
Vadim Malvone
Aniello Murano (Eds.)

 123

LN
AI

 1
42

82

20th European Conference, EUMAS 2023
Naples, Italy, September 14–15, 2023
Proceedings

Multi-Agent Systems

Lecture Notes in Computer Science

Lecture Notes in Artificial Intelligence 14282
Founding Editor
Jörg Siekmann

Series Editors
Randy Goebel, University of Alberta, Edmonton, Canada
Wolfgang Wahlster, DFKI, Berlin, Germany
Zhi-Hua Zhou, Nanjing University, Nanjing, China

The series Lecture Notes in Artificial Intelligence (LNAI) was established in 1988 as a
topical subseries of LNCS devoted to artificial intelligence.

The series publishes state-of-the-art research results at a high level.Aswith theLNCS
mother series, the mission of the series is to serve the international R & D community
by providing an invaluable service, mainly focused on the publication of conference and
workshop proceedings and postproceedings.

Vadim Malvone · Aniello Murano
Editors

Multi-Agent Systems
20th European Conference, EUMAS 2023
Naples, Italy, September 14–15, 2023
Proceedings

Editors
Vadim Malvone
Télécom Paris
Paris, France

Aniello Murano
Universitá degli Studi di Napoli Federico II
Naples, Italy

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Artificial Intelligence
ISBN 978-3-031-43263-7 ISBN 978-3-031-43264-4 (eBook)
https://doi.org/10.1007/978-3-031-43264-4

LNCS Sublibrary: SL7 – Artificial Intelligence

© The Editor(s) (if applicable) and The Author(s), under exclusive license
to Springer Nature Switzerland AG 2023

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors, and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the
editors give a warranty, expressed or implied, with respect to the material contained herein or for any errors
or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

Paper in this product is recyclable.

https://doi.org/10.1007/978-3-031-43264-4

Preface

This volume constitutes the proceedings of the 20th European Conference on Multi-
Agent Systems (EUMAS 2023), held in September 2023 in Naples, Italy. In the past
two decades, we have seen an enormous increase of interest in agent-based computing
and multi-agent systems (MAS). This field is set to become one of the key intelligent
systems technologies in the twenty-first century. The EUMAS conference series aims
to provide the main forum for academics and practitioners in Europe to discuss current
MAS research and applications.

EUMAS 2023 followed the tradition of previous editions: Oxford 2003, Barcelona
2004, Brussels 2005, Lisbon 2006, Hammamet 2007, Bath 2008, Agia Napa 2009,
Paris 2010, Maastricht 2011, Dublin 2012, Toulouse 2013, Prague 2014, Athens 2015,
Valencia 2016, Evry 2017, Bergen 2018, Thessaloniki 2020 (virtual), Israel 2021 (vir-
tual), and Düsseldorf 2022. Like them, EUMAS 2023 aims to provide–in academic
and industrial efforts–the prime European forum for presenting, encouraging, support-
ing, and discussing activity in the research and development of multi-agent systems
as the annual designated event of the European Association for Multi-Agent Systems
(EURAMAS).We are grateful for the guidance provided by the EURAMAS Board.

The peer-review process carried out by the 83 Program Committee (PC) members
put great emphasis on ensuring the high quality of accepted contributions. These papers
were presented at EUMAS 2023 and are contained in this volume. Each submission
to EUMAS 2023 was peer reviewed by at least three PC members in a single-blind
fashion. Out of 47 submissions, the PC decided to accept 24 full papers and 5 short
papers for oral presentation. In addition, EUMAS 2023 was preceded by a Doctoral
Consortium (PhD Day) at which 16 talks were given by PhD students, who presented
their previous results, ongoing work, and future research plans. Sixteen short papers
summarizing such contributions to the PhD Day are also contained in this volume. We
thank Angelo Ferrando and Munyque Mittelmann for organizing the PhD Day, sifting
through the submissions, and selecting them for presentation.

In addition to the papers contained in this volume, the EUMAS 2023 program was
highlighted by two great keynote talks given by Orna Kupferman (Hebrew University,
Israel) and Ana Paiva (University of Lisbon, Portugal).

Among the accepted papers, chose the best ones based on their review scores during
the conference. The award recipients were invited to submit an extended version of their
outstanding papers for fast-track publication in the Journal of Autonomous Agents and
Multi-Agent Systems (JAAMAS). In addition, selected authors were invited to extend
their contributions for a special issue of SN Computer Science.

We thank the authors for submitting their work to EUMAS 2023; the PC members
of EUMAS 2023 as well as the additional reviewers for reviewing the submissions; the
participants for traveling to Naples, listening to and giving great talks, and making this
conference a wonderful event; the invited speakers for their excellent talks; the editors of
JAAMAS for inviting the award recipients to extend their papers and enjoy a fast-track

vi Preface

publication process; the editors of SN Computer Science for supporting a special issue
of extended selected papers; the local organizing committee; our sponsors; and Springer
for sponsoring the Best Paper Award.

July 2023 Vadim Malvone
Aniello Murano

Organization

Program Committee

Alessandro Abate University of Oxford, UK
Natasha Alechina Utrecht University, The Netherlands
Francesco Amigoni Politecnico di Milano, Italy
Carlos Areces Universidad Nacional de Córdoba, Argentina
Guy Avni University of Haifa, Israel
Reyhan Aydogan Delft University of Technology, The Netherlands
Matteo Baldoni Università di Torino, Italy
Cristina Baroglio Università di Torino, Italy
Nick Bassiliades Aristotle University of Thessaloniki, Greece
Francesco Belardinelli Imperial College London, UK
Raphaël Berthon RWTH Aachen University, Germany
Dietmar Berwanger CNRS, France
Antonis Bikakis University College London, UK
Vittorio Bilo University of Salento, Italy
Filippo Bistaffa IIIA-CSIC, Spain
Thomas Bolander Technical University of Denmark, Denmark
Vicent Botti Universitat Politècnica de València, Spain
Patricia Bouyer CNRS, France
Robert Bredereck TU Clausthal, Germany
Valentin Cassano Universidad Nacional de Córdoba, CONICET,

Argentina
Cristiano Castelfranchi Institute of Cognitive Sciences and Technologies,

CNR, Italy
Francesco Chiariello University of Naples Federico II, Italy
Paul Davidsson Malmö University, Sweden
Louise Dennis University of Manchester, UK
João Dias Faculty of Science and Technology, University of

Algarve, Portugal
Piotr Faliszewski AGH University of Science and Technology,

Poland
Angelo Ferrando University of Genoa, Italy
Nicoletta Fornara Università della Svizzera italiana, Switzerland
Tim French University of Western Australia, Australia
Maira Gatti de Bayser Microsoft, Brazil
Raffaella Gentilini University of Perugia, Italy

viii Organization

Charlotte Gerritsen Vrije Universiteit Amsterdam, The Netherlands
Nicola Gigante Free University of Bozen-Bolzano, Italy
Rica Gonen Open University of Israel, Israel
Valentin Goranko Stockholm University, Sweden
Umberto Grandi University of Toulouse, France
Davide Grossi University of Groningen, The Netherlands
Dimitar Guelev Bulgarian Academy of Sciences, Bulgaria
Zahia Guessoum LIP6, Sorbonne Université and Université de

Reims Champagne-Ardenne, France
Julian Gutierrez Monash University, Australia
Magdalena Ivanovska BI Norwegian Business School, Norway
Franziska Klügl Örebro University, Sweden
Panagiotis Kouvaros Imperial College London, UK
Martin Lackner Vienna University of Technology, Austria
Stéphane Le Roux ENS Paris-Saclay, France
Marin Lujak University Rey Juan Carlos, Spain
Vadim Malvone Télécom Paris, France
Jerusa Marchi Federal University of Santa Catarina, Brazil
Enrico Marchioni University of Southampton, UK
Nicolas Markey IRISA, CNRS & Inria & Univ. Rennes 1, France
Francisco S. Melo Instituto Superior Tecnico/INESC-ID, Portugal
Jakub Michaliszyn University of Wrocław, Poland
Marco Montali Free University of Bozen-Bolzano, Italy
Aniello Murano University of Naples Federico II, Italy
Pavel Naumov University of Southampton, UK
Gethin Norman University of Glasgow, UK
Andrea Omicini Alma Mater Studiorum–Università di Bologna,

Italy
Nir Oren University of Aberdeen, UK
Arno Pauly Swansea University, UK
Wojciech Penczek Institute of Computer Science of PAS, Poland
Laurent Perrussel IRIT - Universite de Toulouse, France
Mickael Randour F.R.S.-FNRS & UMONS - Université de Mons,

Belgium
Anna Helena Reali Costa Universidade de São Paulo, Brazil
Rasmus K. Rendsvig University of Copenhagen, Denmark
Alessandro Ricci University of Bologna, Italy
Juan Antonio Rodríguez Aguilar IIIA-CSIC, Spain
Rosaldo Rossetti University of Porto, Portugal
Jörg Rothe Heinrich-Heine-Universität Düsseldorf, Germany
Emilio Serrano Universidad Politécnica de Madrid, Spain
Sonja Smets University of Amsterdam, The Netherlands

Organization ix

Nikolaos Spanoudakis Technical University of Crete, Greece
Sharadhi Alape Suryanarayana University of Oulu, Finland
Nimrod Talmon Ben-Gurion University of the Negev, Israel
Paolo Turrini University of Warwick, UK
Leon van der Torre University of Luxembourg, Luxembourg
Wiebe van der Hoek University of Liverpool, UK
Serena Villata CNRS, Université Côte d’Azur, France
George Vouros University of Piraeus, Greece
Bożena Woźna-Szcześniak Jan Dlugosz University in Częstochowa, Poland
Neil Yorke-Smith Delft University of Technology, The Netherlands
Martin Zimmermann Aalborg University, Denmark

Additional Reviewers

Bednarczyk, Bartosz
Boes, Linus
Burigana, Alessandro
Dogru, Anil
Hammond, Lewis
Hasanbeig, Mohammadhosein
Hyland, David
Kaczmarek, Joanna
Kravari, Kalliopi
Laußmann, Christian
Lu, Chaochao
Lutskanov, Rosen

Main, James C. A.
Orzan, Nicole
Pauly, Reena
Perez, Guillermo
Sabatelli, Matthia
Sakellariou, Ilias
Sende, Micha
Serramia, Marc
Suilen, Marnix
Torralba, Álvaro
Vandenhove, Pierre

Invited Speakers Abstracts

Game-Theoretic Perspectives in Reactive Synthesis

Orna Kupferman

Hebrew University, Israel

Overview

The classical definition of reactive synthesis assumes a single-component system inter-
actingwith a single-component environment. The setting corresponds to a zero-sum two-
player game,where the objectives of the system and the environment are complementary.
Realistic settings are much richer. In addition to systems composed of cooperative com-
ponents, many systems nowadays lack a centralized authority and involve selfish users,
giving rise to multi-agent systems in which the agents have their own objectives, and
thus correspond to non-zero-sum games. Classical game theory concerns non-zero-sum
games for economy-driven applications such as resource allocation, pricing, bidding,
and others. The talk surveys concepts and ideas from game theory that have been or are
waiting to be explored and used in the context of synthesis.

Engineering Social Capabilities in Human-Centered AI

Ana Paiva

INESC-ID, IST, University of Lisbon, Portugal

Overview

Social agents, chatbots or social robots have the potential to change the way we interact
with technology. As they become more affordable, they will have increased involvement
in our daily activities with the ability to perform a wide range of tasks, communicate
naturally with us, and thus, partner with humans socially and collaboratively. But how
do we engineer social capabilities in our AI systems? How do we guarantee that these
agents are trustworthy? To investigate these ideas we must seek inspiration in what it
means to be social and build the technology to support hybrid teams of humans andAI. In
this talk, I will discuss how to engineer social capabilities in agents and illustrate it with
some case studies, discussing the challenges, recent results, and the future directions for
the field of social AI.

Contents

Multiple Attribute List Aggregation and an Application to Democratic
Playlist Editing . 1

Eyal Briman and Nimrod Talmon

On the Graph Theory of Majority Illusions . 17
Maaike Venema-Los, Zoé Christoff, and Davide Grossi

Qualitative Uncertainty Reasoning in AgentSpeak . 32
Michael Vezina, Babak Esfandiari, Sandra Morley,
and François Schwarzentruber

JaKtA: BDI Agent-Oriented Programming in Pure Kotlin 49
Martina Baiardi, Samuele Burattini, Giovanni Ciatto, and Danilo Pianini

Integrating Ontologies and Cognitive Conversational Agents in On2Conv 66
Zeinab Namakizadeh Esfahani, Débora Cristina Engelmann,
Angelo Ferrando, Massimiliano Margarone, and Viviana Mascardi

Exploiting Reward Machines with Deep Reinforcement Learning
in Continuous Action Domains . 83

Haolin Sun and Yves Lespérance

A Comprehensive Presentation of the Jadescript Agent-Oriented
Programming Language . 100

Federico Bergenti, Stefania Monica, and Giuseppe Petrosino

Verifying Programs by Bounded Tree-Width Behavior Graphs 116
Omar Inverso, Salvatore La Torre, Gennaro Parlato,
and Ermenegildo Tomasco

Behavioral QLTL . 133
Giuseppe De Giacomo and Giuseppe Perelli

Lorenzen-Style Strategies as Proof-Search Strategies . 150
Matteo Acclavio and Davide Catta

SHAPE: A Framework for Evaluating the Ethicality of Influence 167
Elfia Bezou-Vrakatseli, Benedikt Brückner, and Luke Thorburn

xviii Contents

Modelling Group Performance in Multiagent Systems: Introducing
the CollabQuest Simulation Game . 186

Alejandra López de Aberasturi-Gómez, Jordi Sabater-Mir,
and Carles Sierra

Towards Developing an Agent-Based Model of Price Competition
in the European Pharmaceutical Parallel Trade Market . 200

Ruhollah Jamali and Sanja Lazarova-Molnar

Using a BDI Agent to Represent a Human on the Factory Floor
of the ARIAC 2023 Industrial Automation Competition . 214

Leandro Buss Becker, Anthony Downs, Craig Schlenoff,
Justin Albrecht, Zeid Kootbally, Angelo Ferrando, Rafael Cardoso,
and Michael Fisher

Symbolic ltlf Best-Effort Synthesis . 228
Giuseppe De Giacomo, Gianmarco Parretti, and Shufang Zhu

Robust Explanations for Human-Neural Multi-agent Systems with Formal
Verification . 244

Francesco Leofante and Alessio Lomuscio

ltlf Synthesis Under Environment Specifications for Reachability
and Safety Properties . 263

Benjamin Aminof, Giuseppe De Giacomo, Antonio Di Stasio,
Hugo Francon, Sasha Rubin, and Shufang Zhu

Logic-Based Approximations of Preferences . 280
Paolo Baldi

A Comparative Analysis of Multi-agent Simulation Platforms for Energy
and Mobility Management . 295

Aliyu Tanko Ali, Martin Leucker, Andreas Schuldei, Leonard Stellbrink,
and Martin Sachenbacher

Observational Preorders for Alternating Transition Systems 312
Romain Demangeon, Catalin Dima, and Daniele Varacca

Synthesising Reward Machines for Cooperative Multi-Agent
Reinforcement Learning . 328

Giovanni Varricchione, Natasha Alechina, Mehdi Dastani,
and Brian Logan

Contents xix

Adaptive Cognitive Agents: Updating Action Descriptions and Plans 345
Peter Stringer, Rafael C. Cardoso, Clare Dixon, Michael Fisher,
and Louise A. Dennis

Pretty Good Strategies and Where to Find Them . 363
Wojciech Jamroga and Damian Kurpiewski

A Multi-agent Sudoku Through the Wave Function Collapse 381
Carlos Marín-Lora and Miguel Chover

AGAMAS: A New Agent-Oriented Traffic Simulation Framework
for SUMO . 396

Mahyar Sadeghi Garjan, Tommy Chaanine, Cecilia Pasquale,
Vito Paolo Pastore, and Angelo Ferrando

Coordinating Systems of Digital Twins with Digital Practices 406
Luca Sabatucci, Agnese Augello, Giuseppe Caggianese, and Luigi Gallo

On Admissible Behaviours for Goal-Oriented Decision-Making
of Value-Aware Agents . 415

Andrés Holgado-Sánchez, Joaquín Arias, Mar Moreno-Rebato,
and Sascha Ossowski

Multi-tasking Resource-Constrained Agents Reach Higher Accuracy
When Tasks Overlap . 425

Andreas Kalaitzakis and Jérôme Euzenat

Election Manipulation on Social Networks with Abstention 435
Vincenzo Auletta, Diodato Ferraioli, and Carmine Viscito

Supporting Adaptive Multi-Agent Systems with Digital Twins
Environments . 445

Samuele Burattini

A Step Forward to Widespread BDI AOP: JaKtA . 452
Martina Baiardi

A Brief Overview of an Approach Towards Ethical Decision-Making 458
Mashal Afzal Memon

On Verifying Unbounded Client-Server Systems . 465
Tephilla Prince

xx Contents

Capacity ATL: Reasoning About Agent Profiles and Applications
to Cybersecurity . 472

Gabriel Ballot

Value-Awareness Engineering: Towards Learning Context-Based Value
Taxonomies . 479

Andrés Holgado-Sánchez

Virtual Environments via Natural Language Agents . 486
Andrea Gatti

Reasoning About Smart Parking . 493
Silvia Stranieri

Towards the Optimization of Speculative PDES Platforms
in Shared-Memory Multi-core Machines . 500

Federica Montesano

Decidability Borders of Verification of Communicating Datalog Agents 507
Francesco Di Cosmo

ltl f Best-Effort Synthesis for Single and Multiple Goal and Planning
Domain Specifications . 514

Gianmarco Parretti

Neurosymbolic Integration of Linear Temporal Logic in Non Symbolic
Domains . 521

Elena Umili

On Theoretical Questions of Machine Learning, Multi-Agent Systems,
and Quantum Computing with Their Reciprocal Applications 528

Mahyar Sadeghi Garjan

Optimal Rescue Sequences in Disastrous Incidents . 534
Rabeaeh Kiaghadi

Efficient Algorithms for LTLf Synthesis . 540
Marco Favorito

Agent Behavior Composition in Stochastic Settings . 547
Luciana Silo

Author Index . 553

Multiple Attribute List Aggregation
and an Application to Democratic

Playlist Editing

Eyal Briman(B) and Nimrod Talmon

Ben-Gurion University, Beersheba, Israel

briman@post.bgu.ac.il

Abstract. We present a social choice model that incorporates time-
based constraints, where the goal is to produce an ordered list that
satisfies both agent preferences (based on approval ballots) and global
constraints. First, we analyze the general model, showing that it is gener-
ally NP-hard, but admits polynomial-time algorithms for a special case;
we also develop heuristic solutions for the general case. Furthermore, we
explore potential applications of the model and demonstrate its relevance
by focusing on the use case of democratic playlist editing. In this sce-
nario, our aim is to generate a playlist that reflects agent preferences for a
given set of musical tracks while also considering soft constraints regard-
ing the sequencing and transitions of tracks over time. We illustrate how
the problem of democratic playlist editing can be translated into our
model, and present simulation results where we apply our heuristics to
solve specific instances of the problem. We contend that our results are
promising, not only for the specific use case of democratic playlist edit-
ing, but also for a plethora of other use cases that we introduce here.

1 Introduction

Social choice theory examines collective decision-making processes by aggregat-
ing individual preferences to reach a collective choice or outcome [2]. In the stan-
dard setting of single-winner elections, a single alternative is chosen from a set of
alternatives, based on group preferences. Moving beyond single-winner elections,
in multi-winner elections—which formally generalize single-winner elections – a
set of candidates or alternatives is selected, following agent preferences [12].
Going even further, in participatory budgeting – which formally generalizes
multi-winner elections – a set of projects, each with its cost, is selected while
respecting agent preferences and a given budget.

We argue that advancements in social choice many times correspond to the
desire of having collective decision-making tools that aggregate agent preferences
and output increasingly complex outputs. Our proposed social choice model can
be viewed from this angle; and, correspondingly, the aggregation methods that
we develop can be seen as computational tools that are able to aggregate agent
preferences and output fairly structurally-involved outputs. In particular, we
consider a social choice setting that consists of the following ingredients:
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
V. Malvone and A. Murano (Eds.): EUMAS 2023, LNAI 14282, pp. 1–16, 2023.
https://doi.org/10.1007/978-3-031-43264-4_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-43264-4_1&domain=pdf
https://doi.org/10.1007/978-3-031-43264-4_1

2 E. Briman and N. Talmon

– A set of elements out of which a subset shall be selected (similar to a multi-
winner election);

– where these elements have certain numerically-valued attributes that shall be
taken into consideration (formally generalizing participatory budgeting);

– and where the selected subset of elements shall be ordered (similarly to rank-
ing elements, such as in proportional ranking [28]).

We describe our setting formally in Sect. 3. Essentially, we formulate a multi-
objective optimization problem that balances between two considerations:

– First, the ordered subset (i.e., list) that we output shall respect agent prefer-
ences (we model this aspect by aiming to maximize the score of the output
list according to some multi-winner voting rule);

– second, the trend or pattern of the attribute values over time within the
output list (we model this aspect by aiming to minimize the distance of the
corresponding patterns to “ideal”, predefined patterns).

Through the use of mathematical optimization techniques and the develop-
ment of effective heuristics, our model provides a robust framework for tackling
diverse use-cases that involve multi-attribute decision problems in which an out-
put list is to be agreed upon. While in this paper we concentrate on a specific
application – namely, of democratic playlist editing – below we first describe
several potential applications of our model. Consider the following applications:

– Democratic Planning: Consider the task of some cooperative manufactur-
ing plan for highly logistic complex products, sensitive products, or products
with occasional or seasonal demand. We aim to optimize different attributes
based on the social choice, ideal demand changing over time, the ideal stock
and inventory changing over time, and different measures such as service
quality type 1 or 2, which will ideally change over time to minimize costs.

– Democratic Scheduling: Democratic scheduling of jobs in a cooperative
using a multi-attribute approach that includes, e.g., job type and its corre-
sponding agent groups.

– Democratic Media: Creating content that serves different functions for var-
ious attributes over time, for example, a TV series or a movie. The amount of
stress/relief or happiness/sadness that the show/movie creates in the viewer’s
experience as the season or movie evolves can be measured.

In Sect. 3 we provide our formal model, which we argue fits all these applica-
tions. Then, in Sect. 7 we describe a different application over which we demon-
strate the applicability of our model as well as the suitability and quality of
several heuristic solutions that we propose for the model. The concrete applica-
tion that we concentrate on in this paper is of democratic playlist editing :

– Democratic Playlist Editing: Producing a musical playlist - perhaps to
accompany a podcast, movie, TV show, theater or dance, where there should
be changes in different attributes over time, such as tempo, loudness, and
emotions that will be expressed through the music (using chords, scales, and
other musical tools).

Multiple Attribute List Aggregation 3

1.1 Paper Structure

After discussing some related work (in Sect. 2), we go on to describe our formal
model (in Sect. 3).

Then, as the aspect of our model that corresponds to respecting agent pref-
erences is both crucial to our model as well as general, in Sect. 4 we describe
how to capture different multi-winner rules in our model. We go on to provide a
computational analysis of our general model (in Sect. 5) and to describe various
general heuristics that we propose for solving instances of the general model (in
Sect. 6).

We continue to describe the problem of democratic playlist editing in detail
and in a formal way (in Sect. 7) and to report on computer-based simulations
that we have performed on real-world and artificial data to evaluate the relevance
and the quality of our algorithms (in Sect. 8).

We conclude in Sect. 9 with a discussion on the implications of our research
and on promising future research directions.

2 Related Work

In this section, we discuss relevant related work in three areas: multi-attribute
social choice, proportional ranking, and multi-attribute scheduling. Indeed, these
three areas of study are the basis for the model presented in this work.

First, however, we would like to mention some related work that does not
directly fall within these three areas:

– First, as our model can be viewed as a time-based social choice model, we
mention ongoing work regarding the aggregation of continuously-changing
agent preferences [1].

– Second, in our work, we draw inspiration from work that combines social
choice aspects with recommendation systems, such as the work of Burke et
al. [7], that evolves around the exploration of dynamic fairness-aware recom-
mendation systems using multi-agent social choice.

– Third, our multi-attribute setting also has some connections with work on
the group activity selection problem [9].

2.1 Multi-attribute Social Choice

Multi-attribute social choice involves aggregating preferences of a group over
alternatives with multiple attributes. Our work focuses on a multi-attribute set-
ting where each element has a vector of numerical attribute values [5,8,16].
Various works explore social choice settings with different attributes, such as
democratic parliamentary elections aiming for proportional representation of
attributes like gender and race in society [4,6,22,23,27].

4 E. Briman and N. Talmon

2.2 Proportional Ranking

Traditional approval voting ranks alternatives based on the percentage of approv-
ing voters, but it may not accurately reflect the preferences of the population.
The proportional ranking model addresses this by interleaving alternatives sup-
ported by different groups of agents, reflecting relative popularity. It empha-
sizes sorting candidates to ensure proportional committees, considering candi-
date diversity and order. This model finds applications in recommendation sys-
tems, hiring, committee elections, and liquid democracy [28]. In our work, we
aim to generate rankings with a broader scope than Skowron et al. [28]. Specif-
ically, in Sect. 7, we consider proportionality in collaborative playlist editing,
where tracks are ranked based on acoustic features, popularity, and proportional
representation. We also mention other related works [14,18].

2.3 Multi-attribute Scheduling

The single-machine scheduling problem involves finding the optimal order of
tasks on a single machine to minimize the total completion time or other objec-
tives. Multi-attribute scheduling extends this by considering multiple objectives
and constraints. It aims to find a schedule that satisfies constraints while optimiz-
ing objectives like completion time or resource utilization [15,20]. Our model gen-
eralizes the multi-attribute single-machine problem, emphasizing multi-objective
optimization and incorporating the social choice aspect.

3 Multi-Attribute List Aggregation (MALA)

In this section, we present the formal model of Multi-Attribute List Aggregation
(MALA). An instance of MALA consists of the following ingredients:

1. A set of y attributes, denoted with their index q ∈ [y].
2. A set of m elements, C = {c1, . . . , cm}. Each element ci, i ∈ [m], for each

attribute q ∈ [y], has some numerical value; we define cq
i to be the numerical

value of element i for attribute q (so, in particular, cq
i ∈ R).

3. A value k ≤ m, k ∈ N; this is the desired size of the list that is the output of
the instance.

4. A set of z so-called Ω constraints, denoted by {Ω1, . . . , Ωz}. Below we describe
what is an Ω-constraint: in particular, an Ω-constraint is defined by a tuple
(q, F, d, w); next we describe what are q, F , d, and w:

– q ∈ [y] is the index of some attribute.
– F := {f1, · · · , ft} is a family of t vectors, each of length k; formally,

f� ∈ R
k, � ∈ [t]. We use a square brackets notation for vectors; i.e., for

� ∈ [t], s ∈ [k], we write f�[s], f�[s] ∈ R, to denote the value of the s’th
element of f�. (Intuitively, each of these vectors corresponds to some ideal
behavior of the output list with respect to attribute q).

Multiple Attribute List Aggregation 5

– d is a metric that returns a distance between two real-valued vectors of
length k. Formally, d : Rk × R

k → R; i.e., d is a function that takes two
vectors of length k and returns a numeric value that we interpret as their
distance; and it shall be a metric. (Intuitively, the metric d quantifies how
close-to-ideal is the output list to at least one of the ideal vectors, with
respect to the attribute q; note that we will use d only to evaluate the
distance between some possible solution and some vector of F .)

– w ∈ R, is the weight that the Ω-constraint gets. (Intuitively, it corre-
sponds to the importance of that Ω-constraint.)

An instance of MALA as described above defines a cost for each possible
solution to it. To describe what it is, let solution be some possible solution to
an instance of MALA; first, formally, solution shall satisfy the following:

– solution ∈ Ck; i.e., solution is a vector of k elements, each from C.
– For s1 �= s2, it holds that solution[s1] �= solution[s2]; i.e., there can be no

repetitions.

Below we describe the cost of a possible solution solution:

– First, the cost of a solution solution with respect to a specific Ω-constraint
Ω = (q, F, d, w) is, roughly speaking, the weight (w) multiplied by the distance
(according to d) between the values of the elements of the solution for the
attribute q to the vector of F that is the closest to it; formally, we define:

cost(solution,Ω) = w · minf∈F d(f, solutionq),

where solutionq ∈ R
k is the vector containing the values of the elements of the

solution with respect to the attribute q; formally, solutionq[s] := solution[s]q,
s ∈ [k].

– Second, the cost of a solution solution with respect to an instance of MALA
MALA (that contains z Ω-constraints) is defined naturally as the summation
of its cost with respect to each of the Ω-constraints; formally, we define:

cost(solution,MALA) =
∑

i∈[z]

cost(solution,Ωi).

Given an instance of MALA MALA, we are looking for a solution solution
of minimum cost; formally, we are looking for the following:

arg min
solution∈Ck

solution[s1] �=solution[s2]
for s1 �=s2

cost(solution,MALA)

Consider the following toy example.

Example 1. Jimmy would like to prepare food to take to work and needs to
decide what to bring to each of his three meals, during the day. His decision
is based on 3 attributes: (1) personal preferences, (2) calories, (3) and sugar.

6 E. Briman and N. Talmon

His candidates are: (1) apple, (2) orange, (3) omelette sandwich, and (4) tuna
sandwich. Each candidate is defined by its unique attributes’ values. Jimmy also
sets his ideal attribute values for each one of the three meals and the importance
of each attribute. Thus, the formal instance – denoted by MALA – is given by
(with some specific data):

– y = 3;
– k = 3
– Ω-constraints:

• q1= apple, q2= orange, q3= omelette sandwich, q4= tuna sandwich.
• F1= {f1}, where f1[1] = 10, f1[2] = 10, f1[3] = 10;
• F2= {f2, f3}, where f2[1] = 80, f2[2] = 600, f2[3] = 60, and where f3[1] =

100, f3[2] = 500, f3[3] = 80;
• F3= {f4, f5}, where f4[1] = 0, f4[2] = 20, f4[3] = 0, and where f5[1] =

0, f5[2] = 0, f5[3] = 0;
• di is the �1 norm, for each i ∈ [3];
• w1 = 1, w2 = 0.5, w3 = 0.8.

– C = {c1, c2, c3, c4} with jimmy’s preferences given by: c11 = 7, c21 = 95, c31 =
19, c12 = 4, c22 = 60, c32 = 12, c13 = 5, c23 = 530, c33 = 15, c14 = 10, c24 = 570,
c34 = 50;

Now let us observe a possible solution1: [apple, omelette sandwich, orange]
from the perspective of the cost of each of the Ω-constraints:

cost(solution1,MALA)

=
3∑

i=1

wi · (minf�∈Fi
di(f, solutionqi)

= 1 · (|10 − 7| + |10 − 5| + |10 − 4|)
+ 0.5 · (|100 − 95| + |500 − 530| + |80 − 60|)
+ 0.8 · (|0 − 19| + |20 − 15| + |0 − 12|) = 70.3.

4 Committee Scoring Rules Using MALA

Next, we will demonstrate the versatility of the MALA model for various voting
rules. Our model is specifically designed for democratic settings, making it appli-
cable to a wide range of use cases, including committee elections. One notable
example is the Democratic Playlist Editing problem, which we will discuss in
detail later.

Approval Voting and Borda Count: In the case of selecting a committee, the
ideal approval score or Borda count would be achieved if all “n” agents voted
or ranked the same “m” candidates, indicating a consensus. To model this, we
represent the perfect approval score and Borda count as a vector of size “k,”
where each candidate’s score is a constant value representing the number of
votes or ranking positions they received from the “n” agents. Thus, this vector
serves as an upper bound for calculating the cost of a given solution. Formally,
we define:

Multiple Attribute List Aggregation 7

– Each candidate’s voting score is given by: voting score(c1) =
∑n

i=1 ci,1 · · · ,
voting score(cm) =

∑n
i=1 ci,m, and ci,j ∈ 0, 1 or ci,j ∈ 0, 1, · · · , k indicates

the approval or ranking of candidate j ∈ [m] by agent i ∈ [n].
– F1 = f1, where in approval voting f1[s] = n, and in Borda count f1[s] = n ·k,

for all s ∈ [k].
– d = any metric distance, such as �1 or �2.

PAV Score: The PAV (Proportional Approval Voting) score assigns scores to
candidates based on the number of votes they receive, with the goal of allocating
seats to candidates proportionally to their support, while also considering the
number of available seats. In our model, each agent approves or disapproves of
certain elements. We introduce a PAV cost constraint to represent the “loss”
of the potential PAV score. This model can also be extended to OWA-based
rules [13]. For each agent vj ∈ v1, · · · , vn voting on elements c1, · · · , cm, we
create an Ω-constraint, and its distance will be the “PAV-cost,” reflecting the
“loss” of the potential PAV score. The following definitions apply:

– q ∈ [m] corresponds to every agent.
– solution[s]j = 1 if agent j approves of candidate i and 0 otherwise, for all

solution ∈ Ck.
– F = {f1} , f1 = {[1]k}.
–

d(x, y) =

{∑k−�1(x,y)
j=1

1
j , �1(x, y) < k

0, else

Given such individual agent Ω-constraints, adding a weight vector of all “1”
results in the realization of PAV as an instance of MALA.

5 Computational Analysis

To study the computational complexity of MALA we consider its decision vari-
ant, in which we are given an additional input that is the maximum total cost
for which existence of a solution above is to be decided. First, we observe that,
following the formulation described above of PAV as a MALA instance, NP-
hardness is established [3]. Next we show that MALA is also NP-hard even with
only 2 constraints.1

1 There is a delicate point here with respect to the representation of the input. We
discuss consequences of this to different applications in Sect. 9, but here, for the
formal hardness statement and proof, it is crucial to describe the representation of
the input that affects the length of the input. So, in particular, it is sufficient to
assume that the F vectors in the input are given explicitly, while the d metrics are
given as black-boxes of length O(1).

8 E. Briman and N. Talmon

Theorem 1. The MALA Decision Problem is NP-hard.

Proof. We provide a reduction from the subset-sum problem [21], where an
instance X containing xi, i ∈ [n] is a “yes-instance” if a subgroup X ′ ⊂ X

exists that satisfies |X ′| = n
2 and

∑
xi∈X′ xi =

∑
xi∈X xi

2 = B
2 . To build an input

for the MALA decision problem given the subset-sum input, we set the following
Ω-constraints:

• q - We have a MALA problem with two identical attributes: q1, q2 having
c1i = c2i = xi for all i.

• F - We set F1 = f1 where f j
1 = 0, and F2 = f2 where f j

2 = M , for all j ∈ [k]
(vector’s length), where M =

∑
xi∈X xi.

• d - We create two distances based on the �1 distance between two given
vectors:

d1(vector1, vector2) =

{
1, �1(vector1, vector2) > B

2

0, �1(vector1, vector2) ≤ B
2

d2(vector1, vector2) =

{
1, �1(vector1, vector2) > M ·n

2 − B
2

0, �1(vector1, vector2) ≤ M ·n
2 − B

2

• Weights- We set w1 = w2 = 1
2 .

We formulate the MALA model as a decision problem - Given all candidates
C and: Ω-constraints, we want to determine if there exists a subset X ′ ⊆ X
such that

∑2
i=1 cost(X ′, Ωi) = 1. If such a subset X ′ exists, then

∑
xi∈X′ xi =

∑
xi∈X xi

2 = B
2 . Conversely, if ci,1 = ci,2, for all i, F1 = F2, d1 = d2, and

X = q1 = q2, we can reduce the problem to the subset sum problem where
|X| = n. In this case, if there exists a subset X ′ ⊆ X such that |X ′| = n

2

and
∑

xi∈X′ xi =
∑

xi∈X xi

2 = B
2 , then

∑2
i=1 cost(X ′, Ωi) = 1. Thus, the MALA

decision problem is NP-hard even with just two attributes, contradicting our
polynomial assumption of the problem.

Observation 1. It is worth noting that there are some polynomially-computable
cases of MALA. For example, when the task is to choose an ordered sub-list of
musical tracks that contains tracks with the most votes and is ordered by a non-
ascending or non-descending tempo (speed of the track).

6 Algorithms

Since our problem has been shown to be NP-hard, we have developed several
heuristic algorithms to obtain a good solution within a reasonable time frame. In
this study, we have chosen to test two main algorithms: Genetic and Simulated
Annealing. Both of these heuristics are suitable for solving similar combinatorial
optimization problems that have complex search spaces and multiple objectives.

Multiple Attribute List Aggregation 9

To simplify the testing process, we make the assumption that each vector family,
denoted as F , which describes optimal behavior over time or sequence of some
feature q, has a finite set. (This assumption will be discussed further in the
Outlook section.) In each of the heuristics explained here, we aim to find the
ordered sub-group of k elements out of a total group of m elements that would
minimize the weighted summation of costs defined by Ω-constraints.

Genetic Algorithm - The algorithm begins by generating an initial popula-
tion of candidate solutions, each represented as a set of parameters. The cost
of each solution is calculated based on the problem at hand. The population is
then sorted based on the descending cost, and the best solution is identified. In
each iteration, the algorithm updates the population size using adaptive popu-
lation sizing techniques, which adjust the number of solutions in the population
based on their performance. The crossover and mutation probabilities, which
control the exploration and exploitation of the search space, are also updated
adaptively [24]. New solutions are generated through crossover or mutation oper-
ations, ensuring that there are no repetitions among the solutions. The cost of
each new solution is calculated, and the population is sorted again. If the best
solution in the new population has a lower cost than the current best solution, it
is updated accordingly. The algorithm continues iterating until the specified total
run time is reached. Finally, the best solution found throughout the iterations
is returned as the output of the algorithm.

Simulated Annealing - The algorithm starts by generating an initial random
solution. It then sets the initial cooling rate and temperature, which are problem-
dependent and determine the exploration-exploitation balance. Additionally, a
number of iterations for a random start are specified to allow for more diverse
exploration. During each iteration, the algorithm calculates the cost of the cur-
rent solution and compares it to the minimal cost found so far. If the current cost
is lower, the minimal cost is updated accordingly. The algorithm also computes the
probability of accepting a worse solution based on an adaptive cooling rate [19]. If
the probability allows accepting a worse solution, the minimal cost is updated. To
explore the search space, a random element and index are generated. If the gen-
erated element is included in the solution, it is swapped with the element at the
generated index. Otherwise, the element at the generated index is replaced with
the generated element. The temperature is decreased using the cooling rate, grad-
ually reducing the exploration ability of the algorithm. The process continues until
the specified total run time is reached. Finally, the best solution found throughout
the iterations is returned as the output of the algorithm.

7 The Democratic Playlist Editing Problem

The focus now shifts to the democratic playlist editing issue, specifically the
problem of creating a playlist with a specific logic or theme. This problem,

10 E. Briman and N. Talmon

known as the Democratic Automated Generation Playlist Problem, involves a
group of friends attempting to create a playlist. In this section, we will dis-
cuss this problem and its formulation using MALA. The Automated Generation
Playlist Problem involves creating a playlist by selecting tracks from a given list
based on their musical attributes, such as scale, key, tempo (beats per minute),
time signature, loudness, valence (optimism), danceability, and more. The Demo-
cratic Automated Generation Playlist extends the original problem by allowing
a community to vote on whether to include tracks in a playlist. Playlist editors
and critics usually look for the following three measures in a playlist [17,26]:

1. Coherence of tracks - Listeners tend to like playlists with tracks that cor-
respond (musically and lyrically) to each other homogeneously. In order to
model the coherence of a feature using MALA, we must find the vector of
some constant value. It will serve as a reference to measure the extent of the
coherence of the attribute’s behavior over time or over a sequence of events.
Thus, we need to search all the positive constant vectors in order to find the
most suitable one for Solution[q] over time. Formally:

– q corresponds to cq
i .

– F = {f1, f2, · · · , ft} having fi[s] = p, i ∈ [t], p ∈ R, for all s ∈ [k].
– d = �1 or �2

2. Smooth transitions between two consecutive tracks - Smooth tran-
sitions are highly valued by users as they provide a seamless progression of
attributes, whether in sequence or over time. The primary objective of these
transitions is to maintain a consistent flow while minimizing abrupt changes
in attributes value’s direction over time.

– qj∈0,··· ,k−1 address a particular attribute, and e, the maximum explicit
number of direction changes it values can undergo.

– F = {f1, f2, · · · , ft} having fi = R
k, i ∈ [t],

such that 0 ≤ ∑k−1
s=2 δ(sign(fi[s] − fi[s − 1]), sign(fi[s + 1] − fi[s])) ≤ e ∈

[k − 1],
δ(x, y) = 0 if x = y, else δ(x, y) = 1.

– d = �1 or �2.
This modeling of smooth transitions as well as coherence, is in contradiction
to our initial assuming of a finite set of functions F . Because the modeling
of these qualities depend on the attribute’s behaviour and the actual sug-
gested tracks; we do not have a way of predicting what would be the ideal
set of functions, and so we can only approximate by giving a few reasonable
functions (a finite set of vectors).

3. Diversity - Like many democratic parliaments that ensure seats for different
groups in society (such as women and minorities) to maintain a proportional
representation of society, a playlist should aim for representation of differ-
ent attributes of the given tracks, including genres (e.g., jazz, pop, rock,
reggae, Brazilian, Afro-beat, Indian), scales (e.g., major and minor), time
signatures (e.g., even and odd beat division of a track), and ranges of tempo
(e.g., Largo (very slow), Adagio (slow), Andante (medium-slow), Moderato
(medium), Allegro (medium-fast), and Presto (fast)).While the two measures

Multiple Attribute List Aggregation 11

before where based on numerical valued attributes, this measure is based on
categorical valued attributes. Formally:

– q corresponds to cq
i ∈ [r] having r = |P q|, and P q to be the set of cate-

gories associated with attribute q.
– F = {f0, f1, · · · , ft}, fi = {fi[s]|s ∈ k, fi[s] ∈ [r], freq(fi[s], fi) = πp∈P q}

having πp to be the optimal proportion of each category of attribute q.
– d = �1 or �2

In conclusion, the Democratic Automated Generation Playlist Problem involves
selecting an ordered subset of k tracks from a set of total m musical tracks that
satisfy both the user’s own taste and some musical constraints.

Example 2. A community of 3 music lovers decided to collaboratively edit a
three sized democratic playlist (i.e., k = 3) out of a 5 sized list of tracks (i.e.,
candidates). Each track has the following musical features and meta-data. After
each member of the group has selected three tracks from the given list of tracks
we assemble them into a binary-requirements-matrix where 1 represents if a
track i was chosen by agent j:

Number Name Artist Album BPM Scale Loudness

1 “I Wish” Stevie Wonder “Songs In the

Key of Life”

106 B flat minor −10.4

2 “Thriller” Michael Jackson “Thriller” 139 E flat minor −3.7

3 “So What” Miles Davis “Kind of

Blue”

138 C major −17.27

4 “Oye Como

Va”

Carlos Santana “Abraxas” 128 G major −13.21

5 “Reelin’ in

the Years”

Steely Dan “Can’t Buy a

Thrill”

135 D major minor −17.34

Track 1 Track 2 Track 3 Track 4 Track 5

agent 1 0 1 1 0 1

agent 2 0 1 1 1 0

agent 3 1 0 1 0 1

We aim to create a 3-track playlist that maximizes: (1) social welfare of the
listeners while maintaining (2) coherence in beats per minute (BPM) among the
tracks. This coherence ensures that all tempos of tracks are close to either 120
(medium tempo) or 180 BPM (fast tempo). We will explore both a potential
“good” solution and a potential “bad” (or “expensive”) solution for the given
example, using distance �1 and measured by explicit F vectors:

– Fwelfare = F1 = {f1} where f1[1] = 3, f1[2] = 3, f1[3] = 3
– FBPM coherence = F2 = {f2, f3} where f2[1] = 120, f2[2] = 120, f2[3] = 120,

and where f3[1] = 180, f3[2] = 180, f3[3] = 180.

12 E. Briman and N. Talmon

Social welfare is given the weight w1=5 and BPM coherence of tracks is given
the weight of w2=0.5.

– Good solution:
∑

i∈[2] cost([track5, track3, track2], Ωi) =
5 · cost([track5, track3, track2], Ω1)+0.5 · cost([track5, track3, track2], Ω2) =
5 ·(|2−3|+ |3−3|+ |3−2|)+0.5 ·(|135−120|+ |138−120|+ |139−120|) = 36.

– Worst solution:
∑

i∈[2] cost([track1, track2, track4], Ωi) =
5 · cost([track1, track2, track4], Ω1)+0.5 · cost([track1, track2, track4], Ω2) =
5 ·(|1−3|+ |2−3|+ |1−3|)+0.5 ·(|106−120|+ |139−120|+ |128−120|) = 45.5.

8 Experimental Analysis

To evaluate the quality of the heuristics discussed earlier, we conducted a
simulation of the Democratic Playlist Editing problem modeled as a MALA-
optimization problem.

8.1 Experimental Design

We generated ten 700-track playlists from Spotify’s “Top 10,000 Songs Of All
Times” playlist2. For each instance, we applied the discussed algorithms to find
an ordered sub-list of 250 tracks that minimized the cost within a ten-minute run.
The heuristic parameters were set as follows: simulated annealing and sequential
simulated annealing with a temperature of 1000◦, an initial cooling rate of 0.003,
and a random start every 1000 iterations. Genetic Algorithm was initialized with
an initial crossover probability of 0.85, an initial population size of 100, and a
maximum population of 5000. The costs were normalized using a 100-random
algorithm, which generated 100 random permutations and selected the one with
the minimal cost. This allowed us to calculate the average cost per minute for
all 10 instances.

We selected three audio features from Spotify’s API out of 13 available fea-
tures [10]: Energy (0.0 to 1.0 score representing intensity and activity), Tempo
(measured in beats per minute), and Danceability (0.0 to 1.0 score representing
suitability for dancing). These features were chosen for their significant impact
on playlist formation.

Approval scores were added to each track using an artificial society of 20
agents. An algorithm was used to generate a list of 700 integers, ensuring a
sum of 5000. The algorithm randomly and uniformly generated approval ballots,
divided the remaining sum by the remaining iterations, and updated the list
accordingly. If there was a remaining sum, it was distributed incrementally to
randomly selected indices until reaching zero. Next, we generated 10 families
of functions (represented as vectors), each one containing 50 different 250-sized
vectors. These functions within each family can be divided into two types:

2 https://open.spotify.com/playlist/1G8IpkZKobrIlXcVPoSIuf.

https://open.spotify.com/playlist/1G8IpkZKobrIlXcVPoSIuf

Multiple Attribute List Aggregation 13

1. We aimed for an ideal behavior of certain attributes over time, specifically
smooth transitions for BPM and energy, with 1–3 direction changes to ensure
smoothness along the playlist. This resulted in a total of 6 families of func-
tions.

2. We defined an ideal static value to measure the coherence of attributes, where
changes in direction are 0 and the slope (i.e., the size of change between
two consecutive tracks) is 0. This applies to BPM, danceability, energy, and
approval score, with the latter only including one vector/function of “all 20s”.

We developed an algorithm that takes in the minimum number of direction
changes, a range for the first variable in the vector (distributed uniformly),
a range for the slope between consecutive variables in the vector (distributed
uniformly), and the minimum and maximum values to set the range of legal
values in the vector. The algorithm generates the initial direction (+ or −)
uniformly and k indexes in the range of 2–248, where k is the number of direction
changes and indexi − indexi+1 ≥ 2. Whenever the algorithm reaches one of the
indexes, or if the value of the current variable is greater than the maximum value
or smaller than the minimal value, a change of direction will occur. Finally, we set
the distance d as �1 and generated a weight for each Ω-constraint combination,
including:

1. Energy weights for 0, 1, 2, and 3 changes of direction over time. These weights
were generated uniformly between 1 to 3, taking into account the involvement
of energy in creating a playlist.

2. Tempo weights for 0, 1, 2, and 3 changes of direction over time. These weights
were generated uniformly between 0.0001 to 0.001, as tempo was deemed to
be a feature of less importance in our simulation.

3. Danceability weight for 0 changes of direction over time. These weights were
generated uniformly between 3 to 4, aiming to create a highly danceable
playlist.

4. Approval score weight for 0 changes of direction over time. These weights
were generated uniformly between 4 to 5, with the intention of creating a
playlist of popular tracks.

We also tested a greedy algorithm as an additional reference, wherein we pre-
formed a local search for the most suitable track to fit into every location in
the list. Finally, we performed another simulation to measure the time required
for the simulated annealing algorithm to reach half the value of zRandom on 10
different instances of different sizes (selected randomly), ranging from 30 tracks
to 240, in jumps of 30.

14 E. Briman and N. Talmon

8.2 Results and Analysis

Fig. 1. Algorithms’s Cost Over a 10 min Run.

Fig. 2. SA Average Time VS Size of Playlist - until SA cost = 0.5 · (zRandom cost).

The results in Fig. 1 show that the simulated annealing algorithm achieved
the lowest normalized cost quickly, with genetic algorithms performing worse.
Figure 2 confirms that the simulated annealing algorithm takes longer to reach
half the value of zRandom as the instance size increases. These results sug-
gest that the simulated annealing algorithm explores a wider range of solutions
compared to the more restrictive genetic algorithm, which converges slower due
to maintaining parental order. Alternatively, the suboptimal tuning of initial
parameters, such as adaptive crossover probability and population size, may
explain the genetic algorithm’s performance and could be improved with addi-
tional tuning techniques. These results suit the findings of Piotr Faliszewski et
al [11] on effective heruistics for committee scoring rules.

Multiple Attribute List Aggregation 15

9 Outlook

In future research, we suggest exploring the following directions:

– Logical constraints: Currently, we assume finite family functions F , limit-
ing the model’s applicability. Extending the model with logical predicates (P)
as Ω-constraints could overcome this limitation and allow for the formulation
of desired attribute behaviors over time.

– Time-axis: In playlist editing, considering variable song durations would
require treating functions F as continuous functions, with the optimization
problem involving a constraint on the summation of selected elements’ time.
This change from our current assumption of equal song durations can offer
added flexibility to the process.

– Several dimensions: While our model is one-dimensional, considering a
variant with multiple dimensions could be valuable for democratic editing of
graphical illustrations or other multidimensional scenarios.

– Heuristic solutions: While we employed three standard heuristics, explor-
ing alternative algorithmic solutions, such as constructing a linguistic model
tailored to the MALA instance using Ngrams [25], may yield improved results.

– Computational analysis: Investigating both tractable and intractable spe-
cial cases of MALA can enhance our understanding of the model’s applicabil-
ity and provide insights into its computational complexity, in particular by
examining different types of distances in the Ω constraints.

References

1. Anonymous personal communication. Continuous preference aggregation in one
dimension (2023)

2. Arrow, K.J., Sen, A., Suzumura, K.: Handbook of Social Choice and Welfare, vol.
2. Elsevier, Amsterdam (2010)

3. Aziz, H.: Proportional representation in approval-based committee voting and
beyond (2018)

4. Aziz, H.: A rule for committee selection with soft diversity constraints. Group
Decisi. Negot. 28(6), 1193–1200 (2019). https://doi.org/10.1007/s10726-019-
09634-5

5. Bossert, W., Peters, H.: Multi-attribute decision-making in individual and social
choice. Math. Soc. Sci. 40(3), 327–339 (2000)

6. Bredereck, R., Faliszewski, P., Igarashi, A., Lackner, M., Skowron, P.: Multiwinner
elections with diversity constraints. In: Proceedings of the AAAI Conference on
Artificial Intelligence, vol. 32 (2018)

7. Burke, R., Mattei, N., Grozin, V., Voida, A., Sonboli, N.: Multi-agent social choice
for dynamic fairness-aware recommendation. In: Adjunct Proceedings of the 30th
ACM Conference on User Modeling, Adaptation and Personalization, pp. 234–244
(2022)

8. Burke, R., Mattei, N., Grozin, V., Voida, A., Sonboli, N.: Multi-agent social choice
for dynamic fairness-aware recommendation. In: Adjunct Proceedings of the 30th
ACM Conference on User Modeling, Adaptation and Personalization, UMAP 2022
Adjunct, pp. 234–244. Association for Computing Machinery, New York, NY, USA
(2022)

https://doi.org/10.1007/s10726-019-09634-5
https://doi.org/10.1007/s10726-019-09634-5

16 E. Briman and N. Talmon

9. Darmann, A., Elkind, E., Kurz, S., Lang, J., Schauer, J., Woeginger, G.: Group
activity selection problem. In: Goldberg, P.W. (ed.) WINE 2012. LNCS, vol.
7695, pp. 156–169. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-
642-35311-6 12

10. Duman, D., Neto, P., Mavrolampados, A., Toiviainen, P., Luck, G.: Music we move
to: Spotify audio features and reasons for listening. PLoS ONE 17(9), 1–18 (2022)

11. Faliszewski, P., Lackner, M., Peters, D., Talmon, N.: Effective heuristics for com-
mittee scoring rules. In: Proceedings of the AAAI Conference on Artificial Intelli-
gence, vol. 32 (2018)

12. Faliszewski, P., Skowron, P., Slinko, A., Talmon, N.: Multiwinner voting: a new
challenge for social choice theory. Trends Comput. Soc. Choice 74(2017), 27–47
(2017)

13. Faliszewski, P., Skowron, P., Slinko, A., Talmon, N.: Committee scoring rules:
Axiomatic characterization and hierarchy. CoRR, abs/1802.06483 (2018)

14. Goldsmith, J., Lang, J., Mattei, N., Perny, P.: Voting with rank dependent scoring
rules (2014)

15. Gupta, S.K., Kyparisis, J.: Single machine scheduling research. Omega 15(3), 207–
227 (1987)

16. Gupta, S., Jain, P., Saurabh, S.: Well-structured committees. In: Bessiere, C.,
(eds.) Proceedings of the Twenty-Ninth International Joint Conference on Artificial
Intelligence, IJCAI-20, pp. 189–195. International Joint Conferences on Artificial
Intelligence Organization, vol. 7 (2020). Main track

17. Ikeda, S., Oku, K., Kawagoe, K.: Analysis of music transition in acoustic feature
space for music recommendation. In: Proceedings of the 9th International Confer-
ence on Machine Learning and Computing, ICMLC 2017, pp. 77–80. Association
for Computing Machinery, New York, NY, USA (2017)

18. Israel, J., Brill, M.: Dynamic proportional rankings. arXiv preprint
arXiv:2105.08043 (2021)

19. Karabin, M., Stuart, S.J.: Simulated annealing with adaptive cooling rates. J.
Chem. Phys. 153(11), 114103 (2020)

20. Karger, D., Stein, C., Wein, J.: Scheduling algorithms (2010)
21. Karp, R.M.: Reducibility among Combinatorial Problems, pp. 85–103,D US,

Boston, MA (1972)
22. Lang, J., Skowron, P.: Multi-attribute proportional representation. Artif. Intell.

263, 74–106 (2018)
23. Lian, J.W., Mattei, N., Noble, R., Walsh, T.: Using order weighted averages to

assign indivisible goods. In: The conference Paper Assignment Problem (2018)
24. Lobo, F.G., Lima, C.F.: A review of adaptive population sizing schemes in genetic

algorithms. In: Proceedings of the 7th Annual Workshop on Genetic and Evo-
lutionary Computation, GECCO 2005, pp. 228–234. Association for Computing
Machinery, New York, NY, USA (2005)

25. McFee, B., Lanckriet, G.R.: The natural language of playlists. In: ISMIR, vol. 11,
pp. 537–541 (2011)

26. Pauws, S., Eggen, B.: Realization and user evaluation of an automatic playlist
generator. J. New Music Res. 32(2), 179–192 (2003)

27. Sikdar, S.K.: Optimal Multi-Attribute Decision Making in Social Choice Problems.
Rensselaer Polytechnic Institute (2018)

28. Skowron, P., Lackner, M., Brill, M., Peters, D., Elkind, E.: Proportional rankings,
Markus Brill (2016)

https://doi.org/10.1007/978-3-642-35311-6_12
https://doi.org/10.1007/978-3-642-35311-6_12
http://arxiv.org/abs/2105.08043

On the Graph Theory of Majority
Illusions

Maaike Venema-Los1(B) , Zoé Christoff1 , and Davide Grossi1,2

1 University of Groningen, Groningen, The Netherlands
{m.d.los,z.l.christoff,d.grossi}@rug.nl

2 University of Amsterdam, Amsterdam, The Netherlands

Abstract. The popularity of an opinion in one’s direct circles is not nec-
essarily a good indicator of its popularity in one’s entire community. For
instance, when confronted with a majority of opposing opinions in one’s
circles, one might get the impression that one belong s to a minority.
From this perspective, network structure makes local information about
global properties of the group potentially inaccurate. However, the way
a social network is wired also determines what kind of information dis-
tortion can actually occur. In this paper, we discuss which classes of
networks allow for a majority of agents to have the wrong impression
about what the majority opinion is, that is, to be in a ‘majority illusion’.

Keywords: majority illusion · social networks · graph colorings

1 Introduction

When making decisions, people often use information from the decisions of others
in their circles and are influenced by those. For instance, if a lot of people around
you buy a specific brand, vote for a specific political party, or have a specific
opinion, you are more likely to buy, vote, or think the same (see e.g. [14,17]).

However, one’s view of ‘the world around’ might be distorted by the social
network one is in, and one might as a result misrepresent one’s situation with
respect to the overall population. A well-known example of this is the so-called
‘friendship paradox’ [9]: agents in a network are likely to get the impression that
their popularity is lower than average because their friends have more friends
than they do. Similarly, on the basis of what they can see of others around
them, agents might get the wrong impression with respect to how popular their
opinions are in the entire population. Indeed, the proportions of opinions an
agent observes in its neighborhood are not necessarily a representative sample
of their overall distribution in the population.

From this local sampling, one could for instance get the impression that they
disagree with the majority of the population on a particular opinion and get
influenced by this impression when taking their decisions. As a consequence,
one could in principle influence what people will decide by changing the net-
work structure to tweak the distribution of opinions/behavior agents see locally.
Figure 1 (a), (b), and (c) illustrate this: rewiring a few edges is sufficient to make
all nodes observe a different majority in their neighborhood.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
V. Malvone and A. Murano (Eds.): EUMAS 2023, LNAI 14282, pp. 17–31, 2023.
https://doi.org/10.1007/978-3-031-43264-4_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-43264-4_2&domain=pdf
http://orcid.org/0000-0002-0704-2081
http://orcid.org/0000-0003-2412-8458
http://orcid.org/0000-0002-9709-030X
https://doi.org/10.1007/978-3-031-43264-4_2

18 M. Venema-Los et al.

Fig. 1. (a), (b), and (c) have the same proportion of blue and red nodes but nodes
see different distributions in their neighborhood: in (a), all nodes have a majority of
red neighbors; changing two edges results in all nodes seeing a tie (b); changing two
more edges makes nodes have a majority of blue neighbors (c). (d) is an example
of a majority-majority-illusion: a majority (the red nodes) have more blue than red
neighbors, while red is the actual global ‘winner’. (Color figure online)

A paradigmatic example is polling bandwagon effects [19] in political decision
making: if, for any reason, citizens prefer not to vote on a losing party, a party
could increase the chances of actually winning by making a lot of voters think
it is winning. The idea of manipulating the network towards this end, so-called
‘information gerrymandering’, is introduced in [4,20] and shown to potentially
lead to undemocratic decisions. Similar phenomena have been observed in a
variety of social networks [15].

In this paper, we examine which networks allow for which types of distortion
between local and global opinion representations. We focus on a specific type
of network distortion, ‘majority illusion’ as introduced by [15], where an agent
observes that more than half its neighbors are in a certain state, while in the total
network, less than half of the agents are in this state. An example is shown in
Fig. 1d: if all nodes were to believe that their neighborhood was representative of
the entire network, the red nodes would believe that the majority of nodes in the
network is blue, while in reality it is red. Whether it is possible for such illusions
to exist, and if so, for how many agents, depends on the network structure. On
the one hand, not all networks allow for most agents to be under this type of
majority illusions. On the other hand, there exist network structures in which
even all agents can be under a majority illusion. In this paper we focus on the
possibility of a majority of agents being in a majority illusion. The network in
Fig. 1d is an example of such a ‘majority-majority illusion’.

Related Work. The concept of majority illusion was first introduced in [15], to
show how network structures can distort individual observations. Computational
simulations are used to study to which extent the majority illusion can occur
in scale-free, Erdős-Rényi networks, and several real-world networks, and show
that networks in which high-degree nodes tend to connect to low-degree nodes
are most susceptible to this illusion.

In [20] a voter game is modeled with two competing parties to show that
majority illusions can be used for the purposes of ‘information gerrymandering’,

On the Graph Theory of Majority Illusions 19

that is, influencing people’s votes by misrepresenting the opinion of the group
to them. The authors predict this by a mathematical model and confirm their
results with a social network experiment with human participants. They find
that information gerrymandering can even take place when all agents have the
same amount of influence (the same degree).

In [10], the computational complexity of majority illusions is studied. A q-
majority illusion is defined, where at least a q fraction of agents are under major-
ity illusion, and it is shown that the problem of deciding whether or not a given
network can be colored into a q-majority illusion is NP-complete for q > 1

2 .
Whether it also holds for q ≤ 1

2 is left as an open question. Since majority illu-
sions can in some situations have detrimental effects and are generally regarded
as undesirable, they also study the problem of eliminating an illusion from a net-
work by adding or deleting edges. The problem to identify whether it is possible
to change the network in such a way that the number of agents with a q-majority
illusion is below a given bound is also shown to be NP-complete for q > 1

2 .

Contributions. We study the possibility of majority illusion in its weak and
strict versions, in different classes of graphs. Section 2 introduces our framework,
definitions and terminology. In Sect. 3, we prove that a weak version of the
majority illusion can occur on all network structures. In Sect. 4, we provide
some stronger results on specific classes of networks: graphs with odd degrees,
properly 2-colorable graphs, and regular graphs. Table 2 gives a summary of
which graphs allow for which type of majority illusions.

2 Preliminaries

Binary Opinion Networks and 2-Colored Graphs. A social network (a simple
graph) G = 〈V,E〉 consists of a finite set V agents (nodes/vertices), and a set
E of (undirected irreflexive) edges between agents. If two agents are connected
by an edge, we call them neighbors. We assume that no agent is a neighbor of
itself. We write Ni for the set of neighbors of i and di for its degree |Ni|. Each
agent holds a binary opinion on a single issue. Since binary single-issue opinion
distributions can be seen as graph 2-colorings, we will borrow the terminology
of vertex colorings, and use the terms ‘color’ and ‘opinion’ interchangeably. We
write ci to refer to agent i’s color and c for the 2-coloring of the graph (c : V →
{red, blue}). A 2-colored graph is a triple C = 〈V,E, c〉. Thoughout the paper,
the term ‘colored graph’ refers to such 2-colored graph.

Majority Illusion and Opposition: Intuitions. In such opinion networks (or 2-
colored graphs), we are concerned with three types of information: individual
opinions, local majority opinions, and global majority opinions. Any two of these
three types of opinions can be in agreement or not. We systematize and illustrate
all possible relations between the above types of opinions in Table 1.

Different fields have been studying disagreement between the different types
of information mentioned above. On the one hand, in social network science and

20 M. Venema-Los et al.

social choice theory, an agent is under majority illusion when its neighborhood
majority disagrees with the global majority [10,15]. On the other hand, graph
theory has concerned itself with the disagreement between a node’s color and the
color of its neighbors: a proper coloring requires that no two adjacent nodes are
of the same color, that is, that everybody disagrees with all of their neighbors.
A generalisation of that concept is that of majority-coloring [1,5,13], where no
agent agrees with most of its neighbors. We call the local disagreement faced
by an agent in a majority coloring majority opposition. In such a situation, one
might have the impression that they belong to a global minority. For instance,
in Fig. 1d all nodes might have this impression, while it is only true for the blue
ones. When all agents are under this impression, then some of them must be
mistaken, it must be some sort of illusion. Clearly, the two concepts of majority
illusion and opposition are related. In this paper, we explore this relation to get
results about majority illusions.

Formal Definitions. We start by introducing some notions to be able to talk
about which opinion is prevalent in a network, be it locally or globally. Given
a set S of agents such that |S| = n and a coloring c, a color x is a majority
winner of S (we write MS = x) if |{i ∈ S | ci = x}| > n

2 . When neither color
is a majority winner among S (there is a tie), we will write MS = tie. We say
that an agent is under majority illusion if both the agent’s neighbourhood and
the entire network have a majority winner (no tie) but they are different. This
definition is equivalent to that in [10].

Definition 1 (majority illusion). Given a colored graph C = 〈V,E, c〉, an
agent i ∈ V is under majority illusion if MNi

�= tie and MV �= tie and MNi
�=

MV . A graph is in a majority-majority illusion if more than half of agents are
under majority illusion.

We can generalise this strict definition to weaker cases. First, there exists
a weaker type of disagreement between local and global majorities: the cases
where exactly one of the two is a tie. Second, the majority of agents under an
illusion can also be weak, when exactly half of the agents are under illusion.
The corresponding generalisations of majority illusion includes both types of
weakening:

Definition 2 (weak versions of majority illusion). Given a colored graph
C = 〈V,E, c〉, agent i ∈ V is under weak-majority illusion if MNi

�= MV . A
graph is in a majority-weak-majority illusion if more than half of the agents
are under weak-majority illusion. A graph is in a weak-majority-(weak-)majority
illusion if at least half of the agents are under (weak-)majority illusion.

As indicated in Table 1, while it is the strict version of the majority illusion
that is studied by [15]1, and by [10], it is the weak version of majority opposition

1 They use the strict version throughout the paper, except for Fig. 1 where the illusion
can be weak.

On the Graph Theory of Majority Illusions 21

Table 1. Possible combinations of local and global majority winners, and presence or
absence of majority opposition and majority illusion. We assume w.l.o.g. that the color
of the relevant individual (highlighted in the exemplary illustrations) is red, otherwise
just swap ‘red’ and ‘blue’ everywhere. ✗ indicates absence of the opposition/illusion, �
indicates presence of the opposition/illusion, ‘weak’ indicates the presence of a weak-
majority opposition or a weak-majority illusion.

that is studied by [1,5], and [13]. As far as we know, the strict majority opposition
and the weak majority illusions have not been studied before. Furthermore, note
that, in the same network, different agents can be under a weak-majority illusion
with respect to different opinions, since it is possible that exactly half of the nodes
in the network are of one color and half of the nodes of the other color.

Before proceeding, we introduce some extra terminology. When an agent is
under majority illusion and all its neighbors all have the same color, we say that
agent is in unanimity illusion. Similarly, when all agents are under a (weak)-
majority illusion, we will call it a unanimity-(weak-)majority illusion. We say
that an illusion is possible for a graph G = 〈V,E〉 if there exists a coloring c
such that C = 〈V,E, c〉 is in the respective illusion.

22 M. Venema-Los et al.

3 Illusions in Arbitrary Networks

Our overall goal is to discover which social networks allow for majority illusions
to occur. Since this is equivalent to asking which graphs can be colored in some
specific way, we build on existing results from vertex colorings to obtain results
about majority illusions. Recall that a coloring is called proper when no two
neighbors are assigned the same color. The weaker notion of majority coloring [1,
13] is immediately relevant to us. In a majority coloring, each vertex is in what we
described as majority opposition: at least half of its neighbors are of a different
color than its own. For coherence with the rest of the paper, we call this a weak
majority coloring here:

Definition 3 (weak majority 2-coloring). A weak majority 2-coloring of a
graph G = 〈V,E〉 is a 2-coloring c such that, for each i ∈ V : MNi

�= c(i).

A graph is called weak majority 2-colorable if there exists a weak majority
2-coloring of it. Given a colored graph, we call monochromatic the edges between
nodes of the same color, and dichromatic the ones between nodes of different
colors.

Remark 1. The main result involving majority colorings is credited to [16] in the
literature [1,5]: every graph is weak majority 2-colorable. The proof strategy for
this result is commonly described as easy and relying on a simple ‘color swapping
mechanism’ that can only reduce the total number of monochromatic edges in
the network. However, [16] itself focuses on multigraphs and is of a much wider
scope. Therefore, to make the paper self-contained, we provide both a proof of
the general result in Appendix 1 and below a proof of the related lemma, crucial
to our main result, Theorem 1.

Lemma 1. Let G = 〈V,E〉 be a graph, and let c be a 2-coloring of G that
minimizes the number of monochromatic edges. Then, c is a weak majority 2-
coloring of G.

Proof. Let EM be the set of monochromatic edges and ED = E\EM the set of
dichromatic edges in graph G colored by c. Assume for contradiction that there
is a node i ∈ V that is an endpoint of strictly more monochromatic edges (we
write EMi

for the set of such edges) than dichromatic edges (EDi
): |EMi

| >
|EDi

|. Consider now a second 2-coloring c′ of G that only differs from c with
respect to i’s color, i.e., c′ assigns the same color as c did to all nodes except
for i: ci �= c′

i. Let us write E′
M for the new set of monochromatic edges, and

E′
Mi

and E′
Di

for the new sets of monochromatic and dichromatic edges from i.
Given that |E′

Mi
| = |EDi

| and |E′
Di

| = |EMi
|, we now have |E′

Di
| > |E′

Mi
| and

|EMi
| > |E′

Mi
|. Given that no other edge of the graph is affected by this change,

the total number of monochromatic edges is smaller with coloring c′ than it was
with c: |EM | > |E′

M |. But since we started by assuming that c was such that
|EM | was minimal, this is a contradiction. �	

We now use the existence of such a majority coloring to prove the following
general result:

On the Graph Theory of Majority Illusions 23

Theorem 1. For any graph G = 〈V,E〉, a majority-weak-majority illusion is
possible.

Proof. Let G = 〈V,E〉 be a graph and let c be a 2-coloring of G that minimizes
the total number of monochromatic edges. By Lemma 1, c is a weak majority
2-coloring of G. Two cases:

– MV �= tie. Assume w.l.o.g. that MV = red. Since c is a weak majority color-
ing, for any red vertex i, MNi

∈ {blue, tie}, and therefore MNi
�= MV . Hence,

a majority of the nodes (the red ones) is under (possibly weak) majority
illusion: we have a majority-weak-majority illusion.

– MV = tie. Two cases:
• If |{i ∈ V : MNi

∈ {blue, red}}| > |V |
2 , we have a majority-weak-majority

illusion.
• Otherwise (if |{i ∈ V : MNi

= tie}| ≥ |V |
2) choose a node j with MNj

=
tie and define a new coloring c′ that is equal to c for all nodes except
for j: c′

j �= cj . Since j has as many blue as red neighbors, this does not
change the total number of monochromatic edges in the graph. Therefore,
c′ is also a coloring that minimizes this number. Hence, by Lemma 1, c′

is also a weak majority 2-coloring of G. Now, we have MV = c′
j , and we

can apply the logic of the first case: Assume w.l.o.g. that c′
j = red. Since

c′ is a weak majority coloring, for any red vertex i, MNi
∈ {blue, tie}. It

follows that a majority of the nodes has MNi
�= MV : we have a majority-

weak-majority illusion. �	
One of the results in [10] is that checking whether or not a network allows

for a majority-majority illusion is NP-complete2. Here, in stark contrast, we see
that there is no need for checking whether a network allows for a majority-weak-
majority illusion, since Theorem 1 shows that it is always the case.

4 Illusions in Specific Network Classes

While the above solves the question of the existence of weak majority illusions,
we now aim to understand when the strict version of the illusion can occur. In
order to obtain results in that direction, we turn to some classes of graphs with
well-known global properties. Note that the results from this section are not
intended to describe realistic classes of social networks but can instead be seen
as a starting point for the systematic analysis of the types of graphs that allow
for majority illusions. We focus on graphs with only odd-degree nodes, properly
2-colorable graphs, and regular graphs.

2 [10] does not actually speak about a majority-majority illusion, but about ‘at least a
fraction of q agents is under majority illusion’, with q > 1

2
. The fact that it then also

holds for majority-majority illusion follows from that ‘more than half’ is equivalent
to ‘at least some fraction q where q is more than half’ since we only have to consider
rational numbers.

24 M. Venema-Los et al.

4.1 Graphs with Odd Degrees

Theorem 2. For any graph G = 〈V,E〉 such that for all i ∈ V, di is odd, a
majority-weak-majority illusion is either a unanimity-weak-majority illusion or
a majority-majority illusion.

Proof. Let G = 〈V,E〉 be such that for all i ∈ V , di is odd. By Theorem 1, there
exists a coloring of G that induces a majority-weak-majority illusion. Consider
any such coloring c. Two cases:

– MV = tie. For all i ∈ V , since di is odd, MNi
�= tie and therefore MNi

�= MV :
we have unanimity-weak-majority illusion.

– MV �= tie. Assume w.l.o.g. that MV = red. Since G is in a majority-weak-
majority illusion, |{i ∈ V : MNi

∈ {blue, tie}}| > |V |
2 , but since for all

i, di is odd, this implies that all those vertices cannot have a tie: we have
|{i ∈ V : MNi

= blue}| > |V |
2 , a majority-majority illusion.

�	
The intuition is that an agent with odd degree cannot see a tie in its neigh-

borhood, which causes either all agents a to be in weak-majority illusion if there
is a global tie, or, if there is no global tie, a majority of agents to be in a majority
illusion.

Given a graph coloring we can define a ‘swappable node’ as a node whose
neighbors all have at least 2 (so 3 for odd degree) more nodes of one color than
nodes of the other color. Then, a corollary of Theorem 2 is the following:

Corollary 1. For a graph G = 〈V,E〉 such that for all i ∈ V, di is odd, if
the coloring c witnessing that majority-weak-majority illusion is possible induces
that Mv = tie and that there is at least one j ∈ V that is ‘swappable’, a weak-
majority-majority illusion is possible.

Proof. W.l.o.g. assume cj = red and define c′ which is equal to c for all nodes
except that c′

j = blue. Since c was a majority 2-coloring, all red nodes had more
than half blue neighbors. Since j’s neighbors all had a margin of at least 2 and
nothing except j’s color changed, all red nodes except j still have more than half
blue neighbors in c′. Hence, half of the nodes are under majority illusion. �	

4.2 2-Colorable Graphs

In the same way as we used the existence of a majority coloring to obtain results
about the existence of majority illusions we can also use the existence of a special
type of weak majority colorings, the proper colorings, to obtain results about
majority illusions in 2-colorable graphs.

Lemma 2. Any proper 2-coloring of a graph G = 〈V,E〉 is either a majority-
majority illusion or a unanimity-weak-majority illusion.

On the Graph Theory of Majority Illusions 25

The idea of the proof is similar to that of Theorem 2: no node can see a tie
among its neighbors.

Proof. Let c be a proper 2-coloring of G. Two cases:

– If MV �= tie, then w.l.o.g. assume that MV = red. Since more than half the
nodes are red and all red nodes have a majority of blue neighbors, we have a
majority-majority illusion.

– If MV = tie, then all the nodes are under weak-majority illusion, since for all
nodes, all neighbors are the other color. We have a unanimity-weak-majority
illusion.

�	
Both cases used in the above proof are cases of majority-weak -majority illusions
(which were already guaranteed to exist by 1), but we can also show the existence
of the strict majority illusion in two different cases. First, when the number of
nodes is odd, there cannot be a global tie, so by using the first case in Lemma 2
we get the following proposition :

Proposition 1. For any properly 2-colorable graph G = 〈V,E〉 with |V | odd, a
majority-majority illusion is possible.

Proof. Let c be a proper 2-coloring of G. Since |V | is odd, MV ∈ {red, blue}, we
can use the first case of the proof of Lemma 2: W.l.o.g. assume MV = red. Since
more than half of the nodes are red and all red nodes have only blue neighbors
(since c was a proper 2-coloring), we have a majority-majority-illusion. �	
Second, when the color of a node can be swapped if needed, we can solve a tie:

Proposition 2. For any properly 2-colorable graph G = 〈V,E〉 with some i ∈ V
such that for all j ∈ Ni dj > 2, a weak-majority-majority illusion is possible.

Proof. Let c be a proper coloring of G. Two cases:

– If MV �= tie, then conformingly to Lemma 2, we have a majority-majority
illusion.

– If MV = tie, then swap the color of node i: let c′ assign the same colors
as c to all other nodes but c′

i �= ci. Now M ′
V = c′i. W.l.o.g. say ci = blue

and c′
i = red. All of i’s neighbors are also red and have now exactly one

red neighbor (i), and more than one blue neighbor. Therefore, all red nodes
except for i have more than half of their neighbors blue. Therefore, exactly
|V |
2 of the nodes are in a situation of majority illusion. �	
In [10], the complexity of checking whether a network admits (what we call)

a weak-majority-majority illusion was left as an open problem. Propositions 1
and 2 show that by checking whether a graph is properly 2-colorable (which
can be done in polynomial time [6]) and whether there exists a node whose
neighbors all have degree larger than 2 or whether the number of nodes is odd,
we can know that a graph admits a (weak-)majority-majority illusion. Still this
does not give us the complexity of checking whether a network admits a weak-
majority-majority-illusion: while this is a sufficient condition for a graph to allow
for a (weak-)majority-majority illusion, it is not a necessary condition.

26 M. Venema-Los et al.

4.3 Regular Graphs

In [2], theoretical analysis and experiments where human subjects were asked
to perform estimation tasks are used to study the influence of network struc-
ture on the wisdom of crowds. The authors find a remarkable difference between
centralized networks, where the degree distribution varies a lot between nodes,
and decentralized (regular) networks, in which all nodes have the same degree,
regarding what social influence does to the accuracy of the estimates of individ-
uals (when individual’s estimates are based on a weighted average of their own
belief and the beliefs of their neighbors). They show that in decentralized net-
works, social influence significantly improves individual accuracy and the group
mean estimate. Furthermore, an overview of research about collective intelli-
gence by Centola [7] mentions several studies about decentralized networks in
practical applications: in decentralized networks, political polarization and biases
about climate change and immigration are reduced [3,11], and social influence
reduced biases about the risk of smoking [12], as well as (implicit) race and
gender biases in clinical settings [8]. Since decentralized/regular networks seem
to be beneficial for group accuracy and bias reduction, we wonder whether they
also are ‘good networks’ in terms of the distortion we study: to what extend they
allow for majority illusions. According to [15], differences between the degrees
of nodes and their neighbors are one of the main factors enabling majority illu-
sion. Therefore, one would expect that regular networks, where all nodes have
the same degree, make majority illusions less likely. Nevertheless, we show that
majority illusions (beyond the ones given by Theorem 1) are also possible in
regular networks.

A k-regular network is a network in which all nodes have degree k. We start
by considering the simplest cases of regular network: simple cycles, where k = 2,
and complete networks, where k = |V | − 1.

Proposition 3 (simple cycles). For any 2-regular graph G = 〈V,E〉, a (weak-
)majority-majority illusion is not possible.

Proof. Let G = 〈V,E〉 be any 2-regular graph. A node can only be under major-
ity illusion if both of its neighbours are of the minority color. Every minority-
colored node can serve as a neighbour for at most two nodes. Thus, to give at
least half of the nodes a majority illusion, there must be at least |V |

2 nodes in
the minority color, which is a contradiction with being a strict minority. �	
However, a majority-weak-majority illusion is possible, according to Theorem 1,
and it is easy to find one (which we leave as an exercise to the reader).

Proposition 4 (weak-majority-majority illusion in complete graphs).
For any complete graph G = 〈V,E〉 (i.e. a k-regular graph with k = |V | − 1), a
(weak-)majority-majority illusion is not possible.

Proof. This is a corollary of Proposition 8 in Appendix 2. If |V | = n, according
to Proposition 8, a weak-p-q illusion can occur iff there is an integer x such that
q(n − 1) < x < qn and n − x ≥ pn. This implies that a majority-weak-majority

On the Graph Theory of Majority Illusions 27

illusion can occur iff there is an integer x such that n−1
2 < x < n

2 and n−x ≥ n
2 .

Clearly, there is no x that satisfies the first requirement. �	
We know (by Theorem 1) that a majority-weak -majority illusion is always possi-
ble on complete graphs too. We can go further and specify the types of colorings
under which these graphs are in such an illusion.

Proposition 5 (majority-weak-majority illusion in complete graphs).
A complete 2-colored graph G = 〈V,E, c〉 is under majority-weak-majority illu-
sion if and only if:

– the difference in numbers of nodes of each color is one; or
– the number of nodes of each color is equal, then it is under unanimity-weak-

majority illusion.

Proof. If the difference in numbers of nodes of each color is one, assume w.l.o.g.
that MV = red. Then for all red nodes r, Mr = tie, so we have a majority-
weak-majority illusion. If the number of nodes of each color is equal, we have
MV = tie but every node will observe a majority of the other color: we have a
unanimity-weak-majority illusion. �	
We return to the analysis of general regular graphs. The number of minority-
colored neighbours needed for an illusion gives a restriction on the possible values
of k depending on |V |:
Proposition 6 ((weak-)majority-majority illusion in k-regular graphs).
Let G = 〈V,E〉 be a k-regular graph with |V | = n. If a (weak-)majority-majority
illusion is possible on G, then n and k must satisfy:

– k ≤ n − 4 if n and k are even;
– k ≤ n − 3 if one of n and k is even and one is odd.

Proof. This is a direct corollary of Proposition 9 in Appendix 2. �	
Example 1. Consider a k-regular graph G = 〈V,E〉 with |V | = 6 and k = 4. For
any node to be in a majority illusion, at least 3 of its neighbours have to have a
different color than the global majority color. Assume that the global majority
color is red. Then there are at least 4 red nodes and therefore only 2 nodes can
be blue. Therefore, no node can have 3 or more blue neighbours.

The number of available edges of the minority color brings another require-
ment on the relative values of |V | and k for the strictest version.

Proposition 7 (majority-majority illusion in k-regular graphs). Let G =
〈V,E〉 be a k-regular graph with |V | = n. If a majority-majority illusion is
possible on G, then n and k must satisfy:

– n ≥ 2(3k+2)
k−2 (assuming k ≥ 3) if n and k are even;

– n ≥ 2(3k+1)
k−1 (assuming k ≥ 2) if n is even and k is odd;

– n ≥ 3k+2
k−2 (assuming k ≥ 3) if k is even and n is odd.

28 M. Venema-Los et al.

Proof. If G is in a majority-majority illusion, there are more than half of the
nodes of one color. W.l.o.g., assume that this majority color is red, and that the
minority color is blue.

– When n and k both are even, in order for a majority-majority illusion to
exist, at least n

2 +1 nodes have to be red. Nodes with an illusion have to have
at least k+2

2 blue neighbours. Then, there have to be at least n
2 +1 such nodes

with an illusion. Thus there have to be at least k+2
2 (n2 +1) = (k+2)(n+2)

4 edges
to a blue node. Hence, there must be at least (k+2)(n+2)

4k blue nodes because
every blue node can have at most k edges. Since at least n

2 + 1 nodes were
red, there are at most n

2 −1 left over to be blue, so this means that (k+2)(n+2)
4k

must be at most n
2 −1. This is equivalent to n ≥ 2(3k+2)

k−2 assuming that k > 2;
– When n is even and k odd, in order for a majority-majority illusion to exist,

at least n
2 + 1 nodes have to be red. Nodes with an illusion have to have at

least k+1
2 blue neighbours. Then, there have to be at least n

2 + 1 such nodes
with an illusion. Thus there have to be at least k+1

2 (n2 +1) = (k+1)(n+2)
4 edges

to a blue node. Hence, there must be at least (k+1)(n+2)
4k blue nodes because

every blue node can have at most k edges. Since at least n
2 + 1 nodes were

red, there are at most n
2 −1 left over to be blue, so this means that (k+1)(n+2)

4k
must be at most n

2 − 1. This is equivalent to n + 2 ≤ k(n − 6), which means
n ≥ 2(3k+1)

k−1 assuming that k > 1;
– When k is even and n odd, in order for a majority-majority illusion to exist,

at least n+1
2 nodes have to be red. Nodes with an illusion have to have at least

k+2
2 blue neighbours. Then, there have to be at least n+1

2 such nodes with an
illusion. Thus there have to be at least k+2

2 · n+1
2 edges to a blue node. Hence,

there must be at least (k+2)(n+1)
4k blue nodes. Since at least n+1

2 nodes were
red, there are at most n−1

2 left over to be blue, so this means that (k+2)(n+1)
4k

must be at most n−1
2 . This is equivalent to n ≥ 3k+2

k−2 assuming that k > 2.

�	
Example 2. Consider a k-regular network with |V | = 6 and k = 3. Let us assume
that red is the global majority color, so we have at least 4 red nodes and at
most 2 blue nodes. Then any node with a majority illusion has at least 2 blue
neighbours. Since for a majority-majority illusion there have to be at least 4
nodes with an illusion, there are at least 4 · 2 = 8 edges to blue nodes necessary.
However, since we have at most 2 blue nodes that each have only 3 edges, this
is not possible.

For any n and k (with k > 2 and n or k even) satisfying the above constraints,
we can find a k-regular graph of size n that has a majority-majority illusion.
Note that this does not mean that for any k-regular graph of size n we can
find a coloring that gives a majority-majority illusion, because there exist many
different regular graphs with the same n and k. We only show that, for all

On the Graph Theory of Majority Illusions 29

Fig. 2. Example of the algorithm for Theorem 3, with n = 12, k = 6.

Table 2. The (im)-possibility of majority illusions on different classes of graphs.
� indicates that the illusion is possible on all graphs of the class, ✗ indicates that
the illusion is not possible on any graph in the class, � / ✗ indicates that the illusion
is possible on some but not all graphs of the class. For the majority-weak-majority
illusion, some stronger results are shown. References to the relevant results are given.

Class of graphs majority-weak-majority
weak-maj.-

majority

majority-

majority

All graphs

�(Thm. 1)

�/ ✗Graph with only

odd-degree nodes
majority-

majority

or

unanimity-

weak-

majority

(Thm. 2)

2-colorable graphs

(Lem. 2)

2-colorable graphs

with |V | odd
� (Prop. 1)

2-colorable graphs

with i ∈ V : ∀j ∈
Ni : dj > 2

� (Prop. 2) �/ ✗

2-regular graphs ✗ (Prop. 3)

Complete graphs

with |V | even
unanimity-weak-majority

(Prop. 5)
✗ (Prop. 4)

Complete graphs

with |V | odd

combinations of n and k not excluded by our previous results, there exists at
least one such graph with the illusion, and that we know how to find it.

Theorem 3. Let n and k be any two integers such that k > 2 and k or n is
even. If the requirements of Propositions 6 and 7 are met, there exists a k-regular
graph G = 〈V,E〉 with |V | = n on which a majority-majority illusion is possible.

Proof sketch. We prove this by construction: we give an algorithm that takes
as input n and k and returns a regular graph with n nodes of degree k that
has a majority-majority illusion. The algorithm and a proof that the algorithm
outputs the desired graph are given in Appendix 3. See Fig. 2 for an example
with 12 nodes of degree 6.

30 M. Venema-Los et al.

Propositions 6 and 7 and Theorem 3 together give necessary and sufficient
conditions for n and k for the existence of a k-regular graph with |V | = n nodes
on which a majority-majority illusion is possible.

5 Conclusion and Outlook

We studied weak and strong versions of the majority illusion. Using results about
majority-colorings, we proved that no network is immune to majority-weak-
majority illusion, and that some classes of graphs are not immune to stronger
types of illusions either. The results are summarized in Table 2. We also provided
an algorithm to find a k-regular graph of size n with a majority-majority illusion,
when it exists.

The most natural direction for further research is to broaden the scope of our
study: first, as we have initiated with Appendix 2, by considering proportions
other than majority; and second, by considering classes of graphs that are more
realistic as social networks, including not necessarily irreflexive ones. Moreover,
beyond verifying their sheer possibility, we keep measuring the likelihood of such
illusions for future work.

A different direction is to investigate the relation between majority illusions
and majority logic [18], which can ‘talk about’ local majorities, but not about
global majority. We propose to enrich the logic with a global majority operator,
to express the results from this paper. The idea is elaborated on in Appendix 4.

Last but not least, it would be interesting to measure the impact of propor-
tional illusions on specific social phenomena. For instance, how do they affect
opinion diffusion dynamics in a population? How do they interact with polling
effects? And how do they relate to better known types of illusions, such as the
above-mentioned ‘friendship paradox’ [9]?

Acknowledgments. We thank the anonymous reviewers of EUMAS 2023 for their
helpful comments. Zoé Christoff acknowledges support from the project Social Net-
works and Democracy (VENI project number Vl.Veni.201F.032) financed by the
Netherlands Organisation for Scientific Research (NWO). Davide Grossi acknowledges
support by the Hybrid Intelligence Center, a 10-year program funded by the Dutch
Ministry of Education, Culture and Science through the Netherlands Organisation for
Scientific Research (NWO).

References

1. Anholcer, M., Bosek, B., Grytczuk, J.: Majority choosability of countable graphs
(2020)

2. Becker, J., Brackbill, D., Centola, D.: Network dynamics of social influence in the
wisdom of crowds. Proc. Natl. Acad. Sci. 114(26), E5070–E5076 (2017). https://
doi.org/10.1073/pnas.1615978114

3. Becker, J., Porter, E., Centola, D.: The wisdom of partisan crowds. Proc. Natl.
Acad. Sci. 116(22), 10717–10722 (2019). https://doi.org/10.1073/pnas.1817195116

https://doi.org/10.1073/pnas.1615978114
https://doi.org/10.1073/pnas.1615978114
https://doi.org/10.1073/pnas.1817195116

On the Graph Theory of Majority Illusions 31

4. Bergstrom, C.T., Bak-Coleman, J.B.: Information gerrymandering in social net-
works skews collective decision-making. Nature 573, 40–41 (2019). https://doi-
org.proxy-ub.rug.nl/10.1038/d41586-019-02562-z

5. Bosek, B., Grytczuk, J., Jakóbczak, G.: Majority coloring game. Discrete Appl.
Math. 255, 15–20 (2019). https://doi.org/10.1016/j.dam.2018.07.020

6. Brown, J.I.: The complexity of generalized graph colorings. Discrete Appl. Math.
69(3), 257–270 (1996). https://doi.org/10.1016/0166-218X(96)00096-0

7. Centola, D.: The network science of collective intelligence. Trends Cognit. Sci.
26(11), 923–941 (2022). https://doi.org/10.1016/j.tics.2022.08.009

8. Centola, D., Guilbeault, D., Sarkar, U., Khoong, E., Zhang, J.: The reduction of
race and gender bias in clinical treatment recommendations using clinician peer
networks in an experimental setting. Nat. Commun. 12(1), 1–10 (2021). https://
doi.org/10.1038/s41467-021-26905-

9. Feld, S.L.: Why your friends have more friends than you do. Am. J. Sociol. 96(6),
1464–1477 (1991). http://www.jstor.org/stable/2781907

10. Grandi, U., Lisowski, G., Ramanujan, M.S., Turrini, P.: On the complexity of
majority illusion in social networks (2022). https://doi.org/10.48550/ARXIV.2205.
02056

11. Guilbeault, D., Becker, J., Centola, D.: Social learning and partisan bias in the
interpretation of climate trends. Proc. Natl. Acad. Sci. 115(39), 9714–9719 (2018).
https://doi.org/10.1073/pnas.1722664115

12. Guilbeault, D., Centola, D.: Networked collective intelligence improves dissemi-
nation of scientific information regarding smoking risks. PLoS ONE 15(2), 1–14
(2020). https://doi.org/10.1371/journal.pone.0227813

13. Kreutzer, S., Oum, S., Seymour, P., der Zypen, D.V., Wood, D.R.: Majority colour-
ings of digraphs. Electr. J. Comb. 24(2) (2017). https://doi.org/10.37236/6410

14. Lazarsfeld, P.F., Merton, R.K.: Friendship as a social process: a substantive and
methodological analysis. Freedom Control Mod. Soc. 18, 18–66 (1954)

15. Lerman, K., Yan, X., Wu, X.Z.: The “majority illusion” in social networks. PLoS
ONE 11(2), 1–13 (2016). https://doi.org/10.1371/journal.pone.0147617

16. Lovász, L.: On decomposition of graphs. Studia Sci. Math. Hungar. 1, 237–
238 (1966). https://www.scopus.com/inward/record.uri?eid=2-2.0-0013497816&
partnerID=40v&md5=e9e8f87de7efa20945f4217ca9ee1124

17. McPherson, M., Smith-Lovin, L., Cook, J.M.: Birds of a feather: homophily in
social networks. Ann. Rev. Sociol. 27(1), 415–444 (2001). https://doi.org/10.1146/
annurev.soc.27.1.415

18. Pacuit, E., Salame, S.: Majority logic. In: Proceedings of the Ninth Interna-
tional Conference on Principles of Knowledge Representation and Reasoning, KR
2004, pp. 598–605. AAAI Press (2004). https://dl.acm.org/doi/10.5555/3029848.
3029925

19. Schmitt-Beck, R.: Bandwagon Effect, pp. 1–5. John Wiley and Sons, Ltd (2015).
https://doi.org/10.1002/9781118541555.wbiepc015

20. Stewart, A.J., Mosleh, M., Diakonova, M., Arechar, A.A., Rand, D.G., Plotkin,
J.B.: Information gerrymandering and undemocratic decisions. Nature 573(7772),
117–121 (2019). https://doi.org/10.1038/s41586-019-1507-6

https://doi-org.proxy-ub.rug.nl/10.1038/d41586-019-02562-z
https://doi-org.proxy-ub.rug.nl/10.1038/d41586-019-02562-z
https://doi.org/10.1016/j.dam.2018.07.020
https://doi.org/10.1016/0166-218X(96)00096-0
https://doi.org/10.1016/j.tics.2022.08.009
https://doi.org/10.1038/s41467-021-26905-
https://doi.org/10.1038/s41467-021-26905-
http://www.jstor.org/stable/2781907
https://doi.org/10.48550/ARXIV.2205.02056
https://doi.org/10.48550/ARXIV.2205.02056
https://doi.org/10.1073/pnas.1722664115
https://doi.org/10.1371/journal.pone.0227813
https://doi.org/10.37236/6410
https://doi.org/10.1371/journal.pone.0147617
https://www.scopus.com/inward/record.uri?eid=2-2.0-0013497816&partnerID=40v&md5=e9e8f87de7efa20945f4217ca9ee1124
https://www.scopus.com/inward/record.uri?eid=2-2.0-0013497816&partnerID=40v&md5=e9e8f87de7efa20945f4217ca9ee1124
https://doi.org/10.1146/annurev.soc.27.1.415
https://doi.org/10.1146/annurev.soc.27.1.415
https://dl.acm.org/doi/10.5555/3029848.3029925
https://dl.acm.org/doi/10.5555/3029848.3029925
https://doi.org/10.1002/9781118541555.wbiepc015
https://doi.org/10.1038/s41586-019-1507-6

Qualitative Uncertainty Reasoning
in AgentSpeak

Michael Vezina1(B) , Babak Esfandiari1, Sandra Morley2,
and François Schwarzentruber3

1 Carleton University, Ottawa, ON, Canada
michaeljvezina@cmail.carleton.ca, babak@sce.carleton.ca

2 Individual Researcher, Toronto, Canada
3 Univ Rennes, IRISA, CNRS, Rennes, France

francois.schwarzentruber@ens-rennes.fr

Abstract. This paper presents an extension of AgentSpeak using
dynamic epistemic logic (DEL) to reason about uncertainty. The exten-
sion relies on minimal AgentSpeak syntax to describe uncertainty, while
augmenting the language with possibilistic reasoning via modalities. We
apply the extension to a realistic navigation example with partial observ-
ability and vary the amount of uncertainty to evaluate scalability. Scal-
ability is compared with an existing extension which relies on a less
expressive form of DEL. We find that DEL’s increased expressiveness
comes with a linear cost in computational complexity.

Keywords: BDI · AgentSpeak · Uncertainty · Dynamic Epistemic
Logic

1 Introduction

Belief-Desire-Intention (BDI) is a model for developing intelligent agents based
on the principles of practical reasoning in humans [12]. BDI is rooted in modal
logic, where one may reason about the beliefs, desires, and intentions of the
agent.

AgentSpeak is an abstract programming language based on the principles of
BDI, but removes itself from the modal logic roots of BDI in favour of a simple
and practical implementation [15]. AgentSpeak is solely focused on capturing
the agent’s beliefs, desires, and intentions and fails to capture other important
aspects of agent-oriented development such as reasoning about uncertainty [13].

To provide AgentSpeak with the ability to reason about uncertainty, we
look to dynamic epistemic logic (DEL). DEL is a modal logic that captures
belief uncertainty through the use of possible world semantics [2]. This paper
introduces DEL-AgentSpeak (D-AS), an AgentSpeak extension that enables for
reasoning about uncertainty through the modalities and expressive event models
provided by DEL.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
V. Malvone and A. Murano (Eds.): EUMAS 2023, LNAI 14282, pp. 32–48, 2023.
https://doi.org/10.1007/978-3-031-43264-4_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-43264-4_3&domain=pdf
http://orcid.org/0000-0001-8109-6486
https://doi.org/10.1007/978-3-031-43264-4_3

Qualitative Uncertainty Reasoning in AgentSpeak 33

2 Background and Related Work

2.1 AgentSpeak

AgentSpeak is a BDI-based abstract agent-oriented programming language,
which provides the operational semantics required for agent operation [15]. The
programming language Jason [8] realizes AgentSpeak, providing an interpreter
for its Prolog-based syntax and an implementation of the operational semantics.
We use AgentSpeak/Jason interchangeably throughout the paper. An AgentS-
peak program is composed of five main elements:

– Beliefs are explicit ground literals � stored in a belief base, including percep-
tions from the environment.

– Rules, �r :- ϕ, are implicit beliefs �r formed under a belief condition ϕ.
– Goals, !�, represent the agent’s desires to be fulfilled.
– Events, reflect the addition (+) or deletion (−) of beliefs or goals, and are

handled by plans.
– Plans: te : c ← b. The execution of a plan is based on the triggering event

(te), a belief precondition (or context, c), and a sequence of instructions in
the body (b). Instructions can include belief modifications (+�, −�), sub-goals
(!�), and actions (�).

Listing 1.1 presents an illustrative AgentSpeak program with initial beliefs on
Lines 1 and 2, a rule on Line 3, an initial goal on Line 4, and a plan on Line 5.
In this example, +!plan will execute given the grounded context rule(1), and
will result in the action act(1).

1 bel (1).

2 bel (2).

3 rule(X) :- bel(X) & X <= 1.

4 !plan.

5 +!plan : rule(X) <- act(X);

Listing 1.1. Illustrative AgentSpeak Program.

The works presented in this paper extend the functionality of beliefs in
AgentSpeak to allow for the specification of uncertainty. As such, we also provide
a formal definition for the logical consequences (or entailment) of beliefs.

In AgentSpeak, beliefs and rules are housed in a belief base B. The agent is
said to believe a conjunction of literals, ϕ, when ϕ is derived from B: B |= ϕ. A
literal, �, is a consequence of B if there exists a most-general unifier (MGU), θ,
satisfying either of these conditions:

– It corresponds with a belief, b, such that b = �θ, or
– It matches a rule, �r :- �1 ∧· · ·∧ �n, where B |= (�1 ∧· · ·∧ �n)θ′ and �rθ

′ = �θ.

A conjunction, ϕ = �1 ∧ · · · ∧ �n, becomes a consequence of B if there exists
an MGU, θ, such that B |= (�1 ∧ · · · ∧ �n)θ. We use B |=φ ϕθ to obtain φ, an
equivalent rewritten form of ϕ, containing the conjunction of ground beliefs in B
that resulted in the consequence of ϕθ, i.e., φ is an equivalent rule-free rewritten
form of ϕθ. The functions presented in this paper use this rewritten form to
provide compact definitions that apply to both explicit and implicit beliefs.

34 M. Vezina et al.

2.2 Uncertainty Reasoning in AgentSpeak

In the existing literature, AgentSpeak has been extended using quantitative
approaches to uncertainty in various works, such as those presented in [3,5].
These methodologies leverage probability theory, providing a precise approach to
uncertainty reasoning. However, precision may not always be achievable or ideal,
especially in scenarios where probabilistic distributions are not easily accessible.
Moreover, these quantitative strategies typically rely on numerical representa-
tions of uncertainty within the agent’s program. Given the symbolic nature of
AgentSpeak syntax, incorporating these numerical elements often results in less
streamlined solutions for uncertainty reasoning, thereby increasing difficulties
during program development and maintenance [19].

On the other hand, symbolic uncertainty reasoning strategies, such as those
proposed in [9,14], employ modalities and rankings to reason about uncertainty.
Modal-based symbolic approaches are often favoured over other symbolic for-
malisms owing to AgentSpeak’s roots in a modal logic (BDI). The alignment
of AgentSpeak with modal logic (i.e., epistemic logic) for uncertainty provides
an elegant description of uncertainty in the language. Although these strate-
gies integrate well with AgentSpeak, they typically depend on logically complex
dialects that are computationally infeasible, and hence, are largely theoretical
and lack practical implementations [13,19].

In 2022, Vezina and Esfandiari introduced an approach to uncertainty reason-
ing in AgentSpeak, referred to as “PAL-AgentSpeak” (P-AS) [19]. P-AS extends
AgentSpeak using public announcement logic (PAL). PAL is a restricted form of
DEL, where public announcement events capture monotonic knowledge change
about a static environment. Unfortunately, due to PAL’s limited abilities, P-AS
faces several non-trivial logical limitations that impact the general applicability
of the extended language.

The reliance of P-AS on PAL restricts it to monotonic change, that is, our
certainty of a static environment only increases as events occur. This severely
limits the types of uncertainty that can be modelled with P-AS. For instance,
PAL struggles to capture simple changes such as moving locations on a map due
to its inability to model changes in state (also known as ontic effects).

Vezina and Esfandiari proposed an ad hoc workaround to capture movement
using P-AS, which requires the anticipation of all resulting action-states at com-
pile time and manual management of these states at run time. The author’s have
acknowledged that their presented workaround lacks soundness, generalizability,
and elegance, and that it places unrealistic expectations on the agent at compile
time.

Our paper aims to address these limitations in a sound, generalizable, and
elegant manner by integrating DEL, a more expressive logic for change, with
AgentSpeak. However, this integration is not a straightforward task, as it requires
additional transformational semantics to fully represent DEL’s expressive capac-
ity within AgentSpeak. D-AS facilitates the comprehensive representation of
DEL with AgentSpeak syntax, offering a declarative and idiomatic approach to
express change within an AgentSpeak program.

Qualitative Uncertainty Reasoning in AgentSpeak 35

In summary, while several approaches have attempted to introduce uncer-
tainty reasoning into AgentSpeak, each has its limitations. This paper presents
a new integration with DEL, aiming to overcome these challenges and provide
a more comprehensive and practical solution for uncertainty management in
AgentSpeak.

2.3 Dynamic Epistemic Logic

Dynamic epistemic logic (DEL) is a modal logic for reasoning about the statics
and dynamics of knowledge [18]. Let P be a non-empty finite set of atomic
propositions. A non-dynamic epistemic formula ϕ is given by the grammar:

ϕ::=p | ¬ϕ | ϕ1 ∨ ϕ2 | Bϕ.

where p ∈ P . The construction Bϕ is read as ‘the agent believes ϕ’. We introduce
DEL with S5 semantics for knowledge, however, we use the term ‘belief’ to
stay consistent with terminology used in AgentSpeak. The dual B̂ϕ = ¬B¬ϕ
represents a possible belief ϕ.

An S5 epistemic model M = (W,V) provides semantics to the entailment
of these formulae, where: W is a set of possible worlds and V : W → 2P is a
valuation that maps worlds to propositional states. Given a pointed world w ∈ W
used for entailment, entailment of truth conditions (boolean cases omitted) are:
M,w |= p iff p ∈ V (w); and M,w |= Bϕ iff for all u ∈ W , M,u |= ϕ. Entailment
semantics for belief formulae Bϕ are independent of any world w ∈ W and can
be simplified to M |= Bϕ.

A DEL event model ε = (E, pre, post) captures the dynamics of uncertainty.
E is a set of possible events, pre(e) is an epistemic formula representing the
precondition for event e, and post(e) assigns an epistemic formula post(e, p) to
each proposition p ∈ P . We say that post(e) = \ is trivial when post(e, p) = p
for all p. The application of an event model ε to an epistemic model M is
a new epistemic model M ′ = M ⊗ ε. The worlds in M ′ are pairs (w, e) in
which the precondition of e holds in w, and in which we reassign the truth
values of propositions according to post. Formally, the updated model M ′ is
defined to be (W ′, V ′) where: W ′ = {(w, e) ∈ W × E | M,w |= pre(e)}, and
V ′((w, e)) = {p ∈ P | M,w |= post(e, p)}.

Example 1 presents the navigation problem used throughout this paper while
simultaneously demonstrating how we can naturally model the problem’s uncer-
tainty using DEL. In Sect. 8, we present an elegant agent-oriented solution to
this problem using D-AS.

Example 1 (Navigation Problem). Consider the navigation problem introduced
in [19], which is based off of the 2019 Multi-Agent Programming Contest
(MAPC). The MAPC is a yearly contest that aims to simulate realistic environ-
ments by posing large-scale uncertainty problems and tight deliberation dead-
lines. The MAPC, specifically the navigation problem, represents a general class
of uncertainty reasoning where modelling and reasoning about uncertainty is

36 M. Vezina et al.

required in order to make a decision in the absence of probabilistic informa-
tion [19]. An agent, Bob, knows the grid map (see Fig. 1) but is uncertain of his
actual location, as he only perceives surrounding obstacles. Bob must navigate
to the goal cell.

Fig. 1. The Known Map Definition.

We represent Bob’s location with loc(X,Y). Note that all directions are
relative: d ∈ {↓, ↑,←,→}. The corresponding initial epistemic model is Mnav =
(W,V) where:

W = {wxy | (x, y) ∈ {0, . . . , 4}2 \ {(1, 2), (2, 2)}}
V (wxy) = {loc(x, y)} ∪

px {loc(x, y) ⇒ obs(d) | obstacle in direction d at xy} ∪
px {loc(x, y) ⇒ dir(d) | direction d in shortest path to goal from xy}

Bob is initially placed at (1,1) and his partial observability allows him to
perceive the obstacle at (1,2), represented via obs(↓). The revealing of this fact
is encoded by the event model εobs(↓) = (E, pre, post) with E = {e}, pre(e) =
obs(↓), and post = \. The resulting model (M ′

nav = Mnav ⊗ εobs(↓)) eliminates
all but two possible worlds (locations) that hold obs(↓): loc(1, 1) and loc(2, 1).

In order to get to the goal location, Bob now moves in the direction modelled
by both possible locations: dir(→). The action move(→) is captured by ε→ =
(E, pre, post) where:

– E = {exy | (x, y) is a non-obstacle cell},
– pre(exy) = loc(x, y),

– post(exy) =

{
{loc(x, y)) = ⊥, loc(x + 1, y)) = �} if x ≤ 3
\ Otherwise

This event model captures the movement of the agent from each valid (i.e.,
non-edge) location to it’s right-adjacent cell. The result (M ′′

nav = M ′
nav ⊗ ε→)

contains the right-adjacent locations of all previous possible locations (inc. rele-
vant obstacle and direction propositions): (2, 1) and (3, 1).

3 Methodology Overview

In general, the goal of D-AS is to provide a richer reasoning experience through
the capturing of uncertainty and the explicit ability to query about the beliefs

Qualitative Uncertainty Reasoning in AgentSpeak 37

it considers certain and/or possible. This integration is achieved by assign-
ing various transformational semantics to AgentSpeak, enabling the translation
from AgentSpeak code into DEL models, formulae, and operations. In order to
achieve this using DEL, we introduce three necessary operations: model creation
(Sect. 4), model updates (Sect. 5), and model queries (Sect. 6).

D-AS utilizes a proposition-based form of DEL, as it provides linear com-
putational complexity properties [16]. As such, the methodology we present in
the following sections involve the transformation of literals into propositional
formulae, referred to as propositionalization (see [11]).

4 Model Creation: Initializing an Epistemic Model

D-AS constructs the initial epistemic model based on the agent’s initial beliefs.
The model creation process of D-AS is based on the process introduced for P-
AS by Vezina and Esfandiari [19], but introduces critical improvements. D-AS
utilizes a SAT solver for model creation, a methodology that is inherently sound
and can be generalized to other domains based on formulae described in the
agent’s program.

The standard AgentSpeak language lacks the ability to explicitly define
uncertainty. Similar to P-AS, D-AS allows the agent to declare initial uncer-
tainty through the use of range beliefs. The initial epistemic model is created
based on the propositionalization of standard beliefs, range beliefs, and con-
straints, whose processes will be discussed in the following sub-sections. Once a
propositional description of the initial belief state is obtained, a SAT solver is
used to identify all satisfiable propositional solutions. These solutions are then
used to populate the possible worlds in the initial epistemic model.

4.1 Propositionalizing Standard Beliefs

Explicit beliefs are simply ground literals. For a ground literal �, proposition-
alization (denoted by pr) is trivial: we assign it a unique propositional symbol
pr(�) = �pr. Given a grounded expression φ, pr(φ) simply replaces � with pr(�)
for all � ∈ φ and ¬pr(�) for all ¬� ∈ φ.

4.2 Propositionalizing Ranged Beliefs

Initial uncertainty of � is declared through a ranged belief with the form:
range(�). Ranged beliefs simply indicate that the agent is uncertain about the
truth value of �. Ranged beliefs are propositionalized differently than standard
beliefs to reflect uncertainty.

The ground ranged belief range(�) is propositionalized as follows:
prRan(�θ) = pr(�θ) ∨ ¬pr(�θ). Note that although the resulting propositional
sentence is a tautology, it is necessary for the SAT solver to generate the correct
propositional states.

38 M. Vezina et al.

We also obtain all positive and negated forms of ranged literals for grounding
purposes. Given belief base B, the function ran(B) = {�θ,∼�θ | B |= range(�)θ}
provides the necessary grounding set. Additionally, given R = ran(B) and a
literal formula ϕ, the notation (B ∪ R) |= ϕ is used to obtain the consequences
of ϕ using both ranged literals in R and any beliefs in B.

4.3 Propositionalizing Constraints

The agent may also know the condition(s) (e.g., ϕ) where the truth of a ranged
belief range(�) is known; these are indicated through the use of standard belief
rules, e.g., � :- ϕ. To incorporate these belief conditions into the initial epistemic
model, we propositionalize their rule-free forms.

Given a set R of ranged literals and belief base B, the function cons(R,B) =
{(�θ, φ) | (B ∪ R) |=φ �θ s.th. � ∈ R} obtains pairs containing the ranged literal
and MGU �θ, and the rule-free condition φ resulting in the consequence of �θ
given beliefs and ranged literals. Given a pair (�θ, φ), we propositionalize the
rule-free truth condition as follows: prCon(�θ, φ) = (pr(φ) ⇒ pr(�θ)).

4.4 Creating the Initial Epistemic Model

Given a belief base B and set of ranged literals R, we start the model creation
process by obtaining all propositional sentences which describe the initial belief
state of the agent, obtained via the following function:

all cons(B,R) = {pr(�) | � ∈ B} ∪ {prRan(�) | � ∈ R}
px ∪ {prCon(�θ, φ) | (�θ, φ) ∈ cons(R,B)}

We then generate a set of possible worlds that conform to these sentences. This is
done by finding all satisfiable solutions to the set of propositional sentences (S).
Let at(S) be the atomic propositions used by the formulae in S. The generation
of the epistemic model is defined as: gen model(S) = 〈W,V 〉, where: W = {w ∈
2at(S) | w |= S}, and V (w) = w, where w |= S indicates that all formulas of S
hold in w.

5 Model Updates: Updating the Epistemic Model

In AgentSpeak, belief events +� and -� represent the addition and deletion
of a literal �, respectively. The effects of these events on uncertainty will
vary depending on the inherent meaning of belief �; e.g., a movement event
(+move(→)) impacts the agent’s beliefs differently than the perception of an
obstacle (+obs(↓)).

In P-AS, all belief events are treated the same, i.e., as monotonic epistemic
change. As a result, P-AS fails to effectively capture change for many domains,
including the navigation example.

By default, all belief events in D-AS are treated as ontic change. In cases
where the default assumption (ontic change) is insufficient, D-AS allows the

Qualitative Uncertainty Reasoning in AgentSpeak 39

agent to capture the DEL event model associated with belief events through
the use of “on” plans. Using ontic change as the default mode for belief events
impacts the belief state in a way that is equivalent to standard AgentSpeak,
and thus allows D-AS to be backwards-compatible with standard AgentSpeak
programs. We introduce each belief update mode in more detail below.

5.1 Default Belief Event Models

In D-AS, belief additions and deletions are modelled as simple ontic changes
when no corresponding “on” plans are available. Given a belief event trigger te,
we create a corresponding default DEL event model: def ev(te) = (E, pre, post)
with: E = {te}, pre(te) = �, post(te, �) = � (if te = +�) or ⊥ (if te = −�).
If the model given by def ev(te) does not sufficiently capture the effects of the
belief event te, the agent can override the default DEL event model through the
use of “on” plans.

5.2 “On” Plans: Overriding Default Event Models

D-AS allows for a more intricate description of belief change through “on” plans.
“On” plans contain a special trigger literal on(�), which are seen as a meta-
description of the epistemic/ontic effects of a belief event �.

Given a belief event +� (or −�) where � is a ground literal, a standard AgentS-
peak plan te : c ← b is assigned “on” plan semantics when te = +on(�) (resp.
te = −on(�)). The plan is transformed into a corresponding DEL event model
where the context and body are transformed into the pre- and post-condition(s),
respectively.

Given a plan library P and triggering event te, we use RelP lans(P, te) as
defined by AgentSpeak’s operational semantics in [8] to obtain a set of relevant
plans (p, θ) with plan p and unifier θ. We use the function rel on(P, te) to find
all relevant “on” plans in P that correspond with te, where: rel on(P,+�) =
RelP lans(P,+on(�)) or rel on(P,−�) = RelP lans(P,−on(�)).

Given a set ROn of relevant “on” plans and a belief base containing ranged
literals BR, we must ground all “on” plans using BR before transforming into a
corresponding DEL event. AppP lans(BR, ROn) is another Jason-provided func-
tion which we use to find the applicable “on” plans from the relevant plans in
ROn whose contexts are grounded consequences of BR

1.

Transforming “On” Plans into DEL Event Models. D-AS transforms
an applicable “on” plan (a, θ) with plan a and MGU θ, into its corresponding
DEL event as follows: (a, θ) is the event’s designated identifier and pre((a, θ)) =
pr(Ctxt(a)θ) is the plan context serving as the event pre-condition. Within
the plan body Body(a)θ, belief additions and deletions are interpreted as ontic
effects, providing us with event post-conditions:

1 Do not confuse AppP lans for AppP lans′ defined in Sect. 6.

40 M. Vezina et al.

post((a, θ)) =

{
(pr(�),�) if +� ∈ Body(a)θ
(pr(�),⊥) if −� ∈ Body(a)θ

Grounding Literals from Ontic Changes. Since ontic changes in “on” plans
introduce new literals that may be involved in the grounding of future queries
and updates, we define the following function, which allow us to extract new
literals from the additive ontic changes in a set of ground “on” plan pairs A.

ontic lits(A) = {�,¬� | (a, θ) ∈ A where + � ∈ Body(a)θ}

5.3 Creating a DEL Event Model

Given a triggering event te and a set of applicable “on” plans A, we create a
corresponding DEL event model for te (or use the default event model when
A = ∅). The following function returns the appropriate DEL event model:

del em(A, te) =

{
〈E = {(a, θ) ∈ A}, pre((a, θ)), post((a, θ))〉 if A �= ∅
def ev(te) else, A = ∅

6 Model Queries: Querying the Epistemic Model

Standard plan contexts allow the agent to express belief preconditions (i.e., a
conjunction of literals), which are used to determine the applicability of a plan
for execution. The standard AgentSpeak language is not expressive enough to
explicitly query uncertainty in the plan contexts. To address this, we introduce
the possibility operator poss(�) which allows the agent to query whether it con-
siders � to be possible. The methodology introduced in this section is identical
to the model querying process presented for P-AS in [19], which enriches plan
contexts with the ability to reason about both certain and possible beliefs by del-
egating the evaluation of belief (and possibility) queries to the epistemic model.

Using the epistemic model to evaluate a plan context requires a transforma-
tion into an equivalent epistemic formula. We assign a new semantic meaning
to belief queries of the form poss(�), given any literal �, where the possibility
modality B̂ is used to reason about �. All non-poss queries in the plan context
will be assigned the standard belief modality B – this is equivalent to standard
belief queries in AgentSpeak.

Given a ground rule-free conjunction ϕ, tr(ϕ) is an epistemic formula
obtained by assigning the appropriate modalities to each propositionalized lit-
eral.

tr(poss(�)) = B̂ pr(�)
tr(�) = B pr(�)

tr(ϕ1 ∧ ϕ2) = tr(ϕ1) ∧ tr(ϕ2)

Note that � in the definition to represent a standard literal, i.e., � �= poss().

Qualitative Uncertainty Reasoning in AgentSpeak 41

6.1 Evaluating Formulae

Given an epistemic model M , and ranged belief base BR = B ∪ R with belief
base B and set of ranged literals R, we use the following function to evaluate a
plan context ϕ: eval〈M,BR〉(ϕ) = {θ | BR |=φ ϕθ s. th. M |= tr(φ)}.

In AgentSpeak, plan contexts are used in determining applicability of a rele-
vant plan (p, θ) with plan p and unifier θ – achieved in AgentSpeak by a function
AppP lans. Given M and BR from above, and a set of relevant plan pairs RP ,
we provide an updated definition that evaluates plan contexts according to the
semantics discussed previously: AppP lans′(M,BR, RP) = {(p, θ ◦ θ′) | (p, θ) ∈
RP and θ′ ∈ eval〈M,BR〉(Ctxt(p))}.

7 Operational Semantics

Operational semantics are presented as semantic rules defining transition rela-
tions between D-AS configurations: 〈ag,C, T, S〉. For brevity, we extend a min-
imal subset of Jason’s configuration definition [8]. Extended components are
bolded.

– ag (agent state). Belief base agB holds initial beliefs/rules, agps holds all
plan definitions, agR = ran(agB) holds all ranged literals, and agM =
gen model(all cons(agB , agR)) holds the initial epistemic model generated
based on the constraints defined by the belief base.

– C (circumstances). CE is a set of event tuples (te, ι) with an event te raised
by intention ι.

– T (transition system). TR and TAp contain relevant and applicable plans as
tuples (p, θ), with plan p and MGU θ.

– S (current step) is one of the standard Jason steps: ProcMsg, SelEv, ApplPl,
SelAppl, SelInt, etc.

Note that the model creation operation, which initializes the agent’s epis-
temic model agM , occurs during the initialization of this configuration and does
not occur within the reasoning cycle itself. This ensures a minimal impact on
the time-sensitive reasoning cycle. The model update and query operations occur
within the reasoning cycle and are described by the semantic rules presented in
the following sub-sections.

7.1 Model Update Semantics

In D-AS, we apply DEL events described by the agent’s “on” plans which match
a given belief event. This process is captured by the semantic rules in Fig. 2,
which override the default AgentSpeak semantic rules for belief addition and
deletion events using the functions provided in Sect. 5. Boxed operations are
those introduced by D-AS.

42 M. Vezina et al.

Fig. 2. Semantic Rules for Belief Addition/Deletion.

7.2 Model Query Semantics

In standard AgentSpeak, the agent selects an event (from CE) and finds a set
TR of relevant plans (p, θ) where p is a plan whose trigger unifies (via MGU θ)
with the selected event. Applicable plans are relevant plans whose context is a
consequence of the agent’s current beliefs. As shown in Fig. 3, D-AS provides new
semantic rules for the step AppPl. We rely on function definitions from Sect. 6
to provide new semantic rules that compute the set of applicable plans TAp by
evaluating relevant plan contexts using the epistemic model. Boxed operations
are those introduced by D-AS.

Fig. 3. Evaluate Applicability of Plans Based on the Epistemic Model.

8 Application and Evaluation

In this section, we apply D-AS to the MAPC’s navigation problem and evaluate
its performance and scalability. The MAPC serves as a general representation of

Qualitative Uncertainty Reasoning in AgentSpeak 43

the class of uncertainty faced by autonomous agents in practice and thus aims
to model realistic uncertainty scenarios [1]. By applying D-AS to the MAPC
domain via the navigation example, we are demonstrating that D-AS is not
limited to a single domain, but rather, that it is applicable to an entire class of
realistic uncertainty problems.

8.1 Application

Listing 1.2 provides the D-AS program for the navigation problem. The range
rule on Line 1 succinctly defines the uncertainty of locations (0,0) to (4,4). The
standard rule on line 2 is interpreted as a constraint on the truth values of
locations by asserting mutual exclusivity. Lastly, the two beliefs on Line 3 state
that we know obstacle locations (1,2) and (2,2) are not valid locations.

The plans on Lines 8 and 9 are assigned “on” semantics (Sect. 5). Respec-
tively, these plans provide the relevant DEL event models for two events: +obs(↓)
and +move(→), which correspond to εobs(↓) and ε→ from Example 1.

Lastly, the +!nav plan on line 10 allows us to reason about movement direc-
tions, which allow us to make a decision that is based on the locations we cur-
rently consider possible.

1 range(loc(X, Y)) :- .in([X,Y] ,[[0 ,0]..[4 ,4]]).

2 ∼loc(X, Y) :- loc(X2 , Y2)&(X, Y)\==(X2,Y2).

3 ∼loc(1, 2). ∼loc(2, 2).

4 obs(down) :- loc(1, 1) | loc(2, 1).

5 dir(right) :- loc(1, 1) | loc(2, 1).

6 ... // Etc. for all obs/dir

7 !nav.

8 +on(obs(D)) : obs(D).

9 +on(move(right)) : loc(X, Y) <- -loc(X, Y); +loc(X+1, Y).

10 +!nav : dir(D) & poss(dir(D)) <- move(D); ...

Listing 1.2. D-AS program for navigation.

The D-AS program presented above allows us to localize the agent by man-
aging which locations we consider possible, and by eliminating impossibilities
as the agent perceives its environment. Interestingly, this D-AS program also
represents a solution to a much more general problem, i.e., the ability of the
agent to make concrete and stable decisions while faced with varying facets of
uncertainty. This is a problem that most autonomous agents face; this problem
is aggravated due to the lack of uncertainty reasoning capabilities in the stan-
dard AgentSpeak language. D-AS solves this problem by providing a general,
yet elegant, solution to capturing and reasoning about uncertainty.

8.2 Evaluation

This section evaluates the scalability of D-AS2 to measure its impact on the
agent’s reasoning cycle. Due to the lack of symbolic approaches to uncertainty
2 D-AS implementation: https://github.com/MikeVezina/epistemic-jason. We use the

DEL reasoner and SAT solver included in Hintikka’s World [17].

https://github.com/MikeVezina/epistemic-jason

44 M. Vezina et al.

reasoning in the literature, P-AS is the only comparable extension which can be
relied upon as a performance benchmark. The evaluation methodology used in
this section scales the navigation application, measuring the time it takes to per-
form model creations, updates, and queries – this is identical to the methodology
used to evaluate P-AS [19], allowing us to provide a direct comparison.

Although our evaluation relies on the MAPC navigation example, the main
goal of our evaluation is to present the worst-case computational complexity
trends. These results are general and can be interpreted regardless of the agent’s
chosen domain.

Additionally, our chosen evaluation parameters are scaled based on the scale
constraints provided by the 2019 MAPC. Owing to the MAPC’s aim of simulat-
ing realistic uncertainty scenarios, the chosen scale and constraints facilitate an
understanding of D-AS’s practical performance. This is made possible by pro-
viding us with results and trends indicative of how D-AS performs under more
realistic conditions [1]. In the following sub-sections, we compare P-AS and D-AS
with respect to their model creation, update, and query performance.

Model Creation. Figure 4 graphs the time it takes for P-AS and D-AS to
create an initial epistemic model (with |W | worlds) from a set of initial beliefs
and rules.

Fig. 4. Model Size vs. Model Creation time (s).

These results show that P-AS performs significantly better during model
creation. P-AS relies on an ad hoc approach to model creation, which lacks the
capability to generalize to other uncertainty domains. D-AS provides a general-
izable model creation approach via SAT solving, but this comes at the cost of
computation time. The worst-case time complexity for D-AS model creation is
exponential, with respect to the agent’s initial beliefs. In practice, there are effi-
cient SAT solving algorithms which may out-perform ad hoc techniques [4]; this
is left to be explored as future work. Additionally, this additional computation
time may be justifiable since model generation can be invoked offline and cached,
i.e., it does not have to impact the agent’s time-sensitive reasoning cycle.

Qualitative Uncertainty Reasoning in AgentSpeak 45

Model Update. Model update times measure the time it takes to apply an
event model to the current epistemic model. Figure 5 compares the time it takes
D-AS and P-AS to update the epistemic model, given |E| events in the event
model and |W | worlds in the current epistemic model. Since P-AS uses PAL, it
is limited to single-event (public announcement) event models where |E| = 1;
with D-AS, we test two scenarios: |E| = 1 and |E| = 2, though D-AS is capable
of expressing any number of events. Note that |E| is dictated by the number of
applicable “on” plans defined by the agent for a given belief event.

Fig. 5. Model size vs. model update time (ms).

P-AS and D-AS perform the same when there is a single-event event model
|E| = 1. In the case where an agent expresses multi-event models in D-AS, the
model update time increases linearly with a factor of |E| due to DEL’s update
semantics.

Model Querying. Figure 6 compares the time it takes P-AS and D-AS to
model-check 100 ground belief queries, with respect to the number of worlds in
the current model |W |. Both P-AS and D-AS perform identically when querying,
since the entailment semantics of formulae are the same for both PAL and DEL.

Fig. 6. Model Size vs. Model Querying Time (100 formulae, ms).

To conclude, P-AS is limited in its expressiveness. D-AS provides a higher
level of expressiveness due to its more extensive semantics, but comes with a
higher computational cost when these higher forms of expressiveness are used
by the agent.

46 M. Vezina et al.

9 Conclusion

D-AS is a DEL-based extension for reasoning about uncertainty in AgentSpeak
which addresses various non-trivial limitations encountered by Vezina and Esfan-
diari’s P-AS [19]. D-AS enables the general creation of any initial epistemic model
via propositionalization of the initial belief state and the use of a SAT solver.
Unlike P-AS, the model creation methodology used in D-AS are general and can
capture descriptions for domains other than the MAPC and the navigation prob-
lem. D-AS also assigns semantics to “on” plans which allow the agent to specify
the impact that belief events have on the epistemic model. Lastly, P-AS lacked
formal operational semantic definitions which are crucial to the description of
any AgentSpeak-based language. This paper presented the necessary operational
semantic definitions for D-AS, including its model creation, update, and querying
operations.

D-AS and P-AS have similar performance and scalability, with a couple of
exceptions. Although model creation is faster with P-AS, their approach is ad
hoc and thus limited to the navigation example. At the cost of performance,
D-AS is able to provide a sound and generalizable model creation process, which
can be applied to domains other than the navigation problem. Additionally, the
model creation process can occur offline and the model can be cached.

During model updates, we see that P-AS and D-AS perform the same when
D-AS is limited to the expressability provided by P-AS (i.e., single-event event
models). As soon as the agent requires the additional expressability provided by
the “on” plans (i.e., DEL event models), computation time grows linearly with
the magnitude of uncertainty.

Both AgentSpeak and DEL are widely-used in multi-agent settings – nat-
urally, future work for D-AS involves multi-agent transformational semantics;
however, multi-agent reasoning comes at an additional methodological and com-
putational cost [16] and is thus left to be explored as future work. Addition-
ally, since D-AS leverages the full power of single-agent DEL, it lends itself to
knowledge-based programs [10] that rely on DEL (e.g., [20]), and DEL planning
domains, such as robotics and security [6,7].

We hope to see D-AS integrated into Jason and other AgentSpeak-based
languages, as D-AS provides powerful semantics for capturing belief change and
reasoning about uncertainty in a manner that is elegant and would be useful for
any agent domain involving uncertainty.

Acknowledgements. We acknowledge the support of the Natural Sciences and Engi-
neering Research Council of Canada (NSERC).

References

1. Ahlbrecht, T., Dix, J., Fiekas, N., Krausburg, T.: The multi-agent programming
contest. In: Ahlbrecht, T., Dix, J., Fiekas, N., Krausburg, T. (eds.) MAPC 2021.
Lecture Notes in Computer Science, vol. 12381, pp. 3–20. Springer, Cham (2020).
https://doi.org/10.1007/978-3-030-88549-6 1

https://doi.org/10.1007/978-3-030-88549-6_1

Qualitative Uncertainty Reasoning in AgentSpeak 47

2. Baltag, A., Renne, B.: Dynamic Epistemic Logic. In: Zalta, E.N. (ed.) The Stan-
ford Encyclopedia of Philosophy. Metaphysics Research Lab, Stanford University,
Winter 2016 edn. (2016)

3. Bauters, K., McAreavey, K., Liu, W., Hong, J., Godo, L., Sierra, C.: Managing dif-
ferent sources of uncertainty in a BDI framework in a principled way with tractable
fragments. J. Artif. Intell. Res. 58, 731–775 (2017). https://doi.org/10.1613/jair.
5287

4. Beskyd, F., Surynek, P.: Domain dependent parameter setting in SAT solver using
machine learning techniques. In: Rocha, A.P., Steels, L., van den Herik, J. (eds.)
ICAART 2022. Lecture Notes in Computer Science, pp. 169–200. Springer Inter-
national Publishing, Cham (2022). https://doi.org/10.1007/978-3-031-22953-4 8

5. Biga, A.A., Casali, A.: G-jason: An extension of jason to engineer agents capable
to reason under uncertainty. In: Proceedings of 14th Intelligent Agent and Systems
Workshop (2014)

6. Bolander, T., Andersen, M.B.: Epistemic planning for single-and multi-agent sys-
tems. J. Appl. Non-Class. Logics 21(1), 9–34 (2011)

7. Bolander, T., Charrier, T., Pinchinat, S., Schwarzentruber, F.: Del-based epistemic
planning: decidability and complexity. Artif. Intell. 287, 103304 (2020). https://
doi.org/10.1016/j.artint.2020.103304

8. Bordini, R.H., Hübner, J.F., Wooldridge, M.: Programming Multi-agent Systems
in AgentSpeak using Jason. John Wiley & Sons, Hoboken (2007)

9. Casali, A., Godo, L., Sierra, C.: g-BDI: a graded intensional agent model for prac-
tical reasoning. In: Torra, V., Narukawa, Y., Inuiguchi, M. (eds.) MDAI 2009.
Lecture Notes in Computer Science, vol. 5861, pp. 5–20. Springer, Berlin (2009).
https://doi.org/10.1007/978-3-642-04820-3 2

10. Fagin, R., Halpern, J.Y., Moses, Y., Vardi, M.Y.: Reasoning About Knowledge.
MIT Press, Cambridge (1995). https://doi.org/10.7551/mitpress/5803.001.0001

11. Genesereth, M., Kao, E.: Introduction to Logic, 3rd edn. Morgan & Claypool Pub-
lishers, Synthesis Lectures on Computer Science (2016)

12. Georgeff, M.P., Rao, A.: An abstract architecture for rational agents. In: Proceed-
ings of the Third International Conference on Principles of Knowledge Represen-
tation and Reasoning, pp. 439–449 (1992)

13. Herzig, A., Lorini, E., Perrussel, L., Xiao, Z.: Bdi logics for BDI architectures: Old
problems, new perspectives. KI - Künstliche Intell. 31(1), 73–83 (2017). https://
doi.org/10.1007/s13218-016-0457-5

14. Jago, M.: Epistemic logic for rule-based agents. J. Logic Lang. Inf. 18(1), 131–158
(2009). https://doi.org/10.1007/s10849-008-9071-8

15. Rao, A.S.: Agentspeak(L): BDI agents speak out in a logical computable language.
In: Van de Velde, W., Perram, J.W. (eds.) MAAMAW 1996. Lecture Notes in
Computer Science, vol. 1038, pp. 42–55. Springer, Berlin (1996). https://doi.org/
10.1007/BFb0031845

16. Schwarzentruber, F.: Epistemic reasoning in Artificial Intelligence. Habilitation
thesis, University of Rennes (2019)

17. Schwarzentruber, F.: Hintikka’s world: agents with higher-order knowledge. In:
Proceedings of the Twenty-Seventh International Joint Conference on Artificial
Intelligence, IJCAI-18, pp. 5859–5861. International Joint Conferences on Artificial
Intelligence Organization (2018). https://doi.org/10.24963/ijcai.2018/862

18. Van Ditmarsch, H., van Der Hoek, W., Kooi, B.: Dynamic Epistemic Logic, vol.
337. Springer, Cham (2007). https://doi.org/10.1007/978-1-4020-5839-4

https://doi.org/10.1613/jair.5287
https://doi.org/10.1613/jair.5287
https://doi.org/10.1007/978-3-031-22953-4_8
https://doi.org/10.1016/j.artint.2020.103304
https://doi.org/10.1016/j.artint.2020.103304
https://doi.org/10.1007/978-3-642-04820-3_2
https://doi.org/10.7551/mitpress/5803.001.0001
https://doi.org/10.1007/s13218-016-0457-5
https://doi.org/10.1007/s13218-016-0457-5
https://doi.org/10.1007/s10849-008-9071-8
https://doi.org/10.1007/BFb0031845
https://doi.org/10.1007/BFb0031845
https://doi.org/10.24963/ijcai.2018/862
https://doi.org/10.1007/978-1-4020-5839-4

48 M. Vezina et al.

19. Vezina, M., Esfandiari, B.: Epistemic reasoning in Jason. In: Proceedings of the
21st International Conference on Autonomous Agents and Multiagent Systems,
AAMAS 2022, pp. 1328–1336. International Foundation for Autonomous Agents
and Multiagent Systems, Richland, SC (2022)

20. Zanuttini, B., Lang, J., Saffidine, A., Schwarzentruber, F.: Knowledge-based pro-
grams as succinct policies for partially observable domains. Artif. Intell. 288,
103365 (2020)

JaKtA: BDI Agent-Oriented Programming
in Pure Kotlin

Martina Baiardi(B) , Samuele Burattini , Giovanni Ciatto ,
and Danilo Pianini

Department of Computer Science and Engineering (DISI),
Alma Mater Studiorum—Univerisità di Bologna,
Via dell’Università 50, 47522 Cesena (FC), Italy

{m.baiardi,samuele.burattini,giovanni.ciatto,danilo.pianini}@unibo.it
https://www.unibo.it/sitoweb/m.baiardi/en,

https://www.unibo.it/sitoweb/samuele.burattini/en,
https://www.unibo.it/sitoweb/giovanni.ciatto/en,
https://www.unibo.it/sitoweb/danilo.pianini/en

Abstract. Multi-paradigm languages are becoming more and more pop-
ular, as they allow developers to choose the most suitable paradigm for
each task. Most commonly, we observe the combination of object-oriented
(OOP) and functional programming (FP), however, in principle, other
paradigms could be hybridised. In this paper, we present JaKtA, an inter-
nal DSL adding support for the definition of belief-desire-intention (BDI)
agents in Kotlin. We believe is a first step to investigate the blending of
Agent-Oriented Programming (AOP) with other popular paradigms and
we discuss the opportunity and value of doing so with an internal DSLs.
Finally, through JaKtA, we show how this can already lead to compactly
and expressively create BDI agents that smoothly interoperate with the
host language, its libraries and tooling.

Keywords: BDI · AgentSpeak(L) · DSL · Kotlin · JaKtA

1 Introduction

Many modern mainstream programming languages natively support multiple
programming paradigms, thus allowing programmers to use the most appropriate
abstractions for the job at hand without the need to adapt their mind to a syntax
and tooling different to the one they are acquainted with. Most frequently, we
observe the combination of object-oriented (OOP) and functional programming
(FP) paradigms: some notable examples are OCaml [16], which adds object-
orientation on top of the functional paradigm; Java, that since version 8 supports
some functional abstractions on top of OOP [17] via the lambda expressions and

This work has been partially supported by the Chist-Era IV project “Expec-
tation”, and by the Italian Ministry for Universities and Research (G.A.
CHIST-ERA-19-XAI-005).
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
V. Malvone and A. Murano (Eds.): EUMAS 2023, LNAI 14282, pp. 49–65, 2023.
https://doi.org/10.1007/978-3-031-43264-4_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-43264-4_4&domain=pdf
http://orcid.org/0009-0001-0799-9166
http://orcid.org/0009-0009-4853-7783
http://orcid.org/0000-0002-1841-8996
http://orcid.org/0000-0002-8392-5409
https://doi.org/10.1007/978-3-031-43264-4_4

50 M. Baiardi et al.

the stream API ; and Scala, that since its conception has been designed with
both OOP and FP in mind [24].

To the best of our knowledge, however, no mainstream programming lan-
guage currently features native support for the agent-oriented programming
paradigm (AOP), especially the beliefs–desires-intentions (BDI) model. The cur-
rent state of the art includes several stand-alone programming languages that
support BDI agents programming following the well-known AgentSpeak(L) [22]
semantics—such as Jason [3], Astra [9], and Goal [13]. However, using and
maintaining stand-alone languages can be burdening, especially when the com-
munity of contributors is small, since languages usually require several tools to
be usable in practice (e.g., content assistants, syntax highlighters, linters, check-
ers, debuggers, etc.) whose development and maintenance adds upon the cost
of the language itself— potentially causing the ecosystem to evolve slowly, and
thus hindering adoption.

In this paper, we propose a solution to both the availability in the mainstream
and the tooling support of BDI languages, by leveraging a recent trend in modern
programming languages: the construction of internal domain-specific languages
(DSLs), namely, carefully designed APIs that capture problem-specific abstrac-
tions into a syntax providing ergonomics akin to that of a dedicated language,
but still letting users rely on the tooling and ecosystem of the host language,
as well as transparently use abstractions from other paradigms on a per-need
basis. Thus, inspired by the successful Jason AOP language, we present Jason-
like Kotlin Agents (JaKtA): a Kotlin internal DSL meant to seamlessly integrate
BDI agents into a mainstream programming language, adding AOP to Kotlin as
an additional paradigm, retaining its toolchain, libraries, and OOP/FP abstrac-
tions. We show that the internal DSL approach can blur the (usually neat)
boundary between the two paradigms, promoting a more natural and seamless
interaction. Moreover, since the code using the DSL abstractions is still valid
code in the host language, we show that the tooling of the host language can be
used immediately, with no need for additional support software to be developed
and maintained.

The remainder of this paper is organised as follows: in Sect. 2, we present
DSL engineering and we summarise the state of the art of BDI languages, then
in Sect. 3 we discuss the design and the main features of JaKtA, and we show how
it can be used to compactly and expressively create BDI agents that smoothly
interoperate with the Kotlin ecosystem; in Sect. 4 we assess the effectiveness of
our internal DSL approach by showing, through practical examples, how it can
simplify the development of BDI agents in some conditions; and finally, in Sect. 5,
we conclude the paper by discussing some limitations of our approach, as well
as some future research directions stemming from it.

2 Background

This work lays on two pillars: DSL engineering (specifically, internal Kotlin
DSLs) and BDI agents programming. In this section, we briefly introduce them

JaKtA: BDI Agent-Oriented Programming in Pure Kotlin 51

by discussing the principles behind the creation of DSLs and we explain how and
why modern languages support the creation of internal DSLs. We also provide
a comparison among existing BDI programming frameworks from the literature,
discussing how syntactical aspects may impact their interoperability and versa-
tility.

2.1 DSL Engineering

As introduced in Sect. 1, DSLs are programming languages tailored to spe-
cific domains: they expose the domain model entities and their interactions as
first-level abstractions. However, there is no rule on which amount of domain-
specificity makes a language a DSL: at some level, every language is domain-
specific, with the specific domain being the paradigm the language is rooted in.
For instance, we argue that even the Agent Speak Language (ASL) can be seen
as a DSL modelling the domain of BDI agents.

From a technical perspective, DSLs can be classified into two broad cat-
egories [24]: external, if they are stand-alone, with their own custom syntax
and compiler/interpreter; and internal, if they are embedded in a host language
and rely on the syntactic and semantic features of the host. From the point
of view of the host language, internal DSLs are indistinguishable from ordinary
libraries (indeed, as C++ inventor Bjarne Stroustrup used to say, “library design
is language design” [25]), their distinction is usually driven by their purpose1.
Consequently, internal DSLs might in principle be realised in any language;
in practice, however, the host language syntactic flexibility directly reflects on
the ergonomics of any internal DSL. For this reason, several recent languages
(e.g., Scala, Kotlin, Ruby) provide syntactic features specifically tailored to the
constructions of internal DSLs. Despite these features simplify the adoption of
internal DSLs, they cannot provide the same expressiveness of an external DSL,
as they are still bound to the host language syntax, for example, in the case of
Kotlin each DSL statement must be enclosed in a curly braces block.

Selecting whether an internal or external DSL is best for the problem at
hand is a matter of trade-offs: as discussed, internal DSLs have limited syntactic
flexibility that could result in a less expressive language, but, in turn, they inherit
from their host: (i) the tooling (IDE support, build systems, linters, debuggers,
profilers, and so on), reducing the maintenance burden; (ii) the libraries, reducing
the need for ad-hoc solutions; and (iii) the abstractions, allowing the DSL to
be used in conjunction with other paradigms. Together, these aspects may also
lower the learning curve for those already acquainted with the host language,
possibly favouring wider adoption.

2.2 BDI Paradigm and Programming Languages

The philosopher Michael Bratman described humans’ practical reasoning via the
“beliefs, desires, intentions” (BDI) framework, as a way to explain future-directed
1 https://www.martinfowler.com/bliki/DslBoundary.html.

https://www.martinfowler.com/bliki/DslBoundary.html

52 M. Baiardi et al.

decision-making [4]. Successively, the framework was formalised by means of
modal logics [8], and then turned into an abstract semantics for computational
agents: AgentSpeak(L) [22]. Computational agents are autonomous entities [19]
situated into an environment they can perceive and affect; they interact either
directly or stigmergically through the environment [23]. The classical implemen-
tation of BDI agents, based on the Procedural Reasoning System (PRS) [12],
is characterized by four main abstractions, namely: beliefs: a set of facts and
rules constituting the agent’s epistemic memory; desires: a set of goals, (pos-
sibly partial) descriptions of the states of the world the agent wants to achieve,
test, or maintain; intentions: a set of tasks the agent is currently committed
to; plans: a set of recipes representing the agent’s procedural memory.

Table 1. Comparison of the identified practical features across several common BDI
agent programming languages. Columns denote languages, rows denote features. JaKtA
is the language proposed in this paper: it is reported here for to ease comparison. In
non-textual cells, symbol � indicates the feature availability, × unavailability, and ∼
that we were not able to find conclusive evidence.

JaKtA Jason [3] Spade-BDI [20] Phidias [10] Astra [9] JACK [26] Jadex [21] Goal [13]

DSL Type internal external both internal external external external external
Hosting Syntax Kotlin AgentSpeak(L) extension Python Python custom Java extension custom Java extension XML Java annotations custom Prolog extension
Execution Platform JVM JVM Python Python JVM JVM JVM JVM
Direct interop. Any JVM language Any JVM language Python Python Any JVM language Any JVM language Any JVM language SWI-Prolog
Paradigm blending � × � � � � × �
Type safety � × × × � � � ×
Reuse mechanisms Any Kotlin mechanism file incl., ext. actions Any Python mechanism Any Python mechanism agent extension reusable plans selective file incl reusable plans, beliefs, goals, and agents
Logic Programming � � × � × × × �
License Apache 2.0 LGPL v3 GPL v3 MIT GPL v3 Proprietary GPL v3 GPL v3

Since its introduction, the community produced many programming lan-
guages for BDI agents. Most of them are either based on or inspired by the
AgentSpeak(L) semantics. In this section, we compare several major BDI agent
programming languages from a software engineering perspective. Details about
the comparison are reported in Table 1. There, columns represent BDI languages,
while rows represent features that those languages may (or may not) have.

As far as BDI agent programming languages are concerned, our comparison
is focussing on those languages which appear to have some running software
implementation which is actively maintained and used by the community. Hence,
we build upon the recent work by Calegari et al. [5], which surveys the state-of-
the-art of logic-based agent-oriented technologies, and we select the ones aimed
at supporting general-purpose BDI agents programming.

Conversely, as far as features are concerned, in the remainder of this section
we discuss the most relevant ones, namely: (i) DSL type (internal or external);
(ii) hosting syntax, i.e., which syntax the DSL is embedded in (for inter-
nal DSLs) or based upon (for external DSLs); (iii) execution platform, i.e.
which runtime platform the language runs upon; (iv) direct interoperability,
i.e., whether other languages can be called from within the BDI language (and,
in that case, which ones); (v) paradigm blending, i.e., whether it is possible
to mix, in the same source and scope, AOP and other abstractions; (vi) type
safety i.e., the ability of the compiler/interpreter to intercept (most) type errors

JaKtA: BDI Agent-Oriented Programming in Pure Kotlin 53

ahead-of-execution; (vii) reuse mechanisms, i.e., whether and how it is possi-
ble to parameterise and reuse partial or entire MAS specifications; (viii) logic
programming support, i.e. the capability to rely upon the mechanisms of unifi-
cation and backtracking to represent and manipulate BDI data structures; and,
finally, (ix) license.

DSL Type and Hosting Syntax. The former feature categorizes BDI languages
as either external or internal DSL, or possibly both of them. Conversely, the
latter feature provides further details about the DSL syntax. The two features
are strictly related, as they both refer to the syntax of the language. In fact, for
internal DSLs, one may be interested in understanding which syntax the DSL is
embedded in, whereas, for external DSLs, we further describe the derivation of
the syntax. Accordingly, for internal DSLs, the hosting syntax is quite straight-
forward: both Spade-BDI and Phidias are hosted by Python. Conversely, exter-
nal DSLs’ syntaxes are built as extensions or refinements of well-known lan-
guages. For instance, while Jadex relies on XML, Goal extends Prolog [15], and
Jason extends AgentSpeak(L); whereas Astra and JACK extend Java.

Execution Platform. The execution platform is the runtime environment which
is required for running a given BDI language—as well as the MAS described
through it. It is worth highlighting that several programming languages may be
executed on the same platform. This is the case, for instance, in Kotlin, Java,
and Scala which are all executed on the JVM platform. The execution platform
is a relevant feature, as it may affect the portability of the MAS, as well as its
interoperability with other systems and languages. Accordingly, while Spade-
BDI and Phidias target the Python platform, the other languages target the
JVM platform.

Direct Interoperability. This feature concerns the ability of the agent program-
ming language to interact with the hosting language constructs. Specifically, this
feature is about which other languages the BDI language at hand can directly
call, exploiting the hosting language interoperability mechanisms. For instance,
every language targetting the JVM can directly call all the other JVM lan-
guages. However, this is not the case for Jadex, which is implemented on Java,
but exploits XML files for MAS specification.

Paradigm Blending. This is a syntactical feature of languages whose syntax
mixes AOP constructs with the hosting language ones—for instance, by letting
developers exploit both AOP and OOP constructs, if the hosting language is
OO. Notice that the opposite situation may also occur. In fact, some languages
enforce a clear separation among high-level AOP constructs (e.g. belief, goals,
plans) and the hosting language ones (e.g. classes, functions, etc.). This separa-
tion may for instance be enforced by requiring the AOP portions of a MAS to
be written in separate files. For instance, in Python-based BDI languages such
as Spade-BDI and Phidias, AOP specifications consist of Python classes and
methods. Conversely, Astra, JACK, and Goal allow exploiting Java or Prolog

54 M. Baiardi et al.

libraries, respectively. Finally, Jason, and Jadex strongly separate AOP from
OOP. There, MAS are composed by scripts describing agent specifications, and
by actions/environment specifications. The former only support AgentSpeak(L)-
compliant constructs, whereas the latter are ordinary Java code.

Type Safety. This feature refers to the presence of a strong type checker for the
BDI language at hand, which may proof check agents specifications at compile-
time. Solutions having a tight interoperability with Java, such as Astra, JACK,
and Jadex, come with this feature; whereas the others do not. Other languages
– such as Jason, Spade-BDI, Phidias, and Goal – come with a more flexi-
ble syntax—as they rely on weakly-typed hosting languages such as Prolog or
Python.

Reuse Mechanisms. This feature refers the presence of abstraction mechanisms
supporting the reuse of partial MAS specifications. As far as this feature is
concerned, we observe great variety among the surveyed languages. Some rely
on bare file include mechanisms. This is the case, for instance, of Jason – which
supports the inclusion of ASL files into other ASL files, by path –, and Jadex—
which supports referencing XML or Java files into other XML files. Furthermore,
virtually all surveyed solutions support the abstraction and reuse mechanisms of
the hosting language, if any. This implies, for instance, that solutions based on an
OO hosting language may take advantage of OOP abstraction mechanisms such
as sub-typing and inheritance for the OO portions of their MAS specifications.
Some solutions may also expose high-level, agent-oriented notions – such as
agents or plans – as first-class syntactical constructs. In other words, they may
support ad-hoc syntaxes for writing agents or plans. This is the case, for instance,
of Astra, JACK, and Goal. When this is the case, first-class abstraction can
be re-used along the MAS specification. For example, Astra supports writing
agents specifications extending other agents specifications.

Logic Programming Support. This feature is about whether BDI languages rely
on full-fledged logic programming as the preferred means to represent and manip-
ulate BDI data structures—e.g. beliefs, goals, etc. This is the case, for instance,
of Jason, Phidias, and Goal, which use logic terms and clauses to represent
beliefs, goals, plans, and events. They also rely on logic unification and resolu-
tion as the basic mechanism to manipulate these data structures to implement
the BDI reasoning cycle.

License. This feature is about which license BDI solutions are distributed with.
Notably, most solutions come with an open-source license, and their source code
is freely available and inspectable on the Web. The only exceptions are JACK,
which is proprietary, closed-source software, and Goal which allegedly has an
open-source license, despite we were not able to find the source code on the Web.

JaKtA: BDI Agent-Oriented Programming in Pure Kotlin 55

3 A Kotlin DSL for BDI Agents

We now let the analysis from Sect. 2.2 drive our selection of core features, that
will lead, in turn, to the actual implementation of a DSL for BDI agents.

We want our DSL to be familiar for BDI experts and, at the same time, to
look idiomatic to the community of mainstream developers. One way to achieve
the first goal is to reach AgentSpeak(L) compliance (i.e., to fulfill its operational
semantic), as AgentSpeak(L)-inspired languages are very popular within the
AOP community. Concerning the second goal, it can be achieved by letting the
DSL (and the underlying agent interpreter) be compliant with the API, the
syntax, and the stylistic conventions of some mainstream language of choice.
Programmers from both communities must be able to blend paradigms, writing
pieces of code that mix BDI abstractions with the ones of the chosen mainstream
language. Together with the will to inherit the existing reuse mechanisms of a
mainstream language, these aspects led us to choose an internal DSL.

As a BDI agent programming language, we also require our DSL to be com-
pliant w.r.t. a set of features, discussed below. First, the language should support
strong typing, and possibly type inference, in order to keep types as hidden as
possible. It should also support modularity and reusability at various levels, there
including (i) agent specifications, (ii) plan libraries and/or individual plans, (iii)
belief bases or goal sets, as well as (iv) internal and external actions. This implies
all such syntactical categories could be in principle written in separate files and
composed in the finest way possible. Writing all such categories in a single file
should be supported as well.

The DSL should support an explicit notion of environment, which in turns
supports the pluggability of custom external actions – i.e., custom functionalities
that agents may invoke to support perception and actuation – as well as the
pluggability of custom message passing mechanisms—hence virtually supporting
distributed communication among agents. As far as pluggability is concerned,
MAS specification written in JaKtA should also support the addition of custom
internal actions on individual agents – i.e., custom functionalities supporting the
inspection/modification of agents’ internals –, as well as the choice of the most
adequate concurrency model for the MAS at hand—i.e., roughly, the strategy
by which agents’ concurrent execution is scheduled by the OS.

Finally, the DSL should support full-fledged logic programming syntax and
semantics in dealing with BDI data structures representation and manipulation.

A more nuanced pick is the selection of the target host language. There are
several elements to consider, including the target platform and its portability
across multiple platforms (as we want to maximise the range of potential target
runtimes), the existing ecosystem (as we want to leverage existing libraries and
tools), the language’s popularity (as we want to let the agent-orientation be
available to the widest possible audience), the type safety, and, of course, the
specific language features that could be leveraged for the construction of a DSL.

We considered several languages, including Java, Scala, Kotlin, Python,
Ruby, C#, and Typescript. From the point of view of syntactic flexibility we
favored Scala, Kotlin, and Ruby, as they provide machinery specifically meant

56 M. Baiardi et al.

to allow the construction of DSLs. We then discarded Ruby, as we wanted a
statically typed language. We picked Kotlin over Scala despite the latter hav-
ing a better type system (supporting, for instance, path-dependent and higher-
kinded types [14]) for merely practical reasons: (i) Scala 3 recently broke retro-
compatibility with Scala 2, and, at the time this work was realised, many libraries
and tools were not yet available for the new version; (ii) we expect Kotlin pop-
ularity to grow faster than Scala’s in the future, as Google picked Kotlin as
reference language for the Android ecosystem2, and (iii) there are emerging
libraries in Kotlin that are meant for data science, e.g.: KotlinGrad3, KMath [18],
KotlinDL4, and Kotlin Dataframe5. Combined with a Kotlin-based solution for
MAS, these tools may hopefully pave the way towards the combination of MAS
and data science.

3.1 Architecture and Implementation Details

It is worth mentioning that some required features are not merely syntactical as
they require support from the underlying BDI agent interpreter. This is the case,
for instance, of features supporting the pluggability of custom message passing
mechanisms as well as the choice of the most adequate concurrency model for
the MAS at hand. For this reason, JaKtA comes with its own BDI execution
engine. Designing from scratch required significant effort, but it also allowed us to
decouple agent specifications and their execution, and opened to the possibility
to target multiple platforms by leveraging the Kotlin capability to do so.

The JaKtA framework then includes three main modules, namely: (i) the
JaKtA DSL, (ii) the JaKtA BDI interpreter, and (iii) the concurrency manage-
ment module. Notably, the DSL is built on top of the BDI interpreter, which in
turn is built on top of the concurrency management module.

In principle, other languages could reuse the BDI interpreter by replacing the
DSL module. For instance, a Jason’s parser or a new Scala internal DSL for AOP
could be plugged on top of the existing BDI interpreter, enjoying, respectively,
the Kotlin debug tools and a reduced implementation effort.

The concurrency management module defines how agents are coupled with
threads, allowing the same specification to be executed on one or more threads,
depending on the application at hand. However, because of space limitations,
in the remainder of this paper we focus upon the syntactical aspects of JaKtA,
leaving the discussion of the underlying interpreter and concurrency module –
as well as the challenges and the opportunities they bring – to future works.

The framework has been released, free and open-source. It is available on
GitHub6 and Maven Central7 and archived on Zenodo [2].

2 https://developer.android.com/kotlin/first.
3 https://github.com/breandan/kotlingrad.
4 https://github.com/Kotlin/kotlindl.
5 https://github.com/Kotlin/dataframe.
6 https://github.com/jakta-bdi/jakta.
7 https://search.maven.org/artifact/it.unibo.jakta/jakta-dsl.

https://developer.android.com/kotlin/first
https://github.com/breandan/kotlingrad
https://github.com/Kotlin/kotlindl
https://github.com/Kotlin/dataframe
https://github.com/jakta-bdi/jakta
https://search.maven.org/artifact/it.unibo.jakta/jakta-dsl

JaKtA: BDI Agent-Oriented Programming in Pure Kotlin 57

3.2 JaKtA’s syntax

JaKtA DSL syntax is strongly inspired by Jason and it is AgentSpeak(L)-
compliant. The entry point is the mas block, inside whose scope all the elements
composing a BDI MAS can be defined:
mas { environment { ... }; agent("jedi") { ... }; agent("sith") { ... } }

In the environment block, users define the external actions that agents can
use, as well as what agents can perceive. External actions include communica-
tion primitives that can be implemented to send messages of a predefined type
to agent message boxes that are reified as part of the environment. Achieving
compliance with different agent communication languages (e.g. KQML [11] as
used in Jason) requires a further definition of the types of messages an agent
can send and how such types are interpreted in the agent lifecycle.
mas { environment {

actions { // definition of the external actions for this environment
action(create , ...) { addAgent (...) }
action(talk , ...) { sendMessage(recipient , ...) }

}
}}

Agents are named entities created with the agent function. These few syntactic
elements are enough to show a hint of how blending paradigms can be leveraged
to build complex systems in a few lines of code. In the following example, we mix
OOP, FP, and AOP: we fetch the rooster of three Italian football teams from a
public website, we extract the names through a regular expression, and then we
create one agent for each player:
mas { // BDI specification

fun allPlayers(team: String) = // Object -oriented style
Regex("""((\w+|\s)+) <\/span >""").findAll(

URL("https :// analytics.soccerment.com/en/team/$team").readText ()
).map { it.groupValues [1] } // Monadic manipulation (functional)

listOf("napoli", "milan", "juventus")
.flatMap (:: allPlayers) // Functional style (higher -order function)
.forEach { agent("$player playing for $team") { ... }/* BDI style */}

}

In this example, we exploit JaKtA for the MAS definition, the OOP paradigm
to deal with the regular expression match and data extraction from the group,
and the functional paradigm to monadically map teams to players.

Agents’ body is a collection of beliefs, goals, internal actions and plans
defined in homonym blocks. Beliefs are represented as a logic theory, namely a
collection of facts and rules expressed in a logic programming fashion. JaKtA
directly leverages, and exposes as API, the logic programming toolkit for Kotlin
2P-Kt [6] and its internal DSL for Prolog [7].

For instance, in the following, we define one fact (zero is a natural number)
and a logic rule defining the ‘successor’ relation among natural numbers:

58 M. Baiardi et al.

mas { agent("gauss") { beliefs {
fact { natural_number(zero) }
rule { natural_number(successor(X)) impliedBy natural_number(X) }

}}}

Goals can indicate either something that the agent wants to achieve or some-
thing that it wants to test (discover). Test goals prioritize the consultation of
the knowledge base over the execution of plans.
mas { agent("player1") { goals { achieve(victory(X)); test(has_won(Y)) } } }

Internal actions can access and modify the agent’s state. In the following snippet,
an internal action is used to modify the knowledge base of an agent, changing
the team it cheers for:
mas { agent("turncoat fan") { actions {

action(changeTeam , 1 /*this parameter is the arity*/) {
removeBelief(cheeringFor(X))
addBelief(cheeringFor(argument (0) /* positional access to parameters*/))

}
}}}

Finally, plans describe which operations the agent is capable to perform; inherit-
ing the successful model of Jason, in JaKtA they are composed of a triggering
event deciding whether the plan is relevant, an optional context restricting
its applicability, and a body with the implementation. The triggering event
can be a goal/belief invocation/addition (+) or failure/deletion (-), in the form:
[+|-]<triggering event> onlyIf {<context>} then {<body>}. If a logical
expression is present in the context block (prefixed by onlyIf), it is then used
to vet the relevant plan; and if the plan is selected for execution the sequence of
operations and actions contained in its body (prefixed by then) is performed. In
the following example, we showcase the expressivity of blended paradigms by cre-
ating a Kotlin function using AOP in JaKtA to verify the Collatz conjecture [1]
for a given number:
fun collatz(number: Int) = mas { agent(collatz) {

goals { achieve(collatz(number)) }
plans {

+achieve(verify(X)) // We reached 4 for the second time: it's a cycle
.onlyIf { found (4).fromSelf }
.then { Print("Collatz Conjecture verified!"); execute(stop) }

+achieve(collatz(X)) // We reached an even number: divide by 2
.onlyIf { X.isEven() and (R `is ` X.intDiv (2)) }
.then { achieve(verify(R), true); +found(X); achieve(collatz(R)) }

+achieve(collatz(X)) // We reached an odd number: multiply by 3 and add 1
.onlyIf { X.isOdd() and (R `is ` ((X * 3) + 1)) }
.then { achieve(verify(R), true); +found(X); achieve(collatz(R)) }

}
}}}

4 JaKtA in practice: running example

In this section, we show how JaKtA compares with a reference AOP technology
(Jason) through a running example in terms of (i) multi-paradigm integration,
and meta-programming, (ii) abstraction, re-use and type safety; and (iii) tooling

JaKtA: BDI Agent-Oriented Programming in Pure Kotlin 59

and ecosystem. The case we select is meant to highlight the benefits of paradigm
blending: we want to write a multi-agent modelling a TicTacToe match played on
a N ×N board, where N is only known at runtime. For the sake of conciseness,
we keep the example deliberately minimal, and we only report the code of a
single player. The full code of the example is available on a public repository8.

The agent may perceive the environment (the board) via percepts of the form
cell(X,Y, Z), where X and Y are the coordinates of the cell, and Z ∈ {e, x, o} is
the symbol contained in the cell. The agent may also perceive the beginning of a
turn via the turn(x) (resp., turn(o)) percept, and may place a symbol in a cell
of the environment using the put(X, Y, Z) external action—which also passes
the turn. The agent’s play strategy is the following: (i) if there are N of your
(resp. the other player’s) marks aligned in a row, declare victory (resp. defeat);
(ii) if there are N − 1 of your (resp. the other player’s) marks aligned and the
N th cell in the same direction is empty, write your mark in that cell; (iii) put a
cross in random empty cell.

There are four alignement directions, so the agent’s belief base can host:
aligned(Cells) :- vertical(Cells) | horizontal(Cells) | diagonal(Cells) |

antidiagonal(Cells).

The critical part of the scenario, however, is dealing with a grid of unknown
size. For a simple 3 × 3 case, the problem can be dealt with via four couples of
rules in the form:

〈alignment〉([cell(X, Y, S)]) :- cell(X, Y, S).
〈alignment〉([cell(X, Y, S1), cell(A, B, S2) | OtherCells]) :-

cell(X, Y, S1) & cell(A, B, S2) & A-X=〈dx〉 & B-Y=〈dy〉 &
〈alignment〉([cell(A, B, S2) | OtherCells]).

where meta-variable 〈alignment〉 can be: vertical, horizontal, diagonal, and
antidiagonal, while 〈dx 〉, 〈dy〉 are in 1, 0, or -1. Under these premises, for a
3× 3 simplified scenario, the plans dealing with victory, loss, and random choice
may be written in Jason as:
+turn(x) : aligned ([cell(_,_,x),cell(_,_,x),cell(_,_,x)]) <- .print('I won')
+turn(x) : aligned ([cell(_,_,o),cell(_,_,o),cell(_,_,o)]) <- .print('I lost')
+turn(x) : cell(X,Y,e) <- put(X,Y,x)

whereas plans making the final move can be written as:
+turn(x) : aligned ([cell(_,_,x),cell(_,_,x),cell(X,Y,e)]) <- put(X,Y,x)
+turn(x) : aligned ([cell(_,_,x),cell(X,Y,e),cell(_,_,x)]) <- put(X,Y,x)
+turn(x) : aligned ([cell(X,Y,e),cell(_,_,x),cell(_,_,x)]) <- put(X,Y,x)

Plans impeding the victory of the opponent would be very similar.
This way of writing plans, however, does not scale well with the size of

the board: a N × N board would count 2N + 3 plan statements with a guard
mentioning N cells. There are no good strategies to handle these situations in
pure Jason (i.e. without using external tools to generate code), while they can
be managed by relying on alternative paradigms in JaKtA.

8 https://github.com/jakta-bdi/jakta-examples.

https://github.com/jakta-bdi/jakta-examples

60 M. Baiardi et al.

Multi-paradigm Integration and Meta-Programmability. The same
application in JaKtA could be created by defining a parametric MAS via an
ordinary Kotlin function with a parameter:
fun ticTacToe(gridSize: Int = 3) = mas {

require(gridSize > 0);
environment { from(GridEnvironment(gridSize)) ; actions { action(Put) } }
player(mySymbol="x", otherSymbol="o", gridSize=gridSize)
player(mySymbol="o", otherSymbol="x", gridSize=gridSize)

}

The function declares a MAS whose environment of type GridEnvironment of
size gridSize supporting an external action Put (defined elsewhere). The two
players are agents returned by the player extension function:
fun MasScope.player(mySymbol: String , otherSymbol: String , gridSize: Int) =

agent("$mySymbol -agent") {
beliefs {

alignment("vertical",dx=0,dy=1); alignment("horizontal",dx=1,dy=0)
alignment("diagonal",dx=1,dy=1); alignment("antidiagonal",dx=1,dy=-1)
setOf("vertical", "horizontal", "diagonal", "antidiagonal")

.forEach { rule { aligned(L) impliedBy it(L) } }
}
plans {

detectVictory(mySymbol , gridSize)
detectDefeat(mySymbol , otherSymbol , gridSize)
makeWinningMove(mySymbol , gridSize)
preventOtherFromWinning(mySymbol , otherSymbol , gridSize)
randomMove(mySymbol)

}
}

Notably, the function exploits multiple paradigms to construct agent spec-
ifications via AOP meta-programming. For instance, predicate aligned/1 is
defined in a forEach loop, while predicates vertical/1, horizontal/1, and
(anti)diagonal/1 are defined by calling the alignment function, which para-
metrically builds rules to compute alignments along the four major directions:
fun BeliefsScope.alignment(name: String , dx: Int , dy: Int) {

val first = cell(A, B, C); val second = cell(X, Y, Z)
rule { name(listOf(second)) impliedBy second }
rule { name(listFrom(first , second , last = W)) .impliedBy(

first , second , (X - A) arithEq dx , (Y - B) arithEq dy ,
name(listFrom(second , last = W))) }

}

With no paradigm blending, based on the bare AgentSpeak(L) syntax, the rules
would have needed to be copied and modified to support multiple cases instead.

Plans are defined by means of Kotlin functions as well: JaKtA plans can have
names, meta-parameters, and leverage decomposition. For instance, victory and
defeat detection are implemented with functions parametric in the symbol of the
player and size of the grid:
fun PlansScope.detectVictory(myMark: String , size: Int) =

detect(myMark , myMark , size) { Print("I won!") }
fun PlansScope.detectDefeat(myMark: String , otherMark: String , size: Int) =

detect(mySymbol , otherMark , size) { Print("I lost!") }

and both rely on a generic detect function implementing a template plan:

JaKtA: BDI Agent-Oriented Programming in Pure Kotlin 61

fun PlansScope.detect(me:String ,oth:String ,s:Int ,action:BodyScope .() ->Unit) =
+turn(me) onlyIf { aligned ((1..s).map { cell(oth) }) } then(action)

Finally, we show how plan generation can be realised in JaKtA by showing the
implementation of makeWinningMove:
fun PlansScope.winningMove(myMark:String , gridSize:Int , mark:String=myMark) =

allPermutationsOf(cell(X, Y, e), cell(mark), size - 1).forEach {
+turn(myMark) onlyIf { aligned(it) } then { Put(X, Y, myMark) }

}

There, gridSize plan statements are generated, one for each possible position
of the empty cell in a line containing N−1 cells with the same mark. Once again,
the definition is parametric in the size of the grid and the symbol of the current
agent. In this way, the JaKtA code would work with all possible values N > 0,
whereas the corresponding AgentSpeak(L) code would need to be tailored on a
single value of N .

We believe that reusable units of agent behaviour such as template plans
and plan generation, made possible by intertwining multiple paradigms, promote
abstraction, reuse, and allow for improved code-organization.

Code Organisation, Reuse, and Type Safety. Proper organisation is impor-
tant to the understandability and extensibility of any program. For instance, in
our example, separating the belief base from the plan library may be useful
to change the latter in order to implement different strategy. The main reuse
technique in Jason (similar for many other external AOP DSLs) is plain file
inclusion, performed with statements of the form include("path/to/file.asl
"). The mechanism is simple, but arguably limited and relatively unsafe, as the
actual result of the inclusion will be known at runtime.

Instead, JaKtA inherits the abstraction mechanisms of Kotlin: programs can
be suitably split into different pieces, at different levels of granularity (pack-
age, file, class, function). Pieces may be either individual beliefs, plans, actions,
or agents, or even groups of them. Furthermore, JaKtA’s (Kotlin’s) reusable
abstractions are type-safe: one cannot, for instance, include a belief where a plan
is expected, and consistency is verified at compile time by the Kotlin compiler.

Tooling and Ecosystem. An indirect benefit of internal DSLs is the avail-
ability of inheriting the rich ecosystem of tools of the host language. We quickly
exemplify in Fig. 1 comparing how JaKtA and Jason are supported by two com-
monly used IDEs: Visual Studio Code (VSCode) and IntelliJ Idea. We install, in
both cases, the latest version of the Jason and Kotlin plugins; notably, we devel-
oped nothing specific for JaKtA, so everything that is displayed came with no
development and maintenance cost. As the figure shows, we get code highlighting
and content assist for both languages in VSCode, although, thanks to Kotlin’s
type system, we obtain better completion suggestions. It is also worth noting
that the suggestions for Jason are in the form of code snippets and have no real
contextual relevance. On IntelliJ Idea, however, we have no highlighting or assist
of any kind for Jason beyond the tools the IDE provides for plain text files: in

62 M. Baiardi et al.

fact, no Jason plugin for Idea exists, users coming from that IDE need to adapt
to a new one, or developers need to invest time and resources into developing
one. Opposedly, JaKtA is fully supported in any IDE featuring Kotlin support
(at the time of writing, this includes VSCode, Idea, Android Studio, Eclipse,
and Atom9).

Fig. 1. IDE support for Jason and JaKtA compared Visual Studio Code (top) and
IntelliJ Idea (bottom). By inheriting the tools made for Kotlin, JaKtA is fully supported
in both IDEs with no need for additional development or maintenance.

Additionally, leveraging Kotlin as host language allows JaKtA code to be
smoothly embedded in Android applications. The TicTacToe example described
above has also been tested on Android10, as demonstrated by Fig. 2. JaKtA is
available on Maven Central, and can thus be imported as an ordinary dependency
in any Android project, at the cost of a single line in the projects’ Gradle build
file.

Fig. 2. The TicTacToe MAS running on Android.

9 https://kotlinlang.org/docs/kotlin-ide.html.
10 code available at: https://github.com/jakta-bdi/jakta-android-example.

https://kotlinlang.org/docs/kotlin-ide.html
https://github.com/jakta-bdi/jakta-android-example

JaKtA: BDI Agent-Oriented Programming in Pure Kotlin 63

5 Conclusion, Limitations, and Future Work

In this paper, we introduce JaKtA: an internal DSL for BDI agent program-
ming, written in Kotlin, that strives to achieve true paradigm blending of AOP,
OOP, and FP in a mainstream language. We show how JaKtA can be used
to implement a simple BDI agent, and how paradigm blending can be used to
achieve improved modularity, and to build reusable BDI elements, thus provid-
ing value to the authors of AOP software. Moreover, we show that, with no need
for dedicated components or tools, and thus with no additional development and
maintenance cost for the language developers, JaKtA is already supported by
most popular IDEs, as it can rely on the existing infrastructure of its host lan-
guage. Additionally, we argue that JaKtA could enable more developers to get
in touch with AOP, since it does not require newcomers to learn a new language,
and/or adopt new tools.

Limitations. Approaching the problem through internal DSLs provides several
benefits already discussed, but they come at the expense of syntactic flexibility
induced by the host language (with different languages having imposing different
constraints). Thus, due to the features of Kotlin, differences among JaKtA and
AgentSpeak(L) are unavoidable. Indeed, only a fixed subset of symbols can be
overloaded in Kotlin. For instance, while the unary logical operator ! can be
overridden in Kotlin, the binary Elvis operator ?: cannot. Thus, JaKtA’s syntax
favors explicit keywords such as achieve and test to represent achievement and
test goals, respectively. Many syntactical design choices in JaKtA were driven by
the need to find appropriate Kotlin representations of Jason-inspired entities. As
a result, JaKtA’s syntax may be more verbose than Jason’s: the choice between
external and internal DSLs, in general, imposes a trade-off between conciseness
and reuse.

Concerning runtime behaviour, JaKtA’s architecture has been designed to
separate the concurrency model from the agent specification. The implementa-
tion discussed in this work relies on a sequential implementation, but different
concurrency models are under active development and will be explored in a
future work.

Future Work. In the future, our research efforts will follow four main direc-
tions. Firstly, we plan to improve JaKtA to fully support Kotlin multiplat-
form facilities, thus enabling the exploitation of a single language and inter-
preter for running BDI systems on top embedded devices (Kotlin/Native) as well
as in Web (Kotlin/JavaScript), mobile (Kotlin/Android), and general-purpose
(Kotlin/JVM) applications. Second, with the help of the concurrency manage-
ment module developed for JaKtA (which we plan to describe in detail in another
work), we intend to investigate how different concurrency models may impact
the design and performance of MASs, both in real-world and simulated scenarios.
Along this line, we will also investigate how JaKtA can be integrated with main-
stream simulation frameworks, to provide better support to the development of
distributed MASs and we will attempt to compare how JaKtA relates to other

64 M. Baiardi et al.

AOP technologies in terms of performance to understand whether the possibil-
ity to change the concurrency model can achieve performance gains. Finally, we
will look for ways to improve the syntax of the DSL, in order to increase its
readability and to thin the gap between the OOP and AOP.

References

1. Andrei, S., Masalagiu, C.: About the collatz conjecture. Acta Inform. 35(2), 167–
179 (1998). https://doi.org/10.1007/s002360050117

2. Martina, B., Ciatto, G., Pianini, D.: Semantic Release Bot: jakta-bdi/jakta: v0.3.0
(2023). https://doi.org/10.5281/zenodo.7900584

3. Bordini, R.H., Hübner, J.F., Wooldridge, M.J.: Programming Multi-agent Sys-
tems in AgentSpeak using Jason. Wiley, Hoboken (2007). http://eu.wiley.com/
WileyCDA/WileyTitle/productCd-0470029005.html

4. Bratman, M., et al.: Intention, Plans, and Practical Reason, vol. 10. Harvard Uni-
versity Press Cambridge, MA (1987)

5. Calegari, R., Ciatto, G., Mascardi, V., Omicini, A.: Logic-based technologies for
multi-agent systems: a systematic literature review. Auton. Agents Multi-Agent
Syst. 35(1), 1:1–1:67 (2021). https://doi.org/10.1007/s10458-020-09478-3

6. Ciatto, G., Calegari, R., Omicini, A.: 2P- Kt: a logic-based ecosystem for symbolic
AI. SoftwareX 16, 100817:1–100817:7 (2021). https://doi.org/10.1016/j.softx.2021.
100817

7. Ciatto, G., Calegari, R., Siboni, E., Denti, E., Omicini, A.: 2P- Kt: logic pro-
gramming with objects & functions in Kotlin. In: Calegari, R., Ciatto, G., Denti,
E., Omicini, A., Sartor, G. (eds.) WOA 2020–21th Workshop “From Objects to
Agents”. CEUR Workshop Proceedings, vol. 2706, pp. 219–236. Sun SITE Central
Europe, RWTH Aachen University, Aachen, Germany (2020). http://ceur-ws.org/
Vol-2706/paper14.pdf, 21st Workshop “From Objects to Agents” (WOA 2020),
Bologna, Italy, 14–16 September 2020. Proceedings

8. Cohen, P.R., Levesque, H.J.: Intention is choice with commitment. Artif. Intell.
42(2–3), 213–261 (1990). https://doi.org/10.1016/0004-3702(90)90055-5

9. Collier, R.W., Russell, S., Lillis, D.: Reflecting on agent programming with AgentS-
peak(L). In: Chen, Q., Torroni, P., Villata, S., Hsu, J., Omicini, A. (eds.) PRIMA
2015. LNCS (LNAI), vol. 9387, pp. 351–366. Springer, Cham (2015). https://doi.
org/10.1007/978-3-319-25524-8_22

10. D’Urso, F., Longo, C.F., Santoro, C.: Programming intelligent IoT systems with a
python-based declarative tool. CEUR Workshop Proceedings, vol. 2502, pp. 68–81.
CEUR-WS.org (2019). https://ceur-ws.org/Vol-2502/paper5.pdf

11. Finin, T., Fritzson, R., McKay, D., McEntire, R.: KQML as an agent communica-
tion language. In: Proceedings of the Third International Conference on Informa-
tion and Knowledge Management, pp. 456–463. CIKM 1994, Association for Com-
puting Machinery, New York, NY, USA (1994). https://doi.org/10.1145/191246.
191322

12. Georgeff, M.P., Lansky, A.L.: Reactive reasoning and planning. In: AAAI. vol. 87,
pp. 677–682 (1987)

13. Hindriks, K.V.: Programming rational agents in GOAL. In: El Fallah Seghrouchni,
A., Dix, J., Dastani, M., Bordini, R.H. (eds.) Multi-Agent Programming, pp. 119–
157. Springer, Boston, MA (2009). https://doi.org/10.1007/978-0-387-89299-3_4

https://doi.org/10.1007/s002360050117
https://doi.org/10.5281/zenodo.7900584
http://eu.wiley.com/WileyCDA/WileyTitle/productCd-0470029005.html
http://eu.wiley.com/WileyCDA/WileyTitle/productCd-0470029005.html
https://doi.org/10.1007/s10458-020-09478-3
https://doi.org/10.1016/j.softx.2021.100817
https://doi.org/10.1016/j.softx.2021.100817
http://ceur-ws.org/Vol-2706/paper14.pdf
http://ceur-ws.org/Vol-2706/paper14.pdf
https://doi.org/10.1016/0004-3702(90)90055-5
https://doi.org/10.1007/978-3-319-25524-8_22
https://doi.org/10.1007/978-3-319-25524-8_22
https://ceur-ws.org/Vol-2502/paper5.pdf
https://doi.org/10.1145/191246.191322
https://doi.org/10.1145/191246.191322
https://doi.org/10.1007/978-0-387-89299-3_4

JaKtA: BDI Agent-Oriented Programming in Pure Kotlin 65

14. Johann, P., Polonsky, A.: Higher-kinded data types: syntax and semantics. In:
34th Annual ACM/IEEE Symposium on Logic in Computer Science, LICS 2019,
Vancouver, BC, Canada, 24–27 June 2019, pp. 1–13. IEEE (2019). https://doi.
org/10.1109/LICS.2019.8785657

15. Körner, P., et al.: Fifty years of prolog and beyond. Theory Pract. Log. Program.
22(6), 776–858 (2022). https://doi.org/10.1017/S1471068422000102

16. Leroy, X., Doligez, D., Frisch, A., Garrigue, J., Rémy, D., Vouillon, J.: The OCaml
system: Documentation and user’s manual. INRIA 3, 42

17. Mazinanian, D., Ketkar, A., Tsantalis, N., Dig, D.: Understanding the use of
lambda expressions in Java. Proc. ACM Program. Lang. 1(OOPSLA), 85:1–85:31
(2017). https://doi.org/10.1145/3133909

18. Nozik, A.: Kotlin language for science and Kmath library. In: AIP Conference
Proceedings, vol. 2163(1), 040004 (2019). https://doi.org/10.1063/1.5130103

19. Omicini, A., Ricci, A., Viroli, M.: Artifacts in the a&a meta-model for multi-agent
systems. Auton. Agents Multi Agent Syst. 17(3), 432–456 (2008). https://doi.org/
10.1007/s10458-008-9053-x

20. Palanca, J., Rincon, J.A., Carrascosa, C., Julián, V., Terrasa, A.: A flexible agent
architecture in SPADE. In: Dignum, F., Mathieu, P., Corchado, J.M., De La Pri-
eta, F. (eds.) Advances in Practical Applications of Agents, Multi-Agent Systems,
and Complex Systems Simulation. The PAAMS Collection, PAAMS 2022. Lec-
ture Notes in Computer Science, vol. 13616, pp. 320–331. Springer, Cham (2022).
https://doi.org/10.1007/978-3-031-18192-4_26

21. Pokahr, A., Braubach, L., Lamersdorf, W.: Jadex: a BDI reasoning engine. In: Bor-
dini, R.H., Dastani, M., Dix, J., El Fallah Seghrouchni, A. (eds.) Multi-Agent Pro-
gramming. MSASSO, vol. 15, pp. 149–174. Springer, Boston, MA (2005). https://
doi.org/10.1007/0-387-26350-0_6

22. Rao, A.S., Georgeff, M.P.: Modeling rational agents within a BDI-architecture. In:
Allen, J.F., Fikes, R., Sandewall, E. (eds.) Proceedings of the 2nd International
Conference on Principles of Knowledge Representation and Reasoning (KR 1991).
Cambridge, MA, USA, 22–25 April 1991, pp. 473–484. Morgan Kaufmann (1991)

23. Ricci, A., Piunti, M., Viroli, M.: Environment programming in multi-agent systems
- an artifact-based perspective. Auton. Agent. Multi-Agent Syst. 23(2), 158–192
(2011). https://doi.org/10.1007/s10458-010-9140-7

24. Riti, P.: Practical Scala DSLs: Real-World Applications Using Domain Spe-
cific Languages. Apress, Berkeley, CA (2018). https://doi.org/10.1007/978-1-4842-
3036-7

25. Stroustrup, B.: The C++ Programming Language, 3rd edn. Addison-Wesley,
Boston (1997)

26. Winikoff, M.: JACK™ intelligent agents: an industrial strength platform. In: Bor-
dini, R.H., Dastani, M., Dix, J., El Fallah Seghrouchni, A. (eds.) Multi-Agent Pro-
gramming. MSASSO, vol. 15, pp. 175–193. Springer, Boston, MA (2005). https://
doi.org/10.1007/0-387-26350-0_7

https://doi.org/10.1109/LICS.2019.8785657
https://doi.org/10.1109/LICS.2019.8785657
https://doi.org/10.1017/S1471068422000102
https://doi.org/10.1145/3133909
https://doi.org/10.1063/1.5130103
https://doi.org/10.1007/s10458-008-9053-x
https://doi.org/10.1007/s10458-008-9053-x
https://doi.org/10.1007/978-3-031-18192-4_26
https://doi.org/10.1007/0-387-26350-0_6
https://doi.org/10.1007/0-387-26350-0_6
https://doi.org/10.1007/s10458-010-9140-7
https://doi.org/10.1007/978-1-4842-3036-7
https://doi.org/10.1007/978-1-4842-3036-7
https://doi.org/10.1007/0-387-26350-0_7
https://doi.org/10.1007/0-387-26350-0_7

Integrating Ontologies and Cognitive
Conversational Agents in On2Conv

Zeinab Namakizadeh Esfahani1 , Débora Cristina Engelmann2 ,
Angelo Ferrando1 , Massimiliano Margarone3 , and Viviana Mascardi1(B)

1 Università degli Studi di Genova, Genova, Italy
n.e.zainab@gmail.com, {angelo.ferrando,viviana.mascardi}@unige.it

2 Faculdades Integradas de Taquara, Taquara-RS, Brazil
deboraengelmann@faccat.br
3 SPX LAB, Genova, Italy
m.margarone@spxlab.com

Abstract. Multiagent systems have been successfully used in many
domains. Being social, they are expected to communicate with human
users in natural language. Nevertheless, the natural interaction between
agents and humans is still challenging. Chatbot technologies are a key
enabler to boost the communication between humans and software
agents, but few technical solutions exist that make the agents’ reason-
ing capabilities easily accessible by a human user via a chatbot and, on
the other hand, the chatbot’s answers more controllable and explainable.
Dial4JaCa is one of such tools. It creates a bridge between Dialogflow
and the JaCaMo cognitive-oriented and symbolic AI-based framework:
the user’s interface is a Dialogflow chatbot allowing the user to interact
in natural language, and the backend implementing the reasoning and
performing required actions is a JaCaMo agent. However, in Dial4JaCa
the consistency between data that feed the JaCaMo agent and those that
feed the Dialogflow chatbot must be guaranteed by the developer via an
error-prone and tedious manual process. By taking an ontology describ-
ing the domain of interest in input and generating both the skeleton for
the JaCaMo agent’s behaviour and the intents for the Dialogflow chat-
bot, On2Conv improves Dial4JaCa robustness and reliability, and moves
one step towards an explainable integration of agents and chatbots.

