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Abstract. In this exploratory work, we provide a general framework,
based on Depth-Bounded Boolean logic, for addressing some of the crit-
icisms towards Savage’s approach to the foundations of decision theory.
We introduce a sequence of approximating preferences structures and
show that, under suitable conditions such preferences give rise to a qual-
itative probability which is almost representable by a finitely additive
probability.

1 Introduction

In his seminal work, first published in 1954, and revisited in 1972 [15], Savage
laid down a foundational framework for decision-making under uncertainty. His
system is based on acts, which are rendered as functions mapping states into
outcomes, and on preferences on such acts, which need to obey certain rationality
axioms.

Savage’s general setup, as well as his axioms, have been since subjected to
wide scrutiny and criticisms. Much controversy has been raised in particular
on the so-called Sure-Thing Principle (STP), that allows an agent to reach a
preference by decomposing it in preferences over two mutually exclusive and
jointly exhaustive subcases. In Savage’s words, the principle is motivated as
follows:

A businessman contemplates buying a certain piece of property. He con-
siders the outcome of the next presidential election relevant. So, to clarify
the matter to himself, he asks whether he would buy if he knew that the
Democratic candidate were going to win, and decides that he would. Sim-
ilarly, he considers whether he would buy if he knew that the Republican
candidate were going to win, and again finds that he would. Seeing that he
would buy in either event, he decides that he should buy, even though he
does not know which event obtains, or will obtain, as we would ordinarily
say [15].

The purpose of this work is to provide a logical perspective, both on Sav-
age’s well-known framework [15] for the foundation of decision theory, and on
its criticisms, arising from the famous scenarios presented by Ellsberg [10] and
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Allais [1]. Both of these scenarios provided patterns of preferences deemed plau-
sible, and yet conflicting with Savage’s axioms, in particular with the Sure-Thing
Principle.

The key observation behind this work is the similarity of STP with what in
classical logic is known as the Principle of Bivalence (PB). To clarify the meaning
of PB, we first present it as a rule in natural-deduction style, as follows [9]:

[ϕ]
.
.
.
ψ

[¬ϕ]
.
.
.
ψ

(PB)
ψ

meaning that, to infer the formula ψ, it suffices to infer it both under the assump-
tion that ϕ is the case and under the assumption that ¬ϕ is the case. The square
brackets around the formulas ϕ and ¬ϕ signal that those are pieces of informa-
tion assumed for the sake of deriving ψ, but not actually held true (they are
discharged, in natural deduction terminology). Following [4], we call this type of
information hypothetical, in contrast to the actual information held by an agent.
Let us note that the inference rule (PB) is also called a “logical” sure-thing
principle in [2], where analogies and differences with STP are analyzed. In par-
ticular, [2] stresses that “STP is a desideratum of rational behavior, but not
logically necessary”, as is the case instead for PB.

In the light of the development of various non-classical logics, considering PB
as logically necessary, without further qualification, is not enough. In particular,
choosing suitable pieces of hypothetical information for its application in logical
deductions, is a complex matter. This may play an important role in decision-
making, as we illustrate in the following.

Example 1. You have an urn with balls that are numbered 1–100, and are colored
in unknown proportions. Three balls with numbers x1, x2, x3 are extracted from
the urn. You are told that x2 = x1 + 1 and x3 = x2 + 1. Ball number x1 is red
and ball number x3 is blue. You have to choose among the following:

– h: You earn 100 euro, if x2 = x1 + 1 and x3 = x2 + 1, 0 otherwise.
– h′: You earn 110 euro if it holds that, among the extracted balls

(δ): “a red ball and a non-red ball have numbers that differ by 1”, 0
otherwise.

The information provided is sufficient to assess that h always returns the payoff
100. It might be however less obvious that also h′ will always return the highest
payoff 110. It suffices to reason by cases: if x2 is red, then, since x3 = x2 +1 and
x3 is not red, δ holds. On the other hand, if x2 is not red, since x2 = x1 + 1 and
x1 is red, δ still holds.

We find it plausible that agents might prefer h to h′, although the payoff for
h′ is higher than that for h, and both are certain for the agent. In support of this
conjecture, note that in empirical research [18], under similar information, over
80% of subjects claimed that it is impossible to determine whether an assertion
of the same logical form as δ is true.
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We might say that, in the above example, an agent preferring h to h′ is behaving
irrationally, or is perhaps attributing a cost to the very act of doing inferences, a
cost which is not immediately captured neither by classical logic, nor by Savage’s
standard decision-theoretic framework.

