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Biomarkers in Medicine and Psychiatry: 
An Overview

Natalia P. Rocha  and Antonio L. Teixeira 

1 � Biomarkers in Medicine: Brief Historical Background 
and Updated Concepts

Although the term “biological marker” has been used since the late 1950s/early 
1960s [1, 2], it was only in the 1980s that the word “biomarker” started being widely 
used, especially in the context of chemicals considered dangerous in water, sedi-
ments, and living organisms [3]. After discussions on whether the term “biomarker” 
should be used only to describe any biological changes in response to exposure to 
xenobiotics [4], the increased knowledge about surrogate markers of clinical out-
comes in the 1990s increased the appeal for the use of biomarkers in the context of 
any diseases [5].

As the field evolved, biomarkers have become the focus of interest of several 
interrelated disciplines (clinical trialists, statisticians, regulators, and therapeutic 
developers) and research applications. As a result, a variety of terms with overlap-
ping meanings started being used, such as biological markers, biomarkers, surrogate 
markers, surrogate endpoints, intermediate endpoints, and others. To mitigate the 
ambiguity, an expert working group convened by the National Institutes of Health 
and the US Food and Drug Administration (FDA) published in 2001 a conceptual 
framework defining biomarker (or a biological marker) as “a characteristic that is 
objectively measured and evaluated as an indicator of a normal biological process, 
a pathological process, or a biological response to a therapeutic intervention” [5]. 
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Since then, this has been the official definition of “biomarker” in clinical and 
research settings.

Biomarkers have numerous applications, and they are valuable tools for disease 
diagnosis, staging, and prognosis and for prediction/monitoring clinical response to 
an intervention. The conceptual framework also provided definitions for “clinical 
endpoint” and “surrogate endpoint.” While a clinical endpoint is “a characteristic or 
variable that reflects how a patient feels, functions, or survives,” a surrogate end-
point is “a biomarker that is intended to substitute for a clinical endpoint” [5]. Only 
a few biomarkers will achieve surrogate endpoint status, requiring them to be rea-
sonably likely to predict clinical benefit (safety, efficacy, or both) with proven accu-
racy and precision/reproducibility. The use of reasonably likely surrogate endpoints 
has been provided by regulation that enables the FDA to grant accelerated market-
ing approval for certain therapeutics [5]. Postmarketing confirmatory trials are 
required to verify and describe the anticipated effects in the case of accelerated 
approval. Conversely, a validated surrogate endpoint can support marketing approval 
of a medical product in a defined context without requiring additional studies to 
demonstrate the clinical benefit directly. If the surrogate endpoint is supported by a 
clear mechanistic rationale and clinical data provide strong evidence that the sur-
rogate endpoint predicts a specific clinical benefit, then it is a validated surrogate 
endpoint. Currently, there are some validated surrogate endpoints, such as CD4 
count and viral load in HIV disease, glycated hemoglobin (HbA1c) in diabetes, 
bone mineral density by dual X-ray absorptiometry in osteoporosis, and blood pres-
sure in cardiovascular diseases.

A very important advance toward a clear definition of biomarkers and their 
potential uses came in 2015, when the FDA-NIH Joint Leadership Council devel-
oped the BEST (Biomarkers, EndpointS, and other Tools) Resource. The BEST 
Resource comprises a glossary that clarifies important definitions and describes 
hierarchical relationships, connections, and dependencies among the terms in the 
field [6]. The BEST glossary is periodically updated to foster effective, unambigu-
ous communication in biomedical research. Table 1 summarizes biomarker types 
according to the BEST. Of note, one biomarker may fall in more than one category. 
For example, international normalized ratio (INR) may be considered a monitoring 
biomarker for assessing whether the desired effect of anticoagulation has been 
attained in patients on warfarin and a response (pharmacodynamic) biomarker when 
evaluating a patient’s response to warfarin treatment for the prevention of thrombo-
sis. Hemoglobin A1c (HbA1c) may be used as a diagnostic biomarker to identify 
patients with type 2 diabetes mellitus, but it is also a validated surrogate endpoint 
for the reduction of microvascular complications associated with diabetes mellitus 
(Table 1).

A quick look at the examples provided in Table 1 brings up the fact that biomark-
ers are especially common in the fields of cancer and cardiology. The use of bio-
markers in cancer dates as early as 1848, when a study reported immunoglobulin 
light chain (‘Bence Jones protein’) in the urine of a patient with multiple myeloma 
[7], a marker that is still valid, but currently measured through modern quantifica-
tion techniques. Aspartate aminotransferase (formerly glutamate oxaloacetate 
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3

Table 1  Biomarker categories according to the Biomarkers, EndpointS, and other Tools (BEST) 
Resource [6]

Type Description Examples

Diagnostic 
biomarker

Used to detect or confirm presence of a 
disease or condition of interest or to 
identify individuals with a subtype of the 
disease

Blood sugar or hemoglobin A1c 
(HbA1c) may be used as a 
diagnostic biomarker to identify 
patients with type 2 diabetes 
mellitus
Repeated blood pressure readings 
obtained outside the clinical setting 
in adults 18 years and older may be 
used as a diagnostic biomarker to 
identify those with essential 
hypertension

Predictive 
biomarker

Used to identify individuals who are more 
likely than similar individuals without the 
biomarker to experience a favorable or 
unfavorable effect from exposure to a 
medical product or an environmental 
agent

BReast CAncer genes 1 and 2 
(BRCA1/2) mutations may be used 
as predictive biomarkers when 
evaluating women with platinum-
sensitive ovarian cancer, to identify 
patients likely to respond to Poly 
(ADP-ribose) polymerase (PARP) 
inhibitors

Prognostic 
biomarker

Used to identify likelihood of a clinical 
event, disease recurrence, or progression 
in patients who have the disease or 
medical condition of interest

Increasing prostate-specific antigen 
(PSA) may be used as a prognostic 
biomarker when evaluating patients 
with prostate cancer during 
follow-up, to assess the likelihood 
of cancer progression
C-reactive protein (CRP) level may 
be used as a prognostic biomarker 
to identify patients with unstable 
angina or a history of acute 
myocardial infarction with a greater 
likelihood of recurrent coronary 
artery disease events

Susceptibility 
biomarker

A biomarker that indicates the potential 
for developing a disease or medical 
condition in an individual who does not 
currently have clinically apparent disease 
or the medical condition

Infection with certain human 
papillomavirus (HPV) subtypes 
may be used as a susceptibility/risk 
biomarker to identify individuals 
with a predisposition to develop 
cervical cancer
Apolipoprotein E (APOE) gene 
variations may be used as 
susceptibility/risk biomarkers to 
identify individuals with a 
predisposition to develop 
Alzheimer’s disease

(continued)

Biomarkers in Medicine and Psychiatry: An Overview
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Table 1  (continued)

Type Description Examples

Safety 
biomarker

A biomarker measured before or after an 
exposure to a medical product or an 
environmental agent to indicate the 
likelihood, presence, or extent of toxicity 
as an adverse effect

Hepatic aminotransferases and 
bilirubin may be used as safety 
biomarkers when evaluating 
potential hepatotoxicity

Response 
biomarker

A biomarker used to show that a 
biological response, potentially beneficial 
or harmful, has occurred in an individual 
who has been exposed to a medical 
product or an environmental agent. 
Response biomarkers can be used as 
pharmacodynamic biomarkers or 
surrogate endpoint, depending on their 
specific context of use:
  Pharmacodynamic biomarker: a response 
biomarker that indicates biologic activity 
of a medical product or environmental 
agent without necessarily drawing 
conclusions about efficacy or disease 
outcome or necessarily linking this 
activity to an established mechanism of 
action
  Surrogate endpoint biomarker: a 
response biomarker that is an endpoint 
used in clinical trials as a substitute for a 
direct measure of how a patient feels, 
functions, or survives

International normalized ratio 
(INR) may be used as a 
pharmacodynamic biomarker when 
evaluating a patient’s response to 
warfarin treatment for prevention of 
thrombosis
Blood pressure reduction is a 
validated surrogate endpoint for 
reduction in rates of stroke, 
myocardial infarction, and mortality 
and has been used as the basis for 
the approval of drugs and in pivotal 
trials of medical devices intended to 
treat hypertension

Monitoring 
biomarker

A biomarker measured repeatedly for 
assessing status of a disease or medical 
condition or for evidence of exposure to 
(or effect of) a medical product or an 
environmental agent

INR or prothrombin time (PT) may 
be used as monitoring biomarkers 
for assessing whether the desired 
effect of anticoagulation has been 
attained in patients on warfarin

Source: Biomarkers, EndpointS, and other Tools (BEST) Resource (https://www.ncbi.nlm.nih.
gov/books/NBK326791/)

transaminase) has historically been a biomarker to diagnose acute myocardial 
infarction. First proposed in 1954, AST is no longer used today as a biomarker of 
myocardial infarction because of its low specificity [8]. At the same time, an inten-
sive quest for noninvasive biomarkers for early cancer detection began, with the 
cancer embryonic antigen (CEA) identified as the first clinically relevant cancer 
biomarker in 1965, followed by prostate-specific antigen (PSA) and alpha-
fetoprotein in 1970 and many other cancer antigens (CA) in the 1970s/1980s [9]. In 
these areas, diagnostic and predictive biomarkers have been used to guide preven-
tive measures and to determine prognosis and response to treatments (Table  1). 
They play a particularly important role in the clinical management of patients with 
cancer and cardiovascular diseases, which may manifest with subtle or no meaning-
ful clinical signs.

N. P. Rocha and A. L. Teixeira
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Fig. 1  Biomarker classification according to the source

The history of biomarkers evolved in tandem with the development of new ana-
lytic technologies that refined the measurement methods. Depending on the meth-
ods and source of samples used for quantification, biomarkers are frequently 
categorized as molecular, physiologic, histologic, radiographic (imaging), and digi-
tal (Fig. 1)

Molecular biomarkers (e.g., blood glucose) reflect biophysical properties that 
can be measured in biological samples (urine, serum, plasma, CSF, bronchoalveolar 
lavage). They comprise small to large molecules, from nucleic acids to proteins. The 
methods for detecting molecular biomarkers vary from immunoassays (radioim-
munoassay, Western blot, ELISA) to antibody-free mass spectrometry and -omics 
assays [10]. Histologic biomarkers measure biochemical alteration in cells, tissues, 
or fluids and are usually measured by immunohistochemistry/immunofluorescence 
methods (e.g., grading and staging of cancers). Physiologic markers measure body 
processes (e.g., blood pressure), and radiographic markers are obtained from imag-
ing studies (e.g., tumor size). A novel and promising modality of biomarkers are 
known as digital biomarkers. These are collected digitally and transformed into 
indicators of health outcomes (e.g., a heart rate biosignal from a wrist-worn wear-
able) [11].

Biomarkers in Medicine and Psychiatry: An Overview
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2 � Steps in the Development of a Candidate Biomarker

The first stage in the development of a biomarker is to identify a target question that 
the biomarker will address, with promising life-changing benefits (considering the 
risks/side effects) and the potential to optimize decision-making. The second stage 
is the internal validation, i.e., the demonstration that the biomarker reflects an 
underlying process of interest instead of confounders. The third stage is the external 
validation, intended to demonstrate the biomarker validity in an independent sam-
ple. The fourth and final stage is the demonstration of clinical utility, in which bio-
markers must add value to existing tools for clinical decisions (designation of 
clinical utility) [12].

According to the BEST Resource, adequate validation is required to ensure that 
a test, tool, or instrument is appropriate for the proposed use. The analytical valida-
tion will establish that the performance characteristics of a test, tool, or instrument 
are acceptable in terms of its sensitivity, specificity, accuracy, precision, and other 
relevant performance characteristics using a specified technical protocol. The ana-
lytical validation will test technical performance, not clinical usefulness. The clini-
cal validation will establish that the test, tool, or instrument acceptably identifies, 
measures, or predicts the concept of interest. The clinical utility will consider pos-
sible benefits or risks to individuals and populations to establish that a given use of 
a medical product will lead to a clear improvement in health outcome or provide 
useful information about diagnosis, treatment, management, or prevention of a dis-
ease [6].

3 � Biomarkers in Psychiatry

The intensive search for biomarkers in psychiatry is motivated by the need for 
objective measures to guide the diagnosis, prognosis, risk stratification, and treat-
ment options [12]. The promising research in biomarkers in psychiatry included the 
study of monoamines, cortisol, inflammatory, and neuroimaging markers [13]. An 
overwhelming number of biomarkers encompassing genetic, molecular, neuroimag-
ing, and/or peripheral phenotypes have been identified in psychiatry, especially in 
the past 20 years (Fig. 2).

Despite the considerable investment, the results have been disappointing [12]. 
The waves of enthusiasm have dissipated during the validation processes of poten-
tial markers, and so far, no biomarker has proven to be reliable, valid, and/or useful 
to be adopted in psychiatric practice [13]. Actually, most biomarkers fail to pass the 
second stage of biomarker development, i.e., internal validation. According to some 
authors, the most promising candidates include (i) the N170 signal (an electroen-
cephalographic event-related brain potential) for subgroup identification in autism 
spectrum disorder; (ii) striatal resting-state functional magnetic resonance imaging 
(fMRI) measures for prediction of treatment response in schizophrenia; (iii) 

N. P. Rocha and A. L. Teixeira
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Fig. 2  Biomarkers in psychiatry: number of manuscripts published per year. (1966–2022, source: 
PubMed, search terms: biomarkers and psychiatry)

error-related negativity (an electrophysiological index) for predicting the onset of 
generalized anxiety disorder; and (iv) resting-state and structural brain connectomic 
measures for prediction of treatment response in social anxiety disorder [12]. All of 
these candidate biomarkers are yet to be validated.

A fundamental challenge in discovering and validating biomarkers in psychiatry 
is the heterogeneity of psychiatric disorders and our insufficient knowledge of brain 
mechanisms and functioning [12]. Psychiatric diagnoses are not biologically 
founded [14] and are based on clusters of symptoms. The current diagnosis system 
groups patients together despite exhibiting very different phenotypes. As a result, 
samples are heterogeneous and may not represent the entire group of patients. In 
addition, samples from patients with one specific diagnosis do not necessarily share 
disease pathophysiological mechanisms [12]. Patients presenting with completely 
different clinical pictures will be pooled together in the studies, and it is not a major 
surprise that researchers will struggle to find relevant markers and effective treat-
ments for this disorder (or, better, these disorders) [15]. Another issue is the univer-
sal presence of comorbidities (including other psychiatric disorders) that can 
influence any potential markers. Similarly, age, sex, common early-life and current 
stressors, genetics, epigenetics, lifestyle factors, and pharmacological and nonphar-
macological therapies can all be confounders in the complex search for potentially 
valid biomarkers [13]. Finally, the great majority of studies focus on adult psychia-
try, and fewer studies address pediatric and geriatric populations [16].

Biomarkers in Medicine and Psychiatry: An Overview
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4 � Clinical Use of Biomarkers in Psychiatry: It Is Time 
to Embrace the Change

The diagnosis and management of patients with psychiatric disorders currently 
depend on the presence and change in symptoms. Clinical trials assessing the effi-
cacy of new treatments for psychiatric disorders and the approval by regulatory 
authorities also rely only on changes in symptom severity based on rating scales. 
Conversely, biomarkers can be cheaper and easier to measure than endpoints, and it 
is clear that psychiatry needs clinically useful biomarkers to advance diagnosis and 
treatment of patients [17]. Moreover, there is consensus that we do not yet have 
clinically actionable biomarkers in psychiatry [12].

As noted above, there are several theoretical issues with biomarker search and 
validation in psychiatry. In addition, there are important practical/methodological 
points to be addressed, including cross-sectional designs, biological sample quality 
and inconsistency, and a lack of multicentric initiatives [18]. Collaborative efforts 
using different markers (including genetics, neuroimaging, proteomics, metabolo-
mics, and transcriptomics) integrated into a multimodal framework will potentially 
increase the biomarkers’ value. The platforms for multi-omic studies enable the 
simultaneous dynamic assessment of multiple molecules that may be tightly con-
nected in a biological pathway underlying the physiopathology of psychiatric disor-
ders [13]. Another promising strategy resides in using powered, long-term 
longitudinal studies that thoroughly describe the natural history of the diseases, 
including remission/response to treatments. In this regard, the Framingham Heart 
Study is an exceptional model for advancing biomarker discovery. This rich, longi-
tudinal, trans-generational, deep phenotyping cohort study has been ongoing since 
1948 and resulted in thousands of discoveries and innovations in cardiology [14]. 
Similar studies leveraging the power of real-world data, combined with the use of 
digital, naturalistic setting markers, will certainly advance biomarker discovery and 
test the clinical utility of precision-based and personalized psychiatry.

5 � Final Remarks

The first documented use of the term “biomarkers” dates from the 1950s, a decade 
known for great advances in medicine, including the polio vaccine and methods that 
enabled successful cardiac surgeries. Since then, cancer and cardiovascular disease 
markers have markedly developed, and we currently have validated several diagnos-
tic, susceptibility, predictive, prognostic, monitoring, and response markers. 
Notwithstanding the breakthroughs in medicine, biomarkers in psychiatry were 
ignored for a considerable amount of time. Since the 1990s many studies have 
focused on biological mechanisms and biomarkers in psychiatry, and thousands of 
potential biomarkers have been identified. Unfortunately, none of these biomarkers 
have been validated for clinical use. Multiple factors explain the status quo, 

N. P. Rocha and A. L. Teixeira
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including the imperfect diagnostic systems and limited understanding of brain 
mechanisms and functioning. The currently available treatments for psychiatric dis-
orders are effective only in ~50% of cases. With the lack of tools to guide treatment 
decisions, the interventions offered are typically based on personal preferences. 
Therefore, it is clear that psychiatry, more than any other specialty in medicine, 
needs clinically useful biomarkers to advance the diagnosis and treatment of 
patients [17].
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1 � Introduction

Psychiatric disorders have long been suspected to have a genetic component of 
inheritance, and the field of research into psychiatric genetics had a major spur in 
the late nineteenth century. Early methodologies included twin, family, and adop-
tion studies to evaluate inheritance and aggregate patterns through multiple genera-
tions. However, in the past century there has been an immense expansion into 
linkage, association, and sequencing studies looking into psychiatric disorders and 
genetic interactions due to the advancements in molecular genetic patterns that can 
manifest variations of DNA or metabolic expressions. As of recently, biomarkers in 
psychiatry research are being tested in clinical, epidemiological, and pharmacologi-
cal interventions and prevention for disorders. The intended purpose of research 
into the genetic underpinnings of psychiatric disorders is that clinicians can provide 
a more focused individualized approach to treatment whether they be pharmaco-
logical or therapeutic. This chapter aims to summarize the most commonly used 
methodologies and findings for psychiatric biomarkers and their clinical efficacy for 
diagnosis and treatment.
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2 � Principles and Methods in Psychiatric Genetics

2.1 � Genome-Wide Association Study (GWAS)

One of the most remarkable aspects of genomic studies in the modern era has been 
genome-wide association studies (GWAS or GWA study), which rely upon analyz-
ing the entire human genome for a multitude of individuals by using single nucleo-
tide polymorphisms (SNPs) to connect them to observable traits or disease states 
[1]. The main principle of GWA studies is a “common disease, common variant” 
hypothesis, which means that common diseases will be derived from a number of 
alleles present in approximately 1–5% of the general population [1]. Rare variants 
of genomic disease, which would be found in less than 1% of the general popula-
tion, often need alternative approaches to identify locus locations associated with 
disease states [2]. GWA studies not only can be used to find disease states but can 
also be used in discovering family-based linkage inheritance patterns passed down 
throughout generations by analyzing thousands of genomic markers connected to 
non-disease phenotypes and possible risk for future disease states [1]. Moreover, 
GWAS feature empirical, objectively focused designs and rely on large sample 
sizes, making them better-powered statistically to reduce bias compared to tradi-
tional candidate gene studies [3]. Candidate gene studies aim to investigate genetic 
variations based on preselected genes or loci of interest, which can be selected 
based on prior knowledge of their biological function or dysfunction in a disease 
state or phenotype of interest. Of note, these studies are slowly becoming obsolete 
for the discovery of novel variants in complex diseases because of their typical 
insufficient statistical power and potential for difficult replicability and false-
positive findings.

The four main components of a GWA study are (1) a large population of selec-
tion with a disease trait in comparison to a control group; (2) DNA genotyping and 
review to ensure a high quality of isolated samples related to genes of interest; (3) 
statistical analysis of SNPs’ passing thresholds to be correlated with target diseases 
or traits; and (4) experimental replication of these genomic associations with inde-
pendent samples [1]. The most common form of GWA study relies on a case-
control design; these studies rely on the selection of participants from clinical 
settings, so this would exclude silent, fatal, or less significant cases from being 
included in the sample sizes (which could ultimately impact the genetic risk asso-
ciations between groups of interests and control groups) [1]. If case-control designs 
are used appropriately, GWA studies can provide powerful insights into diseases, 
such as gene-gene interactions and modification of genetic variants, and even dis-
tinguish low- from high-risk combinations of SNPs within a gene [1]. Another 
form of study design used in GWA studies is cohort, longitudinal studies to study 
individuals over a long period of time. These studies involve collecting information 
from large numbers of people to observe the presence or absence of disease in 
subgroups of genetic variants [1]. This form of study design allows for the identi-
fication of a more direct cause of risk with less chance of bias; however, due to the 
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time involved, this design can be expensive and less optimal for rare disease states. 
The reduced bias from cohort studies is based on the fact that the participants will 
be from a wider range beyond clinical settings, so this may allow there to be a more 
representative sample of the general population. The third main study design for 
GWAS are trio studies, where a patient and their parents have their phenotypes 
assessed and the frequency with which an allele is transmitted to an affected off-
spring from heterozygous parents is then estimated [1]. The null hypothesis in a 
trio study is that there is no association of disease transmission of an allele in a 
given SNP, but alleles with a disease association will be transmitted in excess to the 
affected case individual, demonstrating transmission rates significantly above 50% 
[1]. The advantages of trio studies include the assessment of Mendelian genetic 
inheritance, the fact that they are logistically easily conducted, and proper control-
ling for population structures. Nevertheless, this study design is vulnerable to gen-
otype errors, not to mention that both parents and offspring may be difficult to 
assemble [1].

As GWA studies have become more common due to their relatively easy and 
inexpensive nature, there has been a rise in attention towards standardization of 
GWA studies as well as concern in reducing false-positive results. Modern GWA 
studies are encouraged to employ multistage designs to reduce the quantity of 
false-positive results while retaining statistical power and minimizing the number 
of costly genome-wide scans performed [1]. It is common for modern GWA stud-
ies to begin scanning a small number of individuals then move on to larger groups 
to mitigate false positives in results. Another concern for GWA studies having false 
positives is the very large number of previous samples focused solely on European 
populations. Concurrently, it is hypothesized that results in these populations may 
not be directly transferable to other populations of different ethnicities [4]. In 
recent years, however, there has been an increase in GWA studies collecting sam-
ples from Chinese, Japanese, Koreans, and Pacific Islanders [4]. Another interest-
ing population of interest has been the inclusion of Latin American countries into 
GWA studies due to the complex heterogeneity that has been involved in the region 
due to slavery and immigration circumstances for the past few centuries [5]. 
Understanding the biosocial factors in different global conditions could help to 
give a more comprehensive viewpoint of how environmental exposures can have a 
role in psychiatric disorder incidences in countries with differing levels of finan-
cial, social, crime, environmental, and educational parameters [5]. In addition to 
reducing false positives, increasing sample diversity in psychiatric genetics can 
bring genomic science to the worldwide population and ultimately provide scien-
tific benefits in characterizing high-risk genetic variants to nations around the 
globe [4]. Populations vary in terms of allele frequencies, biological adaptations, 
and other properties that affect the detectability and importance of risk variants, 
and several observations suggest that no single population is sufficient for fully 
uncovering the variants underlying disease in all populations [4]. With the inclu-
sion of non-European subjects, genomic medicine has shown to increase the num-
ber of identified genomic associations and promote fine-mapping of GWAS loci 
[5]. The frequency of high-risk alleles can differ from population to population, so 
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expanding beyond European samples will help elucidate high-risk alleles from dif-
ferent SNPs across the globe. Beyond gene-gene interactions, collecting GWAS 
data from non-European populations will also provide insight into environmental, 
social, and other nongenetic factors playing into disease states due to the variable 
prevalence of diseases in different countries [4]. Finally, with the rise of genotype-
phenotype associations learned from GWA studies, there has been discernable 
interest in how meta-analysis can be used to increase statistical power in detecting 
genetic traits.

One of the limitations of GWA studies is their focus on common variants (i.e., 
found in at least 1% of the population) and their reliance on microarray technolo-
gies. Recent studies have suggested an important role of rare variants (i.e., present 
in <1% of the population), such as deletions and duplication (copy number variants) 
in psychiatric disorders [6], which cannot be captured by traditional GWAS meth-
ods. For that purpose, next-generation sequencing methods have been developed to 
sequence and detect rare and ultra-rare variants in specific phenotypes. While whole 
genome sequencing (WGS) provides an in-depth comprehensive sequencing strat-
egy of the entire genome, focused, more affordable strategies can also provide 
important insights, such as whole exome sequencing (WES, which sequences the 
coding regions of the genome). As discussed in details in Sect. 3, initial WES stud-
ies have identified rare and ultra-rare variants in many psychiatric disorders, 
although their use is still limited compared to GWAS based on the extremely large 
sample sizes required and cost.

2.2 � Polygenic Risk Scores

Polygenic risk scores (PRS) can help quantify an individual’s risk for a particular 
trait by looking at the sum of the risk allele variants present at each SNP weighted 
by the corresponding effect sizes across all available SNPs derived in a well-
powered GWA study [7]. In fact, substantially greater predictive power can be 
achieved by using PRS rather than a small number of genome-wide significant 
SNPs [8]. These weighted sums can include millions of variants and refer to risk 
estimates of disease outcomes or, more commonly, as polygenic score(s) (PGS) 
when referring to any outcome [9]. In the last decade, several GWAS have identified 
polymorphisms associated with the development of depression, attention-deficit/
hyperactivity disorder (ADHD), schizophrenia (SZ), bipolar disorder (BD), and 
autism [10], as discussed in more detail in the next sections. These SNPs from 
GWAS summary statistics provide the foundation for quantitative measures of 
genetic susceptibilities and may be predictive of the incidence of such psychiatric 
disorders. Of note, while PGS represent individual genetic predictions of pheno-
types, prediction is often not the final objective in a research setting; rather, these 
predictions are then typically used for interrogating hypotheses via association 
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testing [8]. Additionally, PRS scores will not give insight to a timeline or progres-
sion of a disease state for an individual, only their risk of acquiring such a state. 
Over 900 publications to date mention PRS with significant developments in how 
they can be constructed and evaluated, including many new proposed uses with a 
hopeful outlook of integrating these studies in a clinical context. In addition, there 
are emerging applications of PRS that further compound the heterogeneity in report-
ing, e.g., using PRS as tools for testing gene x environment interactions or shared 
etiology between diseases [9].

PRS analysis can be distinguished by two input datasets that are required: GWAS 
data summary statistics (e.g., betas, P-values) of genotype-phenotype associations 
(“base” sample) at genetic variants genome-wide and genotypes and phenotype(s) 
in individuals of a “target” sample. Importantly, the statistical power and clinical 
validity of PRS analyses are dependent on the quality of the target and summary 
(base) data. Therefore, both datasets must undergo quality control of high standards 
implemented in GWAS [8]. A strong foundational use of PRS relies on its ancestry, 
predictiveness, and transparency of information needed to reproduce a study. As 
previously mentioned, the majority of GWA studies have been conducted on 
European populations, and thus many of the PRS studies have used European data-
sets as their comparison groups. However, with the increasing number of non-
European groups and individuals being included in GWA and PRS studies, it is 
essential for researchers to provide a detailed description of participants’ genetic 
ancestry alongside how ancestry was determined [9]. For transparency sake, provid-
ing complete details including the method used and how variants are combined into 
a single PRS would also help in the further development of PRS uses for research 
and clinical settings, i.e., whether the individual risks are appropriately being con-
sidered for a disease state [9]. Other defining criteria important for reproducibility 
include demographic and nongenetic predictors (nongenetic variables) in the study. 
In addition to clarifying the methods, it is important that researchers detail the inte-
grated risk model fitting procedure, including the measures used for final model 
selection to find the optimal fit [9].

The clinical capacity of PRS to quantify genetic predisposition for many relevant 
traits and illnesses has begun to be established, with multiple potential uses in set-
tings related to disease risk stratification as well as proposed prognostic uses and 
preventative medicine [9]. There has been a rise of trend for using PRS in commer-
cially available sources outside clinical settings, such as 23andMe and MyHeritage, 
creating a bigger sample group for PRS studies and providing healthcare systems 
with an opportunity to update the information networks for genomic medicine [9]. 
With the surge of new groups being included in PRS studies, identifying specific 
genes within the broad spectrum of PRS studies that are inherent to disease traits 
has the potential to drive new therapies for psychiatric illnesses. For example, PRS-
based clinical intervention, PRS-based disease screening, and PRS-based life plan-
ning were proposed as some potential clinical benefits [11].
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2.3 � Epigenetics

Epigenetic studies explore how the environment can directly impact a person’s 
genomic expression, and, in the context of psychiatry, this could clarify gene-
environment interactions in many disorders. Epigenetic studies additionally provide 
insight to the regulatory mechanisms of DNA repair and homeostasis pathways. 
Most common forms of epigenetic studies include methods focused in DNA meth-
ylation, histone posttranslational modification, or noncoding RNAs [12]. Decades 
of research have investigated the presence of epigenetic stress in schizophrenia, BD, 
anxiety, ADHD, addiction, major depressive disorder (MDD), and personality dis-
orders [12].

One of the most common forms of epigenetic studies includes the assessment of 
DNA methylation. DNA methylation studies look for the addition of a methyl group 
on the 5′ position of cytosine-guanine nucleotides, known as CpG dinucleotides. 
Many of the studies surrounding DNA methylation in the field of psychiatry have 
been focused on mood disorders, anxiety, addiction, and depression, with evidence 
that early childhood adversity correlates with elevated DNA methylation in adults 
[13]. For instance, there is evidence that childhood adversity induces elevation of 
DNA methylation levels in the gene encoding glucocorticoid receptor in the hippo-
campus in both animal and human models [14]. Methylation studies have addition-
ally demonstrated this marker to be a valuable diagnostic tool in the specification of 
an individual’s premorbid risk for personality disorders [14].

Compiling data clusters and samples of various methylation studies can be done 
through an epigenome-wide association study (EWAS). The ability to measure 
methylation in a meticulous manner prompted the development of epigenome data 
pipelines, which have expedited analyses and overcome the hurdles from highly 
dimensional datasets [15]. EWASs study designs can consist of case-control and 
longitudinal designs, as well as family-based study designs and sample quantitative 
traits [15]. The advantage of case-control studies is the ability to compare dichoto-
mous traits between groups which allow researchers to make cross-sectional com-
parisons [15]. Longitudinal studies allow insight into methylation levels for 
intrapersonal and interpersonal trajectories for a group of subjects over a long period 
of time; however, this study design does have limitations for time and can be expen-
sive [15]. Due to the complex interplay between epigenetic factors, researchers 
should be clear in their research criteria and study designs so there can be a high 
level of reproducibility for future EWAS.

Of note, although methylation studies have been the more common method for 
epigenetic studies, histone-chromatin modification and noncoding RNA studies are 
also important. The transcriptome is defined as the genomic activity of transcription 
factors and machinery in accessing DNA, which can be modified by histone modi-
fication, chromatin condensation, noncoding RNAs, and, as previously mentioned, 
cytosine methylation [14].
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3 � Findings in Specific Disorders

In the next sections, we will briefly discuss genetic and epigenetic findings specific 
to some psychiatric disorders and conditions, providing examples of key genes and 
pathways related to each of them. We will focus on findings from the latest GWAS 
and WES studies and briefly discuss major genes identified in various disorders, 
further discussing the role of epigenetics and recent findings with the PRS for them. 
Specific limitations and perspectives of the study of each condition will also be 
provided.

3.1 � Autism Spectrum Disorder

Autism spectrum disorder (ASD) is a disorder caused by dysfunction in neurodevel-
opment, with patients presenting with persistent deficits in social communication, 
social interaction, and restricted, repetitive patterns of behavior across multiple con-
texts [16]. ASD is a multifactorial condition with both genetics and environmental 
influence, with heritability estimated by twin studies of about 90% [17].

The latest GWAS for ASD analyzed genotyping data from a discovery sample 
(7387 ASD cases and 8567 controls) followed by a meta-analysis from two replica-
tion sets: the Danish iPSYCH project (7783 ASD cases and 11,359 controls) and the 
combined deCODE collection (1369 ASD cases and 137,308 controls), which 
included individuals from Iceland, Ukraine, Georgia, and Serbia [18]. With these 
data, a SNP-based heritability (h2SNP) for ASD for the international collaboration 
was found to be 0.326 based on 1,096,173 SNPs [18]. PRS calculated with these 
findings was able to explain 2.45% of the phenotype when using a pooled PRS-
based case-control odds ratio of 1.33 [19].

Table 1 shows selected genes that have been nominally associated with ASD in a 
recent GWAS, including their biological function. One major finding from these 
GWAS is a significant genetic overlap between ASD and SZ. The genetic correla-
tion between the two diseases has been estimated to be 23%, with shared risk loci 
including several genes involved in neurodevelopment, such as exostosin glycosyl-
transferase 1 (EXT1), astrotactin 2 (ASTN2), mono-ADP ribosylhydrolase 2 
(MACROD2), and histone deacetylase 4 (HDAC4) [18].

Advancements in genetic techniques have made it possible for researchers to 
look for rare variants in the population using WES. The most recent WES for ASD 
was conducted using data from 35,584 samples, of which 11,986 had ASD. This 
study successfully identified 102 risk genes for ASD, of which 49 were involved in 
both ASD and neurodevelopment delay genes and 53 were specifically linked to the 
development of ASD. Of the latter, six de novo variants held significance for the 
development of ASD: chromodomain helicase DNA binding protein 8 (CHD8), 
lysine methyltransferase 5B (KMT5B), and lysine demethylase 6B (KDM6B) are 
gene expression regulators, phosphatase and tensin homolog (PTEN) and ankyrin 2 
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Table 1  Selected genes associated with autism spectrum disorder identified in a recent genome-
wide association study [18]

Gene Key function

EXOC4 Synaptic vesicle trafficking
ANO4 Calcium-dependent phospholipid scramblase activity
EXT1 Biosynthesis of heparan sulfate which binds to protein ligands and regulates 

biological activities, including developmental processes
ASTN2 Neuronal-glial adhesion during migration; has been associated with schizophrenia
HDAC4 Deacetylation of core histones, which plays an important role in transcriptional 

regulation
MACROD2 Involved in removing ADP-ribose form mono-ADP-ribosylated proteins
CUEDC2 Ubiquitination-proteasomal degradation pathway
PITX3 Neuronal differentiation transcription factor

ANO4 anoctamin 4, ASTN2 astrotactin 2, CUEDC2 CUE domain-containing 2, EXOC4 exocyst 
complex component 4, EXT1 exostosin glycosyltransferase 1, HDAC4 histone deacetylase 4, 
MACROD2 mono-ADP ribosylhydrolase 2, PITX3 paired-like homeodomain 3

(ANK2) play a role in neuronal communication, and GRB10 interacting GFY pro-
tein 1 (GIGYF1) regulates tyrosine kinase receptor signaling [20].

In addition to genetic alterations, epigenetic modifications affecting DNA tran-
scription and various pre-and postnatal exposures to a variety of environmental fac-
tors have been suggested as precipitating factors for ASD [21]. For instance, air 
emissions, maternal vitamin D deficiency, chemicals like polybrominated diphenyl 
ethers, and exposure to anti-epileptic medications like valproate have been reported 
to cause epigenetic modifications that can ultimately lead to a higher risk for devel-
oping ASD [21]. Some studies have demonstrated changes in the DNA methylation 
of several ASD candidate genes including the gene encoding the oxytocin receptor 
(OXTR), the reelin (RELN), and the SH3 and multiple ankyrin repeat domains 3 
(SHANK3) genes [22]. Oxytocin receptors, which normally regulate social behav-
ior, can undergo DNA methylation and lead to the development of the ASD pheno-
type [21]. SHANK3 is a gene that codes for cell adhesion molecules containing 5 
CpG islands that undergo DNA methylation, and this hypermethylation is needed 
for synapse formation and the proper function of the genome [21]. Examples of 
histone modifications that have been studied in the brain of patients with ASD 
include methylation of lysine residues of H3 histone protein, which can result in 
changes in social interaction and repetitive behavior which are major characteristics 
of ASD. Acetylation of histone proteins of the genes coding for oxytocin and vaso-
pressin has also been associated with ASD-like behavior, as indicated by the increase 
in the upregulation of these receptors after the administration of histone deacetylase 
inhibitors [21].

In summary, ASD is a multifactorial disorder that draws influence from both 
genetics and the environment. However, studies for ASD have not been as robust as 
other neuropsychiatric disorders due to a lack of research stemming from relatively 
small sample size. Further research with larger sample sizes and genome-wide 
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approaches integrating genomics and epigenomics is warranted to identify signifi-
cant genes that will help identify risk for developing ASD.

3.2 � Bipolar Disorder

BD is a psychiatric condition that usually presents with episodes of depression and 
mania [23]. Onset of BD usually begins in young adulthood, with early onset cor-
relating to poorer prognosis and increased comorbidity with other psychiatric disor-
ders [24]. BD, like other psychiatric disorders, is multifactorial in nature, drawing 
from both genetics and the environment. Twin studies focused on BD estimate its 
heritability to be about 67% [23]. Family studies have also shown that BD tends to 
aggregate in families, and there is a 9% recurrence risk for first-degree relatives of 
patients to develop BD [25]. There have been several GWAS performed on BD 
samples, although a major problem with them is that most have been performed 

Table 2  Selected genes associated with bipolar disorder identified in a recent genome-wide 
association study [26]

Gene Function

LMAN2L Cargo receptor in the transport of glycoproteins
GNL3 Regulates cell cycle and affects cell differentiation
MHC Important role in immune response
TMEM258 Component of the oligosaccharyltransferase complex controlling ER stress 

and intestinal inflammation
ADD3 Involved in the assembly of spectrin-actin networks in erythrocytes
PACS1 Sorts proteins and other molecules and sends them to their intended 

destinations inside or outside the cell
CACNB2 Ion channel encoding gene expressed in hippocampal pyramidal neurons
LRRC57 Involved in protein-protein interaction
FURIN Neurodevelopment role, associated with schizophrenia
STK4 Cytoplasmic kinase that induces chromatin condensation with 

internucleosomal DNA fragmentation
KCNB1 Mediates transmembrane potassium transport in excitable membranes
MCHR1 Encodes protein that can inhibit cAMP accumulation by stimulating 

intracellular calcium flux
HTR6 Encodes a serotonin receptor targeted by antipsychotic and antidepressants
TRANK1 and 
DCLK3

Enables ATP binding activity

ADD3 adducin 3, CACNB2 calcium voltage-gated channel auxiliary subunit beta 2, DCLK3 
doublecortin-like kinase 3, ER endoplasmic reticulum, GNL3 G protein nucleolar 3, HTR6 
5-hydroxytryptamine receptor 6, KCNB1 potassium voltage-gated channel subfamily B membrane 
1, LMAN2L lectin, mannose binding 2 like, LRRC57 leucine-rich repeat containing 57, MCHR1 
melanin-concentrating hormone receptor 1, MHC major histocompatibility complex, PACS1 phos-
phofurin acidic cluster sorting protein 1, STK4 serine/threonine kinase 4, TMEM258 transmem-
brane protein 258, TRANK1 tetratricopeptide repeat and ankyrin repeat containing 1

Genetic Biomarkers of Psychiatric Disorders



20

only with subjects of European ancestry [24]. The latest GWAS compared 41,917 
BD cases and 371,549 controls and identified 64 associated genomic loci (of which 
33 were newly discovered loci for BD) [26]. Selected genes from the latest GWAS 
are presented in Table 2. Pulling from the data, the Psychiatric Genomics Consortium 
(PGC) was able to calculate the SNP-based heritability (h2SNP) of BD to be about 
20% [23]. They were also able to derive PRS from the same GWAS, which was able 
to explain about 4% of the phenotypic variance [24].

The most recent WES of BD was conducted with 13,933 patients and 14,422 
controls and found 1 gene, AKAP11 (odds ratio = 7.06), that was significant for both 
BD and SZ [23]. AKAP11 is a scaffolding protein that binds to the regulator subunit 
of protein kinase A where it targets specific substrates for phosphorylation and 
dephosphorylation [23]. Studies have also shown that different subtypes of BD 
overlap with different psychiatric disorders in terms of their genetic underpinnings. 
For example, BD type I, its most severe diagnostic type presenting recurring mood 
episodes with at least one manic episode, genetically overlaps with schizophrenia, 
while BD type II, which requires one major depressive episode with at least one 
hypomanic episode for its diagnosis, overlaps with MDD [23]. One major limitation 
of the most recent WES is its sample size, and it is thought that an increase in the 
sample size of future WES would most likely produce more evidence of rare varia-
tion in BD risk [23].

As previously mentioned, BD, like other psychiatric disorders, is multifactorial 
and is not solely based on genetic causes. Epigenetics, through DNA methylation, 
histone modifications, and regulation of noncoding RNAs, are mechanisms through 
which BD can be regulated [27]. For instance, the methylation rate of the candidate 
gene membrane-bound catechol-O-methyltransferase (MB-COMT) was studied in 
postmortem frontal lobe of patients and showed a 29% hypomethylation in patients 
compared to 69% in controls [27]. Another study done by Cruceanu et al. showed 
that the synapsin II (SYN2) gene, which is part of the synapsin family of neuronal 
phosphoproteins, is associated with an increased expression of H3K4me3, a histone 
modification marker in postmortem brains of BD patients. The SYN2 gene, along 
with other genes in its class, has been shown to play a huge role in psychiatric dis-
orders including both BD and SZ. By changing the levels of H3K4me3 around the 
SYN2 promoter, an increase in gene expression can be induced [28].

3.3 � Schizophrenia

SZ is a psychiatric disorder characterized by hallucinations, delusions, disorganized 
speech and behavior, and negative symptoms like anhedonia and avolition [29]. The 
disorder tends to be chronic with onset in late adolescence and early adulthood [30]. 
There has been an increase in diagnoses of SZ with an incidence of 15.2 per 100,000, 
with males being affected significantly more than females [29]. Of particular con-
cern, SZ increases individual risk for mortality due to a higher suicide rate, adverse 
effect of antipsychotics, and poor health choices including but not limited to 
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Table 3  Selected genes associated with schizophrenia identified in a recent genome-wide 
association study [32]

Gene Function

SLC39A8 Deficiency leads to severe neurodevelopmental disorders via impaired 
manganese transport and glycosylation

GRIN2A Glutamate receptor subunit involved in long-term potentiation, memory, and 
learning

SP4 Transcription factor expressed in the brain and regulated by NMDA 
transmission

STAG1 Controls chromosome segregation and regulates gene expression
FAM120A Encodes RNA binding protein
CACNA1C Encodes voltage-gated calcium channel that mediates membrane polarization 

due to influx of calcium ion
CLCN3 Encodes voltage-gated chloride channel
GABBR2 GABA receptor
GRM1 Metabotropic glutamate receptor that activates phospholipase C
RERE Transcriptional regulator and associated with developmental disorders
BCL11B Encodes transcriptional repressor
Foxp1 and 
MYT1L

Transcriptional regulators and associated with developmental disorders and 
ASD

ASD autism spectrum disorder, BCL11B BAF chromatin remodeling complex subunit, CACNA1C 
calcium voltage-gated channel subunit alpha 1c, CLCN3 chloride voltage-gated channel 3, 
FAM120A family with sequence similarity 120A, FOXP1 forkhead box P1, GABBR2 gamma-
aminobutyric acid type B receptor subunit 2, GRIN2A glutamate ionotropic receptor, GRM1 gluta-
mate metabotropic receptor 1, MYT1L myelin transcription factor 1 like, RERE arginine-glutamic 
acid dipeptide repeats, SLC39A8 solute carrier family 39 member 8, SP4 SP4 transcription factor, 
STAG1 stromal antigen 1

smoking and substance abuse [29]. SZ heritability is estimated to be about 80%, 
with first-degree relatives of patients having about 5–10 times increased risk for 
developing SZ compared to the general population [31].

The largest and latest GWAS for SZ was conducted by the PGC using 76,755 
cases with SZ and 243,649 controls with samples taken from individuals of 
European, East Asian, African American, and Latino ancestry [32]. This is vastly 
different from previous GWAS which tended to focus on individuals solely of 
European ancestry. With this dataset, researchers were able to identify 342 signifi-
cant SNPs at 287 loci associated with the diagnosis and estimated the SNP-based 
heritability (h2SNP) to be about 24% [32]. Selected genes are presented in Table 3. 
PRS was able to explain about 7.7% of the variance seen in SZ [29]. Studies have 
also found significant genetic correlations between SZ and other psychiatric disor-
ders, including BD (rg = 0.68), MDD (rg = 0.34), and ASD (rg = 0.21) [29].

WES has also been performed for SZ, the most recent of which was conducted 
by the Schizophrenia Exome Sequencing Meta-Analysis (SCHEMA) Consortium 
comparing 24,248 SZ cases and 97,322 controls [33]. The authors were able to 
identify 10 genes containing ultra-rare coding variants that were significantly asso-
ciated with SZ (OR of 3–50, P  <  2.14  ×  10−6), which were involved in ion 

Genetic Biomarkers of Psychiatric Disorders



22

transportation (CACNA1G, GRIN2A, and GRIA3), neuronal migration and growth 
(TRIO), transcriptional regulation (SP4, RB1CC1, and SETD1A), nuclear transport 
(XPO7), and ubiquitin ligation (CUL1 and HERC1) [33].

As is the case for other psychiatric diagnoses, SZ is a complex and multifactorial 
disorder known to be influenced by a multitude of factors not limited to genetics. 
Studies have found that the onset and development of SZ can be influenced by 
obstetric complications such as low birth weight, fetal disturbance during the sec-
ond trimester like infection and stress, childhood trauma, ethnicity, and social isola-
tion [30], among other environmental variables. Epigenetic factors, such as DNA 
methylation in genes involved in neurotransmission systems, histone modification, 
and biological aging can also increase the risk for SZ in an individual. For instance, 
it has been shown that people with SZ have a 20-year reduction in life expectancy 
due to both endogenous and environmental factors that can cause accelerated aging 
[34]. Accelerated aging can also be attributed to telomere length shortening seen in 
patients with SZ [35].

Multiple neurotransmitter pathways can be manipulated by DNA methylation, 
including the dopaminergic and serotonergic systems. Using postmortem brain 
samples, a study showed the promoter of the membrane-bound catechol-O-
methyltransferase (MB-COMT) gene to be hypomethylated in SZ, leading to an 
increase in dopamine degradation in the frontal lobe (known to be affected in SZ 
patients) [36]. Blood samples of SZ patients have also shown a hypermethylation of 
the promoter of the serotonin receptor type (5HTR1A) gene [37], which leads to a 
decrease in the expression of this receptor and ultimately to impairment of the sero-
tonergic system [38]. Finally, a study on histone posttranslational modification 
showed a correlation between age of onset and treatment resistance when there is an 
increased level of repressive histone mark H3K9me2  in lymphocytes of SZ 
patients [39].

3.4 � Suicide

Suicide is a leading cause of death associated with the act of injuring oneself with 
the intention of death, including suicide ideation, suicide attempt, and suicide death. 
There are multitudes of factors that would push someone to engage in that act, 
including financial struggles, social environment, and relational problems. In 2020 
alone, 12.2 million American adults thought about suicide, and 1.2 million attempted 
suicide [40]. Annually, the rate of death by suicide is 11.4 per 100,000 subjects, with 
more males dying by suicide than females [41]. Studies have shown that 90% of 
those who either die of or attempted suicide have a psychiatric disorder, usually a 
mood disorder or SZ [42]. However, an inherited component associated specifically 
with suicide has been proposed to be independent from that of other psychiatric 
disorders. Of note, twin studies have estimated heritability for suicide attempt to be 
about 30–55%, which shows that factors other than genetics influence a person’s 
decision to attempt suicide [42, 43].
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The latest GWAS for suicide attempt was conducted with 29,782 cases and 
519,961 controls of primarily European ancestry but also included cases of East 
Asia and African American ancestry. Two loci were found to be of nominal genome-
wide significance, including a variant in the major histocompatibility complex and 
one intergenic locus on chromosome 7 [44]. The SNP-based heritability (h2SNP) for 
suicide attempt was 6.8%, and the calculated PRS was able to explain around 2% of 
phenotypic variance [44]. This GWAS also showed that the genetics of suicide 
attempt present a positive correlation with other psychiatric disorders, including 
MDD (rg = 0.78), SZ (rg = 0.46), BD (rg = 0.49), ADHD (rg = 0.51), and post-
traumatic stress disorder (PTSD) (rg = 0.73) [44].

GWAS for death by suicide was also recently performed and included 3413 cases 
and 14,810 controls (all of European ancestry). Similar to the GWAS for suicide 
attempt, two genome-wide significant loci were found in chromosomes 13 and 15 
and correlated to 6 SNPs [45]. These six SNPs were associated with the long inter-
genic non-protein coding RNA 348 (LINC00348), SOGA family member 2 pseudo-
gene 1 (SOGA2P1), and ATPase phospholipid transporting 10A (ATP10A) genes 
[45]. Suicide death SNP-based heritability (h2SNP) was estimated to be 25% [45]. 
This study also found that people who died by suicide also tend to be at a higher 
genetic risk for MDD, ASD, psychosis, and impulsive behavior, given significant 
genetic correlations of suicide death with these conditions [45]).

WES for suicide has not been performed as much as for the other psychiatric 
disorders previously discussed. The latest WES was performed focusing on patients 
with MDD that died of suicide, comparing brain samples of 23 suicide subjects and 
21 controls [46]. This study found the collagen type VI alpha 6 chain (COL6A6) 
gene to be associated with the suicide/MDD group in about 17% of the suicide sub-
jects, which is a gene known to help with axon guidance [46]. Another WES focused 
on BD patients with history of suicidal behavior and compared 387 subjects with 
suicide attempt history and 631 BD without any suicide attempts [47]. The study 
found two genes, solute carrier family 6 member 13 (SLC6A13) and cilia and fla-
gella associated protein 70 (CFAP70), to be associated with suicide attempt in BD, 
although not reaching study-wide significance. SLC6A13 plays a role in GABA 
neurotransmission regulation, and CFAP70 has a role in cilia function [47].

There have been several studies looking at the role of epigenetics in suicide 
death. A study by McGowan and colleagues showed an increase in DNA methyla-
tion at the NGFI-A binding site in the glucocorticoid receptor promoter in the hip-
pocampus of subjects with a history of childhood abuse who died from suicide [48]. 
Another study by Keller and colleagues showed increased methylation of the brain-
derived neurotrophic factor (BDNF) promoter in the Wernicke area of postmortem 
brain samples associated with suicide [48]. BDNF plays a pivotal role in the devel-
opment of neurons in the CNS, and its downregulation has been seen in suicide 
subjects [48].
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3.5 � Major Depressive Disorder

MDD is a heterogenous mental disorder characterized by periods of sadness, loss of 
interest in normal activities, feeling of worthlessness, suicidal thoughts, and sleep 
and appetite changes. It is a highly prevalent disorder, with estimations that one in 
six people will be diagnosed with MDD in their lifetime [49]. MDD is influenced 
by both the genetic makeup of a person and their environment, with twin studies 
reporting its heritability to be about 30–40% [49].

The latest GWAS for MDD, which was a meta-analysis of three different studies 
(Million Veteran Program, 23andMe, and the UK Biobank and FinnGen), was per-
formed using individuals of European (1,154,267 total subjects with 340,591 diag-
nosed with MDD) and individuals of African ancestry (59,600 total subjects and 
25,843 diagnosed with MDD) [50]. This meta-analysis was able to find 223 signifi-
cant independent SNPs in 178 genomic loci for European ancestry, and none were 
found to be significant for those of African ancestry [50]. Selected genes can be 
found in Table 4. The SNP-based heritability (h2SNP) was averaged to be 6.6% [50].

The latest WES was conducted with 184 patients with MDD and 82 healthy con-
trols and found 24 genes associated with MDD. Among them, the fatty acid syn-
thase (FASN) gene, which encodes fatty acid synthase, was the most significant 
variant [51]. Other genes found were cadherin-related 23 (CDH23), which helps 
form adherens junction and signal transduction; myosin heavy chain 13 (MYH13), 
which helps with muscle contraction; Unc-13 homolog D (UNC13D), which helps 
with vesicle maturation; leukocyte immunoglobulin-like receptor A1 (LILRA1), 
which regulates immune response; calcium voltage-gated channel subunit alpha 1B 
(CACNA1B), which controls neurotransmitter release; trio rho guanine nucleotide 
exchange factor (TRIO), which has a role in cell migration and growth; homer scaf-
fold protein 3 (HOMER3), which mediates protein-protein interaction; and breast 
cancer anti-estrogen resistance protein 3 (BCAR3), which is involved in the 

Table 4  Selected genes associated with major depressive disorder identified in a recent meta-
analysis of genome-wide association studies [50]

Gene Function

NEGR1 Cell adhesion molecule; serves as a trans-neural growth-promoting factor
DRD2 Associated with mood modulation and emotion processing in nucleus accumbens
CELF4 Coordinates synaptic function in excitatory neurons
TRAF3 Mediates signal transduction of CD40, needed immune response activation
LAMB2 Part of extracellular matrix glycoprotein which is a part of noncollagenous 

constituent of basement membranes
SPPL3 Aspartic endopeptidase activity, intramembrane cleaving, and protein 

homodimerization activity
CCDC71 Involved in cellular lipid metabolic process and fat cell differentiation

CELF4 CuGBP Elav-like family member 4, CNS central nervous system, DRD2 dopamine recep-
tor D2, CCDC71 coiled-coil domain-containing 71, LAMB2 laminin subunit gamma 2, NEGR1 
neuronal growth regulator 1, SPPL3 signal peptide peptidase-like 3, TRAF3 TNF receptor associ-
ated factor 3

M. Farhan et al.



25

development of estrogen resistance [51]. EWAS has also been performed using 
blood samples of 11,256 subjects of European and African ancestry and identified 3 
differentially methylated CpG sites [52]. Two genes found to be hypermethylated 
include the cell division control protein 42 binding protein kinase beta (CDC42BPB), 
which regulates cytoskeleton reorganization and cell migration, and rho guanine 
nucleotide exchange factor 3 (ARHGEF3), which is involved in the cellular process. 
The third gene was semaphorin 4B (SEMA4B), which promotes synapse matura-
tion, and was found to be hypomethylated in MDD compared to controls [52].

4 � Clinical Applications of Genetic and Epigenetic Studies

As we develop a better understanding of the genetic underpinnings of psychiatric 
disorders, clinicians are eager to see how this knowledge can translate into real-
world practice. Many of these applications are new enough that they are still being 
tested for their efficacy and broad hypothesized potential.

4.1 � Pharmacogenetics

Pharmacogenetics is the developing field of medicine that seeks to apply under-
standing of patients’ unique genetic profiles in hopes of improved application of 
pharmacological therapies for patients. As patient screening of genetic profiles 
becomes more common, we will see greater application of this field in hopes of 
improving efficacy of medical outcomes including, but not limited to, mortality and 
morbidity. The field of psychiatry has long been plagued with imprecise applica-
tions of medications. For example, the success rates of antidepressants have been 
estimated to reduce instances of depression relapse in 20–30 percent of patients, 
which has left many in the field looking for ways to increase pharmacological treat-
ment efficacy.

As previously discussed, the heritability of psychiatric disorders varies greatly. 
For instance, the heritability of MDD is estimated to be 30–40%, while the herita-
bility of SZ is estimated to be about 80% [31, 53]. Psychiatric conditions are gener-
ally thought of as polygenic disorders with large environmental components that 
can either trigger or cause the underlying pathophysiology. These limiting funda-
mentals have kept the application of pharmacogenetics to the field of psychiatry in 
its early stages.

Despite these challenges, implementation of pharmacogenetics is well underway 
[54, 55]. The development of protocols in the field is still ongoing, with testing of 
pharmacogenetics protocols largely unstandardized. International consortia have 
worked to standardize the production of test results, their reading, and their use [54, 
55]. To date, the Pharmacogenomics Knowledge Base has identified 448 gene-drug 
interactions relevant to the field of psychiatry. Based on these findings, a 16-gene 
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panel has been proposed for psychiatric genomic testing, including alleles within 
the CYP2C9, CYP2C19, CYP2D6, HLA-A, and HLA-B genes [56]. In particular, the 
gene-drug interaction in depression has been a major interest to those involved in 
the pharmacogenetic field [56]. Early research has focused on comparisons between 
treatment as usual and treatment in combination with pharmacogenetic test kits. The 
results of several studies and meta-analyses have shown associations between the 
use of pharmacogenetic testing and symptomatic improvement, as well as lower 
remission rates. Despite some promising initial data, other studies have found 
inconclusive or insufficient data to support their effectiveness [57, 58]. Specifically, 
barriers for clinical implementation of current pharmacogenomic tests include few 
large-scale studies replicating existing findings, a lack of large longitudinal datasets 
assessing their clinical utility, and a poor focus on adverse drug reactions and serum 
drug monitoring in current clinical trials, among others [58]. In this context, the 
American Psychiatric Association Task Force’s current recommendation on the sub-
ject is: “We do not believe the evidence is sufficient at this time to justify the cost 
associated with pharmacogenomic testing, and the data simply do not reinforce or 
support commercial claims.” [59–62]. As the testing range of these kits and our 
understanding of genetics advance, the debate on their utility and potential will 
continue.

4.2 � Polygenic Risk Scores

As previously discussed, PRS are predictors of a patient’s susceptibility to a disease 
process based on their genetic profile. Their use in the field of psychiatry has the 
potential to help quantify expected risk of various diagnoses such as MDD, BD, SZ, 
and others [49, 63]. Some have argued that the use of such scores should be part of 
routine diagnostics, such as lipid panels, complete blood count, or metabolic panels 
[49, 64]. However, the use of PRS is limited by its diagnostic or predictive potential. 
For example, in the case of SZ, when considering the genetic preposition of the 10% 
most susceptible, there is a threefold increase in risk of development. However, in 
the total percentage of this stratified group, only 3% are expected to develop the 
diagnosis. Similarly, among the top 1% strata most likely to develop MDD, only 
30% are expected to develop the diagnosis, a twofold increase over the general 
population. As such, it is easy to see that one might carry a genetic predisposition 
multiple times that of the population as a whole but still be less likely to express the 
disease state. Moreover, there are no established preventive measures available for 
subjects at high risk, further reducing the clinical need for objectively identifying 
such genetic risk.

There remain significant strategic questions on the implementation of PRS in the 
field of psychiatry. Whole population screening for psychiatric disorders is often not 
present or only implemented in limited capacity. Unlike screening for heart disease 
or stroke risk, there is no comprehensive system for risk screening that could incor-
porate PRS as a component. Due to the aforementioned limited predictive value of 
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PRS, implementing it without other screening tools and criteria could be ineffective 
or even counterproductive. In fact, the utility of PRS in diagnosis is currently more 
promising than in whole population screening. While the symptoms of many psy-
chiatric illnesses overlap, especially early in course, PRS has the possibility of pro-
viding some guidance in cases that are unclear. While PRS does not currently have 
the potential to serve as a singular diagnostic tool, its helpfulness can be compared 
akin to a family history of illness. While many might question the value of PRS as 
a diagnostic given the relatively low genetic heritability of many psychiatric disor-
ders, the incorporation of these tools as part of existing patient evaluation might 
provide a level of clarity to the process. Developing utility of PRS in diagnosing 
psychiatric illnesses will be based on substantially increasing the variance explained 
by the PRS by simultaneously using multiple factors, including clinical data and 
environmental components. Moreover, developing preventive measures and strate-
gies for high-risk subjects identified through PRS will be imperative to substantiate 
their incorporation into the clinical setting [49, 65].

5 � Conclusions

Psychiatric research is continually developing an improved understanding of the 
pathophysiology of disease. Our understanding of the gene-environment interac-
tions and emerging technological advancements has the potential to help research-
ers and physicians to better identify/diagnose, treat, and manage psychiatric 
disorders. Through the use of genetic analyses, patients may be able to get diag-
nosed at an earlier time, and this could decrease delayed or inadequate treatment 
[66]. Collaborative efforts from researchers around the world, such as the PGC and 
the iPSYCH, have allowed for the identification of common and rare genetic varia-
tion of a wide range of psychiatric disorders through combined analysis of genetic 
data [67]. Through increasing and diversifying samples, the field hopes to get a 
more holistic picture of population-level genetic profiles and a better understanding 
of disease state developments. In addition, the role of gene-environment interac-
tions through epigenetics and other sources of genetic expression variability will 
continue to improve our understanding of how genetics underlies various diseases. 
Specifically, gene-environment interactions allow researchers and physicians to 
look at how an individual’s genetics can be influenced by exposure in a certain envi-
ronment [68]. If these interactions are ignored, this can lead to inconsistent findings 
and also result in false-negative results [68].

Finally, efforts in psychiatric genetics have contributed to the proposal of the 
emerging field of “precision psychiatry,” which incorporates the fields of psychiatry, 
precision medicine, and pharmacogenetics with the goal of individualized patient 
care [69]. Specifically, precision psychiatry seeks to integrate a wide modality of 
data types and sets including but not limited to neuroimaging, multi-omics, obser-
vational data, and biomarker data [70]. All in all, the field of psychiatric genetics 
and epigenetics may contribute not only to such personalized care but also to a 
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better understanding of the biological basis of psychiatric disorders (providing tar-
gets for the development of novel therapies, for instance). Also, it has a great poten-
tial for ultimately directly impacting clinical practice by helping identify subjects at 
risk, genetically defined homogeneous groups, and tools for a better prediction of 
treatment response.
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Neurophysiological Biomarkers

Feng Fang, Michael Houston, and Yingchun Zhang

1 � Introduction

Biomarkers are objective measurements that can informatively evaluate various 
clinical characteristics of an individual such as the functioning of a biological sys-
tem, the trajectory of illness, and the response to an intervention [1]. Although cur-
rent symptom-based measurements in the  clinical setting can assist in 
neuropsychiatric disorder phenotyping and predict the trajectory or sensitivity inter-
ventions to some extent, it is clear that the traditional tools are limited in correlating 
symptoms to underlying pathophysiology in order to facilitate the development of 
personalized precision therapeutics. Biomarkers, then, offer great opportunity to 
assess the heterogeneity and multivariate interactions of the pathogenesis of various 
brain disorders and cluster individuals into different sub-types in terms of the cause, 
trajectory, and sensitivity of a given neuropsychiatric disorder or treatment [1].

Neurophysiology is a branch of physiology and neuroscience that studies ner-
vous system function [2]. Neurophysiological measurements have some specific 
features that make them well suited to identify potential biomarkers related to dif-
ferent neuropsychiatric disorders [3]. First, neurophysiological measurements can 
be recorded with passive paradigms so that participants do not need to be focused 
and engaged on the tasks, which is ideal for those patients who are difficult to 
engage in human behavioral studies. Besides, neurophysiological biomarkers can 
be acquired with a high temporal resolution to identify the information flow from 
the sensory brain regions to other associated brain areas, which is ideal to determine 
the impairment of information processing flow caused by various neuropsychiatric 
disorders at the earliest stages [4]. Finally, the neurophysiological signals reflect the 
neuronal activity, which can be seen as objective indices of cognitive dysfunction, a 
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prominent feature of patients with neuropsychiatric disorders such as Alzheimer’s 
disease (AD), depression, and stroke. In this chapter, we review the currently avail-
able neurophysiological biomarkers to date and the strengths and limitations of their 
utilization in the development of novel medical tools for phenotyping different neu-
ropsychiatric disorders and predicting various therapeutic interventions.

2 � Methodological Strategies for Biomarker Identification 
and Development

2.1 � Overview of Neurophysiological and Related 
Neuroimaging Methods

The field of neurophysiology has been dominated by the signals recorded from the 
electrical neural activity like the electroencephalogram (EEG) [5]. EEG signals rep-
resent the spatial and temporal summation of synchronous current flow through 
postsynaptic dendritic membranes of cortical pyramidal neurons when the brain is 
activated, wherein dendritic trunks of the neurons are coherently orientated, parallel 
with each other, and perpendicular to the cortical surface to induce sufficient sum-
mation and propagation of electrical signals to the scalp [6]. Traditional EEG 
recording systems have up to 256 EEG electrodes affixed to specific scalp locations 
to monitor the brain electrical neural activity while the participants can perform dif-
ferent tasks based on various experimental paradigms. The recorded EEG signals, 
which represent the large-scale neural oscillatory activity, can be divided into differ-
ent rhythms depending on characteristic frequency bands, including delta (1–4 Hz), 
theta (4–7 Hz), alpha (8–14 Hz), beta (15–25 Hz), and gamma (>25 Hz) [7]. These 
brain rhythms contain information related to the ongoing neuronal processing in 
different brain regions, allowing EEG to be used as a noninvasive approach to char-
acterize neurophysiological biomarkers associated with various neuropsychiatric 
disorders and to assess brain state alterations. However, since the neuron sends and 
receives electrochemical signals, it is difficult to isolate electrical events from the 
metabolic processes. Therefore, neurophysiologists recently began to employ the 
strategies from physics such as functional magnetic resonance imaging (fMRI) and 
functional near-infrared spectroscopy (fNIRS) to examine the metabolic process 
and the hemodynamic activity of the brain [8].

Functional magnetic resonance imaging (fMRI) has revolutionized cognitive 
neuroscience over the past decades [9]. FMRI utilizes the coupling characteristics 
between the neuronal activity and the hemodynamic response, which is the local 
control of blood flow and oxygenation within the brain, to allow the location and 
measure of brain activity in a noninvasive manner [10]. In humans, fMRI has been 
applied routinely to explore the sensory signals processing and control of action and 
make conclusions about the normal and abnormal neural mechanisms of cognitive 
capacities in healthy people and patients with different neuropsychiatric disorders 
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[11]. Findings of the physiological origin of spontaneous brain activity measured by 
fMRI further strengthen the possibility that the detected changes in spontaneous 
brain activity can be utilized as potential biomarkers [11]. From the perspective of 
brain energy metabolism, around 60%–80% of energy consumption from the brain 
is used to support the ongoing neural signaling [12]. Besides, signal transmission 
and neuronal energetic demands are tightly coupled to information coding in the 
cerebral cortex in fMRI experiments [13]. These findings have inspired researchers 
to investigate whether endogenous fMRI biomarkers can characterize the neuro-
physiological changes associated with different neuropsychiatric disorders and 
responses of various therapeutic treatments.

Functional near-infrared spectroscopy (fNIRS) is an optical imaging technique 
for noninvasive exploration of hemodynamic activity of the brain, using lights with 
different wavelengths between 600 nm and 1000 nm that can penetrate the scalp and 
reach the cortical surface to measure the concentration changes of oxygenated 
hemoglobin (HbO) and deoxygenated hemoglobin (HbR) [14]. HbO and HbR are 
coupled with the metabolic activity of neurons in the outer layers of the cortex 
[15–17]. FNIRS is particularly useful for studying the functional activation within 
the brain due to the inherent relationship between neural activity and hemodynamic 
responses of the brain [18–20]. Specifically, fNIRS measures the regional changes 
of HbO and HbR concentrations, which can serve as an indicator of hemodynamic 
changes associated with neural activity of the brain [14]. FNIRS systems have 
received increasing interest in the field of neuropsychiatry for assisting diagnosis, 
prognosis, and follow-up of treatment procedures thanks to their: (1) portability, (2) 
noninvasive nature, (3) modest equipment size, (4) robustness to electrogenic or 
motion artifacts, (5) low operating cost, (6) quick set-up time and calibration, (7) 
ability to collect biological information at any desired frequency and duration, and 
(8) ease of application in ecologically valid settings to a broad range of patient 
populations [21, 22].

2.2 � Brain Activation: A Framework for Developing 
Local-Field Biomarkers

Brain activation refers to the stimulation of neurons or cells within the brain by 
specific experimental paradigms to increase the signaling activity, ion flux, and 
demand for ATP beyond the resting-state threshold [23]. The resting state represents 
an energy-consuming process that utilizes various modalities and pathways to pro-
cess the activation information based on different experimental conditions, for 
example, in comatose, anaesthetized, and conscious subjects [24]. Detailed knowl-
edge of the biochemical, cellular, and network basis for the metabolic signals used 
to generate brain images is essential to properly interpret their relationships to nor-
mal brain activity and neuropsychiatric disorder processes [23]. Glucose is the 
major and obligatory fuel for the normal adult brain, but the pathways, processes, 
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and cell types that consume the additional glucose required during activation com-
pared with baseline and the fates of products of glucose metabolism in working 
brain are not adequately understood.

The human brain is composed of billions of neurons [25]. Each of these elements 
forms a myriad of synapses, establishing a complicated network with quadrillions 
of connections and thus enabling our brains to function in an adaptive manner [26]. 
Although our understanding of neurons on a microscopic scale has progressed in 
recent decades, little is known about how these huge numbers of neurons (and syn-
apses) communicate collectively to generate macroscopic brain signals and human 
behaviors. It is believed that human brain functions and associated behaviors are 
carried out by complex neural activations and networks [27]. These internal activi-
ties generally elevate electrical activity (direct effects) accompanied by a hemody-
namic and metabolic response (indirect effects) which is called “neurovascular 
coupling” and serves as the basic concept for all noninvasive neuroimaging tech-
niques [20, 28, 29]. Depending on the sources of the signals, these brain imaging 
techniques can be roughly divided into two categories. The first category refers to 
imaging techniques that directly capture the neural electrical activities by detecting 
the induced electrical or magnetic fluctuations over the scalp, with most representa-
tive methods in this category as EEG and magnetoencephalography (MEG) [6, 30, 
31]. The second category comprises indirect imaging approaches that rely on hemo-
dynamic (cerebral blood flow, cerebral blood volume) and metabolic (glucose and 
oxygen utilization) responses induced by neural activity, with commonly available 

Fig. 1  Demonstration of neurovascular coupling process
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techniques in this category as fNIRS, fMRI, and positron-emission tomography 
(PET) [10, 14, 32]. In this perspective, EEG and fNIRS have been gaining popular-
ity in the research community and clinical practice due to their distinct natures, 
particularly their noninvasiveness, mobility, and flexibility (Fig. 1) [18].

2.3 � Network Neuroscience: A Framework for Developing 
Network-Level Biomarkers

Network neuroscience pursues novel strategies to map, record, analyze, and model 
the elements and interactions of neurobiological systems, utilizing imaging con-
nectivity approaches such as EEG, fMRI, and fNIRS data [27]. From these neuro-
physiological data, a graph can be constructed, which is a simple mathematical 
representation of a network composed of nodes representing system elements and 
edges and their interactions [27]. In imaging-derived networks, the nodes are typi-
cally parcels of gray matter voxels, ranging from single voxels to entire gyri. 
Associations among nodes (edges) may be established in a number of ways, which 
are typically categorized into structural or functional connectivity approaches 
(Fig. 2) [33].

Fig. 2  Structural versus functional connectivity. (Left) Advanced tractography algorithms allow 
reconstructing the white matter fiber tracts from diffusion MRI. The structural connectivity is esti-
mated in proportion to the number of fiber tracts detected between any two brain areas N and 
P. (Right) On the other hand, the functional connectivity is computed as the correlation between 
the brain activities estimated in areas N and P over the whole recording time
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Structural connectivity approaches aim to understand the network architecture of 
different anatomically connected regions, which can be constructed via the diffu-
sion imaging tractography approach by reconstructing the trajectory of axonal tracts 
using indices of the diffusion of water molecules within neural fibers [34, 35]. In 
this approach, edges reflect estimates of the probability with which a node is physi-
cally connected to another node via white matter tract. Functional connectivity, in 
contrast, can be used to define network edges based on statistical similarities in the 
time series of nodes at rest or during task performance [34, 35]. The edges in func-
tional brain networks represent communication or coordination between nodes. 
With appropriate analytic techniques, causal relations between nodes can also be 
established. This form of connectivity is typically referred to as effective connectiv-
ity [36].

Network neuroscience has revealed organizational principles of healthy brains 
(e.g., small-world architecture and modularity) that allow for efficient, flexible, and 
robust information processing [27]. The fundamental insights into brain network 
organization conferred by network neuroscience hold a great promise for providing 
biomarkers of neuropsychiatric disorders [37]. Studies comparing the networks of 
individuals with psychiatric disorders have observed disorder-related deviations 
from the network topology that defines healthy and disordered networks in preclini-
cal and clinical research [38–40].

2.4 � Brain Controllability Analysis: A Framework 
for Developing System-Level Biomarkers

Cognitive control is similar to the concept of engineering control, where the state of 
a complex system is modulated by an external energetic input [41]. Therefore, it is 
reasonable that the brain can be controlled to alter the cognitive function by tran-
sient network-level control processes like those in engineering. Recently, a func-
tional brain network controllability analysis (fBNC) method was developed to 
investigate the underlying neural control mechanisms related to different cognitive 
processes of various neuropsychiatric disorders and design optimal neuromodula-
tion technique [42–44]. The fBNC method characterizes brain controllability fea-
tures by studying the network dynamics based on the effective connectivity matrices, 
which can be constructed from functional neuroimaging data such as fMRI.

Conventional methods for effective connectivity estimation, including dynamic 
causal modeling, granger causality, and partial correlation-based models, do not 
estimate the dynamics that occur on top of the network. In contrast, the fBNC 
approach allows us to consider the effective relations between brain regions and the 
brain network dynamics simultaneously, based on the system’s input and output 
signals. Prior studies have demonstrated accurate estimation of the effective con-
nectivity network and a good fitness of the fBNC approach in constructing the brain 
network dynamics [42–44]. The fBNC analyses showed a consistent relationship 
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between the controllability diagnostics, average controllability, and modal control-
lability as demonstrated in the structural brain controllability analysis. These find-
ings indicate the potential use of the functional time courses to explore the brain’s 
underlying neural control mechanisms and to locate the optimal target regions based 
on the fBNC-derived controllability diagnostics. This also represents a significant 
enhancement of the approach through incorporation of functional properties and the 
short-term changes of the underlying neural control patterns in contrast with prior 
methods that only considered structural brain network information.

3 � Preclinical and Clinical Research to Inform 
Neurophysiological Biomarker Development 
for Neuropsychiatric Disorders

3.1 � Depression

Depression is a heterogeneous clinical syndrome that is diagnosed when a patient 
reports at least five of nine symptoms, allowing for hundreds of combinations of 
changes in mood, appetite, sleep, energy, cognitive, and motor activities, indicating 
that multiple types of depression exist [45]. However, the neurobiological mecha-
nisms underlying depression remain poorly understood. Recently, researchers and 
clinicians have characterized several depression-related sub-types and developed 
various diagnostic neurophysiological biomarkers by identifying the clusters of 
symptoms that co-occur in patients with depression and then testing for the corre-
lates of neurophysiological features [46–48]. This research has defined typical, 
atypical, melancholic, seasonal, and agitated sub-types of depression associated 
with characteristic changes in clinical symptoms and potential neurophysiological 
biomarkers. Nevertheless, the relationship between clinical sub-types and their bio-
logical substrates is inconsistent at the individual level, making it difficult to reli-
ably phenotype different sub-types and predict antidepressant treatment response at 
the individual level. This indicates that more reliable neurophysiological biomark-
ers are required to accurately differentiate various sub-types of depressions and pre-
dict the treatment response to timely provide alternative treatment options.

EEG measurements have been utilized as alternative tools to diagnose different 
sub-types of depression. Numerous studies have examined differences of various 
frequency bands between healthy patients and patients with depression [49–54]. For 
example, a prior study has demonstrated that the patients with depression demon-
strate greater alpha band and less distributed delta activity compared to healthy 
participants [49]. Besides, another study has also shown increased EEG power in 
various brain regions, including parietal, occipital, posterior temporal, and central 
areas in patients with depression [50]. In addition, EEG has been employed to pre-
dict the treatment response and investigate the relationship between the underlying 
depressive symptoms and other psychiatric comorbidities like internet addition [51, 
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52]. Results indicate that the internet addiction group without depression has 
decreased absolute delta and beta powers in all brain regions, while the internet 
addiction group with depression shows increased relative theta and decreased rela-
tive alpha power in all brain regions. Frontal asymmetry is a relative measure of the 
difference in EEG alpha power between the right and left frontal regions [54]. 
Frontal asymmetry has been found in infants with depressed mothers and is related 
to mothers’ depressive scores [53]. Additionally, reduced left frontal activity has 
been found to be able to predict the first depressive episode in college students [53]. 
These results suggest that the frontal asymmetry detected by the EEG measurement 
may be a potential biomarker to indicate vulnerability to depression.

fMRI measurements have been an especially useful modality to develop neuro-
physiological biomarkers to explore the normal and abnormal brain functions and 
treatment response in patients with depression. For example, resting-state fMRI has 
been reported to be able to quantify the functional network connectivity in patients 
with depression. Specifically, it has shown that depression is associated with dys-
function and abnormal functional connectivity in frontostriatal and limbic brain net-
works [55], in accordance with morphological and synaptic changes in animal 
models [56]. These studies indicate that the brain connectivity measurements 
detected by the fMRI modality are promising biomarkers to identify various sub-
types of patients with depression with stronger neurobiological correlates that can 
predict response of antidepressant treatments. One step further, recent studies have 
also applied the network control theory, or brain controllability analysis, to investi-
gate the cognitive control deficits and predict the antidepressant treatment response 
in patients with depression via fMRI modality [42–44]. As mentioned above, con-
trollability represents the capability of different brain regions in steering the brain 
from any initial state to any desired or target state. Conventional connectivity-based 
measurements show the local properties of varied brain regions and the important 
roles in network architecture. However, controllability-based network measure-
ments describe one brain region’s ability to change the brain behavior from one 
state to another state. One study has demonstrated that the modal controllability of 
frontoparietal network (FPN) computed from the resting-state fMRI data in patients 
with depression is significantly decreased in patients with depression compared to 
healthy subjects [44]. However, throughout the antidepressant treatments using 
escitalopram drug, the controllability of FPN is consistently modulated to the 
approximate level of FPN controllability exhibited by healthy controls [43]. The 
results indicate that the changes of controllability measurements can predict the 
improvement of clinical scores of the patients with depression as the escitalopram 
treatment advanced. Besides, another recent study has also employed the network 
control theory to assess the brain controllability differences between mild cognitive 
impairment (MCI), as prodromal AD, and depression [57]. Results indicate that the 
brain controllability of the default mode network and the superior prefrontal cortex 
in patients with both depression and MCI is significantly decreased compared to 
those MCI patients who do not have depressive symptoms. These results indicate 
that the connectivity- and controllability-based measurements calculated from the 
fMRI signals may be helpful to develop neurophysiological biomarkers to 
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phenotype and predict the treatment response in patients with depression and other 
comorbidities.

fNIRS measurements have also been utilized to explore the depression-related 
biomarkers. Overall, results show that patients with depression have smaller HbO 
increase than healthy controls, with a smaller increase in the frontal area and tem-
poral activation while performing various psychological tasks, including working 
memory, verbal influence, word generation tasks, and trial-making test, or a combi-
nation of the abovementioned tasks [58]. For example, one study reports decreased 
cortical activation throughout the verbal fluency task in patients with depression 
[59]. In addition, another study demonstrates that healthy subjects and patients with 
depression show different patterns of functional connectivity in frontal and tempo-
ral brain areas during trial-making tests, with patients with depression showing a 
decrease and healthy subjects exhibiting a surge in functional connectivity from the 
resting state when conducting trial-making test [60]. Using the emotional para-
digms, a prior study also demonstrates that healthy subjects show increased HbO 
during the happy-word trials and decreased HbO during the threat-word trials com-
pared to the patients with depression [61]. However, another study has reported that 
the patients with depression display notable increase in HbO within the left middle 
frontal region while performing the threat task, whereas patients with depression 
show no variation in HbO while performing the happy task [62]. An independent 
study examined the FPN of patients with early- and late-life depression using the 
fNIRS measurements [63]. The results demonstrate that the FPN is essential in 
patients with late-life depression as patients suffering from late-life depression and 
memory impairment are shown to be at elevated risk for having dementia like 
AD [63].

3.2 � Alzheimer’s Disease (AD)

Alzheimer’s disease (AD) is a progressive neurodegenerative disorder without 
effective treatment options at present [64]. Currently, limited efficacy of clinical 
trials in patients with AD indicates an incomplete understanding of the pathological 
and neurophysiological mechanisms underlying this progressive disorder, requiring 
valid and precise biomarkers to effectively diagnose and treat patients with AD, 
especially at the early stage when the patients have mild cognitive impairment 
(MCI) [65] [66]. Therefore, attention has turned to finding more objective, novel, 
and valid biomarkers of AD that allow for therapeutic intervention at an earlier stage 
of the disorder, potentially allowing for slowing or reversing the dementia symp-
toms at the early stage.

EEG has been successfully utilized in studying neurodegenerative disorders like 
AD. Several EEG characteristics have been put forward as potential neurophysio-
logical biomarkers in patients with AD. For example, a prior study has demon-
strated a high correlation between vision-related EEG signals and the severity of 
dementia assessed by Mini-Mental State Examination scores [67]. These findings 
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indicate that the visual EEG signals may be potential biomarkers in evaluating the 
severity of dementia in patients with AD. In addition, the lower frequency rhythms 
of EEG are prominent characteristic to diagnose the symptoms of AD. Specifically, 
a reduction of power in the alpha (8–15 Hz) and beta (16–31 Hz) bands and an 
increase in the theta (4–8 Hz) and delta (0.5–4 Hz) bands have been observed from 
previous studies [68]. In addition, spectral changes have also been characterized in 
specific topographical locations. The difference between mild AD and healthy con-
trols has been reported to be the most prominent in the temporal area, while the 
comparison between the advanced AD and healthy controls demonstrates that the 
difference is mainly associated with the mid-frontal and anterior bifrontal areas. 
Various studies have also reported changes in functional connectivity in patients 
with AD [69]. In general, AD is considered to be a disconnecting syndrome, show-
ing a lower functional connectivity in patients with dementia due to AD compared 
to healthy controls [70]. One recent study has characterized the AD symptoms as 
lower global information processing and higher local information processing of 
brain network than those of healthy, age-matched controls [71, 72]. Specifically, 
significant positive correlations between global efficiency, average clustering coef-
ficient, and vulnerability in AD network and corresponding Mini-Mental State 
Examination scores were observed. These results support the feasibility of using 
EEG-based connectivity measurements as potential biomarkers to monitor the dif-
ferent stages of AD or even preclinical AD.

FMRI has been utilized as an effective tool to provide biomarkers for detecting 
AD-related brain changes at the early stage. Many fMRI studies in patients with AD 
employ episodic memory tasks to detect the pattern of fMRI activation in the hip-
pocampus and related structures in the medial temporal lobe [73–75]. These studies 
consistently report decreased hippocampal or parahippocampal activity during the 
encoding of new information. A recent quantitative meta-analysis investigating the 
fMRI activation pattern in patients with AD based on memory paradigm identified 
several brain regions being more likely to show greater encoding-related activation 
in healthy participants than in patients with AD, including the hippocampal forma-
tion, ventrolateral prefrontal cortex, precuneus, cingulate gyrus, and lingual gyrus 
[75]. Besides, brain connectivity patterns detected by fMRI modalities in patients 
with AD have been investigated over the past decade. To date, numerous fMRI stud-
ies have shown that patients with AD have reduced resting-state functional connec-
tivity in the default mode network (DMN) compared to the age-matched healthy 
controls [76–78]. Furthermore, DMN connectivity is disrupted in asymptomatic 
individuals with high levels of amyloid deposition in the brain [79, 80], while there 
is impaired deactivation of the posteromedial regions of the DMN during a memory 
encoding task in a similar cohort of cognitively intact, but high amyloid burden, 
individuals [81].

