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Abstract. Several optimal location problems of an obnoxious facility on
a network of roads connecting settlements are considered. It is necessary
to find such location of the facility so that a minimum distance to a
nearest settlement is as large as possible taking into account the resident
population. Such facility can be, for example, a nuclear power plant, a
waste recycling plant. An overview of various formulations, the properties
of the problems and algorithms for solving are given. The main focus is
on the problem taking into account a restriction on transportation costs
for servicing the settlements by the facility. The cost of servicing the
settlements by the facility is determined using the shortest paths in the
network. The objective function uses Euclidean metric. Exact algorithm
for solving of this problem is proposed.
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1 Introduction

One of the actively developing areas of operations research is the analysis and
solving of facilities location problems. Such problems have great applied impor-
tance. They need to be solved in various fields of activity: location of service
points, technological equipment in workshops, automated design of electronic
devices [1–3].

In general, a facilities location problem is formulated as follows: there is an
area with facilities fixed in it and new facilities that need to be located in the
area. Specified restrictions on location of new facilities are to be met, and some
criterion of a quality of location is to be optimal. The various formulations of
such problems are defined by sizes of the facilities, areas in which they should
be located (line, plane, network), various restrictions and types of criterion and
so on [4–6].

The criterion of optimality in the location problems can be different, and
it is depending on the specifics of the facilities and on what functions they

The research was funded in accordance with the state task of the IM SB RAS, project
FWNF-2022-0020.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
M. Khachay et al. (Eds.): MOTOR 2023, CCIS 1881, pp. 188–200, 2023.
https://doi.org/10.1007/978-3-031-43257-6_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-43257-6_15&domain=pdf
http://orcid.org/0000-0002-8560-3446
https://doi.org/10.1007/978-3-031-43257-6_15


Solving Maximin Location Problems on Networks 189

perform. A term “facility” can be interpreted quite widely. Minimization of a
maximum weighted distance between facilities often is used when considering
an optimal location of hospitals, police stations, fire stations. Minimization a
weighted sum of distances is used when choosing a location of switches in a
telephone network, warehouses, substations in a power grid [7–9]. In addition
to these criterions, a maximin and maximum criterions are applied according
to which a minimum distance between facilities or a minimum weighted sum of
distances is maximized, respectively. These criterions are applied when dealing
with obnoxious (undesirable) production facilities that have adverse effects to
people or environment. Note that the adverse effects of such facilities decreases
with increasing distance to them. Therefore it is easiest to locate them as far
away as possible from populated areas.

Most often the maximin criterion in the location problems on networks is
applied in two variants. In the first variant, distances are measured by the short-
est paths in the networks. This metric is used in significant part of the location
problems on networks with the maximin criterion [7,11–13]. In the second vari-
ant, several metrics are used. For example, Euclidean metric is used to measure
a negative effect of the obnoxious facility, and the shortest paths metric is used
to calculate the cost of servicing customers by the facility [6,14].

In this paper, the location problems on various networks with a maximin
criterion are considered. An overview of the formulations and algorithms for
solving of the problems in which the distances in the objective function are
measured along the shortest paths in the network is given. The main attention
is paid to the problem of optimal location of an obnoxious facility on a transport
network connecting some settlements. It is necessary to find such a location of
the facility so that a minimum distance to a nearest settlement is as large as
possible and at the same time a budget for transportation costs for servicing
the settlements by the facility was not violated. The problem uses Euclidean
metric to determine the magnitude of the adverse effects of the obnoxious facility
to the settlements. The shortest paths in network are used to determine the
transportation costs for servicing the settlements by the facility. A polynomial
algorithm for exact solving of this problem is proposed.

Section 2 provides an overview of maximin location problems on arbitrary
and special networks when distances are measured by shortest paths.

In Sect. 3, a formulation of a maximin problem with different metrics is given.
Euclidean metric is used in the objective function of the problem. Shortest paths
metric is used in a restriction on transportation costs. Several properties of the
problem and a polynomial algorithm for solving this problem are presented.

