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Abbreviations

18F-FDG	 18F-2-deoxy-2-fluoro-D-glucose
AD	 Alzheimer’s disease
Amyloid	 Beta-amyloid
APOE	 Apolipoprotein E
ASL	 Arterial spin labeling
CSF	 Cerebrospinal fluid
CT	 Computed tomography
FDA	 US Food and Drug Administration
FLAIR	 Fluid-attenuated inversion recovery
fMRI	 Functional magnetic resonance imaging
FTD	 Frontotemporal dementia
LBD	 Lewy body dementia
lvPPA	 Logopenic aphasia
MCI	 Mild cognitive impairment
MRI	 Magnetic resonance imaging
nfvPPA	 Non-fluent primary progressive aphasia
PET	 Positron-emission tomography
PPA	 Primary progressive aphasia
PSP	 Progressive supranuclear palsy
ROC	 Receiver operating characteristic
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SPECT	 Single photon emission computed tomography
svFTD	 Semantic variant of frontotemporal dementia
Tau	 Hyperphosphorylated tau
TSPO	 Translocator protein

1 � Introduction

The 2018 Research Framework defined the beta-amyloid, tau, and neurodegenera-
tion or AT[N] stages, determined by imaging biomarkers, as critical for Alzheimer’s 
disease (AD) research [1]. Imaging biomarkers for AD were used mostly in research 
until June 2021, when the US Food and Drug Administration (FDA) approved adu-
canumab for clinical use; since then, imaging biomarkers have been used in the 
clinic as well as in research because amyloid deposition in the brain needs to be 
documented before aducanumab may be used. Under the commercial name 
Aduhelm™, aducanumab is a human monoclonal antibody that selectively reacts 
with beta-amyloid brain aggregates, including soluble oligomers and insoluble 
fibrils [2]. Beta-amyloid (amyloid for brevity) is a protein that begins to accumulate 
in the brain of people who eventually will develop AD 5–15 years before the onset 
of clinical symptoms [3]. While amyloid imaging showed that aducanumab reduced 
brain amyloid in clinical trials including patients with mild cognitive impairment 
(MCI) and mild AD [4], the reduction in clinical worsening associated with AD was 
minimally or not affected by aducanumab at the clinical stages included in these 
trials [4, 5]. Nonetheless, physicians began prescribing this medication, which logi-
cally required demonstrating amyloid brain accumulation in a potential candidate 
for aducanumab therapy. While abnormal brain amyloid can be predicted by mea-
suring amyloid and tau in cerebrospinal fluid [6], people prefer amyloid imaging 
when availability or cost does not preclude its use. Although the use of plasma 
biomarkers of amyloid deposition in the brain is promising and gaining in accuracy 
[7], at the time of this writing either CSF or imaging is still needed to document 
brain amyloid deposition in the clinic [8]. Brain amyloid removal by monoclonal 
antibodies occurs largely through the walls of small vessels, which become more 
permeable, giving rise to brain edema or microhemorrhages in about 25% of the 
treated patients [9]. The occurrence of both events can be monitored with MRI 
using the FLAIR sequence for edema and gradient echo or susceptibility-weighted 
sequences to monitor blood deposition in the brain [9].