The utilization of fNIRS in patients with AD focuses on the exploration of over-
all functional activation patterns and the cortical reorganization of the brain systems 
in patients with AD. Functional deficit in patients with AD is associated with hemi-
sphere asymmetry, with AD patients presenting loss of lateralized activation in a 
verbal task, but involving global activation in the right hemispheric regions, which 
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is not observed in the healthy participants [82]. A recent study demonstrates that 
greater and steeper reductions in HbO concentration are consistently observed 
across all brain regions of interest (ROI) as disorder progressed from MCI to moder-
ate/severe AD [83]. Functional connectivity analysis can also characterize the 
intrinsic brain activity utilizing fNIRS modality. Similar to the resting-state fMRI, 
the fNIRS signals recorded from patients with AD also show decreased signal com-
plexity in most brain regions [84]. Besides, the synchronization of fNIRS signals is 
reduced in patients with mild AD compared to normal aging healthy controls, with 
a loss of regularity within the brain network with disorder progression [85]. Previous 
studies also suggest that the brain networks in patients with amnestic MCI are char-
acterized by a higher integration as well as a higher segregation compared to healthy 
controls [86]. In addition, the major ROIs within frontal, temporal, precentral, and 
parietal areas are identified to be associated with cognitive impairment [86]. 
Moreover, other recent studies integrated the EEG and fNIRS modalities, utilizing 
a novel source localization algorithm called dynamic brain transition network 
(DBTN) [87–90], to investigate the brain network properties of AD showing that 
patients with AD have weaker and suppressed cortical connectivity in the high alpha 
band and in beta band to the orbitofrontal and parietal regions [71]. AD-induced 
brain networks, compared to the networks of age-matched healthy controls, are 
mainly characterized by lower degree, clustering coefficient at the frontal pole and 
medial orbitofrontal across all frequency ranges [71]. Additionally, the AD group 
also consistently showed higher index values for these graph-based indices at the 
superior temporal sulcus [71]. All these findings validate the feasibility of utilizing 
fNIRS as a portable and reliable tool for the investigation and early deduction of 
abnormal network alterations in patients with AD and MCI.

3.3 � Stroke

Stroke is a leading cause of disability in adults, and the recovery of motor function 
after stroke is critical for the patients to regain independence in their daily lives [91]. 
However, traditional clinical assessment alone cannot accurately predict patients’ 
recovery trajectories and outcomes. Although the clinical assessment of motor 
impairment within a few days of stroke can help predict the subsequent recovery, it 
cannot predict the longitudinal outcomes of motor recovery after stroke. 
Neurophysiological and neuroimaging biomarkers of corticomotor structure and 
function can then help evaluate the effects of motor recovery after a period of time 
of stroke. Combining neurophysiological biomarkers and clinical assessment can 
then provide clinically useful information when planning the personalized neurore-
habilitation to treat a patient.

EEG is a well-established tool in neurological practice, especially epilepsy, with 
a number of applications in the management of patients with stroke, including mon-
itoring of cortical activity in patients who have acute ischemic stroke and during 
carotid surgery. One previous study has demonstrated that the loss of ipsilesional 
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alpha band power and the increase of ipsilesional beta band power detected within 
two weeks of stroke are related to poor clinical outcome [92]. In addition, a prior 
study has shown that quantitative EEG biomarkers may predict motor recovery by 
recording the resting-state EEG signals within 3 weeks of stroke symptom onset 
[93]. Besides, coherence of beta frequency band between the ipsilesional primary 
motor cortex and the rest of the cortex has shown to be positively linearly related 
with the improvements in the composite scores of upper-limb motor performance 
during the first three months after stroke [93].

FMRI measurements can be utilized as potential biomarkers to evaluate motor 
performance of patients at rest or during motor tasks. Previous studies have 
employed the fMRI modality to predict upper-limb motor outcomes in patients with 
stroke and demonstrated that the patients with good motor outcomes have a greater 
activity in the ipsilesional primary motor cortex, ipsilesional premotor cortex, and 
contralesional cerebellum [94]. Besides, a prior study scanned patients with stroke 
during passive movement of the paretic wrist one month after moderate-to-severe 
stroke, including task-related cortical activity and baseline total motor Fugl-Meyer 
score [95]. It was  found that the patterns of both passive and active task-related 
brain activity measured with fMRI may predict outcome with similar, and possibly 
greater, predictive power than the traditional clinical scores. Quantitative indices 
extracted from fMRI in the early and late subacute stage, such as the laterality index 
from the primary motor cortex (M1), and the investigation of its change over time 
show that stroke is linked to a less lateralized pattern of activation as compared to 
healthy subjects [96–98].

FNIRS is a safe and effective monitoring tool for stroke recovery, including 
upper- and lower-limb recovery, motor learning, cortical function recovery, cerebral 
hemodynamic changes, cerebral oxygenation, therapy, clinical research, and evalu-
ation of the risk for stroke [99]. Prior studies have reported that the upper-limb 
motor recovery is associated with ipsilateral motor cortical compensation [100]. By 
measuring the cortical activities during hemiparetic gait on the treadmill, a previous 
study has shown that the activation in the medial primary sensorimotor cortex and 
premotor cortex in the affected hemisphere may be a potential biomarker of loco-
motor recovery [101]. A recent study has combined fNIRS and EEG modalities to 
identify biomarkers associated with motor function recovery documented post-
stroke cortical reorganization [102]. Task-evoked strength at the ipsilesional pri-
mary somatosensory cortex is significantly lower in patients with stroke compared 
to healthy controls. Across the 4-week rehabilitation intervention, the strength at the 
ipsilesional premotor cortex and the functional connectivity between the bilateral 
primary motor cortices increased in parallel with the improvement of motor func-
tion [102]. Furthermore, baseline neural activity of the ipsilesional premotor cortex 
is significantly associated with motor function recovery, while a higher baseline 
connectivity between the ipsilesional supplementary motor cortex and primary 
motor cortex implies a worse motor function recovery in patients with stroke [102]. 
A recent study utilized the brain controllability analysis to evaluate the motor con-
trol deficits in patients with stroke [103]. The brain controllability of the executive 
control network (ECN) and supplementary motor cortex (SMA) in patients with 
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stroke are significantly lower than in healthy participants. In addition, the baseline 
brain controllability of the primary motor cortex is significantly correlated with the 
baseline FM-UL clinical scores. In conclusion, EEG and fNIRS technologies dem-
onstrate a preliminary potential for monitoring and predicting post-stroke motor 
recovery.

4 � Conclusions

Understanding the dynamics of the brain is important to define the underlying 
mechanisms of different mental disorders, identify biomarkers, and explore novel 
therapeutic approaches. Several potential biomarkers have been unveiled by research 
so far, but the neurophysiology and pathophysiology of these disorders remain to be 
fully elucidated and clarified. In this chapter, we provided an introductory perspec-
tive to highlight the numerous advances in neurophysiology and neuroscience and 
the novel analytical approaches for neurophysiological biomarker identification, 
ranging from neuroimaging, such as fMRI and fNIRS, to network science and cog-
nition for different neuropsychiatric disorders, including AD, depression, and 
stroke. In the field of neuropsychiatry, we have seen rapid growth in the utilization 
of EEG, fMRI, and fNIRS for understanding neural mechanisms of various neuro-
psychiatric disorders and in providing preliminary evidence for refining the treat-
ment of persons with these disorders. However, there remain significant challenges 
to the wide application of these methods to both clinical and research settings, with 
respect to both instrumentation and signal processing. In particular, the robustness 
of these neuroimaging systems will have to be further advanced together with 
enhanced temporal and spatial resolutions to achieve improvements in signal qual-
ity and sensitivity. Novel paradigms and new algorithms for single-trial signal pro-
cessing will be needed to facilitate the routine use of real-time EEG, fMRI, and 
fNIRS training and intervention in clinical practice. The integration of multidimen-
sional information, including EEG, fMRI, fNIRS, eye tracking, and heart rate, and 
artificial intelligence will be invaluable for enabling effective personalized monitor-
ing, diagnosis, and treatment for patients with neuropsychiatric disorders. Finally, 
all of these improvements should be validated in larger clinical populations with 
standardized paradigm protocols and data analysis pipelines to ensure sufficient 
reproducibility and reliability for the clinical applications of these neurophysiologi-
cal biomarkers.
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Structural Neuroimaging Biomarkers 
in Psychiatry

Marsal Sanches

1 � Introduction

Despite the multiple advances in the understanding of the pathophysiology of men-
tal illnesses, the diagnosis in psychiatry remains, primarily, clinical [1]. Therefore, 
the identification of biological features able to precisely identify individuals with 
mental disorders is considered the “holy grail” of psychiatry. Following the seminal 
work of Eve Johnstone, who described enlarged lateral brain ventricles among 
patients with schizophrenia compared to healthy controls [2], structural neuroimag-
ing was seen as a promising approach to achieve that goal.

Consequently, over the past 40 years, advances in structural neuroimaging tech-
niques have provided important contributions to the understanding of the patho-
physiology of psychiatric disorders [3]. Nevertheless, the identification of candidate 
biomarkers through structural neuroimaging has faced numerous challenges, related 
not only to methodological limitations inherent to the techniques in question but 
also to issues involving phenotypical overlap across different mental disorders and 
even the constructs adopted for characterization of those disorders.

The present chapter provides a critical analysis of the role of structural neuroim-
aging for the identification of biomarkers in psychiatry. It starts with a review of the 
currently available structural imaging techniques, followed by a summary of the 
main findings involving structural neuroimaging and candidate biomarkers in psy-
chiatry. Last, we discuss some perspectives involving structural imaging in the field 
of mental disorders and its potential role in biomarker identification.
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2 � Structural Neuroimaging: General and Historical Aspects

Since the early days of modern medicine, the possibility of obtaining structural 
images of the living brain has fascinated clinicians and neuroscientists, as the skull 
offers an obstacle to the visualization of the brain using conventional X-rays [4]. 
Pneumoencephalography, a technique that involved the injection of air in the sub-
arachnoid space, was one of the first attempts to overcome that barrier [5]. 
Nonetheless, the era of structural neuroimaging started with the advent of the com-
puterized tomography (CT) in the early 1970s.

CT involves the exposure of the head to several beams of X-rays and the subse-
quent reconstruction of the images based on different absorption coefficients across 
different tissues [6]. Despite the risks related to exposure to radiation, especially in 
case of repeated studies, the noninvasive nature of CT led to its quick adoption as 
the neuroimaging technique of choice, not only in clinical settings but also for 
research purposes. Several studies utilizing CT for the assessment of individuals 
with mental disorders were carried out in the late 1970s and 1980s, with variable 
degrees of consistency when it comes to their findings. Some of these inconsisten-
cies are related to issues involving the resolution of CT scans and limitations in the 
assessment of certain areas, such as the posterior fossa [4].

Those difficulties were overcome with the development of magnetic resonance 
imaging (MRI), in the late 1970s and early 1980s. While MRI utilizes a concept 
similar to CT based on the computerized reconstruction of images, the different 
parameters for reconstruction are not based on the exposure to radiation but on the 
detection of the so-called resonance phenomenon from hydrogen nuclei. Following 
the initial exposure of tissues to a strong magnetic field and, subsequently, to several 
short-duration magnetic fields, hydrogen nuclei release energy that is captured by a 
coil [4]. Brain MRI offers a high level of resolution, including the accurate visual-
ization of posterior fossa structures and a good contrast between gray and white 
matter. It also allows the performance of repeated studies without concerns about 
exposure to radiation.

Due to these advantages, MRI is currently considered the gold standard when it 
comes to structural brain imaging. In the field of psychiatry, the clinical role of MRI 
for the evaluation and exclusion of organic etiology for behavioral symptoms (such 
as brain tumors, cerebrovascular disease, or brain atrophy) is well established 
(Fig. 1). On the other hand, at its current level of development, MRI is not sensitive 
enough for the direct detection of structural brain abnormalities in patients with 
primary psychiatric conditions [7]. Because of that, the clinical use of brain MRI in 
psychiatry is still limited, and its use in research is primarily based on the search for 
quantitative differences between patients with mental disorders and healthy controls 
with regard to different brain areas of interest, allowing the formulation of hypoth-
esis involving the pathophysiology of the mental disorder in question [8].

For example, in a typical MRI study, a group of patients diagnosed with a certain 
mental disorder (e.g., schizophrenia) and a matched group of healthy controls inde-
pendently complete brain MRI scans. Next, the brain scans from both groups are 
blindly assessed, and measurements of different brain areas are performed, either 
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Fig. 1  Brain MRI T1 sagittal (a, b), coronal (c, d), and axial (e, f) sequences of a control (left) and 
a patient with neurodegenerative disease (right) showing brain volume reduction in the latter. 
(Courtesy: Dr. Thiago M. Cordeiro)

manually or through automatic measurement approaches. As a third step, the volu-
metric values obtained are compared, looking for statistically significant differences 
between both groups. Additionally, putative volumetric differences between patients 
with different clinical and/or sociodemographic features can be carried out, as well 
as analysis looking at correlations between the volumes of certain brain regions and 
psychopathological, neuropsychological, or other biological measures. Longitudinal 
studies, looking at changes in the volumes of specific brain regions overtime, can 
also be performed, using the same approach.
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Nevertheless, despite the multiple advantages of structural MRI, as described 
above, its use in psychiatric research offers several limitations [8]. For example, it 
offers just “static,” volumetric information about the brain, with no data on brain 
functioning or connectivity. It is also subjected to multiple confounding factors, for 
example, treatment effects related to the use of psychotropic medications. The 
indiscriminate comparison of patients and controls with regard to different brain 
area volumes without an a priori hypothesis can increase the risk of type I errors, 
generating the need for correction for multiple comparisons and, consequently, 
larger samples. Moreover, methodological differences involving, for example, the 
measurement technique adopted (manual vs. automatic), strength of the MRI 
machine, and characteristics of the sample, make it difficult to compare findings 
across different studies [9]. Last, structural MRI offers limited value for the clarifi-
cation of the pathophysiological nature of volumetric changes, which can be a result 
of different processes such as early neurodevelopmental disruptions, postnatal neu-
ronal pruning, or neuronal degeneration.

More recently, a variation of structural MRI called diffusion tensor imaging 
(DTI) has been utilized in psychiatry for the assessment of white matter tracts 
and, indirectly, as a measure of connectivity in psychiatric conditions [10]. DTI 
is based on different parameters related to water diffusion, allowing inferences 
regarding structure and myelination of white matter tracts and the reconstruction 
of white matter bundles, which help assess connectivity across different brain 
regions (tractography) [11]. This technique helps overcome part of the limita-
tions associated with pure structural MRI, particularly with regard to the absence 
of data on brain connectivity associated with the latter. Still, DTI data and the 
hypothesis associated with it are often presented and analyzed in conjunction 
with functional MRI measures.

Perhaps the most important limitation of structural brain imaging studies in the 
field of psychiatry is related to the “top-down” approach traditionally adopted by 
these studies. In other words, participants in these studies have their diagnosis 
established through the application of structured interviews which, in turn, are pri-
marily based on clinical diagnostic criteria. While such an approach, from a meth-
odological point of view, is necessary, it may at times limit the constructs on which 
these diagnoses are based, due to considerable phenotypical overlap across different 
mental illnesses. As discussed in the next sessions, that is one of the reasons behind 
the lack of specificity of most structural brain imaging findings among different 
mental disorders, which show variable degrees of replicability.

3 � Structural Neuroimaging Candidate Biomarkers 
in Psychiatry: Current Status

The ideal biomarker in psychiatry would be (1) identifiable in individuals across 
different phases of a certain illness; (2) found not only among patients but also in 
unaffected individuals at a high genetic risk for the condition in question; (3) 
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relatively unaffected by treatment history, status, or severity of illness; (4) easily 
replicated across different studies; (5) meaningful from a pathophysiological per-
spective; and (6) useful in the definition of therapeutic parameters [1, 12–14]. Of 
course, to date no such biomarker has been identified, and there is no consensus 
among experts as for whether such a single finding will ever meet all of those 
requirements. Therefore, current structural neuroimaging biomarker research is 
based on the search for candidates that could fulfill some of those aspects, likely in 
combination with other biological measures. While other chapters of the present 
book will focus on specific candidate biomarkers among different psychiatric con-
ditions, we will discuss the current status of some general aspects of structural neu-
roimaging as a tool for the identification of biomarkers in psychiatry.

3.1 � Structural Neuroimaging Findings in Mental Disorders: 
Similarities and Specificities

So far, findings from structural neuroimaging studies have failed to produce a quan-
tifiable clinical impact in terms of diagnosis and treatment of mental disorders. 
Despite the fact that certain findings are more consistently replicated within specific 
diagnostic categories, those are not specific enough to achieve diagnostic value. 
Nonetheless, these findings have provided contributions with regard to the under-
standing of the pathophysiology of psychiatric conditions, paving the way for fur-
ther investigations utilizing other techniques, such as functional neuroimaging 
techniques and other biological measures.

For example, in mood disorders, findings of structural MRI studies have shown 
a significant variability. Most findings point to abnormalities in brain areas that 
integrate circuits involved in the processing of emotions, particularly fronto-striatal-
limbic structures [15]. It is not clear, however, how diagnosis-specific these findings 
are. While some studies point to similarities between major depressive disorder 
(MDD) and bipolar disorder (BD) with regard to structural brain findings, it is 
unclear whether that results from phenotypical similarities between both conditions, 
leading to the inadvertent inclusion of patients with MDD among research partici-
pants with supposed BD and vice versa, or to the fact that, in the early structural 
MRI studies on mood disorders, these two groups of conditions were often com-
bined. Overall, results from individual studies, meta-analysis, and mega-analysis 
(which often include thousands of patients through the establishment of consor-
tiums) suggest that the most consistent structural findings in BD are enlarged amyg-
dala, enlarged lateral ventricles, and decreased corpus callosum, ventromedial 
prefrontal cortex, anterior cingulate cortex, and basal ganglia volumes [16]. In 
MDD, decreases in the orbitofrontal cortex, cingulate cortex, hippocampus, and 
striatum seem to be the most common finding, although some studies also point to 
volumetric decreases in other frontal lobe regions, such as the dorsolateral prefron-
tal cortex [16]. Given the frequent finding of prefrontal cortex volumetric abnor-
malities in both MDD and BD, it has been hypothesized that hypofrontality could 
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be a common finding between both conditions, which would show, however, dis-
tinct patterns in terms of limbic-striatal volumetric abnormalities.

On the other hand, findings among patients with schizophrenia have been more 
consistently replicated and include enlarged ventricular system, reduced total brain 
volume, enlarged basal ganglia, and reduced thalamic and hippocampal volumes 
[17]. In a recent mega-analysis, widespread reductions in cortical thickness were 
also observed, particularly in the frontal and temporal areas [18]. While these find-
ings point to a certain distinctive pattern in terms of structural imaging findings 
among patients with schizophrenia, they show a certain degree of overlap with those 
observed in patients with mood disorders. While the different methodological limi-
tations already discussed might explain some of these overlapping findings, they 
may also be interpreted as an indication of a continuum between mood disorders 
and psychotic disorders from a clinical and pathophysiological perspective [19].

As an attempt to optimize the potential role of structural neuroimaging tech-
niques in the search for biomarkers in psychiatry, the last decade has seen a growing 
number of studies utilizing machine-learning computerized algorithms for the rec-
ognitions of structural neuroimaging patterns associated with a certain psychiatric 
diagnosis [20]. Such algorithms are based on the comparison of structural MRI 
findings in a selected sample of individuals suffering from one particular condition, 
as well as a control group. The imaging data are inserted in a mathematical model 
that allows the identification of certain patterns of neuroimaging findings, which 
eventually allow the discrimination of patients and controls with variable degrees of 
sensitivity and specificity. The same method can be utilized for the discrimination 
of groups of patients with distinct psychiatric conditions.

For example, in one study, machine learning was utilized to assess the use of 
structural MRI findings to differentiate patients with schizophrenia from those with 
BD and healthy controls [21]. Each group contained a total of 66 research partici-
pants. The model was able to separate patients with schizophrenia from controls 
with an average accuracy of 90% and from patients with BD with an accuracy of 
88%. In contrast, the accuracy in separating patients with BD and controls was 
much lower (53%). In another study, machine learning was utilized to separate 
patients with schizophrenia, BD, and MDD based on structural MRI scans [22]. The 
model was able to differentiate patients with MDD from those with schizophrenia 
with an accuracy of 76%, while patients with BD and MDD were discriminated 
with an accuracy of 69%. Even though these numbers are promising from a meth-
odological standpoint, these levels of accuracy are not yet acceptable for clinical 
purposes.

Despite the excitement on machine learning as a research and potentially clinical 
tool, there are some caveats associated with such studies. First, they require a high 
number of subjects, as machine learning takes into account the heterogeneity of the 
data included in the mathematical model. Since machine learning utilizes very few 
pre-assumptions, the identified predictors (in this case, certain structural neuroim-
aging findings) relevant for a certain model might not necessarily be relevant from 
a biological and pathophysiological standpoint. This could lead to questions regard-
ing its true role in separating patients and controls from a conceptual standpoint 
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[23]. Moreover, with regard to the potential clinical use of these models, there might 
be concerns about their positive predictive value, as they are usually built with sam-
ples containing a similar number of patients and controls, but, in clinical settings, 
the frequencies of mental disorders vary significantly. These issues can be mini-
mized by certain mathematical approaches to machine learning, incorporating prob-
abilistic classification into the model.

3.2 � High-Risk Population Studies

Considering the elevated burden associated with mental disorders, the identification 
of markers that could facilitate the early detection of asymptomatic individuals who 
will later develop certain mental illnesses is of great interest [24]. The term endo-
phenotype is utilized to designate a state-independent behavioral and neurobiologi-
cal feature present not only in affected individuals but also among non-affected ones 
at a high genetic risk for the condition in question (e.g., first-degree relatives of 
patients). Consequently, a considerable portion of structural imaging studies in psy-
chiatry has focused on high-risk populations.

Nevertheless, most structural neuroimaging studies among offspring of parents 
with BD are negative [25]. Sporadic findings include enlarged amygdala and 
reduced gray matter in the hippocampal and parahippocampal gyrus, as well as in 
different regions of the frontal lobe [24]. Among individuals at a high genetic risk 
for MDD, reduced putamen volume has been recently described [26], as well as 
reduced cortical thickness in different brain areas [27]. Of notice, in a study com-
paring offspring of patients with BD and those of patients with schizophrenia, the 
latter exhibited decreased total gray matter brain volume [28]. Other findings 
described among offspring of patients with schizophrenia include increased mean 
fractional anisotropy in the tracts connecting the nucleus accumbens and the DLPFC 
[29], as well as decreased cortical thickness and enlarged ventricles [30].

In summary, structural neuroimaging findings among offspring of patients with 
mental disorders do point to the presence of certain findings that suggest the exis-
tence of neurobiological processes anterior to the development of clinical symp-
toms. These findings seem to be more robust among offspring of patients with 
schizophrenia than among those of individuals with BD. Nonetheless, none of the 
described findings seem to be specific to a particular condition, and their individual 
relevance from a clinical standpoint remains, at this time, limited.

4 � Perspectives in Structural Neuroimaging Biomarkers 
in Psychiatry

Structural neuroimaging studies in psychiatry were, in part, responsible for the 
elimination of the dichotomy between functional and organic mental disorders in 
psychiatry. The advances in the understanding of the pathophysiology of mental 
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disorders associated with these studies are of great importance and have provided 
great insights for other forms of neurobiological research.

Despite these contributions, research based solely on structural imaging findings 
seems to have reached a “roadblock” with regard to their role in the search for bio-
markers in psychiatry. The several methodological limitations already discussed 
and the elevated variability of findings limit their utility in the identification of bio-
markers. Based on the available findings and the current status of structural neuro-
imaging techniques, it is unlikely that diagnostic-specific structural biomarkers will 
be identified over the next several years.

In this scenario, there is a growing trend towards their use in conjunction with 
functional neuroimaging techniques, other biological measures such as genetic 
data, and neuropsychological measurements. When utilized in the context of pattern 
recognition algorithms, such approach may be able to significantly increase the 
accuracy of the model in discriminating diagnostic groups and in separating patients 
and controls.

There have been concerns regarding the potential impact the identification of 
biomarkers could have on the practice of psychiatry as a medical specialty, resulting 
in a progressively lower emphasis on the role of the psychiatric interview/assess-
ment and, eventually, causing psychiatry to become “dehumanized.” This may be a 
particular concern with regard to structural neuroimaging, given its large availabil-
ity and the easiness with which structural MRI scans can be routinely incorporated 
into clinical practice.

Despite these concerns, it is unlikely that a biomarker will ever replace the psy-
chiatric interview in the diagnostic process in psychiatry, and that does not seem to 
be the primary reason behind the search for candidate biomarkers. Given the multi-
tude of factors involved in the diagnostic process in psychiatry, including psycho-
pathological, humanistic, and cultural factors, it is unlikely that a biological measure 
will ever fully replace the clinical judgment necessary for a proper diagnostic for-
mulation. Nonetheless, the characterization of robust biomarkers would be of great 
benefit in the case of diagnostic uncertainties, especially with regard to atypical 
presentations of mental disorders, which are extremely common in clinical settings, 
and therapeutic planning in the context of personalized medicine.
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Functional Neuroimaging Biomarkers

Sydney Singleterry, Damek Homiack, and Olusola Ajilore

1 � Introduction

While structural neuroimaging allows for the visualization of anatomical properties 
and potential physical abnormalities in the brain, functional neuroimaging tech-
niques such as positron-emission tomography (PET), electroencephalography 
(EEG), magnetoencephalography (MEG), and functional magnetic resonance imag-
ing (fMRI) are used to measure neuronal activity and allow researchers to gain 
insight into brain function and connectivity. This chapter will primarily focus on the 
strengths and limitations of fMRI, review current functional neuroimaging bio-
marker literature, explore reasons we have largely failed to locate clinically relevant 
biomarkers thus far, and discuss potential applications of functional neuroimaging 
in exploring neuropsychiatric disorders in the future.

Introduced in the early 1990s, fMRI is a noninvasive imaging modality with the 
ability to quantify activity in brain regions through the measurement of small 
changes in blood flow. Venous blood oxygen level dependent (BOLD)-contrast is 
the most common technique employed in fMRI studies [1]. The BOLD signal 
reflects a drop in deoxyhemoglobin levels that follows when there is increased 
blood flow to the active areas of the brain. This occurs because oxyhemoglobin and 
deoxyhemoglobin react differently within a magnetic field, allowing them to serve 
as naturally occurring contrast [2].

However, given that BOLD serves as an indirect, surrogate measure of neuronal 
activity, it is subject to certain constraints. For one, the hemodynamic response to 
neuronal activity is delayed both in its time to peak and return to baseline; the mea-
sured response also depends on regional neurovascular coupling properties. Though 
not a measure of the exact timing of neuronal activity, multiple assessments have 
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demonstrated that through various techniques, the time delay between neuronal 
activity and signal measurement can be reduced to the order of hundreds of milli-
seconds [3].

fMRI studies are conducted either in conjunction with task-based activities or at 
a resting state. Task-based fMRI (T-fMRI) requires that subjects attend to a task 
designed to engage particular networks (e.g., working memory, emotional process-
ing) and measures the BOLD signal changes between the task and control states [4]. 
On the other hand, resting state fMRI (rs-fMRI) measures low-frequency changes 
that occur at rest and is useful in the characterization of the brain’s functional archi-
tecture. rs-fMRI holds an advantage over task-based fMRI in that it does not require 
subjects to perform complex operations and typically allows for shorter scanning 
durations [5].

The longstanding hope has been that fMRI would help to uncover the neurobio-
logical basis for many neuropsychiatric disorders and generate predictive models to 
be used in clinical decision-making. In the next section, we will review current lit-
erature and highlight areas where we have been able to make measurable progress 
toward clinically relevant biomarkers.

2 � What Would Constitute an fMRI-Based Biomarker?

A biomarker is defined by the NIH as an objectively measured and evaluated indica-
tor of normal biological processes, pathogenic processes, or pharmacologic 
responses to therapeutic intervention [6]. With respect to fMRI-based biomarkers, 
the NIH definition has been expanded to include the criteria listed in Table 1 [7].

In addition to meeting the above criteria, a clinically useful biomarker requires 
sufficient sensitivity and specificity in order to accurately predict the presence or 
absence of a disease state or measure the response to treatment in a given population 
of interest.

To date, despite enormous investment and significant progress toward under-
standing the functional connectivity of the human brain [8], a biomarker that meets 
criteria for meaningful clinical use remains absent. Efforts to define clinically rele-
vant, fMRI-based biomarkers have further informed application challenges as dis-
cussed in the next section.

Table 1  Criteria for an fMRI-based biomarker

Antecedent biomarkers to predict risk of developing a given disease
Screening biomarkers to detect a given disease as early as possible
Diagnostic biomarkers to identify the presence of a given disease
Biomarker signatures that identify pathophysiology of a given disease, leading to elucidation of 
underlying cellular and molecular mechanisms of the disease
Diagnostic biomarkers to predict disease course
Biomarkers that predict the probability of treatment response to a pharmacologic or 
nonpharmacologic intervention
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3 � Challenges: Why Don’t We Have Biomarkers?

3.1 � Diagnostic Challenges

The human nervous system is remarkably complex and plays an intricate role in 
cognition, behavior, and affect. Current understanding is limited, however, even in 
considering healthy individuals within controlled environments. Neuropsychiatric 
disorders like catatonia, multiple sclerosis, Parkinson’s, and dementia reflect com-
plex, often developmentally driven changes in brain function that result in distress 
or impaired functioning. Arriving at a clinical diagnosis requires interpretation of 
subjective, symptom-based reporting over a period of time and the synthesis of 
information from multiple sources.

For example, in DSM-5 major depressive disorder (MDD) is defined as the pres-
ence of at least five out of nine symptoms (that cannot be better explained by another 
diagnosis) lasting >2 weeks and resulting in significant distress or impaired func-
tion. However, based on these diagnostic criteria, many different symptom combi-
nations yield the same MDD diagnosis, resulting in diagnostic heterogeneity. 
Overlap between diagnoses that share multiple defining characteristics, such as with 
MDD and generalized anxiety disorder (GAD), can result in confusion when assess-
ing for comorbidity (which can contribute to overlap) and attempting to determine 
the true co-occurrence rate of seemingly distinct neuropsychiatric disorders. 
Increasingly, the validity of diagnostic accuracy in psychiatry, even when using 
gold-standard tools, has been called into question [9] due to the heterogeneity within 
clinically defined neuropsychiatric conditions.

Despite significant advances in cognitive neuroscience that have clarified neuro-
biological circuits for simple processes and tasks, the underlying social, contextual, 
and psychological influences, which define how symptoms are experienced at an 
individual level, are not reflected in this data. Consider two patients that share a 
diagnosis of dementia, but differ regarding their course of illness, symptom profile, 
and medication trial history. Clinical heterogeneity complicates reductive attempts 
to identify alterations in functional connectivity which may underlie psychopatho-
logical states. Such clinical heterogeneity can present as noise and variability within 
data sets, creating challenges in attributing functional connectivity changes to dis-
ease states and complicating efforts to identify contributing neurobiological mecha-
nisms in the development and treatment of neuropsychiatric conditions. Moreover, 
neuropsychiatric symptoms frequently present with temporal fluctuations in symp-
tom duration and severity, which may not be present within the timeframe of a sin-
gle fMRI session. The existence of complex overlapping and redundant brain 
networks further complicates the identification of biomarkers as these networks can 
plastically adapt to dysfunction in one network, through compensation in one or 
multiple other networks, to maintain psychiatric equilibrium in both healthy con-
trols and individuals experiencing neuropsychiatric distress.

These challenges pervade the neuropsychiatric literature and have created diffi-
culties in the development of preclinical and animal studies and diagnostic and 
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statistical clarity of psychiatric populations and represent a significant challenge in 
the development of biomarkers for psychiatric conditions across investigative 
modalities.

3.2 � Limitations of fMRI in Development of Biomarkers

As previously described, measurement of brain activity in both spatial and temporal 
vectors with fMRI allows for mapping of functional connectivity between specific 
brain regions. The widely recognized potential application of fMRI in the investiga-
tion of neuropsychiatric disorders has inspired a wealth of literature. There are, 
however, a number of obstacles encountered with fMRI utilization that complicate 
transitioning into clinical application.

The process of obtaining high-quality fMRI data requires that subjects are able 
to lay motionless in an MRI scanner for varying periods of time, depending on the 
desired resolution. fMRI is therefore better suited for non-acute conditions given 
the potential danger of agitation and/or noncompliance in these settings. Further, 
despite advances in availability and cost, fMRI remains cost-prohibitive, limiting its 
use to primarily research settings. Regarding data collection, the ability to investi-
gate both spatial and temporal brain activity yields enormous datasets, requiring 
sophisticated analytic tools to decode and interpret functional connections. Site-
specific differences in machine type and acquisition settings further complicate data 
collection and interpretation. These technical considerations create downstream 
challenges when attempting to apply findings from different sites to broader clinical 
samples.

The literature is replete with reported discoveries of functional differences 
between healthy controls and psychiatric populations. However, to date these pur-
ported functional differences have failed to generalize to independent cohorts out-
side of the sample dataset in which the biomarker was discovered. Highlighting the 
challenge of translating neurobiological findings into clinical utility is the relatively 
small effect sizes observed even with the largest univariate differences between con-
trols and individuals with neuropsychiatric conditions. A recent study found distri-
bution overlaps of up to 95% with classification accuracy near 55% between 
neuroimaging deviations between patients with MDD and healthy controls [10].

3.3 � Discussion of Challenges Applying T-fMRI to Psychiatric 
Symptoms/Conditions

Task-based imaging studies assume that differences in how individuals process 
information can yield insight into signs and symptoms of neuropsychiatric illness. 
Tasks are often specially designed in order to engage pathways relevant to 
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psychiatric illness such as reward participation, emotional processing, and working 
memory [11]. Differential neural activation patterns can then be assessed between 
patients and control subjects.

Given that neuropsychiatric symptoms frequently present with clinical distur-
bances in cognitive function, one would suspect that individuals with significant 
neuropsychiatric symptoms would exhibit alterations in network function isolated 
to specific symptomatology. This has been demonstrated in the literature. However, 
in isolation disrupted network function does not necessarily represent a biomarker 
as it remains unknown whether this finding can be used to diagnose, predict the 
presence of, or influence treatment and long-term outcomes in clinical 
populations.

There also remains a lack of mechanistic clarity regarding differences in neural 
activation patterns. This has been addressed previously by combining imaging data 
with generative models of behavior that seek to explain how observable behaviors 
reflect latent computational processes [11].

3.4 � Discussion of Efforts with rs-fMRI and Challenges

rs-fMRI allows for the observation of brain signals at rest and the measurement of 
low-amplitude, spontaneous fluctuations in BOLD activity. It is widely used and 
overcomes some of the methodological limitations of task-based studies. rs-fMRI 
holds an advantage in that it has a shorter imaging duration and does not require the 
presentation of stimuli or any response to presented stimuli. Further, it broadens the 
available participants by removing the need to perform tasks that may present dif-
ficulty for some [5]. Additionally, rs-fMRI can be more easily generalized between 
groups as it allows for standardized pooling of data between clinical sites and thus 
larger sample sizes.

Functional connectivity is measured through the comparison of neuronal activa-
tion time series data and determining if a temporal relationship exists. rs-fMRI takes 
advantage of the functional connectivity between brain regions observed in tasks 
and at rest to characterize broader networks such as the default mode network 
(DMN). The DMN is active when not engaged in task-based behavior, while there 
exist task-oriented networks such as the cognitive control and salience networks.

There is an enormous amount of data in both healthy controls and individuals 
with neuropsychiatric disorders, but the literature has yet to identify distinct 
network-level differences with clinical utility as a biomarker. Despite its advan-
tages, rs-fMRI replicability concerns remain, possibly due to differences in analytic 
decisions in processing data. The lack of distinct differences in functional connec-
tivity between individuals with psychiatric disorders and healthy controls in rs-
fMRI studies has led some to propose that psychiatric conditions may be more 
about the interactions between these networks rather than intrinsic within network 
deficits [12].
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4 � Neuropsychiatric Disorders: Current Progress

4.1 � Catatonia

Catatonia is a neuropsychiatric syndrome found in >10% of acute psychiatric ill-
nesses and characterized by distinct psychomotor, behavioral, and affective symp-
toms [13]. While primarily associated with mood disorders  – most frequently 
bipolar disorder – catatonia is seen in psychosis, neurologic disorders, substance 
use, and other medical conditions. There are two distinct subtypes of catatonia, 
retarded and excited, with the former being more prevalent. In retarded catatonia, 
common symptoms on presentation include immobility, mutism, staring, and with-
drawal; patients with excited catatonia exhibit prolonged periods of psychomotor 
agitation. Though rare in occurrence, catatonia has the potential to be fatal in its 
malignant form. Malignant catatonia is closely related to neuroleptic malignant syn-
drome (NMS) which is marked by muscle rigidity, fever, altered mental status, and 
autonomic abnormalities [13].

Imaging studies are not currently used in the diagnosis, treatment, or monitoring 
of catatonia, and our understanding of the syndrome’s pathobiology is limited. 
Structural MRI studies have explored volumetric and surface-based neural corre-
lates of catatonia in psychiatric patients and revealed diffuse atrophy, signal hyper-
intensities, and cortical changes [14]. One study [15] noted diffuse mild-to-moderate 
atrophy in catatonic subjects with a psychotic, affective, or neurological disorder; 
four of those subjects demonstrated focal atrophy of the frontal lobe and the cere-
bellum. Researchers in another study observed ischemic changes, hemorrhage, and 
atrophy in 37% of catatonic patients with psychotic and affective disorders; 70% of 
those subjects had failed benzodiazepine therapy [16].

fMRI studies, whether task-based or at rest, have generally revealed abnormali-
ties in the frontoparietal, frontotemporal, motor, thalamic, and cerebellar regions 
[14]. [17] Higher functional connectivity was demonstrated in the motor cortices to 
the thalamus, the motor cortices to the cerebellum, and the prefrontal cortex to the 
subthalamic nucleus in patients with schizophrenia spectrum disorder and catatonia 
compared to healthy controls. Interestingly, the same group found that increased 
thalamo-cortical functional connectivity was associated with more severe catatonic 
symptoms. [18] Another group demonstrated dysfunctional activation patterns in 
the orbitofrontal cortex (OFC) and medial prefrontal cortex (MPFC) changes during 
emotional regulation tasks in psychiatric patients with catatonia when compared to 
healthy controls. In a study by the same research group, exaggerated signal reduc-
tion was seen in the OFC, MPFC, and premotor cortex in catatonic patients follow-
ing lorazepam administration [19]. Motor task investigations have demonstrated 
reduced activation in the motor cortex and dorsolateral prefrontal cortex (DLPFC) 
in catatonic subjects [19, 20]. Of note, one primary goal of an ongoing interdisci-
plinary longitudinal MRI study [21] is to develop “neuroimaging biomarkers of 
symptoms severity and therapy outcome based on white matter tracts underlying 
catatonia.”
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At present, functional neuroimaging study findings do not qualify as clinically 
relevant biomarkers; limited sample size, sample population heterogeneity, task-
based study limitations, poor generalizability, nonspecific findings, and difficulty 
interpreting negatively correlated activity have presented as contributing factors. 
Additional studies exploring the widespread neuroimaging abnormalities associated 
with catatonia hold promise for the identification of biomarkers that will allow clini-
cians to more quickly diagnose and treat catatonia.

4.2 � Dementia

Dementia, the progressive decline of cognitive functioning beyond normal aging 
resulting in impairment of completion of activities of daily living, is a neurodegen-
erative process in which previously healthy neurons no longer function appropri-
ately. Functional neuroimaging provides a means of measuring neural activity in 
networks underlying specific cognitive functions. It can also help characterize the 
neural dysfunction associated with dementia, holding promise for identification of 
biomarkers in the detection, progression, and treatment responses of dementing pro-
cesses. Despite significant investments to date, functional neuroimaging remains 
limited in the diagnosis, prognosis, and management of dementing illnesses.

Alzheimer’s disease (AD) is the most common age-related neurodegenerative 
disorder characterized by the presence of amyloid plaques and neurofibrillary tan-
gles. Structural MRI in AD patients shows widespread atrophy with sparing of the 
sensory and occipital lobes until late in the disease course [22]. Hippocampal vol-
ume and shape can be used to distinguish AD from healthy control brains, and rates 
of hippocampal atrophy are associated with increased risk of AD [23, 24]. Current 
clinical criteria recommend use of MRI in the evaluation of cognitive impairment as 
imaging is sensitive to vascular and other neurodegenerative processes. In contrast, 
functional MRI is not currently recommended in the routine diagnosis of AD.

Significant efforts to identify biomarkers capable of predicting the development 
of AD in preclinical healthy controls and individuals with genetic predisposition to 
AD development and progression of mild cognitive impairment (MCI) to AD have 
been undertaken to date. Although numerous studies have found that decreased 
DMN connectivity can predict conversion from MCI to AD, no current index of 
DMN connectivity is considered a valuable biomarker for MCI or AD risk [25]. 
T-fMRI studies focusing on memory encoding and retrieval have similarly shown 
mixed results in their ability to predict MCI progression to AD. More recently PET 
has been used to image amyloid burden which has been shown to correlate with 
cognitive performance and future decline. This measure has been increasingly used 
as a surrogate endpoint in clinical trials for AD identification and disease-modifying 
treatments [26].

Vascular cognitive impairment is a dementing process resulting from ischemic 
infarcts secondary to vascular risk factors such as hypertension, diabetes, and sleep 
apnea which affect brain perfusion. In contrast with AD, vascular cognitive 
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impairment is more likely to affect executive function and is associated with a 
greater burden of white matter disease as evident from white matter hyperintensities 
on T2-weighted structural MR imaging. Due to the generalized nature of vascular 
infarcts, there is a high degree of heterogeneity in the regions of the brain and white 
matter tracts affected in any individual. Consistent with the population heterogene-
ity, both task-based and rs-fMRI studies have demonstrated mixed findings of both 
reduced and increased connectivity, limiting the use of fMRI as a biomarker at the 
population level [27, 28]. Evidence of preexisting neurovascular compromise 
increases the likelihood of postoperative delirium and cognitive decline and may 
hold future utility in risk stratification and prevention of delirium in the preoperative 
period [29].

Behavioral variant frontotemporal dementia is characterized by neuropathologic 
changes in the frontal and temporal lobes leading to progressive deterioration of 
personality with changes in social behavior and cognition. rs-fMRI studies indicate 
decreased connectivity in the salience network in individuals with behavioral vari-
ant frontotemporal dementia which correlated with illness severity, though it should 
be noted that this finding has not been reproduced in other studies [30].

To date, despite significant investment, fMRI does not have clinical utility as a 
biomarker in dementing illnesses. Heterogeneity in populations and mixed findings 
limit extrapolation to individual patients. Future studies tracking circuit functions 
over time in relation to specific symptoms may be useful in monitoring disease 
progression and therapeutic benefit.

4.3 � Epilepsy

“Epilepsy is a disorder of the brain characterized by an enduring predisposition to 
generate epileptic seizures,” which can be defined as “a transient occurrence of 
signs and/or symptoms due to abnormal excessive or synchronous neuronal activity 
in the brain.” Seizure onset is sudden with fleeting episodes. For some time it was 
believed that seizures originated within a single, discrete epileptic focus and from 
there either remained confined or spread throughout the brain [31]. More recent 
data, made possible by new technologies, support the idea that seizure activity origi-
nates from multiple hyperexcitable networks and that frequent fluctuations within 
those networks “move the brain into different seizure probability states that may 
wax and wane before clinical seizures develop [31].” Diagnosis requires the patient 
to have two or more unprovoked seizures that occur at least 24 h apart [32], and 
while some degree of diagnostic uncertainty is typically expected with any disease/
syndrome, epilepsy is exceptional in that the rate of misdiagnosis reaches 20%–30%. 
Interestingly, this rate of misdiagnosis is persistent and similar across epilepsy cen-
ters, countries, and continents, with psychogenic non-epileptic seizures (PNES) 
being the most frequent condition to be inaccurately diagnosed as epilepsy [33].

Functional neuroimaging has proven useful in the localization of epileptogenic 
zones as well as in the study of the brain inflammation, metabolic dysfunction, and 
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blood-brain barrier alterations associated with epilepsy and all representing poten-
tial biomarkers. Contrast-enhanced MRI has been used to study brain-blood barrier 
dynamics and PET to characterize neuronal activity and neuroinflammation 
[34].  Scalp EEG-fMRI was [35] used to better define epileptogenic zones in 29 
patients with focal epilepsy and co-localization of BOLD signal changes with inter-
ictal epileptiform discharges in 8 of the patients, guiding a clinical decision to allow 
the patients to undergo surgery. And task-based studies have indicated a possible 
role for functional neuroimaging in predicting functional outcome. One study [36] 
found preoperative middle and inferior frontal gyri activation during verbal fluency 
tasks to be predictive of naming task performance decline postoperatively in patients 
undergoing left anterior temporal lobe resection, though with poor specificity. And 
despite current limitations (heterogeneity, poor generalizability, low specificity), 
there is cause for optimism regarding functional neuroimaging’s potential to yield 
biomarkers that clarify pathogenesis and guide clinical decision-making in epilepsy.

4.4 � Multiple Sclerosis

Multiple sclerosis is an autoimmune process in which the white matter of the central 
nervous system is progressively damaged resulting in clinical symptoms. White 
matter lesions occur sporadically throughout the brain and spinal cord across time 
resulting in a broad range of clinical symptoms from cognitive impairment to spe-
cific sensory and motor deficits.

Structural MRI is routinely used for diagnosis and monitoring for disease pro-
gression as white matter lesions can be characterized by relative age using IV con-
trast [37]. However, current biomarkers for MS have limited utility in disease 
prognosis. Functional neuroimaging in MS is not currently used as a biomarker but 
holds promise for detection of MS through identification of disrupted functional 
connectivity, identification of specific and individual connectivity changes associ-
ated with clinical symptoms such as cognitive impairment, and possible identifica-
tion of targets for intervention with training programs and transcranial magnetic 
stimulation.

Studies to date have demonstrated successful prediction of development of MS 
in patients with clinically isolated syndrome without MRI lesions [38] and discrimi-
nation of subtypes of MS within the disease spectrum [39, 40]. However, the hetero-
geneity of disease severity and lesion location poses significant challenges in 
applying functional neuroimaging as a biomarker at the population level [41]. For 
example, a systematic review of resting-state functional connectivity changes in 
cognitive impairment found worse cognition in both high and low functional con-
nectivity states [42]. Future studies hold promise for studying individuals on 
repeated occasions to monitor for disease progression and tracking of functional 
connectivity changes in response to therapeutic interventions and disease 
progression.
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4.5 � Parkinson’s Disease

Parkinson’s disease (PD) is a neurodegenerative disorder resulting from the death of 
dopaminergic neurons in the substantia nigra. On pathology, characteristic neuronal 
inclusions called Lewy bodies, which are primarily composed of ⍺-synuclein pro-
tein aggregations, are seen in the cortex. PD presents with characteristic motor 
symptoms (e.g., rigidity, bradykinesia, tremor) and nonspecific, heterogeneous non-
motor symptoms (e.g., excessive daytime sleepiness, orthostatic hypotension, 
hyposmia, constipation, cognitive impairment, REM sleep behavior disorder). 
Anxiety, apathy, and depression are common neuropsychiatric symptoms with psy-
chosis occurring in approximately 40% of PD cases. Non-motor symptoms are most 
commonly the first to develop but may go undetected or unreported or be misattrib-
uted once reported. Mounting evidence suggests that PD consists of heterogeneous 
subtypes with data-driven clustering approaches further clarifying diagnosis based 
on motor and non-motor features, with three proposed subtypes – mild motor pre-
dominant, intermediate, and diffuse malignant [43].

Typically, diagnosis of PD is based on history and examination alone, but neuro-
imaging has proven useful in cases where the presence of parkinsonism is uncertain 
and can improve diagnostic accuracy. In 2001, dopamine transporter single-photon 
emission CT (DAT SPECT) scans were approved by the US Food and Drug 
Administration for use when there is diagnostic uncertainty and the differential 
diagnosis includes both essential tremor and PD [44].

MRI (diffusion imaging, neuromelanin-sensitive imaging, iron-sensitive imag-
ing, T1-weighted imaging) has been valuable in exploring biomarkers that may help 
clinicians clarify diagnosis and monitor progression. Studies utilizing T1-weighted 
MRI have demonstrated the modality to have a significant value in identifying dis-
ease state biomarkers during the early and moderate-late stage. [45] One study found 
certain cortical atrophy patterns to be predictive of motor symptom progression. 
Data regarding T1-weighted MRI value in monitoring progression in moderate-to-
late-stage PD has been inconsistent [46].

Researchers have demonstrated rs-fMRI’s ability to differentiate between PD 
and healthy controls, as well as between PD patients and those with multiple system 
atrophy (MSA) or progressive supranuclear palsy (PSP) [47]. rs-fMRI is not rou-
tinely used in clinical settings to confirm diagnosis, however. Few task-based stud-
ies have been performed. PD patients performing semantic event sequencing tasks 
were found to have decreased activation in the DMN during task performance 
(Tinaz et al. 2008) [48]. Another task-based (unimanual grip task) study by [49] 
showed that compared to controls, PD patients showed a decline in functional activ-
ity, at their 1 year follow-up fMRI, in the putamen and primary motor cortex. The 
same study noted unique patterns of functional changes in MSA and PSP. There is 
a significant potential regarding clinically relevant biomarker development for PD, 
despite challenges related to heterogeneity, nonspecific non-motor symptoms, and 
inconsistent data to date.
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4.6 � Traumatic Brain Injury

Traumatic brain injury (TBI) is a disruption in normal brain functioning secondary 
to damage caused by an external, physical assault and can result in contusions, 
internal hemorrhage, lacerations, focal and diffuse injuries, hypoxia, and axonal 
connectivity disruption [50]. As such TBI comprises a heterogeneous population 
representing the culmination of events that follow a primary injury. Injury is classi-
fied as either primary, thus caused by the initial mechanical insult, or secondary and 
the result of subsequent molecular and cellular changes that continue for a period 
post-injury. TBI severity of injury is rated mild, moderate, or severe based on the 
Glasgow Coma Scale with the vast majority of TBIs considered to be mild [51]. 
Clinical features of TBI include headache, nausea, aphasia, seizures, amnesia, 
behavioral abnormalities, and coma, though mild TBI symptoms are often delayed 
for days to weeks [52] with nearly half of patients that have suffered mild TBI 
developing persistent symptoms [53].

Currently, diagnosis of TBI is clinical with neuroimaging limited to the evalua-
tion of gross injury. Conventional MRI can detect the presence of axonal injury and 
intracranial blood products acutely following a head injury but is limited in detect-
ing the more subtle changes associated with mild TBI [53]. Studies implementing 
functional neuroimaging hold the potential to provide biomarkers that can help 
guide treatment and clarify prognosis.

Several studies to date have reported a positive correlation between their pro-
posed biomarkers and clinical outcomes [54]. One group [55] found increased func-
tional connectivity in the DMN, motor, and visual networks to be associated with a 
higher symptom severity 3 months post-injury. Another study similarly reported a 
higher functional connectivity in the DMN 1 month post-injury [56]. Current evi-
dence suggests limited prognostic value in rs-fMRI use during the acute phase or 
within 24 h of injury [57]. T-fMRI is uniquely equipped to offer insight into the 
neurobehavioral impact of TBI. Studies thus far have revealed a complex relation-
ship between cognitive load and functional activation [58] with regional activation 
changes reported during task performance. One group [59, 60] reported an associa-
tion between DLPFC hypoactivation and symptom severity, and another reported 
abnormal hyperactivation in the working memory network 1 week post-injury to be 
associated with a longer recovery course in athletes [61].

The clinical role of neuroimaging in TBI diagnosis, prognostication, and man-
agement remains limited to the characterization of gross injury and triaging follow-
ing a moderate-to-severe brain injury. And while fMRI has demonstrated utility, the 
development of specific, reproducible biomarkers will require a sufficient under-
standing of the pathophysiology and more subtle changes associated with brain 
injury. Complementary use of additional neuroimaging techniques offers prom-
ise. [62] Advanced MRI techniques such as susceptibility-weighted imaging (SWI), 
diffusion-weighted imaging/diffusion tensor imaging (DWI/DTI), and magnetic 
resonance spectroscopy (MRS) that can collectively assist in the characterization of 
edema, axonal injury, hemorrhage, and provide information on brain metabolites 
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and perfusion post-injury have been highlighted. One major hurdle in the search for 
clinically applicable biomarkers is heterogeneity in TBI’s clinical presentation. 
Heterogeneity is a hallmark of TBI, and outcomes are impacted by factors such as 
mode of injury, whether injury was penetrating or not, force at impact, location of 
injury, presence or absence of head, existing comorbidities, age, metabolic derange-
ments, et cetera – and all factors must be taken into consideration in the search for 
a widely applicable, clinically useful biomarker.

5 � Future Directions

To date, despite significant investment of time and resources into identifying fMRI-
based biomarkers for neuropsychiatric illness, fMRI remains limited with regard to 
clinical application. While acknowledging the lack of a clinical endpoint thus far, 
the challenges described above have led to significant progress and advancements in 
approaches which may yield clinical utility in the future.

As a corollary to fMRI-based biomarker development, animal models of neuro-
psychiatric conditions have failed to yield truly representative models to inform the 
cellular and molecular processes altered in neuropsychiatric disorders. The ongoing 
difficulties in ascribing biomarkers for neuropsychiatric disease states and develop-
ing representative animal models have led to proposals to study specific symptoms, 
such as anhedonia, in lieu of clinical diagnoses.

Using symptom-specific approaches has yielded promising results suggestive of 
biomarkers which can inform clinical treatment. fMRI studies have identified dis-
rupted neural circuits associated with specific symptoms, highlighting potential tar-
gets for therapeutic intervention. One example is the finding of perfusion alterations 
in the subgenual anterior cingulate cortex (sgACC) in individuals experiencing 
acute sadness [63–65]. Subsequent studies have demonstrated efficacy of deep brain 
stimulation targeting the sgACC in individuals with treatment-resistant depression 
[66]. These findings are supported to a degree by trials of rTMS targeting the dlPFC 
with the goal of increasing blood flow to the sgACC, as determined by fMRI. Increased 
perfusion of the sgACC was associated with antidepressant effects in some but not 
all trials (reviewed in [11]). This example illustrates the potential of fMRI in identi-
fying, intervening, and monitoring disrupted neurobiology related to specific symp-
toms to target specific interventions in psychiatric disease states.

Efforts to circumvent the technical limitations of fMRI research increasingly 
utilize large multisite samples with rs-fMRI. Machine learning algorithms can be 
used to correct for specific noise structures to identify more specific functional con-
nections which can discriminate between known individuals with psychiatric dis-
ease and healthy controls in independent datasets. To date, these techniques have 
been applied to populations with autism spectrum disorder (ASD), major depressive 
disorder (MDD), schizophrenia, and obsessive-compulsive disorder. One group in 
Japan  was able  to identify 16 functional connections, primarily within the right 
cingulo-opercular network, with altered connectivity in ASD-diagnosed 
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individuals; they then used this dataset to accurately predict outcomes (with 75% 
accuracy) in an American sample [67]. Notably these findings were not capable of 
predicting other psychiatric disease states, including schizophrenia, attention deficit 
and hyperactivity disorder (ADHD), or MDD.

Machine learning approaches have been used to classify data into multiple 
classes to make predictions about future events at the individual level. Machine 
learning can integrate combinations of demographic and social information with 
rs-fMRI findings and has been reported to differentiate between depressed and non-
depressed subjects with a relatively high accuracy (50–95%), albeit within rela-
tively homogenous clinical samples [68]. Similar approaches have used machine 
learning algorithms to predict treatment response based on rs-fMRI data acquired 
prior to and 2 weeks after starting antidepressant therapy [69].

A meta-analysis of biomarker candidates [70] examined 182 rs-fMRI studies and 
found that DMN, sensorimotor, frontoparietal, and subcortical system dysfunctions 
were shared among ADHD, ASD, bipolar disorder, depression, post-traumatic 
stress disorder, obsessive-compulsive disorder, schizophrenia, Alzheimer’s disease, 
multiple sclerosis, Parkinson’s disease, and mild cognitive impairment. This lack of 
potential biomarker specificity brings into question the nearly universal categorical 
approach in the exploration of potential candidates. Case-control studies that 
explore multiple disorders at once and allow for concurrent analysis may prove 
more prudent and help to identify disorder-specific biomarkers.

6 � Conclusion

The study of brain activity through fMRI has yielded numerous data and at times 
seemed to offer assurance in the search for clinically relevant neuropsychiatric bio-
markers. Many distinct challenges have emerged, however, and include diagnostic 
complexity and the need to analyze extensive data sets. Advances in the way we 
approach the problem have offered a path forward and resulted in significant prog-
ress toward identifying clinically useful biomarkers.
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PET Biomarkers in Psychiatry

Paulette Orhii, Rajiv Radhakrishnan, and Sudhakar Selvaraj

1 � Introduction to PET in Psychiatry

The development of positron-emission tomography (PET) imaging was made pos-
sible by advances in physics, mathematics, chemistry, computer science, and funda-
mental biology since the 1920s [1]. PET imaging became an important tool in 
psychiatry in the 1980s when the first studies investigated the binding of antipsy-
chotic medications to dopamine receptors in schizophrenia. Now, it aids in broaden-
ing our understanding of the etiology, pathophysiology, management, and treatment 
of many psychiatric disorders. In this chapter, we will discuss the different types of 
biomarkers and tracers that have been developed to detect and treat various disor-
ders, the utility of combining PET imaging with other neuroimaging modalities, 
challenges using PET, and future areas of exploration in its use in psychiatry.
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1.1 � PET Background

PET is a three-dimensional imaging technique based on nuclear medicine principles 
of electron-positron collision and annihilation, and coincidence detection of the 
resultant two gamma rays, to study biological, pharmacological, and physiological 
function in vivo. PET imaging involves at least three steps: first, the development 
and preparation of radiotracer by chemically incorporating a radionuclide into a 
molecule targeting either a specific site of action (receptor or enzyme) or a normal 
biochemical process (glucose consumption); second, the administration of radio-
tracer to the subject (human or animal) and subsequent imaging of the radiotracer 
activity by the PET scanner; and third, the quantification of PET data by using 
mathematical modeling and computation. Therefore, the success of PET imaging 
directly depends on scanner quality, suitability of the radiotracer, and validity of 
image analysis.

1.2 � Principles of Radiotracer

PET, when combined with a suitable radiotracer, can be a very powerful tool 
for studying biological targets such as receptors, transporters, enzymes, etc. 
Preparing a suitable radiotracer for a brain target is a complex scientific pro-
cess similar to drug development. To study a specific target in the brain, a PET 
radiotracer must have a range of ideal characteristics [2]. They are as follows: 
(i) a high selectivity and affinity for the target to obtain images with a high 
signal-to-noise ratio; (ii) reversible binding within the scan time to facilitate 
quantitative modeling; (iii) moderate-to-high lipophilic properties to penetrate 
the blood-brain barrier (BBB) for high brain uptake; it should not, however, be 
excessively lipophilic, thereby causing nonspecific binding to fat or other tis-
sue in the brain; (iv) no metabolites with radioactivity that can enter the BB; 
(v) should not alter the functional activity of the target; and (vi) safe to admin-
ister and have acceptable radioactivity dose to permit imaging of clinical 
population.

While PET is a highly sensitive technique for studying in vivo biological sys-
tems, it lacks spatial resolution. The tissue activity recorded during the PET scan 
can be due to the radiotracer bound to the target, to nonspecific binding to other 
targets, or to radiotracer metabolites. An ideal radiotracer has a high specific-to-
nonspecific binding ratio and no detectable metabolites with radioactivity in tissue. 
When administered intravenously, the radiotracer rapidly undergoes metabolism by 
blood and tissue enzymes, so only a fraction of the parent radiotracer compound is 
left to enter the brain. It should be possible to measure the free fraction of radio-
tracer in the plasma because this is helpful for accurate quantification of tissue 
uptake (Table 1).
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1 Characterization of functional anatomy and pathophysiology
2 Diagnosis
3 Early detection and prognosis
4 Disease monitoring
5 Pharmacological advancement

Table 1  Potential PET radioligand uses

2 � PET Radioligands in Alzheimer’s Disease (AD)

2.1 � Alzheimer’s Disease

Alzheimer’s disease (AD) is a neurodegenerative disorder that presents with 
progressive cognitive decline with age. AD is the most common cause of 
dementia, affecting over six million people in the United States, and the num-
ber is projected to rise up to 9.3 million people by the year 2060 [3]. Furthermore, 
there is currently no cure for AD, and it has increasingly been associated with 
mortality—the number of deaths attributed to AD grew by 123% between 2000 
and 2015 [4]. AD was once only diagnosable clinically and postmortem, but 
research advances have helped to develop screening tools and gold-standard 
brain imaging-based diagnostic methods to facilitate early diagnosis and 
prevention.

The exact cause of AD is yet to be determined, but findings suggest that the 
underlying mechanism may be a sequential process of pathologic protein accu-
mulation and neurodegeneration. A leading hypothesis is that AD is associated 
with genetic mutations that result in the aberrant processing of amyloid-β (Aβ) 
protein, which then causes downstream extracellular accumulation of cerebro-
vascular amyloid [5]. This abnormal accumulation is thought to lead to an 
inflammatory response from microglial cells, which results in nerve cell damage 
and the release of tau, a protein that stabilizes microtubules in nerve cell mem-
branes. Tau becomes hyperphosphorylated and resistant to breakdown and 
spreads throughout the cortex ultimately resulting in neurodegeneration [6]. The 
Braak staging model, the gold standard method for the staging of AD based on 
tau aggregation, considers progressive involvement of brain areas, as follows: 
(I) transentorhinal cortex; (II) entorhinal cortex and hippocampus; (III) inferior 
temporal neocortex; (IV–V) association cortices; and (VI) primary sensory cor-
tices [7].

While there is no cure, research studies have identified biomarkers that permit 
intervention at each stage of AD progression. The main targets that have been 
explored in PET imaging studies are Aβ, tau, biomarkers of neuronal damage and 
neuroinflammation, and epigenetics.
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2.2 � Aβ

Aβ is a biomarker that aids in the early diagnosis of AD. Aβ accumulates in the 
transentorhinal regions in the first two stages of AD and then spreads to the limbic 
and isocortical regions in the later stages [8]. Pittsburgh compound B (PiB) was 
the first radiotracer developed to detect Aβ deposits, but fluorine-18 ([18F])-based 
radiotracers such as florbetaben, flutemetamol, and florbetapir are now preferred 
due to their longer half-lives [8]. Studies have determined that [18F]-based radio-
ligands have a good reliability and efficacy in the detection of amyloid [9, 10], and 
the combined use of MRI and PET may result in a higher specificity than MRI 
alone [11, 12]. Furthermore, studies show that the Aβ42/Aβ40 ratio is a more 
precise biomarker in the early stages of AD [13, 14], and PET imaging findings 
have launched innovative approaches to validate tests screening for AD in the 
plasma and cerebrospinal fluid [13, 14]. However, challenges remain in quantify-
ing amyloid in the cerebrospinal fluid (CSF), as no standard protocol currently is 
in use [14].

2.3 � Tau

Hyperphosphorylated tau is a nonspecific biomarker of AD that is also present 
in other tauopathies (Márquez and Yassa, 2019). In AD, hyperphosphorylated 
tau initially accumulates in the medial temporal lobes, and the distribution of 
neurofibrillary tangles has been thought to be directly related to Aβ due to the 
close proximity to amyloid deposits [15]. CSF analysis and fluorodeoxyglucose 
(FDG) PET imaging have shown higher levels of total tau (t-Tau) and phos-
phorylated Tau (p-Tau) 181p and lower levels to be associated with cognitive 
decline [16].

Additionally, it has been proposed that amyloid and hyperphosphorylated tau 
play a synergistic role in driving neurocognitive decline in the medial temporal, 
orbitofrontal, anterior, and posterior cingulate cortices [11]. Tau tracers bind to tau 
tangles in the later stages of AD [17]. Tracers are derived from quinolone and benz-
imidazole, which bind to paired helical filaments in tau [8]. While the first-generation 
tau tracers such as [18F]1451 and [18F]T-807 have been shown to have better uptake 
and signal detection [18], the second-generation tau tracers like [18F]MK6240 have 
demonstrated a higher specificity [19]. In 2020, the Food and Drug Administration 
(FDA) approved [18F]flortaucipir for clinical use [20]. Studies have shown that in 
combination with Aβ, the detection of tau helps increase the discriminative value of 
AD diagnosis [20, 21]. In addition, plasma tau levels correlate with tau PET imag-
ing and increase with the level of neurodegeneration, which suggests that tau is a 
severity marker of AD [21].
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2.4 � Microglial Activation and Neuroinflammation

Neuroinflammation is another important component in the pathophysiology of 
AD. The role of neuroinflammation in AD was first discovered following neuro-
pathological studies. PET studies using the radiotracer [11C]PK11195, which detects 
TSPO, a marker of microglial cells [22], have made it possible to examine these 
changes in vivo. However, drawbacks of [11C]PK11195 include a low binding, a low 
signal-to-noise ratio, and nonspecificity to TSPO [8]. The second-generation tracers 
such as [11C]PBR-28, [18F]DPA-714, [11C]ER176, and [18F]FEPPA have a higher 
specificity and affinity [23, 24] but have reduced binding in individuals with the 
rs6971 single nucleotide polymorphism [25]. Newer tracers such as [11C]ER176 
have been shown to circumvent this issue [26].

While TSPO remains the most researched biomarker for neuroinflammation, 
radioligands for other neuroinflammatory modulators such as glycogen synthase 
kinase 3, monoamine oxidase B, reactive oxygen species, imidazole-2, cyclooxygen-
ases 1 and 2, arachidonic acid, chemokine receptors, purinergic receptors, and Mer 
tyrosine kinase have been developed [26]. Though neuroinflammation is a nonspecific 
biomarker, data acquired from measuring biomarkers of neuroinflammation in the 
CNS is informative in characterizing the pathophysiology and progression of AD.

2.5 � Neurodegeneration

Neurodegeneration is a key feature of AD that has been studied extensively with 
MRI studies, but PET studies provide complementary data that can lead to a more 
accurate diagnosis [8]. One measure of neurodegeneration is glucose hypometabo-
lism, which can be detected with [18F] fluorodeoxyglucose (FDG) PET imaging. 
Studies show that in AD, glucose hypometabolism occurs in areas distinct from 
those implicated in normal aging, such as the temporal, parietal, and sometimes 
frontal lobes [8], which could help differentiate AD from other neuropsychiatric 
disorders such as geriatric depression.

In addition, decreased synaptic connectivity has been found to be associated with 
increased amyloid burden [27]. Radioligands such as [11C]UCB-J and [18F]UCB-H 
have displayed a high specificity for synaptic vesicle glycoprotein 2A (SV2A), a 
biomarker of synaptic density, and a lower binding indicates more synaptic loss [19].

2.6 � Epigenetics

Recent PET studies have explored the genetic associations of AD through epigene-
tic imaging. Radiotracers such as [11C]Martinostat, [18F]Bavarostat, and [18F]MGS3 
target histone deacetylase (HDAC), a protein that aids in gene silencing [8]. Binding 

PET Biomarkers in Psychiatry



86

of these radioligands can help visualize the degree of epigenetic changes in AD [8]. 
While more data is needed, such studies help elucidate the role of epigenetics in AD.

3 � PET Biomarkers in Schizophrenia and Psychosis

3.1 � Schizophrenia

Schizophrenia is a serious mental illness that affects 21 million people worldwide 
[28]. Schizophrenia presents with positive symptoms such as hallucinations and 
delusions, negative symptoms such as alogia and catatonia, impaired cognition, and 
disordered thought [28]. The average lifespan of people with schizophrenia is 
reduced by 20–25 years [29].

Schizophrenia was the first psychiatric disorder to be explored with PET bio-
markers. While not much is known about the etiology of schizophrenia, the dopa-
mine hypothesis posits that increased dopamine synthesis and release in the striatum 
may play a significant role, and it has been expounded upon to include serotonergic 
and glutamatergic activity [30]. The first psychiatric PET imaging studies measured 
glucose metabolism in schizophrenic patients to elucidate the most affected regions 
[30]. Now, PET imaging studies are being conducted to aid in the future treatment 
and prognosis of people with schizophrenia.

3.2 � Dopamine

Early postmortem findings of increased striatal dopamine levels and dopamine 
receptor density in schizophrenic patients helped to formulate the dopamine hypoth-
esis [31–33]. In vivo studies with PET imaging allowed for further examination of 
dopaminergic function in schizophrenia. A systematic review of PET imaging stud-
ies found that increased striatal dopamine drove dopamine dysregulation in schizo-
phrenia but did not find changes in D2/3 receptor density in antipsychotic-naive 
patients [33]. An experiment conducted with [123I]IBZM, a D2 receptor radioligand, 
found that the administration of amphetamine reduced D2 receptor availability in 
patients with schizophrenia compared to healthy controls [34]. A follow-up study 
found decreased dopamine synthesis in remitted patients with schizophrenia, which 
implicates dopamine release in schizophrenia symptomatology [35]. These findings 
suggest that overexcitability of dopaminergic neurons may play a role in increased 
dopamine synthesis in schizophrenia. To test the role of D2 receptors in increased 
dopaminergic signaling, a study depleted dopamine levels in schizophrenia patients 
and healthy controls by up to 80% and found that patients with schizophrenia had 
higher D2 receptor occupancy [36]. This suggests that in addition to increased pre-
synaptic dopamine synthesis and release, dysfunction at the D2 receptor may play a 
role in schizophrenia [37].
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PET imaging studies have also aided in the development of novel approaches to 
treating psychosis. D2 receptor blockers were among the first treatments for schizo-
phrenia, and side effects include hyperprolactinemia and extrapyramidal effects. A 
pivotal PET imaging study found that the occupancy of D2 receptors correlated 
with treatment response and the presence of side effects [38]. Another study mea-
sured dopamine levels with [18F]FDOPA to predict treatment response in partici-
pants with schizophrenia [39] and found that drug-responders had increased levels 
of presynaptic dopamine synthesis at baseline. However, a recent [18F]FDOPA study 
did not find differences in presynaptic dopamine synthesis capacity in schizophre-
nia; but replicated an inverse relationship between presynaptic dopamine synthesis 
capacity and negative symptom severity [40]. PET imaging has potential to improve 
the search of more effective treatment of schizophrenia and other psychotic disor-
ders. A clinical trial used [11C]PHNO PET to measure the effects of TAK-041, a 
G-Protein-coupled receptor 139 (GPR139) agonist, and found that it antagonized 
endogenous dopamine release [41]. Confirmation of the findings of excessive pre-
synaptic dopamine synthesis and response to treatment in larger studies are ongoing.

3.3 � Glutamate

It has been hypothesized that glutamatergic toxicity may play a role in schizophre-
nia pathophysiology [37]. One PET study conducted with [18F]GE179, a ligand spe-
cific for glutamatergic NMDA receptors, found decreased hippocampal distribution 
volume ratio in patients with schizophrenia compared to healthy controls [42]. 
Furthermore, NMDA hypofunction was negatively associated with depressive 
symptoms and overall symptom severity [42]. These findings suggest hypofunction 
of the NMDA receptors and abnormal striatal glutamate signaling may be underly-
ing mechanisms of schizophrenia. Another PET study conducted with [11C]ABP688, 
which is specific for the mGlu5 receptor, failed to find an association between 
mGlu5 receptor density and symptom severity [43]. Ultimately, more research is 
needed to establish the exact role of glutamate in schizophrenia.

3.4 � Microglial Activation

Neuroinflammation via microglial activation, particularly in the gray matter of the 
frontal and temporal lobes, has been proposed to be a mechanism involved in the 
pathophysiology of schizophrenia and psychosis. Earlier studies tested this hypoth-
esis by using the TSPO radiotracer [11C]PK11195 and found increased binding in 
participants with schizophrenia [44, 45]. One study conducted using the novel 
radiotracer [11C]PBR28 demonstrated elevated microglial activation in patients at 
high risk of schizophrenia and psychosis [46]. Another study using [11C]PBR28 
found a negative correlation between TSPO activation and cortical gray matter 
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volume [47]. This finding is potentially related to lower brain synaptic density in 
schizophrenia, since studies have found that microglial activation may be impli-
cated in synaptic loss [48, 49]. However, more recent meta-analyses suggest contra-
dictory results depending on ligand uses, quantitative methods, and illness 
heterogeneity [18, 50]. Newer inflammatory markers are required to study the role 
of neuroinflammation in schizophrenia.

4 � PET Biomarkers in Major Depressive Disorder (MDD)

4.1 � Major Depressive Disorder

MDD has an average prevalence of 12 percent and is projected to become the num-
ber one cause of the global disease burden by 2030 [51]. MDD may present with 
anhedonia, fatigue, difficulty concentrating, and loss of appetite, amongst other 
symptoms [51]. Decreased activity of monoamines serotonin, norepinephrine, and 
dopamine in the CNS is thought to play a dominant role in the symptomatology of 
MDD [52]. Importantly, Selective Serotonin Reuptake Inhibitors (SSRIs) are the 
first-line treatment for MDD. In addition to providing evidence for the monoamine 
hypothesis, PET imaging studies have sought to predict treatment response.

4.2 � Serotonin

Many PET imaging studies have investigated the role of serotonin in depression. A 
study using the radioligand [18F]altanserin demonstrated that neuroticism, a key fea-
ture of MDD, is associated with fronto-limbic serotonin 5-HT2A receptor binding 
potential [53]. In addition, a study conducted with the radiotracer [11C]ZIENT PET 
showed that there is lower 5-HT2A binding potential in MDD patients with prior 
suicidal attempts [54]. This supports the theory that serotonin may play a role in 
depressive symptoms.

PET imaging of serotonin receptors has also helped deepen understanding of 
SSRI’s pharmacodynamics. A study conducted in 2001 targeted 5-HTT receptors 
with the radiotracer [11C]N1N-Dimethyl-2-(2-amino-4-cyano phenyl thio)benzyl-
amine (DASB) to estimate the decrease in 5-HTT binding potential after SSRI 
administration and suggest a maximum effective dose of paroxetine [55]. A recent 
study, using 5-HT2A agonist ligand, [11C]Cimbi-36 and d-amphetamine challenge 
showed that serotonin release capacity was lower in MDD [56]. In addition, a neu-
ropharmacological clinical trial is currently aiming to use the novel serotonin 4 
receptor radiotracer [11C]SB207145 to discover a biomarker that can measure anti-
depressant treatment response in patients with MDD [57]. PET imaging can poten-
tially measure dosing and drug response in the treatment of MDD.
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4.3 � Glucose Metabolism

PET imaging studies have sought to identify the structural and biochemical anat-
omy of MDD. MDD is associated with decreased resting neural activity in the dor-
sal anterior cingulate, dorsolateral prefrontal cortex, insula, and superior temporal 
gyrus and increased activity in the medial and inferior frontal cortex, basal ganglia, 
and subgenual cingulate cortex [58]. [18F]FDG PET has been used to measure neu-
ral activity in these key regions.

4.4 � Glutamate

The role of glutamate in depression has been of particular interest since the 1980s 
when it was discovered that depressed people had reduced levels of GABA, an 
inhibitory neurotransmitter, in their plasma [59, 60]. Since then, additional studies 
have found GABA to be decreased in the CSF and cortical tissue of depressed 
patients [61]. Glutamate is an excitatory neurotransmitter neurotoxic in excess, and 
its release is modulated by GABA [62]. Therefore, the GABAergic deficiency the-
ory suggests that MDD symptoms could be associated with glutamatergic toxicity 
resulting from decreased GABA levels [61].

The results of a study conducted with the radioligand [11C]ABP688, which binds 
to mGlu5 receptors, demonstrated a lower binding, possibly due to compensatory 
increase in glutamate [63], which may explain the mechanism underlying increased 
glutamatergic neurotoxicity in MDD patients. In addition, a phase III clinical study 
found that treatment with ketamine, which blocks glutamatergic NMDA receptors, 
was associated with increased subgenual cingulate glucose metabolism in patients 
with depression [64]. This suggests that ketamine’s therapeutic effect may be attrib-
uted, in part, to its inhibition of glutamatergic signaling.

4.5 � Monoamine Oxidase and Neuroinflammation

PET studies have demonstrated increased neuroinflammation in individuals with 
MDD. A [11C](R)-PK11195 PET study showed increased uptake in the ACC [65], 
which suggests microglial activation. Studies using second-generation TSPO ligand 
[18F]FEPPA have shown elevated binding in cortico-striatal regions providing sup-
portive evidence for neuroinflammation in MDD [66].

Monoamine oxidase is an enzyme that metabolizes monoamines and promotes 
apoptosis and oxidative stress. It is at its highest density in the raphe nuclei, which 
produces serotonergic neurons. It is also present in the mitochondrial membrane of 
glial cells, midbrain serotonergic neurons, and the substantia nigra in dopamine-
containing cells [67]. A study used the radiotracer [11C]harmine PET to target 
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MAO-A and found elevated MAO-A density in the prefrontal cortex and ACC of 
people with postpartum depression (PPD) or positive for PPD symptoms [68]. This 
suggests that oxidative stress may be a factor in the development of PPD, and inter-
ventions that target oxidation stress, such as smoking cessation, may be beneficial.

MAO-B has been shown to be associated with mitochondrial dysfunction at high 
levels [69]. A PET imaging study showed that MAO-B had increased binding in the 
prefrontal cortex in MDD, and increased binding was associated with longer illness 
duration [69]. MAO-B inhibitors have been shown to have a therapeutic benefit in 
the treatment of MDD. Radioligands such as [11C]L-deprenyl, [11C]L-deprenyl-D2, 
[11C]SL25.1188, and [18F]SMBT-1 allow for further exploration into the mechanism 
of MAO-B in MDD and various other psychiatric and neurologic disorders [70].

5 � PET Biomarkers in Bipolar Disorder (BD)

5.1 � Bipolar Disorder

BD is a severe mental illness with a lifetime prevalence of approximately 2.4 per-
cent worldwide [71]. BD is characterized by depression and mania or hypomania 
and is treated with mood stabilizers such as lithium. Even with treatment, the recur-
rence and chronicity of BD remain high, with nearly half experiencing persistent 
symptoms [72]. The pathophysiology of bipolar disorder is unknown, but it is 
thought to be caused by disrupted limbic function and dysregulated monoamine 
signaling [73].

5.2 � Glucose Metabolism

While the search for biomarkers of BD has been complicated by the broad array of 
clinical presentations, a systematic review has identified decreased activity in the 
dorsolateral, medial orbital, and subgenual prefrontal cortices as a consistent feature 
in [18F]FDG PET imaging studies [74]. Studies comparing people with BD to 
healthy controls found that participants with BD have also shown a higher glucose 
metabolism in the hippocampus, parahippocampus, and amygdala [75, 76].

Studies have also sought to identify biomarkers that differentiate bipolar disorder 
from psychopathologies with clinically similar presentations. BD can be misdiag-
nosed as MDD due to the presence of depressive episodes in both disorders. While 
MDD is commonly treated with SSRIs, treating BD with an antidepressant could 
worsen mood symptoms. Therefore, the ability to distinguish the two illnesses is of 
great interest. Studies show that both disorders share hypometabolism in the pre-
frontal cortex, which suggests that this area is a biomarker for depression [77, 78]. 
However, BD exhibits decreased glucose metabolism in the right ACC, while MDD 
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demonstrates decreased glucose metabolism in the right temporal gyrus, right 
insula, and left posterior cingulate [78]. These markers could increase diagnostic 
certainty and decrease the risk of inducing mania in patients with BD.

Additional PET imaging studies have identified biomarkers of clinical subtypes 
of BD. BD I presents with mania, while BD presents with hypomania. A study 
showed that, compared to individuals with BD II, individuals with BD I demon-
strated hypometabolism in the ACC, bilateral middle and inferior gyri, insula, and 
striatum and hypermetabolism in the left parahippocampus [75]. This suggests that 
these areas are more significantly impaired in mania. In addition, hypometabolism 
in the right fusiform gyrus is a potential marker of BD with psychotic features [79]. 
Other PET studies have found mania to be associated with hypermetabolism in the 
ACC [80], medial temporal lobes [81], and parahippocampal cortex [82]. 
Cyclothymia is characterized by mild and persistent hypomanic and depressive 
symptoms [83]. Hyperactivity in the right superior parietal lobule is a potential bio-
marker of cyclothymia [84]. Another [18F]FDG PET study found that individuals 
with BD demonstrated patterns of hypoactivity in the prefrontal cortex consistent 
with individuals with unipolar depression but found hypermetabolism in the amyg-
dala to be associated with treatment-resistant or rapid-cycling BD [77].

Much research must be conducted to identify sensitive and specific biomarkers 
for BD. This is complicated by factors such as medication use, heterogeneity in 
clinical presentation, and demographic variability. While PET biomarkers are still 
being developed, their future use can help diagnose BD.

5.3 � Therapeutic Response Markers

PET imaging has the potential to elucidate the pharmacodynamics of lithium and 
other drugs and improve treatment efficacy for people with BD. A study conducted 
using radiotracers [11C]DASB and [11C]CUMI-101, which bind to 5-HTT and 
5-HT1A receptors, respectively, found that pretreatment binding of 5-HT1A recep-
tors predicted drug response to lithium [85]. Furthermore, despite literature that 
hypothesized lithium affected serotonin receptors, binding did not significantly 
change after lithium’s administration, suggesting that lithium may have an alterna-
tive mechanism [85].

6 � PET Biomarkers in Anxiety Disorders, Post-Traumatic 
Stress Disorder (PTSD), and Fear Dysregulation

Anxiety disorders are the most common form of mental illness, affecting over 30% 
of adults [86]. Anxiety disorders are characterized by excessive worry and fear and 
include generalized anxiety disorder, panic disorder, post-traumatic stress disorder, 
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specific phobia, agoraphobia, and separation anxiety disorder [86]. PET imaging 
has been used to further explore the pathophysiology of PTSD and anxiety disor-
ders. Because there is considerable overlap among anxiety disorders, a transdiag-
nostic approach is useful in understanding the neurobiology of fear response [87].

Excessive fear, a hallmark trait of anxiety disorders, is hypothesized to be caused 
by dysregulation of the limbic system [88]. A [18F]FDG PET imaging study found 
hyperactivity in the amygdala during fear conditioning and insula hyperactivity dur-
ing memory retrieval in participants with PTSD [89]. In addition, GABA-A recep-
tors are downregulated in these areas. Flumazenil PET has shown decreased cortical 
binding of GABA-A BZD receptors and increased binding in the hippocampus and 
parahippocampus, which suggests diminished frontal-limbic regulation in fear 
response [90]. Another PET study found abnormal bilateral reductions of GABA-A 
BZD receptor binding in the insular cortex [91]. Decreased GABA-A inhibition 
could explain the hyperactivity of these areas.

Other neurotransmitters are affected by the fear response as well. One PET imag-
ing study using the radiotracer [11C]WAY-100635 on subjects with PTSD showed 
that participants had higher levels of 5-HT1A binding [92]. Another study found 
that the norepinephrine transporter (NET), measured with (S,S)-[11C]MRB, was 
upregulated in participants with PTSD [93]. These findings explain the presence of 
depressive symptoms in PTSD.

In addition, the hypothalamus-pituitary-adrenal (HPA) axis is significantly 
involved in anxiety disorders and fear dysregulation. PET imaging conducted with 
[18F]AS2471907, a radioligand specific to 11β-hydroxysteroid dehydrogenase 1, 
has demonstrated increased brain cortisol despite lower peripheral cortisol levels in 
individuals with PTSD [94]. In addition, PTSD severity was found to be inversely 
associated with prefrontal limbic availability of 11β-HSD1 [94]. This means that 
brain cortisol levels may play an inhibitory role in fear, which contradicts the previ-
ously held theory that brain cortisol was implicated in PTSD symptomatology. 
Deepened knowledge of the neurobiological mechanisms underlying anxiety disor-
ders can enable further research into treatment.

7 � PET Biomarkers in Substance Use Disorders

7.1 � Substance Use Disorders

The neurobiological mechanism of addiction is thought to be the overactivation of 
the reward circuit, which is predominantly influenced by dopamine [95]. PET imag-
ing identifies the frontal and temporal lobes, insula, and thalamus as key areas in 
addiction. Both PET and SPECT imaging demonstrate decreased availability of D2 
receptors in the striatum with addiction, a finding that endures after abstinence [96]. 
Other regions identified using [18F]FDG PET are the anterior cingulate gyrus, amyg-
dala, orbitofrontal cortex, and dorsolateral prefrontal cortex [97].
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7.2 � Mechanisms Underlying Patterns of Drug Use

PET imaging has been used to understand the neurobiology of drug dependence and 
abstinence. A study on opiate-dependent users measured cerebral blood flow and 
found distinct patterns of activating during craving and stimulation, which suggests 
that different mechanisms may underlie different patterns of dependence [98]. A 
[18F]FDG PET study conducted on methylphenidate users found that the thalamus 
may mediate reward expectation, while the orbitofrontal cortex mediates reinforce-
ment of unexpected reward [99]. Combined data from [18F]FDG PET and SPECT 
measured the change in cerebral activity in chronic methamphetamine users. They 
found that 3 months of abstinence resulted in the recovery of global glucose metab-
olism but decreased relative metabolism in the striatum during tasks [100]. Thalamic 
activity increased compared to baseline, which suggests that the thalamus may play 
a compensatory role in drug use recovery [100].