2 Shortest Paths Metric

The Section deals with a location problem of a facility on arbitrary and special
networks with the maximin criterion. The distances between the vertices of the
network and between the vertices and points on the edges are determined using
the shortest paths [7,11–13]. The maximin location problem is NP -hard for an
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arbitrary number of facilities, even if the network has one edge [15]. Problem for
one facility on general network is polynomially solvable. An overview of some
properties of the problem and algorithms for its solving are given.

2.1 General Network

To formulate a mathematical model of the problem, we introduce the following
notations [11,12]. Let G = (V,E) be a connected, undirected network with a
set of vertices V = {v1, v2, . . . , vn} and a set of edges (vi, vj) ∈ E, vi, vj ∈ V,
i < j, i, j ∈ N = {1, . . . , n}. Each edge connecting vi and vj has positive
weight (length) c(vi, vj). Denote by d(vi, vj) the length of a shortest path between
vertices vi and vj . For any (vi, vj) ∈ E, c(vi, vj) ≥ d(vi, vj). We also denote by
αi a parameter (weight) of the vertex vi, i ∈ N , which is always positive.

It is necessary to locate a facility on the network. Therefore, the set of can-
didate points is the set Z consisting of the vertices and the infinite set of points
on the edges. The location of a point on an edge is determined using the dis-
tances from the vertices of the edge. For example, z is located on the edge
(vi, vj) at a distance of c(vi, z) = λc(vi, vj) from the vertex vi and at a distance
c(vj , z) = (1−λ)c(vi, vj) from the vertex vj , where 0 ≤ λ ≤ 1. Denote by d(vi, z)
the length of a shortest path from vertex vi to z, z ∈ Z. Our objective will be to
maximize

r(z) = min
i∈N

αid(vi, z), (1)

where z ∈ Z.
If a point z∗ solves the problem (1), then it is said to be a maximin location

with the optimal value of the objective function r(z∗).
For network distance function d(vi, z), z ∈ (vp, vq), (vp, vq) ∈ E, the following

properties hold [8,12]:

d(vi, z) = min{d(vi, vp) + c(vi, z), d(vi, vq) + c(vp, vq) − c(vi, z)}
where i = 1, . . . , n, and 0 ≤ c(vi, z) ≤ c(vp, vq).

Fuction d(vi, z) is continuous and concave on segment [0, c(vp, vq)] and one
of the conditions is met

(a) linearly increases with slope 1 in the edge;
(b) linearly decreases with a slope -1 on the edge:
(c) linearly increases with slope 1 on the segment [0, zi(p, q)] and linearly

decreases with slope -1 on the segment [zi(p, q), c(vp, vq)], where

zi(p, q) = (d(vi, vq) + c(vp, vq) − d(vi, vp))/2.

In [12], the problem (1) on general network was investigated. The paper
presents certain properties of the problem, which allow to find a solution to the
problem. Although the problem is non-convex its solution space G can be divided
into edges and resulting subproblems can be solved more easily than the original
problem.
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In [12], it is shown that the problem (1) on the edge (vp, vq) is equivalent to
the following linear programming problem:

max g(z)

g(z) = min
1≤i≤2n,0≤c(vp,z)≤c(vp,vq)

{Biz + Ci} ,

where Bi = αi, Bn+i = −αi, i = 1, . . . , n and Ci = αid(vi, vp), Cn+i =
αi(d(vi, vq) + c(vp, vq)), i ∈ N .

Thus, for any edge (vp, vq) ∈ E, the function g(z), z ∈ (vp, vq) is continuous,
piecewise linear and concave on the segment [0, c(vp, vq)], consisting of at most
2n strictly monotone segments.

In [12], it is proved that there is any unique maximin location on each edge.
As a consequence, there are no more than m local maximums on the network. A
combinatorial algorithm for solving of the problem (1) with a time complexity
O(mn) is proposed.