PB is indeed costly for realistic agents, and bounding its use makes logical
inference tractable, in the sense of computational complexity [17], in contrast
to the intractability (under the usual P �= NP assumption) of classical proposi-
tional logic.

This observation is at the core of a family of logical systems, dubbed Depth-
Bounded Boolean logics [8] (DBBLs), which allow only for a limited application
of PB, and provide tractable approximations of classical logic.

Building on previous work on uncertainty measures in DBBLs [3,4], we intro-
duce in the following a sequence of preferences approximating Savage’s frame-
work, which are based on the limited use of PB and hypothetical information.

This setting allows us to provide a unified account of Savage’s axioms, and of
the preferences in Allais, in Ellsberg, and in Example 1 above. All such prefer-
ences will be considered indeed compatible with (our reformulation of) Savage’s
axioms, and in particular with the Sure-thing principle, but only at the lowest
level of our sequence, where no use of hypothetical information is permitted.
Furthermore, following Savage, we show that the sequence of approximating
preferences determines a finitely additive measure, in the limit.

The paper is further structured as follows. In Sect. 2 we present our analysis
of actual and hypothetical information, based on DBBLs. Section 3 introduces
our sequence of approximating preference relations, provides a reformulation of
some of Savage’s basic axioms in that setting, and analyzes our main examples.
Section 4 provides the conditions under which the sequence of approximating
preferences determines a finitely additive measure in the limit. Finally, we pro-
vide some conclusions and hints at future work.

2 Hypothetical and Actual Information

Before proceeding, we briefly fix some notation. We consider a propositional
logical language L, with the usual classical connectives ∧,∨,→,¬ and set of
propositional variables {p1, . . . , pn, . . . }. The set of formulas will be denoted by
Fm, and lowercase Greek letters will be used to refer to formulas. We denote by
S(ϕ) the set of subformulas of ϕ.

We now recall some crucial ideas of the DBBLs, mentioned in the intro-
duction. These logics permit to distinguish between actual and hypothetical
information in logical deduction, and determine a hierarchy, with a parameter k
measuring the amount of allowed nested use of hypothetical information.

The 0-depth logic, which will be our main focus here, is a logic that does
not allow any application of PB, and is thus concerned only with the manip-
ulation of actual information. This logic is proof-theoretically defined in terms
of the INTroduction and ELIMination (INTELIM) rules in Table 1. The rules
are defined for each connective, both when occurring positively (as the main
connective of a formula) and negatively (in the scope of a negation).
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Table 1. Introduction and Elimination rules.

ϕ ψ

ϕ ∧ ψ
(∧I) ¬ϕ

¬(ϕ ∧ ψ)
(¬ ∧ I1)

¬ψ

¬(ϕ ∧ ψ)
(¬ ∧ I2) ¬ϕ ¬ψ

¬(ϕ ∨ ψ)
(¬ ∨ I)

ϕ

ϕ ∨ ψ
(∨I1) ψ

ϕ ∨ ψ
(∨I2)

ϕ ¬ϕ

⊥ (⊥I) ϕ
¬¬ϕ (¬¬I)

ϕ ∨ ψ ¬ϕ

ψ
(∨E1) ϕ ∨ ψ ¬ψ

ϕ (∨E2)

¬(ϕ ∨ ψ)
¬ϕ (¬ ∨ E1)

¬(ϕ ∨ ψ)

¬ψ
(¬ ∨ E2)

ϕ ∧ ψ
ϕ (∧E1)

ϕ ∧ ψ

ψ
(∧E2)

¬(ϕ ∧ ψ) ϕ

¬ψ
(¬ ∧ E1) ¬(ϕ ∧ ψ) ψ

¬ϕ (¬ ∧ E2)

¬¬ϕ
ϕ (¬¬E) ⊥

ϕ (⊥E)

We note in passing that the logic has also a non-deterministic semantics,
with evaluations capturing the information actually held by an agent rather
than truth, as a primitive notion [7].

The rules encode the principles for the manipulation of information actually
possessed by an agent, for each of the connectives of the language. We refer
to [7,8] for further details and motivation. The 0-depth consequence relation is
defined as follows.

Definition 1. Let T ∪ {ϕ} ⊆ Fm. T �0 ϕ if there is a sequence of formulas
ϕ1, . . . , ϕm such that ϕm = ϕ and each ϕi is either in T or it is obtained by an
application of the rules in Table 1 from formulas ϕj with j < i.

