
Automated QoS-Aware Service Selection
Based on Soft Constraints

Elias Keis1,2,3 , Carlos Gustavo Lopez Pombo4 ,
Agustín Eloy Martinez Suñé5(B) , and Alexander Knapp1

1 Universität Augsburg, Augsburg, Germany
elias.keis@tum.de, alexander.knapp@uni-a.de

2 Technische Universität München, Munich, Germany
3 Ludwig-Maximilians-Universität München, Munich, Germany

4 Universidad Nacional de Río Negro and CONICET, San Carlos de Bariloche,
Argentina

cglopezpombo@unrn.edu.ar
5 Universidad de Buenos Aires and CONICET, Buenos Aires, Argentina

aemartinez@dc.uba.ar

Abstract. QoS attributes are one of the key factors taken into account
when selecting services for a composite application. While there are sys-
tems for automated service selection based on QoS constraints, most of
them are very limited in the preferences the user can state. In this paper
we present: a) a simple, yet versatile, language for describing composite
applications, b) a rich set of notations for stating complex preferences
over the QoS attributes, including checkpoints and invariants, and c) an
automatic tool for optimal global QoS-aware service selection based on
MiniBrass, a state-of-the-art soft-constraint solver. We provide a running
example accompanying the definitions and a preliminary performance
analysis showing the practical usefulness of the tools.

Keywords: Service selection · Soft-constraint solving · Quality of
service · Service-oriented computing

1 Introduction

In software-as-a-service paradigms such as service-oriented computing, software
systems are no longer monolithic chunks of code executing within the boundaries
of an organization. As stated in [21], the vision is to assemble “application com-
ponents into a network of services that can be loosely coupled to create flexible,
dynamic business processes and agile applications that span organizations and
computing platforms”.

Services are “autonomous, platform-independent entities that can be
described, published, discovered, and loosely coupled in novel ways” [21, p. 38].
When several services are combined to achieve a particular goal, it is called
Service Composition [4, p. 55]. While there are several disciplines of Service

c© Springer Nature Switzerland AG 2023
A. Madeira and M. A. Martins (Eds.): WADT 2022, LNCS 13710, pp. 121–140, 2023.
https://doi.org/10.1007/978-3-031-43345-0_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-43345-0_6&domain=pdf
http://orcid.org/0000-0003-3316-379X
http://orcid.org/0000-0002-0248-5019
http://orcid.org/0000-0003-1806-6932
http://orcid.org/0000-0002-4050-3249
https://doi.org/10.1007/978-3-031-43345-0_6

122 E. Keis et al.

Composition, we focus on Service Orchestration, i.e., creating new services “by
combining several existing services in a process flow” [4, p. 57].

When composing or using existing services, we hopefully have multiple ser-
vices fulfilling the functional requirements of our tasks. Beyond that, they typ-
ically stand out against each other in several non-functional attributes. While
the price is an important aspect, they usually also differ in their Quality of
Service (QoS) attributes, for example, latency or availability [16]. Therefore, an
essential aspect of the Service Selection Problem [6, pt. II] is determining whether
the QoS profile of a service satisfies the QoS requirements of a client.

Our approach is based on Constraint Programming (CP) [23] leaning on
soft constraint solving to automate the process of selecting adequate services
based on their QoS properties. Adding hard constraints to reduce the number of
matching services is simple but might lead to either a still too extensive range of
services or not a single one left if we overconstrain the problem. Soft constraints
come in handy as the solver can omit them if the Constraint Satisfaction Prob-
lem (CSP) [11] would be overconstrained otherwise.

We present a tool, named QosAgg, for solving the service selection problem
for composite services in a soft way. We leverage on MiniBrass, a tool presented
in [26] that extends the MiniZinc [20] constraint modeling language and tool,
providing various options to model and solve soft CSPs based on the unifying
algebraic theory of Partial Valuation Structures (PVSs) [27]. Specifically, our
approach provides the means for: 1) describing a service workflow over which
the service selection has to be performed, 2) expressing QoS profiles associated
with concrete services as values of its QoS attributes, 3) expressing QoS require-
ments as soft constraints over the aggregated value of QoS attributes along the
execution of the workflow, 4) automatically finding the best (if any) assignment
of services to tasks given the above set up.

In Sect. 2, we present our approach to the problem of selecting services to
optimize global QoS requirements of a workflow. In Sect. 3 we introduce the
MiniBrass modelling language. In Sect. 4 we show how to model and solve QoS
aware service selection in MiniBrass. In Sect. 5 we perform preliminary perfor-
mance experiments. Finally, in Sect. 6 we draw some conclusions and point out
possible future lines of research.

Related Work. Our work consists of QoS-aware service selection for work-
flows, based on soft constraint solving. While optimization-based techniques
can be separated into locally and globally optimizing ones, we focus on global
optimization-based service selection, where the QoS of each service is considered
pre-determined. In most cases, global optimization means that QoS has to be
aggregated, Sakellariou and Yarmolenko [24] discuss how this can be done for
several attributes.

There are knapsack and graph-path-finding-based approaches for modelling
and solving the optimization problem [30]. Zheng, Luo, and Song [32] propose
a colony-based selection algorithm applicable to multi-agent service composi-
tion [29]. We will delegate the solving of the problem to dedicated solvers but
use a multidimensional, multiple-choice knapsack problem for modelling as well.

Automated QoS-Aware Service Selection Based on Soft Constraints 123

In most of the works that apply Constraint Programming for service selection,
such as [14], only hard constraints are used. When soft constraints are used, the
way to express preferences over solutions is quite limited. For example, [22]
supports softness by assigning importance levels to constraints. Deng et al. [8]
use constraint solving but concentrate on the domain of mobile cloud computing
and therefore put emphasis on temporal constraints. Arbab et al. are working
with (Soft) Constraint Automata [1,2,9] and use them for service discovery [3,
25]. However, Soft Constraint Automata turn out to be representable by soft
constraint satisfaction problems (SCSPs) [2, sec. 6.1], and they concentrate on
local optimization only.

Rosenberg et al. [22] provide an implementation as part of their VRESCo
project [18] that also supports soft constraints [17], but only weighted ones as
well. A more general formalization for soft constraints is c-semirings (Constraint
Semirings) [5] that can also be used for service selection, as Zemni, Benbernou,
and Carro [31] show, but without an implementation. We will fill this gap and
provide flexible soft constraints for service selection in an easy-to-use manner for
users with basic knowledge of constraint programming.

2 Service Selection for Composite Services
Composite services can often be described as workflows [4]. A workflow consists
of one or multiple abstract services. An abstract service is a task that needs to
be done. Each abstract service can be instantiated by any of a class of concrete
ones that can fulfil the task. To avoid confusion, we refer to abstract services as
tasks and to concrete services merely as services. The tasks in a workflow can be
composed sequentially, in parallel, be subject to a choice and put within a loop.