In [7], a linear programming model to solve the problem (1) was used. The
problem is solved for each edge and the maximum value among the set of values
of the objective function is selected. Let the obnoxious facility be placed on
the edge (vp, vq) ∈ E. The shortest path from the facility to the vertex vi is
min{d(vp, vi) + c(vp, z); d(vq, vi) + c(vp, vq) − c(vp, z)}. Then the model has the
following form:

y → max,

αi(d(vp, vi) + c(vp, z)) ≥ y,

αi(d(vq, vi) + c(vp, vq) − c(vp, z)) ≥ y,

c(vp, z) ≤ c(vp, vq),

y, c(vp, z) ≥ 0.

2.2 Tree Networks

Often in the literature, the maximin location problems on networks of a special
type are considered. Network structure allows to find useful properties of the
problem and determine new ways to solve it.

If a network is a path, then we can put n vertices on a real line and identify
them with real numbers such that

0 = x1 < x2 < . . . < xn

and d(xi, xj) = |xi−xj |. Then objective function r(z) is the following expression

r(z) = min{αi|z − xi| : i = 1, . . . , n} = min{r+(z), r−(z)},

where
r+(z) = min{αi(z − xi) : xi ≤ z},

r−(z) = min{αi(xi − z) : xi ≥ z}.
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In [16], a linear-time algorithm is given that finds a maximum value of the
objective function r(z) along the path.

The star is a tree consisting of a central vertex v0 which has edges with n
remaining vertices {v1, . . . , vn} [16]. By Si, denote a problem which consists in
determining a local optimal solution on an edge (v0, vi). It is equivalent to the
problem on the path as follows: we place all vertices on the real line in such a
way that v0 in the point x0 = 0, vertex vi is to the right of v0 at a distance
of c(v0, vi) = xi, and all other vertices vj (j �= i) are to the left of v0 with a
distance of c(v0, vj) = xj . In problem Si, it is necessary to maximize the following
function:

ri(z) = min
j=0,...,n

{minαj(xj + z), αi(xi − z)}
for 0 ≤ z ≤ xi.

Let a maximum be reached in z(i). Point z(i) is a solution following linear
programming problem with two variables y and z:

min{z : y ≤ αj(xj + z), j = 0, . . . , n, y ≥ αi(xi − z)}.

The constraints that are common to all problems Si can be written in the
form y ≤ h(z) where

h(z) = min
j=0,...,n

αj(xj + z).

The function h(z) is piecewise linear and increasing. Point z(i) is an inter-
section of h(z) with αi(xi − z). Due to the monotonicity of h(z) it is required to
calculate z∗ = max z(i). The value of z∗ can be obtained as an optimal solution
to following linear programming problem:

min{z : y ≤ αj(xj + z), y ≥ αi(xi − z), i, j = 0, . . . , n} (2)

Consider an optimal solution (z∗, y∗) of the problem (2). In [17], it is proved
that optimal locations of the obnoxious facility are points on all edges (v0, vi) at
the distance z∗ from the central vertex v0 for which y∗ = αi(xi − z∗).

The problem (2) has 2n constraints and 2 variables. Using an algorithm from
[4] for solving linear programming problem with 2 variables, problem (2) can be
solved in linear time. Thus, the optimal solution of problem (1) on the star can
be found in linear time.

Consider the maximin location problem on weighted trees. To solve the prob-
lem on an arbitrary tree with n vertices, two algorithms are proposed [9,15]
with time complexity O(n log2 n) and O(kn log2 n), respectively. The parameter
k depends on the structure of the tree. For paths and stars, k = O(1). For a
balanced tree, k = O(log n) but there are trees such that k = Θ(n). For an
unweighted tree, a linear algorithm is proposed [17].

3 Euclidean and Shortest Paths Metrics

Section deals with the location problem of an obnoxious facility on an arbi-
trary network with maximin criterion in Euclidean metric and a restriction on
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transportation costs. The transportation costs are determined using the shortest
paths metric. Model that takes into account the natural geometry of transport
networks is proposed. The properties of the problem are found on the basis of
which an exact algorithm for finding a solution of the problem is proposed. The
analysis of the computational complexity of the algorithm is carried out.

