
LN
CS

 1
37

10
Alexandre Madeira
Manuel A. Martins (Eds.)

Recent Trends
in Algebraic
Development Techniques
26th IFIP WG 1.3 International Workshop, WADT 2022
Aveiro, Portugal, June 28–30, 2022
Revised Selected Papers

Lecture Notes in Computer Science 13710
Founding Editors
Gerhard Goos
Juris Hartmanis

Editorial Board Members
Elisa Bertino, Purdue University, West Lafayette, IN, USA
Wen Gao, Peking University, Beijing, China
Bernhard Steffen , TU Dortmund University, Dortmund, Germany
Moti Yung , Columbia University, New York, NY, USA

https://orcid.org/0000-0001-9619-1558
https://orcid.org/0000-0003-0848-0873

The series Lecture Notes in Computer Science (LNCS), including its subseries Lecture
Notes in Artificial Intelligence (LNAI) and Lecture Notes in Bioinformatics (LNBI),
has established itself as a medium for the publication of new developments in computer
science and information technology research, teaching, and education.

LNCS enjoys close cooperation with the computer science R & D community, the
series countsmany renowned academics among its volume editors and paper authors, and
collaborates with prestigious societies. Its mission is to serve this international commu-
nity by providing an invaluable service, mainly focused on the publication of conference
andworkshop proceedings and postproceedings. LNCScommenced publication in 1973.

Alexandre Madeira · Manuel A. Martins
Editors

Recent Trends
in Algebraic
Development Techniques
26th IFIP WG 1.3 International Workshop, WADT 2022
Aveiro, Portugal, June 28–30, 2022
Revised Selected Papers

Editors
Alexandre Madeira
University of Aveiro and CIDMA
Aveiro, Portugal

Manuel A. Martins
University of Aveiro and CIDMA
Aveiro, Portugal

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-031-43344-3 ISBN 978-3-031-43345-0 (eBook)
https://doi.org/10.1007/978-3-031-43345-0

© Springer Nature Switzerland AG 2023

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors, and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the
editors give a warranty, expressed or implied, with respect to the material contained herein or for any errors
or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

Paper in this product is recyclable.

https://orcid.org/0000-0002-0646-2017
https://orcid.org/0000-0002-5109-8066
https://doi.org/10.1007/978-3-031-43345-0

Preface

The 26th International Workshop on Algebraic Development Techniques (WADT 2022)
happened in Aveiro, Portugal, during June 28–30, 2022. The workshop took place under
the auspices of IFIP WG 1.3 and was organized by the Department of Mathematics of
the University if Aveiro with the support of CIDMA - Center for Research and Develop-
ments in Mathematics and Applications (UIDB/04106/2020) and of the project IBEX -
Quantitative methods for cyber-physical programming (PTDC/CCI-COM/4280/2021).

Having their origins as formal methods for reasoning about abstract data types,
algebraic approaches to systems specification evolved into several new specification
frameworks, programming paradigms, and a wide range of application areas. Topics
raised in the call for papers of WADT22 included:

– Foundations of algebraic specification
– Other approaches to formal specification, including process calculi and models of

concurrent, distributed, and mobile computing
– Specification languages, methods, and environments
– Semantics of conceptual modelling methods and techniques
– Model-driven development
– Graph transformations, term rewriting, and proof systems
– Integration of formal specification techniques
– Formal testing, quality assurance, validation, and verification

Following the trend of recent editions, beyond its main track, the event included two
special tracks: one on Algebra for timed and hybrid systems, chaired by Renato Neves,
and another one on Algebraic approaches to quantum computation, chaired by Rui S.
Barbosa.

The program of the workshop was constituted by 29 contributed talks, distributed
on the three tracks, which were presented by people that travelled from Canada, France,
Germany, Ireland, Italy, TheNetherlands,Norway, Portugal, Romania, Singapore, Spain,
Sweden, USA, and UK. Moreover, there were also the following invited talks

– Radu Mardare, with On Phenomenology of Computation
– JoséMeseguer, withBuilding Correct-by-Construction Systems with Formal Patterns
– José Nuno Oliveira, with Why Adjunctions Matter, and
– Peter Selinger, with Number-theoretic methods in quantum computing

As usual in the previous WADT events, all the authors were invited to extend and
submit their works to these post-proceedings. Each submission was reviewed by three
referees. This volume contains the eight accepted papers, which includes two papers
from the invited speakers José Meseguer and José Nuno Oliveira.

WADT represents a core reference in the area of algebraic specification. This work-
shop series was launched in 1982 in Sorpesee, and was followed in Passau (1983), Bre-
men (1984), Braunschweig (1986),Gullane (1987), Berlin (1988),Wusterhausen (1990),

vi Preface

Dourdan (1991), Caldes de Malavella (1992), S. Margherita (1994), Oslo (1995), Tar-
quinia (1997), Lisbon (1998), Chateau de Bonas (1999), Genoa (2001), Frauenchiemsee
(2002), Barcelona (2004), La Roche en Ardenne (2006), Pisa (2008), Etelsen (2010),
Salamanca (2012), Sinaia (2014), Gregynog (2016), Egham (2018), and the edition in
2020, which, due to COVID-19 restrictions, was realized on-line.

July 2023 Alexandre Madeira
Manuel A. Martins

Organization

General Chairs

Alexandre Madeira Aveiro University, Portugal
Manuel A. Martins Aveiro University, Portugal

Special Track Chairs

Rui S. Barbosa INL, Portugal
Renato Neves Minho University, Portugal

Steering Committee

Andrea Corradini University of Pisa, Italy
José Fiadeiro University of Dundee, UK
Rolf Hennicker LMU Munich, Germany
Alexander Knapp University of Augsburg, Germany
Hans-Jörg Kreowski University of Bremen, Germany
Till Mossakowski University of Magdeburg, Germany
Fernando Orejas Universitat Politècnica de Catalunya, Spain
Leila Ribeiro UFRGS, Brazil
Markus Roggenbach University of Swansea, UK
Grigore Ros,u University of Illinois at Urbana-Champaign, USA

Program Committee

Erika Abraham RWTH Aachen, Germany
Luís S. Barbosa University of Minho, Portugal
Rui S. Barbosa INL, Portugal
Carlos Caleiro University of Lisbon, Portugal
Andrea Corradini University of Pisa, Italy
José Luiz Fiadeiro University of Dundee, UK
Ichiro Hasuo NII, Japan
Rolf Hennicker LMU Munich, Germany
Marieke Huisman University of Twente, The Netherlands

viii Organization

Martti Karvonen University of Ottawa, Canada
Aleks Kissinger University of Oxford, UK
Alexander Knapp University of Augsburg, Germany
Alexandre Madeira University of Aveiro, Portugal
Manuel A. Martins University of Aveiro, Portugal
Narciso Martí-Oliet Universidad Complutense de Madrid, Spain
Dominique Mery LORIA, France
Till Mossakowski University of Magdeburg, Germany
Renato Neves University of Minho, Portugal
Peter Ölveczky University of Oslo, Norway
Fernando Orejas Universitat Politècnica de Catalunya, Spain
Markus Roggenbach Swansea University, UK
Georg Struth University of Sheffield, UK
Ionuţ Ţuţu Simion Stoilow Institute of Mathematics,

Romania
Benoît Valiron Université Paris-Saclay, France
Vladimir Zamdzhiev Inria, France

Additional Reviewer

Matthias Volk University of Twente, The Netherlands

Contents

Invited Talks

Building Correct-by-Construction Systems with Formal Patterns 3
José Meseguer

Why Adjunctions Matter—A Functional Programmer Perspective 25
José Nuno Oliveira

Standard Contributions

A Computability Perspective on (Verified) Machine Learning 63
Tonicha Crook, Jay Morgan, Arno Pauly, and Markus Roggenbach

A Presheaf Semantics for Quantified Temporal Logics . 81
Fabio Gadducci and Davide Trotta

Shades of Iteration: From Elgot to Kleene . 100
Sergey Goncharov

Automated QoS-Aware Service Selection Based on Soft Constraints 121
Elias Keis, Carlos Gustavo Lopez Pombo, Agustín Eloy Martinez Suñé,
and Alexander Knapp

Runtime Composition of Systems of Interacting Cyber-Physical
Components . 141

Benjamin Lion, Farhad Arbab, and Carolyn Talcott

SpeX: A Rewriting-Based Formal Specification Environment 163
Ionuţ Ţuţu

Author Index . 179

Invited Talks

Building Correct-by-Construction
Systems with Formal Patterns

José Meseguer(B)

Department of Computer Science, University of Illinois at Urbana-Champaign,
Urbana, USA

meseguer@illinois.edu

Abstract. Formal patterns are formally specified generic solutions to
commonly occurring computational problems. A formal pattern applies
to a typically infinite class of systems that satisfy specified semantic
requirements. Application of a formal pattern to a system satisfying the
formal pattern’s input requirements results in a new system with new
functionality that is correct by construction and enjoys specific formal
properties. This paper explains the semantics of formal patterns and
illustrates their usefulness from the software engineering, programming
methodology, and formal methods perspectives by means of specific for-
mal patterns in several application areas.

1 Introduction

Patterns in software engineering are generic solutions to common computational
problems, so that the same pattern can be applied to solve many instances of
a problem. This paper explains and summarizes work on formal patterns that I
have carried out with various colleagues over the last fourteen years. A previous
snapshot of this body of work appeared in 2014 [58]. Since then, formal patterns
have been applied to new areas, so that a second snapshot seems appropriate.

The main difference between “informal” patterns and the formal patterns
presented here is that informal patterns are illustrated by means of code in
some imperative language, whereas formal patterns are formal executable spec-
ifications, that is, declarative programs that provide a mathematical model for
the pattern, have formally specified semantic requirements for the contexts in
which they can be correctly applied, and come with precise assume-guarantee
formal properties. That is, if the formal pattern is applied in a context enjoying
the assumed semantic requirements, then the declarative program obtained by
applying the formal pattern is guaranteed to enjoy specific formal properties.

By their very nature formal patterns are related to software engineering, pro-
gramming methodology, and formal methods. From the programming method-
ology standpoint, as I further explain in Sect. 2.3 and Sect. 4.1, they endow
a declarative programming language supporting them with powerful meta-
programming capabilities that greatly increase software modularity and reuse
and that extend, yet go far beyond, those of parameterized modules and generic
c© Springer Nature Switzerland AG 2023
A. Madeira and M. A. Martins (Eds.): WADT 2022, LNCS 13710, pp. 3–24, 2023.
https://doi.org/10.1007/978-3-031-43345-0_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-43345-0_1&domain=pdf
https://doi.org/10.1007/978-3-031-43345-0_1

4 J. Meseguer

programming. From the software engineering and formal methods perspective
they support new ways of making software design much more efficient and cost-
effective and of greatly increasing the predictive power of designs before systems
are built. They also support the construction and verification of high-quality
correct software in a much more scalable way than with current methods. This
is because formal patterns can be incorporated into the early software design
stages to design and verify new systems by means of highly reusable and already
verified patterns, and allow formal verification efforts to become much more scal-
able, because the cost of the formal verification of a pattern is amortized over a
potentially infinite set of pattern instantiations. Furthermore, some formal pat-
terns such as PALS [61,65] and Multi-Rate PALS [12–14] can achieve state space
reductions so drastic as to render the formerly unfeasible model checking verifi-
cation of distributed real-time systems scalable up to sophisticated designs such
as the one reported in [12]. Finally, since formal patterns generate declarative
code and come with formal guarantees, they support the correct-by-construction
generation of code from formally specified software designs.

The paper is organized as follows. In Sect. 2 a precise, yet concise, explanation
of what formal patterns are, their relationship to parameterized theories, and a
summary of the areas where they have been applied so far is given. Then, in
Sect. 3 I give a high-level overview of some formal patterns in new areas not
covered in the previous 2014 snapshot [58]. Related work is discussed in Sect. 4.1,
and some concluding remarks are given in Sect. 4.2.

2 Formal Patterns in a Nutshell

Formal patterns are formally specified generic solutions to commonly occurring
computational problems. Being generic, a formal pattern applies, not just to a
single system, but to a typically infinite class of systems that satisfy specified
semantic requirements. Application of a formal pattern to a system satisfying
the formal pattern’s input requirements results in a new system with new func-
tionality that is correct by construction. Such correctness takes the form of an
assume-guarantee formal assurance: assuming that the original system meets
the formal pattern’s semantic requirements, then the application of the formal
pattern to such a system is guaranteed to enjoy specific correctness properties.

2.1 Formal Patterns in Declarative Programming Languages

The application of a formal pattern to the code of a system meeting its require-
ments results in a program. But how is this reconciled with a formal pattern
being a formal specification? The distinction between a program and a formal
(executable) specification evaporates using a declarative programming language,
where a program is a theory T in a computational logic L.

Mathematically, a formal pattern is a theory transformation P that maps any
theory T in the class C of theories satisfying the pattern’s input requirements,

Building Correct-by-Construction Systems with Formal Patterns 5

perhaps with some additional parameters �p, into a new theory P (T, �p) specifying
the new correct-by-construction system generated by P , i.e., we can describe P
as a (possibly partial) function,1

P : C ˆ Params � (T, �p) �Ñ P (T, �p) P ThL

where ThL denotes the category of theories in the language’s computational
logic L. We can therefore view P as a meta-program, that is, as a program that
transforms a declarative program T into another declarative program P (T, �p).

In general, the formal pattern P may transform not just one theory T , but
a vector �T “ T1, . . . , Tn of theories, that is, it may be of the general form
P (T1, . . . , Tn, �p). Since we can see the vector of theories T2, . . . , Tn as part of the
vector of additional parameters �p, I will focus in what follows on the case when
P transforms a single theory T P C.

In general, for a theory T in a computational logic L to be executable as a
declarative program, some additional executability requirements must be met. For
example, when L is equational logic, the minimum executability requirement for
T to be an equational program is that its equations, when oriented as left-to-right
rewrite rules, should be confluent. In some applications (see, e.g., [59]) the class
of theories C transformed by P may not necessarily consist of already executable
theories, because the main point of P may be to transform a theory T P C
into an executable declarative program P (T, �p). In some rare cases the opposite
can be the case, that is, T P C may be an executable declarative program,
but P (T, �p) may not be executable. This actually happens, for example, for
the P transformation defined in [47] and described in §3.1, although further
transformations make P ’s result executable. However, in most applications C
will already be a class of declarative programs in L, i.e., a class of theories that
already enjoy the needed executability conditions, and P (T, �p) will likewise be
a declarative program.

Although in some applications (e.g., [8]) the purpose of a formal pattern P
may be one of optimization and/or specialization of a declarative program T P C,
in L, in many other applications P (T, �p) may instead be a substantial extension of
T with completely new features and capabilities; that is, P (T, �p) is often a more
sophisticated system, enjoying new features and properties not available in T .
Nevertheless, the assume-guarantee properties of P often include the fact that P
will in some appropriate sense be semantics-preserving. But in general this should
not be understood in the sense that T and P (T, �p) have the same semantics.
Instead, the semantics of P (T, �p) will often extend that of T while respecting T
itself, which may remain intact as a subcomponent of P (T, �p). This is in fact the
case for many formal patterns (see, e.g., [10,19,34,43,60,79–81]). From the point
of view of code reusability this means that the code of T is not changed at all
by P . That is, T is kept intact and encapsulated as a subcomponent. This gives

1 In general, the domain of P may be a subset of the Cartesian product C ˆ Params.
This is because for each T P C the choice of adequate parameters in Params may
not be arbitrary, since it may depend on T itself. See Sect. 2.3 for an example.

6 J. Meseguer

formal patterns powerful modularity, code understandability and reusability, and
verification scalability properties.

In yet other kinds of examples of formal pattern (e.g., [13,47,49,50,61]), the
input theory T may not be kept as a subcomponent of P (T, �p). Instead, the
assume-guarantee properties relating T and P (T, �p) may include considerably
more general semantics-preserving properties such as the existence of a simula-
tion or bisimulation (including the case of a stuttering simulation or bisimula-
tion), between P (T, �p) and T .

For a somewhat dated, yet informative, taxonomy of formal patterns that can
help the reader gain further insights about this notion and some of its possible
uses, sometimes as compositions of previously defined patterns, see [58].

2.2 Requirements on the Computational Logic L
Declarative languages based on expressive computational logics will support a
richer variety of formal patterns than less expressive ones. In my own experience,
for a computational logic L to be an expressive semantic framework for formal
patterns it is highly desirable that L supports features such as the following:

1. logical reflection
2. concurrency
3. concurrent object reflection and adaptation
4. support for real-time and probabilistic computations, and
5. advanced formal verification methods and tools.

I will use Maude’s [21] computational logic, namely, rewriting logic [16,55], as
a semantic framework satisfying requirements (1)–(5) (for how requirements (1)–
(5) are met, see [57] and references there). I will illustrate in Sect. 3 Maude’s
practical adequacy to specify and verify a rich variety of formal patterns by
summarizing some of those patterns, and will give references in Sect. 2.5 to
pubications where full details can be found for those and other formal patterns.

2.3 Relationship to Parameterized Theories

Parameterized theories, that is, theory inclusions P
J
↪Ñ B, usually denoted B[P],

from a parameter theory P to a body theory B support very high levels of code
and proof reusability, and a so-called generic programming style. For example, P
may be the theory of totally ordered sets, and B may define a sorting algorithm
on lists whose elements belong to a totally ordered set. Then, this generic sorting
algorithm can be instantiated to sort lists whose elements belong to any com-
putable totally ordered set (A, ă) of elements. Likewise, its proof of correctness
can be carried out once and forall at the parametric level, so that any of the,

Building Correct-by-Construction Systems with Formal Patterns 7

potentially infinite, instantiations of the algorithm to a given totally ordered set
of elements will be correct by construction. Parameterized theories are obvious
and easy examples of formal patterns. Since parameterized theories should pro-
tect their parameter instantiations, they belong to the broader class of formal
patterns P (T, �p), already discussed in Sect. 2.1, that extend their input theory
T while keeping it unchanged as a subcomponent. In fact, the notion of a formal
pattern can be seen as a vast generalization of parameterized theories.

Let me explain the precise sense in which the instantiation of a parameter-
ized theory is a special case of the formal pattern notion. First of all, recall that
the class of theories ThL of a computational logic L is not just a set-theoretic
class but is actually a category, where theories are the objects and the arrows
are theory interpretations (called views in OBJ [41] and Maude [21]). Further-
more, under mild conditions on L, the category ThL has pushouts. Then, the
instantiation of a parameterized theory B[P] by a theory interpretation P

HÑ T
is defined by the pushout diagram:

This is an obvious example of a formal pattern, namely, a function:

B : (T,H) �Ñ B[H]

where the class C of theories over which T ranges is:

C “def {T P ThL | D (H : P Ñ T) P ArrowThL}
and where the parameter vector �p is just a theory interpretation H : P Ñ T .
That is, the domain of B is:

{(T,H) P C ˆ ArrowThL | H : P Ñ T}.

The reason why formal patterns are a vast generalization of parameterized
theories is that the pushout construction B[H], while very useful, is quite a
simple way of “gluing B and T together” as a quotient of the disjoint union of
theories B Z T , so that its axioms (i.e., its code) are a slight renaming of the
axioms in BzP and those in T . In general, however, the theory P (T, �p), generated
by a formal pattern P for an input theory T and parameters �p, may depend on
T and �p in much more sophisticated ways. For example, both its type structure,
such as its sorts and subsorts, and its axioms (i.e., its code) may depend in
fairly complex ways on both T and �p. Also, T may, but need not remain as a
subcomponent of P (T, �p).

From the programming methodology point of view, what this all means is
that formal patterns are meta-programs which provide a vast generalization of
what is possible within current generic programming methodologies, because

8 J. Meseguer

the kinds of genericity that now become possible are both unlimited and user-
definable. Mathematically, what makes all this possible is logical reflection (for
logical reflection in equational and rewriting logic see [22]). In fact, formal pat-
terns are a further development of the idea of endowing a declarative program-
ming language with an extensible and user-definable module algebra by means
of logical reflection proposed in [28,32].

2.4 The Importance of Logical Reflection

Let me explain why logical reflection supports meta-programming and, in partic-
ular, why formal patterns are meta-programs. A theory T in a logic is a meta-level
entity. We can think inside T at the so-called object level, for example by proving
theorems in T . But how can we reason across different theories inside a logic, for
example to manipulate or transform T itself? In particular, how can we formal-
ize a theory transformation P : (T, �p) �Ñ P (T, �p) by axioms inside the logic?
Such axioms should belong to a theory, but which theory, when even T itself is
not fixed but is a parameter ranging over a typically infinite class of theories?

Logical reflection [22] is the answer to all these questions. As already men-
tioned, both equational and rewriting logic are reflective [22]. For rewriting logic
this means that it can faithfully represent its own theories and their deductions,
because it has a finitely presented rewrite theory U that is universal, in the sense
that for any finitely presented rewrite theory R (including U itself) we have the
following equivalence:

R $ t Ñ∗ t′ ⇔ U $ 〈R, t〉 Ñ∗ 〈R, t′〉,

where R and t are terms representing R and t as data elements of U , and 〈 , 〉
is a pairing operator also in U . In particular, the universal theory U has a type,
called Theory, whose terms meta-represent rewrite theories. That is, a theory T
is meta-represented by the term T of type Theory.

It is now easy to explain why a theory transformation P : (T, �p) �Ñ P (T, �p)
is a meta-program, that is, a program in a theory that extends the universal
theory U . We can meta-represent such a theory transformation as a function
P : Theory ˆ Params −Ñ Theory : (T , �p) �Ñ P (T , �p), where Params is the data
type for the additional parameters of the transformation. Of course, the domain
of P is typically a subset of the cartesian product Theory ˆ Params; but we can
give an error value for pairs (T , �p) outside the domain of P . A meta-theorem of
Bergstra and Tucker [15] ensures that if the theory transformation P is effective
—that is, is computable— we can always axiomatize P by means of a finite set
of confluent and terminating equations. Since rewriting logic contains equational

Building Correct-by-Construction Systems with Formal Patterns 9

logic as a sublogic, this means that any effective formal pattern P transforming
rewrite theories can be meta-programmed with a finite set of confluent and
terminating equations in a finitary extension of the universal theory U .

In Maude, reflection and reflection-based meta-programming are efficiently
supported by its META-LEVEL module [21]. For example, although instantiation
of parameterized modules by theory interpretations is currently supported by
Maude itself at the C++ level, in earlier versions of Maude this was supported
by meta-programming, precisely as the formal pattern described in Sect. 2.3,
using the META-LEVEL module (see [28,32]).

2.5 Application Areas

Formal patterns specified as Maude meta-programs have been defined and proved
correct in various application areas, including:

1. Cyber-physical systems
– Formal Patterns for Safe Operation of Medical Devices [79–81]
– PALS [61,65] and Multi-Rate PALS [12–14]

2. Security: DDoS protection
– Cookies [19]
– Adaptive Selective Verification (ASV) [10]
– Server Replicator (SR) and ASV+SR [34]

3. Distributed systems’ implementation and model checking
– The D Transformation [50]
– The P , Sim and M transformations for statistical model checking (SMC)

analysis [47]
– The M Transformation for automatically verifying consistency properties

of Distributed Transaction Systems [49]
4. Theorem proving and executability transformations

– The E �Ñ E” [43] and �E �Ñ �E : [60] Transformations
– The R �Ñ Rl and R �Ñ RΩ

Σ1,l,r, Transformations [59]
– The R �Ñ RU Transformation [31]
– Partial Evaluation Transformations [8].

3 High-Level Overview of Some Formal Patterns

Since a high-level overview of formal patterns in the areas of cyber-physical
systems and DDoS protection can be found in [58], here I will summarize some
formal patterns in the areas of distributed systems and of theorem proving and
executability transformations. This overview will, by choice, be incomplete, since:
(i) the areas covered in [58] will be excluded; and (ii) even in the selected areas I
will not cover all the examples. Therefore, to gain a more complete overview of
formal patterns this paper should be read in conjunction with the earlier paper

10 J. Meseguer

[58], as well as the papers describing those patterns in the two selected areas
which are not covered in what follows, namely, [8,31,49,59,60].

As already mentioned, from the software engineering point of view —and
just as it holds true for informal patterns described by code in some imperative
language— formal patterns are generic solutions to commonly occurring com-
putational problems. Therefore, to better describe each concrete formal pattern
I will explain: (i) the problem that the pattern solves; (ii) its context of appli-
cability, i.e., the input requirements of the formal pattern as a transformation;
(iii) the solution to the given problem provided by the pattern; (iv) the formal
guarantees that, assuming the pattern is instantiated to inputs in the rightful
context, the instantiation of the pattern provides; and (v) the applications of
the pattern to solve specific problems.

3.1 Distributed Systems and Their Analysis

The D Transformation

Problem. Since rewrite theories formally specify concurrent systems, Maude,
as a rewriting-logic-based declarative language, is naturally well-suited to design
new distributed systems and is routinely used for this purpose. Furthermore,
Maude itself and its environment of formal tools support various forms of both
model checking and theorem proving formal verification. In addition Maude is
also a concurrent programming language, since Maude’s declarative programs
can be executed in a distributed manner across different machines. Indeed,
Maude supports concurrent objects that can communicate with each other across
machines (or within a given machine), as well as with other objects outside
Maude through so-called external objects [29], such as socket I/O objects and
file I/O objects. Of course for design and verification purposes the mathemat-
ical model of a concurrent system provided by a rewrite theory, executed in a
Maude interpreter, and verified and analyzed by various formal tools provides
an ideal setting for simulation and formal verification; and also for performance
estimation (see the P transformation below). Once a new system design has
been prototyped, analyzed and verified this way, its distributed implementation
is “only” a matter of explicitly mapping different objects of the thus designed
system into different machines and of supporting their communication by means
of I/O sockets. But, since this implementation of the design has up to now been
done manually, there is still a formality gap between the verified design given by
a rewrite theory and its distributed implementation with the help of I/O sockets.
Bridging this gap is the purpose of the D-transformation [50].

Context. Since actors [3], that is, concurrent objects that communicate with
each other through asynchronous message passing are arguably the most natural
way to specify and program concurrent algorithms and systems, and they can be
specified in Maude as rewrite theories in a completely natural way, the input to
the D transformation is a rewrite theory A (a so-called Maude system module)

Building Correct-by-Construction Systems with Formal Patterns 11

that specifies an actor system (see [47,50,56] for detailed descriptions of how
actor systems, and generalizations of them, determine classes of rewrite theories).

Solution. The D transformation automatically transforms a Maude actor-based
system module (i.e., an actor-based rewrite theory A) into a distributed imple-
mentation by: (i) mapping the various actors into different machines; and (ii)
providing the required middleware (also written in Maude as so-called mediator
objects) for communication between objects across different machines. Pictori-
ally, if we represent actors by circles and messages by envelopes traveling between
actors, we can visualize the D transformation by means of the following figure:

The D transformation has the form:

D : (A, init , di) �Ñ D(A, init, di)

where:

– A is a Maude system module defining an actor system
– init is an initial state of A
– di is a distribution information function di : idobj �Ñ (ip, session#), and
– D(A, init, di) is the Maude program distributing A according to di with initial

state initDdi
(ip, i).

Guarantees. The main guarantee is provided by the following (see [50]):

Theorem 1. A and D(A, init, di) are stuttering bisimilar.

Therefore, for any formula ϕ P CTL∗z© we have:

(A, init) |“ ϕ ⇔ (D(A, init, di), initDdi
(ip, i)) |“ ϕ.

12 J. Meseguer

That is, all CTL∗z© properties already verified about the mathematical model A
from the initial state init are also satisfied by the implementation D(A, init, di)
[51]. The trusted code base includes the Maude implementation itself and the
correct behavior of the TCP-IP implementation used by the socket I/O objects.

Applications. The D transformation has been automated and prototyped in
Maude, and has been experimentally validated through some case studies [50].
The D prototype is a proof of concept that should be optimized in a mature tool.
However, the experience gained so far suggests two encouraging advantages: (1)
Although the efficiency of the automatically generated distributed Maude imple-
mentation is not as high as that of high-quality implementations in conventional
languages, its code size is much smaller and its performance may still be accept-
able for some applications. For example, an efficient C++ implementation of
the NO WAIT distributed transaction system in [44] is roughly 6 times faster
than the automatically generated Maude implementation, but has about 12K
LOC in C++, as opposed to 600 LOC in Maude. (2) Another attractive advan-
tage of the D transformation is that it is possible to develop and thoroughly
analyze both the logical and the quantitative properties of a new distributed
system design, and then automatically generate a correct-by-construction dis-
tributed implementation of that system design in Maude using D. This has been
demonstrated for ROLA [48], a new distributed transaction system occupying a
previously unexplored point in the spectrum of tradeoffs between performance
and database consistency, which has been implemented using D, thus confirming
experimentally the good performance trends that were formerly predicted about
its Maude design by statistical model checking.

The P , Sim and M Transformations

Problem. For distributed systems, both logical correctness and competitive
performance are key requirements. The problem is that, at present, the formal
verification of logical properties such as safety and liveness properties —done
by model checking and theorem proving—, and the quantitative performance
estimation of a system design —done by simulation and by probabilistic or sta-
tistical model checking— use very different mathematical models, so that there
is currently a model schizophrenia, since there is often no clear way to semanti-
cally relate these different models and it is actually quite challenging to do so.
For model-checking-based performance estimation, finite-automata-based mod-
els enriched with probabilities and time are analyzed in tools such as Uppaal
SMC [24] and PRISM [46,70]. The problem is that object-based distributed
system features such as: (i) unbounded data structures in object attributes; (ii)
unbounded increase in the number of both asynchronous messages and dynam-
icaly created objects; and (iii) the need for parametric families of user-specified
distributions whose parameter values may change dynamically so as to faithfully
model their behavior, are quite hard or impossible to represent in such automata-
based models. For quantitative analysis of performance properties based on sta-
tistical model checking (SMC) [5], a further challenge is the need to use models

Building Correct-by-Construction Systems with Formal Patterns 13

of a distributed system that are purely probabilistic, i.e., at any time t, the state
st reached at time t can perform at most one probabilistic transition; this is also
called the absence of nondeterminism (AND) property.

Context. As already mentioned for the D transformation, actors [3] that com-
municate with each other through asynchronous message passing are a very
natural way to specify and program concurrent systems. The actor model can
be made more expressive by allowing generalized actor systems, which extend
the already very large class of Agha’s message-passing actor systems by allowing
“active actors” that can change their state without receiving a message. They
can be naturally specified in Maude as generalized actor rewrite theories [47].

Solution. The model schizophrenia problem is solved by deriving all models nec-
essary for quantitative analysis of a distributed system from the rewriting logic
specification of that system as a generalized actor rewrite theory A through three
semantics-preserving model transformations. The first transformation, called the
P -transformation, has the form:

P : (A,Π) �Ñ AΠ

where AΠ is a timed probabilistic rewrite theory [6] suitable for quantitative SMC
analysis, and Π is a user-specified family of parametric probability distributions
that model quantitatively the message communication delays. Since the prob-
abilistic rewrite theory AΠ is a non-executable mathematical model, a second
theory transformation, called the Sim transformation,

Sim : AΠ �Ñ Sim(AΠ)

associates to the non-executable probabilistic model AΠ an executable rewrite
theory Sim(AΠ) that simulates AΠ ’s behaviors by sampling its distributions
using the Inverse Transform Method [42,73]. But —in a way analogous as how
to model check qualitative, temporal logic properties of the original concurrent
system model A the specification A has to be extended with the relevant state
predicates—, a similar extension, specifying the relevant events to be observed,
is likewise needed for quantitative properties. That is, it is not always possible
to directly express desired quantitative properties on either A or Sim(AΠ). To
support the specification and SMC analysis of quantitative properties, a third
theory transformation, called the M transformation,

M : (Sim(AΠ),m) �Ñ M(Sim(AΠ),m)

adds to Sim(AΠ) a monitor that “records” the events needed to measure quan-
titative properties during a run, as specified by the partial function m.

Except for the user specification of the probability distributions Π and the
events map m, the composition of the P , Sim and M transformations fully
automates the derivation from the original generalized actor rewrite theory A
of an executable rewrite theory M(Sim(AΠ),m) in Maude which, together with

14 J. Meseguer

the desired quantitative property ϕ to be analyzed (expressed in the QuaTEx
quantitative temporal logic [6]), can be directly entered into the PVeStA [9]
statistical model checker. All these transformations have been integrated with
the PVeStA tool in the Actors2PMaude tool [47], which supports automatic
SMC analysis of the quantitative system properties of a concurrent system design
A when the relevant probability distributions Π and events to be observed m
as well as the QuaTEx property ϕ are specified by the user. The architecture
of the Actors2PMaude tool is summarized in the following diagram:

Guarantees include the following (see [47]): (1) For any generalized actor
rewrite theory A and any initial state satisfying natural requirements, all behav-
iors of AΠ are purely probabilistic, i.e., AΠ enjoys the AND property and is
therefore a suitable model for SMC analysis. (2) AΠ is semantically related to
A by means of a stuttering simulation. (3) Sim(AΠ) correctly simulates AΠ . (4)
Sim(AΠ) and M(Sim(AΠ),m), with respective initial states init(initconf) and
M(init(initconf)), are bisimilar rewrite theories.

Applications. In combination, the P , Sim and M transformations solve several
hard problems in the quantitative analysis of distributed system, namely: (i) the
need to develop special-purpose models for such analysis, usually quite different
from the models used for formal verification of logical properties (the model
schizophrenia problem); (ii) the serious barrier to perform statistical model
checking quantitative analysis of distributed systems by non-experts due to the
need for ensuring absence of non-determinism (the AND property), which may
be hard to check; (iii) furthermore, non-experts are typically unfamiliar with
probabilistic simulation techniques for analyzing probabilistic systems; and (iv)
when model checking quantitative system properties expressed as probabilistic
temporal logic formulas, such formulas often refer to basic system properties
that are not part of the distributed system’s specification, so the model must
be extended by hand to define such basic properties, which can be both tedious
and error-prone. Problems (i)–(ii) are solved by the P transformation; prob-
lem (iii) is solved by the Sim transformation; and problem (iv) is solved by
the M transformation. Thanks to the Actors2PMaude tool, the P , Sim and
M transformations are automated, making automated quantitative analysis of
distributed systems by non-experts both much easier and much more reliable.
The paper [47] discusses a wide variety of distributed systems that have been
automatically analyzed using Actors2PMaude.

Building Correct-by-Construction Systems with Formal Patterns 15

3.2 Theorem Proving and Executability Transformations

The E �Ñ E” Transformation

Problem. Equational inductive theorem proving is the most common formal
method used to verify the correcteness properties of equational programs. This
exactly means proving inductive theorems about the initial algebra defined by
the equational program. To scale up inductive proofs there is a need to automate
as much as possible the inductive proof process by means of formula simplifi-
cation methods that build in as much knowledge as possible about the initial
algebra we are reasoning on. Since the atomic predicates on which formulas are
built are equalities u “ v between terms, it can be very useful to build in a
sound and complete axiomatization of the given initial algebra’s equality predi-
cate as an equationally defined Boolean-valued predicate ” such that u “ v
(resp. u �“ v) is an inductive theorem iff u ” v “ true (resp. u ” v “ false) is an
inductive theorem in the initial algebra obtained by adding ” and its defining
equations to the original specification. This is precisely what the E �Ñ E” trans-
formation [43] does, so that the equations of E” become powerful simplification
rules to simplify formulas in E . For example, for 0 and s the constructors for
natural numbers, and , an associative-commutative multiset union construc-
tor, the equations s(x ` s(y)) “ s(s(x) ` y), 0 “ s(y ` z), and U, V “ U,W are
automatically simplified to, respectively, x ` s(y) “ s(x) ` y, K, and V “ W .

Context. In expressive equational languages such as OBJ [41] and (the functional
sublanguages of) CafeOBJ [38] and Maude [21], an equational program is specified
by an order-sorted equational theory E “ (Σ,E YB) such that B is a combination
of associativity, commutativity and unit element axioms for some binary opera-
tors, and the (possibly conditional) equations E, when oriented as rewrite rules �E
are ground convergent modulo the axioms B. Furthermore, it is possible to specify
a subsignature Ω Ď Σ of constructor symbols and show that the equations defin-
ing symbols in ΣzΩ are sufficiently complete, meaning that the �E/B-canonical
form t!�E/B of any ground term is a ground Ω-term. The constructors Ω in E are
called free modulo B iff we have an Ω-algebra isomorphism TΣ/EYB|Ω – TΩ/B ,
where TΣ/EYB|Ω denotes the Ω-reduct of the initial algebra TΣ/EYB of E , which
can be abbreviated to TE . The input to the E �Ñ E” transformation is given by
order-sorted equational theories E that are ground convergent modulo axioms B
consisting of combinations of associativity and/or commutativity axioms and such
that its constructors Ω are free modulo B. The absence of unit axioms is not a seri-
ous restriction, since the already mentioned formal pattern R �Ñ RU , defined in
[31], turns unit axioms into rules and yields an equational theory equivalent to E
and enjoying the same executability conditions.

Solution. For absolutely free constructors, defining equality predicates is quite
easy and well-known. But for constructors that only are free modulo axioms B
such as associativity or associativity-commutativity, the problem is considerably
harder and, to the best of my knowledge, had not been solved until the E �Ñ E”
transformation was proposed. The theory E” adds equality predicates for both
(absolutely) free constructors and for free constructors modulo B.

16 J. Meseguer

Guarantees include the following (see [43]): (i) E” is ground convergent modulo
axioms B” extending B, and sufficiently complete modulo Ω Z {true, false}; (ii)
E” protects the original theory E , i.e., TE” |Σ – TE ; and (iii) for any Σ-equation
u “ v we have the equivalence,

TE |“ u “ v ⇔ TE” |“ u ” v “ true

which shows that E” is a sound and complete equational axiomatization of the
equality predicate in TE .

Applications. A first application area is inductionless induction theorem prov-
ing, where various authors, e.g., [23,40,68], have used an equationally-defined
equality predicate to prove or disprove inductive conjectures automatically. In
inductionless induction work, such equality predicates have been defined for free
constructors. What the E �Ñ E” transformation makes possible it to reason the
same way about order-sorted initial algebras whose constructors obey associativ-
ity and/or commutativity axioms. The E �Ñ E” transformation has been used as
an effective simplification technique in Maude’s Invariant Analyzer tool [71,72],
and also in Maude’s Constructor-Based Reachability Logic Prover [77], where, in
conjunction with other inductive simplification techniques, was instrumental in
automating large parts of the security verification of the IBOS browser [76]. The
E �Ñ E” transformation plays also a key role in the inductive simplification tech-
niques of Maude’s new inductive theorem prover (NuITP) under construction,
where it is used in two of its formula simplification rules [52].

The R �Ñ Rl Transformation

Problem. A rewrite theory [55] is a triple R “ (Σ,E YB,R), where (Σ,E YB)
is an equational theory, which I will assume order-sorted, and R is a collection of
Σ-rewrite rules. The intended meaning of R is that it is the formal specification
of a concurrent system whose states are elements of the initial algebra TΣ/EYB,
and whose concurrent transitions between such states are axiomatized by the
rules R. This exactly means that, conceptually, the application of the rules R
takes place modulo the equations E YB; that is, by means of the rewrite relation
ÑR/(EYB). The problem, however, is that rewriting modulo E Y B is in general
undecidable. Therefore, further executability conditions are needed to compute
efficiently with R. For the equational part they are the obvious ones, namely,
ground convergence of �E modulo B. For R, the needed condition is the so-called
ground coherence of the rules R with the oriented equations �E modulo B [33,84].
This exactly means that for each ground Σ-term t and one-step rewrite modulo
B, t ÑR/B v, there exists a one-step rewrite modulo B, t!�E/B ÑR/B w, such that
v!�E/B “B w!�E/B. What this accomplishes is to eliminate the need for rewriting

modulo E Y B: only rewriting modulo axioms B is needed for both �E and R.
The problem addressed by the formal pattern R �Ñ Rl is how to automatically
complete a rewrite theory R into a semantically equivalent one (i.e., having the
same initial model), that has all the required executability conditions.

Building Correct-by-Construction Systems with Formal Patterns 17

Context. The rewrite theories R admissible as inputs to the R �Ñ Rl transfor-
mation are so-called topmost rewrite theories R “ (Σ,E Y B,R), i.e., theories
whose rules R can only be applied at the top of a term t, never at a proper sub-
term of a term. Many theories that are not topmost such as, for example, actor
system rewrite theories, can be easily transformed into topmost ones. The addi-
tional requirements are that: (i) the equational theory (Σ,E YB) is ground con-
vergent modulo B, and (ii) is sufficiently complete with respect to a constructor
signature Ω and is such that TΣ/EYB|Ω – TΩ/EΩYBΩ

, where EΩ YBΩ Ď E YB,
and EΩ YBΩ is ground convergent and enjoys the finite variant property (FVP)
[37]; and (iii) the lefthand sides of rules in R are all Ω-terms. Requirement (iii)
is very natural and is satisfied in virtually all examples, since giving a transition
rule for a state with unevaluated defined functions goes against basic program-
mer intuitions. The requirement that EΩ YBΩ is FVP is not overly restrictive in
practice, since equations between constructors are rare and tend to be quite sim-
ple. However, equations EΩ YBΩ, besides appearing in well-know examples such
as sets (where EΩ is the idempotency of set union and BΩ is its associativity-
commutativity) are also very useful to model check a (possibly infinite-state)
rewrite theory by means of an equational abstraction [62], a state space reduc-
tion technique based on the addition of new constructor equations EΩ Y BΩ to
collapse many states of a rewrite theory into a single equivalence class in its
quotient under EΩ Y BΩ. In general, such a quotient rewrite theory may not be
executable, but it may become so by applying the R �Ñ Rl transformation.

Solution. The solution is provided by the theory Rl. The lefthand sides of the
rules in Rl are precisely the EΩ , BΩ-variants of the lefthand sides for the rules
in R.

Guarantees include the following (see [59]): If R satisfies the above-mentioned
context requirements, then: (i) R and Rl are semantically equivalent in the
sense of having the same initial model; (ii) if the rules in Rl do not have extra
variables in their righthand sides, then Rl is indeed executable; in particular,
the rules in Rl are coherent with the equations E modulo B. If extra variables
appear in some righthand sides of rules, the theory Rl is only executable symbol-
ically by narrowing [30,54]. However, further inductive reasoning may succeed
in eliminating the extra variables in the righthand sides of the rules in Rl.

Applications. The R �Ñ Rl transformation has two important, yet related,
applications. First, since ground coherence is an essential requirement for the
executability of a rewrite theory, it can complete the rules of a non-executable
topmost rewrite theory to make it ground coherent. Second, ground coherence
completion is frequently needed in model checking applications when an infinite-
state system is made finite-state by means of an equational abstraction [62],
because the originally ground coherent rewrite rules of the given topmost rewrite
theory frequently cease to be ground coherent when the abstraction equations

18 J. Meseguer

are added. This problem has been previously managed by hand (see, e.g., [21]),
but can now be semi-automated thanks to the R �Ñ Rl transformation.

4 Related Work and Concluding Remarks

4.1 Related Work

The most obviously related work is that on what might be called “informal”
patterns in software engineering, e.g., [18,39,75], and on various formalizations
of such patterns, e.g., [2,7,27,35,64,74,78,82], which are further discussed in
[58].

The assume-guarantee properties of a formal pattern are clearly related to
the notion of a contract [63] that will be kept if a pattern is instantiated in a
way that respects its semantic requirements, and to the extensive literature on
assume-guarantee reasoning for concurrent systems, e.g., [1,20,66,85].

Formal patterns for distributed systems are closely related to work on dis-
tributed object reflection [4,26,53,83].

As pointed out in Sect. 2.3, formal patterns are a vast generalization of
parameterized theories à la Clear [17], supported by declarative languages such
as OBJ [41], CafeOBJ [38] and Maude [21], and by various algebraic specification
languages, e.g., [36,67]. Likewise, they generalize ideas in generic programming,
e.g., [25,69]. Also, they further develop the notion of an extensible module algebra
for Maude proposed in [28,32].

There are also clear relationships to meta-programming, program transfor-
mations and software reflection. These areas are too vast to represent by giving
a few references. Just note that some of these ideas go back to LISP, were fur-
ther expanded in Smalltalk, have been widely used in both functional and logic
programming, and that there are regular conferences on declarative program
synthesis and transformation such as LOPSTR. For example, the formal pattern
on partial evaluation transformations [8] mentioned in Sect. 2.5 is part of a large
body of work in this area. The work on aspect-oriented programming (AOP)
[45] is also a style of meta-programming related to formal patterns, in the sense
that the automated enrichment of a software system with new capabilities and
features provided by AOP is likewise provided by patterns that automatically
extend a distributed system with new features, capabilities and properties.

4.2 Concluding Remarks

The formal patterns listed in Sect. 2.5 can be grouped in two main categories:

1. Design and correct-by-construction implementation patterns: [8,10,12–14,19,
34,49,50,61,65,79–81].

2. Patterns for analysis and verification, or for transforming a program to ensure
specific program properties: [31,43,47,49,59,60].

Building Correct-by-Construction Systems with Formal Patterns 19

In Sect. 2 I have emphasized the meaning of type-(1) formal patterns, while in
Sect. 3, the P , Sim and M transformations, the E �Ñ E” transformation, and
the R �Ñ Rl transformation have illustrated type-(2) formal patterns. What this
means is that type-(1) and type-(2) formal patterns can be used in combina-
tion both for system design and correct-by-construction code generation, and as
helpful aids in the analysis and verification process. For example, the combined
availability of the D transformation and the P , Sim and M transformations (plus
the possibility of performing both explicit-state [21] and symbolic model checking
[11,30] verification within Maude) means that there is a seamless path within
rewriting logic supporting both the design and verification of qualitative and
quantitative properties of a concurrent system, and its correct-by-construction
distributed implementation, all within Maude.

The formal pattern examples in Sect. 2.5 and Sect. 3 show that Maude and its
underlying rewriting logic provide an expressive semantic framework for defining
and reasoning about formal patterns. However, the idea of a formal pattern
is parametric on the computational logic L chosen as semantic framework and
could be equally useful in other declarative languages, particularly in declarative
languages whose computational logic supports logical reflection, or that have a
rich enough type structure to describe formal patterns as type transformations.

Acknowledgements. The development of formal patterns is a collective effort with
various colleagues. The references given in Sect. 2.5 provide a list of authors who have
contributed to advance the entire area. My collaborations with Kyungmin Bae, Peter
Csaba Ölveczky, Lui Sha, and Mu Sun in developing various formal patterns for cyber-
physical systems and for the safety of medical devices were an important early stimulus
that has inspired the development of formal patterns in other areas. Focusing just on
the formal patterns presented in Sect. 3, I would like to thank David Basin, Raúl
Gutiérrez, Si Liu, Peter Csaba Ölveczky, Camilo Rocha, Atul Sandur, Qi Wang and
Min Zhang for their contributions in developing some of them. I thank the WADT
2022 organizers for giving me the opportunity to present these ideas in an invited
talk, and the WADT 2022 participants for their insightful comments and questions.
I also presented these ideas in seminar talks at King’s College London, University
College London, and the University of Leicester during the Summer of 2022. I thank
the participants in those seminars for their insightful comments and questions, and
the Leverhulme Trust for funding my visiting professorship at King’s College London,
during the Summer of 2022, which made those seminar presentations possible. Last
but not least, I wish to thank the anonymous reviewers for their excellent suggestions,
which have helped me improve the exposition and further explain these ideas. The
present text has benefited from the comments received in all these ways. This research
has been partially supported by NRL Contract N0017323C2002.