The selection of services to fulfil the tasks in a workflow can be done in many
ways. In our case, workflows are converted to execution plans defining the paths
traversing the workflow. This allows the selection of adequate services for every
task instance in the path, even admitting the selection of different services for
performing different instances of the same task if it has to be executed more
than once, e.g., in loops.

We’ll start with a simple example workflow inspired by [19, Fig. 13.1].

A
B

C D
E

a1

a2
d1

e1

e2b1

b2
b3

Imagine a workflow with an
initialization task A that can be
done by two provisioning services
a1 and a2 and a finalization task
E with two eligible services e1, e2.
In between, there are two possi-
ble paths: either task B is done,
which has three provisions b1 to
b3; or instead, task C with the
same provisions is executed but
then succeeded by task D that
is done by the only available ser-
vice d1.

124 E. Keis et al.

Definition 1. Workflow graphs are defined by the following grammar:

〈Task〉 ::= Task name
〈G〉 ::= Null | 〈Task〉 | 〈G〉 → 〈G〉 | 〈G〉|〈G〉 | 〈G〉 + 〈G〉

Additionally, 〈G〉n serves as syntactic sugar (n ∈ Z>0).

where A → B (or short: A B) denotes sequential composition, A | B parallel
composition, A + B choice, and An a loop with a fixed number of iterations n.
The graph shown above looks like this: A → (B + C D) → E.

As it is clear from the previous definition, we assume that iterations in a
workflow graph are bounded, so every execution plan is finite and the procedure
of service selection is safe from the pothole posed by the termination problem of
unbounded iterations.

Definition 2 (Provisioning service description). A service description con-
sists of: 1) a service name, 2) a set of tasks it can be assigned to, and 3) a set of
QoS attribute names associated with the specific values the service guarantees.

For instance, recalling the previous example, provision b3 can be assigned to
tasks B, C, and have the following QoS attributes: cost = 9, responsetime =
2, availability = 98, accuracy = 99.5, etc.

Since we aim at performing a global selection we should be able to define
preferences about the overall QoS of the composition. Therefore, we need a
way to aggregate the QoS attributes of the individual services in a workflow
configuration. For the QoS attributes that should be aggregated over the whole
workflow, there needs to be information on how to aggregate them.

Definition 3 (Aggregation operator). Each QoS attribute has two associ-
ated aggregation operators:

– agg→, a binary operator for aggregating it over sequential composition, and
– agg‖, a binary operator for aggregating it over parallel composition.

Next we introduce our running example.

Running Example: A company dedicated to manufacture skateboards rents
two workstations in a co-working workshop.

Workflow. The company needs to rent storage for the wheels, boards, and the
finished skateboards that it produces. The co-working workshop offers two rental
models. In the first model, one can rent storage for precisely 10 or 15 items. In
the second, one also has to decide in advance how many items to store but can
rent storage for between 10 and 15 items. The second rental model is a bit more
expensive on a per-item basis and takes a bit longer to set up.

Automated QoS-Aware Service Selection Based on Soft Constraints 125

Once the storage is rented, the company can start producing the boards.
The work is organized in iterations. In each iteration, each workstation can work
individually: one crafts wheels, the other one boards. Alternatively, work can be
done together to assemble four wheels and one board to a skateboard. When
assembling, one can decide to assemble three boards at once, which is a bit
faster. Also, when crafting boards, you either can craft a single board or craft
three boards of a different kind in a single iteration, which is a bit more time and
cost-efficient, and the boards are a bit more pliable but also heavier. Regarding
the wheels, we always create four wheels in a single iteration, but we can choose
from four different kinds of wheels that differ in durability, friction, and cost.

Init

Assemble

Boards

Wheels

Pack

10x

When one
workstation is
done with the
own task of
an iteration,
it waits for
the other one
to finish, too.
After ten iter-
ations, we pack
the finished skateboards either not at all, using cardboard or in a wooden box.
Cardboard—and wood even more—provides better protection but is more expen-
sive and time-consuming.

Attributes. We care about the following global attributes that affect the overall
outcome or the dependencies between tasks: cost, time, storage, number of
produced boards, number of produced wheels, number of finished products.

3 Soft Constraint Solving with MiniBrass

MiniZinc [20] is a solver-independent constraint modeling language for describ-
ing CSPs and constraint optimization problems (COPs) and an associated tool
which translates MiniZinc specifications into the lower-level solver input lan-
guage FlatZinc, supported by numerous constraint solvers. MiniZinc is also used
as a frontend for invoking the user-defined specific solver; which, in our case, will
be Gurobi1, a state-of-the-art commercial optimization solver. In contrast to tra-
ditional programming, where the programmer states what the program should
do in order to compute the result, in constraint programming, the modeller only
states what the solution must satisfy; then, a solver is responsible for coming
up with potential solutions, checking them against the constraints in the model,
and then returning any, or the best, solution.

MiniZinc differentiates between decision and parameter variables. While
parameter variables are compile-time constant, i.e., their value is known even
before the solver starts working, decision variables are the ones that the solver
1 Available at https://www.gurobi.com.

https://www.gurobi.com

126 E. Keis et al.

can variate to come up with new solutions. MiniZinc supports a lot more capa-
bilities, like arrays, quantifiers, or optimization, to name a few2.

Example 1 demonstrates the usage of MiniZinc by showing a toy specification,
together with its output and some considerations.

Example 1. MiniZinc specification:
1 set of int: DOM = 1..2; % DOM = {1, 2}
2 var DOM: x; var DOM: y; % x, y in DOM
3 constraint x!=y;
4 solve satisfy;

Line 1 defines a set DOM containing the integers 1 and 2, line 2 defines two decision
variables x and y in DOM, line 3 constrains them to be different, and line 4 asks
MiniZinc to solve the problem and return any satisfying solution.

MiniZinc’s output after running:
x = 2;
y = 1;

Obviously, (x, y) = (1, 2) would also have been a valid solution. Such a preference
can be enforced by replacing the keyword satisfy by the objective function
minimize x in the statement solve of line 4.

MiniBrass [26], also a modelling language equipped with an analysis tool,
extends MiniZinc in two ways. On the one hand, it enriches the MiniZinc con-
straint modelling language with preference models containing soft constraints.
Soft constraints are constraints that might be omitted if the problem would
be unsatisfiable otherwise. MiniBrass supports a range of algebraic structures
called Partial Valuation Structures (PVSes) [27] that enable the prioritization
of constraints. On the other hand, MiniBrass implements a branch-and-bound
search algorithm which iteratively generates MiniZinc models by adding con-
strains from the preference model whose solutions are considered subsequently
better, according to the underlying PVS. In a sense, MiniBrass is providing
the means for traversing the complete lattice of constraint systems, induced by
the preference model [5, Thm. 2.9]3, and searching for an optimum solution. A
more comprehensive explanation of the many algorithmic aspects involved in the
implementation can be found in [26, p. 21].

While MiniBrass provides various predefined PVSes, e.g., for constraint pref-
erences given as graph, fuzzy constraints, weighted CSPs, and many more, it
also admits the definition of custom PVSes, if needed.