Note that, by direct inspection of the rules in Table 1, we have ��0 p ∨ ¬p. In
fact, this logic, which is strictly weaker than classical logic, has no tautologies
at all. The relation �0 captures inferences that are “trivial” in their reliance
solely on actual information. This is also reflected computationally, by the fact
that, in contrast to classical propositional logic, �0 can be checked in polynomial
time [8].
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While 0-depth logic permits only to represent actual information, and lack
thereof, classical logical proofs also involve reasoning about hypothetical infor-
mation. Consider again ��0 p ∨ ¬p. It can be easily shown that, on the other
hand, p �0 p∨¬p and ¬p �0 p∨¬p. Hence, we can show that p∨¬p is derivable
just by one application of PB, using the hypothetical information p and ¬p. In
DBBLs this amounts to saying that �1 p ∨ ¬p. The consequence �k for k > 0 is
formally defined as follows, see also [8].

Definition 2. Let k > 0. Then T �k ϕ if there is a ψ ∈ S(T ∪ {ϕ}) such that
T, ψ �k−1 ϕ and T,¬ψ �k−1 ϕ.

The parameter k is thus a “counter” which keeps track of how many nested
instances of reasoning by cases are needed for the agent to decide a sentence of
interest.

In this work we use only 0-depth logics, to deal with actual information,
alongside with a sequence of (depth-bounded) forests, to represent the further
hypothetical information which may be used by an agent.

Let us recall the notion of depth-bounded forests, in a slightly modified form
from [4]. We start with a set Supp ⊆ Fm∪{∗}, which represents the information
explicitly provided to the agent. The symbol ∗ is meant to the represent the
absence of any information. Supp collects background information, which may
be of the form “γ holds”, or “the probability of γi is pi” where pi may be the
frequency or objective chance of γi. If no such information is available to the
agent, we let Supp = {∗}. We further impose that for any α, β ∈ Supp, such that
α �= ∗, β �= ∗ we have1 α, β �0 ⊥.

Depth-bounded forests are built, starting from Supp and suitably expand-
ing the nodes with two new children nodes, representing an instance of PB
obtained by considering a certain piece of hypothetical information and its nega-
tion, respectively.

In the following, for any formula γ ∈ Fm, we say that γ decides δ if γ �0 δ or
γ �0 ¬δ. By the depth of a node in a forest, in the usual graph-theoretic sense,
we mean the length of the path from the root of a tree in the forest to the node.
We then say that a leaf α is closed if α 0-decides each formula δ ∈ S(α). A leaf
which is not closed is said to be open.

Definition 3. Let Supp ⊆ Fm∪{∗}. We define recursively, a sequence (Fk)k∈N

of depth-bounded forests based on Supp (DBF, for short), as follows:

1. For k = 0 we let F0 be a forest with no edges, and with the set of vertices
equal to Supp2.

2. The forest Fk, for k ≥ 1 is obtained expanding at least one leaf α of depth k
as follows:
– if α is open, with two nodes α ∧ β and α ∧ ¬β where β is an undecided

subsentence of α.
1 This assumption is actually dispensable [4], but simplifies the formulation of our
main definitions and results.

2 Clearly, Supp is the set of leaves of F0.
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– Otherwise, if α is closed, with two nodes α∧β and α∧¬β, where β ∈ Fm
is a sentence whose variables do not already occur in Supp∪ {α}, if there
are any.

Let us notice that, when F is defined over a language Fm with finitely many
propositional variables, the DBF may be expanded only up to a certain Fk. In
what follows, given a DBF (Fk)k∈N we will denote by Suppk the set of leaves of the
forest Fk. This represent the information which is available to an agent capable
of making k nested use of reasoning by cases. This information will be available
to the agent for probabilistic quantification and evaluation in considering which
actions to take.

3 Approximating Preferences

Our framework for preference comprises, as Savage’s original one, a set of states
St, a set of outcomes O, and a set of acts A. The idea is that each act f ∈ A is
a function f : St → O.

However, we depart from Savage in various respects, in that we focus on the
logical language used to represent states, rather than the more usual set-theoretic
presentation.

First, we think of the set of states St as evaluations of the formulas of our
logical language, of the form v : Fm → {0, 1}.

Given any f ∈ A and S ⊆ St we denote by fS the restriction of f to S. Note
that a function fS is to be interpreted as the function f when the outcomes
outside S are disregarded, but it does not amount to conditioning on S, i.e. to
consider the action upon the assumption that S is true, as is done e.g. in [13].
This means that, in determining, say whether fS is preferred to gT , both the
outcomes and how likely are taken to be S, T matter.