3.1 Problem Formulation

There is a network of roads on a plane connecting some settlements. The popu-
lation size in each settlement and the distances between them are known. It is
necessary to place, for example, a waste recycling plant (facility) on the network.
There is a budget of transportation costs for the transportation of waste from
settlements to the facility. The facility has the adverse effects to the population
and therefore it should be located as far away from the settlements. It is needed
to place the facility on the network as far as possible from the settlements, tak-
ing into account the population size of the settlements and that transportation
costs do not exceed the budget.

To formulate a mathematical model of the problem we use some previously
introduced notations and introduce new ones. Let G = (V,E) be an undirected
network representing the roads and settlements on a plane. The vertices of the
network correspond to the settlements and the edges correspond to the roads.
Two positive parameters (αi, wi) are assigned to each vertex vi, i ∈ N . Parameter
αi reflects a degree of undesirability of placing the facility near the settlement
corresponding vi. Parameter wi, on the contrary, reflects a requirement to place
the facility as close as possible to the settlement corresponding vi. Parameter
wi, for example, is the number of peoples in the settlement correspond to vertex
vi. Parameter αi is the inverse value of the number population in the settlement
correspond to vertex vi. Each vertex vi has coordinates (ai, bi) i ∈ N on the
plane. The edges of the network are segments of straight lines on the plane with
known lengths c(vi, vj) > 0, (vi, vj) ∈ E, i, j ∈ N . As in Sect. 2, we denote by
Z the infinite set of points on the network G. The adverse effects of the facility
to the settlements will be measured in Euclidean metric ρ(vi, z), z ∈ Z, i ∈
N . We will use the shortest paths d(vi, z), z ∈ Z, i ∈ N in G for determining
transportation costs of servicing the settlements. Let T be an available budget for
the transportation of waste from settlements to the facility. The mathematical
model has form:

r1(z) = min
i∈N

αiρ(vi, z) → max
z

, (3)
∑

i∈N

wid(vi, z) ≤ T, (4)

z ∈ Z. (5)

Expression (3) means maximizing of the minimum weighted distance from
the facility to the vertices. Condition (4) guarantees the fulfillment of the restric-
tion on transportation costs. The left part of the inequality (4) is a sum of the
weighted shortest paths from some point z ∈ Z to all vertices of the network.
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Condition (5) means, that the facility is located on infinite set of points on all
edges of G, including all vertices. Problem (3)–(5) is a nonlinear, nonconvex
problem with one or more local maximum.

Note that a linear approximation can be used to model real road sections.
This will lead to the additional introduction of dummy vertices and edges to
the network. This method is used, for example, in [6]. In this paper, we do not
consider any method of approximating real roads by straight-line segments.

In [18], an algorithm for finding an approximate solution to the problem is
proposed. The algorithm considers a finite set of points on an arbitrary edge of
the network. The values of the objective function are calculated at the points,
where the budget restriction is met. The point with a maximum value of the
objective function determines a local maximum on the edge. An approximate
solution to the problem (3)–(5) is the best of the point. An experiment was
conducted to solve the problem with the proposed algorithm on the network of
the main railway lines of France.

Problems close to the formulated one without taking into account the budget
constraint were studied, for example, in [11,17].

In [19–21], a problem of locating an obnoxious facility in a polygonal area on
a plane (polygon) is considered. The problem is finding a point in the polygon,
which maximizes a minimum weighted Euclidean distance to given set points in
the polygon. It does not matter whether the polygon is convex or not. In fact,
this is the problem of maximization function (3) in the polygonal area on the
plane. It is proved, that an optimal solution is either in the convex hull of the
vertices or on the boundary (segments) of the polygon. In the case of searching
the solution on the boundary segment (local optimum) it is necessary to solve a
system of two equations: the linear equation of the boundary segment and the
nonlinear equation of Euclidean distances. If the local optimum is not located
on the boundary of the polygon, then it is necessary to solve a system of three
equations of Euclidean distances.