The clinical use of imaging biomarkers was further encouraged by the January 
2023 FDA approval of lecanemab (Leqembi™), another humanized monoclonal 
antibody, this one targeting soluble amyloid protofibrils and causing not only a 
reduction of brain amyloid but also a slowing of the clinical worsening as well [10]. 
That the clinical effect was modest could be explained by the stage of AD at which 
this medication was used. In mice, two broad stages can be observed, an amyloid-
dependent stage and an amyloid-independent stage [11]. When excess amyloid is 
removed from the brain at the amyloid-dependent stage, the animals do not go on to 
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develop Alzheimer’s disease. However, if excess amyloid is removed at the amyloid-
independent stage, the animals continue to worsen relentlessly until death. At the 
amyloid-dependent stage, there is no abnormal tau in the brain of the animals, but at 
the amyloid-dependent stage, abnormal, phosphorylated tau has begun to be detect-
able in the brain [11]. Similar changes can be observed in humans using imaging 
biomarkers [12]. The brain deposition of amyloid alone is not associated with cog-
nitive impairment [3]. However, when tau is detected by imaging outside the ento-
rhinal cortex, people are already symptomatic, with the degree and type of clinical 
symptoms correlating closely with the degree of tau deposition and its location in 
the brain [13]. Areas with high tau are typically hypometabolic on FDG PET, such 
that there is a ying-yang relationship between these two imaging biomarkers: where 
tau is high, metabolism is low (Fig. 1). As both aducanumab and lecanemab were in 
clinical trials of symptomatic subjects, who were likely at the amyloid-independent 
stage, even the modest clinical effect is encouraging. From the foregoing, determin-
ing tau build up in the brain of a potential candidate for one of these therapies could 
be very helpful to predict benefit: people with more tau are less likely to benefit 
from anti-amyloid antibodies [14].

At the time of this writing, several monoclonal antibodies targeting brain amy-
loid are being studied at the pre-symptomatic, amyloid-dependent, stage. These 
studies are made possible by the availability of amyloid imaging to detect excess 
brain amyloid in people who are cognitively unimpaired. Furthermore, although 
neuropsychological scores are used as outcome measures, brain tau provides a mea-
sure with less day-to-day variability than neuropsychological testing, and it is 
beginning to be used as an outcome measure [15]. This chapter will review the 
imaging biomarkers mentioned in this introduction and others most extensively 
used in dementia, leaving for future reviews potentially useful biomarkers, for 
instance, cortical mean diffusivity [16].

2 � Neuroimaging Biomarkers

The imaging modalities used to study AD include MRI and PET. Single photon 
emission computed tomography (SPECT) is also being used to study brain perfu-
sion, but its use has been largely replaced by the use of an MRI sequence, arterial 
spin labelling, that allows for the study of brain perfusion.

2.1 � MRI Regional Brain Volume

Neurodegeneration causes progressive loss of brain volume, which cannot be appre-
ciated on MRI images nearly as well as other brain lesions, such as tumors or infarc-
tion. Although brain volume loss, widely known as atrophy, can be rated visually 
[17], automated methods are less time-consuming and more precise and facilitate 
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Fig. 1  Imaging findings in patient with AD (logopenic aphasia). Metabolism, amyloid, and tau 
imaging from a 57-year-old woman with the logopenic aphasia variety of Alzheimer’s disease. The 
primary sensory-motor areas (asterisks), as well as the primary visual (striatal cortex) and auditory 
(Heschl’s gyrus) regions (arrowheads), have normal metabolism and no tau deposition. By con-
trast, areas with a high tau deposition (e.g., inferior parietal lobule, arrows) tend to have decreased 
metabolism. In some areas, a high amyloid deposition corresponds to a low metabolism and an 
increased tau (e.g., the precuneus). However, there are areas with high amyloid load and normal 
metabolism, such as the medial occipital region. Uptake in the region of the substantia nigra does 
not correspond to tau deposition. (From [13] with permission)
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longitudinal follow-up. Classical automated methods follow one of the two 
approaches: voxel-based morphometry (VBM) [18] or surface-based morphometry 
(SBM) [19–21]. These methods are based on the automatic segmentation of the 
brain cortex, deep nuclei, white matter, and ventricles, based on the different inten-
sities of these structures, mostly on T1-weighted images. In VBM, through sophis-
ticated deformation techniques, beyond the scope of this chapter, the brain of a 
given individual is placed in a standard brain template, thus facilitating the statisti-
cal comparison of the various brain regions of this individual with similar regions of 
a control sample, typically healthy people of similar age and sex as the individual of 
interest [22, 23]. In SBM, similar procedures are used for segmentation of the vari-
ous components of the brain, but the boundary between the cortical gray and under-
lying white matter is obtained. This boundary, together with surface coordinates of 
the brain of the individual of interest, as well as its deep structures, is ingeniously 
compared to standard brains and atlases that contain the typical anatomical regions 
[24, 25]. The first SBM software, FreeSurfer [26, 27], which is available through an 
open access license, is perhaps the volumetric software most commonly used in 
research. For clinical use, several VBM or SBM commercial packages are available 
for seamless integration with clinical PACS systems. In dementia MRI, the accuracy 
of software that classifies clinically appropriate cases has been compared favorably 
with the accuracy of trained readers [28]. Interestingly, even among image special-
ists, those with more experience in reading brain images obtain the best clinical 
results in dementia patients from automated MRI volume methods [29]. More 
recently, machine learning and neural network computing are revolutionizing the 
use of MRI and other imaging datasets for the longitudinal assessment of brain 
changes in AD/ADRD [30–33]. Since the steps of data processing are not as clear 
as with VBM or SBM, the reliability of these techniques can be best evaluated by 
researchers with an extensive knowledge of brain anatomy and function and by 
comparison with other quantitative techniques [34].