Definition 4 (Partial Valuation Structure – Definition 1, [27]). A partial
valuation structure M = (X, ·, ε, ≤) is given by an underlying set X, an associa-
tive and commutative multiplication operation · : X ×X → X, a neutral element
ε ∈ X for ·, and a partial ordering ≤ ⊆ X × X such that the multiplication · is
2 The interested reader might, however, have a look at the handbook https://www.

minizinc.org/doc-latest/en/index.html.
3 While [5, Thm. 2.9] is stated for c-semirings, PVSes can be converted to and created

from c-semirings [5,13,26], another popular algebraic framework for soft constraints.

https://www.minizinc.org/doc-latest/en/index.html
https://www.minizinc.org/doc-latest/en/index.html

Automated QoS-Aware Service Selection Based on Soft Constraints 127

monotone in both arguments w.r.t. ≤, i.e., m1 · m2 ≤ m′
1 · m′

2 if m1 ≤ m′
1 and

m2 ≤ m′
2, and ε is the top element w.r.t. ≤.

We write m1 < m2 if m1 ≤ m2 and m1 �= m2, and m1 ‖ m2 if neither
m1 ≤ m2 nor m2 ≤ m1. We write |M | for the underlying set and ·M , εM , and
≤M for the other parts of M .

Among the many PVSes already defined in MiniBrass we can find the PVS
type WeightedCsp from [26, p. 27]. Such a PVS allows for assigning a weight
to each of the soft constraints, which will act as preferences. In the resulting
MiniZinc model, heavier constraints will be preferred over lighter ones.

Example 2 shows the use of PVSes for extending Example 1 by an instance
of WeightedCsp in order to formalize a preference model.

Example 2. MiniBrass preference model:
1 include "defs.mbr";
2 PVS: prefer2 = new WeightedCsp("prefer2") {
3 soft -constraint xEquals2: ’x==2’;
4 soft -constraint yEquals2: ’y==2’ :: weights(’2’);
5 };
6 solve prefer2;

Line 1 includes the standard MiniBrass definitions (defs.mbr) which, among
others, allows the usage of WeightedCsp. The identifier prefer2 in line 2 is the
name we choose for our PVS instance. Lines 3 and 4 declare two soft constraints
requiring x and y to be equal to 2 but establish yEquals2 to be heavier (i.e., has
weight 2 in contrast to 1 which is the default weight for the CSP). Therefore, the
complete model consists of both, the hard constraints of the MiniZinc specifica-
tion shown in Example 1 and the MiniBrass preference model shown above. As
x and y have to be different according to the hard constraint, it is not possible to
fulfill both soft constraint simultaneously. Even though (x, y) = (2, 1) fulfils the
hard constraints, the only admissible optimal solution is (x, y) = (1, 2) because
the soft constraint yEquals2 is heavier than xEquals2.

New PVSes can be constructed by combining two PVSes using either the
lexicographic or the Pareto product. The lexicographic combination M lex N
prioritizes the ordering of solutions of M and only considers N when M cannot
decide between two solutions. In the Pareto combination M pareto N, a solution
is better than another if it is better for both M and N.

4 Modeling QoS-Aware Service Selection in MiniBrass

The tool we are presenting, named QosAgg, takes as inputs the workflow descrip-
tion including the quantitative attributes over which the QoS is to be evaluated,
and the service definitions together with their possible assignments to tasks. Its
output is the MiniZinc code containing the CSP to be solved including basic dec-
larations, enums for tasks and services, decision variables assigning one service
to every task and one branch per path choice. The model generated by QosAgg
corresponds to a 0/1 multi-dimensional multi-choice knapsack problem [15,30]:

128 E. Keis et al.

task instances are the bags, and we can put precisely one service into each bag.
Next, one array per QoS attribute is created, containing the values for every
service.

A key element in the translation to a CSP is, as we mentioned before, the
aggregation of QoS attributes along the paths of the workflow in a way that
makes possible to check the satisfaction of the desired constraints. From a the-
oretical point of view, bounded loops are no more than syntactic sugar, so we
start by unfolding them in order to obtain the equivalent graph that can only be
null, a single task, a sequential composition, a parallel composition or a choice
composition. Then, for a graph G aggregation q(G) is then defined recursively
on its structure as follows:

– Let η(T) denote the service chosen to perform the single task T ,
– Let η(G0 +G1 + · · ·+Gn) denote the specific subgraph selected by the choice,
– q(null) yields the valuation which is agg→() for all the QoS attributes,
– q(T), with T a single task, yields the QoS contract of η(T),
– q(G0 → G1 → · · · → Gn) yields the valuation agg→(q(G0), q(G1), . . . , q(Gn)),
– q(G0 ‖ G1 ‖ · · · ‖ Gn) yields the valuation agg‖(q(G0), q(G1), . . . , q(Gn)),
– q(G0 + G1 + · · · + Gn) yields the valuation q(η(G0 + G1 + · · · + Gn)).

Essentially, q aggregates over the parallel and sequential composition using
the corresponding aggregation operators. It deals with single tasks, and choices
by using decision variables that let the solver make the best decision for the
overall QoS. We continue by showing the modeling workflow of the running
example introduced in Sect. 2.

Example 3 (A skateboard company). We start by showing in Listing 1.1 the
input file for QosAgg containing the workflow definition, the provision contracts
and the quantitative attributes that constitute the QoS model.

workflow wf {
graph: Init -> ((Wheels? | Boards?) + Assemble)^10 -> Pack;

provision bigStore for Init: cost = 60, time = 20, storage = 15;
provision smallStore for Init: cost = 30, time = 10, storage = 10;

provision badWheels for Wheels: cost = 5, time = 2, wheels = 4;
provision okWheels for Wheels: cost = 5, time = 2, wheels = 4;
provision expensiveWheels for Wheels: cost = 10, time = 2, wheels = 4;
provision goodWheels for Wheels: cost = 5, time = 2, wheels = 4;

provision singleBoard for Boards: cost = 7, time = 3, boards = 1;
provision threeBoard for Boards: cost = 16, time = 10, boards = 3;

provision singleAssembly for Assemble: cost = 2, time = 4, products = 1,
wheels = -4, boards = -1;

provision threeAssembly for Assemble: cost = 6, time = 10, products = 3,
wheels = -12, boards = -3;

provision noPacking for Pack: cost = 0, time = 0;
provision woodPacking for Pack: cost = 20, time = 10;
provision cardboardPacking for Pack: cost = 3, time = 3;

attribute cost of var int; aggregation cost: sum;
attribute time of var int; aggregation time: sum , max;

Automated QoS-Aware Service Selection Based on Soft Constraints 129

attribute boards of int default 0; aggregation boards: sum;
attribute wheels of int default 0; aggregation wheels: sum;
attribute products of int default 0; aggregation products: sum;
attribute storage of var int default 0;

};

Listing 1.1. QoS model

If we run MiniZinc to solve the CSP produced by QosAgg, it will output
a statement displaying a solution to the problem including a path across the
workflow together with the selected services for each task instance in the path,
and the aggregated value for each QoS attribute for that selection.

