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Abstract. Effective energy and mobility management benefits from
multi-agent simulations (MAS) to model complex interactions among
various agent types. Selecting the optimal MAS platform to implement
and simulate these interactions is vital for achieving accurate results,
scalability to realistic problem sizes, and efficient computational per-
formance. This paper investigates the energy and mobility domain and
identifies key parameters such as the number and complexity of agents,
parallel computing power, CPU requirements etc., for developing MAS in
the context of this domain. It then presents a comprehensive evaluation
of various MAS development platforms. Using a multi-level selection and
elimination approach, we narrowed down our evaluation to two final can-
didates. We then implemented key aspects of our model in both platforms
to compare them in terms of practical relevance. Our findings reveal that
the Agents.jl platform outperforms the Mesa platform in terms of run-
time performance, has a smaller memory footprint for large numbers
of agents, and offers scalability, making it the most suitable choice for
developing MAS for integrated energy and mobility models.

Keywords: Multi-agent simulation · Agent-based models · Mobility
transition · Car-sharing

1 Introduction

The shift from internal combustion engine vehicles to battery-powered electric
vehicles (EVs) is driving a mobility transition aimed at promoting public trans-
port, car-sharing, and sustainability [13,14]. Car-sharing users play a crucial role
in this transition, as they need to adapt their behavior to new circumstances like
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limited range and necessary charging stops, while also the limitations of the elec-
tric power grid must be considered. Electric car-sharing providers should learn
when to charge cars to maximize renewable energy use and ensure car’s avail-
ability. This situation creates a need for AI-supported forecasting, peak shaving,
and recommendation to dynamically adapt car-sharing behavior [27].

Our ongoing project, “Multi-Agent Simulation of Intelligent Resource Regula-
tion in Integrated Energy and Mobility” (MASIRI)1, aims to create a multi-agent
simulation using intelligent agent modeling based on the psychological behavior
of electric car-sharing users. Particularly, we investigate the influence of human
experience and behavior on mobility and energy use in vehicle-to-grid (V2G)
systems, and how this knowledge can optimize system design.

Multi-agent simulation is a computational technique that simulates the
behavior and interactions of multiple agents within an ecosystem [4]. These sim-
ulations are built on the principles of agent-based models (ABM) [6], which
focuses on representing individual agents and their behaviors to study the emer-
gent properties of a system. The simulation environment provides a platform for
agents to interact, communicate, and potentially collaborate or compete with
each other. Agents can exchange information, share resources, coordinate their
actions, and influence the behavior of other agents.

Various platforms have emerged that aid in the development of MAS in
research and industrial contexts [23,25]. However, selecting a MAS develop-
ment platform suitable for a given scenario is a difficult task, as there is no
universally agreed-upon set of criteria for ranking and evaluating these plat-
forms. Researchers rely on using semi-structured techniques, including ques-
tionnaires, to compare platforms [3,9,29]. Some studies compare different plat-
forms [10,18,22] and evaluate specific requirements like strengths, performance,
and code complexity [7,25]. However, many of these studies are outdated, some
platforms are not maintained, and they do not cover our use case area. Several
works in the literature, including [8,11,21,31], and [24], have employed agent-
based models to explore different scenarios within the realm of electromobility.
However, the majority of these studies primarily focus on analyzing EV users
and their charging behavior, as well as the role of EVs as a new form of urban
mobility. The development of a comprehensive MAS of electromobility in the
context of car-sharing and V2G has received comparatively less attention. In
this study, we carefully curated a collection of platforms from multiple sources,
including diverse projects, comparative studies, and online searches. The pri-
mary objective of this extensive curation process was to identify the platform
that best aligns with the specific requirements of our project.

The contributions of this paper are as follows: First, it delineates the require-
ments of MAS for the energy and mobility domain, with a specific focus on a par-
ticular use case. Next, it then presents an updated and comprehensive overview
of various MAS platforms. Employing a multi-level selection and elimination
approach, we narrow down the options from multiple platforms to two final can-
didates. Subsequently, we implement key aspects of our model in both platforms

1 https://www.imis.uni-luebeck.de/en/forschung/projekte/masiri.

https://www.imis.uni-luebeck.de/en/forschung/projekte/masiri
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to enable a practical and relevant comparison. Based on the evaluation and com-
parison, we identify and select the most suitable MAS platform for our specific
research purposes.

