
Michael Khachay · Yury Kochetov · 
Anton Eremeev · Oleg Khamisov · 
Vladimir Mazalov · Panos Pardalos (Eds.)

22nd International Conference, MOTOR 2023 
Ekaterinburg, Russia, July 2–8, 2023 
Revised Selected Papers

Mathematical 
Optimization Theory 
and Operations Research
Recent Trends

Communications in Computer and Information Science 1881



Communications
in Computer and Information Science 1881

Editorial Board Members
Joaquim Filipe , Polytechnic Institute of Setúbal, Setúbal, Portugal
Ashish Ghosh , Indian Statistical Institute, Kolkata, India
Raquel Oliveira Prates , Federal University of Minas Gerais (UFMG),
Belo Horizonte, Brazil
Lizhu Zhou, Tsinghua University, Beijing, China

https://orcid.org/0000-0002-5961-6606
https://orcid.org/0000-0003-1548-5576
https://orcid.org/0000-0002-7128-4974


Rationale
The CCIS series is devoted to the publication of proceedings of computer science con-
ferences. Its aim is to efficiently disseminate original research results in informatics
in printed and electronic form. While the focus is on publication of peer-reviewed full
papers presenting mature work, inclusion of reviewed short papers reporting on work in
progress is welcome, too. Besides globally relevant meetings with internationally repre-
sentative program committees guaranteeing a strict peer-reviewing and paper selection
process, conferences run by societies or of high regional or national relevance are also
considered for publication.

Topics
The topical scope of CCIS spans the entire spectrum of informatics ranging from foun-
dational topics in the theory of computing to information and communications science
and technology and a broad variety of interdisciplinary application fields.

Information for Volume Editors and Authors
Publication in CCIS is free of charge. No royalties are paid, however, we offer registered
conference participants temporary free access to the online version of the conference
proceedings on SpringerLink (http://link.springer.com) bymeans of an http referrer from
the conference website and/or a number of complimentary printed copies, as specified
in the official acceptance email of the event.

CCIS proceedings can be published in time for distribution at conferences or as post-
proceedings, and delivered in the form of printed books and/or electronically as USBs
and/or e-content licenses for accessing proceedings at SpringerLink. Furthermore, CCIS
proceedings are included in the CCIS electronic book series hosted in the SpringerLink
digital library at http://link.springer.com/bookseries/7899. Conferences publishing in
CCIS are allowed to use Online Conference Service (OCS) for managing the whole
proceedings lifecycle (from submission and reviewing to preparing for publication) free
of charge.

Publication process
The language of publication is exclusively English. Authors publishing in CCIS have
to sign the Springer CCIS copyright transfer form, however, they are free to use their
material published in CCIS for substantially changed, more elaborate subsequent publi-
cations elsewhere. For the preparation of the camera-ready papers/files, authors have to
strictly adhere to the Springer CCIS Authors’ Instructions and are strongly encouraged
to use the CCIS LaTeX style files or templates.

Abstracting/Indexing
CCIS is abstracted/indexed in DBLP, Google Scholar, EI-Compendex, Mathematical
Reviews, SCImago, Scopus. CCIS volumes are also submitted for the inclusion in ISI
Proceedings.

How to start
To start the evaluation of your proposal for inclusion in the CCIS series, please send an
e-mail to ccis@springer.com.

http://springerlink.bibliotecabuap.elogim.com
http://springerlink.bibliotecabuap.elogim.com/bookseries/7899
mailto:ccis@springer.com


Michael Khachay · Yury Kochetov ·
Anton Eremeev · Oleg Khamisov ·
Vladimir Mazalov · Panos Pardalos
Editors

Mathematical
Optimization Theory
and Operations Research
Recent Trends

22nd International Conference, MOTOR 2023
Ekaterinburg, Russia, July 2–8, 2023
Revised Selected Papers



Editors
Michael Khachay
Krasovsky Institute of Mathematics
and Mechanics
Ekaterinburg, Russia

Anton Eremeev
Sobolev Institute of Mathematics
Omsk, Russia

Vladimir Mazalov
Institute of Applied Mathematical Research
Petrozavodsk, Russia

Yury Kochetov
Sobolev Institute of Mathematics
Novosibirsk, Russia

Oleg Khamisov
Melentiev Energy Systems Institute
Irkutsk, Russia

Panos Pardalos
University of Florida
Gainesville, FL, USA

ISSN 1865-0929 ISSN 1865-0937 (electronic)
Communications in Computer and Information Science
ISBN 978-3-031-43256-9 ISBN 978-3-031-43257-6 (eBook)
https://doi.org/10.1007/978-3-031-43257-6

© The Editor(s) (if applicable) and The Author(s), under exclusive license
to Springer Nature Switzerland AG 2023

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors, and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the
editors give a warranty, expressed or implied, with respect to the material contained herein or for any errors
or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

Paper in this product is recyclable.

https://orcid.org/0000-0003-3555-0080
https://orcid.org/0000-0001-5289-7874
https://orcid.org/0000-0003-2262-2620
https://orcid.org/0000-0001-7123-8647
https://orcid.org/0000-0002-8021-0205
https://doi.org/10.1007/978-3-031-43257-6


Preface

This volume contains selected papers presented at the 22nd International Conference
on Mathematical Optimization Theory and Operations Research (MOTOR 2023)1 held
during July 2–8, 2023, in Ekaterinburg, capital of the Urals, Russia.

This year, we celebrated the 90th anniversary of academician Ivan Ivanovich Eremin
(1933–2013). Academician I. I. Eremin was a widely known Soviet and Russian math-
ematician, a specialist in mathematical programming and operations research. He intro-
duced the well-known Eremin-Zangwill exact penalty functions, established a brilliant
theory of improper (singular) linear and convex programs having valuable applications
in mathematical economics, and put forward a family of highly efficient iterative algo-
rithms, called by him Fejér methods. In the early 1960s, he established the Ural scientific
school on optimization theory and methods. MOTOR 2023 is devoted to his blessed
memory.

MOTOR 2023 was the fifth joint scientific event unifying a number of well-known
conferences held in Ural, Siberia, and the Far East of Russia for a long time

– The Baikal International Triennial School Seminar on Methods of Optimization
and Their Applications (BITSS MOPT), established in 1969 by academician N. N.
Moiseev, with 17 events held up to 2017,

– The All-Russian Conference on Mathematical Programming and Applications
(MPA), established in 1972 by I. I. Eremin, with 15 events held up to 2015,

– The International Conference on Discrete Optimization and Operations Research
(DOOR), which was organized nine times between 1996 and 2016,

– The International Conference on Optimization Problems and Their Applications
(OPTA), which was organized seven times in Omsk between 1997 and 2018.

The first four events of this series, MOTOR 2019, MOTOR 2020, MOTOR 2021,
and MOTOR 2022 were held in Ekaterinburg, Novosibirsk, Irkutsk, and Petrozavodsk,

1 http://motor2023.uran.ru

http://motor2023.uran.ru
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Russia, respectively. As per tradition, the main conference scope included, but was not
limited to, mathematical programming, bi-level and global optimization, integer pro-
gramming and combinatorial optimization, approximation algorithms with theoretical
guarantees and approximation schemes, heuristics and meta-heuristics, game theory,
optimal control, optimization in machine learning and data analysis, and their valuable
applications in operations research and economics.

In response to the call for papers, MOTOR 2023 received 189 submissions. Out
of 89 full papers considered for review (100 abstracts and short communications were
excluded for formal reasons) only 29 papers were selected by the Program Committee
for publication in the first volume of conference proceedings, LNCS, vol. 13930. Each
submission was reviewed by at least three PC members or invited reviewers, experts in
their fields, in order to supply detailed and helpful comments. In this volume, the PC
recommended for publication 29 papers, after their presentation and discussion during
the conference and subsequent revision with respect to the reviewers’ comments.

The conference featured ten invited lectures:

– Kamil Aida-Zade (Institute of Control Systems, Azerbaijan), “Feedback control on
the class of zonal control actions”

– Mario R. Guarracino (Higher School of Economics, Russia), “Semi-supervised
Learning with Depth Functions”

– Milojica Jaćimović (University of Montenegro, Montenegro), “Strong convergence
of extragradient-like methods for solving quasi-variational inequalities”

– Pinyan Lu (Shanghai University of Finance and Economics, China), “Algorithms for
Solvers: Ideas from CS and OR”

– Panos Pardalos (University of Florida, USA), “Artificial Intelligence, Smart Energy
Systems, and Sustainability”

– Eugene Semenkin (Reshetnev Siberian State University of Science and Technol-
ogy, Russia), “Hybrid evolutionary optimization: how self-adapted algorithms can
automatically generate applied AI tools”

– Yaroslav D. Sergeev (University of Calabria, Italy), “Numerical Infinities and
Infinitesimals in Optimization”

– Alexander A. Shananin (Lomonosov Moscow State University, Russia), “General
equilibrium models in production networks with substitution of inputs”

– Predrag S. Stanimirović (University of Niš, Serbia), “Optimization methods in
gradient and zeroing neural networks”

– Vladimir V. Vasin (Krasovsky Institute of Mathematics and Mechanics, Russia),
“Fejér type iterative processes for quadratic minimization problems”.

We thank the authors for their submissions, members of the Program Committee,
and all the external reviewers for their efforts in providing exhaustive reviews. We thank
our sponsors and partners: Krasovsky Institute of Mathematics and Mechanics, the Ural
Mathematical Center, the Ural Branch of the Russian Academy of Sciences, the Sobolev
Institute of Mathematics and Mathematical Center in Akademgorodok, the Center for
Research and Education in Mathematics, and the Higher School of Economics (Nizhny
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Novgorod).We are grateful to the colleagues from the Springer LNCS andCCIS editorial
boards for their kind and helpful support.

August 2023 Michael Khachay
Yury Kochetov
Anton Eremeev
Oleg Khamisov

Vladimir Mazalov
Panos Pardalos
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Towards Subderivative-Based Zeroing
Neural Networks

Predrag S. Stanimirović1,4(B) , Dimitrios Gerontitis2 ,
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Siberian Federal University, Prosp. Svobodny 79, 660041 Krasnoyarsk, Russia
levk@bk.ru

Abstract. Zeroing Neural Networks (ZNN) are dynamic systems suit-
able for studying and solving time-varying problems. The advantage of
this particular type of recurrent neural networks (RNNs) is their global
and exponential convergence property, which can be accelerated to a
finite-time convergence. The dynamic flow of the ZNN requires the use
of an appropriate error (Zhang) function E(t), which can be in matrix,
vector, or scalar form, and the element-wise time derivative of Ė(t) at
each time instant t. A possible difficulty arises in all cases where the
time derivative Ė(t) does not exist, for any element of E(t) and any
time instant t0 from a predefined time interval [0, T ].

In this research, we propose improvements to the ZNN formula for the
case where the time-derivative of the Zhang function does not exist at
some points. The non-differentiability occurs in various forms in several
cases and occurs frequently. One possible solution in convex and non-
differentiable environments is based on the use of subderivatives instead
of the time derivative. Another solution is applicable in nonconvex cases
and situations with discontinuity, and it is based on shifting in singular
points to avoid the division by zero (DBZ) problem that often occurs in
division with time-varying expressions.

Keywords: Zeroing neural network · subderivative · Gradient descent
methods · Division by zero

Supported by the Laboratory “Hybrid Methods of Modelling and Optimization in Com-
plex Systems”, Siberian Federal University, Prosp. Svobodny 79, 660041 Krasnoyarsk,
Russia.
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4 P. S. Stanimirović et al.

1 Introduction

Nowadays, it is considered normal in science and industry to tackle intractable
problems and solve complex computational problems by using neural networks.
These problems can be manifested in the form of equations and systems of
equations in matrix, vector or scalar form. Zeroing neural networks (ZNNs) are
a class of recurrent neural networks specifically designed to approximate zeros of
these equations. In recent years, ZNNs have played an essential part in finding
online solutions of time-varying (TV) problems.

Zhang Neural Network or Zeroing Neural Network (ZNN) dynamics was pro-
posed by Zhang et al. in 2011 for solving TV problems, mainly in computing
the matrix inversion and pseudoinversion, solving linear and matrix equations
or systems of such equations, solving convex quadratic optimization, calculating
various TV functions in matrix, vector, or scalar form, solving some practical
optimization problems in robotics.

A ZNN model is often designed in implicit dynamics instead of explicit
dynamics assumed in Gradient Neural Networks (GNNs). Each ZNN dynam-
ics is developed in two global steps.

Step 1ZNN. The first step requires the construction of a suitable error function,
also known as Zhang function (ZF) (or Zhangian), termed as E(t). A ZF E(t) is
stated appropriately if the solution to the equation E(t) = 0 coincides with the
exact solution of the problem under consideration. Zhang and Guo, in [22,24],
gave a comprehensive overview of the various Zhang functions and classified
them into four categories: scalar-valued ZFs in the real and complex domain,
vector-valued ZFs in the real and complex domain, and matrix-valued ZFs in
the real and complex domain.

Step 2ZNN. The second step is based on the exploitation of the defined ZF in
the ZNN dynamics, which is given by the evolution law

Ė(t) =
dE(t)

dt
= −kF (E(t)) , (1)

where Ė(t) denotes the time derivative of E(t), k ∈ R
+ is a positive real quantity

necessary for scaling the convergence and F(·) : R
n×n → R

n×n element-wise
application of a suitable odd and monotonically-increasing activation function
(AF). The essence of the AF F is to derive an output based on a set of input
values to a node. The purpose of an activation function is to include non-linearity
to the RNN. Different kinds of nonlinear activation functions improve behaviour
of the ZNN models in practice. Moreover, particular activation functions lead to
a finite-time convergence. In general F is an odd and monotonically increasing
function array, element-wise applicable to elements of a real matrix Q = [qij ] ∈
R

m×n, i.e., F(Q) = [f(qij)], i = 1, . . . , m, j = 1, . . . , n, such that f() is an odd
and monotonically increasing function. In the case when F is based on the linear
function f(x) = x, the ZNN design (1) becomes Ė(t) = −kE(t), and it is called
linear ZNN model.
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The analytic solution to the ordinary differential equation Ė(t) = −kE(t)
defining the linear ZNN evolution is equal to E(t) = E(0)e−kt. Thus E(t) in
the linear ZNN model exponentially converges with the convergence rate k > 0
to the zero equilibrium point E(t) = 0, as t → +∞. In addition, if an odd and
monotonically increasing function f() is used inside the entry-wise activation
F(·), then E(t) again globally converges to E(t) = 0, starting from an arbitrary
initial state E(0). Typical AF accelerates the exponential convergence. Moreover,
some activation functions can initiate a finite convergence time.

Machine learning and ZNN techniques often rely on differentiable functions,
but this constraint is not always satisfied in practice. In fact, functions that are
not differentiable at some points are very common. The goal of our study is to
solve problems arising in the ZNN dynamical evolution in situations where E(t)
is non-differentiable in one or more singular points.

The hierarchy of sections is scheduled as follows. The research problem state-
ment and research questions are described in Sect. 2. Section 3 explores possible
solutions to the stated problem in the ZNN development and applications. Sev-
eral models that involve singular (non-differentiable and discontinuous cases)
situations are presented in Sect. 4, while some concluding observations are given
in the concluding Sect. 5.

2 Problem Statement and Research Questions

The time-derivative Ė(t) in (1) assumes element-wise time derivative. Namely,
the time derivative Ė(t) in the matrix case E(t) = [eij(t)] assumes Ė(t) =
[ėij(t)], while in the scalar case E(t) = [e(t)] it follows Ė(t) = [ė(t)]. We have
singled out several possible situations in which a problem with the application
of ZNN dynamics (1) occurs.

Problem 1. The problem for E(t) = [eij(t)] occurs for the case where ėij(t0)
does not exist, for any element eij(t) and a time instant t0 within the chosen
time interval [0, T ].

Problem 2. The problem for E(t) = [ei(t)] will happen in the case when ėi(t0)
does not exist, for an arbitrary element ei(t) and an arbitrary time instant
t0 ∈ [0, T ].

Problem 3. The problem for E(t) = [e(t)] occurs for the case where ė(t0) does
not exist for any t0 ∈ [0, T ].

Problem 4. Another problem appears in implementing the ZNN design for
solving time-varying nonlinear equations (TVNE). The error function for solving
TVNEs of the general form

℘(x(t), t) = 0, x(t) ∈ R. (2)

is defined in [8,25] by e(t) = ℘(x(t), t). The ZNN dynamics for solving TVNE is
the following dynamical system

ė(t) = ℘̇(x(t), t) = −kF (℘(x(t), t)) ⇐⇒ ∂℘

∂x
ẋ(t) = −kF (℘(x(t), t)) − ∂℘

∂t
. (3)
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The mathematical properties of the ZF defined by ℘2(x(t), t) prompt its use
in approximating the solution of (3). The subsequent model was proposed in [21]
as a development of the ZNN design on the error function e(t) = ℘(x(t), t):

ẋ(t) = −k

2
∂

∂x
℘2(x(t), t) = −k℘(x(t), t)

∂℘

∂t
. (4)

The Eq. (4) represents the Gradient Neural Dynamics (GND) for solving TVNE.
Continuing such research, the authors of [9] proposed the Improved Zeroing
Neural Network (IZNN) model for solving TVNE

∂℘

∂x
ẋ(t) = −k

(
α1℘(x(t), t) + α2 (℘(x(t), t))

1
ω

)
− ∂℘

∂t
, (5)

where α1, α2 > 0 and ω > 1. The dynamical flow (5) possesses a finite time
convergence.

The difficulty in the application of DNE dynamics (3), (4) and (5) occurs
when at least one of the derivatives ∂℘

∂x , ẋ(t) and ∂℘
∂t is not defined. In this case,

the gradient of ℘(x(t), t) is not defined.
The non-differentiability of the function f(t) at the argument t0 occurs in

several cases.

Situation S1. The function f(t) is discontinuous at t0, for example t/|t|;
Situation S2. The graph of f(t) has a corner point, for example |t|;
Situation S3. The function f(t) is unbounded and goes to infinity. An example
is 1/t;
Situation S4. The function f ′(t) is not defined at t0, for example

√
t at t = 0;

Situation S5. The function f(t) can be defined and finite at t0, but f ′(t) is
infinite, which means that f(t) has a vertical tangent at t0. An example is t1/3

at t = 0.

We will use the term singular points of ZNN in order to indicate points at
which non-differentiability occurs in the ZNN design. One approach to solving
the singularity is to use subderivatives. Another solution is based on using condi-
tional shift to escape differentiation is singular points or division by zero (DBZ).

3 Possible Solutions

Division by zero (DBZ) is an attempt to calculate a quotient of two expressions
in time-variant or invariant form whose denominator is zero. A possible solution
in situations S1–S4 is based on the modified ZNN dynamics developed in [5]
for solving the DBZ problem. These situations occur when the function E(t)
is unbounded and goes to infinity. The paper [23] overcomes the singularity
in the DBZ using the approach based on GNNs. The DBZ control singularity
phenomenon arising in the nonlinear control was studied in [26] using a suitable
Zhang dynamical system. The strategy used in [5] is based on the Matlab Fcn
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block that implements the conditional shifting function t + (t == s)λ in the
singular point s, where λ = 10−6 is the Matlab constant. The output of the
equality operator a == b in Matlab is 1 if values of operands a and b are of
identical value; otherwise, the output is 0. As a result, the first possible solution
to overcome the DBZ problem at any singular point s is based on the conditional
shifting of the Zhagian E(t) in the form Ẽ(t) = E(t+(t == s)λ). More precisely,
the following conditional shifting is used to avoid the singularity in the point s:

t + (t == s)λ =

{
t, t �= s,

s + λ, t = s.

If the step λ in the shift Ẽ(t) = E(t + (t == s)λ) is too small and can not solve
the singularity, another step is to increase the value of λ.

The second approach is based on subderivation and subdifferential. The
approach based on subderivative is applicable in finding zeros of ZFs E(t) that
involve convex but non differentiable entries.

In the one-dimensional case, a subderivative of a convex function f : ג → R,
ג ⊆ R, at a point x0 in the open interval ג is a real number ς such that

f(x) ≥ f(x0) + ς(x − x0)

for all x ∈ .ג According to the converse of the mean value theorem, the set of
subderivatives at x0 for f is a nonempty closed interval [l, u], such that l and u
are defined by the one-sided limits

l = lim
x→x−

0

f(x) − f(x0)
x − x0

, u = lim
x→x+

0

f(x) − f(x0)
x − x0

.

The set [l, u] containing all subderivatives is designated as the subdifferential of f
at x0 and denoted by ∂f(x0). If f is convex and its subdifferential at x0 contains
exactly one subderivative, then f is differentiable at x0. A subdifferential of f
at x0 is the set of subderivatives

∂f(x0) := {ς ∈ R| f(x) ≥ f(x0) + ς(x − x0), ∀x ∈ {ג .

Let us assume the existence of an element eij(t) ∈ E(t) such that ėij(t0) does
not exist at a time t0 ∈ [0, T ]. Our idea is to replace ėij(t0) by the subdifferential
∂(eij(t))(t0). In the convex case, instead of ėij(t) it is reasonable to use

éij(t) = Sel (∂(eij(t))(t0)) =

{
ėij(t), t �= t0,

Sel (∂(eij(t))(t0)) , t = t0,
(6)

where Sel (∂(eij(t))(t0)) denotes an arbitrary element from the set ∂(eij(t))(t0).
The ZNN (1) changes accordingly into

É(t) = −kF (E(t)) , (7)
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where É(t) = [éij(t)] if E(t) = [eij(t)]. The dynamical system (7) will be termed
as S-ZNN dynamics. In the scalar case E(t) = e(t), the modified S-ZNN dynamics
becomes Ė(t) = [é(t)] if.

Non-differentiable cases in the optimization problem (3) can be solved by
two strategies. The first strategy is based on replacing e(t) = ℘(x(t), t) by

ẽ(t) = ℘ (x(t + (t == s)λ), t + (t == 0)λ) ,

where s is an expected singular point. The second solution proposes the use of
the subdifferential ∂℘(x(t), t) of ℘(x(t), t), i.e., subderivatives of ∂℘

∂x , ẋ(t) or ∂℘
∂t .

Subgradient methods are verified tools for optimizing a non-differentiable
convex function f(x), x ∈ R

n. These methods iteratively update the approxi-
mation vector taking iterative steps in the negative subgradient direction using
a positive step size. In most cases, the subgradient method uses a pre-specified
step length rather than the exact or approximate line search typical for gradient-
descent methods. The fundamentals of nonsmooth convex optimization meth-
ods were established and developed in [16,17,20]. Different directions have
been taken for the construction of non-smooth optimization methods. Some of
these methods are based on smooth approximations for nonsmooth functions
[1,3,4,6,7,12,14,15]. The principle based on the approximation of nonsmooth
functions initiated a number of methods intended for solving various convex
optimization problems [4,7,14]. Some practical approaches in the field of non-
smooth optimization arose as a result of the progress of subgradient methods
with a space expansion [2,10,13,17–19]. In [11] a relaxation subgradient method
(RSM) was proposed based on the rank-two correction matrices, which are anal-
ogous to the updates used in quasi-Newton (QN) optimization methods.

We assume that the proposed S-ZNN dynamics will be able to overcome
difficulties in singular cases of the ZNN design.

4 Models with Singular Cases

The Simulink implementation of the linear ZNN flow ė = −k e(t) for zeroing
e(t) = a(t)x(t) − 1, a(t), x(t) ∈ R, is presented in Fig. 1. In this case, ė(t) =
ȧ(t)x(t) + a(t)ẋ(t) and the implicit ZNN model ė = −k e(t) is given by

a(t)ẋ(t) = −ȧ(t)x(t) − k[a(t)x(t) − 1],

which gives

ẋ(t) = [1 − a(t)]ẋ(t) − ȧ(t)x(t) − k[a(t)x(t) − 1].

The presented Simulimk is suitable for calculating x(t) = a(t)−1. Singular
cases appear in situations a(t) = 0.

Example 1. Our goal in this example is to calculate x(t) = |t − 1|−1 using
a(t) = |t − 1| and the error function e(t) = |t − 1|x(t) − 1. If we just put this
example using the pure ZNN model (1) we will obtain an error in the Simulink
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Fig. 1. Simulink of the ZNN model for zeroing e(t) = 1 − a(t)x(t).

Fig. 2. The error function behaviour with k = 100 (left) and the trajectory of x(t)
(right) with k = 100 in Example 1. (Color figure online)

implementation. On the other hand, since the objective function x(t) = |t−1|−1

is nonconvex, the S-ZNN model (7) is not applicable. So, it is necessary to apply
shifting ẽ(t) = e(t+(t == 1)λ) to avoid the DBZ problem in the time t = 1. For
k = 100 the error norm |ẽ(t)| and the trajectory of x(t) are presented in Fig. 2.

Graph in Fig. 2 (left) indicates a sudden increase of |ẽ(t)| near the point
t = 1. Graphs in Fig. 2 (right) indicate a small difference near the point t = 1
between the solid blue graph which represents the trajectory generated by the
ZNN model (1) for ẽ and the dashed red graph which represents the theoretical
solution.

Example 2. Choosing a(t) = |t − 1| − t and e(t) = a(t)x(t) − 1, our goal is to
estimate the value of x(t) = (|t−1|−t)−1. The term |t−1| is non-differentiable in
t = 1. Moreover, a(0.5) = 0, so x(t) includes singularity. We apply the Simulink
implementation presented in Fig. 1 of the linear ZNN flow under the zero initial
condition and k = 100 to study the influence of the singularity t = 0.5 and non-
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differentiability in t = 1 on the behaviour of the linear ZNN formula ė(t)−k e(t).
Figure 3 (left) represents the residual error |e(t)| = |(|t − 1| − t) x(t) − 1|. Graphs
in Fig. 3 (right) illustrate the ZNN approximation of x(t) and the exact solution
x∗(t) = 1/(|t − 1| − t).

Fig. 3. The error function behaviour with k = 100 (left) and the trajectory of x(t)
with k = 100 in Example 2. (Color figure online)

The graph of the residual error in figure Fig. 3 (left) vanishes toward zero at
all time points different from t = 0.5 and t = 1, while a significant fluctuation
at t = 0.5 and a small fluctuation at t = 1 are observable. The graphs in Fig. 3
(right) show the perfect correspondence of the solid blue line representing the
ZNN approximation and the dashed red line which represents the theoretical
solution in all points deviating from t = 0.5.

Example 3. Choosing a(t) = |t − 1|−1 in the scalar ZF e(t) = 1 − a(t)x(t),
a(t), x(t) ∈ R, the linear ZNN dynamics can be used to estimate the time-variant
function |t− 1| which is non-differentiable at t = 1. Figure 4 (left) represents the
behaviour of

∣∣x(t)|t − 1|−1 − 1
∣∣ for k = 100. The graph in Fig. 4 (left) approaches

zero, except at time t = 1 where the error increases rapidly. State trajectories
initiated by the linear ZNN formula ė(t) = −k e(t) and the exact trajectory
x∗(t) = |t − 1| for k = 100 are shown in Fig. 4 (right). The solid blue line shows
the ZNN approximation of |t−1| and the red dashed line is the trajectory of x∗(t).
The graphs in Fig. 4 (right) confirm that the blue solid trajectory generated by
the linear ZNN evolution (1) coincides with the red dashed line of the theoretical
solution |t − 1|. The only exception is the immediate vicinity of the point t = 1
where a significant difference between the ZNN and exact trajectories occurs.
These observations show that the proposed linear ZNN model (1) can be used to
calculate |t−1| in all points except t = 1. The value t = 1 is the appropriate point
to replace ė(1) by an appropriate element from the subderivative �(e(t))(1). Such
replacement leads to the S-ZNN design (7).

Example 4. Our intention is to apply linear ZNN dynamics for the compu-
tation of A−1(t) in the special case where some elements of the matrix A(t)
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Fig. 4. The error function behaviour with k = 100 (left) and The trajectory of x(t)
with k = 100 (right) in Example 3. (Color figure online)

are expressions causing singularity at certain time instants. For this reason, the
following matrix is considered

A(t) =
[ 1

|t−1| 1
1 0

]
,

with singularity in t = 1 and theoretical inverse

A−1(t) =
[

0 1
1 − 1

|t−1|

]
.

The parameter k is chosen as k = 1000 and the initial condition is X(0) = 0.
At the point t = 1, the matrix A(t) contains an infinite expression 1/0, caus-

ing the error status at t = 1 in the Simulink presented in Fig. 1. To overcome
the problem of singularity in the function 1/|t − 1| for t = 1 we consider larger
values Relative tolerance=10−3, Absolute tolerance = 10−3 in the configuration
parameters in the Simulink model for matrix inversion and the conditional dis-
placement

t = t + (t == 1)10−2 =

{
t + 10−2, if t = 1
t, else.

(8)

The shifting (8) in t = 1 enables overcoming the problem with the singularity
in this time instant and apply the linear ZNN formula for the computation
of matrix inverse problem and in this case where matrix A(t) includes non-
differential expression.

These specific modifications in the ZNN design generate the residual errors
as in Fig. 5.

From Fig. 5 (left) it can be seen that the linear ZNN formula can be used
to compute the inverse of A(t), since ||A(t)X(t) − I||F vanishes toward 0 as the
parameter k increases and in the special case that one element of the matrix
is non-differentiable at t = 1. Figure 5 (right) shows that elementwise state tra-
jectories of the theoretical solution A−1(t) (red dashed lines) are in correspond
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Fig. 5. The error function behaviour with k = 1000 (left) and trajectories of entries in
X(t) with 1000 (right) in Example 4. (Color figure online)

excellently to the blue lines generated by the linear ZNN formula and this sub-
stantiates the fact that we can use the ZNN design for the case where at least
one element of a time-varying matrix is non-differentiable at some time points.

Example 5. It is useful to study the behaviour of the linear ZNN for solving
the TVNE (2) of one variable. The ZNN dynamics (1) is based on the error
function e(t) = ℘(x(t), t). From (3) we derive the dynamics

ẋ(t) =
(

1 − ∂℘

∂x

)
ẋ(t) − k℘(x(t), t) − ∂℘

∂t
. (9)

The TVNE ℘(x(t), t) ≡ (x(t) − |t|)(x(t) − 1/|t − 2|) = 0 is considered with the
theoretical solutions x∗(t) = |t| and x∗(t) = 1/|t−2|. It is noticed that the second
solution contains a singularity at the time instant t = 2. The error function is
e(t) = ℘(x(t), t) while Fig. 6 represents the Simulink model of (9).

The ZNN design with configuration parameters Relative tolerance=Absolute
tolerance=10−6 leads to the error at the point t = 2. We used large values
Relative tolerance=Absolute tolerance=10−4 in the configuration parameters.
The generated residual errors of ||℘(x(t), t)||F are shown in Fig. 7 for the gain
parameters k = 1000 and initial conditions x(0) = −10, x(0) = 10.

Graphs included in Fig. 7 strengthen the fact that the ZNN formula with
greater tolerances can be used for the solution of TVNE problems even in the
case when one solution of the TVNE includes singularity. Furthermore, it is
observable that for the choice of x(0) = −10 and x(0) = 10 the ZNN formula
converges to the solution x∗(t) = 1/|t − 2|.
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Fig. 6. Simulink of the ZNN formula (9).

Fig. 7. The behaviour of ||℘(x(t), t)||F (left) and the trajectory of x(t) (right) with
k = 1000 under the initial condition x(0) = −10 in Example 5.

5 Concluding Remarks

The ZNN dynamical flow requires the use of the element-wise time-derivative of
the error function Ė(t) at each time t. The difficulty arises in the case where a
time derivative does not exist, for each element of E(t) and any time t0 from a
time interval [0, T ]. In this study, we propose an extension of the ZNN formula
for the case where the time-derivative of the Zhang function does not exist at
some points. The non-differentiability occurs frequently and in various forms.

The aim of our study is to solve the problems that arise in the ZNN dynamic
evolutions in such situations. We propose possible solutions to the problem when
the indefinite error function E(t) (which can be a matrix, a vector, or a scalar)
contains non-diferentiable entries. This means that the time derivative ėij(t)
of some elements eij(t) ∈ E(t) does not exist at some points within the chosen
time interval [0, T ]. The first approach is based on increasing relative and resolute
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error tolerances in the Simulink implementation of the ZNN model and the shift
technique to avoid division by zero (DBZ). More precisely, the DBZ problem can
be solved by suitable modifications of the ZNN dynamics proposed in [5] for the
case when the function E(t) is unbounded and goes to infinity. Another possible
solution is the extended model S-ZNN based on the subderivation (6) at each
point t0 ∈ [0, T ] where ėij(t0) does not exist, for some i, j. We expect that the
scope of ZNN dynamics will be successfully extended to such non-differentiable
cases.

Theoretical analysis of S-ZNN dynamics requires a detailed analysis of con-
vergence and convergence rate. Noise-tolerant and finite-time or time-predefined
convergent S-ZNN models can be considered in further research.
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Abstract. We consider the feasibility problem in a multi-agent decen-
tralized form, where each agent has the personal information of the fea-
sible subset, which is unknown to other agents. The common feasible
set is composed of the agents’ feasible subsets. For solving this problem,
we reformulate it in the form of a variational inequality and propose an
algorithm based on the projection method. Preliminary test calculations
confirm the efficiency of the proposed approach.
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1 Introduction

Now, decentralized systems are actual in different domains of modern human
activities. In this connection, certain aspects become important. On the one
hand, the volume of data can be so great that it is not efficient, or even it is not
possible to realize the calculation at the unique center, at the main server. On
the other hand, the aspect of security requires keeping the information in the
private domain and forbids to share it with other users. Therefore, decentralized
problems arise and have to be investigated for effective use.

Recently in [1], a decentralized penalty method was proposed for solving gen-
eral convex constrained multi-agent optimization problems, where each agent has
the personal information of the feasible set and goal function, which is unknown
to other agents. The agents share their current states only. An important aspect
of this method is the choice of communication structure between users and the
construction of the corresponding penalty function. An interesting feature of this
method is its convergence even in the case when the feasible set of the initial
problem is empty. In [1], the application of this approach to the pure feasibil-
ity problem is also considered; this problem is reformulated as an optimization
problem, which can be solved by the gradient projection method. In the present
paper, we extend the idea of this approach concerning the feasibility problem.
We reformulate the feasibility problem in the form of a variational inequality,
which can be solved by the projection method. The numerical experiments show
the efficiency of the proposed approach.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
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The paper is organized as follows. In Sect. 2, we recall the main scheme of
the penalty method for decentralized problems from [1] applied to the feasibility
problem. In Sect. 3, we propose a new reformulation of the feasibility problem
in the form of a variational inequality and describe the projection method for
solving it. Section 4 describes preliminary numeric experiments. The conclusion
section briefly resumes the paper results.

2 The Penalty Approach for Multi-agent Decentralized
System

There are different approaches to define and solve multi-agent optimization prob-
lems. The first decomposition methods were not really decentralized, the purpose
of these methods was to reduce information flows, but they kept the coordina-
tion center (see [2]). The two main classes of modern decentralized methods are
incremental methods (see [3–5] and references therein) and primal-dual decom-
position methods (see [6,7] and references therein). An exhaustive overview of
modern decentralized methods can be found in [8] and references therein.

Recently, in [1] a decentralized penalty method was proposed for general
convex constrained multi-agent optimization problems. Let us recall the main
idea of this approach applied to the feasibility problem.

The general feasibility problem has the form:

Find z ∈ D,

where D is a convex closed set defined in Rn.
In the decentralized problem definition, m agents have convex closed subsets

Xi, for i = 1, . . . ,m, which are also defined in the space Rn and

D =
m⋂

i=1

Xi.

Each agent has the personal information of the feasible subset, which is
unknown to other agents. The agents share their states only and keep their
feasible sets in secret. To consider the states of all users, the initial problem is
reformulated in the Euclidean space with the dimension N = nm as follows:

Find x ∈ X, (1)

where now the feasible set has the form

X =
m∏

i=1

Xi. (2)

Here xT = (xT
1 , . . . , xT

m), xT
i = (xi1, . . . , xin), for i = 1, . . . , m.

To obtain the common solution, the agents have to exchange the current
information. The structure of a communication network can have different forms;
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the necessary requirement is that the network must be connected and each agent
sends and receives information to and from some other agents.

In the present paper, we will define the network communication structure as
an oriented graph W = (V,A), where V is the set of m nodes-users (which are
denoted by numbers i = 1, . . . ,m for brevity) and A is the set of directed links,
where each link (i, j) means that user i sends its state xi to user j.

The most complex case is the full graph, where each pair of agents commu-
nicates (Fig. 1):

W ′ = (V,A′), A′ = {(i, j) : i �= j, i, j = 1, . . . , m}.

Fig. 1. The maximal communication network structure for network of 5 agents.

In [1], the network structure

W ′′ = (V,A′), A′ = {(i, j), (j, i) : j = i mod m + 1, i = 1, . . . ,m}.

is used (Fig. 2). It is a two-directed cycle.

Fig. 2. A communication network structures for network of 5 users in the form of a
two-directed cycle.

For the latter network, the penalty function is defined as follows in [1]

p(x) = (2τ)−1‖Px‖2,= (2τ)−1
m∑

i=1

‖Pix‖2, (3)



22 O. Pinyagina

where

P =

⎛

⎜⎜⎝

I −I Θ . . . Θ Θ
Θ I −I . . . Θ Θ
. . . . . . . . . . . . . . . . . .
−I Θ Θ . . . Θ I

⎞

⎟⎟⎠ =

⎛

⎜⎜⎝

P1

P2

. . .
Pm

⎞

⎟⎟⎠ ,

here I is the n×n unit matrix, Θ is the n×n zero matrix, Pi is the corresponding
n × nm submatrix of P , i = 1, . . . ,m, and τ > 0 is a fixed scaling parameter.

Then the initial feasibility problem (1)–(2) is reformulated as an optimization
problem

min
x∈X

−→ p(x).

For this problem, in [1] one proposes to use the gradient projection method,
which consists in solving the following problem with fixed α > 0 and some point
xk ∈ X:

min
z∈X

−→ {〈p′(xk), z〉 + (2α)−1‖z − xk‖2}.

Then the iterative process has the form

xk+1 = πX [xk − αp′(xk)], k = 0, 1, 2, . . . (4)

where πX denotes the operation of projection onto the set X.
The gradient for the penalty function (3) p′(x) is defined as follows:

p′
i(x) =

⎧
⎨

⎩

τ−1(2x1 − x2 − xm) if i = 1;
τ−1(2xi − xi+1 − xi−1) if i = 2, . . . ,m − 1;
τ−1(2xm − x1 − xm−1) if i = m.

Here p′(x) = (p′
1(x), . . . , p′

m(x))T .
Therefore, each agent can calculate its own gradient based on its personal

state and information about states of two neighbors, with which it shares data.
Then each agent separately solves the subproblem

min
zi∈Xi

−→ {〈p′
i(x

k), zi〉 + (2α)−1‖zi − xk
i ‖2}.

In other words, the iterative process for each agent has the form

xk+1
i = πXi

[xk
i − αp′

i(x
k)], k = 0, 1, 2, . . . i = 1, . . . ,m.

An interesting feature of this method is its convergence even the feasible set
of the initial problem D is empty.

So, this approach involves some penalty function, whose gradient describes
the communication network and is used in the gradient projection method. But
there exist such forms of communication structure, which cannot be presented
as a gradient of some function. We consider this case in the following section
and propose a general formulation of the feasibility problem in the form of a
variational inequality.
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3 An Algorithm for Decentralized Multi-agent Feasible
Problem

Note that the simplest graph of communication is a one-directed cycle (Fig. 2),
for example:

W = (V,A), A = {(i, j) : j = i mod m + 1, i = 1, . . . , m}. (5)

Fig. 3. The simplest communication network structure for 5 users.

Because in our multi-user system, any user solves its problem privately and
corresponds only its current state to the outer world, the penalty was usually
imposed on the distance between its state and the states of its neighbors, which
receive this state. Case (5) corresponds to the minimal flows of information,
where each user receives information from one user and sends information to
another one. But this situation cannot be described by some penalty function
and this problem cannot be reduced to some optimization problem. Therefore,
we try to reformulate problem (1)–(2) in the form of a variational inequality.

Let a continuous mapping G : Rn −→ Rn be given.
Then we can formulate the following variational inequality: Find x∗ ∈ X

such that

〈G(x∗), x − x∗〉 ≥ 0, ∀x ∈ X. (6)

For network (5), this mapping G has the form

G(x) =

⎛

⎜⎜⎝

x1 − x2

x2 − x3

. . .
xm − x1

⎞

⎟⎟⎠ . (7)

Evidently, if D �= ∅, then variational inequality (6)–(7) has a solution x∗,
where x∗

i = x∗
j , i, j = 1, . . . ,m. Let us prove the inverse assertion.

Proposition 1. If D �= ∅, then for any solution x∗ of problem (6)–(7), we have
x∗
i = x∗

j , i, j = 1, . . . ,m.
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Proof. Assume the opposite. Let there exist i ∈ {1, . . . , m} such that

x∗
i �= x∗

i mod m+1.

Since D �= ∅, we can take any z ∈ D and obtain

〈x∗
1 − x∗

2, z − x∗
1〉 + 〈x∗

2 − x∗
3, z − x∗

2〉 + · · · + 〈x∗
m − x∗

1, z − x∗
m〉 ≥ 0. (8)

On the one hand, after simple transformations we have

‖x∗
1‖2 − 〈x∗

1, x
∗
2〉 + ‖x∗

2‖2 − 〈x∗
2, x

∗
3〉 + · · · + ‖x∗

m‖2 − 〈x∗
m, x∗

1〉 ≤ 0.

On the other hand, we add the expression −x∗
j +x∗

j , where j = (i+1) mod m,
to the right-hand side of each ith scalar product in (8). After simple transfor-
mations, we obtain

‖x∗
2‖2 − 〈x∗

1, x
∗
2〉 + ‖x∗

3‖2 − 〈x∗
2, x

∗
3〉 + . . .

+ ‖x∗
m‖2 − 〈x∗

m−1, x
∗
m〉 + ‖x∗

1‖2 − 〈x∗
m, x∗

1〉
≥ ‖x∗

1 − x∗
2‖2 + ‖x∗

2 − x∗
3‖2 + · · · + ‖x∗

m − x∗
1‖2 > 0.

We get a contradiction, then we obtain that any solution of problem (6)–(7)
gives a solution to problem (1)–(2), as desired.

The mapping G in (7) can be presented as

G(x) = Px,

where, as above,

P =

⎛

⎜⎜⎝

I −I Θ . . . Θ Θ
Θ I −I . . . Θ Θ
. . . . . . . . . . . . . . . . . .
−I Θ Θ . . . Θ I

⎞

⎟⎟⎠ ,

I is the n × n unit matrix, Θ is the n × n zero matrix.
For solving variational inequality (6)–(7), the projection method can be used.

The iterative process of the projection method has the form for some point
xk ∈ X and some fixed α > 0

xk+1 = πX [xk − αG(xk)], k = 0, 1, 2, . . . (9)

This problem is split into m separate subproblems for m users. At stage k,
having the current point xk, each user i constructs its direction by the rule:

Gi(xk) =
{

xk
i − xk

i+1 if i = 1, . . . ,m − 1;
xk
m − xk

1 if i = m

and solve the problem

xk+1
i = πXi

[xk
i − αGi(xk

i )].
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Here

G(x) =

⎛

⎜⎜⎝

G1(x)
G2(x)

. . .
Gm(x)

⎞

⎟⎟⎠ .

Now let us prove the convergence of the proposed algorithm. Firstly, we
consider the mapping T : RN −→ RN

T (x) =

⎛

⎜⎜⎜⎜⎝

x2

x3

. . .
xm

x1

⎞

⎟⎟⎟⎟⎠
. (10)

The mapping G and T are connected as follows

G(x) = x − T (x), (11)

for all x. In the case D �= ∅, variational inequality (6)–(7) is equivalent to the
fixed point problem: Find x∗ ∈ X such that

x∗ = T (x∗).

Recall certain definitions concerning the mapping properties.

Definition 1. A mapping B : RN −→ RN is said to be non-stretching if for all
x, y ∈ RN it holds that

‖B(x) − B(y)‖ ≤ ‖x − y‖.

Definition 2. A mapping B : RN −→ RN is said to be inversely strongly mono-
tone with a constant γ on the set X ∈ RN (or shortly ISM-mapping), if

〈B(x) − B(y), x − y〉 ≥ γ‖B(x) − B(y)‖2, ∀x, y ∈ X.

Let us show that mapping (10) is non-stretching. In fact,

‖T (x) − T (y)‖2 = ‖x2 − y2‖2+‖x3 − y3‖2+· · ·+‖xm − ym‖2+‖x1 − y1‖2 = ‖x − y‖2.

The following proposition establishes the dependence between properties of
mappings G and T , which are connected by correlation (11).

Proposition 2 ([9], Proposition 1.1). Let T : RN −→ RN be a non-stretching
mapping. Then the mapping G from (11) is an ISM mapping with constant
γ = 0.5.

Therefore, we are ready to prove the convergence of the projection method
(9).
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Theorem 1. Let a sequence {xk} be generated by algorithm (9) and there exist
a solution to problem (6)–(7). Then the sequence {xk} converges to a solution
x∗ to problem (6)–(7).

Proof. Firstly, note that the mapping G in problem (6)–(7) is an ISM mapping
with constant γ = 0.5 due to Proposition 2. Then due to Theorem 11.2 from [9],
the sequence {xk} converges to a solution to problem (6)–(7), as desired.

4 Computational Experiments

In this section, we describe preliminary numeric experiments for the considered
algorithm. In all the following series of computational tests, we compared algo-
rithms (4) (based on the communication structure of Fig. 2) and (9) (based on
the communication structure of Fig. 3). In all experiments, the parameters of
methods τ = 1, α = 0.4. We used the stop criterion

‖xk+1 − xk‖ ≤ ε,

where ε = 0.001.
We considered the feasibility problem, where the set D has the form

Ax ≤ b, x ∈ Rn,

Here A is an m × n matrix, b is an m-dimensional vector. Or, in other words,

Xi = {x ∈ Rn : 〈ai, x〉 ≤ bi}, i = 1, . . . ,m,

where ai is the ith row of the matrix A, bi is the ith component of the vector b.
The coefficients aij i = 1, . . . , m, j = 1, . . . , n of the matrix A were uniformly

distributed random values from the segment [−20, 20]. The coefficients bj of the
vector b were uniformly distributed random values from the segment [0, 20]. We
considered the problems for m = 10, 15, 20, 25, 30, 35, 40 users and the space
dimension n = 15, 20, 25, 30, 35, 40, 45, 50.

The computational results are presented in Table 1, which has the follow-
ing structure. The first two columns contain the dimensions of problems, m is
the number of agents, n is the dimension of agents space. Each row presents
the aggregate results for 100 problem instances: mean values (mean val.) and
standard deviations (st.dev.) of iterations numbers and calculation time.

The program was written in Visual C# with double precision, tested on an
Intel i3-4170 CPU at 3.7 GHz, 4 Gb, running under Windows 7.

In all cases, the best results were obtained for the simplest structure of the
communication network and algorithm (9). Note also that the first network struc-
ture (Fig. 2) requires twice as much information flow as compared to the second
structure (Fig. 3).
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Table 1. Computational results.

m n Algorithm (4) Algorithm (9)

iterations time (ms) iterations time (ms)

mean val. st.dev. mean val. st.dev. mean val. st.dev. mean val. st.dev.

10 15 281 155 3,160 1,765 192 69 2,010 0,975

10 20 252 90 3,750 1,558 180 20 2,450 0,623

10 25 221 69 3,690 1,302 179 18 2,710 0,516

15 20 633 270 12,761 5,613 383 44 7,150 0,973

15 25 538 160 13,470 5,642 379 16 8,810 3,161

15 30 521 178 16,190 8,045 385 17 11,120 3,401

20 25 1 146 443 39,740 16,193 656 48 21,250 4,524

20 30 1 027 438 40,740 17,816 666 71 24,740 5,863

20 35 953 260 42,360 12,710 665 9 28,060 4,012

25 30 1 616 537 78,750 27,615 991 15 45,080 5,205

25 35 1 591 531 89,310 29,222 1 006 22 52,150 4,244

25 40 1 465 379 93,410 24,663 1 016 12 59,050 3,576

30 35 2 482 738 168,650 50,988 1 406 20 88,400 8,345

30 40 2 120 648 162,800 49,622 1 427 18 102,570 7,440

30 45 2 015 525 173,290 47,699 1 444 15 114,960 7,141

35 40 3 201 847 289,631 84,979 1 894 30 157,470 10,443

35 45 2 888 739 292,030 78,395 1 918 23 178,920 11,977

35 50 2 797 734 317,621 87,685 1 934 24 201,510 14,340

5 Conclusions

In the present paper, we considered the feasibility problem in multi-agent decen-
tralized form, where each agent has the personal information of the feasible sub-
set, which is unknown to other agents. The common feasible set is composed
of the agents feasible subsets. For solving this problem, we reformulated it in
the form of a variational inequality and proposed an algorithm based on the
projection method. Preliminary test calculations are also given. The proposed
approach has shown to be efficient and is promising for practical use.
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Abstract. In this work, we consider the problem of strongly convex
online optimization with convex inequality constraints. A scheme with
switching over productive and non-productive steps is proposed for these
problems. The convergence rate of the proposed scheme is proven for the
class of relatively Lipschitz-continuous and strongly convex minimiza-
tion problems. Moreover, we study the extensions of the Mirror Descent
algorithms that eliminate the need for a priori knowledge of the lower
bound on the (relative) strong convexity parameters of the observed func-
tions. Some numerical experiments were conducted to demonstrate the
effectiveness of one of the proposed algorithms with a comparison with
another adaptive algorithm for convex online optimization problems.
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Introduction

The development of numerical methods for solving non-smooth online optimiza-
tion problems presents a great interest nowadays due to the appearance of many
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applied problems with the corresponding statement [3,5–7,11]. Online optimiza-
tion plays a key role in solving machine learning, finance, networks, and other
problems. As some examples of such problems, we can mention multi-armed
bandits, job-shop scheduling and ski rental problems, search games, etc. One of
the most popular methods of solving online optimization problems is the Mirror
Descent method [13]. Indeed, the usual Lipschitz condition with respect to the
Euclidean norm may not be very convenient, and the using of other norms leads
to the need to consider the Mirror Descent method

xk+1 := arg min
x∈Q

{γ〈∇fk(xk), x − xk〉 + V (x, xk)},

for some convenient γ > 0 and V (x, y) is a Bregman divergence (see (2)), instead
of the usual subgradient method

xk+1 := arg min
x∈Q

{γ〈∇fk(xk), x − xk〉 +
1
2
‖x − xk‖22}.

Let us note, that Mirror Descent can be also applied for solving online opti-
mization problems in a stochastic setting [1,4], which allows using an arbitrary,
not necessarily 1–strongly convex, distance-generating function (see (2)).

Remind, that the online optimization problem represents the problem of min-
imizing the sum (or the arithmetic mean) of T convex functionals ft : Q −→ R

(t = 1, . . . , T ) given on some compact convex set Q ⊂ R
n

min
T∑

t=1

ft(x), s.t. g(x) ≤ 0, x ∈ Q, (1)

where g : Q −→ R is a convex functional constraint. The key feature of the
problem statement consists in the possibility of calculating the (sub)gradient
∇ft(x) of each functional ft only once.

Online optimization problems with convex constraints-inequalities were con-
sidered, for example, in [8]. As an example of an applied problem, it is natural
to note the sparse online binary classification problem [8].

Recently, in [15] there were proposed some modifications of the Mirror
Descent method for solving online optimization problems in the case, if all the
convex functions ft(x) and convex functional constraint g(x) satisfy Lipschitz
condition, i.e. there exists a constant M > 0, such that

|g(x) − g(y)| ≤ M‖x − y‖,

|ft(x) − ft(y)| ≤ M‖x − y‖, ∀t = 1, . . . , T .

In the case of non-negativity of regret

RegretT :=
T∑

t=1

ft(xt) − min
x∈Q

T∑

t=1

ft(x),
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where xt are the obtained points from the work of the proposed methods for
the problem (1), these methods are optimal for the considered class of prob-
lems accordingly to [6], the number of non-productive steps during their work is
O(T ). In the case of negative regret, the number of non-productive steps for the
proposed methods is O(T 2) [15].

Later, in [16] the smoothness class for the applicability of such approaches
has been extended by reducing the requirement of Lipschitz continuity of func-
tions to the recently proposed concept of relative Lipschitz continuity [9,12].
Therefore a few years ago, the optimization field introduced classes of rela-
tively smooth [2], relatively Lipschitz-continuous, and relatively strongly con-
vex optimization problems [9,10]. These concepts have expanded the class of
problems to which optimal complexity estimates of gradient-type methods in
high-dimensional spaces can be applied.

Let h : Q −→ R be a distance-generating function (or prox-function) that is
continuously differentiable and convex. For all x, y ∈ Q we consider the corre-
sponding Bregman divergence

V (y, x) = h(y) − h(x) − 〈∇h(x), y − x〉. (2)

Definition 1. Let us call a convex function f : Q −→ R to be an M -relatively
Lipschitz-continuous for some M > 0, if the following inequality holds

〈∇f(x), y − x〉 + M
√

2V (y, x) ≥ 0, ∀x, y ∈ Q,

where V (y, x) is a corresponding Bregman divergence.

This concept has been widely used in many applied problems and has also
enabled the proposal of subgradient methods for both non-differentiable and
non-Lipschitz Support Vector Machine (SVM) and for problems of the inter-
section of n ellipsoids while maintaining optimal convergence rate estimates for
the class of simply Lipschitz-continuous functions. It is worth noting that the
proposed methods also allowed the use of an imprecisely defined function (more
exactly, a function that admits a representation in a model form), nevertheless,
the method was also optimal.

In this paper, we improve the existing estimates of the convergence rate
by considering a class of strongly convex functions and generalize the obtained
problem statement to the case of problems with functional constraints.

Definition 2. Let μ > 0. A function f over a convex set Q is called μ-strongly
convex with respect to a convex function h if

f(x) ≥ f(y) + 〈∇f(y), x − y〉 + μV (x, y) ∀x, y ∈ Q,

where V (x, y) is a Bregman divergence corresponding to h.

In this paper we investigate an alternative approach for strongly convex prob-
lems, which guarantees exactly the estimate for the regret O(log T ), where T is
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the number of terms fi. In [8] the worst estimates were obtained. Moreover, in
our work, we obtained more flexible estimates for online optimization problems
with constraints that allow us to use the difference in the parameters of the
strong convexity of each of the functions fi.

It is also worth noting that the approach proposed in this article based on
schemes with switching over productive and non-productive steps may allow
avoiding an additional projection operation on an admissible set (if it is described
by a system of inequalities) during iterations.

More precisely, we present a novel theorem that provides a tighter bound
on regret, in terms of the number of productive steps taken by the algorithm.
Specifically, the theorem proves that if the algorithm completes exactly T pro-
ductive steps and has a non-negative regret, then the number of non-productive
steps satisfies TJ ≤ CT , where C is a constant. This result significantly improves
existing convergence rate estimates for the Mirror Descent method with func-
tional constraints. In addition, we obtain the complexity of the bound in terms
of T and some other problem parameters. This corollary allows us to determine
the number of productive steps needed to achieve the desired accuracy of regret
in practice.

We also consider some modifications of the Mirror Descent method for solving
non-smooth online optimization problems [5]. Specifically, the paper introduces
two algorithms for solving strongly convex minimization problems with and with-
out regularization. The first algorithm, called General-Norm Online Gradient
Descent: Relatively Strongly Convex and Relatively Lipschitz-Continuous Case,
is based on a convex function h and updates the solution iteratively using pre-
dictions and observations of the objective function ft. The second algorithm,
called Adaptive General-Norm Online Gradient Descent with Regularization,
extends the first algorithm by introducing an adaptive regularization term that
depends on a function d that is both relatively Lipschitz-continuous and rela-
tively strongly convex.

For each algorithm, we provide the theoretical justification of bounds on the
regret. These theorems guarantee upper bounds on the regret for each algorithm
and can be used to analyze the performance of the algorithms. Overall, the paper
presents a comprehensive framework for solving non-smooth online optimization
problems with functional constraints, and the results have practical implications
for a broad range of applications.

The paper consists of an introduction and 4 main sections. In Sect. 1 we
consider the basic statement of the constrained online optimization problem
and propose a modification of the Mirror Descent method for minimizing the
arithmetic mean of relatively strongly convex and relatively Lipschitz-continuous
functionals, supposing that functional constraint satisfies the same conditions.
We also provide a theoretical justification for the convergence rate of the pro-
posed method. Section 2 is devoted to some modifications of the algorithms, pro-
posed in [5] for the corresponding class of problems with regularization. In Sect. 3
we combine the above-mentioned ideas and propose algorithms with switching
over productive and non-productive steps both with and without iterative reg-
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ularization during the work of algorithms. In Sect. 4 we present some numerical
experiments which demonstrate the effectiveness of one of the proposed algo-
rithms and a comparison with another adaptive algorithm for the considered
optimization problems.

To sum it up, the contributions of the paper can be stated as follows:

– We proposed an optimal method (Algorithm 1) for solving a constrained
online optimization problem with relatively strongly convex and relatively
Lipschitz-continuous objective functionals and functional constraints. For the
case of non-negative regret, the number of non-productive steps is bounded
by O(T ).

– We proposed two algorithms (Algorithm 2 and Algorithm 3) for solving
strongly convex minimization problems with and without regularization based
on iteratively updating steps by using some auxiliary functions. Similar to [5],
we present extensions of Mirror Descent (Algorithm 4 and Algorithm 5) that
exclude the need for a priori knowledge of the lower bound on the (relatively)
strong convexity parameters of the observed functions.

– We provided the results of numerical experiments demonstrating the advan-
tages of using the proposed methods.

1 Mirror Descent for Relatively Strongly Convex
and Relatively Lipschitz-Continuous Online
Optimization Problems with Inequality Constraints

In this section, we present a scheme for solving the problem (1), when the ft

and g are relatively strongly convex and relatively Lipschitz-continuous. The
ensure points of the proposed scheme are selected among the points xt for which
g(xt) ≤ ε, therefore, we will call step t productive if g(xt) ≤ ε and if the reverse
inequality g(xt) > ε holds then step t will be called non-productive. Let I and J
denote the set of indexes of productive and non-productive steps, respectively.
Let T := |I|, TJ := |J |, and x∗ be a solution of (1), i.e. x∗ = arg min

x∈Q

∑T
t=1 ft(x),

and g(x∗) ≤ 0. Throughout this article, V (x, y) is the Bregman divergence cor-
responding to the convex function h (see (2)). Let us consider a subgradient
method with switching over productive and non-productive steps. As a result
of this method, we get a sequence {xk}k∈I on productive steps, which can be
considered as a solution to the problem (1) with accuracy δ (see (3).

Theorem 1. Suppose that, for each t, ft is an Mf -relatively Lipschitz-
continuous and μ-strongly convex function with respect to the prox-function h.
Let g(x) be Mg-relatively Lipschitz-continuous and μ-strongly convex function
with respect to h. Suppose that Algorithm 1 for

ε =
M2

μ

1 + lnT

T
,
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Algorithm 1. Constrained Online Optimization: Mirror Descent for Relatively
Lipschitz-Continuous and Relatively Strongly Convex Problems (MDRL-RS).
Require: ε > 0, μ > 0, M > 0, T, x1 ∈ Q.
1: i := 1, t := 1;
2: repeat
3: Observe ft.
4: if g(xt) ≤ ε then
5: ηt = 1

tμ
;

6: xt+1 := arg min
x∈Q

{ηt〈∇ft(xt), x〉 + V (x, xt)}; “productive step”

7: i := i + 1;
8: t := t + 1;
9: else

10: ηt = 1
tμ

;
11: xt+1 := arg min

x∈Q
{ηt〈∇g(xt), x〉 + V (x, xt)}; “non-productive step”

12: t := t + 1;
13: end if
14: until i = T + 1.
15: Guaranteed accuracy:

δ :=
M2

μT
(1 + ln(T + TJ)) − ε

TJ

T
. (3)

Ensure: xk, k ∈ I.

where M = max{Mf ,Mg}, works exactly T productive steps and RegretT ≥ 0.
Then there exists a constant C ∈ (2; 3) such that the number of non-productive
steps satisfies TJ ≤ CT , moreover, the following inequality holds:

RegretT :=
T∑

t=1

ft(xt) − min
x∈Q

T∑

t=1

ft(x) ≤ M2

μ

(
1 + ln

(
(C + 1)T

))
= O(Tε),

where g(xt) ≤ ε ∀t = 1, . . . , T .

Proof. The proof is given in [14].

Remark 1. Let us show that our algorithm will necessarily make at least one
productive steps. Indeed, suppose, that the number of productive steps equals
zero, then

εTJ ≤
TJ∑

t=1

(
g(xt) − g(x∗)

)
≤ M2

μ

(
1 + ln TJ

)
.

It is obvious, that for a sufficiently large TJ , the above inequality does not hold.
Thus, for a sufficiently large number of non-productive steps, there will be at
least one productive step.

Let us find out how many non-productive steps need to be taken to achieve
the inequality:

εTJ =
TJM2

μ

1 + ln T

T
>

M2

μ
(1 + ln TJ),
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Thus,
1 + ln T

T
>

1 + ln TJ

TJ
.

Then TJ ≤ CT , where C is a constant, which proves that the number of
non-productive steps is bounded until at least one productive step is made.

2 Online Mirror Descent with Regularization

In this section, we propose some modifications of the algorithms proposed in
[5] for relatively strongly convex and relatively Lipschitz-continuous online opti-
mization problems and provide theoretical estimates of the quality of the solu-
tion. Let us consider the following strongly convex minimization problem

min
x∈Q

T∑

t=1

ft(x), (4)

where Q ⊂ R
n is some compact convex set, ft : Q −→ R are relatively strongly

convex and relatively Lipschitz-continuous functions. Define μ1:t :=
t∑

s=1
μs,

where μs is the parameter of relative strong convexity of the function fs. Let
μ1:0 = 0. Remind that V (x, y) is the Bregman divergence corresponding to the
convex function h (see (2)).

Algorithm 2. General-Norm Online Gradient Descent: Relatively Strongly Con-
vex and Relatively Lipschitz-Continuous Case (OGDRS-RL).
1: Input: convex function h.
2: Initialize x1 arbitrarily.
3: for t = 1, . . . , T do
4: Observe ft.
5: Compute ηt+1 = 1

μ1:t
and let yt+1 be such that ∇h(yt+1) = ∇h(xt) −

ηt+1∇ft(xt).
6: Let xt+1 = arg min

x∈Q
V (x, yt+1) be the projection of yt+1 onto Q.

7: end for
8: Output: xk, k = 1, . . . , T.

Theorem 2. Suppose that, for each t, ft is an Mt-relatively Lipschitz-
continuous and μt-strongly convex function with respect to prox-function h.
Applying the Algorithm 2, we have

RegretT ≤
T∑

t=1

M2
t

μ1:t
.

Proof. The proof is given in [14].
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Let’s now consider an analogue of Algorithm 2 for relatively strongly convex
and relatively Lipschitz-continuous problems with iterative regularization. Define

λ1:t :=
t∑

s=1
λs, λ1:0 = 0. The proposed algorithm is listed as Algorithm 3.

Algorithm 3. Adaptive General-Norm Online Gradient Descent with Regular-
ization (AOGD-R).
1: Input: convex function h.
2: Initialize x1 arbitrarily.
3: for t = 1, . . . , T do
4: Observe ft.

5: Compute λt = 1
2

(√
(μ1:t + λ1:t−1)2 + 8M2

t /(A2 + 2M2
d ) − (μ1:t + λ1:t−1)

)
.

6: Compute ηt+1 = 1
μ1:t+λ1:t

and let yt+1 be such that

∇h(yt+1) = ∇h(xt) − ηt+1 (∇ft(xt) + λt∇d(xt)) .

7: Let xt+1 = arg min
x∈Q

V (x, yt+1) be the projection of yt+1 onto Q.

8: end for
9: Output: xk, k = 1, . . . , T.

For Algorithm 3, we have the following result.

Theorem 3. Suppose that, for each t, ft is Mt-relatively Lipschitz-continuous
and μt-relatively strongly convex function with respect to the prox-function h.
Let d : Q −→ R be Md-relatively Lipschitz-continuous and 1-strongly convex
function with respect to h. Suppose that d(x) ≥ 0, ∀x ∈ Q and A2 = supx∈Q d(x).
Applying Algorithm 3, the following inequalities hold

RegretT ≤ λ1:T A2 +
T∑

t=1

(Mt + λtMd)2

μ1:t + λ1:t
,

and

RegretT ≤ 2 inf
λ∗
1 ,...,λ∗

T

(
(A2 + 2M2

d )λ∗
1:T +

T∑

t=1

(Mt + λ∗
t Md)2

μ1:t + λ∗
1:t

)
.

Proof. The proof is given in [14].

3 The Case of Online Optimization Problems
with Inequality Constraints

In this section, we consider a scheme with switching over productive and non-
productive steps both with and without iterative regularization for a relatively
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strongly convex and relatively Lipschitz-continuous constrained online optimiza-

tion problem. Similarly to Sect. 2, we define μ1:t :=
t∑

s=1
μs, where μs is the

parameter of relative strong convexity of the function fs and let μ1:0 = 0. If t is
the number of non-productive steps, then μt = μg, where μg is the parameter
of relative strong convexity of the function g. As a result of the proposed algo-
rithms, we get a sequence {xk}k∈I on productive steps, which can be considered
as a solution of the problem (1) with accuracy δ (see (5) and (6).

Algorithm 4. Mirror Descent for Constrained Online Optimization Problems
with Relatively Lipschitz-Continuous and Relatively Strongly Convex Functions
(MDCOORL-RS).
Require: ε > 0, M > 0, T, x1 ∈ Q.
1: i := 1, t := 1;
2: repeat
3: Observe ft.
4: if g(xt) ≤ ε then
5: ηt = 1

μ1:t
;

6: xt+1 := arg min
x∈Q

{ηt〈∇ft(xt), x〉 + V (x, xt)}; “productive step”

7: i := i + 1;
8: t := t + 1;
9: else

10: ηt = 1
μ1:t

;
11: xt+1 := arg min

x∈Q
{ηt〈∇g(xt), x〉 + V (x, xt)}; “non-productive step”

12: t := t + 1;
13: end if
14: until i = T + 1.
15: Guaranteed accuracy:

δ :=
1

T

(
T+TJ∑

t=1

M2

μ1:t
− εTJ

)
. (5)

Ensure: xk, k ∈ I.

Theorem 4. Suppose that, for each t, ft is an Mt-relatively Lipschitz-
continuous and μt-strongly convex function with respect to the convex func-
tion h. Let g(x) be Mg-relatively Lipschitz-continuous and μg-strongly convex
function with respect to h. If Algorithm 4 works exactly T productive steps and
RegretT ≥ 0, then the following inequality holds:

RegretT ≤
T+TJ∑

t=1

M2

μ1:t
− εTJ ,

where M = max{Mt,Mg} and g(xt) ≤ ε, ∀t = 1, . . . , T .

Proof. The proof is given in [14].
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Corollary 1. Assume that all conditions of Theorem 4 hold and suppose
μt ≥ μ > 0 for all 1 ≤ t ≤ T + TJ . If

ε =
M2

μ

1 + ln T

T
,

then the bound on the regret of Algorithm 4 is O(ln T ).

Proof.

0 ≤ RegretT ≤
T+TJ∑

t=1

M2

μ1:t
−εTJ ≤

T+TJ∑

t=1

M2

μt
−εTJ ≤ M2

μ

(
ln(T +TJ)+1

)
−εTJ ,

hence εTJ ≤ M2

μ

(
1 + ln(T + TJ)

)
. Let ε =

M2

μ

1 + ln T

T
. Then we have

1 + ln T

T
TJ ≤ 1 + ln(T + TJ),

and

TJ

T
≤ 1 + ln(T + TJ)

1 + ln T
=

1 + ln T + ln(1 + TJ

T )
1 + ln T

≤ 1 + ln(1 +
TJ

T
).

Since the linear function grows faster than the logarithmic one, it is obvious,
that with a sufficiently large TJ , the above inequality does not hold, and then
TJ

T
is bounded. Thus we proved that there exists such a constant C > 0, that

TJ ≤ CT . So, we have

RegretT ≤ M2

μ

(
1 + ln

(
(C + 1)T

))
= O(ln T ) = O(Tε).

Let’s consider an analogue of Algorithm 4 for relatively strongly convex and
relatively Lipschitz-continuous problems with iterative regularization. Similarly

to Sect. 2, we define λ1:t :=
t∑

s=1
λs, λ1:0 = 0.

Theorem 5. Suppose that, for each t, ft is an Mt-relatively Lipschitz-
continuous and μt-relatively strongly convex function with respect to the prox-
function h. Let g(x) be Mg-relatively Lipschitz-continuous and μg-relatively
strongly convex function with respect to h. Let d : Q −→ R be Md-relatively
Lipschitz-continuous and 1-relatively strongly convex function with respect to h.
Suppose also that d(x) ≥ 0, ∀x ∈ Q. If Algorithm 5 works exactly T productive
steps and RegretT ≥ 0, then the following inequalities hold:

RegretT ≤ λ1:T+TJ
A2 +

T+TJ∑

t=1

(M + λtMd)2

μ1:t + λ1:t
− εTJ ,
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Algorithm 5. Constrained Online Optimization: Mirror Descent for Relatively
Strongly Convex and Relatively Lipschitz-Continuous Problems with Regular-
ization (MDCOORL-RS-R).
Require: ε > 0, T, x1 ∈ Q.
1: i := 1, t := 1;
2: repeat
3: Observe ft.
4: if g(xt) ≤ ε then

5: λt = 1
2

(√
(μ1:t + λ1:t−1)2 + 8M2/(A2 + 2M2

d ) − (μ1:t + λ1:t−1)
)
;

6: ηt = 1
μ1:t+λ1:t

;
7: xt+1 := arg min

x∈Q
{ηt〈∇ft(xt)+λt∇d(xt), x〉+V (x, xt)}; “productive step”

8: i := i + 1;
9: t := t + 1;

10: else
11: λt = 1

2

(√
(μ1:t + λ1:t−1)2 + 8M2/(A2 + 2M2

d ) − (μ1:t + λ1:t−1)
)
;

12: ηt = 1
μ1:t+λ1:t

;
13: xt+1 := arg min

x∈Q
{ηt〈∇g(xt) + λt∇d(xt), x〉 + V (x, xt)}; “non-productive

step”
14: t := t + 1;
15: end if
16: until i = T + 1.
17: Guaranteed accuracy:

δ :=
1

T

(
λ1:T+TJ A2 +

T+TJ∑
t=1

(M + λtMd)2

μ1:t + λ1:t
− εTJ

)
. (6)

Ensure: xk, k ∈ I.

and

RegretT ≤ 2 inf
λ∗
1 ,...,λ∗

T+TJ

(
(A2 + 2M2

d )λ∗
1:T+TJ

+
T+TJ∑

t=1

(M + λ∗
t Md)2

μ1:t + λ∗
1:t

)
− εTJ .

where A2 = sup
x∈Q

d(x), M = max{Mt,Mg} and g(xt) ≤ ε, ∀t = 1, . . . , T .

Proof. The proof is given in [14].

We can formulate the following statement for concrete values of μt. Partially,
we can achieve intermediate rates for regret between T and log T .

Corollary 2. Assume that all conditions of Theorem 5 hold and μt = t−α for
all 1 ≤ t ≤ T + TJ .

1. If α = 0, λt = 0 ∀1 ≤ t ≤ T + TJ , and ε = M2 1 + ln T

T
, then the bound on

the regret of Algorithm 5 is O(ln T ).
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2. If α > 1/2, λ1 =
√

T + TJ , λt = 0 for 1 < t ≤ T + TJ , and

ε =
A2 + 2(M2

d + M2)√
T

,

then the bound on the regret of Algorithm 5 is O(
√

T ).
3. If 0 < α ≤ 1/2, λ1 = (T + TJ)α, λt = 0 ∀1 ≤ t ≤ T + TJ and

ε =
(

A2 + 2M2
d +

4M2

α

)
Tα−1,

then the bound on the regret of Algorithm 5 is O(Tα).

Proof. The proof is given in [14].

4 Numerical Experiments

In this section, to demonstrate the performance of the proposed Algorithm
MDCOORL-RS, we conduct some numerical experiments for the considered
problem (1) and make a comparison with an adaptive Algorithm 2, proposed
in [15]. All experiments were implemented in Python 3.4, on a computer fit-
ted with Intel(R) Core(TM) i7-8550U CPU @ 1.80GHz, 1992 Mhz, 4 Core(s), 8
Logical Processor(s). RAM of the computer is 8 GB.

Let us consider the following function

f(x) =
1
T

T∑

i=1

(
|〈ai, x〉 − bi| +

μi

2
‖x‖22

)
, (7)

where ai ∈ R
n, bi ∈ R, μi > 0. Functional constraints are defined as follows

g(x) = max
1≤i≤m

{
〈αi, x〉 − βi +

μ̂i

2
‖x‖22

}
, (8)

where αi ∈ R
n, βi ∈ R, μ̂i > 0.

Function f is the arithmetic mean of the functions fi(x) = |〈ai, x〉 − bi| +
μi

2 ‖x‖22, i = 1, . . . , T . Each of these functions is Mi-Lipschitz-continuous and
μi-strongly convex. Also, function g is Mg-Lipschitz-continuous and μg-strongly
convex. Coefficients ai, αi ∈ R

n and constants bi, βi ∈ R in (7) and (8) are
randomly generated from the uniform distribution over [0, 1). Also, the strong
convexity parameters μi and μ̂i are randomly chosen in the interval (0, 1).

We choose a standard Euclidean proximal setup as a prox-function, starting
point x0 =

(
1√
n
, . . . , 1√

n

)
∈ R

n and Q is the unit ball in R
n.

We run Algorithm MDCOORL-RS and adaptive Algorithm 2 from [15] with
n = 1000 and m = 10 and different values of T with ε = 1/

√
T . The results of the

work of these algorithms are represented in Fig. 1, below. These results demon-
strate the number of non-productive steps, the running time is given in seconds,



Online Optimization Under Relative Lipschitz Conditions 41

the guaranteed accuracy δ of the approximated solution (sequence {xt}t∈I on
productive steps), and the values 1

T

∑T
i=1 fi(xi), where xi is productive, as a

function of T . The dotted curve represents the results of the proposed Algo-
rithm MDCOORL-RS, whereas the dashed curve represents the results of the
adaptive Algorithm 2 in [15].

From the conducted experiments, we can see that the adaptive Algorithm 2
in [15], works faster than Algorithm MDCOORL-RS, with a smaller amount of
non-productive steps. But when increasing the number of functionals fi in (7),
the guaranteed accuracy δ and values of the objective function at productive
steps, produced by Algorithm MDCOORL-RS is better.

Note that from Fig. 1, we can see that increasing of T (the number of func-
tionals fi) leads to an increase of δ (the accuracy of the solution). In other words,
increasing the number of functionals fi in the objective function (7), which in
fact is increasing information about the objective function or actually enlarging
data about the problem, leads to increasing the accuracy of the solution.

Fig. 1. The results of Algorithm MDCOORL-RS (dots) and adaptive Algorithm 2 in
[15] (dashed) for the objective function (7) with constraints (8).

Conclusions

In this paper, we considered relatively strongly convex and relatively Lipschitz-
continuous constrained online optimization problems. We proposed some meth-



42 O. Savchuk et al.

ods with switching over productive and non-productive steps and provided cor-
responding estimates of the quality of the solution. We also presented analogues
of the methods proposed earlier in [5], for solving relatively strongly convex
and relatively Lipschitz-continuous online optimization problems with and with-
out regularization. Furthermore, for the problems with functional constraints,
we have proposed a scheme with switching over productive and non-productive
steps with adaptive regularization. We also proved that if the algorithm runs
exactly T productive steps and has a non-negative regret, then the number of
non-productive steps satisfies TJ ≤ CT , where C is a constant. In particular, for
the proposed methods, we obtained some bounds on the algorithm’s regret in
terms of the number of productive steps made by the algorithm under specific
assumptions about the parameters of relative strong convexity and some other
parameters of the problem.

The key idea of the considered methods is that at each step of the algorithm
for each selected ft, we determine the corresponding parameter of the relative
strong convexity μt. Thus, it is possible to take into account the parameter of
relative strong convexity of each of the functions ft. This is highly significant
because the functions are selected during the method’s working process, and it
would be a mistake to assume that some strong convexity can be set initially. It
is important to note, that if we consider the following functional constraint

g(x) = max
1≤i≤m

{gi(x)},

where each gi is μi-relatively strongly convex function, then in the process of
working of the algorithm at this particular non-productive step t, it makes sense
to consider the first of the constraints gi(x) for which the condition gi(xt) ≤ ε
is violated and the corresponding parameter μi, i.e. μt = μi. We do not initially
know which constraint will be violated in the process of working of the method,
and it is logical to take into account its relative strong convexity parameter
instead of the global relative strong convexity one, which may turn out to be
much larger. We have analyzed the results of the given numerical experiments
and compared the effectiveness of one of the proposed algorithms with Algorithm
2 proposed in [15].
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Abstract. We propose a cutting method with an approximation of the
constraint region for solving a conditional minimization problem. The
developed method is characterized by the fact that when constructing
approximating sets, there is a consistent use of constraint functions. This
approach of considering constraints is implemented in such a way that
only one constraint is used at the initial stage, and the number of involved
constraints is increased as iteration points reach the admissible set. As a
result, the proposed method uses a less amount of computational oper-
ations for constructing approximating sets, which is favorably distin-
guished from the known cutting methods. We discuss various implemen-
tations of the sequential use of constraint functions. The convergence
of the developed cutting method is proved, and an estimation of the
solution accuracy is obtained for the proposed method.
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1 Introduction

Nowadays, when solving optimization problems, it is necessary to take into
account a large number of variables and constraint functions that define an
admissible set. In this regard, there are encounter problems associated with the
numerical implementation of many optimization methods in practice, since when
moving from the current iteration point to the next, the applied minimization
method may “freeze” during the recalculation of intermediate data. To overcome
such computational problems, the development of new optimization algorithms
is currently being carried out either taking into account the specific structures of
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solved problems, or using special methods to reduce the number of restrictions
involved to construct the next approximation.