7.3 � Long-Term Neurochemical Changes in Substance Users

Furthermore, PET imaging studies can elucidate the long-term effects of drug use. 
One study on ecstasy users found that [11C]McN5652, a radioligand for 5-HTT, was 
reduced in abstaining users compared to healthy controls [101, 102]. Another study 
in monkeys found an inverse relationship between D2-like receptor availability and 
susceptibility to addiction [103]. It also found that chronic exposure decreased 
D2-like receptor binding, which could explain the increased tolerance with long-
term exposure [103]. These findings have aided in pharmacologic advancement. 
[11C]Raclopride PET imaging study found that treatment with vigabatrin, a GABA 
agonist, increased GABA levels in the midbrain and decreased dopamine release in 
the striatum, which reduced the feelings of euphoria [104]. Such findings have 
helped to improve addiction treatment. In addition, [11C]UCB-J PET studies have 
demonstrated decreased synaptic density in patients with cannabis use disorder and 
cocaine use disorder [105, 106].

8 � Challenges in Using PET Biomarkers

8.1 � Introduction

While the future of using PET radiotracers to detect biomarkers in psychiatry 
appears promising, many obstacles to widespread implementation remain. Barriers 
include biomarker and radiotracer availability, diagnostic classifications, sampling 
constraints, data quantification, and cost-effectiveness.
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8.2 � Biomarker/Radiotracer Availability

One key challenge is finding appropriate biomarkers [36]. One reason for this is the 
heterogeneity of psychiatric disorders and the overlap in biochemical mechanisms 
underlying their pathophysiology. In addition, considerable biological overlap 
exists in the clinical classification and presentation of psychiatric disorders, so it is 
challenging to find biomarkers with sufficient sensitivity and specificity. Biomarkers 
must have significant predictive value, accessibility, and cost-effectiveness, further 
complicating the search.

In addition to the challenge of identifying biomarkers, more radiotracers are 
needed. An appropriate radiotracer must cross the BBB, bind to its target with suf-
ficient selectivity and specificity, quickly reach equilibrium, and be rapidly cleared 
[107]. New radiotracers are in development. For example, many radiotracers for 
TSPO have a low signal-to-noise ratio, but the third-generation radiotracers with 
increased specificity are being tested [108]. Continued research into new radioli-
gands will enable further advancement in PET imaging.

8.3 � Transdiagnostic Approach

Though PET imaging studies aim to provide objective data to improve diagnostic 
certainty, discordance between diagnostic criteria outlined in the DSM-5 and bio-
markers identified via imaging is a potential barrier. For example, many biomarkers 
identified in MDD often have limited specificity due to the presence of depressive 
symptoms in many other psychiatric disorders. Cognitive dysfunction is a known 
symptom of MDD, schizophrenia, and other psychiatric disorders. PET studies con-
ducted with [11C]UCB-J, a radiotracer with a high specificity for the synaptic den-
sity marker SV2A, have demonstrated an inverse relationship between synaptic 
density and depression severity [109]. In addition, a PET study found that treatment 
with ketamine improved synaptic density in individuals with a lower [11C]UCB-J 
uptake at baseline [110]. Other [11C]UCB-J PET studies have found decreased syn-
aptic density in patients with schizophrenia [46, 47, 107]. This suggests that net-
work alterations may play a role in the pathophysiology of several psychiatric 
conditions. Similarly, TSPO, a marker of neuroinflammation described above, is 
altered in many neuropsychiatric disorders. Biomarkers usually correlate with clini-
cal symptoms rather than DSM diagnoses and can present nonspecifically and even 
subclinically.

Fortunately, support for a greater emphasis on clinical symptoms rather than 
diagnoses is growing. The Research Domain Criteria (RDoC) approach aims to 
classify disorders based on observable behaviors [111]. Exploring the pathology 
behind symptoms rather than diagnoses can facilitate the development of more pre-
cise treatments.
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8.4 � Study Constraints

Another limitation of PET imaging is sampling bias. Typically, studies do not 
include severely ill patients due to their inability to consent or adhere to research 
procedures. This may bias the results of studies and preclude the investigation of 
biomarkers of more severe presentations, such as catatonia. In addition, most of 
the studies are conducted on adult participants because children cannot consent 
to participate in PET research procedures. Therefore, few PET imaging studies 
can identify biomarkers associated with disorders that develop early in child-
hood, such as ADHD, or study the efficacy of pharmacologic treatments in chil-
dren [112].

PET imaging studies are also limited by a small sample size, due to the large 
costs and specificity of research protocols [113]. PET technology requires spe-
cialized expertise and costs thousands of dollars, which precludes smaller labs 
from conducting PET imaging studies and is costly to work on a large scale. 
Consequently, the significance of study results tends to be limited by a small 
effect size.

In addition, data quantification has proved to be a challenge. PET imaging 
requires the venous administration of a radiotracer, and most radiotracers are par-
tially metabolized peripherally. To accurately measure radiotracer input, a function 
accounting for peripheral metabolism must be derived via invasive arterial cannula-
tion [113]. This barrier complicates the ease of administration and recruitment for 
PET imaging studies. Furthermore, early PET imaging studies lacked a standard 
protocol for quantifying PET results, making the data heterogeneous and difficult to 
interpret. Recent improvements have been made to circumvent these issues, which 
we will discuss in the next section.

Long-term radiation exposure risks are a concern for longitudinal PET imag-
ing studies. Depending on the radiotracer administered, participants undergoing 
PET imaging are exposed to up to 10 mSv of radiation, which is the maximum 
allowed by the International Commission on Radiological Protection guidelines 
[113]. This precludes the possibility of longitudinal studies, which could aid in 
understanding disease progression in individuals over time. However, new PET 
technologies with a higher sensitivity are being developed to decrease radiation 
exposure [113].

Lastly, data-sharing is an effective strategy that can help to increase the power of 
PET imaging studies [113]. Increased data-sharing and collaboration could resolve 
limitations imposed by small sample sizes and reduce the heterogeneity of study 
protocols, which would increase the generalizability of study results. Guidelines for 
PET imaging were published by the National Electrical Manufacturers Association, 
American College of Radiology, and Board of European Association of Nuclear 
Medicine, standardizing study protocols [114]. This is a step towards data-sharing 
that will enable a greater collaboration across studies.
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9 � Future Applications

In recent years, PET imaging studies in psychiatry have continued to expand upon 
the decades of previous work. The development of novel radiotracers facilitates the 
imaging of in vivo biochemical processes (Table 2). New neuroinflammation tracers 
developing targets such as glycogen synthase kinase 3, monoamine oxidase B, 
ROS, imidazoline-2 binding sites, cyclooxygenase, and arachidonic acid have 
shown promise [115]. In addition, radiotracers for intracellular proteins are being 
tested, such as sphingosine-1-phosphate receptor 1 (S1P1), cannabinoid-2 receptor 
(CB2), the chemokine receptor CX3CR1, and the P2X7 and P2Y12 purinergic 
receptors [115]. Imaging of α-amino-3-hydroxy-5-methyl-4-isoxazole propionic 
acid (AMPA) receptors with the novel ligand [11C]K-2 can allow greater insight into 
glutamatergic signaling in psychiatric disorders [116]. Radiotracers such as 
[18F]BCPP-EF and [11C]SA4503 are being tested to image mitochondrial complex I 
and sigma 1 receptor, which are markers of cellular stress [117]. Lastly, imaging of 
the synaptic density marker SV2A has demonstrated a synaptic loss in many psychi-
atric disorders, including depression and schizophrenia [47, 106]. Additional PET 
studies can further characterize disease progression in these disorders.

In addition, multimodal imaging studies provide complementary data on neuro-
biological mechanisms. PET and MRI have been found to provide complementary 
data on glucose metabolism [118]. Hippocampal atrophy, a biomarker of both geri-
atric depression and AD, is detected by MRI, and follow-up imaging conducted 
with PET has been validated as an effective method of differentiating the two disor-
ders [12]. A drawback of many multimodal imaging studies is that nonsimultaneous 
imaging sessions introduce random error, such as slight differences in subjects’ 
physiology or technological performance. TRIMAGE is a trimodality that simulta-
neously conducts PET, MRI, and electroencephalogram (EEG), which could allow 
for easier identification and validation of biomarkers [119]. Additionally, the ability 
to simultaneously conduct multimodal imaging could improve the significance of 
multimodal study results.

10 � Conclusion

PET is an imaging modality with remarkable sensitivity and resolution that has been 
shown to be a valuable tool in neuropsychiatric research. While many past studies 
have established the importance of PET in diagnosing and managing AD, current 
and future studies aim to apply its use to psychiatric conditions. While the future of 
PET imaging appears promising, further research in finding appropriate biomarkers 
and developing novel radiotracers is needed. In addition, acceptance of the RDoC 
approach would further validate the widespread use of biomarkers in psychiatry. 
More constraints include a lack of standardization in data quantification, sampling 
issues, and cost-effectiveness.
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Biomarker Radioligand

Translocator protein (TSPO) (1st generation) [11C]PK11195
TSPO (2nd generation) [11C]PBR28

[18F]FEPPA
[11C]ER176
[18F]DPA-714

Cyclooxygenases (COX) 1 & 2 [11C]CPS13
Purinergic receptor P2X7 [11C]SMW139
Imidazoline 2 [11C]BU99008
Monoamine oxidase (MAO) [11C]L-deprenyl

[11C]L-deprenyl-D2
[11C]SL25.1188
[11F]SMBT1

Glial fibrillary acidic protein (GFAP) [11C]Bu99008
Glycogen synthase kinase 3 [11C]PF-367

[11C]SB-216763
Synaptic vesicle protein 2A [11C]UCB-J

[18F]SynVesT-2
Amyloid beta peptide (Aβ) [11C]PiB

[18F]Florbetapir
[18F]Florbetaben
[18F]Flutemetamol

Tau protein (1st gen) [18F]1451
[18F]T-807

Tau protein (2nd gen) [18F]MK-6240
Serotonin transporter (5-HTT) [11C]DASB
Serotonin receptor 4 (5-HT4) [11C]SB207145

[11C]CUMI-101
Serotonin receptor 2A (5-HT2A) [18F]Setoperone

[18F]Altanserin
[11C]ZIENT

Serotonin receptor 6 (5-HT6) [11C]GSK215083
Serotonin receptor 2C (5-HT2C) [11C]WAY-163909

[18F]4
Dopamine [11C]Raclopride
Dopamine [18F]DOPA
GPR139 agonist TAK-041 [11C]PHNO
11β-hydroxysteroid dehydrogenase 1 (11β-HSD1) [18F]AS2471907
Norepinephrine transporter (NET) [11C]MRB
N-Methyl-D-aspartate (NMDA) [18F]GE179
Metabotropic glutamate receptor subtype 5 (mGlu5) [11C]ABP688

Table 2  Biomarker target and PET radioligands
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Despite these challenges, PET imaging has enormous potential to improve the 
diagnosis and treatment of neuropsychiatric conditions. Full-body imaging can elu-
cidate mind-body connections. Investigations in neuroinflammation can uncover the 
pathogenesis of many psychiatric conditions, which would allow further explora-
tion into early detection and treatment. The benefits of longitudinal studies, particu-
larly in neurodegenerative disorders, could greatly outweigh the risks associated 
with repeat PET studies. Lastly, PET imaging can complement other imaging 
modalities, which will help to create a complete conceptualization of psychiatric 
disorders. The PET imaging in psychiatry introduces many avenues of exploration 
that span multiple fields including, neurobiology, immunology, and pharmacology.

Conflict of Interest  Sudhakar Selvaraj has received research support from Flow Neuroscience 
and is a principal or sub-investigator for clinical trials funded by Flow Neuroscience, Compass 
Pathways, LivaNova, and Janssen. Dr. Selvaraj has received consultant fee or honoraria from the 
Worldwide Clinical Trials/Inversago, Vicore Pharma, British Medical Journal Publishing Group, 
and Psychiatry Education Forum LLC. Rajiv Radhakrishnan has received research support from 
Neurocrine Biosciences and Jazz Pharmaceuticals (previously GW Pharmaceuticals).

FundingDr. Sudhakar Selvaraj has received grants/research support from the NIMH 
(1R21MH119441-01A1), NIMH (1R21MH129888-01A1), and NICHD (1R21HD106779-01A1). 
Dr. Rajiv Radhakrishnan has received grants/research support from the NIDA (R01DA054314, 
R21DA054491), NIMH (R21MH123870, R21MH115316), NCCIH (R21AT010763), and 
National Center for Homelessness Among Veterans (NCHAV).

Role of Funder The content of this study is solely the responsibility of the authors and does not 
necessarily represent the official views of the NIH or NCHAV. The UTHealth institution and Yale 
University played no role in the design and conduct of the study; collection, management, analysis, 
and interpretation of the data; preparation, review, or approval of the manuscript; and decision to 
submit the manuscript for publication.

References

1.	Rich DA. A brief history of positron emission tomography. J Nucl Med Technol. 1997;25:4–11.
2.	Pike VW.  PET radiotracers: crossing the blood-brain barrier and surviving metabolism. 

Trends Pharmacol Sci. 2009;30:431–40.
3.	Brookmeyer R, Abdalla N, Kawas CH, Corrada MM. Forecasting the prevalence of preclini-

cal and clinical Alzheimer’s disease in the United States. Alzheimers Dement. 2018;14:121–9.
4.	Alzheimer’s Disease Facts and Figures. In: Alzheimers Dis. Dement. https://www.alz.org/

alzheimers-dementia/facts-figures. Accessed 27 Sep 2022.
5.	Hardy J, Allsop D. Amyloid deposition as the central event in the aetiology of Alzheimer’s 

disease. Trends Pharmacol Sci. 1991;12:383–8.
6.	Ballatore C, Lee VM-Y, Trojanowski JQ. Tau-mediated neurodegeneration in Alzheimer’s 

disease and related disorders. Nat Rev Neurosci. 2007;8:663–72.
7.	Therriault J, Pascoal TA, Lussier FZ, et al. Biomarker modeling of Alzheimer’s disease using 

PET-based Braak staging. Nat Aging. 2022;2:526–35.
8.	Márquez F, Yassa MA. Neuroimaging biomarkers for Alzheimer’s disease. Mol Neurodegener. 

2019;14:21.

P. Orhii et al.

https://www.alz.org/alzheimers-dementia/facts-figures
https://www.alz.org/alzheimers-dementia/facts-figures


99

9.	Joshi AD, Pontecorvo MJ, Clark CM, et al. Performance characteristics of amyloid PET with 
Florbetapir F 18 in patients with Alzheimer’s disease and cognitively Normal subjects. J Nucl 
Med. 2012;53:378–84.

10.	Schipke CG, Peters O, Heuser I, et  al. Impact of Beta-amyloid-specific Florbetaben PET 
imaging on confidence in early diagnosis of Alzheimer’s disease. Dement Geriatr Cogn 
Disord. 2012;33:416–22.

11.	Pascoal TA, Mathotaarachchi S, Mohades S, et  al. Amyloid-β and hyperphosphorylated 
tau synergy drives metabolic decline in preclinical Alzheimer’s disease. Mol Psychiatry. 
2017;22:306–11.

12.	Emsell L, Vanhaute H, Vansteelandt K, et al. An optimized MRI and PET based clinical pro-
tocol for improving the differential diagnosis of geriatric depression and Alzheimer’s disease. 
Psychiatry Res Neuroimaging. 2022;320:111443.

13.	Jang H, Kim JS, Lee HJ, et al. Performance of the plasma Aβ42/Aβ40 ratio, measured with a 
novel HPLC-MS/MS method, as a biomarker of amyloid PET status in a DPUK-KOREAN 
cohort. Alzheimers Res Ther. 2021;13:179.

14.	Dumurgier J, Sabia S, Zetterberg H, et  al. A pragmatic, data-driven method to determine 
cutoffs for CSF biomarkers of Alzheimer disease based on validation against PET imaging. 
Neurology. 2022;99:e669–78.

15.	Ranganath C, Ritchey M.  Two cortical systems for memory-guided behaviour. Nat Rev 
Neurosci. 2012;13:713–26.

16.	Dowling NM, Johnson SC, Gleason CE, Jagust WJ.  The mediational effects of FDG 
Hypometabolism on the association between cerebrospinal fluid biomarkers and neurocogni-
tive function. NeuroImage. 2015;105:357–68.

17.	Groot C, Villeneuve S, Smith R, Hansson O, Ossenkoppele R.  Tau PET Imaging in 
Neurodegenerative Disorders. J Nucl Med. 2022;63:20S–6S.

18.	Marques TR, Ashok AH, Pillinger T, Veronese M, Turkheimer FE, Dazzan P, Sommer IEC, 
Howes OD. Neuroinflammation in schizophrenia: meta-analysis of in vivo microglial imag-
ing studies. Psychol Med. 2019;49:2186–96.

19.	McCluskey SP, Plisson C, Rabiner EA, Howes O. Advances in CNS PET: the state-of-the-art 
for new imaging targets for pathophysiology and drug development. Eur J Nucl Med Mol 
Imaging. 2020;47:451–89.

20.	Mattay VS, Fotenos AF, Ganley CJ, Marzella L.  Brain tau imaging: Food and Drug 
Administration approval of 18F-Flortaucipir injection. J Nucl Med. 2020;61:1411–2.

21.	Shen X-N, Huang Y-Y, Chen S-D, et al. Plasma phosphorylated-tau181 as a predictive bio-
marker for Alzheimer’s amyloid, tau and FDG PET status. Transl Psychiatry. 2021;11:585.

22.	Cagnin A, Brooks DJ, Kennedy AM, Gunn RN, Myers R, Turkheimer FE, Jones T, 
Banati RB.  In-vivo measurement of activated microglia in dementia. Lancet Lond Engl. 
2001;358:461–7.

23.	Rusjan PM, Wilson AA, Bloomfield PM, Vitcu I, Meyer JH, Houle S, Mizrahi R. Quantitation 
of translocator protein binding in human brain with the novel radioligand [18F]-FEPPA and 
positron emission tomography. J Cereb Blood Flow Metab. 2011;31:1807–16.

24.	Fujita M, Kobayashi M, Ikawa M, et al. Comparison of four 11C-labeled PET ligands to quan-
tify translocator protein 18 kDa (TSPO) in human brain: (R)-PK11195, PBR28, DPA-713, 
and ER176—based on recent publications that measured specific-to-non-displaceable ratios. 
EJNMMI Res. 2017;7:84.

25.	Owen DR, Yeo AJ, Gunn RN, et al. An 18-kDa translocator protein (TSPO) polymorphism 
explains differences in binding affinity of the PET radioligand PBR28. J Cereb Blood Flow 
Metab. 2012;32:1–5.

26.	 Ikawa M, Lohith TG, Shrestha S, et al. 11C-ER176, a Radioligand for 18-kDa translocator 
protein, has adequate sensitivity to robustly image all three affinity genotypes in human brain. 
J Nucl Med. 2017;58:320–5.

27.	Spires-Jones TL, Hyman BT.  The intersection of amyloid beta and tau at synapses in 
Alzheimer’s disease. Neuron. 2014;82:756–71.

PET Biomarkers in Psychiatry



100

28.	Charlson FJ, Ferrari AJ, Santomauro DF, Diminic S, Stockings E, Scott JG, McGrath JJ, 
Whiteford HA. Global epidemiology and burden of schizophrenia: findings from the global 
burden of disease study 2016. Schizophr Bull. 2018;44:1195–203.

29.	Kilbourne AM, Morden NE, Austin K, Ilgen M, McCarthy JF, Dalack G, Blow FC. Excess 
heart-disease-related mortality in a national study of patients with mental disorders: identify-
ing modifiable risk factors. Gen Hosp Psychiatry. 2009;31:555–63.

30.	Carlsson A. Does dopamine play a role in schizophrenia? Psychol Med. 1977;7:583–97.
31.	Bird ED, Spokes EG, Iversen LL. Increased dopamine concentration in limbic areas of brain 

from patients dying with schizophrenia. Brain J Neurol. 1979;102:347–60.
32.	Mackay AV, Iversen LL, Rossor M, Spokes E, Bird E, Arregui A, Creese I, Synder 

SH. Increased brain dopamine and dopamine receptors in schizophrenia. Arch Gen Psychiatry. 
1982;39:991–7.

33.	Zakzanis KK, Hansen KT. Dopamine D2 densities and the schizophrenic brain. Schizophr 
Res. 1998;32:201–6.

34.	Laruelle M, Abi-Dargham A, van Dyck CH, et  al. Single photon emission computerized 
tomography imaging of amphetamine-induced dopamine release in drug-free schizophrenic 
subjects. Proc Natl Acad Sci USA. 1996;93:9235–40.

35.	Laruelle M, Abi-Dargham A, Gil R, Kegeles L, Innis R. Increased dopamine transmission in 
schizophrenia: relationship to illness phases. Biol Psychiatry. 1999;46:56–72.

36.	Abi-Dargham A, Rodenhiser J, Printz D, et al. Increased baseline occupancy of D2 receptors 
by dopamine in schizophrenia. Proc Natl Acad Sci USA. 2000;97:8104–9.

37.	McCutcheon RA, Krystal JH, Howes OD. Dopamine and glutamate in schizophrenia: biol-
ogy, symptoms and treatment. World Psychiatry. 2020;19:15–33.

38.	Kapur S, Zipursky R, Jones C, Remington G, Houle S. Relationship between dopamine D2 
occupancy, clinical response, and side effects: a double-blind PET study of first-episode 
schizophrenia. Am J Psychiatry. 2000;157:514–20.

39.	Veronese M, Santangelo B, Jauhar S, D’Ambrosio E, Demjaha A, Salimbeni H, Huajie J, 
McCrone P, Turkheimer F, Howes O. A potential biomarker for treatment stratification in psy-
chosis: evaluation of an [18F] FDOPA PET imaging approach. Neuropsychopharmacology. 
2021;46:1122–32.

40.	Eisenberg DP, Kohn PD, Hegarty CE, Smith NR, Grogans SE, Czarapata JB, Gregory MD, 
Apud JA, Berman KF. Clinical correlation but no elevation of striatal dopamine synthesis 
capacity in two independent cohorts of medication-free individuals with schizophrenia. Mol 
Psychiatry. 2022;27:1241–7.

41.	Rabiner EA, Uz T, Mansur A, et al. Endogenous dopamine release in the human brain as 
a pharmacodynamic biomarker: evaluation of the new GPR139 agonist TAK-041 with 
[11C]PHNO PET. Neuropsychopharmacology. 2022;47:1405–12.

42.	Beck K, Arumuham A, Veronese M, et al. N-methyl-D-aspartate receptor availability in first-
episode psychosis: a PET-MR brain imaging study. Transl Psychiatry. 2021;11:1–8.

43.	Akkus F, Treyer V, Ametamey SM, Johayem A, Buck A, Hasler G. Metabotropic glutamate 
receptor 5 neuroimaging in schizophrenia. Schizophr Res. 2017;183:95–101.

44.	van Berckel BN, Bossong MG, Boellaard R, et  al. Microglia activation in recent-onset 
schizophrenia: a quantitative (R)-[11C]PK11195 positron emission tomography study. Biol 
Psychiatry. 2008;64:820–2.

45.	Doorduin J, de Vries EFJ, Willemsen ATM, de Groot JC, Dierckx RA, Klein 
HC.  Neuroinflammation in schizophrenia-related psychosis: a PET study. J Nucl Med. 
2009;50:1801–7.

46.	Bloomfield PS, Selvaraj S, Veronese M, et al. Microglial activity in people at ultra high risk of 
psychosis and in schizophrenia: an [11C]PBR28 PET brain imaging study. Am J Psychiatry. 
2016;173:44–52.

47.	Selvaraj S, Bloomfield PS, Cao B, Veronese M, Turkheimer F, Howes OD. Brain TSPO imag-
ing and gray matter volume in schizophrenia patients and in people at ultra high risk of psy-
chosis: an [11C]PBR28 study. Schizophr Res. 2018;195:206–14.

P. Orhii et al.



101

48.	Onwordi EC, Halff EF, Whitehurst T, et  al. Synaptic density marker SV2A is reduced in 
schizophrenia patients and unaffected by antipsychotics in rats. Nat Commun. 2020;11:246.

49.	Radhakrishnan R, Skosnik PD, Ranganathan M, et al. In vivo evidence of lower synaptic 
vesicle density in schizophrenia. Mol Psychiatry. 2021;26:7690–8.

50.	Plavén-Sigray P, Matheson GJ, Coughlin JM, et al. Meta-analysis of the glial marker TSPO 
in psychosis revisited: reconciling inconclusive findings of patient–control differences. Biol 
Psychiatry. 2021;89:e5–8.

51.	Bains N, Abdijadid S. Major depressive disorder. StatPearls, Treasure Island, FL, 2022.
52.	Schildkraut JJ. The catecholamine hypothesis of affective disorders: a review of supporting 

evidence. Am J Psychiatry. 1965;122:509–22.
53.	Frokjaer VG, Mortensen EL, Nielsen FA, et  al. Frontolimbic serotonin 2A receptor bind-

ing in healthy subjects is associated with personality risk factors for affective disorder. Biol 
Psychiatry. 2008;63:569–76.

54.	Nye JA, Purselle D, Plisson C, Voll RJ, Stehouwer JS, Votaw JR, Kilts CD, Goodman MM, 
Nemeroff CB. Decreased brainstem and putamen SERT binding potential in depressed sui-
cide attempters using [11C]-zient PET imaging. Depress Anxiety. 2013;30:902–7.

55.	Meyer JH, Wilson AA, Ginovart N, Goulding V, Hussey D, Hood K, Houle S. Occupancy 
of serotonin transporters by paroxetine and citalopram during treatment of depression: a 
[11C]DASB PET imaging study. Am J Psychiatry. 2001;158:1843–9.

56.	Erritzoe D, Ashok AH, Searle GE, et al. Serotonin release measured in the human brain: a 
PET study with [11C]CIMBI-36 and d-amphetamine challenge. Neuropsychopharmacology. 
2020;45:804–10.

57.	Köhler-Forsberg K, Jorgensen A, Dam VH, et  al. Predicting treatment outcome in major 
depressive disorder using serotonin 4 receptor PET brain imaging, functional MRI, cogni-
tive-, EEG-based, and peripheral biomarkers: a NeuroPharm open label clinical trial protocol. 
Front Psych. 2020;11:641.

58.	Fitzgerald PB, Laird AR, Maller J, Daskalakis ZJ. A meta-analytic study of changes in brain 
activation in depression. Hum Brain Mapp. 2008;29:683–95.

59.	Petty F, Schlesser MA.  Plasma GABA in affective illness: a preliminary investigation. J 
Affect Disord. 1981;3:339–43.

60.	Petty F, Sherman AD.  Plasma GABA levels in psychiatric illness. J Affect Disord. 
1984;6:131–8.

61.	Luscher B, Shen Q, Sahir N. The GABAergic deficit hypothesis of major depressive disorder. 
Mol Psychiatry. 2011;16:383–406.

62.	Terbeck S, Akkus F, Chesterman LP, Hasler G. The role of metabotropic glutamate receptor 
5 in the pathogenesis of mood disorders and addiction: combining preclinical evidence with 
human positron emission tomography (PET) studies. Front Neurosci. 2015;9:86.

63.	Deschwanden A, Karolewicz B, Feyissa AM, et al. Reduced metabotropic glutamate receptor 
5 density in major depression determined by [11C]ABP688 PET and postmortem study. Am 
J Psychiatry. 2011;168:727–34.

64.	Nugent AC, Robinson SE, Coppola R, Furey ML, Zarate CA. Group differences in MEG-
ICA derived resting state networks: application to major depressive disorder. NeuroImage. 
2015;118:1–12.

65.	Holmes SE, Hinz R, Conen S, Gregory CJ, Matthews JC, Anton-Rodriguez JM, Gerhard A, 
Talbot PS. Elevated translocator protein in anterior cingulate in major depression and a role 
for inflammation in suicidal thinking: a positron emission tomography study. Biol Psychiatry. 
2018;83:61–9.

66.	Setiawan E, Wilson AA, Mizrahi R, et  al. Role of translocator protein density, a marker 
of Neuroinflammation, in the brain during major depressive episodes. JAMA Psychiatry. 
2015;72:268–75.

67.	Tong J, Meyer JH, Furukawa Y, Boileau I, Chang L-J, Wilson AA, Houle S, Kish 
SJ. Distribution of monoamine oxidase proteins in human brain: implications for brain imag-
ing studies. J Cereb Blood Flow Metab. 2013;33:863–71.

PET Biomarkers in Psychiatry



102

68.	Sacher J, Rekkas PV, Wilson AA, Houle S, Romano L, Hamidi J, Rusjan P, Fan I, Stewart DE, 
Meyer JH. Relationship of monoamine oxidase-A distribution volume to postpartum depres-
sion and postpartum crying. Neuropsychopharmacology. 2015;40:429–35.

69.	Moriguchi S, Wilson AA, Miler L, et al. Monoamine oxidase B Total distribution volume in 
the prefrontal cortex of major depressive disorder. JAMA Psychiatry. 2019;76:634–41.

70.	Meyer JH, Braga J. Development and clinical application of positron emission tomography 
imaging agents for monoamine oxidase B. Front Neurosci. 2022;15:773404.

71.	Rowland TA, Marwaha S.  Epidemiology and risk factors for bipolar disorder. Ther Adv 
Psychopharmacol. 2018;8:251–69.

72.	Judd LL, Akiskal HS, Schettler PJ, Coryell W, Endicott J, Maser JD, Solomon DA, Leon AC, 
Keller MB. A prospective investigation of the natural history of the long-term weekly symp-
tomatic status of bipolar II disorder. Arch Gen Psychiatry. 2003;60:261–9.

73.	Manji HK, Lenox RH. Signaling: cellular insights into the pathophysiology of bipolar disor-
der. Sci Ment Health. 2001.

74.	Sagar R, Pattanayak RD.  Potential biomarkers for bipolar disorder: where do we stand? 
Indian J Med Res. 2017;145:7–16.

75.	Zhang L, Li C-T, Su T-P, et al. P11 expression and PET in bipolar disorders. J Psychiatr Res. 
2011;45:1426–31.

76.	Brooks JO, Vizueta N. Diagnostic and clinical implications of functional neuroimaging in 
bipolar disorder. J Psychiatr Res. 2014;57:12–25.

77.	Ketter TA, Kimbrell TA, George MS, et al. Effects of mood and subtype on cerebral glucose 
metabolism in treatment-resistant bipolar disorder. Biol Psychiatry. 2001;49:97–109.

78.	Hosokawa T, Momose T, Kasai K. Brain glucose metabolism difference between bipolar and 
unipolar mood disorders in depressed and euthymic states. Prog Neuro-Psychopharmacol 
Biol Psychiatry. 2009;33:243–50.

79.	Hellwig S, Domschke K. Update on PET imaging biomarkers in the diagnosis of neuropsy-
chiatric disorders. Curr Opin Neurol. 2019;32:539–47.

80.	Blumberg HP, Stern E, Martinez D, et al. Increased anterior cingulate and caudate activity in 
bipolar mania. Biol Psychiatry. 2000;48:1045–52.

81.	Rubinsztein JS, Fletcher PC, Rogers RD, Ho LW, Aigbirhio FI, Paykel ES, Robbins TW, 
Sahakian BJ. Decision-making in mania: a PET study. Brain J Neurol. 2001;124:2550–63.

82.	Brooks JO, Hoblyn JC, Ketter TA.  Metabolic evidence of corticolimbic dysregulation in 
bipolar mania. Psychiatry Res. 2010;181:136–40.

83.	Parker G, McCraw S, Fletcher K. Cyclothymia. Depress Anxiety. 2012;29:487–94.
84.	Hatano K, Terao T, Hirakawa H, Kohno K, Mizokami Y, Ishii N. Cyclothymic temperament 

and glucose metabolism in the right superior parietal lobule. Psychiatry Res Neuroimaging. 
2017;270:76–9.

85.	Ananth M, Bartlett EA, DeLorenzo C, et al. Prediction of lithium treatment response in bipolar 
depression using 5-HTT and 5-HT1A PET. Eur J Nucl Med Mol Imaging. 2020;47:2417–28.

86.	Bandelow B, Michaelis S. Epidemiology of anxiety disorders in the 21st century. Dialogues 
Clin Neurosci. 2015;17:327–35.

87.	Maeng LY, Milad MR (2017) Post-traumatic stress disorder: the relationship between the fear 
response and chronic stress. Chronic Stress 1:2470547017713297.

88.	Papez JW. A proposed mechanism of emotion. Arch Neurol Psychiatr. 1937;38:725–43.
89.	Zhu Y, Du R, Zhu Y, Shen Y, Zhang K, Chen Y, Song F, Wu S, Zhang H, Tian M.  PET 

Mapping of Neurofunctional Changes in a Posttraumatic Stress Disorder Model. J Nucl Med. 
2016;57(9):1474–7.

90.	Hasler G, Nugent AC, Carlson PJ, Carson RE, Geraci M, Drevets WC.  Altered cerebral 
γ-aminobutyric acid type A–benzodiazepine receptor binding in panic disorder determined 
by [11C]flumazenil positron emission tomography. Arch Gen Psychiatry. 2008;65:1166–75.

91.	Cameron OG, Huang GC, Nichols T, Koeppe RA, Minoshima S, Rose D, Frey KA. Reduced 
γ-aminobutyric AcidA–benzodiazepine binding sites in insular cortex of individuals with 
panic disorder. Arch Gen Psychiatry. 2007;64:793–800.

P. Orhii et al.



103

92.	Sullivan GM, Ogden RT, Huang Y, Oquendo MA, Mann JJ, Parsey RV. Higher in vivo sero-
tonin‐1a binding in posttraumatic stress disorder: A PET study with [11C] WAY‐100635: 
research article: higher 5-HT 1A receptor binding by pet in PTSD.  Depress Anxiety. 
2013;30:197–206.

93.	Ding Y-S. Progress in PET imaging of the norepinephrine transporter system. In: Dierckx 
RAJO, Otte A, de Vries EFJ, van Waarde A, Lammertsma AA, editors. PET and SPECT of 
Neurobiological Systems. Cham: Springer; 2021. p. 713–47.

94.	Bhatt S, Hillmer AT, Rusowicz A, et al. JCI – Imaging brain cortisol regulation in PTSD with 
a target for 11β-hydroxysteroid dehydrogenase type 1. 2021. https://www.jci.org/articles/
view/150452. Accessed 2 Sep 2022.

95.	Volkow ND, Fowler JS, Wang GJ, Baler R, Telang F. Imaging dopamine’s role in drug abuse 
and addiction. Neuropharmacology. 2009;56:3–8.

96.	Mena JC, Cuellar H, Vargas D, Riascos R. PET and SPECT in drug and substance abuse. Top 
Magn Reson Imaging. 2005;16:253–6.

97.	Brody AL, Mandelkern MA, London ED, et  al. Brain metabolic changes during cigarette 
craving. Arch Gen Psychiatry. 2002;59:1162–72.

98.	Daglish MRC, Weinstein A, Malizia AL, et  al. Changes in regional cerebral blood flow 
elicited by craving memories in abstinent opiate-dependent subjects. Am J Psychiatry. 
2001;158:1680–6.

99.	Volkow ND, Fowler JS, Wang G-J, Goldstein RZ. Role of dopamine, the frontal cortex and 
memory circuits in drug addiction: insight from imaging studies. Neurobiol Learn Mem. 
2002;78:610–24.

100.	Wang G-J, Volkow ND, Chang L, Miller E, Sedler M, Hitzemann R, Zhu W, Logan J, Ma Y, 
Fowler JS. Partial recovery of brain metabolism in methamphetamine abusers after protracted 
abstinence. Am J Psychiatry. 2004;161:242–8.

101.	McCann U, Szabo Z, Scheffel U, Dannals R, Ricaurte G. Positron emission tomographic 
evidence of toxic effect of MDMA (“Ecstasy”) on brain serotonin neurons in human beings. 
Lancet. 1998;352:1433–7.

102.	Buchert R, Thomasius R, Wilke F, Petersen K, Nebeling B, Obrocki J, Schulze O, Schmidt U, 
Clausen M. A voxel-based PET investigation of the long-term effects of “Ecstasy” consump-
tion on brain serotonin transporters. Am J Psychiatry. 2004;161:1181–9.

103.	Nader MA, Czoty PW.  PET imaging of dopamine D2 receptors in monkey models of 
cocaine abuse: genetic predisposition versus environmental modulation. Am J Psychiatry. 
2005;162:1473–82.

104.	Gerasimov M r., Dewey S l. Development of a GABAergic treatment for substance abuse 
using PET. Drug Dev Res. 2003;59:240–8.

105.	D’Souza DC, Radhakrishnan R, Naganawa M, et al. Preliminary in vivo evidence of lower 
hippocampal synaptic density in cannabis use disorder. Mol Psychiatry. 2021;26:3192–200.

106.	Angarita GA, Worhunsky PD, Naganawa M, et al. Lower prefrontal cortical synaptic vesicle 
binding in cocaine use disorder: an exploratory 11 C-UCB-J positron emission tomography 
study in humans. Addict Biol. 2022;27:e13123.

107.	Narayanaswami V, Tong J, Schifani C, Bloomfield PM, Dahl K, Vasdev N. Preclinical evalu-
ation of TSPO and MAO-B PET radiotracers in an LPS model of neuroinflammation. PET 
Clin. 2021;16:233–47.

108.	Fan Z, Calsolaro V, Atkinson RA, Femminella GD, Waldman A, Buckley C, Trigg W, Brooks 
DJ, Hinz R, Edison P. Flutriciclamide (18F-GE180) PET: first-in-human PET study of novel 
third-generation in vivo marker of human translocator protein. J Nucl Med. 2016;57:1753–9.

109.	Holmes SE, Scheinost D, Finnema SJ, et al. Lower synaptic density is associated with depres-
sion severity and network alterations. Nat Commun. 2019;10:1529.

110.	Holmes SE, Abdallah C, Esterlis I.  Imaging synaptic density in depression. 
Neuropsychopharmacology. 2022; https://doi.org/10.1038/s41386-022-01368-4.

111.	Abi-Dargham A, Horga G. The search for imaging biomarkers in psychiatric disorders. Nat 
Med. 2016;22:1248–55.

PET Biomarkers in Psychiatry

https://www.jci.org/articles/view/150452
https://www.jci.org/articles/view/150452
https://doi.org/10.1038/s41386-022-01368-4


104

112.	Stancil SL, Tumberger J, Strawn JR. Target to treatment: a charge to develop biomarkers of 
response and tolerability in child and adolescent psychiatry. Clin Transl Sci. 2022;15:816–23.

113.	Cervenka S, Frick A, Bodén R, Lubberink M. Application of positron emission tomogra-
phy in psychiatry—methodological developments and future directions. Transl Psychiatry. 
2022;12:1–11.

114.	Knudsen GM, Ganz M, Appelhoff S, et al. Guidelines for the content and format of PET 
brain data in publications and archives: a consensus paper. J Cereb Blood Flow Metab. 
2020;40:1576–85.

115.	Narayanaswami V, Dahl K, Bernard-Gauthier V, Josephson L, Cumming P, Vasdev 
N. Emerging PET radiotracers and targets for imaging of Neuroinflammation in neurodegen-
erative diseases: outlook beyond TSPO. Mol Imaging. 2018;17:1536012118792317.

116.	Miyazaki T, Nakajima W, Hatano M, et al. Visualization of AMPA receptors in living human 
brain with positron emission tomography. Nat Med. 2020;26:281–8.

117.	Mansur A, Rabiner EA, Comley RA, Lewis Y, Middleton LT, Huiban M, Passchier J, Tsukada 
H, Gunn RN. Characterization of 3 PET tracers for quantification of mitochondrial and syn-
aptic function in healthy human brain: 18F-BCPP-EF, 11C-SA-4503, and 11C-UCB-J.  J 
Nucl Med. 2020;61:96–103.

118.	Wang J, Sun H, Cui B, Yang H, Shan Y, Dong C, Zang Y, Lu J. The relationship among glu-
cose metabolism, cerebral blood flow, and functional activity: a hybrid PET/fMRI study. Mol 
Neurobiol. 2021;58:2862–73.

119.	Guerra AD, Ahmad S, Avram M, et al. TRIMAGE: a dedicated trimodality (PET/MR/EEG) 
imaging tool for schizophrenia. Eur Psychiatry. 2018;50:7–20.

P. Orhii et al.



105

Digital Markers of Mental Health 
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Karin Cinalioglu, Soham Rej, Ipsit Vahia, and Harmehr Sekhon

1 � Introduction

In the last two decades, technology use has soared with 63.5% of the global popula-
tion using internet-connected devices [1]. This has the potential to revolutionize 
psychiatry with new types of data, especially noninvasive data that is not limited to 
a clinic appointment but can be collected in real time and in situ. As indirect mark-
ers of health conditions and of health-associated environmental exposures, digital 
biomarkers that are obtained through technologies such as smartphones, wearables, 
and other types of devices may assist in managing, detecting, and monitoring men-
tal health problems. For clinicians and patients, these markers can provide detailed 
and “objective” information on everyday behaviors and exposures, thus potentially 

Katie C. Bodenstein and Vincent Paquin contributed equally to this work.

K. C. Bodenstein (*) · V. Paquin · M. Lesage · K. Cinalioglu · S. Rej 
Department of Psychiatry, Jewish General Hospital/Lady Davis Institute, McGill University,  
Montreal, QC, Canada
e-mail: katie.bodenstein@mail.mcgill.ca 

K. Sekhon 
University of Toronto Medical School, Toronto, ON, Canada 

I. Vahia 
McLean Hospital, Belmont, MA, USA 

Harvard Medical School, Boston, MA, USA 

H. Sekhon 
Department of Psychiatry, Jewish General Hospital/Lady Davis Institute, McGill University,  
Montreal, QC, Canada 

McLean Hospital, Belmont, MA, USA 

Harvard Medical School, Boston, MA, USA

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
A. L. Teixeira et al. (eds.), Biomarkers in Neuropsychiatry, 
https://doi.org/10.1007/978-3-031-43356-6_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-43356-6_7&domain=pdf
mailto:katie.bodenstein@mail.mcgill.ca
https://doi.org/10.1007/978-3-031-43356-6_7


106

complementing the interviews that are typically bound to medical appointments. 
Digital biomarkers can be collected on a day-to-day basis and over long periods of 
time to generate personalized analyses and predictions of a person’s mental health. 
Drawing from sensor-based data and human-technology interactions during every-
day tasks and activities such as walking, sleeping, texting, etc., clinicians, research-
ers, and patients can investigate markers of illness status and progression, targets of 
intervention, and response to treatment.

In this chapter, we will discuss the types and applications of digital biomarkers 
in relation to psychiatric research and practice, as well as barriers to their use, limi-
tations of current research, and future directions.

2 � What Are Digital (Bio)Markers?

In the medical field, digital biomarkers are generally defined as measures of illness 
or other biological processes that are collected and processed via digital health 
technology (DHT) [2]. A DHT is a type of “system that uses computing platforms, 
connectivity, software, and sensors for healthcare and related uses” [2]. This can be 
any digital device such as mobile phones, wearables (e.g., smartwatches, smart 
shirts, etc.), implantables, or ingestibles that have the ability to collect and 
record data.

Currently, there is no consistent definition of digital biomarkers, with varying 
views around how “biological” these markers need to be. Some authors argue that 
digital biomarkers should be directly linked to biological variables such as those 
related to genetics, epigenetics, endocrinology, immunology, etc., while others 
defend a broader definition of digital (bio)markers that encompass human behav-
iors, psychological states, and environmental factors that influence biology to vary-
ing degrees [3].

Regardless, digital biomarkers present a novel opportunity to evaluate, manage, 
and monitor patients’ health in real time via cost-effect technologies that require 
minimal intervention from patients to collect data. These markers can provide 
healthcare workers with more information to support and inform the care that they 
provide to patients, and they can also empower patients to monitor their own health-
related metrics over time.

Digital biomarkers can be obtained via various DHT, such as mobile phones, 
wearable devices (e.g., smartwatch), or implantable/ingestible technologies (Fig. 1). 
These devices can record various data related to user actions and environmental fac-
tors, notably through sensors (e.g., geolocation) and human-device interactions 
(e.g., screen use). The applications of digital biomarkers can be categorized accord-
ing to three broad categories: (1) assessment of patients in clinical care, (2) evalua-
tion and delivery of mental health interventions, and (3) the study of population 
mental health and psychopathology (Table 1). These will be discussed further in 
Sect. 4.
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Fig. 1  Examples of devices that can be used to measure digital biomarkers

3 � Ethical Issues and Acceptability of Digital Biomarkers

Before examining the content and applications of digital biomarkers, a number of 
ethical and acceptability issues warrant consideration, mainly related to how these 
approaches involve the gathering of data around behaviors that may otherwise be 
considered private. Attention to these issues is crucial in both the development of 
the technology and its application.

Privacy and Security  With the use of digital biomarkers in healthcare arise several 
questions pertaining to ethics and perceptions of users. Issues related to the ano-
nymity, privacy, data ownership, and security of data can be obstacles to the accept-
ability of digital biomarkers in psychiatry. Inconsistencies and the lack of oversight 
and regulations for collecting digital biomarker data have been reported [4], and 
users of wearable devices identify privacy issues and informed consent among their 
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Table 1  Examples of digital biomarkers in psychiatry and psychiatric research

Application Definition Example

Assessment of patients 
in clinical care

Biomarker used to inform 
diagnostic assessments, 
monitoring of illness course, and 
identification of treatment targets

Actigraphy, microphone, and 
screen activity logs can help assess 
sleep cycles, which are often 
affected by mental health problems

Evaluation and 
delivery of mental 
health interventions

Biomarker used to evaluate 
intervention effects and/or deliver 
just-in-time adaptive interventions

Text-mining recognition of 
depressive thoughts can be used to 
trigger prompts on a person’s 
smartphone to suggest appropriate 
cognitive-behavioral techniques

Study of population 
mental health and 
psychopathology

Biomarker used in research to 
investigate a population’s mental 
health or generate knowledge on 
the features and risk factors of 
mental health problems

Logs of video game activity, in 
combination with self-report 
surveys, can be used to better 
understand the associations 
between gaming and mental health

top concerns [5]. Users believe there should be shorter policies in layman’s terms 
for informed consent and better understanding as to where and when their data will 
be used and stored. They also believe consequences should exist if there is a viola-
tion of use on their health data [5].

Accessibility, Acceptability, and Demographic Differences  Additionally, per-
ceived usefulness, enjoyment, appearance (e.g., fashion, conventional look, etc.), 
and trust are also important factors to be considered for the acceptability of and 
adherence to these products [6]. The acceptability of wearable digital devices for 
the collection of health data may differ between populations. In particular, certain 
cultures and communities may uphold varying levels of trust towards digital health 
technologies, which may influence their uptake of digital wearables and their will-
ingness to share personal health data with healthcare practitioners and digital 
health companies. For instance, Black communities in the USA may experience 
more mistrust towards artificial intelligence in healthcare in the context of histori-
cally traumatic events perpetrated by a health system operated by the White major-
ity [7]. There is also the issue of accessibility, with socioeconomic and geographic 
barriers affecting access to digital devices for groups, whether due to insufficient 
internet infrastructures, financial constraints for acquiring internet-connected 
devices, or insufficient digital literacy for using them. As such, older adults gener-
ally experience greater difficulties using newer technologies compared with 
younger generations, and in some countries, women have a lower access to the 
internet than men [8].

Data Accuracy and Reliability  Private companies employ various methods for col-
lecting and interpreting digital health data, and there is often limited scientific evi-
dence to support the validity of their commercial products. Differences in hardware 
(e.g., sensors) and software (e.g., analytical method) as a function of device brands 
and upgrades limit the comparability of digital biomarkers between people and 
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within individuals over time [4]. For health practitioners and patients to use bio-
markers from various technologies, a comprehensive understanding of their accu-
racy and reliability is essential for useful and safe application in the healthcare 
setting.

4 � Sensors and Devices Used to Generate Digital Biomarkers

4.1 � Sensors

Sensors can capture a variety of digital biomarkers with many different sensing 
approaches. For example, sensing approaches can include geolocation, accelerom-
eter, ambient sound and light, language recognition, and capturing physiological 
variables.

Geolocation  Geolocation data is information that is acquired to identify an indi-
vidual’s actual location [9]. Location is estimated through the Global Positioning 
System (GPS), commonly embedded in smartphones, and is increasingly used in 
the digital phenotyping of mental illness [10]. Geolocation-derived data can be 
used to generate various features, such as distance traveled, locations visited, and 
time spent at a given location. In a sample of 54 students, cumulative time spent in 
restaurants was negatively correlated with social anxiety levels, whereas time 
spent in supermarkets was positively correlated with social anxiety [11]. In a sam-
ple of 63 outpatients with schizophrenia, geolocation was used to stratify symptom 
reports (ecological momentary assessments) according to location; they found that 
mood, sleep, and positive psychotic symptom reports from home tended to be 
higher than those from other locations [12]. This information can be collected 
through wearable devices such as smartwatches, smartphones, and wearable 
technologies.

Accelerometer  Accelerometers record movement (acceleration) in space. Because 
many mental health conditions involve changes in the levels of motor activity, 
sleep parameters, or circadian rhythms, digital biomarkers derived from acceler-
ometer data may be relevant to psychiatric research and clinical practice. For 
example, studies have found significant differences on accelerometer-based fea-
tures between patients with mood disorders and healthy controls and have found 
that specific patterns may differentiate between mood disorders (e.g., dysthymia, 
remitted major depressive disorder, mania in bipolar disorder) [13]. In depressed 
participants, daily activity was significantly reduced compared to healthy controls. 
Participants with euthymic bipolar disorder had significant differences in total 
sleep time, latency, and wake after sleep onset compared to healthy controls. 
Accelerometry features have also been associated with symptom levels in indi-
viduals with psychotic disorders [14] and sleep patterns following treatment for 
psychosis [15].
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Ambient Sound and Light  Sound and light can be indicators of environmental 
exposures (e.g., traffic noise, social presence) and behaviors (e.g., activity levels, 
sleep). This type of data can be collected through behavioral rhythm sensing in smart 
devices such as smartphones, smartwatches, wearable technology, etc. [16]. In the 
CrossCheck study (61 outpatients with schizophrenia), changes in rhythm and inten-
sity of daily ambient light were predictive of momentary reports of sleeping well, 
socialization, and feeling calm [16]; further, a higher multi-scale entropy of ambient 
sound, within periods of 3 h collected over 6–12 days, was predictive of subsequent 
reports of being bothered by voices and worrying about people trying to harm oneself.

Language-Based Technologies  Language-based biomarkers provide a unique 
entry point into a person’s mental state and functioning [17]. Cohen et al. (2022) 
examined natural language in video selfies and identified features that were related 
to levels of paranoia [18]. Prevention tools are being developed such as text-mining 
technologies that can be used to recognize texts that indicate suicidal ideation [19]. 
These technologies can rely on language capture from keyboard strokes, micro-
phones, and typed texts posted on social media or sent through private 
communications.

Capturing Physiological and Behavioral Variables  Smartphones, smartwatches, 
smart shirts, and other wearable technologies can generate digital biomarkers from sen-
sors that collect biometric data, such as heart rate, heart rate variability, body tempera-
ture, respiration, hydration levels, walking (gait) patterns, sleep patterns, and indicators 
of physical activity such as number of steps, calories burnt, type of activity, etc. [20].

Unlike mobile devices, wearable technologies (e.g., Hexoskin, Apple Watch, smart 
ring) have the crucial feature that they can be held closer to the human body. The cur-
rent most popular smartwatch is the Apple Watch, which is owned by 30% of North 
American iPhone users [21]. The smartwatch has a variety of functions that can be 
adapted to measure health and wellness data. One study reviewed over 5000 articles 
on the Apple Watch monitoring mental health-related physiological variables [20]. 
The most supportive evidence was heart rate variability (HRV) as an indicator of 
physical and emotional states (e.g., an imbalanced ratio of high- and low-frequency 
components of HRV indicated greater stress) [20]. Other wearables, such as rings and 
smart shirts, are also emerging. The Hexoskin smart shirt, for example, gathers data 
on heart rate, heart rate variability, respiratory rate and volume, activity in the form of 
steps and cadence, sleep positions, and ECG cardiac monitoring [22, 23].

4.2 � Tracking Interactions with Devices

Human interactions with mobile devices can be used to capture behavioral data such 
as online activity, screen time, calls, and keyboard usage that may correlate with 
various mental health outcomes. By measuring the nature of daily interactions with 
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and through devices over time, these biomarkers can complement those that are 
generated from sensor-based data.

Screen Time, Calls, and Keystrokes  Mobile phone activity such as screen use, 
calls, and keyboard activity can give important insights to a person’s mental health. 
Digital health technologies can use these functions to predict severity and assist 
with the management of certain mental illnesses [24].

The BiAffect keyboard was created to collect data from the user which can 
indicate psychomotor activity. In bipolar disorder, mood episodes tend to coin-
cide with changes in cognitive function, psychomotor activity, social activity, 
and diurnal activities [25]. Since texting and web browsing are among the most 
commonly used features of mobile phone users, these features can be examined 
and used to predict the severity of depression and mania [25]. This study assessed 
cognitive function through the amount of error correction on the keyboard and 
through impaired concentration or delays in typing. For example, average inter-
key delay would indicate impaired concentration, increased backspace rate 
would indicate increased error correction, and increased autocorrect rate indi-
cated decreased error detection. In this study, increased accelerometer activity 
was positively correlated with both depression and manic scores, increased usage 
was positively correlated with depression, and increased autocorrect rate was 
correlated with depressive states. Mania scores were not found to be associated 
with increased autocorrect rate, which may reflect a tendency in mania to spell 
words correctly (thus not triggering autocorrections) while making more seman-
tic or grammatical mistakes. Another study used passive mobile sensing data 
including human-device interactions to predict mental health conditions in a 
sample of patients with schizophrenia [16]; for example, increased calls were 
predictive of hearing voices and being bothered. Although monitoring calls, 
screen time, or keyboard activity seems like a mundane and minute process of 
daily activities, these studies suggest they may constitute helpful markers of 
mental health conditions, especially in combination with other data.

Social Media Usage  Social media platforms are a large part of everyday lives. 
These platforms can contain information of an individual’s emotions and their 
daily activities and can potentially provide insight on their mental health. A 
survey sent out to outpatient psychotherapists associated with McLean Hospital 
found that approximately 62% of psychotherapists had viewed patients’ social 
media, and 92% claimed they were able to provide more effective treatment 
based off this information [26]. Similar to the utility of home visits for better 
understanding patients’ environments and daily lives, clinicians can partake 
with patients in a shared exploration of the patients’ digital identities, networks, 
and activities. Considering the vast amount of information within social media, 
their popularity, and their importance in social interactions and self-representa-
tion, social media represents a substantial aspect of patients’ environment that 
may influence their mental health and reciprocally provide a window into their 
lifeworld [27].
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4.3 � Implantable and Ingestible Devices

Implantable Devices  Implantable medical devices can measure biomarkers and 
allow for the analysis of real-time data, such as electrical impulses or other physi-
ological processes. Implantable biosensors have important applications in medical 
diagnostics and precision medicine. For example, cardiovascular implantables 
include cardiac defibrillator, which is used together with heart function data, and 
cardioverter defibrillator (ICD) [28, 29]. Vagus nerve stimulation (VNS) is an 
implantable device that is typically used for epilepsy treatment but has also been 
used for the treatment of severe depression [30]. Deep brain stimulation (DBS) has 
also been used in treatment-resistant depression with the aim of modulating the 
neural circuitry of the brain [30]. Other uses of implantable biosensors include 
closed-loop drug delivery systems, to monitor chemical biomarkers and adjust the 
delivery of medication accordingly [31]. However, the utility of these devices in 
psychiatry has yet to be determined. Crucially, given the invasiveness of implant-
able devices, they pose issues of acceptability and individual autonomy that repre-
sent significant barriers to their development and uptake in psychiatry.

Ingestible Devices  Ingestible devices carrying out data collection through embed-
ded sensors may assist in accurately timing medication release and adherence and 
also provide real-time clinical monitoring of physiological processes such as pH, 
temperature, blood pressure, heart rate, and respiration [32, 33]. This form of per-
sonalized data collection could result in access to information on how individuals 
respond to medication dosage, medication adherence, and food intake and digestion 
[34]. Some early ingestible devices have been approved, such as the Proteus medi-
cation adherence device which can be combined with medication to confirm that the 
medication has reached the patients stomach by notifying a phone application [35]. 
These digestible pills may be able to survive in the body for days and even weeks, 
with current work focusing on the digestible pills harvesting energy from the body 
and using nontoxic and biodegradable materials [33, 36–39]. Ingestible biomedical 
devices may also replace some of the uses of electronic medical implants, thus pro-
viding a less invasive means for biometric data collection [37].

5 � Applications of Digital Markers

In this section, we explore the various applications of digital markers for mental 
healthcare and research. We focus on three categories of applications: (i) the assess-
ment of patients in clinical care, (ii) the evaluation and personalized delivery of 
mental health interventions, and (iii) the study of population mental health and psy-
chopathology. The first two categories of applications focus primarily on clinical 
care, whereas the third focuses on research. However, areas of applications overlap, 
and in many cases, the clinical utility of digital biomarkers remains to be demon-
strated. The applications described below, thus, are largely tentative.
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5.1 � Assessment of Patients in Clinical Care

In mental healthcare, digital markers may facilitate or enhance a range of tasks 
including diagnostic evaluation, monitoring of illness course, and identification of 
targets for intervention.

Diagnostic Evaluation  Digital markers can be used to measure diagnostic features 
of mental disorders. For example, diagnostic criteria of schizophrenia include posi-
tive symptoms (e.g., disorganization of behavior) and negative symptoms (e.g., 
reduction in goal-directed activity), both of which can be indirectly measured 
through accelerometry. In a sample of 100 patients with schizophrenia spectrum 
disorder [40], higher levels of positive symptoms were associated with reduced pre-
dictability of movement (i.e., weaker partial autocorrelations of accelerometry time 
series), whereas higher levels of negative symptoms were associated with a lower 
amount of movement. Digital markers may be particularly relevant for evaluating 
features of mental disorders that are externally observable, thus amenable to more 
direct digital data capture, but they may be less accurate in inferring subjective 
mental states. To name a few, examples of diagnostic criteria well suited to digital 
measurement include reductions in psychomotor activity (as found in depression, 
catatonia, and psychotic disorders) and insomnia (as found in sleep disorders, bipo-
lar disorder, generalized anxiety, and depression). Less accessible to digital mea-
surement may be features such as sadness and guilt in depression, hallucinations in 
psychosis, or specific perceptions of self and others in personality disorders. 
However, even if passive digital sensing cannot capture these “subjective” features 
directly, there will likely be indirect markers nonetheless [41, 42]. For any digital 
marker to be of practical use in diagnostic evaluation, more research is needed to 
establish their validity and diagnostic thresholds in normative samples while 
accounting for the substantial variation in digital data that arises from technological, 
individual, and contextual factors.

Monitoring of Illness Course  Digital markers have a potential utility in moni-
toring people’s mental health and illness over time. Through continuous or 
repeated collection of digital data, one may identify anomalies or trends that 
reflect clinical phenomena. Data analysis and interpretation then become highly 
personalizable [43]. Rather than being compared to group averages, people can 
be their own comparators over time, thus reducing the impact of variability 
stemming from inter-individual differences in habits, measurement technolo-
gies, and other factors. One specific goal of monitoring illness course is to 
detect (and eventually prevent) relapses. In a pilot study of 15 patients with 
schizophrenia followed over 3 months, there was an increased rate of statistical 
“anomalies” in mobility patterns and social behaviors in the 2 weeks prior to a 
relapse [44]. This proof-of-concept study illustrates how digital data may pro-
vide, in real time, early signals of deterioration. By following digital markers 
in-between clinical visits, clinicians may increase the temporal resolution of 
monitoring beyond that of their punctual contacts with patients. Patients them-
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selves may directly benefit from self-monitoring their digital data, for example, 
to gain new insights into their condition [45]. Whether digital monitoring output 
is interpreted by the user or by their mental health professional, it should be 
contextualized and substantiated with other sources of information, such as 
self-reported symptoms or clinical observations.

Identification of Targets for Intervention  A related application is the examination 
of a person’s triggering, perpetuating, or protective factors in the context of mental 
health problems. For example, in a sample of 61 patients with schizophrenia, certain 
features of ambient sound were subsequently predictive of reports of auditory hal-
lucinations and paranoia [16]. Although the association between ambient sounds 
and paranoia does not necessarily reflect causal mechanisms, this study provides an 
illustration of how modifiable exposures from the environment can be identified 
through digital phenotyping, with the aim of identifying potential targets for inter-
vention in clinical care. In contrast to biological markers, whose scope in identify-
ing therapeutics is more or less bound to body physiology, digital markers may 
provide personalized assessments of behaviors and environmental exposures to 
address in treatment.

5.2 � Evaluation and Delivery of Mental Health Interventions

We saw that digital markers can correlate and predict features of relevance for 
the assessment and longitudinal monitoring of mental health problems. For men-
tal health professionals and patients, then, these markers provide information 
that complements self-reports, clinical observations, and biological measures. 
An extension of this application is the use of digital phenotyping to evaluate an 
intervention’s effects, as well as to personalize the delivery and intensity of 
interventions.

Digital Evaluation of Intervention Effects  The rapidity and accuracy with 
which an intervention’s effect is measured are typically constrained by the sub-
jectivity and low temporal density of self-reports and clinical observations. Both 
in experimental research and real-life clinical practice, once a treatment is initi-
ated, follow-up evaluations will generally be, at most, on a monthly to weekly 
basis. This low density means that transient and microscale effects (desired or 
undesired) may be missed. Self-reports and clinical observations may be mutu-
ally discordant and may be biased by other factors such as recall, social desir-
ability, or personal expectations. Digital phenotyping provides a means of 
tracking indices of treatment effects in real time. For example, Pedersen et al. 
(2022) used digital phenotyping to measure some of the outcomes and interven-
tion adherence in their cluster randomized controlled trial [46]. They were inter-
ested in whether a screen time reduction intervention would be effective in 
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increasing physical activity and improving sleep in a sample of families with 
children recruited from the general population. They used thigh and waist accel-
erometry to measure physical activity levels and sensors and smartphone appli-
cations to measure participants’ adherence to the screen time intervention in situ. 
These digital markers showed that families in the treatment arm adhered well to 
the screen time reduction intervention and that there was an objective increase in 
their physical activity compared with the control group. Another example comes 
from Kuosmanen et al. (2020), who used smartphone accelerometry to measure 
parkinsonian tremor and the effect of antiparkinsonian medication thereon [47]: 
in some participants with different levels of bradykinesia and rigidity, acceler-
ometry indices of parkinsonian tremor significantly improved after intake of 
antiparkinsonian medication. These two examples involve digital measures that 
are closely related to the outcomes of interest, but more complex phenotypes, 
such as emotions and behaviors, could also be inferred from digital data to track 
treatment effects.

Just-in-Time Adaptive Interventions  Digital phenotyping may also help iden-
tify the “ideal type,” timing, and intensity of intervention for a person at a given 
moment. By tracking digital markers and other data sources (e.g., self-reported 
symptoms) in situ, mobile applications can automatically decide on whether an 
intervention is indicated and then tailor the delivery of the intervention according 
to individual and contextual factors. This concept has been called “just-in-time 
adaptive interventions” (JITAI) [48, 49]. The literature on JITAI, initiated by 
behavioral health researchers, is still emerging [49, 50]. A recent systematic 
review identified 14 studies on JITAI for reducing harmful substance use, and of 
these, only 2 were randomized controlled trials [50]. Studies used a mix of self-
reports (questionnaires) and digital markers (geolocation) to personalize their 
interventions. Reviewed studies relied primarily on static decision rules for trig-
gering interventions (rather than dynamic rules that “learn” from trials and 
errors), and evidence for their efficacy was overall mixed. Of particular interest 
is the possibility of adapting interventions based on prior knowledge of the indi-
vidual, knowledge that is operationalized through an idiographic model of their 
mental health condition over time. In other words, by modeling a person’s unique 
behaviors and tendencies, and learning what works and does not work for them, 
JITAI applications may optimize their efficacy and acceptability for that person. 
Despite these promises, the current state of evidence on JITAI remains nascent, 
and more research is needed to develop and implement them across a range of 
mental health conditions. Importantly, given the intimacy of data being collected 
on people’s behaviors and mental states, digital phenotyping and JITAI raise 
ethical concerns as they can be conceived as tools of surveillance with potential 
risks for individual autonomy and privacy. Addressing these issues in research 
and clinical translation requires involving users in co-developing the digital phe-
notyping applications, transparency, and protecting users’ control over what data 
is collected and how it is handled [51].
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5.3 � Population Mental Health and Psychopathology

Digital phenotyping is a scalable method for describing features and processes that 
pertain to the mental health of populations. Collection and analysis of digital data 
across a group of individuals can produce knowledge on their mental health needs 
and contribute to the study of mental health conditions in general.

Populational Mental Health  A population’s mental health needs are reflected, to 
some extent, in their digital traces. Social media hold substantial information about 
the behaviors, experiences, and perceptions of communities. For example, Saha 
et  al. (2022) used machine learning and natural language processing to predict 
monthly count of a university’s on-campus mental health consultations [52]. 
Predictions were based on social media posts within the university’s Reddit com-
munity, which improved predictive accuracy relative to models exclusively trained 
on time series data of mental health consultations. Gauld et al. (2022) also analyzed 
social media data but for a different purpose: they aimed to explore trends in popular 
and scientific discourses on autism by mining the text of 10,000 tweets containing 
the expression “#autism” and >50,000 scientific articles containing the word 
“autism” on PubMed [53]. Through characterizing these two corpuses, the authors 
identified salient differences in the priorities and foci of popular and scientific dis-
cussions around autism, illustrating the need for knowledge sharing and mobiliza-
tion. As the two examples above show, publicly available social media data is a 
scalable and accessible means of inferring populational mental health needs and 
perceptions. Private data provided by research participants can also be used to 
increase the precision and scope of populational investigations [54], but due to its 
invasiveness and the challenge of creating population-representative samples, this 
approach appears to have been less frequently employed.

Psychopathology and Risk Factors  Through digital phenotyping, external features 
of mental health problems can be characterized with a high level of granularity and 
temporal density. Technology-based measures of behaviors complement other 
sources of data typically used in the study of mental illness, such as self-reports, 
clinical observations, and biological markers. For example, in a study of 242 adults 
(individuals with bipolar or major depressive disorder and controls), Merikangas 
et al. (2019) employed wrist actigraphy and ecological momentary assessments to 
examine directional associations between mood, sleep, energy, and motor activity 
within the day [55]. They found that moments of lower motor activity were prospec-
tively associated with higher levels of sadness, particularly in bipolar disorder type 
1, suggesting that motor activity may be an important precursor to affective distur-
bances in this condition. Other studies make use of digital phenotyping to assess 
environmental exposures as risk factors for poorer mental health. To illustrate, 
Vuorre et al. (2022) collected game publisher data and questionnaires to examine 
whether a person’s changes in video game use over intervals of 2 weeks were asso-
ciated with subsequent changes in their well-being [56]. To investigate potential 
causal effects of time spent playing video games, the authors focused on within-
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person associations, which are not confounded by time-invariant differences 
between individuals. They found that players’ motivations for gaming, but not their 
screen time, were associated with changes in well-being over time. These studies 
and others show the utility of digital markers for studying mental health or illness 
and their determinants, especially when digital data is combined with other sources 
of information.

5.4 � Barriers to Implementation

Barriers to implementation of digital biomarkers include a lack of evidence for their 
clinical utility or insufficient accuracy and generalizability, as well as problems of 
accessibility, false-positive anxiety, acceptability, and adherence [57–59]. Although 
their predictive accuracy improves when combined with self-report data, digital bio-
markers typically display weak correlations with mental health outcomes of inter-
est. As mentioned above, the accessibility of digital biomarkers may be limited as a 
function of cost (for the patients or the healthcare system). False detection of mental 
health conditions or relapses may inadvertently cause harm, for example, by pro-
voking anxiety in patients and their families. Acceptability may be hampered by 
several issues, including concerns related to privacy and data ownership. In turn, 
these factors can ultimately limit the adherence of patients to collecting digital bio-
markers. Increasingly, these issues of access, acceptance, and accuracy of digital 
biomarkers are given consideration in research and technology development.

6 � Current Challenges and Future Directions

Despite its promises, digital phenotyping faces important limitations and problems 
within the current state of knowledge. In most work, the generalizability of findings 
is constrained by the small sample sizes, lack of populational representativity and 
diversity, and short duration of follow-up [41, 60, 61]. The quality of scientific 
reporting is variable, and in many instances, insufficient information is provided to 
reliably interpret and reproduce the findings. In a recent systematic review of 51 
digital phenotyping studies of depression [41], the median sample size was 58, and 
in most cases the follow-up period was shorter than 2 weeks. Many studies failed to 
provide information on participants’ age (12% of reviewed studies), gender (8%), 
and ethnicity (63%). Most studies did not report recruitment strategies, nonpartici-
pation rates, and attrition – three factors of importance for determining the external 
validity of findings.

For the field of digital markers to progress, thus, greater attention should be paid 
to these issues. A first step is to follow traditional reporting guidelines for observa-
tional research, such as the STROBE [62]. Whenever possible, sample sizes should 
be justified, for example, by using a power calculator tailored to digital phenotyping 
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research [63]. Missing data should be transparently described and should ideally be 
imputed using adequate statistical methods [64]. We also echo previous calls to fol-
low open science practices [41, 60]: these practices include the preregistration of 
studies and analysis plans, as well as the posting of study data and analytic codes to 
trusted repositories [65]. When issues of privacy or data ownership constrain the 
sharing of data, we suggest that researchers report, at the minimum, bivariate cor-
relations between digital markers and clinical outcomes. Doing so, in contrast to 
exclusively reporting predictive models that aggregate multiple variables, will facil-
itate the pooling of associations and the selection of salient markers in future work.

Digital phenotyping research must seek a greater diversity of samples to achieve 
generalizability and equity across populations and contexts [60]. Several factors 
may influence the validity of digital markers. The accuracy of certain sensors has 
been shown to decrease with skin tones [66]. Physical disabilities may confound or 
mitigate associations between digital markers (e.g., accelerometry) and mental 
health outcomes. Culture, ethnicity, education, age, and gender shape how individu-
als interact with technologies, thereby influencing the mental health correlates of 
digital markers [64]. Historical or contextual factors may also derail the validity of 
digital markers if they affect people’s lifestyle or technology use patterns, such as 
during the COVID-19 pandemic lockdowns [60, 67]. Lastly, differences in sensors 
or software are other important sources of variability in digital phenotyping research 
that may impede the generalizability, replicability, and reproducibility of findings if 
these differences are not accounted for [42, 43, 64].

Importantly for their implementation, technologies that harness digital pheno-
typing must be acceptable to their potential users. Because they collect and transmit 
sensitive data, the privacy, confidentiality, anonymity, and security of these tech-
nologies must be regulated in a transparent and robust manner [61, 68]. Informed 
consent, after consideration of the risks of digital phenotyping tools, must be 
obtained from patients and other users. Digital phenotyping holds promise in 
advancing precision psychiatry and personalized mental healthcare [69], but the 
sensibility of its data and the associated potential risks to privacy should be taken 
seriously by researchers, clinicians, policymakers, and users.
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Staging Biomarkers in Psychiatry
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Amon-Rá Leite de Castro, Thyago Antonelli Salgado, Júlio César Bebber, 
and Ives Cavalcante Passos

1 � Introduction

One of the emerging approaches of research in psychiatry is the search for biomark-
ers associated with the course of mental illness. In 2000, the Biomarker Definition 
Working Group, supported by the US National Institutes of Health (NIH), defined a 
biomarker as “a characteristic that is objectively measured and evaluated as an indi-
cation of normal biological processes, pathogenic processes, or pharmacologic 
responses to a therapeutic intervention” [1]. In this sense, biomarkers can help in the 
diagnosis, in the progression of a disease, or in the effectiveness of the treatment [2]. 
In addition, a psychiatric disorder staging approach that involves measuring 
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biomarkers as the disease progresses may enhance the development of more tailored 
treatments [3], as well as earlier diagnosis, changing the illness trajectories of men-
tal disorders.

Biomarkers have helped clinical research and practice of medicine, and, recently, 
psychiatry has also shown advances in this field. In this chapter, the role of staging 
biomarkers will be explored in the main psychiatric disorders.

2 � Staging of Bipolar Disorder

In the last decades, bipolar disorder has been characterized as a disease with a neu-
roprogressive course, with neurobiological, functional, and cognitive alterations 
[4–8]. The progressive course of illness in patients with multiple episodes is called 
clinical progression, and the biological basis of clinical progression is defined as 
neuroprogression. In this context, multiple episodes can lead to episode accelera-
tion, refractoriness to treatment, and functional/neurocognitive impairment. Some 
studies reported that there is a correlation between the number of mood episodes, 
early trauma in the personal history, and an increase in the prevalence of clinical and 
psychiatric comorbidities with neuroprogression [4, 9]. Therefore, recognizing bio-
markers can help to identify neuroprogression signatures in certain clinical subtypes 
of bipolar disorder.

2.1 � Neuroimaging

Neuroimaging studies of bipolar disorder have been extensively explored in recent 
decades. The presentation of structural alterations in the cognitive-functional brain 
network in the early stages of bipolar disorder is already evident, worsening with 
the evolution of the disease [9, 10]. The largest study to date of cortical gray matter 
thickness and surface area measurements from brain magnetic resonance imaging 
(MRI) scans, with 6503 subjects, was carried out by the ENIGMA Bipolar Disorder 
Working Group [11]. It was demonstrated that a long duration of the disease was 
associated with reduced cortical thickness in the frontal, medial parietal, and occipi-
tal regions [11]. A longer disease duration was associated with effects on the left 
and right pericalcarine gyrus, left rostral anterior cingulate gyrus, and right cuneus 
and evidence of significantly increased thickness in the right-side entorhinal gyrus 
as well [11]. A generalized cortical thinning associated with bipolar disorder was 
more detected in the left pars opercularis, left fusiform gyrus, and left rostral middle 
frontal cortex [11]. Furthermore, evidence of an age-diagnosis interaction was dem-
onstrated showing reduced surface area of the left posterior cingulate cortex with 
increasing age, which correlates with the stage of the patient [11]. In this study, the 
association between drugs used in the treatment of bipolar disorder and neuroimag-
ing alterations was concomitantly analyzed. Evidences of increased cortical 
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thickness were associated with the use of lithium, with effects also on the left para-
central gyrus and the left and right superior parietal gyrus [11]. Evidence of 
increased surface area in the left paracentral lobe was also found [11]. Considering 
typical antipsychotic treatment, increased cortical surface area has been demon-
strated in the left middle temporal gyrus, left inferior parietal gyrus, and right tem-
poral pole [11].

Two meta-analyses demonstrated reduced gray matter in the right ventral pre-
frontal cortex, being more evident after multiple episodes [12–15], temporal cortex, 
claustrum, left rostral anterior cingulate cortex, and right fronto-insular cortex [16, 
17], especially in anterior limbic regions, which correspond to executive control and 
abnormalities in emotion processing [16]. Neuroimaging studies have demonstrated 
volumetric reduction in the hypothalamus and thalamus [18]. Postmortem studies 
report reductions in neuronal density in individual cortical layers [13, 19], lower 
glial cell count and density, and a decrease in the number of oligodendrocytes in 
different brain regions [13, 15], corresponding to reports of reduced myelin staining 
in the brains of bipolar patients [20]. In addition, bipolar disorder patients present, 
after multiple manic episodes [21], an increase in lateral and third ventricle vol-
umes, being an indirect measure of brain atrophy, which implies severe cognitive 
impairment [4, 5, 22]. Although several neuroimaging findings have been demon-
strated in patients with bipolar disorder, it has not yet been defined whether such 
brain changes are attributed to the neuroprogressive character of the disease, 
depending on the clinical stage of the disease, or whether some changes may be 
correlated with certain clinical subtypes [6, 9, 23].

Despite that, there are promising studies that pursue to correlate the current stag-
ing of bipolar disease with neuroprogression biomarkers, as neuroimaging struc-
tures and functional neuroimaging. A review [44] showed some of those biomarkers 
at each stage from the bipolar disorder course, aiming to highlight the most promi-
nent findings—which can be found in Table 1, together with other conclusions from 
previously mentioned studies. These essays not only reaffirm the neuroprogressive 
character of bipolar disorder but also open new horizons for better relating the stage 
of each patient with better treatment (and prognosis) in the future.

2.2 � Inflammatory and Neurotrophic Biomarkers

The current understanding of bipolar disorder has linked a clinical staging model 
based on clinical characteristics of the disease to changes in its molecular bases, 
such as in intracellular second messenger systems, monoamines, inflammatory 
cytokines, neurotrophic factors and neurogenesis, corticosteroids, and oxidative, 
mitochondrial, and endoplasmic reticulum stress [24–26]. As one of the mecha-
nisms of neuroprogression, evidence suggests that peripheral and brain inflamma-
tory processes correlate with the pathophysiology of bipolar disorder [26]. Among 
these inflammatory processes, moderately increased plasma levels of pro-
inflammatory cytokines, such as interleukin (IL)-6 and tumor necrosis factor (TNF), 
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Table 1  Correlation between bipolar disorder staging and prominent findings of the 
neuroprogression course of the disease

Kapczinski Berk Neuroimaging
Functional 
neuroimaging

Latent Increased risk of 
bipolar disorder
Mood or anxiety 
symptoms 
without criteria 
for threshold 
bipolar disorder

0—Increased 
risk of bipolar 
disorder

Resilience markers:
↑ Gray matter volume in 
right ventrolateral 
prefrontal cortex [43], 
left parahippocampal 
gyrus [44], and left 
caudate [45]
Risk markers:
↓ Volume in white matter 
tracts connecting 
prefrontal cortical and 
subcortical regions [46]

Resilience markers:
↑ Right-sided activity in 
ventrolateral and 
dorsolateral prefrontal 
cortex [46]
Risk markers:
↓ Ventrolateral 
prefrontal cortex and 
amygdala functional 
connectivity [46]
↑ Amygdala activity

1a—Mild or 
nonspecific 
symptoms of 
mood disorder

1b—
Prodromal 
features: 
ultrahigh risk

Resilience markers:
↑ Prefrontal cortical 
volume [44]
Risk markers:
↓ Volume in right 
dorsolateral prefrontal 
cortex, orbitofrontal 
cortex, anterior cingulate 
cortex, ventral striatum, 
and bilateral frontal and 
temporoparietal regions 
[44]
↓ White matter volume 
[44]
↑ Left-sided subcortical 
volume [44]

Resilience marker:
↑ Prefrontal cortical 
activity during cognitive 
control of emotion and 
cognitive control of 
tasks [44]
Risk marker:
↑ Left-sided increases in 
prefrontal cortical and 
subcortical activity 
during reward and other 
task performance

Early 
stage

I—Well-defined 
periods of 
euthymia without 
overt psychiatric 
symptoms

2—First 
threshold 
mood episode

↓ Corpus callosum [47]
↓ General white matter 
volume [47]
↓ Bilateral pregenual 
anterior cingulate cortex 
[48]

During motion 
processing and 
regulation: amygdala 
and striatum over-
reactivity, ventrolateral 
prefrontal cortex 
under-reactivity, and 
decreased orbitofrontal 
cortex-amygdala 
functional connectivity
[46]
During reward 
processing: left-sided 
ventral striatum and 
ventrolateral prefrontal 
cortex over-reactivity 
[46]

3a—
Recurrence of 
subthreshold 
mood 
symptoms

(continued)
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Table 1  (continued)

Kapczinski Berk Neuroimaging
Functional 
neuroimaging

II—Symptoms in 
interepisode 
periods related to 
comorbidities

3b—First 
threshold 
relapse

↓ Right ventrolateral 
prefrontal cortex volume 
[44]
↓ Amygdala volume [44]
↓ Striatal and 
hippocampal volumes 
[44]

a

Late 
stage

III—Marked 
impairment in 
cognition and 
function

3c—Multiple 
relapses

↑ Lateral ventricles 
volume [22]
↓ Corpus callosum 
volume [47]
↓ General white matter 
volume [47]
↓ Orbital and medial 
prefrontal cortex volume 
[47]
↓ Mesotemporal cortex 
volume [47]

IV—Unable to 
live 
autonomously 
owing to 
cognitive and 
functional 
impairment

4—Persistent 
unremitting 
illness

↓ Hippocampus volume 
[18, 49]
↓ Thalamus volume [18]

a

aThere is no consensus in the reviewed literature concerning the relation between 3a, 3b, 3c, and 4 
stages with functional neuroimaging [44]

and increased IL-1, IL-1RA protein, and mRNA levels in postmortem frontal cortex 
of bipolar patients have been described [26–29]; increased levels of acute-phase 
inflammation proteins such as haptoglobin and C-reactive protein [26, 30, 31], 
BDNF [32], and GDNF [33] are also shown to be altered during bipolar disorder 
mood episodes [26]. Furthermore, one study [34] showed that, during mania, there 
were increased levels of pro-inflammatory cytokines IL-2, IL-4, and IL-6, in com-
parison with healthy subjects, while patients in a depressive episode showed only 
increased IL-6 levels. These findings suggest that BD is associates with a pro-
inflammatory state, with changes in inflammatory biomarkers likely associated with 
mood state [26, 34].

Some of these inflammatory mediators have been shown to be altered in periods 
of depression and mania, as well as in periods of euthymia [35], which corroborates 
the hypothesis that the cognitive and functional decline in bipolar disorder is intrin-
sically linked to inflammatory biomarkers [26, 34, 36]. Increasing evidence has 
correlated, according to the course of neuroprogression, markers of inflammation 
with the manifestation of the clinical features of bipolar disorder, which include 
progressive shortening of the interepisode interval and lower therapeutic response 
[26, 36]. This implies, in the final stage of the neuroprogressive course, tissue dam-
age and structural changes with cognitive and functional sequelae that are essen-
tially the substrate of mood regulation [26, 37]. Thus, the analysis of inflammatory 
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and neurotrophic biomarkers can help in differentiating the early and late stages of 
disease neuroprogression, as a clinical staging approach and therapeutic targeting 
[3, 26].

Additionally, a study [3] proposed a clinical staging to differentiate the early and 
late phases of bipolar disorder, including a latent phase. The presence of prodromal 
symptoms evidences an increased risk of developing the disorder. The presence of 
familial bipolar disorder history, temperament traits, mood and anxiety symptoms, 
and genetic susceptibility indicate an increased likelihood of developing the condi-
tion. In this sense, in terms of biomarkers, the detection of genetic polymorphisms 
is a preventive strategy for the early detection of a patient in the latent state of bipo-
lar disorder [38–40]. As for stage I, proposed by [3], a clinical feature of this phase 
is that patients return to their baseline level of functioning when the mood episodes 
resolve, and pharmacological treatment in stage I may be potentially neuroprotec-
tive. At this stage, increased TNF-α, IL-6, IL-10, and 3-nitrotyrosine could be useful 
biomarkers [3].

In phase II, there is an association between symptoms in interepisodic periods 
and comorbidities such as alcohol/drug abuse/dependence, rapid-cycling bipolar 
disorder presentation, and even anxiety disorders. At this stage, increased levels of 
TNF-α, 3-nitrotyrosine, IL-6, and IL-10 and decreased levels of BDNF [3] are 
found. After adequate treatment, remission can be achieved, and patients can be 
classified as stage I patients. In stage III, the same inflammatory and neurotrophic 
biomarkers described in stage II were detected. These patients may have evidence 
of clinically relevant cognitive impairment and interepisodic subsyndromal bipolar 
disorder symptoms [3], with the duration of the interepisode period of euthymia 
generally decreasing as the number of episodes increases [41]. At this stage, there 
may be abnormalities in biomarkers related to neuronal and glial dysfunction, 
related to oxidative stress [42]. In stage IV proposed by [3], the patient is unable to 
live autonomously due to cognitive and functional impairment, and the levels of 
inflammatory, oxidative stress, and neurotrophic biomarkers are even more 
deregulated.