3.2 Transportation Costs Function

Let’s analyze some properties the sum function of weighted shortest paths from
some point z ∈ Z on arbitrary edge (vp, vq) to all vertices of the network G.

σ(z) =
∑

i∈N

wid(z, vi). (6)

In [11] a concept of edge bottleneck points is introduced. Let a point x be located
on the edge (vp, vq). The point x is an edge bottleneck point with respect to
vertex vk if there is a vertex vk such that

d(vk, vp) + c(vp, x) = d(vk, vq) + c(vq, x),

where c(vp, x), c(vq, x) > 0 are the distances from vp and vq to point x on the
edge (vp, vq). The equality c(vp, x) + d(vq, x) = c(vp, vq) is correct.
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Note that a bottleneck point on edge (vp, vq) with respect to vertex vk is
associated with a cycle formed by the shortest path from vertex vk to vertex vp,
edge (vp, vq), and the shortest path from vertex vq to back to vertex vk. This is
illustrated in Fig. 1., where the shortest paths from vertex vk to vp and vq are
shown in the form of curved lines. The cycle contains the bottleneck point x.

Fig. 1. Cycle contains the bottleneck point x.

Edge (vp, vq) contains an edge bottleneck point with respect to vertex vk if
and only if following inequality holds

|d(vk, vp) − d(vk, vq)| < c(vp, vq). (7)

This means that there is no shortest path from vk to vp and from vk to vq
containing the edge (vp, vq).

The papers [1,11] show that σ(z) on an edge is continuous, piecewise linear,
concave function with critical points (intersection of linear functions) only at the
bottleneck points of the edge. If G is a tree, then in this case there are no edge
bottlenecks points as there are no cycles. Then the following proposition is true.

Proposition 1. If G is a tree, then function σ(z) is linear on arbitrary edge.

Proof. Let (vp, vq) ∈ E be an edge of the G. The set of vertices of the network
G by the edge (vp, vq) is divided into two sets: VL and VR. The set VL is such
set of vertices of the network G that the paths from them to the vq pass through
the vertex vp. By NL denote a set of indexes of such vertices. The set VR is such
set of vertices of the network G that the paths from them to the vp pass through
the vertex vq. By NR denote a set of indexes of such vertices. There are relations
VL ∩ VR = ∅ and VL ∪ VR = V. The following equalities take place.

d(z, vi) = d(vi, vp) + c(vp, z), i ∈ NL.

d(z, vi) = d(vi, vq) + c(vp, vq) − c(vp, z), i ∈ NR.
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σ(z) =
∑

i∈N

wid(z, vi) =
∑

i∈NL

wid(z, vi) +
∑

i∈NR

wid(z, vi) =

∑

i∈NL

wi[d(vi, vp) + c(vp, z)] +
∑

i∈NR

wi[d(vi, vq) + c(vp, vq) − c(vp, z)] =

∑

i∈NL

wid(vi, vp) + c(vp, z)
∑

i∈NL

wi +
∑

i∈NR

wid(vi, vq)+

+c(vp, vq)
∑

i∈NR

wi − c(vp, z)
∑

i∈NR

wi =

∑

i∈NL

wid(vi, vp) +
∑

i∈NR

wid(vi, vq) + c(vp, vq)
∑

i∈NR

wi+

+c(vp, z)(
∑

i∈NL

wi −
∑

i∈NR

wi).

Let ’s put

a =
∑

i∈NL

wid(vi, vp) +
∑

i∈NR

wid(vi, vq) + c(vp, vq)
∑

i∈NR

wi,

b =
∑

i∈NL

wi −
∑

i∈NR

wi.

We get the equation of a straight line σ(z) = a+ bc(vp, z). Moreover, b it can be
negative or positive. Note that this form will have function σ(z) on any edge of
a network, if the edge is a bridge.