Many high-dimensional optimization problems have a sparse structure. Due
to this feature, it is possible to ignore a significant part of the components of
the objective function and constraint functions in computational processes. In
particular, a subgradient method is proposed for unconditionally minimizing a
piecewise linear function in the paper [1]. Since the minimized function is given
by sparse vectors, the used subgradients are dominated by zero elements, and
when constructing the next approximation, a small number of components of
the current iteration point are recalculated. Another way is proposed for solving
high-dimensional optimization problems with a specific structure in the article
[2]. In this work, a modification of the Frank-Wolfe conditional gradient method
was developed to minimize quadratic function defined by a doubly sparse matrix.
This matrix is characterized by the predominance of zero elements not only in
rows but also in columns. Because of this feature of the matrix, the gradient of the
minimized function is not computed at each step, but is recalculated based on the
gradient obtained at the previous iteration. Note that in practice, it is necessary
to organize the correct work with the memory of the computer for implementing
methods from [1,2], since the complexity of recalculating (sub)gradients and
approximations depends on the used structure of the data storage.

In certain situations, when the structure of the solved optimization problem
is unknown or the minimized function and the constraint functions are given in
a general form, fundamentally different approaches become in demand for using
the objective function and constraints in constructing approximations. For exam-
ple, various modifications of the mirror descent method are proposed for solving
convex optimization problems with several functional constraints in the article
[3], where the approximations are found as follows. If the current iteration point
is close enough to the admissible set, then the next approximation is calculated
based on the (sub)gradient of the objective function, and this step is considered
productive. Otherwise, any constraint is chosen from the set of ε-unviolated con-
straints in the neighborhood of the current approximation to calculate the next
iteration point, and this step is unproductive. Note that the feature of calculating
subgradients allows to use only one constraint on unproductive steps, therefore
the algorithms from [3] favorably distinguish from some variants of the mirror
descent method (see, for example, [4,5]). However, the operation of determining
a productive step is very laborious, since all the constraint functions are used.

One more approach of taking into account constraints is proposed for con-
ditional minimization problems in the paper [6]. The constraints are aggregated
according to this approach as follows. Active constraints are determined in the
neighborhood of the current iteration point at each step, and one ”surrogate”
constraint is formed as a linear combination of these active constraints. Then, in
a certain way, the next approximation is constructed by minimizing the objec-
tive function on the auxiliary set specified by this ”surrogate” constraint. In this
regard, the process of finding iteration points is simplified, but it is necessary to
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use all the constraints for determining the active ones, and such an operation
will require significant computing resources.

In this paper, we propose a cutting method with approximation of the con-
straint region by polyhedral sets to minimize a convex nondifferentiable function.
The developed method is characterized by the fact that the constraint functions
are introduced sequentially for constructing approximating sets. This approach
of using constraints is because of the following circumstance. The point is that it
is required to determine a certain subset of constraints for constructing the next
approximating set by separating the current approximation from the admissi-
ble set with cutting planes in many cutting methods with approximation of the
feasible region (see, e.g., [7–13]), and this constraint selection is carried out by
enumeration of all constraint functions, i.e. there are some encounter compu-
tational difficulties appeared in practice for taking into account the constraints
as in [3,6]. Therefore, only one constraint is used to implement the cutoff at
the initial step of the proposed cutting method, and the number of involved
constraints increases as iteration points reach the admissible set, and in view of
this fact the amount of computational operations is decreased that occur in the
process of constructing approximating sets.

2 The Problem Settings

Let f(x), gj(x), j ∈ J = {1, . . . , m}, m ≥ 1, be convex functions defined in an
n-dimensional Euclidian space Rn, Gj = {x ∈ Rn : gj(x) ≤ 0},

G′ =
⋂

j∈J

Gj ,

G′′ ⊂ Rn be a convex closed set,

G = G′ ⋂ G′′.

We immediately note that the interior of the set G may be empty. We solve the
problem

min{f(x) : x ∈ G}. (1)

Suppose f∗ = min{f(x) : x ∈ G}, X∗ = {x ∈ G : f(x) = f∗}, x∗ ∈ X∗,
g(x) = max

j∈J
gj(x), ∂f(x), ∂gj(x), j ∈ J , are subdifferentials of the functions f(x),

gj(x), j ∈ J , at the point x ∈ Rn, respectively, K = {0, 1, . . . }, |J̃ | is a cardinality
of the set J̃ , L(y) = {x ∈ Rn : f(x) ≤ f(y)}, I(x, J̃) = {j ∈ J̃ : x /∈ Gj}, where
J̃ ⊂ J .

3 The Minimization Method

The proposed method constructs a sequence of points {xk}, k ∈ K, as follows.
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Step 0. Choose a convex closed set M0 ⊆ Rn such that x∗ ∈ M0. Assign k = 0,

J1
0 = {1}, J2

0 = J \ {1}.

Step 1. Find a point
xk ∈ Mk

⋂
G′′ ⋂ L(x∗). (2)

Step 2. Form the subsets J ′
k, J ′′

k ⊂ J as follows. Assign

J ′
k = I(xk, J

1
k ).

If I(xk, J
2
k ) = ∅, then assign J ′′

k = ∅. Otherwise, choose J ′′
k as any

non-empty subset of the set I(xk, J
2
k ).

Step 3. Assign Jk = J ′
k

⋃
J ′′
k . If

Jk = ∅, (3)

then the iterative process is stopped, and xk is a solution of the problem
(1).

Step 4. Choose finite sets Aj
k ⊂ ∂gj(xk) for all j ∈ Jk.

Step 5. Assign
Mk+1 = Mk

⋂
Tk (4)

where

Tk =
⋂

j∈Jk

{x ∈ Rn : gj(xk) + 〈a, x − xk〉 ≤ 0 ∀a ∈ Aj
k}. (5)

Step 6. Assign
J1
k+1 = J1

k ∪ J ′′
k , (6)

J2
k+1 = J2

k \ J ′′
k , (7)

k := k + 1, and go Step 3.

Let us make some remarks concerning the proposed method.
Cutting-plane methods with approximation of the constraint region (see,

e.g., [7–12]) usually form some subset of constraint indices to construct the next
approximating set at each step. The process of forming such a subset of indices
can be very laborious, since these methods involve all the constraint functions
that define the admissible set. Therefore, there is a requirement to consistently
take into account the constraints involved in the construction of approximating
sets, and this approach of using constraints is implemented in the proposed
method as follows.

The transition from the current approximating set Mk to Mk+1 occurs by
separating the point xk from the set G′ by cutting planes according to (4), (5).
The set J is divided into two parts in order not to use all the constraints that
determine G′. The first part J1

k includes the numbers of constraints allowed to
participate in the construction of cutting planes at the k-th iteration, and the
second part J2

k contains unused numbers of constraints, and in a certain way,
as will be discussed below, some subset of indices will be moved from J2

k to the
first part J1

k+1 in order to sequentially take into account all the functions gj(x),
j ∈ J .
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Definition 1. Denote by π(I(xk, J̃)) the procedure which is implemented as a
process of finding all numbers i ∈ J̃ ⊆ J such that xk /∈ Gi.

The sets J ′
k, J ′′

k are results of executing the procedure π(I(xk, J
1
k )),

π(I(xk, J
2
k )), respectively, for each k ∈ K in the proposed method. The sets

of indices J ′
k, J ′′

k determine the list of active constraints that are involved in sep-
arating the point xk from the set G′ to construct the approximating set Mk+1.
Note that J ′

k stores the numbers of involved constraints, and J ′′
k stores the num-

bers of constraints from the part of J2
k that are unused at previous iterations, and

in the case of I(xk, J
2
k ) �= ∅ the set J ′′

k can include any indices from J2
k depending

on the complexity of the implementation of the procedure π(I(xk, J
2
k )) according

to Step 3 of the proposed method.

Remark 1. Suppose that I(xk, J
2
k ) �= ∅ is fulfilled for some k ∈ K. It is clear

that the execution of the procedure π(I(xk, J
2
k )) can be laborious under the

large value of |J2
k |. In this connection, at Step 3 the J ′′

k can include not all the
numbers of constraints obtained as a result of executing π(I(xk, J

2
k )), but only a

part of these numbers. In particular, it is possible to find any constraint with the
number jk that satisfies the condition xk /∈ Gjk , and the procedure π(I(xk, J

2
k ))

can be stopped after obtaining this number jk. In addition, J ′′
k can contain a

small group of constraint numbers, for which the values of constraint functions
and subgradients can be easily calculated at the point xk. Due to this feature
of forming the set J ′′

k , the consistent consideration of the constraint functions is
realized for constructing the approximating sets, and as a result the computer
resources are used to a lesser extent.

It is admissable to place all elements obtained by running π(I(xk, J
2
k )) into

J ′′
k . Therefore, all functions gj(x), j ∈ J are used to form the set of indices of

active constraints Jk. In this case, the complexity implementation of separating
the point xk from G′ increases, so it is recommended to use this method of
forming the set J ′′

k for a small value of m. Note that if the set Jk is formed in the
method by using all constraints at each step k ∈ K, then the developed method
is conceptually close to [10].

Lemma 1. For any k ∈ K the equality

J1
k ∪ J2

k = J (8)

is fulfilled.

Proof. According to construction we have

J1
k , J ′

k, J
2
k , J ′′

k ⊂ J ∀k ∈ K. (9)

Suppose k = 0. Then, according to the property of the set subtraction opera-
tion (see, e.g., [14, c. 20]) and taking into account Step 3 of the proposed method,
it follows that

J1
0 ∪ J2

0 = {1} ∪ (J \ {1}) = {1} ∪ J = J.
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Now suppose that the assertion of the lemma holds for some k = l ≥ 0. Let
us prove the assertion of the lemma for k = l + 1. According to the induction
hypothesis we have J1

l ∪J2
l = J. Hence and from (6), (7), (9), taking into account

the property of the set difference operation, we have

J1
l+1 ∪ J2

l+1 = J1
l ∪ (J ′′

l ∪ (J2
l \ J ′′

l )) = J1
l ∪ J ′′

l ∪ J2
l = J.

The lemma is proved.

4 The Convergence Proof

Theorem 1. Suppose the point xk is constructed for some k ∈ K by the pro-
posed method, and the equality (3) is fulfilled. Then xk is a solution of the problem
(1).

Proof. According to the condition of the theorem we have

Jk = J ′
k ∪ J ′′

k = ∅.

The equality Jk = ∅ is true if and only if J ′
k = ∅ and J ′′

k = ∅. In view of J ′
k = ∅

we have
xk ∈ Gj ∀j ∈ J1

k ,

and from the construction of the set J ′′
k it follows that I(xk, J

2
k ) = ∅, i.e.

xk ∈ Gj ∀j ∈ J2
k .

Consequently, taking into account Lemma 1, we have

xk ∈ Gj ∀j ∈ J.

Therefore, xk ∈ G′. In addition, according to Step 3 of the method, the inclusion
xk ∈ G′′ and the inequality f(xk) ≤ f∗ are fulfilled. Thus,

xk ∈ G, f(xk) ≤ f∗,

i.e. f(xk) = f∗. The theorem is proved.

Lemma 2. For all k ∈ K the inclusion

x∗ ∈ Mk. (10)

holds true.

Proof. For k = 0, the inclusion (10) is satisfied by the condition of choosing the
set M0 in Step 3 of the method. Let us assume that (10) is fulfilled for some
k = p ≥ 0. Let us obtain the validity of the inclusion (10) for k = p + 1. Then
the lemma will be proved.
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In view of the inductive assumption we have x∗ ∈ Mp. Then in view of (4)
to prove the inclusion x∗ ∈ Mp+1 it is required to show that

x∗ ∈ Tp. (11)

Note that Jp �= ∅, otherwise the iterative process is stopped and we have
xp = x∗. For all a ∈ Aj

p, j ∈ Jp, due to the convexity of the functions gj(x) the
inequalities

gj(x∗) − gj(xp) ≥ 〈a, x∗ − xp〉
hold. But gj(x∗) ≤ 0 for all j ∈ J . Consequently, gj(xp) + 〈a, x∗ − xp〉 ≤ 0 for
all a ∈ Aj

p, j ∈ Jp, i.e. the inclusion x∗ ∈ Tp is fulfilled. The lemma is proved.

Lemma 3. Suppose the sequence {xk}, k ∈ K, is constructed by the proposed
method. Then for any numbers k′, k′′ ∈ K such that

k′′ > k′

we have the inclusion
xk′′ ∈ Tk′ . (12)

Proof. In view of Step 3 we have xk ∈ Mk, ∀k ∈ K. Therefore, xk′′ ∈ Mk′′ . In
addition, according to (4) we get

Mk′′ ⊂ Mk′′−1 ⊂ · · · ⊂ Mk′+1 = Mk′
⋂

Tk′ .

Hence it follows that the inclusion (12) holds true. The lemma is proved.

We will further assume that the sequence {xk}, k ∈ K, is bounded. Note
that the boundedness of the sequence {xk}, k ∈ K, can be achieved by choosing
M0 as a bounded set.

Remark 2. Since the number of constraints gj(x), j ∈ J is finite, and according
to Step 3 of the proposed method, at least one constraint is transferred from the
index set J2

k to J1
k+1 at each iteration k ∈ K under I(xk, J

2
k ) �= ∅, then we get

J1
k = J, J2

k = ∅
for iterations k ≥ m, consequently, the procedure π(I(xk, J

1
k )) involves all the

functions gj(x), j ∈ J to form the numbers of constraints needed to separate the
point xk from the set Mk.

Lemma 4. Suppose the sequence {xk}, k ∈ K, is constructed by the proposed
method. Then any limit point of the sequence {xk}, k ∈ K, belongs to the set G.

Proof. By construction, for each point xk the inclusion xk ∈ G′′ is satisfied.
Therefore, to prove the assertion, it suffices to show that any limit point will
belong to the set G′.

Assume that the assertion of the lemma is false. Then there exists a conver-
gent subsequence {xk}, k ∈ K1 ⊂ K of the sequence {xk}, k ∈ K such that
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its limit point x̄ satisfies the inequality g(x̄) > 0. Assign g(x̄) = γ. Since the
function g(x) is continuous, there is a neighborhood ω of the point x̄ such that

g(x) ≥ γ

2

for all x ∈ ω. Fix a number k̂ ≥ m, k̂ ∈ K1 such that for all k ∈ K1, k ≥ k̂ the
inclusion xk ∈ ω is fulfilled. Then we have

g(xk) = max
j∈J

gj(xk) ≥ γ

2
∀k ∈ K1, k ≥ k̂. (13)

In view of (13) and the finiteness of the set J , there exists r ∈ J such that for
an infinite number of numbers k ∈ K1, k ≥ k̂, the inequality

gr(xk) ≥ γ

2
(14)

is fulfilled.
Assign

K2 = {k ∈ K1 : k ≥ k̂, gr(xk) ≥ γ

2
}.

Choose numbers k′, k′′ ∈ K2 such that k′′ > k′. Then according to Lemma 3
the inclusion (12) is defined. Hence it follows that the inequality

gr(xk′) + 〈a, xk′′ − xk′〉 ≤ 0 (15)

is fulfilled for all a ∈ Ar
k′ . Since gr(xk′) > 0 and r ∈ Jk′ , then from inequalities

(14), (15) under k = k′ it follows that

〈a, xk′′ − xk′〉 ≤ −γ

2
(16)

for all a ∈ Ar
k′ .

Further, since the sequence {xk}, k ∈ K is bounded, there exists (see, e.g.,
[15, p. 121]) number θ > 0 such that for all a ∈ ∂gr(xk), k ∈ K2, we have the
inequality

||a|| ≤ θ. (17)

Then from (16), (17) it follows that

θ‖xk′′ − xk′‖ ≥ γ

2
. (18)

Now choose for each k ∈ K2 an index pk ∈ K2 such that pk ≥ k + 1. According
to (18)

θ‖xpk
− xk‖ ≥ γ/2.

The last inequality is contradictory because xk → x̄ and xpk
→ x̄ under k → ∞,

k ∈ K2. The lemma is proved.

Theorem 2. Suppose the sequence {xk}, k ∈ K is constructed by the proposed
method. Then any limit point of this sequence belongs to the set X∗.
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Proof. Let {xk}, k ∈ K1 ⊂ K be any convergent subsequence of the sequence
{xk}, k ∈ K, and x̄ be its limit point. Then according to Lemma 4 the inclusion
x̄ ∈ G holds true, therefore,

f(x̄) ≥ f∗.

On the other side, for each k ∈ K we have (2), i.e.

f(xk) ≤ f∗, k ∈ K1.

Passing in this inequality to the limit in k ∈ K1, we obtain f(x̄) ≤ f∗. Thus,
f(x̄) = f∗, and the assertion of the theorem is proved.

Theorem 3. Let gj̄(x), j̄ ∈ J , be a strongly convex function with strong con-
vexity constant μj̄ > 0, x̄ ∈ G, and for some k ∈ K the inclusion j̄ ∈ Jk holds,
the points xk, yk = x̄ + ᾱ(xk − x̄) are constructed, where ᾱ ∈ (0, 1) is a fixed
number. If the inequality

gj̄(xk) − gj̄(yk) ≤ ξ, (19)

is fulfilled for some ξ > 0, then we get the estimation

f∗ − f(xk) ≤ ‖s̄‖
√

2ξ

μj̄ᾱ(1 − ᾱ)
, (20)

where s̄ ∈ ∂f(x̄).

Proof. Since x̄ ∈ G, then
gj̄(x̄) ≤ 0, (21)

f∗ − f(xk) ≤ f(x̄) − f(xk) ≤ ‖s̄‖‖x̄ − xk‖. (22)

In addition, in view of j̄ ∈ Jk we have xk /∈ G′, consequently,

gj̄(xk) > 0. (23)

Further, by the definition of a strongly convex function, we have

μj̄

2
ᾱ(1 − ᾱ)‖xk − x̄‖2 ≤ ᾱgj̄(xk) + (1 − ᾱ)gj̄(x̄) − gj̄(yk).

Hence and from (19), (21), (23) taking into account ᾱ ∈ (0, 1) we get

‖xk − x̄‖ ≤
√

2ξ

μj̄ᾱ(1 − ᾱ)
.

Finally, the validity of the estimation (20) follows from the last inequality and
the relation (22). The theorem is proved.
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Abstract. We propose one variant of the successive concessions method
for solving a multi-objective optimization problem, which differs from the
mentioned famous method by the approach of determining concessions.
The concessions are set in the proposed method in such a way that the
solutions found for the problems of the current and previous stages differ
from each other not by the value of the objective functions, but by some
distance no more than a given value. We describe the implementation
of the method in cases when the problem of each stage is a convex pro-
gramming problem. This implementation uses the algorithm proposed
and proved in this paper, which belongs to the class of cutting methods
with approximating the feasible set by polyhedral sets.
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1 Introduction

There are a significant number of schemes and methods based on various princi-
ples (for example, [1–6]) for solving multi-objective optimization problems. These
principles are essentially based, in particular, on whether all the particular cri-
teria of the problem are equivalent to each other or whether there is a ranking
criterion according to their significance.

The problem to be solved in this note belongs to the second of these types.
One method for solving multi-criteria problems, in which particular optimization
criteria differ in importance, is the so-called concessions method (for example,
[4,6]). Formally, we will describe this method later, and the idea behind it is as
follows.
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At the first stage, we find the optimal value of the objective function, related
to the main particular criterion, under the given constraints of the original prob-
lem. At each next stage, under the same basic restrictions, the optimal value of
the objective function of the next most important criterion is found with the
additional condition that it differs from the optimal values already found at the
previous stages by no more than given positive values. The problem solution of
the last stage, related to the least significant criterion, is taken as the solution
to the original multi-criteria problem.

Note that the solution of the last stage may differ significantly in distance
from the problems solutions of the previous stages and, in particular, from the
problem solution of the first, i.e. main stage. This circumstance does not allow
the method to be applied when a solution to a multi-criteria problem is con-
sidered as a point of the admissible set, which in a certain sense is close to the
sets of solutions to particular problems. In this regard, we propose to change
the approach of specifying concessions in the method so that it is possible to
guarantee the given deviations between the solutions of adjacent stages precisely
by the distance, and not by the values of the objective functions in them.

After setting the problem, we will represent a general scheme of the method
with the modified approach of specifying concessions, and then we will propose
an implementation of the scheme for the case when the problem of each stage is
a convex programming problem. The implementation is based on the developed
here method for solving the convex programming problem, which belongs to the
class of cutting methods. This method approximates the constraint region by
polyhedral sets to construct points, and it is characterized by the fact that the
constructed main iteration points belong to the admissible set.

2 Problem Setting

We solve the multi-objective optimization problem with m particular criteria,
m ≥ 2. Let these criteria be given by continuous functions

f1(x), . . . , fm(x)

defined in n-dimensional Euclidian space Rn, and the feasible set D ⊂ Rn is
bounded and closed.

We immediately agree that the criteria are unequal with each other. Namely,
the first criterion defined by the function f1(x) is main. The other criteria deter-
mined by the functions f2(x), . . . , fm(x), respectively, are numbered in descend-
ing order of their importance, if they are not equivalent to each other.

Without loss of generality, suppose for each j = 1, . . . , m the particular
problem of the related j-th optimization criterion is defined by the following
form:

min{fj(x) : x ∈ D}. (1)

Set
f∗
j = min{fj(x) : x ∈ D}, X∗

j = {x ∈ D : fj(x) = f∗
j }
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for each j = 1, . . . , m.
Lets consider the point x∗ ∈ D as some solution of the initial problem such

that the distance from this point to the solution set X∗
1 of the main problem

among (1) does not exceed the pre-fixed number ε. The formalized rule of choos-
ing the point x∗ and approaches of considering another criteria used to find this
point will be proposed later while describing the variant of the mentioned famous
method. We immediately note that another point is taken as a solution in the
famous method.

3 The Variant of the Successive Concessions Method

Firstly, we describe and analyze the classic successive concessions method. This
method consists of m stages. Denote by k the stage numbers from 1, . . . , m. The
method is as follows. Choose the numbers εj > 0, j = 1, . . . , m − 1.

At the first stage (i.e. under k = 1) the point x1 ∈ D is found as a solution
of the problem

min{f1(x) : x ∈ D},

and set
f̃1 = f1(x1).

Then the solution xk ∈ D is found for each k = 2, . . . , m successively by solving
the problem

min{fk(x) : x ∈ D, fj(x) ≤ f̃j + εj , j = 1, . . . , k − 1},

and set
f̃k = fk(xk).

The point xm is considered as a solution x̃ of the initial multi-objective problem
which is obtained at the last stage.

Note the method does not garante that the number f̃k, 1 ≤ k ≤ m − 1, will
be nearer to the optimal value f∗

k of problem (1) than the value f̃k+1 of the less
important criterion to its optimal value f∗

k+1.
Further, for all j = 1, . . . , m − 1 the value fj(xm) differs from f̃j no more

than the value of εj . In particular, we have

f1(x̃) − f̃1 ≤ ε1

for the main criterion of the problem, i.e. taking into account the equality f̃1 =
f∗
1 , the difference between f1(x̃) and f∗

1 is insignificant under the small value of
ε1. However, it is easy to give an example, when the distance from the point x̃
to the solution set X∗

1 of the problem min{f1(x) : x ∈ D} of the main stage is
significant under the small value ε1. Such a significant difference may turn out
to be unacceptable due to the above definition of the solution to the original
optimization problem.

Thus, the method cannot guarantee a predetermined deviation of the point
x̃ from the set X∗

1 , since the specified distance between the solutions xk, xk+1,
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1 ≤ k ≤ m−1, is not provided. Therefore, the variant of the method is described
below, in which the fixed deviation between the points xk, xk+1 is guaranteed
instead of taking into account the deviation of the values of the functions, and
not the values of the functions at these points.

Firstly, we describe the principal schema of such a variant. This schema
consists of the m stages, and denote by k the numbers of these stages.

Choose the numbers εk > 0, k = 1, . . . , m − 1. Set

D1 = D

for k = 1, i.e. at the first stage, and find the point xk ∈ D1 as a solution to the
problem

min{f1(x) : x ∈ D1}.

Then construct the set
Dk = Dk−1 ∩ Uk−1

for k = 2, . . . , m successively, where

Uk−1 = {x ∈ Rn : ‖x − xk−1‖ ≤ εk−1},

and obtain the point xk ∈ Dk as a solution to the problem

min{fk(x) : x ∈ Dk}. (2)

The point x∗ = xm is considered to be a solution to the initial multi-objective
problem.

Note that the inequalities

‖xk − xj‖ ≤ εj ∀j = 1, . . . , k − 1

hold for each k = 2, . . . , m. Thus, taking into account xm = x∗ we have

‖x∗ − xk‖ ≤ εk ∀k = 1, . . . , m − 1,

and, in particular, the solutions of the main stage and the initial problem satisfy

‖x∗ − x1‖ ≤ ε1.

The sets Uk, k = 1, . . . , m − 1, are constructed in Rn as balls with centers
at the points xk in the proposed variant. It is clear that the sets Uk can be
constructed by another ways. Suppose that all particular criteria of the initial
problem are defined by linear and convex quadratic functions, and D is a convex
polyhedral set. Then, it is convenient to choose the sets Uk as convex polyhedra,
for example, n-dimensional cubes with centers at the points xk = (ξk1 , . . . , ξkn),
i.e.

Uk = {x = (ξ1, . . . , ξn) ∈ Rn : ξki − εk ≤ ξi ≤ ξki + εk, i = 1, . . . , n}.

In this case, the problems of finding the points xk will be linear or, respectively,
quadratic programming problems at each stage.
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In this partial case, there is no problems to implement the described schema
in practice. But in the general case, it is almost impossible to find the points xk

as an exact solution of problem (2). Lets describe below and prove the algorithm
which implements the general schema proposed above with taking into account
approximate solution of problem (2).

4 Implementing the Method and Its Discussion

Further, it is assumed that the functions fj(x), j = 1, . . . , m, are convex in Rn.
The set D ⊂ Rn is convex, bounded, closed, and has a nonempty interior intD.

If, in addition, the functions fj(x) are, for example, linear, then from the
practical viewpoint it is convenient for approximately solving each problem of
(2) to apply so-called cutting methods which approximate the set D by some
polyhedral sets for constructing iteration points (e.g., [7–15,17]). Their conve-
nience lies in the fact that each iteration point is found by solving the linear
programming problem. However, the sequence of iteration points is constructed
in these methods not belonging to the region of constraints. Therefore, the solu-
tion xk of problem (2) is chosen as some approximation not belonging to the set
Dk after applying the scheme of such a method at the k-th stage. Then the set

Dk+1 = Dk ∩ Uk

can be empty for some small εk > 0, and the problem of the (k + 1)-th stage
will not have a solution.

In connection with this remark, we propose the cutting method which is used
to implement the described scheme of the successive concessions method, where
all iteration points are constructed belonging to the admissible set.

Construct a convex bounded closed set M ⊂ Rn such that D ⊂ M . Define
numbers

εk > 0, k = 1, . . . , m − 1, δk > 0, k = 1, . . . , m, q > 1.

Put D1 = D. Choose a number v1 ∈ int D1. Assign k = 1.

Step 1. Put i = 0, M0
k = M , w−1

k = vk.
Step 2. Find a point

yi
k ∈ M i

k ∩ Ek, (3)

where Ek = {x ∈ Rn : fk(x) ≤ f ′
k}, f ′

k = min{fk(x) : x ∈ Dk}. If
yi
k ∈ Dk, then put x̃k = yi

k, and go to Step 7.
Step 3. Compute

zik = λi
kvk + (1 − λi

k)y
i
k, ui

k = yi
k + qik(z

i
k − yi

k),

where λi
k ∈ (0, 1) and qik ∈ [1, q] are chosen in accordance with

zik /∈ intDk, ui
k ∈ intDk.
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Step 4. The point wi
k is fixed as a record point from ui

k and wi−1
k for the function

fk(x), i.e.
fk(wi

k) = min{fk(ui
k), fk(w

i−1
k )}. (4)

Step 5. If
fk(wi

k) − fk(yi
k) ≤ δk, (5)

then put x̃k = wi
k, and go to Step 7. Otherwise, perform Step 6.

Step 6. Choose a finite set Ai
k of generalized-support vectors to the set Dk at

the point zik, and assign

M i+1
k = M i

k ∩ {x ∈ Rn : 〈a, x − zik〉 ≤ 0 ∀a ∈ Ai
k}. (6)

Increase the value of i by one, and go to Step 2.
Step 7. If k = m, then put

x∗ = x̃k,

and the solution process of the initial multi-objective problem is finished.
Otherwise, put

Dk+1 = Dk ∩ {x ∈ Rn : ‖x − x̃k‖ ≤ εk}, (7)

choose a point vk+1 ∈ intDk+1, increase the value of k by one, and go
to Step 1.

We make some remarks concerning the proposed cutting method assuming
the fact that the number k is fixed, 1 ≤ k ≤ m.

Remark 1. It is easy to prove the inclusion Dk ⊂ M i
k for all i ≥ 0 based on

determine condition of the set M and construction approach (6) of the sets M i
k,

i ≥ 1. Therefore,
M i

k ∩ Ek �= ∅,

and it is admissible to choose the points yi
k according to (3). In particular, the

point yi
k can be found in accordance with the condition

fk(yi
k) = min{fk(x) : x ∈ M i

k}. (8)

If fk(x) is linear or convex quadratic, and M is a polyhedron, then (8) is a linear
or quadratic programming problem, respectively, for all i ≥ 0.

Remark 2. In view of (3) the inclusion yi
k ∈ Ek is fulfilled, i ≥ 0. Therefore, if

yi
k ∈ Dk for some i, then yi

k is a problem solution of the k-th stage, and there
is a transition from Step 2 to Step 7 in order to solve the problem of the next
stage.

Remark 3. If we put q1k = 1 at Step 3 of the method, then zik will be an intersec-
tion point of the segment [vk, yi

k] with the boundary of the set Dk. The condition
qik > 1 allows to find such an intersection point approximately.
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Remark 4. Since x̃k ∈ Dk and intD �= ∅, then from (7) it follows that intDk+1 �=
∅ under any εk > 0, and it is admissible to choose the point vk+1 at Step 7 of the
method. Moreover, ui

k ∈ intDk, i ≥ 0. Thus, wi
k ∈ intDk, i ≥ 0, and x̃k ∈ int Dk

according to Step 5. Then in view of (7) x̃k will be an interior point of the set
Dk+1, and it is possible to put

vk+1 = x̃k

at Step 7 of the method.

Remark 5. Since fk(yi
k) ≤ f ′

k taking into account (3), and the inclusion wi
k ∈ Dk

is fulfilled according to Step 4 of the method, then the estimation

fk(yi
k) ≤ f ′

k ≤ fk(wi
k), (9)

i ≥ 0, holds true for the value f ′
k. While fulfilling inequality (5) under some i,

it indicates that wi
k is a δk-solution of problem (2), and it is possible to move

for solving the problem of k + 1-th stage through Step 7. If (5) is fulfilled under
k = m, then the δm-solution of the last stage is obtained, and the obtained point
x̃m is accepted as a solution x∗ of the initial problem. Note that we will prove
an existence of the number i ≥ 0 below such that inequality (5) will be fulfilled
under any fixed δk > 0.

Remark 6. When solving problem (2) of the k-th stage, we have the relaxed opti-
mization process in view of choosing the point wi

k, i = 0, 1, . . . , from condition
(4). The proposed algorithm differs from the mentioned above famous cutting
methods by this feature. Also note that we can skip the definition of the point
w−1

k at Step 1 of the method, and it is admissible immediately to assign

w0
k = u0

k

under i = 0 for each k = 1, . . . , m at Step 4 considering w−1
k = u0

k in (4).

5 The Convergence Proof

Further, lets prove the fact that for each k = 1, 2, . . . ,m there is a number i = ik
such that inequality (5) holds, and in this way we will obtain the approximation
solution x̃k = wik

k of problem (2). In fact, we will prove below the convergence
of the method described at Steps 1–4, 5 for solving problem (2).

Suppose I = {0, 1, . . . }. Assume that Steps 2–4, 6 are executed successively
infinite many times independence of condition (5) under the fixed k (1 ≤ k ≤ m).
In this way the sequences {yi

k}, {zik}, {ui
k}, {wi

k}, i ∈ I, will be constructed.
Note that these sequences are bounded in view of the boundedness of the sets
D, M . Let’s represent the following auxiliary assertions concerning them.

Lemma 1. Let {yi
k}, i ∈ I ′ ⊂ I, be a convergence subsequence of the sequence

{yi
k}, i ∈ I. Then

lim
i∈I′

‖zik − yi
k‖ = 0.
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Proof. Fix numbers l, pl ∈ I ′ such that l < pl. In view of (3), (6) we have the
inclusions

ypl

k ∈ Mpl

k ⊂ M l
k.

Since any vector of the set Al
k is generalized-support at the point zlk not only to

the set Dk but taking into account (6) also to the set Mpl

k , then

〈a, ypl

k − zlk〉 ≤ 0 ∀a ∈ Al
k.

But from Step 3 of the method it follows that

zik = yi
k + λi

k(vk − yi
k), i ∈ I, (10)

thus,
〈a, yl

k − ypl

k 〉 ≥ λl
k〈a, yl

k − vk〉 ∀a ∈ Al
k.

Further, according to Lemma 1 [16] there is a number Δ > 0 such that the
inequality 〈a, yi

k − vk〉 ≥ Δ holds for all i ∈ I ′, i ∈ Ai
k. Consequently,

〈a, yl
k − ypl

k 〉 ≥ Δλl
k ∀a ∈ Al

k.

Hence, we get
‖ypl

k − yl
k‖ ≥ Δλl

k.

From the last inequality obtained for any l, pl ∈ I ′ such that l < pl and the
convergence of the sequence {yi

k}, i ∈ I ′, it follows that the limit ratio λi
k → 0

holds under i → ∞, i ∈ I ′. Then in accordance with equality (10) and the
boundedness of the sequence {‖vk − yi

k‖}, i ∈ I ′, we prove the assertion of the
lemma.

Lemma 2. The equality
lim
i→∞

fk(wi
k) = f ′

k

holds for the sequence {wi
k}, i ∈ I.

Proof. Suppose the subset I ′ ⊂ I is constructed in accordance with fact that
{wi

k}, {yi
k}, i ∈ I ′, are convergence subsequences. Denote by w̄k, ȳk their limit

points, respectively. Since wi
k ∈ Dk, i ∈ I ′, but the set Dk is bounded, then

w̄k ∈ Dk, and, consequently,
fk(w̄k) ≥ f ′

k. (11)

Since fk(wi
k) ≤ fk(ui

k) according to (4), then taking into account Lemma 1 and
the boundedness of the sequence {qik}, i ∈ I ′, we have the inequality

fk(w̄k) ≤ fk(ȳk).

But from fk(yi
k) ≤ f ′

k, i ∈ I ′, it follows that fk(ȳk) ≤ f ′
k, and, therefore,

fk(w̄k) ≤ f ′
k.
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Hence and from (11) we obtain

fk(w̄k) = f ′
k. (12)

Further, in view of (4) the sequence {fk(wi
k)}, i ∈ I, is decreases monotoni-

cally, and it convergences because of its boundedness. Then taking into account
continuity of the function fk(x) and equality (12) we get

lim
i→∞

fk(wi
k) = lim

i∈I′
fk(wi

k) = fk(w̄k) = f ′
k.

The lemma is proved.

Lemma 3. The equality
fk(ȳk) = f ′

k (13)

holds for any limit point ȳk of the sequence {yi
k}, i ∈ I, and if (8) is fulfilled for

all i ∈ I, then the whole sequence {fk(yi
k)}, i ∈ I, convergences to f ′

k.

Proof. Let ȳk be a limit point of the convergence subsequence {yi
k}, i ∈ I ′ ⊂ I.

Since
ui
k = yi

k + qik(z
i
k − yi

k), i ∈ I ′,

then from Lemma 1 and the boundness of the sequence {qik}, i ∈ I ′ it follows
that

‖ui
k − yi

k‖ → 0, i → ∞, i ∈ I ′. (14)

Note that any limit point of the sequence {ui
k}, i ∈ I ′, belongs to Dk according

to the closedness of the set Dk and the inclusions ui
k ∈ Dk, i ∈ I ′. Then in view

of (14) ȳk ∈ Dk, and, thus,
fk(ȳk) ≥ f ′

k.

On the other hand, fk(ȳk) ≤ f ′
k, because fk(yi

k) ≤ f ′
k, i ∈ I ′, according to (3).

Consequently, equality (13) holds true.
Further, suppose the sequence {yi

k}, i ∈ I, is constructed in accordance with
condition (8). In view of (6) we have M i+1

k ⊂ M i
k, i ∈ I, and, thus,

fk(yi+1
k ) ≥ fk(yi

k), i ∈ I.

Hence, taking into account the boundness of {yi
k}, i ∈ I, the sequence {fk(yi

k)},
i ∈ I, converges. Then according to the first proved assertion of the lemma
{fk(yi

k)}, i ∈ I, is a minimized sequence. The second assertion of the lemma is
also proved.

Theorem 1. There is a number i = ik ∈ I for each k = 1, . . . , m such that the
point

x̃k = wik
k (15)

is fixed as a δk-solution of problem (2) of the k-th stage at Step 5 of the method.

Proof. Fix the number k. From inequalities (9) and Lemmas 2, 3 it follows that
there is some i = ik such that inequality (5) is fulfilled for the points yi

k, wi
k,

consequently, we get equality (15). The theorem is proved.
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Suppose, besides the mentioned above conditions, the functions fk(x), k =
1, . . . , m − 1, also satisfy the Lipschitz condition with the constants Lk, respec-
tively, in the set D. Since

x̃k ∈ Dk, k = 1, . . . , m,

and the sets Dk are constructed according to (7), then the inequalities

‖x̃k − x̃j‖ ≤ εj j = 1, . . . , k − 1

hold under each k = 2, . . . , m for the points x̃1, . . . , x̃m. Then taking into account
x̃m = x∗ we have

‖x∗ − x̃k‖ ≤ εk

for k = 1, . . . , m − 1. Hence we obtain the estimations

|fk(x∗) − fk(x̃k)| ≤ Lkεk, k = 1, . . . , m − 1.

Thus, if the constants Lk are known, then it is possible by choosing the numbers
εk to ensure the deviation of the values of fk(x̃k) and fk(x∗) from each other
not exceeding the value of Δk = Lkεk as in the classical method of successive
concessions.

References

1. Ehrgott, M.: Multicriteria Optimization, 2nd edn. Springer, Heidelberg (2005).
https://doi.org/10.1007/3-540-27659-9

2. Ralph, L., Keeny, Y.: Decisions with Multiple Objectives: Preferences and Value
Tradeoffs. Radio and communications, Moscow (1981). [in Russian]

3. Lotov, A.V., Pospelova, I.I.: Lecture notes on the theory and methods of the multi-
objective optimization. Moscow (2005). [in Russian]

4. Podinovsky, V.V., Gavrilov, V.M.: Optimization by Consistently Applied Criteria.
Sov. radio, Moscow (1975). [in Russian]

5. Podinovsky, V.V.: Ideas and Methods of Criteria Importance Theory in Multicri-
teria Decision-Making Problems. Nauka, Moscow (2019). [in Russian]

6. Sobol, I.M.: Selection of Optimal Parameters in Problems with Many Criteria.
Drofa, Moscow (2006). [in Russian]

7. Bulatov, V.P.: Embedding Methods in Optimization Problems. Nauka, Novosibirsk
(1977). [in Russian]

8. Bulatov, V.P.; Belykh, T.I.; Yas’kova, Eh.N.: Efficient methods for solving con-
vex programming problems that apply the embedding of the admissible set into
simplices. Diskretn. Anal. Issled. Oper. 15 (3), 3–10 (2008). [in Russian]

9. Demyanov, V.F., Vasiliev, L.V.: Nondifferentiable Optimization. Nauka, Moscow
(1981). [in Russian]

10. Levitin, E.S., Polyak, B.T.: Constrained minimization methods. USSR Comput.
Math. Math. Phys. 6(5), 1–50 (1966)

11. Polyak, B.T.: Introduction to Optimization. Nauka, Moscow (1983). [in Russian]
12. Nesterov, Yu.: Introductory Lectures on Convex Optimization. Kluwer Academic

Publishers, Boston (2004)

https://doi.org/10.1007/3-540-27659-9


64 I. Zabotin et al.

13. Topkis, D.M.: A note on cutting-plane methods without nested constraint sets.
Oper. Res. 18, 1216–1220 (1970)

14. Zabotin, I. Ya., Yarullin, R. S.: One approach to constructing cutting algorithms
with dropping of cutting planes. Russian Math. (Iz. VUZ). 57(3), 60–64 (2013)

15. Zabotin, I.Ya., Yarullin, R.S.: Cutting Methods Without Nested Approximating
Sets for Mathematical Programming Problems. Kazan University Publisher, Kazan
(2019). [in Russian]

16. Zabotin, I.Ya.: On the several algorithms of immersion-severances for the problem
of mathematical programming. Bull. Irkutsk State Univ. Ser. “Mathematics” 4(2),
91–101 (2011). [in Russian]

17. Zabotin, I.Ya., Shulgina, O.N., Yarullin, R.S.: A cutting method with approxima-
tion of a constraint region and an epigraph for solving conditional minimization
problems. LJM 39(6), 847–854 (2018)



Stochastic Optimization



UCB Strategy for Gaussian and Bernoulli
Multi-armed Bandits

M. A. Ershov and A. S. Voroshilov(B)

Yaroslav-the-Wise Novgorod State University,
Veliky Novgorod 173003, Russian Federation

{s244525,s244528}@std.novsu.ru

Abstract. We have considered a modification of the UCB strategy for
a multi-armed bandit having a Gaussian or Bernoulli distribution of one-
step incomes. This strategy involves choosing an action that corresponds
to the current highest value of the upper confidence bound (UCB) of
the interval estimates of mathematical expectations of one-step income.
The control goal is a minimax strategy, that means in minimizing max-
imum regrets. We computed the maximum regrets using Monte-Carlo
simulations. We also performed a regression analysis of the function of
the dependence of the maximum of the regret function on the strategy
parameter.

Keywords: multi-armed bandit · UCB Strategy · minimax approach ·
regression analysis

1 Introduction

We consider a J-armed bandit problem [1–3], i.e., a slot machine with J ≥ 2 arms,
hereinafter referred to as actions. When choosing an action, the player wins a one-
step income ξ(n), and in total player can choose actions N times, where N is the
control horizon. The player’s goal is to maximize the mathematical expectation
of total income. To do this, during the game, it is necessary to determine the
action corresponding to the highest income and ensure its preferential choice.
Each choice of one of the actions brings random income, the distribution of which
depends only on the currently selected action. If the best action was known, then
it should be applied all the time, but the mathematical expectations of income
m1, . . . , mJ are a priori unknown to the player.

The problem is also known as the problem of expedient behavior and adaptive
control in a random environment [4,5] and is accompanied by the solution of the
“information or control” dilemma, which consists in the fact that to maximize
the total expected income, the player would like to apply only the action that
corresponds to the highest expected one-step income. However, to determine this
action, it is necessary to compare it with the rest, the use of which leads to a
decrease in total income.
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To solve the problem, we use the UCB strategy. Note that UCB implies the
choice of an action based on the upper confidence bound of the interval of the
mathematical expectation of total income. This strategy is quite simple to apply
and has been considered, for example, in [6–9]. In these works, it is established
that in the case of fixed income distributions of a multi-armed bandit, the regret
function has an asymptotic order of growth lnN . In this article, we consider
another approach, in which the main task of the strategy is to select the optimal
value of the interval estimation additive so that the maximum loss (regrets) is
minimal. This approach is called minimax, since it is quite cautious in making
decisions and considers all possible risks; it was considered, for example, in [2,10].
In practice, it was found that with conventional modeling, the optimal value of
the interval estimation additive is determined with a relatively small error. In
this article, for a more accurate search and reduction of the error, we propose
to use a regression analysis of the maximum regrets depending on the UCB
additive.

The structure of the article is presented below. Section 2 describes the clas-
sical formulation of the problem of a multi-armed bandit having a Gaussian
distribution and the UCB strategy. Section 3 describes a modification of the
problem when the machine has a Bernoulli distribution. This modification is
designed for large control horizons and allows you to significantly reduce the
calculation time of the best action due to the batch version of the UCB strat-
egy. Note that the batch version was also considered in [11–13] and the order of
minimax risk is equal to

√
N or close to

√
N . Section 4 describes the calculation

of the regret function for multi-armed bandits. In the Bernoulli distribution,
the mathematical expectation is a probability, which, of course, takes a value
from 0 to 1. As a result, there is a limitation for the set of definitions of the
regret function. Section 5 presents a general view of the graph of the regret
function, as well as a description and an example of the result of regression
analysis. Section 6 presents numerical simulation results. We have considered
cases when J = {2, 3, 4, 6, 8}. The standard normal distribution with parame-
ters m = 0,D = 1 and horizon N = 1000 was chosen for the Gaussian distribu-
tion. For the Bernoulli distribution, the mathematical expectation p took values
from the set p = {1/4, 1/2, 3/4}, horizon N = 5000. Note that the calculations
took less time for the Bernoulli distribution than for the Gaussian distribution.
Section 7 presents the conclusion.

2 Gaussian Multi-armed Bandit

Let’s consider a Gaussian multi-armed bandit with J ≥ 2 actions. Formally, it is
a controlled random process ξn , n = 1, 2, . . . , N , where N is a control horizon.
Random variable ξn depends only on currently chosen action yn and is normally
distributed with a density

f(x|mi) =
exp

(
− (x−mi)

2

2Di

)
√

2πDi

,
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where yn = i, i = 1, 2, . . . , J . Variances D1, . . . , DJ are assumed to be known
and their values are ordered in descending order (D1 ≥ D2 ≥ · · · ≥ DJ). In what
follows, this requirement can be canceled, since the algorithm is not sensitive to
a significant change in variance, so they can be evaluated at the initial stage of
control. Mathematical expectations m1, . . . , mJ are assumed to be unknown and
are not ordered.

Let n decisions were made and the action i was chosen ni times, denote by
Xi(n) the current total income for use. Then Xi(n)/ni is a point estimate of the
mathematical expectation mi. Since the goal is to maximize the mathematical
expectation of total income, it may seem obvious in the future to choose the
action corresponding to the highest current value of the point estimate Xi(n)/ni.
However, at the initial stage, the best action may receive a lower estimate [6],
therefore, to choose the best action, instead of point estimates of mathematical
expectations, we will use the upper bounds of their interval estimates

Ui(n) =
Xi(n)

ni
+ a

√
D ln n

ni
,

where a > 0 is strategy parameter, D = max(D1, . . . , DJ ), ni is the number of
choices of action i, n = n1 + n2 + · · · + nJ . This strategy is called UCB (upper
confidence bound) strategy.

3 Bernoulli Multi-armed Bandit

Let’s consider a Bernoulli multi-armed bandit described by the distribution
{

P (ξn = 1|yn = i) = pi,

P (ξn = 0|yn = i) = qi,

where pi + qi = 1, yn = i, i = 1, . . . , J, n = 1, 2, . . . , N with variance D = piqi

(see., e.g., [3,14,15]). As an application of the multi-armed bandit problem, we
consider binary data processing in the article. The values of the process 1 and 0
correspond to successfully and unsuccessfully processed data number n.

If there is too much data, then processing them one by one will take a lot
of time, in which case batch data processing should be used [11,16]. Batch pro-
cessing is a convenient control strategy because it allows the player to change
the action less often and the time of full processing will be determined by the
number of batches. Let’s consider control strategy that apply actions M times
in a row. Let there be K batches of dimension M each. In this case, the control
horizon will be defined as N = MK. Then the upper confidence bounds will
take the form

Ui(k) =
Xi(k)

ki
+ a

√
DM ln k

ki

where ki is the number of processed batches when selecting action i, accordingly
k = 1, . . . , K is the total number of processed batches.
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4 Calculation of Regrets

The main objective of the strategy is to minimize the maximum regrets by
finding the optimal strategy parameter. This strategy prescribes to apply all the
actions once at the start of the control and then at each instant of time n + 1 to
choose the action corresponding to the maximum of the values Ui(n).

Upon completion of control, the total income will be equal to
∑J

i=1 Xi(n). If
the mathematical expectations m1, . . . , mJ were known, then the optimal strat-
egy is always to use the action corresponding to the maximum of m1, . . . , mJ

and the total income would be equal to N max(m1, . . . , mJ ). Then regrets can
be defined as the normalized difference between the maximum income and the
mathematical expectation of total income E(

∑J
i=1 Xi(N))

lN =
N max(m1, . . . , mJ ) − E(

∑J
i=1 Xi(N))√

DN
.

Let’s limit ourselves to such a set of parameters as was suggested in [11,16]. In
this case we consider such collections of mathematical expectations, which con-
tain one greater and other equal smaller ones, e.g., m1 = m + d

√
D/N, mk =

m − d
√

D/N, k = 2, . . . , J, d ≥ 0. This set describes “close” distributions,
on which the regret attains its maximum values. In the case of a Gaussian
distribution, when modeling without limitation of generality, we assume that
m = 0, D = 1.

For the Bernoulli distribution, the regrets will take the form

lN =
N max(p1, . . . , pJ ) − E(

∑J
i=1 Xi(N))√

DN
,

where p1 = p+ d
√

D/N, pk = p− d
√

D/N, k = 2, . . . , J, d ≥ 0, D = 0.25 is the
maximum variance of one-step income, which is achieved at p = 0.5.

Since 0 ≤ pi ≤ 1 the value of d must be less than some positive value.
{

p + d
√

D/N ≤ 1,

p − d
√

D/N ≥ 0.
→

{
d ≤ (1 − p)

√
N/D,

d ≤ p
√

N/D.

In this case 1 − p = q. Therefore 0 ≤ d ≤ min(p, q)
√

N/D.
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Fig. 1. Regrets for Gaussian two-armed bandit.

5 Search for Optimal Values

In Fig. 1, we present regrets for a two-armed bandit with a Gaussian distribution
and with strategy parameter a = 1 and horizon N = 100.

According to the graph, the value of the function tends to infinity and there
is no global maximum, but we will prove it analytically. Consider the example of
a two-armed bandit. The one-step income from the choice of action i is defined
as mi + εi, where εi is a random variable with a Gaussian distribution. The
values of Ui(n) at the initial stage are equal

⎧
⎨
⎩

U1(2) = m1+ε1
1 + a

√
1·ln 2

1 = d
√

D/N + ε1 + a
√

ln 2,

U2(2) = m2+ε2
1 + a

√
1·ln 2

1 = −d
√

D/N + ε2 + a
√

ln 2.

⎧
⎨
⎩

lim
d→+∞

U1(2) = lim
d→+∞

(
d
√

D/N + ε1 + a
√

ln 2
)

,

lim
d→+∞

U2(2) = lim
d→+∞

(
−d

√
D/N + ε2 + a

√
ln 2

)
.

⎧
⎨
⎩

lim
d→+∞

U1(2) =
√

D/N lim
d→+∞

d + ε1 + a
√

ln 2 = +∞,

lim
d→+∞

U2(2) =
√

D/N lim
d→+∞

(−d) + ε2 + a
√

ln 2 = −∞.

Therefore, as d → +∞, the best action is determined at the initial stage and the
worst action is applied only once.

The maximum possible income corresponds to the first action and is equal
to Nd

√
D/N . Then the total income for a two-armed bandit can be represented

as
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X1 + X2 =
n1∑
i=1

(m1 + εi) +
n2∑

j=1

(m2 + εj) = n1m1 + n2m2 + E

= n1d
√

D/N − n2d
√

D/N + E = (n1 − n2)d
√

D/N + E,

where E is the sum of N quantities with a Gaussian distribution. Then Ei is
the sum of ni quantities with a Gaussian distribution. For a two-armed bandit,
at the end of the simulation n1 + n2 = N .

Then as d → +∞ total income will be equal to

X1 + X2 = (n1 − n2)d
√

(D/N) + E = (N − 1 − 1)d
√

(D/N)

+E = (N − 2)d
√

(D/N) + E.

Then as d → +∞ regrets will be equal to

lN =
Nd

√
D/N − (N − 2)d

√
D/N − E√

DN
=

2d
√

D/N − E√
DN

.

lim
d→+∞

lN = lim
d→+∞

(
2d

√
D/N − E√
DN

)
=

lim
d→+∞

(
2d

√
D/N − E

)

lim
d→+∞

(√
DN

)

=
2
√

D/N lim
d→+∞

(d) − E
√

DN
= +∞.

It’s the same for a multi-armed bandit. Therefore, if we consider the regret at
the initial stage, there is no global maximum. Let’s limit ourselves to searching
for a local maximum on the set Q

Q = {d : 0 ≤ d ≤ C < +∞},

where C �= arg max
d∈Q

(lN ).This means that the function reaches a local maximum

inside the segment [0, C].
Let’s introduce the function of dependence of the local maximum of the

regrets on the value a and denote it as ϕ(a)

ϕ(a) = max
d∈Q

lN (d, a).

Then the optimal value of a is

ã = arg min{ϕ(a)}.

In practice, we have computed that in the vicinity of the minimum point, the
function ϕ(a) is approximated well by a polynomial of the second degree ϕ̃(a) =
b2a

2 + b1a + b0, where b2 > 0. Thus, the optimal value of a can be found as the
minimum ϕ̃(a):

ϕ̃′(a) = 2b2a + b1 = 0,

ã ≈ − b1
2b2

.
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For each case, we selected 30 values of a in increments of 0.01 in the vicinity
of the minimum point. In Table 1 regression analysis results for a two-armed
bandit with a Gaussian distribution and horizon N = 1000 are presented.

Table 1. Regression analysis of the function ϕ̃(a)

Parameter Value

Function ϕ̃(a) 1.44a2 − 2.95a + 2.26

Optimal ã 1.02

Coefficient of determination R2 0.997

Correlation coefficient r 0.998

Approximation error 0.12%

F -test 8458.987

The correlation coefficient is almost equal to 1, which indicates a strong rela-
tionship between a and ϕ̃(a). R2 is also almost equal to 1, therefore, the regres-
sion equation should be considered statistically significant. The approximation
error is less than 10%, which indicates a well-chosen model of the equation. Since
there is only 1 independent variable in the regression equation, according to the
F-table of Critical Values for Significance Level α = 0.05, Fcrit = 4.2. F 	 Fcrit,
therefore, null hypothesis H0 about the statistical insignificance of the regression
equation is rejected. Similar results were obtained for the remaining cases.

In Fig. 2, the solid line corresponds to the function ϕ(a) and the dashed line
corresponds to the function ϕ̃(a).

6 Numerical Results

We computed the regrets using Monte-Carlo simulations. In all cases, 400000
averaging were performed. The deviation from the mathematical expectation d
varied from 0 to 15 in increments of 0.3. Let d̃ = arg max

d∈Q
(lN ), ã = arg minϕ̃(a).

In Fig. 3, the numerical results for multi-armed bandit with the Gaussian
distribution in N = 1000 are presented. The values of the parameters and the
maximum normalized regrets corresponding to lines 1, 2, 3, 4, 5 are presented
in Table 2.

In Fig. 4, we present the results of calculations for the Bernoulli distribution
with batch processing of data with the number of batches K = 50 over M = 100
(N = 5000) data and mathematical expectation p = 0.5. Then d ≤ 70.71. The
values of the parameters of lines 1, 2, 3, 4, 5 are presented in Table 3. Normalized
regrets for the Gaussian and Bernoulli bandits are almost identical. We can see
that the maximum regrets for a bandit with a Gaussian distribution turned out
to be greater. However, with large deviations from the mathematical expectation
d, regrets for a bandit with a Bernoulli distribution increase significantly faster.
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Fig. 2. Graph of the maxima of the regrets function.

Table 2. Regrets of a multi-armed bandit with a Gaussian distribution

Line 1 2 3 4 5

J 2 3 4 6 8

d̃ 1.8 2.1 2.7 3.0 3.3

max
d∈Q

lN 0.75 1.27 1.67 2.30 2.79

ã 1.02 0.90 0.79 0.71 0.64

Fig. 3. Regrets of a multi-armed bandit with a Gaussian distribution.
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This is since at the initial stage, the worst action is applied M times. In Fig. 5
and 6, and in Tables 4 and 5, we present the results of calculations for the
Bernoulli distribution at p = 0.25 and p = 0.75 (K = 50, M = 100, N =
5000), which have equal deviations. Then d ≤ 35.36. These values provide lower
maximum normalized regrets than at p = 0.5, since the variance is less than the
largest value D = 0.25.

Table 3. Regrets of a multi-armed bandit with Bernoulli distribution and p = 0.5.

Line 1 2 3 4 5

J 2 3 4 6 8

d̃ 1.8 2.1 2.7 3.0 3.3

max
d∈Q

lN 0.70 1.18 1.56 2.18 2.72

ã 0.91 0.70 0.57 0.40 0.29

Fig. 4. Regrets of a multi-armed bandit with Bernoulli distribution and p = 0.5.
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Table 4. Regrets of a multi-armed bandit with Bernoulli distribution and p = 0.25.

Line 1 2 3 4 5

J 2 3 4 6 8

d̃ 1.5 1.8 2.1 2.4 3.0

max
d∈Q

lN 0.61 1.02 1.34 1.88 2.35

ã 0.78 0.61 0.50 0.35 0.27

Table 5. Regrets of a multi-armed bandit with Bernoulli distribution and p = 0.75.

Line 1 2 3 4 5

J 2 3 4 6 8

d̃ 1.5 1.8 2.1 2.4 2.7

max
d∈Q

lN 0.62 1.02 1.34 1.88 2.35

ã 0.78 0.59 0.47 0.32 0.24

Fig. 5. Regrets of a multi-armed bandit with Bernoulli distribution and p = 0.25.
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Fig. 6. Regrets of a multi-armed bandit with Bernoulli distribution and p = 0.75.

7 Conclusion

We considered a modification of the UCB strategy for multi-armed bandits hav-
ing a Gaussian and Bernoulli distribution. Batches processing of data with the
highest variance (achieved at p = 0.5), the maximum regrets of a bandit with
a Bernoulli distribution are obtained less than for a bandit with a normal dis-
tribution. But with large deviations of d, batch processing leads to significantly
greater regrets than processing data one by one. For the cases p = 0.25 and
p = 0.75, the maximum normalized regrets are close in values, since in this case
the variances are equal.
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Estimation of Both Unknown Parameters
in Gaussian Multi-armed Bandit
for Batch Processing Scenario
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Abstract. We consider a Gaussian multi-armed bandit problem with
both reward means and variances unknown. A Gaussian multi-armed
bandit is considered because in case of batch processing the cumula-
tive rewards for the batches are distributed close to normally. A batch
version of the UCB strategy is proposed. Strategy’s description that is
invariant in regards to the horizon size is obtained. We consider different
approaches to the task of estimating unknown variances of rewards and
study their effect on the normalized regret. A set of Monte-Carlo simula-
tions is performed to study the batch strategy and illustrate the results
for the two-armed bandit.

Keywords: multi-armed bandit · two-armed bandit · Gaussian
multi-armed bandit · UCB · batch processing · Monte Carlo simulation

1 Introduction

The multi-armed bandit (MAB) problem [1] is considered. J-armed bandit is
imagined as a slot machine with J arms. A gambler (decision-making agent) is
able to choose one of the arms and collect the associated reward. The goal of
the gambler is to maximize the cumulative reward during the course of control.
This problem is also known as the problem of adaptive control in a random
environment [2] and the problem of expedient behavior [3]. It is a reinforcement
learning problem, so it is also studied in machine learning [4,5]. MABs have
also been used to model such problems as managing research projects in a large
organization like a science foundation or a pharmaceutical company [6,7].

Formally the multi-armed bandit is a controlled random process ξ(n), n =
1, 2, . . . , N . Number of steps N is called the control horizon size. Value ξ(n) at
step n only depends on the chosen arm. We assume that there is some prior
assumptions regarding the class of distribution of rewards of arms, and it can
be described by some parameter θ.

Strategy σ applied by the gambler should solve the exploration-exploitation
trade-off: he or she should send some of the available opportunities to exploit
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the best (according to the currently obtained information) arm to explore the
arms that at the moment are evaluated to be less ludicrous, so the information
about the θ can be clarified.

We are considering the batch processing scenario, when the arm is chosen
not for a single use, but for a batch of M uses. Further we assume N = MK for
the simplicity of reasoning and notation. K is therefore the number of processed
batches. The upside of batch processing is the lack of need to decide which arm to
use after each step. Also, if arms can be used in parallel, the possibility to choose
an arm for the batch gives an advantage as total processing time depends on the
number of batches rather than on number of single arm uses. Batch processing
can be used in internet advertising [8] and other data processing scenarios. One
can intuitively expect to observe much higher regret for the batch processing, as
the arm choice is not altered as often as in sequential strategies, but as shown
in [9–15], this is not always the case.

If M is sufficiently large, the cumulative reward for the batch will be dis-
tributed close to normally, according to the central limit theorem. That justifies
further study of Gaussian multi-armed bandits.

The variance of the batch reward depends on the variance of a single
reward. Further we denote variances for arms’ rewards Dl = dlD, where
D = maxl=1...J Dl, and therefore dl ≤ 1, l = 1, . . . , J .

We are considering the case of “close” distribution of rewards, for which mean
rewards are described as{

ml = m + cl

√
D/N ;m ∈ R, |cl| ≤ C < ∞, l = 1, 2, . . . , J

}
(1)

where cl is a measure of “closeness” of reward means. The definitive feature of
“close” distributions is the difference between expected values of order N−1/2.
Maximal normalized regrets are observed on that domain and have the order
N1/2 (see [16]). For “distant” distributions the normalized regrets have smaller
values.

The probability density function for cumulative reward of processed batch
for l-th arm is

fl (x) = (2πMDl)
−1/2 exp

(
− (x − Mml)

2
/(2MDl)

)
, l = 1, 2, . . . , J. (2)

Therefore the Gaussian MAB is described by the vector parameter θ =
(m1, ...,mJ ,D1, ...,DJ ).

We define the regret as expected difference between maximally obtainable
rewards and the rewards that were gained. If the gambler had full information
about the bandit, the best strategy would be to choose the arm with grater
associated reward on each step. Therefore the regret can be calculated as

LN (σ, θ) = Eσ,θ

(
N∑

n=1

(
max

l=1...J
ml − ξ(n)

))
(3)

By Eσ,θ (·) we understand the expected value calculated in respect to measure
measure generated by strategy σ and parameter θ.
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Normalized regret (to the horizon size and variance D) is considered as it
is is useful for comparison of various strategies if they are applied on different
horizon sizes:

L̂N (σ, θ) =
1√
DN

LN (σ, θ) . (4)

The goal of the gambler therefore may be stated as minimizing the normalized
regret (4).

In [13,14] an invariant description independent of the control horizon size is
given for the batch version of strategy [17] and associated normalized regret (for
case of batch processing for MABs). In these works the case of known rewards
variances is studied.

Contributions of this paper include invariant description of the batch ver-
sion of a variant of UCB strategy for the case of unknown variances of rewards
and set of Monte Carlo simulations justified by the obtained description which
allows to estimate the optimal strategy parameters values and compare different
approaches to estimate the variances.

In the following sections we introduce and study an invariant description
of control strategy [17] for the case of unknown variances of rewards. Section 2
contains description of the UCB strategy and its batch version. Section 3 builds
an invariant description of the batch version of the strategy on the unit horizon
and is summarized as Theorem 1. Section 4 presents Monte Carlo simulation
results which allow to find optimal parameter values and to compare different
ways to estimate the variances.

2 UCB Strategy

It is obvious that the gambler should choose the arm with higher associated mean
reward for the purpose of minimizing the regret. Suppose that after step n the
l-th arm was in total used nl times (l = 1, . . . , J). Let Xl(n) denote cumulative
reward for the corresponding arm. Then Xl(n)/nl estimates the mean reward
ml. However, simply using the arm with highest associated value of Xl(n)/nl can
result in significant losses. That can happen in case if initial estimate Xl(n)/nl,
corresponding to the largest ml, by chance takes a lower value. Consequently
this action will be never applied, which can entail significant losses. Therefore,
the strategy should allow each arm to be played infinitely many times on the
infinite control horizon for its mean reward to be estimated correctly.

UCB strategies propose to choose the arm with highest associated upper
confidence bound (hence the name) of interval estimation for the mean reward.
In [17] the following version of UCB strategy is described:

Ul (n) =
Xl (n)

nl
+

√
2Dl log (n/nl)√

nl
, (5)

for l = 1, 2, . . . , J , n = 1, 2, . . . , N .
Confidence bound term

√
2Dl log (n/nl)/nl grows slowly as the gambler plays

more rounds (i.e. as n increases), ensuring that no arm will be excluded from
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selection. Term
√

Dl/nl characterizes the width of the confidence interval for
the mean reward estimate, and

√
log (n/nl) ensures the growth of the confidence

interval width as the step number increases.
That is the way how UCB strategy negotiates the exploration-exploitation

trade-off: it strives to greedily choose the arm with highest point estimation of
mean reward, but also there is an exploration term which makes it possible to
play an arm that was not explored thoroughly enough. The second term is used
for exploration and grows with time.

Strategy prescribes to use each of the arms once for the initial estimation of
bounds.

2.1 Batch Version of the Strategy

Batch version of the strategy (5) would find upper confidence bounds for cumu-
lative batch rewards, therefore the bounds should be found as

Ul (k) =
Xl (k)

kl
+

al

(
d̂1, . . . , d̂J

) √
MD̂l log (k/kl)√

kl

, (6)

where k is the number of processed batches, kl is the number of batches for which
the l-th arm was selected, k = 1, 2, . . . ,K. D̂l is the estimation of variance of a
single reward for l-th arm. Expression

d̂l = D̂l/ max
l=1...J

D̂l (7)

describes variance estimation in relation to the maximum variance estimate.
Function al

(
d̂1, . . . , d̂J

)
substitutes constant

√
2 as the original strategy was

applied to Bernoulli MABs and depends on variances of arm rewards. Transi-
tioning to Gaussian MABs requires to determine its optimal values. Note that
we take into account not the estimations of variances Dl themselves, but of the
ratios dl that determine the variances in relation to the maximal one. Also note
that al (d1, . . . , di, . . . , dj , . . . , dJ ) = al (d1, . . . , dj , . . . , di, . . . , dJ ) for i �= l, j �= l,
that is changing numbering for the arms does not affect the parameter values.

In [18] it was shown that if we split the processing steps into a fairly small
amount of batches (e.g. N = 50), the normalized regret will not grow significantly
compared to the situation when number of steps tends to infinity. Therefore the
steps can be split in relatively low number of batches. We should also take into
the consideration that increasing the batch size will also increase the variance
of its cumulative reward and while the single arm rewards could be considered
“close”, batch rewards can be fairly “distant”, which can yield significant losses.

3 Invariant Description

The indicator Il (k) is function which equals 1 if arm l was chosen for k-th batch
and 0 otherwise:

Il (k) =

{
1, if Ul(k) = maxl=1..J Ul(k),
0, otherwise.

(8)
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Only one of indicators can equal 1 for the k-th batch. Reward for k-th pro-
cessed batch depends on the selected arm and can be expressed as

ξ(k) =
J∑

l=1

Il(k)(Mml +
√

MDlηl,k), (9)

where ηl,k is the standard normal random variable, and mlM +
√

MDηl,k ∼
N(Mml,

√
MD) is the random reward for the k-th batch and l-th arm.

Cumulative rewards associated with each of the arms after processing k
batches are

Xl (k) = klMml +
k∑

i=1

Il (i)
√

MDlηl,i. (10)

Note that for i = 1..k, indicator Il(k) equals 1 exactly kl times, which means
that

∑k
i=1 Il (i)

√
MDηl,k is a normally distributed random variable with vari-

ance klMD.
Therefore

Xl (k) = klM
(
m + cl

√
D/MK

)
+

√
klMDη, (11)

where η is a standard normal random variable.
Confidence bounds (6) are therefore equal to

Ul (k) = M
(
m + cl

√
Dl/MK

)
+

√
MDlη√

kl

+
al

(
d̂1, . . . , d̂J

) √
D̂l log (k/kl)√

kl

.

(12)
Next apply the transformations that do not change the arrangement of

bounds: ul (k) =
√

K/(MD) (Ul (K) − Mm) and tl = kl/K, t = k/K and get

ul(k) = cl +
η√
tl

+
al

(
d̂1, . . . , d̂J

) √
d̂l log t

tl√
tl

. (13)

The obtained formulas describe the batch version of UCB strategy on the
control horizon of a unit size: variables t, tl change their value in interval [0, 1],
l = 1..J . This description depends only on the number of processed batches K.

3.1 Estimating the Variance

Further we consider two ways to estimate the variance.
First, we can use estimation of variance of batches’ rewards to calculate the

variance of the single reward. We divide the estimate of batch variance by batch
size M for that purpose. Note that in this case to make the initial estimation it
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is required to use each arm twice.

D̂l =
kl

M(kl − 1)

(∑k
i=1 Il(i)(Mml +

√
MDlηl,i)2

kl

−
(∑k

i=1 Il(i)(Mml +
√

MDlηl,i)
kl

)2
⎞
⎠ .

Taking into account that sum of squares of kl standard normally distributed
random variables is a random variable χkl

with a chi-squared distribution with
kl degrees of freedom, the estimate for variance is

D̂l =
kl

M(kl − 1)

(
M2m2

l +
MDlχkl

kl
+

∑k
i=1 2Il(i)Mml

√
MDlηl,i)

kl

−M2m2
l − MDlχ1

kl
−

∑k
i=1 2Il(i)Mml

√
MDlηl,i)

kl

)
= Dl

χ(kl−1)

kl − 1

= dlD
χ(kl−1)

kl − 1
.

(14)

Using this estimate, the upper confidence bound in invariant form (13) is

ul(k) = cl +
η√
tl

+
al

(
d̂1, . . . , d̂J

) √
dl

χ(tlK−1)

tlK−1 log t
tl√

tl
. (15)

This expression depends only on the number of processed batches K, not on
the number of single steps N or batch size M . Note that d̂l also only depends
on the number of processed batches according to (7) and (14), l = 1, . . . , J .

The second approach aims to get more accurate estimation of the rewards’
variances by taking into account the fact that single rewards in batches can be
split into batches of smaller sizes. If the batch size is large enough, we can split
it into M2 parts of size M1 such that sum of M1 single rewards is distributed
close to normally. In practice one can estimate the variances using the values of
single rewards no matter its distribution, but the following description will not
hold, and regret may differ slightly.

Note that the first approach is the special case of the second with M2 = 1
and M1 = M .

We continue to evaluate the variances of these parts during the full time of
control.

D̂ =
klM2

M1(klM2 − 1)

(∑kM2
i=1 Il(i)(M1ml +

√
M1Dlη(k))2

klM2

−
(∑kM2

i=1 Il(i)(M1ml +
√

M1Dlη(k))
klM2

)2
⎞
⎠ = dlD

χklM2−1

klM2 − 1
.

(16)
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Using this estimate, the upper confidence bound in invariant form (13) is

ul(k) = cl +
η√
tl

+
al

(
d̂1, . . . , d̂J

) √
dl

χ(tlKM2−1)

tlKM2−1 log t
tl√

tl
. (17)

For these two approaches the estimations of variances depend only on the
number of processed batches K. If the batch is big enough, we can use the second
approach for more accurate estimation.

To implement the strategy algorithmically one can estimate variances by
storing the information not only about the sum of rewards, but also about sum
of squares of rewards for batches of size M1.

3.2 Invariant Description for Normalized Regret

As we can describe the batch processing using only the number of processed
batches K, the following description of the normalized regret is invariant of the
horizon size N .

L̂N (σ, θ) =
1√
DN

Eσ,θ

(
K∑

k=1

(
M max

l=1..J
ml − ξ (k)

))

=
1√
DN

Eσ,θ

(
K∑

k=1

(
M max

l=1..J
ml −

J∑
l=1

MmlIl (k)

))

=
1√
DN

Eσ,θ

(
J∑

l=1

M

(√
D

N
max
i=1..J

cJ − cl

) (
K∑

n=1

Il (k)

))

=
J∑

l=1

(
max
i=1..J

cJ − cl

)
Eσ,θ (tl).

(18)

The reasoning in this section can be summarized as a theorem.

Theorem 1. For multi-armed bandit with J arms, mean rewards ml with
“close” distribution (1) and unknown variances Dl (l = 1, 2, . . . , J), the usage
of the batch version of UCB strategy (6) with batch size M = M1M2 with vari-
ance estimated as (16) has an invariant description on the unit control horizon
defined by bounds (17). For normalized regret (4) expression (18) holds.

The obtained description of the batch strategy depends only on the number of
batches, i.e. is invariant of the horizon size. If the batch size is large enough, each
individual batch can be split into smaller parts for more accurate estimation of
the rewards variances. Stating the theorem allows to use Monte Carlo simulations
to determine the optimal strategy parameters values and to study the normalized
regret for different approaches of variance estimation. Therefore the following
section is justified by the Theorem 1.



86 S. Garbar

4 Simulation Results

For all the illustrations on figures we use a two-armed bandit and assume that
the second arm is the best with m1 = 0 and m2 > 0, i.e. c1 = 0 and c2 > 0.

To assure the ability to notice the differences in normalized regrets for differ-
ent ways of estimating the variances of rewards, first we need to determine the
optimal parameter of the strategy a(d1, d2).

Figure 1 illustrates the approach used to determine the optimal parameter
values. Figure shows plots for normalized regrets for parameter c2, which defines
the difference between mean rewards, and different values of a(d1, d2) and d1 =
d2 = 1. The results of simulations show that for “close” distribution of rewards
for a(1, 1) ∈ (0.875, 0.925) the maximal normalized regret is no greater than
0.697. When the variance is known, the invariant description of the strategy is
independent of the number of processed batches K. Therefore, if it is sufficiently
large, any number can be used to find the optimal parameter values. Case of
K = 100 is presented of that figure. Data for the figure are averaged over 1000000
simulations.

Fig. 1. Normalized regret L̂N (σ, θ) vs. c2 for different values of strategy parameter
a(D1, D2) for d1 = d2 = 1

We compared different values of a(d1, d2) and present the results as Table 1.
First we assumed without loss of generality that d1 = 1 ≥ d2. Otherwise note
that a(d1, d2) = a(d2, d1). The optimal values for the first arm’s strategy param-
eter (with greater estimated variance) are denoted a1. For the second arm nota-
tion a2 is used. Though we did not only search the equal values of a1, a2, the
lowest regret was observed in that case. On the other hand we cannot guarantee
that some set of unequal values won’t be a better choice, but the advantage of
choosing a different set of parameters is not expected to be significant. Also note
that as the strategy is not very sensitive to the variance estimations, it is also not
very sensitive to the values of a1 and a2. Table also contains maximum observed



Estimation of Parameters in Gaussian MAB for Batch Processing 87

normalized regret max L̂N (σ, θ), which is stated only for the domain of “close”
distribution of rewards. For the greater distances between mean rewards higher
magnitude of normalized regret is possible. We find the values where the local
minima for normalized regret are located and denote them c+ and c− for the
positive and the negative. Figure 2 shows normalized regret for different values
of d2. Data the figure are averaged over 200000 simulations.

Table 1. Optimal values for a(d1, d2) for two-armed bandit.

d1 d2 a1 a2 max L̂N (σ, θ) c− c+

1.0 1.000 0.93 0.93 0.696 −3.5 3.5

1.0 0.750 0.92 0.92 0.652 −3.0 3.3

1.0 0.500 0.89 0.89 0.598 −2.8 3.2

1.0 0.250 0.88 0.88 0.537 −2.7 3.1

1.0 0.125 0.86 0.86 0.497 −2.3 2.7

For demonstration purposes the case when single rewards have normal dis-
tribution with variances D1 = D2 = 1 (and so d1 = d2 = 1 ) is considered on
the following plots on Figs. 3 and 4. Therefore we can estimate the variances of
single arm uses as having the same invariant description as obtained above, i.e.
M1 = 1,M2 = M . We did not interpolate parameter values from Table 1, but
used the closest to the current variance estimates ratio. We consider the case of
equal variances as the highest normalized regret is observed in this situation, as
shown in [13] and Table 1. We choose a = 0.93 for further simulations.

Figures 3 and 4 show normalized regret for different methods of estimating
the variance in batch processing. Batch sizes of M = 16 (Fig. 3) and M = 4
(Fig. 4) are selected. In each case K = 50 batches were processed. Data the
figures are averaged over 1000000 simulations.

Line 1 shows the case when variances are estimated for batches during the
control time. Which means variances for rewards are estimated based on k1 and
k2 data points correspondingly. On initial stages of control estimations are the
least accurate, then they gets better during the course of control. To estimate
the variance at least two measures are required, therefore no matter how much
worse one arm is, it will be used for at least two batches to estimate its variance.
Therefore normalized regret is higher for greater values of c2, as less profitable
arm is used 2M times. Higher regret in that case is therefore the more noticeable
the larger batch size is. Maximum normalized regret is 0.704 for M = 4 and 0.705
for M = 16. We observe little regret difference for different batch sizes as the
number of processed batches is the same and variance is estimated based on that
data.

All regret values in text are presented in Table 2 for convenience.
In [19] it is shown that the normalized regret does not depend very strongly

on the precision of the variance estimation, which means that in some cases it



88 S. Garbar

Fig. 2. Normalized regret L̂N (σ, θ) vs. c2 for different values of d2 with parameter a
values from Table 1

may be enough to only estimate the variance on initial stages of control. Line 2
shows the case when variance is estimated for single rewards, and only for the
first batch for each arm. Variances are therefore estimated based on M points
each. That is the reason expected normalized regret is significantly higher for
M = 4 (0.747) than for M = 16 (0.707), as the variance is estimated less
accurately in this case. This approach is obviously very sensitive to the batch
size. Nevertheless its use can be justified when the batch size is big enough as the
variance estimation during the full time of control requires significant volume of
computations.

Line 3 shows the case when the variance is estimated during the full time of
control for single rewards. At the end of control variances are estimated based
on k1M and k2M points. For M = 4 normalized regret is 0.701, for M = 16 it
is 0.696.

Line 4 shows regret in case when the exact value of variance is used instead
of estimation. Maximum regret is 0.691 for M = 4 and 0.690 for M = 16.

