (YOLO). You Only Look Once, or YOLO, is a popular
object detection technique that can recognize multiple items in a real-time video
or image. In one evaluation, it utilizes a single neural network to predict bounding
boxes and class probabilities straight from the complete image. Due to this
approach, YOLO is faster and more accurate than other object detection systems
and therefore it can provide fast inference speeds for the real-time application
of this research.

– YOLOv7 tiny [26]: The YOLOv7 algorithm outperforms its older versions
in terms of speed and accuracy. It requires significantly less hardware than
conventional neural networks and can be trained much more quickly on small
datasets with no pre-learned weights.

– YOLOv5s small [27] and YOLOv6s (small) [28]: Both of these algorithms
have similar performances and results.

Faster R-CNN and Mask R-CNN. Faster R-CNN and Mask R-CNN are
two popular region-based object detection models that use a two-stage approach
for object detection. The first stage generates region proposals, and the second
stage predicts the class and refines the bounding box of each proposal.

Mask R-CNN. [28]: Mask R-CNN extends Faster R-CNN by adding a branch
to predict segmentation masks for each object. This allows the model to also
segment the detected objects in addition to predicting their bounding boxes and
class probabilities.
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4.4 Evaluation Metrics

After the model has been trained, we utilize the testing and validation datasets,
which comprise images that are mutually exclusive from the training dataset, as
input to analyze the network’s accuracy. The model generates a bounding box
around correctly recognized items with a confidence value of.50 or higher. The
amount of true positive bounding boxes drawn around marine plastic waste and
true negatives serves as the basis for evaluation.

The following performance metrics were used to validate and compare the
performance of the detectors used:

– True positive and True negative values.
– Precision and Recall: Reflects whether the model predicted debris in the

input image.

Recall =
TP

TP + FN
, Precision =

TP

TP + FP
(1)

– Mean Average Precision: - Determines how frequently the network can
correctly identify plastic. After gathering the true and false positive data, use
the Intersection over Union (IoU) formula to build a precision-recall curve:

IOU =
BBoxpred ∩ BBoxGroundTruth

BBoxpred ∪ BBoxGroundTruth
(2)

where BBoxPred and BBoxGroundTruth are the expected areas under the
curve for predicted and ground truth bounding boxes. To maximize accuracy,
a high threshold for confidence and IoU must be specified, with a correct pre-
diction, indicated by the threshold being exceeded. After that, the mAP can
be calculated by integrating the precision-recall curve. obtained by integrating
the precision-recall curve [29]:

mAP =
∫ 1

0

p(x)dx (3)

5 Results

The results obtained for debris localization on our custom-curated dataset out-
perform previous models that used individual datasets for training. In this study,
we tested the individual components of two frameworks by conducting exhaus-
tive research on publicly available waste data in various contexts, including clean
waters, natural or man-made lakes/ponds, and ocean beds. The broad range of
baseline results for different contexts and diverse object dimensions will assist
future researchers in this field. The tested models exhibit high average precision,
mAP, and F1 scores compared to their inference speed.

The outcomes of a comprehensive study comparing several architectural net-
works are presented in Table 3. These trade-offs suggest that the results reported
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in this study better reflect long-term performance in a wider range of marine
conditions, enabling a more comprehensive evaluation of the object identifica-
tion model’s performance in the field. Our findings suggest that YOLOv5-Small
and YOLOv6s both achieve strong debris localization metrics in the real-time
detection of epipelagic plastic. However, YOLOv7 yields a notably higher F1
score despite a slight reduction in inference performance. The results of a com-
prehensive research comparing several architectural networks is shown in the
table below.

Table 3. Comparison between various algorithms for the purpose of benchmarking.

Network mAP 0.5 Precision Recall Epochs

YOLOv7 0.96 0.96 0.93 120
YOLOv5s 0.96 0.95 0.93 110
YOLOv6s 0.90 0.94 0.92 180
Faster R-CNN 0.81 0.88 – 100
Mask R-CNN 0.83 0.85 – 100

The trade-offs observed in our study demonstrate that the reported outcomes
reflect the long-term performance of the object identification model in a wider
range of marine conditions, thereby facilitating a more comprehensive evaluation
of the model’s performance in the field. Our findings suggest that YOLOv5-Small
and YOLOv6s achieve excellent debris localization metrics in real-time detection
of epipelagic plastic. However, YOLOv7 achieves a significantly higher F1 score
despite a slight decrease in inference performance.

After evaluating multiple advanced algorithms within the same fam-
ily, including YOLOv5x, v7E6E, and v8x, it was determined that the
nano/small/tiny network architecture demonstrated the highest performance in
evaluations, had a smaller parameter count, and required less computational
power. As a result, this architecture was selected for the study. These algorithms
outperformed classic Faster-RCNN and Mask-RCNN algorithms in terms of both
speed and F1 score.

The performance of the model in real-world scenarios was found to be consis-
tent with the evaluation results presented in Table 3, with only slight variations
observed in a near-real-time setting. These results demonstrate the model’s effi-
cacy in identifying and categorizing underwater debris in practical applications.
Furthermore, the proposed research can serve as a crucial baseline and bench-
mark for future investigations focused on the identification and classification of
marine debris.

ImgCordk = BoxScoreji ∗ Width (4)
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Fig. 3. Quantitative Analysis. (a) Yolov5 and (b) Yolov8. First row: Precision curves.
Second row: Recall curves.

where k belongs to the top, down, right and left corners, i is the box index,
j ε 0, 1, 2, 3, and Width is the image width. In the test photos, these image
coordinates were utilized to illustrate the results of predicted bounding boxes.

6 Conclusion

In this research, our objective was to improve object detection models by reduc-
ing dependence on environment-specific datasets. By employing our mixed,
curated dataset and the latest state-of-the-art computer vision models, we were
able to evaluate the feasibility of monitoring submerged marine debris in near-
real-time for debris quantification. Through the use of robotic arms within
Autonomous Underwater Vehicles (AUVs), our rapid inference speeds achieved
a high level of performance, making real-time object detection of marine plastic
litter in the ocean’s epipelagic and mesopelagic layer possible, as well as the
automatic detection, classification, and sorting of various submerged objects,
including the collection of debris in locations such as sea-beds that are inac-
cessible to humans due to high pressure and other environmental factors. This
application has the potential to automate trash recycling in the extreme aquatic
environment with the help of deep learning. Furthermore, our proposed research
serves as a fundamental baseline and benchmark for future research involving
the identification and classification of underwater debris.
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