Arbitrary hard constraints can be added on top of the basic CSP problem
output by QosAgg in order to force MiniZinc to find more specific solutions satis-
fying both, the basic model, and the newly added hard constrains. For example,
we can enrich our model by defining the notion of profit by means of fixing
the retail price (in this case at 25) and considering the aggregated cost and the
aggregated number of finished products along the selected path. This will make
MiniZinc compute the value of the variable profit enabling, for example, the
possibility of enforcing a lower bound for its value stating that we only accept
solutions leading to a profit greater than such a bound (shown in Listing 1.2).
This is done by feeding MiniZinc with both, the basic MiniZinc model obtained
from QosAgg with the following handcrafted MiniZinc specification:

int: price = 25;
int: bound = 10;
var int: profit = price * wf_aggregated_products - wf_aggregated_cost;

constraint profit > bound;

Listing 1.2. MiniZinc constrain model

Analysing the resulting model will lead to any solution (i.e., a path in the
workflow and an assignment of services to tasks) in which the value calculated
for profit is greater than 10. MiniZinc can also be run with the statement
solve maximize profit; forcing the tool to find an optimum solution in which
the value of profit is not only greater than 10, but also the maximum possible.

Going further, we propose to aim at a richer form of constraints. Adding
soft constraints to our model allows to, for example, force the solvers to search
for solutions that increase profit and decrease time consumption. This can be
done by writing a MiniBrass preference model resorting to two instances of the
predefined PVS type CostFunctionNetwork and the lexicographical product for
combining them as shown in Listing 1.3.

PVS: profit = new CostFunctionNetwork("profit") {
soft -constraint profit: ’500- profit’;

};
PVS: time = new CostFunctionNetwork("time") {

soft -constraint time: ’wf_aggregated_time ’;
};
solve profit lex time;

Listing 1.3. MiniBrass preference model

130 E. Keis et al.

The process continues by feeding MiniBrass input the preference model shown
above, and the basic MiniZinc resulting from combining: 1) the basic model
output by QosAgg from the original model, enriched with 2) the additional
handcrafted hard constraints of a choice.

It will then initiate the search for an optimum solution to the Soft CSP. As
we mentioned before, this is done by applying a branch-and-bound searching
algorithm over the complete lattice of constraint systems, induced by the PVS
formalizing the preference model. The procedure implemented in MiniBrass will
iteratively generate MiniZinc CSPs by adding constraints forcing any solution to
be better than the one found in the previous iteration. In each iteration MiniZinc
is run finding such solution. The iterative process is performed until the CSP
gets unsatisfiable, at which point, an optimal solution has been found in the
previous iteration.

Running MiniBrass on: a) the combination of the output of running QosAgg
on the model shown in Listing 1.1 and the MiniZinc constrain model shown
in Listing 1.2, and b) the MiniBrass preference model shown in Listing 1.3,
yields the statement shown in Listing 1.4.
Profit: 13
Selection graph for wf:

Init=bigStore → (Wheels=goodWheels |) → (Wheels=goodWheels |) → (
Wheels=goodWheels | Boards=threeBoard) → Assemble=threeAssembly → (
Wheels=goodWheels | Boards=threeBoard) → (Wheels=goodWheels |) →
Assemble=singleAssembly → (Wheels=goodWheels |) → Assemble=
singleAssembly → Assemble=singleAssembly → Pack=cardboardPacking

Aggregations for wf:
cost: 137
time: 73
boards: 0
wheels: 0
products: 6

Listing 1.4. MiniZinc solution with aggregation values

The solution has a profit value of 13, workflow is displayed with the selected
services for each task instance, and the aggregated value obtained for each QoS
attribute is shown. The total cost of the solution is 137, the total time is 73,
and the total number of skateboards produced is 6. The attributes boards and
wheels are used to keep track of the number of boards and wheels produced.
When the task Assemble is executed to produce skateboards it consumes boards
and wheels and produces products. A final number of 0 for boards and wheels
means that all the boards and wheels produced have been consumed to produce
skateboards.

4.1 Adding Checkpoints to QosAgg Workflows

Up to this point, we showed how to model the problem of assigning services to
tasks organized in a complex workflow, and how it can be solved based on the
satisfaction of a combination of: 1) hard constraints added to the basic model,
the latter obtained from the description of the workflow, the declaration of the
QoS attributes and the declaration of services capable of performing each of the

Automated QoS-Aware Service Selection Based on Soft Constraints 131

tasks, and 2) soft constrains declared as a preference model through the use of
PVSes.

This approach yields a framework in which it is possible to reason about
the overall aggregated-by-attribute QoS of workflows and the local QoS of the
distinct tasks, but we lack everything in between. This void might lead to a
problem when a desired property is supposed to hold after the execution of a
specific part of a workflow which is not after its completion. Consider the example
of attributes that do not exclusively grow (resp. shrink), but that can both grow
and shrink, and we need to preserve certain invariants regarding greater and
lower bounds for such attributes. A classic example is that of producers and
consumers of resources.

Example 4. Imagine a workflow graph A → B → C where tasks A and C are
meant to produce some resource, and B consumes it. Let there be services
a1, a2 for task A, b1, b2 for B, and c for C, with QoS attributes “cost” and
“resource” (interpreted as the cost associated to the execution of the service,
and the resources produced/consumed by the service) with addition as aggrega-
tion function, and the following QoS contracts:

a1 a2 b1 b2 c

cost 1 2 1 2 1
resource 1 2 −2 −1 2

Then, if we solve optimizing aiming at the lower overall cost, we end up with
the selection a1, b1, and c with aggregated cost 3. It is clear that this solution
is not satisfying as service a1 only produces one resource item, but b1 consumes
two. Adding a constraint to the overall aggregation of the resource attribute
is not of any use because service c adds two more resource items at the end,
compensating the (infeasible) “debt" caused by b.

Example 4 exposes the need of some form of constraints over the aggregated
value of QoS attributes at chosen points within the workflow. Such points in the
execution of a workflow are referred to as “checkpoints" and are placed directly
before and after tasks. They allow us to specify invariants by addressing all
the relevant checkpoints in a certain fragment of interest of the workflow, or to
specify pre-/post-conditions for specific tasks only by addressing the checkpoints
appearing before and after such a task. Figure 1 illustrates this.

Aggregation on Checkpoint. Checkpoints mark those points in the workflow
where constraints are plausible to be placed. Adding constraints at checkpoints
requires the capability of aggregating the values of QoS attributes up to the
specific checkpoint of interest. The reader should note that the definition of the
aggregation presents no further difficulty with respect to what we discussed at
the beginning of the present section but with the sole difference that now the

132 E. Keis et al.

Fig. 1. Checkpoints in a workflow. � are pre-conditions, � post-conditions. (Color
figure online)

evaluation is only performed over the maximal subgraph starting at the begin-
ning of the workflow, and leading to the checkpoint one is interested in as an
ending point.