Overall it is preferred to estimate reward variances based on batches of
smaller sizes when possible. If the batch size is big enough, it is possible to
only estimate variances on for first few batches.
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Fig. 3. Normalized regret L̂N (σ, θ) vs. c2 for M = 16 and different approaches to esti-
mate the variance: 1 - estimating variances for whole batches, 2 - estimating variances
for single rewards on initial stage of control, 3 - estimating variances for single rewards
during the full time of control, 4 - using the exact values

Table 2. Maximum normalized regrets for different approaches to estimate variances.

Used approach M = 4 M = 16

Based on batch rewards 0.704 0.705

Based on single rewards of the first batch 0.747 0.707

Based on single rewards for the full time of control 0.701 0.696

Known variance 0.691 0.690
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Fig. 4. Normalized regret L̂N (σ, θ) vs. c2 for M = 4 and different approaches to esti-
mate the variance: 1 - estimating variances for whole batches, 2 - estimating variances
for single rewards on initial stage of control, 3 - estimating variances for single rewards
during the full time of control, 4 - using the exact values

5 Conclusions

Batch version of UCB strategy [17] for the case of unknown reward variances is
described and studied. Two approaches for estimation of variance are proposed.
An invariant descriptions on a unit control horizon (dependent only on number
of processed batches) for the strategy and normalized regret are given.

A set of Monte Carlo simulations was performed for the case of two-armed
bandit. Optimal strategy parameters values for various sets of arms’ rewards
variances were determined. Normalized regrets were studied for the worst case
of equal variances. A comparison of different ways to estimate the variances of
arms’ rewards is presented for different batch sizes.
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Abstract. The conditional gradient idea proposed by Marguerite Frank
and Philip Wolfe in 1956 was so well received by the community that
new algorithms (also called Frank–Wolfe type algorithms) are still being
actively created. In this paper, we study a non-smooth stochastic convex
optimization problem with constraints. Using a smoothing technique and
based on an accelerated batched first-order Stochastic Conditional Gra-
dient Sliding method, we propose a novel gradient-free Frank–Wolfe type
algorithm called Zero-Order Stochastic Conditional Gradient Sliding
(ZO-SCGS). This algorithm is robust not only for the class of non-smooth
problems, but surprisingly also for the class of smooth black box prob-
lems, outperforming the SOTA algorithms in the smooth case in term
oracle calls. In practical experiments we confirm our theoretical results.
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1 Introduction

The history of the conditional gradient method begins with the Frank–Wolfe
algorithm proposed in 1956 [16]. Marguerite Frank and Philip Wolfe proposed
an alternative to the gradient descent method for solving a class of quadratic
constrained optimization problems that uses linear optimization on a convex

The work was supported by the Ministry of Science and Higher Education of the
Russian Federation (Goszadaniye) 075-00337-20-03, project No. 0714-2020-0005.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
M. Khachay et al. (Eds.): MOTOR 2023, CCIS 1881, pp. 92–106, 2023.
https://doi.org/10.1007/978-3-031-43257-6_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-43257-6_8&domain=pdf
http://orcid.org/0000-0003-1620-9581
http://orcid.org/0000-0002-7681-2481
http://orcid.org/0000-0002-7386-039X
http://orcid.org/0000-0002-8340-5729
https://doi.org/10.1007/978-3-031-43257-6_8


Zero-Order Stochastic Conditional Gradient Sliding Method 93

compact set, avoiding projection. A little later in 1966, Evgenii Levitin and Boris
Polyak in [34] investigated the Frank–Wolfe method (named Conditional Gradi-
ent), obtaining the rate of convergence and showed that this rate is optimal for
the class of smooth convex problems and for all algorithms that use linear mini-
mization oracle. Since then, the conditional gradient algorithm has gained much
interest in the community, because in some cases it is computationally cheaper
to solve the linear minimization problem over the feasible set (thereby guaran-
teeing a presence over the feasible set) than to perform a projection over the
feasible set. Currently, the conditional gradient method is actively used in solv-
ing practical problems of network routing [21,35,38], matrix completion [17,20],
as well as in problems of machine learning [30,40], federated learning [12], online
optimization [9,18,28], standard optimization [19,24,39] and huge-scale opti-
mization [3,7,11].

However, as far as we know, there are no gradient-free algorithms (based on
the conditional gradient method) to solve the black box problem in the non-
smooth case. Where the black box problem means that only the zero-order ora-
cle [42] is available to us, i.e. we have access to the value of the objective function,
not its gradient. This class of problems is a particular case of the practical prob-
lems above, when the gradient calculation procedure is too expensive [1,43] or
not available at all [8,14]. Already in November 2022, a survey appeared [23],
which provides various techniques for creating optimal gradient-free algorithms
(based generally on accelerated batched first-order methods) to solve the black-
box problem. The optimal for a gradient-free algorithm is usually understood
by three criteria: iteration complexity, oracle complexity, and maximum level
of adversary noise. Thus, by choosing the accelerated batched conditional gradi-
ent method and using the smoothing technique from the survey, it is possible to
develop a gradient-free algorithm to solve black-box problem in non-smooth case.

In this paper, we focus on black-box problems in the non-smooth case,
namely, non-smooth convex stochastic optimization problems. To solve this prob-
lem, we use a smoothing scheme approach with l2 randomization. Based on the
accelerated batched conditional gradient method, also known as the Stochas-
tic Conditional Gradient Sliding Method from [33], we create an algorithm and
derive optimal estimates: iteration complexity, oracle complexity, and maximum
adversary noise level. As far as we know, this is the first gradient-free algorithm
for solving a non-smooth convex optimization problem. We show in theory that
Zero-Order Stochastic Conditional Gradient Sliding Method outperforms the
oracle complexity of gradient-free algorithms (which are state of the art algo-
rithms) in a smooth setting, which is a surprising fact. In practical experiments
we confirm our theoretical results.

1.1 Our Contributions

Our contributions can be summarized as:

• We present the first gradient-free algorithm based on the conditional gradient
method “Zero-Order Stochastic Conditional Gradient Sliding Method” (ZO-
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SCGS) for solving a non-smooth convex stochastic optimization problem with
constraints.

• Our theoretical results show that the algorithm is robust for black-box prob-
lems not only in the non-smooth case, but also for the smooth setting case.
That is, our algorithm outperforms state of the art algorithms on oracle calls.
In particular, the SOTA algorithm Zero-Order Conditional Gradient Method
(ZSCG) from [5] has an estimation of oracle complexity ∼ ε−3, while our
algorithm has an estimation of oracle complexity ∼ ε−2.

• We empirically test our theoretical results by comparing the Zero-Order
Stochastic Conditional Gradient Sliding Method (ZO-SCGS) with the Zero-
Order Conditional Gradient Method (ZSCG) on a model case in a smooth
setting. We explain the reason for the advantage of the proposed algorithm.

1.2 Paper Organization

This paper has the following structure. In Sect. 2 we provide related works.
In Sect. 3 we consider the formulation of the problem. We present the novel
gradient-free algorithm in Sect. 4. In Sect. 5 we discuss the theoretical results
obtained. We verify our results with a model experiment in Sect. 6. While Sect. 7
concludes the paper. We provide a detailed proof of the Theorem 1 in the sup-
plementary materials (Appendix A)4.

2 Related Works

Conditional Gradient Methods. There are many works [5,10,13,24,29,33,
37,39,49,50] in the field of conditional gradient methods research. The latest
research results in this area are presented in a recent survey on conditional
gradient methods [6]. For instance, the Stochastic Frank–Wolf algorithm from
[29], which is a generalization of the Frank–Wolf algorithm to stochastic opti-
mization by replacing the gradient in the update with its stochastic approxima-
tion, requires ∼ ε−3 calls of stochastic gradients and performing ∼ ε−1 linear
optimization. Also, for instance, the Stochastic Away Frank–Wolfe algorithm
from [24], which is derived from combining the Away-Step Stochastic Frank–
Wolfe algorithm [27] and the Pairwise Stochastic Frank–Wolfe algorithm [32],
requires ∼ ε−4 log6

(
ε−1

)
calls of stochastic gradients and performing ∼ log

(
ε−1

)

linear optimization. In another work [39], the Momentum Stochastic Frank–
Wolf algorithm, which is obtained from the Stochastic Frank–Wolfe algorithm by
replacing the gradient estimator with the momentum estimator, requires ∼ ε−3

calls of stochastic gradients and linear optimization and in [33] the Stochastic
Conditional Gradient Sliding algorithm was proposed, which is an accelerated
batched method and requires ∼ ε−2 calls of stochastic gradients and perform-
ing ∼ ε−1 linear optimization. The above algorithms solve the problem of con-
vex stochastic optimization and are first-order methods, but the Zeroth-Order
4 The full version of this article, which includes the Appendix A can be found at

the following link: https://arxiv.org/abs/2303.02778.

https://arxiv.org/abs/2303.02778
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Stochastic Conditional Gradient Method from [5], which solves the black box
problem in the smooth case, requires ∼ ε−3 calls of stochastic gradients and
performing ∼ ε−1 linear optimization. In this paper, we choose the accelerated
batched first order method: Stochastic Conditional Gradient Sliding algorithm
from [33] as the basis for creating a novel gradient-free algorithm, since it has
the best number of stochastic gradient calls presented. We will compare the effi-
ciency of our algorithm to the Zeroth-Order Stochastic Conditional Gradient
Method from [5], which is one of the SOTA algorithms.

Gradient-Free Methods. The research field of gradient-free algorithms can be
traced back to at least 1952 [31]. Recent works [2,4,14,15,22,36,47] are heavily
focused on creating optimal gradient-free algorithms based on three criteria: iter-
ation complexity, oracle complexity, and maximum level of adversary noise. For
black-box problems, a gradient approximation is usually used instead of an exact
gradient in first-order algorithms. For instance, work [47] investigated gradient
approximation via coordinate-wise randomization, and work [15] investigated
gradient approximation via random search randomization. Also, for instance,
in [4] the gradient approximation via a “kernel-based” approximation is stud-
ied, the feature of which is to take into account the advantages for the case of
increased smoothness. Some works use smoothing schemes via l1 or l2 random-
ization. For instance, paper [2] studied l1 randomization as an alternative to the
exact gradient for solving smooth optimization problems. Another paper [22]
explained the advantages of solving non-smooth problems using a smoothing
scheme with l2 randomization. And in [36] the smoothing scheme through l1
randomization for non-smooth optimization problems is investigated and it is
shown that in practice there are no significant advantages of l1 randomization
over l2 randomization. In this paper, we use a smoothing scheme with l2 ran-
domization to create a gradient-free algorithm for solving a non-smooth convex
stochastic optimization problem.

3 Setup

We study a non-smooth convex stochastic optimization problem with constraints

f∗ := min
x∈Q

[f(x) := Eξ [f(x, ξ)]] (1)

where Q ⊆ R
d is a convex compact set and f : Q → R is a convex function. This

problem is also known as the black box problem, where a zero-order (gradient-
free) oracle returns a function value f(x, ξ) at the requested point x, possibly
with some adversarial noise δ(x). We now formally introduce the definition of a
gradient-free oracle.

Definition 1 (Gradient-free oracle). Let gradient-free oracle returns a noise
value of f(x, ξ), i.e. for all x ∈ Q

fδ(x, ξ) := f(x, ξ) + δ(x).

Next, we consider the assumptions we use in our theoretical results.
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3.1 Assumptions

We assume that the function is Lipschitz continuous and is convex on set Qγ .

Assumption 1 (Lipschitz continuity of the function). Function f(x, ξ) is
Lipschitz continuous with constant M , i.e. for all x, y ∈ Q:

|f(y, ξ) − f(x, ξ)| ≤ M(ξ)‖y − x‖p.

Moreover, there exists a positive constant M such that E
[
M2(ξ)

] ≤ M2.

Assumption 2 (Convexity on the set Qγ). Let γ > 0 a small number to be
defined later and Qγ := Q+Bd

2(γ), then the function f is convex on the set Qγ .

We also assume that adversarial noise is bounded.

Assumption 3 (Boundedness of noise). For all x ∈ Q, it holds |δ(x)| ≤ Δ.

Our Assumption 1 of a Lipschitz continuity of the function is similar as in [22]
and generalizes to a stochastic setting. For the special case when p = 2 we use
the notation M2 for the Lipschitz constant (see e.g. [14]). Assumption 2 is quite
standard in the literature (see e.g. [41,48]). We used l2-ball here since we use
l2 randomization in this paper. In more general the formulation of the assumption
depends on the choice of gradient approximation (see e.g. [36]). So much prior
work in the context of stochastic optimization often assumed the boundedness
of stochastic or deterministic noise (such as e.g. [1,44,46]). In Assumption 3, we
consider bounded deterministic noise.

3.2 Notation

We use 〈x, y〉 :=
∑d

i=1 xiyi to denote standard inner product of x, y ∈ R
d, where

xi and yi are the i-th component of x and y respectively. We denote lp-norms

(for p ≥ 1) in R
d as ‖x‖p :=

(∑d
i=1 |xi|p

)1/p

. Particularly for l2-norm in R
d

it follows ‖x‖2 :=
√〈x, x〉. We denote lp-ball as Bd

p(r) :=
{
x ∈ R

d : ‖x‖p ≤ r
}

and lp-sphere as Sd
p(r) :=

{
x ∈ R

d : ‖x‖p = r
}
. Operator E[·] denotes full math-

ematical expectation. We notation Õ(·) to hide logarithmic factors. To define
the diameter of the set Q we introduce D := maxx,y∈Q ‖x − y‖p.

4 Main Result

In this section, we present a novel algorithm (see Algorithm 1) that is optimal in
terms of iterative complexity, the number of gradient-free oracle calls, and the
maximum value of adversarial noise. This algorithm is based on an accelerated
first-order Stochastic Conditional Gradient Sliding (SCGD) method from [33].
This section is structured as follows: in Subsect. 4.1 we introduce the basic idea
of the smoothing scheme, in Subsects. 4.2 and 4.3 we consider the main elements
of the smoothing scheme via l2 randomization, and in Subsect. 4.4 we present
the new gradient-free method (see Algorithm 1 for more details).
We start with the main idea of solving problem (1) via the smoothing scheme.
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4.1 Smoothing Scheme Intuition

The main idea of solving problem (1) via the smoothing scheme is to replace the
problem. That is, instead of solving the non-smooth problem we will solve its
smoothed problem:

min
x∈Q

fγ(x), (2)

where fγ a smooth approximation of the non-smooth function f , which we define
below. Thus, to solve the smooth problem (2) it is sufficient to choose the accel-
erated batched algorithm A(Lfγ

, σ2). Next, we introduce the assumptions of
smoothness of the function fγ and bounded variance of the gradient ∇fγ(x, ψ).

Assumption 4 (Lfγ
-smoothness). Function fγ(x) is differentiable and there

exists a constant Lfγ
≥ 0 such that for x, y ∈ Q:

‖∇fγ(y) − ∇fγ(x)‖q ≤ Lfγ
‖y − x‖p.

Assumption 5 (Bounded variance and unbiased). Gradient ∇fγ(x, ξ) has
bounded variance such that for x ∈ Q:

Eψ

[‖∇xfγ(x, ψ) − ∇fγ(x)‖2q
] ≤ σ2, Eψ [∇fγ(x, ψ)] = ∇fγ(x).

Assumptions 4 and 5 are quite common in the literature (see e.g. [26,33,44]).
Here q is such that 1/p + 1/q = 1. And a random variable ψ we define below.

The connection between Problems (1) and (2) is as follows: to solve a non-
smooth problem with ε-accuracy, it is necessary to solve a smooth problem with
(ε/2)-accuracy, where ε-suboptimality is the accuracy of the solution in terms
of expectation (see Appendix A for the proof of this statement). So, to solve
Problem (1) (under the Assumption 4 and 5) with Algorithm A(Lfγ

, σ2), we
need to know the gradient of the smoothed function ∇fγ(x, ψ), Lfγ

-smoothness
constant, and the variance estimate σ2.

In the following subsections we will define these elements.

4.2 Smooth Approximation

Since problem (1) is non-smooth, we introduce a smooth approximation of the
non-smooth function f as follows:

fγ(x) := Eẽ [f(x + γẽ)] , (3)

where γ > 0 is smoothing parameter, ẽ is random vector uniformly distributed on
Bd

2 (γ). Here fγ(x) := E [f(x, ξ)]. The following lemma provides the connection
between non-smooth function f and smoothed function fγ .

Lemma 1. Let Assumptions 1, 2 it holds, then for all x ∈ Q we have

f(x) ≤ fγ(x) ≤ f(x) + γM2.
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Proof. For the first inequality we use the convexity of the function f(x)

fγ(x) = Eẽ [f(x + γẽ)] ≥ Eẽ [f(x) + 〈∇f(x), γẽ〉)] = Eẽ [f(x)] = f(x).

For the second inequality we have

|fγ(x) − f(x)| = |Eẽ [f(x + γẽ)] − f(x)| ≤ Eẽ [|f(x + γẽ) − f(x)|]
≤ γM2Eẽ [‖ẽ‖2] ≤ γM2,

using the fact that f is M2-Lipschitz function.

�
The next lemmas provide properties of the smoothed function fγ .

Lemma 2. Let Assumptions 1, 2 it holds, then for fγ(x) from (3) we have

|fγ(y) − fγ(x)| ≤ M‖y − x‖p, ∀x, y ∈ Q.

Proof. Using M -Lipschitz continuity of function f we obtain

|fγ(y) − fγ(x)| ≤ Eẽ [|f(y + γẽ) − f(x + γẽ)|] ≤ M‖y − x‖p.

�
Lemma 3 (Theorem 1, [22]). Let Assumptions 1, 2 it holds, then fγ(x) has
Lfγ

=
√

dM
γ -Lipschitz gradient

‖∇fγ(y) − ∇fγ(x)‖q ≤ Lfγ
‖y − x‖p, ∀x, y ∈ Q.

4.3 Gradient via l2 Randomization

The gradient of fγ(x, ξ) can be estimated by the following approximation:

∇fγ(x, ξ, e) =
d

2γ
(fδ(x + γe, ξ) − fδ(x − γe, ξ)) e, (4)

where fδ(x, ξ) is gradient-free oracle from Definition 1, e is a random vector
uniformly distributed on Sd

2 (γ). The following lemma provides properties of the
gradient ∇fγ(x, ξ, e).

Lemma 4 (Lemma 2,[36]). Gradient ∇fγ(x, ξ, e) has bounded variance (sec-
ond moment) for all x ∈ Q

Eξ,e

[‖∇fγ(x, ξ, e)‖2q
] ≤ κ(p, d)

(
dM2

2 +
d2Δ2

√
2γ2

)
,

where 1/p + 1/q = 1 and

κ(p, d) =
√

2 min {q, ln d} d1− 2
p .

Remark 1. Using the fact that the second moment is the upper estimate of the
variance for the unbiased gradient and assuming that Δ is sufficiently small we
obtain the following estimate of the variance from Lemma 4:

σ2 ≤ 2
√

2 min {q, ln d} d2− 2
p M2

2 .
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4.4 Zero-Order Stochastic Conditional Gradient Sliding Method

Now we present gradient-free algorithm (see Algorithm 1) to solve problem (1).
We chose Stochastic Conditional Gradient Sliding Method as accelerated batched
Algorithm A(Lfγ

, σ2). Substituting the approximation of the gradient via l2
randomization ∇fγ(x, ξ, e) (∇fγ(x, ψ) from Subsect. 4.1, where ψ = (ξ, e) is not
only the random value ξ, but also the randomization on the l2-sphere e, which
was introduced in Subsect. 4.3) instead of the exact gradient, we obtain a new
ZO-SCGD Algorithm 1 to solve the non-smooth problem (1).

Algorithm 1 Zero-Order Stochastic Conditional Gradient Sliding (ZO-SCGS)
Input: Start point x0 ∈ Q, maximum number of iterations N ∈ Z+.

Let stepsize ζk ∈ [0, 1], learning rate ηk > 0, accuracies βk, batch size Bk ∈ Z+,
smoothing parameter γ > 0.

Initialization: Generate independently vectors e1, e2, ... uniformly distributed on unit
l2-sphere, and set y0 ← x0

1: for k = 1, ..., N do
2: zk ← (1 − ζk)xk−1 + ζkyk−1

3: Sample {e1, ..., eBk} and {ξ1, ..., ξBk} independently

4: gk ← 1
Bk

∑Bk
i=1

[
d
2γ

(f(zk + γei, ξi) − f(zk − γei, ξi)) ei

]

5: yk ← CG(gk, yk−1, ηk, βk) � See CG in Algorithm 2
6: xk ← (1 − ζk)xk−1 + ζkyk

7: end for

Output: xN .

Algorithm 1 has such parameters as number of iterations N , batch size B,
stepsize ζ, learning rate η, accuracies β. The recommendations for selecting
these parameters can be found in Theorem 1. To prove theorem we also need
to know the values of the following parameters: constant of Lipschitz gradient
Lfγ

= 2
√

dMM2
ε (by substituting γ = ε/(2M2) in Lemma 3), where constant of

Lipschitz continuity M defined in Lemma 2 under Assumption 1, and estimate
of the variance σ2 ≤ 2

√
2 min {q, ln d} d2− 2

p M2
2 (from Remark 1).

Next theorem provides estimates of the convergence rate of Algorithm 1.

Theorem 1. Let ε be desired accuracy to solve problem (1) and γ be chosen as
γ = ε/(2M2). Let function f(x, ξ) satisfy the Assumptions 1, 2 and 3. Then Zero-
Order Stochastic Conditional Gradient Sliding algorithm (see Algorithm 1) with
ζk = 3/(k+3), ηk = 8

√
dMM2/(ε(k+3)), βk = 2

√
dMM2D

2/(ε(k+1)(k+2)),
and Bk =

⌈
min{q, ln d}d1− 2

p (k + 3)3ε2/(MD)2
⌉

achieves E [f(xk)] − f∗ ≤ ε

after

N = O
(

d1/4
√

MM2D

ε

)
, T = O

(
min{q, ln d}d2− 2

p M2
2D2

ε2

)

number of iterations and gradient-free oracle calls respectively.
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See Appendix A for detailed proof.
The results of Theorem 1 show that Zero-Order Stochastic Conditional Gra-

dient Sliding algorithm converges with ε-accuracy in N ∼ d1/4ε−1 iterations. The
number of solutions to linear optimization problems, also known as the linear
minimization oracle (LMO), is O

(√
dε−2

)
. Batch size Bk ∈ Z+ must be chosen

integer, so in Theorem 1 �·� denotes the whole part of the next integer number.
The number of oracle calls T requiring the Algorithm 1 to solve a non-smooth
problem (1) with ε-accuracy is T ∼ min{q, ln d}d2− 2

p ε−2.

Remark 2 (Smooth setting). In Theorem 1, we presented the convergence results
of Algorithm 1 in the non-smooth setting, since in this paper we focus on solv-
ing non-smooth convex stochastic optimization problems. However, the algo-
rithm proposed in this paper is robust to the smooth setting as well. To
obtain similar estimates of the algorithm for smooth setting, it is sufficient
not to change constant of Lipschitz gradient (i.e., it is not necessary to sub-
stitute the value obtained in Lemma 3). Therefore, Algorithm 1 with param-
eters ζk = 3/(k + 3), ηk = 4L/(k + 3), βk = LD2/((k + 1)(k + 2)),
and Bk =

⌈
min{q, ln d}d2− 2

p M2
2 (k + 3)3/(LD)2

⌉
achieves E [f(xk)] − f∗ ≤ ε

after N ∼ ε−1/2 iterations, performs ∼ ε−1 linear optimization and requires
T ∼ min{q, ln d}d2− 2

p ε−2 gradient-free oracle calls.

Remark 3. In Subsect. 4.4, we focus on obtaining optimal estimates of itera-
tive N and oracle T complexities, so in proving the Theorem 1 we considered
the case Δ = 0. However, an optimal estimate of the maximum adversarial noise
can be obtained by performing a similar convergence analysis of the Stochastic
Conditional Gradient Sliding Method for the biased stochastic oracle (see exam-
ple analysis in [25]). For brevity, we omit this analysis, stating that the estimate
of maximum adversarial noise is Δ � ε2d−1/2 for gradient-free algorithms cre-
ated by applying smoothing scheme via l2 randomization (see e.g. [14,22]).

5 Discussion

As far as we know, Zero-Order Stochastic Conditional Gradient Sliding (ZO-
SCGS) is the first gradient-free conditional gradient-type algorithm that solves
a non-smooth convex stochastic optimization problem (1). This algorithm, as
Theorem 1 shows, is robust for solving non-smooth black-box problems. But
most interestingly, this algorithm is also robust for smooth black box problems,
because it is superior in terms of the number of oracle calls to the state of the
art algorithms. For instance, the Zeroth-Order Stochastic Conditional Gradient
Method (ZSCG) from [5], which is a SOTA algorithm, has the following oracle
complexity of T ∼ d ε−3 in any setting, while Algorithm 1 has oracle complexity
of T ∼ d ε−2 in the Euclidean setting p = 2 (q = 2) and T ∼ ln(d) ε−2 in the
simplex setting p = 1 (q = ∞). One reason for the advantage of our algorithm
may be that the ZSCG method uses Direct Finite Difference (FFD), while the
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ZO-SCGS method (see Algorithm 1) uses Central Finite Difference (CFD). It
is worth noting that [45] explains why it is worth estimating the gradient via
central finite difference. Another possible reason may be the choice of Gaussian
smoothing instead of smoothing via l2 randomization, because in practical exam-
ples it often happens that the algorithm whose gradient is approximated over
l2 randomization works better than the algorithm whose gradient is approxi-
mated over Gaussian smoothing. Last but not least, a possible reason is that the
Zeroth-Order Stochastic Conditional Gradient Method (ZSCG) used the unac-
celerated first-order Stochastic Frank–Wolfe (SFW) method of [28] as its base.
Since the Stochastic Conditional Gradient Method already has an estimate on
the number of calls to the stochastic gradient as ∼ ε−3. It is hard to expect
an improvement in estimate of oracle complexity when creating a gradient-free
method based on it. Therefore, in this paper we created an optimal gradient-free
method based on an accelerated batched first-order algorithm. So far we have
observed theoretical advantages of Algorithm 1 (robust for solving non-smooth
black box problems) in terms of oracle complexity over SOTA algorithms, which
are robust for solving smooth black box problems. Therefore, in Sect. 6 we will
verify our theoretical results with a model example of a convex stochastic opti-
mization problem in a smooth setting.

6 Experiments

In this section we focus on verifying our theoretical results obtained in Sect. 4 via
experiments1. In particular, we numerically compare the Zero-Order Stochastic
Conditional Gradient Sliding Method (ZO-SCGS) proposed in this paper (see
Algorithm 1) with the Zeroth-Order Stochastic Conditional Gradient Method
(ZSCG) from [5]. We consider a standard model example of a black box problem
in a smooth setting, which has the following form:

min
x∈Q

f(x) :=
1
2
〈x,Ax〉 − 〈b, x〉,

where Q =
{
x ∈ R

d : ‖x‖1 = 1, x ≥ 0
}

is a simplex set, A ∈ R
d×d is a random

positively determined matrix, b ∈ R
d is a vector such that b = Ax∗, and x∗ is a

solution to the problem x∗ = arg minx∈Q f(x). In all tests, the dimensionality of
the problem is d = 100, we fix the maximum number of calls to the gradient-free
oracle Tmax = 107, and the parameters of the algorithms are taken according
to theoretical recommendations: for instance, parameters for Algorithm 1, see
Remark 2, and parameters for Zeroth-Order Stochastic Conditional Gradient
Method, see [5]. In Fig. 1 we compare the ZO-SCGS method with the ZSCG
method. In particular, Fig. 1a shows the dependence of the optimal error (f(xk)−
f∗) on the number of calls of the gradient-free oracle T . And Fig. 1b examines
the dependence of the optimal error (f(xk)−f∗) on the number of iterations N .
We observe that Algorithm 1 significantly outperforms the ZSCG method in the

1 Code repository link: https://github.com/htower/zo-scgs.

https://github.com/htower/zo-scgs
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number of oracle calls. Also, when the maximal value of the gradient-free oracle
call is fixed, we see that the Algorithm 1 is first inferior to the ZSCG method in
the number of iterations.

Fig. 1. Comparison of convergence result of Algorithm 1 with ZSCG method [5].

According to theoretical estimates for the ZO-SCGS and ZSCG methods,
the batch size should be taken at a large size, which is a disadvantage of these
algorithms. In Fig. 2 we compare Algorithm 1 with ZSCG methods using the
fixed batch-size Bk = 100. Figure 2a shows the dependence of the optimal
error (f(xk) − f∗) on the number of calls of the gradient-free oracle T . And
Fig. 2b examines the dependence of the optimal error (f(xk) − f∗) on the num-
ber of iterations N . We see that for a fixed (small) batch size, both algorithms
have convergence, which is a positive result for practical experiments to use. We
also see that ZO-SCGS and ZSCG methods require the same number of calls to
the gradient-free oracle, since we have fixed the batch size in contrast to Fig. 1.
We can also observe that Algorithm 1 significantly outperforms the method both
in the number of to gradient-free oracle calls and in iterations.

Fig. 2. Comparison of convergence result of algorithms with fixed batch size.
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Fig. 3. Effect of the batch size parameter Bk on convergence results.

Figure 3 shows the effect of the batch size parameter Bk on convergence.
Where ‘theory’ means that the batch size corresponds to theoretical estimates,
‘fixed b’ means that the batch size corresponds to the value of b. Figure 3a
explores the dependence of Zero-Order Stochastic Conditional Gradient Sliding
(ZO-SCGS) on batch size Bk, and Fig. 3b explores the dependence of the Zeroth-
Order Stochastic Conditional Gradient Method (ZSCG) on batch size Bk. We
see that theoretical estimates of the batch size slow down the convergence rate
of both methods. And we can also observe a tendency that the smaller the batch
size, the faster the algorithms converge. However, it is worth observing the golden
mean, because with a very small batch size the positive convergence effect will
not be observed, as well as with a very large batch size.

7 Conclusion

We presented, as far as we know, the first gradient-free algorithm of the condi-
tional gradient type, which is robust for solving non-smooth convex stochastic
optimization problems (black-box problems in a non-smooth setting). Using a
smoothing scheme with l2 randomization and basing on an accelerated batched
first-order algorithm, we showed that Zero-Order Stochastic Conditional Gradi-
ent Sliding (ZO-SCGS) is the optimal algorithm for three criteria: total number
of iterations, oracle complexity, and maximum adversarial noise. Our theoreti-
cal results show that Algorithm 1 is a robust method not only for non-smooth
black box problems, but also for black box problems with a smooth setting. We
verified our theoretical results on a practical experiment in a smooth setup by
comparing our algorithm with the state of the art algorithm. We have shown
that using a fixed (small enough) batch size achieves better accuracy than with
batch size derived from theoretical estimates.

References

1. Akhavan, A., Pontil, M., Tsybakov, A.: Exploiting higher order smoothness in
derivative-free optimization and continuous bandits. Adv. Neural. Inf. Process.
Syst. 33, 9017–9027 (2020)



104 A. Lobanov et al.

2. Akhavan, A., Chzhen, E., Pontil, M., Tsybakov, A.B.: A gradient estimator via L1-
randomization for online zero-order optimization with two point feedback. arXiv
preprint arXiv:2205.13910 (2022)

3. Anikin, A., et al.: Efficient numerical methods to solve sparse linear equations with
application to pagerank. Optim. Methods Softw. 37(3), 907–935 (2022). https://
doi.org/10.1080/10556788.2020.1858297

4. Bach, F., Perchet, V.: Highly-smooth zero-th order online optimization. In: Con-
ference on Learning Theory, pp. 257–283. PMLR (2016)

5. Balasubramanian, K., Ghadimi, S.: Zeroth-order nonconvex stochastic optimiza-
tion: handling constraints, high dimensionality, and saddle points. Found. Comput.
Math., 1–42 (2022)

6. Braun, G., et al.: Conditional gradient methods. arXiv preprint arXiv:2211.14103
(2022)

7. Bubeck, S.: Convex optimization: algorithms and complexity. Found. Trends Mach.
Learn. 8(3–4), 231–357 (2015). https://doi.org/10.1561/9781601988614

8. Bubeck, S., Jiang, Q., Lee, Y. T., Li, Y., Sidford, A.; Complexity of highly parallel
non-smooth convex optimization. In: Advances in Neural Information Processing
Systems, vol. 32 (2019)

9. Chen, L., Zhang, M., Karbasi, A.: Projection-free bandit convex optimization. In:
The 22nd International Conference on Artificial Intelligence and Statistics, pp.
2047–2056. PMLR (2019)

10. Combettes, C. W., Spiegel, C., Pokutta, S.: Projection-free adaptive gradients for
large-scale optimization. arXiv preprint arXiv:2009.14114 (2020)

11. Cox, B., Juditsky, A., Nemirovski, A.: Decomposition techniques for bilinear sad-
dle point problems and variational inequalities with affine monotone operators. J.
Optim. Theory Appl. 172, 402–435 (2017). https://doi.org/10.1007/s10957-016-
0949-3

12. Dadras, A., Prakhya, K., Yurtsever, A.: Federated frank-wolfe algorithm. In: In
Workshop on Federated Learning Recent Advances and New Challenges (in Con-
junction with NeurIPS) (2022)

13. Duchi, J., Hazan, E., Singer, Y.: Adaptive subgradient methods for online learning
and stochastic optimization. J. Mach. Learn. Res. 12(7) (2011)

14. Dvinskikh, D., Tominin, V., Tominin, I., Gasnikov, A.: Noisy zeroth-order opti-
mization for non-smooth saddle point problems. In: Pardalos, P., Khachay, M.,
Mazalov, V. (eds.) Mathematical Optimization Theory and Operations Research.
Lecture Notes in Computer Science, vol. 13367, pp. 18–33. Springer, Cham (2022).
https://doi.org/10.1007/978-3-031-09607-5 2

15. Dvurechensky, P., Gorbunov, E., Gasnikov, A.: An accelerated directional deriva-
tive method for smooth stochastic convex optimization. Eur. J. Oper. Res. 290(2),
601–621 (2021). https://doi.org/10.1016/j.ejor.2020.08.027

16. Frank, M., Wolfe, P.: An algorithm for quadratic programming. Naval Res. Logis-
tics Q. 3(1–2), 95–110 (1956). https://doi.org/10.1002/nav.3800030109

17. Freund, R.M., Grigas, P., Mazumder, R.: An extended Frank-Wolfe method with
“in-face” directions, and its application to low-rank matrix completion. SIAM J.
Optim. 27(1), 319–346 (2017). https://doi.org/10.1137/15m104726x

18. Garber, D., Kretzu, B.: Improved regret bounds for projection-free bandit convex
optimization. In: International Conference on Artificial Intelligence and Statistics,
pp. 2196–2206. PMLR (2020)

19. Garber, D., Wolf, N.: Frank-Wolfe with a nearest extreme point oracle. In: Con-
ference on Learning Theory, pp. 2103–2132. PMLR (2021)

http://arxiv.org/abs/2205.13910
https://doi.org/10.1080/10556788.2020.1858297
https://doi.org/10.1080/10556788.2020.1858297
http://arxiv.org/abs/2211.14103
https://doi.org/10.1561/9781601988614
http://arxiv.org/abs/2009.14114
https://doi.org/10.1007/s10957-016-0949-3
https://doi.org/10.1007/s10957-016-0949-3
https://doi.org/10.1007/978-3-031-09607-5_2
https://doi.org/10.1016/j.ejor.2020.08.027
https://doi.org/10.1002/nav.3800030109
https://doi.org/10.1137/15m104726x


Zero-Order Stochastic Conditional Gradient Sliding Method 105

20. Garber, D.: Linear convergence of Frank-Wolfe for rank-one matrix recovery with-
out strong convexity. Math. Program. 199, 1–35 (2022). https://doi.org/10.1007/
s10107-022-01821-8

21. Gasnikov, A., Gasnikova, E.: Traffic assignment models. Numerical aspects. arXiv
preprint arXiv:2003.12160 (2020)

22. Gasnikov, A., et al.: The power of first-order smooth optimization for black-box
non-smooth problems. arXiv preprint arXiv:2201.12289 (2022)

23. Gasnikov, A., Dvinskikh, D., Dvurechensky, P., Gorbunov, E., Beznosikov, A.,
Lobanov, A.: Randomized gradient-free methods in convex optimization. arXiv
preprint arXiv:2211.13566 (2022)

24. Goldfarb, D., Iyengar, G., Zhou, C.: Linear convergence of stochastic frank Wolfe
variants. In: Artificial Intelligence and Statistics, pp. 1066–1074. PMLR (2017)

25. Gorbunov, E., Dvinskikh, D., Gasnikov, A.: Optimal decentralized distributed algo-
rithms for stochastic convex optimization. arXiv preprint arXiv:1911.07363 (2019)

26. Gorbunov, E., Danilova, M., Gasnikov, A.: Stochastic optimization with heavy-
tailed noise via accelerated gradient clipping. Adv. Neural. Inf. Process. Syst. 33,
15042–15053 (2020)
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Abstract. Personnel scheduling is an active research field motivated by
not only economic considerations but also the understanding of impor-
tance of improving working conditions and fairness in assigning employ-
ees to tasks. A large number of daily tasks and an expanding staff require
effective automation of the task allocation process. In the problem under
consideration, given sets of tasks and staff, it is required to assign the
certain number of employees to each task, taking into account their skills.
The goal is to minimize penalties induced by conflicting assignments as
well as by uneven workload of the staff. To solve the problem, a two-phase
heuristic consisting of a greedy heuristic followed by a randomize tabu
search has been developed. Computational experiments shows that the
proposed approach allows us to find optimal or near-optimal solutions
on instances corresponding to real-life problems.
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1 Introduction

Personnel scheduling problems have been attracting a growing attention from
both research community and industry in the last decades [3,8,11,12,35]. The
active research in this field is motivated by not only economic considerations
but also the understanding of importance of improving working conditions and
fairness in assigning employees to tasks. This problem is common for many com-
panies regardless of the branch of economy. Personnel costs may make up a
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significant part of operational expenses, hence it is of utter importance to sched-
ule the workforce in a most efficient way in order to reduce the corresponding
costs. At the same time, if work schedules take into account only costs, then
employees may often be unsatisfied. This in turn may provoke the turnover,
increase work-related fatigue [37], substantially decrease productivity, and even
cause staff absenteeism.

Though personnel scheduling problems may include different objectives and
constraints, they all suppose that there is a set of staff members or employees,
who must be assigned to a set of tasks or shifts subject to specific industrial con-
straints. In particular, unique schedule requirements specific to many industries
and business enterprises demand appropriate mathematical models and algo-
rithms. The scheduling process is quite complex and involves many sub-tasks
like modelling demand in workforce over the planning horizon, planning days
off, constructing shifts (what tasks must be executed and by what number of
employees in order to satisfy demand), task assignment, etc. [12].

Due to a large number of variations and goals of personnel scheduling, there is
a huge amount of research in this direction. As the problem is highly application-
oriented, most of the related research papers address specific problems arisen in
the corresponding industry. For example, a huge body of the literature deals
with personnel scheduling in the transportation industry, e.g. railways [20] and
airlines [19,22,36], where it is often referred to as crew scheduling. Another
traditional, vital application is to roster shifts for nurses and physicians [6,10].
Actually, the nurse rostering problem is one of the traditional widely addressed
personnel scheduling problems dated back to 1960s.

Personal scheduling is usually carried out in three principal stages: (i) staffing,
(ii) shift scheduling, and (iii) rostering [4,32]. They may be considered separately
(one by one) or combined. The first one is to determine the number of personnel
of the required skills sufficient to meet the requirements during a given time
interval. The second stage aims at identifying shifts or tasks and determining
the required skills and the number of staff members of those skills needed to
meet the workforce demand. The last stage is to schedule all the employees over
the time horizon, i.e. assign them to the shifts subject to specific workplace rules
(for example, the number of days off).

In this paper, we consider a personnel rostering problem that is supposed to
be solved on a daily basis. Each day, a new set of tasks is allocated. They must be
executed by a set of employees or staff members. The set of employees is divided
into several subsets. Employees in the same subset have the same skills, i.e. they
are able to execute the same tasks. A task is assumed to be completed if the
required number of staff members is assigned to it. Some limited amount of tasks
can be failed or left uncompleted, i.e. there are no employees assigned to these
tasks. This number is given and is a parameter of the problem. One employee can
be assigned to several tasks. However, some assignments may induce penalties,
e.g. if tasks have the same or close starting time, or they are far away from each
other (spaced in time). or some of the tasks require violating day off require-
ments, etc. The problem assumes additional constraints on the workload of the
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employee subsets, i.e. the workload (the number of tasks assigned) of all employ-
ees in the same group should be as close as possible. Difference in workload is
also penalized.

The aim of the problem is to assign staff to all necessary tasks minimizing the
total penalty value, i.e. minimize the penalty induced by assigning staff members
to conflicting pairs of tasks and by unbalanced workload of the employee subsets.
One can see that the problem relates to the third stage of the personal scheduling
process, and the outputs of the two previous stages are supposed to be known.
As far as we know, exactly the same personnel rostering problem has not been
considered in the literature.

Real-life instances of the problem can involve more than 250 employees and
more than 1000 tasks (which leads to huge amounts of variables in the model)
are hard to solve by a general MIP solver. Such instances appear to be hard
to solve by a general MIP solvers. To obtain high-quality feasible solutions, the
problem requires developing a problem specific solution approach.

As far as we know, the aforementioned problem can be viewed as a variation
and extension of several problems proposed in the literature. First of all, the
problem is closely related to the fixed job scheduling problem, where there is a
set of tasks with given starting and ending times that must be executed non-
preemptively. Given a set of identical processors that can perform one task per
time, one has to assign tasks to processors in a feasible manner in order to mini-
mize the number of processors. A very similar problem, called the heterogeneous
workforce scheduling problem or the numbers of workers minimization problem,
was addressed in [34]. Here, an additional requirement is that each task can
be assigned not to all processors but only to some pre-specified subset. Apart
from minimizing the number of employed processors, the authors propose to
use several other objective functions, e.g. cost minimization or making the best
use of a given workforce. In [14], the authors extend the conventional fixed job
scheduling problem by introducing several specific constraints related to the bus
transportation industry. Another closely related problem was studied in [1,27],
where each job is assigned a weight. As opposed to the previous problem, the
goal is to minimize the total value of the jobs left uncompleted.

Recently, the problem from [34] was reintroduced in [26] as the shift min-
imization personnel task scheduling problem (SMPTSP). Indeed, the problem
objective is to minimize the number of personnel assigned to complete a given
set of tasks with starting time and ending time provided. Each staff member
is supposed to have skills to perform only some subset of tasks. The authors
claim that such a problem is a variant of a more general personnel task schedul-
ing problem [25], which can incorporate various objectives. The authors develop
a Lagrangian heuristic and Wedelin’s type algorithm to find quality solutions
for large scale instances. In [33] the authors proposed a two-stage heuristic for
SMPTSP composed of three types of constructive heuristics followed by a local
branching heuristic. Other solution approaches to SMPTSP include a three-stage
metaheuristic [30], a relax-and-fix heuristic [5], 3-phase algorithm based on the



112 I. Davydov et al.

iterated greedy technique [29], a decomposition-based greedy algorithm [21], a
constraint programming technique [13], etc.

Note that the aforementioned problems and the problem studied in this paper
can also be viewed as a interval scheduling problem. A thorough survey of such
problems is given in [24].

A more general variant of SMPTSP is studied in [28] where the goal is to
design shifts and assign staff members in order to achieve the equity objective
function, i.e. minimize the difference between obtained and targeted workload
of employees.

There are also some general solution frameworks suitable for solving a wide
range of different employee scheduling problems [23].

An example of employee workload balancing aspect is addressed in [9] for
airline crew rostering. The goal is to minimize the total deviation of working
time obtained from the standard working time.

For the introduced personnel scheduling problem, we propose a two-phase
approach consisting of a greedy constructive heuristic followed by a randomized
Tabu Search approach (TS). Note that TS is considered as one of the most
popular metaheuristics widespread in diverse applications. The idea of TS was
presented and formalized by Glover [16–18]. Comprehensive surveys about the
approach details and its numerous applications can be found in [15,31].

The paper is structured as follows. The problem statement and its MIP
formulation is described in Sect. 2. The details of the solution approach are
given in Sect. 3. The effectiveness and efficiency of the proposed approach are
illustrated in a series of computational experiments on real life instances in
Sect. 4.

2 Problem Statement and MIP Formulation

In this section, we provide a mathematical formulation of the proposed personnel
rostering problem. Recall that there is a set of tasks I and a set of staff members
S (divided into groups G) who have skills to execute only some subset of tasks.
Each task has the starting time and ending time and requires a certain number
of staff members to be completed. A pre-specified number of tasks can be failed.
A staff member can be assigned to multiple tasks, although some assignments
lead to penalty. Penalty value becomes higher if tasks starting times are close
to each other or the time space between tasks is large enough. In both cases, an
employee wouldn’t be able to complete both task in time and will cause a delay.
Note that we suppose that the penalties are already computed using an interval
graph that defines conflicting tasks. Fairness aspect also plays an important role
in big teams. It is preferable if all the staff members within a group have the
same workload.

First of all, let us introduce the following additional notations:

1. G is a set of groups of staff,
2. ai denote the number of staff members required to complete task i, ai ∈ Z≥1,
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3. Si is a set of staff from S that can be assigned to task i ∈ I (have skills to
execute the task), Si ⊂ S.

4. wij is a penalty for taking both tasks i and j. Penalty values are computed
based on time space between tasks and their execution time. wij ∈ Z≥0,
i, j ∈ I.

5. K is the number of tasks that can be failed.
6. C is a penalty for unbalanced load in the group.

Let us introduce the binary variables:

xis =
{

1, if staff member s is assigned to task i,
0, otherwise.

zsij =
{

1, if staff member s isassigned to conflicted pair of tasks i and j,
0, otherwise.

di =
{

1, if task i is failed,
0, otherwise.

We also introduce the variable ygmin equals minimal load of the staff member in
group g and variable ygmax equals maximal load of the staff member in group g.

With these notations, the problem is

min
( ∑
i,j∈I

∑
s∈S

wijzsij + C
∑
g∈G

(ygmax − ygmin)
)

(1)

∑
s∈Si

xis = (1 − di)ai, i ∈ I, (2)

∑
i∈I

di ≤ K, (3)

zsij ≥ xis + xjs − 1, i, j ∈ I, s ∈ Si ∩ Sj , (4)

ygmax ≥
∑
i∈I

∑
s∈g

xis, g ∈ G, (5)

ygmin ≤
∑
i∈I

∑
s∈g

xis, g ∈ G, (6)

zsij , xis, di ∈ {0, 1}, i, j ∈ I, s ∈ S, (7)
ygmax, ygmin ∈ Z+, g ∈ G. (8)

Goal function (1) calculates the total penalty induced by the staff assignment
plus the total penalty for unequal workload within each group. Set of constraints
(2) forces to assign the required number of staff members to each task, if the
task is not failed. Constraint (3) allows to fail at most K tasks. Inequalities (4)
bind variables xis and zsij , i.e. they force zsij = 1 if both assignments xis and
xjs are made. Finally, inequalities (5) and (6) define the values of ygmin and
ygmax variables.

The considered problem has the same basic structure as many rostering prob-
lems (e.g. [2]) and appears to be not tractable by MIP solvers due to high number
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of variables and specific landscape of the goal function. An instance of the prob-
lem becomes even more challenging when the total amount of tasks is moderate,
thus allowing allocating the staff members without conflicts. The reason is prob-
ably in the presence of numerous allocations with the same goal function value
that happens due to the high symmetry level of the model. We note that although
the statement of the problem implies integer values of all variables, one can omit
these constraints for zsij , ygmax and ygmin variables for i, j ∈ I, s ∈ S, g ∈ G.
We also note that the dimension of the problem can be sufficiently reduced on
instances, where the wij matrix is sparse, as there is no need to introduce zsij
variable and the corresponding constraint (4) if the value of wij is zero. How-
ever, even after these simplifications, the problem still remains difficult for MIP
solvers.

3 Solution Approach

In this section, we will describe a heuristic approach to solve the problem. The
first phase of the approach is devoted to the construction of the initial solution.
To this end, we propose a greedy constructive heuristic which performs as follows.
It begins the construction of a solution from scratch. In each step, it picks a task
from the task set in a predefined order and seeks for a staff member who is suited
most for the task. To this end, for each candidate, it calculates the penalty value
that will be induced by the assignment of the candidate to this task. If there are
several candidates with the same minimal penalty value, the task is assigned to
the less loaded candidate, i.e. the one whose number of already assigned tasks
is the smallest.

Algorithm 1. Constructive greedy heuristic
1: for i ∈ I do
2: for s ∈ Si do
3: calculate penalty Pis for xis

4: if Pis ≤ bestval then
5: bestcand = ∅, bestcand ← s, bestval = Pis

6: end if
7: if Pis = bestval then
8: bestcand ← s
9: end if

10: end for
11: assign s from bestcand with smallest load to task i
12: end for

The procedure can be easily randomized to provide a variety of outputs by
disturbing the sequence of the tasks in the outer loop. This allows us to run the
procedure several times with different input task sequences and choose the best
solution found as an output.
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Note that at this step a simplified version of the goal function is used, i.e.
we do not consider the second therm directly. The procedure is focused on min-
imization of the penalty value induced by task assignments, while the workload
balancing is carried out only indirectly.

If the value of K > 0, i.e. a number of tasks can be omitted is non-zero, the
presented approach is followed by a similar post-processing procedure: during at
most K steps, we choose the task with the largest penalty value and exclude it
from the solution. The procedure terminates when either K tasks are excluded
from the solution or the total penalty value is zeroed. Although there is no
straightforward motivation in the model to complete as many tasks as possible,
such a solution will always be preferable.

3.1 Tabu Search

In order to improve the solution S0 found by the greedy algorithm, it is fed as
a starting point for the Tabu search approach. We develop a simple and fast
variant of tabu search that employs a randomized neighborhood search and a
simple tabu list structure. A general outline of our procedure is presented in
Algorithm 2. Here Z(S) is the goal function value of the solution S.

Algorithm 2. Randomized Tabu Search
1: Initialization: S∗ ← S0; S ← S0; tabuList ← S0.
2: while Stopping Condition does not hold do
3: Generate a randomized neighborhood Ns ← getNeighbors(S).
4: for (S′ ∈ Ns) do
5: if (S′ /∈ tabuList) ∧ (Z(S′) < Z(S)) then
6: S ← S′

7: end if
8: end for
9: if Z(S) < Z(S∗) then

10: S∗ ← S
11: end if
12: Update tabuList
13: end while
14: return S∗.

We use two types of neighborhoods. The first one, Swap neighborhood, con-
sists of all solutions which are obtained from the incumbent by reassigning one
task of one staff member to another staff member. All solutions in such neighbor-
hood have the same number of completed tasks. The second one, Switch neigh-
borhood, is constructed from the incumbent solution by “switching off” one (i.e.
we decide to skip this task and do not assign any employee to it) of the tasks
and “switching on” another one. This neighborhood is used only if K > 0. We
note that both neighbourhoods do not change the number of completed tasks.
This number is defined and fixed during the run of a greedy heuristic. In order to
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reduce the calculation time, we exploit the idea of randomized neighbourhood.
During the search, we examine not the whole set of neighbouring solutions, but
only a small random subset, i.e. each solution from the Swap or Switch neigh-
bourhoods is examined only with a given probability pn > 0. It is known that
such a trick allows one to sufficiently reduce the calculation time without any
significant reduction in solution quality [7].

As was noted above, we use a simplified version of the tabu list to reduce
the computational efforts on checking whether a solution is contained in the list
or not. Thus, tabu list contains not the entire solutions, but only last moves,
i.e. the task that has been reassigned to another staff or “switched off” becomes
“tabooed” for a number of consecutive iterations. We also note that in our tabu
search procedure, we use a modified version of the objective function to over-
come the high symmetry of the model. To this end, we introduce another term
to the objective function that evaluates not only the difference in load between
the members of a group but also the amount of members whose load is different
from the biggest load and smallest load within the group. I.e. for each group with
imperfect workload balance we calculate sgdiff = minng − ngmin, ng − ngmax,
where ng is the size of the group g, while ngmin and ngmax define the number
of staff members in the group with minimal and maximal load correspondingly.
These values are then added to the goal function during the evaluation of the
neighbouring solution. Such modification allows us to drive the search process
towards more balanced solutions, as it tends to reduce the number of staff mem-
bers with extremal workload values.

4 Computational Experiments

In this section, we present the results of computational experiments, performed
on the data samples related to a real-life personnel scheduling.

In the first series of experiments, we consider the data set, which consists of
7 instances of the problem: test0, test2, test3, test4, test5, test6, test9.
These instances are related to a planning of a huge international airport. The
dimensions of the instances are presented in Table 1. Bigger instances (test6,
test9) are related to a full 24 h schedule of the airport, while smaller ones rep-
resent some parts of the day. Total load here refers to the sum of all ai values,
i.e. the total number of required assignments to be made.

Table 1. Instance size

Param test0 test2 test3 test4 test5 test6 test9

Num of staff 18 18 18 249 249 249 64

Num of groups 2 2 2 6 6 6 4

Num of tasks 10 10 30 151 591 1385 1465

Total load 15 15 30 250 975 2215 2327
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4.1 MIP Solvers

Using the formulation proposed above, we tried to solve the instances with two
well-known MIP solvers: free-distributed SCIP solver and commercial IBM ILOG
CPLEX. The results are as follows. In 1 h of running time both solvers were able
to solve to optimality instances test0, test2, which are of small size (10 tasks,
18 staff members). Instance test3 appeared to be infeasible: 11 out of 30 tasks
have no performers listed. If we exclude these tasks, the problem can also be
solved optimally by both solvers in less than 1 sec.

Remaining 4 instances appeared to be more complex for MIP solvers. Indeed,
in 1 h of running time optimal solution was found only for test5 instance and
only by the CPLEX solver. The scope of the obtained results is presented in
the Table 2. Instances test9 0, test9 10 4 and test9 10 5 refer here to the same
instance test9 but with a different penalty for imbalanced workload - 0, 104

and 105 respectively. In all other instances, this value equals 104. Due to the
extremely overloaded schedule in test9, in this instance different penalty values
provide a sufficient difference in solutions obtained. Scope of these results are
presented in Table 2. Here nvars and ncons provides the number of variables
and constraints in the corresponding MIP model. Column non − zeroes gives
the information of the density of the constraint matrix, the number of non-zero
elements. The upper bound value, obtained by SCIP solver, is given in S ub. The
lower and upper bounds, provided by CPLEX solver are contained in CP lb and
CP ub correspondingly.

Table 2. Results obtained with the MIP solvers

Name nvars ncons non-zeroes S ub CP ub CP lb

test4 174479 274883 898079 26668 3516 0

test5 174479 274883 898079 26668 10000 (opt) 10000 (223s)

test6 2236247 3785121 1893253 2770472 141600 0

test9 0 833601 1481403 4603812 5695152 5141160 0

test9 10 4 833601 1481403 4603812 5695152 1732004 0

test9 10 5 833601 1481403 4603812 5695152 48350040 0

Although we observe that CPLEX is able to provide much better upper
bounds than SCIP, the lower bounds found by both solvers in 1 h remain zeroes,
thus making the GAP ≥ 100%.

4.2 Tabu Search

In this subsection, we provide the results obtained with Tabu search approach.
During the initial testing, we set the following values of the parameters. We set
pn = 0.05, thus we exploit only 5% of the neighborhood. Length of the tabu list
is set to 7 iterations. The termination criterion is the running time in seconds.
In particular, we set it to 10 s.
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The approach is able to find the optimal solutions for instances test0, test2,
test3* even if we reduce the calculation time to 1 s. Results, obtained for bigger
instances are presented in Table 3. Columns ntasks, nstaff, load represent the size
of the instance, i.e. the number of tasks, the number of staff members available,
and the total amount of workload. The latter is the sum of task requirements.
CFvalue represents the total conflict penalty induced by assignments in the
resulting solution. Imb shows the total imbalance in working groups, and ImbP
is the penalty for one unit of imbalance in the goal function. Column total is the
sum of CFvalue and ImbP , which is the goal function value. Column totalGR
is added to the table for comparison. It shows the goal function value of the
solution, obtained with the greedy approach. Finally, the MIP column contains
the best upper bound for the problem found within an hour by a MIP Solver.
We note that, although the presented approach is randomized, and thus does not
guarantee the same output on different runs with the same input data, during
this experiment, we observed identical results during 20 runs on each instance.
The calculation time provided is also seems to be enough as the TS approach
tends to find the best known solution in less than 2 s of computational time. As it
can be observed from the table, for instance test4 our approach was unable to find
the optimal solution. The best solution found so far contains no conflicts, but one
group of workers has an imbalanced load, while the solution, found by CPLEX
solver is perfectly balanced, but contains a number of conflicting assignments.
Test instance 5 is solved optimally by both MIP solver and our approach. On all
other instances, the proposed approach significantly outperforms the commercial
CPLEX solver. In our opinion, it happens due to the significant growth of the
dimension of the instance and thus the number of variables and constraints in
the model. On these instances, even an initial solution, obtained with greedy
approach, appears to be better, although it still can be significantly improved
by local search.

Table 3. TS results, 10 sec run time

Name ntasks nstaff load CFvalue Disb DisbP totalGR total MIP

test4 249 151 250 0 1 10000 40000 10000 3516

test5 249 591 975 0 1 10000 30000 10000 10000

test6 249 1385 2215 43500 3 10000 130580 73500 141600

test9 64 1465 2327 1198920 27 0 1495860 1198920 5141160

test9 64 1465 2327 1222560 9 10000 1685860 1312560 1732004

test9 64 1465 2327 1264320 8 100000 3395860 1364320 48350040

5 Conclusion

In this paper, we consider a new personnel rostering problem aimed at mini-
mizing the total penalty value induced by assignments of employees to specific
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pairs of tasks and by imbalanced workload in the groups of employees. We pro-
pose an integer programming formulation of this problem. As real-life problems
instances turn out to be not tractable by general MIP solvers, we developed a
fast two-phase solution approach based on a randomized tabu search heuristic.

Our future research may be focused on extending the proposed problem for-
mulation by incorporating new objectives or considering joint shift scheduling
and personnel rostering.
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Abstract. Given a sequence of bins and n bar charts consisting of two
bars each (2-BCs). Every bar has a positive height not exceeding 1. Each
bin can contain any subset of bars of total height at most 1. It is required
to pack all 2-BCs into the minimal number of bins so that the bars of each
2-BC do not change their order and occupy adjacent bins. Previously, a
special case of the problem was considered where the first bars of any two
2-BCs cannot be placed into the same bin. For this case an O(n2)-time
algorithm that constructs a packing of length at most OPT + 1, where
OPT is the optimum, was presented. In this paper, we propose a new,
less time-consuming algorithm that also constructs a packing of length
at most OPT +1 for the same case of the problem with time complexity
equals to O(n log n).

Keywords: Bar charts · Packing · Approximation

1 Introduction

The following problem of investment portfolio optimization in the oil and gas
field was studied in [7]. All projects are characterized by the annual oil or gas
production which can be represented using a bar chart (BC). The height of each
bar corresponds to the volume of production during the current year. The total
production volume of all projects must not exceed a given value for each year,
which is due, for example, to the throughput of the pipe. The problem is to
determine the start year of each project in such a way as to finish them in the
shortest possible time.

This problem was called a Bar Charts Packing Problem (BCPP) and formu-
lated as follows. Given a set of n bar charts, each bar has a height at most 1
and unit length. All BCs are required to pack in a unit-height strip of minimum
length. If we split the strip into equal unit-width bins of height 1, then the pack-
ing length is the number of bins containing at least one bar. When packing BCs,
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crossing bars are naturally prohibited. Each BC’s bar can move vertically, but
they are inseparable horizontally and cannot change their order.

The BCPP was first formulated in [8] and its various subproblems were stud-
ied in [9–13]. In this paper, we focus on the special case of the Two-Bar Charts
Packing problem (2-BCPP), where each BC consists of two bars. This problem
is a generalization of the Bin Packing Problem (BPP) [20] and a relaxation of
the Two-Dimensional Vector Packing Problem (2-DVPP) [23].

1.1 Related Results

In the BPP, items with given sizes must be packed in the minimal number of
unit-capacity bins. BPP is a particular case of 2-BCPP when each 2-BC con-
sists of equal bars. Assuming P �= NP , BPP cannot be approximated within
the ratio less than 3/2 [15,27]. As shown in [26], this ratio is achieved by First
Fit Decreasing algorithm in which items are sorted in non-increasing order of
their sizes, and the current item is placed in the first suitable bin. Note that the
proof of non-approximability uses very special instances when OPT is a small
number, such as 2 or 3, even though the number of items unbounded. There-
fore, to estimate the accuracy of approximation algorithms for the bin packing
problem, an asymptotic approximation is used. For example, in the worst case,
the First Fit Decreasing algorithm uses at most 11/9OPT +6/9 bins to pack all
items [5]. Moreover, Fernandez de la Vega and Lueker [14] proposed an asymp-
totical polynomial-time approximation scheme for the BPP. They showed that
for any fixed ε > 0, there exists a polynomial-time algorithm with asymptotic
worst-case ratio not exceeding 1 + ε. Also, BPP admits an AFPTAS [22], and
an additive approximation algorithm which packs any instance I in at most
OPT (I) + O(log(OPT (I))) bins [19].

In the 2-DVPP, which is a generalization of the BPP, there are two attributes
for items and bins. The problem is to minimize the number of used bins when
all items are packed, considering both attributes of the bin’s capacity limits. In
2003, an O(n log n)-time algorithm for the 2-DVPP with absolute performance
guarantee 2 was proposed [23]. A detailed survey of approximation algorithms
for the 2-DVPP can be found in [4]. The best known algorithm builds a (3/2+ε)-
approximate solution, for any ε > 0 [2]. On the other hand, the 2-BCPP is a
relaxation of the 2-DVPP and any ρ-approximation algorithm for the 2-DVPP is
a 2ρ-approximation algorithm for the 2-BCPP [12]. In 1997, Woeginger showed
that there is no asymptotic polynomial time approximation scheme for the 2-
DVPP unless P = NP [28].

The Two-Bar Charts Packing problem is also a special case of the Resource-
Constrained Project Scheduling Problem (RCPSP) with one renewable resource
[3]. Each project is consisting of two unit-duration jobs, which must be executed
without delay consuming a limited non-accumulative resource. Each project can
be represented as a 2-BC in which the value of the consumed resource corre-
sponds to the height of the bars. It is required to find the starting time for each
project in order to finish all projects during the minimum time and no more than
given amount of resource consumes during each time slot. The RCPSP problem is
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NP-hard and polynomial algorithms with worst-case performance are not known
for it. Generally, for such a problem heuristic algorithms are used followed by a
posteriori analysis [16–18,24].

As far as we know, there are only few papers devoted to the 2-BCPP prob-
lem. Since this problem is a generalization of the bin packing problem, which is
strongly NP-hard, then 2-BCPP is strongly NP-hard as well. In [8], a linear time
algorithm for the 2-BCPP was proposed. It builds a packing of length at most
2OPT +1, where OPT is the minimum packing length. Later, it was shown that
the additive constant could be removed and the estimate could be reduced to
2OPT .

The following subproblem of the 2-BCPP was studied in [9–12]. Given a set
S of n 2-BCs. Let ai be the height of the first bar and bi be the height of the
second bar of the 2-BC i ∈ S. A bar is called big if it is higher than 1/2. A
2-BC is called big if at least one of its bars is big, i.e., max{ai, bi} > 1/2. Let
us denote the 2-BCPP problem with big 2-BCs as 2-BCPP>. As shown in [12]
the 2-BCPP> is strongly NP-hard. In the same paper, the authors presented an
O(n2)-time (4/3 OPT + 2/3)-approximation algorithm for the 2-BCPP>.

The 3-BCPP problem of packing bar charts with three bars in each BC was
considered in [13], and a linear time algorithm, which constructs a packing of
length at most 3OPT+2, was proposed. Later, the additive constant was reduced
to 1. If at least two bars of each 3-BC are big and a small bar, if it exists, is
not a second, it was shown how to find a 9/8-approximate solution with time
complexity O(n2.5). Moreover, if at least one bar of each 3-BC is big it was
proven that 3-BCPP remains strongly NP-hard.

In [12], the particular case of the 2-BCPP>, in which an additional restriction
was imposed on the set of feasible solutions, was considered. In what follows, we
will need the following definitions.

Definition 1. Packing is a function p : S → [1, 2n − 1], which associates with
each 2-BC i ∈ S the bin number p(i) where its first bar falls. The packing is
feasible if the sum of the bar’s heights that fall into each bin does not exceed 1,
i.e., for each bin e, 1 ≤ e ≤ 2n, the inequality

∑

i∈S:p(i)=e

ai +
∑

i∈S:p(i)+1=e

bi ≤ 1

holds.

Definition 2. The packing length L(p) is the number of bins in which at least
one bar falls.

As a result of packing p, the first bar of 2-BC i falls into the bin p(i) and the
second bar falls into the bin p(i) + 1. We will consider only feasible packings;
therefore, the word “feasible” will be omitted further.

Definition 3. A packing p is linearly ordered if for any two 2-BCs x, y ∈ S we
have p(x) �= p(y).
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We note that with a linearly ordered packing, each bin contains no more
than two bars. In particular, if the first (second) bar of each 2-BCs is big, then
this condition holds. For this case Erzin et al. [12] proposed an O(n2)-time
algorithm that finds a solution with packing length of at most OPT +1. In this
paper, we present a new algorithm for the same case that constructs a solution
with identical error with complexity equals O(n log n). Our algorithm based on
construction a max-cardinality matching in a special bipartite graph with further
alteration of the resulting cycles (if any) into one path. In [8], the algorithm A,
which constructs a packing of arbitrary 2-BCs into at most 2OPT +1 bins, was
presented. It consists of three stages. The new algorithm can be used at the
second stage of the algorithm A instead of greedy procedure while packing the
big 2-BCs. We are planning to compare these two approaches in the future.

Let us denote the problem of finding a min-length linearly ordered packing
of 2-BCs as 2-BCPP1.

The rest of the paper is organized as follows. Section 2 provides a statement
of the problem as a Boolean Linear Programming (BLP). In Sect. 3, we describe
the constructing of the special bipartite graph. Section 4 is devoted to finding
the max-cardinality matching in the constructed graph. Section 5 describes the
algorithm that forms one path from the cycles, if they exist, and the last section
concludes the paper.

2 Formulation of the Problem

The BLP formulation for 2-BCPP was first presented in [8]. We present it here
for the reader’s convenience. To do this, we introduce the variables:

xij =
{
1, if the first bar of the ith 2-BC falls into the bin j;
0, else.

yj =
{
1, if the bin j contains at least one bar;
0, else.

Then 2-BCPP in the form of BLP is as follows.
∑

j

yj → min
xij ,yj∈{0,1}

; (1)

∑

j

xij = 1, i ∈ S; (2)

∑

i

aixij +
∑

k

bkxkj−1 ≤ yj , ∀j. (3)

In this formulation, criterion (1) is the minimization of the packing length.
Constraints (2) require each 2-BC to be packed into a strip once. Constraints
(3) ensure that the sum of the bar’s heights in each bin does not exceed 1.
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3 Bipartite Graph Constructing

In this section, we show how to construct a special bipartite graph for a given
set of 2-BCs, where the maximal matching can be found in linear time.

Definition 4. Two 2-BCs i and j form a 1-union if as a result of packing p
either p(i) = p(j) + 1 or p(j) = p(i) + 1. 2-BC i forms a 1-union on the left (on
the right) with 2-BC j if the first bar of i is located on the left (right) of the first
bar of j. We denote such union as i←j (i→j).

In the linear ordering packing each 2-BC can participate in the left and
right 1-unions no more than once. We sort 2-BCs in non-increasing order of the
height of the first bar and number them with integers 1, . . . , n. Let us construct
a weighted complete directed 1-union graph G = (V,E) as follows. The vertices
in V are the images of 2-BCs, and an arc (i, j) ∈ E has weight 1 if and only
if 1-union i → j is possible (Fig. 1a). The weights of other arcs are equal to
0. For convenience, we will further identify the vertices and 2-BCs, i.e., vertex
i forms a 1-union with vertex j corresponds to 2-BCs i and j form a 1-union.
Then the 2-BCPP1 is reduced to the maximum asymmetric traveling salesman
problem with arcs weights 0 or 1 (MaxATSP(0,1)) [11]. Indeed, a max-weight
Hamiltonian cycle in G defines a min-length packing for the 2-BCPP1, since each
1-union decreases the packing length by 1.

Let us define a correct bipartite graph G1 = (S1, S2, E1) as follows. For
definiteness, we call set S1 the left and S2 the right parts of the bipartite graph.
Each vertex in S1 corresponds to 2-BC which can form a 1-union on the left, and
each vertex in S2 corresponds to 2-BC which can form a 1-union on the right.
Note that for each 2-BC it is possible to be included into both sets. The vertices
in S2 are ordered from top to bottom in non-increasing order of the height of
the first bar. The edge (i, j) ∈ E1 if i �= j and i ← j (Fig. 2a). We assign to each
vertex in S1 a label equals to the smallest number of the adjacent vertex in S2.
The vertices of the left part are ordered from top to bottom in non-decreasing
order of the assigned labels.

Fig. 1. a) The set of 2-BCs and corresponding 1-union graph; b) Optimal packing and
max-weight path.
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Fig. 2. a) Bipartite graph for 1-union graph in Fig. 1; b) Maximum matching (red bold
lines).

Maximum matching in the correct bipartite graph defines a subset of arcs.
If this subset does not form any cycle in the 1-union graph, then it defines an
optimal packing (Fig. 1b), since cardinality of the maximum matching in G1 is
an upper bound on the number of 1-unions (Fig. 2b). Another case, when cycles
exist, will be considered in Sect. 5.

3.1 Algorithm Construct

The algorithm Construct builds a correct bipartite graph with O(n log n) time
complexity. At the first stage, elements of S are numbered with integers 1, . . . , n
in non-increasing order of the heights of the first bar and form the set S2 placing
vertices from top to bottom according to their numbers. Then, algorithm sets
S1 = S2. After that, the elements of the left part S1 are rearranged from top
to bottom in non-decreasing order of the second bar’s height keeping the vertex
numbering. The second stage consists of a sequence of steps and allows to find
edges of the graph (i, j) ∈ E1, i �= j. Starting with the highest vertex i in the
left part, algorithm scans in numerical order the vertices of the right part until
it finds the first node j �= i, which can form a 1-union i ← j. Algorithm assigns
a label h(i) = j to the vertex i. As a result, the “highest” incident edge (i, j) for
the top left vertex i is found. Note that the highest edge defines all other incident
edges, i.e., if (i, j) ∈ E1, then (i, k) ∈ E1 for any k > j, k �= i, since ak ≤ aj .
For the next vertex in the left part algorithm finds a highest vertex in the right
part, which can form 1-union, starting from one node higher from the last found.
Algorithm stops when next vertex in the left part cannot form a 1-union on the
left with the last vertex in the right part or when all elements in S1 have assigned
labels. Then, all isolated vertices in S1 and S2 are deleted. Any 2-BC which do
not participate in any 1-union evidently occupies two bins. For the constructed
graph it is still possible to be incorrect. In this case, algorithm rearranges the
elements of the left part from top to bottom in non-decreasing order of the
assigned labels. In Fig. 3, we show the example of incorrect graph before last
rearrangement. The nodes 1 and 3 are lower than vertex 2, although they are
adjacent to the node 2, which is higher than the vertex 3 in the right part. After
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Fig. 3. Example of incorrect graph.

placing the vertices of the left part from top to bottom in non-decreasing order
of labels (4,1,3,2), a correct graph will be obtained.

Lemma 1. Algorithm Construct constructs correct bipartite graph in
O(n log n) time.

Proof. The graph is correct by construction. Ordering of sets S1 and S2 can be
implemented in O(n log n) time. Algorithm finds the edges of the bipartite graph
in linear time. The vertices of the left part are reordered, if necessary, at most
n times. The lemma is proved.

4 Maximal Matching in the Correct Bipartite Graph

As mentioned in the previous section, cardinality of a maximum matching in G1

is an upper bound on the number of 1-unions. Let M be the maximal matching.
We introduce an O(n)-time algorithm Max Matching to find M as follows.
Given the list S1, each vertex i of which is assigned a label h(i), and the list
S2. Set M = ∅. Algorithm performs a typical procedure, which consists of the
following. It considers the last (lowest) element i in S1. Since the label h(i) is
assigned to it, the vertex i is adjacent to each vertex k ≥ h(i), k �= i in the list S2

including the last (lowest) vertex j �= i. The edge (i, j) is added to the matching,
i.e., M = M ∪ {(i, j)}. Both vertices i and j are deleted from the S1 and S2,
respectively, together with their incident edges. The procedure is repeated for
the updated lists S1 and S2 until S1 �= ∅ or S2 �= ∅. It is possible for the vertices
to become isolated while removing other vertices together with their incident
edges. Algorithm deletes isolated vertices from the S1 and S2 and repeats the
procedure for the next last element in the S1.

Lemma 2. Algorithm Max Matching constructs a max-cardinality matching
in the correct bipartite graph with O(n) time complexity.

Proof. Recall that if (i, j) ∈ E1, then (i, k) ∈ E1 for any k ≥ j, k �= i. Given
correct bipartite graph, let i is the lowest vertex in the left part and (i, j) is its
lowest incident edge. We will show that there exists a max-cardinality matching
that contains the edge (i, j). Let M be an arbitrary maximal matching. If (i, j) /∈
M, then two following cases are possible:
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Fig. 4. Illustration for the proof of Lemma 2. a) Replacing (p, j) and (i, q) (red edges)
with (p, q) and (i, j) (blue edges); b) Replacing (a, b), (p, j), and (i, p) (red edges) with
(a, p), (p, b), and (i, j) (blue edges).

1. Vertex i is not incident to any edge in M ;
2. Vertex i is incident to some edge in M but not to the edge (i, j).

In the first case, vertex j is adjacent to another vertex of left part, say p. If
(p, j) replace with (i, j), the cardinality of M does not change.

In the second case, let (i, q) ∈ M and (p, j) ∈ M . We get one of the following
cases:

a) p �= q. Then, if (p, j) and (i, q) replace with (p, q) and (i, j), the cardinality
of M does not change (Fig. 4a).

b) p = q. The vertex i is lower than p in the left part of the graph. Therefore,
p is adjacent to some vertex in the right part which is higher than p, say b.
Otherwise, p is located lower than i in the left part. If vertex b is not incident
to any edge in the matching, replacing (p, j) with (p, b) does not change the
cardinality of M . Else, if b is incident in the matching to some edge (a, b),
replacing (a, b), (p, j), and (i, p) with (a, p), (p, b), and (i, j) does not change
the cardinality of M (Fig. 4b).

Thus, there is always max-cardinality matching with the lowest edge (i, j)
incident to the lowest vertex i ∈ S1. Algorithm includes the edge (i, j) in M
and deletes the vertices i and j with all incident edges from the graph. Then,
it considers next lowest vertex in the left part and repeats the same procedure
until S1 �= ∅ or S2 �= ∅. Max-cardinality matching in the correct bipartite graph
is constructed after one browsing of the vertices of the left part. So, the running
time of the algorithm Max Matching equals O(n). The lemma is proved.

5 Constructing a Solution to the 2-BCPP1

In this section we propose algorithm Delete Cycles, which constructs an
approximate solution to the 2-BCPP1 from the max-cardinality matching M .
Recall that we identify the vertices and 2-BCs. Each edge in the M defines a
corresponding 1-union. Since vertices can belong to both parts of bipartite graph,
matching edges can form not only paths, but also cycles in a 1-union graph. If
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the edges of M do not form any cycle in the 1-union graph, then this matching
determines an optimal solution to the 2-BCPP1. If there are cycles in 1-union
graph formed by M , algorithm makes one path from them, losing no more than
one arc. As a result, we get a packing of length at most OPT + 1.

5.1 Algorithm Delete Cycles

Note, that algorithm Construct numbers all 2-BCs in non-increasing order of
the height of the first bar. Algorithm Delete Cycles constructs the following
digraph G2 = (V2, E2). The elements of the set V2 are the images of 2-BCs
included in the M . The vertices are placed from left to right according to their
numbers. The arc (i, j) ∈ E2 if (j, i) ∈ M . Let us set a cycle counter m = 0.
Algorithm builds a sequence of arcs starting from the rightmost vertex until
it finds the end-node of the path or returns to the rightmost vertex forming
a cycle. In the first case, algorithm packs 2-BCs which are the prototypes of
vertices forming the path to the first empty bin according to the 1-unions in the
path. Let us call the vertices in this path visited. In the second case, algorithm
increases cycle counter by 1 and assigns to this cycle the counter value. The
nodes in the cycle are visited too. This procedure is repeated for the rightmost
unvisited vertex if it exists. Thus, after one browsing of the vertices, the quantity
m of cycles in G2 is known. Algorithm Delete Cycles rebuilds existing cycles
into one path decreasing the amount of arcs in the max-cardinality matching by
one. Let us consider the possible cases.

1. m = 1. In this case, algorithm deletes arbitrary arc in the cycle forming a
path. The number of arcs is reduced by one.

2. m = 2. Let (i, j) be the incoming arc to the vertex j with the smallest
number (leftmost) in the first cycle, and (k, l) be the incoming arc to the
vertex l with the smallest number (leftmost) in the second cycle. One of the
arcs (i, j) or (k, l) is outgoing from the vertex with greater number. Without
loss of generality, we assume that i > k. Algorithm deletes both arcs (i, j) and
(k, l) and adds an arc (i, l) decreasing the amount of arcs by one. In Fig. 5a,
we show the example with two cycles. Each subset of vertices {1, 3, 4, 9} and
{2, 5, 6, 7, 8} forms a cycle. In the example, algorithm deletes the arcs (3,1)
and (6,2) to the leftmost vertices in each cycle (Fig. 5b). Let us show that
adding the arc (i, l) is always correct. Three cases are possible:
(a) l < j < k < i (Fig. 6a);
(b) l < k < j < i (Fig. 6b);
(c) j < l < k < i (Fig. 6c).
Since all vertices are sorted in non-increasing order of the height of the first
bar, i > k, and there is a 1-union k → l, then a 1-union i → l is possible too.
One arc is removed in each cycle, namely (i, j) (red one) and (k, l) (blue one),
resulting in two paths. The algorithm combines these two paths into one by
adding arc (i, l) (green one) (Fig. 6).