3 � Staging of Major Depressive Disorder

Major depressive disorder (MDD) is a complex multifactorial syndrome, with life 
prevalence reaching up to 15% of the global population, which has a great impact 
on life quality [50]. In that regard, there is a rising importance of the role of bio-
markers in staging major depression, since it could be related with disease severity, 
illness progression, and treatment response [51]; nevertheless, so far, there is no 
effective staging model that may be used in clinical practice [52]. Despite that, sev-
eral studies have enhanced our knowledge about biomarkers in MDD, which allows 
future horizons to the subject. The most important biomarkers related to the staging 
of MDD are those that have a role on the multifactorial pathogenesis of the dis-
ease—i.e., inflammatory markers, neurotrophic factors, neuroprogression, and oxi-
dative stress-related markers [53].
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3.1 � Inflammatory and Neurotrophic Biomarkers

With regard to neuroprogression and grown neurologic factors, it has been found 
that the serum levels of brain-derived neurotrophic factor (BDNF)—an important 
marker of neuroplasticity—are considerably lower in treatment-naive patients with 
MDD than in healthy or treated ones [54]. That finding supports the idea that the 
diminished volume of brain regions affected on MDD patients, such as the hippo-
campus and amygdala, could be increased by BDNF activity [54].

Regarding inflammatory markers, there is a recent systematic review and meta-
analysis of several longitudinal studies that approached a prospective relation 
between innate immune system mediators and MDD—especially interleukin-6 
(IL-6), tumor necrosis factor-α (TNF-α), and C-reactive protein (CRP) [55]. The 
authors found that higher serum levels of CRP and mainly IL-6 were associated 
with the onset of MDD, and current symptoms of depression were associated with 
future higher levels of CRP and IL-6—whereas no relation was found between 
TNF-α and the disease.

Concerning oxidative stress-related markers, a narrative review [53] showed that 
distinct enzymes, such as xantine oxidase (XO), monoamine oxidase (MAO), and 
cyclooxygenase-2 (COX-2), are increased in patients with MDD.

3.2 � Neuroimaging

Many studies conducted using structural MRI and MRI-based techniques have pro-
vided evidence that support brain abnormalities in MDD [56, 57]. Several studies 
reported increased functional activity in the amygdala, hippocampus, and medial 
prefrontal cortex, while decreased functional activity was related to the lateral pre-
frontal cortex and the striatum [58]. Regarding volume, the amygdala showed no 
differences in some studies, and the medial prefrontal cortex, lateral prefrontal cor-
tex, striatum, and hippocampus presented a reduction in volume [58]. As high-
lighted by several meta-analyses, volumetric reduction in the hippocampus remains 
the most investigated and replicated finding in MDD.

4 � Staging of Post-Traumatic Stress Disorder

The trajectory of post-traumatic stress disorder (PTSD) is recognized to be nonuni-
form, with a cluster of symptoms forming a chronic sustained stress syndrome that 
varies based on the type of trauma and surrounding circumstances. In a certain 
subset of patients, in which there is disease progression, there are increasingly 
emerging findings in the literature about neuroprogression, which may play an 
important role in the perpetuation of the disorder [59]. Research suggests that the 
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chronicity of symptoms in PTSD and related brain alterations can lead to the devel-
opment of neurocognitive impairments. Specifically, for a subset of patients whose 
symptoms worsen or are maintained at a high intensity, there may be progressive 
changes in the prefrontal cortex, in addition to declines in verbal memory and facial 
recognition abilities, as well as worsened psychological, physical, and social func-
tioning [60].

4.1 � Neuroimaging

There is evidence from neuroimaging studies demonstrating that PTSD patients 
exhibit structural and functional brain changes. It is known that there are a reduction 
of the hippocampus [61], insula, and anterior cingulate volumes [62] and changes in 
white matter volume in the frontal and cingulate regions [63]. In addition, it has not 
been clarified yet whether the duration of the disease is correlated with the reduction 
in hippocampal volume [64], which plays an important role in encoding memories 
and regulating the amygdala [60]. In terms of functional alterations, alteration in 
amygdala activation was demonstrated [61]. The hippocampus and amygdala are 
key points in understanding the disease, as they help in the perception of trauma and 
in the process of coordinating memories. It is known that the essence of PTSD 
develops from the re-experiencing of traumatic memory, with physiological and 
psychological reactivation, and a risk of sustained reactivity to stress, due to the 
alteration of amygdala activation, associated with the deficit hippocampal value of 
the security context [59].

4.2 � Inflammatory Biomarkers

It is proposed that the pro-inflammatory environment in PTSD is interrelated with 
the increased risk of developing pathological mechanisms, manifesting itself 
through cardiovascular and autoimmune diseases. Regarding the prevalence of 
PTSD-related physical comorbidities, 38.7% presented metabolic syndrome, 36.1% 
presented hyperglycemia, and 76.9% presented hypertension in a group of middle-
aged patients with chronic PTSD [65]. Another study demonstrated a twofold 
increased risk of developing autoimmune disease such as inflammatory bowel dis-
ease, thyroiditis, multiple sclerosis, and rheumatoid arthritis in individuals with 
PTSD [66].

A meta-analysis [67] showed that patients with PTSD had notably higher levels 
of CRP, IL-6, and TNF-α compared to healthy controls, although no oxidative stress 
markers were associated with PTSD. These results imply that the long-term, low-
level inflammation associated with PTSD may be responsible for the increased 
occurrence of inflammatory-mediated diseases, such as cardiovascular diseases and 
diabetes, and accelerated aging in patients. Furthermore, the study indicates that 
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targeting inflammatory markers could also serve as a therapeutic option for treating 
PTSD [60]. Another meta-analysis showed that IL-6, IL-1β, and IFNγ levels were 
higher in the PTSD group compared to the healthy controls. A subgroup analysis of 
patients not given any medication also showed higher levels of tumor necrosis 
factor-α (TNF-α) in the PTSD group compared to controls. Illness duration was 
associated with interleukin-1β levels, and severity was associated with interleukin-6 
levels [67].

The significant body of research showing alterations in neuroimaging, meta-
bolic, and immune function, along with oxidative stress and inflammation, collec-
tively provides evidence of a potential longitudinal trajectory of PTSD. This directs 
us to a possible clinical staging strategy according to sequential neurobiological 
changes, which outlines severity, prognosis, and treatment of the disease. A longitu-
dinal approach through disease stage delineation can contribute to discoveries about 
phenotypes and clinical courses [59]. Even so, although all these structural and 
functional brain changes have been demonstrated, it is still unclear whether progres-
sion of the findings occurs as the disease progresses, confirming the hypothesis that 
PTSD would be a disease that exhibits neuroprogression [68]. As in bipolar disor-
der, for example, it is not known whether the brain changes would be explained by 
subsets of distinct phenotypes of patients or whether neuroprogression would 
explain, at least in part, such findings.

5 � Schizophrenia

Schizophrenia is a debilitating mental disorder with lifetime prevalence rates 
between 0.3% and 0.7%, and its onset typically occurs in adolescence or early 
adulthood [69]. The disorder is characterized by positive symptoms, which include 
delusions, hallucinations, and disorganized speech, and negative symptoms such as 
lack of motivation [70]. It is now known that most antipsychotic drugs focus on cor-
recting neurotransmitter imbalances, yet most patients continue to have several 
residual symptoms that substantially affect quality of life [71–73]. Currently, how-
ever, many discoveries have been made regarding the molecular aspects involved in 
the pathophysiology of schizophrenia [71, 74].

5.1 � Inflammatory and Neurotrophic Biomarkers

More attention needs to be given to the nature of the relationship between cognitive 
impairment in schizophrenia and elevated CRP. In a meta-analysis [75], an inverse 
relationship was found between CRP levels and cognitive functioning in schizo-
phrenia. However, the inverse relationship was very modest. Elevated CRP levels 
are not necessarily related to the inflammatory process in schizophrenia. However, 
they may indicate the presence of comorbidities such as metabolic syndrome and 
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obesity, as these conditions are more commonly present in people with schizophre-
nia than in people without the disorder [75, 76]. It is doubtful whether the high 
levels of CRP found in schizophrenia are more important as a risk factor for the 
development of the disease than as a consequence of the development of the disease 
itself [77, 78].

Regarding BDNF, it is known that the association between reduced BDNF and 
cognitive impairment in schizophrenia may be more associated with factors such as 
trauma and stress than in relation to the disorder itself [79–81]. A study [75] found 
an important relationship between disease stage, BDNF, and cognition. In the early 
stages of the disease, the relationship between the level of BDNF and verbal mem-
ory is more apparent. Meanwhile, in chronic patients, the relationship between 
BDNF and processing speed/working memory is more evident [75]. A meta-analysis 
[82] showed that serum and plasma BDNF levels in patients with schizophrenia 
were decreased compared with healthy controls.

Regarding cytokine levels in the first-onset and drug-naïve schizophrenia 
patients, a mixed pro- and anti-inflammatory profile was identified [83]. IL-1RA, 
IL-10, and IL-15 levels were increased in the first-onset patients compared to con-
trols [83]. After 6  weeks of treatment with atypical antipsychotics, the levels of 
IL-1RA and the anti-inflammatory cytokine IL-10 were decreased, and symptom 
improvement was correlated to changes in IL-10 levels [83]. It is not known whether 
the altered levels of cytokines are a cause or a consequence of the pathophysiologi-
cal process of the disease.

5.1.1 � Neuroimaging

As seen in the largest analysis of brain MRI scans from individuals with schizophre-
nia, some brain structure abnormalities are seen in individuals with the disorder 
when compared to healthy controls: the hippocampus, amygdala, thalamus, accum-
bens, and intracranial volume are significantly smaller, while the pallidum and lat-
eral ventricle are considerably larger [84]. Relationships between the duration of the 
mental disorder and the magnitude of changes in brain structures were also found: 
there was a positive association between putamen and pallidum volume and dura-
tion of illness [84].

A study [85] investigated the structural differences between the brains of patients 
with schizophrenia divided into two groups, neuropsychologically near normal 
(NPNN) and neuropsychologically impaired (NPI). It was found that both NPNN 
and NPI had smaller gray matter volumes and larger third ventricles than healthy 
comparison subjects. However, NPI patients had smaller white matter volumes and 
larger volumes of the lateral ventricles [85]. As observed in this research, there was 
an abnormality in the volume of white matter in NPI patients, while in NPNN 
patients, this volume was considerably normal when compared to healthy subjects. 
This suggests that white matter may play a key role in the cognitive deficits observed 
in patients with schizophrenia [85].
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According to the clinical profile of the patients, different degrees of structural 
alterations are manifested [86, 87]. An important example is the relationship 
between verbal memory and the thickness of the cerebral cortex in patients with 
schizophrenia. Patients who have a thinner cortex in areas responsible for verbal 
memory consequently have a greater functional impairment of this cognitive func-
tioning [88].

6 � Conclusion

The development of staging systems for psychiatric disorders is a dynamic and 
evolving process. While significant progress has been made in establishing a staging 
system for bipolar disorder (BD), ongoing research is crucial to refine and validate 
its applicability in clinical practice. Furthermore, it is imperative to extend these 
efforts to the development of staging systems for other psychiatric disorders.

By encouraging further studies in this field, we can gain a deeper understanding 
of the diverse clinical presentations, prognosis, and individualized treatment strate-
gies across a range of psychiatric disorders. We need further research to pave the 
way for the translation of staging systems into valuable and effective tools for guid-
ing clinical decision-making.
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Biomarkers of Delirium and Cognitive 
Impairment

Marcos Vasconcelos Pais and Orestes Vicente Forlenza

1 � Introduction

Delirium is related to increased morbidity and mortality and remains an underdiag-
nosed condition. Additionally, older adults who experience an episode of delirium 
are at a higher risk of developing subsequent dementia from different causes [1, 2]. 
Currently, the diagnosis of delirium is based on clinical assessment with the support 
of nonspecific biomarkers. There are multiple instruments to support the clinical 
diagnosis of delirium in different settings. The required laboratory assessments in 
the diagnostic workup include complete blood count, urea and creatinine levels, 
electrolytes, blood sugar, C-reactive protein, liver function, and thyroid function, as 
well as radiological tests, all guided by the patient’s previous clinical condition and 
the presenting features of delirium. Some cases will demand further assessments 
such as neuroimaging, electroencephalogram (EEG), lumbar puncture, and further 
laboratory testing, e.g., antibody testing. Nonspecific biomarkers assess possible 
underlying causes of delirium such as infections, dehydration, hypoxia, and poor 
nutrition, just to name a few. Although important and necessary, these biomarkers 
are not related to specific delirium pathophysiology features. The clinical diagnostic 
workup of delirium has no established specific biomarkers [1–4]. Soon, specific 
biomarkers might play a decisive role in clinical routine.
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Many mechanisms have been implicated in the pathophysiology of delirium. 
Neuropathological changes associated with aging, neuroinflammation, neuroendo-
crine stress response/dysregulation, circadian dysregulation, and oxidative stress 
are the main biological processes observed in patients in delirium episodes [5, 6]. 
These processes are activated by the precipitants of delirium, or underlying causes, 
to consequently impair both the neurotransmission and network connectivity, with 
the clinical presentation of delirium as the result of brain failure. These steps portray 
a picture of the “systems integration failure hypothesis” (SIFH), a proposition of a 
specific combination of neuropathological changes attributed to delirium [5]. This 
hypothesis is an effort to unify previous theories in a comprehensive and representa-
tive paradigm.

Table 1 summarizes the main hypotheses explaining the pathophysiology of 
delirium that pave the way to understand the definition of the most promising bio-
markers. Currently, the most studied mechanism underlying delirium is systemic 
inflammation, a result of a proinflammatory state, and an enhanced inflammatory 
response to acute stress [4].

The development of specific biomarkers of delirium and the understanding of 
how these biomarkers are directly related to the delirium pathophysiology can con-
tribute to the prevention of delirium. Predictor biomarkers could also help in the 
development of specific interventions, and guide the assessment of treatment, reduc-
ing the overall risk of mortality, morbidity, and healthcare costs. Moreover, they 
might help distinguishing those individuals at a higher risk of dementia, contribut-
ing to early diagnosis and timely interventions.

Although there are numerous studies with candidate biomarkers of delirium, no 
specific biomarker has been validated or implemented for routinely clinical assess-
ment. The focus of this chapter is to review the recent advances in the field of bio-
markers related to the specific pathophysiology of delirium, identifying the most 
promising markers in clinical and surgical settings.

Table 1  Main hypotheses explaining delirium pathophysiology

Aging
Neuropathological changes associated with inflammation, oxidative stress, and neuroendocrine 
responses
Circadian dysregulation
Melatonin-tryptophan dysregulation
Neuroinflammation
Activation of proinflammatory cytokines resulting in breakdown of the blood-brain barrier
Neuroendocrine
Disruption of the hypothalamic-pituitary axis in reaction to acute stress
Oxidative stress
Decline in the normal antioxidant defense

Adapted from Ref. [5]

M. V. Pais and O. V. Forlenza



141

2 � Candidate Biomarkers

Current literature is mainly focused on inflammatory biomarkers of delirium. 
However, different pathways provide biomarkers some more promising than others. 
Noteworthy, biomarkers have been studied with different objectives, e.g., as mark-
ers of risk of delirium, delirium duration [7], delirium severity, or delirium resil-
ience [8]. The following sections convey information first on inflammatory 
biomarkers of delirium, followed by brief discussions about other pathways and 
biomarkers studied.

2.1 � Inflammatory Biomarkers

Neuroinflammation plays a central role in delirium pathophysiology, and most stud-
ies have focused on inflammatory cytokines and immune activation when address-
ing biomarkers of delirium [2]. In addition, recent studies have revealed that this 
immune activation occurs early in the pathophysiology of delirium [9].

Dunne et al. performed a systematic review of studies investigating biomarkers 
associated with delirium only and in patients with other comorbidities, including 
depression and cognitive dysfunction, and identified the most frequently studied 
biomarkers. These included IL-6, C-reactive protein (CRP), cortisol, S100 beta 
(S100β) protein, insulin growth factor (IGF)-1, and TNF alpha (TNF-α) [10]. Higher 
interleukin-1β (IL-1β) cytokine levels, especially in the hippocampus, were also 
implicated in the cognitive changes present in delirium. Cerebrospinal fluid (CSF) 
IL-1β and the ratio CSF/serum IL-1β were higher in patients with incident delirium 
relative to patients without delirium [11]. The assessment of these biomarkers could 
be explained by their central role in the different stages of the pathophysiology of 
delirium, as summarized below:

	1.	 Systemic inflammation, resulting in increased levels of CRP, causes blood-brain 
barrier disruption and, consequently, neuroinflammation [12–14].

For many years called an “acute phase protein,” CRP has emerged as a strong 
delirium-specific biomarker. Routinely, CRP is used in the diagnostic workup of 
delirium as an indicator of current infectious and inflammatory conditions. A 
significant number of studies have been focused on investigating the relationship 
between CRP and delirium in clinical and surgical settings. Most of these studies 
assessing CRP using a panel of inflammatory markers demonstrated a positive 
association between increased levels of CRP and delirium [10]. In a study using 
a proteomic approach and comparing multiple proteins and their associations 
with delirium cases, significantly higher CRP levels were identified at three 
time-points, i.e., preoperatively, at post-anesthesia care unit, and at postoperative 
day 2, but not at 1-month follow-up, revealing its acute dynamic [4]. Recently, 
Zhang et  al. reported that the serum CRP/albumin ratio had a slightly better 
performance than CRP alone when predicting postoperative delirium [15]. 
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Together, these findings have established CRP as a promising biomarker of 
delirium.

	2.	 Three direct results of neuroinflammation are the depletion of neurotrophic fac-
tors (IGF-1), production of local proinflammatory cytokines (IL-1, IL-2, IL-6, 
and IL-8), and production of reactive oxygen species [16].

Results from studies investigating the role of IGF-1 in delirium vary. Although 
some studies have not found associations between levels of IGF-1 [17, 18] and 
the occurrence of delirium, a number of studies have reported low levels in asso-
ciation with delirium [10, 19–21]. This was supported by a recent meta-analysis 
of 13 studies [22]. However, the conflicting findings presented over the years 
underpin the need for establishing guidelines for the study of biomarkers in 
delirium. Studies in different settings, clinical or surgical, using a multitude of 
assays and outcome measures will certainly result in a myriad of findings.

IL-6 is one of the most studied biomarkers in delirium. IL-6 is usually assessed 
alongside a panel of other inflammatory markers, increasing the accuracy in pre-
dicting delirium occurrence [23]. A significant association between levels of 
IL-6 and delirium has been consistently reported [2, 7, 24]. Most studies investi-
gate the profile of IL-6 mainly in surgical settings. The changes observed were 
present in different timepoints, with IL-6 presenting elevated levels in preopera-
tive delirium and at 6, 12, and 18 h after surgery [10, 24]. Interestingly, Chen 
et al. reported that a concentration of IL-6 of 583 pg/mL or higher at the 18th 
postoperative hour predicts postoperative delirium in coronary artery bypass 
graft patients [24].

	3.	 Finally, there is activation of glial cell causing elevation of S100β levels. From 
the family of calcium-binding proteins, S100β is present in high concentrations 
in astroglia and oligodendroglia and is an indicator of neuronal injury [25]. The 
release of S100β may represent a glial response to inflammation, ischemia, and 
metabolic stress and is associated with the terminal event of the inflammatory 
pathway underlying delirium. The main importance of S100β in delirium is that 
it seems to represent a marker of delirium duration and prognosis [26]. Khan 
et al. have previously demonstrated that critically ill patients with abnormal lev-
els of S100β had a trend towards higher delirium duration [27].

	4.	 Tumor necrosis factor alpha (TNF-α) is a cytokine related to multiple pathways 
[28]. Inflammation, apoptosis, and necrosis are possible outcomes of homeosta-
sis disruption, and TNF-α seems to be a marker of these processes. Only a few 
studies have been able to show a clear relationship between the levels of TNF-α 
and the occurrence of delirium [10]. It also seems that TNF-α neurotoxicity is 
related to the inhibition of IGF-1 activity [29]. Further investigation is needed 
since studies have also revealed an association between higher circulating levels 
of TNF-α and changes in cognition [30–32].

Table 2 summarizes candidate biomarkers of delirium.
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Table 2  Candidate biomarkers of delirium

Genetics Apolipoprotein E (ApoE) 4 allele, glucocorticoid receptor haplotype, 
interleukin-6 (IL-6) gene, interleukin-6 receptor (IL-6R) gene, 
interleukin-8 (IL-8) gene, melatonin receptor 1B gene

Inflammatory/
immune

Alpha-1-acid glycoprotein, choline, C-reactive protein (CRP), complement 
factor C3, fms-like tyrosine kinase-3 ligand (Flt-3L)
Interleukin-1β (IL-1β), interleukin-1 receptor antagonist (IL-1ra), 
interleukin-2 (IL-2), interleukin-6 (IL-6), soluble interleukin-6 receptor 
(sIL-6R), interleukin-8 (IL-8), interleukin-12, tumor necrosis factor alpha 
(TNF-α), soluble TNF-receptor 1 (sTNFR-1), vascular endothelial factor 
(VEGF), interleukin-5 (IL-5)
Natural killer (NK) cells

Neurodegeneration Amyloid beta (Aβ), glial fibrillary acidic protein (GFAP), tau, S100, 
calcium binding B (S100β)
Atrophy (hippocampal, global), cerebral blood flow, diffusion tensor 
imaging (DTI), white matter hyperintensity (WMH)

Neurotransmission Acetylcholinesterase (AChE), anticholinergic activity (AA), 
butyrylcholinesterase (BuChE), dopamine, melatonin, norepinephrine, 
tryptophan (T), kynurenine (K), K/T ratio

Neurotrophic Brain-derived neurotrophic factor (BDNF)
Metabolic Glucose, insulin, insulin-like growth factor-1 (IGF-1), leptin
Physiological 
stressor

Cortisol, 8-iso-prostaglandin F2α, neopterin

Adapted from Ref. [3]

2.2 � Neuroendocrine Biomarkers

The stress-induced response of the hypothalamic-pituitary-adrenal (HPA) axis is 
mainly represented by changes in cortisol levels [33]. There is an association 
between prolonged activation of the HPA axis and neurotoxicity caused by pro-
longed exposure to high cortisol [34, 35]. High levels of cortisol, brain exposition, 
and administration of glucocorticoids can cause symptoms similar to those of delir-
ium, including inattention [36].

Higher cortisol levels have been measured in Alzheimer’s disease (AD) patients. 
In addition, these increased levels were also predictors of poorer performance in 
patients with cognitive decline. These findings are similar in delirium studies, with 
cortisol levels having a significant impact in delirium [37–40].

Some studies have shown a positive relationship between cortisol concentration 
and pure delirium and adjusting for comorbidities [10]. Furthermore, higher cortisol 
levels are associated with delirium in the first week after stroke, increasing depen-
dency, morbidity, and mortality independently of stroke severity [41]. However, the 
different sources of heterogeneity in the causes of increased levels of cortisol play 
an important role in determining the levels of cortisol associated with delirium, and 
the evidence of this relationship becomes less conclusive when comorbidities are 
present. In addition, some studies were not able to establish a pattern between 
changes in cortisol concentrations and the time of onset of delirium in surgical 
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settings [42–44]. Importantly, CSF levels reflect better brain exposure to cortisol 
than plasma cortisol levels [35, 39].

2.3 � Biomarkers of Neurodegenerative Diseases and Delirium

There is a lack of studies focused on the association between delirium and the pres-
ence of established biomarkers of different neurodegenerative diseases. Although 
referring to a frequently observed overlap between delirium and dementia, this rela-
tionship has not been investigated at the biomarker level [45]. The role of the differ-
ent AD biomarkers in delirium, for example, has been insufficiently investigated. 
Lower concentrations of plasma neurofilament light protein (NfL), a marker of neu-
ronal damage, during the days prior to a surgical procedure predict better postopera-
tive outcomes and early discharge from the hospital [46]. In a study investigating 
delirium severity after vascular surgery and potential changes in CSF amyloid, tau, 
and neurodegeneration (ATN) biomarkers, Parker et al. showed that CSF total tau 
(t-tau) and phosphorylated tau-181 (p-tau181) increased postoperatively, but not 
NfL or the amyloid-β (Aβ) 42/40 ratio. Results for NfL became significant after the 
exclusion of those with spinal cord ischemia [47]. Moreover, a lower CSF Aβ/tau 
ratio was associated with postoperative delirium in a study with a sample of indi-
viduals who had been submitted to total hip/knee replacement under spinal anesthe-
sia [48]. Finally, a recent prospective study revealed that higher preoperative levels 
of plasma p-tau217 and p-tau181 were predictors of delirium incidence and severity 
after surgery [49]. Noteworthy, the main question that remains is which is the patho-
physiology basis of these associations.

2.4 � Neurotransmitter Activity

Cholinergic and dopaminergic pathways have been implicated in the onset of delir-
ium, and these neurotransmitters seem to interact with each other to cause most of 
the symptoms [50]. The initial hypothesis is that a deficiency in acetylcholine 
together with an excess of dopamine in certain brain regions would account for the 
clinical presentation [51]. Cholinergic activity is considered an independent risk 
factor of delirium, and it has also been linked to inflammation. A reduction in cho-
linergic activity seems to lead to an increased inflammatory response mediated by 
IL-6 and IGF-1 [10, 44]. However, studies investigating the association between 
cholinergic deficiency and delirium have been showing conflicting results, with 
early findings of a positive relationship not being confirmed by recent studies [10].

Excessive dopaminergic activity has been also postulated as an underlying aspect 
of the pathophysiology of delirium. Dopaminergic and cholinergic systems interact 
with each other and affect other systems such as the glutamatergic and gamma-
aminobutyric acid (GABA) pathways [5].
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2.5 � Behavioral Biomarkers and Risk Assessment

Most changes and symptoms identified at delirium presentation are related to behav-
ior, cognition, or consciousness, three of the well-known five delirium domains [5]. 
The level of consciousness and inattention are key aspects of delirium. Cognitive 
assessments should include specific tools to evaluate consciousness and attention. 
However, a multitude of conditions affect attention and should be investigated in 
delirium risk assessments. In addition, the altered level of consciousness, as a 
behavior observation, should be observed at different times of the day to capture the 
typical fluctuations present in delirium [50]. The patient would present fluctuations 
over hours or days of cognition, with impaired attention and concentration, or con-
fusion. Visual and auditory hallucinations are common. Finally, there are often 
behavioral changes in communication, interaction with people, and sudden changes 
in mood and attitude. Changes in physical function such as altered mobility, rest-
lessness, agitation, aggression, and sleep disturbances are often interpreted as sec-
ondary to these mental disturbances. In the face of these changes and in the absence 
of a risk assessment, delirium could be overlooked as the main diagnosis, delaying 
proper care [52]. Moreover, Landreville et al. showed that patients with delirium 
superimposed on dementia present more behavioral symptoms of dementia than 
patients with dementia without delirium [53].

Cognitive evaluation for delirium should include assessments of attention, orien-
tation, memory, and clarity of thought. A mild cognitive deficit might also not be 
present at the moment of initial assessment due to fluctuations and must include 
more observations throughout the day. A study conducted in the context of 
Successful Aging after Elective Surgery (SAGES) study found that a greater base-
line memory function in older adults predicts decreased postoperative delirium risk 
and severity [54]. Other studies have shown that unspecified cognitive impairments, 
mild cognitive impairment (MCI), and dementia are independent predictors of delir-
ium [55–58].

Healthcare professionals directly involved in treating delirium should focus their 
attention in not only diagnosing delirium but also anticipating its occurrence. Most 
importantly, all patients admitted to a hospital or a long-term residential care should 
be routinely assessed for the risk of developing delirium. Initially, the assessment 
includes four main risk factors: if the patient is 65 years old or older; if the patient 
had a severe illness prior to the onset of symptoms of delirium (the severe illness 
may be a preexisting clinical condition that has been deteriorating or at risk of dete-
riorating); if the patient has a current hip fracture; and, finally, if the patient has 
cognitive impairment. The cognitive impairment may be present at the moment of 
the assessment or a past complaint. Additionally, it may be related to previously 
diagnosed dementia or not. The assessment of cognition at admittance, identifying 
patients at a higher risk of developing delirium, would have a significant impact in 
the early identification and treatment. Confusion and mild cognitive deficits must 
not be considered as “expected” or “normal” outcomes of any conditions in older 
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adults, and specifically new-onset cognitive symptoms should be faced as signs of 
delirium.

Sleep quality has also been implicated in the risk of delirium. Sleep burden (cal-
culated based on sleep duration, excessive daytime sleepiness, insomnia, napping, 
and chronotype) showed a relationship with a higher risk of developing delirium 
[59]. Disruption of circadian cycle is recognized as a risk factor for delirium inci-
dence. The underlying mechanisms involve increased levels of proinflammatory 
cytokines, decreased parasympathetic tone, decreased sympathetic tone, increased 
blood pressure, increased evening cortisol levels, elevated insulin, and elevated 
blood glucose [60]. These mechanisms are combined to abnormally low levels of 
melatonin to contribute to the onset of delirium [61].

Finally, behavioral changes in the patient with delirium might include withdrawn 
attitude, refusal of food or interventions, quietness, and sleepiness, all common 
symptoms of hypoactive delirium. This subtype of delirium is even more under-
recognized although occurring in up to 50% of cases. In these cases, evaluation of 
symptoms of delirium and assessment of cognitive status is a greater challenge for 
clinicians and must not be neglected [62].

2.6 � Neuroimaging Biomarkers

Neuroimaging is mostly used for the assessment of underlying causes of delirium. 
Computerized tomography (CT) is still the most used imaging technique. However, 
the overall yield is low (around 13% for patients from an emergency department and 
around 17% for patients from ICUs), and magnetic resonance imaging (MRI) has 
been gradually moving forward as the preferred technique [63]. The best predictors 
of significant neuroimaging findings are new focal neurological deficits, deteriora-
tion in conscious levels, and recent falls [64].

It has been postulated that preserved superior memory function, as a result of the 
anterior mid-cingulate cortex integrity based on cortical thickness measures in 
structural MRI collected preoperatively, is a protective factor for delirium and that 
this neuroimaging measure could be a biomarker of delirium resilience [8]. In fact, 
different studies have shown results supporting the relationship between delirium 
and specific structural brain changes. Cerebral ventricular size, sulcal widening or 
atrophy, and volume of the whole brain or specific regions are the main candidate 
neuroimaging biomarkers of delirium [65].

Using validated visual scales to assess ventricular size and sulcal atrophy [66, 
67] or quantifying volumes using automated software [68], overall researchers 
revealed (i) larger ventricular atrophy scores during delirium onset; (ii) that severe 
sulcal atrophy and ventricular dilatation predicted delirium; and (iii) that a greater 
ventricle-to-brain ratio indicated a longer delirium duration. Results were conflict-
ing, with studies showing that lower baseline brain volumes are not a risk factor for 
postoperative delirium [68]. However, the difference between findings might be 
explained by methodological bias [65]. Furthermore, Shioiri et al., using MRI and 
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semiautomated software, showed decreased gray matter volume in the temporal and 
limbic lobes [69].

Mixed results were published on the relationships between white matter hyper-
intensities (WMHs), or ischemic lesions and delirium, mostly in surgical popula-
tions. Additionally, the incidence of stroke in specific brain regions may increase the 
risk of delirium [65].

Mean diffusivity (MD) and fractional anisotropy (FA) are quantitative measures 
of diffusion tensor imaging (DTI). Changes in MD and FA are useful indicators of 
the integrity of the white matter architecture [70]. Overall, changes associated with 
loss of white matter integrity in the corpus callosum, fronto-thalamic, cerebellar, 
and limbic systems were predictors of delirium incidence and severity [65].

Significantly lower cerebral oxygenation saturation (ScO2) [71, 72], abnormal 
connectivity between the dorsal prefrontal and subcortical regions on resting-state 
functional MRI (fMRI) [73], and cortical hypometabolism assessed by fluorodeox-
yglucose positron-emission tomography (FDG-PET) [74, 75] are the main findings 
of studies of neuroimaging biomarkers based on functional neuroimaging outcomes.

The main limitations of studies with neuroimaging techniques in the field of 
delirium are the use of specific populations, e.g., surgical populations, precluding 
generalization of results.

2.7 � Electroencephalogram (EEG)

A significant number of electrophysiological studies have been trying to identify 
signature cortical patterns related to delirium in recent years. Sleigh et al. identified 
cortical slow wave activity as a hallmark of delirium [76]. Delirium, specifically 
postoperative delirium, has been also associated with an increased relative delta 
power in the EEG [77]. Occipital alpha relative power during eyes-closed state, 
occipital theta relative power during eyes-open state, and frontal theta relative power 
during eyes-open state, spectral features of EEG, are associated with delirium sever-
ity and duration in distinct ways, inviting further investigation on the applicability 
of EEG in delirium assessment [78]. In addition, Tanabe et al. showed a lower EEG 
signal complexity, representing a reduced level of cortical information processing, 
to be associated with delirium severity [79].

The integration of different types of biomarkers, e.g., EEG with biomarkers of 
neuroinflammation, would represent a better understanding of the role of biomark-
ers in delirium. However, although presenting recent advances and important results, 
studies using EEG in delirium still face many challenges. Some centers are not able 
to perform EEG, and the idea of performing a more complex assessment for patients 
suffering from delirium should come after simple clinical diagnostic procedures 
have been already implemented [76]. There is still discussion on how these clinical 
procedures should be determined. Another use of EEG in delirium that has been 
investigated in a clinical trial is the monitoring of anesthetic depth. It has been asso-
ciated with a reduction in the incidence of postoperative delirium [80].
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3 � Conclusion

Recent advances in the identification of specific biomarkers of delirium have 
increased the possibility of delirium prevention in different settings. However, there 
is still a lack of evidence to support real-world interventions beyond the established 
laboratory routine to identify underlying causes or factors contributing to the onset 
of delirium. Actually, the field of delirium research faces multiple challenges. There 
is an understanding, for example, that the different clinical subtypes of delirium 
based on psychomotor activity, i.e., hyperactive, hypoactive, and mixed, could 
result in different biomarker profiles [2, 76]. Thus, the improvement of diagnostic 
tools and classification of delirium subtypes would be an important step forward.
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Fluid-Based Biomarkers of Alzheimer’s 
Disease

Natalia P. Rocha , Antonio L. Teixeira , and Leonardo Cruz de Souza

1 � Introduction

Alzheimer’s disease (AD) is the most common form of dementia, accounting for 
approximately 50–60% of all cases [1]. The most prominent feature of AD is the 
progressive impairment of cognitive function, with early impairment of episodic 
memory in most cases [1]. The incidence of AD increases with age, and because of 
population aging and higher life expectancy, the prevalence of AD continues to rise. 
In this context, AD represents a major public health concern, with significant social 
and economic consequences [2], especially in low- and middle-income coun-
tries [3].

AD was initially defined as a clinical-pathological entity, and the neuro-
pathological examination is the gold standard for AD diagnosis [4]. The AD 
hallmarks are the presence of extracellular amyloid plaques and intracellular 
neurofibrillary tangles composed mainly of amyloid-beta 42 (Aβ42) peptide 
and hyperphosphorylated tau protein, respectively [5]. The abnormal brain 
deposits of Aβ and tau define AD as a unique neurodegenerative disease, 
among other causes of dementia [4]. However, these pathological findings 

N. P. Rocha (*) 
Department of Neurology, The University of Texas Health Science Center at Houston, 
Houston, TX, USA
e-mail: Natalia.PessoaRocha@uth.tmc.edu 

A. L. Teixeira 
Neuropsychiatry Program, Department of Psychiatry and Behavioral Sciences, The 
University of Texas Health Science Center at Houston, Houston, TX, USA 

L. C. de Souza 
Department of Internal Medicine, Universidade Federal de Minas Gerais,  
Belo Horizonte, Brazil

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
A. L. Teixeira et al. (eds.), Biomarkers in Neuropsychiatry, 
https://doi.org/10.1007/978-3-031-43356-6_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-43356-6_10&domain=pdf
https://orcid.org/0000-0001-6404-5580
https://orcid.org/0000-0002-9621-5422
mailto:Natalia.PessoaRocha@uth.tmc.edu
https://doi.org/10.1007/978-3-031-43356-6_10


154

may be present in the brains of individuals who did not have a clinical diagno-
sis of AD, while other protein deposits (e.g., Lewy bodies) and cerebrovascu-
lar disease are frequently found in AD brains [5]. Inconsistencies in clinical 
and neuropathological definitions of AD led the field to distinguish AD into 
two entities: a clinical definition of AD (diagnostic guidelines based on clini-
cal signs and symptoms) [6] and a biological definition of AD (that can be 
used to support the clinical diagnosis or define preclinical stages for research 
use) [4].

The current clinical diagnosis of AD is based on the presence of cardinal 
(i.e., cognitive) symptoms and exclusion of other causes of dementia [6]. 
Biomarkers of AD have been included in the latest diagnostic criteria to increase 
its reliability. These biomarkers include decreased levels of amyloid-beta 42 
(Aβ42) and elevated levels of total tau and phosphorylated tau (p-tau) in cerebro-
spinal fluid (CSF) or positive positron-emission tomography (PET) amyloid 
imaging1 [6]. However, the pathophysiological processes underlying AD develop 
decades before the clinical onset of the disease, and although preclinical AD has 
been recognized as a disease stage in the 2011 NIA-AA revised criteria for AD 
diagnosis [6, 7], so far there is no test to predict conversion of preclinical AD 
into clinically defined AD. An important progress in the field came with the 
2018 NIA-AA Research Framework, which provided a biological definition of 
AD in living people instead of the syndromal construct currently used for the 
clinical diagnosis of AD. This framework proposed a classification system 
known as AT(N), in which biomarkers of Aβ deposition (A) and pathologic tau 
(T) are combined to markers of neurodegeneration (N) [4]. The AT(N) research 
framework clearly defines AT(N) profiles and biomarker categories in the 
Alzheimer’s continuum [4], facilitating the understanding of the disease process 
and the sequence of events that lead to cognitive impairment and dementia 
(Fig. 1). The identification of patients at a high risk for AD is fundamental for 
defining preclinical stages of AD and for the development of effective disease-
modifying therapies.

A huge number of studies have investigated the potential of inflammation, oxida-
tive stress, miRNAs, and many other classes of biomarkers in the context of 
AD. Although these studies have shown group differences and association to AD 
measures (which include symptoms and neuroimaging markers), unfortunately, 
most of these markers failed to demonstrate clinical and/or research utility. In this 
chapter, we discuss the fluid biomarkers – all related to the AT(N) system – that 
have shown promise to predict and support the diagnosis, prognosis, or therapeutic 
response in AD.

1 Neuroimaging markers for AD are separately discussed in Chap. 11.
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Fig. 1  The AT(N) system as proposed by Jack et al., in the 2018 NIA-AA Research Framework. 
(Ref [4])

2 � Cerebrospinal Fluid (CSF) Markers 
of Alzheimer’s Disease

The main biomarkers employed in AD diagnosis are Aβ42, total tau, and the isoforms 
of phosphorylated tau protein (p-tau181 and p-tau231) in the CSF.  These markers 
reflect the core pathological hallmarks of AD, i.e., the extracellular deposits of Aβ 
and the intracellular accumulation of abnormally hyperphosphorylated tau protein 
[1]. Clinicopathological studies showed that the CSF levels of total tau reflect the 
intensity of the neuronal degeneration, while p-tau reflects tangle pathology [8, 9]. 
It has also been demonstrated that antemortem levels of Aβ42 in the CSF are inversely 
correlated with Aβ plaque counts at brain biopsies and at postmortem examination 
[8, 9]. Moreover, there is an inverse correlation between CSF Aβ42 levels and the 
overall retention of the amyloid tracer Pittsburgh compound B (PiB) with positron-
emission tomography exam [10, 11]. Taken together, data from clinicopathological 
studies support considering CSF biomarkers as surrogate markers of the pathophys-
iological process of AD [12].

AD patients typically exhibit a decrease in CSF Aβ42 and an increase in CSF total 
tau and p-tau compared to healthy controls. This “AD CSF signature” differentiates 
AD patients from age-matched controls with 80–90% sensitivity and specificity 
[13, 14]. It is recommended to measure CSF Aβ40 and calculate Aβ42/Aβ40 ratio to 
normalize the “total” amyloid production level [13]. The Aβ42/Aβ40 provides a 
higher diagnostic accuracy than Aβ42 alone [13].
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The aggregation of Aβ into amyloid plaques and the consequent reduction of its 
availability in the CSF are the suggested mechanisms to explain the reduction of 
CSF Aβ42 levels in AD patients [12, 13]. Of note, a decrease in CSF Aβ42 levels may 
also occur in other neurological diseases, such as Lewy body dementia, vascular 
dementia, and cerebral amyloid angiopathy [12]. Although decreased levels of Aβ42 
are characteristic of AD, it is insufficient for an etiologic diagnosis of AD.

Tau is considered a nonspecific marker of neuronal lesions associated with vari-
ous biological processes [12]. In AD patients, the total levels of tau in the CSF are 
about three times higher than in age-matched controls, but isolated high tau protein 
levels can also be detected in other neurodegenerative diseases and brain lesions, 
such as traumatic brain injury, stroke, and Creutzfeldt-Jakob disease [12, 13]. On 
the contrary, p-tau protein (subtypes p-tau181 and p-tau231) seems to be a more spe-
cific biomarker of AD [12, 13].

It is well established that the best accuracy in the differential diagnosis of AD 
patients is obtained with the combined analysis of two or more of the three main AD 
CSF markers (total tau, p-tau, and Aβ42). Association of Aβ42 with total tau or p-tau 
improves both sensitivity and specificity of AD diagnosis compared to any of the 
markers alone. Accordingly, the ratios tau/Aβ42 and p-tau/Aβ42 have been proposed, 
as well as the AD-CSF-Index [15].

The combination of low Aβ42 and high levels of tau and p-tau can accurately 
identify patients with AD, even at the early stages of the disease, before full demen-
tia develops [12, 13]. Indeed, it has also been consistently shown in large cohorts of 
patients with mild cognitive impairment (MCI) that an AD biomarker profile distin-
guishes with high accuracy (up to 95% sensitivity) MCI patients who will progress 
to AD dementia from healthy controls and from MCI patients who will remain cog-
nitively stable during the follow-up. These longitudinal studies showed that “MCI-
converters” have an initial biological profile characterized by low Aβ42 associated 
with high levels of CSF total tau and p-tau. In contrast, “MCI-stable” patients have 
an average biomarker profile [16, 17]. Taken together, these data support the validity 
of CSF markers for identifying incipient AD among patients with MCI [12, 13, 18].

The analysis of CSF biomarkers can support the differential diagnosis between 
AD and other dementias [19–21]. Data from different centers consistently showed 
that the combined analysis of Aβ + tau CSF biomarkers provides the best accuracy 
in the differential diagnosis between AD and other dementias, such as Lewy body 
dementia and frontotemporal dementia (FTD) [19]. CSF biomarkers are also help-
ful in identifying patients with focal atypical AD presentations. Atypical focal forms 
of AD do not present the typical amnestic pattern and include non-amnestic focal 
cortical syndromes [22], such as posterior cortical atrophy, logopenic aphasia, and 
the behavioral/dysexecutive variant (so-called frontal variant) [23]. These variants 
exhibit the typical CSF signature of AD and the characteristic histological lesions of 
Alzheimer’s pathology at postmortem exam.

In addition to the markers of Aβ deposition and pathologic tau, markers of neu-
rodegeneration complete the AT(N) triad proposed in the 2018 NIA-AA Research 
Framework. In this regard, several neurodegeneration markers have been proposed, 
including neurogranin; neuronal pentraxin 2 (NPTX2); synaptosomal-associated 
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protein, 25 kDa (SNAP-25); growth-associated protein, 43 kDa (GAP-43); 
β-synuclein; and others [24]. The neurofilament light chain (NfL) stands out among 
several neurodegeneration markers studied, and it has been intensively investigated 
in degenerative dementias. The increase in CSF NfL levels reflects axonal damage 
in AD and other neurodegenerative diseases, such as FTD. NfL measurement dif-
ferentiates degenerative dementias from other non-degenerative conditions, such as 
primary psychiatric disorders [25, 26]. As a marker of neurodegeneration, NfL is 
particularly important as a biomarker of disease progression. CSF NfL levels can 
significantly predict cortical amyloid load, brain atrophy, and cognitive perfor-
mance among patients with AD [27, 28] and individuals without dementia [29].

3 � Blood-Based Biomarkers of Alzheimer’s Disease

The current generation of AD biomarkers is invaluable for research (and sometimes 
clinical practice), but they are costly and invasive. Less costly and less invasive 
biomarkers would facilitate the use of such markers. In this regard, new techniques, 
mainly ultrasensitive immunoassays, are paving the way to detect very low brain 
protein concentrations in peripheral blood samples. Among several blood-based 
candidates, plasma levels of tau and NfL show promise as neurodegeneration mark-
ers, but they are not AD-specific. More recently, studies have also demonstrated that 
plasma Aβ holds promise as a potential (more specific) biomarker for AD [4].

As for the CSF, the combination of plasma levels of p-tau217 and Aβ42/Aβ40 ratio 
resulted in the most accurate model predicting AD neuropathological changes [30]. 
Numerous studies applying different techniques (immunoassays and mass 
spectrometry-based assays) showed that the plasma Aβ42/Aβ40 ratio is significantly 
lower in individuals with Aβ neuropathology compared to Aβ-negative people, 
independent of the cognitive status [reviewed in [24]]. Nevertheless, the accuracy of 
the plasma Aβ42/Aβ40 ratio in detecting Aβ pathology varied a lot, with mass 
spectrometry-based assays performing better than immunoassays. In addition, even 
in the high-performing assays, the correlations between plasma and CSF ratios were 
modest, probably due to peripheral sources Aβ [24].

The quantification of phosphorylated tau isoforms in plasma seems to yield bet-
ter results than plasma Aβ, and high-sensitivity assays performed well in assessing 
p-tau181, p-tau217, and p-tau231. Plasma p-tau species show good accuracy in distin-
guishing individuals with amyloid and tau pathology, using either neuroimaging or 
neuropathological assessments [24, 31]. Plasma p-tau217 seems to be the best in 
detecting AD pathology and predicting dementia, in addition to presenting the high-
est correlation coefficient among other p-tau isoforms when assessing plasma vs. 
CSF levels [24].

Plasma levels of NfL also correlate well with CSF levels and, therefore, can be 
used as a proxy for neurodegeneration. Indeed, elevated baseline plasma NfL was 
demonstrated as a good prognostic marker of cognitive decline and neuroimaging 
measures of neurodegeneration, with effect sizes similar to CSF NfL [29]. Like 
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CSF, plasma levels of NfL are a nonspecific marker of neurodegeneration, helpful 
in distinguishing neurodegeneration from other causes of dementia and in tracking 
disease progression [32]. In addition to NfL, plasma levels of glial fibrillary acidic 
protein (GFAP) hold promise as a predictive, nonspecific biomarker for AD. GFAP 
is thought to reflect reactive astrocytes, and the plasma levels of GFAP are increased 
in individuals with early amyloid pathology. Moreover, plasma GFAP can predict 
cognitive decline and conversion to AD in individuals without cognitive impairment 
and MCI [24].

4 � Final Remarks

Establishing an early and accurate diagnosis of AD will be of paramount impor-
tance when disease-modifying therapeutic strategies are available [33]. These treat-
ments will probably be more efficient if they are administered in the early stages of 
the disease and in well-defined groups of patients, requiring accurate early diagno-
sis tools [33]. For that, there is the need for biomarkers that reliably reflect the 
diagnosis and also the underpinning pathophysiology of the disease. In this sce-
nario, many neurodegeneration and neuroinflammation markers have been proposed 
for AD. Among them, Aβ, tau, and NfL provide information clinically relevant for 
AD prognosis [24]. CSF biomarkers represent a major development in the diagnos-
tic framework of dementia, but methodological issues must be acknowledged when 
considering the use of such biomarkers: the absence of established universal refer-
ence values, analytical variability [34], the possibility of false-positive results espe-
cially in patients over 70 years of age [35], the difficulty of performing the exam, 
and the high cost [26].

Amyloid PET is the only biomarker considered by the US Food and Drug 
Administration (FDA) as a “reasonably likely surrogate endpoint,” and therefore, it 
is currently used by AD disease-modifying trials seeking FDA’s Accelerated 
Approval. No AD fluid biomarker (including CSF markers) has been deemed a “rea-
sonably likely surrogate endpoint,” and no AD biomarker has yet achieved the status 
of a “validated surrogate endpoint” according to the FDA definitions [36]. 
Nevertheless, phase 3 trials testing anti-Aβ treatments are using plasma levels of 
AD-related markers (Aβ42, Aβ40, p-tau217) to identify individuals likely having pre-
clinical AD (NCT05026866, NCT04468659).

Importantly, the development of biomarkers of AD (including CSF Aβ, tau, 
p-tau, and amyloid PET) led to a new biological definition of AD [4, 37]. New diag-
nostic criteria for AD incorporated biomarkers in the clinical approach. The combi-
nation of clinical and biological tools offers the possibility to diagnose AD before 
the dementia stage and also in atypical non-amnestic presentations. Moreover, bio-
marker evidence enhances the specificity for diagnosing AD, which is crucial for 
new disease-modifying drugs that will tap into different pathophysiological targets.

The routine use of blood-based markers will undoubtedly speed up the process 
and reduce the costs related to AD diagnosis. These markers will be valuable 
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predictive/diagnostic and prognostic tools. Blood-based markers will likely be used 
in the screening process to support or reject an AD diagnosis, select patients for tri-
als, and monitor treatment response. The individuals with unclear or indeterminate 
results will need confirmatory testing with amyloid PET or CSF AD biomarkers 
[24]. Importantly: (i) CSF- or forthcoming blood-based markers should be com-
bined with a comprehensive clinical assessment and structural brain imaging; (ii) 
blood markers should never supersede a clinical diagnosis; (iii) they should only be 
used in patients with suspected AD when such a diagnosis will probably change the 
management of the patient, in addition to inclusion/monitoring in clinical trials [24].
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SPECT	 Single photon emission computed tomography
svFTD	 Semantic variant of frontotemporal dementia
Tau	 Hyperphosphorylated tau
TSPO	 Translocator protein

1 � Introduction

The 2018 Research Framework defined the beta-amyloid, tau, and neurodegenera-
tion or AT[N] stages, determined by imaging biomarkers, as critical for Alzheimer’s 
disease (AD) research [1]. Imaging biomarkers for AD were used mostly in research 
until June 2021, when the US Food and Drug Administration (FDA) approved adu-
canumab for clinical use; since then, imaging biomarkers have been used in the 
clinic as well as in research because amyloid deposition in the brain needs to be 
documented before aducanumab may be used. Under the commercial name 
Aduhelm™, aducanumab is a human monoclonal antibody that selectively reacts 
with beta-amyloid brain aggregates, including soluble oligomers and insoluble 
fibrils [2]. Beta-amyloid (amyloid for brevity) is a protein that begins to accumulate 
in the brain of people who eventually will develop AD 5–15 years before the onset 
of clinical symptoms [3]. While amyloid imaging showed that aducanumab reduced 
brain amyloid in clinical trials including patients with mild cognitive impairment 
(MCI) and mild AD [4], the reduction in clinical worsening associated with AD was 
minimally or not affected by aducanumab at the clinical stages included in these 
trials [4, 5]. Nonetheless, physicians began prescribing this medication, which logi-
cally required demonstrating amyloid brain accumulation in a potential candidate 
for aducanumab therapy. While abnormal brain amyloid can be predicted by mea-
suring amyloid and tau in cerebrospinal fluid [6], people prefer amyloid imaging 
when availability or cost does not preclude its use. Although the use of plasma 
biomarkers of amyloid deposition in the brain is promising and gaining in accuracy 
[7], at the time of this writing either CSF or imaging is still needed to document 
brain amyloid deposition in the clinic [8]. Brain amyloid removal by monoclonal 
antibodies occurs largely through the walls of small vessels, which become more 
permeable, giving rise to brain edema or microhemorrhages in about 25% of the 
treated patients [9]. The occurrence of both events can be monitored with MRI 
using the FLAIR sequence for edema and gradient echo or susceptibility-weighted 
sequences to monitor blood deposition in the brain [9].

The clinical use of imaging biomarkers was further encouraged by the January 
2023 FDA approval of lecanemab (Leqembi™), another humanized monoclonal 
antibody, this one targeting soluble amyloid protofibrils and causing not only a 
reduction of brain amyloid but also a slowing of the clinical worsening as well [10]. 
That the clinical effect was modest could be explained by the stage of AD at which 
this medication was used. In mice, two broad stages can be observed, an amyloid-
dependent stage and an amyloid-independent stage [11]. When excess amyloid is 
removed from the brain at the amyloid-dependent stage, the animals do not go on to 
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develop Alzheimer’s disease. However, if excess amyloid is removed at the amyloid-
independent stage, the animals continue to worsen relentlessly until death. At the 
amyloid-dependent stage, there is no abnormal tau in the brain of the animals, but at 
the amyloid-dependent stage, abnormal, phosphorylated tau has begun to be detect-
able in the brain [11]. Similar changes can be observed in humans using imaging 
biomarkers [12]. The brain deposition of amyloid alone is not associated with cog-
nitive impairment [3]. However, when tau is detected by imaging outside the ento-
rhinal cortex, people are already symptomatic, with the degree and type of clinical 
symptoms correlating closely with the degree of tau deposition and its location in 
the brain [13]. Areas with high tau are typically hypometabolic on FDG PET, such 
that there is a ying-yang relationship between these two imaging biomarkers: where 
tau is high, metabolism is low (Fig. 1). As both aducanumab and lecanemab were in 
clinical trials of symptomatic subjects, who were likely at the amyloid-independent 
stage, even the modest clinical effect is encouraging. From the foregoing, determin-
ing tau build up in the brain of a potential candidate for one of these therapies could 
be very helpful to predict benefit: people with more tau are less likely to benefit 
from anti-amyloid antibodies [14].

At the time of this writing, several monoclonal antibodies targeting brain amy-
loid are being studied at the pre-symptomatic, amyloid-dependent, stage. These 
studies are made possible by the availability of amyloid imaging to detect excess 
brain amyloid in people who are cognitively unimpaired. Furthermore, although 
neuropsychological scores are used as outcome measures, brain tau provides a mea-
sure with less day-to-day variability than neuropsychological testing, and it is 
beginning to be used as an outcome measure [15]. This chapter will review the 
imaging biomarkers mentioned in this introduction and others most extensively 
used in dementia, leaving for future reviews potentially useful biomarkers, for 
instance, cortical mean diffusivity [16].

2 � Neuroimaging Biomarkers

The imaging modalities used to study AD include MRI and PET. Single photon 
emission computed tomography (SPECT) is also being used to study brain perfu-
sion, but its use has been largely replaced by the use of an MRI sequence, arterial 
spin labelling, that allows for the study of brain perfusion.

2.1 � MRI Regional Brain Volume

Neurodegeneration causes progressive loss of brain volume, which cannot be appre-
ciated on MRI images nearly as well as other brain lesions, such as tumors or infarc-
tion. Although brain volume loss, widely known as atrophy, can be rated visually 
[17], automated methods are less time-consuming and more precise and facilitate 
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Fig. 1  Imaging findings in patient with AD (logopenic aphasia). Metabolism, amyloid, and tau 
imaging from a 57-year-old woman with the logopenic aphasia variety of Alzheimer’s disease. The 
primary sensory-motor areas (asterisks), as well as the primary visual (striatal cortex) and auditory 
(Heschl’s gyrus) regions (arrowheads), have normal metabolism and no tau deposition. By con-
trast, areas with a high tau deposition (e.g., inferior parietal lobule, arrows) tend to have decreased 
metabolism. In some areas, a high amyloid deposition corresponds to a low metabolism and an 
increased tau (e.g., the precuneus). However, there are areas with high amyloid load and normal 
metabolism, such as the medial occipital region. Uptake in the region of the substantia nigra does 
not correspond to tau deposition. (From [13] with permission)
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longitudinal follow-up. Classical automated methods follow one of the two 
approaches: voxel-based morphometry (VBM) [18] or surface-based morphometry 
(SBM) [19–21]. These methods are based on the automatic segmentation of the 
brain cortex, deep nuclei, white matter, and ventricles, based on the different inten-
sities of these structures, mostly on T1-weighted images. In VBM, through sophis-
ticated deformation techniques, beyond the scope of this chapter, the brain of a 
given individual is placed in a standard brain template, thus facilitating the statisti-
cal comparison of the various brain regions of this individual with similar regions of 
a control sample, typically healthy people of similar age and sex as the individual of 
interest [22, 23]. In SBM, similar procedures are used for segmentation of the vari-
ous components of the brain, but the boundary between the cortical gray and under-
lying white matter is obtained. This boundary, together with surface coordinates of 
the brain of the individual of interest, as well as its deep structures, is ingeniously 
compared to standard brains and atlases that contain the typical anatomical regions 
[24, 25]. The first SBM software, FreeSurfer [26, 27], which is available through an 
open access license, is perhaps the volumetric software most commonly used in 
research. For clinical use, several VBM or SBM commercial packages are available 
for seamless integration with clinical PACS systems. In dementia MRI, the accuracy 
of software that classifies clinically appropriate cases has been compared favorably 
with the accuracy of trained readers [28]. Interestingly, even among image special-
ists, those with more experience in reading brain images obtain the best clinical 
results in dementia patients from automated MRI volume methods [29]. More 
recently, machine learning and neural network computing are revolutionizing the 
use of MRI and other imaging datasets for the longitudinal assessment of brain 
changes in AD/ADRD [30–33]. Since the steps of data processing are not as clear 
as with VBM or SBM, the reliability of these techniques can be best evaluated by 
researchers with an extensive knowledge of brain anatomy and function and by 
comparison with other quantitative techniques [34].

Volume loss in the medial temporal regions was the first reliable neuroimaging 
finding detected in AD [35] and still thought to be the most robust on MRI. The 
name of neurodegenerative pattern has been assigned to the pattern of atrophy most 
often observed in AD [36] (Fig. 2). Indeed, regional atrophy in a set of mostly post-
Rolandic structures is a strong predictor of AD on MRI [19]. In cognitively unim-
paired people, the presence of a neurodegenerative MRI pattern is predictive of the 
development of mild cognitive impairment later in life, particularly when associated 
with amyloid deposition [37].

Most cortical thickness studies have assumed a linear volume loss in the AD 
process, starting at the pre-symptomatic stages. However, a biphasic pattern is more 
likely, with increased thickness at some point of the very early process, followed by 
subsequent progressive thinning [38, 39]. This pattern would agree with early 
inflammatory changes resulting in cortical swelling that would be compensated for 
and surpassed by the volume loss caused by later progressive neuronal loss. This 
pattern would explain why atrophy has not been found by every study to predate the 
onset of cognitive impairment in familial autosomal dominant AD [40–43]. It would 
also explain the paradoxical increased “atrophy” in patients treated with 
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Fig. 2  Cortical thickness in Alzheimer’s disease. On MRI templates of the brain, in color are areas 
of the brain of a patient with Alzheimer’s disease where the cortex is thinner at a higher (yellow) 
or lower (red) statistical level as compared to a group of controls of the same age and sex

monoclonal antibodies targeting amyloid [44]. A reduction in cortical amyloid has 
been documented neuropathologically to reduce inflammation in the cortex [45]. 
These data suggest that MRI volumetry is not a reliable marker of neurodegenera-
tion in therapeutic trials.

By correlating postmortem findings with the pattern of atrophy on MRI, three 
distinct atrophy patterns have been found in patients with typical AD neuropathol-
ogy, including amyloid deposition: typical AD (about 70% of cases), limbic-
predominant AD (20%) and hippocampal-sparing AD (10%) [46]. Most patients 
with typical and limbic-predominant AD initially present with an amnestic syn-
drome, but only about 40% of those with hippocampal-sparing AD do. Medial tem-
poral atrophy is most severe in patients with limbic-predominant AD, followed 
closely by typical AD, and milder in those with hippocampal-sparing AD. Conversely, 
the most severe cortical atrophy was noted in patients with hippocampal-sparing 
AD, followed by those with typical disease, and then limbic-predominant AD. The 
ratio of hippocampal to cortical volumes allowed the best discrimination between 
subtypes [46]. In addition, some AD patients, particularly younger ones, present 
with a disorder of visual perception, including one or several components of Balint’s 
syndrome, alexia, and even field defects on confrontation testing, caused by poste-
rior cortical atrophy [47–49] (Fig. 3).

The pattern of atrophy in AD resembles that of dementia with Lewy bodies (DLB) 
[50], but in DLB there is more atrophy in the fusiform gyrus and paracentral cortex 
[51]. The imaging similarity between the two diseases can be explained at least in 
part by the frequent coexistence of AD and alpha-synuclein neuropathologies [50, 
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Fig. 3  Cortical thickness, amyloid, and tau in a patient with the posterior cortical atrophy variant 
of Alzheimer’s disease. Areas of decreased cortical thickness are indicated as in Fig 2. Areas with 
increased amyloid or tau are in red. Note the similar topography of these changes, most pro-
nounced in the posterior portion of the brain

52, 53]. Patients with pure alpha-synuclein pathology have little atrophy, such that 
the lack of hippocampal atrophy associated with memory loss in MCI is indicative 
of DLB [54]. Atrophy in AD, which tends to affect the posterior brain regions, differs 
from atrophy in FTD, which tends to affect the anterior portion of the brain [55]. 
Hippocampal volume alone poorly differentiates AD from FTD; hippocampal scle-
rosis associated with FTD could explain the overlap [56].
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2.2 � Metabolism

Regional brain metabolism is currently used as a biomarker of neurodegeneration, 
for instance, to document the “N,” neurodegeneration, in the AT[N] system [1]. 
Metabolism is measured with 18F-FDG PET [57–59]. Metabolism may be closely 
linked to the pathophysiology of AD; as in older people, the regional brain expres-
sion of AD-risk genes correlates with regional metabolism [60]. The most typical 
metabolic pattern found in early AD is decreased metabolism bilaterally in the pari-
etotemporal association cortex and posterior cingulate gyrus [61] (Fig.  4). 
Metabolism reflects synaptic activity and therefore is most affected early in the 
regions to which medial temporal neurons project [62, 63] and may reflect impaired 
connectivity even in pre-symptomatic subjects [40, 64]. As atrophy corresponds to 
neuronal loss, it is no surprise that the regions most affected on volumetric MRI and 
metabolic PET do not coincide early in AD [65], but they partially overlap as the 
disease progresses [66]. As AD progresses, some areas of the frontal association 
cortex become hypometabolic, while the paracentral cortex (primary motor-sensory 
areas) remains preserved (Fig. 1). The specificity and sensitivity of these findings 
continue to be debated. In studies of AD with neuropathological confirmation, the 
sensitivity (84–95%) has been higher than the specificity (71–74%), that is, a nor-
mal study is seldom associated with AD [59, 67]. Using consensus diagnosis, in an 
area under the receiver operating characteristic (ROC) analysis for three automated 
approaches to mild AD diagnosis, the specificity approximates 85% when the 

Fig. 4  FDG PET group 
findings in Alzheimer’s 
disease. Projected on a 
rendered MRI and shown 
in red are areas with a low 
metabolism in a group of 
28 patients with early 
Alzheimer’s disease, 
compared with 28 healthy 
controls. Note sparing of 
the paracentral (primary 
motor-sensory) cortex
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Fig. 5  “Island sign” in Lewy body dementia (LBD). On MRI templates of the medial aspect of the 
brain, areas of decreased metabolism (18F-FDG PET) in AD (A) and decreased perfusion (H2

15O-
PET) in LBD (B). Metabolism and perfusion are coupled in AD and LBD. Note involvement of the 
posterior cingulate gyrus in AD but sparing of this region (arrow) in LBD. (Modified from [153])

sensitivity is pegged at 80% [68]. Depending on the approach and the sample stud-
ied, the accuracy for predicting the evolution of MCI to AD varies from 0.774 to 
0.983 [68]. Among persons with MCI, those most likely to progress to AD have 
metabolic findings similar to AD [69]. 18F-FDG PET may predict better than struc-
tural MRI or SPECT the worsening from MCI to AD [70].

The AD metabolic pattern can also be found with DLB, in part because the two 
brain pathologies often coexist [52, 53]. However, while AD tends to render hypo-
metabolic the posterior cingulate gyrus, this structure is often spared in DLB, giving 
rise to the “posterior-cingulate island sign” on FDG PET [71] (Fig. 5). Unlike AD, 
which tends to affect posterior brain regions, the frontal and anterior portions of the 
temporal lobes are usually hypometabolic in FTD [58]. Patients with progranulin 
mutations, however, often have parietal involvement [72].

2.3 � Perfusion Imaging

In the absence of associated vascular disease [73], perfusion is typically coupled to 
metabolism in neurodegenerative disorders. In current clinical practice, brain perfu-
sion is most often studied with MRI arterial spin labelling (ASL), a sequence that 
can be obtained together with more conventional MRI sequences. As expected, 
cerebral blood flow (CBF) obtained with ASL tends to correlate topographically 
with metabolism, particularly in the more advanced AD stages [74–78]. However, 
FDG PET slightly outperforms ASL in separating AD and, particularly, MCI 
patients from controls, both in visual readings and using automated procedures [74, 
77, 79, 80].

Brain perfusion can also be assessed with SPECT, using Tc-99m HMPAO (hexa-
methyl propylamine oxime, Ceretec™), a lipid soluble macrocyclic amine, or 
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Tc-99m ECD (ethyl cysteinate dimer, Neurolite™). A head-to-head comparison of 
perfusion SPECT with metabolism PET has shown better sensitivity and specificity 
of PET over SPECT in AD and diffuse Lewy body disease [57].

2.4 � Amyloid Imaging

Brain amyloid was initially imaged with “Pittsburgh compound B” (11C-PIB) [81]. 
PIB is available bound to 11C, a positron-emitting isotope with a half-life of 20.4 min, 
requiring an on-site cyclotron. However, since 2012 there are amyloid-imaging 
compounds bound to 18F, with a half-life of 109.8 min. The longer half-life allows 
for the radiotracer to be synthesized at a facility with a cyclotron and then shipped 
to institutions with PET cameras, more widely available. Good concordance with 
histologically measured amyloid load has been shown not only for PIB [82, 83] but 
also for three 18F amyloid PET tracers, 18F-florbetapir [84], 18F-flutemetamol [85], 
and 18F-florbetaben [86], which are approved by the FDA for use in the clinical set-
ting. At the time of this writing, 2023, a fourth amyloid PET tracer, 18F-flutafuranol, 
also known as 18F-NAV4694, is only used in research, but it has much less white-
matter binding than other 18F tracers, thus providing cleaner images, similar to those 
obtained with PIB [87].

As another biomarker of AD, decreased CSF amyloid 42 [88], amyloid brain 
deposition begins in the preclinical stages of AD, increases during the MCI stage, 
and, by the time of the AD diagnosis, remains relatively stable as the disease pro-
gresses [3, 89]. Thus, amyloid deposition is a marker of the pre-symptomatic stages 
of the disease and correlates with the degree of cognitive impairment only in the 
preclinical stages and MCI, not during AD [3, 90], while atrophy and synaptic dys-
function continue to increase and spread as clinical AD worsens and cognition dete-
riorates [89].

In asymptomatic individuals of similar age, amyloid deposition has been found 
more often among APOE4 carriers [91], but this genotype may not have an effect on 
the risk of cognitive worsening once its effect on amyloid deposition is accounted 
for [92, 93]. Lifetime cognitive engagement has been found to protect from preclini-
cal amyloid deposition [94], but this effect, like the protective effect of physical 
exercise, may be restricted to APOE4 carriers [95]. Impaired sleep has been associ-
ated with an increased amyloid burden [96].

Amyloid deposition is the strongest and earliest neuroimaging predictor of future 
cognitive impairment in healthy elderly and of worsening from MCI to AD, increas-
ing the risk between three- and sevenfold [92, 97, 98]. The effect of amyloid deposi-
tion on cognitive impairment in the early stages of the AD continuum may be 
modulated by some common genetic variants. For instance, healthy APOE4 carriers 
have not only a greater amyloid deposition but also worse memory and visuospatial 
skills for the same amount of 11C-PIB binding [99]. This finding may reflect a lon-
ger period of time with amyloid deposition in the APOE4 carriers. Healthy, amyloid-
positive carriers of the Met genotype of the brain-derived neurotrophic factor 
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(BDNF) Val66Met allele have a greater worsening on follow-up in episodic mem-
ory, language, and executive function than the Val homozygotes despite similar 
amyloid PET binding in both groups [100].

Amyloid imaging is also a powerful tool to separate the dementias characterized 
by amyloid deposition, such as AD and diffuse DLB, often associated with AD [53], 
from the FTD, which course without amyloid deposition. Separating patient sam-
ples of AD and FTD validated clinically, areas under the ROC curve for 11C-PIB 
(0.888) and 18F-FDG (0.910) were similar [101]. 11C-PIB slightly outperformed 
18F-FDG in patients with known histopathology [101]. A confounder is the presence 
of amyloid deposition in some older people with FTD because the prevalence of 
amyloid positivity increases with age [37, 102]. Although the diagnosis of AD is 
predicated on the presence of amyloid plaques in the brain [103], a few cases with 
AD have a tau PET typical for AD, with intense uptake in the cortex of AD regions, 
but a negative amyloid PET [104, 105]. Neuropathology is still lacking, but it is 
possible that these patients have diffuse or cotton-wool plaques or some other type 
of amyloid burden not well imaged with the current amyloid PET tracers [106, 107]. 
These patients should not be confused with patients who have a negative amyloid 
PET, but a positive signal, although typically weaker than in AD, in FTD-typical 
areas with one of the tau tracers. In these cases, the signal is often greatest in white 
matter, which on neuropathology contains a lower density of known abnormal pro-
tein aggregates, such as tau or TDP-43, than the cortex [108].

Patients with an AD clinical phenotype may have a negative amyloid PET scan. 
In a clinical trial of early AD, 14% had negative amyloid scans among 214 with AD 
symptomatology [109]. This proportion parallels the 14% amyloid-negative in a 
population sample of 154 amnesic MCI patients and 16% of 58 MCI patients from 
ADNI [110] and may rise to 30% when the patients studied are older than 82 years 
[111]. It may reflect the smaller subset of patients with dementia who do not have 
elevated amyloid or tau at autopsy [112]. These imaging findings could reflect the 
rather mixed pathology found in the oldest-old [113]. However, even with a careful 
neuropathological exclusion of other etiologies, clinical and neuropathological find-
ings are occasionally dissociated: individuals with marked amyloid and neurofibril-
lary pathology may be cognitively intact [112]. In these individuals there is less 
amyloid deposition in the form of fibrillar plaques and intimately related oligomeric 
amyloid assemblies, less hyperphosphorylated soluble tau species localized in syn-
apses, and less glial activation [114].

In early AD, amyloid deposition is highest in the default network and, thus, in 
fronto-parieto-temporal association cortex, including the precuneus, but sparing the 
paracentral regions and primary visual and auditory sensory cortex (Fig. 1). The 
caudate nucleus is often affected as well.

Longitudinal amyloid imaging allows for the evaluation of the natural history of 
amyloid deposition among at-risk genotypes [91], and it is being used as a marker 
of effectiveness in clinical trials carried out during the preclinical stage of AD, 
because it has helped elucidate brain changes during AD therapy [10, 115, 116].
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2.5 � Tau Imaging

In the healthy brain, the protein tau stabilizes neurotubules and is therefore essential 
for normal neural function [11]. However, in AD and other neurodegenerative dis-
orders, tau becomes abnormally hyperphosphorylated, dysfunctional, and mis-
folded, constituting the tangles observed neuropathologically in AD and other 
tauopathies. PET tracers are available that bind strongly to the abnormally folded 
tau, using the folding properties of this protein for binding. These tracers do not 
bind to the healthy, native form of tau, but here we refer to hyperphosphorylated tau 
simply as “tau,” as has become common usage. PET tracers currently used to image 
tau include 18F-T807, most recently known as 18F-AV-1451 or 18F-flortaucipir [117–
119], which was approved for clinical use by the FDA after a postmortem study 
proved that 18F-flortaucipir binds to tau tangles in AD [120]. 18F-Flortaucipir shows 
highly specific uptake in areas known neuropathologically to contain a large amount 
of tau in AD [13, 118, 121] (Fig. 1). It has little white matter binding, but there is 
uptake in the substantia nigra, explained by binding of 18F-flortaucipir to melanin 
[122, 123], and in the choroid plexus, possibly from binding to calcifications or 
even tau in this structure [124, 125]. In older individuals, even those cognitively 
intact, there is nonspecific binding in the lenticular nucleus, red nucleus, and sub-
thalamic nucleus, possibly due to iron deposition [124], as well as in the upper por-
tion of the cerebellum (Fig. 6).

18F-Flortaucipir binds to tau in AD [126], which is associated with 3- and 4-repeat 
(3R and 4R) tau aggregates, but much less or not at all with 3R or 4R tau found in 
most varieties of tau-related FTD [122, 124]. The configuration of tau aggregates, 
which differs in various tauopathies [127], most likely determines binding. For 
instance, 18F-flortaucipir binds to patients harboring a p.R406W mutation in the 
MAPT gene, encoding tau [128]. This mutation results in 3R and 4R tau aggregates 

Fig. 6  “Nonspecific” uptake with the PET tau tracer 18F-flortaucipir. From left to right and pro-
jected on MRI, coronal, axial, and sagittal 18F-flortaucipir images from a cognitively normal 
72-year-old man. Note uptake in the globus pallidus (coronal section, white arrows), substantia 
nigra (axial section, arrows), and superior portion of the cerebellum (sagittal section, arrow). None 
of these areas are known to harbor tau
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like those in AD [128]. 18F-Flortaucipir also binds weakly to the regions most 
affected in FTD cases and, particularly, in semantic dementia [129], but careful 
neuropathological evaluation has shown a lack of binding to 4R tau or to TDP-43 
[124, 130, 131]. Furthermore, the signal in FTD involves the white matter, rather 
than the cortex, where the accumulation of misfolded proteins is greatest [108]. This 
binding has been postulated to correspond to MAO-B, abundantly expressed by 
astrocytes, but the 18F-flortaucipir signal has not been suppressed by blocking 
MAO-B [108].

Compared to 18F-flortaucipir, two commonly used newer tau PET tracers have 
less nonspecific binding to the lenticular nucleus, 18F-MK6240 and 18F-PI-2620. 
There is extensive experience with 18F-MK6240, which has less binding to choroid 
plexus than 18F-flortaucipir, thus allowing for a better quantification of tau deposi-
tion in medial temporal regions, including the entorhinal cortex [105]. A negative 
characteristic of 18F-MK6240 is the frequent intense binding to meningeal struc-
tures and to the skull (Fig. 7); various methods have been suggested to compensate 
for this binding [132]. Less experience exists with 18F-PI-2620, which also seems to 
bind to the meninges and skull [133]. 18F-PI-2620 has been postulated to bind not 
only to AD tau [134] but also to 4R tau as well and thus be useful in imaging corti-
cobasal degeneration and progressive supranuclear palsy [133, 135].

Tau accumulation measured with tau PET tracers correlates better with the 
degree of cognitive impairment than amyloid accumulation [136], a finding in 
agreement with prior neuropathological studies [137]. Furthermore, there is an 
inverse correlation between tau accumulation and brain metabolism: regions high in 
tau have uniformly depressed metabolism [13] (Fig. 1). This correlation is not as 
tight with amyloid accumulation (Fig. 1).

In amyloid-negative, clinically normal people older than 60, tau accumulation in 
the entorhinal cortex is associated with worse cognitive performance and greater tau 
in other brain regions [138].

Fig. 7  “Nonspecific” uptake with the PET tau tracer 18F-MK6240. From left to right and projected 
on MRI, coronal, axial, and sagittal 18F-MK6240 images from a cognitively normal 73-year-old 
man. Please compare it with Fig. 6. Although there is no uptake in the globus pallidus (coronal 
section, white arrows), there is still uptake in the substantia nigra and uptake in the skull and 
meninges (red arrows)
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2.6 � Inflammation Imaging

Although brain inflammation is prominent in AD and related disorders, the use of 
inflammation imaging is not as widespread as that of previously described imaging 
biomarkers. Inflammation can be pathogenic, reflect scavenging of neurons and 
neuronal processes, or have a neuroprotective effect [139–141]. Animal models of 
tau-induced neuronal loss have shown earlier and more severe inflammation than 
models of increased amyloid [142], and both microglia and reactive astrocytes are 
found at autopsy to be increased in areas of the brain affected by neurodegenerative 
pathology. However, in vivo brain inflammation data in human neurodegeneration 
is scant. PET imaging allows in vivo quantification of neuroinflammation by mea-
suring the density of the 18-kDa translocator protein (TSPO), which is expressed in 
microglia, astrocytes, and reactive endothelial cells. TSPO has been imaged with 
11C-PK11195, a compound that in humans has a low affinity for the receptor [143] 
and a low ratio of specific-to-nonspecific binding [144]. The limitations of 11C-
PK11195 prompted the development of second-generation radioligands for imaging 
activated microglia. 11C-PBR28 is a second-generation radioligand with a high 
affinity to TSPO, favorable in vivo kinetics, and greater signal-to-noise ratio than 
11C-PK11195 in monkey brain [144]. Unfortunately, the affinity of this and other 
TSPO PET tracers is strongly determined by the rs6971 polymorphism on the TSPO 
gene, leading to high- and low-affinity groups, as well as an intermediate pheno-
type. More recently developed, 11C-ER176 has a higher affinity for TSPO and 
allows for imaging of people with the low-affinity rs6971 polymorphism of the 
TSPO gene [145, 146].

Using these tracers, increased brain inflammation has been documented even at 
pre-symptomatic stages of AD [147], with a good topographic correlation between 
inflammation and amyloid deposition (Fig. 8). At the MCI stage, many studies, for 
instance [148, 149], but not all [150] have shown neuroinflammation. The lack of 
consistency at the MCI stage may be related to a biphasic effect of inflammation, 
with earlier and later peaks [151], possibly neuroprotective at the early stages, but 
harmful at later stages. While this is still unclear, neuroinflammation seems to medi-
ate tau spreading [152]. In dementing diseases more focal than AD, such as seman-
tic dementia, inflammation has been shown to peak at the boundary between 
involved and healthy brain (Fig. 9), suggesting that inflammation plays an important 
role in the progression of neurodegeneration [108].

In conclusion, the availability of imaging biomarkers for several of the major 
components of AD has greatly furthered the understanding of the development of 
this disease in humans. Furthermore, it has facilitated the performance of clinical 
trials that have recently yielded positive results. In terms of imaging, the develop-
ment of tracers for alpha-synuclein and TDP-43, of great importance in LBD and 
FTD respectively, is being worked on. Furthermore, perfecting plasma biomarkers 
would greatly facilitate population screening, so that putative therapies could be 
applied to prevent or thwart the pathological processes causing irreparable neuronal 
loss in diseases leading to dementia.
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Fig. 8  Amyloid and inflammation PET in a pre-symptomatic AD patient. Although this person 
was cognitively unimpaired, amyloid PET evidenced increased amyloid deposition in the frontal 
lobe and precuneus. Similar regions had inflammation on 11C-ER176 PET. This tracer binds to TSPO

Fig. 9  Cortical thickness on MRI and inflammation PET in semantic dementia. On brain tem-
plates, in color are areas where a group of patients with semantic dementia differ from controls. 
Cortical thickness is most abnormal at the anterior portion of the left temporal lobe, in the core of 
the damage, while inflammation peaks at the periphery of the area with reduced cortical thickness. 
(From [108])

Neuroimaging Biomarkers in Alzheimer’s Disease and Related Disorders



178

Funding  This work was supported by the Nantz National Alzheimer Center, Houston Methodist 
Neurological Institute, and by the Chao, Baucom, Graham, Harrison, Henning and Nantz Funds 
from the Houston Methodist Hospital Foundation, as well as by the Dearing.

References

1.	Jack CR Jr, Bennett DA, Blennow K, Carrillo MC, Dunn B, Haeberlein SB, Holtzman DM, 
Jagust W, Jessen F, Karlawish J, Liu E, Molinuevo JL, Montine T, Phelps C, Rankin KP, 
Rowe CC, Scheltens P, Siemers E, Snyder HM, Sperling R, Contributors. NIA-AA Research 
Framework: toward a biological definition of Alzheimer’s disease. Alzheimers Dement. 
2018;14:535–62.

2.	Sevigny J, Chiao P, Bussiere T, Weinreb PH, Williams L, Maier M, Dunstan R, Salloway S, 
Chen T, Ling Y, O’Gorman J, Qian F, Arastu M, Li M, Chollate S, Brennan MS, Quintero-
Monzon O, Scannevin RH, Arnold HM, Engber T, Rhodes K, Ferrero J, Hang Y, Mikulskis A, 
Grimm J, Hock C, Nitsch RM, Sandrock A. The antibody aducanumab reduces abeta plaques 
in Alzheimer’s disease. Nature. 2016;537:50–6.

3.	Villemagne VL, Pike KE, Chetelat G, Ellis KA, Mulligan RS, Bourgeat P, Ackermann 
U, Jones G, Szoeke C, Salvado O, Martins R, O’Keefe G, Mathis CA, Klunk WE, Ames 
D, Masters CL, Rowe CC.  Longitudinal assessment of Abeta and cognition in aging and 
Alzheimer disease. Ann Neurol. 2011;69:181–92.

4.	Budd Haeberlein S, Aisen PS, Barkhof F, Chalkias S, Chen T, Cohen S, Dent G, Hansson 
O, Harrison K, von Hehn C, Iwatsubo T, Mallinckrodt C, Mummery CJ, Muralidharan KK, 
Nestorov I, Nisenbaum L, Rajagovindan R, Skordos L, Tian Y, van Dyck CH, Vellas B, Wu 
S, Zhu Y, Sandrock A. Two randomized phase 3 studies of aducanumab in early Alzheimer’s 
disease. J Prev Alzheimers Dis. 2022;9:197–210.

5.	Costa T, Cauda F.  A Bayesian reanalysis of the phase III aducanumab (ADU) trial. J 
Alzheimers Dis. 2022;87:1009–12.

6.	Barthélemy NR, Saef B, Li Y, Gordon BA, He Y, Horie K, Stomrud E, Salvadó G, Janelidze 
S, Sato C, Ovod V, Henson RL, Fagan AM, Benzinger TLS, Xiong C, Morris JC, Hansson O, 
Bateman RJ, Schindler SE. CSF tau phosphorylation occupancies at T217 and T205 repre-
sent improved biomarkers of amyloid and tau pathology in Alzheimer’s disease. Nat Aging. 
2023;3:391–401.

7.	 Jack CR, Wiste HJ, Algeciras-Schimnich A, Figdore DJ, Schwarz CG, Lowe VJ, Ramanan 
VK, Vemuri P, Mielke MM, Knopman DS, Graff-Radford J, Boeve BF, Kantarci K, Cogswell 
PM, Senjem ML, Gunter JL, Therneau TM, Petersen RC. Predicting amyloid PET and tau 
PET stages with plasma biomarkers. Brain. 2023;146:2029–44.

8.	Mattsson-Carlgren N, Palmqvist S. The emerging era of staging Alzheimer’s disease pathol-
ogy using plasma biomarkers. Brain. 2023;146:1740–2.

9.	Salloway S, Chalkias S, Barkhof F, Burkett P, Barakos J, Purcell D, Suhy J, Forrestal F, Tian 
Y, Umans K, Wang G, Singhal P, Budd Haeberlein S, Smirnakis K. Amyloid-related imaging 
abnormalities in 2 phase 3 studies evaluating aducanumab in patients with early Alzheimer 
disease. JAMA Neurol. 2022;79:13–21.

10.	van Dyck CH, Swanson CJ, Aisen P, Bateman RJ, Chen C, Gee M, Kanekiyo M, Li D, 
Reyderman L, Cohen S, Froelich L, Katayama S, Sabbagh M, Vellas B, Watson D, Dhadda 
S, Irizarry M, Kramer LD, Iwatsubo T. Lecanemab in early Alzheimer’s disease. N Engl J 
Med. 2023;388:9–21.

11.	Hyman BT. Amyloid-dependent and amyloid-independent stages of Alzheimer disease. Arch 
Neurol. 2011;68:1062–4.

12.	Masdeu JC, Pascual B.  Genetic and degenerative disorders primarily causing dementia. 
Handb Clin Neurol. 2016;135:525–64.

J. C. Masdeu and B. Pascual



179

13.	Pascual B, Masdeu JC. Tau, amyloid, and hypometabolism in the logopenic variant of pri-
mary progressive aphasia. Neurology. 2016;86:487–8.

14.	Reardon S. Alzheimer’s drug donanemab: what promising trial means for treatments. Nature. 
2023;617:232–3.

15.	Shcherbinin S, Evans CD, Lu M, Andersen SW, Pontecorvo MJ, Willis BA, Gueorguieva 
I, Hauck PM, Brooks DA, Mintun MA, Sims JR.  Association of amyloid reduction after 
donanemab treatment with tau pathology and clinical outcomes: the TRAILBLAZER-ALZ 
randomized clinical trial. JAMA Neurol. 2022;79:1015–24.