The remainder of the paper is organized as follows: Sect. 2 introduces MAS
for integrated energy and mobility and identifies the resulting requirements for
MAS development. Section 3 studies various MAS development platforms, Sect. 4
explains the results from implementing our use case scenario and their evaluation,
and finally, Sect. 5 presents the conclusion.

2 MAS for Integrated Energy and Mobility

In our project MASIRI, the model aims to simulate the current and future
energy usage and the mobility behavior of the inhabitants of Lübeck, a city in
the state of Schleswig-Holstein, Germany, with a population of approximately
220,000 and a car ownership rate of 464 per 1,000 inhabitants. We take into
account the growing popularity of private and electric car-sharing, as well as the
mobility needs of the residents within their living spaces [12].

Developing MAS in this domain requires various agent types and groups to
reflect the different actors involved, including electric cars, their users, and a
micro-grid energy system. In our setting, we consider electric cars and charging
stations with bi-directional capabilities, meaning that the cars, when not driving,
can also serve as energy buffers and feed back energy into the grid (V2G). The
car users encompass individuals from diverse age groups, with a variety of car
models and sizes to cater to their needs. The micro-grid energy system harnesses
renewable energy from different sources, such as wind and solar power, with the
latter generated by photovoltaic (PV) panels installed on residential rooftops.

Our model and simulation will be developed by domain experts rather than
versatile programmers. As a result, we seek to find a MAS development platform
that provides a modeling language based on or similar to popular programming
languages like Python or Java. Additionally, we will incorporate historical records
of the grid, weather conditions, and car-sharing bookings into the model. This
means that the platform should also support the import of data from exter-
nal sources, such as CSV files. Other requirements regarding MAS development
platforms will be identified in Sect. 3.

2.1 Model Description

To scale our model, we utilized the latest available data from the city’s statistics
department [12]. Based on this data, we identified a total of 150,000 car users,
all of whom we assumed to be car-sharing users. In addition, we considered the
number of cars in the city, which was recorded as 103,000. For the purpose of our
simulation, we assumed that all of these cars were electric, used for car-sharing.
Furthermore, we took into account the 50,000 residential buildings in Lübeck
and assumed that they are either partially or fully equipped with PV panels,
heating systems, and air conditioning units. These buildings, along with the
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cars and their users, will collectively represent the agents in our simulation. To
capture the dynamics and patterns over time, we will simulate a complete year
of data records. By incorporating these real-world numbers and characteristics,
our simulation aims to accurately represent the scale and size of the agents and
their interactions within the modeled system.

Dynamical generation and optimization are necessary for several components
of the agents’ modules. These include a booking reservation logic (booking algo-
rithm) for users to reserve cars and bi-directional charging of electric car batter-
ies. Optimizing the booking algorithm is crucial to avoid high car unavailability
to satisfy users’ needs or to serve as an energy buffer. We have already developed
a booking reservation algorithm using the Python programming language, and
by leveraging linear programming techniques [30], we have successfully optimized
both the booking algorithm and the bi-directional charging system. In addition
to this, we also plan to use reinforcement learning to train agents on adaptive
booking strategies without harming the energy grid.

2.2 Platform Evaluation Scenario

In order to assess the MAS development platforms, we develop a minimum viable
product (MVP) that simulates a use case closely resembling our intended final
product. For this purpose, we establish the following requirement in the use case:

1. Users: Agents who book electric cars for random short-distance trips, fol-
lowing a normal distribution throughout the day.

2. Cars: These are electric cars utilized for a car-sharing service, which have a
certain driving range depending on their state of charge (SoC). They recharge
upon return from a trip and are capable of buffering excess energy when
connected to the grid.

3. Houses: Residential units with optional features like solar power roofs, heat
pumps, air conditioning systems. Private cars contribute to the energy con-
sumption of the houses when they are being recharged.

4. Random Weather: The use case involves random sunshine and tempera-
ture data at a 5-min resolution, incorporating yearly and daily cycles, sea-
sonal variations, and daytime fluctuations. These patterns include noise to
capture realistic yearly and daily variations. By incorporating this data, we
have abstracted the energy model (micro-grid) aspect that will be included
in the final product. However, it is important to note that in our final prod-
uct, we intend to conduct a comprehensive study of a micro-grid connection
within the given settings.