3. m > 2. Algorithm forms one path from the m-th and (m − 1)-th cycles
in the same way as it was done for the case m = 2. For each next cycle
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Fig. 5. a) Example of two cycles in the graph; b) Arcs (3,1) and (6,2) are deleted.

Fig. 6. Illustration to the algorithm Delete Cycles. l is the leftmost vertex in the first
cycle, vertex i is adjacent to the leftmost vertex in the second cycle. a) case (a); b)
case (b); c) case (c). (Color figure online)

c = (m − 2), . . . , 1 algorithm performs the following procedure. The outgoing
from the rightmost vertex r arc is removed. A new arc from vertex r to the
end-node of the path built from the (c + 1)-th cycle is added. It is possible,
since the vertex with the highest number in the c-th cycle is located to the
right of the end-vertex of the built path. Thus, there is no decreasing of the
number of arcs when algorithm rebuilds the cycles c = (m − 2), . . . , 1.

Lemma 3. Algorithm Delete Cycles rebuilds existing cycles into one path
decreasing the amount of arcs of the max-cardinality matching exactly by one
in O(n) time.

Proof. As a result of one scan of m < n cycles, they were rebuilt in one path
with decreasing of the amount of arcs exactly by one. The lemma is proved.

5.2 OPT + 1 Approximation

Algorithm APX constructs an approximate packing.

Algorithm APX

Construct a bipartite graph by algorithm Construct
Find a max-cardinality matching by algorithm Max Matching
Rebuild all cycles in one path by algorithm Delete Cycles
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Theorem 1. Algorithm APX builds a packing of length at most OPT + 1 in
O(n log n) time, where OPT is the optimum of the 2-BCPP1.

Proof. Lemmas 1, 2 and 3 imply that the running time of algorithm APX is
O(n log n). Cardinality of a maximum matching in the correct bipartite graph
is an upper bound on the number of 1-unions. If the found maximal matching
forms any cycle in 1-union graph, then algorithm Delete Cycles decreases the
amount of arcs in the matching by one, resulting in the loss of only one possible
1-union. Hence, the length of the built packing is at most OPT +1. The theorem
is proved.

6 Conclusion

Previously, for the problem 2-BCPP1, an O(n2)-time greedy algorithm with
preliminary lexicographic sorting was proposed [12], which constructs a packing
of length at most OPT +1, where OPT is the length of the optimal packing. In
this paper, we propose a new, less time-consuming algorithm that also constructs
a packing of length at most OPT +1 for the same problem. The running time of
our new algorithm is O(n log n). Reducing the time complexity of linear ordering
packing is important, since in several packing algorithms it is used as a procedure
at some step.
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Abstract. In clustering problems, one has to partition a given set of
objects into pairwise disjoint subsets (clusters) taking into account only
similarity of objects. In the graph cluster editing problem similarity rela-
tion on the set of objects is given by an undirected graph whose vertices
are in one-to-one correspondence with objects and edges correspond to
pairs of similar objects. The goal is to find a nearest to a given graph
G = (V,E) cluster graph, i.e., a graph on the vertex set V each connected
component of which is a complete graph. The distance between graphs
is understood as the Hamming distance between their incidence vectors.

We consider a variant of the cluster editing problem in which the size
of each cluster is bounded from above by a positive integer s. In 2011,
Il’ev and Navrotskaya proved that this problem is NP-hard for any fixed
s � 3. In 2015, Puleo and Milenkovic proposed a 6-approximation algo-
rithm for this problem. In 2016, Il’ev, Il’eva and Navrotskaya presented
an approximation algorithm that is 3-approximation in case of s = 3 and
5-approximation in case of s = 4.

Now we propose simple greedy-type 2-approximation algorithms for
these cases with tight performance guarantees.

Keywords: Graph · Cluster editing · Approximation algorithm ·
Performance guarantee

1 Introduction

In clustering problems, one has to partition a given set of objects into pairwise
disjoint subsets (clusters) taking into account only similarity of objects. In graph
clustering problems similarity relation on the set of objects is given by an undi-
rected graph whose vertices are in one-to-one correspondence with objects and
edges correspond to pairs of similar objects. A version of this problem is known
as the Graph Approximation problem [1,4–6,12,14]. In this problem, the goal
is to find a nearest to a given graph G = (V,E) cluster graph, i.e., a graph on
the vertex set V each connected component of which is a complete graph. The
distance between graphs is understood as the Hamming distance between their
incidence vectors.
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Later, the Graph Approximation problem was repeatedly and independently
rediscovered and studied under various names (Correlation Clustering, Cluster
Editing, etc. [2,3,11]). Recently, the unweighted version of the problem was
named the Cluster Editing problem, whereas the Correlation Clustering problem
refers to statements with arbitrary weights of edges [10,11,13].

In different traditional statements of the graph Cluster Editing (CE) prob-
lem the number of clusters may be given, bounded, or undefined. We focus our
attention on a relatively new version of problem CE in which the size of every
cluster is bounded from above by a positive integer s.

Introduce now some definitions and notation.
We consider only ordinary graphs, i.e., the graphs without loops and multiple

edges. Denote by K2,K3 and K4 complete 2-, 3- and 4-vertex graphs, respec-
tively (edge, triangle and tetrahedron). Let Q4 be a graph obtained from K4 by
removing precisely one edge (absent edge).

An ordinary graph G = (V,E) is called a cluster graph if every connected
component of G is a complete graph [11]. Let M(V ) be the family of all cluster
graphs on the set of vertices V .

If G1 = (V,E1) and G2 = (V,E2) are ordinary graphs both on the set of
vertices V , then the distance d(G1, G2) between them is defined as

d(G1, G2) = |E1ΔE2| = |E1 \ E2| + |E2 \ E1|,
i.e., d(G1, G2) is the number of distinct edges in G1 and G2. Evidently, d(G1, G2)
equals the Hamming distance between the incidence vectors of the graphs G1

and G2.
In the 1960–1980s the following Graph Approximation problem was under

study. It can be considered as one of formalizations of the graph clustering
problem [1,4–6,12,14]:

Problem CE (Cluster Editing). Given a graph G = (V,E), find a graph
M∗ ∈M(V ) such that

d(G,M∗) = min
M∈M(V )

d(G,M).

The versions of Problem CE, where the number of clusters is equal to a
given positive integer k (CEk) or is bounded from above by k (CE�k) were also
studied, 2 � k � |V |.

Problem CE is NP-hard, problems CEk and CE�k are NP-hard for any fixed
k � 2. Main results on computational complexity and approximation algorithms
with performance guarantees for these problems can be found in surveys [7,13].

In this paper, we consider the following statement of the problem. Let
M�s(V ) be the family of all cluster graphs on V such that the size of each
connected component is at most an integer s, 2 � s � |V |.
Problem CE�s. Given a graph G = (V,E) and an integer s, 2 � s � |V |, find
M∗ ∈ M�s(V ) such that

d(G,M∗) = min
M∈M�s(V )

d(G,M).
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In [2], in the proof of NP-hardness of Problem CE without any constraints
on the number and sizes of clusters, it was actually shown that Problem CE�3

is NP-hard. In 2011, Il’ev and Navrotskaya [8] proved that Problem CE�s is
NP-hard for any fixed s � 3, whereas Problem CE�2 is polynomially solv-
able. In 2015, Puleo and Milenkovic [10] proposed a 6-approximation algorithm
for problem CE�s. In 2016, Il’ev, Il’eva and Navrotskaya [9] presented for this
problem an approximation algorithm that is 3-approximation in case of s = 3
and 5-approximation in case of s = 4.

Apart from theoretical interest, cases of small cluster sizes are also interesting
from a practical point of view (e.g., allocation of bulky objects into containers
of bounded capacity).

In this paper, we propose simple approximation algorithms for cases s = 3
and s = 4 with better performance guarantees.

The paper is organized as follows. In Sect. 2, we propose a greedy-type 2-
approximation algorithm for Problem CE�3. In Sect. 3, a similar polynomial-
time 2-approximation algorithm is presented for Problem CE�4. Performance
guarantees of both algorithms are tight. Conclusion summarizes the results of
the work.

2 An Approximation Algorithm for Problem CE�3

In [9], for Problem CE�s (s � 3) a polynomial-time approximation algorithm
with the performance guarantee � (s−1)2

2 �+ 1 was proposed. For cases s = 3 and
s = 4 it yields performance guarantees 3 and 5, respectively. In this section, we
offer a polynomial-time 2-approximation algorithm for Problem CE�3.

Algorithm A1
Input: An arbitrary graph G = (V,EG).
Output: A cluster graph M = (V,EM ) ∈ M�3(V ) – an approximate solution
to Problem CE�3.

0 G′ ← G, M ← (V, ∅).
1 While there is a clique K3 in G′ do

add a K3 to M and remove it from G′ with all incident edges.
2 While there is a clique K2 in G′ do

add a K2 to M and remove it from G′ with all incident edges.
End.

Time complexity of Algorithm A1 is O(n3), where n = |V |.
Remark 1. Without loss of generality suppose that the optimal graph M∗ is a
subgraph of G. Note that in Problem CE�3 such M∗ always exists [8].

Further, we consider only such optimal solutions.

Lemma 1. Let G be an arbitrary graph, M∗ be an optimal solution to Problem
CE�3 on G. Denote by

– E1 the set of edges of the graph G that are not placed in M∗, but are included
in M by Algorithm A1 (i.e., E1 = (EG ∩ EM ) \ EM∗);



Approximation Algorithms for Graph Cluster Editing 137

– E∗ the set of edges of G that are not included in M , but are placed in M∗

(i.e., E∗ = (EG ∩ EM∗) \ EM ). Then

|E∗| � 2|E1|.
Proof. Consider the following mental procedure of labelling edges of the set E∗

whose steps correspond to steps of Algorithm A1. The procedure assigns labels
to all edges of the set E∗ that are removed from the current graph G′ at every
step of Algorithm A1. Labelling are realized with using edges of the set E1. Each
edge e ∈ E1 gives its labels of the form e∗ to at most 2 adjacent to e unlabelled
edges of the set E∗. At the beginning all edges of E∗ are unlabelled.

Note that any clique K3 found by Algorithm A1 at Step 1 can have 0, 1 or
3 common edges with cliques K3 of the graph M∗. Hence only 3 or 2 edges of
any clique K3 ⊆ M may belong to the set E1. Note also that if the edge e of a
clique K2 found by Algorithm A1 at Step 2 belongs to E1, then at most 2 edges
of E∗ are adjacent to e in the current graph G′. Therefore, only the following
cases are possible.

a) Let K3 be a clique found by Algorithm A1 at Step 1, where all 3 its edges
a, b, c belong to E1. Then in the graph G′ at most 6 unlabelled edges of E∗

are adjacent to these 3 edges. They get at most 6 labels of the form a∗, b∗, c∗
(Fig. 1a).

b) Let K3 be a clique found by Algorithm A1 at Step 1, where only 2 its edges
a, b belong to E1. Then in the graph G′ at most 4 edges of E∗ are adjacent
to these 2 edges, and they get labels a∗, b∗ (Fig. 1b).

c) Let K2 be a clique found by Algorithm A1 at Step 2, and its edge a belongs
to E1. Then in the graph G′ at most 2 edges of E∗ are adjacent to a, and
they get labels a∗ (Fig. 1c).

Fig. 1. Gray triangles are cliques found by Algorithm A1, white triangles are cliques
of M∗ (in M∗ some cliques K3 and K2 can be replaced by K2 and K1, respectively).
The double line represents the common edge of the graphs M and M∗. (Color figure
online)

On completion of Algorithm A1 the graph G′ becomes empty. As far as all
edges of the set E∗ that are removed from the current graph G′ get labels, and
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each edge e ∈ E1 gives its labels to at most 2 adjacent to e unlabelled edges of
the set E∗, then |E∗| ≤ 2|E1|.

Lemma 1 is proved.

Example 1. Example of working Algorithm A1 (Fig. 2).

Fig. 2. Graphs G (a), M (b), and M∗ (c). Gray triangles are K3 found by Algorithm
A1. Double lines represent common edges of the graphs M and M∗. (Color figure
online)

Theorem 1. Let G = (V,EG) be an arbitrary graph. Then

d(G,M)
d(G,M∗)

� 2, (1)

where M∗ = (V,EM∗) is an optimal solution to Problem CE�3 on the graph G,
M = (V,EM ) is the cluster graph constructed by Algorithm A1.

Proof. Taking into account Remark 1 we suppose that the optimal graph M∗ is
a subgraph of G. By the definition, d(G,M∗) = |EG \ EM∗ |+ |EM∗ \ EG|. Since
M∗ ⊆ G, then EM∗ \ EG = ∅, and d(G,M∗) = |EG \ EM∗ |.

Write the difference EG \ EM∗ in the form EG \ EM∗ = E0 ∪ E1, where

– E0 is the set of edges of the graph G that are not placed neither in M∗, nor
in M ;

– E1 is the set of edges of the graph G that are not placed in M∗, but are
included in M by Algorithm A1 (i.e., E1 = (EG ∩ EM ) \ EM∗).

Then

d(G,M∗) = |E0| + |E1|. (2)
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By constructing, the graph M is a subgraph of the graph G, therefore
d(G,M) = |EG \ EM |. Write the difference EG \ EM in the following form:
EG \ EM = E0 ∪ E∗, where E∗ is the set of edges of G not included in M , but
placed in M∗ (i.e., E∗ = (EG ∩ EM∗) \ EM ).

Then
d(G,M) = |E0| + |E∗|. (3)

By (2), (3), and Lemma 1, we obtain

d(G,M)
d(G,M∗)

=
|E0| + |E∗|
|E0| + |E1| � |E∗|

|E1| � 2|E1|
|E1| = 2.

Theorem 1 is proved.

Remark 2. Example 1 shows that bound (1) is tight.

3 An Approximation Algorithm for Problem CE�4

In [9], a polynomial-time 5-approximation algorithm was proposed for Problem
CE�4. In this section, we offer a polynomial-time 2-approximation algorithm
for this problem.

Algorithm A2
Input: An arbitrary graph G = (V,EG).
Output: A cluster graph M = (V,EM ) ∈ M�4(V ) – an approximate solution
to Problem CE�4.

0 G′ ← G, M ← (V, ∅).
1 While there is a clique K4 in G′ do

add a K4 to M and remove it from G′ with all incident edges.
2 While there is a clique K3 in G′ do

add a K3 to M and remove it from G′ with all incident edges.
3 While there is a clique K2 in G′ do

add a K2 to M and remove it from G′ with all incident edges.
End.

Time complexity of Algorithm A1 is O(n4), where n = |V |.
Remark 3. Without loss of generality suppose that in Problem CE�4 any 4-
vertex component of the optimal solution M∗ either coincides with a clique K4

of a given graph G, or is obtained from a subgraph Q4 of G by adding the absent
edge. Besides that, in Problem CE�4 such M∗ always exists.

Proof. If a clique K4 ⊆ M∗ would be obtained from some 4-vertex subgraph H
of G = (V,EG) by adding at least 2 edges, then instead of their adding we would
remove from H at most 2 edges and obtain another cluster graph M ′ ∈ M�4(V )
such that d(G,M ′) � d(G,M∗).
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Further, we consider only such optimal solutions to Problem CE�4.

Lemma 2. Let G be an arbitrary graph, M∗ be an optimal solution to Problem
CE�4 on G. Denote by

– E1 the set of edges of the graph G that are not placed in M∗, but are included
in M by Algorithm A1 (i.e., E1 = (EG ∩ EM ) \ EM∗);

– E2 = EM∗ \ EG;
– E∗ the set of edges of G that are not included in M , but are placed in M∗

(i.e., E∗ = (EG ∩ EM∗) \ EM ). Then

|E∗| � 2(|E1| + |E2|).
Proof. Once again consider a mental procedure of labelling edges of the set E∗

whose steps correspond to steps of Algorithm A2. The procedure assigns labels
to all edges of the set E∗ that are removed from the current graph G′ at every
step of Algorithm A2. Labelling are realized with using edges of the sets E1

and E2. Each edge e ∈ E1 or E2 gives its labels of the form e∗ to at most 2
adjacent to e unlabelled edges of the set E∗. At the beginning all edges of E∗

are unlabelled.
Reasoning as in Lemma 1, one can show that quantity of edges of the set E1

is sufficient to labelling edges belonging to all cliques K4,K3 and K2 of the graph
M∗ that are subgraphs of G (Fig. 1, 3). Only some edges of cliques K4 ⊆ M∗

obtained from subgraphs Q4 ⊂ G can remain unlabelled with using edges of E1

at the moment of removing from the current graph G′.

Fig. 3. Gray tetrahedrons are K4 found by Algorithm A2, white tetrahedrons are
cliques of M∗ (in M∗ some cliques K4 can be replaced by K3, K2 and K1). Double
lines represent common edges of the graphs M and M∗. (Color figure online)

List all cases when quantity of edges of E1 may be insufficient to labelling all
edges of the set E∗ that are removed from the current graph G′ at some step of
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Algorithm A2. In all these cases, edges of the set E∗ remaining unlabelled with
using edges of E1 belong to some Q4 ⊂ G with absent edge x ∈ E2.

Case 1. At Step 1 Algorithm A2 finds a cligue K4 ⊂ G′ three edges a, b, c of
which are incident to vertex 1 of Q4. Then a, b, c ∈ E1 and they give their labels
a∗, b∗, c∗ to edges 12, 13 and 14, respectively (it is possible that these are their
second labels, and first labels a∗, b∗, c∗ were given to some edges incident to
other endpoints of edges a, b, c) (Fig. 4a).

After removing K4 and all incident to it edges from G′, the next graph G′

will contain edges 23, 34 ∈ Q4. Note that at least one of these edges must belong
to E∗.

Two cases are possible.
1) Only one of edges 23, 34 belongs to E∗. W.l.o.g. suppose that 23 ∈ E∗.

It means that Algorithm A2 includes in M some clique containing edge 34.
If this clique is K4 or K3, then it also contains some edge d incident to vertex
3. Note that d ∈ E1 and it gives its label d∗ to edge 23.

The only situation, where edge 23 at the moment of its removing from the
current graph G′ can remain without label getting from an edge of the set E1 is
the following.

Algorithm A2 finds at Step 3 the clique K2 =< 34 >, and so edge 34 is
removed from G′ with all incident edges. But in this case 34 /∈ E1, hence edge
23 remains unlabelled with using edges of E1.

In order to avoid this situation the procedure assigns to edge 23 label x∗,
where x = 24 ∈ E2 (Fig. 4b).

Fig. 4. Gray tetrahedrons are K4 found by Algorithm A2. The dotted line represents
the edge x ∈ EM∗ \ EG = E2. The double line represents the common edge of the
graphs M and M∗. (Color figure online)



142 V. Il’ev and S. Il’eva

2) Both edges 23, 34 belong to E∗.
It means that Algorithm A2 includes in M some edges incident to one, two

or three vertices of {2, 3, 4}. These edges belong to E1 and give theirs labels to
both edges 23, 34, except the only situation, when Algorithm A2 finds at Step
3 some clique K2 =< 35 >, where 5 /∈ {2, 4}, and besides in G′ there is an edge
56 ∈ E∗ (Fig. 4c). Then d = 35 ∈ E1 and d gives its labels d∗ to edge 56 and
one of edges 23, 34, let say 34. In this situation edge 23 remains unlabelled with
using edges of E1.

In order to avoid such situation the procedure assigns to edge 23 label x∗,
where x = 24 ∈ E2 (Fig. 4d).

Fig. 5. Gray triangles are K3 found by Algorithm A2. The dotted line represents the
edge x ∈ EM∗ \ EG = E2. Double lines represent common edges of the graphs M and
M∗. (Color figure online)

Case 2 differs from case 1 in that Algorithm A2 finds in G′ at Step 2 a clique K3

instead of K4 (Fig. 5a). Here as in case 1 edges 12 and 13 get labels a∗ and b∗,
but edge 14 can’t be labelled with using edges of the set E1. So the procedure
assigns to 14 label x∗, where x = 24 ∈ E2.

And just like in case 1, in order to avoid unwanted situations in the next graph
G′ listed in subcases 1), 2) of case 1, edge 23 gets label x∗, where x = 24 ∈ E2.

Case 3 differs from previous one in that the clique K3 found by Algorithm A2
at Step 2 has a common edge with Q4, let say 12 (Fig. 5b). In this case as above
edge 14 gets label x∗, where x = 24 ∈ E2.

Case 4. At Step 2 Algorithm A2 finds the clique K3 with edges 12, 13, 23 and
removes it from the graph G′ with all incident edges. But before removing, the
procedure assigns to edges 14 and 34 labels x∗, where x = 24 ∈ E2 (Fig. 5c).

On completion of Algorithm A2 the graph G′ becomes empty. As far as all
edges of the set E∗ that are removed from the current graph G′ get labels, and
each edge e ∈ E1 or E2 gives its labels to at most 2 adjacent to e unlabelled
edges of the set E∗, then |E∗| ≤ 2(|E1| + |E2|).

Lemma 2 is proved.
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Fig. 6. Graphs G (a), M (b), and M∗ (c). The gray triangle is K3 found by Algorithm
A2. The dotted line represents the edge x ∈ EM∗ \ EG = E2. Double lines represent
common edges of the graphs M and M∗. (Color figure online)

Example 2. Example of working Algorithm A2 (Fig. 6).

Theorem 2. Let G = (V,EG) be an arbitrary graph. Then

d(G,M)
d(G,M∗)

� 2, (4)

where M∗ = (V,EM∗) is an optimal solution to Problem CE�4 on the graph G,
M = (V,EM ) is the cluster graph constructed by Algorithm A2.

Proof. By the definition, d(G,M∗) = |EG \ EM∗ | + |EM∗ \ EG|. Write the dif-
ference EG \ EM∗ in the form EG \ EM∗ = E0 ∪ E1, where

– E0 is the set of edges of the graph G that are not placed neither in M∗, nor
in M by Algorithm A2;

– E1 is the set of edges of the graph G that are not placed in M∗, but are
included in M by Algorithm A2.

Denote E2 = EM∗ \ EG. Then

d(G,M∗) = |E0| + |E1| + |E2|. (5)

By constructing, the graph M is a subgraph of the graph G, therefore
d(G,M) = |EG \ EM |. Write the difference EG \ EM in the following form:
EG \ EM = E0 ∪ E∗, where E∗ is the set of edges of G not included in M , but
placed in M∗.

Then
d(G,M) = |E0| + |E∗|. (6)

Therefore, by (5), (6), and Lemma 2, we obtain

d(G,M)
d(G,M∗)

=
|E0| + |E∗|

|E0| + |E1| + |E2| � |E∗|
|E1| + |E2|
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� 2(|E1| + |E2|)
|E1| + |E2| = 2.

Theorem 2 is proved.

Remark 4. Example 2 shows that bound (4) is tight.

4 Conclusion

A version of the graph clustering problem is considered. In this version sizes
of all clusters don’t exceed a given positive integer s. This problem is NP-hard
for every fixed s � 3. New polynomial-time 2-approximation greedy-type algo-
rithms with tight performance guarantees are proposed for the cases s = 3 and
s = 4. Performance guarantees of these algorithms are better than ones of earlier
presented approximation algorithms.

Acknowledgement. The research of the first author was funded in accordance with
the state task of the IM SB RAS, project FWNF-2022-0020.
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On Cone Partitions for the Min-Cut
and Max-Cut Problems with Non-negative
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Abstract. We consider the classical minimum and maximum cut prob-
lems: find a partition of vertices of a graph into two disjoint subsets that
minimize or maximize the sum of the weights of edges with endpoints in
different subsets. It is known that if the edge weights are non-negative,
then the min-cut problem is polynomially solvable, while the max-cut
problem is NP-hard.

We construct a partition of the positive orthant into convex cones cor-
responding to the characteristic cut vectors, similar to a normal fan of
a cut polyhedron. A graph of a cone partition is a graph whose vertices
are cones, and two cones are adjacent if and only if they have a common
facet. We define adjacency criteria in the graphs of cone partitions for
the min-cut and max-cut problems. Based on them, we show that for
both problems the vertex degrees are exponential, and the graph diam-
eter equals 2. These results contrast with the clique numbers of graphs
of cone partitions, which are linear for the minimum cut problem and
exponential for the maximum cut problem.

Keywords: Min-cut and max-cut problems · Cut polytope · Cone
partition · 1-skeleton · Vertex adjacency · Graph diameter · Vertex
degree · Clique number

1 Introduction

We consider two classical problems of finding a cut in an undirected graph.
MINIMUM AND MAXIMUM CUT PROBLEMS.
INSTANCE. Given an undirected graph G = (V,E) with an edge weight

function w : E → R≥0.
QUESTION. Find a subset of vertices S ⊂ V such that the sum of the

weights of the edges from E with one endpoint in S and another in V \S is as
small as possible (minimum cut or min-cut) or as large as possible (maximum
cut or max-cut).
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Both problems have many practical applications. The minimum cut problem
is most often associated with the max-flow min-cut theorem of Ford and Fulk-
erson: the maximum flow in the flow network is equal to the total weight of the
edges in a minimum cut [18]. In particular, it is used in planning communication
networks and determining their reliability [23,28]. In turn, the maximum cut
problem arises in cluster analysis [12], the Ising model in statistical physics [3],
the VLSI design [3,13], and the image segmentation [32].

In terms of computational complexity, the min-cut problem with non-
negative edges is polynomially solvable, for example, by Dinic-Edmonds-Karp
flow algorithm in O(|V |3|E|) time [16], or by Stoer-Wagner algorithm in
O(|V ||E| + |V |2 log |V |) time [33]. On the other hand, the min-cut and max-
cut problems with arbitrary edges, and the max-cut problem with non-negative
edges are known to be NP-hard [20,22]. More background information on the
min-cut and max-cut problems can be found in the Encyclopedia of Optimiza-
tion [17] and the Handbook of Combinatorial Optimization [27].

In this paper, we approach to the cut problem from a polyhedral point of view
by studying the properties of the graphs of cone partitions of a positive orthant
with respect to the characteristic cut vectors. The results of the research are
summarized in Table 1 and highlighted in bold.

Table 1. Pivot table of properties of the graphs of cone partitions for the cut problems
in the complete graph Kn

Arbitrary cut Minimum non-negative cut Maximum non-negative cut

Vertex adjacency O(1) [4] O(n) O(n)

Diameter 1 [4] 2 2

Vertex degree 2n−1 − 1 [4] 2n −k + 2k − 4 2n −1 − 2k − 2n −k + 2 + n

Clique number 2n−1 [4] 2n − 3 [9]
( n
n
2 −1

)
or

( n
n−1
2

)
[6]

2 Cut Polytope and Cone Partition

We consider a complete graph Kn = (V,E) on n vertices. With each subset
S ⊆ V we associate the characteristic 0/1−vector v(S) ∈ {0, 1}d, where d = C2

n

and

v(S)i,j =

{
1, if |S ∩ {i, j}| = 1,
0, otherwise.

Thus, the coordinates of the characteristic vector (also known as the cut vector)
indicate whether the corresponding edges are in the cut or not.

The cut polytope CUT(n) (see Barahona and Mahjoub [4]) is defined as the
convex hull of all characteristic (cut) vectors:

CUT(n) = conv {v(S) : S ⊆ V } ⊂ R
d.

An example of constructing the cut polytope CUT(3) is shown in Fig. 1.
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Fig. 1. An example of constructing a cut polytope for K3

The cut polytope and its various relaxations often serve as the linear pro-
gramming models for the cut problem. See, for example, the polynomial time
algorithm by Barahona for the max-cut problem on graphs not contractible to
K5 [5].

We consider a dual construction of a cone partition (see Bondarenko [7,8]),
similar to a normal fan (see, for example, Ziegler [34]). Let X be some set of
points in R

d (for example, all cut vectors v(S) for S ⊆ V ), and x ∈ X. Denote
by

K(x) = {c ∈ R
d : 〈c,x〉 ≥ 〈c,y〉, ∀y ∈ X},

where 〈c,x〉 = cTx is the scalar product. Thus, K(x) as a set of solutions to
a system of linear homogeneous inequalities is a convex polyhedral cone that
includes all points c ∈ R

d, for which the linear function cTx achieves its max-
imum on the set X at the point x. The collection of all cones K(x) is called
the cone partition of the space R

d with respect to the set X (Fig. 2). The cone
partition is analogous to the Voronoi diagram, exactly coinciding with it if the
Euclidean norms of all points of the set X are equal.

The 1-skeleton of a polytope P is the graph whose vertex set is the vertex set
of P and the edge set is the set of geometric edges or one-dimensional faces of
P . The cone partition of space is directly related to the 1-skeleton of a polytope
since two vertices x1 and x2 of the polytope conv(X) are adjacent if and only if
the cones K(x1) and K(x2) have a common facet (see Bondarenko [7]):

x1 and x2 adjacent ⇔ dim (K (x1) ∩ K (x2)) = d − 1.

Fig. 2. An example of a 1-skeleton and cone partition
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We call such two cones adjacent and consider the graph of a cone partition of
the space R

d with respect to the set X. In the general case, it coincides with the
1-skeleton of a polytope.

The study of the 1-skeleton is of interest, since, on the one hand, the vertex
adjacency can be directly applied to develop simplex-like combinatorial opti-
mization algorithms that move from one feasible solution to another along the
edges of the 1-skeleton. See, for example, the set partitioning algorithm by Balas
and Padberg [1], Balinski’s algorithm for the assignment problem [2], Ikura and
Nemhauser’s algorithm for the set packing [21], etc.

On the other hand, some characteristics of the 1-skeleton estimate the time
complexity for different computation models and classes of algorithms. In par-
ticular, the diameter (the greatest distance between any pair of vertices) is a
lower bound for the number of iterations of the simplex method and similar
algorithms. Indeed, let the shortest path between a pair of vertices u and v of
a polytope P consist of d(P ) edges. If a simplex-like algorithm chooses u as the
initial solution, and the optimal solution is v, then no matter how successfully
the algorithm chooses the next adjacent vertex of the 1-skeleton, the number of
iterations cannot be less than d(P ) (see, for example, Dantzig [15]).

Note that although the diameter of a graph can easily be found in polynomial
time in the number of vertices, combinatorial polytopes tend to have exponen-
tially many vertices. In general, it is NP-hard to determine the diameter of a
1-skeleton of a polytope specified by linear inequalities with integer data (see
Frieze and Teng [19]).

Another important characteristic is the clique number of the 1-skeleton of the
polytope P (the number of vertices in the largest clique), which serves as a lower
bound on the worst-case complexity in the class of algorithms based on linear
decision trees. See Bondarenko [8] for more details. Besides, for all known cases,
it has been established that the clique number of 1-skeleton of a polytope is
polynomial for polynomially solvable problems [10,24,25] and superpolynomial
for intractable problems [7,11,26,30].

Returning to the cut polytope, the properties of its 1-skeleton were studied
by Barahona and Mahjoub in [4].

Theorem 1 (Barahona and Mahjoub [4]). The 1-skeleton of the CUT(n)
polytope is a complete graph.

Thus, any two vertices of the cut polytope CUT(n) are adjacent, which makes
the 1-skeleton not very useful in this case.

However, the polytope CUT(n) is associated with the cut problem in the
graph with arbitrary edge weights and does not reflect the differences between
max-cut and min-cut problems with non-negative edges. Since with arbitrary
edges, both min-cut and max-cut problems are equivalent and NP-hard [20].

To take into account the specifics of the cut problem, the construction of a
cut polyhedron is introduced (see Conforti et al. [14]), which is the dominant of
a cut polytope:

dmt(CUT(n)) = CUT(n) + R
d
+,
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i.e. the Minkowski sum of a polytope and a positive orthant.
In this paper, we consider the dual construction of a cone partition of a

positive orthant with respect to the set of cut vectors for all non-empty cuts
X ⊂ V in the complete graph Kn = (V,E):

K+
max(X) = {c ∈ R

d, c ≥ 0 : 〈c,v(X)〉 ≥ 〈c,v(Y )〉, ∀Y ⊂ V },

K+
min(X) = {c ∈ R

d, c ≥ 0 : 〈c,v(X)〉 ≤ 〈c,v(Y )〉, ∀Y ⊂ V }.

Firstly, these cone partitions and their graphs were introduced in [9] and later
studied in [6]. In particular, it was established that the clique number of a
graph of a cone partition is linear for the polynomially solvable min-cut problem
and exponential for the NP-hard max-cut problem. Similar results for the cut
polyhedron and the minimum cut problem are considered in [14,31].

Note that we exclude the empty cut from consideration and identify each
cut X ⊂ V and its complement X̄ = V \X. Thus, the total number of cuts is
2|V |−1 − 1.

3 Vertex Adjacency

The adjacency criteria in the graphs of cone partitions for cut problems with
non-negative edges were introduced in [9]. In this section, we present simpler
alternative versions of the criteria with new proofs based on crossing sets termi-
nology and the submodularity of the cut function.

Two subsets A,B ⊂ V are called crossing if

A ∩ B = ∅, and A\B = ∅, and B\A = ∅, and V \(A ∪ B) = ∅.

An example of crossing sets is shown in Fig. 3.

Theorem 2. The cones K+
min(X) and K+

min(Y ) are adjacent if and only if the
cuts X and Y are not crossing.

Proof. Suppose that the cuts X and Y are crossing, but the cones K+
min(X) and

K+
min(Y ) are adjacent. The adjacency of cones means that there exists a non-

negative vector c that belongs to both cones K+
min(X) and K+

min(Y ) but does

Fig. 3. An example of crossing sets
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not belong to any other cone from the partition K+
min:

∃c ∈ R
d (c ≥ 0) : 〈c,v(X)〉 = 〈c,v(Y )〉 < 〈c,v(Z)〉, ∀Z ⊂ V (Z = X,Y ). (1)

An important property of the cut function is submodularity (see
Schrijver [29]):

〈c,v(X)〉 + 〈c,v(Y )〉 ≥ 〈c,v(X ∪ Y )〉 + 〈c,v(X ∩ Y )〉.

Since the cuts X and Y are crossing, both cuts X∪Y and X∩Y exist and are not
empty. Moreover, the value of at least one of them does not exceed 〈c,v(X)〉 and
〈c,v(Y )〉 due to the submodularity of the cut function. Therefore, the inequality
(1) is violated, and the cones K+

min(X) and K+
min(Y ) are not adjacent.

Now suppose that the cuts X and Y are not crossing. It is easy to check that
in this case at least one of the cuts or its complement is a subset of another cut
or its complement. Without loss of generality, we assume that X ⊂ Y .

We consider the following vector c of edge weights (Fig. 4):

– the total weight of the edges between X and Y \X, and between Ȳ and Y \X
are both equal to 2;

– edges between X and Ȳ have total weight 1;
– all other edges have weight 4.

By construction, the values of the cuts X and Y are both equal to 3, the value
of the cut Y \X is 4, and all other cuts contain at least one edge of the weight
4. Thus, by the inequality (1), the cones K+

min(X) and K+
min(Y ) are adjacent.

Theorem 3. The cones K+
max(X) and K+

max(Y ) are adjacent if and only if one
of the following conditions is satisfied:

– cuts X and Y are crossing;
– the symmetric difference between cuts X and Y contains exactly one element

|X � Y | = 1, or |X̄ � Y | = 1, or |X � Ȳ | = 1, or |X̄ � Ȳ | = 1.

Fig. 4. Cuts of X and Y in the case of X ⊂ Y
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Fig. 5. Cuts X, Y , Z, and T

Proof. Adjacency of the cones K+
max(X) and K+

max(Y ) means that:

∃c ∈ R
d (c ≥ 0) : 〈c,v(X)〉 = 〈c,v(Y )〉 > 〈c,v(Z)〉, ∀Z ⊂ V (Z = X,Y ). (2)

Let the cuts X and Y be not crossing and contain more than one element
in the symmetric difference. Without loss of generality, we examine the case
X ⊂ Y . Since |X � Y | > 1, the set Y \X contains at least two elements and can
be divided into two non-empty subsets A and B. We consider two additional cuts
Z = X ∪ A and T = X ∪ B (Fig. 5). By the submodularity of the cut function,
we obtain that

〈c,v(Z)〉 + 〈c,v(T )〉 ≥ 〈c,v(X = Z ∩ T )〉 + 〈c,v(Y = Z ∪ T )〉.

The value of at least one of the cuts Z or T cannot be less than the value of X
and Y . Thus, by (2), the cones K+

max(X) and K+
max(Y ) are not adjacent.

Now suppose that the cuts X and Y are crossing. Again we consider the
special vector c of edge weights (Fig. 6):

– all edges between X ∩ Y and X̄ ∩ Ȳ , and between X ∩ Ȳ and X̄ ∩ Y have
positive weights with a total sum both equal to 1;

– the weights of all other edges are zero.

Fig. 6. The case of crossing cuts X and Y
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Fig. 7. Case of cuts X and Y with one element in the symmetric difference

Both cuts X and Y have a value of 2 equal to the total sum of all edges in
the graph. Any other cut skips at least one non-zero edge, and its value is less
than 2. Therefore, the cones K+

max(X) and K+
max(Y ) are adjacent.

It remains to consider the last configuration when the cuts X and Y do not
cross and contain only one element in the symmetric difference. Without loss of
generality, we assume X ⊂ Y and |X �Y | = 1. We consider the following vector
c of edge weights (Fig. 7):

– each edge between X and Ȳ has a positive weight and their total sum is equal
to 1;

– the weights of all other edges are equal to 0.

Again, the total sum of the weights of all edges in the graph and the values
of the cuts X and Y are equal to 1. Any other cut skips at least one non-zero
edge, and its value is less than 1. Thus, the cones K+

max(X) and K+
max(Y ) are

adjacent.

Note that if X,Y ⊂ V are two cuts, then verifying whether the sets are
crossing and the corresponding cones are adjacent can be done in linear time
O(V ).

4 Graph Diameter

In this section, we present new results on the diameter of the graphs of cone
partitions for the min-cut and max-cut problems with non-negative edges.

Theorem 4. The diameter d(K+
min) of the graph of cone partition for the min-

cut problem with non-negative edges is equal to 2 for all |V | ≥ 4.

Proof. Cases |V | ≤ 3 are trivial: in a graph on two vertices there is only one
non-empty cut, and in a graph on three vertices, the cones of all three non-empty
cuts are pairwise adjacent.

Recall that the eccentricity ε(v) of a graph vertex v is the greatest distance
between v and any other vertex of a graph. Let us show that the graph of
the cone partition K+

min contains vertices with eccentricity 1, i.e. vertices that
are adjacent to all others. We choose a cut X separating exactly one element
(|X| = 1 or |X̄| = |V | − 1). Consider an arbitrary cut Y different from X:
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– if X ⊂ Y , then X\Y = ∅, the cuts are not crossing, and the corresponding
cones K+

min(X) and K+
min(Y ) are adjacent;

– if X ⊂ Y , then X ∩ Y = ∅, the cuts are not crossing, and the cones K+
min(X)

and K+
min(Y ) are also adjacent.

Thus, ε(K+
min(X)) = 1, hence the graph diameter equals 2.

Note that for other cuts Y such that 2 ≤ |Y | ≤ |V |−2, we have ε(K+
min(Y )) =

2. Indeed, for each Y there exists a crossing cut Z such that the cones K+
min(Y )

and K+
min(Z) are not adjacent, but there is a path between them in the graph

of cone partition through K+
min(X), where |X| = 1.

Theorem 5. The diameter d(K+
max) of the graph of cone partition for the max-

cut problem with non-negative edges is equal to 2 for all |V | ≥ 4.

Proof. Again, cases |V | ≤ 3 are trivial. Besides, if |V | = 4, then for any cut
X, where |X| = 2, the cone K+

max(X) has eccentricity 1. Indeed, any other cut
on two elements is crossing with X, and for any cut on 1 or 3 elements, the
symmetric difference with X or V \X contains exactly 1 element.

Let us show that if |V | ≥ 5, then the eccentricity of each vertex in the graph
of a cone partition equals 2. We consider two arbitrary cuts X and Y whose
cones are not adjacent and construct a cut Z such that the cone K+

max(Z) is
adjacent to both K+

max(X) and K+
max(Y ).

By Theorem 3, the cones K+
max(X) and K+

max(Y ) are not adjacent if and
only if the cuts X and Y are not crossing, and the symmetric difference between
cuts contains more than one element. In this case, at least one of the cuts or
its complement is a subset of another cut or its complement. Without loss of
generality, we assume that X ⊂ Y and |X � Y | ≥ 2. Let us construct a cut Z
according to the following rules.

1. If |X| > 1, then Z = Ȳ ∪ {x}, where x is one of the elements of X (Fig. 8).
The cuts X and Z are crossing, hence the cones K+

max(X) and K+
max(Z) are

adjacent. The cut Ȳ is a subset of Z and the symmetric difference is exactly
one element x. Therefore, the cones K+

max(Y ) and K+
max(Z) are also adjacent.

2. If |Ȳ | > 1, then Z = X ∪ {y}, where y is one of the elements of Ȳ (Fig. 9).
Similarly to the previous case, the cuts Ȳ and Z are crossing, and X is a
subset of Z with exactly one element in the symmetric difference. Therefore,
the cones K+

max(X) and K+
max(Y ) are adjacent to the cone K+

max(Z).
3. If |X| = |Ȳ | = 1, then Z = X ∪ Ȳ (Fig. 10). The cuts X and Ȳ are subsets of

Z and differ from Z by exactly one element. Therefore, the cones K+
max(X)

and K+
max(Y ) are adjacent to the cone K+

max(Z).

Therefore, for any cuts X and Y there exists a cut Z whose cone K+
max(Z)

is adjacent both to K+
max(X) and K+

max(Y ). On the other hand, if |V | ≥ 5,
then for any cut X there is a cut Y obtained from X by adding or removing 2
elements, such that the cones K+

max(X) and K+
max(Y ) are not adjacent. Thus,

the eccentricity of each vertex of the graph of a cone partition equals 2, whence
the diameter of the graph is also 2.
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Fig. 8. Case |X| > 1 and Z = Ȳ ∪ {x}, where x is one of the elements of X

Fig. 9. Case |Ȳ | > 1, then Z = X ∪ {y}, where y is one of the elements of Ȳ

Fig. 10. Case |X| = |Ȳ | = 1 and Z = X ∪ Ȳ
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5 Vertex Degrees

Now we study the degrees of vertices in the graphs of cone partitions for the
min-cut and max-cut problems with non-negative edges. They are of interest
if the adjacency criteria are applied as neighborhood structures for simplex-like
algorithms. Let’s call the cardinality of the cut S the minimum of the cardinalities
|S| and |V \S|.
Theorem 6. Let |V | = n and the cardinality of the cut X ⊂ V equals k, then the
degree of the vertex K+

min(X) in the graph of the cone partition for the min-cut
problem with non-negative edges is equal to

2n−k + 2k − 4.

Proof. We separately consider two cases by the cardinality of the cut. If k = 1,
then, by Theorem 2, the corresponding cone is adjacent to the cones of all other
cuts in the graph. Therefore, the degree of a vertex in the graph of cone partition
is equal to 2n−1 − 2.

Now we examining the case k > 1. Consider some cut X and its complement
X̄ = V \X (see Fig. 11). By definition, a cut Y crossing with X must contain
some elements from X and some elements from X̄. The number of subsets of a
finite set of k elements, excluding the empty set and the entire set, is 2k − 2.
Consider all combinations of admissible subsets in X and X̄, divided by 2 to
exclude complements, and we get that the total number of cuts that cross X is

(2k − 2) · (2n−k − 2)
2

= 2n−1 − 2k − 2n−k + 2.

The degree of the vertex in the graph of the cone partition corresponding to
the cut X can be obtained by subtracting the number of crossing cuts from the
total number of cuts, different from X:

deg(K+
min(X)) = 2n−1 − 2 − (

2n−1 − 2k − 2n−k + 2
)

= 2n−k + 2k − 4.

Fig. 11. The cut X, its complement X̄, and the crossing cut Y
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Corollary 1. The degree of a vertex in the graph of the cone partition for the
min-cut problem with non-negative edges is bounded above and below by

2� n
2 � + 2�n

2 � − 4 ≤ deg(K+
min(X)) ≤ 2n−1 − 2.

We now turn to the max-cut problem.

Theorem 7. Let |V | = n and the cardinality of the cut X ⊂ V equals k, then the
degree of the vertex K+

max(X) in the graph of the cone partition for the max-cut
problem with non-negative edges is equal to{

n − 1, if k = 1,
2n−1 − 2k − 2n−k + 2 + n, otherwise.

Proof. Similarly, we consider separately the cases k = 1 and k > 1. Let k = 1.
A unit cut X cannot cross with any other cut. Therefore, the cone K+

max(X) is
adjacent only to the cones K+

max(Y ) for which |X � Y | = 1, i.e. X ⊂ Y and
|Y \X| = 1. There are exactly n − 1 such cuts in total.

Now consider some cut X of cardinality k > 1. As previously stated, the
number of cuts that are crossing with X is equal to

2n−1 − 2k − 2n−k + 2.

The number of cuts Y for which |X �Y | = 1 is equal to n since there are k ways
to subtract one element from the cut X and n − k ways to add one element to
X (see Fig. 12). Therefore, the degree of the vertex corresponding to the cut X
is equal to

deg(K+
max(X)) = 2n−1 − 2k − 2n−k + 2 + n.

Corollary 2. The degree of a vertex in the graph of the cone partition for the
max-cut problem with non-negative edges is bounded above and below by

n − 1 ≤ deg(K+
max(X)) ≤ 2n−1 − 2�n

2 � − 2�n
2 � + 2 + n.

Fig. 12. An example of cuts X,Y1, Y2, such that |X � Y1| = |X � Y2| = 1
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6 Conclusion

The results of the research are summarized in the pivot Table 1. The cut prob-
lem with arbitrary edges and the max-cut problem with non-negative edges are
NP-hard. On the other hand, the min-cut problem with non-negative edges is
polynomially solvable. Studying the 1-skeleton and the graphs of cone partitions
associated with the cut problem, we see that in all cases verifying the adjacency
is a simple problem, the diameter of the polyhedral graph does not exceed 2,
and the degrees of vertices are exponential. Of all the characteristics of a 1-
skeleton, only the clique number correlates with the complexity of the problem:
linear for the polynomially solvable min-cut problem with non-negative edges,
and superpolynomial for the NP-hard max-cut problem with non-negative edges
and cut problems with arbitrary edges. Besides, the adjacency criteria and the
structure of the graphs of cone partitions can be applied to develop and analyze
simplex-like combinatorial algorithms for cut problems with non-negative edges.

Acknowledgements. We are very grateful to the anonymous reviewers for their com-
ments and suggestions which helped to improve the presentation of the results in this
paper.

References

1. Balas, E., Padberg, M.: On the set-covering problem: Ii. an algorithm for set par-
titioning. Operations Research 23(1), 74–90 (1975). https://doi.org/10.1287/opre.
23.1.74

2. Balinski, M.L.: Signature methods for the assignment problem. Oper. Res. 33(3),
527–536 (1985). https://doi.org/10.1287/opre.33.3.527

3. Barahona, F., Grötschel, M., Jünger, M., Reinelt, M.: An application of combi-
natorial optimization to statistical physics and circuit layout design. Oper. Res.
36(3), 493–513 (1988). https://doi.org/10.1287/opre.36.3.493

4. Barahona, F., Mahjoub, A.R.: On the cut polytope. Math. Program. 36(2), 157–
173 (1986). https://doi.org/10.1007/BF02592023

5. Barahona, F.: The max-cut problem on graphs not contractible to K5. Oper. Res.
Lett. 2, 107–111 (1983). https://doi.org/10.1016/0167-6377(83)90016-0

6. Bondarenko, V., Nikolaev, A.: On graphs of the cone decompositions for the min-
cut and max-cut problems. Int. J. Math. Math. Sci. 2016, 7863650 (2016). https://
doi.org/10.1155/2016/7863650

7. Bondarenko, V.A.: Nonpolynomial lower bounds for the complexity of the traveling
salesman problem in a class of algorithms. Autom. Remote. Control. 44(9), 1137–
1142 (1983)

8. Bondarenko, V.A.: Estimating the complexity of problems on combinatorial opti-
mization in one class of algorithms. Phys.-Dokl. 38(1), 6–7 (1993)

9. Bondarenko, V.A., Nikolaev, A.V.: Combinatorial and geometric properties of the
max-cut and min-cut problems. Dokl. Math. 88(2), 516–517 (2013). https://doi.
org/10.1134/S1064562413050062

10. Bondarenko, V.A., Nikolaev, A.V.: On the skeleton of the polytope of pyra-
midal tours. J. Appl. Ind. Math. 12(1), 9–18 (2018). https://doi.org/10.1134/
S1990478918010027

https://doi.org/10.1287/opre.23.1.74
https://doi.org/10.1287/opre.23.1.74
https://doi.org/10.1287/opre.33.3.527
https://doi.org/10.1287/opre.36.3.493
https://doi.org/10.1007/BF02592023
https://doi.org/10.1016/0167-6377(83)90016-0
https://doi.org/10.1155/2016/7863650
https://doi.org/10.1155/2016/7863650
https://doi.org/10.1134/S1064562413050062
https://doi.org/10.1134/S1064562413050062
https://doi.org/10.1134/S1990478918010027
https://doi.org/10.1134/S1990478918010027


On Cone Partitions for the Min-Cut and Max-Cut Problems 159

11. Bondarenko, V.A., Nikolaev, A.V., Shovgenov, D.A.: Polyhedral characteristics of
balanced and unbalanced bipartite subgraph problems. Autom. Control. Comput.
Sci. 51(7), 576–585 (2017). https://doi.org/10.3103/S0146411617070276

12. Boros, E., Hammer, P.L.: On clustering problems with connected optima in
Euclidean spaces. Discret. Math. 75(1), 81–88 (1989). https://doi.org/10.1016/
0012-365X(89)90080-0

13. Chen, R.W., Kajitani, Y., Chan, S.P.: A graph-theoretic via minimization algo-
rithm for two-layer printed circuit boards. IEEE Trans. Circuits Syst. 30(5), 284–
299 (1983). https://doi.org/10.1109/TCS.1983.1085357

14. Conforti, M., Rinaldi, G., Wolsey, L.: On the cut polyhedron. Discrete Math.
277(1), 279–285 (2004). https://doi.org/10.1016/j.disc.2002.12.001

15. Dantzig, G.B.: Linear Programming and Extensions. RAND Corporation, Santa
Monica, CA (1963). https://doi.org/10.7249/R366

16. Edmonds, J., Karp, R.M.: Theoretical improvements in algorithmic efficiency for
network flow problems. J. ACM 19(2), 248–264 (1972). https://doi.org/10.1145/
321694.321699

17. Floudas, C.A., Pardalos, P.M.: Encyclopedia of Optimization. Springer, New York
(2009). https://doi.org/10.1007/978-0-387-74759-0

18. Ford, L.R., Fulkerson, D.R.: Maximal flow through a network. Can. J. Math. 8,
399–404 (1956). https://doi.org/10.4153/CJM-1956-045-5

19. Frieze, A.M., Teng, S.H.: On the complexity of computing the diameter of
a polytope. Comput. Complex. 4(3), 207–219 (1994). https://doi.org/10.1007/
BF01206636

20. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory
of NP-Completeness (Series of Books in the Mathematical Sciences). Freeman, W.
H (1979)

21. Ikura, Y., Nemhauser, G.L.: Simplex pivots on the set packing polytope. Math.
Program. 33, 123–138 (1985). https://doi.org/10.1007/BF01582240

22. Karp, R.M.: Reducibility among combinatorial problems. In: Miller, R.E.,
Thatcher, J.W., Bohlinger, J.D. (eds.) Complexity of Computer Computations.
The IBM Research Symposia Series, pp. 85–103. Springer, Boston (1972). https://
doi.org/10.1007/978-1-4684-2001-2_9

23. Lun, D.S., Médard, M., Koetter, R., Effros, M.: On coding for reliable communi-
cation over packet networks. Phys. Commun. 1(1), 3–20 (2008). https://doi.org/
10.1016/j.phycom.2008.01.006

24. Maksimenko, A.: Combinatorial properties of the polyhedron associated with the
shortest path problem. Comput. Math. Math. Phys. 44, 1611–1614 (2004)

25. Nikolaev, A.V.: On 1-skeleton of the polytope of pyramidal tours with step-backs.
Siberian Electron. Math. Rep. 19, 674–687 (2022). https://doi.org/10.33048/semi.
2022.19.056

26. Padberg, M.: The Boolean quadric polytope: some characteristics, facets
and relatives. Math. Program. 45(1), 139–172 (1989). https://doi.org/10.1007/
BF01589101

27. Pardalos, P.M., Du, D.Z., Graham, R.L.: Handbook of Combinatorial Optimiza-
tion. Springer, New York (2013). https://doi.org/10.1007/978-1-4419-7997-1

28. Picard, J.C., Queyranne, M.: On the structure of all minimum cuts in a network
and applications. In: Rayward-Smith, V.J. (ed.) Combinatorial Optimization II.
Mathematical Programming Studies, vol. 13, pp. 8–16. Springer, Heidelberg (1980).
https://doi.org/10.1007/BFb0120902

29. Schrijver, A.: Combinatorial Optimization: Polyhedra and Efficiency. Springer, Hei-
delberg (2003)

https://doi.org/10.3103/S0146411617070276
https://doi.org/10.1016/0012-365X(89)90080-0
https://doi.org/10.1016/0012-365X(89)90080-0
https://doi.org/10.1109/TCS.1983.1085357
https://doi.org/10.1016/j.disc.2002.12.001
https://doi.org/10.7249/R366
https://doi.org/10.1145/321694.321699
https://doi.org/10.1145/321694.321699
https://doi.org/10.1007/978-0-387-74759-0
https://doi.org/10.4153/CJM-1956-045-5
https://doi.org/10.1007/BF01206636
https://doi.org/10.1007/BF01206636
https://doi.org/10.1007/BF01582240
https://doi.org/10.1007/978-1-4684-2001-2_9
https://doi.org/10.1007/978-1-4684-2001-2_9
https://doi.org/10.1016/j.phycom.2008.01.006
https://doi.org/10.1016/j.phycom.2008.01.006
https://doi.org/10.33048/semi.2022.19.056
https://doi.org/10.33048/semi.2022.19.056
https://doi.org/10.1007/BF01589101
https://doi.org/10.1007/BF01589101
https://doi.org/10.1007/978-1-4419-7997-1
https://doi.org/10.1007/BFb0120902


160 A. V. Nikolaev and A. V. Korostil

30. Simanchev, R.Y.: On the vertex adjacency in a polytope of connected k-factors.
Trudy Inst. Mat. i Mekh. UrO RAN 24, 235–242 (2018). https://doi.org/10.21538/
0134-4889-2018-24-2-235-242

31. Skutella, M., Weber, A.: On the dominant of the s-t-cut polytope: vertices, facets,
and adjacency. Math. Program. 124(1), 441–454 (2010). https://doi.org/10.1007/
s10107-010-0373-7

32. de Sousa, S., Haxhimusa, Y., Kropatsch, W.G.: Estimation of distribution algo-
rithm for the max-cut problem. In: Kropatsch, W.G., Artner, N.M., Haxhimusa,
Y., Jiang, X. (eds.) GbRPR 2013. LNCS, vol. 7877, pp. 244–253. Springer, Heidel-
berg (2013). https://doi.org/10.1007/978-3-642-38221-5_26

33. Stoer, M., Wagner, F.: A simple min-cut algorithm. J. ACM 44(4), 585–591 (1997).
https://doi.org/10.1145/263867.263872

34. Ziegler, G.: Lectures on Polytopes. Graduate Texts in Mathematics. Springer, New
York (1995). https://doi.org/10.1007/978-1-4613-8431-1

https://doi.org/10.21538/0134-4889-2018-24-2-235-242
https://doi.org/10.21538/0134-4889-2018-24-2-235-242
https://doi.org/10.1007/s10107-010-0373-7
https://doi.org/10.1007/s10107-010-0373-7
https://doi.org/10.1007/978-3-642-38221-5_26
https://doi.org/10.1145/263867.263872
https://doi.org/10.1007/978-1-4613-8431-1


A Pattern-Based Heuristic for a Temporal
Bin Packing Problem with Conflicts

A. Ratushnyi(B)

Sobolev Institute of Mathematics SB RAS, Novosibirsk, Russia

alexeyratushny@gmail.com

Abstract. We introduce a new temporal bin packing problem with con-
flicts that originated from cloud data centers. For each item (virtual
machine), we know an arrival time, a finish time, and two weights (CPU
and RAM) which are defined by a corresponding type. Each bin (server)
has two capacities and is divided into several non-identical parts, called
NUMA nodes. Some items are large and have to be split into two pre-
defined parts. Our goal is to pack all items into the minimum number
of bins during the known time horizon. For this problem, we design a
heuristic based on a column generation approach. We consider a static
problem at one moment with a heavy load to obtain a lower bound. The
resulting patterns (columns) are then reused to construct a feasible solu-
tion to the entire temporal problem. However, the distribution of types
may vary at different moments. To address this, we propose to generate
more versatile sets of patterns that take into account several moments.
We perform computational experiments on semi-synthetic instances with
ten types, 10000 items for bins with two NUMA nodes, and 20000 items
for bins with four NUMA nodes. Every instance has a 10000-long time
horizon. Computational results demonstrate the effectiveness of the app-
roach and a small average gap.

Keywords: bin packing problem · knapsack problem · column
generation · temporal · conflicts

1 Introduction

Cloud computing raises a wide variety of challenging problems. One of them is
the optimal distribution of client requests for resource allocation. This necessarily
brings us to the temporal bin packing problem. It is a well-known and widely
studied optimization problem by many researchers. This paper considers a new
variation of the temporal bin packing problem. It has type conflicts and the
NUMA (Non-uniform memory access) architecture [10] of bins. We also consider
large and small sizes of items. Size affects the packing procedure. The problem
is NP-hard since it is a generalization of the bin packing problem [11].

A variation of the temporal bin packing problem considered in the condi-
tions of the data center is proposed in [3]. Authors propose MIP and both a
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lower bound and an upper bound. One of the conclusions is that this prob-
lem is rather hard for solvers even despite a breaking symmetry technique. The
work [7] reviews the column generation approach for a temporal case. Yet, the
columns take into account the entire horizon and all items, while a procedure
for reducing time moments is proposed to decrease the runtime. Authors of
the paper [12] propose reduction methods for a temporal case with a counted
number of server activations (or so-called fire-ups). The number of server acti-
vations is also an important indicator because it consumes a significant amount
of electricity. Minimizing this objective can significantly reduce financial costs.
A branch-and-price algorithm, based on column generation, for a temporal case,
is implemented in [4]. It is able to prove optimality for instances with up to
500 items. The paper [18] shows an approach with a predefined set of patterns.
The works [5,6] give an overview of both online and offline variations of the
bin packing problem with conflicts. The bin packing problem with clique-graph
conflicts is considered in [1]. It finds an application in security in cloud comput-
ing. The authors propose an asymptotic polynomial time approximation scheme
and a special approach for packing small items. The publication [16] provides
a description of a branch-and-price approach. It considers a special case when
the conflict graph is an interval graph. The dependence of the complexity of the
problem on the density of the graph conflicts is also explored. The authors of the
works [9,15] make some basic analysis of different heuristics. They compare First
Fit, First Fit Decreasing, Next Fit, Best Fit, A genetic algorithm, approaches
based on solving a sequence of a subset-sum problem, and some others. In the
work [13], a team from Microsoft proposes new geometric heuristics for vector
bin packing problem and compare them with First Fit Decreasing. It also con-
siders bad instances for different approaches. A couple of works [2,17] consider
multi-objective versions of the problem.

In our previous work [14], we considered a temporal bin packing problem
without any conflicts and with an even distribution of resources across NUMA
nodes. To obtain a lower bound, we used a column generation procedure to solve
a linear relaxation of a static bin packing problem (a subproblem that considers
only virtual machines from a single moment). At the same time, the upper bound
was obtained by extending an integer solution of a static problem using the First
Fit heuristic. This approach provided close lower and upper bounds.

In this paper, we extend our previous work and show how to cope with type
conflicts and unequal NUMA nodes. To compute lower bounds, we use the same
idea and obtain a solution for a single moment by the column generation app-
roach, where the pricing problem takes into account type conflicts. Then, we
run a couple of pattern-based heuristics to extend an integer static solution over
the entire horizon and obtain a feasible solution for the problem. In the process
of extension, these heuristics utilize the packing patterns (columns) obtained
during the column generation. Both of the heuristics aim at maintaining pack-
ing patterns on servers, that is, packing virtual machines according to patterns
throughout the horizon. However, the distribution of types of virtual machines
sometimes varies at different moments. Thus, some patterns obtained at one
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moment may be poorly suited for another. To this end, one of the heuristics
tries to use a more versatile set of patterns. Our computational experiments
show the effectiveness of these heuristics on large-scale problems.

The paper is organized as follows. Section 2 gives the details and notation
of the problem. We present the models for the master problem and the pricing
problem in Sect. 3. They are used in obtaining the lower bound. We also provide
the details on the column generation procedure. The developed heuristics for a
temporal case are given in Sect. 4. Section 5 contains a description of the data
sets. It also provides computational results. In Sect. 6, we conclude.

2 Formulation of the Problem

We are given a set of identical servers S, each one has a set N of NUMA nodes.
Every node n ∈ N has a capacity Cn

r of a resource r ∈ R = {CPU, RAM}. The
goal is to place every virtual machine (VM) from the set M on any server, in
such a way to use the least number of servers. Every VM m ∈ M has a start time
αm and a finish time ωm. Thus, it exists only in time moments t ∈ T such that
αm ≤ t < ωm. In addition, there is a set of types L. It is assumed that |L| � |M |.
Each VM m has a certain type l ∈ L which defines the required amount of CPU
and RAM for the virtual machine m. For example, a type may indicate that
some VM requires 1 CPU and 4 RAM or 32 CPU and 64 RAM. More examples
can be found at [8]. A type also specifies whether the corresponding VM is large
or small. A large VM is divided into two fixed parts that are placed on the same
server, but on two different NUMA nodes and processed simultaneously for the
entire lifetime of the VM. The part p ∈ P = {1, 2} of any large virtual machine
of type l takes dp

lr amount of resource r ∈ R. At the same time, a small virtual
machine of type l has only one part, which occupies dp

lr (defined only for p = 1)
amount of the resource r ∈ R, and should be completely placed on one node.

In addition, the problem input has a set of conflicts KL. Each conflict is a
pair of types (l1, l2), where l1, l2 ∈ L. If (l1, l2) ∈ KL then any VM m1 with the
type l1 and any VM m2 with the type l2 cannot be placed on the same server.

To present the full model, we introduce additional notation. We denote by
Msmall and M large (M = Msmall∪M large) the subsets of small and large virtual
machines. The same can be done for the set L = Lsmall∪Llarge. The set Mt ⊆ M
consists of all the VMs existing at the time moment t ∈ T . Similarly, the set Mt

also can be split into two subsets Mt = Msmall
t ∪M large

t . The set of conflicts KL

for types L can be mapped into the equivalent set of conflicts KM for virtual
machines. If (l1, l2) ∈ KL, then (m1,m2) ∈ KM for every virtual machine m1

that has the type l1 and every virtual machine m2 that has the type l2.
The decision variables are as follows: xmsn,m ∈ M, s ∈ S, n ∈ N equals 1 if

the small virtual machine (or the first part of the large virtual machine) m is
placed on the node n of the server s and 0 otherwise; ymsn,m ∈ M large, s ∈ S
equals 1 if the second part of the large virtual machine m is placed on the node
n of the server s and 0 otherwise; zs, s ∈ S equals 1 if the server s was active
at any moment (at least one) and 0 otherwise; F is the number of servers used.
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It is worth noting that since virtual machines cannot be moved from one server
to another, the variables xmsn, ymsn do not require any index t. In addition, we
should mention that the total number of servers F used may be greater than the
number of active servers at any moment t ∈ T . While it is the maximum number
of servers over all the moments that has been used in our work [14], different
objective function (1) is used in this paper.

min
(xmsn),(yms),(zs)

F (1)

s.t. F =
∑

s∈S

zs, (2)

∑

s∈S

∑

n∈N

xmsn = 1, m ∈ M, (3)

∑

n

xmsn ≤
∑

n

ymsn, m ∈ M large, s ∈ S, (4)

xmsn + ymsn ≤ 1, m ∈ M large, n ∈ N, s ∈ S, (5)
∑

n∈N

xmsn ≤ zs, m ∈ M, s ∈ S, (6)

∑

n

xm1sn +
∑

n

xm2sn ≤ 1, (m1,m2) ∈ KM , s ∈ S, n ∈ N, (7)

∑

m∈Mt

d1mrxmsn +
∑

m∈M large
t

d2mrymsn ≤ Cn
r , t ∈ T, s ∈ S, n ∈ N, r ∈ R, (8)

xmsn, ymsn, zs ∈ {0, 1}. (9)

The objective (1) is to minimize the number of servers. Equality (2) defines
the number of servers used. Constraints (3–4) enforce every virtual machine to
be placed. Inequalities (5) prohibit both parts of any large VM to be placed on
the same node. Inequalities (6) show that the server s is active when at least
one virtual machine was placed there. Constraints (7) manage the conflicts.
Inequalities (8) limit the number of resources on each server at every moment.

The model (1)–(9) is extremely hard to solve, even having only two NUMA
nodes. Therefore, it is necessary to develop heuristic approaches capable of
quickly obtaining a solution. This is especially important for data centers with
a huge number of servers because they usually have very large instances. And
the runtime is important for analyzing various situations and making decisions
or applying the solution to other problems.

3 Column Generation

Based on the results of the previous work [14] we assume that using only a
subset of virtual machines can be enough to get a good lower bound. We also
assume that the column generation is capable to provide a better result than
other approaches. It is proposed to select only one moment t̂ and solve the linear
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relaxation of the bin packing problem with conflicts for all the virtual machines
from the set Mt̂. The result will become the lower bound for the problem consid-
ered. A good example of such a moment t̂ can be a moment with the highest load
on one of the resources. The load can be computed using the following formula
loadr = (

∑
m ∈ Msmall

t̂
d1lr +

∑
m ∈ M large

t̂

∑
p∈P dp

lr)/
∑

n∈N Cn
r , where l (of

dp
lr) is the type of the corresponding virtual machine m ∈ Mt̂. Notice that if we

remove the temporality and consider only one moment, then virtual machines
of the same type have no difference. Thus, in this section, we will operate with
the set of types L instead of the set M .

To describe the applied column generation procedure, we first have to intro-
duce several additional models. The first model corresponds to the bin packing
problem or so-called master problem. Here J is the set of all possible patterns
for one server. The value alj denotes the integer number of VMs of the type
l ∈ L in the column j ∈ J . The J ′ ⊂ J is usually a small subset of patterns that
must be large enough for the problem to have a feasible solution. One possible
option is to take columns jl with the only non-zero element aljl > 0 for every
l ∈ L. The value hl represents the number of requests for a virtual machine of
the type l. The variable xj is equal to the number of servers packed according
to the pattern j. The master problem has the following form.

min
∑

j∈J ′
xj (10)

s.t.
∑

j∈J ′
aljxj ≥ hl, l ∈ L, (11)

xj ≥ 0, j ∈ J ′. (12)

The objective (10) is the number of bins. Inequality (11) guarantees that all
the virtual machines are packed.

The dual problem looks like the following.

max
∑

l∈L

hlλl (13)

s.t.
∑

l∈L

aljλl ≤ 1, j ∈ J ′, (14)

λl ≥ 0, l ∈ L. (15)

Let λ∗
l be the dual variables of the current optimal solution. The pricing

problem is used to get new columns that can improve the objective function of
the master problem. It is a modification of the knapsack problem and can be
represented by the model (16)–(23). Here, the variable zn

l shows how many small
VMs of type l ∈ L are placed on the node n. The variable ynk

l shows the number
of large VMs of type l ∈ L, with the first part placed on node n and the second
part placed on node k. The χl equals 1 if at least one virtual machine of the
type l is placed.
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max α =
∑

n∈N

∑

l∈Lsmall

λ∗
l z

n
l +

∑

n∈N

∑

k∈N
k �=n

∑

l∈Llarge

λ∗
l y

nk
l (16)

∑

l∈Lsmall

d1lrz
n
l +

∑

k∈N
k �=n

∑

l∈Llarge

(d1lry
nk
l + d2lry

kn
l ) ≤ Cn

r , r ∈ R,n ∈ N, (17)

χl ≥
∑

n∈N

zn
l

M
, l ∈ Lsmall, (18)

χl ≥
∑

n∈N

∑

k∈N
k �=n

ynk
l

M
, l ∈ Llarge, (19)

χl1 + χl2 ≤ 1, (l1, l2) ∈ KL, (20)
χl ∈ {0, 1}, l ∈ L, (21)

ynk
l ≥ 0, integer, l ∈ Llarge, n, k ∈ N, (22)

zn
l ≥ 0, integer, l ∈ Lsmall, n ∈ N. (23)

The objective (16) is the weighted number of packed virtual machines.
Inequalities (17) limit the capacity of the server. Constraints (18)–(20) add con-
flicts. The value M is a fixed large number greater than any hl.

It is also possible to use another model (24)–(32) for the pricing problem with
a less number of variables. Let zn

l show a number of small VMs (or a number
of first parts of large VMs) of the type l ∈ L placed on the node n. And let yn

l

show a number of second parts of large VMs of the type l ∈ Llarge placed on the
node n.

max α =
∑

n∈N

∑

l∈L

λ∗
l z

n
l (24)

zn
l ≤

∑

k∈N
k �=n

yk
l , l ∈ Llarge, n ∈ N, (25)

∑

n∈N

zn
l =

∑

n∈N

yn
l , l ∈ Llarge, (26)

∑

l∈L

d1lrz
n
l +

∑

l∈Llarge

d2lry
n
l ≤ Cn

r , r ∈ R,n ∈ N, (27)

χl ≥
∑

n∈N

zn
l

M
, l ∈ L, (28)

χl1 + χl2 ≤ 1, (l1, l2) ∈ KL, (29)
χl ∈ {0, 1}, l ∈ L, (30)

yn
l ≥ 0, integer, l ∈ Llarge, n ∈ N, (31)
zn
l ≥ 0, integer, l ∈ L, n ∈ N. (32)
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Constraints (25) ensure that two parts of any large virtual machine are placed
and that they are located on the different NUMA nodes. This set of constraints
is sufficient for the case |N | = 2. We add the additional set of constraints (26) for
the case |N | > 2. It ensures that no two first parts of any large virtual machine
use the same second part. For example, consider the case when the first two parts
(of two different large VMs) are placed on the first and second NUMA nodes,
and at the same time, only one second part is located on the third NUMA node.
Other constraints are taken from the model (16)–(23).

The Algorithm 1 gives the pseudocode of the column generation procedure
with the proposed models. We run it at two moments that have the highest load
for each resource (CPU and RAM). After that, we choose the largest result as a
lower bound.
Algorithm 1: The column generation procedure
Input: An initial subset of columns J ′, A set of virtual machines Mt̂;
Output: A lower bound LB, A supplemented set J ′;

1 Initialization: α∗ ← ∞;
2 while α∗ > 1 do
3 λ∗

l ← solve (13)-(15);
4 jnew, α∗ ← solve (24)-(32);
5 Add the new column jnew to the set J ′;
6 end
7 LB ← �∑l∈L hlλ

∗
l �;

8 return: LB, J ′;

This approach can be improved in the case when a complement of a conflict
graph splits into connected components. Assume we have a graph G = (V,E),
where V = L and (i, j) ∈ E if there is no conflict between i and j. Then, any
connected component Gk of the graph G can be mapped to a corresponding set
of servers of a static solution (with a corresponding set of virtual machines).
Any VM from such a set can not be moved to any other set of servers. Thus,
we can compute a lower bound independently for each of these components.
Consequently, a lower bound becomes LB =

∑
k�LBGk

�.

4 Upper Bounds

We obtain a set of useful packing patterns in the process of column generation.
All of them can be adopted for an upper bound. We propose to reuse a set
of columns J ′ that we get as an output of the Algorithm 1. It helps us to
construct a static integer solution at time moment t̂. This solution is partial
and can be extended to the whole horizon. A set of virtual machines M can
be divided into three disjoint subsets Mmiddle = {m ∈ M |αm ≤ t̂ < ωm},
Mright = {m ∈ M |αm > t̂}, Mleft = {m ∈ M |t̂ ≥ ωm}. We run a different
packing procedure for each of these subsets.

First, we solve a bin packing problem (10)–(12) for the set Mmiddle with
integer variables xj . Here we use the columns J ′ obtained in the Algorithm 1.
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This solution shows how many servers (= xj) with each pattern j ∈ J ′ we need
to use at the moment t̂. However, this solution is in terms of types, and it is
not in terms of virtual machines. Thus, a decoding procedure is required. After
we created the servers and assigned a pattern to each one, we begin to pack the
virtual machines from the set Mmiddle. For each VM m of a type l ∈ L we select
the first server that still has a place in its pattern j (alj > 0) and update the
pattern (alj = alj − 1). Note that we update only the pattern associated with
the current server and do not touch any others.

Algorithm 2: Pattern-based heuristic
Input: A set of virtual machines Mright, A set of servers S with

corresponding patterns;
1 sort(Mright);
// Sort the VMs in non-decreasing order of start times αm

2 for every m̂ ∈ Mright do
3 isP laced ← false;
4 for every server s ∈ S do
5 for every m ∈ s do
6 if ωm ≤ αm̂ then
7 remove m from the server s;
8 alj ← alj + 1; ; // if server s has a pattern

9 end
10 end
11 if al̂j > 0 or s has enough space then
12 isP laced ← true
13 al̂j ← al̂j − 1;
14 stop looking for a server;
15 end
16 end
17 if isP laced = true then
18 create a new server s;
19 place m̂ on the server s;
20 isP laced ← true;
21 end
22 end

The sets Mleft and Mright have similar packing procedures. As presented
in the Algorithm 2 we use a heuristic based on First Fit that preserves server
patterns. Firstly, the set Mright is sorted in non-decreasing order of start times
αm. Then every virtual machine m̂ ∈ Mright is packed on the first server that
has a vacant place in its pattern (alj > 0) or has enough resources (for servers
without patterns). If there is no suitable server, then a new server is created
without any pattern. Such a server can take any VM if it doesn’t break any
conflict. Also, before searching for a suitable server, we are to remove every VM
m that has already finished (ωm ≤ αm̂). The same procedure is repeated for the
set Mleft. Yet, we sort it in non-increasing order of finish times ωm. And we
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remove virtual machines that have αm ≥ ωm̂. This approach is memory-efficient
and fast enough since it only requires keeping one time moment in memory. This
moment equals αm of the current virtual machine for the set Mright and ωm for
the set Mleft.

During the packing process, along with a server, we also have to select one
or two NUMA nodes. On each server, the nodes with the highest free space have
priority. This way, the loading of all nodes remains close to uniform. It helps to
pack large virtual machines since they require resources not from one, but from
two NUMA nodes at once.

Fig. 1. A representation of the difference between sets of patterns. We run column
generation at two different time moments to compare sets of unique patterns. Every
pattern is depicted as a column of black and white cells. Each black cell shows that
the corresponding type is used in the pattern. At both time moments we have exactly
eight used patterns and they are represented in the order of generation.

The approach described above is strongly tied to patterns. Yet, different time
moments may have significantly different subsets of virtual machines. Running
the Algorithm 1 in such moments would lead to getting different sets J ′ (see
Fig. 1). Thus, the proposed heuristic requires additional improvements.
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One of the possible ways to improve it is to use a more versatile set of pat-
terns. Suppose we have a solution for the temporal problem obtained by the app-
roach described above. We can select several difficult time moments {t1, ..., tk}.
These moments are the ones with the highest load. To increase diversity, we
divide the entire horizon with a step h and choose one moment for each resource
r ∈ R in each interval. Every ti ∈ {t1, ..., tk} can be associated with a correspond-
ing set of patterns Ji ∈ {J1, ..., Jk}. To select a universal subset of patterns Jun

from the combined set Ĵ = ∪k
i=1Ji we solve the following model (33)-(35). The

patterns from the set Jun ⊆ Ĵ correspond to the variables xj > 0.
The model (33)-(35) almost completely coincides with (10)–(12). Yet, here

we look for a set of patterns that can pack all virtual machines at every ti ∈
{t1, ..., tk} independently. A solution to the problem (33)–(35) is not a lower
bound in general. However, we hope that it can help to obtain better upper
bounds.

When we have a new, more universal set of patterns, we construct an upper
bound for the moment with the highest load t̂. Computation experiments show
that such an approach is capable of providing better results, although it takes
much longer. The pseudocode of this procedure is presented in Algorithm 3.

min
∑

j∈Ĵ

xj (33)

s.t.
∑

j∈Ĵ

aljxj ≥ max
ti∈{t1,...,tk}

hti
l , l ∈ L, (34)

xj ≥ 0, integer, j ∈ Ĵ . (35)

Algorithm 3: Temporal pattern-based heuristic
Input: A set of time moments {t1, ..., tk};

1 for every ti ∈ {t1, ..., tk} do
2 run Algorithm 1 at the moment ti;
3 save the corresponding set of patterns Ji obtained;
4 end
5 solve (33)-(35) and get a subset of universal patterns Jun;
6 solve the model (10)-(12) at t̂ with integer variables and the set Jun for

the set Mmiddle;
7 run Algorithm 2 for the set Mright;
8 run Algorithm 2 for the set Mleft;

5 Computational Experiments

For our experiments, we generated a couple of semi-synthetic data sets. The
requirements of each type l ∈ L (CPU and RAM) and server configurations are
provided by one cloud computing company. Hereby, we have ten types and two
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server configurations, first one is with two different NUMA nodes and another
one is with four different NUMA nodes. Each set contains fifty instances with
10000 VMs for servers with two NUMA nodes and fifty instances with 20000
VMs for servers with four NUMA nodes. The length of the time horizon always
equals 10000. In total, we have 200 instances. The algorithms are implemented
in python, and the experiments are carried out on a computer with Intel Core
i5-11400F and 16 GB of RAM. Gurobi 10.0 is used as a solver.

We compare the following approaches:

– First Fit (FF). We pack the sets Mright and Mleft by the First Fit algo-
rithm, with no trying to keep patterns. That is, a virtual machine gets to any
server that has a sufficient amount of resources, and conflicts are not violated.

– Pattern-based (PB). We pack the sets Mright and Mleft in correspondence
with patterns obtained at some moment t̂. If there are not enough servers,
then we create a new server without any pattern.