Keywords: Conversational agents · Cognitive agents · BDI agents ·
Ontologies

1 Introduction

With the recent widespread interest in using chatbots in different areas, research
on making them as intelligent as possible has gained attention. Powerful chat-
bot platforms now offer Machine Learning techniques, especially Large Language
Models, LLM [30], and in particular Generative Pre-Trained Transformers [24]

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
V. Malvone and A. Murano (Eds.): EUMAS 2023, LNAI 14282, pp. 66–82, 2023.
https://doi.org/10.1007/978-3-031-43264-4_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-43264-4_5&domain=pdf
http://orcid.org/0009-0005-0578-1509
http://orcid.org/0000-0002-6090-8294
http://orcid.org/0000-0002-8711-4670
http://orcid.org/0009-0009-2634-6847
http://orcid.org/0000-0002-2261-9926
https://doi.org/10.1007/978-3-031-43264-4_5

Integrating Ontologies and Cognitive Conversational Agents in On2Conv 67

such as OpenAI’s ChatGPT1 and GPT-42, to detect – besides many other things
– the user’s intent from an utterance. The GPT hype seems unstoppable: at Jan-
uary 2023, according to a study of the UBS Swiss bank, ChatGPT was estimated
to be the fastest growing app ever3.

The hype also brings issues. On March 14th, 2023, the offices of the Euro-
pean Parliament shared a first draft on General Purpose Artificial Intelligence
like ChatGPT, proposing some obligations for the providers of these AI models
and responsibilities for the different economic actors involved4. The draft sug-
gests that throughout their lifecycle, ChatGPT and similar models will have to
undergo external audits testing their performance, predictability, interpretabil-
ity, corrigibility, safety and cybersecurity in line with the European AI Act’s
strictest requirements. On March 31st, ChatGPT was banned by the Italian
data protection authority over privacy concerns5. It was restored on April 28th,
but France and Spain had shared similar worries in the meantime.

The concerns of authorities, scientists and citizens about the use of black-
box General Purpose Artificial Intelligence and the ongoing debate suggest that
the benefits of integrating chatbots – even last-generation ones – with intelli-
gent agents equipped with logic-based reasoning capabilities should be better
explored. Indeed, the benefits of this integration might be twofold. On the one
hand, users might talk to agents in natural language, removing the interaction
barrier that is still preventing the large adoption of intelligent agents – and in
particular of cognitive, logic-based ones – by the industry and by people on
the street. On the other hand, thanks to the symbolic approach underneath the
agent, the user-agent conversation might be controlled, monitored, explained,
and steered towards directions implemented in the agent’s reasoning rules.

For instance, let us consider a user that asks a health assistant agent “I am
really scared by these three symptoms together: blurred vision, increased thirst and
need to urinate often”; ChatGPT would try to reassure the user by answering
“I understand that these symptoms can be concerning, but it’s important not to
panic. [...] The most common cause of these symptoms is diabetes, which can be
easily diagnosed with a blood test.”6. However, the health assistant agent must
be aware of its user’s gender, age, medications, and it should be able to reason
about them and their relations.

Let us suppose that the user is Bob, a male following Fluoxetine therapy.
The three symptoms might be side effects of the medication, although they
are not frequent ones. The health assistant agent should be aware that Bob
takes Fluoxetine because of his illness anxiety disorder and should not mention
diabetes as a common cause of these symptoms, at least in its first answer,
1 https://openai.com/blog/chatgpt, accessed on May 2023.
2 https://openai.com/research/gpt-4, accessed on May 2023.
3 https://www.reuters.com/technology/chatgpt-sets-record-fastest-growing-user-

base-analyst-note-2023-02-01/, accessed on May 2023.
4 https://www.euractiv.com/section/artificial-intelligence/news/leading-eu-

lawmakers-propose-obligations-for-general-purpose-ai/, accessed on May 2023.
5 https://www.bbc.com/news/technology-65139406, accessed on May 2023.
6 Query-Answer experimented on May 5th, 2023.

https://openai.com/blog/chatgpt
https://openai.com/research/gpt-4
https://www.reuters.com/technology/chatgpt-sets-record-fastest-growing-user-base-analyst-note-2023-02-01/
https://www.reuters.com/technology/chatgpt-sets-record-fastest-growing-user-base-analyst-note-2023-02-01/
https://www.euractiv.com/section/artificial-intelligence/news/leading-eu-lawmakers-propose-obligations-for-general-purpose-ai/
https://www.euractiv.com/section/artificial-intelligence/news/leading-eu-lawmakers-propose-obligations-for-general-purpose-ai/
https://www.bbc.com/news/technology-65139406

68 Z. N. Esfahani et al.

not to alarm Bob. ChatGPT’s “it’s important not to panic” statement does not
seem the best advice for a patient with an anxiety disorder, who might react
with panic! Rather, the health assistant agent might report the conversation to
the physician in charge of Bob, to keep her updated and let her intervene if
it is the case, and keep on interacting with Bob in a reassuring way, without
overdramatizing the situation.

If the user is Alice, a 35 years old female following a Clomiphene Citrate
therapy, hopefully, the reason for the three symptoms together might be not
diabetes but a desired pregnancy. Clomiphene Citrate is a fertility medication
that can cause blurred vision, and pregnancy may increase thirst and the need
to urinate. The assistant agent might then answer “Alice, why not trying a
pregnancy test today?”.

These reactions targeted to the user’s needs can be possible only if, besides
being equipped with natural language understanding capabilities, the agent is
also aware of concepts like medications, what they are taken for, their side effects,
the user’s diseases, their symptoms, and it is able to reason on them to provide
a personalised answer.

To move a first step towards tackling the challenges above, we designed,
implemented and tested On2Conv to translate the domain knowledge rep-
resented in an Ontology into a Conversational cognitive agent based on
Dial4JaCa [10,11]. In Dial4JaCa, the chatbot-like interface towards the user
and the agent behind must be fed by manually generated input represented
in two different formats. These two representations have to be generated and
kept consistent by the human developer, who is hence exposed to an error-prone
process.

By using On2Conv, the two representations of the input for the chatbot-like
interface and the JaCaMo agent are instead generated in an automatic fashion
starting from the same piece of knowledge, the ontology. This approach ensures
that “Every piece of knowledge must have a single, unambiguous, authoritative
representation within a system” [18] – the ontology in this case – and solves one
of the main engineering issues that we experimented while using Dial4JaCa. As a
further advantage, being an “an explicit specification of a conceptualization” [15],
the ontology where the domain information is stored can be used in the early
requirement analysis stages to allow the developers, the domain experts, the
clients and the users to reach an agreement about the domain of interest and
the relationships among concepts therein.

The structure of the paper is the following: Sect. 2 introduces the background
and the works related to On2Conv. Section 3 presents its design and implemen-
tation. Section 4 discusses the features of the ontology that feeds On2Conv and
shows some experiments carried out in the domestic violence domain. Finally,
Sect. 5 concludes by highlighting some future directions.

Integrating Ontologies and Cognitive Conversational Agents in On2Conv 69

2 Background and Related Work

Dialogflow [2] is a lifelike conversational AI with state-of-the-art virtual agents
developed by Google. It allows users to create personal chatbots, namely con-
versational agents equipped with intents, entities, and fulfillment.

During a conversation between humans, a human speaker can utter different
types of sentences, each one with a different intentional meaning. That meaning
can be identified as the intent of that sentence. In order to explain the map
between sentences and intents to the Dialogflow chatbot, the agent’s developer
should provide examples of sentences that convey that intent, for each intent
that is relevant for the application.

The fulfillment is a sort of help from home: if the agent cannot answer mes-
sages for some specific intent, those messages are forwarded to an external, spe-
cialized source that is waiting. Fulfillment provides a field where the user can
insert the url address of the service to query. The service at that address will
be consulted only for those intents that require it; in that case, Dialogflow will
wait for the answer and will forward it to the user.
JaCaMo [4] is a framework for Multiagent Programming that combines:

(1) Jason [5], for programming autonomous agents characterised by mentalistic
notions like beliefs, goals, desires, intentions, and ability to reason;

(2) CArtAgO [1,27], for programming environment artifacts;
(3) MOISE [16], for programming multiagent organisations.

Jason is a language inspired by the Beliefs-Desires-Intentions (BDI) paradigm [7,
26] that implements the logic-based AgentSpeak(L) language [25]. The Jason
elements that are more relevant for programming one individual, cognitive agent
are:

– Beliefs: the set of facts the agent knows,
– Goals: the set of goals the agent wants to achieve,
– Plans: the set of pre-compiled, operational plans the agent can use to achieve

its goals.

Finally, Dial4JaCa [10,11] provides a bridge between Dialogflow or Rasa7 [3]
conversational agents and Jason agents.

As far as the related work is concerned, the strong connection between agents
and semantic web technologies, and ontologies in particular, is as old as the
semantic web itself [17]. Also, the connection between agents and chatbots is at
the basis of the notion of “conversational agents”, agents able to conversate with
a human user, that started to flourish in the nineties [8,19,23].

When we move to connections between BDI agents and chatbots, however,
the literature is scarce and, most often, the BDI paradigm is used as a theoretical
framework, rather than as a technological tool.

As an example, the paper by Miliauskas and Dzemydiene [21] presents a
non implemented architecture for a BDI chatbot assistant in a travel planning
7 An open-source framework for building chat and voice-based AI assistants.

70 Z. N. Esfahani et al.

domain. Sirocki’s Master Thesis [28] aims at aiding 113, the national suicide
prevention center for The Netherlands. While the conversational agents design
was based upon the BDI architecture, the technological solutions neither adopted
any AgentSpeak-like, declarative agent programming language, nor implemented
the standard BDI engine. The application domain is however similar to ours,
suggesting that chatbots that need to be “psychologically aware and competent”
might benefit from being designed and/or implemented as cognitive agents. The
paper by Sugumar and Chandra [29] explore factors influencing the adoption
of chatbots for financial sectors by emphasising on the role of user desires in
addition to human beliefs. The BDI architecture is not used during the chatbot
design stages, but only as a framework to represent the factors which the users
expect to get from AI technologies for their adoption (beliefs), the user’s future
desires, and their intentions to adopt chatbots for financial services.

The normative agent system to prevent cyberbullying presented by Bosse and
Stam [6] is old, but closer to our approach from a technological point of view.
It consists of multiple agents implemented in Jason that control users’ norm
adherence within virtual societies: the agents continuously monitor the behaviour
of the visitors – in particular, their communicative behaviour –, communicate
with each other to maintain shared beliefs of the visitors’ characteristics, and
apply punishments and rewards to influence their behaviour. To the best of
our knowledge, however, the most recent works in this research strand are all
related to Dial4JaCa and include the implementation of a conversational agent to
support hospital bed allocation [9], RV4JaCa (Runtime Verification for JaCaMo)
that aims to control the dialogue flow in a MAS [12], and VEsNA (Virtual
Environments via Natural language Agents) [14] that enhances the design of
virtual environments by exploiting Dialogflow, JaCaMo, and Unity for building
the dynamic virtual environment, and letting human users immerse in it.

3 On2Conv Design and Implementation

On2Conv is meant to fill the gap among cognitive agents (in particular, BDI
agents implemented in the AgentSpeak(L) language), conversational agents (in
particular, chatbots implemented in DialogFlow), and ontologies (in particular,
OWL ontologies).

It is implemented in Java using Eclipse Version 2021-12, and Gradle8 as
the builder. It builds on top of JaCaMo, the OWL API9 as the API to manage
ontologies, and Dialogflow ES as the platform to build the chatbot-like interface.
On2Conv is available to the research community on GitHub, https://github.
com/znesss/Ontology-to-JaCaMo and Dialogflow.

Figure 1 shows how to use On2Conv in conjunction with Dial4JaCa, to auto-
matically generate the Dialogflow chatbot and the JaCaMo cognitive agent. At
the bottom of the figure, the core element, namely the domain ontology modeled
using the OWL language [20], is shown. The ontology feeds both the Dialogflow
8 https://gradle.org/, accessed on May 2023.
9 http://owlcs.github.io/owlapi/, accessed on May 2023.

https://github.com/znesss/Ontology-to-JaCaMo_and_Dialogflow
https://github.com/znesss/Ontology-to-JaCaMo_and_Dialogflow
https://gradle.org/
http://owlcs.github.io/owlapi/

Integrating Ontologies and Cognitive Conversational Agents in On2Conv 71

interface, shown at the top of the figure as a cube, via files in JSON format10, and
the JaCaMo back-end, via AgentSpeak (.asl) files. The purple box tagged with
“File Generation by On2Conv” represents the On2Conv system that is in charge
of creating these files based on the ontology knowledge, ready to be imported
into JaCaMo and Dialogflow.

On the JaCaMo side there are two different agents implemented in Jason: the
com agent and the onto agent. The first is the agent whose skeleton .asl code
is generated by On2Conv, while the second is in charge of interacting with the
ontology in order to find out the correct answers based on the recognized intent’s
parameter values. The com agent plans must be completed by the developer, but
their skeleton is coherent by design with the Dialogflow intents, since both are
generated starting from the same source of knowledge, namely the ontology.

Fig. 1. Methodology to use On2Conv.

After receiving the user’s sentence (1), Dialogflow automatically matches
it with an intent (2). Intents are generated by On2Conv based on the ontology
knowledge, namely the intent names, training phrases associated with them, and
their entities. Hence, we are sure that the matched intent’s entities are present
10 https://www.json.org/json-en.html, accessed on May 2023.

https://www.json.org/json-en.html

72 Z. N. Esfahani et al.

in the ontology for further queries by the JaCaMo agents. The matched intent
may have been set to send a request to JaCaMo agents to infer and answer.
The existing Dial4JaCa system is represented by the cyan arrows labelled as
3 and 7, it manages the execution of the response and request services, con-
verting the request to a list of key values. The cyan arrow 5 represents the
use of Onto4JaCa11 [13], which is responsible for providing the methods for the
plans that query the ontology, shown by the cyan hexagons. Upon receiving
the request, the com agent selects a suitable plan, among those generated by
On2Conv and completed by the developer, for sending a message containing
necessary parameters to the onto agent, and receives the answer from it. This
interaction is shown by numbers 4 and 6. Dialogflow responds to the user with
the received answer, and any possible context provided by the JaCaMo agents
(8).

On2Conv reads an ontology and produces output to feed the Dialogflow inter-
face, and the JaCaMo agents. Figure 2 shows the interaction between a chatbot
developer and On2Conv, where the modules represent On2Conv major methods.
On2Conv is equipped with an interface developed by WindowBuilder Editor12,
a bi-directional Java GUI designer.

Fig. 2. On2Conv - Chatbot Developer view.

After loading the ontology and choosing a folder to store the JSON and .asl
generated from the ontology, the developer will receive messages confirming that
the files are created.

The process of generating these files starts with extracting the classes of
the ontology as a list and passing them to methods that manage them in order
to extract the information needed, and to create the suitable representation in
JSON (then compacted into a zip file) and in .asl file.

11 https://github.com/DeboraEngelmann/Onto4JaCa, accessed on May 2023.
12 https://www.eclipse.org/windowbuilder/, accessed on May 2023.

https://github.com/DeboraEngelmann/Onto4JaCa
https://www.eclipse.org/windowbuilder/

Integrating Ontologies and Cognitive Conversational Agents in On2Conv 73

As far as the files to feed JaCaMo are concerned, the JaCaMo plans are cre-
ated with triggering events and contexts corresponding to the intents of ontol-
ogy and written on the .asl files. The chatbot developer should add the desirable
parameter values among those received in the plan’s triggering event to the belief
base, make the appropriate query, and send it to onto agent. The generated .asl
file already contains the plans which build the response message to be sent to
Dialogflow, based on the answer received from onto agent.

On the Dialogflow side, the input .zip file consists of JSON format files each
carrying distinct information such as entity properties, their entries, training
phrases properties, and other items. After importing the zip file, the chatbot
developer has to 1. go through all the intents, 2. associate all the entity values of
each training phrase with the appropriate entity name in the parameters box, 3.
toggle on the required field of parameter13, 4. set the input context, and 5. turn
on the fulfilment option for the intents aimed to redirect to MAS in JaCaMo.

4 Ontology Development and Experiments

Figure 3 shows the interaction between the expert in charge for defining the
domain-related concepts that will characterize the ontology (“the expert” in the
sequel), and the developer of the multiagent system that will take advantage of
On2Conv (“the developer” in the sequel). The ontology’s structure is shown in
Fig. 4.

Fig. 3. Ontology Development.

The creation of the ontology is likely to be an iterative process, requiring
interactions between the expert and the developer, and may follow some well
known ontology engineering methodology like the Ontology Development 101

13 This step should be done only in case there are plans in onto agent on JaCaMo side
attempting to unify the literal values with variables.

74 Z. N. Esfahani et al.

Fig. 4. Ontology Structure.

guide [22]. The second step proposed in that guide, is “consider reusing exist-
ing ontologies”. Ontology sharing and reuse is one of the main motivations for
On2Conv, besides improving the Dial4JaCa engineering. Given that an ontology
to be used as input for On2Conv must respect some constraints related to its
structure and hierarchy, we provide further and ad-hoc instructions on On2Conv
ontology development (or adaptation for reuse) at https://github.com/znesss/
Ontology-to-JaCaMo and Dialogflow/wiki#onto-development.

There are two sources for the information to be integrated into the ontology.
The first is a dialogue chart that must be designed by the developer, with the
help of the expert, considering as many scenarios as possible. This chart may
contain simple short conversations as “User: Hello, how do I look today?”, “Bot:
You look fantastic, Dalia.” or rather complex ones as “User: Hello, what do you
suggest me to read?”, “Bot: Tell me more about your list of favourite genres and
writers, Dalia.”, “User: The last book I enjoyed reading was Quaderno proibito”.

This dialogue chart helps the developer to identify topics (Intents) the user’s
sentence has to be matched with, in order for the agent to provide a suitable
answer. Such sentences are categorised as the training phrases of that intent.
During this process, entities detected to be used as a word to help the answer-
generation are marked to be later added to their own proper class inside the
Entity class.

The second source of information is the knowledge coming from the expert,
that will feed the Entities class. For instance, if the expert provides the fact
that “Setting clear goals, making plans, eliminating distractions, and taking
breaks can help people focus and stay motivated.”, the developer might create
an Entity named MotivationBooster and include taking breaks as instance.

After making the list of Intents, Entities, Training phrases, Responses, and
Entity Synonyms, the developer has to create the classes with the same names
and include their items as the subcategories or individuals. Following that, the
properties linking these classes have to be defined. An object property must
relate individuals to individuals only. Therefore, in order to relate each intent
to multiple training phrases, the developer has to create individuals inside each
intent class. These individuals may represent subcategories of their parent class,
and in addition to allowing the developer to incorporate more expert knowledge
by defining a more comprehensive ontology, their use is enabling the developer

https://github.com/znesss/Ontology-to-JaCaMo_and_Dialogflow/wiki#onto-development
https://github.com/znesss/Ontology-to-JaCaMo_and_Dialogflow/wiki#onto-development

Integrating Ontologies and Cognitive Conversational Agents in On2Conv 75

to relate them with training phrases through the property has-training. Table 1
shows the domain and range of the four properties that the developer must
instantiate.

Table 1. Developer-defined-properties.

Name Domain Range

has-training Intents TrainingPhrases

has-entity TrainingPhrases Entities

has-synonym Entities EntitySynonyms

has-answer Intents Responses

As an example of ontology to be used to feed On2Conv we introduce donna-
MAMi for creating a motivational agent for women experiencing domestic violence.
The donnaMAMi structure is shown in form of tree in Fig. 5. Not all the classes
are shown for lack of space.

Fig. 5. Tree-like view of donnaMAMi.

In donnaMAMi, Intents include DailyActivities, Feelings, FuturePlans,
Memories, hence topics that may be dealt with during a conversation between
a woman and the motivational agent; some Intents are broken into sub-classes
and may have instances (individuals). Also, some Intents are more related with
the domestic violence domain, such as HarmfulExperience.

76 Z. N. Esfahani et al.

Fig. 6. expert-defined-properties.

Entities are designed to incorporate the domain dependent concepts. Take
the entity Emotional Abuse for example. Its instances come from the expert
that should be a psychologist with experience in the domestic violence domain,
and are used to conclude the degree of the abuse, in order to generate acceptable
response and/or take appropriate action. DomesticViolenceActs, Psychologi-
calDisorders, and RiskLevel are the entities developed entirely based on the
psychology domain texts that we consulted in order to design the donnaMaMi
ontology, given the absence of a domain expert in the team.

Figure 6 shows an example of how the expert might define relations. For
example, both a husband and a boyfriend may commit physical abuse by hitting,
and some examples of sentences that are related to this kind of abuse are “He hit
me again”, represented in the ontology as an individual identified by the name
He hit me again, and “My boyfriend hits me”.

Further examples of relations between the individuals for the daily con-
versations are provided in Fig. 7. The expert-defined-properties shown in
Fig. 6 have hasAnswer, hasRisk, isSympOf, mayCommit as sub-properties, and
the list might be further expanded. For example, hasRisk links an individual
of DomesticViolenceActs (a subclass of Entities class) to an individual of
RiskLevel which is an Entities’ sub-class as well. This information is used by
the reasoning system to find out the risk level of specific a domestic violence act.

It is also possible to include in the expert-defined-properties, the prop-
erties linking an Intents individual to an Entities individual, or vice-versa.
For instance in donnaMAMi ontology, isSympOf’s domain is NegativeFeelings,
and its range is PsychologicalDisorder which is referring to the fact that any

Integrating Ontologies and Cognitive Conversational Agents in On2Conv 77

Fig. 7. donnaMAMi Ontology Example.

negative feeling the user is talking about may lead to a psychological disorder.
Therefore, the part of knowledge provided by the expert can be related to the
topics of the conversations going on between the chatbot and the user devised
by the developer.

The sentences inserted in the donnaMAMi instances are used to automatically
generate training sentences for Dialogflow as shown in Fig. 8.

78 Z. N. Esfahani et al.

Fig. 8. Training phrases for the Dialogflow HarmfulExperience Intent generated start-
ing from the donnaMAMi ontology.

On the other hand, Listing 1.1 shows the Jason plan of the com agent agent,
named donnaMAMi com agent in this instance of the MAS, also automatically
generated by On2Conv and then edited by the developer to add domain depen-
dent behaviour. As anticipated in Sect. 3, the com agent acts as an interface
between Dialogflow and the ontology. The plan shown in Listing 1.1 deals with
the case of having recognized “HarmfulExperience” as the intent of the user’s
sentence (second line, representing the context of the Jason plan). The com agent
actions in the plan’s body are aimed at sending a request for the correct answer to
the onto agent, named the donnaMAMi onto agent in this MAS (last line), after
the parameters of the intent are properly managed. The donnaMAMi onto agent
is in charge of looking for the correct answer in the ontology. At this stage of the
On2Conv development, we were mainly focused on the On2Conv implementation
and on its coherence. Although the plan shown in Listing 1.1 mainly implements
a simple reactive behaviour, without any logical reasoning, Jason natively sup-
ports logic-based reasoning on the agents’ beliefs that are represented in an
explicit, symbolic way. The examples of sophisticated integration of knowledge
and deduction of new facts presented in the Introduction can indeed be imple-
mented in Jason thanks to its support to Prolog-like rules. While we do not claim
that this implementation would be effortless, we believe that it would bring sig-
nificant advantages in terms of code readability, shareability, and explainability,
supporting a transparent approach to modern Artificial Intelligence.

Integrating Ontologies and Cognitive Conversational Agents in On2Conv 79

1 +! responder(RequestedBy , RespId , IntentName , Params , Contexts)

2 : (IntentName == "HarmfulExperience ")

3 <- !delprevparams ;

4 for (.member(X,Params)) { +X; };

5 ?param("PhysicalAbuse ",ABUS); ?param("BodyParts",BD);

6 ?param("Injuries",INJ); ?param("People",PPL);

7 .send(donnaMAMi_ onto _agent ,askOne ,

8 answerHarmfulExperience (ABUS , BD , INJ , PPL , RespId)).

Listing 1.1. Jason plan for the donnaMAMi com agent edited after being generated
starting from the donnaMAMi ontology.

Finally, in Fig. 9, two different scenarios for a specific context are shown.
The context is needs professional help when “any” person “has done/does/is
doing” any “physical harm” to the user. In the first scenario (Fig. 9a), if the user
does not provide the necessary information (in the tested case: person), she will
be prompted by the chatbot to mention it, to take the best action based on
the answer. The second scenario (Fig. 9b) copes with the situation where an
injury is detected in the uttered sentence of the user. In this case, the priority
is to tell the user to call the ambulance. Besides from taking care of the context
generation, the type of injury is extracted, therefore the agent answers with
“Have you called the ambulance?” to suggest the user to immediately do it, in
a gentle, non assertive way.

Fig. 9. Experiments: generating the correct context for the conversation based on what
the user says.

80 Z. N. Esfahani et al.

5 Conclusions and Future Work

In this paper, the On2Conv tool to generate the files for feeding the Dialogflow
and JaCaMo agents starting from information stored in an ontology has been
presented. On2Conv adds robustness to the agents communicating through Dial-
4JaCa, and makes the development process faster and less error-prone elimi-
nating duplication of information, as suggested by the “Don’t repeat yourself”
(DRY) software engineering principle.

The feasibility of the methodology using On2Conv is explored through the
development of the donnaMAMi ontology and its exploitation to create a MAS.
The donnaMAMi MAS has been tested by the authors with sample sentences that
a user may utter in a simplified world. Although no tests were carried out in a
real-world environment with any possible sentence about domestic violence, the
test sentences were chosen wisely to cover as many aspects as possible in order
for the MAS reasoning power to be evaluated.

To improve the donnaMAMi ontology and to move the experiment outside
the boundaries of academia, we are currently interacting with the SAVE THE
WOMAN Italian association of social promotion14.

Born in 2020, SAVE THE WOMAN is responsible for promoting and dis-
seminating digital solutions against gender-based violence. One of these solu-
tions is the NONPOSSOPARLARE (ICANNOTTALK) chatbot, developed
by SPX under the guidance of one of the authors of this paper. In the last
two years NONPOSSOPARLARE has been integrated in more than twenty
women assistance portals, collecting – in a fully anonymous, GDPR-compliant
way – valuable information on how victims use digital tools to ask help. We are
currently evaluating how we can integrate the NONPOSSOPARLARE chatbot
with ontological knowledge and with reasoning capabilities, thanks to On2Conv.

During the development of On2Conv and of its experimentation we relied
on our own sensitivity and common sense to address the psychological aspects
related with domestic violence. With the help of the SAVE THE WOMAN on
the field staff, however, the donnaMAMi ontology and the agents’ reasoning mech-
anism might be made more realistic and once injected into NONPOSSOPAR-
LARE, they might make it more competent and solid.

References

1. Cartago. https://cartago.sourceforge.net/
2. Dialogflow documentation. https://cloud.google.com/dialogflow/docs/
3. Introduction to rasa open source & rasa pro. https://rasa.com/docs/rasa/
4. Boissier, O., Bordini, R.H., Hübner, J.F., Ricci, A., Santi, A.: Multi-agent ori-

ented programming with JaCaMo. Sci. Comput. Program. 78(6), 747–761 (2013).
https://doi.org/10.1016/j.scico.2011.10.004

5. Bordini, R.H., Hübner, J.F., Wooldridge, M.J.: Programming Multi-agent Systems
in AgentSpeak using Jason. Wiley, Hoboken (2007)

14 https://www.savethewoman.org/, accessed on May 2023.

https://cartago.sourceforge.net/
https://cloud.google.com/dialogflow/docs/
https://rasa.com/docs/rasa/
https://doi.org/10.1016/j.scico.2011.10.004
https://www.savethewoman.org/

Integrating Ontologies and Cognitive Conversational Agents in On2Conv 81

6. Bosse, T., Stam, S.: A normative agent system to prevent cyberbullying. In:
Boissier, O., Bradshaw, J., Cao, L., Fischer, K., Hacid, M. (eds.) Proceedings of the
2011 IEEE/WIC/ACM International Conference on Intelligent Agent Technology,
IAT 2011, Campus Scientifique de la Doua, Lyon, France, 22–27 August 2011, pp.
425–430. IEEE Computer Society (2011). https://doi.org/10.1109/WI-IAT.2011.
24

7. Bratman, M.: Intention, Plans, and Practical Reason. Harvard University Press,
Cambridge, MA (1987)

8. Cassell, J., et al.: Embodiment in conversational interfaces: Rea. In: Williams,
M.G., Altom, M.W. (eds.) Proceeding of the CHI 1999 Conference on Human
Factors in Computing Systems: The CHI is the Limit, Pittsburgh, PA, USA, 15–
20 May 1999, pp. 520–527. ACM (1999). https://doi.org/10.1145/302979.303150

9. Engelmann, D.C., Cezar, L.D., Panisson, A.R., Bordini, R.H.: A conversational
agent to support hospital bed allocation. In: Britto, A., Delgado, K.V. (eds.) Intelli-
gent Systems - 10th Brazilian Conference, BRACIS 2021, Virtual Event, 29 Novem-
ber – 3 December 2021, Proceedings, Part I. Lecture Notes in Computer Science,
vol. 13073, pp. 3–17. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-
91702-9 1

10. Engelmann, D.C., et al.: Dial4jaca - a demonstration. In: Dignum, F., Corchado,
J.M., de la Prieta, F. (eds.) Advances in Practical Applications of Agents, Multi-
Agent Systems, and Social Good. The PAAMS Collection - 19th International
Conference, PAAMS 2021, Salamanca, Spain, 6–8 October 2021, Proceedings. Lec-
ture Notes in Computer Science, vol. 12946, pp. 346–350. Springer, Cham (2021).
https://doi.org/10.1007/978-3-030-85739-4 29

11. Engelmann, D.C., et al.: Dial4jaca - a communication interface between multi-
agent systems and chatbots. In: Dignum, F., Corchado, J.M., de la Prieta, F. (eds.)
Advances in Practical Applications of Agents, Multi-Agent Systems, and Social
Good. The PAAMS Collection - 19th International Conference, PAAMS 2021,
Salamanca, Spain, 6–8 October 2021, Proceedings. Lecture Notes in Computer
Science, vol. 12946, pp. 77–88. Springer, Cham (2021). https://doi.org/10.1007/
978-3-030-85739-4 7

12. Engelmann, D.C., Ferrando, A., Panisson, A.R., Ancona, D., Bordini, R.H., Mas-
cardi, V.: Rv4jaca - towards runtime verification of multi-agent systems and robotic
applications. Robotics 12(2), 49 (2023). https://doi.org/10.3390/robotics12020049

13. Engelmann, D.C.: Intentional dialogues in multi-agent systems based on ontologies
and argumentation. Ph.D. thesis, Pontif́ıcia Universidade Católica do Rio Grande
do Sul and University of Genoa (Double-degree) (2023)

14. Gatti, A., Mascardi, V.: Vesna, a framework for virtual environments via natural
language agents and its application to factory automation. Robotics 12(2), 46
(2023). https://doi.org/10.3390/robotics12020046

15. Gruber, T.R.: A translation approach to portable ontology specifications. Knowl.
Acquis. 5(2), 199–220 (1993)

16. Hannoun, M., Boissier, O., Sichman, J.S., Sayettat, C.: MOISE: an organizational
model for multi-agent systems. In: Monard, M.C., Sichman, J.S. (eds.) IBERAMI-
A/SBIA -2000. LNCS (LNAI), vol. 1952, pp. 156–165. Springer, Heidelberg (2000).
https://doi.org/10.1007/3-540-44399-1 17

17. Hendler, J.A.: Agents and the semantic web. IEEE Intell. Syst. 16(2), 30–37 (2001).
https://doi.org/10.1109/5254.920597

18. Hunt, A., Thomas, D.: The Pragmatic Programmer: From Journeyman to Master.
Addison-Wesley, Boston [etc.] (2000). http://www.amazon.com/The-Pragmatic-
Programmer-Journeyman-Master/dp/020161622X

https://doi.org/10.1109/WI-IAT.2011.24
https://doi.org/10.1109/WI-IAT.2011.24
https://doi.org/10.1145/302979.303150
https://doi.org/10.1007/978-3-030-91702-9_1
https://doi.org/10.1007/978-3-030-91702-9_1
https://doi.org/10.1007/978-3-030-85739-4_29
https://doi.org/10.1007/978-3-030-85739-4_7
https://doi.org/10.1007/978-3-030-85739-4_7
https://doi.org/10.3390/robotics12020049
https://doi.org/10.3390/robotics12020046
https://doi.org/10.1007/3-540-44399-1_17
https://doi.org/10.1109/5254.920597
http://www.amazon.com/The-Pragmatic-Programmer-Journeyman-Master/dp/020161622X
http://www.amazon.com/The-Pragmatic-Programmer-Journeyman-Master/dp/020161622X

82 Z. N. Esfahani et al.

19. Massaro, D.W., Cohen, M.M., Daniel, S., Cole, R.A.: Chapter 7 - develop-
ing and evaluating conversational agents. In: Hancock, P. (ed.) Human Per-
formance and Ergonomics, pp. 173–194. Handbook of Perception and Cogni-
tion (Second Edition), Academic Press, San Diego (1999). https://doi.org/10.
1016/B978-012322735-5/50008-7, https://www.sciencedirect.com/science/article/
pii/B9780123227355500087

20. McGuinness, D.L., Van Harmelen, F., et al.: OWL web ontology language overview.
W3C Recommendation 10(10), 2004 (2004)

21. Miliauskas, A., Dzemydiene, D.: An approach to designing belief-desire-intention
based virtual agents for travel assistance. In: Lupeikiene, A., Matulevicius, R.,
Vasilecas, O. (eds.) Joint Proceedings of Baltic DB&IS 2018 Conference Forum and
Doctoral Consortium co-located with the 13th International Baltic Conference on
Databases and Information Systems (Baltic DB&IS 2018), Trakai, Lithuania, 1–4
July 2018. CEUR Workshop Proceedings, vol. 2158, pp. 94–103. CEUR-WS.org
(2018). https://ceur-ws.org/Vol-2158/paper10.pdf

22. Noy, N.F., McGuinness, D.L.: Ontology development 101: A guide to creating
your first ontology (2001). https://protege.stanford.edu/publications/ontology
development/ontology101.pdf

23. Nugues, P., Godéreaux, C., El Guedj, P.O., Revolta, F.: A conversational agent
to navigate in virtual worlds. In: Proceedings Dialogue Management in Natural
Language Systems. Twente Workshop on Language Technology, vol. 11, pp. 23–33
(1996)

24. Radford, A., Narasimhan, K., Salimans, T., Sutskever, I.: Improving language
understanding by generative pre-training (2018). https://gwern.net/doc/www/s3-
us-west-2.amazonaws.com/d73fdc5ffa8627bce44dcda2fc012da638ffb158.pdf

25. Rao, A.S.: Agentspeak(l): BDI agents speak out in a logical computable language.
In: de Velde, W.V., Perram, J.W. (eds.) Agents Breaking Away, 7th European
Workshop on Modelling Autonomous Agents in a Multi-Agent World, Eindhoven,
The Netherlands, 22–25 January 1996, Proceedings. Lecture Notes in Computer
Science, vol. 1038, pp. 42–55. Springer, Cham (1996). https://doi.org/10.1007/
BFb0031845

26. Rao, A.S., Georgeff, M.P., et al.: BDI agents: from theory to practice. In: Icmas,
vol. 95, pp. 312–319 (1995)

27. Ricci, A., Piunti, M., Viroli, M., Omicini, A.: Environment programming in
CArtAgO. In: El Fallah Seghrouchni, A., Dix, J., Dastani, M., Bordini, R.H. (eds.)
Multi-Agent Programming, pp. 259–288. Springer, Boston, MA (2009). https://
doi.org/10.1007/978-0-387-89299-3 8

28. Sirocki, J.: Design and evaluation of a conversational agent model based on stance
and BDI providing situated learning for triage-psychologists in the helpline of 113
suicide prevention (2019). master Thesis, Delft University of Technology

29. Sugumar, M., Chandra, S.: Do i desire chatbots to be like humans? Exploring
factors for adoption of chatbots for financial services. J. Int. Technol. Inf. Manag.
30(3), 38–77 (2021)

30. Vaswani, A., et al.: Attention is all you need. In: Guyon, I., et al. (eds.) Advances
in Neural Information Processing Systems 30: Annual Conference on Neural
Information Processing Systems 2017, 4–9 December 2017. Long Beach, CA,
USA, pp. 5998–6008 (2017). https://proceedings.neurips.cc/paper/2017/hash/
3f5ee243547dee91fbd053c1c4a845aa-Abstract.html

https://doi.org/10.1016/B978-012322735-5/50008-7
https://doi.org/10.1016/B978-012322735-5/50008-7
https://www.sciencedirect.com/science/article/pii/B9780123227355500087
https://www.sciencedirect.com/science/article/pii/B9780123227355500087
https://ceur-ws.org/Vol-2158/paper10.pdf
https://protege.stanford.edu/publications/ontology_development/ontology101.pdf
https://protege.stanford.edu/publications/ontology_development/ontology101.pdf
https://gwern.net/doc/www/s3-us-west-2.amazonaws.com/d73fdc5ffa8627bce44dcda2fc012da638ffb158.pdf
https://gwern.net/doc/www/s3-us-west-2.amazonaws.com/d73fdc5ffa8627bce44dcda2fc012da638ffb158.pdf
https://doi.org/10.1007/BFb0031845
https://doi.org/10.1007/BFb0031845
https://doi.org/10.1007/978-0-387-89299-3_8
https://doi.org/10.1007/978-0-387-89299-3_8
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html

Exploiting Reward Machines with Deep
Reinforcement Learning in Continuous

Action Domains

Haolin Sun(B) and Yves Lespérance

York University, Toronto, Canada
{sun0907,lesperan}@yorku.ca

Abstract. In this paper, we address the challenges of non-Markovian
rewards and learning efficiency in deep reinforcement learning (DRL) in
continuous action domains by exploiting reward machines (RMs) and
counterfactual experiences for reward machines (CRM). RM and CRM
were proposed by Toro Icarte et al. A reward machine can decompose
a task, convey its high-level structure to an agent, and support certain
non-Markovian task specifications. In this paper, we integrate state-of-
the-art DRL algorithms with RMs to enhance learning efficiency. Our
experimental results demonstrate that Soft Actor-Critic with counter-
factual experiences for RMs (SAC-CRM) facilitates faster learning of
better policies, while Deep Deterministic Policy Gradient with coun-
terfactual experiences for RMs (DDPG-CRM) is slower, achieves lower
rewards, but is more stable. Option-based Hierarchical Reinforcement
Learning for reward machines (HRM) and Twin Delayed Deep Determin-
istic (TD3) with CRM generally underperform compared to SAC-CRM
and DDPG-CRM. This work contributes to the ongoing development of
more efficient and robust DRL approaches by leveraging the potential of
RMs in practical problem-solving scenarios.

Keywords: Deep Reinforcement Learning · Reward Machines

1 Introduction

In reinforcement learning (RL), an agent interacts with the environment by
performing actions in each state, receiving a reward signal in return and the
agent’s goal is to learn a policy (mapping observations to actions) that maximizes
the expected cumulative reward and improves its policy from past experiences.

In simple discrete action domains, like turn-based games with finite states
and actions, basic RL algorithms such as Q-learning [23] suffice to quickly find
the optimal policy. However, in more complex continuous action domains like
autonomous driving, where variables like acceleration and steering angle have
infinite domains, the agent cannot try all possible actions. Consequently, Q-
learning fails to identify actions with the highest expected rewards and deter-
mine the optimal policy, and struggles to explore the state space effectively. Deep
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
V. Malvone and A. Murano (Eds.): EUMAS 2023, LNAI 14282, pp. 83–99, 2023.
https://doi.org/10.1007/978-3-031-43264-4_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-43264-4_6&domain=pdf
http://orcid.org/0009-0001-7185-0921
http://orcid.org/0000-0003-1625-0226
https://doi.org/10.1007/978-3-031-43264-4_6

84 H. Sun and Y. Lespérance

reinforcement learning (DRL) was developed to address hard RL problems such
as those in continuous action domains. DRL combines neural networks’ under-
standing capabilities with RL’s decision-making, allowing agents to tackle more
complex problems in such domains [7].

Reward functions in RL algorithms are typically “black boxes”. As a result,
learning requires extensive interaction with the environment, consuming signif-
icant time and computational resources. However, if the agent can access the
reward function’s internal structure and understand the task’s high-level idea,
it can leverage this information to expedite optimal policy learning.

To provide agents access to the reward function, Toro Icarte et al. proposed
using finite state machines called reward machines (RMs) [20–22], which define a
novel form for reward functions that support certain non-Markovian task specifi-
cations. The reward is non-Markovian when it doesn’t just depend on the current
world state but on the whole history. A reward machine can define multiple forms
of reward functions, including concatenation, loops, and conditional rules. It can
also decompose a complex task into subtasks, revealing each subtask’s reward
function to the agent. The RM is assumed to be fully known to the agent; as the
agent transitions between RM states, the specific subtask’s reward is returned,
enabling state-by-state learning and thus allowing the agent to conduct less
exploration and speed up the learning. Reward machines offer flexible expres-
sion, allowing tasks to be represented using Linear Temporal Logic over infinite
or finite traces (LTL/LTLf) [4,15] or other formal languages before translation
into a reward machine. A related approach is that of “restraining bolts” [3],
where LTLf restraining specifications are compiled into automata and used in
RL to ensure that the learned behavior conforms to them [1]. Another related
approach is called “logically constrained RL” [9], where one specifies rules about
the finite set of actions that are allowed in a given state, avoiding an exhaus-
tive update over the whole state space, thus guiding the agent to learn more
efficiently and conform to desired behaviors.

To utilize an RM’s structure, Toro Icarte et al. proposed a novel approach
called counterfactual experiences for reward machines (CRM) [20,22]. CRM
leverages reward function information from RMs during agent-environment
interactions to generate synthetic experiences, helping the agent make more
explicit judgments about RM states thus accelerating learning speed.

Reward machines can be applied in both discrete and continuous action
domains. In discrete action domains, Toro Icarte et al. enhanced the learning
efficiency of existing RL and DRL algorithms by combining reward machines
with Q-learning [23] and Double DQN [10], where RM-based Q-learning can
converge to the optimal policy. However, in continuous action domains, only
DDPG [12] and option-based Hierarchical Reinforcement Learning (HRL) [19]
have been combined with reward machines. As new deep RL algorithms emerged,
the performance of DDPG and option-based HRL has become less prominent,
with some newly proposed algorithms surpassing their performance. To address
this issue and further improve the learning efficiency of RM-based algorithms in
continuous action domains, we focused on two aspects in our work.

Exploiting Reward Machines with Deep Reinforcement Learning 85

First, we combined CRM with two widely used and well-performing deep RL
algorithms, Soft Actor-Critic (SAC) [8] and Twin-Delayed Deep Deterministic
Policy Gradient (TD3) [6]. We call the resulting algorithms Soft Actor-Critic
with CRM (SAC-CRM) and Twin-Delayed Deep Deterministic Policy Gradient
with CRM (TD3-CRM).

Next, we expanded the range of tasks tested compared to prior experiments,
e.g., [22]. Based on the RM model, we defined six new tasks in two different
continuous action domains. We ran experiments and compared the performance
of existing and new RM-based deep RL algorithms and analyzed reasons for
performance differences. Through these experiments, we found that SAC-CRM
was generally the best-performing algorithm among those studied. The learning
speed and reward values it achieved within the specified learning steps were
generally the best amongst all the algorithms.

2 Preliminaries

2.1 Reward Machines in RL

Reward Machines. To support non-Markovian rewards, Toro Icarte et al. [20–
22] introduced a novel reward function form called the reward machine (RM).
Formally, given a set of propositional symbols P, a set of (environment) states
S, and a set of actions A, a reward machine (RM) is a tuple RPSA =
〈U, u0, F, δu, δr〉 where U is a finite set of states, u0 ∈ U is the initial state, F is a
finite set of terminal states (where U ∩F = ∅), δu is the state-transition function,
δu : U×2P → U∪F , and δr is the state-reward function, δr : U → S×A×S → R.

Consider a simple example where our agent (see Fig. 1) is a cheetah-like robot,
as in the OpenAI Gym Half-Cheetah domain [2], and the task is to start from
an arbitrary point between A and B, first go to point A, then to B and then
C, then back to B, then back to C again, and then finally to point D to receive
a reward of 1000 (which is Task 3 of the Half-Cheetah domain in Sect. 4). The
agent can move in this 2D environment by choosing the moving angle and force
to apply at each joint. Notice that this task involves non-Markovian rewards.

Fig. 1. An example RM environment (Half-Cheetah).

Also, since the agent starts far from point D, and the task contains multi-
ple back-and-forth operations (e.g., to do pick ups and deliveries), if the task
description only specifies the final goal of reaching point D, the agent must
spend significant time exploring. However, using a reward machine (RM) allows
the task to be decomposed into subtasks by introducing multiple RM states to

86 H. Sun and Y. Lespérance

Fig. 2. The automaton for the task.

represent each intermediate reward function. With this, the agent can learn to
reach each point sequentially, thus getting closer to the target with each sub-
task. This approach reduces exploration time and improves learning efficiency.
The automaton for this task is shown in Fig. 2. In this automaton, the reward
value is a small control penalty CP for transitions among the non-terminal RM
states u0 to u5, and when the agent reaches point D while in u5, it arrives at the
terminal RM state, and it will receive a reward value of 1000. In this environ-
ment, the set of propositional symbols P can be defined as P = {A,B,C,D},
where event e ∈ P occurs when the agent is at location e. To assign truth values
to symbols in P, a labelling function L : S × A × S → 2P will be needed. L can
assign truth values to symbols in P given an environment experience (s, a, s′),
where s′ is the resulting state after executing action a from the environmental
state s. In the example, U is the set of all the non-terminal RM states, including
{u0, u1, u2, u3, u4, u5}; F is the set of the terminal RM state, which is the state
after u5. When the agent reaches point A, the state-transition function δu will
transfer the agent’s current RM state from u0 to u1 (otherwise it remains in u0),
and it will transfer the RM state from u1 to u2 when the agent reaches point B,
and so forth. When the agent reaches point D, a terminal state, the state-reward
function δr will give the agent a reward of 1000.

MDPRM. In traditional reinforcement learning, the underlying environment
model of the agent is assumed to be a Markov Decision Process (MDP) [5]. An
MDP is a tuple M = 〈S,A, r, p, γ, μ〉, where S is a finite set of states, A is a
finite set of actions, r : S × A × S → R is the reward function, p (st+1 | st, at) is
the transition probability distribution, γ ∈ (0, 1] is the discount factor, and μ is
the initial state distribution where μ (s0) is the probability that the agent starts
in state s0 ∈ S. By using reward machines, the agent learns in the environment
considering not only the environmental state st at time t, but also the RM
state ut at time t. The extra consideration of the RM state ut changes the
learning environment from a traditional MDP to a Markov Decision Process
with a Reward Machine (MDPRM) [20–22]. A Markov Decision Process with a
Reward Machine (MDPRM) is a tuple T = 〈S,A, p, γ, μ,P, L, U, u0, F, δu, δr〉,
where S, A, p, γ and μ are defined as in an MDP, P is a set of propositional
symbols, L is a labelling function L : S × A × S → 2P , and U , u0, F , δu, and δr

are defined as in a reward machine. In an MDPRM, the policy learned by the
agent then changes from π(a | s) to π(a | s, u), and the experience changes from
〈s, a, r, s′〉 to 〈s, u, a, r, s′, u′〉. It can be seen that MDPRMs are regular MDPs
when considering the cross-product between the environmental states S and the

Exploiting Reward Machines with Deep Reinforcement Learning 87

RM states U . As such, standard RL algorithms can learn in MDPRMs by using
the cross-product of environment and RM states [1,11].

CRM. To exploit the information provided by the RM, Toro Icarte et al.
proposed a method called Counterfactual experience for Reward Machines
(CRM) [20,22]. CRM also learns policies over the cross-product π(a | s, u),
but uses counterfactual reasoning to generate synthetic experiences. In CRM,
the RM will go through every RM state ū ∈ U after each action, and use the
state transition function δu (ū, L (s, a, s′)) to determine the next RM state ū′;
the agent will also receive a reward of r̄ using the reward transition function
δr(ū) (s, a, s′). That is, instead of just providing the actual experience in an
MDPRM, the RM can now provide one experience per RM state. In this man-
ner, after taking just one action, the agent will get to know whether the action
could cause a transition in any of the RM states and what the reward would be
if that happened. In other words, the agent will be able to determine precisely
whether its current action, made in the current environmental state, would have
an impact on any subtask. This greatly improves the efficiency of the agent’s
exploration.

2.2 Deep RL Algorithms

Deep Deterministic Policy Gradient (DDPG). Deep Deterministic Policy
Gradient (DDPG) [12] is an off-policy deep reinforcement learning algorithm
that incorporates an actor-critic architecture to address complex, continuous
control problems. DDPG utilizes two distinct neural networks, namely the actor
network and the critic network. The actor network is responsible for learning the
optimal policy, while the critic network approximates the optimal Q-function,
which estimates the expected reward of taking a given action in a given state.

In DDPG, the actor network takes the current environment state as input and
outputs a continuous-valued action derived from the current policy. The critic
network estimates the value of state-action pairs based on the actor network’s
output. By adopting a deterministic policy gradient approach, DDPG is able to
effectively handle continuous action spaces, while the incorporation of experience
replay and target networks stabilizes the learning process.

Option-Based Hierarchical Reinforcement Learning (HRL). Option-
based Hierarchical Reinforcement Learning (HRL) [19] is a framework for effi-
ciently learning and planning in complex environments with long-term goals
and multiple abstraction levels. In HRL, agents learn a set of subgoals, or
“options”, which can be combined to create high-level plans. Options serve as
reusable subroutines learned through experience. During training, agents learn
intra-option policies to achieve each subgoal and inter-option policies for transi-
tioning between subgoals. This allows agents to navigate complex environments
by decomposing problems into smaller, more manageable subtasks. Thus a key
advantage of HRL is its ability to reduce the amount of training needed, partic-
ularly in tasks involving long action sequences.

88 H. Sun and Y. Lespérance

Soft Actor-Critic (SAC). Soft Actor-Critic (SAC) [8] is an off-policy deep
RL algorithm specifically designed for continuous control tasks. SAC aims to
concurrently maximize the policy’s entropy and its cumulative return, i.e., obtain
an agent that succeeds at the task while acting as randomly as possible. To do
this, it incorporates an entropy term into the Q-function:

Qπ
soft(s, a) = E

st,at∼ρπ

[∞∑
t=0

γtr (st, at) + α

∞∑
t=1

γtH (π (· | st)) | s0 = s, a0 = a

]

where entropy is defined as: H(P) = E
x∼P

[− log P (x)].

Adding this entropy component enables deeper exploration of the state space,
which is crucial in continuous control tasks characterized by high-dimensional
state and action spaces.

The maximum entropy model offers several advantages, including making
the fewest assumptions about the environment’s unknown information while
matching observed data. This approach ensures that the model remains robust
and adaptable to various environments. Furthermore, by controlling the entropy
value, the agent can maintain a high level of exploration capability. This prevents
the agent from prematurely converging to a local optimum and allows for the
discovery of more optimal solutions in complex problem domains.

Twin Delayed Deep Deterministic Policy Gradient (TD3). Twin
Delayed Deep Deterministic Policy Gradient (TD3) [6] is an off-policy deep RL
algorithm for continuous control tasks, improving upon the original Deep Deter-
ministic Policy Gradient (DDPG) algorithm by addressing several limitations.
A primary enhancement in TD3 is the use of two critic networks instead of one,
estimating the value of state-action pairs and reducing overestimation bias. TD3
also employs delayed policy updates, updating the policy less frequently than
the critic networks to decrease policy update variance and stabilize learning.
Another notable feature of TD3 is target policy smoothing, which adds noise
to actions selected by the actor network, regularizing the policy and increasing
its robustness to environmental perturbations. This is especially beneficial in
continuous control tasks where minor action changes significantly impact the
agent’s behavior.

For more technical details about these algorithms, see [18].

3 Adapting Deep RL Algorithms with Reward Machines

Toro Icarte et al. [20,22] proposed a variant of DDPG that incorporates the CRM
approach, calling it DDPG-CRM. Concurrently, they introduced an options-
based Hierarchical Reinforcement Learning (HRL) algorithm that learns options
to move between states of a RM, which they call HRM. The integration of CRM
into DDPG is achieved by initially modifying the learning environment to suit
the Markov Decision Process with a Reward Machine (MDPRM), followed by

Exploiting Reward Machines with Deep Reinforcement Learning 89

the inclusion of counterfactual experiences into the replay buffer. Instead, HRM
applies DDPG to learn the option policies while employing Deep Q-Network
(DQN) [13] to learn the high-level policy. In this work, we incorporate the CRM
approach into two additional deep RL algorithms that are currently widely rec-
ognized for their strong performance, namely Soft Actor-Critic (SAC) [8] and
Twin Delayed Deep Deterministic Policy Gradient (TD3) [6]. Note that we also
experimented with combining CRM with PPO [17] but the performance/learning
efficiency was very poor, see [18] for details. PPO is an on-policy RL method and
it is not clear how counterfactual experiences can be incorporated effectively in
such approaches.

3.1 Soft Actor-Critic (SAC) with CRM

First, we use SAC as a base and propose a new algorithm, SAC-CRM, that takes
advantage of the task structure that the RM has made visible. In SAC-CRM,
the agent still uses the entropy value from the baseline SAC when updating the
Q-function and continues the Energy-Based Policy model from the baseline SAC.
In contrast to the baseline, SAC-CRM changes the type of the actual experience
compared to the baseline SAC and also adds counterfactual experiences to the
replay buffer. The pseudocode of SAC-CRM is shown in Algorithm 1.

In SAC-CRM, the learning environment becomes an MDPRM, so the RM
experience will be added to the replay buffer. The actual experience learned by
the agent will change from the original 〈s, a, r, s′〉 to 〈s, ū, a, r̄, s′, ū′〉, where ū and
ū′ are the RM states before and after the action a, and r̄ is the reward given by
the reward machine. Also, CRM will generate one counterfactual experience for
each RM state after the agent takes an action (see line 7 in Algorithm 1). To
generate the counterfactual experiences, the agent will traverse each RM state
ū ∈ U after making an action. If the agent’s action in ū causes the environmental
state s change to the next environmental state s′, then the next RM state will
be calculated by the state-transition function, which is ū′ = δu (ū, L (s, a, s′)),
and the agent will receive a reward given by the state-reward function, which is
r̄ = δr(ū) (s, a, s′). CRM generates one counterfactual experience for each RM
state. The expression of the counterfactual experience set is:

{(s, ū, a, δr(ū) (s, a, s′) , s′, δu (ū, L (s, a, s′))) | ū ∈ U}

Correspondingly, SAC-CRM will learn the information provided by CRM when
updating the policy. Specifically, the agent will consider both the actual expe-
rience and counterfactual experiences. In terms of reward, the agent will now
consider the RM reward provided by the state-reward function. At this point,
since the agent learns in an MDPRM, SAC-CRM will not only consider the
actual environmental state but the cross-product of the environmental state and
the RM state, as well as the counterfactual experiences provided by CRM (line 9
to line 15 in Algorithm 1). Note that we follow [8] and maintain two independent
Q functions and use the minimum of the two in the policy improvement step
(line 15) to mitigate positive bias. The updated policy is selected by minimizing

90 H. Sun and Y. Lespérance

Algorithm 1 . Soft Actor-Critic with counterfactual experiences for RMs
(CRM).
Input: initial policy parameters θ, Q-function parameters φ1, φ2, empty replay buffer

D, labelling function L, a finite set of states U , a finite set of terminal states F ,
state-transition function δu, state-reward function δr, initial RM state u0 ∈ U

1: Set target parameters equal to main parameters φtarg,1 ← φ1, φtarg,2 ← φ2

2: Initialize u ← u0 and s ← EnvInitialState()
3: repeat
4: Observe state s and select action a ∼ πθ(· | s, u)
5: Execute a in the environment and observe next state s′

6: Compute the reward r ← δr(u) (s, a, s′) and next RM state u′ ←
δu (u, L (s, a, s′)), and done signal d to indicate whether s′ is terminal

7: Set experience ← {(s, ū, a, δr(ū) (s, a, s′) , s′, δu (ū, L (s, a, s′)) , d) | ū ∈ U}
8: Store experience in replay buffer D
9: If s′ is terminal or ū ∈ F , reset environment state.

10: if it’s time to update then
11: for j in range (however many updates) do
12: Randomly sample a batch B of transitions from D
13: Compute targets for the Q functions:

y
(
r̄, s′, ū′, d

)
= r+γ(1−d)

(
min
i=1,2

Qφtarg,i

(
s′, ū′, ã′) − α log πθ

(
ã′ | s′, ū′)

)
,

ã′ ∼ πθ

(· | s′, ū′)

14: Update Q-functions by one step of gradient descent using

∇φi

1

|B|
∑

(s,ū,a,r̄,s′,ū′,d)∈B

(
Qφi(s, ū, a) − y

(
r̄, s′, ū′, d

))2
for i = 1, 2

15: Update policy by one step of gradient ascent using

∇θ
1

|B|
∑

s,ū∈B

(
min
i=1,2

Qφi (s, ū, ãθ(s, ū)) − α log πθ (ãθ(s, ū) | s, ū)

)

where ãθ(s, ū) is a sample from πθ(· | s, ū) which is differentiable wrt θ via
the reparametrization trick.

16: Update target network with

φtarg,i ← ρφtarg,i + (1 − ρ)φi for i = 1, 2

17: end for
18: end if
19: until convergence or maximum training step reached

the distance between it and the energy-based policy (EBP) for the Q function,
where the distance is measured via Kullback-Leibler divergence.

Exploiting Reward Machines with Deep Reinforcement Learning 91

3.2 Twin Delayed Deep Deterministic Policy Gradient (TD3)
with CRM

We chose Twin Delayed Deep Deterministic Policy Gradient (TD3) as another
algorithm to integrate with CRM. The integration process is similar to SAC-
CRM and involves two steps. First, we added reward machine information to
the actual experience, which includes current and next RM states and the RM
reward. Then, we added counterfactual experiences to the replay buffer.

Because the learning environment becomes an MDPRM, we need to include
reward machine information in the actual experience. Specifically, we added the
cross-product of the environmental states and the RM states to the actual expe-
rience, as well as the reward provided by the reward machine, changing the
agent’s experience from 〈s, a, r, s′〉 to 〈s, u, a, r, s′, u′〉. Then, we added counter-
factual experiences by generating a corresponding counterfactual experience for
each RM state after the agent executes each action. This experience contains the
next RM state ū′ calculated using the state-transition function δu(ū) and the
RM reward r̄ calculated by the state-reward function δr(ū), which is the same
form as the counterfactual experience in SAC-CRM.

For more details about all these algorithms, see [18]; the code is available at
https://github.com/haolinsun0907/Exploiting RMs with DRL).

4 Experimental Evaluation

In this section, we test the proposed algorithms (SAC-CRM and TD3-CRM) in
two continuous action domains, comparing their performance with existing algo-
rithms (DDPG-CRM and HRM). The test environments are the Half-Cheetah
(2D) and Ant (3D) domains in OpenAI Gym [2]. All CRM-based algorithms
have a batch size of 100n, where n = |U | represents the number of non-terminal
RM states. For HRM, option policies are learned using DDPG, and the high-
level policy is learned using DQN. The batch size of HRM is 100n, where n
represents the available options. The neural networks for all algorithms use two
hidden layers with 256 units and RELU activation functions.

In both domains, the agent’s task involves reaching multiple points in a spe-
cific order, making the rewards non-Markovian. This tests each algorithm’s abil-
ity to control the agent’s movement by coordinating its limbs, as well as CRM’s
impact on task completion. The efficiency of the baseline algorithms determines
the agents’ movement speed, affecting the steps required to reach target points.
Additionally, since the environments are RM environments with complex tasks,
it is difficult for the agent to learn to complete the task using only the baseline
algorithm running over the cross-product of the environment and reward machine
states. To substantiate this assertion, we conducted a performance comparison
between the baseline SAC and DDPG running over the cross-product states
versus their counterparts, SAC-CRM and DDPG-CRM, that generate counter-
factual experiences. The test results (on the Half-Cheetah Tasks 1 and 2 below)
revealed a significant performance boost when counterfactual experiences were
utilized, thus underscoring their pivotal role in enhancing the efficacy of these

https://github.com/haolinsun0907/Exploiting_RMs_with_DRL

92 H. Sun and Y. Lespérance

algorithms; see [18] for details. CRM provides more specific task information,
improving the agent’s learning efficiency in completing multi-target point tasks.

4.1 Results in the Half-Cheetah Domain

In the Half-Cheetah domain, our first experimental environment, the agent is
a cheetah-like robot with six joints, see Fig. 1. The robot must learn to control
these joints to stand, move forward, or backward. It chooses how much force to
apply to each joint per step, resulting in an infinite action space. The continuous
state space includes each joint’s location (coordinates’ values on the plane) and
velocity. We will test the new and existing algorithms on four tasks, including
one original task defined by Toro Icarte et al. [20,22] (Task 1). The tasks are:

– Task 1: Starting between points A and B, first go to point B, then repeatedly
go back and forth between A and B.

– Task 2: Starting between points A and B, first go to point A, then to B, then
to C, then back to B, and then A, and repeat indefinitely.

– Task 3: Starting between points A and B, first go to point A, then to B, then
C, then back to B, then to C again, then reach point D and stop.

– Task 4: Starting between points A and B, either go to point A or to B, then
go to point C, and finally reach point D and stop.

We will use these tasks to test and compare the performance of our new algo-
rithms, SAC-CRM and TD3-CRM, against [22]’s RM-based algorithms, DDPG-
CRM and HRM. For all tasks, the agent starts from an arbitrary position
between points A and B. Following the original approach in [22], to prevent
the agent from ceasing exploration, the agent receives a small negative reward
value, called Control Penalty (CP), after each RM state transition.

Figure 3 displays the performance of the evaluated algorithms. The horizontal
axis represents the total number of training steps (three million), while the
vertical axis indicates the total reward received by the agent within an episode
(of 1,000 training steps). Different coloured lines represent the mean episode
reward among 10 trials for each algorithm, and the shaded area indicates the
range between the highest and lowest episode rewards for each trial. Note that
the results for the first task with DDPG-CRM and HRM, initially presented by
Toro Icarte et al. [22], were reconfirmed in our study. After repeating the task
ten times, we found our results consistent with theirs.

It can be seen that SAC-CRM outperforms all other algorithms in this
domain, exhibiting faster learning speeds and higher reward values. In Task
1, SAC-CRM achieves the same performance level as the second-best performer,
DDPG-CRM, in 150,000 training steps-up to 20 times faster. The mean reward
value after two million training steps for SAC-CRM is about 30% higher than
DDPG-CRM. With a highest episode reward of around 11,000, SAC-CRM can
complete the task approximately 11 times in one episode, three more than
DDPG-CRM. SAC-CRM also excels in the other tasks, demonstrating the fastest
learning speed and highest episode reward.

Exploiting Reward Machines with Deep Reinforcement Learning 93

Fig. 3. Results in Half-Cheetah domain.

Other algorithms do not perform as well as SAC-CRM. DDPG-CRM ranks
second, with more stable learning curves than SAC-CRM. HRM performs reason-
ably well but has lower rewards than SAC-CRM and DDPG-CRM. TD3-CRM
fails to complete the task within the training period (without counterfactual
experiences, it works effectively in the easier tasks).

4.2 Results in the Ant Domain

We further tested the algorithms’ performance in the Ant domain to increase the
environment and task complexity. The Ant robot is a 3D robot with a torso and
four legs, each with two links. The main goal is to coordinate the four legs by
applying torques to the eight hinges, allowing movement in any direction on the
plane. The state space (coordinates of the joints in 3D space) and action space
(torque on the joints) are also continuous, similar to the Half-Cheetah domain.

The Ant domain was chosen for several reasons. First, it is a 3D environment,
providing a larger moving space and more diverse states. Second, the Ant robot’s
higher number of joints requires more complex movement coordination, making
learning more difficult. Consequently, the Ant domain is ideal for testing the
performance of RM-based algorithms in a more complex environment.

94 H. Sun and Y. Lespérance

Fig. 4. The abstract representation of Ant.

We will test three tasks in the Ant environment, which has designated points
similar to the Half-Cheetah domain. Figure 4 shows an abstract representation
of the domain. In all three tasks, the ant robot starts at a random location near
the origin:

– Task 1: Starting nearby the origin, go to point B, then repeatedly move
between points A and B.

– Task 2: Starting nearby the origin, go to points A, B, and C sequentially,
then back to B, A, and repeat indefinitely.

– Task 3: Starting nearby the origin, choose either point A or B, go to the
chosen point, then to points C and D. From point D, return to the chosen
point (A or B) and stop.

Figure 5 displays the learning curves of all algorithms across tasks. Only SAC-
CRM and DDPG-CRM achieve significant rewards within the specified learning
steps, while the other algorithms do not.

It can be seen that SAC-CRM outperforms all other algorithms, demonstrat-
ing faster learning and higher reward values compared to DDPG-CRM. This is
primarily due to SAC’s greater exploration capability. In the Ant domain, the
agent’s movement expands to backward, forward, left, and right, increasing the
movement space. SAC’s high exploration tendency enables it to try new direc-
tions and explore joint coordination more effectively, improving movement speed
faster than other algorithms. Conversely, DDPG-CRM’s exploration rate dimin-
ishes as it learns, resulting in slower performance improvement.

Notably, HRM performs poorly in the Ant domain, with a significant per-
formance gap compared to the Half-Cheetah domain. Although it quickly finds
local optimal solutions, HRM’s policies often get stuck in local optima. In the
Half-Cheetah domain, lower environmental complexity allows the agent to rely
on local optimal policies for relatively high rewards. However, in more complex
environments, the gap between local and global optimal policies widens, and
local optimal policies become insufficient for obtaining high rewards, resulting
in HRM’s poor performance in the Ant domain.

Lastly, TD3-CRM’s performance remains weak, similar to its results in the
Half-Cheetah domain.

Exploiting Reward Machines with Deep Reinforcement Learning 95

Fig. 5. Results in Ant domain.

5 Discussion

Performance of SAC-CRM. The experimental results reveal that SAC-CRM
consistently outperforms the other tested RM-based algorithms across all tasks,
demonstrating superior learning speed and policy quality. Its advantage is par-
ticularly pronounced in the more complex Ant domain. Therefore, SAC-CRM is
deemed the optimal choice for all tasks in both Half-Cheetah and Ant domains
explored in this paper.

The standout performance of SAC-CRM can be attributed mainly to its
unique entropy-based policy update mechanism. In our continuous experimental
environments, numerous action combinations influence the agent’s movement,
some leading to failure, some to slow progress, and others to rapid advancement.
The entropy-based mechanism encourages extensive exploration, enabling the
policy to avoid early local optima and maintain high exploration levels while
maximizing reward value.

Furthermore, SAC-CRM’s success is bolstered by its generation of stochastic
policies. In the continuous action domain, multiple optimal actions often exist
in a specific state. Unlike deterministic policies, which limit the discovery of
better action combinations by outputting a unique action, SAC-CRM saves all
available actions in a given state, allocating their probabilities based on their
Q-values. This broader ‘vision’ in action selection allows more frequent testing
of different action combinations, accelerating learning for complex tasks such as
multi-limb robot control.

96 H. Sun and Y. Lespérance

Performance of DDPG-CRM. Despite not achieving the highest rewards
in most tasks, DDPG-CRM displays consistent performance, outshining other
RM-based algorithms in stability, especially compared to SAC-CRM.

However, DDPG-CRM’s drawbacks include its slow learning speed and lower
rewards compared to SAC-CRM. The experimental results show that in all tasks,
DDPG-CRM lags behind SAC-CRM in both learning speed and reward achieved.
This gap widens in the more complex Ant domain. Due to its deterministic policy
learning, DDPG-CRM is less exploratory, limiting the agent’s capacity to seek
better action combinations. Moreover, its traditional Q-function-based learning
may overestimate Q-values, causing premature convergence to a local optimum.

In summary, DDPG-CRM is robust and stable, making it a viable choice for
simpler environments like Half-Cheetah when stability is more important than
optimal performance. However, its reward output falls short compared to SAC-
CRM, making it less suitable for complex environments like the Ant domain.

Performance of HRM. The experimental results show that HRM performs
reasonably well in the Half-cheetah domain. While not as efficient as SAC-
CRM, it achieves comparable performance to DDPG-CRM in learning speed
and reward, and it also often surpasses DDPG-CRM in early training stages.

However, HRM’s performance declines sharply in the more complex Ant
domain. This is due to HRM’s predisposition to find local optima. HRM has
no guarantee of convergence to a global optimum, which becomes problematic
as the gap between local and global optima widens in complex environments.
Thus, while HRM performs well in low-complexity settings, it becomes less effec-
tive in more complex environments. Note that HRM’s performance depends on
it using a good decomposition for the task; but we think that the RM-based task
decompositions are reasonably good for our test tasks.

Performance of TD3-CRM. TD3-CRM’s performance in all tasks is far from
ideal, earning the lowest rewards among all the evaluated algorithms. The reason
appears to be a conflict between CRM and TD3’s policy updating mechanism.

First, TD3-CRM assigns the lower Q-value to an action using two learned
Q-functions. This works well in MDPs, where Q-values are often overestimated,
but not in MDPRMs. In an MDPRM, the RM information is critical for the
agent to transfer from one RM state to another; specifically, the actions that
can make the RM state change usually have high Q-values, which encourage the
agent to keep using these actions to make transitions between the RM states.
Nevertheless, TD3 always tries to “underestimate” the Q-values, which will avoid
these beneficial actions.

Furthermore, TD3’s target policy smoothing regularization, which adds noise
to actions, restricts optimal action selection and steers the agent towards close
alternatives instead. This contrasts with CRM’s encouragement for the agent
to execute optimal actions that trigger RM state changes. Consequently, this
contradiction confuses the agent, causing infrequent correct actions and resulting
in poor performance.

Exploiting Reward Machines with Deep Reinforcement Learning 97

6 Conclusion

Training a practical deep RL agent for specific scenarios typically requires exten-
sive training data and time. Furthermore, agents often face complex tasks with
non-Markovian rewards, making learning high-quality policies from limited infor-
mation a significant challenge. Therefore, observing more information and fully
utilizing it is crucial for improving training efficiency.

Our research is inspired by previous work on reward machines and deep RL
algorithms, particularly the work by Toro Icarte et al. [20,22]. Our contribu-
tions include extending two mainstream deep RL algorithms, SAC and TD3,
to exploit reward machine models and counterfactual experiences, yielding two
new reward machine-based algorithms, SAC-CRM and TD3-CRM. In order to
simulate the tasks that an intelligent agent might encounter in the real world,
we introduced seven different task types in two simulated continuous action
domains. We evaluated experimentally the performance of all RM-based deep
RL algorithms across these tasks. We found that the newly proposed SAC-CRM
performed best in most tasks.

For future work, there are several key areas of focus. First, more exten-
sive parameter tuning could potentially enhance algorithm performance, as the
current uniform parameters may not allow for optimal performance. Second,
expanding experimental evaluations to include a wider variety of tasks and
domains would allow for more comprehensive robustness testing and a better
understanding of the environments and tasks best suited for each algorithm.
Third, finding ways to stabilize the policies of SAC-CRM, which currently fluc-
tuate in learning curves across tasks, could make it a more robust algorithm.
Fourth, incorporating Automated Reward Shaping [14] into CRM-based algo-
rithms may further improve learning speed by providing intermediate rewards
for subtask completion. Fifth, it’s worth exploring ways to combine CRM and
on-policy deep RL algorithms such as PPO [17] and TRPO [16]. This could
further expand the use cases for RM and CRM. Lastly, applying these RL algo-
rithms to real-world hybrid domains, which involve both discrete and continuous
decision variables, could offer more practical solutions to real-world problems,
expanding their usability beyond the purely continuous control problems they
currently address.

Acknowledgements. Work supported by the National Science and Engineering
Research Council of Canada and York University.

References

1. Brafman, R.I., Giacomo, G.D., Patrizi, F.: LTLf/LDLf non-markovian rewards.
In: McIlraith, S.A., Weinberger, K.Q. (eds.) Proceedings of the Thirty-Second
AAAI Conference on Artificial Intelligence, (AAAI-18), the 30th Innovative Appli-
cations of Artificial Intelligence (IAAI-18), and the 8th AAAI Symposium on Edu-
cational Advances in Artificial Intelligence (EAAI-18), New Orleans, Louisiana,
USA, February 2–7, 2018, pp. 1771–1778. AAAI Press (2018). https://www.aaai.
org/ocs/index.php/AAAI/AAAI18/paper/view/17342

https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/17342
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/17342

98 H. Sun and Y. Lespérance

2. Brockman, G., Cheung, V., Pettersson, L., Schneider, J., Schulman, J., Tang, J.,
Zaremba, W.: OpenAI Gym. CoRR abs/1606.01540 (2016), http://arxiv.org/abs/
1606.01540

3. De Giacomo, G., Iocchi, L., Favorito, M., Patrizi, F.: Restraining bolts for rein-
forcement learning agents. In: The Thirty-Fourth AAAI Conference on Artificial
Intelligence, AAAI 2020, The Thirty-Second Innovative Applications of Artificial
Intelligence Conference, IAAI 2020, The Tenth AAAI Symposium on Educational
Advances in Artificial Intelligence, EAAI 2020, New York, NY, USA, February
7–12, 2020, pp. 13659–13662. AAAI Press (2020). https://ojs.aaai.org/index.php/
AAAI/article/view/7114

4. De Giacomo, G., Vardi, M.Y.: Linear temporal logic and linear dynamic logic
on finite traces. In: Rossi, F. (ed.) IJCAI 2013, Proceedings of the 23rd Inter-
national Joint Conference on Artificial Intelligence, Beijing, China, August 3–
9, 2013. pp. 854–860. IJCAI/AAAI (2013). http://www.aaai.org/ocs/index.php/
IJCAI/IJCAI13/paper/view/6997

5. Feinberg, A.: Markov decision processes: discrete stochastic dynamic programming
(Martin L. Puterman). SIAM Rev. 38(4), 689 (1996). https://doi.org/10.1137/
1038137

6. Fujimoto, S., van Hoof, H., Meger, D.: Addressing function approximation error in
actor-critic methods. In: Dy, J.G., Krause, A. (eds.) Proceedings of the 35th Inter-
national Conference on Machine Learning, ICML 2018, Stockholmsmässan, Stock-
holm, Sweden, July 10–15, 2018. Proceedings of Machine Learning Research, vol.
80, pp. 1582–1591. PMLR (2018). http://proceedings.mlr.press/v80/fujimoto18a.
html

7. Guillen-Perez, A., Cano, M.: Learning from oracle demonstrations - a new app-
roach to develop autonomous intersection management control algorithms based
on multiagent deep reinforcement learning. IEEE Access 10, 53601–53613 (2022).
https://doi.org/10.1109/ACCESS.2022.3175493

8. Haarnoja, T., Zhou, A., Abbeel, P., Levine, S.: Soft actor-critic: off-policy max-
imum entropy deep reinforcement learning with a stochastic actor. In: Dy, J.G.,
Krause, A. (eds.) Proceedings of the 35th International Conference on Machine
Learning, ICML 2018, Stockholmsmässan, Stockholm, Sweden, July 10–15, 2018.
Proceedings of Machine Learning Research, vol. 80, pp. 1856–1865. PMLR (2018).
http://proceedings.mlr.press/v80/haarnoja18b.html

9. Hasanbeig, M., Kroening, D., Abate, A.: LCRL: certified policy synthesis via
logically-constrained reinforcement learning. In: Ábrahám, E., Paolieri, M. (eds.)
QEST 2022. LNCS, vol. 13479, pp. 217–231. Springer, Cham (2022). https://doi.
org/10.1007/978-3-031-16336-4 11

10. van Hasselt, H., Guez, A., Silver, D.: Deep reinforcement learning with double q-
learning. In: Schuurmans, D., Wellman, M.P. (eds.) Proceedings of the Thirtieth
AAAI Conference on Artificial Intelligence, February 12–17, 2016, Phoenix, Ari-
zona, USA, pp. 2094–2100. AAAI Press (2016). http://www.aaai.org/ocs/index.
php/AAAI/AAAI16/paper/view/12389

11. Lacerda, B., Parker, D., Hawes, N.: Optimal policy generation for partially satis-
fiable co-safe LTL specifications. In: Yang, Q., Wooldridge, M.J. (eds.) Proceed-
ings of the Twenty-Fourth International Joint Conference on Artificial Intelligence,
IJCAI 2015, Buenos Aires, Argentina, July 25–31, 2015, pp. 1587–1593. AAAI
Press (2015). http://ijcai.org/Abstract/15/227

12. Lillicrap, T.P., et al.: Continuous control with deep reinforcement learning. In:
Bengio, Y., LeCun, Y. (eds.) 4th International Conference on Learning Repre-

http://arxiv.org/abs/1606.01540
http://arxiv.org/abs/1606.01540
https://ojs.aaai.org/index.php/AAAI/article/view/7114
https://ojs.aaai.org/index.php/AAAI/article/view/7114
http://www.aaai.org/ocs/index.php/IJCAI/IJCAI13/paper/view/6997
http://www.aaai.org/ocs/index.php/IJCAI/IJCAI13/paper/view/6997
https://doi.org/10.1137/1038137
https://doi.org/10.1137/1038137
http://proceedings.mlr.press/v80/fujimoto18a.html
http://proceedings.mlr.press/v80/fujimoto18a.html
https://doi.org/10.1109/ACCESS.2022.3175493
http://proceedings.mlr.press/v80/haarnoja18b.html
https://doi.org/10.1007/978-3-031-16336-4_11
https://doi.org/10.1007/978-3-031-16336-4_11
http://www.aaai.org/ocs/index.php/AAAI/AAAI16/paper/view/12389
http://www.aaai.org/ocs/index.php/AAAI/AAAI16/paper/view/12389
http://ijcai.org/Abstract/15/227

Exploiting Reward Machines with Deep Reinforcement Learning 99

sentations, ICLR 2016, San Juan, Puerto Rico, May 2–4, 2016, Conference Track
Proceedings (2016). http://arxiv.org/abs/1509.02971

13. Mnih, V., et al.: Human-level control through deep reinforcement learning. Nature
518(7540), 529–533 (2015). https://doi.org/10.1038/nature14236

14. Ng, A.Y., Harada, D., Russell, S.: Policy invariance under reward transformations:
theory and application to reward shaping. In: Bratko, I., Dzeroski, S. (eds.) Pro-
ceedings of the Sixteenth International Conference on Machine Learning (ICML
1999), Bled, Slovenia, June 27–30, 1999, pp. 278–287. Morgan Kaufmann (1999)

15. Pnueli, A.: The temporal logic of programs. In: 18th Annual Symposium on Foun-
dations of Computer Science, Providence, Rhode Island, USA, 31 October - 1
November 1977, pp. 46–57. IEEE Computer Society (1977). https://doi.org/10.
1109/SFCS.1977.32

16. Schulman, J., Levine, S., Abbeel, P., Jordan, M.I., Moritz, P.: Trust region policy
optimization. In: Bach, F.R., Blei, D.M. (eds.) Proceedings of the 32nd Interna-
tional Conference on Machine Learning, ICML 2015, Lille, France, 6–11 July 2015.
JMLR Workshop and Conference Proceedings, vol. 37, pp. 1889–1897. JMLR.org
(2015). http://proceedings.mlr.press/v37/schulman15.html

17. Schulman, J., Wolski, F., Dhariwal, P., Radford, A., Klimov, O.: Proximal pol-
icy optimization algorithms. CoRR abs/1707.06347 (2017). http://arxiv.org/abs/
1707.06347

18. Sun, H.: Exploiting Reward Machines with Deep Reinforcement Learning in Con-
tinuous Action Domains. Master’s thesis, EECS Dept., York University, Toronto,
Canada (2022)

19. Sutton, R.S., Precup, D., Singh, S.: Between MDPs and semi-MDPs: a framework
for temporal abstraction in reinforcement learning. Artif. Intell. 112(1–2), 181–211
(1999). https://doi.org/10.1016/S0004-3702(99)00052-1

20. Toro Icarte, R.: Reward Machines. Ph.D. thesis, University of Toronto, Canada
(2022). http://hdl.handle.net/1807/110754

21. Toro Icarte, R., Klassen, T.Q., Valenzano, R.A., McIlraith, S.A.: Using reward
machines for high-level task specification and decomposition in reinforcement learn-
ing. In: Dy, J.G., Krause, A. (eds.) Proceedings of the 35th International Confer-
ence on Machine Learning, ICML 2018, Stockholmsmässan, Stockholm, Sweden,
July 10–15, 2018. Proceedings of Machine Learning Research, vol. 80, pp. 2112–
2121. PMLR (2018). http://proceedings.mlr.press/v80/icarte18a.html

22. Toro Icarte, R., Klassen, T.Q., Valenzano, R.A., McIlraith, S.A.: Reward machines:
exploiting reward function structure in reinforcement learning. J. Artif. Intell. Res.
73, 173–208 (2022). https://doi.org/10.1613/jair.1.12440

23. Watkins, C.J.C.H., Dayan, P.: Q-learning. Mach. Learn. 8, 279–292 (1992). https://
doi.org/10.1007/BF00992698

http://arxiv.org/abs/1509.02971
https://doi.org/10.1038/nature14236
https://doi.org/10.1109/SFCS.1977.32
https://doi.org/10.1109/SFCS.1977.32
http://proceedings.mlr.press/v37/schulman15.html
http://arxiv.org/abs/1707.06347
http://arxiv.org/abs/1707.06347
https://doi.org/10.1016/S0004-3702(99)00052-1
http://hdl.handle.net/1807/110754
http://proceedings.mlr.press/v80/icarte18a.html
https://doi.org/10.1613/jair.1.12440
https://doi.org/10.1007/BF00992698
https://doi.org/10.1007/BF00992698

A Comprehensive Presentation
of the Jadescript Agent-Oriented

Programming Language

Federico Bergenti1(B), Stefania Monica2, and Giuseppe Petrosino2

1 Dipartimento di Scienze Matematiche, Fisiche e Informatiche, Università degli
Studi di Parma, Parma, Italy
federico.bergenti@unipr.it

2 Dipartimento di Scienze e Metodi dell’Ingegneria, Università degli Studi di Modena
e Reggio Emilia, Reggio Emilia, Italy

{stefania.monica,giuseppe.petrosino}@unimore.it

Abstract. Jadescript is an agent-oriented programming language based
on JADE that aims to become a dependable tool for the construction of
industrial-strength multi-agent systems. This paper contributes to this
objective by providing researchers and practitioners with a comprehen-
sive description of Jadescript that discusses the most relevant features
attained in several years of continuous development. In particular, this
paper focuses on how Jadescript promotes the adoption of some ideas
taken from agent-oriented programming by providing direct support for
agent-oriented abstractions, like messages and ontologies, by encourag-
ing the use of event-driven programming to govern interactions, and by
allowing fine-grained task management using behaviours. Finally, to illus-
trate the practical applicability of Jadescript, this paper presents in detail
the implementation of a well-known election algorithm traditionally used
to coordinate distributed systems.

Keywords: Agent-oriented software engineering · Agent-oriented
programming · JADE · Jadescript

1 Introduction

In recent years, the design and the implementation of software agents have
received significant attention from the literature on agents and MASs (Multi-
Agent Systems). In this context, JADE (Java Agent DEvelopment frame-
work) [2,3,6] stands as a prominent open-source software framework aligned to
the fundamental ideas inspired by AOP (Agent-Oriented Programming) [31] and
AOSE (Agent-Oriented Software Engineering) [8]. JADE was envisaged with the
goal of creating a flexible and robust framework for the construction of agent-
based software systems using the technology standardized by FIPA (Foundation
of Intelligent Physical Agents) [30]. Since its creation, JADE have been used by

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
V. Malvone and A. Murano (Eds.): EUMAS 2023, LNAI 14282, pp. 100–115, 2023.
https://doi.org/10.1007/978-3-031-43264-4_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-43264-4_7&domain=pdf
https://doi.org/10.1007/978-3-031-43264-4_7

A Comprehensive Presentation of Jadescript 101

several researchers and practitioners all over the world [6], and it has been suc-
cessfully employed in a wide range of real-world applications (e.g., [5,7,11,16]).
JADE is still a point of reference for researchers and practitioners working on
agent-based software systems and for teachers lecturing on AOP and AOSE.

The longevity and the popularity of JADE attest its relevance, and they also
bear evidence that JADE helped identify and promote some of the character-
istic abstractions of AOP and AOSE. For example, during the development of
JADE, it was understood that agents could be effectively managed using vir-
tual machines named (agent) containers, which could be organized in (agent)
platforms [6]. Platforms and containers can be distributed across several physi-
cal machines connected through an underlying network, and they can be made
responsible to provide general-purpose services to agents like naming, discovery,
and messaging. Note that JADE helped understand that these services are better
considered as platform-level services, and they cannot be faithfully considered as
agents, which is the approach that the first public FIPA specifications followed.

Despite the success of JADE and the importance of the ideas that it helped
identify and promote, the development of agents and MASs with JADE comes
with some inherent issues. Most notably, the use of JADE to develop agents
and MASs implies the use of Java, which tends to obfuscate the adoption of the
agent-oriented abstractions that JADE provides. For example, the extraction of
a message from a message queue, its validation, its conversion to a processable
form, and its dispatch to a suitable handler requires much boilerplate code and
several nested conditional statements, which inevitably increase the complexity
of the produced code. Actually, the inherent complexity of the Java code needed
to use the agent-oriented abstractions that JADE provides can cause the intro-
duction of subtle bugs. Therefore, programmers are constantly tempted to avoid
the adoption of these abstractions in favor of lower level, but harmless, solutions.

Most of the issues inherent to the use of JADE for the construction of agents
and MASs can be traced back to the adoption of Java to interface JADE, and
therefore they can be alleviated by means of a dedicated language. This language
could be specifically designed to ease the adoption of the agent-oriented abstrac-
tions that JADE offers in the spirit of DSLs (Domain-Specific Languages) [19].
Moreover, it could be designed to refine and extend these abstractions to provide
programmers with a complete and coherent system level for the design and the
implementation of agent-based software systems [4,9,14]. Actually, this language
could support programmers in their everyday work while promoting the view of
agents and MASs that JADE and FIPA advocate.

Jadescript [6] was envisaged some years ago [13] with the intent to break the
strong connection that links JADE with Java, thus advancing previous related
investigations [10]. Jadescript has undergone significant improvements since its
last published report [12], and this paper offers an up-to-date presentation of the
language that serves as a comprehensive reference for its major features. Also,
this paper precisely cites the papers that originally introduced each discussed
improvement, thus providing accurate references for further reading.

102 F. Bergenti et al.

The major features that Jadescript exhibits are described throughout this
paper highlighting the advantages and the disadvantages that they bring to
the construction of software agents and agent-based software systems. These
features recast, improve, and extend, using dedicated language constructs, the
abstractions that JADE provides. The description of these features and con-
structs is enriched with sections of Jadescript code that demonstrate the use
of these features and constructs in a nontrivial example. The chosen example
shows how the distinguishing features of Jadescript, and its characteristic event-
driven approach, can be used to implement a well-known distributed algorithm,
thus emphasizing the ability of Jadescript agents to schedule concurrent tasks
using behaviours and to communicate using messages and shared ontologies.
The chosen example is an implementation of the bully algorithm [20], which is
a well-known election algorithm [20] used to coordinate distributed systems.

In detail, the bully algorithm is a distributed algorithm designed to elect
a leader among a group of participants. Each participant is associated with a
unique identifier, and each participant knows the identifiers of all other partic-
ipants. Identifiers are totally ordered, and therefore they can be used to order
participants. When participants start, the participant with the highest identifier
assumes the leadership. Then, the algorithm proceeds as follows:

1. A participant p detects that the current leader is inoperative;
2. The participant p sends a message to all other participants with higher iden-

tifiers to elect a new leader;
3. When a participant q answers to p, p gives up and q takes over by sending a

message to all other participants with higher identifiers; but
4. If no participants answer, participant p becomes the new leader.

In the Jadescript implementation of this algorithm described in the remaining
of this paper, the detection that the leader is inoperative is accomplished by
periodically sending heartbeat messages and waiting for acknowledgements [21].
In detail, when a participant becomes the leader, it starts sending heartbeat
messages every H = 3 s to all other participants. Therefore, a participant can
consider the leader as inoperative if the participant did not receive heartbeat
messages from the leader for the last T = 10 s, and when this happens, the
participant starts a new election.

This paper is organized as follows. Section 2 describes the support for ontolo-
gies that Jadescript currently provides. Section 3 discusses how agents and their
behaviours can be programmed using Jadescript. Section 4 describes the current
support that Jadescript offers to handle events and messages. Finally, Sect. 5
concludes the paper and briefly outlines some planned future developments.

2 Ontologies in Jadescript

JADE and FIPA adopt (communication) ontologies [32] as the principal means
to share the interpretation of the content of messages among communicating
agents. Ontologies serve as shared conceptual frameworks that allows the agents

A Comprehensive Presentation of Jadescript 103

in a MAS to effectively communicate and coordinate. For JADE, an ontology is a
set of definitions that describe the structure of the concepts, the (agent) actions,
the predicates, and the (atomic) propositions pertinent to a given application
domain. JADE uses these structured descriptions only to improve the efficiency
and the robustness of message passing.

Jadescript adheres to the approach to the use of ontologies that JADE and
FIPA promote, but it provides ontologies not only to enable fruitful commu-
nication among agents but also to define structured data that can be used in
the construction of the agents and their behaviours. In order to support this
extended approach to the use of ontologies, Jadescript treats ontologies as orga-
nized packages of concepts, actions, predicates, and propositions.

In particular, Jadescript provides concepts to facilitate the manipulation of
domain-specific structured data. Similarly, Jadescript provides actions to rep-
resent the actions that agents can perform, request, cancel, or, more generally,
refer to. Concepts and actions can be optionally structured in terms of typed
properties, and they have the possibility to extend other concepts and actions,
respectively. Predicates and propositions are elements of an ontology that Jade-
script provides to represent logical facts. Predicates are structured in terms of
typed properties, while propositions are not structured. Note that, with the use
of the uses ontology construct, agents and their behaviours can explicitly refer
to an ontology, which causes the elements of the referenced ontology to be readily
usable in the Jadescript code of the agents and their behaviours.

Both JADE and Jadescript allow ontologies to be structured into hierarchies.
In particular, an ontology, in JADE or in Jadescript, can extend other ontologies
to reuse the concepts, the actions, the predicates, and the propositions from ref-
erenced ontologies, and possibly introduce new elements. This hierarchical app-
roach is supported by JADE to promote the reusability of ontologies pertaining
to a specific application domain. However, Jadescript adopts this hierarchical
approach with the twofold aim to promote the reusability of ontologies and to
improve the modularization of the Jadescript code when ontologies are used to
manipulate data in the agents and their behaviours.

JADE allows agents to use various types of data as the content of messages,
such as serialized Java objects, bit arrays, and strings of characters. In con-
trast, Jadescript imposes a more stringent restriction on the content of messages,
and it enforces agents to use only concepts, actions, predicates, or propositions.
The shift from allowing arbitrary data types in the content of messages, like
JADE does, to enforcing the use of ontologies, like Jadescript does, is a decision
explicitly taken in the design of Jadescript to foster a well-founded approach to
knowledge sharing and communication within a MAS. Essentially, the Jadescript
agents in a MAS are forced to adhere to a common taxonomy that describes the
relevant characteristics of the application domain in order to improve the char-
acteristic interoperability and reusability of software agents [9].

Figure 1 shows the Jadescript code of the ontology used by the participants
in the bully example. The ontology defines one proposition (Alive), one action
(ElectNewLeader), and one predicate (NewLeader). The Alive proposition is
used as the content of the heartbeat messages that the leader sends to the other

104 F. Bergenti et al.

Fig. 1. The Jadescript code of the ontology used in the bully example, which defines
one proposition (Alive), one action (ElectNewLeader), and one predicate (NewLeader)
to be used as the content of messages exchanged by participants.

participants. The ElectNewLeader action is used as the content of the messages
that participants send when they detect that the leader is inoperative. Finally,
the NewLeader predicate is used as the content of the messages used to inform
all participants about the identity of the newly elected leader.

3 Jadescript Agents and Their Behaviours

Jadescript treats agents as the fundamental building blocks of software, and one
of the basic assumptions behind Jadescript is that a Jadescript agent is a JADE
agent. Therefore, Jadescript agents can be deployed in JADE containers, and,
when deployed, they are assigned unique AIDs (Agent IDentifiers) [3]. AIDs
are totally ordered in the scope of a platform because JADE, following FIPA,
uses a textual representation for AIDs. In Jadescript, AIDs are represented by
values of type aid, which is one of basic data types that Jadescript provides [25].
Since Jadescript AIDs are JADE AIDs, the values of type aid can be compared
using relational operators, such as < and <=. The total ordering of the AIDs in
the scope of a platform is used in the bully example to order participants during
elections to ensure that a participant send messages only to the participants with
higher identifiers. In detail, a participant p gives up in favor of a participant q if
the AID of p is strictly less than the AID of q.

Similarly to JADE agents, a Jadescript agent have a private state that com-
prises a lifecycle state, a message queue, a queue of active behaviours, and an
application-specific state described in terms of a set of properties. To ensure
autonomy, the state of an agent can be accessed and modified only by the agent
and its behaviours, and an agent can be destroyed only by the container that
hosts it. The Jadescript code of an agent specifies, among other things, the prop-
erties that form the application-specific state of the agent and the handlers that
the agent uses when it is created and destroyed.

Figure 2 shows the Jadescript code of the participants in the bully exam-
ple. The code starts by associating participants with the Bully ontology, whose
Jadescript code is shown in Fig. 1. This association enables participants to read-
ily refer to the elements of the Bully ontology, allowing participants, and their
behaviours, to create, manipulate and, in particular, send and receive, elements
of the ontology. Moreover, the Jadescript code shown in Fig. 2 specifies that the
application-specific state of a participant is structured in terms of six properties.
The first two properties are the period of the heartbeat messages and the time

A Comprehensive Presentation of Jadescript 105

Fig. 2. The Jadescript code of the participants in the bully example.

interval used when awaiting for a heartbeat message or a response. The two sub-
sequent properties are the AID of the current leader and the list of the AIDs of

106 F. Bergenti et al.

all participants. Finally, the last two properties refer to the two behaviours used
by the participant to enact the bully algorithm, as described later in this section.

Note that Jadescript agents can use private functions, procedures, and event
handlers to perform some of their tasks. Functions and procedures are used by
agents to execute sections of parameterized code that, in the case of functions,
can also compute a value. Event handlers are used to specify how agents react
when interesting events occurs. For example, the Jadescript code of the partici-
pants in the bully example, shown in Fig. 2, contains the setLeader procedure
and one on create handler. A participant that has just won an election uses
the setLeader procedure to inform all other participants of the result of the
election, and it changes its private state accordingly. The on create handler
specifies what a participant should do as soon as it is created and activated in
the platform. A participant receives upon creation the list of the AIDs of the
participants, which includes its AID, and the on create handler initializes the
private state of the participant before activating its main behaviours, which are
different for the leader and for the other participants.

Besides functions, procedures, and event handlers, Jadescript offers a struc-
tured approach to model the tasks of the agents using behaviours. Actually,
Jadescript agents can concurrently execute several behaviours using a coopera-
tive scheduling strategy [3]. This approach, which originated in the preliminary
JADE prototypes [6], renounces to parallelism within the agent to favor paral-
lelism and distribution among the agents.

Just like agents, a Jadescript behaviour has a private state structured in
terms of a set of properties. Moreover, a behaviour can contain private func-
tions, procedures, and event handlers. Note that a behaviour can be restricted
to be used only by specific agents by means of the for agent construct. This
construct identifies which agents can create and use a behaviour, and it allows
the behaviour to readily access and modify the private state of its agent, which
is the agent that created the behaviour. In addition, the use of this construct
allows a behaviour to readily use the functions and the procedures of its agent.

Jadescript offers two types of behaviours: one-shot behaviours and cyclic
behaviours. One-shot behaviours represent tasks that are designed to be exe-
cuted only once. After a one-shot behaviour has completed its execution, it is
automatically removed from the queue of the active behaviours of its agent. This
kind of behaviour is ideal to create atomic sequences of actions that are meant
to be deferred. For example, the Jadescript code of the behaviour that the par-
ticipants in the bully example use to simulate a fatal failure in shown in Fig. 3.
This behaviour is used to keep the bully example interesting by simulating fatal
failures in the current leader, which force the remaining participants to initiate
the election of a new leader.

Differently from one-shot behaviours, cyclic behaviours are used for repeat-
able tasks. After each execution, a cyclic behaviour remains in the queue of the
active behaviours of its agent, and it is rescheduled for subsequent executions
until explicitly deactivated. Cyclic behaviours are essential for tasks that require
waiting for specific events or for tasks that need to be repeated periodically.

A Comprehensive Presentation of Jadescript 107

Fig. 3. The Jadescript code of the one-shot behaviour used to simulate the fatal failure
of the leader in the bully example.

Typically, cyclic behaviours consist of event handlers, with support functions
and procedures, that are designed to react to specific events.

Every time an agent schedules a behaviour, it attempts to execute one of
the event handlers of the behaviour. The attempts are performed in the order
in which handlers are written in the Jadescript code of the behaviour, from top
to bottom. If, after scheduling a cyclic behaviour, no applicable event handlers
are found, the behaviour transitions to the waiting state to save computational
resources. While in the waiting state, the behaviour remains idle until a new
interesting event occurs. Once an interesting event has occurred, the behaviour
transitions to the ready state, so it can be selected by the behaviour scheduler
embedded in its agent. This approach allows Jadescript agents to efficiently
manage cyclic behaviours, ensuring that they can promptly react to relevant
events while saving resources during inactivity.

One-shot and cyclic behaviours form a versatile framework for agents to han-
dle diverse tasks. This framework has been recently extended to support periodic
and delayed executions [28]. In the current version of Jadescript, the activation
of behaviours, expressed using the activate statement, can have arguments to
detail when and how often the activated behaviour should be executed. These
arguments are specified using the at keyword, the after keyword, or the every
keyword. The at keyword can be used to precisely state when the activation
should take place. The after keyword can be used to force a delay before the
activation takes place. Finally, the every keyword can be used only with cyclic
behaviours, and possibly with the at keyword or after keyword, to state that
the activation is periodic and to specify its period. Similarly, the deactivation of
behaviours can be delayed by using the at keyword or the after keyword in the
scope of the deactivate statement. These recent improvements empower pro-
grammers to code tasks that are typical of distributed systems, such as managing
timeouts or sending heartbeat messages.

Each participant in the bully example has two behaviours whose Jadescript
code is shown in Fig. 4. The first is called monitor behaviour while the second is
called heartbeat behaviour. The monitor behaviour is used by a participant to
receive and process the heartbeat messages from the leader. When activated, this
behaviour activates the election behaviour of the participant, which is available
through the election property of the participant. The timeoutInterval prop-
erty of the participant is used to determine for how long this activation should
be delayed. Upon receiving an heartbeat message, the monitor behaviour of a
participant postpones the activation of the corresponding election behaviour.

108 F. Bergenti et al.

Fig. 4. The Jadescript code of the behaviours used to monitor (MonitorHeartbeat)
and periodically signal (DoHeartbeat) the correct functioning of the leader.

Therefore, an election starts only when the leader fails to communicate with the
other participants for a sufficiently long period of time. Note that the recep-
tion of heartbeat messages is handled by the monitor behaviour of a participant
using a message handler. A comprehensive description of message handlers is
available in Sect. 4. The heartbeat behaviour of a participant is executed by the
participant with a period specified by its heartbeatPeriod property. At each
execution, only the leader acts, and it broadcasts a message, whose content is
Alive, to all other participants. Finally, note that both the monitor behaviour
and the heartbeat behaviour use the for agent construct to access the private
state of their participant.

4 Events and Messages in Jadescript

The messaging service that JADE provides is location-transparent, and there-
fore it allows agents in the same platform to communicate using asynchronous
messages independently of their current hosting containers. This feature allows
treating the network addresses of agents as low-level details that are subsumed
by their AIDs. Actually, this feature abstracts away the complexities of low-level
communication mechanisms. Therefore, a MAS based on JADE can be designed
focusing only on agents and their tasks. Jadescript complements this feature
with specific constructs that embrace event-driven programming, as follows.

Jadescript categorizes events in either internal or external. Internal events
pertain to changes in the private state of an agent or in the private state of a
behaviour, and they can be captured using specific event handlers. For exam-
ple, the initial creation of an agent can be captured using an on create han-
dler. Similarly, the ordered destruction of an agent can be captured using an
on destroy handler. These two event handlers are also available to behaviours,

A Comprehensive Presentation of Jadescript 109

which can also react to execution, activation, and deactivation events. An on
execute handler is executed every time a behaviour is selected by the inter-
nal scheduler of its agent. An on activate handler is executed the first time a
behaviour is selected after its activation. Finally, an on deactivate handler is
executed when a behaviour is removed from the queue of the active behaviours
of an agent, either explicitly via the deactivate statement or implicitly when
the behaviour is done. The set of internal events has been recently extended to
support exception handling [26]. Agents and behaviours can react to exceptions
arising from procedure, functions, and event handlers by means of on exception
handlers. A behaviour can explicitly fail by means of the fail statement, or it
can implicitly fail because of uncaught exceptions. Agents can handle behaviour
failures using on behaviour failure handlers, which provide the means to pos-
sibly reactivate failed behaviours.

Currently, Jadescript supports two types of external events: native events
and message events. Native events are submitted to an agent using the Java API
designed to support bidirectional interoperability between Jadescript agents and
legacy Java code [27]. A native event has a content that is a predicate or proposi-
tion defined in one of the ontologies used by the agent. Therefore, predicates and
propositions can be used to model conditions that occur in the local view of the
environment that the agent has. Native events are essential to allow agents inter-
facing with their environment to support, for example, pervasive and ubiquitous
agents (e.g., [1,15,22]). Similarly, message events occur when new messages are
delivered to an agent. Upon arrival, a new message is always placed in the mes-
sage queue of the agent by the messaging service of the platform. Every time an
on message handler of an active behaviour is executed, it attempts to retrieve
a message from this queue for further processing.

In Jadescript, a message always includes several properties. In particular, a
message includes the AID of the sender and the list of the AIDs of the receivers.
It includes a performative, which is a label that indicates the purpose of the
communicative act performed by sending the message. It also includes the name
of the ontology that the sender and the receivers are expected to share. Finally,
it includes a content, which is defined in terms of the concepts, the actions,
the predicates, and the propositions of the shared ontology. The send message
statement can be used in Jadescript to construct and send messages to other
agents, explicitly specifying the receivers, the performative, and the content.
Note that Jadescript does not require programmers to specify the sender of a
message or the ontology used in a message because the execution context of
the send message statement can provide this information. Finally, note that
Jadescript assumes that the content of a message is compatible with the per-
formative of the message. For example, a request message can only contain an
action, whereas an inform message can only contain a predicate or an atomic
proposition. This restriction is not imposed by JADE because JADE does not
even restrict the content of messages to rely on a shared ontology.

Agents can be programmed in Jadescript to selectively handle specific incom-
ing messages by refining message handlers. This is primarily obtained with the

110 F. Bergenti et al.

use of a dedicated construct that associates an handler with the messages for
which a specified Boolean expression evaluates to true. This expression refers to
the properties of the incoming message and to the state of the agent to obtain
a sophisticated condition that holds only for the messages that the handler can
actually process on the basis of the state of the agent. Figure 4 shows the Jade-
script code of behaviours that use message handlers to selectively decide which
message to process. Note that if a message handler cannot process an incoming
message because the message is not structured as expected or because the state
of the agent is not appropriate, the message queue is left unchanged to give
subsequent message handlers the opportunity to process the message.

It is worth noting that message handlers feature pattern matching to ease the
construction of the condition that must hold for a message to be processed [23].
Pattern matching allows programmers to effectively deconstruct the content of
the received messages by matching them against message patterns. A message
pattern consists of a constant performative followed by a content pattern. A
content pattern is an expression that can contain values, free variables, and
placeholders. The values in a content pattern are compared for equality with the
values of the corresponding properties of the received messages. When a match
is successful, the content of the matching message is deconstructed, and the free
variables of the content pattern are bound and made accessible in the scope
of the handler. Pattern matching enhances the expressive power of Jadescript,
enabling effective message selection while allowing programmers to focus on the
parts of the received messages that are truly relevant for the message handlers.

Each participant in the bully example has two behaviours whose Jadescript
code is shown in Fig. 5. The first is called leadership change behaviour while the
second is called take over behaviour. The leadership change behaviour uses an on
message handler that matches against messages whose performative is inform
and whose content matches the pattern NewLeader(l), where l is a free variable.
If a message is actually processed by the handler, the l variable is bound to the
AID of the leader. The value of l is then used to set the new leader by means
of the setLeader procedure. This behaviour is always active for all agents to
ensure that all agents in the MAS, including those who did not participate in the
election, are aware of the leadership change caused by the successful conclusion
of an election. The take over behaviour is used by a participant to take over in
an election initiated by a participant with a lower AID. The message handler
in this behaviour matches against messages whose performative is propose and
whose content matches the content pattern ElectNewLeader. When a message
that matches against this message pattern is received, the participant can decide
whether to accept the proposal and takes over or not.

Finally, each participant in the bully example has two behaviours whose
Jadescript code is shown in Fig. 6. The first is called election behaviour while
the second is called terminate election behaviour. The election behaviour of a
participant, which is accessed using the election property of the participant,
has a property named iAmCandidate that acts as a Boolean flag. While true,
the participant considers itself as a valid candidate for leadership. On the con-

A Comprehensive Presentation of Jadescript 111

Fig. 5. The Jadescript code of two behaviours used to handle changes in leadership
(HandleLeaderChanges) and to respond to election messages from other participants
(RespondElection).

trary, while false, the participant does not consider itself as a valid candidate for
leadership. When activated, the election behaviour sets its flag to true, stops the
monitoring behaviour of the participant, and subsequently sends a propose mes-
sage with content ElectNewLeader to all participants with higher AIDs. Finally,
the election behaviour activates a terminate election behaviour with a delay equal
to the value of the timeoutInterval property to perform an ordered termina-
tion of the election. The election behaviour provides a message handler designed
to process messages whose performative is accept proposal and whose content

Fig. 6. The Jadescript code of two behaviours used to handle take over in
elections (Election) and to perform the ordered termination of an election
(TerminateElection).

112 F. Bergenti et al.

matches the content pattern ElectNewLeader. When a message that matches
this pattern arrives, the handler flips the flag to false, and the participant no
longer considers itself as a valid candidate for leadership. The terminate election
behaviour implements a timeout for the responses from the other participants.
When activated, it deactivates the corresponding election behaviour to make the
participant stop waiting for the responses from the other participants. Then, if
the participant still considers itself as a valid candidate, the participant wins the
election and terminates the election using the setLeader procedure. Otherwise,
the participant remains idle, waiting for a message of leadership change.

5 Conclusion

Jadescript is an agent-oriented programming language based on JADE that aims
to become a dependable tool for the construction of industrial-strength MASs.
This paper contributes to this objective by providing a comprehensive and self-
contained description of Jadescript that discusses the most relevant features of
the language in detail and through an example.

Jadescript is a practical language, and the current implementation of its
compiler is available at https://github.com/aiagents/jadescript. The compiler
is bundled in a distribution with a dedicated plugin for the Eclipse IDE to
support programmers in managing their Jadescript projects with the help of
several wizards and a feature-rich text editor [24]. Moreover, the distribution
includes a set of additional support tools and some documentation. Note that the
distribution also provides a Java API that can be used to support bidirectional
interoperability between Jadescript agents and legacy Java code [27].

Jadescript and its tools are under active and continuous development to
explore new features and fix problems. Among the plethora of possible new
features, the focus is now on the features that are expected to effectively pro-
mote the adoption of the agent-oriented abstractions that characterize AOP and
AOSE without introducing excessive complexity for programmers. Actually, each
explored new feature must be characterized by significant advantages for pro-
grammers so that the inevitable additional complexity is justified. This is the
reason why the short term plans for the development of Jadescript include a
dedicated and feature-rich support for interaction protocols [29].

Internal preliminary experiments highlighted the relevance of a dedicated
support for interaction protocols in Jadescript. In particular, these experiments
suggested that the early use of interaction protocols could promote a new design
approach for agents and MASs in which the design could start with the spec-
ification of ontologies and interaction protocols. Jadescript, with its envisaged
support for interaction protocols, will be a practical tool to specify ontologies
and interaction protocols, and therefore it will be readily usable to bring design
artifacts to executable code. Essentially, designers will be able to use Jadescript
to design ontologies and interaction protocols for their MASs to establish exe-
cutable specifications that will encompass the overall conduct of their MASs
from a global perspective. Afterwards, the detailed implementation of agents

https://github.com/aiagents/jadescript

A Comprehensive Presentation of Jadescript 113

and behaviours will take place in Jadescript with a local focus on all the aspects
related to the effective implementation of the specific tasks of the agents. Essen-
tially, the envisaged support for interaction protocols will enable compliance-
by-construction matched with a sophisticated support for recovery strategies.
Finally, it is worth noting that the envisaged support for interaction protocols is
expected to be open to the integration of external tools like, for example, tools
for runtime verification and monitoring [17,18], that programmers will be free
to use to improve the quality of their software.

The programmers that use JADE already know and appreciate interaction
protocols because JADE provides a comprehensive support for interaction proto-
cols that includes the interaction protocols that FIPA standardized. Therefore,
Jadescript is obviously expected to provide programmers with the possibility
of using general-purpose interaction protocols and with the possibility of defin-
ing application-specific interaction protocols. In detail, the envisaged support
for interaction protocols will allow associating interaction protocols with ontolo-
gies to provide programmers with an effective means to specify the content of
acceptable messages. Moreover, by adopting the same constructs already avail-
able for messages, such as message handlers and pattern matching, the support
for interaction protocols will allow specifying additional constraints on the con-
tent of acceptable messages. Finally, note that the current proposal for the new
constructs designed to extend Jadescript with a dedicated support for interac-
tion protocols matches the syntactic style of the rest of the language, seamlessly
integrating these new constructs in the current language.

Acknowledgements. This work was partially supported by the Italian Ministry of
University and Research under the PRIN 2020 grant 2020TL3X8X for the project Type-
ful Language Adaptation for Dynamic, Interacting and Evolving Systems (T-LADIES).

References

1. Adorni, G., Bergenti, F., Poggi, A., Rimassa, G.: Enabling FIPA agents on small
devices. In: Klusch, M., Zambonelli, F. (eds.) CIA 2001. LNCS (LNAI), vol. 2182,
pp. 248–257. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44799-
7 28

2. Bellifemine, F., Bergenti, F., Caire, G., Poggi, A.: Jade — a java agent development
framework. In: Bordini, R.H., Dastani, M., Dix, J., El Fallah Seghrouchni, A. (eds.)
Multi-Agent Programming. MSASSO, vol. 15, pp. 125–147. Springer, Boston, MA
(2005). https://doi.org/10.1007/0-387-26350-0 5

3. Bellifemine, F., Caire, G., Greenwood, D.: Developing Multi-Agent Systems with
JADE. Wiley Series in Agent Technology, Wiley, Hoboken (2007)

4. Bergenti, F.: A discussion of two major benefits of using agents in software devel-
opment. In: Petta, P., Tolksdorf, R., Zambonelli, F. (eds.) ESAW 2002. LNCS
(LNAI), vol. 2577, pp. 1–12. Springer, Heidelberg (2003). https://doi.org/10.1007/
3-540-39173-8 1

5. Bergenti, F., Caire, G., Gotta, D.: Large-scale network and service management
with WANTS. In: Industrial Agents: Emerging Applications of Software Agents in
Industry, pp. 231–246. Elsevier (2015)

https://doi.org/10.1007/3-540-44799-7_28
https://doi.org/10.1007/3-540-44799-7_28
https://doi.org/10.1007/0-387-26350-0_5
https://doi.org/10.1007/3-540-39173-8_1
https://doi.org/10.1007/3-540-39173-8_1

114 F. Bergenti et al.

6. Bergenti, F., Caire, G., Monica, S., Poggi, A.: The first twenty years of agent-based
software development with JADE. Auton. Agents Multi-Agent Syst. 34(36), 1–19
(2020)

7. Bergenti, F., Franchi, E., Poggi, A.: Agent-based social networks for enterprise col-
laboration. In: Proceedings of the 20th IEEE International Workshops on Enabling
Technologies: Infrastructure for Collaborative Enterprises (WETICE 2011), pp.
25–28. IEEE (2011)

8. Bergenti, F., Gleizes, M.P., Zambonelli, F. (eds.): Methodologies and Software
Engineering for Agent Systems: The Agent-Oriented Software Engineering Hand-
book, Multiagent Systems, Artificial Societies, and Simulated Organizations, vol.
11. Springer, New York (2004)

9. Bergenti, F., Huhns, M.N.: On the use of agents as components of software systems.
In: Bergenti, F., Gleizes, M.P., Zambonelli, F. (eds.) Methodologies and Software
Engineering for Agent Systems: The Agent-Oriented Software Engineering Hand-
book. Multiagent Systems, Artificial Societies, and Simulated Organizations, vol.
11, pp. 19–31. Springer, Boston (2004). https://doi.org/10.1007/1-4020-8058-1 3

10. Bergenti, F., Iotti, E., Monica, S., Poggi, A.: Agent-oriented model-driven devel-
opment for JADE with the JADEL programming language. Comput. Lang. Syst.
Struct. 50, 142–158 (2017)

11. Bergenti, F., Monica, S.: Location-aware social gaming with AMUSE. In:
Demazeau, Y., Ito, T., Bajo, J., Escalona, M.J. (eds.) PAAMS 2016. LNCS (LNAI),
vol. 9662, pp. 36–47. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-
39324-7 4

12. Bergenti, F., Monica, S., Petrosino, G.: A scripting language for practical agent-
oriented programming. In: Proceedings of the 8th ACM SIGPLAN International
Workshop on Programming Based on Actors, Agents, and Decentralized Control
(AGERE 2018) at ACM SIGPLAN Conference Systems, Programming, Languages
and Applications: Software for Humanity (SPLASH 2018). ACM (2018)

13. Bergenti, F., Petrosino, G.: Overview of a scripting language for JADE-based multi-
agent systems. In: Proceedings of the 19th Workshop “From Objects to Agents”
(WOA 2018). CEUR Workshop Proceedings, vol. 2215, pp. 57–62. RWTH Aachen
(2018)

14. Bergenti, F., Poggi, A.: Exploiting UML in the design of multi-agent systems.
In: Omicini, A., Tolksdorf, R., Zambonelli, F. (eds.) ESAW 2000. LNCS (LNAI),
vol. 1972, pp. 106–113. Springer, Heidelberg (2000). https://doi.org/10.1007/3-
540-44539-0 8

15. Bergenti, F., Poggi, A.: Ubiquitous information agents. Int. J. Coop. Inf. Syst.
11(3–4), 231–244 (2002)

16. Bergenti, F., Poggi, A.: Developing smart emergency applications with multi-agent
systems. Int. J. E-Health Med. Commun. 1(4), 1–13 (2010)

17. Briola, D., Mascardi, V., Ancona, D.: Distributed runtime verification of JADE
multiagent systems. In: Camacho, D., Braubach, L., Venticinque, S., Badica, C.
(eds.) Intelligent Distributed Computing VIII. SCI, vol. 570, pp. 81–91. Springer,
Cham (2015). https://doi.org/10.1007/978-3-319-10422-5 10

18. Ferrando, A., Ancona, D., Mascardi, V.: Decentralizing MAS monitoring with
DecAMon. In: Proceedings of the 16th International Joint Conference on
Autonomous Agents and MultiAgent Systems (AAMAS 2017). IFAAMAS (2017)

19. Fowler, M., Parsons, R.: Domain Specific Languages. Addison-Wesley, Boston
(2010)

20. Garcia-Molina, H.: Elections in a distributed computing system. IEEE Trans. Com-
put. C-31(1), 48–59 (1982)

https://doi.org/10.1007/1-4020-8058-1_3
https://doi.org/10.1007/978-3-319-39324-7_4
https://doi.org/10.1007/978-3-319-39324-7_4
https://doi.org/10.1007/3-540-44539-0_8
https://doi.org/10.1007/3-540-44539-0_8
https://doi.org/10.1007/978-3-319-10422-5_10

A Comprehensive Presentation of Jadescript 115

21. Gouda, M.G., McGuire, T.M.: Accelerated heartbeat protocols. In: Proceedings
of 18th International Conference on Distributed Computing Systems (ICDS 1998),
pp. 202–209. IEEE (1998)

22. Monica, S., Bergenti, F.: Hybrid indoor localization using WiFi and UWB tech-
nologies. Electronics 8(3), 334 (2019)

23. Petrosino, G., Bergenti, F.: Extending message handlers with pattern matching
in the Jadescript programming language. In: Proceedings of the 20th Workshop
”From Objects to Agents” (WOA 2019). CEUR Workshop Proceedings, vol. 2404,
pp. 113–118. RWTH Aachen (2019)

24. Petrosino, G., Iotti, E., Monica, S., Bergenti, F.: Prototypes of productivity tools
for the Jadescript programming language. In: Proceedings of the 22nd Workshop
“From Objects to Agents” (WOA 2021). CEUR Workshop Proceedings, vol. 2963,
pp. 14–28. RWTH Aachen (2021)

25. Petrosino, G., Iotti, E., Monica, S., Bergenti, F.: A Description of the Jadescript
Type System. In: Chen, J., Lang, J., Amato, C., Zhao, D. (eds.) DAI 2021. LNCS
(LNAI), vol. 13170, pp. 206–220. Springer, Cham (2022). https://doi.org/10.1007/
978-3-030-94662-3 13

26. Petrosino, G., Monica, S., Bergenti, F.: Robust software agents with the Jade-
script programming language. In: Proceedings of the 23rd Workshop “From Objects
to Agents” (WOA 2022). CEUR Workshop Proceedings, vol. 3261, pp. 194–208.
RWTH Aachen (2022)

27. Petrosino, G., Monica, S., Bergenti, F.: Cross-paradigm interoperability between
Jadescript and Java. In: Proceedings of the 15th International Conference on Agents
and Artificial Intelligence (ICAART 2023), vol. 1, pp. 165–172. Science and Tech-
nology Publications (2023)

28. Petrosino, G., Monica, S., Bergenti, F.: Delayed and periodic execution of tasks
in the Jadescript programming language. In: Omatu, S., Mehmood, R., Sitek, P.,
Cicerone, S., Rodŕıguez, S. (eds.) DCAI 2022. LNCS, vol. 583, pp. 50–59. Springer,
Cham (2023). https://doi.org/10.1007/978-3-031-20859-1 6

29. Poslad, S.: Specifying protocols for multi-agent systems interaction. ACM Trans.
Auton. Adapt. Syst. 2(4), 15:-15:24 (2007)

30. Poslad, S., Charlton, P.: Standardizing agent interoperability: the FIPA approach.
In: Luck, M., Mař́ık, V., Štěpánková, O., Trappl, R. (eds.) ACAI 2001. LNCS
(LNAI), vol. 2086, pp. 98–117. Springer, Heidelberg (2001). https://doi.org/10.
1007/3-540-47745-4 5

31. Shoham, Y.: Agent-oriented programming. Artif. Intell. 60(1), 51–92 (1993)
32. Tomaiuolo, M., Turci, P., Bergenti, F., Poggi, A.: An ontology support for semantic

aware agents. In: Kolp, M., Bresciani, P., Henderson-Sellers, B., Winikoff, M. (eds.)
AOIS -2005. LNCS (LNAI), vol. 3529, pp. 140–153. Springer, Heidelberg (2006).
https://doi.org/10.1007/11916291 10

https://doi.org/10.1007/978-3-030-94662-3_13
https://doi.org/10.1007/978-3-030-94662-3_13
https://doi.org/10.1007/978-3-031-20859-1_6
https://doi.org/10.1007/3-540-47745-4_5
https://doi.org/10.1007/3-540-47745-4_5
https://doi.org/10.1007/11916291_10

Verifying Programs by Bounded
Tree-Width Behavior Graphs

Omar Inverso1, Salvatore La Torre2, Gennaro Parlato3(B),
and Ermenegildo Tomasco1,2,3

1 Gran Sasso Science Institute, L’Aquila, Italy
2 Università degli Studi di Salerno, Fisciano, Italy
3 Università degli Studi del Molise, Pesche, Italy

gennaro.parlato@unimol.it

Abstract. We present a novel framework to reason about programs
based on encodings of computations as graphs. The main insight here
is to rearrange the programs such that given a bound k, each computa-
tion can be explored according to any tree decomposition of width k of
the corresponding behaviour graph. This produces under-approximations
parameterized on k, which result in a complete method when we restrict
to classes of behaviour graphs of bounded tree-width. As an additional
feature, the transformation of the input program can be targeted to exist-
ing tools for the analysis. Thus, off-the-shelf tools based on fixed-point,
or capable of analyzing sequential programs with scalar variables and
nondeterminism, can be used. To illustrate our approach, we develop
this framework for sequential programs and discuss how to extend it
to handle concurrency. For the case of sequential programs, we develop
a compositional approach to generate on-the-fly tree decompositions of
nested words, which is based on graph-summaries.

1 Introduction

Program computations are typically described as runs of flat transition systems
with possibly infinitely many states. The basic information stored in a state is the
current control location and the valuation of the statically allocated variables.
Depending on the class of programs, a state can also store heap structures,
the call stack and in general, additional data structures to handle concurrency
(multiple call stacks, FIFO channels, etc.).

Computations can also be represented as graphs (behaviour graphs) where
the nodes capture the basic (finite) information, and different types of edges are
used to capture the transitions and the relations deriving from the use of the
additional data structures (see [17]). For example, a stack can be captured by

This work was partially supported by INDAM-GNCS 2022 and 2023, AWS 2021 Ama-
zon Research Awards, the MUR project ‘Innovation, digitalisation and sustainability
for the diffused economy in Central Italy’, Spoke 1 MEGHALITIC, VITALITY Ecosys-
tem, and FARB 2021–2023 grants Università degli Studi di Salerno.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
V. Malvone and A. Murano (Eds.): EUMAS 2023, LNAI 14282, pp. 116–132, 2023.
https://doi.org/10.1007/978-3-031-43264-4_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-43264-4_8&domain=pdf
https://doi.org/10.1007/978-3-031-43264-4_8

Verifying Programs by Bounded Tree-Width Behavior Graphs 117

linking the pair of states corresponding to a push and a matching pop, a queue
by linking an enqueue to a matching dequeue, and so on.

Several classes of behavior graphs can be defined depending on the aspects
and the granularity of the information we wish to capture. Nested words nat-
urally capture the control-flow structure of sequential programs [1], multiply
nested words that of shared-memory multi-threaded programs and stack-queue
graphs that of both distributed programs with recursive calls and sequential
programs with queues and stacks [17], and more definitions are possible.

A very general result on the decidability of problems on classes of behaviour
graphs is the decidability of MSO for all MSO-definable classes of graphs of
bounded tree-width [5,6,17], which generalizes Courcelle/Seese’s theorem [3,19].
For interesting classes of programs, many decidability results of relevant decision
problems in verification, such as reachability, model-checking and decidability of
linear temporal logics, are indeed subsumed by this general result.

A class of graphs has tree-width k if for each graph there is a tree decompo-
sition of width at most k + 1, that is, the graph can be rearranged on a tree by
assigning to each node a set of at most k + 1 graph vertices (bag) such that all
vertices and edges are covered and vertices replicated in two nodes also belong
to all the bags on the path connecting them. Essentially, for a behaviour graph
G, a tree decomposition T of width k ensures that we can execute the compu-
tation described by G by checking the consistency of the information at each
vertex (i.e., its program counter and variable valuation) locally to a node and
its neighbors: in fact, to check the consistency across the edges of G, it is suffi-
cient to consider one bag at a time, and to ensure that each vertex has the same
information in any bag, it is sufficient to compare for each node the bags at the
node and at its children.

This way of looking at the tree decompositions is the crucial intuition of the
approach we present in this paper. We design a general framework for analyzing
programs where given a parameter k, we transform an input program P such
that the resulting encoding P ′ interprets the behaviours of P as described above,
according to all the tree decompositions of width k of P behaviour graphs, and
then P ′ is analyzed in a separate tool.

Our approach gives a novel and natural way of representing and analyzing
systems and has several other features. First, each tree decomposition rearranges
the transitions of a computation and gets a way to explore them in a totally inde-
pendent order, and thus our approach is likely to be less sensitive to “pathological
patterns”. Second, the width of a tree decomposition gives a natural parameter
for bounding the additional storage needed to explore the program computa-
tions, and thus we get under-approximation methods of adjustable precision for
arbitrary classes of systems. Third, and probably more importantly, we get a
general way to encode unbounded heap structures captured in configurations
into a thick tree where we need to associate a fixed amount of data stored at
each node. The tree encodings of computation graphs will allow us to encode
complex features of programs (recursion, concurrency, heap, etc.) in a uniform
way where we can exploit off-the-shelf solutions that compute the fixed point of

118 O. Inverso et al.

finite relations or can check sequential programs with only scalar variables and
non-determinism, to analyze these otherwise complex systems.

We develop our framework for sequential programs with recursive procedure
calls and use as behaviour graphs the nested words augmented with the program
counters and the variable valuations (program nested words). A crucial aspect is
to find an efficient way to generate tree decompositions for this class of graphs.
We introduce the concept of shape of a program nested word (pnw-shape) to
summarize portions of program nested words. Namely, a pnw-shape is either a
fragment of a nested word (ground pnw-shape), or a merge of two “compatible”
pnw-shapes, or a contraction of a pnw-shape on a set of vertices. By compatible
we essentially mean that the pnw-shapes can share nodes but edges do not
overlap, and the contraction has the effect of keeping only the vertices in the
contraction set and projecting on them the edges of the starting pnw-shape.
Essentially, in the construction of a tree decomposition, we use these pnw-shapes
to summarize the information of the portion of the nested word covered by the
nodes of a subtree. In particular, we start from the leaves labeled each with a
ground pnw-shape. At each internal node v, we add a ground pnw-shape which is
compatible with the pnw-shape of the children of v, and compute the pnw-shape
of v by first merging these three pnw-shapes and then contracting the resulting
pnw-shape on the vertices of the ground one (which form the bag of v). We also
provide a test for the root to ensure that the constructed tree is indeed a tree
decomposition.

We outline a simple implementation of our approach as a code-to-code trans-
lation of C-like sequential programs that do not make use of dynamic memory
allocation. The output of the transformation is a program that nondeterminis-
tically builds a tree decomposition using recursive procedure calls as in a DFS
traversal of the tree. The ground program pnw-shapes are nondeterministically
guessed, and the consistency of program counters and variable valuations asso-
ciated to each vertex is checked for each edge (according to the semantics of the
input program). Moreover, there are procedures to implement the tests, and the
merging and contraction operations.

As a further contribution, we give an informal though detailed description
on how this approach can be extended to handle concurrent shared-memory
programs and how this relates to the sequentialization algorithms (see [2,4,9,
16,18] for a sample research). We believe that our approach can be extended to
many other classes of programs and systems, such as concurrent programs with
a weak memory model assumption, distributed programs, and programs with
dynamic data-structures, to mention some.

2 Programs with Recursive Procedure Calls

We consider sequential programs with possibly recursive procedure calls. For
the sake of simplicity and without loss of generality, we omit local variables and
procedure parameters (in a procedure call, when needed, the values are passed
through the global variables). Since we only admit global variables, henceforth
we refer to them simply as variables.

Verifying Programs by Bounded Tree-Width Behavior Graphs 119

Fig. 1. A sample program.

In the rest of the paper, we use program P of Fig. 1 as a running example. P is
a simple program with three possible behaviours depending on the initial values
of the variable x being 1, 2 or an other value. In the last case, the condition of the
assume statement does not hold and thus the computation immediately halts. In
the remaining cases, the procedures boo and foo get recursively called until the
assert statement at program counter 5 is reached. Now, a computation with
x = 2 violates the assertion, and thus reaches an error state, while a computation
with x = 1 continues through the end of the procedure main.

Fig. 2. BNF grammar of programs.

Syntax. The BNF gram-
mar on the right gives
the formal syntax of pro-
grams (Fig. 2). A program
starts with the declara-
tion of a finite set of vari-
ables Var that are visi-
ble to all procedures. We
assume variables range
over some (potentially
infinite) data domain D, a language of expressions 〈expr〉 interpreted over D,
and a language of predicates 〈pred〉 over the variables. Thereafter, there is a dec-
laration of a non empty list of procedures, among which one called main that is
initially executed to start the program. Each procedure is formed by a nonempty
sequence of labeled statements of the form pc : 〈stmt〉 where pc is the program
counter (or program location) and 〈stmt〉 defines a simple language of C-like
statements. We assume that each procedure has return as last statement.

For a program P , we denote with PC (resp., Call, Ret) the set of all pro-
gram counters pc such that pc : stmt (resp., pc : call p, pc : return) is a labeled
statement of P . Furthermore, for every pc ∈ Call we denote with afterCall(pc)
the (unique) program counter pc′ such that pc′ : stmt is the statement that is
executed after returning the procedure call with program counter pc.

Semantics. The semantics is given as a transition system. Each program can
make procedure calls and manipulate variables. Thus, a state is a configuration
of the form 〈ν, pc,St〉 where ν is a valuation of the variables (i.e., ν : Var �→ D),
pc ∈ PC is a program counter, and St is the content of the call stack (i.e., the
control locations of the pending procedure calls). A configuration C = 〈ν, pc,St〉
is initial if pc is the program counter of the first statement of the procedure main
and St is the empty stack.

120 O. Inverso et al.

The transition relation, denoted ↪→, is defined as usual. The control-flow
statements update the program counter, possibly depending on a predicate (con-
dition). The assignment statements update the variable valuation other than
moving to the next program counter. At a procedure call, the current location of
the caller (pc) is pushed onto the stack, and the control moves to the first location
of the called procedure. At a return statement the control location at the top of
the stack is popped, say pc, and the control moves to location afterCall(pc).

A computation of a program is a sequence of configurations C0C1 . . . Cn such
that C0 is initial, and Ci−1 ↪→ Ci for every i ∈ [1, n].

3 Graphs Representing Program Executions

In this section, we recall some definitions on graphs and define the notion of
program nested word that we use in the rest of the paper to represent the
executions of a program.

Multigraphs. A multigraph is a structure G = (V,E1, . . . , En), where V is a
finite set of vertices, and for each i, Ei ⊆ V × V is a set of directed edges. An
edge (u, v) ∈ Ei is also denoted as uEiv. A multigraph G = (V,Ei) is a line
graph if there is an ordering of all vertices of G, say v0, v1, . . . , vm, such that
Ei = {vj−1Eivj | j ∈ [m]}.

Nested Words. A nested word1 is a multigraph (V,→, �) where (V,→) is a line
graph and � is a matching edge relation such that for every u, v, u′, v′ ∈ V :

– if u � v then u →+ v;
– if u � v, u′

� v′ are distinct edges then (1) u, v, u′, v′ are all distinct nodes,
and (2) if u →+ u′ then either v →+ u′ or v′ →+ v.

Program Nested Words. We wish to look at the computations of a program via
their behaviour graphs, i.e., finite graphs that carefully model with their edges
the control-flow structure. In particular, we use as behaviour graphs the nested
words annotated with the program counter (pc, for short) and the valuation of
the variables of each state. We refer to such annotated nested words as program
nested words. In Fig. 3, we give the behaviour graph of a computation of the
program from Fig. 1 when x = 1 holds. The vertices of the nested word v0, . . . , v17
are labeled with the corresponding pc in the program. Also, in the figure, we
report the variable valuation at the beginning and update it at each node after
an assignment. Moreover, the �-edges are represented as curved arrows and
the →-edges are represented as straight arrows. The →-edges capture the linear
ordering of the program states in the computation (and thus the transitions
of the computation). The �-edges match the vertices corresponding to the pc
of a call to a procedure to the pc of the next statement of the procedure that
will be executed after returning the call (return location). Consider for example

1 We assume that there are no unmatched calls and returns, differently from [1].

Verifying Programs by Bounded Tree-Width Behavior Graphs 121

Fig. 3. Program nested word of a run of the program in Fig. 1.

v1 � v17, v1 corresponds to the state that precedes the call to boo from main
(with pc 1) and v17 corresponds to the state after returning from this call (with pc
2); also we have v1 → v2, and v2 corresponds to the begin of the first activation
of boo (with pc 3).

Below, we give a logical characterization of program nested words. For the
ease of presentation we assume that all the procedure calls in the computations
are returned. Note that this is without loss of generality, since we can always
append a possibly empty sequence of additional transitions (which are not actual
program transitions and thus can be recognized as such) to match all pending
calls in the call stack.

Definition 1 (Program Nested Word). A program nested word of a pro-
gram P with set of variables Var and set of program counters PC, is a tuple
(nw,Val, pc) where

– nw = (V,→, �) is a nested word; let V = {v0, v1, . . . , vn} such that vi−1 → vi
for i ∈ [1, n];

– Val and pc are labeling functions that map each vertex of V respectively with a
valuation of Var and a program counter in PC such that pc(v0) is the program
counter of the first statement of procedure main and for u, v, z ∈ V :

• if u → v then 〈Val(u), pc(u), st〉 ↪→ 〈Val(v), pc(v), st′〉, for some st, st′;
• if u � v then pc(u) ∈ Call, pc(v) = afterCall(pc(u)), and pc(z) ∈ Ret

where z → v;
• if pc(u) ∈ Call, then u � v exists;
• if u → v and pc(u) ∈ Ret, then z � v exists. �	

From Executions to Program Nested Words and Back: Let π = C0C1 . . . Cn be
a computation of P , where Ci = 〈νi, pci,Sti〉 for i ∈ [0, n]. For each i ∈ [0, n]
with pci ∈ Call, we say that i matches j if j is the smallest index such that
j > i and Stj = Sti. We denote with NW(π) the tuple (nw,Val, pc) where
nw = ({v0, . . . , vn},→, �) is a nested word such that (1) vi−1 → vi for i ∈ [1, n],
(2) vi � vj iff i matches j in π, and (3) Val(vi) = νi and pc(vi) = pci, for
i ∈ [0, n]. We can show that NW(π) is indeed a program nested word of P .

Vice-versa, consider a program nested word pnw = (nw,Val, pc) of P and
let {v0, . . . , vn} be the set of vertices of nw such that vi−1 → vi for i ∈ [1, n].
We denote with RUN(pnw) the sequence of configurations C0C1 . . . Cn where
denoting Ci = 〈Val(vi), pc(vi),Sti〉, St0 is the empty stack and for i ∈ [1, n]:

122 O. Inverso et al.

(1) if pc(vi−1) ∈ Call then Sti = pc(vi−1).Sti−1 (procedure call), (2) if vj � vi
then Sti−1 = pc(vj).Sti (return from a call), (3) otherwise Sti = Sti−1 (internal
move). We can show that RUN(π) is indeed a computation of P .

Thus the following holds:

Theorem 1. Given a program P there is a one-to-one mapping (modulo a ver-
tex renaming) between the computations and the program nested words of P .

4 Bounded Tree-Width Analysis of Programs

The main intuition behind our methodology is to use the tree decompositions of
the behaviour graphs of a program, to guide the exploration of its computations.

Informally, a tree decomposition of a graph G is a binary tree whose nodes
are labeled with sets of G vertices, which are called bags, such that every edge or
vertex of G is covered by at least one bag, and if a vertex v belongs to two bags
labeling two different nodes then all the bags on the unique path connecting
such nodes also contain v. Figure 4(a) gives a tree decomposition of the program
nested word of Fig. 3 where each bag is implicitly defined by the vertices of the
graph that labels the node. A formal definition of tree decomposition is given at
the end of this section.

We illustrate the role played by tree decompositions in our methodology
on the sample program nested word of Fig. 3 and with respect to the above
mentioned tree decomposition.

We augment the tree decompositions by adding to each node some edges of
the graph such that each edge is mapped exactly to a node whose bag contains
both of its endpoints (note that such a labeling is always possible since by
definition each edge is covered by at least one bag). The tree decomposition
of Fig. 4(a) is augmented in such a way.

Now, by assuming that we have an augmented tree decomposition for a pro-
gram nested word of a program P (we will discuss in the next section how to
generate efficiently such tree decompositions), we check that a labeling of each
vertex in each bag with a program counter and a variable valuation of P forms a
computation of P : that is, we can reconstruct a program nested word of P from
the additional labeling and the tree decomposition.

Starting from the leaves, we locally check the consistency of the transitions
captured by the edges in the bag. For example, in node n5, we can check for
the consistency of the program counters and variable evaluations of the vertices
v6, v7, v8, v9, v10, v11 according to (1) the transitions of P corresponding to the
→-edges (v6, v7), (v7, v8), (v9, v10) and (v10, v11) and (2) the �-edge (v6, v10).
Then, moving up to the parent of n5, i.e., n2, we do not need to keep the
information for v7, v8, v9, v10, since all the edges involving them have already
been examined (this is carefully captured by the tree decomposition that does
not contain these vertices in the bag of n2). However, we need to check that the
program counter and the variable valuation associated with the vertices that are
kept, i.e., v6 and v11, are the same as in n2 and n5.

Verifying Programs by Bounded Tree-Width Behavior Graphs 123

Fig. 4. Example of a tree decomposition (a) and an nw-shape tree (b) for the program
nested word of Fig. 3.

In this use of tree decompositions, a bag associated with a node n is the
interface, or the sticking vertices, of the portion of nested word corresponding
to the subtree rooted at n with the rest of the computation. Thus, if we restrict
to tree decompositions with bags of size bounded by a parameter k (the width),
at each node we only need to track O(k) information. By choosing k ≥ 3, for
the class of programs that we have defined, we can explore the whole set of
computations of a program, as stated by Theorem 2 at the end of this section.

Tree Decompositions and Tree-Width. A tree-decomposition of a multigraph G =
(V,E1, . . . , En) is a pair D = (T, {bagt}t∈N), where T is a binary tree with set
of nodes N , and bagt ⊆ V satisfying the following:

– for every v ∈ V , there is a node t ∈ N such that v ∈ bagt;
– for every i and (u, v) ∈ Ei, there is a node t ∈ N such that u, v ∈ bagt;
– if u ∈ (bagt ∩ bagt′) then u ∈ bagt′′ for every T node t′′ that lies on the unique

path connecting t to t′ in T .

The width of a tree decomposition (T, {bagt}t∈N) is the size of the largest bag in
it, minus one; i.e. maxt∈N{|bagn|} − 1. The tree-width of a graph is the smallest
of the widths overall its tree decompositions.

Theorem 2 ([17]). Any nested word has tree-width at most 2.

5 Getting Tree Decompositions for Program Nested
Words

In the description of our approach from the previous section, we assume that a
tree-decomposition of a program nested word is given. Indeed, we compute such
decompositions on the fly. For this, we need to carry in our summaries (at each

124 O. Inverso et al.

node) some structural information about the portion of the nested word so far
explored, such that we can correctly check portions of nested words separately,
then combine them in the same structure, and in the end claim that we have
constructed a valid tree decomposition for a computation of the program.

The Informal Scenario. Our notion of summary for nested words is a shape of a
nested word, nw-shape for short. Informally, an nw-shape is either a fragment of
a nested word (ground nw-shape), or a merge of two “compatible” nw-shapes, or
a contraction of an nw-shape on a set of vertices. By compatible, we essentially
mean that the nw-shapes can share nodes but the edges do not overlap. For
example, each of the graphs labeling the nodes of the tree in Fig. 4(b) is an
nw-shape.

In addition to the notation used for nested words, we also use the symbols
� and � to annotate respectively that an end-point of a �-edge is the actual
one or it replaces one that has been abstracted away. In particular, for a ground
nw-shape all the endpoints of a �-edge are marked with �.

To generate a tree decomposition, we construct an nw-shape tree. In Fig. 4,
we give an nw-shape tree for the nested word from Fig. 3. We start from the
leaves that are assigned each with a ground nw-shape. For each internal node n,
we add a ground nw-shape (marked with gsh below the line in each node) and
compute a summary of the ground nw-shapes in the subtree rooted at n (marked
with sh above the line). The summary is computed by merging the summaries at
the children and the ground nw-shape of the current node, and then contracting
the resulting nw-shape on the vertices of the ground nw-shape (note that at each
node the nw-shape and the ground nw-shape have the same set of vertices).

For example, consider node n1. The nw-shapes from nodes n3 and n4 just
share the vertex v3 and therefore can be merged (in fact they are compatible
because when glued to v3 there are no overlaps between the edges). Similarly,
the resulting nw-shape can be merged with the ground nw-shape of n1, and the
resulting nw-shape has vertices v1, v2, v3, v4, v5 and v11. In the contraction, only
v4 gets abstracted away. The effect of the contraction is thus to remove v4 and
connect v3 to v5 to store the information that has already been explored in the
space between v3 and v5.

The contraction is slightly more intricate when an endpoint of a �-edge
is abstracted away. In fact, in this case, the new endpoint (if any) is selected,
among those that have not been removed, as the closest one which is included
in the portion of the graph below the edge. In particular, the �-edge from v3
to v11 in n1 is replaced (in the contraction) by the �-edge from v5 to v11 in n0,
and since v5 is not the actual left endpoint of this edge, we annotate the left end
of v5 � v11 with �. Also observe that in case there is no such vertex (both the
endpoints are abstracted away and no vertices in the between are kept in the
new set of vertices), the edge is canceled. This is in fact the case for the self-loop
on v6 in node n2, which does not appear in the nw-shape of n0.

There are two more conditions to ensure to obtain an nw-shapetree. First,
the vertices of a ground shapein an internal node must contain all the vertices at
the “borders” of the maximal lines defined by →-edges in the nw-shapes of its

Verifying Programs by Bounded Tree-Width Behavior Graphs 125

children and the endpoints of the �-edges that have not yet been added to the
shapes of the subtree (see, for example, vertex v11 in n2). Second, the nw-shape
of the root must be entirely connected through the →-edges (linearly connected)
and should have all the endpoints of � matched (fully matched).

An augmented tree decomposition is easily obtained from an nw-shape tree
by retaining for each node just its ground shape. Since vice versa also holds,
i.e., for each augmented tree decomposition there is a corresponding nw-shape
tree, our method captures all the augmented tree decompositions of a program.
Moreover, it can be implemented on the fly, with all operations being local.

Nested Word Shapes. Let T = {�,�} be an alphabet, where the symbol � stands
for abstract, and � stands for concrete.

Definition 2 (Nested Word Shapes). A nested word shape (nw-shape) is a

tuple S = (V,⇒,→, {t,z
�}t,z∈T) where

– V is a finite set of vertices;
– (V,⇒) is a line graph;
– the set of linear edges → is a subset of ⇒;
– the set of the matching edges �= (

⋃
t,z∈T

t,z
�) where

t,z
�⊆ V × V and is such

that (where a, b, c, d,∈ T and u, v, x, y ∈ V):
• if u � v then also u ⇒∗ v;
• if u � v and x � y, then the following does not hold:

∗ u ⇒+ x ⇒+ v ⇒+ y (matching edges do not cross);
∗ (u, v) �= (x, y) and v = x (call and return of distinct matching edges

must not coincide);
• u

�,�
� u does not hold;

• at most one among u
�,�
� v, u

�,�
� v and u

�,�
� v holds;

• if u
a,b
� v, u

c,d
� y and y ⇒+ v then a = �;

• if u
a,b
� v, x

c,d
� v and u ⇒+ x then b = �.

S is ground if all of its matching edges are concrete, that is, � is exactly
�,�
� .

S is linearly connected if → is exactly ⇒. �	

A linear border of a shape S is a vertex u ∈ V without a linear successor or
a linear predecessor, i.e., either u �→ v for each v ∈ V or v �→ u for each v ∈ V .

Operations on Shapes. In the following, we fix S = (V,⇒,→, {t,z
�}t,z∈T), S′ =

(V ′,⇒′,→′, {
t,z

�
′}t,z∈T), and Si = (Vi,⇒i,→i, {

t,z
�i}t,z∈T) for i = 1, 2.

An nw-shape S′ is the contraction of an nw-shape S on a set of vertices
V ′ ⊆ V , denoted S′ = contraction(S, V ′), if the following holds:

– ⇒′∗ is the total order on V ′ induced by ⇒∗;
– →′ is the set of all pairs (x, y) ∈ V ′ × V ′ such that either (1) x → y, or (2)

there is a sequence of vertices u1, u2, . . . , um ∈ (V \ V ′) such that x → u1 →
u2 → . . . → um → y.

126 O. Inverso et al.

– for each matching edge (u, v) of S, denote with contraction�(u, v) the pair
(x, y) if the following holds:

• u ⇒∗ x ⇒∗ y ⇒∗ v;
• x is the smallest vertex x′ ∈ V ′ with u ⇒∗ x′; and
• y is the greatest vertex y′ ∈ V ′ with y′ ⇒∗ v.

For every t, z ∈ T,
t,z

�
′ is the minimal set containing all pairs (x, y) such that

there exist u, v ∈ V where (1) u
p,s
� v for some p, s, (2) contraction�(u, v) =

(x, y), (3) t = � iff u = x and p = �, and (4) z = � iff v = y and s = �.

S is the merge of two nw-shapes S1 and S2, denoted S = merge(S1, S2), if S
is an nw-shape and the following holds:

– V = V1 ∪ V2;
– ⇒1,⇒2⊆⇒;
– (→1 ∩ →2) = ∅, and →= (→1 ∪ →2);
– For every t, z ∈ T,

t,z
�= (

t,z
�1 ∪ t,z

�2).

Tree Decompositions via nw-Shapes. In an nw-shape tree T , the vertices of the
nw-shape are typed as either left (L) or right (R) endpoint of a matching edge,
or none of them, with the meaning that u ∈ L, resp. v ∈ R, iff there is a ground
nw-shape of T that contains an edge u

�,�
� v.

Definition 3 (nw-shape Tree). An nw-shape tree T is a triple (T, sh, gsh)
where T is a binary tree with set of nodes N , and sh and gsh label each node of
T with respectively an nw-shape and a ground nw-shape such that for each n ∈ N
the following holds:

– if n is a leaf, then sh(n) = gsh(n);
– if n is an internal node, denoting with n1 and n2 its left and right children

and with Vn the set of the vertices of gsh(n):
• sh(n) = contraction(S(n), Vn) where S(n) is the merge of sh(n1), sh(n2)

and gsh(n);
• denoting with LR the set of all vertices from L ∪ R that are not concrete

endpoints of �-edges of sh(n1) and sh(n2), Vn contains LR and all the
linear borders of sh(n1) and sh(n2);

• if n is the root, then additionally sh(n) is also linearly connected and fully
matched, that is, all its vertices from L∪R are concrete endpoints of some
�-edge.

We denote with G(T) the graph
⋃

n∈N gsh(n). �	

Note that in the above definition for each n ∈ N , gsh(n) and sh(n) have the
same vertices and each edge of gsh(n) is also an edge of sh(n). By structural
induction, it is possible to show that the graph obtained by the union of the
ground nw-shapes of the leaves of a subtree is a ground nw-shape corresponding
to a fragment of a nested word. When the nw-shape associated with the root
of the subtree is also linearly connected and fully matched, then the resulting
ground nw-shape corresponds to a nested word.

Verifying Programs by Bounded Tree-Width Behavior Graphs 127

Lemma 1. For any nw-shape tree T , G(T) is a nested word.

For a nested word w denote with •−w−• the nested word obtained from w by
adding two new vertices vL and vR along with the edges vL → v and v′ → vR
where v denotes the first vertex and v′ the last vertex of w according to →∗.

From an nw-shape tree T = (T, sh, gsh) such that G(T) = •−w−•, define
D(T) = (T, {Vn}n∈N) where N is the set of nodes of T and Vn is the set of all
the vertices of sh(n) but vL and vR. By the definitions of nw-shape tree and tree
decomposition, we get that D(T) is a tree decomposition of w.

Vice versa, consider a tree decomposition D = (T, {Bn}n∈N) of a nested
word w = (V,→, �). Add to each bag Bn the vertices vL and vR and define:

– {→n}n∈N such that each edge u → v of w, belongs to exactly one →n such
that u, v ∈ Bn, and each of vL → v and v′ → vR belongs to exactly one →n;

– {�n}n∈N such that for each edge u � v of w, u
�,�
� v belongs to exactly one

�n such that u, v ∈ Bn;
– each ⇒n is the total order on Bn induced by →∗;
– gsh(n) = (Bn,⇒n,→n, �n), L = {u | u � v} and R = {v | u � v}.

Starting from the parents of the leaves of T we compute for each node n, sh(n)
as the contraction on Vn of the merge of gsh(n), sh(n1) and sh(n2) where n1

and n2 are the children of n. By definition, we can show that T = (T, sh, gsh) is
nw-shapeand G(T) = •−w−•. Therefore, the following theorem holds.

Theorem 3. For any nested word w, there exists a tree decomposition D of
width k iff there exists an nw-shape tree T = (T, sh, gsh) such that •−w−• = G(T)
and each gsh(n) has at most k vertices of w.

Note that the additional vertices vL and vR do not correspond to any state
of the program and are not really needed to have the above theorem. In fact,
it would be sufficient to modify the definition of nw-shape tree such that a left
(respectively right) linear border can be abstracted away as soon as a prefix
(resp. a suffix) of the nested word has been explored.

Shapes and Shape Trees for Programs. We augment nw-shape and nw-shape
trees with program counters and variable valuations. In particular, we define a
pnw-shape inductively from portions of program nested words and with merging
and contraction operations. The merging requires that a same vertex is labeled
with the same program counter and the same variable valuation. Analogously
to nw-shape trees, we define the pnw-shape tree with respect to the notion of
pnw-shape.

For a mapping f : A → B and C ⊆ A, we denote with f|C the restriction of
f to C. For mappings fi : Ai → Bi i = 1, 2, we denote with f1 ∪ f2 the mapping
defined as f1(x) for each x ∈ A1 and f2(x) for each x ∈ A2 \ A1.

Fix a program P . A ground pnw-shape S of P is a triple (S,Val, pc) such that
S is a ground nw-shape and there exists a program nested word (nw,Val′, pc′)
of P such that S is a subgraph of nw, Val = Val′|V and pc = pc′

|V .
A pnw-shape S of P is either a ground pnw-shape or S = (S,Val, pc) is:

128 O. Inverso et al.

– the contraction of a pnw-shape, that is, there is pnw-shape S ′ = (S′,Val′, pc′)
and denoting with V the set of vertices of S, S = contraction(S′, V), Val =
Val′|V to V and pc = pc′

|V , or
– the merging of two pnw-shapes, that is, there are two pnw-shapes S1 =

(S1,Val1, pc1) and S2 = (S2,Val2, pc2) for which, denoting with V the
intersection of the sets of vertices of S1 and S2, Val1(v) = Val2(v) and
pc1(v) = pc2(v) for every v ∈ V , then S = merge(S1, S2), Val = Val1 ∪ Val2
and pc = pc1 ∪ pc2.

Analogously to nw-shape tree, we define the pnw-shape tree with respect to
the notion of pnw-shape. The definition is the same except that the merging and
contraction operations apply to pnw-shape, and thus we omit further details.

6 Implementation

In this section, we briefly illustrate an implementation of the outlined approach,
that is targeted to use a verifier of sequential programs (with recursive procedure
calls), though also fixed-point translations in the style of [7,8,11] are possible.

The input program P is transformed into a program P ′ that is essen-
tially composed of the main and five more procedures: contraction(S1,S2),
check(S), ShapeTree(), merge(S1, S2) and CreateGroundShape(k). All the
procedures except for ShapeTree() do not contain recursive calls.

Procedure main nondeterministically computes a pnw-shape S by calling
ShapeTree and then calls check on it.

Procedure check verifies that S is indeed a pnw-shape that can label the root
of a pnw-shape tree, i.e., it is linearly connected and fully matched. (Observe
that fully matched within a program nw-shape-tree refers to all the vertices that
are marked with a program counter from Call or correspond to the return states
after a call.) If this is the case and the last vertex (according to the linear order)
corresponds to an error state, then a statement assert(0) is reachable (which
defines the error state in P ′).

Fig. 5. Procedure ShapeTree.

Procedure ShapeTree (Fig. 5) com-
putes the pnw-shape at the nodes
of a possible pnw-shape tree. When
invoked from main, it starts from
the root. At each node, it guesses
a ground nw-shape S by invok-
ing CreateGroundShape. Then, non-
deterministically, it decides whether
the current node is a leaf or is inter-
nal. In the first case, S is returned,
otherwise two recursive calls to ShapeTree are done (one for the left child and
the other for the right one). The pnw-shapes returned by these calls are meant to
label the two children, then according to the definition of pnw-shape tree these
are contracted and merged by respectively invoking procedures contraction
and merge, thus obtaining the pnw-shape for the current node, that is returned.

Verifying Programs by Bounded Tree-Width Behavior Graphs 129

Observe that ShapeTree exactly implements the properties of Definition 3. To
minimize memory usage, we employ contraction of the children’s nw-shapebefore
merging them, eliminating the need for constructing an intermediate nw-shape
containing 2k nodes.

The procedure contraction also ensures that S2 has as vertices all the linear
borders of S1 along with the vertices corresponding to calls and return states that
have not yet been matched with the �-edges (which is required by Definition 3).
Procedure CreateGroundShape nondeterministically generates a ground pnw-
shapewith k vertices and for each edge of the nw-shape it ensures that the
program counters of its endpoints conform to the meaning of the edge in the
program (that is, a transition or the matching of a call and a return state).
Furthermore, if an edge represents a transition, it guarantees the consistency of
variable values at its endpoints with the transition’s semantics.

7 Discussion

In this paper, we have presented a new methodology to perform software analysis.
The main idea is to transform the input programs so that the exploration of the
computations is guided by the tree decompositions of their behavior graphs. We
have developed in detail our methodology for sequential programs with recursive
procedure calls and without dynamic data structures.

In this section, we discuss how to extend our approach to concurrent pro-
grams and how it relates to sequentialization of concurrent programs. We then
conclude with some remarks and future work.

Concurrent Programs. Concurrent programs consist of a finite number of threads
where each of them is defined by a sequential program. All threads run in par-
allel and communicate through a finite number of shared variables according
to the sequential consistency memory model (SC). A natural graph encoding
for the computations of concurrent programs is the following. The behavior of
each thread is modeled with a nested word. Further, the behaviour of the shared
memory is represented by a line graph capturing the sequence of memory opera-
tions, where each vertex represents a unique read or write operation. Vertices of
the nested words are labeled, as usual, with a program counter and a valuation
of the global variables, while memory vertices are labeled with a valuation of the
shared variables. A vertex u of a nested word that “reads” a shared variable for
executing the local transition, it is linked through a memory edge to the mem-
ory vertex representing that operation. The direction of this edge is reversed if
the vertex “writes” to a shared variable. Since each memory vertex u represents
exactly one memory operation, u has exactly one memory edge incident on it.
Of course, memory edges will never cross w.r.t. temporal events (as we assume
SC). Let us call these behavior graphs concurrent nested words (cnw).

Concurrent nested words admit natural summaries that reflect their com-
position. A concurrent nw-shape (cnw-shape for short) is formed by a distinct
nw-shape for each component nested word, and an additional memory-shape
that is a nw-shape without matching edges. Additional care should be taken

130 O. Inverso et al.

for the memory edges to avoid crossing. We have worked out the details of this
representation. For example, a contraction operation on a cnw-shape can be
accomplished by executing a contraction on each component nw-shape and the
memory-shape. Furthermore, memory edges are contracted similarly to match-
ing edges of nw-shapes. The merge operation is defined exactly as for nw-shapes.
By defining cnw-shape trees using the same combination of operations seen for
nw-shape trees, we can show an equivalent of Theorem 3 for the concurrent set-
ting. In addition, a code-to-code translation for concurrent programs is again
possible (it is similar to that described in Sect. 6). An essential point to note is
that verification tools designed for sequential programs can be effectively reused
for analyzing concurrent programs.

Here we convey the idea that our approach actually leads to a sort of sequen-
tialization when applied to concurrent programs and implemented as a code-to-
code translation to sequential programs. A sequentialization translates a con-
current program P into a nondeterministic sequential program P ′ that (under
certain assumptions) behaves equivalently [9,16,18]. To make the approach effec-
tive, P ′ should not track the whole state space of the concurrent program, as
in the cross product of the thread states. All sequentializations that have been
proposed in literature only track one local state at a time and use k copies of
the shared variables, for a given parameter k. Under these restrictions, such
approaches can only cover a strict subset of computations in which each thread
can at most interact k times with the other threads. These features are indeed
desirable as we get a parameterized analysis technique that aims at exploiting
as much as possible by tuning k for the underlying sequential verification tool.
By increasing the parameter k, we can capture more computations, but this of
course comes with a cost in terms of computational resources.

Our analysis schema inherits the favorable features of sequentializations while
extending its coverage to a broader range of computations for the parameter k.
By considering cnw-shapes with at most k nodes, we also track k copies of
the variables (either global or shared), but cover all cnw of tree width k vs.
existing sequentializations being only able to intercept a very small subset of
them. Moreover, a different sequentialization must be designed to capture new
classes of behavior (parameterized programs [10], thread creation [2,4], scope
bounded [12,14,15], path bounded [13], etc.), while our schema is uniform for
all of them.

Future Work. We believe that obtaining scalable solutions for sequential pro-
grams based on our approach will pave the way to lift such results to the con-
current settings. On the theoretical side, it would be interesting to study how
computations of concurrent programs running under weak memory models can
be modeled with behaviour graphs. Similarly, for distributed programs where
the communication among threads happens through FIFO channels (see [17]
for behaviour graphs of these programs). Further, we believe that our approach
could be useful to reason about programs manipulating heaps. The intuition is
that concurrent and distributed programs can be seen as sequential programs

Verifying Programs by Bounded Tree-Width Behavior Graphs 131

that use stacks for recursion and queues to simulate FIFO channels. We thus
wonder whether our approach can be lifted to more general data structures.

References

1. Alur, R., Madhusudan, P.: Adding nesting structure to words. In: Ibarra, O.H.,
Dang, Z. (eds.) DLT 2006. LNCS, vol. 4036, pp. 1–13. Springer, Heidelberg (2006).
https://doi.org/10.1007/11779148 1

2. Bouajjani, A., Emmi, M., Parlato, G.: On sequentializing concurrent programs.
In: Yahav, E. (ed.) SAS 2011. LNCS, vol. 6887, pp. 129–145. Springer, Heidelberg
(2011). https://doi.org/10.1007/978-3-642-23702-7 13

3. Courcelle, B.: The monadic second-order logic of graphs. I. Recognizable sets of
finite graphs. Inf. Comput. 85(1), 12–75 (1990). https://doi.org/10.1016/0890-
5401(90)90043-H

4. Emmi, M., Qadeer, S., Rakamaric, Z.: Delay-bounded scheduling. In: Ball, T.,
Sagiv, M. (eds.) Proceedings of the 38th ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, POPL 2011, Austin, TX, USA, 26–28 Jan-
uary 2011, pp. 411–422. ACM (2011). https://doi.org/10.1145/1926385.1926432

5. Enea, C., Habermehl, P., Inverso, O., Parlato, G.: On the path-width of integer lin-
ear programming. In: Peron, A., Piazza, C. (eds.) Proceedings Fifth International
Symposium on Games, Automata, Logics and Formal Verification, GandALF 2014.
EPTCS, Verona, Italy, 10–12 September 2014, vol. 161, pp. 74–87 (2014). https://
doi.org/10.4204/EPTCS.161.9

6. Enea, C., Habermehl, P., Inverso, O., Parlato, G.: On the path-width of integer
linear programming. Inf. Comput. 253, 257–271 (2017). https://doi.org/10.1016/
j.ic.2016.07.010

7. Grebenshchikov, S., Lopes, N.P., Popeea, C., Rybalchenko, A.: Synthesizing soft-
ware verifiers from proof rules. In: Vitek, J., Lin, H., Tip, F. (eds.) ACM SIGPLAN
Conference on Programming Language Design and Implementation, PLDI 2012,
Beijing, China, 11–16 June 2012, pp. 405–416. ACM (2012). https://doi.org/10.
1145/2254064.2254112

8. Hoder, K., Bjørner, N., de Moura, L.: µZ – an efficient engine for fixed points
with constraints. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol.
6806, pp. 457–462. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-
642-22110-1 36

9. La Torre, S., Madhusudan, P., Parlato, G.: Reducing context-bounded concurrent
reachability to sequential reachability. In: Bouajjani, A., Maler, O. (eds.) CAV
2009. LNCS, vol. 5643, pp. 477–492. Springer, Heidelberg (2009). https://doi.org/
10.1007/978-3-642-02658-4 36

10. La Torre, S., Madhusudan, P., Parlato, G.: Sequentializing parameterized pro-
grams. In: Bauer, S.S., Raclet, J. (eds.) Proceedings Fourth Workshop on Founda-
tions of Interface Technologies, FIT 2012. EPTCS, Tallinn, Estonia, 25th March
2012, vol. 87, pp. 34–47 (2012). https://doi.org/10.4204/EPTCS.87.4

11. La Torre, S., Madhusudan, P., Parlato, G.: Analyzing recursive programs using a
fixed-point calculus. In: Hind, M., Diwan, A. (eds.) Proceedings of the 2009 ACM
SIGPLAN Conference on Programming Language Design and Implementation,
PLDI 2009, Dublin, Ireland, 15–21 June 2009, pp. 211–222. ACM (2009). https://
doi.org/10.1145/1542476.1542500

https://doi.org/10.1007/11779148_1
https://doi.org/10.1007/978-3-642-23702-7_13
https://doi.org/10.1016/0890-5401(90)90043-H
https://doi.org/10.1016/0890-5401(90)90043-H
https://doi.org/10.1145/1926385.1926432
https://doi.org/10.4204/EPTCS.161.9
https://doi.org/10.4204/EPTCS.161.9
https://doi.org/10.1016/j.ic.2016.07.010
https://doi.org/10.1016/j.ic.2016.07.010
https://doi.org/10.1145/2254064.2254112
https://doi.org/10.1145/2254064.2254112
https://doi.org/10.1007/978-3-642-22110-1_36
https://doi.org/10.1007/978-3-642-22110-1_36
https://doi.org/10.1007/978-3-642-02658-4_36
https://doi.org/10.1007/978-3-642-02658-4_36
https://doi.org/10.4204/EPTCS.87.4
https://doi.org/10.1145/1542476.1542500
https://doi.org/10.1145/1542476.1542500

132 O. Inverso et al.

12. La Torre, S., Napoli, M.: Reachability of multistack pushdown systems with scope-
bounded matching relations. In: Katoen, J.-P., König, B. (eds.) CONCUR 2011.
LNCS, vol. 6901, pp. 203–218. Springer, Heidelberg (2011). https://doi.org/10.
1007/978-3-642-23217-6 14

13. La Torre, S., Napoli, M., Parlato, G.: A unifying approach for multistack pushdown
automata. In: Csuhaj-Varjú, E., Dietzfelbinger, M., Ésik, Z. (eds.) MFCS 2014.
LNCS, vol. 8634, pp. 377–389. Springer, Heidelberg (2014). https://doi.org/10.
1007/978-3-662-44522-8 32

14. La Torre, S., Napoli, M., Parlato, G.: Reachability of scope-bounded multistack
pushdown systems. Inf. Comput. 275, 104588 (2020). https://doi.org/10.1016/j.
ic.2020.104588

15. La Torre, S., Parlato, G.: Scope-bounded multistack pushdown systems: fixed-
point, sequentialization, and tree-width. In: D’Souza, D., Kavitha, T., Radhakr-
ishnan, J. (eds.) IARCS Annual Conference on Foundations of Software Technology
and Theoretical Computer Science, FSTTCS 2012. LIPIcs, Hyderabad, India, 15–
17 December 2012, vol. 18, pp. 173–184. Schloss Dagstuhl - Leibniz-Zentrum für
Informatik (2012). https://doi.org/10.4230/LIPIcs.FSTTCS.2012.173

16. Lal, A., Reps, T.W.: Reducing concurrent analysis under a context bound to
sequential analysis. Formal Methods Syst. Des. 35(1), 73–97 (2009). https://doi.
org/10.1007/s10703-009-0078-9

17. Madhusudan, P., Parlato, G.: The tree width of auxiliary storage. In: Ball, T.,
Sagiv, M. (eds.) Proceedings of the 38th ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, POPL 2011, Austin, TX, USA, 26–28 Jan-
uary 2011, pp. 283–294. ACM (2011). https://doi.org/10.1145/1926385.1926419

18. Qadeer, S., Wu, D.: KISS: keep it simple and sequential. In: Pugh, W.W., Cham-
bers, C. (eds.) Proceedings of the ACM SIGPLAN 2004 Conference on Program-
ming Language Design and Implementation 2004, Washington, DC, USA, 9–11
June 2004, pp. 14–24. ACM (2004). https://doi.org/10.1145/996841.996845

19. Seese, D.: The structure of models of decidable monadic theories of graphs.
Ann. Pure Appl. Log. 53(2), 169–195 (1991). https://doi.org/10.1016/0168-
0072(91)90054-P

https://doi.org/10.1007/978-3-642-23217-6_14
https://doi.org/10.1007/978-3-642-23217-6_14
https://doi.org/10.1007/978-3-662-44522-8_32
https://doi.org/10.1007/978-3-662-44522-8_32
https://doi.org/10.1016/j.ic.2020.104588
https://doi.org/10.1016/j.ic.2020.104588
https://doi.org/10.4230/LIPIcs.FSTTCS.2012.173
https://doi.org/10.1007/s10703-009-0078-9
https://doi.org/10.1007/s10703-009-0078-9
https://doi.org/10.1145/1926385.1926419
https://doi.org/10.1145/996841.996845
https://doi.org/10.1016/0168-0072(91)90054-P
https://doi.org/10.1016/0168-0072(91)90054-P

Behavioral QLTL

Giuseppe De Giacomo1,2 and Giuseppe Perelli2(B)

1 University of Oxford, Oxford, UK
2 Sapienza University of Rome, Rome, Italy

perelli@di.uniroma1.it

Abstract. This paper introduces Behavioral QLTL, a “behavioral” vari-
ant of Linear Temporal Logic (ltl) with second-order quantifiers. Behav-
ioral qltl is characterized by the fact that the functions that assign the
truth value of the quantified propositions along the trace can only depend
on the past. In other words, such functions must be “processes” [1]. This
gives the logic a strategic flavor that we usually associate with planning.
Indeed we show that temporally extended planning in nondeterministic
domains and ltl synthesis are expressed in Behavioral qltl through for-
mulas with a simple quantification alternation. While as this alternation
increases, we get to forms of planning/synthesis in which contingent and
conformant planning aspects get mixed. We study this logic from the
computational point of view and compare it to the original qltl (with
non-behavioral semantics) and simpler forms of behavioral semantics.

1 Introduction

Since the very early time of AI, researchers have tried to reduce planning to
logical reasoning, i.e., satisfiability, validity, logical implication [29]. However as
we consider more and more sophisticated forms of planning this becomes more
and more challenging, because the logical reasoning required quickly becomes
second-order. One prominent case is if we want to express the model of the
world (aka the environment) and the goal of the agent directly in Linear Tem-
poral Logic (ltl). ltl has been often adopted also in Artificial Intelligence.
Examples are the pioneering work on using temporal logic as a sort of program-
ming language through the MetateM framework [7], the work on temporally
extended goals and declarative control constraints [5,6], the work on planning
via model-checking [9,17,18,20], the work on adopting ltl logical reasoning
(plus some meta-theoretic manipulation) for certain forms of planning [10,12].
More recently the connection between planning in nondeterministic domains and
(reactive) synthesis [35] has been investigated, and in fact it has been shown that
planning in nondeterministic domains can be seen in general terms as a form of
synthesis in presence of a model of the environment [3,11], also related to syn-
thesis under assumptions [13,14].

However the connection between planning and synthesis also clarifies formally
that we cannot use directly the standard forms of reasoning in ltl, such as
satisfiability, validity, or logical implication, to do planning. Indeed the logical
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
V. Malvone and A. Murano (Eds.): EUMAS 2023, LNAI 14282, pp. 133–149, 2023.
https://doi.org/10.1007/978-3-031-43264-4_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-43264-4_9&domain=pdf
https://doi.org/10.1007/978-3-031-43264-4_9

134 G. De Giacomo and G. Perelli

reasoning task we have to adopt is a nonstandard one, called “realizability” [16,
35], which is inherently a second-order form of reasoning on ltl specifications.
So one question comes natural: can we use the second-order version of ltl, called
qltl (or qptl) [40] and then use its classic reasoning tasks, such as satisfiability,
validity and logical implication, to capture planning and synthesis?

In [10] a positive answer was given limited to conformant planning [37], in
which we have partial observability on the environment and, in particular, we
cannot fully observe the initial state and the environment response to agent
actions, which however are deterministic. Hence, in conformant planning we
need to synthesize plans/strategies that work (in the deterministic domain) in
spite of the lack of knowledge. [10] shows that exploiting existential and universal
quantifications, to account for the lack of knowledge, qltl could actually capture
conformant planning through standard satisfiability.

However, the results there do not apply when the environment is nondeter-
ministic, as in contingent planning (with or without full observability) [37]. The
reason for this is very profound. Any plan/strategy must be a “process”, i.e.,
a function that observes what has happened so far (the history), observes the
current state, and takes a decision (conditional on what observed) on the next
action to do [1]. qltl instead interprets quantified propositions (i.e., in the case
of planning, the actions to be chosen) through functions that have access to the
whole traces, i.e., also the future instants, hence they cannot be considered pro-
cesses. This is a clear mismatch that makes standard qltl unsuitable to capture
planning through standard reasoning tasks.

This mismatch is not only a characteristic of qltl, but, interestingly, even of
logics that have been introduced specifically for strategic reasoning such as Strat-
egy Logic (sl) [15,32]. This has led to investigating the “behavioral” semantics
in these logics, i.e., a semantics based on processes. In their seminal work [32],
Mogavero et al. introduce and analyze the behavioral aspects of quantification in
sl: a logic for reasoning about the strategic behavior of agents in a context where
the properties of executions are expressed in ltl. They show that restricting to
behavioral quantification of strategies is a way of both making the semantics
more realistic and computationally easier. In addition, they proved that behav-
ioral and non-behavioral semantics coincide for certain fragments, including the
one corresponding to the well known atl� [2], but diverge for more interesting
classes of formulas, e.g., the ones that can express game-theoretic properties such
as Nash Equilibria and the like. This has started a new line of research that aims
at identifying new notions of behavioral and non-behavioral quantification, as
well as characterize the syntactic fragments that are invariant to these semantic
variations [24,25,33].

In this paper, inspired by the study of behavioral semantics in Strategy Logic,
we introduce a simple and elegant variant of qltl with a behavioral semantics.
The resulting logic, called Behavioral-qltl (qltlB), maintains the same syntax
of qltl, but is characterized by the fact that the functions that assign the truth
value of the quantified propositions along the trace can only depend on the past.
In other words such functions must indeed be “processes”. This makes qltlB

Behavioral QLTL 135

perfectly suitable to capture extended forms of planning and synthesis through
standard reasoning tasks (satisfiability in particular).

In qltlB, planning for temporally extended goals in nondeterministic
domains, as well as ltl synthesis, are expressed through formulas with a simple
quantification alternation. While, as this alternation increases, we get to forms
of planning/synthesis in which contingent and conformant planning aspects get
mixed by controlling via quantification what is visible of the current history
to take a decision on. For example, the qltlB formula of the form ∃Y ∀Xψ
represents the conformant planning over the ltl specification (of both envi-
ronment model and goal) ψ, as it is intended in [37]. Here we use ∀X to
hide in the history the propositions (a.k.a. fluents) that are not visible to
the agent. Note that this could be done also with standard qltl, since ∃Y
is put upfront as it cannot depend on the nondeterministic evolution of X.
The qltlB formula ∀X∃Y ψ represents contingent planning in fully observable
domains [37], also known as Strong Planning in Fully Observable Nondetermin-
istic Domains (FOND) [19,26], as well as ltl synthesis [35]. The qltlB for-
mula ∀X1∃Y ∀X2ϕ represents the problem of contingent planning under partial
observability [37], also known as Strong Planning in Partially Observable Non-
deterministic Domains (POND) [26]. Here, X1 and X2 are, respectively, the
visible and hidden propositions controlled by the environment and the strategy
corresponding to the Skolem function assigning the values to Y depends on the
values of X1 in the history so far but not on the values of X2, which indeed
remain non-observable to the agent. By going even further in alternation, we get
a generalization of POND where a number the controllable variables of the agent
depend individually on more and more environment variables. In other words,
we have a hierarchy of partial observability over the whole history on which the
various variable under the control of the agent can depend upon. Interestingly,
if we consider the agent controlled variables as independent actuators, then this
instantiates the problem of distributed synthesis with strictly decreasing levels
of information studied in formal methods [22,31,36].

We study qltlB by introducing a formal semantics that is Skolem-based,
meaning that we assign existential values through Skolem-like functions that
depend on the universal (adversarial) choice of the variables of interest. Specif-
ically we restrict such Skolem function to depend only on the past and hence
behave as processes/strategies/plans. As a matter of fact, such Skolem functions
can be represented as suitable labeled trees, describing all the possible execu-
tions of a given process that receive inputs from the environment. We then study
satisfiability in qltlB and characterize its complexity as (n + 1)-EXPTIME-
complete, with n being the number of quantification blocks of the form ∀Xi∃Yi

in the formula. Note that this is substantially lower than the complexity of sat-
isfiability for classic qltl, which depends on the overall quantifier alternation
in the formula, and in particular is 2(n − 1)-EXSPACE-complete. Interestingly,
instantiating our satisfiability procedure we get an optimal technique for solving
synthesis, and planning in nondeterministic domains, for ltl goals in the case of
full observability and partial observability. Indeed, both the formula ∀X∃Y ψ for

136 G. De Giacomo and G. Perelli

the case of full observability and the formula ∀X1∃Y ∀X2ϕ for the case of partial
observability, include a single block of the form ∀Xi∃Yi, and hence satisfiability
can be checked in 2-EXPTIME, thus matching the 2-EXPTIME-completeness
of the two problems [30,35].

2 Quantified Linear Temporal Logic

Linear Temporal Logic (ltl) was originally proposed in Computer Science as a
specification language for concurrent programs [34]. Formulas of ltl are built
from a set Var of propositional variables (or simply variables), together with
Boolean and temporal operators. Its syntax can be described as follows:

ψ ::= x | ¬ψ | ψ ∨ ψ | ψ ∧ ψ | Xψ | ψUψ

where x ∈ Var is a propositional variable.
Intuitively, the formula Xψ says that ψ holds at the next instant. Moreover,

the formula ψ1Uψ2 says that at some future instant ψ2 holds and until that point,
ψ1 holds. We also use the standard Boolean abbreviations true := x∨¬x (true),
false := ¬true (false), and ψ1 → ψ2 := ¬ψ1 ∨ ψ2 (implication). In addition,
we also use the binary operator ψ1Rψ2

.= ¬(¬ψ1U¬ψ2) (release) and the unary
operators Fψ := trueUψ (eventually) and Gψ := ¬F¬ψ (globally).

The classic semantics of ltl is given in terms of infinite traces, i.e., truth-
value assignments over the natural numbers. More precisely, a trace π ∈ (2Var)ω

is an infinite sequence of truth assignments over the set of variables Var, where
(·)ω is the classic omega operator used to denote such infinite sequences. By
π(i) ∈ 2Var, we denote the i-th truth assignment of the infinite sequence π.
Along the paper, we might refer to finite segments of a computation π. More
precisely, for two indexes i, j ∈ N, by π(i, j) .= π(i), . . . , π(j) ∈ (2Var)∗ we denote
the finite segment of π from it’s i-th to its j-th position, where (·)∗ is the classic
Kleene’s star used to denote finite sequences of any length. A segment π(0, j)
starting from 0 is also called a prefix and is sometimes denoted π≤j . Moreover,
we sometimes use πX to denote a trace over a subset X ⊆ Var of variables, that
is, we make explicit the range of variables on which the trace is defined.

We say that an ltl formula ψ is true on an assignment π at instant i, written
π, i |=LTL ψ, if:

– π, i |=LTL x, for x ∈ Var iff x ∈ π(i);
– π, i |=LTL ¬ψ iff π, i 	|=LTL ψ;
– π, i |=LTL ψ1 ∨ ψ2 iff either π, i |=LTL ψ1 or π, i |=LTL ψ2;
– π, i |=LTL ψ1 ∧ ψ2 iff both π, i |=LTL ψ1 and π, i |=LTL ψ2;
– π, i |=LTL Xψ iff π, i + 1 |=LTL ψ;
– π, i |=LTL ψ1Uψ2 iff for some j ≥ i, we have that π, j |=LTL ψ2 and for all

k ∈ {i, . . . j − 1}, we have that π, k |=LTL ψ1.

A formula ψ is true over π, written π |=LTL ψ, iff π, 0 |=LTL ψ. A formula ψ is
satisfiable if it is true on some trace and valid if it is true in every trace.

Behavioral QLTL 137

Quantified Linear-Temporal Logic (qltl) is an extension of ltl with two
Second-order quantifiers [39]. Its formulas are built using the classic ltl Boolean
and temporal operators, on top of which existential and universal quantification
over variables is applied. Formally, the syntax is given as follows:

ϕ ::= ∃xϕ | ∀xϕ | x | ¬ϕ | ϕ ∨ ϕ | ϕ ∧ ϕ | Xϕ | ϕUϕ,

where x ∈ Var is a propositional variable.
Note that this is a proper extension of ltl, as qltl has the same expressive

power of mso [39], whereas ltl is equivalent to fol [23].
In order to define the semantics of qltl, we introduce some notation. For a

trace π and a set of variables X ⊆ Var, by Prj(π,X) we denote the projection
trace over X defined as Prj(π,X)(i) .= π(i) ∩ X at any time point i ∈ N.
Moreover, by Prj(π,−X) .= Prj(π, Var \ X) we denote the projection trace
over the complement of X. For a single variable x, we simplify the notation as
Prj(π, x) .= Prj(π, {x}) and Prj(π,−x) .= Prj(π, Var\{x}). Finally, we say that
π and π′ agree over X if Prj(π,X) = Prj(π′,X).

Observe that we can reverse the projection operation by combining traces
over disjoint sets of variables. More formally, for two disjoint sets X,X ′ ⊆ Var
and two traces πX and πX′ over X and X ′, respectively, we define the combined
trace πX �πX′ as the (unique) trace over X ∪X ′ such that its projections on X
and X ′ correspond to πX and πX′ , respectively.

The classic semantics of the quantifiers in a qltl formula ϕ over a trace π,
at instant i, denoted π, i |=C ϕ, is defined as follows:

– π, i |=C ψ iff π, i |=LTL ψ for every quantifier-free (ltl) formula ψ;
– π, i |=C ∃xϕ iff there exists π′ agreeing with π over −x s.t. π′, i |=C ϕ;
– π, i |=C ∀xϕ iff for each π′ agreeing with π over −x, it holds that π′, i |=C ϕ;

A variable x is free in ϕ if it occurs at least once out of the scope of either
∃x or ∀x in ϕ. By free(ϕ) we denote the set of free variables in ϕ.

As for ltl, we say that ϕ is true on π, and write π |=C ϕ iff π, 0 |=C ϕ.
Analogously, a formula ϕ is satisfiable if it is true on some trace π, whereas it is
valid if it is true on every possible trace π. Note that, as quantifications in the
formula replace the trace over the variables in their scope, we can assume that
π are traces over the set free(ϕ) of free variables in ϕ.