References

1. Abadi, M., Lamport, L.: Composing specifications. ACM Trans. Program. Lang.
Syst. 15(1), 73–132 (1993)

2. Abrial, J.R., Hoang, T.S.: Using Design Patterns in Formal Methods: An Event-
B Approach. In: Fitzgerald, J.S., Haxthausen, A.E., Yenigün, H. (eds.) ICTAC.
LNCS, vol. 5160, pp. 1–2. Springer (2008)

20 J. Meseguer

3. Agha, G.: Actors. MIT Press (1986)
4. Agha, G., Frolund, S., Panwar, R., Sturman, D.: A linguistic framework for

dynamic composition of dependability protocols. IEEE Parall. Distrib. Technol.:
Syst. Appl. 1, 3–14 (1993)

5. Agha, G., Palmskog, K.: A survey of statistical model checking. ACM Trans. Model.
Comput. Simul. 28(1), 6:1–6:39 (2018)

6. Agha, G.A., Meseguer, J., Sen, K.: PMaude: Rewrite-based specification language
for probabilistic object systems. Electr. Notes Theor. Comput. Sci. 153(2) (2006)

7. Alencar, P.S.C., Cowan, D.D., Lucena, C.J.P.: A formal approach to architectural
design patterns. In: Gaudel, M.-C., Woodcock, J. (eds.) FME 1996. LNCS, vol.
1051, pp. 576–594. Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-
60973-3 108

8. Alpuente, M., Cuenca-Ortega, A., Escobar, S., Meseguer, J.: A partial evaluation
framework for order-sorted equational programs modulo axioms. J. Log. Algebraic
Methods Program. 110, 100501 (2020)

9. AlTurki, M., Meseguer, J.: PVeStA: a parallel statistical model checking and
quantitative analysis tool. In: Corradini, A., Klin, B., Ĉırstea, C. (eds.) CALCO
2011. LNCS, vol. 6859, pp. 386–392. Springer, Heidelberg (2011). https://doi.org/
10.1007/978-3-642-22944-2 28

10. AlTurki, M., Meseguer, J., Gunter, C.: Probabilistic modeling and analysis of DoS
protection for the ASV protocol. Electr. Notes Theor. Comput. Sci. 234, 3–18
(2009)

11. Bae, K., Escobar, S., Meseguer, J.: Abstract Logical Model Checking of Infinite-
State Systems Using Narrowing. In: Rewriting Techniques and Applications
(RTA’13). LIPIcs, vol. 21, pp. 81–96. Schloss Dagstuhl-Leibniz-Zentrum fuer Infor-
matik (2013)

12. Bae, K., Krisiloff, J., Meseguer, J., Ölveczky, P.C.: Designing and verifying dis-
tributed cyber-physical systems using multirate PALS: an airplane turning control
system case study. Sci. Comput. Program. 103, 13–50 (2015)

13. Bae, K., Meseguer, J., Ölveczky, P.C.: Formal patterns for multirate distributed
real-time systems. Sci. Comput. Program. 91, 3–44 (2014)

14. Bae, K., Ölveczky, P.C., Meseguer, J.: Definition, semantics, and analysis of mul-
tirate synchronous AADL. In: Jones, C., Pihlajasaari, P., Sun, J. (eds.) FM 2014.
LNCS, vol. 8442, pp. 94–109. Springer, Cham (2014). https://doi.org/10.1007/978-
3-319-06410-9 7

15. Bergstra, J.A., Tucker, J.V.: A characterisation of computable data types by means
of a finite equational specification method. In: de Bakker, J., van Leeuwen, J. (eds.)
ICALP 1980. LNCS, vol. 85, pp. 76–90. Springer, Heidelberg (1980). https://doi.
org/10.1007/3-540-10003-2 61

16. Bruni, R., Meseguer, J.: Semantic foundations for generalized rewrite theories.
Theor. Comput. Sci. 360(1–3), 386–414 (2006)

17. Burstall, R.M., Goguen, J.A.: The semantics of clear, a specification language. In:
Bjøorner, D. (ed.) Abstract Software Specifications. LNCS, vol. 86, pp. 292–332.
Springer, Heidelberg (1980). https://doi.org/10.1007/3-540-10007-5 41

18. Buschmann, F., Meunier, R., Rohnert, H., Sommerlad, P.: Pattern-Oriented Soft-
ware Architecture, Volume 1: A System of Patterns. Addison-Wesley (1996)

19. Chadha, R., Gunter, C.A., Meseguer, J., Shankesi, R., Viswanathan, M.: Mod-
ular preservation of safety properties by cookie-based DoS-protection wrappers.
In: Barthe, G., de Boer, F.S. (eds.) FMOODS 2008. LNCS, vol. 5051, pp. 39–58.
Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-68863-1 4

https://doi.org/10.1007/3-540-60973-3_108
https://doi.org/10.1007/3-540-60973-3_108
https://doi.org/10.1007/978-3-642-22944-2_28
https://doi.org/10.1007/978-3-642-22944-2_28
https://doi.org/10.1007/978-3-319-06410-9_7
https://doi.org/10.1007/978-3-319-06410-9_7
https://doi.org/10.1007/3-540-10003-2_61
https://doi.org/10.1007/3-540-10003-2_61
https://doi.org/10.1007/3-540-10007-5_41
https://doi.org/10.1007/978-3-540-68863-1_4

Building Correct-by-Construction Systems with Formal Patterns 21

20. Chandy, K.M., Misra, J.: Parallel Program Design: A Foundation. Addison-Wesley
(1988)

21. Clavel, M., et al.: All About Maude - A High-Performance Logical Framework.
LNCS, vol. 4350. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-
71999-1

22. Clavel, M., Meseguer, J., Palomino, M.: Reflection in membership equational logic,
many-sorted equational logic, Horn logic with equality, and rewriting logic. Theo-
ret. Comput. Sci. 373, 70–91 (2007)

23. Comon, H., Nieuwenhuis, R.: Induction=i-axiomatization+first-order consistency.
Inf. Comput. 159(1–2), 151–186 (2000)

24. David, A., Larsen, K.G., Legay, A., Mikucionis, M., Poulsen, D.B.: Uppaal SMC
tutorial. Int. J. Softw. Tools Technol. Transf. 17(4), 397–415 (2015)

25. Dehnert, J.C., Stepanov, A.: Fundamentals of generic programming. In: Jazayeri,
M., Loos, R.G.K., Musser, D.R. (eds.) Generic Programming. LNCS, vol. 1766,
pp. 1–11. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-39953-4 1

26. Denker, G., Meseguer, J., Talcott, C.: Rewriting semantics of meta-objects and
composable distributed services. ENTCS 36, Elsevier (2000). In: Proceedings of
the 3rd International Workshop on Rewriting Logic and its Applications (2000)

27. Dong, J., Alencar, P.S.C., Cowan, D.D., Yang, S.: Composing pattern-based com-
ponents and verifying correctness. J. Syst. Softw. 80(11), 1755–1769 (2007)

28. Durán, F.: A reflective module algebra with applications to the Maude language
(1999), Ph.D. Thesis, University of Málaga

29. Durán, F., et al.: Programming and symbolic computation in Maude. J. Log. Alge-
braic Methods Program. 110, 100497 (2020)

30. Durán, F., Eker, S., Escobar, S., Mart́ı-Oliet, N., Meseguer, J., Rubio, R., Talcott,
C.L.: Equational unification and matching, and symbolic reachability analysis in
maude 3.2 (system description). In: Automated Reasoning - 11th International
Joint Conference, IJCAR 2022. Lecture Notes in Computer Science, vol. 13385,
pp. 529–540. Springer (2022). https://doi.org/10.1007/978-3-031-10769-6 31

31. Durán, F., Lucas, S., Meseguer, J.: Termination modulo combinations of equational
theories. In: Ghilardi, S., Sebastiani, R. (eds.) FroCoS 2009. LNCS (LNAI), vol.
5749, pp. 246–262. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-
642-04222-5 15

32. Durán, F., Meseguer, J.: Maude’s module algebra. Sci. Comput. Program. 66(2),
125–153 (2007)

33. Durán, F., Meseguer, J.: On the Church-Rosser and coherence properties of con-
ditional order-sorted rewrite theories. J. Algebraic Logic Programm. 81, 816–850
(2012)

34. Eckhardt, J., Mühlbauer, T., AlTurki, M., Meseguer, J., Wirsing, M.: Stable avail-
ability under denial of service attacks through formal patterns. In: de Lara, J.,
Zisman, A. (eds.) FASE 2012. LNCS, vol. 7212, pp. 78–93. Springer, Heidelberg
(2012). https://doi.org/10.1007/978-3-642-28872-2 6

35. Eden, A.H., Hirshfeld, Y.: Principles in formal specification of object oriented
design and architecture. In: Stewart, D.A., Johnson, J.H. (eds.) CASCON. p. 3.
IBM (2001)

36. Ehrig, H., Claßen, I.: Overview of algebraic specification languages, environments
and tools, and algebraic specification of software systems. Bull. Europ. Assoc.
Theor. Comput. Sci. 39, 103–111 (1989)

37. Escobar, S., Sasse, R., Meseguer, J.: Folding variant narrowing and optimal variant
termination. J. Algebraic Logic Program. 81, 898–928 (2012)

https://doi.org/10.1007/978-3-540-71999-1
https://doi.org/10.1007/978-3-540-71999-1
https://doi.org/10.1007/3-540-39953-4_1
https://doi.org/10.1007/978-3-031-10769-6_31
https://doi.org/10.1007/978-3-642-04222-5_15
https://doi.org/10.1007/978-3-642-04222-5_15
https://doi.org/10.1007/978-3-642-28872-2_6

22 J. Meseguer

38. Futatsugi, K., Diaconescu, R.: CafeOBJ Report. World Scientific (1998)
39. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns. Elements of

Reusable Object-Oriented Software. John Wiley & Sons (1994)
40. Goguen, J.A.: How to prove algebraic inductive hypotheses without induction. In:

Bibel, W., Kowalski, R. (eds.) CADE 1980. LNCS, vol. 87, pp. 356–373. Springer,
Heidelberg (1980). https://doi.org/10.1007/3-540-10009-1 27

41. Goguen, J., Winkler, T., Meseguer, J., Futatsugi, K., Jouannaud, J.P.: Introducing
OBJ. In: Software Engineering with OBJ: Algebraic Specification in Action, pp.
3–167. Kluwer (2000)

42. Grimmett, G., Stirzaker, D.: Probability and Random Processes (3rd, Ed.). Oxford
University Press (2001)

43. Gutiérrez, R., Meseguer, J., Rocha, C.: Order-sorted equality enrichments modulo
axioms. Sci. Comput. Program. 99, 235–261 (2015)

44. Harding, R., Aken, D.V., Pavlo, A., Stonebraker, M.: An evaluation of distributed
concurrency control. Proc. VLDB Endow. 10(5), 553–564 (2017)

45. Kiczales, G., Mezini, M.: Aspect-oriented programming and modular reasoning.
In: 27th International Conference on Software Engineering ICSE 2005, pp. 49–58.
ACM (2005)

46. Kwiatkowska, M., Norman, G., Parker, D.: PRISM 4.0: verification of probabilistic
real-time systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS,
vol. 6806, pp. 585–591. Springer, Heidelberg (2011). https://doi.org/10.1007/978-
3-642-22110-1 47

47. Liu, S., Meseguer, J., Ölveczky, P.C., Zhang, M., Basin, D.: Bridging the semantic
gap between qualitative and quantitative models of distributed systems 6(OOP-
SLA2) (2022). https://doi.org/10.1145/3563299

48. Liu, S., Ölveczky, P.C., Wang, Q., Gupta, I., Meseguer, J.: Read atomic trans-
actions with prevention of lost updates: ROLA and its formal analysis. Formal
Aspects Comput. 31(5), 503–540 (2019)

49. Liu, S., Ölveczky, P.C., Zhang, M., Wang, Q., Meseguer, J.: Automatic analysis
of consistency properties of distributed transaction systems in Maude. In: Vojnar,
T., Zhang, L. (eds.) TACAS 2019. LNCS, vol. 11428, pp. 40–57. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-17465-1 3

50. Liu, S., Sandur, A., Meseguer, J., Ölveczky, P.C., Wang, Q.: Generating Correct-by-
Construction Distributed Implementations from Formal Maude Designs. In: Lee,
R., Jha, S., Mavridou, A., Giannakopoulou, D. (eds.) NFM 2020. LNCS, vol. 12229,
pp. 22–40. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-55754-6 2

51. Meseguer, J., Palomino, M., Mart́ı-Oliet, N.: Algebraic simulations. J. Log. Algebr.
Program 79(2), 103–143 (2010)

52. Meseguer, J., Skeirik, S.: Inductive reasoning with equality predicates, contextual
rewriting and variant-based simplification. In: Escobar, S., Mart́ı-Oliet, N. (eds.)
WRLA 2020. LNCS, vol. 12328, pp. 114–135. Springer, Cham (2020). https://doi.
org/10.1007/978-3-030-63595-4 7

53. Meseguer, J., Talcott, C.: Semantic models for distributed object reflection. In:
Magnusson, B. (ed.) ECOOP 2002. LNCS, vol. 2374, pp. 1–36. Springer, Heidelberg
(2002). https://doi.org/10.1007/3-540-47993-7 1

54. Meseguer, J., Thati, P.: Symbolic reachability analysis using narrowing and its
application to the verification of cryptographic protocols. J. Higher-Order Symbol.
Comput. 20(1–2), 123–160 (2007)

55. Meseguer, J.: Conditional rewriting logic as a unified model of concurrency. The-
oret. Comput. Sci. 96(1), 73–155 (1992)

https://doi.org/10.1007/3-540-10009-1_27
https://doi.org/10.1007/978-3-642-22110-1_47
https://doi.org/10.1007/978-3-642-22110-1_47
https://doi.org/10.1145/3563299
https://doi.org/10.1007/978-3-030-17465-1_3
https://doi.org/10.1007/978-3-030-55754-6_2
https://doi.org/10.1007/978-3-030-63595-4_7
https://doi.org/10.1007/978-3-030-63595-4_7
https://doi.org/10.1007/3-540-47993-7_1

Building Correct-by-Construction Systems with Formal Patterns 23

56. Meseguer, J.: A logical theory of concurrent objects and its realization in the Maude
language. In: Agha, G., Wegner, P., Yonezawa, A. (eds.) Research Directions in
Concurrent Object-Oriented Programming, pp. 314–390. MIT Press (1993)

57. Meseguer, J.: Twenty years of rewriting logic. J. Algebraic Logic Programm. 81,
721–781 (2012)

58. Meseguer, J.: Taming distributed system complexity through formal patterns. Sci.
Comput. Program. 83, 3–34 (2014)

59. Meseguer, J.: Generalized rewrite theories, coherence completion, and symbolic
methods. J. Log. Algebraic Methods Program. 110, 100483 (2020)

60. Meseguer, J.: Checking sufficient completeness by inductive theorem prov-
ing. In: Rewriting Logic and Its Applications - 14th International Workshop,
WRLA@ETAPS 2022. Lecture Notes in Computer Science, vol. 13252, pp. 171–
190. Springer (2022). https://doi.org/10.1007/978-3-031-12441-9 9

61. Meseguer, J., Ölveczky, P.C.: Formalization and correctness of the PALS archi-
tectural pattern for distributed real-time systems. Theor. Comput. Sci. 451, 1–37
(2012)

62. Meseguer, J., Palomino, M., Mart́ı-Oliet, N.: Equational abstractions. Theoret.
Comput. Sci. 403(2–3), 239–264 (2008)

63. Meyer, B.: Object-Oriented Software Construction. Prentice Hall (1997)
64. Mikkonen, T.: Formalizing design patterns. In: ICSE, pp. 115–124 (1998)
65. Miller, S., Cofer, D., Sha, L., Meseguer, J., Al-Nayeem, A.: Implementing logi-

cal synchrony in integrated modular avionics. In: Proceedings of the 28th Digital
Avionics Systems Conference. IEEE (2009)

66. Misra, J.: A Discipline of Multiprogramming. Springer-Verlag (2001)
67. Mosses, P.D. (ed.): Casl Reference Manual. LNCS, vol. 2960. Springer, Heidelberg

(2004). https://doi.org/10.1007/b96103
68. Musser, D.: On proving inductive properties of abstract data types. In: Proceed-

ings, 7th Symposium on Principles of Programming Languages. Association for
Computing Machinery (1980)

69. Gianni, P. (ed.): ISSAC 1988. LNCS, vol. 358. Springer, Heidelberg (1989). https://
doi.org/10.1007/3-540-51084-2

70. PRISM: PRISM-SMC (Accessed April 2022). https://www.prismmodelchecker.
org/manual/RunningPRISM/StatisticalModelChecking

71. Rocha, C., Meseguer, J.: Proving safety properties of rewrite theories. In: Corra-
dini, A., Klin, B., Ĉırstea, C. (eds.) CALCO 2011. LNCS, vol. 6859, pp. 314–328.
Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22944-2 22

72. Rocha, C., Meseguer, J.: Mechanical analysis of reliable communication in the alter-
nating bit protocol using the Maude invariant analyzer tool. In: Iida, S., Meseguer,
J., Ogata, K. (eds.) Specification, Algebra, and Software. LNCS, vol. 8373, pp.
603–629. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-54624-
2 30

73. Rubinstein, R., Kroese, D.: Simulation and the Monte Carlo Method (3rd, Ed.).
J. Wiley & Sons (2017)

74. Saeki, M.: Behavioral specification of GOF design patterns with LOTOS. In:
APSEC. pp. 408–415. IEEE Computer Society (2000)

75. Schmidt, D., Stal, M., Rohnert, H., Buschmann, F.: Pattern-Oriented Software
Architecture, Volume 2: Patterns for Concurrent and Networked Objects. John
Wiley & Sons (2000)

https://doi.org/10.1007/978-3-031-12441-9_9
https://doi.org/10.1007/b96103
https://doi.org/10.1007/3-540-51084-2
https://doi.org/10.1007/3-540-51084-2
https://www.prismmodelchecker.org/manual/RunningPRISM/StatisticalModelChecking
https://www.prismmodelchecker.org/manual/RunningPRISM/StatisticalModelChecking
https://doi.org/10.1007/978-3-642-22944-2_22
https://doi.org/10.1007/978-3-642-54624-2_30
https://doi.org/10.1007/978-3-642-54624-2_30

24 J. Meseguer

76. Skeirik, S., Meseguer, J., Rocha, C.: Verification of the IBOS browser security
properties in reachability logic. In: Escobar, S., Mart́ı-Oliet, N. (eds.) WRLA 2020.
LNCS, vol. 12328, pp. 176–196. Springer, Cham (2020). https://doi.org/10.1007/
978-3-030-63595-4 10

77. Skeirik, S., Stefanescu, A., Meseguer, J.: A constructor-based reachability logic for
rewrite theories. Fundam. Inform. 173(4), 315–382 (2020)

78. Soundarajan, N., Hallstrom, J.O.: Responsibilities and rewards: Specifying design
patterns. In: ICSE, pp. 666–675. IEEE Computer Society (2004)

79. Sun, M., Meseguer, J.: Distributed real-time emulation of formally-defined patterns
for safe medical device control. In: Ölveczky, P.C. (ed.) Proceedings of the 1st
International Workshop on Rewriting Techniques for Real-Time Systems, RTRTS
2010. Electronic Proceedings in Theoretical Computer Science, vol. 36, pp. 158–177
(2010)

80. Sun, M., Meseguer, J.: Formal specification of button-related fault-tolerance
micropatterns. In: Escobar, S. (ed.) WRLA 2014. LNCS, vol. 8663, pp. 263–279.
Springer, Cham (2014). https://doi.org/10.1007/978-3-319-12904-4 15

81. Sun, M., Meseguer, J., Sha, L.: A formal pattern architecture for safe medical
systems. In: Ölveczky, P.C. (ed.) WRLA 2010. LNCS, vol. 6381, pp. 157–173.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-16310-4 11

82. Taibi, T., Ling, D.N.C.: Formal specification of design patterns - a balanced app-
roach. J. Object Technol. 2(4), 127–140 (2003)

83. Venkatasubramanian, N., Talcott, C.L., Agha, G.: A formal model for reason-
ing about adaptive QoS-enabled middleware. ACM Trans. Softw. Eng. Methodol.
13(1), 86–147 (2004)

84. Viry, P.: Equational rules for rewriting logic. Theoret. Comput. Sci. 285, 487–517
(2002)

85. Viswanathan, M., Viswanathan, R.: Foundations for circular compositional rea-
soning. In: Orejas, F., Spirakis, P.G., van Leeuwen, J. (eds.) ICALP 2001. LNCS,
vol. 2076, pp. 835–847. Springer, Heidelberg (2001). https://doi.org/10.1007/3-
540-48224-5 68

https://doi.org/10.1007/978-3-030-63595-4_10
https://doi.org/10.1007/978-3-030-63595-4_10
https://doi.org/10.1007/978-3-319-12904-4_15
https://doi.org/10.1007/978-3-642-16310-4_11
https://doi.org/10.1007/3-540-48224-5_68
https://doi.org/10.1007/3-540-48224-5_68

Why Adjunctions Matter—A Functional
Programmer Perspective

José Nuno Oliveira(B)

High Assurance Software Laboratory, INESC TEC and University of Minho,
Braga, Portugal

jno@di.uminho.pt

Abstract. For the average programmer, adjunctions are (if at all known)
more respected than loved. At best, they are regarded as an algebraic
device of theoretical interest only, not useful in common practice.

This paper is aimed at showing the opposite: that adjunctions under-
lie most of the work we do as programmers, in particular those using
the functional paradigm. However, functions alone are not sufficient to
express the whole spectrum of programming, with its dichotomy between
specifications—what is (often vaguely) required—and implementations—
how what is required is (hopefully well) implemented. For this, one needs
to extend functions to relations.

Inspired by the pioneering work of Ralf Hinze on “adjoint (un)folds”,
the core of the so-called (relational) Algebra of Programming is shown in
this paper to arise from adjunctions. Moreover, the paper also shows how
to calculate recursive programs from specifications expressed by Galois
connections—a special kind of adjunction.

Because Galois connections are easier to understand than adjunctions
in general, the paper adopts a tutorial style, starting from the former and
leading to the latter (a path usually not followed in the literature). The
main aim is to reconcile the functional programming community with a
concept that is central to software design as a whole, but rarely accepted
as such.

Keywords: Algebra of programming · Programming from
specifications · Adjunctions

“(...) and Jim Thatcher proposed the name
ADJ as a (terrible) pun on the title of the
book that we had planned to write (...)
[recalling] that adjointness is a very
important concept in category theory (...)”
— Joseph A. Goguen, Memories of ADJ,
EATCS nr. 36, 1989

1 Context

The notion of an algebraic data type is central to the theoretical advances in com-
puter science since the 1980s—a “vintage decade” that turned program semantics
c© Springer Nature Switzerland AG 2023
A. Madeira and M. A. Martins (Eds.): WADT 2022, LNCS 13710, pp. 25–59, 2023.
https://doi.org/10.1007/978-3-031-43345-0_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-43345-0_2&domain=pdf
http://orcid.org/0000-0002-0196-4229
https://doi.org/10.1007/978-3-031-43345-0_2

26 J. N. Oliveira

into a branch of scientific knowledge [6,7], and the trend in which the WADT
series of workshops arose. In particular, the ‘ADJ group’ promoted what can
be regarded as the first effective use of category theory in computer science,
centered upon notions such as initiality, freeness and institution [7,10].

The categorial concept of an adjunction [14] underlies all such techniques and
is so important that the ADJ group decided to carve it in their own acronym, as
quoted above. However, for the average programmer adjunctions are regarded
(if at all known) as working at the meta-level only [10]. In fact, explicit use of
adjunctions as an instrumental device for abstract reasoning in programming
is relatively rare. Less rare is the use of Galois connections (a special case of
adjunction) to structure relational algebra techniques [1,2], but even so the topic
is not mainstream.

This contribution to the WADT series tries to show how relevant adjunctions
are in explaining many things we do as programmers. In a tutorial flavour, it will
try to show how practical adjunctions are by revealing their “chemistry in action”.

It is common practice to introduce the adjunction concept first, and only then
refer to what is regarded as a modest instance: the Galois connection (GC). That
is, general concept first, instances later. Below we go in the opposite direction,
which is easier to grasp: GCs are presented first, together with a set of examples
and applications. Only after these are understood and appreciated does one step
into full generality.

2 Galois Connections

Things in everyday life often come “in pairs”, as dichotomies such as e.g. good/bad,
action/reaction, the left/the right, lower/upper, easy/hard and so on. In a sense,
each pair defines itself: one element of the pair exists... because the other also
exists, and is its opposite (i.e. antithesis). Despite the circularity, common every-
day language survives over such dualities.

Perfect Antithesis. The perfect antithesis (opposition, inversion) is the bijection
or isomorphism. For instance, multiplication and division are inverses of each
other in the positive reals: x

y × y = x and x×y
y = x . That is, there is no loss of

information when dividing or multiplying. In general, f and g such that

B

g

��∼= A

f

��

{
f (g b) = b
g (f a) = a (1)

hold are termed isomorphisms and regarded as lossless transformations.

Imperfect Antithesis. However, data transformations in practice are lossy, e.g.
jpg2pdf

∼=
pdf2jpg

jpg2pdf · pdf2jpg = id
pdf2jpg · jpg2pdf = id

Why Adjunctions Matter 27

even though our eyes can hardly spot the difference in most cases.
It is often the case that loss of information in such imperfect inversions can

be expressed in this way,{
f (g b) � b
a � g (f a) (2)

telling “how bad” each “round trip” is. This relies on under and over approxima-
tions captured by two preorders (i.e. reflexive and transitive relations),

(�)

g

��
(�)

f

��

{x, y, z}

{x, y}
������
{x, z}

��

{y, z}
������

{x}
�� ������

{y}
��

		��

����
{z}

��
���� ��

∅

��		�����
�������

where f and g are assumed monotonic.

Handling Approximations. Let us write the arrow

x
(�) �� y (resp. x

(�) �� y) to denote x � y
(resp. x � y) in (2). We shall drop the ordering
symbols, e.g. simply writing x �� y , wher-
ever these are clear from the context, as in the
Hasse diagram aside. This arrow-notation will
enable us to express our reasoning graphically, as in the following diagram:

(�)

a

g x

f (�)

f a

f (g x) x

g
(�)

g (f a)

g x

a

(3)

Let us “parse” this diagram without rushing: arrow a → g x means a � g x .
By monotonicity we get f a � f (g x), i.e. arrow f a → f (g x). From (2) we
get f (g x) → x and, by transitivity (“composition” of these two arrows) we get
f a → x . We are done with the first “triangle”.

The triangle on the right starts with g (f a) → g x , which follows by mono-
tonicity from f a → x in the first one. Again from (2) and transitivity we get
a → g x where we started from. Summing up:

a � g x ⇒ f a � x ⇒ a � g x

By circular implication, the equivalence

f a � x ⇔ a � g x (4)

28 J. N. Oliveira

holds for any a and x , and we say that f and g are Galois connected, writing
f � g to declare so. Terminology: f is said to be the lower (a.k.a. left) adjoint
of the connection and g the upper (a.k.a. right) adjoint. The intuition behind
this terminology is captured by the superlatives in the following interpretation
of (4):

– f a—lowest x such that a � g x
– g x—greatest a such that f a � x .

Did we write “superlatives”? Note that we have plenty of these in software require-
ments, e.g.

– ... the largest prefix of x with at most n elements (i.e. the meaning of function
take n x in Haskell)

– ... the largest number that multiplied by y is at most x (i.e. the meaning of
integer division x ÷ y).

Back to the perfect/imperfect dichotomies above, compare numeric division in
the reals (R), for y �= 0,

a × y = x ⇔ a = x / y

—an isomorphism—with (whole) division in the natural numbers (N0),

a × y � x ⇔ a � x ÷ y (5)

—a Galois connection: (×y) � (÷y).

3 The Easy and the Hard

It is the experience of every school child that x ÷ y is much harder to calculate
by hand than x × y . Indeed, division is perhaps the very first “hard” problem
(algorithm) that children encounter in their basic maths education. Interestingly,
(×y) � (÷y) bears a simple message:

hard (÷y) is explained by easy (×y).

This pattern extends to program specifications, recall

take n xs should yield the longest possible prefix of xs not exceeding n in
length

from above. The corresponding formal specification,

length ys � n ∧ ys � xs︸ ︷︷ ︸
easy

⇔ ys � take n xs︸ ︷︷ ︸
hard

(6)

is another GC, where (�) is the list-prefix partial ordering.1 Many other exam-
ples can be found in programming, for instance:
1 The reader may wonder how (6) fits in the frame of (4). To see this, let us write (6)

in the uncurried format: (length ys, ys) ((�) × (�)) (n, xs) ⇔ ys � ̂take (n, xs)

where, in general, ĝ (a, b) = g a b. Thus f x = (length x , x), g = ̂take and the
product ordering has the expected relational meaning, which in general is: (x , y) (R×
S) (a, b) ⇔ x R a ∧ y S b.

Why Adjunctions Matter 29

– The function takeWhile p xs should yield the longest prefix of xs whose ele-
ments all satisfy predicate p.

– The function filter p xs should yield the longest sublist of xs all elements of
which satisfy predicate p.

4 Indirect Equality

Back to (×y)� (÷y), consider the following, well-known implementation of inte-
ger division:

x ÷ y = if x � y then 1 + (x
 y) ÷ y else 0 (7)

Can this implementation be derived from the specification (5)? Note that,
because subtraction in N0 is not invertible, one needs to resort to “truncated
subtraction” (written x
 y below) which, as one might suspect, is an adjoint of
another GC in N0:

a
 b � x ⇔ a � x + b (8)

To address the question above, one needs yet another brick in the wall: the
principle of indirect equality, valid for any partial order [2]:

a = b ⇔ 〈∀ z :: z � a ⇔ z � b〉 (9)

This principle of indirect equality blends nicely with GCs, as the following cal-
culation sketch suggests:

z � g a

⇔ { ... }
. . . (go to the easy side, do things there and come back)

⇔ { ... }
z � . . . g . . . a ′ . . .

:: { indirect equality }
g a = . . . g . . . a ′ . . .

Note how a difficult g can in principle be calculated by going to the easy side of
the specification GC and coming back.

30 J. N. Oliveira

As a simple example of using (9), let us calculate x ÷ y (5) in case x � y
holds:

z � x ÷ y

⇔ { (×y) � (÷y) and (x � y) + y = x for x � y }
z × y � (x
 y) + y

⇔ { (� y) � (+y) }
(z × y)
 y � x
 y

⇔ { factoring out y works also for � }
(z
 1) × y � x
 y

⇔ { chain the two GC s }
z � 1 + (x
 y) ÷ y

:: { recursive branch of (7) calculated thanks to indirect equality (9) }
x ÷ y = 1 + (x
 y) ÷ y

�

The other case (x < y) also stems from (5):

x < y

⇔ { trivial }
¬ (y � x)

⇔ { (5), for a := 1 }
1 > x ÷ y

⇔ { trivial (in N0) }
x ÷ y = 0

�

Altogether, we have proven that the recursive implementation (7) of x ÷ y is
correct with respect to its GC specification (5).

5 GCs as Formal Specifications

Let us now try a similar exercise for take, formally specified by (6). This time,
however, no known implementation is assumed. Moreover, we wish to show how
to draw properties from specification (6) before implementing take, i.e. without
knowing anything about its actual implementation.

Why Adjunctions Matter 31

For instance, what happens if we chain two takes in a row, (take m) ·(take n)?
We calculate:

ys � take m (take n xs)

⇔ { GC (6) }
length ys � m ∧ ys � take n xs

⇔ { again GC (6) }
length ys � m ∧ length ys � n ∧ ys � xs

⇔ { min GC: a � x ∧ a � y ⇔ a � x ‘min’ y }
length ys � (m ‘min’ n) ∧ ys � xs

⇔ { again GC (6) }
ys � take (m ‘min’ n) xs

:: { indirect equality (9) }
take m (take n xs)) = take (m ‘min’ n) xs

Note the fully deductive calculation—no recursion, no induction. There could be
none, in fact, because we have no implementation of take yet! Calculating this
is the subject of the reasoning that follows.

A quick inspection of (6) invites us to consider the cases n = 0 and xs = []
because they trivialize the easy side of the GC, as is easy to show. Case n = 0
first:

ys � take 0 xs

⇔ { GC }
length ys � 0 ∧ ys � xs

⇔ { length ys � 0 ⇔ ys = [] }
ys = []

⇔ { antisymmetry of (�); [] � ys holds for any ys }
ys � []

:: { indirect equality }
take 0 xs = []

32 J. N. Oliveira

Now case xs = []:

ys � take n []

⇔ { GC }
length ys � n ∧ ys � []

⇔ { ys � [] ⇔ ys = []; length [] = 0 }
ys = []

⇔ { antisymmetry of (�); [] � ys holds for any ys }
ys � []

:: { indirect equality }
take n [] = []

Thus we get the base cases:

take 0 = []
take [] = []

By pattern matching, the remaining case is take (n+1) (h :xs). The following
fact about list-prefixing,

s � (h : t) ⇔ s = [] ∨ 〈∃ s ′ :: s = (h : s ′) ∧ s ′ � t〉 (10)
will be required. This property is quite obvious but... where does it come from?2
Let us accept it for the moment, leaving the answer to the question to Sect. 16
later on. Once again, we calculate:

ys � take (n + 1) (h : xs)

⇔ { GC (6) ; prefix (10) }
length ys � n + 1 ∧ (ys = [] ∨ 〈∃ ys ′ :: ys = (h : ys ′) ∧ ys ′ � xs〉)

⇔ { distribution ; length [] = 0 � n + 1 }
ys = [] ∨ 〈∃ ys ′ :: ys = (h : ys ′) ∧ length ys � n + 1 ∧ ys ′ � xs〉

⇔ { length (h : t) = 1 + length t }
ys = [] ∨ 〈∃ ys ′ :: ys = (h : ys ′) ∧ length ys ′ � n ∧ ys ′ � xs〉

⇔ { GC (6) }
ys = [] ∨ 〈∃ ys ′ :: ys = (h : ys ′) ∧ ys ′ � take n xs〉

⇔ { fact (10) }
ys � h : take n xs

:: { indirect equality over list prefixing (�) }
take (n + 1) (h : xs) = h : take n xs

2 The question also applies to ys � [] ⇔ ys = [] which was taken for granted above.

Why Adjunctions Matter 33

By putting everything together we have an implementation of take, indeed the
standard one in Haskell:

take 0 = []
take [] = []
take (n + 1) (h : xs) = h : take n xs

In summary, by expressing the formal specification of a particular (e.g. recur-
sive) function in the form of a GC, not only one can prove properties but also
calculate an implementation (program) without performing inductive proofs.
However, the final implementation is inductive. So, the question arises:

Where does this induction come from?

The answer is not immediate and calls for the generalization from GCs to adjunc-
tions.

6 From GCs to Adjunctions

Recall our arrow notation a
(�) �� b for a � b in (3). In the “set of pairs”

interpretation of a binary relation, one might write

(�) (a, b) = {(a, b)}
meaning that the evidence that we have that a � b holds is {(a, b)}—the sin-
gleton set made of exactly the pair (a, b) ∈ (�).

Now compare (�) (a, b) = {(a, b)} with something like (broadening scope):

C(a, b) = { ‘the things that relate a to b in some context C’ }
So, every such “thing” m ∈ C(a, b) acts as a witness of the C-relationship
between a and b. Moreover, assuming C (whatever this is), m ∈ C(a, b) can be
written m :a → b, recovering the arrow notation used before. (Notation m :a → b
can also be read as telling that m is of type a → b, a view that matches with
some examples below.)

We thus land into a category—C—where a and b are objects and m is said
to be a morphism. In general, there will be more than one morphism between
a and b, thus the need to name them. The set C(a, b) of all such morphisms is
called a homset.

Categories are an extremely versatile concept, as the following instances of
categories show,

C(a, b) = { ‘matrices with a-many columns and b-many rows’ }
or

C(a, b) = { ‘Haskell functions from type a to type b’ }

34 J. N. Oliveira

or

C(a, b) = { ‘binary relations in a × b’ }

among many others relevant to maths and programming.
Compared to the preorders they generalize, categories purport a “dramatic”

increase in expressiveness (Fig. 1). For instance, a � a always holds in a preorder
(reflexivity), that is, homset (�) (a, a) is non-empty. The categorial extension
of reflexivity to an arbitrary category C also means that C (a, a) is non-empty
because it always includes a special morphism, the so-called identity morphism
id. This is written id:a → a wherever C is implicit from the context. For instance,
in the category S of sets (objects) and functions between sets (morphisms),
id : a → a is the identity function id x = x on set a.

In turn, preorder transitivity, a � b ∧ b � c ⇒ a � c, generalizes to
morphism composition: m ∈ C (a, b) and n ∈ C (b, c) generate n ·m in C (a, c),
called the composition of n and m, which is such that m · id = id · m = m.

What is the meaning of generalizing (3) from preorders (�) and (�) to two
categories S and D? Recall our starting point,{

f (g x) � x
a � g (f a)

which meanwhile was written thus:{
f (g x) → x
a ← g (f a)

According to the correspondence of Fig. 1, monotonic functions f and g give
place to functors F and G, respectively:3⎧⎨

⎩
F (G X) ε �� X

A G (F A)
η��

(11)

The “core” morphisms ε and η will be explained later. For the moment, our aim
is to “replay” (3), now in the categorial setting:

D

A

G X

k

F C

F A

F k

F (G X) X
ε

�k� = h

G D

G (F A)

G h

G X

A
η

�h�
(12)

3 Recall that functors are available in Haskell via fmap, exported by the Functor class.
As is well known, properties F id = id and F (f · g) = (F f) · (F g) hold.

Why Adjunctions Matter 35

Starting from some A k �� G X we obtain ε·F k , granted by functor F (triangle
on the left). We define �k� = ε · F k and choose to use h to denote �k� in the
triangle that follows. Picking h in turn, functor G grants G h · η. We define
�h� = G h · η, that is, �h� = ��k��. In case �h� = k , h and k are in a 1-to-1
correspondence and we have the isomorphism

C (F A,X) ∼= D (A,G X) (13)

clearly generalizing (4). In this case we say that we have an adjunction and that
F and G are adjoint functors, writing F � G as before. F is called the left adjoint
functor and G the right adjoint functor.

Fig. 1. From preorders to categories.

7 Adjunctions

Another way to express (13) is given below (14), where the two adjoint functors
F :D → C and G :C → D are renamed to L :D → C and R :C → D, respectively,
to better match with the left and right qualifiers above:

C D

L A → X

� �
∼= A → R X

� �
��

(14)

It also features the two isomorphism witnesses between the two homsets, where
�h� is called the R-transpose of h and �k� the L-transpose of k . This isomorphism
can be expressed in the standard way,

k = �h� ⇔ �k� = h (15)

capturing how one transpose is the opposite of the other. Clearly,{ ��h�� = h
��k�� = k (16)

36 J. N. Oliveira

and one is back to perfect antithesis (1), but in a much richer setting, as is
explained next.

From (12) we know that �k� = ε · F k . So we can inline this in (15) and draw
a diagram to depict what is going on:

D

L

��� C

R

��

k = �h� ⇔ ε · L k︸ ︷︷ ︸
�k�

= h

R X L (R X) ε �� X

A

k=�h�

��

L A

L k

��

h

�����������
(17)

Thus we see how the adjunction L � R embodies a universal property that tells
that �h� is the unique solution of the equation ε·L k = f on k , for a given h. Very
soon we shall see how productive (17) is. For the moment, we just inspect what
happens for k = id. Since L id = id and ε · id = ε, we get id = �ε�, equivalent to

ε = �id� (18)

by (15), leading to the definition of ε. Terminology: ε is called the co-unit of the
adjunction.

Dual Formulation. The term co-unit suggests that there might be a unit some-
where in the construction—and indeed there is. Above we inlined �k� = ε · L k
in (15). But we could do otherwise, inlining the other definition �k� = R k · η.
This gives us a dual formulation of the adjunction,

k = �h� ⇔ R k · η︸ ︷︷ ︸
�k�

= h

L B

k=�h�
��

R (L B)

R k

��

B
η��

h����
��
��
��
�

C R C

(19)

—compare with (17)—now telling that �h� is the unique solution to equation
R k · η = h. Terminology:

η = �id� (20)

is called the unit of the adjunction.

Natural Transformations. Morphisms such as ε and η are of generic type F X →
G X , where functors F and G come from and go to the same categories, the
identity functor F X = X from a category to itself included. They are said to be
natural transformations. This invites us to go back to Fig. 1, where the pointwise
ordering between two functions, f

.
� g meaning f x � g x for every input x , is

Why Adjunctions Matter 37

said to scale up to such natural transformations between two functors F and G,
i.e. morphisms of type F X → G X parametric on X .4

8 Examples

A rich theory arises from (17,19) which the reader can find compactly presented
in laws (64) to (81) of the appendix. Before exploring such a theory, let us
give some adjunction examples. Because we wish to focus on adjunctions that
are relevant to programming, the examples are less general than they could be.
Thus we stay within the category S of sets and functions in the examples that
follow.

(Covariant) Exponentials: (× K) � (K) This is perhaps the most famous
adjunction, holding between category S and itself:

A × K → X

curry
∼= A → XK

uncurry

�� where
{
curry f a b = f (a, b)
uncurry g (a, b) = g a b

This instantiates (17) for⎧⎨
⎩

L X = X × K
R X = XK

ε = ev

{ �f � = curry f
�f � = uncurry f (21)

where X × K denotes the Cartesian product of sets X and K , XK denotes the
set of all functions of type K → X and ev (f , k) = f k . Universal property (17)
and its diagram become

k = curry f ⇔ ev · (k × id)︸ ︷︷ ︸
uncurry k

= f

S

(×K)

�� S

K

��

BK BK × K ev �� B

A

k=curry f

��

A × K

k×id

��

f

�����������

in this adjunction.
Associated with the Cartesian product X ×Y of two sets X and Y we have

the two projections π1 : X × Y → X and π2 : X × Y → Y which are such

4 Thus natural transformations instantiate to the polymorphic functions so dear to
the functional programmer, together with their theorems for free [23] so useful in
program calculation. For the correspondence between indirect equality and the so-
called Yoneda lemma (still Fig. 1) please see [5].

38 J. N. Oliveira

that π1 (x , y) = x and π2 (x , y) = y . These projections are the essence of the
adjunction that follows, which captures the categorial view of pairing.

Pairing: Δ � (×) In this adjunction we have⎧⎨
⎩

L X = Δ X = (X ,X)
R (X ,Y) = X × Y
ε = (π1, π2)

{ �(f , g)� = 〈f , g〉
�k� = (π1 · k , π2 · k) (22)

where 〈f , g〉 x = (f x , g x) pairs up the results of two functions f and g applied
to the same input.

Note how the product in the left adjoint of the previous adjunction now
participates in the right adjoint of this one, but in a more general way: it takes
a pair of sets and builds their Cartesian product.

What is the new left adjoint? It is the functor that duplicates sets, L X =
(X ,X). This means that its target category is S2, the category of pairs of both
sets and functions. Composition in S2 is the expected (f , g) · (h, k) = (f ·h, g ·k).
Using this composition rule when instantiating (17) for this adjunction, we get
the universal property of pairing:

k = 〈f , g〉 ⇔
{

π1 · k = f
π2 · k = g

S

Δ

�� S2

(×)

��

B × A (B × A,B × A)
(π1,π2)�� (B,A)

C

k=〈f ,g〉

��

(C ,C)

(k ,k)

��

(f ,g)

�������������

Above we have seen how components of adjoint functors can shift roles,
leading to new adjunctions. Is there any adjunction in which the duplication
functor Δ, which above plays the left adjoint role, becomes right adjoint? Yes,
see our third example below.

Co-pairing: (+) � Δ The previous adjunction Δ � (×) gave us an explanation of
what it means to run two functions at the same time, in parallel, for the same
input. Shifting Δ to the right of the � symbol will provide an explanation for
the dual idea of running two functions not in parallel, but in alternative:⎧⎨

⎩
L (X ,Y) = X +Y
R X = Δ X = (X ,X)
ε = ∇ = [id, id]

{ �k� = (k · i1, k · i2)
�(f , g)� = [f , g] (23)

The corresponding left adjoint builds the disjoint union X +Y of a pair of sets
(X ,Y) inhabited with X and Y data via two range-disjoint injections i1 :X →
X + Y and i2 : Y → X + Y . So the equation i1 x = i2 y has no solution in
X + Y and thus any function of type X + Y → Z is made of two independent
components, one of type X → Z and the other of type Y → Z , which run in

Why Adjunctions Matter 39

alternative depending on which side of the sum the input is. Such an alternative
is denoted by [f , g] and, in symbols rather than words, we have [f , g] · i1 = f
and [f , g] · i2 = g .

By instantiating (17) with (23) one gets the universal property of alternatives:

{
f = k · i1
g = k · i2

⇔ k = [f , g]

S2

(+)

�� S

Δ

��

(A,A) A+A ∇ �� A

(C ,D)

(f ,g)=(k ·i1,k ·i2)
��

C +D

f+g

��

k

��								

(24)

The adjunctions given so far involve the category of sets and (total) func-
tions that provide a basis for so-called strong [22] functional programming. For
instance, alternatives give rise to conditional computations [4] and so on.

More examples of adjunctions could be given in this setting, see e.g. [11].
We prefer to give a final example that does not fit (directly) in functional pro-
gramming practice, but is essential to reasoning about functional programs. It
links S to another category which extends it: its objects are the same (sets)
but the morphisms become binary relations instead of functions. This category
of relations will be denoted by R and its composition corresponds to relational
chaining, as seen below.

Power Transpose: J � P This adjunction captures the view that every binary
relation R :A → B (a morphism in R) can be expressed by a set-valued function
ΛR :A → P B (a morphism in S), defined by:5

(ΛR) a = {b | b R a } (25)

Thus b ∈ ΛR a ⇔ b R a, which in relational pointfree notation (the “internal
language” of R) is written ∈·ΛR = R, where ∈ :B ← P B is the set membership
relation. Thus membership “cancels” the power-transpose Λ:

R S

A → X

Λ
∼= A → P X

(∈·)
�� (26)

We write A → X instead of J A → X because the lower adjoint J is the identity
on objects. It just converts a function in S to the corresponding relation in R6,
5 Notation P B means the powerset of B , i.e. the set of all subsets of B . Also note

that we write b R a to express (b, a) ∈ R, keeping with the tradition of using infix
notation in relational facts, e.g. a � b instead of (a, b) ∈ (�) and so on. In this
vein, relation composition is expressed by b (S · R) a ⇔ 〈∃ c :: b S c ∧ c R a〉.

6 Interestingly, the usual presentation y = f (x) of functions in maths textbooks is
relational, not strictly functional.

40 J. N. Oliveira

cf.: ⎧⎨
⎩

J X = X
y (J k) x ⇔ y = k x
R X = P X = {S | S ⊆ X }

⎧⎨
⎩

ε = (∈)
�R� = ΛR
y �k� x ⇔ y ∈ (k x)

(27)

Altogether, the adjunction expresses the universal property of power-
transposition:

k = ΛR ⇔ ∈ · k︸︷︷︸
�k�

= R

S

J

�� R

P
��

P B P B ∈ �� B

A

k=ΛR

��

A

J k

��

R

��

(28)

This adjunction will prove specially useful later on where dealing with recursion
in presence of inductive data types.

9 Properties

The main advantage of a unifying concept such as that of an adjunction is that
one can express the rich theory of (17, 19) only once, covering all the particular
instances by construction. As already mentioned, several properties that are easy
to derive as corollaries of (17, 19) are given in the appendix. The terminology is
inspired by [4], among other references that use similar names, see e.g. [18].

To illustrate their application, let us see how the actions of the functors
involved in an adjunction can be recovered from the adjunction itself, laws (71)
and (80). Taking Δ � (×) as example, let us use (71), R h = �h · ε�, to find
a definition for f × g , which is R (f , g). Since ε = (π1, π2), then (f , g) · ε =
(f · π1, g · π2). Since �(x , y)� = 〈x , y〉, we finally get

f × g = 〈f · π1, g · π2〉 (29)

Similarly, for J � P, by (71) we get

P R = Λ(R · (∈)) (30)

that is, (P R) X = {b | b R a ∧ a ∈ X }.7
Next, let us calculate f + g as in the left-adjoint of (+) � Δ (23) using (80),

L g = �η · g�. In the same way as above, f + g = L (f , g) = �η · (f , g)�. Since
η = �id� (74), i.e. η = (i1, i2) by (23), we get f + g = �i1 · f , i2 · g� and finally:

f + g = [i1 · f , i2 · g] (31)
7 Note that P is not a relational functor (in R) but rather another way of expressing

relations by functions in S. It is often referred to as the existential image functor
[4]. Interestingly, (30) captures the way the so-called navigation style of Alloy [12]
works, enabling an (essentially) functional execution of its relational core.

Why Adjunctions Matter 41

All such properties and those of the appendix involve only one adjunction
at a time. Perhaps more interesting are those that arise by composing adjunc-
tions, to be seen shortly. Before this, we address a topic that is very relevant to
programming and bears a strong link to adjunctions.

10 Monads

The categorial view of functional programming had a big “push forward” when
the concept of a monad was incorporated in languages such as e.g. Haskell,
making it possible to have purely functional implementations of computations
that were regarded as non-functional before. Since the pioneering work by Moogi
[15], the concept has gained wider and wider acceptance from both the theory
and practice cohorts of the programming community, see e.g. [9,24] among many
other references.

The question is: where do monads come from? It turns out that monads arise
from adjunctions. Put simply, for every adjunction L � R, the composition M =
R · L is a monad, meaning that M comes equipped with natural transformations
η and μ,

A
η �� MA M2A

μ��

such that

μ · η = id = μ · M η (32)
μ · μ = μ · M μ (33)

hold. Definitions

η = �id� (34)
μ = R ε (35)

show how the so-called multiplication (μ) and unit (η) of monad M = R · L arise
from L � R. Proofs that (32, 33) follow from definitions (34, 35) and adjunction
properties can be found in the appendix.

As an example, recall the adjunction J � P (27). Because J is the identity
on objects, it turns out that P, the powerset functor, is a monad. By (34) and
(25), its unit is η a = {a }. By (35) and (71), its multiplication μ = Λ(∈) · (∈)
is distributed union,

μ S = {a | 〈∃ x : a ∈ x : x ∈ S 〉}
where S is a set of sets. (The usual notation for μ S is

⋃
S.)

In the interest of programming, one may wonder whether, in this powerset
adjunction J�P (28), one can interpret relational expressions in R by set-valued
functions in S. In particular, one may be interested in implementing relational
composition R · S by somehow running their set-valued function counterparts
ΛR and ΛS as functional programs.

42 J. N. Oliveira

This is possible as instance of the so-called monadic (or Kleisli) composition,8
defined for any adjunction L � R as follows,

f • g = μ · M f · g (36)

where M = R · L as seen above. One has

�f · g� = �f � • �g� (37)

as proved in the appendix.
As a well-known example, Kleisli composition enables one to sequence state-

based computations in a purely functional, elegant way using the so-called state
monad which arises from the (× K) � (K) adjunction (21).9

11 Composing Adjunctions

Above we saw the example of a functor (Δ) being at the same time a left adjoint
and a right adjoint of a different adjunction. Let us study the situation in which
two such adjunctions are chained: L � M � R.

A quick inspection of how a morphism L A k �� R B can be transformed
unveils the composite adjunction (M L) � (M R):10

M L A → B
∼= { M � R }

L A → R B
∼= { L � M }

A → M R B
D

L

� C

M
��

M

� D

R
��

A B

A
g
��

L A
k��

M L A
f
��

M R B R B B

Given L A k �� R B , k = �f �R holds for exactly

one M L A
f �� B . (See the diagram aside.) On

the other hand, k = �g�L holds for exactly one

A
g �� M R B . So the exchange law

�f �R = �g�L (38)

holds for such M L A
f �� B and A

g �� M R B . Observe in the diagram
that f and g in (38) live in the same category (D).

8 This is the way relational specifications are handled in [4], for instance.
9 For more details about this monad and how to calculate with it please see e.g. [18].

10 In the sequel we adopt the usual shortcut for functor composition, e.g. M L instead
of M · L and so on.

Why Adjunctions Matter 43

The Product-Coproduct “Mix”. Let us see an instance of (38) that emerges from
composing (+) � Δ � (×) and is dear to algebra of programming practitioners

[4]: in this case, M L A
f �� B is of type Δ (+) (A,C) → (B ,D),

f = (A+ C ,A+ C)
(m,n) �� (B ,D)

and A
g �� M R B is of type (A,C) → Δ (×) (B ,D):

g = (A,C)
(i,j) �� (B × D ,B × D) (39)

So, �f �R = �g�L becomes 〈m,n〉 = [i , j], which we want to solve next. Looking
at (39), we have i = 〈h, k〉 and j = 〈p, q〉 for some h, k , p, q . Then:

〈m,n〉 = [〈h, k〉 , 〈p, q〉]
⇔ { (+) � Δ }{

(m,n) · (i1, i1) = (h, k)
(m,n) · (i2, i2) = (p, q)

⇔ { re-arranging }{
(m,m) · (i1, i2) = (h, p)
(n,n) · (i1, i2) = (k , q)

⇔ { Δ � (×) }{
m = [h , p]
n = [k , q]

A
i1 ��

h

��
p

�����
���

���
���

���
��� A + C C

k

������
���

���
���

���
��

q

��

i2��

B B × D
π1

��
π2

�� D

The composite adjunction (+)�Δ�(×) there-
fore yields the well-known exchange law [4],

〈[h , p], [k , q]〉 = [〈h, k〉 , 〈p, q〉] (40)

which is very useful in handling functions that
input sums and output products. As will be seen
in the sequel, (40) will play an important role

when dealing with mutual recursion.

(+)�Δ meets L�R. As we have seen, adjunction (24) brings with it the possibility
of expressing alternative computations. One wonders whether such a possibility
can be extended “across” other adjunctions via the composition

S2

(+)

��S

Δ
��

L

��C

R
��

that is

S2 S

(R A,R A) R A+ R A ∇ �� R A

(C ,D)

(�f �,�g�)
��

C +D

�f �+�g�
��

�k�

��������

44 J. N. Oliveira

meaning:11{ �f � = �k� · i1
�g� = �k� · i2

⇔ �k� = [�f � , �g�] (41)

Clearly, the right side of (41) can be written k = �[�f � , �g�]�. Concerning the
left side:{ �k� · i1 = �f �

�k� · i2 = �g�
⇔ { fusion (67) and isomorphism (72) (twice) }{

k · L i1 = f
k · L i2 = g

In summary, (41) re-writes to the universal property

k = �[�f � , �g�]� ⇔
{
k · L i1 = f
k · L i2 = g (42)

that is, we have coproducts in C induced by the lower adjoint L.

Relational Coproducts. Let us inspect (42) for L � R := J � P (27). In this case,
�k� = (∈) · k and L i1 = J i1 is injection i1 regarded as a relation, y i1 x ⇔ y =
i1 x , which is usually abbreviated to i1 (similarly for i2):

X = (∈) · [ΛR , ΛS]︸ ︷︷ ︸
[R ,S]

⇔
{
X · i1 = R
X · i2 = S (43)

Thus relational coproducts are born, in which alternatives are still denoted by
[R ,S], as in the functional case, since types always tell us whether we are in S
or R.

As another example, this time concerning (× K) � (K) (21), we get

k = uncurry [curry f , curryg] ⇔
{
k · (i1 × id) = f
k · (i2 × id) = g

and so on and so forth for other L � R.12

12 More About R

We have just seen that the category of relations R has coproducts. In fact, it has
a much richer structure which stems from the powerset construction in S (27).

11 The � and � � that occur in (41) and (42) have to do with L � R, since the
corresponding transposes of (+) � ∇ are spelt out via (23).

12 These facts are actually instances of a more general result: coproducts generalize to
so-called colimits and these are preserved by left adjoints [14].

Why Adjunctions Matter 45

The fact that powersets are ordered by set inclusion induces a partial order on
relations in R easy to define:13

R ⊆ S ⇔ 〈∀ a :: (ΛR a) ⊆ (ΛS a)〉 (44)

Put in another way, every homset R(A,B) is partially ordered and we say that
R is order-enriched.

This enrichment is actually “richer”: (44) carries with it a complete Boolean
algebra and therefore relation union (R∪S) and intersection (R∩S) are defined
within the same homset R (A,B) by construction, whose least element is usually
denoted by ⊥ and the largest by �.

The other interesting structural property is that homsets R(A,B) and
R(B ,A) are isomorphic, that is, R is self dual. For each R ∈ R(A,B), the
corresponding relation in R (B ,A) is denoted by R◦ (the converse of R) and we
have:14

b R a ⇔ a R◦ b

This is a major advantage of R when compared to S, where only isomorphisms
can be reversed. Moreover, it turns out that converses of functions play a major
role in R. In particular, the useful rule

b (f ◦ · R · g) a ⇔ (f b) R (g a) (45)

holds, for suitably typed functions f and g and relation R,15 please see the type
diagram below.

C D
R��

B

f

��

A

g

��

f◦·R·g
��

The use of this rule can be appreciated by applying it to both
sides of a Galois connection, recall (4): term f a � x becomes
a (f ◦ · (�)) x and term a � g x becomes a ((�) · g) b. That
is, the logical equivalence of a GC (4) becomes the relational
equality :

f ◦ · (�) = (�) · g (46)

This version of (4) is said to be pointfree in the sense that it dispenses with
variables, or points, a and x .16 The question arises: how does one describe the
preorders (�) and (�) at such a pointfree level? This is related to a previous
question: how does a recursive program such as e.g. take get generated from an
equality like (46)? With no further delay we need to bring recursion into our
framework of reasoning.

13 The fact that we use the same symbol to order relations and order powersets should
not be a problem, as types disambiguate its use.

14 Self-duality in R arises from isomorphism P X ∼= 2X (“sets are predicates”) in S. By
this and uncurrying, A → P B ∼= 2A×B . Since A × B ∼= B × A, we can go in reverse
order and obtain B → P A, etc.

15 Following a widely adopted convention [4] to save text, we denote “relations that are
functions” by lowercase letters.

16 This is the way (in R) Galois connections are handled in e.g. [1,16].

46 J. N. Oliveira

13 Recursion Comes In

a

f

��

A

f

��

F Aa��

F f

��
b B F B

b
��

For a given (endo)functor F, any morphism
A F Aa�� is said to be an F-algebra, where
A is said to be the carrier of the algebra. F-
algebras form a category provided its morphisms

a
f �� b satisfy a particular property,

f · a = b · F f (47)

captured in the diagram aside.17 Property (47) states that A-elements are
mapped to B -elements in a structural way. Think for instance of A = B = N0

being the natural numbers, F X = X × X , a (n,m) = n +m, b (x , y) = x × y
and f x = cx , for some fixed c. Then (47) becomes f (a (n,m)) = b (f n, f m),
then f (n +m) = (f n)× (f m) and finally cn+m = cn × cm , which holds in N0.

Thus (+) c()
�� (×) is a F-algebra morphism.

Some situations arise in which a is such that, for every b, f is unique. In such
cases, a is an isomorphism18, that is, there exists some morphism a◦ such that
a◦ · a = id and a · a◦ = id. Such algebras a are said to be initial and usually

denoted by in, i.e. F T
in �� T assuming their carrier set denoted by T. The

uniqueness of f wrt. b is written f = � b � and we have the universal property:

k = � b � ⇔ k · in = b · F k

Due to the tight relationship between in and F, it is common to write μF instead
of T and inF instead of in:

k = � b � ⇔ k · inF = b · F k

μF

k=� b �

��

μF

in◦
F

��

k

��

∼= F μF

inF

��

F k

��
B B F B

b

		

(48)

In words, � b � is referred to as the19 F-catamorphism induced by algebra b.
As illustrated in the sequel, it is a generic, recursive construct expressing the
transformation of μF into B in a “recursive-descent” manner dictated by functor
F.

17 Such F-algebra morphisms are often called F-homomorphisms. Note the overloading

of f in a
f �� b , a F-algebra morphism; and f in (47), a function between the

corresponding carriers.
18 This is known as the Lambek lemma [4].
19 Definite article because it is unique.

Why Adjunctions Matter 47

A very simple example of catamorphism is the “for-loop” combinator defined
over the natural numbers (μF = N0) in which F X = 1 +X :

for b i = � [i , b] � (49)

In this case,

inF = [zero , succ] (50)

is the so-called Peano algebra which builds natural numbers, where
1 zero �� N0 = 0 generates 0 and N0

succ �� N0 , the successor function succ n =

n +1, generates all other numbers. (By 1
k �� X we mean the constant func-

tion k = k , where 1 is a singleton object.)
By unfolding (49) through (48) one derives

for b i 0 = i
for b i (n + 1) = b (for b i n)

clearly showing that b is the loop-body and i is the loop-initialization.20
Due to its genericity, the catamorphism concept has proved very useful in

studying functional recursion. Similarly to [11], but extending this work towards
the relational setting, the remainder of this paper addresses the “chemistry”
between adjunctions and catamorphisms.

� � meets L � R. As a first step in the investigation of such “chemistry”, we
set ourselves the task of solving the equation �f � = � �h� �, where � � is the
R-transpose of some adjunction L � R, �f � : μF → R A and �h� : F R A → R A:

�f � = � �h� �

⇔ { cata-universal (48) }
�f � · inF = �h� · F �f �

⇔ { fusion (67) twice }
�f · L inF� = �h · L F �f ��

⇔ { isomorphism � (72) }
f · L inF = h · L F �f �

Altogether,

f · L inF = h · L F �f � ⇔ �f � = � �h� � (51)

20 In spite of its elementary nature, the for-loop combinator is very useful in program-
ming, see e.g. [8,19]. The unfolding of (49) down to the given pointwise definition is
routine work in algebra of programming practice, see e.g. [18]. Starting from (48), it
mainly uses the laws of the (+) � ∇ adjunction.

48 J. N. Oliveira

cf. the diagrams:

C S

L μF

L in◦
F

f

��

∼= L F μF

L inF

��

L F �f �
��

A L F R A

h

��

μF

in◦
F

��

�f �
��

∼= F μF

inF

��

F �f �
��

R A F R A

�h�
!!

Although we did not get rid of � � from the left side of (51), this result already
offers us something useful, as the following example shows.