16.	Rodriguez-Vieitez E, Montal V, Sepulcre J, Lois C, Hanseeuw B, Vilaplana E, Schultz AP, 
Properzi MJ, Scott MR, Amariglio R, Papp KV, Marshall GA, Fortea J, Johnson KA, Sperling 
RA, Vannini P. Association of cortical microstructure with amyloid-β and tau: impact on cog-
nitive decline, neurodegeneration, and clinical progression in older adults. Mol Psychiatry. 
2021;26:7813–22.

17.	Scheltens P, Fox N, Barkhof F, De Carli C. Structural magnetic resonance imaging in the 
practical assessment of dementia: beyond exclusion. Lancet Neurol. 2002;1:13–21.

18.	Good CD, Scahill RI, Fox NC, Ashburner J, Friston KJ, Chan D, Crum WR, Rossor MN, 
Frackowiak RS. Automatic differentiation of anatomical patterns in the human brain: valida-
tion with studies of degenerative dementias. NeuroImage. 2002;17:29–46.

19.	Dickerson BC, Bakkour A, Salat DH, Feczko E, Pacheco J, Greve DN, Grodstein F, Wright 
CI, Blacker D, Rosas HD, Sperling RA, Atri A, Growdon JH, Hyman BT, Morris JC, Fischl 
B, Buckner RL. The cortical signature of Alzheimer’s disease: regionally specific cortical 
thinning relates to symptom severity in very mild to mild AD dementia and is detectable in 
asymptomatic amyloid-positive individuals. Cereb Cortex. 2009;19:497–510.

20.	Thompson PM, Hayashi KM, de Zubicaray G, Janke AL, Rose SE, Semple J, Herman D, 
Hong MS, Dittmer SS, Doddrell DM, Toga AW. Dynamics of gray matter loss in Alzheimer’s 
disease. J Neurosci. 2003;23:994–1005.

21.	Goto M, Abe O, Hagiwara A, Fujita S, Kamagata K, Hori M, Aoki S, Osada T, Konishi S, 
Masutani Y, Sakamoto H, Sakano Y, Kyogoku S, Daida H. Advantages of using both voxel- 
and surface-based morphometry in cortical morphology analysis: a review of various applica-
tions. Magn Reson Med Sci. 2022;21:41–57.

22.	Ashburner J.  A fast diffeomorphic image registration algorithm. NeuroImage. 
2007;38:95–113.

23.	Ashburner J, Friston KJ.  Voxel-based morphometry  – the methods. NeuroImage. 
2000;11:805–21.

24.	Fischl B, Sereno MI, Dale AM. Cortical surface-based analysis. II: inflation, flattening, and a 
surface-based coordinate system. NeuroImage. 1999;9:195–207.

25.	Fischl B, Sereno MI, Tootell RB, Dale AM. High-resolution intersubject averaging and a 
coordinate system for the cortical surface. Hum Brain Mapp. 1999;8:272–84.

26.	Fischl B, Salat DH, Busa E, Albert M, Dieterich M, Haselgrove C, van der Kouwe A, Killiany 
R, Kennedy D, Klaveness S, Montillo A, Makris N, Rosen B, Dale AM. Whole brain seg-
mentation: automated labeling of neuroanatomical structures in the human brain. Neuron. 
2002;33:341–55.

27.	Fischl B. FreeSurfer. https://surfer.nmr.mgh.harvard.edu/, 2023.
28.	Kloppel S, Stonnington CM, Barnes J, Chen F, Chu C, Good CD, Mader I, Mitchell LA, Patel 

AC, Roberts CC, Fox NC, Jack CR Jr, Ashburner J, Frackowiak RS. Accuracy of demen-
tia diagnosis: a direct comparison between radiologists and a computerized method. Brain. 
2008;131:2969–74.

29.	Pemberton HG, Goodkin O, Prados F, Das RK, Vos SB, Moggridge J, Coath W, Gordon 
E, Barrett R, Schmitt A, Whiteley-Jones H, Burd C, Wattjes MP, Haller S, Vernooij MW, 
Harper L, Fox NC, Paterson RW, Schott JM, Bisdas S, White M, Ourselin S, Thornton JS, 
Yousry TA, Cardoso MJ, Barkhof F.  Automated quantitative MRI volumetry reports sup-
port diagnostic interpretation in dementia: a multi-rater, clinical accuracy study. Eur Radiol. 
2021;31:5312–23.

Neuroimaging Biomarkers in Alzheimer’s Disease and Related Disorders

https://surfer.nmr.mgh.harvard.edu/


180

30.	Balboni E, Nocetti L, Carbone C, Dinsdale N, Genovese M, Guidi G, Malagoli M, Chiari 
A, Namburete AIL, Jenkinson M, Zamboni G. The impact of transfer learning on 3D deep 
learning convolutional neural network segmentation of the hippocampus in mild cognitive 
impairment and Alzheimer disease subjects. Hum Brain Mapp. 2022;43:3427–38.

31.	Joo L, Shim WH, Suh CH, Lim SJ, Heo H, Kim WS, Hong E, Lee D, Sung J, Lim JS, 
Lee JH, Kim SJ.  Diagnostic performance of deep learning-based automatic white matter 
hyperintensity segmentation for classification of the Fazekas scale and differentiation of sub-
cortical vascular dementia. PLoS One. 2022;17:e0274562.

32.	Liu S, Masurkar AV, Rusinek H, Chen J, Zhang B, Zhu W, Fernandez-Granda C, Razavian 
N. Generalizable deep learning model for early Alzheimer’s disease detection from structural 
MRIs. Sci Rep. 2022;12:17106.

33.	Martí-Juan G, Lorenzi M, Piella G.  MC-RVAE: multi-channel recurrent variational 
autoencoder for multimodal Alzheimer’s disease progression modelling. NeuroImage. 
2023;268:119892.

34.	Lee J, Burkett BJ, Min HK, Senjem ML, Lundt ES, Botha H, Graff-Radford J, Barnard LR, 
Gunter JL, Schwarz CG, Kantarci K, Knopman DS, Boeve BF, Lowe VJ, Petersen RC, Jack 
CR Jr, Jones DT. Deep learning-based brain age prediction in normal aging and dementia. 
Nat Aging. 2022;2:412–24.

35.	Masdeu J, Aronson M. CT findings in early dementia. The Gerontologist. 1985;25:82.
36.	Jack CR Jr, Knopman DS, Chetelat G, Dickson D, Fagan AM, Frisoni GB, Jagust W, 

Mormino EC, Petersen RC, Sperling RA, van der Flier WM, Villemagne VL, Visser PJ, Vos 
SJ. Suspected non-Alzheimer disease pathophysiology – concept and controversy. Nat Rev 
Neurol. 2016;12:117–24.

37.	Petersen RC, Lundt ES, Therneau TM, Weigand SD, Knopman DS, Mielke MM, Roberts 
RO, Lowe VJ, Machulda MM, Kremers WK, Geda YE, Jack CR Jr. Predicting progression to 
mild cognitive impairment. Ann Neurol. 2019;85:155–60.

38.	Montal V, Vilaplana E, Pegueroles J, Bejanin A, Alcolea D, Carmona-Iragui M, Clarimón J, 
Levin J, Cruchaga C, Graff-Radford NR, Noble JM, Lee JH, Allegri R, Karch CM, Laske C, 
Schofield PR, Salloway S, Ances B, Benzinger T, McDale E, Bateman R, Blesa R, Sánchez-
Valle R, Lleó A, Fortea J. Biphasic cortical macro- and microstructural changes in autosomal 
dominant Alzheimer’s disease. Alzheimers Dement. 2021;17:618–28.

39.	Fortea J, Sala-Llonch R, Bartres-Faz D, Bosch B, Llado A, Bargallo N, Molinuevo JL, 
Sanchez-Valle R. Increased cortical thickness and caudate volume precede atrophy in PSEN1 
mutation carriers. J Alzheimers Dis. 2010;22:909–22.

40.	Yau WY, Tudorascu DL, McDade EM, Ikonomovic S, James JA, Minhas D, Mowrey W, 
Sheu LK, Snitz BE, Weissfeld L, Gianaros PJ, Aizenstein HJ, Price JC, Mathis CA, Lopez 
OL, Klunk WE. Longitudinal assessment of neuroimaging and clinical markers in autosomal 
dominant Alzheimer’s disease: a prospective cohort study. Lancet Neurol. 2015;14:804–13.

41.	Bateman RJ, Xiong C, Benzinger TL, Fagan AM, Goate A, Fox NC, Marcus DS, Cairns NJ, 
Xie X, Blazey TM, Holtzman DM, Santacruz A, Buckles V, Oliver A, Moulder K, Aisen PS, 
Ghetti B, Klunk WE, McDade E, Martins RN, Masters CL, Mayeux R, Ringman JM, Rossor 
MN, Schofield PR, Sperling RA, Salloway S, Morris JC. Clinical and biomarker changes in 
dominantly inherited Alzheimer’s disease. N Engl J Med. 2012;367:795–804.

42.	Reiman EM, Quiroz YT, Fleisher AS, Chen K, Velez-Pardo C, Jimenez-Del-Rio M, Fagan 
AM, Shah AR, Alvarez S, Arbelaez A, Giraldo M, Acosta-Baena N, Sperling RA, Dickerson 
B, Stern CE, Tirado V, Munoz C, Reiman RA, Huentelman MJ, Alexander GE, Langbaum 
JB, Kosik KS, Tariot PN, Lopera F. Brain imaging and fluid biomarker analysis in young 
adults at genetic risk for autosomal dominant Alzheimer’s disease in the presenilin 1 E280A 
kindred: a case-control study. Lancet Neurol. 2012;11:1048–56.

43.	Apostolova LG, Hwang KS, Medina LD, Green AE, Braskie MN, Dutton RA, Lai J, 
Geschwind DH, Cummings JL, Thompson PM, Ringman JM.  Cortical and hippocampal 
atrophy in patients with autosomal dominant familial Alzheimer’s disease. Dement Geriatr 
Cogn Disord. 2011;32:118–25.

J. C. Masdeu and B. Pascual



181

44.	Salloway S, Sperling R, Fox NC, Blennow K, Klunk W, Raskind M, Sabbagh M, Honig 
LS, Porsteinsson AP, Ferris S, Reichert M, Ketter N, Nejadnik B, Guenzler V, Miloslavsky 
M, Wang D, Lu Y, Lull J, Tudor IC, Liu E, Grundman M, Yuen E, Black R, Brashear HR, 
Bapineuzumab, Clinical Trial I. Two phase 3 trials of bapineuzumab in mild-to-moderate 
Alzheimer’s disease. N Engl J Med. 2014;370:322–33.

45.	Zotova E, Bharambe V, Cheaveau M, Morgan W, Holmes C, Harris S, Neal JW, Love S, 
Nicoll JA, Boche D. Inflammatory components in human Alzheimer’s disease and after active 
amyloid-beta42 immunization. Brain. 2013;136:2677–96.

46.	Whitwell JL, Dickson DW, Murray ME, Weigand SD, Tosakulwong N, Senjem ML, 
Knopman DS, Boeve BF, Parisi JE, Petersen RC, Jack CR Jr, Josephs KA. Neuroimaging 
correlates of pathologically defined subtypes of Alzheimer’s disease: a case-control study. 
Lancet Neurol. 2012;11:868–77.

47.	Ossenkoppele R, Schonhaut DR, Baker SL, O’Neil JP, Janabi M, Ghosh PM, Santos M, 
Miller ZA, Bettcher BM, Gorno-Tempini ML, Miller BL, Jagust WJ, Rabinovici GD. Tau, 
amyloid, and hypometabolism in a patient with posterior cortical atrophy. Ann Neurol. 
2015;77:338–42.

48.	Lehmann M, Ghosh PM, Madison C, Laforce R Jr, Corbetta-Rastelli C, Weiner MW, 
Greicius MD, Seeley WW, Gorno-Tempini ML, Rosen HJ, Miller BL, Jagust WJ, Rabinovici 
GD. Diverging patterns of amyloid deposition and hypometabolism in clinical variants of 
probable Alzheimer’s disease. Brain. 2013;136:844–58.

49.	Rosenbloom MH, Alkalay A, Agarwal N, Baker SL, O’Neil JP, Janabi M, Yen IV, Growdon 
M, Jang J, Madison C, Mormino EC, Rosen HJ, Gorno-Tempini ML, Weiner MW, Miller BL, 
Jagust WJ, Rabinovici GD. Distinct clinical and metabolic deficits in PCA and AD are not 
related to amyloid distribution. Neurology. 2011;76:1789–96.

50.	Nedelska Z, Ferman TJ, Boeve BF, Przybelski SA, Lesnick TG, Murray ME, Gunter JL, 
Senjem ML, Vemuri P, Smith GE, Geda YE, Graff-Radford J, Knopman DS, Petersen RC, 
Parisi JE, Dickson DW, Jack CR Jr, Kantarci K. Pattern of brain atrophy rates in autopsy-
confirmed dementia with Lewy bodies. Neurobiol Aging. 2015;36:452–61.

51.	Ye R, Touroutoglou A, Brickhouse M, Katz S, Growdon JH, Johnson KA, Dickerson BC, 
Gomperts SN. Topography of cortical thinning in the Lewy body diseases. Neuroimage Clin. 
2020;26:102196.

52.	Boyle PA, Yu L, Leurgans SE, Wilson RS, Brookmeyer R, Schneider JA, Bennett 
DA.  Attributable risk of Alzheimer’s dementia attributed to age-related neuropathologies. 
Ann Neurol. 2019;85:114–24.

53.	Toledo JB, Gopal P, Raible K, Irwin DJ, Brettschneider J, Sedor S, Waits K, Boluda S, 
Grossman M, Van Deerlin VM, Lee EB, Arnold SE, Duda JE, Hurtig H, Lee VM, Adler CH, 
Beach TG, Trojanowski JQ. Pathological α-synuclein distribution in subjects with coincident 
Alzheimer’s and Lewy body pathology. Acta Neuropathol. 2016;131:393–409.

54.	Kantarci K, Lesnick T, Ferman TJ, Przybelski SA, Boeve BF, Smith GE, Kremers WK, 
Knopman DS, Jack CR Jr, Petersen RC. Hippocampal volumes predict risk of dementia with 
Lewy bodies in mild cognitive impairment. Neurology. 2016;87:2317–23.

55.	Whitwell JL, Boeve BF, Weigand SD, Senjem ML, Gunter JL, Baker MC, DeJesus-Hernandez 
M, Knopman DS, Wszolek ZK, Petersen RC, Rademakers R, Jack CR Jr, Josephs KA. Brain 
atrophy over time in genetic and sporadic frontotemporal dementia: a study of 198 serial 
magnetic resonance images. Eur J Neurol. 2015;22:745–52.

56.	de Souza LC, Chupin M, Bertoux M, Lehericy S, Dubois B, Lamari F, Le Ber I, Bottlaender 
M, Colliot O, Sarazin M. Is hippocampal volume a good marker to differentiate Alzheimer’s 
disease from frontotemporal dementia? J Alzheimers Dis. 2013;36:57–66.

57.	O’Brien JT, Firbank MJ, Davison C, Barnett N, Bamford C, Donaldson C, Olsen K, Herholz 
K, Williams D, Lloyd J. 18F-FDG PET and perfusion SPECT in the diagnosis of Alzheimer 
and Lewy body dementias. J Nucl Med. 2014;55:1959–65.

58.	Herholz K. Guidance for reading FDG PET scans in dementia patients. Q J Nucl Med Mol 
Imaging. 2014;58:332–43.

Neuroimaging Biomarkers in Alzheimer’s Disease and Related Disorders



182

59.	Jagust W, Reed B, Mungas D, Ellis W, Decarli C. What does fluorodeoxyglucose PET imag-
ing add to a clinical diagnosis of dementia? Neurology. 2007;69:871–7.

60.	Ye F, Funk Q, Rockers E, Shulman JM, Masdeu JC, Pascual B. In Alzheimer-prone brain 
regions, metabolism and risk-gene expression are strongly correlated. Brain Commun. 
2022;4:fcac216.

61.	Chen K, Ayutyanont N, Langbaum JB, Fleisher AS, Reschke C, Lee W, Liu X, Bandy D, 
Alexander GE, Thompson PM, Shaw L, Trojanowski JQ, Jack CR Jr, Landau SM, Foster 
NL, Harvey DJ, Weiner MW, Koeppe RA, Jagust WJ, Reiman EM, Alzheimer’s Disease 
Neuroimaging I.  Characterizing Alzheimer’s disease using a hypometabolic convergence 
index. NeuroImage. 2011;56:52–60.

62.	Miettinen PS, Pihlajamaki M, Jauhiainen AM, Niskanen E, Hanninen T, Vanninen R, 
Soininen H. Structure and function of medial temporal and posteromedial cortices in early 
Alzheimer’s disease. Eur J Neurosci. 2011;34:320–30.

63.	Bozoki AC, Korolev IO, Davis NC, Hoisington LA, Berger KL. Disruption of limbic white 
matter pathways in mild cognitive impairment and Alzheimer’s disease: a DTI/FDG-PET 
study. Hum Brain Mapp. 2011;33(8):1792–802.

64.	Drzezga A, Becker JA, Van Dijk KR, Sreenivasan A, Talukdar T, Sullivan C, Schultz AP, 
Sepulcre J, Putcha D, Greve D, Johnson KA, Sperling RA. Neuronal dysfunction and dis-
connection of cortical hubs in non-demented subjects with elevated amyloid burden. Brain. 
2011;134:1635–46.

65.	Chetelat G, Desgranges B, Landeau B, Mezenge F, Poline JB, de la Sayette V, Viader F, 
Eustache F, Baron JC. Direct voxel-based comparison between grey matter hypometabolism 
and atrophy in Alzheimer’s disease. Brain. 2008;131:60–71.

66.	La Joie R, Perrotin A, Barre L, Hommet C, Mezenge F, Ibazizene M, Camus V, Abbas A, 
Landeau B, Guilloteau D, de La Sayette V, Eustache F, Desgranges B, Chetelat G. Region-
specific hierarchy between atrophy, hypometabolism, and beta-amyloid (Abeta) load in 
Alzheimer’s disease dementia. J Neurosci. 2012;32:16265–73.

67.	Silverman DH, Small GW, Chang CY, Lu CS, Kung De Aburto MA, Chen W, Czernin 
J, Rapoport SI, Pietrini P, Alexander GE, Schapiro MB, Jagust WJ, Hoffman JM, Welsh-
Bohmer KA, Alavi A, Clark CM, Salmon E, de Leon MJ, Mielke R, Cummings JL, Kowell 
AP, Gambhir SS, Hoh CK, Phelps ME.  Positron emission tomography in evaluation of 
dementia: regional brain metabolism and long-term outcome. JAMA. 2001;286:2120–7.

68.	Caroli A, Prestia A, Chen K, Ayutyanont N, Landau SM, Madison CM, Haense C, Herholz 
K, Nobili F, Reiman EM, Jagust WJ, Frisoni GB, Eadc-Pet Consortium N-D, Alzheimer’s 
Disease Neuroimaging I. Summary metrics to assess Alzheimer disease-related hypometa-
bolic pattern with 18F-FDG PET: head-to-head comparison. J Nucl Med. 2012;53:592–600.

69.	Mosconi L, Brys M, Glodzik-Sobanska L, De Santi S, Rusinek H, de Leon MJ. Early detec-
tion of Alzheimer’s disease using neuroimaging. Exp Gerontol. 2007;42:129–38.

70.	Yuan Y, Gu ZX, Wei WS. Fluorodeoxyglucose-positron-emission tomography, single-photon 
emission tomography, and structural MR imaging for prediction of rapid conversion to 
Alzheimer disease in patients with mild cognitive impairment: a meta-analysis. AJNR Am J 
Neuroradiol. 2009;30:404–10.

71.	Graff-Radford J, Murray ME, Lowe VJ, Boeve BF, Ferman TJ, Przybelski SA, Lesnick 
TG, Senjem ML, Gunter JL, Smith GE, Knopman DS, Jack CR Jr, Dickson DW, Petersen 
RC, Kantarci K.  Dementia with Lewy bodies: basis of cingulate Island sign. Neurology. 
2014;83:801–9.

72.	Josephs KA, Duffy JR, Strand EA, Machulda MM, Vemuri P, Senjem ML, Perkerson RB, 
Baker MC, Lowe V, Jack CR Jr, Rademakers R, Whitwell JL. Progranulin-associated PiB-
negative logopenic primary progressive aphasia. J Neurol. 2014;261:604–14.

73.	Wong CY, Thie J, Gaskill M, Ponto R, Hill J, Tian HY, Balon H, Wu D, Fink-Bennett D, 
Nagle C. A statistical investigation of normal regional intra-subject heterogeneity of brain 
metabolism and perfusion by F-18 FDG and O-15 H2O PET imaging. BMC Nucl Med. 
2006;6:4.

J. C. Masdeu and B. Pascual



183

74.	Dolui S, Li Z, Nasrallah IM, Detre JA, Wolk DA. Arterial spin labeling versus (18)F-FDG-
PET to identify mild cognitive impairment. Neuroimage Clin. 2020;25:102146.

75.	Yan L, Liu CY, Wong KP, Huang SC, Mack WJ, Jann K, Coppola G, Ringman JM, Wang 
DJJ. Regional association of pCASL-MRI with FDG-PET and PiB-PET in people at risk for 
autosomal dominant Alzheimer’s disease. Neuroimage Clin. 2018;17:751–60.

76.	Verclytte S, Lopes R, Lenfant P, Rollin A, Semah F, Leclerc X, Pasquier F, Delmaire 
C. Cerebral hypoperfusion and hypometabolism detected by arterial spin labeling MRI and 
FDG-PET in early-onset Alzheimer’s disease. J Neuroimaging. 2016;26:207–12.

77.	Tosun D, Schuff N, Jagust W, Weiner MW. Discriminative power of arterial spin labeling 
magnetic resonance imaging and 18F-fluorodeoxyglucose positron emission tomography 
changes for amyloid-β-positive subjects in the Alzheimer’s disease continuum. Neurodegener 
Dis. 2016;16:87–94.

78.	Verfaillie SC, Adriaanse SM, Binnewijzend MA, Benedictus MR, Ossenkoppele R, Wattjes 
MP, Pijnenburg YA, van der Flier WM, Lammertsma AA, Kuijer JP, Boellaard R, Scheltens P, 
van Berckel BN, Barkhof F. Cerebral perfusion and glucose metabolism in Alzheimer’s dis-
ease and frontotemporal dementia: two sides of the same coin? Eur Radiol. 2015;25:3050–9.

79.	Ceccarini J, Bourgeois S, Van Weehaeghe D, Goffin K, Vandenberghe R, Vandenbulcke M, 
Sunaert S, Van Laere K. Direct prospective comparison of (18)F-FDG PET and arterial spin 
labelling MR using simultaneous PET/MR in patients referred for diagnosis of dementia. Eur 
J Nucl Med Mol Imaging. 2020;47:2142–54.

80.	Riederer I, Bohn KP, Preibisch C, Wiedemann E, Zimmer C, Alexopoulos P, Förster 
S. Alzheimer disease and mild cognitive impairment: integrated pulsed arterial spin-labeling 
MRI and (18)F-FDG PET. Radiology. 2018;288:198–206.

81.	Klunk WE, Koeppe RA, Price JC, Benzinger TL, Devous MD Sr, Jagust WJ, Johnson KA, 
Mathis CA, Minhas D, Pontecorvo MJ, Rowe CC, Skovronsky DM, Mintun MA.  The 
Centiloid Project: standardizing quantitative amyloid plaque estimation by PET. Alzheimers 
Dement. 2015;11(1–15):e11–4.

82.	Villeneuve S, Rabinovici GD, Cohn-Sheehy BI, Madison C, Ayakta N, Ghosh PM, La Joie R, 
Arthur-Bentil SK, Vogel JW, Marks SM, Lehmann M, Rosen HJ, Reed B, Olichney J, Boxer 
AL, Miller BL, Borys E, Jin LW, Huang EJ, Grinberg LT, DeCarli C, Seeley WW, Jagust 
W. Existing Pittsburgh Compound-B positron emission tomography thresholds are too high: 
statistical and pathological evaluation. Brain. 2015;138:2020–33.

83.	Murray ME, Lowe VJ, Graff-Radford NR, Liesinger AM, Cannon A, Przybelski SA, Rawal 
B, Parisi JE, Petersen RC, Kantarci K, Ross OA, Duara R, Knopman DS, Jack CR Jr, Dickson 
DW. Clinicopathologic and 11C-Pittsburgh compound B implications of Thal amyloid phase 
across the Alzheimer’s disease spectrum. Brain. 2015;138:1370–81.

84.	Choi SR, Schneider JA, Bennett DA, Beach TG, Bedell BJ, Zehntner SP, Krautkramer MJ, 
Kung HF, Skovronsky DM, Hefti F, Clark CM. Correlation of amyloid PET ligand florbetapir 
F 18 binding with abeta aggregation and neuritic plaque deposition in postmortem brain tis-
sue. Alzheimer Dis Assoc Disord. 2012;26:8–16.

85.	Wolk DA, Grachev ID, Buckley C, Kazi H, Grady MS, Trojanowski JQ, Hamilton RH, 
Sherwin P, McLain R, Arnold SE.  Association between in  vivo fluorine 18-labeled flute-
metamol amyloid positron emission tomography imaging and in vivo cerebral cortical histo-
pathology. Arch Neurol. 2011;68:1398–403.

86.	Sabri O, Sabbagh MN, Seibyl J, Barthel H, Akatsu H, Ouchi Y, Senda K, Murayama S, 
Ishii K, Takao M, Beach TG, Rowe CC, Leverenz JB, Ghetti B, Ironside JW, Catafau AM, 
Stephens AW, Mueller A, Koglin N, Hoffmann A, Roth K, Reininger C, Schulz-Schaeffer 
WJ. Florbetaben PET imaging to detect amyloid beta plaques in Alzheimer’s disease: phase 
3 study. Alzheimers Dement. 2015;11:964–74.

87.	Rowe CC, Jones G, Dore V, Pejoska S, Margison L, Mulligan RS, Chan JG, Young K, 
Villemagne VL. Standardized expression of 18F-NAV4694 and 11C-PiB beta-amyloid PET 
results with the centiloid scale. J Nucl Med. 2016;57:1233–7.

Neuroimaging Biomarkers in Alzheimer’s Disease and Related Disorders



184

88.	Palmqvist S, Zetterberg H, Mattsson N, Johansson P, Minthon L, Blennow K, Olsson M, 
Hansson O. Detailed comparison of amyloid PET and CSF biomarkers for identifying early 
Alzheimer disease. Neurology. 2015;85:1240–9.

89.	Jack CR Jr, Lowe VJ, Senjem ML, Weigand SD, Kemp BJ, Shiung MM, Knopman DS, 
Boeve BF, Klunk WE, Mathis CA, Petersen RC. 11C PiB and structural MRI provide 
complementary information in imaging of Alzheimer’s disease and amnestic mild cognitive 
impairment. Brain. 2008;131:665–80.

90.	Chetelat G, Villemagne VL, Pike KE, Ellis KA, Ames D, Masters CL, Rowe CC. Relationship 
between memory performance and beta-amyloid deposition at different stages of Alzheimer’s 
disease. Neurodegener Dis. 2012;10:141–4.

91.	Vlassenko AG, Mintun MA, Xiong C, Sheline YI, Goate AM, Benzinger TL, Morris 
JC. Amyloid-beta plaque growth in cognitively normal adults: longitudinal [11C]Pittsburgh 
compound B data. Ann Neurol. 2011;70:857–61.

92.	Petersen RC, Wiste HJ, Weigand SD, Rocca WA, Roberts RO, Mielke MM, Lowe VJ, 
Knopman DS, Pankratz VS, Machulda MM, Geda YE, Jack CR Jr. Association of elevated 
amyloid levels with cognition and biomarkers in cognitively normal people from the com-
munity. JAMA Neurol. 2016;73:85–92.

93.	Lim YY, Laws SM, Villemagne VL, Pietrzak RH, Porter T, Ames D, Fowler C, Rainey-Smith 
S, Snyder PJ, Martins RN, Salvado O, Bourgeat P, Rowe CC, Masters CL, Maruff P. Abeta-
related memory decline in APOE epsilon4 noncarriers: implications for Alzheimer disease. 
Neurology. 2016;86:1635–42.

94.	Landau SM, Marks SM, Mormino EC, Rabinovici GD, Oh H, O’Neil JP, Wilson RS, Jagust 
WJ. Association of lifetime cognitive engagement and low beta-amyloid deposition. Arch 
Neurol. 2012;69:623–9.

95.	Vemuri P, Lesnick TG, Przybelski SA, Knopman DS, Machulda M, Lowe VJ, Mielke MM, 
Roberts RO, Gunter JL, Senjem ML, Geda YE, Rocca WA, Petersen RC, Jack CR Jr. Effect of 
intellectual enrichment on AD biomarker trajectories: longitudinal imaging study. Neurology. 
2016;86:1128–35.

96.	Brown BM, Rainey-Smith SR, Villemagne VL, Weinborn M, Bucks RS, Sohrabi HR, Laws 
SM, Taddei K, Macaulay SL, Ames D, Fowler C, Maruff P, Masters CL, Rowe CC, Martins 
RN. The relationship between sleep quality and brain amyloid burden. Sleep. 2016;39:1063–8.

97.	Burnham SC, Bourgeat P, Dore V, Savage G, Brown B, Laws S, Maruff P, Salvado O, Ames 
D, Martins RN, Masters CL, Rowe CC, Villemagne VL. Clinical and cognitive trajectories 
in cognitively healthy elderly individuals with suspected non-Alzheimer’s disease patho-
physiology (SNAP) or Alzheimer’s disease pathology: a longitudinal study. Lancet Neurol. 
2016;15:1044–53.

98.	Schreiber S, Landau SM, Fero A, Schreiber F, Jagust WJ. Comparison of visual and quan-
titative florbetapir F 18 positron emission tomography analysis in predicting mild cognitive 
impairment outcomes. JAMA Neurol. 2015;72:1183–90.

99.	Kantarci K, Lowe V, Przybelski SA, Weigand SD, Senjem ML, Ivnik RJ, Preboske GM, 
Roberts R, Geda YE, Boeve BF, Knopman DS, Petersen RC, Jack CR Jr. APOE modifies the 
association between Abeta load and cognition in cognitively normal older adults. Neurology. 
2012;78:232–40.

100.	Lim YY, Villemagne VL, Laws SM, Ames D, Pietrzak RH, Ellis KA, Harrington KD, 
Bourgeat P, Salvado O, Darby D, Snyder PJ, Bush AI, Martins RN, Masters CL, Rowe CC, 
Nathan PJ, Maruff P. BDNF Val66Met, Abeta amyloid, and cognitive decline in preclinical 
Alzheimer’s disease. Neurobiol Aging. 2013;34:2457–64.

101.	Rabinovici GD, Rosen HJ, Alkalay A, Kornak J, Furst AJ, Agarwal N, Mormino EC, O’Neil 
JP, Janabi M, Karydas A, Growdon ME, Jang JY, Huang EJ, Dearmond SJ, Trojanowski JQ, 
Grinberg LT, Gorno-Tempini ML, Seeley WW, Miller BL, Jagust WJ. Amyloid vs FDG-PET 
in the differential diagnosis of AD and FTLD. Neurology. 2011;77:2034–42.

102.	Serrano GE, Sabbagh MN, Sue LI, Hidalgo JA, Schneider JA, Bedell BJ, Van Deerlin VM, 
Suh E, Akiyama H, Joshi AD, Pontecorvo MJ, Mintun MA, Beach TG. Positive florbetapir 

J. C. Masdeu and B. Pascual



185

PET amyloid imaging in a subject with frequent cortical neuritic plaques and frontotemporal 
lobar degeneration with TDP43-positive inclusions. J Alzheimers Dis. 2014;42:813–21.

103.	Hyman BT, Phelps CH, Beach TG, Bigio EH, Cairns NJ, Carrillo MC, Dickson DW, 
Duyckaerts C, Frosch MP, Masliah E, Mirra SS, Nelson PT, Schneider JA, Thal DR, Thies 
B, Trojanowski JQ, Vinters HV, Montine TJ.  National Institute on Aging-Alzheimer’s 
Association guidelines for the neuropathologic assessment of Alzheimer’s disease. 
Alzheimers Dement. 2012;8:1–13.

104.	Krishnadas N, Doré V, Laws SM, Porter T, Lamb F, Bozinovski S, Villemagne VL, Rowe 
CC.  Exploring discordant low amyloid beta and high neocortical tau positron emission 
tomography cases. Alzheimers Dement (Amst). 2022;14:e12326.

105.	Pascoal TA, Therriault J, Benedet AL, Savard M, Lussier FZ, Chamoun M, Tissot C, Qureshi 
MNI, Kang MS, Mathotaarachchi S, Stevenson J, Hopewell R, Massarweh G, Soucy JP, 
Gauthier S, Rosa-Neto P. 18F-MK-6240 PET for early and late detection of neurofibrillary 
tangles. Brain. 2020;143:2818–30.

106.	Abrahamson EE, Kofler JK, Becker CR, Price JC, Newell KL, Ghetti B, Murrell JR, McLean 
CA, Lopez OL, Mathis CA, Klunk WE, Villemagne VL, Ikonomovic MD. 11C-PiB PET 
can underestimate brain amyloid-β burden when cotton wool plaques are numerous. Brain. 
2022;145:2161–76.

107.	 Ikonomovic MD, Buckley CJ, Abrahamson EE, Kofler JK, Mathis CA, Klunk WE, Farrar 
G. Post-mortem analyses of PiB and flutemetamol in diffuse and cored amyloid-β plaques in 
Alzheimer’s disease. Acta Neuropathol. 2020;140:463–76.

108.	Pascual B, Funk Q, Zanotti-Fregonara P, Cykowski MD, Veronese M, Rockers E, Bradbury 
K, Yu M, Nakawah MO, Román GC, Schulz PE, Arumanayagam AS, Beers D, Faridar A, 
Fujita M, Appel SH, Masdeu JC. Neuroinflammation is highest in areas of disease progres-
sion in semantic dementia. Brain. 2021;144:1565–75.

109.	Vellas B, Carrillo MC, Sampaio C, Brashear HR, Siemers E, Hampel H, Schneider LS, 
Weiner M, Doody R, Khachaturian Z, Cedarbaum J, Grundman M, Broich K, Giacobini E, 
Dubois B, Sperling R, Wilcock GK, Fox N, Scheltens P, Touchon J, Hendrix S, Andrieu S, 
Aisen P. Designing drug trials for Alzheimer’s disease: what we have learned from the release 
of the phase III antibody trials: a report from the EU/US/CTAD Task Force. Alzheimers 
Dement. 2013;9:438–44.

110.	Petersen RC, Aisen P, Boeve BF, Geda YE, Ivnik RJ, Knopman DS, Mielke M, Pankratz VS, 
Roberts R, Rocca WA, Weigand S, Weiner M, Wiste H, Jack CR Jr. Mild cognitive impair-
ment due to Alzheimer disease in the community. Ann Neurol. 2013;74:199–208.

111.	Mathis CA, Kuller LH, Klunk WE, Snitz BE, Price JC, Weissfeld LA, Rosario BL, Lopresti 
BJ, Saxton JA, Aizenstein HJ, McDade EM, Kamboh MI, DeKosky ST, Lopez OL. In vivo 
assessment of amyloid-beta deposition in nondemented very elderly subjects. Ann Neurol. 
2013;73:751–61.

112.	Monsell SE, Mock C, Roe CM, Ghoshal N, Morris JC, Cairns NJ, Kukull W. Comparison of 
symptomatic and asymptomatic persons with Alzheimer disease neuropathology. Neurology. 
2013;80:2121–9.

113.	Nelson PT, Head E, Schmitt FA, Davis PR, Neltner JH, Jicha GA, Abner EL, Smith CD, Van 
Eldik LJ, Kryscio RJ, Scheff SW. Alzheimer’s disease is not “brain aging”: neuropathologi-
cal, genetic, and epidemiological human studies. Acta Neuropathol. 2011;121:571–87.

114.	Perez-Nievas BG, Stein TD, Tai HC, Dols-Icardo O, Scotton TC, Barroeta-Espar I, 
Fernandez-Carballo L, de Munain EL, Perez J, Marquie M, Serrano-Pozo A, Frosch MP, 
Lowe V, Parisi JE, Petersen RC, Ikonomovic MD, Lopez OL, Klunk W, Hyman BT, Gomez-
Isla T.  Dissecting phenotypic traits linked to human resilience to Alzheimer’s pathology. 
Brain. 2013;136:2510–26.

115.	Mintun MA, Lo AC, Duggan Evans C, Wessels AM, Ardayfio PA, Andersen SW, Shcherbinin 
S, Sparks J, Sims JR, Brys M, Apostolova LG, Salloway SP, Skovronsky DM. Donanemab in 
early Alzheimer’s disease. N Engl J Med. 2021;384:1691–704.

Neuroimaging Biomarkers in Alzheimer’s Disease and Related Disorders



186

116.	Sperling RA, Donohue MC, Raman R, Sun CK, Yaari R, Holdridge K, Siemers E, Johnson 
KA, Aisen PS, Team AS. Association of factors with elevated amyloid burden in clinically 
normal older individuals. JAMA Neurol. 2020;77(6):735–45.

117.	Jonasson M, Wall A, Chiotis K, Saint-Aubert L, Wilking H, Sprycha M, Borg B, Thibblin A, 
Eriksson J, Sorensen J, Antoni G, Nordberg A, Lubberink M. Tracer kinetic analysis of (S)-
(1)(8)F-THK5117 as a PET tracer for assessing tau pathology. J Nucl Med. 2016;57:574–81.

118.	Johnson KA, Schultz A, Betensky RA, Becker JA, Sepulcre J, Rentz D, Mormino E, 
Chhatwal J, Amariglio R, Papp K, Marshall G, Albers M, Mauro S, Pepin L, Alverio J, Judge 
K, Philiossaint M, Shoup T, Yokell D, Dickerson B, Gomez-Isla T, Hyman B, Vasdev N, 
Sperling R. Tau positron emission tomographic imaging in aging and early Alzheimer dis-
ease. Ann Neurol. 2016;79:110–9.

119.	Chien DT, Bahri S, Szardenings AK, Walsh JC, Mu F, Su MY, Shankle WR, Elizarov A, Kolb 
HC. Early clinical PET imaging results with the novel PHF-tau radioligand [F-18]-T807. J 
Alzheimers Dis. 2013;34:457–68.

120.	Fleisher AS, Pontecorvo MJ, Devous MD Sr, Lu M, Arora AK, Truocchio SP, Aldea P, Flitter 
M, Locascio T, Devine M, Siderowf A, Beach TG, Montine TJ, Serrano GE, Curtis C, Perrin 
A, Salloway S, Daniel M, Wellman C, Joshi AD, Irwin DJ, Lowe VJ, Seeley WW, Ikonomovic 
MD, Masdeu JC, Kennedy I, Harris T, Navitsky M, Southekal S, Mintun MA, Investigators 
AS. Positron emission tomography imaging with [18F]flortaucipir and postmortem assess-
ment of Alzheimer disease neuropathologic changes. JAMA Neurol. 2020;77:829–39.

121.	Scholl M, Lockhart SN, Schonhaut DR, O’Neil JP, Janabi M, Ossenkoppele R, Baker SL, 
Vogel JW, Faria J, Schwimmer HD, Rabinovici GD, Jagust WJ. PET imaging of tau deposi-
tion in the aging human brain. Neuron. 2016;89:971–82.

122.	Marquie M, Normandin MD, Vanderburg CR, Costantino IM, Bien EA, Rycyna LG, Klunk 
WE, Mathis CA, Ikonomovic MD, Debnath ML, Vasdev N, Dickerson BC, Gomperts SN, 
Growdon JH, Johnson KA, Frosch MP, Hyman BT, Gomez-Isla T. Validating novel tau posi-
tron emission tomography tracer [F-18]-AV-1451 (T807) on postmortem brain tissue. Ann 
Neurol. 2015;78:787–800.

123.	Hansen AK, Knudsen K, Lillethorup TP, Landau AM, Parbo P, Fedorova T, Audrain H, 
Bender D, Ostergaard K, Brooks DJ, Borghammer P.  In vivo imaging of neuromelanin in 
Parkinson’s disease using 18F-AV-1451 PET. Brain. 2016;139:2039–49.

124.	Lowe VJ, Curran G, Fang P, Liesinger AM, Josephs KA, Parisi JE, Kantarci K, Boeve BF, 
Pandey MK, Bruinsma T, Knopman DS, Jones DT, Petrucelli L, Cook CN, Graff-Radford 
NR, Dickson DW, Petersen RC, Jack CR Jr, Murray ME. An autoradiographic evaluation of 
AV-1451 tau PET in dementia. Acta Neuropathol Commun. 2016;4:58.

125.	 Ikonomovic MD, Abrahamson EE, Price JC, Mathis CA, Klunk WE. [F-18]AV-1451 posi-
tron emission tomography retention in choroid plexus: more than “off-target” binding. Ann 
Neurol. 2016;80:307–8.

126.	Ossenkoppele R, Schonhaut DR, Scholl M, Lockhart SN, Ayakta N, Baker SL, O’Neil 
JP, Janabi M, Lazaris A, Cantwell A, Vogel J, Santos M, Miller ZA, Bettcher BM, Vossel 
KA, Kramer JH, Gorno-Tempini ML, Miller BL, Jagust WJ, Rabinovici GD.  Tau PET 
patterns mirror clinical and neuroanatomical variability in Alzheimer’s disease. Brain. 
2016;139:1551–67.

127.	Taniguchi-Watanabe S, Arai T, Kametani F, Nonaka T, Masuda-Suzukake M, Tarutani A, 
Murayama S, Saito Y, Arima K, Yoshida M, Akiyama H, Robinson A, Mann DM, Iwatsubo 
T, Hasegawa M. Biochemical classification of tauopathies by immunoblot, protein sequence 
and mass spectrometric analyses of sarkosyl-insoluble and trypsin-resistant tau. Acta 
Neuropathol. 2016;131:267–80.

128.	Smith R, Puschmann A, Scholl M, Ohlsson T, van Swieten J, Honer M, Englund E, Hansson 
O. 18F-AV-1451 tau PET imaging correlates strongly with tau neuropathology in MAPT 
mutation carriers. Brain. 2016;139:2372–9.

129.	Josephs KA, Martin PR, Botha H, Schwarz CG, Duffy JR, Clark HM, Machulda MM, 
Graff-Radford J, Weigand SD, Senjem ML, Utianski RL, Drubach DA, Boeve BF, Jones DT, 

J. C. Masdeu and B. Pascual



187

Knopman DS, Petersen RC, Jack CR Jr, Lowe VJ, Whitwell JL. [(18) F]AV-1451 tau-PET 
and primary progressive aphasia. Ann Neurol. 2018;83:599–611.

130.	Josephs K, Tosakulwong N, Weigand S, Buciuc M, Lowe V, Dickson D, Whitwell 
J.  Relationship between (18)F-flortaucipir uptake and histologic lesion types in 4-repeat 
tauopathies. J Nucl Med. 2021;63(6):931–5.

131.	Marquie M, Normandin MD, Meltzer AC, Siao Tick Chong M, Andrea NV, Anton-Fernandez 
A, Klunk WE, Mathis CA, Ikonomovic MD, Debnath M, Bien EA, Vanderburg CR, 
Costantino I, Makaretz S, DeVos SL, Oakley DH, Gomperts SN, Growdon JH, Domoto-
Reilly K, Lucente D, Dickerson BC, Frosch MP, Hyman BT, Johnson KA, Gomez-Isla 
T. Pathologic correlations of [F-18]-AV-1451 imaging in non-Alzheimer tauopathies. Ann 
Neurol. 2016;81(1):117–28.

132.	Harrison TM, Ward TJ, Murphy A, Baker SL, Dominguez PA, Koeppe R, Vemuri P, Lockhart 
SN, Jung Y, Harvey DJ, Lovato L, Toga AW, Masdeu J, Oh H, Gitelman DR, Aggarwal N, 
Snyder HM, Baker LD, DeCarli C, Jagust WJ, Landau SM.  Optimizing quantification of 
MK6240 tau PET in unimpaired older adults. NeuroImage. 2023;265:119761.

133.	Tezuka T, Takahata K, Seki M, Tabuchi H, Momota Y, Shiraiwa M, Suzuki N, Morimoto A, 
Nakahara T, Iwabuchi Y, Miura E, Yamamoto Y, Sano Y, Funaki K, Yamagata B, Ueda R, 
Yoshizaki T, Mashima K, Shibata M, Oyama M, Okada K, Kubota M, Okita H, Takao M, 
Jinzaki M, Nakahara J, Mimura M, Ito D. Evaluation of [(18)F]PI-2620, a second-generation 
selective tau tracer, for assessing four-repeat tauopathies. Brain Commun. 2021;3:fcab190.

134.	Rullmann M, Brendel M, Schroeter ML, Saur D, Levin J, Perneczky RG, Tiepolt S, Patt M, 
Mueller A, Villemagne VL, Classen J, Stephens AW, Sabri O, Barthel H, On Behalf of the 
German Imaging Initiative for Tauopathies Gii T. Multicenter (18)F-PI-2620 PET for in vivo 
Braak staging of tau pathology in Alzheimer’s disease. Biomol Ther. 2022;12(3):458.

135.	Schönecker S, Palleis C, Franzmeier N, Katzdobler S, Ferschmann C, Schuster S, Finze A, 
Scheifele M, Prix C, Fietzek U, Weidinger E, Nübling G, Vöglein J, Patt M, Barthel H, Sabri 
O, Danek A, Höglinger GU, Brendel M, Levin J. Symptomatology in 4-repeat tauopathies is 
associated with data-driven topology of [(18)F]-PI-2620 tau-PET signal. Neuroimage Clin. 
2023;38:103402.

136.	Wang L, Benzinger TL, Su Y, Christensen J, Friedrichsen K, Aldea P, McConathy J, Cairns 
NJ, Fagan AM, Morris JC, Ances BM.  Evaluation of tau imaging in staging Alzheimer 
disease and revealing interactions between beta-amyloid and tauopathy. JAMA Neurol. 
2016;73:1070–7.

137.	Nelson PT, Alafuzoff I, Bigio EH, Bouras C, Braak H, Cairns NJ, Castellani RJ, Crain BJ, 
Davies P, Del Tredici K, Duyckaerts C, Frosch MP, Haroutunian V, Hof PR, Hulette CM, 
Hyman BT, Iwatsubo T, Jellinger KA, Jicha GA, Kovari E, Kukull WA, Leverenz JB, Love 
S, Mackenzie IR, Mann DM, Masliah E, McKee AC, Montine TJ, Morris JC, Schneider 
JA, Sonnen JA, Thal DR, Trojanowski JQ, Troncoso JC, Wisniewski T, Woltjer RL, Beach 
TG.  Correlation of Alzheimer disease neuropathologic changes with cognitive status: a 
review of the literature. J Neuropathol Exp Neurol. 2012;71:362–81.

138.	Groot C, Doré V, Robertson J, Burnham SC, Savage G, Ossenkoppele R, Rowe CC, 
Villemagne VL. Mesial temporal tau is related to worse cognitive performance and greater 
neocortical tau load in amyloid-β-negative cognitively normal individuals. Neurobiol Aging. 
2021;97:41–8.

139.	Ferretti MT, Cuello AC. Does a pro-inflammatory process precede Alzheimer’s disease and 
mild cognitive impairment? Curr Alzheimer Res. 2011;8:164–74.

140.	Serrano-Pozo A, Mielke ML, Gomez-Isla T, Betensky RA, Growdon JH, Frosch MP, Hyman 
BT. Reactive glia not only associates with plaques but also parallels tangles in Alzheimer’s 
disease. Am J Pathol. 2011;179:1373–84.

141.	Hoozemans JJ, Rozemuller AJ, van Haastert ES, Eikelenboom P, van Gool 
WA.  Neuroinflammation in Alzheimer’s disease wanes with age. J Neuroinflammation. 
2011;8:171.

Neuroimaging Biomarkers in Alzheimer’s Disease and Related Disorders



188

142.	Maeda J, Zhang MR, Okauchi T, Ji B, Ono M, Hattori S, Kumata K, Iwata N, Saido TC, 
Trojanowski JQ, Lee VMY, Staufenbiel M, Tomiyama T, Mori H, Fukumura T, Suhara T, 
Higuchi M. In vivo positron emission tomographic imaging of glial responses to amyloid-
beta and tau pathologies in mouse models of Alzheimer’s disease and related disorders. J 
Neurosci. 2011;31:4720–30.

143.	Okello A, Edison P, Archer HA, Turkheimer FE, Kennedy J, Bullock R, Walker Z, Kennedy 
A, Fox N, Rossor M, Brooks DJ. Microglial activation and amyloid deposition in mild cogni-
tive impairment: a PET study. Neurology. 2009;72:56–62.

144.	Kreisl WC, Fujita M, Fujimura Y, Kimura N, Jenko KJ, Kannan P, Hong J, Morse CL, Zoghbi 
SS, Gladding RL, Jacobson S, Oh U, Pike VW, Innis RB. Comparison of [(11)C]-(R)-PK 
11195 and [(11)C]PBR28, two radioligands for translocator protein (18 kDa) in human and 
monkey: implications for positron emission tomographic imaging of this inflammation bio-
marker. NeuroImage. 2010;49:2924–32.

145.	Fujita M, Kobayashi M, Ikawa M, Gunn RN, Rabiner EA, Owen DR, Zoghbi SS, Haskali 
MB, Telu S, Pike VW, Innis RB. Comparison of four (11)C-labeled PET ligands to quan-
tify translocator protein 18 kDa (TSPO) in human brain: (R)-PK11195, PBR28, DPA-713, 
and ER176-based on recent publications that measured specific-to-non-displaceable ratios. 
EJNMMI Res. 2017;7:84.

146.	Masdeu JC, Pascual B, Fujita M. Imaging neuroinflammation in neurodegenerative disorders. 
J Nucl Med. 2022;63:45S–52S.

147.	Zou J, Tao S, Johnson A, Tomljanovic Z, Polly K, Klein J, Razlighi QR, Brickman AM, Lee 
S, Stern Y, Kreisl WC. Microglial activation, but not tau pathology, is independently asso-
ciated with amyloid positivity and memory impairment. Neurobiol Aging. 2020;85:11–21.

148.	Fan Z, Dani M, Femminella GD, Wood M, Calsolaro V, Veronese M, Turkheimer F, 
Gentleman S, Brooks DJ, Hinz R, Edison P. Parametric mapping using spectral analysis for 
(11)C-PBR28 PET reveals neuroinflammation in mild cognitive impairment subjects. Eur J 
Nucl Med Mol Imaging. 2018;45:1432–41.

149.	Parbo P, Ismail R, Sommerauer M, Stokholm MG, Hansen AK, Hansen KV, Amidi A, 
Schaldemose JL, Gottrup H, Braendgaard H, Eskildsen SF, Borghammer P, Hinz R, Aanerud 
J, Brooks DJ. Does inflammation precede tau aggregation in early Alzheimer’s disease? A 
PET study. Neurobiol Dis. 2018;117:211–6.

150.	Kreisl WC, Lyoo CH, McGwier M, Snow J, Jenko KJ, Kimura N, Corona W, Morse CL, 
Zoghbi SS, Pike VW, McMahon FJ, Turner RS, Innis RB. In vivo radioligand binding to trans-
locator protein correlates with severity of Alzheimer’s disease. Brain. 2013;136:2228–38.

151.	Fan Z, Brooks DJ, Okello A, Edison P. An early and late peak in microglial activation in 
Alzheimer’s disease trajectory. Brain. 2017;140:792–803.

152.	Pascoal TA, Benedet AL, Ashton NJ, Kang MS, Therriault J, Chamoun M, Savard M, 
Lussier FZ, Tissot C, Karikari TK, Ottoy J, Mathotaarachchi S, Stevenson J, Massarweh 
G, Scholl M, de Leon MJ, Soucy JP, Edison P, Blennow K, Zetterberg H, Gauthier S, 
Rosa-Neto P. Microglial activation and tau propagate jointly across Braak stages. Nat Med. 
2021;27:1592–9.

153.	Goker-Alpan O, Masdeu JC, Kohn PD, Ianni A, Lopez G, Groden C, Chapman MC, Cropp B, 
Eisenberg DP, Maniwang ED, Davis J, Wiggs E, Sidransky E, Berman KF. The neurobiology 
of glucocerebrosidase-associated parkinsonism: a positron emission tomography study of 
dopamine synthesis and regional cerebral blood flow. Brain. 2012;135:2440–8.

J. C. Masdeu and B. Pascual



189© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
A. L. Teixeira et al. (eds.), Biomarkers in Neuropsychiatry, 
https://doi.org/10.1007/978-3-031-43356-6_12

Biomarkers of Cognitive Decline 
and Dementia in Down Syndrome

Marcos Vasconcelos Pais, Leda Leme Talib, and Orestes Vicente Forlenza

1 � Introduction

Down syndrome (DS) is caused by full or partial trisomy, translocation, or mosa-
icism of chromosome 21. Cognitive decline is a nearly universal part of aging in DS, 
with a cumulative incidence of dementia suggested to be around 80% to 95% by 
65 years and a mean age of diagnosis of 55 years [1–4]. Alzheimer’s disease (AD) 
is the cause of virtually all the dementia cases in this population, and increased 
dementia risk is mainly driven by the amyloid precursor protein (APP) overexpres-
sion on chromosome 21 responsible for the exponential accumulation of amyloid-
beta (Aβ) in the brain [5]. The presence of typical AD neuropathology is thought to 
be consistent by the age of 40 [1, 4, 6, 7]. Therefore, dementia due to AD in DS is 
now conceptualized as a form of genetically determined AD, similar to its autoso-
mal dominant form [8].

Since AD pathology is universal in older adults with DS, the common pathways 
shared between the two conditions represent an opportunity to understand 
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Table 1  Characteristics of Alzheimer’s disease (AD) in Down syndrome (DS)

Similarities with sporadic AD and 
autosomal dominant AD

Frequency of dementia increases exponentially with age
Pathology characterized by atrophy, hypometabolism, and 
Aβ deposition
Pathology affects the same cortical regions

Similarities with autosomal 
dominant AD

Mean age of onset 55 years
Early striatal PiB-PET pattern

Specificities of AD in DS Increased plasma levels of Aβ1–42

Hippocampal atrophy pattern is influenced by the lower 
mean hippocampal volume across lifespan
NfL elevation and brain hypometabolism occur earlier

AD Alzheimer’s disease, DS Down syndrome, Aβ amyloid beta peptide, PiB-PET Pittsburgh com-
pound B positron emission tomography, NfL neurofilament light protein

preclinical mechanisms related to AD. Overall, the pathology hallmarks and some 
clinical aspects of AD in DS are qualitatively similar to those of sporadic AD [9]. 
Symptomatic AD prevalence in individuals with DS increases exponentially with 
age. AD pathology in individuals with DS also targets the same cortical regions 
affected in the sporadic and autosomal dominant forms [10]. Finally, atrophy, hypo-
metabolic, and Aβ deposition aspects are similar to those described in the sporadic 
and autosomal dominant forms of the disease [10]. Conversely, there are specific 
similarities with autosomal dominant AD [11–13], such as mean age of onset and 
early striatal Pittsburgh compound B (PiB) binding [11, 14], and particularities 
related to AD pathology in this population (Table 1).

Differences in biomarkers in individuals with DS include differences in plasma 
Aβ1–42 concentrations (58% higher in adults with DS than in controls across the 
whole DS age span) and hippocampal atrophy (people with DS had smaller hippo-
campal volume across their lifespans than did controls) [11]. Neurodegenerative 
changes, as measured by plasma neurofilament light (NfL) protein increases, or 
brain hypometabolism might occur much earlier than previously thought in indi-
viduals with DS, even before fibrillar Aβ deposition is detectable by PET [10]. This 
chapter aims to describe aspects related to biomarkers of cognitive impairment and 
dementia in DS, trying to portray a comprehensive picture of current evidence of 
these distinct features.

2 � Cognitive Markers

Traditional cognitive screening is not appropriate to assess dementia in individuals 
with DS. The premorbid intellectual disability and the presence of common comor-
bidities like depression and hypothyroidism complicate the diagnosis of dementia in 
these individuals [1, 15]. The development of dementia in this population happens 
overlapping previously impaired cognitive domains, usually after the age of 40 years 
[6]. Additionally, the complex cognitive phenotype seen in these individuals is also 
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significantly diverse, with various degrees of impairment and some cognitive 
domains more affected than others. Noteworthy, traditional criteria, e.g., the 
International Classification of Diseases (ICD) or the Diagnostic and Statistical 
Manual of Mental Disorders (DSM), are likely to underdiagnose dementia in this 
population since experienced clinicians usually incorporate other clinical informa-
tion when making a diagnosis of AD in DS [16].

There are various instruments available to assess cognitive decline in DS, includ-
ing the Dementia Scale for Mentally Retarded Persons (DMR) [17], the Test of 
Severe Impairment [18], the National Task Group (NTG)-Early Detection Screen 
for Dementia [19, 20], the Down Syndrome Mental Status Exam [21], the Cambridge 
Cognitive Examination for Older Adults with Down Syndrome (CAMCOG-DS) 
[22], the Cambridge Cognitive Examination for Mental Disorders of Elderly-Down 
Syndrome (CAMDEX-DS) [23], and the Cognitive Scale for Down Syndrome (CS-
DS) [24]. Importantly, the CAMCOG-DS lacks sensitivity to distinguish preclinical 
AD, but is thought to have a dynamic range more adequate for monitoring symp-
tomatic individuals and AD progression in DS [25].

After distinguishing previous impairments from new ones, the next step in the 
cognitive diagnostic workup would be the assessment of the progression of the 
emergent cognitive symptoms. Studies have shown benefits of using primarily cog-
nitive screening for this diagnosis [26], while others argue that informant-based 
instruments, e.g., the Informant Questionnaire on Cognitive Decline in the Elderly 
(IQCODE), would be a better fit [27].

It is also debatable if memory and attention impairments are the earliest cogni-
tive changes in dementia development in this population [28–30]. Hippocampal 
dysfunction is usually already present in individuals with DS before the develop-
ment of dementia, with impairments in both verbal short-term memory and explicit 
long-term memory [31]. This could challenge the view of an initial impairment in 
memory as the first sign of progressive cognitive decline. Noteworthy, the presence 
of several medical conditions in this population, such as gastrointestinal issues, 
uncorrected hearing loss or vision problems, and congenital heart defects, are 
thought to impact cognition and behavior development and must be taken into 
account [32].

Some researchers have described the earliest changes associated with sustained 
attention, executive function, language, and behavior [33, 34]. Impairments in these 
domains might represent that the patient will present with a clinical syndrome of 
“frontal” symptoms at early stages, complicating the diagnosis [26, 30, 34]. In fact, 
frontal lobe functions are thought to be the first ones to be impaired during AD pro-
gression in this population [34]. The mechanism involved in early manifestations of 
executive dysfunction and behavioral changes is thought to be due to an early Aβ 
accumulation in the striatum affecting fronto-striatal circuits [14]. However, there is 
a lack of studies using the main behavioral assessment instruments or new ones 
adapted and validated for AD in individuals with DS [33]. Based on a few longitu-
dinal studies that assessed behavior patterns in individuals with DS, it appears that 
apathy, disinhibition, and executive dysfunction have been reported as early behav-
ioral symptoms, occurring in the preclinical and prodromal stages. Conversely, 
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agitation, hyperactivity or general slowness, and psychotic symptoms are more 
prevalent in the dementia stage [33].

3 � Biomarkers of Amyloid Pathology

Amyloid pathology in DS follows a path from its first deposition around 12 years of 
age in the temporal lobe, then affecting neocortical regions and the hippocampus, 
then subcortical regions, and, finally, the cerebellum [35]. Changes in plasma con-
centrations of APP metabolites in DS, e.g., a sixfold increase in Aβ1–42, indicate a 
metabolic shift in APP metabolism toward the amyloidogenic pathway [36]. 
However, some of the consistent changes in Aβ biomarkers seen in both familial and 
sporadic AD have not been completely confirmed in DS.

3.1 � CSF and Plasma Markers

Lumbar puncture is a safe procedure in people with DS [13], but wide implementa-
tion and repeated assessments are obviously challenging. There is a lack of CSF 
biomarkers studies in individuals with DS regardless of their superior diagnostic 
performance [37]. It appears that Aβ1–42 and other amyloid species levels are ele-
vated in early childhood in this population, with CSF tau levels remaining low. With 
increasing age, CSF Aβ1–42 levels decline and CSF tau levels increase over time [38]. 
Signs of abnormalities in APP processing, i.e., increased concentrations of secreted 
APP peptides (sAPP) α and β, and truncated Aβ1–40 forms, were also found. 
Additionally, older adults with DS had higher levels of YKL-40, a marker of microg-
lial activity, and higher levels of the amyloid precursor-like protein 1 (APLP1) [39]. 
Finally, one study reported higher CSF levels of presenilin-1 (PSEN1) that were 
independent of the presence of cognitive impairment or dementia [40].

Plasma Aβ biomarkers in DS still have an uncertain predictive power in diagnos-
ing AD in DS [37, 41, 42]. Hamlett et al. found, in a subgroup of DS with dementia 
symptoms, that Aβ1–42 levels were decreased compared to non-demented DS indi-
viduals, a finding that is similar to what is typically found in AD [43]. Conversely, 
different from the typical pattern of change seen in euploid adults with AD, lower 
mean plasma levels of Aβ1–40, and higher plasma Aβ1–42 levels and Aβ1–42/Aβ1–40 ratio 
have been reported in DS [44]. Also, studies have shown increased levels of all three 
Aβ biomarkers, independently of cognitive status, in children with DS when com-
pared to age-matched euploid controls [45]. In adults, higher plasma Aβ1–42 levels 
were present in cases with dementia or were related to an increased risk of develop-
ing dementia [46]. Finally, one study found lower levels of plasma Aβ1–40, higher 
levels of plasma Aβ1–42, and higher Aβ1–42/Aβ1–40 ratio in individuals with DS and 
longer dementia [42]. A systematic review found inconsistent results across studies 
investigating the Aβ biomarkers’ changes in DS [41]. Together these findings call 
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for future investigation on these biomarkers in order to identify a specific plasma 
AD signature in individuals with DS.

3.2 � Neuroimaging

Structural neuroimaging like magnetic resonance imaging (MRI) findings in the 
brain of individuals with DS are compatible with those observed in AD. Neuroimaging 
abnormalities include hippocampal atrophy, volumetric reductions on the thalamus 
and striatum, metabolic abnormalities, and increased brain Aβ load [14]. Moreover, 
the presence of AD-related pathology in neuroimaging biomarkers is not always 
associated with the presence of dementia in DS [47, 48]. Studies that evaluated PiB-
PET in this population found a similar aspect of elevated Aβ before the onset of 
symptoms [14]. These and other similar findings reveal that there is a preclinical 
phase of AD in individuals with DS and that the presence of brain Aβ is not neces-
sarily related to cognitive impairment. Importantly, the brains of individuals with 
DS but not AD also show neuroimaging abnormalities not related to AD. In fact, 
amyloid-negative individuals with DS seem to have altered structural brain imaging 
profiles even when dementia is not present [14].

4 � Biomarkers of Tau Pathology

Tau pathology initiates around 35 years of age in individuals with DS, first affecting 
the entorhinal and transentorhinal cortex, then hippocampus, temporal cortex, other 
regions or cerebral cortex, and finally reaching the visual association cortex and 
primary visual cortex [35].

4.1 � CSF and Plasma Markers

As previously mentioned, there are only a few studies investigating CSF biomarkers 
of AD in individuals with DS. The well-known CSF AD signature established in the 
general population has been described in individuals with DS [37] but was not thor-
oughly validated in DS yet. Findings reported so far have shown that CSF tau levels 
remain low in early childhood in this population and increase over time. This means 
that older DS individuals tend to have significantly higher total tau (t-tau) and 
hyperphosphorylated tau (p-tau) concentrations than younger individuals [38, 39]. 
Importantly, CSF and plasma t-tau concentrations seem to be only weakly corre-
lated in DS [37].

Consistent findings have shown increased levels of plasma t-tau in individuals 
with DS [44, 49]. Additionally, plasma p-tau, more specifically p-tau181, also 
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accurately distinguished asymptomatic DS from individuals with prodromal AD or 
AD dementia and DS [50]. Hamlett et al. compared two age groups (8–35 years vs. 
>35  years of age) and age-matched controls and found higher levels of plasma 
p-tau181  in both groups compared to controls, and, in the subgroup of DS with 
dementia symptoms, plasma p-tau181 levels were increased compared to non-
demented DS subjects [43].

Plasma NfL has also shown good performance in differentiating prodromal AD 
from AD dementia in DS (see below) [37, 51]. Although plasma p-tau181 and NfL 
have shown promising results, in recent years, plasma p-tau217 has had a better 
performance as a biomarker of AD both in euploid and DS individuals. In a recent 
study, Janelidze et al. found that higher levels of plasma p-tau217 correlated with 
increased tau burden in the temporal region assessed by tau-PET in Aβ-PET positive 
individuals with DS. For predicting Aβ-PET positivity, the performance of plasma 
p-tau217 was superior to that of other biomarkers [52].

4.2 � Neuroimaging

The Aβ positivity is needed for tau-PET binding in DS. All Aβ-PET negative DS 
individuals are also tau-PET negative. There is an exponential increase in tau after 
the age of 40 years and it correlates with progressive neurodegeneration assessed by 
fluorodeoxyglucose (FDG)-PET and MRI, and cognitive decline [53]. However, the 
relationship between tau-PET and tau biomarkers in CSF or plasma in DS remains 
less explored. Janelidze et al. addressed this gap by showing that increased levels of 
plasma p-tau217, GFAP, t-tau, and NfL were associated with abnormal tau-PET 
status in the temporal region in individuals with DS. Importantly, the combination 
of plasma p-tau217 and age had an area under the curve (AUC) higher than 95% in 
identifying tau-PET positivity in individuals with DS [52]. Moreover, Grigorova 
et al. showed that baseline tau-PET deposition was a significant predictor of cogni-
tive and functional decline, independently of Aβ-PET status [54].

5 � Biomarkers of Neurodegeneration

It appears that a marked imbalance between regeneration and degeneration pro-
cesses is present in individuals with DS and this is especially true for younger indi-
viduals. Increased levels of advanced glycation end product receptors (RAGE) 
leukocytes (degeneration) and decreased levels of Nestin and CD34 (regeneration), 
for example, were present in these individuals [55]. More frequently studied bio-
markers of neurodegeneration have also shown alterations in individuals with DS, 
e.g., the plasma glial fibrillary acidic protein (GFAP), a marker of astrogliosis, 
and NfL.
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5.1 � CSF and Plasma Markers

As previously discussed, the research focus on CSF biomarkers in DS is limited. 
With recent advances in blood-based assays, there is considerably more evidence 
available on these biomarkers. A few studies have shown, for example, patterns of 
change in CSF NfL in this population. The levels of NfL in the CSF of individuals 
with DS are thought to increase with dementia progression. In addition, CSF and 
plasma NfL concentrations are strongly correlated in DS [37], reinforcing the role 
of the blood-based assays as the main focus of recent studies for this specific bio-
marker. Although NfL is considered a nonspecific marker of neurodegeneration in 
different neurological disorders, increasing with age, studies have shown that 
plasma NfL displayed the best diagnostic performance of AD in DS when compared 
to other plasma biomarkers [37]. In DS, this biomarker increases with age and is 
capable of distinguishing the presence of AD in persons with DS, also correlating 
with changes in behavior in this population when cognitive decline or dementia is 
present [56]. Higher levels of plasma NfL were found in demented DS subjects and  
predicted progression to dementia [57]. Plasma NfL alone or in combination with 
t-tau distinguished between AD in individuals with DS from those who were cogni-
tively stable, with AUCs ranging between 86% and 90% but significantly lower 
(56–66%) in distinguishing mild cognitive impairment (MCI) cases [51]. A study 
held by Fortea et al. reported that NfL showed the best performance in differentiat-
ing prodromal AD from AD dementia in DS, with an AUC of 95%, a sensitivity of 
90%, and a specificity of 92% [37]. Importantly, the fact that NfL is not specific to 
AD has far less importance in DS compared to the general population, since virtu-
ally all dementia cases in DS are due to AD, lowering the possibility of a false-
positive result [57].

Janelidze et al., in a study that determined best combinations of plasma biomark-
ers to detect AD-related pathology in DS, showed that GFAP and NfL were increased 
in both amyloid-positive and -negative DS groups based on Aβ-PET. This finding 
might represent that these biomarkers show increased levels before amyloid positiv-
ity in PET and might also be affected by other mechanisms than amyloidosis [52].

5.2 � Neuroimaging

Individuals with DS, either with or without dementia, demonstrate hypometabolism 
pattern in the posterior cingulate, however more pronounced in the non-demented 
individuals [58]. Another important neuroimaging finding is the presence of hyper-
metabolism in regions of gray matter atrophy as a compensatory mechanism in 
early stages [10]. Researchers conducted a prospective study using voxel-based 
morphometry (VBM) in MRI and glucose metabolic rate (GMR) in PET in middle-
aged persons with DS before the onset of clinical signs of dementia. The baseline 
MRI data revealed that the DS group showed less gray matter in the cerebellum, the 
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anterior cingulate, the frontal lobe, and the temporal lobe, including part of the hip-
pocampus, and more gray matter in the parahippocampal gyrus and the inferior 
brainstem, when compared to controls [59]. PET showed increased GMR in areas 
of the temporal lobes in the DS group, the exact areas where euploid AD group 
showed decreased GMR, compared to respective controls. Also, lower GMR was 
reported in the posterior cingulate and the fusiform gyrus [60]. These authors pro-
posed that increased GMR and reduced gray matter in some of these areas might 
represent a compensatory brain response to an early stage of neurodegeneration [48].

It has been shown that decreased resting-state functional connectivity of the 
default mode network (DMN) is present in people with AD, and amyloid deposition 
is thought to occur initially in important areas for this network, e.g., the precuneus, 
and the medial orbitofrontal and posterior cingulate cortices [61–63]. These find-
ings prompted an investigation that found connectivity differences in posterior cor-
tices between PiB-PET-positive and PiB-PET-negative individuals with DS. These 
differences were associated with the presence of AD pathology [64].

6 � Biomarkers of Inflammation and Oxidative Stress

The AT(N) model, developed for late-onset AD, does not incorporate potential roles 
of inflammation and cerebrovascular disease, which are often seen in adults with DS 
[11]. Flores-Aguilar et al. reported the presence of an early and evolving neuroin-
flammatory phenotype across the lifespan in DS. Older adults with DS displayed 
reduced levels of interleukin-10 (IL-10), IL-12p40, interferon-gamma (IFN-γ), and 
tumor necrosis factor-alpha (TNF-α) when compared to younger DS individuals 
[65]. Other neuroinflammation features include microglial and astrocytic activation, 
increased inflammatory gene expression, formation of immune complexes, and 
cerebral oxidative stress [66]. Apparently, an inflammatory process occurring before 
plaque formation is present in DS implicating various pro- and anti-inflammatory 
biomarkers such as IFN-γ, IL-6, IL-8, palmitoylated membrane protein 1 (MPP-1), 
matrix metallopeptidase 9 (MMP-9), and MMP-3 [36, 66, 67].

Furthermore, aspects related to oxidative stress have been linked to cognitive 
decline in DS subjects. The activity of the superoxide dismutase enzymes (SOD) 
predicts decreased memory over time in a cohort of individuals with DS followed for 
4 years [68]. Other genes located on chromosome 21 such as the superoxide dis-
mutase 1 (SOD1) gene have been implicated in AD pathology in DS [43]. Increased 
total SOD is considered a marker of oxidative stress. Malondialdehyde (MDA), 
which is increased, and glutathione peroxidase (GPx3), decreased, are other markers 
of oxidative stress in this population [69]. A few studies have demonstrated the rela-
tionship between core AD biomarkers and cytokines changes. Startin et  al., for 
example, showed that the levels of IL-1β were positively correlated with the levels 
of t-tau and negatively correlated with the Aβ1–42/t-tau ratio, but no association was 
observed with levels of Aβ1–42 in these individuals with DS [70]. Together these 
markers may play a critical role in the AD neuropathology in individuals with DS.
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Finally, higher concentrations of other biomarkers of neurodegenerative pro-
cesses, such as nerve growth factor precursor, tissue plasminogen activator, neuro-
serpin, metalloproteases, and other inflammatory cytokines, were also found in 
DS [36].

7 � Biomarkers of Cerebrovascular Disease

The main aspect differentiating cardiovascular pathology in people with DS from 
those with sporadic AD is the more frequent occurrence, in the former, of cerebral 
amyloid pathology (CAA), a disease of small leptomeningeal and cortical vessels 
with progressive Aβ deposition [70]. Also, CAA seems to be more severe in DS, 
with age-dependent increased frequency of microhemorrhages [71, 72], which usu-
ally occurs in the brains of these individuals 25 years after the initial Aβ deposition, 
around 40 years of age [73].

There is a lack of studies characterizing biomarkers of CAA in DS, with most of 
the literature on the subject based on general old populations. A few studies could 
determine the main neuroimaging findings of CAA in DA. Studies with MRI in 
these individuals found micro hemorrhages and white matter malformations [74] 
and gradually increasing over time higher microbleeds count in lobar regions (gray 
and white matter of frontal, parietal, temporal, occipital lobes, and the insula), and 
higher likelihood of presenting siderosis [75]. Importantly, other vascular patholo-
gies usually implicated in cerebrovascular disease such as hypertension, atheroscle-
rosis, and arteriosclerosis are rarely seen in DS, raising the hypothesis of a degree 
of systemic protection against these conditions existing in individuals with DS [76]. 
Additionally, individuals with DS are somewhat protected against intracerebral 
hemorrhage and hemorrhagic stroke [72].

8 � Genes and Protein Expression

8.1 � Amyloid Precursor Protein (APP) Gene

The APP gene is one of the genes overexpressed in DS with full trisomy 21. 
However, other candidate genes or regulatory sequences encoded in chromosome 
21 may interfere with Aβ aggregation and other events, thereby triggering the early 
onset of AD, beyond APP [77]. These candidate genes are related to the develop-
ment of amyloid plaques and neurofibrillary tangles, oxidative stress, mitochondrial 
dysfunction, defects in exocytic events and endosomal dysfunction, lysosomal dys-
function, and neuroinflammation [78].
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8.2 � Apolipoprotein E (ApoE)

It is unclear if ApoE ε4 DS carriers have higher mortality and higher risk of devel-
oping AD than ApoE ε4 DS noncarriers [79, 80]. It seems that the limited impact of 
ApoE in this population might be related to a low prevalence of no more than 22% 
among individuals with DS, and 33% among those with AD [41]. Importantly, the 
ApoE ε2 allele is not protective as usually described for euploid individuals [81].

Importantly, the triplication of other genes on chromosome 21 linked to different 
molecular pathways also plays a role in AD pathogenesis in individuals with DS [1]. 
Some of the genes that are overexpressed are responsible for the production of cru-
cial proteins in processes such as neuron and synapse growth, development, and 
maintenance. These include the previously mentioned SOD1 pathway, the metabo-
lism of cholesterol (ABCG1), Aβ processing and clearance (CSTB, BACE2, and 
SYNJ1), tau phosphorylation (DYRK1A), mitochondrial dysfunction (RCAN), and 
inflammatory responses (S100B, IFNRs) [82, 83]. The chromosome 21 also encodes 
interferon receptor genes (IFNRs), responsible for interferon hyperactivation, and, 
after a series of inductions and dysregulations, the production of quinolinic acid, a 
neurotoxin of excitatory toxicity associated with cognitive decline in older adults 
with AD [15, 84, 85].

A series of different genes are overexpressed in DS individuals when compared 
to cognitively unimpaired subjects, resulting in various protein levels alterations 
and potential biomarkers. These include (1) synaptophysin and synaptosomal-
associated protein 25-kDa (SNAP-25), two synaptic proteins, found in lower densi-
ties in the frontal, parietal, and temporal cortex and in the hippocampus, but 
increased SNAP-25  in the cerebellum; (2) levels of the synaptojanin-1 (SYNJ1) 
gene are higher in DS [86] and both the overexpression and the absence of this pro-
tein can lead to synaptic and cognitive dysfunctions in this population [87–91]; (3) 
4-hydroxy-2-trans-nonenal (HNE) protein is a marker of protein oxidation and 
higher levels are found in the frontal cortex; (4) the human mitochondrial elonga-
tion factor Tu (EF-Tu) gene is related to the synthesis of proteins critically involved 
in energy and metabolism, and decreased expression and downregulation were 
reported in the frontal cortex in DS; (5) decreased expression and downregulation of 
the thioredoxin-dependent peroxide reductase mitochondrial (PRDX3) were found 
in the frontal cortex; (6) the alpha (α)-enolase is involved in energy metabolism, and 
decreased expression and downregulation were found in the frontal cortex; (7) 
Rab-3A and the transitional endoplasmic reticulum ATPase (TER ATPase), involved 
in Aβ clearance, transport of synaptic vesicles, and the regulation of autophagy, 
respectively, are present in lower levels in DS; and (8) the malate dehydrogenase 
mitochondrial (MDH), involved in energy metabolism, is found in higher levels in 
individuals with DS [2, 92]. Noteworthy, the DYRK1A gene is also overexpressed 
in DS, and the protein directly phosphorylates multiple serine and threonine resi-
dues of tau, including Thr212 (p-tau212) [93]. Plasma p-tau212 has been showing 
better performance than plasma p-tau181 in discriminating AD dementia in DS.
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9 � Conclusion

The AD occurrence in individuals with DS has been regarded as a unique opportu-
nity for studying unclear aspects of the AD continuum since virtually all individuals 
with DS who develop dementia have AD as the underlying cause. Although under-
lying neuropathological changes and the course of dementia in individuals with DS 
are less understood, recent advances based on the use of different assay techniques 
have revealed consistent findings, shedding some light on AD in this population. 
These advances have also reinforced the view that DS is an important model for 
therapeutic development in AD. Diverse international research consortia and col-
laborations are addressing the remaining gaps in the research field of biomarkers of 
cognitive decline and dementia in DS.
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1 � Introduction

Schizophrenia is a syndrome characterized by positive (i.e., delusions, hallucina-
tions, and formal thought disorder) and negative symptoms (i.e., lack of volition and 
flattening of affect) [1]. Cognitive impairment has also been recognized as a core 
clinical feature of the disorder [2].

Schizophrenia is one of the most serious psychiatric illnesses, being associated 
with isolation, stigma, unemployment, suicide, poor lifestyle, higher clinical comor-
bid rates, and a reduced life expectancy by 13–15  years when compared to the 
general population [3]. Despite the large burden related to schizophrenia and the 
huge amount of research on it, treatment of schizophrenia remains largely unsatis-
factory. Negative symptoms and cognitive impairment are not reasonably alleviated 
with current pharmacotherapy. Regarding positive symptoms around 20–30% of 
individuals may be resistant to usual antipsychotic treatment, and for these patients, 
clozapine is the only approved drug. Around 40% are clozapine-resistant patients [1].

Schizophrenia is a highly heterogeneous syndrome, and little is known about 
why patients show very different disease courses, responses, and side effects to 
treatments, as well as the complex neurobiology that underlie these differences. 
Biomarkers may help to deal with this heterogeneity as they can allow the 
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identification of features in a particular person that can be associated with suscepti-
bility to schizophrenia, differential diagnosis, illness course, therapeutic response, 
and side effects (i.e., a precision medicine approach) [4].

Schizophrenia is the psychiatric diagnosis with the most research on personal-
ized biomarker approaches after depression. Although numerous candidate bio-
markers have been identified for schizophrenia, most of these measures have not 
proven sufficiently reliable, valid, and useful to be adopted clinically [4]. Lots of 
factors hamper the achievement of clinically useful biomarkers in schizophrenia. 
The diagnosis of schizophrenia is based on symptoms, and the patients are extremely 
heterogeneous. Hence, the biological processes that underlie the disease may vary 
from one patient to another and over the course of the illness. At the same time, the 
pathophysiology of schizophrenia overlaps with other disorders, so that several bio-
markers may also be affected in these disorders (e.g., bipolar disorder). Furthermore, 
biomarkers may also be affected by several variables such as environmental factors, 
comorbidities, and treatments [5].

Despite these hurdles, considerable progress has been made in identifying candi-
date biomarkers in schizophrenia. In this chapter we will describe the recent 
advances in the research with neuroimaging, genetic, peripheral, and cognitive bio-
markers in schizophrenia.

2 � Genetic Biomarkers

The study of the role of genetics in schizophrenia dates back to the beginning of the 
twentieth century, when it was identified that schizophrenia has higher rates in rela-
tives of patients than in the general population [6]. In the second half of the twenti-
eth century, studies of monozygotic versus dizygotic twins and the adopted-away 
offspring of affected mothers confirmed that genetic factors play a role in the etiol-
ogy of schizophrenia [7, 8]. Much of the risk for schizophrenia is genetic. Current 
heritability figures range from 64% in pedigree studies to 81% in twin studies [1]. 
Genetic risk involves large numbers of common allele rare copy number variants 
(CNVs) and rare coding variants (RCVs) [9].

A large genome-wide association study (GWAS) published in 2014 reported 176 
genomic loci containing common alleles associated with schizophrenia. GWAS 
allow calculating a polygenic risk score (PRS), but the low sensitivity and specific-
ity limit its clinical utility. Two individuals with equal scores likely have different 
risk alleles because risk relies on multiple intertwined or alternative pathways [6]. 
Genes previously associated with schizophrenia such as the dopamine receptor D2 
(DRD2) gene, genes involved in glutamatergic neuro-transmission, and genes that 
have important roles in immunity (e.g., B-lymphocyte lineages, complement path-
way) were highlighted in this GWAS [10].

Unfortunately, the complex relationship between the translation of these genes 
and the pathophysiology of schizophrenia remained far from elucidated. However, 
since there is evidence that genes aggregate into pathways, this complexity could be 
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reduced by investigating the potential biological function of convergence path-
ways [6].

Some approaches have been proposed to assess putative risk genes converging 
into relevant biological pathways: (1) In the reference-based approach, genes linked 
with biological processes of interest, e.g., glutamatergic signaling, are prioritized in 
order to create pathway-specific PRSs. (2) In regulome approaches, noncoding 
DNA sequences that have a role as master regulators of gene expression are priori-
tized. (3) The coexpresssion approach is based on the premise that the expression of 
genes is correlated to orchestrate cellular responses to stimuli. Clusters or modules 
of highly coexpressed genes may be identified so that one score by their first princi-
pal component (module eigengene) can be calculated and subsequently associated 
with traits of interest [6]. Some of these approaches have been employed in the lat-
est GWAS of the Psychiatric Genomics Consortium (PGC) published in 2022. It 
was the largest GWAS for schizophrenia to date involving 76,755 cases and 243,649 
controls and reported common variant associations with SCZ in 287 distinct loci. 
Although variant only explains a small proportion of risk for SCZ, composite scores 
may yield odds ratio of 39 between top and bottom centiles. As argued above, the 
authors tried to prioritize the analysis of genes associated to biological processes 
that contribute to pathogenesis of schizophrenia in order to increase the understand-
ing of the association between the variants and the pathophysiology of schizo-
phrenia [9].

Using a combination of fine-mapping, transcriptomic analysis, and functional 
genomic annotations, the authors prioritized 120 genes associated with schizophre-
nia of which 106 are protein-coding. The results of this study are summarized in the 
table below:

Tissue and cell types Associations were concentrated in genes expressed in CNS excitatory 
neurons (mainly cerebral cortex and hippocampus) and inhibitory 
cortical interneurons, but not in other tissues or cell types. There was 
little evidence for involvement of genes with highly specific 
expression in glia or microglia

Synaptic location and 
function

Fifteen genes have synaptic annotations, seven postsynaptic, five both 
pre- and postsynaptic, two presynaptic, and one gene not specific. 
Multiple genes encode receptors, ion channels, and proteins that play 
a role in endocytosis, synaptic organization and differentiation, and 
modulation of chemical transmission. The diversity of synaptic 
proteins identified in this study suggests multiple functional 
interactions of schizophrenia risk converging on synapses

Variants that influence 
gene expression of 
biomarkers involved in 
schizophrenia

Genes affected by variants associated with schizophrenia that 
influence gene expression include ACE encoding angiotensin 
converting enzyme (schizophrenia under-expression)

Variants associated with 
schizophrenia and other 
disorders

SNPs in ATP2A2 are associated with Darier disease, bipolar disorder, 
and schizophrenia. ATP2A2 encodes a sarcoplasmic/endoplasmic 
reticulum calcium pump, suggesting that its role in schizophrenia 
pathogenesis may be through regulating neuronal cytoplasmic 
calcium levels
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Variants associated with 
rare mutations and with 
neurodevelopment

Some common variants were prioritized because they are associated 
with rare deleterious mutations in schizophrenia (e.g., GRIN2A and 
SP4). GRIN2A encodes a glutamatergic NMDA receptor subunit, and 
SP4, a transcription factor that is highly expressed in the brain and is 
regulated by NMDA transmission, regulates NMDA receptor 
abundance. Other common variants were prioritized because they are 
enriched at genes implicated in neurodevelopmental disorder 
(BCL11B, CACNA1C, GRIN2A, and SLC39A8)

In sum, the last and largest GWAS for schizophrenia has identified prioritized 
candidate biomarker genes mainly related to synapses, some of which are also 
related both to common variants and rare penetrant mutations as well neurodevelop-
ment, notably GRIN2A [9].