Volume loss in the medial temporal regions was the first reliable neuroimaging 
finding detected in AD [35] and still thought to be the most robust on MRI. The 
name of neurodegenerative pattern has been assigned to the pattern of atrophy most 
often observed in AD [36] (Fig. 2). Indeed, regional atrophy in a set of mostly post-
Rolandic structures is a strong predictor of AD on MRI [19]. In cognitively unim-
paired people, the presence of a neurodegenerative MRI pattern is predictive of the 
development of mild cognitive impairment later in life, particularly when associated 
with amyloid deposition [37].

Most cortical thickness studies have assumed a linear volume loss in the AD 
process, starting at the pre-symptomatic stages. However, a biphasic pattern is more 
likely, with increased thickness at some point of the very early process, followed by 
subsequent progressive thinning [38, 39]. This pattern would agree with early 
inflammatory changes resulting in cortical swelling that would be compensated for 
and surpassed by the volume loss caused by later progressive neuronal loss. This 
pattern would explain why atrophy has not been found by every study to predate the 
onset of cognitive impairment in familial autosomal dominant AD [40–43]. It would 
also explain the paradoxical increased “atrophy” in patients treated with 
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Fig. 2  Cortical thickness in Alzheimer’s disease. On MRI templates of the brain, in color are areas 
of the brain of a patient with Alzheimer’s disease where the cortex is thinner at a higher (yellow) 
or lower (red) statistical level as compared to a group of controls of the same age and sex

monoclonal antibodies targeting amyloid [44]. A reduction in cortical amyloid has 
been documented neuropathologically to reduce inflammation in the cortex [45]. 
These data suggest that MRI volumetry is not a reliable marker of neurodegenera-
tion in therapeutic trials.

By correlating postmortem findings with the pattern of atrophy on MRI, three 
distinct atrophy patterns have been found in patients with typical AD neuropathol-
ogy, including amyloid deposition: typical AD (about 70% of cases), limbic-
predominant AD (20%) and hippocampal-sparing AD (10%) [46]. Most patients 
with typical and limbic-predominant AD initially present with an amnestic syn-
drome, but only about 40% of those with hippocampal-sparing AD do. Medial tem-
poral atrophy is most severe in patients with limbic-predominant AD, followed 
closely by typical AD, and milder in those with hippocampal-sparing AD. Conversely, 
the most severe cortical atrophy was noted in patients with hippocampal-sparing 
AD, followed by those with typical disease, and then limbic-predominant AD. The 
ratio of hippocampal to cortical volumes allowed the best discrimination between 
subtypes [46]. In addition, some AD patients, particularly younger ones, present 
with a disorder of visual perception, including one or several components of Balint’s 
syndrome, alexia, and even field defects on confrontation testing, caused by poste-
rior cortical atrophy [47–49] (Fig. 3).