3.3 Domain of Admissible Solutions

Let’s look some properties of the problem (3)–(5) that allow to find all local opti-
mums and exact solution to the problem. A domain of admissible solutions of the
problem is only some part of the network G due to the restriction of transporta-
tion costs (budget). All edge segments, on which the value of transportation costs
do not exceed the value of the budget T form the domain of admissible solutions
of the problem (3)–(5). By D denote the domain. If the budget restriction is vio-
lated for the vertices of an edge, then the edge does not belong to the domain D.
It follows from the concavity property of the transportation costs function.

Before constructing the domain of admissible solutions of the problem (3)–(5)
on an edge (vp, vq), it is necessary to find all edge bottleneck points. The following
algorithm for finding such points on the edge is proposed. Consistently consider
all vertices of the network G. For a current vertex vk we check performing of the
inequality (7). If the inequality (7) does not hold, then the edge (vp, vq) does not
contain an edge bottleneck point relative to vk, and we move to another vertex G.
If the inequality holds, then the edge (vp, vq) contains an edge bottleneck point
relative to the vertex vk. Distance s from the vertex vp to the point is equal to

s =
|d(vk, vp) − d(vk, vq)| + c(vp, vq)

2
.
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After constructing all the bottleneck points on the edge, we determine the
domain of admissible solutions on the edge. To do this, we arrange the bottleneck
points in ascending order s1 < s2 < . . . sn from the vertex vp, p < q. Sequentially
calculate following values

T1(si) =
∑

k∈N

wk min{d(vk, vp) + si; d(vk, vq) + c(vp, vq) − si}.

The following variants are possible.

1) T1(vp) ≤ T and T1(vq) ≤ T .
1) We look through the bottleneck points sequentially. There is a pair of points

st and st+1 such that T1(st) ≤ T and T1(st+1) > T. If T1(st) < T , then we
construct the equation of the line l(st, st+1) through the points (st, T1(st))
and (st+1, T1(st+1)). Solving the equation l(st, st+1) = T , and we find a point
z1, for which T1(z1) = T . If T1(st) = T , then the value of z1 is defined as
z1 = st. Next, we calculate a value of the function T1 at the points st+2, st+3

etc. There is such k, that T1(sk) > T and T1(sk+1) ≤ T . If T1(sk+1) < T ,
then we construct the equation of the line l(sk, sk+1) through the specified
pair of the points. Solving the equation l(sk, sk+1) = T , and we find a point
z2, for which T1(z2) = T . If T1(sk+1) = T , then the value of z2 is defined
as z2 = sk+1. Thus two points are found on the edge (vp, vq), for which
T1(z1) = T1(z2) = T . The domain of admissible solutions on the edge (vp, vq)
represents two segments: [vp, z1] and [z2, vq], as shown in Fig. 2.
If there is no such pair of points st and st+1, for which T1(st) ≤ T and
T1(st+1) > T , then all points of the edge (vp, vq) belong to the domain of
admissible solutions.

2) T1(vp) ≤ T and T1(vq) > T .
There is a pair of points st and st+1 such that T1(st) ≤ T and T1(st+1) > T . If
T1(st) < T , then we construct the equation of the line l(st, st+1) through the
points (st, T1(st)) and (st+1, T1(st+1)). Solving the equation l(st, st+1) = T ,
and we find the point z1, for which T1(z1) = T . If T1(st) = T , then the value
of z1 is defined as z1 = st. The domain of admissible solutions on the edge
(vp, vq) represents the segment [vp, z1].

3) T1(vp) > T and T1(vq) ≤ T .
There is a pair of points st and st+1 such that T1(st) > T and T1(st+1) ≤ T .
If T1(st+1) < T , then we construct the equation of the line l(st, st+1) through
the points (st, T1(st)) and (st+1, T1(st+1)). Solving the equation l(st, st+1) =
T , and we find the point z2, for which T1(z2) = T . If T1(st+1) = T , then the
value of z2 is defined as z2 = st+1. The domain of admissible solutions on the
edge (vp, vq) represents a segment [z2, vq].
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Fig. 2. Function σ(z) and Domain of admissible solutions on edge (vp, vq).