For convenience, and without loss of generality, qltl is typically used in
prenex normal form, i.e., according to the following syntax:

ϕ ::=∃xϕ | ∀xϕ | ψ

where ψ is an ltl formula over the the propositional variables Var. Hence a qltl
formula in prenex normal form has the form ℘ψ, where ℘ = Qn1x1 . . . Qnnxn

is a prefix quantification with Qni ∈ {∃,∀} and xi being a variable occurring
on a quantifier-free subformula ψ. Every qltl formula can be rewritten in
prenex normal form, meaning that such rewriting is true on the same set of
traces. Consider for instance the formula G(∃y(y ∧ X¬y)). This is equivalent to
∀x∃y(singleton(x) → (G(x → (y ∧ X¬y)))), with singleton(x) .= Fx ∧ G(x →

138 G. De Giacomo and G. Perelli

XG¬x) expressing the fact that x is true exactly once on the trace1. A full proof
of the reduction to prenex normal form can be found in [41, Section 2.3].

Recall that for a formula ϕ = ℘ψ is easy to obtain the prefix normal form
of its negation ¬ϕ as ℘¬ψ, where ℘ is obtained from ℘ by swapping every
quantification from existential to universal and vice-versa. From now on, by ¬ϕ
we denote its prenex normal form transformation.

An alternation in a quantification prefix ℘ is either a sequence ∃x∀y or a
sequence ∀x∃y occurring in ℘. A formula of the form ℘ψ is of alternation-depth k
if ℘ contains exactly k alternations. Following the notation introduced in [39], by
k-qltl we denote the qltl fragment of formulas with alternation k. Moreover,
Σqltl

k and Πqltl
k denote the fragments of k-qltl of formulas starting with an

existential and a universal quantification, respectively.
Let ℘ be a quantification prefix. By ∃(℘) and ∀(℘) we denote the set of

variables that are quantified existentially and universally, respectively. We say
that two variables x and x′ belong to the same block X if no alternation occurs
between them, i.e., they are both of the same quantification type, together with
any other variable occurring in between them in ℘.

Note that a qltl formula ℘ψ is equivalent to any formula ℘′ψ where ℘′ is
obtained from ℘ by shuffling variables belonging to the same block. For this rea-
son, it is convenient to make use of the syntactic shortcuts ∃Xϕ

.= ∃x1 . . . ∃xkϕ
and ∀Xϕ

.= ∀x1 . . . ∀xkϕ with X = {x1, . . . , xk}, being a block of variables in
℘. Formulas can then be written in the form Qn1X1 . . . QnnXnψ with X1, . . . Xn

being maximal blocks, meaning that every two consecutive occurrences of them
are of different quantification type. More formally, it holds that Qni = ∃ iff
Qni+1 = ∀, for every i < n.

Note that also the semantics of prenex qltl formulas can easily be lifted in
terms of quantification blocks.

For a qltl formula ϕ, a trace π, and an instant i, we obtain that

– π, i |=C ψ iff π, i |=LTL ψ, for every quantifier-free formula ψ;
– π, i |=C ∃Xϕ iff there exists π′ agreeing with π over −X s.t. π′, i |=C ϕ;
– π, i |=C ∀Xϕ iff for each π′ agreeing with π over −X, it holds that π′, i |=C ϕ2.

From now on, we might refer to variable blocks, simply as blocks. Moreover,
with a slight overlap of notation, we write X ⊆ ∃(℘) to denote that the variables
of the block X are existentially quantified in ℘.

The satisfiability problem consists in, given a qltl formula ϕ, determining
whether it is satisfiable or not. Note that every formula ϕ is satisfiable if, and
only if, ∃free(ϕ)ϕ is satisfiable. This means that we can study satisfiability in
qltl for closed formulas, i.e., formulas where every variable is quantified.

Consider the formula ϕ = ∃y(y ↔ Gx) with free(ϕ) = {x}. This is satisfiable
as, for example, the trace π obtained by combining πx over {x} taking always

1 The reader might observe that pushing the quantification over y outside the temporal
operator does not work. Indeed, the formula ∃yG(y ∧ X¬y) is unsatisfiable.

2 Notice that now we are dealing with variable blocks and not single variables at the
time.

Behavioral QLTL 139

the value true with the trace πy over {y} assigning true at the first instant
satisfies (y ↔ Gx). Notice that ϕ = ∃y(y ↔ Gx) is satisfiable if and only if the
close formula ∃x∃y(y ↔ Gx) is so. Analogously, ϕ is valid if and only if the close
formula ∀x∃y(y ↔ Gx) is so.

Such problem is decidable, though computationally highly intractable in gen-
eral [39]. For a given natural number k, by k-EXPSPACE we denote the lan-

guage of problems solved by a Turing machine with space bounded by 22
...2

n

,
where the height of the tower is k and n is the size of the input. By convention
0-EXPSPACE denotes PSPACE.

Theorem 1 [40]. Satisfiability for k-qltl is k-EXPSPACE-complete.

3 Skolem Functions for QLTL Semantics

We now give an alternative way to capture the semantics of qltl, which is in
terms of (second order) Skolem functions. This will allow us later to suitably
restrict such Skolem functions to capture behavioral semantics, by forcing them
to depend only on the past history and the current situation.

Consider two variable blocks X and Y . By X <℘ Y we denote the fact that
X occurs before Y in ℘. For a given existentially quantified block Y ∈ ∃(℘),
by Dep℘(Y) = {X ∈ ∀(℘)|X <℘ Y } we denote the blocks to which Y depends
on in ℘. Moreover, for a given set F ⊆ Var of variables, sometimes referred as
the free variables block, by DepF

℘ (Y) = F ∪ Dep℘(Y) we denote the augmented
dependency, taking into account the additional free block. Whenever clear from
the context, we omit the subscript and simply write Dep(Y) and DepF (Y).

The relation defined above captures the concept of variable dependence gen-
erated by quantifiers and free variables in a qltl formula. Intuitively, whenever a
dependence occurs between two blocks X and Y , this means that the existential
choices of Y are determined by a function whose domain is given by all possible
choices available for X, be it universally quantified or free in the corresponding
formula. This dependence is know in first-order logic as Skolem function and can
be described in qltl as follows.

Definition 1 (Skolem function). For a given quantification prefix ℘ defined
over a set Var(℘) ⊆ Var of variables, and a free block F = Var \ Var(℘), a
function

θ : (2F∪∀(℘))ω → (2∃(℘))ω

is called a Skolem function over (℘, F) if, for all traces π1, π2 ∈ (2F∪∀(℘))ω over
F ∪ ∀(℘) and for all blocks Y ∈ ∃(℘), it holds that

Prj(π1, Dep
F (Y)) = Prj(π2, Dep

F (Y)) implies Prj(θ(π1), Y) = Prj(θ(π2), Y).

In other words, whenever π1 and π2 are equal over the variables to which
block Y depends on, θ(π1) and θ(π2) are equal over the block Y .

140 G. De Giacomo and G. Perelli

Intuitively, a Skolem function takes traces of the free variables and (the blocks
of) universally quantified variables and returns traces of (the blocks of) existen-
tially quantified variables so that they depend only on the free variables and the
universal variables that appear before them in the quantification prefix ℘.

Skolem functions can be used to give an alternative characterization of the
semantics of qltl formulas in prenex normal form. Given a trace π over F ∪ ∀(℘),
sometimes we denote the combined trace θ̂(π) .= π � θ(π), as if θ̂ combines the
inputs and outputs outcomes of θ together.

Definition 2 (Skolem semantics). A qltl formula ϕ = ℘ψ is Skolem true
over a trace π at an instant i, written π, i |=S ϕ, if there exists a Skolem function
θ over (℘, free(ϕ)) such that θ̂(π �π∀(℘)), i |=LTL ψ, for every possible trace π∀℘.

Intuitively, the Skolem characterizes the truth of a qltl formula with the
existence of a Skolem function that returns the traces of the existential quantifi-
cations as function of the variables to which they depend in the formula ϕ. The
following theorem shows, the Skolem semantics is equivalent to the classic one.
Therefore, for every formula ϕ and every trace π, it holds that π |=S ϕ if, and
only if, π 	|=S ¬ϕ.

Theorem 2. For every qltl formula ϕ = ℘ψ and every trace πF ∈ (2F)ω over
the free variables block F = free(ϕ) of ϕ, it holds that

π |=C ϕ if, and only if, π |=S ϕ.

Proof. The proof proceeds by induction on the length of ℘. For the case of |℘| = 0
it holds that ℘ = ε is the empty sequence. This means that ϕ = ψ is variable free
and the classic and Skolem semantics coincide with the ltl semantics. Therefore
we obtain πF |=C ψ iff πF |=S ψ.

For the case of |℘| > 0 we prove the two implications separately. From the
left to right direction, assume that πF |=C ϕ and distinguish two cases:

– ℘ = ∃X℘′. Thus, there exists a trace πX ∈ (2X)ω such that πF �πX |=C ℘′ψ.
By induction hypothesis, we have that πF �πX |=S ℘′ψ and so that there exists
a Skolem function θ′ over (℘′, F ∪{X}) such that θ̂′(πF �πX �π′) |=LTL ψ, for
every π′ ∈ (2∀(℘′))ω. Now, consider the Skolem function θ over (℘, F) defined
as θ(πF � π′) = θ′(πF � πX � π′

−X) � πX for every π′ ∈ (2∀(℘))ω. This implies
that θ̂(πF � π′) |=LTL ψ for every π′ ∈ (2∀(℘))ω, and so that πF |=S ϕ.

– ℘ = ∀X℘′. Then, it holds that πF � πX |=C ℘′ψ for every πX ∈ (2X)ω. By
induction hypothesis, for every πX ∈ (2X)ω there exists a Skolem function
θπX over (℘′, F ∪ {X}) such that θ̂πX(πF � πX � π′) |=LTL ψ for every π′ ∈
(2∀(℘′))ω. Now, consider the Skolem function θ over (℘, F) defined as θ(πF �
π′) = θπ′

X
(πF �π′

X�π′
−X). It holds that θ̂(πF �π′) |=LTL ψ for every π′ ∈ (2℘)ω,

which means that πF |=S ϕ.

For the right to left direction, assume that πF |=S ℘ψ. Then, there exists a
Skolem function θ over (℘, F) such that θ̂(πF �π) |=LTL ψ for every π ∈ (2∀(℘))ω.
Here, we also distinguish the two cases.

Behavioral QLTL 141

– ℘ = ∃X℘′. Observe that DepF (X) = F . Then it holds that θ(πF � π)(X) =
θ(πF ∪ π′)(X) = πX for every π, π′ ∈ (2∀(℘′))ω. Now, define the Skolem
function θ′ over (℘′, F ∪{X}) as θ′(πF �πX �π′) = Prj(θ(πF �πX �π′),−X)
outputting the same as θ except for the trace of the block variable X. It holds
that θ̂′(πF � πX � π′) |=LTL ψ for each π′ ∈ (2∀(℘′))ω and so, by induction
hypothesis, that πF � πX |=C ℘′ψ, which in turns implies that πF |=C ∃X℘′ψ
and so that πF |=C ϕ.

– ℘ = ∀X℘′. Observe that ∀(℘) = ∀(℘′) ∪ {X}, and so that θ is also a Skolem
function over (℘′, F ∪ {X}). This implies that, for each πX ∈ (2X)ω, it holds
that θ̂(πF �πX �π′) |=LTL ψ for every π′ ∈ (2∀(℘′))ω. By induction hypothesis,
we obtain that, for every πX ∈ (2X)ω, it holds that πF � πX |=C ℘′ψ, which
in turns implies that πF |=C ∃X℘′ψ and so that πF |=C ϕ.

4 Behavioral QLTL (QLTLB)

The classic semantics of qltl requires to consider at once the evaluation of
the variables on the whole trace. This gives rise to counter-intuitive phenomena.
Consider the formula ∀x∃y(Gx ↔ y). Such a formula is satisfiable. Indeed, on the
one hand, for the trace assigning always true to x, the trace that makes y true
at the beginning satisfies the temporal part. On the other hand, for every other
trace making x false sometimes, the trace that makes y false at the beginning
satisfies the temporal part. However, in order to correctly interpret y on the first
instant, one needs to know in advance the entire trace of x. Such requirement is
practically impossible to fulfill and does not reflect the notion of reactive systems,
where the agent variables at the k-th instant of the computation depend only
on the past assignments of the environment variables. Such principle is often
referred to as behavioral in the context of strategic reasoning, see e.g., [25,32].

Here, we introduce an alternative semantics for qltl, which is based on the
idea that the existential variables are controlled by the agent and the universally
quantified variables are controlled by the environment. We require such control
functions to be processes in the sense of [1], i.e., the next move depends only
on the past history and the present, but not the future. Moreover the choices of
the existential variables can depend only on the universal variables coming ear-
lier in the quantification prefix. In other words this semantics allows for partial
observability of the uncontrollable variables (i.e., the universally quantified vari-
ables). To formally define the semantics, we suitably constrain Skolem functions
to make them behavioral, i.e., processes.

Specifically we introduce behavioral qltl, denoted qltlB, a logic with the
same syntax as of prenex normal form qltl, namely:

ϕ ::=∃xϕ | ∀xϕ | ψ

where ψ is an ltl formula over the the propositional variables Var. However,
while the syntax is the same of qltl, the semantics of qltlB is defined in terms
of behavioral Skolem functions.

142 G. De Giacomo and G. Perelli

Definition 3 (Behavioral Skolem function). For a given quantification pre-
fix ℘ defined over a blocks of propositional variables Var and a block F of free
variables, a Skolem function θ over (℘, F) is behavioral if, for all π1, π2 ∈
(2F∪∀(℘))ω, k ∈ N, and Y ∈ ∃(℘), it holds that

Prj(π1(0, k), DepF (Y)) = Prj(π2(0, k), DepF (Y))
implies

Prj(θ(π1)(0, k), Y) = Prj(θ(π2)(0, k), Y).

The behavioral Skolem functions capture the fact that the trace of existen-
tially quantified variables depends only on the past and present values of free
and universally quantified variables. This offers a way to formalize the semantics
of qltlB as follows.

Definition 4. A qltlB formula ϕ = ℘ψ is true over a trace π in an instant
i, written π, i |=B ℘ψ, if there exists a behavioral Skolem function θ over
(℘, free(ϕ)) such that θ̂(π � π′), i |=C ψ for every π′ ∈ (2free(ϕ)∪∀(℘))ω.

A qltlB formula ϕ is true on a trace π, written π |=B ϕ, if π, 0 |=B ϕ. A formula
ϕ is satisfiable if it is true on some trace and valid if it is true in every trace.
Consider again the formula ϕ = ∃y(y ↔ Gx) with free(ϕ) = {x}, now in qltlB.
This is satisfiable again. Indeed, consider the behavioral Skolem function θ such
that θ(πx)(0, 0) = true and θ(πx)(0, k) = false for each k > 0. Now, for the
trace π obtained by combining πx over {x} taking always the value true with
the trace πy = θ(πx) over {y} generated by the Skolem function θ, we have that
π satisfies (y ↔ Gx).

Again, notice that ϕ = ∃y(y ↔ Gx) is satisfiable if and only if the close
formula ∃x∃y(y ↔ Gx) is so. Indeed, now notice that the Skolem function chose
both the values of x and y as needed in (y ↔ Gx). However, the formula ϕ is
not valid. Indeed, the closed formula ∀x∃y(y ↔ Gx) is neither satisfiable nor
valid in qltlB since, in order to set the value of y appropriately, one should
be able to observe the whole trace πx and, since behavioral Skolem functions
depend only on history, this cannot be done. Observe that also the negation of
∀x∃y(y ↔ Gx) is not satisfiable. Indeed, the formula ∃y∀x(x 	↔ Gy) cannot have
a Skolem function that sets the values of y appropriately without seeing x at the
first instant. This is a common phenomenon, as it also happens when considering
the behavioral semantics of logic for the strategic reasoning [25,32].

Consider instead the formula ϕ = ∃yG(y ↔ x). This is both satisfiable and
valid. Indeed, in the case of satisfiability, the closed formula ∃x∃yG(y ↔ x)
is satisfiable as the behavioral Skolem function can chose the values of x and
y appropriately. For the case of validity, the closed formula ∀x∃yG(y ↔ x) is
satisfiable, as the Skolem function can set the value of y in dependence of the
history of values for x (in particular, the last one) in a suitable way. Instead the
formula ∃y∀xG(y ↔ x) is not satisfiable (neither valid) since the Skolem function
needs to chose the values for y independently (i.e., without observing) the values
of x.

Behavioral QLTL 143

5 Capturing Advanced Forms of Planning in QLTLB

In order to gain some intuition on qltlB, it is interesting to see how qltlB can
capture advanced forms of Planning. We assume some familiarity with Planning
in AI, see [26,27]. In planning, we typically have a: domain D (here including
the initial state) describing the dynamics of the environment, i.e., what happens
when the agent performs its actions; a goal G that the agent has to accomplish
in the domain. The various forms of planning can be seen as a game between
the agent controlling the actions and environment controlling the fluents. Given
an agent’s action, the environment responds by setting the fluents according to
the specification in D. The agent has to come up with actions that eventually
enforce the goal G. Typically the goal is reaching a state with certain properties
(values of fluents) but here we consider temporally extended goals, so the goal is
a specification of desirable traces rather than states [5]. Here we consider several
forms of planning where the fluents to the agent are: (i) totally invisible (con-
formant planning); (ii) totally visible –but not controllable (contingent planning
with full observability); (iii) or partially visible (contingent planning with partial
observability).

In the following, we assume to have a ltl formula ϕD that captures the
domain D (including the initial state), and another ltl formula ϕg that captures
the agent goal G. Such formulas are on fluents, controlled by the environment, for
which we use the variables X possibly with subscripts, and actions, controlled by
the agent, for which we used the variable Y possibly with subscripts. Notice that
by using ltl to express the domain we can actually capture not only standard
Markovian domains, but also non-Markovian ones in which the reaction of the
environment depends on the whole history, as well as, liveness constrains on the
environment dynamics. So ϕD can be seen as denoting the set of traces that
satisfy the (temporally extended) domain specifications D.

The general formula for a planning problem is of the form: ϕ = ϕD → ϕg,
which says that on the infinite runs where the environment acts as prescribed
by ϕD the goal ϕg holds [3,10]. Note that ϕ does not mention strategies but
only traces, so it is not very useful in isolation to solve planning, i.e., to show
the existence of a plan/strategy that guarantees ϕ independently of the environ-
ment’s behavior. To capture this, we are going to use second order quantification
of qltlB. In all the formulas below, the blocks X are the fluents and blocks Y
are the actions (coded in binary for simplicity).

Consider the qltlB formula ∃Y ∀Xϕ. This is looking for an assignment of
the actions Y such that for every assignment of the fluents X the resulting ltl
formula ϕ holds. This formula captures conformant planning [18]. Note that the
values of Y , i.e., the choice of actions at each point in time, do not depend on
X. That is the plan (the Skolem function deciding Y) does not see the evolution
of the fluents X. This is the reason why the plan is conformant. Note also that
in this case the fact that X are assigned through a behavioral Skolem function
or any Skolem function is irrelevant, since we do not see the values of X anyway
when choosing the Skolem function for Y (i.e., the plan). So this form of planning
could be captured through standard qltl as well.

144 G. De Giacomo and G. Perelli

Consider the qltlB formula ∀X∃Y ϕ. This states that at every point in time
for every value of the fluents X there exists an action Y such that the resulting
trace satisfies ϕ. This captures contingent planning with full observability, i.e.,
(strong) planning in Fully Observable Nondeterministic Domains (FOND) [19,
26]. Here the fact that Y at the current instant may depend only on the past
and current values of X of the behavioral semantics is critical. Otherwise the
choices of action Y would depend on the future values of fluents X, that is,
the plan would not be a process but would forecast the future, which is usually
impossible in practice. Note that with qltlB formulas of the form ∀X∃Y ψ, where
ψ is an arbitrary ltl formula, we capture ltl synthesis (for realizing the ltl
specification ψ) [35].

Now consider the qltlB formula ∀X1∃Y ∀X2ϕ. It is similar to the previous
one but now we have split the fluents X into X1 and X2 and the actions Y are
allowed to depend on X1 but not on X2. In other words, the Skolem function for
Y may depend on the previous and current values of X1 but does not depend
on the values of X2. This captures contingent planning with partial observabil-
ity, i.e., (strong) planning in Partially Observable Nondeterministic Domains
(POND), where some fluents are observable (X1) and some are not (X2), and
indeed the plan can only depend on the observable ones [26,28]. Note that with
qltlB formulas of the from ∀X1∃Y ∀X2ψ, where ψ is an arbitrary ltl formula,
we capture synthesis under incomplete information (for realizing the ltl speci-
fication ψ) [30]. Notice also that we can indeed include fairness assumptions in
ϕD and hence in ϕ, so with some care, see [4], the above two qltlB formulas
can capture also strong cyclic plans [20,26].

As we allow more quantifier nesting we get more and more sophisticated forms
of planning. For example the qltlB formula ∀X1∃Y1(. . .)∀Xn∃Ynϕ captures
a centralized planning for multiple plan actuators with hierarchically reduced
partial observability, with the innermost plan actuator, controlling Yn, solv-
ing a FOND planning instance. Similarly, ∀X1∃Y1(. . .)∀Xn∃Yn∀Xn+1ϕ captures
a centralized planning for multiple plan actuators with hierarchically reduced
partial observability, with the innermost plan actuator, controlling Yn, solving
a POND planning instance. Instead, ∃Y1∀X1(. . .)∃Yn−1∀Xn−1∃Ynϕ captures a
centralized planning for multiple plan actuators with hierarchically reduced par-
tial observability, with the outermost actuator, controlling Y1, solving a con-
formant planning instance and the innermost, controlling Yn, solving a FOND
planning instance. Similarly, ∃Y1∀X1(. . .)∃Yn−1∀Xn−1∃Yn∀Xnϕ captures a cen-
tralized planning for multiple plan actuators with hierarchically reduced partial
observability, with the outermost actuator, controlling Y1, solving a conformant
planning instance and the innermost, controlling Yn, solving POND planning.

Note that, these last forms of planning have never been studied in detail in
the AI literature. However the corresponding form of synthesis has indeed been
investigated under the name of distributed synthesis [22,36]. Distributed synthe-
sis concerns the coordination of a number of agents, each with partial observ-
ability on the environment and on the other agents, so as to enforce together
an ltl formula. Several visibility architectures among agents have been consid-

Behavioral QLTL 145

ered, including those that allow for information forks, that is, situations in which
two agents receive information from the environment in a way that they can-
not completely deduce the information received by the other agent. In general
distributed synthesis is undecidable [36]. However, it has been proven that the
absence of information forks is sufficient to guarantee the decidability of synthe-
sis [22]. Specifically, without information forks it is possible to arrange the agents
in a sort of information hierarchy, which leads to decidability [22]. Incidentally,
this is the form of uniform distributed synthesis that is captured by the above
qltlB formulas. Indeed we will show later that solving a distributed synthesis
with hierarchical information architectures can be done optimally by reduction
to qltlB satisfiability of the formulas presented above.

6 QLTLB Properties

Clearly, since qltlB shares the syntax with qltl, all the definitions that involve
syntactic elements, such as free variables and alternation, apply to this variant
the same way. As for qltl, the satisfiability of a qltlB formula ϕ is equiva-
lent to the one of ∃free(ϕ)ϕ, as well as the validity is equivalent to the one
of ∀free(ϕ)ϕ. However, the proof is not as straightforward as for the classic
semantics case.

Theorem 3. For every qltlB formula ϕ = ℘ψ, ϕ is satisfiable if, and only if,
∃free(ϕ)ϕ is satisfiable. Moreover, ϕ is valid if, and only if, ∀free(ϕ)ϕ is valid.

Proof. We show the proof only for satisfiability, as the one for validity is similar.
The proof proceeds by double implication.

From left to right, assume that ϕ is satisfiable, therefore there exists a trace
π over F = free(ϕ) such that π |=B ϕ, which in turns implies that there exists
a behavioral Skolem function θ over (℘, F) such that θ̂(π � π′) |=C ψ for every
trace π′ ∈ (2∀(℘))ω. Consider the function θ′ : (2∀(℘))ω → (2∃(℘)∪F)ω defined as
θ′(π′) = θ(π � π′) � π, for every π′ ∈ (2∀(℘))ω. Clearly, it is a behavioral Skolem
function over (∃F℘, ∅) such that θ̂′(π′) |=LTL ψ for every π′ ∈ (2∀(℘))ω, which
implies that ∃Fϕ is satisfiable.

From right to left, we have that ∃Fϕ is satisfiable, which means that there
exists a behavioral Skolem function θ over (∃Fϕ, ∅) such that θ̂(π) |=LTL ψ for
every π ∈ (2∀(℘)∪{F})ω. Observe that DepF (F) = ∅, and so that θ(π)(F) =
θ(π′)(F) = πF for every π, π′ ∈ (2∀(℘))ω. Thus, consider the behavioral Skolem
function θ′ over (℘, F) defined as θ′(π′

F �π) = θ(πF �π), for every π′
F ∈ (2F)ω and

π ∈ (2∀(℘))ω, from which it follows that θ′(πF ∪π) |=LTL ψ for every π ∈ (2∀(℘))ω,
from which we derive that πF |=B ℘ψ, and so that ϕ is satisfiable.

Note that every behavioral Skolem function is also a Skolem function. This
means that a formula ϕ interpreted as qltlB is true on π implies that the same
formula is true on π also when it is interpreted as qltl. The reverse, however,
is not true, as we have seen this when discussing the satisfiability of the formula
ϕ = ∀x∃y(y ↔ Gx). Indeed, we have.

146 G. De Giacomo and G. Perelli

Lemma 1. For every qltlB formula ϕ and every trace π over the set free(ϕ)
of free variables, if π |=B ϕ then π |=C ϕ. On the other hand, there exists a
formula ϕ and a trace π such that π |=C ϕ but not π |=B ϕ.

7 QLTLB Satisfiability

There are three syntactic fragments for which qltl and qltlB are equivalent.
Precisely, the fragments ΠqltlB

0 , ΣqltlB
0 , and ΣqltlB

1 . Recall that ΠqltlB
0 formulas

are of the form ∀Xϕltl, whereas ΣqltlB
0 formulas are of the form ∃Y ϕltl. Finally,

ΣqltlB
1 formulas are of the form ∃Y ∀Xϕltl. The reason is that the sets of Skolem

and behavioral Skolem functions for these formulas coincide, and so the existence
of one implies the existence of the other.

Theorem 4. For every qltlB formula ϕ = ℘ψ in the fragments ΠqltlB
0 , ΣqltlB

0 ,
and ΣqltlB

1 and every trace π, it holds that π |=B ϕ if, and only if, π |=C ϕ.

Proof. The proof proceeds by double implication. From left to right, it follows
from Lemma 1. From right to left, consider first the case that ϕ ∈ Πqltl

0 . Observe
that ∃(℘) = ∅ and so the only possible Skolem function θ returns the empty
interpretation on every possible interpretation π � π′ ∈ (2free(ϕ)∪∀(℘))ω. Such
Skolem function is trivially behavioral and so we have that π |=S ϕ implies
π |=B ϕ.

For the case of ϕ ∈ Σqltl
0 ∪Σqltl

1 , assume that π, |=S ϕ and let θ be a Skolem
function such that θ(π�π′) |=C ϕ for every π′ ∈ (2∀(℘))ω. Observe that, for every
Y ∈ ∃(℘), it holds that Dep℘ = ∅ and so the values of Y depend only on the free
variables in ϕ. Now, consider the Skolem function θ′ over (℘, free(ϕ)) defined
such that as θ′(π′) .= θ(π′

�∀(℘)�π). As θ is a Skolem function and Dep℘ = ∅, it
holds that θ′(π′)(Y) = θ′(π′′)(Y) for every π′, π′′ ∈ (2∀(℘))ω and so θ′ is trivially
behavioral. Moreover, from its definition, it holds that θ′(π � π′) |=C ψ for every
π′ ∈ (2∀(℘))ω, which implies π |=B ϕ.

Theorem 4 shows that for these three fragments of qltlB, satisfiability can
be solved by employing qltl satisfiability. This also comes with the same com-
plexity, as we just interpret the qltlB formula directly as qltl one.

Corollary 1. Satisfiability for the fragments ΠqltlB
0 and ΣqltlB

0 is PSPACE-
complete. Moreover, satisfiability for the fragment ΣqltlB

1 is EXPSPACE-
complete.

We now turn into solving satisfiability for qltlB formulas that are not in
fragments ΠqltlB

0 , ΣqltlB
0 , and ΣqltlB

1 . Analogously to the case of qltl, note
that Theorem 3 allows to restrict our attention to closed formulas. We use an
automata-theoretic approach inspired by the one employed in the synthesis of
distributed systems [22,31,38]. Details about this construction are available in
the appendix. We have the following.

Theorem 5. Satisfiability of n-qltlB is (n + 1)-EXPTIME-complete.

Behavioral QLTL 147

We close this section by observing that the above techniques for solving
qltlB satisfiability give us optimal techniques to solve conformant planning,
contingent planing in FOND and contingent planing in PONDs in the case of
ltl goals. Indeed for conformant planning we have to solve a formula of the form
∃Y ∀Xϕ which belongs to ΣqltlB

1 and can be solved in EXPSPACE. On the other
hand conformant planning for ltl goals is EXPACE-complete [21]. contingent
planning in FOND is captured by a formula of the form ∀X∃Y ϕ which can
be solved in 2-EXPTIME. On the other hand planning in FOND for ltl goals
is 2-EXPTIME-complete –by reduction to synthesis [35]. Similarly, contingent
planning in POND is captured by a formula of the form ∀X1∃Y ∀X2ϕ, which
although more complex than in the previous case still contains only a single
block of the form ∀Xi∃Yi, and hence can still be solved in 2-EXPTIME. On
the other hand planning in POND for ltl goals is 2-EXPTIME-complete –by
reduction to synthesis under incomplete information [30].

Note also that this result gives us an optimal technique for solving synthesis
and planing in nondeterministic domains for ltl goals. Indeed the qltlB for-
mulas that capture them requires a single block of the form ∀Xi∃Yi, and hence
satisfiability can be checked in 2-EXPTIME, thus matching the 2-EXPTIME-
completeness of the two problems.

8 Conclusion

We introduced a behavioral variant of qltl. Our variant, qltlB, is based on the
following ingredients. First, it uses the syntax of qltl. Secondly, it interprets
the existential quantifications ∃Y as functions from histories to the next value of
Y , where the variables observed over the histories are controlled by the nesting
of quantification. Third, satisfiability over this logic corresponds to advanced
forms of reactive synthesis with partial observability.

Recently, independently of our work, qltl has been at the base of a proposal
that shares with us a strategic nature [8]. As witnessed by the complexity char-
acterization of satisfiability in the two cases, respectively (n + 1)-EXPTIME-
complete, with n being the number of quantification blocks in our case, and
2-EXPTIME-complete in [8], our proposal looks at more sophisticated forms
of strategies, with respect to partial observability over the histories. Deeper
understanding on the relationship between the two approaches deserves further
investigation.

Acknowledgements. This work was supported by MUR under the PRIN pro-
gramme, grant B87G22000450001 (PINPOINT), the ERC Advanced Grant White-
Mech (No. 834228), by the EU ICT-48 2020 project TAILOR (No. 952215), by the
PRIN project RIPER (No. 20203FFYLK), the JPMorgan AI Faculty Research Award
“Resilience-based Generalized Planning and Strategic Reasoning”, and PNRR MUR
project PE0000013-FAIR.

148 G. De Giacomo and G. Perelli

References

1. Abadi, M., Lamport, L., Wolper, P.: Realizable and unrealizable specifications of
reactive systems. In: Ausiello, G., Dezani-Ciancaglini, M., Della Rocca, S.R. (eds.)
ICALP 1989. LNCS, vol. 372, pp. 1–17. Springer, Heidelberg (1989). https://doi.
org/10.1007/BFb0035748

2. Alur, R., Henzinger, T., Kupferman, O.: Alternating-time temporal logic. JACM
49(5), 672–713 (2002)

3. Aminof, B., De Giacomo, G., Murano, A., Rubin, S.: Planning under LTL envi-
ronment specifications. In: ICAPS, pp. 31–39. AAAI Press (2019)

4. Aminof, B., De Giacomo, G., Rubin, S.: Stochastic fairness and language-theoretic
fairness in planning in nondeterministic domains. In: ICAPS, pp. 20–28. AAAI
Press (2020)

5. Bacchus, F., Kabanza, F.: Planning for temporally extended goals. Ann. Math.
Artif. Intell. 22(1–2), 5–27 (1998)

6. Bacchus, F., Kabanza, F.: Using temporal logics to express search control knowl-
edge for planning. Artif. Intell. 116(1–2), 123–191 (2000)

7. Barringer, H., Fisher, M., Gabbay, D.M., Gough, G., Owens, R.: METATEM: an
introduction. Formal Aspects Comput. 7(5), 533–549 (1995)

8. Bellier, D., Benerecetti, M., Monica, D.D., Mogavero, F.: Good-for-game QPTL:
an alternating hodges semantics. ACM Trans. Comput. Log. 24(1), 4:1–4:57 (2023)

9. Bertoli, P., Cimatti, A., Roveri, M.: Heuristic search + symbolic model checking
= efficient conformant planning. In: IJCAI 2001, pp. 467–472 (2001)

10. Calvanese, D., De Giacomo, G., Vardi, M.Y.: Reasoning about actions and planning
in LTL action theories. In: KR 2002, pp. 593–602 (2002)

11. Camacho, A., Bienvenu, M., McIlraith, S.A.: Towards a unified view of AI planning
and reactive synthesis. In: ICAPS 2019, pp. 58–67 (2019)

12. Cerrito, S., Mayer, M.C.: Bounded model search in linear temporal logic and its
application to planning. In: de Swart, H. (ed.) TABLEAUX 1998. LNCS (LNAI),
vol. 1397, pp. 124–140. Springer, Heidelberg (1998). https://doi.org/10.1007/3-
540-69778-0 18

13. Chatterjee, K., Henzinger, T.A.: Assume-guarantee synthesis. In: Grumberg, O.,
Huth, M. (eds.) TACAS 2007. LNCS, vol. 4424, pp. 261–275. Springer, Heidelberg
(2007). https://doi.org/10.1007/978-3-540-71209-1 21

14. Chatterjee, K., Henzinger, T.A., Jobstmann, B.: Environment assumptions for syn-
thesis. In: van Breugel, F., Chechik, M. (eds.) CONCUR 2008. LNCS, vol. 5201, pp.
147–161. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-85361-
9 14

15. Chatterjee, K., Henzinger, T.A., Piterman, N.: Strategy logic. Inf. Comput. 208(6),
677–693 (2010). https://doi.org/10.1016/j.ic.2009.07.004

16. Church, A.: Logic, arithmetics, and automata. In: 1962 Proceedings of the Inter-
national Congress of Mathematicians, pp. 23–35 (1963)

17. Cimatti, A., Giunchiglia, E., Giunchiglia, F., Traverso, P.: Planning via model
checking: a decision procedure for AR. In: Steel, S., Alami, R. (eds.) ECP 1997.
LNCS, vol. 1348, pp. 130–142. Springer, Heidelberg (1997). https://doi.org/10.
1007/3-540-63912-8 81

18. Cimatti, A., Roveri, M.: Conformant planning via symbolic model checking. J.
Artif. Intell. Res. 13, 305–338 (2000)

19. Cimatti, A., Roveri, M., Traverso, P.: Strong planning in non-deterministic domains
via model checking. In: AIPS, pp. 36–43. AAAI (1998)

https://doi.org/10.1007/BFb0035748
https://doi.org/10.1007/BFb0035748
https://doi.org/10.1007/3-540-69778-0_18
https://doi.org/10.1007/3-540-69778-0_18
https://doi.org/10.1007/978-3-540-71209-1_21
https://doi.org/10.1007/978-3-540-85361-9_14
https://doi.org/10.1007/978-3-540-85361-9_14
https://doi.org/10.1016/j.ic.2009.07.004
https://doi.org/10.1007/3-540-63912-8_81
https://doi.org/10.1007/3-540-63912-8_81

Behavioral QLTL 149

20. Daniele, M., Traverso, P., Vardi, M.Y.: Strong cyclic planning revisited. In: Biundo,
S., Fox, M. (eds.) ECP 1999. LNCS (LNAI), vol. 1809, pp. 35–48. Springer, Hei-
delberg (2000). https://doi.org/10.1007/10720246 3

21. De Giacomo, G., Vardi, M.Y.: Automata-theoretic approach to planning for tem-
porally extended goals. In: Biundo, S., Fox, M. (eds.) ECP 1999. LNCS (LNAI),
vol. 1809, pp. 226–238. Springer, Heidelberg (2000). https://doi.org/10.1007/
10720246 18

22. Finkbeiner, B., Schewe, S.: Uniform distributed synthesis. In: LICS 2005, pp. 321–
330 (2005)

23. Gabbay, D.M., Pnueli, A., Shelah, S., Stavi, J.: On the temporal basis of fairness.
In: Abrahams, P.W., Lipton, R.J., Bourne, S.R. (eds.) POPL 1980, pp. 163–173
(1980)

24. Gardy, P., Bouyer, P., Markey, N.: Dependences in strategy logic. In: STACS 2018,
LIPIcs, vol. 96, pp. 34:1–34:15 (2018)

25. Gardy, P., Bouyer, P., Markey, N.: Dependences in strategy logic. Theory Comput.
Syst. 64(3), 467–507 (2020)

26. Geffner, H., Bonet, B.: A Concise Introduction to Models and Methods for Auto-
mated Planning. Morgan & Claypool, San Rafael (2013)

27. Ghallab, M., Nau, D.S., Traverso, P.: Automated Planning - Theory and Practice,
1st edn., p. 635. Elsevier, Amsterdam (2004)

28. Goldman, R.P., Boddy, M.S.: Expressive planning and explicit knowledge. In: Pro-
ceedings of AIPS (1996)

29. Green, C.C.: Application of theorem proving to problem solving. In: IJCAI 1969,
pp. 219–240 (1969)

30. Kupferman, O., Vardi, M.Y.: Synthesis with incomplete informatio. In: Barringer,
H., Fisher, M., Gabbay, D., Gough, G. (eds.) Advances in Temporal Logic. Applied
Logic Series, vol. 16, pp. 109–127. Springer, Dordrecht (2000). https://doi.org/10.
1007/978-94-015-9586-5 6

31. Kupferman, O., Vardi, M.Y.: Synthesizing distributed systems. In: LICS 2001. pp.
389–398 (2001)

32. Mogavero, F., Murano, A., Perelli, G., Vardi, M.: Reasoning about strategies: on
the model-checking problem. ACM TOCL 15(4), 34:1–34:47 (2014)

33. Fijalkow, N., Maubert, B., Murano, A., Rubin, S., Vardi, M.Y.: Public and private
affairs in strategic reasoning. In: Kern-Isberner, G., Lakemeyer, G., Meyer, T. (eds.)
KR 2022 (2022). https://proceedings.kr.org/2022/14/

34. Pnueli, A.: The temporal logic of programs. In: FOCS-77, pp. 46–57 (1977)
35. Pnueli, A., Rosner, R.: On the synthesis of a reactive module. In: POPL, pp. 179–

190. ACM (1989)
36. Pnueli, A., Rosner, R.: Distributed reactive systems are hard to synthesize. In:

FOCS 1990, pp. 746–757 (1990)
37. Rintanen, J.: Complexity of planning with partial observability. In: ICAPS 2004,

pp. 345–354 (2004)
38. Schewe, S.: Synthesis of distributed systems. Ph.D. thesis, Saarland University,

Saarbrücken, Germany (2008)
39. Sistla, A., Vardi, M., Wolper, P.: The complementation problem for Büchi

automata with applications to temporal logic. TCS 49, 217–237 (1987)
40. Sistla, A.P.: Theoretical issues in the design and verification of distributed systems.

Ph.D. thesis (1985)
41. Thomas, W.: Languages, automata, and logic. In: Rozenberg, G., Salomaa, A.

(eds.) Handbook of Formal Languages, pp. 389–455. Springer, Heidelberg (1997).
https://doi.org/10.1007/978-3-642-59126-6 7

https://doi.org/10.1007/10720246_3
https://doi.org/10.1007/10720246_18
https://doi.org/10.1007/10720246_18
https://doi.org/10.1007/978-94-015-9586-5_6
https://doi.org/10.1007/978-94-015-9586-5_6
https://proceedings.kr.org/2022/14/
https://doi.org/10.1007/978-3-642-59126-6_7

Lorenzen-Style Strategies as Proof-Search
Strategies

Matteo Acclavio1(B) and Davide Catta2

1 University of Southern Denmark, Odense, Denmark
acclavio@imada.sdu.dk

2 Università degli studi di Napoli, Federico II, Naples, Italy

Abstract. Dialogical logic, originated in the work of Lorenzen and his student
Lorenz, is an approach to logic in which the validity of a certain formula is defined
as the existence of a winning strategy for a particular kind of turn-based two-
players games. This paper studies the relationship between winning strategies
for Lorenzen-style dialogical games and sequent calculus derivations. We define
three different classes of dialogical logic games for the implicational fragment
of intuitionistic logic, showing that winning strategies for such games naturally
correspond to classes of derivations defined by uniformly restraining the rules of
the sequent calculus.

Keywords: Dialogical Logic · Sequent Calculus · Game Semantics

1 Introduction

Dialogical logic is an approach to the study of logical reasoning, introduced by Loren-
zen and his student Lorenz [21,22], in which the validity of a formula is defined as
the existence of a winning strategy for a turn-based two-player game. These games are
articulated as argumentative dialogues in which the Proponent player P (she/her) aims
at showing that a given formula is valid, while the Opponent player O (he/him) aims at
finding possible fallacies disproving it. More precisely, each play starts with P assert-
ing a certain formula. O takes his turn and attacks the claim made by P according to
its logical form. The player P can, either, defend his previous claim or counter-attack.
The debate evolves following this pattern. The player P wins whenever she has the last
word, i.e., when O cannot attack anymore without violating the game’s rules.

Dialogical logic was initially conceived as a foundation for the meaning of the con-
nectives and quantifiers of intuitionistic logic, and it has gradually become detached
from its connection with intuitionism over the years, becoming a subject of research
in philosophical logic [5,10,23,28], in the formal semantics of natural language [8,9],
in proof theory [3,13,14,17,25,29,30] and inspiring a series of work in formal argu-
mentation theory and multi-agent systems [6,20,24,26,27]. In proof theory, the sound-
ness and completeness of a dialogical system is proved by establishing the equivalence
between the existence of a winning strategy in specific games and the notion of validity
in a given logic. This result is typically attained by defining a procedure that reconstructs
a formal derivation from a winning strategy (and vice versa) in a sound and complete
system for a given logic [3,12,13]. In this paper, we study the correspondence between

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
V. Malvone and A. Murano (Eds.): EUMAS 2023, LNAI 14282, pp. 150–166, 2023.
https://doi.org/10.1007/978-3-031-43264-4_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-43264-4_10&domain=pdf
https://doi.org/10.1007/978-3-031-43264-4_10

Lorenzen-Style Strategies as Proof-Search Strategies 151

certain classes of winning strategies for a given dialogic system and the structure of the
corresponding formal derivations in the sequent calculus. We study winning strategies
in which P moves are restricted according to O precedent moves (e.g., if O plays a
move A → B as a response to a move of P of a special kind, then the P has to immedi-
ately reply to this move). We prove that for each of the classes of winning strategies we
consider, we have a correspondence with a proof-search strategy in the sequent calcu-
lus GKi for the→-fragment of intuitionistic logic [33]. This latter result is obtained by
showing that it is possible to narrow the proof-search space in sequent calculus without
losing the soundness and completeness of the sequent system (as, e.g., in focusing [4])
and that there is a straightforward correspondence between such focused proofs and
winning strategies.

This work shows how interesting results on the combinatorics of proofs can be
obtained using dialogic logic, whose methods are not as well known as the ones from
more widely used proof systems such as analytic tableaux, sequent calculus and nat-
ural deduction. In fact, certain intuitive restrictions on the behavior of the players in
dialogical games allows us to express proof search strategies allowing us to reduce the
proof search space, without requiring convoluted definitions in sequent calculus. The
techniques developed in this work pave the way for further investigations on the use of
dialogical logic methods in designing proof systems with restricted research space.

Related Work. Various definitions of Lorenzen-style dialogue games have been pro-
posed over the years; the definitions that have a more direct relevance to our work
are those of Felscher’s E-dialogues [12] and Fermüller’s E-dialogues [3,13]. In an E-
dialogue, each O move is either a challenge to the immediately preceding P move or
a defense from it. In Felscher’s E-dialogues there are no challenges directed toward
atomic formulas, and P cannot assert an atomic formula unless O has already asserted
it. On the contrary, in Fermüller’s E-dialogue atomic formulas can be attacked, but only
by O and both players can freely assert them without restrictions. In our definition, we
choose a hybrid approach in which P can assert an atomic proposition freely as long
as that assertion is a challenge against a previous O assertion, and in which P cannot
assert an atomic proposition as a defense to a previous attack unless that proposition
has already been asserted byO. The assertion of an atomic proposition can be attacked,
but only by O and only if that assertion is a challenge.

Herbelin noted the formal correspondence between winning strategies for dialogi-
cal games and sequent calculus focusing proofs in his doctoral dissertation [17]. In the
fifth chapter of the dissertation, Herbelin shows that winning strategies for E-dialogues
(defined by Felscher in [12]), are in bijective correspondence with proofs of the LGQ
sequent calculus. Herbelin’s technique to transform winning strategies into sequent cal-
culus proofs is very elegant and will be used by us (with slight modifications) to achieve
the same result.

Another work that, in spirit, is closer to ours is the one presented by Stitch in [30].
In this work, the author studies a multi-agents variant of dialogical logic games. Such
games are turn-based games in which a coalition of Proponents plays against an Oppo-
nent: when it is their turn, each of the Proponent can make a different move. The play is
won by the Proponents if the Opponent cannot react to any of the Proponents’s moves of
the previous round. Stitch shows that Proponents winning strategies for such games cor-

152 M. Acclavio and D. Catta

respond to derivations in a multi-conclusion variant of the already cited LGQ sequent
calculus. Plays are formalized by Stitch as paths in a peculiar sequent calculus, and
strategies as derivations of this sequent calculus. While there may be some similarities
between Stitch’s works and ours, it is essential to note the significant differences in the
details. We here consider “traditional” dialogical games played by two players, and we
obtain the correspondence with restricted sequent calculus proof by restricting the way
in which the Proponent can play in a game. Moreover, we show how to transform win-
ning strategies into derivations (and vice versa) directly without the need of defining an
ad-hoc sequent calculus formalism.

Outline of the Paper. The paper is organized as follows: in Sect. 2 we state definitions
on dialogical logic, defining different classes of plays and strategies. In Sect. 3 we intro-
duce different sequent calculi for intuitionistic logic, obtained by restricting the rules of
the sequent calculus GKi [33]. In Sect. 4 we show how to sequentialize winning strat-
egy, that is, how to define a sequent calculus derivation associated to a given winning
strategy, and we prove the correspondence between classes of winning strategies and
classes of GKi derivations. In Sect. 5 we show the converse. In Sect. 6 we discuss the
obtained results and future works.

2 Dialogical Logic

In this section we fix the notation and terminology, as well as the formal definitions on
dialogical logic we use in this paper.

2.1 Notation and Terminology

We denote by |σ| the length of a countable1 sequence σ = σ1, σ2, . . . , by σ≤i the
prefix σ1, . . . , σi. The parity of an element σi in σ is the parity of i. It is even or odd
iff i is. Given two sequences σ and τ, we write σ � τ if σ = τ≤i for a given i ≤ |τ| and
we denote by σ · τ their concatenation.

A tree T = 〈N ,E〉 is a connected directed graph with a countable set of nodes N
containing a special node r ∈ N called root, and such that the set of edges E ⊂ N ×N
contains a unique edge 〈x, y〉 for every non-root node y ∈ N . If 〈x, y〉 ∈ E, we say that
x is the parent of y and that y is a child of x. A path (in T) is a sequence of nodes
P = x1, x2 . . . such that x1 is the root of T and xi+1 is a child of xi for all i > 0.

A branch is a maximal path. Given two nodes x and y, x is an ancestor of y and y
is a descendant of x if there is a path containing x whose last element is y (note that
every node is an ancestor and a descendant of itself). The height |x| of a node x is the
length of the (unique) path from the root to x. Thus, the root has height 1, a child of the
root has height 2 and so on. The height of a tree is the maximal height of its nodes.

In this paper we consider formulas generated from a countable non-empty set of
atomic propositionsA = {a, b, c, . . .} and the implication connective→ (and the paren-
thesis symbols). In the following, we may write (A1 · · · An) → c as a shortcut for

1 We use the adjective countable in the standard mathematical sense: a set is countable iff it is
in a one-to-one correspondence with a (finite or infinite) subset of the set of natural numbers.

Lorenzen-Style Strategies as Proof-Search Strategies 153

A1 → (· · · → (An → c) · · ·). We consider the implication fragments of intuition-
istic logic IL→, defined as the smallest set of formulas containing each instance of the
two axioms A→ (B→ A) and A→ (B→ C)→ ((A→ B)→ (A→ C)) and closed for
modus ponens, that is: if A ∈ IL→ and A→ B ∈ IL→ then B ∈ IL→. We say that a formula
F is valild if and only if F ∈ IL→2.

2.2 Dialogical Games

A challenge is a pair 〈?, s〉 where s is either an occurrence of the symbol •, in which
case such a challenge is said atomic, or where s is formula F. A defense is a pair 〈!, F〉
where F is a formula. An assertion (of F) is a non-atomic challenge 〈?, F〉 or a defense
〈!, F〉. A move is an assertion or an atomic-challenge. An augmented sequence is a
pair 〈σ, φ〉 where σ is a non-empty sequence of moves, and φ is a function mapping any
σi with i > 1 to a σ j = φ(σi) with opposite parity and such that j < i. A move σi in
σ is called P-move (denoted σPi) if i is odd, and O-move (denoted σOi) if i is even. It
is a repetition if there is j < i such that i and j have opposite parity and σi and σ j are
assertions of the same formula.

Definition 1. Let 〈σ, φ〉 be an augmented sequence and i ≤ |σ|.

1. A challenge σi is justified whenever:
(a) either σi is an atomic-challenge and φ(σi) is an assertion of an atomic formula;
(b) or σi = 〈?, A〉 and φ(σi) is an assertion of a formula A→ B.

2. A defense is σi is justified whenever:
(a) either σi and φ(φ(σi)) are assertions of a same atomic formula a ∈ A and φ(σi)

is an atomic challenge;
(b) or σi is an assertion of a formula B, φ(σi) is a justified challenge of the form
〈?, A〉, and φ(φ(σi)) is an assertion of A→ B.

If σi is a justified move, we say φ(σi) justifies σi and that σi is justified by φ(σi). A
challenge σi is unanswered if there is no defense σk such that σk is justified by σi. A
justified challenge σi is a counterattack if φ(σi) is a challenge. A justified sequence is
an augmented sequence in which any move except the first one is justified.

Definition 2 (Play). A play for F is a justified sequence p = 〈σ, φ〉 starting with P
defending F, that is, σ1 = 〈!, F〉 and such that the following holds for any 1 < i ≤ |σ|:

1. each O-move is justified by the immediately preceding P-move, that is, φ(σ2k) =
σ2k−1 for any 2k ≤ |σ|;

2. each P-move (but the first) is justified by some preceding O-move. In particular, if P
states a defense, such defense is justified by the last unanswered challenge stated by
O, that is, if σ2k+1 = 〈!, F〉, then φ(σ2k+1) = σ2h is the unanswered challenge with
maximal 2h ≤ 2k;

3. if P state a defense and such a defense is an assertion of an atomic formula, then
there must be another preceding O assertion of the same atomic formula. That is, if
σ2k+1 = 〈!, a〉 with a ∈ A, then σ2k+1 is a repetition;

2 This definition of validity corresponds to the standard one i.e., valid in every Kripke model
whose accessibility relation is a preorder and whose labeling is monotone. See e.g. [15,32].

154 M. Acclavio and D. Catta

4. Only O can challenge assertions of atomic formulas and these assertions must be
challenges. That is, if σi = 〈?, •〉, then i must be even and φ(σi) is a challenge.

A play p = 〈σ, φ〉 is finite if σ is. and its length |p| is the length σ. A move m is legal for
p if 〈σ · m, φ ∪ {〈m, σi〉}〉 is a play for a i ≤ |σ|.
Definition 3 (Winning Condition). The player P wins a play p = 〈σ, φ〉 if σ is finite
and ends with a P-move 〈!, a〉 with a ∈ A. Otherwise, O wins.

We now define two particular types of plays: Lorenzen-Felscher plays, and Stubborn
plays. In Lorenzen-Felscher plays P can assert an atomic formula only if O has already
asserted it. In Stubborn plays once P starts challenging an assertion of a complex for-
mula B, she will stubbornly continue to challenge the subformulas of that formula until
O asserts an atomic formula.

Definition 4. Let p = 〈σ, φ〉 be a play.

1. p is a Lorenzen-Felscher play (or LF-play) if any P-assertion of an atomic formula
is a repetition. That is, if σ2k+1 ∈ {〈!, a〉, 〈?, a〉 | a ∈ A}, then there is h ≤ k such that
σ2h = ±〈�, a〉 for � ∈ {?, !}

2. p is a Stubborn play (or ST-play) if the following hold:
(a) whenever O assert a complex formula A → B as a defense from a preceding

challenge, then P’s next move is a challenge of such a formula. That is, if σ′ ·
mO � σ and m = 〈!, A → B〉, then σ′ · mO · nP � σ for a n = 〈?, A〉 justified by
m.

(b) whenever O assert an atomic formula c as a defense from a preceding challenge,
then P’s next move is a defense asserting c. That is, if σ′ ·mO � σ and m = 〈!, c〉,
then σ = σ′ · mO · nP where n = 〈!, c〉.

Example 1. Consider the two following plays (both won by P). We represent a play
〈σ, φ〉 as a sequence of moves. We represent the function φ by drawing directed edges
from each move σi to the move φ(σi).

The play on the left is LF-play that is not a ST-play, while the one on the right is
ST-play that is not an LF-play. Remark that each atomic challenge 〈?, •〉 is an O-move,
and it is justified by a P-challenge asserting an atomic formula.

Lorenzen-Style Strategies as Proof-Search Strategies 155

Definition 5. Let A be a formula. The game for A is a pair GA = 〈RA, φA〉 where
RA = 〈NA,EA〉 is a tree of moves and φ : NA → NA is a map such that:

1. for each path P of RA, the pair 〈P, φA|P〉 is a play for A;
2. for each node v of RA, all and only the children of v are legal move of the play in GA

ending with v.

A node v of G is a P-node (resp. O-node) if is its height is odd (resp. even).
A strategy for A is a pair S = 〈T , ψ〉 such that T is a subtree of RA (and ψ is defined

as the restriction of φA on the nodes in T) in which every O-node has at most one child.
It is winning when T is finite and any of its branch is a play won by P. A Lorenzen-
Felscher strategy (resp. Stubborn strategy) is a strategy such that each branch of S is
a LF-play (resp. a ST-play).

Example 2. Below we provide a representation of Lorenzen-Felscher winning strategy
(left) and of a winning Stubborn strategy (right) for the formula a → b → ((b → c) →
(a → c)) as tree of moves. As in Example 1 we represent the function φ by drawing
directed edges from each move σi to the move φ(σi). However, we here we omit the
edges with source an O-move because φ(σ2k+2) = σ2k+1 for all k ∈ N.

3 Sequent Calculus

In this section, we recall the definition of the sequent calculus GKi from [33] which
is sound and complete for the logic IL→. We then provide three classes of derivations
obtained by imposing restrictions on rules applications, and we show that they are still
sound and complete with respect to the same logic.

A sequent is an expression Γ � C where C is a formula and Γ is a finite (possibly
empty) multiset of formulas. A derivation D is a finite tree of sequents constructed
using the rules in Fig. 1 in which each leaf is obtained by an Ax-rule and each non-leaf
sequent is obtained by →R-rule or a →L-rule. A sequent Γ � C is GKi-provable if it
admits a derivation in the sequent calculus GKi, whose root (or conclusion) is Γ � C.

156 M. Acclavio and D. Catta

Fig. 1. Rules for the sequent calculus GKi. In each rule we have underlined its principal formula
in the conclusion, and the active formulas in each premise.

Theorem 1 [33]. The sequent calculus GKi is sound and complete for IL→, that is a
formula F is valid if and only if � F is provable in GKi.

We characterize derivations according to their shape.

Definition 6. Let D be a derivation of some sequent Δ � F in GKi. We say that:

1. D is a strategic derivation (or S-derivation) when each left-hand side premise of
→L-rule of the form Γ � A→ B is the conclusion of a→R-rule;

2. D is a LF-derivation if the left-hand side premise of each →L-rule is always the
conclusion of a→R-rule or an Ax-rule;

3. D is a ST-derivation if is a S-derivation and the active formula of the right-hand
premise of each →L-rule in D is the principal formula of this premise. That is,
if Γ, A → B, B � C is the right-hand premise of a →L-rule, then either it is the
conclusion of a Ax if B = C is atomic, or it is the conclusion of a→L-rule. In both
cases B is the principal formula of Γ, A→ B, B � C

Remark 1. Every LF-derivation is a S-derivation by definition. If a sequent Γ � C
occurs in a S-derivation D as conclusion of a →L-rule and as left-hand premise of
(another) →L-rule with principal formula A → B, then A = C and A is an atomic
formula. Similarly, if a sequent Γ, A → B, B � C is the right-hand premise of→L-rule
in a ST-derivation, then C is atomic.

LF-derivations were introduced by Herbelin in the fifth chapter of his PhD thesis
(where they are called LGQ-derivations [17]). Similarly, ST-derivations are a variant
of derivations in the sequent calculus LJT, also introduced by Herbelin in [16]. The
only difference is that the sequent calculus LJT contains an explicit contraction rule
and operates over sequents of the form Γ; A � C or Γ; ∅ � C with Γ set of formula
occurences, and A and C formulas. The following lemma will prove useful later on.

Lemma 1 (Weakening admissibility). If a sequent Γ � C admits an ST-derivation,
then there is a ST-derivation D� of the sequent Γ, Δ � C for any finite multiset Δ. More-
over, D� contains the same rules of D (with the same principal and active formulas).

Proof. It suffices to consider the derivation D� obtained by adding Δ to any leaf of D .

Since the sequent calculus GKi is a sound and complete with respect to IL→, we can
prove that the set of S-derivations and the set of LF-derivations are also sound and
complete with respect to IL→.

Theorem 2. Let Γ � C be a sequent. It is GKi-provable iff it admits a S-derivation iff it
admits a LF-derivation.

Proof. The fact that anyGKi-provable sequents admits a LF-derivation has been proved
in [7]. We conclude since any LF-derivation is a S-derivation and any S-derivation is a
derivation in GKi.

Lorenzen-Style Strategies as Proof-Search Strategies 157

3.1 Games on Hyland-Ong Arenas

In order to prove that also the set of ST-derivations are sound and complete for IL→, we
establish a correspondence between winning innocent strategies for games on Hyland-
Ong Arenas [19] and ST-derivations. We then conclude by levering on the result of
soundness and (full-)completeness of these winning strategies with respect to IL→.

Note 1. Both games in dialogical logic and game on Hyland-Ong arenas formalize
proofs as winning strategies over games defined by a formula F. However, some termi-
nology in these two paradigms identify objects of different nature. For this reason, we
here list the main differences.

Dialogical Logic Games on Hyland-Ong arenas

a play σ1, σ2, . . . starts i = 1 odd a play τ0, τ1, . . . starts i = 0 even

a play starts with a P-move a play starts with a O-move

a move is a subformula of F plus
a polarity

a move corresponds to an atom
in F

To facilitate distinguishing as much as possible the two formalisms, in games over
Hyland-Ong arenas we denote the proponent P by • the opponent O by ◦.

Definition 7. A sink of a directed acyclic graph G = 〈V, →〉 is a vertex v such that
〈v,w〉 �→ for no w ∈ V. The arena of a formula F is the A-labeled directed acyclic

graph (where is a directed acyclic graph, and 	 a label-
ing function associating to each v ∈ V[[[F]]] an atom 	(v) ∈ A) defined as follows:

with I = {(s[[A]], s[[B]])} where s[[A]] and s[[B]] are the unique (by construction) sink of [[A]]
and [[B]] respectively. The arena of a sequent A1, . . . , An � B is defined as the arena
[[(A1 · · · An)→ B]].

Definition 8. Let F be a formula. A justified sequence for F is a pair 〈τ, f 〉 where
τ = τ0, . . . , τn is a non-empty sequence of moves (i.e., occurrences of vertices of [[F]]),
and f is a function mapping each τi with i > 0 in its justifier f (τi) = τ j for a j < i such
that i + j is odd (i.e. if i is even, then j is odd and vice versa).

The pointer of a move τi with i > 0 is the pair 〈τi, f (τi)〉; we identify f with the set
of pointers it defines. A move τi is a ◦-move (resp. •-move) if i is even (resp. i is odd).

A view is a justified sequence 〈τ, f 〉 such that:

– it is a play, that is, the initial move τ0 is the sink of [[F]];
– it is ◦-shortsighted, that is, f (τi) = τi−1 for each non-initial ◦-move τi;
– it is •-uniform, that is, 	(τi) = 	(τi−1) for each •-move τi.

Remark 2. By definition, it follows that each ◦-move (resp. •-move) is an occurrence of
a vertex v of [[F]] having even (resp. odd) distance d(v) from the sink s[[F]] of [[F]], where
the distance d(v) is defined as the number of vertices in a path from v to s[[F]] minus one.
The proof that each of such a path in an arena has the same length is provided in [31].

158 M. Acclavio and D. Catta

The predecessor of a view is the result of deleting the final move (and its pointer);
the converse is the successor relation.

Definition 9. Let F be a formula. A winning innocent strategy (or WIS) Σ for F is a
finite, non-empty prefix-closed set of views for F such that:

1. The view containing a single occurrence of the sink of [[F]] belongs to Σ;
2. Σ is ◦-complete: if 〈ρ · v, f 〉 ∈ Σ with v a •-move, then every successor of 〈ρ · v, f 〉 is

in Σ;
3. Σ is •-deterministic and •-total: if 〈ρ · v, f 〉 ∈ Σ and v is an ◦-move, then exactly one

successor of 〈ρ · v, f 〉 belongs to Σ.

Theorem 3 [11,19]. A formula F is valid iff there is a WIS for F.

Lemma 2. Let Γ � F be a sequent. For any WIS Σ for Γ � F there is a canonically
defined ST-derivation DΣ of Γ � F.

Proof. The proof is by induction on the pair 〈|Σ |, |F|〉 where |Σ | is the cardinality of Σ
and |F| is the height of F3.

1. if F = c is atomic, then Σ must contain the set of views {c◦, c◦ ·c•} where the justifier
of c• is c◦. We have two cases
(a) either c◦ · c• is maximal in Σ, and by ◦-completeness we deduce that Γ = Δ, c.

In this case DΣ is a proof of Δ, c � c obtained by an Ax-rule.
(b) or c◦ · c• is not maximal in Σ. By ◦-completeness, we conclude that Γ =
Δ, (A1 · · · An) → c for some Δ and n ≥ 1. For each i ≤ n let ai be the root
of [[Ai]] and let Σi be the prefix-closed set of views containing each view of Σ
that starts with ai. We obtain that Σi is a WIS for Γ � Ai for any i and that
|Σi| < |Σ |. By induction hypothesis, for each i ≤ n there is a canonically defined
ST-derivation DΣi of Γ � Ai. By weakening admissibility (Lemma 1), we have
a derivation D�Σi

of Γ�i � Ai with Γ�i = Γ, (Ai · · · An) → c, . . . , An → c for any
i ∈ {2, . . . , n}. We define DΣ as the following ST-derivation:

DΣ1

Γ � A1

D �Σ2

Γ�2 � A2

D �Σn

Γ�n � An
Ax
Γ, (A2 · · · An)→ c, . . . , An → c, c � c

Γ, (A2 · · · An)→ c, . . . , An → c � c
...

Γ, (A3 · · · An)→ c, (A2 · · · An)→ c � c

Γ, (A2 · · · An)→ c � c
→L

Γ � c

Notice that, in virtue on the restriction on the application of the →L-rule
in ST-derivation, this is the unique way to define DΣ from the derivations
DΣ�1 , . . . ,DΣn .

3 The height of a formula is the height of its construction tree.

Lorenzen-Style Strategies as Proof-Search Strategies 159

2. If F = A → B then Σ is also a strategy for Γ, A � B. Since |B| < |A → B|, by
induction hypothesis there is a ST-derivation DΣ of Γ, A � B and we can conclude
by the application of a→R-rule.

Theorem 4. Let F be a formula. It is valid if and only if it admits a ST-derivation.

Proof. If F is valid, then by Theorem 1 there is GKi derivation of � F. By Theorem 3
there is aWIS Σ for � F, therefore a ST-derivationDΣ by Lemma 2. We conclude since
the converse trivially holds because every ST-derivation is a GKi-derivation.

4 From Dialogical Logic Strategies to Derivations

In this section, we show how to associate to any winning dialogical strategy for a for-
mula F a S-derivation of the sequent � F. We first show how we associate a sequent to
any O-move of a strategy.

Definition 10. Let F be any formula and S = 〈T , φ〉 be a strategy for F. Recall that
each path P of T is a sequence of moves. The O-tree of S is the tree TO defined as
follows:

1. the set of nodes of TO contains each O node of T , an additional node r and nothing
else;

2. a node v of TO is the parent of a node v′ iff either v = r and v′ = P2 is the second
move of a branch P in T , or there is a branch P in T such that v = P2k and
v′ = P2k+2.

We recursively define the function Seq. associating to any node v of TO a sequent
Seq(v):=Γv � Fv and it is defined as follows:

1. if |v| = 1, then v is the root r. Thus Γv = ∅ and Fv = F;
2. If |v| = k + 1, then there is a P-node t which is the parent of v in S and a node v′

which is the parent of v in TO, with associated sequent Seq(v′) = Γv′ � Fv′ .
(a) if v = 〈?, •〉, then t asserts an atomic formula b. We let Γv = Γv′ and Fv = b;
(b) if v = 〈?, A〉, then t asserts a formula A→ B. We let Γv = Γv′ , A and Fv = B;
(c) otherwise v = 〈!, B〉 and we let Γv = Γv′ , B and Fv = Fv′ .

The following proposition states that the formulas asserted by O in the play ending
with v are precisely those that are contained in Γv.

Proposition 1. Let S = 〈T , φ〉 be a strategy and let TO be its O-tree. For every node v
of TO and for every formula B we have that B ∈ Γv if and only if there is an ancestor v′

of v that asserts B.

Proof. If B ∈ Γv, we can prove that there is an ancestor v′ of v that asserts B by induction
on |v|. If v is the root of TO, then the proposition is vacuously true. Otherwise we
conclude by inductive hypothesis since either v is an assertion of B, and then Γv = Γv′ , B
where v′ is the parent of v, or v = 〈?, •〉, and then Γv = Γv′ where v′ is the parent of v.

The converse implication immediately follows by the definition of Seq.

160 M. Acclavio and D. Catta

Given a winning strategy S = 〈T , φ〉 for F, we can show that each leaf of TO is
labeled by a sequent that is conclusion of an Ax-rule of the sequent calculus.

Proposition 2. Let S = 〈T , φ〉 be a winning strategy and m a leaf of T . If n is the
parent of m in T and m = 〈!, a〉, then Γn is of the form Δ, a � a.

Proof. Since S is winning, then m is the last move of a play p that is won by P. Conse-
quently, by Condition 2 in the definition of play, m is a repetition. Thus the atom a has
already been asserted byO in the play. By the definition of Seq, we deduce that a ∈ Γn.

Moreover, m is justified by a O-challenge t. As a consequence, t is either justified
by an assertion of B→ a for some formula B, or by an assertion 〈?, a〉. By the definition
of Seq, we conclude the formula Ft of the sequent associated by Seq to t is a. By the
Condition 2 in the definition of play, any O-move t1, . . . , tk that is after t is a defense
move. This implies, by definition of Seq, that Fti = Ft for all i; therefore Ft = Fn = a.

The two following technical propositions will be used in the proof of Lemma 3.

Proposition 3. Let S = 〈T , φ〉 be a winning strategy, TO be its O-tree and m a node
of TO. If m is the parent of a defense move m′ asserting B, then A → B ∈ Γm for some
formula A.

Proof. Let B be the unique branch of S containing both m and m′, and let t be P-move
that is the parent of m. By the definition of strategy, 〈B, φ|B〉 is a play. Consequently, m
is justified by t and t must be a challenge asserting some formula A. This means that the
O-move φ(t) is an assertion of A→ B. Since φ(t) is an ancestor of m, we conclude that
A→ B ∈ Γm.

Proposition 4. Let S = 〈T , φ〉 be a winning strategy, TO be its O-tree and m a node of
TO. If m is the parent of m′ and m′ is counterattack asserting A, then A → B ∈ Γm for
some formula B.

Proof. The proof is entirely similar to the one of the previous proposition.

Definition 11. Let S = 〈T , φ〉 be a winning strategy, and TO be its O-tree. We define
a function Φ associating a tree of sequent D v rooted in Γv � Fv to each node v of TO.
Such a function is defined by recursion on the number of descendants of v.

1. If the number of descendant of v is one, then v is a leaf of TO. We associate to v a
tree whose only node is Γv � Fv.

2. Suppose that D x is defined for all vertex of having at most n ≥ 1 descendants and
let v be a node with k + 1 descendants. Let t be the unique P-node of T such that v
is the parent of t in T :
(a) If t is a challenge asserting some formula A, then there are two cases:

– A is an atomic formula a, and v has (in TO) two children v1 = 〈?, •〉 and
v2 = 〈!, B〉. Then the tree of sequents D v is defined as follows:

D v1

Γ, a→ B � a

D v2

Γ, a→ B, B � C
→L

Γ, a→ B � C

Lorenzen-Style Strategies as Proof-Search Strategies 161

where Γ, a → B � a and Γ, a → B, B � C are the sequents associated to v1
and v2 respectively.

– A = A1 → A2 and v has two children v1 = 〈?, A1〉 and v2 = 〈!, B〉 (in TO)
for some formula B. The tree of sequents D v is

D v1

Γ, (A1 → A2)→ B, A1 � A2 →R

Γ, (A1 → A2)→ B, � A1 → A2

D v2

Γ, (A1 → A2)→ B, B � C
→L

Γ, (A1 → A2)→ B � C

where Γ, (A1 → A2) → B, A1 � A2 and Γ, (A1 → A2), B � C are the
sequents associated to v1 and v2 respectively.

(b) If t is a defense asserting A → B, then v has a unique child v1 = 〈?, A〉 in TO
and D v is defined as:

D v1

Γ, A � B
→R

Γ � A→ B

Lemma 3. For every winning strategy S = 〈T , φ〉, for every node v of TO, the tree of
sequent D v is a S-derivation of Γv � Fv

Proof. The proof is by induction on the height of D v. If the height is 1, then the lemma
is immediately established in virtue of Proposition 2. The inductive cases follow by
induction hypothesis, by construction of D v and by Propositions 3 and 4.

Theorem 5. For any winning strategy S = 〈T , φ〉, the tree of sequent DS associated to
the root-node of TO is a S-derivation of � F, moreover:

1. if S is a Lorenzen-Felscher winning strategy, then DS is a LF-derivation;
2. if S is a Stubborn winning strategy, then DS is a ST-derivation.

Proof. The fact that DS is a S-derivation of � F follows immediately by Lemma 3. We
only give a proof of (2) because the proof of (1) is easier.

Consider a sequent in DS that is obtained by an application of a →L-rule and let
Γ, A → B, B � C be its right-hand premise. We must show that B is the principal
formula of this latter sequent. Remark that the sequent Γ, A→ B, B � C is associated to
aOmove 〈!, B〉 inTO. There are two cases: if B = B→ B1, then sinceS is Stubborn, we
must have that child t of 〈!, B〉 is a challenge 〈?, B1〉. By the definition of the function
Φ, the sequents associated to the child v1 and v2 are of the form Γ, A → B, B � B1

and Γ, A → B, B, B2 � C, this means that B = B1 → B2 is the principal formula of
Γ, A→ B, B � C. The case in which B is an atomic formula is similar.

5 From Derivations to Dialogical Logic Strategies

In this section, we show how to transform any S-derivation of � F in a winning strategy
for F. To do so, we define a function that associates to any path P of D a play for F.

162 M. Acclavio and D. Catta

Definition 12. Let P = S 1, . . . , S n be a path in a S-derivation D of F. We associate
with P a sequence of moves σP by induction on |P|

– If |P| = 1 then σP = 〈!, F〉;
– if |P| = n and P = P′, S then we consider the following cases:

1. If S is the conclusion of an Ax-rule whose principal formula is a, then:
(a) if S is the premise of a→R-rule then the principal formula of this last rule

must be B→ a for some formula B. We define σP = σP
′ · 〈?, B〉 · 〈!, a〉;

(b) if S is the left-hand premise of →L-rule, then the principal formula of this
last rule must be a → B for some formula B; we define σP = σP

′ · 〈?, •〉 ·
〈!, a〉;

(c) if S is the right-hand premise of a→L-rule whose principal formula is C →
D, then we define σP = σP′ · 〈!,D〉 · 〈!, a〉;

2. If S is the conclusion of an→R-rule whose principal formula is A→ B then:
(a) if S is the left-hand premise of an→L-rule, then σP = σP

′

(b) if S is the right-hand premise of an →L-rule whose principal formula is
C → D, then σP = σP

′ · 〈!,D〉 · 〈!, A→ B〉;
(c) if S is the premise of an→R-rule then, the principal formula of such a rule

must be G → (A → B) for some formula G. We define σP = σP
′ · 〈?,G〉 ·

〈!, A→ B〉.
3. If S is the conclusion of an→L-rule whose principal formula is A→ B then:

(a) if S is the premise of a →R-rule whose principal formula is C → D, then
σP = σP

′ · 〈?,C〉 · 〈?, A〉
(b) If S is the left-hand premise of a→L-rule whose principal formula is C →

D, then C must be an atomic formula. We define σP = σP
′ · 〈?, •〉 · 〈?, A〉.

(c) If S is the right-hand premise of →L whose principal formula is C → D,
then we define σP = σP

′ · 〈!,D〉 · 〈?, A〉.

Proposition 5. Let D be ST-derivation of � F, P a path in D and Γ � C the last
sequent of this path. If B ∈ Γ, then there is an O-move in σP that asserts B.

Proof. By induction on the length of P.

By the above proposition, if P = S 1, . . . , S n is a path of D and if a formula occur-
rence A is the principal formula of a →L-rule in one of the S i, then there is a O-move
σPi that asserts A. For any formula occurrence A, we denote by mA the first move in σP

that asserts such formula occurrence A.

Definition 13. Let D be a S-derivation and let P be a path in D . We define a function
φP from σP to σP by the following cases:

1. φP(σPi) = σ
P
i−1 if σPi is an O move;

2. φP(σPi) = mA if σPi is a P move and S n is the conclusion of a→L whose principal
formula occurrence is A;

3. φP(σPi) = σ
P
k if σPi is a P move and a defense, and σPk is the last unanswered O

challenge in σP≤i−1.

Lorenzen-Style Strategies as Proof-Search Strategies 163

Lemma 4. Let D be a S-derivation derivation of � F. If P is a path in D , then pP =
〈σP, φP〉 is a play for F. Moreover, if P is a branch of D , then 〈σP, φP〉 is won by P.

Proof. Suppose that the proposition holds for any path whose length is at most k ≥ 1
and let P = P′, S by a path of length k + 1. We should check that σP

′ · mO · nP and φP

forms a play where m and n are the two moves associated to S . There are as many cases
as those detailed in the Definition 12 of σP. We only consider some of them. Let t be
the last move of σP

′
.

– If S is obtained by an→L-rule whose principal formula is A → B and S is the
left-hand premise of another→L-rule whose principal formula is C → D, then m =
〈?, •〉, n = 〈?, A〉, φP(m) = t and φP(n) = mA→B. The move t is the Pmove associated
to the last element Σ � G of P′. This latter sequent is obtained by a →L. Thus, by
construction t is 〈?,C〉, and since C is atomic, and t is a justified move by induction
hypothesis, then m is justified. The move mA→B is an O-move that asserts A → B,
since n = 〈?, A〉 and mA→B is justified by hypothesis, then m is justified as well.

– If S is obtained by an →R-rule whose principal formula is A → B and S is the
premise of another →R-rule whose principal formula is G → (A → B), then m =
〈?,G〉, n = 〈!, A → B〉, φP(m) = t and φP(n) = m. The move t is associated to the
last sequent Γ � G → (A → B) of P′. This latter sequent is obtained by a→R with
principal formula G → (A → C) thus t = 〈!,G → (A → C)〉 and since t is justified
by induction hypothesis, then also m is. The fact that n is justified is immediate.

– If S is obtained by an Ax-rule whose principal formula is a and S is the premise
of →R, then the principal formula of this rule must be B → a for some B. In this
case m = 〈?, B〉 and n = 〈!, a〉. Remark that t = 〈B → a〉, and since t is justified by
induction hypothesis, then also m is. By definition of φP, we have that φP(n) = m
and thus also m is justified. We should check that n = 〈!, a〉 is a repetition. This
easily follows by observing that S must be of the form Δ, a, B � a for some Δ and by
applying Proposition 5.

The fact that pP is won by P whenever P is a branch, follows from the fact that the last
move of pP must be 〈!, a〉 for some atom a.

Lemma 5. Let D be a proof of � F and P a path in D . The following holds:

1. if D is a ST-derivation then 〈σP, φP〉 is a S-play;
2. if D is a LF-derivation then 〈σP, φP〉 is a LF-play.

Proof. Both statement are proven by induction on |P|. We only detail the interesting
case of (2), i.e., when P = P′, S and the lastO-move of σP is a defense asserting either
a complex formula A → B or an atomic formula a. By the construction of σP, S can
only be a sequent Γ � G that is the right-hand premise of a→L with principal formula
C → (A → B) (resp C → a). As a consequence, G must be an atomic formula b,
and thus either Γ � b is obtained by another →L-rule or by an Ax-rule. In the former
case, since D is a ST-derivation, then A → B is the principal formula of Γ � b, and by
construction of σP its last move must be 〈?, A〉 and must be justified by 〈!, A→ B〉 and
we can conclude. In the latter case, since D is an ST-derivation, then b = a and Γ � G
is Δ, a � a for some multiset Δ. Thus, the last move of σP must be 〈!, a〉.

164 M. Acclavio and D. Catta

Let D be a S-derivation of � F. Let TD be the tree in which any branch is equal to a
σB for a branch B of D . Let φD be the union of all φB for a branch B of D .

Theorem 6. If D is a S-derivation of � F, then SD = 〈TD , φD 〉 is a winning strategy
for F. Moreover, if D is a LF-derivation then SD is a Lorenzen-Felscher strategy and
if D is a ST-derivation, then SD is a Stubborn strategy.

Proof. Each branch of SD is a play won by P in virtue of Lemma 4. The other con-
ditions in the definition of strategy follows easily by the construction of the sequences
composing SD . The fact that SD is a Lorenzen-Felscher (resp. Stubborn) strategy when
D is a LF-derivation (resp. ST-derivation) follows from Lemma 5.

Corollary 1. Strategies, Lorenzen-Felscher Strategies and Stubborn Strategies are
sound and complete for IL→.

We conclude by establishing that there is a bijective correspondence between the
classes of winning strategies and derivations that we have considered.

Theorem 7. The following statements hold:

1. The set of S-derivations is in one-to-one correspondence with the set of winning
strategies;

2. The set of LF-derivations is in one-to-one correspondence with the set of Lorenzen-
Felscher winning strategies

3. The set of ST-derivations is in one-to-one correspondence with the set of Stubborn
winning strategies.

Proof. The procedure we have used to transform winning strategies into derivations
(see Definition 11) and the one we have used to obtain the converse result (see Defini-
tions 12 and 13) are one the inverse of the other. Thus, the result follows.

6 Conclusion and Future Work

We have defined different classes of Lorenzen-style dialogical plays for intuitionistic
logic by restricting the way in which P can play during a game. We have shown that
winning strategies for such games naturally corresponds to particular GKi derivations
obtained by limiting the application of GKis-rules in proof search procedures.

The correspondence between Stubborn strategies and ST-derivation, as well as the
result we used to prove that the latter are sound and complete with respect to IL→

(Lemma 2), suggest the existence of a one-to-one correspondence between these strate-
gies and Hyland-Ong Winning Innocent Strategies. In future work, we want to study
this correspondence in order to use dialogical logic to define denotational semantics of
the simply typed lambda calculus [18], for which Hyland-Ong game semantics is a fully
abstract denotational semantics [11,19]. Moreover, the results in [1,2] would suggest a
way to define a dialogical system for the constructive modal logic CK.

The semantics of formal argumentation systems are often specified through the help
of concepts originated in dialogic logic (e.g. E-strategies see [24]). We think it would
be interesting to study a more abstract version of our stubborn strategies in the context
of formal argumentation.

Lorenzen-Style Strategies as Proof-Search Strategies 165

Acknowledgments. The first author is supported by Villum Fonden, grant no. 50079. The sec-
ond author is supported by the PRIN project RIPER (No. 20203FFYLK).

References

1. Acclavio, M., Catta, D., Straßburger, L.: Game semantics for constructive modal logic.
In: Das, A., Negri, S. (eds.) TABLEAUX 2021. LNCS (LNAI), vol. 12842, pp. 428–445.
Springer, Cham (2021). https://doi.org/10.1007/978-3-030-86059-2 25

2. Acclavio, M., Catta, D., Straßburger, L.: Towards a denotational semantics for proofs in
constructive modal logic (2021). https://hal.archives-ouvertes.fr/hal-03201439. Preprint

3. Alama, J., Knoks, A., Uckelman, S.: Dialogues games for classical logic (short paper), pp.
82–86. Universiteit Bern (2011)

4. Andreoli, J.M.: Logic programming with focusing proofs in linear logic. J. Log. Comput. 2,
297–347 (1992)

5. Barrio, E., Clerbout, N., Rahman, S.: Introducing consistency in a dialogical framework for
paraconsistent logic (online 2018). Log. J. IGPL/Log. J. IGPL 28(5), 953–972 (2020). https://
halshs.archives-ouvertes.fr/halshs-01689148

6. Booth, R., Gabbay, D.M., Kaci, S., Rienstra, T., van der Torre, L.W.N.: Abduction and
dialogical proof in argumentation and logic programming. In: Schaub, T., Friedrich, G.,
O’Sullivan, B. (eds.) ECAI 2014–21st European Conference on Artificial Intelligence, 18–
22 August 2014, Prague, Czech Republic - Including Prestigious Applications of Intelligent
Systems (PAIS 2014). Frontiers in Artificial Intelligence and Applications, vol. 263, pp. 117–
122. IOS Press (2014). https://doi.org/10.3233/978-1-61499-419-0-117

7. Catta, D.: From strategies to derivations and back an easy completeness proof for first order
intuitionistic dialogical logic (2022). https://hal.archives-ouvertes.fr/hal-03188862. Working
paper or preprint

8. Catta, D., Moot, R., Retoré, C.: Dialogical argumentation and textual entailment. In:
Loukanova, R. (ed.) Natural Language Processing in Artificial Intelligence—NLPinAI 2020.
SCI, vol. 939, pp. 191–226. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-
63787-3 7

9. Catta, D., Stevens-Guille, S.J.: Lorenzen won the game, Lorenz did too: dialogical logic
for ellipsis and anaphora resolution. In: Silva, A., Wassermann, R., de Queiroz, R. (eds.)
WoLLIC 2021. LNCS, vol. 13038, pp. 269–286. Springer, Cham (2021). https://doi.org/10.
1007/978-3-030-88853-4 17

10. Crubellier, M., Marion, M., McConaughey, Z., Rahman, S.: Dialectic, the dictum de omni
and ecthesis. Hist. Philos. Logic 40(3), 207–233 (2019)

11. Danos, V., Herbelin, H., Regnier, L.: Game semantics & abstract machines. In: Proceedings,
11th Annual IEEE Symposium on Logic in Computer Science, New Brunswick, New Jersey,
USA, 27–30 July 1996, pp. 394–405. IEEE Computer Society (1996). https://doi.org/10.
1109/LICS.1996.561456

12. Felscher, W.: Dialogues, strategies, and intuitionistic provability. Ann. Pure Appl. Logic
28(3), 217–254 (1985). https://doi.org/10.1016/0168-0072(85)90016-8

13. Fermüller, C.G.: Parallel dialogue games and hypersequents for intermediate logics. In:
Cialdea Mayer, M., Pirri, F. (eds.) TABLEAUX 2003. LNCS (LNAI), vol. 2796, pp. 48–
64. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-45206-5 7

14. Fermüller, C.G.: Connecting sequent calculi with Lorenzen-style dialogue games. In: Paul
Lorenzen-Mathematician and Logician, pp. 115–141 (2021)

15. Fitting, M.: Intuitionistic Logic, Model Theory and Forcing. North-Holland Pub. Co., Ams-
terdam (1969)

https://doi.org/10.1007/978-3-030-86059-2_25
https://hal.archives-ouvertes.fr/hal-03201439
https://halshs.archives-ouvertes.fr/halshs-01689148
https://halshs.archives-ouvertes.fr/halshs-01689148
https://doi.org/10.3233/978-1-61499-419-0-117
https://hal.archives-ouvertes.fr/hal-03188862
https://doi.org/10.1007/978-3-030-63787-3_7
https://doi.org/10.1007/978-3-030-63787-3_7
https://doi.org/10.1007/978-3-030-88853-4_17
https://doi.org/10.1007/978-3-030-88853-4_17
https://doi.org/10.1109/LICS.1996.561456
https://doi.org/10.1109/LICS.1996.561456
https://doi.org/10.1016/0168-0072(85)90016-8
https://doi.org/10.1007/978-3-540-45206-5_7

166 M. Acclavio and D. Catta

16. Herbelin, H.: A λ-calculus structure isomorphic to Gentzen-style sequent calculus structure.
In: Pacholski, L., Tiuryn, J. (eds.) CSL 1994. LNCS, vol. 933, pp. 61–75. Springer, Heidel-
berg (1995). https://doi.org/10.1007/BFb0022247

17. Herbelin, H.: Séquents qu’on calcule: de l’interprétation du calcul des séquents comme cal-
cul de λ-termes et comme calcul de stratégies gagnantes. Phd thesis, Université Paris 7
(1995). https://tel.archives-ouvertes.fr/tel-00382528/file/These-Her95.pdf

18. Hindley, J.R.: Basic Simple Type Theory. Cambridge Tracts in Theoretical Computer Sci-
ence, vol. 42. Cambridge University Press (1997). Corrected edition, 2008

19. Hyland, M., Ong, L.: On full abstraction for PCF: I, II, and III. Inf. Comput. 163(2), 285–
408 (2000). https://doi.org/10.1006/inco.2000.2917, http://www.sciencedirect.com/science/
article/pii/S0890540100929171

20. Kacprzak, M., Budzynska, K.: Reasoning about dialogical strategies. In: Graña, M., Toro, C.,
Howlett, R.J., Jain, L.C. (eds.) KES 2012. LNCS (LNAI), vol. 7828, pp. 171–184. Springer,
Heidelberg (2013). https://doi.org/10.1007/978-3-642-37343-5 18

21. Lorenzen, P.: Logik und agon. Atti Del XII Congresso Internazionale Filosofia 4, 187–194
(1958)

22. Lorenzen, P., Lorenz, K.: Dialogische Logik. Wissenschaftliche Buchgesellschaft [Abt. Ver-
lag] (1978)

23. Mcconaughey, Z.: Existence, meaning and the law of excluded middle. A dialogical approach
to Hermann Weyl’s philosophical considerations. Klesis - Revue Philos. 46 (2020). https://
hal.archives-ouvertes.fr/hal-03036825

24. Modgil, S., Caminada, M.: Proof theories and algorithms for abstract argumentation frame-
works. In: Simari, G.R., Rahwan, I. (eds.) Argumentation in Artificial Intelligence, pp. 105–
129. Springer, Boston (2009). https://doi.org/10.1007/978-0-387-98197-0 6

25. Pavlova, A.: Dialogue games for minimal logic. Log. Log. Philos. 30(2), 281–309 (2020).
https://doi.org/10.12775/LLP.2020.022, https://apcz.umk.pl/LLP/article/view/LLP.2020.022

26. Prakken, H.: Coherence and flexibility in dialogue games for argumentation. J. Log. and
Comput. 15(6), 1009–1040 (2005). https://doi.org/10.1093/logcom/exi046

27. Prakken, H., Sartor, G.: A dialectical model of assessing conflicting arguments in legal rea-
soning. Artif. Intell. Law 4(3–4), 331–368 (1996). https://doi.org/10.1007/BF00118496

28. Rahman, S., Clerbout, N.: Constructive type theory and the dialogical approach to meaning.
Baltic Int. Yearb. Cogn. Log. Commun. 8, 1–72 (2013). https://doi.org/10.4148/1944-3676.
1077, https://halshs.archives-ouvertes.fr/halshs-01225723

29. Rahman, S., Clerbout, N., Keiff, L.: On dialogues and natural deduction. In: Primiero, G.
(ed.) Acts of Knowledge: History and Philosophy of Logic, pp. 301–336. College Publica-
tions, Tributes (2009). https://halshs.archives-ouvertes.fr/halshs-00713187

30. Sticht, M.: Multi-agent dialogue games and dialogue sequents for proof search and schedul-
ing. In: Fiorentini, C., Momigliano, A. (eds.) Proceedings of the 31st Italian Conference on
Computational Logic, Milano, Italy, 20–22 June 2016. CEUR Workshop Proceedings, vol.
1645, pp. 21–36. CEUR-WS.org (2016). https://ceur-ws.org/Vol-1645/paper 20.pdf

31. Straßburger, L., Heijltjes, W., Hughes, D.J.D.: Intuitionistic proofs without syntax. In:
LICS 2019–34th Annual ACM/IEEE Symposium on Logic in Computer Science. pp. 1–
13. IEEE, Vancouver (2019). https://doi.org/10.1109/LICS.2019.8785827, https://hal.inria.
fr/hal-02386878

32. Troelstra, A., van Dalen, D.: Constructivism in Mathematics (vol. 2). Studies in Logic and
the Foundations of Mathematics, vol. 123. North-Holland (1988)

33. Troelstra, A., Schwichtenberg, H.: Basic Proof Theory. Cambridge University Press, USA
(1996)

https://doi.org/10.1007/BFb0022247
https://tel.archives-ouvertes.fr/tel-00382528/file/These-Her95.pdf
https://doi.org/10.1006/inco.2000.2917
http://www.sciencedirect.com/science/article/pii/S0890540100929171
http://www.sciencedirect.com/science/article/pii/S0890540100929171
https://doi.org/10.1007/978-3-642-37343-5_18
https://hal.archives-ouvertes.fr/hal-03036825
https://hal.archives-ouvertes.fr/hal-03036825
https://doi.org/10.1007/978-0-387-98197-0_6
https://doi.org/10.12775/LLP.2020.022
https://apcz.umk.pl/LLP/article/view/LLP.2020.022
https://doi.org/10.1093/logcom/exi046
https://doi.org/10.1007/BF00118496
https://doi.org/10.4148/1944-3676.1077
https://doi.org/10.4148/1944-3676.1077
https://halshs.archives-ouvertes.fr/halshs-01225723
https://halshs.archives-ouvertes.fr/halshs-00713187
https://ceur-ws.org/Vol-1645/paper_20.pdf
https://doi.org/10.1109/LICS.2019.8785827
https://hal.inria.fr/hal-02386878
https://hal.inria.fr/hal-02386878

SHAPE: A Framework for Evaluating
the Ethicality of Influence

Elfia Bezou-Vrakatseli1 , Benedikt Brückner2 , and Luke Thorburn1(B)

1 King’s College London, London, UK
{elfia.bezou vrakatseli,luke.thorburn}@kcl.ac.uk

2 Imperial College London, London, UK
b.brueckner21@imperial.ac.uk

Abstract. Agents often exert influence when interacting with humans
and non-human agents. However, the ethical status of such influence is
often unclear. In this paper, we present the SHAPE framework, which
lists reasons why influence may be unethical. We draw on literature from
descriptive and moral philosophy and connect it to machine learning
to help guide ethical considerations when developing algorithms with
potential influence. Lastly, we explore mechanisms for governing influ-
ential algorithmic systems, inspired by regulation in journalism, human
subject research, and advertising.

Keywords: influence · manipulation · mental interference · nudging ·
choice architecture · suasion · persuasion · cognitive liberty · mental
integrity · mental self-determination · freedom of thought · preference
change

1 Introduction

Influence—which we define broadly as one agent taking an action that causes
a change in another agent—is ubiquitous in multi-agent systems. If the agent
being influenced is a person or is otherwise deserving of moral consideration,
then it is widely accepted that some types of influence (e.g., blackmail, extor-
tion) are unethical. In many settings where human communication is mediated
by algorithms, however, the ethical status of influence is less clear. For example,
interacting with a recommender system may change our preferences [25,43,64]
and emotions [63], exposure to online political advertising can change our vot-
ing intentions [31], and interacting with large language models can change our
opinions [10,58]. In such cases, it can be easier to sense that there may be an
ethical principle being violated than to articulate the principle of concern.

There is a substantial body of work from descriptive and moral philosophy
on concepts such as “influence” [102], “manipulation” [76], “mental interference”
[37], “nudging” [91], “choice architecture” [94], “suasion” and “persuasion” [15],
“cognitive liberty” [95], “mental integrity” [37], “mental self-determination” [21],
freedom of thought [65], and preference change [25]. The definition of each of
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
V. Malvone and A. Murano (Eds.): EUMAS 2023, LNAI 14282, pp. 167–185, 2023.
https://doi.org/10.1007/978-3-031-43264-4_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-43264-4_11&domain=pdf
http://orcid.org/0009-0004-8954-246X
http://orcid.org/0000-0003-0699-1688
http://orcid.org/0000-0003-4120-5056
https://doi.org/10.1007/978-3-031-43264-4_11

168 E. Bezou-Vrakatseli et al.

these terms, and the situations in which the phenomena they describe can be
considered ethical, are all contested. We do not attempt to stipulate definitions or
resolve normative disagreements in this paper. Rather, we draw on this literature
to highlight specific reasons why some types of influence might be unethical,
and link these concerns to relevant work from computer science and artificial
intelligence (AI). Our hope is that the framework created through this synthesis
will help designers of algorithmic systems that influence people to think more
concretely about the ethical considerations relevant to their work.

Before introducing the framework we would like to stress that not all influ-
ence is bad or morally questionable. Our definition of influence (given in the
opening sentence of this article) is so broad as to encompass all causal relation-
ships between agents. In this view, all human communication—much of which
is beneficial—constitutes a form of influence. In particular, rational persuasion
(“the unforced force of the better argument” [52]) is often delineated as being
a morally acceptable form of communication, and hence influence [98]. Without
aiming to provide a perfect characterisation of wrongful influence, our view is
that influence is ethically acceptable unless it possesses a property which makes
it wrongful, and this paper is an attempt to compile a list of such properties.

Method. To arrive at the SHAPE framework we conducted an extensive (but
unstructured) literature search in order to compile a list of reasons why influence
may be unethical. This longlist of reasons was iteratively grouped into sets of
similar concerns, discussed, supplemented with additional literature searches,
and re-grouped until we arrived at the current version of the framework. This
process was not straightforward due to the fact that a number of categories have a
non-negligible overlap, and our decisions about how to hierarchically arrange the
relevant ideas are inevitably somewhat contingent and subjective. Additionally,
we emphasise that this article is not a true systematic review, and the amount of
literature relevant to the ethics of influence is vast. Nonetheless, we are confident
that the chosen categories are informative, if not perfectly disjoint, and to the
best of our knowledge we are the first to provide a framework to assess the
ethicality of influential AI systems.

2 Concerns

In this section we develop our SHAPE (Secrecy, Harm, Agency, Privacy, Exo-
geneity) framework by listing reasons why influence may be unethical, drawing
on work from moral philosophy and linking it to relevant concepts in computer
science and AI. We do not claim that this list is comprehensive, but we do
think it covers the most commonly-cited objections to influence. Similarly, we
do not claim that this is a perfect taxonomy or that each of the reasons given
is perfectly distinct from the others, but we do argue that the five groups of
reasons—secrecy, harm, agency, privacy, and exogeneity—capture meaningful
families of objections. The aim of the framework is to provide guidance about
whether a particular instance of influence might be unethical to those in charge
of designing the agent or process which exerts the influence. While the terms in

SHAPE: A Framework for Evaluating the Ethicality of Influence 169

Box 1. The SHAPE framework for considering the ethicality of influence.

the acronym give an overview of concerns, the corresponding sections provide
a more detailed analysis for each. An overview of the framework summarising
these reasons is given in Box 1, and a discussion of the concept of intent (which
is relevant to all five reasons) is given in Box 2.

2.1 Secrecy

First, influence may be unethical if it involves secrecy. In the literature, variations
of this idea have also been referred to as “covertness” [39], “deception” [72],
“lying” [71], or “trickery” [76]. Articulating precise definitions for these terms
is an open philosophical problem [67], but many have been proposed. The core
idea is perhaps most neutrally defined as an “information asymmetry”, where
the influencer has more information than the influencee [35]. More narrowly,

170 E. Bezou-Vrakatseli et al.

deception has been defined as any situation where an agent A intentionally
causes another agent B to have a false belief, with necessary requirement that
agent A does not believe it to be true [26].

Secrecy of all sorts may be wrong—when it is wrong—because it violates a
moral norm or duty, specifically “a duty to take care not to cause another to form
false beliefs based on one’s behaviour, communication, or omission” [97], because
it constitutes a breach of an implicit promise to be open and truthful [84], or
because it constitutes a betrayal of trust [71]. The wrongness of secrecy may also
in some cases be due to downstream consequences of the secrecy, rather than due
to the secrecy itself. For example, some argue that when an intent to influence
is hidden from the influencee, it is “less likely to trigger rational scrutiny” [76]
and thus bypasses reason, reducing agency (Sect. 2.3).

That said, secrecy may not always be unethical, as in cases of “benevolent
deception” [3]. For example, it may be beneficial for the rehabilitation of patients
who have suffered stokes or other brain injuries if their physical therapist robot
obfuscates their true progress towards recovery [19].

Here, we distinguish between two types of secrecy as it relates influence:
secrecy of intent and secrecy of means.

Secrecy of Intent. Influence may be unethical if the influence is intended by the
influencer, and the influencee is not fully aware of this intent. For example, a
video deepfake [73] intended to influence public opinion in a certain direction
(perhaps by misrepresenting the actions of a political figure) may be unethical
because the people who are influenced are not made fully aware of this intention.
Had they been aware, they would have assigned less credence to the information
contained in the video [68].

Secrecy of Means. Influence may also be unethical if the influencee is not fully
aware of the means by which they are being influenced. For example, a user
interacting with a sophisticated social media recommender system may be fully
aware that the algorithm is designed to maximise the total amount of time they
spend on the platform—so there is no secrecy of intent—but be unaware of
the strategies the recommender is employing to achieve this, such as through
the occasional recommendation of content that is increasingly sympathetic to a
conspiracy theory [105].

Technical Work. Of the many ethical objections to influence, secrecy has
perhaps received the most attention in the context of AI. For example, the siz-
able literature on algorithmic transparency, explainability, and interpretability
(see, e.g., [27,69]) represents an attempt to mitigate information asymmetries
between AI systems and their human users. There is also an emerging literature
that seeks to provide formal definitions of deception from a causal perspective,
along with mechanisms for detecting it in AI systems [88,113,114,116]. Algo-
rithmic agents can also fall prey to influence involving secrecy, as in cases of
adversarial attacks [70], data-poisoning [70], reward function tampering [44],
and manipulating human feedback [115].

SHAPE: A Framework for Evaluating the Ethicality of Influence 171

2.2 Harm

Second, influence may be unethical if it causes harm. There are many different
forms of harm, with some of the most prominent categories including reduced
physical or mental well-being [78], bias [118], unfairness [118], or injustice [101].
In general, harm and related concepts such as “suffering” [56] are expansively
but inconsistently defined. Definitions range from those that equate harm with
any “physical or other injury or damage” [23], to those state harm is a condition
of “interference with individual liberty”, originating from the “harm principle”
of John Stuart Mill [81], a definition which would liken harm to a reduction in
agency (Sect. 2.3).

Ethical (if not legal) views on what does and doesn’t count as harm are nor-
mative and contested, and this is notably true of harms that may arise from
speech acts in algorithmically-mediated online fora. For example, “safe spaces”
are viewed by some as a means of avoiding psychological harm and others as
an institution which, if realised, inflicts epistemic harms [6]. Regardless of the
position one takes in such debates, it seems defensible that there are many
forms of harm which are widespread but not frequently well-articulated, and
some of these harms can plausibly be promulgated by influential AI systems.
One example of such harms has been labelled epistemic injustice [61]. Varieties
of epistemic injustice include testimonial injustice, where an individual is dis-
credited as a credible source of knowledge, and hermeneutic injustice, where an
individual experiences reduced capacity to make sense of their own experiences
due to a lack of a relevant framework, shared vocabulary, or common knowledge
of a shared experience. Both forms of epistemic injustice may be exacerbated by
language models or recommender systems, if such systems are heavily used and
systematically privilege certain perspectives.

It should be emphasised that harm, while perhaps intrinsically injurious, need
not always be unethical. A surgeon making a cut to a patient’s skin to fix their
broken leg may cause temporary harm and pain, but is arguably acting in the
best interests of the patient. In such cases, influence would then not be unethical
despite causing harm. The assessment of harmful influence is further complicated
by the fact that it can be very hard to define when influence is actually harmful,
particularly influence over mental properties such as preferences [25].

Technical Work. The concept of harm is a central topic among AI policy-
makers, with the prevention of harm being underscored as a critical principle
for AI systems in the European Commission’s report on trustworthy AI. The
report asserts that AI systems should never cause adverse effects on any human
being [54]. Harm, particularly in the physical sense induced by AI systems,
has been scrutinized extensively within the domain of self-driving cars through
thought experiments like the trolley problem [41].

Another significant area of research is AI in healthcare, where there is a strong
emphasis on the minimization of harm potential. AI systems in healthcare are
expected not only to elevate the well-being of individuals but also to consider the

172 E. Bezou-Vrakatseli et al.

Box 2. The concept of intent, as it relates to the ethics of influence.

potential psychological or mental harm they may cause, such as those resulting
from discrimination or neglect [78].

A prominent challenge in this field is assigning responsibility when harm does
occur, given the numerous actors typically involved in the development process.
This issue is particularly salient in the context of recommender systems, which
often serve to influence human behaviour. Even when these systems are designed
with benevolent intentions—such as supporting healthy decision-making—they
can unintentionally cause adverse effects [40].

2.3 Agency

Third, influence may be unethical if it reduces human agency, or related concepts
such as “self-determination” [21] and “autonomy” [85]. There are many proposed
definitions of agency [46]. One account defines agency as the act of an agent
making use of its ability to act [90]. In this view, agency requires that executed
actions are intended, and result in part from the agent’s reasoning processes. To

SHAPE: A Framework for Evaluating the Ethicality of Influence 173

reduce human agency, then, is to disrupt the link between an agent’s intentions
or reasoning processes and their subsequent actions.

Several works link influence with a reduction in agency. Being influenced into
performing an action reduces the agency of an individual, at least in terms of
the decision about whether to perform that action [103]. Human agency is often
characterised as having intrinsic moral value, and reductions in agency may be
wrong regardless of whether that reduction in agency is paternalistic and results
in improved welfare for the person affected. Not respecting the competency of an
individual to make their own decisions is seen as a lack of appreciation of them
being a rational agent [96] or even a degradation [75]. Perhaps more unambigu-
ously, reduced agency can be wrong if it involves impairments to the psycholog-
ical capabilities of the subject thought to be the basis for free will [100]. The
wrongness of reductions in human agency may also stem from the fact that the
interests of the affected agent are being devalued or deprioritised relative to
those of the another party (see Sect. 2.5) [86,96].

However, it has also been argued that reductions in agency are not always
wrong, and that rational agents often do not oppose influence that has this
effect [22]. Instead, agency may be valuable instrumentally because is often
a useful means to an end. We sometimes place ourselves in situations where
we have reduced agency—such as following a recipe or studying a prescribed
curriculum—if it helps to achieve a goal.

Here, we give five accounts of what it means for influence to reduce agency:
removing options, imposing conditional costs or offers, influencing without con-
sent, bypassing reason, or being irresistible. These are likely not mutually
exclusive.

Removal of Options. Influence may be unethical if it removes options previously
available to the influencee [49]. For example, an autonomous vehicle may in some
implementations prevent its human driver from deciding to take a certain route
to a destination that they otherwise would have taken. Options may be removed
explicitly (by refusal) or implicitly (by a failure to provide an affordance that
would enable the option). Options can also be removed effectively, without being
absolutely removed, by imposing conditional costs (see below) that are so severe
as to make the option untenable. Such removal of options, where the influenced
party can be said to have no choice or no acceptable choice, has been labelled
“coercion” [62,77,119].

Conditional Costs or Offers. Influence may be unethical if it imposes conditional
costs or offers on the influenced depending on the action they choose to take,
thus altering the relative appeal of different options. In philosophical literature,
this type of influence is sometimes called “pressure” [76]. Conditional costs can
be seen as a form of threat, though the severity of the threatened cost can vary
significantly. Examples of costs that might be threatened include a loss of time
or energy (e.g., nudging [101] or browbeating [12]), a loss of social status (e.g.,
peer pressure), or physical violence (e.g., kidnappers demanding a ransom).

174 E. Bezou-Vrakatseli et al.

It is possible to use carrots as well as sticks: the costs imposed may be
opportunity costs. For example, the influencer may attach positive incentives or
“offers” (e.g., money or status) to certain alternatives, which reduces the relative
value of others [87]. Such incentives are not always unethical. For example, it is
generally considered acceptable to offer salaries to influence people to work for
you. Baron [12] suggests that such incentives are only unethical if they mean the
influenced adopts a particular alternative for “the wrong sort of reason” [12].
Which sorts of reasons are considered wrong will be context specific.

Consent. Influence may be unethical if it occurs without (informed) consent,
thus potentially ignoring a decision a person has made while exercising their
agency [45]. For example, consent is plausibly the morally distinguishing factor
between strenuous exercise and forced labour.

Bypassing Reason. Influence may be unethical if it bypasses human reason [51].
Mechanisms of influence which involve the bypassing of reason include: cus-
tomised presentation of information, the flooding of agents with irrelevant infor-
mation to crowd out relevant information, and the withholding of certain infor-
mation [17]; exploitation of known imperfections in human decision-making such
as group pressure [7]; exploitation of the “truth effect”, which is the fact that
frequent repetition of a statement increases the probability of individuals to find
that statement to be true [53,92]; anchoring [5]; and appeals to emotion such as
fear [57].

Irresistibility. Influence may be unethical to the extent that it is difficult to
resist [17,28]. Attempts at influence can be made difficult to resist through the
use of techniques such as flattery or seduction. Use of such techniques arguably
reduces agency of those influenced. This has direct implications on the moral
responsibility of an agent for their actions. Such responsibility has been claimed
to not require “regulative control”, i.e. access to alternative possibilities, but
merely “guidance control” as control over the mechanism which steers their
behaviour. An agent who is influenced into acting in a certain way through
mechanisms they cannot resist is therefore not morally responsible for the con-
sequences of their actions [47].

Technical Work. There is an emerging body of technical work that seeks to
quantify degrees of agency, often from a causal perspective [29,60]. There has
also been work that seeks to use AI to support human agency in certain contexts,
such as in learning environments [34] or on social media platforms [59].

2.4 Privacy

Influence may also be unethical if it is made possible by a violation of privacy.
Privacy is a fundamental aspect of our lives that refers to our ability to con-
trol access to our personal information. It encompasses the right to keep certain

SHAPE: A Framework for Evaluating the Ethicality of Influence 175

information about ourselves hidden from others and is vital for protecting our
individuality, fostering trust, and preserving our personal freedom. The more
information is known about a person, the greater the extent to which it is possible
to identify mechanisms by which they can be influenced. Nissenbaum [74] iden-
tifies three privacy principles frequently cited when justifying privacy-enhancing
laws: (1) limiting surveillance of citizens and use of information about them
by agents of government, (2) restricting access to sensitive, personal, or private
information, (3) curtailing intrusions into places deemed private or personal.

In the first years after the internet was established a number of very serious
invasions of individual privacy were committed [110]. There is currently a con-
sensus on condemning such actions, but the concern of privacy is still relevant
and a very complex one. When training an agent, privacy can be inadvertently
breached through data collection, data aggregation, predictions or third-party
access [120]. One example of a practice that often raises privacy concerns is
personalised ads. The extensive collection of user data raises concerns about
the transparency of data collection practices and the potential for unautho-
rised access or misuse of personal information [109]. More generally, the per-
sonalised, virtual experience that such practices result in “fractures the public
sphere into individual parallel realities” [110], while also being more likely to
promote extreme content, and less likely to be noticed by experts who have
historically been responsible for fact-checking (e.g., journalists).

As the concern of privacy is very complex, it is important to be able to identify
the type of information that is private and which should therefore be protected
(and not used without our consent). Ben and Lazar [13] distinguish between the
following types of data: training (i.e., data collected to train predictive models)
vs targeting (i.e., data used for targeting); sensitive1 (i.e., data about a person
that they might reasonably not want others to know) vs nonsensitive; and sub-
divide sensitive into intrinsically sensitive(i.e., if it is sensitive when considered
on its own) vs extrinsically sensitive (if it is sensitive only when considered in
combination with other data points). Privacy concerns arise when the training
data consists of sensitive and nonsensitive information [11]; a model trained on
that data can uncover a link between intrinsically nonsensitive properties P , Q,
and R, and intrinsically sensitive property S. This means that if we have access
to values for these non-sensitive properties for a user, the chances of successfully
predicting S increase [13].

We address the privacy concern on two levels: as an individual breach of
contract or trust, and as a wrong associated with collective surveillance.

Breach of Contract. Thinking back to the three privacy principles, principles
(2) and (3) address the individual level. A privacy breach constitutes a violation
of these principles. Principle (3) encompasses the traditional idea of sanctity, in
support of the notion of people “shielding themselves from the gaze of others”,
whereas principle (2) encapsulates the nature of the information collected, and

1 An extensive analysis of the notion of “sensitive information” and why it is critical
can be found in [111].

176 E. Bezou-Vrakatseli et al.

potentially disseminated, which should be protected when it meets societal stan-
dards of intimacy, sensitivity, or confidentiality [74]. The ethical ramifications of
influence encompass the broader societal implications of privacy violations; a
breach of contract in these cases constitutes a degradation of human dignity.
This extends beyond the individual level since individual privacy infringements
can violate the right to privacy of other people, and the consequences of privacy
losses are experienced collectively [110].

Surveillance. The issue of surveillance adds an extra layer to the aforementioned
collective experience of privacy loss. The first of the three principles is dedicated
to this concern, and it constitutes a special case of the more general principle of
protecting individuals against unacceptable government domination. The right
to privacy can thus also be understood by referring to general, well-defined,
and generally accepted political principles addressing the balance of power [74]
(See also Sect. 2.5). An invasion of the privacy of an agent gives others power
over that agent [110]. On a societal level, citizens’ autonomy is threatened when
they lose their privacy. The more data are collected, the easier it becomes to
anticipate the following actions of an individual, the more prone people become
to influence, and the easier it becomes to justify this influence. Government
surveillance becomes, thus, more powerful once they gain access to said data.
This is a critical concern since “a largely unregulated tech industry is detrimental
to free and democratic societies” [110].

Technical Work. While the most obvious approaches to mitigating privacy
concerns relating to influence involve simply deciding whether or not to pro-
ceed with a given product deployment or research project, there is also research
on technical approaches to respecting privacy in certain applications of influ-
ential AI. These include work on differential privacy [1,38] and contextual
integrity [14,33].

2.5 Exogeneity

Lastly, influence may be unethical if it advances interests not held by the agent
being influenced, a property we call exogeneity.

We present two articulations of unethical exogeneity in influence: the dis-
parate advancing of exogenous and endogenous interests, and the exercise of
power.

Exogenous Interests. Influence may be unethical if it advances exogenous goals
or interests (those not held by the influencee) over endogenous goals or interests
(those held by the influencee). In this account, the wrongness of influence stems
not from the fact that the influencer benefits (they may not benefit), or from
harm to the influencee in absolute terms (they may not be harmed), but from
the relative advantaging of the interests of another agent over the interests of
the influencee [13,76,86].

SHAPE: A Framework for Evaluating the Ethicality of Influence 177

Power. Influence may also be unethical if it empowers one party over another,
or constitutes an exercise of power of one party over another. There is consider-
able philosophical literature on how power is instantiated in technology [16], as
well as related concepts including “control” and “domination” [9]. For example,
manipulating the opinion of a single individual can be difficult [31], but widely-
used recommender systems present a vector by which a minority might steer
the opinions and behaviour of a larger population, through an accumulation of
small or stochastic effects. Another example of power being abused is the use of
AI-enabled ad targeting to influence election results [18].

Technical Work. Monitoring whose interests are being served through the
use of an AI system lends itself naturally to questions of fairness, and there is
substantial literature on both formal measures of fairness [82] and algorithms
for promoting it [112]. Another relevant line of work relates the development of
mechanisms for diffusing or decentralising the power that is exercised through
the use of influential AI systems. This includes both technical social choice mech-
anisms for choosing objective functions [66], and the use of participatory insti-
tutions such as citizen assemblies [79] and collective response systems [32,80] to
provide democratic oversight.

3 Governance of Influence

For the most part, the concerns listed in Sect. 2 point to general or abstract prin-
ciples that can inform an understanding of the ethical status of different kinds
of influence. In order for such an understanding to be widely adopted into the
practices of those designing and building influential algorithmic systems, we need
mechanisms for deciding, disseminating and enforcing what best practice looks
like in specific, concrete terms. Here we point to three such mechanisms (pro-
fessional cultures, ethics review processes, government regulation) via examples
from other domains (scientific research with human subjects, journalism, adver-
tising).

3.1 Professional Culture

In journalism there is minimal formal oversight of ethical practice, but nonethe-
less there is broad understanding of a core set of ethical principles which are
reinforced by educational institutions, professional organisations, and workplace
culture [48,89]. These principles commonly include mention of accuracy or truth-
fulness [83], objectivity or impartiality [117], and avoidance of harm through the
use of anonymity or avoiding coverage of certain topics (e.g. suicide) [24,36].
Such principles informally govern influence in the context of journalism. Sim-
ilar ethical principles exist in computer science, but these are not as widely
adopted [20,30].

178 E. Bezou-Vrakatseli et al.

3.2 Institutional Ethics Reviews

Formal ethics review processes, such as those conducted by most academic insti-
tutions in advance of research that involves human subjects, are one way of
formalising a consideration for the ethics of influence. Reviewers involved in
such processes already grapple with the use of techniques such as deception or
trickery to create experimental conditions [8], and with what it means to have
meaningfully consented to be subject to such influence [55]. Examples of such
review processes in practice are numerous, in AI research a number of prestigious
conferences and journals have implemented such mechanisms through checklists
and the provision of guidelines [99]. The same holds true for industry where the
widespread deployment of AI-based algorithms has lead to the establishment of
ethics review processes by large companies such as Adobe or Google [4,50].

3.3 Regulation

In many jurisdictions, the advertising industry is subject to laws that place
limits on the content of advertising and the contexts in which certain types
of advertising can appear. These often require that advertising avoid outright
deception (e.g., truth-in-advertising laws) [106], and ban ads in contexts where
they are thought to cause harm (e.g., the ban of gambling, alcohol, or fast food
ads during childrens’ programs or televised sports) [2,104]. Such laws formally
specify classes of influence which are collectively deemed unacceptable in the
context of advertising.

Since AI is a fast-moving field, implementing regulatory guidelines for it
presents a challenge. Though not specifically targeted at AI systems, the Euro-
pean Union’s General Data Protection Regulation (GDPR) sets out a number
of rules which implicitly impose constraints on Artificial Intelligence as well [93].
These rules will be concretised by the Union’s Artificial Intelligence Act which
it aims to pass by the end of 2023 and which is specifically targeted at the regu-
lation of AI Systems [42]. Further examples of planned AI regulation include the
attempts in the United Kingdom where a white paper was recently published
which will be used as the basis for the country’s AI regulations [107] as well as
the US which published a Blueprint for an AI Bill of Rights [108].

4 Conclusion

In this paper we have synthesised some of the most commonly cited reasons—
captured by the acronym SHAPE—why influence can be unethical. Specifically,
these are that influence can (1) involve secrecy regarding the intent or means
of influence, (2) cause harm, (3) reduce human agency by removing options,
imposing conditional costs or offers, occurring without consent, bypassing rea-
son, or being irresistible, (4) violate privacy by relying on the use of private
information in a way that breaches an assumed contract or being implicated in
mass surveillance, and (5) advance exogenous interests at the expense of endoge-
nous interests, or give one group power over another. We linked each of these

SHAPE: A Framework for Evaluating the Ethicality of Influence 179

general principles to relevant concepts from computer science and artificial intel-
ligence, and described three models of ethical governance from other domains—
professional culture which emphasises ethics, institutional ethics reviews, and
regulation—which could be employed to translate such general principles into
practice.

We envisage the SHAPE framework being used by designers of influential AI
systems as a way to structure their thinking when considering the ethical impacts
of their systems. For example, those building a product based on a large language
model (LLM) might systematically work through Box 1, enumerating the exam-
ples of each of the SHAPE concerns that arise in the context of their product.
These might include user-to-LLM feedback loops that are not understood by the
user (secrecy), defamatory hallucinations (harm), affordances that require extra
effort by users to surface certain perspectives in model outputs (agency), use of
personal data to improve user retention (privacy), and adversely paternalistic
choices in the design of the product (exogeneity), among others. Such a list could
then be translated into a list of actions to be taken to remove or mitigate each
of these ethical concerns.

For the most part, we have in this paper refrained from stipulating particular
definitions or drawing definitive lines between ethical and unethical influence.
Such decisions will likely be context-specific and contested, and our focus has
instead been on drawing connections between work in philosophy and computer
science. That said, it would be valuable for future work to consider the extent
to which these concerns over influence could be made more precise by focus-
ing on narrower domains, such as LLM-enabled chat interfaces or social media
recommender systems.

Acknowledgements. The authors were supported by UK Research and Innovation
[grant number EP/S023356/1], in the UKRI Centre for Doctoral Training in Safe and
Trusted Artificial Intelligence (safeandtrustedai.org), co-located at King’s College Lon-
don and Imperial College London.

References

1. Abadi, M., et al.: Deep learning with differential privacy. In: Proceedings of the
2016 ACM SIGSAC Conference on Computer and Communications Security, pp.
308–318. CCS 2016, Association for Computing Machinery, New York, NY, USA
(2016). https://doi.org/10.1145/2976749.2978318

2. Adams, J., Tyrrell, R., Adamson, A.J., White, M.: Effect of restrictions on televi-
sion food advertising to children on exposure to advertisements for ‘less healthy’
foods: Repeat cross-sectional study. PLOS ONE 7(2), 1–6 (2012). https://doi.
org/10.1371/journal.pone.0031578

3. Adar, E., Tan, D.S., Teevan, J.: Benevolent deception in human computer interac-
tion. In: Proceedings of the SIGCHI Conference on Human Factors in Computing
Systems, pp. 1863–1872 (2013)

4. Adobe Inc.: AI Ethics. https://www.adobe.com/uk/about-adobe/aiethics.html
5. Adomavicius, G., Bockstedt, J.C., Curley, S.P., Zhang, J.: Do recommender sys-

tems manipulate consumer preferences? A study of anchoring effects. Inf. Syst.
Res. 24(4), 956–975 (2013). https://doi.org/10.1287/isre.2013.0497

https://safeanadtrustedai.org
https://doi.org/10.1145/2976749.2978318
https://doi.org/10.1371/journal.pone.0031578
https://doi.org/10.1371/journal.pone.0031578
https://www.adobe.com/uk/about-adobe/aiethics.html
https://doi.org/10.1287/isre.2013.0497

180 E. Bezou-Vrakatseli et al.

6. Anderson, D.: An epistemological conception of safe spaces. Soc. Epistemology
35(3), 285–311 (2021). https://doi.org/10.1080/02691728.2020.1855485

7. Asch, S.E.: Opinions and social pressure. Sci. Am. 193(5), 31–35 (1955). https://
doi.org/10.1038/scientificamerican1155-31

8. Athanassoulis, N., Wilson, J.: When is deception in research ethical? Clin. Ethics
4(1), 44–49 (2009). https://doi.org/10.1258/ce.2008.008047

9. Aytac, U.: Digital domination: Social media and contestatory democracy. Polit.
Stud. 00323217221096564 (2022). https://doi.org/10.1177/00323217221096564

10. Bai, H., Voelkel, J.G., Eichstaedt, J.C., Willer, R.: Artificial intelligence can per-
suade humans on political issues (2023). https://doi.org/10.31219/osf.io/stakv.
https://osf.io/stakv/

11. Barocas, S., Nissenbaum, H.: Big data’s end run around anonymity and consent.
Priv. Big Data Public Good: Frameworks Engagem. 1, 44–75 (2014)

12. Baron, M.: Manipulativeness. In: Proceedings and Addresses of the American
Philosophical Association, vol. 77, no. 2, pp. 37–54 (2003). http://www.jstor.org/
stable/3219740

13. Benn, C., Lazar, S.: What’s wrong with automated influence. Can. J. Philos.
52(1), 125–148 (2022). https://doi.org/10.1017/can.2021.23

14. Benthall, S., Gürses, S., Nissenbaum, H., et al.: Contextual integrity through the
lens of computer science. Now Publishers (2017)

15. Berdichevsky, D., Neuenschwander, E.: Toward an ethics of persuasive technology.
Commun. ACM 42(5), 51–58 (1999). https://doi.org/10.1145/301353.301410

16. Bloomfield, B.P., Coombs, R.: Information technology, control and power: the
centralization and decentralization debate revisited. J. Manage. Stud. 29(4), 459–
459 (1992)

17. Blumenthal-Barby, J.S.: A framework for assessing the moral status of manip-
ulation, In: Weber, C.C.M. (ed.) Manipulation, pp. 121–134. Oxford University
Press (2014)

18. Boine, C.: AI-enabled manipulation and EU law (2021). https://doi.org/10.2139/
ssrn.4042321

19. Brewer, B.R., Fagan, M., Klatzky, R.L., Matsuoka, Y.: Perceptual limits for a
robotic rehabilitation environment using visual feedback distortion. IEEE Trans.
Neural Syst. Rehab. Eng. 13(1), 1–11 (2005)

20. BCS, The Chartered Institute for IT: Code of conduct for BCS members (2022).
https://www.bcs.org/media/2211/bcs-code-of-conduct.pdf

21. Bublitz, J.C., Merkel, R.: Crimes against minds: on mental manipulations, harms
and a human right to mental self-determination. Crim. Law Philos. 8(1), 51–77
(2014). https://doi.org/10.1007/s11572-012-9172-y

22. Buss, S.: Valuing autonomy and respecting persons: manipulation, seduction, and
the basis of moral constraints. Ethics 115(2), 195–235 (2005). https://doi.org/
10.1086/426304

23. Cambridge dictionary (2023). https://dictionary.cambridge.org. Accessed 23 July
2023

24. Carlson, M.: Whither anonymity? journalism and unnamed sources in a changing
media environment. In: Journalists, Sources, and Credibility, pp. 49–60. Routledge
(2010)

25. Carroll, M., Hadfield-Menell, D., Russell, S., Dragan, A.: Estimating and penal-
izing preference shift in recommender systems. In: Proceedings of the 15th ACM
Conference on Recommender Systems, pp. 661–667. RecSys 2021, Association
for Computing Machinery, New York, NY, USA (2021). https://doi.org/10.1145/
3460231.3478849

https://doi.org/10.1080/02691728.2020.1855485
https://doi.org/10.1038/scientificamerican1155-31
https://doi.org/10.1038/scientificamerican1155-31
https://doi.org/10.1258/ce.2008.008047
https://doi.org/10.1177/00323217221096564
https://doi.org/10.31219/osf.io/stakv
https://osf.io/stakv/
http://www.jstor.org/stable/3219740
http://www.jstor.org/stable/3219740
https://doi.org/10.1017/can.2021.23
https://doi.org/10.1145/301353.301410
https://doi.org/10.2139/ssrn.4042321
https://doi.org/10.2139/ssrn.4042321
https://www.bcs.org/media/2211/bcs-code-of-conduct.pdf
https://doi.org/10.1007/s11572-012-9172-y
https://doi.org/10.1086/426304
https://doi.org/10.1086/426304
https://dictionary.cambridge.org
https://doi.org/10.1145/3460231.3478849
https://doi.org/10.1145/3460231.3478849

SHAPE: A Framework for Evaluating the Ethicality of Influence 181

26. Carson, T.L.: Lying and Deception: Theory and practice. OUP Oxford, Oxford
(2010)

27. Carvalho, D.V., Pereira, E.M., Cardoso, J.S.: Machine learning interpretability:
a survey on methods and metrics. Electronics 8(8), 832 (2019). https://doi.org/
10.3390/electronics8080832. https://www.mdpi.com/2079-9292/8/8/832

28. Cave, E.M.: What’s wrong with motive manipulation? Ethical Theor. Moral
Pract. 10(2), 129–144 (2007). https://doi.org/10.1007/s10677-006-9052-4

29. Chan, A., et al.: Harms from increasingly agentic algorithmic systems. In: Pro-
ceedings of the 2023 ACM Conference on Fairness, Accountability, and Trans-
parency, pp. 651–666. FAccT 2023, Association for Computing Machinery, New
York, NY, USA (2023). https://doi.org/10.1145/3593013.3594033

30. Association for Computer Machinery: ACM code of ethics and professional con-
duct (2018). https://www.acm.org/code-of-ethics

31. Coppock, A., Hill, S.J., Vavreck, L.: The small effects of political advertising are
small regardless of context, message, sender, or receiver: evidence from 59 real-
time randomized experiments. Sci. Adv. 6(36), eabc4046 (2020). https://doi.org/
10.1126/sciadv.abc4046

32. Coy, P.: Can A.I. and democracy fix each other? New York Times (2023). https://
www.nytimes.com/2023/04/05/opinion/artificial-intelligence-democracy-
chatgpt.html

33. Criado, N., Such, J.M.: Implicit contextual integrity in online social networks.
Infor. Sci. 325, 48–69 (2015). https://doi.org/10.1016/j.ins.2015.07.013

34. Deschênes, M.: Recommender systems to support learners’ agency in a learning
context: a systematic review. Int. J. Educ. Technol. High. Educ. 17(1), 50 (2020).
https://doi.org/10.1186/s41239-020-00219-w

35. Dierkens, N.: Information asymmetry and equity issues. J. Financ. Quant. Anal.
26(2), 181–199 (1991)

36. Domaradzki, J.: The Werther effect, the Papageno effect or no effect? A literature
review. Int. J. Environ. Res. Public Health 18(5), 2396 (2021). https://doi.org/
10.3390/ijerph18052396

37. Douglas, T., Forsberg, L.: Three rationales for a legal right to mental integrity.
In: Ligthart, S., van Toor, D., Kooijmans, T., Douglas, T., Meynen, G. (eds.)
Neurolaw. Palgrave Studies in Law. Neuroscience, and Human Behavior, pp. 179–
201. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-69277-3 8

38. Dwork, C.: Differential Privacy. In: Bugliesi, M., Preneel, B., Sassone, V.,
Wegener, I. (eds.) ICALP 2006. LNCS, vol. 4052, pp. 1–12. Springer, Heidelberg
(2006). https://doi.org/10.1007/11787006 1

39. Dynel, M.: Comparing and combining covert and overt untruthfulness: on lying,
deception, irony and metaphor. Pragmatics Cogn. 23(1), 174–208 (2016)

40. Ekstrand, J.D., Ekstrand, M.D.: First do no harm: considering and minimizing
harm in recommender systems designed for engendering health. In: Engendering
Health Workshop at the RecSys 2016 Conference, pp. 1–2. ACM (2016)

41. Etzioni, A., Etzioni, O.: Incorporating ethics into artificial intelligence. J. Ethics
21(4), 403–418 (2017). https://doi.org/10.1007/s10892-017-9252-2

42. European Parliament: EU AI Act: First regulation on Artificial Intelli-
gence (2023). https://www.europarl.europa.eu/news/en/headlines/society/
20230601STO93804/eu-ai-act-first-regulation-on-artificial-intelligence

43. Evans, C., Kasirzadeh, A.: User tampering in reinforcement learning recommender
systems (2022)

https://doi.org/10.3390/electronics8080832
https://doi.org/10.3390/electronics8080832
https://www.mdpi.com/2079-9292/8/8/832
https://doi.org/10.1007/s10677-006-9052-4
https://doi.org/10.1145/3593013.3594033
https://www.acm.org/code-of-ethics
https://doi.org/10.1126/sciadv.abc4046
https://doi.org/10.1126/sciadv.abc4046
https://www.nytimes.com/2023/04/05/opinion/artificial-intelligence-democracy-chatgpt.html
https://www.nytimes.com/2023/04/05/opinion/artificial-intelligence-democracy-chatgpt.html
https://www.nytimes.com/2023/04/05/opinion/artificial-intelligence-democracy-chatgpt.html
https://doi.org/10.1016/j.ins.2015.07.013
https://doi.org/10.1186/s41239-020-00219-w
https://doi.org/10.3390/ijerph18052396
https://doi.org/10.3390/ijerph18052396
https://doi.org/10.1007/978-3-030-69277-3_8
https://doi.org/10.1007/11787006_1
https://doi.org/10.1007/s10892-017-9252-2
https://www.europarl.europa.eu/news/en/headlines/society/20230601STO93804/eu-ai-act-first-regulation-on-artificial-intelligence
https://www.europarl.europa.eu/news/en/headlines/society/20230601STO93804/eu-ai-act-first-regulation-on-artificial-intelligence

182 E. Bezou-Vrakatseli et al.

44. Everitt, T., Hutter, M., Kumar, R., Krakovna, V.: Reward tampering problems
and solutions in reinforcement learning: a causal influence diagram perspective.
Synthese 198(Suppl 27), 6435–6467 (2021)

45. Faden, R.R., Beauchamp, T.L.: A History and Theory of Informed Consent.
Oxford University Press, Oxford (1986)

46. Ferrero, L.: An introduction to the philosophy of agency. In: The Routledge Hand-
book of Philosophy of Agency. Routledge (2022)

47. Fischer, J.M.: Responsibility and manipulation. J. Ethics 8(2), 145–177 (2004).
https://doi.org/10.1023/B:JOET.0000018773.97209.84

48. Frost, C.: Journalism Ethics and Regulation. Taylor & Francis, Milton Park
(2015). https://books.google.co.uk/books?id=K5b4CgAAQBAJ

49. Garnett, M.: Agency and inner freedom. Noûs 51(1), 3–23 (2017). http://www.
jstor.org/stable/26631435

50. Google LLC: Google AI Review Process. https://ai.google/responsibility/ai-
governance-operations/

51. Gorin, M.: Do manipulators always threaten rationality? Am. Philos. Q. 51(1),
51–61 (2014)

52. Habermas, J.: Between Facts and Norms: Contributions to a Discourse Theory of
Law and Democracy. The MIT Press, Cambridge (1996)

53. Hasher, L., Goldstein, D., Toppino, T.: Frequency and the conference of referential
validity. J. Verbal Learn. Verbal Behav. 16(1), 107–112 (1977). https://doi.org/
10.1016/S0022-5371(77)80012-1

54. High Level Expert Group on Artificial Intelligence: Ethics Guidelines for Trust-
worthy AI (2019)

55. Hoeyer, K., Hogle, L.F.: Informed consent: the politics of intent and practice in
medical research ethics. Ann. Rev. Anthropol. 43(1), 347–362 (2014). https://
doi.org/10.1146/annurev-anthro-102313-030413

56. Hofmann, B.: Suffering: harm to bodies, minds, and persons. In: Handbook of the
Philosophy of Medicine, pp. 129–145 (2017)

57. Howard, P., Ganesh, B., Liotsiou, D., Kelly, J., François, C.: The IRA, social
media and political polarization in the United States, 2012–2018. U.S, Senate
Documents ((2019)

58. Jakesch, M., Bhat, A., Buschek, D., Zalmanson, L., Naaman, M.: Co-writing with
opinionated language models affects users’ views. In: Proceedings of the 2023 CHI
Conference on Human Factors in Computing Systems. CHI 2023, Association
for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/
3544548.3581196

59. Kang, H., Lou, C.: AI agency vs. human agency: understanding human–
AI interactions on TikTok and their implications for user engagement. J.
Comput.-Mediated Commun. 27(5), zmac014 (2022). https://doi.org/10.1093/
jcmc/zmac014

60. Kenton, Z., Kumar, R., Farquhar, S., Richens, J., MacDermott, M., Everitt, T.:
Discovering agents (2022)

61. Kidd, I.J.K., Medina, J., Pohlhaus Jr., G. (eds.): The Routledge Handbook
of Epistemic Injustice. Routledge, London (2017). https://doi.org/10.4324/
9781315212043

62. Kligman, M., Culver, C.M.: An analysis of interpersonal manipulation. J. Med.
Philos. A Forum Bioeth. Philos. Med. 17(2), 173–197 (1992). https://doi.org/10.
1093/jmp/17.2.173

https://doi.org/10.1023/B:JOET.0000018773.97209.84
https://books.google.co.uk/books?id=K5b4CgAAQBAJ
http://www.jstor.org/stable/26631435
http://www.jstor.org/stable/26631435
https://ai.google/responsibility/ai-governance-operations/
https://ai.google/responsibility/ai-governance-operations/
https://doi.org/10.1016/S0022-5371(77)80012-1
https://doi.org/10.1016/S0022-5371(77)80012-1
https://doi.org/10.1146/annurev-anthro-102313-030413
https://doi.org/10.1146/annurev-anthro-102313-030413
https://doi.org/10.1145/3544548.3581196
https://doi.org/10.1145/3544548.3581196
https://doi.org/10.1093/jcmc/zmac014
https://doi.org/10.1093/jcmc/zmac014
https://doi.org/10.4324/9781315212043
https://doi.org/10.4324/9781315212043
https://doi.org/10.1093/jmp/17.2.173
https://doi.org/10.1093/jmp/17.2.173

SHAPE: A Framework for Evaluating the Ethicality of Influence 183

63. Kramer, A.D.I., Guillory, J.E., Hancock, J.T.: Experimental evidence of massive-
scale emotional contagion through social networks. Proc. Natl Acad. Sci. 111(24),
8788–8790 (2014). https://doi.org/10.1073/pnas.1320040111

64. Krueger, D., Maharaj, T., Leike, J.: Hidden incentives for auto-induced distribu-
tional shift (2020)

65. Lavazza, A.: Freedom of thought and mental integrity: The moral requirements
for any neural prosthesis. Front. Neurosci. 12, 82 (2018). https://doi.org/10.3389/
fnins.2018.00082.https://www.frontiersin.org/articles/10.3389/fnins.2018.00082

66. Lee, M.K., et al.: WeBuildAI: participatory framework for algorithmic governance.
Proc. ACM Hum.-Comput. Interact. 3(CSCW), 1–35 (2019)

67. Levine, T.R.: Encyclopedia of Deception, vol. 2. Sage Publications, Thousand
Oaks (2014)

68. Lewandowsky, S., Van Der Linden, S.: Countering misinformation and fake news
through inoculation and Prebunking. Eur. Rev. Soc. Psychol. 32(2), 348–384
(2021)

69. Linardatos, P., Papastefanopoulos, V., Kotsiantis, S.: Explainable AI: a review
of machine learning interpretability methods. Entropy 23(1), 18 (2021). https://
doi.org/10.3390/e23010018. https://www.mdpi.com/1099-4300/23/1/18

70. Madry, A., Makelov, A., Schmidt, L., Tsipras, D., Vladu, A.: Towards deep
learning models resistant to adversarial attacks. arXiv preprint arXiv:1706.06083
(2017)

71. Mahon, J.E.: Contemporary Approaches to the Philosophy of Lying. In: The
Oxford Handbook of Lying. Oxford University Press, Oxford (2018). https://doi.
org/10.1093/oxfordhb/9780198736578.013.3

72. Martin, C.W.: The Philosophy of Deception. Oxford University Press, Oxford
(2009)

73. Mirsky, Y., Lee, W.: The creation and detection of deepfakes: a survey. ACM
Comput. Surv. (CSUR) 54(1), 1–41 (2021)

74. Nissenbaum, H.: Privacy as contextual integrity. Wash. L. Rev. 79, 119 (2004)
75. Noggle, R.: Manipulative actions: a conceptual and moral analysis. Am. Philoso.

Q. 33(1), 43–55 (1996)
76. Noggle, R.: The ethics of manipulation. In: Zalta, E.N. (ed.) The Stanford Ency-

clopedia of Philosophy. Metaphysics Research Lab, Stanford University. Summer
2022 edn. (2022)

77. Nozick, R.: Coercion. In: Morgenbesser, M.P.S.S.W. (ed.) Philosophy, Science,
and Method: Essays in Honor of Ernest Nagel, pp. 440–72. St Martin’s Press,
New York (1969)

78. World Health Organization, et al.: Ethics and governance of artificial intelligence
for health: WHO guidance (2021)

79. Ovadya, A.: Towards platform democracy: Policymaking beyond corporate
CEOs and partisan pressure. https://www.belfercenter.org/publication/towards-
platform-democracy-policymaking-beyond-corporate-ceos-and-partisan-pressure

80. Ovadya, A.: ‘Generative CI’ through collective response systems (2023)
81. Peczenik, A., Karlsson, M.M.: Law, justice and the state: essays on justice and

rights. In: Proceedings of the 16th World Congress of the International Association
for Philosophy of Law and Social Philosophy (IVR) Reykjav́ık, 26 May-2 June,
1993, vol. 1. Franz Steiner Verlag (1995)

82. Pessach, D., Shmueli, E.: A review on fairness in machine learning. ACM Comput.
Surv. 55(3), 51:1–51:44 (2023). https://doi.org/10.1145/3494672

83. Porlezza, C.: Accuracy in journalism (2019). https://doi.org/10.1093/acrefore/
9780190228613.013.773

https://doi.org/10.1073/pnas.1320040111
https://doi.org/10.3389/fnins.2018.00082.
https://doi.org/10.3389/fnins.2018.00082.
https://www.frontiersin.org/articles/10.3389/fnins.2018.00082
https://doi.org/10.3390/e23010018
https://doi.org/10.3390/e23010018
https://www.mdpi.com/1099-4300/23/1/18
http://arxiv.org/abs/1706.06083
https://doi.org/10.1093/oxfordhb/9780198736578.013.3
https://doi.org/10.1093/oxfordhb/9780198736578.013.3
https://www.belfercenter.org/publication/towards-platform-democracy-policymaking-beyond-corporate-ceos-and-partisan-pressure
https://www.belfercenter.org/publication/towards-platform-democracy-policymaking-beyond-corporate-ceos-and-partisan-pressure
https://doi.org/10.1145/3494672
https://doi.org/10.1093/acrefore/9780190228613.013.773
https://doi.org/10.1093/acrefore/9780190228613.013.773

184 E. Bezou-Vrakatseli et al.

84. Ross, W.D.: Foundations of Ethics. Read Books Ltd., Redditch (2011)
85. Rubel, A., Castro, C., Pham, A.: Autonomy, agency, and responsibility, pp. 21–

42. Cambridge University Press (2021). https://doi.org/10.1017/9781108895057.
002

86. Rudinow, J.: Manipulation. Ethics 88(4), 338–347 (1978). https://doi.org/10.
1086/292086

87. Sachs, B.: Why coercion is wrong when it’s wrong. Australas. J. Philos. 91(1),
63–82 (2013). https://doi.org/10.1080/00048402.2011.646280

88. Sahbane, I., Ward, F.R., Åslund, C.H.: Experiments with detecting and mitigating
AI deception (2023)

89. Sanders, K.: Ethics and Journalism. SAGE Publications, Thousand Oaks (2003).
https://books.google.co.uk/books?id=5khuTNSQ6rYC

90. Schlosser, M.: Agency. In: Zalta, E.N. (ed.) The Stanford Encyclopedia of Philos-
ophy. Metaphysics Research Lab. Winter 2019 edn. Stanford University, Stanford
(2019)

91. Schmidt, A.T., Engelen, B.: The ethics of nudging: an overview. Philos. Compass
15(4), e12658 (2020). https://doi.org/10.1111/phc3.12658

92. Schwartz, M.: Repetition and rated truth value of statements. Am. J. Psychol.
95(3), 393–407 (1982). https://doi.org/10.2307/1422132

93. E.P. for the Future of Science: Technology: the impact of the general data pro-
tection regulation (GDPR) on artificial intelligence (2020)

94. Selinger, E., Whyte, K.: Is there a right way to nudge? The practice and ethics
of choice architecture. Soc. Compass 5(10), 923–935 (2011). https://doi.org/10.
1111/j.1751-9020.2011.00413.x

95. Sententia, W.: Neuroethical considerations: cognitive liberty and converging tech-
nologies for improving human cognition. Ann. New York Acad. Sci. 1013(1),
221–228 (2004). https://doi.org/10.1196/annals.1305.014

96. Seymour Fahmy, M.: Love, respect, and interfering with others. Pacific Philos. Q.
92(2), 174–192 (2011). https://doi.org/10.1111/j.1468-0114.2011.01390.x

97. Shiffrin, S.V.: Speech Matters: On Lying, Morality, and the Law. Princeton Uni-
versity Press, Princeton (2014). https://doi.org/10.1515/9781400852529

98. Spahn, A.: And lead us (not) into persuasion...? Persuasive technology and the
ethics of communication. Sci. Eng. Ethics 18(4), 633–650 (2012). https://doi.org/
10.1007/s11948-011-9278-y

99. Srikumar, M., et al.: Advancing ethics review practices in AI research. Nat. Mach.
Intell. 4(12), 1061–1064 (2022). https://doi.org/10.1038/s42256-022-00585-2

100. Sripada, C.S.: What makes a manipulated agent unfree? Philos. Phenomenological
Res. 85(3), 563–593 (2012). https://doi.org/10.1111/j.1933-1592.2011.00527.x

101. Sunstein, C.R.: The ethics of nudging. Yale J. Regul. 32(2), 413–450 (2015)
102. Sunstein, C.R.: The Ethics of Influence: Government in the Age of Behavioral

Science. Cambridge University Press, Cambridge (2016)
103. Taylor, J.S.: Practical Autonomy and Bioethics. Routledge, New York (2009).

https://doi.org/10.4324/9780203873991
104. Thomas, S.L., et al.: Young people’s awareness of the timing and placement of

gambling advertising on traditional and social media platforms: a study of 11–16-
year-old’s in Australia. Harm Reduction J. 15(1), 51 (2018). https://doi.org/10.
1186/s12954-018-0254-6

105. Thorburn, L., Stray, J., Bengani, P.: Is optimizing for engagement changing
us? Understanding recommenders (2022). https://medium.com/understanding-
recommenders/is-optimizing-for-engagement-changing-us-9d0ddfb0c65e

https://doi.org/10.1017/9781108895057.002
https://doi.org/10.1017/9781108895057.002
https://doi.org/10.1086/292086
https://doi.org/10.1086/292086
https://doi.org/10.1080/00048402.2011.646280
https://books.google.co.uk/books?id=5khuTNSQ6rYC
https://doi.org/10.1111/phc3.12658
https://doi.org/10.2307/1422132
https://doi.org/10.1111/j.1751-9020.2011.00413.x
https://doi.org/10.1111/j.1751-9020.2011.00413.x
https://doi.org/10.1196/annals.1305.014
https://doi.org/10.1111/j.1468-0114.2011.01390.x
https://doi.org/10.1515/9781400852529
https://doi.org/10.1007/s11948-011-9278-y
https://doi.org/10.1007/s11948-011-9278-y
https://doi.org/10.1038/s42256-022-00585-2
https://doi.org/10.1111/j.1933-1592.2011.00527.x
https://doi.org/10.4324/9780203873991
https://doi.org/10.1186/s12954-018-0254-6
https://doi.org/10.1186/s12954-018-0254-6
https://medium.com/understanding-recommenders/is-optimizing-for-engagement-changing-us-9d0ddfb0c65e
https://medium.com/understanding-recommenders/is-optimizing-for-engagement-changing-us-9d0ddfb0c65e

SHAPE: A Framework for Evaluating the Ethicality of Influence 185

106. Tushnet, R.: Chapter 11: Truth and Advertising: The Lanham Act and Commer-
cial Speech Doctrine. Edward Elgar Publishing, Cheltenham, UK (2008). https://
doi.org/10.4337/9781848441316.00020

107. UK Department for Science, Innovation and Technology: A Pro-innovation App-
roach to AI Regulation (2023)

108. US Office of Science and Technology Policy: Blueprint for an AI Bill of Rights
(2022)

109. Vold, K., Whittlestone, J.: Privacy, Autonomy, and Personalised Targeting:
rethinking how personal data is used. Apollo-University of Cambridge Reposi-
tory (2019). https://doi.org/10.17863/CAM.43129

110. Véliz, C.: Privacy is Power: Why and How You Should Take Back Control of Your
Data. Transworld Digital, London (2020)

111. Wacks, R.: Personal Information: Privacy and the Law. Clarendon Press, Oxford
(1989)

112. Waller, M., Rodrigues, O., Cocarascu, O.: Bias mitigation methods for binary
classification decision-making systems: survey and recommendations (2023)

113. Ward, F.R., Everitt, T., Belardinelli, F., Toni, F.: Honesty is the best policy: defin-
ing and mitigating AI deception. https://causalincentives.com/pdfs/deception-
ward-2023.pdf

114. Ward, F.R., Toni, F., Belardinelli, F.: A causal perspective on AI deception in
games. In: Proceedings of the 2022 International Conference on Logic Program-
ming Workshops (2022)

115. Ward, F.R., Toni, F., Belardinelli, F.: On agent incentives to manipulate human
feedback in multi-agent reward learning scenarios. In: AAMAS, pp. 1759–1761
(2022)

116. Ward, F.R., Toni, F., Belardinelli, F.: Defining deception in structural causal
games. In: Proceedings of the 2023 International Conference on Autonomous
Agents and Multiagent Systems, pp. 2902–2904 (2023)

117. Ward, S.J.A.: Objectivity and bias in journalism (2019). https://doi.org/10.1093/
acrefore/9780190228613.013.853

118. Weidinger, L., et al.: Ethical and social risks of harm from language models (2021).
https://arxiv.org/abs/2112.04359

119. Wood, A.W.: Coercion, manipulation, exploitation. In: Manipulation: Theory and
Practice. Oxford University Press, Oxford (2014). https://doi.org/10.1093/acprof:
oso/9780199338207.003.0002

120. Zuboff, S.: The Age of Surveillance Capitalism. Public Affairs, New York (2019)

https://doi.org/10.4337/9781848441316.00020
https://doi.org/10.4337/9781848441316.00020
https://doi.org/10.17863/CAM.43129
https://causalincentives.com/pdfs/deception-ward-2023.pdf
https://causalincentives.com/pdfs/deception-ward-2023.pdf
https://doi.org/10.1093/acrefore/9780190228613.013.853
https://doi.org/10.1093/acrefore/9780190228613.013.853
https://arxiv.org/abs/2112.04359
https://doi.org/10.1093/acprof:oso/9780199338207.003.0002
https://doi.org/10.1093/acprof:oso/9780199338207.003.0002

Modelling Group Performance
in Multiagent Systems: Introducing
the CollabQuest Simulation Game

Alejandra López de Aberasturi-Gómez(B) , Jordi Sabater-Mir ,
and Carles Sierra

Artificial Intelligence Research Institute, IIIA-CSIC, Barcelona, Spain
{alejandra,jsabater,sierra}@iiia.csic.es

Abstract. We present a novel model for studying group performance in
collaborative multiagent teams. The model incorporates task interdepen-
dence and evaluation types as key factors influencing group dynamics.
We propose a simulation game called CollabQuest, which will serve as a
platform to explore the effects of these factors on collective performance
within the context of collaborative project teams. The game involves
agents collaborating to fill a common pool with a minimum amount of
work within a limited number of turns, simulating a group work envi-
ronment. By manipulating the composition of the group and the inter-
dependence among agents, we plan to study how different types of tasks
and evaluation approaches impact the behaviour and decision-making of
agents. The model integrates intrinsic and extrinsic rewards, creating a
tension between individual and collective interests, and reflecting real-
world challenges. Through CollabQuest, we aim to gain insights into the
challenges and strategies associated with multiagent systems in collab-
orative settings. This preliminary work lays the foundation for further
research in the field of multiagent reinforcement learning and collective
decision-making.

Keywords: Multiagent Reinforcement Learning · Group
Productivity · Collaboration

1 Introduction

Collaborative skills are increasingly crucial in modern society, leading many
countries to shift their educational systems towards promoting teamwork over
the last few decades.

The traditional individualistic teaching approach, which encouraged com-
petition among students until the 1970s, has given way to a more collabora-
tive classroom setting since the 1980s. Innovative teaching strategies now focus
on projects and teamwork, where students collectively engage their intellectual
efforts within a group. In these group work scenarios, students are organized
into teams of three to five members to collaboratively solve problems, explore
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
V. Malvone and A. Murano (Eds.): EUMAS 2023, LNAI 14282, pp. 186–199, 2023.
https://doi.org/10.1007/978-3-031-43264-4_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-43264-4_12&domain=pdf
http://orcid.org/0000-0001-6895-2217
http://orcid.org/0000-0001-6982-3572
http://orcid.org/0000-0003-0839-6233
https://doi.org/10.1007/978-3-031-43264-4_12

Modelling Group Performance in Multiagent Systems 187

concepts, answer questions, or create products. Each member can take on inter-
dependent tasks that contribute to a common goal or participate in the same
shared task.

Similarly, in the corporate world, individual-oriented industrial psychology
and group-oriented psychology have been applied for more than half a century.
However, according to Edgar H. Schein, “organizational research and consulting
practices still seem obsessed with reducing interactive phenomena into individual
traits such as emotional intelligence” [9]. In educational settings, the advan-
tages of adopting this collaborative teaching approach have been observed [4].
However, implementing effective group teaching and leadership can be challeng-
ing, especially due to limited access to external resources like theoretical mod-
els or consultants. Consequently, the responsibility for fostering effective group
dynamics often falls solely on teachers, who may lack the necessary theoretical
background or tools to navigate this task successfully [1].

To address these gaps, we propose a computational model that studies the
factors influencing the productivity of groups. Viewing group productivity as an
objective measure of a workgroup’s outcomes [2], we believe a well-designed and
trained multiagent model can predict group performance in specific tasks. By
leveraging this capability, we aim to optimize and facilitate group work. Collab-
orative skills are becoming increasingly important in our modern society, to the
point that many countries have witnessed a paradigm shift in their educational
systems towards increased teamwork through the last few decades.

This research makes several significant contributions to the field of collabo-
rative performance in multiagent systems within group work contexts. Firstly,
we propose a formal model that integrates theories from social psychology and
game theory, providing a structured framework for investigating teamwork and
decision-making processes. This model offers a novel approach to studying col-
laboration in groups and lays the foundation for our future work.

Additionally, we introduce the concept of the CollabQuest simulation game,
which, although still in its early stages, holds great potential as an experimental
platform for exploring the dynamics of collaborative performance. By manipu-
lating factors such as group composition and interdependence, we expect that
CollabQuest will allow researchers and educators to gain valuable insights into
the challenges and strategies associated with group work. Through the explo-
ration of these factors, we anticipate uncovering key dynamics that influence
collaborative performance, thereby informing the design and implementation of
effective interventions. As CollabQuest is still in its early stages, we envision its
potential as an experimental platform for advancing our understanding of group
performance and decision-making processes in multiagent systems

The paper is organized as follows: The next section outlines the key theo-
ries from social psychology and game theory that underpin our proposed model.
Building upon the insights from the literature, Sect. 3 presents a formal model for
investigating teamwork, offering a structured framework for studying collabora-
tive decision-making processes. In Sect. 4, we propose the idea of the CollabQuest
simulation game-a tool designed to examine how group performance might vary

188 A. López de Aberasturi-Gómez et al.

when modifying two critical internal factors: composition and interdependence.
While CollabQuest is currently a work in progress, we envision it as an innova-
tive experimental platform for exploring the dynamics of group performance and
decision-making. Finally, Sect. 5 concludes the paper by discussing the potential
applications and implications of the CollabQuest game in collaborative multi-
agent systems, emphasizing its potential contribution to understanding group
performance.

2 Group Work as a Mixed-Motive Game

Group productivity or group performance refers to the relationship between the
resources available for a task and the outcome achieved. Each individual brings
their own knowledge, motivations, and personality traits (among other elements)
to the group, influencing and being influenced by the context and the other
members of the team. The processes of group interaction (the relationships that
build up and evolve among the individuals within the group) determine whether
individuals will combine their resources appropriately to achieve the group’s
goals based on the task type the group needs to accomplish.

In psychology, theoretical models of group productivity agree that the inter-
nal factors shaping group performance are: 1) the group members, 2) the inter-
dependences among group members caused by the task, and 3) the processes of
group interaction that occur among group members [7].

A very well-known taxonomy of group tasks in social psychology is owed to
Ivan D. Steiner [10] and anchors on the relationship between what the individ-
ual and the group contribute to the assignment. This taxonomy distinguishes
between:

1. Additive tasks: group productivity is the sum of individual productivity. For
example, a group project where each member is assigned a specific section to
research and write, and their individual contributions are combined to create
a comprehensive report.

2. Compensatory tasks: group productivity is the average of individuals’ pro-
ductivity. For instance, in a group presentation, each member presents a dif-
ferent aspect of the topic, and the overall performance is evaluated based on
the collective quality of their presentations.

3. Disjunctive tasks: the group selects the response or contribution of one of its
members. For example, in a problem-solving task, the group’s success depends
on identifying the best solution provided by any member of the group.

4. Conjunctive tasks: all group members must contribute for the task to be
finished. For instance, in a group fitness challenge, the group’s success is
determined by the ability of the least fit member to complete the tasks or
exercises, and

5. Discretionary tasks: where there is no direct relationship between individual
and group contributions. An example of a discretionary task is a brainstorm-
ing session where each member generates ideas individually, and the group’s
success depends on the overall quantity and quality of the ideas contributed.

Modelling Group Performance in Multiagent Systems 189

When one or several group members exert less effort than their potential to
achieve optimal performance in a collective task, it is referred to as motivation
loss. One factor that can undermine motivation is social loafing. Social loafing
is characterised by a decrease in individual contributions (working “less hard”)
when people work in a group and believe that others are also working, compared
to when they work alone. Conversely, we can observe the opposite effect known as
social compensation. Social compensation occurs when individuals put in extra
effort when they anticipate lower performance from other group members [12].
This phenomenon arises from the desire to compensate for a perceived lack
of skills or motivation among colleagues to successfully complete a task. The
study suggests that people are more likely to work harder in a group setting
compared to when they are working alone if 1) at least one group member
expects insufficient effort from others to achieve success, and 2) the task holds
significant importance to those individuals.

On the other hand, Steiner made a clear distinction between potential pro-
ductivity, which represents what a group is capable of achieving, and actual
productivity, which reflects what the group actually accomplishes. According to
his theory, actual productivity can be calculated by subtracting the “lost” pro-
cesses within the group from the potential productivity. These “lost” processes
refer to factors that hinder the group from reaching its full potential. Steiner
identified two such processes: the loss of motivation and the loss of coordina-
tion. It’s important to note that Steiner also acknowledged the possibility of
gains in addition to losses in group interaction processes. In addition, substan-
tial efforts have been devoted in social psychology to studying audience effects
like social facilitation and inhibition on productivity. This preliminary version
will not cover these aspects, though. Instead, we will focus on elements that have
the highest impact on group productivity without considering the effect of other
group members’ gaze.

In the context of group work, it is useful to view it as a mixed-motive game.
A mixed-motive game, as defined in game theory, involves players whose prefer-
ences among outcomes partially align and partially conflict. This scenario moti-
vates players to both cooperate and compete, similar to the dynamics of the
Prisoner’s Dilemma game. In a mixed-motive game, individuals face not only
interpersonal conflict with others but also intrapersonal psychological conflict
resulting from the clash of motives. In the context of group members working
together, they share the common goal of collaborating to complete a group task.
However, factors such as the evaluation system (e.g., being assessed as a group
vs. being assessed individually), the task structure (e.g., whether the group prod-
uct reflects the behaviour of a single member or the contributions of all members
are combined), and the perceived cost of individual contributions create a psy-
chological conflict. This conflict presents each member with the choice between
cooperating with the rest of the group or pursuing personal interests (defecting)
within the group context.

The notion of a social dilemma and the associated research paradigms are
particularly suitable for studying settings where the task assessment is the same

190 A. López de Aberasturi-Gómez et al.

for all team members [5]. Specifically, in such a situation, the payoff structure
that group members face seems similar to the dilemma of contributing to public
goods: agents contribute their expertise over time to the service of the group
and benefit from the evaluation of the task regardless of whether they have
contributed or not, and without diminishing the evaluation received by others.

To represent situations involving mixed motivations that concern multiple
decision makers (hereafter referred to as DMs) and extend over time, [6] define
a Sequential Social Dilemma (SSD) as a general-sum Markov game, which may
not necessarily be a cooperative one, where agents must learn an appropriate
policy while coexisting with one another. Unlike social dilemmas in traditional
game theory, in an SSD, cooperation or defection are labels that apply to poli-
cies (rather than actions), such that the cooperativeness of a policy becomes a
gradable quality defined concerning a certain metric.

We understand that a group work scenario meets the necessary conditions to
be modelled as an SSD, as it involves multiple DMs with general and possibly dif-
ferent, motivations who must interact over time. During their interactions, each
individual must decide what contributions to make to the group while coexist-
ing with and being affected by others. Therefore, we propose utilising the model
of [6] to represent the internal elements of a group that, according to theory, pri-
marily impact its performance, i.e., the group members, the interdependences
caused by the task among group members, and the processes of group interaction
that unfold. Further, we propose a game, CollabQuest, as a future simulation
platform to explore the effects of these factors on collective performance.

Until recently, most previous work on policy search in multiagent systems
took a prescriptive view: “What should each agent do?” The challenge of mod-
elling games that were not purely cooperative (i.e., situations where there was
no complete alignment of the goals of all the agents) led [6] to adopt an orthogo-
nal approach, the descriptive one: “What social effects emerge when each agent
uses a particular learning rule?” To answer this question, they use reinforcement
learning.

Reinforcement learning implements goal-directed behaviour. Goals in rein-
forcement learning are formalised in terms of a signal, the reward, passing from
the environment to the agent. The mission of a reinforcement learning agent
is to maximise the expected value of the cumulative sum of a received reward
signal [11] without being explicitly told how to do it (i.e., without the use of
heuristics that facilitate the search for a solution to the problem). Shedding
heuristics, in this case, is particularly advantageous, as in line with what has
been mentioned before, structural factors, payoff systems and group phenomena
conspire in a complex web of relationships that cannot be fully captured using
hand-designed rules. A behavioural model based on the pursuit of a positive
(extrinsic or intrinsic) reward signal naturally fits into this approach: based on
theoretical assumptions about the motivations (external and internal) underly-
ing behaviour, we design a reward function that takes these factors into account
and observes the resulting social effects. This same approach has been advocated
in seminal works such as [3].

Modelling Group Performance in Multiagent Systems 191

3 Formal Model

As [2] proposed, we interpret group productivity as an objective measure of the
outcomes of a workgroup, often involving the counting of items or tracking the
achievement of milestones in a project. We assume that given a group task, there
exists an objective and quantitative measure of group productivity in work units,
denoted as [W].

Definition 1 (Group Task). We characterize a group task ∇ by a scalar W∇
representing the measure of group productivity (in work units) required to con-
sider the task completed, a scalar T∇ indicating the maximum time available for
the group to complete the task and a label l∇ indicating the typology of the task:

∇ := (W∇, T∇, l∇) (1)

A group task will be considered accomplished after a time T with group pro-
ductivity W if the following two conditions are simultaneously met:

{
W ≥ W∇
T ≤ T∇

(2)

In order to represent resources that the members of a group bring to the
team, we introduce the concept of expertise:

Definition 2 (Expertise). We define the expertise pi of the i-th member of
the group to solve a group task involving a single competency as a constant
representing the amount of work that i can accomplish per unit of time applying
that competency.

pi =
(

dW

dt

)
i

(3)

In practice, we approximate the expertise of i as the ratio of the amount of
work W i that i can perform in a time interval to the duration of the interval:

pi ≈ W i

Δt
(4)

So, the work units that i performs while working on the task during a time
interval Δt are approximated by the product:

W i ≈ pi · Δt

3.1 Multiagent Reinforcement Learning

We consider a group task that involves a single competency, denoted as W∇,
within a work scenario. Following Leibo et al.’s approach, we model this scenario
as a Markov game. The participants in this game are identified as group members
and are considered agents belonging to the set J . By adopting a Markov game

192 A. López de Aberasturi-Gómez et al.

framework, we can capture the dynamics of the group task and analyze the
interactions and decision-making processes of the individual agents within the
collaborative setting. The task state St ∈ S represents the system’s current state.
The duration of an episode (i.e. the duration of a task) is limited by T∇, but it
can potentially end earlier if the end conditions in Eq. 2 are met. We discretize
the time axis along which the agents interact, treating it as a game with turns.
For instance, a time step might tick a new hour. At each time step or turn t,
every agent has the option to allocate a certain percentage Ai

t = a, if any, of their
turn time to contribute to the task. Although this is, of course, a simplification,
it captures the temporally extended nature of the interaction and the fact that
not every member of the group needs to engage in teamwork simultaneously
with the rest of peers. In this context, the agents’ agency is reflected through
the time they choose to spend on the task, which we refer to as abstract actions.
The available range of time percentages that an agent can choose to contribute
from defines its set of possible actions, denoted as A. Consequently, the joint
action space becomes An, where n represents the number of agents within the
system J . To denote a joint action of the entire agent system, we utilize the
notation −→a .

As outlined later, our model’s transition function is represented by the label
l∇, which corresponds to the task type and determines how agents’ contributions
are combined to make progress in the task. We denote this transition function
P : S × S × An −→ [0, 1], as the function P(s′|s,−→a) that maps each tuple
(s′, s,−→a) to a probability density value for each choice of s and −→a . Each agent i
has full observation of the task state s and learns a behaviour πi(a|s) guided by
a reward signal Ri. Given a temporal discount factor γ ∈ [0, 1], the state-value
function at state St = s for agent i when the joint policy is −→π = (π1, ..., πn) is
defined as:

V
−→π
i (s) = E−→π

[∞∑
k=0

γkRi
t+k+1|St = s

]
(5)

3.2 Task Type and Transition Function

As mentioned in the introduction, the most widely used taxonomy of tasks
in group psychology distinguishes between additive, compensatory, disjunctive,
conjunctive, and discretionary tasks. The task typology determines how the
efforts of group members are combined to achieve a collective outcome, thus
establishing task interdependences among them [7], as the performance of each
group member in a group task depends to some extent on the performance of
others.

In our model, the task type imposes constraints on how the work performed
by group members is aggregated to transition to the next task state. While the
agents’ allocation of their turn time might introduce stochasticity, resulting in
some noise when mapping effort to measured contributions, we will, for simplic-
ity, treat these transitions deterministically as a starting point. Therefore, here
we will focus on the subfamily of Markov Decision Processes (MDPs) within the
broader class of Markov Games as our general framework.

Modelling Group Performance in Multiagent Systems 193

The task state at time t, St, will be the accumulated group work units from
the start of the episode until t, where S0

.= 0. We focus on the first four types
of tasks1 and denote by Ai

t = a the fraction of time that agent i decides to
dedicate to working on the task in turn t. The total time dedicated by the set
J of agents in turn t is represented by

−→
A t = −→a . We group the expertise of all

agents in J into a constant vector −→p = (p1, ..., pn). Let St be the current task
state,

−→
A t be the joint action of the group, and W∇ be the productivity measure

representing the completion threshold for the task. The transition functions P
for the different task typologies are defined as:
Transition Function of an Additive Task (A): In an Additive task, the group’s
performance is the sum of the individual contributions.

PA(St+1 = s′|St = s,
−→
A t = −→a) =

{
1 if s′ = s + (−→p · −→a �)
0 otherwise

Transition Function of a Compensatory Task (X): In this case, the next state
St+1 is determined by the current state St, the collective actions

−→
A t, and the

specific and normalised weights ωi, i ∈ J assigned to each agent in the system.

PX(St+1 = s′|St = s,
−→
A t = −→a) =

{
1 if s′ = s +

∑
i∈J

ωi(pi · ai) with
∑
i∈J

ωi = 1

0 otherwise

Transition Function of a Disjunctive Task (D): In a disjunctive task, the
group’s performance is determined by the achievement of at least one group
member. Hence, the transition function for a disjunctive task must ensure that
the group’s progression depends on the maximum contribution among all mem-
bers

PD(St+1 = s′|St = s,
−→
A t = −→a) =

{
1 if s′ = s + max

i∈J
{pi · ai}

0 otherwise

Transition Function of a Conjunctive Task (C): In a conjunctive task, the
group’s performance is contingent upon achieving the least performing mem-
ber. Hence, the transition function for a disjunctive task must ensure that the
group’s progression relies on the least-performing member’s contribution to task
completion.

PC(St+1 = s′|St = s,
−→
A t = −→a) =

{
1 if s′ = s + min

i∈J
{pi · ai}

0 otherwise

3.3 Payoff System and Expected Reward

In addition to task interdependences, Nijstad’s model [7] considers the interde-
pendences caused among group members by the distribution of feedback and
rewards. Consistent with major models in social psychology, the evaluation of a
collective task (i.e., the payoff system) can be of three types:
1 We exclude discretionary tasks from our model since the way contributions of team

members are aggregated is not determined in their definition.

194 A. López de Aberasturi-Gómez et al.

1. Promotive of interdependence
2. Contrient or competitive, and
3. Independent (where each group member’s evaluation depends solely on their

own performance)

In our model, the payoff system partially determines the reward Ri
t received

by the i-th agent in each turn. Specifically, we allow the reward Ri
t to have an

intrinsic component representing the cost (effort) of collaborating for the public
good, Ci

t , and an extrinsic component dependent on the payoff system, Ei
t , that

serves as feedback for agents to discern between high and low-performing turns:

Ri
t = Ei

t − Ci
t

The expected reward function for an agent i in a turn t is:

ri(s,−→a) .= E

[
Ri

t|St−1 = s,
−→
A t−1 = −→a

]

which can be decoupled as a sum of the form:

ri(s,−→a) = ei(s,−→a) − ci(s,−→a) (6)

where ei(s,−→a) represents the external reward function received by agent i, and
ci(s,−→a) represents the cost or effort incurred by agent i for dedicating ai units
of time.

As a starting point, we take ci(s,−→a) ≡ f(ai) (the expected cost of a turn
for agent i is a function of the time dedicated to the task by i in that turn).
Specifically, we propose that the expected cost is of the form ci(s,−→a) = βi · ai,
where βi is a proportionality constant that may vary (or not) for each agent.

Regarding the expected extrinsic reward, we define the following functional
forms for each type of evaluation:
Promotive Evaluation: In a promotive evaluation, the extrinsic reward received
by each agent is solely based on the overall performance of the group. It does
not take into account individual contributions or rankings within the team. The
functional form for the expected extrinsic reward in a promotive evaluation can
be defined as:

ei(s,−→a) = f(s,−→a) for all i

Here, f(s,−→a) represents a function that determines the expected extrinsic
reward based on the collective performance of the group, as indicated by the
state s and the vector of actions −→a . In this type of evaluation, all agents receive
the same reward, promoting a sense of cooperation and shared success within the
group. In such a situation, the payoff structure that agents face is similar to the
dilemma of contributing to public goods. According to [8], there are two main
characteristics that distinguish a public good: non-exclusion and non-rivalry.
The first characteristic refers to the impossibility of denying the consumption
or enjoyment of the good to any individual. The second characteristic is that
the enjoyment of one person does not diminish the amount that others can

Modelling Group Performance in Multiagent Systems 195

consume. For instance, taxpayers face such a dilemma when their contributions
are enjoyed by everybody, without the possibility of denying access to social
security and public health to tax evaders. All the population would be better
off if everybody payed their taxes, yet from a selfish perspective one maximises
their payoff by exploiting the contributions and not reciprocating.

Promotive evaluation in teamwork is thus an instance of the public goods
dilemma: cooperative agents contribute their expertise over time to the service
of the group, and all agents benefit from the evaluation of the task regardless of
whether they contributed or not. Plus, enjoyment of the evaluation by an agent
does not diminish the evaluation received by others.

Competitive or Contrient Evaluation: In competitive evaluation, the extrin-
sic reward is based on the relative productivity or ranking of each individual
within the group. The evaluation takes into account the proportion of an indi-
vidual’s productivity (represented by pi · ai) compared to the productivity of
others in the team J :

ei(s,−→a) = f(ranki(−→a ,−→p))

In this expression, ranki(−→a ,−→p) represents the ranking of individual i based
on their productivity within the group, considering both their contribution vec-
tor −→a and the expertise vector −→p . The function f(·) maps the rank to a cor-
responding reward or outcome. The specific form of the function f(·) can vary
depending on the specific context and criteria used for ranking individuals.

Hence, when this kind of evaluation is implemented, each member’s grade
reflects their rank within the group. For instance, educational systems in which
the highest honours are awarded in a class based on the percentile that the
student occupies are contrient.

Independent Evaluation: For independent evaluation, we can define it using a
function that directly considers the individual’s own performance without refer-
encing the performance of others:

ei(s,−→a) = f(pi, ai)

Each individual is evaluated based on their expertise and effort, providing a
sense of autonomy and independence in the evaluation process. An example of
such an evaluation would be an educational system in which the highest honours
are awarded if a student’s performance satisfies a pre-established set of criteria.

In terms of the payoff system, it is important to clarify that the extrinsic
reward Et in non-terminal states should be contingent exclusively on the actions
undertaken by the agents in t − 1. This approach enables the agents to discern
between high-performing and low-performing turns, allowing them to assess and
differentiate the effectiveness of their actions in contributing to the collective
task.

To provide an example, let’s consider a simplified promotive evaluation
system where tasks are either pass or fail. In this system, the extrinsic reward
Et in non-terminal states is determined solely by the agents’ actions. After each

196 A. López de Aberasturi-Gómez et al.

time step or turn, the agents receive a shared extrinsic reward of Et ∝ (−→p ·−→a �)
based on their contributions.

In the case of terminal states, which represent evaluations performed by
the instructor, an extrinsic reward can be designed. For instance, a reward of
Et = 10 can be assigned to a task that has been successfully completed, meeting
the criterion St ≥ W∇, while a reward of Et = −10 can be allocated otherwise

4 CollabQuest: Unleashing Collective Potential

Finally, we present a baseline simulation game, CollabQuest, designed to repli-
cate a teamwork environment and provide a structured platform for systemat-
ically studying group collaboration based on the model discussed earlier. The
game aims to investigate how the performance of groups in tasks involving a sin-
gle competency is predicted to vary when modifying two internal factors believed
to be most predictive of group performance: composition and interdepen-
dence.

In CollabQuest, the collective goal of the agents is to fill a common pool with
a minimum of tokens equivalent to W∇ units of work within a maximum of T∇
turns. If T∇ turns go by without successfully filling the common pool, the agents
receive a negative reward representing failure. Each agent i is endowed with a
skill level pi that remains constant throughout the interaction. This skill level
determines the value of the tokens for each player. For example, each token of a
player with skill level pi = 2 will have a value of 2. In each turn, each agent can
contribute Ai

t ∈ [amin, amax], so that we compute an agent’s contribution in a
turn as the product pi · ai.

To create tension between individual and collective interests, CollabQuest
incorporates both extrinsic and intrinsic rewards in the agent’s decision-making
process. The reward function for each agent at each time step consists of an
extrinsic component and an intrinsic component that represents the cost of con-
tributing to the public good. This tension reflects real-world scenarios, where
individual incentives often conflict with the collective goal. While agents may
be tempted to free-ride and benefit from the work of their peers in the short
term, the success of the group and the avoidance of negative rewards depend on
making sufficient contributions throughout the game

In future studies, we plan to apply a parsimonious methodology that draws
inspiration from practices followed in the social sciences. This methodology will
involve carefully manipulating the variables of group composition, interdepen-
dence, task type, and payoff system to gain valuable insights into their impact
on group performance. Our aim is to conduct these studies in a rigorous and
efficient manner.

To examine the influence of group composition, we will manipulate the num-
ber of agents, denoted as n, and the skill vector represented by −→p . This will
allow us to explore how different team sizes and skill distributions among group
members affect overall performance outcomes.

Furthermore, we will intentionally manipulate interdependence by imposing
specific task types and payoff systems (evaluation methods). For instance, to

Modelling Group Performance in Multiagent Systems 197

study the performance of a group of agents with different skill levels in an addi-
tive task under promotive evaluation, the transition function could be designed
such that all contributions from all agents determine the successor state.

PA(St+1 = s′|St = s,
−→
A t = −→a) =

{
1 if s′ = s + (−→p · −→a �)
0 otherwise

Similarly, to align with the promotive nature of the task, an equal extrinsic
reward function would be uniformly employed for all agents:

Et =

{−→p · −→a � for non-terminal states
10 · I(St ≥ W∇) − 10 · I(St < W∇) for terminal states

Notice that in non-terminal states, the extrinsic reward is contingent on the
actions performed by the agents J in the previous turn, reflecting the immediate
impact of their actions on the collaborative task. Conversely, in terminal states,
the extrinsic reward assumes the role of a global evaluation by an instructor or
leader, providing an overall assessment of the group’s performance.

We believe that CollabQuest may serve as an effective model for study-
ing team dynamics due to its ability to capture key elements of collaborative
decision-making. By simulating the interactions among agents and considering
factors such as composition and interdependence, CollabQuest has the potential
to provide valuable insights into how teams perform in complex tasks according
to social and group psychology models. The game’s integration of intrinsic and
extrinsic rewards creates a realistic tension between individual and collective
interests, reflecting the dynamics often observed in group work scenarios.

Eventually, the insights gained from CollabQuest can inform team formation
practices in group work settings. Educators and administrators can leverage the
findings to design teams with complementary skills and diverse perspectives,
fostering a teamwork environment where team members can benefit from each
other’s expertise.

5 Conclusions and Future Work

To conclude, this paper makes significant contributions to the study of collab-
orative performance in multiagent systems, particularly within educational and
corporate contexts. Firstly, we present a formal model that offers a novel app-
roach to investigating teamwork based on evidence from social psychology and
game theory. As far as our knowledge extends, this is the first multi-agent rein-
forcement model specifically designed for group performance prediction.

Moreover, we introduce the CollabQuest simulation game as a foundational
tool for exploring the dynamics of collaborative decision-making. This game will
allow for the manipulation of important factors such as task interdependence
and evaluation types, enabling researchers to gain insights into the underlying
mechanisms that drive group dynamics. By varying the composition of the group

198 A. López de Aberasturi-Gómez et al.

and the interdependence among agents, we aim to uncover the challenges and
strategies associated with collaboration in groups.

Through the integration of intrinsic and extrinsic rewards, CollabQuest cre-
ates a tension between individual and collective interests, mirroring real-world
scenarios. Our preliminary work establishes a strong foundation for further
research in the field of multiagent reinforcement learning. It opens up pos-
sibilities for enhancing educational and corporate outcomes by deepening our
understanding of group work and decision-making processes.

We believe that this model and the CollabQuest simulation game hold great
potential for informing the design and implementation of interventions that fos-
ter effective collaboration and maximise collective outcomes.

For the sake of simplicity, this preliminary work has focused solely on tasks
that involve the application by the group members of a single competency. Mov-
ing forward, we plan to extend our research by investigating more complex sce-
narios involving tasks that require sets of d competencies, C, such that W∇ is
replaced by a d-dimensional vector

−→W∇.
We believe that this extension of the model will provide a foundation for

studying collaborative performance in divisible tasks [10].
Additionally, we will explore the incorporation of other traits into the agents

beyond their expertise. These efforts will pave the way for innovative approaches
in collaborative multiagent systems and contribute to the advancement of effec-
tive teamwork.

References

1. Bolton, M.K.: The role of coaching in student teams: a “just-in-time” approach to
learning. J. Manag. Educ. 23(3), 233 (1999)

2. Campion, M.A., Medsker, G.J., Higgs, A.C.: Relations between work group char-
acteristics and effectiveness: implications for designing effective work groups. Pers.
Psychol. 46(4), 823–847 (1993)

3. Jara-Ettinger, J., Gweon, H., Schulz, L.E., Tenenbaum, J.B.: The näıve utility cal-
culus: computational principles underlying commonsense psychology. Trends Cogn.
Sci. 20(8), 589–604 (2016)

4. Johnson, D.W., Johnson, R.T.: An educational psychology success story: social
interdependence theory and cooperative learning. Educ. Res. 38(5), 365–379 (2009)

5. Kameda, T., Stasson, M.F., Davis, J.H., Parks, C.D., Zimmerman, S.K.: Social
dilemmas, subgroups, and motivation loss in task-oriented groups: in search of an
“optimal” team size in division of work. Soc. Psychol. Q. 55, 47–56 (1992)

6. Leibo, J.Z., Zambaldi, V., Lanctot, M., Marecki, J., Graepel, T.: Multi-agent rein-
forcement learning in sequential social dilemmas. arXiv preprint arXiv:1702.03037
(2017)

7. Nijstad, B.A.: Group Performance. Psychology Press, London (2009)
8. Ostrom, V., Ostrom, E.: Public goods and public choices. In: Alternatives for

Delivering Public Services, pp. 7–49. Routledge (2019)
9. Schein, E.H.: Organizational psychology then and now: some observations. Annu.

Rev. Organ. Psychol. Organ. Behav. 2(1), 1–19 (2015)
10. Steiner, I.D.: Group Process and Productivity. Academic Press, New York (1972)

http://arxiv.org/abs/1702.03037

Modelling Group Performance in Multiagent Systems 199

11. Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction. MIT Press,
Cambridge (2018)

12. Williams, K.D., Karau, S.J.: Social loafing and social compensation: the effects
of expectations of co-worker performance. J. Pers. Soc. Psychol. 61(4), 570–581
(1991)

Towards Developing an Agent-Based
Model of Price Competition

in the European Pharmaceutical Parallel
Trade Market

Ruhollah Jamali1(B) and Sanja Lazarova-Molnar2,1

1 The Maersk Mc-Kinney Moller Institute, University of Southern Denmark,
5230 Odense, Denmark

{ruja,slmo}@mmmi.sdu.dk
2 Institute of Applied Informatics and Formal Description Methods, Karlsruhe

Institute of Technology, 76133 Karlsruhe, Germany
sanja.lazarova-molnar@kit.edu

Abstract. The European pharmaceutical parallel trade refers to the
practice of purchasing pharmaceutical products in one European Union
(EU) member state at a lower price and reselling the products in another
EU member state at a higher price. In the pharmaceutical market, pricing
strategies are of utmost importance as the market structure and regula-
tions allow only the lowest-priced product to gain market share, making
it imperative for players to optimize their pricing decisions in order to
remain competitive. Therefore, developing a dynamic and data-driven
pricing strategy that takes into account market conditions, competitors’
behaviors, and regulatory compliance is of interest to players involved in
this market. In this paper, we demonstrate the potential of agent-based
modeling as a tool for integrating mathematical modeling and economic
concepts and investigating targeted pricing strategies in the pharma-
ceutical parallel trade market. We achieve this by utilizing agent-based
modeling to evaluate and compare multiple pricing strategies through
simulation. We aim to identify the challenges associated with developing
a dynamic pricing approach in this complex market by showcasing the
effectiveness of agent-based modeling. We contribute to the understand-
ing of pricing strategies and their implications in the pharmaceutical
parallel trade market.

Keywords: Agent-based modeling and simulation · Pricing strategy ·
Price competition · Pharmaceutical parallel trade

1 Introduction

The European pharmaceutical trade market incorporates the practice of paral-
lel trade, also known as parallel importing, in which patented pharmaceutical

This work is partly funded by the Innovation Fund Denmark (IFD) under File No.
9065-00207B.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
V. Malvone and A. Murano (Eds.): EUMAS 2023, LNAI 14282, pp. 200–213, 2023.
https://doi.org/10.1007/978-3-031-43264-4_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-43264-4_13&domain=pdf
http://orcid.org/0000-0002-9881-0487
http://orcid.org/0000-0002-6052-0863
https://doi.org/10.1007/978-3-031-43264-4_13

Price Competition in the European Pharmaceutical Parallel Trade Market 201

products are purchased in one EU member state at a lower price, repackaged to
comply with another EU member state market’s local legislation, and then resold
in the destination state at a higher price. This is made possible by the EU’s sin-
gle market that allows for free movement of goods between member states [6].
There are several players involved in the pharmaceutical parallel trade market,
including original manufacturers (also known as originators), parallel importers,
wholesalers, retailers (pharmacies, supermarkets, and online retailers), and reg-
ulators. In this market, each player plays a unique role and interacts with others
to bring pharmaceutical products to the end-users. The parallel trade market can
benefit consumers as it increases the availability of cheaper medicines. However,
it can also have a negative impact on pharmaceutical companies’ profitability
and competitiveness [7].

Decision-making processes in the pharmaceutical trade market are challeng-
ing as they involve multiple factors, such as market demand, dynamic supply
chain, balancing profitability and affordability, regulations, and price competi-
tion. Investigating and quantifying even one of these factors could be a chal-
lenging assignment. For example, the price competition between parallel traders
and the originator in a country’s market can be intense, as all parties are vying
for a share of the market and profits, whereas the parallel import framework
allows parallel traders to offer the same products to consumers at a lower price
than the original manufacturers [5]. The pricing strategy for players involved in
the pharmaceutical parallel trade market is a complex process that takes into
account various factors such as the price of the product in the origin country,
transportation and logistics costs, tariffs, taxes, and the market demand in the
target country.