Figure 1 provides an overview of the simulation use case. The simulation does not
consider the positions of houses and users, types of cars, users’ age groups, and
other details that will be included in our final model. We also do not consider
modeling charging stations as we would have in the final model.

Use Case Agent Actions and Interactions: User agents book cars at random
times, with more daytime activity and a normal distribution peaking at 14:00
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Fig. 1. Use case overview. Arrows indicate temporary or permanent connectivity or
availability.

and a 3-h standard deviation. The cars are recharged after each trip, with trip
duration determining the required charging. Power consumption and generation
data are collected in 5-min intervals, using realistic charging times and battery
sizes. Charging times contribute to overall power consumption data.

The house agents generate and consume electricity based on generated
weather data. House agents have randomized features, such as air condition-
ing, solar power, and heat pumps with varying capacities. Larger houses have
greater solar power capacity. Power consumption and generation data are col-
lected for each 5-min slot, with car charging times included in the overall data.
Electric car batteries buffer excess solar energy, feeding it back to the house
when needed, if the car is idle.

In this paper, our primary objective is to evaluate different platforms and
identify the most suitable one for our project. Consequently, the simulation use
case described herein only considers certain details (of the intended final product)
to assess the platforms.

2.3 Expected Features from MAS Platform

As our project is expected to span over multiple years, it is essential for us to
have an active and well-maintained platform that can effectively support our
evolving needs. The complexity of the project will undoubtedly grow over time,
requiring a simulation platform that can keep up with these changes. In this
paper and the MASIRI project at large, we identify some general as well as
domain-specific features that are crucial. The general features include:

G1 Language familiarity: This is important because of the expertise of the
developers. The platform must be one that does not require much time to
learn its syntax and ABM implementation.

G2 Scalability: Currently, our plan is to simulate the inhabitants of Lübeck.
However, it is possible that the population size may change, leading to
a larger population, or that the model might be adapted or modified to
analyze another city. Therefore, it is crucial to have a platform that can
accommodate scalability when necessary.
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G3 Parallelism & distributed computing: Based on our preliminary inves-
tigation, we have found that most platforms offer some level of parallel
computing features. However, it is important to note that the emphasis
on ease of use rather than performance is evident in some platforms [28].
Given that our model comprises various types of agents and is of large size,
efficient simulation running time becomes a crucial factor, and therefore,
performance is a significant consideration.

G4 Community support: A platform with an active and strong community
fosters knowledge sharing and facilitates the exchange of experiences. This
community support will be invaluable during the development phase, par-
ticularly when it comes to debugging and troubleshooting. The collective
expertise and insights of community members can provide valuable guidance
and solutions, enabling us to address challenges more efficiently.

G5 Interoperability: The platform should facilitates interface with exter-
nal libraries, tools, and data sources for domain-specific functionality and
streamlined data processing. This feature will enable us to incorporate our
already developed booking algorithm, optimization tools, and the historical
record.

G6 Visualization & analysis tools: The inclusion of built-in tools dedicated
to visualizing and analyzing simulation outputs plays a crucial role in facil-
itating a deeper understanding of the simulation results and enabling com-
prehensive performance evaluation. These integrated tools will provide us
with intuitive and interactive interfaces to explore, interpret, and visualize
complex simulation data in a meaningful way.

G7 Documentation: A wealth of comprehensive resources, including plat-
form documentation, YouTube videos, tutorials, and working examples, will
greatly assist us in gaining a thorough understanding of how to effectively
utilize the platform. These resources will serve as invaluable tools during the
initial stages, providing step-by-step guidance, practical demonstrations,
and real-world examples that will aid in our learning process and enable us
to make the most of the platform’s capabilities.

For our agent-based learning, mobility, and energy use case, the following
additional features are crucial:

D1 Learning capabilities: For an ideal platform, it is imperative to encom-
pass support for a diverse range of learning algorithms that enable the
training of agents to adapt strategies and optimize energy usage.

D2 OpenStreetMap space: The ability to incorporate geo-spatial data,
including the positions of users and cars in relation to each other, house
locations, road networks, points of interest, and more, is crucial for accu-
rately simulating real-world mobility and energy systems. It should provide
a rich and detailed spatial dataset that enhances the realism and accuracy
of our model.