We are now ready to reformulate some of the Savage’s axioms in our setting.
We focus first on those that deal with preference exclusively, without concern for
their role in justifying a probabilistic representation of an agent’s belief. Recall
that A ⊆ OSt and let  by a binary relation over A, standing for a preference
between acts. Then, we require, as in Savage P1 [15]:

A1  is a total pre-order, i.e. reflexive and transitive, over A

We then formulate a weak form of the sure-thing principle, which is closer to
Savage’s informal presentation [15] than to his own axiom P2.

A2 (Sure-thing). The following rules are satisfied:

fS  gS fT  gT

fS∪T  gS∪T

fS � gS fT  gT

fS∪T � gS∪T

for any S, T ⊆ Fm with S ∩ T = ∅.

The third axiom is an adaptation of Savage’s state independence P3. Before
presenting it, let us recall that a set S is said to be non-null if there are at least
two acts fS , f ′

S ∈ A with fS � f ′
S .
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A3 (State independence). Let S ⊆ St be non-null. Then  satisfies the following
rule:

f(S) = f ′(St) = {x} g(S) = g′(St) = {y} f ′  g′

fS  gS

Definition 4 (Consistent Preference Structure). Let A ⊆ OSt and  be a
binary relation over A. We say that (A,) is a consistent preference structure
iff it satisfies axioms A1-A3 above.

So far, we have only reformulated Savage’s axioms, in a framework which is
more congenial to our logical construction. Our key contribution is however, for-
malizing acts, as seen from the point of view of an agent with bounded inferential
resources. Towards this purpose, we assume that the agent does not have direct
access to the state space St of A, but only to some information, in a syntactic
format, that she has to elaborate upon.

The actual, explicit information, provided to the agent, is here encoded by
a set Supp ⊆ Fm. On the other hand, the information that she has to (via a
reasoning effort) hypothesize about will be rendered by the set of leaves Suppk

of a suitable DBF, say F = (Fk)k∈N
which is built starting from Supp.

Now we can express what it means for an agent to access the acts via some
pieces of (actual and/or hypothetical information). First, let us define

bk(ϕ) = {α ∈ Suppk | α �0 ϕ}

and
plk(ϕ) = {α ∈ Suppk | α ��0 ¬ϕ}

in analogy with the notion of belief and plausibility function in the theory of
Dempster-Shafer belief functions [16]. The set bk(ϕ) collects all the pieces of
information that have been explored by the agent up to depth k, that allow her
to immediately (i.e. via �0, without using PB) infer ϕ. On the other hand, plk(ϕ)
collects the pieces of information at depth k that do not immediately exclude ϕ.

For any f ∈ A, f : St → O we will denote by fk : Suppk → P(O) the function
associating to each piece of information α ∈ Suppk the following subset of O:

fk(α) := f({v ∈ St | v(ϕ) = 1, for each ϕ such that α ∈ plk(ϕ)} ⊆ O

Note that a formula α is here mapped into the set of outcomes which are
not excluded by α. This is because α, which represent a piece of information
the agent can actually consider, need not to correspond to a state St (i.e. a
logical evaluation assigning a truth value to each formula), and might not provide
enough information to determine which particular outcome obtains.

Furthermore, for any S ⊆ Suppk, we denote by fk
S the restriction of fk to

S. Note that S is here taken to be a subset of formulas in Suppk, rather than a
subset of the states, i.e. of evaluations.

Definition 5 (Consistent k-Preference Structure). Let A ⊆ OSt. We say
that (Ak,k) is a consistent k-preference structure iff
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– Ak contains fk
S for each S ⊆ Suppk, f ∈ A

– (Ak,k) is a consistent preference structure, i.e. it satisfies A1–A3 above.

We are now ready to define our notion of approximating sequence.

Definition 6. Let F = (Fk)k∈N be a DBF sequence, and A ⊆ OSt. We say that
P = (Ak,k)k∈N is an approximating preference sequence (APS, for short) iff:

– For each k ∈ N, (Ak,k) is a consistent preference structure.
– For every k ∈ N, and every ϕ,ψ ∈ Fm, f, g ∈ Supp, we have that fk k gk

implies fk′ k′ gk′
for every k′ ≥ k.