Constraints on Checkpoints. Checkpoints allow us a smoother implementation
of various constraints. Going back to our running example, we can observe that
there is an actual risk of: 1) the sum of the produced wheels, boards, and fin-
ished skateboards in the storage might exceed the capacity we booked, or 2) the
numbers of wheels, boards, and skateboards might be negative;

or, at least, there is no formal impediment for any of those situations to occur.
Therefore, we would like to guarantee that none of those situations happens to
be true at any point in the path selected as a solution. The following constraint
shows how checkpoints help in enforcing this type of properties:
constraint forall(cp in wf_all_checkpoints)(

wf_checkpoints_boards[cp] + wf_checkpoints_wheels[cp] +
wf_checkpoints_products[cp] <= storage /\

wf_checkpoints_boards[cp] >= 0 /\ wf_checkpoints_wheels[cp] >= 0 /\
wf_checkpoints_products[cp] >= 0

);

In the previous constraint wf_all_checkpoints is the designated name for the
set containing all the checkpoints of the workflow, and wf_checkpoints_boards,
wf_checkpoints_wheels and wf_checkpoints_products are arrays containing
the aggregated attribute value up to every checkpoint in wf_all_checkpoints.

Finally, by resorting to this type of constraints we can recall Example 4 and
provide an elegant solution for the problem we used as motivation. The follow-
ing constraint is what we need: “constraint forall(cp in wf_all_checkpoints)
(wf_checkpoints_resource[cp] >= 0);”.

Loops introduce a complex control flow structure that requires special treat-
ment in order to provide a flexible way of establishing constraints allowing them
to restrict all the iterations or just a single one, as shown in the following example.
Let a workflow have graph (A3 ‖ B)2 and a single QoS attribute named resource.
As tasks in a path are named according to their concrete instance once the itera-
tions are unfolded, all of them have their own associated checkpoints so we can,
for example, ensure that we start with at least five resource items in the first iter-
ation by adding the following constrain: “constraint wf_checkpoints_resource[
wf_A_pre_1_1] >= 5;”.

Automated QoS-Aware Service Selection Based on Soft Constraints 133

Analogously, “wf_A_pre_2_3” would be the name for the checkpoint for the
last iteration. A constraint ensuring that after executing (any instance of) B
there are less than five resource items can be stated as follows: “constraint
forall(cp in wf_checkpoints_B_post)(wf_checkpoints_resource[cp] < 5);”.

The case of workflows containing choices present a different, and very impor-
tant issue. Consider workflow “Give + Take” and again a single QoS attribute
named resource. The services for Give all produce items; the services for
Take all consume them. Again we want to ensure that no resource is used
before it has been produced. Adding the constraint “constraint forall(cp in
wf_all_checkpoints)(wf_checkpoints_resource[cp] >= 0)” solves the problem

but only partially. Note that, as there is no loop, the only reasonable choice
is the path executing Give and omitting task Take, and that is the right solu-
tion. However, MiniZinc yields that the problem is unsatisfiable; this is because
wf_all_checkpoints also contains the checkpoint wf_Take_post, and there the
resource balance is negative. Nevertheless, when choosing the path with Give,
we can ignore that checkpoint as the execution never even comes across task
Take.

This is a problem regarding the reachability of specific points. To solve this
issue we added expressions for each task instance stating whether it is reachable,
i.e., part of the selected path, or not. We use these expressions to include only
those checkpoints in the predefined checkpoint sets that are part of the selected
path. For a task instance to be reachable, all the choices that it is part of need
to select the branches leading towards the instance.

Once again, for the code generation, we recursively descend in the work-
flow graph. Each time we come across a choice composition, we remember the
name of its choice decision variable and the branch we descended into. When we
reach a single task, the conjunction of all choice variables we came across having
the value required for the branch we went into gives us the reachability expres-
sion. In the case of the task Take in motivating situation described above, this
would be: “choice1 == 2”. Therefore, the checkpoint set wf_all_checkpoints
is generated by filtering all the checkpoints for reachability. However, individual
checkpoints, like “wf_Take_post” in our example, require manual handling. For
example, the “constraint wf_checkpoints_resource[wf_Take_post] >= 0” has to
hold even if “wf_Take_inst” is not reachable. One way to solve this is to only
“enable" constraints when the instance is reachable. This is done by resorting
to the assertion “wf_reachable” with which it is possible to state the con-
straint: “constraint wf_reachable[wf_Take_inst] -> wf_checkpoints_resource[
wf_Take_post] >= 0;”.

4.2 Toolchain Architecture

In the figure, we depict the architecture of the toolchain we propose for solv-
ing the problem of QoS-aware service selection for tasks organized as complex
workflows described at the beginning of this section.

134 E. Keis et al.

Preference
model

Constraint
model

model QoSAgg
MiniBrass

CSP
model

MiniZinc

CSP
model

CSP generator

sat

unsat

Last solution

Dark grey nodes sym-
bolize tools and light
grey ones are files; among
the latter, those with
solid outline are either
the model, or the output
statement, and those with
the dashed outline are
intermediate files result-
ing from processing the
model. The model consists of: 1) the workflow model containing: a) the graph of
tasks, b) the QoS attributes, each of them with their corresponding aggregation
functions for both, parallel composition and sequential composition, and c) the
services’ QoS specification and possible assignment to tasks; 2) the constraint
model consisting of the hard constraints the user wants the solution to satisfy,
and 3) the preference model consisting of the soft constraints the user wants to
guide the search for a solution.

The tools include: 1) QosAgg that takes the workflow model as input and
produces a file containing the basic CSP model containing the specification
of the corresponding 0/1 multi-dimensional multi-choice knapsack problem, 2)
MiniBrass that takes the CSP model resulting from combining the output of
QosAgg and the constraint model, and the preference model, and implements
the branch-and-bound search algorithm for incrementally finding the best solu-
tion, according to the preference model, and 3) MiniZinc that runs the solver
over the complete model in order to find the optimum solution.

5 Preliminary Performance Analysis

In this paper we proposed a toolchain for QoS-aware service selection for tasks
organized as complex workflows. Among the different tools involved in it, we
were responsible only for the development of QosAgg. On the one hand, an exclu-
sive performance analysis of QosAgg does not lead to any significant conclusion
because, as we mentioned before, it is a simple parsing process translating work-
flow models to Soft CSP; on the other hand, any discussion on the theoretical
complexity/empirical study of the toolchain formed by MiniBrass, MiniZinc and
Gurobi on arbitrary Soft CSP4, does not provide the right insight on the actual
performance of such tools in analysing the Soft CSPs obtained from QosAgg. For

4 The interested reader is pointed to [5,28] for the results associated to the theoretical
complexity of the formal framework underlying MiniBrass and to [26, section 5]
for an empirical evaluation. In the case of the complexity associated to the use
of MiniZinc there is not much to be said about the translation to FlatZinc (i.e., its
target language) because most of the computational effort resides in the execution of
the solver [20]. Regarding Gurobi; a comprehensive empirical study against the SAS
solvers, available at https://www.sas.com, running over the Mittelmann’s benchmark
can be found in [12].

https://www.sas.com

Automated QoS-Aware Service Selection Based on Soft Constraints 135

this reason, we chose to perform an empirical performance study of the complete
toolchain we proposed as a blackbox.