D3 Data integration: The integration of external data plays a pivotal role
in the effectiveness and significance of an ABM platform. By seamlessly
incorporating real-time or historical data sources, the platform becomes
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capable of facilitating realistic and dynamic simulations that closely mirror
the complexities of real-world situations.

3 Multi-level Selection

To compile a comprehensive list of platforms, we conducted thorough searches
across multiple sources, including diverse projects, comparative studies, and
online resources. In particular, notable survey articles such as [15] and review
articles like [16,23,26], and [1] provided valuable insights and compilations of
platforms in the field. Leveraging these sources, we identified platforms based
on their specific areas of application, existing projects utilizing the platforms,
and studies that conducted comparisons among different platforms. Given the
diverse modeling approaches offered by these platforms, we categorized them
into the following groups:

– Language or Environment for MAS (LEM): Refers to programming
languages, frameworks, and software environments that are used to create,
simulate, and deploy ABMs.

– Support Software (SS): Refers to a software tool, package, or platform that
provides specific functionalities and capabilities to facilitate the development,
deployment, and management of ABMs.

– MAS-based Modeling Platform (MMP): Refers to a software applica-
tion or platform that specifically focuses on modeling and simulating ABMs.
These platforms provide an environment where developers can design and
simulate agents, their behaviors, interactions, and the dynamic environment
in which they operate.

We then gathered information (summarized in Table 1) on each platform’s
modeling language, licence, and activity status2. The latter was checked through
various means, including visiting the platform’s website (in search of recent
updates, news, and announcements), engaging with the community (such as
discussion groups), and examining the GitHub or source code repository.

3.1 First Round of Selection

After careful evaluation, we eliminated platforms for which we could not find
essential information, such as licensing details or recent activities. Some plat-
forms, including FAME, SWARM, JACK, Junus, GOAL, Cougaar, and StarLogo
(TNG and Nova versions), have not been regularly updated or maintained. This
lack of maintenance raises concerns about their reliability, potential bugs, and
compatibility with modern operating systems. To mitigate the risk of selecting
an inactive platform (or platform that might become inactive) for our project,
we decided to also exclude platforms with no activity for more than 2 years.
Consequently, FLAME, 2APL, ZEUS, and ActressMAS were also removed from
consideration.
2 This information was checked on May 25th, 2023.
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Table 1. A table showing different MAS development platforms. The platforms are
listed in alphabetical order and not ranked. GPL stands for General Public Licence,
AFL for Academic Free License, EPL for Eclipse Public License, and COSL for Cougaar
Open Source License.

Name Modeling language Licence Category Last activity

ActressMAS C# Open source LEM 2021.06.15
Agents.jl Julia MIT MMP 2023.05.19
AgentScript JavaScript Various LEM 2023.01.23
Cougaar Java COSL LEM 2013.10.22
FAME Jave Apache v2.0 SS 2021.01.20
FLAME C/C++ Open source LEM 2017.05.30
GAMA GAML GNU GPL v3 LEM 2021.10.15
GOAL GOAL unknown LEM 2021.11.08
JACK Java Commercial license LEM 2015.07.01
JADE Java Open source (Java) LEM 2022.12.19
Jadex Java GNU GPL v2.0 LEM 2022.10.08
Janus SARL Apache v2.0 LEM unknown
Jason AgentSpeak GNU GPL v3 LEM 2023.04.02
Mason Java AFL LEM 2022.09.07
MATSim XML GNU GPL MMP 2023.04.01
Mesa Python 3+ Apache v2.0 MMP 2023.03.08
NetLogo NetLogo GNU GPL v2.0 MMP 2023.05.11
Repast4Py Python Various MMP 2023.03.02
SPADE Python Open source SS 2023.12.13
SpaDES R GNU GPL v3 SS 2022.02.16
SUMO Python, Java, C++ EPL v2.0 SS 2023.06.29
StarLogo Objective C Various LEM 2018.11.24
SWARM Java C GNU GPL LEM 2013.08.01
ZEUS Java Unknown LEM 2021.06.20
2APL 2APL GNU GPL v3.0 LEM 2021.12.01

Platforms such as AgentScript, SPADE, Jason, Jadex, and JADE are actively
maintained and continue to receive updates. Unfortunately, we were unable to
find information regarding the compatibility of these platforms with the general
requirements G4 and G7. SpaDES is based on the R language, while Jason is
based on AgentSpeak. Moreover, we found limited documentation and commu-
nity support forums for these platforms. Consequently, their capacity to fulfill
requirements G1, G4, and G7 is further hindered.