Let us see how � � meets Δ� (×), the pairing adjunction (22) where (recall)
L f = Δ f = (f , f), ε = (π1, π2) and �(f , g)� = 〈f , g〉. In this case, the left-hand
side of (51) becomes:

(f , g) · L inF = (h, k) · L (F �(f , g)�)
⇔ { L f = (f , f) ; �(f , g) = 〈f , g〉 }

(f , g) · (inF, inF) = (h, k) · (F 〈f , g〉,F 〈f , g〉)
⇔ { composition and equality of pairs of functions }{

f · inF = h · F 〈f , g〉
g · inF = k · F 〈f , g〉

Concerning the right-hand side:

�(f , g)� = � �(h, k)� �

⇔ { �(f , g) = 〈f , g〉 twice }
〈f , g〉 = � 〈h, k〉 �

Putting both sides together we get the so-called mutual recursion law:

〈f , g〉 = � 〈h, k〉 � ⇔
{
f · inF = h · F 〈f , g〉
g · inF = k · F 〈f , g〉 (52)

This first outcome of the interplay between recursion and adjunctions is
already useful in programming, as it can help reduce the complexity of some
dynamic programming (DP) problems by calculation. In particular, it can be
used to convert complex multiple recursion into Peano-recursion, i.e., for-loops
(49).

Many examples of application of (52) could be given.21 Perhaps the most
famous (and shortest to explain) is the Fibonacci series, a classic in DP :
21 See e.g. [18], where examples include the derivation of efficient implementations of R-

valued functions from their Taylor series expansion into mutually recursive functions
that are “packed together” via (52).

Why Adjunctions Matter 49

fib 0 = 1
fib 1 = 1
fib (n + 2) = fib (n + 1) + fib n

By defining f n = fib (n + 1) and expanding it through the Peano-algebra, one
gets, {

f 0 = 1
f (n + 1) = f n + fib n{
fib 0 = 1
fib (n + 1) = f n

that is:{
f · [zero , succ] = [1 , add] · 〈f ,fib〉
fib · [zero , succ] = [1 , π1] · 〈f ,fib〉

By (52) and the exchange law (40), this leads to the for-loop

〈f ,fib〉 = � [(1, 1) , 〈add, π1〉] �
that is (in Haskell syntax):

fib = π2 · for loop (1, 1) where
loop (x , y) = (x + y , x)

In retrospect, note how the main ingredients of the calculation above rely mainly
on adjunctions: law (52), which instantiates (51) for Δ�(×), and law (40), which
arises from (+) � Δ � (×).

14 Towards Adjoint-Recursion

The relevance of (51) is, as already seen in (52), the possibility of “converting”
a non-standard recursive construct (f) into a catamorphism by right-adjoint
transposition. However, (51) still needs the transpose �f � on the left side of the
equivalence. Can we do without this transpose?

For this to happen, we need to get rid of �f � in the recursive call L F �f �.
The resource we have for this is the cancellation law (66), ε ·L �f � = f . However,
L in L F �f � is in the wrong position and needs to commute with F. So we need
a distributive law L F → F L or, more generally, a natural transformation

φ : L F → G L (53)

enabling such a commutation over some other functor G. Still, for ε · L �f � = f
to be of use, we need G ε somewhere in the pipeline. We thus refine h :=h ·G ε ·φ
in (51) and carry on:

50 J. N. Oliveira

�f � = � �h · G ε · φ� �

⇔ { (51) }
f · L inF = h · G ε · φ · L F �f �

⇔ { natural-φ: φ · L F f = G L f · φ }
f · L inF = h · G ε · G L �f � · φ

⇔ { functor G; cancellation ε · L �f = f (66) }
f · L inF = h · G f · φ

We thus reach

f · (L inF) = h · G f · φ ⇔ �f � = � �h · G ε · φ� � (54)

where natural transformation φ:L F → G F captures a switch of recursion-pattern
between f and the F-catamorphism �f �, through L.

What kind of function is f ? Because inF is an isomorphism, f can also be
written as

f = h · G f · φ · L in◦
F

that is, f is a fixpoint. It is an instance of the recursive scheme

f = c · G f · d (55)

which is often termed hylomorphism [4] and generalizes the catamorphism com-
binator. (For d = in◦

μF
one would have, by (48), f = � c �.) Altogether, (54) shows

the equivalence of a G-hylomorphism and an F-catamorphism made possible by
natural transformation φ : L F → G F :

f · (L inF) = h · G f · φ︸ ︷︷ ︸
G-hylomorphism

⇔ �f � = � �h · G ε · φ� �︸ ︷︷ ︸
adjoint F-catamorphism

Note that, in general, they sit in different categories. The G-hylomorphism (in
say C) is depicted in a diagram by:

L μF

f

��

G L μF

G f

��

L F μF

L inF

��

φ
��

A G Ah��

Why Adjunctions Matter 51

The diagram of its adjoint F-catamorphism (in S) is:

μF

�f �
��

F μF
inF��

F �f �
��

R A F R A
�h·G ε·φ���

A G Ah�� G L R AG ε�� L F R A
φ��

We shall refer to (54) as the adjoint-cata theorem. Its main interest is that
one can use the “cata-artillery” that stems from universal property (48) to reason
about hylomorphism f by converting f to �f �.22 But not necessarily: by (17) on
the right side of (54), we get

f · (L inF) = h · G f · φ︸ ︷︷ ︸
G-hylomorphism

⇔ f = �� �h · G ε · φ� ��︸ ︷︷ ︸
〈|h|〉

(56)

giving birth to a new recursion combinator with universal property :

f = 〈|h|〉 ⇔ f · L inF = h · G f · φ

In case φ is invertible, i.e. an isomorphism, the above converts to

f = 〈|h|〉 ⇔ f · L inF · φ◦︸ ︷︷ ︸
α

= h · G f (57)

which shares the structure of (48), where we started from. Indeed, for the trivial
adjunction in which L and R are the identity functors, φ = id, F = G and 〈|h|〉
coincides with � h �. But, in general, (57) has a much wider scope as it enables
us to handle recursive structures (μF) “embraced” by some contex information
(L μF), a quite common situation in programming.

For instance, f may be applied to a recursive structure x paired with some
data k , f (x , k). While this falls off the scope of (48), it is handled by (56) for
L X = X × K , the lower adjoint of the exponentials adjunction (21). This is
precisely the situation in a result known as the Structural Recursion Theorem
which is proved in [4] with no explicit connection to the underlying adjunction.23

Clearly, (56) is much wider in scope. And, as it turns out, it also covers
another result in [4] as special case, this time involving the already mentioned
category of relations R. This is addressed in the following section.

22 As explained extensively in [26], the expressive power of hylomorphisms (55) comes
at the cost of being more difficult to reason with when compared to catamorphisms,
as they lack, in general, a universal property.

23 See Theorem 3.1 in [4], which we can now regard as a corollary of (56).

52 J. N. Oliveira

15 Going Relational

Let us inspect what (56) means in presence of the power-transpose adjunction
J � P (27). Thanks to J being the identity on objects, we may choose G (in R)
as defined by:

y G (L f) x ⇔ y = F f x (58)

In words, G establishes a structural relationship between object structures x and
y , via the relation L f , iff y is the outcome of mapping f over x in S. That is,
G is the relator [3] that models F f in R. Moreover, (58) is nothing but (53)
written pointwise, for φ = id.

Given the close association of G to F expressed by (58), there is no harm
in writing only one such symbol (e.g. F) knowing that F in a relational con-
text means G. Assuming this notation convention, and knowing that φ “is” the
identity, (54) instantiates to

X · inF = R · F X ⇔ ΛX = �Λ(R · F ∈) � (59)

depicted by diagrams as follows:24

μF

X

��

F μF
inF��

F X

��
A F A

R
��

⇔
μF

ΛX

��

F μF
inF��

F ΛX

��
P A F P A

Λ(R·F ε·φ)
��

Finally, there is little harm in denoting the new combinator of (56) by �R �
instead of 〈|R|〉, giving birth to the relational catamorphism combinator:

X · inF = R · F X ⇔ X = ∈ · �Λ(R · F ∈) �︸ ︷︷ ︸
�R �

(60)

Thus “banana-brackets” are extended to relations, giving birth to inductive rela-
tions. Note that R is a relational F-algebra, which is checked in every recursive
descent of �R � across the input data.

Before proceeding to examples, it should be mentioned that the equivalence

X = �R � ⇔ ΛX = �Λ(R · F ∈) � (61)

—which is another way of expressing (60)—is known in the literature as the
Eilenberg-Wright Lemma [4]. So we have just shown that this lemma follows from
the more general “adjoint-cata” theorem (54) via the power-transpose adjunction
J � P.

� �-reflection and More. As a first introduction to reasoning about inductive
relations in R, let us see what we get from (60) when X = id. Put in another

24 Note that the left diagram lives in R while the right one lives in S.

Why Adjunctions Matter 53

way, we wish to solve id = �R � for R. Since F id = id, (60) immediately gives
us inF = R ⇔ id = �R �, meaning that the equation id = �R � has one sole
solution, R = inF. Substituting, we get

� inF � = id (62)

known as the reflection law [4]. In words, it means that recursively dismantelling
a tree-structure into its parts and assembling these back again yields the original
tree-structure.

Taking the case of the Peano algebra inF = [zero , succ] (50), where F X =
1+X , as example, we get � [zero , succ] � = for succ 0 = id. Note that [zero , succ]
is a function, and so we actually do not need (60) for this, (48) where we started
from is enough.

Now, since we can plug relations into (60), how about going for something
larger than [zero , succ], for instance � [zero , zero∪ succ] �? (Recall from (43) that
relation union and alternatives involving relations are well-defined.)

Let us first of all see what kind of relation X = � [zero , zero ∪ succ] � is,
governed by universal property (60):

X = � [zero , zero ∪ succ] �

⇔ { (60) for F X = id +X }
X · [zero , succ] = [zero , zero ∪ succ] · (id +X)

⇔ { (+) � Δ in R: fusion (76) and absorption (77) }
[X · zero ,X · succ] = [zero , (zero ∪ succ) · X]

⇔ { (+) � Δ in R: isomorphism }{
X · zero = zero
X · succ = (zero ∪ succ) · X

⇔ { go pointwise in R via relation composition and (45), several times }{
n X 0 ⇔ n = 0
m X (n + 1) = 〈∃ k : k X n : m = 0 ∨ m = k + 1〉

⇔ { simplify }{
n X 0 ⇔ n = 0
m X (n + 1) ⇔ m = 0 ∨ (m − 1) X n

By inspection, it can be seen that X is the less-or-equal relation in N0.
Indeed, by replacing X by � we get:

– base clause—n � 0 ⇔ n = 0, which means that 0 is the infimum of the
ordering.

– inductive clause—m � n + 1, which means that either m = 0 (the infimum
of the ordering again) or, for m �= 0, we have m � n + 1 ⇔ m − 1 � n,
something we have seen many times in school algebra.

54 J. N. Oliveira

All in all, our calculations show that the (�) ordering on the natural numbers
is an inductive relation. Note, however, this is not a privilege of (�) : N0 → N0,
as we shall see next.

16 Back to Galois Connections

Recall from Sect. 5 that the prefix (�) ordering over finite lists was handled
assuming basic “axiom” (10),

s � (h : t) ⇔ s = [] ∨ 〈∃ s ′ :: s = (h : s ′) ∧ s ′ � t〉
as well as the assumption that the empty sequence [] is the infimum of the order-
ing. (Further recall that these assumptions were needed where e.g. calculating
take from its Galois connection specification.)

Let us work out (�) in the same way as (�) above. There are two constructors
of finite lists, either nil = [] generating the empty list; or cons (a, x) = a : x
generating a new list a : x from an existing one (x) by placing a new element (a)
at the front of x .

Thus the initial algebra in this case is inF = [nil , cons], giving way to cata-
morphisms over a slightly more complex relator, F R = id+ id×R, where id×R
has to do with the fact that cons requires two arguments.

The parallel between [zero , succ] and [nil , cons] is obvious, and so we move
straight to defining (�) as the inductive relation (a.k.a. relational catamor-
phism):

(�) = � [nil , nil ∪ cons] � (63)

The reader can easily replay the calculation of (�) this time for (�) and conclude
that “axioms” (10) and x � [] ⇔ x = [] are indeed the pointwise equivalent to
defining the list-catamorphism (63) in R.

Eventually, we are in position to answer the main question in Sect. 5, raised
by the calculation of recursive right-adjoints such as integer division and take:

“Where does this induction come from?”

It is now clear that what turns such adjoints into recursive (inductive) functions
is the very nature of the partial orderings that express them as “best solutions”,
which are bound to be inductive relations as dictated by the inductive structure
of the underlying data.

Last but not least, there is yet another advantage: in R we can resort to the
pointfree version of Galois connections (46), where all the components of the
connections are homogeneous—all of them are morphisms of a (single) category,
R—be them functions, orderings or other relations. By catamorphism algebra,
the reasonings of Sect. 5 can be performed at pointfree level, in a more calcula-
tional style, possibly assisted by GC-oriented proof assistants [21], as detailed
below.

Why Adjunctions Matter 55

17 Related and Current Work

In his landmark paper [11] on “adjoint folds and unfolds”, Ralf Hinze leaves the
following suggestion:

(...) Finally, we have left the exploration of relational adjoint (un)folds
to future work.

Following this hint was the main motivation for the research reported in this
paper. The main outcome is a unified view of the relational algebra of program-
ming, in particular concerning results in the literature [4] that now fit together
as outcomes of the generic adjoint-cata theorem of Sect. 14.

The paper is also aimed at framing, in a wider setting, the author’s long
standing interest in Galois connections as a generic reasoning device [16,17,21].
Previous work also includes the use of adjunctions in a categorial approach
to linear algebra [13] and in calculating tail-recursive programs by “left Peano
recursion” [8,19].

Current work is going in two main directions. On the applications’ side, trying
to evaluate how generic and useful the idea of deriving programs from Galois
connections is (recall Sect. 5) and whether this can be (semi)automated by tools
such as the Galculator [21]. This would have the advantage over e.g. [16] of not
requiring in-depth knowledge of the algebra of relational operators such as e.g.
shrinking.

On the side of foundations of program semantics, we would like to explore
the hint in [20] of working out the relationship between denotational semantics
and structured operational semantics (SOS, regarded as an inductive relation)
[25] as an instance of the adjoint-cata theorem. This is expected to enable a
calculational flavour in programming language semantics theory.

18 Summary

Science proceeds from the particular to the general. Scientific maturity is
achieved when convincing explanations are given around simple (but expressive)
concepts, generic enough to encompass an entire theoretical framework. Sim-
plicity and elegance in science enhance scientific communication, make concepts
more understandable and knowledge more lasting.

Adjunctions are one such concept, expressive and general enough to capture
much of mathematics and theory of programming.

Throughout this work, the author learned to appreciate “adjoint folds” even
more and to regard adjunctions as a very fertile device for explaining program-
ming as a whole. So important that teaching them (inc. Galois connections)
should be mainstream. May the tutorial flavour of the current paper contribute,
however little, to this end.

Acknowledgments. The author wishes to thank the organizers of WADT’22 for invit-
ing him to give the talk which led to this paper. His work is financed by National Funds

56 J. N. Oliveira

through the FCT - Fundação para a Ciência e a Tecnologia, I.P. (Portuguese Founda-
tion for Science and Technology) within the IBEX project, with reference PTDC/CCI-
COM/4280/2021.

A Properties of Adjunctions and Monads

Corollaries of k = �f � ⇔ ε · L k = f (17)

reflection:

�ε� = id (64)

that is,

ε = �id� (65)

cancellation:

ε · L �f � = f (66)

fusion:

�h� · g = �h · L g� (67)

absorption:

(R g) · �h� = �g · h� (68)

naturality :

h · ε = ε · L (R h) (69)

closed definition:

�k� = ε · (L k) (70)

functor :

R h = �h · ε� (71)

isomorphism:

�f � = �g� ⇔ f = g (72)

Dual corollaries of k = �f � ⇔ R k · η = f (19)

reflection:

�η� = id (73)

that is,

η = �id� (74)

Why Adjunctions Matter 57

cancellation:

R �f � · η = f (75)

fusion:

g · �h� = �R g · h� (76)

absorption:

�h� · L g = �h · g� (77)

naturality :

h · ε = ε · L (R h) (78)

closed definition:

�g� = (R g) · η (79)

functor

L g = �η · g� (80)

cancellation (corollary):

ε · L η = id (81)

Monads. Proof of (32):

μ · μ = μ · M μ

⇔ { μ = R ε (35); functor R }
R (ε · ε) = (R ε) · (R (L (R ε)))

⇔ { functor R }
R (ε · ε) = R (ε · L (R ε))

⇔ { natural-ε (69) }
R (ε · ε) = R (ε · ε)

�
Proof of (33):

μ · η = id = μ · M η

⇔ { μ = R ε, η = �id etc }
R ε · �id� = id = R ε · (R L η)

⇔ { absorption (68); functor R }
�ε� = id = R (ε · L η)

⇔ { reflection (64); cancellation (81) }
true

�

58 J. N. Oliveira

Proof of (37):

f • g

= { f • g = μ · M f · g }
μ · M f · g

= { M = R L; μ = R ε }
R ε · (R (L f)) · g

= { functor R }
R (ε · L f) · g

= { cancellation: ε · L f = �f �; g = ��g� }
R �f � · ��g��

= { absorption: (R g) · �h = �g · h }
��f � · �g��

�

References

1. Backhouse, K., Backhouse, R.C.: Safety of abstract interpretations for free, via
logical relations and Galois connections. SCP 15(1–2), 153–196 (2004)

2. Backhouse, R.C.: Mathematics of Program Construction, p. 608. University of
Nottingham. Unpublished Book Draft (2004)

3. Backhouse, R.C., de Bruin, P., Hoogendijk, P., Malcolm, G., Voermans, T.S., van
der Woude, J.: Polynomial relators. In: Nivat, M., Rattray, C.S., Rus, T., Scollo, G.
(eds.) Proceedings of the 2nd Conference on Algebraic Methodology and Software
Technology, AMAST 1991, pp. 303–326. Springer, Heidelberg (1991). Workshops
in Computing (1992)

4. Bird, R., de Moor, O.: Algebra of Programming. Prentice-Hall, Upper Saddle River
(1997)

5. Boisseau, G., Gibbons, J.: What you Needa know about Yoneda: profunctor optics
and the Yoneda lemma (functional pearl). Proc. ACM Program. Lang. 2(ICFP),
84:1–84:27 (2018)

6. Burstall, R., Lampson, B.: A Kernel language for abstract data types and modules.
In: Kahn, G., MacQueen, D.B., Plotkin, G. (eds.) SDT 1984. LNCS, vol. 173, pp.
1–50. Springer, Heidelberg (1984). https://doi.org/10.1007/3-540-13346-1_1

7. Burstall, R.M., Goguen, J.A.: Algebras, theories and freeness. Technical report
CSR-101-82, University of Edinburgh, February 1982

8. Danvy, O.: Folding left and right matters: direct style, accumulators, and contin-
uations. J. Funct. Program. 33, e2 (2023)

9. Gibbons, J., Hinze, R.: Just do it: simple monadic equational reasoning. In: Pro-
ceedings of the 16th ACM SIGPLAN International Conference on Functional Pro-
gramming, ICFP 2011, pp. 2–14. ACM, New York (2011)

https://doi.org/10.1007/3-540-13346-1_1

Why Adjunctions Matter 59

10. Goguen, J.A., Burstall, R.M.: Institutions: abstract model theory for specification
and programming. J. ACM 39(1), 95–146 (1992)

11. Hinze, R.: Adjoint folds and unfolds – an extended study. SCP 78(11), 2108–2159
(2013)

12. Jackson, D.: Software Abstractions: Logic, Language, and Analysis. The MIT
Press, Cambridge (2012). Revised edition, ISBN 0-262-01715-2

13. Macedo, H.D., Oliveira, J.N.: Typing linear algebra: a biproduct-oriented approach.
SCP 78(11), 2160–2191 (2013)

14. Mac Lane, S.: Categories for the Working Mathematician. GTM, vol. 5. Springer,
New York (1978). https://doi.org/10.1007/978-1-4757-4721-8

15. Moggi, E.: Notions of computation and monads. Inf. Comput. 93(1), 55–92 (1991)
16. Mu, S.-C., Oliveira, J.N.: Programming from Galois connections. In: de Swart, H.

(ed.) RAMICS 2011. LNCS, vol. 6663, pp. 294–313. Springer, Heidelberg (2011).
https://doi.org/10.1007/978-3-642-21070-9_22

17. Oliveira, J.N.: Biproducts of Galois connections. Presentation at the IFIP WG 2.1
#79 Meeting, Otterlo, NL, January 2019

18. Oliveira, J.N.: Program Design by Calculation (2021). Unpublished book draft,
February 2021. Informatics Dept., U. Minho (pdf)

19. Oliveira, J.N.: A note on the under-appreciated for-loop. Technical report TR-
HASLab:01:2020 (2020). (pdf), HASLab/U.Minho and INESC TEC

20. Oliveira, J.N.: On the power of adjoint recursion. Presentation at the IFIP WG
2.1 #06 Meeting (Online), October 2021

21. Silva, P.F., Oliveira, J.N.: ‘Galculator’: functional prototype of a Galois-connection
based proof assistant. In: PPDP 2008, pp. 44–55. ACM (2008)

22. Turner, D.A.: Elementary strong functional programming. In: Hartel, P.H., Plas-
meijer, R. (eds.) FPLE 1995. LNCS, vol. 1022, pp. 1–13. Springer, Heidelberg
(1995). https://doi.org/10.1007/3-540-60675-0_35

23. Wadler, P.L.: Theorems for free! In: 4th International Symposium on Functional
Programming Languages and Computer Architecture, London, pp. 347–359. ACM,
September 1989

24. Wadler, P.L.: Comprehending monads. In: Proceedings of the 1990 ACM Confer-
ence on Lisp and Functional Programming, Nice, France (1990)

25. Winskel, G.: The Formal Semantics of Programming Languages: An Introduction.
MIT Press, Cambridge (1993)

26. Yang, Z., Wu, N.: Fantastic morphisms and where to find them - a guide to recur-
sion schemes. In: MPC 2022. LNCS, vol. 13544, pp. 222–267. Springer, Cham
(2022)

https://doi.org/10.1007/978-1-4757-4721-8
https://doi.org/10.1007/978-3-642-21070-9_22
http://www.di.uminho.pt/~jno/ps/pdbc.pdf
https://www4.di.uminho.pt/~jno/ps/haslabtr202010.pdf
https://doi.org/10.1007/3-540-60675-0_35

Standard Contributions

A Computability Perspective on (Verified)
Machine Learning

Tonicha Crook1 , Jay Morgan2 , Arno Pauly1 ,
and Markus Roggenbach1(B)

1 Department of Computer Science, Swansea University, Swansea, Wales, UK
m.roggenbach@swansea.ac.uk

2 Université de Toulon, Aix Marseille Univ, CNRS, LIS, Marseille, France
jay.morgan@univ-tln.fr

Abstract. In Computer Science there is a strong consensus that it is
highly desirable to combine the versatility of Machine Learning (ML)
with the assurances formal verification can provide. However, it is unclear
what such ‘verified ML’ should look like.

This paper is the first to formalise the concepts of classifiers and learn-
ers in ML in terms of computable analysis. It provides results about
which properties of classifiers and learners are computable. By doing
this we establish a bridge between the continuous mathematics under-
pinning ML and the discrete setting of most of computer science.

We define the computational tasks underlying the newly suggested
verified ML in a model-agnostic way, i.e., they work for all machine learn-
ing approaches including, e.g., random forests, support vector machines,
and Neural Networks. We show that they are in principle computable.

Keywords: Machine Learning · adversarial examples · formal
verification · computable analysis

1 Introduction

Machine Learning (ML) concerns the process of building both predictive and
generative models through the use of optimisation procedures. The remarkable
success of ML methods in various domains raises the question of how much trust
one can put into the responses that an ML model provides. As ML models are
also applied in critical domains, some form of verification seems essential (e.g.
eloquently argued by Kwiatkowska [9]).

However, due to the widespread use of non-discrete mathematics in ML, tra-
ditional verification techniques are hard to apply to its artefacts. Furthermore,
many ML applications lack specifications in the form of, say, an input/output
relationship, on which ‘classical’ verification approaches are often based. A typ-
ical example of this would be an ML application that shall decide if a given
picture depicts a cat. Lacking a specification, what kind of properties can be
verified? We will take the view that, like in classical verification, it is useful to
expand the range of properties beyond simple input/output relations.
c© Springer Nature Switzerland AG 2023
A. Madeira and M. A. Martins (Eds.): WADT 2022, LNCS 13710, pp. 63–80, 2023.
https://doi.org/10.1007/978-3-031-43345-0_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-43345-0_3&domain=pdf
http://orcid.org/0000-0002-4882-9999
http://orcid.org/0000-0003-3719-362X
http://orcid.org/0000-0002-0173-3295
http://orcid.org/0000-0002-3819-2787
https://doi.org/10.1007/978-3-031-43345-0_3

64 T. Crook et al.

By employing the toolset of computable analysis (the field concerned with
computation on continuous data types), we are using the same continuous math-
ematics underpinning the theory of machine learning, and avoids any ad-hoc
discretization.

We present an investigation into what kind of verification questions are
answerable in principle about ML models – irrespective of the particular ML
framework applied. We see these questions as basic building blocks for a future
ML property specification language. Discretization, as far as it may be neces-
sary for the sake of efficiency, can then be left to the implementation; without
impacting correctness.

We use the language of computable analysis to formally define the computa-
tional questions we want to ask. We can prove that they are solvable in general
(by exhibiting algorithms for them), while remaining independent of any concrete
ML methodology. The semi-decision procedures in this paper are not meant for
implementation. We are also not making any claims about computational com-
plexity.

Our paper is organised as follows: in Sect. 2 we provide a gentle summary of
our results. In Sect. 3, we provide definitions and key properties from computable
analysis. Section 4 develops our theory with mathematical precision. Finally,
Sect. 5 discusses related work.

2 A Gentle Summary of Our Results

In this section, we provide a gentle introduction to our results. The technical
details and proofs, which are using concepts of Computable Analysis, are pro-
vided later in the paper. The main results are of the nature that specific functions
model aspects of interest in ML (verification), and are computable.

We first model classifiers, define elementary questions on them and explore
when they are computable. Then we formalise the idea of adversarial examples
for a classifier utilising metric spaces. We show that detecting adversarial exam-
ples or proving their absence is computable. Next, we consider the process of
learning itself. One question of interest here is the robustness of the results of
a learned classifier depending on changes of the training data. We study this in
two settings within Subsect. 2.3.

2.1 Classifiers

One basic notion of ML is that of a classifier. A classifier takes as an input some
description of an object, say, in the form of a vector of real numbers, and outputs
either a colour or does not give an answer. This makes classifiers a generalisation
of semi-decision procedures.

A Computability Perspective on (Verified) Machine Learning 65

Computable Analysis is developed as the theory of functions on the real
numbers and other sets from analysis, which can be computed by machines.
The first step in formalising a classifier in Computable Analysis is to discuss its
domain and codomain. To this end Computable Analysis uses the notion of a
represented space (to be formalised later in this paper, as are the other technical
notions). The domain of a classifier can in general be an arbitrary represented
space, while the codomain is defined as follows:

Definition 1. The represented space k⊥ contains the elements {0, . . . , k−1,⊥},
where 0, . . . , k − 1 are discrete points and ⊥ is an additional point specified by
no information at all/represents ‘no information’.

Including the bottom element ⊥ in our framework is essential to obtain a
satisfactory theory. It can represent uncertainty. When we are modelling an ML-
classifier that outputs probabilities attached to the colours, we could e.g. consider
n ∈ k to be the answer if the assigned probability exceeds 0.5, and ⊥ to be the
answer if no individual colour exceeds 0.5.

A classifier has to be a computable function in order to be implementable.
A key observation of Computable Analysis is that computable functions are
by necessity continuous1. In fact, it turns out that the most suitable notion
of function space in Computable Analysis is the space C(X,Y) of continuous
functions from X to Y. This justifies the following definition:

Definition (Definition 8). A classifier is a continuous function that takes some
x ∈ X as input, and either outputs a colour j ∈ k, or diverges (which is seen as
outputting ⊥). The collection of classifiers is the space C(X,k⊥).

Any concrete classifier we would care about will actually be computable.
However, the definition includes also non-computable (but continuous) ones.

Example 1. A support vector machine produces separating hyperplanes, which
act as classifier by returning one colour on one side of the hyperplane, another
colour on the other side, and no answer for points on the hyperplane.

Given a classifier, what verification questions could we ask? We may want to
confirm individual requirements or look at assertions regarding the behaviour of
the classifier on an entire set or region A. These could be used for verification,
where we desire to obtain a guarantee that the system is working correctly, or
to identify potential errors. Concrete question include:

1. existsValue which answers true on input (n,A, f) iff ∃x ∈ A f(x) = n. Oth-
erwise, there is no answer.

1 Arguing informally, continuity means that sufficiently good approximations of the
input specify approximations of the output to desired precision. Computability
means that we can actually compute the desired approximations of the output from
sufficiently good approximations of the input. The latter cannot be possible for dis-
continuous function.

66 T. Crook et al.

Example 2. Consider a DDOS-attack detection system realized as a classifier f .
The region A consists of data indicating an attack is happening, and the colour
n means that the system concludes there is no attack. If existsValue(n,A, f)
returns true, we have identified a false negative in f .

2. forallValue which answers true on input (n,A, f) iff ∀x ∈ A f(x) = n. Oth-
erwise, there is no answer.

Example 3. Continuing with Example 2, here we may consider the property that
for every data point in the region A the presence of the attack is successfully
identified. If forallValue(n,A, f) returns true, we have verified that all points in
the set A are classified as expected.

3. fixedValue, which on input (n,A, f) answers 1 iff ∀x ∈ A f(x) = n, and
answer 0 iff ∃x ∈ A f(x) ∈ k \ {n}. The answer ⊥ is given if the classifier
returns ⊥ for at least one point in A, but does not return any colour except
n on points from A.

Example 4. Consider an automated stock trading system which makes decisions
to buy, sell or hold a particular stock based on its technical indicators. Deciding
to buy or sell is represented as a colour (as it is an active decision), while ⊥
means to hold the current position. Given a region A of very positive technical
indicator values, we may want to ideally be assured that the system will always
buy, while the decision to sell would be a clear mistake. If fixedValue(buy, A, f)
returns 1, we know that the system meets the ideal requirement. If it returns
0, we have found a mistake. Answer ⊥ means that the system falls short of its
target without making a clear mistake.

4. constantValue which on input (A, f) answers 1 iff there is some n ∈ k such
that fixedValue(n,A, f) answers 1, and which answers 0 iff fixedValue(n,A, f)
answers 0 for all n ∈ k.

The question constantValue is a first approximation of how to deal with
adversarial examples.

Example 5. Assume we have reason to believe that all points in the region A
are very similar, and should thus be classified in the same way by the classifier
f . If constantValue(A, f) returns 1, we have the confirmation that this indeed
happens. Obtaining the answer 0 suggests that a mistake might have happened,
as two similar data points get assigned different colours. No answer (i.e. ⊥)
means that some points in A remain unclassified by f .

It remains to specify what regions A are considered and how they are rep-
resented. Two familiar notions from computable analysis are exactly what we
need to make these questions computable, namely the compact sets K(X) and
the overt sets V(X) (see Proposition 2). Finite sets are both compact and overt.
This means that for any finite sample of data all four questions are computable.
The far more interesting applications however concern infinite sets, e.g. all points
belonging to a geometrically defined region, as they go beyond testing a classifier
for a finite number of inputs.

A Computability Perspective on (Verified) Machine Learning 67

2.2 Adversarial Examples

One specific verification task that has caught the attention of the ML community
is to find adversarial examples [5,7,22] or to prevent them from occurring. One
says that an adversarial example occurs when a ‘small’ change to the input
results in an ‘unreasonably large’ change in the output (i.e. akin our fourth task
above). For example, given a correctly classified image, small, even unnoticeable
changes to the pixels in the image can vastly change the classification output.

Example 6. In particular image-based Deep Neural Networks (DNNs) can be
easily fooled with precise pixel manipulation. The work in [23] uses a Gaus-
sian mixture model to identify keypoints in images that describe the saliency
map of DNN classifiers. Modifying these keypoints may then change the classi-
fication label made by said DNN. They explore their approach on ‘traffic light
challenges’ (publicly available dashboard images of traffic lights with red/green
annotations). In this challenge, they find modifying a single pixel is enough to
change neural network classification.

If we want to discuss small changes in data, say, in an image, we need to
assume a notion of distance. We will thus assume that our domain X comes
equipped with a metric d : X×X → R≥0, specifically, that (X, d) is a computable
metric space (which covers nearly any metric space considered in real analysis).

Detecting the presence or the absence of adversarial examples can be explored
using the following function:

Definition 2. Let (X, d) be a computable metric space, and C(X,k⊥) the space
of classifiers. The map locallyConstant : X×R

+ ×C(X,k⊥) → 2⊥ returns 1 on
input (x, ε, f) iff f returns the same colour n ∈ k for all y ∈ X with d(x, y) ≤ ε.
It returns 0 if there exists some y ∈ X with d(x, y) < ε such that f returns
distinct colours on x and y. It returns ⊥, if some points ε-close to x remain
unclassified by f (such as in the cases of the global-robustness property [10]), but
no distinct colours appear; or if there is a distinct colour appearing at a distance
of exactly ε to x.

The map locallyConstant is illustrated in Fig. 1. Consider the (closed) ε-ball
around a point x. For a classifier f , locallyConstant outputs 1 if everything in
the ball yields the same answer under f . The answer is 0 if there are two points
(depicted as a red and a blue star in the figure) that yield distinct answers in the
ball. The answer ⊥ appears in two cases: If there are unclassified points inside
the open ε-ball around x (the white region inside the ball on the right), or if
another colour appears on the boundary of the ball, but not inside it (blue star).

We prove in Theorem 1 below that locallyConstant is computable under mild
assumptions, namely that every closed ball B(x, ε) is compact (which implies
that (X, d) is locally compact). The Euclidean space Rn is both a typical example
for an effectively locally compact computable metric space where all closed balls
are compact, and the predominant example relevant for ML.

To relate back to adversarial examples, locallyConstant tells us whether a
classifier admits an adversarial example close to a given point x.

68 T. Crook et al.

Fig. 1. Illustrating the map locallyConstant (Color figure online)

Example 7. In the context of fully-autonomous vehicles that use sensor-captured
data as input for DNN models, [7] explains how lighting conditions and angles, as
well as defects in sensor equipment themselves, yield realistic adversarial exam-
ples. Assume the metric to be chosen to model the impact of these issues on
the sensor data. Then one could deploy locallyConstant on a fully-autonomous
vehicle in order to detect if one can trust the classifier on the current input data
(answer 1) or not (answer 0).

2.3 Learners

Up to now, we considered already trained ML procedures. Now we discuss the
process of learning itself, and introduce the concept of a learner. A learner takes
a sample of points with corresponding labels and outputs a trained model:

Definition 3. A learner is a (computable) procedure that takes as an input a
tuple ((x0, n0), . . . , (x�, n�)) ∈ (X × k)∗ and outputs a classifier f ∈ C(X,k⊥).
The collection of all learners is the space C((X × k)∗, C(X,k⊥)).

Note that we not only consider classifiers to be continuous functions, but
that also learning itself is assumed to be continuous. As discussed above, this is
a consequence of demanding that learning is a computable process. Continuity
here means in essence2 that if the data sample is altered by changing some xk

to some very close x′
k instead, the resulting classifiers f and f ′ cannot assign

distinct colours to the same point y (though they may still differ in the use of
⊥).

Now we can ask how ‘robust’ the classifier we are learning with the training
data actually is. This phenomenon has recently attracted attention in the ML
literature under the term of underspecification [4]. Whether we view the phe-
nomenon as robustness of learning or underspecification of the desired outcome
is a matter of perspective: A failure of robustness is tied to the existence of
(almost) equally good alternative classifiers.

Our first question on a classifier is: is it possible by adding one extra point
to the training data to change the classification? In other words, can a small
addition to the training data lead to a change in classification (this is not already
guaranteed by continuity of learning; the size of training data is a discrete value).
2 By uncurrying, we can move from a learner L to the function � : (X×k)∗ ×X → k⊥

such that L((xi, ni)i≤j)(x) = �((xi, ni)i≤j , x). One of them is continuous iff the other
is. Now we can see that if � returns a colour, it returns the same colour on an open
neighbourhood of both training sample and test point.

A Computability Perspective on (Verified) Machine Learning 69

1. robustPoint takes as input a point x, a learner and some training data. It
answers 1 if every extension of the training data by one more sample point
leads to x still receiving the same colour. It answers 0, if there exists an
extension of the training data by a single sample point leading to x receiving
a different colour. The case ⊥ covers if x is unclassified for the original data
or some of its extensions.

2. robustArea takes as input an area A, a learner and some training data. It
yields 1 if every point in A is recognized as robust by robustPoint, it yields 0
if there exists a point x ∈ A where robustPoint returns 0, and ⊥ otherwise.

If X is computably compact and computably overt, and we take the regions A
to be themselves compact and overt sets, then both operations are computable.

Allowing to add more than one point does not genuinely complicate the the-
ory. However, it is useful to also ask the question where the additional points are
added. Again, we consider a metric expressing the distance between the points
added to the training set and the point whose classification we are interested in.

We will call training data dense at a point x, if adding a small number of
additional data points sufficiently far from x does not change its classification
under the learned classifier. It is sparse if the classification can be changed.

We will show that the operation SprsOrDns is computable (if the computable
metric space X is computably compact). This operation has a number of param-
eters: a learner L, the number N of permitted additional data points, the dis-
tance ε, the training data (xi, ni)i≤� and the point x of interest. It answers 0 iff
(xi, ni)i≤� is sparse at x, and answers 1 if (xi, ni)i≤� is dense at x.

Fig. 2. Illustrating lack of robustness. Left: Original data, Right: Changed separating
line due to one added data point (at (18,0)). (Color figure online)

Figures 2 and 3 illustrate the notions of robustness and sparsity/density on
the same data set3 – see https://github.com/Roggenbach/PublishedSoftware/
blob/main/robust_sparse.py for the Python implementation used to produce
these two figures. In Fig. 2 we show a classification example: our algorithm utilises
3 Our overall algorithms are theoretical and not easily put into code. However, the

individual concepts can be, in order to help the understanding of mathematical
concepts such as robustness/sparsity and density.

https://github.com/Roggenbach/PublishedSoftware/blob/main/robust_sparse.py
https://github.com/Roggenbach/PublishedSoftware/blob/main/robust_sparse.py

70 T. Crook et al.

Fig. 3. Illustration of predicates concerning the original classifier. Left: Robustness
(Red: Robustness, Blue: Not Robust), Right: Sparsity/Density (Red: Dense, Blue:
Sparse) – note: ⊥ is at the boundaries between the coloured areas. (Color figure online)

a Support Vector Machine to create a separating line between the grey and red
dots. The left side shows the original data set, and the right side shows the data
set after the addition of another grey dot. We point out that the separating line
has moved significantly.

In the left image of Fig. 3 one can see which areas of the input space can be
affected in the classification due to adding one point to the training data. The
algorithm adds the extra data point, calculates the separating line, and then
checks whether each point in the graph is on the left or right of the separating
line. It continues to do this for all possible addition data points in order to
see what points of the graph never change sides of the line (robust) and which
do. The blue area consists of all points which are not robust, i.e. can fall on
either side of the separating line depending on the additional point. The red
area consists of all robust points, i.e., they always fall on the same side of the
separating line independent of the additional point.

The right image of Fig. 3 then shows the notion of sparsity/density: As before,
we consider whether a point could fall on either side of the separating line after
the addition of another sample point. However, we only consider sample points
further than 5 units away from the point under consideration. There can be
points which are dense, but not robust (see the area directly above (10, 0) and
(20, 0)). This can be explained as follows: To obtain a very steep separating line,
the extra data point needs to be placed in the area around (15, 0). Thus, the
steep separating lines contribute to the pattern at the top of the picture, but do
not affect the red component at the bottom.

Density implies robustness, but not the converse, as for the former we exclude
additional training data too close to the point under discussion. It depends on
the application which notion is more suitable. Lack of robustness under addition
of a single data point indicates a too small set of training data. If we consider
adding a more significant fraction of additional training data, robustness may
be a too demanding notion. In this case, dense points are still those where only
very similar counterexamples would challenge the response of the classifier.

A Computability Perspective on (Verified) Machine Learning 71

3 Computing with Real Numbers and Other Non-discrete
Data Types

The following summarises the formal definitions and key properties of the most
important notions for our paper. It is taken near verbatim from [2]. A more
comprehensive treatment is found in [16].

Definition 4. A represented space is a pair X = (X, δX) where X is a set and
δX :⊆ N

N → X is a partial surjection (the notation :⊆ denotes partial functions,
N

N is the space of infinite sequences of natural numbers). A function between
represented spaces is a function between the underlying sets.

For example, we will consider the real numbers R as a represented space
(R, ρ) by fixing a standard enumeration ν : N → Q of the rational numbers, and
then letting ρ(p) = x iff ∀k ∈ N |ν(p(k)) − x| < 2k. In words, a name for a real
number encodes a sequence of rational numbers converging to it with speed 2−k.
Likewise, the spaces R

n can be considered as represented spaces by encoding
real vectors as limits of sequences of rational vectors converging with speed 2−k.
This generalises to the following:

Definition 5. A computable metric space is a metric space (X, d) together with
a dense sequence (an)n∈N (generalizing the role of the rational numbers inside
R) which makes the map (n,m) 	→ d(an, am) : N2 → R computable. The induced
representation of X is δd mapping p ∈ N

N to x ∈ X iff ∀n ∈ N d(x, ap(n)) < 2−n.

An important facet of computable analysis is that equality is typically not
decidable; in particular, it is not for the spaces R

n. For these, inequality is
semidecidable though (which makes them computably Hausdorff by definition).
If equality is also semidecidable, a space is called computably discrete.

Definition 6. For f :⊆ X → Y and F :⊆ N
N → N

N, we call F a realizer of
f (notation F
 f), iff δY (F (p)) = f(δX(p)) for all p ∈ dom(fδX). A map
between represented spaces is called computable (continuous), iff it has a com-
putable (continuous) realizer.

Two represented spaces of particular importance are the integers N and the
Sierpiński space S. The represented space N has as underlying set N and the
representation δN : N

N → N defined by δN(p) = p(0), i.e., we take the first
element of the sequence p. The Sierpiński space S has the underlying set {�,⊥}
and the representation δS : NN → S with δS(0ω) = ⊥ and δS(p) = � for p �= 0ω.

Represented spaces have binary products, defined in the obvious way: The
underlying set of X × Y is X × Y , with the representation δX×Y(〈p, q〉) =
(δX(p), δY(q)). Here 〈 , 〉 : NN × N

N → N
N is the pairing function defined via

〈p, q〉(2n) = p(n) and 〈p, q〉(2n + 1) = q(n).
A central reason why the category of represented spaces is such a convenient

setting lies in the fact that it is cartesian closed. We have available a function
space construction C(·, ·), where the represented space C(X,Y) has as underlying

72 T. Crook et al.

set the continuous functions from X to Y, represented in such a way that the
evaluation map (f, x) : C(X,Y) × X → Y becomes computable.

Having available the space S and the function space construction, we can
introduce the spaces O(X) and A(X) of open and closed subsets respectively of
a given represented space X. For this, we identify an open subset U of X with
its (continuous) characteristic function χU : X → S, and a closed subset with
the characteristic function of the complement. As countable join (or) and binary
meet (and) on S are computable, we can conclude that open sets are uniformly
closed under countable unions, binary intersections, and preimages under con-
tinuous functions by merely using elementary arguments about function spaces.

Note that neither negation ¬ : S → S (i.e. mapping � to ⊥ and ⊥ to �)
nor countable meet (and)

∧
: C(N,S) → S (i.e. mapping the constant sequence

(�)n∈N to � and every other sequence to ⊥) are continuous or computable.
We need two further hyperspaces, which both will be introduced as subspaces

of O(O(X)). The space K(X) of saturated compact sets identifies A ⊆ X with
{U ∈ O(X) | A ⊆ U} ∈ O(O(X)). Recall that a set is saturated, iff it is equal to
the intersection of all open sets containing it (this makes the identification work).
The saturation of A is denoted by ↑ A :=

⋂{U ∈ O(X) | A ⊆ U}. Compactness
of A corresponds to {U ∈ O(X) | A ⊆ U} being open itself. The dual notion of
compactness is overtness. We obtain the space V(X) of overt sets by identifying
a closed set A with {U ∈ O(X) | A ∩ U �= ∅} ∈ O(O(X)).

Aligned with the definition of the compact and overt subsets of a space, we
can also define when a space itself is compact (respectively overt):

Definition 7. A represented space X is (computably) compact, iff isFull :
O(X) → S mapping X to � and any other open set to ⊥ is continuous (com-
putable). Dually, it is (computably) overt, iff isNonEmpty : O(X) → S mapping
∅ to ⊥ and any non-empty open set to � is continuous (computable).

The relevance of K(X) and V(X) is found in particular in the following char-
acterisations, which show that compactness just makes universal quantification
preserve open predicates, and dually, overtness makes existential quantification
preserve open predicates.

Proposition 1 ([16, Proposition 40 and 42]). The following are computable:

1. The map ∃ : O(X × Y) × V(X) → O(Y) defined by

∃(R,A) = {y ∈ Y | ∃x ∈ A (x, y) ∈ R}.

2. The map ∀ : O(X × Y) × K(X) → O(Y) defined by

∀(R,A) = {y ∈ Y | ∀x ∈ A (x, y) ∈ R}.

The represented space (V ∧ K)(X) contains the sets which are both compact
and overt, and codes them by providing the compact and the overt information
simultaneously. Thus, both universal and existential quantification over elements
of (V ∧ K)(X) preserve open predicates.

A Computability Perspective on (Verified) Machine Learning 73

4 A Theory of Verified ML

Here we provide the mathematical counterpart to Sect. 2.

4.1 A Theory of Classifiers

As stated above, we consider classification tasks only. This means that a trained
model will take as input some description of an object, and either outputs a class
(which we take to be an integer from k = {0, . . . , k − 1}, k > 0), or it does not
give an answer. Here, not giving an answer can happen by the algorithm failing
to terminate, rather than by an explicit refusal to select a class. This is important
to handle connected domains such as the reals, in light of the continuity of all
computable functions. Formally, we are dealing with the represented space k⊥,
which contains the elements {0, . . . , k − 1,⊥}, where 0ω is the only name for ⊥,
and any 0m1�0ω is a name for � < k, m ∈ N.

Definition 8. A classifier is a (computable/continuous) procedure that takes
some x ∈ X as input, and either outputs a colour j ∈ k, or diverges (which
is seen as outputting ⊥). The collection of classifiers is the space C(X,k⊥).

Example 8 (Expanding Example 1). Consider the classifier we would obtain from
Support Vector Machine [6]. The relevant space X will be R

n for some n ∈ N.
The classifier is described by a hyperplane P splitting R

n into two connected
components C0 and C1. We have two colours, so the classifier is a map p : Rn →
2⊥. If x ∈ Ci, then p(x) = i. If x ∈ P , then p(x) = ⊥.

On the fundamental level, we need the no-answer answer ⊥ as we will never
be able to be certain that a numerical input is exactly on the separating hyper-
plane, even if we keep increasing the precision: equality on reals is not decidable.

Practically, computations might be performed using floating-point arith-
metic, where equality is decidable. In this, the use of ⊥ is still meaningful: If we
keep track of the rounding errors encountered, we can use ⊥ to denote that the
errors have become too large to classify an input.

Example 9. Neural network classifiers compute a class score for every colour,
which, when these class scores are normalised, share similar properties as a
probability distribution. This translates into our framework by fixing a threshold
p ≥ 0.5, and then assigning a particular colour to an input iff its class score
exceeds the threshold p. If no colour has a sufficiently high score, the output
is ⊥. As long as the function computing the class scores is computable, so is
the classifier we obtain in this fashion. If our class scores can use arbitrary real
numbers, we cannot assign a colour for the inputs leading to the exact threshold.

As motivated and discussed in Sect. 2, we show that we can compute the
answers to the following verification questions:

74 T. Crook et al.

Proposition 2. The following maps are computable:

1. existsValue : k×V(X)×C(X,k⊥) → S, which answers true on input (n,A, f)
iff ∃x ∈ A f(x) = n.

2. forallValue : k×K(X)×C(X,k⊥) → S, which answers true on input (n,A, f)
iff ∀x ∈ A f(x) = n.

3. fixedValue : k × (V ∧ K)(X) × C(X,k⊥) → 2⊥, which on input (n,A, f)
answers 1 iff ∀x ∈ A f(x) = n, and answer 0 iff ∃x ∈ A f(x) ∈ k \ {n}, and
⊥ otherwise.

4. constantValue : (V ∧K)(X)×C(X,k⊥) → 2⊥, which on input (A, f) answers
1 iff there is some n ∈ k such that fixedValue(n,A, f) answers 1, and which
answers 0 iff fixedValue(n,A, f) answers 0 for all n ∈ k.

4.2 A Theory of Treating Adversarial Examples

One useful application of the map constantValue is using it on some small regions
that we are interested in. In ML terms, it addresses the question if there are
adversarial examples for a classifier in the vicinity of x. To characterise small
regions, we would have available a metric, and then wish to use closed balls
B(x, r) as inputs to constantValue.

To this end, we need to obtain closed balls B(x, r) as elements of (V ∧K)(X).
The property that for every x ∈ X we can find an R > 0 such that for every
r < R we can compute B(x, r) ∈ K(X) is a characterization of effective local
compactness of a computable metric space X [17]. We generally get clB(x, r),
the closure of the open ball, as elements of V(X). For all but countably many
radii r we have that B(x, r) = clB(x, r), and we can effectively compute suitable
radii within any interval [17].

Theorem 1. Let X be an effectively locally compact computable metric space
with metric d such that every closed ball is compact. The map locallyConstant :
X × R

+ × C(X,k⊥) → 2⊥ is computable, where locallyConstant(x, r, f) = 1 iff
∀y ∈ B(x, r) f(x) = f(y) �= ⊥, and locallyConstant(x, r, f) = 0 iff ∃y0, y1 ∈
B(x, r) ⊥ �= f(y0) �= f(y1) �= ⊥.

An adversarial example is the result of a small change or perturbation to
the original input that results in a change of classification made by, say, a DNN.
I.e. given the classifier f and an input x, an adversarial example is f(x) �= f(x+r)
for ||r|| ≤ ε and ε > 0. The question is: what do we call a ‘small’ perturbation,
i.e., how does one choose the parameter r?

Example 10. Assume that we want to use our classifier to classify measurement
results with some measurement errors. As an example, let us consider the use
of ML techniques to separate LIGO sensor data indicating gravitational waves
from terrestrial noise (e.g. [21]). If our measurements are only precise up to ε,
then having an adversarial example for r = ε tells us that we cannot trust the
answers from our classifier. In the example, this could mean finding that the
precise values our sensors show are classified as indicating a gravitational wave,
but a negligible perturbation would lead to a ‘noise’-classification.

A Computability Perspective on (Verified) Machine Learning 75

We could use domain knowledge to select the radius r [13]. For example, in an
image classification task, we could assert a priori that changing a few pixels only
can never turn a picture of an elephant into a picture of a car. If we use Hamming
distance as a metric on the pictures, stating what we mean with a few pixels
gives us the value r such that any adversarial example demonstrates a fault in
the classifier. Another example by [19] finds the upper and lower bounds of the
input space via an optimisation procedure, following that DNNs are Lipschitz
continuous functions and all values between these bounds are reachable.

So far it was the responsibility of the user to specify a numerical value for
what a ‘small’ perturbation is in the definition of adversarial examples. As an
alternative, we can try to compute the maximal value r such that on any scale
smaller than r the point under consideration is not an adversarial example.

Corollary 1. Let X be an effectively locally compact computable metric space
with metric d such that all closed balls are compact. The map OptimalRadius :⊆
X × C(X,k⊥) → R defined by (x, f) ∈ dom(OptimalRadius) iff f(x) �= ⊥,
∃y ⊥ �= f(y) �= f(x) and ∀r, ε > 0 ∃z ∈ B(x, r + ε) \ B(x, r) f(z) �= ⊥; and by

OptimalRadius(x, f) = sup {r ∈ R | ∃i ∈ k ∀y ∈ B(x, r) f(y) = i}
= inf {r ∈ R | ∃y ∈ B(x, r) ⊥ �= f(x) �= f(y) �= ⊥}

is computable.

4.3 A Theory of Learners and Their Robustness

Let us now consider the process of training the classifier. To keep matters simple,
we will not adopt a dynamic view, but rather model this as a one-step process.
We also only consider supervised learning, i.e., machine learning where the data
set consists of labelled examples and the learning algorithm is learning a function
that maps feature vectors to labels. Definition 3 formalised our conception of a
learner as a map from finite sequences of labelled points to classifiers.

We do not prescribe any particular relationship between the training data
and the behaviour of the resulting classifier. It could seem reasonable to
ask that a learner L faithfully reproduces the training data, i.e. satisfies
L((xi, ni)i≤�)(xm) = nm. But such a criterion is, in general, impossible to satisfy.
This is because our notion of training data does not rule out having multiple
occurrences of the same sample point with different labels. It would also not
match applications, as it often is desirable that a model can disregard parts of
its training data as being plausibly faulty.

We can, however, ask whether a learner (e.g. CNN) when given non-
contradictory training data will output a classifier faithfully reproducing it:

Proposition 3. Let X be computably overt and computably Hausdorff. The
operation

doesDeviate : C((X × k)∗, C(X,k⊥)) → S

returning true on input L iff there is some input (xi, ni)i≤� ∈ (X × k)∗ with
xi �= xj for i �= j, and some m ≤ � such that L((xi, ni)i≤�)(xm) ∈ k \ {nm} is
computable.

76 T. Crook et al.

Robustness Under Additional Training Data. Generally, our goal will not be so
much to algorithmically verify properties of learners for arbitrary training data,
but rather be interested in the behaviour of the learner on the given training
data and hypothetical small additions to it. One question here would be to ask
how robust a classifier is under small additions to the training data. A basic
version of this would be:

Proposition 4. Let X be computably compact and computably overt. The map

robustPoint : X × (X × k)∗ × C((X × k)∗, C(X,k⊥)) → 2⊥

answering 1 on input x, (xi, ni)i≤� and L iff

∀x�+1 ∈ X ∀n�+1 ∈ k L((xi, ni)i≤�)(x) = L((xi, ni)i≤�+1)(x) ∈ k

and answering 0 iff

∃x�+1 ∈ X ∃n�+1 ∈ k ⊥ �= L((xi, ni)i≤�)(x) �= L((xi, ni)i≤�+1)(x) �= ⊥
is computable.

We can lift robustPoint to ask about all points in a given region, or even in
the entire space as a corollary:

Corollary 2. Let X be computably compact and computably overt. The map

robustRegion : (K ∧ V)(X) × (X × k)∗ × C((X × k)∗, C(X,k⊥)) → 2⊥

answering 1 on input A, (xi, ni)i≤� and L iff robustPoint answers 1 for every
x ∈ A together with (xi, ni)i≤� and L, and which answer 0 iff there exists some
x ∈ A such that robustPoint answers 0 on input x, (xi, ni)i≤� and L, and which
answers ⊥ otherwise, is computable.