The pattern of atrophy in AD resembles that of dementia with Lewy bodies (DLB) 
[50], but in DLB there is more atrophy in the fusiform gyrus and paracentral cortex 
[51]. The imaging similarity between the two diseases can be explained at least in 
part by the frequent coexistence of AD and alpha-synuclein neuropathologies [50, 
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Fig. 3  Cortical thickness, amyloid, and tau in a patient with the posterior cortical atrophy variant 
of Alzheimer’s disease. Areas of decreased cortical thickness are indicated as in Fig 2. Areas with 
increased amyloid or tau are in red. Note the similar topography of these changes, most pro-
nounced in the posterior portion of the brain

52, 53]. Patients with pure alpha-synuclein pathology have little atrophy, such that 
the lack of hippocampal atrophy associated with memory loss in MCI is indicative 
of DLB [54]. Atrophy in AD, which tends to affect the posterior brain regions, differs 
from atrophy in FTD, which tends to affect the anterior portion of the brain [55]. 
Hippocampal volume alone poorly differentiates AD from FTD; hippocampal scle-
rosis associated with FTD could explain the overlap [56].
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2.2 � Metabolism

Regional brain metabolism is currently used as a biomarker of neurodegeneration, 
for instance, to document the “N,” neurodegeneration, in the AT[N] system [1]. 
Metabolism is measured with 18F-FDG PET [57–59]. Metabolism may be closely 
linked to the pathophysiology of AD; as in older people, the regional brain expres-
sion of AD-risk genes correlates with regional metabolism [60]. The most typical 
metabolic pattern found in early AD is decreased metabolism bilaterally in the pari-
etotemporal association cortex and posterior cingulate gyrus [61] (Fig.  4). 
Metabolism reflects synaptic activity and therefore is most affected early in the 
regions to which medial temporal neurons project [62, 63] and may reflect impaired 
connectivity even in pre-symptomatic subjects [40, 64]. As atrophy corresponds to 
neuronal loss, it is no surprise that the regions most affected on volumetric MRI and 
metabolic PET do not coincide early in AD [65], but they partially overlap as the 
disease progresses [66]. As AD progresses, some areas of the frontal association 
cortex become hypometabolic, while the paracentral cortex (primary motor-sensory 
areas) remains preserved (Fig. 1). The specificity and sensitivity of these findings 
continue to be debated. In studies of AD with neuropathological confirmation, the 
sensitivity (84–95%) has been higher than the specificity (71–74%), that is, a nor-
mal study is seldom associated with AD [59, 67]. Using consensus diagnosis, in an 
area under the receiver operating characteristic (ROC) analysis for three automated 
approaches to mild AD diagnosis, the specificity approximates 85% when the 

Fig. 4  FDG PET group 
findings in Alzheimer’s 
disease. Projected on a 
rendered MRI and shown 
in red are areas with a low 
metabolism in a group of 
28 patients with early 
Alzheimer’s disease, 
compared with 28 healthy 
controls. Note sparing of 
the paracentral (primary 
motor-sensory) cortex
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Fig. 5  “Island sign” in Lewy body dementia (LBD). On MRI templates of the medial aspect of the 
brain, areas of decreased metabolism (18F-FDG PET) in AD (A) and decreased perfusion (H2

15O-
PET) in LBD (B). Metabolism and perfusion are coupled in AD and LBD. Note involvement of the 
posterior cingulate gyrus in AD but sparing of this region (arrow) in LBD. (Modified from [153])

sensitivity is pegged at 80% [68]. Depending on the approach and the sample stud-
ied, the accuracy for predicting the evolution of MCI to AD varies from 0.774 to 
0.983 [68]. Among persons with MCI, those most likely to progress to AD have 
metabolic findings similar to AD [69]. 18F-FDG PET may predict better than struc-
tural MRI or SPECT the worsening from MCI to AD [70].