The second condition says that, as k increases, the agent can refine, but cannot
revise previously determined preferences. Let us test now our notion of APS
with the well-known examples of Ellsberg and Allais. To ease notation, in the
following we will often slightly abuse the notation, writing directly f k g instead
of fk k gk.

Example 2 (Ellsberg). Suppose that an agent is presented an urn filled with balls,
and is provided the information that 2/3 of the balls are either yellow or blue
(Y ∨B), and the remaining 1/3 are red (R). A ball will be extracted from the urn
and an agent is confronted with a choice between acts f, g, h, j. The following
table summarizes the setup in the standard Savage framework, where states are
represented in the columns, the available acts in the rows, and the cells contain
the monetary outcome, say in euros.

Table 2. Ellsberg’s one urn scenario.

R Y B

f 100 0 0

g 0 100 0

h 100 0 100

j 0 100 100

Ellsberg [10] points out that the strict preferences f � g and j � h are
plausible: agents will typically prefer, ceteris paribus, a bet whose states they
can quantify probabilistically (R and Y ∨B for the acts f and j) over one where
this is not the case (Y and B for the acts g and j). In other words, they will
display a form of ambiguity aversion [12].

On the other hand, these preferences are in violation of Savage STP. Indeed,
if we ignore what happens in case a blue ball (B) is picked (i.e. we ignore the third
column in Table 2), and we assume that the preference for a payoff of 100 euros
is independent of the state in which it occurs, the agent should be indifferent
between acts f and h, and g and j. Furthermore, both, f and g, and h and j
give the same payoff for B, i.e. 0 and 100, respectively. According to the STP
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then, a preference for f over h dictates a preference for g over j, in contrast to
Ellsberg’s preferences.

Let us now formalize the example in our setting. We take a finite language
over the variables {Y,B,R} which stand for the event that a yellow, blue, red
ball is picked, respectively. We denote by γ the sentence expressing the fact that
Y,B,R are mutually exclusive and jointly exhaustive. We build a DBF and an
APS as follows. We let Supp = {(Y ∨B)∧γ,R∧γ}, since those are the formulas
upon which the agent is provided probabilistic information, and A = {f, g, h, j}.
It is easy to show that for any such formula α ∈ Supp we have pl0(α) = {α}. The
acts f, g, h, j are again defined as in Table 2. Assume that f �0 g and j �0 h. We
may consider a decomposition of such preferences only via the formulas in Supp.
We have (omitting the formula γ, for simplicity): gY ∨B �0 fY ∨B , fR �0 gR,
jY ∨B �0 hY ∨B, and hR �0 jR. These preferences, together with f �0 g and
j �0 h, do not contradict axiom A2, i.e. our reformulated version of the Sure-
thing principle. Note that, since Y ∨ R and B are not formulas of Suppk, the
functions say fY ∨R, hY ∨R, gY ∨R, jY ∨R and fB, hB , gB , jB are not defined.

Now, let us consider the expansion of Supp to a 1-depth forest F1, and the
corresponding 1-depth preference structure over Supp1. Notice that the node
R ∧ γ in Supp is already closed, and thus need not be expanded. We expand
instead the open node (Y ∨ B) ∧ γ as follows (we omit γ for simplicity):

Y ∨ B

Y B

R

Consider the preference structure (A1,1). With a little abuse of notation,
since ((Y ∨ B) ∧ γ ∧ Y ) �0 Y , ((Y ∨ B) ∧ γ ∧ ¬Y ) �0 B and R ∧ γ �0 R, we just
write the formula on the right Y,B,R instead of the corresponding formula on
the left, which belongs to Supp1.

Note that, at depth 1, the preferences f �1 g and j �1 h are not allowed
by Definition 5. By state independence, we have indeed that f{Y } ≈1 h{Y },
f{R} ≈1 h{R} and g{Y } ≈1 j{Y }, g{R} ≈1 j{R}. On the other hand, we have
f{B} ≈1 g{B}, and h{B} ≈1 j{B}, while j{B} � f{B}.

Now, let us further assume that f{Y }∪{R} �1 g{Y }∪{R}. By the previous
equivalences, we may use A2 to get h{Y }∪{R} � j{Y }∪{R}. By the latter, since
we also have h{B} ≈1 j{B} we may use A2 to obtain h �1 j, which is contrary
to the initial assumption j �1 h.

Let us now assume g{Y }∪{R} 1 f{Y }∪{R}. Since fB ≈1 gB , by state inde-
pendence, we obtain by A2, g = g{Y }∪{R}∪{B} 1 f{Y }∪{R}∪{B} = f , again
contradicting the initial assumption that f �1 g. In both cases we derived a
contradiction with one of the assumptions f �1 g and j �1 h.