Sparsity of Training Data. Allowing arbitrary additional training data as in the
definition of robustness might not be too suitable – for example, if we add the
relevant query point together with another label to the training data, it would
not be particularly surprising if the new classifier follows the new data. If we
bring in a metric structure, we can exclude new training data which is too close
to the given point.

Definition 9. Fix a learner L : (X × k)∗ → C(X,k⊥), some N ∈ N and
ε > 0. We say that (xi, ni)i≤� is sparse at x ∈ X, if there are (yi,mi)i≤j and
(y′

i,m
′
i)i≤j′ such that � + N ≥ j, j′ ≥ �, yi = y′

i = xi and mi = m′
i = ni for

i ≤ �, and d(yi, x), d(y′
i, x) > ε for i > � satisfying ⊥ �= L((yi,mi)i≤j)(x) �=

L((y′
i,m

′
i)i≤j′)(x) �= ⊥.

We say that (xi, ni)i≤� is dense at x ∈ X if for all (yi,mi)i≤j and (y′
i,m

′
i)i≤j′

such that � + N ≥ j, j′ ≥ �, yi = y′
i = xi and mi = m′

i = ni for
i ≤ �, and d(yi, x), d(y′

i, x) ≥ ε for i > � it holds that L((yi,mi)i≤j)(x) =
L((y′

i,m
′
i)i≤j′)(x) �= ⊥.

A Computability Perspective on (Verified) Machine Learning 77

To put it in words: Training data is dense at a point whose label it determines,
even if we add up to N additional points to the training data, which have to be
at least ε away from that point. Conversely, at a sparse point, we can achieve
different labels by such an augmentation of the training data. If we have chosen
the parameters N and ε well, then we can conclude that based on the training
data we can make reasonable assertions about the dense query points, but unless
we have some additional external knowledge of the true distribution of labels,
we cannot draw reliable conclusion about the sparse query points. We concede
that it would make sense to include points under sparse where the classifiers will
always output ⊥ even if we enhance the training data, but this would destroy
any hope of nice algorithmic properties.

Theorem 2. Let X be a computably compact computable metric space. The
operation

SprsOrDns : C((X × k)∗, C(X,k⊥)) × N × R+ × (X × k)∗ × X → 2⊥

answering 0 on input L,N, ε, (xi, ni)i≤� and x iff (xi, ni)i≤� is sparse at x, and
answers 1 if (xi, ni)i≤� is dense at x is computable.

5 Related Work

For Neural Networks already in 2010, Pulina and Tachella presented an app-
roach for verifying linear arithmetic constraints on multiplayer perceptions by
translating them into SAT-instances [18]. A decade later, a systematic review on
testing and verification of neural networks already covered 91 articles [24]. A sur-
vey focused on verification of deep neural networks is [11]. The focus here is on
the operation we call forallValue (Proposition 2) and its generalization beyond
classification tasks. The computation is carried out by taking into account the
specific structure of the network and the use of piecewise linear activation func-
tions, which allows for the treatment of regions as rational polytopes. While tak-
ing these details into account enables the development of efficient algorithms, it
is somewhat disappointing if using sigmoidal activation functions (as necessary
for the final activation in a binary classification setup) instead requires one to
modify even the theoretical framework behind the verification approach. (Such
a modification has been carried out using Taylor models in place of polytopes,
and the Taylor expansion of the sigmoidal activation function [8]). Our approach
is model agnostic, in particular, independent of small details such as the choice
of activation functions.

Again for Neural Networks, a more general approach to decidability of veri-
fication questions starts with the observation that as long as we are using piece-
wise linear activation functions and specifications definable in the theory of real
closed fields (i.e. quantified formulas involving +, × and ≤), we obtain decid-
ability (i.e. yes/no-answers, no need for ⊥) for free. This follows the theory of
real closed fields and is decidable (albeit with infeasible complexity). This was
remarked e.g. in [8]. If we want to ask questions involving a particular data set,

78 T. Crook et al.

we need to be able to define the data set in the theory of real closed fields.
This seems like an awkward requirement for experimental data. In contrast,
our theory is compatible with data obtained through imprecise measurements
[15]. Extending the approach based on real-closed fields to sigmoidal activation
functions seems to require the truth of Schanuel’s conjecture [12]. Again, our
approach is model agnostic.

Recently using probably approximately correct (PAC) learning theory (for
background [20]), a study into the intermediate setting where learners are
required to be computable but not resource-bounded has been achieved by [1].
They have developed a notion of a computable learner similar to ours. They used
key concepts of a computable enumerable representable (CER) hypothesis class,
along with an empirical risk minimization (ERM) learner. This allowed them to
find an ERM learner that is computable on every CER class that is PAC learn-
able in the realizable case. However, verification questions are not considered in
[1].

6 Summary and Future Work

We motivated and presented a number of questions that one might want to ask
when verifying classifiers obtained by ML. These include elementary questions
such as whether any point in a region gets assigned a particular colour, but
also more advanced ones such as whether adversarial examples exist. Finally, we
make a contribution to the phenomenon of underspecification by studying the
robustness of learners. Using the framework of computable analysis we are capa-
ble of precisely formalizing these questions, and to prove them to be computable
under reasonable (and necessary) assumptions.

Regarding the necessity of the assumptions, we point out that dropping con-
ditions, or considering maps providing more information instead, will generally
lead to non-computability. We leave the provision of counterexamples, as well
as potentially a classification of how non-computable these maps are to future
work. The notion of a maximal partial algorithm recently proposed by Neumann
[14] also seems a promising approach to prove optimality of our results.

There is a trade-off between the robustness of a classifier and its ‘accuracy’.
It seems possible to develop a computable quantitative notion of robustness for
our function locallyConstant, which could then be used as part of the training
process in a learner. This could be a next step to adversarial robustness [3,5].

Rather than just asking questions about particular given classifiers or learn-
ers, we could start with a preconception regarding what classifier we would want
to obtain for given training data. Natural algorithmic questions then are whether
there is a learner in the first place that is guaranteed to meet our criteria for the
classifiers, and whether we can compute such a learner from the criteria.

Our choice to consider classifiers as the sole entities to be learned in the
present paper is meant to keep verification questions simple. Our framework
allows for straight-forward extensions to any desired broader setting.

A Computability Perspective on (Verified) Machine Learning 79

References

1. Ackerman, N., Asilis, J., Di, J., Freer, C., Tristan, J.B.: On the computable learning
of continuous features. In: Presentation at CCA 2021 (2021)

2. de Brecht, M., Pauly, A.: Noetherian Quasi-Polish spaces. In: 26th EACSL Annual
Conference on Computer Science Logic (CSL 2017). LIPIcs, vol. 82, pp. 16:1–16:17
(2017)

3. Carlini, N., Wagner, D.: Towards evaluating the robustness of neural networks. In:
IEEE Symposium on Security and Privacy, pp. 39–57 (2017)

4. D’Amour, A., et al.: Underspecification presents challenges for credibility in mod-
ern machine learning. J. Mach. Learn. Res. 23(226), 1–61 (2022). http://jmlr.org/
papers/v23/20-1335.html

5. Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge
(2016)

6. Hearst, M.A., Dumais, S.T., Osuna, E., Platt, J., Scholkopf, B.: Support vector
machines. IEEE Intell. Syst. Appl. 13(4), 18–28 (1998)

7. Huang, X., Kwiatkowska, M., Wang, S., Wu, M.: Safety verification of deep neural
networks. In: Majumdar, R., Kunčak, V. (eds.) CAV 2017. LNCS, vol. 10426, pp.
3–29. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63387-9_1

8. Ivanov, R., Carpenter, T.J., Weimer, J., Alur, R., Pappas, G.J., Lee, I.: Verifying
the safety of autonomous systems with neural network controllers. ACM Trans.
Embed. Comput. Syst. 20(1), 1–26 (2020). https://doi.org/10.1145/3419742

9. Kwiatkowska, M.Z.: Safety verification for deep neural networks with provable
guarantees (Invited Paper). In: Fokkink, W., van Glabbeek, R. (eds.) 30th Inter-
national Conference on Concurrency Theory (CONCUR 2019). Leibniz Inter-
national Proceedings in Informatics (LIPIcs), vol. 140, pp. 1:1–1:5. Schloss
Dagstuhl-Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany (2019). http://
drops.dagstuhl.de/opus/volltexte/2019/10903

10. Leino, K., Wang, Z., Fredrikson, M.: Globally-robust neural networks. In: Proceed-
ings of the 38th International Conference on Machine Learning, pp. 6212–6222.
PMLR, July 2021

11. Liu, C., Arnon, T., Lazarus, C., Strong, C.A., Barrett, C.W., Kochenderfer, M.J.:
Algorithms for verifying deep neural networks. Found. Trends Optim. 4(3–4), 244–
404 (2021). https://doi.org/10.1561/2400000035

12. Macintyre, A., Wilkie, A.J.: On the decidability of the real exponential field. In:
Odifreddi, P. (ed.) Kreiseliana. About and Around Georg Kreisel, pp. 441–467. A
K Peters (1996)

13. Morgan, J., Paiement, A., Pauly, A., Seisenberger, M.: Adaptive neighbourhoods
for the discovery of adversarial examples. arXiv preprint arXiv:2101.09108 (2021)

14. Neumann, E.: Decision problems for linear recurrences involving arbitrary real
numbers. Logical Methods in Computer Science (2021). https://arxiv.org/abs/
2008.00583

15. Pauly, A.: Representing measurement results. J. Univ. Comput. Sci. 15(6), 1280–
1300 (2009)

16. Pauly, A.: On the topological aspects of the theory of represented spaces. Com-
putability 5(2), 159–180 (2016). https://doi.org/10.3233/COM-150049

17. Pauly, A.: Effective local compactness and the hyperspace of located sets. arXiv
preprint arXiv:1903.05490 (2019)

http://jmlr.org/papers/v23/20-1335.html
http://jmlr.org/papers/v23/20-1335.html
https://doi.org/10.1007/978-3-319-63387-9_1
https://doi.org/10.1145/3419742
http://drops.dagstuhl.de/opus/volltexte/2019/10903
http://drops.dagstuhl.de/opus/volltexte/2019/10903
https://doi.org/10.1561/2400000035
http://arxiv.org/abs/2101.09108
https://arxiv.org/abs/2008.00583
https://arxiv.org/abs/2008.00583
https://doi.org/10.3233/COM-150049
http://arxiv.org/abs/1903.05490

80 T. Crook et al.

18. Pulina, L., Tacchella, A.: An abstraction-refinement approach to verification of
artificial neural networks. In: Touili, T., Cook, B., Jackson, P. (eds.) CAV 2010.
LNCS, vol. 6174, pp. 243–257. Springer, Heidelberg (2010). https://doi.org/10.
1007/978-3-642-14295-6_24

19. Ruan, W., Huang, X., Kwiatkowska, M.: Reachability analysis of deep neural net-
works with provable guarantees. In: Proceedings of the Twenty-Seventh Interna-
tional Joint Conference on Artificial Intelligence, pp. 2651–2659, July 2018

20. Shalev-Shwartz, S., Ben-David, S.: Understanding Machine Learning: From Theory
to Algorithms. Cambridge University Press, Cambridge (2014)

21. Skliris, V., Norman, M.R.K., Sutton, P.J.: Real-time detection of unmodelled
gravitational-wave transients using convolutional neural networks (2020). https://
doi.org/10.48550/ARXIV.2009.14611

22. Szegedy, C., et al.: Intriguing Properties of Neural Networks. arXiv preprint
arXiv:1312.6199 (2013)

23. Wicker, M., Huang, X., Kwiatkowska, M.: Feature-guided black-box safety testing
of deep neural networks. In: Beyer, D., Huisman, M. (eds.) TACAS 2018. LNCS,
vol. 10805, pp. 408–426. Springer, Cham (2018). https://doi.org/10.1007/978-3-
319-89960-2_22

24. Zhang, J., Li, J.: Testing and verification of neural-network-based safety-critical
control software: a systematic literature review. Inf. Softw. Technol. 123, 106296
(2020). https://www.sciencedirect.com/science/article/pii/S0950584920300471

https://doi.org/10.1007/978-3-642-14295-6_24
https://doi.org/10.1007/978-3-642-14295-6_24
https://doi.org/10.48550/ARXIV.2009.14611
https://doi.org/10.48550/ARXIV.2009.14611
http://arxiv.org/abs/1312.6199
https://doi.org/10.1007/978-3-319-89960-2_22
https://doi.org/10.1007/978-3-319-89960-2_22
https://www.sciencedirect.com/science/article/pii/S0950584920300471

A Presheaf Semantics for Quantified Temporal
Logics

Fabio Gadducci(B) and Davide Trotta

Department of Computer Science, University of Pisa, Pisa, Italy
fabio.gadducci@unipi.it, trottadavide92@gmail.com

Abstract. Temporal logics encompass a family of formalisms for the verifica-
tion of computational devices, and its quantified extensions allow to reason about
the properties of individual components of a system. The expressiveness of these
logics poses problems in identifying a semantics that exploits its features with-
out imposing restrictions on the acceptable behaviours. We address this issue by
introducing a counterpart-based semantics and we provide a categorical presen-
tation of such semantics in terms of relational presheaves.

Keywords: Quantified temporal logics · Counterpart semantics · Relational
presheaves

1 Introduction

Temporal logics encompass a widely adopted family of formalisms for the specification
and verification of computational devices, ranging from standalone programs to large-
scale systems, which find applications in diverse areas such as synthesis, planning and
knowledge representation, see [6,33] among many others. Usually, these logics have a
propositional fragment at their core, which is extended by operators predicating on the
stepwise behaviour of a system. The framework proved extremely effective, and after
the foundational work carried out since Pnueli’s seminal paper [32], research focused
on developing techniques for the verification of properties specified via such logics.

Several models for temporal logics have been developed, with the leading example
being the notion of transition system, also known as Kripke frame: a set of states, each
one representing a configuration of the system, and a binary relation among them, each
one identifying a possible state evolution. However, one may be interested in enriching
both states and transitions with more structure, for example by taking states as algebras
and transitions as algebra homomorphisms. A prominent use case of these models is the
one exploiting graph logics [7,8], where states are specialised as graphs and transitions
are families of (partial) graph morphisms. The resulting logics allow the interaction of
temporal and spatial reasoning and thus to express the possible transformations of the
structure of a graph over time, see [2,23,34] for three early entries.

There are many quantified extensions of the modal/temporal logics paradigm, and
in general adding quantifiers to such logics involves a number of difficulties. Consider

Research partially supported by the Italian MIUR project PRIN 2017FTXR7S “IT-MaTTerS” and
by the University of Pisa project PRA 2022 99 “FM4HD”.

c© Springer Nature Switzerland AG 2023
A. Madeira and M. A. Martins (Eds.): WADT 2022, LNCS 13710, pp. 81–99, 2023.
https://doi.org/10.1007/978-3-031-43345-0_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-43345-0_4&domain=pdf
https://doi.org/10.1007/978-3-031-43345-0_4

82 F. Gadducci and D. Trotta

a model with two states s0, s1, a transition from s0 to s1 and another transition going
backward, and an item i that appears in s0 only. Is item i being destroyed and (re)created
again and again? Or is it just an identifier that is reused? The issue is denoted in the lit-
erature as the trans-world identity problem (see [15, Sect. 16] for a survey of the related
philosophical issues). An often adopted solution is to choose a set of universal items,
which are used to form each state, making it immediate to refer to the same element
across states. Despite their simplicity, solutions based on a fixed domain of individuals
are not perfectly suited to model systems with dynamic allocation and deallocation of
components. Consider again the above example. The problem is that item i belongs to
the universal domain, and hence it is exactly the same after every deallocation in state
s1. But intuitively, every instance of i should instead be considered to be distinct (even
if syntactically equivalent).

Am alternative solution to the fixed domain approach was advanced by Lewis [27]
with the counterpart paradigm: each state identifies a local set of elements, and (possibly
partial) morphisms connect them by carrying elements from one state to the other. This
allows to speak formally about entities that are destroyed, duplicated, (re)created, or
merged, and to adequately deal with the identity problem of individuals between worlds.
Going back to graph logics, semantics based on domains relative to each state has been
adopted for a μ-calculus with second-order quantifiers in [11] and, more recently, in
metric temporal graph logic [19]: see [12, Sect. 6] for an overview on temporal graph
logics. In fact, the paper builds on the set-theoretical description of the counterpart
semantics introduced in [11], with the goal of explaining how the model admits a natural
presentation in a categorical setting and how it can be adapted to offer a counterpart
semantics for (linear) temporal logics with second-order quantifiers.

From a technical perspective, our starting point was the hyperdoctrine presentation
of first-order logics, as originally described by Lawvere in his work on categories with
equational structure [25,26]. More precisely, the direct inspiration was the presheaf
model for modal logics with first-order quantifiers presented in [16]. Our work extends
and generalises the latter proposal in a few directions. First of all, the focus on temporal
logics, with an explicit next operator: the need to account for the single steps of evolu-
tion requires to tweak the original proposal by Ghilardi and Meloni by equipping our
models with a chosen family of arrows, each one representing a basic step of the system
at hand. Furthermore, the choice of a counterpart semantics forces the transition rela-
tion between worlds to be given by families of possibly partial morphisms between the
algebras forming each world: this is modelled by using relational presheaves, instead of
functional ones. Related to this, tackling second-order quantification requires additional
effort since relational presheaves do not form a topos, due to the fact that the category
of sets and relations is not a topos [30].

The paper has the following structure. Section 2 recalls basic properties of multi-
sorted algebras, which describe the structure of our worlds. Section 3 presents relational
presheaves, showing how they capture a generalised notion of transition system and how
they support second-order operators. Section 4 introduces our logic, a monadic second-
order extension of classical linear time temporal logics, and Sect. 5 finally shows how to
provide it with a counterpart semantics, thanks to the categorical set-up of the previous
sections. This paper is rounded up by a concluding section and by a running example,
highlighting the features of the chosen logics.

A Presheaf Semantics for Quantified Temporal Logics 83

Related Works. Functional presheaves can be seen as the categorical abstraction of
Kripke frames [16,17]. Building on this intuition, relational presheaves (see [30] for
an analysis of the structure of the associated category) can be thought of as a categori-
fication of counterpart Kripke frames in the sense of Lewis [27], see also the similar
use advocated in [36]. An in-depth presentation of classical counterpart semantics is in
[3,20]. In this work we use relational presheaves to provide a categorical account of the
counterpart models in [11], further specialising them to temporal logics.

As we already recalled, many authors considered quantified temporal logics and
addressed decidability and complexity issues. Since our examples are motivated by
applications to graph rewriting, we refer to the works surveyed in [15, Sect. 16]. Less
explored is the side of categorical semantics. More precisely, we are aware of a topos-
theoretical description of a semantics for modal logics in [1] and a presentation in terms
of Lawvere’s doctrines in [5]. Moreover, for connections between the areas of coalgebra
and modal logics we refer to [24], while specifically for temporal logics to [21,22].
Note however that, as far as we are aware, currently these approaches generalise to the
categorical setting the usual Kripke-style semantics, not the counterpart one.

2 Some Notions on Multi-sorted Algebras

We begin by recalling the definition of many-sorted algebras and their homomorphisms,
which lies at the basis of the structure of our worlds.

Definition 1. A many-sorted signature Σ is a pair (SΣ , FΣ) given by a set of sorts
SΣ := {τ1, . . . , τm} and by a set FΣ := {fΣ : τ1 × · · · × τm → τ | τi, τ ∈ SΣ} of
function symbols typed over S∗

Σ .

In the following we fix a many-sorted signature Σ := (SΣ , FΣ).

Definition 2. A many-sorted algebra A with signature Σ, i.e. a Σ-algebra, is a pair
(A,FA

Σ) such that

– A is a set whose elements are typed over SΣ;
– FA

Σ := {fA
Σ : Aτ1 × · · · × Aτm

→ Aτ | fΣ ∈ FΣ ∧ fΣ : τ1 × · · · × τm → τ} is a
set of typed functions.

Notice that we denoted by Aτ the set {a ∈ A | a : τ} of elements of A with type τ .

Definition 3. Given two Σ-algebras A and B, a (partial) homomorphism ρ is a fam-
ily of (partial) functions ρ := {ρτ : Aτ ⇀ Bτ | τ ∈ SΣ} typed over SΣ such that
for every function symbol fΣ : τ1 × · · · × τm → τ and for every list of elements
(a1, . . . , am), if ρτi

is defined for the element ai of type τi, then ρτ is defined for the
element fA

Σ (a1, . . . , am) and ρτ (fA
Σ (a1, . . . , am)) = fB

Σ(ρτ1(a1), . . . , ρτm
(am)).

Example 1. Let us consider the signature ΣGr := (SGr, FGr) for directed graphs. The
set SGr consists of the sorts of nodes τN and edges τE , while the set FGr is composed
by the function symbols s, t : τE → τN , which determine, respectively, the source and
the target node of an edge. In this case, a ΣGr-algebra G is a directed graph and a
homomorphism of ΣGr-algebras is exactly a (partial) morphism of directed graphs. In
Fig. 1 we find the visual representations for three graphs G0,G1 and G2.

84 F. Gadducci and D. Trotta

Fig. 1. Three graphs: G0 (left), G1 (middle) andG2 (right)

Let Σ be a many-sorted signature, and let us fix disjoint sets Xτ of variables for
each sort symbol of SΣ . In order to introduce the notion of term, we take into account
signatures of the kind ΣX := (SΣ , FΣ � X), i.e. obtained by extending a many-sorted
signature Σ with a denumerable set X =

⋃
τ Xτ of variables typed over SΣ .

Definition 4. Let ΣX be a many-sorted signature. The many-sorted set T (ΣX) of
terms obtained from ΣX is the smallest such that

x ∈ Xτ

x : τ ∈ T (ΣX)

fΣ : τ1 × · · · × τm → τ ∈ FΣ ti : τi ∈ T (ΣX)
fΣ(t1, . . . , tm) : τ ∈ T (ΣX)

Finally, we recall the notion of context and term-in-context over a signature ΣX .

Definition 5. Let ΣX be a many-sorted signature. A context Γ over ΣX is a finite list
[x1 : τ1, . . . , xn : τn] of (variable, sort)-pairs, subject to the condition that x1, . . . , xn

are distinct.

A term-in-context takes the form t : τ [Γ] where t is a term, τ is a sort, and Γ is a
context over the given signature ΣX . The well-formed terms-in-context are inductively
generated by the two rules

x : τ [Γ ′, x : τ, Γ]

t1 : τ1 [Γ] · · · tm : τm [Γ]
fΣ(t1, . . . , tm) : τ [Γ]

where fΣ : τ1 × · · · × τm → τ is a function symbol of FΣ .

Definition 6. Let ΣX be a many-sorted signature. The syntactic category or category
of contexts Con(Σ) of ΣX is defined as follows

– its objects are α-equivalence class of contexts;

A Presheaf Semantics for Quantified Temporal Logics 85

– a morphism γ : Γ → Γ ′, where Γ ′ = [y1 : τ1, . . . , ym : τm], is specified by an
equivalence class of lists of the form γ = [t1, . . . , tm] of terms over ΣX such that
ti : τi [Γ] holds for i = 1, . . . , m.

The composition of two morphisms is formed by making substitutions.

Recall that two contexts are α-equivalent if they differ only in their variables; in
other words, the list of sorts occurring in each context are equal (and in particular, the
contexts are of equal length). Requiring the objects of the syntactic category to be α-
equivalence classes of contexts ensures that the category Con(Σ) has finite products,
given by the concatenations of contexts. As for morphisms, the equivalence relation we
consider is the one identifying two terms if they are equal up to substitution.

3 A Categorical View of Counterpart Models

We start this section recalling the notion of Kripke frame, largely used in the analysis
of modal languages [4], and its development into counterpart semantics.

Definition 7. A Kripke frame is a triple 〈W,R,D〉 such that W is a non-empty set, R
is a binary relation on W , and D is a function assigning to every w ∈ W a non-empty
set D(w) such that if wRw′ then D(w) ⊆ D(w′).

The set W is the domain of possible worlds, whereas R is the accessibility relation
among worlds. The elements of each domain D(w) represent individuals existing in w.

Kripke frames are assumed to satisfy the increasing domain condition, i.e. for all
w,w′ ∈ W , if wRw′ then D(w) ⊆ D(w′), but this condition represents a strong con-
straint, philosophically and from the point of view of applications. Over the years, this
condition has been at the heart of several discussions and controversies. In particular,
Lewis denied the possibility of identifying the same individual across worlds, and he
substituted the notion of trans-world identity with a counterpart relation C among the
worlds [27]. In order to assign a meaning to terms necessary and possible according to
Lewis’ theory, Kripke frames are enriched by a function C such that for all w,w ∈ W ,
Cw,w′ is a subset of D(w) × D(w′), interpreted as the counterpart relation.

Definition 8. A counterpart frame is a 4-tuple 〈W,R,D,C〉 such that W , R, and D
are as for Kripke frames (but D may not satisfy the increasing domain condition) and
C is a function assigning to every pair 〈w,w′〉 a subset of D(w) × D(w′).

As anticipated, Kripke-like solutions are not perfectly suited to model systems with
dynamic allocation and deallocation of components. This will be clearer later, when
we present Example 9. Alternative solutions based on counterpart relations are e.g.
introduced in [11], where the authors propose a novel approach to the semantics of
quantified μ-calculi, considering a sort of labeled transition systems as semantic domain
(called counterpart models), where states are algebras and transitions are defined by
counterpart relations (a family of partial homomorphisms) between states.

We conclude this section recalling the notion of counterpart model from [11].

86 F. Gadducci and D. Trotta

Definition 9. Let Σ be a many-sorted signature and A the set of algebras over Σ. A
counterpart model is a triple M := 〈W,�, d〉 such that W is a set of worlds, d : W →
A is a function assigning to every ω ∈ W a Σ-algebra, and �⊆ (W ×(A ⇀ A)×W)
is the accessibility relation over W enriched with (partial) homomorphisms between the
algebras of the connected worlds.

In other words, for every element (w1, cr, w2) ∈� we have a (partial) homomor-
phism cr : d(w1) ⇀ d(w2), which explicitly defines the counterparts in (the algebra
assigned to) the target world of (the algebra assigned to) the source world. The intuition
is that we are considering a transition system labeled with morphisms between alge-
bras, as a generalisation of graph transition systems. The counterpart relations allow us
to avoid the trans-world identity problem, i.e. the implicit identification of elements of
(the algebras of) different worlds sharing the same name. As a consequence, the name
of the elements has a meaning that is local to the world they belong to. As we will see,
this is the reason allowing to the counterpart relations the creation, deletion, renaming,
and merging of elements in a type-respecting way.

3.1 Relational Presheaves Models

The main goal of this section is to explain how the counterpart model introduced in [11]
admits a natural generalisation in a categorical setting. To fix the notation, and to pro-
vide the intuition behind our models, we briefly recall from [16] a presheaf presentation
of the notions of world, process, and individuals arising from modal logic.

Given a small category W , its objects σ, ω, ρ, . . . can be considered as worlds or
instants of time, and its arrows f : σ → ω thus represent possible temporal develop-
ments. In the usual notion of Kripke-frame the accessibility relation is simply required
to be a binary relation on the set of worlds, and this means that there is at most one way
to evolve from a given world to another. This is a constraint we want to avoid, reflecting
e.g. the many ways a source graph may evolve preserving different sets of nodes and
edges, yet reaching the same target graph. To this end, the immediate generalisation of
a set of worlds W and a relation R is given by a category W .

From this perspective, a presheaf D : Wop → Set assigns to every world ω the set
Dω := D(ω) of its individuals, and to a temporal development f : σ → ω a function
Df : Dω → Dσ between the individuals living in the worlds ω and σ. Therefore, if
we consider two elements a ∈ Dω and b ∈ Dσ , the equality b = Df (a) can be
read as a is a future development of b with respect to f. In other words, the notion
of presheaf represents the natural categorification of the notion of counterpart frame
whose counterpart relation is functional. In particular, it is direct to check that, given a
presheaf D : Wop → Set, one can define a counterpart frame 〈W,R,D,C〉 where

– W is given by the objects of the category W ,
– ωRσ if and only if there exists at least an arrow ω → σ of W ,
– D is given by the action of D : Wop → Set on the objects of W ,
– C assigns to every pair 〈ω, ω′〉 the subset of D(ω)×D(ω′)whose elements are pairs

〈a, a′〉 such that there exists an arrow f : ω → ω′ such that a = Df (a′).

A Presheaf Semantics for Quantified Temporal Logics 87

Thus, we have seen that the choice of presheaves for the counterpart semantics is
quite natural, but it comes with some restrictions: one of the main reasons why such
semantics has been introduced is not only to avoid the increasing domain condition, but
more generally to avoid the constraint that every individual of a world w has to admit a
counterpart in every world connected to w. Presheaves are not subject to the increasing
domain condition but if we consider a temporal development f : ω → σ, and being Df

a total function, we have that for every individual of Dσ there exists a counterpart in
Dω . This forces that an individual t living of the world σ necessarily has a counterpart
in the world ω with respect to the development f : ω → σ. To fully abstract the idea
of counterpart semantics in categorical logic and the notion of counterpart frame, we
have to consider the case in which Df : Dσ � Dτ is an arbitrary relation. Therefore, in
this context an element 〈a, b〉 ∈ Df can be read as a is the future counterpart of b with
respect the development f . We recall now the notion of relational presheaf [18,35].

Definition 10. A relational presheaf is a functor V : Cop → Rel for Rel the category
of sets and relations.

The generality of relational presheaves allows to deal with partial functions, thus
avoiding the difficult situations we previously described. Indeed, as observed in [16],
relational presheaves form a category with finite limits if as morphisms we consider the
families of set functions ψ := {fσ : Vσ → Uσ}σ∈C such that for every g : σ → ρ of
the base category, if 〈t, s〉 ∈ Vg then 〈fρ(t), fσ(s)〉 ∈ Ug where s ∈ Vσ and t ∈ Vρ.
Such a choice for morphisms of relational presheaves has become standard, and we
refer to [16,29,36] or to [35, Definition 3.3.3], where this kind of morphisms are called
generalised rp-morphisms. Here we simply call them relational morphisms, and we
denote by [Wop,Rel] the category of relational presheaves and relational morphisms,
again following the notation used in [16]. Having seen the link between counterpart
frames and relational presheaves, we now introduce the new notion of counterpart W-
model and we explain how this is a categorification of the counterpart models in [11].

Definition 11. Let Σ be a many-sorted signature. A counterpart W-model is a triple
T = (W,SΣ ,FΣ) such that W is a category of worlds, SΣ := {[|τ |]T : Wop →
Rel}τ∈SΣ

is a set of relational presheaves on W , and FΣ := {I(fΣ) : [|τ1|]T × · · · ×
[|τm|]T → [|τ |]T}fΣ∈FΣ

is a set of relational morphisms.

Definition 12. Let Σ be a many-sorted signature and W a category. We define the
category of counterpart W-models, denoted by count-W-model(Σ), as the category
whose objects are counterpart W-models T and whose morphisms F : T → T′ are
families of morphisms F := {Fτ : [|τ |]T → [|τ |]T′}τ∈SΣ

of relational presheaves, com-
muting with the relational morphisms of FΣ and F′

Σ , i.e. Fτ ◦I(fΣ) = I ′(fΣ)◦(Fτ1 ×
· · · × Fτm

) for every function symbols fΣ : τ1 × · · · × τm → τ ∈ FΣ of the signature.

The notion of counterpart W-model admits a clear interpretation from the cat-
egorical perspective of functorial semantics. Observe that, by definition, a counter-
part W-model T = (W,SΣ ,FΣ) assigns to a sort τ of the signature Σ a relational
presheaf [|τ |]T : Wop → Rel and to a function symbol fΣ a relational morphism
I(fΣ) : [|τ1|]T × · · · × [|τm|]T → [|τ |]T. Thus a counterpart W-model can be represented

88 F. Gadducci and D. Trotta

as a functor FW : Con(Σ) → [Wop,Rel] preserving finite products from the syntactic
category Con(Σ), see Definition 6, into the category of W-presheaves.

Similarly, every such functor FW : Con(Σ) → [Wop,Rel] induces a counterpart
W-model. It is thus straightforward to check that the following result holds.

Theorem 1. Let W be a category. The category of counterpart W-models is equiva-
lent to the category FP(Con(Σ), [Wop,Rel]) of finite product preserving functors and
natural transformations from the syntactic category Con(Σ) over Σ to the category
[Wop,Rel] of relational presheaves over W .

Note that if we want to recover in our framework the original idea behind the notion
of counterpart models introduced in [11], i.e., that every world is sent to a Σ-algebra,
we just need to consider counterpart W-models T = (W,SΣ ,FΣ) where every rela-
tional presheaf of SΣ sends a morphism f : ω → σ of the category W to a relation
[|τ |]Tf : [|τ |]Tσ � [|τ |]Tω whose converse relation ([|τ |]Tf)† : [|τ |]Tω � [|τ |]Tσ is a partial func-
tion. In particular, the following two results provide the link between counterpart mod-
els in the sense of [11] (see Definition 9) and counterpart W-models.

Proposition 1. Let T := (W,SΣ ,FΣ) be a counterpart W-model. If every relational
presheaf of SΣ sends an arrow f : ω → σ of W to a relation [|τ |]Tf : [|τ |]Tσ � [|τ |]Tω
whose converse relation ([|τ |]Tf)† : [|τ |]Tω � [|τ |]Tσ is a partial function, then the triple
MT := 〈WT,�T, dT〉 is a counterpart model, where

– the set of worlds is given by the objects of the category W , i.e. WT = ob(W),
– dT : WT → A is a function assigning to every ω ∈ WT the Σ-algebra dT(ω) :=
(Aω, FAω

Σ) with Aω :=
⋃

τ∈SΣ
{[|τ |]Tω} and FAω

Σ :=
⋃

fΣ∈FΣ
{I(fΣ)ω},

– for every f : ω → σ of W we have (ω, crf , σ) ∈�T with the function crf :
dT(ω) ⇀ dT(σ) defined on a ∈ [|τ |]Tσ as crf (a) := ([|τ |]Tf)†(a).
Notice that in the previous proposition the only property to check is that every crf

is a partial homomorphism of Σ-algebras, which follows from each I(fΣ) being a
relational morphism. Similarly, one can directly check the dual result.

Proposition 2. Let Σ be a many-sorted signature and M := 〈W,�, d〉 a counterpart
model. Then the triple TM = (W,SΣ ,FΣ) is a counterpart W-model, where

– the category W has the worlds of W as objects and as arrows those obtained by
defining for every (ω1, cr, ω2) ∈� a generating arrow cr : ω1 → ω2,

– for every sort τ of SΣ we define the relational presheaf [|τ |]TM : Wop → Rel by
the assignment [|τ |]TM

ω := d(ω)τ and for every generating cr : ω1 → ω2 of W by
[|τ |]TM

ω := (cr)†τ ,
– for every function fΣ : τ1 × · · · × τm → τ of FΣ we define the relational morphism

I(fΣ) : [|τ1|]TM × · · · × [|τm|]TM → [|τ |]TM by the assignment I(fΣ)ω := f
d(ω)
Σ .

Remark 1. LetΣ be a many-sorted signature andM := 〈W,�, d〉 a counterpart model.
Note that if we first construct the counterpart W-model TM employing Proposition 2,
and then the counterpart modelM(TM) employing Proposition 1, we have that the coun-
terpart modelM(TM) may be different fromM. As it will be shown in Theorem 2, when
considering temporal structures such a difference will be irrelevant, from a semantic
point of view.

A Presheaf Semantics for Quantified Temporal Logics 89

Example 2. Let us consider the signature ΣGr := (SGr, FGr) for directed graphs from
Example 1. Recall that the set SGr consists of the sorts of nodes τN and edges τE ,
while the set FGr consists of the function symbols s, t : τE → τN , which determine,
respectively, the source and the target node of an edge. In this case, a ΣGr-algebra G
is a directed graph and a homomorphism of ΣGr-algebras is exactly a (partial) mor-
phism of directed graphs. The notion of counterpart W-model allows us to provide a
categorical presentation of the semantics in [11]. In this case, a counterpart W-model
TGr = (W,SΣGr

,FΣGr
) consists of

– a category of worlds W ,
– SΣGr

= {[|τN |]T, [|τE |]T}, where [|τN |]T and [|τE |]T are relational presheaves on the
category W of worlds such that ([|τN |]Tf)† and ([|τE |]Tf)† are partial functions for
every f : ω → σ of W ,

– FΣGr
= {I(s), I(t)}, where I(s) : [|τE |]T → [|τN |]T and I(t) : [|τE |]T → [|τN |]T are

morphisms of relational presheaves.

As anticipated in Proposition 1, this recasts the notion of counterpart model in [11].
Thus, given the model TGr, we have again that every ω is mapped to a directed graph
d(ω) := ([|τN |]Tω , [|τE |]Tω , I(s)ω, I(t)ω) identified by the set of nodes [|τN |]Tω , the set
of arcs [|τE |]Tω , and the functions I(s)ω, I(t)ω : [|τE |]Tω → [|τN |]Tω . Moreover, every mor-
phism f : ω → σ of the categoryW induces a partial homomorphism of directed graphs
crf : d(ω) ⇀ d(σ) given by crf := (([|τN |]Tf)†, ([|τE |]Tf)†).

Example 3. Let us consider again the signature ΣGr := (SGr, FGr) for directed
graphs, and consider the three graphs depicted in Fig. 1. In this case we consider a
category W whose objects are three worlds ω0, ω1, and ω2 and the morphisms are
generated by the compositions of four arrows

ω0
f0 �� ω1

f2

��
f1 �� ω2

f3 �� ω2.

The relational presheaves of nodes and edges are given by the assignment

– [|τN |]Tωi
:= NGi

, where NGi
is the set of nodes of the graphGi;

– [|τN |]Tf0
:= {(n3, n0), (n4, n1), (n3, n2)} ⊆ NG1 × NG0 ;

– [|τN |]Tf1
:= {(n5, n3), (n5, n4)} ⊆ NG2 × NG1 ;

– [|τN |]Tf2
:= {(n5, n3), (n5, n4)} ⊆ NG2 × NG1 ;

– [|τN |]Tf3
:= {(n5, n5)} ⊆ NG2 × NG2 .

– [|τE |]Tωi
:= EGi

, where EGi
is the set of edges of the graphGi;

– [|τE |]Tf0
:= {(e3, e0), (e4, e1)} ⊆ EG1 × EG0 ;

– [|τE |]Tf1
:= {(e5, e3)} ⊆ EG2 × EG1 ;

– [|τE |]Tf2
:= {(e5, e4)} ⊆ EG2 × EG1 ;

– [|τE |]Tf3
:= {(e5, e5)} ⊆ EG2 × EG2 .

Natural transformations I(s) and I(t) are the domain and codomain maps. Note
that ([|τN |]Tfi

)† and ([|τE |]Tfi
)† are partial functions for i = 0 . . . 3, hence we are under

90 F. Gadducci and D. Trotta

the hypotheses of Proposition 1. Thus, following the assignment of Example 2, a coun-
terpart model 〈W,�, d〉 corresponds to the counterpart W-model, and we have that
d(ωi) = Gi, and crfi

can be represented graphically as

Fig. 2. A counterpart model with three sequential worlds

The counterpart model in Fig. 2 illustrates two executions for our running example.
They illustrate the main features of our logic, as presented in the next sections. The
counterpart relations (drawn with dotted lines and colours to distinguish crf1 from crf2)
indicates that at each transition one edge is discarded and its source and target nodes
are merged. For example, the transition crf0 := (([|τN |]Tf0

)†, ([|τE |]Tf0
)†) deletes edge e2

and merges nodes n0 and n2 into n3. Similarly for crf1 and crf2 , while crf3 is a cycle
preserving both e5 and n5 , denoting that the system is idle, yet alive.

3.2 Relational Power-Set Presheaf

The category of presheaves is a topos, and hence it is rich enough to deal with higher-
order features, since it admits power objects, which are generalisation of standard power
sets to an arbitrary category with finite limits. Unfortunately, relational presheaves
rarely have such a structure [30]. Indeed, the category Set is a topos while the category
of sets and relationsRel is just an allegory [10], and, as the slogan says, allegories are
to binary relations between sets as categories are to functions between sets.

However, one could employ relational presheaves for higher-order features using the
structure of power allegory of the category of relations. For the formal definition and
the proof that Rel is a power allegory we refer the reader to [10, Proposition 2.414],
while now we briefly discuss how one can define the power-set relational presheaf
P(V) : Cop → Rel of a given presheaf V : Cop → Rel.

To this aim we employ the equivalence between relations and Galois connections
(or maps) on power-sets [14], i.e. the equivalence betweenRel andMap(Pow), where
the latter category is that whose objects are power-sets and whose morphisms are maps.
Recall from [14, Example 2] that once we have a relation R : A � B, we can define
a function PR : P(B) → P(A) (preserving arbitrary unions) by assigning PR(S) :=
{a ∈ A |∃b ∈ S : aRb} to every subset S ⊆ B. Moreover, given the equivalence
Rel ≡ Map(Pow), and using the fact that Pow = (Powop)op, we can conclude that
the assignment R �→ PR preserves compositions and identities.

A Presheaf Semantics for Quantified Temporal Logics 91

Definition 13. Let V : Cop → Rel be a relational presheaf. The relational power-set
presheaf P(V) : Cop → Rel is the functor defined as

– for every object σ ∈ C, P(V)(σ) is the power-set of Vσ ,
– for every arrow f : σ → ω of C the relation P(V)f : P(V)ω � P(V)σ is defined as

P(V)f := PVf
.

The relational presheaf P(V) : Cop → Rel is thus an ordinary presheaf over Set.
Finally, given a relational presheaf V : Cop → Rel we define the epsiloff relational
presheaf ∈V : Cop → Rel.

Definition 14. Let V : Cop → Rel be a relational presheaf. The epsiloff relational
presheaf is the functor ∈V : Cop → Rel defined as

– for every σ ∈ C, ∈V (σ) := {(a,A) ∈ Vσ × P(V)σ | a ∈ A},
– for every f : σ → ω, (∈V)f is the relation given by 〈(b,B), (a,A)〉 ∈ (∈V)f if

〈b, a〉 ∈ Vf and P(V)f (B) = A where B ⊆ Vω and A ⊆ Vσ .

We now have in place all the pieces that are needed for the semantics of our logic.

4 Syntax of Quantified Temporal Logic

Before presenting the syntax of our logic, we consider a set of second-order variables
χ ∈ X , where a variable χτ with sort τ ∈ SΣ ranges over sets of elements of sort
τ . We introduce our syntax employing a sort of positive normal form. It is a standard
presentation for linear temporal logics: it includes derived operators to have negation
applied only to atomic propositions, thus allowing to capture negation in terms of set
complements. As we will see, to properly tackle existential quantification, we will also
require a non-standard not-next operator.

Definition 15. Let Σ be a many-sorted signature, X a set of first-order variables, and
X a set of second-order variables, both typed over SΣ . The set FΣ of formulae of our
temporal logic is generated by the rules

φ := tt | ε ∈τ χ | ¬φ,

ψ := φ | ψ ∨ ψ | ψ ∧ ψ | ∃τx.φ | ∃τχ.ψ | ∀τx.φ | ∀τχ.ψ | Oψ | nOψ | ψ1Uψ2 | ψ1Wψ2.

Note that ∈τ is a family of membership predicates typed over SΣ indicating that the
evaluation of a term ε with sort τ belongs to the evaluation of a second-order variable
χ with the same sort τ . The next operator O provides a way of asserting that something
has to be true after every step, i.e. Oφ means that φ has to hold at the next state. The
not-next operator nO provides a way of asserting that something has to be false at every
next step of length one, i.e. nOφ means that φ does not hold at the next state. The until
operator U is explained as follows: φ1Uφ2 means that φ1 has to hold at least until φ2

becomes true, which must hold at the current or a future position. The operator ψ1Wψ2

denotes the weak until operator, meaning that ψ2 may never hold true.

92 F. Gadducci and D. Trotta

We will often use ff for ¬tt. The sometimes modality ♦ is obtained as ♦φ := ttUφ
and the always modality� as�ψ := ψWff. The typed equality ε1 =τ ε2 can be derived
as ∀τχ.(ε1 ∈τ χ ↔ ε2 ∈τ χ), and we write x �=τ y for ∃τχ.(x ∈τ χ ∧ y �∈τ χ).

As usual, we consider formulae in context, defined as [Γ,Δ] φ, where φ is a formula
of FΣ , Γ is a first-order context and Δ is a second-order context.

Example 4. Consider again the graph signature, the counterpart model of Fig. 2, and
the predicates presentτ (x) := ∃τy.x =τ y regarding the presence of an entity with
sort τ in a world (the typing is usually omitted). Combining this with the next operator,
we can for example speak about elements that are present at the given world and that
will be present at the next step, i.e. presentτ (x)∧O(presentτ (x)). Similarly, we can
speak about elements that are present at a given world, but that are always deleted at
very next step, i.e. presentτ (x)∧nO(presentτ (x)). The formula �(presentτE

(x))
means that for all the evolutions of our systems there exists at least an edge. The formula
∃τN

x.(((x �= y) ∧ O(x = y)) means that given a node y there exists another different
node that will be identified with y at the next step. Finally, the formula �(∃τE

e.s(e) =
x ∧ t(e) = y) means that the nodes x and y will always be connected by an edge.

5 Temporal Structures and Semantics

The notion of hyperdoctrine was introduced by Lawvere in a series of seminal papers
[25,26] to provide a categorical framework for first order logic. In recent years, this
notion has been generalised in several settings, for example introducing elementary
and existential doctrines [28,37] and modal hyperdoctrines [5]. In particular, in [17,18]
modal hyperdoctrines are introduced employing the notion of attribute associated to a
presheaf as a categorification of the modal semantics. We start recalling the notion of
set of classical attributes, and then we show how by simply fixing a class of morphisms
of the base category of a presheaf, we can construct the main temporal operators.

Definition 16. Let V : Wop → Rel be a relational presheaf. We define the set
T (V) := {{Aω}ω∈W | Aω ⊆ Vω} whose objects are called classical attributes.

The set of classical attributes has the structure of a complete boolean algebra
with respect to inclusion. Moreover, a morphism f : V → U of relational presheaves
induces a morphism of boolean algebras f∗ : T (U) → T (V) between sets of classi-
cal attributes. This action is given by pulling back world-by-world, i.e. for A ∈ T (U)
computing the pullback for every ω and defining f∗(A) := {f∗

ω(Aω)}ω∈W ∈ T (V)
for each A ∈ T (U).

Given a relational presheaf V : Wop → Rel, a classical attribute A = {Aω}ω∈W
of T (V), and an element s ∈ Vω, we use the validity notation s �V

ω A to mean that
s ∈ Aω . Therefore, writing s �V

ω A means that at the world or instant ω, an individual
s of Vω satisfies the property A.

Definition 17. A temporal structure on a category W is a class T of arrows of W .

A Presheaf Semantics for Quantified Temporal Logics 93

Given a relational presheaf V : Wop → Rel, the idea is that the class T represents
the atomic processes or the indecomposable operations of W . Each of them represent a
single evolution step of the system at heand, and as such they are used for the encoding
of the next step operator.

Definition 18. Let T be a temporal structure on a category W and ω an object of T.
We denote by path(T, ω) the class of sequences t := (t1, t2, t3, . . .) of arrows such
that tn ∈ T for every n ≥ 1 and such that dom(t1) = ω and cod(ti) = dom(ti+1) for
every i ≥ 1.

Definition 19. Let T be a temporal structure on a category W , V : Wop → Rel a
relational presheaf, s ∈ Vω and t : ω → σ an arrow of W . We denote by countσt (s) :=
{z ∈ Vσ | 〈z, s〉 ∈ Vt} the set of counterparts of s at σ with respect to t.

Given a sequence t := (t1, t2, t3, . . .) we denote by t≤i the arrow titi−1 · · · t1.
Moreover we denote ωi := cod(ti). The intuition is that the arrows in path(T, ω)
represents the T-evolutions of the state ω. The choice of the name temporal structure
recalls that by simply fixing a class T, we can define operators O, nO, U, and W on the
complete boolean algebra T (V) of classical attributes.

Definition 20. Let T be a temporal structure on a category W and V : Wop → Rel a
relational presheaf. Then for every s ∈ Vω and A := {Aω}ω∈W of T (V) we define

– s �V
ω O(A) if for every arrow t : ω → σ of T, the set countt(s) is non-empty and

for every z ∈ countσt (s) we have z �V
σ A;

– s �V
ω nO(A) if for every arrow t : ω → σ of T, the set countt(s) is empty or for

every z ∈ countσt (s) we have z �V
σ X \ A, where V \ A := {Vω \ Aω}ω∈W is the

attribute given by the set-theoretical complements of A in V .
– s �V

ω AUB if for every t ∈ path(T, ω) there exists n̄ such that for every i < n̄ the
set counterparts countωi

t≤i
(s) is non-empty and for every z ∈ countωi

t≤i
(s) we have

z �V
ωi

A. Moreover, the set countωn̄

t≤n̄(s) is non-empty and for every z̄ ∈ countωn̄
t≤n̄

(s)
we have z̄ �V

ωn̄
B.

– s �V
ω AWB if for every t ∈ path(T, ω), we have that for every i the set countωi

t≤i(s)
is non-empty and for every z ∈ countωi

t≤i(s) z �V
ωi

A or there exists n̄ such
that for every i < n̄ the set counterparts countωi

t≤i(s) is non-empty, for every
z ∈ countωi

t≤i(s) we have z �V
ωi

A and the set countωn̄

t≤n̄(s) is non-empty and for
every z̄ ∈ countωn̄

t≤n̄
(s) we have z̄ �V

ωn̄
B.

Recall that given a relational presheaf V : Wop → Rel, the top element of T (V)
is given by the attributes � = {Vω}ω∈W and the bottom element by ⊥ = {∅ω}ω∈W
since the order of T (V) is given by the inclusion of sets. Thus, employing the previous
notions, we can define the operators ♦A and �A as ♦A := �UA and �A := AW⊥.

Example 5. We already noted that a counterpart model, as defined in Definition 9, is an
instance of a labelled transition system (LTS), i.e. a triple (S,L,→), where S is a non-
empty set of states, L is the set of labels, and →⊆ S ×L×S is a relation, which is total
in the first component, i.e. for every s ∈ S there exists a label l ∈ L and a state s′ such

94 F. Gadducci and D. Trotta

that (s, l, s′) ∈→. Therefore, another meaningful choice for the category of worlds and
the temporal structure is considering an LTS (S,L,→) and the free category W(S) on
it: a temporal structure is given by the set TS of arrows of the relation →, where the
next time operator O has exactly the meaning of it holds after every step of length one.

5.1 Semantics via Temporal Structures

In this section we show how relational presheaves and temporal structures can be
employed to obtain models for our quantified temporal logic. Recall that in the seman-
tics of worlds, providing the interpretation of a formula means providing an interpreta-
tion of such a formula in every world.

Definition 21. Let Σ be a many-sorted signature. A temporal counterpart W-model
is a 4-tuple T := (W,T,SΣ ,FΣ) such that the triple (W,SΣ ,FΣ) is a counterpart
W-model and T is a temporal structure on W .

Now, the presence of a temporal structure in the definition of temporal counterpart
model allows us to refine Proposition 1 and Proposition 2 in the context of temporal W-
counterpart models. We then to obtain the following correspondence with counterpart
models in the sense of [11].

Theorem 2. There is a bijective correspondence between counterpart models 〈W,�
, d〉 and temporal W-counterpart models (W,T,SΣ ,FΣ) where W is freely generated
by the set of objects ob(W) and the arrows in T and a relational presheaf in SΣ

sends a morphism f : ω → σ of W to a relation [|τ |]Tf : [|τ |]Tσ � [|τ |]Tω whose converse
([|τ |]Tf)† : [|τ |]Tω � [|τ |]Tσ is a partial function.

Proof. The construction of a temporal W-counterpart model from a counterpart model
is given exactly as in Proposition 2 with the obvious choice of the temporal struc-
ture. What changes is only the definition of a counterpart model from a temporal W-
counterpart model. In fact, while in Proposition 1 every arrow f : ω1 → ω2 of the
base category induces an element (ω1, crf , ω2) ∈�, if we start from a temporal W-
counterpart model as in Theorem 2, we define an elements (ω1, crf , ω2) ∈� only for
those arrows f ∈ T of the temporal structure. It is direct to check that these two con-
structions provide a bijective correspondence.

Theorem 2 highlights the role of arrows in T: they are precisely those arrows of
W that are actually relevant. This intuition is going to be made explicit below in the
presentation of the semantics.

Now we show how terms-in-context and formulae-in-context are interpreted, noting
that by definition of temporal W-counterpart model, the interpretation of sorts, function
and relation symbols is fixed. Thus, for the rest of this section we fix a temporal W-
counterpart model T = (W,T,SΣ ,FΣ).

A Presheaf Semantics for Quantified Temporal Logics 95

First of all, given a first-order context Γ = [x1 : τ1, . . . , xn : τn], we denote by

[|Γ |]T := [|τ1|]T × · · · × [|τn|]T

the relational presheaf associated to context Γ via the counterpart W-model
(W,SΣ ,FΣ). Then, given a second-order context Δ = [χ1 : τ1, . . . , χm : τm], we
denote by

[|Δ|]T := P([|τ1|]T) × · · · × P([|τm|]T)
where P([|τi|]T) denotes the relational power-set presheaf of [|τi|]T, see Definition 13.
Thus we define the interpretation [|Γ,Δ|]T := [|Γ |]T × [|Δ|]T.

A term in a context [Γ,Δ] t : τ is interpreted as a morphism of relational presheaves

– if t = xi, then [|t|]T is the projection πi : [|Γ,Δ|]T → [|τ |]T;
– if t = f(t1, . . . , tk), then [|t|]T is I(f) ◦ 〈[|t1|]T, . . . , [|tk|]T〉 : [|Γ,Δ|]T → [|τ |]T.

The interpretation of a given formula φ in a context [Γ] has to be defined for each
world, in line with the usual Kripke-style semantics. Therefore, the interpretation of
[Γ] φ is given as a classical attribute

[|[Γ] φ|]T := {[|[Γ] φ|]Tω}ω∈W

of the relational presheaf [|Γ |]T, where every [|[Γ] φ|]Tω is a subset of [|Γ |]Tω . Recall that
the notation [|Γ |]Tω indicates the set given by the evaluation [|Γ |]T at ω.

Moreover, we start defining the interpretation of a formula at a given fixed world,
and we use induction on the structure on φ as usual.

The interpretation of standard formulae at a world ω is given as follows

– [|[Γ,Δ] tt|]Tω := [|Γ,Δ|]Tω ;
– [|[Γ,Δ] ε ∈τ χ|]Tω := 〈πε, πχ〉∗

ω(∈[|τ |]T (ω)) where 〈πε, πχ〉 : [|[Γ,Δ]|]T → [|[ε :
τ, χ : τ |]T are the opportune projections;

– for every φ, then [|Γ,Δ] ¬φ|]Tω := [|Γ,Δ] φ|]Tω where (−) denotes the set-theoretical
complements, i.e. we have [|Γ,Δ] ¬φ|]Tω := [|Γ,Δ|]Tω \ [|Γ,Δ] φ|]Tω .