Besides GWAS, other studies have identified SNPs associated with clinically 
relevant features. For example, polymorphisms of the DRD2 gene were found to be 
associated with antipsychotic-induced akathisia [11]. Polymorphisms of the HTR1B 
gene were also associated with antipsychotic-induced akathisia [11] as well as 
extrapyramidal side effects in haloperidol-treated patients [12].

Another promising research among genetic biomarkers in schizophrenia include 
small noncoding RNA molecules called microRNAs (miRNAs) as they regulate 
hundreds of target transcripts, which has an impact on the entire gene network. It 
has been shown that miRNAs could regulate gene expression during onset and dis-
ease progression and could serve as potential diagnostic and pharmacogenomics 
biomarkers during treatment [13–15].

3 � Neuroimaging Biomarkers

For over four decades, neuroimaging studies with patients with schizophrenia have 
been used to improve the knowledge of the pathophysiology of schizophrenia. 
Alterations in brain structure, function, connection, and metabolism have been 
reported and associated with the disorder [16]. Despite several findings in brain 
imaging research, in clinical practice, the necessity of neuroimaging assessments in 
patients in the first episode of psychosis and chronic schizophrenia is not unani-
mous and has been used to provide a differential diagnosis of other diseases that 
could lead to psychotic symptoms, such as autoimmune encephalitis [17, 18].

In 2012 the American Psychiatric Association published a consensus report on 
neuroimaging markers in psychiatry disorders. In this document, there is a recom-
mendation for neuroimaging biomarkers to have a sensitivity >80% for detecting a 
psychiatric disorder and a specificity >80% for distinguishing from other disorders 
(area under the curve >0.8). Furthermore, the biomarker should be reliable, repro-
ducible, noninvasive, simple to perform, and inexpensive. In this consensus, all the 
neuroimaging biomarkers should be validated by two independent investigators 
[19]. Even though more than 10  years have passed since the publication of this 
document, neuroimaging biomarkers have not yet met the criteria proposed by the 
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APA consensus in schizophrenia. Despite the absence of neuroimaging biomarkers 
as diagnostic and therapeutic markers, those techniques continue to be considered 
potential biomarkers. The most commonly neuroimaging techniques are based on 
magnetic resonance imaging (MRI) and positron-emission tomography (PET). MRI 
enables the assessment of structural and functional imaging, as well as molecular 
spectroscopy. PET allows for the tracing of molecular metabolism. Two recent 
reviews have examined the utilization of neuroimaging techniques as biomarkers in 
schizophrenia [4, 20].

3.1 � Predictors for Transition to Psychosis

Recent studies conducted with structural neuroimaging have utilized machine learn-
ing techniques to calculate the risk for psychotic disorders based on MRI and incor-
porating clinical data and other biomarkers. In a study conducted with 73 participants 
across 2 high risk-to-psychosis centers, reductions in gray matter volume in the 
frontal cortex, basal ganglia, and cerebellum were significant factors for transition 
to psychosis with a prediction accuracy of 80% (with a sensitivity of 75.8% and 
specificity of 84.8%) [21]. Conversely, in a larger study with a machine learning 
approach involving 246 subjects, structural neuroimaging, genetic information 
(genome-wide genotyping), and environmental elements were unable to predict the 
occurrence of a first psychotic episode in a clinical high-risk population [22]. In a 
multicenter study involving over 600 participants, a data integration sequence was 
conducted, combining clinical information, neurocognitive data, expert clinician 
opinions, polygenic risk, and structural MRI. This study had an accuracy of 85.5% 
(with a sensitivity of 84.6% and specificity of 86.4%) in predicting the transition to 
psychosis. Structural MRI, along with other markers, contributed to increasing the 
sensitivity compared to solely on clinical opinions. The regions implicated in the 
prognostic assessment included reduced gray matter volume in the superior tempo-
ral, supramarginal, angular, orbitofrontal, inferior frontal, dorsomedial prefrontal, 
and occipital cortices, as well as increased gray matter volume in the dorsolateral 
prefrontal, precuneal, insular, hippocampal, and cerebellar regions [23]. Chung 
et  al. conducted a neuroanatomical-based prediction age comparing MRI brain 
structures and chronological age in clinically high-risk individuals. Adolescents 
(ages 12–17) in high risk who converted to psychosis had an overestimation of their 
ages in this sample, with an area under the curve of 0.63. This study, however, could 
not predict conversion to psychosis, comparing the converter and nonconverter indi-
viduals [24].

The North American Prodrome Longitudinal Study Consortium assessed func-
tional MRI (fMRI) in individuals at a high risk for psychosis. The study revealed an 
increase in connectivity within the cerebellum-thalamo-cortical circuit in individu-
als who transitioned to psychosis, with an area under the curve of 0.64 [25].

Molecular imaging techniques such as PET and MRS demonstrate the promising 
potential of the prediction to psychosis. Kegeles et al. evaluated striatal glutamate 
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levels in individuals at risk for psychosis and found that, despite the small sample 
size, the ROC curve for striatal glutamate levels yielded an AUC of 0.774 [25, 26]. 
Furthermore, PET studies in a high-risk sample have shown that individuals who 
transitioned to psychosis exhibited increased striatal dopamine synthesis using 
[18F]-DOPA [27]. Although these findings need replication, they hold potential for 
predicting psychotic disorders.

3.2 � Diagnosis

Kambeitz et al. conducted a meta-analysis of neuroimaging studies as biomarkers 
for the identification of schizophrenia diagnosis. The analysis included 38 studies 
utilizing various neuroimaging modalities such as structural MRI, fMRI, PET, and 
diffusion tensor imaging (DTI). The pooled results for classification between 
schizophrenia and healthy control groups yielded a sensitivity of 80.3% and speci-
ficity of 80.3%. Interestingly, a higher sensitivity in classification was observed in 
older subjects and chronic patients. In terms of neuroimaging methods, resting-state 
fMRI demonstrated a higher sensitivity in classification compared to structural MRI 
[28]. Although this meta-analysis has presented promising data, a large study with 
five independent datasets with patients in the first episode of psychosis did not show 
good accuracy with structural neuroimaging classification in machine learning anal-
ysis [29]. More recently, a different technique for calculating functional connectiv-
ity in resting-state fMRI has been reported by Shi et al. Using degree centrality and 
voxel-mirrored homotopic connectivity to evaluate functional connectivity and a 
machine learning approach, they found an accuracy of 74% differentiating fMRI 
from healthy controls and patients with schizophrenia [30]. Psychotic symptoms 
have been associated with increased release and synthesis of striatal dopamine, 
which makes the striatum a region of great interest [31, 32]. Li et al. proposed a 
functional striatal abnormalities (FSA) score. The study calculated an individual 
score for each patient with schizophrenia comparing the striatal resting-state MRI 
data with that of healthy controls. The result, using the FSA score, was a sensitivity 
of 79.3% and specificity of 81.5%, distinguishing healthy controls from patients 
with schizophrenia [33].

3.3 � Treatment Response

Neuroimaging biomarkers to stratify response to medication and therapy or predict 
other outcomes have been studied by some groups. Distinct trajectories and differ-
ences in treatment response in schizophrenia have been shown by Jiang et al. in 
cross-sectional and longitudinal MRI data. Two distinct trajectories were observed: 
(1) the cortical phenotype, where atrophy in the image began in the Broca’s areas, 
and (2) the hippocampus, where the atrophy began in the hippocampus. In a 
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longitudinal analysis, patients in the first phenotype had a better response to medi-
cation for positive symptoms. Another interesting result was that patients with less 
brain atrophy had a better response to transcranial magnetic stimulation (TMS) for 
positive symptoms in both trajectory groups. Group 2 (hippocampus atrophy) had a 
better response to TMS for negative symptoms [34].

In a study with the first episode of psychosis patients, cortical gyrification was 
assessed in MRI to predict treatment response to antipsychotics. Patients in the first 
episode of psychosis with worse response to antipsychotics had reduced gyrification 
in insular, left frontal, and right temporal regions when compared to responders 
[35]. Li et al. applied the FSA scores (see Diagnosis above) to longitudinal data and 
showed an association of FSA scores with treatment response [33]. There are few 
longitudinal PET studies assessing treatment in schizophrenia and no study as a 
biomarker.

4 � Peripheral Markers

4.1 � Immune Markers

The association between immune alterations and schizophrenia was postulated 
more than a century ago. In 1876, Alexander Rosenblum suggested that typhoid 
fever or malaria could cure psychosis. And in 1926, Karl Menninger publishes 200 
cases of post-influenza psychosis, one third of which were reported to resemble 
dementia praecox (conceptual predecessor of schizophrenia) [36].

Currently, most studies looking for associations between schizophrenia and 
immune markers focus on the analysis of peripheral cytokines. A recent meta-
analysis [37] comparing people with schizophrenia and healthy controls showed 
that concentrations of interleukin (IL)-1β, IL-1 receptor antagonist (IL-1RA), solu-
ble interleukin-2 receptor (sIL-2R), IL-6, IL-8, IL-10, tumor necrosis factor 
(TNF)-α, and C-reactive protein are consistently elevated in subjects with both 
acute and chronic schizophrenia, relative to healthy controls. IL-2 and interferon 
(IFN)-γ were significantly elevated in acute psychotic episodes, whereas IL-4, 
IL-12, and IFN-γ were significantly reduced in chronic schizophrenia. These results 
suggest that people with schizophrenia have a baseline level of change in inflamma-
tory proteins over the course of the disorder, as reflected by consistently elevated 
pro-inflammatory proteins, which would be “traits” markers (e.g., IL-6), whereas 
those with acute psychosis may have overlapping immune activity with increased 
concentrations of “status” markers (e.g., IFN-γ). However, factors such as age, gen-
der, smoking, body mass index, antipsychotics use, and illness duration can influ-
ence these results [37]. It should also be noted that increased levels of inflammatory 
proteins found in schizophrenia do not reach a level of clinical systemic inflamma-
tion, being at a subclinical level.
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An important question is whether subjects at clinical risk for developing psycho-
sis (e.g., positive family history for schizophrenia) show changes in peripheral 
inflammatory markers. Subjects at risk of developing schizophrenia have been 
found to have elevated levels of IL-6 compared to controls. However, no peripheral 
inflammatory marker was able to predict conversion to schizophrenia or related 
disorders [38].

Another aspect to be highlighted is that the use of antipsychotics can alter inflam-
matory markers in subjects with schizophrenia. A recent meta-analysis found that 
risperidone, but not clozapine, confers a significant reduction in pro-inflammatory 
peripheral cytokines (IL-6 and TNF-α). This reduction occurs in chronic schizo-
phrenia, but not in first-episode psychotic subjects [39].

Alterations in inflammatory markers are observed in several mental disorders, 
such as major depressive disorder and bipolar disorder. The specificity of these 
changes is important for observing whether these markers are disorder-specific or 
common features between disorders [40, 41]. Although there may be some speci-
ficities  – for example, IFN-γ is increased in the first episode of psychosis and 
schizophrenia relapse, but decreased in major depressive disorder [41], and IL-8 
demonstrates a heterogeneous profile between disorders [40] – other cytokines such 
as IL-6 are also increased in acute schizophrenia, manic episodes in bipolar disor-
der, and major depressive disorder [41]. The fact that several mental disorders pres-
ent similar alterations in inflammatory markers suggests a common mechanism 
underlying these alterations [41].

4.2 � Oxidative Stress

Markers of oxidative stress injury and antioxidant defense appear to be altered in 
schizophrenia compared to healthy controls. As for cytokines, some markers seem 
to be “status” markers (total antioxidant status, red blood cell catalase, and plasma 
nitrite), as they show different changes according to stabilization, exacerbations, or 
first-episode psychosis. On the other hand, red blood cell superoxide dismutase may 
present a “trait” marker of schizophrenia, as it is persistently reduced in various 
stages of the disorder [42]. Antipsychotics seem to improve the antioxidant defense 
system, decreasing markers of lipid peroxidation and restoring levels of antioxidant 
agents [43, 44]. Lipid peroxidation may be associated with cognitive impairments 
observed in schizophrenia [45].

5 � Cognitive Markers

Current evidence shows that cognitive impairments in schizophrenia have a neuro-
developmental pattern, beginning several years before the disease onset, reaching as 
low as −1.5 standard deviation in cognitive tests [46]. Further, it can also be 
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identified in high-risk individuals and in first-degree relatives [47]. Cognitive 
impairment has a relatively stable course after the first psychotic crisis and through-
out life (until 65 years old), settling between −0.75 and – 1.5 standard deviation in 
z scores in more conservative data [47] and reaching −2.5 standard deviation in z 
scores in cognitive tests in more classical evidence [46]. Virtually all cognitive 
domains are subject to impairment in schizophrenia. Working memory, attention 
and vigilance, verbal learning and memory, visual learning and memory, reasoning 
and problem-solving, processing speed, and social cognition are among the most 
frequently affected in the literature [48]. Cognitive impairment in schizophrenia has 
no relationship with psychosis, use of antipsychotics, or length of illness, and evi-
dence supports the idea that it constitutes a core symptom of the disease [47].

6 � Discussion

A huge amount of information about biomarkers in schizophrenia has been pro-
duced recently. However, most of them have not proven to be adopted clinically yet. 
As in other psychiatric diseases, biomarkers in schizophrenia have a low sensitivity 
and specificity. The heterogeneity of the illness, the biological similarities with 
other psychiatric disorders, the influence of medication, and the environmental and 
clinical factors are some examples of the hurdles of this research field. Nevertheless, 
some strategies have led to considerable progress in identifying promising candi-
date biomarkers in schizophrenia. These include (1) prioritizing risk genes that con-
verge into relevant biological pathways; (2) integrating neuroimage data with 
clinical information, neurocognitive data, expert clinician opinions, environmental 
elements, and polygenic risk; and (3) stratifying classes of biomarkers based on 
their potential impact on clinical management (e.g., prognosis, diagnosis, and treat-
ment). These advances bring hope that in addition to increasing our understanding 
of the neurobiology of schizophrenia and the development of novel therapeutics, the 
research of biomarkers in schizophrenia may allow to have economically viable 
measures that are clinically predictive at the individual person level [4].
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Biomarkers for Bipolar Disorder

Emma O’Leary, Seetal Dodd, and Michael Berk 

1 � Introduction

Biomarkers offer compelling promise to better understand bipolar disorder and 
identify effective treatments. It has a lifetime prevalence of 2.5%, and death by sui-
cide is 30–60 times greater than the general population [1]. It is the 12th leading 
cause of disability worldwide [2], and while it typically manifests in late adoles-
cence, diagnosis lags until the third decade of life. Cognitive symptoms account for 
much of the functional impairment in those affected, and premature mortality is 
largely due to associated medical illnesses. Effective tools to assist in both risk pre-
diction and diagnosis hold the potential to curb morbidity. Furthermore, biomarkers 
may provide an avenue that increases the opportunity for personalised and precision 
treatments that could maximise efficacy and minimise adverse effects for each indi-
vidual patient.

Biomarkers in bipolar disorder have been investigated as markers for diagnosis, 
clinical staging and episode acuity. Studies have also explored the similarities and 
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differences with other mental illnesses. Research into biomarkers has and continues 
to uncover important insights into the biological basis of bipolar disorders and what 
is happening during different illness phases and over time.

Mental illnesses have been separated from physical illnesses, precisely because 
physical changes had not been observed. Hence, early biomarker research that 
revealed observable changes was seen to hold great promise. The discovery of bio-
logical changes that could be consistently observed created optimism that unravel-
ling the biological basis of mental illness was a realistic possibility. In an episodic 
illness such as bipolar disorder, this is particularly appealing as it poses the oppor-
tunity to identify phases of illness and tailor treatment and monitoring. Furthermore, 
biomarkers of change would allow for the investigation and application of more 
rigorous treatment approaches.

Although many biomarkers have been investigated that often show significant 
perturbations in clinical populations, the usefulness of these findings is often lim-
ited. It is often not clear why a biomarker is perturbed in someone with a mental 
illness or even what is being measured. Furthermore, bipolar disorder is a pleomor-
phic disorder, and comorbid physical and mental disorders are more common than 
not. Some biomarkers, such as oxidative, nitrosative and inflammatory markers, are 
raised across many diagnosed conditions. Factors such as chronicity, diagnostic 
overlay and the episodic nature of the disorder present further challenges. 
Interpreting the wealth of data regarding biomarkers for bipolar disorder remains 
challenging.

Common difficulties with biomarker research include a lack of specificity as well 
as considerable interindividual variation. Additionally, it is not often clear whether 
a perturbance is a state or trait characteristic, varying with symptom acuity or with 
illness. Biomarkers can also vary with stage of illness, from prodrome to illness 
onset to chronic dysfunction. Some biomarkers can also be measured outside of 
normal population ranges in unaffected near relatives.

In this chapter we review the findings from investigations of biomarkers for bipo-
lar disorders, discuss what those findings have revealed (see Fig. 1) and comment on 
future directions for this area of research.
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Fig. 1  An overview of biomarkers for bipolar disorder

2 � Neuroimaging

Morphological findings from neuroimaging of patients with bipolar disorder have 
included higher rates of white matter hyperintensities in T2-weighted magnetic 
resonance images, increased lateral ventricular volume, reduced whole brain and 
prefrontal lobe volume and increased volume of the globus pallidus [3]. These volu-
metric changes have been consistently found through several studies, with studies 
also identifying changes in non-affected siblings. Brain volumes were also investi-
gated in a study that included people with schizophrenia, bipolar disorder and major 
depression, finding that major depressive disorder could be differentiated from 
schizophrenia (76% accuracy) and that brain volume changes with bipolar disorder 
were more similar to major depressive disorder than to schizophrenia, with an algo-
rithm assigning 74% of people with bipolar disorder to a major depressive disorder 
classification [4]. These morphological changes may also be characteristic of greater 
chronicity and are also found with normal ageing. Increased grey matter volume has 
been demonstrated with lithium treatment, including the prefrontal cortex, amyg-
dala and hippocampal regions [5].

Emotional dysregulation in bipolar disorder has been associated with alterations 
of fronto-limbic-subcortical structures, providing reduced regulation of brain struc-
tures associated with emotions including the amygdala, ventral striatum, ventral 
anterior cingulate cortex, ventral prefrontal cortex and insula and reduced regula-
tion of brain structures associated with cognition including the hippocampus, dorsal 
anterior cingulate cortex and dorsal prefrontal cortex [5]. Support for these concepts 
has come from fMRI studies that have shown increased activation of frontal cortex 
Brodmann area 10 during a working memory task for people with bipolar disorder 
compared to controls. Elsewhere, increased amygdala activation was greater for 
people at risk of bipolar disorder than for healthy controls when presented with 
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emotional faces, although the difference was not significant for bipolar disorder 
cases [5]. Studies using fMRI comparing people with bipolar disorder to healthy 
controls have associated bipolar disorder with increased activation of the parahip-
pocampal gyrus, amygdala, basal ganglia and middle frontal gyrus (BA10) and 
decreased activation in the inferior frontal gyrus, precuneus, middle frontal gyrus 
(BA9), thalamus and cerebellum [5].

Other imaging technologies including diffusion tensor imaging (DTI) and mag-
netic resonance spectroscopy (MRS) have been used to differentiate mental disor-
ders. DTI studies of patients with bipolar disorder have further investigated the 
regions of white matter hyperintensities discovering decreases in fractional anisot-
ropy in these regions, suggestive of changes to the integrity and coherence of white 
matter. Furthermore, higher numbers of reconstructed fibres have been observed in 
the left hemisphere of bipolar subjects, specifically the left uncus fasciculus, and are 
not found in subjects with schizophrenia or unipolar depression [6]. MRS studies 
have shown reductions of N-acetylcysteine, glutamate and choline in subjects with 
bipolar disorder [7]. Notwithstanding the promise of this research, the sensitivity 
and specificity of these findings as well as cost and pragmatic considerations mean 
that neuroimaging has yet to impact routine clinical care.

3 � Genetics

Based on twin, adoption and family studies, bipolar disorder has been widely 
accepted as substantially heritable [8]. In twin studies, heritability is estimated 
between 60% and 90% [9]. Supporting this is epidemiological evidence of increased 
risk in first-, second- and third-degree relatives [9]. This however has not been easy 
to corroborate in molecular genetic research.

Genome-wide association studies have been the most successful method of iden-
tifying genetic variants associated with bipolar disorder. Several large-scale studies 
have found multiple loci significantly associated with bipolar disorder. A recent 
meta-analysis incorporating over 40,000 individuals with bipolar disorder found 64 
genome-wide risk-specific loci. Of these, 33 loci were new discoveries including a 
locus for the major histocompatibility complex which has already been associated 
with other psychiatric conditions including schizophrenia, major depressive disor-
der and problematic alcohol use [10]. Another large European study, including over 
20,000 cases, identified 30 specific loci of genes encoding for ion channels, neu-
rotransmitter transporters and synaptic components [11]. Some of the most studied 
risk loci include CACNA1C, ANK3, NCAN and POU3F2. The CACNA1C gene 
codes for the alpha 1C subunit of L-type voltage-dependent calcium channel and is 
already targeted in the treatment of hypertension and angina. It is being evaluated as 
a potential therapeutic target with, for example, drug repurposing. Along with 
ANK3 which is involved in synaptic plasticity, both are modulated in response to 
lithium [12].
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Bipolar disorder risk gene alleles have been found to have a small effect size and 
low penetrance [13]. In contrast to twin studies, heritability has been calculated at 
around 30% [13]. This supports a complex, multifactorial model of heritability that 
may include the contribution of rare gene variants, epigenetic effects and polygenic 
risk, whereby multiple genes impart a small, cumulative effect.

A polygenic risk score is a method used to estimate the effect of multiple genetic 
variants on an individual’s phenotype. It has been used to examine subtypes of bipo-
lar disorder as well as explore how these genes may manifest in certain phenotypes 
and outcomes such as comorbid psychiatric disorders, creativity and educational 
attainment. It has also been used to identify cross disorder phenotypic pairs with, for 
example, schizophrenia, major depressive disorder and attention-deficit hyperactiv-
ity disorder [9]. This method offers opportunities for greater insight into the aetiol-
ogy of the disease as well as the potential use as a marker of classification and 
disease. Larger discovery and greater sample diversity will increase the power of 
this approach.

Epigenetic factors such as DNA methylation may contribute to the heritability of 
bipolar disorder and have the potential to improve diagnosis and prognosis and pre-
dict treatment response. Methylation patterns in bipolar disorder have been exten-
sively researched in recent years with genome-wide as well as specific candidate 
gene methylation sites being explored such as BDNF and serotonin receptors. The 
methylation status of the serotonin receptor 3A (5-HT3AR), for example, has been 
shown to play a role in moderating the effects of childhood adversity on the clinical 
severity of bipolar disorder in adults [14]. DNA methylation at specific loci has been 
shown to be affected by treatment with mood stabilisers and may explain part of 
medication response. One challenge is that DNA methylation varies across different 
tissues. While often used as a proxy, peripheral blood cells such as platelets do not 
entirely reflect brain tissue [15]. Nonetheless, methylation appears to play an impor-
tant role in the pathophysiology of bipolar disorder and shows promise as a marker 
of treatment response.

4 � Peripheral Markers

Peripheral biomarkers are measures in biofluid specimens collected from subjects 
of interest. Some of the earliest biomarker studies investigated physiological 
changes in people with mental illness by observing peripheral indicators of 
monoamines and the hypothalamic-pituitary-adrenal (HPA) axis activity, such as 
dexamethasone suppression, cortisol levels and 3H-imipramine binding to plate-
lets [5]. More recent studies have focussed on neuroplasticity, immune function 
and energy metabolism, and there are also emerging discoveries in relation to 
circadian rhythms.
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4.1 � HPA Axis Markers

The early finding of HPA axis hyperactivity in certain mental disorders was signifi-
cant for psychiatry. It supported the notion that a biological underpinning of mental 
illnesses was a neuroendocrine stress response. In bipolar disorder, HPA hyperactiv-
ity has been consistently found, and it is noted to be more pronounced with age and 
dampened by antipsychotics [16]. Variation has also been found in different illness 
states with hyperactivity more marked in mania but also present in euthymic sub-
jects. While it may hold promise as a state and trait marker, it is not specific to 
bipolar illness with HPA hyperactivity also found in diverse conditions such as 
depression and schizophrenia [17]. Additionally, many studies do not take into 
account ultradian variability, which is activity fluctuations occurring in each 24 h 
cycle. This should be considered in future investigations.

4.2 � Neurotrophic Markers

As a family of proteins, neurotrophic factors play a key role in the cellular plasticity 
of the brain, regulating growth, synaptic transmission and the survival of neurons. 
Peripheral brain-derived neurotrophic factor (BDNF) has been the most extensively 
studied neurotrophic marker in mood disorders, following the discovery that both 
antidepressants and mood stabilisers could alter its signalling cascades. The most 
consistent finding has been abnormally low plasma or serum measures of BDNF in 
depression and bipolar disorders although some meta-analyses found no variation 
between control subjects and bipolar euthymia [18, 19]. Since BDNF also decreases 
with age and duration of illness, it may also be a potential marker for neuroprogres-
sion, which refers to the process of changes in the brain that occur over time, in 
psychiatric and neurological disorders. It captures the worsening of symptoms or 
cognitive function associated with the progression of a disorder [20]. Furthermore, 
a meta-analysis found an increase in peripheral BDNF after treatment of acute 
mania [21]. Interestingly, one study of subjects with bipolar disorder found higher 
BDNF levels to be associated with better cognitive function [22]. Studies, however, 
with larger sample sizes and greater homogeneity such as controlling for medica-
tions and medical comorbidities are needed before any conclusions can be drawn. 
Peripheral BDNF could be a potential marker of illness state as well as neuropro-
gression; however, more longitudinal studies are needed.

4.3 � Immune Markers

The association of bipolar disorder with inflammatory medical conditions such as 
cardiovascular and metabolic disease, chronic infections and autoimmunity is well 
established in the epidemiological literature [23]. According to more recent studies, 
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both central and peripheral cytokines are altered in bipolar disorder. It is likely that 
to some degree, all of these immune system signalling molecules cross the blood-
brain barrier [24].

Abnormalities in several individual inflammatory markers have been detected 
with highly sensitive C-reactive protein, interleukin-6 and tumour necrosis factor 
alpha being amongst the most commonly reported [25, 26]. Other markers of inter-
est include soluble TNF receptor type 1, soluble IL-2 receptor [25], interleukin-8, 
eotaxin-2, interferon-γ-induced protein-10 and monocyte chemoattractant protein-
1. Various other cytokines are found to be altered in bipolar disorder, but findings in 
meta-analyses are inconsistent [25–27]. Factors such as sample size and method-
ological and sample heterogeneity cloud the picture. In the early phase of acute ill-
ness across bipolar disorder, schizophrenia and major depressive disorder, a 
proinflammatory state with immune system activation seems to be occurring [27]. 
Instead of monitoring individual cytokines, cytokine panels or ratios may prove to 
be meaningful [25, 27]. A consensus however has not been reached regarding this 
or other methodological issues.

Despite the lack of conclusive findings, cytokines appear to be linked to a myriad 
of other biomarkers of bipolar disorder [28], and early clinical trials of anti-
inflammatory medications show some promise as adjunctive treatments [29]. It is 
also incompletely understood whether markers of inflammation reflect a bipolar 
disorder-related inflammatory process itself or are a proxy of known risk factors 
such as obesity and stress [30]. Expanded research, with a larger-scale, more robust 
investigation into the role of cytokines, may yield further insights.

4.4 � Oxidative Stress

Several lines of inquiry suggest mitochondrial dysfunction could be implicated in 
bipolar disorder’s aetiology [13, 31]. This dysfunction is associated with a state of 
oxidative stress where the usual antioxidant processes are overwhelmed. Markers of 
the sequelae of this oxidative stress such as nitrous oxide levels and lipid peroxida-
tion have been found to be elevated in those with bipolar disorder when compared 
with healthy controls [32]. Mitochondrial dysfunction may be a pathophysiological 
explanation as well as a potential treatment target [33].

4.5 � Metabolic Markers

Metabolomics involves analysing a large number of metabolites to gain insight into 
internal cellular processes. This emerging technology has demonstrated several 
metabolic pathways involved in neurotransmission, neuronal integrity and energy 
metabolism to be of significance in bipolar disorder and that these pathways were 
shared with major depressive disorder. While no firm conclusions can yet be drawn, 
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this presents exciting new opportunities for understanding and treating bipolar dis-
order [34].

Biomarkers relating to metabolic syndrome have also been investigated with glu-
cagon and glucagon-like peptide significantly associated with past mood episodes 
[7]. Studies found that adiponectin was significantly increased in bipolar euthymia, 
and a longer illness duration was associated with a greater effect size [35]. Leptin 
did not appear to be a marker of bipolar diagnosis but was affected by obesity [36]. 
An exploratory lipidomics study of euthymic patients found that over 100 lipids 
were significantly different compared with healthy controls with phosphatidylinosi-
tols being the most altered of these [37].

5 � Cognitive Markers

Current evidence indicates that individuals with bipolar disorder have a particular 
pattern of cognitive dysfunction, with several studies highlighting impairments in 
memory, attention and executive function [38, 39]. Deficits in verbal memory, pro-
cessing speed, social cognition and mental flexibility have also been noted [38, 40, 
41]. Mood phase also impacts cognition, with manic patients performing more 
poorly in several domains compared with euthymic and depressed subjects [41]. 
Less prominent cognitive impairments have also been noted in first-degree relatives 
indicating that these deficits may be a marker of genetic vulnerability to the disorder 
[42, 43]. Patterns of cognition in people with established disorder may differ from 
those at risk; there is evidence that cognitively gifted individuals appear to be at a 
greater risk of later illness [44].

Cognitive decline over the course of illness supports the concept of neuropro-
gression; however, it remains unclear if this is due to the disorder itself or other 
factors such as medications and age-related processes, including the effect of 
comorbidities [41]. Furthermore, not all individuals have the same degree of cogni-
tive impairment, raising the possibility of subgroups within the disorder. It has been 
noted however that along with recurrent illness episodes and subthreshold symp-
tomatology, cognitive deficits were one of the greatest predictors of functional out-
come in affected individuals [39]. Hence, cognitive biomarkers hold a potential use 
in predicting disease susceptibility and functional outcomes as well as assisting in 
disease stratification which could ultimately affect treatment approaches.

6 � Circadian Markers

The exact nature of the relationship between disordered sleep and bipolar illness is 
not entirely clear. Molecular, genetic, actigraphic and self-report probes have been 
adopted to deepen our understanding. Independent of mood state and including 
drug-naïve  patients, evidence suggests that bipolar subjects have a greater 
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preponderance for evening chronotype and circadian rhythm disturbance when 
compared with controls [45]. This differs from subjects with major depressive dis-
order, where circadian disturbance is shown to be mood symptom dependent. A 
meta-analysis of actigraphically monitored euthymic individuals found that total 
sleep time was significantly increased despite difficulties with sleep initiation and 
maintenance [46]. This, combined with the finding of reduced daytime activity, sup-
ports the notion that a bidirectional interaction between circadian dysregulation and 
bipolar disorder exists [46, 47]. Symptomatology, behavioural and medication-
related factors all seem to play a role. Cyclical melatonin secretion [47] and salivary 
and buccal cortisol levels [48] may prove to be useful state markers of circadian 
dysregulation, but further investigation is needed [13].

Several genetic association studies have demonstrated a link between multiple 
circadian-related genes and bipolar disorder such as CLOCK, ARTNL, CSNKε, 
PER3, NPAS2, NR1d1, TIMELESS, RORA, RORB and GSK3β. The associations 
were modest, consistent with polygenic heritability where each gene contributes a 
small amount to a cumulative risk [13]. While there does appear to be an association 
between circadian genes and proneness to bipolar disorder, many of the findings are 
contradictory. One possible explanation is gene-environment interactions [47]. 
Alternatively, the picture may include bipolar subtypes whereby particular genes 
confer sensitivity to changes in rhythm, resulting in rapid cycling or relapses. 
Circadian genes associated with rapid cycling have been identified in CRY2, 
CLOCK, ARNTL2, TIMELESS and CSNK1ε. Many of these findings highlight the 
important link between bipolar disorder and circadian genes as well as their poten-
tial to predict and prognosticate.

7 � Discussion

While a greater understanding of bipolar disorder has been obtained from various 
arms of research, sometimes this has meant uncovering deeper complexity. Many 
findings appear interrelated be that between psychiatric disorders, risk factors or 
between biomarkers themselves. One of the greatest hurdles to getting these bio-
markers to the bedside has been their lack of sensitivity and poor specificity. This 
may be in part due to the heterogeneity of bipolar disorders and extensive comorbid-
ity as well as common underlying aetiologies amongst many mental illnesses. 
Multiple complex factors such as medical illness, lifestyle, stressors and medica-
tions also interact with the markers being assessed. Despite these challenges, 
research to date has shown great insights into the mechanism of bipolar disorders, 
its progression and pathophysiology. In addition, it has yielded a greater under-
standing of risk factors, disease acuity and the potential of different treatment ave-
nues including drug repurposing and novel target sites. While no single biomarker 
has emerged as readily adaptable to the clinical environment, many have proven 
meaningful in understanding aspects of pathophysiological processes. Novel 
approaches such as metabolomics and digital technologies like actigraphy also 
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present new opportunities for translational research. Consolidating and expanding 
on existing findings could pave the way towards stratified approaches whereby bio-
markers can be used to group patients based on risk or response to treatment. This 
would vastly change the way we address this complex and potentially disabling 
condition.
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1 � Introduction

Anxiety disorders are the most common psychiatric disorders, with an estimated 
prevalence of 18% in the USA [1] and 14% in Europe [2]. They usually start in 
childhood, adolescence, or early adulthood and are twice as common in women [3]. 
Despite the public health significance of anxiety disorders, which the WHO ranks 
as the ninth health-related cause of disability [4], adequate treatment is still deficient 
[5]. This is particularly problematic because, if left untreated, anxiety disorders tend 
to be chronic [6] and may progress to depression and other conditions [7].
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Despite being highly comorbid with each other [8], anxiety disorders are clini-
cally differentiated by the type of cue that elicits anxiousness, including socioenvi-
ronmental (e.g., social situations) and internal stimuli (e.g., thoughts and 
uncomfortable bodily sensations). Abnormalities of fear circuitry play a central role 
in anxiety disorders. In addition, recent conceptualizations have also implicated 
abnormalities in circuits associated with affective responses in these disorders [9].

Although very prevalent, the current picture is one in which patients with anxiety 
disorders are neglected by health services. Anxiety disorders are often underdiag-
nosed [5]. This may be partly due to the nature of anxiety disorders in which patients 
may actively avoid seeking medical help as part of their clinical presentation. 
Anxiety disorders may also mimic other medical conditions (e.g., patients with 
panic disorder presenting in emergency departments with presumed cardiac or pul-
monary problems). Furthermore, for those patients that do undergo treatment, a 
significant reduction in symptoms may occur in less than half [10]. Their pharma-
cological treatment has not seen great strides in development in the last couple of 
decades, with many newer drugs being variations of old ones. This stasis has been 
accompanied by a retreat of investments from the pharmaceutical industry in devel-
oping new pharmaceuticals [11]. This is partly due to the highly complex task of 
translating discoveries from fundamental neuroscience into effective therapeutic 
interventions. Theoretically, many of these therapeutic shortcomings may be dimin-
ished by the early identification of individuals with anxiety disorders in tandem with 
the early implementation of effective treatment.

In this chapter, we will review recent data regarding potential biomarkers of 
anxiety disorders, including data from neuroimaging and physiological measure-
ments. We address generalized anxiety disorder (GAD), panic disorder (PD), and 
social anxiety disorder (SAD). Although still incipient, these findings hold promise 
for future clinical applications such as predicting treatment response or identifying 
susceptible individuals early.

2 � Generalized Anxiety Disorder

Generalized anxiety disorder (GAD) is characterized by excessive and persistent 
worrying that is difficult to control and has a negative impact on daily functioning 
and general well-being [12]. Patients generally suffer from anxiety-related physical 
manifestations such as fatigue, muscle tension, and sleep disturbances, but GAD is 
phenomenologically heterogeneous. Its study is complicated by its high comorbid-
ity rate with other psychiatric disorders, especially other anxiety disorders and 
depression.
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2.1 � Structural Brain Morphology – Structural Magnetic 
Resonance Imaging Studies in Generalized 
Anxiety Disorder

There is evidence that patients with GAD have anatomical alterations in brain struc-
ture, mainly in areas associated with fear circuitry and emotional regulation. Despite 
this, findings are markedly heterogeneous, with most results needing to be repli-
cated. Further, most studies contain small sample sizes and rely on a region-of-
interest (ROI) rather than a whole-brain approach, with varying ROIs between 
studies. Some studies have also investigated volumetric abnormalities of localized 
white and gray matter and altered structural connectivity.

One may speculate that due to greater responsivity of the amygdala during aver-
sive anticipation [13], patients with GAD would develop an activity-dependent 
increase in amygdala gray matter volume [14]. Some studies, indeed, reported 
increased gray matter volume (GMV) in the amygdala of these patients [9, 15]. 
However, most studies show no significant structural differences in the amygdala 
[16–23], with a recent meta-analysis failing to find GMV differences [24].

Reduced hippocampal volume in GAD has also been described [16–19, 22, 23], 
which has been confirmed by a meta-analysis [24]. Some, but not all, studies 
included patients with comorbid major depressive disorder (MDD). This fact is 
important since hippocampal volume is reduced in patients with MDD [25]. Hettema 
et al. attempted to control this by removing all subjects with lifetime MDD but still 
found a trend for a smaller left hippocampus in subjects with GAD. Furthermore, 
GAD patients with comorbid MDD have thinner right medial orbitofrontal cortex 
(mOFC) and fusiform gyri, as well as left temporal pole and lateral occipital corti-
ces, supporting the proposal that GAD is a distinct neurobiological entity [16]. The 
role of hippocampal volume as a biomarker for GAD, internalizing traits, or deficits 
in emotion regulation needs to be further elucidated. It is, however, improbable that 
this alteration is disorder specific.

2.2 � Structural Brain Morphology – in Generalized 
Anxiety Disorder

DW-MRI studies have provided evidence of WM abnormalities and disruptions of 
brain connectivity in GAD, including reduced frontolimbic connectivity in adoles-
cents [26] and adults with the disorder [16, 27, 28]. Attenuated anatomical connec-
tions between PFC and amygdala, corresponding to the uncinate fasciculus, which 
is a WM tract that interconnects ventral regions of the PFC and ACC to the amyg-
dala [29–31], were also correlated with trait anxiety [32]. Also, in the uncinate fas-
ciculus, reduced fractional anisotropy (FA), indicative of attenuated fiber integrity, 
was found in GAD patients [16, 27, 28]. Therefore, the uncinate fasciculus has 
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emerged as a promising candidate for a marker in GAD, though more studies are 
clearly needed.

Multiple studies have also found reduced WM volume in the PFC, including the 
DLPFC [23, 33, 34] and vmPFC [35]. For the latter, reduced vmPFC thickness cor-
related with enhanced fear generalization [35].

2.3 � fMRI in Generalized Anxiety Disorder

2.3.1 � Resting-State fMRI

Unlike other anxiety disorders in which symptoms can be easily provoked through 
exposure to external stimuli, GAD is characterized by persistent worrying states 
that are not easily elicited. Thus, trait anxiety might be particularly amenable to 
investigation by resting state fMRI.

There is good evidence for frontolimbic resting-state functional connectivity 
(rsFC) abnormalities in GAD. The amygdala integrates information from two dis-
sociable brain networks in specialized subregions. The basolateral amygdala has 
predominantly cortical higher sensory and medial prefrontal connectivity. In con-
trast, the centromedial amygdala is primarily interconnected with midbrain struc-
tures and the thalamus. This pattern appears less distinct in patients with GAD [9]. 
In the same study, a weaker rsFC with dACC and an increased rsFC between dlPFC 
and the amygdala negatively correlated with measures of anxiety [9]. Similar 
reduced basolateral amygdala and centromedial amygdala network distinctiveness 
was also shown in adolescents with GAD [36], along with disruptions in amygdala 
connectivity with the mPFC, insula, and cerebellum. Additionally, altered amygdala-
PFC connectivity is reported in healthy subjects with elevated state anxiety [37]. 
Another study strengthened the dysregulated top-down emotional regulation 
hypothesis, with decreased rsFC between the basolateral amygdala and the ACC 
and mPFC [38].

2.3.2 � Emotional Dysregulation fMRI

Emotion regulation refers, in a very general sense, to mechanisms that modulate the 
trajectory of an emotion. There is “explicit” (associated with awareness) and 
“implicit” (occurs outside of consciousness) emotion regulation [39]. The explicit 
regulation paradigm most studied is reappraisal, which is associated with the activa-
tion of the dlPFC, vlPFC, and parietal cortex. Implicit regulation is most studied in 
the inhibition of fear and emotional conflict paradigms, which consistently show 
activation of vACC and vmPFC [40]. Emotion dysregulation may be broken down 
into two related components: atypical emotional reactivity and dysregulation of 
reactivity [41]. More specifically, patients with GAD experience heightened emo-
tions, poor understanding of emotions, negative reactivity, and maladaptive 
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management of emotions [42]. GAD appears less compatible with traditional fear 
conditioning models than other anxiety disorders, and many fMRI studies have 
investigated general affective processing-related tasks. Specific markers of emo-
tional dysregulation, ubiquitous in mental health disorders, may serve as dimen-
sional transdiagnostic markers for more precise biological and psychotherapeutic 
interventions.

2.3.3 � Emotional Reactivity – Facial Affect and Image Processing

In healthy subjects, rsFC imaging suggests that spontaneous activity in the amyg-
dala positively predicts activity in structures important in emotional appraisal and 
affective states, including the ACC, insula, mPFC, striatum, and thalamus. The 
activity in the superior and middle frontal gyrus, posterior cingulate cortex (PCC), 
and precuneus, which are associated with cognitive tasks, negatively predicts amyg-
dala activity [43]. The amygdala and its related structures are crucial for fear [44] 
and negative valence processing [45]. Amygdala also responds to facial expressions 
of happiness, disgust, and humor and may play a role in the processing of socioemo-
tionally salient stimuli altogether [46, 47], although there may be preferential acti-
vation to threat- and fear-cues across anxiety disorders [48]. Moreover, fearful faces 
typically activate the amygdala bilaterally in healthy individuals [49].

One study observed greater amygdala reactivity correlated with clinical anxiety 
in pediatric patients with GAD responding to fearful faces [50]. In another, this 
change occurred only when angry faces were masked from conscious awareness 
[51]. In the latter study, when faces were processed consciously, a typical reactivity 
was observed in the amygdala, but more pronounced activation occurred in the 
vlPFC, suggesting a possible compensatory function. Similar results were reported 
in adolescents viewing fearful faces while attending to their subjective fear [52]. As 
previously noted, the amygdala plays a role in social salience in general. Facial 
emotion processing results in GAD may be further complicated by abnormal amyg-
dala responses to facial processing [53]. More pronounced amygdala activation was 
shown in processing fearful faces compared to happy faces [48]. Despite this, find-
ings indicating no differences when compared with healthy controls [54, 55], or 
even reduced amygdala responses to fearful expressions [56], have also been 
described.

In addition, the picture in GAD may be more complex than amygdala hyperac-
tivity in response to certain stimuli, as dorsomedial and lateral prefrontal regions 
and dACC may play distinct modulatory roles in limbic function [53]. There is 
evidence that both the prefrontal regions and the ACC regulate and monitor emo-
tional responses mediated by the amygdala [57]. ACC reactivity is negatively cor-
related with amygdala reactivity in response to facial expressions [58, 59]. Moreover, 
in adolescents with GAD, limbic functioning displays more regular amygdala 
hyperactivation than their adult counterparts. This finding may reflect the learned 
employment of top-down modulation strategies by adults. Therefore, some findings 
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implicating emotion regulation circuit abnormalities in adults may, in part, reflect 
illness duration.

Current literature suggests an abnormality of amygdala-prefrontal connectivity 
in GAD. A recent study showed that increased positive coupling between the amyg-
dala, dorsomedial prefrontal cortex (dmPFC), and dorsal anterior cingulate cortex  
(dACC) during fearful face processing vs. happy faces correlated with both GAD 
and dimensional measures of anxiety in what is proposed to be an aversive amplifi-
cation circuit [60]. Conversely, in studies with an emotional conflict paradigm, in 
which GAD participants were asked to classify if faces were fearful or happy, over-
laid with either congruent or incongruent emotional words, participants with GAD 
showed lesser dmPFC response, with additional decreased amygdala-vACC con-
nectivity [61, 62]. These findings suggest that GAD has increased between the 
amygdala and dACC/dmPFC during emotional reactivity and diminished connec-
tivity with vmPFC/vACC during implicit emotional regulation paradigms [53]. 
Adolescents with GAD presented more activation of the vlPFC in tasks with angry 
faces and attentional bias away from them. Increases in right vlPFC activation were 
associated with diminished anxiety symptoms. A later work from the same group 
showed a negative coupling between vlPFC and amygdala when exposed to masked 
angry faces [51]. In summary, conscious processing of angry faces produced normal 
amygdala responses and hyperactive vlPFC, while masked angry faces produced 
amygdala hyperactivity. This is in line with models that suggest a possible compen-
satory function of top-down processing.

A heightened right amygdala activation during the processing of fearful faces 
relative to happy ones correlated with trait anxiety across anxiety diagnoses [48]. A 
study examining transdiagnostic measures of anxiety in a mixed patient population, 
including SAD, GAD, and MDD, found that anxiety scores were positively corre-
lated with greater activation in bilateral insula, anterior/midcingulate, and dlPFC in 
response to angry faces [63].

An fMRI study conducted during a facial emotion processing task, before and 
after ten sessions with cognitive behavioral therapy (CBT) [64], showed blunted 
amygdala, insula, and ACC responses to happy facial expressions at baseline, but 
CBT enhanced insular response to happy faces while attenuating ACC activation to 
angry/fearful faces. Another transdiagnostic treatment study, including varied anxi-
ety diagnoses in youth, showed similar findings, with participants receiving CBT or 
SSRI. Both treatments increased the activation of vACC [65].

2.3.4 � Emotional Reactivity – Verbal and Imagery Stimulus

Cognitive models of GAD propose that worry is a predominantly verbal-linguistic 
process that modulates undesirable emotional states and, possibly, mental imagery 
[66]. In a study, participants were imaged while being presented with acoustic 
recordings of verbal descriptions of personal worry content versus a neutral state-
ment before and after 7-week treatment with citalopram [67]. Post-treatment 
patients displayed reduced activation of prefrontal regions, insula, striatum, and 
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Fig. 1  Simplified scheme of neural circuitry involved in emotional processing. Structures are 
categorized into two groups: those involved in emotional reactivity and those relevant for emotion 
regulation

paralimbic regions during exposure to verbal worry stimulus when compared to pre-
treatment. Anxiety-provoking words [68] and images [69] also increase vlPFC 
response. Buff and colleagues observed increased reactivity to threat pictures in the 
cingulate cortex, insula, and dlPFC of GAD patients without amygdala hyperactiva-
tion and increased FC between posterior dlPFC and vlPFC and between the cingu-
late cortex and insula [70]. A simplified scheme of the neural circuitry relevant to 
emotional processing can be seen in Fig. 1.

2.3.5 � Cognition and Emotion

One study investigated the effects of emotional interference on working memory 
and found greater activation in the vlPFC, dlPFC, hippocampus, and amygdala in 
GAD patients and impaired performance in a working memory task during emo-
tional distracters [69]. Regarding the closely related function of attentional control, 
another study reported an association between trait anxiety and reduced recruitment 
of dlPFC and dACC during a “go-no go” task and slower error-free performance. 
Additionally, enhanced dlPFC-precuneus and dlPFC-PCC connectivity during 
blocks in which commission errors occurred were associated with anxiety and 
worry [71].
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Worry may reduce exposure to anxiety-provoking material, thus avoiding associ-
ated unpleasant autonomic responses. In one study, worrying that was verbal in 
nature was associated with reduced cardiac variability and higher baseline heart 
rate. After perseverative cognition induction, more pronounced use of words that 
corresponded with reduced heart rate was associated with enhanced functional con-
nectivity between the amygdala and frontal areas. More wordy worrying is also 
associated with more activation of the temporal lobe. More negative thoughts were 
associated with decreased functional connectivity between the amygdala and 
ACC [72].

2.3.6 � Treatment Studies

The current biological treatment of GAD is essentially a trial-and-error process. 
Biomarkers as treatment response predictors in GAD are a promising avenue of 
research. Patients with similar phenotypic presentations may present distinct neuro-
biological functioning, rendering them susceptible to different treatment options or 
modalities. Hoehn-Saric et al., reported reduced activation in medial prefrontal and 
paralimbic regions as well as in the insula and striatum during the processing of 
worrying phrases after 7 weeks of treatment with citalopram, compared to initial 
conditions. These changes paralleled a reduction in anxiety self-reports [67].

An enhanced ACC activity in exposure to fearful faces [73] and anticipation of 
aversive stimuli [13] predicted positive treatment outcomes with venlafaxine for 
8 weeks in GAD patients. It is possible that ACC responsivity could be used in the 
future as a predictor of treatment outcomes in GAD. Following successful treat-
ment, with either CBT or fluoxetine for 8  weeks, patients with GAD showed 
increased vlPFC reactivity to angry faces in both treatment arms [74]. Similarly, a 
greater activation of the vlPFC was observed in patients who underwent an 8-week 
mindfulness-based stress reduction program [75]. Functional coupling between the 
amygdala and vlPFC also increased after the intervention.

2.4 � Neurochemical Biomarkers in Generalized 
Anxiety Disorder

There are few studies on plasma-based biomarkers for GAD in general, indicating 
the further need for deeper exploration of such approaches. Although some studies 
have shown changes in binding studies for serotonin reuptake, adrenergic receptors, 
benzodiazepines, and others, in platelets and lymphocytes [76–80], these findings 
are usually not disease-specific and will require further replication.

GAD lacks consistent evidence regarding hypothalamic-pituitary-adrenal (HPA) 
axis alterations. For instance, in a large study with Vietnam veterans, patients with 
GAD had no difference in morning salivary cortisol compared to controls [81]. 
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Additionally, despite altered sleep patterns, children with GAD did not differ from 
controls in pre-sleep salivary cortisol levels [82]. Markers related to immune 
responses have also been investigated in GAD. One study examined the genome-
wide gene expression in GAD and found that 631 genes were differentially expressed 
in anxious men compared to controls. Genes related to immune responses to acute 
bacterial and viral infection were represented among them to a large extent. 
Additionally, anxious men also showed altered gene expression in the macrophage-
enriched metabolic network, implicated in metabolic syndrome [83]. C-reactive 
protein (CRP) was elevated in GAD [84], although this change was attenuated after 
controlling for health-related factors [85]. A recent meta-analysis showed signifi-
cantly raised CRP values in GAD [86] and preliminary evidence of increased IFN-γ 
and TNF-α levels. Moreover, patients with GAD have higher total oxidative status 
and oxidative stress index [87, 88]. Biomarkers related to oxidative stress may play 
some role in the treatment of patients. Specifically, the study by Ercan et al. showed 
that anxiety severity correlated with measures of oxidative stress, such as the intra-
cellular enzyme prolidase. In addition, GAD with or without comorbid MDD is 
characterized by increased nitro-oxidative stress, which entails increased nitric 
oxide production, increased lipid peroxidation, and lessened lipid-associated anti-
oxidant defenses [89].

Other factors, such as BDNF, have also been investigated. Despite consistent 
findings in MDD, BDNF involvement is controversial in GAD. No significant asso-
ciation was found between anxiety symptom severity in GAD and baseline BDNF 
levels, although levels did increase after treatment with duloxetine [90]. Some stud-
ies suggest that female patients with GAD have reduced BDNF levels [91], although 
this warrants further investigation [91].

3 � Panic Disorder

Panic disorder (PD) is characterized by recurrent panic attacks, which are abrupt 
surges of intense fear, generally accompanied by physical and psychological mani-
festations such as accelerated heart rate, palpitations, profuse sweating, dizziness, 
numbing/paresthesia, chest pain, abdominal discomfort, nausea, depersonalization/
derealization, and fear of “going crazy” or dying. These manifestations typically 
reach peak intensity within minutes and are generally self-limited and short-lasting. 
Besides recurrent panic attacks, PD features prominent anticipatory anxiety and 
maladaptive and cognitive changes centered around phobic avoidance of new panic 
attacks. PD often runs in tandem with agoraphobia in approximately two-thirds of 
patients, which constitutes the fear of places where help or escape may be difficult. 
PD can be described in a straightforward fear conditioning model: symptom-
generating stimuli (interoceptive cues, internal physiological signs) elicit phobic 
avoidance and fear generalization.
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3.1 � Structural Brain Morphology – Structural Magnetic 
Resonance Imaging Studies in Panic Disorder

The amygdala is proposed to have a central role in the pathophysiology of PD [92]. 
Earlier studies consistently reported reduced amygdala volume in patients with PD 
[93] and a negative correlation between amygdala volume and clinical anxiety 
scores. Reduced amygdala volume is proposed to result from chronic amygdala 
hyperactivity. Another consistent finding is a reduced OFC GMV in PD [94, 95], 
including PD and agoraphobia [96]. Importantly, the OFC and amygdala are 
strongly interconnected.

Changes in other structures are also reported, such as increased GMVs in the 
insula [97], which is important for interoception, and midbrain structures related to 
respiratory and cardiovascular control [98]. Cortical volume abnormalities have 
also been described, mainly a volume reduction in the ACC [99].

3.2 � Structural Brain Morphology – in Panic Disorder

There are some WM abnormalities in PD. For instance, an increase in FA in the left 
anterior and right posterior cingulate regions correlated with clinical severity [100]. 
Interestingly, two case reports indicate that damage of the dACC causes repeated 
panic attacks [101]. Electrical stimulation of the pregenual ACC evokes panic-like 
symptoms [102]. These observations are in accordance with cognitive-attentional 
models of PD, in which it is suggested that PD patients are overly sensitive to inter-
nal autonomic cues and the role played by ACC in receiving and modulating auto-
nomic activity.

3.3 � fMRI in Panic Disorder

3.3.1 � Resting-State fMRI in PD

There are few rsFC studies in PD, possibly due to the inherent difficulties associated 
with the disorder. Patients may be reluctant to enter confined spaces for prolonged 
periods, as is typically necessary for these studies. Patients with PD seem to have an 
increased rsFC between the right amygdala and precuneus and with the occipital 
cortex bilaterally, as well as abnormal rsFC between the dACC and frontal, parietal, 
and occipital cortical areas [103]. Of note, an increase in rsFC between ACC and 
precuneus, two core medial structures of the DMN, correlated with GABA concen-
tration in the ACC, measured by magnetic resonance spectroscopy. Whole-brain 
analysis showed increased rsFC between the thalamus and postcentral gyrus in PD 
patients [104]. Further, abnormal connectivity between the post/precentral gyrus 
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and the thalamus was correlated with scores of both trait anxiety and alterations in 
body perception. In addition, the precentral gyrus was a central hub of an altered 
connectivity network in PD [105]. In summary, the emerging evidence of rsFC in 
PD suggests abnormalities in the posterior and medial structures of the DMN, as 
well as enhanced connectivity in regions associated with the sensorimotor network, 
which may precipitate a higher sensitivity to internal visceral cues.

3.3.2 � Emotional Processing fMRI in PD

PD patients demonstrated greater insula response to unpredictable aversiveness than 
healthy controls and patients with MDD [106]. Complementary findings were 
reported in a study investigating neural activity in patients with PD and agoraphobia 
using neutral and agoraphobia-specific stimuli exposure presented with or without 
an anticipatory stimulus. During anticipation of agoraphobia-specific stimuli, 
enhanced reactivity was observed in the insula of the patients [107]. Also, when 
exposed to panic-specific stimuli, patients showed greater insula activation when 
responses to negative or neutral pictures were compared [108]. Similarly, Feldker 
et al. observed activation of an “extended fear network” in PD involving the insula, 
among other brain regions, for panic-related versus neutral scenes [109]. Activation 
of the insula seems to occur at the beginning of a panic attack [110]. Importantly, 
greater insula activation differentiated PD from other anxiety disorders across all 
emotional face types [48]. Given the role of the insula in interoception [111], it is 
plausible that it may serve as an “alarm” regarding internal bodily cues during panic 
attacks.

Studies on amygdala activity in PD have resulted in inconsistent findings. 
Amygdala was hyperactive in response to panic-related words in PD [112] but 
showed no difference between PD and healthy controls when exposed to happy and 
neutral faces [113] and less activation in response to fearful faces [114]. Additionally, 
PD was associated with amygdala hypoactivation during face perception [115]. 
Furthermore, unlike controls that exhibit classic amygdala activation in response to 
masked fearful faces, PD patients failed to show amygdala activation [116]. 
Regarding amygdala activity during panic attacks, robust activation in spontaneous 
[110, 117] and pharmacologically induced PAs [118] has been observed.

The brainstem has also been largely implicated in PD, especially the periaque-
ductal gray (PAG) [119]. Due to its small size, detecting abnormalities in the PAG 
using BOLD signal may suffer from intrinsic limitations. Boshuisen et al. reported 
increased midbrain activity, most likely in the PAG, during a challenge with the 
panicolytic agent pentagastrin [120]. In healthy subjects, PAG activity increases in 
response to approaching threats [121]. One study demonstrated increased brainstem 
activation due to hypercapnia in patients with PD. In this study, activation of the 
insula correlated with breathlessness [122]. This result is in accordance with a 
recent finding that fear of cardiovascular symptoms is associated with significant 
insula activation and fear of respiratory systems with brainstem hyperactivation to 
panic-related visual stimuli [123].
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When comparing remitted PD patients with healthy controls during an emotional 
Stroop test, one study showed that patients were more influenced by the emotional 
incongruence of a previous task, with increased activity in the dACC during conflict 
detection in controls. In contrast, patients demonstrated a drop in dACC recruitment 
and enhanced activation of the amygdala and brainstem, suggesting a deficit in 
resolving conflicting emotional information [124]. In summary, studies point to an 
attentional bias toward panic-specific stimuli and altered top-down processing in 
fear-conditioning and emotion regulation in PD.

3.3.3 � Treatment fMRI Studies

Recent studies have investigated biomarkers regarding treatment response in 
PD. Interestingly, a machine-learning approach combining data from the acquisi-
tion and extinction phases of a fear-conditioning task yielded 82% accuracy [125]. 
Treatment response to CBT was characterized by inhibitory functional connectivity 
activity between the ACC and amygdala that was stable over time, while success-
fully treated patients showed increased right hippocampal activation when exposed 
to stimulus contingencies [126]. Also, the long variant of the serotonin transporter 
polymorphism (5-HTTLPR) seems to modulate ACC-amygdala coupling during 
the fear-conditioning task [127]. Other studies have found evidence of pretreatment 
activity predicting treatment response, with greater activation of bilateral insula and 
left dlPFC during a threat-processing task predicting better response to CBT [128]. 
A normalization of pretreatment hyperactivation in the amygdala, dmPFC, and 
dlPFC was found in 71% of recovered patients after treatment with CBT [129].

Better response to CBT in PD is moderated by enhanced differentiation between 
the reaction to threat and safety-related stimuli in limbic and cortical regions. More 
specifically, non-responders appear to have more difficulty distinguishing between 
safety and threatening conditions, partly due to problems in top-down modulation 
of limbic structures such as the amygdala, insula, and brainstem structures [130].

3.4 � Physiological Biomarkers

3.4.1 � Respiratory Patterns and Carbon Dioxide (CO2) Sensitivity

The connection between PD and respiration is an interesting one. Patients with PD 
have more irregular tidal volumes, i.e., the air volume that moves in and out of the 
lungs with each respiratory cycle [131]. Further, patients with PD have baseline 
hyperventilation that may be chronic, as well as presenting higher irregularity in 
breathing patterns [132]. These alterations are not present in other anxiety disorders 
[133]. Additionally, patients with PD have a disproportionately higher prevalence of 
respiratory diseases, such as chronic obstructive pulmonary disease and asthma 
[134, 135]. A respiratory subtype of PD has been hypothesized [136], in which 
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breathlessness and choking sensations predominate. Further studies are needed, but 
a combination of different biomarkers may describe this subtype, with varying 
responses to treatment and phenomenology.

Respiratory challenges, the most common of which is inhaling hypercapnic gas 
mixtures, can induce anxiety in healthy volunteers but may also be a useful bio-
marker in PD. Patients with PD are reliably hyperreactive to such challenges, pro-
ducing panic-like symptoms, even compared to other anxiety disorders [137–139]. 
Moreover, CO2 hypersensitivity is primarily accounted for by a unique genetic lia-
bility [140]. This is especially relevant because CO2 hypersensitivity is also present 
in youth with separation anxiety disorder and parental PD [141]. Following the 
notion of CO2 hypersensitivity as a risk trait for PD, two twin studies by Battaglia 
et al. suggest an association with genetic factors [142, 143]. A recent meta-analysis 
suggests an increased CO2 sensitivity in PD patients and their healthy first-degree 
relatives [144]. Overall, responsivity to the CO2 inhalation challenge may predict 
clinical outcomes and responsiveness to different therapeutic modalities being a 
possible biomarker.

3.4.2 � Heart Rate Variability

It is widely known that the symptoms of PD may express clinically as tachycardia, 
palpitations, and even chest pain. However, patients suffering from PD often show 
reduced heart rate variability (HRV) [145, 146]. HRV is associated with autonomic 
nervous system function, and low HRV is a known risk factor for cardiovascular 
events [147]. Moreover, panic is associated with an increased risk of cardiovascular 
disease and atrial fibrillation. Further still, patients with PD have been shown to 
have abnormal perceptions of their heartbeat [104]. HRV may be a marker of shared 
underlying autonomic dysfunction in anxiety and cardiovascular disorders. Recent 
data has pointed to the abnormal coupling of neural activity and the heart [148]. 
HRV is advantageous over other potential biomarkers because it can be fast, cheap, 
and noninvasive. It is, however, unlikely to be specific to PD as many other disor-
ders are associated with reduced HRV, such as cardiovascular diseases, fibromyal-
gia, diabetes, and depression; despite these limitations, it may have its use in 
detecting treatment-related changes.

3.5 � Neurochemical Biomarkers in PD

Several neurochemical biomarkers have been investigated in PD. Early studies indi-
cated that patients with PD have higher plasma serotonin (5-HT) levels than con-
trols [149, 150]. Measures of 5-hydroxyindoleacetic acid (5-HIAA), the major 
5-HT metabolite in the cerebrospinal fluid (CSF), are decreased in patients success-
fully treated with tricyclic antidepressants. However, no baseline difference was 
observed [151].
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Abnormalities in the signaling pathway mediated by the peptide cholecystokinin 
(CCK) have also been implicated in PD. CCK administration produces a panico-
genic effect [152, 153]. Moreover, intravenous CCK-4, an agonist at the CCK 
receptor, may be a reliable test to differentiate patients with PD from healthy con-
trols, with marked effects: 25 μg of intravenous CCK-4 caused panic in 91% of 
patients and 17% of controls. In comparison, 50 μg elicited panic in all patients but 
only in 47% of controls [154]. Abnormalities in the CCK system may be wide-
spread in PD, as patients were shown to have lower concentrations of CCK-8  in 
lymphocytes and the CSF [155, 156]. As a complicating factor, most CCK in the 
plasma is derived from the gut, so peripheral measures only marginally represent 
CCK arising from the CNS, which limits the interpretation of peripheral measures 
as a biomarker. In accordance with functional neuroanatomical data of PD, CCK-4-
induced panic correlated with increased blood flow in the anterior cingulate and 
claustrum-insular-amygdala region [118]. Although the data are unequivocal 
regarding CCK-peptides involvement in PD, clinical applications are still elusive, 
and as of yet, no CCK-receptor antagonists are helpful in the treatment of the disor-
der [157, 158]. Other markers, including those related to dopamine [159], noradren-
aline [160], and GABA neurotransmission [161], have also been studied but with 
inconsistent findings.

As seen in other anxiety disorders, patients with PD have altered immunological 
function. A recent study with drug-naïve first-episode patients in PD acute phase 
demonstrated higher levels of proinflammatory cytokines that can decrease the 
availability of monoamines. Lower serum anti-inflammatory IL-10 was also 
reported [162]. A better description of an inflammatory profile sensitive to drug 
status and disease staging is essential to its utility as a biomarker, as markers may 
change as the disease progresses.

Another interesting avenue of research into inflammatory alterations in PD is the 
kynurenine/tryptophan (kyn/tryp) ratio. Kynurenine is a product of the breakdown 
of tryptophan. It is hypothesized that increased inflammatory activity shunts the 
metabolism of tryptophan to kynurenine, and downstream metabolic processes lead 
to neuroactive metabolites that contribute to cognitive deficits. One study found that 
an elevated peripheral kyn/tryp ratio predicted short-term memory deficits [163]. 
The peripheral kyn/tryp ratio may be useful as a biomarker for cognitive deficits in 
PD and other anxiety disorders. Theoretically, treatments targeting this pathway 
may ameliorate cognitive abnormalities.

4 � Social Anxiety Disorder

Social anxiety disorder (SAD), formerly referred to as “social phobia,” is character-
ized by anxiety and fear of and avoidance of social situations due to unreasonable 
fears of negative evaluation and scrutiny of others. SAD typically has an onset at an 
early age and tends to persist into adulthood. Lifetime prevalence in Western coun-
tries is as high as 5–15% [164, 165]. The disorder is marked by impairments in daily 
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functioning, primarily in the social domain. Despite being a common and highly 
distressing disorder, its diagnostic reliability is widely variable [166, 167], and the 
quality of treatment available to these patients is often inadequate [5]. Behavioral 
inhibition is a temperamental trait characterized by a tendency to withdraw from 
unfamiliar situations and peers. Existing literature suggests that behaviorally inhib-
ited temperament predicts the later development of SAD [168]. Biomarkers of SAD 
may, therefore, aid in the early detection of predisposing features and expedite pre-
ventive measures for the development of the disorder.

4.1 � Structural Brain Morphology – Structural Magnetic 
Resonance Imaging Studies in Social Anxiety Disorder

Similar to structural MRI studies in other anxiety disorders, findings in SAD are 
highly variable. A recent meta-analysis that used data from MRI studies showed 
increased GMV in the dorsal striatum in SAD, which positively correlated with self-
reported symptom severity, but found no volumetric alterations in the amygdala and 
hippocampus. The authors suggest that the dorsal striatum may be causally impli-
cated in the negatively biased processing of social stimuli [169]. Socially anxious 
tendencies also correlate with striatal volume in healthy women [170]. Reduced 
bilateral insular volumes [171] and right insular cortical thinning [172] in SAD have 
also been noted, possibly pointing to abnormal interoception observed in patients.

Individuals with SAD with more pronounced social avoidance had smaller pre-
cuneus GMVs [173]. However, increased GMV in the left precuneus and superior 
parietal regions correlated with greater social disability [174]. A CBT randomized-
controlled study found that GMV in the amygdala diminished 1 year after effective 
treatment, and left amygdala volume was correlated with pre-treatment clinical 
severity. Volumetric reductions in structures associated with the DMN, namely the 
dmPFC and precuneus, were also observed [175].

4.2 � Structural Brain Morphology – White Matter (WM) 
and Structural Connectivity – Diffusion-Weighted 
Magnetic Resonance Imaging (DW-MRI) in Social 
Anxiety Disorder

Studies utilizing DW-MRI to investigate structural connectivity in SAD are sparse. 
Similar to WM alterations in GAD, reduced FA in the uncinate fasciculus has also 
been observed in patients with SAD [177, 178]. The uncinate fasciculus is a WM 
tract that connects the frontal cortex to the amygdala. Therefore, reduced structural 
connectivity between frontal regions and the amygdala may underlie deficits in 
emotional regulation in SAD. A recent DW-MRI study reported a significant 
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increase in FA in bilateral uncinate fasciculus and right inferior longitudinal fas-
ciculus [176]. These findings suggest that targeting impaired frontolimbic connec-
tivity in patients with SAD may improve treatment. Also, developing accessible 
biomarkers and therapeutic interventions focused on this specific aspect may yield 
benefits.

4.3 � fMRI in Social Anxiety Disorder

4.3.1 � Resting-State fMRI in SAD

Resting-state fMRI studies in a drug-naïve sample found increased functional con-
nectivity between different frontotemporal regions such as the ACC and caudate. 
Moreover, ACC activity was positively correlated with symptom severity. 
Frontoparietal abnormalities were also reported. The authors conclude that hyper-
connectivity of the cingulate gyrus with caudate and putamen seeds could indicate 
striatal dysfunction in SAD [179]. Altered connectivity between the striatum and 
frontal regions has been reported in other studies as well [180, 181]. Higher social 
anxiety significantly correlated with reduced functional connectivity between the 
amygdala and the ACC in socially anxious patients. Furthermore, oxytocin, which 
is thought to produce prosocial behaviors, enhanced resting-state connectivity 
between bilateral amygdalae and vACC/mPFC, normalizing the initial abnormality 
[182]. Hahn et  al. [183] reported reduced rsFC between the left amygdala and 
mOFC, as well as with the precuneus. The OFC is central in the modulation of 
amygdala reactivity to fear and social cognition. Therefore, abnormalities in mOFC-
amygdala connectivity could indicate a proneness toward social anxiety. 
Additionally, Jung et al. report reduced rsFC between the amygdala and the dlPFC 
[184]. In contrast, [185] report increased rsFC between the amygdala and the PFC, 
using amygdala subregions seeds. Amygdala-PFC, more specifically the dACC, 
hyperconnectivity was also reported and shown to normalize after successful CBT 
treatment [186].

Most resting-state studies point toward abnormal resting-state connectivity 
between the amygdala and frontal regions, although findings are inconsistent, with 
some studies showing increased and others decreased connectivity. A recent meta-
analysis of rsFC based on fMRI in SAD found that the most common alteration was 
an increased rsFC between frontal regions and the amygdala [187]. As discussed by 
the authors, this apparent inconsistency could be due to the inadequate grouping of 
frontal regions as one functional area. SAD is likely characterized by increased con-
nectivity between dlPFC and the amygdala, potentially a marker for negative 
appraisal of emotional stimuli or possibly maladaptive compensatory cognitive 
modulation of the amygdala. Moreover, reduced connectivity between the mPFC, 
ACC, and mOFC could instantiate problems in implicit emotional modulation. 
These different abnormalities in PFC-amygdala connectivity could guide more pre-
cise interventions. A recent study applied machine learning models to classify 
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young adult participants into low or high social anxiety using the radiomic features 
of rsFC. The most important features included in the model were radiomic measures 
associated with the left OFC and amygdala. The best-performing model achieved an 
accuracy of 77.7% [188].

4.3.2 � Task-Based fMRI in SAD

Task-based functional imaging studies have indicated an extended model of altered 
brain functioning in SAD that goes beyond the “anxiety circuit” previously pro-
posed [189]. This circuit was mainly restricted to the altered amygdala, insula, and 
inferior frontal gyrus functioning. However, recent models suggest increased pari-
etal and medial occipital brain activation [190]. These regions appear to have 
increased SAD activity while being less functionally connected. These include the 
cuneus, precuneus, and the PCC, all regions implicated in the DMN, which could 
explain some of the phenomenology observed in SAD, such as self-referentiality 
and problems in emotion regulation. Moreover, connectivity between the amygdala 
and prefrontal and orbitofrontal regions was also highly inconsistent and showed a 
tendency for increased connectivity. This extended model also suggests increased 
activity in the fusiform gyrus in SAD, possibly related to an altered perception of 
facial expressions in social situations.

4.3.3 � Treatment fMRI Studies

Psychotherapy and pharmacotherapy seem to reduce activity in the left inferior pari-
etal cortex, right postcentral gyrus, and right precuneus, as well as increase activity 
in the left inferior frontal gyrus/insula and bilateral middle cingulate gyrus in SAD 
[191]. After effective treatment with psychotherapy, patients showed increased 
activity in the bilateral precuneus and left inferior parietal gyrus, and decreased 
activity in the right cerebellum, left middle frontal gyrus, and cingulate gyrus. 
Effective pharmacotherapy had a different effect. Successful treatment increased 
activity in the right postcentral gyrus, left middle occipital gyrus, and right medial 
orbital frontal gyrus and reduced activity in the bilateral insula and left medial cin-
gulate. Importantly, higher baseline activity in the precuneus predicted improve-
ment with psychotherapy and pharmacotherapy [191]. Moreover, two studies 
compared treatment with CBT to wait-listed patients with SAD. The treatment 
group showed an increase in the degree of negative correlation in the functional con-
nectivity between the left amygdala and dmPFC during the reappraisal of negative 
self-beliefs [192] and positive connectivity among regions involved in emotional 
regulation, including dmPFC, dACC, dlPFC, and vlPFC when reappraising social 
criticism [193].

Regarding the prediction of treatment outcomes, some studies showed promising 
results for future use of fMRI to guide interventions in SAD. Neuroimaging-based 
treatment response predictions demonstrated that baseline responsivity to angry vs. 
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neutral faces in cortical areas, particularly regions of higher-order visual processing 
to threatening social stimuli, was predictive of response to CBT [194]. This result 
was replicated by Klumpp et al., who showed that greater pretreatment responsivity 
of higher-order visual processing (superior and middle temporal gyrus) and emotion 
processing areas (dACC, dmPFC) to a facial emotion perception task predicted 
positive treatment outcomes with CBT [195]. An increased baseline resting-state 
connectivity between the amygdala and pgACC also predicted treatment response 
to CBT [196]. Similarly, initial coupling patterns between the amygdala and dACC 
predicted long-term treatment outcomes after treatment with internet-based CBT 
[197]. Frick et al. [198] showed that dACC activity differentially predicted clinical 
response to different treatments; baseline dACC responsivity to disorder-relevant 
emotional faces was higher in responders to SSRI + CBT combination group, 
whereas the opposite was the case in the placebo + CBT group (i.e., reactivity was 
lower); therefore, dACC responsivity may serve as a biomarker for treatment choice. 
Exploring possible factors related to pretreatment dACC responsivity to emotional 
stimuli and its relation to CBT response, a study reported that treatment outcome 
was predicted by increased dACC responsivity to threatening distractors vs. neutral 
distractors during a high perceptual load task but not low [199]. Given the role of 
dACC in salience and conflict resolution by allocating attention toward relevant 
stimuli, SAD patients with deficits in these functions may have a greater 
response to CBT.

Applying rsFC data of patients with SAD, amygdala connectivity, and severity 
scores of social anxiety, a model predicted 33% of the variance in treatment out-
comes to CBT. In contrast, pre-treatment severity alone accounted for 12% of the 
variance. The regions that accounted for the change in symptoms were the sgACC 
left and right central sulcus and regions of the right temporal-occipital cortices. 
Combining other connectomic predictors with rsfMRI, such as diffusion-weighted 
MRI, and clinical severity, the model accounted for 60% of the variance in treat-
ment response. Interestingly, adding patient demographics to the model marginally 
improved model predictions [200]. Using a machine learning technique, dACC 
reactivity to a cognitive task achieved 83% accuracy in predicting treatment out-
comes of CBT [201].

4.4 � PET and SPECT in Social Anxiety Disorder

One study measured regional cerebral blood flow (rCBF) in patients with SAD 
compared to healthy controls after exposure to anxiety-inducing stimuli. Both 
groups demonstrated increased rCBF in the ACC and OFC/insula; however, patients 
showed increased blood flow in the right anterior prefrontal and parietal regions 
[202]. Implementing a public versus private speaking challenge, Tillfors et  al. 
reported that increased fear and anxiety were associated with greater rCBF in the 
right amygdala [203]. Also, increased heart rate and subjective anxiety were corre-
lated with enhanced rCBF in the dlPFC, left interior temporal cortices, and left 
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amygdaloid-hippocampal region during anticipatory anxiety before speaking in 
public [204]. A similar experimental setup found a positive correlation between 
rCBF in the hypothalamus and salivary cortisol during stress induction, as well as a 
reduction in blood flow in the mPFC, possibly due to a modulatory effect of this 
region on the stress responsivity [205]. Interestingly, patients with SAD had lower 
baseline plasma cortisol levels than healthy controls. These levels were negatively 
correlated with 5HT1a binding in the amygdala, hippocampus, and retrosplenial 
cortex [206], suggesting that dysregulation of the HPA axis may increase suscepti-
bility to psychiatric disorders via alteration of 5HT1a receptor distribution in the 
limbic system.

Furmark et  al. compared rCBF during public speaking before and after treat-
ment; after both CBT and treatment with an SSRI, symptom improvement corre-
lated with reduced rCBF in the amygdala, hippocampus, anterior and medial 
temporal cortices, and parahippocampal and amygdaloid area [207]. It seems over-
all that findings regarding rCBF in SAD are in line with those of other anxiety dis-
orders in general, where symptom severity appears to correlate with increased blood 
flow in the amygdala and other limbic structures.

4.5 � Neurochemical Biomarkers in Social Anxiety Disorder

SAD is associated with neurochemical alterations. When given a 5-HT secreta-
gogue, fenfluramine, socially anxious patients showed exaggerated cortisol secre-
tion. This finding suggests a likely supersensitivity of post-synaptic 5-HT receptors 
[208]. Moreover, in patients with SAD, 5-HT2 receptor density in platelets is asso-
ciated with symptom severity [209].

Levels of salivary alpha-amylase may be considered a biomarker of stress. One 
study demonstrated that, after tryptophan depletion, successfully treated socially 
anxious patients show a significantly higher level of salivary alpha-amylase and 
more autonomic activation after a public speaking challenge [210]. There is evi-
dence in primates that higher baseline cortisol and a more reactive HPA axis are 
associated with social avoidance. In contrast, most evidence points to normal base-
line HPA axis activity in social anxiety [211], and when alterations are present, 
patients have comorbid depression [212]. HPA axis reactivity appears to be more 
pronounced, however. In an experimental setup, SAD patients had a more pro-
nounced cortisol response to a social stressor when compared to HCs, where the 
magnitude of the response correlated positively to avoidance observed during the 
stressor, independently of other physiological measures [213]. Additionally, more 
intense cortisol responses to a social stressor are a possible marker for pre-pubertal 
social anxiety in youth [214]. In a large adult cohort of patients with anxiety disor-
ders, female patients with SAD had lower plasma levels of CRP and IL-6 [215].

Oxytocin has known prosocial effects, promoting intra-group increases in trust 
and reducing anxiety levels. Therefore, it has been posited that dysregulation of 
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oxytocin may be an underlying factor contributing to SAD. Nevertheless, patients’ 
and controls’ oxytocin plasma levels were similar [216].

5 � Final Considerations

Current knowledge regarding biomarkers for anxiety disorders is promising but still 
incomplete. This fact could reflect, in part, the inherent limitations of the available 
methods. However, a more probable cause is the misalignment between current 
diagnostic constructs and emerging neuroscience findings. A possibly more fruitful 
paradigm, as proposed by the Research Domain Criteria (RDoC), would be the 
search for biomarkers that more closely describe transdiagnostic measures of psy-
chopathology [217, 218].

Deficits in emotion regulation are present in all anxiety disorders [219]. 
Therefore, it could be a useful transdiagnostic biomarker, as the neurobiological 
mechanisms that underlie these alterations seem to be maintained across different 
disorders. Moreover, effective implementation of emotion regulation strategies is a 
component of resilience to mental illness in general [220]. Current models of suc-
cessful cognitive control of emotional reactivity in healthy individuals encompass 
activation of frontal regions (dlPFC, vlPFC, dACC) and areas of the parietal lobe 
that modulate activity in the amygdala [221, 222]. The dlPFC is thought to serve a 
more general role in cognitive control, allowing the maintenance of cognitive 
appraisals in working memory. The vlPFC (possibly in conjunction with the ante-
rior insula) may signal the salience of emotional content and the need to regulate 
behavior. At the same time, dACC and inferior/superior parietal cortices may allo-
cate the resources required during goal-oriented attention. The modulation of the 
emotional network is thought to target the amygdala and related structures. The 
amygdala is important for emotional salience and modulating defensive behavior. 
Patients with anxiety disorders show a consistent reduction of dACC and inferior/
superior parietal cortices during attempts at downregulating negative emotion. At 
the same time, most studies also showed decreased activation in vlPFC, dlPFC, and 
SMA during tasks, suggesting that the allocation of control and attention in anxiety 
disorders may be impaired [223]. These findings could contribute to developing 
neuroimaging tools to guide brain-based therapeutic interventions, such as neuro-
modulation or specific psychotherapeutic treatments that promote the correction of 
a particular impaired mechanism spanning different diagnostic constructs.

Another interesting theme is the growing use of machine learning models. 
Although they are not biomarkers in the traditional sense, the outputs from these 
models have achieved some impressive results, especially regarding treatment out-
come prediction. However, there is a trade-off between the neurobiological under-
standing these models allow and their predictive capacity.

In summary, the neurobiology of anxiety disorders is not entirely known, but it 
seems to involve abnormalities in brain circuits implicated in threat detection and 
emotional regulation. There is a high degree of conservation of the brain 
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mechanisms engaged during threat detection across mammals [224–226]. Progress 
in and future clinical use of biological markers may aid in diagnosing anxiety disor-
ders and inform tailored biological and psychotherapeutic treatments that may 
guide clinician decision-making toward more individualized care. Future efforts 
into translating neurobiological findings into clinically applicable paradigms may 
necessitate a shift in diagnostic categories more aligned with neuroscience.
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1 � Introduction

Obsessive-compulsive disorder (OCD) is often a disabling condition characterized 
by recurrent and persistent thoughts, urges, or images that result in anxiety or dis-
tress (obsessions) and/or repetitive behaviors or mental acts aimed at decreasing the 
resulting discomfort or performed according to certain rules (compulsions) [1]. 
Epidemiological studies suggest OCD to affect up to 2.5% of the general population 
[2]. The first-line treatments for OCD include cognitive-behavioral therapy (CBT) 
and/or selective serotonin reuptake inhibitors (SSRIs). However, approximately 
30% of patients don’t respond to these treatments, and many fail to achieve full 
remission of the symptoms [3].

OCD is a complex psychiatric disorder, and its diagnosis relies mostly on the 
clinical assessment. A greater understanding of the biological underpinnings of 
OCD could result in a more logical classification system based on biomarkers rather 
than only on clinical symptoms. Furthermore, biological data could help predicting 
whether a patient would respond more favorably to a specific treatment. In this con-
text, the identification of biomarkers has become promising to improve the accuracy 
of the diagnosis and to develop a more personalized treatment. In this chapter, we 
aim to address two biomarkers reported in samples with obsessive-compulsive and 
related disorders (OCRDs), namely, inflammatory parameters and imaging findings.
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Accordingly, an increasing number of studies have shown growing positive evi-
dence between changes in circulating pro-inflammatory cytokine levels and 
OCD. Cytokines are low molecular weight glycoproteins, produced in all organs 
and in different cell types. They are released through different stimuli and act in the 
processes of immune and inflammatory responses, being responsible for cell signal-
ing and the pathophysiology of some diseases [4–6]. The cytokines thought to be 
more closely related to OCD include the tumor necrosis factor alpha (TNF-α), inter-
leukin-6 (IL-6), and interleukin-1beta (IL-1β).

Neuroimaging is also considered a valuable tool to detect brain function and 
structure and to investigate how the human brain works. Indeed, many neuroimag-
ing studies have found structural, functional, and metabolic differences between 
patients with OCD and healthy controls [7]. There have also been attempts to link 
inflammatory markers with dysfunctional neural systems. For instance, Attwells 
et al. (2017) used positron-emission tomography (PET) to demonstrate for the first 
time inflammation within brain regions related to the pathophysiology of OCD – 
they found that patients with OCD displayed elevated levels of a microglial compo-
nent of neuroinflammation in the cortico-striato-thalamo-cortical (CSTC) circuit 
compared to healthy volunteers [8].