Example 3 (Allais). Assume you have an urn containing balls numbered from
1 to 100, and a ball will be extracted from the urn. You are offered a choice
between the following acts, which are represented in the following table.
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Table 3. Allais.

1 2–10 11–100

f 100 100 100

g 0 500 100

f ′ 100 100 0

g′ 0 500 0

Allais deems the strict preferences f � g and g′ � f ′ plausible, although they
conflict with the sure-thing principle. Indeed, the pairs of acts f and g, and f ′

and g′ have the same outcome, in case balls 11-100 are extracted, namely 100
for the first pair, and 0, for the second. By the sure-thing principle, since the
acts f and f ′, and g and g′ have the same outcomes for each extracted ball, f
can be preferred to g, if and only f ′ is preferred to g′.

We formalize this scenario in our setting, building a DBF and an
APS. It suffices to consider a finite language over three variables, namely
{p1, p2−10, p11−100}, standing for the numbers on the extracted ball. We let
Supp = {γ} where γ encodes the fact that p1, p2−10, p11−100 are mutually
exclusive and jointly exhaustive. We further let A = {f, g, f ′, g′}, where the
acts are defined as in Table 3. At depth 0, we may only compare fγ , gγ , g′

γ , f ′
γ ,

since Supp = {c}. Hence, we may have f 0 g and g′ 0 f ′, since no appli-
cation of A2 can be performed. At depth 1, we replace Supp with Supp1 =
{γ ∧ ¬p11−100, γ ∧ p11−100}. We omit γ in the following for simplicity. We
have f¬p11−100 ≈1 f ′

¬p11−100
, g{¬p11−100} ≈1 g′

{¬p11−100}, and on the other hand
fp11−100 ≈1 gp11−100 and f ′

p11−100
≈1 g′

p11−100
. By A2 we immediately get that

fSupp1
1 gSupp1

iff f ′
Supp1

1 g′
Supp1

, contrary to the Allais’ preferences.

Finally, we address Example 1 in our formal setting.

Example 1 (continued). We denote:3 by pin the assertion “xi = n′′; by qij , the
assertion “xi = xj + 1′′ and finally by ri the assertion “the ith extracted ball is
red”. The initial information provided to the agent is Supp = {γ}, where by γ we
denote the formula r1 ∧ ¬r3 ∧ q12 ∧ q23 ∧ ∨100

k=1 p1k. The formula δ in Example 1
is encoded instead as: ∨

i,j∈{1,2,3}
i�=j

ri ∧ ¬rj ∧ qij .

We take A = {h, h′}, where h, h′ are defined as in Example 1, with h(γ) = {100}
and h(¬γ) = {0}, and h′(δ) = {110}, h′(¬δ) = {0}. Now, in A0 we may compare
h0 and h′0, which both have Supp = {γ} as their domain. We have then h0(γ) =
{100} and h′0(γ) = h′({δ,¬δ}) = {110, 0} since γ ��0 δ. Hence we may still allow

3 We use a propositional language, to fit the simple general framework put forward in
this work, although we might have a more compact representation in a first-order
language.
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h �0 h′. On the other hand, if we consider the 1-depth forest (actually, tree)
expanding Supp = {γ} as follows:

γ

γ ∧ r2 γ ∧ ¬r2

we now have that both h′1(γ ∧ r2) = {110} and h′1(γ ∧ ¬r2) = {110}, since
γ ∧ r2 �0 δ and γ ∧ ¬r2 �0 δ. Hence h′1 is constantly equal to 110. On the other
hand h1 is still constantly equal to 100, and assuming that 110 is preferred to
100, we may only have h′ 1 h, by state independence.

4 Qualitative Probability and Representation

So far, we have build up the general framework and illustrated how it takes into
account various alleged counterexamples, and criticisms of Savage’s approach.
In particular, our setting shows that a form of idealization is at play in Savage’s
setting, in essentially disregarding the cost of reasoning by case.

This does not preclude to obtain as a limit, idealized case, Savage’s elegant
mathematical result, in our framework. Let us recall that one of the main advan-
tages of Savage’s framework is its representation theorem for expected utility,
which is obtained on the basis of his axioms on preferences among acts. While we
are still not able to recover the full representation of expected utility in the limit,
in our setting, we will focus here on an important intermediate step towards this
result, which has an independent foundational interest.