We also have that

– [|[Γ,Δ] ψ ∨ ψ|]Tω := [|[Γ,Δ] ψ|]Tω ∪ [|[Γ,Δ] ψ|]Tω ;
– [|[Γ,Δ] ψ ∧ ψ|]Tω := [|[Γ,Δ] ψ|]Tω ∩ [|[Γ,Δ] ψ|]Tω ;
– [|[Γ,Δ] ∀τy.ψ|]Tω := {a ∈ [|Γ,Δ|]T(ω) |∀b ∈ [|τ |]Tω we have (a, b) ∈ [|[Γ, y :

τ,Δ] ψ|]Tω};
– [|[Γ,Δ] ∀τχ.ψ|]Tω := {a ∈ [|Γ,Δ|]T(ω) |∀b ∈ P([|τ |]T)(ω) we have (a, b) ∈

[|[Γ,Δ, χ : τ] ψ|]Tω};
– [|[Γ,Δ] ∃τy.ψ|]Tω := {a ∈ [|Γ,Δ|]T(ω) |∃b ∈ [|τ |]Tω such that (a, b) ∈ [|[Γ, y :

τ,Δ] ψ|]Tω};
– [|[Γ,Δ] ∃τχ.ψ|]Tω := {a ∈ [|Γ,Δ|]T(ω) |∃b ∈ P([|τ |]T)(ω) such that (a, b) ∈

[|[Γ,Δ, χ : τ] ψ|]Tω}.

Finally, we have the interpretation of formulae in which temporal operators occur

– [|[Γ,Δ] Oψ|]Tω := O[|[Γ,Δ] ψ|]Tω ;

96 F. Gadducci and D. Trotta

– [|[Γ,Δ] nOψ|]Tω := nO[|[Γ,Δ] ψ|]Tω ;
– [|[Γ,Δ] ψUψ|]Tω := [|[Γ,Δ] ψ|]TωU[|[Γ,Δ] ψ|]Tω ;
– [|[Γ,Δ] ψWψ|]Tω := [|[Γ,Δ] ψ|]TωW[|[Γ,Δ] ψ|]Tω ;

where O, nO, U, and W are the operators induced by the temporal structure T.
In particular, We now conclude by employing the correspondence in Theorem 2

to prove that the semantics introduced in [11] and the one we present for temporal
counterpart models are equivalent.

Theorem 3. A formula is satisfied by a counterpart model if and only if it is satisfied
by the corresponding temporal W-counterpart model.

Finally, notice that Theorem 3 holds also in a stronger form, where the satisfiability
is required to hold world by world, i.e. a formula is satisfied at a given world by a coun-
terpart model if and only if it is satisfied by the corresponding temporal W-counterpart
model at the corresponding world.

Example 6. Temporal W-counterpart models allow us to obtain as an instance the
semantics for standard LTL by considering as temporal structure the free category gen-
erated by a tree order. In particular, the interpretation of the classical temporal operators
O, U, and W coincide with the usual one of LTL.

Example 7. Let us consider our running example of Fig. 2 and the temporal structure
given by the morphism T := {f0, f1, f2, f3}. Now let us consider the property [y :
τN] ∃τN

x.(((x �= y) ∧ O(x = y)) presented in Example 4: we have that

– [|[y : τN] ∃τN
x.((x �= y) ∧ O(x = y))|]Tω0

= {n0, n2} is the set of nodes of the
graph G0 that will be identified at the next step, i.e. at the world ω1;

– [|[y : τN] ∃τN
x.((x �= y) ∧ O(x = y))|]Tω1

= {n3, n4} is the set of nodes of the
graph G1 that will be identified at the next step, i.e. at the world ω2;

– [|[y : τN] ∃τN
x.((x �= y) ∧ O(x = y))|]Tω2

= ∅ is the set of nodes of the graph G2

that will be identified at the next step.

Example 8. Recall the toy example presented in the introduction, i.e. the model with
two states s0 and s1. In order to describe it, consider a one-sorted signature Σ = {τ}
with no function symbols, and the free category S generated by two arrows {f0 : s0 →
s1, f1 : s1 → s0} and the relational presheaf D : Sop → Rel such that Ds0 = {i},
Ds1 = ∅, and both Df0 and Df1 are the empty relation. Then consider the counterpart
model given by (S,T := {f0, f1},D, ∅). One of the main advantages of the counterpart
semantics is the possibility to deal with processes destroying elements. In this setting an
interesting formula is [x : τ] present(x) ∧ O(Opresent(x)), i.e. meaning that there
exists an entity at a given world that has a counterpart after two steps. If we consider its
interpretation at world s0 in the model (S, {f0, f1},D, ∅), it is direct to check that

[|[x : τ] present(x) ∧ O(Opresent(x))|]Ts0
= ∅.

This is exactly what we expected, since it essentially means that entity i has no coun-
terpart at the world s0 after two steps, even if it belongs to the world relative to s0.

A Presheaf Semantics for Quantified Temporal Logics 97

Example 9. The creation and destruction of entities has attracted the interest of vari-
ous authors (see e.g. [9,38]) as a means for reasoning about the allocation and deal-
location of resources or processes. Our logic does not offer an explicit mechanism
for this purpose. Nevertheless, as we have shown in Example 4, we can easily derive
a predicate regarding the presence of an entity in a certain world as presentτ (x).
Using this predicate together with the next-time modalities O and nO, we can reason
about the preservation and deallocation of some entities after one step of evolution
of the system as nextStepPreserved(x) := presentτ (x) ∧ O(presentτ (x)) and
nextStepDeallocated(x) := presentτ (x) ∧ nO(presentτ (x)).

Now we provide an interpretation of these two formulae for our running example in
Fig. 2 and the temporal structure given by the morphism T := {f0, f1, f2, f3}. Then

– [|[x : τE] nextStepPreserved(x)|]Tω0
= {e0, e1} is the set of edges ofG0 surviv-

ing next steps;
– [|[x : τE] nextStepPreserved(x)|]Tω1

= ∅ is the set of edges ofG1 surviving next
steps;

– [|[x : τE] nextStepPreserved(x)|]Tω2
= {e5} is the set of edges of G2 surviving

next steps.

Notice that [|[x : τE] nextstepPreserved(x)|]Tω1
= ∅ because we have that d(f1)

forgets the arrow e4, while d(f2) forgets the arrow e3. This follows from our definition
of the next operator, where we require that a given property has to hold for every step
of length one. Then, we conclude considering the case of next-step deallocation

– [|[x : τE] nextstepDeallocated(x)|]Tω0
= {e2} is the set of edges of G0 that are

deallocated at the next steps;
– [|[x : τE] nextStepDeallocated(x))|]Tω1

= ∅ is the set of edges of G1 that are
deallocated at the next steps;

– [|[x : τE] nextStepDeallocated(x)|]Tω2
= ∅ is the set of edges of G2 that are

deallocated at the next steps.

6 Conclusions and Future Works

In the paper we presented a counterpart semantics for quantified temporal logics that is
based on relational presheaves. Starting points were previous works on modal logics,
namely the set-theoretical counterpart semantics in [11] and the functional presheaves
model for Kripke frames in [16], and indeed they are both recovered in our framework.

Counterpart semantics offers a solution to the trans-world identity problem The use
of presheaves allows us to recover it, as well as to model second-order quantification.

The choice of temporal logics asked for some ingenuity in the way to model the
next operator, with the introduction of what we called temporal structures, as well as in
the treatment of negation, which required the use of a restricted syntax and an operator
not-next. Our presheaf framework may as well recover the semantics of other tempo-
ral logics, and in fact we believe that it is general enough that it could be adapted to
many different formalisms: indeed, with respect to our focus on partial ones, relational
presheaves allows for a very general notion of morphism between worlds, which could
be pivotal for formalisms where non-determinism plays a central role.

98 F. Gadducci and D. Trotta

From a categorical perspective, our results open two challenging lines for future
works. The first one regards deduction systems, which we overlooked since our aims
lie more on the verification side [13]: see e.g. [31] for a recent take with respect to
counterpart-based semantics for quantified modal logics. Using relational presheaves
makes this task tricky to pursue, but it deserves future investigations. The second
regards the study of formal criteria for the semantics of quantified temporal logic in
the spirit of categorical logic, where models are thought of as opportune morphisms. A
possible solution could be presenting temporal models as morphisms of suitable Law-
vere doctrines. This is also a non-trivial problem that we will deal with in future work.

References

1. Awodey, S., Kishida, K., Kotzsch, H.: Topos semantics for higher-order temporal modal
logic. Logique et Analyse 57(228), 591–636 (2014)

2. Baldan, P., Corradini, A., König, B., Lluch Lafuente, A.: A temporal graph logic for veri-
fication of graph transformation systems. In: Fiadeiro, J.L., Schobbens, P.-Y. (eds.) WADT
2006. LNCS, vol. 4409, pp. 1–20. Springer, Heidelberg (2007). https://doi.org/10.1007/978-
3-540-71998-4 1

3. Belardinelli, F.: Quantified Modal Logic and the Ontology of Physical Objects. Ph.D. thesis,
Scuola Normale Superiore of Pisa (2006)

4. Blackburn, P., van Benthem, J., Wolter, F. (eds.): Handbook of Modal Logic, North-Holland,
vol. 3 (2007)

5. Braüner, T., Ghilardi, S.: First-order modal logic. In: Blackburn et al. [4], pp. 549–620 (2007)
6. Cardelli, L., Gardner, P., Ghelli, G.: A spatial logic for querying graphs. In: Widmayer,

P., Eidenbenz, S., Triguero, F., Morales, R., Conejo, R., Hennessy, M. (eds.) ICALP 2002.
LNCS, vol. 2380, pp. 597–610. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-
45465-9 51

7. Courcelle, B.: The monadic second-order logic of graphs. I. Recognizable sets of finite
graphs. Inf. Comput. 85(1), 12–75 (1990)

8. Dawar, A., Gardner, P., Ghelli, G.: Expressiveness and complexity of graph logic. Inf. Com-
put. 205(3), 263–310 (2007)

9. Distefano, D., Rensink, A., Katoen, J.: Model checking birth and death. In: Baeza-Yates, R.,
Montanari, U., Santoro, N. (eds.) IFIP TCS 2002. IFIP Conference Proceedings, vol. 223,
pp. 435–447. Kluwer (2002)

10. Freyd, P., Scedrov, A.: Categories, Allegories. Elsevier, Amsterdam (1990)
11. Gadducci, F., Lluch Lafuente, A., Vandin, A.: Counterpart semantics for a second-order μ-

calculus. Fundamenta Informaticae 118(1–2), 177–205 (2012)
12. Gadducci, F., Laretto, A., Trotta, D.: Specification and verification of a linear-time tem-

poral logic for graph transformation. In: Poskitt, C.M., Fernandez, M. (eds.) ICGT 2023.
LNCS, vol. 13961, pp. 22–42. Springer, Heidelberg (2023). https://doi.org/10.1007/978-3-
031-36709-0 2

13. Gadducci, F., Lluch Lafuente, A., Vandin, A.: Exploiting over- and under-approximations
for infinite-state counterpart models. In: Ehrig, H., Engels, G., Kreowski, H.-J., Rozenberg,
G. (eds.) ICGT 2012. LNCS, vol. 7562, pp. 51–65. Springer, Heidelberg (2012). https://doi.
org/10.1007/978-3-642-33654-6 4

14. Gardiner, P., Martin, C., de Moor, O.: An algebraic construction of predicate transformers.
Sci. Comput. Program. 22(1), 21–44 (1994)

15. Garson, J.: Modal logic. In: Zalta, E.N., Nodelman, U. (eds.) The Stanford Encyclopedia of
Philosophy. Metaphysics Research Lab, Stanford University, Spring 2023 edn. (2023)

https://doi.org/10.1007/978-3-540-71998-4_1
https://doi.org/10.1007/978-3-540-71998-4_1
https://doi.org/10.1007/3-540-45465-9_51
https://doi.org/10.1007/3-540-45465-9_51
https://doi.org/10.1007/978-3-031-36709-0_2
https://doi.org/10.1007/978-3-031-36709-0_2
https://doi.org/10.1007/978-3-642-33654-6_4
https://doi.org/10.1007/978-3-642-33654-6_4

A Presheaf Semantics for Quantified Temporal Logics 99

16. Ghilardi, S., Meloni, G.C.: Modal and tense predicate logic: models in presheaves and
categorical conceptualization. In: Borceux, F. (ed.) Categorical Algebra and its Applica-
tions. LNM, vol. 1348, pp. 130–142. Springer, Heidelberg (1988). https://doi.org/10.1007/
BFb0081355

17. Ghilardi, S., Meloni, G.: Relational and topological semantics for temporal and modal pred-
icative logic. In: Corsi, G., Sambin, G. (eds.) Nuovi problemi della logica e della scienza II,
pp. 59–77. CLUEB (1990)

18. Ghilardi, S., Meloni, G.: Relational and partial variable sets and basic predicate logic. J.
Symb. Logic 61(3), 843–872 (1996)

19. Giese, H., Maximova, M., Sakizloglou, L., Schneider, S.: Metric temporal graph logic over
typed attributed graphs. In: Hähnle, R., van der Aalst, W. (eds.) FASE 2019. LNCS, vol.
11424, pp. 282–298. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-16722-6 16

20. Hazen, A.: Counterpart-theoretic semantics for modal logic. J. Phil. 76(6), 319–338 (1979)
21. Jacobs, B.: Many-sorted coalgebraic modal logic: a model-theoretic study. RAIRO-Theor.

Inf. Appl. 35, 31–59 (2001)
22. Jacobs, B.: The temporal logic of coalgebras via Galois algebras. Math. Struct. Comput. Sci.

12(6), 875–903 (2002)
23. Kastenberg, H., Rensink, A.: Model checking dynamic states in GROOVE. In: Valmari, A.

(ed.) SPIN 2006. LNCS, vol. 3925, pp. 299–305. Springer, Heidelberg (2006). https://doi.
org/10.1007/11691617 19

24. Kupke, C., Pattinson, D.: Coalgebraic semantics of modal logics: an overview. Theor. Com-
put. Sci. 412(38), 5070–5094 (2011)

25. Lawvere, F.: Adjointness in foundations. Dialectica 23, 281–296 (1969)
26. Lawvere, F.W.: Diagonal arguments and cartesian closed categories. In: Category Theory,

Homology Theory and their Applications II. LNM, vol. 92, pp. 134–145. Springer, Heidel-
berg (1969). https://doi.org/10.1007/BFb0080769

27. Lewis, D.: Counterpart theory and quantified modal logic. J. Phil. 65(5), 113–126 (1968)
28. Maietti, M., Rosolini, G.: Quotient completion for the foundation of constructive mathemat-

ics. Logica Universalis 7(3), 371–402 (2013)
29. Niefield, S.: Change of base for relational variable sets. Theory Appl. Categories 12(7), 248–

261 (2004)
30. Niefield, S.: Lax presheaves and exponentiability. Theory Appl. Categories 24(12), 288–301

(2010)
31. Orlandelli, E.: Labelled sequent calculi for indexed modal logics. CLEUB (2023)
32. Pnueli, A.: The temporal logic of programs. In: FOCS 1977, pp. 46–57. IEEE Computer

Society (1977)
33. Reif, J., Sistla, A.: A multiprocess network logic with temporal and spatial modalities. J.

Comput. Syst. Sci. 30(1), 41–53 (1985)
34. Rensink, A.: Model checking quantified computation tree logic. In: Baier, C., Hermanns, H.

(eds.) CONCUR 2006. LNCS, vol. 4137, pp. 110–125. Springer, Heidelberg (2006). https://
doi.org/10.1007/11817949 8

35. Rosenthal, K.: Quantales and Their Applications. Longman, London (1990)
36. Sobocinski, P.: Relational presheaves, change of base and weak simulation. J. Comput. Syst.

Sci. 81(5), 901–910 (2015)
37. Trotta, D.: The existential completion. Theory Appl. Categories 35, 1576–1607 (2020)
38. Yahav, E., Reps, T., Sagiv, M., Wilhelm, R.: Verifying temporal heap properties specified via

evolution logic. Logic J. IGPL 14(5), 755–783 (2006)

https://doi.org/10.1007/BFb0081355
https://doi.org/10.1007/BFb0081355
https://doi.org/10.1007/978-3-030-16722-6_16
https://doi.org/10.1007/11691617_19
https://doi.org/10.1007/11691617_19
https://doi.org/10.1007/BFb0080769
https://doi.org/10.1007/11817949_8
https://doi.org/10.1007/11817949_8

Shades of Iteration: From Elgot to Kleene

Sergey Goncharov(B)

Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany

sergey.goncharov@fau.de

Abstract. Notions of iteration range from the arguably most general
Elgot iteration to a very specific Kleene iteration. The fundamental
nature of Elgot iteration has been extensively explored by Bloom and
Esik in the form of iteration theories, while Kleene iteration became
extremely popular as an integral part of (untyped) formalisms, such
as automata theory, regular expressions and Kleene algebra. Here, we
establish a formal connection between Elgot iteration and Kleene itera-
tion in the form of Elgot monads and Kleene monads, respectively. We
also introduce a novel class of while-monads, which like Kleene mon-
ads admit a relatively simple description in algebraic terms. Like Elgot
monads, while-monads cover a large variety of models that meaningfully
support while-loops, but may fail the Kleene algebra laws, or even fail
to support a Kleen iteration operator altogether.

1 Introduction

Iteration is fundamental in many areas of computer science, such as semantics,
verification, theorem proving, automata theory, formal languages, computability
theory, compiler optimisation, etc. An early effort to identifying a generic notion
of iteration is due to Elgot [7], who proposed to consider an algebraic theory
induced by a notion of abstract machine (motivated by Turing machines, and
their variants) and regard iteration as an operator over this algebraic theory.

Roughly speaking, an algebraic theory carries composable spaces of mor-
phisms L(n,m), indexed by natural numbers n and m and including all func-
tions from n to m1, called base morphisms. For example, following Elgot, one can
consider as L(n,m) the space of all functions n×S → m×S representing transi-
tions from a machine state ranging over n to a machine state ranging over m, and
updating the background store over S (e.g. with S being the Turing machine’s
tape) in the meanwhile. In modern speech, L(n,m) is essentially the space of
Kleisli morphisms n → Tm of the state monad T = (– ×S)S . Then a machine
over m halting states and n non-halting states is represented by a morphism
in L(n,m + n), and the iteration operator is meant to compute a morphism
in L(n,m), representing a run of the machine, obtained by feedbacking all non-
halting states. This perspective has been extensively elaborated by Bloom and
Esik [4] who identified the ultimate equational theory of Elgot iteration together

1 Here we identify numbers n ∈ N with finite ordinals {0, . . . , n − 1}.

c© Springer Nature Switzerland AG 2023
A. Madeira and M. A. Martins (Eds.): WADT 2022, LNCS 13710, pp. 100–120, 2023.
https://doi.org/10.1007/978-3-031-43345-0_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-43345-0_5&domain=pdf
https://doi.org/10.1007/978-3-031-43345-0_5

Shades of Iteration: From Elgot to Kleene 101

with plenty other examples of algebraic theories induced by existing semantic
models, for which the theory turned out to be sound and complete.

By replacing natural numbers with arbitrary objects of a category with finite
coproducts and by moving from purely equational to a closely related and prac-
tically appealing quasi-equational theory of iteration, one arrives at (complete)
Elgot monads [2,15], which are monads T , equipped with an iteration operator

f : X → T (Y + X)
f† : X → TY

(†)

In view of the connection between computational effects and monads, pioneered
by Moggi [32], Elgot monads provide arguably the most general model of itera-
tion w.r.t. functions carrying computational effects, such as mutable store, non-
determinism, probability, exceptional and abnormal termination, input-output
actions of process algebra. The standard way of semantics via domain theory
yields a general (least) fixpoint operator, which sidelines Elgot iteration and
overshadows its fundamental role. This role becomes material again when it
comes to the cases when the standard scenario cannot be applied or is diffi-
cult to apply, e.g. in constructive setting [12], for deterministic hybrid system
semantics [13], and infinite trace semantics [30].

In contrast to Elgot iteration, Kleene iteration, manifested by Kleene alge-
bra, is rooted in logic and automata theory [22], and crucially relies on non-
determinism. The laws of Kleene algebra are from the outset determined by
a rather conservative observation model, describing discrete events, coming one
after another in linear order and in finite quantities. Nevertheless, Kleene algebra
and thus Kleene iteration proved to be extremely successful (especially after the
celebrated complete algebraic axiomatization of Kleene algebra by Kozen [25])
and have been accommodated in various formalizations and verification frame-
works from those for concurrency [18] to those for modelling hybrid systems [34].
A significant competitive advantage of Kleene iteration is that it needs no (even
very rudimental) type grammar for governing well-definedness of syntactic con-
structs, although this cannot be avoided when extending Kleene algebra with
standard programming features [1,26,27]. Semantically, just as Elgot iteration,
Kleene iteration can be reconciled with computational effects, leading to Kleene
monads [11], which postulate Kleene iteration with the type profile:

f : X → TX

f∗ : X → TX
(∗)

Given f , f∗ self-composes it non-deterministically indefinitely many times. In
contrast to Elgot monads, the stock of computational effects modelled by Kleene
monads is rather limited, which is due to the fact that many computational
effects are subject to laws, which contradict the Kleene algebra laws. For a simple
example, consider the computational effect of exception raising, constrained by
the law, stating that postcomposing an exception raising program by another
program is ineffective. Together with the Kleene algebra laws, we obtain a havoc:

raise e1 = raise e1; ⊥ = ⊥ = raise e2; ⊥ = raise e2,

102 S. Goncharov

where ⊥ is the unit of non-deterministic choice. This and similar issues led
to a number of proposals to weaken Kleene algebra laws [9,10,31,33] (poten-
tially leading to other classes of monads, somewhere between Elgot and Kleene),
although not attempting to identify the weakest set of such laws from the founda-
tional perspective. At the same time, it seems undebatable that Kleene iteration
and the Kleene algebra laws yield the most restricted notion of iteration.

We thus obtain a spectrum of potential notions of iteration between Elgot
monads and Kleene monads. The goal of the present work is, on the one hand to
explore this spectrum, and on the other hand to contribute into closing the con-
ceptual gap between Kleene iteration and Elgot iteration. To that end, we intro-
duce while-monads, which capture iteration in the conventional form of while-
loops. Somewhat surprisingly, despite extensive work on axiomatizing iteration
in terms of (†), a corresponding generic axiomatization in terms of “while” did
not seem to be available. We highlight the following main technical contributions
of the present work:

• We provide a novel axiomatization of Kleene iteration laws, which is effective
both for Kleene algebras and Kleene monads (Proposition 4);

• We show that the existing axiomatization of Elgot monads is minimal (Propo-
sition 12);

• We establish a connection between Elgot monads and while-monads (Theorem
18);

• We render Kleene monads as Elgot monads with additional properties (The-
orem 22).

Additional proof details can be found in the full version of this paper: https://
arxiv.org/abs/2301.06202.

2 Preliminaries

We rely on rudimentary notions and facts of category theory, as used in seman-
tics, most notably monads [3]. For a (locally small) category C we denote by |C|
the class of its objects and by C(X,Y) the set of morphisms from X ∈ |C|
to Y ∈ |C|. We often omit indices at components of natural transformations to
avoid clutter. Set will denote the category of classical sets and functions, i.e.
sets and functions formalized in a classical logic with the law of excluded middle
(we will make no use of the axiom of choice). By 〈f, g〉 : X → Y × Z we will
denote the pairing of two morphisms f : X → Y and g : X → Z (in a category
with binary products), and dually, by [f, g] : X + Y → Z we will denote the
copairing of f : X → Z and g : Y → Z (in a category with binary coproducts).
By ! : X → 1 we will denote terminal morphisms (if 1 is an terminal object).

An (F -)algebra for an endofunctor F : C → C is a pair (A, a : FA → A).
Algebras form a category under the following notion of morphism: f : A → B
if a morphism from (A, a) to (B, b) if bf = (Ff) a. The initial algebra is
an initial object of this category (which may or may not exit). We denote
this object (μF, in). (F -)coalgebras are defined dually as pairs of the form

https://arxiv.org/abs/2301.06202
https://arxiv.org/abs/2301.06202

Shades of Iteration: From Elgot to Kleene 103

(A, a : A → FA). The final coalgebra will be denoted (νF, out). By Lambek’s
Lemma [29], both in and out are isomorphisms, and we commonly make use of
their inverses in-1 and out-1.

3 Monads for Computation

We work with monads represented by Kleisli triples (T, η, (–)�) where T is a
map |C| → |C|, η is the family (ηX : X → TX)X∈|C| and (–)� sends f : X → TY

to f � : TX → TY in such a way that the standard monad laws

η� = id, f �η = f, (f �g)� = f �g�

hold true. It is then provable that T extends to a functor with Tf = (ηf)�

and η to a unit natural transformation. Additionally, we can define the multi-
plication natural transformation μ : TT → T with μX = id� (thus extending T
to a monoid in the category of endufunctors). We preferably use bold letters,
e.g. T, for monads, to contrast with the underlying functor T . The axioms of
monads entail that the morphisms of the form X → TY determine a category,
called Kleisli category, and denoted CT, under Kleisli composition f · g = f � g
with η as the identity morphism. Intuitively, Kleisli category is the category of
(generalized) effectful programs w.r.t. C as the category of “pure”, or effectless,
programs. More precisely, we will call pure those morphisms in CT that are of
the form η f . We thus use diagrammatic composition g; f alongside and equiv-
alently to functional composition f · g, as the former fits with the sequential
composition operators of traditional programming languages.

A monad T is strong if it comes with a natural transformation τX,Y : X ×
TY → T (X × Y) called strength and satisfying a number of coherence condi-
tions [32]. Any monad on Set is canonically strong [23].

Example 1 (Monads). Recall some computationally relevant monads on Set
(all monads on Set are strong [32]).

1. Maybe-monad : TX = X + 1, η(x) = inl x, f �(inl x) = f(x), f �(inr �) = inr �.
2. Powerset monad : TX = PX, η(x) = {x}, f �(S ⊆ X) = {y ∈ f(x) | x ∈ S}.
3. TX = {S | S ∈ P+(X + 1), if S is infinite then inr � ∈ S} where P+ is

the non-empty powerset functor, η(x) = {inl x}, f �(S ⊆ X) = {y ∈ f(x) |
inlx ∈ S} ∪ ({inr �} ∩ S).

4. Exception monad : TX = X +E where E is a fixed (unstructured) non-empty
set of exceptions, η(x) = inl x, f �(inl x) = f(x), f �(inr e) = inr e.

5. Non-deterministic writer monad : TX = P(M × X) where (M, ε, •) is any
monoid, η(x) = {(e, x)}, f �(S ⊆ M × X) = {(n • m, y) | (m,x) ∈ S, (n, y) ∈
f(x)}.

6. Discrete sub-distribution monad : TX = {d : [0, 1] → X | ∑
x∈X d(x) ≤ 1}

(the supports of d, {x ∈ X | d(x) > 0} are necessarily countable – otherwise
the sum

∑
x∈X d(x) would diverge), η(x) is the Dirac distribution δx, centred

in x, i.e. δx(y) = 1 if x = y, δx(y) = 0 otherwise, (f : X → DY)�(d)(y) =∑
x∈X f(x)(y) · d(x).

104 S. Goncharov

7. Partial state monad: TX = (X × S + 1)S , where S is a fixed set of global
states, η(x)(s) = inl(x, s), f �(g : S → X × S + 1)(s) = inr � if g(s) = inr �
and f �(g : S → Y × S + 1)(s) = f(x)(s′) if g(s) = inl(x, s′).

8. Partial interactive input: TX = νγ. ((X + γI) + 1), where I is a set of input
values, η(x) = out-1(inl inlx), (f : X → TY)� is the unique such morphism
f � : TX → TY that (eliding the isomorphisms T ∼= (– +T I) + 1)

f �(inl inlx) = f(x), f �(inl inrh) = inl inr(f � h), f �(inr �) = inr � .

Intuitively, p ∈ TX is a computation that either finishes and gives a result
in X, or takes an input from I and continues recursively, or (unproductively)
diverges.

9. Partial interactive output: TX = νγ. ((X + γ × O) + 1), where O is a set
of output values, η(x) = out-1(inl inlx), (f : X → TY)� is the unique such
morphism f � : TX → TY that (eliding the isomorphisms T ∼=(– +T ×O)+1)

f �(inl inlx) = f(x), f �(inl inr(p, o)) = inl inr(f �(p), o), f �(inr �) = inr � .

The behaviour of p ∈ TX is as in the previous case, except that it outputs
to O instead of expecting an input from I in the relevant branch.

Kleisli categories are often equivalent to categories with more familiar indepen-
dent descriptions. For example, the Kleisli category of the maybe-monad is equiv-
alent to the category of partial functions and the Kleisli category of the powerset
monad is equivalent to the category of relations. Under the monads-as-effects
metaphor, partial functions can thus be regarded as possibly non-terminating
functions and relations as non-deterministic functions.

The above examples can often be combined. E.g. non-deterministic stateful
computations are obtained as TA = S → P(A × S). The Java monad of [20],

TX = S → (X × S + E × S) + 1

with S the set of states and E the set of exceptions.

4 Kleene Monads

A Kleene algebra can be concisely defined as an idempotent semiring (S, ⊥, η,
∨, ;) equipped with an operator (–)∗ : S → S, such that

• g; f∗ is the least (pre-)fixpoint of g ∨ (–); f ,
• f∗;h is the least fixpoint of h ∨ f ; (–),

where the order is induced by ∨: f ≤ g if f ∨ g = g. We assume here and
henceforth that sequential composition ; binds stronger than ∨.

More concretely, a Kleene algebra (S, ⊥, η, ∨, ; , (–)∗) is an algebraic struc-
ture, satisfying the laws in Fig. 1. A categorical version of Kleene algebra emerges
as a class of monads, called Kleene monads [14], which can be used for inter-
preting effectful languages with iteration and non-determinism.

Shades of Iteration: From Elgot to Kleene 105

Fig. 1. Axioms Kleene algebras/monads.

Definition 2 (Kleene-Kozen Category/Kleene Monad). We say that a
category C is a Kleene-Kozen category if C is enriched over bounded (i.e. pos-
sessing a least element) join-semilattices and strict join-preserving morphisms,
and there is Kleene iteration operator

(–)∗ : C(X,X) → C(X,X),

such that, given f : Y → Y , g : Y → Z and h : X → Y , g f∗ is the least (pre-
)fixpoint of g ∨ (–) f and f∗ h is the least (pre-)fixpoint of h ∨ f (–).

A monad T is a Kleene monad if CT is a Kleene-Kozen category.

Recall that a monoid is nothing but a single-object category, whose morphisms
are identified with monoid elements, and whose identity morphisms and mor-
phism composition are identified with monoidal unit and composition. This sug-
gests a connection between Kleene-Kozen categories and Kleene algebras.

Proposition 3. A Kleene algebra is precisely a Kleene-Kozen category with one
object.

We record the following characterization of Kleene-Kozen categories (hence, also
of Kleene algebras by Proposition 3).

106 S. Goncharov

Proposition 4. A category C is a Kleene-Kozen category iff

• C is enriched over bounded join-semilattices and strict join-preserving mor-
phisms;

• there is an operator (–)∗ : C(X,X) → C(X,X), such that
1. f∗ = id ∨ f∗ f ;
2. id∗ = id;
3. f∗ = (f ∨ id)∗;
4. h f = f g implies h∗ f = f g∗.

Proof. Let us show necessity.

1. The law f∗ = id ∨ f∗ f holds by assumption.
2. Since id = id ∨ id id, id is a fixpoint of f �→ id ∨ f id, and thus id∗ ≤ id. Also

id∗ = id ∨ id∗ id ≥ id. Hence id = id∗ by mutual inequality.
3. To show that (f ∨ id)∗ ≤ f∗, note that f∗ = id ∨ f∗ f = id ∨ f∗ f ∨ f∗ =

id ∨ f∗ (f ∨ id), and use the fact that (f ∨ id)∗ is the least fixpoint. The
opposite inequality is shown analogously, by exploiting the fact that f∗ is a
least fixpoint.

4. Suppose that h f = f g, and show that h∗ f = f g∗. Note that

f ∨ (h∗ f) g = f ∨ h∗ f g = f ∨ h∗ h f = h∗ f,

i.e. h∗ f satisfies the fixpoint equation for f g∗, and therefore h∗ f ≥ f g∗. By
a symmetric argument, h∗ f ≤ f g∗, hence h∗ f = f g∗.

We proceed with sufficiency. Suppose that (–)∗ is as described in the second
clause of the present proposition. Observe that by combining assumptions 1 and 4
we immediately obtain the dual version of 1, which is f∗ = id ∨ f f∗. Now, fix
f : Y → TY and g : Y → TZ, and show that f∗ g is the least fixpoint of g ∨f (–)
– we omit proving the dual property, since it follows by a dual argument. From
f∗ = id ∨ f∗ f we obtain f∗ g = g ∨ f (f∗ g), i.e. f∗ g is a fixpoint. We are left to
show that it is the least one. Suppose that h = g ∨ f h for some h, which entails

(id ∨ f)h = h ∨ f h = g ∨ f h ∨ f h = h = h id.

Since g ≤ h, using assumptions 2, 3 and 4, we obtain

f∗ g ≤ (id ∨ f)∗ g ≤ (id ∨ f)∗ h = h id∗ = h,

as desired. ��
The axioms of Kleene monads do not in fact need a monad, and can be

interpreted in any category. We focus on Kleisli categories for two reasons: (i) in
practice, Kleene-Kozen categories are often realized as Kleisli categories, and
monads provide a compositional mechanism for constructing more Kleene-Kozen
categories by generalities; (ii) we will relate Kleene monads and Elgot monads,
and the latter are defined by axioms, which do involve both general Kleisli mor-
phisms and the morphisms of the base category.

Shades of Iteration: From Elgot to Kleene 107

Example 5. Let us revisit Example 1. Many monads therein fail to be Kleene
simply because they fail to support binary non-determinism. Example 1.6 is
an interesting case, since we can define the operation of probabilistic choice
+p : C(X,TY) × C(X,TY) → C(X,TY) indexed by p ∈ [0, 1], meaning that
x +p y is resolved to x with probability p and to y with probability 1 − p. For
every x ∈ X, f(x) +p g(x) is a convex sum of the distributions f(x) and g(x).
This operation satisfies the axioms of barycentric algebras (or, abstract convex
sets [36]), which are somewhat similar to those of a monoid, but with the multi-
plication operator indexed over [0, 1]. To get rid of this indexing, one can remove
the requirement that probabilities sum up to at most 1 and thus obtain spaces
of valuations [37] instead of probability distributions. Valuations can be conve-
niently added pointwise, and thus defined addition satisfies monoidal laws, but
fails idempotence, hence still does not yield a Kleene monad. Given two valua-
tions v and w, we also can define v ∨w as the pointwise maximum. This satisfies
the axioms of semilattices, but fails both distributivity laws.

Example 1.3 is the Set-reduct or Plotkin powerdomain [35] over a flat domain.
It supports proper non-deterministic choice, but the only candidate for ⊥ is not
a unit for it.

Kleene monads of Example 1 are only 2 and 5. The non-deterministic state
monad over TX = (P(X×S))S obtained by adapting Example 1.7 in the obvious
way is also Kleene.

Except for the powerset monad, our examples of Kleene monads are in fact
obtained by generic patterns.

Proposition 6. Let T be a Kleene monad. Then so are

1. the state monad transformer (T (– ×S))S for every S;
2. the writer monad transformer T (M × –) for every monoid (M, ε, •) if T is

strong and strength τX,Y : X × TX → T (X × Y) respects the Kleene monad
structure, as follows:

τ (id × ⊥) = ⊥, τ (id × f∗) = (τ (id × f))∗,

τ (id × (f ∨ g)) = τ (id × f) ∨ τ (id × g).
(1)

Example 7. Note that the powerset monad P is a Kleene monad with f∗ cal-
culated as a least fixpoint of η ∨ (–) · f .

1. By Proposition 6.1, (P(– ×S))S is a Kleene monad.
2. By applying Proposition 6.2, to the free monoid A� of finite strings over an

alphabet A we obtain that P(A� × –).

It is easy to see that for every Kleene monad T, Hom(1, T1) is a Kleene
algebra. By applying this to the above clauses we obtain correspondingly the
standard relational and language-theoretic models of Kleene algebra [28].

108 S. Goncharov

Fig. 2. Axioms of Elgot monads.

5 Elgot Monads

A general approach to monad-based iteration is provided by Elgot monads. We
continue under the assumption that C supports finite coproducts. This, in partic-
ular, yields an if-the-else operator sending b ∈ C(X,X + X) and f, g ∈ C(X,Y)
to if b then p else q = [q, p] · b ∈ C(X,Y). Note that for any monad T on C, CT

inherits finite coproducts.

Definition 8 (Elgot monad). An Elgot monad in a category with binary
coproducts is a monad T equipped with an Elgot iteration operator

(–)† : C(X,T (Y + X)) → C(X,TY),

subject to the following principles:

Fixpoint : [η, f†] · f = f† (f : X → T (Y + X))

Naturality : g · f† = ([η inl · g, η inr] · f)† (g : Y → TZ, f : X → T (Y + X))

Codiagonal : f†† = ([η, η inr] · f)† (f : X → T ((Y + X) + X))

Uniformity :
g · ηh = η(id + h) · f

g† · ηh = f† (h : X → Z, g : Z → T (Y + Z),

f : X → T (Y + X))

Shades of Iteration: From Elgot to Kleene 109

These laws are easier to grasp by depicting them graphically (Fig. 2), more
precisely speaking, as string diagrams (cf. [17,21] for a rigorous treatment in
terms of monoidal categories). Iterating f is depicted as a feedback loop. It is
then easy to see that while Fixpoint expresses the basic fixpoint property of
iteration, Naturality and Codiagonal are essentially rearrangements of wires.
The Uniformity law is a form of induction: the premise states that ηh can be
pushed over g, so that at the same time g is replaced by f , and the conclusion is
essentially the result of closing this transformation under iteration. Uniformity
is therefore the only law, which alludes to pure morphisms. Intuitively, the mor-
phisms f and g can be seen as programs operating correspondingly on X and Y
as their state spaces, and h : X → Y is a map between these state spaces.
Uniformity thus ensures that the behaviour of iteration does not depend on the
shape of the state space. It is critical for this view that h is pure, i.e. does not
trigger any side-effects.

Remark 9 (Divergence). Every Elgot monad comes together with the defin-
able (unproductive) divergence constant δ = (η inr)†. Graphically, δ : X → T∅
will be depicted as , symmetrically to the depiction of the initial mor-
phism ! : ∅ → TX as .

Example 10 (Elgot Monads). Clauses 1–9 of Example 1 all define Elgot mon-
ads. A standard way of introducing Elgot iteration is enriching the Kleisli cat-
egory over pointed complete partial orders and defining (f : X → T (Y + X))†

as a least fixpoint of the map [η, –] · f : C(X,TY) → C(X,TY) by the Kleene
fixpoint theorem. This scenario covers 1.–7. In all these cases, we inherit com-
plete partial order structures on Set(X,TY) by extending canonical complete
partial order structures from TY pointwise. In particular, in 4, we need to chose
the divergence element δ ∈ E. This choice induces a flat domain structure on
X + E: x � y if x = y or x = δ. The induced divergence constant in the sense of
Remark 9 then coincides with δ, and hence there are at least as many distinct
Elgot monad structures on the exception monad as exceptions.

Clauses 8 and 9 fit a different pattern. For every Elgot monad T and every
endofunctor H, if all final coalgebras THX = νγ. T (X + Hγ) exist then TH

extends to an Elgot monad [13], called the coalgebraic generalized resumption
transform of T. This yields 8 and 9 by taking T to be the maybe-monad in both
cases and HX = XI and HX = O × X respectively.

Remark 11 (Dinaturality). A classical law of iteration, which is not included
in Definition 8, is the Dinaturality law, which has the following graphical repre-
sentation:

This law has been used in one of the equivalent axiomatization of iteration
theories [4] (under the name “composition identity”) and thus was initially inher-
ited in the definition of Elgot monads [2,15]. However, Ésik and Goncharov [8]
latter discovered that Dinaturality is derivable in presence of Uniformity.

110 S. Goncharov

Remark 11 poses the question, if the present axiomatization of Elgot monads
possibly contains further derivable laws. Here, we resolve it in the negative.

Proposition 12. The axiomatization in Definition 8 is minimal.

Proof. For every axiom, we construct a separating example that fails that axiom,
but satisfies the other three. Every example is a monad on Set.

• Fixpoint: For any monad T, equipped with a natural transformation p : 1 →
TX, we can define f† = [η, p !] · f for a given f : X → T (Y + X). It is easy to
see that Naturality, Codiagonal and Uniformity are satisfied, but Fixpoint
need not to, e.g. with T being the non-deterministic writer monad (Example
1.5) over the additive monoid of natural numbers N.

• Naturality: Let T = P and let f†(x) = Y for every f : X → T (Y + X) and
every x ∈ X. Note that every f : X → T (Y + Z) is equivalent to a pair
(f1 : X → TY, f2 : X → TZ) and [g, h] · f = g · f1 ∪h · f2 for any g : Y → TV ,
h : Z → TV . This helps one to see that all the axioms, except Naturality hold
true, e.g. ([η, f†] · f)(x) = f1(x) ∪ Y = Y = f†(x). Naturality fails, because
g ·δ = g ·(η inr)† �= ([η inl ·g, η inr] ·η inr)† = δ, since the image of δ : X → TY
is {Y }, while the image of g · δ, aka the image of g, need not be {Y }.

• Codiagonal: Consider the exception monad transform TX = P(2� × X ∪ 2ω)
of the non-deterministic writer monad over the free monoid 2�. This is
canonically an Elgot monad, and let us denote by (–)‡ the correspond-
ing iteration operator. Every f : X → T (Y + X), using the isomorphism
T (Y + X) ∼= P(2� × Y ∪ 2ω) × P(2� × X), induces a map f̂ : X → P(2� × X).
Let f† : X → TY be as follows: f†(x) is the union of f‡(x) and the set

{w ∈ 2ω | ∃u ∈ 2�. uw = w1w2 . . . , (w1, x1) ∈ f̂(x), (w2, x2) ∈ f̂(x1), . . .}.

That (–)† satisfies Fixpoint, Naturality and Uniformity follows essentially
from the fact that so does (–)‡. To show that (–)† failsCodiagonal, consider
g : 1 → P((2� +2�)∪ 2ω), with g(�) = {inl 0, inr 1}. Let f be the composition
of g with the obvious isomorphism P((2� + 2�) ∪ 2ω) ∼= T ((0 + 1) + 1). Now
([η, η inr] · f)†(�) = 2ω �= {0ω, 1ω} = f††(�).

• Uniformity: Consider the exception monad on TX = X + {0, 1}. This can
be made into an Elgot monad in two ways: by regarding either 0 or 1 as the
divergence element. Given f : X → T (Y +X), we let f† be computed as a least
fixpoint according to the first choice if X is a singleton and according to the
second choice otherwise. The axioms except Uniformity are clearly satisfied.
To show that Uniformity fails, let |X| > 2, |Z| = 1, g = η inr, f = η inr,
h = !. The premise of Uniformity is thus satisfied, while the conclusion is not,
since f† is constantly 1 and g† is constantly 0. ��

Although we cannot lift any of the Elgot monad laws, Naturality can be signifi-
cantly restricted.

Proposition 13. In the definition of Elgot monad, Naturality can be equiva-
lently replaced by its instance with g of the form η inr : Y → T (Y ′ + Y).

Shades of Iteration: From Elgot to Kleene 111

6 While-Monads

We proceed to develop a novel alternative characterization of Elgot monads in
more conventional for computer science terms of while-loops.

Definition 14 (Decisions). Given a monad T on C, we call any family
(Cd

T(X) ⊆ C(X,T (X + X)))X∈|C|, a family of decisions if every Cd
T(X) con-

tains η inl, η inr, and is closed under if-then-else.

We encode logical operations on decisions as follows:

ff = η inl, b && c = if b then c else ff, b = if b then ff else tt,

tt = η inr, b || c = if b then tt else c.

By definition, decisions can range from the smallest family with Cd
T(X) =

{ff, tt}, to the greatest one with Cd
T(X) = C(X,T (X + X)).

Remark 15. Our notion of decision is maximally simple and general. An alter-
native are morphisms of the form b : X → T2, from which we can obtain

X
〈id,b〉−−−→ X × T2 τ−→ T (X × 2) ∼= T (X + X) if T is strong, with τ being

the strength. The resulting decision d would satisfy many properties we are
not assuming generally, e.g. if d then tt else ff = η. Both morphisms of the form
X → T2 and X → T (X + X) are relevant in semantics as decision making
abstractions – this is explained in detail from the perspective of categorical logic
by Jacobs [19], who uses the names predicates and instruments correspondingly
(alluding to physical, in particular, quantum experiments).

Elgot monads are essentially the semantic gadgets for effectful while-languages.
In fact, we can introduce a semantic while-operator and express it via Elgot
iteration. Given b ∈ Cd

T(X) and p ∈ C(X,TX), let

while b p = (if b then p; tt else ff)†, (2)

or diagrammatically, while b p is expressed as

It is much less obvious that, conversely, Elgot iteration can be defined
via while, and moreover that the entire class of Elgot monads can be rebased
on while. We dub the corresponding class of monad while-monads.

Definition 16 (While-Monad). A while-monad is a monad T, equipped with
an operator

while : Cd
T(X) × C(X,TX) → C(X,TX),

112 S. Goncharov

such that the following axioms are satisfied

W-Fix while b p = if b then p; (while b p) else η

W-Or while (b || c) p = (while b p);while c (p;while b p)

W-And
ηh; b = ηu;ff

while (b && (c || ηu;ff)) p = while b (if c then p else ηh)

W-Uni
ηh; b = if c then ηh′; tt else ηu;ff ηh′; p = q; ηh

ηh;while b p = (while c q); ηu

The laws of while-monads roughly correspond to Fixpoint, Codiagonal,
Naturality and Uniformity. This correspondence is somewhat allusive
for W-And, which under u = id instantiates to the nicer looking

ηh; b = ff

while (b && c) p = while b (if c then p else ηh)

However, this instance generally seems to be insufficient. Let us still consider
it in more detail. The while-loop while (b && c) p repeats p as long as both b
and c are satisfied, and while b (if c then p else ηh) repeats (if c then p else ηh)
as long as b is satisfied, but the latter program still checks c before running p
and triggers ηh only if c fails. The equality in the conclusion of the rule is thus
due to the premise, which ensures that once ηh is triggered, the loop is exited
at the beginning of the next iteration.

Note that using the following equations

do p while b = p;while b p (3)
while b p = if b then (do p while b) else η (4)

we can define (do p while b) from (while b p) and conversely obtain the latter
from the former. Unsurprisingly, while-monads can be equivalently defined in
terms of do-while.

Lemma 17. Giving a while-monad structure on T is equivalent to equipping T
with an operator, sending every b ∈ Cd

T(X) and every p ∈ C(X,TX) to
(do p while b) ∈ C(X,TX), such that the following principles hold true:

DW-Fix do p while b = p; if b then (do p while b) else η

DW-Or do p while (b || c) = do (do p while b) while c

DW-And
ηh; b = ηu;ff

if c then do p while (b && (c || ηu;ff)) else ηu

= do (if c then p else ηh) while b

DW-Uni
ηh; p = q; ηh′ ηh′; b = if c then ηh; tt else ηu;ff

ηh; do p while b = (do q while c); ηu

The relevant equivalence is witnessed by the Eq. (3) and (4).

Shades of Iteration: From Elgot to Kleene 113

Finally, we can prove the equivalence of while-monads and Elgot monads, under
an expressivity assumption, stating that sets of decisions Cd

T are sufficiently non-
trivial. Such an assumption is clearly necessary, for, as we indicated above, the
smallest family of decisions is the one with Cd

T(X) = {ff, tt}, and it is not enough
to express meaningful while-loops.

Theorem 18. Suppose that for all X,Y ∈ |C|, η(inl+inr) ∈ Cd
T(X+Y). Then T

is and Elgot monad iff it is a while-monad w.r.t. Cd
T. The equivalence is witnessed

by mutual translations: (2) and

f† = η inr; (while η(inl + inr) [η inl, f]); [η, δ]. (5)

Diagrammatically, f† is expressed as

for f : X → T (Y + X).

Proof (Sketch). Note that (5) is equivalent to

f† = η inr;
(
do [η inl, f] while η(inl + inr)

)
; [η, δ]. (6)

The proof consists of four parts:

(i) The composite translation (–)† → while → (–)† yields an identity w.r.t. the
Elgot monad laws, i.e.

η inr; (if (inl + inr) then [η inl, f]; η inr else η inl)†; [η, δ] = f†.

for every f : X → T (Y + X).

(ii) The composite translation while → (–)† → while yields an identity w.r.t. the
while-monad laws, i.e.

η inr;
(
while η(inl + inr) [η inl, if b then p; tt else ff]

)
; [η, δ] = while b p.

for every p : X → TX and b ∈ Cd
T(X).

(iii) The laws of Elgot monads follow from those of while-monads. Thanks to
Proposition 13, it suffices to prove only a restricted version of Naturality. The
verification of Codiagonal is facilitated by using (6) instead of (5).

(iv) The laws of while-monads follow from those of Elgot monads. This is done
by verifying the equivalent characterization from Lemma 17, after proving that
the identity do p while b = (b · p)† follows from (2).

114 S. Goncharov

7 Kleene Monads as Elgot Monads

If hom-sets of the Kleisli category of a while-monad T are equipped with a
semilattice structure and every Cd

T(X) is closed under that structure, we can
define Kleene iteration as follows:

p∗ = while (ff ∨ tt) p.

That is, at each iteration we non-deterministically decide to finish or to continue.
Given a decision b ∈ Cd

T(X), let b? = (if b then η else δ) ∈ C(X,TX). The
standard way to express while-loops via Kleene iteration is as follows:

while b p = (b?; p)∗; (�b)?

If the composite translation while → (–)∗ → while was a provable identity,
this would essentially mean equivalence of Kleene iteration and while with non-
determinism. This is generally not true, unless we postulate more properties
that connect while and nondeterminism. We leave for future work the problem of
establishing a minimal set of such laws. Here, we only establish the equivalence
for the case when the induced Kleene iteration satisfies Kleene monad laws.
To start off, we note an alternative to Uniformity, obtained by replacing the
reference to pure morphisms with the reference to a larger class consisting of
those h, for which δ · h = δ. We need this preparatory step to relate Elgot
iteration and Kleene iteration, since the latter does not hinge on a postulated
class of pure morphisms, while the former does.

Definition 19 (Strong Uniformity). Given an Elgot monad T, the strong
uniformity law is as follows:

Uniformity� :
δ · h = δ g · h = [η inl, η inr · h] · f

g† · h = f†

where h : X → TZ, g : Z → T (Y + Z), and f : X → T (Y + X).

Clearly, Uniformity is an instance of Uniformity�.

Example 20. An example of Elgot monad that fails Uniformity� can be
constructed as follows. Let S be the reader monad transform of the maybe-
monad on Set: SX = (X + 1)2, which is an Elgot monad, since the maybe-
monad is so and Elgotness is preserved by the reader monad transformer. Let
TX = X × (X + 1) + 1 and note that T is a retract of S under

ρ : (X + 1) × (X + 1) ∼= X × (X + 1) + (X + 1) id+!−−→ X × (X + 1) + 1.

It is easy to check that ρ is a congruence w.r.t. the Elgot monad structure, and
it thus induces an Elgot monad structure on T [16, Theorem 20].

Now, let TE = T (– +E) for some non-empty E. The Elgot monad structure
of T induces an Elgot monad structure on TE . However, TE fails Uniformity�.

Shades of Iteration: From Elgot to Kleene 115

Indeed, let h : X → (X + E) × ((X + E) + 1) + 1 and f : X → ((1 + X) + E) ×
(((1 + X) + E) + 1) + 1 be as follows:

h(x) = inl(inl x, inl inr e) f(x) = inl(inr e, inl inl inrx)

where e ∈ E. Then h·δ = δ, f†(x) = inl(inr e, inr �), and f ·h = [η inl, η inr·h]·f ,
but (f† · h)(x) = inl(inr e, inl inr e) �= inl(inr e, inr �) = f†(x).

Remark 21. Example 20 indicates that it is hard to come up with a general
and robust notion of Elgot iteration, which would confine to a single category,
without referring to another category of “well-behaved” (e.g. pure) morphisms.
While the class of Elgot monads is closed under various monad transformers, the
example shows that Elgot monads with strong uniformity are not even closed
under the exception monad transformer.

We are in a position to relate Kleene monads and Elgot monads.

Theorem 22. A monad T is a Kleene monad iff

1. T is an Elgot monad;
2. the Kleisli category of T is enriched over join-semilattices (without least ele-

ments) and join-preserving morphisms;
3. T satisfies (η inl ∨ η inr)† = η;
4. T satisfies Uniformity�.

To prove the theorem, we need to mutually encode Kleene iteration and Elgot
iteration. These encodings go back to Căzǎnescu and Ştefǎnescu [5]. Observe the
following easily provable property.

Lemma 23. For any monad T, whose Kleisli category is enriched over join-
semilattices and join-preserving morphisms, [f1, g1] ∨ [f2, g2] = [f1 ∨ f2, g1 ∨ g2]
where f1, f2 : X → TZ, g1, g2 : Y → TZ.

Proof (of Theorem 22). We modify the claim slightly by replacing Clause 2.
with the stronger

2′. The Kleisli category of T is enriched over bounded join-semilattices and strict
join-preserving morphisms, and δ = (η inr)† : X → TY is the least element of
C(X,TY).

Let us show that 1.–4. entail 2′.

• Right strictness of Kleisli composition: f · δ = δ. Using naturality, f · δ =
f · (η inr)† = ([η inl · f, η inr] · η inr)† = (η inr)† = δ.

• Left strictness of Kleisli composition: δ ·f = δ. Since η inr·f = [η inl, η inr · f]·
η inr, by strong uniformity, δ · f = (η inr)† · f = (η inr)† = δ.

• δ is the least element, equivalently, f∨δ = f for all suitably typed f . It suffices
to consider the special case f = η, for then f ∨ δ = f · (η ∨ δ) = f · η = f for
a general f .
Note that (η inl ∨ η inr) · (η ∨ δ) = [η inl, η inr · (η ∨ δ)] · (η inl ∨ η inr), which
by 3. and 4. entails η ∨ δ = (η inl ∨ η inr)† · (η ∨ δ) = (η inl ∨ η inr)† = η.

116 S. Goncharov

Now, given (–)† of an Elgot monad, whose Kleisli category is enriched over join-
semilattices, let

(f : X → TX)∗ =
(
η inl ∨ η inr · f : X → T (X + X)

)†
.

Conversely, given (–)∗ of a Kleene monad, let

(f : X → T (Y + X))† = ([η, δ] · f) · (
[δ, η] · f : X → TX

)∗
.

We are left to check that these transformations are mutually inverse and that
the expected properties of defined operators are satisfied.