In the next sections, we discuss recent and relevant neuroimaging and peripheral 
biomarker (i.e., cytokines) studies that investigate biomarkers for OCRD, focusing 
on biomarkers for OCD diagnosis and treatment response.

2 � Neuroimaging Biomarkers

2.1 � OCD Diagnosis

Can magnetic resonance imaging (MRI) data be used to infer diagnostic status? 
There are many studies that try to combine brain imaging features to create a bio-
marker of OCD. Here, we will focus on studies that used MRI and machine learning 
strategies. For instance, the Enhancing Neuro-Imaging and Genetics through Meta-
Analysis (ENIGMA) OCD consortium investigated structural neuroimaging bio-
markers for OCD in more than 2000 patients. They used machine learning analysis 
of cortical thickness, surface area, and subcortical volume to try to classify OCD 
and controls. Although their analysis was unable to distinct patients with OCD from 
healthy controls [9], their negative findings may have been related to the strategies 
they employed.

Other studies employing alternative approaches were successful in describing 
differences. An earlier study used a different machine learning technique to predict 
OCD severity in drug-naïve patients and found that gray matter volumes in the left 
medial orbitofrontal cortex (OFC) and left putamen contained the most relevant 
information to predict symptom severity, measured by the Yale-Brown Obsessive 
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Compulsive scale (Y-BOCS) and the Dimensional Yale-Brown Obsessive-
Compulsive Scale (DY-BOCS) [10].

In addition to structural neuroimaging, functional MRI (fMRI) is an important 
tool to help identify biomarkers in OCD. Fontenelle et  al. (2018) used fMRI to 
investigate the discriminative power of multivariate pattern analysis of regional 
fMRI responses to sentences thought to generate moral emotions (such as guilt, 
disgust, compassion, and anger). They found that the activity in the left nucleus 
accumbens discriminated OCD patients from controls during the experience of dif-
ferent moral emotions, particularly disgust [11]. Apart from the investigation of 
emotions, fMRI can also be used to explore functional connectivity in brain regions.

For instance, a study using fMRI aimed to identify cortical connectivity bio-
markers of both global and dimension-specific symptom severity of OCD. The 
study investigated 41 patients and found that symptom severity was directly linked 
to dysconnectivity between brain networks, including dorsal attention, default, 
and frontoparietal networks. The most predictive connections involved brain 
regions with previously demonstrated abnormalities in OCD, i.e., the OFC, the 
ventrolateral prefrontal cortex (vlPFC), the superior and inferior parietal lobules 
(SPL and IPL), and the precuneus – together with other areas like the posterior 
temporal and parieto-occipital regions. Also, the authors identified patterns associ-
ated with the severity of contamination/washing and responsibility for harm/
checking symptoms [12].

More recently, a study used resting-state fMRI data and applied the EMPaSchiz 
(Ensemble algorithm with Multiple Parcellations for Schizophrenia prediction) to 
predict OCD diagnostic status. The researchers used dataset from 350 subjects 
and applied features effective for schizophrenia. They found that the knowledge-
based approach leads to a prediction performance of 80.3% accuracy for an OCD 
diagnosis [13]. Although this approach sounds promising in distinguishing 
patients with OCD from healthy controls, the authors mentioned it is uncertain 
whether it can distinguish OCD from other psychiatric disorders. As a diagnostic 
biomarker should be highly specific [14], more studies are necessary to validate 
this approach.

Although the literature on biomarkers of OCD (including neuroimaging) is mas-
sive, the studies are heterogeneous and are susceptible to bias. An umbrella review 
was performed by Fullana et al. (2020) to summarize and evaluate the quality of 
evidence regarding diagnostic biomarkers in OCD. They assessed systematic 
reviews and meta-analyses encompassing 73 potential biomarkers for OCD – bio-
chemical, neurocognitive, behavioral, neurophysiological, and neuroimaging. More 
than 60% of the investigated biomarkers showed a significant association with 
OCD. Two neuroimaging biomarkers – increased fractional anisotropy of the ante-
rior limb of the internal capsule and decreased fractional anisotropy of the genu of 
the corpus callosum – were reported as promising features. However, the associa-
tions were not sufficiently strong, and they concluded that currently there is no reli-
able biomarker for OCD diagnosis [15].
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2.2 � OCD Treatment Response

The ideal biomarker of treatment response should be able to indicate a positive 
response to a given treatment. This should lead to the development of personalized 
treatments and reduce the trial-and-error process that accompanies the selection of 
the most effective therapeutic strategy. Knowing if the patient is more or less likely 
to respond to a treatment would benefit patients and avoid social and economic costs 
associated with multiple failed therapeutic attempts [14].

Although CBT and SSRIs are considered the first-line treatment for OCD, we 
currently have no consistent marker to predict the outcome of the treatment in 
patients other than the initial severity of the disorder [16]. Below we summarize 
structural, functional, and metabolic neuroimaging studies that have investigated 
variables to predict the outcome of psychological or pharmacological treatments of 
OCD patients.

The search for predictors of treatment response to SSRIs began in the late 1980s. 
Many studies used fluoro-deoxyglucose positron-emission tomography (FDG-PET) 
to compare regional differences in cerebral glucose metabolism. For instance, 
Swedo et al. (1989) investigated metabolic rates in patients before a treatment with 
clomipramine. The results showed that lower metabolic rates in the right orbitofron-
tal and right anterior cingulate cortices before treatment were correlated with a bet-
ter response to the treatment with clomipramine [17]. Another study examined 
whether pre-treatment of orbitofrontal cortex metabolism would predict response to 
paroxetine and showed that a lower metabolism in both the left and the right orbito-
frontal cortices predicted a greater improvement in OCD severity with treat-
ment [18].

Later, MRI studies showed structural or functional correlates as potential bio-
markers to predict treatment response. In an early fMRI study, activation of the 
cerebellum and the superior temporal gyrus during a symptom-provocation task 
performed before treatment was positively correlated with the reduction of the 
symptoms after the treatment with fluvoxamine [19].

In a randomized controlled trial, Hoexter et al. (2013) evaluated potential bio-
markers of response to fluoxetine or CBT by using structural neuroimaging. Patients 
underwent MRI scans before the treatment with fluoxetine or a group-based CBT 
for 12 weeks. Symptom improvement in the fluoxetine treatment group was corre-
lated with a smaller gray matter volume within the right middle lateral orbitofrontal 
cortex, whereas symptom improvement in the CBT group was significantly corre-
lated with a larger pre-treatment gray matter volume within the right medial pre-
frontal cortex (mPFC) [20]. Actually, brain changes that differentiate patients who 
show good responses to CBT from those who do not respond or have a partial 
response to these strategies are still not clear. In another study, the gray matter (GM) 
volume in the right medial prefrontal cortex pre-treatment was positively correlated 
with the reduction of the symptoms post-CBT. In contrast, measurements of GM 
volume within the right lateral orbitofrontal cortex were correlated with treatment 
response to fluoxetine [20]. Another recent study demonstrated that four different 
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cortical structural parameters were associated with the efficacy of CBT. Specifically, 
a model was created integrating the following features: sulcal depth, gray matter 
volume, cortical thickness, and gyrification values. The authors suggested that, 
together, these cortical structural features may predict which patients are likely to 
respond to CBT [21].

Olatunji et al. (2014) examined the neural correlates of symptom improvement 
with CBT using fMRI. Patients with contamination obsessions and washing com-
pulsions underwent symptom provocation with contamination-related images 
before completing 12 weeks of CBT. Activation in brain regions involved in emo-
tional processing, such as the anterior temporal pole and amygdala, was most 
strongly associated with a better treatment response [22]. Another fMRI study in a 
sample of unmedicated patients investigated whether a task-based neural activity 
can predict response to exposure and response prevention. Increased activity within 
cingulo-opercular and default mode network regions predicted better ERP outcomes 
[23]. In a resting-state fMRI, Fullana et al. (2017) found that the decreased basolat-
eral amygdala-ventromedial prefrontal cortex connectivity predicted a better CBT 
outcome [24]. Altogether these studies offer insights in the prediction of CBT out-
come for patients with OCD through fMRI.

Magnetic resonance spectroscopy (MRS) studies have also attempted to find bio-
markers for treatment outcomes shown by subjects with OCD. A randomized con-
trolled trial in pediatric OCD showed that the lower the pre-CBT glutamate levels in 
the ventral posterior cingulate cortex, the greater post-CBT improvement in symp-
toms [25], whereas in a pilot study by Ivarsson et al. (2021), higher concentrations 
of glutamine and glutamate combined (Glx) and of N-acetylaspartate and 
N-acetylaspartylglutamate combined (tNAA) in the middle cingulate cortex were 
associated with a worse CBT outcome [26].

Finally, Brecke et al. (2021) could not predict exposure and response prevention 
outcome using diffusion tensor imaging (DTI). They investigated if white matter 
microstructure would predict treatment response of OCD patients to exposure and 
response prevention. Patients were scanned at a baseline and again 3 months after 
completing a protocol of four consecutive days of concentrated exposure and 
response prevention. Their results showed that none of the baseline microstructure 
measures significantly predicted changes in the Y-BOCS score [27]. Future studies 
investigating the ability of DTI to predict therapeutic response among subjects with 
OCD are still needed.

2.3 � Obsessive-Compulsive Spectrum Disorders

OCD spectrum or related disorders include body dysmorphic disorder (BDD), 
hoarding disorder, trichotillomania (or hair-pulling disorder), and skin-picking dis-
order. The neurobiological mechanisms underlying these disorders are not fully 
understood, and they were much less investigated than OCD, making it more diffi-
cult to define potential biomarkers.
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A systematic review reported differences in brain activity, structure, and connec-
tivity in BDD participants in frontostriatal, limbic, and visual system regions when 
compared to healthy control and other clinical groups [28]. More recently, another 
review of neuroimaging studies in BDD showed changes in visual processing, fron-
tostriatal, and limbic systems. Apart from that, this study also found abnormalities 
in the white matter connectivity and reduced cortical thickness in the temporal and 
parietal lobes [29].

As most neuroimaging studies focus on hoarding as a symptom of OCD, it is still 
difficult to identify a specific biomarker for this disorder [30]. However, Yamada 
et al. investigated structural changes in gray matter of patients with hoarding disor-
der compared with OCD and healthy controls and found that the hoarding group 
showed a significantly increased gray matter volume in the frontal pole and OFC 
compared to the other groups [31].

A systematic review on neuroimaging studies on trichotillomania revealed some 
differences in either the structure or function of some brain areas compared to con-
trols – for instance, the putamen, the ACC, and the amygdala. However, they do not 
seem to be robust enough to be a potential biomarker [32]. Another study suggests 
that structural abnormalities in the insular cortex and parietal and occipital regions 
are related to the pathophysiology of skin-picking disorder [33]. Alongside tricho-
tillomania, skin-picking disorder is considered a body-focused repetitive behavior 
disorder, and some studies suggest they might share neural correlates.

Taken together, we conclude that further studies are needed to investigate the use 
of imaging findings as potential diagnostic or prognostic biomarkers for OCD spec-
trum or related disorders.

3 � Neuroinflammatory Biomarkers

Although the relationship between OCD and the immune processes is still not com-
pletely clear, some studies have pointed to a link between alterations in the levels of 
pro-inflammatory cytokines with OCD outcomes [34, 35]. Cytokines are involved 
in immune and inflammatory responses and responsible for cell signaling [4, 36]. 
Dysregulation of cytokines can impact the ability of cells to communicate and alter 
the homeostatic function of nervous tissue leading to pathological conditions [6]. 
The main cytokines studied in OCD are tumor necrosis factor alpha (TNF-α), inter-
leukin-6 (IL-6), and interleukin-1 beta (IL-1β).

Cappi et al. (2012) found that the A allele of the TNF-α rs361525 polymorphism 
increases TNF-α transcription in individuals with OCD. This may occur because 
TNF-α can increase the expression of the serotonin transporter (SERT) in the cell 
membranes of neurons, which would increase the capacity of transporters to reup-
take serotonin from the synaptic cleft after the transmission of the nerve signal, 
leading to a lower level of serotonin available in the synaptic cleft [37, 38]. 
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Therefore, the described result supports the serotonergic hypothesis of OCD, which 
suggests that the decrease in serotonin may be related to the development of the 
disorder.

In addition to TNF-α, the cytokines IL-6 and IL-1β were also investigated in 
OCD samples. Gray and Bloch (2012) conducted a meta-analysis where they exam-
ined 12 studies on the association between OCD and serum plasma levels of pro-
inflammatory cytokines. They found decreased IL-1β levels in OCD patients, 
whereas TNF-α and IL-6 levels did not differ significantly when compared to the 
healthy control group. However, when stratified subgroup analysis based on medi-
cation status was performed, IL-6 levels were significantly increased in unmedi-
cated adults with OCD when compared to controls. Also, plasma levels of TNF-α 
were increased in patients with comorbid depression compared to the control group 
[39]. Nevertheless, a more recent meta-analysis showed divergent results. In the 
study carried out by Cosco et al. (2019), which included 16 studies, comprising 538 
patients with OCD and 463 healthy controls, TNF-α, IL-6, and IL-1β levels did not 
differ significantly between participants with OCD and healthy controls [40]. This 
discrepancy in results may be due to differences in methodologies, including diver-
gent biological samples, age, body mass index, sex, and comorbidities of patients.

Dysregulation of mechanisms caused by the infections may be responsible for 
the emergence of autoimmune diseases and, in some cases, OCD [41–43]. For 
example, in Sydenham’s chorea, a neurological disorder caused by infection with 
beta-hemolytic group A Streptococcus pyogenes, the antibodies produced in 
response to this infection can cross-react with neuronal antigens in the basal gan-
glia, which can lead to inflammation and dysfunction in this region of the brain, 
contributing to the development of OCD and other neuropsychiatric symptoms [44, 
45]. Supporting this investigation, Maia et al. (2005) demonstrated in a controlled 
study that behavioral disorders, such as OCD and attention deficit hyperactivity 
disorder, were more frequently present in patients with Sydenham’s chorea than in 
normal controls [46]. Their role on the precipitation of OCD in adult samples is less 
clear. Other studies also indicate a significant association of OCD symptoms in 
patients diagnosed with autoimmune diseases, such as multiple sclerosis [47] and 
systemic lupus erythematosus [41].

Conditions known as OCD spectrum or related disorders, such as body dysmor-
phic disorder, hoarding disorder, trichotillomania, and skin-picking disorder [1], are 
complex psychiatric conditions that may also have a neuroinflammatory compo-
nent. However, research on the relationship between inflammatory processes and 
these conditions is limited, and immune activation may also be secondary to symp-
toms. For example, individuals with hoarding disorder who have difficulty discard-
ing and accumulate large amounts of objects may be particularly exposed to squalor 
and susceptible to chronic inflammatory disorders. Similarly, patients with trichotil-
lomania and skin-picking disorder may exhibit an inflammatory response due to the 
skin lesions caused by their hair-pulling compulsions.
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4 � Discussion

Over the past years many efforts have been made to identify biomarkers for 
OCD. Despite some advances in understanding the biological underpinnings of 
OCD, we still do not have a biomarker that consistently influences diagnosis and 
therapeutic strategies in a reproducible manner. The ability to identify factors which 
can reliably predict treatment response is critical to help guiding the most suitable 
treatment for each individual, leading to a better prognosis [48]. To date, this 
remains a promise.

OCD is a multifactorial and heterogeneous disorder. Symptom overlap with 
other psychiatric disorders brings significant challenges in the search for biomark-
ers. To be useful, a diagnostic biomarker for OCD should have little or no overlap 
with any other neuropsychiatric disorders. However, many of the neuroimaging 
findings are not specific to OCD [49]. Likewise, the pattern of cytokines is also 
similar across diagnoses [50].

Some researchers have suggested the search for “transdiagnostic” biomarkers 
instead of a diagnosis-specific biomarker [51]. Other researchers suggest that the 
search for biomarkers in psychiatric disorders should combine strategies that con-
sider a variety of biological data, like molecular, neuroimaging, and neurophysio-
logical findings, integrated in different “biotypes” [52]. Indeed, Attwells et  al. 
(2017) showed for the first time neuroimaging evidence for neuroinflammation 
throughout the cortico-striato-thalamo-cortical circuit of OCD [8]. This sheds light 
to the possibility of analyzing peripheral and neuroimaging data together to develop 
a biomarker for OCD. The development of a biomarker for OCD would represent an 
advance for the personalized treatment in psychiatry. In this context, more strategies 
and studies are necessary to identify meaningful and replicable candidates.
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1 � Introduction

Knowledge of sleep-wake disorders is relevant to clinical and psychiatric practice. 
Sleep disturbances can be a symptomatic manifestation of psychiatric disorders and 
a risk factor for them [1, 2]. One of the recent discoveries of the function of sleep is 
related to the glymphatic system that is responsible for “cleaning” of the metabolic 
waste of the brain during sleep [1] and could be a possible underlying mechanism 
of neuropsychiatric disorders [3]. However, these relations are not universal, with 
marked differences across pathologies. Sleep disturbances can be prodromal or a 
consequence of psychiatric, clinical, and neurologic disorders; therefore, sleep 
should be evaluated and taken into consideration for the treatment of the patient [4].

The co-occurrence of psychiatric disorders and sleep-wake disorders underlines 
the need of preventing, diagnosing, and treating sleep disorders. Biomarkers of 
sleep provide specific diagnostic and prognostic information and evaluate the risk of 
comorbid diseases (e.g., lung, heart), thereby directing treatment plan and assessing 
the adequacy of therapy to enhance sleep and circadian health. Therefore, they fit 
very well in the precision medicine framework. Precision medicine offers the oppor-
tunity to selectively apply diagnostic tools to determine populations at risk based on 
genetics and biomarkers and then select optimal therapies. Thus, precision medicine 
depends on the identification of markers that accurately predict susceptibility, prog-
nosis, and treatment response for specific disease processes [5].
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2 � What We Are Looking For

The ideal sleep disorder biomarker should be disease-sensitive, disease-specific, 
and dose- and treatment-responsive and should correlate with disease severity and 
causal pathway. It should predict disease complications with easy and inexpensive 
measures, as well as assess a panel of metrics (inflammation, oxidative stress, auto-
nomic, etc.) [6]. We look for a biomarker for point-of-care to determine current 
sleep deficiency status (short term, long term), preferably with a high sensitivity, to 
identify the state and degree of sleep disorder, and a high specificity, to identify the 
presence/absence of the sleep disorder (Table 1), being used in an annual medical 
care visit. The ideal biomarker should be easy to measure under a single assay, such 
as a neurophysiological biomarker.

3 � Where We Are

The field of biomarkers in sleep is in constant development [7]. For a biomarker to 
be reliable, there is a need of standardized measures across populations. However, 
sleep varies significantly inter- and intra-individually across different nights, also 
depending on several behavioral and environmental factors. There is now an increas-
ing recognition of the negative health effects of insufficient sleep and circadian 
disruption related to contemporary lifestyle, especially in the post-pandemic era, 
making it very important to develop valid biomarkers for insufficient sleep, sleep 
disorders, and circadian disruption.

Table 1  Ideal biomarker characteristics

Ideal biomarker Comments

Sensitive for disease Screening test, diagnostic utility
Specific for disease Few false positives avoid unnecessary polysomnography
Dose-responsive, correlates with 
disease severity

Could quantify disease burden, prioritize therapy

Treatment-responsive Use as a metric for adequacy of therapy or adherence to 
continuous positive airway pressure

Involved in important causal 
pathway

Reliable surrogate outcome measure, predicting disease 
complications

Easily measured Would not require major expertise to assess
Inexpensive Allow high throughput in clinic or research
Panel of metrics Assess multiple pathways, e.g., inflammation, oxidative 

stress, autonomic

Reprinted with permission from Montesi et al. [6]
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3.1 � Sleep Disorders and Insufficient Sleep

Biomarkers can be a physiological signal-based signature, a biomarker that func-
tions as a surrogate, such as blood pressure [8], snoring [9], or morphology of elec-
troencephalograph (EEG) sleep signals, including sleep physiologic transients 
(such as K-complexes, sleep spindles, sawtooth waves, and delta waves).

The EEG is the key tool to study sleep-wake states, being part of several tests, 
such as overnight polysomnography (PSG), Multiple Sleep Latency Test (MSLT), 
and Maintenance of Wakefulness Test (MWT). The EEG along with the monitoring 
of several physiological variables (i.e., electrooculogram, EOG; electrocardiogram, 
ECG; airflow; submental, temporal, masseter, and tibialis anterior muscle surface 
electromyogram, EMG; thorax and abdomen respiratory effort; plethysmography 
belts; snoring, microphones; body position, saturation of peripheral oxygen, SpO2; 
and heart rate, sensors) is known as the “sleep study” or PSG. It provides a “picture” 
of the recorded night of sleep. The simultaneous analysis of the neurophysiological 
variables is staged according to the American Academy of Sleep Medicine (AASM) 
rules [10, 11]. This staging classifies the sleep architecture/structure/pattern and its 
deviations from the normal ranges. This analysis in addition to other variables pro-
vided by the PSG (heart rate, SpO2, snoring, movement of legs and/or arms, effort 
of the thorax, etc.) is used to distinguish between many sleep disorders. Different 
monitoring types of PSG can be performed, such as: (i) neurological assembly, 
which includes an increased number of electrodes added to the standard PSG mon-
tage; (ii) bruxism assembly, assessing mandibular movements or contraction, and 
may include video recording; (iii) for positive air pressure (PAP) titration, defining 
the proper PAP pressure to eliminate the respiratory events and maintain normal 
ranges of SpO2; and (iv) split-night, to compare baseline and post-treatment data in 
some specific cases.

Sleep disorders can be used as a proxy biomarker for some diseases. Specific 
stages of sleep insufficiency can be seen in PSG examinations in certain popula-
tions. Rapid eye movement (REM) sleep stage changes, such as shortened REM 
sleep latency (the period between sleep onset and the occurrence of the first REM 
period), increased REM sleep stage duration, and increased REM density are seen 
in patients with depression [12]. Sleep stages may alternate in a chaotic manner in 
patients after stroke, presenting severely diminished slow-wave sleep (SWS, N3 
NREM sleep stage) [13, 14]. Slow-wave activity, an EEG sign that can be present in 
SWS, reflects glymphatic pathology, indicating a strong association with Alzheimer’s 
disease [15], via a lack of clearance of beta-amyloid [16].

Rapid eye movement (REM) sleep behavior disorder (RBD) is a parasomnia 
characterized by loss of muscle atonia and abnormal dream-enactment behaviors 
during REM sleep [11]. RSBD is prodromal to “synucleinopathies” (e.g., Parkinson’s 
disease, dementia with Lewy bodies, or multiple system atrophy) [17], also indicat-
ing a more severe and disabling form of these conditions [18].
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3.2 � Sleep Loss and Excessive Daytime Sleepiness

Sleep varies across lifespan [19, 20]. Proxy biomarkers of acute and chronic sleep 
loss have been investigated [5], but without any established or valid so far. Sleeping 
less than the recommended amount for the age range [20] can lead to several prob-
lems, including deprived immune function, inflammation, and hormonal 
dysfunction.

Acute sleep loss (between 1 and 3 days) and chronic sleep loss (more than 3 days, 
lasting for weeks, months, and sometimes years) are associated with candidate bio-
markers of immune system dysregulation: interleukin (IL)-6  in plasma/serum, 
saliva, or expressed by monocytes [21–23], IL-1B or IL-1 receptor antagonist [24, 
25], tumor necrosis factor alpha (TNF-α) or receptors [26, 27], chemokine receptor 
CXCR2 expression [26], cellular adhesion molecules [28], natural killer cells [24], 
and salivary amylase [29], among others.

Regarding chronic sleep loss, besides changes in inflammation, increases in neu-
trophils, lymphocytes, and monocytes are expected [30], with marked alterations of 
their circadian rhythmicity. In salivary assessment, amylase protein, driven by 
increased sympathetic activity, is a marker of insufficient sleep [31], but without 
enough specificity given its pleiotropic nature. In addition, there are changes in 
metabolites after chronic sleep restriction (i.e., oxalic acid and diacylglycerol 36:3) 
[32], being biomarkers of sleep deficiency.

Sleep has immune-supporting effects, and in the absence of an infectious chal-
lenge, sleep promotes inflammatory homeostasis as a result of its effects on several 
inflammatory mediators. Findings in sleep insufficiency, being short sleep duration, 
acute or chronic sleep loss, and sleep disturbances, indicate systemic low-grade 
inflammation that is associated with many diseases with an inflammatory compo-
nent, such as neurodegeneration, diabetes, and atherosclerosis [33].

Regarding hormonal dysfunction due to sleep insufficiency, hormones such as 
ghrelin, orexin, and nesfatin-1 appear to be linked to sleep in patients with major 
depression, via appetite regulation [34].

Excessive daytime sleepiness (EDS) is important and a common issue in modern 
life. A higher risk of accidents and a low quality of life are related to EDS.  To 
address EDS, the most commonly used tool is the Epworth Sleepiness Scale. It is a 
questionnaire with eight situations in which you rate your tendency to fall asleep on 
a scale (from 0, no chance of dozing, to 3, high chance of dozing). Scores higher 
than 10 are related to EDS [35]. Objective measures of sleepiness are the Multiple 
Sleep Latency Test (MSLT) and the Maintenance of Wakefulness Test (MWT). The 
MSLT measures how quickly the patient falls asleep during the day and is useful in 
the diagnosis of hypersomnias. The MSLT consists of five scheduled naps, broken 
by 2 h breaks, monitored with EEG [36]. The average sleep latency during the 
MSLT is 10 min or more in individuals without EDS [11, 37]. The MWT measures 
the ability of the individual to stay alert during the day or a defined period of time 
during the day [37]. It consists of four records, with a duration of 40 min each, fol-
lowed by intervals of 1  h and 20  min. The MWT is an indicator of how well 
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individuals may be able to function and remain alert during quiet periods of inactiv-
ity [38]. Usually, the purpose is to assess the effectiveness of the treatment for sleep 
disorder with EDS. The trial is terminated after 40 min with sleep or after unequivo-
cal sleep onset (defined as 3 continuous epochs of stage 1 sleep or 1 epoch of any 
other stage of sleep) has occurred in any time [11, 37].

Other predicting cognitive performance impairments during prolonged wakeful-
ness is through tracking facial features and head movements. Prolonged wakeful-
ness affects eyelids, embitters wrinkle configuration, and lines around eyes, and 
drives the corners of the mouth droop. Facial features can be practical in applica-
tions since they can be obtained using a webcam, which is a noninvasive and easy 
way to collect data. Many facial indices are highly correlated with working and 
cognitive performance on Psychomotor Vigilance Test (PVT) [39]. Another contro-
versial biomarker for EDS is the size of the pupil. Recently, the authors found a 
negative correlation between the size of the pupil and the subjective level of 
EDS. However, they highlight that the baseline pupil diameter could not be used as 
a systematic reliable index of sleepiness [40].

Salivary markers could also be used to assess EDS. Salivary α-amylase is an 
enzyme produced by the salivary glands innervated by the sympathetic nervous 
system, involving norepinephrine. As norepinephrine is implicated in the regulation 
of wakefulness, this could be an indirect measure of vigilance. Salivary oxalate was 
found in sleep-restricted animal models and also in humans [41].

3.3 � Obstructive Sleep Apnea

Obstructive sleep apnea (OSA) is a sleep disorder described by repetitive collapse 
or narrowing of the upper airway during sleep. There is a reduction or a cessation of 
airflow due to upper airway collapse [11]. Intermittent hypoxia (desaturation fol-
lowed by reoxygenation) leads to sleep fragmentation, surges in sympathetic activa-
tion (hypertension as a biomarker), and impaired gas exchange. Hypoxemia is 
considered one of the causative triggers for inflammatory markers [6]. Sleep frag-
mentation, in turn, can indicate sleep deprivation and chronic sleep insufficiency, 
clinically presenting with symptoms of inflammation. OSA increases inflammatory 
factors, endothelial dysfunction [42], and glucose intolerance, meaning that OSA is 
associated with metabolic, inflammation, and oxidative stress markers.

Such markers are quite difficult to discern whether they are related to OSA or 
comorbidities that are usually associated with OSA (i.e., obesity, diabetes mellitus, 
and hypertension). For instance, OSA and obesity are very likely associated. The 
adipose tissue can produce proinflammatory markers, such as TNF-α and IL-6 [43]. 
Both markers have also been seen in sleep fragmentation in nonobese sample [44]. 
The same happens for C-reactive protein (CRP), which can be elevated in a myriad 
of inflammatory conditions. Moreover, the sympathetic excitation is one of the pro-
posed underlying mechanisms of OSA leading to hypertension [43].
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Snoring, the vibration produced during the narrowing of the upper airways, has 
been associated with endothelial injury [45]. The vibration may mechanically dam-
age existing atherosclerotic plaque, causing distal embolization. There is evidence 
on a dose-response association of vascular compromise (pulse-wave velocity as 
well as intimal-medial thickness) and severity of OSA (apnea-hypopnea index), 
linking OSA to atherothrombosis [46]. Accordingly, investigations of platelet func-
tion have demonstrated that the degree of hypoxemia is correlated with glycoprotein 
Ib expression on the surface of platelets, with higher hypoxemia associated to evi-
dence of platelet activation [47].

For the metabolic markers of OSA, increased glucose levels and pancreatic β-cell 
activity have been associated with severity of OSA in patients with normal glucose 
metabolism, and therefore the level of HbA1c can be considered a potential bio-
marker for OSA [48].

Other component shared by atherosclerosis/cardiovascular disease and OSA is 
oxidative stress. The repetitive upper airway obstruction and intermittent apnea and 
successive reoxygenation are assumed to activate the formation of free radical spe-
cies, thus provoking a cascade of oxidative stress marker production, mainly 
8-isoprostane [49], IL-6, and nitric oxide [50]. Finally, cysteine and homocysteine 
have been postulated as possible biomarkers of OSA [51].

3.4 � Insomnia Disorder

Insomnia disorder is a persistent difficulty with initiating and/or maintaining sleep 
and/or waking up earlier than desired. There are high-frequency EEG activity and 
cortical hyperarousal, the pathophysiology of which remains unclear [11]. The 
authors describe brief awakenings in patients with insomnia disorder, defined by 
alpha frequency during wake after sleep-onset periods. A lower alpha variability 
before sleep could indicate a dysfunction of the alpha generation mechanism in 
insomnia [52]. A meta-analysis demonstrated that patients with insomnia disorder 
exhibited increased theta and gamma power during wakefulness. In addition, a 
decreased delta power and an increased theta, alpha, and sigma power during NREM 
sleep were found. EEG during resting-state wakefulness in patients with insomnia 
showed increases in theta activity, which is seen in daytime sleepiness or hypnotic 
medication [52].

3.5 � REM Sleep Behavior Disorder

Patients with isolated REM sleep behavior disorder (RBD) are commonly regarded 
as being in the early stages of specific neurodegenerative diseases. RBD can predict 
conversion to clinically manifest α-synucleinopathies. Hyposmia is one of the earli-
est prodromal signs of parkinsonism and also isolated RBD [53]. The diagnosis 
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depends on the PSG with video to identify loss of REM atonia or relationship 
between nocturnal behaviors in REM sleep stage [11].

Autonomic impairment is seen in patients with isolated RBD using question-
naires, heart rate variability, cardiac scintigraphy, and autonomic reflex testing [54]. 
Nigrostriatal dopaminergic impairment in imaging, PET, and SPECT has been 
found in patients with isolated RBD. Skin biopsy is a promising tool to identify 
α-synucleinopathies [55].

Although genetic studies show that isolated RBD has a distinct genetic back-
ground than neurodegenerative diseases, neurofilament light chain (NFL) and glial 
fibrillary acidic protein (GFAP) are promising biomarkers for RBD in the context of 
Parkinson’s disease [56].

3.6 � Willis-Ekbom Disease

The diagnosis of Willis-Ekbom disease or restless legs syndrome (RLS) depends on 
the clinical criteria according to the International Classification of Sleep Disorders, 
3rd Edition (ICSD-3) [11]. RLS is a sensorimotor disorder that impairs sleep and 
quality of life. Genetic characteristics, iron deficiency, and adenosine, glutamate, 
and dopamine dysregulation are implicated in the pathogenesis of RLS.  Several 
studies have found iron deficiency of patients with RLS, both in the brain and in the 
cerebrospinal fluid [57].

Serum ferritin level is considered as a good biomarker of iron stores. A low 
serum ferritin level has been reported in 10–20% of adults with RLS. Nevertheless, 
a low serum ferritin level is a potential biomarker for RLS augmentation, which is 
the most severe complication of this syndrome. Augmentation is the paradoxical 
worsening of RLS symptoms caused by dopaminergic therapy [57].

Hepcidin is another biomarker for iron-related disorders. Hepcidin regulates iron 
homeostasis by modulating the iron-exporter ferroportin, with potential use to diag-
nose RLS. However, elevated hepcidin levels have also been reported in inflamma-
tion, hemochromatosis, metabolic syndrome, and cardiovascular diseases [57, 58].

3.7 � Narcolepsy

The diagnosis of narcolepsy is defined by clinical findings and MSLT criteria. 
Patients with narcolepsy must present the mean of latencies ≤8 min, in addition to 
≥2 naps, with REM sleep episodes according to the ICSD-3 [11].

The variant HLA-DQB1*0602 allele of the HLA-DQB1 gene is much more 
prevalent in patients with cataplexy (95%), but lower in patients without cataplexy 
(40%). The HLA-DQB1*0602 allele is a potential biomarker in predicting individ-
ual differences in sleep deprivation in normal people.
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In 1998, hypocretin was discovered, which is a neuropeptide produced in the 
lateral hypothalamus with a sleep-regulating function. Hypocretin has two recog-
nized receptors called 1 and 2. Hypocretin-1, which modulates sleep-wake control, 
is low in the cerebrospinal fluid of patients with type 1 narcolepsy. In 2010, an 
association between narcolepsy and a vaccine to control the H1N1 virus was found 
in Europe and China. Thus, a higher prevalence of the HLA-DQB1*0602 allele and 
a decrease in the population of hypocretinergic cells in the lateral hypothalamus 
point to an immunological mechanism. Changes in one or more of the components 
of the complex formed by T cell receptor (TCR), major histocompatibility complex 
(MHC), and CD40L could direct the hypocretin-producing cells to attack [59]. The 
presence of specific Tribbles homolog 2 antibodies has also been described in 
patients with type 1 narcolepsy, which suggests an antibody-mediated self-injury in 
this population of patients with narcolepsy [60].

3.8 � Circadian Phase Disorders

Sleep-wake cycle is also modulated by circadian rhythm hormones such as melato-
nin, cortisol, and adenosine and also by core body temperature.

Melatonin is one of the most known biomarkers of sleep. The phase of the central 
circadian pacemaker (i.e., the suprachiasmatic nucleus) and amplitude are measured 
by melatonin. Melatonin concentrations in plasma or saliva samples are collected in 
dim light, under normal conditions, and its release onset is generally about 2–3 h 
prior to the habitual sleep time. Despite being considered a gold standard marker for 
the phase of the central pacemaker, melatonin measured in plasma samples is 
impractical due to the need of the samples to be collected every 30 min in a time 
window of 4–5 h or even more to the expected sleep onset [5]. Salivary samples are 
easier and validated measures but also require multiple samples [61]. Urine samples 
may be more useful and will detect the primary metabolite of melatonin in urine, 
6-sulfatoxymelatonin, providing an estimate of timing and amount of melatonin 
[62], despite being less precise than saliva and blood samples of melatonin.

Other hormone that can be measured in blood or saliva is cortisol. As cortisol has 
a circadian pattern of release, it is also difficult to obtain multiple samples over time. 
Cortisol is a pleiotropic hormone, and many factors can interfere with it.

Adenosine is a multifunctional molecule, involved in vasodilatation and energy 
metabolism, that increases with time spend awake [63]. Adenosine is hard to mea-
sure due to its rapid formation and clearance in blood [64].

Core body temperature is a marker of circadian timing but difficult to measure. 
Rectal probes or pills with telemetry are not practical and therefore not used in daily 
practice [5].
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4 � Conclusions and Perspectives

Developing sleep biomarkers is more like developing multiple ones, as a panel of 
biomarkers, or even a combination of panels, a biomarker signature, that will span 
several functional domains. The ideal unique biomarker has not been found yet, and 
we are not sure this unique biomarker will ever exist.

The developments in biosensor technology and the advances in mobile and wear-
able technologies offer additional opportunities to monitor sleep-wake cycle and its 
disorders. Metabolomics, proteomics, and microRNA techniques may open an ave-
nue of new investigations, as they could potentially identify sleep disturbance sig-
natures [65, 66]. Numerous markers have the potential to serve as screening tools: 
an array of markers, as well as analysis of epigenetic factors, which could serve in 
diagnosis and in tailoring the best specific treatment for the patient.
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1 � Introduction

A biological marker or “biomarker” is used in science as a catchall term describing 
a metric tied to clinical symptoms of a disease state. Ideally, biomarkers are objec-
tive, quantitative, physiologically based, and statistically predictive of (1) patho-
physiology that characterizes the disease state, or predictive of (2) a biological 
response to a therapeutic intervention for a disease [1]. Examples consistent with 
this description include HbA1c levels in diabetes mellitus and basal ganglia neuron 
loss in Parkinson’s disease. Biomarker development has proven both invaluable and 
elusive in medical science. For example, the identification of oncogenes has revolu-
tionized cancer subtyping and treatment [2]. Alternatively, the identification of 
amyloid-ß and tau protein accumulations have become diagnostically essential in 
Alzheimer’s disease pathology, but therapeutic approaches targeting these proteins 
have to date been clinically unsuccessful [3, 4].

This dilemma is underscored in a broad review of the status of biomarker devel-
opment: “The importance of well-understood definitions and a shared understand-
ing of how to apply them should not be underestimated… [yet] the potential for 
much more acute biological measurement has been blunted by confusion about defi-
nitions that is slowing or even stalling progress toward development of useful diag-
nostic and therapeutic technologies” [5] (pp. 213–214). The pursuit of biomarker 
development in medicine has evolved toward the exploration of complex composite 
biomarkers (i.e., weighted combinations of factors) and digital biomarkers used to 
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dynamically measure factors in quasi-real time [5]. To bring order to biomarker 
definition and development, the FDA-NIH-led task force “Biomarkers, EndpointS, 
and other Tools” (BEST) was created [6]. Recapitulation of the BEST report is 
beyond the scope of this chapter. However, key recommendations include the fol-
lowing suggestions: (1) that biomarkers should be separated from clinical outcome 
assessments, that is, patient-centered outcomes such as measures of quality or life 
or functional ability commonly used in randomized clinical trials and (2) the divi-
sion of biomarkers into subtypes: diagnostic, monitoring, pharmacodynamic, prog-
nostic, susceptibility/risk, and safety [5, 6]. For reasons that will be further 
elucidated, biomarker development in substance use disorders (SUD) has not yet 
progressed to the stage where such distinctions can be meaningfully or thoroughly 
applied using these recommended criteria.

The difficulties of biomarker identification and application take on an additional 
degree of complexity in the case of psychiatric disorders, owing to the polythetic, 
behaviorally based, and nonbiological diagnostic criteria in the behavioral health 
sciences [7]. This is certainly the case in SUD. Indeed, by DSM-5 and OCD-10 
criteria, SUD is a disorder of “use,” diagnosed by clusters of symptoms (primarily 
behavior patterns) and their consequences. This stands in contrast to many other 
medical diseases, whose definition, diagnosis, treatment, and biomarker investiga-
tion all follow directly from a specific biological etiology, for example, cancer, con-
gestive heart failure, and multiple sclerosis. While SUD has several well-established 
neural and biological consequences and correlates, the specificity and predictive 
utility of biomarker identification in SUD is in the nascent phase [7, 8]. Existing 
therapeutic approaches have largely been driven by interventions developed inde-
pendent of a mechanistic understanding of biomarkers.

In summarizing the status of biomarkers in SUD, the foregoing necessitates a 
careful operational definition and designation of domains in which potential bio-
markers have been investigated. Following suggestions made by Kwako et al. [9], 
it is important in SUD to distinguish between biomarkers and intermediate pheno-
types; the former may be “indicative of active disease,” while the latter “comprises 
a stepping-stone in the disease process” [9] (p. 123). This distinction provides for 
well-considered inclusion of cognitive-behavioral processes as biomarkers in 
SUD (in addition to purely biological biomarkers). Kwako et al. [9] provide guide-
lines for such behavioral processes, suggesting domains of reinforcer pathology, 
negative emotionality/negative affective bias, and impaired executive functions. 
Note that, generally, these cognitive/behavioral domains are common features in 
several other psychiatric diseases (mood disorders, PTSD, ADHD) and, thus, lack 
specificity and utility as optimal biomarkers for SUD. However, these domains 
may be uniquely compromised specifically in the context of SUD-related phenom-
enon. SUD-related reinforcer pathologies in delay discounting, reward valuation, 
and incentive salience are observed primarily in situations comparing drug-of-
choice to other “natural” reinforcers such as food or money [10, 11]. Biased atten-
tional processes are observed in the presence of drug-related cues relative to other 
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reinforcing cues (food, sex) [12, 13]. Negative affect and anhedonia are most pro-
nounced in states of withdrawal or prolonged abstinence [14]. Cognitive-behavioral 
dysfunctions are strongly associated with connectivity changes in the limbic-
striatal-DLPFC pathways [14] and in HPA-axis dysregulation in response to bio-
logical and physical stressors [15, 16]. Accordingly, our review of 
cognitive-behavioral biomarkers in SUD will focus principally on research that is 
specific to SUD-specific processes and/or contexts. Overall, the review will high-
light biomarker research in SUD from the following five domains (if available): 
genetic/epigenetic, cellular/molecular, peripheral systems, neuroimaging, and 
cognitive-behavioral/psychometric.

The ensuing sections of this chapter will review progress in biomarker identi-
fication for the following major classes of abused drugs: nicotine, alcohol, psy-
chostimulants, and opioids. The review will be organized by the following 
operational definition of an SUD biomarker: a measurable biological or cogni-
tive-behavioral variable that is uniquely associated with a present diagnosis of 
SUD and may covary with SUD status. This operational definition excludes pre-
existing factors that may predispose an individual to risk for developing an SUD 
(e.g., genetic variations, family history, EEG patterns, and childhood psychiatric 
disorders) and focuses on evidence tied specifically to a current SUD. Note also 
that this definition is not fully consonant with the BEST recommendations 
described above, because (1) the behavioral diagnosis, definition, and symptoms 
of SUD do not easily blend with the recommended BEST criteria or biomarker 
subtyping, [6] and (2) adhering strictly to these criteria would leave little evidence 
to describe research in biomarker development for SUD. Finally, the present 
chapter will not serve as an exhaustive compendium of all biomarker evidence in 
SUD, but is intended to summarize the current state of knowledge.

2 � Nicotine

2.1 � Genetic/Epigenetic

Epigenome-wide associated studies (EWAS) have identified differential DNA 
methylation of genes in blood, lung, and adipose tissue of tobacco smokers [17–19]. 
Importantly, several studies have reported that these epigenetic changes are reversed 
after cessation [20]. A recent study in postmortem brain assessed DNA methylation 
in five brain regions and identified 16 differentially methylated regions (DMRs) 
associated with tobacco smoking. Enrichment analyses showed that genes in the 
DMRs were enriched for neurodevelopment, cell growth, and morphogenesis in the 
anterior cingulate cortex, dendritic spine development in the prefrontal cortex, and 
regulation of vessel development in the ventral striatum [21].
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2.2 � Cellular/Molecular

Biomarkers that have been examined in relation to various aspects of tobacco use 
disorder, that is, exposure or severity of dependence, include various markers of 
stress (i.e., cortisol, adrenocorticotropic hormone, and catecholamines), markers of 
atherogenicity (triglycerides, LDL, HDL, and c-reactive protein), nitric oxide, 
advanced oxidation end products, fibrinogen, and other markers [22]. A systematic 
review of tobacco use disorder biomarkers concluded that cortisol and atherogenic-
ity markers appear to be the promising biomarkers for further investigation, and 
longitudinal, repeated-measures studies would be needed to determine the direc-
tionality of the observed associations and true predictive power of these biomarkers 
[22]. It is possible that a composite biomarker that includes various levels of data, 
such as genetic information, neuroimaging data, molecular, and other markers, 
would be useful to more accurately capture the complexity of nicotine (or other 
drug) dependence.

2.3 � Peripheral Systems

Recent tobacco use, particularly cigarette smoking, can be assessed by measuring 
breath carbon monoxide (CO) or cotinine. Breath CO is a relatively short-term mea-
sure of smoking, with a half-life of 2–8 h [23]. A breath CO level of 4 ppm or less 
is considered indicative of recent smoking abstinence [24, 25]. Cotinine is the pri-
mary metabolite of nicotine and has a half-life of 16–20 h, thereby serving as a 
measure of longer-term abstinence [23]. Additionally, cotinine is the primary mea-
sure used among people that utilize electronic nicotine delivery systems (ENDS), 
which do not increase breath CO levels. Cotinine levels indicative of smoking absti-
nence can be obtained by 7 days following cessation [26].

Less commonly assessed, but still important biomarkers of tobacco use include 
total nicotine equivalents (TNE), 4-(methylnitrosamino)-1-butanol (NNAL), vola-
tile organic compounds (VOCs), and polycyclic aromatic hydrocarbons (PAHs) 
[27]. TNE is defined as the molar sum of nicotine and its known metabolites in 
urine. It is the gold standard biomarker of daily nicotine intake, being independent 
of factors that can affect nicotine metabolism (e.g., metabolism, genetics, sex, diet, 
and medication use). NNAL is a metabolite of nicotine-derived nitrosamine ketone 
(NNK), a potent lung carcinogen and a major tobacco-specific nitrosamine (TSNA). 
NNAL is an important biomarker for assessing tobacco exposure and evaluating 
nicotine delivery products and a biomarker of cancer risk. VOCs are a nonspecific 
and diverse group of chemicals that are found in tobacco product emissions as well 
as the natural environment. However, levels of VOCs and VOC metabolites are ele-
vated in the urine of smokers [28–31]. Tobacco-related VOCs of interest include 
acrolein, benzene, 1,3-butadiene, and acrylonitrile. PAHs are another nonspecific 
group of measures that can result from the incomplete combustion of organic 
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compounds, such as tobacco during smoking. Common examples of PAHs found in 
tobacco include naphthalene, fluorene, phenanthrene, and pyrene. Some PAHs, such 
as naphthalene, are carcinogenic and associated with increased lung cancer risk as 
well as cardiovascular and chronic obstructive pulmonary diseases. Of the urinary 
biomarkers of exposure, PAHs are arguably the most variable, with different levels 
based on geographic location and type of tobacco product.

Nicotine, which is a primary addictive component of tobacco, is metabolized to 
cotinine by the P450 liver enzyme CYP2A6, which also metabolizes cotinine to 
trans-3′-hydroxycotinine (3HC) [32]. The nicotine metabolite ratio (NMR) of 3HC 
to cotinine is a marker of nicotine metabolism. About 60% of variability in nicotine 
clearance and about 40% of the variability in cotinine clearance are heritable [33, 
34]. NMR is a genetically informed biomarker, because it reflects the substantial 
influence of CYP2A6 genetic variation and is also correlated with demographic 
characteristics and certain smoking behaviors (age, race, BMI, hormonal factors, 
and smoking itself) [35]. NMR is relatively inexpensive; can be measured in plasma, 
urine, or saliva; and is independent of time since the last cigarette [36–38].

The relationship between NMR and response to treatment has been a focus of 
several investigations [39–42]. While the findings of the studies show some hetero-
geneity, smokers in the lowest NMR quartiles (slow metabolizers), compared to 
those in higher quartiles (fast metabolizers), generally respond better to nicotine 
replacement therapy, while faster metabolizers appear to have more benefit with 
nonnicotine medications [40, 42]. There are certain challenges with NMR utiliza-
tion, one of them being lack of an established cut-off level. While additional research 
would be needed to establish the NMR cut-off levels in various body fluids (i.e., 
plasma, urine, and saliva) and to examine the feasibility of using NMR to guide 
therapy in real-world clinical settings, studies conducted to date suggest that this 
biomarker holds promise for being used as a tool for personalizing smoking cessa-
tion treatment [22, 39, 43–46].

NMR has been also studied as a predictor of relapse following a quit attempt. In 
several studies of smoking cessation medications [39, 44], slower metabolizers 
were more likely to maintain abstinence from smoking. In contrast, the first study to 
examine NMR and spontaneous quitting (not part of a structured treatment interven-
tion) at the population level across five countries (N  =  874) reported that faster 
metabolizers were more successful in quitting [43]. The investigators of the latter 
study suggested that these disparate findings could be due to the fact that smokers 
who enroll in studies of smoking cessation interventions could be fundamentally 
different from “free-living” smokers in terms of demographic characteristics and 
smoking behaviors.

Studies show that high metabolizers experience greater cravings for cigarettes 
and greater total daily puffs and puff volume [47, 48]. These factors suggest that fast 
metabolizers can be at an increased risk of tobacco-related disease. Carroll and col-
leagues [49] examined the relationship between NMR, smoking intensity, and a 
broad array of biomarkers of exposure and biological effects. Compared to slow 
metabolizers, normal/fast metabolizers had higher levels of total nicotine equiva-
lents, tobacco-specific nitrosamines, VOCs, and PAHs. While some of these 
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findings were consistent with previous research [50], a novel finding was that com-
pared to slow metabolizers, normal/fast metabolizers had higher levels of inflamma-
tory biomarkers. These data suggest that NMR could have a role in predicting the 
risk of exposure to harmful compounds and, ultimately, tobacco-related disease.

2.4 � Neuroimaging

Acute nicotine administration may contribute to enhanced attention and perfor-
mance. However, chronic cigarette smoking is linked with poorer cognition. 
Neuroimaging contributes important insight into the structural and functional brain 
alterations linked with chronic nicotine use [51]. For example, structural MRI stud-
ies have shown that chronic smoking has an impact on gray matter integrity [52–
54], with volume decreases in multiple regions, including left insula, right 
cerebellum, parahippocampus, multiple prefrontal cortex regions, and the thalamus 
[55]. Such regional atrophy may result from the deleterious impact of chronic ciga-
rette smoking and/or reflect predisposing neurobiological, neurocognitive, or per-
sonality factors. It should be noted that the findings of the studies on nicotine-related 
structural changes in the brain have not been consistent, which could be due to rela-
tively small sample sizes and methodological differences across the studies [53, 
56, 57].

Chronic use of cigarettes results in upregulation of nicotinic acetylcholine recep-
tors (nAChRs), the primary receptor for nicotine, in the brain [58]. Although the 
exact mechanism of nAChR upregulation is not fully understood, nicotine exposure 
does increase receptor function and sensitivity to nicotine, and upregulation may be 
due to increased trafficking of nAChRs to the cell surface, increased efficiency of 
receptor development, or other possible mechanisms [59]. Supporting evidence of 
nAChR upregulation comes from a number of convergent lines of research. In 
human postmortem tissue studies, α4β2*, the most common nAChR of interest, is 
significantly increased in smokers compared to nonsmokers [60, 61]. Additionally, 
former smokers that have been abstinent from smoking for at least 1 year exhibit 
nAChR densities that are similar to nonsmokers [61]. Results from positron emis-
sion tomography (PET) or single photon emission computed tomography (SPECT) 
also show upregulation of brain nAChRs among smokers compared to nonsmokers 
[62–67], as well as normalization of nAChR levels following smoking cessation 
treatment [62, 63, 65].

Different aspects of nicotine use appear to be linked with different brain areas. 
The striatum is a principal component of the brain circuits promoting addiction (i.e., 
reward processes), whereas the habenula may contribute to negative reinforcement 
mechanisms that perpetuate nicotine use. Habenula is activated by negative out-
comes and the lack of rewards, acting as a “brake” on the reward processing system. 
An fMRI study that compared brain activity in smokers versus nonsmokers showed 
that smokers exhibited less activity in the striatum in response to positive feedback 
(i.e., reward), an alteration that was not mitigated by nicotine administration; and 
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this effect was more pronounced with greater addiction severity. Conversely, nico-
tine administration reduced habenula activity following both positive and negative 
feedback among smokers but not nonsmokers; and increased habenula activity 
among smokers correlated with elevated tobacco cravings [68].

Naqvi and colleagues [69] found that smokers with brain damage involving the 
insula, a region implicated in conscious urges, were more likely than smokers with 
lesions not involving the insula to undergo a disruption of smoking addiction, char-
acterized by the ability to quit smoking easily, immediately, without relapse, and 
without persistence of the urge to smoking [69]. These findings suggested that the 
insula could be a critical neural substrate in the addiction to nicotine. Indeed, subse-
quent research confirmed and extended these findings, reporting that compared to 
noninsular lesions, insular damage was associated with increased odds of absti-
nence and fewer cravings and withdrawal symptoms [70–72]. The findings of these 
and other preclinical and clinical studies demonstrate that the insula may play a 
critical role in smoking abstinence and cravings and that this region may serve as a 
therapeutic target for smoking cessation [8, 73].

2.5 � Cognitive-Behavioral/Psychometric

The Fagerstrom Test of Nicotine Dependence (FTND) is a 6-item questionnaire and 
the gold standard in assessing nicotine dependence [74]. In clinical settings, the first 
question of the FTND – assessing time to smoke the first cigarette after waking up – 
may be particularly useful. Shorter delays to smoking the first cigarette are associ-
ated with greater smoking severity, exposure to carcinogens, and smoking-related 
negative health outcomes compared to those that do not smoke within the first 
hour [75].

The Questionnaire on Smoking Urges (QSU) is a 10-item questionnaire com-
monly used to measure tobacco craving [76]. The QSU provides a total score and 
two subscores assessing positive and negative reinforcing effects of tobacco use. 
The Minnesota Nicotine Withdrawal Scale (MNWQS) ascertains 8 DSM-5-related 
withdrawal symptoms and 9 other possible symptoms on a 5-point Likert scale 
ranging from 0 (none) to 4 (severe) [77].

Most smokers who initiate a quit attempt without additional (professional) sup-
port typically relapse within the first week [78]. However, a robust and reliable 
predictor of longer-term abstinence is the ability to maintain continuous abstinence 
during the initial 2 weeks of the quit attempt [79–82]. Interestingly, this relationship 
holds true even if abstinence is experimentally induced through additional treatment 
support [83]. Human laboratory studies indicate that 2 weeks of abstinence reduces 
the relative reinforcing effects of cigarettes [26]. Therefore, central or peripheral 
biomarkers that can be identified to covary with 2 weeks of continuous abstinence 
may hold promise in the field of nicotine use disorder.

Reinforcer pathology is defined as persistent high valuation of a reinforcer (e.g., 
drug) and/or excessive preference for immediate consumption despite long-term 
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negative consequences [84]. These characteristics can be assessed using two 
behavioral-economic paradigms, drug demand and delay discounting. Drug demand 
measures consumption of drug as a function of increasing price under conditions of 
constraint (e.g., limited funds, limited time window of drug consumption, and no 
other sources of drug), which can be assessed using hypothetical drug purchasing 
tasks. Both amount of consumption and resistance to decreasing consumption as 
drug price increases are indicators of greater drug demand. Drug demand maps onto 
current conceptualizations of SUDs, which define chronic drug use as continuing 
use despite increasing negative consequences [85]. A systematic literature review 
has shown that greater tobacco demand is significantly associated with greater 
smoking severity, as measured by tobacco consumption and clinical measures of 
smoking severity such as the FTND [86].

Delay discounting describes how consequences (e.g., access to valued sub-
stances, such as nicotine) decrease in value as a function of increasing delay to those 
consequences (e.g., the time before the next cigarette can be smoked). The delay 
discounting paradigm provides a behavioral mechanism describing why individuals 
with SUDs demonstrate myopic decision-making reflected by choices for a smaller, 
more immediate reward (e.g., drug consumption) over a larger, delayed reward 
(e.g., better health and stable income). Systematic reviews have shown greater delay 
discounting to be associated with tobacco use severity and poorer tobacco cessation 
outcomes [87, 88] (Table 1).

3 � Alcohol

Alcohol is the most misused substance worldwide and places users at risk for a wide 
variety of serious health problems. According to a cross-sectional population-based 
study examining the years 2015–2019, 1 in 8 deaths of adult in the United States 
aged 20–64 years was attributable to alcohol [89]. Excessive alcohol use is a leading 
preventable cause of death in the United States, reducing average life span by 
26 years [90, 91]. As with all SUDs, diagnostic criteria for alcohol use disorder 
(AUD) are behaviorally based. Although several biomarkers for alcohol use exist, 
these biomarkers lack specificity for alcohol use disorder per se. Instead, these 
markers serve as indicators of volume of alcohol use and overlap significantly with 
markers for other disease processes. This section provides an overview of potential 
biomarkers for AUD, noting limitations in terms of sensitivity and specificity.

3.1 � Genetic/Epigenetic

Understanding genetic influences on AUD can be important in informing preven-
tion, diagnosis, and treatment. Ongoing research provides initial evidence of poten-
tial genetic biomarkers for AUD. For example, alcohol dehydrogenase 1B (ADH1B) 
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Table 1  Summary of biomarker findings in nicotine use disorder

Domain Summary of findings References

Genetic/
epigenetic

Differential DNA methylation of genes in blood, 
lung, and adipose tissue of tobacco smokers. 
Changes are reversible after cessation

Tsai et al. [17], Joehanes 
et al. [18], Stueve et al. 
[19], McCartney et al. 
[20]

Smoking associated with 16 differentially 
methylated regions (DMRs). Genes in DMRs 
enriched for neurodevelopment, cell growth and 
morphogenesis (anterior cingulate cortex), dendritic 
spine development (prefrontal cortex), and 
regulation of vessel development (ventral striatum)

Zillich et al. [21]

Cellular/
molecular

Possible associations of active smoking with 
cortisol and markers of atherogenicity. Additional 
research is needed

Newton [22]

Peripheral 
biomarkers

Markers of exposure (smoking status): breath CO 
and cotinine

SRNT [23], Perkins et al. 
[24]
Yoon et al. [26]

Potential marker of treatment response and risk of 
relapse: nicotine metabolite ratio (NMR)

Lerman et al. [39], 
Patterson et al. [40], 
Schnoll et al. [42], Fix 
et al. [43], Siegel et al. 
[46]

Neuroimaging Chronic smoking impacts gray matter integrity, 
with volume decreases in left insula, right 
cerebellum, parahippocampus, multiple prefrontal 
cortex regions, and thalamus

Fritz et al. [52], Hanlon 
et al. [53], Stoeckel et al. 
[54], Sutherland et al. 
[55]

Chronic smoking leads to upregulation of nicotinic 
acetylcholine receptors (nAChRs). nAChRs 
normalize after smoking cessation

Whiting and Lindstrom 
[58]; Benwell et al. [60]; 
Breese et al. [61], Brody 
et al. [62], Cosgrove 
et al. [63], Mamede et al. 
[65]

Insula is a potential substrate in nicotine addiction 
and may serve as therapeutic target for smoking 
cessation

Naqvi et al. [69], 
Abdolahi et al. [70], 
Abdolahi et al. [71]

Cognitive-
behavioral

Addiction Severity: Fagerstrom Test of Nicotine 
Dependence (FTND)

Heatherson et al. [74]

Craving for cigarettes: Questionnaire on Smoking 
Urges (QSU)

Tiffany and Drobes [76]

Smoking withdrawal symptoms: Minnesota 
Nicotine Withdrawal Scale

Hughes and Hatsukami 
[77]

Reinforcer pathology: Delay Discounting and 
Tobacco Demand

Zvorsky et al. [86], 
Barlow et al. [88], Syan 
et al. [87]

catalyzes the oxidation of alcohol to acetaldehyde and has been identified as an 
important candidate gene for predicting AUD [92]. In a study examining which 
DSM-5 criteria for AUD contribute to the relationship between ADH1B and AUD, 
Hart et al. [92] found that social/interpersonal problems, withdrawal, and tolerance 
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were significant predictors of the rs1229984 genotype. Tolerance and time spent 
using alcohol were the greatest predictors of the rs2066702 genotype. This study 
adds to the research aimed at identifying and understanding polymorphisms associ-
ated with AUD, but more research is needed to achieve the goal of identifying 
genetic biomarkers for AUD.

A review article of differentially methylated genes in brain and blood tissues in 
AUD found enrichment of genes involved in immune system response and inflam-
matory processes [93]. A subsequent EWAS (epigenetic) analysis in AUD identified 
a network of DMRs enriched in pathways related to glucocorticoid signaling and 
inflammation [94]. More recently, a large study of five brain regions identified dif-
ferential methylation in the caudate nucleus and ventral striatum [95].

3.2 � Cellular/Molecular

Ethanol levels are indicative of recent alcohol use. Due to the short half-life of etha-
nol, the use of this measurement to determine AUD is limited. Combining clinical 
observation with ethanol level measurement can be used to tentatively draw conclu-
sions. High ethanol levels with no apparent signs of intoxication are indicative of 
alcohol tolerance, which is one indicator of AUD [96].

Biological assays of recent alcohol use include breath alcohol levels (BAC), 
ethyl glucuronide (EtG), and transdermal alcohol concentrations (TAC). However, 
each of these measures has limitations. BAC is relatively quick and easy to assess 
but will typically stop detecting alcohol 12–24  h following the last drink con-
sumed. EtG is a byproduct of alcohol formed when ethanol is broken down in the 
body. EtG can be assessed in urine using immunoassay or inexpensive urine test 
strips. EtG can accurately assess heavy drinking in the past 2 or 3 days using a 
500 ng/mL threshold, but lower drinking levels may be missed. Longer detection 
periods up to 5 days are also possible by lowering EtG cutoff thresholds but will 
also result in increased false-positive rates from exposure to other alcohol-
containing products such as hand sanitizer [97, 98]. Therefore, frequent BAC or 
EtG testing would be needed to monitor chronic alcohol use, indicative of AUD, 
but accurate assessment of number of drinks consumed is difficult and may miss 
lower levels of recent drinking. Currently, the most accurate measure of alcohol 
exposure is via measurement of TAC using devices such as the SCRAMx [99]. 
Approximately, 1% of alcohol consumed is emitted through the skin [100–102], 
and devices such as the SCRAMx can take frequent assessments of TAC levels to 
accurately assess recent drinking [103–105]. SCRAMx is often used in the context 
of judicial monitoring. A significant practical hurdle of SCRAMx is the potential 
stigma and discomfort from continuously wearing a visible ankle device. In sum-
mary, objective and accurate assessment of the frequency and volume of alcohol 
consumed remains a challenge.
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3.3 � Peripheral Systems

Alcohol has both short-term and long-term effects on the central and peripheral 
nervous systems. Autonomic arousal in the form of elevated heart rate, hyperten-
sion, and diaphoresis are markers of alcohol withdrawal [106]. However, not all 
individuals with alcohol use disorder go through withdrawal. Heart rate variability 
is a variation in intervals between heartbeats and is an important indicator of cardiac 
health. There is evidence that AUD are associated with increased cardiovascular 
risk. Several studies have examined heart rate variability (HRV) as a potential bio-
marker for AUD. In a systematic review and meta-analysis, Cheng et al. [107] found 
that patients with AUD have significantly lower parasympathetic activity compared 
to individuals without AUD. Another review found that participants with AUD had 
higher reactive HRV scores compared to healthy controls and that individuals with 
increased reactivity were more likely to relapse and report more cravings. As with 
other potential biomarkers mentioned in this chapter, HRV can be affected by non-
AUD factors such as age, sex, mental health conditions such as depression and anxi-
ety, physical health conditions such as diabetes, and the medications used to treat 
those conditions [107, 108]. The use of HRV as a biomarker for AUD would require 
the ability to rule out other conditions to achieve scientifically acceptable specificity.

There are established liver enzyme markers for alcohol use disorder, which 
include serum γ-glutamyl transferase (GGT), mean corpuscular volume (MCV), 
and carbohydrate-deficient transferrin (CDT). GGT is an indicator of liver damage 
and is elevated in about 75% of individuals with alcohol dependence [109, 110]. 
MCV is indicative of chronic heavy drinking. Heavy daily alcohol use can raise the 
MCV above the reference range. After several months of abstinence, MCV can 
return to within the reference range. While MCV potentially indicates AUD, this 
measure lacks specificity because it is also a marker of other medical conditions 
such as hepatitis and vitamin deficiencies. CDT has also been widely investigated as 
a marker for heavy alcohol use. People who consume high levels of alcohol (50–80 
grams per day) will have increased CDT serum levels [111]. Research shows that 
CDT is better at distinguishing people with AUD versus heavy alcohol consumption 
without AUD [112]. Therefore, there is a component of “severity” related to meet-
ing criteria for AUD that is sensitive to CDT measurement, and this sensitivity 
moves beyond a simple indication if total volume of alcohol consumed. While there 
are some benefits to these markers, all are better indicators of chronic alcohol con-
sumption versus alcohol use disorder [109, 110].

3.4 � Neuroimaging

Chronic alcohol use can result in many brain-related syndromes. These are well 
documented in chronic AUD and include Wernicke’s encephalopathy (12–18%), 
Korsakoff’s syndrome (10–15%), hepatic encephalopathy (3–16%), central pontine 
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myelinolysis (<0.5%), alcoholic cerebellar degeneration (0.4–42%), alcohol-related 
dementia (3–24%), and Marchiafava-Bignami disease (<0.002%) [113, 114]. Each 
of these is associated with brain alterations that can be identified through radiologi-
cal signatures. For Wernicke’s encephalopathy, primary targeted brain areas include 
mammillary bodies, periaqueductal gray matter, dorsal medulla, tectal plates, oli-
vary bodies, pons, and tissue surrounding the third ventricle. Primary regions 
affected by Korsakoff’s syndrome include mammillary bodies, hippocampus, thala-
mus, and the orbitofrontal cortices. Secondary affected regions include the cerebel-
lum and pons. For hepatic encephalopathy, primary affected regions contain the 
globus pallidus and substantia nigra. Secondary regions include the corticospinal 
tract and cortex. For central pontine myelinolysis, only the pons is a primary region, 
whereas the basal ganglia, thalamus, and cerebral gray-white matter junctions make 
up secondary affected regions. For alcoholic cerebellar degeneration and alcohol-
related dementia, affected regions consist of the cerebellum and frontal cortex. In 
Marchiafava-Bignami disease, primary and secondary regions consist of the corpus 
callosum and cortex, respectively.

3.5 � Cognitive-Behavioral/Psychometric

Excessive alcohol use in the form of either heavy drinking or binge drinking can be 
objectively measured by assessing the number of standard alcoholic drinks con-
sumed. Standard drinks are defined as a 12 fluid ounce can of beer (~5% alcohol), 5 
fluid ounce glass of wine (~12% alcohol; one wine bottle typically contains 5 
glasses), and a 1.5 fluid ounce shot of distilled liquor (~40% alcohol). Heavy drink-
ing is defined as more than 7 drinks/week for females and 14 drinks/week for males. 
Binge drinking is defined as consuming 4 or more drinks for females and 5 or more 
drinks for males in a single occasion [115]. However, accurate assessment of alco-
hol consumed can be challenging. For example, even if the individual is motivated 
to accurately report the numbers of drinks consumed, they may underestimate the 
actual amount of alcohol used in what they typically consume as a single drink. In 
these circumstances, having a visual guide may help mitigate this issue. Additionally, 
alcohol intoxication impairs memory function and can impede accurate recall.

Information on quantity and frequency of alcohol used can be collected using 
validated questionnaires, such as the Alcohol Use Disorders Identification Test 
(AUDIT) [116], the time-line follow-back (TLFB) [117], or the CAGE (Cut down, 
Annoyed, Guilty, Eye-opener) [118]. These screening tools can provide information 
on the amount of alcohol used and problems related to alcohol use, which are indi-
cators of AUD. A major limitation to these instruments is that these are self-report 
measures and rely on memory and accurate reporting.

Common across many SUDs, individuals with AUD display reinforcer pathology 
in relation to their alcohol use as measured by both delay discounting and alcohol 
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demand. In a meta-analysis, significantly greater discounting was observed among 
individuals with AUD compared to matched controls with observed effects in the 
medium effect size range (d = 0.50) in AUD and small (d = 0.25) in drinkers without 
AUD samples [119]. Additionally, greater delay discounting was significantly asso-
ciated with quantity and frequency of alcohol consumption [120]. A meta-analysis 
found greater alcohol demand to be significantly associated with greater alcohol 
misuse with moderate effect sizes [121]. Multiple studies have observed that indi-
viduals with higher categorized levels of alcohol misuse exhibited significantly 
greater alcohol demand [122–125]. Additionally, several studies observed that 
greater alcohol demand was significantly associated with higher alcohol consump-
tion, symptoms of alcohol dependence, and alcohol-related problems [123, 126–
129] (Table 2).

Table 2  Summary of biomarker findings in alcohol use disorder

Domain Summary of findings References

Genetic/
epigenetic

ADH1B associated with several DSM 5 criteria for 
AUD

Hart et al. [92]

EWAS analyses in AUD identified a network of 
DMRs enriched in pathways related to glucocorticoid 
signaling and inflammation

Lohoff et al. [94]

Cellular/
molecular

Low folate due to alcohol use disorder/malnutrition, 
low thiamine associated with Wernicke-Korsakoff 
syndrome

Jesse et al. [106], 
Weaver [130]

Breath CO, EtG, TAC Norberg et al. [100], 
Pizon et al. [101], 
Swift [102]

Peripheral 
systems (organs, 
etc.)

Scleral icterus, indicative of cirrhosis, which could be 
due to alcohol or viral hepatitis; epigastric tenderness, 
indicative of alcohol-related pancreatitis and gastritis

Weaver [130]

MCV potentially indicates alcohol use disorder but is 
also a marker of other medical conditions, such as 
hepatitis and vitamin deficiencies

Neumann et al. 
[109], Sharpe et al. 
[110]

Neuroimaging Wernicke’s encephalopathy, Korsakoff’s syndrome, 
hepatic encephalopathy, central pontine myelinolysis, 
alcoholic cerebellar degeneration, alcohol-related 
dementia, Marchiafava-Bignami disease

Zahr and 
Pfefferbaum [113]

Cognitive-
behavioral

Excessive drinking: >7 drinks/week for women, >14 
drinks/week for men; binge drinking: 4 or more for 
women, 5 or more for men

CDC [115]

AUDIT, CAGE Saunders et al. 
[116], Ewing [118]

Reinforcer pathology: delay discounting, alcohol 
demand

Mackillop et al. 
[131]
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4 � Psychostimulants

Psychostimulants are drugs that increase the activity of the central nervous system 
and typically increase mood and arousal [132]. The term psychostimulants encom-
passes several compounds ranging from caffeine to nicotine to prescription drugs 
like dextroamphetamine. This chapter will discuss biomarkers related to the use of 
illicit stimulants that have high abuse potential, cause negative health problems, and 
for which there is sufficient biomarkers research: cocaine use disorder (CUD) and 
methamphetamine (MUD) use disorder. Stimulant use disorders are diagnosed 
according to the DSM-5 [133] and are based on self-reported symptoms. To date, 
there is no definitive diagnostic biomarker for stimulant use disorder. However, a 
plethora of research in recent years has identified several potential biomarkers that, 
while primarily nonspecific, are (1) associated with diagnostic status that demon-
strate potential consequences of the disorder and (2) that predict treatment out-
comes. The ensuing sections describe some of the exemplary biomarkers of 
psychostimulant use disorder according to individual measurement domains.

4.1 � Genetic/Epigenetic

A study in the nucleus accumbens of individuals with cocaine dependence found 
hypermethylation of tyrosine hydroxylase (TH), containing a putative binding site 
for the early growth response 1 (EGR1) transcription factor, specifically in striatal 
neuronal nuclei. The activity of this locus is attenuated by methylation and enhanced 
by EGR1 overexpression, suggesting that cocaine dependence modulates dopami-
nergic signaling genes via alterations of epigenetic regulation [134].

Epigenetic modifications that result in changes in gene expression have been 
observed in methamphetamine via histone acetylation, histone methylation, DNA 
methylation, and DNA hydroxymethylation [135]. Through these processes, his-
tone proteins are modified, transcription factor binding at gene promoters are 
allowed or disallowed, and changes are made to the chemical covalent bonds of the 
DNA sequence [136]. Limanaqi and colleagues [136] suggest that even a “single 
dose of METH may be sufficient to induce an epigenetic switch consisting in 
increased gene expression.”

4.2 � Cellular/Molecular

Brain-derived neurotrophic factor (BDNF) is a central nervous sytem neurotrophin 
involved in neuronal cell growth and repair [137]. According to a recent meta-
analysis, cocaine users had lower serum BDNF [138] compared to controls with a 
large effect size (standardized mean difference  =  −1.78). This effect was only 
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present in active users. Notably, compared to plasma measurements, serum mea-
surements may be more stable. For those with MUD, BDNF levels were higher 
compared to controls for plasma sample studies (standardized mean differ-
ence = 0.59) [138]. Furthermore, a rise in BDNF levels was observed in participants 
in recovery, suggesting that the neurotrophin could be a possible MA-associated 
biomarker [138, 139]. Therefore, the psychostimulant drugs cocaine and metham-
phetamine might differ in their relationship to BDNF, but key mechanisms remain 
unclear.

4.3 � Peripheral Systems

Several peripheral biomarkers have been identified to help indicate the presence of 
a psychostimulant use disorder in combination with clinical interview, self-report, 
and behavioral measures. Urine drug screening, while not indicative of a use disor-
der per se, is useful for identifying recent use. Benzoylecgonine, the major cocaine 
metabolite, is detected in the urine within a few hours of cocaine use and can be 
detected for up to 3 days [140]. When screening for methamphetamine use, a series 
of tests are utilized to first examine the presence of amphetamine (a major metabo-
lite of methamphetamine) and then to examine two primary methamphetamine iso-
mers, d-methamphetamine and l-methamphetamine [141]. Methamphetamine can 
be detected in the urine for 2–5 days [142], but caution should be taken in assessing 
for methamphetamine as false positives are common [141].

As psychostimulants have well-known effects on the cardiac system [132], some 
research has found that heart rate might serve as a biomarker of disease state. 
Bradycardia is defined as a heart rate of less than 60 bpm or in severe instances, less 
than 50 bpm. The proportion of participants with bradycardia was determined to be 
larger in cocaine-dependent subjects compared to healthy controls [143]. Further, 
bradycardia is predictive of the inability to achieve abstinence during treatment for 
CUD. Heart rate increases with length of abstinence, suggesting changes in brady-
cardia may covary with withdrawal. Taken together, bradycardia might serve as a 
descriptive biomarker of dysregulation of beta-adrenergic receptors [144], which 
are involved in cardiac functioning.

Peripheral metabolites and proteins that are measured in human plasma can pro-
vide information on associated neurotransmitter systems and possible relationships 
to cognitive/behavioral processes, such as incentive salience, executive function, 
and negative emotionality [7]. Specifically, evidence indicates higher levels of 
n-methyl-serotonin and guanine and lower levels of hypoxanthine, anthranilate, and 
xanthine in participants with CUD compared to controls [145]. A study of human 
serum samples from Shi and colleagues [146] found five proteins that may be useful 
as biomarkers for methamphetamine use: α1-Acid glycoprotein, Transthyretin, 
Complement factor H, Apolipoprotein L1, and Haptoglobin. All of these proteins 
were upregulated in participants who met criteria for methamphetamine use 
disorder.
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It has been hypothesized that chronic use of abused substances may lead to neu-
roinflammation; [147–149] recent work has attempted to identify peripheral bio-
markers of this inflammatory response. Overall, the evidence for peripheral 
inflammatory biomarkers is inconsistent in CUD, with a recent meta-analysis indi-
cating no overall differences between CUD and controls [150]. However, there are 
differences in dopamine kinetics between cocaine and methamphetamine that may 
account for differences in their effect on inflammatory processes. Additionally, it is 
possible that the peripheral inflammatory markers are not good indicators of central 
nervous system inflammation. Below, we discuss several neuroimaging studies that 
have identified neuroinflammatory biomarkers related to stimulant use disorder.

4.4 � Neuroimaging

4.4.1 � Positron Emission Tomography (PET) and Magnetic Resonance 
Spectroscopy (MRS)

PET imaging uses a radioactive tracer to view biochemical or metabolic functioning 
in the brain and other organs, while MRS detects radio frequency electromagnetic 
signals produced by atomic nuclei. Specific to addiction, PET has been useful in 
identifying changes in neurotransmitter systems in the brain associated with psy-
chostimulant use. PET imaging has shown that long-term use of psychostimulants 
leads to broad downregulation of the striatal dopamine system. For example, there 
is a decrease in the release of dopamine, reduced transporter availability, and 
reduced D2/D3 receptor availability in psychostimulant use disorder compared to 
healthy controls [151]. PET has also been useful in identifying the neuroinflamma-
tory biomarker high translocator protein (TSPO). Neuroinflammation evidenced by 
high TSPO levels has been shown in those with MUD [147]. This upregulation of 
TSPO is a consequence of reactive glial cells and microglia activation. Higher 
TSPO levels have been shown consistently in methamphetamine users, but less so 
in cocaine users [147]. One PET study of methamphetamine users found TSPO 
levels ranging from 264% to 1530% higher across the midbrain, striatum, thalamus, 
orbito-frontal cortex, and insular cortex compared to controls [152].

Magnetic resonance spectroscopy studies also present evidence that compared to 
non- methamphetamine users, metabolic alterations in the brain are associated with 
neuroinflammation such that (1) N-acetyl-aspartate (NAA) concentrations and (2) 
creatine plus phosphocreatine (CrPCr) to choline-containing compound (Cho) ratio 
in the brain of methamphetamine users were significantly reduced [153, 154]. 
Myoinositol levels of the frontal and striatal white matter were higher in cocaine 
users by 5–23% compared to healthy controls [155]. MRS studies of methamphet-
amine users have reported mixed results – some with higher myoinositol levels than 
controls, specifically higher myoinositol levels in the frontal cortex. Other research 
did not identify significant differences between groups [155]. It appears that meth-
amphetamine may have a stronger association to TSPO levels as a potential bio-
marker, while cocaine may have a stronger association with myoinositol levels.
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4.4.2 � Diffusion Tensor Imaging (DTI)

DTI uses the diffusion of water molecules to evaluate white matter integrity and can 
indicate when the fibers and/or myelin are compromised. Use of psychostimulants 
has been shown to affect the white matter of the prefrontal cortex and the corpus 
callosum [156, 157]. As white matter integrity is associated with cognitive functions 
such as response inhibition and recall, impaired white matter integrity may serve as 
a biomarker of the cognitive impairment observed in psychostimulant users.

4.4.3 � Functional Magnetic Resonance Imaging (fMRI)

fMRI uses a magnetic field and radio waves to create an image of the brain and 
detects oxygenated blood within the brain. One of the earliest and most cited effects 
of stimulants on the brain was found with MRI – hypo-frontality, or widespread 
reduced activity in the frontal cortex [158]. While it is likely that this biomarker is 
nonspecific to stimulant use, research shows a very robust decreased activation of 
frontal areas that are associated with several stimulant use disorder symptoms (e.g., 
cognitive control, impulsivity, learning and habit formation, and reward 
processing).

fMRI studies have also been useful in identifying predictive biomarkers, that is, 
markers that predict relapse during/after treatment. Specifically, disruption in the 
limbic system during experimental reward tasks and reduced brain activity during 
executive functioning tasks are both related to risk for relapse [158]. Notably, there 
is considerable variability in the results of fMRI studies of psychostimulant use 
disorders, which could be due to the heterogeneity in inclusion criteria and varied 
definitions of relapse.

4.4.4 � Electroencephalogram (EEG)

EEG measures the electrical activity over the scalp and represents groups of neu-
rons firing in synchrony. Resting-state EEG is acquired when the participant is 
awake and not engaging in any experimentally directed activity. Resting-state fre-
quency bands have been associated with different cognitive functions and, thus, 
may be useful in measuring changes in the brain associated with substance use. An 
increase in beta power, indicative of increased neural excitability and disinhibition 
[159], is observed in CUD, particularly in males and those injecting versus smoking 
[160]. For methamphetamine users, altered EEG results have been found as well. In 
chronic methamphetamine users, increased power in the delta and theta bands were 
observed, as well as disruption of functional brain connectivity in the gamma band 
[160]. EEG alterations were also found for methamphetamine abstainers. 
Specifically, short-term abstainers featured decreased cortical complexity, while 
longer-term abstainers showed modifications in functional connectivity in gamma 
and delta bands potentially indicative of more long-term cognitive deficits [161, 162].
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Event-related potentials, or EEG responses to time-locked events (such as the 
presentation of a visual stimulus), can also serve as biomarkers of underlying cogni-
tive processes involved in addiction. For example, the late positive potential (LPP) 
occurs in response to motivationally salient stimuli. A recent meta-analysis found 
an increased LPP to cocaine images in CUD compared to controls with a large 
effect size [163]. The LPP might be useful in objectively assessing the motivational 
relevance of drug cues in individuals with SUD, which could provide information 
on risk for relapse [164, 165]. Another component, the Error-Related Negativity 
(ERN), occurs in response to errors and reflects the underlying neural mechanisms 
involved in error monitoring. According to several studies, the ERN is reduced in 
individuals with CUD, again serving as an objective indicator that might distinguish 
between CUD and controls [166]. While it is beyond the scope of this chapter to 
discuss each event-related potential component, it is worth noting that several com-
ponents have been shown to be predictive of addiction treatment outcomes [167]. 
Additional research in this area will help clarify if EEG can be useful in identifying 
biomarkers of behavior change over the course of treatment and whether unique 
EEG biomarkers specific to SUD and/or psychostimulant use disorder can be 
determined.

4.5 � Cognitive-Behavioral/Psychometric

In terms of neuroscience-informed clinical markers of addiction, the Addictions 
Neuroclinical Assessment (ANA) is composed of three domains to understand the 
dysfunction that accompanies SUD: incentive salience, negative emotionality, and 
executive functions. Although these domains have been replicated for AUD, they 
have not been as clearly established for other abused substances, including metham-
phetamine [168]. Nieto and Ray [168] attempted to do this by using exploratory 
factor analysis to find neurofunctional domains that mapped onto the ANA domains. 
They found that negative emotionality explained the most variability in the data, 
particularly depression, anxiety, and emotional symptoms from methamphetamine 
withdrawal [168], suggesting that methamphetamine use may be motivated by an 
attempt to cope with negative emotional symptoms (paradoxically exacerbated by 
methamphetamine withdrawal). Trait impulsivity loaded onto this factor as well, but 
to a less degree than the negative emotionality [168]. The incentive salience domain, 
specifically urges and cravings, also explained a significant proportion of variance 
in the data, followed by the executive function domain, which explained the least 
[168]. No such attempts have been made for CUD specifically, but all three domains 
are related to cocaine use. Most notably, negative emotionality plays a role in cue-
elicited craving for cocaine [169], but it remains unclear if reduced mood is a risk 
factor for or consequence of cocaine use (Table 3).
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Table 3  Summary of biomarker findings in psychostimulant use disorder

Domain Summary of findings References

Genetic/epigenetic Hypermethylation of tyrosine hydroxylase in 
striatal neuronal nuclei in CUD

Vaillancourt et al. 
[134]

MA users: histone acetylation, histone 
methylation, DNA methylation, DNA 
hydroxymethylation

Jayanthi et al. [135], 
Limanaqi et al. [136]

Cellular/molecular Higher BDNF levels for meth and cocaine users 
than controls in MUD and CUD

Ornell et al. [138], 
Mendelson et al. [139]

Peripheral systems Urine drug screen for cocaine metabolite detects 
recent cocaine use up to 72 h

Cone et al. [140]

Bradycardia (HR < 60) – HR lower in CUD than 
controls and predicts worse treatment outcomes

Bough et al. [143]

Higher levels of n-methyl-serotonin and guanine 
and lower levels of hypoxanthine, anthranilate, 
and xanthine in CUD

Patkar et al. [145]

MUD: Urine drug screen for amphetamine 
metabolite and isomers (d-methamphetamine and 
l-methamphetamine) detects recent cocaine use up 
to 5 days

Moeller et al. [141], 
Hadland and Levy 
[142]

MUD: Proteins: An upregulation of 5 proteins: 
α1-Acid glycoprotein, Transthyretin, Complement 
factor H, Apolipoprotein L1, and Haptoglobin

Shi et al. [146]

(continued)
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Table 3  (continued)

Domain Summary of findings References

Neuroimaging PET/MRS
Lower D2/D3 receptor availability, reduced 
dopamine transporter availability, reduced 
dopamine release in stimulant use disorder

Ashok et al. [151], 
Volkow et al. [170]

Increased myo-inositol in stimulant use disorder
MUD: PET studies have shown 
neuroinflammation through higher high 
translocator protein (TSPO) levels compared to 
controls
MA: MRS studies have shown neuroinflammation 
through reduced N-acetylaspartate (NAA) 
concentrations and creatine plus phosphocreatine 
(CrPCr) to choline-containing compound (Cho) 
ratio. Mixed findings for myo-inositol levels

Kohno et al. [147], 
Sekine et al. [152], 
Ernst et al. [153], 
Sekine et al. [154], 
Woodcock et al. [155]

DTI
Impaired white matter integrity (genu of corpus 
callosum and prefrontal cortex) in psychostimulant 
users compared to controls

Suchting et al. [156], 
Beard et al. [157]

fMRI
Widespread hypo-frontality in CUD
Dysfunctional limbic system and reduced 
executive system predicts worse treatment 
outcomes in CUD

Hanlon et al. [158]

EEG
Increased resting-state beta power in CUD 
compared to controls

Liu et al. [160]

Higher LPP in response to cocaine images in CUD 
compared to controls

Webber et al. [163]

Reduced ERN in response to errors in CUD 
compared to controls

Pasion et al. [166]

MUD: Chronic users – increased power in delta 
and theta and aberrations in the gamma band. For 
short-term abstainers – decreased cortical 
complexity; for longer-term abstainers – 
modifications in functional connectivity of gamma 
and delta bands

Liu et al. [160]

Cognitive-
behavioral

Negative emotionality predictor of cue-induced 
craving for cocaine

Elman et al. [169]

MUD: Negative emotionality explained the most 
variability, particularly depression, anxiety, and 
emotional symptoms from methamphetamine 
withdrawal

Nieto and Ray [168]
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5 � Opioids

Opioids are substances that act on opioid receptors and have primarily been used for 
the relief of pain. The opioid system, consisting of G protein-coupled receptors 
called mu-, delta-, and kappa-opioid receptors, is implicated in a variety of physio-
logical processes including pain, stress response, and reward [171]. As with other 
substances, research establishing biological markers of opioid misuse or opioid use 
disorder (OUD) is nascent. Many findings have limited specificity to OUD, showing 
overlap with findings on other SUDs, as can be seen in the following sections. 
Below we summarize human studies that have found differences in different 
domains among individuals with chronic opioid use from those without, laying 
groundwork for further research on candidate biomarkers.