Agent-based modeling and simulation (ABMS) enable the possibility to eval-
uate, analyze, and predict behaviors and interactions, especially under uncer-
tainty as is common in complex processes such as economics interactions [19].
ABMS has advantages over other forms of modeling, like mathematical model-
ing, by facilitating the design of agents with relatively more autonomy, and has
been applied in the field of economics for a number of purposes, such as ana-
lyzing market dynamics, the impact of regulations, and the study of financial
markets [18]. Furthermore, running simulations that account for multiple initial
assumptions can offer insights to guide decision-making, ultimately contributing
to the maximization of economic efficiency and stability. In our previous work,
we developed a simple agent-based model of the pharmaceutical parallel trade
market involving two countries and demonstrated how this model could be ben-
eficial for players involved in this market and how economists can use the model
to investigate the pharmaceutical parallel trade market [9,10].

In the first agent-based model of the pharmaceutical parallel trade market,
the competition between players is modeled as a Cournot competition where
players compete to get a larger market share only by adjusting their sell quanti-
ties [10]. In subsequent work, we developed an initial pricing function for agents
to investigate and demonstrate the ability of an agent-based model to simulate
multiple scenarios of parallel trade of pharmaceuticals [8]. The primary objective

202 R. Jamali and S. Lazarova-Molnar

of this study is to investigate the effect of various pricing strategies on the prof-
itability of agents participating in the price competition of the pharmaceutical
parallel trade market, through an agent-based modeling approach. The study
aims to identify the challenges and opportunities associated with modeling pric-
ing strategy and their implications on the market.

The rest of the paper is structured as follows: In Sect. 2, we present the
agent-based model of the pharmaceutical trade market. Section 3 describes the
agent-based model specification of the case study. Results and discussion of the
case study are presented in Sect. 4. Lastly, a summary and outlook of the paper
are provided in Sect. 5.

2 Description of the Parallel Trade Market Model

In this study, we model the price competition among multiple parallel traders
and a manufacturer (or direct sellers) in the Danish pharmaceutical market using
agent-based modeling. Our research utilizes the agent-based model to study pric-
ing strategies and key factors that influence pricing strategies for the participants
of the pharmaceutical market.

Parallel traders import medicine from foreign countries, repackage it to com-
ply with Danish regulations, and sell it for profit, whereas manufacturers sell
medicine directly in the market. In Denmark, the prices of medicinal products
are determined by pharmaceutical companies (parallel traders and manufactur-
ers) and sold at the same rate by all pharmacies. The Danish Medicines Agency
does not regulate the prices set by the companies but rather ensures that prices
are updated every 14 days (fortnight) and reported to relevant parties. Every
fortnight, pharmaceutical companies that wish to sell a particular medicine must
establish its price. The company that offers the lowest price for a medicine will
be the offered brand for that medicine at all pharmacies in Denmark. If the com-
pany with the lowest price cannot deliver the market demand, pharmacies will
proceed to offer the product from the company with the second lowest price, and
so on. The system of fixed prices and free market competition helps maintain low
prices for medicinal products. This framework creates a level of stability in the
market by setting limits on the number of packages a company can deliver [2,11].

This study extends our previous research [10] by expanding the agent-based
model to account for the behavior of the players’ pricing strategies during the
price competition in the destination market. First, we describe the basis agent-
based model of a pharmaceutical trade market that comprises two countries.
Then, we define pricing strategies for the players involved in the market, result-
ing in an extended agent-based model of price competition in the market. The
nature of price competition in the Danish pharmaceutical market is unique in
that only the player with the lowest price can secure market share in a given fort-
night, while others are unable to do so. Moreover, considering the narrow profit
margin associated with parallel trading of pharmaceutical product and their
expiry date, the decisions regarding timing and pricing can have a significant
impact on participants’ profitability. Consequently, it is crucial for participants

Price Competition in the European Pharmaceutical Parallel Trade Market 203

in this market to explore and develop effective pricing strategies to gain an edge
in the competition.

2.1 Agent-Based Model of Pharmaceutical Parallel Trade Market

Our agent-based model of the pharmaceutical parallel trade market is moti-
vated by a game theory model of the parallel trade market between the United
States and Canada and examines the impact of parallel trade on the profits of
manufacturers and social welfare [17]. Two countries are involved in the game
theory model, denoted as country I and country E as importer and exporter,
correspondingly. The model commences with a pharmaceutical manufacturer
(located in country E) negotiating the price of a patented medicine with the
government of country I, which is modeled as Nash bargaining negotiation [16].
Subsequently, parallel traders purchase the medicine in country I and incur a
transfer cost to repackage and move the medicine to country E. Then parallel
traders compete with the manufacturer in the market of country E (where the
manufacturer can sell the medicine at its desired price) to sell the medicine and
maximize their profits, modeled using Cournot competition [4]. Cournot com-
petition is an economic model that illustrates a business scenario wherein rival
companies present a homogenous product and compete by determining their
sales quantity in the market. The equilibrium price (P) for the medicine in the
game theory model is calculated according to:

P =

{
1
2 [1 − n(1 − 2(PI+t))

n + 2], if PI ≤ 1
2 − t

1
2 , otherwise

, (1)

where PI is the price of medicine in country I, n is the number of parallel traders
engaged in the market, and t is the transfer cost for parallel traders.

In the agent-based model of the pharmaceutical parallel trade market, we
consider the environment to be the same countries as in the game theory model.
The model has three types of agents, i.e., government, manufacturer, and par-
allel trader. The simulation of our agent-based model consists of multiple steps
that model the behavior of the manufacturer and traders in the pharmaceutical
market of the two countries, I and E. In each step, the manufacturer and the
government set the medicine price in country I using the Nash bargaining result
same as the game theory model. The manufacturer then sells the product in
country I, while traders evaluate the profitability of participating in country E’s
market considering the transfer cost. If traders participate in the market, they
compete with the manufacturer and each other to sell a quantity of the medicine
of interest. The price of the medicine in country E is calculated using a linear
demand function that depends on the total quantity sold and the market size.
The revenues for the manufacturer and traders are calculated at each step by
reducing costs associated with sales. The manufacturer and traders adjust their
market shares to maximize their revenue in each step. Fig 1 provides a high-
level overview of the agent-based model. The agent-based model demonstrates
the capability to replicate equilibrium prices observed in the game theory model.

204 R. Jamali and S. Lazarova-Molnar

Moreover, it offers the advantage of convenient adjustment of model parameters
for agents, such as transfer cost, enabling further investigation of the market
dynamics.

Fig. 1. Agent-based model of a pharmaceutical parallel trade market.

To modify our original agent-based model and investigate pricing strategies,
we consider that the government and the manufacturer have already completed
the negotiation, and the price of the medicine is fixed in country I (PI). Parallel
traders subsequently purchase the medicine at PI . After incurring the transfer
cost (t), parallel traders participate in price competition in country E by imple-
menting individual pricing strategies that we elaborate on further in Subsect. 2.2.
Through running multiple scenarios, we evaluate the effectiveness of each pricing
strategy and investigate the impact of different criteria on price adjustment.

2.2 Pricing Strategy

Pricing is an important aspect of marketing and a crucial decision for busi-
nesses [3], as it is the only element that generates revenue. Developing a pricing
strategy is an intricate task influenced by multiple factors, such as product type,
company goals, and market trends. Different pricing approaches, such as price
skimming, penetration pricing, bundling, promotion, and complementary pric-
ing, work towards determining the optimal price level [12].

Price Competition in the European Pharmaceutical Parallel Trade Market 205

In our model, two distinct pricing strategies are employed by agents. The
first strategy is cost-plus pricing, which is utilized by the manufacturer. This
approach entails adding a margin to the cost of production of the medicine to
determine its final price. Given the typical nature of the pharmaceutical market,
where the demand for patented medicines is generally assumed to surpass the
supply, it is reasonable to assume that the manufacturer would adopt a cost-
plus pricing approach. In our model, the margin is calculated by considering a
revenue margin parameter greater than zero. To determine the price, the revenue
margin is multiplied by the cost of production and then added to the cost.

The second pricing strategy is employed by parallel traders, where they aver-
age a predicted price of the medicine and the price derived from the cost-plus
pricing to arrive at their price for the next fortnight. Parallel traders utilize his-
torical data to predict the market price for the next step. They can employ two
methods to predict the market price: averaging the price of the market for the
last K fortnights, or employing a linear regression model that considers demand,
the prices of all players in the market, and the number of fortnight, to predict
the price of the medicine for the next fortnight.

Every step or in the agent-based model represents a fortnight where all play-
ers involved in the market assess their revenue margin and adjust it based on
their previous sales. They examine their revenue histories from the previous
N fortnight and if their revenue in more than D fortnights were zero, which
suggests that their price is not competitive, they reduce their revenue margin.
Conversely, if they earned some revenue in more than T fortnights in the previ-
ous N fortnights, indicating the potential for higher profits with a higher price,
they increase their revenue margin. The pseudocode presented in Algorithm 1
outlines a comprehensive pricing strategy for market participants.

Algorithm 1. Pricing algorithm for agents in the agent-based model of the
danish pharmaceutical market.

if Zero revenue for over D fortnights out of the last N : then
Reduce revenue margin

else if Positive revenue for over T fortnights out of last N : then
Increase revenue margin

else
Keep current revenue margin

end if
P̂ ← Predicted price of the market
for Player in the market do

P ← cost-plus pricing using revenue margin
if Player is manufacturer: then

P ← P
else

P ← (P + P̂)/2
end if

end for

206 R. Jamali and S. Lazarova-Molnar

2.3 The Agent-Based Model of Price Competition

In this model, there are two types of agents, termed manufacturer and trader,
and the environment is the market, where all agents compete to sell a patented
medicine produced by the manufacturer. In the following, we present the model
in a structured manner, according to the guidelines in the Macal and North
tutorial [13].

The first step towards presenting the model is defining the agents set, includ-
ing agents’ attributes and the rules governing their behavior. Both manufacturer
and trader agents have eight attributes: 1) Warehouse capacity, which indicates
their capacity to store the medicine in a market. 2) Stock, which indicates the
number of available medicines in the warehouse. 3) Cost, which for the manufac-
turer indicates the production cost of the medicine, and for the trader indicates
the total cost of buying, repackaging, and moving the medicine. 4) Revenue mar-
gin, which is used for cost-plus pricing. 5) Warehouse input, which indicates the
number of medicine they are adding to their storage at every step. 6) N , which
indicates the number of past fortnights they want to consider for revenue margin
adjustment. 7) D, which is the a threshold for decreasing the revenue margin. 8)
T , which is a threshold to increase the revenue margin. N , D, and T as presented
in the pricing algorithm 1 are parameters representing the competitiveness of an
agent in the market.

The second step is to define interaction rules. In each simulation step, both
types of agents add a fixed amount of medicine to their warehouse, considering
their warehouse capacity. Next, the agents will determine their selling prices for
the upcoming fortnight, employing the pricing strategies outlined in Subsect. 2.2.
The agent with the lowest price will then become the first seller in the market.
If an agent can not provide the medicine for the market (the market demand
is bigger than the agent’s stock), the agent with the second lowest price start
selling their medicine, and so on. Finally, all agents calculate their step revenue.

The Danish pharmaceutical market is the environment of our model. The
environment has only one attribute, which is the market demand for medicine.

3 Case Study

In this section, we present the implementation details of the model presented
in Sect. 2, aimed at evaluating the impact of pricing strategies and investigating
agent-based model applications as a representative of the pharmaceutical market
in Denmark. Here we are running our initial step towards developing an agent-
based model of price competition. The model was developed using the Python
programming language, and the Mesa library [14]. Our case study focuses on the
competition surrounding the medication Apixaban, sold under the brand name
Eliquis, which is used to treat and prevent blood clots and to reduce the risk of
stroke in individuals with nonvalvular atrial fibrillation [1].

To generate the demand data for Apixaban, we utilized the Danish Health
Data Authority website (https://medstat.dk/), which provides historical data
on the volume of the drug sold in the Danish market. Given the limited size

https://medstat.dk/

Price Competition in the European Pharmaceutical Parallel Trade Market 207

of the data set, we generated synthetic time series data from it using the SDV
library [15]. We used the Gaussian Copula form SDV library, which is a tool to
model the dependence structure of a set of variables by combining their marginal
distributions with a copula function. This tool can generate synthetic time series
data that captures the statistical characteristics of the original data. Addition-
ally, the historical pricing data for the Danish market is publicly available from
the Danish Medicine Agency (https://medicinpriser.dk/), which has a compre-
hensive record of the price development of all medicines on the market, updated
on a bi-weekly basis since 1998. This data was employed to train the linear
regression model used in the pricing strategy.

The parameter values utilized in the model implementation are based on
available data for Apixaban. In our simulations, the warehouse capacity of the
manufacturer was considered to be 10000 units of medicine, while that of the
traders was set to 8000 units. The cost for the manufacturer was considered to
be 400 DKK and 550 DKK for the traders. The initial revenue margin for the
manufacturer was set at 0.7 and 0.3 for the traders. The warehouse input of the
manufacturer in each step was set at 700 medicine units, while that of the traders
was 450 medicine units. We use the variables N , D, and T in the model to define a
player’s competitiveness in the market in terms of their pricing behavior. Since
the manufacturer operates in multiple countries, it was considered that they
adopt a less competitive approach in the market and look over a longer window
when adjusting their revenue margin. Therefore, the value of N was set at 20
for the manufacturer and less than 10 for the traders. D and T are thresholds
that indicate the impact of market share on the pricing, with D and T being 2
and 18, respectively, for the manufacturer. This means that if the manufacturer
does not have any sales in the market for 18 fortnights of the last 20, they will
reduce their revenue margin by 0.01. If they have more than two sales in the last
20, they will increase it by the same amount.

The agent-based model of price competition in the pharmaceutical market of
Denmark, developed in this study, provides a data-driven approach to investigat-
ing the market dynamics. This model offers the capability to examine the long-
term impacts of various pricing strategies and provides insights into the behav-
ior of market participants. Furthermore, the model can assist market players in
exploring and determining the optimal approach to the market. In the following
section, we will demonstrate the model’s capabilities through multiple scenarios,
highlighting its practical applications for players in the pharmaceutical market
of Denmark.

4 Experiments and Results

The objective of the first scenario is to examine the impact of different pricing
strategies on the total revenue of traders in the Danish pharmaceutical market.
To accomplish this, four traders were considered, where two of them utilizing
a simple price prediction technique by computing the average of the last five
fortnights’ prices and the other two employing linear regression to forecast the

https://medicinpriser.dk/

208 R. Jamali and S. Lazarova-Molnar

next fortnight’s price based on historical data. To differentiate their character-
istics, different values of N , D, and T were assigned to each trader. Here, one of
the traders who employed averaging as their prediction technique was assigned
N = 8 while the other was assigned N = 5. The same was done for the traders
who utilized linear regression for price prediction. Additionally, T = 4 and D = 2
were assigned to all traders, while for the manufacturer, we set N = 20, T = 18,
and D = 2. We simulated the model for 1000 replications, each lasting 1000
steps, with a synthetic time-series market demand generated in each replication,
which varied and was independent of one run to another. We used the results of
this simulation experiment to determine the impact of competitiveness on the
total revenue of traders in the pharmaceutical market.

The simulation results showed that the trader who used averaging as the price
prediction method and had N = 5 had the highest average revenue of more than
65 million for the whole 1000 steps. The second place was occupied by the trader
who also employed averaging but had N = 8, with an average revenue of more
than 64.2 million. The third place was held by the trader who had N = 8 and
used linear regression as the price prediction method, with an average revenue
of more than 64 million. The trader who had N = 5 and used linear regression
as the prediction method had an average revenue of 63.8 million, which was the
lowest among all traders.

The simulation result indicates that using averaging as the price prediction
method was more beneficial for traders than linear regression under the current
assumptions. Moreover, the results suggest that being more aggressive in chang-
ing the revenue margin is more profitable for traders when using averaging as
the prediction method, whereas a different outcome might be expected when
using another prediction method. This highlights the importance of investigat-
ing different approach combinations in a market, as the combination could have
a completely different outcome than the expected one.

Fig. 2. Market price of the medicine over 1000 simulations.

Price Competition in the European Pharmaceutical Parallel Trade Market 209

Additionally, previous simulations can provide an overview of the future mar-
ket price for the medicine while considering a projected demand for the medicine.
Figure 2 illustrates the market price over simulations. Each colored line indicates
an independent simulation, while the black one indicates the average of all sim-
ulations. In all simulations, the first 50 steps are historical data of prices. Since,
in every simulation, a synthetic time-series market demand is generated, the
medicine market price varies, which is aligned to the law of supply and demand
in economics. However, the interesting observation from Fig. 2 is that price com-
petition caused a diminishing trend in the market price over time.

The second scenario focuses on the manufacturer’s behavior optimization
in the Danish pharmaceutical market using our agent-based model. The simula-
tion addresses a situation where the manufacturer aims to achieve the maximum
profit per product sold in the Danish market over a period of two years, consisting
of 104 fortnights. In this simulation, the manufacturer can adjust the parameters
N , T , and S to reflect their anticipated market behavior and use historical data
to predict the behavior of other market participants. Given the knowledge of the
market’s parameters, the manufacturer can then use the agent-based model to
determine the optimal approach to attain their goal. In this scenario, we investi-
gated the impact of varying values of parameter N on profit per product for the
manufacturer in the Danish pharmaceutical market. Specifically, we considered
values of 10 to 60 by step of 10 for N , where T was set as N × 0.9 and D as
N × 0.1. To obtain robust results, we ran 500 simulations and calculated the
95% confidence intervals for profit per product for each value of N . The detailed
results are presented in Fig. 3.

Fig. 3. Profit per product confidence interval for different values of N .

In the final scenario, we aimed to investigate the impact of new revenue
margin adjustment criteria on traders’ revenue in the Danish pharmaceutical

210 R. Jamali and S. Lazarova-Molnar

market. Two additional criteria were introduced, one based on total revenue
and another one based on volume sold, which were used to set the revenue
margin values for each player. We ran the simulation for 1000 fortnights, repeated
1000 times, with one trader employing the previous criterion (count of zero
revenue) explained in Subsect. 2.2, two using the new criteria, and the last
trader considering all three criteria in an or clause (combined criterion). The
results showed that the previous criterion, where traders only adjusted their
revenue margin based on the number of zero revenue fortnights in the previous
N fortnights, was the most profitable. The combined criterion was the second
most profitable, while the total revenue and volume sold criteria ranked next. We
also analyzed the profit per product for each trader and observed a similar order,
with the gap between the first and second place being less than one. Our findings
suggest that considering total revenue and volume sold does not necessarily lead
to better pricing strategies for traders in the Danish pharmaceutical market,
while employing the zero revenue count is the most profitable approach. Figure 4
provides a visualization of the 95% confidence intervals of total revenue and profit
per product for all criteria.

5 Summary and Outlook

In this paper, we present an agent-based model of price competition in the Dan-
ish pharmaceutical market between a manufacturer and parallel traders. We
demonstrated how this model can be used to analyze the long-term impact of
pricing strategies on the market. Furthermore, the model facilitates participants
in comprehending the behaviors of other market players in a structured and data-
driven fashion by employing data-driven parameters. This model is an important
step towards developing a data-driven model of price competition in the Dan-
ish pharmaceutical market, allowing players to explore optimal approaches to
engage with the market. The presented model enables players to fine-tune their
behaviors, particularly their pricing strategies, in order to achieve specific goals.

We ran multiple what-if scenarios with our agent-based model of the mar-
ket to investigate the impact of different parameters on the players’ revenue
and profit per product. In our first simulation experiment, we investigated the
impact of different pricing strategies on the traders’ total revenue. In our second
simulation experiment, we showed that the manufacturer could optimize their
behavior in the market using our agent-based model to maximize their profit
per product on sales. In our last simulation, we illustrated the impact of revenue
margin adjustment criteria on total revenue and price per product of traders.

Our agent-based model of price competition in the Danish pharmaceutical
market has the potential to become an effective tool for players to optimize their
pricing strategies and understand their competitors’ behavior. Our simulations
indicate that the choice of price prediction method can have a significant impact
on traders’ total revenue. In this work, we explored and experimented with mul-
tiple pricing strategies and investigated various factors affecting the strategy.
It is essential to acknowledge that the model presented in this study has yet

Price Competition in the European Pharmaceutical Parallel Trade Market 211

Fig. 4. 95% confidence intervals of (a) total revenue and (b) profit per product for all
criteria included in pricing strategy.

to undergo a validation process, and further research is necessary to assess its
reliability and effectiveness for real-world applications. While our initial findings
appear promising, it is imperative to conduct additional testing and refinement
to establish its potential for practical implementation. Future work will involve
rigorous experimentation and simulation under diverse conditions and scenar-

212 R. Jamali and S. Lazarova-Molnar

ios to assess the robustness of the approach, and to explore its benefits and
limitations using historical data of the pharmaceutical parallel trade market.

Our agent-based model provides a framework to explore pricing strategies
and optimize behaviors considering specific goals. In our future research, we aim
to extend this model further to investigate the impact of other factors, such
as the expiry date of available products, expected competitor’s actions, type of
behavior considering the product, development in purchase prices, and supply
chain dynamics. Overall, our study highlights the importance of using data-
driven approaches to understand and optimize behavior in complex markets
such as the pharmaceutical industry.

References

1. Apixaban monograph for professionals. https://www.drugs.com/monograph/
apixaban.html. Accessed 10 Feb 2023

2. Prices of medicine. https://laegemiddelstyrelsen.dk/en/reimbursement/prices/.
Accessed 03 Feb 2023

3. Borden, N.H.: The concept of the marketing mix. J. Advert. Res. 4(2), 2–7 (1964)
4. Cournot, A.A.: Researches into the mathematical principles of the theory of wealth.

New York: Macmillan Company, 1927 [c1897] (1927)
5. Danzon, P.M.: The economics of parallel trade. Pharmacoeconomics 13(3), 293–

304 (1998)
6. Darba, J., Rovira, J.: Parallel imports of pharmaceuticals in the European union.

Pharmacoeconomics 14(Suppl 1), 129–136 (1998)
7. Enemark, U., Pedersen, K.M., Sørensen, J.: The economic impact of parallel import

of pharmaceuticals (2006)
8. Jamali, R., Lazarova-Molnar, S.: Agent-based simulation of the pharmaceutical

parallel trade market: a case study. In: The 14th International Conference on Ambi-
ent Systems, Networks and Technologies (2022)

9. Jamali, R., Lazarova-Molnar, S.: The relationship between agent-based simulation
and game theory in the case of parallel trade. In: 2022 IEEE International Confer-
ence on Agents (ICA), pp. 36–41. IEEE (2022)

10. Jamali, R., Lazarova-Molnar, S.: Towards agent-based simulation of the parallel
trading market of pharmaceuticals. In: 2022 IEEE International Conference on
Parallel & Distributed Processing with Applications, Big Data & Cloud Comput-
ing, Sustainable Computing & Communications, Social Computing & Networking
(ISPA/BDCloud/SocialCom/SustainCom). IEEE (2022)

11. Kaiser, U., Mendez, S.J., Rønde, T., Ullrich, H.: Regulation of pharmaceutical
prices: evidence from a reference price reform in Denmark. J. Health Econ. 36,
174–187 (2014)

12. Kienzler, M., Kowalkowski, C.: Pricing strategy: a review of 22 years of marketing
research. J. Bus. Res. 78, 101–110 (2017)

13. Macal, C.M., North, M.J.: Tutorial on agent-based modeling and simulation. In:
Proceedings of the Winter Simulation Conference, 2005, p. 14. IEEE (2005)

14. Masad, D., Kazil, J.: MESA: an agent-based modeling framework. In: 14th
PYTHON in Science Conference, vol. 2015, pp. 53–60 (2015)

15. Montanez, A., et al.: SDV: an open source library for synthetic data generation.
Ph.D. thesis, Massachusetts Institute of Technology (2018)

https://www.drugs.com/monograph/apixaban.html
https://www.drugs.com/monograph/apixaban.html
https://laegemiddelstyrelsen.dk/en/reimbursement/prices/

Price Competition in the European Pharmaceutical Parallel Trade Market 213

16. Nash, J.: Two-person cooperative games. Econometrica: J. Econometric Soc. 21,
128–140 (1953)

17. Pecorino, P.: Should the us allow prescription drug reimports from Canada? J.
Health Econ. 21(4), 699–708 (2002)

18. Tesfatsion, L.: Agent-based computational economics: a constructive approach to
economic theory. In: Handbook of Computational Economics, vol. 2, pp. 831–880
(2006)

19. Vermeulen, B., Pyka, A.: Agent-based modeling for decision making in economics
under uncertainty. Economics 10(1), 20160006 (2016)

Using a BDI Agent to Represent
a Human on the Factory Floor
of the ARIAC 2023 Industrial

Automation Competition

Leandro Buss Becker1,5(B), Anthony Downs2, Craig Schlenoff2,
Justin Albrecht2, Zeid Kootbally2, Angelo Ferrando3, Rafael Cardoso4,

and Michael Fisher1

1 University of Manchester, Manchester, UK
{leandro.bussbecker,michael.fisher}@manchester.ac.uk

2 National Institute of Standards and Technology, Gaithersburg, MD, USA
{anthony.downs,craig.schlenoff,justin.albrecht,zeid.kootbally}@nist.gov

3 University of Genova, Genova, Italy
angelo.ferrando@unige.it

4 University of Aberdeen, Aberdeen, UK
rafael.cardoso@abdn.ac.uk

5 Federal University of Santa Catarina, Florianópolis, Brazil

Abstract. The “Agile Robotics for Industrial Automation Competi-
tion” (ARIAC) is an international robotic competition carried out in a
simulated factory floor using ROS 2 (Robot Operating System)/Gazebo.
Competitors control one gantry robot, four AGVs, and many other ele-
ments/devices, overcoming a range of agility challenges in this simulated
environment, and are provided with a scoring system to evaluate their
performance during the tasks. This paper describes one of the agility
challenges in ARIAC 2023, which pertains to a simulated human opera-
tor on the factory floor. In undertaking manufacturing tasks, competitors
must avoid close proximity between the gantry robot and the human not
to get penalized. The human operator is implemented as a Belief-Desire-
Intention (BDI) agent in Jason. It is provided with a range of different
potential types of behaviour in what concerns with how such human
reacts when in proximity to the gantry robot. Three different personali-
ties are presented, ranging from a minimally intrusive up to a very intru-
sive one. A preliminary analysis was conducted to evaluate the impact
of using the developed Jason agent in the ARIAC 2023 competition.

Keywords: Robots in human environments · BDI agents · Jason/ROS

This work was supported by NIST in the USA and the UK’s Royal Academy of Engi-
neering through its Chair in Emerging Technologies scheme.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
V. Malvone and A. Murano (Eds.): EUMAS 2023, LNAI 14282, pp. 214–227, 2023.
https://doi.org/10.1007/978-3-031-43264-4_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-43264-4_14&domain=pdf
https://doi.org/10.1007/978-3-031-43264-4_14

Using Agents to Represent Humans in ARIAC 215

1 Introduction

Organised by the National Institute of Standards and Technology (NIST) since
2017, the Agile Robotics for Industrial Automation Competition1 [5] (ARIAC)
is an annual simulation-based competition which brings together researchers and
practitioners to tackle challenges related to agile robotics that industry is facing.

ARIAC 2023 uses version 2 of the Robot Operating System (ROS 2)2, an
open-source framework that offers a comprehensive set of libraries and tools to
develop robot software, in conjunction with Gazebo, a physics-based simulator.
Together, ROS 2/Gazebo provide a flexible and efficient platform for designing,
testing, and deploying robotics applications.

One of the main goals of ARIAC is to provide real-life manufacturing scenar-
ios where humans and robots share a low-volume high-mix workload in a collab-
orative environment. As such, a new challenge has been introduced in ARIAC
2023, which consists of avoiding close contact between a human operator that
moves around the factory floor making inspections and the robots present in the
workcell. The workcell contains the following robots: (i) four AGVs that move
forward or backward within a given straight lane, and (ii) one gantry3 robot
that consists of a manipulator mounted onto an overhead system that allows it
to move along the entire factory floor.

It is our aim that the human operator can have different types of behaviours
(from now on we refer to these types as personalities), varying the level of inter-
ference caused by the human operator to the gantry robot. The human operator
must also attempt not to collide against the AGVs while they move within the
factory floor. Figure 1 depicts the ARIAC 2023 simulation scenario.

It is required for the gantry robot not to get closer to the human opera-
tor than established in the ISO/TS 15066:2016 standard “Robots and robotic
devices – Collaborative robots”, which addresses the safety issue of robot speed
and separation monitoring [6]. A similar restriction also applies for the AGVs.
Competitors get penalized if such restrictions are not properly followed.

This paper concerns the implementation of the movement control strategy
for the human operator. Given that Belief-Desire-Intention (BDI) agents [9] can
emulate the cognitive reasoning of humans in a very natural way, this paradigm
was selected to be used for controlling our human operator. More specifically,
the implementation of our BDI agent is done in Jason [1], a well-known BDI
programming language [2]. The challenge that we face is this work relates not
simply with implementing the Jason agent, but also with how to properly inte-
grate it within the complex ARIAC 2023 simulation environment. Moreover, it
1 https://www.nist.gov/ariac.
2 Certain commercial products or company names are identified here to describe our

competition. Such identification is not intended to imply recommendation or endorse-
ment by the National Institute of Standards and Technology, nor is it intended to
imply that the products or names identified are necessarily the best available for the
purpose.

3 Gantry robots are also called Cartesian or Linear robots. In the ARIAC 2023 docu-
mentation it will be also referred to as ceiling robot.

https://www.nist.gov/ariac

216 L. B. Becker et al.

is also a challenge how to guide competitors so that they can properly deploy
all the tools needed to run our agent within the simulation environment.

The main contributions of this paper can be summarized are as follows: (i) we
describe how to integrate the Jason BDI agent for controlling the human operator
within the complex ARIAC 2023 simulation scenario; (ii) we detail how such
agent is in fact programmed in Jason and how it interfaces with ROS 2/Gazebo.
(iii) we analyze the impact of using such Jason agent in ARIAC 2023 from the
final user (competitors) perspective, in what concerns the deployment and usage
difficulties and also the impact in respect to the CPU utilization.

The remaining parts of this paper are organised as follows. Section 2 describes
the ARIAC competition. Section 3 presents the software architecture of our solu-
tion. The developed Jason agent is detailed in Sect. 4. Our conclusions are pre-
sented in Sect. 5.

Fig. 1. The ARIAC 2023 scenario. The red square in the top left (safe zone) is the
starting position of the human operator. The four blue squares below the tables are
the workstations. AGV-1 is moving and the other three are stationary. The human
operator is facing the gantry robot, but from the image it is not possible to guess its
current personality: if antagonistic or indifferent it will move towards the gantry; if
helper it will turn around and move back to the workstation-2. (Color figure online)

Using Agents to Represent Humans in ARIAC 217

2 Agile Robotics for Industrial Automation Competition

ARIAC is an annual competition which aims to tackle challenges that industry
is facing in agile robotics. The main goal of ARIAC is to test the agility of
industrial robot systems and to enable industrial robots on shop floors to be more
productive, more autonomous, and to require less time from shop floor workers.
In ARIAC, agility is defined broadly to address: (1) task failure identification and
recovery by robots, (2) automated planning to minimise (or eliminate) the up-
front robot programming time when a new task is introduced, and (3) operation
in fixtureless environments, where robots can sense the environment and perform
tasks on parts that are not in predefined locations. The competition participants
are required to develop a robot control system for a gantry robot in order to
perform kitting operations in a simulated environment.

Prior to designing ARIAC in 2017, NIST explored existing robotics com-
petitions to ensure none of them already addressed industrial robotics agility.
The Amazon Picking Challenge [4] was one of the competitions related to chal-
lenges addressed in ARIAC. The competition assessed the capability of robots
to perform some of the common pick and place operations that are currently
performed by humans. The Robot Perception Challenge [7] was another compe-
tition which was relevant to agility challenges. The goal of this competition was
to drive improvements in sensing and perception technologies for next-generation
robots. ARIAC was designed to test and measure Industrial Robot Agility in a
holistic sense, because no other competitions were covering that niche.

Figure 1 depicts the simulated environment where the ARIAC 2023 competi-
tion takes place. The gantry can move in the simulated environment to interact
with objects in order to perform kitting for assembly tasks (announced dynam-
ically during the simulation). A kit is an order for specific items, which can be
found on shelves, on the conveyor belt, and in bins. The robot builds kits by pick-
ing up all the required items and placing them into one of the trays located on
the automated guided vehicles (AGVs). When an order is completed, the AGV
delivers the kit and a final score is given to the participants’ systems. The final
score takes into account many aspects, such as if the type/colour of the selected
item matches the type/colour required by the order; the accuracy of products’
pose in the tray; and the time taken by the control system to complete a kit
(measured in simulation seconds).

The ARIAC 2023 competition has eight “agility challenges”4. They repre-
sent extra difficulties that competitors may face while performing kitting tasks.
For example, competitors could face faulty and/or flipped parts to assemble.
Challenges are sampled together in different “trials” that the competitors must
overcome during the qualification and final rounds of the competition. Within
the scope of this paper we focus on the “human operator” agility challenge.

4 https://ariac.readthedocs.io/en/latest/competition/challenges.html.

https://ariac.readthedocs.io/en/latest/competition/challenges.html

218 L. B. Becker et al.

2.1 Human Operator Agility Challenge

This challenge consists of inserting a human operator that navigates through the
factory floor (workcell). In Fig. 1, it is possible to observe the presence of the
human operator (on the right) facing the gantry robot (on the left). The goal
of this challenge is to test the ability of the competitors’ control system for the
gantry robot to avoid collisions with the human operator, otherwise it will incur
a penalization.

The simulated human operator will take one of the three personalities in a
given trial. Note that, once a personality has been selected for a trial, it will
not change during that trial. Even though the development and integration of
changing a personality at runtime in ARIAC would be feasible, to simplify the
evaluation of the competitor’s controller, we opted for a static agent’s personality.
Regardless of the personality that the agent adopts, it was decided to avoid
random moves and to make simplistic, predefined, movement patterns along the
four workstations that simulate working/inspection tasks, something common
for humans to do within a factory floor. The human operator agent will keep
travelling to these workstations and working until the trial ends.

If the human operator and one of the robots get closer than a minimum
safety distance (details for the calculation are provided in the next section),
then the human is teleported to a safe zone (the top left position shown in
Fig. 1). Exceptionally, the human operator is not teleported if it gets close to a
non-moving (static) AGV. Moreover, if the teleport operation is caused for being
too close to the gantry robot, then the competitor team gets penalised, which
also implies disabling the gantry robot for 8 s; afterwards, the normal operation
is resumed. In such case the human operator is teleported away purely to give
time to the competitors to recover and to avoid situations where the human can
behave too aggressively and keep the gantry in a deadlock.

The agent’s personalities are as following:

1. Indifferent : The human operator follows a predetermined path, regardless of
the location of the robots in the environment.

2. Antagonistic: The human operator purposefully moves towards the gantry
robot to interfere with the robot’s current task.

3. Helpful : The human operator will move to another workstation (changing
direction to avoid the gantry) once the gantry robot is detected to be at a
certain distance (safety distance× 2).

The helpful agent was designed to be minimally intrusive, and should rarely
interfere the competition. On the other hand, the antagonistic agent is intended
to be very intrusive, and is likely to frequently cause penalization to the com-
petitors. We foresee that the indifferent agent is the one that will better judge
the competitors’ skills to avoid contact with the human operator.

2.2 Safety Distance Calculation

The safety distance between the human operator and the robots (gantry robot
and AGVs) is derived from the ISO/TS 15066:2016 standard - “Robots and

Using Agents to Represent Humans in ARIAC 219

robotic devices - Collaborative robots”, which addresses the safety issue of robot
speed and separation monitoring [6]. ISO/TS 15066:2016 specifies that the min-
imum allowable distance between a robot and a human is

dmin = kH(t1 + t2) + kRt1 + B + δ

where t1 is the maximum time between the actuation of the sensing function
and the output signal switching devices to the off state, t2 is the maximum
response time of the machine (i.e., the time required to stop the machine), δ is
an additional distance, based on the expected intrusion toward the critical zone
prior to actuation of the protective equipment, kH is the speed of the intruding
human, kR is the speed of the robot, and B is the Euclidean distance required
to bring the robot to a safe, controlled stop.

3 Simulation Software Overview

Figure 2 illustrates the elements within the simulation scenario that are of inter-
est for the developed BDI agent: the human operator, the four AGVs, and the
gantry robot. The relevant related information about such elements – mainly
location and speed – must be constantly updated within the agent, which can
only actuate towards the human operator. The additional elements in the scene
(shown in Fig. 1) are treated simply as obstacles that should be avoided by the
navigation control algorithm running in ROS 2.

A relatively complex software architecture was built to support this simu-
lation environment. Such software architecture is composed of several elements
that include, mostly, artifacts from ROS 2 (nodes, topics, services, actions, plug-
ins) and the Jason agent. Figure 3 depicts the elements of the proposed solution5.

Analysing Fig. 3 from left to right, first there is the task manager Gazebo
plugin. It is in charge of initialising all the components that constitute the com-
petition scenario. It is also in charge of publishing the /ariac/start human topic
to start our Jason’s human–agent, which was already launched but remains idle
until a message on this topic is received. Continuing to the right of the figure,
the agent can publish to the three topics at the bottom and subscribe to the
two topics at the top, which are all related to the human control ROS 2 node.
This node also interacts with the teleport Gazebo plugin and with the navigation
stack (part of the ROS 2 distribution).

4 The Human Agent

The Jason agent is in charge of the high-level control of the human operator. In
the simulation, the human is represented as a robot with a human mesh on top
of it. Representing the human as a robot allows the human to easily interact with
other ROS elements in the simulation. The agent is responsible for controlling the

5 Source code available at https://github.com/usnistgov/ARIAC.

https://github.com/usnistgov/ARIAC

220 L. B. Becker et al.

Fig. 2. Overview of the simulation environment from the BDI agent perspective.

Fig. 3. Software architecture artifacts that support the adopted simulation scenario.

movements of the human, calling ROS 2 functions such as move(x, y) and stop().
It must also be constantly updated about the position of the gantry robot and
the AGVs, so that it can properly reason about the actions to be taken. It was
decided that the human behaviour should be simple and predictable to a certain
extent, i.e., there should be no random moves. Therefore, in general terms, the
human operator must move around four predefined points of interest within the

Using Agents to Represent Humans in ARIAC 221

virtual factory’s shop floor (the workstations). The default movement occurs in
a clockwise basis starting at workstation 4 (4 > 2 > 1 > 3 > 4 > . . .).

Jason programs are implemented separately into agent and environment pro-
grams. Agent programs consist of (in this order): initial beliefs and rules; ini-
tial goals; and plans. Plans are written with traditional AgentSpeak syntax [8]
triggering_event : context <- body. wherein the triggering_event can be the
addition/deletion of a belief or a goal, the context are the preconditions of
the plan, and the body is a sequence of operations (actions or addition/deletion
of beliefs/goals). Environment programs are written in Java and define the
semantics of the actions that agents can execute, as well as providing the agent
with environment perceptions.

4.1 Initial Beliefs and Initial Goal

The initial lines of code from the agent define a set of static beliefs that are used
for orientation purposes. For instance, it defines the (x, y) coordinates of the four
target positions (workstations 1 to 4), the first position for the robot to visit, and
the order in which such positions should be visited (for either counterclockwise
and clockwise movement directions).

Two beliefs can change at runtime: working(Loc) and counterClockWise. The
first keeps track of the current station, so that the agent can derive the next tar-
get position; while the latter, if present in the agent’s belief, indicates a counter-
clockwise movement direction (otherwise the agent adopts clockwise movement).
The agent has one initial goal to wait for the human start message.

4.2 Plans for Movement Control

The agent’s main task is to keep the human operator moving through the pre-
defined points. We implement this with two plans, with triggering events +!work

and +work_completed, as shown in Listing 1.1. The first has a context used only
to find the coordinates of the desired destination (ln.1)6. It then removes the
belief that indicates the previous target location (ln.2), and sets the belief with
the current target location (ln.3). Finally, it calls an external action in charge of
activating the movement at the ROS node (ln.4). The +work_completed is trig-
gered when the ROS node indicates that the human operator reached the target
position. Its context is used to find the next location to be visited. There is an
analogous version of this plan for the counterclockwise movement.

6 ‘ln.’ will be used as abbreviation for line throughout the paper.

222 L. B. Becker et al.

1 +!work(Loc) : location(Loc , X, Y, Z) <-

2 -working(_);

3 +working(Loc);

4 move(X, Y, Z).

6 +work_completed(_) : working(Loc) & next_loc(Loc ,Next) &

counterClockWise <- !work(Next).

Listing 1.1. Main plans to move the human operator.

In the plan on Listing 1.2, the +gantry_disabled(_) belief is added when
the gantry is disabled due the fact that the distance between the gantry and
the human operator is violating the safety distance. This belief is added with a
parameter for debugging purposes. Note the use of as in Prolog, which indicates
that the term can be unified with anything (i.e., we do not care about its contents
in this plan). A similar plan was created for when the human operator is too
close to an AGV. The difference in the AGV case is that it calls a teleport service
that does not penalise the competitor.

1 +gantry_disabled(_) : firstStation(ST) <-

2 .drop_all_desires ;

3 teleport_safe; // stop + teleport to safe zone

4 .wait (8000);

5 !!work(ST).

Listing 1.2. Plan for when the Gantry is disabled.

In such a plan, the agent drops its own desires (ln.2) using an internal action
(Jason predefined actions that do not interact with the environment). This is
done to stop all goals currently executed by the agent (e.g., moving to a work-
station). Then, we call an external action (implemented in the environment)
to teleport the human operator to the safe location (ln.3). This is obtained on
the Gazebo side by means of a custom plugin (developed as part of the human
challenge integration in ARIAC). After that, the agent waits a fixed amount of
time (ln.4); the latter is domain specific and has been decided to give time to the
gantry’s controller to restore its own tasks. At the end, the plan concludes by
calling the !work once more, and restoring the standard movement of the human
operator in the simulation by going to the first workstation.

4.3 Implementing Personalities

The human personality defines how it behaves in respect to the gantry posi-
tion. This role is defined upon the agent’s initialisation based on the parameter
specified in a particular trial (we expect that in ARIAC 2023 there will be at
least one trial with each personality). As mentioned in Sect. 2, the three possible
personalities are Indifferent, Antagonistic, and Helpful.

In order to implement these three different personalities within the Jason
agent, we provide three distinct implementations for the +gantry_detected per-

Using Agents to Represent Humans in ARIAC 223

ception. Each implementation lies in a different agent program file (asl exten-
sion), which is loaded according to the agent initialisation parameter. This per-
ception is triggered when the human operator and the gantry get “too close”.
This distance, which is computed in Jason’s Environment class, is defined as
being twice the safety distance (calculated as shown in Sect. 2.2).

The implementation for the indifferent personality is proforma, as in fact
it has no condition and does not take any action (it is just an empty plan).
Therefore we only discuss here the implementations for the antagonistic and the
helpful personalities, as follows.

The core part of antagonistic agent behavior is shown in Listing 1.3.

1 +gantry_detected(_) :

2 working(Loc) & next_loc(Loc ,Next) <-

3 stop_movement;

4 .drop_all_desires ;

5 move_to_gantry;

6 .wait("+work_completed(_)");

7 !!work(Next).

Listing 1.3. Jason code for the agent with the antagonistic personality.

It has a context that will always be true since it uses beliefs that are always
supposed to be present in the belief base, but it is needed in order to allow iden-
tifying the destination that the human is currently moving to (ln.2). It first stops
and cancels any navigation goal (ln.3), then it drops all desires (ln.4) and trig-
gers an external action requiring the human to move towards the gantry (ln.5).
Afterwards the plan remains blocked until it reaches the target position (ln.6).
When this holds, it resumes moving to the next station (ln.7).

The core part of the helpful agent implementation is shown in Listing 1.4.
It requires two distinct plans because it can be moving in either clockwise or
counterclockwise directions. The agent keeps the internal belief counterClockWise
, which is used in the plan contexts to reason about the current direction. If this
belief is present (condition in ln.2), then the movement is counterclockwise, and
the plan in ln.1–6 is triggered. Otherwise, if it is absent (condition in ln.9), the
movement is clockwise, triggering the plan in ln.8–13. Besides having different
contexts, each of them adjusts the direction in a different way (ln.5 versus ln.12)
and resumes the movement towards a different destination (ln.6 versus ln.13).

The plans for the helpful agent are implemented as atomic, a predefined plan
annotation available in Jason (@id[atomic] where id is a unique plan identifier)
to stop considering concurrent intention stacks (i.e., only the intentions related
to this plan can be selected). This is required because we do not want these
plans to be interrupted while executing, otherwise the agent could lose track of
its current movement direction.

224 L. B. Becker et al.

1 @detected[atomic]

2 +gantry_detected(_) : working(Loc) & previous_loc(Loc ,

Prev) & counterClockWise <-

3 stop_movement;

4 .drop_all_desires ;

5 -counterClockWise ;

6 !!work(Prev).

8 @detectedCounter [atomic]

9 +gantry_detected(_) : working(Loc) & next_loc(Loc ,Next) &

not counterClockWise <-

10 stop_movement;

11 .drop_all_desires ;

12 +counterClockWise ;

13 !!work(Next).

Listing 1.4. Jason code for the agent with the helpful personality.

1 public class RosEnv extends Environment{

2 RosBridge bridge = new RosBridge ();

3 ...

4 @Override

5 public void init(String [] args) {

6 super.init(args);

7 bridge.connect("ws:// localhost :9090", true);

8 bridge.subscribe(SubscriptionRequestMsg.generate("

9 /ariac_human/state")

10 .setType("ariac_msgs/msg/HumanState")

11 .setThrottleRate (1)

12 .setQueueLength (1),

13 new RosListenDelegate () {

14 public void receive(JsonNode dt, String st) {

15 MessageUnpacker <HumanState > unpkr = new

MesageUnpacker <HumanState >(HumanState.class);

16 HumanState m = unpkr.unpackRosMessage (dt);

17 gpX = m.robot_position.x; //store Gantry position

18 ... //same to y,z

19 double dis_robotHuman = calcDistanceRH(m);

20 double safe_dis = calcSafeDistance (m);

21 if(dis_robotHuman >2* safe_dis){

22 Literal gDet=new LiteralImpl("gantry_detected");

23 gDet.addTerm(new NumberTermImpl(ctrDt ++));

24 addPercept("human",gDet);

25 } } }

26); // END subscribe "/ ariac_human/state"

27 ... // continue subscription to other ROS topics

28 } // END init()

Listing 1.5. RosEnv Jason’s Environment with ROS–topics subscription.

Using Agents to Represent Humans in ARIAC 225

4.4 The Environment Class

Jason’s Environment class is responsible for performing the agents’ interaction
with the external world. In this case, the Environment class is responsible for
subscribing to the ROS topics of interest and transforming the messages within
them into perceptions for the agent. It is also responsible for implementing the
agent’s external actions, which in this case means publishing on ROS topics. The
previous Fig. 3 presented the topics-of-interest for our human agent.

Our implementation is based in the ROS-A interface7 [3] which makes use
of the ROSBridge8 library. Listing 1.5 shows our RosEnv class definition and its
init() method, where subscriptions to ROS topics are defined (e.g., ln.8–26)
and, when received, are transformed into perceptions for the agent (ln.21–23).
In total, the agent subscribes to four ROS topics, as depicted in the Fig. 3.

The method executeAction() is responsible for decoding the required exter-
nal action, as presented in ln.1–11 of Listing 1.6. An example of ROS–topic
publication is given in ln.12–15. In total, the agent publishes four different ROS
topics, as also depicted in the Fig. 3.

1 public boolean executeAction(String ag, Structure ac){

2 if (ac.getFunctor ().equals("move")) { //

3 ... //get x,y,z "terms" from ac

4 move(x,y,z);

5 } else if (ac.getFunctor ().equals("stop_movement"))

6 stop_moving ();

7 ... // continue with other ext. actions

8 else return false;

9 informAgsEnvironmentChanged ();

10 return true; // action successfully executed

11 } ... //here starts the method ’s implementation

12 public void stop_moving () {

13 Publisher pub = new Publisher("/ariac_human/stop",

"std_msgs/Bool", bridge);

14 pub.publish(new Bool(true));

15 }

Listing 1.6. External actions and ROS topic publishers.

4.5 Results and Additional Remarks

This section presents the preliminary analysis conducted to evaluate the impact
of using the developed Jason agent in the ARIAC 2023 competition – a com-
plete analysis should be done once the competition is finished. Such analysis is
performed in terms of deployment and usage difficulties – from the final users
(competitors) perspective – and also in respect to the impact on the computing
resources utilization.

7 https://github.com/rafaelcaue/jason-rosbridge.
8 http://wiki.ros.org/rosbridge suite.

https://github.com/rafaelcaue/jason-rosbridge
http://wiki.ros.org/rosbridge_suite

226 L. B. Becker et al.

The metric used to evaluate the users difficulties regards the number of
related issues opened in the competition’s Github9. From a total of 256 issues
opened until the present moment, only 3 (1.2%) were related with the “human
operator” agility challenge: #221, #229, and #245. The first issue was related
with installation problems of two required artifacts, Java and ROS 2: (i) wrong
JDK version, and (ii) missing ROS 2 nav2-simple-commander package. The issue
#229 addressed the effects the human in proximity with the AGVs, and trig-
gered some internal parameters tuning in our software. The last issue addressed
difficulties for running the system within a Docker package.

Performance tests were conducted to evaluate the impact of the developed
BDI-agents in respect to the computing resources utilization. Such tests were
executed using a Linux Ubuntu 20.04 workstation with an Intel Core i9-10920X
CPU with 24 cores at 3.50 GHz, 64 GiB of memory, and the NVIDIA GeForce
RTX 3080 graphics card. ROS 2 Galactic was used. The ps command at 2 s
intervals was used to log CPU utilization. The performance data was collected by
running a 275 s long experiment. As the experiment script is launched it spawns
27 processes related with ROS 2/Gazebo and one process related with the Jason
agent. For the ROS 2/Gazebo processes, the average CPU utilization was 510%
(five cores entirely plus 10% of a sixth core). For the Jason process, the average
CPU utilization was 6.5%. The Jason CPU usage decreased slightly over time.
Overall, Jason required only 1.27% of the CPU portion used by ROS 2/Gazebo,
which shows that it does not provide a significant overhead when observing the
complete simulation system.

We recorded videos demonstrating the three different human personalities in
action in the competition environment.10 As the gantry is stopped close to the
station 1, only the indifferent human will in fact reach this station – and then
will continue moving up to the point that it gets teleported. The antagonistic
human will change its direction towards the gantry before reaching station 1, and
shortly after it will also get teleported. The helpful human will turn around as
it gets close to the station 1 and will continue moving in the opposite direction.

5 Conclusions and Future Work

This paper presented what is considered to be the first use of BDI agents in the
ARIAC competition. Amongst the challenges that we faced when implement-
ing this agent, we highlight the high-level of complexity involving the software
architecture of the ARIAC 2023 competition. Our Jason agent was required to
interact with different components of the simulation environment, so that it
could properly control the human operator in the simulation. Besides the Jason
agent, including its environment, it was necessary to implement a couple of addi-
tional ROS 2/Gazebo components, such as the Python ROS node for movement
control and the CPP Gazebo plugin to support the teleport operation.
9 https://github.com/usnistgov/ARIAC/issues?q=is%3A+issue.

10 Indifferent: https://youtu.be/5pqm5WSQNTw. Helpful: https://youtu.be/7CH4sko
Os8c. Antagonistic: https://youtu.be/TQh9GQ1BbFw.

https://github.com/usnistgov/ARIAC/issues?q=is%3A+issue
https://youtu.be/5pqm5WSQNTw
https://youtu.be/7CH4skoOs8c
https://youtu.be/7CH4skoOs8c
https://youtu.be/TQh9GQ1BbFw

Using Agents to Represent Humans in ARIAC 227

The conducted analysis presented evidences that using BDI technologies did
cause significant overhead to the final users in terms of complexity for properly
putting the system to run. More importantly, it did not lead to a significant
overhead in terms of CPU utilization.

Even though the currently developed movement control for the human oper-
ator is simplistic if considering the full capacities of a BDI application, it serves
as basis for more sophisticated/complex versions that will come in the future.
This can, therefore, be seen as a successful initiative, which can also be observed
as a pedagogical action towards evangelising the use of cognitive/BDI agents
within non-agents developer communities, such as the robotics one, which is the
community mostly involved with the ARIAC competition. We also understand
this to be an initial seed towards spreading the use of cognitive agents within
industrial automation environments.

As future work, we aim to analyse the practical effects (consequences) on
competitors in the human challenge after ARIAC 2023 takes place, in especial
in what concerns the impact of the three different personalities of the human
operator.

References

1. Bordini, R.H., Hübner, J.F., Wooldrige, M.: Programming Multi-Agent Systems in
AgentSpeak Using Jason. John Wiley & Sons, Hoboken (2007)

2. Cardoso, R.C., Ferrando, A.: A review of agent-based programming for multi-agent
systems. Computers 10(2), 16 (2021)

3. Cardoso, R.C., Ferrando, A., Dennis, L.A., Fisher, M.: An interface for programming
verifiable autonomous agents in ROS. In: Bassiliades, N., Chalkiadakis, G., de Jonge,
D. (eds.) EUMAS/AT -2020. LNCS (LNAI), vol. 12520, pp. 191–205. Springer,
Cham (2020). https://doi.org/10.1007/978-3-030-66412-1 13

4. Correll, N., et al.: Analysis and Observations from the First Amazon Picking Chal-
lenge (2016)

5. Harrison, W., Downs, A., Schlenoff, C.: The agile robotics for industrial automation
competition. AI Mag. 39(4), 73–76 (2018)

6. Marvel, J.A.: Performance metrics of speed and separation monitoring in shared
workspaces. IEEE Trans. Autom. Sci. Eng. 10(2), 405–414 (2013)

7. Marvel, J.A., Hong, T.H., Messina, E.: 2011 solutions in perception challenge perfor-
mance metrics and results. In: Proceedings of the Workshop on Performance Metrics
for Intelligent Systems, pp. 59–63. ACM, New York, NY, USA (2012)

8. Rao, A.S.: AgentSpeak(L): BDI agents speak out in a logical computable language.
In: Van de Velde, W., Perram, J.W. (eds.) MAAMAW 1996. LNCS, vol. 1038, pp.
42–55. Springer, Heidelberg (1996). https://doi.org/10.1007/BFb0031845

9. Rao, A.S., Georgeff, M.P.: BDI agents: from theory to practice. In: Lesser, V.R.,
Gasser, L. (eds.) Proceedings of the First International Conference on Multiagent
Systems, pp. 312–319. The MIT Press, United States (1995)

https://doi.org/10.1007/978-3-030-66412-1_13
https://doi.org/10.1007/BFb0031845

Symbolic LTLf Best-Effort Synthesis

Giuseppe De Giacomo1,2, Gianmarco Parretti1(B), and Shufang Zhu2(B)

1 University of Rome “La Sapienza”, Rome, Italy
{degiacomo,parretti}@diag.uniroma1.com

2 University of Oxford, Oxford, UK
{giuseppe.degiacomo,shufang.zhu}@cs.ox.ac.uk

Abstract. We consider an agent acting to fulfil tasks in a nondeter-
ministic environment. When a strategy that fulfills the task regardless
of how the environment acts does not exist, the agent should at least
avoid adopting strategies that prevent from fulfilling its task. Best-effort
synthesis captures this intuition. In this paper, we devise and compare
various symbolic approaches for best-effort synthesis in Linear Temporal
Logic on finite traces (ltlf). These approaches are based on the same
basic components, however they change in how these components are
combined, and this has a significant impact on the performance of the
approaches as confirmed by our empirical evaluations.

1 Introduction

We consider an agent acting to fulfill tasks in a nondeterministic environment, as
considered in Planning in nondeterministic (adversarial) domains [8,15], except
that we specify both the environment and the task in Linear Temporal Logic
(ltl) [3], the formalism typically used for specifying complex dynamic properties
in Formal Methods [5].

In fact, we consider Linear Temporal Logic on finite traces (ltlf) [11,12],
which maintains the syntax of ltl [18] but is interpreted on finite traces. In this
setting, we study synthesis [3,12,13,17]. In particular, we look at how to syn-
thesize a strategy that is guaranteed to satisfy the task against all environment
behaviors that conform to the environment specification.

When a winning strategy that fulfills the agent’s task, regardless of how
the environment acts, does not exist, the agent should at least avoid adopting
strategies that prevent it from fulfilling its task. Best-effort synthesis captures
this intuition. More precisely, best-effort synthesis captures the game-theoretic
rationality principle that a player would not use a strategy that is “dominated”
by another of its strategies (i.e. if the other strategy would fulfill the task against
more environment behaviors than the one chosen by the player). Best-effort
strategies have been studied in [4] and proven to have some notable properties:
(i) they always exist, (ii) if a winning strategy exists, then best-effort strategies
are exactly the winning strategies, (iii) best-effort strategies can be computed
in 2EXPTIME as computing winning strategies (best-effort synthesis is indeed
2EXPTIME-complete).
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
V. Malvone and A. Murano (Eds.): EUMAS 2023, LNAI 14282, pp. 228–243, 2023.
https://doi.org/10.1007/978-3-031-43264-4_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-43264-4_15&domain=pdf
https://doi.org/10.1007/978-3-031-43264-4_15

Symbolic ltlf Best-Effort Synthesis 229

The algorithms for best-effort synthesis in ltl and ltlf have been presented
in [4]. These algorithms are based on creating, solving, and combining the solu-
tions of three distinct games but of the same game arena. The arena is obtained
from the automata corresponding to the formulas E and ϕ constituting the envi-
ronment and the task specifications, respectively.

In particular, the algorithm for ltlf best-effort synthesis appears to be quite
promising in practice since well-performing techniques for each component of the
algorithm are available in the literature. These components are: (i) transforma-
tion of the ltlf formulas E and ϕ into deterministic finite automata (dfa),
which can be double-exponential in the worst case, but for which various good
techniques have been developed [6,10,16,22]; (ii) Cartesian product of dfas,
which is polynomial; (iii) minimization of dfas, which is also polynomial; (iv)
fixpoint computation over dfa to compute adversarial and cooperative winning
strategies for reaching the final states, which is again polynomial.

In this paper, we refine the ltlf best-effort synthesis techniques presented
in [4] by using symbolic techniques [5,7,22]. In particular, we show three different
symbolic approaches that combine the above operations in different ways (and
in fact allow for different levels of minimization). We then compare the three
approaches through empirical evaluations. From this comparison, a clear winner
emerges. Interestingly, the winner does not fully exploit dfa minimization to
minimize the dfa whenever it is possible. Instead, this approach uses uniformly
the same arena for all three games (hence giving up on minimization at some
level). Finally, it turns out that the winner performs better in computing best-
effort solutions even than state-of-the-art tools that compute only adversarial
solutions. These findings confirm that ltlf best-effort synthesis is indeed well
suited for efficient and scalable implementations.

The rest of the paper is organized as follows. In Sect. 2, we recall the main
notions of ltlf synthesis. In Sect. 3, we discuss ltlf best-effort synthesis, and
the algorithm presented in [4]. In Sect. 4, we introduce three distinct symbolic
approaches for ltlf best-effort synthesis: the first (c.f., Subsect. 4.2) is a direct
symbolic implementation of the algorithm presented in [4]; the second one (c.f.,
Subsect. 4.3) favors maximally conducting dfa minimization, thus getting the
smallest possible arenas for the three games; and the third one (c.f., Subsect. 4.4)
gives up dfa minimization at some level, and creates a single arena for the three
games. In Sect. 5, we perform an empirical evaluation of the three algorithms.
We conclude the paper in Sect. 6.

2 Preliminaries

ltlfBasics. Linear Temporal Logic on finite traces (ltlf) is a specification lan-
guage to express temporal properties on finite traces [11]. In particular, ltlf

has the same syntax as ltl, which is instead interpreted over infinite traces [18].
Given a set of propositions Σ, ltlf formulas are generated as follows:

ϕ::=a | (ϕ1 ∧ ϕ2) | (¬ϕ) | (◦ϕ) | (ϕ1 U ϕ2)

230 G. De Giacomo et al.

where a ∈ Σ is an atom, ◦ (Next), and U (Until) are temporal operators. We
make use of standard Boolean abbreviations such as ∨ (or) and → (implies), true
and false. In addition, we define the following abbreviations Weak Next •ϕ ≡
¬◦¬ϕ, Eventually ♦ϕ ≡ trueU ϕ and Always �ϕ ≡ ¬♦¬ϕ. The length/size of
ϕ, written |ϕ|, is the number of operators in ϕ.

A finite (resp. infinite) trace is a sequence of propositional interpretations
π ∈ (2Σ)∗ (resp. π ∈ (2Σ)ω). For every i ≥ 0, πi ∈ 2Σ is the i-th interpretation
of π. Given a finite trace π, we denote its last instant (i.e., index) by lst(π).
ltlf formulas are interpreted over finite, nonempty traces. Given a finite, non-
empty trace π ∈ (2Σ)+, we define when an ltlf formula ϕ holds at instant i,
0 ≤ i ≤ lst(π), written π, i |= ϕ, inductively on the structure of ϕ, as:

– π, i |= a iff a ∈ πi (for a ∈ Σ);
– π, i |= ¬ϕ iff π, i
|= ϕ;
– π, i |= ϕ1 ∧ ϕ2 iff π, i |= ϕ1 and π, i |= ϕ2;
– π, i |= ◦ϕ iff i < lst(π) and π, i + 1 |= ϕ;
– π, i |= ϕ1 U ϕ2 iff ∃j such that i ≤ j ≤ lst(π) and π, j |= ϕ2, and ∀k, i ≤ k < j

we have that π, k |= ϕ1.

We say π satisfies ϕ, written as π |= ϕ, if π, 0 |= ϕ.

Reactive Synthesis Under Environment Specifications. Reactive synthesis con-
cerns computing a strategy that allows the agent to achieve its goal in an adver-
sarial environment. In many AI applications, the agent has a model describing
possible environment behaviors, which we call here an environment specifica-
tion [2,3]. In this work, we specify both environment specifications and agent
goals as ltlf formulas defined over Σ = X ∪Y, where X and Y are disjoint sets
of variables under the control of the environment and the agent, respectively.

An agent strategy is a function σag : (2X)∗ → 2Y that maps a sequence
of environment choices to an agent choice. Similarly, an environment strat-
egy is a function σenv : (2Y)+ → 2X mapping non-empty sequences of agent
choices to an environment choice. A trace π = (X0 ∪ Y0)(X1 ∪ Y1) . . . ∈
(2X∪Y)ω is σag-consistent if Y0 = σag(ε), where ε denotes empty sequence, and
Yi = σag(X0, . . . , Xi−1) for every i > 0. Analogously, π is σenv-consistent if
Xi = σenv(Y0, . . . , Yi) for every i ≥ 0. We define π(σag, σenv) to be the unique
infinite trace that is consistent with both σag and σenv.

Let ψ be an ltlf formula over X ∪Y. We say that agent strategy σag enforces
ψ, written σag � ψ, if for every environment strategy σenv, there exists a finite
prefix of π(σag, σenv) that satisfies ψ. Conversely, we say that an environment
strategy σenv enforces ψ, written σenv � ψ, if for every agent strategy σag, every
finite prefix of π(σag, σenv) satisfies ψ. ψ is agent enforceable (resp. environment
enforceable) if there exists an agent (resp. environment) strategy that enforces it.
An environment specification is an ltlf formula E that is environment enforce-
able.

The problem of ltlf reactive synthesis under environment specifications is
defined as follows.

Symbolic ltlf Best-Effort Synthesis 231

Definition 1. The ltlf reactive synthesis under environment specifications
problem is defined as a pair P = (E , ϕ), where ltlf formulas E and ϕ correspond
to an environment specification and an agent goal, respectively. Realizability of
P checks whether there exists an agent strategy σag that enforces ϕ under E, i.e.,

∀σenv � E , π(σag, σenv) |= ϕ

Synthesis of P computes such a strategy if it exists.

A naive approach to this problem is a reduction to standard reactive synthesis of
ltlf formula E → ϕ [3]. Moreover, it has been shown that the problem of ltlf

reactive synthesis under environment specifications is 2EXPTIME-complete [3].

3 Best-Effort Synthesis Under Environment
Specifications

In reactive synthesis, the agent aims at computing a strategy that enforces the
goal regardless of environment behaviors. If such a strategy does not exist, the
agent just gives up when the synthesis procedure declares the problem unreal-
izable, although the environment can be possibly “over-approximated”. In this
work, we synthesize a strategy ensuring that the agent will do nothing that
would needlessly prevent it from achieving its goal – which we call a best-effort
strategy. Best-effort synthesis is the problem of finding such a strategy [4]. We
start by reviewing what it means for an agent strategy to make more effort with
respect to another.

Definition 2. Let E and ϕ be ltlf formulas denoting an environment spec-
ification and an agent goal, respectively, and σ1 and σ2 be two agent strate-
gies. σ1 dominates σ2 for ϕ under E, written σ1 ≥ϕ|E σ2, if for every
σenv � E , π(σ2, σenv) |= ϕ implies π(σ1, σenv) |= ϕ.

Furthermore, we say that σ1 strictly dominates σ2, written σ1 >ϕ|E σ2, if
σ1 ≥ϕ|E σ2 and σ2
≥ϕ|E σ1. Intuitively, σ1 >ϕ|E σ2 means that σ1 does at least
as well as σ2 against every environment strategy enforcing E and strictly better
against one such strategy. If σ1 strictly dominates σ2, then σ1 makes more effort
than σ2 to satisfy the goal. In other words, if σ2 is strictly dominated by σ1,
then an agent that uses σ2 does not do its best to achieve the goal: if it used
σ1 instead, it could achieve the goal against a strictly larger set of environment
behaviors. Within this framework, a best-effort strategy is one that is not strictly
dominated by any other strategy.

Definition 3. An agent strategy σ is best-effort for ϕ under E, if there is no
agent strategy σ′ such that σ′ >ϕ|E σ.

It follows immediately from Definition 3 that if a goal ϕ is agent enforce-
able under E , then best-effort strategies enforce ϕ under E . Best-effort synthesis
concerns computing a best-effort strategy.

232 G. De Giacomo et al.

Definition 4 ([4]). The ltlf best-effort synthesis problem is defined as a pair
P = (E , ϕ), where ltlf formulas E and ϕ are the environment specification and
the agent goal, respectively. Best-effort synthesis of P computes an agent strategy
that is best-effort for ϕ under E.

While classical synthesis settings first require checking the realizability of
the problem, i.e., the existence of a strategy that enforces the agent goal under
environment specification [12,17], deciding whether a best-effort strategy exists
is trivial, as they always exist.

Theorem 1 ([4]). Let P = (E , ϕ) be an ltlf best-effort synthesis problem.
There exists a best-effort strategy for ϕ under E.

ltlf best-effort synthesis can be solved by a reduction to suitable dfa games
and is 2EXPTIME-complete [4].

dfaGame. A dfa game is a two-player game played on a deterministic finite
automaton (dfa). Formally, a dfa is defined as a pair A = (D, F), where D is
a deterministic transition system such that D = (2X∪Y , S, s0, δ), where 2X∪Y is
the alphabet, S is the state set, s0 ∈ S is the initial state and δ : S × 2X∪Y → S
is the deterministic transition function, and F ⊆ S is a set of final states. We call
|S| the size of D. Given a finite word π = (X0 ∪ Y0) . . . (Xn ∪ Yn) ∈ (2X∪Y)+,
running π in D yields the sequence ρ = s0 . . . sn+1 such that s0 is the initial
state of D and si+1 = δ(si,Xi ∪ Yi) for all i. Since the transitions in D are
all deterministic, we denote by ρ = Run(π,D) the unique sequence induced by
running π on D. We define the product of transition systems as follows.

Definition 5. The product of transition systems Di = (Σ,Si, s(0,i), δi) (with
i = 1, 2) over the same alphabet is the transition system D1 × D2 = (Σ,S, s0, δ)
with: S = S1×S2; s0 = (s(0,1), s(0,2)); and δ((s1, s2), x) = (δ(s1, x), δ(s2, x)). The
product D1 × . . . × Dn is defined analogously for any finite sequence D1, . . . ,Dn

of transition systems over the same alphabet.

A finite word π is accepted by A = (D, F) if the last state of the run it
induces is a final state, i.e., lst(ρ) ∈ F , where ρ = Run(π,D). The language of A,
denoted as L(A), consists of all words accepted by the automaton. Every ltlf

formula ϕ can be transformed into a dfa Aϕ that accepts exactly the traces that
satisfy the formula, in other words, Aϕ recognizes ϕ.

Theorem 2 ([11]). Given an ltlf formula over Σ, we can build a dfa Aϕ =
(Dϕ, Fϕ) whose size is at most double-exponential in |ϕ| such that π |= ϕ iff
π ∈ L(Aϕ).

In a dfa game (D, F), the transition system D is also called the game arena.
Given σag and σenv denoting an agent strategy and an environment strategy,
respectively, the trace π(σag, σenv) is called a play. Specifically, a play is win-
ning if it contains a finite prefix that is accepted by the dfa. Intuitively, dfa
games require F to be visited at least once. An agent strategy σag is winning in

Symbolic ltlf Best-Effort Synthesis 233

(D, F) if, for every environment strategy σenv, it results that π(σag, σenv) is win-
ning. Conversely, an environment strategy σenv is winning in the game (D, F)
if, for every agent strategy σag, it results that π(σag, σenv) is not winning. In
dfa games, s ∈ S is a winning state for the agent (resp. environment) if the
agent (resp. the environment) has a winning strategy in the game (D′, F), where
D′ = (2X∪Y , S, s, δ), i.e., the same arena D but with the new initial state s.
By Wag(D, F) (resp. Wenv(D, F)) we denote the set of all agent (resp. environ-
ment) winning states. Intuitively, Wag represents the “agent winning region”,
from which the agent is able to win the game, no matter how the environment
behaves.

We also define cooperatively winning strategies for dfa games. An agent
strategy σag is cooperatively winning in game (D, F) if there exists an envi-
ronment strategy σenv such that π(σag, σenv) is winning. Hence, s ∈ S is a
cooperatively winning state if the agent has a cooperatively winning strategy in
the game (D′, F), where D′ = (2X∪Y , S, s0, δ). By W′

ag(D, F) we denote the set
of all agent cooperative winning states.

When the agent makes its choices based only on the current state of the game,
we say that it uses a positional strategy. Formally, we define an agent positional
strategy (a.k.a. memory-less strategy) as a function τag : S → 2X . An agent
positional strategy τag induces an agent strategy σag : (2X)∗ → 2Y as follows:
σag(ε) = τ(s0) and, for i ≥ 0, σag(X0 . . . Xi) = τag(si+1), where si+1 is the last
state in the sequence ρ = Run(π,D), with π being the finite sequence played until
now, i.e., π = (σag(ε)∪X0)(σag(X0)∪X1) . . . (σ(X0 . . . Xk−1)∪Xk). Similarly, we
can define an environment positional strategy as a function τenv : S × 2Y → 2X .
A positional strategy for a player that is winning (resp. cooperatively winning)
from every state in its winning region is called uniform winning (resp. uniform
cooperatively winning).

The solution to ltlf best-effort synthesis presented in [4] can be summarized
as follows.

Algorithm 0 [4]. Given an ltlf best-effort synthesis problem P = (E , ϕ),
proceed as follows:

1. For every ξ ∈ {¬E , E → ϕ, E ∧ ϕ} compute the dfas Aξ = (Dξ, Fξ).
2. Form the product D = D¬E × DE→ϕ × DE∧ϕ. Lift the final states of each

component to the product, i.e. if Aξ = (Dξ, Fξ) is the dfa for ξ, then the
lifted condition Gξ consists of all states (s¬E , sE→ϕ, sE∧ϕ) s.t. sξ ∈ Fξ.

3. In dfa game (D, GE→ϕ) compute a uniform positional winning strategy fag.
Let Wag ⊆ S be the agent’s winning region.

4. In dfa game (D, G¬E) compute the environment’s winning region V ⊆ Q.
5. Compute the environment restriction D′ of D to V .
6. In dfa game (D′, GE∧ϕ) find a uniform positional cooperatively winning strat-

egy gag.
7. Return the agent strategy σag induced by the positional strategy kag, which

is defined as follows: kag(s) =

{
fag(s) if s ∈ Wag,

gag(s) otherwise.

234 G. De Giacomo et al.

4 Symbolic LTLf Best-Effort Synthesis

We present in this section three different symbolic approaches to ltlf

best-effort synthesis, namely monolithic, explicit-compositional, and symbolic-
compositional, as depicted in Fig. 1. In particular, we base on the symbolic tech-
niques of DFA games presented in [22], which we briefly review below.

Fig. 1. From left to right, (a) monolithic, (b) explicit-compositional, and (c) symbolic-
compositional techniques to ltlf best-effort synthesis. In particular, Ds = Ds

E→ϕ ×
Ds

¬E × Ds
E∧ϕ in (a) and (b). Ds = Ds

E × Ds
ϕ in (c). The specific operations of the three

techniques are enclosed in red boxes.

4.1 Symbolic dfa Games

We consider the dfa representation described in Sect. 3 as an explicit-state rep-
resentation. Instead, we are able to represent a dfa more compactly in a sym-
bolic way by using a logarithmic number of propositions to encode the state

Symbolic ltlf Best-Effort Synthesis 235

space. More specifically, the symbolic representation of D is a tuple Ds =
(X ,Y,Z, Z0, η), where Z is a set of state variables such that |Z| = �log |S|�,
and every state s ∈ S corresponds to an interpretation Z ∈ 2Z over Z; Z0 ∈ 2Z

is the interpretation corresponding to the initial state s0; η : 2X ×2Y ×2Z → 2Z

is a Boolean function such that η(Z,X, Y) = Z ′ if and only if Z is the interpre-
tation of a state s and Z ′ is the interpretation of the state δ(s,X ∪Y). The set of
goal states is represented by a Boolean function f over Z that is satisfied exactly
by the interpretations of states in F . In the following, we denote symbolic dfas
as pairs (Ds, f).

Given a symbolic dfa game (Ds, f), we can compute a positional uniform
winning agent strategy through a least fixpoint computation over two Boolean
formulas w over Z and t over Z∪Y, which represent the agent winning region and
winning states with agent actions such that, regardless of how the environment
behaves, the agent reaches the final states, respectively. Specifically, w and t are
initialized as w0(Z) = f(Z) and t0(Z,Y) = f(Z), since every goal state is an
agent winning state. Note that t0 is independent of the propositions from Y,
since once the play reaches goal states, the agent can do whatever it wants. ti+1

and wi+1 are constructed as follows:

ti+1(Z, Y) = ti(Z, Y) ∨ (¬wi(Z) ∧ ∀X.wi(η(X,Y,Z)))
wi+1(Z) = ∃Y.ti+1(Z, Y)

The computation reaches a fixpoint when wi+1 ≡ wi. To see why a fixpoint is
eventually reached, note that function wi+1 is monotonic. That is, at each step,
a state Z is added to the winning region wi+1 only if it has not been already
detected as a winning state, written ¬wi(Z) in function ti+1(Z, Y) above, and
there exists an agent choice Y such that, for every environment choice X, the
agent moves in wi, written ∀X.wi(η(X,Y,Z)).

When the fixpoint is reached, no more states will be added, and so all agent
winning states have been collected. By evaluating Z0 on wi+1 we can determine
if there exists a winning strategy. If that is the case, ti+1 can be used to com-
pute a uniform positional winning strategy through the mechanism of Boolean
synthesis [14]. More specifically, by passing ti to a Boolean synthesis procedure,
setting Z as input variables and Y as output variables, we obtain a uniform
positional winning strategy τ : 2Z → 2Y that can be used to induce an agent
winning strategy.

Computing a uniform positional cooperatively winning strategy can be per-
formed through an analogous least-fixpoint computation. To do this, we define
again Boolean functions ŵ over Z and t̂ over Z ∪ Y, now representing the agent
cooperatively winning region and cooperatively winning states with agent actions
such that, if the environment behaves cooperatively, the agent reaches the final
states. Analogously, we initialize ŵ0(Z) = f(Z) and t̂0(Z,Y) = f(Z). Then, we
construct t̂i+1 and ŵi+1 as follows:

t̂i+1(Z, Y) = t̂i(Z, Y) ∨ (¬ŵi(Z) ∧ ∃X.ŵi(η(X,Y,Z)))

ŵi+1(Z) = ∃Y.t̂i+1(Z, Y);

236 G. De Giacomo et al.

Once the computation reaches the fixpoint, checking the existence and com-
puting a uniform cooperatively winning positional strategy can be done similarly.

Sometimes, the state space of a symbolic transition system must be restricted
to not reach a given set of invalid states represented as a Boolean function. To
do so, we redirect all transitions from states in the set to a sink state. Formally:

Definition 6. Let Ds = (Z,X ,Y, Z0, η) be a symbolic transition system and g
a Boolean formula over Z representing a set of states. The restriction of Ds to g
is a new symbolic transition system D′s = (Z,X ,Y, Z0, η

′), where η′ only agrees
with η if Z |= g, i.e., η′ = η ∧ g.

4.2 Monolithic Approach

The monolithic approach is a direct implementation of the best-effort synthesis
approach presented in [4] (i.e., of Algorithm 0), utilizing the symbolic synthesis
framework introduced in [22]. Given a best-effort synthesis problem P = (E , ϕ),
we first construct the dfas following the synthesis algorithm described in Sect. 3,
and convert them into a symbolic representation. Then, we solve suitable games
on the symbolic dfas and obtain a best-effort strategy. The workflow of the
monolithic approach, i.e., Algorithm 1, is shown in Fig. 1(a). We elaborate on
the algorithm as follows.

Algorithm 1. Given an ltlf best-effort synthesis problem P = (E , ϕ), proceed
as follows:

1. For ltlf formulas E → ϕ, ¬E and E ∧ ϕ compute the corresponding minimal
explicit-state dfas AE→ϕ = (DE→ϕ, FE→ϕ), A¬E = (D¬E , F¬E) and AE∧ϕ =
(DE∧ϕ, FE∧ϕ).

2. Convert the dfas to a symbolic representation to obtain As
E→ϕ =

(Ds
E→ϕ, fE→ϕ), As

¬E = (Ds
¬E , f¬E) and As

E∧ϕ = (Ds
E∧ϕ, fE∧ϕ).

3. Construct the product Ds = Ds
E→ϕ × Ds

¬E × Ds
E∧ϕ.

4. In dfa game (Ds, fE→ϕ), compute a uniform positional winning strategy τag

and the agent’s winning region Wag(Ds, fE→ϕ).
5. In dfa game (Ds, f¬E), compute the environment’s winning region

Wenv(Ds, f¬E).
6. Compute the symbolic restriction D′s of Ds to Wenv(Ds, f¬E) to restrict the

state space of Ds to considering Wenv(Ds, f¬E) only.
7. In dfa game (D′s, fE∧ϕ), compute a uniform positional cooperatively winning

strategy γag.
8. Return the best-effort strategy σag induced by the positional strategy κag

constructed as follows: κag(Z) =

{
τag(Z) if Z |= Wag(Ds, fE→ϕ)
γag(Z) otherwise.

The main challenge in the monolithic approach comes from the ltlf -to-
dfa conversion, which can take, in the worst case, double-exponential time [11],
and thus is also considered the bottleneck of ltlf synthesis [22]. To that end,
we propose an explicit-compositional approach to diminish this difficulty by
decreasing the number of ltlf -to-dfa conversions.

Symbolic ltlf Best-Effort Synthesis 237

4.3 Explicit-Compositional Approach

As described in Sect. 4.2, the monolithic approach to a best-effort synthesis prob-
lem P = (E , ϕ) involves three rounds of ltlf -to-dfa conversions corresponding
to ltlf formulas E → ϕ, ¬E and E ∧ϕ. However, observe that dfas AE→ϕ, A¬E
and AE∧ϕ can, in fact, be constructed by manipulating the two dfas AE and
Aϕ of ltlf formulas E and ϕ, respectively. Specifically, given the explicit-state
dfas Aϕ and AE , we obtain AE→ϕ, A¬E and AE∧ϕ as follows:

– AE→ϕ = Comp(Inter(AE ,Comp(Aϕ));
– A¬E = Comp(AE);
– AE∧ϕ = Inter(AE ,Aϕ);

where Comp and Inter denote complement and intersection on explicit-state
dfas, respectively. Note that transforming ltlf formulas into dfas takes double-
exponential time in the size of the formula, while the complement and intersec-
tion of dfas take polynomial time in the size of the dfa.

The workflow of the explicit-compositional approach, i.e., Algorithm 2, is
shown in Fig. 1(b). As the monolithic approach, we first translate the formulas
E and ϕ into minimal explicit-state dfas AE and Aϕ, respectively. Then, dfas
AE→ϕ, A¬E and AE∧ϕ are constructed by manipulating AE and Aϕ through
complement and intersection. Indeed, the constructed explicit-state dfas are
also minimized. The remaining steps of computing suitable dfa games are the
same as in the monolithic approach.

4.4 Symbolic-Compositional Approach

The monolithic and explicit-compositional approaches are based on playing three
games over the symbolic product of transition systems DE→ϕ, D¬E , and DE∧ϕ.
We observe that given dfas AE = (DE , FE) and Aϕ = (Dϕ, Fϕ) recognizing E
and ϕ, respectively, the dfa recognizing any Boolean combination of E and ϕ
can be constructed by taking the product of DE and Dϕ and properly defining
the set of final states over the resulting transition system.

Lemma 1. Let Aψ1 = (Dψ1 , Fψ1) and Aψ2 = (Dψ2 , Fψ2) be the automata rec-
ognizing ltlf formulas ψ1 and ψ2, respectively, and ψ = ψ1 op ψ2 denoting an
arbitrary Boolean combination of ψ1 and ψ2, i.e., op ∈ {∧,∨,→,↔}. The dfa
Âψ = (D̂ψ, F̂ψ) with D̂ψ = Dψ1 ×Dψ2 and F̂ψ = {(sψ1 , sψ2) | sψ1 ∈ Fψ1 op sψ2 ∈
Fψ2} recognizes ψ.

Proof. (→) Assume π |= ψ. We will prove that π ∈ L(Âϕ). To see this, observe
that π |= ψ implies π |= ψ1 op π |= ψ2. It follows by [11] that π ∈ L(Aψ1) op π ∈
L(Aψ2), meaning that running π in Dψ1 and Dψ2 yields the sequences of states
(sψ1

0 , . . . , sψ1
n) and (sψ2

0 , . . . , sψ2
n) such that sψ1

n ∈ Fψ1 op sψ2
n ∈ Fψ2 . Since D̂ψ

is obtained through synchronous product of Dψ1 and Dψ2 , running π in Âψ

yields the sequence of states ((sψ1
0 , sψ2

0), . . . , (sψ1
n , sψ2

n)), such that (sψ1
n , sψ2

n) ∈
F̂ψ. Hence, we have that π ∈ L(Âψ).

238 G. De Giacomo et al.

(←) Assume π ∈ L(Âϕ). We prove that π |= ψ. To see this, observe that
π ∈ L(Âϕ) means that the run ρ = (sψ1

0 , sψ2
0) . . . (sψ1

n , sψ2
n) induced by π on

D̂ψ is such that (sψ1
n , sψ2

n) ∈ F̂ψ. This means, by construction of F̂ψ, that
(sψ1

n , sψ2
n) s.t. sψ1

n ∈ Fψ1 op sψ2
n ∈ Fψ2 . Since D̂ψ is obtained through synchronous

product of Dψ1 and Dψ2 , it follows that π ∈ L(Aψ1) op π ∈ L(Aψ2). By [11] we
have that π |= ψ1 op π |= ψ2, and hence π |= ψ. ��

Notably, Lemma 1 tells that the dfas AE→ϕ, A¬E , and AE∧ϕ can be con-
structed from the same transition system by defining proper sets of final states.
Specifically, given the dfas AE = (DE , FE) and Aϕ = (Dϕ, Fϕ) recognizing E and
ϕ, respectively, the dfas recognizing E → ϕ, ¬E , and E ∧ ϕ can be constructed
as AE→ϕ = (D, FE→ϕ), A¬E = (D, F¬E), and AE∧ϕ = (D, FE∧ϕ), respectively,
where D = DE × Dϕ and:

– FE→ϕ = {(sE , sϕ) | sE ∈ FE → sϕ ∈ Fϕ}.
– F¬E = {(sE , sϕ) | sE
∈ FE}.
– FE∧ϕ = {(sE , sϕ) | sE ∈ FE ∧ sϕ ∈ Fϕ}.

The symbolic-compositional approach precisely bases on this observation. As
shown in Fig. 1(c), we first transform the ltlf formulas E and ϕ into minimal
explicit-state dfas AE and Aϕ, respectively, and then construct the symbolic
representations As

E and As
ϕ of them. Subsequently, we construct the symbolic

product Ds = Ds
E ×Ds

ϕ, once and for all, and get the three dfa games by defining
the final states (which are Boolean functions) from fE and fϕ as follows:

– fE→ϕ = fE → fϕ.
– f¬E = ¬fE .
– fE∧ϕ = fE ∧ fϕ.

From now on, the remaining steps are the same as in the monolithic and explicit-
compositional approaches.

Algorithm 3. Given a best-effort synthesis problem P = (E , ϕ), proceed as
follows:

1. Compute the minimal explicit-state dfas AE = (DE , FE) and Aϕ = (Dϕ, Fϕ).
2. Convert the dfas to a symbolic representation to obtain As

E = (Ds
E , fE) and

As
ϕ = (Ds

ϕ, fϕ).
3. Construct the symbolic product Ds = Ds

E × Ds
ϕ.

4. In dfa game Gs
E→ϕ = (Ds, fE → fϕ) compute a positional uniform winning

strategy τag and the agent winning region Wag(Ds, fE → fϕ).
5. In the dfa game (Ds,¬fE) compute the environment’s winning region

Wenv(Ds,¬fE).
6. Compute the symbolic restriction D′s of Ds to Wenv(Ds, f¬E) so as to restrict

the state space of Ds to considering Wenv(Ds, f¬E) only.
7. In the dfa game (D′s, fE ∧fϕ) find a positional cooperatively winning strategy

γag.
8. Return the best-effort strategy σag induced by the positional strategy κag

constructed as follows: κag(Z) =

{
τag(Z) if Z |= Wag(Ds, fE→ϕ)
γag(Z) otherwise.

Symbolic ltlf Best-Effort Synthesis 239

5 Empirical Evaluations

In this section, we first describe how we implemented our symbolic ltlf best-
effort synthesis approaches described in Sect. 4. Then, by empirical evaluation,
we show that Algorithm 3, i.e., the symbolic-compositional approach, shows an
overall best-performance. In particular, we show that performing best-effort syn-
thesis only brings a minimal overhead with respect to standard synthesis and
may even show better performance on certain instances.

5.1 Implementation

We implemented the three symbolic approaches to ltlf best-effort synthesis
described in Sect. 4 in a tool called BeSyft, by extending the symbolic synthesis
framework [20,22] integrated in state-of-the-art synthesis tools [6,9]. In partic-
ular, we based on Lydia1, the overall best performing ltlf -to-dfa conversion
tool, to construct the minimal explicit-state dfas of ltlf formulas. Moreover,
BeSyft borrows the rich APIs from Lydia to perform relevant explicit-state dfa
manipulations required by both Algorithm 1, i.e., the monolithic approach (c.f.,
Subsect. 4.2), and Algorithm 2, i.e., the explicit-compositional approach (c.f.,
Subsect. 4.3), such as complement, intersection, minimization. As in [20,22], the
symbolic dfa games are represented in Binary Decision Diagrams (BDDs) [7],
utilizing CUDD-3.0.0 [19] as the BDD library. Thereby, BeSyft constructs and
solves symbolic dfa games using Boolean operations provided by CUDD-3.0.0,
such as negation, conjunction, and quantification. The uniform positional win-
ning strategy τag and the uniform positional cooperatively winning strategy γag

are computed utilizing Boolean synthesis [14]. The positional best-effort strat-
egy is obtained by applying suitable Boolean operations on τag and γag. As a
result, we have three derivations of BeSyft , namely BeSyft-Alg-1, BeSyft-Alg-2,
and BeSyft-Alg-3, corresponding to the monolithic, explicit-compositional, and
symbolic-compositional approach, respectively.

5.2 Experiment Methodology

Experiment Setup. All experiments were run on a laptop with an operating
system 64-bit Ubuntu 20.04, 3.6 GHz CPU, and 12 GB of memory. Time out
was set to 1000 s.

Benchmarks. We devised a counter-game benchmark, based on the one proposed
in [21]. More specifically, there is an n-bit binary counter and, at each round,
the environment chooses whether to issue an increment request for the counter
or not. The agent can choose to grant the request or ignore it and its goal is to
get the counter to have all bits set to 1. The increment requests only come from
the environment, and occur in accordance with the environment specification.

1 https://github.com/whitemech/lydia.

https://github.com/whitemech/lydia

240 G. De Giacomo et al.

The size of the minimal dfa of a counter-game specification grows exponentially
as n increases.

In the experiments, environment specifications ensure that the environment
eventually issues a minimum number K of increment requests in sequence,
which can be represented as ltlf formulas EK = ♦(add ∧ •(add) . . . ∧•(. . . (•(add)) . . .)), where K is the number of conjuncts. Counter-game
instances may be realizable depending on the parameter K and the number
of bits n. In the case of a realizable instance, a strategy for the agent to enforce
the goal is to grant all increment requests coming from the environment. Else,
the agent can achieve the goal only if the environment behaves cooperatively,
such as issuing more increment requests than that specified in the environment
specification. That is, the agent needs a best-effort strategy. In our experiments,
we considered counter-game instances with at most n = 10 bits and K = 10
sequential increment requests. As a result, our benchmarks consist of a total of
100 instances.

5.3 Experimental Results and Analysis

In our experiments, all BeSyft implementations are only able to solve counter-
game instances with up to n = 8 bits. Figure 2 shows the comparison (in log
scale) of the three symbolic implementations of best-effort synthesis on counter-
game instances with n = 8 and 1 ≤ K ≤ 10. First, we observe that BeSyft-Alg-
1 (monolithic) and BeSyft-Alg-2 (explicit-compositional) reach timeout when
K ≥ 8, whereas BeSyft-Alg-3 (symbolic-compositional) is able to solve all 8-bit
counter-game instances. We can also see that BeSyft-Alg-1 performs worse than
the other two derivations since it requires three rounds of ltlf -to-dfa conver-
sions, which in the worst case, can lead to a double-exponential blowup. Finally,
we note that BeSyft-Alg-3, which implements the symbolic-compositional app-
roach, achieves orders of magnitude better performance than the other two imple-
mentations, although it does not fully exploit the power of dfa minimization.
Nevertheless, it is not the case that automata minimization always leads to
improvement. Instead, there is a tread-off of performing automata minimization.
As shown in Fig. 2, BeSyft-Alg-3, performs better than BeSyft-Alg-2, though the
former does not minimize the game arena after the symbolic product, and the
latter minimizes the game arena as much as possible.

On a closer inspection, we evaluated the time cost of each major operation of
BeSyft-Alg-3, and present the results on counter-game instances with n = 8 and
1 ≤ K ≤ 10 in Fig. 3. First, the results show that ltlf -to-dfa conversion is the
bottleneck of ltlf best-effort synthesis, the cost of which dominates the total
running time. Furthermore, we can see that the total time cost of solving the
cooperative dfa game counts for less than 10% of the total time cost. As a result,
we conclude that performing best-effort synthesis only brings a minimal overhead
with respect to standard reactive synthesis, which consists of constructing the
dfa of the input ltlf formula and solving its corresponding adversarial game.
Also, we observe that solving the cooperative game takes longer than solving
the adversarial game. Indeed, this is because the fixpoint computation in the

Symbolic ltlf Best-Effort Synthesis 241

Fig. 2. Comparison (in log scale) of BeSyft implementations on counter game instances
with n = 8 and 1 ≤ K ≤ 10.

Fig. 3. Relative time cost of BeSyft-Alg-3 major operations on counter game instances
with n = 8 and 1 ≤ K ≤ 10.

cooperative game often requires more iterations than that in the adversarial
game.

Finally, we also compared the time cost of symbolic-compositional best-effort
synthesis with that of standard reactive synthesis on counter-game instances.
More specifically, we considered a symbolic implementation of reactive synthesis
that computes an agent strategy that enforces the ltlf formula E → ϕ [10,
22], which can be used to find an agent strategy enforcing ϕ under E , if it
exists [3]. Interestingly, Fig. 4 shows that for certain counter-game instances,
symbolic-compositional best-effort synthesis takes even less time than standard
reactive synthesis. It should be noted that symbolic-compositional best-effort
synthesis performs ltlf -to-dfa conversions of ltlf formulas ϕ and E separately
and combines them to obtain the final game arena without having automata
minimization, whereas reactive synthesis performs the ltlf -to-dfa conversion
of formula E → ϕ and minimizes its corresponding dfa. These results confirm

242 G. De Giacomo et al.

Fig. 4. Comparison (in log scale) of BeSyft-Alg-3 and implementations of symbolic
ltlf reactive synthesis on counter-game instances with n = 8 and 1 ≤ K ≤ 10.

the practical feasibility of best-effort synthesis and that automata minimization
does not always guarantee performance improvement.

6 Conclusion

We presented three different symbolic ltlf best-effort synthesis approaches:
monolithic, explicit-compositional, and symbolic-compositional. Empirical eval-
uations proved the outperformance of the symbolic-compositional approach. An
interesting observation is that, although previous studies suggest taking the max-
imal advantage of automata minimization [20,21], in the case of ltlf best-effort
synthesis, there can be a trade-off in doing so. Another significant finding is that
the best-performing ltlf best-effort synthesis approach only brings a minimal
overhead compared to standard synthesis. Given this nice computational result,
a natural future direction would be looking into ltlf best-effort synthesis with
multiple environment assumptions [1].

Acknowledgments. This work has been partially supported by the ERC-ADG
White- Mech (No. 834228), the EU ICT-48 2020 project TAILOR (No. 952215), the
PRIN project RIPER (No. 20203FFYLK), and the PNRR MUR project FAIR (No.
PE0000013).

References

1. Aminof, B., De Giacomo, G., Lomuscio, A., Murano, A., Rubin, S.: Synthesizing
best-effort strategies under multiple environment specifications. In: KR, pp. 42–51
(2021)

2. Aminof, B., De Giacomo, G., Murano, A., Rubin, S.: Planning and synthesis under
assumptions. arXiv (2018)

3. Aminof, B., De Giacomo, G., Murano, A., Rubin, S.: Planning under LTL envi-
ronment specifications. In: ICAPS, pp. 31–39 (2019)

Symbolic ltlf Best-Effort Synthesis 243

4. Aminof, B., De Giacomo, G., Rubin, S.: Best-effort synthesis: doing your best is
not harder than giving up. In: IJCAI, pp. 1766–1772 (2021)

5. Baier, C., Katoen, J.P.: Principles of Model Checking. MIT Press, Cambridge
(2008)

6. Bansal, S., Li, Y., Tabajara, L.M., Vardi, M.Y.: Hybrid compositional reasoning
for reactive synthesis from finite-horizon specifications. In: AAAI, pp. 9766–9774
(2020)

7. Bryant, R.E.: Symbolic Boolean manipulation with ordered binary-decision dia-
grams. ACM Comput. Surv. 24(3), 293–318 (1992)

8. Cimatti, A., Pistore, M., Roveri, M., Traverso, P.: Weak, strong, and strong cyclic
planning via symbolic model checking. AIJ 1–2(147), 35–84 (2003)

9. De Giacomo, G., Favorito, M.: Compositional approach to translate LTLf/LDLf

into deterministic finite automata. In: ICAPS, pp. 122–130 (2021)
10. De Giacomo, G., Favorito, M.: Lydia: a tool for compositional LTLf /LDLf syn-

thesis. In: ICAPS, pp. 122–130 (2021)
11. De Giacomo, G., Vardi, M.Y.: Linear temporal logic and linear dynamic logic on

finite traces. In: IJCAI, pp. 854–860 (2013)
12. De Giacomo, G., Vardi, M.Y.: Synthesis for LTL and LDL on Finite Traces. In:

IJCAI, pp. 1558–1564 (2015)
13. Finkbeiner, B.: Synthesis of reactive systems. Dependable Softw. Syst. Eng. 45,

72–98 (2016)
14. Fried, D., Tabajara, L.M., Vardi, M.Y.: BDD-based Boolean functional synthesis.

In: Chaudhuri, S., Farzan, A. (eds.) CAV 2016. LNCS, vol. 9780, pp. 402–421.
Springer, Cham (2016). https://doi.org/10.1007/978-3-319-41540-6 22

15. Ghallab, M., Nau, D.S., Traverso, P.: Automated Planning - Theory and Practice.
Elsevier, Amsterdam (2004)

16. Henriksen, J.G., et al.: Mona: monadic second-order logic in practice. In: Brinksma,
E., Cleaveland, W.R., Larsen, K.G., Margaria, T., Steffen, B. (eds.) TACAS 1995.
LNCS, vol. 1019, pp. 89–110. Springer, Heidelberg (1995). https://doi.org/10.1007/
3-540-60630-0 5

17. Pnueli, A., Rosner, R.: On the synthesis of a reactive module. In: POPL, pp. 179–
190 (1989)

18. Pnueli, A.: The temporal logic of programs. In: FOCS, pp. 46–57 (1977)
19. Somenzi, F.: CUDD: CU Decision Diagram Package 3.0.0. Universiy of Colorado

at Boulder (2016)
20. Tabajara, L.M., Vardi, M.Y.: Partitioning techniques in LTLf synthesis. In: IJCAI,

pp. 5599–5606 (2019)
21. Zhu, S., De Giacomo, G., Pu, G., Vardi, M.Y.: LTLf synthesis with fairness and

stability assumptions. In: AAAI, pp. 3088–3095 (2020)
22. Zhu, S., Tabajara, L.M., Li, J., Pu, G., Vardi, M.Y.: Symbolic LTLf synthesis. In:

IJCAI, pp. 1362–1369 (2017)

https://doi.org/10.1007/978-3-319-41540-6_22
https://doi.org/10.1007/3-540-60630-0_5
https://doi.org/10.1007/3-540-60630-0_5

Robust Explanations for Human-Neural
Multi-agent Systems with Formal

Verification

Francesco Leofante(B) and Alessio Lomuscio

Department of Computing, Imperial College London, London, UK
{f.leofante,a.lomuscio}@imperial.ac.uk

Abstract. The quality of explanations in human-agent interactions is
fundamental to the development of trustworthy AI systems. In this paper
we study the problem of generating robust contrastive explanations for
human-neural multi-agent systems and introduce two novel verification-
based algorithms to (i) identify non-robust explanations generated by
other methods and (ii) generate contrastive explanations equipped with
formal robustness certificates. We present an implementation and evalu-
ate the effectiveness of the approach on two case studies involving neural
agents trained on credit scoring and traffic sign recognition tasks.

Keywords: Robust Explainable AI · Formal Verification

1 Introduction

The forthcoming adoption of AI in modern societies has lead to the emergence
of sophisticated multi-agent systems in which humans and artificial agents inter-
act and collaborate [2,17,41]. Advances of deep learning [24] have facilitated the
development of neural agents governed by neural networks (NNs) synthesised
from data [1]. We call Human-Neural Multi-agent System (HNMAS) a system
composed by humans and neural MAS interacting and communicating in view
of achieving common and private goals. While HNMAS may offer rapid gains
in terms of performance and generalisation, neural agents are known to pro-
duce outputs that are not normally intelligible to humans, thus hindering the
deployment of HNMAS that can be trusted by human participants.

Some of the methods in the area of Explainable AI (XAI) are concerned
with making NNs, and other learned models, more understandable to humans.
A widely recognised factor contributing towards this goal is the availability of
explanations, i.e., arguments supporting or contrasting the decisions taken by
an NN. In particular, Contrastive Explanations (CEs) have attracted interest as
they appear to ease human comprehension [22,32]. To understand what makes

Work partially supported by the DARPA Assured Autonomy programme (FA8750-
18-C-0095), the UK Royal Academy of Engineering (CiET17/18-26) and an Imperial
College Research Fellowship awarded to Leofante. This paper is an extended version
of [26] presented at AAMAS 2023.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
V. Malvone and A. Murano (Eds.): EUMAS 2023, LNAI 14282, pp. 244–262, 2023.
https://doi.org/10.1007/978-3-031-43264-4_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-43264-4_16&domain=pdf
http://orcid.org/0000-0001-8245-9429
http://orcid.org/0000-0003-3420-723X
https://doi.org/10.1007/978-3-031-43264-4_16

Robust Explanations for Human-Neural Multi-agent Systems 245

CEs advantageous, consider the classic scenario of a loan application, contain-
ing the features employment status unemployed, loan term 40 months and loan
amount $1500, being classified by a bank’s NN as rejected. A CE explaining this
decision may consist of a slightly modified application where the loan amount
is reduced to $1310 resulting in the application being accepted. This would give
the applicant an explanation as to a possible change that would lead to the
desired output. Explanations of this form have been found to elicit causal think-
ing in humans [7,31] and may thus play a crucial role in fostering trustworthy
human-AI partnerships. Crucially, CEs are typically proposed as a tool to pro-
vide recourse to individuals that have been impacted by the decisions of an AI.
It is therefore important that explanations are trustworthy and of high quality,
and appropriate methods are developed to ensure that this is the case.

Several approaches have been proposed to compute CEs for NNs accord-
ing to different quality criteria, such as validity and proximity [22,33,48], plau-
sibility [20,22] and actionability [47]. We discuss these in Sect. 2. Our focus
here is the criterion of robustness. Robustness has often been defined in terms
of robustness to input perturbations [43,44], robustness to changes in the NN
parameters [4,9,18,46] or robustness to model multiplicity [25,37]. While these
notions are useful when considering NNs in isolation, other forms of robustness
are equally important when humans are in the loop. In particular, robustness to
noisy execution, i.e., the validity of CEs when implemented by humans in a noisy
and inconsistent manner [38], has so far received little attention, but is an essen-
tial stepping stone towards building trustworthy interactions in HNMAS. Indeed,
current algorithms generate explanations under the assumption that the human
receiving a CE will follow the recourse recommendations it provides exactly.
However, several studies have reported that this rarely happens in practical
applications [3,38]. This may jeopardise the validity of CEs, thus reducing the
trust humans put into their neural agent counterpart. Consider the loan example:
if decreasing the loan amount to $1309 (as opposed to the recommended $1310)
does not result in the application being accepted (thus invalidating the CE), the
human may start questioning whether the explanations are actually capturing
the decision making of the neural agent, defeating the original purpose for which
the explanation was generated.

To remedy this, we propose an entirely novel approach to generate CEs that
uses automated reasoning techniques to provide strong robustness guarantees. In
particular, we put forward novel techniques to (i) formally assess the robustness
of CEs and (ii) generate CEs with provable robustness certificates. To achieve
this, we leverage recent advances in verification of neural networks (VNN) [6].
We establish a formal correspondence between the validation of robustness for
a CE and the verification of absence of adversarial attacks in an NN. As we
show, this enables us to (i) determine whether or not an explanation is robust
and, (ii) synthesise explanations with rigorous mathematical guarantees on their
robustness. The guarantees offered by our methodology provide users of CEs
with a quantitative metric which can be used to evaluate the reliability of an
explanation. For illustration, consider the loan example once more: using our
approach, a bank would then be able to provide CEs together with robustness

246 F. Leofante and A. Lomuscio

ranges within which explanations are guaranteed to remain valid, e.g., $1310 ±
0.5. The user can then decide whether to accept this explanation, or ask for a
new, more robust one. It can be seen, even from this simple example, that this
kind of robustness guarantees can prove extremely useful in sensitive situations.

The rest of this paper is organised as follows. We discuss related work below
and cover the necessary background in Sect. 2. We then introduce our main
results in Sect. 3 and demonstrate their usefulness in Sect. 4 on two case studies
involving credit scoring and traffic sign recognition. We then conclude in Sect. 5,
where we discuss our results together with some avenues for future work. In
summary, this paper proposes the first formal approach for the generation of
CEs for HNMAS with strong robustness guarantees.

Related Work. Several approaches have been proposed to compute CEs for
NNs based on continuous optimisation [8,22,30,35,48], Mixed-integer Linear
Programming (MILP) [33,42] and Satisfiability Modulo Theories solving [20].

As CEs are increasingly used to guide decisions in areas with clear soci-
etal implications [10,39], their reliability has come under scrutiny. In particular,
recent work has shown that algorithms based on gradient search can be highly
sensitive to input perturbations and thus may result in radically different CEs
being generated to explain very similar events [44].

Another line of work has shown that CEs often lack robustness with respect to
changes in the model being explained [4,9,18,25,37,46]. As noted in [13], such
fragility may denote that explanations are not capturing the actual decision-
making process of the underlying neural model, thus casting doubts on their
reliability.

Closely related to this work is [36], where the authors focused on a class of
CEs known as counterfactual explanations (CFEs), and showed that many pop-
ular approaches to generate CFEs often return explanations that are indistin-
guishable from adversarial examples. This may have troublesome consequences
within HNMAS, as the interaction between humans and neural agents on expla-
nations may be misguided by explanations that are in fact just an artefact of
the underlying model and do not explain anything about the agent’s behaviour.

Finally, [38] considers the notion of robustness to noisy execution which is
central to this work. The authors describe situations in which the validity of a
CFE may be compromised by small perturbations directly applied to the expla-
nation itself. The authors point out that such perturbations may naturally occur
when humans try to implement the changes prescribed by a CFE. As we already
argued in the introduction, this notion of robustness is particularly relevant
to HNMAS, where fragile explanations may hinder a transparent interaction
between humans and neural agents. While we target the same notion of robust-
ness here, we note that the approach proposed in [38] is heuristic and incomplete,
thus only providing probabilistic guarantees on whether an explanation may be
invalidated on average. As such, this approach may fail to detect cases in which
explanations may be invalidated. In contrast, we seek much stronger, formal
guarantees that allow whether an explanation can be trusted to be identified.

Robust Explanations for Human-Neural Multi-agent Systems 247

2 Background

Notation. We consider neural agents implemented by feed-forward, ReLU-based
NNs trained to solve classification problems. For ease of exposition, we consider
binary classification tasks where a neural classifier computes a function f : X →
[0, 1] mapping an input x ∈ X to a classification label c ∈ {0, 1}. The input
x is classified as 1 if f(x) ≥ 0.5 and 0 otherwise. With an abuse of notation,
we denote these outcomes as f(x) = 1 and f(x) = 0 respectively. However, our
approach can be seamlessly applied to the multi-class setting as we demonstrate
in Sect. 4. Finally, we use ‖·‖p to denote p-norms with the usual meaning.

Contrastive Explanations. CEs for neural classifiers have been formalised in
the literature in different ways; following [22], we distinguish between counter-
factual explanations and semi-factual explanations.

Counterfactual Explanations. Consider the loan example in the introduction and
assume a loan application xF was rejected by the bank’s AI agent, i.e., f(xF) = 0.
The individual submitting xF may want to interrogate the agent to understand
what changes would be needed in their application for the loan to be accepted.
An answer to this question may be given in terms of a counterfactual explana-
tion, i.e., a set of changes that, if applied to xF , results in another hypotheti-
cal application for which the loan is granted. A formalisation of counterfactual
explanations (CFEs) can defined as follows.

Definition 1. Given an input xF ∈ X and a neural classifier f such that
f(xF) = 0, find x ∈ X such that: (i) d(x, xF) ≤ ε and (ii) f(x) = 1 where
d(·, ·) : X × X → R+ is a distance function, ε ∈ R>0.

A CFE thus corresponds to a new input x that is at most ε-far from the
original input xF that makes the classification flip. Common choices for the
distance function are the normalised L1 [48] or L∞ [36] distances; w.l.o.g. we
focus on the latter and thus consider d(·, ·) : X × X → [0, 1].

While Definition 1 ensures the validity of a CFE, i.e., x is guaranteed to flip
the classification of f , we highlight that previous work extended it to accom-
modate a host of different metrics. For instance, [33,48] enforce proximity by
requiring that x be the nearest input that causes the classification to change,
under the assumption that good CFEs lie in the vicinity of the input to be
explained; this can be obtained by embedding Definition 1 into a simple binary
search scheme minimising ε. Others require that CFEs be plausible; a common
approach, also used here, is to enforce plausibility via domain-consistency [20],
where counterfactual instances are restricted to the range of admissible values
for the domain of features. Finally, [47] argued that CFEs should be actionable,
i.e., they should only involve input features that can be modified by end-users
(e.g., income vs age). This can be obtained by extending Definition 1 to enforce
that changes only occur on selected (actionable) dimensions of the input space.
While our focus in this work is mostly on robustness to noisy execution, we will
later show how actionability can be seamlessly integrated in our proposal.

248 F. Leofante and A. Lomuscio

Semifactual Explanations. Consider the loan scenario once more. Assume an
application xF has been rejected again and this time the customer would like to
know the margin by which their application was rejected. The agent may answer
this question in terms of a semifactual explanation, describing changes that, if
applied to xF , would still result in a denied loan. A formalisation of semifactual
explanations (SFEs) can be defined as follows.

Definition 2. Given an input xF ∈ X and a neural classifier f such that
f(xF) = 0, find x ∈ X such that: (i) d(x, xF) ≥ ε and (ii) f(x) = 0 where
d(·, ·) : X × X → R+ is a distance function, ε ∈ R>0.

SFEs thus describe hypothetical situations where the output of the classifier
would not change, even if the input xF were to be modified. Similarly to CFEs,
additional requirements are often imposed on SFEs to improve their quality.
A common choice is to require that explanations are obtained via large fea-
ture modification, i.e., x should be sufficiently distant from xF to maximise its
plausibility [22]; this can again be obtained by embedding Definition 2 into an
optimisation scheme where the distance between the original input and the SFE
is maximised. However, our main focus in this work will be on providing robust-
ness guarantees for an SFE and we leave other properties for future work. As for
the distance function d(·, ·), the same choices made for CFEs apply here.

Verification of Neural Networks. VNN is concerned with determining whether
an NN satisfies an input-output specification defining allowed inputs and desired
outputs. Several approaches have been developed for a wide range of neural
architectures and specifications [1,5,11,12,14,15,19,21,23,29,40]. In this work
we focus on local robustness [21,27,28], which is the most commonly studied
property within the VNN literature, and is defined as follows.

Definition 3. Consider an input xF and a neural classifier f such that f(xF) =
0 (resp. f(xF) = 1). The neural classifier is said to be locally robust with radius
ε ∈ R≥0 if for all x such that ‖x − xF ‖∞ ≤ ε, we have that f(x) = 0 (resp.
f(x) = 1).

Informally, local robustness requires that the prediction of a neural network
for a specific input xF does not change drastically within a reasonably small
neighbour, defined as an ε-ball under L∞ norm. Common techniques to check
whether a network satisfies local robustness, also used in this paper, include
symbolic interval propagation [16,49] and reductions to MILP [5,29]. We refer
to [6] for a recent summary of approaches and results in the VNN area.

3 Robust Explanations via Verification

In this section we propose to analyse robustness of explanations through the
lens of formal verification of neural networks. By doing so, we will derive a
new method to generate CEs equipped with formal robustness guarantees by
construction. In addition, the method also enables human agents to analyse CEs

Robust Explanations for Human-Neural Multi-agent Systems 249

via quantitative robustness metrics which they can use to filter out potentially
problematic explanations, as we will show later in our experiments.

The notion of robustness that we study is tied to variations of a CE’s classi-
fication with respect to changes in the CE that led to that classification. Intu-
itively, if a CE is modified slightly then the classification provided by the classifier
for that new input should not change radically. If that is the case, as discussed
in [13], it is likely to signify that the CE is an artefact of the classifier and does
not represent, nor explain, its underlying classification logic.

Motivating Example. Consider a real loan application based on the Home Equity
Line of Credity (HELOC) dataset (more details on this are provided in Sect. 4).
HELOC contains instances corresponding to line of credit applications, such as
the following one:

xF = [62, 323, 1, 104, 14, 7, 7, 100, 0, 0, 8, 24, 2, 18, 0, 1, 1, 4, 100, 3, 1, 0, 36]

which corresponds to an application that was rejected by the bank’s AI agent.
Using an off-the-shelf CFE generation algorithm, we may obtain the following:

x = [62, 323, 1, 104,19.84, 7, 7, 100, 0, 0, 8, 24, 2, 18, 0, 1, 1, 4, 100, 3, 1, 0, 36]

where increasing the 5-th element of xF (highlighted in bold) results in the
application being accepted. However, upon testing, we may actually discover
that a very slight perturbation to a subset of features in x (highlighted in red)
invalidates the CFE, i.e.,

x′ = [61.8, 323, 1, 104, 19.84, 7, 7, 100, 0, 0, 8, 24, 2,17.8, 0, 1,1.2,4.2, 100, 3, 1, 0, 36]

is again rejected. This lack of robustness is not in line with human intuition and
expectations, which ultimately weakens the explanation power of the CFE. To
remedy this, we propose an approach based on formal verification to mechanise
the analysis and discovery of robust explanations.

3.1 Robust Counterfactual Explanations

We are interested in identifying robust CFEs for a neural classifier f and input
x, f(x) = 0. Towards this end, the first question we address is whether a (possi-
bly non-robust) explanation exists for a given input x. Answering this question
requires solving the satisfaction problem introduced in Definition 1.

Proposition 1. Deciding the existence of a CFE is NP-complete.

Proof. Checking if an input x is indeed a CFE can be done in polynomial time
by simply propagating x through f . This places the problem in NP. To show
that the problem is NP-hard, observe that determining the existence of a CFE
entails checking the satisfaction of a set of linear constraints encoding (i) that
d(x, xF) < ε (ii) the computation performed by f and (iii) that f(x) = 1.
This problem has been shown to be NP-hard for ReLU-based classified here
considered [21], which gives the result.

250 F. Leofante and A. Lomuscio

We now show that determining the existence of a CFE can be recast in terms
of verification techniques.

Theorem 1. The existence of a CFE for an input xF and neural classifier f can
be established by checking whether f violates local robustness on xF for radius ε.

Proof. If f satisfies local robustness on xF with radius ε, then all other inputs
x within distance ε will yield f(x) = 0, thus showing that no CFE exists for xF

(as per Definition 1). On the other hand, if f violates local robustness, at least
one input x exists such that both conditions in Definition 1 are met.

Observation 1. A complete procedure for determining the existence of a CFE
can be derived from any complete procedure for verifying local robustness.

Theorem 1 establishes a connection between CFEs and formal verification
methods for neural networks, showing that the latter can be used to compute
explanations. Furthermore, if the verification procedure is complete, then if an
explanation exists, it will be obtained (computational limitations withstanding).
However, this is not enough to conclude something about the robustness of an
explanation. We therefore propose the following, novel formalisation.

Definition 4. Consider an input xF and a neural classifier f such that f(xF) =
0. Let x be a CFE computed for xF , i.e., f(x) = 1. The CFE x is said to be robust
to noisy execution up to magnitude δ if for all inputs x′ such that ‖x′ −x‖∞ ≤ δ,
we have that f(x′) = 1.

For readability, we will use δ-robustness as a shorthand to indicate robustness
to noisy execution up to magnitude δ. In a nutshell, δ-robustness requires that
explanations remain valid across a (reasonably-sized) neighbourhood to ensure
that small noise introduced by humans when implementing recourse recommen-
dations cannot invalidate them.

Proposition 2. Deciding whether a CFE x is δ-robust is coNP-complete.

Proof. To see that the problem is in coNP, observe that a counterexample
certificate is simply an input x′ such that ‖x′ − x‖∞ ≤ δ and f(x′) = 0. To
see that the problem is coNP-complete, consider its complement, defined as the
problem of determining whether there exists an input x′ such that ‖x′−x‖∞ ≤ δ
and f(x′) = 1. This is known to be NP-complete [21], giving the result.

Theorem 2. The δ-robustness of a CFE x and a neural classifier f can be
established by checking whether f satisfies local robustness on x for radius δ.

Proof. If f satisfies local robustness on x with radius δ, all inputs x′ obtained
from noisy executions that may perturb each component of x up to ±δ are
guaranteed yield f(x′) = 1, thus proving that the CFE is δ-robust. Otherwise,
there exists an input x′ such that ‖x′ − x‖∞ ≤ δ and f(x′) = 0, thus proving
that the CFE is not robust.

Robust Explanations for Human-Neural Multi-agent Systems 251

Observation 2. A complete procedure for deciding the δ-robustness of a CFE
can be derived from any complete procedure for verifying local robustness.

Following Observation 2, we have established that neural networks verifica-
tion algorithms can be used to check whether a CFE is robust to noisy executions.
As we will show in our experiments, this result can be used to generate provable
robustness guarantees for a given explanation.

3.2 Robust Semi-factual Explanations

We now turn our attention to robust SFEs and analyse the problem pertaining
to the existence of an SFE as per Definition 2.

Proposition 3. Deciding the existence of an SFE is NP-complete.

A reduction to verification similar to that presented in Theorem 1 can be
devised to decide the existence of a semifactual explanation; the details are
therefore omitted. We now formalise robustness to noisy execution for an SFE,
following the same rationale used for CFEs.

Definition 5. Consider an input xF and a neural classifier f such that f(xF) =
0. Let x be an SFE computed for xF , i.e., f(x) = 0. The SFE x is said to be
δ-robust if for all x′ ∈ X such that ‖x′ − x‖∞ ≤ δ we have that f(x′) = 0.

Proposition 4. Deciding whether an SFE is δ-robust is coNP-complete.

The proof is similar to that of Proposition 2 and is therefore omitted. Also
in this case, a reduction to the verification problem can be devised to determine
the robustness of an SFE to noisy execution. Specifically, the problem is reduced
to checking whether the neural classifier satisfies local robustness on x for radius
δ, following the same steps presented in Theorem 2.

4 Experimental Evaluation

Section 3 laid the foundations for generating formal robustness guarantees for
explanations using verification. In this section we demonstrate the practical
applicability of our approach and present algorithms, with implementations, to
generate CEs with formal robustness guarantees. We illustrate these algorithms
in the context of different input data types (tabular and images) and apply them
to both fully-connected and convolutional neural classifiers. Our approach can
successfully determine whether explanations generated by other methods are
robust for user-defined δ’s, but in contrast with them, it can generate novel ones
that come with formal robustness guarantees. As we show later, the approach
scales to neural classifiers with millions of trainable parameters.

252 F. Leofante and A. Lomuscio

Experimental Setup. The approach below is implemented in Python. Our
approach is agnostic of the verification engine used and can therefore be instan-
tiated with any complete verifier; the current implementation leverages two com-
plete verification engines, Venus [5] and VeriNet [16]. Venus solves verifica-
tion queries by means of a reduction to Mixed-Integer Linear Programming;
VeriNet instead uses an approach based on interval analysis to compute the
output-reachable space of an NN, which is then checked against the local robust-
ness property. Both verifiers are used as black-boxes from their user interface; we
refer to the respective papers for more details. We evaluated our approach on two
case studies involving neural agents trained to perform credit scoring and traffic
sign recognition tasks. Experiments were carried out on an Intel Core i7-6700 (8
cores) with 16GB RAM and running Ubuntu 19.10 (Linux kernel 5.3.0-46).

4.1 Automated Credit Scoring

Our first case study concerns the verification and generation of robust CFEs for
a neural agent trained to perform credit scoring tasks. We consider the HELOC
dataset [10], which contains anonymised information about home equity line of
credit (HELOC) applications made by real homeowners. Each entry contains 23
features that describe the risk profile of an applicant. Entries are labelled as “bad ”
if the corresponding customer resulted to be a late payer, or “good ” otherwise.
The decision task is to predict whether a new customer will repay their HELOC
within two years and thus, whether or not to accept the application.

Neural Classifiers. We trained three feed-forward neural networks; each classi-
fier takes a 23-dimensional input xF and produces an output y which determines
whether a customer is assigned a good credit score, i.e., they have made their
payments without ever being more than 90 days overdue, or bad otherwise. All
classifiers have 3 hidden layers of size 128 (nn1), 256 (nn2) and 512 (nn3) respec-
tively. All networks were trained using PyTorch 1.4.0 and the Adam optimiser;
inputs are normalised within [−0.5, 0.5].

Verifying Robustness of Explanations. We start our analysis with a set
of experiments designed to show how verification tools can be used to check
the robustness of heuristically-computed explanations. For these experiments we
considered Contrastive Explanation Method (CEM) [8], a popular explanation
algorithm. CEM uses a gradient-based search to compute SFEs and CFEs for a
given input and neural classifier. Our aim is to understand the extent to which
explanations provided by CEM are robust. Given a contrastive explanation x,
a neural classifier f and a robustness threshold δ, we formulate a verification
query to establish whether f satisfies local robustness for x and radius δ. If
local robustness is satisfied, then the explanation is guaranteed to be robust.
Otherwise, a counterexample to the robustness hypothesis can be returned to
show an input for which the explanation is invalidated.

Results. For each of the neural networks considered we used CEM to gen-
erate 100 SFEs and 100 CFEs for a total of 200 randomly selected instances

Robust Explanations for Human-Neural Multi-agent Systems 253

Table 1. Robustness of 100 CFEs (top) and 100 SFEs (bottom) for different robustness
thresholds. For each δ, we report the number of explanations that were found to be
robust (#), the average time (t, sec) needed to check robustness and the number of
timeouts after 1 h (to).

CFEs δ = 0.1 δ = 0.5 δ = 1 δ = 2 δ = 5

t to # t to # t to # t to # t to

nn1 100 0.08 0 56 0.32 0 2 0.52 0 0 1.06 0 0 1.51 0
nn2 100 0.1 0 25 10.69 0 0 17.68 1 0 11.58 0 0 60.59 1
nn3 100 0.19 0 5 156.20 23 0 85.28 4 0 252.23 7 0 381.76 8
SFEs δ = 0.1 δ = 0.5 δ = 1 δ = 2 δ = 5

t to # t to # t to # t to # t to

nn1 100 0.04 0 100 0.04 0 98 0.22 0 1 0.41 0 0 1.18 0
nn2 100 0.1 0 57 0.87 0 2 1.10 0 1 22.28 0 0 14.75 0
nn3 100 0.18 0 48 20.19 0 8 68.66 6 0 41.52 7 0 969.67 37

of the HELOC dataset. For each explanation, we formulated local robustness
queries as described above and used Venus to verify robustness across domains
of different sizes. Results are reported in Table 1 for δ ∈ {0.1, 0.5, 1, 2, 5} (at
verification time, each perturbation value is rescaled within the normalisation
ranges used for training). Overall, we observe that scalability of our approach
does not appear to be an issue for smaller δ’s. We notice, however, that checking
large domains on bigger networks requires increased computational efforts and
results in more timeouts. This is expected given the complexity of the underly-
ing decision problems (cf Sect. 3). We also observe that both SFEs and CFEs
obtained via CEM are robust for small δ’s. However, their robustness decreases
when considering larger domains. This is already evident, e.g., for δ = 0.5, where
the number of δ-robust explanations drops considerably, revealing that most of
the explanations proposed by the tool are not robust. This is understandable
as CEM is not designed to generate robust explanations; however users have no
way to determine the extent to which an explanation is robust.

CFEs with Robustness Guarantees. The experiments above showed that
present state-of-the-art gradient-based approaches may generate non-robust
explanations. We now take a step further and show how our approach can be
used to generate explanations endowed with formal robustness guarantees. In
the following, we discuss a tighter coupling between explanation generation with
verification and argue this simple idea empowers humans users to decide whether
to accept an explanation with a low robustness threshold, or ask for a new one
with better robustness guarantees.

Remark. The main focus of the proposed algorithm is to quantify the robustness
of a CFE. As such, in our experiments we do not enforce additional metrics such
as proximity or sparsity. However we stress that these metrics can be easily
embedded into our framework; we exemplify this using the actionability metric.

254 F. Leofante and A. Lomuscio

Algorithm 1
Require: input xF , neural classifier f , parameters ε,δ
Ensure: CFE x, certified robustness threshold l
1: x ← none
2: l, u ← 0, δ
3: /*Determine whether CFE exists*/
4: res, x ← checkLocalRobustness(f, x, ε)
5: /*If robustness is violated, a CFE exists; otherwise return*/
6: if res is false then
7: /*Binary search to determine robustness threshold*/
8: while u − l > 0 do
9: m ← l+u

2

10: res, x′ ← checkLocalRobustness(f, x, m)
11: if res is true then
12: l ← m
13: else
14: u ← m
15: return x, l

A procedure to generate robustness guarantees for CFEs is given in Algo-
rithm 1. The algorithm receives an input xF , a neural classifier f and parameters
ε, δ. The overall aim of the algorithm is to first decide whether a CFE exists; if
one can be found, the algorithm operates further steps to quantify its robustness.
After some initialisation steps (l. 1–2), the algorithm performs an initial verifica-
tion query to establish whether f satisfies robustness on xF for radius ε (l. 4). If
the property holds, the algorithm immediately returns as no CFE exists within
the analysed distance. Instead, if the property is violated, a CFE x is found and
the algorithm moves on to quantify its robustness. The search is initialised with
a user-specified robustness threshold δ, defining the target robustness that a user
would like to achieve. As δ may not be attainable in general for a given CFE,
the algorithm performs a binary search to find the largest radius across which
x is robust (l. 8–17). At each step of the search, a verification query checking
local robustness of the CFE is performed until either the largest robust radius
is found or termination condition is reached.

Results. For each network, we sampled 200 instances from the HELOC dataset
evenly split between accepted and rejected applications. We used the Venus ver-
ifier to generate an initial explanation and then computed the largest radius for
which the explanation is robust. In practice, the binary search scheme terminates
when u − l ≤ 0.0001.

A summary of the results obtained running Algorithm 1 with ε ∈
{0.1, 0.5, 1, 2} and δ = 2 are shown in Table 2. To begin with, we notice that
when ε is too small, the algorithm is not able to find CFEs. However, we observe
that when ε increases, the algorithm is able to identify more CFEs, for which
robustness guarantees are successfully computed. Overall, we observe that the
explanations generated are characterised by small robustness thresholds on aver-

Robust Explanations for Human-Neural Multi-agent Systems 255

age; this information can be used by regulators and users alike to select only
those explanations that have larger thresholds, such as the one we reported in
the example above, and filter out others that may be more problematic. Further-
more, [36] showed that SoA explanation methods tend to return explanations
that are indistinguishable from adversarial examples. Using the robustness cer-
tificates provided by our methodology, users would be able to decide when an
explanation can be trusted with confidence (i.e., high robustness threshold) and
when instead the explanation may just be an artefact of the model (i.e., low
robustness threshold). We conclude with an example to demonstrate our robust-
ness guarantees.

Table 2. Robustness results for CFEs generated for 100 random instances. For each
initial ε, we report the number of robust explanations (#), their average robustness
threshold (l), the average time (t, sec) it took to compute them and the number of
timeouts after 1 h (to).

CFEs ε = 0.1 ε = 0.5 ε = 1 ε = 2

l t to # l t to # l t to # l t to

nn1 3 0.02 0.22 0 15 0.04 0.55 0 35 0.02 1.28 0 62 0.03 4.09 0

nn2 6 0.02 0.61 0 16 0.04 1.93 0 30 0.05 66.97 6 53 0.05 120.31 36

nn3 6 0.01 2.79 0 16 0.03 153.18 1 18 0.04 156.77 69 12 0.07 1231.74 88

Example 1. Consider the following rejected application:

xF = [66, 185, 11, 92, 23, 0, 0, 91, 18, 6, 6, 23, 1, 22, 0, 1, 1, 53, 19, 7, 3, 4, 71]

Using Algorithm 1, we generated the following CFE:

x = [71, 190, 16, 97, 19.6, 4, 4.5, 96, 22.7, 2.1, 3.8, 28, 5.4, 25.2, 5, 0.2, 1.1, 48, 14, 12, 6.7, 3.3, 70.6]

for which we were able to prove a robustness threshold of l = 1.8. This result
can be then used to generate a textual explanation:

“Modifying xF to x would result in your application being accepted. Accep-
tance would still be granted even if each feature in x were to vary up to ±1.8.”

The user can then use this information to decide whether to accept this
explanation, or ask for a new one with stronger robustness guarantees.

Incorporating Actionability. As already mentioned, Algorithm 1 can be
extended to account for additional properties beyond robustness. A particu-
larly desirable property that we consider is actionability, where perturbations
are permitted only on features that the end-user can reasonably act upon. Gen-
erating actionable explanations that are also robust is of crucial importance to
guarantee that produced recommendations indeed achieve the goal pursued by
the user.

256 F. Leofante and A. Lomuscio

Actionability is typically enforced by allowing changes only input features
which are classified as mutable a-priori (e.g., the education level of an applicant
may change while his or her ethnicity may not). Such domain knowledge can be
seamlessly incorporated into our framework. This simply requires local robust-
ness checks to be performed over domains that are defined by box constraints
(as opposed to L∞), where immutable features are not allowed to change their
initial value. Most state-of-the-art verifiers for neural networks support this fea-
ture natively; we therefore tested this approach in a setting where only 4 out
of 23 features of the HELOC dataset can be modified: number of satisfactory
trades, number of total trades, number of trades opened in last twelve months
and number of bank trades with high utilisation ratio.

Results. We tested the ability of our approach to generate robust, actionable
CFEs for nn1. Similarly to the previous set of experiments, we observe CFEs that
modify only few features may be impossible to find for small values of ε. Indeed,
we could prove that no CFE exists for ε = 0.1, with their number increasing
for larger neighbourhoods: we identified 3, 6, 9 and 15 CFEs corresponding to ε
equal to 0.5, 1, 2 and 5 respectively. Reducing the number of mutable features
can, however, be exploited to analyse larger perturbations of input features as
the sparsity of perturbations reduces the search space to be explored. As a result,
we were able to run experiments using values of ε up to 30 and generate 50 robust
actionable CFEs taking 9.8s on average.

These experiments confirm that our approach can indeed generate CEs with
robustness guarantees that are also actionable. This has important practical
implications: our CEs suggest changes that are achievable in practice and are
formally guaranteed to yield the expected outcome for any slight perturbation of
magnitude less than the robustness threshold identified. We see these results as
an important contribution toward complementing existing approaches for XAI.

4.2 Traffic Sign Recognition

We now turn to agents dealing with image classification tasks. In particu-
lar, we consider the German Traffic Sign Recognitions Benchmark (GTSRB)
dataset [45], which contains images of traffic signs collected under strong vari-
ations in visual appearance due to, e.g., illumination and weather conditions.
Given such variability, a neural agent may fail to provide robust decisions: a
correctly classified image may cease to be so if small photometric changes were
applied to it. We then show how SFEs augmented with robustness guarantees
can provide formal assurances in the presence of photometric changes.

Neural Classifier. We trained a convolutional neural network to solve the
GTSRB classification task. Images in the dataset were rescaled to size 32 × 32;
thus, the network takes a 32×32-dimensional input image xF and produces a 43-
dimensional output y containing the score for each of the 43 classes. The classifier
consists of two convolutional layers, each paired with a batch normalisation layer,
followed by one fully-connected layer, thus resulting in ∼5M tunable parameters;

Robust Explanations for Human-Neural Multi-agent Systems 257

Fig. 1. A neural network. Fig. 2. Augmented neural network.

all layers use ReLU activations. The classifier was trained using Pytorch 1.4.0;
no normalisation was applied.

Encoding Photometric Changes. Reasoning about robustness of SFEs for
the GTSRB requires a way to encode mathematically the possible effects of
photometric changes. It has been observed that such changes can be modelled
via standard NN layers [34], as show in the following example.

Example 2. Consider the neural network in Fig. 1. The network receives an input
x = [x0, x1] and produces an output y. Network weights and biases, as well as
activations, are omitted to simplify exposition.

Photometric changes are defined by a linear transformation of the input x
defined as x′ = α · x + β, where α controls the contrast and β the brightness
of x′. This operation can be encoded by a linear layer where the inputs x0, x1

are transformed by α and β before being fed to the original network (Fig. 2).
Prepending this additional layer to the original network (shown in grey), we
obtain an augmented network that takes as input the parameters encoding the
photometric changes, produces a transformed image and then proceeds with the
classification. This construction allows the study of the robustness of explana-
tions using standard verifiers, where local robustness is now checked in the space
of parameters α, β defining the transformation.

SFEs with Robustness Guarantees. We now generate SFEs with provable
robustness guarantees for the neural classifier in question. To assist in this task
we use a verification-based procedure similar to Algorithm 1, where users can
select domains of interest for parameters α and β. We then check whether classi-
fications are robust across this domain, i.e., the classification of the original input
is not affected by the transformations analysed. When this is the case, the user
is given the possibility to generate several SFEs by navigating the domain char-
acterised by α and β values which have been proved to be robust. To facilitate
this task, we developed the GUI shown in Fig. 3, where the user can use slid-
ers to navigate the space of parameters controlling photometric changes. Notice
that each valuation of α and β is formally guaranteed to yield valid SFEs, fol-
lowing our procedure. Otherwise, an explanation is returned to exemplify the
circumstances under which the neural classifier fails, as shown in Fig. 4.

Results. We evaluate our approach using 50 randomly selected GTRSB images;
for each image, we let the user select three transformation domains of varying

258 F. Leofante and A. Lomuscio

Fig. 3. A GUI to navigate and visualise robust SFEs obtained for different contrast
(α) and brightness (β) values.

Fig. 4. When the SFE is not robust, a counterexample is visualised.

sizes, thereby resulting in 150 instances. The augmented network, together with
the user-proposed bounds are sent to VeriNet to solve verification queries. Our
approach was able to generate robust SFEs for 11 domains taking an average
time of 0.70s per instance; 98 domains were proved not to be robust with an
average solving time of 1.42s (41 timeouts in total). These experiments confirm
that our approach can be used to generate SFEs with robustness guarantees for
convolutional classifiers operating on images. This is an important step toward
providing reliable CEs for neural networks used in safety-critical applications
such as autonomous driving.

5 Discussion and Conclusions

In this paper we have laid the foundations for a rigorous study of the robustness
of CEs with respect to noisy execution. We developed entirely novel approaches
to verify the robustness of any candidate CE and indeed to generate CEs with

Robust Explanations for Human-Neural Multi-agent Systems 259

formal robustness guarantees. We have provided an implementation and used it
to generate explanations for complex classifiers of millions of tunable parameters.

One consideration with our approach is that robustness guarantees are gener-
ated either for norm-bounded (Sect. 4.1) or user-defined (Sect. 4.2) noise models.
Such perturbations may fail to account for the shape of decision boundaries in
a neural classifier, possibly resulting in conservative estimates of the robustness
threshold. As such, we believe our results also motivate interesting discussions
on how robustness thresholds could be set in practical applications.

Our results motivate several further research directions. This work showed
how formal verification neural networks can play a role towards increasing the
reliability of CEs; it would be interesting to investigate synergies between XAI
and VNN further. Verification could be integrated more tightly into the expla-
nation generation process to ensure that only CEs with the strongest robustness
guarantees are returned. Lastly, it would be interesting to study the implications
that robustness (or a lack thereof) may have on human trust within HNMAS.

References

1. Akintunde, M., Botoeva, E., Kouvaros, P., Lomuscio, A.: Formal verification of
neural agents in non-deterministic environments. J. Auton. Agents Multi-Agent
Syst. 36(1) (2022)

2. Barrett, S., Rosenfeld, A., Kraus, S., Stone, P.: Making friends on the fly: cooper-
ating with new teammates. Artif. Intell. 242, 132–171 (2017)

3. Björkegren, D., Blumenstock, J., Knight, S.: Manipulation-proof machine learning.
arXiv preprint arXiv:2004.03865 (2020)

4. Black, E., Wang, Z., Fredrikson, M.: Consistent counterfactuals for deep mod-
els. In: Proceedings of the International Conference on Learning Representations
(ICLR22). OpenReview.net (2022)

5. Botoeva, E., Kouvaros, P., Kronqvist, J., Lomuscio, A., Misener, R.: Efficient ver-
ification of neural networks via dependency analysis. In: Proceedings of the 34th
AAAI Conference on Artificial Intelligence (AAAI20), pp. 3291–3299. AAAI Press
(2020)

6. Brix, C., Müller, M.N., Bak, S., Johnson, T.T., Liu, C.: First three years of the
international verification of neural networks competition (VNN-COMP). arXiv
preprint arXiv:2301.05815 (2023)

7. Byrne, R.: Counterfactuals in explainable artificial intelligence (XAI): evidence
from human reasoning. In: Proceedings of the 28th International Joint Conference
on Artificial Intelligence, IJCAI19, pp. 6276–6282 (2019)

8. Dhurandhar, A., et al.: Explanations based on the missing: towards contrastive
explanations with pertinent negatives. In: Advances in Neural Information Pro-
cessing Systems (NeurIPS18), pp. 590–601 (2018)

9. Dutta, S., Long, J., Mishra, S., Tilli, C., Magazzeni, D.: Robust counterfactual
explanations for tree-based ensembles. In: Proceedings of the International Confer-
ence on Machine Learning (ICML22). Proceedings of Machine Learning Research,
vol. 162, pp. 5742–5756. PMLR (2022)

10. FICO Community: Explainable Machine Learning Challenge (2019). https://
community.fico.com/s/explainable-machine-learning-challenge

http://arxiv.org/abs/2004.03865
http://arxiv.org/abs/2301.05815
https://community.fico.com/s/explainable-machine-learning-challenge
https://community.fico.com/s/explainable-machine-learning-challenge

260 F. Leofante and A. Lomuscio

11. Guidotti, D., Leofante, F., Pulina, L., Tacchella, A.: Verification of neural networks:
enhancing scalability through pruning. In: Proceedings of the 24th European Con-
ference on Artificial Intelligence (ECAI20), pp. 2505–2512. IOS Press (2020)

12. Guidotti, D., Pulina, L., Tacchella, A.: pyNeVer: a framework for learning and ver-
ification of neural networks. In: Hou, Z., Ganesh, V. (eds.) ATVA 2021. LNCS,
vol. 12971, pp. 357–363. Springer, Cham (2021). https://doi.org/10.1007/978-3-
030-88885-5_23

13. Hancox-Li, L.: Robustness in machine learning explanations: does it matter? In:
Proceedings of the 2020 Conference on Fairness, Accountability, and Transparency
(FAT*20), pp. 640–647. ACM (2020)

14. Henriksen, P., Hammernik, K., Rueckert, D., Lomuscio, A.: Bias field robustness
verification of large neural image classifiers. In: Proceedings of the 32nd British
Machine Vision Conference (BMVC21). BMVA Press (2021)

15. Henriksen, P., Lomuscio, A.: Efficient neural network verification via adaptive
refinement and adversarial search. In: Proceedings of the 24th European Con-
ference on Artificial Intelligence (ECAI20), pp. 2513–2520. IOS Press (2020)

16. Henriksen, P., Lomuscio, A.: DEEPSPLIT: an efficient splitting method for neu-
ral network verification via indirect effect analysis. In: Proceedings of the 30th
International Joint Conference on Artificial Intelligence (IJCAI21), pp. 2549–2555.
ijcai.org (2021)

17. Jennings, N.R., et al.: Human-agent collectives. Commun. ACM 57(12), 80–88
(2014)

18. Jiang, J., Leofante, F., Rago, A., Toni, F.: Formalising the robustness of counterfac-
tual explanations for neural networks. In: Proceedings of the 37th AAAI Conference
on Artificial Intelligence (AAAI23), pp. 14901–14909. AAAI Press (2023)

19. Johnson, T., et al.: ARCH-COMP20 category report: artificial intelligence and neu-
ral network control systems (AINNCS) for continuous and hybrid systems plants.
In: Proceedings of the 7th International Workshop on Applied Verification of Con-
tinuous and Hybrid Systems (ARCH20), pp. 107–139. EasyChair (2020)

20. Karimi, A., Barthe, G., Balle, B., Valera, I.: Model-agnostic counterfactual expla-
nations for consequential decisions. In: Proceedings of the 23rd International Con-
ference on Artificial Intelligence and Statistics (AISTATS20), pp. 895–905. PMLR
(2020)

21. Katz, G., Barrett, C., Dill, D.L., Julian, K., Kochenderfer, M.J.: Reluplex: an
efficient SMT solver for verifying deep neural networks. In: Majumdar, R., Kunčak,
V. (eds.) CAV 2017. LNCS, vol. 10426, pp. 97–117. Springer, Cham (2017). https://
doi.org/10.1007/978-3-319-63387-9_5

22. Kenny, E., Keane, M.: On generating plausible counterfactual and semi-factual
explanations for deep learning. In: Proceedings of the 35th AAAI Conference on
Artificial Intelligence, AAAI21, pp. 11575–11585. AAAI Press (2021)

23. Kouvaros, P., et al.: Formal analysis of neural network-based systems in the aircraft
domain. In: Huisman, M., Păsăreanu, C., Zhan, N. (eds.) FM 2021. LNCS, vol.
13047, pp. 730–740. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-
90870-6_41

24. LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436–444
(2015)

25. Leofante, F., Botoeva, E., Rajani, V.: Counterfactual explanations and model mul-
tiplicity: a relational verification view. In: Proceedings of the 20th International
Conference on Principles of Knowledge Representation and Reasoning (KR23)
(2023, to appear)

https://doi.org/10.1007/978-3-030-88885-5_23
https://doi.org/10.1007/978-3-030-88885-5_23
https://doi.org/10.1007/978-3-319-63387-9_5
https://doi.org/10.1007/978-3-319-63387-9_5
https://doi.org/10.1007/978-3-030-90870-6_41
https://doi.org/10.1007/978-3-030-90870-6_41

Robust Explanations for Human-Neural Multi-agent Systems 261

26. Leofante, F., Lomuscio, A.: Towards robust contrastive explanations for human-
neural multi-agent systems. In: Proceedings of the International Conference on
Autonomous Agents and Multiagent Systems (AAMAS23), pp. 2343–2345. ACM
(2023)

27. Leofante, F., Narodytska, N., Pulina, L., Tacchella, A.: Automated verification
of neural networks: advances, challenges and perspectives. CoRR abs/1805.09938
(2018)

28. Liu, C., Arnon, T., Lazarus, C., Strong, C.A., Barrett, C.W., Kochenderfer, M.J.:
Algorithms for verifying deep neural networks. Found. Trends Optim. 4(3–4), 244–
404 (2021)

29. Lomuscio, A., Maganti, L.: An approach to reachability analysis for feed-forward
ReLU neural networks. arXiv preprint arXiv:1706.07351 (2017)

30. Van Looveren, A., Klaise, J.: Interpretable counterfactual explanations guided by
prototypes. In: Oliver, N., Pérez-Cruz, F., Kramer, S., Read, J., Lozano, J.A.
(eds.) ECML PKDD 2021. LNCS (LNAI), vol. 12976, pp. 650–665. Springer, Cham
(2021). https://doi.org/10.1007/978-3-030-86520-7_40

31. McCloy, R., Byrne, R.: Semifactual “even if” thinking. Thinking Reason. 8(1),
41–67 (2002)

32. Miller, T.: Explanation in artificial intelligence: insights from the social sciences.
Artif. Intell. 267, 1–38 (2019)

33. Mohammadi, K., Karimi, A., Barthe, G., Valera, I.: Scaling guarantees for nearest
counterfactual explanations. In: Proceedings of the AAAI/ACM Conference on AI,
Ethics, and Society (AIES21), pp. 177–187. ACM (2021)

34. Mohapatra, J., Weng, T., Chen, P., Liu, S., Daniel, L.: Towards verifying robust-
ness of neural networks against A family of semantic perturbations. In: Proceed-
ings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR20), pp. 241–249. IEEE (2020)

35. Mothilal, R.K., Sharma, A., Tan, C.: Explaining machine learning classifiers
through diverse counterfactual explanations. In: Proceedings of the International
Conference on Fairness, Accountability, and Transparency (FAT*20), pp. 607–617.
ACM (2020)

36. Pawelczyk, M., Agarwal, C., Joshi, S., Upadhyay, S., Lakkaraju, H.: Exploring
counterfactual explanations through the lens of adversarial examples: a theoretical
and empirical analysis. In: Proceedings of the International Conference on Arti-
ficial Intelligence and Statistics (AISTATS22). Proceedings of Machine Learning
Research, vol. 151, pp. 4574–4594. PMLR (2022)

37. Pawelczyk, M., Broelemann, K., Kasneci, G.: On counterfactual explanations under
predictive multiplicity. In: Proceedings of the 36th Conference on Uncertainty in
Artificial Intelligence (UAI20). Proceedings of Machine Learning Research, vol.
124, pp. 809–818. AUAI Press (2020)

38. Pawelczyk, M., Datta, T., van den Heuvel, J., Kasneci, G., Lakkaraju, H.: Proba-
bilistically robust recourse: navigating the trade-offs between costs and robustness
in algorithmic recourse. In: Proceedings of the 11th International Conference on
Learning Representations (ICLR23). OpenReview.net (2023)

39. ProPublica: How We Analyzed the COMPAS Recidivism Algorithm (2016).
https://www.propublica.org/article/how-we-analyzed-the-compas-recidivism-
algorithm

40. Pulina, L., Tacchella, A.: An abstraction-refinement approach to verification of
artificial neural networks. In: Touili, T., Cook, B., Jackson, P. (eds.) CAV 2010.
LNCS, vol. 6174, pp. 243–257. Springer, Heidelberg (2010). https://doi.org/10.
1007/978-3-642-14295-6_24

http://arxiv.org/abs/1706.07351
https://doi.org/10.1007/978-3-030-86520-7_40
https://www.propublica.org/article/how-we-analyzed-the-compas-recidivism-algorithm
https://www.propublica.org/article/how-we-analyzed-the-compas-recidivism-algorithm
https://doi.org/10.1007/978-3-642-14295-6_24
https://doi.org/10.1007/978-3-642-14295-6_24

262 F. Leofante and A. Lomuscio

41. Rosenfeld, A., Richardson, A.: Explainability in human-agent systems. Auton.
Agents Multi Agent Syst. 33(6), 673–705 (2019)

42. Russell, C.: Efficient search for diverse coherent explanations. In: Proceedings of the
International Conference on Fairness, Accountability, and Transparency (FAT*19),
pp. 20–28. ACM (2019)

43. Sharma, S., Henderson, J., Ghosh, J.: CERTIFAI: a common framework to pro-
vide explanations and analyse the fairness and robustness of black-box models. In:
Proceedings of the AAAI/ACM Conference on AI, Ethics, and Society (AIES20),
pp. 166–172. ACM (2020)

44. Slack, D., Hilgard, A., Lakkaraju, H., Singh, S.: Counterfactual explanations
can be manipulated. In: Advances in Neural Information Processing Systems 34
(NeurIPS21), pp. 62–75 (2021)

45. Stallkamp, J., Schlipsing, M., Salmen, J., Igel, C.: The German traffic sign recog-
nition benchmark: a multi-class classification competition. In: Proceedings of the
International Joint Conference on Neural Networks (IJCNN11), pp. 1453–1460.
IEEE (2011)

46. Upadhyay, S., Joshi, S., Lakkaraju, H.: Towards robust and reliable algorithmic
recourse. In: Advances in Neural Information Processing Systems 34 (NeurIPS21),
pp. 16926–16937 (2021)

47. Ustun, B., Spangher, A., Liu, Y.: Actionable recourse in linear classification.
In: Proceedings of the Conference on Fairness, Accountability, and Transparency
(FAT*19), pp. 10–19. ACM (2019)

48. Wachter, S., Mittelstadt, B., Russell, C.: Counterfactual explanations without
opening the black box: automated decisions and the GDPR. Harv. JL Tech. 31,
841 (2017)

49. Wang, S., Pei, K., Whitehouse, J., Yang, J., Jana, S.: Efficient formal safety anal-
ysis of neural networks. In: Advances in Neural Information Processing Systems
(NeurIPS18), pp. 6367–6377. Curran Associates, Inc. (2018)

LTLf Synthesis Under Environment
Specifications for Reachability and Safety

Properties

Benjamin Aminof1(B), Giuseppe De Giacomo1,2(B), Antonio Di Stasio2(B),
Hugo Francon3(B), Sasha Rubin4(B), and Shufang Zhu2(B)

1 Sapienza University of Rome, Rome, Italy
benj@forsyte.at

2 University of Oxford, Oxford, UK
{giuseppe.degiacomo,antonio.distasio,shufang.zhu}@cs.ox.ac.uk

3 ENS Rennes, Rennes, France
hugo.francon@ens-rennes.fr

4 The University of Sydney, Camperdown, Australia
sasha.rubin@sydney.edu.au

Abstract. In this paper, we study ltlf synthesis under environment
specifications for arbitrary reachability and safety properties. We con-
sider both kinds of properties for both agent tasks and environment
specifications, providing a complete landscape of synthesis algorithms.
For each case, we devise a specific algorithm (optimal wrt complexity of
the problem) and prove its correctness. The algorithms combine common
building blocks in different ways. While some cases are already studied
in literature others are studied here for the first time.

1 Introduction

Synthesis under environment specifications consists of synthesizing an agent
strategy (aka plan or program) that realizes a given task against all possible
environment responses (i.e., environment strategies). The agent has some indi-
rect knowledge of the possible environment strategies through an environment
specification, and it will use such knowledge to its advantage when synthesizing
its strategy [2,4,9,24]. This problem is tightly related to planning in adversarial
nondeterministic domains [20], as discussed, e.g., in [10,15].

In this paper, we study synthesis under environment specifications, considering
both agent task specifications and environment specifications expressed in Linear
Temporal Logic on finite traces (ltlf). These are logics that look at finite traces or
finite prefixes of infinite traces. For concreteness, we focus on ltlf [16,17], but the
techniques presented here extend immediately to other temporal logics on finite
traces, such as Linear Dynamic Logics on finite traces, which is more expressive
than ltlf [16], and Pure-Past ltl, which has the same expressiveness as ltl but
evaluates a trace backward from the current instant [11].

Linear temporal logics on finite traces provide a nice embodiment of the
notable triangle among Logics, Automata, and Games [21]. These logics are full-
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
V. Malvone and A. Murano (Eds.): EUMAS 2023, LNAI 14282, pp. 263–279, 2023.
https://doi.org/10.1007/978-3-031-43264-4_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-43264-4_17&domain=pdf
https://doi.org/10.1007/978-3-031-43264-4_17

264 B. Aminof et al.

fledged logics with high expressiveness over finite traces, and they can be trans-
lated into classical regular finite state automata; moreover, they can be further
converted into deterministic finite state automata (dfas). This transformation
yields a game represented on a graph. In this game, one can analyze scenar-
ios where the objective is to reach certain final states. Finally, despite the fact
that producing a dfa corresponding to an ltlf formula can require double-
exponential time, the algorithms involved—generating alternating automata
(linear), getting the nondeterministic one (exponential), determinizing it (expo-
nential), solving reachability games (poly)—are particularly well-behaved from
the practical computational point of view [26,28,32].

In this paper, however, we consider ltlf specifications in two contexts which
we denote as

∃ϕ and ∀ϕ with ϕ an arbitrary ltlf formula.

The first one specifies a reachability property: there exists a finite prefix π<k

of an infinite trace π such that π<k |= ϕ. This is the classical use of ltlf to specify
synthesis tasks [17]. The second one specifies a safety property: every finite prefix
π<k of an infinite trace π is such that π<k |= ϕ. This is the classical use of ltlf to
specify environment behaviours [1,13]. The formulas ∀ϕ and ∃ϕ with ϕ in ltlf

capture exactly two well-known classes of ltl properties in Manna and Pnueli’s
Temporal Hierarchy [23]. Specifically, ∃ϕ captures the co-safety properties and
∀ϕ captures the safety properties (in [23], expressed respectively as ♦ψ and �ψ
with ψ an arbitrary Pure-Past ltl formulas, which consider only past operators.)

We let Env and Task denote an environment specification and a task specifica-
tion, respectively, consisting of a safety (∀ϕ) and/or reachability property (∃ϕ).
This gives rise to 12 possible cases: 3 without any environment specifications,
3 with safety environment specifications (∀ϕ), 3 with reachability environment
specifications (∃ϕ), and 3 with both safety and reachability environment speci-
fications (∃ϕ∧∀ϕ). For each of these, we provide an algorithm, which is optimal
wrt the complexity of the problem, and prove its correctness. When the problem
was already solved in literature, we give appropriate references (e.g., Task = ∃ϕ
and Env = true is classical ltlf synthesis, solved in [17]). In fact, we handle all
the cases involving reachability in the environment specifications by providing
a novel algorithm that solves the most general case of Env = ∃ϕ1 ∧ ∀ϕ2 and
Task = ∃ϕ3 ∧ ∀ϕ4

1.
These algorithms use the common building blocks (combining them in dif-

ferent ways): the construction of the dfas of the ltlf formulas, Cartesian prod-
ucts of such dfas, considering these dfas as the game arena and solving games
for reachability/safety objectives. Also, all these problems have a 2EXPTIME-
complete complexity. The hardness comes from ltlf synthesis [17], and the mem-
bership comes from the ltlf -to-dfa construction, which dominates the complex-
ity since computing the Cartesian products and solving reachability/safety games

1 In fact, this algorithm can solve all cases, but it’s much more involved compared to
the direct algorithms we provide for each case.

ltlf Synthesis Under Env. for Reach. and Safe. Properties 265

is polynomial2. Towards the actual application of our algorithms, we observe that
although the dfas of ltlf formulas are worst-case double-exponential, there is
empirical evidence showing that the determinization of nfa, which causes one of
the two exponential blow-ups, is often polynomial in the nfa [27,28,32]. More-
over, in several notable cases, e.g., in all DECLARE patterns [29], the dfas are
polynomial in the ltlf formulas, and so are our algorithms.

2 Preliminaries

Traces. For a finite set Σ, let Σω (resp. Σ+,Σ∗) denote the set of infinite strings
(resp. non-empty finite strings, finite strings) over Σ. We may write concate-
nation of sets using ·, e.g., Σ · Σ denotes the set of strings over Σ of length 2.
The length of a string is denoted |π|, and may be infinite. Strings are indexed
starting at 0. For a string π and k ∈ IN with k < |π|, let π<k denote the finite
prefix of π of length k. For example, if π = π0π1 . . . πn, then |π| = n + 1 and
π<2 = π0π1. Typically, Σ will be the set of interpretations (i.e., assignments)
over a set Prop of atomic propositions, i.e., Σ = 2Prop. Non-empty strings will
also be called traces.

Linear-Time Temporal Logic on Finite Traces. ltlf is a variant of Linear-time
temporal logic (ltl) interpreted over finite, instead of infinite, traces [16]. Given
a set Prop of atomic propositions, ltlf formulas ϕ are defined by the following
grammar: ϕ::=p | ¬ϕ | ϕ ∧ ϕ | ◦ϕ | ϕ U ϕ where p ∈ Prop denotes an atomic
proposition, ◦ is read next, and U is read until. We abbreviate other Boolean
connectives and operators.

For a finite trace π ∈ (2Prop)+, an ltlf formula ϕ, and a position i (0 ≤ i <
|π|), define π, i |= ϕ (read “ϕ holds at position i”) by induction, as follows:

– π, i |= p iff p ∈ πi (for p ∈ Prop);
– π, i |= ¬ϕ iff π, i �|= ϕ;
– π, i |= ϕ1 ∧ ϕ2 iff π, i |= ϕ1 and π, i |= ϕ2;
– π, i |= ◦ϕ iff i < |π| − 1 and π, i + 1 |= ϕ;
– π, i |= ϕ1 U ϕ2 iff for some j (i ≤ j < |π|), π, j |= ϕ2, and for all k (i ≤ k <

j), π, k |= ϕ1.

We write π |= ϕ, if π, 0 |= ϕ and say that π satisfies ϕ. Write L(ϕ) for the set of
finite traces over Σ = 2Prop that satisfy ϕ. In addition, we define the weak next
operator •ϕ ≡ ¬◦¬ϕ. Note that: ¬◦ϕ is not, in general, logically equivalent
to ◦¬ϕ, but we have that ¬◦ϕ ≡ •¬ϕ.

Domains. A domain (aka transition system, aka arena) is a tuple D =
(Σ, Q, ι, δ), where Σ is a finite alphabet, Q is a finite set of states, ι ∈ Q is
the initial state, δ : Q × Σ → Q is a transition function. For an infinite string

2 For pure-past ltl, obtaining the dfa from a pure-past ltl formula is single expo-
nential [11], and indeed the problems and all our algorithms become EXPTIME-
complete.

266 B. Aminof et al.

w = w0w1w2 . . . ∈ Σω a run of D on w is a sequence r = q0q1q2 . . . ∈ Qω

that q0 = ι and qi+1 ∈ δ(qi, wi) for every i with 0 ≤ i. A run of D on a finite
string w = w0w1 . . . wn over Σ is a sequence q0q1 · · · qn+1 such that q0 = ι and
qi+1 ∈ δ(qi, wi) for every i with 0 ≤ i < n+1. Note that every string has exactly
one run of D.

Deterministic Finite Automaton (DFA). A DFA is a tuple M = (D, F) where
D is a domain and F ⊆ Q is a set of final states. A finite word w over Σ is
accepted by M if the run of M on w ends in a state of F . The set of all such
finite strings is denoted L(M), and is called the language of M.

Theorem 1. [17] Every ltlf formula ϕ over atoms Prop can be translated into
a dfa Mϕ over alphabet Σ = 2Prop such that for every finite string π we have
that π ∈ L(M) iff π |= ϕ. This translation takes time double-exponential in the
size of ϕ.

Properties of Infinite Strings. A property is a set P of infinite strings over Σ, i.e.,
P ⊆ Σω. We say that P is a reachability property if there exists a set T ⊆ Σ+

of finite traces such that if w ∈ P then some finite prefix of w is in T . We say
that P is a safety property if there exists a set T ⊆ Σ+ of finite traces such
that if w ∈ P , then every finite prefix of w is in T . It is worth noting that the
complement of a reachability property is a safety property, and vice versa.

An ltlf formula can be used to denote a reachability (resp., safety) property
over Σ = 2Prop as follows.

Definition 1. For an ltlf formula ϕ, let ∃ϕ denote set of traces π such that
some finite prefix of π satisfies ϕ, and let ∀ϕ denote set of traces π such that
every finite (non-empty) prefix of π satisfies ϕ.

Note that ∃ϕ denotes a reachability property, and ∀ϕ denotes a safety property.
From now on, “prefix” will mean “finite non-empty prefix”. Note also that for
an ltlf formula, L(ϕ) is a set of finite traces. On the other hand, L(∃ϕ) (and
similarly L(ψ) where ψ is a Boolean combination of formulas of the form ∃ϕ for
ltlf formulas ϕ) is a set of infinite traces. In this paper, we consider ∃ϕ, ∀ϕ,
and ∃ϕ ∧ ∀ϕ to specify both agent tasks and environment behaviours.

Deterministic Automata on Infinite Strings (da). Following the automata-
theoretic approach in formal methods, we will compile formulas to automata.
We have already seen that we can compile ltlf formulas to dfas. We now intro-
duce automata over infinite words to handle certain properties of infinite words.
A deterministic automaton (da, for short) is a tuple A = (D, α) where D is a
transition system, say with the state set Q, and α ⊆ Qω is called an acceptance
condition. An infinite string w is accepted by A if its run is in α. The set of all
such infinite strings is denoted L(A), and is called the language of A.

We consider reachability (reach) and safety (safe) acceptance conditions,
parameterized by a set of target states T ⊆ Q:

ltlf Synthesis Under Env. for Reach. and Safe. Properties 267

– reach(T) = {q0q1q2 . . . ∈ Qω | ∃k ≥ 0 : qk ∈ T}. In this case, we call A a
reachability automaton.

– safe(T) = {q0q1q2 . . . ∈ Qω | ∀k ≥ 0 : qk ∈ T}. In this case, we call A a safety
automaton.

Remark 1. Every reachability (resp. safety) property expressible in ltl is the
language of a reachability automaton (resp. safety automaton) [16,22,25].

3 Problem Description

Reactive Synthesis. Reactive Synthesis (aka Church’s Synthesis) is the problem
of turning a specification of an agent’s task and of its environment into a strategy
(aka policy). This strategy can be employed by the agent to achieve its task,
regardless of how the environment behaves. In this framework, the agent and the
environment are considered players in a turn-based game, in which players move
by picking an evaluation of the propositions they control. Thus, we partition
the set Prop of propositions into two disjoint sets of propositions X and Y, and
with a little abuse of notation, we denote such a partition as Prop = Y ∪ X .
Intuitively, the propositions in X are controlled by the environment, and those
in Y are controlled by the agent. In this work (in contrast to the usual setting
of reactive synthesis), the agent moves first. The agent moves by selecting an
element of 2Y , and the environment responds by selecting an element of 2X .
This is repeated forever, and results in an infinite trace (aka play). From now
on, unless specified otherwise, we let Σ = 2Prop and Prop = Y ∪ X . We remark
that the games considered in this paper are games of perfect information with
deterministic strategies.

An agent strategy is a function σag : (2X)∗ → 2Y . An environment strategy is
a function σenv : (2Y)+ → 2X . A strategy σ is finite-state (aka finite-memory) if
it can be represented as a finite-state input/output automaton that, on reading
an element h of the domain of σ, outputs the action σ(h). A trace π = (Y0 ∪
X0)(Y1 ∪ X1) · · · ∈ (2Y∪X)ω follows an agent strategy σag : (2X)∗ → 2Y if
Y0 = σag(ε) and Yi+1 = σag(X0X1 . . . Xi) for every i ≥ 0, and it follows an
environment strategy σenv if Xi = σenv(Y0Y1 . . . Yi) for all i ≥ 0. We denote
the unique infinite sequence (play) that follows σag and σenv as play(σag, σenv).
Let P be a property over the alphabet Σ = 2Prop, specified by formula or da.
An agent strategy σag (resp., environment strategy σenv) enforces P if for every
environment strategy σenv (resp., agent strategy σag), we have that play(σag, σenv)
is in P . In this case, we write σag � P (resp. σenv � P). We say that P is agent
(resp., environment) realizable if there is an agent (resp. environment) strategy
that enforces P .

Synthesis Under Environment Specifications. Typically, an agent has some
knowledge of how the environment works, represented as a fully observable model
of the environment, which it can exploit to enforce its task [2]. Formally, let Env
and Task be properties over alphabet Σ = 2Prop, denoting the environment spec-
ification and the agent task, respectively.

268 B. Aminof et al.

Note that while the agent task Task denotes the set of desirable traces from
the agent’s perspective, the environment specification Env denotes the set of
environment strategies that describe how the environment reacts to the agent’s
actions (no matter what the agent does) in order to enforce Env. Specifically,
Env is treated as a set of traces when we reduce the problem of synthesis under
environment specification to standard reactive synthesis.

We require a consistency condition of Env, i.e., there must exist at least one
environment strategy σenv � Env. An agent strategy σag enforces Task under the
environment specification Env, written σag �Env Task, if for all σenv � Env we
have that play(σag, σenv) |= Task. Note that if Env = true then this just says that
σag enforces Task (i.e., the environment specification is missing).

Definition 2 (Synthesis under environment specifications). Let Env and
Task be properties over alphabet Σ = 2Prop, denoting the environment specifi-
cation and the agent task, respectively. (i) The realizability under environment
specifications problem asks, given Task and Env, to decide if there exists an agent
strategy enforcing Task under the environment specification Env. (ii) The synthe-
sis under environment specifications problem asks, given Task and Env, to return
a finite-state agent strategy enforcing Task under the environment specification
Env, or say that none exists.

In [2] is shown that for any linear-time property3, synthesis under environ-
ment specifications can be reduced to synthesis without environment specifica-
tions. Thus, in order to show that Task is realizable under Env it is sufficient to
show that Env → Task is realizable. Moreover, to solve the synthesis problem for
Task under Env, it is enough to return a strategy that enforces Env → Task.

Table 1. Task and Env considered. Note that, from Alg. 7 we get the remaining
cases involving reachability environment specifications by suitably setting ϕ1, ϕ2, ϕ4 to
true.

Task Env Alg

∃ϕ true Algorithm 1
∀ϕ true Algorithm 2
∃ϕ1 ∧ ∀ϕ2 true Algorithm 3
∃ϕ1 ∀ϕ2 Algorithm 4
∀ϕ1 ∀ϕ2 Algorithm 5
∃ϕ1 ∧ ∀ϕ2 ∀ϕ3 Algorithm 6
∃ϕ1 ∧ ∀ϕ2 ∃ϕ3 ∧ ∀ϕ4 Algorithm 7

In the rest of the paper, we provide a landscape of algorithms for ltlf syn-
thesis considering reachability and safety properties for both agent tasks and

3 Technically, the properties should be Borel, which all our properties are.

ltlf Synthesis Under Env. for Reach. and Safe. Properties 269

environment specifications. However, these synthesis problems are complex and
challenging due to the combination of reachability and safety properties. To
tackle this issue, one possible approach is to reduce ltlf synthesis problems to
ltl synthesis problems through suitable translations, e.g., [12,14,30,31]. How-
ever, there is currently no methodology for performing such translations when
considering combinations of reachability and safety properties4. Additionally,
synthesis algorithms for ltl specifications are generally more challenging than
those for ltlf specifications, both theoretically and practically [13,14,30,31]. In
this paper, we show that for certain combinations, we can avoid the detour to
ltl synthesis and keep the simplicity of ltlf synthesis. Specifically, we consider
that Task and Env take the following forms: ∃ϕ1,∀ϕ1,∃ϕ1 ∧ ∀ϕ2 where the ϕi

are ltlf formulas, and in addition we consider the case of no environment speci-
fication (formally, Env = true). This results in 12 combinations. Algorithms 1–7,
listed in Table 1, optimally solve all the combinations. All these algorithms adopt
some common building blocks while linking them in different ways.

Theorem 2. Let each of Task and Env be of the forms ∀ϕ, ∃ϕ, or ∃ϕ1 ∧∀ϕ2.
Solving synthesis for an agent Task under environment specification Env is
2EXPTIME-complete.

4 Building Blocks for the Algorithms

In this section, we describe the building blocks we will use to devise the algo-
rithms for the problem described in the previous section.

DAs for ∃ϕ and ∀ϕ. Here, we show how to build the da whose language is
exactly the infinite traces satisfying ∃ϕ (resp. ∀ϕ). The first step is to convert
the ltlf formula ϕ into a dfa Mϕ = (Σ, Q, ι, δ, F) that accepts exactly the
finite traces that satisfy ϕ as in Theorem 1. Then, to obtain a da A∃ϕ for ∃ϕ
define A∃ϕ = (2X∪Y , Q, ι, δ, reach(F)). It is immediate that L(∃ϕ) = L(A∃ϕ).
To obtain a da A∀ϕ for ∀ϕ define A∀ϕ = (2X∪Y , Q, ι, δ, safe(F ∪ {ι})).

The reason ι is considered a part of the safe set is that the dfa Mϕ does
not accept the empty string since the semantics of ltlf precludes this. It is
immediate that L(∀ϕ) = L(A∀ϕ). For ψ ∈ {∃ϕ,∀ϕ}, we let ConvertDA(ψ)
denote the resulting da.

Lemma 1. Let ϕ be an ltlf formula, and let ψ ∈ {∃ϕ,∀ϕ}. Then the languages
L(ψ) and L(ConvertDA(ψ)) are equal.

For formulas of the form ∀ϕ we will suppress the initial state in the objective
and so ConvertDA(∀ϕ) will be written (D∀ϕ, safe(T)), i.e., T contains ι.

Games over da. The synthesis problems we consider in this paper are solved
by reducing them to two-player games. We will represent games by das A =
4 In [9] is shown that the case of ltlf synthesis under safety and reachability properties

can be solved by reducing to games on infinite-word automata. This certain case is
covered in our paper, nevertheless, we provide a direct approach that only involves
games on finite-word automata.

270 B. Aminof et al.

(D, α) where D is a transition system, sometimes called an ‘arena’, and α is an
acceptance condition, sometimes called a ‘winning condition’. The game is played
between an agent (controlling Y) and environment (controlling X). Intuitively,
a position in the game is a state q ∈ Q. The initial position is ι. From each
position, first the agent moves by setting Y ∈ 2Y , then the environment moves
by setting X ∈ 2X , and the next position is updated to the state δ(q, Y ∪ X).
This interaction results in an infinite run in D, and the agent is declared the
winner if the run is in α (otherwise, the environment is declared the winner).

Definition 3. An agent strategy σag is said to win the game (D, α) if for every
trace π that follows σag, the run in D of π is in α.

In other words, σag wins the game if every trace π that follows σag is in L(D, α).
For q ∈ Q, let Dq denote the transition system D with initial state q, i.e.,
Dq = (Σ, Q, q, δ). We say that q is a winning state for the agent if there is an
agent strategy that wins the game (Dq, α); in this case, the strategy is said to
win starting from q.

In the simplest settings, we represent agent strategies as functions of the
form fag : Q → 2Y , called positional strategies. An agent positional strategy fag
induces an agent strategy, σag = Strategy(Dq, fag), as follows: define σag(ε) =
fag(q), and for every finite trace π let ρ be the run of Dq on π (i.e., starting in
state q), and define σag(π) = fag(q′) where q′ is the last state in ρ (i.e., q′ = ρ|π|).
In more complex settings, e.g., in the Algorithm 7, we will construct functions
of the form fag : Q · (2Y · 2X · Q)∗ → 2Y , which similarly induce agent strategies
Strategy(Dq, fag) where for every finite trace π = Y0∪X0, · · · , Yk∪Xk, and run
q0, · · · , qk+1 of π in Dq, define σag(π) = fag(q0, Y0 ∪ X0, q1, Y1 ∪ X1, · · · , qk+1).
Below the agent strategy σag = Strategy(Dq, fag) returned by the various
algorithms will be finite state, in the sense that it is representable as a transducer.
For simplicity, with a little abuse of notation, we will return directly σag, instead
of its finite representation as a transducer.

Dual definitions can be given for the environment, with the only notable
difference being that fenv : Q × 2X → 2Y since the moves of the environment
depend also on the last move of the agent (since the agent moves first).

In this paper, besides the terms ‘environment’ and ‘agent’, we also consider
the terms ‘protagonist’ and ‘antagonist’. If the da (D, α) is a specification for
the agent, then the agent is called the protagonist and the environment is called
the antagonist. On the other hand, if the da (D, α) is a specification for the
environment, then the environment is called the protagonist, and the agent is
called the antagonist. Intuitively, the protagonist is trying to make sure that
the generated traces are in L(D, α), and the antagonist to make sure that the
generated traces are not in L(D, α). Define Winp (resp. Wina) as the set of states
q ∈ Q such that q is a protagonist (resp. antagonist) winning state. This set
is called protagonist’s (resp. antagonist) winning region. In this paper, all our
games (including reachability and safety games) are determined. Therefore:

Lemma 2. For every state q ∈ Q, it holds that q ∈ Winp iff q /∈ Wina.

ltlf Synthesis Under Env. for Reach. and Safe. Properties 271

The problem of solving a game (D, α) for the protagonist is to compute the
winning region Winp and a function fp such that Strategy(D, fp) wins from
every state in Winp

5. To do this, we will also sometimes compute a winning
strategy for the antagonist (that wins starting in its winning region).

Solving Reachability Games and Safety Games. We repeatedly make use of solu-
tions to reachability games and safety games given by das A. Thus, for a pro-
tagonist p ∈ {ag, env} let Solvep(A) denote the procedure for solving the game
A, i.e., p is trying to ensure the play is in L(A); this procedure returns the pro-
tagonist’s winning region Winp and a function fp such that Strategy(D, fp)
wins starting from every state in Winp [19].

Product of Transition Systems. Let Di (1 ≤ i ≤ k) be transition systems over
alphabet Σ. Their product, denoted Product(D1, · · · ,Dk), is the transition sys-
tem D = (Σ, Q, ι, δ) defined as follows: (i) The alphabet is Σ. (ii) The state set
is Q = Q1 ×· · ·×Qk. (iii) The initial state is ι = (ι1, · · · , ιk). (iv) The transition
function δ maps a state (q1, · · · , qk) on input z ∈ Σ to the state (q′

1, · · · , q′
k)

where q′
i = δi(qi, z) (1 ≤ i ≤ k). Also, the lift of a set Fi ⊆ Qi to D is the set

{(q1, · · · , qk) : qi ∈ Fi} ⊆ Q.

Restriction of a Transition System. The restriction of a transition system,
defined as the procedure Restriction(D, S), restricts D = (Σ, Q, ι, δ) to S ⊆ Q
is the transition system D′ = (Σ, S ∪ {sink}, ι, δ′, α′) where for all z ∈ Σ,
δ′(sink, z) = sink, δ′(q, z) = δ(q, z) if δ(q, z) ∈ S, and δ′(q, z) = sink other-
wise. Intuitively, D′ redirect all transitions from S that leave S to a fresh sink
state. We may denote the sink by ⊥6.

5 Reachability Tasks, No Env Spec

Algorithm 1 solves the realizability and synthesis for the case of reachability
tasks and no environment specification. Formally, Task is of the form ∃ϕ where
ϕ is an ltlf formula, and Env = true. This problem is solved in [17], but here
we rephrase the problem in our notation.

Theorem 3. Algorithm 1 solves the synthesis under environment specifications
problem with Task = ∃ϕ,Env = true, where ϕ is an ltlf formula.

5 Since strategies can depend on the history, and thus on the starting state in partic-
ular, there is always a strategy that wins from every state in Winp.

6 We remark that (i) when we restrict the transition system of a da (D, α) we may
need to revise the winning-condition α to express whether reaching sink is good for
the protagonist or not (although many times it is not, e.g., when restricting to the
winning-region for a safety condition); (ii) in one case, in Algorithm 7, we will add
two sink states.

272 B. Aminof et al.

Algorithm 1. Task = ∃ϕ,Env = true
Input: ltlf formula ϕ
Output: agent strategy σag that enforces ∃ϕ
1: A = ConvertDA(∃ϕ), say A = (D∃ϕ, reach(T))
2: (W, fag) = Solveag(A)
3: if ι �∈ W return “Unrealisable” endif
4: return σag = Strategy(D∃ϕ, fag)

6 Safety Tasks, No Env Spec

Algorithm 2 handles the case Task is of the form ∀ϕ where ϕ is an ltlf formula,
and Env = true. We can use the result in [17] to solve the synthesis for ∀ϕ from
the point of view of the environment.

Algorithm 2. Task = ∀ϕ,Env = true

Input: ltlf formula ϕ
Output: agent strategy σag that enforces ∀ϕ

1: A1 = ConvertDA(∀ϕ), say A1 = (D∀ϕ, safe(T1))
2: (S1, fag) = Solveag(A1)
3: if ι �∈ S1 return “Unrealisable” endif
4: return σag = Strategy(D∀ϕ, fag)

Theorem 4. Algorithm 2 solves the synthesis under environment specifications
problem with Task = ∀ϕ,Env = true, where ϕ is an ltlf formula.

7 Reachability and Safety Tasks, No Env Spec

Algorithm 3 handles the case that Task is of the form ∃ϕ1 ∧ ∀ϕ2 where ϕ1 and
ϕ2 are ltlf formulas, and Env = true.

Intuitively, the algorithm proceeds as follows. First, it computes the corre-
sponding da for ∀ϕ2 and solves the safety game over it. The resulting winning
area represents the set of states from which the agent has a strategy to realize its
safety task. Then, it restricts the game area to the agent’s winning area. Finally,
it solves the reachability game over the game product of the corresponding da
of ∃ϕ1 and the remaining part of the da for ∀ϕ2.

In order to obtain the final strategy for the agent we need to refine the strat-
egy fag to deal with the sink state, call it ⊥2, and combine it with gag. Given fag
computed in Line 3, define f ′′

ag : Q1 × (S2 ∪ {⊥2}) → 2Y over D by f ′′
ag(q, s) =

fag(s) if s ∈ S2, and f ′′
ag(q, s) = Y (for some arbitrary Y) otherwise. In words,

f ′′
ag ensures the second component stays in S2 (and thus in T2). Recall that gag

over D ensures that T1 is reached in the first co-ordinate, while at the same time
maintaining the second co-ordinate is in S2. Finally, let Combine(D, R, gag, fag)

ltlf Synthesis Under Env. for Reach. and Safe. Properties 273

Algorithm 3. Task = ∃ϕ1 ∧ ∀ϕ2,Env = true

Input: ltlf formulas ϕ1 and ϕ2

Output: agent strategy σag that realizes ∃ϕ1 and ∀ϕ2

1: A1 = ConvertDA(∃ϕ1), say A1 = (D∃ϕ1 , reach(T1))
2: A2 = ConvertDA(∀ϕ2), say A2 = (D∀ϕ2 , safe(T2))
3: (S2, fag) = Solveag(A2)
4: D′

∀ϕ2 = Restrict(D∀ϕ2 , S2), say the sink state is ⊥2

5: D = Product(D∃ϕ1 , D′
∀ϕ2)

6: (R, gag) = Solveag(D, reach(T1 × S2))
7: if ι �∈ R return “Unrealisable” endif
8: hag = Combine(D, R, gag, fag)
9: return σag = Strategy(D, hag)

denote the final strategy hag : Q1 × (S2 ∪ {⊥2}) → 2Y defined as follows:
hag((q, s)) = gag((q, s)) if (q, s) ∈ R, and hag((q, s)) = f ′′

ag((q, s)) otherwise. Intu-
itively, the agent following hag will achieve the reachability goal while staying
safe, whenever this is possible, and stays safe otherwise.

Theorem 5. Algorithm 3 solves synthesis under environment specifications
problem with Task = ∃ϕ1 ∧ ∀ϕ2,Env = true, where the ϕi are ltlf formulas.

8 Reachability Tasks, Safety Env Specs

Algorithm 4 handles the case that Task is of the form ∃ϕ1 and Env = ∀ϕ2, where
ϕ1, ϕ2 are ltlf formulas. A similar problem of this case was solved in [13],
which, more specifically, considers only finite safety of the agent, i.e., the agent
is required to stay safe until some point (the bound is related to an additional
agent reachability task), and thus can actually be considered as reachability.

Intuitively, the algorithm first computes all the environment strategies that
can enforce Env = ∀ϕ2 [7], represented as a restriction of the da for ∀ϕ2, as in the
previous section. Then, based on restricting the game arena on these environment
strategies, the algorithm solves the reachability game over the product of the
corresponding da of ∃ϕ1 and the restricted part of the da for ∀ϕ2.

Theorem 6. Algorithm 4 solves the synthesis under environment specifications
problem with Task = ∃ϕ1,Env = ∀ϕ2, where the ϕi are ltlf formulas.

274 B. Aminof et al.

Algorithm 4. Task = ∃ϕ1,Env = ∀ϕ2

Input: ltlf formulas ϕ1, ϕ2

Output: agent strategy σag that enforces ∃ϕ1 under ∀ϕ2

1: A1 = ConvertDA(∃ϕ1), say A1 = (D∃ϕ1 , reach(T1))
2: A2 = ConvertDA(∀ϕ2), say A2 = (D∀ϕ2 , safe(T2))
3: (S2, fenv) = Solveenv(A2)
4: D′

2 = Restrict(D2, S2), say the sink state is ⊥2

5: D = Product(D1, D′
2)

6: (R, fag) = Solveag(D, reach((T1 × S2) ∪ (Q1 × {⊥2}))
7: if ι �∈ R return “Unrealisable” endif
8: return σag = Strategy(D, fag)

9 Safety Tasks, Safety Env Specs

Algorithm 5 handles the case that Task is of the form ∀ϕ1 and Env = ∀ϕ2, where
ϕ1, ϕ2 are ltlf formulas.

Intuitively, the algorithm proceeds as follows. First, it computes the corre-
sponding da for ∀ϕ2 and solves the safety game for the environment over it. The
resulting winning area represents the set of states, from which the environment
has a strategy to enforce the environment specification L(∀ϕ2). It is worth noting
that restricting the da to considering only such winning area, in fact, captures
all the environment strategies that enforce L(∀ϕ2) [7]. Based on the restriction,
the algorithm solves the safety game over the product of the corresponding da
of ∀ϕ1 and the remaining part of the da for ∀ϕ2.

Algorithm 5. Task = ∀ϕ1,Env = ∀ϕ2

Input: ltlf formulas ϕ1, ϕ2

Output: agent strategy σag that enforces ∀ϕ1 under ∀ϕ2

1: A1 = ConvertDA(∀ϕ1), say A1 = (D1, safe(T1))
2: A2 = ConvertDA(∀ϕ2), say A2 = (D2, safe(T2))
3: (S2, fenv) = Solveenv(A2)
4: D′

2 = Restrict(D2, S2), call the sink ⊥2

5: D = Product(D1, D′
2)

6: (S, fag) = Solveag(D, safe((T1 × S2) ∪ (Q1 × {⊥2})))
7: if ι �∈ S return “Unrealisable” endif
8: return σag = Strategy(D, fag)

Theorem 7. Algorithm 5 solves the synthesis under environment specifications
problem with Task = ∀ϕ1,Env = ∀ϕ2, where the ϕi are ltlf formulas.

10 Reachability and Safety Tasks, Safety Env Specs

Algorithm 6 handles the case that Task is of the form ∃ϕ1 ∧∀ϕ2 and Env = ∀ϕ3,
where ϕ1, ϕ2, ϕ3 are ltlf formulas. As mentioned in the previous section, a

ltlf Synthesis Under Env. for Reach. and Safe. Properties 275

similar problem of this case that considers only finite safety of the agent was
solved in [13] by reducing Task to reachability properties only. Instead, we provide
here an approach to the synthesis problem considering infinite agent safety.