(i) (–)† → (–)∗ → (–)†: Given f : X → T (Y + X), we need to show that

([η, δ] · f) · (η inl ∨ η inr · [δ, η] · f)† = f†.

Indeed,

([η, δ]·f) · (η inl ∨ η inr · [δ, η] · f)†

=
(
[η inl · [η, δ] · f, η inr]� (η inl ∨ η inr · [δ, η] · f)

)† // Naturality

= ([η inl, δ] · f ∨ [δ, η inr] · f)†

= ([η inl ∨ δ, δ ∨ η inr] · f)† // Lemma 23

= ([η inl, η inr] · f)†

= f†.

(ii) (–)∗ → (–)† → (–)∗: Given f : X → TX, we need to show that

([η, δ] · (η inl ∨ η inr · f)) · ([δ, η] · (η inl ∨ η inr · f))∗ = f∗.

Indeed, [η, δ]·(η inl∨η inr·f) = η∨δ = η, and [δ, η]·(η inl∨η inr·f) = δ ∨ η · f = f ,
and therefore the right-hand side reduces to η · f∗ = f∗.

The rest of the proof amount to (iii) deriving Kleene iteration axioms from
those of Elgot iteration (using Proposition 4), and to (iv) deriving Elgot iteration
axioms from those of Kleene iteration.

In presence of assumptions 1.–3., the distinction between Uniformity and
Uniformity� becomes very subtle.

Example 24 (Filter Monad). There is an Elgot monad T, whose Kleisli cate-
gory is enriched over bounded semilattices, (η inl∨η inr)† = η, but T fails strong
uniformity. We prove it by adapting Kozen’s separating example for left-handed
and right-handed Kleene algebras [24, Proposition 7].

Recall that the filter monad [6] sends every X to the set of all filters on X,
equivalently to those maps h : (X → 2) → 2, which preserve � and ∧: h(�) = �,
h(f ∧ g) = h(f) ∧ h(g) where � and ∧ on X → 2 are computed pointwise. For
us, it will be more convenient to use the equivalent formulation, obtained by
flipping the order on 2 (so, the resulting monad T could be actually called the
ideal monad). Every TX is then the set of those h : PX → 2, for which

f(∅) = ⊥, f(s ∪ t) = f(s) ∨ f(t).

Shades of Iteration: From Elgot to Kleene 117

1. Note that Kleisli category SetT is dually isomorphic to a category C, for
which every C(X,Y) consists of functions PX → PY , preserving finite joins
(in particular, monotone). This category has finite products: P∅ is the termi-
nal object and PX × PY = P(X + Y), by definition.

2. Under this dual isomorphism, every morphism f : X → T (Y +X) corresponds
to a morphism f̂ : PY × PX → PX in C where we compute a fixpoint
PY → PX using the Knaster-Tarski theorem, and transfer it back to C as
f† : X → TY .

3. The construction of f† entails both (η inl∨η inr)† ≤ η and (η inl∨η inr)† ≥ η,
hence (η inl ∨ η inr)† = η.

4. Enrichment in semilattices is obvious in view of the dual isomorphism of SetT
and C.

5. The Fixpoint law follows by construction. The remaining Elgot monad laws
follow by transfinite induction.

6. If T was a Kleene monad, any C(X,X) would be a Kleene algebra, but Kozen
showed that it is not, hence T is not a Kleene monad.

7. By Theorem 22, T fails Uniformity�.

8 Conclusions

When it comes to modelling and semantics, many issues can be framed and
treated in terms of universal algebra and coalgebra. However, certain phenom-
ena, such as recursion, partiality, extensionality, require additional structures,
often imported from the theory of complete partial orders, by enriching cate-
gories and functors, and devising suitable structures, such as recursion and more
specifically iteration. In many settings though, iteration is sufficient, and can be
treated as a self-contained ingredient whose properties matter, while a particular
construction behind it does not. From this perspective, Elgot monads present a
base fundamental building block in semantics.

We formally compared Elgot monads with Kleene monads, which are a mod-
est generalization of Kleene algebras. In contrast to inherently categorical Elgot
monads, Kleene algebra is a simple notion, couched in traditional algebraic
terms. The price of this simplicity is a tight pack of laws, which must be accepted
altogether, but which are well-known to be conflicting with many models of iter-
ation. We proposed a novel notion of while-monad, which in the categorical
context are essentially equivalent to Elgot monads, and yet while-monads are
morally a three-sorted algebra over (Boolean) decisions, programs and certain
well-behaved programs (figuring in the so-called uniformity principle). This is
somewhat similar to the extension of Kleene algebra with tests [28]. The resulting
Kleene algebra with tests is two-sorted, with tests being a subsort of programs,
and forming a Boolean algebra. Our decisions unlike tests do not form a subsort
of programs, but they do support operations of Boolean algebra, without how-
ever complying with all the Boolean algebra laws. We have then related Elgot
monads (and while-monads) with Kleene monads, and as a side-effect produced a
novel axiomatization of Kleene algebra (Proposition 4), based on a version of the

118 S. Goncharov

uniformity principle. We regard the present work as a step towards bringing the
gap between Elgot iteration and Kleene iteration, not only in technical sense,
but also in the sense of concrete usage scenarios. We plan to further explore
algebraic axiomatizations of iteration, based on the current axiomatization of
while-monads.

References

1. Aboul-Hosn, K., Kozen, D.: Relational semantics for higher-order programs. In:
Uustalu, T. (ed.) MPC 2006. LNCS, vol. 4014, pp. 29–48. Springer, Heidelberg
(2006). https://doi.org/10.1007/11783596 5

2. Adámek, J., Milius, S., Velebil, J.: Equational properties of iterative monads. Inf.
Comput. 208(12), 1306–1348 (2010)

3. Awodey, S.: Category Theory, 2nd edn. Oxford University Press Inc, Oxford (2010)
4. Bloom, S., Ésik, Z.: Iteration Theories: The Equational Logic of Iterative Processes.

Springer, Cham (1993). https://doi.org/10.1007/978-3-642-78034-9
5. Căzǎnescu, V.E., Gheorghe, S.: Feedback, iteration, and repetition. In: Gheorghe,

P. (ed.) Mathematical Aspects of Natural and Formal Languages, Volume 43 of
World Scientific Series in Computer Science, pp. 43–61. World Scientific (1994)

6. Day, A.: Filter monads, continuous lattices and closure systems. Can. J. Math.
27(1), 50–59 (1975)

7. Elgot, C.: Monadic computation and iterative algebraic theories. In: Rose, H.E.,
Shepherdson, J.C. (eds.) Logic Colloquium 1973, Volume 80 of Studies in Logic
and the Foundations of Mathematics, pp. 175–230. Elsevier (1975)

8. Ésik, Z., Goncharov, S.: Some remarks on Conway and iteration theories. CoRR,
abs/1603.00838 (2016)

9. Fokkink, W.J., Zantema, H.: Basic process algebra with iteration: completeness of
its equational axioms. Comput. J. 37(4), 259–268 (1994)

10. Gomes, L., Madeira, A., Barbosa, L.S.: On Kleene algebras for weighted compu-
tation. In: Cavalheiro, S., Fiadeiro, J. (eds.) SBMF 2017. LNCS, vol. 10623, pp.
271–286. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70848-5 17

11. Goncharov, S.: Kleene monads. PhD thesis, Universität Bremen (2010)
12. Goncharov, S.: Uniform Elgot iteration in foundations. In: 48th International Col-

loquium on Automata, Languages, and Programming, ICALP 2021, Volume 198
of LIPIcs, pp. 131:1–131:16. Schloss Dagstuhl - Leibniz-Zentrum für Informatik
(2021)

13. Goncharov, S., Jakob, J., Neves, R.: A semantics for hybrid iteration. In: Schewe, S.,
Zhang, L. (eds.) 29th International Conference on Concurrency Theory, CONCUR
2018, Volume 118 of LIPIcs, pp. 22:1–22:17. Schloss Dagstuhl - Leibniz-Zentrum
für Informatik (2018)

14. Goncharov, S., Schröder, L., Mossakowski, T.: Kleene monads: handling iteration
in a framework of generic effects. In: Kurz, A., Lenisa, M., Tarlecki, A. (eds.)
CALCO 2009. LNCS, vol. 5728, pp. 18–33. Springer, Heidelberg (2009). https://
doi.org/10.1007/978-3-642-03741-2 3

15. Goncharov, S., Schröder, L., Rauch, C., Jakob, J.: Unguarded recursion on coin-
ductive resumptions. Log. Methods Comput. Sci 14(3) (2018)

16. Goncharov, S., Schröder, L., Rauch, C., Piróg, M.: Unifying guarded and unguarded
iteration. In: Esparza, J., Murawski, A.S. (eds.) FoSSaCS 2017. LNCS, vol.
10203, pp. 517–533. Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-
662-54458-7 30

https://doi.org/10.1007/11783596_5
https://doi.org/10.1007/978-3-642-78034-9
https://doi.org/10.1007/978-3-319-70848-5_17
https://doi.org/10.1007/978-3-642-03741-2_3
https://doi.org/10.1007/978-3-642-03741-2_3
https://doi.org/10.1007/978-3-662-54458-7_30
https://doi.org/10.1007/978-3-662-54458-7_30

Shades of Iteration: From Elgot to Kleene 119

17. Hasegawa, M.: The uniformity principle on traced monoidal categories. In: Cate-
gory Theory and Computer Science, CTCS 2002, Volume 69 of ENTCS, pp. 137–
155 (2003)

18. Hoare, C.A.R.T., Möller, B., Struth, G., Wehrman, I.: Concurrent Kleene algebra.
In: Bravetti, M., Zavattaro, G. (eds.) CONCUR 2009. LNCS, vol. 5710, pp. 399–
414. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-04081-8 27

19. Jacobs, B.: Affine monads and side-effect-freeness. In: Hasuo, I. (ed.) CMCS 2016.
LNCS, vol. 9608, pp. 53–72. Springer, Cham (2016). https://doi.org/10.1007/978-
3-319-40370-0 5

20. Jacobs, B., Poll, E.: Coalgebras and monads in the semantics of java. Theoret.
Comput. Sci. 291, 329–349 (2003)

21. Joyal, A., Street, R., Verity, D.: Traced monoidal categories. In: Mathematical
Proceedings of the Cambridge Philosophical Society, vol. 119, pp. 447–468 (1996)

22. Kleene, S.C.: Representation of events in nerve nets and finite automata. In: Shan-
non, C., McCarthy, J. (eds.) Automata Studies, pp. 3–41. Princeton University
Press (1956)

23. Kock, A.: Strong functors and monoidal monads. Arch. Math. 23(1), 113–120
(1972)

24. Kozen, D.: On Kleene algebras and closed semirings. In: Rovan, B. (ed.) MFCS
1990. LNCS, vol. 452, pp. 26–47. Springer, Heidelberg (1990). https://doi.org/10.
1007/BFb0029594

25. Kozen, D.: A completeness theorem for Kleene algebras and the algebra of regular
events. Inf. Comput. 110(2), 366–390 (1994)

26. Kozen, D.: On the complexity of reasoning in Kleene algebra. Inf. Comput. 179,
152–162 (2002)

27. Kozen, D., Mamouras, K.: Kleene algebra with products and iteration theories.
In: Ronchi, S., Rocca, D. (eds.) Proceedings Computer Science Logic 2013, CSL
2013, Volume 23 of LIPIcs, pp. 415–431. Schloss Dagstuhl - Leibniz-Zentrum für
Informatik (2013)

28. Kozen, D., Smith, F.: Kleene algebra with tests: completeness and decidability. In:
van Dalen, D., Bezem, M. (eds.) CSL 1996. LNCS, vol. 1258, pp. 244–259. Springer,
Heidelberg (1997). https://doi.org/10.1007/3-540-63172-0 43

29. Lambek, J.: A fixpoint theorem for complete categories. Math. Z. 103, 151–161
(1968)

30. Levy, P.B., Goncharov, S.: Coinductive resumption monads: guarded iterative and
guarded Elgot. In: Proceedings 8rd International Conference on Algebra and Coal-
gebra in Computer Science, CALCO 2019, LIPIcs. Schloss Dagstuhl - Leibniz-
Zentrum für Informatik (2019)

31. McIver, A., Rabehaja, T.M., Struth, G.: On probabilistic Kleene algebras,
automata and simulations. In: de Swart, H. (ed.) RAMICS 2011. LNCS, vol.
6663, pp. 264–279. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-
642-21070-9 20

32. Moggi, E.: A modular approach to denotational semantics. In: Pitt, D.H., Curien,
P.-L., Abramsky, S., Pitts, A.M., Poigné, A., Rydeheard, D.E. (eds.) CTCS 1991.
LNCS, vol. 530, pp. 138–139. Springer, Heidelberg (1991). https://doi.org/10.1007/
BFb0013462

33. Möller, B.: Kleene getting lazy. Sci. Comput. Programm. 65(2), 195–214 (2007).
Special Issue Dedicated to Selected Papers from the Conference of Program Con-
struction 2004, MPC 2004

34. Platzer, A.: Differential dynamic logic for hybrid systems. J. Autom. Reasoning
41(2), 143–189 (2008)

https://doi.org/10.1007/978-3-642-04081-8_27
https://doi.org/10.1007/978-3-319-40370-0_5
https://doi.org/10.1007/978-3-319-40370-0_5
https://doi.org/10.1007/BFb0029594
https://doi.org/10.1007/BFb0029594
https://doi.org/10.1007/3-540-63172-0_43
https://doi.org/10.1007/978-3-642-21070-9_20
https://doi.org/10.1007/978-3-642-21070-9_20
https://doi.org/10.1007/BFb0013462
https://doi.org/10.1007/BFb0013462

120 S. Goncharov

35. Plotkin, G.D.: A powerdomain construction. SIAM J. Comput. 5(3), 452–487
(1976)

36. Stone, M.: Postulates for the barycentric calculus. Ann. Mat. Pura Appl. 29(1),
25–30 (1949)

37. Varacca, D., Winskel, G.: Distributing probability over non-determinism. Math.
Struct. Comput. Sci. 16(1), 87–113 (2006)

Automated QoS-Aware Service Selection
Based on Soft Constraints

Elias Keis1,2,3 , Carlos Gustavo Lopez Pombo4 ,
Agustín Eloy Martinez Suñé5(B) , and Alexander Knapp1

1 Universität Augsburg, Augsburg, Germany
elias.keis@tum.de, alexander.knapp@uni-a.de

2 Technische Universität München, Munich, Germany
3 Ludwig-Maximilians-Universität München, Munich, Germany

4 Universidad Nacional de Río Negro and CONICET, San Carlos de Bariloche,
Argentina

cglopezpombo@unrn.edu.ar
5 Universidad de Buenos Aires and CONICET, Buenos Aires, Argentina

aemartinez@dc.uba.ar

Abstract. QoS attributes are one of the key factors taken into account
when selecting services for a composite application. While there are sys-
tems for automated service selection based on QoS constraints, most of
them are very limited in the preferences the user can state. In this paper
we present: a) a simple, yet versatile, language for describing composite
applications, b) a rich set of notations for stating complex preferences
over the QoS attributes, including checkpoints and invariants, and c) an
automatic tool for optimal global QoS-aware service selection based on
MiniBrass, a state-of-the-art soft-constraint solver. We provide a running
example accompanying the definitions and a preliminary performance
analysis showing the practical usefulness of the tools.

Keywords: Service selection · Soft-constraint solving · Quality of
service · Service-oriented computing

1 Introduction

In software-as-a-service paradigms such as service-oriented computing, software
systems are no longer monolithic chunks of code executing within the boundaries
of an organization. As stated in [21], the vision is to assemble “application com-
ponents into a network of services that can be loosely coupled to create flexible,
dynamic business processes and agile applications that span organizations and
computing platforms”.

Services are “autonomous, platform-independent entities that can be
described, published, discovered, and loosely coupled in novel ways” [21, p. 38].
When several services are combined to achieve a particular goal, it is called
Service Composition [4, p. 55]. While there are several disciplines of Service

c© Springer Nature Switzerland AG 2023
A. Madeira and M. A. Martins (Eds.): WADT 2022, LNCS 13710, pp. 121–140, 2023.
https://doi.org/10.1007/978-3-031-43345-0_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-43345-0_6&domain=pdf
http://orcid.org/0000-0003-3316-379X
http://orcid.org/0000-0002-0248-5019
http://orcid.org/0000-0003-1806-6932
http://orcid.org/0000-0002-4050-3249
https://doi.org/10.1007/978-3-031-43345-0_6

122 E. Keis et al.

Composition, we focus on Service Orchestration, i.e., creating new services “by
combining several existing services in a process flow” [4, p. 57].

When composing or using existing services, we hopefully have multiple ser-
vices fulfilling the functional requirements of our tasks. Beyond that, they typ-
ically stand out against each other in several non-functional attributes. While
the price is an important aspect, they usually also differ in their Quality of
Service (QoS) attributes, for example, latency or availability [16]. Therefore, an
essential aspect of the Service Selection Problem [6, pt. II] is determining whether
the QoS profile of a service satisfies the QoS requirements of a client.

Our approach is based on Constraint Programming (CP) [23] leaning on
soft constraint solving to automate the process of selecting adequate services
based on their QoS properties. Adding hard constraints to reduce the number of
matching services is simple but might lead to either a still too extensive range of
services or not a single one left if we overconstrain the problem. Soft constraints
come in handy as the solver can omit them if the Constraint Satisfaction Prob-
lem (CSP) [11] would be overconstrained otherwise.

We present a tool, named QosAgg, for solving the service selection problem
for composite services in a soft way. We leverage on MiniBrass, a tool presented
in [26] that extends the MiniZinc [20] constraint modeling language and tool,
providing various options to model and solve soft CSPs based on the unifying
algebraic theory of Partial Valuation Structures (PVSs) [27]. Specifically, our
approach provides the means for: 1) describing a service workflow over which
the service selection has to be performed, 2) expressing QoS profiles associated
with concrete services as values of its QoS attributes, 3) expressing QoS require-
ments as soft constraints over the aggregated value of QoS attributes along the
execution of the workflow, 4) automatically finding the best (if any) assignment
of services to tasks given the above set up.

In Sect. 2, we present our approach to the problem of selecting services to
optimize global QoS requirements of a workflow. In Sect. 3 we introduce the
MiniBrass modelling language. In Sect. 4 we show how to model and solve QoS
aware service selection in MiniBrass. In Sect. 5 we perform preliminary perfor-
mance experiments. Finally, in Sect. 6 we draw some conclusions and point out
possible future lines of research.

Related Work. Our work consists of QoS-aware service selection for work-
flows, based on soft constraint solving. While optimization-based techniques
can be separated into locally and globally optimizing ones, we focus on global
optimization-based service selection, where the QoS of each service is considered
pre-determined. In most cases, global optimization means that QoS has to be
aggregated, Sakellariou and Yarmolenko [24] discuss how this can be done for
several attributes.

There are knapsack and graph-path-finding-based approaches for modelling
and solving the optimization problem [30]. Zheng, Luo, and Song [32] propose
a colony-based selection algorithm applicable to multi-agent service composi-
tion [29]. We will delegate the solving of the problem to dedicated solvers but
use a multidimensional, multiple-choice knapsack problem for modelling as well.

Automated QoS-Aware Service Selection Based on Soft Constraints 123

In most of the works that apply Constraint Programming for service selection,
such as [14], only hard constraints are used. When soft constraints are used, the
way to express preferences over solutions is quite limited. For example, [22]
supports softness by assigning importance levels to constraints. Deng et al. [8]
use constraint solving but concentrate on the domain of mobile cloud computing
and therefore put emphasis on temporal constraints. Arbab et al. are working
with (Soft) Constraint Automata [1,2,9] and use them for service discovery [3,
25]. However, Soft Constraint Automata turn out to be representable by soft
constraint satisfaction problems (SCSPs) [2, sec. 6.1], and they concentrate on
local optimization only.

Rosenberg et al. [22] provide an implementation as part of their VRESCo
project [18] that also supports soft constraints [17], but only weighted ones as
well. A more general formalization for soft constraints is c-semirings (Constraint
Semirings) [5] that can also be used for service selection, as Zemni, Benbernou,
and Carro [31] show, but without an implementation. We will fill this gap and
provide flexible soft constraints for service selection in an easy-to-use manner for
users with basic knowledge of constraint programming.

2 Service Selection for Composite Services
Composite services can often be described as workflows [4]. A workflow consists
of one or multiple abstract services. An abstract service is a task that needs to
be done. Each abstract service can be instantiated by any of a class of concrete
ones that can fulfil the task. To avoid confusion, we refer to abstract services as
tasks and to concrete services merely as services. The tasks in a workflow can be
composed sequentially, in parallel, be subject to a choice and put within a loop.

The selection of services to fulfil the tasks in a workflow can be done in many
ways. In our case, workflows are converted to execution plans defining the paths
traversing the workflow. This allows the selection of adequate services for every
task instance in the path, even admitting the selection of different services for
performing different instances of the same task if it has to be executed more
than once, e.g., in loops.

We’ll start with a simple example workflow inspired by [19, Fig. 13.1].

A
B

C D
E

a1

a2
d1

e1

e2b1

b2
b3

Imagine a workflow with an
initialization task A that can be
done by two provisioning services
a1 and a2 and a finalization task
E with two eligible services e1, e2.
In between, there are two possi-
ble paths: either task B is done,
which has three provisions b1 to
b3; or instead, task C with the
same provisions is executed but
then succeeded by task D that
is done by the only available ser-
vice d1.

124 E. Keis et al.

Definition 1. Workflow graphs are defined by the following grammar:

〈Task〉 ::= Task name
〈G〉 ::= Null | 〈Task〉 | 〈G〉 → 〈G〉 | 〈G〉|〈G〉 | 〈G〉 + 〈G〉

Additionally, 〈G〉n serves as syntactic sugar (n ∈ Z>0).

where A → B (or short: A B) denotes sequential composition, A | B parallel
composition, A + B choice, and An a loop with a fixed number of iterations n.
The graph shown above looks like this: A → (B + C D) → E.

As it is clear from the previous definition, we assume that iterations in a
workflow graph are bounded, so every execution plan is finite and the procedure
of service selection is safe from the pothole posed by the termination problem of
unbounded iterations.

Definition 2 (Provisioning service description). A service description con-
sists of: 1) a service name, 2) a set of tasks it can be assigned to, and 3) a set of
QoS attribute names associated with the specific values the service guarantees.

For instance, recalling the previous example, provision b3 can be assigned to
tasks B, C, and have the following QoS attributes: cost = 9, responsetime =
2, availability = 98, accuracy = 99.5, etc.

Since we aim at performing a global selection we should be able to define
preferences about the overall QoS of the composition. Therefore, we need a
way to aggregate the QoS attributes of the individual services in a workflow
configuration. For the QoS attributes that should be aggregated over the whole
workflow, there needs to be information on how to aggregate them.

Definition 3 (Aggregation operator). Each QoS attribute has two associ-
ated aggregation operators:

– agg→, a binary operator for aggregating it over sequential composition, and
– agg‖, a binary operator for aggregating it over parallel composition.

Next we introduce our running example.

Running Example: A company dedicated to manufacture skateboards rents
two workstations in a co-working workshop.

Workflow. The company needs to rent storage for the wheels, boards, and the
finished skateboards that it produces. The co-working workshop offers two rental
models. In the first model, one can rent storage for precisely 10 or 15 items. In
the second, one also has to decide in advance how many items to store but can
rent storage for between 10 and 15 items. The second rental model is a bit more
expensive on a per-item basis and takes a bit longer to set up.

Automated QoS-Aware Service Selection Based on Soft Constraints 125

Once the storage is rented, the company can start producing the boards.
The work is organized in iterations. In each iteration, each workstation can work
individually: one crafts wheels, the other one boards. Alternatively, work can be
done together to assemble four wheels and one board to a skateboard. When
assembling, one can decide to assemble three boards at once, which is a bit
faster. Also, when crafting boards, you either can craft a single board or craft
three boards of a different kind in a single iteration, which is a bit more time and
cost-efficient, and the boards are a bit more pliable but also heavier. Regarding
the wheels, we always create four wheels in a single iteration, but we can choose
from four different kinds of wheels that differ in durability, friction, and cost.

Init

Assemble

Boards

Wheels

Pack

10x

When one
workstation is
done with the
own task of
an iteration,
it waits for
the other one
to finish, too.
After ten iter-
ations, we pack
the finished skateboards either not at all, using cardboard or in a wooden box.
Cardboard—and wood even more—provides better protection but is more expen-
sive and time-consuming.

Attributes. We care about the following global attributes that affect the overall
outcome or the dependencies between tasks: cost, time, storage, number of
produced boards, number of produced wheels, number of finished products.

3 Soft Constraint Solving with MiniBrass

MiniZinc [20] is a solver-independent constraint modeling language for describ-
ing CSPs and constraint optimization problems (COPs) and an associated tool
which translates MiniZinc specifications into the lower-level solver input lan-
guage FlatZinc, supported by numerous constraint solvers. MiniZinc is also used
as a frontend for invoking the user-defined specific solver; which, in our case, will
be Gurobi1, a state-of-the-art commercial optimization solver. In contrast to tra-
ditional programming, where the programmer states what the program should
do in order to compute the result, in constraint programming, the modeller only
states what the solution must satisfy; then, a solver is responsible for coming
up with potential solutions, checking them against the constraints in the model,
and then returning any, or the best, solution.

MiniZinc differentiates between decision and parameter variables. While
parameter variables are compile-time constant, i.e., their value is known even
before the solver starts working, decision variables are the ones that the solver
1 Available at https://www.gurobi.com.

https://www.gurobi.com

126 E. Keis et al.

can variate to come up with new solutions. MiniZinc supports a lot more capa-
bilities, like arrays, quantifiers, or optimization, to name a few2.

Example 1 demonstrates the usage of MiniZinc by showing a toy specification,
together with its output and some considerations.

Example 1. MiniZinc specification:
1 set of int: DOM = 1..2; % DOM = {1, 2}
2 var DOM: x; var DOM: y; % x, y in DOM
3 constraint x!=y;
4 solve satisfy;

Line 1 defines a set DOM containing the integers 1 and 2, line 2 defines two decision
variables x and y in DOM, line 3 constrains them to be different, and line 4 asks
MiniZinc to solve the problem and return any satisfying solution.

MiniZinc’s output after running:
x = 2;
y = 1;

Obviously, (x, y) = (1, 2) would also have been a valid solution. Such a preference
can be enforced by replacing the keyword satisfy by the objective function
minimize x in the statement solve of line 4.

MiniBrass [26], also a modelling language equipped with an analysis tool,
extends MiniZinc in two ways. On the one hand, it enriches the MiniZinc con-
straint modelling language with preference models containing soft constraints.
Soft constraints are constraints that might be omitted if the problem would
be unsatisfiable otherwise. MiniBrass supports a range of algebraic structures
called Partial Valuation Structures (PVSes) [27] that enable the prioritization
of constraints. On the other hand, MiniBrass implements a branch-and-bound
search algorithm which iteratively generates MiniZinc models by adding con-
strains from the preference model whose solutions are considered subsequently
better, according to the underlying PVS. In a sense, MiniBrass is providing
the means for traversing the complete lattice of constraint systems, induced by
the preference model [5, Thm. 2.9]3, and searching for an optimum solution. A
more comprehensive explanation of the many algorithmic aspects involved in the
implementation can be found in [26, p. 21].

While MiniBrass provides various predefined PVSes, e.g., for constraint pref-
erences given as graph, fuzzy constraints, weighted CSPs, and many more, it
also admits the definition of custom PVSes, if needed.

Definition 4 (Partial Valuation Structure – Definition 1, [27]). A partial
valuation structure M = (X, ·, ε, ≤) is given by an underlying set X, an associa-
tive and commutative multiplication operation · : X ×X → X, a neutral element
ε ∈ X for ·, and a partial ordering ≤ ⊆ X × X such that the multiplication · is
2 The interested reader might, however, have a look at the handbook https://www.

minizinc.org/doc-latest/en/index.html.
3 While [5, Thm. 2.9] is stated for c-semirings, PVSes can be converted to and created

from c-semirings [5,13,26], another popular algebraic framework for soft constraints.

https://www.minizinc.org/doc-latest/en/index.html
https://www.minizinc.org/doc-latest/en/index.html

Automated QoS-Aware Service Selection Based on Soft Constraints 127

monotone in both arguments w.r.t. ≤, i.e., m1 · m2 ≤ m′
1 · m′

2 if m1 ≤ m′
1 and

m2 ≤ m′
2, and ε is the top element w.r.t. ≤.

We write m1 < m2 if m1 ≤ m2 and m1 �= m2, and m1 ‖ m2 if neither
m1 ≤ m2 nor m2 ≤ m1. We write |M | for the underlying set and ·M , εM , and
≤M for the other parts of M .

Among the many PVSes already defined in MiniBrass we can find the PVS
type WeightedCsp from [26, p. 27]. Such a PVS allows for assigning a weight
to each of the soft constraints, which will act as preferences. In the resulting
MiniZinc model, heavier constraints will be preferred over lighter ones.

Example 2 shows the use of PVSes for extending Example 1 by an instance
of WeightedCsp in order to formalize a preference model.

Example 2. MiniBrass preference model:
1 include "defs.mbr";
2 PVS: prefer2 = new WeightedCsp("prefer2") {
3 soft -constraint xEquals2: ’x==2’;
4 soft -constraint yEquals2: ’y==2’ :: weights(’2’);
5 };
6 solve prefer2;

Line 1 includes the standard MiniBrass definitions (defs.mbr) which, among
others, allows the usage of WeightedCsp. The identifier prefer2 in line 2 is the
name we choose for our PVS instance. Lines 3 and 4 declare two soft constraints
requiring x and y to be equal to 2 but establish yEquals2 to be heavier (i.e., has
weight 2 in contrast to 1 which is the default weight for the CSP). Therefore, the
complete model consists of both, the hard constraints of the MiniZinc specifica-
tion shown in Example 1 and the MiniBrass preference model shown above. As
x and y have to be different according to the hard constraint, it is not possible to
fulfill both soft constraint simultaneously. Even though (x, y) = (2, 1) fulfils the
hard constraints, the only admissible optimal solution is (x, y) = (1, 2) because
the soft constraint yEquals2 is heavier than xEquals2.

New PVSes can be constructed by combining two PVSes using either the
lexicographic or the Pareto product. The lexicographic combination M lex N
prioritizes the ordering of solutions of M and only considers N when M cannot
decide between two solutions. In the Pareto combination M pareto N, a solution
is better than another if it is better for both M and N.

4 Modeling QoS-Aware Service Selection in MiniBrass

The tool we are presenting, named QosAgg, takes as inputs the workflow descrip-
tion including the quantitative attributes over which the QoS is to be evaluated,
and the service definitions together with their possible assignments to tasks. Its
output is the MiniZinc code containing the CSP to be solved including basic dec-
larations, enums for tasks and services, decision variables assigning one service
to every task and one branch per path choice. The model generated by QosAgg
corresponds to a 0/1 multi-dimensional multi-choice knapsack problem [15,30]:

128 E. Keis et al.

task instances are the bags, and we can put precisely one service into each bag.
Next, one array per QoS attribute is created, containing the values for every
service.

A key element in the translation to a CSP is, as we mentioned before, the
aggregation of QoS attributes along the paths of the workflow in a way that
makes possible to check the satisfaction of the desired constraints. From a the-
oretical point of view, bounded loops are no more than syntactic sugar, so we
start by unfolding them in order to obtain the equivalent graph that can only be
null, a single task, a sequential composition, a parallel composition or a choice
composition. Then, for a graph G aggregation q(G) is then defined recursively
on its structure as follows:

– Let η(T) denote the service chosen to perform the single task T ,
– Let η(G0 +G1 + · · ·+Gn) denote the specific subgraph selected by the choice,
– q(null) yields the valuation which is agg→() for all the QoS attributes,
– q(T), with T a single task, yields the QoS contract of η(T),
– q(G0 → G1 → · · · → Gn) yields the valuation agg→(q(G0), q(G1), . . . , q(Gn)),
– q(G0 ‖ G1 ‖ · · · ‖ Gn) yields the valuation agg‖(q(G0), q(G1), . . . , q(Gn)),
– q(G0 + G1 + · · · + Gn) yields the valuation q(η(G0 + G1 + · · · + Gn)).

Essentially, q aggregates over the parallel and sequential composition using
the corresponding aggregation operators. It deals with single tasks, and choices
by using decision variables that let the solver make the best decision for the
overall QoS. We continue by showing the modeling workflow of the running
example introduced in Sect. 2.

Example 3 (A skateboard company). We start by showing in Listing 1.1 the
input file for QosAgg containing the workflow definition, the provision contracts
and the quantitative attributes that constitute the QoS model.

workflow wf {
graph: Init -> ((Wheels? | Boards?) + Assemble)^10 -> Pack;

provision bigStore for Init: cost = 60, time = 20, storage = 15;
provision smallStore for Init: cost = 30, time = 10, storage = 10;

provision badWheels for Wheels: cost = 5, time = 2, wheels = 4;
provision okWheels for Wheels: cost = 5, time = 2, wheels = 4;
provision expensiveWheels for Wheels: cost = 10, time = 2, wheels = 4;
provision goodWheels for Wheels: cost = 5, time = 2, wheels = 4;

provision singleBoard for Boards: cost = 7, time = 3, boards = 1;
provision threeBoard for Boards: cost = 16, time = 10, boards = 3;

provision singleAssembly for Assemble: cost = 2, time = 4, products = 1,
wheels = -4, boards = -1;

provision threeAssembly for Assemble: cost = 6, time = 10, products = 3,
wheels = -12, boards = -3;

provision noPacking for Pack: cost = 0, time = 0;
provision woodPacking for Pack: cost = 20, time = 10;
provision cardboardPacking for Pack: cost = 3, time = 3;

attribute cost of var int; aggregation cost: sum;
attribute time of var int; aggregation time: sum , max;

Automated QoS-Aware Service Selection Based on Soft Constraints 129

attribute boards of int default 0; aggregation boards: sum;
attribute wheels of int default 0; aggregation wheels: sum;
attribute products of int default 0; aggregation products: sum;
attribute storage of var int default 0;

};

Listing 1.1. QoS model

If we run MiniZinc to solve the CSP produced by QosAgg, it will output
a statement displaying a solution to the problem including a path across the
workflow together with the selected services for each task instance in the path,
and the aggregated value for each QoS attribute for that selection.

Arbitrary hard constraints can be added on top of the basic CSP problem
output by QosAgg in order to force MiniZinc to find more specific solutions satis-
fying both, the basic model, and the newly added hard constrains. For example,
we can enrich our model by defining the notion of profit by means of fixing
the retail price (in this case at 25) and considering the aggregated cost and the
aggregated number of finished products along the selected path. This will make
MiniZinc compute the value of the variable profit enabling, for example, the
possibility of enforcing a lower bound for its value stating that we only accept
solutions leading to a profit greater than such a bound (shown in Listing 1.2).
This is done by feeding MiniZinc with both, the basic MiniZinc model obtained
from QosAgg with the following handcrafted MiniZinc specification:

int: price = 25;
int: bound = 10;
var int: profit = price * wf_aggregated_products - wf_aggregated_cost;

constraint profit > bound;

Listing 1.2. MiniZinc constrain model

Analysing the resulting model will lead to any solution (i.e., a path in the
workflow and an assignment of services to tasks) in which the value calculated
for profit is greater than 10. MiniZinc can also be run with the statement
solve maximize profit; forcing the tool to find an optimum solution in which
the value of profit is not only greater than 10, but also the maximum possible.

Going further, we propose to aim at a richer form of constraints. Adding
soft constraints to our model allows to, for example, force the solvers to search
for solutions that increase profit and decrease time consumption. This can be
done by writing a MiniBrass preference model resorting to two instances of the
predefined PVS type CostFunctionNetwork and the lexicographical product for
combining them as shown in Listing 1.3.

PVS: profit = new CostFunctionNetwork("profit") {
soft -constraint profit: ’500- profit’;

};
PVS: time = new CostFunctionNetwork("time") {

soft -constraint time: ’wf_aggregated_time ’;
};
solve profit lex time;

Listing 1.3. MiniBrass preference model

130 E. Keis et al.

The process continues by feeding MiniBrass input the preference model shown
above, and the basic MiniZinc resulting from combining: 1) the basic model
output by QosAgg from the original model, enriched with 2) the additional
handcrafted hard constraints of a choice.

It will then initiate the search for an optimum solution to the Soft CSP. As
we mentioned before, this is done by applying a branch-and-bound searching
algorithm over the complete lattice of constraint systems, induced by the PVS
formalizing the preference model. The procedure implemented in MiniBrass will
iteratively generate MiniZinc CSPs by adding constraints forcing any solution to
be better than the one found in the previous iteration. In each iteration MiniZinc
is run finding such solution. The iterative process is performed until the CSP
gets unsatisfiable, at which point, an optimal solution has been found in the
previous iteration.

Running MiniBrass on: a) the combination of the output of running QosAgg
on the model shown in Listing 1.1 and the MiniZinc constrain model shown
in Listing 1.2, and b) the MiniBrass preference model shown in Listing 1.3,
yields the statement shown in Listing 1.4.
Profit: 13
Selection graph for wf:

Init=bigStore → (Wheels=goodWheels |) → (Wheels=goodWheels |) → (
Wheels=goodWheels | Boards=threeBoard) → Assemble=threeAssembly → (
Wheels=goodWheels | Boards=threeBoard) → (Wheels=goodWheels |) →
Assemble=singleAssembly → (Wheels=goodWheels |) → Assemble=
singleAssembly → Assemble=singleAssembly → Pack=cardboardPacking

Aggregations for wf:
cost: 137
time: 73
boards: 0
wheels: 0
products: 6

Listing 1.4. MiniZinc solution with aggregation values

The solution has a profit value of 13, workflow is displayed with the selected
services for each task instance, and the aggregated value obtained for each QoS
attribute is shown. The total cost of the solution is 137, the total time is 73,
and the total number of skateboards produced is 6. The attributes boards and
wheels are used to keep track of the number of boards and wheels produced.
When the task Assemble is executed to produce skateboards it consumes boards
and wheels and produces products. A final number of 0 for boards and wheels
means that all the boards and wheels produced have been consumed to produce
skateboards.

4.1 Adding Checkpoints to QosAgg Workflows

Up to this point, we showed how to model the problem of assigning services to
tasks organized in a complex workflow, and how it can be solved based on the
satisfaction of a combination of: 1) hard constraints added to the basic model,
the latter obtained from the description of the workflow, the declaration of the
QoS attributes and the declaration of services capable of performing each of the

Automated QoS-Aware Service Selection Based on Soft Constraints 131

tasks, and 2) soft constrains declared as a preference model through the use of
PVSes.

This approach yields a framework in which it is possible to reason about
the overall aggregated-by-attribute QoS of workflows and the local QoS of the
distinct tasks, but we lack everything in between. This void might lead to a
problem when a desired property is supposed to hold after the execution of a
specific part of a workflow which is not after its completion. Consider the example
of attributes that do not exclusively grow (resp. shrink), but that can both grow
and shrink, and we need to preserve certain invariants regarding greater and
lower bounds for such attributes. A classic example is that of producers and
consumers of resources.

Example 4. Imagine a workflow graph A → B → C where tasks A and C are
meant to produce some resource, and B consumes it. Let there be services
a1, a2 for task A, b1, b2 for B, and c for C, with QoS attributes “cost” and
“resource” (interpreted as the cost associated to the execution of the service,
and the resources produced/consumed by the service) with addition as aggrega-
tion function, and the following QoS contracts:

a1 a2 b1 b2 c

cost 1 2 1 2 1
resource 1 2 −2 −1 2

Then, if we solve optimizing aiming at the lower overall cost, we end up with
the selection a1, b1, and c with aggregated cost 3. It is clear that this solution
is not satisfying as service a1 only produces one resource item, but b1 consumes
two. Adding a constraint to the overall aggregation of the resource attribute
is not of any use because service c adds two more resource items at the end,
compensating the (infeasible) “debt" caused by b.

Example 4 exposes the need of some form of constraints over the aggregated
value of QoS attributes at chosen points within the workflow. Such points in the
execution of a workflow are referred to as “checkpoints" and are placed directly
before and after tasks. They allow us to specify invariants by addressing all
the relevant checkpoints in a certain fragment of interest of the workflow, or to
specify pre-/post-conditions for specific tasks only by addressing the checkpoints
appearing before and after such a task. Figure 1 illustrates this.

Aggregation on Checkpoint. Checkpoints mark those points in the workflow
where constraints are plausible to be placed. Adding constraints at checkpoints
requires the capability of aggregating the values of QoS attributes up to the
specific checkpoint of interest. The reader should note that the definition of the
aggregation presents no further difficulty with respect to what we discussed at
the beginning of the present section but with the sole difference that now the

132 E. Keis et al.

Fig. 1. Checkpoints in a workflow. � are pre-conditions, � post-conditions. (Color
figure online)

evaluation is only performed over the maximal subgraph starting at the begin-
ning of the workflow, and leading to the checkpoint one is interested in as an
ending point.

Constraints on Checkpoints. Checkpoints allow us a smoother implementation
of various constraints. Going back to our running example, we can observe that
there is an actual risk of: 1) the sum of the produced wheels, boards, and fin-
ished skateboards in the storage might exceed the capacity we booked, or 2) the
numbers of wheels, boards, and skateboards might be negative;

or, at least, there is no formal impediment for any of those situations to occur.
Therefore, we would like to guarantee that none of those situations happens to
be true at any point in the path selected as a solution. The following constraint
shows how checkpoints help in enforcing this type of properties:
constraint forall(cp in wf_all_checkpoints)(

wf_checkpoints_boards[cp] + wf_checkpoints_wheels[cp] +
wf_checkpoints_products[cp] <= storage /\

wf_checkpoints_boards[cp] >= 0 /\ wf_checkpoints_wheels[cp] >= 0 /\
wf_checkpoints_products[cp] >= 0

);

In the previous constraint wf_all_checkpoints is the designated name for the
set containing all the checkpoints of the workflow, and wf_checkpoints_boards,
wf_checkpoints_wheels and wf_checkpoints_products are arrays containing
the aggregated attribute value up to every checkpoint in wf_all_checkpoints.

Finally, by resorting to this type of constraints we can recall Example 4 and
provide an elegant solution for the problem we used as motivation. The follow-
ing constraint is what we need: “constraint forall(cp in wf_all_checkpoints)
(wf_checkpoints_resource[cp] >= 0);”.

Loops introduce a complex control flow structure that requires special treat-
ment in order to provide a flexible way of establishing constraints allowing them
to restrict all the iterations or just a single one, as shown in the following example.
Let a workflow have graph (A3 ‖ B)2 and a single QoS attribute named resource.
As tasks in a path are named according to their concrete instance once the itera-
tions are unfolded, all of them have their own associated checkpoints so we can,
for example, ensure that we start with at least five resource items in the first iter-
ation by adding the following constrain: “constraint wf_checkpoints_resource[
wf_A_pre_1_1] >= 5;”.

Automated QoS-Aware Service Selection Based on Soft Constraints 133

Analogously, “wf_A_pre_2_3” would be the name for the checkpoint for the
last iteration. A constraint ensuring that after executing (any instance of) B
there are less than five resource items can be stated as follows: “constraint
forall(cp in wf_checkpoints_B_post)(wf_checkpoints_resource[cp] < 5);”.

The case of workflows containing choices present a different, and very impor-
tant issue. Consider workflow “Give + Take” and again a single QoS attribute
named resource. The services for Give all produce items; the services for
Take all consume them. Again we want to ensure that no resource is used
before it has been produced. Adding the constraint “constraint forall(cp in
wf_all_checkpoints)(wf_checkpoints_resource[cp] >= 0)” solves the problem

but only partially. Note that, as there is no loop, the only reasonable choice
is the path executing Give and omitting task Take, and that is the right solu-
tion. However, MiniZinc yields that the problem is unsatisfiable; this is because
wf_all_checkpoints also contains the checkpoint wf_Take_post, and there the
resource balance is negative. Nevertheless, when choosing the path with Give,
we can ignore that checkpoint as the execution never even comes across task
Take.

This is a problem regarding the reachability of specific points. To solve this
issue we added expressions for each task instance stating whether it is reachable,
i.e., part of the selected path, or not. We use these expressions to include only
those checkpoints in the predefined checkpoint sets that are part of the selected
path. For a task instance to be reachable, all the choices that it is part of need
to select the branches leading towards the instance.

Once again, for the code generation, we recursively descend in the work-
flow graph. Each time we come across a choice composition, we remember the
name of its choice decision variable and the branch we descended into. When we
reach a single task, the conjunction of all choice variables we came across having
the value required for the branch we went into gives us the reachability expres-
sion. In the case of the task Take in motivating situation described above, this
would be: “choice1 == 2”. Therefore, the checkpoint set wf_all_checkpoints
is generated by filtering all the checkpoints for reachability. However, individual
checkpoints, like “wf_Take_post” in our example, require manual handling. For
example, the “constraint wf_checkpoints_resource[wf_Take_post] >= 0” has to
hold even if “wf_Take_inst” is not reachable. One way to solve this is to only
“enable" constraints when the instance is reachable. This is done by resorting
to the assertion “wf_reachable” with which it is possible to state the con-
straint: “constraint wf_reachable[wf_Take_inst] -> wf_checkpoints_resource[
wf_Take_post] >= 0;”.

4.2 Toolchain Architecture

In the figure, we depict the architecture of the toolchain we propose for solv-
ing the problem of QoS-aware service selection for tasks organized as complex
workflows described at the beginning of this section.

134 E. Keis et al.

Preference
model

Constraint
model

model QoSAgg
MiniBrass

CSP
model

MiniZinc

CSP
model

CSP generator

sat

unsat

Last solution

Dark grey nodes sym-
bolize tools and light
grey ones are files; among
the latter, those with
solid outline are either
the model, or the output
statement, and those with
the dashed outline are
intermediate files result-
ing from processing the
model. The model consists of: 1) the workflow model containing: a) the graph of
tasks, b) the QoS attributes, each of them with their corresponding aggregation
functions for both, parallel composition and sequential composition, and c) the
services’ QoS specification and possible assignment to tasks; 2) the constraint
model consisting of the hard constraints the user wants the solution to satisfy,
and 3) the preference model consisting of the soft constraints the user wants to
guide the search for a solution.

The tools include: 1) QosAgg that takes the workflow model as input and
produces a file containing the basic CSP model containing the specification
of the corresponding 0/1 multi-dimensional multi-choice knapsack problem, 2)
MiniBrass that takes the CSP model resulting from combining the output of
QosAgg and the constraint model, and the preference model, and implements
the branch-and-bound search algorithm for incrementally finding the best solu-
tion, according to the preference model, and 3) MiniZinc that runs the solver
over the complete model in order to find the optimum solution.

5 Preliminary Performance Analysis

In this paper we proposed a toolchain for QoS-aware service selection for tasks
organized as complex workflows. Among the different tools involved in it, we
were responsible only for the development of QosAgg. On the one hand, an exclu-
sive performance analysis of QosAgg does not lead to any significant conclusion
because, as we mentioned before, it is a simple parsing process translating work-
flow models to Soft CSP; on the other hand, any discussion on the theoretical
complexity/empirical study of the toolchain formed by MiniBrass, MiniZinc and
Gurobi on arbitrary Soft CSP4, does not provide the right insight on the actual
performance of such tools in analysing the Soft CSPs obtained from QosAgg. For

4 The interested reader is pointed to [5,28] for the results associated to the theoretical
complexity of the formal framework underlying MiniBrass and to [26, section 5]
for an empirical evaluation. In the case of the complexity associated to the use
of MiniZinc there is not much to be said about the translation to FlatZinc (i.e., its
target language) because most of the computational effort resides in the execution of
the solver [20]. Regarding Gurobi; a comprehensive empirical study against the SAS
solvers, available at https://www.sas.com, running over the Mittelmann’s benchmark
can be found in [12].

https://www.sas.com

Automated QoS-Aware Service Selection Based on Soft Constraints 135

this reason, we chose to perform an empirical performance study of the complete
toolchain we proposed as a blackbox.

For comparability reasons, the workflow model, the constraint model and
preference models are synthetically generated in a specific way to be explained
below. All the experiments are carried out using MiniZinc 2.6.4 with the pro-
prietary solver Gurobi 9.5.2 on a machine having an Apple M1 chip with eight
cores and 16 GB RAM on a 64 bit macOS Monterey.

This experimental study pretends to shed some light on how the structure
of the workflow drives the complexity of the analysis so we devised experiments
aiming at revealing the compositional nature of the computational effort required
to solve a problem. To this end we: 1) performed an empirical study of the cost
associated to solving Soft CSPs obtained from workflows consisting of single
tasks whose complexity varies according to: a) the number of service providers,
and b) the number of quantitative attributes involved in the model, 2) studied
the correlation between the cost associated to the analysis of the composition
of workflows (sequential, parallel and choice) and a function of the costs asso-
ciated to the analysis of the workflows involved in such a composition. In this
case we varied the amount of workflows (only considering simple tasks) in the
composition.

The property under analysis in all cases is the lex composition of the max-
imization of the value of each attribute. We start by identifying the impact of
the number of attributes and providers on the computational cost of solving the
optimum service assignment for workflows consisting of a single task. To this
end we fixed the structure of the workflow, the hard constrains and the soft con-
strains in order to obtain a family of Soft CSPs whose analysis can reflect the
growth in the computational effort required while a problem gets bigger, either
in terms of the amount of attributes or the amount of service providers. In order
to ameliorate statistical deviations, we ran the tool over 10 randomly generated
instances of workflows consisting of a single task and varying the number of
attributes ranging from 10 to 100 stepping by 10 and providers ranging from
1 to 2000 stepping by 100, and reported the average of the values obtained in
the runs. From the experimental data we can derive the following observations:
1) the computational cost associated to QosAgg, when varying the amount of
service providers, grows linearly in all the cases with5 R2 ≥ 0.99, 2) the com-
putational cost associated to MiniBrass, when varying the amount of service
providers, grows polinomially (with grade 2) with R2 ≥ 0.79, with the excep-
tions of the experiments for 1 attribute, in which R2 = 0.7462; the average R2

is 0.8901, 3) the computational cost associated to QosAgg, when varying the
amount of attributes, grows linearly in all the cases with R2 ≥ 0.9, 4) the com-
putational cost associated to MiniBrass, when varying the amount of attributes,
grows polynomially (with grade 2) with R2 ≥ 0.74; the average R2 is 0.857, 5)
the computational cost associated to QosAgg is at most around 30% of the total
cost of analysis.

5 R squared, denoted R2, is the coefficient of determination that provides a measure
of how well the model fits the data.

136 E. Keis et al.

We continue by analyzing the computational cost associated to the workflow
composition operators (i.e., sequential, parallel and choice composition). We gen-
erated 10 sets containing 10 workflows consisting of a single task, 100 providers
and 50 QoS attributes. In order to understand how the size of the composi-
tion impacts the cost of analysis, each set is used to conduct an experiment
in which we subsequently increment the size of the composition from 1 to 10
subworkflows. In both parallel and sequential composition we used max as the
aggregation function. From the previous experimental data we can derive the
following observations about the behaviour of the sequential and parallel compo-
sition: 1) the computational cost associated to the execution of QosAgg, when
varying the amount of workflows in the composition, grows linearly in average
and in all the individual cases. In the average case the fitting has R2 ≥ 0.99, 2)
the computational cost associated to the execution of MiniBrass, when varying
the amount of workflows in the composition, grows exponentially both in average
and in all the individual cases. In the average case the fitting has R2 ≥ 0.98, and
3) the computational cost associated to the execution of MiniBrass excedes the
timeout of one hour for cases of compositions consisting of 8 or more workflows
(except for 3 and 2 cases for sequential and parallel composition respectively).

The results for sequential and parallel composition are similar, this is due to
the fact that in both cases we are using the same aggregation function, which
yields the same minizinc model. The reader should also note that the analysis
time may vary a lot depending on many other factors; we can identify some
obvious ones like: 1) the choice, and diversity, of aggregation functions associ-
ated to the quantitative attributes, 2) the hard and soft constraints, which can
severely influence the behaviour of the analysis tools, and 3) how intricate is the
structure of the workflow,

among others. In the case of the choice composition operator we can derive
the following observations: 1) the computational cost associated to the execution
of QosAgg, when varying the amount of workflows in the choice composition,
grows linearly in average and in all the individual cases. In the average case the
fitting has R2 ≥ 0.99, and 2) the computational cost associated to the execution
of MiniBrass, when varying the amount of workflows in the choice composition,
grows polinomially (with grade 2) both in average and in all the individual cases.
In the average case the fitting has R2 ≥ 0.99.

In summary, the execution cost of QosAgg increases linearly and accounts for
a relatively small portion of the overall analysis cost. On the other hand, the exe-
cution cost of MiniBrass exhibits exponential growth in the case of parallel and
sequential composition, while demonstrating polynomial growth in the case of
choice composition. Unsurprisingly, the cost of executing MiniBrass constitutes
the majority of the total analysis cost.

6 Conclusions and Further Research

We presented a toolchain supporting optimum QoS-aware service selection for
tasks organized as workflows, based on soft constrain solving. QosAgg is used to

Automated QoS-Aware Service Selection Based on Soft Constraints 137

generate a skeleton MiniZinc model from workflow specifications (i.e., a descrip-
tion of the workflow, an enumeration of the QoS attributes together with their
corresponding aggregation operator, and the list of providers for each task,
including their QoS profile, expressed as values for the QoS attributes). Such
a MiniZinc model contains, non-exclusively, decision variables corresponding to
aggregations of the QoS attributes that can be used to enforce additional con-
strains over specific points of the workflow. On top of the resulting MiniZinc
CSP, it is possible to add soft constrains resulting in a Soft CSP that can be
solved using MiniBrass. We performed a preliminary performance analysis under
the hypothesis that the computational cost of solving the Soft CSPs generated
is driven, and compositionally determined, by the composition operators used to
create workflows. Such study exhibited the impact of the exponential nature of
solving the Soft CSPs by MiniBrass on the overall performance of the toolchain.

QosAgg creates decision variables for all possible path and service selections.
These might be too many for MiniZinc to handle for more extensive use cases; in
that case, it might be necessary to make MiniZinc evaluate only one specific path
choice at a time and repeat that for all the possible paths in an iterative process
in order to obtain scalability. Moreover, we focused on offline optimization only
(i.e., all information had to be provided from the beginning). In reality, one might
only have estimations of the values as QoS contracts whose real run-time value
might affect future decisions leading to a dynamic notion of optimum relative to
the online behavior of the selected providers. There is on going research about
how to integrate offline and online decision-making [7].

Finally, there are many situations our workflows cannot model directly and
need to be sorted out manually that are left for further research. To name a few:
there are no built-in conditional path choices that depend on aggregated values.
Support for compensation actions [10] would also be helpful, e.g., for the case
where services can fail. Services at the moment are assumed to have constant
QoS attributes across all executions. Support for probabilistic decisions would
make it much easier to model decisions that we cannot influence, e.g., because
the user of the composite service makes them, etc.