5.1 � Genetic/Epigenetic

Mu opioid receptors (MOR) are the sole receptors for both the analgesic and adverse 
actions of morphine – when OPRM1, the gene that encodes MOR, is deleted in 
mice, the therapeutic, rewarding, and dependence-inducing effects of morphine dis-
appear [172]. In addition to analgesic effects, MOR also mediate natural rewards 
and self-control [171]. Genetic studies have shown positive associations between 
polymorphisms altering OPRM1 expression in prefrontal cortex and OUD [173].

Addiction susceptibility is known to be influenced by both genetic and environ-
mental factors, suggesting an important role for epigenetic regulation. Further, 
long-term drug exposure causes persistent changes in brain gene expression, par-
tially via epigenetic mechanisms [174]. These mechanisms include DNA methyla-
tion, which is the most stable form of epigenetic alteration, and several studies have 
suggested a critical role for this mechanism in SUD. Below are findings from stud-
ies that have conducted EWAS of DNA methylation in OUD.

Studies have identified differential DNA methylation in the OPRM1 gene in both 
blood [175, 176] and brain tissue [177] of patients with OUD. A study of European-
American women with OUD identified three genome-wide differentially methyl-
ated sites that mapped to genes involved in chromatin remodeling, DNA binding, 
cell survival, and cell projection [178]. Kozlenkov and colleagues [179] reported 
differential methylation of 1298 sites in heroin users compared to controls. A study 
in human postmortem brain of patients with OUD identified dysregulation of genes 
involved in astrocytic processes, neurogenesis, cytokine response, glial cell differ-
entiation, and transcription factor regulation [180].
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5.2 � Cellular/Molecular

Brain-derived neurotrophic factor (BDNF), a type of protein promoting neuronal 
cell growth and plasticity, has been suggested as a candidate biomarker in several 
psychiatric disorders. A recent meta-analysis found lower BDNF levels in plasma 
among heroin users than in controls [138]. However, plasma BDNF findings gener-
ally may have more heterogeneity than serum BDNF where more substantial group 
differences in other substances have been found (i.e., alcohol and cocaine), warrant-
ing further research on BDNF levels in OUD.

Further molecular markers, including blood/inflammatory markers and neu-
rotransmitters, are discussed below in the peripheral and cognitive-behavioral 
sections.

5.3 � Peripheral Systems

Laboratory drug tests determine active use of multiple substances, including opi-
oids. Indicators include reduced albumin, increased international normalized ratio 
(INR) and prothrombin time, and increased levels of alanine aminotransferase 
(ALT) and aspartate aminotransferase (AST), which reflect liver impairment as a 
result of hepatitis C virus infection acquired through injection of opioids [130]. 
Though much lab testing has focused on blood or urine sampling, saliva, sweat, and 
hair testing methods have become available and developed further for synthetic opi-
oids [181]. Positive urine tests for opioids indicate recent exposure but are not defin-
itive for determination of a diagnosis of OUD.

In terms of oxidative stress, a study on plasma metabolites in individuals with 
OUD undergoing methadone treatment showed increased levels of N-methyl-
serotonin, α- and γ-tocopherol, guanine, and xanthosine, as well as lower levels of 
guanosine and hypoxanthine compared to non-drug users [182]. These outcomes 
indicated altered antioxidant activity in peripheral metabolites that could distin-
guish OUD from those without OUD.

Studies have shown increased levels of inflammatory blood markers in OUD, 
including increased interleukin-10 and upregulation of preprodynorphin mRNA and 
prodynorphin peptide [183]. Similar patterns have also been observed in hemato-
logic markers, such as higher WBC, lymphocyte count, and RBC distribution width, 
in subjects with opioid misuse versus those without [184]. As with other markers 
being investigated in OUD, findings are heterogenous and need replication.

The US Centers for Disease Control and Prevention has shown that patients with 
at least two chronic non-SUD medical conditions accounted for more than 90% of 
opioid-related hospitalizations (including OUD) in the United States from 2011 to 
2015 [185], the most prevalent being asthma. A study in the United Kingdom 
showed that asthma and chronic obstructive pulmonary disease (COPD) were more 
prevalent among patients on methadone compared to non-methadone patients and 
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that methadone prescriptions were an independent predictor for both COPD and 
asthma even after controlling for tobacco-smoking rates and smoking intensity 
[186]. A causal relationship between heroin smoking and early-onset COPD has 
been proposed [187], along with mechanisms such as suppressed neural respiration, 
airway resistance, and increased histamine release [188]. However, these findings 
may not be easily distinguished from nicotine use disorder, should be considered 
preliminary, and warrant further studies determining causality between OUD and 
chronic respiratory or other diseases.

5.4 � Neuroimaging

5.4.1 � Neurophysiology

Event-related potentials (ERPs) measure changes in electrical fields generated by 
large populations of neurons through the scalp, time-locked to a specific event. 
Several ERPs have been found to covary with substance use status, including 
OUD. The late positive potential (LPP) is a centroparietally distributed ERP that is 
modulated by motivational relevance (reward valence) of visual stimuli. The LPP 
has been found to be larger in abstinent heroin users compared to matched nonusers 
in response to heroin cues [189], suggesting greater cortical processing of substance 
cues in users. Such a group difference is not usually observed in response to images 
of neutral, positive, and sometimes negative motivational value, suggesting consid-
erable specificity of the LPP in distinguishing those with SUD from non-users.

The error-related negativity (ERN), a frontocentral ERP elicited after the com-
mission of an error in a task, is smaller in heroin users compared to controls [190], 
consistent with fMRI work showing reduced error-related activation in the anterior 
cingulate cortex [191]. This suggests impaired ability to respond to errors; however, 
this appears to be true for users of other substances [192]. ERP findings generally 
suggest alterations in motivational relevance of opioid cues specifically in OUD 
individuals compared to other cues, as well as impaired error monitoring like those 
with other SUDs.

5.4.2 � MRI

Across different classes of drugs including nicotine, cannabis, stimulants, and opi-
oids, lower gray matter volume has been observed for substance users compared to 
controls in medial frontal lobe, anterior cingulate cortex, and insula according to a 
recent network meta-analysis of structural MRI [193]. Functional cluster analyses 
revealed networks related to default mode network, salience, and executive control, 
suggesting network-level alterations in the brain related to SUD. A meta-analysis of 
studies focusing on OUD found the fronto-temporal region as the main location of 
gray matter reductions associated with opioid use [194], with length of use 
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negatively associated with gray matter volume in the left cerebellar vermis and 
insula. This suggests OUD may lead to reductions in the frontocerebellar network 
involved in impulsivity and in the fronto-insular system implicated in cognitive and 
decision-making functions.

5.4.3 � PET

A PET study found increased binding of [11C] diprenorphine (a mu opioid receptor 
agonist) across individuals with OUD undergoing detoxification compared to 
matched controls [195], suggesting increased opioid receptor availability as an 
acute effect of early abstinence. The report noted the differences in binding were 
observed across widespread areas in the brain, in contrast to what has been observed 
in cocaine or alcohol withdrawal (most changes being found in the ventral striatum 
and caudate), potentially due to more direct pharmacological effects of opioids on 
receptors and changes in the endogenous opioid system.

5.5 � Cognitive-Behavioral/Psychometric

As part of the reinforcer pathology of SUD [9], delay discounting – the decrease in 
sensitivity to delayed outcomes – has been implicated across SUD. Increased delay 
discounting of both heroin and money was found in individuals with OUD when 
they were opioid-deprived compared to when they were opioid-satiated; under both 
deprived and satiated conditions, participants discounted delayed heroin to higher 
degree than money [196].

Stress  Opioids decrease cortisol, so stress and arousal mechanisms are necessarily 
involved [197]. Stress and drug cues have been found to increase craving, anxiety, 
negative emotions, and cardiovascular responses in individuals with OUD undergo-
ing naltrexone treatment [198]. This indicates increased “wanting” of drug as the 
resulting behavior related to changes in physiological stress mechanisms.

Sleep and Arousal  Opioid exposure implicates multiple systems that promote 
sleep and waking, including norepinephrine (projecting from locus coeruleus), 
dopamine (midbrain), serotonin (dorsal raphe nuclei), histamine (tuberomammil-
lary nucleus), and orexin (posterior lateral hypothalamus) [199]. Alterations in the 
neurotransmitter activities of these networks help explain sleep dysfunction 
observed in OUD. Dopamine from the midbrain is increased during use of all drugs 
and downregulated during abstinence. Mu opioids are enhanced in chronic opioid 
use, and mu opioid receptors show increased tolerance during abstinence. 
Norepinephrine is reduced during opioid intoxication and hyperexcitable during 
withdrawal. Locus coeruleus neurons are activated during opioid withdrawal; thus, 
hyperarousal and insomnia are associated with withdrawal [151]. Serotonin neurons 
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in dorsal raphe nuclei are involved in arousal from sleep in response to hypercapnia 
(inadequate respiration due to excessive carbon dioxide in the bloodstream), which 
is impaired during opioid overdose [200]. Histamine neurons of the tuberomammil-
lary nucleus are activated by opioids, resulting in increased histamine during opioid 
intoxication. Orexin neurons (cells that fire during waking but are silent during 
sleep) are also implicated in opioid use, potentially in the initial rewarding phase of 
opioids; individuals with narcolepsy and low orexin levels do not tend to misuse 
opioids. Long-term opioid exposure leads to upregulation of orexin, which may 
increase hyperarousal observed in those with OUD regardless of treatment status 
(Table 4).

6 � Summary and Future Directions

Despite major advances in identifying neurobiological abnormalities in the brains 
of individuals with SUD, current diagnostic methods are not brain-based, leaving 
the field without an individual biological maker that is uniquely associated with the 
presence of the disease. Screening tools that rely on self-reported behaviors and 
their consequences are currently considered the gold standard in diagnosing 
SUD. As this chapter illustrates, however, there has been significant progress in the 
search for diagnostic biomarkers in SUD. For each major drug class reviewed, bio-
marker research has been conducted across biological domains ranging from genetic 
and cellular to neuroimaging to cognitive and behavioral.

At least three conclusions are warranted by the evidence reviewed. First, existing 
markers suffer from limited diagnostic accuracy. Simply put, we do not have a 
“HbA1c assay” for SUD, that is, a biomarker that is easy, inexpensive, and clini-
cally useful both in detecting disease and in describing disease progression and 
treatment response over time. In the case of SUD, a positive screening test result 
from blood, urine, or breath samples can tell us about recent level of exposure to a 
specific substance, but without additional information, such test results cannot con-
firm a diagnosis or distinguish between individuals with and without SUD.

Second, biomarkers used in combination across multiple measurement domains 
are likely to perform more accurately than a single marker in detecting SUD disease 
complexity. Given the plethora of candidate biomarkers reviewed in this chapter, 
studies testing multiple biomarkers simultaneously are likely to better capture the 
complexity of SUD. While not axiomatic, complex heterogenous phenomenon are 
often best described and predicted by multivariate measurement approaches (e.g., 
Lubke and McArtor [201]. As an example of this approach, a combination of 
genetic/epigenetic, molecular, and psychometric markers is currently being evalu-
ated by our research team at UTHealth Houston in a study to develop a bio-
behavioral signature of risk for opioid misuse [202, 203]. First, using DNA from a 
sample of opioid-exposed trauma-injury patients, polygenic risk scores (PRS) are 
calculated based on GWAS studies in OUD [204, 205]. Next, genetic and clinical 
information is combined by determining the relationship between PRS and OUD 
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Table 4  Summary of biomarker findings in opioid use disorder

Domain Summary of findings References

Genetic/epigenetic Genes: Presence of mu opioid receptor genotype 
(OPRM1 gene) responsible for therapeutic, rewarding 
and dependence-inducing effects of morphine

Darcq and 
Kieffer [171], 
Nielsen et al. 
[176]

Increased DNA methylation in mu opioid receptor 
promotor of individuals with OUD

Ebrahimi et al. 
[175], Oertel 
et al. [177]

Cellular/molecular Neuronal cell growth: Plasma brain derived neurotrophic 
factor in heroin users lower than controls

Ornell et al. 
[138]

(Neurotransmitter activities listed below under Sleep and 
arousal in Cognitive-Behavioral section)

Peripheral systems Oxidative stress: Altered plasma metabolite levels 
(increased N-methylserotonin, α- and γ-tocopherol, 
guanine, xanthosine and lower levels of guanosine and 
hypoxanthine) in individuals with OUD compared to 
nondrug users

Mannelli et al. 
[182]

Inflammatory and hematologic: Increased interleukin-10, 
up-regulation of preprodynorphin mRNA and 
prodynorphin peptide blood markers; increased WBC 
and lymphocyte count, increased RBC distribution width 
in individuals with opioid misuse versus those without

Bryant et al. 
[183], Orum 
et al. [184]

Chronic disease: Chronic obstructive pulmonary disease 
and asthma observed at higher rates in chronic opioid 
use

Mehta et al. 
[186], Walker 
et al. [187]

Neuroimaging Event-related potentials: Larger late positive potential in 
response to substance cues (increased motivational 
relevance), and smaller error-related negativity (impaired 
ability to respond to errors) in heroin users compared to 
matched controls

Franken et al. 
[107], Cheng 
et al. [189], Lutz 
et al. [192]

MRI: Reduced gray matter volume particularly in 
fronto-temporal region associated with opioid use

Wollman et al. 
[194]

PET: Increased [11C] diprenorphine binding in 
individuals with OUD undergoing detoxification, 
suggesting increased mu opioid receptor availability in 
early abstinence

Williams et al. 
[195]

Cognitive-
behavioral

Reinforcer pathology: Greater degree of delay 
discounting of both heroin and money in individuals 
with OUD when opioid-deprived than when 
opioid-satiated

Giordano et al. 
[196]

Sleep and arousal system: Reduced norepinephrine and 
increased dopamine, mu opioids, histamine, and orexin 
during opioid intoxication; increased excitability of 
norepinephrine, downregulated release of dopamine, 
tolerance of mu opioid receptors, and upregulated orexin 
during opioid withdrawal

Valentino and 
Volkow [199]
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risk factors measured psychometrically using the Opioid Risk Tool [ORT: 206], 
resulting in an “enriched” bio-behavioral score for classifying high versus low risk 
of OUD. This score is then further enriched with epigenetic microRNA (miRNA) 
data. Several miRNAs involved in regulation of synaptic plasticity are hypothesized 
to underlie drug addiction [207], and miRNAs have been shown to regulate mu-
opioid receptor levels and modulate opioid tolerance [208, 209]. Importantly, brain 
miRNAs are actively secreted into the blood via exosomes, and therefore, brain-
derived miRNAs isolated from blood could provide important biosignatures of 
opioid-induced epigenetic modifications and/or OUD. Further, these miRNA bio-
signatures could lead to identification of OUD-associated brain targets and to moni-
toring brain responses to medications, because they convey messages across brain 
cells. This approach has already proven useful for other brain diseases, such as 
Parkinson’s and Alzheimer’s diseases [210, 211]. This increased interest and effort 
aimed at developing a multiple biomarker signature shows high potential for 
improving accuracy in predicting and diagnosing SUD [For more examples of cur-
rent work in this area, see 7, 8, 212].

A third conclusion and future direction would be to leverage omics technologies 
in the search for candidate biomarkers of SUD. In this regard, advances in genomic 
and imaging technologies, coupled with increased availability of human postmor-
tem brain tissue, have facilitated the generation of multilevel omics data, including 
epigenomics, transcriptomics, and proteomics, in the human brain. With this explo-
sion of data comes a great need for vertical data integration and analyses across 
different molecular layers that allow cross-validation of network alterations and 
integration with neuroimaging data. Integration of RNAseq, microRNAseq, DNA 
methylation, and proteomics in brain regions of subjects with CUD and OUD com-
pared to controls is currently being performed. Analyses have identified localization 
to synapse and myelination pathways enriched in CUD [213] and acute inflamma-
tory response, angiogenesis, synaptic remodeling, and the orexin receptor network 
as the main enriched pathways in OUD [180, 214, 215]. Further, cell-type specific 
effects are being identified in these networks. The results point to unique brain alter-
ations induced by cocaine and opioids, suggesting distinct mechanisms of action 
and neurotoxicity. These results could shed light on the neurobiological mecha-
nisms of SUDs and could lead to development of novel therapeutic approaches to 
minimize damage induced by these drugs of abuse.

The foregoing conclusions must be tempered by the acknowledgement that bio-
marker development for SUD, like much of psychiatry, will continue to be limited 
in predictive and therapeutic utility until diagnostic methods are able to draw more 
heavily on biological criteria. When diagnostic criteria for SUD evolve to include 
biological variables, biomarker development will progress to align  more closely 
with diagnostic accuracy and covary with therapeutic outcomes.
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1 � Introduction

The interconnection between traumatic brain injury (TBI) and neuropsychiatric dis-
eases finds its roots back in 1848 with the case of Phineas Gage, a railroad construc-
tion foreman who survived a severe TBI when an iron rod pierced his skull and 
brain [1]. The remarkable changes in Gage’s personality and behavior following the 
injury overshadowed his survival, providing an impetus for future explorations into 
the relationship between TBI and behavioral alterations [2].

Biomarkers serve as measurable indicators of biological processes and may pro-
vide instrumental tools to clarify the pathophysiology of a wide range of clinical 
symptoms and signs—including post-TBI neuropsychiatric symptoms. Such bio-
markers potentially identify at-risk individuals, enhance diagnostic precision, and 
monitor disease progression and treatment response [3]. The field has seen excep-
tional advancements in recent years in identifying and validating biomarkers for 
post-TBI neuropsychiatric conditions, paving the path toward more personalized 
and targeted treatment approaches.

This chapter explores the present understanding of biomarkers for neuropsychi-
atric symptoms related to TBI. It discusses the primary sources of potential bio-
markers, including blood and cerebral spinal fluid (CSF) (Fig. 1), and examines the 
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Fig. 1  Potential blood and cerebrospinal fluid (CSF) biomarkers of traumatic brain injury (TBI)-
associated neuropsychiatric disorders. Growing evidence has pointed out an association between 
blood levels of Neurofilament light chain (NFL), phos tau (p-tau), Glial Fibrillary Acidic Protein 
(GFAP), Ubiquitin C-Terminal Hydrolase L1 (UCHL-1), Interleukin-6 (IL-6), Tumor Necrosis 
Factor Alpha (TNF-α) and Brain-derived neurotrophic factor (BDNF) and TBI-related neuropsy-
chiatric symptoms like anxiety, depression, post-traumatic stress disorder (PTSD) and cognitive 
deficits in the military population. In the general population, blood concentrations of soluble 
CD40L (sCD40L), Cathepsin-D, Interleukin-4 (IL-4), Neuropilin-1, Interferon alpha-2 (IFNα2) 
and Copeptin have been associated with impulsivity following mild TBI while the Interleukins 
IL-2 and IL-10 have been associated with depressive symptoms after a brain injury. Moreover, 
CSF levels of interleukins IL-7 and IL-8, soluble vascular cell adhesion molecule-1 (sVCAM-1), 
soluble intercellular adhesion molecule-1 (sICAM-1) as well as of the soluble form of Fas (sFas), 
an apoptosis-signaling receptor molecule, have been reported as potential biomarkers of depres-
sion secondary to TBI. (Created with biorender.com)

challenges and opportunities with their clinical implementation. It also probes into 
the implications of biomarker-guided approaches for the management of post-TBI 
neuropsychiatric sequelae, as well as future research prospects in this field.
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2 � Neuropsychiatric and Cognitive Symptoms Associated 
with TBI

Clinically, a diverse landscape of neuropsychiatric syndromes and disorders  – 
depression, anxiety, bipolar disorder, impulsivity, cognitive deficits, apathy, anhe-
donia, and aggressive behaviors  – may manifest after TBI. Neuropsychiatric 
symptoms stemming from TBI can display persistent characteristics from months to 
years subsequent to the inciting injury. An intricate interplay of factors contributes 
to the severity and duration of these symptoms, key among them being the magni-
tude of the injury, the topographical location of the lesion, and any psychiatric his-
tory predating the injury. An enriched comprehension of the neurobiological 
apparatus that underscores these symptoms holds the potential to navigate the for-
mulation of precisely targeted interventions, thereby amplifying the life quality of 
those affected with TBI [4].

2.1 � Depression

Among the psychiatric disorders ensuing from TBI, depression is the most com-
mon, with incidence rates oscillating between 25% and 50% within the initial year 
post injury [5, 6]. The onset of depression is often insidious, materializing several 
months after the primary injury [7]. While the pathophysiological mechanisms 
underlying TBI-induced depression remain to be fully discerned, researchers have 
postulated the involvement of monoamine neurotransmitter alterations, neuroin-
flammation, and injury to frontal and limbic structures [8].

2.2 � Anxiety Disorders

TBI patient often grapple with anxiety disorders, a spectrum that includes general-
ized anxiety disorder, panic disorder, and phobias. The prevalence rates for post-
TBI anxiety disorders oscillate between 11% and 37% [9]. It has been reported that 
a previous history of psychiatric conditions may increase the risk for the develop-
ment of anxiety disorders following a TBI [7]. While the neurobiological basis of 
post-TBI-associated anxiety disorders remains to be fully clarified, a potential 
involvement of amygdala and prefrontal cortex damage has been proposed [10].
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2.3 � Posttraumatic Stress Disorder

PTSD is a mental health condition characterized by reexperiencing symptoms, 
avoidance, and alterations in arousal, cognition, and mood, triggered by a terrifying 
situation — either experiencing it or witnessing it. The increasing interest in inves-
tigating PTSD following TBI relies on the fact that the events that cause TBI can be 
often emotionally traumatic. Moreover, there is evidence that the physical brain 
damage resulting from a TBI might be an important risk factor for PTSD. Although 
the mechanisms underlying TBI-associated PTSD remain unclear, the physical 
impairment of neural circuits may hamper the regulation of fear responses, coping 
skills, and use of adaptive cognitive strategies contributing to PTSD [11, 12]. Higher 
rates of PTSD have been reported following TBI in military personnel varying from 
27.3% to 43.9%. This might be explained, at least in part, by the fact that soldiers, 
apart from the physical trauma of TBI, often experience repeated psychological 
trauma through combat exposures [12]. Among civilians affected by TBI, the PTSD 
rates vary from 2.6% to 36% [13].

2.4 � Bipolar Disorder and Mania

The incidence of bipolar disorder and mania among TBI patients is relatively mod-
est, presenting prevalence rates spanning 1.7–9% [14]. The likelihood of post-TBI 
mania development increases with the presence of risk factors such as a familial 
history of bipolar disorder and lesions localized in the right hemisphere, particularly 
the orbitofrontal and basotemporal regions [14]. The post-TBI mania pathophysiol-
ogy has been associated with dysregulated monoamine neurotransmitter systems, 
with dopamine playing a notable role [14].

2.5 � Cognitive Impairment

TBI frequently causes cognitive impairments, a prevalent neuropsychiatric outcome 
that disrupts various cognitive domains spanning from attention and memory to 
executive function and processing speed. Tsai et al. (2021) demonstrated that mild 
TBI initially triggered memory and attention deficits in 31% and 20% of cases, 
respectively. This incidence slightly decreased in the subacute phase to 26% and 
18%, respectively. Moderate-to-severe TBI exhibited a more pronounced subacute 
impact, with 49% experiencing memory deficits and 54% attention deficits. In the 
chronic phase, however, memory deficits reduced to 21%, while attention deficits 
remained high at 50% [15].

The intensity and duration of such cognitive impairment generally correlate with 
the severity of the trauma. This can result in a spectrum of effects: Mild TBI 
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frequently triggers mild cognitive disturbances, whereas injuries of a higher magni-
tude often lead to enduring cognitive dysfunction [16]. The inflicted structural harm 
to the frontal and temporal lobes, coupled with widespread axonal injury, serves as 
a contributing factor to the cognitive deficits that ensue post TBI [16]. Associated 
with these structural changes, neuroinflammatory mechanisms, disruptions of neu-
rotransmitter systems, such as the cholinergic and glutamatergic systems, also con-
tribute to post-TBI cognitive impairment [4].

2.6 � Apathy and Anhedonia

TBI regularly precipitates apathy, a state often delineated by diminished motivation, 
emotional numbness, and a reduction in goal-oriented behaviors. Prevalence esti-
mates for this neuropsychiatric outcome ranges from 10.84% (without depression) 
to 60% (with depression) [17]. Moreover, TBI patients frequently exhibit anhedo-
nia, a condition marked by the loss of capacity to derive satisfaction from activities 
traditionally deemed pleasurable. Both apathy and anhedonia are related to lesions 
of the frontal-subcortical circuits, with particular emphasis on the prefrontal and 
anterior cingulate regions and parieto-subcortical circuits [18].

2.7 � Aggression

TBI is frequently associated with aggression, with its prevalence estimated to be in 
the range of 37–71% [19, 20]. The manifestation of this post-TBI syndrome often 
encompasses both verbal and physical aggression, coupled with a decrease in frus-
tration tolerance and an increase in irritability. Post-TBI aggression is linked to 
cortical thinning of the orbitofrontal regions [21]. Beyond structural brain changes, 
researchers discern alterations in neurotransmitter systems as potential contributors 
to these behavioral transformations. Notably, they emphasize changes in the func-
tioning of glutamate and cholinergic systems [22].

2.8 � Impulsivity

Impulsivity is a multifaceted concept that is defined as a tendency to react rapidly 
without forethought of future negative consequences for oneself or others. It is a 
common complication following moderate to severe TBI [23]. There is evidence 
that approximately 35–38% of patients will present motor impulsivity, also known 
as response disinhibition, during acute recovering post TBI [24]. Impulsive behav-
iors map to dysfunctions in the frontal lobe, a cerebral area pivotal to the orchestra-
tion of decision-making and impulse control [25]. Hence, unraveling the intricacies 
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of post-TBI impulsivity stands as a vital imperative for sculpting effective and tai-
lored rehabilitation strategies.

3 � TBI-Related Biomarkers for Neurobehavioral Symptoms 
and Disorders

3.1 � Blood Biomarkers

Researchers are currently exploring the viability of blood biomarkers as tools of 
detection and progress monitoring to understand TBI’s subsequent behavioral and 
cognitive repercussions. In particular, molecular variations in TBI patients’ blood 
samples – cytokines, chemokines, and other biological markers could act as reveal-
ing signposts of TBI-related psychiatric disorders (Fig. 1).

Peltz et al. (2020) assessed neurofilament light chain (NFL), total tau, glial fibril-
lary acidic protein (GFAP), α-synuclein, β-amyloid 42 (Aβ42), phosphorylated tau 
(p-tau), along with cytokines like tumor necrosis factor–α (TNF-α) and interleukin-
6 (IL-6) in serum and plasma of older veterans with a TBI history [26]. They 
observed discernable patterns of these markers when mapped against different post-
TBI cognitive groups. These cognitive groups were defined by a set of assessment 
tools, including the Mini-Mental State Examination [MMSE], Auditory Verbal 
Learning Test [AVLT] Learning Trials, AVLT Delayed Recall, and Wechsler Adult 
Intelligence Scale [WAIS] Digit Symbol tests [26]. When comparing the TBI group 
with cognitive deficits and controls or the TBI group without cognitive impairment, 
p-tau, NFL, GFAP, IL-6, and TNF-α were increased. The cumulative integration of 
these markers wielded the power to differentiate the post-TBI cognitive groups with 
remarkable accuracy, boasting an area under the curve [AUC] score of 0.85 [26].

Lange et  al. (2021) examined the correlation between serum biomarkers and 
neurobehavioral changes post-military-related TBI across a spectrum of injury 
severities and non-injured controls [27]. They identified tau, neurofilament light 
chain (NFL), glial fibrillary acidic protein (GFAP), and ubiquitin carboxy-terminal 
hydrolase L1 (UCHL-1) as crucial biomarkers. Intriguingly, increasing tau, NFL, 
and GFAP levels signaled worsening symptoms like anxiety, PTSD, and depression, 
among others [27]. UCHL-1 predicted an escalation in anxiety, somatic, and neuro-
logical symptoms [27]. In noninjured controls, however, these biomarkers did not 
correlate with symptom deterioration. This suggests that elevated levels of tau, 
NFL, GFAP, and UCHL-1 within the first year post injury might predict a persistent 
decline in neurobehavioral symptoms [27].

Vedantam et al. (2021) gathered data from patients diagnosed with mild trau-
matic brain injury (mTBI) and controls exhibiting orthopedic injuries (OI) across 
three trauma centers. The team drew blood samples from the patients within 24 h 
following the injury and then again 6 months later, providing them with measure-
ments of plasma inflammatory cytokines. Neuropsychological tests took place at 
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various intervals after the injury [28]. The study, involving mainly male participants 
associated with vehicle accidents, included 53 mTBI patients and 24 OI controls 
[28]. An early surge in plasma IL-2 levels showed a link with an escalation in post-
concussive symptoms a week later. Moreover, 6 months after the injury, a spike in 
plasma IL-10 levels corresponded with more severe depression and PTSD symp-
toms [28]. These results underscore how inflammation and cytokine levels can 
influence the severity of post-concussive symptoms, PTSD, and depression follow-
ing a mTBI [28].

Cardoso et  al. (2023) employed machine learning–based modeling to unearth 
potential biomarkers related to impulsivity following mTBI.  They evaluated 21 
mTBI patients within a month post injury and compared these findings to data from 
19 healthy controls, using measures of impulsivity, executive functioning, episodic 
memory, self-reported cognitive failures, and blood biomarkers indicative of inflam-
mation, vascular damage, and neuronal deterioration [23]. mTBI patients mani-
fested significantly higher impulsivity than controls, both in terms of the overall 
Barratt Impulsiveness Scale (BIS) score and its subscales. Intriguingly, specific bio-
markers, including sCD40L, Cathepsin D, IL-4, Neuropilin-1, IFN-α2, and 
Copeptin, showed associations with increased impulsivity in mTBI patients [22]. 
Hence, Cardoso et  al. (2023) both validate the link between mTBI and elevated 
impulsivity in non-military populations and reveal novel pathophysiological path-
ways potentially implicated in mTBI-related impulsivity [23].

In the cross-sectional cohort study by Pattinson et al. (2020), researchers estab-
lished a positive association between tau concentrations and symptom severity in 
military personnel and veterans, regardless of their TBI history. More specifically, 
significant correlations emerged between tau and specific subscales of the 
Neurobehavioral Symptom Inventory (NSI) for post-concussive symptoms, the 
PTSD Checklist self-report measure (PCL), and the patient health questionnaire 
(PHQ-9) for depressive symptoms [29]. Pattinson et al. (2020) also noted elevated 
NFL levels in individuals subjected to repetitive TBI. These findings suggest blood 
levels of tau and NFL as potential markers of persistent neurological and behavioral 
symptoms following TBI. These observations underscore the critical role of chronic 
biomarker measurements and indicate the need for future longitudinal studies fol-
lowing TBI [29].

Drestch et  al. (2016) noted that the BDNF Val66 Met genotype significantly 
linked to the risk of sustaining mTBI and screening positive for traumatic stress. 
Predeployment traumatic stress, combat exposure, mTBI during deployment, and 
the BDNF Met/Met genotype collectively explained 22% of the variance in postde-
ployment PTSD scores [30]. However, predeployment traumatic stress alone 
accounted for 17% of the scores. These findings indicate that predeployment trau-
matic stress, genetics, and environmental factors play distinct roles in the develop-
ment of combat-related traumatic stress among military service members [30].

Table 1 summarizes the association between blood biomarkers and behavioral/
cognitive changes post-TBI across different studies.

Blood biomarkers carry immense promise in pinpointing individuals susceptible 
to neuropsychiatric and behavioral shifts following a TBI. The reviewed studies 
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Table 1  Blood biomarkers for neuropsychiatric alterations post TBI

Study Methods Results Conclusion

Peltz et al. 
2020
[26]

Evaluated relevance of 
blood-based exosomal 
protein markers and 
cytokines (NfL, total tau, 
GFAP, α-synuclein, Aβ42, 
p-tau, TNF-α, IL-6) in TBI 
patients vs. controls

Significant differences 
observed in p-tau, 
NFL, GFAP, IL-6, and 
TNF-α levels between 
different cognitive 
groups post TBI.

Integration of these 
biomarkers can differentiate 
post-TBI cognitive groups 
with high accuracy.

Lange 
et al. 2021
[27]

Examined correlation 
between serum biomarkers 
(tau, NFL, GFAP, UCHL-1) 
and neurobehavioral changes 
post TBI across varying 
severities and noninjured 
controls

Tau, NFL, GFAP, and 
UCHL-1 increased 
levels associated with 
worsening 
neuropsychiatric 
symptoms, including 
anxiety, depression, 
PTSD, and cognitive 
deficits.

Elevated tau, NFL, GFAP, 
and UCHL-1 levels within 
the first year post injury 
might indicate persistent 
neurobehavioral symptom 
decline.

Vedantam 
et al. 2021
[28]

Collected data from mTBI 
and OI patients from three 
trauma centers; conducted 
neuropsychological tests at 
various intervals after injury

Early rise in plasma 
IL-2 levels linked with 
increased post-
concussive symptoms a 
week later; 6 months 
post injury, elevated 
plasma IL-10 levels 
correlated with severe 
depression and PTSD 
symptoms.

Inflammation and cytokine 
levels significantly 
influence post-concussive 
symptoms, PTSD, and 
depression following an 
mTBI.

Cardoso 
et al. 2023
[23]

Employed machine 
learning–based modeling to 
identify potential mTBI-
related impulsivity 
biomarkers, comparing 
mTBI patients and healthy 
controls

mTBI patients showed 
higher impulsivity; 
biomarkers sCD40L, 
Cathepsin D, IL-4, 
Neuropilin-1, IFN-α2, 
and Copeptin were 
associated with 
increased impulsivity 
in mTBI patients.

Evidenced the link between 
mTBI and increased 
impulsivity in non-military 
populations and suggested 
novel pathophysiological 
pathways implicated in 
mTBI-related impulsivity.

Pattinson 
et al. 2020
[29]

Tau and NFL concentrations 
were measured, with 
symptom severity assessed 
through the NSI, PCL, and 
PHQ-9

Tau concentrations 
showed a positive 
association with 
symptom severity, 
regardless of TBI 
history. Significant 
correlations were found 
between tau and specific 
subscales of the NSI, 
PCL and PHQ-9. 
Elevated levels of NFL 
were observed in 
participants with a 
history of repetitive TBI.

The findings underscore the 
importance of consistent 
biomarker measurement in 
patients with TBI and 
highlight the need for 
longitudinal studies to 
further elucidate the 
relationship between tau 
concentrations and 
behavioral or cognitive 
modifications.

(continued)
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underscore the correlation of certain biomarkers, such as GFAP, with post-TBI cog-
nitive impairment and PTSD. Despite these advancements, the role of blood bio-
markers in tracking and predicting neuropsychiatric changes post TBI remains 
partially understood. The mechanisms that form these associations demand further 
investigation.

3.2 � Cerebral Spinal Fluid Biomarkers

The CSF of people with TBI hosts an array of molecules, such as neurotransmitters, 
cytokines, and chemokines, among others, that can inform about clinical outcomes 
[31]. Fluctuations in the concentrations of these molecular components could serve 
as an informative gauge, potentially pinpointing individuals prone to post-TBI psy-
chiatric disorders (Fig. 1) [31]. The notion of employing such markers not only for 
identification but also for progress monitoring, poses an avenue for future research.

Juengst et al. (2015) investigated the capacity of acute inflammation profiles as 
predictive factors for posttraumatic depression (PTD) risk within 6–12 months post 
traumatic brain injury [32]. Drawing from a prospective cohort design, they studied 
adults with moderate to severe traumatic brain injury from a university-associated 
level 1 trauma center, concentrating on participants with available acute serum and 
CSF levels [32]. By using the Patient Health Questionnaire-9 (PHQ-9) and an array 
of inflammatory biomarkers – including IL-1β, IL-4, IL-5, IL-6, IL-7, IL-8, IL-10, 
IL-12, TNF-α, sVCAM-1, sICAM-1, and sFAS – they found that elevated levels of 
CSF cytokine surface markers (sVCAM-1, sICAM-1, and sFAS) significantly 
increased PTD risk [32]. Notably, exceeding the 75th percentile in sICAM-1, 
sVCAM-1, or sFAS values elevated the likelihood of PTD risk at 6  months to 
85.7%. Beyond this, the investigators discerned a potential link between inflamma-
tory biomarkers IL-7 and IL-8 and PTD risk at the 12-month mark [32].

Table 1  (continued)

Study Methods Results Conclusion

Drestch 
et al. 
(2016)
[30]

Examined how various 
factors, such as genetic 
predisposition, early-life 
experiences, previous 
traumatic events, 
psychological and cognitive 
factors, as well as 
deployment-related 
experiences, influence the 
development of traumatic 
stress after returning from 
deployment

BDNF Val66 Met 
genotype significantly 
linked to risk of mild 
traumatic brain injury 
(mTBI) and positive 
traumatic stress 
screening.

Pre-deployment traumatic 
stress, geneics, and 
environmental factors 
uniquely contribute to 
combat-related traumatic 
stress in military service 
members.
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While CSF biomarkers can potentially indicate long-term behavioral alterations 
due to TBI, their practical usage is limited [32]. The cost, invasive nature, and lack 
of availability in certain medical settings curtail the clinical feasibility of CSF 
sampling.

3.3 � Neuroimaging Biomarkers

Different techniques, namely, magnetic resonance imaging (MRI), its functional 
variant (fMRI), positron emission tomography (PET), and magnetoencephalogra-
phy (MEG), have emerged as invaluable investigative tools in TBI. Their coordi-
nated application provides critical insights by identifying, delineating, and 
quantifying both structural and functional changes underlying brain dysfunction 
and, therefore, psychiatric manifestations.

Medeiros et  al. (2022) reviewed potential neuroimaging biomarkers for post 
TBI. Combing through four databases, they curated 38 articles from 2035 citations, 
representing a diverse pool of 1793 subjects [33]. Predominantly, these studies used 
structural MRI and unveiled an intriguing correlation: Post-TBI depression links 
with reduced gray matter and increased white matter damage [33]. Consistencies 
emerged in gray matter reductions in specific regions like the rostral anterior cingu-
late cortex, pre-frontal cortex, and hippocampus, along with damage in five crucial 
white matter tracts including cingulum, internal capsule, superior longitudinal fas-
ciculi, and anterior and posterior corona radiata [33]. This investigation, though not 
pinpointing a definitive neuroimaging biomarker for post-TBI depression, spot-
lights potential research paths, thus contributing significantly to the understanding 
of post-TBI depression.

Using fMRI, Raji et al. (2015) showed that TBI repercussions entailed dimin-
ished default mode network (DMN) connectivity as opposed to a healthy control 
group, whereas PTSD exhibited an opposite trend with enhanced DMN connectiv-
ity compared to both the control group and TBI cohort [34]. Another fMRI study by 
Mišić et al. (2016) revealed a marked reduction in neural activity variability, imply-
ing a potential constraining effect of PTSD on the brain dynamic range of neural 
activity after TBI [35].

A study by Todd et al. 2015, which employed MEG to probe the neural receptiv-
ity to combat-related cues in military personnel diagnosed with PTSD, observed an 
amplified neural response in these individuals when confronted with such stimuli, 
contrasting with their unaffected peers [36]. This implies a potential hypersensitiv-
ity within the PTSD-associated neural network to trauma-related instigators [36]. 
Nathan et al. confirmed persistent hyperconnectivity in emotion regulation in PTSD 
patients post TBI. Their research, informed by the application of FDG-PET, revealed 
that increased severity of PTSD symptoms was associated with heightened connec-
tivity in the middle frontal, parahippocampal, and precuneus regions in military 
patients with TBI [37]. The heightened connectivity among these regions can be 
seen as a potential PTSD biomarker during post-TBI convalescence.
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Essentially, exploiting neuroimaging techniques has allowed researchers to delve 
into the realms of structural and functional anomalies embedded within the brain, 
mapping critical connections between TBI and ensuing psychiatric disorders like 
PTSD. Pioneering studies have not only unveiled the stark differences in DMN con-
nectivity between PTSD, TBI, and healthy individuals but have also exposed the 
potentially restricting influence of PTSD on neural activity variability. MEG, with 
its increasing prominence, has uncovered the hyperreactivity of PTSD-afflicted 
neural networks to combat-related cues, and the persistent emotional hyperconnec-
tivity in PTSD patients post TBI, indicating a potential PTSD biomarker. While 
structural MRI studies have linked post-TBI depression to gray matter reductions 
and white matter damage, they haven’t identified a definitive neuroimaging bio-
marker. Nonetheless, they offer valuable leads for future research pathways.

4 � Conclusion

The investigation and understanding of biomarkers, including CSF, blood biomark-
ers, and neuroimaging biomarkers, for psychiatric disorders following TBI are criti-
cal in advancing diagnosis, prognosis, and treatment.

The field of post-TBI psychiatric disorders has made significant advancements, 
but gaps and challenges persist. Longitudinal studies on a large scale are crucial to 
determine the reliability and specificity of CSF and blood biomarkers, such as 
BDNF and GFAP, for psychiatric conditions, particularly PTSD.  These studies 
should consider factors like age, gender, ethnicity, and TBI severity to establish 
biomarkers’ generalizability and external validity in real-world settings. 
Understanding the underlying molecular and cellular mechanisms, exploring bio-
marker interactions, and standardizing measurement methods are essential. 
Integrating fluid-based biomarkers with neuroimaging findings can provide a com-
prehensive understanding, enhance diagnostics, and aid in developing targeted 
interventions. Longitudinal neuroimaging studies are also essential to track struc-
tural and functional changes. Additionally, Gotshall et al. (2021) discovered signifi-
cant associations between sleep quality and chronic inflammation in chronic mTBI 
patients, indicating that sleep-focused interventions could potentially regulate 
inflammatory processes and impact neuropsychological outcomes [38]. Further 
research is needed to explore the bidirectional relationship between sleep and 
inflammation following mTBI and determine the therapeutic implications of 
addressing sleep disorders in these patients [38]. In sum, future perspectives should 
consider refining already identified biomarkers, discovering new ones, and person-
alized treatments for psychiatric disorders after TBI.

Studying biomarkers for post-TBI psychiatric disorders, including CSF, blood, 
and neuroimaging biomarkers, poses significant potential for improving the quality 
of life for affected individuals. Future research will contribute to a more compre-
hensive understanding of TBI-related psychiatric disorders and ultimately pave the 
way for better diagnosis, prognosis, and treatment options.
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Biomarkers in Psychiatry: Conceptual 
and Methodological Challenges

Antonio L. Teixeira , Natalia P. Rocha , and Michael Berk 

1 � Introduction

Despite the significant advances in understanding the biological bases of psychiatric 
disorders, especially since the 1990s during “The Decade of the Brain,” the promise 
of valid biomarkers for the field has never materialized [1, 2]. During the same 
period, other areas, such as oncology and cardiology, witnessed a revolution in diag-
nostic and therapeutic tools, greatly impacting clinical practice [3]. Part of the 
explanation for this scenario, where psychiatry lags much behind other medical 
areas, relates to the nature of its conditions – which sit in the most complex organ, 
that is, the brain, and involve more complicated physiology and pathophysiology – 
complicating the diagnostic process. Therefore, the processes of identification (or 
discovery) and validation of potential biomarkers followed by incorporation into 
psychiatric practice are very challenging, and previous attempts to launch blood 
tests for psychiatric diagnoses, for example, failed because of reproducibility/
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validity issues, especially sensitivity and specificity along with implementation bar-
riers and costs [4]. Besides these conceptual, methodological, and financial issues, 
other factors seem to play a role.

In a provocative manuscript, Korth and Fangerau defended “that a complete sub-
stitution of the clinical diagnosis [in psychiatry] by a blood test is generally not 
desired among clinicians” [5]. In other words, these authors suggested the field 
itself is not prepared and not interested in that. They enumerated three groups of 
factors that would corroborate their perspective: (i) methodological problems, espe-
cially the intrinsic biological heterogeneity of the clinical umbrella diagnoses in 
psychiatry compounded by extensive and normative comorbidity; (ii) professional 
fears that clinical authority may be threatened by new diagnostic tools/technologies; 
(iii) conceptual problems involving a dualistic mindset. They support these claims 
regarding the resistance “to the progress of naturalization in psychiatry” using 
schizophrenia as their example. Although the authors bring up important and inter-
esting points, there are several contentious statements, especially their assumption 
that “clinicians do not desire” diagnostic tests. Following what happened in other 
medical areas, there is this growing consensus that major advances in psychiatry 
will be possible only with the incorporation of precision medicine tools, such as 
biomarkers [6]. Thus, psychiatrists are not only desiring but also eager to have 
access to biomarkers. But what is preventing them from having valid biomarkers in 
their practice?

This chapter will discuss different reasons underlying the lack of valid biomark-
ers in psychiatric practice starting with the daunting issue of biomarker discovery 
(Fig. 1).

Fig. 1  Overview of the challenges related to biomarker discovery and validation in psychiatry
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2 � Biomarker Discovery

Biomarker development has been a multistep and iterative process beginning with 
its discovery in disease vs. nondisease subjects/samples [7]. Therefore, the first step 
is to determine who has or not a psychiatric disorder. However, this approach has 
been confounded by the pooling of biomarkers into a single group. Putative markers 
can however fulfill multiple nonoverlapping functions [8]. Such biomarkers can be 
classified into those of (1) risk, (2) diagnosis/trait, (3) state or acuity, (4) stage, (5) 
treatment response, and (6) prognosis, with variable overlap between these 
constructs.

Psychiatric disorders are traditionally diagnosed using polythetic criteria based 
on a constellation of subjective (e.g., sadness, worries) and behavioral (e.g., reduced 
goal-directed behaviors) symptoms. These symptoms must influence the interper-
sonal or social functioning of the affected persons. Most of these symptoms can be 
considered nonobjective or not easily accessible by a third person (such as a clini-
cian), being influenced by social and cultural values. Furthermore, except in cases 
of delirium and symptomatic presentations, there are no biomarkers or tests to sup-
port or refute the psychiatric diagnosis. If a person states they are “sad,” so far, there 
are no absolute means to guarantee they are actually “sad” and/or have a depressive 
disease. In cardiology, for example, besides assessing patients’ symptoms (e.g., 
dyspnea and fatigue), imaging (e.g., echocardiography) and lab (e.g., brain natri-
uretic peptide) tests are used to properly define the severity and/or cause of the 
symptoms along with treatment monitoring. Conversely, given the idiosyncratic 
nature of reported delusions and hallucinations and their spectral departure from 
everyday life experiences, the boundaries of schizophrenia are usually better demar-
cated than other conditions, such as anxiety and depression. Consequently, its diag-
nosis is less dependent – not totally independent – on sociocultural parameters than 
the latter conditions in which socioeconomic expectations, cultural, and religious 
beliefs can influence the diagnostic process. In other words, psychiatric diagnoses 
require a certain level of dysfunction and/or impaired adjustment to the environ-
ment, and the self- or social perception of these facts is intrinsically related to socio-
cultural values and expectations. Complicating this further, the dysfunction in a 
particular individual with a particular disorder may be driven by the disorder itself 
or by comorbid problems like personality and substance abuse.

There are also problematic issues related to the heterogeneity and stability of 
psychiatric diagnoses. For example, 227 different symptom combinations can be 
estimated to fulfill the DSM-based diagnostic criteria for major depressive disorder. 
In clinical settings, the observed numbers were significantly smaller (between 119 
and 170) but remains large enough to lead to clinical conundrums [9]. Two people 
diagnosed with major depression might not share similar symptoms. Regarding sta-
bility, psychiatric diagnosis can change over time. For instance, changes in the diag-
nosis of schizophrenia and bipolar disorder are not uncommon. In a large cohort 
study, the overall diagnostic consistency rate was 87.3% for schizophrenia and 
71.9% for bipolar disorder [10]. Furthermore, comorbidity with other psychiatric 
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disorders is the rule, interfering with specificity. In a nutshell, the diagnostic catego-
ries in psychiatry are essentially fluid, subjective, with fuzzy boundaries and based 
on difficult-to-measure features.

The diagnostic process of psychiatric conditions differs significantly from other 
medical conditions, which rely heavily on biomarkers. Actually, the conceptualiza-
tion, diagnosis, and treatment of most medical diseases usually follow a framework 
stemming from a specific biological cause or pathophysiological pathway, such as 
cancer, diabetes, and heart failure. However, the etiopathogenesis of psychiatric dis-
orders remains largely elusive. Even in psychiatric conditions with high heritability, 
such as schizophrenia and bipolar disorder, studies have failed to identify single 
candidate genes, with current evidence implicating multiple genes, each playing 
very minor pathogenic roles [11, 12]. More importantly, despite marked differences 
in clinical symptoms, prognosis, and treatment, many of these conditions share mul-
tiple environmental, genetic, and pathophysiological pathways, with no clear bio-
logical signatures assigned to specific disorders [13]. This lack of specificity is a 
major issue in the biology of psychiatric disorders. Another relevant point is the 
integration of environmental factors, including social and cultural aspects, into dis-
ease/disorder pathogenesis. While there are conditions such as posttraumatic stress 
disorder (PTSD) in which environmental factors are considered crucial for diagno-
sis and pathogenesis, attentional deficit and hyperactivity disorder (ADHD) is a 
more contentious example. Regarded as a neurodevelopmental disorder with a sup-
posedly established neurobiological background, ADHD has a prevalence two times 
higher in the United States compared to other Western countries and much higher in 
relation to other countries [14, 15]; whether this reflects a true increased prevalence, 
diagnostic practices, or a mismatch between normal childhood behavior, especially 
of boys, and environmental and educational expectations remains uncertain. Finally, 
neurobiology alone does not explain the rampant increase in their incidence and 
prevalence following COVID-19 lockdowns and related socioeconomic turmoil, 
reinforcing the view that it is difficult to disentangle psychiatric diagnoses from the 
sociocultural milieu [16]. Of course, this is not the same as stating that psychiatric 
disorders are merely social constructs, as some social scientists claim. As it has 
become increasingly challenging to support a traditional dualistic view [5], the 
same can be said about embracing an eliminative materialistic position.

The fundamental differences in diagnostic processes and pathogenesis/patho-
physiology are at the heart of the complex discovery of biomarkers in psychiatry. 
Although the last decades have witnessed a significant increase in the understanding 
of the biological basis of psychiatric disorders with the identification of several 
candidate biomarkers, the development of the field has been hampered by their sen-
sitivity and specificity and, hence, limited predictive and therapeutic utility [17]. In 
the current diagnostic frameworks (WHO-ICD and APA-DSM), it is unlikely that 
biomarkers will align with “disorders” that actually correspond to syndromes [18]. 
The development of new diagnostic frameworks incorporating biological variables 
may foster biomarker development in line with diagnostic accuracy. Accordingly, 
although “not meant to serve as a diagnostic guide,” the Research Domain Criteria 
(RDoC) NIMH-sponsored initiative promised to address this gap between 
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psychopathology – categorized under descriptive entities – and biology [19], not 
that breakthroughs have been emergent via that paradigm either.

Biomarker discovery starts with assessing a large number of potential candidates 
(analytes and/or tests) in a limited number of individuals, with progressive escala-
tion to a smaller number of candidates in larger samples. However, most studies 
have relatively small samples, affecting their statistical power and few studies have 
a priori power calculations [20]. In addition, most studies have a cross-sectional, 
case-control design with a comparison group of extremely “healthy” controls, con-
trasting behavioral and/or biological assays between patients with chronic illness 
and healthy comparison participants [21]. The combination of underpowered stud-
ies and usually small effect sizes of the observed differences in biomarkers explains 
the very frequent discrepant results in the psychiatry literature [20].

Another issue is the biomarker target, usually diagnosis when susceptibility or 
treatment response might be more feasible [21]. More than diagnosis tools, bio-
markers may offer the potential to better predict disease occurrence, disease pheno-
type, and variability in drug response (both efficacy and toxicology) [22]. For 
example, pharmacogenomics targeting P450 enzymes may detect individuals who 
might need higher or lower doses of medication, which can increase the likelihood 
of response to therapy [20]. In sum, conceptual and methodological issues prevent 
the actual definition of a potential biomarker candidate in psychiatry.

3 � Biomarker Validation and Implementation

Once identified, the candidate biomarker must be validated from both analytical and 
clinical standpoints. In psychiatry, different biological fluids (e.g., blood, urine, and 
cerebrospinal fluid (CSF)) have been used as a discovery matrix for biomarkers. 
Given its proximity to the brain and disease process, CSF is – in theory – an impor-
tant source of analytes or molecular biomarkers that could inform about psychiatric 
disorders. Nevertheless, because of issues related to CSF sampling (e.g., pain, dis-
comfort, and cost), there are few CSF studies in psychiatry, especially if compared 
to blood-based investigations. Given that there is post-mortem evidence of region-
ally specific changes in diverse parameters and analytes, even CSF does not neces-
sarily represent a regionally or circuit specific change. CSF analysis has nevertheless 
contributed to changing the landscape of Alzheimer’s disease diagnosis in clinical 
practice and could have been more often considered in acute behavioral presenta-
tions to rule out autoimmune encephalitis [23]. While much more accessible, blood 
can reflect not only the nervous system pathological processes but also the sum of 
other biological (e.g., cardiovascular and endocrine) processes.

Several preanalytical factors influence the biospecimen and, as a consequence, 
the discovery and validation of biomarkers. Among preanalytical factors, it is worth 
mentioning: time of day, fasting status, use of drugs/medications, menstrual cycle, 
medical comorbidity, BMI sampling/handling, and storage procedures. Analytical 
factors, especially involving standardization and uniformity of the selected assay, 
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are also important in biomarker development. Analytical validation ensures the 
reproducibility, accuracy, and precision of the proposed biomarker, influencing its 
subsequent utilization [7]. An attempt to market-launch a blood test for schizophre-
nia failed, at least in part, because of reproducibility issues [4].

Clinical validation defines the biomarker’s role in diagnosis, stratification, moni-
toring, or prognostication [24, 25]. As previously mentioned, the clinical and patho-
physiological overlap among major psychiatric disorders poses a major challenge 
for the clinical validation of diagnostic biomarkers. Moreover, as psychiatric disor-
ders are clinically diagnosed, whether diagnostic biomarkers could ever outperform 
a purely clinical diagnosis is a matter of debate. Conversely, these biomarkers could 
help discriminate syndromes that are often difficult to differentiate in cross-sectional 
assessments, such as bipolar depression versus unipolar depression, and improve 
the specificity and sensitivity of the clinical diagnosis [2]. The use of biomarkers for 
stratification and/or therapeutic decision is more promising but still very prelimi-
nary because of the gap between the current understanding of the pathophysiology 
of psychiatric disorders and outcome definition (based on behavioral parameters). 
The neurophysiological-informed symptom-based approach can close this gap and 
contribute to personalized interventions through neuromodulation methods [6].

Following validation studies, new technology must be employed to transition 
from biomarker discovery to the implementation phase. To be used in clinical prac-
tice, the biomarker must address a clinically-relevant question – how well it con-
firms or changes diagnosis, defines specific treatments, and improves outcomes – in 
a reliable and costly manner. Current technologies used in early phases of biomarker 
development are limited to research settings because of the cost and/or complexity 
of equipment or analytical procedures [26]. Therefore, other methods must be con-
sidered to allow the scalability of the biomarker use. Finally, the bar to clinical uti-
lization is largely determined by sensitivity and specificity, or positive and negative 
predictive value, and this has historically been hard to attain [20].

4 � Perspectives

Despite a great potential for biomarkers in psychiatry, the field has been unable to 
incorporate them into clinical practice partly because of the current diagnostic 
framework. Psychiatric disorders are descriptively defined and not homogeneous 
from a biological perspective. These facts hamper the alignment between diagnosis 
and pathophysiological processes, which overlap greatly between diverse and seem-
ingly unrelated disorders, and multiple biomarkers. Therefore, instead of diagnostic 
biomarkers, biomarkers for disorder stratification may be more relevant and ulti-
mately can help delineate future diagnostic frameworks. Identifying biosignatures 
linked to specific biotypes may not only reframe the diagnostic process but also 
inform about prognosis and therapeutics, moving from “one size fits all” to a per-
sonalized intervention.
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Given the complexity of psychiatric disorders, these biosignatures will probably 
result from multimodal approaches, that is, the combination of a set of biomarkers 
obtained from different methods. In this scenario, omics technologies have acceler-
ated the identification of candidate biomarkers. Noteworthy, chronic diseases 
involve changes in multiple molecular pathways, and validating associations 
between diseases and large sets of biomarkers is hugely challenging. Psychiatry has 
also witnessed a transition from molecular/neurochemical centered-
pathophysiology  – the foundation of psychopharmacology  – to a neural circuity 
dysfunction that can be targeted by different neuromodulation modalities (e.g., 
DBS, TMS, and VNS). Besides opening therapeutic venues, this neural-based per-
spective can more directly inform about the biological basis of psychiatric symp-
toms (e.g., amotivation and auditory hallucinations).

Following biomarker discovery, a careful standardization of preanalytical and 
analytical phases will be necessary. This is a crucial step towards the implementa-
tion of biomarkers in clinical practice that will ultimately depend on factors like 
cost and relevance. Regarding the latter, biomarkers may provide a different type of 
evidence compared to patient-reported outcomes, such as symptoms, functioning, 
and/or perception of quality of life. Biomarkers, for instance, may be less suscepti-
ble to placebo effect than patient-reported outcomes and could expedite drug selec-
tion and development [7].

Finally, as a word of caution, focus on biomarkers or the emerging “personalized 
psychiatry” should not undermine the view of medicine as a humanistic tradition 
based on person-centered approaches [2]. In addition, emphasis on biomarkers 
should not dismiss the critical role played by social and lifestyle determinants on 
health and the notion that sociocultural values and expectations influence self- and 
societal perception of illnesses, especially psychiatric disorders.
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Ethical Issues Related to Biomarkers 
in Psychiatry

Mauricio Viotti Daker

1 � Introduction

We need moral standards of behavior to live in a society. It is possible to glimpse a 
spectrum from legal laws across ethics to more spread moral values (besides other 
kinds of values). Laws are well-established legislated and determinative rules con-
cerning justice in a society. Moral values are normative orientations bound to daily 
life practical and particular situations whose variability does not allow detailed sys-
tematization. Ethics would be in the middle, as more regular prescriptive norms 
people should follow. We may see a hierarchical disposition from laws to values, 
considering that ethics should usually not surpass laws, and moral values not exceed 
ethics. On the other hand, there would be an inverse hierarchy concerning the ori-
gins of laws and ethical norms, which would have been based on or derived from 
real practical situations where values abound.

The above intends a general view concerning legal and moral instances, even if 
this view may be disputable in many philosophical branches. Indeed, ethics has 
been discussed since Antiquity. Aristotle was the first to deal specifically with it in 
what is known as virtual ethics, whereby the individual character stands out [1]. 
Importantly, ethics or virtue is acquired through practical wisdom – phronesis – and 
not through theory; ethics is immersed in the practice of living. It recalls our proce-
dural memory, which is learned and executed in practice. Practical wisdom is a 
disposition to do or practice (praxis), not requiring a product or making something 
(poiêsis). In this regard, it differs from craft or art (techné), which is a disposition to 
making, resulting in something else, for example, carpentry makes a house and 
medicine produces health [2]. Ethics or virtue aims to leave well, flourish, and have 
pleasure with well-doing: eudaimonia. For some philosophers, to achieve it, one 
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should live in agreement with nature or the governance of the universe. In a more 
circumscribed view, we might say that character should agree with social values, 
which are assimilated or incorporated by the personality, a process termed introcep-
tion by William Stern [3, 4].

Other ethical branches are well-established beyond virtual ethics, such as 
“applied ethics” like medical ethics, business ethics, etc. “Descriptive ethics” con-
cerns empirical research on people’s beliefs about morality, including comparative 
ethics, in fields such as sociology, anthropology, psychology, and epidemiology. 
“Meta-ethics” deals with what means ethics, morals, right and wrong, etc. 
“Normative ethics” is prescriptive, concerning how people should or ought to act. 
Based on Hume, it is often mentioned in the literature that descriptive ethics con-
cerns what “is,” while normative ethics concerns what people “ought” to behave. 
“Is” and “ought” would not merge, which led many authors to question the legiti-
macy of descriptive empirical ethics. But today, this distinction is blurred and “is” 
or facts are considered more than pure facts, inducing normativity or values [5]. 
Ethics would balance perspectives and merge practical moral knowledge (phrone-
sis) and normative solutions [6]. Normative ethics includes virtual ethics (the 
choices of a virtuous character or agent) and concerns the deontological and conse-
quentialist ethical approaches. Deontology means doing the right thing or following 
the rule irrespective of its consequences. Consequentialist or utilitarian ethics states 
that the consequence of the conduct defines what is right or wrong.

Medical ethics then is applied ethics, as it is bioethics. Both terms are often inter-
changeable, though bioethics goes beyond medicine to biology in general and up to 
include ecology for some authors. Of course, there are extra-biological ethics, such 
as concerning many professions unrelated to biology, financial or government eth-
ics, etc. In some cultures, ethics is bound to religion, which is not necessarily the 
case in more secular societies.

Neuroethics is an interdisciplinary field related to neurosciences, which can 
divide into ethics of neurosciences and neurosciences of ethics [7]. The former con-
sists of applying traditional bioethical questions to neurosciences, such as the ethi-
cal implications of biomarkers related to the nervous system. How far does a 
neurodegenerative or psychiatric disorder interfere with the capacity for legitimate 
informed consent? How do we know if a person is lying? Is it possible to detect 
dispositions or motivations? How about enhancing capabilities? By contributing 
technically to such issues, neurosciences will demand ethical considerations in the 
traditional sense. On the other hand, concerning neurosciences of ethics, would 
neurosciences unveil our moral behavior and ethical questions? Will it someday 
substitute moral philosophy? This chapter will not deal with this latter perspective 
because it is still incipient and controversial. Indeed, ethics must also accomplish 
with historical or sociocultural constructs transcending one’s brain [8, 9]. The 
Human Genome Project also raised the above questions, and there is as well an 
applied ethics in the field of bioethics named genetic ethics; also sociogenomics 
concerning the genetic contribution or interface to social behavior.
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The Food and Drug Administration (FDA) defines a biomarker as

A defined characteristic that is measured as an indicator of normal biological processes, 
pathogenic processes, or biological responses to an exposure or intervention, including 
therapeutic interventions. Biomarkers may include molecular, histologic, radiographic, or 
physiologic characteristics. A biomarker is not a measure of how an individual feels, func-
tions, or survives [10].

A name, acronym, or specific code is needed to identify a biomarker uniformly 
across research and clinical settings. Besides, its source (whether molecular, histo-
logic, radiographic, etc.), pathophysiological origin or plausibility, measurement 
method (MRI, ELISA, etc.), and unit of measurement should be described. Seven 
functional categories are listed: susceptibility/risk, diagnostic, monitoring, prognos-
tic, predictive, response, and safety biomarker [10, 11]. Biomarkers can also fall 
into three categories: trace, which is permanent; state, which reflects the clinical 
status; and endophenotype, a subtype of trait linking genes to specific psychopatho-
logical phenotypes [12]. Ethics concerns may arise in all categories; some are men-
tioned ahead.

2 � From the Bioethics Dawn to Values-Based Medicine

Although there have been medical ethical concerns since Egypt, Mesopotamia, and 
the Hippocratic Oath, twentieth-century events such as medical experiments in 
World War II and the scientific advances leading to the atomic bombing triggered 
unprecedented ethical apprehension. Bioethics since then has developed as an 
autonomous field, and ethics ceased to be an almost exclusive activity of philoso-
phers and theologians. Many associated factors contributed to it, leading to oppos-
ing moral opinions in a pluralistic context and calling ethical reflection (Table 1).

Fulford et  al. [13], mentioning the historian of medicine Maehle and Geyer-
Kordesch [14], corroborated the above factors and added others: mid-twentieth-
century atrocities, rapid advances in medical science and technology, opening up 
the doctor–patient relationship, broader social changes (the Civil Rights Movement), 
and the philosopher Tom Beauchamp and philosopher and theologian James 
Childress’ landmark book Principles of Biomedical Ethics (1979, 8th edition 2019), 
with the four principles: autonomy, nonmaleficence, beneficence, and justice [15]. 
Nonmaleficence and beneficence date to the Hippocratic Oath. Justice is also a tra-
ditional concern. However, autonomy is a new profound ethical orientation [14].

Table 1  Factors related to the bioethics dawn [5]

The proliferation of technological innovations in biotechnology and medical innovations, e.g., 
molecular biochemistry, pharmacology, organ transplants
Debates on equal access to health services
Emancipatory movement for the patient instead of a traditional physician’s authority paternalism
The lack of a common interpretative framework of moral guidelines for daily actions in a 
postmodern world

Ethical Issues Related to Biomarkers in Psychiatry
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Bioethical downsides are also recognized, such as cross-cultural insensitivity, 
impersonal doctor-patient relationships, contradictory information on guidelines, 
defensive practice and burnout, litigation costs, etc. Quasi-legal bioethics regula-
tions, though necessary, bring code inflation (the growth of rules and regulations), 
practitioner deflation (defensive and other bad practices), and problem conflation, 
disadvantaging patients [13]. Code inflation amounts to an attempt to define the 
indefinable in an overreliance on explicit definitions; it is impossible to cover all 
practical situations and contingencies. Even those mentioned four principles are not 
absolute since, in many situations, one principle opposes other(s), and a balance is 
necessary and often challenging. Code inflation is one of the reasons for profes-
sional deflation. For example, confidentiality (linked to autonomy) and relevant 
sharing of information (beneficence) may collide, whereby professionals may have 
no escape from doing wrong. That may bring a defensive posture regarding confi-
dentiality at the expense of patient care, e.g., in multidisciplinary primary care. 
Similarly, bioethics may bureaucratize research when ethical rules are out of step 
with new research demands or out of context with the research particularities [16]. 
The ethicists’ autonomy may be overemphasized: “ethicist knows best” may replace 
“doctor knows best” [17] and “researcher knows best,” we would say.

Fulford et  al. [13] remember that the abovementioned ethical difficulties are 
accentuated in mental health and primary cares. These authors consider that 
Beauchamp and Childress’s perspective offer a traditional medical model view of 
presumably scientific value-free facts (a “half-field view”), which is more suitable 
for areas of bodily medicine (e.g., cardiology, pulmonology, and orthopedics). 
Mental health comprises prominent psychosocial aspects and usually no clear-cut 
biological processes and biomarkers; therefore, values differences  – dissensus  – 
emerge more ostensibly and should be properly considered.

Values-based practice (VBP) aims at minimizing the above difficulties [18]. It is 
akin to casuistry and particularism. While in quasi-legal ethics, external individuals 
to the clinical situation decide what ought to be done, such as ethic committees, 
ethicists, and lawyers, in VBP decide those directly concerned in each decision, 
such as users and providers [13, 17]. VBP derives from analytic philosophy influ-
enced by Richard M. Hare [19, 20]. According to Hare, values are prescriptive or 
action-guiding; that is, they underpin decisions (as well as scientific evidence does) 
[21]. Further, shared values look descriptive or factual, such as a good strawberry 
implies, by direct association, a sweet, colorful red, grub-free strawberry. On the 
other hand, a good or beautiful modern picture is not a so straitly shared value, incit-
ing disagreements and remaining overtly value laden. Similarly, no one will ques-
tion that a heart infarct is a disease needing immediate invasive care. On the other 
hand, when is it ethical to impose involuntary treatment or hospitalization on mental 
health? How far is the patient capable of informed consent? Situations such as the 
latter would demand a refined VBP. In this respect, 10 principles of VBP were dis-
closed, helping its implementation [13, 18, 20]. VBP or values-based-medicine 
(VBM) complements evidence-based-medicine (EBM) [21].

Similarities to a decentralized VBP or VBM are reported regarding research eth-
ics. Lyle et  al. [16] sustain that ethics depends too much on central regulatory 
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instances besides being focused on informed consent (apropos, a tautological term). 
Approving the informed consent at the outset is as if solving all ethical problems. 
Still, the researcher must constantly deal with ethical situations that may appear 
throughout and beyond the research. Difficulties in obtaining ethical approval are 
attributed to neoliberal governance because risks are managed by protecting the 
research participants’ autonomy above all else. The authors advise a complemen-
tary person-centered approach through the researchers’ preparedness for situated 
practical ethics, with support from central ethical instances [16]. Mann et al. prize 
self-regulation for proteomics scientists beyond the regulatory standards imposed 
from outside the profession. Not only because of a better understanding of a specific 
field: “It is also because self-regulation, based on values chosen by the profession 
itself, ideally informed by patient advocates, has a greater likelihood of legitimacy 
and therefore of effect” [22].

3 � Ethical Concerns with Biomarkers

New technologies and biomarkers raise multiple concerns ranging from legal ones 
up to daily practice values. For example, genetic testing is becoming affordable to 
the population and may confront psychiatrists with the patient’s understanding and 
hopes regarding such tests, which are often unrealistic, while genetic counselors are 
needed but scarce and may know little about psychiatric disorders [23–25]. Concerns 
about beneficence, nonmaleficence, and autonomy regarding predictive and diag-
nostic genetic testing may soon expand, involving the patients and their relatives. 
Returning individual research results and incidental findings in genetic and genomic 
research are already an open debate in translational science [26]. We are no longer 
in a time when biological samples or data are taken from a patient (e.g., HeLa cells 
from Henrietta Lacks) without informed consent.

Concerning neurosciences and neuroethics, Fuchs [27] pointed out that predict-
ing disease, psychopharmacological enhancement, and invasive or noninvasive 
brain technologies may affect the individual’s sense of privacy, autonomy, and iden-
tity. He alerts that “reductionist interpretations of neuroscientific results challenge 
notions of free will, responsibility, personhood and the self which are essential for 
western culture and society” [27]. Therefore, ethical, social, and legal issues about 
the human person and the brain emerge. Some examples can illustrate the ethical 
challenges in the field.

3.1 � The Case of Neuroimaging

Following Fuchs, neuroimaging is a helpful tool but supplementary. Regarding the 
responsibility criteria in the justice system, the misunderstanding of brain scans as 
direct measure of psychological states or traits carries the risk that courts, 
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immigration services, insurance companies, and others might use neuroimage tech-
niques prematurely. In any case, autonomy or privacy should be granted over our 
brain states since it could be exploited for screening job applicants, assessing insur-
ance risks, detecting a vulnerability to mental illness, determining who qualifies for 
disability benefits, etc. [27].

About predictive neuroimaging, for example, abnormalities in certain areas in 
adolescents predicting schizophrenia and possible early psychopharmacological 
intervention, Fuchs notes: “The complexity and plasticity of the brain, however, 
definitely restrict the reliability of such prognoses. What degree of probability 
would count as sufficient? Which long-term side effects would be acceptable? The 
possible benefit of predictive imaging would have to be carefully weighed not only 
against possible harm but also against the burden of knowledge and the possible 
discriminations caused by being an at-risk patient [27].”

Technical neuroimaging-guided interventions in the brain, for example, for DBS, 
raise particular concerns regarding the person’s identity, agency, and inviolability. It 
might convey “a mechanistic view of the human body and mind as seemingly com-
posed of single, exchangeable elements. It adds new urgency to the question of what 
distinguishes humans from machines” [27]. Further, external interventions could 
replace coping abilities and personal development.

Mental states depend upon a historical narrative world as a meaningful whole, 
not to be found inside the brain alone. Fuchs concludes: “In the last analysis, the 
question of what is ‘really real’ – brains instead of selves, physical matter instead of 
animated bodies – is an ethical question” [27].

The abovementioned ethical concerns and others are noticeable within the scope 
of open science with transparency of data repositories. Beauvais et al. [28] discuss 
some issues in this respect: concern for individuals and communities, including 
marginalized communities, kinds of consent, privacy protections, participatory 
research designs, contextual integrity (the integrity of functions, purposes, and val-
ues), fusions of clinical and research goals, and incidental findings. A principle of 
solidarity is proposed that unites infrastructures and bridges the right to benefit from 
scientific advancement with neuroimaging with the right to be protected from unjus-
tified harms [28].

3.2 � The Case of Alzheimer’s Disease

Davis [29] lists ethical issues in Alzheimer’s disease (AD) research but not exclu-
sive to AD.  The need for large cohorts for long studies raises concerns about 
informed consent (principle of autonomy). Prospective studies should be less prob-
lematic since the participant can be non-symptomatic and capable of informed con-
sent. A legal, authorized representative could also be involved in studies departing 
from mild cognitive impairment. However, neither way solves possible ethical prob-
lems since the long-term study scopes may change, and the authorized representa-
tive may not be at the disposal later. Noteworthy, early participants may not benefit 
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as much from the later more relevant research arms. At any rate, the participant must 
have cleared the possibility of withdrawing from the study. Eventual loss of confi-
dentiality or even disclosure of risks/benefits may bring harm.

Concerning biomarkers properly, these are incorporated in current AD diagnos-
tic criteria, representing a risk for AD many years or even decades before symptoms 
occur. Biomarkers could help individuals and their families to plan their lives. On 
the other hand, insurers and care institutions may use the same information to deny 
coverage or increase the premium, as already happens with Huntington’s disease. A 
high-risk individual’s first signs of the disease might even prompt suicidal ideations. 
Therefore, disclosing biomarkers results needs to balance the risk-benefit ratio in 
asymptomatic participants or patients, besides protecting them from insurance poli-
cies (principles of beneficence and nonmaleficence). Heart murmurs, a biomarker 
made available through the stethoscope, also led to paying more for medical insur-
ance besides partly negatively impacting the individuals’ lives [30]. Every new 
medical technology brings biomarkers with a spectrum effect prone to false inter-
pretations and risks but tends to be more precise with better knowledge of the patho-
logical condition. Enrolling participants in research or caring for patients with an 
AD biomarker will already mean they are at higher risk, leading to ethical conse-
quences. The impact of disclosing a nongenetic biomarker is probably different 
since it implies an ongoing pathological process, while genetic biomarkers indicate 
risk. Davis concludes that just as with the Human Genome Project in 1998, “we are 
on the brink of a huge enterprise with enormous promise to mankind […] Sufficient 
resources should be dedicated to support ethics integration” [29].

Bunnik et al. [31] draw attention to the fundamental right of access of research 
participants to their data (principle of autonomy); researchers should not maintain a 
paternalistic posture and withhold the results. That leads to a critical approach to the 
personal utility of AD’s related biomarker testing. Personal utility is the extent to 
which the biomarker test can effect change on a (nonmedical) personal level. It dif-
fers from biomarkers’ clinical validity (predictive value) and clinical utility or the 
extent to which the biomarker test will affect clinical management and improve the 
individual’s health. Since there are no proven effective preventive strategies, AD 
biomarkers have no clinical utility in cognitively nonimpaired individuals.

Nongenetic biomarkers detected by cerebrospinal fluid (CSF) and positron emis-
sion tomography (PET) concerning amyloid-β (Aβ) do not have clinical validity for 
cognitively unimpaired populations; they are used in mild cognitive impairment 
(MCI), but their validity is less relevant than clinical assessment [31]. Besides, it is 
necessary to complement them with neurodegenerative image biomarkers in a tem-
poral order [32]. For instance, 20–40% of cognitively unimpaired elderly have sig-
nificant Aβ-plaque deposition [31]. For ethical challenges concerning screening for 
AD and new drugs for reducing Aβ or tau, see Gustavsson et al. and commentaries 
[33]. The genetic biomarker APOE has clinical validity: the presence of APOE ε4 
variant constitutes a 3.5-fold increased risk of AD, and two copies an up to 15-fold 
risk. But the latter is relatively rare (2% of the population), and some never develop 
AD dementia [31].
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The personal utility should imply a sufficient level of clinical validity (the extent 
to which the biomarker distinguishes between those who will develop the disease 
and those who will not). As seen above, most AD biomarkers, especially if taken in 
isolation, do not have clinical validity, thus no personal utility. Therefore, false 
expectations should be avoided. Even 12% of well-educated and informed partici-
pants positive for amyloid PET scans thought they were at imminent risk of devel-
oping AD or that it was diagnostic of AD [34]. People could take many needless 
measures in life with potentially severe implications and suffering. We are far from 
the predictive certainty of some diseases, e.g., specific mutation for Huntington’s 
disease; this would solve many of today’s ethical problems but raise others. Bunnik 
concludes: “Future research should focus on finding out how much certainty people 
require to make meaningful choices, and to what extent this depends on personality 
characteristics of people, the purposes for which they will use the biomarker, and 
the context they are in [31].”

Though sometimes a challenging enterprise, the validity of biomarkers has been 
investigated and discussed concerning the FDA mentioned seven different func-
tional roles [11]. As expected, nonvalidated biomarkers are potentially harmful in 
clinical trials and clinically, for example, when suggesting a credible medication 
effect but based on a yet uncertain physiopathology. On the other hand, a biomarker 
is used for a particular clinical purpose in a clinical context; hence its validity is not 
absolute. Ideally, there will be a repository of biomarkers data with more valid or 
non-valid applications [11].

3.3 � Children and Adolescents

Biomarker ethical concerns particularly involve children and adolescents. 
Biomarkers may predict the development of psychiatric disorders but also behav-
iors, personality traits, and mental or emotional capacity. Sign and Rose [35] point 
here many ethical consequences, such as: (i) The need for education regarding the 
nature of biomarkers and avoiding misconceptions and reductionistic explanations 
for complex behaviors or conditions in children. (ii) Disclosing biomarkers for try-
ing to prevent mental disorders possibly linked to delinquency, substance abuse, 
antisocial behavior, personality disorder, and criminality may cause harm to the 
development of this population besides discrimination. (iii) Will psychiatric risk 
profiling of children change their ideas of identity and capacity? Will others per-
ceive them differently? (iv) How could biomarker information motivate individuals 
instead of inducing a fatalistic attitude? (v) How to deal with ethnic or minority 
research results avoiding stigmatization? (vi) Would that have a self-reinforcing 
effect? (vii) Caution with overstated claims when commercial interests are in play. 
(viii) Careful research is needed about the translational application of biomarkers to 
guide clinical, educational, and legal policies.

Regarding autism, there has been an expectation that biomarkers will reveal its 
causes and enable more targeted methods for diagnosis and intervention. However, 
the concept has changed from a severe delimitated disorder to a heterogenous 
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spectrum bordering normality, even with possibly positive favorable aspects [36]. 
Ethical concerns accompany these scientific advances and conceptual changes. 
There is a debate between difference and disability, as also found in primary mental 
disorders (see ahead). From the perspective of difference or neurodiversity propo-
nents, searching for biomarkers designed to identify, treat, or prevent autism is mis-
guided from a moral point of view. But the disability proponents prevail, especially 
considering the more nuclear severe cases. There is also a fear that biomarkers for 
autism could evolve, probably prematurely without a desirable certainty, into 
embryo selection and elective termination preimplantation or in the uterus [36]. 
Establishing thresholds for the clinical validity of biomarkers is crucial. As with 
neuroimage, collaborative studies relying upon open data and biobanks will allow 
for more extensive studies aside from new ethical challenges.

4 � Mental Health and Primary Mental 
Disorders Particularities

Neuroethics and biomarkers brought visibility to psychiatry in bioethics. It should 
be mentioned, however, that this is an exception considering that psychiatry has 
been an outsider in the bioethics morning. As seen above, bioethics stemmed from 
the atrocities of World War II and human rights abuses in research, therefore focused 
on autonomy and informed consent. But how about the autonomy and informed 
consent of psychiatric patients? Williams sustains that “For Bioethics in its nascent 
stages to have more thoroughly engaged mental illness would have indicated an 
apparent doubling back on the core principles it utilized to protect individuals in 
research settings” [37]. Besides, bioethics is prone to high-tech and futuristic 
advancements, such as concerning biomarkers and their great persuasive images 
and numbers, even if often greater than warranted by their predictive power [35]. 
Why bother then with the homeless and imprisoned psychiatric patients? 
Deinstitutionalization in the 1960s and 1970s gave the impression that patients were 
being protected, alleviating bioethics from intervening while resulting in patients’ 
criminalization and lack of assistance. According to Williams, bioethics now has “a 
secure-enough foundation to help tackle more nuanced clinical problems that affect 
patients at the margins of society but at the center of healthcare systems and clinical 
care” [37].

Much bioethical discussion deals with new technological possibilities and, as we 
have seen, more tangible diseases such as AD. Aside from the above concern on 
psychiatric assistance, some specific issues might touch the so-called primary, func-
tional, or endogenous mental disorders. Would they behave like AD? Will their bio-
markers someday have the level of accuracy we already have for AD? It seems to be 
a difference between mental disorders as essentially deficit or abnormality and other 
disorders that spread into normal mental life. We should certainly assume that there 
are deviations in the function of the brain tissue, but these deviations will rise from 
the normal somatic disposition in just the same way as their mental counterparts are 
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related to normal behavior. Mental disorders which are “functional” in this sense 
can and must shade off into normal human psychology [38].

The history of psychiatry is rich in conceptions regarding this relationship 
between mental disorders and normal mental life [39, 40]. Accordingly, in the con-
text of primary or functional psychiatric disorders, “it is never a clear-cut case of the 
biomarker being present or absent; rather it will be present above threshold values 
or outside reference standards derived from the healthy population” [12]. Further, it 
is plausible that positive and necessary aspects of mental life relate to these so-
called functional disorders. Again, an example in the history of psychiatry is by 
Fauser (anticipating Hoche’s acknowledged work on the meaning of symptom com-
plexes [41]), who considered the endogenous constitutional manifestations in con-
nection to the normal mind as “coordinated symptom complexes” or “psychic 
functions already preformed in healthy lives.” To be clear: “All of us – even we 
completely healthy people – have these symptom complexes in us by predisposi-
tion” [42]. If that is right, a further possibility is that some mental disorders might 
be due to imbalance among such functions instead of deficits alone, reminding the 
Greek conception of mental disorders in their connection with personality [43]. 
Anyway, biomarkers will keep their usefulness in diagnosis and prediction, espe-
cially in a biomarker cluster or panel instead of some biomarker alone. They may 
also indicate positive mental aspects concerning primary mental disorders, which 
could help minimize stigma and discrimination.

5 � Conclusion

Psychiatry deals with objectivity and subjectivity. Technology and biomarkers play 
an objective role in a strictly medical model. On the other hand, psychiatry is much 
a moral enterprise. No surprise that legal, ethical, and values concerns escalate at 
this junction. Biomarkers have been a powerful tool in medicine and surely will help 
psychiatry, taking for granted adequate ethical conditions. Biomarkers will show 
deficits in some psychiatric disorders in the traditional medical model, but they 
might also show positive aspects linked to personality or normal mental life. In both 
cases, they shall contribute to our understanding of psychopathology, psychology, 
and standards of behavior. The interplay of research, clinic, and ethics is inseparable 
in a dynamic harmony for the best of humanity.
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