The AD metabolic pattern can also be found with DLB, in part because the two 
brain pathologies often coexist [52, 53]. However, while AD tends to render hypo-
metabolic the posterior cingulate gyrus, this structure is often spared in DLB, giving 
rise to the “posterior-cingulate island sign” on FDG PET [71] (Fig. 5). Unlike AD, 
which tends to affect posterior brain regions, the frontal and anterior portions of the 
temporal lobes are usually hypometabolic in FTD [58]. Patients with progranulin 
mutations, however, often have parietal involvement [72].

2.3 � Perfusion Imaging

In the absence of associated vascular disease [73], perfusion is typically coupled to 
metabolism in neurodegenerative disorders. In current clinical practice, brain perfu-
sion is most often studied with MRI arterial spin labelling (ASL), a sequence that 
can be obtained together with more conventional MRI sequences. As expected, 
cerebral blood flow (CBF) obtained with ASL tends to correlate topographically 
with metabolism, particularly in the more advanced AD stages [74–78]. However, 
FDG PET slightly outperforms ASL in separating AD and, particularly, MCI 
patients from controls, both in visual readings and using automated procedures [74, 
77, 79, 80].

Brain perfusion can also be assessed with SPECT, using Tc-99m HMPAO (hexa-
methyl propylamine oxime, Ceretec™), a lipid soluble macrocyclic amine, or 
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Tc-99m ECD (ethyl cysteinate dimer, Neurolite™). A head-to-head comparison of 
perfusion SPECT with metabolism PET has shown better sensitivity and specificity 
of PET over SPECT in AD and diffuse Lewy body disease [57].

2.4 � Amyloid Imaging

Brain amyloid was initially imaged with “Pittsburgh compound B” (11C-PIB) [81]. 
PIB is available bound to 11C, a positron-emitting isotope with a half-life of 20.4 min, 
requiring an on-site cyclotron. However, since 2012 there are amyloid-imaging 
compounds bound to 18F, with a half-life of 109.8 min. The longer half-life allows 
for the radiotracer to be synthesized at a facility with a cyclotron and then shipped 
to institutions with PET cameras, more widely available. Good concordance with 
histologically measured amyloid load has been shown not only for PIB [82, 83] but 
also for three 18F amyloid PET tracers, 18F-florbetapir [84], 18F-flutemetamol [85], 
and 18F-florbetaben [86], which are approved by the FDA for use in the clinical set-
ting. At the time of this writing, 2023, a fourth amyloid PET tracer, 18F-flutafuranol, 
also known as 18F-NAV4694, is only used in research, but it has much less white-
matter binding than other 18F tracers, thus providing cleaner images, similar to those 
obtained with PIB [87].

As another biomarker of AD, decreased CSF amyloid 42 [88], amyloid brain 
deposition begins in the preclinical stages of AD, increases during the MCI stage, 
and, by the time of the AD diagnosis, remains relatively stable as the disease pro-
gresses [3, 89]. Thus, amyloid deposition is a marker of the pre-symptomatic stages 
of the disease and correlates with the degree of cognitive impairment only in the 
preclinical stages and MCI, not during AD [3, 90], while atrophy and synaptic dys-
function continue to increase and spread as clinical AD worsens and cognition dete-
riorates [89].

In asymptomatic individuals of similar age, amyloid deposition has been found 
more often among APOE4 carriers [91], but this genotype may not have an effect on 
the risk of cognitive worsening once its effect on amyloid deposition is accounted 
for [92, 93]. Lifetime cognitive engagement has been found to protect from preclini-
cal amyloid deposition [94], but this effect, like the protective effect of physical 
exercise, may be restricted to APOE4 carriers [95]. Impaired sleep has been associ-
ated with an increased amyloid burden [96].

Amyloid deposition is the strongest and earliest neuroimaging predictor of future 
cognitive impairment in healthy elderly and of worsening from MCI to AD, increas-
ing the risk between three- and sevenfold [92, 97, 98]. The effect of amyloid deposi-
tion on cognitive impairment in the early stages of the AD continuum may be 
modulated by some common genetic variants. For instance, healthy APOE4 carriers 
have not only a greater amyloid deposition but also worse memory and visuospatial 
skills for the same amount of 11C-PIB binding [99]. This finding may reflect a lon-
ger period of time with amyloid deposition in the APOE4 carriers. Healthy, amyloid-
positive carriers of the Met genotype of the brain-derived neurotrophic factor 
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(BDNF) Val66Met allele have a greater worsening on follow-up in episodic mem-
ory, language, and executive function than the Val homozygotes despite similar 
amyloid PET binding in both groups [100].