Intuitively, the algorithm proceeds as follows. Following the algorithms pre-
sented in the previous sections, it first computes all the environment strategies
that can enforce Env = ϕ3, represented as a restriction of the da for ∀ϕ3. Then,
based on restricting the game arena on these environment strategies, the algo-
rithm solves the safety game for the agent over the product of the corresponding
da of ∀ϕ2 and the restricted part of the da for ∀ϕ3. This step is able to capture
all the agent strategies that can realize ∀ϕ2 under environment specification ∀ϕ3.
Next, we represent all these agent strategies by restricting the product automa-
ton to considering only the computed agent winning states, thus obtaining D′.
Finally, the algorithm solves the reachability game over the product of the corre-
sponding da of ∃ϕ1 and D′. In order to abstract the final strategy for the agent,
it is necessary to combine the two agent strategies: one is from the safety game
for enforcing ∀ϕ2 under ∀ϕ3, the other one is from the final reachability game
for enforcing ∃ϕ1 while not violating ∀ϕ2 under ∀ϕ3.

Algorithm 6. Task = ∃ϕ1 ∧ ∀ϕ2,Env = ∀ϕ3

Input: ltlf formulas ϕ1, ϕ2, ϕ3

Output: agent strategy σag that enforces ∃ϕ1 ∧ ∀ϕ2 under ∀ϕ3

1: A1 = ConvertDA(∃ϕ1), say A1 = (D1, reach(T1))
2: A2 = ConvertDA(∀ϕ2), say A2 = (D2, safe(T2))
3: A3 = ConvertDA(∀ϕ3), say A3 = (D3, safe(T3))
4: (S3, fenv) = Solveenv(A3)
5: D′

3 = Restrict(D3, S3), call the sink ⊥3

6: D = Product(D2, D′
3)

7: (S2, f
s
ag) = Solveag(D, safe((T2 × S3) ∪ (Q2 × {⊥3})))

8: D′ = Restrict(D, S2), call the sink ⊥2

9: C = Product(D1, D′)
10: Let fs′

ag : Q1 × (S2 ∪ {⊥2}) → 2Y map (q1, q2) to fs
ag(q2) if q2 ∈ S2, and is arbitrary

otherwise. {fs′
ag lifts fs

ag to C}
11: (R, fr

ag) = Solveag(C, reach((T1 × S2 × S3) ∪ (Q1 × (η(S2) ∪ {⊥2}) × {⊥3}))
{ η : Q2 × Q3 → Q2 is the projection onto Q2, i.e., (q2, q3)
→ q2}

12: if ι �∈ R return “Unrealisable” endif
13: Let fag : Q1 × (S2 ∪ {⊥2}) → 2Y on C map q to fr

ag(q) if q ∈ R, and to fs′
ag (q)

otherwise. {fag does fr
ag on R, and fs′

ag otherwise.}
14: return σag = Strategy(C, fag)

Theorem 8. Algorithm 6 solves synthesis under environment specifications
problem with Task = ∃ϕ1 ∧ ∀ϕ2,Env = ∀ϕ3, where the ϕi are ltlf formulas.

276 B. Aminof et al.

11 Reachability and Safety Tasks and Env Specs

Algorithm 7 handles the case that Env = ∀ϕ1 ∧ ∃ϕ2 and Task = ∃ϕ3 ∧ ∀ϕ4 by
solving synthesis for the formula Env → Task [2], i.e., for (∃¬ϕ1 ∨∀¬ϕ2)∨ (∃ϕ3 ∧
∀ϕ4). Note that, from the general case, we get all cases involving reachability
environment specifications by suitably setting ϕ1, ϕ2 or ϕ4 to true. We remark
that for the case ϕ4 = true in which the safety and reachability specifications are
presented in the safety-fragment and co-safety fragment of ltl is solved in [10].

We first define two constructions that will be used in the algorithm. Given
a transition system D = (Σ, Q, ι, δ) and a set of states T ⊆ Q, define
Flagged(D, T) to be the transition system that, intuitively, records whether
a state in T has been seen so far. Formally, Flagged(D, T) returns the tran-
sition system Df = (Σ, Qf , ιf , δf) defined as follows: 1. Qf = Q × {yes, no}.
2. ιf = (ι, b), where b = no if ι �∈ T , and b = yes if ι ∈ T . 3.
δf ((q, b), z) = (q′, b′) if δ(q, z) = q′ and one of the following conditions holds:
(i) b = b′ = yes, (ii) b = b′ = no, q′ �∈ T , (iii) b = no, b′ = yes, q′ ∈ T . Given
a transition system D = (Σ, Q, ι, δ) and disjoint subsets V0, V1 of Q, define
RestrictionWithSinks(D, V0, V1) to be the transition system on state set V0

that, intuitively, behaves like D on V0, transitions from V0 to V1 are redirected
to a new sink state ⊥, and transitions from V0 to Q \ (V0 ∪ V1) are redirected to
a new sink state �. Formally, RestrictionWithSinks(D, V0, V1) is the tran-
sition system (Σ, Q̂, ι̂, δ̂) defined as follows: 1. Q̂ = V0 ∪ {�,⊥}. 2. ι̂ = ι. 3.
δ̂(q, z) = δ(q, z) if δ(q, z) ∈ V0. Otherwise, define δ̂(q, z) = ⊥ if δ(q, z) ∈ V1, and
δ̂(q, z) = � if δ(q, z) ∈ Q \ (V0 ∪ V1).

Intuitively, at Line 10, S2 will form part of the agent’s winning region since
from here safe(T2) can be ensured. At Line 12, R3 will also form part of the
agent’s winning region since from R3 in D′ reach(T3)∩safe(T4) can be ensured. In
the following steps, we identify remaining ways that the agent can win, intuitively
by maintaining T2∩T4 either forever (in which case safe(T2) is ensured), or before
the state leaves T2 ∩ T4 either (i) it is in S2 or R3 (in which case we proceed as
before), or otherwise (ii) it is in S4 (but not in S2 nor in R3) and has already
seen T3 (in which case reach(T3) ∩ safe(T4) can be ensured).

At the end of the algorithm, we combine the four strategies f1
ag, f

2
ag, f

3
ag and

f4
ag through procedure Combine(Df , f1

ag, f
2
ag, f

3
ag, f

4
ag, R1, S2, R3, E) to obtain

the final strategy fag : (Qf)+ → 2Y as follows. For every history h ∈ (Qf)+, if
the history ever enters R1 then follow f1

ag, ensuring reach(T1), otherwise, writing
q for the start state of h: 1. if q ∈ S2 then use f2

ag, which ensures safe(T2); 2.
if q ∈ R3 then use f3

ag until T3 is reached and thereafter use f4
ag, which ensures

safe(T4) ∩ reach(T3); 3. if q ∈ E then use fe
ag while the states are in E, ensuring

safe(T2) if play stays in E; if ever, let q′ be the first state in the history that is
not in E; by construction, this corresponds to � in Df and thus is (i) in S2 or
(ii) in R3, and so proceed as before, or else (iii) in (S4 \ T2) \ (R3 ∪ S2) (which
can be simplified to S4 \ (R3 ∪ T2)) with flag value yes in which case switch to
strategy f4

ag. Intuitively, case (i) ensures safe(T2), and cases (ii) and (iii) each
ensure safe(T4)∩reach(T3); 4. and if none of these, then make an arbitrary move.
Note that in spite of being a function of the whole history, fag can be represented

ltlf Synthesis Under Env. for Reach. and Safe. Properties 277

Algorithm 7. Task = ∃ϕ3 ∧ ∀ϕ4,Env = ∀ϕ1 ∧ ∃ϕ2

Input: ltlf formulas ϕ1, ϕ2, ϕ3, ϕ4

Output: agent strategy σag that enforces ∃ϕ3 ∧ ∀ϕ4 under ∀ϕ1 ∧ ∃ϕ2

1: A1 = ConvertDA(∃¬ϕ1), say A1 = (D1, reach(B1))
2: A2 = ConvertDA(∀¬ϕ2), say A2 = (D2, safe(B2))
3: A3 = ConvertDA(∃ϕ3), say A3 = (D3, reach(B3))
4: A4 = ConvertDA(∀ϕ4), say A4 = (D4, safe(B4))
5: Dp = Product(D1, D2, D3, D4)
6: Let Qp be the state set of Dp, and Ti the lift of Bi to Qp (for i ≤ 4)
7: (R1, f

1
ag) = Solveag(Dp, reach(T1))

8: D′
p = Restrict(Dp, Q \ R1)

9: Df = Flagged(D′
p, T3)

10: (S2, f
2
ag) = Solveag(Df , safe(T2))

11: (S4, f
4
ag) = Solveag(Df , safe(T4))

12: (R3, f
3
ag) = Solveag(Restrict(Df , S4), reach(T3))

13: V0 = (Qf \ (S2 ∪ S4)) ∪ ((S4 ∩ T2) \ (R3 ∪ S2))
14: V1 is all states in (S4 \ T2) \ (R3 ∪ S2) whose flag is set to no
15: D̂ = RestrictionWithSinks(Df , V0, V1)
16: (E, fe

ag) = Solveag(D̂, safe((T2 ∩ T4) ∪ {}))
17: Wag = S2 ∪ R3 ∪ E {Note that Wag ⊆ Qf ∪ {}}
18: if ι �∈ Wag return “Unrealisable” endif
19: fag = Combine(Df , f1

ag, f
2
ag, f

3
ag, f

4
ag, R1, S2, R3, E) {See the definition below.}

20: return σag = Strategy(Df , fag)

by a finite-state transducer. So in the Algorithm 7, as before, with a little abuse
of notation we write directly σag = Strategy(Df , fag), to mean that we return
its representation as a transducer.

Theorem 9. Algorithm 7 solves the synthesis under environment specifications
problem with Task = ∃ϕ3∧∀ϕ4 and Env = ∀ϕ1∧∃ϕ2, where ϕi are ltlf formulas.

Comparison to Algorithms 1–6. Note that Algorithm 7 can solve the other six
variants by suitably instantiating some of ϕ1, ϕ2, ϕ3, ϕ4 to true. Nevertheless,
Algorithm 7 is much more sophisticated than Algorithms 1–6. Hence, in this
paper, we present the algorithms deductively, starting with simpler variants and
moving to the most difficult. Furthermore, instantiating Algorithm 7 does not
always give the same algorithms as Algorithms 1–6. For instance, Algorithm 1
for the synthesis problem of Task = ∃ϕ (no environment specification) can be
obtained from Algorithm 7 by setting ϕ1, ϕ2, ϕ4 to true, but we cannot get
Algorithm 4 for the synthesis problem of Env = ∀ϕ and Task = ∃ψ in this
way. This is because Algorithm 7 solves the synthesis problem by reducing to
Env → Task [2], but Algorithm 4 directly disregards all environment strategies
that cannot enforce Env by first solving a safety game for the environment on Env
and removing all the states that do not belong to the environment winning region
to get a smaller game arena, hence obtaining optimal complexity. Analogously,
in Algorithm 3 for the synthesis problem of Env = true and Task = ∃ϕ1 ∧

278 B. Aminof et al.

∀ϕ2, we also first disregard all the agent strategies that are not able to enforce
∀ϕ2, obtaining a smaller game arena for subsequent computations, hence getting
an optimal complexity in practice compared to constructing the game arena
considering the complete state space from the DA of ∀ϕ2.

12 Conclusion

In this paper, we have studied the use of reachability and safety properties based
on ltlf for both agent tasks and environment specifications. As mentioned in
the introduction, though we have specifically focused on ltlf , all algorithms
presented here can be readily applied to other temporal logics on finite traces,
such as Linear Dynamic Logics on finite traces (ldlf), which is more expressive
than ltlf [16], and Pure-Past ltl [11], as long as there exists a technique to
associate formulas to equivalent dfas.

It is worth noting that all the cases studied here are specific Boolean com-
binations of ∃ϕ. It is of interest to indeed devise algorithms to handle arbitrary
Boolean combinations. Indeed, considering that ltlf is expressively equivalent
to pure-past ltl, an arbitrary Boolean combination of ∃ϕ would correspond to
a precise class of ltl properties in Manna & Pnueli’s Temporal Hierarchy [23]:
the so-called obligation properties. We leave this interesting research direction
for future work.

Another direction is to consider best-effort synthesis under assumptions for
Boolean combinations of ∃ϕ, instead of (ordinary) synthesis under assumptions,
in order to handle ignorance the agent has about the environment [3,5,6,8,18].

References

1. Aminof, B., De Giacomo, G., Murano, A., Rubin, S.: Planning and synthesis under
assumptions. CoRR (2018)

2. Aminof, B., De Giacomo, G., Murano, A., Rubin, S.: Planning under LTL envi-
ronment specifications. In: ICAPS, pp. 31–39 (2019)

3. Aminof, B., De Giacomo, G., Lomuscio, A., Murano, A., Rubin, S.: Synthesizing
best-effort strategies under multiple environment specifications. In: KR, pp. 42–51
(2021)

4. Aminof, B., De Giacomo, G., Murano, A., Rubin, S.: Synthesis under assumptions.
In: KR, pp. 615–616. AAAI Press (2018)

5. Aminof, B., De Giacomo, G., Rubin, S.: Best-effort synthesis: doing your best is
not harder than giving up. In: IJCAI, pp. 1766–1772. ijcai.org (2021)

6. Aminof, B., De Giacomo, G., Rubin, S., Zuleger, F.: Stochastic best-effort strategies
for Borel goals. In: LICS, pp. 1–13 (2023)

7. Bernet, J., Janin, D., Walukiewicz, I.: Permissive strategies: from parity games to
safety games. RAIRO Theor. Inform. Appl. 36(3), 261–275 (2002)

8. Berwanger, D.: Admissibility in infinite games. In: Thomas, W., Weil, P. (eds.)
STACS 2007. LNCS, vol. 4393, pp. 188–199. Springer, Heidelberg (2007). https://
doi.org/10.1007/978-3-540-70918-3_17

9. Camacho, A., Bienvenu, M., McIlraith, S.A.: Finite LTL synthesis with environ-
ment assumptions and quality measures. In: KR, pp. 454–463 (2018)

https://doi.org/10.1007/978-3-540-70918-3_17
https://doi.org/10.1007/978-3-540-70918-3_17

ltlf Synthesis Under Env. for Reach. and Safe. Properties 279

10. Camacho, A., Bienvenu, M., McIlraith, S.A.: Towards a unified view of AI planning
and reactive synthesis. In: ICAPS, pp. 58–67 (2019)

11. De Giacomo, G., Di Stasio, A., Fuggitti, F., Rubin, S.: Pure-past linear temporal
and dynamic logic on finite traces. In: IJCAI, pp. 4959–4965 (2020)

12. De Giacomo, G., Di Stasio, A., Perelli, G., Zhu, S.: Synthesis with mandatory stop
actions. In: KR, pp. 237–246 (2021)

13. De Giacomo, G., Di Stasio, A., Tabajara, L.M., Vardi, M.Y., Zhu, S.: Finite-trace
and generalized-reactivity specifications in temporal synthesis. In: IJCAI, pp. 1852–
1858 (2021)

14. De Giacomo, G., Di Stasio, A., Vardi, M.Y., Zhu, S.: Two-stage technique for LTLf

synthesis under LTL assumptions. In: KR, pp. 304–314 (2020)
15. De Giacomo, G., Rubin, S.: Automata-theoretic foundations of FOND planning

for LTLf and LDLf goals. In: IJCAI, pp. 4729–4735 (2018)
16. De Giacomo, G., Vardi, M.Y.: Linear temporal logic and linear dynamic logic on

finite traces. In: IJCAI, pp. 854–860 (2013)
17. De Giacomo, G., Vardi, M.Y.: Synthesis for LTL and LDL on finite traces. In:

IJCAI, pp. 1558–1564 (2015)
18. Faella, M.: Admissible strategies in infinite games over graphs. In: Královič, R.,

Niwiński, D. (eds.) MFCS 2009. LNCS, vol. 5734, pp. 307–318. Springer, Heidelberg
(2009). https://doi.org/10.1007/978-3-642-03816-7_27

19. Fijalkow, N., et al.: Games on graphs (2023)
20. Geffner, H., Bonet, B.: A Coincise Introduction to Models and Methods for Auto-

mated Planning. Morgan & Claypool (2013)
21. Grädel, E., Thomas, W., Wilke, T. (eds.): Automata Logics, and Infinite Games: A

Guide to Current Research. LNCS, vol. 2500. Springer, Heidelberg (2002). https://
doi.org/10.1007/3-540-36387-4

22. Kupferman, O., Vardi, M.Y.: Model checking of safety properties. Formal Methods
Syst. Des. 19(3), 291–314 (2001)

23. Manna, Z., Pnueli, A.: A hierarchy of temporal properties. In: PODC, pp. 377–410
(1990)

24. Pnueli, A., Rosner, R.: On the synthesis of a reactive module. In: POPL, pp. 179–
190 (1989)

25. Rabin, M.O., Scott, D.S.: Finite automata and their decision problems. IBM J.
Res. Dev. 3(2), 114–125 (1959)

26. Tabajara, L.M., Vardi, M.Y.: LTLF synthesis under partial observability: from
theory to practice. In: GandALF. EPTCS, vol. 326, pp. 1–17 (2020)

27. Tabajara, L.M., Vardi, M.Y.: Partitioning techniques in LTLF synthesis. In: IJCAI,
pp. 5599–5606 (2019)

28. Tabakov, D., Vardi, M.Y.: Experimental evaluation of classical automata construc-
tions. In: Sutcliffe, G., Voronkov, A. (eds.) LPAR 2005. LNCS (LNAI), vol. 3835,
pp. 396–411. Springer, Heidelberg (2005). https://doi.org/10.1007/11591191_28

29. Westergaard, M.: Better algorithms for analyzing and enacting declarative work-
flow languages using LTL. In: Rinderle-Ma, S., Toumani, F., Wolf, K. (eds.) BPM
2011. LNCS, vol. 6896, pp. 83–98. Springer, Heidelberg (2011). https://doi.org/10.
1007/978-3-642-23059-2_10

30. Zhu, S., De Giacomo, G., Pu, G., Vardi, M.Y.: LTLf synthesis with fairness and
stability assumptions. In: AAAI, pp. 3088–3095 (2020)

31. Zhu, S., Tabajara, L.M., Li, J., Pu, G., Vardi, M.Y.: Symbolic LTLf synthesis. In:
IJCAI, pp. 1362–1369 (2017)

32. Zhu, S., Tabajara, L.M., Pu, G., Vardi, M.Y.: On the power of automata minimiza-
tion in temporal synthesis. In: GandALF. EPTCS, vol. 346, pp. 117–134 (2021)

https://doi.org/10.1007/978-3-642-03816-7_27
https://doi.org/10.1007/3-540-36387-4
https://doi.org/10.1007/3-540-36387-4
https://doi.org/10.1007/11591191_28
https://doi.org/10.1007/978-3-642-23059-2_10
https://doi.org/10.1007/978-3-642-23059-2_10

Logic-Based Approximations
of Preferences

Paolo Baldi(B)

Department of Human Studies, University of Salento, Lecce, Italy

paolo.baldi@unisalento.it

Abstract. In this exploratory work, we provide a general framework,
based on Depth-Bounded Boolean logic, for addressing some of the crit-
icisms towards Savage’s approach to the foundations of decision theory.
We introduce a sequence of approximating preferences structures and
show that, under suitable conditions such preferences give rise to a qual-
itative probability which is almost representable by a finitely additive
probability.

1 Introduction

In his seminal work, first published in 1954, and revisited in 1972 [15], Savage
laid down a foundational framework for decision-making under uncertainty. His
system is based on acts, which are rendered as functions mapping states into
outcomes, and on preferences on such acts, which need to obey certain rationality
axioms.

Savage’s general setup, as well as his axioms, have been since subjected to
wide scrutiny and criticisms. Much controversy has been raised in particular
on the so-called Sure-Thing Principle (STP), that allows an agent to reach a
preference by decomposing it in preferences over two mutually exclusive and
jointly exhaustive subcases. In Savage’s words, the principle is motivated as
follows:

A businessman contemplates buying a certain piece of property. He con-
siders the outcome of the next presidential election relevant. So, to clarify
the matter to himself, he asks whether he would buy if he knew that the
Democratic candidate were going to win, and decides that he would. Sim-
ilarly, he considers whether he would buy if he knew that the Republican
candidate were going to win, and again finds that he would. Seeing that he
would buy in either event, he decides that he should buy, even though he
does not know which event obtains, or will obtain, as we would ordinarily
say [15].

The purpose of this work is to provide a logical perspective, both on Sav-
age’s well-known framework [15] for the foundation of decision theory, and on
its criticisms, arising from the famous scenarios presented by Ellsberg [10] and

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
V. Malvone and A. Murano (Eds.): EUMAS 2023, LNAI 14282, pp. 280–294, 2023.
https://doi.org/10.1007/978-3-031-43264-4_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-43264-4_18&domain=pdf
https://doi.org/10.1007/978-3-031-43264-4_18

Logic-Based Approximations of Preferences 281

Allais [1]. Both of these scenarios provided patterns of preferences deemed plau-
sible, and yet conflicting with Savage’s axioms, in particular with the Sure-Thing
Principle.

The key observation behind this work is the similarity of STP with what in
classical logic is known as the Principle of Bivalence (PB). To clarify the meaning
of PB, we first present it as a rule in natural-deduction style, as follows [9]:

[ϕ]
.
.
.
ψ

[¬ϕ]
.
.
.
ψ

(PB)
ψ

meaning that, to infer the formula ψ, it suffices to infer it both under the assump-
tion that ϕ is the case and under the assumption that ¬ϕ is the case. The square
brackets around the formulas ϕ and ¬ϕ signal that those are pieces of informa-
tion assumed for the sake of deriving ψ, but not actually held true (they are
discharged, in natural deduction terminology). Following [4], we call this type of
information hypothetical, in contrast to the actual information held by an agent.
Let us note that the inference rule (PB) is also called a “logical” sure-thing
principle in [2], where analogies and differences with STP are analyzed. In par-
ticular, [2] stresses that “STP is a desideratum of rational behavior, but not
logically necessary”, as is the case instead for PB.

In the light of the development of various non-classical logics, considering PB
as logically necessary, without further qualification, is not enough. In particular,
choosing suitable pieces of hypothetical information for its application in logical
deductions, is a complex matter. This may play an important role in decision-
making, as we illustrate in the following.

Example 1. You have an urn with balls that are numbered 1–100, and are colored
in unknown proportions. Three balls with numbers x1, x2, x3 are extracted from
the urn. You are told that x2 = x1 + 1 and x3 = x2 + 1. Ball number x1 is red
and ball number x3 is blue. You have to choose among the following:

– h: You earn 100 euro, if x2 = x1 + 1 and x3 = x2 + 1, 0 otherwise.
– h′: You earn 110 euro if it holds that, among the extracted balls

(δ): “a red ball and a non-red ball have numbers that differ by 1”, 0
otherwise.

The information provided is sufficient to assess that h always returns the payoff
100. It might be however less obvious that also h′ will always return the highest
payoff 110. It suffices to reason by cases: if x2 is red, then, since x3 = x2 +1 and
x3 is not red, δ holds. On the other hand, if x2 is not red, since x2 = x1 + 1 and
x1 is red, δ still holds.

We find it plausible that agents might prefer h to h′, although the payoff for
h′ is higher than that for h, and both are certain for the agent. In support of this
conjecture, note that in empirical research [18], under similar information, over
80% of subjects claimed that it is impossible to determine whether an assertion
of the same logical form as δ is true.

282 P. Baldi

We might say that, in the above example, an agent preferring h to h′ is behaving
irrationally, or is perhaps attributing a cost to the very act of doing inferences, a
cost which is not immediately captured neither by classical logic, nor by Savage’s
standard decision-theoretic framework.

PB is indeed costly for realistic agents, and bounding its use makes logical
inference tractable, in the sense of computational complexity [17], in contrast
to the intractability (under the usual P �= NP assumption) of classical proposi-
tional logic.

This observation is at the core of a family of logical systems, dubbed Depth-
Bounded Boolean logics [8] (DBBLs), which allow only for a limited application
of PB, and provide tractable approximations of classical logic.

Building on previous work on uncertainty measures in DBBLs [3,4], we intro-
duce in the following a sequence of preferences approximating Savage’s frame-
work, which are based on the limited use of PB and hypothetical information.

This setting allows us to provide a unified account of Savage’s axioms, and of
the preferences in Allais, in Ellsberg, and in Example 1 above. All such prefer-
ences will be considered indeed compatible with (our reformulation of) Savage’s
axioms, and in particular with the Sure-thing principle, but only at the lowest
level of our sequence, where no use of hypothetical information is permitted.
Furthermore, following Savage, we show that the sequence of approximating
preferences determines a finitely additive measure, in the limit.

The paper is further structured as follows. In Sect. 2 we present our analysis
of actual and hypothetical information, based on DBBLs. Section 3 introduces
our sequence of approximating preference relations, provides a reformulation of
some of Savage’s basic axioms in that setting, and analyzes our main examples.
Section 4 provides the conditions under which the sequence of approximating
preferences determines a finitely additive measure in the limit. Finally, we pro-
vide some conclusions and hints at future work.

2 Hypothetical and Actual Information

Before proceeding, we briefly fix some notation. We consider a propositional
logical language L, with the usual classical connectives ∧,∨,→,¬ and set of
propositional variables {p1, . . . , pn, . . . }. The set of formulas will be denoted by
Fm, and lowercase Greek letters will be used to refer to formulas. We denote by
S(ϕ) the set of subformulas of ϕ.

We now recall some crucial ideas of the DBBLs, mentioned in the intro-
duction. These logics permit to distinguish between actual and hypothetical
information in logical deduction, and determine a hierarchy, with a parameter k
measuring the amount of allowed nested use of hypothetical information.

The 0-depth logic, which will be our main focus here, is a logic that does
not allow any application of PB, and is thus concerned only with the manip-
ulation of actual information. This logic is proof-theoretically defined in terms
of the INTroduction and ELIMination (INTELIM) rules in Table 1. The rules
are defined for each connective, both when occurring positively (as the main
connective of a formula) and negatively (in the scope of a negation).

Logic-Based Approximations of Preferences 283

Table 1. Introduction and Elimination rules.

ϕ ψ

ϕ ∧ ψ
(∧I) ¬ϕ

¬(ϕ ∧ ψ)
(¬ ∧ I1)

¬ψ

¬(ϕ ∧ ψ)
(¬ ∧ I2) ¬ϕ ¬ψ

¬(ϕ ∨ ψ)
(¬ ∨ I)

ϕ

ϕ ∨ ψ
(∨I1) ψ

ϕ ∨ ψ
(∨I2)

ϕ ¬ϕ

⊥ (⊥I) ϕ
¬¬ϕ (¬¬I)

ϕ ∨ ψ ¬ϕ

ψ
(∨E1) ϕ ∨ ψ ¬ψ

ϕ (∨E2)

¬(ϕ ∨ ψ)
¬ϕ (¬ ∨ E1)

¬(ϕ ∨ ψ)

¬ψ
(¬ ∨ E2)

ϕ ∧ ψ
ϕ (∧E1)

ϕ ∧ ψ

ψ
(∧E2)

¬(ϕ ∧ ψ) ϕ

¬ψ
(¬ ∧ E1) ¬(ϕ ∧ ψ) ψ

¬ϕ (¬ ∧ E2)

¬¬ϕ
ϕ (¬¬E) ⊥

ϕ (⊥E)

We note in passing that the logic has also a non-deterministic semantics,
with evaluations capturing the information actually held by an agent rather
than truth, as a primitive notion [7].

The rules encode the principles for the manipulation of information actually
possessed by an agent, for each of the connectives of the language. We refer
to [7,8] for further details and motivation. The 0-depth consequence relation is
defined as follows.

Definition 1. Let T ∪ {ϕ} ⊆ Fm. T �0 ϕ if there is a sequence of formulas
ϕ1, . . . , ϕm such that ϕm = ϕ and each ϕi is either in T or it is obtained by an
application of the rules in Table 1 from formulas ϕj with j < i.

Note that, by direct inspection of the rules in Table 1, we have ��0 p ∨ ¬p. In
fact, this logic, which is strictly weaker than classical logic, has no tautologies
at all. The relation �0 captures inferences that are “trivial” in their reliance
solely on actual information. This is also reflected computationally, by the fact
that, in contrast to classical propositional logic, �0 can be checked in polynomial
time [8].

284 P. Baldi

While 0-depth logic permits only to represent actual information, and lack
thereof, classical logical proofs also involve reasoning about hypothetical infor-
mation. Consider again ��0 p ∨ ¬p. It can be easily shown that, on the other
hand, p �0 p∨¬p and ¬p �0 p∨¬p. Hence, we can show that p∨¬p is derivable
just by one application of PB, using the hypothetical information p and ¬p. In
DBBLs this amounts to saying that �1 p ∨ ¬p. The consequence �k for k > 0 is
formally defined as follows, see also [8].

Definition 2. Let k > 0. Then T �k ϕ if there is a ψ ∈ S(T ∪ {ϕ}) such that
T, ψ �k−1 ϕ and T,¬ψ �k−1 ϕ.

The parameter k is thus a “counter” which keeps track of how many nested
instances of reasoning by cases are needed for the agent to decide a sentence of
interest.

In this work we use only 0-depth logics, to deal with actual information,
alongside with a sequence of (depth-bounded) forests, to represent the further
hypothetical information which may be used by an agent.

Let us recall the notion of depth-bounded forests, in a slightly modified form
from [4]. We start with a set Supp ⊆ Fm∪{∗}, which represents the information
explicitly provided to the agent. The symbol ∗ is meant to the represent the
absence of any information. Supp collects background information, which may
be of the form “γ holds”, or “the probability of γi is pi” where pi may be the
frequency or objective chance of γi. If no such information is available to the
agent, we let Supp = {∗}. We further impose that for any α, β ∈ Supp, such that
α �= ∗, β �= ∗ we have1 α, β �0 ⊥.

Depth-bounded forests are built, starting from Supp and suitably expand-
ing the nodes with two new children nodes, representing an instance of PB
obtained by considering a certain piece of hypothetical information and its nega-
tion, respectively.

In the following, for any formula γ ∈ Fm, we say that γ decides δ if γ �0 δ or
γ �0 ¬δ. By the depth of a node in a forest, in the usual graph-theoretic sense,
we mean the length of the path from the root of a tree in the forest to the node.
We then say that a leaf α is closed if α 0-decides each formula δ ∈ S(α). A leaf
which is not closed is said to be open.

Definition 3. Let Supp ⊆ Fm∪{∗}. We define recursively, a sequence (Fk)k∈N

of depth-bounded forests based on Supp (DBF, for short), as follows:

1. For k = 0 we let F0 be a forest with no edges, and with the set of vertices
equal to Supp2.

2. The forest Fk, for k ≥ 1 is obtained expanding at least one leaf α of depth k
as follows:
– if α is open, with two nodes α ∧ β and α ∧ ¬β where β is an undecided

subsentence of α.
1 This assumption is actually dispensable [4], but simplifies the formulation of our
main definitions and results.

2 Clearly, Supp is the set of leaves of F0.

Logic-Based Approximations of Preferences 285

– Otherwise, if α is closed, with two nodes α∧β and α∧¬β, where β ∈ Fm
is a sentence whose variables do not already occur in Supp∪ {α}, if there
are any.

Let us notice that, when F is defined over a language Fm with finitely many
propositional variables, the DBF may be expanded only up to a certain Fk. In
what follows, given a DBF (Fk)k∈N we will denote by Suppk the set of leaves of the
forest Fk. This represent the information which is available to an agent capable
of making k nested use of reasoning by cases. This information will be available
to the agent for probabilistic quantification and evaluation in considering which
actions to take.

3 Approximating Preferences

Our framework for preference comprises, as Savage’s original one, a set of states
St, a set of outcomes O, and a set of acts A. The idea is that each act f ∈ A is
a function f : St → O.

However, we depart from Savage in various respects, in that we focus on the
logical language used to represent states, rather than the more usual set-theoretic
presentation.

First, we think of the set of states St as evaluations of the formulas of our
logical language, of the form v : Fm → {0, 1}.

Given any f ∈ A and S ⊆ St we denote by fS the restriction of f to S. Note
that a function fS is to be interpreted as the function f when the outcomes
outside S are disregarded, but it does not amount to conditioning on S, i.e. to
consider the action upon the assumption that S is true, as is done e.g. in [13].
This means that, in determining, say whether fS is preferred to gT , both the
outcomes and how likely are taken to be S, T matter.

We are now ready to reformulate some of the Savage’s axioms in our setting.
We focus first on those that deal with preference exclusively, without concern for
their role in justifying a probabilistic representation of an agent’s belief. Recall
that A ⊆ OSt and let by a binary relation over A, standing for a preference
between acts. Then, we require, as in Savage P1 [15]:

A1 is a total pre-order, i.e. reflexive and transitive, over A

We then formulate a weak form of the sure-thing principle, which is closer to
Savage’s informal presentation [15] than to his own axiom P2.

A2 (Sure-thing). The following rules are satisfied:

fS gS fT gT

fS∪T gS∪T

fS � gS fT gT

fS∪T � gS∪T

for any S, T ⊆ Fm with S ∩ T = ∅.

The third axiom is an adaptation of Savage’s state independence P3. Before
presenting it, let us recall that a set S is said to be non-null if there are at least
two acts fS , f ′

S ∈ A with fS � f ′
S .

286 P. Baldi

A3 (State independence). Let S ⊆ St be non-null. Then satisfies the following
rule:

f(S) = f ′(St) = {x} g(S) = g′(St) = {y} f ′ g′

fS gS

Definition 4 (Consistent Preference Structure). Let A ⊆ OSt and be a
binary relation over A. We say that (A,) is a consistent preference structure
iff it satisfies axioms A1-A3 above.

So far, we have only reformulated Savage’s axioms, in a framework which is
more congenial to our logical construction. Our key contribution is however, for-
malizing acts, as seen from the point of view of an agent with bounded inferential
resources. Towards this purpose, we assume that the agent does not have direct
access to the state space St of A, but only to some information, in a syntactic
format, that she has to elaborate upon.

The actual, explicit information, provided to the agent, is here encoded by
a set Supp ⊆ Fm. On the other hand, the information that she has to (via a
reasoning effort) hypothesize about will be rendered by the set of leaves Suppk

of a suitable DBF, say F = (Fk)k∈N
which is built starting from Supp.

Now we can express what it means for an agent to access the acts via some
pieces of (actual and/or hypothetical information). First, let us define

bk(ϕ) = {α ∈ Suppk | α �0 ϕ}

and
plk(ϕ) = {α ∈ Suppk | α ��0 ¬ϕ}

in analogy with the notion of belief and plausibility function in the theory of
Dempster-Shafer belief functions [16]. The set bk(ϕ) collects all the pieces of
information that have been explored by the agent up to depth k, that allow her
to immediately (i.e. via �0, without using PB) infer ϕ. On the other hand, plk(ϕ)
collects the pieces of information at depth k that do not immediately exclude ϕ.

For any f ∈ A, f : St → O we will denote by fk : Suppk → P(O) the function
associating to each piece of information α ∈ Suppk the following subset of O:

fk(α) := f({v ∈ St | v(ϕ) = 1, for each ϕ such that α ∈ plk(ϕ)} ⊆ O

Note that a formula α is here mapped into the set of outcomes which are
not excluded by α. This is because α, which represent a piece of information
the agent can actually consider, need not to correspond to a state St (i.e. a
logical evaluation assigning a truth value to each formula), and might not provide
enough information to determine which particular outcome obtains.

Furthermore, for any S ⊆ Suppk, we denote by fk
S the restriction of fk to

S. Note that S is here taken to be a subset of formulas in Suppk, rather than a
subset of the states, i.e. of evaluations.

Definition 5 (Consistent k-Preference Structure). Let A ⊆ OSt. We say
that (Ak,k) is a consistent k-preference structure iff

Logic-Based Approximations of Preferences 287

– Ak contains fk
S for each S ⊆ Suppk, f ∈ A

– (Ak,k) is a consistent preference structure, i.e. it satisfies A1–A3 above.

We are now ready to define our notion of approximating sequence.

Definition 6. Let F = (Fk)k∈N be a DBF sequence, and A ⊆ OSt. We say that
P = (Ak,k)k∈N is an approximating preference sequence (APS, for short) iff:

– For each k ∈ N, (Ak,k) is a consistent preference structure.
– For every k ∈ N, and every ϕ,ψ ∈ Fm, f, g ∈ Supp, we have that fk k gk

implies fk′ k′ gk′
for every k′ ≥ k.

The second condition says that, as k increases, the agent can refine, but cannot
revise previously determined preferences. Let us test now our notion of APS
with the well-known examples of Ellsberg and Allais. To ease notation, in the
following we will often slightly abuse the notation, writing directly f k g instead
of fk k gk.

Example 2 (Ellsberg). Suppose that an agent is presented an urn filled with balls,
and is provided the information that 2/3 of the balls are either yellow or blue
(Y ∨B), and the remaining 1/3 are red (R). A ball will be extracted from the urn
and an agent is confronted with a choice between acts f, g, h, j. The following
table summarizes the setup in the standard Savage framework, where states are
represented in the columns, the available acts in the rows, and the cells contain
the monetary outcome, say in euros.

Table 2. Ellsberg’s one urn scenario.

R Y B

f 100 0 0

g 0 100 0

h 100 0 100

j 0 100 100

Ellsberg [10] points out that the strict preferences f � g and j � h are
plausible: agents will typically prefer, ceteris paribus, a bet whose states they
can quantify probabilistically (R and Y ∨B for the acts f and j) over one where
this is not the case (Y and B for the acts g and j). In other words, they will
display a form of ambiguity aversion [12].

On the other hand, these preferences are in violation of Savage STP. Indeed,
if we ignore what happens in case a blue ball (B) is picked (i.e. we ignore the third
column in Table 2), and we assume that the preference for a payoff of 100 euros
is independent of the state in which it occurs, the agent should be indifferent
between acts f and h, and g and j. Furthermore, both, f and g, and h and j
give the same payoff for B, i.e. 0 and 100, respectively. According to the STP

288 P. Baldi

then, a preference for f over h dictates a preference for g over j, in contrast to
Ellsberg’s preferences.

Let us now formalize the example in our setting. We take a finite language
over the variables {Y,B,R} which stand for the event that a yellow, blue, red
ball is picked, respectively. We denote by γ the sentence expressing the fact that
Y,B,R are mutually exclusive and jointly exhaustive. We build a DBF and an
APS as follows. We let Supp = {(Y ∨B)∧γ,R∧γ}, since those are the formulas
upon which the agent is provided probabilistic information, and A = {f, g, h, j}.
It is easy to show that for any such formula α ∈ Supp we have pl0(α) = {α}. The
acts f, g, h, j are again defined as in Table 2. Assume that f �0 g and j �0 h. We
may consider a decomposition of such preferences only via the formulas in Supp.
We have (omitting the formula γ, for simplicity): gY ∨B �0 fY ∨B , fR �0 gR,
jY ∨B �0 hY ∨B, and hR �0 jR. These preferences, together with f �0 g and
j �0 h, do not contradict axiom A2, i.e. our reformulated version of the Sure-
thing principle. Note that, since Y ∨ R and B are not formulas of Suppk, the
functions say fY ∨R, hY ∨R, gY ∨R, jY ∨R and fB, hB , gB , jB are not defined.

Now, let us consider the expansion of Supp to a 1-depth forest F1, and the
corresponding 1-depth preference structure over Supp1. Notice that the node
R ∧ γ in Supp is already closed, and thus need not be expanded. We expand
instead the open node (Y ∨ B) ∧ γ as follows (we omit γ for simplicity):

Y ∨ B

Y B

R

Consider the preference structure (A1,1). With a little abuse of notation,
since ((Y ∨ B) ∧ γ ∧ Y) �0 Y , ((Y ∨ B) ∧ γ ∧ ¬Y) �0 B and R ∧ γ �0 R, we just
write the formula on the right Y,B,R instead of the corresponding formula on
the left, which belongs to Supp1.

Note that, at depth 1, the preferences f �1 g and j �1 h are not allowed
by Definition 5. By state independence, we have indeed that f{Y } ≈1 h{Y },
f{R} ≈1 h{R} and g{Y } ≈1 j{Y }, g{R} ≈1 j{R}. On the other hand, we have
f{B} ≈1 g{B}, and h{B} ≈1 j{B}, while j{B} � f{B}.

Now, let us further assume that f{Y }∪{R} �1 g{Y }∪{R}. By the previous
equivalences, we may use A2 to get h{Y }∪{R} � j{Y }∪{R}. By the latter, since
we also have h{B} ≈1 j{B} we may use A2 to obtain h �1 j, which is contrary
to the initial assumption j �1 h.

Let us now assume g{Y }∪{R} 1 f{Y }∪{R}. Since fB ≈1 gB , by state inde-
pendence, we obtain by A2, g = g{Y }∪{R}∪{B} 1 f{Y }∪{R}∪{B} = f , again
contradicting the initial assumption that f �1 g. In both cases we derived a
contradiction with one of the assumptions f �1 g and j �1 h.

Example 3 (Allais). Assume you have an urn containing balls numbered from
1 to 100, and a ball will be extracted from the urn. You are offered a choice
between the following acts, which are represented in the following table.

Logic-Based Approximations of Preferences 289

Table 3. Allais.

1 2–10 11–100

f 100 100 100

g 0 500 100

f ′ 100 100 0

g′ 0 500 0

Allais deems the strict preferences f � g and g′ � f ′ plausible, although they
conflict with the sure-thing principle. Indeed, the pairs of acts f and g, and f ′

and g′ have the same outcome, in case balls 11-100 are extracted, namely 100
for the first pair, and 0, for the second. By the sure-thing principle, since the
acts f and f ′, and g and g′ have the same outcomes for each extracted ball, f
can be preferred to g, if and only f ′ is preferred to g′.

We formalize this scenario in our setting, building a DBF and an
APS. It suffices to consider a finite language over three variables, namely
{p1, p2−10, p11−100}, standing for the numbers on the extracted ball. We let
Supp = {γ} where γ encodes the fact that p1, p2−10, p11−100 are mutually
exclusive and jointly exhaustive. We further let A = {f, g, f ′, g′}, where the
acts are defined as in Table 3. At depth 0, we may only compare fγ , gγ , g′

γ , f ′
γ ,

since Supp = {c}. Hence, we may have f 0 g and g′ 0 f ′, since no appli-
cation of A2 can be performed. At depth 1, we replace Supp with Supp1 =
{γ ∧ ¬p11−100, γ ∧ p11−100}. We omit γ in the following for simplicity. We
have f¬p11−100 ≈1 f ′

¬p11−100
, g{¬p11−100} ≈1 g′

{¬p11−100}, and on the other hand
fp11−100 ≈1 gp11−100 and f ′

p11−100
≈1 g′

p11−100
. By A2 we immediately get that

fSupp1
1 gSupp1

iff f ′
Supp1

1 g′
Supp1

, contrary to the Allais’ preferences.

Finally, we address Example 1 in our formal setting.

Example 1 (continued). We denote:3 by pin the assertion “xi = n′′; by qij , the
assertion “xi = xj + 1′′ and finally by ri the assertion “the ith extracted ball is
red”. The initial information provided to the agent is Supp = {γ}, where by γ we
denote the formula r1 ∧ ¬r3 ∧ q12 ∧ q23 ∧ ∨100

k=1 p1k. The formula δ in Example 1
is encoded instead as: ∨

i,j∈{1,2,3}
i�=j

ri ∧ ¬rj ∧ qij .

We take A = {h, h′}, where h, h′ are defined as in Example 1, with h(γ) = {100}
and h(¬γ) = {0}, and h′(δ) = {110}, h′(¬δ) = {0}. Now, in A0 we may compare
h0 and h′0, which both have Supp = {γ} as their domain. We have then h0(γ) =
{100} and h′0(γ) = h′({δ,¬δ}) = {110, 0} since γ ��0 δ. Hence we may still allow

3 We use a propositional language, to fit the simple general framework put forward in
this work, although we might have a more compact representation in a first-order
language.

290 P. Baldi

h �0 h′. On the other hand, if we consider the 1-depth forest (actually, tree)
expanding Supp = {γ} as follows:

γ

γ ∧ r2 γ ∧ ¬r2

we now have that both h′1(γ ∧ r2) = {110} and h′1(γ ∧ ¬r2) = {110}, since
γ ∧ r2 �0 δ and γ ∧ ¬r2 �0 δ. Hence h′1 is constantly equal to 110. On the other
hand h1 is still constantly equal to 100, and assuming that 110 is preferred to
100, we may only have h′ 1 h, by state independence.

4 Qualitative Probability and Representation

So far, we have build up the general framework and illustrated how it takes into
account various alleged counterexamples, and criticisms of Savage’s approach.
In particular, our setting shows that a form of idealization is at play in Savage’s
setting, in essentially disregarding the cost of reasoning by case.

This does not preclude to obtain as a limit, idealized case, Savage’s elegant
mathematical result, in our framework. Let us recall that one of the main advan-
tages of Savage’s framework is its representation theorem for expected utility,
which is obtained on the basis of his axioms on preferences among acts. While we
are still not able to recover the full representation of expected utility in the limit,
in our setting, we will focus here on an important intermediate step towards this
result, which has an independent foundational interest.

Let us recall that, on the way to his representation theorem, Savage first
manages to obtain a measure of probability, only on the basis of preferences
among acts. This is done in two steps: first he derives, from the preference of an
agent, an ordering reflecting how likely the agent finds the events of interest, i.e.
a qualitative probability. Subsequently, he extracts from this relational structure
a unique numerical probability representing it.

Let us now recall the notion of qualitative probability over arbitrary boolean
algebras, and that of representability, and adapt them to our setting.

Definition 7 (Qualitative probability). Let B = (B,�,∧,∨,¬,⊥,�) be a
boolean algebra. (B,�) is a qualitative probability if

1. � is a total preorder over B;
2. � � ⊥;
3. if α � β then α � β and
4. if α ∧ γ = ⊥ and β ∧ γ = ⊥, then α � β if and only if α ∨ γ � β ∨ γ.

Since our sequences are built syntactically, we will use here a different, syn-
tactic definition of qualitative probability.

Logic-Based Approximations of Preferences 291

Definition 8 (synctactic qualitative probability). Let Fm be the set of
formulas over the language L. (Fm,�) is a (syntactic) qualitative probability if

1. � is a total preorder over Fm;
2. � � ⊥;
3. if β � α then α � β and
4. if α ∧ γ � ⊥ and β ∧ γ � ⊥ then

α � β if and only if α ∨ γ � β ∨ γ.

The two notions are essentially equivalent. Indeed, if we are given a (syn-
tactic) qualitative probability (Fm,�), we may just define a qualitative prob-
ability by quotienting over the logically equivalent formulas, i.e. building the
Lindenbaum-Tarski algebra and suitably adapting the � relation to the equiva-
lence classes. Let us now recall the following, see e.g. [15].

Definition 9 ((Almost) Representability). A qualitative probability (B,�)
is said to be

– representable if there exists a unique4 finitely additive probability P such that
α � β iff P (α) ≥ P (β)

– almost representable, if there exists a unique finitely additive probability P
such that α � β implies P (α) ≥ P (β).

Savage considers in his system a specific axiom P4 for the purpose of extract-
ing a qualitative probability from preference, and a further axiom P6 for the
purpose of representability. In our framework, we obtain qualitative probabilities
and representability via a slightly different route, inspired by the reformulation
of P4 in [6].

First, we will define a sequence of comparative beliefs, determined by an APS.

Definition 10. Let F = (Fk)k∈N be a DBF and (Ak,k)k∈N be an APS. We
call comparative plausibility �k determined by k, the relation �k defined, for
any ϕ,ψ ∈ Fm by:

– ϕ �k ψ if fk
ϕ k gk

ψ, for each fk, gk ∈ Suppk such that fk(ϕ) = gk(ψ) = {x}
for some x ∈ O.

– ϕ �k ψ if plk(ϕ) ⊇ plk(ψ).
– � �k ⊥
The idea is that, when we consider acts that have the same outcome, over dif-
ferent pieces of information, the preferences of an agent for one act over the
other, only reflects how likely she finds the piece of information to occur. More
concretely, if an agent prefers a bet giving her 5 euros if tomorrow it rains, to a
bet giving her 5 euros if tomorrow it will be sunny, this can only mean (if she is
rational) that she finds rainy weather more likely than sunny weather.

4 Uniqueness is typically nor requested in the definition of representability and almost
representability in the literature.

292 P. Baldi

Note that the definition ensures that �k is not empty, hence in particular it
encodes Savage’s axiom (P5).

We now give conditions on an APS, to obtain from the sequences of �k,
a qualitative probability in the limit. Before that, we recall, adapting from [4]
what we mean by limit.

Definition 11 (Limit structures). Take a DBF and let F = (Suppk,�k)k∈N

be a sequence of relational structures, where each �k is a binary relation over
Fm. We say that the structure (Fm,�) is the limit of F , where

ϕ � ψ iff there is a k such that ϕ �n ψ, for every n ≥ k.

Definition 12. We say that an APS P = (Ak,k)k∈N over a DBF F =
{Fk}k∈N is:

– Belief-determining iff:
• For any ϕ,ψ ∈ Fm there exists a k ∈ N such that either ϕ �k ψ or

ψ �k ϕ.
– Refinable if whenever α �k β for some α, β ∈ Suppk and k ∈ N, there is a

k′ ≥ k such that

β �k′ γ for every γ ∈ Suppk′ that is a descendent of α.

– Coverable if whenever α �k β for some α, β ∈ Suppk and k ∈ N, there is a
k′ ≥ k and γ ∈ Suppk′ such that γ ∧ α � ⊥ and

α ∨ γ ��k′β

The condition of being belief-determining is our reformulation of axiom P4 in
Savage, which is here considered as an axiom of a whole APS, rather than of
each Consistent k-Preference Structure, as we did instead for A1–A3. By this
condition, indeed, �k determines a total order in the limit.

We are now ready to provide our main result.

Theorem 1. Let P be an APS over a DBF F with Supp = {∗}. If P is belief-
determining, then the limit (Fm,�) of (Fk,�k)k∈N is a qualitative probability.

Proof. Let us start by showing that, if ψ � ϕ, then ϕ � ψ. From ψ � ϕ, we get
¬ϕ � ¬ψ. We thus have a derivation of ¬ψ from ¬ϕ, by using the rules of �0 and
applications of PB. Let k ∈ N be such that for any n ≥ k, the set Suppn collects
all the premises of the applications of PB in the proof of ¬ψ from ¬ϕ. Hence,
for each α ∈ Suppn, if α �0 ¬ϕ, then α �0 ¬ψ, that is, if α ��0 ¬ψ, then α ��0 ¬ϕ.
Hence pln(ϕ) ⊇n pln(ψ), for n ≥ k. This entails, by Definition 10, ϕ �n ψ, for
each n ≥ k, hence ϕ � ψ.

We now show that the relation is total. Take ϕ,ψ ∈ Fm. Now, since P is
belief determining, there is a k such that ϕ �k ψ or ψ �k ϕ. Assume the first
is the case. Since P is an APS, we will also have that, for any n ≥ k, ϕ �n ψ,
hence in particular ϕ � ψ.

Logic-Based Approximations of Preferences 293

Transitivity and reflexivity are immediate, since they follow by A1 for k,
and the fact that P is an APS.

As for additivity, suppose that ϕ ∧ χ � ⊥ and ψ ∧ χ � ⊥. We will show that
ϕ � ψ iff ϕ ∨ γ � ψ ∨ γ. Let k be such that each α ∈ Suppk is closed. We have
that ϕ ∨ χ �k ψ ∨ χ iff ϕ �k ψ (adapting the proof of Lemma 11(5) in [4]).
By the definition of �k, this means that for each f, g such that fk(ϕ ∨ ξ) =
gk(ϕ ∨ ψ) = {x} we have fϕ∨ξ k gψ∨ξ. On the other hand, by the reflexivity
of k (A1), we have fξ k fξ and gξ k gξ. Hence, by A2 f{ϕ}∪{ξ} k f{ψ}∪{ξ}
iff fϕ k gψ. But the latter amounts at saying that ϕ �k ψ, and the same will
hold for any n ≥ k. Hence we have finally obtained ϕ � ψ iff ϕ ∨ ξ � ψ ∨ ξ.

Finally, adapting from [4], we have that, under the refinability and coverability
conditions described above, an APS determines a (almost) representable quali-
tative probability.

Corollary 1. Let P be a belief-determining APS.

– If P is refinable, then its limit is almost representable, in the case AL is
infinite.

– If P is coverable then its limit is representable, in the case AL is finite.

Proof. Follows from Theorem 1, and Theorem 20 and 22 in [4].

5 Conclusion

We have introduced a logic-based framework for preference, which approximates
Savage’s framework, on the basis of the bounded use of hypothetical information.
Our approach accommodates in a unified way various traditional challenges to
Savage, in particular concerning the Sure-thing principle. Despite their differ-
ences, in all the examples considered, we have found indeed a similar pattern:
some preferences may be accepted at the bottom level of our sequence, i.e. 0,
but they turn out to be inconsistent with Savage-style axioms, when consid-
ering k for k > 0, i.e. when suitable hypothetical information is taken into
account. Since DBBLs are computationally tractable, a further natural direction
of research for our work is in the computational complexity issues related with
the reasoning with the resulting measures of comparative probability. In partic-
ular, we aim to compare our setting with other approaches to decision theory,
which are logically (in particular, syntactically) and computationally inspired,
such as that pursued in [5].

Future work will provide suitable representation theorems for preferences in
our framework, in terms of generalized expected utility, both at each level of
the approximating sequence, and in the limit. This will be compared with the
literature on decision-making under uncertainty, based on weakenings of axioms
in the Anscombe-Aumann framework [11]. We further plan to consider logical
systems where the preference relation k is taken to be part of the language,
and investigate their properties, with the aim of obtaining tractable logics of
preference.

294 P. Baldi

References

1. Allais, M.: Le comportemement de l’homme rationnel devant le risque: critique des
postulats et axiomes de l’ecole americaine. Econometrica 21(4), 503–546 (1953)

2. Aumann, R.J., Hart, S., Perry, M.: Conditioning and the sure-thing principle, pp.
1–10 (2005)

3. Baldi, P., Hosni, H.: Tractable approximations of probability. J. Logic Comput.
33, 599–622 (2022)

4. Baldi, P., Hosni, H.: Logical approximations of qualitative probability. In: ISIPTA.
Proceedings of Machine Learning Research, vol. 147, pp. 12–21. PMLR (2021)

5. Bjorndahl, A., Halpern, J.Y.: Language-based decisions. Electron. Proc. Theor.
Comput. Sci. 335, 55–67 (2021)

6. Bradley, R.: Decision Theory with a Human Face. Cambridge University Press,
Cambridge (2017)

7. D’Agostino, M.: An informational view of classical logic. Theor. Comput. Sci. 606,
79–97 (2015)

8. D’Agostino, M., Finger, M., Gabbay, D.: Semantics and proof-theory of depth
bounded Boolean logics. Theor. Comput. Sci. 480, 43–68 (2013)

9. D’Agostino, M., Floridi, L.: The enduring scandal of deduction: is propositional
logic really uninformative? Synthese 167, 271–315 (2009)

10. Ellsberg, D.: Risk, ambiguity, and the savage axioms. Quart. J. Econ. 75(4), 643–
669 (1961)

11. Gilboa, I.: Theory of Decision Under Uncertainty. Cambridge University Press,
Cambridge (2009)

12. Gilboa, I., Marinacci, M.: Ambiguity and the Bayesian paradigm. In: Arló-Costa,
H., Hendricks, V.F., van Benthem, J. (eds.) Readings in Formal Epistemology.
SGTP, vol. 1, pp. 385–439. Springer, Cham (2016). https://doi.org/10.1007/978-
3-319-20451-2 21

13. Kranz, D., Luce, R.D., Suppes, P., Tversky, A.: Foundations of Measurement, vol.
1. Academic Press, New York (1971)

14. Pearl, J.: The sure-thing principle. J. Causal Inference 4(1), 81–86 (2016)
15. Savage, L.J.: The Foundations of Statistics, 2nd edn. Dover (1972)
16. Shafer, G.: A Mathematical Theory of Evidence. Princeton University Press,

Princeton (1976)
17. Sipser, M.: Introduction to the Theory of Computation. PWS Publishing Company

(1997)
18. Stanovich, K.: What Intelligence Tests Miss: The Psychology of Rational Thought.

Yale University Press (2009)

https://doi.org/10.1007/978-3-319-20451-2_21
https://doi.org/10.1007/978-3-319-20451-2_21

A Comparative Analysis of Multi-agent
Simulation Platforms for Energy

and Mobility Management

Aliyu Tanko Ali1(B) , Martin Leucker1 , Andreas Schuldei1 ,
Leonard Stellbrink2 , and Martin Sachenbacher1

1 Institute for Software Engineering and Programming Languages,
University of Lübeck, Ratzeburger Allee 160, Lübeck, Germany

{aliyu.ali,leucker,andreas.schuldei,sachenbacher}@isp.uni-luebeck.de
2 Institute for Multimedia and Interactive Systems, University of Lübeck,

Ratzeburger Allee 160, Lübeck, Germany
leonard.stellbrink@uni-luebeck.de

Abstract. Effective energy and mobility management benefits from
multi-agent simulations (MAS) to model complex interactions among
various agent types. Selecting the optimal MAS platform to implement
and simulate these interactions is vital for achieving accurate results,
scalability to realistic problem sizes, and efficient computational per-
formance. This paper investigates the energy and mobility domain and
identifies key parameters such as the number and complexity of agents,
parallel computing power, CPU requirements etc., for developing MAS in
the context of this domain. It then presents a comprehensive evaluation
of various MAS development platforms. Using a multi-level selection and
elimination approach, we narrowed down our evaluation to two final can-
didates. We then implemented key aspects of our model in both platforms
to compare them in terms of practical relevance. Our findings reveal that
the Agents.jl platform outperforms the Mesa platform in terms of run-
time performance, has a smaller memory footprint for large numbers
of agents, and offers scalability, making it the most suitable choice for
developing MAS for integrated energy and mobility models.

Keywords: Multi-agent simulation · Agent-based models · Mobility
transition · Car-sharing

1 Introduction

The shift from internal combustion engine vehicles to battery-powered electric
vehicles (EVs) is driving a mobility transition aimed at promoting public trans-
port, car-sharing, and sustainability [13,14]. Car-sharing users play a crucial role
in this transition, as they need to adapt their behavior to new circumstances like

This project was funded by the state of Schleswig-Holstein, Germany.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
V. Malvone and A. Murano (Eds.): EUMAS 2023, LNAI 14282, pp. 295–311, 2023.
https://doi.org/10.1007/978-3-031-43264-4_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-43264-4_19&domain=pdf
http://orcid.org/0000-0003-3841-2054
http://orcid.org/0000-0002-3696-9222
http://orcid.org/0000-0001-5416-1676
http://orcid.org/0000-0003-2188-1743
http://orcid.org/0000-0002-5418-1885
https://doi.org/10.1007/978-3-031-43264-4_19

296 A. T. Ali et al.

limited range and necessary charging stops, while also the limitations of the elec-
tric power grid must be considered. Electric car-sharing providers should learn
when to charge cars to maximize renewable energy use and ensure car’s avail-
ability. This situation creates a need for AI-supported forecasting, peak shaving,
and recommendation to dynamically adapt car-sharing behavior [27].

Our ongoing project, “Multi-Agent Simulation of Intelligent Resource Regula-
tion in Integrated Energy and Mobility” (MASIRI)1, aims to create a multi-agent
simulation using intelligent agent modeling based on the psychological behavior
of electric car-sharing users. Particularly, we investigate the influence of human
experience and behavior on mobility and energy use in vehicle-to-grid (V2G)
systems, and how this knowledge can optimize system design.

Multi-agent simulation is a computational technique that simulates the
behavior and interactions of multiple agents within an ecosystem [4]. These sim-
ulations are built on the principles of agent-based models (ABM) [6], which
focuses on representing individual agents and their behaviors to study the emer-
gent properties of a system. The simulation environment provides a platform for
agents to interact, communicate, and potentially collaborate or compete with
each other. Agents can exchange information, share resources, coordinate their
actions, and influence the behavior of other agents.

Various platforms have emerged that aid in the development of MAS in
research and industrial contexts [23,25]. However, selecting a MAS develop-
ment platform suitable for a given scenario is a difficult task, as there is no
universally agreed-upon set of criteria for ranking and evaluating these plat-
forms. Researchers rely on using semi-structured techniques, including ques-
tionnaires, to compare platforms [3,9,29]. Some studies compare different plat-
forms [10,18,22] and evaluate specific requirements like strengths, performance,
and code complexity [7,25]. However, many of these studies are outdated, some
platforms are not maintained, and they do not cover our use case area. Several
works in the literature, including [8,11,21,31], and [24], have employed agent-
based models to explore different scenarios within the realm of electromobility.
However, the majority of these studies primarily focus on analyzing EV users
and their charging behavior, as well as the role of EVs as a new form of urban
mobility. The development of a comprehensive MAS of electromobility in the
context of car-sharing and V2G has received comparatively less attention. In
this study, we carefully curated a collection of platforms from multiple sources,
including diverse projects, comparative studies, and online searches. The pri-
mary objective of this extensive curation process was to identify the platform
that best aligns with the specific requirements of our project.

The contributions of this paper are as follows: First, it delineates the require-
ments of MAS for the energy and mobility domain, with a specific focus on a par-
ticular use case. Next, it then presents an updated and comprehensive overview
of various MAS platforms. Employing a multi-level selection and elimination
approach, we narrow down the options from multiple platforms to two final can-
didates. Subsequently, we implement key aspects of our model in both platforms

1 https://www.imis.uni-luebeck.de/en/forschung/projekte/masiri.

https://www.imis.uni-luebeck.de/en/forschung/projekte/masiri

Comparison of MAS Platforms 297

to enable a practical and relevant comparison. Based on the evaluation and com-
parison, we identify and select the most suitable MAS platform for our specific
research purposes.

The remainder of the paper is organized as follows: Sect. 2 introduces MAS
for integrated energy and mobility and identifies the resulting requirements for
MAS development. Section 3 studies various MAS development platforms, Sect. 4
explains the results from implementing our use case scenario and their evaluation,
and finally, Sect. 5 presents the conclusion.

2 MAS for Integrated Energy and Mobility

In our project MASIRI, the model aims to simulate the current and future
energy usage and the mobility behavior of the inhabitants of Lübeck, a city in
the state of Schleswig-Holstein, Germany, with a population of approximately
220,000 and a car ownership rate of 464 per 1,000 inhabitants. We take into
account the growing popularity of private and electric car-sharing, as well as the
mobility needs of the residents within their living spaces [12].

Developing MAS in this domain requires various agent types and groups to
reflect the different actors involved, including electric cars, their users, and a
micro-grid energy system. In our setting, we consider electric cars and charging
stations with bi-directional capabilities, meaning that the cars, when not driving,
can also serve as energy buffers and feed back energy into the grid (V2G). The
car users encompass individuals from diverse age groups, with a variety of car
models and sizes to cater to their needs. The micro-grid energy system harnesses
renewable energy from different sources, such as wind and solar power, with the
latter generated by photovoltaic (PV) panels installed on residential rooftops.

Our model and simulation will be developed by domain experts rather than
versatile programmers. As a result, we seek to find a MAS development platform
that provides a modeling language based on or similar to popular programming
languages like Python or Java. Additionally, we will incorporate historical records
of the grid, weather conditions, and car-sharing bookings into the model. This
means that the platform should also support the import of data from exter-
nal sources, such as CSV files. Other requirements regarding MAS development
platforms will be identified in Sect. 3.

2.1 Model Description

To scale our model, we utilized the latest available data from the city’s statistics
department [12]. Based on this data, we identified a total of 150,000 car users,
all of whom we assumed to be car-sharing users. In addition, we considered the
number of cars in the city, which was recorded as 103,000. For the purpose of our
simulation, we assumed that all of these cars were electric, used for car-sharing.
Furthermore, we took into account the 50,000 residential buildings in Lübeck
and assumed that they are either partially or fully equipped with PV panels,
heating systems, and air conditioning units. These buildings, along with the

298 A. T. Ali et al.

cars and their users, will collectively represent the agents in our simulation. To
capture the dynamics and patterns over time, we will simulate a complete year
of data records. By incorporating these real-world numbers and characteristics,
our simulation aims to accurately represent the scale and size of the agents and
their interactions within the modeled system.

Dynamical generation and optimization are necessary for several components
of the agents’ modules. These include a booking reservation logic (booking algo-
rithm) for users to reserve cars and bi-directional charging of electric car batter-
ies. Optimizing the booking algorithm is crucial to avoid high car unavailability
to satisfy users’ needs or to serve as an energy buffer. We have already developed
a booking reservation algorithm using the Python programming language, and
by leveraging linear programming techniques [30], we have successfully optimized
both the booking algorithm and the bi-directional charging system. In addition
to this, we also plan to use reinforcement learning to train agents on adaptive
booking strategies without harming the energy grid.

2.2 Platform Evaluation Scenario

In order to assess the MAS development platforms, we develop a minimum viable
product (MVP) that simulates a use case closely resembling our intended final
product. For this purpose, we establish the following requirement in the use case:

1. Users: Agents who book electric cars for random short-distance trips, fol-
lowing a normal distribution throughout the day.

2. Cars: These are electric cars utilized for a car-sharing service, which have a
certain driving range depending on their state of charge (SoC). They recharge
upon return from a trip and are capable of buffering excess energy when
connected to the grid.

3. Houses: Residential units with optional features like solar power roofs, heat
pumps, air conditioning systems. Private cars contribute to the energy con-
sumption of the houses when they are being recharged.

4. Random Weather: The use case involves random sunshine and tempera-
ture data at a 5-min resolution, incorporating yearly and daily cycles, sea-
sonal variations, and daytime fluctuations. These patterns include noise to
capture realistic yearly and daily variations. By incorporating this data, we
have abstracted the energy model (micro-grid) aspect that will be included
in the final product. However, it is important to note that in our final prod-
uct, we intend to conduct a comprehensive study of a micro-grid connection
within the given settings.

Figure 1 provides an overview of the simulation use case. The simulation does not
consider the positions of houses and users, types of cars, users’ age groups, and
other details that will be included in our final model. We also do not consider
modeling charging stations as we would have in the final model.

Use Case Agent Actions and Interactions: User agents book cars at random
times, with more daytime activity and a normal distribution peaking at 14:00

Comparison of MAS Platforms 299

Fig. 1. Use case overview. Arrows indicate temporary or permanent connectivity or
availability.

and a 3-h standard deviation. The cars are recharged after each trip, with trip
duration determining the required charging. Power consumption and generation
data are collected in 5-min intervals, using realistic charging times and battery
sizes. Charging times contribute to overall power consumption data.

The house agents generate and consume electricity based on generated
weather data. House agents have randomized features, such as air condition-
ing, solar power, and heat pumps with varying capacities. Larger houses have
greater solar power capacity. Power consumption and generation data are col-
lected for each 5-min slot, with car charging times included in the overall data.
Electric car batteries buffer excess solar energy, feeding it back to the house
when needed, if the car is idle.

In this paper, our primary objective is to evaluate different platforms and
identify the most suitable one for our project. Consequently, the simulation use
case described herein only considers certain details (of the intended final product)
to assess the platforms.

2.3 Expected Features from MAS Platform

As our project is expected to span over multiple years, it is essential for us to
have an active and well-maintained platform that can effectively support our
evolving needs. The complexity of the project will undoubtedly grow over time,
requiring a simulation platform that can keep up with these changes. In this
paper and the MASIRI project at large, we identify some general as well as
domain-specific features that are crucial. The general features include:

G1 Language familiarity: This is important because of the expertise of the
developers. The platform must be one that does not require much time to
learn its syntax and ABM implementation.

G2 Scalability: Currently, our plan is to simulate the inhabitants of Lübeck.
However, it is possible that the population size may change, leading to
a larger population, or that the model might be adapted or modified to
analyze another city. Therefore, it is crucial to have a platform that can
accommodate scalability when necessary.

300 A. T. Ali et al.

G3 Parallelism & distributed computing: Based on our preliminary inves-
tigation, we have found that most platforms offer some level of parallel
computing features. However, it is important to note that the emphasis
on ease of use rather than performance is evident in some platforms [28].
Given that our model comprises various types of agents and is of large size,
efficient simulation running time becomes a crucial factor, and therefore,
performance is a significant consideration.

G4 Community support: A platform with an active and strong community
fosters knowledge sharing and facilitates the exchange of experiences. This
community support will be invaluable during the development phase, par-
ticularly when it comes to debugging and troubleshooting. The collective
expertise and insights of community members can provide valuable guidance
and solutions, enabling us to address challenges more efficiently.

G5 Interoperability: The platform should facilitates interface with exter-
nal libraries, tools, and data sources for domain-specific functionality and
streamlined data processing. This feature will enable us to incorporate our
already developed booking algorithm, optimization tools, and the historical
record.

G6 Visualization & analysis tools: The inclusion of built-in tools dedicated
to visualizing and analyzing simulation outputs plays a crucial role in facil-
itating a deeper understanding of the simulation results and enabling com-
prehensive performance evaluation. These integrated tools will provide us
with intuitive and interactive interfaces to explore, interpret, and visualize
complex simulation data in a meaningful way.

G7 Documentation: A wealth of comprehensive resources, including plat-
form documentation, YouTube videos, tutorials, and working examples, will
greatly assist us in gaining a thorough understanding of how to effectively
utilize the platform. These resources will serve as invaluable tools during the
initial stages, providing step-by-step guidance, practical demonstrations,
and real-world examples that will aid in our learning process and enable us
to make the most of the platform’s capabilities.

For our agent-based learning, mobility, and energy use case, the following
additional features are crucial:

D1 Learning capabilities: For an ideal platform, it is imperative to encom-
pass support for a diverse range of learning algorithms that enable the
training of agents to adapt strategies and optimize energy usage.

D2 OpenStreetMap space: The ability to incorporate geo-spatial data,
including the positions of users and cars in relation to each other, house
locations, road networks, points of interest, and more, is crucial for accu-
rately simulating real-world mobility and energy systems. It should provide
a rich and detailed spatial dataset that enhances the realism and accuracy
of our model.

D3 Data integration: The integration of external data plays a pivotal role
in the effectiveness and significance of an ABM platform. By seamlessly
incorporating real-time or historical data sources, the platform becomes

Comparison of MAS Platforms 301

capable of facilitating realistic and dynamic simulations that closely mirror
the complexities of real-world situations.

3 Multi-level Selection

To compile a comprehensive list of platforms, we conducted thorough searches
across multiple sources, including diverse projects, comparative studies, and
online resources. In particular, notable survey articles such as [15] and review
articles like [16,23,26], and [1] provided valuable insights and compilations of
platforms in the field. Leveraging these sources, we identified platforms based
on their specific areas of application, existing projects utilizing the platforms,
and studies that conducted comparisons among different platforms. Given the
diverse modeling approaches offered by these platforms, we categorized them
into the following groups:

– Language or Environment for MAS (LEM): Refers to programming
languages, frameworks, and software environments that are used to create,
simulate, and deploy ABMs.

– Support Software (SS): Refers to a software tool, package, or platform that
provides specific functionalities and capabilities to facilitate the development,
deployment, and management of ABMs.

– MAS-based Modeling Platform (MMP): Refers to a software applica-
tion or platform that specifically focuses on modeling and simulating ABMs.
These platforms provide an environment where developers can design and
simulate agents, their behaviors, interactions, and the dynamic environment
in which they operate.

We then gathered information (summarized in Table 1) on each platform’s
modeling language, licence, and activity status2. The latter was checked through
various means, including visiting the platform’s website (in search of recent
updates, news, and announcements), engaging with the community (such as
discussion groups), and examining the GitHub or source code repository.

3.1 First Round of Selection

After careful evaluation, we eliminated platforms for which we could not find
essential information, such as licensing details or recent activities. Some plat-
forms, including FAME, SWARM, JACK, Junus, GOAL, Cougaar, and StarLogo
(TNG and Nova versions), have not been regularly updated or maintained. This
lack of maintenance raises concerns about their reliability, potential bugs, and
compatibility with modern operating systems. To mitigate the risk of selecting
an inactive platform (or platform that might become inactive) for our project,
we decided to also exclude platforms with no activity for more than 2 years.
Consequently, FLAME, 2APL, ZEUS, and ActressMAS were also removed from
consideration.
2 This information was checked on May 25th, 2023.

302 A. T. Ali et al.

Table 1. A table showing different MAS development platforms. The platforms are
listed in alphabetical order and not ranked. GPL stands for General Public Licence,
AFL for Academic Free License, EPL for Eclipse Public License, and COSL for Cougaar
Open Source License.

Name Modeling language Licence Category Last activity

ActressMAS C# Open source LEM 2021.06.15
Agents.jl Julia MIT MMP 2023.05.19
AgentScript JavaScript Various LEM 2023.01.23
Cougaar Java COSL LEM 2013.10.22
FAME Jave Apache v2.0 SS 2021.01.20
FLAME C/C++ Open source LEM 2017.05.30
GAMA GAML GNU GPL v3 LEM 2021.10.15
GOAL GOAL unknown LEM 2021.11.08
JACK Java Commercial license LEM 2015.07.01
JADE Java Open source (Java) LEM 2022.12.19
Jadex Java GNU GPL v2.0 LEM 2022.10.08
Janus SARL Apache v2.0 LEM unknown
Jason AgentSpeak GNU GPL v3 LEM 2023.04.02
Mason Java AFL LEM 2022.09.07
MATSim XML GNU GPL MMP 2023.04.01
Mesa Python 3+ Apache v2.0 MMP 2023.03.08
NetLogo NetLogo GNU GPL v2.0 MMP 2023.05.11
Repast4Py Python Various MMP 2023.03.02
SPADE Python Open source SS 2023.12.13
SpaDES R GNU GPL v3 SS 2022.02.16
SUMO Python, Java, C++ EPL v2.0 SS 2023.06.29
StarLogo Objective C Various LEM 2018.11.24
SWARM Java C GNU GPL LEM 2013.08.01
ZEUS Java Unknown LEM 2021.06.20
2APL 2APL GNU GPL v3.0 LEM 2021.12.01

Platforms such as AgentScript, SPADE, Jason, Jadex, and JADE are actively
maintained and continue to receive updates. Unfortunately, we were unable to
find information regarding the compatibility of these platforms with the general
requirements G4 and G7. SpaDES is based on the R language, while Jason is
based on AgentSpeak. Moreover, we found limited documentation and commu-
nity support forums for these platforms. Consequently, their capacity to fulfill
requirements G1, G4, and G7 is further hindered.

We examined different implementations of Repast, specifically focusing on
Repast Simphony, a Java-based modeling toolkit, and Repast4Py, a Python-
based distributed agent-based modeling toolkit. Since our booking algorithm

Comparison of MAS Platforms 303

was already developed in Python, we found the Repast4Py version more appeal-
ing. We further evaluated it alongside another Python-based platform, Mesa.
Through our analysis, we discovered that Repast offers certain advantages over
Mesa in terms of documentation and flexibility in programming languages [5].
However, Mesa provides advantages in terms of simplicity, user-friendliness, and
seamless integration with Python libraries and frameworks [20]. The simulation
software SUMO [17] was also evaluated as part of our study. It offers a user-
friendly graphical user interface (GUI) called “sumo-gui,” which simplifies the
process of adding road layouts, intersections, vehicles, and users through drag
and drop functionality. Additionally, SUMO provides an interface Python library
called “TraCI,” allowing users to develop Python scripts that can connect to a
running SUMO simulation, retrieve information, and control various aspects of
the simulation. We encountered challenges when attempting to incorporate the
energy model component of our model in a seamless and straightforward manner.

Although some of the remaining platforms are not based on Java or Python,
they have extensive documentation and a wealth of working examples available,
making them popular within the ABM modeling community. Moving forward,
we will provide a brief overview of these platforms.

Mason [19] is a fast, discrete-event, multi-agent simulation library core in
Java. It serves as a robust foundation for developing large-scale, custom-purpose
simulations in Java, while also catering to the requirements of lightweight sim-
ulation applications. It has a comprehensive model library accompanied by an
optional suite of visualization tools, catering to both 2D and 3D simulations.

Mesa [20] is a versatile and open-source Python library specifically designed
for agent-based modeling (ABM). It offers users a streamlined approach to devel-
oping agent-based models by providing built-in core components like spatial
grids and agent schedulers. Additionally, Mesa allows for flexible customization
through the implementation of personalized components.

NetLogo [28] is an integrated development environment and programming
language designed for modeling and simulating complex systems. It features a
custom scripting language, NetLogo, and built-in visualization tools. Users can
export data to external visualization tools for advanced analysis.

GAMA [2] is an open-source simulation platform and modeling language
offering various features for agent creation, communication, and decision-making.
GAMA provides visualization and analysis tools and a custom language, GAML,
for composing complex models with spatial dimensions. The platform supports
running simulations on multiple machines for increased performance.

MATSim [32] is an open-source framework for simulating large-scale trans-
portation systems, modeling individual travelers and vehicles within a network.
It is Java-based and features tools for different transport modes, routing algo-
rithms, and activity-based travel demand modeling. MATSim also offers visu-
alization and analysis tools for exploring simulation dynamics and is ideal for
predicting policy impacts on transportation systems.

304 A. T. Ali et al.

Agents.jl [7] is a Julia library for agent-based modeling within the Juli-
aDynamics ecosystem. Julia is a high-performance language suitable for com-
putational and numerical science applications. Agents.jl manages and creates
spaces, simplifies data collection, and offers visualization options, including
OpenStreetMaps and 3D visualizations, through related JuliaDynamics libraries.
Julia also enables developers to call methods, functions, or scripts from other
languages such as Python or R.

A summary of the pros and cons of the platforms following the initial round
of selection is presented in Table 2. This summary highlights the notable advan-
tages and drawbacks of each platform, providing valuable insights to inform the
subsequent stages of the selection process.

3.2 Second Round of Selection

In order to evaluate the remaining platforms based on the specified requirements
outlined in Subsect. 2.3, and taking into account the pros and cons summarized
in Table 2, we employ a rating scale. This rating scale assigns values of high = 3,
medium = 2, and low = 1 to each platform, indicating the level of satisfaction
for each requirement.

For each platform, we assess its performance against each requirement and
assign a corresponding rating. A rating of “high” is assigned when a platform fully
satisfies a requirement, “medium” when it partially satisfies the requirement, and
“ low ” when it does not meet the requirement. By applying this rating scale, we
calculate a score for each platform, considering the cumulative ratings for all the
evaluated requirements as follows:

score = 3× (highs) + 2× (mediums) + 1× (lows). (1)

The platform with the highest cumulative score signifies that it fulfills the
majority of the requirements. The scores for each platform are calculated based
on the assigned ratings, and Table 5 showcases the platforms alongside their
corresponding scores.

In the end, we observed that Mason (scored 18) and GAMA (scored 18),
have relatively smaller user communities compared to other platforms, resulting
in limited availability of tutorials and documentation. We encountered challenges
in finding comprehensive resources such as kickstart examples, troubleshooting
guides, and interactive forums for engaging with developers and users of these
platforms. MATSim (scored 19) and NetLogo (scored 18), although they have
larger user communities and tutorials, lack community support at a similar level
as Mason and GAMA. Additionally, we found limited examples or resources
showcasing the implementation of non-transport simulations using MATSim.
NetLogo, being a Logo-based language, requires developers to familiarize them-
selves with its specific syntax. Furthermore, information on integrating external
modules or expanding the platform’s functionality was scarce during our evalu-
ation process.

Comparison of MAS Platforms 305

Table 2. Pros and Cons.

Platform Pros Cons

Mason Highly customizable and flexible for
creating multi-agent simulations.
Supports both discrete and continuous
modeling

Steep learning curve. Lacks a
user-friendly interface. Limited
visualization options

Mesa Easy to use and well-documented.
Supports both discrete and continuous
modeling. Has a built-in visualization
tool

Limited support for advanced features
like parallel computing and large-scale
simulations

NetLogo User-friendly and intuitive interface.
Supports both discrete and continuous
modeling. Has a large library of
pre-built models. Good visualization
options

Limited support for large-scale
simulations. Limited customization
options

GAMA Highly customizable and flexible.
Supports both discrete and continuous
modeling. Good visualization options

Steep learning curve. Limited
community support

MATSim Strong support for agent-based
transportation modeling. Supports
large-scale simulations. Good
visualization options

Limited support for other types of
multi-agent simulations. Steep
learning curve

Agents.jl Highly customizable and flexible.
Supports both discrete and continuous
modeling. Good support for scientific
computing

Recurring issue of packages being
redefined constantly. Steep learning
curve. Various visualization options

Mesa (scored 23), benefiting from Python’s intuitiveness, community sup-
port, and familiarity, was more appealing, especially since we already have a
module (booking algorithm) that was developed in Python. In addition to this,
we found it to be more easy to learn compared to RepastPy. Similarly, Agents.jl
(scored 26) is based on Julia, a language that has some similarities in syntax
with Python, and the ability to call Python’s methods and scripts through pack-
ages such as PyCall.jl. Agents.jl is appealing as well due to multiple reasons.
Among these reasons is the fact that it benefits from Julia’s active user base
and the availability of Julia-specific libraries and resources that are interopera-
ble with Python, agents’ learning capabilities, speed, scalability [7] etc. Agents.jl
and Mesa have the highest and second highest score. As such, we pre-selected
Agents.jl and Mesa as the final two platforms for further evaluation.

4 Mesa vs. Agents.jl

We created a minimum viable product (MVP) reflecting our final product to
compare the performance and ease of use of Mesa and Agents.jl. This MVP is
based on the scenario in Subsect. 2.2. The code is publicly available3. During
3 https://github.com/stockh0lm/masiri_mas_framework_benchmark.

https://github.com/stockh0lm/masiri_mas_framework_benchmark

306 A. T. Ali et al.

development, we sought help from Python and Julia communities for technical
details and bug hunting, using chat platforms and web forums. While we found no
dedicated Mesa community, there was an Agents.jl discussion channel in the Julia
Slack server4. Both communities were approachable, helpful, and competent,
with fast response times. Although the Julia community was smaller, it did not
negatively impact the support received.

It is worth noting that Mesa is single-threaded; therefore, there is no direct
way to utilize multi-threaded runs. The only option for achieving concurrent or
parallel computing in Mesa is to run multiple computations in parallel and use
the intermediate results. This implies that the implementation discussed in this
paper utilizes a single thread for Mesa.

4.1 Implementation - Model Speed and Scalability Evaluation

We implemented identical simulations in Mesa and Agents.jl. Mesa, by default,
operates in a single-threaded manner. However, in order to enhance its perfor-
mance and enable parallel agent processing, we incorporated multi-threading
functionality in Julia, utilizing varying numbers of concurrent threads. Antici-
pating more complex final agents, we added a recursive Fibonacci computation
for both frameworks to increase computational load. We ran both simulations
with agent numbers as powers of two (1, 2, 4, . . . , 2048), at which point the
Mesa runs took several days, and clear trends were established. We examined
Agents.jl’s vertical scalability using 1, 2, 4, and 8 threads for different agent
numbers. We did not attempt using the Distributed.jl library for Julia, as it
would have exceeded our time scope and been challenging to test at the time.
The results of this implementation is shown in Tables 3 and 4.

In order to evaluate the RAM consumption and runtime performance (exclud-
ing the compile-time of Agents.jl), we incorporated code to measure these metrics
and enabled dynamic configuration of the number of agents. The benchmarks
were conducted on a Debian GNU-Linux Server with specifications including 12
cores, 32GB RAM, Julia 1.8.5, Agents.jl 5.12, Python 3.11.1, and Mesa 1.2.1.
To minimize system-related variability, we recorded the median runtime of four
simulation runs, ensuring that the agent numbers varied identically for each run.

Table 3. Comparison of RAM usage in the benchmark for Mesa and Agents.jl. The
runs for 106 and 107 agents were never completed and only started to measure the
trend in memory usage.

Mesa Agents.jl

1 agent 155.84 MB 555.39 MB
1000000 agents 0.7 GB 0.7 GB
10000000 agents 5.3 GB 3.3 GB

4 https://julialang.slack.com/archives/CBLNLEU74.

https://julialang.slack.com/archives/CBLNLEU74

Comparison of MAS Platforms 307

Table 4. Single threaded speed comparison of Mesa and Agents.jl.

Mesa Agents.jl

1 agent 91 s 0,5 s
32 agents 48 min 2,5 s
2048 agents 52 h 155 s

4.2 Benchmark Results

Mesa required about 160 MB for agent counts up to 2048, while Agents.jl used
between 524 MB and 608 MB in this range, see Fig. 2. Mesa’s RAM footprint was
about four times smaller and more consistent than Agents.jl’s. In both cases, the
majority of the memory footprint appeared to be caused more by binaries and
libraries than the model and agent data. This manifested only at higher agent
counts of one million, as seen in Table 3. Run time for the models increased with
the number of agents: Mesa ran between 50 s (1 agent) and 52 h (2048 agents).
In Agents.jl the same computations took between 0.2 s and 5min, as displayed
in Table 4. Mesa is about a thousand times slower than Agents.jl when running
the simulations.

The multi-threading results (also depicted in Fig. 3) showed that run-time
decreased as thread count increased, particularly for higher agent numbers,
where eight threads were roughly twice as fast as one thread. However, the
scalability was not consistently linear, indicating factors such as resource con-
tention, parallelization overhead, or implementation limitations. For low agent
numbers, higher thread counts led to increased run-time, suggesting that the
optimal thread count is dependent on the simulation’s complexity and agent
count. Overall, Agents.jl demonstrates promising vertical scalability, but further
optimization is necessary for efficient resource utilization. Based on our evalu-
ation and experience during the simulation of our use case, we have concluded
that Agents.jl is the most suitable platform for implementing our model. One

Fig. 2. Used RAM Comparison. Fig. 3. Median Run Time Comparison.

308 A. T. Ali et al.

T
ab

le
5.

Sc
or

in
g

M
A

S
de

ve
lo

pm
en

t
pl

at
fo

rm
s.

T
o
ol
s

L
an

gu
ag

e
F
am

il
ia
ri
ty

S
ca

la
b
il
it
y

P
ar

al
le
li
sm

& d
is
tr
ib

u
te

d
co

m
p
u
ti
n
g

C
om

m
u
n
it
y

su
p
p
or

t
In

te
ro

p
er

ab
il
it
y

V
is
u
al
iz
at

io
n

&
an

al
y
si
s

to
ol
s

D
o
cu

m
en

ta
ti
on

L
ea

rn
in

g
ca

p
ab

il
it
ie
s

O
p
en

S
tr
ee

t–
M

ap
sp

ac
e

D
at

a
in
te

gr
at

io
n

S
c
o
r
e

M
es

a
h
ig
h

m
ed

iu
m

lo
w

m
ed

iu
m

h
ig
h

h
ig
h

h
ig
h

m
ed

iu
m

lo
w

h
ig
h

23

A
ge

n
ts
.j
l

lo
w

H
ig
h

H
ig
h

H
ig
h

H
ig
h

H
ig
h

H
ig
h

m
ed

iu
m

h
ig
h

m
ed

iu
m

26

M
as

on
h
ig
h

h
ig
h

m
ed

iu
m

lo
w

m
ed

iu
m

m
ed

iu
m

lo
w

lo
w

lo
w

m
ed

iu
m

18

M
A
T
S
im

h
ig
h

h
ig
h

m
ed

iu
m

lo
w

m
ed

iu
m

m
ed

iu
m

m
ed

iu
m

lo
w

lo
w

m
ed

iu
m

19

N
et

L
og

o
lo
w

m
ed

iu
m

m
ed

iu
m

m
ed

iu
m

m
ed

iu
m

h
ig
h

m
ed

iu
m

m
ed

iu
m

lo
w

lo
w

18

G
A
M

A
lo
w

h
ig
h

m
ed

iu
m

lo
w

m
ed

iu
m

m
ed

iu
m

lo
w

m
ed

iu
m

lo
w

h
ig
h

18

Comparison of MAS Platforms 309

of the key factors that led us to this conclusion is the impressive runtime speed
we observed while using Agents.jl. It has demonstrated superior performance in
handling the computational demands of our simulation, making it the preferred
choice among the evaluated platforms.

5 Conclusion

In this paper, we conducted a study on various MAS development platforms
with the aim of selecting the most suitable candidate for modeling a Multi-
Agent Simulation of Intelligent Resource Regulation in the context of Integrated
Energy and Mobility. We considered both general (G1-G7) and domain-specific
(D1-D3) features during our evaluation process. Through this study, we identified
two final candidates, namely Mesa in Python and Agents.jl in Julia. To assess
their suitability for our project, we developed a MVP in these two platforms
and evaluated their performance, speed, scalability, and memory footprint. Our
evaluation criteria also encompassed determining whether the platforms fulfill
our requirements for both general and domain-specific features.

While Mesa had a smaller memory footprint and a larger community,
Agents.jl offered significantly better runtime performance, which was nearly a
thousand times faster in some cases. Considering these factors, we concluded that
Agents.jl in Julia was the most suitable framework for our project. Its superior
performance, ability to scale with larger models, and integration with Python
code make it a solid choice for implementing our intelligent resource regulation
model.

References

1. Abar, S., Theodoropoulos, G.K., Lemarinier, P., O’Hare, G.M.: Agent based mod-
elling and simulation tools: a review of the state-of-art software. Comput. Sci. Rev.
24, 13–33 (2017)

2. Amouroux, E., Chu, T.-Q., Boucher, A., Drogoul, A.: GAMA: an environment for
implementing and running spatially explicit multi-agent simulations. In: Ghose, A.,
Governatori, G., Sadananda, R. (eds.) PRIMA 2007. LNCS (LNAI), vol. 5044, pp.
359–371. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-01639-
4_32

3. Bitting, E., Carter, J., Ghorbani, A.A.: Multiagent systems development kits: an
evaluation. In: Proceedings of the 1st Annual Conference on Communication Net-
works & Services Research. Moncton, Canada, pp. 80–92. Citeseer (2003)

4. Bousquet, F., Le Page, C.: Multi-agent simulations and ecosystem management: a
review. Ecol. Model. 176(3–4), 313–332 (2004)

5. Collier, N.T., Ozik, J., Tatara, E.R.: Experiences in developing a distributed
agent-based modeling toolkit with Python. In: 2020 IEEE/ACM 9th Workshop
on Python for High-Performance and Scientific Computing (PyHPC), pp. 1–12.
IEEE (2020)

6. Crooks, A.T., Heppenstall, A.J.: Introduction to agent-based modelling. In: Hep-
penstall, A., Crooks, A., See, L., Batty, M. (eds.) Agent-Based Models of Geograph-
ical Systems, pp. 85–105. Springer, Dordrecht (2012). https://doi.org/10.1007/978-
90-481-8927-4_5

https://doi.org/10.1007/978-3-642-01639-4_32
https://doi.org/10.1007/978-3-642-01639-4_32
https://doi.org/10.1007/978-90-481-8927-4_5
https://doi.org/10.1007/978-90-481-8927-4_5

310 A. T. Ali et al.

7. Datseris, G., Vahdati, A.R., DuBois, T.C.: Agents.jl: a performant and feature-
full agent-based modeling software of minimal code complexity. Simulation, p.
00375497211068820 (2022)

8. ElBanhawy, E.Y., Dalton, R., Thompson, E.M., Kottor, R.: Real-time electric
mobility simulation in metropolitan areas. A case study: Newcastle-Gateshead,
in 1, 533–546 (2012)

9. Garcia, E., Giret, A., Botti, V.: On the evaluation of MAS development tools.
In: Bramer, M. (ed.) IFIP AI 2008. ITIFIP, vol. 276, pp. 35–44. Springer, Boston
(2008). https://doi.org/10.1007/978-0-387-09695-7_4

10. Garcia, E., Giret, A., Botti, V.: Analysis, comparison and selection of mas software
engineering processes and tools. In: Yang, J.-J., Yokoo, M., Ito, T., Jin, Z., Scerri,
P. (eds.) PRIMA 2009. LNCS (LNAI), vol. 5925, pp. 361–375. Springer, Heidelberg
(2009). https://doi.org/10.1007/978-3-642-11161-7_25

11. Grignard, A., et al.: The impact of new mobility modes on a city: a generic approach
using ABM. In: Morales, A.J., Gershenson, C., Braha, D., Minai, A.A., Bar-Yam,
Y. (eds.) ICCS 2018. SPC, pp. 272–280. Springer, Cham (2018). https://doi.org/
10.1007/978-3-319-96661-8_29

12. Lübeck, H., Bürgermeister, D., et al.: Statistisches Jahrbuch 2019–2022: Lübeck
in Zahlen 2019–2022. Hansestadt Lübeck, Fackenburger Allee 29, 23539 Lübeck
(2022). https://bekanntmachungen.luebeck.de/dokumente/d/1720/inline

13. Hertzke, P., Müller, N., Schenk, S., Wu, T.: The global electric-vehicle market is
amped up and on the rise. McKinsey Center for Future Mobility, pp. 1–8 (2018)

14. Jittrapirom, P., Caiati, V., Feneri, A.M., Ebrahimigharehbaghi, S., Alonso
González, M.J., Narayan, J.: Mobility as a service: a critical review of definitions,
assessments of schemes, and key challenges (2017)

15. Kravari, K., Bassiliades, N.: A survey of agent platforms. J. Artif. Soc. Soc. Simul.
18(1), 11 (2015)

16. Leon, F., Paprzycki, M., Ganzha, M.: A review of agent platforms. Multi-Paradigm
Modelling for Cyber-Physical Systems (MPM4CPS), ICT COST Action IC1404,
pp. 1–15 (2015)

17. Lopez, P.A., et al.: Microscopic traffic simulation using sumo. In: 2018 21st Inter-
national Conference on Intelligent Transportation Systems (ITSC), pp. 2575–2582.
IEEE (2018)

18. López, T.S., Brintrup, A., McFarlane, D., Dwyer, D.: Selecting a multi-agent sys-
tem development tool for industrial applications: a case study of self-serving air-
craft assets. In: 4th IEEE International Conference on Digital Ecosystems and
Technologies, pp. 400–405. IEEE (2010)

19. Luke, S.: Multiagent simulation and the mason library. George Mason University
1 (2011)

20. Masad, D., Kazil, J.: MESA: an agent-based modeling framework. In: 14th
PYTHON in Science Conference, vol. 2015, pp. 53–60. Citeseer (2015)

21. Nijenhuis, B., Doumen, S.C., Hönen, J., Hoogsteen, G.: Using mobility data and
agent-based models to generate future e-mobility charging demand patterns (2022)

22. Owen, C., Love, D., Albores, P.: Selection of simulation tools for improving sup-
ply chain performance. In: Proceedings of 2008 OR Society Simulation Workshop
(2008)

23. Pal, C.V., Leon, F., Paprzycki, M., Ganzha, M.: A review of platforms for the
development of agent systems. arXiv preprint arXiv:2007.08961 (2020)

24. Querini, F., Benetto, E.: Agent-based modelling for assessing hybrid and electric
cars deployment policies in Luxembourg and Lorraine. Transp. Res. Part A: Policy
Pract. 70, 149–161 (2014)

https://doi.org/10.1007/978-0-387-09695-7_4
https://doi.org/10.1007/978-3-642-11161-7_25
https://doi.org/10.1007/978-3-319-96661-8_29
https://doi.org/10.1007/978-3-319-96661-8_29
https://bekanntmachungen.luebeck.de/dokumente/d/1720/inline
http://arxiv.org/abs/2007.08961

Comparison of MAS Platforms 311

25. Railsback, S.F., Lytinen, S.L., Jackson, S.K.: Agent-based simulation platforms:
review and development recommendations. Simulation 82(9), 609–623 (2006)

26. Rendón Sallard, T., Sànchez-Marrè, M.: A review on multi-agent platforms and
environmental decision support systems simulation tools (2006)

27. Thoma, D., Sachenbacher, M., Leucker, M., Ali, A.T.: A digital twin for coupling
mobility and energy optimization: the ReNuBiL living lab. In: FM2023 Workshop
on Applications of Formal Methods and Digital Twins (2023, to appear)

28. Tisue, S., Wilensky, U.: NetLogo: a simple environment for modeling complexity.
In: International Conference on Complex Systems, vol. 21, pp. 16–21. Citeseer
(2004)

29. Tran, Q.-N.N., Low, G., Williams, M.-A.: A feature analysis framework for eval-
uating multi-agent system development methodologies. In: Zhong, N., Raś, Z.W.,
Tsumoto, S., Suzuki, E. (eds.) ISMIS 2003. LNCS (LNAI), vol. 2871, pp. 613–617.
Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-39592-8_87

30. Vanderbei, R.J., et al.: Linear Programming. Springer, Cham (2020)
31. Vuthi, P., Peters, I., Sudeikat, J.: Agent-based modeling (ABM) for urban neigh-

borhood energy systems: literature review and proposal for an all integrative ABM
approach. Energy Inform. 5(4), 1–23 (2022)

32. Axhausen, K.W., Horni, A., Nagel, K.: The Multi-agent Transport Simulation
MATSim. Ubiquity Press (2016)

https://doi.org/10.1007/978-3-540-39592-8_87

Observational Preorders for Alternating
Transition Systems

Romain Demangeon1, Catalin Dima2(B), and Daniele Varacca2

1 LIP6, Sorbonne University Paris, Paris, France
romain.demangeon@sorbonne-universite.fr

2 LACL, Université Paris-Est Créteil, Créteil, France
{dima,daniele.varacca}@u-pec.fr

Abstract. We define two notions of observational preorders on Alter-
nating transition systems. The first is based on the notion of being able to
enforce a property. The second is based on the idea of viewing strategies
as a generalised notion of context. We show that alternating simulation
as defined by Alur et al. [3] is a sound proof technique for the enforcing
preorder and a complete proof technique for the “contextual” preorder.
We conclude by comparing alternating simulation with the classic notion
of simulation on labelled transition systems.

1 Introduction

Several process calculi have been defined to model concurrent systems, such as
the Calculus of Communicating Systems (CCS) [10], or the π-calculus [11]. In
these syntactic frameworks, there is a canonical way to define a preorder between
terms. It consists in giving an unlabelled “reduction” semantics of the terms,
some notions of basic observation, and then define the preorders contextually :
one term P is less than a term Q if for every context C, if C[P] produces some
basic observation, so does C[Q]. This definition is often easy to give, and it’s
also rather convincing. The usual narrative then says that proving that two
terms are in the relation is hard, due to the quantification over all contexts.
Labelled semantics comes to the rescue by means of theorems that say that
labelled similarity is included in (or coincide with) contextual preorder. This is
the case for CCS and the π-calculus for instance.

In this paper we address the following question:

Can we generalise a notion of contextual preorder
to a setting where there is no syntax around?

In particular, how can we generalise the notion of context?
We will consider the model of Alternating Transition Systems (ATS) pro-

posed by Alur, Henzinger and Kupferman [2]. In this setting, states can be
described by boolean properties and a notion of alternation between an Agent
and an Opponent is present. ATSs come with a notion of strategy. The Agent
and the Opponent follow strategies according to some rules, and the interaction
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
V. Malvone and A. Murano (Eds.): EUMAS 2023, LNAI 14282, pp. 312–327, 2023.
https://doi.org/10.1007/978-3-031-43264-4_20

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-43264-4_20&domain=pdf
https://doi.org/10.1007/978-3-031-43264-4_20

Observational Preorders for Alternating Transition Systems 313

between the strategies produces a run of the system. We then can make several
observations on the run, we can for instance observe the sequence of boolean
properties encountered during this run.

The first preorder we define is based on the notion of enforcing a specifica-
tion (which slightly generalizes [13,14]). The Agent can enforce a specification
if it has a winning strategy for it, that is a strategy such that, whatever the
Opponent does, the resulting execution satisfies the specification. After formal-
ising a suitable general notion of specification, we propose to define a preorder
as follows: an ATS P is less than an ATS Q if for every specification ϕ, if Agent
can enforce ϕ on P then she can enforce it on Q.

To define a second preorder, we generalise the definition of contextual pre-
order to ATS using the intuition that strategies generalise the notion of context.
With this intuition in mind, we say that an ATS P is less than an ATS Q if for
every pair of strategies σA, σO (of Agent and Opponent), if the run produced
by these strategies on P exhibits some properties, so does the run produced by
the same strategies on Q. One problem with this intuition is that the notion
of strategy, as defined by Alur et al., is very much bound to the system. We
cannot directly apply a strategy for P to a different system Q. We overcome this
difficulty by defining a way of “transfering” a strategy from a system to another.

ATS come also equipped with a notion of alternating simulation [3], which
is used to define another preorder, called Alternating Similarity. The natural
question to ask is: what is the relation between these preorders? We show that
alternating similarity and the generalised contextual preorders coincide, and they
are both stronger than the enforcing preorder.

In order to carry out our proofs, we propose a simplified presentation of
ATS, using a formalism close to labelled transition systems. In the syntactic
models, labels are useful when the system interacts with a context, but they are
not necessary to the more powerful notion of strategy. We still like to rephrase
the notion of ATS in a labelled setting. In this way we are able to stress the
connections between the notion of alternating simulation, and Milner and Park’s
notion of simulation on LTS. We also argue that the labelled presentation may
play some role in future extensions of our work.

Plan. The main contributions of our work are:

1. the introduction of the enforcing preorder on ATS;
2. the introduction of a contextual preorder which compares ATS by matching

their strategies; using a choice correspondence operation;
3. the translation of the alternating simulation preorder to our labelled presen-

tation of ATS;
4. the proof that two preorders coincide and they are stronger than the third.

Section 2 presents our new definition for Alternating Transition Systems, con-
sidering them as agent/opponent games on LTS, and defines the enforcing pre-
order. Section 3 introduces our version of alternating simulation(AS) as a way
to compare ATS taking into account just how labels group together outcoming
transitions. Section 4 defines a pre-order relation on ATS which compares how

314 R. Demangeon et al.

strategies for the two ATS can interact. A pair of mapping on states and labels,
called choice correspondence, allows one to compare two systems using actions
with different labels. We call this the Morris preorder. Section 5 shows that the
largest alternating simulation and the Morris preorder coincide. We also show
that they are both stronger (we conjecture strictly) than the enforcing preorder.
We conclude by discussing the symmetric versions of our relations. We also define
a name-aware version of the alternating simulation and compare it with Park
and Milner’s simulation.

2 An Alternating View of Transition Systems

Alternating Transition Systems (ATS) were introduced by Alur, Henzinger and
Kupferman [2] to model open systems. In this model, the execution of a system
is produced by the action of different agents. They are a very useful model, that
has been used extensively in research related with synthesis and verification
[1,4,8,15] (to cite only a few). However it lacks the simplicity of the notion of
Labelled Transition Systems (LTS) [12] that is at the basis of the semantics of
process algebras. In this section we propose to see traditional LTS as a simplified
version of ATS.

2.1 Definition

Alur, Henzinger and Kupferman define ATS by having several players that can
form coalitions. In this paper, to make things simple, we will only consider two
players: the Agent and the Opponent. As in the definition by Alur, Henzinger
and Kupferman, these players make choices that produce an eventual execution
of the system. However the choices are made on a standard LTS. The intuition
is that at each state of the system, the Agent chooses a label l (among all the
labels that are allowed in that state), while the Opponent chooses one of the
transitions that are labelled by l. A Labelled Transition System (LTS) is a tuple
L = (S, s0, L, T , P,≤, O) where

1. S is the set of states and L a the set of labels, with s0 ∈ S the initial state.
2. T ⊆ S × L × S is the transition relation.
3. P is the set of atomic observations and (P,≤) forms a discrete partial order.
4. O : S → P is the observation function.

We write s
l−→ if there exists s′ such that s

l−→ s′.
In Fig. 1, transitions with the same labels are grouped in bunch of transitions,

making explicit how the game proceed. From state s0, Agent chooses one bunch
of transitions labelled by either l or k; then Opponent chooses a state reachable
by a transition taken from the chosen bunch. For instance, if Agent chooses l,
Opponent can choose s2 but not s4.

A finite or infinite run of an LTS is an alternating sequence of states and
labels, starting in the inital state, respecting the transition relation. The set of
finite runs of an LTS L is denoted by runs(L). The set of infinite runs of an LTS

Observational Preorders for Alternating Transition Systems 315

Fig. 1. Bunches of transitions in ATS.

L is denoted by runs∞(L), the set of finite runs ending with a state runs•(L)
and the set of finite runs ending with a label runs→(L). The length of a run ρ
is denoted �(ρ) (and equals ∞ for infinite runs). Furthermore, for any k ≤ �(ρ),
the (k + 1)-th item (state or action) in the run ρ is denoted ρ[k], with the first
item being denoted ρ[0], while the prefix of length k + 1 is denoted ρ[≤ k].

The observation function can be extended homomorphycally to a map O :
runs∞(L) → Pω which we call the infinite observation of the run. Given two
infinite observations Q1 = (p0 . . . pn . . .), Q2 = (r0 . . . rn . . .) where for each i ≥ 0
we have pi, ri ∈ P , we say that Q1 ≤ Q2 if for each i ≥ 0, pi ≤ ri. If (s, l, s′) ∈ T
we will write s

l−→ s′.
As we discuss in details later, the identity of labels is not important. In

the presence of the syntax of a process algebras, the identity of a label allows
synchronisations of different subsystems. But in the framework we discuss here,
labels are just a means of grouping together different transitions. We will allow
relabelling as long as they produce the same groups (or bunches) of transitions.

As the intuition suggests, the successive moves of the Agent and the Oppo-
nent produce an infinite execution of the system, as we formalise now.

2.2 Strategies and Observations

Given an LTS L = (S, s0, L, T , P,≤, O), a strategy for the Agent is a function
σA : runs•(L) → L such that if σA(s0l0 . . . sn) = ln then sn

ln−→. A strategy for
the Opponent is a function σO : runs→(L) → S such that if σO(s0l0 . . . snln) = s′

then sn
ln−→ s′. For simplicity, we can suppose that each state of an LTS has at

least one outgoing transition (towards a sink state if necessary). This allows us
to define strategies as total functions.

The combination of two strategies produces an infinite run. Given an LTS
L = (S, s0, L, T), a strategy for the Agent σA, a strategy for the Opponent σO,
we define an infinite run r = s0l0 . . . snln . . . ∈ runs∞(L), denoted ρ[L, σA, σO],
as follows:

– l0 = σA(s0); ln = σA(s0 . . . sn);
– sn+1 = σO(s0 . . . snln);

316 R. Demangeon et al.

For the purpose of this paper we will define a specification to be an upward
closed set of infinite observations, so that if an infinite observation satisfies a
given specification ϕ, a larger observation satisfies ϕ also.

Definition 1. We say that a run r satisfies the specification ϕ (denoted r � ϕ)
if O(r) ∈ ϕ.

2.3 Enforcing Preorder

We want to define a preorder between systems based on the above notion of
observation. Given two LTS L,L′, when can we say that L′ is “better” than L?
We propose the following intuition: if Agent can enforce some specification on
L, then she must be able to enforce it on L′.

Definition 2. We say that Agent can enforce a specification ϕ on L if

∃σA∀σOρ[L, σA, σO] � ϕ.

We can now formalise the notion of enforcing preorder:

Definition 3. Let L = (S, s0, L, T , P,≤, O) and L′ = (S′, s′
0, L

′, T ′, P,≤, O′) be
two LTSs sharing the same observation order (P,≤). We say that L ≤ L′ if for
any specification ϕ, if Agent can enforce ϕ on L then Agent can enforce ϕ on L′.

3 Alternating Simulations

Alur et al. [3] introduce a notion of bisimulation for ATS, called alternating
bisimulation. This notion has some resemblance to the notion introduced by
Park and Milner [10] for LTS, but there are also major differences, not least
because the model they apply to are different.

In this section we propose to define a notion of Alternating (bi)simulation
for LTS that follows the intuition explained in the previous section. At first, we
will only study the notion of simulation - we will discuss the symmetric relations
at the end of the paper.

The notion of simulation by Park and Milner takes the identity of labels very
seriously. There are two main reasons for this. First, we argue that this is due
to the fact that LTS usually model syntactic process algebras where labels are
important for synchronisation. In our setting, however, labels are only needed
to group transitions together. Secondly, in the world of process algebras, labels
also play the role of observations. In this paper, we use a more general notion of
observation.

Therefore our definition of simulation will allow “relabelling”. This brings us
to the following definition.

Definition 4. Let L = (S, s0, L, T , P,≤, O) and L′ = (S′, s′
0, L

′, T ′, P,≤, O′) be
two LTSs sharing the same observation order (P,≤). An Alternating simulation
(AS) between them is, is a binary relation R ⊆ S×S′ such that whenever s R s′,
then O(s) ≤ O(s′) and:

Observational Preorders for Alternating Transition Systems 317

for all labels l s.t. s
l−→, there exists h s.t. s′ h−→ and for all t′ s.t. s′ h−→ t′,

there exists t s.t. s
l−→ t and t R t′.

The largest AS, ⊂AS, is called alternating similarity. If there is a AS R s.t.
s0 R s′

0, we say L ⊂AS L′.

Remark 1. Note that, contrary to the notion in [3], we do not require O(s) =
O(s′) in the first item above. The reason will come up later, when defining the
“Morris preorder” in Definition 6.

Example 1. s1
l

���
��

��
��

�
l

����
��
��
��

s2

h

��

s3

s4

t1

k

��
t2

j

��
t3

Consider the two LTL depicted above, where all the states have the same
observation. (We could also imagine that states with no outgoing transitions
have one transition towards a sink state with a special observation). In this
case the relation {(s1, t1), (s2, t2), (s4, t3)} is an AS. However, there is no AS
containing (t1, s1). Indeed the only choice to match t1

k−→ is s1
l−→. But if now we

choose s1
l−→ s3, we need to have (t2, s3), in which case there is no transition in

the first system to match the action of the second system.

As one of the main results of this paper, we will show that, alternating
simulation is a sound proof technique for the enforcing preorder.

Theorem 1. Let L = (S, s0, L, T , P,≤, O) and L′ = (S′, s′
0, L

′, T ′, P,≤, O′) be
two LTSs sharing the same observation order. If L ⊂AS L′ then L ≤ L′.

This theorem implies Lemma 1 of [3]. Its proof is based on the simulation
game, briefly suggested [3], that we formalize here for our variant of the alter-
nating simulation.

3.1 The Simulation Game

In this section we adapt the classical two-player simulation game between Spoiler
and Duplicator to the case of the alternating simulation. We then show that any
memoryless winning strategy for Duplicator in this game defines an AS, and
vice-versa, any AS gives a memoryless winning strategy for Duplicator.

The simulation game is built from any two LTS L = (S, s0, L, T , P,≤, O) and
L′ = (S′, s′

0, L
′, T ′, P,≤, O′). Intuitively, from game positions labelled with pairs

of states (s, s′) ∈ S × S′, Spoiler chooses a label l ∈ L and the game advances
to a position labelled (s, s′, l) which belongs to Duplicator. Here, Duplicator
must reply with a label l′ ∈ L′ and then the game proceeds to a position labeled

318 R. Demangeon et al.

(s, s′, l, l′) belonging again to Spoiler. In this new position, Spoiler chooses t′ ∈ S′

such that (s′, l′, t′) ∈ T ′, the game advancing further to a position (s, s′, l, l′, t′)
belonging to Duplicator. Finally, Duplicator must reply in this position with a
state t ∈ S such that (s, l, t) ∈ T , after which the game advances to position
(t, t′), and the above sequence of moves can be played again. All positions (s, s′)
with O(s) �≤ O(s′) are winning for Spoiler, hence Duplicator’s objective is to
avoid these positions – that is, a safety objective.

Formally, the two-player turn-based simulation game is built as follows: G =
(QD,QS , q0, δ) where QD = S × S′ × L ∪ S × S′ × L × L′ × S′, QS = S × S′ ∪
S × S′ × L × L′, q0 = (s0, s′

0) ∈ QS ActD = L′ ∪ S, ActS = L ∪ S′, and the
transition function is:

δ =
{
(s, s′) l−→ (s, s′, l) | s ∈ S, s′ ∈ S′, l ∈ L, s

l−→
}

∪
{
(s, s′, l) l′−→ (s, s′, l, l′) | s ∈ S, s′ ∈ S′, l ∈ L, l′ ∈ L′}

∪
{
(s, s′, l, l′) t′

−→ (s, s′, l, l′, t′) | s ∈ S, s′ ∈ S′, l ∈ L, l′ ∈ L′, t′ ∈ S′

with (s′, l′, t′) ∈ T ′}

∪
{
(s, s′, l, l′, t′) t−→ (t, t′) | s ∈ S, s′ ∈ S′, l ∈ L, l′ ∈ L′, t ∈ S, t′ ∈ S′

with (s, l, t) ∈ T and (s′, l′, t′) ∈ T ′}

Finally, Duplicator’s objective is defined by the set of states Obj = {(s, s′, α) ∈
QD ∪ QS | O(s) ≤ O(s′)} ⊆ Q.

A strategy for Duplicator is a mapping σD : (QS · QD)∗ −→ ActD and a
strategy for Spoiler is a mapping σS : (QS · QD)∗ × QS −→ ActS . Furthermore,
a memoryless strategy for Duplicator is a mapping σ : QD −→ ActD. Due to
the particular way in which the states, actions and transitions are constructed,
we will identify a memoryless strategy with a pair (σL′ , σS) with σL′ : S × S′ ×
L −→ L′ and σS : S × S′ × L × L′ × S′ −→ S. A run ρ is compatible with a

strategy for Duplicator σ if, whenever ρ[i] ∈ QD, then ρ[i]
σ(ρ[≤i+1])−−−−−−−→ ρ[i + 2].

Note that the AS game G is a safety game, defined by the set of runs
RunsObj =

{
ρ ∈ runs(G) | ∀i ∈ N.ρ[i] ∈ Obj

}
.

Theorem 2. L ⊂AS L′ if and only if Duplicator has a memoryless winning
strategy in the simulation game.

Proof. The proof proceeds by showing that any memoryless winning strategy for
Duplicator gives rise to an alternating simulation, and vice-versa. Technically,
this requires restating the notion of AS by skolemizing the existential quan-
tifiers in Definition 4. The skolemized version of AS is given by the following
proposition:

Proposition 1. A relation R is an AS if and only if, for any sRs′, O(s) ≤
O(s′) and there exist partial functions η : S×S′×L −→ L′ and θ : S×S′×L×S′

(called an AS pair) such that whenever sRs′:

1. For each l ∈ L with s
l−→ we have that η(s, s′, l) is defined and s′ η(s,s′,l)−−−−−→.

Observational Preorders for Alternating Transition Systems 319

2. For each t′ ∈ S′ with s′ η(s,s′,l)−−−−−→ t′, we have that θ(s, s′, l, t′) is defined.
3. s

l−→ θ(s, s′, l, t′) ∈ T .
4. θ(s, s′, l, t′)Rt′.

With this preparation, given σ = (σL′ , σS) a memoryless winning strategy
for Duplicator, we build the following relation R ⊆ S × S′:

sRσs′ iff there exists a run ρ ∈ Runs(G) which is compatible with (σL′ , σS)
such that (s, s′) = ρ[i] for some i ∈ N.

We will show that Rσ is an AS between L and L′.
Note first that, if sRσs′ then O(s) ≤ O(s′) since any run ρ which is com-

patible with (σL′ , σS) must be winning for Duplicator and therefore visit only
positions (s, s′) ∈ Obj. We then build, using σ, an AS pair (ησ, θσ) as required
by Proposition 1, as follows: for each s ∈ S, s′, t′ ∈ S′, l ∈ L,

ησ(s, s′, l) = σL′(s, s′, l) and θσ(s, s′, l, t′) = σS(s, s′, l, σL′(s, s′, l), t′)

Then the pair (ησ, θσ) satisfies the hypotheses of Proposition 1 for Rσ:

1. For any (s, s′, l), ησ(s, s′, l) = σL′(s, s′, l) is defined and s′ σL′ (s,s′,l)−−−−−−→.
2. For any (s, s′, l, t′), θσ(s, s′, l, t′) = σS(s, s′, l, σL′(s, s′, l), t′) is defined.

3. (s, s′, l, σL′(s, s′, l), t′)
σS(s,s′,l,σ(s,s′,l),t′)−−−−−−−−−−−−−→ (σS(s, s′, l, σ(s, s′, l), t′), t′) ∈ δ,

which implies that s
l−→ σS(s, s′, l, σL′(s, s′, l), t′) ∈ T by definition of G.

4. Any run which reaches (s, s′) and is compatible with (σL′ , σS) can be
extended to a run which reaches σS(s, s′, l, σL′(s, s′, l), t′), t′), and therefore
σS(s, s′, l, σL′(s, s′, l), t′), t′)Rσt′.

For the other direction of Theorem 2, the skolemized version of AS will
be again of help, by providing us with the Duplicator choices in each state of
the simulation game. Namely, given AS R defined by the AS pair (η, θ) as in
Proposition 1, we show that any extension of (η, θ) to a pair of total functions
(σL′ , σS) represents a memoryless winning strategy for Duplicator in G. Or, in
other words, the tuples where η and θ are undefined cannot be reached by runs
which are compatible with these choices.

Formally, take any strategy for Duplicator (σL′ , σS) with σL′ : S×S′ ×L −→
L′ and σS : S × S′ × L × L′ × S′ −→ S which is defined as follows:

– For each s, s′, l, σL′(s, s′, l) = η(s, s′, l) if η(s, s′, l) is defined, and is arbitrary
otherwise.

– For each s, s′, l, l′, t′, σS(s, s′, l, σ(s, s′, l), t′) = θ(s, s′, l, t′) if η(s, s′, l) and
θ(s, s′, l, t′) are defined, and is arbitrary otherwise.

Then any finite run ρ which is compatible with (σL′ , σS) visits only states
(s, s′, α) with sRs′ – and, as a consequence, (s, s′, α) ∈ Obj. The proof goes
by induction on the length of the run.

The base case is trivial since s0Rs′
0 and the initial position in G is compatible

with any strategy. So assume ρ is a run of length ≥ 1. If the length of the run is

320 R. Demangeon et al.

4k + 1, then ρ = ρ′ · (s, s′, l) for some ρ′ with �(ρ′) = 4k and ρ′[4k] = (s, s′), and
therefore sRs′ by the induction hypothesis. Furthermore, for �(ρ) = 4k + 2
we must have ρ = ρ′ · (s, s′, l, l′) and, by the induction hypothesis, ρ′[4k +
1] = (s, s′, l) is such that sRs′. But then, by construction of σL′ , we must
have l′ = σL′(s, s′, l) = η(s, s′, l). Going one step further, for �(ρ) = 4k + 3 we
must have ρ = ρ′ · (s, s′, l, l′, t′) and again sRs′ by the induction hypothesis and
l′ = σL′(s, s′, l). Finally, for �(ρ) = 4k + 4 and ρ = ρ′ · (t, t′) compatible with
(σL′ , σS), we must have ρ[4k + 3] = (s, s′, l, l′, t′), sRs′, l′ = σL′(s, s′, l), and
t = σS(s, s′, l, l′, t′) = θ(s, s′, l, t′) and hence tRt′.

4 Strategies as Contexts

The previous section does not tell the whole story of alternating simulation, and
we explore here the connections with observational preorders from [7].

4.1 Observational Preorders

In a syntactic calculus, there is a standard way to define observational preorder
on syntactic terms, which we call here the Morris-style definition: t ≤ s if for
every context C, the observations that can be made on C[t] are (in some sense)
included in the observations that can be made on C[s] [7]. In the case of the
functional language PCF, for instance, the Morris preorder is defined taking
termination as the only observation.

While the relation is very easy to define, and very convincing, the quantifi-
cation over all possible contexts makes it hard to directly prove that two terms
are in the relation. Some other, easier to handle, notion is then introduced for
this purpose. For instance, in the ’70 people tried to capture the observation
pre-congruence for PCF using domains, and subsequently using game seman-
tics. The holy Grail of this line of research was “full abstraction”, a precise
characterisation of the Morris preorder.

In the study of CCS, (bi)-simulation and its large weaponry of up-to tech-
niques, was proven to precise characterise barbed pre-congruence, which can be
argued to be a generalisation of the Morris preorder to nondeterministic systems.

In the exemples mentioned above, contexts can be seen as way of testing a
term: you submit a term to different experiments, and observe the results. In
the setting studied here, there are no terms, only transition systems. The only
way to interact with a transition system is by playing on it. Therefore we argue
that the right transposition of contexts, here, are the strategies.

Let’s try to formulate the Morris-style preorder using this intuition. Given
two LTS L,L′ we say that L ≤ L′ if for any strategies σA, σO the observations
of ρ[L, σA, σO] are included in the observations of ρ[L′, σA, σO].

There is a problem with this naive formulation: the definition of strategy
does not allow the same strategies to interact with different transition systems.
We need to have a way to generalise the notion of “same” strategy. Strategies
make choices based on the previous history. We need to put in correspondence

Observational Preorders for Alternating Transition Systems 321

different choices, on different histories. We argue then that two strategies are
“the same” if they make corresponding choices.

4.2 Choice Correspondence and the Morris Preorder

We have therefore to propose a suitable definition of “choice correspondence”
for states and labels:

Definition 5. Let L = (S, s0, L, T , P,≤, O) and L′ = (S′, s′
0, L

′, T ′, P,≤, O′)
be two LTSs sharing the same observation order. A choice correspondence is
consituted by two mappings:{

f : runs•(L) × runs•(L′) → L → L′

g : runs→(L) × runs→(L′) → S′ → S
with the following properties:

– if hl ∈ runs→(L) and f(h, h′)(l) = l′ then h′l′ ∈ runs→(L′);
– if h′s′ ∈ runs•(L′) and g(h, h′)(s′) = s then hs ∈ runs•(L).

In one direction, the f component builds a correspondence between choices
of labels, while in the other direction, the g component builds a correspondence
between states. Both mappings take into account the history of the computation.

A choice correspondence allows us to build a run on two LTSs, with just one
pair of strategies. Since the corresponding functions act in different directions, we
will need one strategy to be defined on each LTS. Then the two other strategies
are induced by the correspondence.

Let L = (S, s0, L, T) and L′ = (S′, s′
0, L

′, T) be two LTSs. Consider (f, g)
be a choice correspondence, σA a strategy for agent in L and σ′

O a strategy for
opponent in L′.

We define the following:

– a map ξ′ : runs→(L) → runs→(L′),
– a strategy σO for opponent in L,
– a map ξ : runs•(L′) → runs•(L),
– and a strategy σ′

A for agent in L′.

We do that by induction on the length of the argument. For the base case
we put ξ(s′

0) = s0 and σ′
A(s′

0) = σA(s0).
For the induction step, let h′l′s′ ∈ runs•(L′), define h = ξ(h′), l = σA(h)

and s = g(hl, h′l′)(s′), then

ξ(h′l′s′) = hls and σ′
A(h′l′s′) = f(hls, h′l′s′)(σA(hls)).

The function ξ′ and the strategy σO are defined analogously.
Note that the definition of σ′

A does not depend on σ′
O and that the definition

σO does not depend on σA. When f, g is clear from the context, we will denote
σ′

A = ξ′(σA) and σO = ξ(σ′
O). We obtain thus two runs: ρ[L, σA, ξ(σ′

O)] and
ρ[L′, ξ′(σA), σ′

O].

322 R. Demangeon et al.

We can now say that σA and ξ′(σA) are “the same” strategy up to the choice
correspondence (f, g) (and similarly for ξ(σ′

O) and σ′
O).

The definitions proposed above allow us to give a generalised definition of
contextual preorder. Recall that in the in the original definition, S ≤ S′ if,
whatever observations we can make with C[S], it is possible with C[S′]. Here
we don’t really care for which term we choose the context as it must be the
same for both. The way we defined the choice correspondence forces us to define
the strategies on specific systems, and then “transfer it” to the other one. This
informal discussion leads us to this formal definition of Morris preorder up to
choice correspondence:

Definition 6. Let L = (S, s0, L, T) and L′ = (S′, s′
0, L

′, T) be two LTSs. Con-
sider a choice correspondence (f, g) for L and L′. We say that L ≤f,g L′ if for
all strategy σA for agent in L and all strategy σ′

O for opponent in L′ :

O(ρ[L, σA, ξ(σ′
O)]) ≤ O(ρ[L′, ξ′(σA), σ′

O]).

5 The Adequacy Theorems

We can now state the main theorem of the paper.

Theorem 3. . Let L = (S, s0, L, T) and L′ = (S′, s′
0, L

′, T) be two LTSs. The
following are equivalent:

1. L ⊂AS L′;
2. there exists a choice correspondence (f, g) such that L ≤f,g L′.

To prove this theorem we utilize the AS game defined in Subsect. 3.1.

Lemma 1. Duplicator has a winning strategy in G if and only if there is a choice
correspondence (f, g) for which L ≤f,g L′.

For the one direction, we build a choice correspondence (f, g) directly from
the definition of a strategy σD for Duplicator. We then show that if σD is winning,
L ≤f,g L′. For the other direction, from a choice correspondence (f, g) we build
a strategy σD for Duplicator, which is winning if L ≤f,g L′. See the appendix
for the details.

In general, the strategy we build for Duplicator is aware of all the history, but
Theorem 2 requires a memoryless strategy. Therefore, to conclude the Proof of
Theorem 3, we need to observe that, G being a safety game and hence a particular
type of parity game, it is memoryless determined [6,9], that is, if Duplicator has
a winning strategy, then she has a memoryless winning strategy.

We are finally able to prove Theorem 1. It is a corollary of the following
proposition and of Theorem 3.

Proposition 2. Let L = (S, s0, L, T) and L′ = (S′, s′
0, L

′, T). If there exists a
choice correspondence (f, g) for which L ≤f,g L′, then L ≤ L′.

Observational Preorders for Alternating Transition Systems 323

Proof. Consider a choice correspondence (f, g). Given two strategies σA for L
and σ′

O for L′, we are able to build two strategies σ′
A for L′ and σO for L. If

L ≤f,g L′ then
O(ρ[L, σA, σ′

O]) ≤ O(ρ[L′, σA, σ′
O]).

Summarizing, the following formula is true:

∀σA∀σ′
O∃σ′

A∃σO.O(ρ[L, σA, σO]) ≤ O(ρ[L′, σ′
A, σ′

O]).

Note, however, that the way we constructed σ′
A depends only on the choice

correspondence (f, g) and on the definition of σA. We can therefore swap the
quantifiers:

∀σA∃σ′
A∀σ′

O∃σO.O(ρ[L, σA, σO]) ≤ O(ρ[L′, σ′
A, σ′

O]).

In a sense, the choice correspondence acts as a form of local skolemization of
the existential quantifiers.

Fix now an upward-closed specification ϕ and assume that O(ρ[L, σA, σO]) ≤
O(ρ[L′, σ′

A, σ′
O]). Then ρ[L, σA, σO] � ϕ =⇒ ρ[L′, σ′

A, σ′
O] � ϕ.

Therefore if there exists a choice correspondence (f, g) for which L ≤f,g L′,
we can conclude that for all upward-closed specification ϕ:

∀σA∃σ′
A∀σ′

O∃σO. (ρ[L, σA, σO] � ϕ =⇒ ρ[L′, σ′
A, σ′

O] � ϕ) .

By pushing the quantifiers inward in a suitable way, we obtain that for all
upward-closed specification ϕ:

(∃σA∀σO.ρ[L, σA, σO] � ϕ) =⇒ (∃σ′
A∀σ′

O.ρ[L′, σ′
A, σ′

O] � ϕ)

which is the definition of enforcing preorder. ��

Proposition 3. The inverse of Theorem 1 does not hold.

Figure 2, inspired from [13], provides the counterexample for the inverse of The-
orem 1. The partial order of observations is P = {⊥, p, q, r} where ≤ is the
identity relation. In both LTS, the Agent has two strategies, one enforcing
ϕ1 = {⊥pω,⊥qω} and the other enforcing ϕ2 = {⊥pω,⊥rω}. Hence L1 ≤ L2

and L2 ≤ L1. On the other hand, clearly L1 �⊂AS L2 and L2 �⊂AS L1.

6 Complements

6.1 The Quest for Symmetric Relations

We have studied in detail three preorders. What can we say about the symmetric
version of them? The symmetric version of the enforcing preorder, that we call
enforcing equivalence, is easily defined: We say that L is enforcing equivalent to
L′ if for any specification ϕ, Agent can enforce ϕ on L if and only if Agent can
enforce ϕ on L′.

324 R. Demangeon et al.

Fig. 2. Two LTS which are enforcing equivalent but for which there exists no alternat-
ing simulation in either direction.

The notion of alternating bisimulation is also easily defined as a symmetric
alternating simulation. The largest alternating bisimulation is called alternat-
ing bisimilarity. As for Park and Milner bisimulation, alternating bisimilarity is
stronger than the equivalence generated by alternating similarity, as we show in
the following example.

Example 2. s1

l����
��
��
��

l ���
��

��
��

�

s2

h
����
��
��
�� k

���
��

��
��

� s3

h
��

sx sy s′
x

t1

l

��
t2

h����
��
��
�

k

���
��

��
��

tx ty

In this model, the observation in states sx, s′
x, tx is x, and the observa-

tion in sy, ty is y. The reader can verify that {(s1, t1), (s2, t2), (sx, tx), (sy, ty)}
and {(t1, s1), (t2, s2), (t2, s3), (tx, sx), (ty, sy), (tx, s′

x)} are both alternating sim-
ulations, but there is no alternating bisimulation containing (s1, t1).

It remains open to find a proper definition of Morris equivalence, as we have
not yet pinned down the right symmetric generalisation of the notion of choice
correspondence. Asking the functions (f, g) to be bijective seems to us too strong
a requirement. However just asking the existence of two unrelated choice corre-
spondences would correspond to having two simulations in both direction, and
we have just shown that this is weaker than bisimilarity.

This quest for Morris equivalence should also be guided by the bisimulation
game, which is the symmetric version of the simulation game in Sect. 3.1, and
then stating an appropriate adaptation of Theorem 2 and, consequently, The-
orem 3. More specifically, in the bisimulation game, in each position (s, s′) ∈
S × S′, Spoiler first chooses the side where she challenges the simulation (that

Observational Preorders for Alternating Transition Systems 325

is, challenges Duplicator with either proving that s ⊂AS s′ or s′ ⊂AS s), and then
proceeds by proposing Duplicator with a label in the chosen transition system.
We call this extra intermediary step a side-challenging step. The symmetry in
the definition of the alternating bisimulation could be solved in the bisimula-
tion game by requiring that Duplicator have imperfect information, in the sense
that she “forgets” each Spoiler’s side-challenging step. But two-player games
with imperfect information are not determined in general, hence more study is
needed to properly adapt Theorem 2.

6.2 Taking Labels Seriously

To get closer to the world of Park and Milner we propose a definition of simula-
tion that takes into account the identity of the labels.

Definition 7. A Name-aware alternating simulation (NAAS) on a labelled tran-
sition system, is a binary relation R such that whenever s R t, O(s) ≤ O(t) and:

for all labels l, if s
l−→, then t

l−→, and for all t′ s.t. t
l−→ t′, there exists s′

s.t. s
l−→ s′ and s′ R t′.

The largest NAAS, ⊂NA, is called name-aware similarity. If there is a NAAS
s R t, we say s ⊂NA t.

In the following examples we suppose all the states have the same observation.

Example 3. s1
l

���
��

��
��

�
l

����
��
��
��

s2

h

��

s3

s4

t1
l

���
��

��
��

l

����
��
��
�

t2
h

���
��

��
��

t4

h����
��
��
�

t5
{(s1, t1), (s2, t4), (s4, t5)} is a NAAS

Example 4. s1

l ���
��

��
��

�
l

����
��
��
�� k

����
���

���
���

���

s2

h

��

s3 s5

s4

t1
l

���
��

��
��

l����
��
��
�

t2
h

���
��

��
��

t4

h����
��
��
�

t5
There is no NAAS in either direction.

The example above shows that the NAAS is different from the standard
notion of similarity by Park and Milner. Indeed there is a standard simulation
between t1 and s1: the fact that there is a label more from s1 is irrelevant.

While the two notions of simulation differ, it can be shown that the symmetric
notions coincide.

326 R. Demangeon et al.

Definition 8. A Name-aware alternating bisimulation (NAAB) on a labelled
transition system, is a binary relation R such that both R and R−1 are NAAS.
The largest NAAB is called name-aware bisimilarity.

A Park and Milner simulation (PMS) on a labelled transition system, is a
binary relation R such that whenever s R t,

– O(s) ≤ O(t)
– for all labels l, and for all states s′ if s

l−→ s′, then there exists t′ such that
t

l−→ t′., there exists s′ s.t. s′ R t′.

A Park and Milner bisimulation (PMB) on a labelled transition system, is a
binary relation R such that both R and R−1 are PMS.

Theorem 4. A binary relation R ⊆ S × T is a Name-aware alternating bisim-
ulation if and only if it is a Park and Milner bisimulation.

Proof. The proof is done in both directions by checking that a NAAB satisfies
the conditions for being a PMB, and that a PMB satisfies the conditions for
being a NAAB.

7 Conclusions and Future Work

We have generalised the syntactic notion of observational preorder to a setting
without syntax, and we also have presented some notions originally defined on
alternating transition systems, using standard labelled transition systems. This
leads us to a new definition of a coinductive relation, that happens to characterise
the Morris preorder.

Alternating bisimulations were used to prove (manually) bisimulation reduc-
tions for multi-agent systems [5], which were specified using the ISPL multi-agent
modelling language used in the MCMAS tool for model-checking. We plan to
provide LTS semantics to such multi-agent modelling languages together with
algorithmic tools for deciding or building alternating bisimulation reductions.
This will lead us to an extension of this work to the case of alternating transi-
tion systems (or concurrent game structures) with imperfect information, which
requires a notion of observation-based strategy.

A notion of choice correspondence that takes into account the identity of the
labels can be easily defined. We think that the corresponding notion of Morris
preorder coincides with name-aware similarity.

Acknowledgments. We thank the anonymous reviewers for their remarks, sugges-
tions and references, among which the papers [13,14] provided us with the inspiration
for the counterexample in Proposition 3.

Observational Preorders for Alternating Transition Systems 327

References

1. Alur, R., Henzinger, T.A.: Reactive modules. Formal Methods Syst. Des. 15(1),
7–48 (1999). https://doi.org/10.1023/A:1008739929481

2. Alur, R., Henzinger, T.A., Kupferman, O.: Alternating-time temporal logic. J.
ACM 49(5), 672–713 (2002)

3. Alur, R., Henzinger, T.A., Kupferman, O., Vardi, M.Y.: Alternating refinement
relations. In: Sangiorgi, D., de Simone, R. (eds.) CONCUR 1998. LNCS, vol. 1466,
pp. 163–178. Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0055622

4. Atkinson, K., Bench-Capon, T.J.M.: Practical reasoning as presumptive argumen-
tation using action based alternating transition systems. Artif. Intell. 171(10–15),
855–874 (2007)

5. Belardinelli, F., Condurache, R., Dima, C., Jamroga, W., Jones, A.V.: Bisimula-
tions for verifying strategic abilities with an application to threeballot. In: Larson,
K., Winikoff, M., Das, S., Durfee, E.H. (eds.) Proceedings of the 16th Conference
on Autonomous Agents and MultiAgent Systems, AAMAS 2017, São Paulo, Brazil,
8–12 May 2017, pp. 1286–1295. ACM (2017)

6. Emerson, E.A., Jutla, C.S.: Tree automata, mu-calculus and determinacy
(extended abstract). In: 32nd Annual Symposium on Foundations of Computer
Science, San Juan, Puerto Rico, 1–4 October 1991, pp. 368–377. IEEE Computer
Society (1991)

7. Morris, J.H.: Lambda-calculus models of programming languages. Ph.D. thesis,
M.I.T. (1968)

8. Lomuscio, A., Qu, H., Raimondi, F.: MCMAS: an open-source model checker for
the verification of multi-agent systems. Int. J. Softw. Tools Technol. Transf. 19(1),
9–30 (2017). https://doi.org/10.1007/s10009-015-0378-x

9. Mazala, R.: Infinite games. In: Grädel, E., Thomas, W., Wilke, T. (eds.) Automata
Logics, and Infinite Games. LNCS, vol. 2500, pp. 23–38. Springer, Heidelberg
(2002). https://doi.org/10.1007/3-540-36387-4 2

10. Milner, R.: A Calculus of Communicating Systems. Lecture Notes in Computer Sci-
ence, vol. 92. Springer, Heidelberg (1980). https://doi.org/10.1007/3-540-10235-3

11. Milner, R.: Communicating and Mobile Systems - The Pi-Calculus. Cambridge
University Press, Cambridge (1999)

12. Nielsen, M., Winskel, G.: Models for Concurrency, pp. 1–148. Oxford University
Press (1995). Also published in BRICS Research Series as RS-94-12

13. van Benthem, J.: Extensive games as process models. J. Log. Lang. Inf. 11(3),
289–313 (2002)

14. van Benthem, J., Bezhanishvili, N., Enqvist, S.: A new game equivalence, its logic
and algebra. J. Philos. Log. 48(4), 649–684 (2019)

15. van der Hoek, W., Roberts, M., Wooldridge, M.J.: Social laws in alternating time:
effectiveness, feasibility, and synthesis. Synthese 156(1), 1–19 (2007)

https://doi.org/10.1023/A:1008739929481
https://doi.org/10.1007/BFb0055622
https://doi.org/10.1007/s10009-015-0378-x
https://doi.org/10.1007/3-540-36387-4_2
https://doi.org/10.1007/3-540-10235-3

Synthesising Reward Machines
for Cooperative Multi-Agent

Reinforcement Learning

Giovanni Varricchione1(B), Natasha Alechina1, Mehdi Dastani1,
and Brian Logan1,2

1 Department of Information and Computing Sciences, Utrecht University,
Utrecht, The Netherlands

{g.varricchione,n.a.alechina,m.m.dastani,b.s.logan}@uu.nl
2 Department of Computing Science, University of Aberdeen, Aberdeen, UK

Abstract. Reward machines have recently been proposed as a means
of encoding team tasks in cooperative multi-agent reinforcement learn-
ing. The resulting multi-agent reward machine is then decomposed into
individual reward machines, one for each member of the team, allowing
agents to learn in a decentralised manner while still achieving the team
task. However, current work assumes the multi-agent reward machine to
be given. In this paper, we show how reward machines for team tasks can
be synthesised automatically from an Alternating-Time Temporal Logic
specification of the desired team behaviour and a high-level abstraction
of the agents’ environment. We present results suggesting that our auto-
mated approach has comparable, if not better, sample efficiency than
reward machines generated by hand for multi-agent tasks.

1 Introduction

Reward machines (RMs) [4,18,19] have recently been proposed as a way of spec-
ifying rewards for reinforcement learning (RL) agents. RMs are Mealy machines
used to specify tasks and rewards based on a high-level abstraction of the agent’s
environment. Providing an explicit encoding of the structure of the task has been
shown to increase sample efficiency in reinforcement learning. For example, the
RM-based algorithm proposed in [4] has been shown to out-perform state-of-
the-art RL algorithms, especially in tasks requiring specific temporally extended
behaviours.

Recently, in [12], RMs were proposed as a means of specifying rewards for
team tasks in multi-agent reinforcement learning. In cooperative multi-agent
reinforcement learning (MARL) [13] the aim is to train a group of agents to
perform a team task with the objective of maximising the expected future reward
of the team. MARL is more challenging than single-agent RL. As the correctness
of the actions of each agent may depend on the actions of other agents in the
team, the agents must coordinate their actions [2]. In addition, the agents are
learning and updating their policies simultaneously. From the point of view of
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
V. Malvone and A. Murano (Eds.): EUMAS 2023, LNAI 14282, pp. 328–344, 2023.
https://doi.org/10.1007/978-3-031-43264-4_21

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-43264-4_21&domain=pdf
https://doi.org/10.1007/978-3-031-43264-4_21

Synthesising Reward Machines for Cooperative MARL 329

each individual agent, the learning problem is non-stationary; i.e., the optimal
policy for each agent is constantly changing [7].

In [12] these problems are addressed by specifying a multi-agent reward
machine which encodes the abstract structure of the team task. The multi-
agent reward machine is then decomposed into individual reward machines, one
for each member of the team. The decomposition is carried out by projecting the
coalition RM onto the set of observable events of each agent in the team. If the
decomposition is done in such a way that the combined behaviour of the indi-
vidual reward machines is “bisimulation equivalent” to that of the team reward
machine, each agent can be trained using its individual reward machine to per-
form its part of the team task in a decentralised manner while still ensuring that
the team task will be achieved by the joint action of the agents. This avoids the
problem of non-stationarity, and in [12] an algorithm based on this approach
called “Decentralized Q-Learning with Projected Reward Machines” (DQPRM)
is shown to be more sample efficient than independent q-learners (IQL) [16] and
hierarchical independent learners (h-IL) [17].

However, in [12], the multi-agent reward machine is generated “by hand”.
Although reward machines are usually specified by hand, some works, such as
[5,9], have shown how these can be synthesised automatically. Inspired by this
line of research, in this paper we show how individual reward machines can
be synthesised automatically from a high-level description of the agents’ envi-
ronment and an Alternating-time Temporal Logic (ATL) specification of the
desired team behaviour. As in [12], we provide formal guarantees ensuring that
the behaviour learned from our automatically synthesised individual RMs is
guaranteed to result in coordinated behaviour on the team task. Moreover, as
tasks are specified in ATL, we can easily incorporate additional constraints on
team goals, e.g., invariant properties, which were not dealt with in [12].

The structure of this paper is as follows. In Sect. 2, we give preliminaries for
our work; these include defining reward machines and the syntax and semantics
of (imperfect information) ATL. In Sect. 3, we present our approach and show
how to synthesise team and individual RMs. Moreover, we provide theoretical
results in line to those of [12]. Section 4 provides an empirical evaluation of our
work. As the main focus of our approach is to automatize the construction of
RMs in multi-agent reinforcement learning, we will show how agents trained with
our automatically synthesised RMs have comparable, if not better, performance
than those of [12]. Then, in Sect. 5 we present related works, and in Sect. 6 we
conclude and indicate possible future directions.

2 Preliminaries

In this section, we briefly introduce reward machines, multi-agent reinforcement
learning with reward machines, and Alternating Time Temporal Logic, which
form the basis of our approach.

330 G. Varricchione et al.

2.1 Multi-agent Environments

We begin by defining a Multi-Agent Environment (MAE) that specifies the low-
level environment in which the agents act.

Definition 1 (Multi-agent environment). A multi-agent environment with
n agents is a tupleE = 〈Agt, S1, . . . , Sn, A1, . . . , An,Pr , (Propi)i∈Agt,Val〉where:
– Agt is a non-empty finite set of n agents;
– Si is the finite set of states of agent i. We denote the set of joint states, i.e.,

the cartesian product of all the sets of states, with S = S1 × · · · × Sn;
– Ai is the finite set of actions of agent i. We denote the set of joint actions,

i.e., the cartesian product of all the sets of actions, with A = A1 × · · · × An;
– Pr : S × A × S → Δ(S) is the joint state transition probability distribution

and Δ(S) is the set of all probability distributions over S; Pr(s′|s,a) denotes
the probability of transitioning from a joint state s ∈ S to a joint state s′ ∈ S
by performing a joint action a ∈ A;

– (Propi)i∈Agt is the set of propositional symbols “observable” by agent i,
Prop :=

⋃
i∈Agt Propi is the entire set of observable propositions;

– Val : Prop → 2S is a valuation function mapping each propositional symbol
to the set of joint states in which it is true. For each agent i, we can also
obtain its individual valuation function Val i by taking the restriction of Val
onto Propi and Si;

A joint policy π : S → Δ(A) maps any state in a MAE E to a probability
distribution over the set of joint actions.

When agents are trained individually, we will consider their induced Markov
Decision Process (MDP), i.e., Mi = 〈Si, Ai,Pr ,Propi,Val〉.

In the context of a MAE, we might be interested in some specific propositions
that can aid us when specifying some task we want the agents to accomplish. In
such case, we give a “labelling”, used to describe how the evolution of the MAE
affects the truth of these propositions. Given a set of propositional symbols
Prop, we denote with Prop the set of literals we derive from it. For a given
propositional symbol p ∈ Prop, we denote with, respectively, p+ and p− its
positive and negative literal.

Definition 2 (Labelling). Given a MAE E = 〈Agt, S1, . . . , Sn, A1, . . . , An,
Pr , (Propi)i∈Agt,Val〉, its labelling is the, naturally induced, function L : S ×
A × S → ℘(Prop) mapping transitions in the MAE to the set of associated
literals that are brought about by it. To be precise, given joint states s, s′ ∈ S
and joint action a ∈ A, we have that L(s,a, s′) := {p+ | s /∈ Val(p) ∧ s′ ∈
Val(p)} ∪ {p− | s ∈ Val(p) ∧ s′ /∈ Val(p)}. As each agent i ∈ Agt has its own set
of observable propositional symbols Propi, we can define its individual labelling
Li : Si × Ai × Si → ℘(Propi) by analogously taking Li(si, ai, si) := {p+ | si /∈
Val i(p) ∧ s′

i ∈ Val i(p)} ∪ {p− | si ∈ Val i(p) ∧ s′
i /∈ Val i(p)}.

In this paper we focus on postcondition labelling, where L(s,a, s′) is the set
of literals made true in s′ by executing a in s. If, for a given atomic proposition

Synthesising Reward Machines for Cooperative MARL 331

Fig. 1. CooperativeButtons domain from [12].

p ∈ Prop, we have that neither of its literals appear in L(s,a, s′), then it means
that its truth value has not changed from s to s′.

Example 1. We now give an example of a MAE. The CooperativeButtons
environment [12] is a 10× 10 gridworld containing walls (some of which can
be lowered) and buttons (Fig. 1). There are three agents, i1, i2 and i3. Agents
can move left, up, right, down or stay in the same cell. Movement actions
are nondeterministic: if an agent moves in any direction, it may end up in a
cell adjacent to the one it was trying to reach with probability 0.2. Walls stop
agents from moving to the desired cell, but the coloured ones can be lowered by
pressing the corresponding button. The red button requires two agents to press
it together in order to lower the red wall. The goal of the agents is to cooperate
to allow agent i1 to reach the Goal location. The task can be achieved as follows:
first i1 presses the yellow button, then i2 the green button, then i2 and i3 the
red button, and finally i1 reaches the Goal location.

The set of propositional symbols is Prop = {YB , GB , ARB
2 , ARB

3 , RB ,Goal}.
Propositional symbols YB , GB and RB are true if, respectively, the yellow, green
and red button has been pressed, while Goal is true if an agent is on the goal
location G. If i2 and i3 are on the button, then propositional symbols ARB

2 and
ARB

3 are respectively true. As soon as both ARB
2 and ARB

3 are true, RB becomes
true as well. Agent i1’s set of propositions is Propi1 = {YB , RB ,Goal}, agent
i2’s is Propi2 = {YB , GB , ARB

2 , RB}, and agent i3’s is Propi3 = {GB , ARB
3 , RB}.

Note that there are no propositions corresponding to exact location of agents in
the environment, which would be relevant for the low-level MARL environment.

A joint state corresponds to the pair of coordinates 〈xj , yj〉 of each agent
ij ∈ {i1, i2, i3} and the set of propositions true in it1. Individual states for agent
i contain only its coordinates and the set of propositions, from Propi, true in it.
1 For convenience, we will omit the set of propositional symbols true in joint states, and

just give them as triples of coordinates. Whenever the set of propositional symbols
is needed, we will explicitly state it beforehand.

332 G. Varricchione et al.

We now explain how the set of propositional symbols is crucial in order to
correctly define the dynamics of MAEs. Suppose that agent i2 is in cell 〈5, 1〉,
i.e., in front of the yellow wall. If the agent were to perform (successfully) the
down action, then its resulting state would depend on whether YB is true or
false: in the former case, i2 reaches cell 〈5, 2〉, in the latter it will hit the wall
and remain on cell 〈5, 1〉.

Finally, as an example of a label for a transition, suppose the initial joint
state s is 〈〈1, 0〉, 〈5, 0〉, 〈8, 0〉〉 (with no propositional symbol being true) and
that the joint action is 〈right, stay, stay〉. In this case, if agent i1 correctly
moves to the right, the next joint state will be 〈〈2, 0〉, 〈5, 0〉, 〈8, 0〉〉, meaning
that agent i1 has correctly pressed the yellow button. Therefore, the transi-
tion 〈〈1, 0〉, 〈5, 0〉, 〈8, 0〉〉, 〈right, stay, stay〉, 〈〈2, 0〉, 〈5, 0〉, 〈8, 0〉〉 will be labelled
with {Y +

B }.

2.2 Reward Machines

A reward machine (RM) (referred to as a simple reward machine in [18]) is a
Mealy machine over an alphabet Σ. Intuitively, an RM takes abstract descrip-
tions of an event in the environment as input, and outputs a reward.

Definition 3. A reward machine is a tuple R = 〈U, uI , Σ, t, r〉 where:

– U is a finite non-empty set of states;
– uI is the initial state;
– Σ is a finite set of environment events;
– t : U × Σ → U is a transition function that, for every state u ∈ U and event

e ∈ Σ, gives the state resulting from observing event e in state u; and
– r : U × Σ → R is a reward function that for every state u ∈ U and event

e ∈ Σ gives the reward resulting from observing event e in state u.

In our case, the set of events Σ will correspond to sets of literals over the
finite set of propositional symbols Prop, as given in the definition of MAEs.

2.3 Multi-Agent RL with RMs

To formally define the multi-agent reinforcement learning problem with reward
machines, we introduce the notion of a Markov Game with a Reward Machine
(MGRM). An MGRM is essentially a product of a multi-agent environment and
a reward machine; it is the multi-agent analogous of a Markov Decision Process
with Reward Machine (MDPRM), as defined in [18].

Definition 4. A (cooperative) Markov Game with a Reward Machine is a
tuple G = 〈Agt, S1, . . . , Sn, A1, . . . , An,Pr , (Propi)i∈Agt,Val , L, γ, U, uI , Σ, t, r〉
where:

– Agt, Sj , Aj ,Pr , (Propi)i∈Agt,Val are as in Definition 1;
– L : S × A × S → ℘(Prop) is the labelling function, defined as in Definition 2;

Synthesising Reward Machines for Cooperative MARL 333

– γ ∈ [0, 1] is a discount factor;
– U, uI , Σ, t, r are as in Definition 3, with Σ = ℘(Prop);
– If in states s ∈ S, u ∈ U , the agents perform an action a to move from s to

s′, then u′ = t(u,L(s,a, s′)) and the agents receive a reward r(u,L(s,a, s′)).

The alphabet Σ is a labelling L of triples from S × A × S by consistent sets
of literals over Prop. In this paper we focus on postcondition labelling, where
L(s,a, s′) is the set of literals made true in s′ by executing a in s. As each
agent i ∈ Agt has a set of observable variables Propi ⊆ Prop, we define the set
of observable events of agent i as Σi := ℘(Propi)∩Σ. Notice that Σi is defined as
the powerset of the literals obtained by considering the propositions observable
by i. Similarly, for a coalition A ⊆ Agt, we define ΣA :=

⋃
i∈Agt Σi. We assume

that ΣAgt = Σ, i.e. the grand coalition is able to observe all events. For a given
event e ∈ Σ and a subset of events Σ′ ⊆ Σ, we denote the restriction of e onto
Σ′ by e � Σ′, where e � Σ′ ⊆ e is the maximal subset2 (with respect to inclusion)
of e that is also in Σ′. This will be used to define the ‘part of’ the event e that
is observable by a given subset of agents.

The (cooperative) multi-agent reinforcement learning problem [3,15] is to
learn an optimal group policy π∗ : S → Δ(A) that maximises the expected
discounted future reward from any joint state.

2.4 Alternating-Time Temporal Logic

Alternating-time Temporal Logic (ATL) [1] is a standard formalism for specify-
ing the high-level behaviour of agents in multi-agent systems. In this section, we
define the syntax and semantics of ATL with imperfect information. We need
imperfect information because we cannot assume that the agents can observe all
the effects of each other’s actions, and it is important for decomposability that
each agent bases its choice of actions only on what it can observe.

Let Agt = {i1, . . . , in} be a set of n agents and Prop denote a (finite) set of
propositional symbols. Formulas of ATL are defined by the following syntax:

φ, ψ ::= p | ¬φ | φ ∨ ψ | 〈〈A〉〉©φ | 〈〈A〉〉�φ | 〈〈A〉〉φ U ψ

where p ∈ Prop is a proposition and A ⊆ Agt. Here, 〈〈A〉〉©φ means that coalition
A has a strategy to ensure that the next state satisfies φ, 〈〈A〉〉�φ that A has a
strategy to ensure that φ is always true, and 〈〈A〉〉φ U ψ that A has a strategy to
ensure that φ holds until it eventually enforces ψ.

The models of ATL are concurrent game structures. Imperfect information
is modelled by indistinguishability relations between states, one for each agent.
The resulting concurrent game structures are called “epistemic concurrent game
structures”.

2 We assume that Σ′ is a subset of events obtained by taking the powerset of a subset
of propositional symbols Prop′ ⊆ Prop. This is to ensure that e � Σ′ is always
well-defined as the unique maximal subevent of e in Σ′.

334 G. Varricchione et al.

Definition 5. An epistemic concurrent game structure (ECGS) is a tuple M =
〈Agt,Q,Prop, v, (∼i| i ∈ Agt), Act, d, δ〉 where:

– Agt is a non-empty finite set of n agents;
– Q is a non-empty finite set of states;
– Prop is a finite set of propositional symbols;
– v : Prop → ℘(Q) is a valuation which associates each proposition in Prop

with a subset of states where it is true;
– ∼i⊆ Q × Q for each i ∈ Agt is an equivalence relation. For each state q ∈ Q,

we denote with [q]i the equivalence class of q for ∼i;
– Act is a non-empty finite set of actions;
– d : Q × Agt → ℘(Act)\{∅} is a function which assigns to each q ∈ Q a non-

empty set of actions available to each agent i ∈ Agt, with the constraint that
q1 ∼i q2 implies that d(q1, i) = d(q2, i). We denote joint actions by all agents
in Agt available at q by D(q) = d(q, i1) × . . . × d(q, in);

– δ : (q, σ) �→ Q is a function that gives for every q ∈ Q and joint action
σ ∈ D(q) the state resulting from executing σ in q. We write q

σ−→ q′ to
abbreviate δ(q, σ) = q′.

Given an ECGS M , we denote the set of all infinite sequences of states
(computations) by Qω. For a computation λ = q0q1 . . . ∈ Qω, we use, for any
natural j ∈ N, the notation λ[j] to denote the j-th state qj in the computation
λ. Given an ECGS M and a state q ∈ Q, a joint action by a coalition A ⊆ Agt
is a tuple σA = (σi)i∈A such that σi ∈ d(q, i) for all i ∈ A. The set of all joint
actions for A at state q is denoted by DA(q). Given a joint action by the grand
coalition σ ∈ D(q), σA denotes the joint action executed by A: σA = (σi)i∈A.
The set of all possible outcomes of a joint action σA ∈ DA(q) at state q is
out(q, σA) = {q′ ∈ Q | ∃σ′ ∈ D(q) : σA = σ′

A ∧ q′ = δ(q, σ′)}.
In our case, we specifically consider ECGSs in which each action a ∈ Act

has a set of (consistent) postconditions post(a) ⊆ Prop associated to. For any
coalition A ⊆ Agt, we define post(σA) :=

⋃
i∈A post(σi). The transition function

δ is defined accordingly: δ(q, σ) leads to the state q′ in which the propositional
symbols of positive and negative literals from post(σ) are, respectively, true and
false, and q′ ∈ v(p) ⇐⇒ q ∈ v(p) for all propositional symbols p without a
literal in post(σ). For joint actions σ such that post(σ) is not consistent, δ is
undefined.

Example 2. As an example, we provide an ECGS that abstracts the Coop-
erativeButtons MAE. Obviously, Agt = {i1, i2, i3}. We take Q = 2Prop ,
where Prop is the original set of propositional symbols from the Coopera-
tiveButtons domain, as given in Example 1, which also acts as the set of
propositional symbols in the ECGS. v is the naturally induced valuation, i.e.,
v(p) = {q ∈ Q | p ∈ q}. For the equivalence (indistinguishability) relation-
ships ∼i of agent i, we take the one naturally induced by the set of “observ-
able” propositional symbols Propi of agent i as described in Example 1. In
other words, for any agent i ∈ Agt, two states q, q′ are such that q ∼i q′ if
and only if q ∈ v(p) ⇐⇒ q′ ∈ v(p) for all p ∈ Propi. The set of actions

Synthesising Reward Machines for Cooperative MARL 335

is Act = {press yellow, press green, press red, to goal, nil}, where nil is
the “null” action that can be executed by any agent in any state and leads to
no consequence. The action press yellow can be performed only by agent i1,
whenever YB is false. press green can be performed only by agent i2, whenever
GB and YB are, respectively, false and true. press red can be performed by
agents i2 and i3: for the former, whenever YB is true, and, for the latter, when-
ever GB is true. Finally, to goal can be performed only by agent i1, whenever
RB is true. As for the transition function δ, all valid joint actions have the “intu-
itive” set of postconditions, e.g., if agent i1 performs the press yellow action
and i2 and i3 the nil action, then the ECGS moves from state q to state q′,
where the only difference is that q �∈ v(YB) and q′ ∈ v(YB). The only action
that requires “coordination” is press red, in the sense that δ is defined so that
any joint action σ moves the ECGS to a state where RB is true if and only if
σi2 = σi3 = press red.

We would like to stress how the ECGS differs from the MAE in this example:
as one can notice, the ECGS does not contain any information about the precise
position of the agents in the environment, unlike the MAE. Moreover, the set
of actions are completely different: the MAE’s actions describe how the agents
“phisically” move in the environment, whereas the ECGS’s describe how the
agents can press buttons or reach the goal. Due to this, having just a “strategy”
to achieve the task in the ECGS does not suffice for the agents to be able to
also achieve the task in the MAE: they need to learn how to move in the latter
environment in order to do so. However, as we will later see, having a “high-level
strategy” can aid them in learning how to act in the MAE.

Given an ECGS M , a strategy for a coalition A ⊆ Agt is a mapping FA :
Q → Act|A| such that, for every q ∈ Q, FA(q) ∈ DA(q). A computation λ ∈ Qω

is consistent with a strategy FA iff, for all j ≥ 0, λ[j + 1] ∈ out(λ[j], FA(λ[j])).
We denote by out(q, FA) the set of all consistent computations λ of FA that
start from q. Some strategies are unrealistic in that they require agents to select
different actions in two states that they cannot distinguish. For this reason, the
strategies are usually restricted to being uniform:

Definition 6 (Uniform strategy). A strategy for agent i, Fi, is uniform if
and only if it specifies the same choices for indistinguishable situations: if q ∼i q′

then Fi(q) = Fi(q′). A strategy for a coalition A is uniform if and only if it is
uniform for each i ∈ A.

Strong uniformity requires, in addition, that in order for a formula of the
form 〈〈A〉〉ϕ to be true in a state q, the same uniform strategy by A should
ensure ϕ from all the states indistinguishable from q by A, i.e., all q′ ∈ [q]A,
where [q]A is the equivalence class of q for ∼A:=

⋂
i∈A ∼i.

Given an ECGS M , a state q of M , the truth of an ATL formula ϕ with
respect to M and q is defined inductively on the structure of ϕ as follows:

– M, q |= p iff q ∈ v(p);
– M, q |= ¬φ iff M, q �|= φ;

336 G. Varricchione et al.

– M, q |= φ ∨ ψ iff M, q |= φ or M, q |= ψ;
– M, q |= 〈〈A〉〉©φ iff there exists a uniform strategy FA such that for all q′ ∼A q,

for all λ ∈ out(q′, FA): M,λ[1] |= φ;
– M, q |= 〈〈A〉〉�φ iff there exists a uniform strategy FA such that for all q′ ∼A q,

for all λ ∈ out(q′, FA) and j ≥ 0: M,λ[j] |= φ;
– M, q |= 〈〈A〉〉φ U ψ iff there exists a uniform strategy FA such that for all

q′ ∼A q, for all λ ∈ out(q′, FA), ∃j ≥ 0: M,λ[j] |= ψ and M,λ[k] |= φ for all
k ∈ {0, . . . , j − 1}.

Finally, we define a witness for a coalitional modality formula (see e.g., [11]).
If a formula of the form 〈〈A〉〉ϕ is true in a state q, there is a strategy FA such that
all paths generated by this strategy satisfy ϕ. A witness W (q, FA) for the truth
of 〈〈A〉〉ϕ in q is a finite tree rooted in q that is generated by executing FA. For ϕ
of the form ©φ, the tree is cut off at the first “step”, meaning that only states
satisfying φ and that can be reached from the initial state in one transition are
considered. For ϕ of the form φ U ψ, the tree is cut off at the states satisfying ψ.
For ϕ of the form �φ, the tree is cut off at the first repeating state encountered
on the branch (intuitively, it represents cyclic paths satisfying φ).

We specify tasks for for agent teams using ATL formulas. Hence, in our
approach, the ECGS will be the “high-level environment” which abstracts the
low-level MAE in which the agents act. For example, the task from the Buttons
domain can be specified as 〈〈Agt〉〉�U Goal : this formula is true if the grand
coalition Agt has a strategy to reach the goal. The ATL formula plays a role
similar to that of a planning goal in the synthesis of single-agent reward machines
in [9]. However, the use of ATL means we can specify more flexible properties:
for example, that Agt can bring about ψ while maintaining φ, or that Agt
can maintain some property forever φ, etc. We can also talk about abilities
of A ⊂ Agt allowing for, e.g., the presence of opponent coalitions. Nevertheless,
in this work we focus on the case in which A = Agt, leaving the treatment of
a non-fully-cooperative setting to future research. As we always assume that
A = Agt, we will write just A to refer to the grand coalition.

3 Synthesising MGRMs

In this section, we show how, given an ECGS M , an initial state q of such ECGS,
and an ATL formula 〈〈A〉〉ϕ specifying a team task, we can synthesise a MGRM
from a witness W (q, FA), where FA is a strategy for coalition A to enforce ϕ (if
there exists any).

In Fig. 2, we provide a high-level overview of the objects that are used in
our approach and how they are related to each other. The MAE and individual
agents’ environments (represented by Markov Decision Processes), the ECGS
and the ATL formula are all given in input, whereas the rest is computed in our
approach. We would like to stress the fact that the dynamics of the low-level
environments are hidden to the agents, which means that it is not possible for
them to compute a policy to perform the task by only having a witness of a
high-level strategy for it.

Synthesising Reward Machines for Cooperative MARL 337

Fig. 2. High-level overview and relationship between the objects used in our approach.
Objects in blue can be reused in other tasks.

3.1 Synthesising Reward Machines

Fix an ECGS M = 〈Agt,Q,Prop, v, (∼i| i ∈ Agt), Act, d, δ〉 with some initial
state q ∈ Q and an ATL formula 〈〈A〉〉ϕ. We can use an ATL model checker
to synthesise a uniform strategy FA to achieve the task encoded by the ATL
formula 〈〈A〉〉ϕ. For example, Fig. 3 shows a uniform strategy synthesised by
the MCMAS model checker [11] for the CooperativeButtons task. From a
uniform strategy FA to achieve 〈〈A〉〉ϕ and some initial ECGS state q, we can
generate a witness W (q, FA) for FA in time polynomial in M and 〈〈A〉〉ϕ. Then,
from the witness, we can synthesise both the coalitional RM RA and each of the
individual RMs Ri, for each agent i ∈ A.

Notice that the witness and the reward machine derived from it are defined
in terms of the (high-level) actions of M and are not directly executable in the
MAE E or in the individual agents’ environments. However, the synthesised RM
can be used to guide an agent in learning which low-level actions in E should be
performed to accomplish each step in the RM.

Intuitively, for a sub-coalition B ⊆ A, states of RB are equivalence classes of
nodes in the witness, plus an extra “error” state. Edge labels (ECGS actions)
in the witness are replaced with events corresponding to postconditions of those
actions. The reward machines for 〈〈A〉〉φ U ψ and 〈〈A〉〉�φ transit to the error
state on events corresponding to a violation of φ (we assume that ¬φ is always
observable by A). The error state has a self-loop and no transitions to other
states of the reward machine. Finally, the state corresponding to the second last
state of the witness for 〈〈A〉〉φ U ψ transits to the error state only on events that
both violate φ and are not postconditions of the last action in the witness (do
not achieve ψ).

338 G. Varricchione et al.

Fig. 3. Strategy for the CooperativeButtons domain. To obtain the corresponding
coalition RM, it suffices to modify the action labels with their corresponding postcon-
ditions and give 1 as a reward on the transition from state 3 to 4 and 0 on all other
transitions.

Reward Machine Synthesis. Given the ECGS M = 〈Agt,Q,Prop, v, (∼i| I ∈
Agt), Act d, δ〉 and a witness W (q, FA), we construct a reward machine RB =
〈UB , uI

B , ΣB , tB , rB〉 for B ⊆ A as follows:

– UB = Q(W (q, FA))/ ∼B ∪{uerr} is the set of equivalence classes of states in
W (q, FA) with respect to the indistinguishability relation of B, plus uerr;

– uI
B = [q]B ;

– ΣB is defined as usual. If 〈〈A〉〉ϕ is of the form 〈〈A〉〉�φ or 〈〈A〉〉φ U ψ, then we
also add the event ¬φ to ΣB ;

– tB(u, e) = u′ iff there are q1, q2 in the set of nodes of W (q, FA) such that
u = [q1]B and u′ = [q2]B , with q1 connected to q2 through an edge labelled
with FA(q1), and there is a joint action σ ∈ D(q1) with q1

σ−→ q2, σA = FA(q1)
and such that e = post(σ) � ΣB . If 〈〈A〉〉ϕ = �φ or 〈〈A〉〉ϕ = 〈〈A〉〉φ U ψ and
¬φ ∈ e, then u′ = uerr unless e = post(σ) � ΣB for an action σ leading to a
final state qf in W (q, FA). In the latter case the RM transitions to u′ = [qf]
in the witness W (q, FA) (as φ needs to hold only strictly before ψ holds);

– For the definition of rB , there are three different cases:
1. rB(u, e) = 1 iff 〈〈A〉〉ϕ = 〈〈A〉〉©φ, u = [q], and e = post(FA(q)) � ΣB ,

or 〈〈A〉〉ϕ = 〈〈A〉〉φ U ψ and e = post(σ) � ΣB for an action σ leading to a
final state qf in W (q, FA).

2. rB(u, e) = −1 iff 〈〈A〉〉ϕ = 〈〈A〉〉�φ, u �= uerr and ¬φ ∈ e;
3. For all other (u, e), rB(u, e) = 0.

3.2 Correctness of the Approach

We now show that the RMs generated by our approach are “correct” decom-
positions in the sense of [12]. In [12] it is shown that the reward the individual

Synthesising Reward Machines for Cooperative MARL 339

RMs grant to the agents is always equal to the reward the coalition RM would
have granted them. Moreover, it is shown how the probabilities that each agent
achieves its subtask bound the probability that the whole coalition achieves the
team task. In this Subsection we replicate these results for our approach.

Let A be a coalition of agents, FA a strategy for the coalition and q the initial
state of the ECGS. We define the set of compatible event sequences ΞFA,s for
strategy FA and initial state q as the set of event sequences that is observed by
coalition A while following strategy FA, i.e. ΞFA,q := {ξ | ∃λ ∈ out(q, FA)∀j ∈
N∃σ ∈ D(λ[j]) : σA = FA(λ[j]) ∧ ξ[j] = post(σ) � ΣA}.

Theorem 1. Fix a strategy FA for the coalition of agents A = {i1, . . . , in}
and an initial state q. Let RA = 〈UA, uI

A, ΣA, tA, rA〉 be the coalition RM and
R⊗ = 〈U⊗, uI

⊗, Σ⊗, t⊗, r⊗〉 be the product RM Ri1 ⊗. . .⊗Rin . Given a compatible
event sequence ξ ∈ ΞFA,q, then for any step j ∈ |ξ| we have that rA(uj

A, ξ[j]) =
r⊗(g(uj), ξ[j]), where uj = (uj

i1
, . . . , uj

in
) is the j-th state reached by the product

RM following the event sequence ξ, and g((ui1 , . . . , uin)) :=
⋂

i∈A ui for any
(ui1 , . . . , uin) ∈ Ui1 × · · · × Uin , with Uij being the set of states of Rij .

Proof Sketch. The claim is proven by showing that g is a homomorphism, with
respect to the transition and reward functions, from the set of states of the
product RM (the parallelization of all the individual RMs) to that of the coalition
RM. This can be done via an induction on the length of the input sequence.

To conclude, we state a theorem relating the expected undiscounted future
rewards obtained by a coalition to the ones obtained by the agents in such
coalition. Consider a coalition A = {i1, . . . , in}, a witness W (q, FA) for some
state q of an ECGS and a strategy FA for some formula 〈〈A〉〉ϕ, a joint state s
of a MAE and an arbitrary joint policy π = (π1, . . . , πn) for the same MAE.
For the coalition RM RA built from W (q, FA), we denote by V π

A (s) the sum of
expected undiscounted future rewards produced by RA, given all agents follow
their policy as specified by π from the MGRM state s and the initial state
uI

A of RA. Analogously, for the individual RM Rij built from the same witness
W (q, FA), we denote by V π

ij
(s) the sum of expected undiscounted future rewards

produced by Rij under the same assumptions. Moreover, recall that if 〈〈A〉〉ϕ is
of the form 〈〈A〉〉©φ or 〈〈A〉〉φ U ψ, then any RM generated from a witness for a
strategy for the formula can give a reward of only 0 or 1. Similarly, any RM for
a formula of the form 〈〈A〉〉�φ can give a reward of only 0 or −1.

Theorem 2. If 〈〈A〉〉ϕ is of the form 〈〈A〉〉©φ or 〈〈A〉〉φ U ψ, then

max{0, V π
i1 (s) + . . . + V π

in (s) − (n − 1)} ≤ V π
A (s) ≤

min{V π
i1 (s), . . . , V π

in (s)}
If 〈〈A〉〉ϕ is of the form 〈〈A〉〉�φ, then

max{−V π
i1 (s), . . . ,−V π

in (s)} ≤ −V π
A (s) ≤

min{1,−V π
i1 (s) − . . . − V π

in (s)}.

340 G. Varricchione et al.

Proof Sketch. Observe that V π
A (s) and V π

ij
(s) are, respectively, the probabilities

that coalition A and agent ij complete, if 〈〈A〉〉ϕ is of the form 〈〈A〉〉©φ or
〈〈A〉〉φ U ψ, or fail, if 〈〈A〉〉ϕ is of the form 〈〈A〉〉�φ, their (sub)task. Since A
completes the task if and only if all its agents complete their task, and fails the
task if and only if some of its agents fail theirs, the claim follows by applying
the Fréchet inequalities for logical conjunctions and disjunctions.

Theorem 2 bounds the probability that a coalition completes or fails (depend-
ing on the formula) a task, assuming all agents follow the policy specified by π.
For formulas of the form 〈〈A〉〉©φ or 〈〈A〉〉φ U ψ, if all agents i ∈ A are able
to (eventually) complete their subtask, then coalition A is able to (eventually)
complete the team task: for all agents V π

ij
(s) = 1, then max{0, V π

i1
(s) + . . . +

V π
in

(s) − (n − 1)} = 1, and so V π
A (s) = 1. Similarly, for formulas of the form

〈〈A〉〉�φ, if agent ij violates φ, then the coalition will violate φ: −V π
ij

(s) = 1, then
max{−V π

i1
(s), . . . ,−V π

in
(s)} = 1, and so V π

A (s) = −1. When γ = 1, optimality
of individual policies implies optimality of the joint policy. Note this does not
imply the same holds when γ < 1, thus we leave this case to future research.

4 Evaluation

In this section we present an evaluation of the automatically synthesised reward
machines. Specifically, we show how strategies for team goals generated by the
model checker MCMAS [11] can be used to produce an RM for each agent in a
team of agents, and present results from the two benchmarks from [12], Cooper-
ativeButtons and 10-Agent Rendezvous3. The Rendezvous environment
is a 10× 10 gridworld in which the agents first have to rendezvous at a common
location, and then each agent has to reach its individual goal location.

We compare the performance of DQPRM when using our automatically syn-
thesised RMs and the RMs from [12] in both the CooperativeButtons and
Rendezvous environments. We used the same experimental setup as in [12] for
these two tasks. In both the CooperativeButtons and Rendezvous envi-
ronments, if an agent, during its individual training, observes an event that can
also be observed by another agent, it is provided with a signal that simulates
successful synchronisation with probability 0.3. This is needed to “simulate” the
behaviour of other agents during the individual training. For action selection,
agents use softmax exploration with a constant temperature of τ = 0.2. The
discount factor is γ = 0.9 and the learning rate α = 0.8. For both tasks each
experiment consists of 10 episodes: for CooperativeButtons each episode
consists of 250000 training steps, while for Rendezvous 150000 training steps.
For both tasks a test is run every 1000 training steps to evaluate the agents, with
every test running for at most 1000 steps (after which the test is ended and the
task is considered failed). Performance is measured as the number of steps nec-
essary to complete the task. For both plots, lines represent median performance,
whereas the shaded areas the 25th and 75th percentiles.

3 Code is available at github.com/giovannivarr/SynthesisingRMsMARL.

https://github.com/giovannivarr/SynthesisingRMsMARL

Synthesising Reward Machines for Cooperative MARL 341

The results are shown in Fig. 4. As can be seen, agents trained with our
automatically generated RMs converge faster than those trained with the hand-
crafted ones from [12]. We believe this might be due to the fact that in both
tasks the generated RMs have less states than the hand-crafted ones. Though
we do not have any formal results about this, we also think this is a side effect of
synthesising RMs against defining them by hand, as in the latter case one could
include information that might turn out to be superfluous to complete the final
task. It might also be the case that one does not include enough information,
hence obtaining an RM that is not informative enough to the agent to achieve
the task. Regardless, the experimental evaluation suggests that, at least for these
scenarios, automated synthesis generates RMs that successfully encode the task.

Fig. 4. CooperativeButtons and Rendezvous [12]. The x-axis shows the number of
elapsed training steps (in a logarithmic scale). The y-axis the number of steps required
for the learned policies to complete the task – note that the agents have a maximum
limit of 1000 steps to complete the task, after which the test is considered “failed”.

5 Related Works

There is a large literature on the problem of non-stationarity in MARL [7,8,14,
22]. Some approaches address the problem by training each agent individually.
For example, in IQL [16], each agent learns a policy by treating other agents
as part of the environment. Others, e.g., [6,21], adopt a hierarchical approach,
where a task is decomposed so that agents learn how to cooperate only at the
highest level of the hierarchy. This seems to be more efficient than learning
how to cooperate in the low-level environment. In a sense, we also employ a
hierarchical approach, but in our case there is no need for the agents to learn
how to cooperate at the high level because the policy learnt using their RM
ensures coordination.

An approach employing high-level planning for formally specified single-agent
RL tasks was proposed in [10]. First, low-level policies for a set of subtasks are
trained, and then high-level planning is used to identify the sequence of subtasks

342 G. Varricchione et al.

which maximizes the probability of achieving the task, as described by a formal
specification, given the current policies. Our work differs from [10] as we consider
a multi-agent setting and use a different specification language.

Reward machines were introduced in [18] as a way of improving the sample
efficiency of reinforcement learning by providing an RL agent with a high-level
abstract description of its task and environment. There have been several pro-
posals for the automated generation of RMs. For example, in [19,20] an RM is
learned by an agent through experience in the environment. Closer to our work is
[4], where an RM for a single agent is generated using LTL and other logics that
are equivalent to regular languages, and [9] where a single-agent RM is generated
from a sequential or a partial order plan. However, to the best of our knowledge,
our approach is the first to synthesise individual RMs in a multi-agent setting.

6 Conclusions and Future Work

We have given a procedure to synthesise team reward machines for a cooperative
MARL task from a given ATL specification. As in [12], the team RM is then
decomposed in individual RMs, one per agent in the team, that are used to train
such agents individually. We have provided theoretical bounds on the probability
of the team completing the task after its agents are trained individually, similarly
to what was done in [12]. Empirically, we have shown that the performance we
obtain by using our synthesised RMs is broadly similar to that obtained by using
hand-crafted ones from [12].

One direction for future work would be to investigate whether the use of
multiple or “partially-ordered” strategies improves performance in the multi-
agent setting. The RMs we construct are based on witnesses. Essentially, they
correspond to sequential plans, each of them representing a single strategy. How-
ever, in [9] it was shown that, for single-agent RL, using partial order plans to
construct RMs improves performance. In our approach, this would translate to
having a witness that, instead of representing a single strategy, shows all possible
strategies to achieve the task. In truth, this can already be done in the current
version of MCMAS. While this approach can be easily implemented in a single-
agent setting, it is not as trivial in a multi-agent one due to various reasons, e.g.,
it would require the agents to communicate to decide which plan to follow.

Another future direction would be to investigate non-cooperative RL scenar-
ios. In these cases, ATL could be easily employed to produce a strategy for the
coalition of agents we are interested in. MCMAS, the model checker we used
in this work, is able to generate witnesses for such settings. To the best of our
knowledge, this would also be a novelty in the reward machines literature, as
RMs have never been employed in a non-cooperative multi-agent setting.

Finally, one could consider to enrich the specification language to ATL∗. This
would enable even more flexible specification of tasks and generation of strategies
for several temporal formulas simultaneously.

Synthesising Reward Machines for Cooperative MARL 343

References

1. Alur, R., Henzinger, T.A., Kupferman, O.: Alternating-time temporal logic. J.
ACM 49(5), 672–713 (2002)

2. Boutilier, C.: Planning, learning and coordination in multiagent decision processes.
In: Proceedings of the 6th Conference on Theoretical Aspects of Rationality and
Knowledge, pp. 195–210. Morgan Kaufmann Publishers Inc. (1996)

3. Buşoniu, L., Babuška, R., De Schutter, B.: Multi-agent reinforcement learning: an
overview. In: Srinivasan, D., Jain, L.C. (eds.) Innovations in Multi-Agent Systems
and Applications - 1. Studies in Computational Intelligence, vol. 310, pp. 183–221.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14435-6 7

4. Camacho, A., Toro Icarte, R., Klassen, T.Q., Valenzano, R., McIlraith, S.A.: LTL
and beyond: formal languages for reward function specification in reinforcement
learning. In: Proceedings of the 28th International Joint Conference on Artificial
Intelligence, IJCAI-19, pp. 6065–6073. IJAI (2019)

5. Camacho, A., Toro Icarte, R., Klassen, T.Q., Valenzano, R., McIlraith, S.A.: LTL
and beyond:formal languages for reward function specification in reinforcement
learning. In: Proceedings of the Twenty-Eighth International Joint Conference on
Artificial Intelligence, IJCAI-19, pp. 6065–6073. International Joint Conferences
on Artificial Intelligence Organization (2019). https://doi.org/10.24963/ijcai.2019/
840

6. Ghavamzadeh, M., Mahadevan, S., Makar, R.: Hierarchical multi-agent reinforce-
ment learning. Auton. Agent. Multi-Agent Syst. 13(2), 197–229 (2006)

7. Hernandez-Leal, P., Kaisers, M., Baarslag, T., de Cote, E.M.: A survey of learning
in multiagent environments: dealing with non-stationarity (2019)

8. Hernandez-Leal, P., Kartal, B., Taylor, M.E.: A survey and critique of multia-
gent deep reinforcement learning. Auton. Agent. Multi-Agent Syst. 33(6), 750–797
(2019)

9. Illanes, L., Yan, X., Toro Icarte, R., McIlraith, S.A.: Symbolic plans as high-level
instructions for reinforcement learning. In: Beck, J.C., Buffet, O., Hoffmann, J.,
Karpas, E., Sohrabi, S. (eds.) Proceedings of the Thirtieth International Conference
on Automated Planning and Scheduling (ICAPS 2020), pp. 540–550. AAAI Press
(2020). www.ojs.aaai.org/index.php/ICAPS/article/view/6750

10. Jothimurugan, K., Bansal, S., Bastani, O., Alur, R.: Compositional reinforcement
learning from logical specifications. In: Ranzato, M., Beygelzimer, A., Dauphin, Y.,
Liang, P., Vaughan, J.W. (eds.) Advances in Neural Information Processing Sys-
tems, vol. 34, pp. 10026–10039. Curran Associates, Inc. (2021). www.proceedings.
neurips.cc/paper files/paper/2021/file/531db99cb00833bcd414459069dc7387-Pap
er.pdf

11. Lomuscio, A., Qu, H., Raimondi, F.: MCMAS: an open-source model checker for
the verification of multi-agent systems. Int. J. Softw. Tools Technol. Transfer 19(1),
9–30 (2017)

12. Neary, C., Xu, Z., Wu, B., Topcu, U.: Reward machines for cooperative multi-
agent reinforcement learning. In: Proceedings of the 20th International Conference
on Autonomous Agents and MultiAgent Systems (AAMAS 2021), pp. 934–942.
ACM (2021)

13. Panait, L., Luke, S.: Cooperative multi-agent learning: the state of the art. Auton.
Agent. Multi-Agent Syst. 11(3), 387–434 (2005)

14. Silva, F.L.D., Taylor, M.E., Costa, A.H.R.: Autonomously reusing knowledge in
multiagent reinforcement learning. In: Proceedings of the 27th International Joint

https://doi.org/10.1007/978-3-642-14435-6_7
https://doi.org/10.24963/ijcai.2019/840
https://doi.org/10.24963/ijcai.2019/840
www.ojs.aaai.org/index.php/ICAPS/article/view/6750
www.proceedings.neurips.cc/paper_files/paper/2021/file/531db99cb00833bcd414459069dc7387-Paper.pdf
www.proceedings.neurips.cc/paper_files/paper/2021/file/531db99cb00833bcd414459069dc7387-Paper.pdf
www.proceedings.neurips.cc/paper_files/paper/2021/file/531db99cb00833bcd414459069dc7387-Paper.pdf

344 G. Varricchione et al.

Conference on Artificial Intelligence, IJCAI-18, pp. 5487–5493. International Joint
Conferences on Artificial Intelligence Organization (2018)

15. Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction. MIT press,
Cambridge (2018)

16. Tan, M.: Multi-agent reinforcement learning: independent vs. cooperative agents.
In: In Proceeedings of the 10th International Conference on Machine Learning, pp.
330–337 (1993)

17. Tang, H., et al.: Hierarchical deep multiagent reinforcement learning with temporal
abstraction (2019)

18. Toro Icarte, R., Klassen, T.Q., Valenzano, R., McIlraith, S.A.: Reward machines:
exploiting reward function structure in reinforcement learning. J. Artif. Intell. Res.
73, 173–208 (2022)

19. Toro Icarte, R., Waldie, E., Klassen, T.Q., Valenzano, R.A., Castro, M.P., McIl-
raith, S.A.: Learning reward machines for partially observable reinforcement learn-
ing. In: Advances in Neural Information Processing Systems 32: Annual Conference
on Neural Information Processing Systems 2019, pp. 15497–15508 (2019)

20. Xu, Z., et al.: Joint inference of reward machines and policies for reinforcement
learning. In: Proceedings of the International Conference on Automated Planning
and Scheduling, vol. 30, pp. 590–598 (2020)

21. Yang, J., Borovikov, I., Zha, H.: Hierarchical cooperative multi-agent reinforcement
learning with skill discovery. In: Proceedings of the 19th International Conference
on Autonomous Agents and MultiAgent Systems, pp. 1566–1574. International
Foundation for Autonomous Agents and Multiagent Systems (2020)

22. Zhang, K., Yang, Z., Başar, T.: Multi-agent reinforcement learning: a selective
overview of theories and algorithms. In: Vamvoudakis, K.G., Wan, Y., Lewis, F.L.,
Cansever, D. (eds.) Handbook of Reinforcement Learning and Control. SSDC,
vol. 325, pp. 321–384. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-
60990-0 12

https://doi.org/10.1007/978-3-030-60990-0_12
https://doi.org/10.1007/978-3-030-60990-0_12

Adaptive Cognitive Agents: Updating
Action Descriptions and Plans

Peter Stringer1(B) , Rafael C. Cardoso2 , Clare Dixon1 , Michael Fisher1 ,
and Louise A. Dennis1

1 The University of Manchester, Manchester, UK
{peter.stringer,clare.dixon,michael.fisher,

louise.dennis}@manchester.ac.uk
2 University of Aberdeen, Aberdeen, UK

rafael.cardoso@abdn.ac.uk

Abstract. In this paper we present an extension of Belief-Desire-
Intention agents which can adapt their performance in response to
changes in their environment. We consider situations in which the agent’s
actions no longer perform as anticipated. Our agents maintain explicit
descriptions of the expected behaviour of their actions, are able to track
action performance, learn new action descriptions and patch affected
plans at runtime. Our main contributions are the underlying theoretical
mechanisms for data collection about action performance, the synthesis
of new action descriptions from this data and the integration with plan
reconfiguration. The mechanisms are supported by a practical implemen-
tation to validate the approach.