For comparability reasons, the workflow model, the constraint model and
preference models are synthetically generated in a specific way to be explained
below. All the experiments are carried out using MiniZinc 2.6.4 with the pro-
prietary solver Gurobi 9.5.2 on a machine having an Apple M1 chip with eight
cores and 16 GB RAM on a 64 bit macOS Monterey.

This experimental study pretends to shed some light on how the structure
of the workflow drives the complexity of the analysis so we devised experiments
aiming at revealing the compositional nature of the computational effort required
to solve a problem. To this end we: 1) performed an empirical study of the cost
associated to solving Soft CSPs obtained from workflows consisting of single
tasks whose complexity varies according to: a) the number of service providers,
and b) the number of quantitative attributes involved in the model, 2) studied
the correlation between the cost associated to the analysis of the composition
of workflows (sequential, parallel and choice) and a function of the costs asso-
ciated to the analysis of the workflows involved in such a composition. In this
case we varied the amount of workflows (only considering simple tasks) in the
composition.

The property under analysis in all cases is the lex composition of the max-
imization of the value of each attribute. We start by identifying the impact of
the number of attributes and providers on the computational cost of solving the
optimum service assignment for workflows consisting of a single task. To this
end we fixed the structure of the workflow, the hard constrains and the soft con-
strains in order to obtain a family of Soft CSPs whose analysis can reflect the
growth in the computational effort required while a problem gets bigger, either
in terms of the amount of attributes or the amount of service providers. In order
to ameliorate statistical deviations, we ran the tool over 10 randomly generated
instances of workflows consisting of a single task and varying the number of
attributes ranging from 10 to 100 stepping by 10 and providers ranging from
1 to 2000 stepping by 100, and reported the average of the values obtained in
the runs. From the experimental data we can derive the following observations:
1) the computational cost associated to QosAgg, when varying the amount of
service providers, grows linearly in all the cases with5 R2 ≥ 0.99, 2) the com-
putational cost associated to MiniBrass, when varying the amount of service
providers, grows polinomially (with grade 2) with R2 ≥ 0.79, with the excep-
tions of the experiments for 1 attribute, in which R2 = 0.7462; the average R2

is 0.8901, 3) the computational cost associated to QosAgg, when varying the
amount of attributes, grows linearly in all the cases with R2 ≥ 0.9, 4) the com-
putational cost associated to MiniBrass, when varying the amount of attributes,
grows polynomially (with grade 2) with R2 ≥ 0.74; the average R2 is 0.857, 5)
the computational cost associated to QosAgg is at most around 30% of the total
cost of analysis.

5 R squared, denoted R2, is the coefficient of determination that provides a measure
of how well the model fits the data.

136 E. Keis et al.

We continue by analyzing the computational cost associated to the workflow
composition operators (i.e., sequential, parallel and choice composition). We gen-
erated 10 sets containing 10 workflows consisting of a single task, 100 providers
and 50 QoS attributes. In order to understand how the size of the composi-
tion impacts the cost of analysis, each set is used to conduct an experiment
in which we subsequently increment the size of the composition from 1 to 10
subworkflows. In both parallel and sequential composition we used max as the
aggregation function. From the previous experimental data we can derive the
following observations about the behaviour of the sequential and parallel compo-
sition: 1) the computational cost associated to the execution of QosAgg, when
varying the amount of workflows in the composition, grows linearly in average
and in all the individual cases. In the average case the fitting has R2 ≥ 0.99, 2)
the computational cost associated to the execution of MiniBrass, when varying
the amount of workflows in the composition, grows exponentially both in average
and in all the individual cases. In the average case the fitting has R2 ≥ 0.98, and
3) the computational cost associated to the execution of MiniBrass excedes the
timeout of one hour for cases of compositions consisting of 8 or more workflows
(except for 3 and 2 cases for sequential and parallel composition respectively).

The results for sequential and parallel composition are similar, this is due to
the fact that in both cases we are using the same aggregation function, which
yields the same minizinc model. The reader should also note that the analysis
time may vary a lot depending on many other factors; we can identify some
obvious ones like: 1) the choice, and diversity, of aggregation functions associ-
ated to the quantitative attributes, 2) the hard and soft constraints, which can
severely influence the behaviour of the analysis tools, and 3) how intricate is the
structure of the workflow,

among others. In the case of the choice composition operator we can derive
the following observations: 1) the computational cost associated to the execution
of QosAgg, when varying the amount of workflows in the choice composition,
grows linearly in average and in all the individual cases. In the average case the
fitting has R2 ≥ 0.99, and 2) the computational cost associated to the execution
of MiniBrass, when varying the amount of workflows in the choice composition,
grows polinomially (with grade 2) both in average and in all the individual cases.
In the average case the fitting has R2 ≥ 0.99.

In summary, the execution cost of QosAgg increases linearly and accounts for
a relatively small portion of the overall analysis cost. On the other hand, the exe-
cution cost of MiniBrass exhibits exponential growth in the case of parallel and
sequential composition, while demonstrating polynomial growth in the case of
choice composition. Unsurprisingly, the cost of executing MiniBrass constitutes
the majority of the total analysis cost.

6 Conclusions and Further Research

We presented a toolchain supporting optimum QoS-aware service selection for
tasks organized as workflows, based on soft constrain solving. QosAgg is used to

Automated QoS-Aware Service Selection Based on Soft Constraints 137

generate a skeleton MiniZinc model from workflow specifications (i.e., a descrip-
tion of the workflow, an enumeration of the QoS attributes together with their
corresponding aggregation operator, and the list of providers for each task,
including their QoS profile, expressed as values for the QoS attributes). Such
a MiniZinc model contains, non-exclusively, decision variables corresponding to
aggregations of the QoS attributes that can be used to enforce additional con-
strains over specific points of the workflow. On top of the resulting MiniZinc
CSP, it is possible to add soft constrains resulting in a Soft CSP that can be
solved using MiniBrass. We performed a preliminary performance analysis under
the hypothesis that the computational cost of solving the Soft CSPs generated
is driven, and compositionally determined, by the composition operators used to
create workflows. Such study exhibited the impact of the exponential nature of
solving the Soft CSPs by MiniBrass on the overall performance of the toolchain.

QosAgg creates decision variables for all possible path and service selections.
These might be too many for MiniZinc to handle for more extensive use cases; in
that case, it might be necessary to make MiniZinc evaluate only one specific path
choice at a time and repeat that for all the possible paths in an iterative process
in order to obtain scalability. Moreover, we focused on offline optimization only
(i.e., all information had to be provided from the beginning). In reality, one might
only have estimations of the values as QoS contracts whose real run-time value
might affect future decisions leading to a dynamic notion of optimum relative to
the online behavior of the selected providers. There is on going research about
how to integrate offline and online decision-making [7].