References

1. Arbab, F., Baier, C., Rutten, J., Sirjani, M.: Modeling component connectors in
reo by constraint automata: (extended abstract). Electron. Notes Theor. Comput.
Sci. 97, 25–46 (2004). https://doi.org/10.1016/j.entcs.2004.04.028

2. Arbab, F., Santini, F.: Preference and similarity-based behavioral discovery of ser-
vices. In: ter Beek, M.H., Lohmann, N. (eds.) WS-FM 2012. LNCS, vol. 7843, pp.
118–133. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38230-
7_8. ISBN 978-3-642-38230-7

3. Arbab, F., Santini, F., Bistarelli, S., Pirolandi, D.: Towards a similarity-based web
service discovery through soft constraint satisfaction problems. In: Proceedings of
the 2nd International Workshop on Semantic Search over the Web, ICPS Proceed-
ings, New York, NY, USA. Association for Computing Machinery (2012). https://
doi.org/10.1145/2494068.2494070. ISBN 978-1-4503-2301-7

https://doi.org/10.1016/j.entcs.2004.04.028
https://doi.org/10.1007/978-3-642-38230-7_8
https://doi.org/10.1007/978-3-642-38230-7_8
https://doi.org/10.1145/2494068.2494070
https://doi.org/10.1145/2494068.2494070

138 E. Keis et al.

4. Baryannis, G.: Service composition. In: Papazoglou, M.P., Pohl, K., Parkin, M.,
Metzger, A. (eds.) Service Research Challenges and Solutions for the Future Inter-
net. LNCS, vol. 6500, pp. 55–84. Springer, Heidelberg (2010). https://doi.org/10.
1007/978-3-642-17599-2_3. ISBN 978-3-642-17599-2

5. Bistarelli, S., Montanari, U., Rossi, F.: Semiring-based constraint satisfaction
and optimization. J. ACM 44(2), 201–236 (1997). https://doi.org/10.1145/256303.
256306. ISSN 0004–5411

6. Bouguettaya, A., Sheng, Q.Z., Daniel, F. (eds.): Web Services Foundations.
Springer, New York (2014). https://doi.org/10.1007/978-1-4614-7518-7. ISBN 978-
1-4614-7517-0

7. De Filippo, A., Lombardi, M., Milano, M.: Integrated offline and online decision
making under uncertainty. J. Artif. Int. Res. 70, 77–117 (2021). https://doi.org/
10.1613/jair.1.12333. ISSN 1076–9757

8. Deng, S., Huang, L., Wu, H., Wu, Z.: Constraints-driven service composition in
mobile cloud computing. In: 2016 IEEE International Conference on Web Services
(ICWS), pp. 228–235 (2016). https://doi.org/10.1109/ICWS.2016.37

9. Dokter, K., Gadducci, F., Santini, F.: Soft constraint automata with memory. In:
de Boer, F., Bonsangue, M., Rutten, J. (eds.) It’s All About Coordination. LNCS,
vol. 10865, pp. 70–85. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-
90089-6_6. ISBN 978-3-319-90089-6

10. El Hadad, J., Manouvrier, M., Rukoz, M.: Tqos: transactional and qos-aware selec-
tion algorithm for automatic web service composition. IEEE Trans. Serv. Comput.
3(1), 73–85 (2010). https://doi.org/10.1109/TSC.2010.5

11. Freuder, E.C., Mackworth, A.K.: Constraint satisfaction: an emerging paradigm.
In: Handbook of Constraint Programming, vol. 2, 1 edn. (2006). ISBN 978-008-04-
6380-3

12. Helm, W.E., Justkowiak, J.-E.: Extension of Mittelmann’s benchmarks: comparing
the solvers of SAS and Gurobi. In: Fink, A., Fügenschuh, A., Geiger, M.J. (eds.)
Operations Research Proceedings 2016. ORP, pp. 607–613. Springer, Cham (2018).
https://doi.org/10.1007/978-3-319-55702-1_80

13. Hosobe, H.: Constraint hierarchies as semiring-based csps. In: 2009 21st IEEE
International Conference on Tools with Artificial Intelligence, pp. 176–183. IEEE
(2009). https://doi.org/10.1109/ICTAI.2009.43

14. Lecue, F., Mehandjiev, N.: Towards scalability of quality driven semantic web
service composition. In: 2009 IEEE International Conference on Web Services, pp.
469–476. IEEE (2009). https://doi.org/10.1109/ICWS.2009.88. ISBN 978-0-7695-
3709-2

15. Martello, S., Toth, P.: Algorithms for knapsack problems. In: Martello, S., Laporte,
G., Minoux, M., Ribeiro, C. (eds.) Surveys in Combinatorial Optimization, number
132 in North-Holland Mathematics Studies, North-Holland, pp. 213–257 (1987).
https://doi.org/10.1016/S0304-0208(08)73237-7

16. Menascé, D.A.: Qos issues in web services. IEEE Internet Comput. 6(6), 72–75
(2002). https://doi.org/10.1109/MIC.2002.1067740. ISSN 1941–0131

17. Meseguer, P., Rossi, F., Schiex, T.: Soft constraints. In: Handbook of Constraint
Programming, vol. 9, 1 edn., pp. 281–328 (2006). ISBN 978-008-04-6380-3

18. Michlmayr, A., Rosenberg, F., Leitner, P., Dustdar, S.: End-to-end support for
qos-aware service selection, invocation and mediation in vresco. Technical report,
Vienna University of Technology (2009). https://dsg.tuwien.ac.at/Staff/sd/papers/
TUV-1841-2009-03.pdf

https://doi.org/10.1007/978-3-642-17599-2_3
https://doi.org/10.1007/978-3-642-17599-2_3
https://doi.org/10.1145/256303.256306
https://doi.org/10.1145/256303.256306
https://doi.org/10.1007/978-1-4614-7518-7
https://doi.org/10.1613/jair.1.12333
https://doi.org/10.1613/jair.1.12333
https://doi.org/10.1109/ICWS.2016.37
https://doi.org/10.1007/978-3-319-90089-6_6
https://doi.org/10.1007/978-3-319-90089-6_6
https://doi.org/10.1109/TSC.2010.5
https://doi.org/10.1007/978-3-319-55702-1_80
https://doi.org/10.1109/ICTAI.2009.43
https://doi.org/10.1109/ICWS.2009.88
https://doi.org/10.1016/S0304-0208(08)73237-7
https://doi.org/10.1109/MIC.2002.1067740
https://dsg.tuwien.ac.at/Staff/sd/papers/TUV-1841-2009-03.pdf
https://dsg.tuwien.ac.at/Staff/sd/papers/TUV-1841-2009-03.pdf

Automated QoS-Aware Service Selection Based on Soft Constraints 139

19. Moghaddam, M., Davis, J.G.: Service selection in web service composition: a com-
parative review of existing approaches. In: Bouguettaya, A., Sheng, Q., Daniel, F.
(eds.) Web Services Foundations, pp. 321–346. Springer, New York (2014). https://
doi.org/10.1007/978-1-4614-7518-7_13

20. Nethercote, N., Stuckey, P.J., Becket, R., Brand, S., Duck, G.J., Tack, G.: MiniZinc:
towards a standard CP modelling language. In: Bessière, C. (ed.) CP 2007. LNCS,
vol. 4741, pp. 529–543. Springer, Heidelberg (2007). https://doi.org/10.1007/978-
3-540-74970-7_38. ISBN 978-3-540-74970-7

21. Papazoglou, M.P., Traverso, P., Dustdar, S., Leymann, F.: Service-oriented com-
puting: state of the art and research challenges. Computer 40(11), 38–45 (2007).
https://doi.org/10.1109/MC.2007.400. ISSN 1558–0814

22. Rosenberg, F., Celikovic, P., Michlmayr, A., Leitner, P., Dustdar, S.: An end-to-end
approach for qos-aware service composition. In: 2009 IEEE International Enterprise
Distributed Object Computing Conference, pp. 151–160. IEEE (2009). https://doi.
org/10.1109/EDOC.2009.14. ISBN 978-0-7695-3785-6

23. Rossi, F., van Beek, P., Walsh, T. (eds.): Handbook of Constraint Programming,
1 edn. Elsevier Science Inc., Amsterdam (2006). ISBN 978-008-04-6380-3

24. Sakellariou, R., Yarmolenko, V.: On the flexibility of ws-agreement for job sub-
mission. In: Proceedings of the 3rd International Workshop on Middleware for
Grid Computing, ICPS Proceedings. Association for Computing Machinery (2005).
https://doi.org/10.1145/1101499.1101511. ISBN 978-1-59593-269-3

25. Sargolzaei, M., Santini, F., Arbab, F., Afsarmanesh, H.: A tool for behaviour-
based discovery of approximately matching web services. In: Hierons, R.M., Merayo,
M.G., Bravetti, M. (eds.) SEFM 2013. LNCS, vol. 8137, pp. 152–166. Springer, Hei-
delberg (2013). https://doi.org/10.1007/978-3-642-40561-7_11. ISBN 978-3-642-
40561-7

26. Schiendorfer, A., Knapp, A., Anders, G., Reif, W.: MiniBrass: soft constraints for
MiniZinc. Constraints 23(4), 403–450 (2018). https://doi.org/10.1007/s10601-018-
9289-2

27. Schiendorfer, A., Knapp, A., Steghöfer, J.-P., Anders, G., Siefert, F., Reif, W.:
Partial valuation structures for qualitative soft constraints. In: De Nicola, R., Hen-
nicker, R. (eds.) Software, Services, and Systems. LNCS, vol. 8950, pp. 115–133.
Springer, Cham (2015). https://doi.org/10.1007/978-3-319-15545-6_10. ISBN 978-
3-319-15545-6

28. Schiex, T., Fargier, H., Verfaillie, G.: Valued constraint satisfaction problems: hard
and easy problems. In: Proceedings of the Fourteenth International Joint Con-
ference on Artificial Intelligence, IJCAI 1995, Montréal, Québec, Canada, 20–25
August 1995, vol. 2, pp. 631–639. Morgan Kaufmann (1995)

29. Wei, L., Junzhou, L., Bo, L., Xiao, Z., Jiuxin, C.: Multi-agent based QoS-aware
service composition. In: 2010 IEEE International Conference on Systems, Man
and Cybernetics, pp. 3125–3132. IEEE (2010). https://doi.org/10.1109/ICSMC.
2010.5641725

30. Tao, Yu., Zhang, Y., Lin, K.-J.: Efficient algorithms for web services selection with
end-to-end qos constraints. ACM Trans. Web 1(1), 6-es (2007). https://doi.org/10.
1145/1232722.1232728. ISSN 1559–1131

31. Zemni, M.A., Benbernou, S., Carro, M.: A soft constraint-based approach to QoS-
aware service selection. In: Maglio, P.P., Weske, M., Yang, J., Fantinato, M. (eds.)
ICSOC 2010. LNCS, vol. 6470, pp. 596–602. Springer, Heidelberg (2010). https://
doi.org/10.1007/978-3-642-17358-5_44. ISBN 978-3-642-17358-5

https://doi.org/10.1007/978-1-4614-7518-7_13
https://doi.org/10.1007/978-1-4614-7518-7_13
https://doi.org/10.1007/978-3-540-74970-7_38
https://doi.org/10.1007/978-3-540-74970-7_38
https://doi.org/10.1109/MC.2007.400
https://doi.org/10.1109/EDOC.2009.14
https://doi.org/10.1109/EDOC.2009.14
https://doi.org/10.1145/1101499.1101511
https://doi.org/10.1007/978-3-642-40561-7_11
https://doi.org/10.1007/s10601-018-9289-2
https://doi.org/10.1007/s10601-018-9289-2
https://doi.org/10.1007/978-3-319-15545-6_10
https://doi.org/10.1109/ICSMC.2010.5641725
https://doi.org/10.1109/ICSMC.2010.5641725
https://doi.org/10.1145/1232722.1232728
https://doi.org/10.1145/1232722.1232728
https://doi.org/10.1007/978-3-642-17358-5_44
https://doi.org/10.1007/978-3-642-17358-5_44

140 E. Keis et al.

32. Zheng, X., Luo, J.Z., Song, A.B.: Ant colony system based algorithm for qos-
aware web service selection. In: Kowalczyk, R. (ed.) Grid Service Engineering and
Management “The 4th International Conference on Grid Service Engineering and
Management” GSEM 2007, number 117 in Lecture Notes in Informatics, Bonn, Ger-
many, pp. 39–50. Gesellschaft für Informatik e. V. (2007). https://dl.gi.de/server/
api/core/bitstreams/4cefa9ab-94e1-4d82-b2ea-4d8ea1041838/content. ISBN 978-
3-88579-211-6

https://dl.gi.de/server/api/core/bitstreams/4cefa9ab-94e1-4d82-b2ea-4d8ea1041838/content
https://dl.gi.de/server/api/core/bitstreams/4cefa9ab-94e1-4d82-b2ea-4d8ea1041838/content

Runtime Composition of Systems of
Interacting Cyber-Physical Components

Benjamin Lion1(B), Farhad Arbab1,2, and Carolyn Talcott3

1 CWI, Amsterdam, The Netherlands
{lion,arbab}@cwi.nl

2 Leiden University, Leiden, The Netherlands
3 SRI International, Menlo Park, CA, USA

Abstract. The description of concurrent systems as a network of inter-
acting processes helps to reduce the complexity of the specification. The
same principle applies for the description of cyber-physical systems as
a network of interacting components. We introduce a transition sys-
tem based specification of cyber-physical components whose semantics
is compositional with respect to a family of algebraic products. We give
sufficient conditions for execution of a product of cyber-physical compo-
nents to be correctly implemented by a lazy runtime expansion of the
product construction. Our transition system algebra is implemented in
the Maude rewriting logic system. As an example, we show that, under
a coordination protocol, a set of autonomous energy-aware robots can
self-sort themselves on a shared physical grid.

1 Introduction

Cyber-physical systems are highly interactive. Self driving cars are instances of
cyber-physical systems with a significant amount of interaction between cyber
and physical aspects. The controller in the car periodically samples its environ-
ment through its cameras and other sensors, and performs actions to drive the
car. Dually, the environment responds to the action of the car by applying the
corresponding power on the wheel, consumming energy, and eventually mov-
ing the car on the ground. The specification of a problem involving parts with
cyber-physical aspects is complex and requires a specification of each individual
part, plus how the parts interact. For instance, consider a car rental agency, for
which autonomous cars are parked in a line. Having cars parked too far from the
agency wastes time for the renters. The agency may therefore want to sort the
cars at the end of the day, so that the reserved cars are first in line for the next
day. As one can imagine, such a problem involves several parts in interaction.
We give hereafter a specification of a simplified version of this problem, that
involves sorting robots on a 2 by n grid.

Interaction in Cyber-Physical Systems. We simplify the example of self driving
car on a rental parking with a set of robots moving on a field. Consider a set

c© Springer Nature Switzerland AG 2023
A. Madeira and M. A. Martins (Eds.): WADT 2022, LNCS 13710, pp. 141–162, 2023.
https://doi.org/10.1007/978-3-031-43345-0_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-43345-0_7&domain=pdf
https://doi.org/10.1007/978-3-031-43345-0_7

142 B. Lion et al.

of 5 robots, roaming on a grid of size 2 by 5, as displayed in Fig. 1. Robots are
identified with a unique identifier, and are initially positioned as shown in the
left configuration of Fig. 1. Each robot is equipped with a battery from which it
draws some energy for its move. A robot can move on an adjacent cell as long
as the cell is free, i.e., no other robot is located on the cell. A robot may have a
sensor that tells whether the next cell is free, and may send or receive messages
from other robots. However, the system of robots is inherently concurrent, as
each robot runs at its own speed, draws current from its battery, may sample
the environment at arbitrary times, and take decisions according to its own
strategy. In the system depicted in Fig. 1, can the robots sort themselves in
ascending order while maintaining the energy level of their batteries above zero?
To answer this question requires analysis of the interactions among both cyber
and physical parts of the system.

Fig. 1. Initial configuration of the unsorted robots (left), and final configuration of the
sorted robots (right).

Specification. The sorting problem highlights the need for a component-based
approach to design cyber-physical systems. Both cyber aspects (logic of each
robot) and physical parts (grid and batteries of robots) have a decisive contri-
bution for having the robots eventually sorted. Yet, the resulting cyber-physical
system is modular: the same set of robots may run on a different grid, with
different batteries; or the same grid may welcome different types of robots, with
other kinds of sensors.

In [16], we define an algebraic model in which components are first class enti-
ties and denote sequences of observables, called Timed-Event Sequences (TES),
from both cyber and physical aspects of systems. Interaction between compo-
nents is defined exogenously using algebraic operators on components. The model
of components is declarative: a component denotes a set of sequences of observa-
tions, and abstracts from the processes that generate such sequences. A product
of two components declares what set of sequences of each component is conserved
to comprise the resulting product component, and our algebraic framework sup-
ports an open-ended set of product operators parameterized on user-defined
composability relations.

In this paper, we give a state-based specification for components to oper-
ationally define their behavior. A procedure is then required to generate the
behavior of their composition such that the result faithfully respects the inter-
action constraints among components.

Runtime Composition of Systems of Interacting Cyber-Physical Components 143

Compositional Runtime. The procedure that composes state-based components
is either done statically, or dynamically at runtime. In the first case, the resulting
composition may be optimized to improve its execution, while the second case
allows for modularity and runtime modifications.

Traditionally, a composition is flattened [17] by syntactically enumerating all
combinations of states and transitions. The flattened result contains all valid
behaviors and therefore faithfully respects the interaction constraints. As state
space may quickly get large, flattening the composition may be undesirable.

Instead, we seek a runtime composition operator that jointly executes step-
wise each component. The proof obligation for the correctness of such runtime
procedure is that the resulting behavior correctly respects the interaction con-
straints reflected in the product operator over components. For instance, given
that component behavior is non-blocking, the runtime should not generate a
finite sequence of composite observables for which there is no continuation (non-
blockingness [10]). We characterize a set of components for which our step-wise
composition is correct: components should be deadlock free and pairwise compat-
ible. As a result, given compatible components, correctness of the step-wise prod-
uct reduces to showing that after each step, the system of components remains
deadlock free. We use our result to analyze in Maude a system of robots that
sort themselves.

Contributions. The contributions of this paper are:

– a large family of operators to model interaction of state-based descriptions of
cyber-physical components;

– a proof of semantic correctness for a range of user-defined products of TES
transition systems;

– a sufficient condition for applying a decomposition operator in incremental
steps at runtime;

– an application of our model on an example of self-sorting robots.

The state based model in our formalism allows for a uniform description of
arbitrary composition and arbitrary nesting of cyber-physical aspects of compo-
nents. Such diversity of operators is desirable to model the diversity of interaction
among cyber-physical components.

2 Related Work

Process Algebra. The algebra of components described in this paper is an
extension of [16]. Algebra of communicating processes [9] (ACP) achieves simi-
lar objectives by decoupling processes from their interaction. For instance, the
encapsulation operator in process algebra is a unary operator that restricts which
actions occurs, i.e., δH(t ‖ s) prevents t and s from performing actions in H.
Moreover, composition of actions is expressed using communication functions,
i.e., γ(a, b) = c means that actions a and b, if performed together, form the new

144 B. Lion et al.

action c. Different types of coordination over communicating processes are stud-
ied in [5]. In [3], the authors present an extension of ACP to include time-sensitive
processes. Our work accommodates the counterparts of the δH and γ operators
from ACP and provides many more operators needed for direct expression of
interaction of cyber-physical components.

Discrete Event Systems. In [13], the author lists the current challenges in mod-
elling cyber-physical systems in such a way. The author points to the problem
of modular control, where even though two modules run without problems in
isolation, the same two modules may block when they are used in conjunction.

In [18], the authors present procedures to synthesize supervisors that control
a set of interacting processes and, in the case of failure, report a diagnosis. Cyber-
physical systems have also been studied from an actor-model perspective, where
actors interact through events [11,19]. In our work, we add to the event structure
a timing constraint, and expose conditions to take the product of discrete event
systems at runtime.

Components. In [2], the authors give a co-inductive definition of components, to
which [16] is an extension. In [4], the authors propose a state based specification
as constraint automata. A transition in a constraint automaton is labelled by
a guarded command, whose satisfaction depends on the context of its product
(other constraint automata). Except from [12], constraint automata do not have
time as part of their semantics (i.e., only specify time insensitive components),
and only describe observables on ports. In that respect, our model extends con-
straint automata by generalizing the set of possible observables, and adding the
time of the observables as part of the transition.

Timed Systems. In [8], the authors use heterogeneous timed asynchronous rela-
tional nets (HT-ARNs) to model timed sensitive components, and a specification
as timed IO-automata. The authors show some conditions (progress-enabledness
and r-closure) for the product of two HT-ARNs to preserve progress-enabledness.
We may have recovered a similar result, but with some modifications. Our prod-
uct is more expressive: κ needs not be only synchronization of shared events,
but can have more intricate coordination [16] (e.g., exclusion of two events). We
do not necessitate our process to be r-closed, and in general, we do not want to
explicitly write the silent observations.

The conjunction operator in Timed Automata defines a Timed Automaton
whose transitions are either synchronous transition labelled by shared actions (or
shared delay), or a transition with an independent action. The conjunction oper-
ator, however, is limited and cannot directly express the wide range of relations
and compositions that occur within cyber-physical systems. The definition of a
parametrized class of operators on TES transition systems makes the interac-
tion constraints explicit in our model and enables modular design of state-based
cyber-physical systems.

Runtime Composition of Systems of Interacting Cyber-Physical Components 145

3 Components in Interaction

In [16], we give a unified semantic model to capture cyber and physical aspects
of processes as components and characterize their various types of interactions
as user-defined products in an algebraic framework. Moreover, we show some
general conditions for products on components to be associative, commutative,
and idempotent. In this section, we recall the basic definitions of a component
and product from [16], and introduce in Section 2.2 some instances of product
that suit our example in this paper.

Notations. Given σ : N → Σ, let σ[n] ∈ Σn be the finite prefix of size n of
σ and let ∼n be an equivalence relation on (N → Σ) × (N → Σ) such that
σ ∼n τ if and only if σ[n] = τ [n]. Let FG(L) be the set of left factors of a set
L ⊆ Σω, defined as FG(L) = {σ[n] | n ∈ N, σ ∈ L}. We use σ′ to denote the
derivative of the stream σ, such that σ′(i) = σ(i+1) for all i ∈ N. We write σ(n)

for the n-th derivative of σ, i.e., the stream such that σ(n)(i) = σ(n + i) for all
i ∈ N. For a pair (σ, τ) of TESs, we use (σ, τ)′ to denote the new pair of TESs
for which the observation(s) with the smallest time stamp has been dropped,
i.e., (σ, τ)′ = (σ(x), τ (y)) with x (resp. y) is 1 if pr2(σ)(0) ≤ pr2(τ)(0) (resp.
pr2(τ)(0) ≤ pr2(σ)(0)) and 0 otherwise.

Let E be the domain of events. A timed-event stream σ ∈ TES (E) over a
set of events E ⊆ E is an infinite sequence of observations, where an observation
σ(i) = (O, t) consists of a pair of a subset of events in O ⊆ E, called observable,
and a positive real number t ∈ R+ as time stamp. A timed-event stream (TES)
has the additional properties that consecutive time stamps are increasing and
non-Zeno, i.e., for any TES σ and any time t ∈ R, there exists an element
σ(i) = (Oi, ti) in the sequence such that t < ti. For σ ∈ TES (E) and t ∈ R+, we
use σ(t) to denote the observable O in σ if there exists i ∈ N with σ(i) = (O, t),
and ∅ otherwise. We write dom(σ) for the set of all t ∈ R+ such that there
exists i ∈ N with σ(i) = (Oi, t) with Oi ⊆ E. Note that, for t ∈ R+ where
σ(t) = ∅, the meaning of σ(t) is ambiguous as it may mean either t 	∈ dom(σ),
or there exists an i ∈ N such that σ(i) = (∅, t). The ambiguity is resolved
by checking if t ∈ dom(σ). The operation ∪ forms the interleaved union of
observables occurring in a pair of TESs, i.e., for two TESs σ and τ , we define σ∪τ
to be the TES such that dom(σ∪τ) = dom(σ)∪dom(τ) and (σ∪τ)(t) = σ(t)∪τ(t)
for all t ∈ dom(σ) ∪ dom(τ).

We recall the greatest post fixed point of a monotone operator, that we later
use as a definition scheme and as a proof principle. Let X be any set and let
P(X) = {V | V ⊆ X} be the set of all its subsets. If Ψ : P(X) → P(X) is a
monotone operator, that is, R ⊆ S implies Ψ(R) ⊆ Ψ(S) for all R ⊆ X and
S ⊆ X, then Ψ has a greatest fixed point P = Ψ(P) satisfying:

P =
⋃

{R | R ⊆ Ψ(R)}
This equality can be used as a proof principle: in order to prove that R ⊆ P ,
for any R ⊆ X, it suffices to show that R is a post-fixed point of Ψ , that is,
R ⊆ Ψ(R).

146 B. Lion et al.

3.1 Components

A component uniformly models both cyber and physical aspects through a
sequence of observables.

Definition 1 (Component). A component C = (E,L) is a pair of an inter-
face E, and a behavior L ⊆ TES (E). �

A complex system typically consists of multiple components that interact
with each other. For that purpose, we capture in an interaction signature the
type of the interaction between a pair of components, and we define a family of
binary products acting on components, each parametrized with an interaction
signature. Formally, an interaction signature Σ = (R,⊕) is a pair of a compos-
ability relation R(E1, E2) ⊆ TES (E1) × TES (E2) and a composition function
⊕ : TES (E) × TES (E) → TES (E) for arbitrary sets of events E1, E2 ⊆ E. As
a result, the product of two components, under a given interaction signature,
returns a new component whose behavior reflects that the two operand compo-
nents’ joint behavior is constrained according to the interaction signature.

Intuitively, the newly formed component describes, by its behavior, the evo-
lution of the joint system under the constraint that the interactions in the sys-
tem satisfy the composability relation. Formally, the product operation returns
another component, whose set of events is the union of sets of events of its
operands, and its behavior is obtained by composing all pairs of TES s in the
behavior of its operands deemed composable by the composability relation.

Definition 2 (Product). Let Σ = (R,⊕) be an interaction signature, and
Ci = (Ei, Li), i ∈ {1, 2}, two components. The product of C1 and C2, under
Σ, denoted as C1 ×Σ C2, is the component (E,L) where E = E1 ∪ E2 and L is
defined by

L = {σ1 ⊕ σ2 | σ1 ∈ L1, σ2 ∈ L2, (σ1, σ2) ∈ R(E1, E2)}
While the behaviors of a component are streams, it is natural to consider

termination of a component. We express a terminating behavior of component
C = (E,L) as an element σ ∈ L such that there exists n ∈ N with σ(n) ∈ TES (∅).
In other words, a terminating behavior σ is such that, starting from the n-th
observation, all next observations are empty.

Given a component C, we define C∗ to be the component that may termi-
nate after every sequence of observables. Formally, C∗ is the component whose
behavior is the prefix closure of C, i.e., the component C∗ = (E,L∗), where

L∗ = L ∪ {τ | ∃n ∈ N.∃σ ∈ L. τ ∼n σ, τ (n) ∈ TES (∅)}
In [16], we give a co-inductive definition for some R and ⊕ given a compos-

ability relation on observations, and a composition function on observations.
Let κ(E1, E2) ⊆ (P(E1) × R+) × (P(E2) × R+) be a composability relation

on observations, and, for any R ⊆ TES (E1) × TES (E2), let Φκ(E1, E2)(R) ⊆
TES (E1) × TES (E2) be such that:

Φκ(E1, E2)(R) = {(τ1, τ2) | (τ1(0), τ2(0)) ∈ κ(E1, E2) ∧ (τ1, τ2)′ ∈ R)}

Runtime Composition of Systems of Interacting Cyber-Physical Components 147

The lifting of κ on TES s, written [κ], is the parametrized relation obtained by
taking the greatest post fixed point of the function Φκ(E1, E2) for arbitrary
pairs E1, E2 ⊆ E, i.e., the relation [κ](E1, E2) =

⋃
R⊆TES(E1)×TES(E2)

{R | R ⊆
Φκ(E1, E2)(R)}.

Two observations are synchronous if the two following conditions hold:

1. every observable that shares an event with the other component interface
must occur simultaneously with one of its related observables; and

2. only an observable that does not share events with the other component
interface can happen before another observable, i.e., at a strictly lower time.

Definition 3 (Synchronous observations). We define κsync as the synchro-
nous composability relation on observations and ((O1, t1), (O2, t2)) ∈
κsync(E1, E2) if and only if every shared event always occurs at the same time,
i.e., t1 < t2 implies O1 ∩ E2 = ∅, and t2 < t1 implies O2 ∩ E1 = ∅, and t2 = t1
implies O1 ∩ E2 = O2 ∩ E1;

Let
� be the product defined as
� = ×([κsync],∪). Intuitively,
� synchronizes
all observations that contain events shared by the interface of two components.
As a result of [16],
� is associative and commutative. Section 3.2 introduces a
motivating example in which robots, roaming on a shared physical medium, must
coordinate to sort themselves. We define algebraically the system consisting of 5
robots and a grid, to which we then add some coordinating protocol components.
For more details on each component, see [14].

3.2 Self-Sorting Robots

We consider the battery, robot, and grid components introduced in [14] in the
following interaction:

Sys(n, T1, . . . , Tn) = ⊗i∈{1,...,n}(R(i, Ti) ×ΣRiBi
Bi) ×ΣRG

Gμ({1, . . . , n}, n, 2)

where n is the number of robots R(i, Ti), each interacting with a private bat-
tery Bi under the interaction signatures ΣRiBi

, and in product with a grid G
under the interaction signature ΣRG. We use ⊗ for the product with the free
interaction signature (i.e., every pair of TESs is composable), and the notation
⊗i∈{1,...,n}{Ci} for C1 ⊗ . . . ⊗ Cn as ⊗ is commutative and associative.

We fix n = 5 and the same period T for each robot. We write E for the set of
events of the composite system Sys(5, T), and Ri for robot R(i, T) with identifier
i. Figure 1 in the introduction shows five robot instances, each of which has a
unique and distinct natural number assigned, positioned at an initial location
on a grid. The goal of the robots in this example is to move around on the grid
such that they end up in a final state where they line-up in the sorted order
according to their assigned numbers.

We consider trace properties P ⊆ TES (E) and say that C satisfies P if
and only if L ⊆ P , i.e., all the behavior of C is included in the property P .
For the system Sys(5 ,T), we consider the following property: eventually, the

148 B. Lion et al.

position of each robot Ri is (i, 0)Ri
, i.e., every robot successfully reaches its

place. This property is a trace property, which we call Psorted and consists of
every behavior σ ∈ TES (E) such that there exists an n ∈ N with σ(n) = (On, tn)
and (i, 0)Ri

∈ On for all robots Ri. In Sect. 3.3, we explore ways to enforce the
property Psorted on the system of robots, and in Sect. 5 verify its validity given
an operational specification for each robot given in Sect. 4.

3.3 Properties of Components and Coordination

Robots may beforehand decide on some strategies to swap and move on the grid
such that their composition satisfies the property Psorted . For instance, consider
the following strategy for each robot Ri:

– swapping : if the last read (x, y) of its location is such that x < n, then moves
North, then West, then South.

– pursuing : otherwise, move East.

Remember that the grid prevents two robots from moving to the same cell,
which is therefore removed from the observable behavior. We emphasize that
some sequences of moves for each robot may deadlock, and therefore are not part
of the component behavior of the system of robots, but may occur operationally
by constructing a behavior step-by-step (see Sect. 4.2). Consider Fig. 2, for which
each robot follows its internal strategy. Because of non-determinism introduced
by the timing of each observations, one may consider the following sequence
of observations: first, R1 moves North, then West; in the meantime, R2 moves
West, followed by R3, R4, and R5. By a similar sequence of moves, the set of
robots ends in the configuration on the right of Fig. 2. In this position and for
each robot, the next move dictated by its internal strategy is disallowed, which
corresponds to a deadlock. While behaviors do not contain finite sequences of
observations, which makes the scenario of Fig. 2 not expressible as a TES, such
scenario may occur in practice. We give in next Section some analysis to prevent
such behavior to happen.

Fig. 2. Initial state of the unsorted robot (left) leading to a possible deadlock (right)
if each robot follows its strategy.

Alternatively, the collection of robots may be coordinated by an external
protocol that guides their moves. Besides considering the robot and the grid
components, we add a third kind of component that acts as a coordinator. In
other words, we make the protocol used by the robots to interact explicit and
external to them and the grid; i.e., we assume exogenous coordination. Exoge-
nous coordination allows robots to decide a priori on some strategies to swap and

Runtime Composition of Systems of Interacting Cyber-Physical Components 149

move on the grid, in which case their external coordinator component merely
unconditionally facilitates their interactions. Alternatively, the external coordi-
nator component may implement a protocol that guides the moves of a set of
clueless robots into their destined final locations. The most intuitive of such
coordinators is the property itself as a component. Indeed, let Csorted = (E,L)
be such that E =

⋃
i∈I ERi

with I = {1, 2, 3, 4, 5} and L = Psorted . Then, and
as shown in [16], the coordinated component

Sys(5, T)
� Csorted

trivially satisfies the property Psorted . While easily specified, such coordination
component is non-deterministic and not easily implementable. We provide an
example of a deterministic coordinators.

As discussed, we want to implement the property Psorted as a collection of
small coordinators that swap the position of unsorted robots. Intuitively, this
protocol mimics the behavior of bubble sort, but for physical devices. Given
two robot identifiers R1 and R2, we introduce the swap component S(R1, R2)
that coordinates the two robots R1 and R2 to swap their positions. Its interface
ES(R1, R2) contains the following events:

– start(S(R1, R2)) and end(S(R1, R2)) that respectively notify the beginning
and the end of an interaction with R1 and R2. Those events are observed
when the swap protocol is starting or ending an interaction with either R1 or
with R2.

– (x, y)R1 and (x, y)R2 that occur when the protocol reads, respectively, the
position of robot R1 and robot R2,

– dR1 and dR2 for all d ∈ {N,W,E, S} that occur when the robots R1 and R2

move;
– lock(S(R1, R2)) and unlock(S(R1, R2)) that occur, respectively, when another

protocol begins and ends an interaction with either R1 and R2.

The behavior of a swapping protocol S(R1, R2) is such that it starts its protocol
sequence by an observable start(S(R1, R2)), then it moves R1 North, then R2

East, then R1 West and South. The protocol starts the sequence only if it reads
a position for R1 and R2 such that R1 is on the cell next to R2 on the x-axis.
Once the sequence of moves is complete, the protocol outputs the observable
end(S(R1, R2)). If the protocol is not swapping two robots, or is not locked,
then robots can freely read their positions.

Swapping protocols interact with each others by locking other protocols
that share the same robot identifiers. Therefore, if S(R1,R2) starts its proto-
col sequence, then S(R2, Ri) synchronizes with a locked event lock(S(R2, Ri)),
for 2 < i. Then, R2 cannot swap with other robots unless S(R1,R2) completes its
sequence, in which case end(S(R1, R2)) synchronizes with unlock(S(R2, Ri)) for
2 < i. We extend the underlying composability relation κ on observations such
that, for i < j, simultaneous observations (O1, t) and (O2, t) are composable,

150 B. Lion et al.

i.e., ((O1, t), (O2, t)) ∈ κ, if:

start(S(Ri, Rj)) ∈ O1 =⇒ ∃k.k < i.lock(S(Rk, Ri)) ∈ O2∨
∃k.j < k.lock(S(Rj , Rk)) ∈ O2

and

end(S(Ri, Rj)) ∈ O1 =⇒ ∃k < i.unlock(S(Rk, Ri)) ∈ O2∨
∃j < k.unlock(S(Rj , Rk)) ∈ O2

For each pair of robots Ri, Rj such that i < j, we introduce a swapping
protocol S(Ri, Rj). As a result, the coordinated system is given by the following:

Sys(5, T)
�i<j S(Ri, Rj)

Note that the definition of
� imposes that, if one protocol starts its sequence,
then all protocols that share some robot identifiers synchronize with a lock event.
Similar behavior occurs at the end of the sequence. See Example 2 for an oper-
ational specification of the robot, grid, and swap component.

4 An Operational Specification of Components

In Sect. 3.1, we give a declarative specification of components, and consider infi-
nite behaviors only. We give, in Sect. 4.1, an operational specification of com-
ponents using TES transition systems. We relate the parametrized product of
TES transition systems with the parametrized product on their corresponding
components, and show its correctness. The composition of two TES transition
systems may lead to transitions that are not composable, and ultimately to a
deadlock, i.e., a state with no outgoing transitions.

4.1 TES Transition Systems

The behavior of a component as in Definition 1 is a set of TESs. We give an
operational definition of such set using a labelled transition system.

Definition 4 (TES transition system). A TES transition system is a triple
(Q,E,→) where Q is a set of state identifiers, E is a set of events, and → ⊆
(Q×N) × (P(E) × R+) × (Q×N) is a labelled transition relation, where labels
on transitions are observations and a state is a pair of a state identifier and a

counter value, such that [q, c]
(O,t)−−−→ [q′, c′] implies that c′ ≥ c.

We use the notation θ([q, c]) to refer to the counter value c labeling the state.

Example 1 (Strictly progressing TES transition system). We call a TES transi-

tion systems strictly progressing if, for all transitions [q, c]
(O,t)−−−→ [q′, c′], we have

that c′ > c. An example of a TES transition system that is strictly progress-
ing is one for which the counter label increases by 1 for every transition, i.e.,

[q, c]
(O,t)−−−→ [q′, c + 1].

Runtime Composition of Systems of Interacting Cyber-Physical Components 151

Remark 1. The counter value labeling a state of a TES transition system is
related to the number of transitions a TES transition system has taken. The
counter value is therefore not related to the time of the observation labeling
the transition. However, it is possible for some transitions in the TES transition
system to keep the same counter value in the post state. As shown later, we
use the counter value to model fairness in the product of two TES transition
systems.

We present two different ways to give a semantics to a TES transition system:
inductive and co-inductive. Both definitions give the same behavior, as shown
in Theorem 1, and we use interchangeably each definition to simplify the proofs
of, e.g., Theorem 2.

Semantics 1 (Runs). A run of a TES transition system is an infinite sequence
of consecutive transitions, such that the sequence of observations labeling the
transitions form a TES, and the counter in the state is always eventually strictly
increasing. Formally, the set of runs Linf(T, s0) of a TES transition system T =
(Q,E,→) initially in state s0 is:

Linf(T, s0) = {τ ∈ TES (E) | ∃χ ∈ (Q × N)ω.χ(0) = s0∧∀i.χ(i)
τ(i)−−→ χ(i + 1)∧

∃j > 0. θ(χ(i + j)) > θ(χ(i))}
Note that the domain of quantification for Linf(T, s0) ranges over TESs, therefore
the time labeling observations is, by definition, strictly increasing and non-Zeno.
The component semantics of a TES transition system T = (Q,E,→) initially in
state q is the component C = (E,Linf(T, q)).

Semantics 2 (Greatest Post Fixed Point). Alternatively, the semantics of a
TES transition system is the greatest post fixed point of a function over sets
of TESs paired with a state. For a TES transition system T = (Q,E,→),
let R ⊆ TES (E) × (Q × N). We introduce φT : P(TES (E) × (Q × N)) →
P(TES (E) × (Q × N)) as the function:

φT (R) = {(τ, s) | ∃n.∃p ∈ (Q × N), s
τ [n]−−→ p ∧θ(p) > θ(s) ∧ (τ (n), p) ∈ R}

where τ [n] is the prefix of size n of the TES τ .
We can show that φT is monotone, and therefore φT has a greatest post fixed

point ΩT =
⋃{R | R ⊆ φT (R)}. We write ΩT (q) = {τ | (τ, s) ∈ ΩT } for any

s ∈ Q × N. Note that the two semantics coincide.

Theorem 1 (Equivalence). For all s ∈ Q×N, Linf(T, s) = {τ | (τ, s) ∈ ΩT }.
The semantics of a TES transition system is defined as the component whose

behavior contains all runs of the TES transition system. Operationally, however,
the (infinite) step-wise generation of such a sequence does not always return a
valid prefix of a run. We introduce finite sequences of observables of a TES tran-
sition system, and define a deadlock of a TES transition system as a reachable
state without an outgoing transition.

152 B. Lion et al.

Let T = (Q,E,→) be a TES transition system. We write q
u−→ p for

the sequence of transitions q
u(0)−−−→ q1

u(1)−−−→ q2 . . .
u(n−1)−−−−−→ p, where u =

〈u(0), . . . , u(n − 1)〉 ∈ (P(E) × R+)n. We write |u| for the size of the sequence
u. We use Lfin(T, q) to denote the set of finite sequences of observables labeling
a finite path in T starting from state q, such that

Lfin(T, s) = {u | ∃p.s
u−→ p ∧ ∀i < |u| − 1.u(i) = (Oi, ti) ∧ ti < ti+1}

Let FG(L) be the set of left factors of a set L ⊆ Σω, defined as FG(L) =
{σ[n] | n ∈ N, σ ∈ L}. We write σ(n) for the n-th derivative of σ, i.e., the stream
such that σ(n)(i) = σ(n + i) for all i ∈ N.

Remark 2 (Deadlock). Observe that FG(Linf(T, q)) ⊆ Lfin(T, q) which, in the
case of strict inclusion, captures the fact that some states may have no outgoing
transitions and therefore deadlock.

Remark 3 (Abstraction). There may be two different TES transition systems
T1 and T2 such that Linf(T1) = Linf(T2), i.e., a set of TESs is not uniquely
characterized by a TES transition system. In that sense, the TES representation
of behaviors is more abstract than TES transition systems.

We use the transition rule q
(O,t)−−−→ q′ where the counter is not written to denote

the set of transitions
[q, c]

(O,t)−−−→ [q′, c′]

for c′ ≥ c with c, c′ ∈ N.

Example 2. The behavior of a robot introduced earlier is a TES transition sys-

tem TR = ({q0}, ER,→) where q0
({e},t)−−−−→ q0 for arbitrary t in R+ and e ∈ ER.

Similarly, the behavior of a grid is a TES transition system TG(I, n,m) =
(QG, EG(I, n,m),→) where:

– QG ⊆ (I → ([0;n] × [0;m])),

– f
(O,t)−−−→ f ′ for arbitrary t in R+, such that

• dR ∈ O implies f ′(R) is updated according to the direction d if the
resulting position is within the bounds of the grid;

• (x, y)R ∈ O implies f(R) = (x, y)R and f ′(R) = f(R);
• f ′(R) = f(R), otherwise.

The behavior of a swap protocol S(Ri,Rj) with i < j is a TES transition
system TS(R1, R2) = (Q,E,→) where, for t1, t2, t3 ∈ R+ with t1 < t2 < t3:

– Q = {q1, q2, q3, q4, q5, q6};
– E = ERi

∪ ERj
∪ {lock(Ri, Rj), unlock(Ri, Rj), start(Ri, Rj), end(Ri, Rj)}

– q1
({lock(Ri,Rj)},t1)−−−−−−−−−−−−→ q2;

– q2
({unlock(Ri,Rj)},t1)−−−−−−−−−−−−−→ q1;

Runtime Composition of Systems of Interacting Cyber-Physical Components 153

– q1
({start(Ri,Rj),(x,y)Ri

,(x+1,y)Rj
},t1)−−−−−−−−−−−−−−−−−−−−−−−−→ q3;

– q3
({NRj

},t1)−−−−−−−→ q4
({WRj

,ERi
},t2)−−−−−−−−−−→ q5

({SRj
},t3)−−−−−−−→ q6;

– q6
({end(Ri,Rj)},t1)−−−−−−−−−−−→ q1;

We use the letters E, W , S, and N , for an observation of a robot moving in
the directions East, West, South, and North, respectively. �

The product of two components is parametrized by a composability relation
κ on observations and syntactically constructs the product of two TES transition
systems.

Definition 5 (Product). The product of two TES transition systems T1 =
(Q1, E1,→1) and T2 = (Q2, E2,→2) under the constraint κ is the TES transition
system T1 ×κ T2 = (Q1 × Q2, E1 ∪ E2,→) such that:

[qi, ci]
(Oi,ti)−−−−→i [q′

i, c
′
i] i ∈ {1, 2} ((O1, t1), (∅, t1)) ∈ κ(E1, E2) t1 < t2

[(q1, q2),min(c1, c2)]
(O1,t1)−−−−→ [(q′

1, q2),min(c′
1, c2)]

[qi, ci]
(Oi,ti)−−−−→i [q′

i, c
′
i] i ∈ {1, 2} ((∅, t2), (O2, t2)) ∈ κ(E1, E2) t2 < t1

[(q1, q2),min(c1, c2)]
(O2,t2)−−−−→ [(q′

1, q2),min(c1, c′
2)]

[qi, ci]
(Oi,ti)−−−−→i [q′

i, c
′
i] i ∈ {1, 2} ((O1, t1), (O2, t2)) ∈ κ(E1, E2) t2 = t1

[(q1, q2),min(c1, c2)]
(O1∪O2,t1)−−−−−−−→ [(q′

1, q
′
2),min(c′

1, c
′
2)]

Remark 4. The notion of an observation is an abstraction that groups an atomic
set of events within an ε neighborhood of a time t (see [16]). The statement that
two observations happen at the same time therefore becomes meaningful, and
describes two sets of events that occur atomically within an ε neighborhood of
the same time.

Observe that the product is defined on pairs of transitions, which implies that
if T1 or T2 has a state without outgoing transition, then the product has no outgo-
ing transitions from that state. The reciprocal is, however, not true in general. We
write CT1×κT2((s1, s2)) for the component CT1×κT2([(q1, q2),min(c1, c2)]) where
s1 = [q1, c1] and s2 = [q2, c2].

Theorem 2 states that the product of TES transition systems denotes (given
a state) the set of TESs that corresponds to the product of the corresponding
components (in their respective states). Then, the product that we define on
TES transition systems does not add nor remove behaviors with respect to the
product on their respective components.

Example 3. Consider two strictly progressing (as in Example 1) TES transition
systems T1 = (Q1, E1,→1) and T2 = (Q2, E2,→2). Then, consider a transition
in the product T1 ×κ T2 such that

[(q1, q2), c]
(O1,t1)−−−−→ [(q′

1, q2), c]

154 B. Lion et al.

we can deduce that T1 made a step while the counter c labelling the state didn’t
change. Therefore, T2 in state q2 has a counter labelling its state that is higher
than the counter labelling the state in q1. Alternatively, if

[(q1, q2), c]
(O1,t1)−−−−→ [(q′

1, q2), c + 1]

then the counter at q2 may become lower than the counter at which T1 performs
the next transition, which means that eventually T2 has to take a transition.

The composability relation κ in the product of two TES transition systems
(see Definition 5) accepts an independent step from T1 (resp. T2) if the obser-
vation labeling the step relates to the simultaneous silent observation from T2

(resp. T1). Given two composable TESs σ and τ respectively in the component
behavior of T1 and T2, the composability relation [κ] must relate heads of such
TESs co-inductively. As we do not enforce silent observations to be effective from
the product rules (1) and (2), we consider composability relations such that:

– if ((O1, t1), (∅, t1)) ∈ κ(E1, E2) then ((O1, t1), (O2, t2)) ∈ κ(E1, E2) for any
O2 ⊆ P(E2) and t2 > t1; and

– if ((∅, t2), (O2, t2)) ∈ κ(E1, E2) then ((O1, t1), (O2, t2)) ∈ κ(E1, E2) for any
O1 ⊆ P(E1) and t1 > t2

The two rules above encode that an observation from T1 is independent to T2

(i.e., ((O1, t1), (∅, t1)) ∈ κ(E1, E2) if and only if T1 and T2 can make observations
at difference times (i.e., ((O1, t1), (O2, t2)) ∈ κ(E1, E2) for arbitrary (O2, t2) from
T2 with t2 > t1.

Theorem 2 (Correctness). For two TES transition systems T1 and T2, and
for κ satisfying the constraint above:

CT1×κT2(s) = CT1(s1) ×([κ],[∪]) CT2(s2)

with s1 = [q1, c1] ∈ (Q1 × N), s2 = [q2, c2] ∈ (Q2 × N), and s =
[(q1, q2),min(c1, c2)].

Remark 5 (Fairness). Fairness, in our model, is the property that, in a product
of two TESs T1 ×κ T2, then always, eventually, T1 and T2 each makes progress.
The definition of the product of two TES transition systems defines the counter
value of the composite state as the minimal counter value from the two compound
states. The semantic condition that considers runs with counter values that
are always eventually increasing is sufficient for having T1 and T2 to always
eventually take a step, as shown in Theorem 2.

Remark 6. Note that the generality of Theorem 2 comes from the parametrized
composability relation κ. Thus, for instance, the synchronous product of I/O
automata can be expressed by a suitable composability relation κ that synchro-
nizes the occurrence of shared inputs and outputs for parallel composition or
conjunction (see [7]).

Runtime Composition of Systems of Interacting Cyber-Physical Components 155

We give in Example 4 the TES transition systems resulting from the product
of the TES transition systems of two robots and a grid. Example 4 defines
operationally the components in Sect. 2.2, i.e., their behavior is generated by a
TES transition system.

Example 4. Let TR1 , TR2 be two TES transition systems for robots R1 and R2,
and let TG({1}, n,m) be a grid with robot R1 alone and TG({1, 2}, n,m) be a
grid with robots R1 and R2. We use κsync as defined in Definition 3.

The product of TR1 , TR2 , and TG({1, 2}, n,m) under κsync is the TES transi-
tion system TR1 ×κsync TR2 ×κsync TG({1, 2}, n,m) such that it synchronizes obser-
vations of the two robots with the grid, but does not synchronize events of the
two robots directly, since the two sets of events are disjoint. �

As a consequence of Theorem 1, letting κsync be the composability relation
used in the product
� and writing T = TR1 ×κsync TR2 ×κsync TG, CT (q1, q2, q3)
is equal to the component CTR1

(q1)
� CTR2
(q2)
� CTG

(q3).

Definition 6. Let T be a TES transition system, and let CT (q) = (E,Linf(T, q))
be a component whose behavior is defined by T . Then, C is deadlock free if and
only if FG(Linf(T, q)) = Lfin(T, q) 	= ∅. As a consequence, we also say that (T, q)
is deadlock free when CT (q) is deadlock free.

A class of deadlock free components is that of components that accept arbi-
trary insertions of ∅ observables in between two observations. We say that such
component is prefix-closed, as every sequence of finite observations can be con-
tinued by an infinite sequence of empty observables, i.e., C is such that C = C∗

(as defined after Definition 5). We say that a TES transition system T is prefix-
closed in state s if and only if CT (s) = C∗

T (s). For instance, if T is such that,

for any state s and for any t ∈ R+ there is a transition s
(∅,t)−−−→ s, then T is

prefix-closed.

Lemma 1. If T1 and T2 are prefix-closed in s1 and s2 respectively, then T1×κsync

T2((s1, s2)) is prefix-closed.

We search for the condition under which deadlock freedom is preserved under
a product. Section 3.3 gives a condition for the product of two deadlock free
components to be deadlock free.

4.2 Compatibility of TES Transition Systems

Informally, the condition of κ-compatibility of two TES transition systems T1

and T2, respectively in initial state s01 and s02, describes the existence of a
relation R on pairs of states of T1 and T2 such that:

– (s01, s02) ∈ R, and
– for every state (s1, s2) ∈ R, there exists an outgoing transition from T1 (recip-

rocally T2) that composes under κ with an outgoing transition of T2 (respec-
tively T1) and the resulting pair of states is in the relation R.

156 B. Lion et al.

Formally, a TES transition system T1 = (Q1, E1,→1) from state s01 is κ-
compatible with a TES transition system T2 = (Q2, E2,→2) from state s02, and
we say (T1, s01) is κ-compatible with (T2, s02) if there exists a relation R ⊆
(Q1 × N) × (Q2 × N) such that (s01, s02) ∈ R and for any (s1, s2) ∈ R,

– there exist s1
(O1,t1)−−−−→1 s′

1 and s2
(O2,t2)−−−−→2 s′

2 such that ((O1, t1), (O2, t2)) ∈
κ(E1, E2); and

– for all s1
(O1,t1)−−−−→1 s′

1 and s2
(O2,t2)−−−−→2 s′

2 if ((O1, t1), (O2, t2)) ∈ κ(E1, E2)
then (u1, u2) ∈ R, where ui = si if ti = min{t1, t2}, and ui = s′

i otherwise for
i ∈ {1, 2}.

In other words, if (T1, s1) is κ-compatible with (T2, s2), then there exists
a composable pair of transitions in T1 and T2 from each pair of states in R
(first item of the definition), and all pairs of transitions in T1 composable with
a transition in T2 from a state in R end in a pair of states related by R. If
(T2, s2) is κ-compatible to (T1, s1) as well, then we say that (T1, s1) and (T2, s2)
are κ-compatible.

Theorem 3 (Deadlock free). Let (T1, s1) and (T2, s2) be κ-compatible. Let
CT1(s1) and CT2(s2) be deadlock free, as defined in Definition 6. Then,
CT1(s1) ×([κ],[∪]) CT2(s2) is deadlock free.

In general however, κ-compatibility is not preserved over products, as demon-
strated by Example 5. For the case of coordinated cyber-physical systems, com-
ponents are usually not prefix-closed as there might be some timing constraints
or some mandatory actions to perform in a bounded time frame.

Example 5. Suppose three TES transition systems Ti = ({qi}, {a, b, c, d},→i),
with i ∈ {1, 2, 3}, defined as follows for all n ∈ N:

– q1
({a,b},n)−−−−−−→1 q1 and q1

({a,c},n)−−−−−−→1 q1;

– q2
({a,c},n)−−−−−−→2 q2 and q2

({a,d},n)−−−−−−→2 q2;

– q3
({a,d},n)−−−−−−→3 q3 and q3

({a,b},n)−−−−−−→3 q3.

The TES transition systems T1(q1), T2(q2), and T3(q3) are pairwise κsync-
compatible because each pair-wise product has an outgoing transition with an infi-
nite run. However, T1(q1) is not κsync-compatible with T2(q2)×κsync T3(q3) because
no transition can synchronize between all three TES transition systems. �

Lemma 2. Let ×κ be commutative and associative, and for arbitrary E1, E2 ∈
E, and t ∈ R+, let ((∅, t), (∅, t)) ∈ κ(E1, E2). Moreover, let S be a set of TES
transition systems, such that for T ∈ S and every state [q, n] in T , we have

[q, n]
(∅,t)−−−→ [q, n]. For S = S1 � S2 a partition of S, ×κ{T}T∈S1 and ×κ{T}T∈S2

are κ-compatible and the component C×κ{T}T ∈S
is deadlock free.

The consequence of two TES transition systems T1 and T2 being κ-compatible
on (s1, s2) and deadlock free, is that they can be run step-by-step from (s1, s2)

Runtime Composition of Systems of Interacting Cyber-Physical Components 157

and ensure that doing so would not generate a sequence of observations that is
not a prefix of an infinite run. However, there is still an obligation for the step-
by-step execution to produce a run that is in the behavior of the product, i.e.,
to perform a step-by-step product at runtime. Indeed, the resulting sequence of
states must always increase the counter value, which means that the selection
of a step must be fair (as introduced in Remark 5). We show in Example 6
an example for which an infinite sequence of transitions in the product (e.g.,
produced by a step-by-step implementation of the product) would not yield a
run, due to fairness violation.