Amyloid imaging is also a powerful tool to separate the dementias characterized 
by amyloid deposition, such as AD and diffuse DLB, often associated with AD [53], 
from the FTD, which course without amyloid deposition. Separating patient sam-
ples of AD and FTD validated clinically, areas under the ROC curve for 11C-PIB 
(0.888) and 18F-FDG (0.910) were similar [101]. 11C-PIB slightly outperformed 
18F-FDG in patients with known histopathology [101]. A confounder is the presence 
of amyloid deposition in some older people with FTD because the prevalence of 
amyloid positivity increases with age [37, 102]. Although the diagnosis of AD is 
predicated on the presence of amyloid plaques in the brain [103], a few cases with 
AD have a tau PET typical for AD, with intense uptake in the cortex of AD regions, 
but a negative amyloid PET [104, 105]. Neuropathology is still lacking, but it is 
possible that these patients have diffuse or cotton-wool plaques or some other type 
of amyloid burden not well imaged with the current amyloid PET tracers [106, 107]. 
These patients should not be confused with patients who have a negative amyloid 
PET, but a positive signal, although typically weaker than in AD, in FTD-typical 
areas with one of the tau tracers. In these cases, the signal is often greatest in white 
matter, which on neuropathology contains a lower density of known abnormal pro-
tein aggregates, such as tau or TDP-43, than the cortex [108].

Patients with an AD clinical phenotype may have a negative amyloid PET scan. 
In a clinical trial of early AD, 14% had negative amyloid scans among 214 with AD 
symptomatology [109]. This proportion parallels the 14% amyloid-negative in a 
population sample of 154 amnesic MCI patients and 16% of 58 MCI patients from 
ADNI [110] and may rise to 30% when the patients studied are older than 82 years 
[111]. It may reflect the smaller subset of patients with dementia who do not have 
elevated amyloid or tau at autopsy [112]. These imaging findings could reflect the 
rather mixed pathology found in the oldest-old [113]. However, even with a careful 
neuropathological exclusion of other etiologies, clinical and neuropathological find-
ings are occasionally dissociated: individuals with marked amyloid and neurofibril-
lary pathology may be cognitively intact [112]. In these individuals there is less 
amyloid deposition in the form of fibrillar plaques and intimately related oligomeric 
amyloid assemblies, less hyperphosphorylated soluble tau species localized in syn-
apses, and less glial activation [114].

In early AD, amyloid deposition is highest in the default network and, thus, in 
fronto-parieto-temporal association cortex, including the precuneus, but sparing the 
paracentral regions and primary visual and auditory sensory cortex (Fig. 1). The 
caudate nucleus is often affected as well.

Longitudinal amyloid imaging allows for the evaluation of the natural history of 
amyloid deposition among at-risk genotypes [91], and it is being used as a marker 
of effectiveness in clinical trials carried out during the preclinical stage of AD, 
because it has helped elucidate brain changes during AD therapy [10, 115, 116].
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2.5 � Tau Imaging