Finally, there are many situations our workflows cannot model directly and
need to be sorted out manually that are left for further research. To name a few:
there are no built-in conditional path choices that depend on aggregated values.
Support for compensation actions [10] would also be helpful, e.g., for the case
where services can fail. Services at the moment are assumed to have constant
QoS attributes across all executions. Support for probabilistic decisions would
make it much easier to model decisions that we cannot influence, e.g., because
the user of the composite service makes them, etc.

References

1. Arbab, F., Baier, C., Rutten, J., Sirjani, M.: Modeling component connectors in
reo by constraint automata: (extended abstract). Electron. Notes Theor. Comput.
Sci. 97, 25–46 (2004). https://doi.org/10.1016/j.entcs.2004.04.028

2. Arbab, F., Santini, F.: Preference and similarity-based behavioral discovery of ser-
vices. In: ter Beek, M.H., Lohmann, N. (eds.) WS-FM 2012. LNCS, vol. 7843, pp.
118–133. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38230-
7_8. ISBN 978-3-642-38230-7

3. Arbab, F., Santini, F., Bistarelli, S., Pirolandi, D.: Towards a similarity-based web
service discovery through soft constraint satisfaction problems. In: Proceedings of
the 2nd International Workshop on Semantic Search over the Web, ICPS Proceed-
ings, New York, NY, USA. Association for Computing Machinery (2012). https://
doi.org/10.1145/2494068.2494070. ISBN 978-1-4503-2301-7

https://doi.org/10.1016/j.entcs.2004.04.028
https://doi.org/10.1007/978-3-642-38230-7_8
https://doi.org/10.1007/978-3-642-38230-7_8
https://doi.org/10.1145/2494068.2494070
https://doi.org/10.1145/2494068.2494070

138 E. Keis et al.

4. Baryannis, G.: Service composition. In: Papazoglou, M.P., Pohl, K., Parkin, M.,
Metzger, A. (eds.) Service Research Challenges and Solutions for the Future Inter-
net. LNCS, vol. 6500, pp. 55–84. Springer, Heidelberg (2010). https://doi.org/10.
1007/978-3-642-17599-2_3. ISBN 978-3-642-17599-2

5. Bistarelli, S., Montanari, U., Rossi, F.: Semiring-based constraint satisfaction
and optimization. J. ACM 44(2), 201–236 (1997). https://doi.org/10.1145/256303.
256306. ISSN 0004–5411

6. Bouguettaya, A., Sheng, Q.Z., Daniel, F. (eds.): Web Services Foundations.
Springer, New York (2014). https://doi.org/10.1007/978-1-4614-7518-7. ISBN 978-
1-4614-7517-0

7. De Filippo, A., Lombardi, M., Milano, M.: Integrated offline and online decision
making under uncertainty. J. Artif. Int. Res. 70, 77–117 (2021). https://doi.org/
10.1613/jair.1.12333. ISSN 1076–9757

8. Deng, S., Huang, L., Wu, H., Wu, Z.: Constraints-driven service composition in
mobile cloud computing. In: 2016 IEEE International Conference on Web Services
(ICWS), pp. 228–235 (2016). https://doi.org/10.1109/ICWS.2016.37

9. Dokter, K., Gadducci, F., Santini, F.: Soft constraint automata with memory. In:
de Boer, F., Bonsangue, M., Rutten, J. (eds.) It’s All About Coordination. LNCS,
vol. 10865, pp. 70–85. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-
90089-6_6. ISBN 978-3-319-90089-6

10. El Hadad, J., Manouvrier, M., Rukoz, M.: Tqos: transactional and qos-aware selec-
tion algorithm for automatic web service composition. IEEE Trans. Serv. Comput.
3(1), 73–85 (2010). https://doi.org/10.1109/TSC.2010.5

11. Freuder, E.C., Mackworth, A.K.: Constraint satisfaction: an emerging paradigm.
In: Handbook of Constraint Programming, vol. 2, 1 edn. (2006). ISBN 978-008-04-
6380-3

12. Helm, W.E., Justkowiak, J.-E.: Extension of Mittelmann’s benchmarks: comparing
the solvers of SAS and Gurobi. In: Fink, A., Fügenschuh, A., Geiger, M.J. (eds.)
Operations Research Proceedings 2016. ORP, pp. 607–613. Springer, Cham (2018).
https://doi.org/10.1007/978-3-319-55702-1_80

13. Hosobe, H.: Constraint hierarchies as semiring-based csps. In: 2009 21st IEEE
International Conference on Tools with Artificial Intelligence, pp. 176–183. IEEE
(2009). https://doi.org/10.1109/ICTAI.2009.43

14. Lecue, F., Mehandjiev, N.: Towards scalability of quality driven semantic web
service composition. In: 2009 IEEE International Conference on Web Services, pp.
469–476. IEEE (2009). https://doi.org/10.1109/ICWS.2009.88. ISBN 978-0-7695-
3709-2

15. Martello, S., Toth, P.: Algorithms for knapsack problems. In: Martello, S., Laporte,
G., Minoux, M., Ribeiro, C. (eds.) Surveys in Combinatorial Optimization, number
132 in North-Holland Mathematics Studies, North-Holland, pp. 213–257 (1987).
https://doi.org/10.1016/S0304-0208(08)73237-7

16. Menascé, D.A.: Qos issues in web services. IEEE Internet Comput. 6(6), 72–75
(2002). https://doi.org/10.1109/MIC.2002.1067740. ISSN 1941–0131

17. Meseguer, P., Rossi, F., Schiex, T.: Soft constraints. In: Handbook of Constraint
Programming, vol. 9, 1 edn., pp. 281–328 (2006). ISBN 978-008-04-6380-3

18. Michlmayr, A., Rosenberg, F., Leitner, P., Dustdar, S.: End-to-end support for
qos-aware service selection, invocation and mediation in vresco. Technical report,
Vienna University of Technology (2009). https://dsg.tuwien.ac.at/Staff/sd/papers/
TUV-1841-2009-03.pdf

https://doi.org/10.1007/978-3-642-17599-2_3
https://doi.org/10.1007/978-3-642-17599-2_3
https://doi.org/10.1145/256303.256306
https://doi.org/10.1145/256303.256306
https://doi.org/10.1007/978-1-4614-7518-7
https://doi.org/10.1613/jair.1.12333
https://doi.org/10.1613/jair.1.12333
https://doi.org/10.1109/ICWS.2016.37
https://doi.org/10.1007/978-3-319-90089-6_6
https://doi.org/10.1007/978-3-319-90089-6_6
https://doi.org/10.1109/TSC.2010.5
https://doi.org/10.1007/978-3-319-55702-1_80
https://doi.org/10.1109/ICTAI.2009.43
https://doi.org/10.1109/ICWS.2009.88
https://doi.org/10.1016/S0304-0208(08)73237-7
https://doi.org/10.1109/MIC.2002.1067740
https://dsg.tuwien.ac.at/Staff/sd/papers/TUV-1841-2009-03.pdf
https://dsg.tuwien.ac.at/Staff/sd/papers/TUV-1841-2009-03.pdf