Example 6. Let T1 = ({q1}, {a},→1) and T2 = ({q2}, {b},→2) be two TES

transition systems such that: [q1, c]
({a},t)−−−−→1 [q1, c + 1] and [q2, c]

({b},t)−−−−→2 [q2, c +
1]for all t ∈ R+ and all c ∈ N. Let κ be such that (({a}, t), (∅, t)) ∈ κ({a}, {b})
and ((∅, t), ({b}, t)) ∈ κ({a}, {b}). Then, the product T1 ×κ T2 has the composite

transitions [(q1, q2), c]
({a},t)−−−−→ [(q1, q2), c] and [(q1, q2), c]

({b},t)−−−−→ [(q1, q′
2), c] for

all c ∈ N and t ∈ R+.

The product, therefore has runs of the kind [(q1, q2), c]
({a},ti)−−−−−→ [(q′

1, q2), c] where
for all i ∈ N, ci + 1 = ci+1 and ti < ti+1 (increasing) and there exists j ∈ N

with i < tj (non-Zeno). Thus, this run does only transitions from T1 and none
from T2: there is a step for which the counter c does not increase anymore. One
reason is that rule (1) of the product is always chosen. Instead, by imposing that
we always eventually take rule (3), we ensure that the step-by-step product is
fair.

We consider a class of TES transition systems for which a step-by-step imple-
mentation of their product is fair, i.e., always eventually the counter of the com-
posite state increases. More particularly, we consider TES transition systems
that always eventually require synchronization. Therefore, the product always
eventually performs rule (3), and the runs are consequently fair. Such property is
a composite property, that can be obtained compositionally by imposing a trace
property on a TES transition system, such as: for every trace, there is always
eventually a state for which all outgoing transitions must synchronize with an
observation from the other TES transition system.

Remark 7. In the actor model, fairness is usually defined as an individual prop-
erty: always eventually an action that is enabled (such as reading a message in a
queue) will be performed. This notion of fairness differs from the one we intro-
duced for TES transition systems. In our model, fairness formalizes a collective
property, namely that each component always eventually progresses to yield an
observation.

Definition 7 (k-synchronizing). Two TES transition systems T1 and T2 are
k-synchronizing under κ if every sequences of k transitions in the product T1 ×κ

T2 contains at least one transition constructed by rule (3) of the product in
Definition 5.

158 B. Lion et al.

Lemma 3. Let T1 and T2 be two k-synchronizing TES transition systems. Then,
a step-by-step execution of the product T1 ×κ T2 is fair, namely, every finite
sequence of transitions is a prefix of an infinite run in the product behavior, i.e.,
FG(Linf(T1 ×κ T2, q)) = Lfin(T1 ×κ T2, q).

Remark 8. The step-by-step implementation of the product is sound if TES
transition systems always eventually synchronize on a transition. Definition 7
and Lemma 3 show that if two TES transition systems are k-synchronizing,
then their product can be formed lazily, step-by-step, at runtime.

5 Application: Self-Sorting Robots

We implemented in Maude a framework to simulate concurrent executions of
TES transition systems, where time stamps are restricted to natural numbers.
Using the description given in Example 2 for the grid and for robots, we add to
their composition several protocols that aim at preventing deadlock. The source
for the implementation is accessible at [1] to reproduce the results of this section.

Components in Maude. The implementation of TES transition systems in Maude
focuses on a subset that has some properties. First, TES transition systems in
Maude have time stamps that range over the set of positive natural numbers N.
We do not implement components with real time.

Second, TES transition systems run at a fixed sampling rate. Let T be the
sampling period. This property encodes that, between two transitions in the
TES transition system, a fixed time duration of T has passed. A TES transition
system may allow for arbitrary delay of its transitions by a fixed multiple k of
delay T . In which case, we say that the TES transition system is delay insensitive.

Formally, for every q
(O,n)−−−→ p of a delay insensitive TES transition system with

period T , we have n = k ·T for some k ∈ N. We therefore write q
O−→ p to denote

the set of transitions q
(O,k·T)−−−−−→ p for all n ∈ N.

In Maude, the state of a TES transition system component is represented by
a term and the state of a composed system is a multiset of component states.
Transitions of the step-wise product are defined in terms of such system states.
For instance, the swap protocol between robots R(3) and R(1) is the defined in
Maude as:

[swap(R(3),R(1)): Protocol | k("s") |-> ds(q(0)); false; mt]

where swap(R(3),R(1)) is the name of the component; Protocol is its class;
k("s") maps to the initial state of the protocol q(0); "false" denotes the status
of the protocol; and "mt" is the set of transitions that the protocol may take.

Runtime Composition. The product of TES transition systems is constructed at
runtime, step by step. We use κsync for the product of TES transition systems.

Given a list of initialized TES transition system, the runtime computes the
set of all possible composite transitions, from which transitions that violate the

Runtime Composition of Systems of Interacting Cyber-Physical Components 159

Algorithm 1. Runtime composition

Require:
- n initialized TES transition systems S = {T1(q1), . . . , Tn(qn)}

1: procedure RuntimeComposition

2: for Ti(qi) ∈ S do add {qi
Oi−−→i pi | pi ∈ Qi} to Tr

3: while trsi, trsj ∈ Tr do

4: for qi
Oi−−→ pi ∈ trsi and qj

Oj−−→ pj ∈ trsj do
5: if ((Oi, 1), (Oj , 2)) ∈ κsync(Ei, Ej) then

6: add (qi, qj)
Oi−−→ (pi, qj) to trsij

7: if ((Oi, 2), (Oj , 1)) ∈ κsync(Ei, Ej) then

8: add (qi, qj)
Oj−−→ (qi, pj) to trsij

9: if ((Oi, 1), (Oj , 1)) ∈ κsync(Ei, Ej) then

10: add (qi, qj)
Oi∪Oj−−−−→ (pi, pj) to trsij

11: Tr := (Tr \ {trsi, trsi}) ∪ {trsij}
12: let trs ∈ Tr
13: let (q1, . . . , qn)

O−→ (r1, . . . , rn) ∈ trs
14: for i ≤ n do Ti(qi) ⇒ Ti(ri)

composability relation κsync are filtered out, and one transition that is compos-
able is non-deterministically chosen.

Algorithm 1 shows the procedure RuntimeComposition that corresponds
to a one step product of the input TES transition systems. Note that such
procedure applied recursively on its results would generate a behavior that is in
behavior of the product of the TES transition systems.

Results. Initially, the system consists of three robots, with identifiers R(0),
R(1), and R(2), each coordinated by two protocols swap(R(i),R(j)) with
i, j ∈ {0, 1, 2} and j < i. The trolls move on a grid and trolls R(0), R(1),
and R(2) are respectively initialized at position (2; 0), (1; 0), and (0; 0).1 The
property Psorted is a reachability property on the state of the grid, that states
that eventually, all robots are in the sorted position. In Maude, given a sys-
tem of 3 robots, we express such reachability property with the following search
command:

search [1] init =>*

[sys::Sys [field : Field | k((0;0)) |-> d(R(0)),

k((1;0)) |-> d(R(1)),

k((2;0)) |-> d(R(2)) ; true ; mt]] .

The initial configuration of the grid is such that robot 0 is on location (2; 0),
robot 1 on (1; 0), and robot 2 on (0; 0). Since the grid is of size 3 by 2, robots need
to coordinate to reach the desired sorted configuration. The search commands
search for a final state where the robots are sorted.

1 We refer to [6] for a more detailed description of the Maude framework.

160 B. Lion et al.

Table 1 features three variations on the sorting problem. The first system
is composed of robots whose moves are free on the grid. The second adds one
battery for each component, whose energy level decreases for each robot move.
The third system adds a swap protocol for every pair of two robots. The last
system adds a protocol and batteries to compose with the robots.

We record, for each of those systems, whether the sorted configuration is
reachable (Psorted), and if all three robots can run out of energy (Pbat).

Table 1. Evaluation of different systems for the Psorted and Pbat behavioral properties,
where st. stands for states, rw for rewrites. Note that the Pbat property is not evaluated
when the system does not contain battery components.

System Psorted Pbat

��
0≤i≤2

Ri �� G 12.103 st., 25s, 31.106 rw

��
0≤i≤2

(Ri �� Bi) �� G 12.103 st., 25s, 31.106 rw true

��
0≤i≤2

Ri �� G ��
0≤i<j≤2

S(Ri, Rj) 8250 st., 44s, 80.106 rw

��
0≤i≤2

(Ri �� Bi) �� G ��
0≤i<j≤2

S(Ri, Rj) 8250 st., 71s, 83.106 rw false

Observe that the reachability query returns a solution for both system: the
one with and without protocols. However, the time to reach the first solution
increases as the number of transition increases (adding the protocol components).
We leave as future work some optimizations to improve on our results.

6 Conclusion

We introduce a transition system based specification of cyber-physical systems
whose semantics is compositional with respect to a family of algebraic products.
We give sufficient conditions for execution of a product to be correctly imple-
mented by a lazy expansion of the product construction. We proved, using an
implementation of our framework in Maude, a set of autonomous robots that
move on a grid, coordinated by a local swapping protocol, satisfy the emergent
property of ending in sorted position.

This work is a first step towards a finite characterization of component behav-
iors. We give in [15] a specification of TES transition systems as rewriting agents,
and explore other case studies for showing safety properties of cyber-physical
systems. As a future work, the extension of the framework with real time can
open reasoning about optimal frequencies at which robots can interact to fulfill
a coordination pattern.

Acknowledgement. Talcott was partially supported by the U. S. Office of Naval
Research under award numbers N00014-15-1-2202 and N00014-20-1-2644, and NRL
grant N0017317-1-G002. Arbab was partially supported by the U. S. Office of Naval

Runtime Composition of Systems of Interacting Cyber-Physical Components 161

Research under award number N00014-20-1-2644. We thank the reviewers for their
critical comments and their helpful suggestions.

References

1. https://scm.cwi.nl/CSY/cp-agent
2. Arbab, F., Rutten, J.J.M.M.: A coinductive calculus of component connectors. In:

Wirsing, M., Pattinson, D., Hennicker, R. (eds.) WADT 2002. LNCS, vol. 2755,
pp. 34–55. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-40020-
2 2. ISBN 978-3-540-20537-1

3. Baeten, J.C.M., Middelburg, C.A.: Real time process algebra with time-dependent
conditions. J. Log. Algebraic Methods Program. 48(12), 1–38 (2001). https://doi.
org/10.1016/S1567-8326(01)00004-2

4. Baier, C., et al.: Modeling component connectors in Reo by constraint automata.
Sci. Comput. Program. 61(2), 75–113 (2006). https://doi.org/10.1016/j.scico.2005.
10.008. ISSN 0167–6423

5. Bergstra, J.A., Klop, J.W.: Process algebra for synchronous communication. Inf.
Control 60(1), 109–137 (1984). https://doi.org/10.1016/S0019-9958(84)80025-X.
ISSN 0019–9958

6. Clavel, M., et al.: All About Maude - A High-Performance Logical Framework.
LNCS, vol. 4350. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-
71999-1

7. David, A., et al.: Timed I/O automata: a complete specification theory for real-
time systems. In: Johansson, K.H., Yi, W. (eds.) Proceedings of the 13th ACM
International Conference on Hybrid Systems: Computation and Control, HSCC
2010, Stockholm, Sweden, 12–15 April 2010, pp. 91–100. ACM (2010). https://doi.
org/10.1145/1755952.1755967

8. José Luiz Fiadeiro and Antónia Lopes: Heterogeneous and asynchronous networks
of timed systems. Theor. Comput. Sci. 663, 1–33 (2017). https://doi.org/10.1016/
j.tcs.2016.12.014

9. Fokkink, W.J.: Introduction to Process Algebra. Texts in Theoretical Computer
Science. An EATCS Series. Springer, Heidelberg (2000). https://doi.org/10.1007/
978-3-662-04293-9. ISBN 978-3-540- 66579-3

10. van Hulst, A.C., Reniers, M.A., Fokkink, W.J.: Maximally permissive controlled
system synthesis for non-determinism and modal logic. Disc. Event Dyn. Syst.
27(1), 109–142 (2016). https://doi.org/10.1007/s10626-016-0231-8

11. Kappé, T., et al.: Soft component automata: composition, compilation, logic, and
verification. Sci. Comput. Program. 183, 102300 (2019). https://doi.org/10.1016/
j.scico.2019.08.001

12. Kokash, N., Jaghoori, M.M., Arbab, F.: From timed reo networks to networks of
timed automata. Electron. Notes Theor. Comput. Sci. 295, 11–29 (2013). https://
doi.org/10.1016/j.entcs.2013.04.004. ISSN 1571–0661

13. Lafortune, S.: Discrete event systems: modeling, observation, and control. In:
Annual Review of Control, Robotics, and Autonomous Systems, vol. 2, no. 1, pp.
141–159 (2019). https://doi.org/10.1146/annurev-control-053018-023659

14. Lion, B., Arbab, F., Talcott, C.: Runtime composition of systems of interacting
cyber-physical components (2022)

https://scm.cwi.nl/CSY/cp-agent
https://doi.org/10.1007/978-3-540-40020-2_2
https://doi.org/10.1007/978-3-540-40020-2_2
https://doi.org/10.1016/S1567-8326(01)00004-2
https://doi.org/10.1016/S1567-8326(01)00004-2
https://doi.org/10.1016/j.scico.2005.10.008
https://doi.org/10.1016/j.scico.2005.10.008
https://doi.org/10.1016/S0019-9958(84)80025-X
https://doi.org/10.1007/978-3-540-71999-1
https://doi.org/10.1007/978-3-540-71999-1
https://doi.org/10.1145/1755952.1755967
https://doi.org/10.1145/1755952.1755967
https://doi.org/10.1016/j.tcs.2016.12.014
https://doi.org/10.1016/j.tcs.2016.12.014
https://doi.org/10.1007/978-3-662-04293-9
https://doi.org/10.1007/978-3-662-04293-9
https://doi.org/10.1007/s10626-016-0231-8
https://doi.org/10.1016/j.scico.2019.08.001
https://doi.org/10.1016/j.scico.2019.08.001
https://doi.org/10.1016/j.entcs.2013.04.004
https://doi.org/10.1016/j.entcs.2013.04.004
https://doi.org/10.1146/annurev-control-053018-023659

162 B. Lion et al.

15. Lion, B., Arbab, F., Talcott, C.L.: A rewriting framework for interacting cyber-
physical agents. In: Margaria, T., Steffen, B (eds.) Leveraging Applications of For-
mal Methods, Verification and Validation. Adaptation and Learning - 11th Interna-
tional Symposium, ISoLA 2022, Rhodes, Greece, 22–30 October 2022, Proceedings,
Part III. Lecture Notes in Computer Science, vol. 13703, pp. 356–375. Springer,
Heidelberg (2022). https://doi.org/10.1007/978-3-031-19759-8 22

16. Lion, B., Arbab, F., Talcott, C.L.: A semantic model for interacting cyber-physical
systems. In: Lange, J., et al. (eds.) Proceedings 14th Interaction and Concurrency
Experience, ICE 2021, Online, 18 June 2021, vol. 347, pp. 77–95. EPTCS (2021).
https://doi.org/10.4204/EPTCS.347.5

17. Mohajerani, S., Malik, R., Fabian, M.: A framework for compositional nonblocking
verification of extended finite-state machines. Disc. Event Dyn. Syst. 26(1), 33–84
(2016). https://doi.org/10.1007/s10626-y015-0217-y

18. Sampath, M., Lafortune, S., Teneketzis, D.: Active diagnosis of discrete-event sys-
tems. IEEE Trans. Autom. Control 43(7), 908–929 (1998). https://doi.org/10.
1109/9.701089

19. Talcott, C.: Cyber-physical systems and events. In: Wirsing, M., Banâtre, J.-P.,
Hölzl, M., Rauschmayer, A. (eds.) Software-Intensive Systems and New Computing
Paradigms. LNCS, vol. 5380, pp. 101–115. Springer, Heidelberg (2008). https://
doi.org/10.1007/978-3-540-89437-7 6

https://doi.org/10.1007/978-3-031-19759-8_22
https://doi.org/10.4204/EPTCS.347.5
https://doi.org/10.1007/s10626-y015-0217-y
https://doi.org/10.1109/9.701089
https://doi.org/10.1109/9.701089
https://doi.org/10.1007/978-3-540-89437-7_6
https://doi.org/10.1007/978-3-540-89437-7_6

SpeX: A Rewriting-Based Formal
Specification Environment

Ionuţ Ţuţu(B)

Simion Stoilow Institute of Mathematics of the Romanian Academy,
Bucharest, Romania

ittutu@gmail.com, ionut.tutu@imar.ro

Abstract. This is a gentle introduction to SpeX, a rewriting-based
logical environment and executable framework implemented in Maude
that facilitates the experimental development of formal specification lan-
guages and tools. The environment is language agnostic, so it is not
geared towards any particular syntax, semantics, or supporting tech-
nology; instead, it provides a rich collection of libraries that assist the
continuous integration of parsers and information processors. We outline
the general architecture of SpeX, discuss its operational semantics, and
illustrate the steps necessary in order to integrate new languages.

Keywords: Logical environment · Formal specification · Experimental
development · Conditional rewriting · Maude implementation

1 Introduction

The development of new formal specification languages is often a necessary yet
challenging, even arduous, task. Declarative logical frameworks, such as lf [7],
mmt [11], and rl [9], facilitate this process by means of highly expressive meta-
languages and tools through which a wide array of logical systems and calculi
can be represented and reasoned about. This representational approach makes
it easy to provide generic tool support for newly developed formalisms, but it
requires both language developers and end users to be familiar with the logical
framework of choice. On the other hand, systems such as the K framework [12]
(which deals primarily with the design and analysis of programming languages)
and Hets [10] (the Heterogeneous Tool Set, which provides an integrating frame-
work of multiple logical systems, together with proof tools and logic translations)
feature a clear separation between the meta-language utilized by system devel-
opers and the specification language and tools offered to end users.

In this work, we explore a similar route to that of K and Hets in order
to develop a rewriting-based environment, called SpeX, for working with for-
mal specifications. This includes, for example, tool support for parsing and for

This work was supported by a grant of the Romanian Ministry of Education and
Research, CCCDI – UEFISCDI, project number PN-III-P2-2.1-PED-2019-0955, within
PNCDI III.
c© Springer Nature Switzerland AG 2023
A. Madeira and M. A. Martins (Eds.): WADT 2022, LNCS 13710, pp. 163–178, 2023.
https://doi.org/10.1007/978-3-031-43345-0_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-43345-0_8&domain=pdf
https://doi.org/10.1007/978-3-031-43345-0_8

164 I. Ţuţu

analysing specifications, as well as automatically generated interpreters. How-
ever, unlike K, the environment we propose targets specification languages and is
inherently heterogeneous; and unlike Hets, for which specifications are built over
logical systems formalized as institutions [5] by means of a fixed set of structur-
ing constructs [13], SpeX admits a much weaker notion of ‘language’, enabling
us to capture, for instance, comorphisms of structured institutions [15] where
the structuring mechanisms can change as well along language translations.

Despite these small advancements, the basic functionality of SpeX is modest
compared to any of the tools and frameworks mentioned above. Its main asset is
the environment’s potential to be easily extended in order to accommodate new
specification languages or features, many of which may be experimental. That
is, the purpose of SpeX is distinctly academic, aiming to help bridge the gap
between the theory and practice of formal specification and verification by pro-
viding researchers in the area with an environment that encourages prototyping
and testing ideas and techniques even from early stages of development. To that
end, we introduce a suite of software libraries, all implemented in Maude [2],
that support the integration of new formal specification languages.

From an architectural standpoint, SpeX consists of a small supervisory kernel
that manages input/output operations and, most importantly, hosts a number
of information processors – one for each specification language that is integrated
into the environment. Some processors are concrete, pertaining to a given logical
system (say, equational or first-order logic), while others are generic, allowing
various combinations of specification-building operators to be defined on top of
base logical systems that meet certain requirements. Therefore, for any instance
of SpeX, the capabilities of the environment are dictated by the processors and
corresponding languages it hosts. At most one of those processors can actively
take part in a user interaction at a given time, and the active processor may
change as a result of that interaction, hence SpeX may react differently (even to
the same input) depending on which processor is currently selected.

To illustrate the general approach and the steps needed in order to extend
the environment, we consider two kinds of languages. The first one is a sim-
ple, understated language used for numerical calculations; this enables us to
swiftly go through some of the details of implementing parsers and processors
without having to invest much time in defining and understanding the actual
language. The second one is a new, far more complex language based on hid-
den algebra [6] that allows for the specification of hierarchical compositions of
behavioural objects [3]; we use this example to show that the SpeX primitives
employed in language integration are sufficiently powerful and flexible to support
the development of full-blown modern algebraic-specification formalisms.

The paper is structured as follows: in Sect. 2, we discuss the architecture of
SpeX and introduce the main Maude libraries on which the environment is based;
Sect. 3 is devoted to the execution of SpeX, which is approached from a different
angle, as a distributed system comprising interacting streams, a core interpreter,
and processors; in Sect. 4, we discuss the tool’s object-based implementation via
term rewriting; Sect. 5 shows the process through which new languages can be

SpeX: A Rewriting-Based Formal Specification Environment 165

integrated into the environment; and, lastly, in Sect. 6, we briefly demonstrate
more advanced parsing and processing capabilities.

2 System Overview

Figure 1 gives a cursory look at the architecture of SpeX. The environment is
defined by a collection of interwoven Maude libraries. Some of them are common
libraries (abbreviated cl in the diagrammatic representation), which provide
extensive support for working with basic data types such as lists, sets, associative
arrays, as well as numbers, strings, identifiers, syntax trees, configurations, and
so on. Common libraries are often used as a base when integrating language
processors. All major components of SpeX rely on them.

Fig. 1. A bird’s-eye view of SpeX

Next, there is repl, a library that defines the command-line top level of the
SpeX interpreter by means of read-eval-print loops (reminiscent of the classic
interactive environments used in implementations of Lisp). Each input stream
– linked, e.g., to the standard input inherited from a Unix shell or to a file – is
seamlessly handled through such a loop: during each iteration, a text fragment is
automatically read and tokenized into identifiers; the resulting sequence is sent

166 I. Ţuţu

to the interpreter to be evaluated; once completed, the evaluation yields another
sequence of identifiers, which is written to the standard output stream.

The main feature of repl is that it sets apart the evaluation step – which is
language and input dependent – from the management of input/output streams
and the reading and printing of identifiers. The former requires a foreign com-
ponent to perform the evaluation, whereas the latter is ready-made and fully
implemented within read-eval-print loops. Hence, interpreters using the repl
library, such as SpeX, need only focus on the evaluation part.

The library sap provides support for grammar-based syntactic analysis and
printing, thus extending the reading and printing capabilities of repl from iden-
tifiers to syntax trees. By syntactic analysis, or parsing, we mean the process of
inferring the structure of a plain text according to the rules of some pre-defined
formal grammar (defined by language developers). This may also include tests
to ensure that the input conforms to certain language-specific constraints – e.g.,
that all non-logical symbols used in a sentence are properly declared beforehand.
Parsing yields three kinds of outcomes: it may be successful, producing a syntax
tree that can be further dealt with by the interpreter; it may deem the input
incomplete, calling for more text to be read before drawing a conclusion; or it
may fail, in which case it provides an appropriate error message indicating why
the text cannot be parsed. The printing facilities of sap provide the means to
flatten a syntax tree back to a sequence of identifiers/symbols. This may also
be used as a form of pretty-printing according to the formatting guidelines of a
given grammar, which depends on the language under consideration.

All language processors integrated into the SpeX environment have access to
a shared database (depicted in the lower part of the diagrammatic representa-
tion in Fig. 1) where they can publish data that may be of use to other proces-
sors. This aspect is particularly advantageous in the context of heterogeneous
specification frameworks, as it allows specification modules to be reused across
languages. Similarly to parsing and processing, the nature of the shared data is
language dependent; for example, it may include collections of named specifica-
tion modules that could be retrieved afterwards by processors and imported in
other specifications that may be written in a different language. SpeX stores a
user-defined database record for every language it supports, and continuously
updates that record upon each input-processing step. In practice, the SpeX
database is hierarchical: each of its records is identified by a language name and
stores language-specific shared data, which, as hinted above, is typically given
by a database-like structure as well, mapping specification names to modules.
As a general rule, processors can make use of any shared data (of any supported
language), but the updates are limited to their own database records.

The knowledge base is the dominant and largest architectural component
of SpeX. It acts as an ever-expanding repository of language-specific text

SpeX: A Rewriting-Based Formal Specification Environment 167

processors. Some of those processors, such as Calc, which we discuss in Sect. 5 of
this paper, are monolithic; they are adapted to a specific flat (i.e., unstructured)
language and are independent of any other processor integrated into the environ-
ment. This is the simplest kind of language processor that one can define in SpeX.
Others are parameterized. For example, in Fig. 1, we indicate by Th[L] a family
of processors that deal with theory presentations over an arbitrary base language
L: say, a textbook language such as propositional logic (denoted PL) or first-order
logic (FOL); or more advanced, experimental languages such as the modal logic
of dynamic networks of interactions (DNI), which was recently proposed in [17]
for modelling system reconfigurations; each of these base languages is handled
by a separate SpeX processor, distinct from Th[L]. Furthermore, one can also
develop heterogeneous processors. That is the case of COMP, which accommo-
dates hierarchical compositions of behavioural objects [3] and integrates both
many-sorted (MSA) and hidden (HA) algebraic specification modules.

Lastly, the SpeX supervisor, depicted in the right-hand side of the diagram in
Fig. 1, brings together the functionalities of all other architectural components
(particularly those of the knowledge base), manages the execution of language
processors, and provides a simple command-line interface for interacting with
the environment. In essence, through plain lines of text, which may be typed
directly at the command line or loaded from a file, users can select a language
(e.g., Calc or Th[PL]), then process any subsequent input (unless they switch to
a different language at some point) according to the definition of that language.

3 Object Interactions

From an operational perspective, SpeX can be seen as a distributed system con-
sisting of several different kinds of entities: read-eval-print loops (one for each
input source), a homonymous core interpreter, text processors (one for each
language integrated into the environment) and, potentially, sub-processors (in
case of parametric or heterogeneous languages, for example). In typical object-
oriented fashion, we model such entities as objects and we use messages to for-
malize the medium through which entities exchange information.

The sequence diagram in Fig. 2 traces some of the most important object
interactions that occur during an execution of the tool. The protagonists, listed
at the top of the diagram, are: O, a read-eval-print loop; SpeX, the core inter-
preter; and $[L], the text processor that is meant to handle input for a selected
language L. They operate in parallel; each has its own lifeline scattered with
coloured activation bars used to show that the object is engaged in a specific
activity. The process flow is suggested through arrows drawn between activation
bars and labelled with messages. We use solid arrows for standard (synchronous)
messages and dashed arrows for those messages that should be considered replies.

168 I. Ţuţu

Fig. 2. Interactions between the main entities of the SpeX environment

The object O wraps both input and output streams. Unless the user termi-
nates the repl – by issuing the quit or eof command – the outer loop in the
sequence diagram is carried out for each line of the input stream, as long as there
are tokens available. Within the loop, if the input stream matches the command
line, the first optional fragment is used to compile a prompt to be displayed to
the user before an attempt to read a new line. That prompt may be of the form
SpeX >, Calc >, Th[PL] >, etc., depending on which language is selected.

SpeX: A Rewriting-Based Formal Specification Environment 169

Next, through get/got-line messages, the repl obtains a new raw text
line from an external object – the input stream. It pre-processes that line into
a sequence X of tokens, which is then sent to the interpreter to be evaluated.
The evaluation takes place in one or two steps, depending on whether or not
the input is valid/well formed with respect to the language L. Therefore, first,
X needs to be parsed. The procedure is determined both by the definition of L
and by the current state of the SpeX database, DB. In return, we get a parsing
outcome, denoted PO, for which we consider three possible cases:

1. PO = successful-parsing(T), indicating that the text is syntactically cor-
rect with respect to the definition of L and producing a corresponding syntax
tree T. In this case, the second evaluation step is to send the syntax tree T
back to $[L] in order to be processed, generating a result Y that is meant to
be printed and an updated database record R for the language L.

2. PO = incomplete input, indicating that the interpreter cannot make a deci-
sion based on the input available thus far; more text needs to be read.

3. PO = parsing-error(E, A), indicating that the text cannot be parsed. In
this case, we get an error message E together with a series of additional error
arguments A that may be helpful for troubleshooting purposes.

When the parsing outcome is definite – i.e., successful or erroneous – the final
optional fragment in the sequence diagram is used for writing a suitable text
message to the output stream (another external object). That message is either
a textual representation of the result Y obtained when processing the syntax tree
T, or an error report based on the message E and the error arguments A.

4 A Rewriting-Based Infrastructure

SpeX is implemented in Maude [2] (see also [1]), a high-performance specification
and programming language based on equational logic and conditional rewriting
with extensive support for object-based development and for meta-level applica-
tions. This means, in a nutshell, that the execution of SpeX is captured using a
term-rewriting system of ‘configurations’ by which we model states of the envi-
ronment at various points in time. More formally, the configurations we employ
in this context are multisets of (states of) objects and messages.

In keeping with standard Maude notation, we build configurations from
objects and messages through plain juxtaposition. We denote objects by terms
of the form < O : C | Atts >, where O is an object identifier, C is a class identi-
fier, and Atts is a multiset of object attributes – used to capture various aspects
of an object’s state. In a similar manner, messages are denoted by terms of the
form m(O, Args), where m is a message constructor, O is an object identifier –
the intended receiver of the message – and Args is a list of arguments defining
the contents of the message. Occasionally, the first element in Args is used to
identify the sender of the message; this is particularly useful for messages that
are expected to be followed by some kind of reply.

170 I. Ţuţu

The interactions outlined in Sect. 3 are defined by rewrite rules that specify
how configurations should change upon the delivery of messages. These rules
are typically of the form < O : C | Atts > m(O, Args) ⇒ Cfg, where Cfg is
a configuration fragment that captures the end result of delivering an m-message
to (an instance of) the object O. Many times, the fragment Cfg consists of an
updated instance of the object O together with new messages that O sends to
other objects. As an example, consider the following rewrite rule, which models
the follow-up of a successful parsing operation:

rl < SpeX : INT | parsing O input, Atts >
parsed(SpeX, NPL, successful-parsing(T))

⇒ < SpeX : INT | processing O input, Atts >
process(head(NPL), tail(NPL), SpeX, T, db(Atts)) .

In the listing above, O, Atts, NPL, and T are all universally quantified vari-
ables. O stands for the current repl; we use it in the object attributes parsing O
input and processing O input to mark different stages during the execution of
the SpeX interpreter. The variable Atts designates any additional attributes of
the interpreter, such as the current state of its database, given by db(Atts); most
of those attributes are of little significance in this transition but need to be pre-
served for further interactions. Next, NPL stands for a non-empty list of processor
identifiers; this is a slight departure from the diagram given in Fig. 2 (where we
use a single identifier instead of a list), yet necessary in order to accommodate
more complex execution scenarios that may involve sub-processors. Finally, T
matches the syntax tree that ensues when parsing a well-formed input.

The rules defining the execution of SpeX – or of any other similarly purposed
rewrite-based interpreter – can easily become much more complex than this. To
be practically useful, the tool may need, for instance, to manage input and out-
put streams, to display results and error messages appropriately (independently
of how those results or messages are generated), or to handle language-specific
commands in addition to the ordinary declarative input. Repeated and perhaps
divergent implementations of this sort of routine mechanisms (which are actually
language independent) may be detrimental to the experimental development of
new specification formalisms. Therefore, what SpeX proposes is an infrastructure
where the language-independent part of the interpreter/environment is ready
for immediate use, allowing researchers and developers to focus on language-
specific aspects. This separation of concerns is also apparent in the sequence
diagram depicted in Fig. 2. The red and blue activation bars indicate language-
independent activities that belong to the core section of the SpeX infrastructure.
The red activation bars correspond to objects that are external to Maude’s ordi-
nary rewriting of configurations, while the blue activation bars denote activities
that are already fully implemented – through rewrite rules like the one listed
above. Developers of specification languages need to implement only those activ-
ities for $[L] that are represented by yellow activation bars; and even then, in
some cases (e.g., when compiling the command prompt), the SpeX libraries offer
default implementations or templates.

SpeX: A Rewriting-Based Formal Specification Environment 171

5 Language Integration

To illustrate the integration of new formalisms, we consider a simple declara-
tive language used by a hypothetical numerical calculator – admittedly, not a
conventional specification language, yet sufficiently close to its modern algebraic
relatives and simple enough to allow us to discuss the idiosyncrasies of extending
the SpeX knowledge base without delving too much into language-specific issues.

The calculator language, which we name Calc, consists of a single kind of
declaration: ‘let’ statements of the form id := exp meant to associate a numerical
expression exp with an identifier id that could then be used in other expressions
or commands. Expressions are built from rational numbers and from values of
identifiers, denoted [id], through repeated applications of the basic operators
of arithmetic. Their semantics is given by unique ‘evaluation’ homomorphisms
(defined inductively on the structure of expressions) to an algebra of rational
numbers. For inspection purposes, in addition to declarations, we also consider
evaluation commands, written eval id, which are meant to compute the value
of an identifier according to the expression that is assigned to it.

Figure 3 depicts a typical work session in SpeX. On the left, we have the
contents of a file named triangular.calc, which provides a definition of trian-
gular numbers using the language Calc. On the right, there is the log of a user’s
command-line interaction with SpeX and the Calc processor. We use colours to
highlight different types of text: blue for language-independent commands that
are handled directly by the SpeX interpreter; yellow to indicate declarations
and commands that are specific to Calc; and red for the command-line prompt.
The first command, load triangular.calc, is used to read the definition of
triangular numbers from a file. Within that file, lang Calc is used to select the
language Calc. From that point on, each subsequent line of triangular.calc
is handled by the Calc processor, which, in return, prints a suitable confirma-
tion message (e.g., Defining id Tn). Back at the command line, the prompt is
automatically changed to reflect the selection of Calc. The eval command is
used to compute the fourth triangular number, returning 10.

Fig. 3. Defining and evaluating triangular numbers in Calc

Integrating languages such as Calc is usually done in three phases: (i) develop
an algebraic representation of the data structures and operations that are proper

172 I. Ţuţu

to the language; (ii) provide specialized support for syntactic analysis and print-
ing; and (iii) implement a dedicated object-based processor using rewrite rules.

The first phase is undoubtedly the most important, because that is where the
abstract syntax of the language is introduced (in contrast to concrete syntax,
which is dealt with in the second phase), along with elements related to the
semantics of the language and to the formal methods it supports: for Calc,
there is only one such method, namely the evaluation of numerical expressions.

Algebraic Representation

At run time, SpeX is defined by one large rewrite theory encompassing all
libraries discussed so far and the details of all languages recorded in the knowl-
edge base. To compartmentalize that information, we employ language identi-
fiers: singleton data types (as used, e.g., in the development of Hets [10]) that
‘label’ the data structures and operations of a language. For example, for Calc
we write:

fmod CALC/LID is
sort Calc .
op Calc : → Calc [ctor] .

endfm

We declare a separate functional module for the abstract syntax of the expres-
sions used in Calc. In the listing below, RAT and QID are the predefined Maude
modules of rational numbers (having the sort Rat) and of quoted identifiers
(Qid). The atomic expressions, given by num and val, have an additional argu-
ment that allows us to determine with ease that they belong to the language
Calc.

fmod CALC/EXP is
protecting CALC/LID + RAT + QID .
sort Exp{Calc} .
op num : Calc Rat → Exp{Calc} [ctor] .
op val : Calc Qid → Exp{Calc} [ctor] .
op _+_ : Exp{Calc} Exp{Calc} → Exp{Calc} [ctor] .
. . .

endfm

The representations of Calc declarations, for which we use the sort
Decl{Calc}, of the memory of the calculator, Memory{Calc}, formalized as a
dictionary mapping identifiers to expressions, and of the commands associated
with the language Calc are defined in a similar manner. The full implementation
of these data types is available in the source-code repository [16] of SpeX.

As mentioned at the beginning of this section, the semantics of Calc is based
on the following well-known universal property of the free algebra defining the
abstract syntax of the language: every mapping of identifiers to values – in par-
ticular, any finite mapping such as those determined by the states of the memory

SpeX: A Rewriting-Based Formal Specification Environment 173

of the calculator – can be uniquely extended to a homomorphism between the
algebra of numerical expressions and an algebra of rational numbers. We cap-
ture those homomorphisms through an operation eval parameterized by memory
states and defined by structural induction.

fmod CALC/EVAL is
protecting CALC/MEMORY .
op eval : Exp{Calc} Memory{Calc} ⇀ Rat .
eq eval(num(L, V), M) = V .
eq eval(val(L, N), M) = eval(M[N], M \ N) .
eq eval(E1 + E2, M) = eval(E1, M) + eval(E2, M) .
. . .

endfm

In the listing above, L is a variable that denotes the current language, Calc; V
and N denote rational values and identifiers, respectively; M is a memory state;
we write M[N] to indicate the numerical expression stored in that state for the
identifier N, provided that M contains such a record, and M \ N to indicate the
memory state obtained from M by discarding the record that corresponds to N;
lastly, E1 and E2 are other variables of sort Exp{Calc}.

Syntactic Analysis and Printing
This phase makes ample use of the library sap, which serves as a foundation for
implementing parsers and printers in a modular manner by means of combinatory
techniques similar to those advanced in [8,14]. We begin by defining the concrete
syntax of Calc. For that purpose, we use the Maude module GRAMMAR, which is
part of sap and allows us to introduce formal grammars in a bnf-like notation.

fmod CALC/LANGUAGE is
protecting CALC/LID + GRAMMAR .
op grammar : Calc → Grammar .
eq grammar(Calc)
= grammar ’Calc/Syntax is

’Decl ::= "_:=_" : ’Id ’Exp [prec(35)]
’Id ::= token "id"
’Exp ::= just ’Num

| "[_]" : ’Id
| "_+_" : ’Exp ’Exp [assoc prec(33)]
| . . .

’Num ::= <number>
’Cmd ::= "eval_" : ’Id

endgr .
endfm

To implement the parser, we use the sap module SYNTACTIC-ANALYSIS –
actually, an instance of it, since that module is parameterized; see [16] for
details. The analysis technique we consider is context sensitive: it captures con-
text through a notion of syntactic-analysis state, which is language dependent

174 I. Ţuţu

and may change while the input is parsed. For Calc, the syntactic-analysis states
are simply sets consisting of those identifiers whose declarations have previously
been parsed. So, in the running scenario presented in Fig. 3, the analysis state is
initially empty; it consists of the identifier n after processing the second line of
triangular.calc; and is given by both n and Tn when the file is fully loaded.

The main parsing operation is implemented as follows:

op parse_input_in_ : Calc QidList AnalysisState{Calc} ⇀ ...
eq parse L input (X) in SAS
= parse L declaration (X) in SAS

or-else parse L command (X) in SAS .

Here, L is once more a variable of sort Calc (standing for the current language); X
denotes a list of quoted identifiers (the text to be parsed); and SAS is a syntactic-
analysis state. The right-hand side of the equation combines two other more basic
parsers – for declarations and for commands – using the sap operator or-else.
This means that the second parser is executed only if the first one fails. Each of
those two parsers is implemented according to the following pattern:

eq parse L declaration (X) in SAS
= scan L input (X : ’Decl)

then analyse L declaration in SAS .

The right-hand side of this equation is almost entirely defined by sap operators.
On the first line, scan L input (X : ’Decl) corresponds to a shallow parser
that checks whether X can be derived from ’Decl using the production rules of
the Calc grammar. If it succeeds, the parser drafts a syntax tree for X. On the
second line, that tree is then traversed – and, for more complex languages, edited
if necessary – to ensure that it meets certain additional constraints; in our case,
to check that all identifiers used in an expression belong to SAS.

Therefore, the only substantial task for language developers at this stage
is to define the tree traversal analyse_declaration. This is typically done by
induction on the structure of syntax trees. For example, following the successful
execution of the shallow parser mentioned above, we get a syntax tree of the form
{’_:=_[N, E] : ’Decl}, where ’_:=_ corresponds to its root, N and E are the
subtrees of the root, and ’Decl is a tree annotation (the trees we consider here
are slightly more complex than the usual Maude meta-representation of terms).
The listing below shows how one may specify the analysis of declarations:

eq analyse L declaration {’_:=_[N, E] : ’Decl}
= try { ’_:=_ [

solve L id (N),
analyse L expression (E)

] : ’Decl } ,

where solve_id and analyse_expression are additional analysis actions spe-
cific to Calc, and try is another predefined sap operator. The right-hand side

SpeX: A Rewriting-Based Formal Specification Environment 175

of the equation can be read as follows: attempt to solve the first subtree (i.e., to
check that the token used is a valid identifier); if that succeeds, continue to anal-
yse the second subtree as an expression. If both actions succeed, then compile
a new syntax tree with the same root and annotation as the original one, and
with subtrees defined by solve_id and analyse_expression; otherwise, we get
a parsing error that is handled automatically by sap and repl – the role of the
latter is to identify where exactly in the input stream did the error occur.

The printing part is straightforward. For Calc expressions, we can write:

op print : Exp{Calc} → QidList .
eq print(E) = print Calc term show-exp(E) .

where show-exp is a function that converts Calc expressions to syntax trees
(which, in Maude’s terminology, are annotated terms), and the actual printing
– i.e., flattening of a syntax tree into a list of tokens – is managed by sap.

The Language Processor

Every processor integrated into SpeX is defined by a Maude module that imports
(an instance of) either SPEX-PROCESSOR or BASIC-SPEX-PROCESSOR. These sys-
tem modules provide the basic building blocks – language-specific object and
class identifiers, attributes, messages, etc. – used for implementing processors.
The end result can usually be obtained by writing a small number of rewrite rules.
Those rules address aspects such as the starting up or the shutting down of a pro-
cessor, prompt handling, parsing, processing, and the execution of commands.
The first three of these have default implementations in BASIC-SPEX-PROCESSOR,
which is the base module we are using for the Calc language.

The rule listed below integrates the syntactic analysis of Calc declarations
and commands into the parsing infrastructure of SpeX: to parse an input X, we
simply run the Calc parser presented in the previous section in the analysis state
given by all identifiers recorded in the memory of the calculator.

rl < $[L] : PROC | running, Atts >
parse($[L], SpeX, X, DB)

⇒ < $[L] : PROC | running, Atts >
parsed(SpeX, $[L], parse L input X

in AnalysisState[L]{ids(DB[L])}) .

Next, the processing of a declaration amounts to recording it into the Calc
memory – for which we use the predefined operation insert – and in presenting
an appropriate confirmation message to the user. For the latter, we merely check
whether the declaration is fresh or an update of a previously declared identifier.

crl < $[L] : PROC | running, Atts >
process($[L], SpeX, T, DB)

⇒ < $[L] : PROC | running, Atts >
processed(SpeX, $[L],

176 I. Ţuţu

if defined(DB[L][N])
then Advisory: log(’redefining ’id) N
else log(’Defining ’id) N fi,
insert(N, E, DB[L]))

if (N := E) := read-decl(L, T) .

The rule used for computing the value of a recorded identifier – obtained by
evaluating the expression assigned to it – can be written in much the same way.
The only major difference is that, instead of process($[L], SpeX, T, DB), we
need to react to a message of the form do($[L], Cmd[L]{eval N}, DB), where
N is the identifier whose value we aim to compute. The result may be undefined
because redefining identifiers is prone to introduce circular references; see the
full implementation of Calc in [16, Lang/Calc] for details omitted here.

crl < $[L] : PROC | executing SpeX command, Atts >
do($[L], Cmd[L]{eval N}, DB)

⇒ < $[L] : PROC | running, Atts >
processed(SpeX, $[L], log(’Evaluating) N ’\n

if ?V :: Rat
then print(num(L, ?V))
else ’undefined fi)

if ?V := eval(DB[L][N], DB[L] \ N) .

All in all, the integration of Calc requires a few dozen equations, most of which
(nearly two thirds) are used for syntactic analysis, and only three rewrite rules.

6 Beyond Calculators

The method presented in Sect. 5 works equally well for much more complex
languages like, say, the language of full first-order theory presentations, which is
also integrated into SpeX. In most cases, complexity arises in the form of sheer
volume of features: multiple types of declarations, variables, logical connectives
(especially quantifiers), various commands, etc. All contribute to an increasingly
large knowledge base. However, the main development phases are the same.

One of the most advanced languages currently integrated into SpeX is
COMP [4], a specification language that embodies the behavioural-abstraction
paradigm and supports the formal development of component-based systems in a
modular, hierarchical fashion. The main specification units of COMP, called object
modules, consist of hidden-algebra [6] declarations of data types and states,
including ordinary operations, observations, actions, projections (in case of
components), and corresponding axioms. Structured specifications are obtained
through special composition operators introduced in [3] that enable the hierar-
chical construction of larger and more intricate objects from simpler components.

The listing below gives an example of a more sophisticated kind of input
for COMP that can be handled using the SpeX libraries discussed in this paper.
The behavioural specification describes the functioning of a watch. It is obtained

SpeX: A Rewriting-Based Formal Specification Environment 177

through the synchronized composition (see [3] for details) of three other object
modules (counters) that specify the hour, minute, and second indicators. The
only axiom shown here defines how the ticking of the watch (modelled using an
action) affects the hour indicator.

bobj WATCH is
syncing (UP-TO-24-COUNTER as HOUR)

and (UP-TO-60-COUNTER as MINUTE)
and (UP-TO-60-COUNTER as SECOND) .

var X : State . vars H, M, S : Nat .
act tick_ : State → State .
ax HOUR/Display(tick X) = inc HOUR/Display(X)

if MINUTE/value(X) = 59 and SECOND/value(X) = 59 .
...

endbo

open WATCH
let ax ... [label: Lemma-1] .
check tick inc-min (H:Nat : M:Nat : S:Nat)

∼ inc-min tick (H:Nat : M:Nat : S:Nat) .
close

The open...close environment that follows the specification, and which is sim-
ilar in style to the proof scores written in the obj family of languages, includes
commands that support the formal verification method of COMP. In this case,
we use them to introduce lemmas and to check a behavioural property, namely
the non-interference of a mechanism added for adjusting the minute indicator
(inc-min) with the internal ticking of the watch. Further details on the syntax,
semantics, and verification method of COMP are available at [4].

7 Conclusions

In this paper, we have presented an executable logical environment, called SpeX,
that fosters the development of new specification languages, or features thereof,
through an infrastructure based on term rewriting where languages and tools
can be integrated and interconnected with ease, in an experimental manner. We
have discussed the basic building blocks of SpeX, its operational semantics, and
some of the primitives that support the integration of specification languages.

For language developers, the main benefit of using SpeX lies in its rapid-
prototyping capabilities: language features, for example, can usually be added
using only a handful of equations. This stems from the combination of a rich
collection of libraries with a simple, expressive, and executable implementation
language such as Maude – there is also a downside here though, since language
integrators need to be familiar with both Maude and the SpeX libraries.

For end users, on the other hand, the utility of any instance of the SpeX envi-
ronment resides in the language processors it hosts. Currently, besides DNI [17]

178 I. Ţuţu

and COMP [4] – two successful demonstrations of experimental language develop-
ment using SpeX – the knowledge base includes definitions of standard base lan-
guages corresponding to propositional, equational, and first-order logic, among
others, as well as basic structuring mechanisms that rely on imports. Work is
under way to implement generic specifications (over arbitrary base languages)
and to provide parametric support for theorem proving.

Acknowledgements. I am grateful to Răzvan Diaconescu for several fruitful discus-
sions on the design of SpeX and for our joint work on COMP. Many thanks also go
to the anonymous referees for their helpful feedback, which has led to an improved
presentation on integrating languages into the SpeX environment.

References

1. Clavel, M., et al.: Maude Manual (Version 3.2.1) (2022)
2. Clavel, M., et al.: All About Maude - A High-Performance Logical Framework.

LNCS, vol. 4350. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-
71999-1

3. Diaconescu, R.: Behavioural specification for hierarchical object composition.
Theor. Comput. Sci. 343(3), 305–331 (2005)

4. Diaconescu, R., Ţuţu, I.: The COMP system (2022). http://www.imar.ro/~diacon/
COMPproject/COMP.html

5. Goguen, J.A., Burstall, R.M.: Institutions: abstract model theory for specification
and programming. J. ACM 39(1), 95–146 (1992)

6. Goguen, J.A., Malcolm, G.: A hidden agenda. Theor. Comput. Sci. 245(1), 55–101
(2000)

7. Harper, R., Honsell, F., Plotkin, G.D.: A framework for defining logics. J. ACM
40(1), 143–184 (1993)

8. Hutton, G.: Higher-order functions for parsing. J. Funct. Program. 2(3), 323–343
(1992)

9. Martí-Oliet, N., Meseguer, J.: Rewriting logic as a logical and semantic framework.
In: WRLA 1996. Electronic Notes in Theoretical Computer Science, vol. 4, pp.
190–225. Elsevier (1996)

10. Mossakowski, T., Maeder, C., Lüttich, K.: The heterogeneous tool set (Hets). In:
CADE-21. CEUR Workshop Proceedings, vol. 259 (2007)

11. Rabe, F., Kohlhase, M.: A scalable module system. Inf. Comput. 230, 1–54 (2013)
12. Roşu, G.: Matching logic. Logical Methods Comput. Sci. 13(4) (2017)
13. Sannella, D., Tarlecki, A.: Specifications in an arbitrary institution. Inf. Comput.

76(2/3), 165–210 (1988)
14. Swierstra, S.D.: Combinator parsers: from toys to tools. Electron. Notes Theor.

Comput. Sci. 41(1), 38–59 (2001)
15. Ţuţu, I.: Comorphisms of structured institutions. Inf. Process. Lett. 113(22–24),

894–900 (2013)
16. Ţuţu, I.: SpeX source-code repository. GitLab (2022). https://gitlab.com/ittutu/

spex/
17. Ţuţu, I., Chiriţă, C.E., Fiadeiro, J.L.: Dynamic reconfiguration via typed modali-

ties. In: Huisman, M., Păsăreanu, C., Zhan, N. (eds.) FM 2021. LNCS, vol. 13047,
pp. 599–615. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-90870-
6_32

https://doi.org/10.1007/978-3-540-71999-1
https://doi.org/10.1007/978-3-540-71999-1
http://www.imar.ro/~diacon/COMPproject/COMP.html
http://www.imar.ro/~diacon/COMPproject/COMP.html
https://gitlab.com/ittutu/spex/
https://gitlab.com/ittutu/spex/
https://doi.org/10.1007/978-3-030-90870-6_32
https://doi.org/10.1007/978-3-030-90870-6_32

Author Index

A
Arbab, Farhad 141

C
Crook, Tonicha 63

G
Gadducci, Fabio 81
Goncharov, Sergey 100

K
Keis, Elias 121
Knapp, Alexander 121

L
Lion, Benjamin 141

M
Meseguer, José 3
Morgan, Jay 63

O
Oliveira, José Nuno 25

P
Pauly, Arno 63
Pombo, Carlos Gustavo Lopez 121

R
Roggenbach, Markus 63

S
Suñé, Agustín Eloy Martinez 121

T
Talcott, Carolyn 141
Trotta, Davide 81
Ţuţu, Ionuţ 163

© Springer Nature Switzerland AG 2023
A. Madeira and M. A. Martins (Eds.): WADT 2022, LNCS 13710, p. 179, 2023.
https://doi.org/10.1007/978-3-031-43345-0

https://doi.org/10.1007/978-3-031-43345-0

	 Preface
	 Organization
	 Contents
	Invited Talks
	Building Correct-by-Construction Systems with Formal Patterns
	1 Introduction
	2 Formal Patterns in a Nutshell
	2.1 Formal Patterns in Declarative Programming Languages
	2.2 Requirements on the Computational Logic L
	2.3 Relationship to Parameterized Theories
	2.4 The Importance of Logical Reflection
	2.5 Application Areas

	3 High-Level Overview of Some Formal Patterns
	3.1 Distributed Systems and Their Analysis
	3.2 Theorem Proving and Executability Transformations

	4 Related Work and Concluding Remarks
	4.1 Related Work
	4.2 Concluding Remarks

	References

	Why Adjunctions Matter—A Functional Programmer Perspective
	1 Context
	2 Galois Connections
	3 The Easy and the Hard
	4 Indirect Equality
	5 GCs as Formal Specifications
	6 From GCs to Adjunctions
	7 Adjunctions
	8 Examples
	9 Properties
	10 Monads
	11 Composing Adjunctions
	12 More About R
	13 Recursion Comes In
	14 Towards Adjoint-Recursion
	15 Going Relational
	16 Back to Galois Connections
	17 Related and Current Work
	18 Summary
	A Properties of Adjunctions and Monads
	References

	Standard Contributions
	A Computability Perspective on (Verified) Machine Learning
	1 Introduction
	2 A Gentle Summary of Our Results
	2.1 Classifiers
	2.2 Adversarial Examples
	2.3 Learners

	3 Computing with Real Numbers and Other Non-discrete Data Types
	4 A Theory of Verified ML
	4.1 A Theory of Classifiers
	4.2 A Theory of Treating Adversarial Examples
	4.3 A Theory of Learners and Their Robustness

	5 Related Work
	6 Summary and Future Work
	References

	A Presheaf Semantics for Quantified Temporal Logics
	1 Introduction
	2 Some Notions on Multi-sorted Algebras
	3 A Categorical View of Counterpart Models
	3.1 Relational Presheaves Models
	3.2 Relational Power-Set Presheaf

	4 Syntax of Quantified Temporal Logic
	5 Temporal Structures and Semantics
	5.1 Semantics via Temporal Structures

	6 Conclusions and Future Works
	References

	Shades of Iteration: From Elgot to Kleene
	1 Introduction
	2 Preliminaries
	3 Monads for Computation
	4 Kleene Monads
	5 Elgot Monads
	6 While-Monads
	7 Kleene Monads as Elgot Monads
	8 Conclusions
	References

	Automated QoS-Aware Service Selection Based on Soft Constraints
	1 Introduction
	2 Service Selection for Composite Services
	3 Soft Constraint Solving with MiniBrass
	4 Modeling QoS-Aware Service Selection in MiniBrass
	4.1 Adding Checkpoints to QosAgg Workflows
	4.2 Toolchain Architecture

	5 Preliminary Performance Analysis
	6 Conclusions and Further Research
	References

	Runtime Composition of Systems of Interacting Cyber-Physical Components
	1 Introduction
	2 Related Work
	3 Components in Interaction
	3.1 Components
	3.2 Self-Sorting Robots
	3.3 Properties of Components and Coordination

	4 An Operational Specification of Components
	4.1 TES Transition Systems
	4.2 Compatibility of TES Transition Systems

	5 Application: Self-Sorting Robots
	6 Conclusion
	References

	SpeX: A Rewriting-Based Formal Specification Environment
	1 Introduction
	2 System Overview
	3 Object Interactions
	4 A Rewriting-Based Infrastructure
	5 Language Integration
	6 Beyond Calculators
	7 Conclusions
	References

	Author Index