Let us recall that, on the way to his representation theorem, Savage first
manages to obtain a measure of probability, only on the basis of preferences
among acts. This is done in two steps: first he derives, from the preference of an
agent, an ordering reflecting how likely the agent finds the events of interest, i.e.
a qualitative probability. Subsequently, he extracts from this relational structure
a unique numerical probability representing it.

Let us now recall the notion of qualitative probability over arbitrary boolean
algebras, and that of representability, and adapt them to our setting.

Definition 7 (Qualitative probability). Let B = (B,�,∧,∨,¬,⊥,�) be a
boolean algebra. (B,�) is a qualitative probability if

1. � is a total preorder over B;
2. � � ⊥;
3. if α � β then α � β and
4. if α ∧ γ = ⊥ and β ∧ γ = ⊥, then α � β if and only if α ∨ γ � β ∨ γ.

Since our sequences are built syntactically, we will use here a different, syn-
tactic definition of qualitative probability.
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Definition 8 (synctactic qualitative probability). Let Fm be the set of
formulas over the language L. (Fm,�) is a (syntactic) qualitative probability if

1. � is a total preorder over Fm;
2. � � ⊥;
3. if β � α then α � β and
4. if α ∧ γ � ⊥ and β ∧ γ � ⊥ then

α � β if and only if α ∨ γ � β ∨ γ.

The two notions are essentially equivalent. Indeed, if we are given a (syn-
tactic) qualitative probability (Fm,�), we may just define a qualitative prob-
ability by quotienting over the logically equivalent formulas, i.e. building the
Lindenbaum-Tarski algebra and suitably adapting the � relation to the equiva-
lence classes. Let us now recall the following, see e.g. [15].

Definition 9 ((Almost) Representability). A qualitative probability (B,�)
is said to be

– representable if there exists a unique4 finitely additive probability P such that
α � β iff P (α) ≥ P (β)

– almost representable, if there exists a unique finitely additive probability P
such that α � β implies P (α) ≥ P (β).

Savage considers in his system a specific axiom P4 for the purpose of extract-
ing a qualitative probability from preference, and a further axiom P6 for the
purpose of representability. In our framework, we obtain qualitative probabilities
and representability via a slightly different route, inspired by the reformulation
of P4 in [6].

First, we will define a sequence of comparative beliefs, determined by an APS.

Definition 10. Let F = (Fk)k∈N be a DBF and (Ak,k)k∈N be an APS. We
call comparative plausibility �k determined by k, the relation �k defined, for
any ϕ,ψ ∈ Fm by:

– ϕ �k ψ if fk
ϕ k gk

ψ, for each fk, gk ∈ Suppk such that fk(ϕ) = gk(ψ) = {x}
for some x ∈ O.

– ϕ �k ψ if plk(ϕ) ⊇ plk(ψ).
– � �k ⊥
The idea is that, when we consider acts that have the same outcome, over dif-
ferent pieces of information, the preferences of an agent for one act over the
other, only reflects how likely she finds the piece of information to occur. More
concretely, if an agent prefers a bet giving her 5 euros if tomorrow it rains, to a
bet giving her 5 euros if tomorrow it will be sunny, this can only mean (if she is
rational) that she finds rainy weather more likely than sunny weather.

4 Uniqueness is typically nor requested in the definition of representability and almost
representability in the literature.
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Note that the definition ensures that �k is not empty, hence in particular it
encodes Savage’s axiom (P5).

We now give conditions on an APS, to obtain from the sequences of �k,
a qualitative probability in the limit. Before that, we recall, adapting from [4]
what we mean by limit.

Definition 11 (Limit structures). Take a DBF and let F = (Suppk,�k)k∈N

be a sequence of relational structures, where each �k is a binary relation over
Fm. We say that the structure (Fm,�) is the limit of F , where

ϕ � ψ iff there is a k such that ϕ �n ψ, for every n ≥ k.

Definition 12. We say that an APS P = (Ak,k)k∈N over a DBF F =
{Fk}k∈N is:

– Belief-determining iff:
• For any ϕ,ψ ∈ Fm there exists a k ∈ N such that either ϕ �k ψ or

ψ �k ϕ.
– Refinable if whenever α �k β for some α, β ∈ Suppk and k ∈ N, there is a

k′ ≥ k such that

β �k′ γ for every γ ∈ Suppk′ that is a descendent of α.