As a result, the domain of admissible solutions of the problem (3)–(5) on an
arbitrary edge (vp, vq) has no more than two segments. One of the ends of these
segments will be vertex vp or vq. Thus, to solve problem (3)–(5) on the domain
D, this is solving a series of the problems on edge segments of the network G.

If G is a tree, then there is no need to find bottleneck points. If T1(vp) ≤ T
and T1(vq) > T (T1(vp) > T and T1(vq) ≤ T ), we find an intersection point z1
(z2) of the straight line l(vp, vq) with the straight line y = T . Thus, we get the
domain of admissible solutions on edge (vp, vq) segment[vp, z1] ([z2, vq]).

3.4 Algorithm

At the first step of the algorithm for solving the problem (3)–(5) it is necessary
to check, that the domain D is not empty. To do this, we solve a problem of
finding 1-median on the network in the shortest paths metric. If the solution of
the problem has the value of the objective function no more than T, then the
domain of admissible solutions of problem (3)–(5) is not empty.

When searching a local optimum on an edge (vp, vq) belonging to the admis-
sible domain, it is necessary to construct a weighted Voronoi diagram for the
vertices of the network G [3,5]. Next, we find the intersection points of the edges
of the Voronoi diagram with the segments admissible domain D on the edge
(vp, vq). As a result, the edge segments will be divided into pieces by the inter-
section points. Each the piece will be located inside some locus of the Voronoi
diagram. The function r1 is convex on each such piece [6]. Consequently, the
function r1 reaches an optimal value at the intersection points of the edges of
the Voronoi diagram with the edge segments (vp, vq) belonging to the domain
D. Choosing a point with a maximum value of the function r1, we find a local
optimum of the problem (3)–(5) on the edge (vp, vq).

Looking through all the edges of the network G, the segments of which belong
to the domain of admissible solutions D, we get a set of local optimums. Choosing
a maximum value from them, we obtain a global solution to the problem (3)–(5).

The algorithm for finding a local optimum of the problem (3)–(5) on an edge
can be briefly presented as follows.
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Step 1. Solve the 1-median problem on network G. If optimal value of objective
function of the problem is greater T , then the problem (3)–(5) has no solution.

Step 2. Construct the domain of admissible solutions D.
Step 3. Construct the weighted Voronoi diagram of vertices of the network G.
Step 4. Find intersection points of all Voronoi edges with the segments of the

edge, belonging to the domain D.
Step 5. Calculate the values of the function (3) at the specified intersection

points. The point, at which the maximum value of the objective function is
reached, will be a local optimum of the problem on the edge.

There are O(n2) vertices and O(n2) edges in a weighted Voronoi diagram,
which can be generated in O(n2) time. There are O(mn2) intersection points the
edges of Voronoi diagram with the edges of network G, since each Voronoi edge
can be intersect an edge of network G at most twice [3]. Therefore a complexity
of the algorithm is O(mn2).

4 Conclusion

The problems of optimal location of an obnoxious facility on a networks of roads
connecting settlements are considered. It is necessary to find such location of
the facility so that the minimum distance to the nearest settlement is as large as
possible. An overview of the properties and algorithms for solving the problems
using the shortest paths metric is given.

The main attention is paid to the problem taking into account a restriction on
transportation costs for servicing the settlements by the facility. The objective
function uses Euclidean metric. The restriction take into account the shortest
paths in the network. A polynomial algorithm for finding all local maximums on
the edges of the network is proposed. The choice of the optimal solution among
the specified optimums can be made by the decision-maker from any additional
conditions. Considered model and proposed algorithm can be applied for solving,
for example, a problem of location a waste processing plant to reduce the adverse
effects to the population.

One of the conditions of the problem that is the assumption, that roads
are line segments on a plane. Real roads can be approximated by straight-line
segments. Furthermore, an interesting continuation the study of the problem is it
solution without the use of Voronoi diagram. For example, using an approach to
solving a maximin problem within a bounded region on a plane with Euclidean
metric and applying Karuch-Kuhn-Tucker optimality conditions.
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