In the healthy brain, the protein tau stabilizes neurotubules and is therefore essential 
for normal neural function [11]. However, in AD and other neurodegenerative dis-
orders, tau becomes abnormally hyperphosphorylated, dysfunctional, and mis-
folded, constituting the tangles observed neuropathologically in AD and other 
tauopathies. PET tracers are available that bind strongly to the abnormally folded 
tau, using the folding properties of this protein for binding. These tracers do not 
bind to the healthy, native form of tau, but here we refer to hyperphosphorylated tau 
simply as “tau,” as has become common usage. PET tracers currently used to image 
tau include 18F-T807, most recently known as 18F-AV-1451 or 18F-flortaucipir [117–
119], which was approved for clinical use by the FDA after a postmortem study 
proved that 18F-flortaucipir binds to tau tangles in AD [120]. 18F-Flortaucipir shows 
highly specific uptake in areas known neuropathologically to contain a large amount 
of tau in AD [13, 118, 121] (Fig. 1). It has little white matter binding, but there is 
uptake in the substantia nigra, explained by binding of 18F-flortaucipir to melanin 
[122, 123], and in the choroid plexus, possibly from binding to calcifications or 
even tau in this structure [124, 125]. In older individuals, even those cognitively 
intact, there is nonspecific binding in the lenticular nucleus, red nucleus, and sub-
thalamic nucleus, possibly due to iron deposition [124], as well as in the upper por-
tion of the cerebellum (Fig. 6).

18F-Flortaucipir binds to tau in AD [126], which is associated with 3- and 4-repeat 
(3R and 4R) tau aggregates, but much less or not at all with 3R or 4R tau found in 
most varieties of tau-related FTD [122, 124]. The configuration of tau aggregates, 
which differs in various tauopathies [127], most likely determines binding. For 
instance, 18F-flortaucipir binds to patients harboring a p.R406W mutation in the 
MAPT gene, encoding tau [128]. This mutation results in 3R and 4R tau aggregates 

Fig. 6  “Nonspecific” uptake with the PET tau tracer 18F-flortaucipir. From left to right and pro-
jected on MRI, coronal, axial, and sagittal 18F-flortaucipir images from a cognitively normal 
72-year-old man. Note uptake in the globus pallidus (coronal section, white arrows), substantia 
nigra (axial section, arrows), and superior portion of the cerebellum (sagittal section, arrow). None 
of these areas are known to harbor tau
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like those in AD [128]. 18F-Flortaucipir also binds weakly to the regions most 
affected in FTD cases and, particularly, in semantic dementia [129], but careful 
neuropathological evaluation has shown a lack of binding to 4R tau or to TDP-43 
[124, 130, 131]. Furthermore, the signal in FTD involves the white matter, rather 
than the cortex, where the accumulation of misfolded proteins is greatest [108]. This 
binding has been postulated to correspond to MAO-B, abundantly expressed by 
astrocytes, but the 18F-flortaucipir signal has not been suppressed by blocking 
MAO-B [108].

Compared to 18F-flortaucipir, two commonly used newer tau PET tracers have 
less nonspecific binding to the lenticular nucleus, 18F-MK6240 and 18F-PI-2620. 
There is extensive experience with 18F-MK6240, which has less binding to choroid 
plexus than 18F-flortaucipir, thus allowing for a better quantification of tau deposi-
tion in medial temporal regions, including the entorhinal cortex [105]. A negative 
characteristic of 18F-MK6240 is the frequent intense binding to meningeal struc-
tures and to the skull (Fig. 7); various methods have been suggested to compensate 
for this binding [132]. Less experience exists with 18F-PI-2620, which also seems to 
bind to the meninges and skull [133]. 18F-PI-2620 has been postulated to bind not 
only to AD tau [134] but also to 4R tau as well and thus be useful in imaging corti-
cobasal degeneration and progressive supranuclear palsy [133, 135].

Tau accumulation measured with tau PET tracers correlates better with the 
degree of cognitive impairment than amyloid accumulation [136], a finding in 
agreement with prior neuropathological studies [137]. Furthermore, there is an 
inverse correlation between tau accumulation and brain metabolism: regions high in 
tau have uniformly depressed metabolism [13] (Fig. 1). This correlation is not as 
tight with amyloid accumulation (Fig. 1).

In amyloid-negative, clinically normal people older than 60, tau accumulation in 
the entorhinal cortex is associated with worse cognitive performance and greater tau 
in other brain regions [138].