– Temporal pattern-based (TPB). It works according to Algorithm 3.
Thus, it is identical to the approach PB, but uses a different set of patterns.

All the approaches are run once for every moment tr = argmax(loadr), r ∈
R. If the moments with the highest load for both resources coincide, then all
approaches are run only once. When selecting difficult moments {t1, ..., tk}, a
constant step h and ten intervals are used. We repeat it for every resource r ∈
R. Considering only two resources, we have 10 ≤ k ≤ 20, because some time
moments may coincide.

Fig. 2. Example of an instance for the first data set. Start time, finish time, and a
type being sampled from the uniform distribution, the resource demand looks like a
hill with a pronounced extremum. Different time moments differ rather by the number
of virtual machines and not by the ratio of types. CPU and RAM are evaluated in
terms of servers (the amount is divided by the server capacity).

The result tables below have the following rows and columns. The columns
FF, PB, TPB refer to the different approaches listed above. The rows avg.
GAP and std. GAP show the average and standard deviation of the relative
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Fig. 3. Example of an instance for the second set. All virtual machines have a relatively
short lifetime. The resource demand has several time points that are close to the
extremum. The ratio of types at different times differ (see Fig. 1), and as a result,
the sets of patterns also differ. CPU and RAM are evaluated in terms of servers (the
amount is divided by the server capacity).

percentage deviation of the column generation lower bound and the correspond-
ing upper bound. The rows MIN GAP and MAX GAP show the minimum
and maximum deviations. The row N SERVERS shows an average absolute
difference between the lower and a corresponding upper bound. The final row
TIME is an average runtime in seconds.

The first set of instances is generated as follows. The start time αm is selected
from the discrete uniform distribution U[1,9999]. The finish time ωm is selected
from the discrete uniform distribution U[αm+1,10000]. The type l is randomly
selected from the whole set L using the discrete uniform distribution U[1,10].
Conflicts are randomly chosen for each instance from the whole set of conflicts
by the discrete uniform distribution U[0,45]. Such generation leads to an approx-
imately equal ratio of types all over the horizon. As a consequence, the same set
of patterns can be obtained even at sufficiently distant moments. For an example
of such an instance, see Fig. 2. The results are presented in Table 1.

The second set is generated in a more complicated way. The start time αm

is selected from the discrete uniform distribution U[1,9999]. The finish time is
computed as follows ωm = min(αm + U[1,2000], 10000). Thereby, the lifetimes of
all virtual machines are quite short, and a static solution at any moment t has
less effect on the whole temporal solution. Before choosing a type, we select a
subset L5 with five different types. And then we choose a type for the current
VM from the set L5 using the discrete uniform distribution U[1,5]. Conflicts are
generated in the same way as for the first data set. With such generation, the
ratio of types differs at different time moments. As a result, the sets of patterns
obtained by column generation at different time moments also differ (see Fig. 1).
For an example of such an instance, see Fig. 3. The results are presented in
Table 2.

We can draw the following conclusions based on Table 1 and Table 2. The
First Fit approach works noticeably worse than both pattern-based heuristics
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Table 1. Results for the first set of instances

2 NUMA nodes 4 NUMA nodes

FF PB TPB FF PB TPB

avg. GAP 3.22 1.41 1.35 2.83 1.06 0.97

std. GAP 1.45 0.39 0.39 1.52 0.32 0.31

MIN GAP 0.80 0.68 0.67 0.55 0.37 0.18

MAX GAP 6.04 2.63 2.63 6.73 2.25 1.80

N SERVERS 14.78 6.40 6.14 13.12 4.90 4.50

TIME 26.24 28.19 226.29 174.96 204.82 1125.09

Table 2. Results for the second set of instances

2 NUMA nodes 4 NUMA nodes

FF PB TPB FF PB TPB

avg. GAP 10.12 6.79 5.07 14.71 5.82 4.77

std. GAP 2.49 1.41 1.52 4.51 1.29 1.22

MIN GAP 4.72 2.85 2.85 3.51 3.07 2.0

MAX GAP 14.55 9.27 8.78 22.15 8.27 7.24

N SERVERS 15.12 9.82 7.22 22.96 8.28 6.72

TIME 35.64 37.34 237.75 204.76 219.88 1315.04

on both data sets. In the worst case, it shows the GAP equal to 22.96%. The
Temporal pattern-based idea shows insignificantly better results on the first data
set compared to the Pattern-based heuristic. We could expect this because the
pattern sets are too similar. For the second data set, the TPB approach can
noticeably improve the results of the PB approach. Although it requires signifi-
cantly more time due to the need to run several column generations. Instances
with four NUMA nodes seem to be harder. We noticed that this is caused by
a pricing problem (24)–(32) that requires more time for four NUMA nodes. At
the same time, the master problem requires insignificant time compared to the
pricing problem. The column generation takes most of the time, thus FF and
PB have almost identical runtimes.

6 Conclusions

In this work, we presented the new temporal bin packing problem with conflicts
and NUMA architecture. We developed a couple of pattern-based heuristics.
Each uses a column generation procedure to select proper patterns. And one of
them utilizes more universal columns. Two models for the modified knapsack
problem were introduced. We carried out computational experiments on two
different data sets. One data set is obtained using a fairly primitive generation
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procedure, while the other simulates complex conditions. Strong results were
demonstrated for both data sets. The proposed methods can be generalized to
other variations of the bin packing problem.

Acknowledgement. The study was carried out within the framework of the state
contract of the Sobolev Institute of Mathematics (project FWNF-2022-0019).
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Abstract. The paper deals with the following scheduling problem. Jobs
are served by a single machine. Each job is characterized by a positive
weight, a release date, a due date. Servicing times are the same for all
jobs. Preemptions are allowed. We investigate the case of the discrete
time. The goal is to find a schedule for servicing jobs that minimizes
the weighted sum of tardiness. The complexity status of this problem
is unknown today. Our paper proposes two models of boolean linear
programming for this problem. A comparative analysis of the models is
carried out, and results of the computational experiment are described.

Keywords: Schedules · Tardiness · Polyhedral approach · Valid
inequalities · (0,1)-programming

1 Introduction

The total weighted tardiness problem on a single machine is considered. The
problem is formulated as follows. Let V , |V | = n, be a set of jobs that must
be served by a single machine. Each job i ∈ V is characterized by a positive
weight (wi > 0), a release date (ri ≥ 0), and a due date (di > 0). Servicing times
(pi > 0) are the same for all jobs, that is pi = p for all i ∈ V . Preemptions are
allowed. All of these characteristics are integer. We investigate the case of the
discrete time. The goal is to find a schedule for processing jobs that minimizes the
weighted sum of tardiness. A jobs schedule is a (0, 1)-vector x with coordinates
xik, i ∈ V , k = 1, 2, . . ., which are determined by the rules: xik = 1, if at time k
the job i is being served; otherwise xik = 0.

Let us introduce the value Ci(x) = max{k ∈ D | xik = 1}, the last moment
of processing job i in the schedule x. The tardiness of a job i ∈ V in the schedule
x is the value Ti(x) = max{0, Ci(x) − di}. The goal is to find a schedule that
minimizes the weighted sum of tardiness.

In the notation adopted in scheduling theory, this problem can be written
as 1|pmtn; pi = p; ri|

∑
wiTi. Depending on the type of constraints, the com-

putational complexity of the problem varies. With equal job weights, the prob-
lem is polynomially solvable both with and without preemptions (1|pmtn; pi =
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p; ri|
∑

Ti and 1|pi = p; ri|
∑

Ti) [1–3]. In case when preemptions are dis-
abled, the processing times for jobs are different, but the times of their arrival
the same, the problem is NP -hard both in weighted and unweighted versions
(1||∑ Ti and 1||∑ wiTi ) [3–5]. As for the considered problem, that is,
1|pmtn; pi = p; ri|

∑
wiTi, its complexity status is currently unknown [3].

Since the number of calls is finite, we can introduce some general deadline
d, long enough for all jobs to be processed. The set of all schedules on the set
V that fit into a given deadline d will be denoted by Σd. In addition, we will
use the notation D = {1, 2, . . . , d}. With such an arrangement, the schedule
x ∈ Σd is conveniently presented as a table of dimension n × d, in which each
row corresponds to the job i ∈ V , and each column corresponds to the time
k ∈ D. Any column of this table that does not contain ones is called empty. It is
clear that the schedules introduced above are integer solutions of the following
system of constraints:

∑

k∈D

xik = p, i ∈ V ; (1)

∑

i∈V

xik ≤ 1, k ∈ D; (2)

xik ≥ 0, i ∈ V, k = ri + 1, ri + 2, . . . , d; (3)

xik = 0, i ∈ V, k = 1, 2, . . . , ri; (4)

The polyhedron specified by conditions (1)–(4) is, in fact, a polyhedron of the
transportation problem with integer right-hand sides and therefore it is integer.

As it has been noted, scheduling theory considers a large number of problems
on the set of schedules Σd. These problems differ in the structure of objective
functions. We consider the problem of minimizing the function

f(x) =
∑

i∈V

wiTi(x) =
∑

i∈V

wi max{0, Ci(x) − di}, (5)

on the set of vertices of the polyhedron (1)–(4). Note that the problem is not an
integer linear programming problem, since its objective function is non-linear.

Review [6] presents a large number of integer models for various problems
in scheduling theory, including for a single machine. In the present study, a new
integer model is proposed for the problem under consideration. The model has
a visual interpretation in terms of graph theory. In addition, this model is eas-
ily projected onto a number of other scheduling problems on a single machine
with preemptions, among which there are polynomially solvable, NP-hard prob-
lems and problems with an open complexity status, for example: 1|pmtn; pi =
p; ri|

∑
wiCi, 1|pmtn; ri|

∑
Ci, 1|pmtn; pi = p; ri|

∑
Ti, 1|pmtn; ri|

∑
wiCi,

1|pmtn; ri|
∑

Ui, 1|pmtn; pi = p; ri|
∑

wiUi, 1|pmtn; ri|
∑

wiUi. All these prob-
lems are mentioned in [3].

The current paper explores the polyhedral properties of the problem. To do
this, we need the following concepts and notation.
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Let G be an ordinary graph. If i and j are adjacent vertices of the graph G,
then we will use the notation ij to denote the edge between them. The degree
of a vertex i of the graph G is denoted by dG(i). A graph H is a subgraph of
graph G (H ⊂ G) if the vertex set (edge set) of graph H is a subset of vertex set
(edge set) of graph G. For the graphs G1 and G2 the notation G1 ∪ G2 means
the graph obtained by the union of the vertex sets and the edge sets of these
graphs. A polytope in a finite-dimensional Euclidean space is a convex hull of
a finite set of points, a polyhedron is a solution set of a finite system of linear
equations and inequalities if it is bounded. The polyhedron containing the given
polytope will be called the polyhedral relaxation of the polytope.

Let M be a subset of the t-dimensional Euclidean space Rt. A linear inequal-
ity in Rt is called valid with respect to M if any point from M satisfies it. A
valid inequality is called a support one if there is a point in M that satisfies it
as an equality. Support inequalities are important in constructing convex hulls
of sets and in cutting plane algorithms.

In this paper, we consider a special approach to constructing a linear objec-
tive function for the problem 1|pmtn; pi = p; ri|

∑
wiTi, which makes it possible

to use the apparatus of integer linear programming to solve it. Section 2 proves
the monotonicity property of the objective function, which makes it possible to
determine the minimum general deadline for processing of all jobs. The poly-
nomial resolvability of the problem of finding this minimum deadline is shown.
In Sect. 3, we construct a special graph that allows us to consider the set of all
schedules as a family of its subgraphs. In terms of this graph, we formalize the
last moments of processing jobs. In Sect. 4, the mentioned graph is associated
with the Euclidean space, in terms of which the Boolean linear programming
model of the problem under consideration is described. In addition, three classes
of valid inequalities for the scheduling polytope are found. Each of these classes
consists of a polynomial number of constraints, resulting in several more polyhe-
dral relaxations of the scheduling polytope. In Sect. 5 these classes of inequalities
are described. Finally, Sect. 6 presents the computational results of testing the
constructed models and comparing the proposed polyhedral relaxations.

2 On a Minimal General Deadline

Note that the sets Σd for different d have the monotonicity property, that means
that for d < d′ there is an inclusion Σd ⊂ Σd′ . In this view, we can talk about the
value dmin, which is determined by the conditions: Σdmin

�= ∅, but Σdmin−1 = ∅.
In this section, we will show that this monotonicity is also preserved with respect
to the optimal value of the objective function (5).

Theorem 1. Let d ≥ dmin. For any schedule x ∈ Σd+1 there exists a schedule
x′ ∈ Σd such that f(x′) ≤ f(x).

Proof. Let x ∈ Σd+1. Let us order the jobs by no increase of characteristics ri,
i ∈ V , i.e. r1 ≤ r2 ≤ . . . ≤ rd+1. Let r(x) = max{k | xik = 0, i ∈ V } be the
rightmost empty column of the table corresponding to schedule x. If r(x) = d+1,
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then everything is proved since the column d+1 in the schedule x can be simply
deleted, and the rest of the table will be the required schedule x′ ∈ Σd. Let
rs−1 < r(x) ≤ rs ≤ d. Let us show that there exists a job i ≤ s such that
Ci(x) > r(x). Indeed, suppose that Ci(x) < r(x) for each i = 1, 2, . . . , s − 1.
If r(x) < rs, then the columns r(x) + 1, r(x) + 2, . . . , rs are also empty and,
without loss of generality, we can assume that r(x) = rs. This means that
the table fragment for schedule x, formed by rows s, s + 1, . . . , n and columns
rs+1, rs+2, . . . , d+1, has no empty columns and satisfies requirements (1) and
(2). But then d + 1 = dmin, which contradicts the condition of the theorem.

So, there is a job i ≤ s such that Ci(x) > r(x). Consider a new schedule x̃
obtained from the schedule x by moving the unit from the cell (i, Ci(x)) to the
cell (i, r(x)). As a result, we get Ci(x̃) < C(x) and r(x̃) = Ci(x) > r(x). Since the
number of columns is finite, repeating this procedure the needed number of times,
we will get r(x′) = d + 1, i.e. the column d + 1 will be empty. At the same time,
the value of the objective function did not increase at each step since the transfer
of unity was always carried out in the direction of decreasing column numbers.

The theorem is proved.

It follows from Theorem 1 that the set Σdmin
contains optimal schedules.

This fact and the intention to reduce the dimensionality of the problem makes
the search for the minimum general deadline necessary. The polyhedron specified
by conditions (1)–(4) is, in fact, a polyhedron of the transportation problem with
integer right-hand sides and, therefore, is integer. To search for dmin, a polyno-
mial dichotomy procedure is proposed. In this procedure we use the integrality
of the polyhedron (1)–(4). Let us denote this polyhedron by Md.

The dichotomy scheme for searching for dmin.
We set A = 1, B = np +max{ri | i ∈ V }.
i-th iteration
Step 1. Calculate d = 	A+B

2 
.
Step 2. If Md = ∅, then set A := d, B := B and go to step 3. If Md �= ∅, then

we set A := A, B := d and go to Step 3.
Step 3. If B − A = 1, then output: dmin = B. Otherwise, go to i + 1-th

iteration.
Checking the condition Md = ∅ (or, equivalently, Md �= ∅) at step 2 can

be done by solving LP problem with an arbitrary linear objective function on
the polyhedron Md. Since the polyhedron is integer, the condition Md = ∅ is
equivalent to no schedules for given d.

Further, everywhere we will assume that the general deadline for all jobs is
minimal, that is, d = dmin.

3 The Description of a Schedule Set and Jobs Completion
Times in Graph Theory Terms

Problem (5) is not an integer linear programming problem since the objective
function is not linear. This difficulty is typical for most scheduling problems
when the apparatus of integer linear programming are used.
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Let us proceed to the description of the set of schedules in graph theory
terms. Let us consider three sets of vertices: V is the set of jobs, D is the set
of time moments at which the jobs are processed, Y is a duplicate of the set V
(this is an auxiliary set that will be used to calculate the completion times of
jobs). Moreover, for the sets V and Y the order of the elements is not essential,
the set D = {1, 2, . . . d} is ordered. Since the sets V and Y are identical, in
cases where the element i belongs to the set V and the set Y at the same
time, we will use the notation i ∈ V (= Y ). Let G1 = (V,D;E1) be a complete
bipartite graph with parts V and D and edge set E1 = {ik | i ∈ V, k ∈ D};
G2 = (Y,D;E2) is a complete bipartite graph with parts Y and D and edge set
E2 = {ik | i ∈ Y, k ∈ D}. Let us form the graph G = G1 ∪ G2. In the graph G,
we define a family of subgraphs H according to the following rule. The subgraph
H ⊂ G, H = H1 ∪ H2, H1 ⊂ G1, H2 ⊂ G2 belongs to the family H (called a
schedule) if the following three conditions hold for H

dH1(i) = p, i ∈ V ; (6)

dH1(k) = 0 for k = 1, 2, . . . , ri, and dH1(k) ≤ 1 for k = ri+1, ri+2, . . . , d; (7)

for i ∈ V (= Y ) i k ∈ D the inclusion ik ∈ EH2

occurs if and only if there is l ∈ D, l ≥ k, such that il ∈ EH1. (8)

Figure 1 shows a fragment of such a graph H ∈ H for the vertex i = 3.

Fig. 1. Fragment of graph H ∈ H for i = 3.

If H = H1 ∪ H2 ∈ H, then by virtue of (6) and (7) the inclusion ik ∈ EH1

means that at time k ∈ D the job i ∈ V and only it is being serviced, and
condition (8) guarantees that the vertex i ∈ Y will be connected by edges to
all vertices of the set {1, 2, . . . Ci} ⊂ D. Thus, the subgraph H1 ⊂ H defines
the schedule and the degrees of the vertices i ∈ Y with respect to the subgraph
H2 ⊂ H are the jobs completion times.
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This construction allows us to formulate the problem under consideration in
the form of:

min{
∑

i∈Y

wi max{0, dH2(i) − di} | H = (H1,H2) ∈ H} (9)

4 The Polyhedral Formulation of the Problem

Let us construct a Boolean linear programming model for problem (9). Let RE =
RE1 × RE2 be the space associated with the edge set of the graph G. In other
words, RE is the space of column vectors whose components are indexed by
elements of the set E = E1 ∪ E2. The coordinate axes in RE1 will be denoted
xik, in RE2 – yik. Let H ∈ H. The incidence vector of the subgraph H = H1∪H2

is the vector (xH1 , yH2) ∈ RE1 × RE2 with coordinates

for i ∈ V, k ∈ D xH1
ik =

{
1, if ik ∈ EH1,
0, otherwise.

for i ∈ Y, k ∈ D yH2
ik =

{
1, if ik ∈ EH2,
0, otherwise.

Now the set of schedules H can be associated with a polytope

PH = conv{(xH1 , yH2) ∈ RE | H = H1 ∪ H2 ∈ H}.
Theorem 2. A subgraph H = H1 ∪ H2 ∈ G belongs to the family H (is a
schedule) if and only if its incidence vector (xH1 , yH2) ∈ RE is an integer point
of the polyhedron which is formed by constraints (1)–(4) and constraints

d∑

l=k

xil ≤ pyik, i ∈ V (= Y ), k ∈ D; (10)

yik ≤
d∑

l=k

xil, i ∈ V (= Y ), k ∈ D; (11)

yik ≤ 1, i ∈ Y, k ∈ D. (12)

Proof. Let H = H1 ∪ H2 ∈ H. The fulfillment of constraints (1)–(4) and (12)
for the point (xH1 , yH2) is obvious. Let us consider constraints (10) and (11).
Let i ∈ V (= Y ), k ∈ D. Suppose

∑d
l=k xH1

il > pyH2
ik . If yH2

ik = 1, then p <
∑d

l=k xH1
il ≤ ∑d

l=1 xH1
il = dH1(i). It contradicts condition (6) from the definition

of the family H. If yH2
ik = 0, then

∑d
l=k xH1

il > 0. Therefore, there are l ≥ k such
that il ∈ EH1. Then, from condition (8) we obtain that ik ∈ EH2 or, which is
the same, yH2

ik = 1. The fulfillment of constraints (10) for the point (xH1 , yH2)
is proved.

Now, let us supppose that yH2
ik >

∑d
l=k xH1

il . If yH2
ik = 0, then we obtain

a contradiction with the non-negativity of the vector xH1 . If yH2
ik = 1, then
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ik ∈ EH2 and from (8) it follows that there is a number s ≥ k such that
is ∈ EH1 or, which is the same, xH1

is = 1. Therefore, 1 >
∑d

l=k xH1
il ≥ xH1

is = 1,
which does not make sense. This proves the fulfillment of constraints (11) for
the point (xH1 , yH2). Now, let us prove the reverse implication. Let (x̄, ȳ) be an
integer solution of the system ((1)–(4), (10)–(11)). Note that for any i ∈ V (= Y )
and k ∈ D, due to (2) and (3) we have x̄ik ≤ 1, and due to (3) and (10) we
have ȳik ≥ 0. Let H1 ⊂ G1 and H2 ⊂ G2 be such that ik ∈ EH1 if and only if
x̄ik = 1, and ik ∈ EH2 if and only if ȳik = 1.

Let us show that H1 ∪ H2 ∈ H. The fulfillment of conditions (6) and (7)
from the definition of the family H immediately follows from constraints (1) and
(2). Let us prove condition (8). If ik ∈ EH2, then ȳik = 1. Then from (11)
we have 1 <

∑d
l=k x̄il. This means that there exists l ≥ k such that x̄il = 1 or,

equivalently, il ∈ EH1. If ik /∈ EH2, then from (3) and (10) we get
∑d

l=k x̄il = 0.
This means that x̄il = 0 for any l ≥ k or, equivalently, il /∈ EH1.

The theorem is proved.

The polyhedron defined by the constraints ((1)–(4), (10)–(12)) will be
denoted by MH. It is obvious that PH ⊆ MH, i.e. MH is a polyhedral relax-
ation of the polytope PH . Moreover, since MH and PH lie in the unit cube, we
can state the corollary of Theorem 2.

Corollary 1. The vertex set of the polytope PH coincides with the set of integer
points in the space RE that belong to the polyhedron MH.

The above description of the set of schedules in terms of the graph G allows
us to linearize the objective function of problem (9). As already noted, for the
schedule H = H1 ∪ H2 ∈ H the completion time of the job i ∈ V can be
expressed as Ci(xH1) ≡ Ci(xH1 , yH2) = dH2(i) =

∑
k∈D yik. Let us show that

max{0, Ci(xH1) − di} =
∑d

k=di+1 yik. Indeed, if Ci(xH1) ≤ di, then yik = 0 for
all k > di and, consequently,

∑d
k=di+1 yik = 0. If Ci(xH1) > di, then yik = 1

for all k = di + 1, di + 2, . . . , Ci(xH1) and hence
∑d

k=di+1 yik =
∑Ci(x

H1 )
k=di+1 yik =

Ci(xH1) − di.
Now problem (9) can be formulated as a Boolean programming problem of

the form

min{
∑

i∈Y

d∑

k=di+1

wiyik | (x, y) ∈ MH ∩ ZE}, (13)

where ZE is an integer lattice of the space RE .
The form of the objective function in problem (13) implies the presence of

the condition di < d, although, generally speaking, the situation di ≥ d is
possible. However, in this case for x ∈ Σd we have max{0, Ci(x) − di} = 0 and
consequently the jobs i ∈ V for which di ≥ d, we can simply not include it in the
objective function. Therefore, further, without loss of generality, we will assume
that di < d for all i ∈ V .
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The following example (Fig. 2) show that the polyhedron MH also has non-
integer vertices, i.e. the inclusion PH ⊂ MH is strict. We present the vertex of
the MH polyhedron in graph form. Here n = 3, p = 4, d = 12, r = (0, 2, 2). The
solid line shows the variables for which the point (x, y) ∈ MH has the value 1,
the dotted line shows non-integer variables. In addition, Table 1 shows the values
for each variable yik, i ∈ Y , k ∈ D. This example was obtained by applying the
simplex method to the polyhedron ((1)–(4), (10)–(12)) (the form of the objective
function does not matter).

Fig. 2. Non-integer point of the polyhedron MH.

Table 1. The values of the variables yik for the point from Fig. 2.

yik 1 2 3 4 5 6 7 8 9 10 11 12

1 1 0.75 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.25
2 1 1 1 1 1 1 1 0.75 0.5 0.25 0 0
3 1 1 1 0.75 0.5 0.25 0 0 0 0 0 0

5 Classes of Valid Inequalities

This section describes the classes of inequalities valid with respect to the poly-
tope PH. The inequalities of these classes strengthen the constraints of the poly-
hedron MH in the sense that MH has points cut off by them. We propose three
classes of valid inequalities.
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The first class consists of the set of hyperplanes that entirely contain the
polytope PH. Since the processing of the job i cannot be completed before the
moment ri + p, so by condition (8) from the definition of the family H we have

Proposition 1. The polytope PH lies entirely in each of the hyperplanes given
by the equations

ri+p∑

k=1

yik = ri + p, i ∈ V.

The class of these hyperplanes will be denoted by S1. Note that since the
number of these constraints is equal to n, it is expedient to include them in the
initial polyhedral relaxation of the polytope PH.

Equally simple and directly following from condition (8) is the second class
of valid inequalities.

Proposition 2. For any i ∈ V and k ∈ D the inequality

xik ≤ yik

is valid with respect to the polytope PH.

This class of inequalities will be denoted by S2.
And finally, the third class.

Proposition 3. For any k ∈ D the inequality

∑

i∈V

yik ≥ n − �k − 1
p

�

is valid with respect to the polytope PH.

Indeed, according to the construction of the model (6)–(8) and its polyhedral
description ((1)–(4), (10)–(12)) we have the following: if 1 − yik = 0, then job
i ∈ V is in processing at time k ∈ D; if 1−yik = 1, then job i has been complete
processing at previous moments of times. Therefore,

∑
i∈Y (1−yik) is the number

of jobs whose processing is completed before k, that is, in the period from 1 to
(k − 1) inclusive. During this time, no more than �k−1

p � jobs can be completely
processed. So

∑
i∈Y (1 − yik) ≤ �k−1

p � or, equivalently,
∑

i∈Y yik ≥ n − �k−1
p �.

Note that for k ≥ pn+1 we have n−�k−1
p � ≤ 0 and the inequality from Propo-

sition 3 becomes trivial. Therefore, when using these inequalities, we assume that
k ≤ pn. This class of inequalities will be denoted by S3.

It is easy to check directly that the point from Fig. 2 is cut off, for example,
by the inequalities x36 ≤ y36, x28 ≤ y28, and so on. These inequalities belong to
the class S2. The same point is cut off by the inequality y18 + y28 ≥ 3 − � 8−1

4 �
belonging to the class S3. This means that the inequalities constructed in this
section can serve as cutting planes in the corresponding algorithms.
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6 Probation of Models and Experimental Comparison
of Relaxations

In this work, a computing experiment was conducted. The goal of experiment
was to compare the models that were built in Sects. 4 and 5, namely:

– model M1, formed by constraints (1)–(4), (10)–(12) and by objective
function

min
∑

i∈y

d∑

k=di+1

wiyik;

– model M2, formed by constraints (1)–(4), (10)–(12) and constraints of
S1, S2, S3 and the same objective function.

The classes S1, S2 and S3 were described in Sect. 5. They are valid for
a polytope PH. In addition, examples of fractional points were given, cut off
by constructed inequalities. Therefore these inequalities can be used as cutting
planes in the corresponding algorithms. Note that the capacities of these classes
are polynomial in n. Accordingly, these inequalities can be simultaneously added
to the constraints on the problem (13), not fearing that this will entail the
exponential increase in the number of constraints.

To conduct an experiment, a program was developed in java. To solve the
integer linear problems, the programs from the IBM ILOG CPLEX 20.1.0 pack-
age are used.

The experiment was conducted on a computer with a dual-core Intel Pentium
P6200 processor with a frequency of 2.13GHz. When calculating the time of
solving the problem, the processor time was taken into account, that is, the time
that the processor spent directly on solving the problem.

During the experiment, a series of problems with pre-set values of n and
p were generated. The wi parameters were randomly selected from the interval
from 1 to 100. The values of ri were selected so that for each task d = dmin = pn,
the values of di were selected with the condition of di < d.

The generated problems were launched alternately on both models. The prob-
lem was considered unresolved if the solution time exceeded 60min.

Table 2 presents the average values of the results of launching problems of
M1 and M2 on various input data. The number of jobs of n changed from 10 to
120, servicing time p = 3.4.5. For each n, 10 instances with various parameters
of p, ri, di, wi were solved. An empty cell means that none of the instances with
these parameters was solved in 60min. As can be seen from Table 2, the addition
of the valid inequalities S1, S2 and S3 to the constraints of polyhedron MH can
significantly increase the dimension of the problems solved.
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Table 2. The results of solving the instances using M1 and M2 on various input data.

n p M1 (sec) M2 (sec) n p M1 (sec) M2 (sec)

10 3 0,42 0,24 50 3 210,45 50,10
4 1,37 0,62 4 192,31
5 11,62 2,79 5 611,40

20 3 5,90 6,07 60 3 54,15 35,60
4 75,08 84,09 4 178,00
5 856,25 417,65 5 309,60

30 3 7,06 3,03 70 3 634,40
4 774,20 6,24 80 3 1180,00
5 12,07 100 3 477,60

40 3 5,98 5,43 120 3 2203,00
4 1798,00 18,38
5 27,71

7 Conclusion

In this work in the graph theory terms, new models that formalize the problem of
finding a schedule on one machine that minimizes the weighted sum of tardiness
are built.

The main feature of the models proposed in this work is that here the schedule
set are interpreted as a family of subgraphs of the some special graph. As a result,
we get a rich arsenal of possibilities for analyzing the combinatorial structure
of the problem. These possibilities is significantly expanding when using the
polyhedral properties of the corresponding polytope.

The numerical experiment was carried out in order to evaluate the efficiency
of additional classes of valid inequalities S1, S2 and S3. The model M2 with addi-
tional constraints behaves much better than the M1 model in terms of solution
time. At the same time, the model M2 contains a significantly more constraints
than the model M1. Nevertheless, as can be seen from the experiment, that
usage of these inequalities leads to an increase of the dimension of problems that
we can solve. We did not set ourselves the task of obtaining records in terms of
dimension. This goal will be relevant to our next work on this topic.
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Solving Maximin Location Problems
on Networks with Different Metrics

and Restrictions
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Abstract. Several optimal location problems of an obnoxious facility on
a network of roads connecting settlements are considered. It is necessary
to find such location of the facility so that a minimum distance to a
nearest settlement is as large as possible taking into account the resident
population. Such facility can be, for example, a nuclear power plant, a
waste recycling plant. An overview of various formulations, the properties
of the problems and algorithms for solving are given. The main focus is
on the problem taking into account a restriction on transportation costs
for servicing the settlements by the facility. The cost of servicing the
settlements by the facility is determined using the shortest paths in the
network. The objective function uses Euclidean metric. Exact algorithm
for solving of this problem is proposed.

Keywords: Euclidean metric · Maxmin criterion · Obnoxious facility ·
Shortest paths · Voronoi diagram

1 Introduction

One of the actively developing areas of operations research is the analysis and
solving of facilities location problems. Such problems have great applied impor-
tance. They need to be solved in various fields of activity: location of service
points, technological equipment in workshops, automated design of electronic
devices [1–3].

In general, a facilities location problem is formulated as follows: there is an
area with facilities fixed in it and new facilities that need to be located in the
area. Specified restrictions on location of new facilities are to be met, and some
criterion of a quality of location is to be optimal. The various formulations of
such problems are defined by sizes of the facilities, areas in which they should
be located (line, plane, network), various restrictions and types of criterion and
so on [4–6].

The criterion of optimality in the location problems can be different, and
it is depending on the specifics of the facilities and on what functions they
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perform. A term “facility” can be interpreted quite widely. Minimization of a
maximum weighted distance between facilities often is used when considering
an optimal location of hospitals, police stations, fire stations. Minimization a
weighted sum of distances is used when choosing a location of switches in a
telephone network, warehouses, substations in a power grid [7–9]. In addition
to these criterions, a maximin and maximum criterions are applied according
to which a minimum distance between facilities or a minimum weighted sum of
distances is maximized, respectively. These criterions are applied when dealing
with obnoxious (undesirable) production facilities that have adverse effects to
people or environment. Note that the adverse effects of such facilities decreases
with increasing distance to them. Therefore it is easiest to locate them as far
away as possible from populated areas.

Most often the maximin criterion in the location problems on networks is
applied in two variants. In the first variant, distances are measured by the short-
est paths in the networks. This metric is used in significant part of the location
problems on networks with the maximin criterion [7,11–13]. In the second vari-
ant, several metrics are used. For example, Euclidean metric is used to measure
a negative effect of the obnoxious facility, and the shortest paths metric is used
to calculate the cost of servicing customers by the facility [6,14].

In this paper, the location problems on various networks with a maximin
criterion are considered. An overview of the formulations and algorithms for
solving of the problems in which the distances in the objective function are
measured along the shortest paths in the network is given. The main attention
is paid to the problem of optimal location of an obnoxious facility on a transport
network connecting some settlements. It is necessary to find such a location of
the facility so that a minimum distance to a nearest settlement is as large as
possible and at the same time a budget for transportation costs for servicing
the settlements by the facility was not violated. The problem uses Euclidean
metric to determine the magnitude of the adverse effects of the obnoxious facility
to the settlements. The shortest paths in network are used to determine the
transportation costs for servicing the settlements by the facility. A polynomial
algorithm for exact solving of this problem is proposed.

Section 2 provides an overview of maximin location problems on arbitrary
and special networks when distances are measured by shortest paths.

In Sect. 3, a formulation of a maximin problem with different metrics is given.
Euclidean metric is used in the objective function of the problem. Shortest paths
metric is used in a restriction on transportation costs. Several properties of the
problem and a polynomial algorithm for solving this problem are presented.

2 Shortest Paths Metric

The Section deals with a location problem of a facility on arbitrary and special
networks with the maximin criterion. The distances between the vertices of the
network and between the vertices and points on the edges are determined using
the shortest paths [7,11–13]. The maximin location problem is NP -hard for an
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arbitrary number of facilities, even if the network has one edge [15]. Problem for
one facility on general network is polynomially solvable. An overview of some
properties of the problem and algorithms for its solving are given.

2.1 General Network

To formulate a mathematical model of the problem, we introduce the following
notations [11,12]. Let G = (V,E) be a connected, undirected network with a
set of vertices V = {v1, v2, . . . , vn} and a set of edges (vi, vj) ∈ E, vi, vj ∈ V,
i < j, i, j ∈ N = {1, . . . , n}. Each edge connecting vi and vj has positive
weight (length) c(vi, vj). Denote by d(vi, vj) the length of a shortest path between
vertices vi and vj . For any (vi, vj) ∈ E, c(vi, vj) ≥ d(vi, vj). We also denote by
αi a parameter (weight) of the vertex vi, i ∈ N , which is always positive.

It is necessary to locate a facility on the network. Therefore, the set of can-
didate points is the set Z consisting of the vertices and the infinite set of points
on the edges. The location of a point on an edge is determined using the dis-
tances from the vertices of the edge. For example, z is located on the edge
(vi, vj) at a distance of c(vi, z) = λc(vi, vj) from the vertex vi and at a distance
c(vj , z) = (1−λ)c(vi, vj) from the vertex vj , where 0 ≤ λ ≤ 1. Denote by d(vi, z)
the length of a shortest path from vertex vi to z, z ∈ Z. Our objective will be to
maximize

r(z) = min
i∈N

αid(vi, z), (1)

where z ∈ Z.
If a point z∗ solves the problem (1), then it is said to be a maximin location

with the optimal value of the objective function r(z∗).
For network distance function d(vi, z), z ∈ (vp, vq), (vp, vq) ∈ E, the following

properties hold [8,12]:

d(vi, z) = min{d(vi, vp) + c(vi, z), d(vi, vq) + c(vp, vq) − c(vi, z)}
where i = 1, . . . , n, and 0 ≤ c(vi, z) ≤ c(vp, vq).

Fuction d(vi, z) is continuous and concave on segment [0, c(vp, vq)] and one
of the conditions is met

(a) linearly increases with slope 1 in the edge;
(b) linearly decreases with a slope -1 on the edge:
(c) linearly increases with slope 1 on the segment [0, zi(p, q)] and linearly

decreases with slope -1 on the segment [zi(p, q), c(vp, vq)], where

zi(p, q) = (d(vi, vq) + c(vp, vq) − d(vi, vp))/2.

In [12], the problem (1) on general network was investigated. The paper
presents certain properties of the problem, which allow to find a solution to the
problem. Although the problem is non-convex its solution space G can be divided
into edges and resulting subproblems can be solved more easily than the original
problem.
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In [12], it is shown that the problem (1) on the edge (vp, vq) is equivalent to
the following linear programming problem:

max g(z)

g(z) = min
1≤i≤2n,0≤c(vp,z)≤c(vp,vq)

{Biz + Ci} ,

where Bi = αi, Bn+i = −αi, i = 1, . . . , n and Ci = αid(vi, vp), Cn+i =
αi(d(vi, vq) + c(vp, vq)), i ∈ N .

Thus, for any edge (vp, vq) ∈ E, the function g(z), z ∈ (vp, vq) is continuous,
piecewise linear and concave on the segment [0, c(vp, vq)], consisting of at most
2n strictly monotone segments.

In [12], it is proved that there is any unique maximin location on each edge.
As a consequence, there are no more than m local maximums on the network. A
combinatorial algorithm for solving of the problem (1) with a time complexity
O(mn) is proposed.

In [7], a linear programming model to solve the problem (1) was used. The
problem is solved for each edge and the maximum value among the set of values
of the objective function is selected. Let the obnoxious facility be placed on
the edge (vp, vq) ∈ E. The shortest path from the facility to the vertex vi is
min{d(vp, vi) + c(vp, z); d(vq, vi) + c(vp, vq) − c(vp, z)}. Then the model has the
following form:

y → max,

αi(d(vp, vi) + c(vp, z)) ≥ y,

αi(d(vq, vi) + c(vp, vq) − c(vp, z)) ≥ y,

c(vp, z) ≤ c(vp, vq),

y, c(vp, z) ≥ 0.

2.2 Tree Networks

Often in the literature, the maximin location problems on networks of a special
type are considered. Network structure allows to find useful properties of the
problem and determine new ways to solve it.

If a network is a path, then we can put n vertices on a real line and identify
them with real numbers such that

0 = x1 < x2 < . . . < xn

and d(xi, xj) = |xi−xj |. Then objective function r(z) is the following expression

r(z) = min{αi|z − xi| : i = 1, . . . , n} = min{r+(z), r−(z)},

where
r+(z) = min{αi(z − xi) : xi ≤ z},

r−(z) = min{αi(xi − z) : xi ≥ z}.
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In [16], a linear-time algorithm is given that finds a maximum value of the
objective function r(z) along the path.

The star is a tree consisting of a central vertex v0 which has edges with n
remaining vertices {v1, . . . , vn} [16]. By Si, denote a problem which consists in
determining a local optimal solution on an edge (v0, vi). It is equivalent to the
problem on the path as follows: we place all vertices on the real line in such a
way that v0 in the point x0 = 0, vertex vi is to the right of v0 at a distance
of c(v0, vi) = xi, and all other vertices vj (j �= i) are to the left of v0 with a
distance of c(v0, vj) = xj . In problem Si, it is necessary to maximize the following
function:

ri(z) = min
j=0,...,n

{minαj(xj + z), αi(xi − z)}
for 0 ≤ z ≤ xi.

Let a maximum be reached in z(i). Point z(i) is a solution following linear
programming problem with two variables y and z:

min{z : y ≤ αj(xj + z), j = 0, . . . , n, y ≥ αi(xi − z)}.

The constraints that are common to all problems Si can be written in the
form y ≤ h(z) where

h(z) = min
j=0,...,n

αj(xj + z).

The function h(z) is piecewise linear and increasing. Point z(i) is an inter-
section of h(z) with αi(xi − z). Due to the monotonicity of h(z) it is required to
calculate z∗ = max z(i). The value of z∗ can be obtained as an optimal solution
to following linear programming problem:

min{z : y ≤ αj(xj + z), y ≥ αi(xi − z), i, j = 0, . . . , n} (2)

Consider an optimal solution (z∗, y∗) of the problem (2). In [17], it is proved
that optimal locations of the obnoxious facility are points on all edges (v0, vi) at
the distance z∗ from the central vertex v0 for which y∗ = αi(xi − z∗).

The problem (2) has 2n constraints and 2 variables. Using an algorithm from
[4] for solving linear programming problem with 2 variables, problem (2) can be
solved in linear time. Thus, the optimal solution of problem (1) on the star can
be found in linear time.

Consider the maximin location problem on weighted trees. To solve the prob-
lem on an arbitrary tree with n vertices, two algorithms are proposed [9,15]
with time complexity O(n log2 n) and O(kn log2 n), respectively. The parameter
k depends on the structure of the tree. For paths and stars, k = O(1). For a
balanced tree, k = O(log n) but there are trees such that k = Θ(n). For an
unweighted tree, a linear algorithm is proposed [17].

3 Euclidean and Shortest Paths Metrics

Section deals with the location problem of an obnoxious facility on an arbi-
trary network with maximin criterion in Euclidean metric and a restriction on
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transportation costs. The transportation costs are determined using the shortest
paths metric. Model that takes into account the natural geometry of transport
networks is proposed. The properties of the problem are found on the basis of
which an exact algorithm for finding a solution of the problem is proposed. The
analysis of the computational complexity of the algorithm is carried out.

3.1 Problem Formulation

There is a network of roads on a plane connecting some settlements. The popu-
lation size in each settlement and the distances between them are known. It is
necessary to place, for example, a waste recycling plant (facility) on the network.
There is a budget of transportation costs for the transportation of waste from
settlements to the facility. The facility has the adverse effects to the population
and therefore it should be located as far away from the settlements. It is needed
to place the facility on the network as far as possible from the settlements, tak-
ing into account the population size of the settlements and that transportation
costs do not exceed the budget.

To formulate a mathematical model of the problem we use some previously
introduced notations and introduce new ones. Let G = (V,E) be an undirected
network representing the roads and settlements on a plane. The vertices of the
network correspond to the settlements and the edges correspond to the roads.
Two positive parameters (αi, wi) are assigned to each vertex vi, i ∈ N . Parameter
αi reflects a degree of undesirability of placing the facility near the settlement
corresponding vi. Parameter wi, on the contrary, reflects a requirement to place
the facility as close as possible to the settlement corresponding vi. Parameter
wi, for example, is the number of peoples in the settlement correspond to vertex
vi. Parameter αi is the inverse value of the number population in the settlement
correspond to vertex vi. Each vertex vi has coordinates (ai, bi) i ∈ N on the
plane. The edges of the network are segments of straight lines on the plane with
known lengths c(vi, vj) > 0, (vi, vj) ∈ E, i, j ∈ N . As in Sect. 2, we denote by
Z the infinite set of points on the network G. The adverse effects of the facility
to the settlements will be measured in Euclidean metric ρ(vi, z), z ∈ Z, i ∈
N . We will use the shortest paths d(vi, z), z ∈ Z, i ∈ N in G for determining
transportation costs of servicing the settlements. Let T be an available budget for
the transportation of waste from settlements to the facility. The mathematical
model has form:

r1(z) = min
i∈N

αiρ(vi, z) → max
z

, (3)
∑

i∈N

wid(vi, z) ≤ T, (4)

z ∈ Z. (5)

Expression (3) means maximizing of the minimum weighted distance from
the facility to the vertices. Condition (4) guarantees the fulfillment of the restric-
tion on transportation costs. The left part of the inequality (4) is a sum of the
weighted shortest paths from some point z ∈ Z to all vertices of the network.
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Condition (5) means, that the facility is located on infinite set of points on all
edges of G, including all vertices. Problem (3)–(5) is a nonlinear, nonconvex
problem with one or more local maximum.

Note that a linear approximation can be used to model real road sections.
This will lead to the additional introduction of dummy vertices and edges to
the network. This method is used, for example, in [6]. In this paper, we do not
consider any method of approximating real roads by straight-line segments.

In [18], an algorithm for finding an approximate solution to the problem is
proposed. The algorithm considers a finite set of points on an arbitrary edge of
the network. The values of the objective function are calculated at the points,
where the budget restriction is met. The point with a maximum value of the
objective function determines a local maximum on the edge. An approximate
solution to the problem (3)–(5) is the best of the point. An experiment was
conducted to solve the problem with the proposed algorithm on the network of
the main railway lines of France.

Problems close to the formulated one without taking into account the budget
constraint were studied, for example, in [11,17].

In [19–21], a problem of locating an obnoxious facility in a polygonal area on
a plane (polygon) is considered. The problem is finding a point in the polygon,
which maximizes a minimum weighted Euclidean distance to given set points in
the polygon. It does not matter whether the polygon is convex or not. In fact,
this is the problem of maximization function (3) in the polygonal area on the
plane. It is proved, that an optimal solution is either in the convex hull of the
vertices or on the boundary (segments) of the polygon. In the case of searching
the solution on the boundary segment (local optimum) it is necessary to solve a
system of two equations: the linear equation of the boundary segment and the
nonlinear equation of Euclidean distances. If the local optimum is not located
on the boundary of the polygon, then it is necessary to solve a system of three
equations of Euclidean distances.

3.2 Transportation Costs Function

Let’s analyze some properties the sum function of weighted shortest paths from
some point z ∈ Z on arbitrary edge (vp, vq) to all vertices of the network G.

σ(z) =
∑

i∈N

wid(z, vi). (6)

In [11] a concept of edge bottleneck points is introduced. Let a point x be located
on the edge (vp, vq). The point x is an edge bottleneck point with respect to
vertex vk if there is a vertex vk such that

d(vk, vp) + c(vp, x) = d(vk, vq) + c(vq, x),

where c(vp, x), c(vq, x) > 0 are the distances from vp and vq to point x on the
edge (vp, vq). The equality c(vp, x) + d(vq, x) = c(vp, vq) is correct.
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Note that a bottleneck point on edge (vp, vq) with respect to vertex vk is
associated with a cycle formed by the shortest path from vertex vk to vertex vp,
edge (vp, vq), and the shortest path from vertex vq to back to vertex vk. This is
illustrated in Fig. 1., where the shortest paths from vertex vk to vp and vq are
shown in the form of curved lines. The cycle contains the bottleneck point x.

Fig. 1. Cycle contains the bottleneck point x.

Edge (vp, vq) contains an edge bottleneck point with respect to vertex vk if
and only if following inequality holds

|d(vk, vp) − d(vk, vq)| < c(vp, vq). (7)

This means that there is no shortest path from vk to vp and from vk to vq
containing the edge (vp, vq).

The papers [1,11] show that σ(z) on an edge is continuous, piecewise linear,
concave function with critical points (intersection of linear functions) only at the
bottleneck points of the edge. If G is a tree, then in this case there are no edge
bottlenecks points as there are no cycles. Then the following proposition is true.

Proposition 1. If G is a tree, then function σ(z) is linear on arbitrary edge.

Proof. Let (vp, vq) ∈ E be an edge of the G. The set of vertices of the network
G by the edge (vp, vq) is divided into two sets: VL and VR. The set VL is such
set of vertices of the network G that the paths from them to the vq pass through
the vertex vp. By NL denote a set of indexes of such vertices. The set VR is such
set of vertices of the network G that the paths from them to the vp pass through
the vertex vq. By NR denote a set of indexes of such vertices. There are relations
VL ∩ VR = ∅ and VL ∪ VR = V. The following equalities take place.

d(z, vi) = d(vi, vp) + c(vp, z), i ∈ NL.

d(z, vi) = d(vi, vq) + c(vp, vq) − c(vp, z), i ∈ NR.
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σ(z) =
∑

i∈N

wid(z, vi) =
∑

i∈NL

wid(z, vi) +
∑

i∈NR

wid(z, vi) =

∑

i∈NL

wi[d(vi, vp) + c(vp, z)] +
∑

i∈NR

wi[d(vi, vq) + c(vp, vq) − c(vp, z)] =

∑

i∈NL

wid(vi, vp) + c(vp, z)
∑

i∈NL

wi +
∑

i∈NR

wid(vi, vq)+

+c(vp, vq)
∑

i∈NR

wi − c(vp, z)
∑

i∈NR

wi =

∑

i∈NL

wid(vi, vp) +
∑

i∈NR

wid(vi, vq) + c(vp, vq)
∑

i∈NR

wi+

+c(vp, z)(
∑

i∈NL

wi −
∑

i∈NR

wi).

Let ’s put

a =
∑

i∈NL

wid(vi, vp) +
∑

i∈NR

wid(vi, vq) + c(vp, vq)
∑

i∈NR

wi,

b =
∑

i∈NL

wi −
∑

i∈NR

wi.

We get the equation of a straight line σ(z) = a+ bc(vp, z). Moreover, b it can be
negative or positive. Note that this form will have function σ(z) on any edge of
a network, if the edge is a bridge.

3.3 Domain of Admissible Solutions

Let’s look some properties of the problem (3)–(5) that allow to find all local opti-
mums and exact solution to the problem. A domain of admissible solutions of the
problem is only some part of the network G due to the restriction of transporta-
tion costs (budget). All edge segments, on which the value of transportation costs
do not exceed the value of the budget T form the domain of admissible solutions
of the problem (3)–(5). By D denote the domain. If the budget restriction is vio-
lated for the vertices of an edge, then the edge does not belong to the domain D.
It follows from the concavity property of the transportation costs function.

Before constructing the domain of admissible solutions of the problem (3)–(5)
on an edge (vp, vq), it is necessary to find all edge bottleneck points. The following
algorithm for finding such points on the edge is proposed. Consistently consider
all vertices of the network G. For a current vertex vk we check performing of the
inequality (7). If the inequality (7) does not hold, then the edge (vp, vq) does not
contain an edge bottleneck point relative to vk, and we move to another vertex G.
If the inequality holds, then the edge (vp, vq) contains an edge bottleneck point
relative to the vertex vk. Distance s from the vertex vp to the point is equal to

s =
|d(vk, vp) − d(vk, vq)| + c(vp, vq)

2
.
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After constructing all the bottleneck points on the edge, we determine the
domain of admissible solutions on the edge. To do this, we arrange the bottleneck
points in ascending order s1 < s2 < . . . sn from the vertex vp, p < q. Sequentially
calculate following values

T1(si) =
∑

k∈N

wk min{d(vk, vp) + si; d(vk, vq) + c(vp, vq) − si}.

The following variants are possible.

1) T1(vp) ≤ T and T1(vq) ≤ T .
1) We look through the bottleneck points sequentially. There is a pair of points

st and st+1 such that T1(st) ≤ T and T1(st+1) > T. If T1(st) < T , then we
construct the equation of the line l(st, st+1) through the points (st, T1(st))
and (st+1, T1(st+1)). Solving the equation l(st, st+1) = T , and we find a point
z1, for which T1(z1) = T . If T1(st) = T , then the value of z1 is defined as
z1 = st. Next, we calculate a value of the function T1 at the points st+2, st+3

etc. There is such k, that T1(sk) > T and T1(sk+1) ≤ T . If T1(sk+1) < T ,
then we construct the equation of the line l(sk, sk+1) through the specified
pair of the points. Solving the equation l(sk, sk+1) = T , and we find a point
z2, for which T1(z2) = T . If T1(sk+1) = T , then the value of z2 is defined
as z2 = sk+1. Thus two points are found on the edge (vp, vq), for which
T1(z1) = T1(z2) = T . The domain of admissible solutions on the edge (vp, vq)
represents two segments: [vp, z1] and [z2, vq], as shown in Fig. 2.
If there is no such pair of points st and st+1, for which T1(st) ≤ T and
T1(st+1) > T , then all points of the edge (vp, vq) belong to the domain of
admissible solutions.

2) T1(vp) ≤ T and T1(vq) > T .
There is a pair of points st and st+1 such that T1(st) ≤ T and T1(st+1) > T . If
T1(st) < T , then we construct the equation of the line l(st, st+1) through the
points (st, T1(st)) and (st+1, T1(st+1)). Solving the equation l(st, st+1) = T ,
and we find the point z1, for which T1(z1) = T . If T1(st) = T , then the value
of z1 is defined as z1 = st. The domain of admissible solutions on the edge
(vp, vq) represents the segment [vp, z1].

3) T1(vp) > T and T1(vq) ≤ T .
There is a pair of points st and st+1 such that T1(st) > T and T1(st+1) ≤ T .
If T1(st+1) < T , then we construct the equation of the line l(st, st+1) through
the points (st, T1(st)) and (st+1, T1(st+1)). Solving the equation l(st, st+1) =
T , and we find the point z2, for which T1(z2) = T . If T1(st+1) = T , then the
value of z2 is defined as z2 = st+1. The domain of admissible solutions on the
edge (vp, vq) represents a segment [z2, vq].
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Fig. 2. Function σ(z) and Domain of admissible solutions on edge (vp, vq).

As a result, the domain of admissible solutions of the problem (3)–(5) on an
arbitrary edge (vp, vq) has no more than two segments. One of the ends of these
segments will be vertex vp or vq. Thus, to solve problem (3)–(5) on the domain
D, this is solving a series of the problems on edge segments of the network G.

If G is a tree, then there is no need to find bottleneck points. If T1(vp) ≤ T
and T1(vq) > T (T1(vp) > T and T1(vq) ≤ T ), we find an intersection point z1
(z2) of the straight line l(vp, vq) with the straight line y = T . Thus, we get the
domain of admissible solutions on edge (vp, vq) segment[vp, z1] ([z2, vq]).

3.4 Algorithm

At the first step of the algorithm for solving the problem (3)–(5) it is necessary
to check, that the domain D is not empty. To do this, we solve a problem of
finding 1-median on the network in the shortest paths metric. If the solution of
the problem has the value of the objective function no more than T, then the
domain of admissible solutions of problem (3)–(5) is not empty.

When searching a local optimum on an edge (vp, vq) belonging to the admis-
sible domain, it is necessary to construct a weighted Voronoi diagram for the
vertices of the network G [3,5]. Next, we find the intersection points of the edges
of the Voronoi diagram with the segments admissible domain D on the edge
(vp, vq). As a result, the edge segments will be divided into pieces by the inter-
section points. Each the piece will be located inside some locus of the Voronoi
diagram. The function r1 is convex on each such piece [6]. Consequently, the
function r1 reaches an optimal value at the intersection points of the edges of
the Voronoi diagram with the edge segments (vp, vq) belonging to the domain
D. Choosing a point with a maximum value of the function r1, we find a local
optimum of the problem (3)–(5) on the edge (vp, vq).

Looking through all the edges of the network G, the segments of which belong
to the domain of admissible solutions D, we get a set of local optimums. Choosing
a maximum value from them, we obtain a global solution to the problem (3)–(5).

The algorithm for finding a local optimum of the problem (3)–(5) on an edge
can be briefly presented as follows.



Solving Maximin Location Problems on Networks 199

Step 1. Solve the 1-median problem on network G. If optimal value of objective
function of the problem is greater T , then the problem (3)–(5) has no solution.

Step 2. Construct the domain of admissible solutions D.
Step 3. Construct the weighted Voronoi diagram of vertices of the network G.
Step 4. Find intersection points of all Voronoi edges with the segments of the

edge, belonging to the domain D.
Step 5. Calculate the values of the function (3) at the specified intersection

points. The point, at which the maximum value of the objective function is
reached, will be a local optimum of the problem on the edge.

There are O(n2) vertices and O(n2) edges in a weighted Voronoi diagram,
which can be generated in O(n2) time. There are O(mn2) intersection points the
edges of Voronoi diagram with the edges of network G, since each Voronoi edge
can be intersect an edge of network G at most twice [3]. Therefore a complexity
of the algorithm is O(mn2).

4 Conclusion

The problems of optimal location of an obnoxious facility on a networks of roads
connecting settlements are considered. It is necessary to find such location of
the facility so that the minimum distance to the nearest settlement is as large as
possible. An overview of the properties and algorithms for solving the problems
using the shortest paths metric is given.

The main attention is paid to the problem taking into account a restriction on
transportation costs for servicing the settlements by the facility. The objective
function uses Euclidean metric. The restriction take into account the shortest
paths in the network. A polynomial algorithm for finding all local maximums on
the edges of the network is proposed. The choice of the optimal solution among
the specified optimums can be made by the decision-maker from any additional
conditions. Considered model and proposed algorithm can be applied for solving,
for example, a problem of location a waste processing plant to reduce the adverse
effects to the population.

One of the conditions of the problem that is the assumption, that roads
are line segments on a plane. Real roads can be approximated by straight-line
segments. Furthermore, an interesting continuation the study of the problem is it
solution without the use of Voronoi diagram. For example, using an approach to
solving a maximin problem within a bounded region on a plane with Euclidean
metric and applying Karuch-Kuhn-Tucker optimality conditions.
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Abstract. Probability Shaping (PS) is a method to improve a Modu-
lation and Coding Scheme (MCS) in order to increase reliability of data
transmission. It is already implemented in some modern radio broadcast-
ing and optic systems, but not yet in wireless communication systems.
Here we adapt PS for the 5G wireless protocol, namely, for relatively
small transport block size, strict complexity requirements and actual
low-density parity-check codes (LDPC). We support our proposal by a
numerical experiment results in Sionna simulator, showing 0.6 dB gain
of PS based MCS versus commonly used MCS.
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LS Least Squares
LTE Long-Term Evolution
MCS Modulation and Coding Scheme

MIMO Multiple-input multiple-output
NLOS Non-Line-of-Sight
NUC Non-uniform Constellations

OFDM Orthogonal Frequency-Division Multiplexing
PS Probability Shaping

PSCM Probability Shaped Coded Modulation
QAM Quadrature Amplitude Modulation
SNR Signal-to-Noise Ratio

1 Introduction

In the 5G New Radio downlink procedure, the user equipment proposes the
serving base station for use in the next signal transmission of the optimal modu-
lation and coding scheme (MCS) [1] based on quadrature amplitude modulation
(QAM). In order to achieve the capacity of the additive white Gaussian noise
(AWGN) channel, the transmit signal must be Gaussian distributed. The use
of uniformly distributed QAM symbols with optimal coded modulation (CM)
leads to a shaping loss of up to 1.53 dB for high order constellations [4]. Bit-
interleaved coded modulation (BICM) with parallel bit-wise demapping as cur-
rently employed in LTE leads to an additional loss.

Non-uniform constellations (NUC) and geometric shaping (GS) have been
recently adopted for the next-generation terrestrial broadcast standard [12]. The
QAM constellations are optimized for each target signal-to-noise ratio (SNR)
by maximizing the BICM capacity for uniformly distributed bits. Note that, in
contrast to standard Gray-labeled QAM (Fig. 1), the Non-Uniform constellations
do not allow for a simple independent demapping of the real and imaginary
part. Therefore, one-dimensional NUCs for each real dimension were also studied
in [12], which provide a reduced shaping gain. The performance of BICM can be
improved by using non-uniform constellations (NUC), but there remains a gap
to the capacity with Gaussian transmit signal.

In the traditional approach of data transmission, each point in a particular
constellation has an equal chance of being transmitted. While this technique
gives the highest bit rate for a given constellation size, it ignores the energy
cost of the individual constellation points. So, as an alternative to GS, it is
also possible to adjust the probabilities of the constellation points such that
they follow an approximate discrete Gaussian distribution, using the probability
shaping (PS) method [11]. Probabilistically shaped coded modulation (PSCM)
enables the BICM system to close the gap to the capacity with Gaussian transmit
signal. PS is a CM strategy that combines constellation shaping and channel
coding.

In the literature, Gallager’s error exponent approach has been used to study
the achievable information rates of PS [5, Ch. 5]. In particular, it was shown
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that the PS method has achievable capacities for additive white Gaussian noise
channels [2]. In [6], the authors revisit the capacity achieving property of PS. The
concept of selecting constellation points using a nonuniform Maxwell-Boltzmann
PS is investigated in the study [11]. Nonuniform PS signaling scheme reduces
the entropy of the transmitter output and, as a result, the average bit rate. How-
ever, if low-energy points are picked more frequently than high-energy points,
energy savings may (more than) compensate for the bit rate reduction. Authors
of [16] proposed a new PS distribution that outperforms Maxwell-Boltzmann is
studied for the nonlinear fiber channel. In [9] the authors successfully tested the
suitability of PS constellations in a German nationwide fiber ring of Deutsche
Telekom’s R&D field test network. In [3] the PS method is implemented in 64-
QAM coherent optical transmission system. In [10], a proposed extension to the
5G New Radio polar coding chain is the introduction of a shaping encoder in
front of the polar encoder, which will improve the performance with higher order
modulation using this PS scheme.

The main objectives of the study:

– In this paper, we investigate the PS Enumerative Sphere Shaping (ESS) [7]
method known in the literature with respect to a realistic MIMO OFDM
wireless channel with LDPC at a given coderate.

– We provide numerical experiments on the modern Sionna [8] simulation plat-
form and find local optimal parameters for the ESS method, minimizing
BLER and providing a gain of up to 0.6 dB over the QAM-16 baseline.

– This study could be interesting from a scientific point of view, since there are
almost no published papers on PS that consider such realistic and contempo-
rary scenarios, while considering only theoretical distributions [15].

The basic principle of PS method is presented in Fig. 2. We change the prob-
ability of constellation points, which allows us to scale their coordinate with
preserving of the mathematical expectation of constellation power.

Fig. 1. The base station selects the appropriate QAM scheme for use in the next data
transmission. With the increasing of the system quality, the higher QAM can be used.
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2 System Model

A block diagram of the proposed PSCM transmitter and receiver is shown in
Fig. 6. The main difference to conventional BICM is the distribution matcher
that maps the uniformly distributed data bits to bit streams with a desired
distribution, which determine the amplitudes of the transmitted QAM symbols.
The forward error correction (FEC) encoder generates additional parity bits,
which are uniformly distributed and determine the signs of the transmitted QAM
symbols. This results in an approximately Gaussian distributed transmit signal
using the same constellation mapping as in Long-Term Evolution (LTE).

At the receiver side, the QAM demapper calculates the bit-wise log-likelihood
ratios (LLRs) based on the observed receive signal, taking the non-uniform trans-
mit symbol distribution into account. These LLRs are fed to the FEC decoder
as in conventional BICM, and the decoder output is finally mapped back to data
bits by the distribution deshaper. Note that both the distribution matcher and
deshaper correspond to simple one-to-one mappings, which can be efficiently
implemented.

3 Optimal Distribution for Probability Shaping

Let PX = (p1, . . . , pm) be the vector of probabilities of each constellation point
and X = (x1, . . . , xm) is its random variable — transmitted points on the con-
stellation, where m is a number of the constellation points.

Let Y be a random variable — received points:

Y = X + N0, N0 ∼ CN (0, σ2), 0 < σ2 < ∞, (1)

where N0 is a Gaussian random variable — noise of a channel.
The energy of the constellation is equal to the expectation of |X|2, i.e.

E[|X|2] =
m∑

i=1

pi|xi|2.

Our goal is to minimize the energy of the constellation to reduce errors in sym-
bols. In this paper, we study the case when the random variable X is distributed
on the QAM constellation.

Example. Initial distribution of X is uniform. For instance, the energy of QAM-
16 is equal to 10 since

E[|X|2] =
1
16

· (4 · 2 + 8 · 10 + 4 · 18) = 10.

Now if we change the distribution of X in such a way that

– four points with coordinates (±1,±1) have probability 0.125
– eight points with coordinates (±1,±3), (±3,±1) have probability 0.0375
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– four points of coordinates (±3,±3) have probability 0.05.

In this case, the energy will be equal to 7.6 since

E[|X|2] = 0.125 · 4 · 2 + 0.0375 · 8 · 10 + 0.05 · 4 · 18 = 7.6,

and if we shift the points by multiplying them by the square root of ratio of the

energies of the constellations
√

10
7.6 , then the energy again become equal to 10.

It follows that the points of constellation are further apart, and the variance is
the same. So, the probability of error are less.

3.1 Problem Statement

The physical meaning of the problem (2) is to minimize the constellation energy
at a fixed constellation entropy. The entropy H(X) means the amount of infor-
mation transmitted by the constellation, and the energy E[|X|2] means the power
the transmitter has to expend in transmitting the data.

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

E[|X|2] =
m∑

i=1

pi · |xi|2 → min
PX

m∑

i=1

pi = 1

H(X) = −
m∑

i=1

pi · log2 pi = const

(2)

There is no analytical expression for the problem (2), and so the constellation
points are assumed to have a Maxwell-Boltzmann distribution (3) since it is close
to the optimal distribution [11] and maximizes the entropy of the constellation
with a constraint on its energy:

p̂i =
e−µ|xi|2

∑m
j=1 e−µ|xj |2 , i = 1, . . . ,m (3)

Parameter μ = μ(p̂1, . . . p̂m) — is a scaling of constellation points:

m∑

i=1

pi · |xi|2 =
m∑

i=1

p̂i · |μxi|2 ⇐⇒ μ2 =
∑m

i=1 pi · |xi|2∑m
i=1 p̂i · |xi|2 (4)

where pi is the uniform distribution, p̂i is the optimal distribution, and xi is the
complex coordinates of the points.
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Fig. 2. The probability shaping method increases system performance by scaling con-
stellation points, which is allowed while preserving the constellation power — the
mathematical expectation of the modulus of the complex points.

4 Coded Modulation Design for QAM-16

According to the labelling procedure, we can notice that the first two bits in the
binary representation of the constellation points are responsible for symmetry
about the coordinate axes, and the last two bits are responsible for absolute
value. (Fig. 3). In what follows, we will refer to the first two bits as sign bits,
and the last two bits as amplitude bits. Thus, amplitude bit zero corresponds
to points with coordinates ±1, and amplitude bit corresponds to points with
coordinates ±3.

4.1 Constellation Energy Minimisation

For the practical finite block-length codes, it is required to implement the Enu-
merative Sphere Shaping (ESS) method [7].

The energy minimization process is fairly straightforward. We take the con-
stellation points with the smallest absolute value with a higher probability, and
the points with the largest absolute value with a lower probability. Thus, we are
more interested in constellation points that have more zeros than ones at the
amplitude bit positions in the binary representation, and then it is sufficient to
maximize the probability of zero at the amplitude bit positions. We also assume
that the sign bits are uniformly distributed, i.e. the probability of zero and one
of the first two bits in the binary representation of each constellation point is
equal to 1

2 .
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Fig. 3. Gray labeling of the sign and amplitude bits. (Color figure online)

As noted above, amplitude bit one corresponds to more distant points from
the origin, and amplitude bit zero corresponds to closer points. Thus, we can
assume that the energy of a sequence of n amplitude bits consisting of k ones
and n − k zeros, is equal to

12 + . . . + 12︸ ︷︷ ︸
n−k

+ 32 + . . . + 32︸ ︷︷ ︸
k

.

It can be seen that the nearest points to the origin have the lowest energy.
For a given number of input amplitude bits k and block length n, the most

efficient way to change probabilities is to map all possible 2k realisations to
the 2k sequences of n amplitude bits with minimal energy. After that, we can
calculate the probability of one pa(1) and probability of zero pa(0) in a set of
blocks of length n.

Now if we know the distribution of the amplitude bits, then we can find the
probability of the constellation points. Each constellation point contains two sign
bits and two amplitude bits, so the probability of a point is equal to

p̂i = (
1
2
)2 · pa(0)k · (1 − pa(0))1−k, i = 1, . . . , 16 (5)

where k is the number of zero amplitude bits in the bit representation of the
constellation point.

After we have changed the distribution of constellation points, we can cal-
culate the scaling parameter μ as the ratio of the initial energy to the received
energy:

μ2 =
E[|X|2]
E[|X̂|2] =

10
∑16

i=1 p̂i · |xi|2
, (6)

where X̂ is a new random variable with distribution 5. Finally, we shift points
of the constellation by multiplying them by the parameter μ, thereby reducing
the probability of error.
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4.2 Amplitude Shaper and Sign Delay

Fig. 4. Data flow through the amplitude probability shaper and encoder to modulation.

In this subsection we describe the model provided in Fig. 4. Initially, the input
is k informational bits with a uniform distribution. These bits are divided into
two groups, one of which will be the amplitude bits, and the other group will be
part of the sign bits. Amplitude bits are transmitted through the shaper block,
which works according to the algorithm described above. The shaper output is
a block of a different length, in which the amplitude bits are already distributed
according to the algorithm. We will denote the number of bits in the first group
by ksh, the number of bits in the second group by ksign and the number of bits
at the shaper output by nsh.

After that, ksign bits and nsh amplitudes bits are concatenated and encoded
using the LDPC procedure. The LDPC procedure, in turn, generates additional
Δn check bits, which are also considered to be uniformly distributed. We will
denote the number of bits at the encoder output as nFEC = ksign + nsh + Δn.
Note that the ksign + Δn bits are sign bits, which have a uniform distribution,
while the amplitude bits nsh are distributed according to the algorithm. The
number of sign ksign and error correction bits Δn is equal to the number of
shaper output bits, i.e. nsh = ksign + Δn.

For this procedure, coderate R ∈ (0, 1] is fixed, while shaper input size ksh
and shaper output nsh vary. The values of ksign and nFEC can be calculated
using the code rate formulas.

Extra bits are now shared between Shaper with rate Rsh = ksh

nsh
and Encoder

with rate RFEC = nsh+ksign

nFEC
, afterall R = 1

2 (Rsh + 2RFEC − 1).
The problem is to find the optimal proportion between Rsh and RFEC.

4.3 Example of Generated Probabilities Using ESS

In Tables 1, 2 examples of generated probabilities for QAM-16 and QAM-64
(Fig. 1) using the ESS method [7] are given. Note that for QAM-64 and above
the probabilities of zeros and ones depend on each other, so joint probabilities
need to be determined.
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Table 1. Example of amplitude probabilities for QAM-16, nsh = 256.

ksh 40 80 120 160 200 240 256

pa(0) 0.97 0.94 0.90 0.84 0.76 0.64 0.5

pa(1) 0.03 0.06 0.10 0.16 0.24 0.36 0.5

Table 2. Example of amplitude probabilities for QAM-64, nsh = 1024.

ksh 300 400 500 600 700 800 900 1000 1024

pa(00) 0.87 0.80 0.73 0.66 0.59 0.52 0.44 0.32 0.25

pa(01) 0.13 0.18 0.23 0.27 0.30 0.32 0.31 0.28 0.25

pa(10) 0.00 0.01 0.03 0.06 0.09 0.13 0.18 0.23 0.25

pa(11) 0.00 0.00 0.00 0.01 0.01 0.03 0.07 0.16 0.25

4.4 Probability Shaping Mapping

For mapping purposes, we form a special PS matrix (Fig. 5) with uniform sign
bits and non-uniform amplitude bits, following the data flow scheme (Fig. 4).
We generate ksign sign bits with equal probability of zeros and ones ps = 1

2 ,
and nsh amplitude bits with unequal probability of zeros and ones: pa �= 1

2 such
that pa(0) > pa(1). The probability of amplitude bits can be determined by the
proper values of ksh and nsh using the ESS method [7].

Finally, after the PS matrix is constructed, the mapping to the QAM is
performed. With mapping procedure, bits are converted to the constellation
points (or symbols) using the mapping table, which gives a specific coordinate
on the complex plane for each unique sequence of bits. Notice that, given bit
probabilities, there is a one-to-one correspondence to symbol probabilities.

After mapping procedure is done the symbols go through the MIMO channel,
demodulation and decoding, probability deshaping and BLER calculation, which
are described in Sect. 2 and Fig. 6. The demodulation and deshaping methods are
the same procedures described earlier and are performed in reverse order. The
decoding procedure is a complex process, which uses loopy belief propagation [14]
to iteratively recover the correct bits (LLRs).
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Fig. 5. Creating a code block virtual matrix, generating sign ksign bits, LDPC Δn bits
and amplitude nsh bits with final symbol mapping. The red dots represent the mapped
constellation points from the generated binary sequence.

4.5 Arrangement of Finite Code Block Shapes

To consistent all the shapes ksh, ksign and Δn, and form the PS matrix (Fig. 5)
we solve the system of integer equations (7) finding LCM. Hereafter, the values
of Nsh

fr and NFEC
fr define the multiplicative constants balancing these equations.

The values of NA and NS define the number of amplitude and sign bits in the
code block. It is implicitly assumed that everywhere in Figs. (4), (5) the values
are ksh := Nsh

fr ksh, ksign := Nsh
fr ksign, Δn := NFEC

fr Δn, nFEC := NFEC
fr nFEC:

⎧
⎪⎨

⎪⎩

NA = nshNsh
fr

CNS = NA

NS + NA = NFEC
fr nFEC,

(7)

where the value of C defines the constellation system, i.e. C = 1 — QAM-16,
C = 2 — QAM-64, C = 3 — QAM-256 and so on.

5 Numerical Experiments

In the experiments, Coded BLER is the average error of transmitted block of
bits before the LDPC encoder and after the decoding in Fig. 6, which takes into
account the realistic coding-encoding procedure.

5.1 Energy per Bit and Noise Ratio

The energy per bit to noise ratio Eb/N0 is a normalized SNR measure, also known
as SNR per bit. The Eb/N0 measure can be used to express the relationship
between signal power and noise power.

The energy per bit measure Eb is the energy we use to transmit one bit of
information with the total power P and the LDPC coderate R:

Eb =
P

R
,



Probability Shaping of Quadrature Amplitude Modulation 213

Fig. 6. Block diagram of probability shaping transmitter and receiver.

The noise measure N0 is the noise variance per real and imaginary parts:

N0 = 2σ2

Thus, Eb/N0 can be expressed in terms of SNR:

Eb/N0 =
P

R

1
2σ2

=
P

σ2

1
2R

=
SNR
2R

In decibel, Eb/N0 is

Eb/N0 in dB = 10 log10(Eb/N0) = 10 log10

(
P

σ2

1
2R

)
(8)

We use the value of Eb/N0 in the Monte Carlo experiments. For a given value
of Eb/N0 with the power P and coderate R the variable noise power σ2 disturbs
the symbols transmitted over the channel (1).

5.2 Realistic Simulations Using Sionna

This study considers OFDM MIMO with a base station and a user equipped with
multiple cross-polarised antennas. We provide simulations in Sionna [8] on the
OFDM channel using 5G LDPC codes. The architecture of the system consists of
LDPC, Bit Interleaver, Resource Grid Mapper, LS Channel Estimator, Nearest
Neighbor Demapper, LMMSE Equalizer [13], OFDM Modulator and presented
in Fig. 6. Optimization variables are constellation type, a bit order, coderate,
BLER, SNR, code block sizes and 5G model (LOS D, NLOS A).

The system uses soft estimates of LLRs for the decoder. Channel model is
chosen to be OFDM 5G 2.6 GHz with delay spread of 40ns. The block size is
1536 with 105 number of Monte-Carlo trials in the simulations and so in total
1.536 · 108 bits were processed for each point of Eb/N0. For all simulation, 20
iterations of LDPC have been used. The code source is random binary tensors.
The system use 3GPP wireless both Line of Sight (LOS) and Non Line of Sight
(NLOS) channel models D and A. The model is simulated in real time domain
considering inter-symbol (IS) and inter-carrier (IC) interferences. In Table 3 we
provide simulation parameters for Sionna.



214 E. Bobrov and A. Dordzhiev

In Figs. 7 and 8, we provide an experiment for both QAM-16 LOS Model D
and NLOS Model A probability shaped (PS) constellations. We present exper-
iments Coded BLER (see Fig. 6) with Gaussian transmit signal with QAM16
Baseline and amplitude PS with different shaping parameters, where coderate
is r, block size is n and parameters of PS are nsh and ksh.

There is a local optimum for ksh = 192 PS QAM-16 in both LOS and NLOS
models. It is noteworthy that the optimal parameter ksh is the same for the
different LOS and NLOS models, which tells us that the chosen parameters are
stable. Note that with wrong parameter settings, e.g. a strong shaping factor
ksh = 128, the quality of the PS method is worse than that of baseline QAM.

In Fig. 9 present experiments with AWGN channel and LDPC, which show
a higher gain than for the OFDM channel model.

In Table 4, we provide gains in dB of the proposed PS method at 10% BLER.
The PS method achieves 0.56 dB gain in Model A NLOS Uplink compared to
the baseline. From the massive experiments, we conclude that the proposed PS
method constellations superior the baseline QAM for real 5G Wireless System
using FEC LDPC.

The model codes and related experiments can be found in the repository1.

Table 3. Simulation parameters in Sionna.

Carrier frequency 2.6e9

Delay spread 40e-9

Cyclic prefix length 6

Num guard carriers [5, 6]

FFT size 44

Num user terminal antennas 2

Num base station antennas 2

Num OFDM symbols 14

Num LDPC iterations 20

Table 4. Gain in dB of the proposed PS method at 10% BLER.

Model D LOS Model A NLOS

Uplink 0.52 dB 0.56 dB

Downlink 0.5 dB 0.5 dB

1 https://github.com/eugenbobrov/On-Probabilistic-QAM-Shaping-for-5G-MIMO-
Wireless-Channel-with-Realistic-LDPC-Codes.

https://github.com/eugenbobrov/On-Probabilistic-QAM-Shaping-for-5G-MIMO-Wireless-Channel-with-Realistic-LDPC-Codes
https://github.com/eugenbobrov/On-Probabilistic-QAM-Shaping-for-5G-MIMO-Wireless-Channel-with-Realistic-LDPC-Codes
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Fig. 7. Model D LOS Downlink channel Coded BLock Error Rate for OFDM QAM16.

Fig. 8. Model A NLOS Uplink channel Coded BLock Error Rate for OFDM QAM16.
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Fig. 9. AWGN channel Coded BLock Error Rate QAM16.