We examined different implementations of Repast, specifically focusing on
Repast Simphony, a Java-based modeling toolkit, and Repast4Py, a Python-
based distributed agent-based modeling toolkit. Since our booking algorithm
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was already developed in Python, we found the Repast4Py version more appeal-
ing. We further evaluated it alongside another Python-based platform, Mesa.
Through our analysis, we discovered that Repast offers certain advantages over
Mesa in terms of documentation and flexibility in programming languages [5].
However, Mesa provides advantages in terms of simplicity, user-friendliness, and
seamless integration with Python libraries and frameworks [20]. The simulation
software SUMO [17] was also evaluated as part of our study. It offers a user-
friendly graphical user interface (GUI) called “sumo-gui,” which simplifies the
process of adding road layouts, intersections, vehicles, and users through drag
and drop functionality. Additionally, SUMO provides an interface Python library
called “TraCI,” allowing users to develop Python scripts that can connect to a
running SUMO simulation, retrieve information, and control various aspects of
the simulation. We encountered challenges when attempting to incorporate the
energy model component of our model in a seamless and straightforward manner.

Although some of the remaining platforms are not based on Java or Python,
they have extensive documentation and a wealth of working examples available,
making them popular within the ABM modeling community. Moving forward,
we will provide a brief overview of these platforms.

Mason [19] is a fast, discrete-event, multi-agent simulation library core in
Java. It serves as a robust foundation for developing large-scale, custom-purpose
simulations in Java, while also catering to the requirements of lightweight sim-
ulation applications. It has a comprehensive model library accompanied by an
optional suite of visualization tools, catering to both 2D and 3D simulations.

Mesa [20] is a versatile and open-source Python library specifically designed
for agent-based modeling (ABM). It offers users a streamlined approach to devel-
oping agent-based models by providing built-in core components like spatial
grids and agent schedulers. Additionally, Mesa allows for flexible customization
through the implementation of personalized components.

NetLogo [28] is an integrated development environment and programming
language designed for modeling and simulating complex systems. It features a
custom scripting language, NetLogo, and built-in visualization tools. Users can
export data to external visualization tools for advanced analysis.

GAMA [2] is an open-source simulation platform and modeling language
offering various features for agent creation, communication, and decision-making.
GAMA provides visualization and analysis tools and a custom language, GAML,
for composing complex models with spatial dimensions. The platform supports
running simulations on multiple machines for increased performance.

MATSim [32] is an open-source framework for simulating large-scale trans-
portation systems, modeling individual travelers and vehicles within a network.
It is Java-based and features tools for different transport modes, routing algo-
rithms, and activity-based travel demand modeling. MATSim also offers visu-
alization and analysis tools for exploring simulation dynamics and is ideal for
predicting policy impacts on transportation systems.
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Agents.jl [7] is a Julia library for agent-based modeling within the Juli-
aDynamics ecosystem. Julia is a high-performance language suitable for com-
putational and numerical science applications. Agents.jl manages and creates
spaces, simplifies data collection, and offers visualization options, including
OpenStreetMaps and 3D visualizations, through related JuliaDynamics libraries.
Julia also enables developers to call methods, functions, or scripts from other
languages such as Python or R.

A summary of the pros and cons of the platforms following the initial round
of selection is presented in Table 2. This summary highlights the notable advan-
tages and drawbacks of each platform, providing valuable insights to inform the
subsequent stages of the selection process.

3.2 Second Round of Selection

In order to evaluate the remaining platforms based on the specified requirements
outlined in Subsect. 2.3, and taking into account the pros and cons summarized
in Table 2, we employ a rating scale. This rating scale assigns values of high = 3,
medium = 2, and low = 1 to each platform, indicating the level of satisfaction
for each requirement.

For each platform, we assess its performance against each requirement and
assign a corresponding rating. A rating of “high” is assigned when a platform fully
satisfies a requirement, “medium” when it partially satisfies the requirement, and
“ low ” when it does not meet the requirement. By applying this rating scale, we
calculate a score for each platform, considering the cumulative ratings for all the
evaluated requirements as follows:

score = 3× (highs) + 2× (mediums) + 1× (lows). (1)

The platform with the highest cumulative score signifies that it fulfills the
majority of the requirements. The scores for each platform are calculated based
on the assigned ratings, and Table 5 showcases the platforms alongside their
corresponding scores.