Fig. 7  “Nonspecific” uptake with the PET tau tracer 18F-MK6240. From left to right and projected 
on MRI, coronal, axial, and sagittal 18F-MK6240 images from a cognitively normal 73-year-old 
man. Please compare it with Fig. 6. Although there is no uptake in the globus pallidus (coronal 
section, white arrows), there is still uptake in the substantia nigra and uptake in the skull and 
meninges (red arrows)
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2.6 � Inflammation Imaging

Although brain inflammation is prominent in AD and related disorders, the use of 
inflammation imaging is not as widespread as that of previously described imaging 
biomarkers. Inflammation can be pathogenic, reflect scavenging of neurons and 
neuronal processes, or have a neuroprotective effect [139–141]. Animal models of 
tau-induced neuronal loss have shown earlier and more severe inflammation than 
models of increased amyloid [142], and both microglia and reactive astrocytes are 
found at autopsy to be increased in areas of the brain affected by neurodegenerative 
pathology. However, in vivo brain inflammation data in human neurodegeneration 
is scant. PET imaging allows in vivo quantification of neuroinflammation by mea-
suring the density of the 18-kDa translocator protein (TSPO), which is expressed in 
microglia, astrocytes, and reactive endothelial cells. TSPO has been imaged with 
11C-PK11195, a compound that in humans has a low affinity for the receptor [143] 
and a low ratio of specific-to-nonspecific binding [144]. The limitations of 11C-
PK11195 prompted the development of second-generation radioligands for imaging 
activated microglia. 11C-PBR28 is a second-generation radioligand with a high 
affinity to TSPO, favorable in vivo kinetics, and greater signal-to-noise ratio than 
11C-PK11195 in monkey brain [144]. Unfortunately, the affinity of this and other 
TSPO PET tracers is strongly determined by the rs6971 polymorphism on the TSPO 
gene, leading to high- and low-affinity groups, as well as an intermediate pheno-
type. More recently developed, 11C-ER176 has a higher affinity for TSPO and 
allows for imaging of people with the low-affinity rs6971 polymorphism of the 
TSPO gene [145, 146].

Using these tracers, increased brain inflammation has been documented even at 
pre-symptomatic stages of AD [147], with a good topographic correlation between 
inflammation and amyloid deposition (Fig. 8). At the MCI stage, many studies, for 
instance [148, 149], but not all [150] have shown neuroinflammation. The lack of 
consistency at the MCI stage may be related to a biphasic effect of inflammation, 
with earlier and later peaks [151], possibly neuroprotective at the early stages, but 
harmful at later stages. While this is still unclear, neuroinflammation seems to medi-
ate tau spreading [152]. In dementing diseases more focal than AD, such as seman-
tic dementia, inflammation has been shown to peak at the boundary between 
involved and healthy brain (Fig. 9), suggesting that inflammation plays an important 
role in the progression of neurodegeneration [108].

In conclusion, the availability of imaging biomarkers for several of the major 
components of AD has greatly furthered the understanding of the development of 
this disease in humans. Furthermore, it has facilitated the performance of clinical 
trials that have recently yielded positive results. In terms of imaging, the develop-
ment of tracers for alpha-synuclein and TDP-43, of great importance in LBD and 
FTD respectively, is being worked on. Furthermore, perfecting plasma biomarkers 
would greatly facilitate population screening, so that putative therapies could be 
applied to prevent or thwart the pathological processes causing irreparable neuronal 
loss in diseases leading to dementia.
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Fig. 8  Amyloid and inflammation PET in a pre-symptomatic AD patient. Although this person 
was cognitively unimpaired, amyloid PET evidenced increased amyloid deposition in the frontal 
lobe and precuneus. Similar regions had inflammation on 11C-ER176 PET. This tracer binds to TSPO

Fig. 9  Cortical thickness on MRI and inflammation PET in semantic dementia. On brain tem-
plates, in color are areas where a group of patients with semantic dementia differ from controls. 
Cortical thickness is most abnormal at the anterior portion of the left temporal lobe, in the core of 
the damage, while inflammation peaks at the periphery of the area with reduced cortical thickness. 
(From [108])
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