6 Conclusions and Suggested Future Work

In this paper, for a MIMO OFDM wireless channel with realistic LDPC code
at a given code rate, we study the PS scheme of Enumerative Sphere Shaping
(ESS) known from the literature. We find local optimal parameters for the ESS
method that minimise the BLER and provide a gain of up to 0.6 dB over the
QAM-16 baseline through numerical experiments on the state-of-the-art Sionna
simulation platform, modeling physical communication system level. Since there
are almost no published works on PS that consider such realistic and contempo-
rary scenarios, while only considering theoretical distributions, this study could
be of scientific interest. In the future, a detailed study of BLER performance of
a combination of PS and GS methods is possible, which could be very promising
in communication applications.
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3. Buchali, F., Steiner, F., Böcherer, G., Schmalen, L., Schulte, P., Idler, W.: Rate
adaptation and reach increase by probabilistically shaped 64-QAM: an experimen-
tal demonstration. J. Lightwave Technol. 34(7), 1599–1609 (2016)

4. Forney, G., Gallager, R., Lang, G., Longstaff, F., Qureshi, S.: Efficient modulation
for band-limited channels. IEEE J. Sel. Areas Commun. 2(5), 632–647 (1984)

5. Gallager, R.G.: Information Theory and Reliable Communication, vol. 588.
Springer, Cham (1968)

6. Gültekin, Y.C., Alvarado, A., Willems, F.M.: Achievable information rates for
probabilistic amplitude shaping: an alternative approach via random sign-coding
arguments. Entropy 22(7), 762 (2020)

7. Gültekin, Y.C., Fehenberger, T., Alvarado, A., Willems, F.M.: Probabilistic shap-
ing for finite blocklengths: distribution matching and sphere shaping. Entropy
22(5), 581 (2020)

8. Hoydis, J., et al.: Sionna: an open-source library for next-generation physical layer
research. arXiv preprint: arXiv:2203.11854 (2022)

9. Idler, W., et al.: Field trial of a 1 Tb/s super-channel network using probabilisti-
cally shaped constellations. J. Lightwave Technol. 35(8), 1399–1406 (2017)
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Abstract. It is considered the routing problem for which some fixed
tasks must be serviced above all. Other tasks can be serviced only after
realization of above-mentioned original tasks. It is supposed that each our
task is the megalopolis (nonempty finite set) visiting with fulfilment of
some works. In our setting, two partial interconnected routing problems
arise. We suppose that, in each partial routing problem, the correspond-
ing precedence conditions are given. Using widely understood dynamic
programming (DP), we obtain the optimal composition solution for ini-
tial total problem. As an application, we note the known engineering
problem connected with sheet cutting by zones on CNC machines. By
DP procedure the optimal algorithm realized on PC was constructed.

Keywords: Dynamic programming · Precedence conditions · Route

1 Introduction

The known hard-to-solve traveling salesman problem (TSP) is the natural pro-
totype of considered extremal routing problems with elements of decomposition.
In connection with TSP we note [1–3]; moreover, we note [4,5] as investigations
connected with dynamic programming (DP) for TSP solution. But, in rout-
ing problems oriented to engineering applications, many essential singularities
arise. In these connection, first of all, we note different constraints (of course,
in problems connected with sheet cutting on CNC machines, many constraints
arise). In particular, in practical routing problems, precedence conditions are
realized. For problems connected with sheet cutting, conditions excluding ther-
mal deformations of details are very important. For this aim, it is possible to use
penalty method; in this case, cost functions with task list dependence arise. We
use this approach. In the following, constructions of [6] are used. In connection
with applications, we are oriented to monograph [7]. We note some investiga-
tions connected with routing for megalopolises: see [8–10]. Moreover, in [11–23],
questions connected with sheet cutting are considered (see remarks in Sect. 5).
But, in this investigation, new approach to optimization for compositional solu-
tions set out: following [6] and [9], we consider the procedure for construction
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of optimal compositional solutions. Similar results are unknown to the autors
(of course, the routing problems with megalopolises visiting under precedence
conditions mean). It is important, that for real problem connected with sheet
cutting, manages to get a solution in a reasonable time (see Sects. 4 and 5).

2 The Mathematical Setting

We fix a nonempty set X and a nonempty finite subset X0 of X. Elements of X0

are considered as starting points. Fix a natural number n, n >= 4, nonempty finite
sets M1, . . . , Mn (megalopolises), each of which is a subset of X, and nonempty
relations

M1, . . . ,Mn

for which

M1 ⊂ M1 × M1, . . . ,Mn ⊂ Mn × Mn. (1)

So, elements of Mj , where j is a natural number with 1 <= j <= n, are ordered pairs
(OP). Let M1, . . . , Mn be pairwise disjunctive; M1 ∩ X0 = ∅, . . . , Mn ∩ X0 = ∅.
We consider the next movements

(x ∈ X0) → (x1,1 ∈ Mγ(1) � x1,2 ∈ Mγ(1)) → . . . (2)
→ (xn,1 ∈ Mγ(n) � xn,2 ∈ Mγ(n)),

(x1,1, x1,2) ∈ Mγ(1), . . . , (xn,1, xn,2) ∈ Mγ(n), (3)

where γ is a permutation of indexes 1, . . . ,n.

Some General Designations. We suppose that N
�
= {1; 2; . . .} (�

= is the
equality by definition), N0

�
= {0; 1; 2; . . .} and

p, q
�
= {k ∈ N0 | (p <= k)&(k <= q)} ∀p ∈ N0 ∀q ∈ N0.

Let R+
�
= {ξ ∈ R | 0 <= ξ}, where R is the real line. If H is a nonempty set, then

by R+[H] we denote the set of all functions from H into R+ (nonnegative real-
valued functions on H). For each OP h, by pr1(h) and pr2(h) we denote the first
and the second elements of h respectively; of course, h = (pr1(h),pr2(h)). To a
set H, we associate the family P(H) of all subsets of H and P ′(H)

�
= P(H)\{∅}.

Let M �
= {Mi : i ∈ 1,n} and, for fixed N ∈ 2,n − 2,

M1
�
= {Mi : i ∈ 1, N}, M2

�
= M\M1 = {Mi : i ∈ N + 1,n};

we consider the sets of M as megalopolises. We take the next requirement:
in (2), (3), visiting to megalopolises of M2 is admissible only after visiting to
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all megalopolises of M1. So, we obtain M1-problem and M2-problem; these
problems are interconnected.

Suppose that P is the set of all permutations of indexes of 1,n and P1 and
P2 are the sets of all permutations of indexes of 1, N and 1,n − N respectively.
We call routes permutations of P, P1, and P2. If α ∈ P1 and β ∈ P2, then

α � β ∈ P

is defined by the rule

((α♦β)(k)
�
= α(k) ∀k ∈ 1, N)&((α♦β)(l)

�
= β(l − N) + N ∀l ∈ N + 1,n).(4)

So, (4) is the route coalescence. Suppose that the choice of P1 and P2 can be
subordinated to precedence conditions. In this connection, we fix the sets K1

and K2 for which

K1 ⊂ 1, N × 1, N, K2 ⊂ 1,n − N × 1,n − N.

Elements of K1 and K2 are called address pairs. If h is an address pair, then
pr1(h) is called sender and pr2(h) is called receiver of h. We suppose that

(∀K0 ∈ P ′(K1) ∃z0 ∈ K0 : pr1(z0) �= pr2(z) ∀z ∈ K0) (5)
&(∀K̃0 ∈ P ′(K2) ∃z0 ∈ K̃0 : pr1(z0) �= pr2(z) ∀z ∈ K̃0)

(in applied problems, conditions (5) are fulfilled typically). Then, by [8, (2.2.53)]

A1
�
= {α ∈ P1 | α−1(pr1(z)) < α−1(pr2(z)) ∀z ∈ K1} �= ∅, (6)

A2
�
= {α ∈ P2 | α−1(pr1(z)) < α−1(pr2(z)) ∀z ∈ K2} �= ∅, (7)

where α−1 is the inverse permutation for every permutation α. In (6) and (7),
admissible (by precedence) routes are introduced. Using (6) and (7), we obtain
that

P
�
= {α♦β : α ∈ A1, β ∈ A2} �= ∅ (8)

and P ⊂ P. So, (8) is considered as the set of all admissible routes in M-problem
(the problem about visiting to all megalopolises of M).

Along with routes, we introduce trajectories in M-problem. Let Z be the set
of all mappings from 0,n in X × X. Under x ∈ X0 and γ ∈ P, in the form of

Zγ [x]
�
= {(zt)t∈0,n ∈ Z | (z0 = (x, x)) (9)

&(zt ∈ Mγ(t) ∀t ∈ 1,n)},

we obtain nonempty finite set of all trajectories starting from x and coordinated
with route γ. For x ∈ X0 we obtain that

D̃[x]
�
= {(γ, (zt)t∈0,n) ∈ P × Z | (zt)t∈0,n ∈ Zγ [x]} (10)
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is the set of all admissible solutions in the (M, x)-problem (M-problem with
starting point x). Finally, we introduce the set

D
�
= {(γ, (zt)t∈0,n, x) ∈ P × Z × X0 | (γ, (zt)t∈0,n) ∈ D̃[x]} (11)

of all (admissible) routing processes. So, D is a nonempty finite set. We con-
sider elements of (11) as admissible solutions in the basic M-problem for which
starting optimization is also admissible.

We suppose that N is the family of all nonempty subsets of 1,n. For j ∈ 1,n,
suppose that

(Mj
�
= {pr1(z) : z ∈ Mj})&(Mj

�
= {pr2(z) : z ∈ Mj});

moreover, let

(X
�
=

n⋃

i=1

Mi)&(X
�
= (

n⋃

i=1

Mi) ∪ X0).

As cost functions, we fix

c ∈ R+[X × X × N], c1 ∈ R+[M1 × N], . . . , cn ∈ R+[Mn × N], (12)

f ∈ R+[
n−N⋃

i=1

MN+i].

In terms of functions (12), we introduce additive criterion: for x ∈ X0, γ ∈ P,
and (zt)t∈0,n ∈ Zγ [x]

Cγ [(zt)t∈0,n]
�
=

n∑

t=1

[c(pr2(zt−1), pr1(zt), {γ(k) : k ∈ t,n}) (13)

+cγ(t)(zt, {γ(k) : k ∈ t,n})] + f(pr2(zn)).

In (13), we estimate all steps of movements (2), (3). For x ∈ X0, the following
(M, x)-problem is investigated:

Cγ [(zt)t∈0,n] → min, (γ, (zt)t∈0,n) ∈ D̃[x]; (14)

we associate with (14) the corresponding extremum Ṽ [x] and (nonempty)
extremal set (sol)[x]:

Ṽ [x]
�
= min

(γ,(zt)t∈0,n)∈D̃[x]
Cγ [(zt)t∈0,n] ∈ R+, (15)

(sol)[x]
�
= {(γ, (zt)t∈0,n) ∈ D̃[x] | Cγ [(zt)t∈0,n] = Ṽ [x]} �= ∅. (16)

But, our basic routing problem (M-problem) is

Cγ [(zt)t∈0,n] → min, (γ, (zt)t∈0,n, x) ∈ D; (17)
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for this M-problem, we consider extremum V and (nonempty) extremal set
SOL:

V
�
= min

(γ,(zt)t∈0,n,x)∈D
Cγ [(zt)t∈0,n] (18)

= min
x∈X0

min
(γ,(zt)t∈0,n)∈D̃[x]

Cγ [(zt)t∈0,n] = min
x∈X0

Ṽ [x] ∈ R+,

SOL
�
= {(γ, (zt)t∈0,n, x) ∈ D | Cγ [(zt)t∈0,n] = V} �= ∅. (19)

By (15), the extremum function Ṽ [·] defined on X0 is realized. We consider the
problem

Ṽ [x] → min, x ∈ X0, (20)

of starting point optimization; of course, V is extremum of (20) and

X0
opt

�
= {x ∈ X0 | Ṽ [x] = V} �= ∅ (21)

is the corresponding extremal set. Then, by (15), (16), (18), (19), and (21)

(γ∗, (z∗
t )t∈0,n, x∗) ∈ SOL ∀x∗ ∈ X0

opt ∀(γ∗, (z∗
t )t∈0,n) ∈ (sol)[x∗]. (22)

3 The General Scheme of Algorithm

For solution of M-problem (17), the corresponding (optimal) algorithm was pro-
posed in [6]. This algorithm allows you to solve the problem of tangible dimension
in a reasonable time (see examples in [6]). The corresponding values of the count-
ing time are given when considering the examples in Sects. 4 and 5. The basic
element of this solution is DP realizable under decomposition of M-problem
by the system of M1-problem and M2-problem. In addition, formalization of
M1-problem and M2-problem is analogous to constructions for M-problem (see
(9)–(19)) with some transformation of cost functions compared to (12). Now, we
confine ourselves to the presentation of the algorithm scheme.

In connection with used DP procedures, we note that here variant ascending
to [8, Section 4.9] is realized (see constructions of [10–12]). In addition (under
precedence conditions), we don’t build the whole array of Bellman function val-
ues. Instead of this, we define special layers of this function. For this, layers of
position space are first created. In turn, essential lists of tasks are constructed for
this. In the last build, precedence conditions are used significantly. In addition,
we are achieving significant savings in computing resources. So, we use prece-
dence conditions “in positive direction”. We connect every layer of position space
with fixed power value for essential lists which are elements of the given layer.
Important, that for construction of all layers of Bellman function, a fairly sim-
ple recurrent procedure is realized. Of course, this recurrent procedure is based
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on the Bellman equation. In our case, this Bellman equation takes into account
precedence conditions.

We note that, in our case, constructions based on the Bellman equation are
realized for M1-problem and M2-problem separately. After realization each of
two recurrent procedures, we obtain extremum function for corresponding partial
problem. This function is defined on the starting point set. But, for M2-problem,
the latter set more to be created. This operation is envisaged in the first step of
our algorithm. Now, let’s move on to the consideration of the algorithm scheme.

1) Create a set of starting points for M2-problem in the form

X00 �
=

⋃

i∈1,N\K̃1

Mi, (23)

where K̃1
�
= {pr1(h) : h ∈ K1}. Form M2-problem as a system of (M2, x)-

problems with x ∈ X00.
2) Define the layers of the Bellman function for M2-problem. As final layer of

the Bellman function, we define the extremum function of M2-problem.
3) By extremum function of M2-problem we create terminal component of (addi-

tive) criterion in M1-problem. Form M1-problem as a system of (M1, x)-
problems, where x ∈ X0.

4) Define the layers of the Bellman function for M1-problem. The extremum
function of M1-problem is realized as final layer of the Bellman function. By
this layer we define optimal starting point x0 and extremum as the value of
the final layer for this point.

5) Using standard (for DP) procedure, we construct optimal solution of
(M1, x

0)-problem in the form of OP route-trajectory. As a result, we obtain
M1-solution with the start x0.

6) Fix finish point x00 on the trajectory of M1-solution. Define optimal solution
on (M2, x

00)-problem in the form of OP route-trajectory that is M2-solution
(this construction is realized by DP procedure).

7) Glue together M1-solution and M2-solution. Glue together separately routes
and trajectories. As a result, we obtain optimal solution of (M, x0)-problem.
Adding the point x0 to this solution, we get see (22) the optimal route process
that is an element of SOL (19).

The detailed proofs of theoretical statements are contained in [6,9]. Now,
we note only several important statements about connection of M-problem and
M1-problem. Namely, extremum V (18) of M-problem coincides with analogous
extremum for M1-problem. And what is more, the extremum function

Ṽ [·] �
= (Ṽ [x])x∈X0 ∈ R+[X0]

coincides with analogous extremum function of M1-problem. Finally, the set
(21) coincides with the set of all optimal starting points for M1-problem. These
properties are connected with step 3): terminal component of criterion of M1-
problem is defined by extremum function of M2-problem. So, step 3) defines the
natural connection of M1-problem and M2-problem. This circumstance shows
the important role of terminal component using as part of the criterion.
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4 Computing Experiment: Sheet Cutting Under Two
Zones

The optimal algorithm of previous section was implemented as a standard pro-
gram for the simplest variant of the instrument control under sheet cutting on
CNC machines by zones. In addition, the problem solution on a PC was con-
sidered. As X, a nondegenerate rectangle in the plane was used: we have cut
sheet of metal. Sets M1, . . . , Mn are realized by the contour sampling (really:
equidistant curves). In addition, two types of points on these sets are used: tie-
in-points and switch off points. Each of relations M1, . . . ,Mn consists of OP of
above-mentioned type (tie-in-point and switch off point). In the above mentioned
simplest variant of the instrument control by zones, M1- and M2-problem are
realized like Sect. 1. So, a decomposition of total M-problem is realized. In M1-
problem and M1-problem, there are precedence conditions given by the sets K1

and K2 of address OP. Moreover, in M-problem, there are conditions connected
with heat removal under thermal cutting. The corresponding exact definitions of
cost functions (12) are given in [10, Section 5,6]. So, now, we consider the variant
of two zones. For this variant, the optimal algorithm with 1)–7) was realized.

For computations was used computer with Intel i5-11300H CPU, 8 Gb RAM,
Windows 11 OS. The program was written in the C++ language with using of
Qt interface library.

Fig. 1. Sample 1: computation result.
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Sample 1. Number of contours is n = 50. Precedence condition pairs number
equals 31. It split in two clusters with dimension |M1| = |M2| = 25. The
numbers of precedence conditions for these clusters are |K1| = 14 and |K2| = 17.
The external price function has threshold value of the penalty 0,5, length of the
finish cut area 100mm, width – 25mm. The penalty value is 1000000. Obtained
result is 119,9. So, the result is correct in sense of thermal restrictions set through
cost functions. Indeed, this result is significantly less than the penalty constant.
Counting time is 25min 16 s. The obtained result shown on the Fig. 1.

Fig. 2. Sample 2: computation result.

Sample 2. Now, we consider one example for which we will try to take into
account the consideration of technological nature (see [7, §1.3.3]). Namely, in
the case of thermal cutting, so called long details must be cut first. It’s about
the details for which the linear dimensions differ to much. Such details are most
susceptible to thermal deformation. Therefore, it is advisable to cut them earlier
in order to ensure more efficient removal of heat generated during insertion.
In this connection, we form megalopolises on M1-problem including discrete
contours of long details (we allow adding some more megalopolises to M1). The
remaining megalopolises are included in M2.

Number of contours is n = 31. Precedence condition pairs number equals
12. It split in two clusters with dimension |M1| = 11, |M2| = 20. The numbers
of precedence conditions for these clusters are |K1| = 2 and |K2| = 10. The
external price function parameters was used like in sample 1. Obtained result is
83,6. It has no penalties, so, the result is correct in sense of thermal restrictions
set through cost functions. Counting time is 20 s. The obtained result shown on
the Fig. 2.

5 Computing Experiment: Sheet Cutting by Zones
in the General Case

Now, we consider natural evolution of algorithm of Sect. 2 for problem connected
with cutting by zones. Namely, we consider more general variant: so, we assume
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that r zones are set, where r ∈ N and r >= 3 (suppose that X, X0, n, M1, . . . , Mn,
M1, . . . ,Mn correspond to Sect. 1; analogously, remain cost functions (12) with
obvious correction domain of definition for f). Fix numbers

N0 ∈ 1,n, N1 ∈ 1,n, . . . , Nr ∈ 1,n

for which N0 = 0, Nr = n and Ns+2 � Ns+1 under s ∈ 0, r − 1. In the following,
we suppose that

Mj
�
= {Mi : i ∈ Nj−1 + 1, Nj} ∀j ∈ 1, r.

Then, {Mj : j ∈ 1, r} is a partition of M = {Mj : j ∈ 1,n}. With

M1, . . . ,Mr

we connect r zones (clusters). Suppose that, in the following, K1, . . . ,Kr are
sets of address OP: for j ∈ 1, r,

Kj ⊂ 1, Nj − Nj−1 × 1, Nj − Nj−1

and ∀K0 ∈ P ′(Kj) ∃z0 ∈ K0 : pr1(z0) �= pr2(z) ∀z ∈ K0. Under j ∈ 1, r, we
introduce the set Pj of all permutations of indexes of 1, Nj − Nj−1 and the set

Aj
�
= {α ∈ Pj | α−1(pr1(z)) < α−1(pr2(z)) ∀z ∈ Kj} �= ∅.

of all admissible (by precedence) permutations of such type. So, we have partial
routes. We realize gluing together routes of A1, . . . ,Ar and obtain a nonempty set
of admissible routes in the basic M-problem similar to (17). Of course, we have
also Mj-problem for each j ∈ 1, r. Now, we confine ourselves to the presentation
of the algorithm scheme (more detailed consideration given in [6, Section 12]).

1) For each j ∈ 1, r − 1, we define the set

K̂j
�
= {pr1(z) : z ∈ Kj}.

Then, we introduce the set

X00
j

�
=

⋃

s∈1,Nj−Nj−1\K̂j

MNj−1+s

and consider X00
j as the set of all possible starting points in Mj+1-problem.

Moreover, suppose that X00
0

�
= X0 (recall that X0 is given by our supposi-

tions).
2) For Mr-problem, we define layers of the Bellman function for Mr-problem.

As final layer, the extremum function of Mr-problem is realized.
3) If j ∈ 2, r − 1 and, for Mj+1-problem, the extremum function was con-

structed, we define terminal component of additive criterion of Mj-problem
as above-mentioned extremum function for Mj+1-problem. So, Mj-problem
formed. Now, we define layers of the Bellman function for this Mj-problem.
As final layer, the extremum function of Mj-problem is realized.
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4) After realization of step 3) for all Mj-problem, where j ∈ 2, r − 1, we use the
extremum function of M2-problem for construction of terminal component of
additive criterion for M1-problem. Then, we sequentially define layers of the
Bellman function for M1-problem. Final layer is defined on X0 and corre-
sponds to extremum function of this M1-problem. We find the point x0 ∈ X0

realizing minimum of extremum function.
5) Using layers of the Bellman function of M1-problem, we construct optimal

solution of this problem with start x0. This solution is realized as OP route-
trajectory.

6) If k ∈ 1, r − 1 and sequentially optimal solutions of Mj-problems, j ∈ 1, k,
already were constructed, we fix the finish point x00 on Mk-trajectory in
the form of second element of OP corresponding to trajectory value for final
index (for Mk-problem). We use x00 as starting point for Mk+1-problem after
which determine optimal solution of this problem as OP route-trajectory.

7) After building sequentially optimal solutions of all problems M1, . . . ,Mr, we
realize component-wise gluing of these solutions (routes stick together with
routes and trajectories stick together with trajectories). The resulting OP
is completed by the point x0. The obtained triplet is considered as required
realization of route process.

Now, we briefly consider example of realization of the above-mentioned algo-
rithm in problem connected with sheet cutting by zones.

Sample 3. Number of contours is n = 100. Precedence condition pairs
number is 70. It split in five clusters with dimension |M1| = 16, |M2| = 20,
|M3| = 24, |M4| = 20, |M5| = 20. The numbers of precedence conditions for
these clusters are |K1| = 9, |K2| = 14, |K3| = 18, |K4| = 15, |K5| = 14. The
external price function parameters was used like in sample 1. Obtained result
is 238,2. It again has no penalties. Counting time is 53 s. The obtained result
shown on the Fig. 3.

Fig. 3. Sample 3: computation result.
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Based on a computational experiment, it can be noted that the maximum
number of contours in one cluster (zone) for computing on a personal computer
is in the range of 25–35, and depends on the number of nested contours, i.e. on
the number of precedence conditions. The dependence on the number of clusters,
if the clusters are similar, is close to linear.

In connection with Cutting Path problem (the tool path optimization prob-
lem for CNC sheet-cutting machines), we note monograph [7], in which, the
detailed statement of this engineering problem is discussed (moreover, see the
detailed consideration in [11,12]). We recall the known “nesting” problem [13,14]
with which the Cutting Path Problem is connected. Moreover, in should be sin-
gled investigations [15–19], where questions of routing algorithms constructing
are considered. We especially note research by A.A.Petunin (see [20–23]). For
more detailed familiarization with routing methods in Cutting Path Problem,
we recommend [11, Introduction].

6 Conclusion

In this article, the routing problem with constraints and complicated cost func-
tions is investigated. This problem is connected with realization implementation
of visits to nonempty finite sets (megalopolises) with fulfilment some works. Of
course, this mathematical problem has many engineering applications. In given
investigation, only one application noted; namely, we have focused on issues
connected with sheet cutting on CNC machines. In given problem, often zone
cutting mode is used. In simplest case, two zones are fixed. Then, all contour set
is divided into the sum of two subsets. It is required to first cut the contours of
the first set and only after that to cut the contours of the second subset. This
statement is considered in given article. For this statement, optimal solution
is constructed. This solution is a triplet with the first element as a route, the
second element as a trajectory, and the third elements as a starting point. For
solution construction, the widely understood DP is used. The corresponding DP
procedures are realized for two zones separately. After, the gluing of two DP
procedures is realized. So, in this article, a useful connection of DP and decom-
position constructions is established. In the final of article, the development of
constructed algorithm for the case of arbitrary finite zones number is stated.
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Abstract. A model is proposed for generating a mineral raw materials
development program in a resource-rich region. The model is based on a
special mechanism of public-private partnership with a consortium. The
main idea of the partnership model is to cluster mine fields and set up a
system of consortia of private investors who jointly implement projects to
construct the necessary production infrastructure in the cluster. Such a
mechanism is based on the search for a compromise between the interests
of the government and private investors, ensuring a Stackelberg equilib-
rium. In the process of interaction (two periods, sequential choice), the
government acts as a leader by setting quotas on the compensations for
the consortia’s costs of implementing the infrastructure projects. The
system of consortia plays the role of a follower by rationally choosing the
infrastructure development program that ensures the profitability of the
development projects for private investors, taking into account the costs
of shared construction and the compensation schedule offered by the
government. This approach allows one to form a targeted development
plan by solving a bilevel problem of mathematical programming. This
plan determines for each consortium a list of implemented infrastruc-
ture projects and, for private investors, a schedule of infrastructure costs
and their compensations from the budget. It is proven that the problem
of the government belongs to the class of ΣP

2 -hard problems associated
with the second level of the polynomial hierarchy. The main directions
are proposed in searching for efficient solution algorithms based on meta-
heuristics and enabling the solution of high-dimensional problems.

Keywords: Stackelberg game · bilevel mathematical programming
problems · ΣP

2 -hard problems · stochastic local search · strategic
planning · public-private partnership · a consortium of subsoil users

1 Introduction

The development of mechanisms for stimulating private investment presents a
timely and relevant, as-yet unresolved problem in Russia, primarily in the under-
developed resource-rich regions of Siberia and the Far East. The established
practice of making this kind of decision in subsoil resource management tends to
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operate with political arguments and most unsophisticated effectiveness evalua-
tions, which are derived from analysis of technological projects and current raw
materials prices.

Practical experience shows that when attempting to stimulate private invest-
ment activity, the government does not succeed in applying the traditional sup-
port tools either. Using the financial resources of the Investment Fund of Russia,
the government builds production infrastructure (see, e.g., the transport infras-
tructure project for the development of mineral resources in the southeast of the
Chita oblast [1], or finances the implementation of a large complex of infras-
tructure and environmental activities related to building the reservoir of the
Boguchanskaya hydro-based power plant within a project of integrated develop-
ment of the Lower Angara Region [2].

The expert community is skeptical about the actual progress in implement-
ing these projects. Thus, the railway built by the government in Transbaikalia
remained unattended over a long period; in the meantime, it was being disman-
tled vigorously for scrap metal to be sold in China. It was only in 2016 that the
railway was restored and put into temporary operation. In the Lower Angara
Region, the budget did not receive the revenues announced in the project doc-
umentation, and the people who resettled from the flood zone got neither the
promised benefits nor additional social infrastructure. In the Yenisei Siberia
Megaproject, the government again plans to take over the implementation of
large-scale infrastructure projects to build the Elegest-Kyzyl-Kuragino railway
and the Beya transport infrastructure without a detailed analysis of the con-
sequences of such an undertaking in terms of balancing the interests of the
government and private investors [3].

Behind all these attempts by the government to support business and inten-
sify the development of natural resources, one can clearly see a lack of qualified
expert assessment of the integrated large-scale projects, which the government
calls – not quite correctly – public-private partnership projects. In the classical
model of public-private partnership (PPP), the investor reaches an agreement
with the government on a certain list of infrastructure projects that open up the
field development projects of interest to the investor, and then he implements
these infrastructure projects at his own expense. The government, in turn, com-
pensates for his costs with a certain lag, e.g., starting from the time it begins to
receive taxes from the mining operations set up by the private investor [4–8].

Thus, practical experience shows that the a priori confidence in that any
combination of business support tools always brings a positive result does not
have a leg to stand on if we set the goal of safeguarding the interests of society
as a whole as well as private business. That is why working out a mechanism for
a public-private partnership, which would determine a program for development
of natural resources in an underdeveloped territory, is a timely and relevant
problem of great practical importance, which requires the creation of special
tools to support managerial decision-making.
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Such a program defines a list of measures necessary for the development of a
given territory and it is designed to answer several questions that are important
for a potential investor.

How to help the investor overcome the barriers associated with the lack of
transport and energy infrastructure, which is so typical of most Siberian and Far
Eastern regions of Russia? What kind of a private investment stimulation mech-
anism, which would combine a range of government investment policy measures,
should be put at the core of the program for the development of local natural
resources? What organizational activities can be performed to harmonize the
goals and pool the resources of individual subsoil users?

These problems are the focus of this paper. Having supplemented the clas-
sical PPP model with the consortium mechanism, the authors considerably
expand the previously studied partnership models [9–15] by supplementing them
with horizontal connections between private investors and resource consolidation
effects. It is of fundamental importance that the PPP mechanism and the devel-
opment program thus become as concrete and targeted as possible, which in
itself could be directly beneficial for managerial practice.

2 Mathematical Model

We assume that the mine fields within a region form a system of nonoverlap-
ping clusters; such a hypothesis is true for most of the underdeveloped regions
of Siberia and the Far East. The transport and energy infrastructure for such
a system of clusters is built by a system of consortia localized in these clusters
(one consortium per cluster). In each cluster, the government sets up a man-
agement company (MC) that organizes and coordinates the shared financing
of infrastructure construction by the private investors that are members of the
consortium and pays out compensations for the costs incurred of subsoil users
from the budget. It is also assumed that the MC takes over all the functions of
the government in coordinating the interests of the investor and the government
in terms of mining projects (pre project analysis, environmental control, mon-
itoring, etc.). The output of the model is a targeted plan for each consortium
to generate a mineral raw materials development program. The plan determines
for each consortium (cluster) a list of infrastructure projects to be implemented
and for each investor (mine field) a schedule of costs to build the necessary
production infrastructure and a schedule of compensation payments from the
budget.

Such a scheme is viable and attractive to the potential private investor only if
the latter achieves the necessary profitability of the overall project for developing
the mine field and building a part of the necessary infrastructure. It is attractive
for the government primarily because of the timing of the development costs: in
contrast to the current practice, the compensation payments from the budget
can be postponed to the period when taxes are beginning to flow. In addition,
the government obtains a tool for regulating the distribution of natural resource
rent, a tool that is much more flexible than rent taxes, by assigning a larger



234 S. Lavlinskii et al.

share of infrastructure costs in the consortium to highly profitable mine fields.
The only thing left to do is to determine the parameters of such a partnership
(development program) to ensure profitability for private investors and the max-
imum possible amount of natural resource rent for the government in the form
of taxes.

Consortium Model
How can we describe the functioning of a consortium with an MC coordinat-

ing and organizing the processes of mining, the shared construction of mining
infrastructure, and the subsequent mutual settlements?

In our case, the MC of the consortium acts as a managerial agent for the
PPP project by creating the institutional structure of the partnership and coor-
dinating the interaction of the participants in line with the project goals. Here
it is vitally important to take into account transaction costs (TCs) [16,17]. The
latter act as friction in coordinating the interests of the investor and the gov-
ernment and substantially affects, first of all, the formation and functioning of
the consortium. By its nature, such a specialized consortium must solve com-
plex, inherently optimization-based problems. This circumstance distinguishes
it from today’s directorates of the aforementioned megaprojects and programs,
whose managerial decision-making tools do not measure up to the level of tasks
assigned to them.

TCs include not only the costs arising from the conclusion of contracts but
also those accompanying the interactions between economic agents [18–20]. In
the case of large-scale mining projects implemented in remote regions, TCs may
be very high [21]. For an MC, representing the interests of the government,
they comprise, e.g., control and monitoring (such as technical oversight and
environmental monitoring), the costs of improving supportive public institutions,
etc. The TCs of an investor participating in the consortium comprise the costs
of conducting an environmental impact assessment, the costs of maintaining
business departments responsible for interacting with the relevant regulatory
bodies, etc.

Here we distinguish between the ex ante and ex post TCs of implement-
ing a project. The reason is that ex ante and ex post TCs in field development
address essentially different issues. Moreover, depending on an institutional envi-
ronment, they can be distributed differently between the government and the
private investor, and our model should possess a functional that would capture
this circumstance.

Model assumptions:

(1) The size of TCs for both the consortium’s MC and the investor depends on
the volume of project investment.

(2) While coordinating their interests (T1 years), the MC and the investor bear
ex ante TCs; during the entire period of project implementation (T2 years),
they bear ex post TCs.

(3) Ex ante TCs are increasing until the launch of the project; ex post TCs are
decreasing in the course of implementing the project.



PPP with a Consortium 235

(4) For the investor, the model specifies not only the level of TCs but also the
share of these costs that are attributed to project costs.

By introducing these hypotheses, we can formalize the size of TCs and cap-
ture, in an aggregate form, their behavior over time.

PPP Formation Model
The problem statement can be represented as follows. We use the following

notation:
T = {−T1, . . . , 0, 1, . . . , T2} is the time horizon; T0 is the time lag of reim-

bursement of infrastructure costs by the private investor; I is a set of production
projects; J is a set of infrastructure development projects; K is a set of consortia.
Each production project has its own private investor.

Production project i in year t:
CFP t

i is the operating cash cashflow (the difference between the incomes and
expenses of operating activities in the process of development);

DBP t
i are the tax revenues of the budget from the project;

ITCP t
i and MTCP t

i are, respectively, the TCs of investor i and the TCs
incurred by the MC of the investor’s “host” consortium, which arise during the
preparation (ex ante, t = −T1, . . . , 0) and implementation (ex post, t = 1, . . . , T2)
of the production project.

Infrastructure project j in year t:
ZItj is the schedule of investment costs necessary for implementing project;
V DItj are the off-project revenues of the budget from implementing project

j, which are associated with the overall development of the local economy;
MTCItj is the schedule of the TCs incurred by the MC of the consortium

implementing project j;
ITCItj is the schedule of the total TCs of the investors partaking in the

implementation of project j.
Outside the planning horizon (t = −T1, . . . , 0), the model parameters CFP t

i ,
DBP t

i , ZItj and V DItj are assumed to be zero.
Interproject connection:
μij is the indicator of technological cohesion between production and infras-

tructure projects; i ∈ I, j ∈ J :

μij =

⎧
⎨

⎩

1, if the implementation of production project i
necessarily requires the implementation of infrastructure project j,

0 otherwise.

The sets of production and infrastructure projects are divided in a nonover-
lapping (mutually disjoint) manner into NC consortia, based on the location of
the field clusters. A single field is a single consortium consisting of one investor.

The topology of the consortia system is defined by the following parameters:
αkj is the parameter indicating whether infrastructure project j is attributed

to consortium k; this parameter equals to one if the attribution is valid and zero
otherwise.
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βki is the parameter indicating whether the investor of production project i
is attributed to consortium k; this parameter equals to one if the attribution is
valid and zero otherwise.

The discounts of the government and the investor: DG and DI respectively.
BudGt, BudIti are the budget constraints of, respectively, the government

and investors.
We introduce the following integer variables:

zi =
{

1, if the investor i launches production project,
0 otherwise;

cj =
{

1, if infrastructure project j is implemented by one of the consortia,
0 otherwise;

Real-valued variables of the model:
W̄ t

k and W t
k are the compensation schedules, respectively, offered by the

leader (government) and actualized in reality; the compensations reimburse the
infrastructure costs incurred by the private investors partaking in consortium k
and the expenses associated with the functioning of the MC;

Rt
i is the compensation schedule (determined by the consortium’s MC) for

the costs of private investor i;
Dij is the share of investor i in the costs of implementing infrastructure

project j.
The PPP formation model can be represented as the following problem of

bilevel mathematical programming.
The upper-level problem P̃G can be formulated as follows:
∑

t∈T

( ∑

i∈I

DBP t
i zi +

∑

j∈J

V DItjcj −
∑

k∈K

W t
k

)
/(1 + DG)t → max

W̄ ,z,c,W,R,D
(1)

subject to: ∑

k∈K

W̄ t
k ≤ BudGt; t ∈ T ; (2)

W̄ t
k ≥ 0; t ∈ T ; k ∈ K; (3)

(z, c,W,D,R) ∈ F∗(W̄ ). (4)

The set F∗ is a set of optimal solutions of the following low-level parametric
consortia problem P̃C(W̄ ):

γ
∑

t∈T

(∑

i∈I

((CFP t
i − ITCP t

i ) zi −
∑

j∈J

(ZItj + ITCItj)Dij + Rt
i)

)
/(1 + DI)t

+ (1 − γ)
∑

t∈T

(∑

i∈I

DBP t
i zi +

∑

j∈J

V DItjcj −
∑

k∈K

W t
k

)
/(1 + DG)t → max

z,c,W,R,D

(5)
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subject to:

W t
k ≤ W̄ t

k; t ∈ T ; k ∈ K; (6)

∑

t∈T

(∑

i∈I

DBP t
i ziβki +

∑

j∈J

V DItjcjαkj − W t
k

)
/(1 + DG)t ≥ 0; k ∈ K; (7)

Rt
i = 0;−T1 ≤ t ≤ T0; i ∈ I; (8)

Rt
i ≥ 0;T0 + 1 ≤ t ≤ T2; i ∈ I; (9)

∑

i∈I

Rt
iβki +

∑

j∈J

MTCItjcjαkj +
∑

i∈I

MTCP t
i ziβki ≤ W t

k; k ∈ K; t ∈ T ; (10)

0 ≤ Dij ≤ μij ; i ∈ I; j ∈ J ; (11)

∑

i∈I

Dijβki = αkjcj ; k ∈ K; j ∈ J ; (12)

∑

t∈T

(∑

i∈I

(CFP t
i − ITCP t

i ) zi −
∑

j∈J

(ZItj + ITCItj)Dij (13)

+ Rt
i

)
/(1 + DI)t ≥ 0; i ∈ I;

cj ≥ μijzi; i ∈ I; j ∈ J ; (14)

− (CFP t
i − ITCP t

i ) zi +
∑

j∈J

(ZItj + ITCItj)Dij (15)

− Rt
i ≤ BudIti ; t ∈ T ; i ∈ I.

In the formulated model, the consortium’s MC try to find a compromise
between the interests of partners. Thus, the MC seeks to distribute infrastructure
costs and budgetary compensation in such a way as to harmonize the rent-seeking
behavior of investors and the position of the government as the owner of natural
resources (5). The parameter γ reflects the degree to which the interests of a
private investor are taken into account.

Constraints (11)–(12) describe the procedure for distributing the infrastruc-
ture costs (including TCs) among the members of a consortium. The interde-
pendence of production and infrastructure projects is set by constraint (14); i.e.,
a mining project cannot be launched if the necessary production infrastructure
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is not present. The budgets of the government (2) and the investors (15) define
restrictions on a feasible set of projects.

The consortium’s MC begins compensation payments to investors after T0

years (8), (9), e.g., from the time of receiving the first tax payments. The MC’s
budget constraint (10) fixes the important role of TCs arising in the process of
coordinating interests in mining and in building infrastructure. The compensa-
tion schedule should provide the government with a balance of budget revenues
and transfers to the consortium (7) as well as compensate for the infrastructure
costs of each investor with a discount factor (13).

The formation of consortium k is expedient for the government only if its
MC and investors can ensure an increase in the government’s objective function
((1) and (7)). This is why the formation of a single consortium for the full set
of mine fields (NC = 1) may in some cases be less efficient than creating a
system of several consortia covering the entire territory and taking into account
the spatial locations of the objects of planning.

The output of the model is a targeted mineral raw materials development
program {cj , zi, R

t
i,Dij} that determines a list of launched infrastructure and

production projects specifies a mechanism for implementing shared construction,
and defines the main parameters of the compensation policy.

3 Computational Complexity

This paper considers a new bilevel model of interaction between the government
and private investors is based on a special mechanism of public-private part-
nership with a consortium. The structural features of the new model do not
allow us to take advantage of previously developed approaches to estimating the
computational complexity of bilevel PPP models from [9–15]. The first results
obtained for this model in the study of its relationships with the polynomial
hierarchy are given below. Let us associate with the government problem P̃G
the standard decision problem D(P̃G), in which the input is the input of the
government problem and an arbitrary rational number k. In the problem D(P̃G)
we have to decide whether or not there exists a feasible solution with the value of
the objective function greater than or equal to k. The decision problem D(P̃G)
belongs to the class ΣP

2 if there exists a non-deterministic Turing oracle machine
that recognizes problem L in polynomial time using some language from the class
NP as an oracle. Class ΣP

2 refers to the second level of the polynomial hierar-
chy [22]. An optimization problem belongs to the class NPO if its standard
decision problem belongs to the class NP [22]. Similarly, the class ΣP

2 O con-
tains optimization problems for which the corresponding standard recognition
problem belongs to the class ΣP

2 [23]. Class NPO refers to the first level of the
approximation hierarchy and class ΣP

2 O, respectively, to the second level of this
hierarchy.

We now show that the government problem is ΣP
2 -hard provided that param-

eter γ is 1 and there is no constraint (9) in the lower-level problem by reducing the
ΣP

2 -complete Subset-Sum-Interval problem to the problem in question [24,25].
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Theorem 1. The problem of the government P̃G is ΣP
2 -hard.

Proof. (Sketch of the proof)
The Subset-Sum-Interval problem. Given positive integers q1, ..., ql, R and r,

where r does not exceed l. Does an integer S exist that R ≤ S < R + 2r and
none of the subsets I ⊆ {1, ..., l} satisfies Σi∈Iqi = S.

We reduce this problem to the problem of the government. For this purpose
let us construct the following input of the government problem. Let there be
l + 2 production projects and l + 1 infrastructure projects. Assume that we
have a single consortium, the planning horizon is three years. For the first l
production projects, we have CFP 1

i = CFP 2
i = 0, CFP 3

i = 2qi. For other
projects: CFP 1

l+1 = 0, CFP 2
l+1 = −1/2, CFP 3

l+1 = 1, CFP 1
l+2 = 0, CFP 2

l+2 =
R, CFP 3

l+2 = Δ and DBP 1
l+1 = 0,DBP 2

l+1 = 0, DBP 3
l+1 = Δ, DBP 1

l+2 =
0,DBP 2

l+2 = 0, DBP 3
l+2 = 2Δ. For the first l infrastructure projects, we have

ZI1i = ZI3i = 0, ZI2i = qi. For other projects: ZI1l+2 = R,ZI2l+2 = 0, ZI3l+2 = 0,
where Δ is a fairly large positive number such as 2R + 2r+1. Then each of the
players is willing to incur any expense to make such a profit. Every production
project with the number i ∈ {1, ..., l+2}, excluding l+1, is required to implement
an infrastructure project with the same number. It follows from the accepted
agreements that the values of α1j and β1i are equal to 1 for all j ∈ {1, ..., l, l+2}
and i ∈ {1, ..., l + 2}. All other parameters of the production and infrastructure
projects are set to zero. The government budget in the first year is R + 2r − 1.
In the second and third years, the budget is zero. Each investor has zero budget
in any year.

Let S be equal to W̄11. The attractiveness of the l + 2 project and the
zero solvency of investors force the government to give no less than R to the
consortium. That is, S ≥ R. In addition, S does not exceed the value of the
government budget. That is, S ≤ R + 2r − 1. Excluding the constraint (9) from
the model allows the l + 2 investor to return up to R to the consortium in the
second year. Thus, the consortium can distribute among investors up to S for
the implementation of the first l + 1 production projects. Consortium income is
calculated using the formula:

Δ + S +
∑

1≤i≤l

qizi + 0.5zl+1,

subject to constraint (10):

S ≥
∑

1≤i≤l

qizi + 0.5zl+1.

Consequently, the production project l+1 needed by the government will be
started only when none of the subsets I ⊆ {1, ..., l} satisfies Σi∈Iqi = S.

4 Results and Discussion

The formulated model (1)–(15) can serve as a basis for developing model tools
to support managerial decision-making when generating mineral raw materials
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development program based on the above-described PPP mechanism with a con-
sortium. Having addressed the task of developing effective methods to solve the
corresponding bilevel problem of high-dimensional mathematical programming,
we can work out a practical methodology to develop a government investment
policy that stimulates the arrival of a private investor by harmonizing the goals
and pooling the resources of individual subsoil users.

This study established the following fact:
The government problem belongs to ΣP

2 -hard problems associated with the
second level of the polynomial hierarchy (Theorem 1).

This fact indicates that the search for optimal solutions is unlikely to suc-
ceed even at relatively small dimensions. Under these conditions, it does not
even make sense to search for approximate solutions with a guaranteed accuracy
estimate for the relative deviation from the optimal solution over polynomial
time.

Today’s literature knows examples of efficient algorithms for solving this kind
of complex problems, but these algorithms work only at small dimensions or for
problems with a special structure [13,14,25–29]. In our case, the structure is
the most generic, and the dimension of the consortia problem has increased
substantially relative to the previous versions of the model.

Under these conditions, in order to solve the problem on the basis of meta-
heuristics and exact methods, it is necessary to develop a stochastic approximate
hybrid algorithm that generates a “good” initial solution for a stochastic local
ascent. In the process of searching for the initial solution, one needs to find an
upper bound for the optimal value of the government’s problem. To do so, it is
proposed to find an optimal solution to the HP -relaxation of the government’s
problem. Now the initial solution is calculated using a procedure at each step
of which the problem of the consortia is solved with an additional threshold
constraint on the value of the government’s objective function. The threshold
constraint is generated using the previously obtained upper bound.

Speaking about the stochastic local search algorithm, it is currently planned
to realize this algorithm in the form of a stochastic coordinate-wise ascent. How-
ever, in order to refine this algorithm and achieve a good performance on real
data, it is necessary to conduct additional theoretical and experimental studies.
Under these conditions, the stochastic approximate hybrid algorithm is likely to
give a good approximate solution to the bilevel problem.

The authors plan to realize the described scenario of searching for effective
approximate methods to solve bilevel problems of large dimensions in the model
under study using a special model test site with actual information on Trans-
baikalia. The result of this work will be a toolkit for supporting managerial deci-
sions with a wide scope of applications. The toolkit will be useful in the practice
of real management of the mineral raw materials complex in the Siberian and
Far Eastern regions, where large-scale investment projects are being launched
with the participation of the government, including dozens of project activities
to be implemented over a time horizon of 20–30 years.
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1 Introduction

Often, when constructing mathematical models, it is necessary to exclude some
circumstances of the problem from attention and consider its characteristics
unchanged. In real-world applications, ignoring the possibility of data variability
can make the optimal solution to the problem unacceptable from a practical point
of view. In such situations, the Company may prefer to obtain a solution to the
problem in which the presence of some uncertainties will be taken into account
in advance. Then there is a need to clarify the concept of optimality, subject to
possible changes in the data. The literature has suggested various approaches to
optimization problems with different kinds of uncertainties, for discrete location
problems [5,8,19,28,31,34]. For example, in the article [32], the authors distin-
guish between the concepts of risk and uncertainty. In risk situations, there are
uncertain parameters whose values are known and determined by probability dis-
tributions. Such problems are the subject of stochastic optimization; the general
goal is to optimize the mathematical expectation of the value of the objective
function [8,16,34]. These studies have been conducted for a long time (see, for
example, [28,31,34]). The literature on this approach for location problems is
quite wide. For example, the study [7] examines a capacitated facility location
problem with uncertain demand. It is assumed that the demands are indepen-
dent and equally distributed random variables with an arbitrary distribution.
The article [35] discusses a situation that may arise when preparing supplies in
case of a natural disaster. In such cases, the amount of possible demand and
the availability of the transport network cannot be accurately determined. The
authors describe the problem using the stochastic facility location model and
propose a new matheuristic for its solution. In [16], a stochastic model for a
discrete location problem is considered. In order to realize random demand, in
addition to the usual stage, the second stage of placement is created. The loss
quantile is used as the criterion function of the model. Research in this direction
can also be found, for example, in [4,29].

In cases where parameters can change unpredictably and information about
them is unknown, system performance is optimized in the worst case. Such tasks
are referred to as robust optimization. Robustness can be interpreted as a mea-
sure of the flexibility of the solution to achieve almost optimal values under
conditions of uncertainty. There are various definitions of robustness. In one of
them, a set of uncertainties is used to represent a range of parameter changes
in robust optimization problems instead of probabilistic information. For exam-
ple, there are sets of uncertainties bounded by a rectangle or an ellipsoid [5,6].
The robust variant of the single-source capacitated facility location problem with
uncertainty in customer demand using the Danzig-Wolfe decomposition was pro-
posed in [33] and a branch and price algorithm was developed. Authors of [4]
introduced the almost robust discrete optimization. This methodology allows us
to take into account uncertainties in models with Boolean variables.

The concept of a stability radius is closely related to robustness. Perhaps the
first descriptive definition of the stability radius for distances in the traveling
salesman problem is given in [21]. Here, the analytical expression of the radius is
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written out, its properties are described, and some estimates and other theoret-
ical results are given. Later, the authors continued their research and presented
a general approach to finding the stability radius of solutions to combinato-
rial optimization problems [14]. In [27], the authors analyze the relationship
between the robustness radius for continuous optimization problems and the
mixed-integer linear problem. The applications of the radius of robust feasibility
of mixed-integer problem for the facility location are described in [10].

In this paper, we consider one of the approaches to determining the robust-
ness of a solution in continuous location problems, also known in the literature
as threshold robustness [10,11]. We study the possibility of generalizing this con-
cept for the case of discrete location problems using the example of a competitive
facility location and design problem with elastic demand. In our paper, we will
call the initial version of the problem the deterministic location problem (DLP).
The paper considers the bicriteria version of this discrete problem, in which, in
addition to the main criterion, there is an additional criterion for the robustness
of the searching solution. The formulation of DLP in the form of a non-linear
bicriteria integer programming problem is proposed. As a solution method, we
develop the variable neighborhood search approach.

The paper consists of an introduction and three sections. Section 2 presents
models of deterministic and robust variants of the Capacitated Location and
Design Problem with Elastic Demand. Notation is introduced and a mathemat-
ical model of the original problem is written out. A single-criteria formulation of
a robust variant of the problem (RLP) is presented. A new mathematical model
is proposed for solving the bi-criteria robust capacitated facility location and
design problem with elastic demand (BRLP). In Sect. 3, a new original algo-
rithm for local search with alternating neighborhoods and a modified version of
the SEMO evolutionary algorithm are presented, taking into account the need
to optimize both the reliability criterion and the maximum income. Section 4
presents test series for experimental analysis of the algorithms, describes the
results of numerical experiments, and discusses them. Finally, the prospects of
the approach are discussed.

2 Bi-criteria Robust Competitive Facility Location
and Design Problem with Elastic Demand

We propose a new bi-criteria version for the following facility location and design
problem with elastic demand. The situation is considered when a new company
tries to penetrate the goods market. Competitor facilities are already operating
in the market that serves the demand of customers. The goal of the new com-
pany is to capture as much of the customer’s demand as possible. To do this,
the company can choose the location and design variants for their facilities, con-
sidering the necessary costs and the available budget. Customers independently
determine the points of satisfaction of demand by choosing a facilities of a new
company or of a competitor.
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To write out the model, we introduce the following notation. Let N , C, S,
R be the set of customers, set of locations of the competitor’s facilities, sets of
points of possible locations, and design variants of the new company’s facilities,
respectively. The coefficients kijr involve the attractiveness of facilities to cus-
tomers, the distance to them, and sensitivity to this distance, i ∈ N, j ∈ S, r ∈ R.
Each customer’s demand wi is also known, i ∈ N . The new company can locate
its facilities, taking into account the available budget B and the necessary costs
cij for opening facilities j ∈ S with the design variants r ∈ R.

Let’s agree that if the facility is located in point j, then we will say that the
facility i is open. Boolean variables xjr indicate whether or not facility j is open
with a design variant r, j ∈ S, r ∈ R. The benefit of the facility i for client j is
uij =

∑R
r=1 kijrxjr. Denote Ui the total utility from all located facilities for a

customer i ∈ N ; MSi is a new company’s total share. Given the notation, the
mathematical model looks like this:

max
∑

i∈N

wi · g(Ui) · MSi, (1)

∑

j∈S

∑

r∈R

cjrxjr ≤ B, (2)

∑

r∈R

xjr ≤ 1, j ∈ S, (3)

xjr ∈ {0, 1}, r ∈ R, j ∈ S. (4)

The goal of the new company to capture the maximum share is reflected using
the function (1). Constraint (2) allows you to take into account the budget.
Inequalities (3) allow choosing only one design variant.

Such a model for a capacitated facility location and design problem with
elastic demand was proposed by R. Aboolian, O. Berman, and D. Krass (for
more details, see [3]). They used rules from marketing to describe the demand

function. More specifically the demand function is g(Ui) = 1 − exp
(

− λiUi

)

,

where λi is the characteristic of elastic demand in point i, λi > 0; The total
utility for a customer at i ∈ N from all open facilities is calculated by the
formula:

Ui =
∑

j∈S

R∑

r=1

kijrxjr + Ui(C) = Ui(S) + Ui(C).

The company’s total share of facility i ∈ N is

MSi =
Ui(S)

Ui(S) + Ui(C)
=

∑
j∈S

∑R
r=1 kijrxjr

∑
j∈S

∑R
r=1 kijrxjr +

∑
j∈C uij

.

In terms of the notation introduced, the goal function (1) looks like this:

max
∑

i∈N

wi

(

1 − exp
(

− λi

(∑

j∈S

R∑

r=1

kijrxjr + Ui(C)
)))

(5)



VNS Approach for the Bi-criteria Competitive Location 247

×
( ∑

j∈S

∑R
r=1 kijrxjr

∑
j∈S

∑R
r=1 kijrxjr +

∑
j∈C uij

)

.

In the model (5), (2)–(4) all parameters are known and unchangeable. In
a real economic situation, the demand, the number of consumers, the volume
of production, and others change over time. We will consider a situation where
demand may decrease. In this case, the company wants to find out before what
change in demand it is profitable for it to locate its facilities. Earlier, we formu-
lated a one-criterion robust statement for a problem with elastic demand [22].
To write it out, we will additionally introduce the minimum allowable volume
of demand W ; variable ρ is robustness (stability radius of demand); variables γi

are the deviation from the set volume of demand wi in the point i ∈ N .
The one-criteria robust capacitated facility location and design problem with

elastic demand looks as follows [22]:

max ρ, (6)
ρ ≤ γi, i ∈ N, (7)

∑

i∈N

(wi − γi) · g(Ui) · MSi ≥ W, (8)

γi ≤ wi, i ∈ N, (9)
∑

j∈S

∑

r∈R

cjrxjr ≤ B, (10)

∑

r∈R

xjr ≤ 1, j ∈ S, (11)

xjr ∈ {0, 1}, ρ ≥ 0, γi ≥ 0, j ∈ S, r ∈ R. (12)

In this paper, we consider a bi-criteria formulation of the robust capacitated
facility location and design problem with elastic demand (BRLP) in which, in
addition to the main criterion that maximizes the share of demand served, there
is also a criterion that maximizes the robustness of the solutions obtained. Thus,
the robust version of the presented discrete location problem can be written as
the following bicriteria nonlinear integer programming problem:

max ρ, (13)

max
∑

i∈N

(wi − γi) (14)

×
(

1 − exp
(

− λi

(∑

j∈S

∑

r∈R

kijrxjr + Ui(C)
)))

×
( ∑

j∈S

∑
r∈R kijrxjr

∑
j∈S

∑
r∈R kijrxjr + Ui(C)

)

,

ρ ≤ γi, i ∈ N, (15)
γi ≤ wi, i ∈ N, (16)
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∑

j∈S

∑

r∈R

cjrxjr ≤ B, (17)

∑

r∈R

xjr ≤ 1, j ∈ S, (18)

xjr ∈ {0, 1}, ρ ≥ 0, γi ≥ 0, j ∈ S, r ∈ R. (19)

To solve the robust problem (13)–(19), the original version of the Variable
Neighborhood Search (VNS) algorithm is proposed in the next section.

3 Algorithms for the Bi-criteria Location Problem

Since in the general case, the search for the exact value of the criterion W is
not possible [24], we construct an approximate Pareto boundary. The aim of
the research was to construct an approximation of the boundary in a new way,
using the idea of VNS, and compare the results obtained with the well-known
algorithm. To do this, we propose an algorithm based on variable neighborhood
search and a modified version of the SEMO evolutionary algorithm [20]. Let
a criterion vector function (ρ,W ) be given on the set of admissible solutions
D, given by constraints (15)-(19). At each iteration of the algorithm SEMO, a
new non-dominant pair (ρ,W ) is searched for. The result is a set of solutions
forming an approximation of the Pareto boundary. The RVNS algorithm finds
a sequence of solutions, each of which dominates the previous one. Thus, the
algorithm gets one pair (ρ,W ) in one run, while ρ improves for the selected W .
This implementation is an analog of the method of successive concessions when
the main criterion is ρ. Let’s describe our developments in more detail.

Simple Evolutionary Multiobjective Optimizer. Introduce a dominance
relation for approximate values similar to the classical definition. Let’s denote it
by �′, and the corresponding Pareto boundary by F ′. Next, we will look for an
approximation of the Pareto boundary using the Simple Evolutionary Multiob-
jective Optimizer (SEMO) [20] algorithm. In the process of the SEMO algorithm
at each iteration, a parent individual is randomly selected from a population that
contains pairwise non-dominant solutions (individuals). Next, we get a descen-
dant from the parent individual through the mutation operation, which we add
to the population if there are no dominant individuals or individuals with the
same value of the vector criterion in it. All individuals of the population that
are dominated by a descendant are removed. The result of the algorithm is a
population calculated by the end of its execution. The scheme of the SEMO
algorithm is presented below (see Algorithm 1).

Reduced Variable Neighborhood Search Algorithm. Local search algo-
rithms have taken a firm position among modern methods of approximate solu-
tions. Often, to solve a real-world problem, instead of a time-consuming opti-
mal solution, it is enough to find an approximate solution of good quality in
a relatively short time. To do this, it is reasonable to use local search algo-
rithms. Tabu search, simulated annealing, greedy randomized adaptive search
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Algorithm 1: SEMO algorithm
Generate a solution x randomly and put Π := {x};
while the stop criterion has not been met do

Π := Π\{z ∈ Π|x′ �′ z};
if � ∃z ∈ Π, such as z �′ x′ or (V (z), B(z), Q(z)) = (V (x′), B(x′), Q(x′))
then

Π := Π ∪ {x′}
return population Π

procedure, iterated local search, population-based metaheuristics, and others are
widely used for decision-making in various actual situations [2,9,23,25,26]. The
Variable Neighborhood Search (VNS) approach is one of such modern methods.
Mladenović and Hansen offered this approach for the traveling salesman problem
[30]. Currently, we can say that this is a well-known method, it is successfully
used to solve complex combinatorial problems such as p-median problem, com-
petitive facility location problem, etc.), scheduling problems, and many others
[12,13,15,17,18,24,36]. Depending on whether they use all the steps or not, the
authors form various variants of the basic algorithm. In this paper, we pro-
pose Reduced Variable Neighborhood Search (RVNS) algorithm to solve the
bi-criteria robust facility location and design problem with elastic demand.

The neighborhoods system is a basis of a Variable Neighborhood Search
approach (VNS). The construction of special-type neighborhoods is a mandatory
part of the algorithm development. In this paper, for the VNS algorithm, the
neighborhood types Nmove and Nadd of a special form are used, taking into
account the features of the location and design problem [22,24]. As a result of
the transition to a new solution in the neighborhood Nmove, we transfer one
open facility from a certain point to another. As a result of the application of
the neighborhood Nadd, the two facilities have a different design variant.

Let the integer vector x = (xjr ) be such that xjr corresponds to design
variant r of facility in point j as follows: xjr = r ⇔ xjr = 1, j ∈ S, r ∈ R. When
the location is selected, i.e. the value of r is defined for each j, then we can
calculate the current share of consumer demand served by the company using
(14):

W =
∑

i∈N

(wi − γi) (1 − exp (−λi (Ui(S) + Ui(C))))
(

Ui(S)
Ui(S) + Ui(C)

)

.

The function Δ(x, γ) = W − W shows the deviation of the value of the share of
demand W obtained by the algorithm from the minimum allowable volume of
demand W . The larger the value of Δ(x, γ), the better the solution is in terms
of the company’s revenue. We will call a Record the best-found value Δ(x, γ)
and the corresponding vectors x and γ.

In the Robust Location and Design Problem with elastic demand, there are
(|N | + 1) more variables: ρ is robustness, γi is a deviation from wi, i ∈ N .
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The robustness ρ depends on γ and is determined as a least from all deviations
γi, i ∈ N . In our previous work [22] we used the following equation to calculate

ρ for a one-criterion robust problem (6)–(12): ρ(x) = W ·∑i∈N wi−W

|N |·W .
In this paper, we will allow the components of the vector γ to take dif-

ferent values in order to be able to select the values of the vector x. As the
computational experiment below has shown, such tactics have made it possible
to improve not only the reliability criterion (13) but also to increase the share
of serviced demand (14). To implement this idea in the variable neighborhood
search algorithm, we proposed a special neighborhood for γ.

Definition 1 (Neighborhood Nk−iflip). A feasible vector γ′ is called a neighbor
for the vector γ in the neighborhood of Nk−flip if it can be obtained as follows:
select K of the various components of the vector γ and change them according
to the rules:

a) if γk = 0, then put γ′
k := γk + 1;

b) if (γk = 1)&(wk > 1), then with probability 0.001 put γ′
k := γk − 1, with

probability 0.999 put γ′
k := γk + 1;

c) if (1 < γk)&(wk > 1), then with probability 0.1 put γ′
k := γk + 1, with

probability 0.9 put γ′
k := γk − 1;

d) if γk = wk, with probability 0.9 put γ′
k := γk − 1.

To organize the search for a solution to the bi-criteria problem (13)–(19)
by the RVNS algorithm, the following sequence of neighborhoods is selected:
N1 = Nk−iflip, N2 = Nadd, N3 = Nmove. In the Reduced Variable Neighborhood
Search algorithm (RVNS) the initial values x will be determined as the best-
known solution of the problem (1)–(4). The number of iterations will be the
stopping criteria. Denote the iteration number for t, and the maximum number
of iterations for T , the number of neighborhood variants for V .

The idea of our algorithm is as follows. We are looking for a pair (x, γ). First,
we try to increase part of the company’s share of customer demand by changing
the vector γ. If this is no longer possible, then we are trying to improve the share
of customer demand by changing x, using the idea of looking at neighborhoods as
in the VNS approach. The scheme of the Reduced Variable Neighborhood Search
algorithm is the following (see Algorithm 2). Information about the results of
experimental studies can be found in the next section.

4 Computational Experiments

Experimental studies were conducted in order to compare the results of the
proposed RVSN with the SEMO algorithm and the commercial LocalSolver.
For this purpose, test cases were created based on a series of test instances
for a deterministic facility location and design problem with elastic demand.
These examples of the DLP turned out to be difficult for well-known solvers
CoinBonmin and Baron [24]. The W parameter has been added to the test
instances. It was equal to W = 0.5 · rec, 0.6 · rec, . . . , 0.9 · rec, where rec is the
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Algorithm 2: Reduced Variable Neighborhood Search for Bi-Criteria
Competitive Location and Design Problem with Elastic Demand
Initialization.
Select a set of neighborhood structures Nv, v = 1, . . . , V , that will be used in
the search;
Find the initial solution of x by solving the problem (1)–(4);
Set γ = 0, ρRec = 0, Rec := Δ(x, γ), t := 1;
Step 1.
if t ≤ T then

set neighborhood number v := 1

end of RVNS;
Step 2. (Shaking γ.) Generate a point γ′ ∈ Nv;
Step 3. (Move or not γ.);
if Δ(x, γ′) > Rec then

Rec := Δ(x, γ′), γ := γ′, ρRec = mini∈N γi, go to step 2;

go to step 4;
Step 4. Until v ≤ V repeat the following steps;

Step 4.1. (Shaking x.) Generate a point x′ ∈ Nv;
Step 4.2. (Move or not x.) if Δ(x′, γ) > Rec then

Rec := Δ(x′, γ), x := x′, v := 2.

Move on to the neighborhood with the next number v := v + 1. Go to step 4
Step 5. Set t := t + 1. Go to step 1.

maximum value of the DLP objective function. The rec parameter was calculated
by LocalSolver [1]. The number of points was equal to 60, 80, 100, 150, 200, and
300. There are three possible design options with opening costs equal to 1, 2, and
3, respectively. Four budget options were considered, its cost is 3, 5, 7, and 9.
Thus, a total of 480 test copies were created. All points are located in a rectangle
of size 100 by 150, the distances between the points satisfy the triangle inequality.
Consumer demand is elastic (λ = 1), and consumers are highly sensitive to the
distance to service points (β = 2).

The algorithm is tested on the computer Intel (R) Xeon (R) CPU X5675 @
3.07 GHz with 96.0 Gb RAM. The algorithms were run 50 times on each of the
instances.

It is interesting to note that in the test instances under consideration, the
Pareto boundary contains a small number of points. The RVNS and SEMO
algorithms showed similar results. For example, for m = 60 SEMO founds a
solution (1.26.36), and RVNS founds a solution (1.26.09), in other cases (1,51.78)
and (1,52.50), respectively. The CPU time of both algorithms does not exceed 1 s.

We conducted experimental studies comparing VNS and LocalSolver in two
stages. First, each of the algorithms performed calculations until they met the
stopping criterion. The variable neighborhood search stopped working when it
couldn’t find a better solution than what it had already found. The counting time
of the Local Solver was selected taking into account previous experiments for
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DLP and was 20 s. In the second part of the experimental studies, the proposed
algorithm and the solver were put under the same conditions in terms of counting
time.

We use the following notations in the tables: dimension is the number of
points of demand; ρRV NS is a result of RVNS; ρLS is a Local Solver result; ρ0.5

is the value of the ρ in case W = 0.5 · rec; error of the results calculated by the
formula errorρ = ρRV NS−ρLS

ρLS
. For the values of W, the notation is similar.

Describe the first stage of an experimental study in which the algorithms
worked up to the stop criterion. In Table 1 we give a deviation of the objec-
tive function calculated by RVNS from the objective function which calculates
LocalSolver. The table shows that the closer the threshold value (W ) approaches
the optimal, the more the deviation of the objective function grows. In the case
where W = 0.9 · rec for all examples of the objective function of the RVNS
algorithm and the solver was equal to 0, i.e. no chance to change wi. The closer
the W value is to the optimal DLP value, the less wi can be changed.

Table 1. Average deviation ρ from LocalSolver, up to stop criteria.

dimension errorρ0.5 errorρ0.6 errorρ0.7 errorρ0.8 errorρ0.9

60 2.375 2.875 4.250 9.250 0.000

80 5.625 2.875 4.375 8.750 0.000

100 4.375 6.875 5.250 11.750 0.000

150 7.500 8.625 9.000 21.625 0.000

200 10.250 11.125 12.875 26.000 0.000

300 14.125 14.125 0.000 0.000 0.000

As indicated above W is the current share of customer demand served by
the Company (14). Deviation W of the RVNS algorithm from LocalSolver is
given in Table 2. It can be seen from the table that the greatest deviations are
achieved in the examples W = 0.5 ·rec and they gradually grow to W = 0.9 ·rec.
Negative values mean that the W calculated by the RVNS was better than the
LocalSolver.

Reduced Variable Neighborhood Search algorithm average running time is
rather short and is less than 1 s. The LocalSolver solver time was 20 (standard
solver time). It can be seen that the running time of the algorithm grows with
the growth of the dimension.

The 95% confidence interval for the probability of obtaining the solution
of RVNS better than LocalSolver is given in Table 3. It can be seen from the
table that, as in the case with the deviation W, in the examples W = 0.5 · rec
the probability of improving the solver’s record is the highest and it gradually
decreases to W = 0.9 · rec. This is also explained by the fact that the values
of the objective function of the algorithm and the solver do not differ in the
examples of the series W = 0.9 · rec.
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Table 2. Average deviation W from LocalSolver, up to stop criteria.

Dimension errorW0.5 errorW0.6 errorW0.7 errorW0.8 errorW0.9

60 −45.981 −24.912 −8.295 −0.883 1.126

80 −49.807 −26.664 −9.473 −0.517 1.923

100 −45.965 −25.367 −8.958 −0.302 2.932

150 −40.719 −23.634 −8.103 0.317 1.533

200 −44.148 −23.486 −8.557 −0.497 2.074

300 −39.910 −16.452 −5.071 0.657 1.410

Table 3. The 95% confidence interval for the probability of obtaining the solution of
RVNS better than LocalSolver.

N W = 0.5rec W = 0.6rec W = 0.7rec W = 0.8rec W = 0.9rec

60 [0.995; 0.995] [0.991; 0.992] [0.878; 0.880] [0.623; 0.625] [0.344; 0.346]

80 [0.994; 0.993] [0.996; 0.997] [0.922; 0.923] [0.591; 0.594] [0.097; 0.098]

100 [1.000; 1.000] [0.991; 0.992] [0.889; 0.8901] [0.491; 0.494] [0.108; 0.110]

150 [0.987; 0.988] [0.990; 0.990] [0.924; 0.9256] [0.450; 0.453] [0.077; 0.078]

200 [0.987; 0.988] [0.968; 0.969] [0.918; 0.919] [0.563; 0.565] [0.098; 0.1000]

300 [0.975; 0.975] [0.911; 0.912] [0.799; 0.801] [0.354; 0.356] [0.030; 0.031]

The superiority of the Reduced Variable Neighborhood Search algorithm over
the solver can also be seen in the boxplot (Fig. 1 and 2). The numbers on the
horizontal axis indicate the dimensions of the problems. The vertical axis shows
deviations in the percentage of RVNS results from LocalSolver results. It can be
seen from the graph that for the case W = 0.5 · rec all boxes are located below
0, which means that in most cases the solver’s record has been improved. At
the same time, there are not so many emissions that would be greater than 0.
The boxes are not elongated, this means that the deviations are rather densely
grouped relative to the median value. For comparison with RVNS for one-criteria
robust problem [22], from Fig. 2 it can be seen that for the case W = 0.5 ·rec, all
boxes are located above 0. It means that a new algorithm receives robust results
with a better value of a share of customers’ demand. For the case W = 0.9 · rec,
the results show insignificant deviations from the LocalSolver (Fig. 2). The most
densely grouped deviations are for dimensions 60, 80, 150, and 300.

Next, we put the algorithms in the same conditions in terms of counting time.
Firstly the RVNS algorithm and the Local Solver were given a running time equal
to 1 s. In these conditions, the deviation W does not change in comparison with
the results that were given earlier in the first part of the experimental studies,
but the deviation ρ is getting better. The results show that in this case, the RVNS
more often finds the value of the objective function the same as that of the solver.
For example, all dimensions at W = 0.8 · rec and W = 0.9 · rec are the same.
It should be noted that the algorithm wins more significantly than the solver in
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Fig. 1. Statistical analysis for W = 0.5rec. for BRLP.

Fig. 2. Statistical analysis for W = 0.5rec. for RLP.
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terms of the satisfied demand. Then the Reduced Variable Neighborhood Search
algorithm and the Local Solver were given a runtime of 20 s. Since in Part 1
of the experiments the greatest difference in the behavior of the algorithms was
observed for W = 0.9 · rec and W = 0.5 · rec, we will analyze only these test
instances. For the case W = 0.9 · rec, the deviation of the objective function
does not change, for the W = 0.5 · rec it slightly increases. At the same time, on
a series of W = 0.5 · rec, the deviation of W is not as significant as in Part 2a
when the algorithm is running for 1 s, and with W = 0.9 ·rec, it practically does
not differ (see Table 4). For experiments with CPU time at 1 s the deviation of
W are the same.

Table 4. Average deviation ρ and W from LocalSolver, same time, 20 s.

Dimension errorρ0.5 errorW0.5 errorρ0.9 errorW0.9

60 4.500 −24.912 0.000 1.718

80 5.375 −26.835 0.000 2.169

100 7.250 −25.082 0.000 3.273

150 11.125 −22.445 0.000 0.317

200 16.875 −27.503 0.000 2.063

300 23.000 −31.386 0.000 1.389

In general, computational experiments show that in the cases W = 0.5 · rec,
W = 0.6 · rec, W = 0.7 · rec, the algorithm is slightly inferior to the solver
in terms of the value of the objective function. At the same time for 1 s, the
deviation will be less than if you give them 20 s. This means that this time is
not enough for the solver to find good solutions for the value of the objective
function. However, if we compare the satisfied demand, then with the examples
W = 0.5·rec, W = 0.6·rec, W = 0.7·rec, the algorithm significantly outperforms
the solver. Using the examples W = 0.8 · rec, W = 0.9 · rec, the algorithm, and
the solver practically do not differ in the value of the objective function, and the
results are comparable in terms of satisfied demand regardless of time. From the
point of view of the Company, it can get a solution with the help of the RVNS,
if the requirements for the share of demand are relaxed to half of the optimal
values of the non-robust problem. If the Company plans to find a stable solution
close to the optimal non-robust solution, then the probability of this is small.

5 Conclusions

In this paper, we develop a threshold robustness approach to discrete location
problems. We are building a new bi-criteria variant of a competitive location
and design problem with elastic demand, in which, in addition to the main
criterion, there is a criterion for the reliability of the search solution. We have
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provided an original version of the variable neighborhood search algorithm with
neighborhood systems adjusted to the problem we study. For a comparative
analysis of the RVNS results, a modified version of the SEMO evolutionary
algorithm was implemented. To conduct numerical experiments, a series of test
instances was created by analogy with real data. The values obtained by the
well-known LocalSolver were chosen as reference values.

It should be noted that the proposed Reduced Variable Neighborhood Search
algorithm shows results comparable to the well-known SEMO evolutionary algo-
rithm. An important characteristic is that the RVNS is quite fast. It finds values
better than the LocalSolver given the same amount of time. There is a tendency
that the closer the threshold value is to the optimal solution of a non-robust
problem, the more difficult it is for the algorithm to find a good solution. This
shows an increase in deviations from the results of the Localsolver. Note that in
this case, the RVNS exceeds the solver in terms of the share of demand served.

It seems promising to continue research to study the properties of the bicri-
teria problem and construct other special algorithms for solving it.
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Abstract. We consider a two-echelon inventory management problem,
where customers’ requests for spare parts of different types must be ful-
filled within a given service level threshold. The supply system is com-
posed of multiple warehouses in the first echelon, where the customers’
requests are processed, and a single second-echelon warehouse, replen-
ishing stocks of the first-echelon warehouses. Replenishment requests of
warehouses are invoked according to inventory policies, which are char-
acterized by one or two numerical parameters and are individual for each
warehouse and each spare part type. The goal is to minimize the total
storage cost for all warehouses at both echelons. System operation is sim-
ulated within a black-box function that computes the request satisfaction
rate and inventory holding costs depending on the policy parameters. In
the work, we propose a decomposition approach to adjust these param-
eters for an industrial-sized supply system. Computational experiments
for up to 1,000 types of items and 100 warehouses are discussed.

Keywords: Grey-box optimization · Multiple-choice knapsack
problem · Local search

1 Introduction

Optimization of the supply chain is crucial for big manufacturers [4,13]. Inven-
tory management aims to deal with the trade-off between customer satisfaction
and inventory holding costs. In practice, the arrival of customer orders is stochas-
tic and difficult to control. Therefore, keeping spare parts in the warehouse is
necessary to satisfy the customers’ demands in time but leads to an increase in
holding costs simultaneously.

The multi-echelon model for the first time appeared in the literature in the
paper of Lee [6]. Since then, there have been a number of theoretical studies of
the problem [1] as well as practical algorithms [14]. Some authors try to build a
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mathematical model and solve it using heuristics, exact methods, or stochastic
programming [15,16]. However, these algorithms either use greatly simplified
models or suffer from computational complexity [10]. There is another method
that has several advantages over classical optimization algorithms: a simulation-
based approach. It uses a simulator that takes account of all features of the supply
chain. In that case, an optimization algorithm uses the simulator as a black-box
function and optimizes input parameters. Recent research has demonstrated the
potential of this approach in both deterministic [5] and stochastic [3] cases.
However, because the properties of the objective function and constraints are
now unknown and the algorithm cannot use much problem-specific information,
this scheme introduces some new difficulties. There are some algorithms that
use only the input and output of the simulator [7,8] or combine simulation with
mathematical programming [9]. And the attention to the second approach is
increasing [2].

A common way of managing supplies is by using policy parameters at each
storage unit that control replenishment requests. Using different policies, ware-
houses may order new items in a periodic manner or consider the current inven-
tory level. Order sizes can also be fixed or based on incoming demand. A review
of different optimization problems related to spare parts inventory management
can be found in [17].

In this paper, we propose a new algorithm for the two-echelon inventory
management problem. The algorithm iteratively solves black-box sub-problems
for each item separately and then combines the solutions into a solution for
the whole problem. We perform several computational experiments to evaluate
the performance of the developed scheme and compare it with the Nevergrad
solver [11] and Multi-Echelon Optimizer which is a specialized algorithm for
solving the described problem. The experiments showed the effectiveness of the
proposed approach.

The paper is organized in the following way: in Sect. 2 we formulate the
two-echelon inventory management problem, in Sect. 3 we describe the proposed
approach, particularly in Subsect. 3.2 we describe an upper-level scheme, and
in Subsect. 3.3 we describe a local search algorithm used to solve black-box
subproblems, in Sect. 4 we present the results of the computational experiments,
and Sect. 5 concludes the article.

2 The Inventory Management Problem Formulation

An inventory control policy is to decide when to send the replenishment orders
and the order quantity. We consider a two-echelon multi-warehouse inventory
system, which contains one upper-level warehouse and multiple local ones.

Local warehouses apply the (s, S) policy. For each individual item, the (s, S)
policy contains two positive integer parameters, InvMin (Inventory Minimum or
ordering point) and InvMax (Inventory Maximum or order-up-to level), repre-
senting the replenishment point and maximum inventory level. When the ware-
house meets an external demand for item i, it is immediately satisfied from stock
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if items are available; otherwise, it is backordered. The inventory position is the
amount of stock minus the backorder plus the number of items ordered but not
yet received. If the inventory position falls below the InvMin threshold, a request
to replenish items up to the InvMax level is sent to the central warehouse.