Keywords: Beliefs-Desires-Intentions · Action Descriptions · AI
Planning

1 Introduction

Long-term autonomy requires autonomous systems to adapt once their capa-
bilities no longer perform as expected. To achieve this, a system must first be
capable of detecting such changes and then adapting its internal reasoning pro-
cesses to accommodate these. For example, deploying an autonomous robot into
a dynamic environment can result in actions becoming unreliable over time, as
the environment changes, producing unexpected outcomes that were unforesee-
able before runtime. The autonomous agent must be capable of observing these
changes and adapting accordingly.

Cognitive agents [6,29,35] have explicit reasons for the choices they make.
These are often described in terms of the agent’s beliefs and goals, which in turn
determine the agent’s intentions. This view of cognitive agents is encapsulated
within the Belief-Desire-Intention (BDI) model [28,29]. Here, beliefs represent
the agent’s (possibly incomplete, possibly incorrect) information about itself,
other agents, and its environment, desires represent the agent’s long-term goals,
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
V. Malvone and A. Murano (Eds.): EUMAS 2023, LNAI 14282, pp. 345–362, 2023.
https://doi.org/10.1007/978-3-031-43264-4_22

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-43264-4_22&domain=pdf
http://orcid.org/0000-0002-8760-4717
http://orcid.org/0000-0001-6666-6954
http://orcid.org/0000-0002-4610-9533
http://orcid.org/0000-0002-0875-3862
http://orcid.org/0000-0003-1426-1896
https://doi.org/10.1007/978-3-031-43264-4_22

346 P. Stringer et al.

while intentions represent the goals that the agent is actively pursuing (the
representation of intentions often includes partially instantiated and/or executed
plans and so combines the goal with its intended means).

Our work focuses on cognitive agents programmed in a Belief-Desire-
Intention (BDI) [30] programming language providing high-level decision mak-
ing in an autonomous system, as outlined in [15]. Programs written in these lan-
guages use plans created in advance by a programmer to select actions to execute
in the environment. These plans make implicit assumptions about the behaviour
of the actions they execute. Therefore, in this context, the challenge becomes
to make these assumptions explicit, detect when they no longer hold, and then
modify the plans accordingly. Most agent programming languages commonly
used for high-level control of autonomous robots, do not support the adaptation
of agent programs at runtime to deal with changes in their environment.

Some of these languages use action descriptions (sometimes referred to as
capabilities in the literature), which consist of explicit pre- and post-conditions
for all known actions. An action’s pre-conditions are the environment conditions
which should hold if an action is to execute correctly, whilst post-conditions are
the expected changes in the environment made as a direct result of the completed
action. We assume the existence of these action descriptions. We also assume that
the cognitive agent is able to determine: when an action has finished executing;
and whether it has met its post-conditions when it does so. These assumptions
allow the system to maintain logs of action performance which can then be
mined to detect patterns of failure. Although not all BDI systems can represent
action descriptions, some do, and so mechanisms and semantics used for such
functionality are discussed in [12,23,33].

Once a failure pattern is detected, we use synthesis methods to update its
action description to reflect its actual behaviour. We can then repair or replace
actions in any existing plans by using an automated planner to construct patches.

Running Example. Consider an agent navigating around a space to visit some
set of waypoints (where, for instance, it needs to perform some kind of inspection
tasks). Examples of this kind are common (see [19,27]). We assume the agent
has a predetermined route to traverse the waypoints—for instance that the robot
should visit waypoint 0, then 1, then 2, then 3 before returning to 0. It also
has actions that encode movement between waypoints (e.g., move(0, 1) moves
the robot from point 0 to point 1). As well as the specific actions needed for
the predetermined route, the agent is also aware that it can move between the
other waypoints (for instance that it can move from point 0, directly to point 3,
move(0, 3) and from point 3 to point 1, move(3, 1)). If, over time, the route
between points 0 and 1 becomes obstructed, we would like the robot to reason
that it can replace the instruction to move from 0 to 1 directly, in its plan, with
an instruction to move from 0 to 3, and then from 3 to 1.

Our contribution, in this work, is a methodology to detect faulty actions,
modify their descriptions and reconfigure BDI plans based on these new descrip-
tions, enabling long term autonomy. Our work applies in general to BDI pro-
gramming languages which allow action descriptions. We have implemented the

Adaptive Cognitive Agents: Updating Action Descriptions and Plans 347

methodology in the Gwendolen programming language as a prototype to exem-
plify the approach.

2 Background and Related Work

Gwendolen is a BDI programming language that contains a number of features
for integrating with autonomous and robotic systems. One of its main distinctive
features is that Gwendolen agents can be verified using a program model-
checker, Agent Java Pathfinder (AJPF) [16]. A full operational semantics for
Gwendolen is presented in [13]. Its key components are, for each agent, a
set of beliefs that are ground first-order formulae and a set of intentions that
are stacks of deeds associated with some event. Deeds can be the addition or
deletion of beliefs, the adoption of new goals, and the execution of primitive
actions. A Gwendolen agent may have several concurrent intentions and will,
by default, execute the first deed on each intention stack in turn. Gwendolen
is event-driven and events include the acquisition of new beliefs (typically via
perception), messages and goals. A programmer supplies plans that describe
how an agent should react to events by extending the deed stack of the relevant
intention. These plans contain actions for execution.

Plans are of the form event : guard <- deeds, where the event is the addi-
tion or deletion of a belief or goal, the guard is a term that is evaluated against
the agent’s belief set and the deeds are transformed into an intention stack if
the event occurs and the guard evaluates to true.

If implemented in Gwendolen, our example of a robot travelling between
waypoints can be represented with the four plans shown in Fig. 1. We use standard
BDI syntax in which ! represents a goal and + denotes the addition of this goal.
The first of these plans states that if a new goal to be at waypoint 1 has been
added (+!at(1)) and the agent currently believes it is at waypoint 0 (B at(0))
then the agent should move to waypoint 1 (move(0, 1)) and adopt the goal to be
at waypoint 2 (+!at(2)) to continue its patrol route. For example, if the robot
starts at waypoint 0 and is sent a goal to reach waypoint 1, then these four plans
will keep the robot patrolling around all four waypoints autonomously.

Fig. 1. Four Gwendolen plans for a patrolling robot.

While all BDI languages have individual features, they have many similari-
ties. In particular the use of plans (sometimes called rules) which have guards
controlling when they apply and then execute some sequence of actions, belief
updates and goal updates is common to many such languages (e.g., Jason [3]
and GOAL [23]).

348 P. Stringer et al.

Some BDI languages also employ action descriptions (sometimes referred to
as capabilities) which have their roots in AI planning and STRIPS operators [18].

Definition 1 (Action Description). We assume a language L of first-order
terms. Action descriptions are a triple {Pre}A{Post} where A is a term in L
representing an action, {Pre} is a set of terms representing the action’s pre-
conditions and {Post} is a set of expressions of the form +t or −t (where t is a
term in L). Note: +t means that the term t should be added to the agent’s belief
base following execution of the action and −t means that the term t should be
removed from the agent’s belief base.

Returning to our example, the action description {at(0)}move(0, 1)
{−at(0),+at(1)} can be associated with the agent action move(0, 1). This has
the pre-condition, {at(0)} (the agent is at waypoint 0), and post-conditions
{−at(0),+at(1)} (the belief that the agent is at waypoint 0 should be removed
and the belief that the agent is at waypoint 1 should be added).

In many languages, actions descriptions are used both to control whether an
action is executed if it appears in a plan (by checking the action’s pre-conditions)
and to directly manipulate the agent’s belief base using the post-conditions with-
out using perception to check whether the action has completed successfully and
established these post-conditions. In some cases it is implicitly assumed that the
low-level action execution process checks post-conditions and so a success signal
is not sent to the agent unless the post-conditions have been achieved.

Action descriptions/capabilities exist in, among others, the GOAL [24] lan-
guage and 2APL [11]. A version of Gwendolen also exists that contains an
implementation of action descriptions [33].

Gwendolen does not use its action descriptions to control action execution
or to update its belief base. Instead it uses the descriptions to make inferences
about action success or failure by comparing the state of the world after an action
execution completes with the state of the world described in the post-conditions.
This allows the agent to react to action failure as well as, more generally, to plan
failure. Gwendolen also tracks the performance of actions over time in an
action log. An example of an action log using the move(0, 1) action is shown in
Fig. 2. This shows a log with two entries. Each entry contains the action name,
a list of the difference in beliefs before and after the action executed, and finally
the outcome for that action once it terminated. The action in Fig. 2 is a move
action from waypoint 0 to waypoint 1. In the first entry, the action is believed to
have succeeded and the change in beliefs is shown as the addition of the belief
at(1) (at waypoint 1) and removal of the belief at(0) which matches the expected
post-conditions for that action. In the second entry, the change in beliefs results
in the agent believing that it is at waypoint 3, not at waypoint 1 as per the
action description, producing a failure as the action outcome.

The action log has a fixed, application specific size, and the oldest entry
is removed before adding a new one, once the log reaches its size limit. The
presence of this action log opens up the possibility of implementing an action
lifecycle [34] inspired by the concept of goal life-cycles for BDI languages [22].

Adaptive Cognitive Agents: Updating Action Descriptions and Plans 349

Fig. 2. Example of an action log with the move(0, 1) action for a Gwendolen agent.

An action lifecycle allows actions which fail or are aborted to be moved into a
suspect state and finally become deprecated following repeated failures.

We’re not aware of any other BDI language that maintains an action log in
this way, but in principle, it should not be difficult to add this functionality to
any language that already supports action descriptions.

The automated planning research community has invested considerable effort
in the modelling of actions with stochastic outcomes, both theoretically as vari-
ants on Markov Decision Procedures [26,36], and practically by capturing such
concepts in planners (e.g. [9]) and domain description languages such as in the
Planning Domain Definition Language (PDDL) 2.1 [20]. This community deploys
action descriptions to flexibly plan on-the-fly for each new goal which avoids the
problem faced in BDI languages that an action whose behaviour has changed
may result in failing, and therefore useless, plans. The use of a BDI language,
with its programmer supplied plans, presumes that bespoke planning for every
new goal is undesirable (usually for reasons of efficiency, but also for verifiabil-
ity). Our approach exploits AI planning techniques to patch the plans that fail
as a result of action failure, but seeks to minimize the amount of planning that
actually takes place.

Plan failure has been extensively researched in BDI programming languages
(e.g., [4,17,31]), however, it has not been linked with action descriptions perhaps
because most languages do not use action descriptions as a mechanism to detect
action failure. The closest work to our own is in [22] with a proposal for BDI
goal life-cycles.

A key component of our approach is synthesising or learning a new action
description when an action ceases to perform as expected. We presume this
arises because of the dynamic environment in which the agent is operating.
Using algorithms to discover the effects of actions has been explored in the AI
Planning domain [2]. Most of the resulting techniques operate in environments
where it is assumed multiple action descriptions need to be learned at the same
time and that the action descriptions themselves have not been changing during
the learning period. We have based our approach on ideas from [10] and [21] in
which new action descriptions are learned from traces of action behaviour with
a weighting mechanism used to guide choice of additions and deletions to the
constructed action post-condition.

After learning/synthesizing a new (or updated) action description, it is nec-
essary to refactor the plans from the plan library. The process of updating plans
of execution based on a set of conditions (failure or new information) is often

350 P. Stringer et al.

referred to as reconfigurability, and it has been frequently applied in the robotics
and manufacturing industry [1,5,8,32]. A mechanism for plan library reconfig-
urability combining BDI agents and automated planning was presented in [7],
but it has no account for how failure is detected, and simply ignores the action
that caused the failure in subsequent reconfigurations. We leverage this work in
ours, if an action is deprecated by the action lifecycle, then any plans involving
that action are patched using the mechanism from [7].

To the best of our knowledge, there is no end-to-end framework in cognitive
agents for updating action descriptions and patching the associated plans such
as is presented here.

3 Framework

Our starting point is the system architecture outlined in [15] in which a cognitive
agent performs high-level mission reasoning, such as deciding in which order some
set of waypoints are to be visited. In order to do this, it takes input from sub-
systems for processing sensor data into high-level concepts such as the location of
obstacles, and outputs instructions (actions) to control systems such as those for
navigation and path planning. This is shown in Fig. 3 together with the action
log component that tracks action performance.

Fig. 3. System architecture overview.

Cognitive agents generally employ a reasoning cycle which governs a sense-
reason-act process. The action log integrates with the act phase and compares
the outcomes of executed actions to the post-conditions described in the action’s
description. If the post-conditions are successful, then a success is logged, and if
they are not a failure is logged. In all situations the action log also records the
changes in beliefs from the moment when the action was executed, to the moment
when it succeeded or failed. These changes are stored as a list of expressions of the
form +t or −t where t is a term—that is, in the same format as post-conditions
in action descriptions.

Adaptive Cognitive Agents: Updating Action Descriptions and Plans 351

Figure 4 shows five entries in an action log. When a new entry is made by
an agent following an action execution, the size of the log is checked against the
predefined size limit. If the size limit has been reached, then the oldest entry
is removed (from the top of the list in this example) before the new entry is
added to the bottom. In this case a single action success has been experienced
for the move(0, 1) action, followed by four failures. These failures might be
caused by, for instance, some obstacle appearing in the path between waypoints
0 and 1. Attempts by the agent to move around the obstacle, using low-level
obstacle avoidance techniques have led consistently to the agent finding itself at
waypoint 3, each time this action is executed in the route goal.

The agent is able to navigate the rest of the route in this example but finds
that the move(0, 1) action leads the agent to believe they have reached way-
point 3, and when executing this action during the next four iterations of the
route, the same outcome is recorded.

Our framework extends action descriptions to include a failure threshold (Def-
inition 2).

Definition 2 (Action Description (modified)). Action descriptions are a
tuple {Pre}A{Post}[n] where A, {Pre} and {Post} are as described in Defini-
tion 1 and n is a positive integer representing a failure threshold.

If the number of failures for the action in the action log exceeds the failure
threshold, then the action becomes deprecated. Note that the action log should
be of fixed length, so that an action can not become deprecated as the result
of a slow build up of occasional failure over time. It only becomes deprecated if
its recent failures have exceeded the threshold. The definition of recent should
be application specific to account for speed with which change/degradation is
anticipated in the environment. The threshold should be specific to the action
itself, since some actions are naturally more failure prone than others for reasons
that may be external to the action itself. Our tolerance of failure therefore varies
depending upon the action.

We extend the act phase of the reasoning so that after the execution of
an action, the action log is consulted. If the most recent action has not become

Fig. 4. Example of detecting failures in an action log with size limit equal to 5. The
next new entry will be added to the bottom row and the first row would be removed.

352 P. Stringer et al.

deprecated the cycle continues as before. If it has become deprecated, then a new
action description is synthesized from the information in the log and relevant
plans are patched before the agent continues to the sense phase. This reasoning
cycle is shown in Fig. 5.

Fig. 5. Extended Sense-Reason-Act cycle to account for action deprecation, synthesis
of new action descriptions, and the patching of plans.

We synthesize a new action description by extracting, from the action log,
all the failed instances of the deprecated action. We then have a list (prob-
ably containing duplicates, as can be observed from Fig. 4) of new candidate
post-conditions for the action in the form of the change in beliefs as the action
executed. Each item in this list is assigned a weight score based on how recent
the item is. The weights for identical items are then summed and that with the
highest score selected as the new post-condition for the action. Pseudo-code for
this process is shown in Algorithm 1. Line 2 instantiates the initial weight score
(n) to 1, and in Line 3 it sets post scores to an empty map. Lines 4–7 will loop
through every entry in the action log to find entries that match with the dep-
recated action (same action) and where the outcome of the entry was reported
as a failure. When this happens, the post-conditions of the action are added to
the post scores map along with the weight score, which is then incremented by
one for the future iterations of the action log. In line 8 we initialise best with 0.
Lines 9–11 iterate over the keys in the post scores map to select the candidate
post-condition with the highest weight score.

If we consider the action log in Fig. 4 and suppose our failure threshold is
four, then the agent’s ‘act’ phase should now attempt to synthesize a new action
description from the log. It extracts the list of failures which contains four items
all of which have identical new post-conditions—namely {+at(3),−at(0)}. This
therefore becomes the new post-condition for the action move(0, 1).

Adaptive Cognitive Agents: Updating Action Descriptions and Plans 353

Algorithm 1: Algorithm for synthesizing post-conditions when an action
is detected to be deprecated.
1 if action is deprecated then
2 n ← 1;
3 post scores ← {} // map of post-conditions to scores

4 for entry ∈ action log do
// NB. the action log consists of tuples (action, change in

beliefs, outcome)

5 if entry[0] = action & entry[2] = Failure then
6 post scores[entry[1]] ← post scores[entry[1]] + n;
7 n ← n + 1

8 best ← 0;
9 for post ∈ keys(post scores) do

10 if post scores[post] > best then
11 best ← post

However, suppose the action log is more variable. Initially, attempts to avoid
the obstacle between 0 and 1 resulted in the agent arriving at waypoint 3, but
suppose the obstacle has become more serious—perhaps sand and debris is piling
up as the result of storms—and now the low-level movement behaviour causes an
abort that returns the agent to waypoint 0. This results in the action log in Fig. 6.

Fig. 6. Example of an action log with variable post-conditions for the same action
(move(0, 1)).

Figure 7 shows this action log extracted into a list of candidate post-
conditions, weighted by how recent they are.

Of the two candidate post-conditions {+at(3),−at(0)} has a total weight of 3,
while {} (no change) has a total weight of 7. Therefore the empty post-condition
is selected for the new action description.

Once a new action description is stored, we are able to use a plan reconfig-
uration mechanism to patch any plans containing the action. The work in [7]
describes how an AI planning problem can be extracted from a failed action by
a process of:

354 P. Stringer et al.

Fig. 7. Post-conditions extracted from Fig. 6, added with their respective weights which
are calculated based on how recent they are.

Fig. 8. Gwendolen reasoning cycle. Our additions are shown with dashed lines and
stages we have modified are shown with dotted lines.

1. using the failed action’s pre- and post-conditions as initial and goal states
respectively for the planning problem; and

2. using the set of all other action descriptions as an action model for the planner.

This planning problem can then be solved to create a “patch” for any BDI plan
containing the failed action. Our framework uses this mechanism with a slight
modification. We only seek to replace an action once it has become deprecated
(i.e., after some pre-defined number of failures). The set of action descriptions
sent to the planner is then created from the agent’s current set of action descrip-
tions, including the newly learned description of the deprecated action.

In our example, let us assume that our move(0,1) action has become
deprecated. Attempts to move from waypoint 0 to waypoint 1 now result
in the agent arriving at waypoint 3 (based on the action log from Fig. 4.
A STRIPS-type planner [18] is called with the updated action descriptions
and an initial planning state—at(0) (the agent is at waypoint 0)—and
goal state—at(1) & ¬ at(0) (the agent should end up at waypoint 1)—
created from the pre- and post-conditions of move(0, 1). Among other action
descriptions the planner has the new description for move(0,1) available

Adaptive Cognitive Agents: Updating Action Descriptions and Plans 355

({at(0)}move(0, 1){−at(0),+at(3)}[4] with [4] representing the failure thresh-
old of the action) as well as an action describing a move from waypoint 3 to
1 ({at(3)}move(3, 1){−at(3),+at(1)}[4]). It is straightforward for the plan-
ner to create the plan move(0,1),move(3,1) to solve this problem (note that
move(0,1) now takes us to waypoint 3, not waypoint 1). If we were using plans
similar to the Gwendolen plans1 shown in Fig. 1, this means that the plan
+!at(1):{at(0)} <- move(0, 1), +!at(2) contains our deprecated action and
will not succeed in moving the agent to waypoint 1. This patch produced by the
planner, replaces the appearance of move(0, 1) in the original plan producing
the new plan: +!at(1):{at(0)} <- move(0, 1), move(3, 1), +!at(2) which
is stored for reuse.

4 Implementation

We implemented our framework in the version of the Gwendolen programming
language that creates an action log of action success and failure using action
descriptions [33].2

We extended the Gwendolen reasoning cycle with a synthesize stage (Stage
D1) and a reconfigure stage (Stage D2) which are executed after Gwendolen’s
equivalent of the act phase which is called Stage D. This reconfigure stage uses
the action log to synthesize new action descriptions and then uses these to patch
the agent’s plans. Our extended Gwendolen reasoning cycle is shown in Fig. 8
with our additions shown using dashes.

After Stage D (when actions are executed), the last entry of the action log
is checked. If it is an entry for anything other than an action failure nothing
further happens, no action becomes deprecated, and the cycle continues to Stage
E. However, if it is an entry for an action that has failed, the number of entries
containing a failure for this specific action is checked against its failure threshold.
Note that the threshold value of an action is domain specific. If the threshold
has been reached, the reasoning cycle moves to the new Stage D1 in which a
new action description will be learned and then to Stage D2 where plans will be
patched.

A fixed length action log may not capture rare, but still consistent, failures, as
the oldest entry is removed when new entries are recorded. A more sophisticated
failure threshold could be developed to measure the significance of each failure
regardless of frequency and act accordingly, although this case was not considered
in the current implementation.

There is also scope for further development to allow greater refinement of fail-
ure thresholds, which is not limited to just failure frequency. In the current state,
the punishment for assigning an inappropriate threshold is not considerable, as
agents would quickly reach the threshold again to correct the action description
back to the original description. This is the current state of managing incorrect
1 As noted, many BDI formalisms represent plans in a very similar fashion, so although

we use a Gwendolen plan as an example here, the technique is general.
2 Code available at https://github.com/mcapl/mcapl/tree/reconfig eumas.

https://github.com/mcapl/mcapl/tree/reconfig_eumas

356 P. Stringer et al.

failure detections. However, this method is wholly reliant upon accurate agent
perception of the environment and actions could produce further failures if the
agent wrongly believes pre-conditions for actions. This system works under the
assumption that the agent’s perception of the environment remains accurate.
Further testing and deployment into a realistic scenario would be required to
improve on the current implementation.

Once a new action description is stored we are able to use plan reconfiguration
mechanism from [7]. This extracts all the action descriptions from the agent
and translates them into STRIPS operators [18]. Let, {Pre}a{Post}[n] be the
old action description for the failed action a. The reconfiguration mechanism
computes initial and goal states for a planning problem from {Pre} and {Post}.
This planning problem is then given to a STRIPS planner together with the
STRIPS operators of the agent’s plan descriptions. If the planner computes a
new plan this is translated into a sequence of Gwendolen actions, al, this
sequence replaces a everywhere it appears in the agent’s plans.

5 Evaluation

We evaluated our approach on a variation of the “waypoint patrol” example
we have been using throughout the paper. Our environment consisted of five
waypoints and our agent had a plan for a patrol mission to visit each waypoint
in turn. The Gwendolen plan was:

+!at(4):{at(0)} <- move(0, 1),

move(1, 2),

move(2, 3),

move(3, 4);

Each move action had a description of the form:

{at(X)}move(X, Y){−at(X),+at(Y)}
(e.g., {at(1)}move(1, 2){−at(1),+at(2)}. We varied the number of action
descriptions for ‘move’ actions available to the agent. The agent always had
descriptions for the four actions in the plan (i.e., move(0, 1), move(1, 2),
move(2, 3), move(3, 4)—we refer to these as the fixed actions), but also had
a random selection of other ‘move’ actions between the five waypoints—we refer
to these as the variable actions. Figure 9 illustrates this, with the fixed move
actions shown by solid lines and the variable move actions shown by dashed
lines.

We generated random instances of this scenario varying the probability that
each of the variable ‘move’ actions was available. The table presented in Fig. 10
shows how many times (out of ten runs) our framework successfully managed
to patch the plan in the event that the move(0, 1) action resulted in the agent
finding itself at waypoint 2 rather than waypoint 1.

As is to be expected, we can see that as the number of potential alternative
actions increases, so does the chance of successfully patching the failing plan.

Adaptive Cognitive Agents: Updating Action Descriptions and Plans 357

Fig. 9. Waypoint environment. Dashed arrows indicate variable actions only available
in some instantiations of the problem.

Fig. 10. First row represents the probability for each extra move route to be available in
the execution. Second row contains the results for how many times our implementation
managed to successfully patch a plan when the action move(0, 1) action was deprecated
resulting in a move to waypoint 2, rather than waypoint 1

In particular, once more than 50% of the edges in the graph are available as
actions, there is a high chance that the agent will be able to synthesize a patch
for its plans.

When there was only a 10% probability of each variable action being avail-
able, the reconfigured plan, when it could be generated, tended to be quite long.
For instance, in one instance, the only variable action available at runtime was
the move(3, 1) action. This resulted in a patch were move(0, 1) was replaced
by the sequence move(0, 1), move(2, 3), move(3, 1) (recall that move(0,
1) is now resulting in a move to waypoint 2). This resulted in the patched plan:

+!at(4):{at(0)} <- move(0, 1),

move(2, 3),

move(3, 1),

move(1, 2),

move(2, 3),

move(3, 4);

The shortest possible plan patch, can be achieved for when the move(2, 1)
action is available to the planner. When possible, the planner always opts for
the plan with the lowest “cost” that can achieve the provided goal state. We
modelled the plan cost simply as the total number of actions in the plan. In our
scenario this provides a good estimation for the lowest cost (in terms of resources
consumed by the agent in order to execute the plan) since all of the actions are

358 P. Stringer et al.

similar, though this would not necessarily hold true for other action models.
This costing approach explains why we tended to generate shorter patches when
more actions were available.

6 Discussion and Future Work

One major aspect of future work is to adapt the framework to manage action
descriptions containing variables. Many BDI languages use variables and unifica-
tion in plans, to enable one plan to apply in many situations depending upon the
instantiation of its parameters. There are two aspects to this challenge. Firstly
when an action is executed in a BDI language, it is almost always the case that
its variable parameters are instantiated—so although we might have an action
description of the form {at(X)}move(X, Y){−at(X),+at(Y)} where X and Y
are variables, it is only ever called as, say move(0, 1) or move(1, 2). Therefore
the process of synthesizing new descriptions from the action log will need to
utilize generalisation techniques to abstract from concrete log entries to abstract
descriptions. It may also be necessary to split action descriptions by synthesizing
new pre-conditions indicating that, in some situations the action still behaves
as originally assumed, but in others it does not. Secondly, STRIPS-type plan-
ners, while they frequently use action descriptions that contain variable param-
eters, do not generally plan using initial and goal states that contain variables.
This includes the planner embedded in the implementation we used from [7]—
therefore this planner would need to be replaced with one capable of handling
variables in initial states and goals. The work in [25] contains simple examples
that might be adapted for this use.

We would also like to introduce more sophistication into the algorithm for
learning new action descriptions. At present all changes in beliefs after an action
execution are treated as one group. Consider a situation where two robots are
both working in an area. Sometimes, after moving between waypoints the agent
also perceives the presence of the second robot. In this case the current action
log would sometimes record {+at(1),−at(0),+second robot} as the belief change
and sometimes record {+at(1),−at(0)}. Algorithm 1 treats these entirely sep-
arately and is unable to recognise that +at(1) and −at(0) occur in both. We
anticipate that weighting each term appearing in the set of belief changes indi-
vidually, rather than as a group, would enable the construction of post-conditions
that better reflected the actual action behaviour.

At present the planning problem sent to the STRIPS planner is formulated
from the description of the failed action alone and does not account for the
context in which the action appears. Many BDI plans are expressed in terms
of some guard, which can be considered a pre-condition for the whole plan, and
a goal which can be considered a goal state for the plan. We would like to
use techniques such as regression planning to infer from the plan’s guard and
goal, and the pre-conditions and post-conditions of any other actions in the
plan, what the actual state of the agent is likely to be at the point the failed
action was executed and which of the failed action’s post-conditions were actually

Adaptive Cognitive Agents: Updating Action Descriptions and Plans 359

necessary in order to achieve the goal of the plan. This introduces more flexibility
into the patching mechanism, allowing plans to be patched even if an exact
replacement for the failing action could not be found. It also reduces the risk that
the computed patch might contain additional post-conditions that will break the
plan—for instance, suppose our failed action is {pr1}a1{+po2} and the computed
patch is a2, a3 where a3’s post-condition is {+po1,+po3}. Now consider a plan
e:guard < −a1,a4 where the description of a4 is {¬po3}a4{+po4}. If we replace
a1 in this plan with our patch then a4 will no longer be applicable and the plan
will break. More context-sensitive construction of the planning problem should
be able to account for this and avoid creating a patch that will break the plan.

The use of the Gwendolen language which is linked to the AJPF
model-checking tool and the Model-Checking Agent Programming Languages
(MCAPL) framework [14], opens the possibility of verifying the patched plans
produced by our framework. While we are interested in exploring this idea,
the AJPF model-checker typically performs verification very slowly. If the agent
existed in an environment where there were periods of inactivity, then it would be
possible for re-verification to take place to ensure that the agent’s plans contin-
ued to adhere to any specified properties, but in an environment where patching
needs to occur quickly then this may not be feasible. If the reconfiguration mech-
anism was adapted, as suggested above, to be sensitive to the context in which an
action was invoked then it should be possible to establish idealised results about
the safety of patches, at least in environments where the only things changing
the environment are the agent’s own actions. It might also be possible to treat
actions appearing in plans as sequences of abstract actions of length up to l,
with the abstract actions having no specified behaviour during verification. This
forces the verification to consider all possible action outcomes, allowing plans to
be patched with any sequence of actions of length less than l, but the resulting
state space for verification is likely to be unwieldy and include consideration of
many action outcomes that are either unlikely or impossible, forcing, in turn,
the inclusion of fail-safe plans within the agent to handle behaviour that can
never occur resulting in “crufty” code.

The extent to which long-term autonomy can be achieved through the gen-
eration of amended action descriptions and the patching of plans is an open
question. Scenarios such as we have presented involving navigation around way-
points linked in a graph structure are relatively common, and it is reasonable to
suppose that over time paths between waypoints might alter. What is unknown
is how common it is that changes in the environment or robot capabilities can
be compensated for by combinations of (adapted) actions and how common it is
that action degradation simply results in a robot that can not usefully perform
its mission. It is likely that the proposed framework would need to be combined
with mechanisms for weakening mission specifications, for instance, by dropping
some goals that were no longer obtainable, while continuing to pursue others.

We have presented here the over-arching template of a framework for adapt-
ing BDI agent plans in the face of changed action behaviour. With the additions
from the future work described, the framework in this paper should be capable

360 P. Stringer et al.

of handling larger scenarios with greater complexity. Also, introducing multiple
agents to the scenario undoubtedly increases the complexity of the situation,
although this also opens the opportunity for agents to collaborate and share
action descriptions.

Acknowledgements. This work has been supported by The University of Manch-
ester’s Department of Computer Science and the EPSRC “Robotics and AI for Nuclear”
(EP/R026084/1), “Future AI and Robotics for Space” (EP/R026092/1), and Compu-
tational Agent Responsibility (EP/W01081X/1) Hubs and the TAS Verifiability Node
(EP/V026801). During the course of this work, Michael Fisher was supported by the
Royal Academy of Engineering.

References

1. Antzoulatos, N., Castro, E., de Silva, L., Rocha, A.D., Ratchev, S., Barata, J.: A
multi-agent framework for capability-based reconfiguration of industrial assembly
systems. Int. J. Prod. Res. 55(10), 2950–2960 (2017)

2. Arora, A., Fiorino, H., Pellier, D., Etivier, M., Pesty, S.: A review of learning
planning action models. Knowl. Eng. Rev. 33, e20 (2018)

3. Bordini, R.H., ubner, J.F.H., Wooldridge, M.: Programming Multi-agent Systems
in AgentSpeak Using Jason (2007)

4. Bordini, R.H., Hübner, J.F.: Semantics for the Jason variant of AgentSpeak (plan
failure and some internal actions). In: ECAI, pp. 635–640. IOS Press (2010).
https://doi.org/10.3233/978-1-60750-606-5-635

5. Borgo, S., Cesta, A., Orlandini, A., Umbrico, A.: A planning-based architecture
for a reconfigurable manufacturing system. In: Proceedings of the Twenty-Sixth
International Conference on International Conference on Automated Planning and
Scheduling, ICAPS 2016, pp. 358–366. AAAI Press, London (2016)

6. Bratman, M.E.: Intentions, Plans, and Practical Reason. Harvard University Press,
Cambridge (1987)

7. Cardoso, R.C., Dennis, L.A., Fisher, M.: Plan library reconfigurability in BDI
agents. In: Dennis, L.A., Bordini, R.H., Lespérance, Y. (eds.) EMAS 2019. LNCS
(LNAI), vol. 12058, pp. 195–212. Springer, Cham (2020). https://doi.org/10.1007/
978-3-030-51417-4 10

8. Chen, I.M., Yang, G., Yeo, S.H.: Automatic modeling for modular reconfigurable
robotic systems: theory and practice. In: Cubero, S. (ed.) Industrial Robotics, chap.
2. IntechOpen, Rijeka (2006)

9. Cirillo, M., Karlsson, L., Saffiotti, A.: Human-aware task-planning: an application
to mobile robots. ACM Trans. Intell. Syst. Technol. 1(2), 15 (2010)

10. Cohen, P.R., Feigenbaum, E.A.: The Handbook of Artificial Intelligence: Volume
3, vol. 3. Butterworth-Heinemann (2014)

11. Dastani, M.: 2APL: a practical agent programming language. Auton. Agent. Multi-
Agent Syst. 16, 214–248 (2008). https://doi.org/10.1007/s10458-008-9036-y

12. Dastani, M., van Birna Riemsdijk, M., Meyer, J.-J.C.: Programming multi-agent
systems in 3APL. In: Bordini, R.H., Dastani, M., Dix, J., El Fallah Seghrouchni, A.
(eds.) Multi-Agent Programming. MSASSO, vol. 15, pp. 39–67. Springer, Boston,
MA (2005). https://doi.org/10.1007/0-387-26350-0 2

13. Dennis, L.A.: Gwendolen semantics: 2017. Technical report ULCS-17-001, Univer-
sity of Liverpool, Department of Computer Science (2017)

https://doi.org/10.3233/978-1-60750-606-5-635
https://doi.org/10.1007/978-3-030-51417-4_10
https://doi.org/10.1007/978-3-030-51417-4_10
https://doi.org/10.1007/s10458-008-9036-y
https://doi.org/10.1007/0-387-26350-0_2

Adaptive Cognitive Agents: Updating Action Descriptions and Plans 361

14. Dennis, L.A.: The MCAPL framework including the agent infrastructure layer and
agent java pathfinder. J. Open Sour. Softw. 3(24), 617 (2018)

15. Dennis, L.A., Fisher, M., Lincoln, N.K., Lisitsa, A., Veres, S.M.: Practical verifica-
tion of decision-making in agent-based autonomous systems. Autom. Softw. Eng.
23(3), 305–359 (2016)

16. Dennis, L.A., Fisher, M., Webster, M.P., Bordini, R.H.: Model checking agent
programming languages. Autom. Softw. Eng. 19(1), 5–63 (2012). https://doi.org/
10.1007/s10515-011-0088-x

17. Ferrando, A., Cardoso, R.C.: Safety shields, an automated failure handling mech-
anism for BDI agents. In: Proceedings of the 21st International Conference on
Autonomous Agents and Multiagent Systems, AAMAS 2022, pp. 1589–1591. Inter-
national Foundation for Autonomous Agents and Multiagent Systems, Richland
(2022). www.ifaamas.org/Proceedings/aamas2022/pdfs/p1589.pdf

18. Fikes, R.E., Nilsson, N.J.: Strips: a new approach to the application of
theorem proving to problem solving. Artif. Intell. 2(3), 189–208 (1971).
https://doi.org/10.1016/0004-3702(71)90010-5, www.sciencedirect.com/science/
article/pii/0004370271900105

19. Fisher, M., et al.: An overview of verification and validation challenges for inspec-
tion robots. Robotics 10(2) (2021). https://doi.org/10.3390/robotics10020067,
www.mdpi.com/2218-6581/10/2/67

20. Fox, M., Long, D.: PDDL2.1: an extension to PDDL for expressing temporal plan-
ning domains. JAIR 20, 61–124 (2003)

21. Guerra-Hernández, A., El Fallah-Seghrouchni, A., Soldano, H.: Learning in BDI
multi-agent systems. In: Dix, J., Leite, J. (eds.) CLIMA 2004. LNCS (LNAI),
vol. 3259, pp. 218–233. Springer, Heidelberg (2004). https://doi.org/10.1007/978-
3-540-30200-1 12

22. Harland, J., Morley, D.N., Thangarajah, J., Yorke-Smith, N.: An operational
semantics for the goal life-cycle in BDI agents. Auton. Agent. Multi-Agent Syst.
28(4), 682–719 (2014). https://doi.org/10.1007/s10458-013-9238-9

23. Hindriks, K.V.: Programming rational agents in GOAL. In: El Fallah Seghrouchni,
A., Dix, J., Dastani, M., Bordini, R.H. (eds.) Multi-Agent Programming, pp. 119–
157. Springer, Boston (2009). https://doi.org/10.1007/978-0-387-89299-3 4

24. Hindriks, K.V.: Programming cognitive agents in goal (2021)
25. Luger, G.F.: Artificial Intelligence: Structures and Strategies for Complex Problem

Solving, 6th edn. Addison-Wesley Publishing Company, USA (2008)
26. Mausam, Weld, D.S.: Planning with durative actions in stochastic domains. JAIR

31, 33–82 (2008)
27. Menghi, C., Tsigkanos, C., Pelliccione, P., Ghezzi, C., Berger, T.: Specification

patterns for robotic missions. IEEE Trans. Softw. Eng. 47(10), 2208–2224 (2021).
https://doi.org/10.1109/TSE.2019.2945329

28. Rao, A.S., Georgeff, M.P.: Modeling agents within a BDI-architecture. In: Proceed-
ings of the 2nd International Conference on Principles of Knowledge Representation
and Reasoning (KR&R), pp. 473–484. Morgan Kaufmann (1991)

29. Rao, A.S., Georgeff, M.P.: An abstract architecture for rational agents. In: Proceed-
ings of the 3rd International Conference on Principles of Knowledge Representation
and Reasoning (KR&R), pp. 439–449. Morgan Kaufmann (1992)

30. Rao, A.S., Georgeff, M.P.: An abstract architecture for rational agents. KR 92,
439–449 (1992)

31. Sardina, S., Padgham, L.: A BDI agent programming language with failure han-
dling, declarative goals, and planning. Auton. Agent. Multi-Agent Syst. 23(1),
18–70 (2011)

https://doi.org/10.1007/s10515-011-0088-x
https://doi.org/10.1007/s10515-011-0088-x
www.ifaamas.org/Proceedings/aamas2022/pdfs/p1589.pdf
https://doi.org/10.1016/0004-3702(71)90010-5
www.sciencedirect.com/science/article/pii/0004370271900105
www.sciencedirect.com/science/article/pii/0004370271900105
https://doi.org/10.3390/robotics10020067
www.mdpi.com/2218-6581/10/2/67
https://doi.org/10.1007/978-3-540-30200-1_12
https://doi.org/10.1007/978-3-540-30200-1_12
https://doi.org/10.1007/s10458-013-9238-9
https://doi.org/10.1007/978-0-387-89299-3_4
https://doi.org/10.1109/TSE.2019.2945329

362 P. Stringer et al.

32. Støy, K., Brandt, D., Christensen, D.J.: Self-reconfigurable Robots. MIT Press,
Cambridge (2010)

33. Stringer, P., Cardoso, R.C., Dixon, C., Dennis, L.A.: Implementing durative actions
with failure detection in GWENDOLEN. In: Alechina, N., Baldoni, M., Logan,
B. (eds.) EMAS 2021. LNCS, vol. 13190, pp. 332–351. Springer, Cham (2022).
https://doi.org/10.1007/978-3-030-97457-2 19

34. Stringer, P., Cardoso, R.C., Huang, X., Dennis, L.A.: Adaptable and verifiable BDI
reasoning. In: Cardoso, R.C., Ferrando, A., Briola, D., Menghi, C., Ahlbrecht, T.
(eds.) Proceedings of the First Workshop on Agents and Robots for reliable Engi-
neered Autonomy, Virtual event, 4th September 2020. Electronic Proceedings in
Theoretical Computer Science, vol. 319, pp. 117–125. Open Publishing Association
(2020). https://doi.org/10.4204/EPTCS.319.9

35. Wooldridge, M., Rao, A. (eds.): Foundations of Rational Agency. Applied Logic
Series. Kluwer Academic Publishers (1999)

36. Younes, H.L.A., Simmons, R.G.: Solving generalized semi-Markov decision pro-
cesses using continuous phase-type distributions. In: Proceedings of the AAAI, pp.
742–747. AAAI Press (2004)

https://doi.org/10.1007/978-3-030-97457-2_19
https://doi.org/10.4204/EPTCS.319.9

Pretty Good Strategies and Where
to Find Them

Wojciech Jamroga1,2 and Damian Kurpiewski2,3(B)

1 Interdisciplinary Centre for Security, Reliability and Trust, SnT,
University of Luxembourg, Esch-sur-Alzette, Luxembourg

2 Institute of Computer Science, Polish Academy of Sciences, Warsaw, Poland
d.kurpiewski@ipipan.waw.pl

3 Faculty of Mathematics and Computer Science, Nicolaus Copernicus University,
Toruń, Poland

Abstract. Synthesis of bulletproof strategies in imperfect information
scenarios is a notoriously hard problem. In this paper, we suggest that
it is sometimes a viable alternative to aim at “reasonably good” strate-
gies instead. This makes sense not only when an ideal strategy cannot
be found due to the complexity of the problem, but also when no win-
ning strategy exists at all. We propose an algorithm for synthesis of such
“pretty good” strategies. The idea is to first generate a surely winning
strategy with perfect information, and then iteratively improve it with
respect to two criteria of dominance: one based on the amount of conflict-
ing decisions in the strategy, and the other related to the tightness of its
outcome set. We focus on reachability goals and evaluate the algorithm
experimentally with very promising results.

Keywords: Strategy synthesis · imperfect information ·
alternating-time temporal logic · model checking

1 Introduction

As the systems around us become more complex, and at the same time more
autonomous, the need for unambiguous specification and automated verifica-
tion rapidly increases. Many relevant properties of multi-agent systems refer to
strategic abilities of agents and their groups. For example, functionality require-
ments can be often understood in terms of the user’s ability to complete the
selected tasks. Similarly, many security properties boil down to inability of the
intruder to obtain his goals. Logics of strategic reasoning provide powerful tools
to reason about such aspects of MAS [3,7,8,29,40,45]. A typical property that
can be expressed says that the group of agents A has a collective strategy to
enforce temporal property ϕ, no matter what the other agents in the system do.
In other words, A have a “winning strategy” that achieves ϕ on all its possible
execution paths.

Specifications in agent logics can be then used as input to model checking,
which makes it possible to verify the correct behavior of a multi-agent system by
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
V. Malvone and A. Murano (Eds.): EUMAS 2023, LNAI 14282, pp. 363–380, 2023.
https://doi.org/10.1007/978-3-031-43264-4_23

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-43264-4_23&domain=pdf
https://doi.org/10.1007/978-3-031-43264-4_23

364 W. Jamroga and D. Kurpiewski

an automatic tool [1,18,19,22,27,34,36,37]. Moreover, model checking of strate-
gic formulas typically relies on synthesis of a suitable strategy to demonstrate
that such a strategy exists.

Verification and reasoning about strategic abilities is difficult for a number
of reasons. The prohibitive complexity of model checking and strategy synthe-
sis is a well known factor [7,8,10,26,39]. This can be overcome to some degree
by using efficient symbolic methods and data structures [9,13,27,44]. However,
real-life agents typically have limited capabilities of observation, action, and
reasoning. That brings additional challenges. First, the theoretical complexity of
model checking for imperfect information strategies (sometimes called uniform
strategies) ranges from NP–complete to undecidable [10,25,45], depending on
the precise setup of the problem. Secondly, practical attempts at verification suf-
fer from state-space and transition-space explosion. Thirdly, there is no simple
fixed-point characterisation of typical properties [12,24]. As a consequence of the
latter, most approaches to synthesis and verification boil down, in the worst case,
to checking all the possible strategies [16,17,35,38,43]. Unfortunately, the strat-
egy space is huge – usually larger than the state space by orders of magnitude,
which makes brute-force search hopeless.

An interesting attempt at heuristic search through the strategy space has
been proposed in [35]. There, a concept of domination between strategies was
introduced, based on the “tightness” of the outcome sets induced by the strate-
gies. Formally, strategy s dominates s′ if the set of possible executions of s is
a strict subset of the executions of s′. The intuition is that those strategies are
better which give the agent a better grip on what is going to happen, and better
reduce the nondeterminism of the system. Then, the authors of [35] proposed
an algorithm for synthesis of uniform strategies, based on depth-first search
through the strategy space with simultaneous optimization of dominated par-
tial strategies. The algorithm, dubbed DominoDFS, performed with considerable
success on several benchmarks. This might have had two related reasons. First,
restricting the set of successor states reduces the possibility of encountering a
“bad” successor further on. Perhaps even more importantly, it reduces the space
of reachable states, and hence has the potential to considerably speed up the
computation.

In this paper, we take the idea of dominance-based optimization, and apply
it from a completely different angle. Most importantly, we propose that search-
ing for a “reasonably good” strategy is sometimes a viable alternative to the
search for an ideal one (where “ideal” means a surely winning imperfect infor-
mation strategy). This obviously makes sense when no winning strategy exists,
but also when an ideal strategy cannot be found due to the complexity of the
problem. Moreover, we propose a procedure for synthesis of such “pretty good”
strategies. The algorithm starts with generating a surely winning strategy with
perfect information. Then, it iteratively improves it with respect to two criteria
of dominance: one based on the amount of conflicting decisions in the strategy,
and the other related to the tightness of its outcome set. It is worth noting that

Pretty Good Strategies and Where to Find Them 365

this is an anytime algorithm. Thus, it always returns some strategy, provided
that a perfect information strategy has been generated in the first phase.

We evaluate the algorithm experimentally on randomly generated concur-
rent game structures with imperfect information, as well as the scalable Drones
benchmark of [35]. The results are compared to the output of DominoDFS and to
the fixpoint approximation algorithm of [33], forming a very promising pattern.
In particular, for models with relatively small information sets (a.k.a. epistemic
indistinguishability classes), our algorithm was able to find ideal strategies where
the other approaches consistently failed. We note that, according to the theoret-
ical results proposed in [32], approaches relying on search through the space of
uniform strategies may be feasible for models with large information sets. At the
same time, they are unlikely to succeed for models with small epistemic classes.
This makes our new method a potentially good complement to algorithms like
DominoDFS.

Outline of the Paper. The structure of the paper is as follows. We begin by
introducing the standard semantics of strategic ability in Sect. 2. We also cite
the complexity results for model checking and strategy synthesis, and recall the
notion of strategic dominance from [35] that will serve as inspiration for our
heuristics. In Sect. 3, we propose an abstract template for multicriterial strate-
gic dominance, and instantiate it by two actual dominance relations that will
provide the heuristics. Our algorithm for strategy synthesis based on iterated
improvement is presented in Sect. 4, and evaluated experimentally in Sect. 5.
We also discuss how the algorithm can be extended to synthesis of coalitional
strategies in Sect. 6. Finally, we conclude in Sect. 7.

Related Work. A number of frameworks has been aimed at the verification of
strategic properties under imperfect information. Regarding the available tools,
the state-of-the-art MAS model checker MCMAS [37,38] combines efficient sym-
bolic representation of state-space using Binary Decision Diagrams (BDDs) with
exhaustive iteration over uniform strategies. A similar approach based on exhaus-
tive search through strategy space is presented in [17]. A prototype tool SMC [43]
employs bounded unfoldings of transition relation with strategy exploration and
calls to MCMAS. Strategy search with optimisation of partial strategies has
been further used in [14,16,35]. Most relevant to us, the optimisation in [35] was
driven by strategic dominance based on the tightness of the outcome set.

Other recent attempts at feasible verification of uniform strategies include [5,
6,31] that propose methods for reduction of models with incomplete information,
based respectively on abstraction, bisimulation, and partial-order equivalences.
Another method [33] avoids the brute-force strategy search by using fixpoint
approximations of the input formulas. A prototype tool STV implementing the
DominoDFS algorithm and the fixpoint approximation was reported in [34].

We note that all the above approaches try to directly synthesize an ideal
(i.e., uniform surely winning) strategy for the given goal. In contrast, our new
algorithm starts with a flawed strategy (namely, surely winning but not uniform),
and attempts to do iterative improvement. As we show, this may well end up in

366 W. Jamroga and D. Kurpiewski

producing an ideal solution in cases where the other methods are inconclusive.
No less importantly, our algorithm produces reasonably good strategies even
when an ideal one cannot be found. The only related work in model checking of
multi-agent systems, that we are aware of, is [4,11] where a theoretical framework
was proposed for reasoning about strategies that succeed on “sufficiently many”
outcome paths.

2 Preliminaries

In this section we recall the standard formal framework used for reasoning about
strategies in MAS. To this end, alternating-time temporal logic ATL [2,3,45] is
often used. We also recall the notion of dominance for partial strategies, that
was proposed in [35].

2.1 ATL: What Agents Can Achieve

ATL [2,3,45] generalizes the branching-time temporal logic CTL [21] by replac-
ing the path quantifiers E,A with strategic modalities 〈〈A〉〉. Formulas of ATL
allow to express intuitive statements about what agents (or groups of agents)
can achieve. For example, 〈〈W,E〉〉FwinWE says that the players West and Eeast
in a game of Bridge can jointly win the game. Formally, the syntax of ATL is
defined by the following grammar:

φ ::= p | ¬φ | φ ∧ φ | 〈〈A〉〉Xφ | 〈〈A〉〉Gφ | 〈〈A〉〉φ Uφ,

where p ∈ PV is an atomic proposition and A ⊆ Agt is a group of agents. We
read 〈〈A〉〉γ as “A can identify and execute a strategy that enforces γ”, X as “in
the next state”, G as “now and always in the future”, and U as “until”.

2.2 Models

We interpret ATL [3,45] specifications over a variant of transition systems where
transitions are labeled with combinations of actions, one per agent. Moreover,
epistemic relations are used to indicate states that look the same to a given
agent. Formally, an imperfect information concurrent game structure, or simply a
model, is given by M = 〈Agt, St, PV, V,Act, d, o, {∼a| a ∈ Agt}〉 which includes a
nonempty finite set of agents Agt = {1, . . . , k}, a nonempty set of states St, a set
of atomic propositions PV and their valuation V : PV → 2St, and a nonempty
finite set of (atomic) actions Act. The protocol function d : Agt × St → 2Act

defines nonempty sets of actions available to agents at each state; we will write
da(q) instead of d(a, q), and define dA(q) =

∏
a∈A da(q) for each A ⊆ Agt, q ∈ St.

Furthermore, o is a (deterministic) transition function that assigns the outcome
state q′ = o(q, α1, . . . , αk) to each state q and tuple of actions 〈α1, . . . , αk〉 such
that αi ∈ di(q) for i = 1, . . . , k. Every ∼a⊆ St × St is an epistemic equivalence
relation with the intended meaning that, whenever q ∼a q′, the states q and q′ are

Pretty Good Strategies and Where to Find Them 367

indistinguishable to agent a. By [q]a we mean the set of states indistinguishable
to agent a from the state q. The model is assumed to be uniform, in the sense that
q ∼a q′ implies da(q) = da(q′). Note that perfect information can be modeled by
assuming each ∼a to be the identity relation.

2.3 Strategies

A strategy of an agent a ∈ Agt is a conditional plan that specifies what a is
going to do in every possible situation. The details of the definition depend on
the observational capabilities of the agent and its memory. In this paper we
consider the case of imperfect information imperfect recall strategies (sometimes
also called uniform memoryless strategies), where an agent can observe only a
part of the environment (i.e., perceives some states as indistinguishable) and
performs the same action every time a given state is reached.

Formally, a uniform strategy for a is a function σa : St → Act satisfying
σa(q) ∈ da(q) for each q ∈ St and σa(q) = σa(q′) for each q, q′ ∈ St such that
q ∼a q′. A collective uniform strategy σA for a coalition A ⊆ Agt is a tuple of
individual strategies, one per agent from A.

2.4 Outcome Paths

A path λ = q0q1q2 . . . is an infinite sequence of states such that there is a
transition between each qi, qi+1. We use λ[i] to denote the ith position on path
λ (starting from i = 0) and λ[i, j] to denote the part of λ between positions i
and j. Function out(q,σa) returns the set of all paths that can result from the
execution of a strategy σa, beginning at state q. Formally:

out(q,σa) = {λ = q0, q1, q2 . . . | q0 = q and for each i = 0, 1, . . . there exists
〈αi

a1
, . . . , αi

ak
〉 such that αi

a ∈ da(qi) for every a ∈ Agt, and αi
a = σA|a(qi)

for every a ∈ A, and qi+1 = o(qi, α
i
a1

, . . . , αi
ak

)}.

Moreover, the function outir(q,σa) =
⋃

a∈A

⋃
q∼aq′ out(q′,σa) collects all the

outcome paths that start from states that are indistinguishable from q to at least
one agent in A.

2.5 Semantics of ATL

Given a model M and a state q, the semantics of ATL formulas is defined as
follows:

– M, q |= p iff q ∈ V (p),
– M, q |= ¬φ iff M, q 	|= φ,
– M, q |= φ ∧ ψ iff M, q |= φ and M, q |= ψ,
– M, q |= 〈〈A〉〉Xφ iff there exists a uniform strategy σA such that for all λ ∈

out ir(q,σA) we have M,λ[1] |= φ,
– M, q |= 〈〈A〉〉Gφ iff there exists a uniform σA such that for all λ ∈ out ir(q,σA)

and i ∈ N we have M,λ[i] |= φ,

368 W. Jamroga and D. Kurpiewski

– M, q |= 〈〈A〉〉ψ Uφ iff there exists a uniform σA such that for all λ ∈
out ir(q,σA) there is i ∈ N for which M,λ[i] |= φ and M,λ[j] |= ψ for all
0 ≤ j < i.

The standard boolean operators (logical constants � and ⊥, disjunction ∨, and
implication →) are defined as usual. Additionally, we define “now or sometime
in the future” as Fϕ ≡ �Uϕ. It is easy to see that M, q |= 〈〈A〉〉Fφ iff there
exists a collective uniform strategy σA such that, on each path λ ∈ out ir(q,σA),
there is a state that satisfies φ.

2.6 Model Checking and Strategy Synthesis

It is well known that model checking of ATL based on uniform memory-
less strategies is ΔP

2 -complete with respect to the size of the explicit (global)
model [10,30,45], i.e., on top of the usual state-space and transition-space explo-
sion which arises from the composition of the agents’ local models. This concurs
with the results for solving imperfect information games and synthesis of winning
strategies, which are also known to be hard [20,26,41]. Note that model check-
ing ATL corresponds very closely to strategy synthesis for reachability/safety
games. In fact, most model checking algorithms for ATL try to build a winning
strategy when checking if such a strategy exists.

It is also known that both strategy synthesis and ATL model checking for
imperfect information are not only theoretically hard, they are also difficult in
practice. In particular, imperfect information strategies do not admit straightfor-
ward fixpoint algorithms based on standard short-term ability operators [12,23].
That makes incremental synthesis of strategies impossible, or at least difficult
to achieve. Some practical attempts to overcome the barrier have been reported
in [14–16,28,33,35,42]. Up until now, experimental results confirm that the ini-
tial intuition was right: model checking of strategic modalities for imperfect
information is hard, and dealing with it requires innovative algorithms and ver-
ification techniques.

We emphasize that, at the same time, model checking for perfect information
strategies (i.e., ones that can specify different choices at indistinguishable states)
is much cheaper computationally, namely P-complete in the size of the model [3].

2.7 Partial Strategies and Strategy Dominance

A partial strategy for a is a partial function σa : St ⇀ Act that can be extended
to a strategy. The domain of a partial strategy is denoted by dom(σa). The set
of all partial strategies for A ⊆ Agt is denoted by ΣA.

Let q ∈ dom(σA) for some σA ∈ ΣA. The outcome of σA from q consists of all
the maximal paths λ ∈ dom(σA)∗ ∪ dom(σA)ω that follow the partial strategy.
Formally we have:

λ ∈ out(q, σA) iff λ1 = q ∧ ∀i≤|λ|λi ∈dom(σA)
∧ ∀i<|λ|∃β∈dAgt\A(λi)o(λi, (σA(λi), β)) = λi+1

Pretty Good Strategies and Where to Find Them 369

where |λ| denotes the length (i.e., the number of states) of λ and λ is either
infinite or cannot be extended. For each i ∈ N let λi denote the i–th element.
Let Q ⊆ dom(σA). A partial strategy σA is Q-loopless, if the set

⋃
q∈Q out(q, σA)

contains only finite paths. For each p ∈ PV we say that σA is p-free if V (p) ∩
dom(σA) = ∅.

In what follows, we often refer to partial strategies simply as strategies and
assume a fixed CEGM and A ⊆ Agt.

The paper [35] proposed a notion of strategic dominance defined with respect
to a given context. Assume that we want to compare two partial strategies σA

and σ′
A. First, we fix a context strategy σC

A , such that after executing it the
control can be given to strategy σA or σ′

A. Then, we say that σA dominates σ′
A,

iff the sets of input states1 of both strategies are equal, and the set of output
states of strategy σA is a subset of the set of output states of strategy σ′

A.

3 Two Notions of Dominance for Iterated Strategy
Improvement

In [35], partial strategies are optimized according to only one criterion, namely
the tightness of their outcome sets. In contrast, we propose to use two dimensions
for optimization: tightness of the outcome and uniformity of the actions selected
within the strategy. This is because, unlike [35], we start the synthesis with a
perfect information strategy. Thus, our algorithm optimizes strategies that can
include any number of conflicts, in the sense that it might prescribe different
actions within the same information set [q]a.

3.1 Multi-criterial Domination: Abstract Template

Consider a set of partial strategies Σ of agent a, based on the same epistemic
class of a. That is, there exists q ∈ St such that dom(σ) ⊆ [q]a for every σ ∈ Σ.
Let σ1, σ2 ∈ Σ. We begin with an abstract definition of domination that looks at
two criteria C1, C2. The idea is that σ2 dominates σ1 if it improves on C1 without
deteriorating with respect to C2.

Definition 1 ((C1, C2)-domination). Let each Ci be a criterion associated with
a total order �Ci

on the partial strategies in Σ. The strict variant ≺Ci
of the order-

ing is defined in the obvious way, by �Ci
\(�Ci

)−1. We say that σ1 is (C1, C2)-
dominated by σ2 iff it holds that σ1 ≺C1 σ2 and at the same time σ1 �C2 σ2. �

Definition 2 (Better and best domination). Consider partial strategies
σ2, σ

′
2 that both (C1, C2)-dominate σ1. We say that σ2 better (C1, C2)-dominates

σ1 iff σ′
2 ≺C1 σ2, i.e., σ2 performs better than σ′

2 with respect to the primary
criterion C1. Note: the fact that σ2 better dominates σ1 than σ′

2 does not imply
that σ2 dominates σ′

2, because σ2 may perform poorer than σ′
2 on the secondary

criterion C2.
1 i.e., initial states of the strategy.

370 W. Jamroga and D. Kurpiewski

Moreover, σ2 best dominates σ1 with respect to (C1, C2) iff it dominates σ1

and no other strategy in Σ better dominates σ1. The set of strategies that best
dominate σ1 with respect to (C1, C2) will be denoted by BestC1,C2(σ1). �

3.2 Outcome- and Uniformity-Dominance

In the following, we assume a shared set of input nodes In ⊆ dom(σ1), dom(σ2).
The set of states reachable from In by partial strategy σi is denoted by
Reach(In, σi). Furthermore, we define the domain of relevance of σi as
RDom(In, σi) = dom(σi) ∩ Reach(In, σi). That is, RDom(In, σi) excludes from
the domain of σi the states that cannot be reached, and hence are irrelevant
when reasoning about potential conflicts between choices.

The outcome criterion is given by relation �O(In) such that σ1 �O(In) σ2

iff Reach(In, σ2) ⊆ Reach(In, σ1), i.e., σ2 has at least as tight set of reachable
outcome states as σ1.

We will now proceed to the other criterion, related to uniformity of strategies.
First, we define the conflict set of σi on states Q ⊆ St as Conflicts(Q,σi) =
{(q, q′) ∈ Q × Q | σi(q) 	= σi(q′)}, i.e., the set of all pairs of states from Q where
σi specifies conflicting choices.

Now, the uniformity criterion is given by relation �U(In) such that σ1 �U(In)

σ2 iff Conflicts(RDom(In, σ2), σ2) ⊆ Conflicts(RDom(In, σ1), σ1). In other
words, all the conflicts that σ2 encounters in its domain of relevance must also
appear in σ1 (but not necessarily vice versa).

Definition 3 (Outcome- and uniformity-domination). We say that σ1 is
outcome-dominated by σ2 on input In iff it is (O(In),U(In))-dominated by σ2.
Likewise, σ1 is uniform-dominated by σ2 on input In iff it is (U(In),O(In))-
dominated by σ2. The concepts of better and best domination apply in a natural
way. �

4 Iterated Strategy Synthesis

In this section, we propose an algorithm for strategy synthesis, based on the
following idea: first generate a surely winning perfect information strategy (if
it exists), and then iteratively improve it with respect to the dominance rela-
tions proposed in Sect. 3. Of the two relations, uniformity-dominance has higher
priority. The iterative improvement terminates when the procedure reaches a
fixpoint (i.e., no more improvement is possible anymore) or when the time limit
is exceeded. After that, the optimized strategy is returned and checked for uni-
formity.

We will now define our procedure in more detail.

Definition 4 (Input). The input of the algorithm consists of: model M , state
q in M , and formula 〈〈a〉〉Fϕ. We define the set of initial states as Q0 = [q]∼a

,
i.e., the states that agent a considers possible when the system is in q.

Pretty Good Strategies and Where to Find Them 371

Algorithm 1. Synthesis algorithm strat synth(M)
Generate a winning perfect information strategy σ
if σ doesn’t exist then

return false
end if
Create an empty list PStr
Create a list IS of information sets in M † σ
for i = 1 to |IS| do

Take the info set (i, Qi) and generate the corresponding partial strategy σi as a
restriction of σ to Qi and add it to PStr
Ini := Qi ∩ Reach

(
Reach(Q0, σ) \ Qi, (σ \ σi)

)

RDomi := Qi ∩ Reach(Ini, σi)
Outi := Reach(Ini, σi) \ Qi

Conflictsi := Conflicts(RDomi, σi)
end for
Optimize the resulting list of partial strategies PStr
return PStr

Definition 5 (Data structures). The algorithm uses the following data struc-
tures:

– The model;
– A list of information sets for agent a, represented by pairs (id,Qid) where

id ∈ N is the identifier of the info set, and Qid ⊆ St is an abstraction class
of the ∼a relation;

– A list of partial strategies PStr represented by the following tuples:

(id, σid, Inid,RDomid,Conflictsid, Outid)

where id is the identifier of the information set on which the strategy operates,
σid is the current set of choices, Inid the set of input states, RDomid is the
domain of relevance of σid from Inid, Conflictsid is the current set of conflicts,
and Outid is the set of output states, i.e., the states by which σid can pass the
control to another partial strategy.

The main part of the procedure is defined by Algorithms 1, 2 and 3. Algo-
rithm 1 tries to generate a perfect information strategy by employing a standard
algorithm, e.g., the well-known fixpoint algorithm of [3]. If successful, it produces:

– An ordered list of epistemic indistinguishability classes, also known as infor-
mation sets, for agent a. The list is generated by means of depth-first search
through the transition network, starting from the initial state. Note that the
information sets are restricted to the pruning of model M by strategy σ,
denoted M † σ in the pseudocode. That is, only states reachable by σ from
the initial state will be taken into account when looking at potential conflicts
between a’s choices;

– The ordered list of partial strategies extracted from σ, following the same
ordering that was established for the information sets.

372 W. Jamroga and D. Kurpiewski

Algorithm 2. Single sweep optimization algorithm optimize once(PStr)
OldPStr := PStr
for i = 1 to |IS| do

repeat
OldPStri := PStr(i)
if exists σ that uniform-best dominates PStr(i) in Ini then

update PStr(i) by taking σi := σ and recomputing the sets RDomi, Outi,
and Conflictsi

end if
if exists σ that outcome-best dominates PStr(i) in Ini then

update PStr(i) by taking σi := σ and recomputing the sets RDomi, Outi,
and Conflictsi

end if
until PStr(i) = OldPStri
update σ with the current contents of PStr
for every j �= i do

update the input states of PStr(j) by Inj := Qj ∩ Reach
(
Reach(Q0, σ) \

Qj , (σ \ σj)
)

end for
end for
return PStr

Algorithm 3. Optimization algorithm optimize(PStr)
repeat

OldPStr := PStr
Pstr := optimize once(PStr)

until timeout or (PStr = OldPStr)
return PStr

After that, Algorithm 1 calls Algorithm 3.
Algorithm 3 proceeds in cycles. In each cycle it calls Algorithm 2, which

optimizes the partial strategies one by one, following the ordering established by
Algorithm 1. Moreover, each partial strategy is optimized first with respect to
the uniformity-dominance, and then according to the outcome-dominance; this
proceeds in a loop until a fixpoint is found. Algorithm 3 terminates when no
improvement has been seen in the latest iteration, or the timeout is reached.

It is worth emphasizing that, except for the first phase (generation of a
perfect information strategy), this is an anytime algorithm. It means that the
procedure will return some strategy even for models whose size is beyond grasp
for optimal model checking algorithms. This is a clear advantage over the existing
approaches [14,16,33,35,37,38,43] where the algorithms typically provide no
output even for relatively small models.

Pretty Good Strategies and Where to Find Them 373

5 Experimental Evaluation

We evaluate the algorithm of Sect. 4 through experiments with two classes of
models: randomly generated models and the Drones benchmark of [35].

5.1 First Benchmark: Random Models

As the first benchmark for our experiments, we use randomly generated models
of a given size. The models represent a single agent playing against a nonde-
terministic environment. The models are generated according to the following
procedure. First, we begin by generating a directed graph with several, ran-
domly chosen, connections. The size of the graph is given by the parameter.
Subsequently, we introduce additional connections between randomly selected
nodes from distinct paths, in order to increase the complexity of the resulting
model. Winning states are selected from the set containing the final states from
each of the paths.

Once the graph is generated, it is used to construct the model. Each node
represents a unique state, and a connection between two nodes indicates the
presence of at least one transition between them. The transitions are generated
using the following approach: for each node, a subset of outgoing connections is
randomly chosen. From this subset, a set of transitions is created with actions
selected randomly. As a result, some transitions will be influenced not only by
the agent but also by the nondeterministic environment. This process is repeated
multiple times. In the final step of the model generation algorithm, atomic propo-
sitions are randomly assigned to states, and epistemic classes are generated at
random.

The number of connections, actions, winning states and epistemic classes is
given as the function of the number of states in the model.

5.2 Second Benchmark: Drone Model

As the second benchmark we use the Drone Model from [35] with some minor
modifications. In this scenario drones are used to measure the air quality in the
specified area. The motivation is clear, as nowadays many cities face a problem
of air pollution.

A model is described using three variables:

– Number of drones;
– Initial energy for each drone;
– Map size, i.e., the number of places in the area.

Every drone is equipped with a limited battery, initially charged to some
energy level. Each action that the drone performs uses one energy unit. When
the battery is depleted, the drone lands on the ground and must be picked up.

In our scenario, in contrast to the original one, the map is randomly generated
as a directed graph. This introduces randomization into the model generation

374 W. Jamroga and D. Kurpiewski

Fig. 1. Random Model results with logarithmic epistemic classes

Fig. 2. Random Model results with linear epistemic classes

process, enabling us to thoroughly test our algorithms. It is guaranteed that
the graph is connected, and each node can be reached from the initial one.
Furthermore, each node has no more than four neighbors: one for each direction
of the world. Along with the map, pollution readings are also randomly generated
and assigned to each place. Readings can have one of the two values: pollution
or no pollution.

Each drone holds information about its current energy level, the set of already
visited places and its current position on the map. When in a coalition, the drones
share their data between themselves, as it is often done in real-life applications.
The indistinguishability relations are given by a faulty GPS mechanism: some of
the places on the map are indistinguishable for the drone. In that way, epistemic
classes are defined.

At each step, the drone can perform one of the listed actions:

– Fly in one of four directions: North, West, South or East;
– Wait, i.e., stay in the current place.

As mentioned before, each action costs the drone one unit of its energy level.
Due to the unpredictable nature of the wind, when performing the fly action the
drone can be carried away to a different place from the one it intended.

5.3 Running the Experiments

In the experiments, we have tested 10 cases for each benchmark and each config-
uration, and collected the average results. Due to the randomized nature of the
models, it was possible that the model generation produces a structure where
no winning perfect information strategy existed. Such models were disregarded
in the output of the experiments. We note in passing that, for the Randomized
Model benchmark, winning perfect information strategies existed in approxi-
mately 70% of cases.

Pretty Good Strategies and Where to Find Them 375

Fig. 3. Drone Model results

For each test case, first the perfect information strategy was randomly chosen,
and then its optimized version was generated according to Algorithm 3. We
compared our results with two other methods: fixpoint approximation from [33]
and DominoDFS from [35]. Both algorithms were implemented in Python as well
as the strategy optimization algorithm. The code is available online at https://
github.com/blackbat13/stv.

Random Model was tested in two different configurations that differ only by
the function that binds the size of epistemic classes. In the first configuration, the
maximum size of the epistemic classes was given by log2 n, where n is the number
of states in the model. In the second configuration, the size of the epistemic
classes was at most 10% n, i.e., linear wrt to the size of the state space.

For both benchmarks, only singleton coalitions were considered. In particular,
for Drone Model, we only generated models with a single drone acting against
the environment.2 The initial energy of the drone was defined as the number of
places in the map times two, in order to increase the likelihood of generating
a model in which the drone can visit all the places on the randomly generated
map.

The experiments were conducted on an Intel Core i7-6700 CPU with dynamic
clock speed of 2.60–3.50 GHz, 32 GB RAM, running under 64bit Linux Debian.

5.4 Results

The output of the experiments is presented in Figs. 1, 2 and 3. Figures 1 and 2
present the results for the Random Model benchmark; Fig. 3 presents the results
for the Drone Model benchmark. All running times are given in seconds. The
timeout was set to 90 s. In case of strategy optimization, this was split into two
parts: 30 s for the strategy generation, and 60 s for its optimization.

The first columns present information about the model configuration, its
size and generation time. The next seven columns describe the output of our
algorithms, i.e., the randomly generated strategy with perfect information and its
optimized version. The last part of the tables contains the reference results from
the algorithms used for comparison: lower and upper fixpoint approximation and
DominoDFS method.

The table headers should be interpreted as follows:

– Map: number of places on the map (for Drone Model);
– #st: number of states in the model;

2 Preliminary experiments for coalitions of drones are presented in Sect. 6.

https://github.com/blackbat13/stv
https://github.com/blackbat13/stv

376 W. Jamroga and D. Kurpiewski

Algorithm 4. Optimization algorithm for coalition optimize coal(PStr,A)
repeat

OldPStr := PStr
for agent in A do

Pstr := optimize once(PStr)
end for

until timeout or (PStr = OldPStr)
return PStr

– G.time: generation time for the model/strategy;
– #str: number of states reachable in the strategy;
– #ep: number of states in which the strategy uniformity was broken;
– %ir: percentage of cases in which optimized strategy was a uniform strategy;
– Time: time used by the Approximation/Domino DFS algorithm;
– Conclusive: percentage of cases in which the result of fixpoint approxima-

tion was conclusive, i.e. when both the upper bound and the lower bound
computations yield the same outcome;

– True: percentage of cases in which Domino DFS returned a winning strategy
(timeout was reached in all the other cases).

As the results show, our method performed very well in comparison to the
reference algorithms. The DominoDFS method ended mostly with timeout for
larger models, and the fixpoint approximations gave mostly inconclusive results.
In contrast, our optimized strategies obtained pretty good elimination of con-
flicts, and in many cases produced ideal, i.e., fully uniform strategies.

The results also show clearly that our optimization algorithm works best
in situations when the size of the epistemic classes is relatively small. For the
logarithmic size of the epistemic classes, the optimized strategy was always a
uniform strategy (!). As for the setting with the linear size, the optimization-
based algorithm was not as good, but still gave a reduction of conflicts of about
40%. Even in that case, it produced ideal strategies in 10–20% of instances.
It is also worth pointing out that, for the Drone benchmark, our optimization
returned a uniform strategy in about 60% cases.

We note, again, that our algorithm is an anytime algorithm, which means
that it always returns some strategy, regardless of the given timeout.

6 Coalitional Strategies

So far, we have focused on the synthesis of individual strategies. In fact, our
synthesis algorithm in Sect. 4 works only for singleton coalitions. This is because
it relies on the fact that the domains of partial strategies are closed with respect
to indistinguishability relations of the involved agents. While such a closure is
guaranteed for information sets of single agent, the union of information sets of
several agents typically does not satisfy the property.

Pretty Good Strategies and Where to Find Them 377

Fig. 4. Drone model results for coalitions

One way out is to define the domains of partial strategies by the closure. The
domains would in that case correspond to common knowledge neighborhoods for
the coalition. Unfortunately, this will not work well in practice: for most models,
the common knowledge closure will produce the whole state space, and thus
make the computation infeasible.

Another simple idea is to optimize coalitional strategies agent-wise, alter-
nating between the agents. In that case, we optimize the individual strategies
being parts of σA one by one, using the optimization template from Sect. 4. The
resulting procedure is presented as Algorithm 4.

The output of our experimental evaluation for synthesis of coalitional strate-
gies is presented in Fig. 4. For the experiments, the Drone benchmark was
selected with coalition of two drone agents. As the results show, our algorithm
obtained a high level of optimization of the initial, perfect information, strat-
egy. Most importantly, the procedure produced ideal strategies in 60% and 40%
of the instances, respectively, thus providing a conclusive answer to the model
checking question in about half of the cases.

7 Conclusions

In this paper, we propose an anytime algorithm to synthesize “reasonably good”
strategies for reachability goals under imperfect information. The idea is to first
generate a surely winning strategy with perfect information, and then iteratively
improve it with respect to its uniformity level and the tightness of its outcome set.
We evaluate the algorithm experimentally on two classes of models: randomly
generated ones and ones modeling a group of drones patrolling for air pollution.
The results show high optimization rates, especially for models with relatively
small indistinguishability classes. For such models, the procedure produced ideal
strategies in a large fraction of the instances, thus providing a conclusive answer
to the model checking question.

The fact that our method works well for models with small epistemic classes
suggests that it should complement, rather than compete, with methods based
on search through the space of uniform strategies (which usually work better
for models with large information sets). Depending on the kind of the model, a
suitable algorithm should be used.

Acknowledgements. The work was supported by NCBR Poland and FNR Lux-
embourg under the PolLux/FNR-CORE projects STV (POLLUX-VII/1/2019 and
C18/IS/12685695/IS/STV/Ryan), SpaceVote (POLLUX-XI/14/SpaceVote/2023 and

378 W. Jamroga and D. Kurpiewski

C22/IS/17232062/SpaceVote) and PABLO (C21/IS/16326754/PABLO). The work of
Damian Kurpiewski was also supported by the CNRS IEA project MoSART.

References

1. Alur, R., et al.: MOCHA: modularity in model checking. Technical report, Univer-
sity of Berkeley (2000)

2. Alur, R., Henzinger, T.A., Kupferman, O.: Alternating-time temporal logic. In:
Proceedings of the 38th Annual Symposium on Foundations of Computer Science
(FOCS), pp. 100–109. IEEE Computer Society Press (1997)

3. Alur, R., Henzinger, T.A., Kupferman, O.: Alternating-time temporal logic. J.
ACM 49, 672–713 (2002). https://doi.org/10.1145/585265.585270

4. Aminof, B., Malvone, V., Murano, A., Rubin, S.: Graded modalities in strategy
logic. Inf. Comput. 261, 634–649 (2018). https://doi.org/10.1016/j.ic.2018.02.022

5. Belardinelli, F., Condurache, R., Dima, C., Jamroga, W., Jones, A.: Bisimulations
for verification of strategic abilities with application to ThreeBallot voting protocol.
In: Proceedings of the 16th International Conference on Autonomous Agents and
Multiagent Systems (AAMAS), pp. 1286–1295. IFAAMAS (2017)

6. Belardinelli, F., Lomuscio, A.: Agent-based abstractions for verifying alternating-
time temporal logic with imperfect information. In: Proceedings of AAMAS, pp.
1259–1267. ACM (2017)

7. Berthon, R., Maubert, B., Murano, A., Rubin, S., Vardi, M.Y.: Strategy logic with
imperfect information. In: Proceedings of LICS, pp. 1–12 (2017). https://doi.org/
10.1109/LICS.2017.8005136

8. Berthon, R., Maubert, B., Murano, A., Rubin, S., Vardi, M.Y.: Strategy logic with
imperfect information. ACM Trans. Comput. Log. 22(1), 5:1–5:51 (2021). https://
doi.org/10.1145/3427955

9. Bryant, R.E.: Graph-based algorithms for Boolean function manipulation. IEEE
Trans. Comput. 35(8), 677–691 (1986)

10. Bulling, N., Dix, J., Jamroga, W.: Model checking logics of strategic ability: com-
plexity. In: Dastani, M., Hindriks, K., Meyer, J.J. (eds.) Specification and Verifi-
cation of Multi-agent Systems, pp. 125–159. Springer, Boston (2010). https://doi.
org/10.1007/978-1-4419-6984-2 5

11. Bulling, N., Jamroga, W.: What agents can probably enforce. Fund. Inform. 93(1–
3), 81–96 (2009)

12. Bulling, N., Jamroga, W.: Alternating epistemic mu-calculus. In: Proceedings of
IJCAI-11, pp. 109–114 (2011)

13. Burch, J.R., Clarke, E.M., McMillan, K.L., Dill, D.L., Hwang, L.J.: Symbolic model
checking: 10-20 states and beyond. In: Proceedings of 4th Annual IEEE Symposium
on Logic in Computer Science (LICS), pp. 428–439. IEEE Computer Society (1990)

14. Busard, S.: Symbolic model checking of multi-modal logics: uniform strategies and
rich explanations. Ph.D. thesis, Universite Catholique de Louvain (2017)

15. Busard, S., Pecheur, C., Qu, H., Raimondi, F.: Improving the model checking of
strategies under partial observability and fairness constraints. In: Merz, S., Pang, J.
(eds.) ICFEM 2014. LNCS, vol. 8829, pp. 27–42. Springer, Cham (2014). https://
doi.org/10.1007/978-3-319-11737-9 3

16. Busard, S., Pecheur, C., Qu, H., Raimondi, F.: Reasoning about memoryless strate-
gies under partial observability and unconditional fairness constraints. Inf. Com-
put. 242, 128–156 (2015). https://doi.org/10.1016/j.ic.2015.03.014

https://doi.org/10.1145/585265.585270
https://doi.org/10.1016/j.ic.2018.02.022
https://doi.org/10.1109/LICS.2017.8005136
https://doi.org/10.1109/LICS.2017.8005136
https://doi.org/10.1145/3427955
https://doi.org/10.1145/3427955
https://doi.org/10.1007/978-1-4419-6984-2_5
https://doi.org/10.1007/978-1-4419-6984-2_5
https://doi.org/10.1007/978-3-319-11737-9_3
https://doi.org/10.1007/978-3-319-11737-9_3
https://doi.org/10.1016/j.ic.2015.03.014

Pretty Good Strategies and Where to Find Them 379

17. Calta, J., Shkatov, D., Schlingloff, H.: Finding uniform strategies for multi-agent
systems. In: Dix, J., Leite, J., Governatori, G., Jamroga, W. (eds.) CLIMA 2010.
LNCS (LNAI), vol. 6245, pp. 135–152. Springer, Heidelberg (2010). https://doi.
org/10.1007/978-3-642-14977-1 12

18. Čermák, P., Lomuscio, A., Mogavero, F., Murano, A.: MCMAS-SLK: a model
checker for the verification of strategy logic specifications. In: Biere, A., Bloem, R.
(eds.) CAV 2014. LNCS, vol. 8559, pp. 525–532. Springer, Cham (2014). https://
doi.org/10.1007/978-3-319-08867-9 34

19. Cermák, P., Lomuscio, A., Murano, A.: Verifying and synthesising multi-agent
systems against one-goal strategy logic specifications. In: Proceedings of AAAI,
pp. 2038–2044 (2015)

20. Chatterjee, K., Doyen, L., Henzinger, T., Raskin, J.F.: Algorithms for omega-
regular games of incomplete information. Log. Methods Comput. Sci. 3(3), 4 (2007)

21. Clarke, E., Emerson, E.: Design and synthesis of synchronization skeletons using
branching time temporal logic. In: Kozen, D. (ed.) Logic of Programs 1981. Lecture
Notes in Computer Science, vol. 131, pp. 52–71. Springer, Cham (1981). https://
doi.org/10.1007/bfb0025774

22. Dembiński, P., et al.:
√

erics: a tool for verifying timed automata and estelle spec-
ifications. In: Garavel, H., Hatcliff, J. (eds.) TACAS 2003. LNCS, vol. 2619, pp.
278–283. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-36577-X 20

23. Dima, C., Maubert, B., Pinchinat, S.: The expressive power of epistemic μ-calculus.
CoRR abs/1407.5166 (2014)

24. Dima, C., Maubert, B., Pinchinat, S.: Relating paths in transition systems: the fall
of the modal mu-calculus. In: Italiano, G.F., Pighizzini, G., Sannella, D.T. (eds.)
MFCS 2015. LNCS, vol. 9234, pp. 179–191. Springer, Heidelberg (2015). https://
doi.org/10.1007/978-3-662-48057-1 14

25. Dima, C., Tiplea, F.: Model-checking ATL under imperfect information and perfect
recall semantics is undecidable. CoRR abs/1102.4225 (2011)

26. Doyen, L., Raskin, J.F.: Games with imperfect information: theory and algorithms.
In: Lecture Notes in Game Theory for Computer Scientists, pp. 185–212. Cam-
bridge University Press (2011)

27. Gammie, P., van der Meyden, R.: MCK: model checking the logic of knowledge.
In: Alur, R., Peled, D.A. (eds.) CAV 2004. LNCS, vol. 3114, pp. 479–483. Springer,
Heidelberg (2004). https://doi.org/10.1007/978-3-540-27813-9 41

28. Huang, X., van der Meyden, R.: Symbolic model checking epistemic strategy logic.
In: Proceedings of AAAI Conference on Artificial Intelligence, pp. 1426–1432 (2014)

29. Jamroga, W.: Logical Methods for Specification and Verification of Multi-agent
Systems. ICS PAS Publishing House (2015)

30. Jamroga, W., Dix, J.: Model checking ATLir is indeed ΔP
2 -complete. In: Proceed-

ings of EUMAS. CEUR Workshop Proceedings, vol. 223 (2006)
31. Jamroga, W., Penczek, W., Dembiński, P., Mazurkiewicz, A.: Towards partial order

reductions for strategic ability. In: Proceedings of the 17th International Confer-
ence on Autonomous Agents and Multiagent Systems (AAMAS), pp. 156–165.
IFAAMAS (2018)

32. Jamroga, W., Knapik, M.: Some things are easier for the dumb and the bright
ones (beware the average!). In: Proceedings of the Twenty-Eighth International
Joint Conference on Artificial Intelligence IJCAI, pp. 1734–1740 (2019). https://
doi.org/10.24963/ijcai.2019/240

33. Jamroga, W., Knapik, M., Kurpiewski, D., Mikulski, �L.: Approximate verification
of strategic abilities under imperfect information. Artif. Intell. 277 (2019). https://
doi.org/10.1016/j.artint.2019.103172

https://doi.org/10.1007/978-3-642-14977-1_12
https://doi.org/10.1007/978-3-642-14977-1_12
https://doi.org/10.1007/978-3-319-08867-9_34
https://doi.org/10.1007/978-3-319-08867-9_34
https://doi.org/10.1007/bfb0025774
https://doi.org/10.1007/bfb0025774
https://doi.org/10.1007/3-540-36577-X_20
https://doi.org/10.1007/978-3-662-48057-1_14
https://doi.org/10.1007/978-3-662-48057-1_14
https://doi.org/10.1007/978-3-540-27813-9_41
https://doi.org/10.24963/ijcai.2019/240
https://doi.org/10.24963/ijcai.2019/240
https://doi.org/10.1016/j.artint.2019.103172
https://doi.org/10.1016/j.artint.2019.103172

380 W. Jamroga and D. Kurpiewski

34. Kurpiewski, D., Jamroga, W., Knapik, M.: STV: Model checking for strategies
under imperfect information. In: Proceedings of the 18th International Conference
on Autonomous Agents and Multiagent Systems AAMAS 2019, pp. 2372–2374.
IFAAMAS (2019)

35. Kurpiewski, D., Knapik, M., Jamroga, W.: On domination and control in strate-
gic ability. In: Proceedings of the 18th International Conference on Autonomous
Agents and Multiagent Systems AAMAS 2019, pp. 197–205. IFAAMAS (2019)

36. Kurpiewski, D., Pazderski, W., Jamroga, W., Kim, Y.: STV+reductions: towards
practical verification of strategic ability using model reductions. In: Proceedings of
AAMAS, pp. 1770–1772. ACM (2021)

37. Lomuscio, A., Qu, H., Raimondi, F.: MCMAS: an open-source model checker for
the verification of multi-agent systems. Int. J. Softw. Tools Technol. Transf. 19(1),
9–30 (2017). https://doi.org/10.1007/s10009-015-0378-x

38. Lomuscio, A., Raimondi, F.: Model checking knowledge, strategies, and games
in multi-agent systems. In: Proceedings of International Joint Conference on
Autonomous Agents and Multiagent Systems (AAMAS), pp. 161–168 (2006).
https://doi.org/10.1145/1160633.1160660

39. Mogavero, F., Murano, A., Perelli, G., Vardi, M.: Reasoning about strategies: on
the model-checking problem. ACM Trans. Comput. Log. 15(4), 1–42 (2014)

40. Mogavero, F., Murano, A., Vardi, M.: Reasoning about strategies. In: Proceedings
of FSTTCS, pp. 133–144 (2010)

41. Peterson, G., Reif, J.: Multiple-person alternation. In: Proceedings of the 20th
Annual Symposium on Foundations of Computer Science (FOCS), pp. 348–363.
IEEE Computer Society Press (1979)

42. Pilecki, J., Bednarczyk, M.A., Jamroga, W.: Synthesis and verification of uniform
strategies for multi-agent systems. In: Bulling, N., van der Torre, L., Villata, S.,
Jamroga, W., Vasconcelos, W. (eds.) CLIMA 2014. LNCS (LNAI), vol. 8624, pp.
166–182. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-09764-0 11

43. Pilecki, J., Bednarczyk, M., Jamroga, W.: SMC: synthesis of uniform strategies
and verification of strategic ability for multi-agent systems. J. Log. Comput. 27(7),
1871–1895 (2017). https://doi.org/10.1093/logcom/exw032

44. Raimondi, F., Lomuscio, A.: Automatic verification of multi-agent systems by
model checking via ordered binary decision diagrams. J. Appl. Log. 5(2), 235–251
(2007)

45. Schobbens, P.Y.: Alternating-time logic with imperfect recall. Electron. Notes
Theor. Comput. Sci. 85(2), 82–93 (2004)

https://doi.org/10.1007/s10009-015-0378-x
https://doi.org/10.1145/1160633.1160660
https://doi.org/10.1007/978-3-319-09764-0_11
https://doi.org/10.1093/logcom/exw032

A Multi-agent Sudoku Through the Wave
Function Collapse

Carlos Maŕın-Lora(B) and Miguel Chover

GAMERS - Video Games Research Group, Institute of New Imaging Technologies,
Universitat Jaume I, Castellón de la Plana, Spain

{cmarin,chover}@uji.es

Abstract. Sudoku is a logic puzzle that involves filling a 9× 9 grid
with digits from 1 to 9 without repeating any number in the same row,
column, or subgrid. Translating this traditional newspaper puzzle into a
video game raises technical challenges as generating a complete and valid
grid, creating puzzles with solutions based on the difficulty level, and
implementing user interaction mechanisms. This research paper presents
the specification and implementation of Sudoku as a video game using the
entropies from the wave function collapse technique and a multi-agent
game development methodology. The main focus of the development
is to consider each of the 81 cells as autonomous agents, computing
the possibilities space for each agent and establishing the information
transfer mechanisms based on the game’s constraints.

Keywords: Multi-agent systems · Entropy · Wave function collapse ·
Game development · Game logic

1 Introduction

Sudoku is a logic game based on the challenge of completing a 9× 9 grid with
numbers from 1 to 9, ensuring that each row, column, and sub-grid contains all
numbers without repeating. The full implementation of Sudoku as a video game
is a challenge that varies in difficulty depending on the approach chosen, the
programming language used, and the level of experience of the programmer.

The first step in its implementation goes through the generation of the puz-
zle. There are methods such as elimination and filling, backtracking, symmetry-
based generation, and backtracking algorithms [8,19]. These methods allow the
creation of Sudoku grids with different difficulty levels and aesthetic styles, ensur-
ing that they comply with the game rules and guaranteeing a unique solution.
The choice of method will depend on the specific requirements and purposes
of the video game and the selection of programming language and data struc-
tures suitable for the grid generation and manipulation process. Although not
strictly necessary, data structures such as lists, vectors, or arrays can help to effi-
ciently organize the grid data and simplify the operations required to validate

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
V. Malvone and A. Murano (Eds.): EUMAS 2023, LNAI 14282, pp. 381–395, 2023.
https://doi.org/10.1007/978-3-031-43264-4_24

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-43264-4_24&domain=pdf
http://orcid.org/0000-0003-1055-7657
http://orcid.org/0000-0002-0525-7038
https://doi.org/10.1007/978-3-031-43264-4_24

382 C. Maŕın-Lora and M. Chover

the solution and apply the generation methods. However, for an experienced pro-
grammer familiar with Sudoku concepts, the implementation can be moderate to
easy, while for a novice programmer, it can be more challenging. Implementing
a game with a matrix nature as this without loops and complex data structures
presents an exciting intellectual and technical challenge. Although the efficiency
of the computer application is likely to be poorer than using them, learning
techniques to solve it can provide new and interesting approaches.

In recent years, the development of applications with the multi-agent sys-
tems (MAS) methodology has brought innovative approaches in various areas of
computer science, and videogames are one of the fields that have experienced a
greater impact, where they have been applied to improve content generation and
the resolution of complex problems [14,21]. In this sense, and using a method-
ology for the creation of video games such as MAS [1,10], this work presents
an alternative approach for the procedural implementation of the game through
the procedural generation method of the Wave Function Collapse (WFC) [5].

The goal is to explore how interaction and cooperation between multiple
agents within a shared environment can be applied in the Sudoku generation and
provide challenging and varied solutions for players. Furthermore, we will exam-
ine how this implementation affects different levels of complexity. To accomplish
this, we will discuss the key concepts of the methodology and their application
to the game. We will also describe the proposed architecture for our implemen-
tation and discuss the challenges and benefits of this approach. Through testing,
we will evaluate the performance and effectiveness of our MAS.

With all this in mind, the paper is organized as follows. Section 2 presents the
work context and the technical foundations of this development. Subsequently,
Sect. 3 describes and specifies the system architecture. Section 4 outlines the
most relevant mechanics of this implementation, and a description of the appli-
cation performance is presented in Sect. 5. Finally, Sect. 6 presents the general
conclusions of the work and the lines of future work.

2 Background

2.1 Game’s Overview

Sudoku is a logic game played on a grid of 9× 9 squares divided into nine blocks
of 3× 3 squares each. The game’s goal is to fill the grid with the numbers from 1
to 9 so that each row, column, and 3× 3 subgrid contains all the numbers from
1 to 9 without repeating. It is considered a game of logic and problem-solving
that has become popular worldwide due to its simplicity and ability to provide
mental challenges at different difficulty levels. Sudoku puzzles can be found in
newspapers, magazines, websites, and mobile apps.

A conventional Sudoku game starts with some squares already solved, which
limits the possible combinations and makes the game’s difficulty level flexible.
From these initial values, the player must deduce which number should go in
each empty square using the game’s constraints. There are variants of Sudoku
that present different challenges and strategies. For instance, Sudoku X works

A Multi-agent Sudoku Through the Wave Function Collapse 383

on a 9× 9 grid with two additional diagonals that must contain the numbers 1
to 9 without repeating [15], while Samurai Sudoku consists of five overlapping
9× 9 grids, each with its own rules [2].

2.2 Math Involvement

In mathematical terms, Sudoku is a combination and permutation problem. A
9× 9 Sudoku grid has 81 squares, each of which can contain one of nine possible
numbers. Therefore, the number of possible Sudoku grids is 981, which is an
incredibly large number: about 6.67 × 1077. However, not all grids are valid per
se, as they must also comply with the rules and constraints of the game. That is,
each row, column and 3× 3 subgrid must contain all numbers from 1 to 9 without
repeating. Although the exact number of valid Sudoku grids is unknown with
certainty, it is estimated that there are about 65.47 × 109 valid grids.

To solve more complicated Sudoku grids, mathematical techniques such as
graph theory and mathematical logic can be applied. For instance, graph theory
can be used to represent the Sudoku grid as a bipartite graph, where nodes rep-
resent the squares and edges connect squares that are in the same row, column,
or subgrid. They can also be applied to search for feasible solutions. Mathe-
matical logic techniques can also be applied to deduce which are the possible
solutions for each box, using techniques such as mutual exclusion and constraint
inference. These techniques rely on logical deduction to reduce the number of
possible solutions for each cell, which can speed up the resolution [3,17].

Finally, in terms of creating Sudoku grids, mathematical techniques can be
applied to design grids that have special properties, such as a minimum number
of initial numbers or a particular difficulty. For instance, combinatorial design
techniques can be used to create symmetrical or asymmetrical Sudoku grids,
which can add an element of aesthetics to the game [19].

2.3 Wave Function Collapse

WFC is a concept in quantum physics that refers to the collapse of the wave
function of a particle into a measured state. In very general terms, the idea is
that the unobserved state of a particle can be in any potential state. As soon as
the particle is observed, the possibilities vanish and the wave function collapses.
For computer graphics and video games, it has interestingly been applied as a
method of procedural content creation. The aim is to generate content automati-
cally and randomly, such as landscapes, game levels, or architectural structures,
using algorithms, constraints, and predefined rules that return coherent and
structurally defined results [6,20].

The original algorithm was developed by Maxim Gumin as a texture syn-
thesis method based on single-setup or sample-sample images [4]. Although its
application in different contexts relies on the potential states that the algorithm
scatters, be they textures, 3D models, or numerical values. The basic idea is that
starting from a discrete space such as a mesh or grid and a finite set of possible
values, the algorithm initializes each grid cell with potentially all possible values.

384 C. Maŕın-Lora and M. Chover

That is, with maximum entropy [7,18]. This means that if a cell collapses to a
value, the neighboring cells will also see their entropy reduced according to the
pre-established restrictions. As the algorithm is executed, the probability wave is
collapsed to a particular state, eliminating the least probable options and retain-
ing the most probable ones. This process is repeated until a final configuration
is reached, which can be used as a result regardless of the context.

2.4 Video Game Development as MAS

The relationship between MAS and video games is not new. In the literature, one
can find multiple references to games that use this methodology to solve specific
mechanics [12,14]. However, this paper relies on game engine able to produce
games that meet the requirements of a MAS following its formal definition to
make a description of the game and its essential elements [9,10]. That is, it uses
the methodology to generate complete games as MAS.

In this model, the objects or actors of the game are like autonomous agents
Ag that interact with each other within a shared environment Env to describe
complex systems. Following this analogy and based on the formal definition of
MAS, the game represents the environment and the actors are the agents of
the multi-agent games. From the environment state, the actors can perceive
information and react to specific states based on their predefined tasks.

The behavior associated with the tasks is determined by sets of behavioral
rules and predefined logical semantics. The construction of the games is based
on a single type of actor and no hierarchical relationships between them. Each of
them has the same structure of properties and behavioral rules with which they
can interact with the game environment. All this without a scene graph, which
simplifies the internal architecture of the engine [1,16]. The definition of the
behavior is established through formal semantics based on predicate logic with a
level of abstraction for the definition of the actor’s behavior that makes complex
data structures such as vectors or matrices unnecessary. This semantics consists
of only five conditions and four actions to define the games using predicate
formulas and without requiring logical operators, matrices, or loops, since the
game loop performs cyclic evaluations of the behavior rules, simply using the
IF-THEN-ELSE structure [11,13].

3 Description and Specification

From an expert programmer’s point of view, it seems strange not to consider
developing a game like Sudoku without using data structures such as lists, vec-
tors, or matrices to represent the grid. However, it is not strictly necessary.
Following the methodology of video game development such as MAS [10], a spa-
tial placement of 81 agents interacting with their neighbors within their shared
environment can be envisioned.

Practically all current game engines have an interactive graphical interface
to prepare the spatial arrangement of the elements that compose a level. In the

A Multi-agent Sudoku Through the Wave Function Collapse 385

case of Sudoku, the initial layout consists of generating the 9× 9 grid of agents
Ag and initializing them within the game environment Env .

Following the video game development methodology discussed above, the
logic evaluation of the agents Ag is performed by evaluating their behavioral rules
at each iteration of the game loop. That is, the game engine will evaluate the
rules of all the agents once per iteration and perform the necessary actions. For
this reason, for this implementation, it is necessary to use states that delimit the
actions to be performed depending on the phase in which the game is, whether
it is the grid generation, the level generation, or the user interaction. Next, the
game’s features and the elements that compose it are described and specified.

Env {
State (string) = "WFC_ENTROPY"
Level (int) = 41
Auction (int) = 1
Entropy (int) = 9
AgRow (int) = -1
AgColumn (int) = -1
AgBlock (int) = -1
AgValue (int) = -1
Propagated (int) = 0
Collapsed (int) = 81

}

Ag {
State (string) = "WFC_ENTROPY"
Row (int)= -1
Column (int) = -1
Block (int) = -1
Auction (int) = 1
Entropy (int) = 9
EntropyX (bool) = true
Value (int) = 0

}

3.1 Environment Description

The environment Env is the shared space in which the game takes place. It is
composed by a set of variables that are accessible to every agent Ag that exists
in it. In the environment designed for this game, there are variables that control
aspects such as the phase in which it is located, the difficulty level, information
about the selected agent Ag, or other control variables. The State variable is key
since it delimits the evaluation of the agent’s behavior rules to the phase in which
the game is located. For example, the first phase is the grid generation with the
WFC method, so those states begin with the prefix WFC. Similarly, the ones
related to level generation start with LEVEL. The contents of the environment
Env are presented above.

3.2 Agent Description

At a simplistic level, in this game, each agent Ag is the representation of a par-
ticular value and its space of possibilities within this environment. In terms of
variables and characteristics, the agent has variables that determine its position
on the grid, a state controller to drive the evaluation of the logic at each phase,
and variables to control the entropy of the agent before it collapses to a par-
ticular value. Initially, the agents have maximum entropy (9) and no collapse,
meaning zero value (0). The structure of an agent Ag is described at the section’s
beginning. It should be noted that for simplicity and ease of reading, the boolean
entropy control variables have been grouped from one value to a single variable
(EntropyX).

386 C. Maŕın-Lora and M. Chover

4 Game Implementation and Mechanics

For this particular version of Sudoku, four phases have been visualized that
could be said to be organized sequentially. In the first phase, a spatial layout
of the game’s matrix structure is established and the agents’ information is
initialized. In the second phase, a pseudo-random grid is constructed to meet
the game constraints based on the collapse of the agents in the environment. In
the third phase, and from the grid obtained, the agents are randomly collapsed
or expanded until the selected difficulty level is completed. After each expansion,
it is verified that the puzzle has at least one solution path. At this point, the
player has a valid level with which to start playing in the last phase. That phase
is the game itself, where the user’s interactions with the game are controlled.

4.1 Spatial Layout of the Grid

The Sudoku implementation using the multi-agent game engine approach, based
on agents instead of conventional data structures, offers a distinct, flexible, and
adaptable alternative [10]. This approach stands out for its ability to adapt to
distributed environments, its efficiency, and scalability. It provides an innovative
way of approaching the generation of complex games such as Sudoku, taking full
advantage of the capabilities of MAS and even promoting parallel performance
[21]. In this sense, the structure is generated by assembling and spatially arrang-
ing the 81 grid agents and initializing their information. Which consists of their
positioning relative to their neighbors. In other words, their row, column, and
subgrid. Figure 1 shows on the left the initial arrangement of the 81 agents with
their information highlighted, and on the right a representation of an agent’s
neighborhood relationships (331). Any potential change in the agent state will
affect only its row (green), column (yellow), and subgrid (blue) neighbors.

Fig. 1. Grid structure with the agents’ codes (left) and the 331 agent neighborhood
relationship as an example (right).

A Multi-agent Sudoku Through the Wave Function Collapse 387

4.2 Grid Generation

With the structure established in the previous phase, it is time to generate a valid
puzzle that meets the constraints of the game. Remember, each agent can take an
integer value between 1 and 9, but that value cannot reappear in its neighborhood
(row, column, subgrid). For this task, let’s use the WFC procedural generation
techniques. This technique starts from a finite set of possible values or assets,
either digits, textures, or 3D models. These assets have associated with them
pre-established neighborhood constraints that try to ensure continuity when
generating procedural patterns. In the present case, a set of values represented
by the digits 1 to 9 and by the neighborhood constraints.

Starting from the uncollapsed agents with the lowest entropy, and auction
process selects and collapses one to a random value among its entropy. The
information about the collapsed value is propagated through its neighborhood,
reducing the entropy values of its neighboring agents, that is, the agents sharing
row, column and subgrid. Following the previous example, Fig. 2 shows the grid
of agents with maximum entropy on the left, and on the right the collapse of
agent 331 to value 9. As can be seen, the neighbors have had their entropy
reduced to 8 potential values. As long as the grid is not completed, the next steps
consist of repeating the same process. Since there are not lists or other similar
data structures, the method to select the next agent is to make an auction.
To do this, first the agents with the lowest entropy are identified and second,
these agents generate a random number. The selected agent will be the one that
meets the lowest entropy condition and the lowest auction value. The winner
will collapse to one of its potential values within its entropy and propagate this
change in its neighborhood.

This method relies primarily on the game engine’s game loop. Each action
is performed depending on the state of the environment and the agents. This

Fig. 2. Example of the grid with maximum entropy (left) and collapse of the first agent
and propagation of information in its neighborhood (right).

388 C. Maŕın-Lora and M. Chover

process is repeated until there are no more uncollapsed agents or until there is
no valid solution. That is, when there is an agent with 0 entropy. In that case,
the puzzle is reset and it starts again. Other methods could be used to search for
solution paths, but as will be seen later, restarting this phase is a fast and robust
solution. The agent’s behavior rules that control this process are presented next:

WFC ENTROPY: These are the agent’s actions while the environment has
the “WFC ENTROPY ” state. The agent also has three sub-states for this rule:
“WFC ENTROPY ”, “WFC AUCTION ” and “WFC COLLAPSE”. These sub-
states are sequential and executed in consecutive iterations of the game loop.
Their tasks are, respectively, to determine which are the agents with the lowest
entropy, to perform a random auction to select an agent among those with the
lowest entropy, and finally to collapse the selected agent. At the end of the
process or if it does not meet the entropy or auction cutoff criteria, the agent
goes to a waiting state or “IDLE”. If the search for the lowest entropy founds
an agent with entropy 0, it goes to the “WFC RESET” state to undo the grid
and start over.

1 if(Env.State == "WFC_ENTROPY")
2 if(Ag.State == "WFC_ENTROPY")
3 if(Env.Entropy > Ag.Entropy)
4 Env.Entropy = Ag.Entropy;
5 Ag.State = "WFC_AUCTION";
6 else
7 Ag.State = "IDLE";
8 end
9 if(Env.Entropy == 0)

10 Env.collapsed = 81;
11 Ag.State = "IDLE";
12 Env.State = "WFC_RESET";
13 end
14 end
15 if(Ag.State == "WFC_AUCTION")
16 Ag.Auction = Rand (0 ,100000);
17 if(Env.Auction > Ag.Auction)

18 Env.Auction = Ag.Auction;
19 Ag.State = "WFC_COLLAPSE";
20 else
21 Ag.State = "IDLE";
22 end
23 end
24 if(Ag.State == "WFC_COLLAPSE")
25 if(Env.Auction == Ag.Auction)
26 Env.AgRow = Ag.Row;
27 Env.AgColumn = Ag.Column;
28 Env.AgBlock = Ag.Block;
29 Env.State = "WFC_COLLAPSE";
30 end
31 Ag.State = "IDLE";
32 end
33 end

Behavior Rule 1.1 – Agent’s ”WFC ENTROPY” rule.

WFC RESET: If in “WFC ENTROPY ” any agent with entropy 0 is found,
the process must be restarted. This behavior rule is in charge of restarting the
agent and resetting the environment state when all are ready.

1 if(Env.State == "WFC_RESET")
2 Ag.Entropy = 9;
3 Ag.EntropyX = true;
4 Env.Collapsed -= 1;

5 if(Env.Collapsed == 0)
6 Env.State = "WFC_ENTROPY";
7 end
8 end

Behavior Rule 1.2 – Agent’s ”WFC RESET” rule.

WFC COLLAPSE: The agent selected in “WFC ENTROPY ” is collapsed to
a random value within its probability space and the environment information is
updated. The next step is to propagate the information to its neighbors.

A Multi-agent Sudoku Through the Wave Function Collapse 389

1 if(Env.State == "WFC_COLLAPSE")
2 if(Env.Row == Ag.Row)
3 if(Env.Column == Ag.Column)
4 if(Env.Block == Ag.Block)
5 Ag.Value = Rand(Ag.EntropyX);
6 Env.AgValue = Ag.Value;
7 Env.Collapsed += 1;

8 Env.Propagate -= 1;
9 Env.State = "WFC_PROPAGATE";

10 end
11 end
12 end
13 end

Behavior Rule 1.3 – Agent’s ”WFC COLLAPSE” rule.

WFC PROPAGATE: Finally, “WFC PROPAGATE” is responsible for prop-
agating the agent’s collapse information among its neighbors. That is, it elimi-
nates the collapsed value of the entropy of the non-collapsed agents that share
row, column, or subgrid. Finally, a check is made to see if the grid is complete
or if there are missing agents to be collapsed. In the first case, it is passed to the
“LEVEL RANDOM ” level generation state, and in the second case it is returned
to “WFC ENTROPY ” to repeat the process with the remaining agents.

1 if(Env.State == "WFC_PROPAGATE")
2 if(Ag.value != 0)
3 if(Ag.Row == Env.AgRow)
4 Ag.EntropyX = false;
5 Ag.Entropy -= 1;
6 end
7 if(Ag.Column == Env.AgColumn)
8 Ag.EntropyX = false;
9 Ag.Entropy -= 1;

10 end
11 if(Ag.Block == Env.AgBlock)
12 Ag.EntropyX = false;
13 Ag.Entropy -= 1;

14 end
15 end
16 Env.Propagate -= 1;
17 if(Env.Propagate == 0)
18 if(Env.Collapsed < 81)
19 Env.State = "WFC_ENTROPY";
20 else
21 Env.State = "LEVEL_RANDOM";
22 Ag.State = "LEVEL_AUCTION";
23 end
24 end
25 end

Behavior Rule 1.4 – Agent’s ”WFC PROPAGATE” rule.

4.3 Level Generation

With a complete and valid grid according to the game constraints, the puzzle
begins to be generated according to a preset difficulty level.

In this sense, starting from a specific number of agents set by a value to denote
the difficulty level, the opposite process of the previous phase is started. That is,
one of the collapsed agents is randomly selected, uncollapsed and its information
is expanded in its neighborhood. If after this step there is no agent with entropy
1, the expansion is undone and a collapsed agent is randomly selected again.

This process is looped until the number of collapsed agents equals the selected
difficulty level. An example of a grid generated in the first phase can be seen
in Fig. 3 on the left, which is converted into a puzzle ready to be played with a
difficulty level of 40 collapsed agents and 41 to be discovered.

Similarly, as in the previous phase, this process is directly dependent on the
game loop of the engine since the rules evaluation is performed autonomously by
each agent at each iteration of the loop. Next, the behavioral rules of the agents
controlling this process are presented.

390 C. Maŕın-Lora and M. Chover

Fig. 3. Example of a complete and valid grid generated (left) and a puzzle ready to
play with level 41 (right).

LEVEL RANDOM: This rule is used to select an agent for decollapse. The
selection method is the random auction, as in the previous phase. In the first
iteration, the auction is made and, if it is the winner, in the second iteration it
is established as the agent to be decollapsed.

1 if(Env.State == "LEVEL_RANDOM")
2 if(Ag.State == "LEVEL_AUCTION")
3 if(Ag.Value != 0)
4 Ag.Auction = Rand (0 ,100000);
5 if(Env.Auction > Ag.Auction)
6 Env.Auction = Ag.Auction;
7 Ag.State = "LEVEL_COLLAPSE";
8 end
9 end

10 end

11 if(Ag.State == "LEVEL_COLLAPSE")
12 if(Env.Auction == Ag.Auction)
13 Env.AgRow = Ag.Row;
14 Env.AgColumn = Ag.Column;
15 Env.AgBlock = Ag.Block;
16 Env.State = "LEVEL_COLLAPSE";
17 end
18 Ag.State = "IDLE";
19 end
20 end

Behavior Rule 1.5 – Agent’s ”LEVEL RANDOM” rule.

LEVEL COLLAPSE: If the agent is the selected one, this rule decollapses it
and moves the state to the propagation sub-phase “LEVEL PROPAGATE”.

1 if(Env.State = "LEVEL_COLLAPSE")

2 if(Env.Row == Ag.Row)

3 if(Env.Column == Ag.Column)

4 if(Env.Block == Ag.Block)

5 Env.AgValue = Ag.Value;

6 Ag.EntropyX = true;

7 Ag.Entropy += 1;

8 Env.Collapsed -= 1;

9 Env.State = "LEVEL_PROPAGATE";

10 end

11 end

12 end

13 end

Behavior Rule 1.6 – Agent’s ”LEVEL COLLAPSE” rule.

LEVEL PROPAGATE: This rule applies to the collapsed agent’s neighbors,
whose entropy is increased by the collapsed value. After this, a check is made to
see if there are more collapsed agents than the game’s difficulty level. If so, the

A Multi-agent Sudoku Through the Wave Function Collapse 391

process is repeated and if not, the next and last “PLAY ” phase is switched. In
addition, if any agent with 0 entropy is found, the last collapse is undone and
the process is repeated selecting another agent.

1 if(Env.State = "LEVEL_PROPAGATE")
2 if(Ag.Value != 0)
3 if(Ag.Row == Env.AgRow)
4 Ag.EntropyX = true;
5 Ag.Entropy += 1;
6 end
7 if(Ag.Column == Env.AgColumn)
8 Ag.EntropyX = true;
9 Ag.Entropy += 1;

10 end
11 if(Ag.Block == Env.AgBlock)
12 Ag.EntropyX = true;
13 Ag.Entropy += 1;

14 end
15 end
16 if(Env.Collapsed > Env.Level)
17 Env.State = "LEVEL_RANDOM";
18 Ag.State = "LEVEL_AUCTION";
19 else
20 Env.State = "PLAY";
21 end
22 if(Ag.Entropy == 0)
23 Env.State = "LEVEL_UNCOLLAPSE";
24 end
25 end

Behavior Rule 1.7 – Agent’s ”LEVEL PROPAGATE” rule.

LEVEL UNCOLLAPSE: If the last collapse had to be undone, the entropy
of the selected agent is increased and it is switched to the sub-state that controls
the expansion of information in its neighbors “LEVEL EXPAND”.

1 if(Env.State = "LEVEL_UNCOLLAPSE")
2 if(Env.Row == Ag.Row)
3 if(Env.Column == Ag.Column)
4 if(Env.Block == Ag.Block)
5 Ag.Value = Env.AgValue;
6 Ag.EntropyX = false;
7 Ag.Entropy -= 1;

8 Env.Collapsed += 1;
9 Env.State = "LEVEL_EXPAND"

10 end
11 end
12 end
13 end

Behavior Rule 1.8 – Agent’s ”LEVEL UNCOLLAPSE” rule.

LEVEL EXPAND: In the same way as in the”LEVEL PROPAGATE”, the
information is transferred by its neighbors but in this case, removing the value
of the decollapsed agent from its entropy.

1 if(Env.State = "LEVEL_EXPAND")
2 if(Ag.Value != 0)
3 if(Ag.Row == Env.AgRow)
4 Ag.EntropyX = false;
5 Ag.Entropy -= 1;
6 end
7 if(Ag.Column == Env.AgColumn)
8 Ag.EntropyX = false;
9 Ag.Entropy -= 1;

10 end
11 if(Ag.Block == Env.AgBlock)
12 Ag.EntropyX = false;
13 Ag.Entropy -= 1;
14 end
15 end
16 Env.State = "LEVEL_RANDOM";
17 end

Behavior Rule 1.9 – Agent’s ”LEVEL EXPAND” rule.

4.4 User Interaction

With the puzzle ready to play, it only remains to specify the logic of the user’s
interaction with the game. And for this, and the simplicity of this text, it is
assumed that the agent selection is done by pointer and the value selection is

392 C. Maŕın-Lora and M. Chover

done by numeric keypad with values from 0 to 9. Where 0 corresponds to the
action of resetting the value of the agent. In this sense, the following is the
behavior rules that model this logic in the specification system:

PLAY: This rule controls the user’s interaction in two ways: the agent’s selection
by pointer and the value choice to be placed in the agent by a keyboard.

1 if(Env.State == "PLAY")
2 if(pointer(Ag))
3 if(Env.Row != 0)
4 Env.AgRow = 0;
5 Env.AgColumn = 0;
6 Env.AgBlock = 0;
7 else
8 Env.AgRow = Ag.Row;
9 Env.AgColumn = Ag.Column;

10 Env.AgBlock = Ag.Block;
11 end

12 end
13 if(keyboard(x))
14 if(Env.AgRow != 0)
15 Ag.Value = x;
16 Env.Collapsed += 1;
17 Env.AgRow = 0;
18 Env.AgColumn = 0;
19 Env.AgBlock = 0;
20 end
21 end
22 end

Behavior Rule 1.10 – Agent’s ”PLAY” rule.

5 Results

From the presented description and specification, the game has been imple-
mented in the Unity game engine, specifically in its version 2022.2.1.f1. The
result is a fully functional game deployed for the Android mobile platform. In
Fig. 4 you can see on the left a game capture with the puzzle ready to be played,
and on the right, the same puzzle but already solved. In the screenshot on the
left, the entropy values of each of the agents can also be observed for debugging
and validation purposes.

Fig. 4. Screenshot of the game implementation in Unity with the puzzle ready to play
with level 41 (left) and the same puzzle solved (right).

A Multi-agent Sudoku Through the Wave Function Collapse 393

Table 1. Seconds taken to grid build (WFC) and level creation (LEVEL) phases.

AGENTS WFC AVG

41 2.82 1.64 2.04 1.64 1.64 1.64 4.46 3.76 1.64 1.64 2.29

51 1.64 1.64 6.44 1.64 2.80 3.48 1.64 2.40 1.64 1.64 2.50

61 1.64 1.64 4.62 2.04 1.64 1.64 3.16 1.64 1.64 1.64 2.13

71 1.64 3.16 1.64 3.96 2.04 1.64 2.78 1.64 1.64 2.04 2.22

LEVEL

41 0.84 0.84 0.84 0.84 0.84 0.84 0.84 0.84 0.84 0.84 0.84

51 1.04 1.04 1.04 1.04 1.06 1.06 1.06 1.04 1.04 1.04 1.05

61 1.30 1.24 1.32 1.32 1.28 1.28 1.26 1.28 1.28 1.28 1.28

71 1.66 1.94 1.78 1.64 1.80 1.78 2.02 1.72 1.68 1.74 1.78

TOTAL

41 3.66 2.48 2.88 2.48 2.48 2.48 5.30 4.60 2.48 2.48 3.13

51 2.68 2.68 7.48 2.68 3.86 4.54 2.70 3.44 2.68 2.68 3.54

61 2.94 2.88 5.94 3.36 2.92 2.92 4.42 2.92 2.92 2.92 3.41

71 3.30 5.10 3.42 5.60 3.84 3.42 4.80 3.36 3.32 3.78 3.99

The efficiency of the implementation is one of the unknowns of the process.
A benchmark with 10 executions of the game over 4 levels of difficulty has been
performed to estimate the effect of the methodology. Where each level involves
more agents without collapsing initially. The results of these measurements can
be seen in Table 1.

From Table 1, arises that the generation process with the WFC method has
no relation with the selected level. Since the dimensions of the problem are
constant and the variability in the average times is due to the restart that was
decided to implement when, given the pseudo-random component of the phase, it
is not possible to continue with the generation, and the process is restarted. The
situation changes in the case of the level, where an increase in times is observed
as the number of agents without collapse increases. It has been observed that in
the first level, no backtracking events are observed, but from level 51 onwards
entropy recalculations begin to be observed. At the last level, a range of 10–20
backtracking and recalculation events have been observed.

Overall, the average level generation times until the player can start inter-
acting range from 3 to 4 s. These are not prohibitive times, but to smooth that
transition an airport shuffle or panel effect has been arranged to provide feedback
to the player about what is happening while the puzzle is being generated.

6 Conclusions and Future Work

This paper has presented a procedural implementation of the Sudoku game using
a methodology to generate games such as MAS. The main goal was to propose

394 C. Maŕın-Lora and M. Chover

a solution for a game with a matrix nature using MAS. The results obtained
show that this approach generates a fully functional video game, offering valid
and varied Sudokus to the players.

This approach has represented a challenge since it has made it possible to
approach a complex matrix game such as Sudoku innovatively. Furthermore,
the successful implementation of Sudoku as a MAS supports the feasibility and
effectiveness of this approach. The generation of games using MAS opens up
new possibilities, as it can allow expanding the range of methodologies for game
construction as this approach offers a distinct, flexible, and adaptable alternative
to distributed and scalable environments. In addition to helping developers to
acquire computational thinking skills different from the traditional ones.

In this sense, one of the next research lines lies on the definition of a formal
scripting language that encapsulates the methodology for generating games as
MAS, its integration within a game engine created specifically on it, and on a
commercial engine such as Unity.

Acknowledgements. This work has been developed with the support of valgrAI
- Graduate School and Research Network of Artificial Intelligence and the Gener-
alitat Valenciana, and co-funded by the European Union. Furthermore, with Grant
PDC2021-120997-C31 funded by MCIN/AEI/10.13039/501100011033 by the “Euro-
pean Union NextgenerationEU/PRTR”. Grant to Consolidated Research Groups
(CIAICO/2021/037) of the Department of Innovation, Universities, Science and Digital
Society (Generalitat Valenciana).

References

1. Chover, M., Maŕın-Lora, C., Rebollo, C., Remolar, I.: A game engine designed
to simplify 2D video game development. Multimed. Tools Appl. 79, 12307–12328
(2020)

2. Danbaba, A.: Construction and analysis of samurai sudoku. Int. J. Math. Comput.
Sci. 10(4), 165–170 (2016)

3. Felgenhauer, B., Jarvis, F.: Mathematics of sudoku I. Math. Spectr. 39(1), 15–22
(2006)

4. Gumin, M.: Wave Function Collapse: Bitmap & tilemap generation from a single
example with the help of ideas from Quantum Mechanics. GitHub (2016). www.
github.com/mxgmn/WaveFunctionCollapse

5. Karth, I., Smith, A.M.: WaveFunctionCollapse is constraint solving in the wild.
In: Proceedings of the 12th International Conference on the Foundations of Digital
Games, pp. 1–10, August 2017

6. Kleineberg, M.: An infinite, procedurally generated city, assembled out of blocks
using the Wave Function Collapse algorithm with backtracking. GitHub (2018).
www.github.com/marian42/wavefunctioncollapse

7. Machta, J.: Entropy, information, and computation. Am. J. Phys. 67(12), 1074–
1077 (1999)

8. Maji, A.K., Jana, S., Roy, S., Pal, R.K.: An exhaustive study on different sudoku
solving techniques. Int. J. Comput. Sci. Issues (IJCSI) 11(2), 247 (2014)

9. Maŕın-Lora, C., Chover, M., Sotoca, J.M.: Prototyping a game engine architecture
as a multi-agent system. In: 27th International Conference in Central Europe on
Computer Graphics, Visualization and Computer Vision (WSCG 2019) (2019)

www.github.com/mxgmn/WaveFunctionCollapse
www.github.com/mxgmn/WaveFunctionCollapse
www.github.com/marian42/wavefunctioncollapse

A Multi-agent Sudoku Through the Wave Function Collapse 395

10. Maŕın-Lora, C., Chover, M., Sotoca, J.M., Garćıa, L.A.: A game engine to make
games as multi-agent systems. Adv. Eng. Softw. 140, 102732 (2020)

11. Maŕın-Lora, C., Chover, M., Sotoca, J.M.: A game logic specification proposal for
2D video games. In: Rocha, Á., Adeli, H., Reis, L.P., Costanzo, S., Orovic, I.,
Moreira, F. (eds.) WorldCIST 2020. AISC, vol. 1159, pp. 494–504. Springer, Cham
(2020). https://doi.org/10.1007/978-3-030-45688-7 50

12. Maŕın-Lora, C., Chover, M., Sotoca, J.M.: A multi-agent specification for the Tetris
game. In: Matsui, K., Omatu, S., Yigitcanlar, T., González, S.R. (eds.) DCAI 2021.
LNNS, vol. 327, pp. 169–178. Springer, Cham (2022). https://doi.org/10.1007/978-
3-030-86261-9 17

13. Maŕın-Lora, C.: Game Development Based on Multi-agent Systems (Doctoral dis-
sertation, Universitat Jaume I) (2022)

14. Nystrom, R.: Game programming patterns. Genever Benning (2014)
15. Provan, J.S.: Sudoku: strategy versus structure. Am. Math. Mon. 116(8), 702–707

(2009)
16. Rebollo, C., Maŕın-Lora, C., Remolar, I., Chover, M.: Gamesonomy vs Scratch:

two different ways to introduce programming. In: 15th International Conference
On Cognition And Exploratory Learning In The Digital Age (CELDA 2018). Ed.
IADIS Press (2018)

17. Russell, E., Jarvis, F.: Mathematics of sudoku II. Math. Spectr. 39(2), 54–58 (2006)
18. Sbert, M., Feixas, M., Rigau, J., Viola, I., Chover, M.: Applications of information

theory to computer graphics. In: Eurographics (Tutorials), pp. 625–704, August
2007

19. Simonis, H.: Sudoku as a constraint problem. In: CP Workshop on Modeling and
Reformulating Constraint Satisfaction Problems, vol. 12, pp. 13–27. Citeseer, Octo-
ber 2005

20. Stalberg, O.: Townscaper. Steam (2021). www.store.steampowered.com/app/
1291340/Townscaper/

21. Wooldridge, M.: An Introduction to Multiagent Systems. John wiley & sons, Hobo-
ken (2009)

https://doi.org/10.1007/978-3-030-45688-7_50
https://doi.org/10.1007/978-3-030-86261-9_17
https://doi.org/10.1007/978-3-030-86261-9_17
www.store.steampowered.com/app/1291340/Townscaper/
www.store.steampowered.com/app/1291340/Townscaper/

AGAMAS: A New Agent-Oriented Traffic
Simulation Framework for SUMO

Mahyar Sadeghi Garjan, Tommy Chaanine, Cecilia Pasquale ,
Vito Paolo Pastore , and Angelo Ferrando(B)

Department of Informatics, Bioengineering, Robotics and Systems Engineering,
University of Genoa, Genoa, Italy

{mahyar.sadeghigarjan,tommy.chaanine,cecilia.pasquale,
vito.paolo.pastore,angelo.ferrando}@unige.it

Abstract. Simulating everyday traffic scenarios is not an easy task.
Many aspects have to be taken into consideration and properly modelled,
from static components, like traffic lights, to dynamic components, like
vehicles. Due to their intrinsic autonomy and distribution, such compo-
nents have already been designed as software agents, and integrated into
existing traffic simulators, such as SUMO. The needing for agent-based
modelling is even more evident when autonomous vehicles are present
in the simulation. In this paper, we present an Agent-Based Traffic Sim-
ulation framework, where the simulation components can be defined as
JADE agents. We present the engineering of our framework, and we
show how it represents a new alternative for creating Agent-Based simu-
lations in the largely used SUMO traffic simulator. We also demonstrate
its applicability by employing the framework in one case study involving
autonomous vehicles.

Keywords: Agent-Based Traffic Simulation · JADE · SUMO

1 Introduction

The transportation of goods and passengers plays a crucial role in our society. As
a consequence, the demand for traffic mobility has grown significantly in recent
decades, bringing benefits to human development but causing, as a side effect,
an increase in road congestion. Indeed, traffic jams are becoming more frequent
every day [10,25,27]. The reasons may vary, but at the heart of the matter, we
always find a human component. This is true both in urban scenarios, as well as
in highway ones. The traffic problem can be tackled from different perspectives;
many efforts have been made by researchers to develop traffic control strategies
for both urban and highway networks [9,15,21]. Nowadays, the most advanced
traffic control strategies involve the use of intelligent devices as actuators of dif-
ferent control actions, ranging from smart traffic lights [13,14,23] to Connected
and Autonomous Vehicles (CAVs) [5,6,16]. The former depends on static objects
(the traffic lights) and can be mainly deployed in urban scenarios, while the lat-
ter can be also deployed in highway scenarios, and depends on dynamic objects
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
V. Malvone and A. Murano (Eds.): EUMAS 2023, LNAI 14282, pp. 396–405, 2023.
https://doi.org/10.1007/978-3-031-43264-4_25

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-43264-4_25&domain=pdf
http://orcid.org/0000-0002-0760-4769
http://orcid.org/0000-0002-5827-5571
http://orcid.org/0000-0002-8711-4670
https://doi.org/10.1007/978-3-031-43264-4_25

AGAMAS: A New Agent-Oriented Traffic Simulation Framework for SUMO 397

(CAVs) that act as safety cars to enforce a certain speed on vehicular traffic to
prevent congestion in different scenarios. In both cases, new and intelligent com-
ponents are added to the traffic flow, with the objective of preventing/solving
traffic jams. Such components need to be autonomous, reactive, proactive, and
in some cases, even rational. Namely, such components need to be agents.

Some work recognising static and dynamic intelligent components in traffic
scenarios as agents have been recently released [8,12,19]. Nonetheless, we are
still far away from a large use of such intelligent systems in everyday life, and
the possibility of deploying them as agents may be an important stepping stone
to achieving such a goal. Because of that, it is problematic to foresee the possible
implications of their use. To overcome this issue, traffic simulations have been
exploited [3]; where both autonomous and non-autonomous components can be
deployed and experimented with together.

In such scenarios, the logic is usually hard-coded inside the simulation; mainly
because the existing tools do not support an easy-to-use integration with agent
technologies. For this reason, even though from an engineering perspective it
would be advantageous to exploit software agents to handle the autonomous
components in the simulation, it is usually hardly the case.

Various tools exist to simulate traffic scenarios, amongst them we may find
SUMO [11], Aimsun [1], Matsim [18], and PTV Vissim [17] (to cite the most
widely used ones). Unfortunately, no existing and maintained framework bridges
the gap between such traffic simulators and the agent world.

This paper tries to fill this gap, by introducing a general-purpose AGent-
oriented trAffic siMulAtor in Sumo (AGAMAS). We opted for SUMO as a traffic
simulator, as it is open source and largely adopted by the traffic simulation com-
munity. AGAMAStransparently integrates JADE [2] software agents in SUMO.
Amongst the available agent-based frameworks, we opted for JADE because
based on Java, highly customisable, and natively decentralised.

2 Background

Tackling daily life traffic issues can be costly. Traffic congestion is an example
that can be solved by enlarging the size of the highways. However, this app-
roach is expensive in terms of time and resources. Traffic control, on the other
hand, offers cheaper and short-term solutions in which it is possible to enhance
the traffic flow. Modelling the traffic results in traffic flow prediction, incident
detection and eventually better control of the traffic. However, gauging the effec-
tiveness of these models requires traffic simulation software tools. Traffic model
simulations allow for fast, safe, reproducible, and cost-effective experiments.

Simulation of Urban MObility, or SUMO [11], is a multi-modal traffic sim-
ulator, designed to handle large networks. It is microscopic, continuous, and
portable, and it was developed by the German Aerospace Centre for modelling
inter-modal traffic systems like vehicles, public transport and pedestrians. Since
2001, it has been available as an open-source project. In 2017 it became an
Eclipse Foundation project.

398 M. Sadeghi Garjan et al.

SUMO can simulate and analyse road traffic and traffic management systems,
in addition to route finding, visualisation, importing networks and calculating
emissions. It allows the generation (virtually) of detectors’ observations and to
model the flow of traffic at intersections. SUMO is used in research concerning
traffic prediction, traffic lights and vehicular communication systems, and to
analyse new traffic strategies before they are implemented in the real world.
Moreover, SUMO can be enhanced with custom models, providing many APIs
for online control of the simulation. Since traffic scenarios are highly dynamic,
having online (and continuous) access to the environment is a paramount feature.
These online communications are necessary to build flexible and reactive agent-
based solutions. For this reason, in AGAMAS, we opted for SUMO as a simulated
traffic environment where to introduce our software agents.

3 Related Work

A similar framework to AGAMASwas introduced back in 2010 [24], and it’s
named TRasMapi. Traffic simulation software has seen huge improvements
since then. However, TRasMapi is not updated and cannot provide access to
the features that have been introduced into SUMO during the last decade.
Moreover, TRasMapi was used to build more abstract frameworks. In [22], for
instance, TRasMapi was used to implement artificial transportation systems in
which it was used to allow synchronisation between an agent-based population
and SUMO that could instantiate an Artificial Society (AS) of heterogeneous
drivers and intelligent traffic light management solutions. Since [22] is based on
TRasMapi, it is no longer compatible with recent versions of SUMO.

Another tool that allows implementing agents in SUMO is ITSUMO [20], in
which agents are implemented as cellular automata. ATSim [4] is another related
framework, providing the possibility to create an agent-based traffic simulation
system to support global system throughput on a macro-level view. However,
unlike AGAMAS, ATSIM combines JADE with commercial traffic simulation
suite AimSun [1]; while AGAMASand SUMO are open source.

AGAMAShas a proper definition of agents in the traffic simulation in terms
of connectivity and autonomy. Agents in JADE perform actions based on their
behaviours, while the resulting computations can be decentralised (thanks to
JADE containers). Most of the recent publications have disregarded this fact
due to the lack of a proper library to implement autonomous objects as agents.
For example, in [7], the cooperation among autonomous vehicles is performed in
a centralised way. Hence, one action is chosen for all the vehicles in the network.

4 Agent-Based Traffic Simulation in AGAMAS

The urge to have an Agent-Based simulation with new capabilities in terms of
interacting with the SUMO environment and also having access to its recent
(more sophisticated) APIs was the motivation for this work. Two of the main
properties of an agent are sensing the environment and performing actions to

AGAMAS: A New Agent-Oriented Traffic Simulation Framework for SUMO 399

change the latter itself. Hence, both requirements should be taken into consider-
ation in the development of a new Agent-Based traffic simulation framework. As
previously mentioned, JADE and SUMO are the two main components of AGA-
MAS. The former, for what concerns the software agents’ development, while
the latter, for what concerns the traffic simulation. Figure 1 demonstrates the
architecture of the above-mentioned framework. Real-time interaction with the
environment is provided by Traci APIs (based on TCP connections). Traci is a
short form of “Traffic Control Interface”. It provides the bridge to a running sim-
ulation in SUMO, allowing to retrieve values of simulated objects and change
their behaviour online. Since this connection is continuous, it offers real-time
interaction with the environment. AGAMAS’ agents have continuous access to
the environment and its simulated objects.

Fig. 1. The Architecture of AGAMAS.

Note that, even though technological, this aspect is quite relevant. Indeed, in
order to handle such a continuous connection, AGAMAS’ agents need to run in
parallel with SUMO. This requires AGAMASto be thread-safe, especially in what
concerns the interactions between the JADE agents and SUMO. Specifically, it
is necessary for the Traci instantiation to be thread-safe.

In the case of Java, the available Traci library is called libtraci1 and is
fully supported and maintained by the SUMO development team. Libtraci has
recently been extended to support concurrent interactions2 with SUMO. Because
of that, AGAMAShas been safely built on top of it.

1 https://sumo.dlr.de/docs/Libtraci.html.
2 This feature has been recently added to libtraci thanks to the effort of the SUMO

team and the authors of this work.

https://sumo.dlr.de/docs/Libtraci.html

400 M. Sadeghi Garjan et al.

4.1 Perceptions and Actions of Agents

Agents, of any type, should have the capability to sense the environment and
perform actions upon the latter. Here, we discuss in detail, how agents interact
with the simulated environment.

Perceptions and Actions in AGAMASare propagated through Traci. As
reported in Fig. 1, Traci is the bridge to connect JADE agents with SUMO, and
it is divided into two main parts: (i) Traci server, and (ii) Traci client. Based on
the AGAMAS’ architecture, Traci server is on the simulation side (i.e., SUMO),
and starts listening to the queries (sent by the agents) as soon as the simula-
tions start. Traci client is a part of the middleware and performs the role of the
communication module.

APIs in Traci client are accessible using the SUMO Command Module.
Although, in AGAMAS, the developer does not need to deal directly with either
the TCP connections or the Command Modules. Overall, the APIs offered by
Traci which are built upon Command Modules can be divided into two parts:
GET: They retrieve values from the simulation. Agents in the framework per-
ceive the simulated environment through these APIs. SET: They change values
of variables, or the behaviour, of a simulated object. Using these APIs, agents
are able to perform their actions in the environment.

In the older version of Traci, it was required to manually deal with the con-
nections and the commands, hence, making it difficult to submit queries. How-
ever, in AGAMAS, instead of building the communication module from scratch,
libtraci is exploited. As previously mentioned, libtraci is the implementation of
Traci in Java and it simplifies utilising the APIs.

Perceptions of any agent can be gathered through this package by calling
the desired GET queries. To perform an action, SET APIs of an object in the
simulation can be called.

4.2 AGAMAS’ Architecture

In this section, we dive more into the details of the middleware, demonstrating
how an agent can be created. AGAMASis an Agent-Oriented Traffic Simulation
framework. The aim of this framework is to introduce autonomous objects into
the simulation, with message-exchanging capabilities that simplify the imple-
mentation of an agent-oriented traffic simulation by abstracting away the basic
and necessary functionalities of SUMO and JADE integration. Using the frame-
work, it is possible to focus more on the agent aspect of the simulation, rather
than its actual implementation.

Although every simulated object can be represented as an agent, AGAMAS-
concentrates especially on autonomous vehicles due to their importance. More-
over, autonomous vehicles are the most challenging objects in traffic simulations,
and the most natural ones to be specified as agents.

One of the main features of AGAMASis to provide the possibility to have
a cluster of vehicles. In this paper, an autonomous vehicle cluster is defined as
a cluster of vehicles, controlled by an agent in JADE. Based on this concept,

AGAMAS: A New Agent-Oriented Traffic Simulation Framework for SUMO 401

it is possible to have autonomous vehicles with a specific range of decentralised
computations. Such a simplification in AGAMASis useful when describing com-
plex behaviours that affect a swarm of identical vehicles. This becomes relevant
when multiple objects in the simulation are not rational (at the object level),
but their cluster is (at the collective level).

After an initial configuration phase, the simulation is ready to be populated
by objects (as agents). For instance, it is possible to create multiple agents, where
each agent handles one (or many) vehicle(s) in the SUMO simulation. Naturally,
such a number of vehicles is arbitrary and it is determined by the application’s
requirements. By creating a cluster with one vehicle, in fact, we are inserting a
fully autonomous vehicle in the simulation. It is also possible to handle multiple
SUMO vehicles with a single JADE agent. Representing multiple vehicles as a
single agent will lead to highly sophisticated cooperation due to agent-based
communications among the clusters and single autonomous vehicles and the
simplicity of submitting queries for all the vehicles in a cluster.

As an example, in Listing 1.1, it is shown how to create a cluster of vehicles
as an agent, and how to monitor their speed using a JADE cyclic behaviour:

Listing 1.1. An example of creating an agent with a cluster of two vehilces.
1 public stat ic void main (St r ing [] a rgs) {
2 St r ing [] command = new St r ing [] { ”sumo−gui ” , ”−−delay ” , ” 10 .0 ” ,
3 ”−c” , ” p a t h t o s umoc f g f i l e ” } ;
4 SUMOMAS sm = new SUMOMAS(fa lse , command , 5000) ;
5 List<Str ing> i d s = new ArrayList<Str ing >() ;
6 i d s . add (”1”) ; i d s . add (”2”) ;
7 // veh i c l e type parameters should be passed to the c l u s t e r
8 AV Cluster avc = sm . c r e a t eC lu s t e r (ids , v eh i c l e s t ype ,
9 route id , departure t ime , depar ture lane , d epa r tu r e po s i t i on ,

10 departure speed , a r r i v a l l a n e , a r r i v a l p o s , a r r i v a l s p e ed ,
11 from TAZ , to TAZ , l i n e , per son capac i ty , person number) ;
12 ArrayList<SumoVehicle> v e h i c l e s=avc . getSumoVehicles () ;
13 SumoVehicle v e h i c l e 1=v eh i c l e s . get (1) ;
14 avc . addBehaviour (new Cycl icBehaviour () {
15 @Override
16 public void ac t i on () { System . out . p r i n t l n (avc . getSpeed ()) ; }
17 }) ;
18 avc . addBehaviour (new OneShotBehaviour () {
19 @Override
20 public void ac t i on () { v eh i c l e 1 . changeLane (1 , 9) ; }
21 }) ;
22 sm . runSim () ;
23 }

Above, a cluster with two vehicles is created by passing the list of specified
IDs (line 6), and other vehicle-type parameters that can be found in the SUMO
documentation. SUMOMAS, after setting up the agent, and adding its correspond-
ing vehicles to the simulation, returns the agent in charge of the resulting cluster
(line 8). Users do not need to deal with adding the vehicles to the simulation and
starting up the agents themselves. Furthermore, AGAMAShandles the agent’s
life cycle in the simulation. That is, it kills the agent when all of its vehicles
exit the simulation (i.e., when the simulated objects stop existing in the SUMO
simulated environment).

Each cluster agent in AGAMAShas access to the SUMO Vehicle class (part
of libtraci); the latter provides additional functionalities for each vehicle of the

402 M. Sadeghi Garjan et al.

cluster. However, in order to simplify the APIs, AGAMASabstracts this aspect
away from the user. In fact, all the operations performed on the cluster are
automatically propagated (and if needed replicated) to the under-the-hood set of
SUMO vehicles. Thanks to this, the user can focus on programming the agent as a
cluster, without the need of programming the single low-level vehicles’ behaviour.

Once the agent has been created (exploiting the SUMOMAS class), it is exactly
a JADE agent. Because of that, we can program it as it is customary for JADE
agents. For instance, in Listing 1.1, line 14, we add a cyclic behaviour to the
agent. With it, we can log the speed of the agent; that is, the speed of the vehicles
belonging to its cluster. This simple code logs the speed of all the vehicles in the
cluster. This is obtained by calling the getSpeed() method on the cluster agent
(line 16), which returns a list with a size equals to the number of vehicles inside
the cluster. The order of the so returned speeds in the list is the same as the ID
list passed upon agent creation.

5 Experiments

The case study on which we experimented AGAMASconsists of a deadlock han-
dling scenario, as shown in Fig. 2. This case study has been inspired by [26].

In this case study, we explore the use of AGAMASto develop CAVs capable
of solving a simple deadlock scenario. In more detail, the case study consists in
a traffic simulation where all vehicles are CAVs, but two kinds exist: the normal
ones (the green) and the emergency ones (the red). The problem we tackle with
AGAMASis to develop these CAVs as JADE agents, where the objective is for
the emergency vehicles to not get delayed by normal ones on their road.

Let us assume we have one single emergency vehicle (CAV EM), and various
normal vehicles. Amongst the latter, we have one vehicle that is currently an
obstacle for the emergency one (CAV Slow 0). In order to avoid making the emer-
gency vehicle to stop, CAV Slow 0 needs to free the lane. To do so, since we are in
a scenario where all the vehicles are CAVs, it can communicate with its closest
CAV on its right (CAV Slow 1 in this case), as depicted in Fig. 2. Such commu-
nication is devolved to create a gap for letting CAV Slow 0 change lane (and so
freeing the lane for the emergency vehicle). In more detail, by using AGAMAS’
APIs (partially provided by libtraci), and by message exchange amongst the
JADE agents, the emergency vehicle sends a message to the CAV blocking its
lane (CAV Slow 0 in this instance). Upon receiving such a message, CAV Slow 0,
in turn, asks CAV Slow 1 to decrease its own speed (to create a gap to be filled
by CAV Slow 0). Figure 2 demonstrates such message passing.

Now that, even though the process of freeing the lane for the emergency
vehicle is clear, we need to focus on when the communication amongst the CAVs
should indeed start. Specifically, we need to determine the ideal distance for the
emergency vehicle to ask the obstacle to change lanes. That is if the emergency
vehicle sends a message when closer to the obstacle than the ideal distance,
then the obstacle may not have the time to free the lane. This is related to the
concept of ideal travel time; that is the time the emergency vehicle can travel

AGAMAS: A New Agent-Oriented Traffic Simulation Framework for SUMO 403

Fig. 2. Simple Deadlock. Emergency Vehicle cannot travel faster

Fig. 3. Distance to send the message to the obstacle vehicle vs. Travel time

the route, all the way, constantly, with its maximum speed (so without any
obstacle forcing it to decrease its speed or, in the worst case, stop). This travel
time is measurable in a free lane with an emergency vehicle, travelling with the
maximum desired speed. Figure 3 reports the experimental results we obtained;
where, if the emergency vehicle sends a message before getting closer than 200 m3

to the obstacle vehicle, then it can travel without being slowed down.

6 Conclusions and Future Work

In this work, we proposed AGAMAS, an Agent-Oriented Traffic Simulation
framework that combines the JADE agent development system, with the SUMO
traffic simulator. We presented AGAMAS, its engineering, and its main compo-
nents. Specifically, we showed how AGAMASexploits the Traci API to obtain
a highly-usable and extendable implementation. AGAMASrepresents a stable
solution that allows exploiting the newest features of SUMO.

Future directions will include further extensions of AGAMAS. We presented
the core of AGAMAS, but we are interested in further enriching its own library
to simplify the creation of autonomous objects in traffic simulation (as we did
for the cluster creation case study). The experiments we carried out showed
the effectiveness of AGAMAS, but we plan to simulate more challenging sce-
narios (i.e., scenarios that involve more autonomous behaviours), where its full
potential can be exploited.

3 Naturally, this value depends on the simulation parameters (e.g., vehicles’ speed).

404 M. Sadeghi Garjan et al.

References

1. Barceló, J., Casas, J.: Dynamic network simulation with AIMSUN. In: Kitamura,
R., Kuwahara, M. (eds.) Simulation Approaches in Transportation Analysis. Oper-
ations Research/Computer Science Interfaces Series, vol. 31, pp. 57–98. Springer,
Boston, MA (2005). https://doi.org/10.1007/0-387-24109-4 3

2. Bellifemine, F.L., Caire, G., Greenwood, D.: Developing Multi-Agent Systems with
JADE. John Wiley & Sons, Hoboken (2007)

3. Chao, Q., et al.: A survey on visual traffic simulation: models, evaluations,
and applications in autonomous driving. Comput. Graph. Forum 39(1), 287–308
(2020). https://doi.org/10.1111/cgf.13803

4. Chu, V.H., Görmer, J., Müller, J.P.: ATSim: combining AIMSUM and jade for
agent-based traffic simulation. In: Proceedings of the 14th Conference of the Span-
ish Association for Artificial Intelligence (CAEPIA) (2011)

5. Čičić, M., Pasquale, C., Siri, S., Sacone, S., Johansson, K.H.: Platoon-actuated
variable area mainstream traffic control for bottleneck decongestion. Eur. J. Con-
trol 68, 100687 (2022)

6. Čičić, M., Xiong, X., Jin, L., Johansson, K.H.: Coordinating vehicle platoons for
highway bottleneck decongestion and throughput improvement. IEEE Trans. Intell.
Transp. Syst. 23(7), 8959–8971 (2021)

7. Dong, J., Chen, S., Ha, P.Y.J., Li, Y., Labi, S.: A DRL-based multiagent coopera-
tive control framework for CAV networks: a graphic convolution Q network. arXiv:
Artificial Intelligence (2020)

8. Gerostathopoulos, I., Pournaras, E.: Trapped in traffic?: A self-adaptive framework
for decentralized traffic optimization. In: Litoiu, M., Clarke, S., Tei, K. (eds.) Pro-
ceedings of the 14th International Symposium on Software Engineering for Adap-
tive and Self-Managing Systems, SEAMS@ICSE 2019, Montreal, QC, Canada, 25–
31 May 2019, pp. 32–38. ACM (2019). https://doi.org/10.1109/SEAMS.2019.00014

9. Hamilton, A., Waterson, B., Cherrett, T., Robinson, A., Snell, I.: The evolution
of urban traffic control: changing policy and technology. Transp. Plan. Technol.
36(1), 24–43 (2013)

10. Johansson, O., Pearce, D., Maddison, D.: Blueprint 5: True Costs of Road Trans-
port. Routledge, Abingdon (2014)

11. Lopez, P.A., et al.: Microscopic traffic simulation using sumo. In: The 21st IEEE
International Conference on Intelligent Transportation Systems. IEEE (2018).
www.elib.dlr.de/124092/

12. Nguyen, J., Powers, S.T., Urquhart, N., Farrenkopf, T., Guckert, M.: An overview
of agent-based traffic simulators. CoRR abs/2102.07505 (2021). www.arxiv.org/
abs/2102.07505

13. de Oliveira, L.F.P., Manera, L.T., Luz, P.D.G.D.: Smart traffic light controller
system. In: Alsmirat, M.A., Jararweh, Y. (eds.) Sixth International Conference on
Internet of Things: Systems, Management and Security, IOTSMS 2019, Granada,
Spain, 22–25 October 2019, pp. 155–160. IEEE (2019). https://doi.org/10.1109/
IOTSMS48152.2019.8939239

14. de Oliveira, L.F.P., Manera, L.T., Luz, P.D.G.D.: Development of a smart traffic
light control system with real-time monitoring. IEEE Internet Things J. 8(5),
3384–3393 (2021). https://doi.org/10.1109/JIOT.2020.3022392

15. Pasquale, C., Sacone, S., Siri, S., Ferrara, A.: Traffic control for freeway networks
with sustainability-related objectives: review and future challenges. Annu. Rev.
Control 48, 312–324 (2019)

https://doi.org/10.1007/0-387-24109-4_3
https://doi.org/10.1111/cgf.13803
https://doi.org/10.1109/SEAMS.2019.00014
www.elib.dlr.de/124092/
www.arxiv.org/abs/2102.07505
www.arxiv.org/abs/2102.07505
https://doi.org/10.1109/IOTSMS48152.2019.8939239
https://doi.org/10.1109/IOTSMS48152.2019.8939239
https://doi.org/10.1109/JIOT.2020.3022392

AGAMAS: A New Agent-Oriented Traffic Simulation Framework for SUMO 405

16. Piacentini, G., Goatin, P., Ferrara, A.: Traffic control via platoons of intelligent
vehicles for saving fuel consumption in freeway systems. IEEE Control Syst. Lett.
5(2), 593–598 (2020)

17. PTV, A.: VISSIM 5.30-05 user manual. Germany. Karlsruhe: PTV AG (2011)
18. Rieser, M., Dobler, C., Dubernet, T., Grether, D., Horni, A., Lammel, G., Waraich,

R., Zilske, M., Axhausen, K.W., Nagel, K.: Matsim user guide. MATSim, Zurich
(2014)

19. Sarné, G.M.L., Postorino, M.N.: Agents meet traffic simulation, control and man-
agement: a review of selected recent contributions. In: Santoro, C., Messina, F.,
Benedetti, M.D. (eds.) Proceedings of the 17th Workshop From Objects to Agents
co-located with 18th European Agent Systems Summer School (EASSS 2016),
Catania, Italy, 29–30 July 2016. CEUR Workshop Proceedings, vol. 1664, pp. 112–
117. CEUR-WS.org (2016). www.ceur-ws.org/Vol-1664/w19.pdf

20. da Silva, B.C., Junges, R., de Oliveira, D., Bazzan, A.L.C.: ITSUMO: an intelli-
gent transportation system for urban mobility. Adaptive Agents and Multi-Agent
Systems (2004)

21. Siri, S., Pasquale, C., Sacone, S., Ferrara, A.: Freeway traffic control: a survey.
Automatica 130, 109655 (2021)

22. Soares, G., Kokkinogenis, Z., Macedo, J.L., Rossetti, R.J.F.: Agent-based traffic
simulation using sumo and jade: an integrated platform for artificial transportation
systems. In: International Conference on Simulation of Urban Mobility (2013)

23. Tan, D., Younis, M.F., Lalouani, W., Lee, S.: PALM: platoons based adaptive
traffic light control system for mixed vehicular traffic. In: 2021 IEEE Smart-
World, Ubiquitous Intelligence & Computing, Advanced & Trusted Computing,
Scalable Computing & Communications, Internet of People and Smart City Inno-
vation (SmartWorld/SCALCOM/UIC/ATC/IOP/SCI), Atlanta, GA, USA, 18–
21 October 2021, pp. 178–185. IEEE (2021). https://doi.org/10.1109/SWC50871.
2021.00033

24. Timóteo, I.J.P.M., Araujo, M.R., Rossetti, R.J.F., Oliveira, E.C.: TraSMAPI: an
API oriented towards multi-agent systems real-time interaction with multiple traf-
fic simulators. In: 13th International IEEE Conference on Intelligent Transporta-
tion Systems, Funchal, Madeira, Portugal, 19–22 September 2010, pp. 1183–1188.
IEEE (2010). https://doi.org/10.1109/ITSC.2010.5625238

25. Treiber, M., Kesting, A.: Traffic Flow Dynamics: Data, Models and Simulation,
pp. 983–1000. Springer-Verlag, Berlin, Heidelberg (2013). https://doi.org/10.1007/
978-3-642-32460-4

26. Wang, N., Wang, X., Palacharla, P., Ikeuchi, T.: Cooperative autonomous driv-
ing for traffic congestion avoidance through vehicle-to-vehicle communications. In:
IEEE Vehicular Networking Conference (VNC) (2017)

27. Zhang, K., Batterman, S.: Air pollution and health risks due to vehicle traffic. Sci.
Total Environ. 450, 307–316 (2013)

www.ceur-ws.org/Vol-1664/w19.pdf
https://doi.org/10.1109/SWC50871.2021.00033
https://doi.org/10.1109/SWC50871.2021.00033
https://doi.org/10.1109/ITSC.2010.5625238
https://doi.org/10.1007/978-3-642-32460-4
https://doi.org/10.1007/978-3-642-32460-4

Coordinating Systems of Digital Twins
with Digital Practices

Luca Sabatucci1(B), Agnese Augello1, Giuseppe Caggianese2, and Luigi Gallo2

1 Institute for High Performance Computing and Networking, National Research
Council of Italy, Palermo, Italy

{luca.sabatucci,agnese.augello}@icar.cnr.it
2 Institute for High Performance Computing and Networking, National Research

Council of Italy, Naples, Italy
{giuseppe.caggianese,luigi.gallo}@icar.cnr.it

Abstract. Digital Twin is a promising paradigm to support the devel-
opment of socio-technical systems for the digital transformation of soci-
ety. For example, smart cities and healthcare applications gain advan-
tages from this new paradigm. Currently, researchers are investigating
methodologies that exploit Digital Twins as general-purpose abstrac-
tions for complex modelling and simulation. Taking inspiration from the
Social Practice theory, this paper explores the idea of explicitly repre-
senting the physical and social context in socio-technical systems. To
this aim, we introduce the concept of digital practice as an additional
brick of a methodology for modelling and implementing socio-technical
systems via digital twins and agents. We illustrate this preliminary idea
by exploiting an assistance scenario for the elderly.

Keywords: Digital Twins · Digital Practices · Social Practices ·
Socio-Technical Systems · Ambient Assisted Living

1 Introduction

A Digital Twin (DT) is a digital model of a physical entity (an object, a space,
or a complex aggregation) updated through the bidirectional exchange of infor-
mation between the physical and virtual systems [25].

Digital twins have evolved from advanced manufacturing and Industry 4.0 [6]
to become popular instruments to be employed in a range of socio-technical
applications, from smart cities [11,23] to health applications [1,14].

They originated as integrated software architectures to monitor and control
heterogeneous devices, machines, plants, and factories where individual products
are connected through a network [6]. Now, digital twins encountered advanced
artificial intelligence techniques to add the possibility to predict and optimize
complex behaviour by taking advantage of seamless integration between IoT and
data analytics, allowing for rapid analysis and real-time decisions made through
accurate analytics [12].
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
V. Malvone and A. Murano (Eds.): EUMAS 2023, LNAI 14282, pp. 406–414, 2023.
https://doi.org/10.1007/978-3-031-43264-4_26

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-43264-4_26&domain=pdf
https://doi.org/10.1007/978-3-031-43264-4_26

Coordinating Systems of Digital Twins with Digital Practices 407

Recently, also healthcare systems are incorporating the concept of digital
twins, posing the ambitious definition of mirroring persons’ health, including
physical, mental, and social aspects, on top of the clinical data [1]. Human Dig-
ital Twins represent a copy (or counterpart in cyberspace) of a real person [24].
Futuristic scenarios see every newborn will be genome sequenced and her model
continuously updated with data captured by ambient, body-worn, and embed-
ded sensors. More concretely, a human digital twin in healthcare and assistive
scenarios allows us to put humans into the loop. For example, in surgery, having
an updated model of the patient’s body could be of capital importance for the
surgeon before and during an operation.

Also, Software Engineering highlighted the role of digital twins in the digital
transformation of our society [22]. Conceiving complex software systems utilizing
digital twins will lead humans to be more and more intertwined with technologies
and, on the other hand, to augment their capabilities. Moreover, the academy
and industry agree to introduce an integration view on digital twins [15], in which
a system can be conceived as the composition/collaboration of several discrete
digital twins [19]. Also, it is possible to imagine a composite digital twin as a
combination of discrete digital twins by unifying multiple individual components
(or parts) [15].

This paper stems from the need to define a social perspective for digital
twins. We believe that state-of-the-art still misses capturing the context, i.e. the
physical and social setting. This work looks at the concept of Social Practice
(SP) [21], a theory that studies contextual behavioural patterns, determining
actions to do, and incorporating means to be addressed. Recently, this theory
was used to simplify the deliberation processes of virtual agents [3,4,8,13].

We introduce the concept of Digital Practice (DP) as “a digital twin of
a social practice”. It is a digital entity that makes the dynamic relationships
between physical entities in a social environment explicit, taking the context
into account. We intend to push Digital Practices as the third component of a
methodology for designing socio-technical systems via digital twins and agents.
The responsibility of Digital Practices is to monitor the dynamic physical setting
and to coordinate agents and digital twins for addressing social goals. We use
an assistive scenario for the elderly to illustrate the main idea.

The paper is organized as follows: Sect. 2 introduces the baselines for our
work. Section 3 presents the design paradigm where agents and digital twins
are first-class citizens and digital practices provide the social perspective. Some
conclusions are sketched in Sect. 4.

2 Preliminary Concepts

The idea we push on in this paper is that a socio-technical system may be
conceived as a system of agents and digital twins. To create a unifying method-
ology, we take inspiration from sociological and cultural theories, particularly
Social Practice theory [13,21].

408 L. Sabatucci et al.

2.1 Digital Twins and Agents

There are at least two main motivations for a synergy between digital twins and
agents.

First, the novel term Cognitive Digital Twin is always more frequent in liter-
ature, recalling DTs that autonomously perform intelligent tasks. The interest to
incorporate cognition and optimization capabilities into a digital twin has been
caught by the agent community who provided integrated solutions to resolve
unknown situations via prediction and reasoning [10].

Second, the academy and industry agree to support the idea of a social
perspective of digital twins. The Industrial Internet Consortium [15] defined
a discrete digital twin as a single entity. In contrast, a composite digital twin
combines many discrete digital twins representing an entity comprising multiple
components or parts. Indeed, several digital twin systems are conceived with
increasingly complex and collaborative interdependencies [19], and multi-agent
systems could be an extremely useful tool when representing relationships among
several digital twins.

The literature proposes an increasing number of papers that exploit agents
for implementing digital twins showing how the digital twin paradigm is mov-
ing towards a process of ‘agentification’ for different reasons: 1) extending digital
twin with high-level reasoning capabilities for implementing prediction and adap-
tation [10], 2) agents allow implementing societies of digital twins [19], and 3)
DTs provide a powerful engineering abstraction to design agents’ interactions
with the physical environment [20].

We adopt the point of view suggested in Mariani et al. [16] of a system made
of agents and digital twins but with a clear separation of concerns and respon-
sibilities: agents are responsible for autonomous actions and decision-making,
whereas DTs provide a general abstraction for accessing to the physical world.

2.2 Social Practice Theory

According to this theory, social order is embedded within shared structures of
knowledge, shaped by cultural values, which enables a symbolic organization of
reality according to the specific situation.

These structures, consisting of several interconnected elements, allow peo-
ple to give meaning to the world and act in a certain way. In particular, social
practices are routinised behaviours involving individuals acting in a context that
considers bodily and mental activities, material artefacts, knowledge, emotions,
skills, etc. They refer to everyday activities and how humans typically and habit-
ually perform them within a society (such as going to work, cooking, . . .).

Social Practice (SP) aims to integrate the individual perspective with the
social perspective, considering (and explaining) how context relates to individ-
uals’ experiences, culture and capabilities. A practice forms a pattern whose
existence depends on the existence and specific interconnections of many indi-
viduals, which cannot be reduced to any of these. We refer to social practices

Coordinating Systems of Digital Twins with Digital Practices 409

because they are similar for groups of individuals at different points in time and
space.

Interestingly, a Practice is seen as a concrete (even if intangible) entity in
which individuals play a role in enacting it. As observed by [9], social practices
could represent a starting point for systems needing context. Social Practice
theory has inspired the creation of a model for cognitive agents [8], which out-
lines the main elements of a practice, including 1) a Context that describes the
physical elements in the environment, such as the Resources that are used in
the Practice, the involved Actors, Affordances which enable social actions, the
Time under which the practice takes place, and Places where objects and actors
are usually located. 2) a Meaning, which describes the Purpose of the actions,
Promotes, i.e. values that are supported by the practice, Counts-as rules, i.e.
the interpretation of facts in the context 3) Expectations in the practice, such
as possible Plan Patterns, Norms, Strategies), Start and End conditions for the
practice; 4) Activities, including Competences that the agent needs to possess to
perform Possible Actions within the Practice.

3 Digital Practices: Towards a Design Methodology
for Agents and Digital Twins

The level of granularity for modelling the DTs is one of the first decisions to be
made when using them to define a socio-technical system. One possibility is to
conceive the whole system (for instance, the whole caregiving centre) as a small
number of big DTs. Each of them will represent an extensive portion of the field
of interest (including in the same model many aspects, such as physical spaces,
resources and people). In this case, the designer is going to select a coarse-grained
approach. It is worth underlying that scalability could be an issue: designing huge
complex models requires considering all the relationships among the embedded
entities. In our scenario, representing the whole caregiving centre through a
unique digital twin needs considering different locations, guests’ positions and
behaviours, and potential interactions among all its occupants (carers, nurses,
elderly people and visitors).

Conversely, a fine-grained level of granularity is more natural from a design
point of view, because it allows reasoning in a bottom-up style similar to when
designing with object-oriented languages. Actually, this approach could be imag-
ined as an extension of the object-oriented paradigm, where objects have a phys-
ical dimension. Past experiences [17] show a fine-grained approach was successful
in designing manufacturing systems and smart cities. In our scenario, the patient,
the caregiver, the wearable device and the physical space could be modelled as
different DTs.

The fine-grained approach addresses scalability and reusability, but it poses
other problems to solve: simpler objects yield DTs with simpler internal mod-
els, but, in a dynamic context, designers must take into account the possible
interactions among them. Consequently, models grow in complexity to intro-
duce interaction rules. Moreover, defining a strict coupling degrades the level of
reusability in similar contexts.

410 L. Sabatucci et al.

We propose a design methodology that is based on the finer level of granular-
ity and tries to solve some of the potential issues by shifting out the interaction
logic from digital twin models, thus increasing flexibility and reusability. We set
the following desiderata for modelling dynamic digital twin systems: 1) inter-
action as a first-class citizen of the methodology and 2) modelling interactions
considering the context in which they can occur.

3.1 Digital Practice

We introduce the concept of Digital Practice (DP) for developing a dynamic
social perspective for digital twins. A digital practice adds a digital perspective
to the original concept of social practice.

A Digital Practice is defined as the digital twin of a Social Practice. It is
structured as:

– a set of Roles for human and software agents. In particular, humans are
stakeholders whereas agents are responsible for enacting autonomous and
proactive behaviours within the practice.

– Context: digital twins are central for representing entities of the physical
setting (humans, resources and spaces), used to define the activation rule of
the practice, i.e. the specific situation in which the practice activates.

– Time and Space: essential to delineate the practice’s activation rule.
– Domain Knowledge: allows disambiguating the meaning in the practice;

it is typically represented as a set of beliefs and rules concerning a domain
of interest, allowing the software system to perform automatic reasoning and
pattern matching.

– a Goal Model: it represents the final purpose of the practice, merging mean-
ing and social expectation (the feeling that something will or should happen
in a context); it includes goals, and soft goals linked together by relation-
ships. Goals represent states of the world to be addressed, whereas soft goals
represent qualities and values the practice promotes.

– a set of Capabilities: what the digital entities can do (are expected to) do
in the digital practice.

– Digital Affordances: expressing ways of conveying to end-users what
actions are possible in the context and how to interact with the system.

– an Orchestration Plan: it describes a usual flow of actions to address the
final purpose. This is not necessarily a static plan.

– Norms/Conditions: they hold in the social setting and describe what is
considered acceptable and not.

3.2 Designing an Ambient Assisted Living for the Elderly

We use a caregiving centre scenario to describe the work’s motivation and objec-
tive. We suppose to develop an Ambient Assisted Living (AAL) for caregiving
centres where trained caregivers help older adults with daily activities, social-
ization, and rehabilitation [2,5,7].

Coordinating Systems of Digital Twins with Digital Practices 411

IoT devices allow monitoring of physical locations and people activities in
a care facility. Environmental sensors can collect audio and video data about
events happening in the rooms, while wearable technology can offer real-time
biological data and localization.

In this scenario, DTs may represent patients, mirroring the person’s health
condition, psychological state and stress levels. They also can be used for tracing
guests’ movements and behaviour within the building.

Also, some physical spaces (e.g. the living room) are modelled as DTs because
monitoring/controlling environmental conditions and activities in these places
could be important to ensure a good level of assistance.

To obtain more precise data (for some patients), the system should use wear-
able devices. Following the fine-grained approach, we model wearable devices as
DTs because they have a relevant model to be periodically updated. This choice
allows the patient’s DT and the device’s DT to exist and evolve independently.
However, a wearable DT makes sense only if a couple [patient - device] will be
dynamically formed, i.e. when a patient is effectively wearing it.

Here, we report a scenario of fall management. We identified a digital practice
(see Fig. 1) that includes a patient (Elderly Individual DT), his smartwatch
(Wearable DT), physical spaces (Living DT), and caregivers (Digital Caregiver
DT). The practice activates when the patient suffering the Alzheimer’s disease
leaves the living room, and no caregivers are following him. The purpose is to
monitor his movements and prevent risks. The plan is to alert caregivers when the
patient leaves the room and “send” the nearest caregivers if something dangerous
is going to happen.

Fig. 1. The Fall Management digital practice aims at assisting an older individual
when no caregivers are present.

3.3 Some Considerations

Despite the concept of digital practice is still at a preliminary phase, in this
short paper we want to highlight there is a clear value in explicitly modelling
at the digital level those aspects that concern the social practice at the physical
level. From a methodological point of view, digital practice is a first-class design

412 L. Sabatucci et al.

abstraction, different from agents and digital twins. Whereas digital twins run
at a physical layer, agents act at a business layer, digital practices exist at a
higher social layer and their components (roles, goal models, norms, activation
rules) affect underlying elements.

Encapsulating Physical and Social Setting. This work conveys the idea
that agents ‘live’ in a physical/social context. Whereas the physical layer can be
represented by digital twins, it is up to digital practices to define the social setting
in which interactions happen, and the way they occur, according to stakeholders’
meanings and expectations.

Some examples of DPs for the assistive scenario are the following: an elderly
patient with degraded motor skills can be near a stair: this situation triggers
the activation of an emergency protocol, providing an affordance to secure the
elderly. Otherwise, some devices in a specific situation can provide an affordance
for the older person to remember to take medication. Finally, a ramp for disabled
residents starts operating when a wheelchair gets on it.

Therefore, a specific behaviour should activate when external conditions hold.
These may depend on the state of physical things in the scene or other factors
(i.e. social expectations). For example, in the staircase scenario, the interaction
happens in the proximity of two digital twins.

Generating Dynamic Aggegates. The final goal of a digital practice is to
trigger agents’ dynamic behaviour due to what is happening in the physical
world. In the digital practice definition, there are roles and digital twins. As for
agent’s groups [18], roles can be dynamically assigned to agents. Similarly, the
digital practice does not prescribe which instances of digital twins to consider
(supposing a dynamic environment). Indeed, the context evolves in unforeseeable
ways. In the caregiving centre application, designers could not always anticipate
all the combinations of [patient-wearable] that may appear and how they behave
and interact. Digital practices aim to abstractly encapsulate these behavioural
patterns, thus activating and deactivating them dynamically on the occurrence.

4 Conclusions

This paper focused on digital twins as a software engineering paradigm for deal-
ing with systems with an essential physical component, mainly where humans
are in the loop. The objective is to conceive a design paradigm where agents and
digital twins are first-class abstractions.

We introduce a fine-grained perspective in which the system is seen as inter-
acting autonomous entities, some with a physical counterpart and others con-
sisting only of virtual essence. To model interactions and synergies among differ-
ent entities, we took inspiration from sociological and cultural theories, explic-
itly relying on Social Practice theory. This allows us to model the concept of
Digital Practice aiming to integrate the individual perspective with the social
perspective, considering (and explaining) how the context influences individual
behaviours.

Coordinating Systems of Digital Twins with Digital Practices 413

From a methodological point of view, digital practice is a first-class design
abstraction. It is quite different from both agents and digital twins. This is
because digital practices exist at a higher layer and affect underlying elements
(agents and digital twins that run a business and physical layers).

References

1. Ahmadi-Assalemi, G., et al.: Digital twins for precision healthcare. Cyber Def. Age
AI Smart Soc. Augment. Humanit. 133–158 (2020)

2. Andrich, R., et al.: ACube: user-centred and goal-oriented techniques. Fondazione
Bruno Kessler-IRST, Technical report, p. 66 (2010)

3. Augello, A.: Unveiling the reasoning processes of robots through introspective dia-
logues in a storytelling system: a study on the elicited empathy. Cogn. Syst. Res.
73, 12–20 (2022)

4. Augello, A., Gentile, M., Dignum, F.: Social practices for social driven conversa-
tions in serious games. In: De Gloria, A., Veltkamp, R. (eds.) GALA 2015. LNCS,
vol. 9599, pp. 100–110. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-
40216-1 11

5. Bellagente, P., et al.: Easy implementation of sensing systems for smart living. In:
2017 IEEE International Systems Engineering Symposium (ISSE), pp. 1–6. IEEE
(2017)

6. Brettel, M., Friederichsen, N., Keller, M., Rosenberg, M.: How virtualization,
decentralization and network building change the manufacturing landscape: an
industry 4.0 perspective. Int. J. Inf. Commun. Eng. 8(1), 37–44 (2014)

7. Camarinha-Matos, L.M., Ferrada, F., Oliveira, A.I., Rosas, J., Monteiro, J.: Care
services provision in ambient assisted living. IRBM 35(6), 286–298 (2014)

8. Dignum, F.: Social practices: a complete formalization. arXiv preprint
arXiv:2206.06088 (2022)

9. Dignum, V., Dignum, F.: Contextualized planning using social practices. In: Ghose,
A., Oren, N., Telang, P., Thangarajah, J. (eds.) COIN 2014. LNCS (LNAI),
vol. 9372, pp. 36–52. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-
25420-3 3

10. Eirinakis, P., et al.: Enhancing cognition for digital twins. In: 2020 IEEE Interna-
tional Conference on Engineering, Technology and Innovation (ICE/ITMC), pp.
1–7. IEEE (2020)

11. Ford, D.N., Wolf, C.M.: Smart cities with digital twin systems for disaster man-
agement. J. Manag. Eng. 36(4), 04020027 (2020)

12. Fuller, A., Fan, Z., Day, C., Barlow, C.: Digital twin: enabling technologies, chal-
lenges and open research. IEEE Access 8, 108952–108971 (2020)

13. Holtz, G.: Generating social practices. J. Artif. Soc. Soc. Simul. 17(1), 17 (2014)
14. Liu, Y., et al.: A novel cloud-based framework for the elderly healthcare services

using digital twin. IEEE Access 7, 49088–49101 (2019)
15. Malakuti, S., et al.: Digital twins for industrial applications: definition. Business

Values, Design Aspects, Standards and Use Cases: An Industrial Internet Consor-
tium Whitepaper (2020)

16. Mariani, S., Picone, M., Ricci, A.: About digital twins, agents, and multiagent
systems: a cross-fertilisation journey. In: Melo, F.S., Fang, F. (eds.) Autonomous
Agents and Multiagent Systems. Best and Visionary Papers. AAMAS 2022. LNCS,
vol. 13441, pp. 114–129. Springer, Cham (2022). https://doi.org/10.1007/978-3-
031-20179-0 8

https://doi.org/10.1007/978-3-319-40216-1_11
https://doi.org/10.1007/978-3-319-40216-1_11
http://arxiv.org/abs/2206.06088
https://doi.org/10.1007/978-3-319-25420-3_3
https://doi.org/10.1007/978-3-319-25420-3_3
https://doi.org/10.1007/978-3-031-20179-0_8
https://doi.org/10.1007/978-3-031-20179-0_8

414 L. Sabatucci et al.

17. Michael, J., Pfeiffer, J., Rumpe, B., Wortmann, A.: Integration challenges for digi-
tal twin systems-of-systems. In: Proceedings of the 10th IEEE/ACM International
Workshop on Software Engineering for Systems-of-Systems and Software Ecosys-
tems, pp. 9–12 (2022)

18. Odell, J.J., Van Dyke Parunak, H., Fleischer, M.: Modeling agent organizations
using roles. Softw. Syst. Model. 2, 76–81 (2003)

19. Orozco-Romero, A., Arias-Portela, C.Y., Saucedo, J.E.A.M.: The use of agent-
based models boosted by digital twins in the supply chain: a literature review.
In: Vasant, P., Zelinka, I., Weber, G.-W. (eds.) ICO 2019. AISC, vol. 1072, pp.
642–652. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-33585-4 62

20. Picone, M., Mamei, M., Zambonelli, F.: WLDT: a general purpose library to build
IoT digital twins. SoftwareX 13, 100661 (2021)

21. Reckwitz, A.: Toward a theory of social practices: a development in culturalist
theorizing. Eur. J. Soc. Theory 5(2), 243–263 (2002)

22. Saracco, R.: Digital twins: bridging physical space and cyberspace. Computer
52(12), 58–64 (2019)

23. Seuwou, P., Banissi, E., Ubakanma, G.: The future of mobility with connected
and autonomous vehicles in smart cities. Digit. Twin Technol. Smart Cities 37–52
(2020)

24. Shengli, W.: Is human digital twin possible? Comput. Methods Programs Biomed.
Update 1, 100014 (2021)

25. VanDerHorn, E., Mahadevan, S.: Digital twin: generalization, characterization and
implementation. Decis. Support Syst. 145, 113524 (2021)

https://doi.org/10.1007/978-3-030-33585-4_62

On Admissible Behaviours
for Goal-Oriented Decision-Making

of Value-Aware Agents

Andrés Holgado-Sánchez(B) , Joaqúın Arias , Mar Moreno-Rebato ,
and Sascha Ossowski

CETINIA, Universidad Rey Juan Carlos de Madrid, 28933 Móstoles, Spain
{andres.holgado,joaquin.arias,mar.rebato,sascha.ossowski}@urjc.es

Abstract. The emerging field of value awareness engineering claims
that software agents and systems should be value-aware, i.e. they should
be able to explicitly reason about the value-alignment of their actions.
Values are often modelled as preferences over states or actions which are
then extended to plans. In this paper, we examine the effect of different
groundings of values depending on context and claim that they can be
used to prune the space of courses of actions that are aligned with them.
We put forward several notions of such value-admissible behaviours and
illustrate them in the domain of water distribution.

Keywords: Value alignment · Value-admissible behaviours · Value
awareness engineering · Water distribution

1 Introduction

A key requirement for trustworthy AI is to consider ethical aspects in the design
and implementation of AI systems. In particular, it is considered of utmost
importance that autonomous AI agents and systems include a systematic way of
aligning their decisions with human values. While value-based decision-making is
a widely discussed problem in sociology, only recently it has found its way into
computer science [17]. The emerging field of value awareness engineering [8]
claims that software agents and systems should be value-aware, i.e. they should
be able to explicitly reason about the value-alignment of their actions.

Proposals for modelling value-based decision processes of autonomous agents
are often based on preferences over states or actions [7,9], which are then
extended to sequential decisions. Other approaches [2,3] set out from observed
sequences of actions (plans) and then learn preferences over states or actions
through (inverse) reinforcement learning [10].

In this paper, we are concerned with the role of values in plan selection of
autonomous value-aware agents. In particular, we argue that values not only
induce preferences over plans, but may also be used to discard certain courses of
actions right away depending on a particular value grounding. For this purpose,
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
V. Malvone and A. Murano (Eds.): EUMAS 2023, LNAI 14282, pp. 415–424, 2023.
https://doi.org/10.1007/978-3-031-43264-4_27

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-43264-4_27&domain=pdf
http://orcid.org/0000-0001-8853-1022
http://orcid.org/0000-0003-4148-311X
http://orcid.org/0000-0002-4177-9239
http://orcid.org/0000-0003-2483-9508
https://doi.org/10.1007/978-3-031-43264-4_27

416 A. Holgado-Sánchez et al.

we put forward several notions of value-admissible behaviours, and illustrate
them with regard to different groundings of the value of equity in water distri-
bution, taking into account real-world (legal) restrictions.

This paper is structured as follows. Section 2 presents a discussion of related
work. Section 3 introduces the value-related world model for this paper, and puts
forwards our notion of value-admissible plans. In Sect. 4 we present a use case
regarding equitable domestic water distribution in a drought scenario, providing
legal considerations around the value of equity. We also describe and analyze
the results of applying the proposed value-alignment framework to the example.
Finally, Sect. 5 presents our conclusions and points to future lines of work.

2 Related Work

The practical reasoning community was among the first to formally represent
values for computation. Weide et al. [17] introduced value preferences repre-
sented as agent perspectives that consist of preorder relationships between states
to represent the agent’s ideas on how states promote or demote certain values.
However, they use that preference to perform actions in reasoning schemes and
do not analyze sequences of decisions.

An approach more concerned about abstraction and generality of value rep-
resentation is introduced by Montes and Sierra [9]. It conceives states as repre-
sentative of values through a function evaluation, and relies on a taxing example
in order to illustrate a more general framework for optimizing value-alignment
of normative systems. Still, their analysis does not consider the effects of choos-
ing different value semantics functions or other criteria that would characterize
value-admissible plans. Similarly, Lera-Leri et al. [7] proposed an extended for-
malization of a value system where the focus is put on numerically assessing the
value of both taking or not taking actions (instead of states). This framework,
though indeed useful for the value system aggregation problem is, again, not
focusing on analyzing sequences of decisions/actions.

Techniques on reinforcement learning (RL) [16] are considered state of the art
in most decision-making scenarios, though human values have been introduced
scarcely into those systems. There are examples of policies learning values such as
fairness jointly with efficiency in multi-agent systems [6]. The approach defines a
suitable special reward function based on the Coefficient of Variation (CV) that,
for each agent, intends to maximize its default bounded reward subject to that
reward being similar to the other’s, in a resource allocation problem. A similar
approach was developed in [5] to consider equality in social dilemmas. Finally,
[14] brings forward a powerful model for both multi-value-aware and multi-norm-
compliant MDPs, but it relies heavily on the algorithmic value concept in RL to
define the criteria of best value-promoting plans.

As specifying rewards manually requires domain expertise and is a pro-
cess prone to optimization, IRL (Inverse Reinforcement Learning) [10] has
been used which learns the reward from value-aligned trajectories. However,

On Admissible Behaviours for Value-Aware Agents 417

Arnold et al. [1] show that IRL by itself may not be adequate for agents to learn
values, suggesting the use of an external process to actually infer the norms or
guidelines shaping the value-aligned decisions.

3 Value Aligning Sequences of Decisions

We define goal-oriented decision-making as a model based on a Multi-Agent
System (MAS) [9], where the world is modelled as a labelled transition system,
called decision world (S,A, T) with the following elements.

– States S, representing the MAS completely in each situation.
– Actions A, representing the MAS joint actions or decisions.
– Transitions T ⊂ S × A × S, representing available actions connecting each

pair of states. We will denote them with s
a−→ t, where s, t ∈ S and a ∈ A.

– Paths P, representing joint transitions (sequences of decisions), e.g. a path of
length n from s0 to sn would be represented as: P = s0

a1−→ s1
a2−→ . . .

an−−→ sn.
– Goal States G ⊂ S, representing states where agents satisfy their needs or

aims in the problem.
– Plans, representing paths that we consider solutions to our problems, i.e.

those going from a given initial state s0, to a goal state sg ∈ G.

We are interested in identifying which plans adhere the better with a value v
under consideration. We assume v is firstly grounded in states for then, con-
structing path-level criteria.

3.1 State-Level Alignment: Value Preferences

Following Weide et al. [17] or Sierra et al. [15], we assume a value preference
among states based on a preorder relation �v, which we call perspective or
value preorder, i.e. given s and s′, two states, s �v s′ means that s′ is at least
as preferred as s w.r.t. the value v.

Another approach is using a numeric value to quantify the above relation.
Citing [9], the semantics of a value v in state s is an unbounded semantics
function fv : S −→ R, where fv is directly proportional to the promotion of
v.1 The relationship between those approaches is fairly straight-forward: s′ �v

s′′ ⇐⇒ fv(s′) ≤ fv(s′′). Examples of statistical functions that can be used to
define semantics functions for the value of equity are the following:

1. Maximum-Minimum difference (Mn): Difference between maximum and min-
imum values of the state. Inversely proportional to equality.