– Coverable if whenever α �k β for some α, β ∈ Suppk and k ∈ N, there is a
k′ ≥ k and γ ∈ Suppk′ such that γ ∧ α � ⊥ and

α ∨ γ ��k′β

The condition of being belief-determining is our reformulation of axiom P4 in
Savage, which is here considered as an axiom of a whole APS, rather than of
each Consistent k-Preference Structure, as we did instead for A1–A3. By this
condition, indeed, �k determines a total order in the limit.

We are now ready to provide our main result.

Theorem 1. Let P be an APS over a DBF F with Supp = {∗}. If P is belief-
determining, then the limit (Fm,�) of (Fk,�k)k∈N is a qualitative probability.

Proof. Let us start by showing that, if ψ � ϕ, then ϕ � ψ. From ψ � ϕ, we get
¬ϕ � ¬ψ. We thus have a derivation of ¬ψ from ¬ϕ, by using the rules of �0 and
applications of PB. Let k ∈ N be such that for any n ≥ k, the set Suppn collects
all the premises of the applications of PB in the proof of ¬ψ from ¬ϕ. Hence,
for each α ∈ Suppn, if α �0 ¬ϕ, then α �0 ¬ψ, that is, if α ��0 ¬ψ, then α ��0 ¬ϕ.
Hence pln(ϕ) ⊇n pln(ψ), for n ≥ k. This entails, by Definition 10, ϕ �n ψ, for
each n ≥ k, hence ϕ � ψ.

We now show that the relation is total. Take ϕ,ψ ∈ Fm. Now, since P is
belief determining, there is a k such that ϕ �k ψ or ψ �k ϕ. Assume the first
is the case. Since P is an APS, we will also have that, for any n ≥ k, ϕ �n ψ,
hence in particular ϕ � ψ.
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Transitivity and reflexivity are immediate, since they follow by A1 for k,
and the fact that P is an APS.

As for additivity, suppose that ϕ ∧ χ � ⊥ and ψ ∧ χ � ⊥. We will show that
ϕ � ψ iff ϕ ∨ γ � ψ ∨ γ. Let k be such that each α ∈ Suppk is closed. We have
that ϕ ∨ χ �k ψ ∨ χ iff ϕ �k ψ (adapting the proof of Lemma 11(5) in [4]).
By the definition of �k, this means that for each f, g such that fk(ϕ ∨ ξ) =
gk(ϕ ∨ ψ) = {x} we have fϕ∨ξ k gψ∨ξ. On the other hand, by the reflexivity
of k (A1), we have fξ k fξ and gξ k gξ. Hence, by A2 f{ϕ}∪{ξ} k f{ψ}∪{ξ}
iff fϕ k gψ. But the latter amounts at saying that ϕ �k ψ, and the same will
hold for any n ≥ k. Hence we have finally obtained ϕ � ψ iff ϕ ∨ ξ � ψ ∨ ξ.

Finally, adapting from [4], we have that, under the refinability and coverability
conditions described above, an APS determines a (almost) representable quali-
tative probability.

Corollary 1. Let P be a belief-determining APS.

– If P is refinable, then its limit is almost representable, in the case AL is
infinite.

– If P is coverable then its limit is representable, in the case AL is finite.

Proof. Follows from Theorem 1, and Theorem 20 and 22 in [4].

5 Conclusion

We have introduced a logic-based framework for preference, which approximates
Savage’s framework, on the basis of the bounded use of hypothetical information.
Our approach accommodates in a unified way various traditional challenges to
Savage, in particular concerning the Sure-thing principle. Despite their differ-
ences, in all the examples considered, we have found indeed a similar pattern:
some preferences may be accepted at the bottom level of our sequence, i.e. 0,
but they turn out to be inconsistent with Savage-style axioms, when consid-
ering k for k > 0, i.e. when suitable hypothetical information is taken into
account. Since DBBLs are computationally tractable, a further natural direction
of research for our work is in the computational complexity issues related with
the reasoning with the resulting measures of comparative probability. In partic-
ular, we aim to compare our setting with other approaches to decision theory,
which are logically (in particular, syntactically) and computationally inspired,
such as that pursued in [5].

Future work will provide suitable representation theorems for preferences in
our framework, in terms of generalized expected utility, both at each level of
the approximating sequence, and in the limit. This will be compared with the
literature on decision-making under uncertainty, based on weakenings of axioms
in the Anscombe-Aumann framework [11]. We further plan to consider logical
systems where the preference relation k is taken to be part of the language,
and investigate their properties, with the aim of obtaining tractable logics of
preference.
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