The central warehouse applies the (S − 1, S) policy. The (S − 1, S) policy
contains a single ROP (Reorder Point) parameter representing a replenishment
point. This parameter controls the number of items kept at the warehouse. If
the central warehouse receives a replenishment request, it fulfils it from stock
and requests the same number of items from an outside supplier. This supplier
is assumed to have an unlimited number of items.

When a replenishment order is placed from a downstream unit to an upstream
facility in a multi-echelon system, a time period is required for preparing, han-
dling, and delivering goods for that order. The lead time is the duration from
the moment an order is placed to the moment the shipment is received.

If there are m local warehouses in total, there are 2m + 1 parameters to
control the inventory levels in all warehouses for a single item. However, there
are many items in the spare part warehouses. As a result, the number of variables
might be rather large.

The performance indicators of the inventory system are usually related to
customer satisfaction; for example, the fulfilment rate is equal to the percentage
of orders or demand fulfilled within the due dates. Aside from performance,
inventory holding costs are also important to the company. The holding cost is
equal to the integral of the inventory level over the time horizon multiplied by
the unit holding cost.

The optimization of the spare part inventory system is to decide the value of
the inventory control parameters InvMin and InvMax for all the local warehouses
and all the items, and the ROP parameters of the central warehouse for all the
items, such that the fulfilment rates are not less than a certain value and the
inventory holding cost is minimized. Table 1 contains the notation used in the
paper.

The inventory management problem (IMP) could be written as follows:

min
X

InvHoldCost(X) (1)

s.t.

LSatRate(X) ≥ α (2)
CSatRate(X) ≥ β (3)

x2
if ≤ max(2x1

if , 1), i ∈ I, f ∈ F, (4)

x2
if ≥ x1

if , i ∈ I, f ∈ F, (5)

l(X) ≤ X ≤ u(X). (6)

We consider the case, where we know that total holding cost is a sum of
holding costs across all items and total fulfillment rates are a fraction of the
satisfied demand to the total demand:
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Table 1. Notation

I set of items
F set of local warehouses
LDemand total demand facing by local warehouses
LDemandi i ∈ I, total demand for item i facing by local

warehouses
CDemand(·) total demand facing by central warehouse

depending on policy parameters
CDemandi(·) i ∈ I, total demand for item i facing by central

warehouse depending on policy parameters
InvHoldCost(·) inventory holding cost computed within the

simulator and depending on policy parameters
InvHoldCosti(·) i ∈ I, portion of the inventory holding cost

associated with item i

LSatDemandi(·) i ∈ I, total demand for item i satisfied by local
warehouses depending on policy parameters

CSatDemandi(·) i ∈ I, total demand for item i satisfied by central
warehouse depending on policy parameters

LSatRate(·) demand satisfaction rate in local warehouses
depending on policy parameters

CSatRate(·) demand satisfaction rate in central warehouse
depending on policy parameters

x1
if i ∈ I, f ∈ F , InvMin value for item i in the local

warehouse f

x2
if i ∈ I, f ∈ F , InvMax value for item i in the local

warehouse f

x3
i i ∈ I, ROP value for item i in the central

warehouse
X variable vector of policy parameter values,

composed of all x1
if , x2

if and x3
i values

α local warehouse satisfaction rate threshold
β central warehouse satisfaction rate threshold
l(·) lower bound of the variable’s domain interval
u(·) upper bound of the variable’s domain interval

InvHoldCost(X) =
∑

i

InvHoldCosti(X),

LDemand =
∑

i

LDemandi,

CDemand(X) =
∑

i

CDemandi(X),
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LSatDemand(X) =
∑

i

LSatDemandi(X),

CSatDemand(X) =
∑

i

CSatDemandi(X),

LSatRate(X) = LSatDemand(X)/LDemand,

CSatRate(X) = CSatDemand(X)/CDemand(X)

A black-box simulator is used to obtain LDemandi, CDemandi(X),
InvHoldCosti(X), LSatDemandi(X), and CSatDemandi(X) values for solution
vector X.

The objective function (1) represents the total inventory holding cost. The
satisfaction rates are ensured by constraints (2)–(3). Constraints (4) are intro-
duced due to the business requirements to prohibit the solutions with a non-
empty stock at the beginning of the planning period and empty stock at the end
of the planning period. Inequalities (5) guarantee that an InvMin level is not
greater than the InvMax one. The domain of the variables is defined in (6).

3 Proposed Method

In this section, we describe a two-level reformulation of the IMP that allows
us to decompose it into independent subproblems corresponding to individual
items. The reason for using such a decomposition is that simulations for different
items could be run independently, and it opens the possibility of performing
some computations within the model in parallel. Using the decomposition, we
propose a multi-agent system, where subproblems are delegated to worker agents
coordinated by a guiding agent.

3.1 Two-Level Reformulation

We can notice that the objective function (1) and both constraints (2) and (3)
have a sum of independent values across all items. Also, we can compute func-
tions InvHoldCosti(X), CDemandi(X), LSatDemandi(X), and CSatDemandi(X)
independently for each item. So the idea of the decomposition is that we try to
guess the optimal contribution of items into constraints (2) and (3) and then
independently find the optimal costs for each item with fixed fulfilment rates
requirement.

Along with the notation introduced in Sect. 2, we would use the following
ones:

Variables γi, i ∈ I define the lower bound for clients’ demand for the i-th
item that must be satisfied. Variables δi, i ∈ I define the lower bound for local
warehouses’ demand for the i-th item, that must be satisfied.

With these notations, the problem could be written as follows:
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min
(γi),(δi)

∑

i∈I

ItemHoldCosti(γi, δi) (7)

∑

i∈I

γi ≥ α
∑

i∈I

LDemandi, (8)

∑

i∈I

δi ≥ β
∑

i∈I

CDemandi(X∗
i ), (9)

ItemHoldCosti(γi, δi) = InvHoldCosti(X∗
i ), i ∈ I, (10)

where, for each i ∈ I, X∗
i is a solution of the OneItemi(γi, δi) problem

OneItemi(γi, δi) : min
Xi

InvHoldCosti(Xi) (11)

LSatDemandi(Xi) ≥ γi, (12)
CSatDemandi(Xi) ≥ δi, (13)

x2
if ≤ max(2x1

if , 1), f ∈ F, (14)

x2
if ≥ x1

if , f ∈ F, (15)

l(Xi) ≤ Xi ≤ u(Xi). (16)

The upper-level problem (7)–(10) aims to find a threshold of satisfied demand
for each individual item such that the resulting satisfaction ratio is at least α
for the local warehouses and at least β for the central warehouse. It is worth
noting that constraint (9) involve simulation-dependent values CDemandi, i ∈
I. Moreover, along with common constraints in the form of inequalities and
equations, the upper-level problem contains the constraints that, for each i ∈ I,
obligate the variables Xi to be a solution to the corresponding one-item problem.

On the lower level, we have |I| optimization problems aiming to minimize the
holding cost for each individual item, provided that a certain demand volume
must be satisfied. Objective function (11) and constraints (12) and (13) should
be computed during simulation.

3.2 Multi-agent Scheme

In this section, we describe a heuristic approach to solving the problem (7)–
(16). The approach relies on the fact that one-item problems (11)–(16) could
be processed independently for each individual i ∈ I. It allows us to develop a
Multi-Agent Scheme (MAS), where several worker agents compute in parallel
quality solutions by solving one-item problems using a local search algorithm
while a guiding agent directs the search by requesting solutions for some specific
(γi) and (δi) values and aggregates the solutions of one-item problems into a
combined solution of the whole problem.

Solutions Pool and Initialization Step During the computation, we store
a pool of best-found solutions Pi = {X1

i , . . . , Xki
i } for each problem OneItemi,

i ∈ I and different (γ, δ)-pairs. Let Ki = {1, . . . , ki}, i ∈ I denote the indexing
set for the corresponding pool of solutions. After the evaluation of the solu-
tion Xk

i , i ∈ I, k ∈ Ki, it is attributed with the values dC
ik = CDemandi(Xk

i ),
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sL
ik = LSatDemandi(Xk

i ), sC
ik = CSatDemandi(Xk

i ), and cik = InvHoldCosti(Xk
i ).

Furthermore, the pair (γik, δik) of corresponding values of the OneItem problem
parameters is saved.

We say that a solution Xj
i dominates a solution Xk

i if γij ≥ γik, δij ≥ δik,
and cij ≤ cik. Given X ′

i ∈ Pi, we say that X ′
i is non-dominated if there is no

X ′′
i ∈ Pi such that X ′′

i dominates X ′
i. Each time a new solution is to be added to

the pool, we check to see if it dominates some of the existing ones or is dominated
by another one. All the dominant solutions are removed from the pool.

On the initialization step, given i ∈ I, the pool Pi is empty, and the one-
item problem solutions, corresponding to pairs (γi, δi) such that δi = γi =
� l

pLDemandi� are requested to be computed by worker agents. Here, p ∈ Z
+ is the

algorithm parameter, and l takes integer values from 1 to p. One should notice
that a solution obtained for some (γ, δ)-pair is feasible for the one-item problem
with parameters (γ′, δ′), such that γ ≥ γ′ and δ ≥ δ′. Thus, it is reasonable
to start filling a solution pool by solving a one-item problem with a (γ, δ)-pair
corresponding to the value l = p. The obtained solution is used later to initialize
the local search when the one-item problem with l = p− 1 is being solved. Then
the process repeats further by processing the values of l in decreasing order. We
use p = 10 in our experiments.

If, for an item, it takes less than 105 evaluations to fully enumerate all possible
policy value configurations, then we apply an exhaustive search to these items
and save all non-dominated solutions into the pool.

Guiding Agent. We get a solution to the whole problem (7)–(16) by taking a
single solution to each of the one-item problems from the solution pool and com-
bining these solutions together. Given the solution pool fixed P =

(
P1, . . . , P|I|

)
,

the best combined solution could be obtained by solving an auxiliary integer pro-
gramming problem. Let us introduce binary variables (zik), i ∈ I, k ∈ Pi, where,
given i and k, zik equals one if the solution Xk

i is taken into the combined
solution, and zero otherwise. Then, using the newly introduced notation, the
auxiliary integer programming problem Master (P), which can be regarded as a
master problem in our procedure, is formulated as follows:

min
(zik)

∑

i∈I

∑

k∈Pi

cikzik (17)

∑

k∈Ki

zik = 1, i ∈ I, (18)

∑

i∈I

∑

k∈Ki

sL
ikzik ≥ α

∑

i∈I

LDemandi, (19)

∑

i∈I

∑

k∈Ki

sC
ikzik ≥ β

∑

i∈I

∑

k∈Pi

dC
ikzik, (20)

zik ∈ {0, 1}, i ∈ I, k ∈ Ki. (21)
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The objective function (21) of the master-problem is the inventory holding
cost associated with a combined solution. Inequalities (18) ensure that a single
solution, for each of the one-item problems, would be taken into the combined
solution, while (19) and (20) guarantee the satisfaction rate level. The master
problem could appear to be infeasible due to the improper composition of one-
problem solutions {Xk

i }, i ∈ I, k ∈ Pi in the pools. But we should notice that
the initial state of the pools and the rule to keep non-dominated solutions there,
which are provided in Sect. 3.2, ensure that the master-problem is always feasible.
Indeed, a solution with fulfilment rates on both local and central warehouses’
levels equal to one is always put into a pool during the initialization step when
the one-item problem corresponding to l = p is solved. Such a solution could be
removed from the pool only if another solution having the same fulfilment rate
characteristics is inserted due to the definition of dominance.

We define Z
(
k̃
)

as a solution to the problem Master (P) with zik̃i
= 1, zik =

0 ∀i ∈ I, k �= k̃i, and the procedure to solve the master-problem will be referred
as solveMP(P) thereafter. We call a solution “semi-feasible” if it satisfies con-
straints (14) and we denote set Mi as a set of indices of all semi-feasible solutions
for item i, M =

(
M1, . . . ,M|I|

)
. Then we can give the following propositions.

Proposition 1. Problem IMP is equivalent to problem Master (M) in the sense
that if (Xk∗

i
i ) is an optimal solution to the problem IMP, then Z (k∗) is an optimal

solution to the problem Master (M), and vice versa.

Proposition 2. If some subset Ki ⊆ Mi contains index of an optimal solu-
tion to Master (M), then any optimal solution to Master (K) is also an optimal
solution to Master (M).

Proof. Consider Z
(
k̃
)

to be any optimal solution for Master (K). It is also a
feasible solution for Master (M). Also, because Z (k∗) is a feasible solution for
Master (K), the objective function of Z

(
k̃
)

is not greater than the objective

function of Z (k∗). So Z
(
k̃
)

is optimal for Master (M). 
�

Proposition 2 means that if worker agents occasionally find values corre-
sponding to the optimal solution for the initial problem, then solveMP(P) will
choose that solution, and our algorithm will find the optimal solution to IMP.

The workflow of the guiding agent is organized as a sequence of identical
steps. On each step, the master-problem is solved for the current state of one-
item problems’ solution pools. Afterwards, the agent sends requests to compute
solutions to one-item problems with fulfilment rates neighbouring those corre-
sponding to the solutions selected in the combined one.

Let (zik), i ∈ I, k ∈ Ki be an optimal solution of the master problem on
the current step, and let i ∈ I, k ∈ Ki be such that zik = 1. Then, Xk

i is a
part of a combined solution constructed on the current step. Consider the pair
(γik, δik) associated with that solution. Before the next step begins, the guiding
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agent requests to compute the solutions to the problem OneItemi with slightly
shifted parameters.

Let us denote the size of the shift to be applied to the parameters of one-item
problems as ε. Initially, it is set to be equal to ε0 and remains the same as long as
the combined solution changes from one step to another. In experiments, we used
ε0 = 0.04. When the combined solution remains the same as it was at the previ-
ous step, we set ε ← ε/2. Given the current value ε and the current best satisfac-
tion rates γt

i , δ
t
i at iteration t, the solutions of the problems OneItemi with the

parameters from the set A (γt
i , δ

t
i) = {γt

i ± �εLDemandi�} × {δt
i ± �εCDemandi�}

are requested to be computed. When �εLDemandi� = �εCDemandi� = 1 for all
i ∈ I and the combined solution does not change during two subsequent steps,
the algorithm terminates. The pseudocode of the MAS is represented as Algo-
rithm 1.

Algorithm 1. Multi-agent scheme (MAS)
1: function MAS
2: generate initial set of requested (γ, δ)-pairs: Q0 = (Q0

i ), i ∈ I.
3: prepare containers for solution pools: Pi = ∅, i ∈ I
4: for all (γi, δi) ∈ Q0

i do
5: oneItemLS (γi, δi, Pi)

6: set γ0, δ0 ← solveMP (P )
7: t ← 1, ε ← ε0
8: while stop criterion is not met do
9: for i ∈ I do

10: Qt
i ← Qt−1

i ∪ A
(
γt
i , δ

t
i

)

11: for all (γi, δi) ∈ Qt
i\Qt−1

i do
12: oneItemLS (γi, δi, Pi)

13: γt, δt ← solveMP (P )
14: if γt = γt−1 ∧ δt = δt−1 then
15: ε ← ε/2

16: t ← t + 1

17: return X∗

3.3 Worker Agents and One-Item Problem

When the requests to compute one-item problem solutions are formed by the
guiding agent, the worker agents could satisfy them by processing the one-
item problems for each individual item independently. To find quality solutions,
worker agents perform a randomized local search with additional components
that improve their performance.

Given the item i ∈ I and a pair (γi, δi), the problem OneItemi(γi, δi), defined
as (11)–(16), aims to find the parameters Xi of the policies for item i in all the
warehouses.
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In a case where the pool Pi of non-dominated solutions found so far is not
empty, the randomized local search starts with the best suitable solution from
the pool. It is a solution Xk′

i ∈ Pi, where k′ is such that

k′ = argmin
k∈Ki

{
InvHoldCosti(Xk

i )|γik ≥ γ and δik ≥ δ
}

.

On the initialization step of the MAS, the solution pool could be empty. Accord-
ing to the order of requests on the initialization step, described in Sect. 3.2, the
first solution requested is the one having all the demand satisfied. Such a solution
could be constructed by a simple heuristic. This heuristic uses the assumption
about the independence of each local warehouse when we have a large ROP
value at the central warehouse and need to satisfy the entire demand fully in
local warehouses. Using the assumption about the monotonicity of the inventory
holding cost in InvMin-InvMax values, we find the best solution by means of
a dichotomy algorithm. After that, we adjust the ROP policies of the central
warehouse to minimize its holding cost.

The neighbourhood structure used in the randomized local search is formed
by semi-feasible vectors (satisfying (14)) that define the policy parameters, which
are different for at most two warehouses (both local warehouses and the central
warehouse), and the difference is at most two. More formally, given a solu-
tion Xi = ((x1

if ), (x
2
if ), (x

3
i )), f ∈ F we define a subset N ′(Xi) = {X̄i =

((x̄1
if ), (x̄

2
if ), (x̄

3
i )) such that 0 < ||Xi − X̄i||∞ ≤ 2}. Using this notation, the

neighborhood N(Xi) of Xi could be defined as

N(Xi) =
{
X̄i ∈ N ′(Xi) | x̄3

i = x3
i ,#{f ∈ F | x̄1

if �= x1
if or x̄2

if �= x2
if} ≤ 2

} ∪
{X̄i ∈ N ′(Xi)|#{f ∈ F | x̄1

if �= x1
if or x̄2

if �= x2
if} ≤ 1}.

A randomized neighbourhood of the solution Xi with a randomization parameter
r ∈ Z

∗ would be denoted by Nr(Xi). It consists of r randomly selected elements
of the subset N(Xi). In the experiments, we set r = 21.

We use a tabu list, where we keep the ten most recently visited solutions, to
avoid trapping into a cycle when the set N(Xi) is small and the randomization
does not cause leaving the local optima. During the lookup of the neighbourhood
Nr(Xi), the algorithm moves to the best neighbour which is not in the tabu list.
We use penalty function InfPenalty(Xk

i ) = max
(
γi − LSatDemand(Xk

i ), 0
) ·

104 + max
(
δi − CSatDemand(Xk

i ), 0
) · 104 to prevent moving to an infeasible

solution.
During the computations, visited solutions are compared with the solutions

stored in the pool Pi, which is updated when necessary. When the best-found
solution does not change during T = max{10, n} iterations, where n is the length
of Xi, the search returns to the best solution. The algorithm terminates when
the computational budget of 500 simulations is depleted or when the best-found
solution does not change during 10T iterations. In the MAS algorithm, for i ∈ I
and each pair (γi, δi), we do not spend more than 2, 000 evaluations in total
when solving OneItemi(γi, δi) problems.

The overall scheme of the randomized local search is given by the Algorithm 2.
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Algorithm 2. Local search algorithm used for solving one-item problem
1: function oneItemLS(γi, δi, Pi)
2: Xi = argminXk

i ∈Pi
{InvHoldCost(Xk

i )|γik ≥ γi and δik ≥ δi}
3: while stop criterion is not met do
4: Xi ← argminXk

i ∈Nr(Xi)
{InvHoldCost(Xk

i ) + InfPenalty(Xk
i , v)}

5: Update pool Pi with solution Xi

6: X∗
i ← Choose({Xi, X

∗
i })

7: if Intensification criterion is met then
8: Xi ← X∗

i

9: Clear tabu list
10: return X∗

i

4 Computational Results

The MAS algorithm was implemented in Julia. All experiments were performed
on a computer equipped with Intel Core i7-8700 CPU running at 3.20GHz and
32 GB of RAM, running Microsoft Windows 10 Pro operating system.

4.1 Test Instances Description

Test instances were generated similarly to [12]. We use a Poisson distribution to
generate client requests for spare parts. We generated two families of instances:
small and large. The small instances have 100 items and 10 local warehouses.
An item has a 0.025 probability of having requests from a certain warehouse.
Taking the central warehouse into consideration, we get about 500 variables
per instance. The large instances have 1,000 items, 100 local warehouses, and a
0.045 probability of having requests from a certain warehouse. This gives about
10,000 variables. The levels of the target satisfaction rates were set to α = 0.95,
β = 0.95.

4.2 Comparative Analysis

The proposed algorithm was compared with a general-purpose black-box solver,
Nevergrad [11], and a Multi-Echelon Optimizer (MEO). For Nevergrad, we use
the NGOpt39 optimizer with a 3 · 105 evaluation budget and provide it with an
initial solution found by our heuristic for the case of all demands being satisfied.
If not provided with an initial solution, Nevergrad needs much more computa-
tional budget to show results similar to the ones presented further. Nevergrad
and MAS used all available threads, and MEO was run in a single thread. Besides,
Nevergrad uses full-model simulations, whereas MAS and MEO use simulations
for a one-item model. For MAS, we use the parameters described in the previ-
ous sections. The stopping criterion is achieving ε = 1 and zt = zt−1 (Sect. 3).
Though it should be mentioned that changing the parameters can shift the bal-
ance between computational time and the result quality. In the tables below,
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we show the inventory holding cost values for the corresponding instances and
algorithms.

Table 2 shows the results for small instances. There were 5 runs of the
MAS algorithm and 5 runs of Nevergrad (NG) for each instance, and columns
“MASmin”, “MASavg”, “NGmin”, and “NGavg” show the best and average results
for these runs. Results of MEO are shown in column “MEO”. Columns “tMAS, s”
and “tMEO, s” show the average running time per one run for MAS and MEO.
MAS shows 6% in average better results than MEO in a similar running time,
and Nevergrad shows significantly worse results, though its running time was
approximately 100 times larger than the one of MAS and MEO. We can see that
deviations between the minimal and mean values of the objective function in
MAS runs are pretty small. So, we can conclude that the proposed algorithm is
consistent.

Table 2. Comparison of MAS, MEO and Nevergrad on small instances

Instance MASmin MASavg MEO NGmin NGavg tMAS, s tMEO, s

1 6,486 6,495 6,912 11,857 12,562 26 20
2 5,437 5,480 5,581 11,536 12,181 32 18
3 5,065 5,066 5,503 8,413 8,954 19 18
4 5,590 5,595 5,868 8,705 9,475 19 18
5 12,230 12,238 12,870 16,993 18,540 25 24
6 7,122 7,143 7,518 13,493 14,253 24 19
7 10,846 10,846 11,565 15,747 16,472 22 18
8 11,577 11,578 11,882 17,443 18,028 24 17
9 13,409 13,414 13,743 20,084 21,290 16 20
10 8,975 8,993 9,356 12,999 13,291 22 24

Table 3 shows the results for the large instances. The meaning of the columns
is the same as for Table 2. The results achieved by MAS in running time t =
tMEO are demonstrated in column “MASt”. The running time for Nevergrad was
approximately 4 h per run. The results in columns “MASavg” and “MASt” are
5% and 4% better than ones of MEO. All solutions found by Nevergrad are much
worse than solutions obtained by the other algorithms.

Figure 1 shows the values of the objective function over time for the Multi-
Agent Scheme. The horizontal red line shows the value of the objective function
found by MEO. The vertical orange line denotes time spent by MEO. The blue
ribbon depicts the maximum and minimum values of the objective function
obtained from MAS runs. It can be seen from Fig. 1 and Tables 2, 3 that our
algorithm performs consistently and there is a narrow range of results from run
to run. The maximum relative difference between the best and the worst solution
found by MAS was 1.5%. Also, even the worst solution found by MAS is better
than the solution found by MEO on all large instances.
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Table 3. Comparison of MAS, MEO and Nevergrad on large instances

Instance MASmin MASavg MASt MEO NGmin NGavg tMAS, s tMEO, s

1 134,359 134,469 135,809 140,153 209,120 215,842 1,372 617
2 128,657 128,740 129,725 136,991 217,382 219,338 1,454 622
3 120,136 120,314 120,654 127,671 204,631 208,680 1,248 892
4 146,932 147,193 147,470 154,442 231,940 233,772 1,430 892
5 125,581 125,744 126,123 134,837 210,121 213,743 1,397 903
6 127,484 127,665 128,579 133,663 217,160 219,995 1,377 620
7 99,060 99,260 102,472 104,676 183,820 186,964 1347 356
8 136,558 136,691 137,072 141,286 226,715 229,002 1,368 879
9 129,420 129,568 133,151 137,233 222,444 224,208 1,547 366
10 135,778 135,925 136,435 144,226 238,641 240,459 1,559 909

Fig. 1. Comparison of the performances of MAS and MEO (Color figure online)
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Auxiliary Master (·) problems appeared to be pretty easy for a MIP solver.
So its solution takes less than 1 s. Due to the implementation of the simulation
algorithm, most computational time is spent on simulations and the fraction of
time spent on the algorithm itself is negligible. Also, the whole simulation time
is approximately a sum of simulation times for each item.

5 Conclusion

This paper proposes a new algorithm based on a multi-agent grey-box decom-
position scheme for a two-echelon spare part inventory problem. The algorithm
is distributed between several worker agents and a coordinating agent. Worker
agents use local search to solve black-box single-item problems that are set by the
coordinating agent. Then the coordinating agent solves a 0–1 linear programming
model to combine partial solutions and obtain a solution to the initial problem.
The independence of worker problems allows us to run these computations in
parallel.

We performed several computational experiments with generated instances
to compare our approach with the well-known Nevergrad solver and a provided
specialized algorithm MEO. The experiments show that the proposed scheme
greatly outperforms Nevergrad and demonstrates better results than a special-
ized algorithm used as a benchmark.

Acknowledgement. The study was carried out within the framework of the state
contract of the Sobolev Institute of Mathematics (project FWNF–2022–0019).
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Abstract. In this paper, the stabilization problem for a discrete weakly
nonlinear system with two small positive parameters and a quadratic
quality criterion is considered. The parameters are at the nonlinearities
in system matrices and can be of different order. We use the asymptotic
methods to find a parametric family of solutions in the form of the state
feedback. For the construction of a parametric family of feedback con-
trol we apply the Discrete State-dependent Riccati equation (D-SDRE)
approach, which consists in solving the corresponding discrete matrix
algebraic Riccati equation with state-dependent coefficients. An asymp-
totic expansion of the solution of the corresponding Riccati equation is
found in the form of a power series by two parameters. This regular
asymptotic series is used for the construction of a one-point matrix Pade
approximation by two parameters. The numerical experiments on a grid
of parameters demonstrate the stabilization of the closed-loop systems
with the proposed regulators. The resulting Pade controllers have inter-
polation and extrapolation properties, and often significantly improve
the approximation accuracy in comparison with controllers based on the
regular asymptotic series by one or two parameters.

Keywords: Small parameter · Pade approximation · D-SDRE
approach · Asymptotic approximation

1 Introduction

The presence of parameters in mathematical models of applied control prob-
lems generates a family of admissible controls and corresponding trajectories for
different parameter values, which leads to problems of their approximate ana-
lytical description with the goal to reduce the time requires for the calculation
of controls.

Asymptotic methods based on the choice of small parameters in models
are a powerful tool for obtaining approximate analytical solutions in various
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applications and, in particular, in control problems. With the help of asymp-
totics, it is possible to solve “stiff” problems, propose decomposition methods
for high-dimensional problems, and construct effective initial approximations for
the numerical solution of nonlinear programming and nonlinear optimal control
problems. In recent years, the SDRE (State-dependent Riccati equation) app-
roach is often used for the approximate construction of feedback in nonlinear
control problems, where the gain matrix is based on the approximate solution
of the corresponding matrix Riccati equations and further formal application of
the Kalman algorithm for linear-quadratic problems.

Here we consider a quadratic quality criterion, where the first quadratic form
with the matrix Q is responsible for the quality of transition process, and the
second form with matrix R corresponds to the control costs. The regulators can
be constructed by selection of a weighting matrix Q in a form of a power series
expansion by parameter, where the terms of the expansion are selected in each
approximation. If the norm of the matrix Q is small, then the control costs are
firstly minimized and we actually come to the criterion of minimum energy.

At first, the approximate solution of the Riccati equation is found using
asymptotic methods and Pade approximations. Here the matrix approximation
of Pade [7] is used, which in the scalar case is actively used in many applica-
tions in various fields: physics, mechanics [8,9], etc. In the scalar case the Pade
method consists in the approximation of a considered function with the help
of a ratio of two polynomials, whose coefficients are determined by the special
Taylor‘s series expansion of the function. With the help of Pase constructions, it
is often possible to achieve higher approximation accuracy for a wider interval
of parameter variation than with the use of asymptotics.

Here matrix Pade approximations (PA) are constructed on the basis of an
asymptotic approximation not by one parameter, as in the works [1–3,10], but by
two parameters [13]. PA by several parameters in the scalar case are considered
in [11,12]. In [11], the expansions by two parameters are considered, and in [12],
the coordinates of the state vector of dimension n were used as approximation
parameters and a PA of order [3/3] was constructed for the scalar control.

In this paper, on a numerical example it is also shown that the expansion by
two parameters gives a better approximation than the expansion by one param-
eter, that is, the method of reducing of two small parameters to one parameter
reduces the accuracy. Note that for the first time in literature the peculiarity of
the application of the asymptotic approach with several different small parame-
ters was demonstrated in [5]. In particularly, it is shown there, that in singularly
perturbed problems, where there are parameters of different orders of small-
ness at the derivatives, the algorithm for constructing the system for the zero
approximation differs from the algorithm for the case of one small parameter.
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2 Problem Statement

We consider a weakly nonlinear discrete control system with two positive param-
eters and a quadratic quality criterion

x(t + 1) = A(x, ε)x(t) + B(x, μ)u(t)
= (A0 + εA1(x))x(t) + (B0 + μB1(x))u(t), (1)

x(0) = x0, x(t) ∈ X ⊂ Rn, u(t) ∈ Rr, t = 0, 1, 2... , 0 < μ ≤ μ0, 0 < ε ≤ ε0,

I(u) =
1
2

∞∑

t=0

(xTQ(x, ε, μ)x + uTR0u) → min, Q(x, ε, μ) > 0, R0 > 0. (2)

The D-SDRE (Discrete State-dependent Riccati equation) approach [6], is used
for the parametric synthesis construction. This method consists in solving the
corresponding discrete matrix algebraic Riccati equation with state-dependent
coefficients. Here we choose the control in the form of formally linear feedback

u(x, ε, μ) = −R̃(x, ε, μ)−1B(x, μ)TP (x, ε, μ)A(x, ε)x(t) ,

where R̃(x, ε, μ) = R0 + B(x, μ)TP (x, ε, μ)B(x, μ), is invertible ∀(x, ε, μ) and
P (x, ε, μ) is the solution of the next discrete matrix algebraic state-dependent
Riccati equation for all x ∈ X, 0 < μ ≤ μ0, 0 < ε ≤ ε0

AT (x, ε)P (x, ε, μ)A(x, ε) − P (x, ε, μ) − AT (x, ε)P (x, ε, μ)B(x, μ)R̃(x, ε, μ)−1

×BT (x, μ)P (x, ε, μ)A(x, ε) + Q(x, ε, μ) = 0,
(3)

where matrix Q(x, ε, μ) is selected in a special way for the solvability of equations
for the terms of asymptotics in the form

Q(x, ε, μ) = Q0 + εQ10(x) + μQ01(x) + ε2Q20(x) + εμQ11(x) + μ2Q02(x).

An asymptotic expansion for the solution of the Riccati equation is con-
structed as a Taylor series expansion in the vicinity of the origin (0,0)

P (x, ε, μ) = P0 + εP10(x) + μP01(x) + ε2P20(x) + εμP11(x) + μ2P02(x). (4)

The coefficients of the matrix expansion Q(x, ε, μ) are selected in such a way
as to ensure the solvability of the equations for the terms of the asymptotics
P (x, ε, μ).

Substituting the expression for P (x, ε, μ) (4) into the discrete Riccati equa-
tion (3) and collecting the terms with the same powers of the parameters and
their products, we obtain expressions for the terms of the asymptotic expansion.
For P0 we obtain the matrix algebraic Riccati equation

AT
0 P0A0 − P0 − AT

0 P0B0(R0 + BT
0 P0B0)−1BT

0 P0A0 + Q0 = 0.
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For P10 we have a linear equation,

−P10 + AT
0 P10A0 − AT

0 P0B0(R0 + BT
0 P0B0)−1BT

0 P10A0

−AT
0 P10B0(R0 + BT

0 P0B0)−1BT
0 P0A0

+AT
0 P0B0(R0 + BT

0 P0B0)−1BT
0 P10B0(R0 + BT

0 P0B0)−1BT
0 P0A0 + C(x) = 0,

where C(x) = AT
0 P0A1 + AT

1 P0A0 − AT
0 P0B0(R0 + BT

0 P0B0)−1BT
0 P0A1 −

AT
1 P0B0(R0 + BT

0 P0B0)−1BT
0 P0A0 + Q10.

For P01 we have the following linear equation

−P01 + AT
0 P01A0 − AT

0 P0B0(R0 + BT
0 P0B0)−1BT

1 P0A0

−AT
0 P0B1(R0 + BT

0 P0B0)−1BT
0 P0A0 − AT

0 P0B0(R0 + BT
0 P0B0)−1BT

0 P01A0

−AT
0 P01B0(R0 + BT

0 P0B0)−1BT
0 P0A0 + AT

0 P0B0(R0 + BT
0 P0B0)−1B0P01B

T
0

× (R0 + BT
0 P0B0)−1BT

0 P0A0+
+AT

0 P0B0(R0 + BT
0 P0B0)−1B0P0B

T
1 (R0 + BT

0 P0B0)−1BT
0 P0A0

+AT
0 P0B0(R0 + BT

0 P0B0)−1B1P0B
T
0 (R0 + BT

0 P0B0)−1BT
0 P0A0 + Q01 = 0

and for P20 we get a linear equation

−P20 + AT
1 P0A1 + AT

1 P10A0 + AT
0 P10A1 + AT

0 P20A0

−AT
1 P0B0(R0 + BT

0 P0B0)−1BT
0 P0A1 − AT

0 P0B0(R0 + BT
0 P0B0)−1BT

0 P0A0

−AT
1 P0B0(R0 + BT

0 P0B0)−1BT
0 P10A0 − AT

1 P10B0(R0 + BT
0 P0B0)−1BT

0 P0A0

−AT
0 P0B0(R0 + BT

0 P0B0)−1BT
0 P10A1 − AT

0 P10B0(R0 + BT
0 P0B0)−1BT

0 P0A1

−AT
0 P0B0(R0 + BT

0 P0B0)−1BT
0 P20A0 − AT

0 P20B0(R0 + BT
0 P0B0)−1BT

0 P0A0

+AT
0 P0B0(R0 + BT

0 P0B0)−1B0P10BT
0 (R0 + BT

0 P0B0)−1BT
0 P10A0

+AT
0 P10B0(R0 + BT

0 P0B0)−1B0P10BT
0 (R0 + BT

0 P0B0)−1BT
0 P0A0

+AT
1 P0B0(R0 + BT

0 P0B0)−1B0P10BT
0 (R0 + BT

0 P0B0)−1BT
0 P0A0

+AT
0 P0B0(R0 + BT

0 P0B0)−1B0P10BT
0 (R0 + BT

0 P0B0)−1BT
0 P0A1

+AT
0 P0B0(R0 + BT

0 P0B0)−1B0P20BT
0 (R0 + BT

0 P0B0)−1BT
0 P0A0 + Q20 = 0.

The linear equation for P02 has the form

−P02 + AT
0 P02A0 − AT

0 P01B0(R0 + BT
0 P0B0)−1BT

0 P01A0

−AT
0 P0B0(R0 + BT

0 P0B0)−1BT
0 P02A0 − AT

0 P0B0(R0 + BT
0 P0B0)−1BT

1 P01A0

−AT
0 P0B1(R0 + BT

0 P0B0)−1BT
0 P01A0 − AT

0 P02B0(R0 + BT
0 P0B0)−1BT

0 P0A0

−AT
0 P01B0(R0 + BT

0 P0B0)−1BT
1 P0A0 − AT

0 P01B1(R0 + BT
0 P0B0)−1BT

0 P0A0

−AT
0 P0B1(R0 + BT

0 P0B0)−1BT
1 P0A0 + AT

0 P0B0(R0 + BT
0 P0B0)−1BT

0 P01B0

× (R0 + BT
0 P0B0)−1BT

0 P01A0 + AT
0 P0B0(R0 + BT

0 P0B0)−1BT
1 P0B0(R0 + BT

0 P0B0)−1

×BT
0 P01A0 + AT

0 P0B0(R0 + BT
0 P0B0)−1BT

0 P0B1(R0 + BT
0 P0B0)−1BT

0 P01A0

+AT
0 P01B0(R0 + BT

0 P0B0)−1BT
0 P01B0(R0 + BT

0 P0B0)−1BT
0 P0A0

+AT
0 P0B0(R0 + BT

0 P0B0)−1BT
0 P02B0(R0 + BT

0 P0B0)−1BT
0 P0A0

+AT
0 P0B0(R0 + BT

0 P0B0)−1BT
0 P01B0(R0 + BT

0 P0B0)−1BT
1 P0A0

+AT
0 P0B1(R0 + BT

0 P0B0)−1BT
0 P01B0(R0 + BT

0 P0B0)−1BT
0 P0A0

+AT
0 P01B0(R0 + BT

0 P0B0)−1BT
1 P0B0(R0 + BT

0 P0B0)−1BT
0 P0A0

+AT
0 P0B0(R0 + BT

0 P0B0)−1BT
1 P0B0(R0 + BT

0 P0B0)−1BT
1 P0A0

+AT
0 P0B1(R0 + BT

0 P0B0)−1BT
1 P0B0(R0 + BT

0 P0B0)−1BT
0 P0A0

+AT
0 P01B0(R0 + BT

0 P0B0)−1BT
0 P0B1(R0 + BT

0 P0B0)−1BT
0 P0A0

+AT
0 P0B0(R0 + BT

0 P0B0)−1BT
0 P01B1(R0 + BT

0 P0B0)−1BT
0 P0A0

+AT
0 P0B0(R0 + BT

0 P0B0)−1BT
0 P0B1(R0 + BT

0 P0B0)−1BT
1 P0A0

+AT
0 P0B1(R0 + BT

0 P0B0)−1BT
0 P0B1(R0 + BT

0 P0B0)−1BT
0 P0A0

+AT
0 P0B0(R0 + BT

0 P0B0)−1BT
1 P0B1(R0 + BT

0 P0B0)−1BT
0 P0A0 + Q02 = 0
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and linear equation for P11 is

−P11 + AT
1 P01A0 + AT

0 P01A1 + AT
0 P11A0 − AT

1 P0B0(R0 + BT
0 P0B0)−1BT

1 P0A0

−AT
1 P0B1(R0 + BT

0 P0B0)−1BT
0 P0A0 − AT

0 P0B0(R0 + BT
0 P0B0)−1BT

1 P0A1

−AT
0 P0B1(R0 + BT

0 P0B0)−1BT
0 P0A1 − AT

1 P0B0(R0 + BT
0 P0B0)−1BT

0 P01A0

−AT
1 P01B0(R0 + BT

0 P0B0)−1BT
0 P0A0 − AT

0 P01B0(R0 + BT
0 P0B0)−1BT

0 P0A1

−AT
0 P0B0(R0 + BT

0 P0B0)−1BT
0 P01A1 − AT

0 P0B0(R0 + BT
0 P0B0)−1BT

0 P11A0

−AT
0 P11B0(R0 + BT

0 P0B0)−1BT
0 P0A0 − AT

0 P01B0(R0 + BT
0 P0B0)−1BT

0 P10A0

−AT
0 P10B0(R0 + BT

0 P0B0)−1BT
0 P01A0 − AT

0 P10B0(R0 + BT
0 P0B0)−1BT

1 P0A0

−AT
0 P0B0(R0 + BT

0 P0B0)−1BT
1 P10A0 − AT

0 P0B1(R0 + BT
0 P0B0)−1BT

0 P10A0

−AT
0 P10B1(R0 + BT

0 P0B0)−1BT
0 P0A0 + AT

0 P0B0(R0 + BT
0 P0B0)−1BT

0 P01B0

× (R0 + BT
0 P0B0)−1BT

0 P10A0 + AT
0 P0B0(R0 + BT

0 P0B0)−1BT
0 P10B0

× (R0 + BT
0 P0B0)−1BT

0 P01A0 + AT
1 P0B0(R0 + BT

0 P0B0)−1BT
0 P01B0

× (R0 + BT
0 P0B0)−1BT

0 P0A0 + AT
0 P0B0(R0 + BT

0 P0B0)−1BT
0 P01B0

× (R0 + BT
0 P0B0)−1BT

0 P0A1 + AT
0 P10B0(R0 + BT

0 P0B0)−1BT
0 P01B0

× (R0 + BT
0 P0B0)−1BT

0 P0A0 + AT
0 P01B0(R0 + BT

0 P0B0)−1BT
0 P10B0

× (R0 + BT
0 P0B0)−1BT

0 P0A0 + AT
0 P0B0(R0 + BT

0 P0B0)−1BT
0 P11B0

× (R0 + BT
0 P0B0)−1BT

0 P0A0 + AT
0 P0B0(R0 + BT

0 P0B0)−1BT
0 P0B1

× (R0 + BT
0 P0B0)−1BT

0 P10A0 + AT
1 P0B0(R0 + BT

0 P0B0)−1BT
0 P0B1

× (R0 + BT
0 P0B0)−1BT

0 P0A0 + AT
0 P0B0(R0 + BT

0 P0B0)−1BT
0 P0B1

× (R0 + BT
0 P0B0)−1BT

0 P0A1 + AT
0 P0B1(R0 + BT

0 P0B0)−1BT
0 P10B0

× (R0 + BT
0 P0B0)−1BT

0 P0A0 + AT
0 P10B0(R0 + BT

0 P0B0)−1

×BT
0 P0B1(R0 + BT

0 P0B0)−1BT
0 P0A0 + AT

0 P0B0(R0 + BT
0 P0B0)−1BT

0 P10B1

× (R0 + BT
0 P0B0)−1BT

0 P0A0 + AT
0 P0B0(R0 + BT

0 P0B0)−1

×BT
1 P0B0(R0 + BT

0 P0B0)−1BT
0 P10A0 + AT

1 P0B0(R0 + BT
0 P0B0)−1BT

1 P0B0

× (R0 + BT
0 P0B0)−1BT

0 P0A0 + AT
0 P0B0(R0 + BT

0 P0B0)−1

×BT
1 P0B0(R0 + BT

0 P0B0)−1BT
0 P0A1 + AT

0 P10B0

× (R0 + BT
0 P0B0)−1BT

1 P0B0(R0 + BT
0 P0B0)−1BT

0 P0A0

+AT
0 P0B0(R0 + BT

0 P0B0)−1BT
0 P10B0(R0 + BT

0 P0B0)−1BT
1 P0A0

+AT
0 P0B0(R0 + BT

0 P0B0)−1BT
1 P10B0(R0 + BT

0 P0B0)−1BT
0 P0A0 + Q11 = 0

Note that the terms P10 and P01 of the asymptotic approximation depend
on the matrices A1(x) and B1(x), respectively.

Here we assume that
I. There exist such matrices Q0, Q10, Q01, Q20, Q11, Q02 that the equations are
solvable and P0, P10, P01, P20, P11, P02 are positive definite.

Further, on the basis of the obtained asymptotic expansion for the solution
of the Riccati equation (3) for small values of the parameters, a one-point matrix
Pade approximation of order [2/2] by two parameters ε, μ is constructed

PA[2/2](x, ε, μ) = (M0 + εM10(x) + μM01(x) + ε2M20(x) + εμM11(x) + μ2M02(x))

× (E + εN10(x) + μN01(x) + ε2N20(x) + εμN11(x) + μ2N02(x))−1,
(5)

where E is the identity matrix, matrices M, N are square continuously differ-
entiable matrices of dimension n × n .

Unknown matrix coefficients of the Pade approximation are found from a
system of equations, which is obtained by equating coefficients with the same
degrees of parameters from the equality PA[2/2](x, ε, μ) = P (x, ε, μ) and the
corresponding expansions of the right and left parts.
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The system of equations for 11 unknown matrix Pade coefficients in (5) has
the form

ε0, μ0 : M0= P0

ε : M10= P10 +P0 N10

μ: M01= P01 + P0N01

εμ: M11= P11 + P10N01 + P01N10 + P0N11

ε2 : M20= P20 + P10N10 + P0N20

μ2 : M02= P02 + P01N01 + P0N02

εμ2 : 0 = P11N01 + P10N02 +P02 N10 + P01N11

ε2μ : 0 = P20N01 + P11N10 + P10N11 + P01N20

ε3 : 0 = P20N10 + P10N20

μ3: 0 = P02N01 + P01N02

ε2μ2: 0 = P20N02 +P11 N11 + P02N20.

The applicability of the algorithm is determined by the solvability of the sys-
tem of matrix equations for the PA coefficients and the existence of the inverse
matrix (E + εN10(x) + μN01(x) + ε2N20(x) + εμN11(x) + μ2N02(x))−1. The
matrices of the “denominator” are found from the system of the last five equa-
tions. To get the nonzero coefficients of the “denominator” we add additional
optimization parameters P12, P21, P03, P30, P22 which are found as positive defi-
nite matrices from the minimum of the quality criterion (2).

εμ2 : P12 = P11N01 + P10N02 +P02 N10 + P01N11

ε2μ : P21 = P20N01 + P11N10 + P10N11 + P01N20

ε3 : P30 = P20N10 + P10N20

μ3: P03 = P02N01 + P01N02

ε2μ2: P22 = P20N02 +P11 N11 + P02N20

(6)

or
⎛

⎜⎜⎜⎜⎝

P02(x) P11(x) P01(x) 0 P10(x)
P11 P20(x) P10(x) P01(x) 0

P20(x) 0 0 −P10(x) 0
0 P02(x) 0 0 P01(x)
0 0 P11(x) P02(x) P20(x)

⎞

⎟⎟⎟⎟⎠

⎛

⎜⎜⎜⎜⎝

N10(x)
N01(x)
N11(x)
N20(x)
N02(x)

⎞

⎟⎟⎟⎟⎠
=

⎛

⎜⎜⎜⎜⎝

P12

P21

P30

P03

P22

⎞

⎟⎟⎟⎟⎠
.

The Algorithm of the Pade Regulator Construction

Step 1. An asymptotic approximation of the solution of the matrix discrete
state-dependent Riccati equation by powers of two small parameters ε, μ is
constructed (4).
Step 2. A one-point matrix PA [2/2] by two parameters for the solution of a
matrix discrete Riccati equation is constructed using an asymptotic approxi-
mation by two parameters (step 1).
Step 3. Using a one-point matrix PA we get the Pade regulator

u(x, ε, μ) = −R̃(x, ε, μ)−1B(x, μ)TK(x, ε, μ)A(x, ε)x(t), (7)

where a symmetric control gain matrix K(x, ε, μ) has the form K(x, ε, μ) =
1/2 ∗ (PA[2/2](x, ε, μ) + PA[2/2](x, ε, μ)T ).
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3 Numerical Experiments

Here, the results of numerical experiments carried out for different parameter
values are presented.

Example 1

Let the dynamics of the system be described by the equation

x(t + 1) = (A0 + εA1(x))x(t) + (B0 + μB1(x))u(t),

where

A0 =
(

1 0.1
0 0.5

)
, B0 =

(
0

0.5

)
, A1(x) =

(
2 sin(x1)

x1
1

sin(x2)
x2

2

)
, B1(x) =

(
0.1
0.1

)
.

The results of solving this control problem according to The Algorithm are
presented in Table. 1 and on the Fig. 1. The coefficients P12, P21, P03, P30, P22 in
(6) are found by optimisation of criterion (2). It can be seen, that on the selected
grid the Pade regulator is close to the D-SDRE regulator by the quality criterion
(2) with matrices

Q0 =
(

5 0
0 5

)
, Q10 = Q01 =

(
15 + 0.01x2

1 0
0 15 + 0.01x2

1

)
, Q11 =

(
10 0
0 10

)
,

Q20 = Q02 = 0, R0 = 1.

Table 1. The comparison of the closed-loop controls by the quality criterion

ε μ D-SDRE regulator Pade [2/2] by two parameters

0,01 0,01 227,43 227,52

0,05 0,01 289,18 295,39

0,1 0,01 335,33 366,55

0,01 0,05 218,01 218,17

0,05 0,05 278,34 284,59

0,1 0,05 325,75 355,09

0,01 0,1 207,38 207,68

0,05 0,1 265,91 272,29

0,1 0,1 314,49 341,63

Closed-loop trajectories for Pade [2/2] regulator and D-SDRE regulator are
presented in Fig. 2.
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Fig. 1. The comparison of the regulators by the quality criterion values
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Fig. 2. The trajectories of the closed-loop systems for different parameter values

Example 2

In the next example the problem (1) is reduced to a problem with a single
parameter, where it is assumed, for example, that μ = cε2, c = O(1).

By substituting μ = cε2 we get

x(t + 1) = A(x, ε)x(t) + B(x, ε)u(t)
= (A0 + εA1(x))x(t) + (B0 + cε2B1(x))x(t),

x(0) = x0, x(t) ∈ X ⊂ Rn, u(t) ∈ Rr, t = 0, 1, 2... ,

I(u) =
1
2

∞∑

t=0

(xTQ(x, ε)x + uTR0u) → min,

where X ⊂ Rn is some bounded state-space subset 0 < c, 0 < ε ≤ ε0, Q(x, ε) >
0, R0 > 0. Here we use the second order asymptotics

P̃ (x, ε) = P̃0 + εP̃1(x) + ε2P̃2(x), (8)

using matrices Q(x, ε) = Q0 + εQ1(x) + ε2Q2(x), Q1(x) = Q10, Q2(x) = Q20,

Q0 =
(

10 1
1 10

)
, Q10 =

(
11 + 0.01x2

1 0
0 11 + 0.01x2

1

)
,

Q01 = Q11 = Q02 = Q20 = 0, R0 = 1.
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Now, using second-order asymptotics (8) of the solution of the Riccati equa-
tion (3) for small values of the parameter ε, we construct a one-point Pade
approximation of order [1/2], namely

PA[1/2](x, ε) = (M0(x) + ε M1(x))
(
E + ε N1(x) + ε2N2(x)

)−1
, (9)

where E is an identity matrix, matrices M, N are square quadratic continuously
differentiable matrices of order n × n .

A system of equations for the coefficients for Pade coefficients is

M0(x) = P̃0(x)
M1(x) = P̃0(x)N1(x) + P̃1(x)
0 = P̃0(x)N2(x) + P̃1(x)N1(x) + P̃2(x)
0 = P̃1(x)N2(x) + P̃2(x)N1(x)

or ⎛

⎜⎜⎝

E 0 0 0
0 E −P̃0(x) 0
0 0 −P̃1(x) −P̃0(x)
0 0 −P̃2(x) −P̃1(x)

⎞

⎟⎟⎠

⎛

⎜⎜⎝

M0(x)
M1(x)
N1(x)
N2(x)

⎞

⎟⎟⎠ =

⎛

⎜⎜⎝

P̃0(x)
P̃1(x)
P̃2(x)

0

⎞

⎟⎟⎠ ,

We can also construct the Pade approximation by one parameter of order
[2/2] using the second order asymptotic approximation. For this we additionally
introduce the coefficients P̃3, P̃4 and find them with the help of optimisation by
the quality criterion (2) to ensure the nondegeneracy of the “denominator” of
the Pade approximation.

PA[2/2](x, ε) = (M0(x) + ε M1(x) + ε2 M2(x))
(
E + ε N1(x) + ε2N2(x)

)−1
,

(10)
M0(x) = P̃0(x)
M1(x) = P̃0(x)N1(x) + P̃1(x)
M2(x) = P̃0(x)N2(x) + P̃1(x)N1(x) + P̃2(x),

(−P̃2(x) −P̃1(x)
−P̃3 −P̃2(x)

)(
N1(x)
N2(x)

)
=

(
P̃3

P̃4

)
.

Table 2 and Fig. 3 presents the comparison of controls by quality criteria
values for c = 1. It is shown that by quality criteria values the asymptotic
approximation by two parameters is much closer to the D-SDRE solution and
preserve this closeness and qualitative compliance for a large parameter variation
interval.
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Table 2. The comparison of controls by quality criteria values for c = 1

ε μ D-SDRE Asymptotics by two
parameters

Asymptotics by one
parameter

0,01 0,0001 392,82 392,9156 392,8548

0,05 0,0025 468,7696 472,8012 650,4096

0,1 0,01 510,0006 538,2427 1613,126

0,2 0,04 555,6039 695,9590 44903,85

0,3 0,09 607,9071 887,2460 15506927

The next table (Table 5) presents the results for Pade regulators constructed
on the basis of the asymptotic approximations:

– Pade approximation PA[2/2](x, ε, μ) in (5) by two parameters corresponds to
the asymptotic approximation by two parameters from (4);

– Pade approximations by one parameter PA[1/2](x, ε) in (9), PA[2/2](x, ε) in
(10) correspond to the asymptotic approximation by one parameter from (8).

Here matrices P12, P21, P03, P30, P22 from (6) are found by optimization for
each combination of parameter values and are presented in Table 3. Matrices P̃3,
P̃4 for PA[2/2](x, ε) from (10) by one parameter are presented in Table 4.

Table 3. The optimised coefficients of the Pade system (6)

ε μ P12 P21 P03 P30 P22

0,01 0,0001

(
0, 89 0, 70

0, 70 0, 87

) (
1, 41 0, 91

0, 91 0, 85

) (
1, 37 0, 78

0, 78 1, 30

) (
1, 21 0, 97

0, 97 1, 32

) (
1, 07 0, 67

0, 67 1, 11

)

0,05 0,0025

(
1, 59 0, 96

0, 96 0, 75

) (
1, 51 0, 63

0, 63 0, 57

) (
1, 93 1, 20

1, 20 1, 34

) (
1, 56 0, 91

0, 91 1, 30

) (
2, 94 0, 66

0, 66 0, 41

)

0,1 0,01

(
1, 56 0, 93

0, 93 0, 73

) (
1, 49 0, 63

0, 63 0, 57

) (
1, 80 1, 25

1, 25 1, 54

) (
1, 43 0, 43

0, 43 1, 11

) (
2, 90 0, 54

0, 54 0, 38

)

0,2 0,04

(
2, 62 0, 30

0, 30 0, 94

) (
0, 14 0, 13

0, 13 1, 78

) (
1, 87 0, 00

0, 00 3, 25

) (
7, 50 0, 00

0, 00 0, 18

) (
0, 85 0, 76

0, 76 0, 02

)

0,3 0,09

(
0, 73 1, 37

1, 37 3, 16

) (
1, 03 0, 09

0, 09 0, 76

) (
7, 34 0, 45

0, 45 0, 73

) (
0, 93 0, 13

0, 13 0, 02

) (
0, 32 0, 02

0, 02 0, 13

)

As it can be seen both Pade regulators demonstrate the improvement over
the asymptotic approximations (Fig. 3), but the Pade regulator that uses the
asymptotic approximation by two parameters works on the larger time inter-
val, than Pade regulator by one parameter and it stabilizes the system for all
considered parameter values (see Fig. 4).

Figure 5 emphasizes that the reduction of two small parameters to one is not
always successful.
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Table 4. The optimised coefficients of the Pade system (10)

ε μ P̃3 P̃4

0,01 0,0001

(
1, 2984 0, 1810

0, 1810 0, 7307

) (
2, 8094 1, 6079

1, 6079 1, 4387

)

0,05 0,0025

(
0, 4460 0, 6395

0, 6395 3, 2556

) (
3, 1227 1, 5445

1, 5445 3, 1231

)

0,1 0,01

(
0, 4460 0, 6395

0, 6395 3, 2556

) (
3, 1227 1, 5445

1, 5445 3, 1231

)

0,2 0,04

(
0, 4460 0, 6395

0, 6395 3, 2556

) (
3, 1227 1, 5445

1, 5445 3, 1231

)

0,3 0,09

(
19, 9346 0, 0125

0, 0125 0, 0266

) (
1, 5964 0, 0250

0, 0250 3, 5108

)

Table 5. The comparison of Pade controls by quality criteria values

ε μ D-SDRE Pade [2/2] by
two
parameters

Pade [1/2] by
one parameter

Pade [2/2] by
one parameter

0,01 0,0001 392,82 392,90 392,7795 392,78

0,05 0,0025 468,7696 474,29 489,9492 511,83

0,1 0,01 510,0006 547,91 2781,8328 1153,78

0,2 0,04 555,6039 656,84 1483,4005 2530,40

0,3 0,09 607,9071 764,96 2000,3707 2511311,34

Fig. 3. The comparison of the regulators by the quality criterion values
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Fig. 4. Trajectories of closed-loop systems for regulators based on second-order asymp-
totic approximations for different parameter values

Fig. 5. Trajectories of closed-loop systems for Pade regulators for different parameter
values

The asymptotic approximation by two parameters provides stabilization in
all the considered cases, in contrast to the asymptotic approximation by one
parameter (Fig. 4). As it can be seen, the Pade regulator based on asymptotic
approximation by one parameter (8) fails to stabilize the system for some param-
eter valus (Fig. 5) unlike the Pade regulator by two parameters.

Thus, these experiments demonstrate that the regulators costructed using
Pade approximations by two parameters stabilize the closed-loop systems for
more cases then regulators that use asymptotic approximations by one parame-
ter. The obtained PA regulators have interpolation and extrapolation properties,



290 Y. Danik and M. Dmitriev

which often allow to increase the accuracy of the approximation in comparison
with regulators based on pure asymptotic approximations like (4).

4 Conclusion

The algorithm for constructing a symbolic family of Pade regulators for nonlinear
control systems with two parameters is proposed. It is based on the asymptotic
approximation of the solution of the discrete matrix state-dependent Riccati
equation (D-SDRE) in the zero point (0,0) by both parameters simultaniously
and the further construction of the matrix Pade approximation in order to extend
the admissible parameters’ variation intervals. The comparison of the proposed
Pade regulators with the controller based on an asymptotic approximation by
one parameter demonstrates the advantage of the Pade approximation by two
parameters. The experiments show that the trajectories of closed-loop systems
calculated along the controls which correspond to the asymptotic approxima-
tions by two parameters are closer to the D-SDRE solution for a larger interval
of parameter variation, than by one parameter. Moreover, the regulator based on
the asymptotic approximation by two parameters is better by the quality crite-
rion values. It is also demonstrated that the use of the matrix Pade approxima-
tions gives an improvement over the asymptotic approximations by the quality
of stabilization in the considered examples.
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Abstract. A time-optimal control problem with a spherical velocity vec-
togram is considered. For one class of non-convex planar target sets with
a part of their boundary coinciding with a line segment, conditions are
found to construct branches of singular (scattering) curves in analytical
form. Explicit formulas are obtained for pseudo-vertices, i.e., singular
boundary points of the target set generating branches of the singular
set. An analytical relation is revealed between the endpoints of differ-
ent optimal trajectories with the same initial conditions on the singular
set that falls on the target set in a neighborhood of a pseudo-vertex.
Formulas are found for the extreme points of the singular set branches.
The developed approaches to constructing exact non-smooth solutions
for dynamic control problems are illustrated with examples.

Keywords: scattering curve · singular set · pseudo-vertex · mapping ·
curvature

1 Introduction

In a time-optimal control problem with a spherical velocity vectogram and a
closed non-convex target set, the optimal result function is non-smooth regard-
less of differential properties of the target set boundary. The singularity of
the problem solution is due to special points on the target boundary, which
are pseudo-vertices. These points generate symmetry sets, known as bisectors.
According to conflict management theory, bisectors are scattering curves. Unlike
in regular cases, there are two or more optimal trajectories coming from the
points of these curves that are directed differently from the singular curve. In
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general, bisectors are constructed by numerical methods. These methods are
based on identifying pseudo-vertices of the target set, followed by the construc-
tion of bisector branches by solving algebraic or ordinary differential equations.
From experience of constructing solutions to such problems to date it is possible
to determine conditions for a singular set to be described analytically. This paper
analyzes the case with the target set boundary containing line segments. Analyt-
ical formulas of the mappings connecting the target set points are obtained. On
the one hand, these points are endpoints of optimal trajectories with common
initial conditions, while, on the other hand, they are located in the neighbor-
hood of a pseudo-vertex. An example of a set is also found and presented with
a curved boundary, i.e. a boundary with no straight line segments, for which,
nevertheless, it is possible to construct these mappings in an explicit analytical
form.

It should be noted that the specific dynamic problem under consideration
reduces studying the singular set of its solution to researching properties of a
metric projection onto a closed set of Euclidean space (by geometric methods
mainly). At the same time, the paper considers in detail the case with a projec-
tion operator with no more than two values on the target set.

2 Problem Statement

The time-optimal control problem on the plane R2 with a closed non-convex
target set A ⊂ R2 is considered. The system solution is to be found with current
coordinates x = (x, y) in the optimal time on the target set A. The system
dynamics

ẋ = v (1)

is defined by vector control v = (v1, v2), with possible values v ∈ O(0, 1), where
O(c, r) = {x ∈ R2 : ‖x − c‖ ≤ r} is a circle of radius r centered at point c;
0 = (0, 0) is the origin.

In the present problem, the optimal control v for x /∈ A is a vector of length 1
that is co-directed with the vector originating from point x to the nearest point
y in the Euclidean metric of the set A boundary. The optimal result function
u(x) = u(x, y) is equal to the Euclidean distance ρ(x, A) = min{‖x−y‖ : y ∈ A}
from the point x = (x, y) ∈ R2 to the set A.

The time-optional dynamic problem (1) and the target set A are tightly
connected with the Hamilton-Jacobi differential equations

min
(v1,v2)∈O(0,1)

(
v1

∂u

∂x
+ v2

∂u

∂y

)
+ 1 = 0 (2)

and eikonal equations (
∂u

∂x

)2

+
(

∂u

∂y

)2

= 1. (3)

The generalized (minimax) solution [1, ch. IV] of the Dirichlet problem for Eq.
(2) with a boundary condition

u|∂M = 0 (4)
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coincides with the optimal result function u(x, y) = ρ
(
(x, y), A

)
on the set G =

R2 \ A (see [2, Theorem 1]). The fundamental (generalized) solution of the
Dirichlet problem for Eq. (3) with a boundary condition (4) (introduced by S.
N. Kruzhkov [3]) is equal to the same function to modulo; however, opposite in
sign: uk(x, y) = −ρ

(
(x, y), A

)
.

Let’s assume that the boundary Γ = ∂A of the target set is a plane curve
described by the equation

Γ = {x ∈ R2 : x = x(t), t ∈ Ξ}. (5)

Here Ξ ⊆ R is a simply connected set, whereas the mapping x : Ξ → R2 is and
twice differentiable at all internal points Ξ, except an admissible finite number of
points. It should be noted that the level surface Φ(τ) = {(x, y) ∈ R2 : u(x, y) =
τ} of the function u(x, y) = ρ

(
(x, y), A

)
at the time point τ > 0 coincides with

the wavefronts [4] when the wave propagates from the set A for the time τ in
case of a spherical velocity vectogram.

If the target set is convex, then the function u(x) = ρ(x, A) is also convex
and differentiable by R2 \ A (see [5, ch. II, §8]). If the set A is non-convex, then
u(x) has singular sets due to a number of optimal trajectories for a dynamic
system (1).

We denote ΩA(y) as a union of all points x ∈ A, closest to y in the Euclidean
metric. It should be noted that this construction is crucial for proving the func-
tion u(x, y) = ρ

(
(x, y), A

)
to be a generalized (minimax) solution of the Dirich-

let problem for Eq. (2) with the boundary condition (4). Let’s consider the plot
gr u(x, y) of the function u(x, y) restriction to the set R2 \ A. It is a surface
in an expanded position space with three coordinates x, y, τ. At least one char-
acteristic passes through its each point [1, ch. I, §1.2] of Eq. (2)—the segment[(

x, y, u(x, y)
)
,
(
xp, yp, 0

)]
, where (xp, yp) ∈ ΩA

(
(x, y)

)
.

Definition 1. A set

L(A) =
{
y ∈ R2 : card

(
ΩA(y)

)
> 1

}

is called a bisector L(A) [6] of a closed set A ⊂ R2.

Here, card card
(
ΩA(y)

)
is the cardinality of the set ΩA(y). It is equal to

the number of elements, if the set ΩA(y) is finite. However, cases are possible,
when y is the center of a circle ∂O(x, r), with an arc in Γ. Therefore, all the arc
elements can be included into ΩA(y). Then, card card

(
ΩA(y)

)
is the cardinality

of an infinite set. If for two different points x1 ∈ Γ, x2 ∈ Γ conditions x1 ∈
ΩA(y) and x2 ∈ ΩA(y) are met, then they are said to generate a bisector
point. According to R. Isaacs’s classification for control problems and differential
games, the bisector L(A) is characterized by the following property: at least two
optimal trajectories—the segment [y,x],x ∈ ΩA(y) proceed from each of its
points y ∈ L(A) [7, Example 6.10.1]. Sets similar to the bisector are studied
in the theory of wavefronts and termed as “conflict set” [8], “symmetry set” [9]
and “medial axe” [10]. Is should also be mentioned that in geometric optics, the



Analytical Construction of the Singular Set 295

fundamental solution of the boundary value problem (3), (4) is smooth at points
y ∈ G if card card

(
ΩA(y)

)
= 1, and loses its classical differentiability when

card card
(
ΩA(y)

)
> 1 [11]. Another important application of the set L(A) is

calculating non-convexity of the set A (for more details see [12]).

Definition 2. Let us define the point x0 = x(t0) as a pseudo-vertex of the set
A, whereas ŷ is defined as the bisector extreme point generated by this pseudo-
vertex, if there is a sequence x̃n)}∞

n=1 ⊂ A of point pairs of the set A and the
sequence {yn}∞

n=1 ⊂ L(A) of bisector points for which the following conditions
are met:

lim
n→∞(xn, x̃n) = (x0,x0),

lim
n→∞yn = ŷ,

∀n ∈ N {xn, x̃n} ⊆ ΩA(yn).

If the pseudo-vertex lies on a smooth curve section (5), it is crucial to deter-
mine the relationships between the values of the parameter t, which define the
projections of the bisector points. This enables to construct smooth sections
of the singular set L(A). In general, L(A) may contain bifurcation points. How-
ever, finding them is of secondary importance. This problem is solved by isolating
those elements yi ∈ L(A) for which card card

(
ΩA(yi)

)
> 2. In more detail, sin-

gular points of sets similar to the bisector in Euclidean spaces of small dimension
were investigated, e.g., by V. D. Sedykh [13,14].

Definition 3. Let the point x0 = x(t0) be a pseudo-vertex of the set A. Then,
the continuous function t1 = g(t2), defined on some right semi-neighborhood
(t0, t0+ε), ε > 0 is said to be the right-hand bisector mapping in the neighborhood
of the pseudo-vertices of x0, if the following conditions are met:

∀t2 ∈ (t0, t0 + ε) g(t2) < t0, (6)

lim
t2→t0+0

g(t2) = t0, (7)

∀t2 ∈ (t0, t0 + ε) ∃y ∈ L(A) :
{
x
(
g(t2)),x(t2

)} ⊆ ΩA(y). (8)

Definition 4. Let the point x0 = x(t0) be a pseudo-vertex of the set A. Then,
the continuous function t2 = g(t1), defined on some left semi-neighborhood (t0 −
ε, t0), ε > 0 is said to be the left-hand bisector mapping in the neighborhood of
the pseudo-vertices of x0, if the following conditions are met:

∀t1 ∈ (t0 − ε, t0) g(t1) > t0, (9)

lim
t1→t0−0

g(t1) = t0, (10)

∀t1 ∈ (t0 − ε, t0) ∃y ∈ L(A) :
{
x(t1),x

(
g(t1)

)} ⊆ ΩA(y). (11)
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In total, conditions (6) and (7) mean that the chart closure of a continuous
function t1 = g(t2) has a fixed-point value. Here, g(t0) = lim

t2→t0+0
g(t2) = t0.

Similarly, conditions (9) and (10) mean that the graph closure of a continuous
function t2 = g(t1) has a fixed-point value. Here, g(t0) = lim

t1→t0−0
g(t1) = t0.

These pairs of supplemented functions provide a continuous parametrization of
the curve Γ in the pseudo-vertex neighborhood:

ğ(t) =

⎧⎪⎨
⎪⎩

g(t3), t3 ∈ (t0 − ε, t0), ε > 0,

t0, t3 = t0,

g(t3), t3 ∈ (t0, t0 + ε∗), ε∗ > 0.

For more detail of mapping properties in geometry see, e.g., [15, §4, 1◦].
Supplements (8) and (11) show that x(t1) and x(t2) generate a bisector point. It
should be noted that there are pseudo-vertex neighborhoods, where none of the
above mentioned mappings are defined. This can be a special point of the curve
(5), such that it is a common projection for all points of one of the branches of
L(A), as in [16, Example 4]. On the other hand, at some points x0, the bisector
has two different right- or left-hand mappings. The reason is that two different
extreme points lying on the normal to Γ in x0 on different sides of x0 can
correspond to one pseudo-vertex, as in [6, example 4.1].

3 Analytic Formulas for Constructing a Singular Set

The case is investigated with the curve (5) containing an arc that can be pre-
sented as a function plot in a Cartesian coordinate system.

Consider sets of functions f(x), of point x0 and two numbers ε1 > 0, ε2 > 0,
for which the following conditions are satisfied:

A1. The function f(x) is differentiable on the interval (x0 − ε1, x0 + ε2).
A2. The function f(x) is twice differentiable on the intervals (x0 − ε1, x0) and

(x0, x0 + ε2).
A3. The plot f(x) coincides with the arc of the circle at no interval. (x1, x2) ⊆

(x0 − ε1, x0 + ε2).

Let’s select the curves Γ containing segments of straight lines. We should
note that a smooth curve contain straight line segments only if they are smoothly
conjugated to each other by arcs of curves. In this case, the abscissa x of the
point x ∈ Γ serves as a parameter in the Eq. (5).

Lemma 1. Let the boundary Γ of the set A coincide with the plot of an explicitly
given function y = y(x). If the following conditions are met:

1) for the function y = y(x), the point x0 and the numbers ε1 > 0, ε2 > 0 the
conditions A.1–A.3 are valid;

2) the point x0 =
(
x0, y(x0)

)
, x0 ∈ X, is a pseudo-vertex of the set A, then there

exists a number r > 0 such that for all pairs of points (x1, x2) and (x∗
1, x

∗
2)

such that
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∃y ∈ L(A) :
{(

x1, y(x1)
)
,
(
x2, y(x2)

)} ⊆ ΩA(y), (12)

∃y∗ ∈ L(A) :
{(

x∗
1, y(x∗

1)
)
,
(
x∗
2, y(x∗

2)
)} ⊆ ΩA(y), (13)

x1 ∈ (x0 − r, x0), x∗
1 ∈ (x0 − r, x0), (14)

x2 ∈ (x0, x0 + r), x∗
2 ∈ (x0, x0 + r), (15)

the inequation
x1 < x∗

1, (16)

is satisfied if and only if
x2 > x∗

2. (17)

Proof. Let’s denote xi =
(
xi, y(xi)

)
, x∗

i =
(
x∗

i , y(x∗
i )

)
, i = 1, 2. Without loss

of generality, we assume that the function y = y(x) is linear in the left semi-
neighborhood (x0 − ε, x0), ε > 0 and the right-hand curvature is k(x0 + 0) > 0.
Since a straight line has is zero curvature, the greater limiting curvature is on
the right-hand side of the point x0. Let’s consider the part of the bisector L0(A),
lying in a sufficiently small neighborhood ŷ, such that L0(A) is embedded in the
super plot of the function y(x). Since the mapping y 
→ ΩA(y) is upper semi-
continuous, there is a number r > 0 such that for all points x with an abscissa
x ∈ (x0 − r, x0 + r), the bisector points y ∈ L(A),x ∈ ΩA(y) generated by
these points belong to L0(A). Let’s assume that there are points x1, x2, x

∗
1, x

∗
2 ∈

(x0−r, x0+r) for which conditions (12)–(16) are met, except for (17). This means
that the normal segment π2 from point xi to point y intersects either with the
segment [x∗

1,y
∗] or with the segment [x∗

2,y
∗]. If on the plot the point x2 is to

the left than x∗
2, the line π2 is to pass through one of these segments to cross the

normal plotted to Γ at point x1. However, two segments from the points to their
set projection are able to only intersect with each other either at the starting
point or at the endpoint. According to the Lemma 1, the points x1,x2,x∗

1,x
∗
2

are pairwise distinguishable; therefore, the segments intersect with each other at
the point y = y∗. In this case, there are four different projections for the point
y = y∗ on A in the neighborhood of the pseudo-vertex x0. This contradicts the
condition that in any sufficiently small neighborhood of the pseudo-vertex, the
curve Γ does not coincide with the arc of the circle, which means that at the
bisector points y ∈ L0(A) in a sufficiently small neighborhood corresponding to
the x0 of the extreme point ŷ, the card card

(
ΩA(y)

)
= 2 is fulfilled (for more

details, see [17]).

Lemma 2. Let the set A have a boundary coinciding with the function plot
y = y(x). If the following conditions are met

1) the set of projections ΩA(y) of the bisector point y includes the points x1 =(
x1, y(x1)

)
and x2 =

(
x2, y(x2)

)
;

2) x1 < x2;
3) the function y = y(x) in the neighborhood of the point x = x1 coincides with

the linear function
y = y0 + a(x − x0), (18)
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then, the equation holds true

x1 = xc −
√

(x2 − xc)2 +
(
y(x2) − y0 − a(xc − x0)

)2
1 + a2

, (19)

where

xc =
y0 − ax0 + y′(x2)x2 − y(x2)

y′(x2) − a
. (20)

Proof. Let’s denote coordinates of the bisector point for which points x1 and x2

are included in the set of projections, as y = (x∗, y∗). By construction, y lies at
the intersection of the normals to Γ at x1 and x2. Let’s denote the intersection
point of tangents to Γ at the same points as yc. The tangent at point x1 is
described with the Eq. (18) (we will denote it as γ1), and the tangent at point
x2 is described with the equation

y − y(x2) = y′(x2)(x − x2)

(we will denote it as γ2). When substituting the ordinate value from (18) into
the last equation, we obtain the equation

y0 + a(xc − x0) − y(x2) = y′(x2)(xc − x2)

for the abscissa of the point yc. By explicitly selecting the value xc from it, the
Eq. (20) may be written.

According to the condition of segment equality plotted from the points x1

and x2 to the intersection point of the normals y, it follows that the segments
plotted from x1 and x2 to the intersection point of the tangents yc are of equal
length. Since the first segment lies on the line γ1, its length is determined by the
equation

‖x1 − yc‖ =
|x1 − xc|√

a2 + 1
. (21)

The length of the second segment (with the intersection abscissa value from (20)
and its embedment in the line γ2 taken into account) is calculated as

‖x2 − yc‖ =
√

(x2 − xc)2 +
(
y(x2) − y0 − a(xc − x0)

)2
. (22)

By condition x2 > x1, it can be shown that

xc ≥ x1. (23)

Let’s assume that xc < x1. So yc lies in the semi-neighbourhood Π−, which is
bounded by the line π1 orthogonal to γ1 passing through x1, whereas x2 /∈ Π−.
Therefore, the angle ∠(yc,x1,x2) in the triangle x1xcx2 at the vertex x1 is
greater than the right one. However, since x1ycx2 is an isosceles triangle with
vertex xc, for the angle at its vertex, ∠(yc,x1,x2) < π/2 is estimated. There is
a contradiction.
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According to the equality condition of lengths (21) and (22) and the estimate
(23) (which makes it possible to expand the expression under the module), the
dependence for the abscissas of points x1,xc,x2 is found:

xc − x1√
a2 + 1

=
√

(x2 − xc)2 +
(
y(x2) − y0 − a(xc − x0)

)2
.

When multiplying both parts of the last equation by
√

a2 + 1 (this value is
obviously different from zero for any real a) and then adding x1, the equality
(19) is derived.

Lemma 3. Let the set A have a boundary coinciding with the function graph
y = y(x). If the following conditions are met

1) the set of projections ΩA(y) of the bisector point y includes the points x1 =(
x1, y(x1)

)
and x2 =

(
x2, y(x2)

)
;

2) x1 < x2,
3) the function y = y(x) in the neighborhood of the point x = x2 coincides with

the linear function (18);

the following equation holds true

x2 = xc +

√
(x1 − xc)2 +

(
y(x1) − y0 − a(xc − x0)

)2
1 + a2

, (24)

where

xc =
y0 − ax0 + y′(x1)x1 − y(x1)

y′(x1) − a
. (25)

Proof is completely identical with the proof of Lemma 2, with the only difference
that the intersection point yc of the tangents to gr y(x) lies to the left of the
point x2. Therefore, in the Eq. (24), the distance between points yc and x1 is
added to the abscissa xc of the point yc calculated by Eq. (25).

Theorem 1. Theorem. Let the boundary Γ of the set A coincide with the func-
tion plot y = y(x). If the following conditions are met:

1) for the function y = y(x), the point x0 and the numbers ε1 > 0, ε2 > 0, the
conditions A.1–A.3 are valid;

2) the point x0 =
(
x0, y(x0)

)
, x0 ∈ X is a pseudo-vertex of the set A;

3) the function y(x) in the left semi-neighborhood (x0−ε1, x0), ε1 > 0, coincides
with a linear one,

then, for some number ε > 0 there is a bisector mapping of the right semi-
neighborhood of the pseudo-vertex x0, given by the equation:

x1(x2) = x∗
c(x2) −

√
(x2 − x∗

c(x2))2 +
(
y(x2) − y0 − y′(x0)(x∗

c(x2) − x0)
)2

1 + y′(x0)2
,

(26)

x∗
c(x2) =

y(x0) − y′(x0)x0 + y′(x2)x2 − y(x2)
y′(x2) − y′(x0)

. (27)
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Proof. Since, according to Theorem, the Lemma 1 conditions are fulfilled at the
point x0, in some semi-neighborhood (x0 − ε, x0), the function x2 = x2(x1) con-
necting the projections abscissas of the bisector points is monotonically decreas-
ing. At the point x = x0, there is a discontinuity in the curvature k(x) of the
curve Γ, due to a straight line and a part of Γ that is not a straight line not
meeting at this point. In this case, one-sided curvature signs at x0 coincide on
the left and right (more precisely, k(x0 − 0) = 0; therefore, it can be assumed
that k(x0 − 0) has the same sign as k(x0 + 0)). As shown in [18, Theorem 3],
the extreme point ŷ corresponding to a pseudo-vertex of this type is unique and
coincides with that of the limiting positions of the curvature center c(x), which
is closer to Γ. Since, according to Theorem, in a sufficiently small neighborhood
of the pseudo-vertex, Γ does not contain a circle arc, ΩA(ŷ) = {x0}. Hence,
for all points y ∈ L(A) at y → ŷ, projections pairs {x1,x2} ⊆ ΩA(y) converge
to the point x0, while lying on different sides. That is, in the pseudo-vertex
neighborhood, the bisector mappings for the point coordinates are defined.