2. Sample Standard Deviation (SSD): Standard deviation as dispersion metric
is inversely proportional to equality.

1 Original definition from Montes and Sierra [9] assumes that the range of all value
semantics functions is bounded in [−1, 1], so fv(s) ≈ −1, 0,+1 indicates that state
s strongly opposes, is neutral or strongly promotes the value v, respectively. This
would represent an (unnecessary strict) absolute value promotion metric.

418 A. Holgado-Sánchez et al.

3. Median Absolute Deviation (MAD). It is a robust version of the SSD, unaf-
fected by outsiders.

4. Coefficient of Variation (CV) [6]. Defined as the sample standard deviation
over the mean (in absolute value). Values closer to 0 mean greater equality.

5. Gini Index (GI) [5,9]2. Inequality in an economic system is usually repre-
sented with this function as it has unique important properties [12].

3.2 Plan-Level Alignment and Admissibility

In literature, the value-alignment of a path (and a of plan, by extension) is given
by a human [2] or calculated by aggregating values of states [9] or actions [7].
However, it is important to notice that, from the point of view of the decision-
making of a value-aware agent, not all courses of action need to be considered.
For instance, in a water distribution scenario, all assignments that, at some point
in time, leave stakeholders without a minimum amount of water necessary for
basic needs, should not be considered even if they lead to a final state in which
water distribution is equitable. These “lower bounds” on the value alignment
determine the paths that are admissible under a certain value. They can either
be determined in absolute or in relative terms, and based on preference preorders
or semantics functions, as we will argue in the sequel.

Given an aggregation function agg, and a semantics function fv, we define
the semantics of a value for a path P = s0

a1−→ . . .
an−−→ sn as: aggv(P) =

agg({fv(s0), . . . , fv(sn)}). This is called its aggregated alignment. Examples
of aggregation functions (agg) are the mean, the (discounted) sum, the maxi-
mum, etc. This aggregation concept was already mentioned as a modelling aspect
in [9].

Value-admissible behaviours for a value v are given by a constraint crite-
rion on the set of all plans P. It characterizes the subset of plans B(P,�v) that
are admissibly aligned with the value, based on state/action-level alignment �v.
In this paper we are concerned with three very general classes of such behaviours:

a) Local behaviour. Admits plans which are constructed by only visiting the
next states that are the most preferable:

Blocal(P,�v) = {P ∈ P | ∀s
a−→ t ∈ P,
 ∃ s

a′
−→ t′ ∈ Q ∈ P · t
= t′ ∧ t �v t′}

b) Goal behaviour. Admits plans leading to the goal states that are the most
preferable. Here, out (P) denotes the final and goal state of P .

Bgoal(P,�v) = {P ∈ P |
 ∃Q ∈ P · out (Q)
= out (P) ∧ out (P) �v out (Q)}

2 Note that the [−1, 1]-bounded semantics function used in [9] is defined in terms of
the Gini index, i.e., feq = 1− 2 ·GI(s). Similarly, the rest of the semantics functions
we have enumerated can be bounded to that interval if needed. For this theory, we
just consider these functions as quantifiers of value preorders.

On Admissible Behaviours for Value-Aware Agents 419

c) Aggregated behaviour. This strategy admits plans with the highest overall
alignment according to an agg aggregation function.

Baggv
(P,�v) = {P ∈ P |
 ∃Q ∈ P\{P} · aggv(P) ≤ aggv(Q)}

Requiring value-admissibility of such behaviours obviously reduces the space
of plans that a value-aware agent can choose from. In some situations (e.g.
in Sect. 4.2 while using certain semantics functions) this may even lead to a
unique admissible plan. Therefore, we can introduce some relaxation over the
above criteria, by admitting some more states of plans that are admissibly close
to abiding to them. This relaxation can be more easily stated by quantifying
the preorder, i.e. using (not necessarily bounded) semantics functions. As an
example, we detail the epsilon-local behaviour:

ε-Local Behaviour. Given a set of plans P, ε ∈ N, and the semantics function
for a value v, fv, the ε-local behaviour, Bε is defined as:

Bε(P, fv) = {P ∈ P | ∀s
a−→ t ∈ P, fv(t) ≥ max{fv(t′) | ∃t

a′
−→ t′ ∈ Q ∈ P}− ε}}

This behaviour extends the local one by admitting not only the next most
preferable state(s) but the ε-most preferred at each step; i.e., among the next
possible states, we would admit traversing those with up to an ε decrement in
semantics value w.r.t the most valued one(s).

4 Example: Equity in Water Distribution

To illustrate our approach to value alignment, we draw upon a use case in the
domain of water distribution. This domain has being explored deeply, i.e. with
socio-cognitive agents [11], though with no value-awareness in mind yet. In the
following we first summarise legal aspects and values related to water use, and
then present a simple example considering a situation of water distribution in a
drought scenario, where the value of equity is to be maintained.

4.1 Legal and Values Considerations for Water Distribution

Preserving values in the context of water distribution is indeed of the maximum
importance and representative of general situations. At the European level, the
Parliamentary Assembly of the Council of Europe declared that access to water
must be recognized as a fundamental human right because it is essential for life
on the planet and it is a resource that must be shared by humanity3. Providing
such access is, in turn, a commitment under the UN Sustainable Development
Goal No. 6 of the 2030 Agenda “Ensure availability and sustainable management
of water and sanitation for all”.4

3 Council of Europe Parliamentary Assembly Resolution No. 1693 (2009).
4 SDG 6 of the United Nations 2030 Agenda for Sustainable Development https://

www.un.org/sustainabledevelopment.

https://www.un.org/sustainabledevelopment
https://www.un.org/sustainabledevelopment

420 A. Holgado-Sánchez et al.

As we have seen above, water is an essential good for human life, so uni-
versal access to it must be guaranteed; but water is also a scarce resource with
economic value, which contributes simultaneously to social, environmental, and
economic objectives.5 Currently, the water volume allocation for agriculture is
70%. In water stress scenarios, it will undoubtedly be necessary to reallocate
this percentage to other uses6 and, consequently, to improve water manage-
ment, including digitization in this sector. This will require a better allocation
of water in situations of scarcity and theorizing about different models.

In Spain, the average household water consumption was 133 litres per inhab-
itant per day.7 The main use of water is irrigation and agricultural use, which
accounts for approximately 80.5% of this demand, followed by urban supply,
which represents 15.5%. The remainder is for industrial use [4]. Of all the water
uses, the priority is urban water supply.8 The regulations have established that
the net or average consumption endowment, as a minimum objective, must be
at least 100 litres per inhabitant per day.9

From the legal point of view, water (surface and groundwater) is a public
good (i.e., it is not subject to private ownership). Urban water supply is config-
ured as a public service, extensively regulated (including its price through the
corresponding tariff) and, as such, it has the characteristics inherent to such ser-
vices: equal access, provision, and quality, the existence of basic common condi-
tions, universality and continuity, solidarity, transparency and control with user
participation [13]. In turn, the legislation establishes general principles appli-
cable to water management, from which stand out management unit, integral
treatment, deconcentration, decentralization, coordination, efficiency and user
participation.10

4.2 Use Case

In our use case, in a situation of drought, water needs to be distributed from
a reservoir to 4 equally populated and distant villages using a tanker vehicle
with 11kl of capacity. We consider a goal of distributing a total of 44kl from the
reservoir to the villages. For each trip, we must decide which village is visited
and supplied with water. For simplicity, the vehicle always discharges the entire
capacity of its tank when arriving to a village.

The problem can be modelled with the basic elements of the decision world
introduced in Sect. 3 as follows:
5 https://www.oecd.org/water/Recomendacion-del-Consejo-sobre-el-agua.pdf.
6 In agriculture (https://www.bancomundial.org/es/topic/water-in-agriculture).
7 Statistics on Water Supply and Sanitation Year 2020, see https://www.ine.es/

prensa/essa 2020.pdf.
8 Royal Decree 1/2001, of July 20, approving the Revised Text of the Water Law,

Article 60.
9 Royal Decree 3/2023, of January 10, establishing the technical-sanitary criteria for

the quality of drinking water, its control, and supply, Article 9.
10 Royal Decree 1/2001, of July 20, approving the Revised Text of the Water Law,

Article 14.

https://www.oecd.org/water/Recomendacion-del-Consejo-sobre-el-agua.pdf
https://www.bancomundial.org/es/topic/water-in-agriculture
https://www.ine.es/prensa/essa_2020.pdf
https://www.ine.es/prensa/essa_2020.pdf

On Admissible Behaviours for Value-Aware Agents 421

– States: a state is a list of four values where each value represents the amount
of water delivered to each village, i.e. [11, 11, 0, 0].

– Actions: an action indicates the village visited by the vehicle, identified by
a number from 1 to 4 (one for each village).

– Transitions: Depending on goals, we will have different transitions, though
they all model that the truck delivers its 11kl to the village indicated by the
action. An example of a transition would be [0, 0, 11, 11] 4−→ [0, 0, 11, 22].

Depending on the particular context, the value of equity in this scenario can
be grounded in different semantics functions. We intend to examine the impact
of choosing a specific semantics function in relation to different notions of value-
admissible behaviour. For this purpose, we consider three different semantics
functions inspired by statistical ones from Sect. 3: f1 = −Mm, f2 = −SSD and
f3 = −MAD, and the three main behaviours proposed in Sect. 3.2, i.e., Local,
Goal, and Aggregated (considering the sum as the aggregation function, no
“epsilon” versions considered yet).

Figure 1 shows the state-transition diagram for our use case. For simplicity,
we collapsed states ordering the variables from highest to lowest, so each path
represents much more distributions, but all equivalent in the end. In the figure,
plans pertaining to local behaviours are represented by red edges, the ones from
the aggregated behaviours by blue edges, and goal states are indicated by green
nodes.

Fig. 1. Plans admissible to deliver 44kl under local, goal, and aggregated behaviours.
The local plans are represented by red edges; the aggregated plans, by blue edges; and
the goal plans are those going from the initial state to the green nodes, which mark
the most value-aligned goal states. (Color figure online)

In line with the discussion put forward in Sect. 4.1, we can assume that the
local behaviour is strongly aligned with the value of equity, as an agent adhering
to that type of behaviour can justify its actions by claiming that it is always
promoting equity to the best it can at each moment. Figure 1a shows that, for
f1, there is one single plan admissible under all the behaviours. Indeed, the goal-
admitted plan (reaching the green state) coincides with the plans admitted by
the local and aggregated behaviours.

422 A. Holgado-Sánchez et al.

By contrast, Fig. 1b indicates that considering the semantics function f3
there is only one goal-admissible plan, which does not coincide with the local-
admissible plan. Both plans are aggregate-admissible.

It is worth noting that with Schur-Concave semantics functions, such as f2 =
−SSD or the modified Gini Index from [9], the three behaviours admit the same
single plan (Fig. 1a). This plan certifies a local behaviour which is aligned with
the value while keeping the highest overall final alignment score according to the
semantics of the value. This situation, however, is not the norm, as under f3,
the local plan reaches the state [33, 11, 0, 0] instead of [11, 11, 11, 11]. This means
that we cannot generally assume that just adhering to equitable principles will
lead us into the most equitable goal. Still, the local plan is also admissible as
aggregated behaviour, so it does preserve equity in that sense.

In general, the left blue plan can probably be conceived as most aligned
with the value of equity (it is a goal plan, therefore reaches an equitable goal,
and it is also part of the aggregated behaviours, so achieves overall equity). But
notice that, to follow that plan, the second decision would need to be less equity-
aligned than the other option, implying that it might not fully comply with legal
requirements.

These problems may be addressed using the ε-local behaviour introduced
in Sect. 3.2. With this behaviour, under certain circumstances, a small enough
ε > 0 may be tolerated (e.g. when all the villages get the Spanish minimum
legal amount of water per inhabitant: 133l/inhab.) in the hope for finding better
future alignment.

5 Conclusions and Future Work

In this paper, we analyze water allocation and human rights legislation to analyze
value-aligned decision-making in a water scarcity scenario where preserving the
value of equity is a legal requirement. Based on recent work, we formalize the
value alignment problem with state-level preferences and semantics functions,
characterizing not only the aggregated alignment of general paths but also plan
value-admissibility criteria with the concept of behaviours. With a small water
distribution in a drought situation example, we observe that a behaviour that
conforms to the legislation (trying to preserve equity in each action) may lead
to less equal states in the long term. As such, we ended up proposing a relaxed
behaviour that could contemplate better future equity-aligned decisions without
losing the law’s intentions regarding the value.

In future work, we propose using reinforcement learning considering value-
admissibility behaviours. Different tasks can be investigated, such as learning
an approximately optimal policy adhering to different behaviours simultane-
ously or one that adheres to the ε-local behaviour while maximizing others (e.g.
aggregated/goal behaviour). Lastly, we highlight the problem of defining suitable
value-aligned aggregation functions for generic (goal-oriented) decision-making
problems.

On Admissible Behaviours for Value-Aware Agents 423

Acknowledgements.. This work has been supported by grant VAE: TED2021-
131295B-C33 funded by MCIN/AEI/ 10.13039/501100011033 and by the “Euro-
pean Union NextGenerationEU/PRTR”, by grant COSASS: PID2021-123673OB-C32
funded by MCIN/AEI/ 10.13039/501100011033 and by “ERDF A way of making
Europe”, and by the AGROBOTS Project of Universidad Rey Juan Carlos funded
by the Community of Madrid, Spain.

References

1. Arnold, T., Kasenberg, D., Scheutz, M.: Value alignment or misalignment - what
will keep systems accountable? In: AAAI Workshop on AI, Ethics, and Society
(2017)

2. Christiano, P., Leike, J., Brown, T.B., Martic, M., Legg, S., Amodei, D.: Deep
reinforcement learning from human preferences (2023)

3. Fürnkranz, J., Hüllermeier, E., Cheng, W., Park, S.H.: Preference-based reinforce-
ment learning: a formal framework and a policy iteration algorithm. Mach. Learn.
89, 123–156 (2012). https://doi.org/10.1007/s10994-012-5313-8

4. Government, S.: Strategic project for economic recovery and transformation of
digitalization of the water cycle. Report 2022. Technical report, Ministry for the
Ecological Transition and Demographic Challenge (2022)

5. Guo, T., Yuan, Y., Zhao, P.: Admission-based reinforcement-learning algorithm
in sequential social dilemmas. Appl. Sci. 13(3) (2023). https://doi.org/10.3390/
app13031807. www.mdpi.com/2076-3417/13/3/1807

6. Jiang, J., Lu, Z.: Learning fairness in multi-agent systems. In: Advances in Neural
Information Processing Systems, vol. 32 (2019)

7. Lera-Leri, R., Bistaffa, F., Serramia, M., Lopez-Sanchez, M., Rodriguez-Aguilar,
J.: Towards pluralistic value alignment: aggregating value systems through lp-
regression. In: Proceedings of the 21st International Conference on Autonomous
Agents and Multiagent Systems, AAMAS 2022, Richland, SC, pp. 780–788. Inter-
national Foundation for Autonomous Agents and Multiagent Systems (2022)

8. Montes, N., Osman, N., Sierra, C., Slavkovik, M.: Value engineering for
autonomous agents. CoRR abs/2302.08759 (2023). https://doi.org/10.48550/
arXiv.2302.08759

9. Montes, N., Sierra, C.: Synthesis and properties of optimally value-aligned norma-
tive systems. J. Artif. Intell. Res. 74, 1739–1774 (2022). https://doi.org/10.1613/
jair.1.13487

10. Ng, A.Y., Russell, S.J.: Algorithms for inverse reinforcement learning. In: Pro-
ceedings of the Seventeenth International Conference on Machine Learning, pp.
663–670 (2000)

11. Perello-Moragues, A., Poch, M., Sauri, D., Popartan, L.A., Noriega, P.: Mod-
elling domestic water use in metropolitan areas using socio-cognitive agents. Water
13(8) (2021). https://doi.org/10.3390/w13081024. www.mdpi.com/2073-4441/13/
8/1024

12. Plata-Pérez, L., Sánchez-Pérez, J., Sánchez-Sánchez, F.: An elementary character-
ization of the Gini index. Math. Soc. Sci. 74, 79–83 (2015)

13. PricewaterhouseCoopers: La gestión del agua en españa. análisis y retos del ciclo
urbano del agua (2018). www.pwc.es/es/publicaciones/energia/assets/gestion-
agua-2018-espana.pdf

https://doi.org/10.1007/s10994-012-5313-8
https://doi.org/10.3390/app13031807
https://doi.org/10.3390/app13031807
www.mdpi.com/2076-3417/13/3/1807
https://doi.org/10.48550/arXiv.2302.08759
https://doi.org/10.48550/arXiv.2302.08759
https://doi.org/10.1613/jair.1.13487
https://doi.org/10.1613/jair.1.13487
https://doi.org/10.3390/w13081024
www.mdpi.com/2073-4441/13/8/1024
www.mdpi.com/2073-4441/13/8/1024
www.pwc.es/es/publicaciones/energia/assets/gestion-agua-2018-espana.pdf
www.pwc.es/es/publicaciones/energia/assets/gestion-agua-2018-espana.pdf

424 A. Holgado-Sánchez et al.

14. Rodriguez-Soto, M., Serramia, M., Lopez-Sanchez, M., Rodriguez-Aguilar, J.A.:
Instilling moral value alignment by means of multi-objective reinforcement learning.
Ethics Inf. Technol. 24, 9 (2022). https://doi.org/10.1007/s10676-022-09635-0

15. Sierra, C., Osman, N., Noriega, P., Sabater-Mir, J., Perelló, A.: Value alignment:
a formal approach. CoRR abs/2110.09240 (2021). arxiv.org/abs/2110.09240

16. Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction. MIT Press,
Cambridge (2018)

17. van der Weide, T.L., Dignum, F., Meyer, J.-J.C., Prakken, H., Vreeswijk, G.A.W.:
Practical reasoning using values. In: McBurney, P., Rahwan, I., Parsons, S.,
Maudet, N. (eds.) ArgMAS 2009. LNCS (LNAI), vol. 6057, pp. 79–93. Springer,
Heidelberg (2010). https://doi.org/10.1007/978-3-642-12805-9 5

https://doi.org/10.1007/s10676-022-09635-0
http://arxiv.org/2110.09240
https://doi.org/10.1007/978-3-642-12805-9_5

Multi-tasking Resource-Constrained
Agents Reach Higher Accuracy When

Tasks Overlap

Andreas Kalaitzakis(B) and Jérôme Euzenat

Univ. Grenoble Alpes, Inria, CNRS, Grenoble INP, LIG, 38000 Grenoble, France
{Andreas.Kalaitzakis,Jerome.Euzenat}@inria.fr

Abstract. Agents have been previously shown to evolve their ontologies
while interacting over a single task. However, little is known about how
interacting over several tasks affects the accuracy of agent ontologies.
Is knowledge learned by tackling one task beneficial for another task?
We hypothesize that multi-tasking agents tackling tasks that rely on the
same properties, are more accurate than multi-tasking agents tackling
tasks that rely on different properties. We test this hypothesis by varying
two parameters. The first parameter is the number of tasks assigned to
the agents. The second parameter is the number of common properties
among these tasks. Results show that when deciding for different tasks
relies on the same properties, multi-tasking agents reach higher accuracy.
This suggests that when agents tackle several tasks, it is possible to
transfer knowledge from one task to another.

Keywords: Cultural knowledge evolution · Knowledge transfer ·
Multi-tasking

1 Introduction

Agents have been previously shown to improve their accuracy as a result of cul-
tural knowledge evolution. The latter studies agents that evolve their knowledge
representations, based on their perception and the feedback they receive from
other agents. Recent work on cultural knowledge evolution focuses on agents
tackling a single task: taking an abstract decision within an abstract domain. In
[3], agents are forced to take identical decisions regarding a set of environment
objects. Eventually, agents learn to agree over a single decision task, yet not
necessarily on the same basis. For example, two agents may both decide to visit
Barcelona. Agent α may base its decision on the temperature property, while
agent β may base its decision on the ticket price property.

However, several tasks may exist. We build on previous works by introducing
agents capable of taking abstract decisions within several domains. To do so,

This work has been partially supported by MIAI @ Grenoble Alpes (ANR-19-P3IA-
0003).

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
V. Malvone and A. Murano (Eds.): EUMAS 2023, LNAI 14282, pp. 425–434, 2023.
https://doi.org/10.1007/978-3-031-43264-4_28

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-43264-4_28&domain=pdf
https://doi.org/10.1007/978-3-031-43264-4_28

426 A. Kalaitzakis and J. Euzenat

agents classify objects into ontology classes and associate these classes with
different decisions for different tasks. We consider that realistic agents should
not be able to develop ontologies containing all class descriptions. Thus, we
limit the number of classes to be maintained within an agent’s ontology. When
this limit is reached, agents will try to forget knowledge that is not relevant to
the tasks they favor. Deciding for different tasks may rely on a set of common
properties. For example, the property temperature may be used in order to
choose a destination (task 1). The same property may also be used to decide
whether to wear a T-shirt (task 2). However, the property temperature may be
completely irrelevant to choosing a movie (task 3). We assume that when this set
is not empty, agents carrying several tasks may develop multi-purpose knowledge,
i.e., knowledge that can be transferred among different tasks. Based on this, we
formulate the following hypothesis: multi-tasking agents tackling tasks that rely
on the same properties, are more accurate than multi-tasking agents tackling
tasks that rely on different properties. We test this hypothesis by varying two
parameters. The first parameter is the number of tasks assigned to each agent.
The second parameter the number of common properties shared among the
different tasks. Two variations of the second parameter are examined. Tasks
either rely on the same properties, or rely on different ones. We then evaluate
agent ontologies based on their contribution to promote successful interactions
and provide accurate decisions. Based on this evaluation, the following is shown:
when agents tackle tasks based on common properties, knowledge built by an
agent while tackling one task, improves its accuracy on another task. We thus
conclude that it is possible to transfer knowledge from one task to another.

After discussing related work in Sect. 2, preliminaries regarding the entities
that constitute the environment as well as the notation that describes it, are
introduced in Sect. 3. In Sect. 4, an outline of the experiment is provided, includ-
ing how agents learn their initial ontologies, interact with each other and adapt
when they disagree. Section 5 presents our hypothesis and the protocol used to
test it. Results are presented in Sect. 6 and conclusions are provided in Sect. 7.

2 Related Work

It has been shown that referential games [9] facilitate the establishment of com-
munication protocols between communicating agents. [11] argues that a commu-
nication protocol emerges when agents attempt to minimize the computational
complexity of semantic interpretation. [7] studies a framework where two agents
develop a language in order to succeed in a referential game. [6] shows that
implicit cultural transmission leads to greater language compositionality. While
our work relies on successfully communicating agents, our focus is on how this
successful communication allows for better task completion.

Different examples of multi-tasking agents exist in literature. Indicatively,
multi-task learning has been shown to significantly improve classification in a
variety of areas, e.g., adversary robustness [10], visual interconceptual similarity
[4] and phenotype learning [5]. Agents have also been used to study the impact

Multi-tasking Resource-Constrained Agents Reach Higher Accuracy 427

of multi-task learning on emerging communication protocols. In [12], cooperative
multi-agent reinforcement learning is considered. Our work is related to these
works, since they consider agents that perform several tasks. However our focus
is not on agents that improve their accuracy individually. Here we study agents
that improve their accuracy through social transmission.

Social transmission among agents has been studied in [3] and [13]. In [13], the
authors examine how concepts are organized and how their collective behavior
can be established autonomously. In [3], a two-stage experiment is used, where
agents first learn a classifier and then interact in pairs. Through an adapta-
tion mechanism, it is shown that the agents achieve better knowledge, with-
out adopting identical ontologies. We differentiate from these, by introducing
memory-limited agents that tackle several tasks.

3 Experimental Framework

3.1 Environment

Agents evolve in an environment populated by objects described by a set P of
boolean properties. Objects are therefore described by the presence or absence
of a property p ∈ P, denoted by p and ¬p respectively. Hence, there are 2|P|

object types, that are gathered in a set I.

3.2 Tasks

The term task refers to a piece of work, carried out by an agent. Here, we will
concentrate on a set of decision tasks: making a decision about an object. There
may be different tasks t ∈ T associated to a different set of possible decisions
Dt. Each object o can be considered with respect to any task t ∈ T . A function
h∗(o, t) → Dt provides the correct, unknown to agents, decision for an object
o with respect to a task t. For example, h∗(tomato, coloring) will provide the
decision red.

3.3 Agents

Agents are autonomous, co-existing entities, able to perceive and distinguish
objects based on their properties. In this context, a population of multi-tasking
agents A is assigned different subsets of T . To tackle these tasks, agents build and
evolve private ontologies, expressed in ALC [2]. Each agent α uses its ontology
to compute a function hα(o, t) → Dt which, given an object o and a task t,
provides a decision hα(o, t). The right part of Fig. 1 shows an example of a
multi-task ontology constructed by an agent α. The bottom part represents the
private ontology Oα of agent α, allowing it to classify objects of the environment.
The top part shows a set of decision ontologies, each one containing the valid
decisions for a respective task t. An agent α learns at most one decision for an
object o and a task t. Thus, each leaf of Oα cannot be aligned more than once
with the same decision ontology.

428 A. Kalaitzakis and J. Euzenat

4 Experiment Outline

In this paper, we examine if knowledge can be transferred from one task to
another. To this end, a two-stage experiment is used. In the first stage, agents
induce private ontologies based on randomly selected labeled examples. In the
second stage, agents go through a fixed number of interactions. For each interac-
tion, two randomly selected agents will have to decide with respect to an object
o and a task t. When agents disagree, one of the two agents adapts its ontology.

More details about how agents learn, are assigned tasks, interact, release
resources and adapt their ontologies are presented in Subsects. 4.1, 4.2, 4.3, 4.4
and 4.5 respectively.

4.1 Initial Ontology Induction

We approach multi-task learning as a problem of inducing an ontology capable
of providing a decision for any task t ∈ T . Different algorithms may be used,
affecting the final accuracy of agents. This paper does not examine how different
learning algorithms impact the achieved accuracy. This paper examines how
cultural evolution improves the accuracy of multi-tasking agents. Thus, details
about the learning algorithm are omitted. A learning example can be seen in
Fig. 1. By the end of its initial ontology induction phase, the agent α is able to
classify an object described by p1 � p2 but unable to decide about the task t1.

Fig. 1. Given a set of labeled examples, agents will induce a decision tree. The latter is
subsequently transformed into an ontology. Each color represents a different decision.
(Color figure online)

4.2 Task Assignment

Agents are assigned with different subsets of T of the same size. The latter varies
from 1 to |T | and remains constant for the duration of an experiment. Based on
it, all possible task permutations of the same size are initially produced. Each
permutation corresponding to a different subset of T , is then assigned to an even
number of agents. Thus, the number of agents is always a multiple of the number
of the different subsets of T .

Multi-tasking Resource-Constrained Agents Reach Higher Accuracy 429

4.3 Interaction

For each interaction, two randomly selected agents α and β are asked to provide
a decision for an object o with respect to a task t. The agents provide their
decisions based on the respective functions hα(o, t) and hβ(o, t). If an agent is
unable to provide a decision, then one decision is randomly selected. The agents
will then disclose their decisions to each other. If hα(o, t) = hβ(o, t), the agents
agree and their interaction is considered as successful. On the contrary, their
interaction ends as a failure. In this case, one of the two agents may adapt its
ontology. In order to decide which agent will adapt, an evaluation set is randomly
selected. It contains samples labeled with respect to the task t. The agents are
evaluated against this set and a score is assigned to each one of them. The agent
with the lowest score may adapt its ontology.

4.4 Resources Release

When an agent’s resources are exhausted, it tries to forget knowledge as follows
(Fig. 2). Leaf nodes that satisfy the following criteria are removed: (a) they have
the same immediate parent node (b) they are associated with the same decision
regarding all tasks assigned to the agent. The process is repeated recursively, as
long as leaf nodes satisfying (a) and (b) exist.

Fig. 2. Let an agent α assigned the task t2, with t2 relying on the property set Pt2 .
The property p1 /∈ Pt2 , thus p1 does not allow for distinguishing different decisions
for the task t2. In this example, the agent has associated the same decision (in red),
to both p4 � ¬p1 and p4 � p1. These two classes can be removed without any loss of
accuracy with respect to t2. For the task t2, the parent node will now be associated
with the decision d2 (red). For the task t1, the parent node will now be associated with
one of two decisions previously associated with its former descendent nodes. Here, the
decision d3 (gray) was randomly selected. (Color figure online)

4.5 Adaptation

Our adaptation mechanism extends the one presented in [3]. Based on it, an
agent can either replace an existing decision or split a class into two sub-classes

430 A. Kalaitzakis and J. Euzenat

(Fig. 3). The agent does this on the basis of a property that distinguishes the
current object from the objects classified by the class to be split. Only the
decisions concerning the current task are affected.

5 Experimental Setting

5.1 Hypothesis

– Multi-tasking agents tackling tasks that rely on the same properties, are more
accurate than multi-tasking agents tackling tasks that rely on different prop-
erties.

Fig. 3. The agent α will split the class claws into two sub-classes using the property
poison. The first (claws�¬poison) will be associated with the decision of the agent β.
The second (claws � poison) will be associated with all decisions previously associated
with the class claws.

5.2 Parameters

The experiment is executed under 6 setups. Each setup is run 20 times and its
results are averaged. One run consists of 80000 interactions with each interac-
tion taking place among two randomly selected agents. The total population of

Multi-tasking Resource-Constrained Agents Reach Higher Accuracy 431

agents is 18. Their environment contains 64 different object types, each one per-
ceivable through 6 different binary properties. The agents are initially trained
with respect to 3 tasks. Taking 1 out of 4 decisions with respect to each task
relies on 2 properties. These properties are either the same for all tasks, or dif-
ferent for each task. Agents induce an initial ontology based on a random 10
% of all existing labeled examples. The agents are assigned 1 to 3 tasks. Agent
evaluation is based on 60% of all samples.

5.3 Measures

Success rate, as introduced in [3] is defined as the proportion of successful inter-
actions, over all performed interactions until the nth interaction. Task accuracy
adapts the accuracy measure introduced in [3] to different tasks. It is defined as
the proportion of object types for which a correct decision would be taken with
respect to a task t, by an agent α on the nth iteration of the experiment.

tacc(α, n, t) =
|{o ∈ I : hα

n(o, t) = h∗(o, t)}|
|I|

6 Results and Discussion

We hypothesize that when tasks rely on common properties, it is possible for
agents to build multi-purpose knowledge. To test this hypothesis, the accuracy of
the following two populations was compared. The first consists of agents assigned
up to 3 tasks for which all properties are shared. The second consists of agents
assigned up to 3 tasks for which no properties are shared. Figure 4 depicts the

Fig. 4. (a) average accuracy, (b) accuracy on best task and (c) success rate for different
number of assigned tasks and common properties.

432 A. Kalaitzakis and J. Euzenat

evolution of the agents (a) average accuracy, (b) accuracy on their best task and
(c) success rate, for different number of tasks and common properties. Figure 4a
shows that assigning more tasks to agents, significantly improves their average
accuracy. This improvement is higher when agents tackle tasks that rely on the
same properties. On the one hand, when tasks rely on different properties, agents
tackling 3 tasks are 9% more accurate than agents tackling 1 task. On the other
hand, when tasks rely on common properties, agents tackling 3 tasks are 55%
more accurate than agents tackling 1 task. This shows that agents tackling tasks
relying on a common set of properties, may improve their accuracy on one task
by carrying out another task. Results thus support our hypothesis.

Figure 4b shows two things. First, agents tackling tasks that rely on the same
properties achieve a higher accuracy on their best task, compared to agents tack-
ling tasks that rely on different properties. This indicates that while the agents
may abstain from some tasks, their ontologies contain multi-purpose knowledge,
acquired during the initial ontology induction phase. This further supports our
hypothesis. Second, when tasks rely on different properties, the effect of the
number of tasks assigned to each agent on the accuracy for its best task, is sta-
tistically insignificant (p > 0.05). This indicates that when tasks rely on different
properties, learning to decide with respect to one task is not related to learning
to decide with respect to a different task.

Figure 4c shows that tackling less tasks or having tasks that rely on common
properties improves the success rate. This is due to two reasons. The first is that
the fewer the assigned tasks, the fewer are the decisions over which agents need
to agree. The second is that the more tasks rely on common properties, the less
non relevant knowledge may be present to an agent’s initially induced ontology.
Furthermore, while success rate improves over the course of the experiment, it
does not converge to 1. This indicates that the final ontologies do not allow agents
to reach consensus. This can be explained by the limitation of resources: agents
may lack the resources required to learn to decide accurately for all assigned
tasks and objects. As a result, they are able to decide accurately for different
subsets of the existing object types at a given time. Thus, unless the different
subsets coincide for all agents, consensus cannot be achieved. The latter is true
even when agents interact over the same single task.

6.1 Statistical Analysis

Analysis of variance shows that the number of common properties among differ-
ent tasks, has a statistically significant impact (p < 0.05) on all measures. The
number of assigned tasks has a statistically significant impact on (1) the success
rate and (2) the average accuracy. When tasks rely on common properties, the
latter has a statistically significant impact on the agents accuracy on their best
task.

Multi-tasking Resource-Constrained Agents Reach Higher Accuracy 433

7 Conclusion

We hypothesize that agents tackling tasks that rely on common properties, ben-
efit from the formation of multi-purpose knowledge. We test this hypothesis
by introducing agents that learn and evolve ontologies with respect to several
tasks. The experimental results support this hypothesis. On the one hand, it is
shown that when agents tackle tasks that rely on common properties, knowledge
is transferred from one task to another. On the other hand, when these tasks
rely on different properties, tackling additional tasks does not affect the agents
accuracy on their best task. Thus, deciding between tackling one or several tasks
depends on the agents objective and the environment setup. The agent objective
corresponds to whether they seek to optimize their accuracy on average or on
their best task. The environment setup corresponds to whether the tasks depend
on common properties or not. The experiments rely on minimal hypotheses about
the environment, hence the results apply to a wide range of environment. These
may serve as an insight on how agents evolve their knowledge within more com-
plex environments. For example, one may consider environments where some
tasks share properties, while other tasks are completely independent.

Data Availability. The cultural evolution simulator used for our experiments can be
found in [1]. Settings, results and the data analysis notebook are available in [8].

References

1. Lazy lavender (2023). https://gitlab.inria.fr/moex/lazylav
2. Baader, F., Calvanese, D., McGuinness, D., Nardi, D., Patel-Schneider, P.F. (eds.):

The Description Logic Handbook: Theory, Implementation, and Applications.
Cambridge University Press, Cambridge (2003)

3. Bourahla, Y., Atencia, M., Euzenat, J.: Knowledge improvement and diversity
under interaction-driven adaptation of learned ontologies. In: Proceedings of the
20th ACM International Conference on Autonomous Agents and Multi-Agent Sys-
tems (AAMAS), London, United Kingdom, pp. 242–250 (2021)

4. Fan, J., Gao, Y., Luo, H.: Integrating concept ontology and multitask learning
to achieve more effective classifier training for multilevel image annotation. IEEE
Trans. Image Process. 17(3), 407–426 (2008)

5. Ghalwash, M., Yao, Z., Chakraporty, P., Codella, J., Sow, D.: Phenotypical ontol-
ogy driven framework for multi-task learning. In: Proceedings of the Conference on
Health, Inference, and Learning, CHIL 2021, New York, USA, pp. 183–192 (2021)

6. Harding Graesser, L., Cho, K., Kiela, D.: Emergent linguistic phenomena in multi-
agent communication games. In: Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the 9th International Joint Confer-
ence on Natural Language Processing (EMNLP-IJCNLP), Hong Kong, China, pp.
3700–3710 (2019)

7. Havrylov, S., Titov, I.: Emergence of language with multi-agent games: learning
to communicate with sequence of symbols. In: 5th International Conference on
Learning Representations (ICLR 2017, Workshop Track), Toulon, France (2017)

8. Kalaitzakis, A.: 20230505-MTOA experiment description (2023). https://sake.re/
20230505-MTOA

https://gitlab.inria.fr/moex/lazylav
https://sake.re/20230505-MTOA
https://sake.re/20230505-MTOA

434 A. Kalaitzakis and J. Euzenat

9. Lewis, D.K.: Convention: A Philosophical Study. Wiley-Blackwell, Cambridge
(1969)

10. Mao, C., et al.: Multitask learning strengthens adversarial robustness. In: Vedaldi,
A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12347, pp.
158–174. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58536-5 10

11. Steels, L.: What triggers the emergence of grammar? In: AISB 2005: Proceedings of
the Second International Symposium on the Emergence and Evolution of Linguistic
Communication (EELC 2005), Hatfield, United Kingdom, pp. 143–150 (2005)

12. Thomas, J., Santos-Rodriguez, R., Anca, M., Piechocki, R.: Multi-lingual Agents
Through Multi-headed Neural Networks, vol. 4, Tromsø, Norway (2023)

13. Wang, J., Gasser, L.: Mutual online ontology alignment. In: Proceedings of the 1st
ACM International Conference on Autonomous Agents and Multi-Agent Systems
(AAMAS), Bologna, Italy (2002)

https://doi.org/10.1007/978-3-030-58536-5_10

Election Manipulation on Social Networks
with Abstention

Vincenzo Auletta(B) , Diodato Ferraioli(B) , and Carmine Viscito

Università degli Studi di Salerno, 84084 Fisciano, SA, Italy
{auletta,dferraioli}@unisa.it, c.viscito@studenti.unisa.it

Abstract. The Election Manipulation through the diffusion of (fake)
news on social networks has been a subject that recently attracted the
interest of many works in both in the communities of AI and social choice
theory. However, all these works assume that each voter has to express
her vote, not considering the possibility that she could abstain. One of
the reasons of this omission is the lack of a satisfying modeling of how
people choose to abstain. In this work, we try to fill this gap by presenting
an innovative model for abstention that will match most of the real-
world observations about the topic. Next, we will provide experimental
evidence that abstention opportunity will help the manipulator to control
the elections, by comparing how well-known algorithms and heuristics
behave in the setting with and without abstention.

Keywords: Information Diffusion · Voting · Graph Algorithms

1 Introduction

“We have three major voter suppression operations under way”. These words
were spelled out by a senior official of the Trump campaign for the 2016 pres-
idential election [24]. The three campaigns were aimed to convince groups of
people (idealistic white liberals, young women, and African Americans) among
which the competitor, Hillary Clinton, would win with a large margin, to do not
vote1.

This is just an example of how social networks are nowadays largely used
for manipulating the outcome of an election. Similar examples can be found
in literature with respect to more or less all the electoral events occurred in
the last years [12,22,23]. Since the literature in AI and in social choice theory
focuses on how elections can be bribed, and how much specific electoral rules
are robust against these manipulations [8–10,18], it appears natural to analyse

*Supported by the Italian MIUR PRIN 2017 Project ALGADIMAR “Algorithms,
Games, and Digital Markets” and by “GNCS-INdAM”.
1 E.g., a cartoon with a text “Hillary Thinks African Americans are Super Predators”

was planned to be delivered to certain African American voters through Facebook
“dark posts” – non-public posts whose viewership is controlled by the campaign [24].

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
V. Malvone and A. Murano (Eds.): EUMAS 2023, LNAI 14282, pp. 435–444, 2023.
https://doi.org/10.1007/978-3-031-43264-4_29

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-43264-4_29&domain=pdf
http://orcid.org/0000-0002-7875-3366
http://orcid.org/0000-0002-7962-5200
https://doi.org/10.1007/978-3-031-43264-4_29

436 V. Auletta et al.

within this computational viewpoint how manipulation arising from the spread
of (mis)information on social networks can impact on the election outcome.

This line of research has been started by Wilder and Vorobeychik [38] that
consider that voters in a two-candidate election are arranged in a social network,
and they will support the sponsored candidate as soon as they receive informa-
tion spread by a subset of carefully chosen senders, a.k.a., seeds. They showed
that, even if selecting the best set of seeds can be a computationally hard prob-
lem, however a set of seeds guaranteeing an efficient approximation of the optimal
choice can be efficiently computed. These results have been extended to more
complex settings, focusing, e.g., on different models of information diffusion,
different voting rules, and more complex sets of messages to spread [1,13,14].

Unfortunately, none of these works is able to capture the specific manipula-
tion tentative described above. Indeed, all these works assume that each voter
has to express a vote and she cannot abstain, and they do not consider the
advantage for the sponsored candidate that this choice could guarantee.

Our Contribution. One of the main reasons about this gap is due to the lack of
a satisfying model about the reasons behind abstention. Indeed, voting appears
to be irrational, since the cost of voting usually outweighs the chance of being
influential in the electoral result, and thus the benefit that from one’s own vote
can arise [16]. While a large amount of literature (see Related Works) tried to
provide some justification for this irrational behavior, most of these proposals
fail to match aspects that are actually observed on real-world elections.

Our first contribution in this work is then to design a model for abstention
that provides a closer fit to real-world scenarios. Specifically, our model improves
over previous ones: it matches real-world observations whenever previous models
do, but, our model predicts also an higher turnout of about 60% that essentially
matches the one observed in most of the recent elections [15].

Next we considered the problem of election manipulation in a setting where
agents may decide to abstain. Clearly, the hardness results proved for the simpler
setting without abstention extend to our setting. However, we will run several
simulations showing that, in practice, manipulating an election when abstention
is allowed is easier than when agents are forced to vote.

Related Works. Several models have been proposed in order to justify why people
votes despite of the large unbalance between the cost of voting and the benefit
that our single vote can lead to. For example, Riker and Ordeshook [34] propose
to include in the model a variable representing the sense of civic duty: this does
not explain why electors’ behaviour change from an election to another and from
one type of election to another. Alternative approaches were proposed that model
voters as regret minimizers [21], i.e., voters are assumed to choose a strategy
that minimize the chance of having a large regret, or as players in an opportune
game-theoretic framework [29,33]. Unfortunately, these approaches appear not
to match with data coming from observations of real-world elections. Abstention
has been moreover assumed to be related with asymmetric information available
to voters [20,32]. However, no agreement has been found on how to model this
aspect, and different proposed models lead to very different predictions. An

Election Manipulation on Social Networks with Abstention 437

orthogonal approach assume that the differences in turnout can be motivated
by the disagreement within the electorate, and the partial knowledge about this
disagreement available to voters [19]. However, these models turn out to be often
unpractical, since they do not allow for easy predictions. Finally, other works
focus on the evolutionary aspects related to vote participation [35]: these models
still fail to explain the difference of behavior among elections.

Recently, Guage and Fu [25] proposed a model that merges most of the
above ideas: they consider both information asymmetry and disagreement within
the electorate, and they evaluate this model within an evolutionary framework.
Moreover, they postulate the existence of an underdog effect, in which voters are
happier when they are able to lead to the victory the less favourite candidate.
This model has been observed to better match the behaviors of voters in real-
world elections. Still, it fails to match the turnout size observed in real-world.

As discussed above, none of these models has been considered in the recent
line of work about election manipulation in social networks via the choice of
information seeds [1,13,14,38]. Note anyway that this is not the only election
manipulation approach on social network that has been considered in literature.
For instance, Sina et al. [36] consider a manipulator willing to modify the rela-
tionship among voters to make the desired candidate win an election. Auletta
et al. [2–4] focus on a manipulator controlling the order in which information
is disclosed to voters, and they prove that the manipulator can lead the minor-
ity to become a majority in different settings, and a bare majority to become
a consensus [6] (the last result holds only when there are only two candidates
[5,7]). Bredereck and Elkind [11] finally provide results for each of the above
discussed manipulation approaches, seeding, changing network relationship, and
controlling when information is disclosed.

2 Definitions

We consider an election scenario with n voters an m candidates. In this work we
will follow [38] and [25], and we will consider only the case of m = 2 candidates,
that we will denote as A and B. We assume that the n voters are arranged on the
vertices of a social graph G = (V,E), that models the social relationships among
voters. To each edge e = (u, v) ∈ E is associated a weight p(e) ∈ [0, 1] measuring
the strength of the relationship among u and v. Each voter u moreover has a
preferred candidate cu ∈ {A,B}.

A manipulator is provided with a budget b and she can choose a subset
A0 of at most b voters from which to spread information. As in [1,13,38], the
information is assumed to spread according to the Independent Cascade Model
[27]: at each time step t ≥ 0, for each node u ∈ At and each neighbour v of
u not in

⋃t
i=0 Ai, v is inserted in At+1 with probability p(u, v). Note that the

procedure terminates after T steps where T is the first time step t such that
At+1 is empty. Nodes in

⋃t
i=0 Ai are called active nodes, and they represent the

one that received the information spread by the manipulator.
For each voter u ∈ V , we let au ∈ {0, 1} to denote the decision of u about

whether to vote (au = 1) or to abstain (au = 0). In the former case, the voter

438 V. Auletta et al.

is assumed to vote for the preferred candidate cu. More details about how the
decision is taken are given below. However, we stress that this also depends on
the message received from the manipulator. To distinguish the decision taken
by a voter u when she does not receive this message from the decision that she
takes upon the reception of this message, we will denote the latter as au.

For a candidate c, the votes that this candidate would achieve without manip-
ulation is Vc =

∑
u : cu=c au. Similarly, the votes that c would achieve when the

manipulation is active is V c =
∑

u : cu=c au. The margin of victory of candidate
c without manipulation is Mc = Vc − Vc, where c = {A,B} \ {c}. Similarly, the
margin of victory of candidate c due to the manipulation is M c = V c − V c.
The increment in the margin of victory of c due to the manipulation is then
Δc = M c − Mc. The goal of the manipulator is then to select the set A∗

0 of
seeds of size at most b that maximizes the expected increment in the margin
of victory Δc for the desired candidate c, where expectation is taken over the
random coin tosses of the diffusion model. Roughly speaking, the manipulator
would like to decrease the distance with the winner or increase the distance with
the competitor as much as possible.

3 Modeling Abstention

Our model is inspired by the model proposed by Guage and Fu [25]. It describes
the behavior of a voter as a trade-off between benefits and costs. If the preferred
candidate loses, it would be better not to vote, since there are no benefits.
However, if the preferred candidate wins, one feels like as her own vote was
helpful to the cause, and she enjoys the benefits associated with winning. A
peculiar feature of the model moreover is that the benefits deriving from voting
for a candidate who wins are influenced by how much one expects the candidate
to actually win the election. Specifically, the feeling of being useful to the victory
is larger, and thus the happiness of the voter, when her preferred candidate was
not the favourite one, but it happens to win. This underdog effect leads the model
to assume that the benefit arising from the victory of the preferred candidate
decreases with the size of the majority if this candidate is favourite and increases
otherwise. Note also that the payoff for voting when the election ends in a tie is
always positive and it may even exceed the payoff for voting when the preferred
candidate wins: indeed, when candidates are tied, it is appropriate to think that
one’s vote prevented the candidate from losing and each single vote was crucial.

Specifically, the model of Guage and Fu [25] assumes that a voter u whose
preferred candidate is c receives the following payoff from voting: −1 if c loses;
1
2 if c ties; 1 − w(Pu − 0.5) if c wins, where Pu is the likelihood that u assigns
to the victory of her preferred candidate and w is a scaling factor weighting the
strength of the underdog effect. The benefit from non-voting is instead assumed
to be simply 0. Hence, the expected benefit received on voting will be Uu =
(1 − w(Pu − 0.5))P (Vc > Vc) + 1

2P (Vc = Vc)(1 − w(Pu − 0.5)) − P (Vc < Vc),
where all the probabilities depend on the voter u’s information. Hence, u will
vote when Uu is at least 0, and she will abstain otherwise.

Election Manipulation on Social Networks with Abstention 439

The authors analyse this model in a very simple setting: they indeed assume
that the information is symmetric among supporters of the same candidate and
asymmetric among supporters of different candidates, and they look for the per-
ception that these voters should take. According to an evolutionary viewpoint,
this choice should be one of the self-fulfilling perceptions, namely those per-
ceptions that happens to become true. By analysing the model according to
these intuitions, the authors are able to prove several properties that turn out to
match the ones observed in real-world elections (see [25] for details): e.g., since
the probability of a tie decreases as the number of agents increases, this leads to
a decrease in the turnout for large elections; the turnout decreases when there
is one candidate that is supposed to have a very large margin of victory.

Our Model. The main difference between our model and [25], consists in adding
a cost whenever we abstain, motivated by the happiness in having the preferred
candidate to win (without any effort from the voter) or the regret that one voter
may develop on discovering that her own vote may have been useful to make
her preferred candidate to win. Specifically, we assume that the benefit that the
voter achieves from voting are exactly the same as in [25]. However, when the
voter i abstains, she receives a benefit of U/N if the desired candidate wins, and
a benefit of −1+D/N otherwise, where D is the difference between the number
of votes for the preferred candidate c and the ones for c, and N is the number of
voters. Roughly speaking, if the desired candidate c will win, the voter is happy,
and her happiness increases with the margin of victory; if c will lose, she regrets
for not voting, and the regret increases as candidates are closer to each other.

We can define the expected benefit Uu achieved from voting exactly as above.
Similarly, we can define the expected benefit from abstention as Uu = D

N P (Vc >

Vx) − (
1 − D

N

)
P (Vc ≤ Vx). People will vote only if Uu ≥ Uu. In order to analyse

our model we adopt the same simplifying assumption of [25] and we consider
asymmetry among supporters of different candidates, but symmetry within the
set of supporters of the same candidate: we suppose that each voter believes that
qc is the probability that a supporter of c will submit a vote, and qc to be the same
quantity with respect to c. With this belief one can evaluate whether to vote or
not by simply computing the probability that one candidate defeats the other:
e.g., P (Vc > Vx) =

∑Nc

k=0

(
Nc

k

)
qkc (1 − qc)Nc−k

∑Nc

j=k+1

(
Nc

j

)
qjc(1 − qc)Nc−j , where

Nc is the total number of supporters of candidate c, i.e. Nc = |{u : xu = c}|.
In order to validate our model we follow the same approach as in [25]. Specif-

ically, for fixed values of N (we next show only the case for N = 1000) and w
(next we follow [25] and focus on the case w = 0), we plot for every choice of qA
and qB the threshold that separates abstention from voting for the supporters
of each of the two candidates. In those regions where the expected payoff for
voting is positive, groups would like to increase the frequency with which they
vote, while in the negative regions, they would like to increase the frequency with
which they abstain. Hence, self-fulfilling equilibria must be searched exactly in
the region in which both groups have positive utility. Figure 1 then shows that
this predicts a turnout of about 65%, that matches the one observed in most of
the real-world elections. Interestingly, while our model is the first to correctly

440 V. Auletta et al.

Fig. 1. The figure depicts for each voter the threshold among the case in which voting
is beneficial or not. Note that for supporters of A is convenient to vote when qA is on
the right of the threshold, while for supporters of B is convenient to vote when qB is
on the left of the threshold. The figure refers to the case pA = 0.6.

predicts this turnout, it maintains all the other properties as in [25]. For example,
by redrawing Fig. 1 for different values of pA ∈ [0.5, 1], or for different values of
N , one may observe that turnout decreases with the increase of the population
size or of the perceived distance among the two candidates.

The role played by the voter perception pc turns out to be relevant for the
voting decision, and consequently for the outcome of the election. For example,
a candidate supported by a large majority may want to hide or weaken this
information, otherwise many of their own supporters may be induced to abstain
(since their vote appears to be useless), by decreasing in this way her margin
of victory. On the other side, revealing this information would have a beneficial
effect on supporters of the competitors since it may discourage them to vote. In
this work we focus on this kind of manipulation. Namely, we assume that the
manipulator will spread a message p̃c advertising a false poll describing a margin
of victory of one candidate towards the other one that is different from the real
one. Each voter u receiving the message will then takes her voting decision (i.e.,
it will set au) based on the model above with respect to the voter perception
p̃c, instead that according to the publicly known poll pc. All voters that do not
receive the fake poll, still take their decision according to pc.

4 Election Manipulation

Wilder and Vorobeychik [38] showed that a simple hill-climbing greedy algorithm
is able to return a set of seeds that guarantees a margin of victory for the
desired candidate that is at least 1

2

(
1 − 1

e

)
(1 − ε). Essentially, the algorithm

works by iteratively selecting the seed that produces the largest increment in
the expected number of influenced nodes, until b seeds have been chosen. Note
that this increment can be approximated up to a 1 − ε multiplicative factor

Election Manipulation on Social Networks with Abstention 441

in polynomial-time through a Monte-Carlo algorithm. Moreover, this greedy
approach is known to provide the desired approximation guarantee whenever
the objective function, in this case the margin of victory, is a monotone and
submodular function in the number of seeds. Unfortunately, this approach cannot
give the same approximation guarantee when applied to the case with abstention.
Indeed, the margin of victory can fail to be monotone: if our message turns out
to advertise a smaller gap among candidates than the actual one, and with a
newly added seed this message happens to be sent mostly to supporters of the
competitor, this will reduce the margin of victory of the desired candidate.

This greedy approach is also quite unpractical since the amount of Monte-
Carlo simulations necessary to guarantee a good approximation is usually very
large. For this reason, many heuristics have been proposed to reduce the com-
putational cost of the seed selection algorithm. Many of them are simply based
on choosing as seeds the most central nodes in the networks. Several central-
ity measures have been proposed to this aim, such as degree, betweenness, or
PageRank centrality. We next focus mostly on the simplest of these measure,
i.e., degree centrality, that assigns to each node a measure that is proportional
to the number of neighbors of that node.

We tested the performances of the above algorithms on a bunch of differ-
ent networks, both synthetic and real. First of all we considered Preferential
Attachment networks over 1000 nodes. In these networks nodes are assumed to
join the network sequentially, and each node will chose a neighbor among the
nodes already in the network. In particular, with probability p this node is cho-
sen with a probability that is proportional to the degree of these nodes, so that
a rich-get-richer effect occurs, and with probability 1 − p this node is chosen
uniformly at random. It is known that networks generated in this way have a
power law degree distribution, that is known to be a typical feature of real social
networks [17]. Here we set the value of the parameter p equal to 0.75.

We also consider in our tests some networks that are publicly available on
KONECT [28] and SNAP [31]. Specifically we will consider: Eurorads [37]:
a sparse undirected network with 1174 nodes and 1417 edges; Arenas-Email
[26]: a slightly denser undirected network with 1133 nodes and 5451 edges;
Email-EU-Core [30,39]: a much denser and directed network consisting of 1005
nodes and 25571 edges. For each of these four networks, each node has been ran-
domly assigned to be a supporter of one of the two candidates and edge probabili-
ties have been randomly drawn from [0, 1]. W.l.o.g. we assume that the candidate
supported by the manipulator is A and the seed set has been selected as the set
of 10 nodes with the highest degree. From each of these seeds, the manipula-
tor has been supposed to advertise a fake poll stating p̃A ∈ {0.6, 0.7, 0.8}. We
assume that each node that does not receive this message has a perception that
is equivalent to the fraction of voters supporting A. For each of this settings
we repeated our simulation 50 times. Over these simulations, we will collect the
number of times in which candidate A actually wins and the average margin of
victory. We compared the outcome of our manipulation, with the one in which
the manipulator cannot lead the voters to abstain, but only to change their

442 V. Auletta et al.

preferred candidate: essentially each node that receives the message, and that
in our model would decide to do not vote, is supposed instead to vote for the
less preferred candidate. As for the remaining voters (that would abstain even
without the reception of the fake news), we assume that they will still abstain.

The number of times that candidate A wins and the average margin of victory
increase, e.g. in Eurorads the first goes from 0 to 12 over 50 simulations, and
the second goes from −7 to −4 when p̃A = 0.6. Similar results for p̃A = 0.7: e.g.
in Eurorads we have an increase from 38 to 47 in the number of victories, and
from 3 to 4 in the average margin of victory. It is interesting to note that when
p̃A = 0.8, we instead can have that the effect of abstention can be negative: e.g.,
in Eurorads the number of victories decreases from 50 to 48 and the margin
of victory decreases from 12 to 9: these bad performances are easily explained
with the fact that with such a large value of the advertised poll almost all nodes
receiving it are induced to abstain. Hence, in the setting in which this abstention
is allowed, the election is run over the few remaining candidates only. In this way
the margin of victory cannot be large, or at least it cannot be as large as when
the election is run among all candidates. Moreover, in some cases this margin
of victory can be smaller than 0 when evaluated on the few voters that are not
influenced by the message, but this is not the case when all the people deciding
to do not vote are instead force to vote for their less preferred candidate. These
improvement of the manipulation power when abstention is allowed occurs even
if the seeds are simply selected according to their degree. Better performances are
achieved with smarter algorithms. E.g. when pA = 0.7 on Eurorads, we achieve
an higher percentage of victories with the greedy namely 49 over 50 simulations,
and the expected margin of victory improves from 4 to 6.

5 Conclusion

In this work we took a preliminary analysis of the problem of election manipula-
tion in social networks when the goal of the manipulator is instead to convince
the supporters of the competitor to do not vote. To this aim, we first provided
a formal model of how voters decide to abstain that extends and improves the
model in [25]. The model is defined for elections with only two candidates and
assume that all the supporters of a candidate have the same belief with respect
to the outcome of the election. It would be interesting to extend the model to
elections with more than two candidates or with a larger asymmetry among
different social groups even if they support the same candidate.

Next, we started the analysis of the manipulation problem in our model.
Our goal here has been to show that abstention can help the manipulator to
achieve better results. We had some preliminary hints in this directions, through
our simulations run on several networks and different settings. Clearly, more
experiments would be necessary to verify the extent at which this claim holds.
Moreover, it would also be interesting to analyse more in details the theoretical
aspects of the problem: e.g., to design efficient approximation algorithms or to
formally prove inapproximability results.

Election Manipulation on Social Networks with Abstention 443

References

1. Abouei Mehrizi, M., Corò, F., Cruciani, E., D’Angelo, G.: Election control through
social influence with voters’ uncertainty. J. Comb. Optim. 44(1), 635–669 (2022)

2. Auletta, V., Caragiannis, I., Ferraioli, D., Galdi, C., Persiano, G.: Minority becomes
majority in social networks. In: Markakis, E., Schäfer, G. (eds.) WINE 2015. LNCS,
vol. 9470, pp. 74–88. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-
662-48995-6 6

3. Auletta, V., Caragiannis, I., Ferraioli, D., Galdi, C., Persiano, G.: Information
retention in heterogeneous majority dynamics. In: Devanur, N.R., Lu, P. (eds.)
WINE 2017. LNCS, vol. 10660, pp. 30–43. Springer, Cham (2017). https://doi.
org/10.1007/978-3-319-71924-5 3

4. Auletta, V., Caragiannis, I., Ferraioli, D., Galdi, C., Persiano, G.: Robustness in
discrete preference games. In: AAMAS, pp. 1314–1322 (2017)

5. Auletta, V., Ferraioli, D., Fionda, V., Greco, G.: Maximizing the spread of an
opinion when Tertium Datur Est. In: AAMAS, pp. 1207–1215 (2019)

6. Auletta, V., Ferraioli, D., Greco, G.: Reasoning about consensus when opinions
diffuse through majority dynamics. In: IJCAI, pp. 49–55 (2018)

7. Auletta, V., Ferraioli, D., Greco, G.: On the effectiveness of social proof recom-
mendations in markets with multiple products. In: ECAI, pp. 19–26 (2020)

8. Bartholdi, J.J., Tovey, C.A., Trick, M.A.: The computational difficulty of manip-
ulating an election. Soc. Choice Welfare 6, 227–241 (1989)

9. Bartholdi III, J.J., Orlin, J.B.: Single transferable vote resists strategic voting. Soc.
Choice Welfare 8(4), 341–354 (1991)

10. Bartholdi III, J.J., Tovey, C.A., Trick, M.A.: How hard is it to control an election?
Math. Comput. Model. 16(8–9), 27–40 (1992)

11. Bredereck, R., Elkind, E.: Manipulating opinion diffusion in social networks.
In: Proceedings of the International Joint Conference on Artificial Intelligence
(IJCAI), pp. 894–900 (2017)

12. Bruno, M., Lambiotte, R., Saracco, F.: Brexit and bots: characterizing the
behaviour of automated accounts on twitter during the UK election. EPJ Data
Sci. 11(1), 17 (2022)

13. Castiglioni, M., Ferraioli, D., Gatti, N., Landriani, G.: Election manipulation on
social networks: seeding, edge removal, edge addition. J. Artif. Intell. Res. 71,
1049–1090 (2021)

14. Corò, F., Cruciani, E., D’Angelo, G., Ponziani, S.: Exploiting social influence to
control elections based on positional scoring rules. Inf. Comput. 289, 104940 (2022)

15. Desilver, D.: US trails most developed countries in voter turnout. Pew Res. Cent.
21 (2018)

16. Downs, A.: An economic theory of political action in a democracy. J. Polit. Econ.
65(2), 135–150 (1957)

17. Easley, D., Kleinberg, J.: Networks, Crowds, and Markets: Reasoning About a
Highly Connected World. Cambridge University Press, Cambridge (2010)

18. Faliszewski, P., Hemaspaandra, E., Hemaspaandra, L.A.: How hard is bribery in
elections? J. Artif. Intell. Res. 35, 485–532 (2009)

19. Feddersen, T., Sandroni, A.: A theory of participation in elections. Am. Econ. Rev.
96(4), 1271–1282 (2006)

20. Feddersen, T.J., Pesendorfer, W.: Abstention in elections with asymmetric infor-
mation and diverse preferences. Am. Polit. Sci. Rev. 93(2), 381–398 (1999)

https://doi.org/10.1007/978-3-662-48995-6_6
https://doi.org/10.1007/978-3-662-48995-6_6
https://doi.org/10.1007/978-3-319-71924-5_3
https://doi.org/10.1007/978-3-319-71924-5_3

444 V. Auletta et al.

21. Ferejohn, J.A., Fiorina, M.P.: The paradox of not voting: a decision theoretic anal-
ysis. Am. Polit. Sci. Rev. 68(2), 525–536 (1974)

22. Ferrara, E.: Disinformation and social bot operations in the run up to the 2017
French presidential election. First Monday 22(8) (2017)

23. Giglietto, F., et al.: Mapping Italian news media political coverage in the lead-up
to 2018 general election. Available at SSRN 31799300 (2018)

24. Green, J., Issenberg, S.: Inside the trump bunker, with days to go. BusinessWeek
(2016)

25. Guage, C., Fu, F.: Asymmetric partisan voter turnout games. Dyn. Games Appl.
11(4), 738–758 (2021)

26. Guimera, R., Danon, L., Diaz-Guilera, A., Giralt, F., Arenas, A.: Self-similar com-
munity structure in a network of human interactions. Phys. Rev. E 68(6), 065103
(2003)

27. Kempe, D., Kleinberg, J., Tardos, É.: Maximizing the spread of influence through
a social network. In: KDD, pp. 137–146 (2003)

28. Kunegis, J.: KONECT: the Koblenz network collection. In: Proceedings of the 22nd
International Conference on World Wide Web, pp. 1343–1350 (2013)

29. Ledyard, J.O.: The pure theory of large two-candidate elections. Public Choice
44(1), 7–41 (1984)

30. Leskovec, J., Kleinberg, J., Faloutsos, C.: Graph evolution: densification and
shrinking diameters. ACM Trans. Knowl. Discov. Data (TKDD) 1(1), 2-es (2007)

31. Leskovec, J., Krevl, A.: SNAP datasets: Stanford large network dataset collection
(2014). www.snap.stanford.edu/data

32. Matsusaka, J.G.: Explaining voter turnout patterns: an information theory. Public
Choice 84(1–2), 91–117 (1995)

33. Palfrey, T.R., Rosenthal, H.: A strategic calculus of voting. Public Choice 41(1),
7–53 (1983)

34. Riker, W.H., Ordeshook, P.C.: A theory of the calculus of voting. Am. Polit. Sci.
Rev. 62(1), 25–42 (1968)

35. Sieg, G., Schulz, C.: Evolutionary dynamics in the voting game. Public Choice
85(1–2), 157–172 (1995)

36. Sina, S., Hazon, N., Hassidim, A., Kraus, S.: Adapting the social network to affect
elections. In: AAMAS, pp. 705–713 (2015)

37. Šubelj, L., Bajec, M.: Robust network community detection using balanced prop-
agation. Eur. Phys. J. B 81, 353–362 (2011)

38. Wilder, B., Vorobeychik, Y.: Controlling elections through social influence. In:
AAMAS, pp. 265–273 (2018)

39. Yin, H., Benson, A.R., Leskovec, J., Gleich, D.F.: Local higher-order graph clus-
tering. In: Proceedings of the 23rd ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, pp. 555–564 (2017)

www.snap.stanford.edu/data

Supporting Adaptive Multi-Agent
Systems with Digital Twins Environments

Samuele Burattini(B)

Alma Mater Studiorum - University of Bologna, Via dell’Università 50,
47522 Cesena, FC, Italy

samuele.burattini@unibo.it

Abstract. Adaptability is an essential feature of autonomous agents,
especially when considering the interaction with the real world which is,
by definition, dynamic and unpredictable. To support adaptation in real-
world scenarios self-describing Digital Twins with simulation and predic-
tion abilities could be exploited to build the environment of a multi-agent
system. A roadmap is presented, reflecting on the role of the environment
in the development of multi-agent systems, its potential integration with
Digital Twins and suggesting the need for a generalised model for adap-
tive agents that could leverage the features offered by such Digital Twins
environment.

Keywords: Adaptability · Digital Twins · Multi-Agent Systems

1 Introduction

Agents are defined as software entities situated in an environment that they
can perceive and autonomously act upon to achieve their design objectives [26].
Autonomy is often further linked to the ability of an agent to adapt either to
changes in the environment or to improve its behaviour over time [13].

Adaptability is then a fundamental and defining feature of agents although
often hard to obtain (and measure) practically. Fully adaptable agents may even
end up displaying undesired behaviour, especially when considering the emergent
behaviour of a Multi-Agent System (MAS) [7] and the combination of adapting
and predefined constrained behaviour is still an open issue.

Adaptive agents are especially relevant when employed in scenarios where
the dynamics of the environments are not stable. This is the case of cyber-
physical systems, where software agents need to interact with the real world
which intrinsically exhibits a high degree of unpredictability. The use of agents
in industry has always been of interest to support automation scenarios [11]
but is yet to deliver the full potential due to the strict requirements of such
settings [3,12] and the complexity of the interaction of agents and the real world.

In the past few years, Digital Twins (DTs) emerged from the manufacturing
domain as modelling tools to represent physical assets with the highest possible

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
V. Malvone and A. Murano (Eds.): EUMAS 2023, LNAI 14282, pp. 445–451, 2023.
https://doi.org/10.1007/978-3-031-43264-4_30

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-43264-4_30&domain=pdf
http://orcid.org/0009-0009-4853-7783
https://doi.org/10.1007/978-3-031-43264-4_30

446 S. Burattini

fidelity [6], enabling bidirectional communication between the real and digital
worlds. The concept is rapidly spreading over different domains and applica-
tions and has been further extended to give the DT the ability to augment the
capabilities of an asset for example by making predictions about its behaviour.

In this context, following the principle that the environment can be used as
a first-class abstraction to program Multi-Agent Systems (MAS) [25], Digital
Twins could be used to model such environment, providing a bridge for MAS to
operate in the real world. From a MAS perspective, DTs could encapsulate the
technical details that concern communication with sensors and actuators, provide
a detailed and up-to-date description of the state and capabilities of an asset,
and explicitly support exploration and reasoning through simulated or predictive
outcomes of agent-twin interactions. The development of DTs environments for
multi-agent systems calls for conceptual and technological integration but also
for a new way to intend adaptability not only as an internal ability of the agents
but as driven by the features offered by the environment.

This contribution aims to provide an overview of the background this research
is based on, highlight the first steps that are being developed towards the integra-
tion of MAS and DTs and lay out the open research issues that will be explored
in future works.

2 Background

This work has its roots in the literature about the role of the environment in
MAS and the development of Digital Twins as a modelling tool for physical
assets that enable bidirectional communication between software applications
and the real world.

2.1 The Role of the Environment in Multi-Agent Systems

Every agent definition mentions an environment in which the agent is placed.
The role of such an environment is then of fundamental interest in MAS research.
Specifically, the environment can offer three different levels of support to the
development of multi-agent systems: (i) at a basic level it can be seen as the
deployment context, (ii) at an abstraction level it can be used to shield agents
from technical details, (iii) at an interaction-mediation level it can be used to
regulate access to shared resources and mediate interaction among agents [25].

The Agents & Artifacts (A&A) meta-model [22] introduces the notion of soft-
ware artifact as the basic building block to shape the environment and represent
resources and tools that agent can modify, share and interact with.

Artifacts have a unique identity, a type, and are described by a set of observ-
able properties that agents can perceive, operations that agents can exploit to
perform actions and events that can signal changes. Artifacts are also logically
grouped in workspaces that define the topology of the environment.

From an engineering point of view artifacts model function-oriented compo-
nents that can be exploited by goal-oriented ones. From a designing point of view,
being inspired by theories of human behaviour (such as Activity Theory [21,24]

Supporting Adaptive Multi-Agent Systems with Digital Twins Environments 447

and Distributed Cognition [9]) artifacts have the additional role of supporting
information discovery and exchange to support agent activities [18]. The envi-
ronment design is then crucial to allow agents to effectively explore it, adapt to
its current state and find means to reach their goals and is now considered a
cardinal dimension of Multi-Agent Oriented Programming [1].

2.2 Digital Twins

The idea of Digital Twins has been introduced around twenty years ago in the
field of manufacturing [6] and expanded to several domains with the introduction
of Internet of Things (IoT) technologies, and the movement of Industry 4.0 [16].
In its more recent interpretation, the valuable abstraction of a DT can be applied
to several assets, not only machines or products monitored by sensors, but also
people or processes that are relevant to a specific domain [10].

At its core, the idea is to create a virtual representation of any physical asset
and keep it synchronised with its real counterpart. The Digital Twin should allow
to interact with the physical asset as if it was the asset itself as well as augment
it with additional features and functionalities. Although there is not a unified
architecture for Digital Twins, a generally accepted view is a five-dimensional
model [23] that includes:

1. a physical layer that is related to a unique asset in the real world possibly
observed by sensors and equipped with actuators,

2. a connection layer supporting the data exchange through networking,
3. a data layer for processing and storage of the DT data,
4. a model layer that represents the behaviour of the asset,
5. a service layer that exposes the information collected from the DT to exter-

nal applications as well offering additional services such as prediction and
simulation services.

Implementing this layered architecture requires deep knowledge of several
supporting technologies, from the IoT and network stack related to the physical
side of the twin to the machine learning or modelling techniques required to
create the model layer of the DT and the data processing techniques that make
it possible to keep it up to date and store historical information.

From an agent perspective, the service layer though is the most interesting
because it shields the agent from the technical details and allows it to interact
with the DT, discover its current state as its potential future ones.

3 Building Digital Twins Environments

Several works analyse the relationship between Multi-Agent Systems and Digital
Twins [14,16,20]. Different approaches view agents either as part of the Digital
Twin itself, to model its behaviour, or as an external application layer.

This work follows the latter perspective, to isolate responsibilities between
MAS and the DTs. Specifically, the DTs can be considered general-purpose rep-
resentations of physical entities that can be used in several applications. The

448 S. Burattini

MAS will implement instead the business logic to manage the DTs and achieve
application goals in the considered domain.

This separation of concerns is especially relevant when considering modelling
a complex application domain using several Digital Twins as suggested by the
idea of a Web of Digital Twins (WoDT) [20]. The proposal is to build an ecosys-
tem of Digital Twins capable of describing themselves in terms of their cur-
rent properties, available actions and events as well as relationships with other
DTs. These linked self-describing DTs can populate a (distributed) Knowledge
Graph [8] with near-real-time data about the corresponding physical assets.

From an agent perspective, the Knowledge Graph that is generated by the
WoDT can be seen as a hypermedia environment [4] where agents can interact
using standard Web technologies, furthermore, exploiting a semantic represen-
tation of the environment could also benefit the level of abstraction used when
programming the MAS behaviour [2].

Building Digital Twins environments for MAS along this vision requires effort
in three parallel directions

– WoDT Infrastructure Support : an infrastructure is required to actively start
developing networks of linked Digital Twins capable of providing a semantic
description of their features. This is being worked on in the form of a software
library to create Digital Twins that follow the five dimensional model and
expose a semantic description of their features [19] as well as a platform to
deploy them and enable discovery from external applications.

– DTs in MAS environment : investigating bridges between MAS and DTs
through the environment dimension is necessary both on a conceptual and
technical level. There are different possibilities to achieve this [14] and some
are starting to be developed in the MAS community [15] although this still
needs to sediment towards a universally accepted approach.

– MAS and the Web: when considering the complexity of the Web of Digital
Twins, the integration of DTs in MAS environments needs to take in account
the distributed nature of the environment and the use of standard web tech-
nologies. Studying how agents interact with the Web is an active development
line [5] that can yield interesting results for the research on DTs as well.

4 Future Works

Once the conceptual and technical integration between MAS and the Web of
Digital Twins has been achieved, many open challenges still remain to effectively
leverage DTs environments. Given the context of cyber-physical systems where
both DTs and MAS can be applied, adaptability to changes in the environment
is a key feature to be investigated and build more robust industrial MAS. To
understand how DTs environments could support this process in this section the
two challenges that are more relevant to develop adaptive multi-agent systems
in DTs environment are highlighted: the first one, more on the agent side, is
to understand what does it mean to build an adaptive MAS and what are the
requirements to support adaptability in general, the second one, on the DTs
side, is to understand how to offer support for those requirements.

Supporting Adaptive Multi-Agent Systems with Digital Twins Environments 449

4.1 Towards a Generalised Model for Adaptive MAS

Although adaptability is considered amongst the defining features of a software
agent, there are several different models of agents and several techniques have
been applied to solve the problem of adapting agent behaviour to either unpre-
dictable changes or to learn entirely new behaviours.

To investigate how the environment design can play a role in supporting
adaptation, a generalised model of adaptive MAS could be defined. This can be
crucial in understanding what are the key elements that needs to be available
for the agent to be more robust to changes and identify requirements for the
design of the environment in order to support adaptation.

In particular, the focus will be on generalising those kinds of MAS where the
behaviour is (at least partially) defined, but requires to either cope with changes
or discover better means to achieve goals. This effectively excludes agent systems
that are only based on learning that tackle the problem of adaptation with a
very different perspective and do not include the design of the environment as
first-class abstraction. Such systems are indeed useful for several domains where
it’s infeasible to define a policy beforehand. Instead, in the context of Multi-
Agent Oriented Programming it is more often the case in which a predefined
policy is imposed by the business logic of the application but the system is still
desired to be robust and resilient towards changes over time.

4.2 Exploiting Digital Twins Capabilities for Adaptation

While exploring the general relationship between adaptation and the environ-
ment, Digital Twins models and technologies can be refined in order to exhibit
those capabilities that are considered essential to support adaptation.

Among the ones that are already part of the original concept of a Digital
Twin, it will be relevant to understand how to create self-describing DTs that
expose a knowledge-level [17] representation of their state and capabilities so
that agents can reason upon them. This DT description may need to be aligned
with semantic vocabularies that the agents can understand as well as possibly
be delivered to different agents with different capabilities or goals using different
representation formats. Furthermore, the data required by agents to perform
their reasoning may include features of the Digital Twin itself, such as the fidelity
of an information that is reported from the physical asset.

Finally modelling the simulation and prediction capabilities of a DT to expose
them as a service for agents to safely explore the environment and its dynamics
is an interesting challenge, especially when involving multiple DTs connected in
a complex and open ecosystem such as the Web of Digital Twins. For example
an agents may need to understand whether acting on a DT will result in its goal
achievement without having undesired side effects on other linked DTs. This
would require to assemble some form of simulation scenario or virtual environ-
ment the agent could safely explore before acting on the “real” DTs.

450 S. Burattini

References

1. Boissier, O., Bordini, R., Hubner, J., Ricci, A.: Multi-Agent Oriented Program-
ming: Programming Multi-Agent Systems Using JaCaMo. Intelligent Robotics
and Autonomous Agents series, MIT Press (2020). www.books.google.it/books?
id=GM tDwAAQBAJ

2. Burattini, S., Ciortea, A., Meshua, G., Ricci, A.: Agents & artifacts at the knowl-
edge level. In: Engineering Multi-Agent Systems, 11th International Workshop
(2023). www.emas.in.tu-clausthal.de/2023/papers/EMAS 2023 paper 3263.pdf

3. Calvaresi, D., Marinoni, M., Sturm, A., Schumacher, M., Buttazzo, G.: The chal-
lenge of real-time multi-agent systems for enabling IoT and CPS. In: Proceedings
of the International Conference on Web Intelligence, pp. 356–364 (2017)

4. Ciortea, A., Boissier, O., Ricci, A.: Engineering world-wide multi-agent systems
with hypermedia. In: Weyns, D., Mascardi, V., Ricci, A. (eds.) EMAS 2018. LNCS
(LNAI), vol. 11375, pp. 285–301. Springer, Cham (2019). https://doi.org/10.1007/
978-3-030-25693-7 15

5. Ciortea, A., Mayer, S., Gandon, F., Boissier, O., Ricci, A., Zimmermann, A.: A
decade in hindsight: the missing bridge between multi-agent systems and the world
wide web. In: Proceedings of the International Conference on Autonomous Agents
and Multiagent Systems (2019)

6. Grieves, M., Vickers, J.: Digital twin: mitigating unpredictable, undesirable emer-
gent behavior in complex systems. In: Kahlen, F.-J., Flumerfelt, S., Alves, A. (eds.)
Transdisciplinary Perspectives on Complex Systems, pp. 85–113. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-38756-7 4

7. Guessoum, Z.: Adaptive agents and multiagent systems. IEEE Distrib. Syst. Online
5(7) (2004). https://doi.org/10.1109/MDSO.2004.10

8. Hogan, A., et al.: Knowledge graphs. ACM Comput. Surv. (CSUR) 54(4), 1–37
(2021)

9. Hutchins, E.: Distributed cognition. Int. Encycl. Soc. Behav. Sci. Elsevier Sci. 138,
1–10 (2000)

10. Jones, D., Snider, C., Nassehi, A., Yon, J., Hicks, B.: Characterising the digital
twin: a systematic literature review. CIRP J. Manuf. Sci. Technol. 29, 36–52 (2020)

11. Karnouskos, S., Leitao, P.: Key contributing factors to the acceptance of agents in
industrial environments. IEEE Trans. Ind. Inf. 13(2), 696–703 (2016)

12. Leitão, P., Mař́ık, V., Vrba, P.: Past, present, and future of industrial agent appli-
cations. IEEE Trans. Ind. Inf. 9(4), 2360–2372 (2012)

13. Maes, P.: Modeling adaptive autonomous agents. Artif. Life 1(1 2), 135–162 (1993)
14. Mariani, S., Picone, M., Ricci, A.: Agents and digital twins for the engineering of

cyber-physical systems: opportunities, and challenges. In: Engineering Multi-Agent
Systems, 10th International Workshop (2022). www.emas.in.tu-clausthal.de/2022/
papers/paper7.pdf

15. Mariani, S., Picone, M., Ricci, A.: Towards developing digital twin enabled multi-
agent systems. In: Engineering Multi-Agent Systems, 11th International Workshop
(2023). www.emas.in.tu-clausthal.de/2023/papers/EMAS 2023 paper 9236.pdf

16. Minerva, R., Lee, G.M., Crespi, N.: Digital twin in the IoT context: a survey on
technical features, scenarios, and architectural models. Proc. IEEE 108(10), 1785–
1824 (2020)

17. Newell, A.: The knowledge level. Artif. Intell. 18(1), 87–127 (1982)
18. Omicini, A., Ricci, A., Viroli, M.: Artifacts in the A&A meta-model for multi-agent

systems. Auton. Agents Multi-Agent Syst. 17(3), 432–456 (2008). https://doi.org/
10.1007/s10458-008-9053-x

www.books.google.it/books?id=GM_tDwAAQBAJ
www.books.google.it/books?id=GM_tDwAAQBAJ
www.emas.in.tu-clausthal.de/2023/papers/EMAS_2023_paper_3263.pdf
https://doi.org/10.1007/978-3-030-25693-7_15
https://doi.org/10.1007/978-3-030-25693-7_15
https://doi.org/10.1007/978-3-319-38756-7_4
https://doi.org/10.1109/MDSO.2004.10
www.emas.in.tu-clausthal.de/2022/papers/paper7.pdf
www.emas.in.tu-clausthal.de/2022/papers/paper7.pdf
www.emas.in.tu-clausthal.de/2023/papers/EMAS_2023_paper_9236.pdf
https://doi.org/10.1007/s10458-008-9053-x
https://doi.org/10.1007/s10458-008-9053-x

Supporting Adaptive Multi-Agent Systems with Digital Twins Environments 451

19. Picone, M., Mamei, M., Zambonelli, F.: Wldt: a general purpose library to build
IoT digital twins. SoftwareX 13, 100661 (2021)

20. Ricci, A., Croatti, A., Mariani, S., Montagna, S., Picone, M.: Web of digital twins.
ACM Trans. Internet Technol. 22(4) (2022). https://doi.org/10.1145/3507909

21. Ricci, A., Omicini, A., Denti, E.: Activity theory as a framework for MAS coor-
dination. In: Petta, P., Tolksdorf, R., Zambonelli, F. (eds.) ESAW 2002. LNCS
(LNAI), vol. 2577, pp. 96–110. Springer, Heidelberg (2003). https://doi.org/10.
1007/3-540-39173-8 8

22. Ricci, A., Piunti, M., Viroli, M.: Environment programming in multi-agent systems:
an artifact-based perspective. Auton. Agents Multi-Agent Syst. 23(2), 158–192
(2011). https://doi.org/10.1007/s10458-010-9140-7

23. Tao, F., et al.: Five-dimension digital twin model and its ten applications. Comput.
Integr. Manuf. Syst. 25(1), 1–18 (2019)

24. Vygotsky, L.S., Cole, M.: Mind in society: Development of higher psychological
processes. Harvard University Press (1978)

25. Weyns, D., Omicini, A., Odell, J.: Environment as a first class abstraction in mul-
tiagent systems. Auton. Agents Multi-Agent Syst. 14(1), 5–30 (2007). https://doi.
org/10.1007/s10458-006-0012-0

26. Wooldridge, M., Jennings, N.R.: Intelligent agents: theory and practice. knowl.
Eng. Rev. 10(2), 115–152 (1995)

https://doi.org/10.1145/3507909
https://doi.org/10.1007/3-540-39173-8_8
https://doi.org/10.1007/3-540-39173-8_8
https://doi.org/10.1007/s10458-010-9140-7
https://doi.org/10.1007/s10458-006-0012-0
https://doi.org/10.1007/s10458-006-0012-0

A Step Forward to Widespread BDI AOP:
JaKtA

Martina Baiardi(B)

Department of Computer Science and Engineering (DISI), Alma Mater
Studiorum—Univerisità di Bologna, Via dell’Università 50, 47522 Cesena, FC, Italy

m.baiardi@unibo.it
https://www.unibo.it/sitoweb/m.baiardi/en

Keywords: BDI · AgentSpeak(L) · DSL · Kotlin · JaKtA

1 AOP and the Mainstream

The Agent-Oriented Programming (AOP) is a paradigm introduced thirty years
ago [6] to model autonomous entities with a mental state: agents. Agents are a
form of abstraction used to model complex systems: they are designed to perform
tasks and interact with each other. Each agent has an explicit representation of
the world that depends on the environment in which are situated and they delib-
erate about the best course of action to take to achieve their goals. The typical
approach to model the agents’ mental state, and consequently their behaviour,
is through symbolic techniques; one notable example is the BDI model [5], which
exploits logics to describe agents with three elements: Beliefs, Desires, and Inten-
tions. Beliefs describe the agent’s internal state and keep track of changes that
occur in the environment in which they act. Desires represent the motivational
state of the system, in other words, they are the primary goal that the system
wants to achieve. Each agent is designed with a set of plans, each one composed
of a set of actions, chosen to concur to the achievement of their goals. An agent
chooses a plan depending on the belief set they hold on their mental state. Agents
can execute more than one plan at a time: Intentions represent the plans chosen
by an agent, and they also keep track of their progress.

Today, several languages that support AOP can be found [2] and, specifically
for BDI, common choices are Jason [1], Jadex [4] and Goal [3]. However, despite
having been available for several years, no BDI/AOP programming language
shows up in commonly used programming languages’ popularity indexes such
TIOBE1, PYPL2 (PopularitY of Programming Language) and Stackoverflow
Developer Survey3.

In this short paper, we try to identify some potential factors hindering the
diffusion of the BDI/AOP paradigm and propose a potential improvement path.

1 https://archive.is/C316B.
2 https://archive.ph/4VakY.
3 https://archive.is/LTfhl.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
V. Malvone and A. Murano (Eds.): EUMAS 2023, LNAI 14282, pp. 452–457, 2023.
https://doi.org/10.1007/978-3-031-43264-4_31

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-43264-4_31&domain=pdf
http://orcid.org/0009-0001-0799-9166
https://archive.is/C316B
https://archive.ph/4VakY
https://archive.is/LTfhl
https://doi.org/10.1007/978-3-031-43264-4_31

A Step Forward to Widespread BDI AOP: JaKtA 453

2 The Missing Pieces

In this section, We highlight some of the reasons that we believe are preventing
the spreading of the BDI/AOP paradigm.

2.1 Learning Curve vs. Ergonomics

Currently, there are many AOP technologies, typically found in the form
of stand-alone languages or libraries. Custom languages (Fig. 1) have great
ergonomics, because they are conceived to model the BDI paradigm’s entities,
but, compared to libraries, they generally have a steeper learning curve, as users
need to learn and adapt to a new custom syntax and software ecosystem. The
result is a barrier that prevents developers to understand how to model agents,
even if the problem they need to solve is suitable to be resolved by exploiting
AOP. On the other hand, the adoption of a library leads to a gentler learning
curve as it inherits the syntax and ecosystem of a mainstream language, but at
the price of a much worse ergonomy: a general-purpose language syntax does
not usually capture BDI/AOP abstractions as first-level entities, and, in turn,
this leads to lower clarity, code cleanliness, and maintainability.

We believe that there is a need for BDI/AOP technologies that strike a
balance between ergonomics and ease of adoption, one example is the definition
of internal Domain-Specific Languages (DSLs). Such technologies would offer a
custom syntax while leveraging the existing ecosystem and syntax familiarity of
a mainstream language.

2.2 Tooling

Tooling is a major factor in a programming language’s success. Developers are
more likely to adopt a technology that allows them to leverage well-known
development tools (IDEs, code suggestions, syntax highlighters, linters...) and
rich ecosystems of libraries. Tools are so important to practitioners that some
believe the tooling built around a programming language to be even more impor-
tant than the language itself4. However, these features are tough to find in AOP
custom languages: each one needs the custom implementation of tools that sup-
port developers and, moreover, someone has to maintain them, which is a time-
valuable task for researchers.

We believe that having access to robust tooling is crucial for developers work-
ing with AOP. By leveraging mainstream programming languages, BDI/AOP
libraries inherit the vast array of existing development tools and ecosystems.
This approach not only eliminates the need for custom tooling development but
also ensures ongoing support and maintenance from a wider community. As a
result, developers can leverage efficient and effective tools while enjoying the
benefits of the BDI/AOP paradigm, fostering wider adoption and empowering
to harness the full potential of these programming approaches (Fig. 1).
4 https://archive.is/kXi9M.

https://archive.is/kXi9M

454 M. Baiardi

2.3 Middleware/Runtime Requirements

The majority of BDI/AOP languages rely on specific runtimes, such as the Java
Virtual Machine (JVM) or the Python interpreter. This solution, however, is
not always applicable, because BDI/AOP systems may be designed to execute
on heterogeneous architectures and with specific constraints impeding the use
of the required runtime. For instance, a web application would require agents to
be executed within a browser, while a wearable-oriented application may require
agents to run with constrained resources (making, e.g., unfeasible the use of a
JVM).

BDI/AOP technologies should provide seamless compatibility across diverse
platforms and architectures, ensuring that systems can be implemented and
executed effortlessly, regardless of the specific runtime or constraints of the target
device. Achieving this goal would empower developers to embrace the BDI/AOP
paradigm without being limited by the availability of specific runtimes, thereby
promoting the adoption and widespread use of this paradigm across various
domains and architectures.

2.4 Concurrency Model

Often, current BDI/AOP languages offer limited configuration options regarding
concurrency. Ideally, developers should be able to write their BDI/AOP code
regardless of the underlying concurrency model, which should be pluggable. In
most cases, instead, agent description languages are strictly coupled with their
execution model, and the developer must adapt to it. Concurrency types should
support at least sequential execution, parallel execution, or simulated time:

– Sequential execution is valuable for scenarios that prioritize better debug-
ging capabilities or devices with limited resources: being able to execute
agents sequentially allows for easier traceability and debugging of the agent’s
behaviour, simplifying the identification and resolution of potential issues.
Additionally, resource-constrained devices can benefit from sequential execu-
tion to optimize resource utilization and improve overall performance.

– Parallel execution, on the other hand, is essential for scenarios where high per-
formance and parallelism are crucial. By enabling the system to execute con-
currently, agents can leverage the available hardware resources and improve
overall system efficiency.

– Simulated time execution is particularly useful for testing and simulation pur-
poses. It allows developers to control and manipulate time, facilitating the
simulation of complex scenarios and enabling the testing of agent behaviours
under various conditions. Simulated time execution provides a controlled envi-
ronment for experimentation, ensuring that agents perform as expected in
different time-dependent situations.

A Step Forward to Widespread BDI AOP: JaKtA 455

Fig. 1. Comparisons between different BDI/AOP technologies types.

3 The JaKtA Approach

To address these missing pieces, we propose JaKtA, a BDI framework for Multi-
Agent Systems (MASs) hosted in Kotlin language, and already available as an
experimental tool with a permissive open source license5. The main purpose
of the framework is to reduce developers’ barriers to learning the BDI/AOP
paradigm by:

1. Providing access to BDI/AOP abstractions to a large (and expanding) com-
munity of developers already acquainted with a mainstream language syntax,
for whom the learning curve will be gentle;

2. Offering an ergonomy akin to the one of a dedicated programming language
by leveraging advanced Kotlin features. Kotlin, in fact, directly supports the
creation of internal DSLs. DSLs are specifically designed to assist developers
during the creation of complex domain entities;

3. Inheriting the whole existing, rich, and actively maintained tooling of Kotlin;
4. Running on multiple runtimes via multiplatform compilation using a single

and shared code base;
5. Decoupling BDI entities’ definition from their execution. In this way, the same

system description could be transparently executed single-threaded, multi-
threaded, with simulated time, or even with a custom combination of them.

Currently, JaKtA provides evidence that the first three points can indeed
be achieved: gentler learning curve, ergonomics, and tooling. Kotlin has been
chosen as the host language because of its expanding community, as results from
languages popularity indexes, and being Kotlin the reference language for the
Android mobile platform since 20196. We believe that providing rich BDI/AOP

5 https://github.com/jakta-bdi/jakta.
6 https://archive.is/1IplY.

https://github.com/jakta-bdi/jakta
https://archive.is/1IplY

456 M. Baiardi

support for a language whose popularity will likely continue to grow in the
foreseeable future is a good opportunity to allow more developers access to the
paradigm. Moreover, the direct support to DSLs offered by Kotlin allows us
to provide a syntax that is very close to the one of a custom language, while
still being a mainstream language, and consequently, exploit all the language
features, including syntax, libraries and tooling.

The JaKtA architecture is specifically designed to be modular, this means
that the DSL definition is completely decoupled from the entities model: devel-
opers can easily customize and extend the DSL definition, without compromising
domain entities’ behaviour.

4 The Future Directions

As future research directions, we will focus on two main features to include in
JaKtA: (i) the Kotlin Multiplatform support, and (ii) the implementation of
the library’s concurrency management.

Fig. 2. JaKtA’s future multi-target approach leveraging Kotlin multiplatform.

The multiplatform adoption will enable the framework to compile for sev-
eral platforms, including native, JVM, and web applications (Fig. 2) and, conse-
quently, to be executed on heterogeneous architectures. The concurrency model
management, instead, will enable users to define a MASs without considering
the underlying concurrency model, and then choosing separately how to execute
the system.

References

1. Bordini, R.H., Hübner, J.F.: BDI agent programming in agentspeak using Jason.
In: Toni, F., Torroni, P. (eds.) CLIMA 2005. LNCS (LNAI), vol. 3900, pp. 143–164.
Springer, Heidelberg (2006). https://doi.org/10.1007/11750734_9

2. Calegari, R., Ciatto, G., Mascardi, V., Omicini, A.: Logic-based technologies for
multi-agent systems: summary of a systematic literature review. In: Dignum, F.,
Lomuscio, A., Endriss, U., Nowé, A. (eds.) 20th International Conference on
Autonomous Agents and Multiagent Systems, Virtual Event, AAMAS 2021,United
Kingdom, 3–7 May 2021, pp. 1721–1723. ACM (2021). https://doi.org/10.5555/
3463952.3464214

https://doi.org/10.1007/11750734_9
https://doi.org/10.5555/3463952.3464214
https://doi.org/10.5555/3463952.3464214

A Step Forward to Widespread BDI AOP: JaKtA 457

3. Hindriks, K.V.: Programming rational agents in GOAL. In: El Fallah Seghrouchni,
A., Dix, J., Dastani, M., Bordini, R.H. (eds.) Multi-Agent Programming, pp. 119–
157. Springer, Boston, MA (2009). https://doi.org/10.1007/978-0-387-89299-3_4

4. Pokahr, A., Braubach, L., Lamersdorf, W.: Jadex: a BDI reasoning engine. In: Bor-
dini, R.H., Dastani, M., Dix, J., El Fallah Seghrouchni, A. (eds.) Multi-Agent Pro-
gramming. MSASSO, vol. 15, pp. 149–174. Springer, Boston, MA (2005). https://
doi.org/10.1007/0-387-26350-0_6

5. Rao, A.S., Georgeff, M.P.: Modeling rational agents within a BDI-architecture. In:
Allen, J.F., Fikes, R., Sandewall, E. (eds.) Proceedings of the 2nd International
Conference on Principles of Knowledge Representation and Reasoning (KR 1991),
Cambridge, MA, USA, 22–25 April 1991, pp. 473–484. Morgan Kaufmann (1991)

6. Shoham, Y.: Agent-oriented programming. Artif. Intell. 60(1), 51–92 (1993).
https://doi.org/10.1016/0004-3702(93)90034-9

https://doi.org/10.1007/978-0-387-89299-3_4
https://doi.org/10.1007/0-387-26350-0_6
https://doi.org/10.1007/0-387-26350-0_6
https://doi.org/10.1016/0004-3702(93)90034-9

A Brief Overview of an Approach Towards
Ethical Decision-Making

Mashal Afzal Memon(B)

Università degli Studi dell’Aquila, L’Aquila, Italy
mashalafzal.memon@graduate.univaq.it

Abstract. Ethics in decision-making reflects traits such as trans-
parency, equity, and trust. However, when considering ethics in the
decision-making process of autonomous agents, the significant challenge
is how autonomous agents should interact to reach an agreement, know-
ing that their ethical preferences may differ. On that account, this study
explores two fields to propose an approach to ethical decision-making:
automated negotiation, the field concerning interaction among multiple
agents to reach an agreement, and machine ethics, the field concerned
with adding or ensuring moral behaviors from agents. Although agents
can negotiate and decide on a solution automatically, whether they can
propose an ethically correct decision is still a subject matter. To this end,
this study proposes the concept of introducing ethics in the decision-
making process of intelligent agents for ethical decision-making. In par-
ticular, we propose a research framework that addresses how user ethical
preferences can be converted into quantifiable measures and further used
by autonomous agents during negotiation for ethical decision-making.

Keywords: Adaptation and Learning · Automated negotiation ·
Ethical behavior of multi-agent systems

1 Introduction

Artificial intelligence has played an essential role in the development of future
generation of intelligent agents capable of autonomous decision making [11,30].
Although the next generation of intelligent agents promises many advantages,
their increased degree of freedom raises concerns about their moral behavior
during decision-making [4]. Since the early 2000s, Picard emphasized the need
for embedding morality into autonomous machines: “the greater the freedom of a
machine, the more it will need moral standards” [28]. Consequently, the develop-
ment of autonomous systems that can ensure the morality of their behavior has
attracted the interest of the research community, leading to the birth of the field
of “Machine ethics” [16]. When considering ethics in the decision-making pro-
cess, a significant challenge is how autonomous agents should interact in order to
reach a situational agreement, knowing that their ethical preferences may differ
in general.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
V. Malvone and A. Murano (Eds.): EUMAS 2023, LNAI 14282, pp. 458–464, 2023.
https://doi.org/10.1007/978-3-031-43264-4_32

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-43264-4_32&domain=pdf
http://orcid.org/0000-0003-3556-9144
https://doi.org/10.1007/978-3-031-43264-4_32

A Brief Overview of an Approach Towards Ethical Decision-Making 459

Negotiation is a process between multiple agents in which a decision is made
jointly by communication, i.e., through exchange of dialogues, bids, and offers
to reach an agreement that is accepted by all agents [8,32]. In the context of
“Automated negotiation”, designing agents capable of effectively acquiring and
integrating user ethical preferences into the decision-making process is a key
challenge [6,13,21]. To this end, we focus on combining ethics with automated
negotiation to propose an approach where autonomous agents negotiate with
each other based on user ethical preferences for ethical decision-making. In par-
ticular, in this study, we propose a research framework that focuses on describing
how user ethical preferences can be converted into quantifiable measures to be
then used by autonomous agents during negotiation for ethical decision-making.

The remainder of the paper is structured as follows. In Sect. 2, we detail the
related work to our study. Section 3 describes our research framework. Section 4
provides a discussion with an overview of the future research direction and Sect. 5
concludes the proposed study.

2 Related Work

In this section, we discuss related work that covers both the theoretical funda-
mentals and the current state-of-the-art for automated negotiation and ethical
decision-making.

Challenges of introducing ethics in automated decision-making – In
the following, we discuss more theoretical works that highlight the difficulties of
introducing ethics into autonomous systems. In [26], Moor defines four different
levels of ethical agents. At the lower levels, agents do not have any ethics explic-
itly added to their software, but may have an ethical impact on other agents,
humans, and the environment due to their actions or design (e.g., autopilots can
impact the safety of passengers). At higher levels, Moor identifies explicit ethi-
cal agents, who use available ethical knowledge in their decision process. At the
higher level, Moor also introduces the concept of fully ethical agents, which are
capable of making explicit judgments and justifying them, i.e., human-like ethi-
cal reasoning. In addition to the technical challenges related to the development
of these agents [10,15,29], the uncertainty of different moral principles makes it
difficult to identify a single ethical theory that can be followed to develop such
intelligent systems [4,9,27]. In [14], Floridi describes digital ethics as two sepa-
rate components. The first, hard ethics, represents the ethical rules described by
the higher authorities, which are (in principle, should be) commonly accepted.
The second, soft ethics, encompasses user morals, which can reflect on user per-
sonal preferences during decision-making. This vision poses the challenge of how
to embed user ethical preferences into decision-making, not only in those situa-
tions in which humans interact with autonomous agents but also when the latter
interact between themselves on behalf of humans.

Automated negotiation – In the following, we discuss studies that con-
sider negotiation between autonomous agents for automated decision-making. In
multi-agent systems, rules have been an effective technique for modeling nego-
tiation. In [23], the seller and buyer agents negotiate the price using fuzzy rules

460 M. A. Memon

to find the best bidding strategy. Agents learn during negotiation by interacting
with opponents to modify and create new rules. A similar idea has been discussed
in [18], where agents use associative rules during negotiation to adjust parame-
ters such as time, value intervals to offer, and negotiation issues to reduce the
number of interactions by generating associative rules. Although these studies
present negotiation based on rules, negotiation based on user ethical preferences
is still unexplored. Furthermore, the study in [20] defines various stages of the
life cycle of the negotiating agent, and the studies in [7,25,31], propose multiple
approaches to automate the negotiation process based on different stages of the
life cycle of the negotiating agents. However, none of these studies considers user
ethical preferences in negotiation, which is the main focus of our approach.

Ethical decision-making – We discuss below the studies that consider
ethics during the decision-making process. The architecture of an artificial moral
agent is proposed in [22], which combines the moral values of different stake-
holders to make an ethical decision. The agent makes a decision by forming a
single ethical theory from different moral values. It is assumed that moral values
are classified and that agents utilize them to take a collaborative decision that
leads to an agreement. However, in our study, where agents’ moral values differ
from each other and are unknown to opponents, rather than forming a single
conclusion to agree, agents self-adapt their behavior and negotiate to reach an
agreement until it satisfies their moral values. In [12], the study proposes an
ethical reasoner to conduct decision-making. In this work, the ethical reasoner
follows a predetermined ethical theory, and the possible actions that the system
can undertake are ranked according to their adherence to the ethical theory.
However, the proposed study does not consider the morality of users as part of
decision-making, as the ethical principles followed by the system are decided by
the system designers. Therefore, in our study, we focus on user morals for ethical
decision-making instead of explicit ethical theories and rules.

3 Research Framework

This section describes the focus areas and research questions that result from
the state-of-the-art. Figure 1 shows a visual representation of our framework.

Automated negotiation is a compelling research field that groups three famil-
iar research fields into one, namely, game theory, economics, and artificial intelli-
gence [5]. The significance of automated negotiation is receiving great attention
in the current age, as intelligent agents that negotiate with each other and rep-
resent human users are likely to be more efficient [13,21]. On the other hand,
machine ethics is a field that combines computational logic with moral philoso-
phy [4]. A well-known obstacle in this field is the lack of general agreement on
which specific ethical values should be followed by autonomous decision-making
agents [10,15], as individuals differ in their moral judgements [4,27].

Traditionally, in a multi-agent environment, agents can be cooperative and
communicate with each other to perform a shared task [13,21], or they can be
selfish and compete with others to maximize their own utility [5,17]. In the

A Brief Overview of an Approach Towards Ethical Decision-Making 461

EXOSOUL
Profiling

Technique

Domain
Specific

Regulations

Hard
Ethics

Soft
Ethics

NegotiationInitial
Ethical Profile

Ethical
Agreement

Decision-making

Context-
dependent

Default Ethical
Profile

User Agent1

7
2

3 4

5 6

7a

7b

RQ1 RQ2

Fig. 1. A visual representation of the research framework. The dotted boxes highlight
the elements dedicated to each research question. The solid box represents the compo-
nent, the knowledge base represents the rules and ethical profile, the file icon represents
the instance, the solid arrow represents the data flow, and the dotted arrow represents
the connection between the instance and the parent element.

former case, the system can only follow the ethical principles decided by the
system designers (thus disregarding plurality of opinions); whereas, in the lat-
ter case, the selfish behavior of agents will purposely lead them to ignore the
ethical principles of others, as to maximize their own benefits according to their
own ethical beliefs. For that, we employ the concept of ethics as proposed by
Floridi [14], according to which soft ethics encompasses user ethical preferences
and hard ethics represents explicit ethical rules. In our work, mimicking human
behavior, we consider autonomous systems as independent and competing over
shared resources but willing to negotiate to reach an agreement as long as it
does not violate their own ethical boundaries. Note that it does not make much
sense to hope that the agreement is reached once and for all; rather, it is situa-
tional in that it relates to or depends on specific circumstances, state of affairs,
or environments. To this end, the research questions that model this study are:

RQ1: How does human ethical preferences can be represented as quantifiable
measures?

This research question focuses on profiling human according to their ethical
preferences (i.e., soft ethics as mentioned above). To reflect human ethical pref-
erences in the decision-making process of autonomous agents, it is important to
represent them as quantifiable measures. For that reason, within the EXOSOUL
project1 [1–3,19], we exploit a personalized ethical profiling technique to collect
individual’s preferences through a survey (1) that aims to gather data on the
moral preferences of users in the digital world. The resultant profile of this sur-
vey (2) is then used to develop a context-dependent ethical profile (3) that the
autonomous agent uses for negotiation purposes, as shown in Fig. 1.

RQ2: How can we design autonomous agents that take human ethical prefer-
ences into account when negotiating for decision making?

1 https://exosoul.disim.univaq.it/.

https://exosoul.disim.univaq.it/

462 M. A. Memon

This research question focuses on detailing the process of combining human
ethical preferences with automated negotiation. For that reason, in [24], we pro-
pose an approach in which an autonomous system adapts its behavior and adjusts
its autonomy according to the input it receives from the user as an ethical pro-
file (4). We assume to create a context-dependent profile from the general profile
obtained through [1,2]. It is worth mentioning that even agents negotiate on the
basis of soft ethics; we consider that each agent involved in the process is in com-
pliance with domain specific rules (i.e. hard ethics as mentioned above) to avoid
illegal actions (5). According to user ethical preferences, when the user shows
priority towards herself, the agent self-adapts and becomes self-interested, and
hence negotiates (6) to reach an agreement until it satisfies its ethical beliefs;
however, if self-prioritization according to user ethical preferences is not impor-
tant, the agent becomes cooperative and coordinates to reach an agreement if the
opponent offers satisfy its ethical preferences. During negotiation, each received
offer is then evaluated according to the ethical principles of the user profile. The
negotiation ends when an ethical agreement is reached or no offer satisfies the
ethical beliefs of the involved parties. When no agreement is reached, we con-
sider the agents to follow domain-specific rules to apply a fall-back strategy for
decision-making (7).

4 Discussion

This section provides a discussion and an overview of future steps. Our
work highlights the need to consider ethics in the decision-making process of
autonomous systems. This will help to ensure that autonomous systems behave
ethically while enabling effective decision-making. To this end, as a first step,
we propose to ingrain the ethical beliefs of the user into the system through an
ethical profile [1–3,19]. Context-dependent ethical profiling is one of the future
research directions of this work. For ethics-based negotiation, in [24], we then
propose an approach to utilize the context-dependent ethical profile during nego-
tiation. To this end, we consider the adoption of reinforcement learning as an
appropriate technique. By employing reinforcement learning in negotiation, the
agent will engage in a continuous loop to learn through user ethical preferences
and adapt its negotiation strategy.

5 Conclusion

This study introduces an ethical perspective in the decision-making process of
autonomous agents for ethical decision-making and details how an autonomous
agent can represent user ethical preferences during negotiation. Negotiation
resolves possible conflicts and results in ethical decisions that satisfy the user’s
ethical beliefs. In the future, we plan to implement this study and validate its
effectiveness in real-world scenarios.

A Brief Overview of an Approach Towards Ethical Decision-Making 463

Acknowledgements. The authors would like to thank the entire multidisciplinary
team of the EXOSOUL@univaq project for enlightening debates and joint work on
digital ethics for autonomous systems.

References

1. Alfieri, C., Donati, D., Gozzano, S., Greco, L., Segala, M.: Ethical preferences
in the digital world: the EXOSOUL questionnaire. In: HHAI 2023: Augmenting
Human Intellect, pp. 290–299. IOS Press (2023)

2. Alfieri, C., Inverardi, P., Migliarini, P., Palmiero, M.: Exosoul: ethical profiling in
the digital world. In: HHAI2022: Augmenting Human Intellect, pp. 128–142. IOS
Press (2022)

3. Autili, M., Ruscio, D.D., Inverardi, P., Pelliccione, P., Tivoli, M.: A software
exoskeleton to protect and support citizen’s ethics and privacy in the digital
world. IEEE Access 7, 62011–62021 (2019). https://doi.org/10.1109/ACCESS.
2019.2916203

4. Awad, E., et al.: The moral machine experiment. Nature 563(7729), 59–64 (2018)
5. Baarslag, T., Hendrikx, M.J., Hindriks, K.V., Jonker, C.M.: Learning about the

opponent in automated bilateral negotiation: a comprehensive survey of opponent
modeling techniques. Auton. Agents Multi-Agent Syst. 30(5), 849–898 (2016)

6. Baarslag, T., Kaisers, M.: The value of information in automated negotiation: a
decision model for eliciting user preferences. In: Proceedings of the 16th Conference
on Autonomous Agents and Multiagent Systems, pp. 391–400 (2017)

7. Bachrach, Y., et al.: Negotiating team formation using deep reinforcement learning.
Artif. Intell. 288, 103356 (2020)

8. Bagga, P., Paoletti, N., Stathis, K.: Deep learnable strategy templates for multi-
issue bilateral negotiation. In: Proceedings of the 21st International Conference on
Autonomous Agents and Multiagent Systems, pp. 1533–1535 (2022)

9. Bogosian, K.: Implementation of moral uncertainty in intelligent machines. Minds
Mach. 27(4), 591–608 (2017)

10. Bostrom, N., Yudkowsky, E.: The ethics of artificial intelligence. In: Artificial Intel-
ligence Safety and Security, pp. 57–69. Chapman and Hall/CRC (2018)

11. Buiten, M.C.: Towards intelligent regulation of artificial intelligence. Eur. J. Risk
Regul. 10(1), 41–59 (2019)

12. Cardoso, R.C., Ferrando, A., Dennis, L.A., Fisher, M.: Implementing ethical gov-
ernors in BDI. In: Alechina, N., Baldoni, M., Logan, B. (eds.) EMAS 2021. Lecture
Notes in Computer Science, vol. 13190, pp. 22–41. Springer, Cham (2021). https://
doi.org/10.1007/978-3-030-97457-2_2

13. Chen, S., Weiss, G.: Automated negotiation: an efficient approach to interaction
among agents. In: Interactions in Multiagent Systems, pp. 149–177. World Scientific
(2019)

14. Floridi, L.: Soft ethics and the governance of the digital. Philos. Technol. 31(1),
1–8 (2018)

15. Floridi, L.: Establishing the rules for building trustworthy AI. Nat. Mach. Intell.
1(6), 261–262 (2019)

16. Guarini, M.: Introduction: machine ethics and the ethics of building intelligent
machines. Topoi 32(2), 213–215 (2013)

https://doi.org/10.1109/ACCESS.2019.2916203
https://doi.org/10.1109/ACCESS.2019.2916203
https://doi.org/10.1007/978-3-030-97457-2_2
https://doi.org/10.1007/978-3-030-97457-2_2

464 M. A. Memon

17. Hoen, P.J., Tuyls, K., Panait, L., Luke, S., La Poutré, J.A.: An overview of coop-
erative and competitive multiagent learning. In: Tuyls, K., Hoen, P.J., Verbeeck,
K., Sen, S. (eds.) LAMAS 2005. LNCS (LNAI), vol. 3898, pp. 1–46. Springer,
Heidelberg (2006). https://doi.org/10.1007/11691839_1

18. Hu, J., Deng, L.: An association rule-based bilateral multi-issue negotiation model.
In: 2011 Fourth International Symposium on Computational Intelligence and
Design, vol. 2, pp. 234–237. IEEE (2011)

19. Inverardi, P., Palmiero, M., Pelliccione, P., Tivoli, M.: Ethical-aware autonomous
systems from a social psychological lens. In: Proceedings of the 6th International
Workshop on Cultures of Participation in the Digital Age: AI for Humans or
Humans for AI? CEUR Workshop Proceedings, vol. 3136, pp. 43–48 (2022)

20. Kiruthika, U., Somasundaram, T.S., Raja, S.: Lifecycle model of a negotiation
agent: a survey of automated negotiation techniques. Group Decis. Negot. 29(6),
1239–1262 (2020)

21. Kraus, S.: Agents that negotiate proficiently with people. In: Salerno, J., Yang,
S.J., Nau, D., Chai, S.-K. (eds.) SBP 2011. LNCS, vol. 6589, pp. 137–137. Springer,
Heidelberg (2011). https://doi.org/10.1007/978-3-642-19656-0_21

22. Liao, B., Slavkovik, M., van der Torre, L.: Building jiminy cricket: an architecture
for moral agreements among stakeholders. In: AAAI Conference on AI, Ethics, and
Society, pp. 147–153 (2019)

23. Mahan, F., Isazadeh, A., Khanli, L.M.: Using an active fuzzy ECA rule-based nego-
tiation agent in e-commerce. Int. J. Electr. Commer. Stud. 2(2), 127–148 (2011)

24. Memon, M.A., Scoccia, G.L., Inverardi, P., Autili, M.: Don’t you agree with my
ethics? let’s negotiate! In: Augmenting Human Intellect - Proceedings of the Second
International Conference on Hybrid Human-Artificial Intelligence (HHAI). Fron-
tiers in Artificial Intelligence and Applications, vol. 368, pp. 385–388. IOS Press
(2023)

25. Mohammadi Ashnani, F., Movahedi, Z., Fouladi, K.: Modeling opponent strategy
in multi-issue bilateral automated negotiation using machine learning. Int. J. Web
Res. 3(2), 16–25 (2020)

26. Moor, J.H.: The nature, importance, and difficulty of machine ethics. IEEE Intell.
Syst. 21(4), 18–21 (2006)

27. Nallur, V., Collier, R.: Ethics by agreement in multi-agent software systems. In:
14th International Conference on Software Technologies, Prague, Czech Republic,
26–28 July 2019, pp. 529–535. SCITEPRESS (2019)

28. Picard, R.W.: Affective Computing. MIT press, Cambridge (2000)
29. Ryan, M., Stahl, B.C.: Artificial intelligence ethics guidelines for developers and

users: clarifying their content and normative implications. J. Inf. Commun. Ethics
Soc. 19(1), 61–86 (2020)

30. Totschnig, W.: Fully autonomous AI. Sci. Eng. Ethics 26(5), 2473–2485 (2020)
31. Wu, L., Chen, S., Gao, X., Zheng, Y., Hao, J.: Detecting and learning against

unknown opponents for automated negotiations. In: Pham, D.N., Theeramunkong,
T., Governatori, G., Liu, F. (eds.) PRICAI 2021. LNCS (LNAI), vol. 13033, pp.
17–31. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-89370-5_2

32. Zuckerman, I., Rosenfeld, A., Kraus, S., Segal-Halevi, E.: Towards automated nego-
tiation agents that use chat interfaces. In: The Sixth International Workshop on
Agent-Based Complex Automated Negotiations (ACAN) (2013)

https://doi.org/10.1007/11691839_1
https://doi.org/10.1007/978-3-642-19656-0_21
https://doi.org/10.1007/978-3-030-89370-5_2

On Verifying Unbounded Client-Server
Systems

Tephilla Prince(B)

Indian Institute of Technology Dharwad, Dharwad, India
tephilla.prince.18@iitdh.ac.in

Keywords: Petri Nets · Temporal Logic · Bounded Model Checking

1 Introduction

Formal verification of Petri nets is well studied and there are existing state-
of-the-art verification tools such as KREACH [5], Petrinizer [6], QCOVER [2]
and ICOVER [7]. Several communication protocols, services and applications
are unbounded client-server systems. Existing tools are not specifically suited
for verifying unbounded client-server systems as they do not allow the user to
explicitly specify client and server properties as well as their unboundedness.
Moreover, the tools specify properties in logics such as LTL or CTL, which are
not unsuitable. It is necessary to find suitable logics to express properties of
unbounded client-server systems where the number of clients is not known a
priori. In this work, we make the following key contributions:

– We describe a running example of unbounded client-server systems and nar-
row down a suitable formal model for it.

– We introduce a monodic logic L1
UCS for easily expressing properties of

unbounded client-server systems explained with a running example.1.

1.1 Modeling Unbounded Client-Server Systems

We consider as a running example, the Autonomous Parking System (APS)
that manages parking lots through communication between the system (server)
and the vehicle (client). This system has been successfully implemented by the
industry [3,13]. This is a type of single server multiple client system, where the
clients are distinguishable and unbounded. The service being offered is the finite
set of parking lots available for occupancy by the clients. In this section, the
objective is to identify a formal model for the combined interactions between
the server and unboundedly many clients in the running example. The formal
model should not be specific to the APS case study however, it needs to be
generic enough to apply to other unbounded client-server systems as well.
1 A preliminary version of this work is accepted only for presentation, not publication

at the Indian Conference on Logic and its Applications (ICLA) 2023.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
V. Malvone and A. Murano (Eds.): EUMAS 2023, LNAI 14282, pp. 465–471, 2023.
https://doi.org/10.1007/978-3-031-43264-4_33

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-43264-4_33&domain=pdf
https://doi.org/10.1007/978-3-031-43264-4_33

466 T. Prince

Fig. 1. State diagram of server Fig. 2. State diagram of client

We begin by describing the state diagrams for the server and client given in
Fig. 1 and Fig. 2 respectively. Initially, the system is in the state server_ready
(SR), when it is ready to service the client. We assume a steady inflow of
parking requests. When a client inquires about parking space, the client is in
the parking_requested (PR) state. The server non-deterministically chooses to
either grant or reject the parking request based on local information such as
space availability, the priority of incoming requests, etc. We assume two dis-
joint workflows for each scenario. First, if the server accepts the request, the
server is in request_granted (RG) state and simultaneously, the client goes to
occupy_parking_lot (OP) state. Eventually, the client gives up its allocated
parking space, is in exit_successfully (ES) and simultaneously the server is in
deallocate_parking_lot (DP) state. This marks the successful exit of the client
from the system. Second, if the server rejects the request, the client is in park-
ing_unavailable (PU) state and the server is in request_rejected (RR) state.
The only option is for the client to exit. After granting the request, the server
can go to server_busy (SB) state. Theoretically, this description allows for an
unbounded number of client requests to be processed by the server. It is not dif-
ficult to observe that the combined interactions between the server and clients
described above can be interleaved and formally modeled as a single net.

The requirements for the formal model are as follows. The distinguishable
clients in the running example necessitate distinguishable tokens for client
identifiers. Since there are unbounded clients, a fresh client identifier is issued
when a new client enters the system. When clients exit, the identifiers need to be
purged. The server process is always present. The server (client) processes are in
the server (client) places. There is only communication between the server and
clients. In case of synchronizing places in the net, the union of client identifiers
is necessitated with restriction on the arcs based on the type of process.

Petri nets are suitable to model concurrent behaviour of the clients. The
places correspond to the local states of the client and server, which are a dis-
joint set of server places and client places. The transitions correspond to their
combined interactions. The tokens correspond to the client’s requests. A candi-
date model is the colored Petri net [9] which satisfies the above requirements.
However, we do not prefer the colored Petri net, for two reasons. First, they
allow arbitrary expressions over user-defined syntax labelling the arcs, which is
overkill for our requirement. This is because the underlying modeling language

On Verifying Unbounded Client-Server Systems 467

(such as CPN Modeling Language in CPN Tools [10]) is highly expressive. Sec-
ond, the lack of tools to automatically unfold the formal model of the system
for verification. Recall that our long-term goal is the automatic verification of
unbounded client-server systems. Suppose we represented the formal model as a
colored Petri net such as using CPN Tools, there are no existing tools that can
automatically unfold an unbounded colored Petri net created using CPN Tools.
Existing tools can only unfold bounded colored Petri nets [1,4].

2 Restricted ν-Nets

We consider a model that satisfies all the requirements listed in Sect. 1.1. The
second candidate model is a type of ν-net [12], which is a coloured Petri net
defined over a system of component nets, which use a labelling function λ, to
handle synchronization between multiple component nets. We restrict the ν-
nets to a single component, providing a simplified definition while doing away
with the labelling function used in ν-nets. We begin with some definitions that
are necessary for describing the restricted ν-net. Given an arbitrary set A, we
denote by MS(A), the set of finite multisets of A, given by the set of mappings
m : A → N. We denote by S(m) the support of m, defined as follows: S(m) =
{a ∈ A|m(a) > 0}.

A restricted ν-net is a coloured Petri Net N = (P, T, F), where

– P and T are finite disjoint sets of places and transitions, respectively,
– F : (P ×T)∪ (T ×P) → MS(Var) defines the set of arcs of the net, satisfying

ν �∈ pre(t) for every t ∈ T , where pre(t) =
⋃

p∈P S(F (p, t)) (Fig. 3).

Fig. 3. A restricted ν-net
modeling APS

For a transition t of the net, we define, post(t) =⋃
p∈P S(F (t, p)) and V ar(t) = pre(t)

⋃
post(t),

where, V ar is a finite set of variables used for labelling
arcs. Distinguishable tokens (identifiers) are taken
from an arbitrary infinite set Id. Fresh names (iden-
tifiers) are created in the net using a special variable
ν ∈ V ar that appears only in post-condition arcs. A
marking of a restricted ν-net N = (P, T, F) is a func-
tion M : P → (MS(Id)). We denote by S(M) the
set of names in M . i.e., S(M) =

⋃
p∈P S(M(p)). A

mode of a transition t is a mapping σ : V ar(t) → Id,
instantiating every variable in the adjacent arcs of t to
some identifier. A transition is identifier-preserving
if post(t)\{ν} ⊆ pre(t). Let N be a restricted ν-net
and M a marking of N . We say that M enables the
transition t with mode σ whenever:

– If ν ∈ V ar(t) then σ(ν) �∈ S(M)
– σ(F (p, t)) ⊆ M(p) for all p ∈ P .

468 T. Prince

Notice that σ(ν) �∈ S(M) for the enabling of transition, that causes the creation
of fresh (equal) identifiers in all the places reached by arcs labelled by the special
variable ν.

The reached marking of net N after firing of t with mode σ is denoted by
M

t(σ)−−→ M ′ M ′(p) = M(p) − σ(F (p, t)) + σ(F (t, p)) for every p ∈ P . The
transitions tacc, trej , ts_exit, tu_exit, tacc_sink, trej_sink, represent the accept,
reject, exit successfully, exit unsuccessfully and the two sink transitions respec-
tively. All of them are identifier-preserving transitions. The firing of transition
tsrc acts as the source. The arc labelled ν ensures that a new client identifier
is generated in place pPR. The place pPR contains a set of clients requesting
for parking. In the unsuccessful scenario, the transition trej is fired when the
server rejects the request, which brings the vehicle to parking_unavailable state
represented by place pPU . On firing of transition tu_exit, the vehicle goes to
exited_unsuccessfully state represented by place pEU . The firing of transition
trej_sink is the sink transition for the rejected parking requests. This ensures
that the rejected vehicle identifier exits the system and is never reused. If the
client arrives after it has exited, it is always issued a fresh identifier. Notice
that there are arcs labelled s to indicate the server which has identifier 0, which
is necessary for the acceptance or rejection of a parking request. The token
with identifier 0 is permanently present in each marking exactly at server place
pSR. The ν arc ensures that new identifiers are generated, essentially giving an
unbounded number of agents in the ν-net. The arcs labelled c carry the client
identifiers from one client place to another. The net behaves as a standard ν-net
component with autonomous transitions as described in [11].

3 The Monodic Logic L1
UCS

The monodic logic L1
UCS is an extension of Linear Temporal Logic (LTL), and

both a syntactic and semantic subclass of MFOTL [8]. A monodic formula is a
well-formed formula with at most one free variable in the scope of a temporal
modality. Let Ps be the set of atomic propositions of the server and Pc be the set
of client predicates. The set of client formulae, Δ, is the boolean and temporal
modal closure of atomic client formulae Pc:

α, β ∈ Δ:: = p(x), p ∈ Pc | ¬α | α ∨ β | α ∧ β | Xcα | Fcα | Gcα | α Uc β

The set of server formulae, Ψ , is the boolean and temporal modal closure of
Φ = {(∃x)α, (∀x)α | α ∈ Δ} and atomic server formulae Ps:

Ψ :: = q ∈ Ps | ¬ψ | φ ∈ Φ | ψ1 ∨ ψ2 | ψ1 ∧ ψ2 | Xsψ | Fsψ | Gsψ | ψ1 Us ψ2

where ψ,ψ1, ψ2 ∈ Ψ . To give a flavour of L1
UCS and its expressibility, we enumer-

ate some properties of APS that are not easily expressible in Linear Temporal
Logic (LTL). Let Ps be the set of atomic propositions of the server and Pc be
the set of client predicates. In the APS running example, they are defined as
follows: Pc = {PR,OP, PU,ES,EU}. Ps = {SR}.

On Verifying Unbounded Client-Server Systems 469

1. When a vehicle requests a parking space, it is always the case that for every
vehicle, it eventually exits the system, either successfully after being granted
a parking space, or unsuccessfully, when its request is denied.

ψ1 = Gs(∀x)
(
PR(x) ⇒ Fc (ES(x) ∨ EU(x))

)

2. It is always the case that if the client occupies a parking lot, it will eventually
exit the parking lot.

ψ2 = Gs(∀x)
(
OP (x) ⇒ Fc(ES(x))

)

3. There may be clients who have requested parking and who wait in the parking
unavailable state until they can exit the system.

ψ3 = Gs(∃x)
(

PR(x) ∧ Fc

(
PU(x) Uc EU(x)

)
)

It can be observed that there are no free variables in the scope of Gs and
exactly one free variable in the scope of the client modalities. It is also possible to
construct L1

UCS specifications with propositions from Ps and server transitions.
The ease of expressibility of the client and server behaviour is the key motivation
behind the logic L1

UCS .

Fig. 4. Snapshot of the run-
ning example (APS)

We consider the unbounded client-server sys-
tems where all clients are of the same type. At any
instant, the number of clients is bounded, but their
cardinality is unknown and dynamic. We refer to
the clients that are present in the system at any
point in time as live agents (clients). The live win-
dow of a particular client begins when it enters the
system and ends when the client exits the system.
Hence, if there are several live agents, their live
windows would overlap each other. This is inter-
esting as it allows us to reason about the live clients which satisfy particular
properties simultaneously.

Example 1. Figure 4 depicts the snapshot of the system with 4 distinguishable
clients, with overlapping live windows. While the system is unbounded, there are
a finite number of clients at an instant. Each row shows the local state of that
client. For each instance, the local state of the client is in the cell i.e., client 1
is at state pPR at instance 0. For client 1, the left boundary, when it enters the
system is at instance 0 and its right boundary is at instance 2, when it exits the
system. This corresponds to the client requesting parking and getting rejected.
There may be multiple clients in the same local state (client 3 and client 4 are
in state pPR at instance 4). There may be clients who are live at the bound 5
and have not exited the system, such as clients 3 and 4. This is an interesting
case, where the bound equals the current right boundary for the client.

470 T. Prince

4 Conclusion

We have formally modeled unbounded client-server systems and described a
monodic logic for specifying their properties. Future work includes implementing
an algorithm to formally verify these systems and compute its complexity.

Acknowledgements. I would like to thank my supervisors Ramchandra Phawade
and S. Sheerazuddin for their valuable inputs on this work.

References

1. Bilgram, A., Jensen, P.G., Pedersen, T., Srba, J., Taankvist, P.H.: Improvements
in unfolding of colored petri nets. In: Bell, P.C., Totzke, P., Potapov, I. (eds.) RP
2021. LNCS, vol. 13035, pp. 69–84. Springer, Cham (2021). https://doi.org/10.
1007/978-3-030-89716-1_5

2. Blondin, M., Finkel, A., Haase, C., Haddad, S.: Approaching the coverability prob-
lem continuously. In: Chechik, M., Raskin, J.-F. (eds.) TACAS 2016. LNCS, vol.
9636, pp. 480–496. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-
662-49674-9_28

3. Cai, Z., Zhou, Y., Qi, Y., Zhuang, W., Deng, L.: A millimeter wave dual-lens
antenna for IoT-based smart parking radar system. IEEE Internet Things J. 8,
418–427 (2021). https://doi.org/10.1109/JIOT.2020.3004403

4. Dal Zilio, S.: MCC: a tool for unfolding colored petri nets in PNML format. In: Jan-
icki, R., Sidorova, N., Chatain, T. (eds.) PETRI NETS 2020. LNCS, vol. 12152, pp.
426–435. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-51831-8_23

5. Dixon, A., Lazić, R.: KReach: a tool for reachability in petri nets. In: Biere, A.,
Parker, D. (eds.) TACAS 2020. LNCS, vol. 12078, pp. 405–412. Springer, Cham
(2020). https://doi.org/10.1007/978-3-030-45190-5_22

6. Esparza, J., Ledesma-Garza, R., Majumdar, R., Meyer, P., Niksic, F.: An SMT-
based approach to coverability analysis. In: Biere, A., Bloem, R. (eds.) CAV 2014.
LNCS, vol. 8559, pp. 603–619. Springer, Cham (2014). https://doi.org/10.1007/
978-3-319-08867-9_40

7. Geffroy, T., Leroux, J., Sutre, G.: Occam’s razor applied to the petri net cover-
ability problem. Theor. Comput. Sci. (2018). https://doi.org/10.1016/j.tcs.2018.
04.014

8. Hodkinson, I.M., Wolter, F., Zakharyaschev, M.: Decidable fragment of first-order
temporal logics. Ann. Pure Appl. Logic 106(1–3), 85–134 (2000)

9. Kurt Jensen and Lars Michael Kristensen: Coloured petri nets - modelling and
validation of concurrent systems. Springer (2009). https://doi.org/10.1007/b95112

10. Jensen, K., Kristensen, L.M., Wells, L.: Coloured petri nets and CPN tools for mod-
elling and validation of concurrent systems. Int. J. Softw. Tools Technol. Transf.
9(3–4):213–254 (2007). https://doi.org/10.1007/s10009-007-0038-x

11. Rosa-Velardo, F., de Frutos-Escrig, D.: Name creation vs. replication in petri net
systems. In: Kleijn, J., Yakovlev, A. (eds.) ICATPN 2007. LNCS, vol. 4546, pp.
402–422. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-73094-
1_24

https://doi.org/10.1007/978-3-030-89716-1_5
https://doi.org/10.1007/978-3-030-89716-1_5
https://doi.org/10.1007/978-3-662-49674-9_28
https://doi.org/10.1007/978-3-662-49674-9_28
https://doi.org/10.1109/JIOT.2020.3004403
https://doi.org/10.1007/978-3-030-51831-8_23
https://doi.org/10.1007/978-3-030-45190-5_22
https://doi.org/10.1007/978-3-319-08867-9_40
https://doi.org/10.1007/978-3-319-08867-9_40
https://doi.org/10.1016/j.tcs.2018.04.014
https://doi.org/10.1016/j.tcs.2018.04.014
https://doi.org/10.1007/b95112
https://doi.org/10.1007/s10009-007-0038-x
https://doi.org/10.1007/978-3-540-73094-1_24
https://doi.org/10.1007/978-3-540-73094-1_24

On Verifying Unbounded Client-Server Systems 471

12. Rosa-Velardo, F., de Frutos-Escrig, D.: Name creation vs. replication in petri net
systems. Fundam. Informaticae, 88(3), 329–356 (2008). http://content.iospress.
com/articles/fundamenta-informaticae/fi88-3-06

13. Yan, G., Yang, W., Rawat, D.B., Olariu, S.: Smartparking: a secure and intelligent
parking system. IEEE Intell. Transp. Syst. Mag. 3, 18–30 (2011). https://doi.org/
10.1109/MITS.2011.940473

http://content.iospress.com/articles/fundamenta-informaticae/fi88-3-06
http://content.iospress.com/articles/fundamenta-informaticae/fi88-3-06
https://doi.org/10.1109/MITS.2011.940473
https://doi.org/10.1109/MITS.2011.940473

Capacity ATL: Reasoning About Agent
Profiles and Applications to Cybersecurity

Gabriel Ballot(B)

Télécom Paris - EDF R&D, Palaiseau, France
gabriel.ballot@telecom-paris.fr

Abstract. Cybersecurity is a context in which at least two agents,
namely a defender and an attacker, interact to achieve conflicting objec-
tives. As such, its analysis with game theory is natural. Most game the-
oretic approaches for cybersecurity rely on analytical games described
by a reward function depending on agent actions, and the goal is often
to find equilibriums (e.g, Nash equilibrium). However, these techniques
imply a new analysis for each particular system or network. Contrar-
ily, defining Multi-Agent System (MAS) formalisms adapted to describe
multi-step attacks can help generically design defense systems. Moreover,
model checking defender strategic abilities in the MAS offers guarantees
on active cyber defenses leveraged by the security team, including hon-
eypots (i.e, deception mechanisms) and Moving Target Defenses (i.e,
system reconfiguration). The existing formalisms do not capture all the
aspects of active defenses, so we developed Capacity Alternating-time
Temporal Logic to reason about strategic abilities under imperfect infor-
mation of the agents’ capacities. During my thesis, we plan to explore
further the use of MAS verification for active cybersecurity.

1 Introduction

Model checking is a formal verification technique for ensuring system correct-
ness by checking a property (i.e, a desired quality of the system) for all possi-
ble system computations. It has been successfully applied to computer systems
to guarantee properties without relying on an expert’s knowledge or intuition.
Model checking is based on three components: a formal system model describ-
ing its states and behavior, a formal specification of the system’s correctness,
and a model-checking algorithm to verify if the specification holds on the sys-
tem’s model. Since the early 2000s and the supremacy of systems interconnec-
tion, not only closed systems are analyzed with verification techniques, but also
open systems where multiple agents interact. The modeling and specification
formalisms have evolved to be sometimes more expressive or more specific, for
instance, from Computation Tree Logic (CTL) [11] expressing properties on infi-
nite computation trees to Alternating-time Temporal Logic (ATL) [1] and Strat-
egy Logic (SL) [19] that express agents strategic abilities on Concurrent Game
Structure (CGS). A CGS is a Kripke structure where transitions are labeled

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
V. Malvone and A. Murano (Eds.): EUMAS 2023, LNAI 14282, pp. 472–478, 2023.
https://doi.org/10.1007/978-3-031-43264-4_34

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-43264-4_34&domain=pdf
https://doi.org/10.1007/978-3-031-43264-4_34

Capacity ATL 473

with a tuple of actions (one for each agent), and, in each state, each agent
decides its next action, thus triggering a particular transition. ATL properties
ask whether agent coalitions have a strategy (what action to do in each state)
to enforce properties in a specific temporal horizon. For example, ATL property
readCmd → 〈controler〉(¬write) U read would express that “when read com-
mand arrives, the memory controller can prevent any write in the register until
the read happens”. This thesis explores how strategic system verification can be
a powerful tool for finding optimal defense strategies in cybersecurity.

System security has been analyzed through analytical game theory to derive
optimal defender actions in a specific system [10]. However, strategic verification
of Multi-Agent Systems (MASs) provides a framework to analyze generic sys-
tems. MAS verification and attack modeling give all the elements to reason on
systems under complex multi-step attacks. The cybersecurity community inves-
tigates the use of active defenses to create more reactive and proactive defense
systems. An active defense system implies the defender has actions to counter
the attacker. Consequently, the defender must decide what action to use and
when: it means having a strategy. However, the defender must identify and rea-
son about the current attackers to find meaningful strategies. We focus on two
active defense types: honeypots and Moving Target Defenses (MTDs). Honeypots
mimic attractive computer resources to lure attackers, make them waste time,
and study their capacities. MTD is a defense paradigm aiming to periodically
change the system configuration to shift the attack surface [20]. MTDs tend
to break the longstanding asymmetry between the attacker and the defender,
that is, the attacker can spend an unlimited time planning an attack while the
defender sets its defenses once. MTDs are characterized by three elements (i)
the moving parameter (i.e, a configuration parameter that will change), it can
be the data format, an application binary, the instruction set, the CPU archi-
tecture, the protocol, or the network topology, (ii) the set of valid values for
the moving parameter, for instance, the set of valid addresses for an IP address
shuffling MTD, and the way to choose the next configuration, and (iii) the
reconfiguration period or the triggering condition. In a preliminary work [3], we
characterized the MTD time and cost impact on the attacker using Markov Deci-
sion Processes. MTDs are mostly designed to change configurations periodically.
However, we believe MTDs need a rational activation condition, not just based
on time, because the cost might be high for the regular user, especially when no
malicious activity is detected. In particular, MTDs must rely on precise detec-
tion mechanisms to gather meaningful information about the attacker’s profile.
Enhanced adaptive honeypots can provide this intelligence.

2 Capacity Alternating-Time Temporal Logic

ATL does not deal with different agent profiles, while it is essential for precise
active defenses like adaptive honeypots and MTDs. Consequently, we introduce
Capacity Alternating-time Temporal Logic (CapATL), a logic extending ATL,
to reason about the strategic abilities of agents in a new game structure that

474 G. Ballot

captures the information about agent profiles. We call it Capacity Concurrent
Game Structure (CapCGS).

A CapCGS is a CGS where agents are given a set of capacities that specify
the actions that the agent can do. For instance, an agent can have a set of two
possible capacities, beginner or advanced, and the beginner capacity might only
be able to perform simple actions {α1, α2} while the advanced capacity lets the
agent do {α2, α3}. At the beginning of the play, each agent is secretly given one
of its possible capacities and keeps it during the whole game. Agents cannot
observe others’ capacity assignments or actions during the play. However, they
can observe the history (i.e, the list of game states during the play) and infer
knowledge about other agents’ capacities. Indeed, if the history is q1q2 and the
only transition between q1 and q2 uses the action α3 for the opponent, then
he must have the capacity advanced. This game structure reflects some natural
aspects of MAS : agents can have different profiles that restrict their actions.
This can happen in various situations, such as different client versions in protocol
analysis, different robots in heterogeneous fleets, different personality traits in
social structure modeling, or different attacker profiles in a cybersecurity setting.

CapATL extends ATL with a knowledge operator Ka
cap to ask whether an

agent a has some knowledge about the capacity of agents in the game. As in
ATL [1], a temporal formula specifies in what temporal horizon a subformula
should hold. For example, N � is true if the atomic proposition � holds in the
next state, and �1 U �2 is true if �1 holds until �2 holds. Moreover, 〈·〉 is the
strategic operator. It expresses the existence of a strategy to enforce a temporal
formula whatever the opponents’ actions. For instance, 〈Y 〉N φ asks whether
the agents in Y can enforce φ in the next state, and 〈Y 〉φ1 U φ2 is true if Y has
a strategy to enforce φ1 until φ2 holds.

Semantically, depending on agents’ actions, a CapCGS will give outcomes ρ
of the form ρ = q1

α1−−→ q2
α2−−→ . . . , where {q1, q2, . . . } are states and {α1,α2, . . . }

are tuples of actions, i.e, αi = (αi,1, . . . , αi,k) where k is the number of agents
in the CapCGS. Thus, an outcome ρ is an infinite path, i.e, a list of states and
transitions of the CapCGS taken during the play. Since agents cannot change
their capacities during the play, each agent a must have at least one capacity
ca such that, for all i > 0, αi,a is a possible action for the capacity ca. We call
complete capacity assignment a function λ that assigns a capacity λ(a) to each
agent a. Thus, given an outcome ρ, we can compute the set of complete capacity
assignments �(ρ) that are compatible with ρ. However, agents do not observe
the path ρ, but only the states of the path and their own actions. For each agent
a, we can define an indistinguishability relation ∼a such that ρ ∼a ρ′ iff, for

all i > 0, qi = q′
i and αi,a = α′

i,a where ρ′ = q′
1

α ′
1−−→ q′

2

α ′
2−−→ . . . and α′

i =
(α′

i,1, . . . , α
′
i,k). Thus, given a path ρ, the knowledge of an agent a, i.e, the set of

possible capacity assignment from a’s point of view, is �(ρ, a) :=
⋃

ρ′∼aρ �(ρ′).
A formula Ka

cap(a
′ �→ c) is true given a path ρ if, according to a, every possible

complete capacity assignment λ ∈ �(ρ, a) verifies λ(a′) = c.
CapATL model-checking problem is, given a formula φ and a CapCGS, to

find the set of state q such that q |= φ. This problem is decidable and the

Capacity ATL 475

precise complexity class is yet to be studied. However, CapATL model check-
ing is not polynomial, so it is significantly more complex than ATL. Indeed,
even for reachability objectives, the problem of having a compatible complete
capacity assignment arises. Moreover, the knowledge operator in CapATL differs
from the one in Alternating-time Temporal Epistemic Logic (ATEL) [15,16] since
CapATL deals with imperfect knowledge of agents’ capacities and actions, while
ATEL tackles incomplete information about states. This significant difference
impacts the model-checking problem complexity: imperfect information about
states leads to undecidability when agents have perfect recall [9], whereas model
checking is decidable when imperfect information concerns capacities, even with
perfect recall.

3 Case Study

In cybersecurity, identifying the attacker as soon as possible is extremely valu-
able. Cyber honeypots are decoy systems that aim to lure the attacker from
real resources and collect intelligence about the attacker’s behavior and capac-
ities. Honeypots are generally characterized by five attributes [14]: the level of
interaction with the attacker, the adaptability during a session of interaction,
the deployment environment (on the internet or a private network), the resource
type, the services implemented, and the virtual or real implementation. Adaptive
and interactive honeypots emulate real services and evolve during the interaction
with the attacker. For example, RASSH uses reinforcement learning to keep the
attacker of a fake SSH server active as long as possible [21].

We aim to design a honeypot using a CapCGS model and verify its design
using a CapATL objective. This objective can include safety (avoiding bad states)
and liveness (eventually reaching good states) properties, but also knowledge
properties like identifying the attacker profile and not being identified as a hon-
eypot. The honeypot is a virtual network with several actions, such as modifying
the topology, the services on different machines, introducing vulnerabilities, etc.
Engineers can imagine a honeypot as a set of challenges and make it more realistic
by incorporating them into a larger system with several attack paths. They can
provide, directly or through a transformation, a CapCGS model of the honeypot.
This model relates the honeypot states and the transitions linked to the actions
of the attacker and the defender. We can annotate the states where the attacker
gets a fake reward (e.g, a fake password file) with an atomic proposition win and
the states where the attacker compromises the honeypot for real (e.g, he man-
ages to escape from the virtual environment) with an atomic proposition hacked.
These atomic propositions will be used to formalize the safety and liveness objec-
tives. Relying on public databases like [18], we extract attacker profiles, denoted
c1 to cn, and link them to their respective actions. For instance, c1 is ‘external
employee’ and c2 is ‘internal employee’, which implies c2 has the action ‘plug USB
device’ while c1 does not. The defender can also have two capacities, honeypot
and real, where honeypot allows some actions that are not possible in a real sys-
tem, like modifying the output of the top Linux command. The last step is to for-
malize a CapATL security objective. For instance, we want the defender to have

476 G. Ballot

a strategy such that the honeypot is never hacked, the attacker cannot identify
the system as a honeypot, and when the reward is given to the attacker, we can
identify its capacity (i.e, the attacker profile). This property is expressed in Cap-
ATL as follows: 〈D〉(¬hacked) U (¬hacked ∧ ¬KA

cap(D �→ honeypot) ∧ (win =⇒
(KD

cap(A �→ c1)∨ · · · ∨KD
cap(A �→ cn)))) where the defender is D and the attacker

A. Thus, CapATL tackles, among others, the attack attribution problem—i.e,
finding the attacker capacity—which is one of the primary purposes of honey-
pots. Using CapATL has three main advantages: (i) we have strong guarantees
on the adequation of the honeypot to the specifications, (ii) we automatically
access the honeypot adaptation strategy through model checking, and (iii) the
method is generic and can apply to any adaptive honeypot.

4 Future Works

There are several directions to continue working on CapATL. First, we need to
identify the precise complexity class of the model-checking problem and provide
an efficient algorithm. However, no efficient algorithm can polynomial, which is
not satisfactory for real-world applications. We would like to investigate logical
fragments and restrictions on the strategies class to find a PTIME problem. In
particular, inspired by [17], we can investigate bounded memory agents with
dynamic recall. More practically, we want to implement a honeypot verified
with CapATL, this would validate the applicability of CapATL, and it could
rely on an optimized algorithm. In the future, we plan to look at quantitative
aspects such as in [2] but for capacity aspects. Indeed, the attacker capacity
might be quantified through different scores such as network, system, social
engineering, etc. Moreover, we will get back to MTD and exploit the possible
symbiosis between adaptive honeypots and MTD using strategic verification of
MAS. Moreover, we can extend our idea to Strategy Logic (SL) [12]. In this way,
we can gain expressive power and provide more powerful solution concepts. Since
SL is in general non-elementary we can also study some fragments of the logic
such as SL[SG] [8]. Furthermore, we can also explore the more realistic setting
for games with imperfect information, but unfortunately, as mentioned earlier,
the model checking problem with imperfect information for strategic logics is
undecidable in general. Given the relevance of this setting, even partial solutions
to the problem can be useful, such as abstractions either on the information [4–6]
or on the strategies [7] or on the formulas [13]. In conclusion, we can embed the
mentioned techniques to provide a more powerful and useful framework.

Acknowledgement. This work was carried out within SEIDO Lab, a joint research
laboratory covering research topics in the field of smart grids, e.g, distributed intel-
ligence, service collaboration, cybersecurity, and privacy. It involves researchers from
academia (Télécom Paris, Télécom SudParis, CNRS LAAS) and industry (EDF R&D).

The author thank Vadim Malvone, Jean Leneutre, and Youssef Laarouchi for their
contribution to the work.

Capacity ATL 477

References

1. Alur, R., Henzinger, T.A., Kupferman, O.: Alternating- time temporal logic.
English. J. ACM 49(5), 672–713 (2002). ISSN: 0004–5411. https://doi.org/10.
1145/585265.585270

2. Aminof, B., et al.: Graded modalities in strategy logic. Inf. Comput. 261, 634–649
(2018). https://doi.org/10.1016/j.ic.2018.02.022

3. Ballot, G., et al.: Reasoning about moving target defense in attack modeling for-
malisms. In: Proceedings of the 9th ACM Workshop on Moving Target Defense.
MTD 2022. Los Angeles, CA, USA: Association for Computing Machinery, pp.
55–65 (2022). ISBN: 9781450398787, https://doi.org/10.1145/3560828.3564009

4. Belardinelli, F., Ferrando, A., Malvone, V.: An abstraction-refinement framework
for verifying strategic properties in multi-agent systems with imperfect information.
Artif. Intell. 316, 103847 (2023). https://doi.org/10.1016/j.artint.2022.103847

5. Belardinelli, F., Lomuscio, A., Malvone, V.: An abstraction- based method for ver-
ifying strategic properties in multi-agent systems with imperfect information. In:
The Thirty-Third AAAI Conference on Artificial Intelligence, AAAI 2019, Hon-
olulu, Hawaii, USA, 2019. AAAI Press, pp. 6030–6037 (2019). https://doi.org/10.
1609/aaai.v33i01.33016030

6. Belardinelli, F., Malvone, V.: A three-valued approach to strategic abilities under
imperfect information. In: Calvanese, D., Erdem, E., Thielscher, M., (eds.) Pro-
ceedings of the 17th International Conference on Principles of Knowledge Rep-
resentation and Reasoning, KR 2020, Rhodes, Greece, 2020, pp. 89–98 (2020).
https://doi.org/10.24963/kr.2020/10

7. Belardinelli, F., et al.: Approximating perfect recall when model checking strategic
abilities: theory and applications. J. Artif. Intell. Res. 73, 897–932 (2022). https://
doi.org/10.1613/jair.1.12539

8. Belardinelli, F., et al.: Strategy logic with simple goals: tractable reasoning about
strategies. In: Kraus, S., (ed.) Proceedings of the Twenty-Eighth International Joint
Conference on Artificial Intelligence, IJCAI 2019, Macao, China, August 10–16, pp.
88–94 (2019). https://www.ijcai.org/, https://doi.org/10.24963/ijcai.2019/13

9. Dima, C., Tiplea, F.L.: Model-checking ATL under imperfect information and
perfect recall semantics is undecidable. CoRR abs/1102.4225 (2011). https://hal.
science/hal-01699948

10. Do, C.T et al.: Game theory for cyber security and privacy. ACM Comput. Surv.
50(2) (2017). ISSN: 0360–0300, https://doi.org/10.1145/3057268

11. Emerson, E.A., Clarke, E.M.: Using branching time temporal logic to synthe-
size synchronization skeletons. Sci. Comput. Program. 2(3), 241–266 (1982).
ISSN: 0167–6423. https://doi.org/10.1016/0167-6423(83)90017-5, https://www.
sciencedirect.com/science/article/pii/0167642383900175

12. Mogavero, F.., et al.: Reasoning about strategies: on the model-checking problem.
ACM Trans. Comput. Logic 15(4), 34:1–34:47 (2014). https://doi.org/10.1145/
2631917

13. Ferrando, A., Malvone, V.: Towards the verification of strategic properties in multi-
agent systems with imperfect information. In: Agmon, N. (ed.) Proceedings of the
2023 International Conference on Autonomous Agents and Multiagent Systems,
AAMAS 2023, London, United Kingdom, 29 May 2023–2, June 2023 ACM, 2023,
pp. 793–801. https://doi.org/10.5555/3545946.3598713. URL: https://dl.acm.org/
doi/10.5555/3545946.3598713

https://doi.org/10.1145/585265.585270
https://doi.org/10.1145/585265.585270
https://doi.org/10.1016/j.ic.2018.02.022
https://doi.org/10.1145/3560828.3564009
https://doi.org/10.1016/j.artint.2022.103847
https://doi.org/10.1609/aaai.v33i01.33016030
https://doi.org/10.1609/aaai.v33i01.33016030
https://doi.org/10.24963/kr.2020/10
https://doi.org/10.1613/jair.1.12539
https://doi.org/10.1613/jair.1.12539
https://www.ijcai.org/
https://doi.org/10.24963/ijcai.2019/13
https://hal.science/hal-01699948
https://hal.science/hal-01699948
https://doi.org/10.1145/3057268
https://doi.org/10.1016/0167-6423(83)90017-5
https://www.sciencedirect.com/science/article/pii/0167642383900175
https://www.sciencedirect.com/science/article/pii/0167642383900175
https://doi.org/10.1145/2631917
https://doi.org/10.1145/2631917
https://doi.org/10.5555/3545946.3598713
https://dl.acm.org/doi/10.5555/3545946.3598713
https://dl.acm.org/doi/10.5555/3545946.3598713

478 G. Ballot

14. Fraunholz, D., Zimmermann, M., Schotten, H.D.: An adaptive honeypot configura-
tion, deployment and maintenance strategy. In: 2017 19th International Conference
on Advanced Communication Technology (ICACT), pp. 53–57 (2017). https://doi.
org/10.23919/ICACT.2017.7890056

15. Van Der Hoek, W., Wooldridge, M.: Tractable multiagent planning for epistemic
goals. In: The First International Joint Conference on Autonomous Agents & Mul-
tiagent Systems, AAMAS 2002, July 15–19, 2002, Bologna, Italy, Proceedings.
ACM, pp. 1167–1174 (2002). https://doi.org/10.1145/545056.545095

16. Jamroga, W., van der Hoek, W.: Agents that know how to play. Fundamenta
Informaticae 63(2–3), 185–219 (2004)

17. Jamroga, W., Malvone, V., Murano, A.: Natural strategic ability under imperfect
information. In: Elkind, E., et al., (eds.) Proceedings of the 18th International
Conference on Autonomous Agents and MultiAgent Systems, AAMAS 2019, Mon-
treal, QC, Canada, May 13–17, 2019. International Foundation for Autonomous
Agents and Multiagent Systems, pp. 962–970 (2019). http://dl.acm.org/citation.
cfm?id=3331791

18. Mitre Att&ck. https://attack.mitre.org/. Accessed 30 Jan 01 2023
19. Mogavero, F., et al.: Reasoning about strategies: on the model-checking problem.

English. ACM Trans. Comput. Logic 15(4), 1–47 (2014). ISSN: 1529–3785. https://
doi.org/10.1145/2631917

20. Okhravi, H., et al.: Finding focus in the blur of moving-target techniques. IEEE
Secur. Priv. 12(2), 16–26 (2014). https://doi.org/10.1109/MSP.2013.137

21. Pauna, A., Bica, I.: RASSH - reinforced adaptive SSH honeypot. In: 2014 10th
International Conference on Communications (COMM). IEEE, pp. 1–6 (2014).
https://doi.org/10.1109/ICComm.2014.6866707

https://doi.org/10.23919/ICACT.2017.7890056
https://doi.org/10.23919/ICACT.2017.7890056
https://doi.org/10.1145/545056.545095
http://dl.acm.org/citation.cfm?id=3331791
http://dl.acm.org/citation.cfm?id=3331791
https://attack.mitre.org/
https://doi.org/10.1145/2631917
https://doi.org/10.1145/2631917
https://doi.org/10.1109/MSP.2013.137
https://doi.org/10.1109/ICComm.2014.6866707

Value-Awareness Engineering: Towards
Learning Context-Based Value

Taxonomies

Andrés Holgado-Sánchez(B)

CETINIA, Universidad Rey Juan Carlos de Madrid, 28933 Móstoles, Spain

andres.holgado@urjc.es

Abstract. The emerging field of value awareness engineering claims
that software agents and systems should be value-aware, i.e. they should
be able to explicitly reason about the value-alignment of their actions.
Existing approaches characterize values in various ways, from which we
defend the recently introduced context-based value taxonomies, which
allow a very rich context-dependent value representation while providing
alignment explainability. We propose further work in the area, that would
strive mainly on the feasibility for a system to learn value taxonomies
from streams of value-aware preferences (using CEP rule learning), so the
result is human-readable and representative of a complex value system.

Keywords: Value awareness engineering · Value Learning ·
Context-based value taxonomies · Complex Event Processing

1 Introduction and Related Work

Value awareness in autonomous systems is an issue that is becoming increasingly
important due to the proliferation of AI-based systems that impact people. The
emerging field of value awareness engineering [10] claims that software agents
and systems should be value-aware, i.e. they should be able to explicitly reason
about the value-alignment of their actions. Value-alignment problems have being
approached in various ways, mostly depending on the application domain con-
sidered. In this future research we will focus in state transition systems either
for decision-making or value learning in a multi- or single-agent scope. In these
and other scenarios, authors came up with different value representations: Weide
et al. [16] or Sierra and Osman [15] represent values as preordered preference
relations; Montes and Sierra [11] used semantics functions, or numerical state
alignment metrics; Lera-Leri et al. [9] approached the value system aggrega-
tion problem through action-based value promotion representation; [1] delved
into argumentation techniques that explicitly reference values; [13] constructed
a reinforcement learning method to align to norms and values, given by environ-
ment rewards; Furnkranz et al. [6] and Chirstiano et al. [3] represented human
preferences with the same technique but parting from trajectories or plans. In the
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
V. Malvone and A. Murano (Eds.): EUMAS 2023, LNAI 14282, pp. 479–485, 2023.
https://doi.org/10.1007/978-3-031-43264-4_35

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-43264-4_35&domain=pdf
http://orcid.org/0000-0001-8853-1022
https://doi.org/10.1007/978-3-031-43264-4_35

480 A. Holgado-Sánchez

three months prior to submitting this report, authors have studied the problem
in unpublished work [7,8] around the value-alignment and admissibility concept
that we summarize here.

From all the approaches visited, we find the context-based value taxonomy
concept by Nardine Osman and Mark d’Inverno [12] inspiring for future research
in the area of value learning. This mathematical representation characterizes
values by a directed acyclic graph with nodes representing intermediate value
concepts derived from automatically satisfied properties from the world states,
with relative importance from some condomain dependent on a context.

We argue that this representation has advantages over other approaches, as
provides both explainability and computational advantages over all other visited
scenarios. Authors also state that this taxonomy can cover most of all the other
representations discussed. The point is that, with value taxonomies, a machine
can hold specific and clear reasoning with values, apart from optimizing some
abstract utility metric or relying on arbitrary human advice of what states or
actions or even transitions are aligned or not. The challenge strives then, in how
would we be able to learn such useful and meaningful taxonomies in an efficient
way, for a single value or groups of them (value systems).

We end up proposing to adapt a work on Automatic CEP (Complex Event
Processing) rule learning, with temporal and spatial relations, by Ralf Bruns
et al. [2], in order to learn these context-based value taxonomies, by reading
streams of agent actions/state information in order to learn not only semantics
functions ([11]) or value aggregation ([9]), but hopefully to elicit aligned agent
behaviours in Multi-Agent Systems.

2 Value Awareness as Value-Alignment and Admissibility

On the way towards the value learning objective we have studied other simpler
approaches and problems, identifying some issues with existing representations.
In [7] we first studied a water allocation problem and the value of equity. Simi-
larly as in [11], we first modelled a MAS (Multi-Agent System) as a goal-oriented
decision-making world composed of states S (representing the states of all agents
in the MAS), actions A (representing all possible joint actions) and transitions
T ⊂ S × A × S(eliciting available connections from each state to others via the
considered set of actions). We also considered goal states G ⊂ S and plans, which
are paths leading to goal states.

We then defined a state-level preference-based value-alignment crite-
rion using a mathematical preorder, similarly as in [15,16]. It assumed each state
has meaning towards value-alignment, grounded via a generic preference relation
that compares pairs of states. For instance, s1 �v s2 would represent that state
s2 is more preferable than s1.

We also considered to quantify those relations in the scenarios where defining
state value semantics functions [11] is feasible. Specifically, a function fv : S →
R is a semantics function if it is directly proportional to the preservation or
alignment of value v in every state. fv(s) would be the (value) semantics of s or

Towards Learning Context-Based Value Taxonomies 481

the semantics of v in state s. We then defined the concept of semantics value
of a path as an aggregation function evaluation over the semantics of the path’s
traversed states (e.g. examples of aggregation are the sum, the mean, etc.).

However, analyzing the legal background of the particular value of equity in
water distribution, we realized that certain aggregations might not be acceptable
from a legal point of view. In particular, legal requirements may often request to
do the appropriate actions in each moment and only looking for the immediate
outcome, instead of focusing on an rather long term optimization. Due to this
fact, we defined then another concept, which is value-admissible behaviours:

Definition 1 (Value-Admissible Behaviour). A value-admissible behav-
iour for a value v is a constraint criteria for plans P that characterizes the subset
B(P,�v) that are admissibly aligned with the value, based on state/action-level
alignment via a preorder �v.

In [8] we trained some policies with reinforcement learning that were able
to adhere to specific behaviours regarding equity while having the objective to
maximize the expected average path alignment (i.e. semantics of paths). We
showed the relevance and the computational feasibility of considering value-
admissibility towards value aligning sequences of decisions.

However, limitations exist for reinforcement learning techniques when try-
ing to cope with value-admissible behaviours. Most surveyed RL algorithms
([3,4,6,8,13], for different reasons) will have problems to correctly represent
behaviours when the Markov assumption for the policy holds no more (i.e. when
the behaviour admissibility depends explicitly on past states/actions).

3 Learning Value-Awareness with Value Taxonomies

So far we discussed some ways to achieve value-aligned decision making within
newly introduced value-admissible behaviours. But we took for granted that val-
ues are encoded as state preferences inside agents, and we as a society might not
know how to model certain complex values with such detail. We want to analyze
what aspects the agents consider when taking decisions, regarding their value
system [14]. We claim that these state preferences, and admissible behaviours
should be learned by analyzing (human) agent actions and plans.

A new fine-grained representation needs to be used in order to gather prop-
erties of states into value alignment criteria. We found context-based value
taxonomies [12] a nice candidate towards that end. Instances of value tax-
onomies (Definition 2) will be able not only to define state-level value preference
representation or path value-admissibility, but also to provide mechanisms of
explainability with regard to value-alignment based on relevant state or path
properties. Moreover, different taxonomies may be used to context-aware aggre-
gate values [9] together (i.e. solidarity and equity could both be abstract value
concepts for another taxonomy for the value of reciprocity). An example of a
context-based taxonomy from [12] is seen in Fig. 1a.

482 A. Holgado-Sánchez

Definition 2 ((Context-based) Value Taxonomy). A (context-based)
value taxonomy V (c) = (N,E, Ic), based on a context c is defined as a directed
acyclic graph, where:

1. The set of nodes N = Nl ∪ Nϕ represents value concepts, and it is composed
of two types of nodes:
i) those that are specified through labels, representing abstract value concepts

like ‘fairness’ or ‘reciprocity’;
ii) those that are specified through concrete properties of states, such as the

Gini Index [7,11] in allocation problems.
2. The set of edges E : N × N is a set of directed edges (np, nc) ∈ E that

represent the relation between value concepts np and nc (parent and child
nodes, respectively) illustrating that the value concept np is a more general
concept than nc.

3. The importance function Ic : N → COD assigns an importance value from
the codomain COD to value concepts in N , depending on the context c.. The
condomain could be an interval [−1, 1], for instance.

Fig. 1. A context-based value taxonomy for fairness [12] (left) and the suggested CEP
rule learnable elements [2] (right)

The alignment of an entity e’s actions (or states, or behaviours) with a
context-based value taxonomy V (c) is then specified in Eq. (1):

A(e, V (c)) =
⊕

p∈NΦ,c

f(sd(p, e), Ic(p)), (1)

where NΦ,c represents the property nodes of the taxonomy V (c) and sd(p, e)
represents the degree of satisfaction of property p with respect to the e’s actions.
The function f is used to take into account the importance of property nodes
when considering their degree of satisfaction, whereas

⊕
is used to aggregate

those values for all property nodes in V (c).

Towards Learning Context-Based Value Taxonomies 483

The work in [12] does not specify a concrete “aggregation language” to define
the aggregation function

⊕
and the function f . This “aggregation language”

may not have a clear accepted definition and we consider that learning it is the
way to go to have a proper relevant taxonomic definition of our values. To do so,
we propose using work by Bruns et al. [2], in the context of CEP rule learning.
Specifically, we propose to learn instantiations of aggregation languages where (in
Fig. 1b) CONDITIONS would characterize taxonomy contexts and ACTIONS
would consist of calculating a suitable A(e, V (c)) as in (1).

The learning of such instantiations could be accomplished by observing the
state transitions that take place in a given system or environment and comparing
those transitions with possible alternative ones that an agent (or group of agents)
would have chosen. The idea here is that state transitions are partially due to
the values an agent has, since they are the results of the actions an agent has
chosen based on its values. Other possible actions would lead to other possible
state transitions but are not preferred by the agent with respect to her value
system. The resulting framework is shown in Fig. 2.

Fig. 2. Schema of the proposed taxonomy-based value learning from events.

Readings of such streams of preferences would lead us to learn no only tax-
onomies for state preferences, but also identifying admissible behaviours regard-
ing different agent perspectives. Although a bias might arise considering that
values are not the only force striving action, this could be sorted out with recent
work assessing how much norms and values really influence behaviour [5,11].

4 Conclusions

This extended abstract aims at reviewing work around decision-making with
awareness of values, identifying a future line of work for a thesis around the
topic of value learning. We defend that an useful value representation providing
both explainability and computational resourcefulness are the context-sensitive
value taxonomies; and that an useful value taxonomy learning method could
be borrowed from Automatic CEP (Complex Event Processing) rule learning.

484 A. Holgado-Sánchez

We claim that this technique would be able to process streams of value-aware
agent preferences and actions to characterize complete value systems and value-
admissible behaviours in any general decision-making context.

Acknowledgements. This work has been supported by grant VAE: TED2021-
131295B-C33 funded by MCIN/AEI/ 10.13039/501100011033 and by the “European
Union NextGenerationEU/PRTR”.

References

1. Bench-Capon, T., Atkinson, K., McBurney, P.: Using argumentation to model
agent decision making in economic experiments. Auton. Agents Multi-Agent Syst.
25, 183–208 (2012)

2. Bruns, R., Dunkel, J., Seremet, S.: Learning ship activity patterns in maritime
data streams: enhancing cep rule learning by temporal and spatial relations and
domain-specific functions. IEEE Trans. Intell. Transp. Syst. (2023). https://doi.
org/10.1109/TITS.2023.3282246

3. Christiano, P., Leike, J., Brown, T.B., Martic, M., Legg, S., Amodei, D.: Deep
reinforcement learning from human preferences (2023)

4. Dalal, G., Dvijotham, K., Vecerik, M., Hester, T., Paduraru, C., Tassa, Y.: Safe
exploration in continuous action spaces (2018)

5. Fagundes, M.S., Ossowski, S., Cerquides, J., Noriega, P.: Design and evalua-
tion of norm-aware agents based on normative markov decision processes. Int.
J. Approximate Reasoning 78, 33–61 (2016). https://doi.org/10.1016/j.ijar.2016.
06.005, https://www.sciencedirect.com/science/article/pii/S0888613X16300871

6. Fürnkranz, J., Hüllermeier, E., Cheng, W., Park, S.H.: Preference-based reinforce-
ment learning: a formal framework and a policy iteration algorithm. Mach. Learn.
89, 123–156 (2012)

7. Holgado-Sánchez, A., Arias, J., Moreno-Rebato, M., Ossowski, S.: Value-admissible
behaviours in goal-oriented value-aware decision-making. In: Submitted to the 20th
European Conference on Multi-Agent Systems (EUMAS 2023) (2023)

8. Holgado-Sánchez, A., Billhardt, H., Ossowski, S.: Learning value-aligned actions in
goal-oriented decision-making. In: Submitted to Value Engineering in AI (VALE
2023) Workshop, Affiliated with the 26th European Conference on Artificial Intel-
ligence (ECAI 2023)

9. Lera-Leri, R., Bistaffa, F., Serramia, M., Lopez-Sanchez, M., Rodriguez-Aguilar,
J.: Towards pluralistic value alignment: aggregating value systems through Lp-
regression. In: Proceedings of the 21st International Conference on Autonomous
Agents and Multiagent Systems, pp. 780–788. AAMAS 2022, International Foun-
dation for Autonomous Agents and Multiagent Systems, Richland, SC (2022)

10. Montes, N., Osman, N., Sierra, C., Slavkovik, M.: Value engineering for
autonomous agents. CoRR abs/2302.08759 (2023). https://doi.org/10.48550/
arXiv.2302.08759, https://doi.org/10.48550/arXiv.2302.08759

11. Montes, N., Sierra, C.: Synthesis and properties of optimally value-aligned norma-
tive systems. J. Artif. Intell. Res. 74, 1739–1774 (2022). https://doi.org/10.1613/
jair.1.13487

12. Osman, N., d’Inverno, M.: A computational framework of human values for ethical
AI (2023)

https://doi.org/10.1109/TITS.2023.3282246
https://doi.org/10.1109/TITS.2023.3282246
https://doi.org/10.1016/j.ijar.2016.06.005
https://doi.org/10.1016/j.ijar.2016.06.005
https://www.sciencedirect.com/science/article/pii/S0888613X16300871
https://doi.org/10.48550/arXiv.2302.08759
https://doi.org/10.48550/arXiv.2302.08759
https://doi.org/10.48550/arXiv.2302.08759
https://doi.org/10.1613/jair.1.13487
https://doi.org/10.1613/jair.1.13487

Towards Learning Context-Based Value Taxonomies 485

13. Rodriguez-Soto, M., Serramia, M., Lopez-Sanchez, M., Rodriguez-Aguilar, J.A.:
Instilling moral value alignment by means of multi-objective reinforcement learn-
ing. Ethics Inf. Technol. 24(1), 1–17 (2022). https://doi.org/10.1007/s10676-022-
09635-0

14. Schwartz, S.H.: Universals in the content and structure of values: theoretical
advances and empirical tests in 20 countries. In: Advances in Experimental Social
Psychology, vol. 25, pp. 1–65. Elsevier (1992)

15. Sierra, C., Osman, N., Noriega, P., Sabater-Mir, J., Perelló, A.: Value alignment: a
formal approach. CoRR abs/2110.09240 (2021), https://arxiv.org/abs/2110.09240

16. van der Weide, T.L., Dignum, F., Meyer, J.-J.C., Prakken, H., Vreeswijk, G.A.W.:
Practical reasoning using values. In: McBurney, P., Rahwan, I., Parsons, S.,
Maudet, N. (eds.) ArgMAS 2009. LNCS (LNAI), vol. 6057, pp. 79–93. Springer,
Heidelberg (2010). https://doi.org/10.1007/978-3-642-12805-9 5

https://doi.org/10.1007/s10676-022-09635-0
https://doi.org/10.1007/s10676-022-09635-0
https://arxiv.org/abs/2110.09240
https://doi.org/10.1007/978-3-642-12805-9_5

Virtual Environments via Natural
Language Agents

Andrea Gatti(B)

DIBRIS - University of Genoa, Genoa, Italy

andrea.gatti@edu.unige.it

Abstract. VEsNA is a framework for managing Virtual Environments
via Natural Language Agents. It allows users to interact with agents
using natural language and makes it easy to understand the action of
agents through a modern virtual interface.

Keywords: Multi-agent Systems · Natural Language Processing ·
Virtual Reality

1 Introduction and Motivation

The recent advent of ChatGPT has led to much discussion in the world of scien-
tific research. In addition to generating answers that are indeed plausible, much
of the credit for these discussions goes to the rapid spread of the tool. If we
check Google Trends1 for Google searches containing “ChatGPT” by comparing
them with two very close research fields, “Chatbot” and “Generative Artificial
Intelligence”, we obtain the graph visible in Fig. 1.

Fig. 1. Google Trend Analysis between “ChatGPT”, “ChatBot” and “Generative AI”

1 https://trends.google.com/trends/explore?date=2021-01-01%202023-07-13&
q=ChatGPT,%2Fm%2F01305y,%2Fg%2F11khkg2rwf&hl=it. visited on 2023, July
14th.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
V. Malvone and A. Murano (Eds.): EUMAS 2023, LNAI 14282, pp. 486–492, 2023.
https://doi.org/10.1007/978-3-031-43264-4_36

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-43264-4_36&domain=pdf
http://orcid.org/0009-0003-0992-4058
https://trends.google.com/trends/explore?date=2021-01-01%202023-07-13&q=ChatGPT,%2Fm%2F01305y,%2Fg%2F11khkg2rwf&hl=it.
https://trends.google.com/trends/explore?date=2021-01-01%202023-07-13&q=ChatGPT,%2Fm%2F01305y,%2Fg%2F11khkg2rwf&hl=it.
https://doi.org/10.1007/978-3-031-43264-4_36

Virtual Environments via Natural Language Agents 487

This gap between the popularity of the tool and the corresponding areas of
research suggests that general interest increases when research finds interfaces
that make the technology accessible in a natural way to non-expert users. Chat-
GPT presents itself with an interface to which users have long been accustomed.

For this very purpose, VEsNA2 is introduced, a framework for Virtual Envi-
ronments via Natural Language Agents. VEsNA allows users to interact with a
virtual environment by writing messages in natural language. Within the virtual
environment live static objects that can be added or removed, and intelligent
virtual agents with a physical body. We presented a first version of the frame-
work in [12] at the AREA (Second Workshop on Agents and Robots for reliable
Engineered Autonomy) workshop3in the context of IJCAI (International Joint
Conferences on Artificial Intelligence Organization) on July 24Th, 2022 and we
extended this work in [11].

2 Background

VEsNA exploits three opensource technologies: Rasa for the Natural Language
Processing part, JaCaMo for the Multiagent Systems part and Godot for the
Virtual Environment part.

Rasa. Rasa [18] is an open-source generative conversational AI platform that
allows users to implement their own chatbot. Users define a set of intents with
which a message can be sent and a set of actions that the chatbot can perform.
The simplest actions only involve a message on the chat, but more complex
actions can be written in Python as complete classes. Intents and actions are
ordered within user-defined stories that describe the possible course of a con-
versation.

Godot. Godot is a free, all-in-one, cross-platform game engine that makes
it easy to create 2D and 3D games. [13] Godot makes it possible to manage a
virtual environment by handling objects as nodes in a tree. Nodes have different
types with different characteristics that implement different physical qualities. It
is also open to virtual reality and allows scripts to be attached to nodes. Scripts
can be written either in GDScript, Godot’s native language, or in C# via a
plugin that compiles the written code.

JaCaMo. JaCaMo [4,5] “is a framework for Multi-Agent Programming that
combines three separate technologies, each of them being well-known on its
own and developed for a number of years so they are fairly robust and fully-
fledged” [6]. JaCaMo uses Jason for programming autonomous agents, Cartago
for programming environmental artifacts and Moise for programming multi-
agent organisations. It allows the programming of multi-agent systems following
the BDI paradigm. Jason extends the AgentSpeak(L) language and allows agents
to be programmed in a logic programming language. Agents can be extended
using artefacts written in Java.

2 https://github.com/driacats/VEsNA.
3 https://areaworkshop.github.io/AREA2022/.

https://github.com/driacats/VEsNA
https://areaworkshop.github.io/AREA2022/

488 A. Gatti

3 Related Work

Our work aims to study the intersection of software agents, Virtual Reality and
Natural Language Processing. The section is subdivided into three parts: (1)
Software Agents and Virtual Reality, (2) Software Agents and Natural Language
Processing and (3) Software Agents, Virtual Reality and Natural Language Pro-
cessing.

Software Agents and Virtual Reality. One of the first appearance of logic pro-
gramming and Virtual Reality together is in 1999 with LogiMOO [19]. LogiMOO
exploits Prolog for distributing group-work over the internet in user-crafted vir-
tual places, where virtual objects and agents live.

In the Master Thesis by N. Poli dating back 2018 [17], simple Belief-Desire-
Intention agents were implemented using a lightweight Prolog engine, tuProlog
[9], that overcame some limitations of UnityProlog4, an existing Prolog inter-
preter compatible with Unity3D. A roadmap to exploit game engines to model
MAS that also discusses the results achieved in [17] has been published by S.
Mariani and A. Omicini in 2016 [16].

The ThinkEngine [1] is a plugin for Unity that allows developers to program
“Brains” using Answer Set Programming, ASP [14,15].

A. Brännström and J. C. Nieves in [7] introduce UnityIIS, a lightweight
framework for implementing intelligent interactive systems that integrate sym-
bolic knowledge bases for reasoning, planning, and rational decision-making in
interactions with humans. This is done by integrating Web Ontology Language
(OWL)-based reasoning [3] and ASP-based planning software into Unity.

Software Agents and Natural Language Processing. One of the first works
combining Software Agents and Natural Language Processing dates back almost
thirty years ago: E. Csuhaj-Varjú described a multi-agent framework for gener-
ating natural languages, motivated by grammar systems from formal language
theory [8].

Ten years later, a project about understanding a natural language input
using multiagent system techniques was presented by M. M. Aref [2]. In 2004,
V. Y. Yoon et al. proposed in [21] a natural language interface for a multi-agent
system.

More recently, and more consistently with our work, S. Trott et al. described
an implemented system that supports deep semantic natural language under-
standing for controlling systems with multiple simulated robot agents [20].

Software Agents, Virtual Reality and Natural Language Processing. The pro-
posed work represents a natural evolution of the seminal work described in
[11] and [12] that, to the best of my knowledge, is the first to integrate Soft-
ware Agents, Virtual Reality and Natural Language Processing together. There,
together with professor V. Mascardi, I introduce a prototype of VEsNA, a frame-
work for managing Virtual Environments via Natural Language Agents. VEsNA
is a general-purpose, domain-free and flexible framework that allows users to

4 https://github.com/ianhorswill/UnityProlog.

https://github.com/ianhorswill/UnityProlog

Virtual Environments via Natural Language Agents 489

interact with a virtual environment by adding and removing objects using nat-
ural language.

In [10], together with professor V. Mascardi and Angelo Ferrando, I presented
a policy for Rasa [18] that works as online runtime verification monitor.

4 Design and Implementation

Fig. 2. Architecture of VEsNA

VEsNA is a general-purpose, domain-free, scalable and flexible framework that
allows users to interact with a virtual environment using natural language. A
schema of the architecture is visible in Fig. 2. Users see a chat and a virtual
scene viewed from the outside as the interface. First, the framework enables nat-
ural language communication between users and the multi-agent system (MAS).
Within the MAS, one agent, called prompter, is solely responsible for adding and
removing objects from the scene. Second, the framework enables communication
between the MAS and virtual reality. The prompter and Godot communicate
with structured messages in JSON format using a Websocket connection. The
prompter, in particular, is able to add objects with a global reference to the
entire scene (e.g., “Add a table in front on the right”) or by referring to one of
the objects already in the scene (e.g., “Add a chair to the left of the table”).
Objects added by the prompter are static and cannot be moved.

The framework also allows intelligent agents to be added to the scene. MAS
implements the brain of the agents while Godot implements the physical body.
The brain and its body also communicate with JSON messages exchanged using
the Websocket protocol. We call the brain and body pair embodied agent. Each
embodied agent has its own private port for internal communications. Thus, the
brain has access only to that information to which the physical body has access

490 A. Gatti

and not to all the information in the scene. When users add an embodied agent
to the scene the prompter creates a new agent in the MAS and a new body in
the scene and tells both a port on which to communicate. From the time the
agent is created forward all instructions that come from the user to the agent
are routed directly to the agent.

The agent is able to move and see objects, although vision is very rudimentary
for the time being. The agent part of the embodied agent does not take advantage
of all the capabilities of JaCaMo and in particular only performs the actions it
knows without yet being able to put them together to find a nontrivial solution.

The framework implements connections between components with well-
defined JSON messages that allow for the eventual replacement of one of the
components with an equivalent API-compliant one. The framework also imple-
ments a runtime verification monitor to ensure the correctness of communications
between user and chatbot, presented in [10].

5 Conclusions and Future Work

The framework is in an early stage of development that makes it possible to
understand its potential even though it is still in a very primordial stage. The
case study that will be considered for implementation is the theater. In this
context the embodied agents will be the actors and the static objects will be
the props instead, and the framework will act as an assistant director helping
a hypothetical playwright virtually visualize the plot he or she is writing. The
theatrical context will also allow us to study different types of goals, from the
least to the most abstract. If in scripts each actor has a sequence of lines and
directions that he or she interprets with limited freedom, in canovacci, on the
other hand, he or she has more freedom, knowing only the final goal of his or
her character and some indications about character and relationships with the
other actors. The framework should therefore provide a sufficiently nourished
set of actions that can be performed by the actors, actions that can be both
physical and communicative with the other actors. It will also need to be able
to take in input and handle complex, abstract goals and check during execution
whether changes have occurred that necessitate a change of plan. Actors will be
influenced in their actions by their own emotions and the relationships they have
with other agents and will communicate with each other using natural language,
which is also understandable to users.

The framework will also implement an ontology for describing agent knowl-
edge and a runtime verification system that checks the correctness of messages
exchanged between components.

When this part of the implementation achieves stability and usability, then
new challenges will be faced, particularly immersing users in virtual reality by
making them part of the scene and allowing them to communicate directly with
embodied agents without having a chat as an intermediary. A project in this
area of research has potential spin-offs in entertainment (for the creation and
enjoyment of content with opportunities for interaction), training (if immersed

Virtual Environments via Natural Language Agents 491

in virtual reality, users can be exposed to realistic situations that allow them
to learn how to handle or execute certain instructions), and rehabilitation (if
immersed in virtual reality, users can perform rehabilitation exercises together
with a nonhuman instructor).

References

1. Angilica, D., Ianni, G., Pacenza, F.: Declarative AI design in unity using answer set
programming. In: IEEE Conference on Games, CoG 2022, Beijing, China, August
21–24, 2022, pp. 417–424. IEEE (2022). https://doi.org/10.1109/CoG51982.2022.
9893603

2. Aref, M.M.: A multi-agent system for natural language understanding. In: IEMC
2003. Managing Technologically Driven Organizations: The Human Side of Innova-
tion and Change (IEEE Cat. No.03CH37502), pp. 36–40 (2003). https://doi.org/
10.1109/KIMAS.2003.1245018

3. Bechhofer, S., et al.: OWL web ontology language reference. recommendation. In:
World Wide Web Consortium (W3C) (2004). http://www.w3.org/TR/owl-ref/

4. Boissier, O., Bordini, R.H., Hubner, J., Ricci, A.: Multi-agent Oriented Program-
ming: Programming Multi-agent Systems Using JaCaMo. MIT Press, Cambridge
(2020)

5. Boissier, O., Bordini, R.H., Hübner, J.F., Ricci, A., Santi, A.: Multi-agent ori-
ented programming with JaCaMo. Sci. Comput. Program. 78(6), 747–761 (2013).
https://doi.org/10.1016/j.scico.2011.10.004

6. Boissier, O., Bordini, R.H., Hübner, J.H., Ricci, A., Santi, A.: Jacamo project.
http://jacamo.sourceforge.net/

7. Brännström, A., Nieves, J.C.: A Framework for developing interactive intelligent
systems in unity. In: Amit Chopra, J.D., Zalila-Wenkstern, R. (eds.) Engineering
Multi-Agent Systems (EMAS 2022) (2022). https://emas.in.tu-clausthal.de/2022/
papers/paper12.pdf

8. Csuhaj-Varjú, E.: Grammar systems: a multi-agent framework for natural language
generation. In: Paun, G. (ed.) Mathematical Aspects of Natural and Formal Lan-
guages, World Scientific Series In Computer Science, vol. 43, pp. 63–78. World
Scientific (1994). https://doi.org/10.1142/9789814447133 0004

9. Denti, E., Omicini, A., Ricci, A.: Multi-paradigm java-prolog integration in tuPro-
log. Sci. Comput. Program. 57(2), 217–250 (2005). https://doi.org/10.1016/j.scico.
2005.02.001

10. Ferrando, A., Gatti, A., Mascardi, V.: RV4Rasa: a formalism-agnostic runtime ver-
ification framework for verifying chat-bots in rasa. In: Proceedings of the 6th Inter-
national Workshop on Verification and Monitoring at Runtime Execution (VOR-
TEX 2023), July 18, 2023, Seattle, WA, USA. ACM, New York, NY, USA (2023)

11. Gatti, A., Mascardi, V.: Towards VEsNA, a framework for managing virtual envi-
ronments via natural language agents. In: Cardoso, R.C., Ferrando, A., Papacchini,
F., Askarpour, M., Dennis, L.A. (eds.) Proceedings of the Second Workshop on
Agents and Robots for reliable Engineered Autonomy, AREA@IJCAI-ECAI 2022,
Vienna, Austria, 24th July 2022. EPTCS, vol. 362, pp. 65–80 (2022). https://doi.
org/10.4204/EPTCS.362.8

12. Gatti, A., Mascardi, V.: VEsNA, a framework for virtual environments via natural
language agents and its application to factory automation. Robotics 12(2), 46
(2023). https://doi.org/10.3390/robotics12020046

https://doi.org/10.1109/CoG51982.2022.9893603
https://doi.org/10.1109/CoG51982.2022.9893603
https://doi.org/10.1109/KIMAS.2003.1245018
https://doi.org/10.1109/KIMAS.2003.1245018
http://www.w3.org/TR/owl-ref/
https://doi.org/10.1016/j.scico.2011.10.004
http://jacamo.sourceforge.net/
https://emas.in.tu-clausthal.de/2022/papers/paper12.pdf
https://emas.in.tu-clausthal.de/2022/papers/paper12.pdf
https://doi.org/10.1142/9789814447133_0004
https://doi.org/10.1016/j.scico.2005.02.001
https://doi.org/10.1016/j.scico.2005.02.001
https://doi.org/10.4204/EPTCS.362.8
https://doi.org/10.4204/EPTCS.362.8
https://doi.org/10.3390/robotics12020046

492 A. Gatti

13. Godot: Godot: Online Resource. https://godotengine.org
14. Lifschitz, V.: Action languages, answer sets, and planning. In: Apt, K.R., Marek,

V.W., Truszczynski, M., Warren, D.S. (eds.) The Logic Programming Paradigm.
Artificial Intelligence, pp. 357–373. Springer, Heidelberg (1999). https://doi.org/
10.1007/978-3-642-60085-2 16

15. Lifschitz, V.: Answer Set Programming. Springer, Cham (2019). https://doi.org/
10.1007/978-3-030-24658-7

16. Mariani, S., Omicini, A.: Game engines to model MAS: a research roadmap. In:
Santoro, C., Messina, F., Benedetti, M.D. (eds.) 17th Workshop “From Objects to
Agents” co-located with 18th European Agent Systems Summer School (EASSS
2016), Catania, Italy, July 29–30, 2016. CEUR Workshop Proceedings, vol. 1664,
pp. 106–111. CEUR-WS.org (2016). http://ceur-ws.org/Vol-1664/w18.pdf

17. Poli, N.: Game Engines and MAS: BDI & artifacts in Unity, Master’s thesis, Alma
Mater Studiorum Universita di Bologna (2018)

18. Rasa: Rasa. https://rasa.com
19. Tarau, P., Bosschere, K.D., Dahl, V., Rochefort, S.: LogiMOO: an extensible multi-

user virtual world with natural language control. J. Log. Program. 38(3), 331–353
(1999). https://doi.org/10.1016/S0743-1066(98)10028-6

20. Trott, S., Appriou, A., Feldman, J., Janin, A.: Natural language understanding and
communication for multi-agent systems. In: 2015 AAAI Fall Symposia, Arlington,
Virginia, USA, November 12–14, 2015, pp. 137–141. AAAI Press (2015). http://
www.aaai.org/ocs/index.php/FSS/FSS15/paper/view/11675

21. Yoon, V.Y., Rubenstein-Montano, B., Wilson, T., Lowry, S.: Natural language
interface for a multi agent system. In: 10th Americas Conference on Information
Systems, AMCIS 2004, New York, NY, USA, August 6–8, 2004, p. 215. Association
for Information Systems (2004). http://aisel.aisnet.org/amcis2004/215

https://godotengine.org
https://doi.org/10.1007/978-3-642-60085-2_16
https://doi.org/10.1007/978-3-642-60085-2_16
https://doi.org/10.1007/978-3-030-24658-7
https://doi.org/10.1007/978-3-030-24658-7
http://ceur-ws.org/Vol-1664/w18.pdf
https://rasa.com
https://doi.org/10.1016/S0743-1066(98)10028-6
http://www.aaai.org/ocs/index.php/FSS/FSS15/paper/view/11675
http://www.aaai.org/ocs/index.php/FSS/FSS15/paper/view/11675
http://aisel.aisnet.org/amcis2004/215

Reasoning About Smart Parking

Silvia Stranieri(B)

University of Naples Federico II, Naples, Italy
silvia.stranieri@unina.it

Abstract. Efficient parking management can lead to reduced traffic
congestion, lower fuel consumption, decreased air pollution, improved
overall urban mobility, and it constitutes a challenge in the automotive
field. This work faces the problem by following both algorithmic and for-
mal approaches, relying on practical implementation and rigorous anal-
ysis and verification.