Automated QoS-Aware Service Selection Based on Soft Constraints 139

19. Moghaddam, M., Davis, J.G.: Service selection in web service composition: a com-
parative review of existing approaches. In: Bouguettaya, A., Sheng, Q., Daniel, F.
(eds.) Web Services Foundations, pp. 321–346. Springer, New York (2014). https://
doi.org/10.1007/978-1-4614-7518-7_13

20. Nethercote, N., Stuckey, P.J., Becket, R., Brand, S., Duck, G.J., Tack, G.: MiniZinc:
towards a standard CP modelling language. In: Bessière, C. (ed.) CP 2007. LNCS,
vol. 4741, pp. 529–543. Springer, Heidelberg (2007). https://doi.org/10.1007/978-
3-540-74970-7_38. ISBN 978-3-540-74970-7

21. Papazoglou, M.P., Traverso, P., Dustdar, S., Leymann, F.: Service-oriented com-
puting: state of the art and research challenges. Computer 40(11), 38–45 (2007).
https://doi.org/10.1109/MC.2007.400. ISSN 1558–0814

22. Rosenberg, F., Celikovic, P., Michlmayr, A., Leitner, P., Dustdar, S.: An end-to-end
approach for qos-aware service composition. In: 2009 IEEE International Enterprise
Distributed Object Computing Conference, pp. 151–160. IEEE (2009). https://doi.
org/10.1109/EDOC.2009.14. ISBN 978-0-7695-3785-6

23. Rossi, F., van Beek, P., Walsh, T. (eds.): Handbook of Constraint Programming,
1 edn. Elsevier Science Inc., Amsterdam (2006). ISBN 978-008-04-6380-3

24. Sakellariou, R., Yarmolenko, V.: On the flexibility of ws-agreement for job sub-
mission. In: Proceedings of the 3rd International Workshop on Middleware for
Grid Computing, ICPS Proceedings. Association for Computing Machinery (2005).
https://doi.org/10.1145/1101499.1101511. ISBN 978-1-59593-269-3

25. Sargolzaei, M., Santini, F., Arbab, F., Afsarmanesh, H.: A tool for behaviour-
based discovery of approximately matching web services. In: Hierons, R.M., Merayo,
M.G., Bravetti, M. (eds.) SEFM 2013. LNCS, vol. 8137, pp. 152–166. Springer, Hei-
delberg (2013). https://doi.org/10.1007/978-3-642-40561-7_11. ISBN 978-3-642-
40561-7

26. Schiendorfer, A., Knapp, A., Anders, G., Reif, W.: MiniBrass: soft constraints for
MiniZinc. Constraints 23(4), 403–450 (2018). https://doi.org/10.1007/s10601-018-
9289-2

27. Schiendorfer, A., Knapp, A., Steghöfer, J.-P., Anders, G., Siefert, F., Reif, W.:
Partial valuation structures for qualitative soft constraints. In: De Nicola, R., Hen-
nicker, R. (eds.) Software, Services, and Systems. LNCS, vol. 8950, pp. 115–133.
Springer, Cham (2015). https://doi.org/10.1007/978-3-319-15545-6_10. ISBN 978-
3-319-15545-6

28. Schiex, T., Fargier, H., Verfaillie, G.: Valued constraint satisfaction problems: hard
and easy problems. In: Proceedings of the Fourteenth International Joint Con-
ference on Artificial Intelligence, IJCAI 1995, Montréal, Québec, Canada, 20–25
August 1995, vol. 2, pp. 631–639. Morgan Kaufmann (1995)

29. Wei, L., Junzhou, L., Bo, L., Xiao, Z., Jiuxin, C.: Multi-agent based QoS-aware
service composition. In: 2010 IEEE International Conference on Systems, Man
and Cybernetics, pp. 3125–3132. IEEE (2010). https://doi.org/10.1109/ICSMC.
2010.5641725

30. Tao, Yu., Zhang, Y., Lin, K.-J.: Efficient algorithms for web services selection with
end-to-end qos constraints. ACM Trans. Web 1(1), 6-es (2007). https://doi.org/10.
1145/1232722.1232728. ISSN 1559–1131

31. Zemni, M.A., Benbernou, S., Carro, M.: A soft constraint-based approach to QoS-
aware service selection. In: Maglio, P.P., Weske, M., Yang, J., Fantinato, M. (eds.)
ICSOC 2010. LNCS, vol. 6470, pp. 596–602. Springer, Heidelberg (2010). https://
doi.org/10.1007/978-3-642-17358-5_44. ISBN 978-3-642-17358-5

https://doi.org/10.1007/978-1-4614-7518-7_13
https://doi.org/10.1007/978-1-4614-7518-7_13
https://doi.org/10.1007/978-3-540-74970-7_38
https://doi.org/10.1007/978-3-540-74970-7_38
https://doi.org/10.1109/MC.2007.400
https://doi.org/10.1109/EDOC.2009.14
https://doi.org/10.1109/EDOC.2009.14
https://doi.org/10.1145/1101499.1101511
https://doi.org/10.1007/978-3-642-40561-7_11
https://doi.org/10.1007/s10601-018-9289-2
https://doi.org/10.1007/s10601-018-9289-2
https://doi.org/10.1007/978-3-319-15545-6_10
https://doi.org/10.1109/ICSMC.2010.5641725
https://doi.org/10.1109/ICSMC.2010.5641725
https://doi.org/10.1145/1232722.1232728
https://doi.org/10.1145/1232722.1232728
https://doi.org/10.1007/978-3-642-17358-5_44
https://doi.org/10.1007/978-3-642-17358-5_44

140 E. Keis et al.

32. Zheng, X., Luo, J.Z., Song, A.B.: Ant colony system based algorithm for qos-
aware web service selection. In: Kowalczyk, R. (ed.) Grid Service Engineering and
Management “The 4th International Conference on Grid Service Engineering and
Management” GSEM 2007, number 117 in Lecture Notes in Informatics, Bonn, Ger-
many, pp. 39–50. Gesellschaft für Informatik e. V. (2007). https://dl.gi.de/server/
api/core/bitstreams/4cefa9ab-94e1-4d82-b2ea-4d8ea1041838/content. ISBN 978-
3-88579-211-6

https://dl.gi.de/server/api/core/bitstreams/4cefa9ab-94e1-4d82-b2ea-4d8ea1041838/content
https://dl.gi.de/server/api/core/bitstreams/4cefa9ab-94e1-4d82-b2ea-4d8ea1041838/content

	Automated QoS-Aware Service Selection Based on Soft Constraints
	1 Introduction
	2 Service Selection for Composite Services
	3 Soft Constraint Solving with MiniBrass
	4 Modeling QoS-Aware Service Selection in MiniBrass
	4.1 Adding Checkpoints to QosAgg Workflows
	4.2 Toolchain Architecture

	5 Preliminary Performance Analysis
	6 Conclusions and Further Research
	References