In the end, we observed that Mason (scored 18) and GAMA (scored 18),
have relatively smaller user communities compared to other platforms, resulting
in limited availability of tutorials and documentation. We encountered challenges
in finding comprehensive resources such as kickstart examples, troubleshooting
guides, and interactive forums for engaging with developers and users of these
platforms. MATSim (scored 19) and NetLogo (scored 18), although they have
larger user communities and tutorials, lack community support at a similar level
as Mason and GAMA. Additionally, we found limited examples or resources
showcasing the implementation of non-transport simulations using MATSim.
NetLogo, being a Logo-based language, requires developers to familiarize them-
selves with its specific syntax. Furthermore, information on integrating external
modules or expanding the platform’s functionality was scarce during our evalu-
ation process.
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Table 2. Pros and Cons.

Platform Pros Cons

Mason Highly customizable and flexible for
creating multi-agent simulations.
Supports both discrete and continuous
modeling

Steep learning curve. Lacks a
user-friendly interface. Limited
visualization options

Mesa Easy to use and well-documented.
Supports both discrete and continuous
modeling. Has a built-in visualization
tool

Limited support for advanced features
like parallel computing and large-scale
simulations

NetLogo User-friendly and intuitive interface.
Supports both discrete and continuous
modeling. Has a large library of
pre-built models. Good visualization
options

Limited support for large-scale
simulations. Limited customization
options

GAMA Highly customizable and flexible.
Supports both discrete and continuous
modeling. Good visualization options

Steep learning curve. Limited
community support

MATSim Strong support for agent-based
transportation modeling. Supports
large-scale simulations. Good
visualization options

Limited support for other types of
multi-agent simulations. Steep
learning curve

Agents.jl Highly customizable and flexible.
Supports both discrete and continuous
modeling. Good support for scientific
computing

Recurring issue of packages being
redefined constantly. Steep learning
curve. Various visualization options

Mesa (scored 23), benefiting from Python’s intuitiveness, community sup-
port, and familiarity, was more appealing, especially since we already have a
module (booking algorithm) that was developed in Python. In addition to this,
we found it to be more easy to learn compared to RepastPy. Similarly, Agents.jl
(scored 26) is based on Julia, a language that has some similarities in syntax
with Python, and the ability to call Python’s methods and scripts through pack-
ages such as PyCall.jl. Agents.jl is appealing as well due to multiple reasons.
Among these reasons is the fact that it benefits from Julia’s active user base
and the availability of Julia-specific libraries and resources that are interopera-
ble with Python, agents’ learning capabilities, speed, scalability [7] etc. Agents.jl
and Mesa have the highest and second highest score. As such, we pre-selected
Agents.jl and Mesa as the final two platforms for further evaluation.

4 Mesa vs. Agents.jl

We created a minimum viable product (MVP) reflecting our final product to
compare the performance and ease of use of Mesa and Agents.jl. This MVP is
based on the scenario in Subsect. 2.2. The code is publicly available3. During
3 https://github.com/stockh0lm/masiri_mas_framework_benchmark.

https://github.com/stockh0lm/masiri_mas_framework_benchmark
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development, we sought help from Python and Julia communities for technical
details and bug hunting, using chat platforms and web forums. While we found no
dedicated Mesa community, there was an Agents.jl discussion channel in the Julia
Slack server4. Both communities were approachable, helpful, and competent,
with fast response times. Although the Julia community was smaller, it did not
negatively impact the support received.

It is worth noting that Mesa is single-threaded; therefore, there is no direct
way to utilize multi-threaded runs. The only option for achieving concurrent or
parallel computing in Mesa is to run multiple computations in parallel and use
the intermediate results. This implies that the implementation discussed in this
paper utilizes a single thread for Mesa.

4.1 Implementation - Model Speed and Scalability Evaluation

We implemented identical simulations in Mesa and Agents.jl. Mesa, by default,
operates in a single-threaded manner. However, in order to enhance its perfor-
mance and enable parallel agent processing, we incorporated multi-threading
functionality in Julia, utilizing varying numbers of concurrent threads. Antici-
pating more complex final agents, we added a recursive Fibonacci computation
for both frameworks to increase computational load. We ran both simulations
with agent numbers as powers of two (1, 2, 4, . . . , 2048), at which point the
Mesa runs took several days, and clear trends were established. We examined
Agents.jl’s vertical scalability using 1, 2, 4, and 8 threads for different agent
numbers. We did not attempt using the Distributed.jl library for Julia, as it
would have exceeded our time scope and been challenging to test at the time.
The results of this implementation is shown in Tables 3 and 4.