1 Introduction

In today’s era, the Internet of Things (IoT) is increasingly becoming an essential
part of our daily lives [19]. The integration of IoT can be observed in various
aspects, including autonomous vehicles [34], smart cities [18], and autonomous
vehicular networks [2]). This trend is expected to continue, as evidenced by a
study [31] predicting that by 2050, nearly 65% of the population will reside in
urban areas. This projected increase in urban population would inevitably lead
to a rise in the number of vehicles on city roads, consequently exacerbating
several related issues such as traffic congestion, as indicated by a study [30]
ranking Rome as one of the European cities with the longest traffic jam delays.
Furthermore, this surge in vehicles also contributes to increased gas emissions
[29] and a greater demand for parking spaces.

The parking problem refers to the challenges and issues associated with effi-
ciently managing parking spaces in urban areas. IoT offers promising solutions
to address the parking problem by leveraging interconnected devices, sensors,
and data analysis. Smart parking systems equipped with IoT technology can
collect real-time data about parking space availability, occupancy, and duration.
Furthermore, parking behavior analysis and prediction based on collected data
can help optimize parking space allocation, traffic flow management, and pricing
strategies. The detection of available parking slots poses a significant challenge in
vehicular ad hoc networks, impacting various aspects. Firstly, the search for an
unoccupied parking slot by drivers is a major cause of traffic congestion, as they
repeatedly navigate the same roads until they find an available spot. Addition-
ally, the psychological stress experienced by drivers must be considered. Lastly,
the issue of environmental pollution is crucial. As highlighted in a study by [20],
assessing vehicle energy consumption and urban air quality is essential.

In addressing complex problems, such as those encountered in vari-
ous domains including technology, science, and society, employing different
approaches becomes essential for gaining comprehensive insights and achieving
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
V. Malvone and A. Murano (Eds.): EUMAS 2023, LNAI 14282, pp. 493–499, 2023.
https://doi.org/10.1007/978-3-031-43264-4_37

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-43264-4_37&domain=pdf
http://orcid.org/0000-0002-6952-0368
https://doi.org/10.1007/978-3-031-43264-4_37

494 S. Stranieri

optimal solutions. This notion holds true when tackling challenges using both
algorithmic and formal methods. By approaching the same problem from mul-
tiple perspectives, we can leverage the unique strengths of each approach and
gain a deeper understanding of the problem’s intricacies.

In literature, the parking problem is mainly treated with algorithmic meth-
ods, which offer a practical and efficient approach to problem-solving [1,5–
8,11,12,14–16,32], but also with formal methods, that provide a rigorous and
systematic approach to problem-solving, drawing upon mathematical models,
logical specifications, and formal strategic reasoning [3,17,21,22,26,28].

The thesis [33] advances the state of the art by employing techniques from
both approaches. Indeed, when applied to the same problem, algorithmic and
formal methods allows us to benefit from the strengths of each approach. Algo-
rithmic methods provide practical implementations, while formal methods offer
rigorous analysis and verification. This complementary nature enables us to thor-
oughly explore problem spaces, refine solutions, and make informed decisions.

2 An Algorithmic Solution

Extensive research has been conducted on solving a well-known optimization
problem by drawing inspiration from the behavior of real ants in nature. This
optimization problem is commonly referred to as the ant colony optimization
problem (ACO). The aim is to utilize this solution approach in a decentralized
manner to tackle the parking problem. However, the approach deviates from
traditional ACO principles. In typical ACO scenarios, ants are attracted to paths
with a higher concentration of pheromone, a chemical substance released by
ants that have previously traversed the same path. In contrast, in the proposed
scenario, the pheromone acts as a deterrent for drivers to avoid overcrowded
situations. Specifically, when a driver follows a particular path, the associated
pheromone is updated to inform other drivers that the path may be congested.
This mechanism ensures that when a driver needs to choose a path, they will
opt for the one with less congestion by following the pheromone trail. As a
result, a context-aware and self-organizing network is established, promoting
an even distribution of vehicles among available parking slots. This approach
also contributes to lower gas emissions as drivers can avoid multiple rounds of
searching for a parking space.

More precisely, the model configuration can be seen in Fig. 1, where each
driver, that has to park his car, has a starting region that is known, and a
destination region towards which he wants to get as close as possible. Hence, the
graph configuration depends on a fixed destination region for any driver taking
part of the parking process.

For each parking region of the model, and each edge connecting nodes, w
is the distance to walk to reach the destination region, and a is the number
of available parking spots in the region, while d is the distance to travel by
road to reach the destination node of the arc from the source one, and p is the
probability with which each vehicle will visit the destination node of the arc from

Reasoning About Smart Parking 495

Fig. 1. Parking regions graph.

the source one. Since it is a probability, it is a value between zero and one. As
in the standard ACO, this parameter works as the pheromone but, differently
form ACO, it has a repulsive power, rather than an attractive one.

In order to avoid drivers choosing the wrong edges, a coloring mechanism is
provided. “Wrong edges” means edges that push the driver irreversibly away from
the destination, rather than getting him closer to it. Since, at the very beginning
of the execution, there is no pheromone yet to inform drivers of which edges
should be picked and which should not, a graph coloring is needed to prevent
wrong choices that would lead to a bad exploration of the graph. Precisely, a
parameter θ is defined, which indicates the maximum distance that is reasonable
to walk from the parking slot to the destination: (i) the red nodes are those that
do not lead to the destination node, and hence they should be avoided; (ii) the
green nodes are the ones that bring to the destination or to a parking region
within the distance θ; (iii) the yellow is associated to those nodes v having
only one outgoing arc, which is directed only to a node having v among its
adjacent nodes. Such a configuration might be source of annoying loops, and for
this reason it is imposed that yellow nodes should be visited only once by each
vehicle, unless a parking slot is made available in the region: in this last case,
a further visit is allowed to complete possibly the parking process. Clearly, as
in the standard version of ACO, at the beginning, the graph does not provide a
meaningful pheromone information, indeed it has value 1 on every edge. In this
phase, the edge chosen by the driver, among the available ones with the same
amount of pheromone, is the one that maximizes the ratio a

d∗w .
Moreover, in order to make simulate the repulsion mechanism, the pheromone

on an edge is decreased when a vehicle moves to the pointed node and it is
increased when a vehicle leaves the source node. When each vehicle has per-
formed a movement, a total evaporation occurs, meaning that the pheromone is
updated so to make attractive again the edges already visited.

Finally, every time a vehicle visits a node already seen, a constraint relaxation
is applied, that increases the parameter θ.

496 S. Stranieri

3 A Formal Solution

With a formal approach, cars are treated as individual entities in a multi-player
game, engaging in competition for parking spots at entry gates. The proposed
algorithm is based on priorities for the allocation of parking spaces and it ensures
a Nash equilibrium solution. The model definition is explained as follows.

Definition 1. The Parking Game Structure (PGS) is a tuple G = (G,Agt, S, F,
T,R), where:

– G = {g1, g2, ..., gn} is set of gates;
– Agt = {Agtk}k∈G, where Agtk = {a1, a2, ..., alk} be the set of agents at the

gate k ∈ G (i.e., the cars waiting for parking at k), with
⋂n

i=1 Ai = ∅. We let
lk = |Agtk| be the number of cars at the gate k; lk = |Agtk| be the number of
cars at the gate k;

– S = {s1, s2, ..., sm} is the set of parking slots;
– F = {Fk}k∈G, where Fk = (f1, f2, ..., flk) is the list of resilience values for

the agents in Agtk, with fi ∈ [0, 1] for each i ∈ Agtk;
– T = {Tk}k∈G, where Tk = (t1, t2, ..., tlk) is the list of time limits for the

agents in Agtk, where ti ∈ N represents the time the agent i has available for
parking starting from gate gk;

– R = {Rk}k∈G, where Rk = (r1, r2, ..., rm) is the list of reaching-times for the
gate k, where ri ∈ N represents the time needed to reach the parking slot i
from gate gk, for each i ∈ S.

The resilience values for the agents have a twofold usage: first, they create
an ordering system among the agents, which is essential in determining their
prioritization; second, these indexes significantly impact the final preemption
order, which can have a significant effect on the overall outcome. The intuition
is that the higher the resilience the less the priority for the agent. Such resilience
indexes are supposed to be unique, meaning fi �= fj ,∀1 ≤ i < j ≤ n. The
indexes in the set F can either be manually set or automatically determined. In
the case of agents, the resilience index represents their capability. Therefore, a
lower index value indicates a higher priority.

A strategy for an agent involves choosing an appropriate slot. A strategy
profile is a set of n strategies, one for each player, represented as an n-tuple
s̄ = (s̄1, ..., s̄n). It is important to note that it is possible for multiple players to
choose the same strategy. Next, the costs associated with the strategy profile s̄
is defined as a tuple of costs, denoted as c̄ = (c̄1, ..., c̄n). Let B > 0 be a constant
value denoting the highest cost any agent may have for parking.

Definition 2. Let ai ∈ Agt be an agent and s̄ = (s̄1, ..., s̄n) be a strategy profile.
The cost c̄ = (c̄1, ..., c̄n) is such that:

c̄i(s̄) =

⎧
⎪⎨

⎪⎩

fi(ti − ri); if (i)(ti − ri) ≥ 0 &
(ii)(�k �= i : fk < fi ∧ sk = si ∧ (tk − rk) ≥ 0)

B, otherwise

Reasoning About Smart Parking 497

The cost value ci is considered finite if agent ai has sufficient time to reach
the parking slot si and the slot has not been occupied by another agent ak with
lower resilience (fk < fi). In this case, the finite value of ci reflects the amount
of time remaining for the agent after reaching the assigned slot, relative to the
total amount of time available to him. On the other hand, if the cost value is
assigned as highest, B, it represents the worst outcome for agent ai, meaning
that they were unable to park at slot si. The utility of agent i for the strategy
profile s̄ is ui(s̄) = B − c̄i(s̄).

That is, ui(s̄) is the difference between the highest cost B and her actual
cost ci given the strategies s̄. Finally, the social welfare is the sum of utilities of
among all agents in the system.

A strategy profile s is a Nash Equilibrium [27] if for all players i and each
alternate strategy s′

i, we have that ui(si, s−i) ≥ ui(s′
i, s−i).

In other words, no player i can change his chosen strategy from si to s′
i and

thereby improve his utility, assuming that all other players stick the strategies
they have chosen in s. Observe that such a solution is self-enforcing in the sense
that once the players are playing such a solution, it is in every player’s best
interest to stick to his or her strategy. Then, the total cost, denoted as π, of
a strategy s̄ is defined as the sum of all the cost values in the tuple s̄, that is
π(s̄) =

∑
i∈Ag ci.

Experimental results prove that the algorithm presented in this study effi-
ciently determines a Nash equilibrium for allocating parking slots within a
quadratic time frame. It surpasses the performance of a greedy solution by suc-
cessfully satisfying a greater number of parking requests and achieving higher
social welfare. Notably, the Nash algorithm exhibits exceptional effectiveness
when the number of cars matches the number of slots, making it the preferred
choice for meeting agent demands with significantly superior performance.

4 Conclusions

This work explores the parking problem from both an algorithmic and a formal
point of view. Algorithms excel at optimizing processes, allocating resources,
and making informed decisions based on available data. They involve designing
and implementing step-by-step procedures or algorithms to accomplish specific
tasks. Formal methods offer a high level of precision, allowing for the verifica-
tion, validation, and formal specification of systems and processes. They enable
the construction of mathematical models that accurately represent the problem
and its constraints, enabling rigorous analysis and verification of system prop-
erties. By applying formal methods, we can detect and prevent potential issues,
guarantee correctness, ensure safety, and evaluate the performance of systems.

Acknowledgement. This papers is based on the Phd Thesis [33] and the works [1,
4,9,10,13,23–25]. This work is partially supported by the PRIN project RIPER (No.
20203FFYLK).

498 S. Stranieri

References

1. Agizza, M., Balzano, W., Stranieri, S.: An improved ant colony optimization based
parking algorithm with graph coloring. In: Barolli, L., Hussain, F., Enokido, T.
(eds.) AINA 2022. LNNS, vol. 451, pp. 82–94. Springer, Cham (2022). https://doi.
org/10.1007/978-3-030-99619-2_8

2. Alsarhan, A., Al-Ghuwairi, A.R., Almalkawi, I.T., Alauthman, M., Al-Dubai, A.:
Machine learning-driven optimization for intrusion detection in smart vehicular
networks. Wirel. Pers. Commun. 117(4), 3129–3152 (2021)

3. Aminof, B., Murano, A., Rubin, S., Zuleger, F.: Verification of agent navigation in
partially-known environments. Artif. Intell. 308, 103724 (2022)

4. Arif, M., Balzano, W., Fontanella, A., Stranieri, S., Wang, G., Xing, X.: Integration
of 5G, VANETs and blockchain technology. In: TrustCom, pp. 2007–2013 (2020)

5. Balzano, M., Balzano, W., Sorrentino, L., Stranieri, S.: Smart destination-based
parking for the optimization of waiting time. In: Barolli, L., Amato, F., Moscato,
F., Enokido, T., Takizawa, M. (eds.) WAINA 2020. AISC, vol. 1150, pp. 1019–1027.
Springer, Cham (2020). https://doi.org/10.1007/978-3-030-44038-1_94

6. Balzano, W., Barbieri, V., Riccardi, G.: Smart priority park framework based on
DDGP3. In: AINA, pp. 674–680. IEEE Computer Society (2018)

7. Balzano, W., Galiano, W., Stranieri, S.: PaSy - management of a smart-parking
system based on priority queues. In: Barolli, L., Woungang, I., Enokido, T. (eds.)
AINA 2021. LNNS, vol. 227, pp. 81–90. Springer, Cham (2021). https://doi.org/
10.1007/978-3-030-75078-7_9

8. Balzano, W., Lapegna, M., Stranieri, S., Vitale, F.: Competitive-blockchain-based
parking system with fairness constraints. Soft. Comput. 26(9), 4151–4162 (2022)

9. Balzano, W., Murano, A., Sorrentino, L., Stranieri, S.: Network signal comparison
through waves parameters: a local-alignment-based approach. In: M&N, pp. 1–6.
IEEE (2019)

10. Balzano, W., Murano, A., Sorrentino, L., Stranieri, S.: A smart compact traffic
network vision based on wave representation. In: Barolli, L., Takizawa, M., Xhafa,
F., Enokido, T. (eds.) WAINA 2019. AISC, vol. 927, pp. 870–879. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-15035-8_85

11. Balzano, W., Murano, A., Vitale, F.: V2V-EN - vehicle-2-vehicle elastic network.
Procedia Comput. Sci. 98, 497–502 (2016)

12. Balzano, W., Prosciutto, E., di Covella, B.S., Stranieri, S.: A resource allocation
technique for VANETs inspired to the Banker’s algorithm. In: Barolli, L. (ed.)
3PGCIC 2022. LNCS, vol. 571, pp. 222–231. Springer, Cham (2022). https://doi.
org/10.1007/978-3-031-19945-5_22

13. Balzano, W., Stranieri, S.: ACOp: an algorithm based on ant colony optimization
for parking slot detection. In: Barolli, L., Takizawa, M., Xhafa, F., Enokido, T.
(eds.) WAINA 2019. AISC, vol. 927, pp. 833–840. Springer, Cham (2019). https://
doi.org/10.1007/978-3-030-15035-8_81

14. Balzano, W., Stranieri, S.: COVID-prevention-based parking with risk factor com-
putation. In: Barolli, L., Yim, K., Enokido, T. (eds.) CISIS 2021. LNNS, vol. 278,
pp. 121–130. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-79725-
6_12

15. Balzano, W., Vitale, F.: DiG-park: a smart parking availability searching method
using V2V/V2I and DGP-class problem. In: AINA, pp. 698–703. IEEE Computer
Society (2017)

https://doi.org/10.1007/978-3-030-99619-2_8
https://doi.org/10.1007/978-3-030-99619-2_8
https://doi.org/10.1007/978-3-030-44038-1_94
https://doi.org/10.1007/978-3-030-75078-7_9
https://doi.org/10.1007/978-3-030-75078-7_9
https://doi.org/10.1007/978-3-030-15035-8_85
https://doi.org/10.1007/978-3-031-19945-5_22
https://doi.org/10.1007/978-3-031-19945-5_22
https://doi.org/10.1007/978-3-030-15035-8_81
https://doi.org/10.1007/978-3-030-15035-8_81
https://doi.org/10.1007/978-3-030-79725-6_12
https://doi.org/10.1007/978-3-030-79725-6_12

Reasoning About Smart Parking 499

16. Balzano, W., Vitale, F.: PAM-SAD: ubiquitous car parking availability model
based on V2V and smartphone activity detection. In: De Pietro, G., Gallo, L.,
Howlett, R.J., Jain, L.C. (eds.) KES-IIMSS 2017. SIST, vol. 76, pp. 232–240.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-59480-4_24

17. Berthon, R., Maubert, B., Murano, A., Rubin, S., Vardi, M.Y.: Strategy logic with
imperfect information. ACM Trans. Comput. Log. 22(1), 5:1–5:51 (2021)

18. Ghazal, T.M., et al.: IoT for smart cities: machine learning approaches in smart
healthcare-a review. Future Internet 13(8), 218 (2021)

19. Greengard, S.: The Internet of Things. MIT Press, Cambridge (2021)
20. Höglund, P.G.: Parking, energy consumption and air pollution. Scie. Total Environ.

334, 39–45 (2004)
21. Jameel, F., Zafar, N.A.: Formal modeling and automation of e-payment smart

parking system. In: ICoDT2, pp. 1–6. IEEE (2021)
22. Latif, S., Rehman, A., Zafar, N.A.: NFA based formal modeling of smart parking

system using TLA+. In: ICISCT, pp. 1–6. IEEE (2019)
23. Malvone, V., Stranieri, S.: Towards a model checking tool for strategy logic with

simple goals. In: Proceedings of the 22nd Italian Conference on Theoretical Com-
puter Science, Bologna, Italy, 13–15 September 2021, vol. 3072 of CEUR Workshop
Proceedings, pp. 311–316. CEUR-WS.org (2021)

24. Maubert, B., Murano, A., Pinchinat, S., Schwarzentruber, F., Stranieri, S.:
Dynamic epistemic logic games with epistemic temporal goals. In: ECAI, vol. 325 of
Frontiers in Artificial Intelligence and Applications, pp. 155–162. IOS Press (2020)

25. Maubert, B., Pinchinat, S., Schwarzentruber, F., Stranieri, S.: Concurrent games
in dynamic epistemic logic. In: IJCAI, pp. 1877–1883. ijcai.org (2020)

26. Murano, A., Stranieri, S., Mittelmann, M.: Multi-agent parking problem with
sequential allocation. In: ICAART, pp. 484–492. SCITEPRESS (2023)

27. Nisan, N., Roughgarden, T., Tardos, E., Vazirani, V.V.: Algorithmic Game Theory.
Cambridge University Press, Cambridge (2007)

28. Noviello, F., Mittelmann, M., Murano, A., Stranieri, S.: Parking problem with mul-
tiple gates. In: Mathieu, P., Dignum, F., Novais, P., De la Prieta, F. (eds.) PAAMS
2023. Lecture Notes in Computer Science, vol. 13955, pp. 213–224. Springer, Cham
(2023). https://doi.org/10.1007/978-3-031-37616-0_18

29. Pope Iii, C.A., et al.: Lung cancer, cardiopulmonary mortality, and long-term expo-
sure to fine particulate air pollution. Jama 287(9), 1132–1141 (2002)

30. Statista. Cities with the longest traffic jam delays in Europe in 2019, based on
average number of hours lost per year (2019)

31. Statista. Proportion of population in cities worldwide from 1985 to 2050 (2021)
32. Stranieri, S.: An indoor smart parking algorithm based on fingerprinting. Future

Internet 14(6), 185 (2022)
33. Stranieri, S.: Vehicular ad Hoc Networks: an algorithmic and a game-theoretic

approach. Ph.D. thesis, Universitá di Napoli, Federico II (2022)
34. Wiseman, Y.: Autonomous vehicles. In: Research Anthology on Cross-Disciplinary

Designs and Applications of Automation, pp. 878–889. IGI Global (2022)

https://doi.org/10.1007/978-3-319-59480-4_24
https://doi.org/10.1007/978-3-031-37616-0_18

Towards the Optimization of Speculative
PDES Platforms in Shared-Memory

Multi-core Machines

Federica Montesano(B)

University of Rome Tor Vergata, Rome, Italy

federica.montesano@alumni.uniroma2.eu

Abstract. Speculative parallel discrete event simulation on shared-
memory machines has become a hot field to study due to its exploita-
tion of massively parallel computing systems. This paper reviews various
aspects taken into account during the first two year of the PhD, believing
in their relevance also in the context of agent-based simulation. In par-
ticular, it first focuses on memory-awareness to improve performance of
speculative PDES platforms, it then introduces a new incremental state
saving mechanism leveraging operating system’s services and finally it
describes a way of collecting a global committed state during run-time
execution with minimum delay.

Keywords: parallel discrete event simulation · shared-memory
machines · load-sharing · parallel computing · agent-based simulation ·
communication · cooperation · coordination

1 Introduction

Parallel discrete event simulation (PDES) [1,5,15] provides the support for sim-
ulating large and complex discrete-event systems and along its life researchers
have been designing solutions to exploit computing resources in order to improve
overall performance and scalability.

In PDES, a model is typically partitioned into Logical Processes (LPs), which
are executed across multiple processing units and which process events. In tra-
ditional PDES, threads manage a subset of LPs for a medium-long amount of
time before finding a new binding. To the contrary, a share-everything approach
[8,9,11] allows any thread to manage any LP at any time, allowing the simula-
tion to progress more rapidly due to a short-term binding between threads and
LPs. The latter is the approach we refer to throughout the paper.

LPs need to be synchronized in order to guarantee correctness. Each LP has
a virtual clock to advance its simulation time, to order events to be processed
and to send events to other LPs through message passing interface (MPI). Syn-
chronization among LPs is violated if a LP receives out-of-order events, meaning
events in the past (the timestamp of the event received is lower than the current
LP’s clock). We refer to this as a causality violation. Consequently, to ensure
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
V. Malvone and A. Murano (Eds.): EUMAS 2023, LNAI 14282, pp. 500–506, 2023.
https://doi.org/10.1007/978-3-031-43264-4_38

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-43264-4_38&domain=pdf
http://orcid.org/0000-0002-9875-6601
https://doi.org/10.1007/978-3-031-43264-4_38

Speculative PDES Optimization 501

correct synchronization, a PDES system must satisfy a necessary and sufficient
condition widely known as Local Causality Constraint (LCC) [10]. To satisfy
LCC a synchronization technique must be adopted.

Synchronization techniques fall into two categories: conservative and opti-
mistic. The former strictly avoids causality violations to happen, the latter tol-
erates some causality violations and support state saving and state restoring
mechanism to cope with the violations. Optimistic synchronization is the mech-
anism we refer to throughout the paper, based on the Time Warp algorithm [6].

As a first aspect taken into consideration there is spatial/temporal locality.
As stated at the beginning, our paradigm is share-everything, meaning that
there is no pre-determined partitioning of LPs among threads and that every
thread picks an available LP and processes events destined to it. But nothing
comes without a cost, and some limitations of this approach lie in the need of
concurrently scanning a global pool of events instead of a per-thread queue,
and also in the lack of memory-awareness in both the just mentioned pool and
the actual access to the LPs’ state. Even though the non-blocking nature of
our global pool reduces some problems related to concurrent access to the pool
[11,12], the above limitations practically hinder scalability, so we developed a
mechanism to fully exploit caching hierarchy also in a NUMA-aware way without
increasing the probability of causality violations, as explained in Sect. 2.

As mentioned, optimistic synchronization implies that some mechanism to
restore the correct state of the simulation is implemented. Checkpointing tech-
niques for PDES have been extensively studied in the literature. There are two
main strategies: periodic state saving [17–19] and incremental state saving [2,20].
The former copies the entire LP’s state periodically, the latter copies portions of
LP’s state based on what has been actually accessed (see Fig. 1). We explored a
new incremental state saving mechanism exploiting the operating systems’ mem-
ory protection facility, in order to minimize the intrusiveness given by instru-
mentation techniques.

Fig. 1. Incremental state saving in speculative PDES platforms

As a last aspect considered in this paper, we describe the problem of inspect-
ing a portion of the simulation state during run-time execution. The problem to
tackle in a speculative environment is ensuring that the state being accessed is a

502 F. Montesano

committed one, in order to avoid accessing to a potentially incorrect state due to
causality violations. We define a state as committed if the virtual time of every
LP is lower than or equal to the last computed global virtual time (GVT) [7,16].
The global virtual time is either the smallest local vitual time or the smallest
timestamp of all messages in transit.

Output collection and simulation state inspection (also referred to as state
swapping) have not been comprehensively studied in the literature [3]. Our con-
tribution has been to develop a mechanism to allow an effective access to the
committed global state without hampering simulation execution and in a prompt
manner.

The objective of this paper is to present some results achieved during the
first two years of PhD regarding the optimization of several aspects of specula-
tive PDES in shared-memory platforms to suggest possible application of some
techniques to enhance agent-based simulation performance.

In particular, we present solutions for:

1. exploiting in a better way cache and memory hierarchy without hampering
progress of the simulation or causing over-speculation [14] to improve overall
performance, in Sect. 2

2. improving state saving/restoring in an optimistic environment in order to
reduce memory usage through incremental state saving leveraging memory
protection services1, in Sect. 3

3. collecting the committed global state through state swapping, balancing the
workload of the worker threads, in a prompt manner and without hampering
actual simulation execution [13], in Sect. 4.

2 Locality Based Load-Sharing and NUMA Awareness

In order to fully exploit the benefits of speculative PDES we have leveraged the
concepts of spatial and temporal locality in the following manner: on one hand
we favor batch processing of events destined to LPs which are more likely to
be in closest cache components respect to a worker thread, on the other hand
we develop a window-based mechanism to control the extent of local picking of
events to avoid over-speculation by tuning the window’s width through condi-
tions regarding both the commit rate of the simulation and the event execution’s
granularity. This is depicted in Fig. 2.

Furthermore, we consider an additional aspect regarding memory locality,
that is NUMA awareness: our locality improvement has been extended to take
into consideration also NUMA placement of LPs when trying to pick an event.
Locality based load-sharing is relevant for agent-based simulation to reduce the
communication overhead between agents. We compared our solution with our
baseline speculative simulation platform USE [8], reaching overall better perfor-
mance in terms of throughput (up to 30% speedup) with negligible overhead.
1 The paper Marotta, Montesano, Pellegrini and Quaglia: Incremental Checkpointing
of Large State Simulation Models with Write-Intensive Events via Memory Update
Correlation on Buddy Pages is currently under review.

Speculative PDES Optimization 503

Fig. 2. Spatial/Temporal locality approach

3 Incremental State Saving Exploiting Memory
Protection

Incremental state saving has been studied using profiling and/or instrumentation
techniques [4] in order to detect actually written memory locations and manage
the state saving in a more fine-grained way [23]. Our contribution is based on the
exploitation of operating systems’ write-protection service and on the concept of
buddy pages. In fact, we consider two pages A, B as buddies if they are contigu-
ous and aligned in the segment layout. If these pages are both write-accessed,
we group these two pages into a larger page C, actually managed by the check-
pointing operation even if just one of the single pages has been write-accessed.
During the simulation execution, the write-protection service is switched on/off
when saving/restoring the state in order to support the incremental state saving.

The idea of coalescing pages has been adopted to reduce the costs of the
write-protection, since its execution brings the operating systems to flush inter-
nal memory structures, risking to cause too much overhead. We compared our
solution to an instrumentation-based one, observing a higher throughput respect
to the instrumentation-based technique (22% speedup), and a large memory
reduction respect to the full checkpointing mechanism (about a third of the full
checkpoint). Despite the low level solution, it is likely that its application in
agent-based simulation would still have benefits in terms of overall efficiency of
the state saving procedure.

4 Effective Access to the Committed Global State

In the scenario of fully-shared speculative PDES, when considering the state
swapping problem we have to be sure that the portion of state we are consid-
ering is committed. An additional problem is caused by the promptness of the
approach chosen to make the threads switch from the simulation context to the
state swapping context. The latter aspect is very important both for real-time
applications and agent-based simulation, to guarantee prompt decisions based
on the simulation output. In fact, since agent-based simulation is used to model

504 F. Montesano

social/emergency situations or biological dynamics, one might want to promptly
have access to the simulation output in order to make some decisions. Since this
aspect has not been fully dealt with, we have developed a mechanism to sup-
port the access to a committed global state exploiting Linux kernel’s facilities,
in particular:

1. we developed a two-contexts based mechanism to promptly alert all threads
and make them switch from the simulation context to a new context, desig-
nated to the collection of the committed state of all LPs, namely state swap
activities;

2. the above mentioned mechanism to alert the threads is based on the operating
system’s service called Inter Processor Interrupt [21,22], which allows to send
an interrupt to one or more threads with minimum delay, all managed in
several kernel level modules;

3. we developed a mechanism to balance the workload [24] among the threads
dedicated to the committed state collection, in order to avoid that a thread
which is faster than others in swapping its states returns too early to simu-
lation context, leading to over-optimism in its execution.

We compared our solution with a synchronous signaling mechanism to make
threads switch to the state swapping context, showing the effectiveness of our
solution in terms of promptness and intrusiveness. In fact, our mechanism takes
around 10/30 µs against 300 ms of the synchronous approach to switch from
simulation context to state swapping context, and 1 ms against 10 ms to switch
back.

5 Conclusions

An overview of the results achieved during the first two years of PhD has been
proposed. In particular, a special attention to memory locality has been paid
in order to fully exploit the capabilities of speculative PDES. Continuing, a
new perspective on the implementation of incremental state saving has been
introduced, exploiting memory protection services, along with a memory segment
management scheme based on buddies to reduce the costs associated with the
mentioned service. Finally, we developed a mechanism to promptly alert threads
while executing the simulation to make them switch into another context and
start state swapping operation in order to produce a committed global state of
the simulation, without impeding the actual progress of the simulation.

Future research directions include integrating low level memory pages man-
agement mechanisms to further improve the state swapping operation, and also
dynamically adjust resource usage, mainly LPs’ state, in order to reduce the
memory used by the simulation.

References

1. Andelfinger, P., Köster, T., Uhrmacher, A.: Zero lookahead? Zero problem. The
window racer algorithm. In: Proceedings of the 2023 ACM SIGSIM Conference

Speculative PDES Optimization 505

on Principles of Advanced Discrete Simulation, SIGSIM-PADS 2023, pp. 1–11.
Association for Computing Machinery, New York (2023). https://doi.org/10.1145/
3573900.3591115

2. Carnà, S., Ferracci, S., Santis, E.D., Pellegrini, A., Quaglia, F.: Hardware-assisted
incremental checkpointing in speculative parallel discrete event simulation. In:
2019 Winter Simulation Conference, WSC 2019, National Harbor, MD, USA, 8–11
December 2019, pp. 2759–2770. IEEE (2019). https://doi.org/10.1109/WSC40007.
2019.9004901

3. Cucuzzo, D., D’Alessio, S., Quaglia, F., Romano, P.: A lightweight heuristic-based
mechanism for collecting committed consistent global states in optimistic simula-
tion. In: 11th IEEE International Symposium on Distributed Simulation and Real-
Time Applications, DS-RT 2007, pp. 227–234. IEEE Computer Society (2007).
https://doi.org/10.1109/DS-RT.2007.18

4. Economo, S., Cingolani, D., Pellegrini, A., Quaglia, F.: Configurable and efficient
memory access tracing via selective expression-based x86 binary instrumentation.
In: 24th IEEE International Symposium on Modeling, Analysis and Simulation
of Computer and Telecommunication Systems, MASCOTS 2016, London, United
Kingdom, 19–21 September 2016, pp. 261–270. IEEE Computer Society (2016).
https://doi.org/10.1109/MASCOTS.2016.69

5. Fujimoto, R.M.: Parallel discrete event simulation. Commun. ACM 33(10), 30–53
(1990). https://doi.org/10.1145/84537.84545

6. Fujimoto, R.M.: Performance of time warp under synthetic workloads. In: Pro-
ceedings of the Multiconference on Distributed Simulation, pp. 23–28. Society for
Computer Simulation (1990)

7. Fujimoto, R.M., Hybinette, M.: Computing global virtual time in shared-memory
multiprocessors. ACM Trans. Model. Comput. Simul. 4, 425–446 (1997). https://
doi.org/10.1145/268403.268404

8. Ianni, M., Marotta, R., Cingolani, D., Pellegrini, A., Quaglia, F.: The ultimate
share-everything PDES system. In: Proceedings of the 2018 ACM SIGSIM Con-
ference on Principles of Advanced Discrete Simulation, SIGSIM-PADS 2018, pp.
73–84. Association for Computing Machinery, New York (2018). https://doi.org/
10.1145/3200921.3200931

9. Ianni, M., Marotta, R., Pellegrini, A., Quaglia, F.: Towards a fully non-blocking
share-everything PDES platform. In: 21st IEEE/ACM International Symposium
on Distributed Simulation and Real Time Applications, DS-RT 2017, Rome, Italy,
18–20 October 2017, pp. 25–32. IEEE Computer Society (2017). https://doi.org/
10.1109/DISTRA.2017.8167663

10. Jefferson, D.R.: Virtual time. ACM Trans. Program. Lang. Syst. 7(3), 404–425
(1985). https://doi.org/10.1145/3916.3988

11. Marotta, R., Ianni, M., Pellegrini, A., Quaglia, F.: A lock-free o(1) event pool and
its application to share-everything PDES platforms. In: Proceedings of the 20th
International Symposium on Distributed Simulation and Real-Time Applications,
DS-RT 2016, pp. 53–60. IEEE Press (2016). https://doi.org/10.1109/DS-RT.2016.
33

12. Marotta, R., Ianni, M., Pellegrini, A., Quaglia, F.: A conflict-resilient lock-free
calendar queue for scalable share-everything PDES platforms. In: Proceedings of
the 2017 ACM SIGSIM Conference on Principles of Advanced Discrete Simulation,
SIGSIM-PADS 2017, pp. 15–26. Association for Computing Machinery, New York
(2017). https://doi.org/10.1145/3064911.3064926

https://doi.org/10.1145/3573900.3591115
https://doi.org/10.1145/3573900.3591115
https://doi.org/10.1109/WSC40007.2019.9004901
https://doi.org/10.1109/WSC40007.2019.9004901
https://doi.org/10.1109/DS-RT.2007.18
https://doi.org/10.1109/MASCOTS.2016.69
https://doi.org/10.1145/84537.84545
https://doi.org/10.1145/268403.268404
https://doi.org/10.1145/268403.268404
https://doi.org/10.1145/3200921.3200931
https://doi.org/10.1145/3200921.3200931
https://doi.org/10.1109/DISTRA.2017.8167663
https://doi.org/10.1109/DISTRA.2017.8167663
https://doi.org/10.1145/3916.3988
https://doi.org/10.1109/DS-RT.2016.33
https://doi.org/10.1109/DS-RT.2016.33
https://doi.org/10.1145/3064911.3064926

506 F. Montesano

13. Marotta, R., Montesano, F., Quaglia, F.: Effective access to the committed global
state in speculative parallel discrete event simulation on multi-core machines. In:
Proceedings of the 2023 ACM SIGSIM Conference on Principles of Advanced Dis-
crete Simulation, SIGSIM-PADS 2023, Orlando, FL, USA, 21–23 June 2023, pp.
107–117. ACM (2023). https://doi.org/10.1145/3573900.3591117

14. Montesano, F., Marotta, R., Quaglia, F.: Spatial/temporal locality-based load-
sharing in speculative discrete event simulation on multi-core machines. In:
SIGSIM-PADS 2022: SIGSIM Conference on Principles of Advanced Discrete Sim-
ulation, Atlanta, GA, USA, 8–10 June 2022, pp. 81–92. ACM (2022). https://doi.
org/10.1145/3518997.3531026

15. Pellegrini, A., Quaglia, F.: The ROme OpTimistic simulator: a tutorial. In: an Mey,
D., et al. (eds.) Euro-Par 2013. LNCS, vol. 8374, pp. 501–512. Springer, Heidelberg
(2014). https://doi.org/10.1007/978-3-642-54420-0 49

16. Pellegrini, A., Quaglia, F.: Wait-free global virtual time computation in shared
memory timewarp systems. In: 26th IEEE International Symposium on Computer
Architecture and High Performance Computing, SBAC-PAD 2014, Paris, France,
22–24 October 2014, pp. 9–16. IEEE Computer Society (2014). https://doi.org/
10.1109/SBAC-PAD.2014.38

17. Quaglia, F.: Event history based sparse state saving in time warp. In: Unger, B.W.,
Ferscha, A. (eds.) Proceedings of the 12th Workshop on Parallel and Distributed
Simulation, PADS 1998, Banff, Alberta, Canada, 26–29 May 1998, pp. 72–79. IEEE
Computer Society (1998). https://doi.org/10.1109/PADS.1998.685272

18. Quaglia, F.: Combining periodic and probabilistic checkpointing in optimistic simu-
lation. In: Fujimoto, R.M., Turner, S.J. (eds.) Proceedings of the Thirteenth Work-
shop on Parallel and Distributed Simulation, PADS 1999, Atlanta, GA, USA, 1–4
May 1999, pp. 109–116. IEEE Computer Society (1999). https://doi.org/10.1109/
PADS.1999.766167

19. Quaglia, F.: A cost model for selecting checkpoint positions in time warp parallel
simulation. IEEE Trans. Parallel Distrib. Syst. 12(4), 346–362 (2001). https://doi.
org/10.1109/71.920586

20. Rönngren, R., Liljenstam, M., Ayani, R., Montagnat, J.: Transparent incremental
state saving in time warp parallel discrete event simulation. In: Proceedings of the
Tenth Workshop on Parallel and Distributed Simulation, PADS 1996, pp. 70–77.
IEEE Computer Society, USA (1996). https://doi.org/10.1145/238788.238818

21. Silvestri, E., Milia, C., Marotta, R., Pellegrini, A., Quaglia, F.: Exploiting inter-
processor-interrupts for virtual-time coordination in speculative parallel discrete
event simulation. In: Proceedings of the 2020 ACM SIGSIM Conference on Princi-
ples of Advanced Discrete Simulation, SIGSIM-PADS 2020, pp. 49–59. Association
for Computing Machinery, New York (2020). https://doi.org/10.1145/3384441.
3395985

22. Stallings, W.: Operating Systems: Internals and Design Principles, 7th edn. Pren-
tice Hall Press, USA (2011)

23. Toccaceli, R., Quaglia, F.: DyMeLoR: dynamic memory logger and restorer
library for optimistic simulation objects with generic memory layout. In: 2012
ACM/IEEE/SCS 26th Workshop on Principles of Advanced and Distributed Sim-
ulation, pp. 163–172. IEEE Computer Society, Los Alamitos (2008). https://doi.
org/10.1109/PADS.2008.23

24. Vitali, R., Pellegrini, A., Quaglia, F.: Load sharing for optimistic parallel simula-
tions on multi core machines. ACM SIGMETRICS Perform. Eval. Rev. 3, 2–11
(2012). https://doi.org/10.1145/2425248.2425250

https://doi.org/10.1145/3573900.3591117
https://doi.org/10.1145/3518997.3531026
https://doi.org/10.1145/3518997.3531026
https://doi.org/10.1007/978-3-642-54420-0_49
https://doi.org/10.1109/SBAC-PAD.2014.38
https://doi.org/10.1109/SBAC-PAD.2014.38
https://doi.org/10.1109/PADS.1998.685272
https://doi.org/10.1109/PADS.1999.766167
https://doi.org/10.1109/PADS.1999.766167
https://doi.org/10.1109/71.920586
https://doi.org/10.1109/71.920586
https://doi.org/10.1145/238788.238818
https://doi.org/10.1145/3384441.3395985
https://doi.org/10.1145/3384441.3395985
https://doi.org/10.1109/PADS.2008.23
https://doi.org/10.1109/PADS.2008.23
https://doi.org/10.1145/2425248.2425250

Decidability Borders of Verification
of Communicating Datalog Agents

Francesco Di Cosmo(B)

Free University of Bozen-Bolzano, Bolzano, Italy

fdicosmo@unibz.it

Abstract. We present our recent results in charting the decidability
boundary of formal verification of Communicating Datalog Agents, a
multi-agent system grounded in logic programming.

Keywords: Logic Programming · Data-Centricity · Petri-Nets

1 Introduction

In Declarative Networking [5], multi-agent systems (MASs) grounded in logic
programming have been put forward to simplify the modeling, implementation,
and analysis of network services, protocols, and distributed systems [4,24,29].
These agents are data-centric, i.e., their steps are limited to evaluations of
queries on databases (DBs), and several languages to specify them are avail-
able [1,4,25,26]. An example are Communicating Datalog Agents (CDAs) [10]:
a set of data-centric agents, programmed in a specialization of the Datalog query
language, affected by the environment via the reception of input DBs, exchanging
relational messages on a network of point-to-point channels and are. While the
logic perspective facilitates the development of analysis techniques, in spite of
previous works [12,13,15,30], a comprehensive study of the decidability and com-
plexity of verification of models like CDAs is lacking. In this paper, we present
our results towards closing this gap and, taking into account the characteristic
of CDAs, we provide an articulated decidability border of formal verification.

2 CDA Model

While we introduce CDAs assuming familiarity with Datalog with negation, the
reader can find preliminaries in footnotes or referring to [2]. A CDA is a set
V of agents interacting in a CDA network Net = (V,E,N) (Fig. 1a), where
(V,E) is a directed graph, whose edges (v, u) ∈ E represent communication
channels from v to u, and N is a function assigning to each agent v a relational
representation of the local network, in the form of a network DB N(v) over the
network signature N = {name/1, neigh/1}.1 The DB N(v) contains the name of
1 A signature A is a finite set {A1/a1, . . . , An/an} where, for i ∈ {1, . . . , n}, Ai is

a symbol and ai ∈ N is its arity. Given a countably infinite set Δ, called domain,
of constants, a fact over A is a formula Ai(c1, . . . , cai), where cJ ∈ Δ for each
J ∈ {1, . . . , ai}. A DB over A is a finite set of facts over A.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
V. Malvone and A. Murano (Eds.): EUMAS 2023, LNAI 14282, pp. 507–513, 2023.
https://doi.org/10.1007/978-3-031-43264-4_39

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-43264-4_39&domain=pdf
http://orcid.org/0000-0002-5692-5681
https://doi.org/10.1007/978-3-031-43264-4_39

508 F. Di Cosmo

Fig. 1. A CDA network (a), and an arbitrary data-centric CDA node vi (b).

v and of it neighbors. We focus on connected networks whose edge set is closed
under reflexivity and symmetry. This class contains, e.g., complete networks.

Channels are used to send and deliver messages, i.e., facts over a dedicated
message signature Q. For example, if Q = {Q0/0, Q1/1, Q2/2}, a channel (v, u)
may contain one message T0, two copies of the message Q1(a), for some a ∈
Δ, and one message Q2(v, u), sent by v and still to be delivered to u.2 CDA
communication is asynchronous, i.e., at each step, only one channel delivers only
one message. However, the message to be delivered can be chosen according to
several channel types: a perfect channel delivers all of the sent messages in the
same order they were sent; a lossy channel may lose some message (which is never
delivered), but preserve order; an unordered channel delivers all sent messages,
but in an arbitrary order. Networks have only one channel type.

The environment provides input DBs to agents according to a policy among
interactive (the input DB is updated non-deterministically at each computation
step), autonomous (the input DB is non-deterministically chosen and fixed at
the first computation step) closed (the input DB is always empty).

Each agent (Fig. 1b) is equipped with a relational memory in the form of a
state DB over a dedicated state signature S and may receive additional infor-
mation from the environment in the form of an input DB over a dedicated input
signature. Agents react to the reception of a message by computing a Datalog-
like program Π over the incoming message, the state DB (called previous), and
the input DB.3, returning a new state DB, that substitutes the previous one,
and a set of outgoing messages that are cast on the channels.4

The Datalog-like language used to program agents is D2C, which, in its sim-
plest form, extends Datalog with stratified negation and inequalities by adding
labeled literals, i.e., formulas L@t, where L is a literal5 and t is a term, and the
construct prev. A D2C program Π is a finite set of rules
2 Notice that agent names are considered constants in Δ and can appear in facts.
3 Notice that reactions to changes in the information provided by the environment

can still be modeled by sending on the self-loop channel a dedicated message.
4 In case of ordered channels, the outgoing messages are sent in non-deterministic

order. This way, only the order among the messages sent at different steps is relevant.
While more sophisticated casting policies may be enforced, their relevance is limited,
since ordered channels cause almost immediately undecidable verification [8].

5 Fixed a countably infinite set V of variables, such that Δ ∩ V = ∅, a term is a
constant or a variable. An atom over A is a formula A(t1, . . . , ta) such that A/a ∈ A

Decidability Borders of Verification of Communicating Datalog Agents 509

H if B1,...,BN prev P1,..., PM, C1,..., Ch.

where: 1) the Bis are literals over the state signature (used to query the state
DB being computed), input signature (used to query the input DB), or labeled
message literals (used to query the incoming message, where the labels represent
the name of the sender); 2) the Pis are literals over the state signature (used
to query the previous state DB); 3) the Cis are inequality constraints of the
form t1 �= t2, where t1 and t2 are terms; 4) H is a state atom (used to add
state facts to the state DB being computed) or labeled message facts (used to
produce messages, where the labels represent the name of the recipient). Com-
mon Datalog-like assumptions on safeness and stratification apply (see [10]). For
example, the following program incorporates the content of the input predicate I
and of the incoming message msg in the state predicate S and, if an incorporated
tuple was available also in the previous state DB, then it is sent to all neighbors.

S(X) if I(X). S(X) if Msg(X)@Y. Msg(Y)@X if neigh(X),S(Y) prev S(Y).

Summarising, a computation of a CDA iterates the following cycle until all
channels are empty: 1) asynchronously and according to the channel type, a
message m from a node u is delivered to a node v; 2) an input DB I is retrieved
according to the policy; 3) a copy S of the state DB of v is provisionally stored as
previous state DB ; 4) v computes the program Π over m, I, and S, producing a
new state DB S+ and a set O of outgoing messages; 5) S+ substitutes the state
DB of v and the messages in O are cast on the channels. To enable startup,
initially, all self-loops channels contain the message start.

3 CDA Verification

We chart the decidability boundary of formal verification of CDAs against prop-
erties like termination and sometimes (always) convergence: termination asks
whether the CDA can reach a configuration where all channels are empty; some-
times (always) convergence asks whether, for at least one run (for all runs), the
CDA reaches a configuration where the agents do not change their state DB
anymore. Some relevant related properties are divergence (whether agents do
not converge), control-state reachability (whether the agents reach a target con-
figuration) and reachability (whether also channels reach a target configuration).

All of them can be expressed in the CTLCDA language [10], which specializes
CTL temporal operators (to analyze the temporal behavior of the system) and
FO (to query the local state of agents) to the MAS setting. By focusing on
verification of CTLCDA, we can naturally consider sophisticated fragments based
on the usage of temporal operators and the signatures of FO queries.

In general, verification of CDA against any of the aforementioned property is
undecidable, This is because, thanks to the iterations of the computation cycle,
CDA agents can simulate two counter machines (2CMs) [27], whose termination

and, for each i ∈ {1, . . . , a}, ti is a term. A positive literal over A is an atom ϕ over
A. A negative literal over A is a formula not ϕ, where ϕ is an atom over A.

510 F. Di Cosmo

Table 1. Decidability of termination of prev-aware CDA. B indicates a bounded data-
source; PF indicates that the signature cannot occur in the scope of prev; � indicates
no constraint.

Input PF BPF BPF PF � B BPF BPF PF B B

State B � B PF BPF B PF BPF BPF BPF PF

Channel B BPF PF BPF BPF B PF � PF PF B

Status D U U U U D D U D U D

Fig. 2. A transition in the encoding of a uCDA as a DPN (a), decidability of CTLCDA

fragments against unordered uCDA (b), and of termination against pCDA (c). A +
indicates nesting of the temporal operators; pos and bool indicate positive and boolean
combinations of temporal operators; st and st + ch indicate whether FO queries range
over the state or also over the message signature.

problem is undecidable. This holds true for any channel type. Thus, we search
relevant CDA fragments enjoying decidable verification. These are obtained by
constraining the characteristic features of CDAs, e.g., the data-sources sizes, the
structure of the program, and the expressiveness of messages.

4 Quest for Decidability

The first constraint we consider is data-boundedness [6]. A CDA C is c-channel
bounded if, for all channels, all reachable configurations contain at most c mes-
sages. C is s-state bounded if, for all the agents, all reachable state DBs contain at
most s different constants. A similar b-input bounded constraint can be enforced
on the environment, so that it provides only input DBs with at most b con-
stants. By taking advantage of CDA uniformity, we showed that verification of
CTLCDA properties of totally (i.e., channel, state, and input) bounded CDAs is
PSPACE-complete in the size of the initial configuration and in the number of
agents [9,10]. However, even with unordered channels, lifting any of the bound-
edness conditions results in undecidability (already of termination). The only
exception is the lifting of input boundedness over interactive environments: in
this case, the agents cannot take advantage of the unbounded input.

Envisaging this peculiarity, we formalized interactive prev-aware CDAs
[16,19], a generalization of CDAs with unordered channels in which also input

Decidability Borders of Verification of Communicating Datalog Agents 511

and message literals can occur in the scope of prev. These are defined by combi-
nations of data-boundedness constraints and type of literals allowed in the scope
of prev. Table 1 summarizes the decidability border of termination of prev-aware
CDAs. In fact, each prev-aware case is a sub-case of a decidable fragment or a
generalization of an undecidable one. Decidability is proved by taking advantage
of previous results on bounded CDAs and by noticing that constraints on prev
allow us to forget with impunity the data-values in the various data-sources. This
allows to tune abstractions and encodings in suitable computation models with
good verification properties, e.g., Petri Nets (PN) [28]. Undecidability is proved
via reductions from undecidable problems like satisfiability of stratified Datalog
with inequalities [2] or termination of 2CMs. We do so even in very weak frag-
ments, e.g., where all sources of information, except the channels, are bounded
and only message symbols can occur in the scope of prev. In fact, by exploiting
rules like the following, the agent either receives messages in a desirable order,
encoding 2CM computations in the channels, or signals an error flag.

error not msg2@X prev msg1@X.

Inspired by monadic Datalog [7,14] we studied the impact of lifting chan-
nel boundedness while weakening the message expressiveness. This is done by
bounding the arity messages. Three cases are relevant, i.e., propositional, unary,
and binary CDAs (pCDAs, uCDAs, bCDAs), in which the messages have arity 0,
at most 1, and at most 2, respectively. Via previous results, verification of bCDAs
is undecidable. Instead, reachability-like properties of pCDAs and uCDAs turn
out decidable. In fact, we showed [17,18] that pCDAs enjoy of a close corre-
spondence to Communicating Finite State Machines [11], on which reachability
is decidable as soon as the channels are not perfect [3]. For uCDAs, we recently
tuned an encoding (Fig. 2a) into data PNs (DPN) [22,23,31]. By reducing to
data aware PN coverability, we are able to show the decidability border of the
extensions of coverability problems in Fig. 2b. This indicates that also pCDA can
be encoded in PNs and studied taking advantage of the vast related literature.

5 Conclusions

By exploiting various techniques, we have charted a detailed decidability bound-
ary of verification of CDAs, constraining the characteristic features of the CDA
model itself. As a matter of facts, as soon a CDA fragment is capable, even
in the most exotic way, to maintain an arbitrary (unbounded) order among
tuples, verification of CTLCDA properties becomes undecidable. Nevertheless,
we detected relevant decidable fragments. This is the case of uCDAs, which can
be seen as a declarative formulation of Petri Nets with data and, thus, can be
used to analyse important data-aware concurrent computation models. Hence,
we aim implementing a verification tool for this fragment. Currently, we are
working towards charting the impact of additional CDA features, most notably
the network size and topology. We also plan to extend the programming lan-
guage towards full Answer Set Programming languages, like Clingo [20]; this

512 F. Di Cosmo

would enable the integration of CDA verification in frameworks for the analysis
of agents learned, e.g., via inductive logic programming tools, like ILASP [21].
Moreover, we plan to implement a tool for the verification of decidable properties
of uCDAs.

References

1. Abiteboul, S., Bienvenu, M., Galland, A., Antoine, É.: A rule-based language for
web data management. In: Lenzerini, M., Schwentick, T. (eds.) Proceedings of
the 30th ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database
Systems, PODS 2011, June 12–16, 2011, Athens, Greece, pp. 293–304. ACM (2011)

2. Abiteboul, S., Hull, R., Vianu, V.: Foundations of Databases. Addison-Wesley,
Boston (1995). http://webdam.inria.fr/Alice/

3. Aiswarya, C.: On network topologies and the decidability of reachability problem.
In: Georgiou, C., Majumdar, R. (eds.) NETYS 2020. LNCS, vol. 12129, pp. 3–10.
Springer, Cham (2021). https://doi.org/10.1007/978-3-030-67087-0 1

4. Alvaro, P., Ameloot, T.J., Hellerstein, J.M., Marczak, W., Van den Bussche, J.: A
declarative semantics for Dedalus. Technical report UCB/EECS-2011-120, EECS
Department, University of California, Berkeley (2011). http://www.eecs.berkeley.
edu/Pubs/TechRpts/2011/EECS-2011-120.html

5. Ameloot, T.J.: Declarative networking: recent theoretical work on coordination,
correctness, and declarative semantics. SIGMOD Rec. 43(2), 5–16 (2014)

6. Belardinelli, F., Lomuscio, A., Patrizi, F.: Verification of agent-based artifact sys-
tems. J. Artif. Intell. Res. 51, 333–376 (2014)

7. Benedikt, M., Bourhis, P., Gottlob, G., Senellart, P.: Monadic datalog, tree validity,
and limited access containment. ACM Trans. Comput. Log. 21(1), 6:1–6:45 (2020)

8. Brand, D., Zafiropulo, P.: On communicating finite-state machines. J. ACM 30(2),
323–342 (1983)

9. Calvanese, D., Di Cosmo, F., Lobo, J., Montali, M.: Convergence verification of
declarative distributed systems (extended version). Submitted to an international
journal

10. Calvanese, D., Di Cosmo, F., Lobo, J., Montali, M.: Convergence verification of
declarative distributed systems. In: Monica, S., Bergenti, F. (eds.) Proceedings of
the 36th Italian Conference on Computational Logic, Parma, Italy, 7–9 September
2021. CEUR Workshop Proceedings, vol. 3002, pp. 62–76. CEUR-WS.org (2021)

11. Chambart, P., Schnoebelen, P.: Mixing lossy and perfect Fifo channels. In: van
Breugel, F., Chechik, M. (eds.) CONCUR 2008. LNCS, vol. 5201, pp. 340–355.
Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-85361-9 28

12. Chen, C., Jia, L., Xu, H., Luo, C., Zhou, W., Loo, B.T.: A program logic for
verifying secure routing protocols. In: Ábrahám, E., Palamidessi, C. (eds.) FORTE
2014. LNCS, vol. 8461, pp. 117–132. Springer, Heidelberg (2014). https://doi.org/
10.1007/978-3-662-43613-4 8

13. Chen, C., Loh, L.K., Jia, L., Zhou, W., Loo, B.T.: Automated verification of safety
properties of declarative networking programs. In: Proceedings of the 17th Interna-
tional Symposium on Principles and Practice of Declarative Programming (PPDP),
pp. 79–90 (2015)

14. Cosmadakis, S.S., Gaifman, H., Kanellakis, P.C., Vardi, M.Y.: Decidable optimiza-
tion problems for database logic programs (preliminary report). In: Simon, J. (ed.)
Proceedings of the 20th Annual ACM Symposium on Theory of Computing, 2–4
May 1988, Chicago, Illinois, USA, pp. 477–490. ACM (1988)

http://webdam.inria.fr/Alice/
https://doi.org/10.1007/978-3-030-67087-0_1
http://www.eecs.berkeley.edu/Pubs/TechRpts/2011/EECS-2011-120.html
http://www.eecs.berkeley.edu/Pubs/TechRpts/2011/EECS-2011-120.html
https://doi.org/10.1007/978-3-540-85361-9_28
https://doi.org/10.1007/978-3-662-43613-4_8
https://doi.org/10.1007/978-3-662-43613-4_8

Decidability Borders of Verification of Communicating Datalog Agents 513

15. Deutsch, A., Sui, L., Vianu, V., Zhou, D.: Verification of communicating data-
driven web services. In: Vansummeren, S. (ed.) Proceedings of the Twenty-Fifth
ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems,
26–28 June 2006, Chicago, Illinois, USA, pp. 90–99. ACM (2006)

16. Di Cosmo, F.: Verification of Prev-Free communicating Datalog programs
(extended version). Submitted to an international conference

17. Di Cosmo, F.: Verification of sometimes termination of lazy-bounded declarative
distributed systems (extended version), submitted to ESSLLI 2021 Student Session
Best Paper Proceedings

18. Di Cosmo, F.: Verification of sometimes termination of lazy-bounded declarative
distributed systems. In: Pedersen, M.Y., Pavlova, A. (eds.) Proceedings of the ESS-
LLI Student Session 2021, 32nd European Summer School in Logic, Language and
Information July 26 - August 13, pp. 13–23 (2021). https://tinyurl.com/2s3v2am2

19. Di Cosmo, F.: Verification of Prev-Free communicating Datalog programs. In:
Dovier, A., Formisano, A. (eds.) Proceedings of the 38th Italian Conference on
Computational Logic, Udine, Italy, 21–23 June 2023. CEUR Workshop Proceed-
ings, vol. 3428. CEUR-WS.org (2023)

20. Gebser, M., Kaminski, R., Kaufmann, B., Schaub, T.: Multi-shot ASP solving with
clingo. Theory Pract. Log. Program. 19(1), 27–82 (2019)

21. Law, M., Russo, A., Broda, K.: The ILASP system for learning answer set pro-
grams. https://www.ilasp.com/ (2015)

22. Lazic, R., Newcomb, T.C., Ouaknine, J., Roscoe, A.W., Worrell, J.: Nets with
tokens which carry data. Fundam. Informaticae 88(3), 251–274 (2008)

23. Lazic, R., Schmitz, S.: The complexity of coverability in ν-petri nets. In: Grohe,
M., Koskinen, E., Shankar, N. (eds.) Proceedings of the 31st Annual ACM/IEEE
Symposium on Logic in Computer Science, LICS 2016, New York, NY, USA, 5–8
July 2016, pp. 467–476. ACM (2016)

24. Loo, B.T., et al.: Declarative networking. Commun. ACM 52(11), 87–95 (2009)
25. Loo, B.T., Condie, T., Hellerstein, J.M., Maniatis, P., Roscoe, T., Stoica, I.: Imple-

menting declarative overlays. Oper. Syst. Rev. 39(5), 75–90 (2005)
26. Ma, J., Le, F., Wood, D., Russo, A., Lobo, J.: A declarative approach to distributed

computing: specification, execution and analysis. Theory Pract. Logic Program. 13,
815–830 (2013)

27. Minsky, M.L.: Computation: Finite and Infinite Machines. Prentice-Hall, Hoboken
(1967)

28. Murata, T.: Petri nets: properties, analysis and applications. Proc. IEEE 77(4),
541–580 (1989)

29. Nigam, V., Jia, L., Loo, B.T., Scedrov, A.: Maintaining distributed logic programs
incrementally. Comput. Lang. Syst. Struct. 38(2), 158–180 (2012)

30. Ren, Y., et al.: FSR: formal analysis and implementation toolkit for safe inter-
domain routing. Comput. Commun. Rev. 41(4), 440–441 (2011)

31. Rosa-Velardo, F., de Frutos-Escrig, D.: Decidability and complexity of Petri nets
with unordered data. Theor. Comput. Sci. 412(34), 4439–4451 (2011)

https://tinyurl.com/2s3v2am2
https://www.ilasp.com/

ltlf Best-Effort Synthesis for Single
and Multiple Goal and Planning Domain

Specifications

Gianmarco Parretti(B)

Sapienza Università di Roma, Rome, Italy

parretti@diag.uniroma1.it

Abstract. We study best-effort strategies (aka plans) in fully observ-
able nondeterministic domains (FOND) for goals expressed in Linear
Temporal Logic on Finite Traces (ltlf). The notion of best-effort strat-
egy has been introduced to also deal with the scenario when no agent
strategy exists that fulfills the goal against every possible nondetermin-
istic environment reaction. Such strategies fulfill the goal if possible, and
do their best to do so otherwise. We present a technique for synthesizing
best-effort strategies and propose some possible extensions of best-effort
synthesis for multiple goal and planning domain specifications.

Keywords: Linear Temporal Logic on Finite Traces (ltlf) · Planning
in Nondetermninistic Domains · Best-Effort Strategies · Multiple
Goals · Multiple Planning Domains

1 Introduction

Recently there has been quite some interest in synthesis [17,21] for realizing goals
(or tasks) ϕ against environment specifications E [3,4], especially when both ϕ
and E are expressed in Linear Temporal Logic on finite traces (ltlf) [15,16], the
finite trace variant of ltl [22], a logic specification language that is commonly
adopted in Formal Methods [6]. In this setting, synthesis amounts to finding
an agent strategy that wins, i.e., generates a trace satisfying ϕ, whatever is the
(counter-)strategy chosen by the environment, which in turn has to satisfy its
specification E . This form of synthesis can be seen as an extension of FOND
planning [18,19], as shown in, e.g., [9,14].

Obviously, a winning strategy for the agent may not exist. To handle this
possibility, the notion of best-effort strategy has been introduced [1]. Best-effort
strategies formally capture the idea that the agent could do its best by adopting
a strategy that wins against a maximal set (though not all) of possible envi-
ronment strategies. Best-effort strategies for ltlf goals and assumptions have
some notable properties: (i) they always exist, (ii) if a winning strategy exists,
then best-effort strategies are winning strategies, (iii) best-effort strategies can

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
V. Malvone and A. Murano (Eds.): EUMAS 2023, LNAI 14282, pp. 514–520, 2023.
https://doi.org/10.1007/978-3-031-43264-4_40

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-43264-4_40&domain=pdf
https://doi.org/10.1007/978-3-031-43264-4_40

ltlf Best-Effort Synthesis in Nondeterministic Planning Domains 515

be computed in 2EXPTIME, as computing winning strategies (best-effort syn-
thesis is indeed 2EXPTIME-complete). In [5] an algorithm for ltlf best-effort
synthesis has been presented. This algorithm is based on creating, solving, and
combining the solutions of three distinct games (with three different objectives)
played over a game arena obtained from the deterministic finite-state automata
(dfas) of the ltlf specifications of the agent goal ϕ and environment E .

This work studies ltlf best-effort synthesis in nondeterministic planning
domains with full observability (FOND). We begin by motivating why using
best-effort strategies in nondeterministic planning domains. Next, we present
a technique, based on those in [5,14], for synthesizing best-effort strategies in
nondeterministic planning domains. Finally, we propose some further extensions
to best-effort synthesis by leveraging existing works on synthesis for ltlf goals
and assumptions.

2 Preliminaries

ltlf and Automata. Linear Temporal Logic on Finite Traces (ltlf) is a for-
malism for expressing temporal specifications over finite traces. For instance, the
ltlf formula ♦(G), where G is a Boolean formula, expresses that G eventually
holds. We refer to [15] for more details.
Best-Effort Synthesis for ltlf Goals and Assumptions [5]. Best-effort
synthesis concerns computing a strategy ensuring that the agent does its best
to achieve a goal. Formally, best-effort strategies are maximal in the dominance
order. Specifically, let ϕ and E be ltlf formulas denoting an agent goal and
an environment assumption, respectively, and σ1 and σ2 be agent strategies. σ1

dominates σ2, written σ1 ≥ϕ|E σ2, if for every σenv � E , π(σ2, σenv) |= ϕ implies
π(σ1, σenv) |= ϕ. Furthermore, σ1 strictly dominates σ2, written σ1 >ϕ|E σ2, if
σ1 ≥ϕ|E σ2 and σ2 �≥ϕ|E σ1.

Intuitively, σ1 >ϕ|E σ2 means that σ1 does at least as well as σ2 against every
environment strategy enforcing E and strictly better against one such strategy.
Then, an agent using a strategy σ2 strictly dominated by another strategy, say
σ1, is not doing its best to achieve the goal. In fact, the agent could achieve the
goal against a strictly larger set of environment strategies if it used σ2 instead.
Within this framework, a best-effort strategy is one which is not strictly dom-
inated by any other strategy. Then, best-effort synthesis for ltlf goals and
assumptions concerns computing an agent strategy σ for which there is no other
strategy σ′ such that σ′ >ϕ|E σ.

Notably, best-effort strategies always exist and are winning strategies when
the problem admits one [5]. Furthermore, Best-effort synthesis is 2EXPTIME-
complete and best-effort strategies can be computed in 2EXPTIME, as winning
strategies [16]. For further details, we refer to [5].
FOND Planning for ltlf Goals. Planning in Fully Observable Nondetermin-
istic (FOND) domains for ltlf goals concerns computing a strategy to fulfill a
temporally extended goal expressed as an ltlf formula in a planning domain

516 G. Parretti

where the agent has full observability, regardless of how the environment non-
deterministically reacts to agent actions. This paper aims at extending existing
approaches to planning in FOND domains [8,9,14] with best-effort strategies.

3 Best-Effort Synthesis in Nondeterministic Domains

It is often argued in the literature on planning in nondetermnistic domains that
an agent should act even when a winning strategy does not exist, see, e.g., [10,11].
Best-effort strategies provide an interesting approach to this issue, as they always
exist and guarantee task completion if the task is realizable. To motivate uti-
lizing best-effort strategies in nondeterministic domains, consider the following
example.
Example 1 (adapted from [20]). Consider a robotic autonomous agent and a
human operator working on a cooperative assembly task in a shared workspace.
In the shared workspace, the robot can move blocks among locations. After
every robot action, the human can react by also moving blocks among locations
to interfere with the robot, hence introducing nondeterminism to robot actions.

Consider a robot assigned the task of assembling an arch of blocks. It is easy
to see that the agent has no winning strategy to assemble the arch since the
human can always disassemble it. Therefore, standard synthesis [14,16] would
conclude the task as unrealizable, hence “giving up”. However, the robot still
has the chance to fulfill the goal, should the human cooperate or even perform
flawed reactions due to, e.g., lack of adequate training. Therefore, instead of
simply giving up, the agent should try its best to pursue the goal by exploiting
human reactions. Best-effort strategies precisely capture this intuition.

In principle, the framework in [5] can also capture best-effort synthesis in
nondeterministic planning domains. In particular, one can re-express FOND
domains in ltlf [3,15,20] and then use directly the ltlf best-effort synthe-
sis approach. However, doing so does not allow to take full advantage of the
specificity of planning domains as environment assumptions, as ltlf formulas E
representing planning domains are typically large.

Instead, one could directly transform the domain specification into a dfa and
solve suitable dfa games for constructing a best-effort strategy. Based on this
intuition, we devised a synthesis technique for computing best-effort plans based
on solving and combining the solutions of two variants of reachability dfa games,
namely adversarial and cooperative, played over the same arena. Intuitively, the
adversarial variant requires the agent to reach the goal regardless of environment
reactions. In contrast, the cooperative variant only requires the agent to reach
the goal should the environment cooperate. The game arena is obtained through
synchronous product of the dfas of the planning domain and agent goal. We
implemented our synthesis technique by utilizing the symbolic ltlf framework
in [13,25] and the symbolic encoding of planning domains in [20]. An empiri-
cal evaluation on a scalable variant of the pick-and-place domains described in
Example 1 shows that our technique exhibits orders of magnitude greater scal-
ability than standard best-effort synthesis for ltlf goals and assumptions. We

ltlf Best-Effort Synthesis in Nondeterministic Planning Domains 517

also observed that ltlf best-effort synthesis in nondeterministic domains main-
tains the same complexity as ltlf FOND planning, i.e., 2EXPTIME-complete
and EXPTIME-complete in the size of the goal and domain, respectively [14].

4 Extensions

4.1 Best-Effort Synthesis in Multiple Planning Domains

Many works in the planning and synthesis literature argued that it is not real-
istic in complex AI scenarios to have a single environment specification, e.g.,
see [1,2,12]. The scenario in which the agent is provided with two refining mod-
els of the environment, namely expected and exceptional, is already of interest [1].
In such a scenario, the agent should enforce goal completion against all expected
environment behaviors, while still providing a satisfactory response to excep-
tional environment behaviors. That is, the agent should adopt a strategy that
is best-effort under both the expected and exceptional environment. In its most
general form, this problem is called best-effort synthesis under multiple environ-
ment assumptions [2].

A natural variation of this problem is best-effort synthesis under multiple
planning domain specifications. An agent using a strategy that is best-effort
under each planning domain specification implements adaptive behaviors to
changes in its environment. To see this, consider the following variant of Example
1 in Sect. 3.
Example 2. Assume having a robotic autonomous agent assigned to an assembly
task in a shared workspace and consider the following two scenarios:

– Scenario 1. The agent works on its own on the assembly task, and the effect
of all its actions have deterministic effects. Here, we assume that the agent
has a winning strategy to assemble the arch.

– Scenario 2. As Scenario 1, except that the agent shares its workspace with
the human operator, who can also move objects among locations.

In this example, an agent using a best-effort strategy for both Scenarios 1 and
2 is both able to assemble autonomously the arch when the human does not
interfere and to deal with the nondeterminism arising from the presence of a
human operator. Observe that any strategy synthesized in any of the scenarios
above without considering the other does not implement this behavior. To see
this, observe that if the agent has only a strategy for Scenario 1, then it will
not be able to deal with the nondeterminism coming from the human operator;
similarly, if the agent has only a strategy for Scenario 2, it might rely too much
on the human operator, without being able to complete the task on its own.

4.2 Best-Effort Synthesis for Multiple Goal Specifications

On the other hand, existing works in the literature argued that providing an
agent with multiple goal specifications is reasonable, e.g., [7,24]. Best-effort syn-
thesis provides an interesting approach to this problem as well, as it allows to

518 G. Parretti

instruct an agent to use a strategy that does simultaneously its best to achieve
each goal. An agent using such a strategy can adapt its course of actions to
environment reactions, depending on which goals are realizable and which are
not. To see this, consider the following example.
Example 3. Consider an autonomous agent assigned the task of delivering pack-
ages between rooms in a building. In this domain, the robot can move between
two rooms only if the door that connects them is open. Assume that in the
building, there is a kid who has keys to close some doors, possibly preventing
the agent from moving between rooms. At each time step, the kid can also move
between rooms and close doors for which he has a key. Consider that the agent
has the following tasks:

– Goal 1. Reach room R1 and deliver package P1;
– Goal 2. Reach room R2 and deliver package P2.

Assume that the kid has keys to close all doors leading to room R2 and
cannot prevent the agent from reaching room R1. Then, the agent has a winning
strategy for enforcing Goal 1, while it has only a best-effort strategy for Goal 2.
In this domain, a best-effort strategy for the agent is first to move to R1 and,
after satisfying Goal 1, try its best to reach R2.

Again, a best-effort strategy for any of the two goals above without consid-
ering the other is not guaranteed to implement this behavior. Indeed, an agent
using a best-effort strategy for Goal 1 only, may never reach R2; instead, an
agent using a best-effort strategy for Goal 2 only, may irreparably prevent the
realizability of Goal 1 as, e.g., the kid might lock the agent in room R2.

5 Conclusions and Future Work

This work studied ltlf best-effort synthesis in nondeterministic domains and
proposed some possible extensions. Being best-effort synthesis a new research
subject, many other extensions can be developed, and the list presented here is
not exhaustive. In fact, a natural extension is to combine the two approaches
described in Sects. 4.1 and 4.2. That is, an agent might be provided with mul-
tiple goal and domain specifications, and it must synthesize a strategy that is
best-effort for each given goal-domain pair. Another promising extension is con-
sidering maximally permissive strategies [23], which allow the agent to choose a
best-effort strategy during execution instead of committing to a single solution
beforehand, such that the agent can better adapt to environment reactions. We
leave for future work the development of adequate synthesis techniques to solve
the problems mentioned above.

Acknowledgements. We thank the contributions of all the co-authors (in alphabet-
ical order): Benjamin Aminof, Giuseppe De Giacomo, Sasha Rubin, and Shufang Zhu.
This work has been carried out while Gianmarco Parretti was enrolled in the Ital-
ian National Doctorate on Artificial Intelligence run by Sapienza University of Rome.
This work has been partially supported by the ERC-ADG White- Mech (No. 834228),

ltlf Best-Effort Synthesis in Nondeterministic Planning Domains 519

the EU ICT-48 2020 project TAILOR (No. 952215), the PRIN project RIPER (No.
20203FFYLK), and the PNRR MUR project FAIR (No. PE0000013).

References

1. Aminof, B., De Giacomo, G., Lomuscio, A., Murano, A., Rubin, S.: Synthesizing
strategies under expected and exceptional environment behaviors. In: IJCAI, pp.
1674–1680 (2020)

2. Aminof, B., De Giacomo, G., Lomuscio, A., Murano, A., Rubin, S.: Synthesizing
best-effort strategies under multiple environment specifications. In: Proceedings
of the International Conference on Principles of Knowledge Representation and
Reasoning, pp. 42–51 (2021)

3. Aminof, B., De Giacomo, G., Murano, A., Rubin, S.: Planning and synthesis under
assumptions. arXiv (2018)

4. Aminof, B., De Giacomo, G., Murano, A., Rubin, S.: Planning under LTL envi-
ronment specifications. In: ICAPS, pp. 31–39 (2019)

5. Aminof, B., De Giacomo, G., Rubin, S.: Best-effort synthesis: doing your best is
not harder than giving up. In: IJCAI, pp. 1766–1772 (2021)

6. Baier, C., Katoen, J.P., Guldstrand Larsen, K.: Principles of Model Checking. MIT
Press, Cambridge (2008)

7. Camacho, A., Bienvenu, M., McIlraith, S.A.: Finite LTL synthesis with environ-
ment assumptions and quality measures. In: KR (2018)

8. Camacho, A., Bienvenu, M., McIlraith, S.A.: Towards a unified view of AI planning
and reactive synthesis. In: ICAPS, pp. 58–67 (2019)

9. Camacho, A., McIlraith, S.A.: Strong fully observable non-deterministic planning
with LTL and LTLf goals. In: IJCAI, pp. 5523–5531 (2019)

10. Cimatti, A., Pistore, M., Roveri, M., Traverso, P.: Weak, strong, and strong cyclic
planning via symbolic model checking. AIJ 1–2(147), 35–84 (2003)

11. Cimatti, A., Roveri, M., Traverso, P.: Strong planning in non-deterministic domains
via model checking. In: AIPS, pp. 36–43 (1998)

12. Ciolek, D.A., D’Ippolito, N., Pozanco, A., Sardiña, S.: Multi-tier automated plan-
ning for adaptive behavior. In: ICAPS, pp. 66–74 (2020)

13. De Giacomo, G., Parretti, G., Zhu, S.: Symbolic LTLf best-effort synthesis. In:
EUMAS (2023)

14. De Giacomo, G., Rubin, S.: Automata-theoretic foundations of FOND planning
for LTLf and LDLf goals. In: IJCAI, pp. 4729–4735 (2018)

15. De Giacomo, G., Vardi, M.Y.: Linear temporal logic and linear dynamic logic on
finite traces. In: IJCAI, pp. 854–860 (2013)

16. De Giacomo, G., Vardi, M.Y.: Synthesis for LTL and LDL on finite traces. In:
IJCAI, pp. 1558–1564 (2015)

17. Finkbeiner, B.: Synthesis of reactive systems. Dependable Softw. Syst. Eng. 45,
72–98 (2016)

18. Geffner, H., Bonet, B.: A Concise Introduction to Models and Methods for Auto-
mated Planning (2013)

19. Ghallab, M., Nau, D.S., Traverso, P.: Automated Planning - Theory and Practice
(2004)

20. He, K., Wells, A.M., Kavraki, L.E., Vardi, M.Y.: Efficient symbolic reactive syn-
thesis for finite-horizon tasks. In: ICRA, pp. 8993–8999 (2019)

21. Pnueli, A., Rosner, R.: On the synthesis of a reactive module. In: POPL, pp. 179–
190 (1989)

520 G. Parretti

22. Pnueli, A.: The temporal logic of programs. In: FOCS, pp. 46–57 (1977)
23. Zhu, S., De Giacomo, G.: Act for your duties but maintain your rights. In: Proceed-

ings of the International Conference on Principles of Knowledge Representation
and Reasoning, pp. 384–393 (2022)

24. Zhu, S., De Giacomo, G.: Synthesis of Maximally permissive strategies for LTLf
specifications. In: IJCAI, pp. 2783–2789. ijcai.org (2022)

25. Zhu, S., Tabajara, L.M., Li, J., Pu, G., Vardi, M.Y.: Symbolic LTLf synthesis. In:
IJCAI, pp. 1362–1369 (2017)

Neurosymbolic Integration of Linear
Temporal Logic in Non Symbolic Domains

Elena Umili(B)

Sapienza University of Rome, Rome, Italy

umili@diag.uniroma1.it

Abstract. Linear Temporal Logic (LTL) is widely used to specify tem-
poral relationships and dynamic constraints for autonomous agents.
However, in order to be used in practice in real-world domains, this
high-level knowledge must be grounded in the task domain and inte-
grated with perception and learning modules that are intrinsically con-
tinuous and subsymbolic. In this short paper, I describe many ways to
integrate formal symbolic knowledge in LTL in non-symbolic domains
using deep-learning modules and neuro-symbolic techniques, and I dis-
cuss the results obtained in different kinds of applications, ranging from
classification of complex data to DFA induction to non-Markovian Rein-
forcement Learning.

Keywords: Neurosymbolic AI · Linear Temporal Logic · Deep
Learning

1 Introduction

Linear Temporal Logic (LTL) [10] is a modal logic widely used in different
domains, such as Robotics [7] and Business Process Management [5], for spec-
ifying temporal relationships, dynamic constraints, and performing automated
reasoning. However, exploiting LTL knowledge in real-world applications can
be difficult due to the knowledge’s symbolic “crispy” nature. This short paper
explores different techniques to relax the knowledge to make it applicable in con-
tinuous domains where symbols are grounded through Deep Learning modules
and the symbol grounding function and/or the symbolic temporal specification
can be unknown or partially known. In particular, we propose two different
techniques: (i) one based on Logic Tensor Networks [2,13] and (ii) one based on
Probabilistic Finite Automaton [12]. We apply the first approach to classifying
sequences of images, and we show that our approach requires less data and is

This work is partially supported by the ERC Advanced Grant WhiteMech (No. 834228),
by the EU ICT-48 2020 project TAILOR (No. 952215), by the PRIN project RIPER
(No. 20203FFYLK) and by the PNRR MUR project PE0000013-FAIR.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
V. Malvone and A. Murano (Eds.): EUMAS 2023, LNAI 14282, pp. 521–527, 2023.
https://doi.org/10.1007/978-3-031-43264-4_41

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-43264-4_41&domain=pdf
https://doi.org/10.1007/978-3-031-43264-4_41

522 E. Umili

less prone to overfitting than purely deep-learning-based methods. We use the
second approach to learn DFA specifications from traces with gradient-based
optimization, showing that it can learn larger automata and is more resilient
to noise in the dataset than prior work. Finally, we propose an extension of
our second approach [11] that we apply to non-Markovian Deep Reinforcement
Learning problems [1]. This third contribution has shown to be more sample
efficient of methods based on Recurrent Neural Networks (RNN), and, at the
same time, it requires less prior knowledge than methods based on LTL, such as
Reward Machines [3] and Restraining Bolts [4].

2 Problem Formulation

We consider the problem of integrating some symbolic background knowledge
expressed as an LTLf formula φ in a non-symbolic environment producing at
each run a sequence of images I = i0, i1, ..il−1 and some high-level label over
the sequence. Each image in the sequence is the ‘rendering’ of a symbolic inter-
pretation over the formula alphabet P . This means that there exists a function
sg : I → 2P , where I is the space of images, that maps each image into the
truth values of symbols in P , we call this function symbol grounding function.
We aim to exploit deep learning perception and symbolic reasoning in our system
to leverage both subsymbolic data and symbolic knowledge.

3 Models

3.1 Recurrent Logic Tensor Networks

Logic Tensor Networks (LTN) [2] are a neuro-symbolic framework that can
reason and learn by exploiting both structured symbolic knowledge and raw
data. It implements Real Logic, which is fuzzy relaxation of First Order Logic
(FOL). Thanks to continuous logic, neural networks can co-exist in the logic
framework and actually implement logic elements, grounding every atom in a
real tensor.

LTN can be used for querying, reasoning, and learning: here we focus on
learning. LTN can learn from both data and symbolic knowledge by imposing
the knowledge available, and searching for the groundings that maximize the
satisfiability of that knowledge. This is done by defining a loss objective inverse
to the given formula’s satisfaction level and optimizing the system’s trainable
weights by back-propagation.

In our prior work [13], we use the same concept of learning by best satisfi-
ability, but we apply it to the DFA generated by the LTLf formula. The neu-
ral computational graph implementing the automaton has therefore a recurrent
structure, like a Long short-term memory (LSTM) neural network, and can be
applied to sequences of any length. This feature is missing in the current imple-
mentation of LTN, and it is very convenient for imposing logic specifications
that are extended in the time dimension.

Neurosymbolic Integration of Linear Temporal Logic 523

Fig. 1. Design of the Recurrent Logic Tensor Network used in [13].

Our framework is based on three fuzzy predicates: Symbol, State, and
Output. The predicate Symbol(p, t) denotes whether the t-th image in the
sequence belongs to class p. We ground this predicate with a convolutional
neural network, as shown in Fig. 1. At any time t we are in a state qk of the
automaton, we encode this information with another fuzzy predicate State,
where State(qk, t) is true if we are in state qk at time t. Finally, the fuzzy pred-
icate Output represents the machine’s output in a given time, denoting with
Output(oi, t) whether the machine gives output oi at time t. In particular, the
output can be a symbol in the binary alphabet {Acc,Rej} if our temporal spec-
ification is a DFA, or a symbol in the alphabet {o0, o1, ..., oNO−1} in case the
temporal specification is a Moore Machine.

We use these predicates to define a knowledge base (KB) composed of three
axioms: (i) the initial condition, (ii) the transition rule, and (iii) the output rule.
In particular, the initial condition only specifies the initial state and does not
depend on the classifier predictions. The transition rule calculates the next state
given the current automaton state and the symbol prediction over the current
image. The output rule calculates the current output given the current state.
These two rules are applied recursively as many times as many images compose
the sequence.

By applying the rules in the KB, we can monitor the satisfaction of the
formula φ during time, and, if we know some labels specifying which image
sequences are accepted by the formula and which are not, we can impose this
information defining a loss on the fuzzy automaton output.

524 E. Umili

3.2 Probabilistic Relaxation of DFA: DeepDFA

In another prior work [12], we propose a different neural architecture based on
Probabilistic Finite Automata (PFA). PFAs are easier to integrate with neural
networks since we can calculate the probability that a sequence is accepted by
applying matrix multiplications. In particular, we represent a PFA in matrix
form as a transition matrix Mt, an input vector vi and an output vector vo.
Given a string x = x[0]x[1]...x[l − 1], the probability that the string is accepted
is calculated as follows.

vi × Mt[x[0]] × Mt[x[1]] × ... × Mt[x[l − 1]] × vo (1)

In our work, we have designed a recurrent neural network with parameters
including a transition matrix and an output vector, resembling the working of a
PFA, that we call DeepDFA [12]. Since DFAs can also be represented in the same
matrix form, the architecture can impose as background knowledge both DFA
and PFA specifications. Differently from the framework presented in Sect. 3.1,
this model can only be applied to tasks where the symbols are assumed to be
mutually exclusive, i.e., at each time step one and only one symbol is true, and
the others are false. Another important difference between Recurrent LTN and
DeepDFA is that the latter can also be employed to learn the DFA specifica-
tion from traces, and not only to impose it as outside background knowledge.
In particular, to learn a DFA from traces with DeepDFA, we have used a spe-
cific activation function that smoothly approximates one-hot vectors to drive the
PFA to be a DFA during training while maintaining the differentiability of the
model.

3.3 DeepDFA with Probabilistic Grounded Symbols

Finally, we propose a slightly different model in [11] that extends DeepDFA to
probabilistic grounded symbols. The latter adds to DeepDFA the calculation of
the expectation value over the next DFA state using the symbol’s probabilities at
each time step. It is a more general framework applicable in non-symbolic envi-
ronments, that we have texted in the context of non-Markovian Reinforcement
Learning domains.

4 Applications

4.1 Exploiting LTL Knowledge in Image Sequence Classification

In prior work [13], we used the recurrent LTN architecture explained in Sect. 3.1
to increase the performance of a sequence classifier in visual tasks. In partic-
ular, we considered the task of classifying a sequence of images as compliant
or not with a given formula, by exploiting the formula knowledge and a set of
sequence-level labels expressing if the sequence of images is compliant or not with
the formula. Note that we do not assume any knowledge of the symbol grounding

Neurosymbolic Integration of Linear Temporal Logic 525

function. Symbols are grounded in the images implicitly by our framework while
it tends to maximize the conformance of the predicted DFA outputs with the
sequence labels we have in the dataset. Compared with a purely deep-learning-
based approach that cannot exploit the formula knowledge, our approach reaches
higher accuracy, even if we decrease the number of samples in the dataset, show-
ing that our way of embedding logical knowledge in the network is very effective.

4.2 Neural DFA Induction from Traces

In another work [12], we tested DeepDFA in learning DFA specifications from
labeled sequences of images. Our approach has shown to be very effective in learn-
ing compact DFA from data by minimizing the binary cross-entropy loss between
the model predictions and the labels. In particular, we compared DeepDFA with
a classical combinatorial algorithm for DFA induction based on SAT [15], and we
found that our framework can maintain high performances even with large target
DFA and with a small percentage of errors in the training data, while the SAT-
based approach performs very poorly in these cases. We also compared DeepDFA
with another kind of hybrid method between RNNs and DFAs: L* extraction
[14]. The latter consists of training an RNN on the same task and extracting an
equivalent DFA from the RNN. We found that applying this method to some
complex languages can be tricky, since it can require training many different
RNN architectures before finding the best one for the specific language. Instead,
our method has only one hyperparameter, resulting in similar performances and
a very much lighter fine-tuning.

4.3 Application to Reinforcement Learning: Visual Reward
Machines

Non-Markovian Reinforcement Learning (RL) tasks are arduous, because intelli-
gent agents must consider the entire history of state-action pairs to act rationally
in the environment. A common approach to this kind of task uses RNNs to pre-
process experience data sequences and automatically extract a state representa-
tion for the RL algorithm [6,8,9]. However, there are no theoretical guarantees
the resulting state representation will be Markovian. Another kind of approach,
such as Reward Machines (RM) [3], uses LTL to specify the temporally-extended
tasks and compose a Markovian state representation [4]. However, this approach
requires prior knowledge of both the symbol grounding function mapping the
environment observations in the specification’s symbols and the temporal prop-
erty. This limits the applicability of this approach in real-world domains. In a
previous work [11], we defined Visual Reward Machines (VRM) as a neurosym-
bolic framework based on the model described in Sect. 3.3. VRMs compose the
state representation as RMs, so as to have the same theoretical guarantees in the
limit, and they are equivalent to RMs in case of complete knowledge of the task.
However, VRMs are still applicable in the case of missing knowledge because
they can integrate the available prior knowledge with the data they observe

526 E. Umili

in the environment to learn the missing modules (the symbol grounding func-
tion and/or the DFA). Compared with methods based on RNNs, our approach
reaches higher values of cumulative discounted rewards in visual non-symbolic
tasks where RMs cannot be applied.

5 Conclusions

In conclusion, I described many prior works on integrating Linear Temporal
Logic in non-symbolic (visual) domains, showing the advantage of relying on
both prior structured knowledge and unstructured data acquired in the envi-
ronment. We remark that future artificial systems should be able to acquire
and integrate both these two sources of knowledge from human users and/or
the environment, since this is a fundamental milestone of AI systems to achieve
complex tasks, and this is the main objective behind our current and future
research. In particular, many improvements on the described systems are still
possible, such as, for example, integrating richer temporal formalisms such as
Alternating-Time Temporal Logic and Signal Temporal Logic, which we let as
future research.

References

1. Bacchus, F., Boutilier, C., Grove, A.: Rewarding behaviors, pp. 1160–1167. Port-
land, OR (1996). https://behaviors.pdf

2. Badreddine, S., d’Avila Garcez, A., Serafini, L., Spranger, M.: Logic tensor net-
works. Artif. Intell. 303, 103649 (2022). https://doi.org/10.1016/j.artint.2021.
103649

3. Camacho, A., Toro Icarte, R., Klassen, T.Q., Valenzano, R., McIlraith, S.A.: LTL
and beyond: formal languages for reward function specification in reinforcement
learning. In: Proceedings of the Twenty-Eighth International Joint Conference on
Artificial Intelligence, IJCAI 2019, pp. 6065–6073. International Joint Conferences
on Artificial Intelligence Organization (2019). https://doi.org/10.24963/ijcai.2019/
840

4. Giacomo, G.D., Iocchi, L., Favorito, M., Patrizi, F.: Foundations for restraining
bolts: reinforcement learning with LTLF/LDLF restraining specifications (2019)

5. Giacomo, G.D., Masellis, R.D., Grasso, M., Maggi, F.M., Montali, M.: Monitoring
business metaconstraints based on LTL and LDL for finite traces. In: BPM (2014)

6. Ha, D., Schmidhuber, J.: Recurrent world models facilitate policy evolution. In:
Bengio, S., Wallach, H., Larochelle, H., Grauman, K., Cesa-Bianchi, N., Gar-
nett, R. (eds.) Advances in Neural Information Processing Systems, vol. 31.
Curran Associates, Inc. (2018). https://proceedings.neurips.cc/paper/2018/file/
2de5d16682c3c35007e4e92982f1a2ba-Paper.pdf

7. He, K., Wells, A.M., Kavraki, L.E., Vardi, M.Y.: Efficient symbolic reactive syn-
thesis for finite-horizon tasks. In: 2019 International Conference on Robotics and
Automation (ICRA), pp. 8993–8999 (2019). https://doi.org/10.1109/ICRA.2019.
8794170

8. Heess, N., Hunt, J.J., Lillicrap, T.P., Silver, D.: Memory-based control with recur-
rent neural networks. CoRR abs/1512.04455 (2015). https://arxiv.org/abs/1512.
04455

https://behaviors.pdf
https://doi.org/10.1016/j.artint.2021.103649
https://doi.org/10.1016/j.artint.2021.103649
https://doi.org/10.24963/ijcai.2019/840
https://doi.org/10.24963/ijcai.2019/840
https://proceedings.neurips.cc/paper/2018/file/2de5d16682c3c35007e4e92982f1a2ba-Paper.pdf
https://proceedings.neurips.cc/paper/2018/file/2de5d16682c3c35007e4e92982f1a2ba-Paper.pdf
https://doi.org/10.1109/ICRA.2019.8794170
https://doi.org/10.1109/ICRA.2019.8794170
https://arxiv.org/abs/1512.04455
https://arxiv.org/abs/1512.04455

Neurosymbolic Integration of Linear Temporal Logic 527

9. Kapturowski, S., Ostrovski, G., Dabney, W., Quan, J., Munos, R.: Recurrent expe-
rience replay in distributed reinforcement learning. In: International Conference on
Learning Representations (2019). https://openreview.net/forum?id=r1lyTjAqYX

10. Pnueli, A.: The temporal logic of programs. In: 18th Annual Symposium on Foun-
dations of Computer Science, Providence, Rhode Island, USA, 31 October - 1
November 1977, pp. 46–57. IEEE Computer Society (1977). https://doi.org/10.
1109/SFCS.1977.32

11. Umili, E., Argenziano, F., Barbin, A., Capobianco, R.: Visual reward machines.
In: Proceedings of the 17th International Workshop on Neural-Symbolic Learning
and Reasoning, La Certosa di Pontignano, Siena, Italy, 3–5 July 2023, pp. 255–267
(2023). https://ceur-ws.org/Vol-3432/paper23.pdf

12. Umili, E., Capobianco, R.: DeepDFA: a transparent neural network design for DFA
induction (2023). https://doi.org/10.13140/RG.2.2.25449.98401

13. Umili, E., Capobianco, R., Giacomo, G.D.: Grounding LTLF specifications in
images. In: Proceedings of the 16th International Workshop on Neural-Symbolic
Learning and Reasoning as part of the 2nd International Joint Conference on
Learning & Reasoning (IJCLR 2022), Cumberland Lodge, Windsor Great Park,
UK, 28–30 September 2022, pp. 45–63 (2022). https://ceur-ws.org/Vol-3212/
paper4.pdf

14. Weiss, G., Goldberg, Y., Yahav, E.: Extracting automata from recurrent neural
networks using queries and counterexamples. In: Dy, J., Krause, A. (eds.) Pro-
ceedings of the 35th International Conference on Machine Learning. Proceedings
of Machine Learning Research, vol. 80, pp. 5247–5256. PMLR (2018). https://
proceedings.mlr.press/v80/weiss18a.html

15. Zakirzyanov, I., Morgado, A., Ignatiev, A., Ulyantsev, V.I., Marques-Silva, J.: Effi-
cient symmetry breaking for sat-based minimum DFA inference. In: LATA (2019)

https://openreview.net/forum?id=r1lyTjAqYX
https://doi.org/10.1109/SFCS.1977.32
https://doi.org/10.1109/SFCS.1977.32
https://ceur-ws.org/Vol-3432/paper23.pdf
https://doi.org/10.13140/RG.2.2.25449.98401
https://ceur-ws.org/Vol-3212/paper4.pdf
https://ceur-ws.org/Vol-3212/paper4.pdf
https://proceedings.mlr.press/v80/weiss18a.html
https://proceedings.mlr.press/v80/weiss18a.html

On Theoretical Questions of Machine
Learning, Multi-Agent Systems,

and Quantum Computing with Their
Reciprocal Applications

Mahyar Sadeghi Garjan(B)

Department of Informatics, Bioengineering, Robotics and Systems Engineering,
University of Genoa, Genoa, Italy

S5283082@studenti.unige.it

Abstract. Recent advances in Multi-Agent Systems (MAS) have shown
the importance of this field in computer science. Applications can vary
in many different research areas in which the problems can be tackled
with distributional AI, like economics, sociology, and psychology. How-
ever, there are still challenges and open questions to be answered. Coop-
eration among agents, implies the existence of a complex connection.
Connections can be analysed using GNNs. On the other hand, an agent,
per se, should be flexible and adapted to the environment which can
be done using RL. In this proposal we are mentioning some challenges
and open questions that can be raised by combining these methods in
MAS. Additionally, quantum computing is introduced that can fasten
the computational effort of ML and MAS programs.

Keywords: Multi-Agent Systems · Machine Learning · Reinforcement
Learning · Quantum Computing

1 Introduction

Recent advances in Multi-Agent Systems (MAS) have shown the importance of
this field in computer science. Applications can vary in many different research
areas in which the problems can be tackled with distributional AI, like economics,
sociology, and psychology. However, there are still challenges and open questions
to be answered. Particularly in MAS, due to the recent commercial activities of
the companies, most of the frameworks and tools are not free. Hence, it slows
down, especially, the implementation phase of a MAS research. An instance is
traffic control in which with introducing Connected Autonomous Vehicles(CAVs)
we are able to enhance the traffic flow on highways and increase safety. Having
said this, in a recent research [5], we came up with a free tool, AGAMAS, which is

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
V. Malvone and A. Murano (Eds.): EUMAS 2023, LNAI 14282, pp. 528–533, 2023.
https://doi.org/10.1007/978-3-031-43264-4_42

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-43264-4_42&domain=pdf
https://doi.org/10.1007/978-3-031-43264-4_42

Theoretical Questions of ML, MAS, and QC with Applications 529

specialised in introducing Autonomous Vehicles (AVs) as agents in Jade that can
interact with a simulated environment, called SUMO. AGAMAS provides the
basis to implement safety CAVs to influence the traffic flow and speed. Figure 1
represents the architecture of this framework and 2 demonstrates one application
of it in which a cluster of vehicles in SUMO that are controlled by a single agent
in Jade, have created a block to prevent normal vehicles from their normal flow.

Fig. 1. The Architecture of AGAMAS.

Fig. 2. An application of the AGAMAS in SUMO- Red vehicles are controlled by one
agent in Jade that are blocking the normal green vehicles from their normal flow by
forcing them to decrease their speed

We used the same framework to devise a control-oriented multi-lane highway
model [1] using clusters of CAVs, in which by introducing cluster of CAVs we
were able to avoid congestion by forcing other normal vehicles to change their
lanes. Considering the experience from our recent researches, more interesting
and general questions arose:

1. What would happen if agents were more cooperative and more intelligent?
2. Is it reasonable if we applied ML algorithms to make predictions of accidents

in different sections of a highway, so the CAVs could manage the traffic flow
to avoid jams in the highway more efficiently?

530 M. Sadeghi Garjan

3. What would be the benefits of applying Reinforcement Learning (RL) instead
of explicitly telling agents what actions they should perform?

4. How can we facilitate the cooperation of CAVs, or in general agents in any
other domains?

These questions can be generalised to any other domains that agents are
playing a crucial role in. However, since agents provide a different approach for
programming, it can be exploited in other problems in which the elements of the
phenomenon sense the environment and perform actions autonomously. Further-
more, the so-called agents may not be powerful, solely, when it comes to learning
behaviours to perform best possible actions and adapting to the environment.
As a result, equipping agents with RL can improve them considerably with the
intention of making them more intelligent.

In the following sections these concepts will be described in detail to demon-
strate why these tools can be useful and how they can be improved, hence,
proving a motivation for this proposal.

2 Agents and Learning

Agents are cooperative. In fact, cooperative nature of agents makes MAS to
tackle certain problems. However, cooperation among them, implies the existence
of a complex connection. Connections can be analysed using GNNs. On the other
hand, an agent, per se, should be flexible and adapted to the environment which
can be done using RL. As a result, this section will be divided into two main
parts of RL and GNNs, in particular.

2.1 Reinforcement Learning

RL is one of the most important branches of AI. Due to its capacity for self-
adaption and decision-making in dynamic environments, reinforcement learning
has been widely applied in multiple areas, such as healthcare, data markets,
autonomous driving, and robotics [4]. Agents’ behaviours can be improved by
the means of RL. RL is widely applied on the game domain in which the player
tries to achieve the highest reward by choosing the actions that highly likely can
lead to this aim. As a result, combining RL with MAS can lead to much more
efficient results.

Designing some agent-based programs, especially in larger scales in terms of
number of the agents to be used and amount of cooperation they acquire, can be
a complex task. Studying RL algorithms and exploiting it, particularly in MAS,
can tackle this issue by making agents learn and adapt to the environment more
efficiently. However, there are open questions that require significant amount of
research work, like:

1. How to determine whether an agent is doing good, intelligent exploration?
2. What metrics should be used to evaluate the agents’ behaviours, while exploit-

ing the environment randomly as initial steps?

Theoretical Questions of ML, MAS, and QC with Applications 531

3. How well do exploration methods generalize across environments?
4. How can this generalization be measured?
5. Can ensembles of policies and/or value functions enable faster or safer explo-

ration?

In any case, equipping agents with RL raises its own questions, especially
when it comes to safety issues which are dependent on the amount of autonomy
agents can have to choose their actions.

MAS and RL can benefit from each other and their improvements will affect
the other significantly. An open question in RL is designing algorithms that make
a trade-off between exploration and exploitation. Exploration, simply, means
that agents should try actions or states that they haven’t seen yet. On the other
hand, exploitation is choosing actions that lead to highest reward [3]. Hence,
exploitation prevents the agent from trying different states that may result in
even higher rewards.

2.2 Graph Neural Networks- GNNs

One of the main features of the agents is their cooperation. Cooperation entails
the existence of a highly complex and meaningful connection. GNNs, as a pow-
erful tool, can be exploited to enhance, analyse, and understand the cooperation
among agents. Taking this into consideration, we can improve agent-agent com-
munication and collaboration. A study case has demonstrate the effectiveness of
this approach in which the final aim is to find the most efficient interaction of
agents that can lead to optimal cooperation by the means of RL and GNNs to
improve the cooperation of CAVs, by considering CAVs as nodes of the graph
and connection among them as edges [2]. Although GNNs are powerful methods
in analysing any phenomenon that can be described as graphs, but, still, there
are some questions that should be addressed to achieve further advances in this
field. Heterogeneity, scalability, and interpretability of the GNNs are some of the
problems that are needed to be tackled with further research.

3 Quantum Computing (QC) Impact on MAS and ML

Quantum computing utilizes a qubit as the basic unit of computation. The
qubit represents a quantum superposition state between two basis states, which
denoted as |0〈 and |1〉 [7]. Considering this, by increasing the qubits, number of
the possible states will increase exponentially which provides the capability to
compute very complex computational problems, like cryptography [6].

Needless to say, taking the recent advances in QC into account, migration
from conventional digital computers to quantum computers is inevitable. One
of the the most revolutionary fields that will shape our future is application of
QC in ML and MAS. A remarkable example is the variational quantum circuit
(VQC) architecture, also known as a quantum neural network (QNN), which
integrates a quantum circuit into a classical deep neural network [7].

532 M. Sadeghi Garjan

Quantum computing will allow us to accelerate the training and inference
speed while saving computing resources [7]. Hence, we could build up much
more complex agents with remarkable capability of learning and adapting to the
environment.

As it is demonstrated in paper [7], Quantum Multi-Agent Reinforcement
Learning (QMARL) framework enhances 57.7% of total reward than classical
frameworks. When it comes to RL, the final goal is to increase the reward as
much as possible. Training RL algorithms in an organization of agents, in a
highly complex environment with considerable number of parameters, is out of
classical computers’ capability. Hence, new methods, like QMARL, should be
utilized and designed.

Indeed, QC hardwares are not yet available for the public, but, still, com-
puter scientist, specialised in ML and MAS, should prepare themselves for the
near future with their contribution to answering to some fundamental questions,
raised by science community. Some of these questions are listed below:

1. What is the classical analogue of my quantum machine learning algorithm?
2. How well my QML algorithm performs compared to their corresponding clas-

sical algorithms?

First question demands theoretical research work to see if new quantum-
based methods correspond to conventional algorithms. Second question, on the
other hand, requires experiments for comparison of QC methods and classical
approaches. However, most theoretical questions raise when we want to come
up with quantum-friendly versions of conventional algorithms. Hence, a lot of
researches should be done in this area.

4 Conclusion

Throughout this proposal, some general topics have been mentioned that have
great potentials to improve and combine with other tools. All the challenges that
we have encountered in the ongoing SEED project, in university of Genova, that
mainly has focused on the application of MAS, ML, and, in particular, RL, in
traffic control, including lack of sufficient tools for implementing CAVs, have lead
us to design and contribute more in the above-mentioned topics, especially in
creating AGAMAS. Cooperation and intelligence of the agents can be improved
significantly with exploiting other methods, like RL and GNNs. However, these
specific areas contain their own special challenges, like the trade-off between
exploration and exploitation in RL methods. QC, on the other hand, in few years,
will have significant impact on computer science. Exploiting quantum computers
and adjusting the conventional methods with this newly emerged computational
tool requires inevitable research effort that may shape our future.

Although in this proposal we have mentioned challenges in traffic, but there
are a lot of interesting areas that MAS and ML can be applied. Besides the
applications, it would be very interesting if we could tackle theoretical questions
and form mathematical models for what have been mentioned in this proposal.

Theoretical Questions of ML, MAS, and QC with Applications 533

References

1. Chaanine, T., Ferrando, A., Caterina Pasquale, C., Paolo Pastore, V., Sadeghi Gar-
jan, M., Siri, S.: A control-oriented highway traffic model with multiple clusters of
CAVs. In: IEEE Intelligent Transportation Systems Society Conference Manage-
ment System (2023)

2. Chen, S., Dong, J., Ha, P., Li, Y., Labi, S.: Graph neural network and reinforce-
ment learning for multi-agent cooperative control of connected autonomous vehicles.
Comput.-Aided Civil Infrastruct. Eng. 36(7), 838–857 (2021)

3. Colas, C., Sigaud, O., Oudeyer, P.Y.: Decoupling exploration and exploitation in
deep reinforcement learning algorithms. In: International Conference on Machine
Learning, pp. 1039–1048 (2018)

4. Lei, Y., Ye, D., Shen, S., Sui, Y., Zhu, T., Zhou, W.: New challenges in reinforcement
learning: a survey of security and privacy. Artif. Intell. Rev. 56, 7195–7236 (2022)

5. Sadeghi Garjan, M., Chaanine, T., Caterina Pasquale, C., Paolo Pastore, V., Fer-
rando, A.: Agamas: a new agent-oriented traffic simulation framework for sumo. In:
20th European Conference on Multi-Agent Systems (2023)

6. Yang, Z., Zolanvari, M., Jain, R.: A survey of important issues in quantum comput-
ing and communications. IEEE Commun. Surv. Tutor. (2023)

7. Yun, W.J., et al.: Quantum multi-agent reinforcement learning via variational quan-
tum circuit design. In: 2022 IEEE 42nd International Conference on Distributed
Computing Systems (ICDCS), pp. 1332–1335. IEEE (2022)

Optimal Rescue Sequences in Disastrous
Incidents

Rabeaeh Kiaghadi(B)

Carl von Ossietzky Universität Oldenburg, 26129 Oldenburg, Germany

Rabeaeh.kiaghadi@uni-oldenburg.de

Abstract. With embedded technology becoming able to pursue
autonomous decision-making in complex environments, reliable multi-
agent robotic systems drawing optimal decisions in autonomous search
and rescue (SAR) missions, without human involvement, become fea-
sible. The objective of this study is to design a control algorithm and
provide simulation for an autonomous robotic system in the event of
a hazardous incident where the environment is highly stochastic and
supply injured people/patients with help. Therefore, time management
plays the key role in the number of patients saved as their health con-
dition follows a probabilistic degrading figure. We have modeled robot
and patients utilizing an interactive continuous Markov chain, followed
by a Genetic-based algorithm for the robot to plan a path with the close
to the theoretically possible maximum expected number of the patient
rescued.

Keywords: Search and rescue missions · Stochastic model-based
optimization · Time-critical decision making · Multi-agent Operation

1 Introduction

Every day, our world faces perilous incidents. In the majority of instances, rescue
operations encounter challenges stemming from decision making under massive
uncertainty, where the uncertainties pertain to the health states of the casualties
and to the environment. Significant financial and life losses may be induced by
suboptimal search and rescue sequences such that decision making plays a key
role. Moreover, time emerges as one of the most vital factors and time manage-
ment the top priority in any decision-making process for such incidents where
lives are at stake [13,15,16]. Otherwise, the consequences will be irrecoverable.
However, there are scenarios where human efficiency reaches its limits. Thus,
The necessity for a secure alternative solution in such circumstances has become
of crucial importance. This is where robots set foot in.

2 Related Works

The robotic world is a diverse domain and every task requires a specific robotic
system. Among those, Robustness, scalability and flexibility, as well as dis-
tributed sensing, make swarm robotic systems well suited for rescue missions in
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
V. Malvone and A. Murano (Eds.): EUMAS 2023, LNAI 14282, pp. 534–539, 2023.
https://doi.org/10.1007/978-3-031-43264-4_43

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-43264-4_43&domain=pdf
https://doi.org/10.1007/978-3-031-43264-4_43

Optimal Rescue Sequences in Disastrous Incidents 535

real-world applications [2,6,9]. However, performance of a multi agent robotic
system in a disastrous incidents relies on having a proper vision for modeling
the system in advance considering most, if not all, of possible constraints and
states the system would find itself in. On the other hand, dealing with probability
and uncertainty is inevitable in real systems [1,5,20]. Thus, predicting the future
behavior of such stochastic systems makes it possible to provide an optimal strat-
egy in order to reduce the cost of the project [12]. The closer the model is to the
real system, the more optimal these strategies can become. Brilliant studies has
addressed tools and modeling systems for this matter to be done. [4,8]. Review
of recent scholarly conducted studies in domains of Swarm Intelligence and Multi
agents [3,7,14], Time-Critical Approaches [19], Exploration-Exploitation Trade-
off under uncertainties [18] as well as Probabilistic model checking [10,11] has led
us to aim for providing an integrated optimization method for swarm robotics
performing search and rescue (SAR) missions in dynamic probabilistic environ-
ment.

3 Problem Statement and Contribution

The above analysis reveals that strategic decisions in SAR are characterized by
the massive uncertainties inherent to the problem domain. A central such uncer-
tainty is the survival probability of patients sustaining different injuries when
they have to wait for rescue. We are addressing this issue by providing opti-
mal route planning for rescue robots when differentiated time-dependent sur-
vival probabilities are known for the different casualities, thus solving a complex
stochastic optimization problem. A time-variant survival function is allocated to
each patient which predicts the diminishing likelihood of their survival as time
passes. The desired task for our agent is to maximize the expected number of
rescued patients considering time as its primary budget resource.

Due to the high complexity level of this Search and rescue operation, we
made several assumptions for this step of modeling one agent and a number of
patients to be rescued:

– Robot is informed of approximately how many persons to look for.
– Severity of injured people is categorized into several levels.
– Robot is also informed of the injury classes.
– A supervisor (i.e. drone equipped with GPS) informs the robot about the

location of patients!

To provide a mathematical model of our problem, we utilized interactive con-
tinuous Markov chain modeling in order to formalize the problem through
states/locations and transitions of robots and patients:

In patient’s model Fig. 1, patient can be in the state of ‘Alive/Waiting to
be rescued’, ‘Dead’ or ‘Rescued’. In the first state, patient’s health condition
is degrading based on a survival probability function SPPi

(t) assigned to each
patient, potentially leading to sudden death with a rate of − ˙SPPi

(t) at time
t; once the patient has died, it however remains dead. On the other hand, the

536 R. Kiaghadi

Fig. 1. Patient model Fig. 2. Robot model

transition between states ‘waiting to be rescued’ and ‘Rescued’ requires a signal
received from robot indicating that this particular patient is saved. Similar to
‘Dead’ state, rescued patient stays in the state ‘Rescued’.

In parallel, the robot has three main location to be in (Fig. 2). Before making
any decision, it will be in the state ‘Idle’ where the clock is reset. When the robot
makes one of the possible decisions to rescue a patient (action APi

), it starts to
move toward that particular patient with the required time to reach him/her
being counted. Once it reaches the patient, there is still more time needed for
the rescue mission to be finished. If the patient dies before the rescue mission
is done, robot receives a signal from supervisor, cancels the decision (action
ĀPi

), updates its location and becomes ‘Idle’ again in order to asses the current
situation and make another decision. The same can happen when robot is on
its way to the patient. In case of rescue mission being successful, patient will be
added to finalsequenceList, sends the signal of Af

Pi
and goes back to ‘idle’ for

another decision making process.

4 Methodology

We have formulated our problem as a path planning approach where we are not
looking for the minimum length path but for maximum number of patients res-
cued path. Our algorithm consists of a modified genetic algorithm with heuristic
cost function updating the current plan based on changes in accumulated likeli-
hood of other patients staying alive. Since the state of patients’ health condition
varies over time, it is the robot who should decide which path enables it to res-
cue as many patients as possible at the end of its time budget. For this to be
done, our algorithm considers all changes at each step of robot’s path and robot
re-plans when it is necessary. Similar to actual search and rescue missions, the
severity of patients’ condition is classified into distinct categories, including high,
medium, low, and lost. As a result, our problem has been broken down into four
interconnected problems based on these priority levels. Moreover, the cost in
path planning varies from simple Euclidean distance to some cumulative metric
resulted from a robot moving [17]. Here, we aim to maximize the cumulative

Optimal Rescue Sequences in Disastrous Incidents 537

predicted survival probability, where we have utilized genetic algorithm as part
of our approach, to prioritize our rescue sequence in order to approximate the
maximum of cumulative survival probability.

Algorithm 1: Rescue Mission Algorithm
Data: Coordination of Robot and patients, Patients Health grade
Inputs : R,Pi, (x, y)i, fSurvivalPi

, T

/*Initialization

Finalsequence ← 0;
for i = 1 : Pi do

/*Generate Severity Matrix

Severity(mat(4×P)) = Severity(fSurvivalPi
(T + Ts));

RedList ← PLost ← Severitymat.row(4);
/*Update Lost list

for Severitymat.row(j) = 1 : 3 do
if Severitymat.row(j)! = empty then

PriorityList = PSeq

{
argmax

∑PSL
i=1 fSurvivalPi

(
TCurrent + TRloc→Piloc

) }

/*Approximation of argmax by modified genetic algorithm

break
end

end
Finalsequence ← PriorityList(PSeq(end)) /*Update final list

T ← T + TRescue +
|Rloc−PSeq(end)|

vR
/*Update time

Pi ← Pi − PSeq(end) − PLost /*Update Patients list

Pi ← Pi + PNew /*Update Patient list in case of new ones

(x, y)R ← (x, y)PSeq(end) /*Update Robot coordination

end

5 Simulation and Early Results

Simulation of the proposed approach has been conducted by a simulator as
well as an implementation of Algorithm 1 written in MATLAB. Its output is
an animated trajectory of the robot going from one patient to another. Here,
we present examples of the final rescue sequence and dependency of the robot’s
strategy on its own speed, distance and rescue time required for patients (Figs. 3,
4 and 5).

As it is visible in figures, the environment is highly stochastic that the strat-
egy has to be changed at any point of time. Also, since it is not predictable that
when each patient would die, it plays the most significant rule in the results
compared to the other parameters such as robot’s speed and required rescue
time. Although it is expected that increment in robot’s speed or a decrease in
the rescue time would result in greater number of patients rescued, the outcome
is still highly dependent on the stochastic nature of the environment including
the sudden death of patients. Therefore, the result are the approximated optimal
path through step by step assessment and planning as the timeline of sudden
death reveals.

538 R. Kiaghadi

Fig. 3. Patients’ Survival
Functions

Fig. 4. Different Rescue
Time

Fig. 5. Different Robot
Speed

6 Conclusion and Future Work

According to our current understanding and based on our problem-solving jour-
ney, as we are dealing with a complex planning problem in stochastic domain
where robot has to change its locally aimed decision and destination at any
step in order to reach its global goal of rescuing as many patients as possible,
Genetic algorithm has been adapted here as an starting point option to tackle
such problems. Our prioritized and modified Genetic algorithm results is an opti-
mized path leading to an approximation of the theoretically possible maximum
number of saved patients. In the near future, we step forward to tackle the multi
agent decision making problem in similar environment where the consensus of
robots becomes part of the equation.

However, in an actual incident, where robots are not the only agents perform-
ing search and rescue operations, ethical aspects and personal attitudes comes
into play. Currently, our strategy embedded into the decision-making is totally
utilitarian based on a defined scheme of assigning equal values to the lives of
patients, without any differentiation based on, e.g., an altruistic personal will to
sacrifice for others or societally agreed preference based on, e.g., age or gender.
Consequently, this system aims to be fully autonomous with restricted interac-
tion between patients and robotic agents. It might become a matter of concern
whether the optimal sequence of rescue mission provided by robots’ calculation
would be reliable/acceptable by human agents to follow regarding their moral
beliefs. If ethical aspects and personal attitudes should be taken into considera-
tion, the design of Human-Machine interfaces permitting to express and respect
these will be an interesting future topic to study.

References

1. Al-Hussaini, S., Gregory, J.M., Gupta, S.K.: Generating task reallocation sug-
gestions to handle contingencies in human-supervised multi-robot missions. IEEE
Trans. Autom. Sci. Eng. (2023). https://doi.org/10.1109/TASE.2022.3227415

2. Balta, H., et al.: Integrated data management for a fleet of search-and-rescue
robots. J. Field Robot. 34(3), 539–582 (2017)

3. Delmerico, J., et al.: The current state and future outlook of rescue robotics. J.
Field Robot. 36(7), 1171–1191 (2019)

https://doi.org/10.1109/TASE.2022.3227415

Optimal Rescue Sequences in Disastrous Incidents 539

4. Galstyan, A., Lerman, K.: Analysis of a stochastic model of adaptive task allocation
in robots. In: Brueckner, S.A., Di Marzo Serugendo, G., Karageorgos, A., Nagpal,
R. (eds.) ESOA 2004. LNCS (LNAI), vol. 3464, pp. 167–179. Springer, Heidelberg
(2005). https://doi.org/10.1007/11494676 11

5. Grenyer, A., Schwabe, O., Erkoyuncu, J.A., Zhao, Y.: Multistep prediction of
dynamic uncertainty under limited data. CIRP J. Manuf. Sci. Technol. 37, 37–
54 (2022). https://doi.org/10.1016/j.cirpj.2022.01.002

6. Gómez, N., Peña, N., Rincón, S., Amaya, S., Calderon, J.: Leader-follower behavior
in multi-agent systems for search and rescue based on PSO approach. In: South-
eastCon 2022, pp. 413–420 (2022). https://doi.org/10.1109/SoutheastCon48659.
2022.9764133

7. Hao, B., Zhao, J., Du, H., Wang, Q., Yuan, Q., Zhao, S.: A search and rescue
robot search method based on flower pollination algorithm and q-learning fusion
algorithm. PLoS ONE 18(3), e0283751 (2023)

8. Ibe, O.: Markov processes for stochastic modeling. Newnes (2013)
9. Jácome, M.Y., Alvear Villaroel, F., Figueroa Olmedo, J.: Ground robot for search

and rescue management. In: Botto-Tobar, M., Zambrano Vizuete, M., Montes
León, S., Torres-Carrión, P., Durakovic, B. (eds.) Applied Technologies, pp. 399–
411. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-24985-3 29

10. Konur, S., Dixon, C., Fisher, M.: Analysing robot swarm behaviour via probabilis-
tic model checking. Robot. Auton. Syst. 60(2), 199–213 (2012)

11. Kwiatkowska, M., Norman, G., Parker, D.: Probabilistic model checking and auton-
omy. CoRR abs/2111.10630 (2021)

12. Lerman, K., Martinoli, A., Galstyan, A.: A review of probabilistic macroscopic
models for swarm robotic systems. In: Şahin, E., Spears, W.M. (eds.) SR 2004.
LNCS, vol. 3342, pp. 143–152. Springer, Heidelberg (2005). https://doi.org/10.
1007/978-3-540-30552-1 12

13. Maheswaran, R.T., Rogers, C.M., Sanchez, R., Szekely, P.: Decision-support for
real-time multi-agent coordination. In: Proceedings of the 9th International Con-
ference on Autonomous Agents and Multiagent Systems, vol. 1, pp. 1771–1772
(2010)

14. Notomista, G., et al.: A resilient and energy-aware task allocation framework for
heterogeneous multirobot systems. IEEE Trans. Rob. 38(1), 159–179 (2021)

15. Nourbakhsh, I., Sycara, K., Koes, M., Yong, M., Lewis, M., Burion, S.: Human-
robot teaming for search and rescue. IEEE Pervasive Comput. 4(1), 72–79 (2005).
https://doi.org/10.1109/MPRV.2005.13

16. Nourjou, R., Smith, S.F., Hatayama, M., Okada, N., Szekely, P.: Dynamic assign-
ment of geospatial-temporal macro tasks to agents under human strategic decisions
for centralized scheduling in multi-agent systems. Int. J. Mach. Learn. Comput.
4(1), 39 (2014)

17. Sanchez-Ibanez, J.R., Perez-del Pulgar, C.J., Garćıa-Cerezo, A.: Path planning for
autonomous mobile robots: a review. Sensors 21(23), 7898 (2021)

18. Subbarayalu, V., Vensuslaus, M.A.: An intrusion detection system for drone swarm-
ing utilizing timed probabilistic automata. Drones 7(4), 248 (2023)

19. Unhelkar, V., Shah, J.: Contact: deciding to communicate during time-critical col-
laborative tasks in unknown, deterministic domains. In: Proceedings of the AAAI
Conference on Artificial Intelligence, vol. 30 (2016)

20. Wehbe, R., Williams, R.K.: Probabilistically resilient multi-robot informative path
planning (2022)

https://doi.org/10.1007/11494676_11
https://doi.org/10.1016/j.cirpj.2022.01.002
https://doi.org/10.1109/SoutheastCon48659.2022.9764133
https://doi.org/10.1109/SoutheastCon48659.2022.9764133
https://doi.org/10.1007/978-3-031-24985-3_29
https://doi.org/10.1007/978-3-540-30552-1_12
https://doi.org/10.1007/978-3-540-30552-1_12
https://doi.org/10.1109/MPRV.2005.13

Efficient Algorithms for LTLf Synthesis

Marco Favorito(B)

Banca d’Italia, Rome, Italy

marco.favorito@bancaditalia.it, marco.favorito@gmail.com

Abstract. The use of temporal logic on finite traces, like Linear Tempo-
ral Logic (ltl) has shown to be very powerful for AI. The focus on finite
traces was also motivated by the difficulties of finding good algorithms
for automata determinization in the infinite trace setting as ltl, a crucial
step in the ltl synthesis problem, while such difficulties in the finite set-
ting disappear. For this reason, synthesis of ltl on finite traces (ltlf) has
gained a lot of traction in the research community due to its generality
and relevance to other fields. This work aims to study efficient algorithms
for solving ltlf synthesis. We first focus on a compositional approach
for computing the deterministic finite automaton (DFA), which will be
used together with efficient backward fixpoint computation to solve the
DFA game. Then, we consider a family of forward ltlf synthesis tech-
niques that build the DFA on-the-fly, while searching for a solution, thus
possibly avoiding the full DFA construction. Our contributions brought
to the realization of efficient tools that achieved the best scores in the
2023 edition of SYNTCOMP.

Keywords: Linear Temporal Logic on Finite Traces · ltlf Synthesis ·
Two-Player Games · AND-OR Graph Search

1 Intorduction

One of the grand challenges of Artificial Intelligence (AI) is to equip intelli-
gent agents with autonomous capability of deliberating the execution of com-
plex courses of action to accomplish desired tasks [24,37]. This problem is
related to reactive synthesis in Formal Methods: we have an agent acting
in an adversarial environment such that the agent controls certain variables
(the agent actions) and the environment controls the others (the environment
reactions); given a specification of the task, the agent has to find a strategy
(plan/policy/controller/program) to choose its actions to fulfil the task in spite
of all possible environment reactions [34]. The agent and the environment inter-
act in a two-player game, a notion also used in model checking in Verification
[1,8], which in turn are at the base of ATL interpretation structures [3], often
used in modelling multi-agent systems [39].

In Formal Methods, the most common formalism for specifying tasks is Lin-
ear Temporal Logic (ltl) [33] typically used also in model checking [5]. A finite

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
V. Malvone and A. Murano (Eds.): EUMAS 2023, LNAI 14282, pp. 540–546, 2023.
https://doi.org/10.1007/978-3-031-43264-4_44

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-43264-4_44&domain=pdf
http://orcid.org/0000-0001-9566-3576
https://doi.org/10.1007/978-3-031-43264-4_44

Efficient Algorithms for LTLf Synthesis 541

trace variant of ltl, ltlf [16], became popular in AI. The interest in finite
traces is due to the observation that typically, intelligent agents are not dedi-
cated to a single task all their life but are supposed to accomplish one task after
another. In particular the synthesis problem for ltlf has been studied in [17],
where it has been shown that the complexity characterization of the problem
in the case of ltlf on finite traces is the same as the one for infinite trace,
namely, 2EXPTIME-complete. Also the procedure for computing it is analogus
[32]. Starting from the logical specification, we get a nondeterministic automaton
(NFA in the finite case, Büchi in the infinite case), we determinize it (in the infi-
nite case, we change the automaton, e.g., to a parity one, since Büchi automata
are not closed under determinization, indeed deterministic Büchi automata are
strictly less expressive than nondeterministic ones), and then we solve the corre-
sponding game (DFA games for finite traces, parity games for the infinite ones)
considering which propositions are controllable and which are not. However, in
the case of infinite traces, the determinization remains a very difficult step, and
there are no good algorithms yet to perform it [22]. In fact, the problem is highly
intractable: from a 9-state NBW, its DRW counterpart has 1,059,057-state DRW
[2], and there are no symbolic algorithms for it. Moreover, solving parity games
requires computing nested fixpoints (possibly exponentially many). In the finite
case, determinization is much easier: it requires the usual subset constructions
and good algorithms are available. Indeed, in most cases, the resulting DFA
is actually manageable, a phenomenon often observed when determinization is
applied to automata finite words [38]. So effective tools can indeed be developed.

Our work aims to concretize the envisioned potential of ltlf synthesis by
providing efficient algorithms for solving the problem. First, we focus on an effi-
cient approach for the transformation of ltlf formulas into deterministic finite
automata (DFA), which is at the core of the automata-theoretic technique for
ltlf synthesis [17]. Our approach is compositional, i.e. we inductively transform
each ltlf subformula into a DFA and combine them through automata opera-
tors. By relying on efficient semi-symbolic automata representations, we empiri-
cally show the effectiveness of our approach and the competitiveness with similar
tools [14]. Secondly, we devise a forward-based approach to ltlf synthesis. The
idea is to build the DFA on-the-fly, exploiting the notion of formula progression
[4,18], while computing a winning strategy for the agent. Our approach can be
more efficient than the classical approach based on backward fixpoint computa-
tion, which requires the construction of the full DFA upfront (in the worst case,
doubly exponentially larger than the size of the formula). Empirical evaluation
shows the tool often performs better than the state-of-the-art tools [15].

The topic of ltlf synthesis has amassed so much interest that the 2023
Reactive Synthesis Competition (SYNTCOMP) has offered an ltlf track. The
symbolic ltlf synthesis tool Syft [41], when backed by our tool Lydia, yield-
ing LydiaSyft [21], achieved second place in the 2023 edition of SYNTCOMP,
whereas our forward-search approach to ltlf synthesis [20] ranked first1. These

1 http://www.syntcomp.org/syntcomp-2023-results/.

http://www.syntcomp.org/syntcomp-2023-results/

542 M. Favorito

impressive results witness the impact of our research. These research works have
been part of the author’s PhD thesis [19].

2 Compositional ltlf -to-DFA

There are different ways to compute the equivalent DFA from an ltlf formula
ϕ. The classical approach [16] works as follows: first, compute an equivalent
Alternating Finite Automaton (afa) [12], then compute its equivalent Nonde-
terministic Finite Automaton (nfa), [35], and then determinize the result to
compute the DFA. One of the best practical implementations of the translation
from ltlf to DFA, proposed by [41]. Their tool Syft encodes ltlf formulas into
First-Order Logic formulas, represented as Mona programs [27–29], and uses
the Mona tool to perform the actual translation. Another work [6] proposed a
hybrid approach to the problem of DFA construction from ltlf formulas: first,
they decompose the outermost conjunction in the input formula ϕ, where ϕ is
assumed to be in the form ϕ =

∧n
i=1 ϕi, in n-subformulae ϕ1 . . . ϕn. Then, they

transform each ϕ1 into DFA Aϕi
in explicit-state representation using Mona.

Finally, they start doing the product between all the automata Aϕ.
In our work [14], we took a step further from the compositional approach

proposed in [6]. In particular, our contribution is a fully compositional approach
to handle both ltlf formulae and ldlf formulas. That is, we don’t make any
assumption on the structure of the formula, as done by Bansal et al., which
stops the decomposition step at the outermost conjunction. We process all the
subformulas recursively up to the leaves of the syntax tree, and then we compose
the partial DFA of the subformulas using common operations over automata (e.g.
union, intersection, concatenation) according to the ltlf/ldlf operator being
processed. The main advantage of doing so is that the partial results can be
aggressively minimized at every step, hence keeping the automata as small as
possible and therefore reducing the computational load of the overall procedure.

Since the transformation rules are defined over Linear Dynamic Logic on
finite traces (ldlf) [16], the input ltlf formula ϕ is first translated into an
equivalent (linear-size) ldlf formula. The elementary formula tt (resp. ff) is
translated into a DFA with only one accepting (resp. rejecting) state with a self-
loop. Boolean operators are processed with the analogous automata-theoretic
operations: e.g. conjunction is implemented as automata intersection, disjunc-
tion as union, and negation as complementation. The temporal operator 〈ρ〉ψ is
handled according to the regular expression ρ. Due to lack of space, we cannot
describe it in full detail, and the interested reader should refer to [14]. On the
implementation side, Lydia uses the semi-symbolic DFA representation provided
by Mona. In Mona, the transitions of a DFA are symbolically represented as a
shared multi-terminal binary decision diagram (shMBDD) [9], where the tran-
sition relation of a DFA is encoded as a binary decision diagram (BDD) with
multiple terminal nodes. The alphabets of these DFA are the sets of bit vectors of
length k, i.e. Bk, for some k. In our case, each bit is associated to an atomic propo-
sition appearing in the ldlf formula. In addition to a compact representation

Efficient Algorithms for LTLf Synthesis 543

of transitions of DFA, the Mona DFA library provides efficient implementations
of standard automata operations. These operations include product, (existen-
tial) projection, determinization, and minimization. We extended the library to
include the Kleene closure, the concatenation, and the universal projection. Intu-
itively, these operations are needed in the modelling of nondeterminism of the
U-operator semantics. Finally, the built DFA, which is minimal and explicit in
the state space, is transformed into a symbolic automaton to make it processable
by Syft for efficient symbolic computation for solving the DFA game.

3 Forward ltlf Synthesis

The main drawback of approaches based on backward fixpoint computation for
adversarial reachability of the DFA accepting state is that it requires computing
the entire DFA of the ltlf specification, which in the worst case can be doubly
exponential in the size of the formula. Thus, the DFA construction step becomes
the main bottleneck. A natural idea is to consider a forward search approach
that expands the arena on-the-fly while searching for a solution, possibly avoid-
ing the construction of the entire arena. Forward-based approaches are at the
core of the best solution methods designed for other AI problems: Planning with
fully observable non-deterministic domains (FOND) [23,24], where the agent
has to reach the goal, despite that the environment may choose adversarially
the effects of the agent actions, and Planning in partially observable nondeter-
ministic domains (POND), also known as contingent planning, where the search
procedure must be performed over the belief-states [7,25,36]. However, tech-
niques developed for such problems cannot be applied to ours; an attempt has
been made by encoding the problem into PDDL [26], as [10,11], but unfortu-
nately this might result in a PDDL specification with exponential size.

For these reasons, researchers have been looking into forward search tech-
niques specifically conceived for solving ltlf synthesis. The first most notable
attempt in this direction is [40]. In that work, the authors present an on-the-
fly synthesis approach via conducting a so-called Transition-based Deterministic
Finite Automata (TDFA) game, where the acceptance condition is defined on
transitions instead of states. The main issue of that approach is the full enumer-
ation of agent-environment moves, which are exponentially many in the number
of variables. Moreover, due to the fact that the acceptance condition is defined
on transitions, every generated transition has to be checked for acceptance.

In our works [15] and [20], we investigated ltlf forward synthesis adopting
an AND-OR graph search as in FOND Planning [30,31], but over a doubly
exponential search space, as for contingent planning [7]. We develop specific
techniques to create the search space on-the-fly while exploring it, such that we
can possibly decide realizability before reaching the double-exponential blowup.

In detail, in our first work in this direction, [15], we proposed a technique
to create on-the-fly the DFA corresponding to the ltlf specification. This tech-
nique avoids a detour to automata theory and instead builds directly deter-
ministic transitions from a current state. In particular, this technique exploits

544 M. Favorito

ltl formula progression to separate what happens now (label) and what should
happen next accordingly (successor state). Crucially, we exploited the structure
that formula progression provides to branch on propositional formulas (repre-
senting several evaluations) instead of individual evaluations. This drastically
reduces the branching factor of the AND-OR graph to be searched (recall that
in ltlf synthesis, both the agent choices and the environment choices can be
exponentially many). More specifically, we label transitions/edges with proposi-
tional formulas on propositions controlled by the agent (for OR-nodes) and by
the environment (for AND-nodes). Every such propositional formula captures a
set of evaluations leading to the same successor node. We leverage Knowledge
Compilation (KC) techniques, and in particular Sentential Decision Diagrams
(SDDs) [13], to effectively generate such propositional formulas for OR-nodes
and AND-nodes, and thus reduce the branching factor of the search space. The
implemented tool, Cynthia, showed to perform better than other tools such as
Ltlfsyn [40], and the state-of-the-art approaches Lisa and Lydia.

Nevertheless, for certain types of problem instances, Cynthia’s approach can
get stuck with demanding compilations of the state formulas needed both for
state equivalence checking and for search node expansion. Moreover, the require-
ment of having an irreducible representation of agent-environment moves can be
of little usefulness if the branching factor of the search problem is already high,
resulting in an even greater compilation overhead.

For this reason, in our following work on the same line of research [20], we con-
sidered different realizations of the previous AND-OR graph search framework,
in which we consider two primitive operations: state-equivalence checking and
search node expansion. We formalized and discussed two well-known instances
of equivalence checks; one based on Binary Decision Diagrams [9], and the other
on a computationally-cheap syntactical equivalence between state formulas. Fur-
thermore, we propose a novel search graph expansion technique based on a pro-
cedure inspired by the famous Davis-Putnam-Logemann-Loveland (DPLL) algo-
rithm. This overcomes the limitation of previous works [40] and [14]. The main
benefits of this approach is to focus the computational power for actually explor-
ing the search space, rather than wasting time either slavishly enumerating the
exponentially many variable assignments [40] or by finding the minimal repre-
sentation of the available search moves [15]. The new tool, called Nike showed its
surprising effectiveness. Indeed, as stated earlier, Nike won the ltlf Realizability
Track in the 2023 edition of SYNTCOMP.

4 Conclusion

Our work, both theoretical and practical, laid the foundations for efficient ltlf

synthesis algorithms. We contributed with novel approaches, both for the effec-
tive construction of the DFA that can be used for the classical backward fixpoint
computation and also for a forward approach that possibly avoids the exploration
of the entire DFA game. The impressive results at the 2023 edition of SYNT-
COMP show the impact of our work.

Efficient Algorithms for LTLf Synthesis 545

References

1. de Alfaro, L., Henzinger, T.A., Majumdar, R.: From verification to control:
dynamic programs for omega-regular objectives. In: LICS, pp. 279–290. IEEE Com-
puter Society (2001)

2. Althoff, C.S., Thomas, W., Wallmeier, N.: Observations on determinization of
büchi automata. Theor. Comput. Sci. 363(2), 224–233 (2006)

3. Alur, R., Henzinger, T.A., Kupferman, O.: Alternating-time temporal logic. J.
ACM 49(5), 672–713 (2002)

4. Bacchus, F., Kabanza, F.: Planning for temporally extended goals. Ann. Math.
Artif. Intell. 22(1–2), 5–27 (1998)

5. Baier, C., Katoen, J.: Principles of Model Checking. MIT Press, Cambridge (2008)
6. Bansal, S., Li, Y., Tabajara, L.M., Vardi, M.Y.: Hybrid compositional reasoning

for reactive synthesis from finite-horizon specifications. In: AAAI, pp. 9766–9774.
AAAI Press (2020)

7. Bertoli, P., Cimatti, A., Roveri, M., Traverso, P.: Strong planning under partial
observability. Artif. Intell. 170(4–5), 337–384 (2006)

8. Bloem, R., Jobstmann, B., Piterman, N., Pnueli, A., Sa’ar, Y.: Synthesis of reac-
tive(1) designs. J. Comput. Syst. Sci. 78(3), 911–938 (2012)

9. Bryant, R.E.: Symbolic Boolean manipulation with ordered binary-decision dia-
grams. ACM Comput. Surv. 24(3), 293–318 (1992)

10. Camacho, A., Baier, J.A., Muise, C.J., McIlraith, S.A.: Finite LTL synthesis as
planning. In: ICAPS, pp. 29–38. AAAI Press (2018)

11. Camacho, A., McIlraith, S.A.: Strong fully observable non-deterministic planning
with LTL and LTLf goals. In: IJCAI, pp. 5523–5531 (2019). https://www.ijcai.
org/

12. Chandra, A.K., Kozen, D., Stockmeyer, L.J.: Alternation. J. ACM 28(1), 114–133
(1981)

13. Darwiche, A.: SDD: a new canonical representation of propositional knowledge
bases. In: IJCAI, pp. 819–826. IJCAI/AAAI (2011)

14. De Giacomo, G., Favorito, M.: Compositional approach to translate LTLf/LDLf
into deterministic finite automata. In: ICAPS, pp. 122–130. AAAI Press (2021)

15. De Giacomo, G., Favorito, M., Li, J., Vardi, M.Y., Xiao, S., Zhu, S.: Ltlf synthesis
as AND-OR graph search: Knowledge compilation at work. In: IJCAI, pp. 2591–
2598 (2022). https://www.ijcai.org/

16. De Giacomo, G., Vardi, M.Y.: Linear temporal logic and linear dynamic logic on
finite traces. In: IJCAI, pp. 854–860. IJCAI/AAAI (2013)

17. De Giacomo, G., Vardi, M.Y.: Synthesis for LTL and LDL on finite traces. In:
IJCAI, pp. 1558–1564. AAAI Press (2015)

18. Emerson, E.A.: Temporal and modal logic. In: Handbook of Theoretical Computer
Science, Volume B: Formal Models and Sematics (B), pp. 995–1072. Elsevier and
MIT Press (1990)

19. Favorito, M.: Automata-theoretic techniques for reasoning and learning in linear-
time temporal logics on finite traces (2022)

20. Favorito, M.: Forward LTLf synthesis: DPLL at work (2023). https://doi.org/10.
48550/arXiv.2302.13825

21. Favorito, M., Zhu, S.: Lydiasyft: a compositional symbolic synthesizer for LTLf
specifications (2023)

22. Fogarty, S., Kupferman, O., Vardi, M.Y., Wilke, T.: Profile trees for büchi word
automata, with application to determinization. Inf. Comput. 245, 136–151 (2015)

https://www.ijcai.org/
https://www.ijcai.org/
https://www.ijcai.org/
https://doi.org/10.48550/arXiv.2302.13825
https://doi.org/10.48550/arXiv.2302.13825

546 M. Favorito

23. Geffner, H., Bonet, B.: A Concise Introduction to Models and Methods for Auto-
mated Planning, Synthesis Lectures on Artificial Intelligence and Machine Learn-
ing. Morgan & Claypool Publishers (2013)

24. Ghallab, M., Nau, D., Traverso, P.: Automated Planning and Acting. Cambridge
University Press, Cambridge (2016)

25. Goldman, R.P., Boddy, M.S.: Expressive planning and explicit knowledge. In:
AIPS, pp. 110–117. AAAI (1996)

26. Haslum, P., Lipovetzky, N., Magazzeni, D., Muise, C.: An Introduction to the
Planning Domain Definition Language. ynthesis Lectures on Artificial Intelligence
and Machine Learning. Morgan & Claypool Publishers, S (2019)

27. Henriksen, J.G., et al.: Mona: monadic second-order logic in practice. In: Brinksma,
E., Cleaveland, W.R., Larsen, K.G., Margaria, T., Steffen, B. (eds.) TACAS 1995.
LNCS, vol. 1019, pp. 89–110. Springer, Heidelberg (1995). https://doi.org/10.1007/
3-540-60630-0 5

28. Klarlund, N.: Mona & fido: the logic-automaton connection in practice. In: Nielsen,
M., Thomas, W. (eds.) CSL 1997. LNCS, vol. 1414, pp. 311–326. Springer, Heidel-
berg (1998). https://doi.org/10.1007/BFb0028022

29. Klarlund, N., Møller, A., Schwartzbach, M.I.: MONA implementation secrets. Int.
J. Found. Comput. Sci. 13(4), 571–586 (2002)

30. Mattmüller, R.: Informed progression search for fully observable nondeterminis-
tic planning = Informierte Vorwärtssuche für nichtdeterministisches Planen unter
vollständiger Beobachtbarkeit. Ph.D. thesis, University of Freiburg, Germany
(2013)

31. Mattmüller, R., Ortlieb, M., Helmert, M., Bercher, P.: Pattern database heuristics
for fully observable nondeterministic planning. In: ICAPS, pp. 105–112. AAAI
(2010)

32. Mazala, R.: Infinite games. In: Grädel, E., Thomas, W., Wilke, T. (eds.) Automata
Logics, and Infinite Games. LNCS, vol. 2500, pp. 23–38. Springer, Heidelberg
(2002). https://doi.org/10.1007/3-540-36387-4 2

33. Pnueli, A.: The temporal logic of programs. In: FOCS, pp. 46–57. IEEE Computer
Society (1977)

34. Pnueli, A., Rosner, R.: On the synthesis of a reactive module. In: POPL, pp. 179–
190. ACM Press (1989)

35. Rabin, M.O., Scott, D.S.: Finite automata and their decision problems. IBM J.
Res. Dev. 3(2), 114–125 (1959)

36. Reif, J.H.: The complexity of two-player games of incomplete information. J. Com-
put. Syst. Sci. 29(2), 274–301 (1984)

37. Reiter, R.: Knowledge in Action: Logical Foundations for Specifying and Imple-
menting Dynamical Systems. MIT press, Cambridge (2001)

38. Tabakov, D., Vardi, M.Y.: Experimental evaluation of classical automata construc-
tions. In: Sutcliffe, G., Voronkov, A. (eds.) LPAR 2005. LNCS (LNAI), vol. 3835,
pp. 396–411. Springer, Heidelberg (2005). https://doi.org/10.1007/11591191 28

39. Wooldridge, M.J.: An Introduction to MultiAgent Systems, 2nd edn. Wiley, Hobo-
ken (2009)

40. Xiao, S., Li, J., Zhu, S., Shi, Y., Pu, G., Vardi, M.Y.: On-the-fly synthesis for LTL
over finite traces. In: AAAI, pp. 6530–6537. AAAI Press (2021)

41. Zhu, S., Tabajara, L.M., Li, J., Pu, G., Vardi, M.Y.: Symbolic LTLf synthesis. In:
IJCAI, pp. 1362–1369 (2017). https://www.ijcai.org/

https://doi.org/10.1007/3-540-60630-0_5
https://doi.org/10.1007/3-540-60630-0_5
https://doi.org/10.1007/BFb0028022
https://doi.org/10.1007/3-540-36387-4_2
https://doi.org/10.1007/11591191_28
https://www.ijcai.org/

Agent Behavior Composition
in Stochastic Settings

Luciana Silo1,2(B)

1 Sapienza Università di Roma, Rome, Italy
silo@diag.uniroma1.it

2 Camera dei Deputati, Rome, Italy

Abstract. Behavior composition problem is particularly relevant for
multi-agent systems and aims at building a complex target behavior
using several agent behaviors. In this work, we develop a framework that
models the agent behaviors in stochastic settings both when the target
is represented as a Finite State Machine and when it is represented as
an ltlf formula.

Keywords: Behavior Composition · Markov Decision Processes ·
Decision Theory

1 Introduction

The behavior composition problem is well-known and extensively investigated in
agents and multi-agent settings. It consists of realizing a desired target behavior
using a set of agent’s behavior, i.e., services. Behaviors are an abstraction of
sequences of actions made by agents. The composition and the reuse of compo-
nents has been largely studied in Service Oriented Computing, under the name of
“service composition”. Service composition aims at composing complex services
by orchestrating (i.e., controlling and coordinating) services that are already
at disposal. When service composition takes into account the behavior of the
component service it becomes related to what we call here “behavior composi-
tion” [6]. This framework takes inspiration from several works where the agent’s
behaviors are described by finite transition systems [1–3,6]. The approach used
in these works is known in the literature as the “Roman model” where each
available service is modeled as a finite-state machine (FSM), in which at each
state, the service offers a certain set of actions, and each action changes the state
of the service in some way. The designer is interested in generating a new service
(referred to as a target) from the set of existing services. The target service (the
requirement) is specified using an FSM, too. The composition is synthesized by
building a controller or an orchestrator that uses existing services to satisfy the
requirements of the target service.

Nevertheless, there is an inherent limitation of the approach based on the
classical Roman model, the assumption that the services that can be used to
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
V. Malvone and A. Murano (Eds.): EUMAS 2023, LNAI 14282, pp. 547–552, 2023.
https://doi.org/10.1007/978-3-031-43264-4_45

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-43264-4_45&domain=pdf
http://orcid.org/0000-0001-7250-8979
https://doi.org/10.1007/978-3-031-43264-4_45

548 L. Silo

realize the target service, behave deterministically. This assumption is often
unrealistic because in practice the set of services might show non-deterministic
behavior due, for example, to the complexity of the domain, or due to an inherent
uncertainty on the dynamics of such a system. Hence, the deterministic service
model is not expressive enough to capture crucial facets of the system being
modeled. Moreover, the above-mentioned techniques work only when the target
is fully realizable, i.e. the specification can either be satisfied or not, with no
middle ground.

In this work, we study composition in stochastic settings, in which not only
the target but also the services are allowed to behave stochastically. Additionally,
we also represent the target service using the flexible formalism named declare
[8], directly based on Linear Temporal Logic on finite traces (ltlf) [7].

In both cases, an optimal solution for the composition can be found, by solv-
ing an appropriate probabilistic planning problem (a Markov decision process -
MDP) derived from the services and requirement specifications, taking into the
account the probability associated with each action, and rewards. By solving
this problem we have a solution that coincides with the exact solution if a com-
position exists; otherwise it provides an approximate solution that maximizes
the expected sum of values of the target service’s request.

2 Formalization of the Problem

In this section, we formalize the problem when the target service is fully defined
(FSM) and when it is defined by specifying constraints between the task (ltlf
formula).

2.1 Stochastic Policy

Before stating the problem, we formally define a stochastic service as a tuple
S̃ = 〈Σs, σs0, Fs, A, Ps, Rs〉, formed by:

– Σs is the finite set of service states;
– σs0 ∈ Σ is the initial state;
– Fs ⊆ Σs is the set of the service’s final state;
– A is the finite set of services’ actions;
– Ps : Σs × A → Prob(Σs) is the transition function;
– Rs : Σs × A → R is the reward function.

In short words, the stochastic service is the stochastic variant of the service
defined in the classical Roman model, and it can be seen as a Markov Decision
Process1. The target service (also seen as a Markov Decision Process) is defined
as T = 〈Σt, σt0, Ft, A, δt, Pt, Rt〉 [3], where:

– Σt is the finite set of service states;
1 An MDP is a tuple M = 〈S,A, T,R〉 formed by: a set S of states, a set A of actions,
a transition function T : S × A → Prob(S), and a reward function R : S × A → R.

Agent Behavior Composition in Stochastic Settings 549

– σt0 ∈ Σ is the initial state;
– Ft ⊆ Σ is the set of the service’s final state;
– A is the finite set of services’ actions;
– δt : Σ × A → Σ is the service’s deterministic and partial transition function;
– Pt : Σt → π(A) ∪ ∅ is the action distribution function;
– Rt : Σt × A → R is the reward function.

A stochastic system service Z̃ is a stochastic service where Z̃ =
〈Σz, σz0, Fz, A, Pz, Rz〉 is defined as follows:

– Σz = Σ1 × · · · × Σn;
– σz0 = (σ10, . . . , σn0);
– Fz = {(σ1, . . . , σn) | σi ∈ Fi, 1 ≤ i ≤ n};
– Az = A × {1, . . . n} is the set of pairs (a, i) formed by a shared action a and

the index i of the service that executes it;
– Pz(σ′ | σ, (a, i)) = P (σ′

i | σi, a), for σ = (σ1 . . . σn), σ′ = (σ′
1 . . . σ′

n) and
a ∈ Ai(σi), with σi ∈ Σi and σj = σ′

j for j
= i;
– Rz(σ, (a, i)) = Ri(σi, a) for σ ∈ Σz, a ∈ Ai(σi).

We define the set of joint histories of the target and the system service as Ht,z =
Σt × Σz × (A × Σt × Σz)∗. A joint history ht,z = σt,0σz,0a1σt,1σz,1a2 . . . is
an element of Ht,z. The projection of ht,z over the target (system) actions is
πt(ht,z) = ht (πz(ht,z) = hz).

An orchestrator γ : Σt × Σz × A → {1, . . . , n}, is a mapping from a state of
the target-system service and user action (σt, σz, a) ∈ Σt × Σz × A to the index
j ∈ {1, . . . , n} of the service that must handle it. Crucially, since stochasticity
comes also from the services, the orchestrator does affect the probability of an
history ht,z. Moreover, in general, there are several system histories associated
with a given target history. We say that a target history ht is realizable by an
orchestrator γ if for all joint histories ht,z such that ht = πt(ht,x), the orches-
trator is well-defined, i.e., it can perform all the actions requested by the target
for every possible evolution of the stochastic system service.

The solution technique of the given problem is based on finding an optimal
policy for the composition MDP. The composition MDP is a function, which
consists of the cartesian product between the system service and the target
service defined as follows: M̃(Z̃, T̃) = 〈SM̃, AM̃, TM̃, RM̃〉 [5], where:

– SM̃ = ΣZ̃ × ΣT̃ × A ∪ {sM0};
– AM̃ = {aM0, 1, . . . , n};
– TM̃(sM0, aM0, (σz0, σt0, a)) = Pt(σt0, a);
– TM̃((σz, σt, a), i, (σ′

z, σ
′
t, a

′)) = Pt(σ′
t, a

′) · Pz(σ′
z | σz, 〈a, i〉), if Pz(σ′

z |
σz, 〈a, i〉) > 0 and σt

a−→ σ′
t and 0 otherwise;

– RM̃((σz, σt, a), i) = Rt(σt, a)+Rz(σz, 〈a, i〉), if (a, i) ∈ A(σz) and 0 otherwise.

This definition take into account also the probability of transitioning to the
system successor state σ′

z from σz doing the system action 〈a, i〉, i.e. Pz(σ′
z |

σz, 〈a, i〉), and in the reward function, take into account also, the reward observed

550 L. Silo

from doing system action 〈a, i〉 in σz, and sum it to the reward signal coming
from the target. By construction, if ρ is an optimal policy, then the orchestrator
γ such that γ(σz, σt, a) = ρ(〈σz, σt, a〉 is an optimal orchestrator.

To summarize, given the specifications of the set of stochastic services and
the target service, first compute the composition MDP, then find an optimal
policy for it, and then deploy the policy in an orchestration setting and dispatch
the request to the chosen service according to the computed policy.

2.2 Stochastic Constraint-Based Policy

In the following, we formally define the target process specification as an ltlf
2

formula ϕ over the set of propositions P, which specifies the allowed traces of the
process. We can define this specification via declare, a language and framework
for the declarative constraint-based modeling of processes [8]. declare provides
a set P of propositions representing the atomic tasks which are units of work
in the process. This permits to model the process as a set of logical conditions,
so as to more easily specify those processes in which human experience plays a
key role or in which the rules of precedence between operations cannot simply
be modeled as a sequence. Observe that the set of finite traces that satisfies the
specification ϕ together with the declare assumption ξP can be captured by a
single deterministic process dfa Aϕ, obtained by (i) generating the correspond-
ing nfa (exponential step), (ii) transforming it into a dfa (exponential step)
[9], and (iii) trimming the resulting dfa by removing every state from which no
final state is reachable (polynomial step).

The obtained dfa is indeed a process in the sense that at every step, depend-
ing only on the history (i.e., the current state), it exposes the set of actions
that are legally executable and eventually lead to a final state (assuming fair-
ness of the execution, which disallows remaining forever in a loop). The ltlf
formula transformed into a deterministic finite automaton (dfa) is defined as
Aϕ = 〈P, Q, q0, F, δ〉 where:

– P is the alphabet;
– Q is a finite set of states;
– q0 is the initial state;
– F ⊆ Q is the set of accepting states;
– δ : Q × P → Q is the transition function.

Note that the dfa alphabet is the same as the set of traces that satisfies the
formula ϕ.

The stochastic services are defined as before, and they can perform the
process actions in P. To make our model richer, we allow services to exe-
cute a broader set of actions, i.e. P ′ s.t. P ⊆ P ′, that are specific to the
model of the factory that aims to realize the manufacturing process. The com-
position MDP is a function that consists of the cartesian product between
2 ltlf is a variant of Linear Temporal Logic (ltl) interpreted over finite traces, instead
of infinite ones [7].

Agent Behavior Composition in Stochastic Settings 551

the stochastic system service Z̃ and the dfa Aϕ of the ltlf formula ϕ, i.e.,
M(Z̃,Aϕ) = 〈SM, AM, TM, RM, λ〉 [4], where:

– SM = Σz × Q is the product of the states of the system service and the DFA
states;

– AM is the set of the MDP actions consisting on the product between the
DFA action and the service that performs the action;

– TM((σ, q), 〈a, i〉, (σ′, q′)) = Pz(σ′ | σ, 〈a, i〉) if 〈a, i〉 ∈ Âz(σ) ∧(
(a ∈ P ∧ q

a−→ q′) ∨ q′ = q
)

, 0 otherwise, this means that the transition func-
tion TM takes into account also the probability of transitioning to the system
successor state σ′ from σ doing the system action 〈a, i〉, i.e. Pz(σ′ | σ, 〈a, i〉),
and q′ is the successor state of q in Aϕ after reading a if it is a process action
(a ∈ P), otherwise it is a service custom action and the automaton remains
in the same state (q′ = q);

– RM((σ, q), 〈a, i〉, (σ′, q′)) is the reward function that models the process spec-
ification ϕ, it is equal to 1 if q′ ∈ F , or Rz(σi, a, σ′

i), if 〈a, i〉 ∈ Âz(σ), else
0; particularly the reward function returns 1 if the automaton component of
the state is an accepting state q′ ∈ F , where F is the set of accepting states;

– λ is the discount factor that determines how important future rewards are to
the current state.

An optimal policy for the composition MDP can be computed as before,
i.e., such that the overall expected sum of rewards is minimized. A solution to
this composition MDP induces an orchestrator that coincides with the exact
solution if a composition exists. Otherwise, it provides an approximate solution
that maximizes the expected discounted sum of values of user requests that
can be serviced. Leveraging on the solution policy, the controller dispatches the
requests to the specific service.

3 Conclusion and Future Works

This project extends the works that use the “Roman model”, considering
stochastic settings for agent behaviors. This permits to outline a composition
that is more “realistic”, thanks to the fact that is able to capture the uncertainty
of real systems. Moreover, we define the composition when the target behavior is
fully defined as an FSM, and when it is represented using model constraints, i.e.,
declare language. Besides the development of this work, we considered several
future research directions, aiming to enrich the theoretical framework with inter-
esting features such as exception handling, modularity of the target specification,
possibility to specify safety constraints. Moreover, we are currently developing
other interesting extensions. First of all, we are integrating our framework with
learning techniques in order to achieve greater scalability and investigation on
how to reach the resilience of the system. This can greatly benefit the perfor-
mance of the framework since, instead of computing the cartesian product (that
is high time and memory-consuming), we can directly learn the orchestrator

552 L. Silo

policy on the induced (but unknown) MDP. Then, we are studying the problem
combing techniques from ltlf synthesis, service composition à la Roman Model,
and stochastic shortest paths on transitions with different costs.

References

1. Berardi, D., Calvanese, D., De Giacomo, G., Hull, R., Mecella, M.: Automatic com-
position of transition-based semantic web services with messaging. In: VLDB, vol.
5, pp. 613–624 (2005)

2. Berardi, D., Calvanese, D., De Giacomo, G., Lenzerini, M., Mecella, M.: Automatic
composition of E -services that export their behavior. In: Orlowska, M.E., Weer-
awarana, S., Papazoglou, M.P., Yang, J. (eds.) ICSOC 2003. LNCS, vol. 2910, pp.
43–58. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-24593-3 4

3. Brafman, R.I., De Giacomo, G., Mecella, M., Sardina, S.: Service composition in
stochastic settings. In: Esposito, F., Basili, R., Ferilli, S., Lisi, F. (eds.) AI*IA 2017.
LNCS, vol. 10640, pp. 159–171. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-70169-1 12

4. De Giacomo, G., Favorito, M., Leotta, F., Mecella, M., Monti, F., Silo, L.: AIDA:
a tool for resiliency in smart manufacturing. In: Cabanillas, C., Pérez, F. (eds.)
CAiSE 2023. LNBIP, vol. 477, pp. 112–120. Springer, Cham (2023). https://doi.
org/10.1007/978-3-031-34674-3 14

5. De Giacomo, G., Favorito, M., Leotta, F., Mecella, M., Silo, L.: Digital twins com-
position in smart manufacturing via Markov decision processes. Comput. Ind. 149,
103916 (2023)

6. De Giacomo, G., Patrizi, F., Sardina, S.: Automatic behavior composition synthesis.
Artif. Intell. 196, 106–142 (2013)

7. De Giacomo, G., Vardi, M.Y.: Linear temporal logic and linear dynamic logic on
finite traces. In: IJCAI 2013 Proceedings of the Twenty-Third international joint
conference on Artificial Intelligence, pp. 854–860. ACM (2013)

8. Pesic, M., Schonenberg, H., Van der Aalst, W.M.: DECLARE: full support for
loosely-structured processes. In: 11th IEEE International Enterprise Distributed
Object Computing Conference (EDOC 2007), pp. 287–287. IEEE (2007)

9. Rabin, M.O., Scott, D.: Finite automata and their decision problems. IBM J. Res.
Dev. 3(2), 114–125 (1959)

https://doi.org/10.1007/978-3-540-24593-3_4
https://doi.org/10.1007/978-3-319-70169-1_12
https://doi.org/10.1007/978-3-319-70169-1_12
https://doi.org/10.1007/978-3-031-34674-3_14
https://doi.org/10.1007/978-3-031-34674-3_14

Author Index

A
Acclavio, Matteo 150
Albrecht, Justin 214
Alechina, Natasha 328
Ali, Aliyu Tanko 295
Aminof, Benjamin 263
Arias, Joaquín 415
Augello, Agnese 406
Auletta, Vincenzo 435

B
Baiardi, Martina 49, 452
Baldi, Paolo 280
Ballot, Gabriel 472
Becker, Leandro Buss 214
Bergenti, Federico 100
Bezou-Vrakatseli, Elfia 167
Briman, Eyal 1
Brückner, Benedikt 167
Burattini, Samuele 49, 445

C
Caggianese, Giuseppe 406
Cardoso, Rafael 214
Cardoso, Rafael C. 345
Catta, Davide 150
Chaanine, Tommy 396
Chover, Miguel 381
Christoff, Zoé 17
Ciatto, Giovanni 49

D
Dastani, Mehdi 328
De Giacomo, Giuseppe 133, 228, 263
Demangeon, Romain 312
Dennis, Louise A. 345
Di Cosmo, Francesco 507
Di Stasio, Antonio 263
Dima, Catalin 312
Dixon, Clare 345
Downs, Anthony 214

E
Engelmann, Débora Cristina 66
Esfahani, Zeinab Namakizadeh 66
Esfandiari, Babak 32
Euzenat, Jérôme 425

F
Favorito, Marco 540
Ferraioli, Diodato 435
Ferrando, Angelo 66, 214, 396
Fisher, Michael 214, 345
Francon, Hugo 263

G
Gallo, Luigi 406
Gatti, Andrea 486
Grossi, Davide 17

H
Holgado-Sánchez, Andrés 415, 479

I
Inverso, Omar 116

J
Jamali, Ruhollah 200
Jamroga, Wojciech 363

K
Kalaitzakis, Andreas 425
Kiaghadi, Rabeaeh 534
Kootbally, Zeid 214
Kurpiewski, Damian 363

L
La Torre, Salvatore 116
Lazarova-Molnar, Sanja 200
Leofante, Francesco 244
Lespérance, Yves 83
Leucker, Martin 295

© The Editor(s) (if applicable) and The Author(s), under exclusive license
to Springer Nature Switzerland AG 2023
V. Malvone and A. Murano (Eds.): EUMAS 2023, LNAI 14282, pp. 553–554, 2023.
https://doi.org/10.1007/978-3-031-43264-4

https://doi.org/10.1007/978-3-031-43264-4

554 Author Index

Logan, Brian 328
Lomuscio, Alessio 244
López de Aberasturi-Gómez, Alejandra 186

M
Margarone, Massimiliano 66
Marín-Lora, Carlos 381
Mascardi, Viviana 66
Memon, Mashal Afzal 458
Monica, Stefania 100
Montesano, Federica 500
Moreno-Rebato, Mar 415
Morley, Sandra 32

O
Ossowski, Sascha 415

P
Paolo Pastore, Vito 396
Parlato, Gennaro 116
Parretti, Gianmarco 228, 514
Pasquale, Cecilia 396
Perelli, Giuseppe 133
Petrosino, Giuseppe 100
Pianini, Danilo 49
Prince, Tephilla 465

R
Rubin, Sasha 263

S
Sabater-Mir, Jordi 186
Sabatucci, Luca 406
Sachenbacher, Martin 295
Sadeghi Garjan, Mahyar 396, 528
Schlenoff, Craig 214
Schuldei, Andreas 295
Schwarzentruber, François 32
Sierra, Carles 186
Silo, Luciana 547
Stellbrink, Leonard 295
Stranieri, Silvia 493
Stringer, Peter 345
Sun, Haolin 83

T
Talmon, Nimrod 1
Thorburn, Luke 167
Tomasco, Ermenegildo 116

U
Umili, Elena 521

V
Varacca, Daniele 312
Varricchione, Giovanni 328
Venema-Los, Maaike 17
Vezina, Michael 32
Viscito, Carmine 435

Z
Zhu, Shufang 228, 263

	 Preface
	 Organization
	Invited Speakers Abstracts
	 Game-Theoretic Perspectives in Reactive Synthesis
	 Engineering Social Capabilities in Human-Centered AI
	 Contents

	Multiple Attribute List Aggregation and an Application to Democratic Playlist Editing
	1 Introduction
	1.1 Paper Structure

	2 Related Work
	2.1 Multi-attribute Social Choice
	2.2 Proportional Ranking
	2.3 Multi-attribute Scheduling

	3 Multi-Attribute List Aggregation (MALA)
	4 Committee Scoring Rules Using MALA
	5 Computational Analysis
	6 Algorithms
	7 The Democratic Playlist Editing Problem
	8 Experimental Analysis
	8.1 Experimental Design
	8.2 Results and Analysis

	9 Outlook
	References

	On the Graph Theory of Majority Illusions
	1 Introduction
	2 Preliminaries
	3 Illusions in Arbitrary Networks
	4 Illusions in Specific Network Classes
	4.1 Graphs with Odd Degrees
	4.2 2-Colorable Graphs
	4.3 Regular Graphs

	5 Conclusion and Outlook
	References

	Qualitative Uncertainty Reasoning in AgentSpeak
	1 Introduction
	2 Background and Related Work
	2.1 AgentSpeak
	2.2 Uncertainty Reasoning in AgentSpeak
	2.3 Dynamic Epistemic Logic

	3 Methodology Overview
	4 Model Creation: Initializing an Epistemic Model
	4.1 Propositionalizing Standard Beliefs
	4.2 Propositionalizing Ranged Beliefs
	4.3 Propositionalizing Constraints
	4.4 Creating the Initial Epistemic Model

	5 Model Updates: Updating the Epistemic Model
	5.1 Default Belief Event Models
	5.2 ``On'' Plans: Overriding Default Event Models
	5.3 Creating a DEL Event Model

	6 Model Queries: Querying the Epistemic Model
	6.1 Evaluating Formulae

	7 Operational Semantics
	7.1 Model Update Semantics
	7.2 Model Query Semantics

	8 Application and Evaluation
	8.1 Application
	8.2 Evaluation

	9 Conclusion
	References

	JaKtA: BDI Agent-Oriented Programming in Pure Kotlin
	1 Introduction
	2 Background
	2.1 DSL Engineering
	2.2 BDI Paradigm and Programming Languages

	3 A Kotlin DSL for BDI Agents
	3.1 Architecture and Implementation Details
	3.2 JaKtA's syntax

	4 JaKtA in practice: running example
	5 Conclusion, Limitations, and Future Work
	References

	Integrating Ontologies and Cognitive Conversational Agents in On2Conv
	1 Introduction
	2 Background and Related Work
	3 On2Conv Design and Implementation
	4 Ontology Development and Experiments
	5 Conclusions and Future Work
	References

	Exploiting Reward Machines with Deep Reinforcement Learning in Continuous Action Domains
	1 Introduction
	2 Preliminaries
	2.1 Reward Machines in RL
	2.2 Deep RL Algorithms

	3 Adapting Deep RL Algorithms with Reward Machines
	3.1 Soft Actor-Critic (SAC) with CRM
	3.2 Twin Delayed Deep Deterministic Policy Gradient (TD3) with CRM

	4 Experimental Evaluation
	4.1 Results in the Half-Cheetah Domain
	4.2 Results in the Ant Domain

	5 Discussion
	6 Conclusion
	References

	A Comprehensive Presentation of the Jadescript Agent-Oriented Programming Language
	1 Introduction
	2 Ontologies in Jadescript
	3 Jadescript Agents and Their Behaviours
	4 Events and Messages in Jadescript
	5 Conclusion
	References

	Verifying Programs by Bounded Tree-Width Behavior Graphs
	1 Introduction
	2 Programs with Recursive Procedure Calls
	3 Graphs Representing Program Executions
	4 Bounded Tree-Width Analysis of Programs
	5 Getting Tree Decompositions for Program Nested Words
	6 Implementation
	7 Discussion
	References

	Behavioral QLTL
	1 Introduction
	2 Quantified Linear Temporal Logic
	3 Skolem Functions for QLTL Semantics
	4 Behavioral QLTL (QLTLB)
	5 Capturing Advanced Forms of Planning in QLTLB
	6 QLTLB Properties
	7 QLTLB Satisfiability
	8 Conclusion
	References

	Lorenzen-Style Strategies as Proof-Search Strategies
	1 Introduction
	2 Dialogical Logic
	2.1 Notation and Terminology
	2.2 Dialogical Games

	3 Sequent Calculus
	3.1 Games on Hyland-Ong Arenas

	4 From Dialogical Logic Strategies to Derivations
	5 From Derivations to Dialogical Logic Strategies
	6 Conclusion and Future Work
	References

	SHAPE: A Framework for Evaluating the Ethicality of Influence
	1 Introduction
	2 Concerns
	2.1 Secrecy
	2.2 Harm
	2.3 Agency
	2.4 Privacy
	2.5 Exogeneity

	3 Governance of Influence
	3.1 Professional Culture
	3.2 Institutional Ethics Reviews
	3.3 Regulation

	4 Conclusion
	References

	Modelling Group Performance in Multiagent Systems: Introducing the CollabQuest Simulation Game
	1 Introduction
	2 Group Work as a Mixed-Motive Game
	3 Formal Model
	3.1 Multiagent Reinforcement Learning
	3.2 Task Type and Transition Function
	3.3 Payoff System and Expected Reward

	4 CollabQuest: Unleashing Collective Potential
	5 Conclusions and Future Work
	References

	Towards Developing an Agent-Based Model of Price Competition in the European Pharmaceutical Parallel Trade Market
	1 Introduction
	2 Description of the Parallel Trade Market Model
	2.1 Agent-Based Model of Pharmaceutical Parallel Trade Market
	2.2 Pricing Strategy
	2.3 The Agent-Based Model of Price Competition

	3 Case Study
	4 Experiments and Results
	5 Summary and Outlook
	References

	Using a BDI Agent to Represent a Human on the Factory Floor of the ARIAC 2023 Industrial Automation Competition
	1 Introduction
	2 Agile Robotics for Industrial Automation Competition
	2.1 Human Operator Agility Challenge
	2.2 Safety Distance Calculation

	3 Simulation Software Overview
	4 The Human Agent
	4.1 Initial Beliefs and Initial Goal
	4.2 Plans for Movement Control
	4.3 Implementing Personalities
	4.4 The Environment Class
	4.5 Results and Additional Remarks

	5 Conclusions and Future Work
	References

	Symbolic ltlf Best-Effort Synthesis
	1 Introduction
	2 Preliminaries
	3 Best-Effort Synthesis Under Environment Specifications
	4 Symbolic ltlf Best-Effort Synthesis
	4.1 Symbolic dfa Games
	4.2 Monolithic Approach
	4.3 Explicit-Compositional Approach
	4.4 Symbolic-Compositional Approach

	5 Empirical Evaluations
	5.1 Implementation
	5.2 Experiment Methodology
	5.3 Experimental Results and Analysis

	6 Conclusion
	References

	Robust Explanations for Human-Neural Multi-agent Systems with Formal Verification
	1 Introduction
	2 Background
	3 Robust Explanations via Verification
	3.1 Robust Counterfactual Explanations
	3.2 Robust Semi-factual Explanations

	4 Experimental Evaluation
	4.1 Automated Credit Scoring
	4.2 Traffic Sign Recognition

	5 Discussion and Conclusions
	References

	ltlf Synthesis Under Environment Specifications for Reachability and Safety Properties
	1 Introduction
	2 Preliminaries
	3 Problem Description
	4 Building Blocks for the Algorithms
	5 Reachability Tasks, No Env Spec
	6 Safety Tasks, No Env Spec
	7 Reachability and Safety Tasks, No Env Spec
	8 Reachability Tasks, Safety Env Specs
	9 Safety Tasks, Safety Env Specs
	10 Reachability and Safety Tasks, Safety Env Specs
	11 Reachability and Safety Tasks and Env Specs
	12 Conclusion
	References

	Logic-Based Approximations of Preferences
	1 Introduction
	2 Hypothetical and Actual Information
	3 Approximating Preferences
	4 Qualitative Probability and Representation
	5 Conclusion
	References

	A Comparative Analysis of Multi-agent Simulation Platforms for Energy and Mobility Management
	1 Introduction
	2 MAS for Integrated Energy and Mobility
	2.1 Model Description
	2.2 Platform Evaluation Scenario
	2.3 Expected Features from MAS Platform

	3 Multi-level Selection
	3.1 First Round of Selection
	3.2 Second Round of Selection

	4 Mesa vs. Agents.jl
	4.1 Implementation - Model Speed and Scalability Evaluation
	4.2 Benchmark Results

	5 Conclusion
	References

	Observational Preorders for Alternating Transition Systems
	1 Introduction
	2 An Alternating View of Transition Systems
	2.1 Definition
	2.2 Strategies and Observations
	2.3 Enforcing Preorder

	3 Alternating Simulations
	3.1 The Simulation Game

	4 Strategies as Contexts
	4.1 Observational Preorders
	4.2 Choice Correspondence and the Morris Preorder

	5 The Adequacy Theorems
	6 Complements
	6.1 The Quest for Symmetric Relations
	6.2 Taking Labels Seriously

	7 Conclusions and Future Work
	References

	Synthesising Reward Machines for Cooperative Multi-Agent Reinforcement Learning
	1 Introduction
	2 Preliminaries
	2.1 Multi-agent Environments
	2.2 Reward Machines
	2.3 Multi-Agent RL with RMs
	2.4 Alternating-Time Temporal Logic

	3 Synthesising MGRMs
	3.1 Synthesising Reward Machines
	3.2 Correctness of the Approach

	4 Evaluation
	5 Related Works
	6 Conclusions and Future Work
	References

	Adaptive Cognitive Agents: Updating Action Descriptions and Plans
	1 Introduction
	2 Background and Related Work
	3 Framework
	4 Implementation
	5 Evaluation
	6 Discussion and Future Work
	References

	Pretty Good Strategies and Where to Find Them
	1 Introduction
	2 Preliminaries
	2.1 ATL: What Agents Can Achieve
	2.2 Models
	2.3 Strategies
	2.4 Outcome Paths
	2.5 Semantics of ATL
	2.6 Model Checking and Strategy Synthesis
	2.7 Partial Strategies and Strategy Dominance

	3 Two Notions of Dominance for Iterated Strategy Improvement
	3.1 Multi-criterial Domination: Abstract Template
	3.2 Outcome- and Uniformity-Dominance

	4 Iterated Strategy Synthesis
	5 Experimental Evaluation
	5.1 First Benchmark: Random Models
	5.2 Second Benchmark: Drone Model
	5.3 Running the Experiments
	5.4 Results

	6 Coalitional Strategies
	7 Conclusions
	References

	A Multi-agent Sudoku Through the Wave Function Collapse
	1 Introduction
	2 Background
	2.1 Game's Overview
	2.2 Math Involvement
	2.3 Wave Function Collapse
	2.4 Video Game Development as MAS

	3 Description and Specification
	3.1 Environment Description
	3.2 Agent Description

	4 Game Implementation and Mechanics
	4.1 Spatial Layout of the Grid
	4.2 Grid Generation
	4.3 Level Generation
	4.4 User Interaction

	5 Results
	6 Conclusions and Future Work
	References

	AGAMAS: A New Agent-Oriented Traffic Simulation Framework for SUMO
	1 Introduction
	2 Background
	3 Related Work
	4 Agent-Based Traffic Simulation in AGAMAS
	4.1 Perceptions and Actions of Agents
	4.2 AGAMAS' Architecture

	5 Experiments
	6 Conclusions and Future Work
	References

	Coordinating Systems of Digital Twins with Digital Practices
	1 Introduction
	2 Preliminary Concepts
	2.1 Digital Twins and Agents
	2.2 Social Practice Theory

	3 Digital Practices: Towards a Design Methodology for Agents and Digital Twins
	3.1 Digital Practice
	3.2 Designing an Ambient Assisted Living for the Elderly
	3.3 Some Considerations

	4 Conclusions
	References

	On Admissible Behaviours for Goal-Oriented Decision-Making of Value-Aware Agents
	1 Introduction
	2 Related Work
	3 Value Aligning Sequences of Decisions
	3.1 State-Level Alignment: Value Preferences
	3.2 Plan-Level Alignment and Admissibility

	4 Example: Equity in Water Distribution
	4.1 Legal and Values Considerations for Water Distribution
	4.2 Use Case

	5 Conclusions and Future Work
	References

	Multi-tasking Resource-Constrained Agents Reach Higher Accuracy When Tasks Overlap
	1 Introduction
	2 Related Work
	3 Experimental Framework
	3.1 Environment
	3.2 Tasks
	3.3 Agents

	4 Experiment Outline
	4.1 Initial Ontology Induction
	4.2 Task Assignment
	4.3 Interaction
	4.4 Resources Release
	4.5 Adaptation

	5 Experimental Setting
	5.1 Hypothesis
	5.2 Parameters
	5.3 Measures

	6 Results and Discussion
	6.1 Statistical Analysis

	7 Conclusion
	References

	Election Manipulation on Social Networks with Abstention
	1 Introduction
	2 Definitions
	3 Modeling Abstention
	4 Election Manipulation
	5 Conclusion
	References

	Supporting Adaptive Multi-Agent Systems with Digital Twins Environments
	1 Introduction
	2 Background
	2.1 The Role of the Environment in Multi-Agent Systems
	2.2 Digital Twins

	3 Building Digital Twins Environments
	4 Future Works
	4.1 Towards a Generalised Model for Adaptive MAS
	4.2 Exploiting Digital Twins Capabilities for Adaptation

	References

	A Step Forward to Widespread BDI AOP: JaKtA
	1 AOP and the Mainstream
	2 The Missing Pieces
	2.1 Learning Curve vs. Ergonomics
	2.2 Tooling
	2.3 Middleware/Runtime Requirements
	2.4 Concurrency Model

	3 The JaKtA Approach
	4 The Future Directions
	References

	A Brief Overview of an Approach Towards Ethical Decision-Making
	1 Introduction
	2 Related Work
	3 Research Framework
	4 Discussion
	5 Conclusion
	References

	On Verifying Unbounded Client-Server Systems
	1 Introduction
	1.1 Modeling Unbounded Client-Server Systems

	2 Restricted -Nets
	3 The Monodic Logic LUCS1
	4 Conclusion
	References

	Capacity ATL: Reasoning About Agent Profiles and Applications to Cybersecurity
	1 Introduction
	2 Capacity Alternating-Time Temporal Logic
	3 Case Study
	4 Future Works
	References

	Value-Awareness Engineering: Towards Learning Context-Based Value Taxonomies
	1 Introduction and Related Work
	2 Value Awareness as Value-Alignment and Admissibility
	3 Learning Value-Awareness with Value Taxonomies
	4 Conclusions
	References

	Virtual Environments via Natural Language Agents
	1 Introduction and Motivation
	2 Background
	3 Related Work
	4 Design and Implementation
	5 Conclusions and Future Work
	References

	Reasoning About Smart Parking
	1 Introduction
	2 An Algorithmic Solution
	3 A Formal Solution
	4 Conclusions
	References

	Towards the Optimization of Speculative PDES Platforms in Shared-Memory Multi-core Machines
	1 Introduction
	2 Locality Based Load-Sharing and NUMA Awareness
	3 Incremental State Saving Exploiting Memory Protection
	4 Effective Access to the Committed Global State
	5 Conclusions
	References

	Decidability Borders of Verification of Communicating Datalog Agents
	1 Introduction
	2 CDA Model
	3 CDA Verification
	4 Quest for Decidability
	5 Conclusions
	References

	ltlf Best-Effort Synthesis for Single and Multiple Goal and Planning Domain Specifications
	1 Introduction
	2 Preliminaries
	3 Best-Effort Synthesis in Nondeterministic Domains
	4 Extensions
	4.1 Best-Effort Synthesis in Multiple Planning Domains
	4.2 Best-Effort Synthesis for Multiple Goal Specifications

	5 Conclusions and Future Work
	References

	Neurosymbolic Integration of Linear Temporal Logic in Non Symbolic Domains
	1 Introduction
	2 Problem Formulation
	3 Models
	3.1 Recurrent Logic Tensor Networks
	3.2 Probabilistic Relaxation of DFA: DeepDFA
	3.3 DeepDFA with Probabilistic Grounded Symbols

	4 Applications
	4.1 Exploiting LTL Knowledge in Image Sequence Classification
	4.2 Neural DFA Induction from Traces
	4.3 Application to Reinforcement Learning: Visual Reward Machines

	5 Conclusions
	References

	On Theoretical Questions of Machine Learning, Multi-Agent Systems, and Quantum Computing with Their Reciprocal Applications
	1 Introduction
	2 Agents and Learning
	2.1 Reinforcement Learning
	2.2 Graph Neural Networks- GNNs

	3 Quantum Computing (QC) Impact on MAS and ML
	4 Conclusion
	References

	Optimal Rescue Sequences in Disastrous Incidents
	1 Introduction
	2 Related Works
	3 Problem Statement and Contribution
	4 Methodology
	5 Simulation and Early Results
	6 Conclusion and Future Work
	References

	Efficient Algorithms for LTLf Synthesis
	1 Intorduction
	2 Compositional ltlf-to-DFA
	3 Forward ltlf Synthesis
	4 Conclusion
	References

	Agent Behavior Composition in Stochastic Settings
	1 Introduction
	2 Formalization of the Problem
	2.1 Stochastic Policy
	2.2 Stochastic Constraint-Based Policy

	3 Conclusion and Future Works
	References

	Author Index