In order to evaluate the RAM consumption and runtime performance (exclud-
ing the compile-time of Agents.jl), we incorporated code to measure these metrics
and enabled dynamic configuration of the number of agents. The benchmarks
were conducted on a Debian GNU-Linux Server with specifications including 12
cores, 32GB RAM, Julia 1.8.5, Agents.jl 5.12, Python 3.11.1, and Mesa 1.2.1.
To minimize system-related variability, we recorded the median runtime of four
simulation runs, ensuring that the agent numbers varied identically for each run.

Table 3. Comparison of RAM usage in the benchmark for Mesa and Agents.jl. The
runs for 106 and 107 agents were never completed and only started to measure the
trend in memory usage.

Mesa Agents.jl

1 agent 155.84 MB 555.39 MB
1000000 agents 0.7 GB 0.7 GB
10000000 agents 5.3 GB 3.3 GB

4 https://julialang.slack.com/archives/CBLNLEU74.

https://julialang.slack.com/archives/CBLNLEU74
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Table 4. Single threaded speed comparison of Mesa and Agents.jl.

Mesa Agents.jl

1 agent 91 s 0,5 s
32 agents 48 min 2,5 s
2048 agents 52 h 155 s

4.2 Benchmark Results

Mesa required about 160 MB for agent counts up to 2048, while Agents.jl used
between 524 MB and 608 MB in this range, see Fig. 2. Mesa’s RAM footprint was
about four times smaller and more consistent than Agents.jl’s. In both cases, the
majority of the memory footprint appeared to be caused more by binaries and
libraries than the model and agent data. This manifested only at higher agent
counts of one million, as seen in Table 3. Run time for the models increased with
the number of agents: Mesa ran between 50 s (1 agent) and 52 h (2048 agents).
In Agents.jl the same computations took between 0.2 s and 5min, as displayed
in Table 4. Mesa is about a thousand times slower than Agents.jl when running
the simulations.

The multi-threading results (also depicted in Fig. 3) showed that run-time
decreased as thread count increased, particularly for higher agent numbers,
where eight threads were roughly twice as fast as one thread. However, the
scalability was not consistently linear, indicating factors such as resource con-
tention, parallelization overhead, or implementation limitations. For low agent
numbers, higher thread counts led to increased run-time, suggesting that the
optimal thread count is dependent on the simulation’s complexity and agent
count. Overall, Agents.jl demonstrates promising vertical scalability, but further
optimization is necessary for efficient resource utilization. Based on our evalu-
ation and experience during the simulation of our use case, we have concluded
that Agents.jl is the most suitable platform for implementing our model. One

Fig. 2. Used RAM Comparison. Fig. 3. Median Run Time Comparison.
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of the key factors that led us to this conclusion is the impressive runtime speed
we observed while using Agents.jl. It has demonstrated superior performance in
handling the computational demands of our simulation, making it the preferred
choice among the evaluated platforms.

5 Conclusion

In this paper, we conducted a study on various MAS development platforms
with the aim of selecting the most suitable candidate for modeling a Multi-
Agent Simulation of Intelligent Resource Regulation in the context of Integrated
Energy and Mobility. We considered both general (G1-G7) and domain-specific
(D1-D3) features during our evaluation process. Through this study, we identified
two final candidates, namely Mesa in Python and Agents.jl in Julia. To assess
their suitability for our project, we developed a MVP in these two platforms
and evaluated their performance, speed, scalability, and memory footprint. Our
evaluation criteria also encompassed determining whether the platforms fulfill
our requirements for both general and domain-specific features.

While Mesa had a smaller memory footprint and a larger community,
Agents.jl offered significantly better runtime performance, which was nearly a
thousand times faster in some cases. Considering these factors, we concluded that
Agents.jl in Julia was the most suitable framework for our project. Its superior
performance, ability to scale with larger models, and integration with Python
code make it a solid choice for implementing our intelligent resource regulation
model.
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