According to Theorem condition, the point x0 =
(
x0, y(x0)

)
lies on a smooth

plot section of the function y = y(x). Therefore, the derivative y′(x0) is defined.
Since to the left of the pseudo-vertex the curve Γ coincides with the line segment
γ, the equation of γ coincides with the equation of the tangent to Γ in the
pseudo-vertex:

y = y′(x0)(x − x0) + y(x0). (28)

By properties of a smooth curve pseudo-vertex in some sufficiently small semi-
neighborhoods [x0 −ε0, x0] and [x0, x0 +ε0], such that for each point

(
x2, y(x2)

)
at x2 ∈ (x0, x0 + ε0], there is a point

(
x1, y(x1)

)
, x1 ∈ [x0 − ε0, x0) such that

they generate a bisector point. Let’s choose a semi-neighborhood [x0 − ε0, x0)
such that for points (x, y) =

(
x1, y(x1)

)
at x1 ∈ [x0−ε0, x0), Eq. (28) is fulfilled.

Then, according to Lemma 2, for any point
(
x2, y(x2)

)
at x2 ∈ (x0, x0 + ε0],

there will be a point with an abscissa x1 such that these two points generate a
bisector point. By substituting the value y′(x0) as the coefficient a in Eqs. (19),
(20), and the value y′(x0) as the ordinate value y0, the Eqs. (26) and (27) are
obtained.

Corollary 1. Let the boundary Γ of the set A coincide with the function plot
y = y(x). If the following conditions are met:

1) for the function y = y(x), the point x0 and the numbers ε1 > 0, ε2 > 0, the
conditions A.1–A.3 are valid;

2) the point x0 =
(
x0, y(x0)

)
is a pseudo-vertex of the set A;

3) the function y(x) in the right semi-neighborhood (x0, x0 + ε1) coincides with
a linear one,

then, for some number ε > 0 there is a bisector mapping of the left semi-
neighborhood of the pseudo-vertex x0, given by the equation:

x2(x1) = x∗
c(x1) +

√
(x1 − x∗

c(x1))2 +
(
y(x1) − y0 − y′(x0)(x∗

c(x1) − x0)
)2

1 + y′(x0)2
,

(29)



Analytical Construction of the Singular Set 301

x∗
c(x1) =

y(x0) − y′(x0)x0 + y′(x1)x1 − y(x1)
y′(x1) − y′(x0)

. (30)

Proof is completely identical with the proof of Theorem 1; however, it is based
on Lemma 3.

Remark 1. The coordinates of the bisector extreme point ŷ = (x̂, ŷ) for the
pseudo-vertex meeting Theorem 1 conditions are found as the limiting position
of curvature center [19, ch. III, §25] of the plot y = y(x) at the point x = x0 on
the right:

x̂ = x0 − y′(x0)3 + y′(x0)
y′′(x0 + 0)

, (31)

ŷ = y(x0) − y′(x0)2 + 1
y′′(x0 + 0)

. (32)

Similarly, the bisector extreme point ŷ = (x̂, ŷ) for the pseudo-vertex corre-
sponding to Corollary 1 conditions coincides with the limiting position of the
curvature center at the point x = x0 on the left:

x̂ = x0 − y′(x0)3 + y′(x0)
y′′(x0 − 0)

, (33)

ŷ = y(x0) − y′(x0)2 + 1
y′′(x0 − 0)

. (34)

Remark 2. Since the pseudo-vertex corresponding to the conditions of Theorem
1 has a discontinuity in the curvature of the boundary of the target set, then the
conditions of Theorem 2 from [18] are satisfied in it. Therefore, there is a limit
ratio

lim
x2→x0,x2>x0

x2 − x0

x1(x2) − x0
= 0. (35)

for the abscissas of the projections of the points of the bisector in the neigh-
borhood of the pseudo-vertex. Similarly, for a pseudo-vertex that satisfies the
conditions of Corollary 1, the conditions of Theorem 3 from [18] are satisfied.
Therefore, for the coordinates of the points to which the optimal trajectories
come in the vicinity of x0, the equality

lim
x1→x0,x1<x0

x1 − x0

x2(x1) − x0
= 0. (36)

holds.

When studying diffeomorphisms in the neighborhood of pseudo-vertices, the
question arises on which parameter domain they set the coordinates of the bisec-
tor points. In general, to do this, you need to find all the junction points of the
smooth branches of the bisector. However, for some special cases of the target
set, it is possible to write a system of equations that sets the limits for changing
the parameters.
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Proposition 1. Let the set A be a subplot of a smooth function y = f(x) given
by gluing three smooth functions

y(x) =

⎧⎨
⎩

y1(x), x ∈ (−∞, x(1)],
ax + b, x ∈ (x(1), x(2)],
y2(x), x ∈ (x(2),∞).

(37)

If the set A has exactly two pseudo-vertices
(
x1, f

(
x(1)

))
and

(
x1, f

(
x(2)

))
,

and the bisector has exactly one bifurcation point x∗ = (x∗, y∗), then the set of
projections consists of three points

Ω∗ = {x1,x2,x∗},

where

x1 =
(
x1, y1

(
x(1)

))
,x2 =

(
x2, y2

(
x(2)

))
,x∗ = (x∗, ax∗ + b) ,

for abscissa points, inequalities are fulfilled

x1 < x(1), x(1) < x∗ < x(2), x2 > x(2).

At the same time, there are relations

arctan y′
1(x1) + arctan y′

2(x2) = 2 arctan
y2(x2) − y1(x1)

x2 − x1
, (38)

xc −

√
(x2 − xc)2 +

(
y2(x2) − x(2) + a(xc − x2)

)
1 + a2 =

= xc −

√
(x1 − xc)2 +

(
y1(x1) − x(1) + a(xc − x1)

)
1 + a2 .

(39)

Here, the value xc is found by formula (20), in which x0 = x(2) is taken as the
abscissa x0, and y(x) = y2(x) is taken as the function of y(x). Similarly, the
value of xc is found by the formula (25), in which the abscissa x0 is x0 = x(1)

taken, and the function of y(x) is taken y(x) = y1(x).

Proof. If the bifurcation point is the only one, then it is the junction of the three
branches of the bisector. And the set of its projections on A consists of exactly
three elements. From the condition that the subplot of the function (37) has two
pseudo-vertices, it follows that one of the projections lies between the pseudo-
vertices on the graph of the function f(x), and the other two are on opposite
sides of the pseudo-vertices. For abscissae x1 ∈ (−∞, x(1)), x2 ∈ (x(2),∞) of the
points from the segment of normals to the plot gr f(x), deferred to the bifurcation
point should be equal. In terms of functions yi(x), i = 1, 2, and their derivatives
y′i(x), i = 1, 2 this means the equality (38) is fulfilled, see, for example, formula
(3.1) from paper [17]. At the same time, according to Theorem 1, the abscissa
x∗ of the point x∗ and the abscissa x2 of the point x2 are connected by equality



Analytical Construction of the Singular Set 303

(19). According to Corollary 1, the abscissa x∗ of the point x∗ and the abscissa
x1 of the point x1 are connected by equality (26). Hence, for the coordinates x1

and x2, the right-hand sides of equalities (19) and (26) coincide (provided that
x(1) and x(2), respectively, are taken as the coordinates of the pseudo-vertices in
them). Therefore, equality (39) holds true.

4 Example of the Problem Solution

Let’s consider time-optimal problem with dynamics (1) solution by selecting a
scattering curve if the set A is a function sub plot

y(x) =

⎧⎨
⎩

2 sec(x + 1) − 2, x ∈ (−1 − π/2,−1],
0, x ∈ (−1, 1],
cosh(x − 1) − 1, x ∈ (1,∞).

(40)

The target set boundary analysis demonstrates that there is a pseudo-vertex
x0 =

(
x0, y(x0)

)
= (1, 0), where Theorem 1 conditions are fulfilled. It corre-

sponds to the bisector extreme point, with coordinates found from (31), (32):
ŷ = (1, 1). According to the Eq. (27), the intersection point abscissa of the tan-
gent to the plot of the function (40) at the point x2 > x0 and the line y = 0,
which coincides with a part of this plot at x < 1, is defined as

x∗
c(x2) = x2 − cosh(x2 − 1) − 1

sinh(x2 − 1)
.

By substituting x∗
c(x2) into (26), a bisector mapping in the right pseudo-vertex

semi-neighborhood for the interval (1, 2.538) is obtained:

x1(x2) = x2 − sinh(x2 − 1). (41)

The target set boundary analysis demonstrates that there is another pseudo-
vertex x∗

0 =
(
x∗
0, y(x∗

0)
)

= (−1, 0), where Corollary 1 conditions are fulfilled.
It corresponds to the bisector extreme point, with coordinates found from (33),
(34): ŷ = (−1, 0.5). According to the Eq. (30), the intersection point abscissa of
the tangent to the plot of the function (40) at the point x1 < x0 and the line
y = 0, which coincides with a part of this chart at x > x0, is defined as

x∗
c(x1) = x1 − cos(x1 + 1) − cos2(x1 + 1)

sin(x1 + 1)
.

By substituting x∗
c(x1) into (29), a bisector mapping in the right pseudo-vertex

semi-neighborhood for the interval (−2.059,−1), is obtained (on rearrange-
ments):

x2(x1) = x1 − tan
x1 + 1

2

(√
4 tan2(x1 + 1) − cos2(x1 + 1) + cos(x1 + 1)

)
.

(42)
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The mapping chart (41) as a red curve and the mapping chart (42) as a blue curve
are shown in Fig. 1. From the limit position of the tangent to the x1 = x1(x2)
and x2 = x2(x1) charts in the neighborhood of the pseudo-vertices, it can be
seen that the limit relations (35) and (36) are satisfied. Figure 1 also shows in
green the ploy of the dependence x̆2 = x̆2(x̆1) between the abscissas of the
projections of the points of the third branch of the bisector L(A). There is no
analytical expression for this dependence, it is found as a numerical solution of
a differential equation with x̆1 and x̆2.

The boundary Γ of the target set (green line), the scattering curve L(A) (red
curve) and the level lines Φ with a step 0.4 (blue lines) are shown in Fig. 2. Note
that the function (40) satisfies the conditions imposed on the function (37) in
Proposition 1. Therefore, for the coordinates x1, x∗, x2 of the projections of the
bifurcation point, the system (38), (39) is valid. The normals to the plot gr y(x)
constructed at these points intersect at the point (0.3315, 2.413). The plot of the
optimal result function u(x, y) on a grid with a cell 0.05×0.05 is shown in Fig. 3.
The numerical construction of the approximation of the optimal result function
was computed using the modernized software package [20].

Fig. 1. Charts of the dependencies of the abscissas x1 = x1(x2), x2 = x2(x1) and
x̆2 = x̆2(x̆1) of the points to which the optimal trajectories come from the bisector.
(Color figure online)
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Fig. 2. The boundary Γ of the target set, the bisector L(A) and the level lines Φ of
the optimal result function u(x, y). (Color figure online)
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Fig. 3. Plot of the optimal result function u(x, y) in the time-optimal problem.

5 Conclusion

For one class of planar time-optimal control problems for the case of a closed
convex set, conditions imposed on the target boundary are determined, thus,
enabling to construct a singular set of solutions in an explicit analytical form.
Based on analytical equations obtained, algorithms for constructing level lines
and a chart of the optimal result function are proposed. Example of control
problem with different pseudo vertex of the target set is presented, for which
parts of singular set are constructed analytically.
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Abstract. The fuzzy core is well-known in theoretical economics, it
is widely applied to model the conditions of perfect competition. In
contrast, the original author’s concept of fuzzy contractual allocation
as a specific element of the fuzzy core is not so widely known in the lit-
erature, but it also represents a (refined) model of perfect competition.
This motivates the study of its validity: the existence of fuzzily con-
tractual allocations in an economic model; it also implies the existence
(non-emptiness) of the fuzzy core and develops an approach from [15].
The proof is based on two well-known theorems: Michael’s theorem
on the existence of a continuous selector for a point-to-set mapping
and Brouwer’s fixed point theorem. In literature, only the non-emptiness
of the fuzzy core was proven under essentially stronger assumptions—
typically, it applies replicated economies and Edgeworth equilibria.

Keywords: Fuzzy core · Fuzzy contractual allocation · Edgeworth
equilibria · Perfect competition · Existence theorems

1 Introduction

In modern economic theory, the idea of perfect competition is implemented
in many ways. Among others one can find the famous Aumann [3] approach based
on a model with a non-atomic set of economic agents, non-standard economies
according to Brown–Robinson [5] and, of course, the asymptotic Debreu–Scarf
Theorem [6], as well as other results, including the contractual approach devel-
oped by the author. The history of the idea of perfect competition goes back
to Edgeworth and his well-known conjecture [7] that the core (contract curve)
shrinks into equilibrium. The proof of this conjecture, based on the idea of repli-
cation of economic agents, was proposed in [6]. Later it turned out that the limit
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allocations from the core of the replicated economy, named by Aliprantis as Edge-
worth equilibria, are elements of the fuzzy core of the economy—a concept intro-
duced in [2]. Edgeworth equilibrium is an attainable allocation whose r-fold rep-
etition belongs to the core of the r-fold replica of the original economy, for any
positive integer r.

Due to Debreu–Scarf theorem on the limit coincidence of equilibria
and the core for the replicated economy, the fuzzy core was started to be
also applied to state the existence of competitive equilibrium. As a result, now
the fuzzy core is widely used in theoretical economics, e.g. see [1,8,9]. One can
see also [4] as one of the latest results on the existence of fussy core (under essen-
tially stronger assumptions than in [15]). The original author’s concept of fuzzy
contractual allocation [10,12–14] is not so widely known in the literature, but it
also represents an effective model of perfect competition in its simplest form.
The idea of fuzzy contractual allocation is that, in the current contractual situa-
tion, agents can break contracts asymmetrically, without coordination with other
individuals and without transferring information about their intentions, i.e. act-
ing in a secret manner. Further, individuals can try to find a new contract, such
that this contractual interaction—a break and a signing of a new contract—is
beneficial to each of its participants. If this happens, we are talking about fuzzy
contractual domination. Allocations that are not dominated in this sense are
called fuzzy contractual. They have the highest level of stability and, as it fol-
lows from the analysis, every fuzzy contractual allocation belongs to the fuzzy
core and presents competitive equilibrium. This allows us to state that it is
a model of perfect competition.

Thus, both notions—fuzzy core and fuzzy contractual allocation—play key
roles in modern economic theory, and the conditions under which they exist
have a high theoretical meaning. The paper examines this problem and states
the existence of fuzzy contractual allocations for an economy under very weak
conditions1. This also implies the non-emptiness of the fuzzy core. Our proof is
based on two well-known theorems, they are Michael’s theorem on the existence
of a continuous selector for a point-to-set mapping and Brouwer’s fixed point
theorem. A direct proof of the existence of fuzzy contractual allocations is a new
result, while the non-emptiness of the fuzzy core is well known (under stronger
assumptions). In [15] I suggested the direct proof of fuzzy core non-emptiness,
which is efficient and shortest one among others; it also was stimulating our mod-
ern study, which develops our approach. As a result, I have produced new results
that can be incorporated in proving the existence of Walrasian equilibrium
in economies, even with infinite-dimensional commodity spaces, e.g. see [11].

1 A convex model with a compact set A(X) of feasible allocations and preferences
that are continuously extendable to a neighborhood of A(X).
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2 An Economic Model, Fuzzy Core and Contractual
Approach

I consider a typical exchange economy in which L denotes the (finite-dimen-
sional) space of commodities. Let I = {1, . . . , n} be a set of agents (traders
or consumers). A consumer i ∈ I is characterized by a consumption set Xi ⊂ L,
an initial endowment ei ∈ L, and a preference relation described by a point-
to-set mapping Pi : X ⇒ Xi where X =

∏
j∈I Xj and Pi(x) denotes the set

of all consumption bundles strictly preferred by the i-th agent to the bundle xi

relative to allocation x ∈ X. It is also can be applied the notation yi �i xi which
is equivalent to yi ∈ Pi(x) (to simplify notations; preferences can indirectly
depend on other agents consumption xj ∈ Xj j ∈ I, j �= i). So, the pure
exchange model may be represented as a triplet

E = 〈I, L, (Xi,Pi, ei)i∈I〉.

Let us denote by e = (ei)i∈I the vector of initial endowments of all traders
of the economy. Denote X =

∏
i∈I Xi and let

A(X) = {x ∈ X |
∑

i∈I
xi =

∑

i∈I
ei }

be the set of all feasible allocations. Now let us recall some definitions.
A pair (x, p) is said to be a quasi-equilibrium of E if x ∈ A(X) and there

exists a linear functional p �= 0 onto L such that

〈p,Pi(x)〉 ≥ pxi = pei, ∀i ∈ I.

A quasi-equilibrium such that x′
i ∈ Pi(x) actually implies px′

i > pxi is a Wal-
rasian or competitive equilibrium.

An allocation x ∈ A(X) is said to be dominated (blocked) by a nonempty
coalition S ⊆ I if there exists yS ∈ ∏

i∈S Xi such that
∑

i∈S yS
i =

∑
i∈S ei and

yS
i ∈ Pi(x) ∀i ∈ S.

The core of E , denoted by C(E), is the set of all x ∈ A(X) that are blocked
by no (nonempty) coalition.

Everywhere below we assume that model E satisfies the following assumption.
(A) For each i ∈ I, Xi ⊂ L is a convex closed subset, ei ∈ Xi and, for every

x = (xj)j∈I ∈ A(X):

Pi(x) = co[Pi(x) ∪ {xi}] \ {xi}

is a convex set.
Notice that due to (A) preferences may be satiated, i.e., Pi(x) = ∅ is possible

for some agent i and x ∈ X. However, if Pi(x) �= ∅, then preference is locally
non-satiated at the point x.

For the existence of objects under study, we apply the following (weak) pref-
erence continuity assumption.
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(C) For each i ∈ I there is a point-to-set mapping P̂i : X ⇒ L such
that for every x ∈ A(X) the image P̂i(x) is convex, open in L, implements

Pi(x) = P̂i(x) ∩ Xi

and for every yi ∈ P̂i(x) the set

P̂−1
i (yi) = {z ∈ X | yi ∈ P̂i(z)}

is open one in X.

Remark 1. Notice that our modern assumptions (A) and (C) are a bit stronger
of applied in [15]. In (A) I assume in addition that αyi + (1 − α)xi ∈ Pi(x)
for every yi ∈ Pi(x) and α ∈ [1, 0). For (C) now I assumed also that images
Pi(x), x ∈ A(X) can be extended to a neighbourhood of Xi, i ∈ I.

Also, below without loss of generality to simplify notations, I will assume
that Xi is convex and has full dimension, i.e. int Xi �= ∅ ∀i ∈ I.

In the framework of model E , a formal mechanism of contracting and recon-
tracting can be introduced. This mechanism reflects the idea that any group
of agents can find and realize some (permissible) within-the-group exchanges
of commodities referred to as contracts. The mechanism defines the rules of con-
tracting.

2.1 Fuzzy Core and Fuzzy Contractual Allocations

The concept of the fuzzy core is fruitfully working in the theory of economic
equilibrium. I recall that any vector

t = (t1, . . . , tn) �= 0, 0 ≤ ti ≤ 1, ∀i ∈ I
maybe identified with a fuzzy coalition, where the real number ti is interpreted
as the measure of agent i participation in the coalition. A coalition t is said
to dominate (block) an allocation x ∈ A(X) if there exists yt ∈ ∏

I Xi such that
∑

i∈I
tiy

t
i =

∑

i∈I
tiei ⇐⇒

∑

i∈I
ti(yt

i − ei) = 0 (1)

and
yt

i�i xi, ∀i ∈ supp(t) = {i ∈ I | ti > 0}. (2)
The set of all feasible allocations which cannot be dominated by fuzzy coalitions
is called the fuzzy core of the economy E and is denoted by Cf (E).

We begin with a study of the specific properties of the fuzzy core allocations.
The elements of fuzzy core are defined via conditions (1), (2) which for non-
satiated preferences, i.e., when Pi(x) �= ∅, ∀i ∈ I, the domination may be equiv-
alently rewritten in the form2

0 /∈
∑

i∈I
ti(Pi(x) − ei).

2 Admitting some inaccuracy in formulas here and below, we identify a vector
with a one-element set containing it.
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Thus x ∈ Cf (E) is now equivalent to3

0 /∈ co[∪
I
(Pi(x) − ei)], (3)

that after applying separation theorem allows us to conclude that the elements
of the fuzzy core are quasi-equilibria. Below we propose other useful in appli-
cations characterizations of fuzzy core points presented in “geometrical” terms
(introduced in [10]). To this end, let us consider the sets

Υi(x) = co(Pi(x) ∪ {ei}), i ∈ I.

Due to the convexity of Pi(x), for Pi(x) �= ∅, conclude

co(Pi(x) ∪ {ei}) = ∪
0≤λ≤1

[λPi(x) + (1 − λ)ei] = ∪
0≤λ≤1

λ(Pi(x) − ei) + ei, i ∈ I.

This implies that the condition z + e ∈ ∏
I Υi(x), where e = (e1, . . . , en), is

equivalent to the existence of 0 ≤ λi ≤ 1 and [yi ∈ Pi(x) �= ∅ and yi = ei,
if Pi(x) = ∅], i ∈ I such that

z = (λ1(y1 − e1), . . . , λn(yn − en)).

Hence, due to (1), (2)

x ∈ Cf (E) ⇐⇒ � z ∈ LI , z �= 0 : z + e ∈
∏

I
Υi(x) &

∑

i∈I
zi = 0 ⇐⇒

∏

I
Υi(x)

⋂
A(LI) = {e}, (4)

where A(LI) is a subspace defined by the balance constraints of a pure exchange
economy:

A(LI) = {(z1, . . . , zn) ∈ LI |
∑

i∈I
zi =

∑

i∈I
ei}.

Notice that characterization (4) is also valid for satiated preferences. In doing
so, we have proven the following

Proposition 1. An allocation x ∈ A(X) is the element of fuzzy core if and
only if relation (4) is true.

The direct and effective proof of fuzzy core non-emptiness is based on relation
(4) and I suggested it earlier in [15]. In the case of a 2-agent economy, Fig. 1
presents a graphic illustration of conducted analysis in the Edgeworth’s box
for a 2-goods economy. In this case, an allocation x = (x1, x2) lying in the fuzzy
core is equivalent to the convex hulls of P1(x1) ∪ {e1} and of [ē−P2(ē−x1)] ∪
{e1}, ē = e1 + e2 having only one point, e1, in common.

3 Clearly, for a dominating fuzzy coalition t one may always think that
∑

i∈I ti = 1.
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Fig. 1. Fuzzy core

One more important notion, which probably still is not good enough qualified
in theoretical economy, is the notion of fuzzy contractual allocation. First I recall
briefly the conceptual apparatus of the theory of barter contracts, see [10,12,13].

Any vector v = (vi)i∈I ∈ LI satisfying
∑

i∈I vi = 0 is called a barter
(exchange) contract. Such barter contracts are used in pure exchange economies,
as well as in the consumption sector in the economy with production. In what fol-
lows, we assume that any barter agreement is valid. With every finite collection
V of (permissible) contracts, it can be associated allocation x(V ) = e+

∑
v∈V v,

where the vector e = (e1, . . . , en) ∈ X is an initial endowments allocation. If
e +

∑
v∈U v ∈ X ∀U ⊆ V , i.e., if any part of the contracts is broken one can

get anyway a feasible allocation, then we call V a web of contracts. The con-
sideration of webs of contracts allows us to study a huge massive of contractual
interactions including different possibilities of contracts breaking (one of them
is a fuzzy contractual interaction) for details see [10,12,13].

Let V be a web of contracts. For every v ∈ V we consider and put into cor-
respondence an n-dimension vector

tv = (tv1, t
v
2, . . . , t

v
n), 0 ≤ tvi ≤ 1, ∀i ∈ I,

and let
vt = (tv1v1, t

v
2v2, . . . , t

v
nvn)

be the vector of commodity bundles formed from contract v = (vi)i∈I when
all agents “break” individual bundles (fragments) of this contract in shares
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(1 − tvi )i∈I . Denote T (V ) = T = {tv | v ∈ V } and introduce

V T = {vt | v ∈ V, tv ∈ T}, Δ(V T ) =
∑

vt∈V T

vt. (5)

Definition 1. An allocation x ∈ A(X) is called fuzzy contractual if there exists
a web V such that x = x(V ) and for every T (V ) there is no barter contract
w = (w1, . . . , wn) ∈ LI ,

∑
i∈I wi = 0, such that for

ξi = ξi(T, V,w) = ei + Δi(V T ) + wi, i ∈ I (6)

one has
ξi �i xi ∀i : ξi �= xi. (7)

So, for this kind of allocation the negation of domination means that the imple-
menting web of contracts is stable relative to asymmetric partial breakings of con-
tracts with or without concluding a new contract.

In economic terms, this notion can be explained in the following way. During
recontracting agents may make mistakes, coordination among coalition members
may work imperfectly, information can be hiden and so on. As a result, an agent
i can (erroneously) think that after the partial breaking of current contracts
he/she will have a commodity bundle xT

i = ei + Δi(V T ) and that commodities
from xT

i may be mutually beneficial exchanged so that to dominate the current
allocation x = (xi)I . If allocation x(V ) is not fuzzy contractual, then the last
possibility may (potentially) destroy agreements and allocation will be changed.
Thus fuzzy contractual allocations are protected from this kind of agreement
destructions. Notice, that agents also allow only break contracts and do not
conclude a new one.

We continue from a preliminary result describing mathematical properties
of fuzzy contractual allocations, that is of interest in its own right.

Proposition 2. An allocation x ∈ A(X) is fuzzy contractual if and only if4

Pi(x) ∩ [xi, ei] = ∅ ∀i ∈ I (8)

and ∏

I
[(Pi(x) + co{0, ei − xi}) ∪ {ei}]

⋂
A(LI) = {e}. (9)

Notice that in this proposition Pi(x) = ∅ is possible for some i ∈ I: by def-
inition ∅ + A = ∅ for any A ⊆ L. Condition (8) indicates that a partial break
of contracts without signing of a new one cannot be beneficial. The requirement
(9) denies the existence of a dominating coalition after the partial asymmetric
break of the contract v = (x − e).

Figure 2 illustrates Proposition 2 result in the Edgeworth’s box. Here
P̃2(x2) = ē−P2(ē−x1), ē = e1 + e2 and one can see that preferred bundles are
extended along linear segment with endpoints x1, e1.
4 A linear segment with ends a, b ∈ L is the set [a, b] = co{a, b} = {λa + (1 − λ)b |
0 ≤ λ ≤ 1}.
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Fig. 2. Fuzzy contractual allocations

Proof of Proposition 2. Let x be a fuzzy contractual allocation implemented
by a web V , i.e., x = x(V ) for some web V , satisfying Definition 1. Then (8) is
clearly true one. Suppose that (9) is false and therefore does exist y = (yi)I �= e
which belongs to the left part of equality (9). Consider coalition S = {i ∈ I |
yi �= ei}. Notice Pi(x) �= ∅, i ∈ S and find zi ∈ Pi(x), i ∈ S such that yi =
zi + λi(ei − xi), for some real 0 ≤ λi ≤ 1, i ∈ S and yi = ei, i /∈ S. Determine
wi = yi − ei, i ∈ I. Since

∑
i∈I yi =

∑
i∈I ei then

∑
I wi = 0 and therefore

w = (wi)i∈I is a contract with supp (w) = S �= ∅. One can write

zi = yi − ei + λi(xi − ei) + ei = wi + λi

∑

v∈V

vi + ei, i ∈ S.

Now for all v ∈ V put ti = tvi = λi, i ∈ S, and ti = 1, i /∈ S and apply
T (V ) = {tv}v∈V for allocation x = x(V ). We have xT = e + Δ(V T ), whereby
construction xT

i = ei + ti(xi − ei), ∀i ∈ I. Therefore, by construction

ξi = wi + xT
i = zi ∈ Pi(x), ∀i ∈ S = {j ∈ I | xi �= ξi},

that contradicts (7).
Show that if a contractual allocation x satisfies (8) and (9) then it is fuzzy

contractual relative to the web V = {x − e}. Assume contrary and find T = {t}
and a contract w = (wi)I , supp (w) = S �= ∅, such that

wi + ti(xi − ei) + ei ∈ Pi(x), ∀i ∈ S ⇐⇒ zi = wi + ei ∈ Pi(x) + ti(ei − xi), ∀i ∈ S.

Let us determine zi = ei for i /∈ S. Now due to contract’s definition conclude∑
i∈I zi =

∑
i∈I ei that implies the allocation z �= e belongs to the left part

of (9) and this is a contradiction. �

Notice that as soon as for every feasible allocation x = (xi)I we have

ei ∈ Υi(x) ⊂ (Pi(x) + co{0, ei − xi}) ∪ {ei}, ∀i ∈ I,
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then due to Propositions 1, 2 every fuzzy contractual allocation belongs
to the fuzzy core of economy. However, in general, the property of an alloca-
tion to be fuzzy contractual is still a bit stronger than being an element of fuzzy
core. The following result clarifies the relationships between two fuzzy notions.

Lemma 1. Let x ∈ A(X) and Pi(x) �= ∅ for all i ∈ I. Then x ∈ Cf (E) implies:
∏

i∈I
(Pi(x) + co{0, ei − xi})

⋂
A(LI) = ∅. (10)

The comparing of formulas (10) and (9) makes clearer the difference between
fuzzy core allocation and fuzzy contractual one. One can see that this difference
is not too big that allows us in appropriate circumstances to interpret alloca-
tions from fuzzy core as fuzzy contractual ones.5 Moreover, the fact that every
element of fuzzy core is a quasi-equilibrium (this is why fuzzy core is so popular
in existence theory) can be also easily derived from formula (10). In fact, sepa-
rating sets in (10) by a (non-zero) linear functional π = (p1, . . . , pn) ∈ LI one
can conclude:

(i) pi = pj = p �= 0 for each i, j ∈ I; this is so because π is bounded on A(LI) =
{(z1, . . . , zn) ∈ LI | ∑

i∈I zi =
∑

i∈I ei}. So, one can take p as a price
vector.

(ii) Due to construction and in view of preferences are locally non-satiated
at the point x ∈ A(X) the points xi and ei belong to the closure
of Pi(x)+co{0, ei − xi}. Therefore, via separating property we have

∑

j �=i

pej + pxi ≥
∑

I
pej ⇒ pxi ≥ pei ∀i ∈ I,

that is possible only if pxi = pei ∀i ∈ I. So, we obtain budget constraints
for consumption bundles.

(iii) By separation property for each i we also have

〈p,Pi(x) + co{0, ei − xi}〉 ≥ pei,

that by (ii) implies 〈p,Pi(x)〉 ≥ pxi = pei. So we proved that p is
(quasi)equilibrium prices for allocation x = (xi)i∈I .

As a result, one can see that if an economic model is such that every quasi-
equilibrium is equilibrium, then every fuzzy core allocation is fuzzy contactual
one and therefore two fuzzy concepts are equivalent each other. Conditions deliv-
ering this fact are well known in literature; for example, it is the case when
an economy is irreducible. Moreover there is also a nice possibility to describe
fuzzy contractual allocation as an equilibrium with nonstandard prices, see [14].

5 Earlier in literature allocations from fuzzy core were interpreted only as Edgeworth’s
equilibria and served as a technical tool more than an economic concept.
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3 Existence Theorems

Theorem 1. Let in an exchange economy A(X) be bounded and assumptions
(A), (C) hold. Then fuzzy contractual allocations do exist.

Corollary 1. In Theorem 1 conditions fuzzy core is non-empty, i.e. Cf (E) �= ∅.

The existence of contractual core, fuzzy and fuzzy-contractual allocations
can be established by applying Brouwer (or Kakutani) fixed point theorem
and Michael’s [16] continuous selector theorems. The proof of Theorem 1 is
presented below; we use characterization described in Proposition 2.

4 Proofs

For the further analysis we need auxiliary lemmas. Let NS ⊂ A(X) be an area
of all lower unstable contractual allocations, i.e. x ∈ A(X) for which (8) is false;
also let Ω ⊂ A(X) be a subset consisting the points x ∈ A(X) for which (9) is
false. Below I study some properties of these sets.

Lemma 2. If economy E obeys (A) and (C), then NS and Ω are open in A(X).

Proof. An area of all lower stable contractual allocations is specified as

LS = {x = (xi)i∈I ∈ A(X) | Pi(x) ∩ [xi, ei] = ∅ ∀i ∈ I}

and now I consider its supplement NS = A(X) \ LS, this is the set of all
allocations for which there is an agent interested in a partial break of current
contract v = x − e. Suppose Pi(x) ∩ [xi, ei] �= ∅ for some i ∈ I. It means there
is yi ∈ P̂i(x) ∩ [xi, ei], yi �= xi. Since P̂i(x) is assumed to be an open one, there
is a finite set A ⊂ P̂i(x) such that

yi ∈ int(coA) ⇒ x ∈ Θ =
⋂

a∈A

P̂−1
i (a),

where Θ ⊂ X is open in X. Due to P̂i(z), z ∈ A(X) are also assumed to be
convex ones we conclude yi ∈ coA ⊂ P̂i(z) ∀z ∈ Θ. Now if ε > 0 is so that

zi ∈ L, ||zi − yi|| < ε ⇒ zi ∈ coA & x′ ∈ A(X), ||x′ − x|| < ε ⇒ x′ ∈ Θ,

then for these allocations one can conclude

[x′
i, ei] ∩ coA �= ∅ ⇒ [x′

i, ei] ∩ Pi(x′) �= ∅ ∀x′ ∈ A(X) : ||x′ − x|| < ε.

As a result we conclude NS is the neighbourhood of every its point and, there-
fore, is an open subset of A(X).
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Next I consider Ω ⊂ A(X). The reasoning is similar to that presented above:
for every x ∈ Ω one can find t = (ti)i∈I ∈ [0, 1]I and a contract w = (wi)i∈I ,∑

i∈I wi = 0, such that

yi = wi + ti(xi − ei) + ei ∈ Pi(x), ∀i : yi �= xi.

For these i ∈ I there are finite Ai ⊂ L such that

yi ∈ int(coAi) ⊂ P̂i(z), ∀z ∈
⋂

i:yi �=xi

P̂−1
i (Ai) ∩ A(X) ⊂ Ω.

It implies there is ε > 0 such that

z = (zi)i∈I ∈ A(X), ||z − x|| < ε ⇒ yi = wi + ti(zi − ei) + ei ∈ P̃i(z), ∀i : yi �= xi.

As a result Ω ⊂ A(X) is a neighbourhood of every its point and therefore it is
an open subset in A(X), as we wanted to prove. �

Let us study other properties of these allocations from Ω. Assuming x ∈ Ω
we consider the set of contracts ϕ(x) that fuzzily block this allocation:

ϕ(x) = {(vi, ti)I ∈ (L × [0, 1])I |
∑

I
vi = 0, v �= 0 : ∀i /∈ supp (v), ti = 1 &

∀i ∈ I vi + ti(xi − ei) + ei = gi(x), ∀i ∈ supp (v), gi(x) �i xi}. (11)

The following lemma presents crucial properties of the point-to-set mapping ϕ(·).
First I recall the definition of lower hemicontinuous6 point-to-set mapping.

Definition 2. Let Y , Z be topological spaces. A point-to-set mapping ψ : Y ⇒ Z
is called lower hemicontinuous (l.h.c.) iff

ψ−1(V ) = {y ∈ Y | ψ(y) ∩ V �= ∅}
is open for every open V ⊂ Z. For a metric spaces Y , Z a l.h.c. mapping can be
equivalently characterized as follows:

For every y ∈ Y , z ∈ ψ(y) ⊂ Z and every sequence ym → y there is a sub-
sequence ymk

∈ Y and a sequence zk ∈ ψ(ymk
), m, k ∈ N such that zk → z

for k → ∞.

Lemma 3. If x ∈ Ω the set ϕ(x) is convex and non-empty. Moreover, the map-
ping ϕ : Ω ⇒ (L × [0, 1])I is lower hemicontinuous one.

Proof. I first state the convexity of ϕ(x). Let (w′, t′), (w′′, t′′) ∈ ϕ(x) and α ∈
(0, 1). Then, from the convexity of preferences (A), having in mind t′i = 1 for i /∈
supp (w′) and, similarly, t′′i = 1 for i /∈ supp (w′′) we have:

∀i ∈ supp (w′) ∪ supp (w′′)
6 According to the modern views, the term semi-continuous mapping is specifically
applied for a function—point-to-point map—and hemicontinuous for a correspon-
dence.
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α(w′
i + t′i(xi − ei) + ei) + (1 − α)(w′′

i + t′′i (xi − ei) + ei) �i xi.

Thus, with respect to t = αt′ + (1 − α)t′′, for any α ∈ [0, 1] the contract

w = αw′ + (1 − α)w′′ : (w, t) ∈ ϕ(x).

Next, we show that due to (C) point-to-set mapping ϕ(·), defined in (11) is
lower hemicontinuous.

Indeed, let (v, t) ∈ ϕ(x) be fixed. Now according to (11), for i ∈ I such
that vi �= 0 we have

gi(x) = vi + ti(xi − ei) + ei ∈ Pi(x).

Clearly, without loss of generality it is enough to study the case gi(x) ∈ intPi(x).
Now let Ai ⊂ int Pi(x) be a finite subset such that gi(x) ∈ int(coAi), i.e. coAi

is a neighborhood of gi(x). We specify

Vi =
⋂

a∈Ai

P−1
i (a).

Due to (C) and (A) this is an open neighborhood of x ∈ A(X) such that gi(x) ∈
coAi ⊂ Pi(y) for every y ∈ Vi. So, if xm ∈ A(X), xm → x for the natural
m → ∞, then for some k ∈ N we have: ∀m ≥ k ∀i ∈ supp (v)

gi(xm) = vi + ti(xm
i − ei) + ei ∈ coAi ⊂ Pi(xm) & gi(xm) → gi(x).

As a result, via (11) one concludes (vm, tm) = (v, t) ∈ ϕ(xm) for all m ∈ N
big enough. This proves, by definition, ϕ(·) is lower hemicontinuous in x ∈ Ω ⊂
A(X). �

In the proof of Lemma 4 below I apply the following Michael theorem (see
[16] p. 368, Th 3.1′′′, (c)) on the existence of a continuous selector in its simplified
finite-dimensional presentation.7

Theorem 2 (Michael, 1956). Let Y and Z be subsets of finite-dimensional
linear spaces. Then every l.h.c. point-to-set mapping ψ : Y ⇒ Z having nonempty
convex images ψ(y) ⊂ Z ∀y ∈ Y has a continuous selector.

Lemma 4. There is a continuous function h : Ω → A(X) such that for some
continuous ξi : Ω → Xi, γi : Ω → [0, 1] such that ξi(x) ∈ Pi(x) ∪ {xi} one has

hi(x) = ξi(x) + γi(x)(ei − xi), ∀x ∈ Ω, i ∈ I
and, moreover, for any x ∈ Ω there exists i ∈ I such that hi(x) = ξi(x) �i xi,
i.e. ξi(x) ∈ Pi(x) and γi(x) = 0.
7 Note that in original paper item (c) has a typo for the range of φ : X → K(Y ).
Author denoted K(Y ) as a set of all convex subsets of Y , but speak and prove
the result for a narrower class of sets D(Y ) ⊂ K(Y ), see p. 372. Here I present a less
general result, to avoid a cumbersome specification of D(Y ).
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Proof. According to assumptions and Lemma 3, the correspondence ϕ(·) spec-
ified in (11) obeys all requirements of Michael’s theorem on the existence
of continuous selector: a lower hemicontinuous correspondence having domain
Ω ⊂ A(X), and with convex non-empty images. Thus, there is a continuous
mapping satisfying

(v, t)(·) : Ω → (L × [0, 1])I such that (v(x), t(x)) ∈ ϕ(x) ∀x ∈ Ω.

By definition, we have
∑

i∈I vi(x) = 0 and, ti(x) = 1, gi(x) = xi for i /∈
supp (v(x)) and

∀i ∈ supp (v), vi(x) + ti(x)(xi − ei) + ei = gi(x) ∈ P(x).

Therefore, for fi(x) = vi(x) + ei = gi(x) + ti(x)(ei − xi), i ∈ I we obtain∑
i∈I fi(x) =

∑
i∈I ei. Thus, we find a continuous mapping f : Ω → A(LI)

such that

∀x ∈ Ω e �= f(x) ∈
∏

i∈I
[(Pi(xi) + co{0, ei − xi}) ∪ {ei}]

⋂
A(LI).

Now we define tmin(x) = minj∈I(tj(x)) and specify

hi(x) =
xi + gi(x) + (ti(x) − tmin(x))(ei − xi)

2
, x ∈ Ω, i ∈ I. (12)

So, as ∑

i∈I
(gi(x) + ti(x)(ei − xi)) =

∑

i∈I
ei,

∑

i∈I
(ei − xi) = 0

we conclude ∑

i∈I
hi(x) =

∑

i∈I
ei.

Moreover, for i ∈ I such that ti(x) = tmin(x) we have hi(x) = xi+gi(x)
2 that due

to xi ∈ cl Pi(x) and gi(x) ∈ Pi(x) gives hi(x) ∈ Pi(x). Now we need to show
only that hi(x) ∈ Xi ∀i ∈ Xi.

For gi(x) = xi one can put (ti(x)−tmin(x))
2 = αi ∈ [0, 1] and by (12) conclude

hi(x) = (1 − αi)xi + αiei ∈ Xi.

For gi(x) ∈ Pi(x) ⊂ Xi via (12) for βi = ti(x)−tmin(x) we have (1−βi)xi+βiei ∈
Xi and therefore

hi(x) =
gi(x)

2
+

(1 − βi)xi + βiei

2
∈ Xi.

This proves the map specified in (12) has range A(X). Now putting

ξi(x) =
xi + gi(x)

2
, γi(x) =

ti(x) − tmin(x)
2

, i ∈ I,

we can redefine the map h : Ω → A(X); it obeys all requirements of Lemma 4. �
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Proof of Theorem 1. Recall that
LS = {x = (xi)i∈I ∈ A(X) | Pi(x) ∩ [xi, ei] = ∅ ∀i ∈ I}

is an area of all lower stable contractual allocations and we consider its supple-
ment NS = A(X)\LS, this is the set of all allocations for which there is an agent
interested in a partial break of current contract v = x − e. For x ∈ NS condi-
tion (8) is false. Also we specified Ω ⊂ A(X) as a subset consisting the points
x ∈ A(X) for which (9) is false. Now let us suppose that

Ω ∪ NS = A(X)

and show that it is impossible. According to the assumptions and Lemma 2, NS
and Ω are an open subsets of A(X).

We specify q : NS → A(X) by formula

q(x) =
x + e

2

and “glue” this mapping with h(·) defined in Lemma 4, setting

f(x) = α(x)q(x) + β(x)h(x), x ∈ A(X),

where α : A(X) → [0, 1], β : A(X) → [0, 1] are continuous functions, such
that α(x) = 1 for x ∈ NS \ Ω, β(x) = 1 for x ∈ Ω \ NS, and α(x) + β(x) = 1
∀x ∈ A(X). For example they can be specified as

α(x) =
ρ(x, LS)

ρ(x, LS) + ρ(x, A(X) \ Ω)
, β(x) =

ρ(x, A(X) \ Ω)

ρ(x, LS) + ρ(x, A(X) \ Ω)
, x ∈ A(X),

where ρ(x, S) is a distance from the point x to the set S ⊂ A(X).8 Obvi-
ously, for Ω ∪ NS = A(X) the mapping f : A(X) → A(X) is continuous and,
by Brouwer’s theorem, it must have a fixed point x̄ = f(x̄). However, where is
it?

Suppose x̄ ∈ NS \ Ω. Then f(x̄) = q(x) = x+e
2 �= x̄, since otherwise x̄ = e /∈

NS.
Suppose x̄ ∈ Ω \NS. Then f(x̄) = h(x̄) = (hj(x̄))j∈I and by Lemma 4 there

is i ∈ I such that hi(x̄) ∈ Pi(x̄) that is impossible by (A).
Suppose x̄ ∈ NS ∩ Ω. Now f(x̄) = α(x̄)q(x̄) + β(x̄)h(x̄). Clearly α(x̄) > 0

and β(x̄) > 0, since the contrary is impossible. Recall that we also have hi(x̄) =
ξi(x̄) + γi(x̄)(ei − x̄i) ∀i ∈ I. Now for i0 ∈ I, which is interested in a partial
breaking of the contract x̄ − e, at the fixed point we have

x̄i0 = α

[

x̄i0 +
1
2
(ei0 − x̄i0)

]

+ β[ξi0(x̄) + γi0(x̄)(ei0 − x̄i0)]

= x̄i0 + α
1
2
(ei0 − x̄i0) + β[ξi0(x̄) − x̄i0 + γi0(x̄)(ei0 − x̄i0)] ⇒

[
1
2
α + βγi0(x̄)

]

(ei0 − x̄i0) + β(ξi0(x̄) − x̄i0) = 0. (13)

8 It is standardly defined as ρ(x, S) = infy∈S ρ(x, y).
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Clearly ξi0(x̄) = x̄i0 is impossible, otherwise (13) implies x̄i0 = ei0 . Therefore
ξi0(x̄) ∈ Pi0(x̄). Also at a fixed point x̄ ∈ NS for some λ ∈ (0, 1] we have

λ

[
1
2
α + βγi0(x̄)

]

= μ > 0, μ(ei0 − x̄i0) + x̄i0 ∈ Pi0(x̄).

At the same time, due to (ξi0(x̄) − x̄i0) ∈ Pi0(x̄) − x̄i0 and (A) we conclude

λβ(ξi0 (x̄) − x̄i0 ) ∈ Pi0 (x̄) − x̄i0 ⇒ ∃ηi0 (x̄) ∈ Pi0 (x̄) : λβ(ξi0 (x̄) − x̄i0 ) = ηi0 (x̄) − x̄i0 .

Now, due to (13) and (A) we have μ(ei0 − x̄i0) + ηi0(x̄) − x̄i0 = 0 ⇒
μ(ei0 − x̄i0) + x̄i0

2
+

ηi0(x̄)
2

= x̄i0 ⇒ x̄i0 ∈ coPi0(x̄) = Pi0(x̄),

which is impossible.
Thus, the assumption Ω ∪ NS = A(X) implies the existence of a continu-

ous mapping f : A(X) → A(X) with no fixed point in A(X). This contradicts
Brouwer’s theorem. So, the assumption that there are no fuzzy contractual allo-
cations lead us to a contradiction and it proves the theorem. �
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Linear Interpolation of Program Control
with Respect to a Multidimensional

Parameter in the Convergence Problem
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Abstract. We consider a control system containing a constant three-
dimensional vector parameter, the approximate value of which is reported
to the control person only at the moment of the movement start. The
set of possible values of unknown parameter is known in advance. An
convergence problem is posed for this control system. At the same time,
it is assumed that in order to construct resolving control, it is impossible
to carry out cumbersome calculations based on the pixel representa-
tion of reachable sets in real time. Therefore, to solve the convergence
problem, we propose to calculate in advance several resolving controls,
corresponds to possible parameter values in terms of some grid of nodes.
If at the moment of the movement start it turns out that the value of
the parameter does not coincide with any of the grid nodes, it is possible
to calculate the program control using the linear interpolation formu-
las. However, this procedure can be effective only if a linear combina-
tion of controls corresponding to the same “guide” in the terminology of
N.N. Krasovskii’s Extreme Aiming Method is used. In order to be able
to effectively apply linear interpolation, for each grid cell, we propose
to calculate 8 “nodal” resolving controls and use the method of divid-
ing control into basic control and correcting control in addition. Due to
the application of the latter method, the calculated solvability set turns
out to be somewhat smaller than the actual one. But the increasing of
accuracy of the system state transferring to the target set takes place.

Keywords: Control system · Convergence problem · Unknown
parameter · Program control · Linear interpolation

1 Introduction

One of the main directions of research in mathematical control theory [1,2] is
the reduction of the time required to calculate the resolving optimal control. To
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do this, for example, algorithms of the second order of accuracy with respect to
the time step are considered in papers [3–7]. The calculation of reachable sets
is reduced to the calculation of their boundaries in papers [8–10]. The ways to
reduce the number of points required to describe the reachable sets of control
systems in article [11]. However, all of the above methods are not fast enough
to calculate resolving control in real time. The need for such a fast construction
of permissive control may be arised if part of the information about the control
system becomes available only at the moment of the start of motion. An example
of such situation is described in [12]. According to this article, solving a control
problem with an incompletely known initial condition consists of three stages:

1) collecting information about the system,
2) applying this information to eliminate uncertainty,
3) transition to active control.

Firstly, we note, in the conditions of the system movement start, the control
person has very short period of time to switch from the second to the third stage
of this scheme. Secondly, a significant part of the uncertainties can be reduced
to the parametric uncertainty [13,14,16].

As a solution to this problem, in paper [15] the advance to construct resolving
controls corresponding to several values of an unknown parameter is proposed,
and, when the real value of the parameter is obtained at the start moment, we
can quickly construct resolving control using specially developed formulas for
program control interpolation with respect to a scalar parameter.

This paper is devoted to generalize the results of [15] in case of a multidi-
mensional vector parameter in the framework of the convergence problem for
a control system on a finite time interval. In this article we consider a three-
dimensional vector parameter as an example of a multidimensional vector param-
eter. This dimension is large enough to consider the result provable for an arbi-
trary dimension, while the presentation of the proof for the case of an arbitrary
dimension would lead to unnecessary piling up of formulas.

2 Problem Statement

Let the following control system is given on a finite time interval [t0, ϑ]:

dx

dt
= f(t, x(t), u(t), α), t ∈ (t0, ϑ),

x(t0) = x(0),
(1)

where t is the time, x(t) ∈ R
n is the phase vector of the system state, x(0) ∈ R

n

is the initial state, u(t) is the Lebesgue-measurable vector function (vector of
controls) with values from the compact set P ⊂ R

p, n and p are integers, α ∈ L
is a constant vector parameter, L is a compact in R

3.
We assume that the following conditions are satisfied.
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C1. The vector function f(t, x, u, α) is defined and continuous on [t0, ϑ] ×R
n ×

P × L and for any bounded and closed domain Ω ⊂ [t0, ϑ] × Rn there is a
constant L = L(Ω) ∈ (0,∞) such that

‖f(t, x(1), u, α) − f(t, x(2), u, α)|| ≤ L||x(1) − x(2)‖,

(t, x(i), u, α) ∈ Ω × P × L , i = 1, 2;

here ‖ · ‖ is the Euclidean norm of a vector in R
n.

Remark 1. Taking into account the condition C1, we obtain that the continuity
modules

ω(3)(δ) = max{||f(t, x, u∗, α) − f(t, x, u∗, α)|| :
(t, x, u∗, α), (t, x, u∗, α) ∈ D × P × L , ||u∗ − u∗|| ≤ δ}, δ ∈ (0,∞),

ω(4)(δ) = max{||f(t, x, u, α∗) − f(t, x, u, α∗)|| :
(t, x, u, α∗), (t, x, u, α∗) ∈ D × P × L , ||α∗ − α∗|| ≤ δ}, δ ∈ (0,∞),

are satisfied the limit relations ω(k)(δ) ↓ 0 as δ ↓ 0, k = 3, 4.

C2. There is a constant γ ∈ (0,∞) such that

‖f(t, x, u, α)‖ ≤ γ(1 + ‖x‖), (t, x, u, α) ∈ [t0,∞) × R
n × P × L .

Remark 2. By an admissible control u(t), t ∈ [t0, ϑ], we mean a Lebesgue-
measurable vector function defined on [t0, ϑ] with values from P . The conditions
C1 and C2 are sufficient for each admissible control u(t), the motion x(t), which
is a solution to the system (1) in the class of absolutely continuous functions,
is correspond [17, Sect. 2.1]. In this case, we concider the derivative ẋ(t) as a
generalization of solution, that satisfied the Newton-Leibniz formula is satisfied
for it (see, for example, [18, Ch. 2, Sect. 4]).

Remark 3. By virtue of the condition C2, some sufficiently large domain Ω ⊂
[t0, ϑ]×R

n exists, which certainly contains all possible motions of the system (1)
together with all auxiliary constructions for constructing resolving controls. In
what follows, we will everywhere use the Lipschitz constant L = L(Ω) calculated
just for this Ω domain.

Denote by Bk(a, r) = {ξ ∈ R
k : ||ξ − a|| ≤ r} the closed ball in the space R

k.
C3. Let the points (t∗, x∗) and (t∗, x∗) are belonged to Ω, where t∗ = t∗ + Δ,
x∗ = x∗ + Δ · f(t0 + ϑ − t∗, x∗, u, α), Δ > 0, u ∈ P̌ (ρ(Δ)), α ∈ L . In addition,
let Δα > 0 be also an arbitrary number, but not too large. Then we can define
the function ρ(Δ) in such way to find the correcting vector w from Bp(0, ρ(Δ))
for solving the following boundary value problem

{
ẋ(t) = f(t, x(t), u + w, α̃), t ∈ (t∗, t∗),
x(t∗) = x∗, x(t∗) = x∗
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for every value of α̃ ∈ B3(α,Δα

√
2). In this case, the dependence w = w(α̃)

must be from the class C2(B3(α,Δα

√
3)) and for all α̃ ∈ B3(α,Δα

√
3) must be

satisfied the next inequalities
∥∥∥∥ ∂2w

∂α̃i∂α̃j

∥∥∥∥ ≤ M2, i, j = 1, 3,

where the constant M2 ≥ 0 is determined by the function f(·, ·, ·, ·), by the
domain Ω, and by the values Δ and Δα.

Moreover, in addition to conditions C1, C2, C3, we specify informational
conditions.

We shall assume that at the initial time t0 the person making the choice
of program control u(t) is informed of some approximate value α∗ ∈ L of the
parameter α ∈ L with an error not exceeding

||α∗ − α|| < δα. (2)

In addition, long before the moment t0 of the movement start, the control person
knows the constraint L ∈ comp(R3) and approximate position x∗(t0) of initial
point x(t0) with error

||x∗(t0) − x(t0)|| < δx. (3)

An additional constraint is the control person cannot perform “heavy” calcu-
lations after the moment t0, when the system starts moving. After this moment,
it is necessary to construct an resolving program control in real time, using only
some preliminary calculations stored in a limited amount of memory and a priori
known x∗(t0), L .

Thus, we have formulated the information conditions.
Let M be some compact set in R

n that is the target set for the system (1).
Let us formulate the problem of convergence with M for the system (1).

Problem 1. It is required to determine the existence of an admissible program
control u(t) that transfers the motion x(t) of the system (1) at the time moment
ϑ to a small neighborhood of M , and, if possible, to construct it.

3 Algorithms for Solving the Problem 1

Denote by Ω(δ)(·) the mapping that “thinches” the set, i.e. to any bounded set
A ⊂ R

k, k ∈ N, it associates the finite set Ã = Ω(δ)(A), consisting possibly from
a smaller number of its points and having the property:

d(A, Ã) ≤ δ,

where d(A, Ã) is the Hausdorff distance between A and Ã. Methods for con-
structing such a “thinned out” set Ã are given in [20, p. 549].

Denote P̃ = Ω(Δu)(P̌ ), where Δu > 0 is a sufficiently small constant, P̌ is
the restriction of the control from condition C3.
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Let us introduce the mapping X(Δ) : R × R × 2Ω × L 
→ 2Ω , which acts
according to the rule:

X(Δ)(t∗, t∗, X̃∗, α) =
⋃

x∈ ˜X∗

{x + (t∗ − t∗)f(t∗, x, P̃ , α)}

=
⋃

x∈ ˜X∗

⋃
u∈ ˜P

{x + (t∗ − t∗)f(t∗, x, u, α)}.

Now, after introducing the necessary notation, we formulate a numerical
method for solving the Problem 1 in the form of two algorithms. The first algo-
rithm is intended for calculations that are performed before the system start to
move, and the second algorithm is applied directly during the movement.

Algorithm 1

1) Choose a sufficiently large natural number N and introduce a uniform parti-
tion Γ = {t0, t1, t2, . . . , ti, . . . , tN = ϑ} of the time interval [t0, ϑ] with diam-
eter Δ = Δ(Γ ), which satisfies to relations Δ = ti+1 − ti = N−1 · (ϑ − t0),
i = 0, N − 1.

2) Denote by Δα > 0 a sufficiently small constant that satisfies to condition
C3 for Δ = Δ(Γ ). Also, the condition C3 defines the function ρ(Δ) and the
control set restriction P̌ = P̌ (ρ(Δ)).

3) Choose the following set of vectors {α(j)}Nα
j=1, so that any α ∈ L is inside

“own” cube with eight vertices α(j,±,±,±) = (α(j)
1 ± Δα/2, α

(j)
2 ± Δα/2, α

(j)
3 ±

Δα/2) as a finite subset L̃ ⊂ L .
4) Choose a sufficiently small constant Δx > 0 and for all j = 1, Nα define the

sets
X̃0 = {x(0)},

X̃k(α(j)) = Ω(Δx)(X(Δ)(tk, tk−1, X̃k−1, α
(j)), k = 1, N.

When we construct finite sets X̃k(α(j)), k = 1, N , j = 1, Nα, for each point
x(k,j) ∈ X̃k(α(j)) it is necessary to remember the “parent” point x(k−1,j) ∈
X̃k−1(α(j)) and control u(k,j) = const for which the following relation holds:

x(k,j) = x(k−1,j) + Δ · f(tk−1, x
(k−1,j), u(k,j), α(j)).

5) If for all α(j), j = 1, Nα the distance

ρ(M, X̃N (α(j))) = min{||x − y|| : x ∈ M,y ∈ X̃N (α(j))} ≤ Δx,

then we conclude that the Problem 1 is solvable for any α ∈ L that imple-
mented in the system and we can continue the algorithm execution.
Otherwise, we are forced to state that we cannot construct a resolving program
control for the Problem 1 with acceptable accuracy.
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6) For each j = 1, Nα choose one point x(N,j) ∈ X̃N (α(j)) that is closest to M .
We assume that if our algorithm didn’t finished at step 5), then ρ(x(N,j),M) ≤
Δx, j = 1, Nα. Further, for each j = 1, Nα we denote by x(k,j) and u(k,j)

exactly those points and those constant control vectors that “led” us to x(N,j).
7) For each j = 1, Nα and k = 1, N find 8 constant correcting vectors

w(k,j,±,±) ∈ Bp(0, ρ(Δ)), which are solutions of the following boundary value
problems:

{

ẋ(k,j,±,±)(t) = f(t, x(k,j,±,±)(t), u(k,j) + w(k,j,±,±), α(j,±,±)), t ∈ (tk−1, tk),

x(k,j,±,±)(tk−1) = x(k−1,j), x(k,j,±,±)(tk) = x(k,j).

8) To each α(j) ∈ L̃ associate 8 piecewise constant “‘nodal”’ controls

u(j,±,±,±)(t) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

u(1,j) + w(1,j,±,±,±), t ∈ [t0, t1),
. . .

u(k,j) + w(k,j,±,±,±), t ∈ [tk−1, tk),
. . .

u(N,j) + w(N,j,±,±,±), t ∈ [tN−1, tN ].

(4)

Thus, we have prepared the “‘nodal”’ program controls and completed the
application of the first algorithm. Next, we formulate the second algorithm,
which is executed in real time after the moment t0 of the start of movement.

Algorithm 2

1) Based on the approximate value of α∗ obtained at the moment t0, determine
α(j) ∈ L̃ , in whose cube it is in accordance with the partition, which was
determined in step 3) of the Algorithm 1.

2) Represent the vector α∗ as a linear combination of vectors α(j,±,±,±) as fol-
lows:

α∗ = λ1λ2λ3α
(j,−,−,−) + (1 − λ1)λ2λ3α

(j,+,−,−) + λ1(1 − λ2)λ3α
(j,−,+,−)

+ (1 − λ1)(1 − λ2)λ3α
(j,+,+,−)

+ λ1λ2(1 − λ3)α
(j,−,−,+)

+ (1 − λ1)λ2(1 − λ3)α
(j,+,−,+)

+λ1(1 − λ2)(1 − λ3)α(j,−,+,+) + (1 − λ1)(1 − λ2)(1 − λ3)α(j,+,+,+),

where λ1 + λ2 + λ3 = 0, 0 ≤ λ1 ≤ 1, 0 ≤ λ2 ≤ 1, 0 ≤ λ3 ≤ 1.
3) As a desired resolving program control, use the function

û(t) = λ1λ2λ3u
(j,−,−,−)(t) + (1 − λ1)λ2λ3u

(j,+,−,−)(t)
+λ1(1 − λ2)λ3u

(j,−,+,−)(t) + (1 − λ1)(1 − λ2)λ3u
(j,+,+,−)(t)

+λ1λ2(1 − λ3)u(j,−,−,+)(t) + (1 − λ1)λ2(1 − λ3)u(j,+,−,+)(t)
+λ1(1 − λ2)(1 − λ3)u(j,−,+,+)(t) + (1 − λ1)(1 − λ2)(1 − λ3)u(j,+,+,+)(t).

(5)
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4 Error Estimation

Lemma 1. Let constants 0 ≤ λ1 ≤ 1, 0 ≤ λ2 ≤ 1, 0 ≤ λ3 ≤ 1, points x =
(x1, x2, x3) and y = (y1, y2, y3) are from R

3, function f : R3 → R
n, f ∈ C2(R3),

all its second partial derivatives are bounded by some constant m2 ≥ 0, i.e.

∥∥∥∂2f(x1, x2, x3)
∂xi∂xj

∥∥∥ ≤ m2, i, j = 1, 3.

Then
∥∥f(λ1x1 + (1 − λ1)y1, λ2x2 + (1 − λ2)y2, λ3x3 + (1 − λ3)y3)

−λ1λ2λ3f(x1, x2, x3) − (1 − λ1)λ2λ3f(y1, x2, x3)

−λ1(1 − λ2)λ3f(x1, y2, x3) − (1 − λ1)(1 − λ2)λ3f(y1, y2, x3)

−λ1λ2(1 − λ3)f(x1, x2, y3) − (1 − λ1)λ2(1 − λ3)f(y1, x2, y3)

−λ1(1 − λ2)(1 − λ3)f(x1, y2, y3) − (1 − λ1)(1 − λ2)(1 − λ3)f(y1, y2, y3)
∥∥

≤ 3
8
m2‖x − y‖.

Proof. Expanding the function f(ξ, η2, η3) in the first variable at the points
ξ = x1 and ξ = x2 into Taylor series with remainder in integral form and
substituting ξ = λ1x1 + (1 − λ1)y1, we get the next equalities

f(λ1x1 + (1 − λ1)y1, η2, η3) = f(x1 + (1 − λ1)(y1 − x1), η2, η3)

= f(x1, η2, η3) + (1 − λ1)(y1 − x1) · ∂f(x1, η2, η3)
∂x1

+

λ1x1+(1−λ1)y1∫
x1

(λ1x1 + (1 − λ1)y1 − t)
∂2f(t, η2, η3)

∂t2
dt,

f(λ1x1 + (1 − λ1)y1, η2, η3) = f(y1 + λ1(x1 − y1), η2, η3)

= f(y1, η2, η3) + λ1(x1 − y1)
∂f(y1, η2, η3)

∂y1

+

λ1x1+(1−λ1)y1∫
y1

(λ1x1 + (1 − λ1)y1 − t)
∂2f(t, η2, η3)

∂t2
dt,

which in turn imply that
∣∣f(λ1x1 + (1 − λ1)y1, η2, η3) − λ1f(x1, η2, η3) − (1 − λ1)f(y1, η2, η3)

∣∣
=

∣∣λ1

(
f(x1 + (1 − λ1)(y1 − x1), η2, η3) − f(x1, η2, η3)

)
+ (1 − λ1)

(
f(y1 + λ1(x1 − y1), η2, η3) − f(y1, η2, η3)

)∣∣
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=

∣

∣

∣

∣

λ1 ·
(

(1 − λ1)(y1 − x1)
∂f(x1, η2, η3)

∂x1
+

λ1x1+(1−λ)y1
∫

x1

(λ1x1 + (1 − λ1)y1 − t)
∂2f(t, η2, η3)

∂t2
dt

)

+(1 − λ1) ·
(

λ1(x1 − y1)
∂f(y1, η2, η3)

∂y1
+

λ1x1+(1−λ1)y1
∫

y1

(λ1x1 + (1 − λ1)y1 − t)
∂2f(t, η2, η3)

∂t2
dt

)∣

∣

∣

∣

=
∣∣∣∣ − λ1(1 − λ1)(y1 − x1)

y1∫
x1

∂2f(t, η2, η3)
∂t2

dt

+λ1

λ1x1+(1−c1)y1∫
x1

(λ1x1 + (1 − λ1)y1 − t)
∂2f(t, η2, η3)

∂t2
dt

+ (1 − λ1)

λ1x1+(1−λ1)y1∫
y1

(λ1x1 + (1 − λ1)y1 − t)
∂2f(t, η2, η3)

∂t2
dt

∣∣∣∣

≤ λ1(1−λ1)m2(y1 −x1)2 +λ1m2
(1 − λ1)2(y1 − x1)2

2
+ (1−λ1)m2

λ2
1(y1 − x1)2

2

=
3
2
λ1(1 − λ1)m2(y1 − x1)2 ≤ 3

8
m2(y1 − x1)2.

Substituting η2 = x2, η2 = y2, η3 = x3, and η3 = y3 into the last inequality,
we obtain the inequalities∥∥f(λ1x1 + (1 − λ1)y1, x2, x3) − λ1f(x1, x2, x3) − (1 − λ1)f(y1, x2, x3)

∥∥
≤ 3

8
m2(y1 − x1)2,

(6)

∥∥f(λ1x1 + (1 − λ1)y1, y2, x3) − λ1f(x1, y2, x3) − (1 − λ1)f(y1, y2, x3)
∥∥

≤ 3
8
m2(y1 − x1)2,

(7)

∥∥f(λ1x1 + (1 − λ1)y1, x2, y3) − λ1f(x1, x2, y3) − (1 − λ1)f(y1, x2, y3)
∥∥

≤ 3
8
m2(y1 − x1)2,

(8)

∥∥f(λ1x1 + (1 − λ1)y1, y2, y3) − λ1f(x1, y2, y3) − (1 − λ1)f(y1, y2, y3)
∥∥

≤ 3
8
m2(y1 − x1)2.

(9)

Similarly, for any values of η1, η2 and η3 from the domain of the function
f(·, ·, ·), we get the following equalities

∥∥f(η1, λ2x2 + (1 − λ2)y2, η3) − λ2f(η1, x2, η3) − (1 − λ2)f(η1, y2, η3)
∥∥

≤ 3
8
m2(y2 − x2)2,

(10)

∥∥f(η1, η2, λ3x3 + (1 − λ3)y3) − λ3f(η1, η2, x3) − (1 − λ3)f(η1, η2, y3)
∥∥

≤ 3
8
m2(y3 − x3)2.

(11)



332 V. N. Ushakov et al.

Using the inequalities (6)–(11) and the triangle inequality, we can estimate
the difference∥∥f(λ1x1 + (1 − λ1)y1, λ2x2 + (1 − λ2)y2, λ3x3 + (1 − λ3)y3)

−λ1λ2λ3f(x1, x2, x3) − (1 − λ1)λ2λ3f(y1, x2, x3)

−λ1(1 − λ2)λ3f(x1, y2, x3) − (1 − λ1)(1 − λ2)λ3f(y1, y2, x3)

−λ1λ2(1 − λ3)f(x1, x2, y3) − (1 − λ1)λ2(1 − λ3)f(y1, x2, y3)

−λ1(1 − λ2)(1 − λ3)f(x1, y2, y3) − (1 − λ1)(1 − λ2)(1 − λ3)f(y1, y2, y3)
∥∥

≤ ∥∥f(λ1x1 + (1 − λ1)y1, λ2x2 + (1 − λ2)y2, λ3x3 + (1 − λ3)y3)

−λ1f(x1, λ2x2 + (1 − λ2)y2, λ3x3 + (1 − λ3)y3)

− (1 − λ1)f(y1, λ2x2 + (1 − λ2)y2, λ3x3 + (1 − λ3)y3)
∥∥

+
∥∥λ1f(x1, λ2x2 + (1 − λ2)y2, λ3x3 + (1 − λ3)y3)

−λ1λ2λ3f(x1, x2, x3) − λ1(1 − λ2)λ3f(x1, y2, x3)

−λ1λ2(1 − λ3)f(x1, x2, y3) − λ1(1 − λ2)(1 − λ3)f(x1, y2, y3)
∥∥

+
∥∥(1 − λ1)f(y1, λ2x2 + (1 − λ2)y2, λ3x3 + (1 − λ3)y3)

− (1 − λ1)λ2λ3f(y1, x2, x3) − (1 − λ1)(1 − λ2)λ3f(y1, y2, x3)

− (1 − λ1)λ2(1 − λ3)f(y1, x2, y3) − (1 − λ1)(1 − λ2)(1 − λ3)f(y1.y2.y3)
∥∥

≤ 3
8
m2(y1 − x1)2 + λ1

∥∥f(x1, λ2x2 + (1 − λ2)y2, λ3x3 + (1 − λ3)y3

−λ2f(x1, x2, λ3x3 + (1 − λ3)y3) − (1 − λ2)f(x1, y2, λ3x3 + (1 − λ3)y3)
∥∥

+λ1

∥∥λ2f(x1, x2, λ3x3 +(1−λ3)y3)−λ2λ3f(x1, x2, x3)−λ2(1−λ3)f(x1, x2, y3)
∥∥

+λ1

∥∥(1 − λ2)f(x1, y2, λ3x3 + (1 − λ3)y3)

− (1 − λ2)λ3f(x1, y2, x3) − (1 − λ2)(1 − λ3)f(x1, y2, y3)
∥∥

+ (1 − λ1)
∥∥f(y1, λ2x2 + (1 − λ2)y2, λ3x3 + (1 − λ3)y3)

−λ2f(y1, x2, λ3x3 + (1 − λ3)y3) − (1 − λ2)f(y1, y2, λ3x3 + (1 − λ3)y3)
∥∥

+ (1 − λ1)
∥
∥λ2f(y1, x2, λ3x3 + (1 − λ3)y3) − λ2λ3f(y1, x2, x3) − λ2(1 − λ3)f(y1, x2, y3)

∥
∥

+ (1 − λ1)
∥∥(1 − λ2)f(y1, y2, λ3x3 + (1 − λ3)y3)

− (1 − λ2)λ3f(y1, y2, x3) − (1 − λ2)(1 − λ3)f(y1, y2, y3)
∥∥

≤ 3
8
m2(y1 − x1)2 + λ1 · 3

8
m2(y2 − x2)2 + λ1λ2 · 3

8
m2(y3 − x3)2

+λ1(1 − λ2) · 3
8
m2(y3 − x3)2 + (1 − λ1) · 3

8
m2(y2 − x2)2

+ (1 − λ1)λ2 · 3
8
m2(y3 − x3)2 + (1 − λ1)(1 − λ2) · 3

8
m2(y3 − x3)2

=
3
8
m2(y1 − x1)2 +

3
8
m2(y2 − x2)2 +

3
8
m2(y3 − x3)2 =

3
8
m2||y − x||2.
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Remark 4. For a single variable scalar function f : [x0, x1] → R with bounded
second derivative (i.e. |f ′′(x)| ≤ m2, where the constant m2 ≥ 0) from the error
estimate for Lagrange’s interpolation formula [19, ch. XIV, §14, formula (6)]

∣∣∣∣f(x) − x − x1

x0 − x1
f(x0) − x − x0

x1 − x0
f(x1)

∣∣∣∣ ≤
max

x0≤x≤x1
|f ′′(x)|

2
· |(x − x0)(x − x1)|

and the inequality

(x − x0)(x1 − x) ≤ (x1 − x0)2

4
, x0 ≤ x ≤ x1,

directly follows the estimaion
∣∣f(λx + (1 − λ)y) − λf(x) − (1 − λ)f(y)

∣∣ ≤ m2

8
(y − x)2, x, y ∈ R, 0 ≤ λ ≤ 1.

(12)

However, for a vector function of several variables, the proof of formula (6)
given in [19, ch. XIV, §14] will be not correct due to the use of Lagrange’s
theorem on the finite increment formula, which, as is known, is not applicable
to vector functions.

Theorem 1. Let the system (1) satisfies the conditions C1, C2, C3 and the
information conditions described in §2, and system motion x̂(t), t ∈ [t0, ϑ], was
generated by the control û(t) that generated by the Algorithm 1 and by the Algo-
rithm 2 .

Then

ρ(x̂(ϑ),M) ≤ Δx + δxeL(ϑ−t0) +
ω(3)

(3
8
M2Δ

2
α

)
+ ω(4)(δα)

L

(
eL(ϑ−t0) − 1

)
.

Proof. According to step 3) of the Algorithm 1, there is an index j ∈ {1, ..., Nα}
such that

α∗ = λ1λ2λ3α
(j,−,−,−) + (1 − λ1)λ2λ3α

(j,+,−,−)

+λ1(1 − λ2)λ3α
(j,−,+,−) + (1 − λ1)(1 − λ2)λ3α

(j,+,+,−)

+λ1λ2(1 − λ3)α(j,−,−,+) + (1 − λ1)λ2(1 − λ3)α(j,+,−,+)

+λ1(1 − λ2)(1 − λ3)α(j,−,+,+) + (1 − λ1)(1 − λ2)(1 − λ3)α(j,+,+,+),

where 0 ≤ λ1 ≤ 1, 0 ≤ λ2 ≤ 1, 0 ≤ λ3 ≤ 1.
The symbol x̂(t) denotes the system (1) motion that corresponding to the

control
û(t) = λ1λ2λ3u

(j,−,−,−)(t) + (1 − λ1)λ2λ3u
(j,+,−,−)(t)

+λ1(1 − λ2)λ3u
(j,−,+,−)(t) + (1 − λ1)(1 − λ2)λ3u

(j,+,+,−)(t)

+λ1λ2(1 − λ3)u(j,−,−,+)(t) + (1 − λ1)λ2(1 − λ3)u(j,+,−,+)(t)

+λ1(1 − λ2)(1 − λ3)u(j,−,+,+)(t) + (1 − λ1)(1 − λ2)(1 − λ3)u(j,+,+,+)(t),
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where α is the parameter, and x(t0) is the initial state. Note that in this notation
x̂(t0) = x(t0) is the exact initial state of the system, and the estimation (3) can
be written as

||x̂(t0) − x(t0)|| = ||x(t0) − x∗(t0)|| ≤ δx. (13)

By construction
ρ(x(ϑ),M) ≤ Δx. (14)

Let us estimate the mismatch ||x̂(ϑ) − x(ϑ)||.
By virtue of the condition C3, there is some ideal correcting vector w(1,j) ∈

Bp(0, ρ(Δ)) such that the system state x(t0) under the action of constant control
u(1,j) + w(1,j) on the interval [t0, t1) and, with the parameter α∗, is transferred
to the point x(t1) along some trajectory x(t).(Therefore, we denote by x(t)
the entire trajectory of the system (1) passing through the points x(t0), x(t1)
, ..., x(tN ) under the action of the corresponding piecewise constant control
u(t) = u(k,j) + w(k,j), t ∈ [tk−1, tk), k = 1, N .)

However, according to the Algorithm 2 we use the correcting vector

ŵ(1,j) = λ1λ2λ3w
(1,j,−,−,−) + (1 − λ1)λ2λ3w

(1,j,+,−,−)

+λ1(1 − λ2)λ3w
(1,j,−,+,−) + (1 − λ1)(1 − λ2)λ3w

(1,j,+,+,−)

+λ1λ2(1 − λ3)w(1,j,−,−,+) + (1 − λ1)λ2(1 − λ3)w(1,j,+,−,+)

+λ1(1 − λ2)(1 − λ3)w(1,j,−,+,+) + (1 − λ1)(1 − λ2)(1 − λ3)w(1,j,+,+,+)

instead of the ideal correcting vector w(1,j).
Due to the fact that it is a convex linear combination of the vector set

{w(1,j,±,±,±)}, it also falls into Bp(0, ρ(Δ)). By virtue of the Lemma 1, the
estimation

||ŵ(1,j) − w(1,j)|| ≤ 3
8
M2Δ

2
α

is satisfied.
Since, according to the formulas (4) and (5)

û(t) = u(1,j) + ŵ(1,j), t ∈ [t0, t1),

then
||û(t) − u(t)|| = ||ŵ(1,j) − w(1,j)|| ≤ 3

8
M2Δ

2
α, t ∈ [t0, t1).

Similarly, for each k = 1, N , by virtue of the condition C3, there is some ideal
correcting vector w(k,j) ∈ Bp(0, ρ(Δ)) such that the system state x(tk−1) under
constant control u(t) = u(k,j) + w(k,j) on the interval [tk−1, tk) and for α = α∗

is transfered to the point x(tk) along the trajectory x(t). However, according to
the Algorithm 2, on the interval [tk−1, tk), we use the control

û(t) = v(k,j) + ŵ(k,j)

= v(k,j) + λ1λ2λ3w
(1,j,−,−,−) + (1 − λ1)λ2λ3w

(1,j,+,−,−)
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+λ1(1 − λ2)λ3w
(1,j,−,+,−) + (1 − λ1)(1 − λ2)λ3w

(1,j,+,+,−)

+λ1λ2(1 − λ3)w(1,j,−,−,+) + (1 − λ1)λ2(1 − λ3)w(1,j,+,−,+)

+λ1(1 − λ2)(1 − λ3)w(1,j,−,+,+) + (1 − λ1)(1 − λ2)(1 − λ3)w(1,j,+,+,+),

for which, by virtue of the Lemma 1, he following estimate holds:

||û(t) − u(t)|| = ||ŵ(k,j) − w(k,j)|| ≤ 3
8
M2Δ

2, t ∈ [tk−1, tk), k = 1, N. (15)

In other words, the estimation (15) is performed on the entire time interval
[t0, ϑ].

In addition, recall that the value α∗ of the parameter α is known with some
error δα (see (2)).

Thus, we obtain for t ∈ [t0, ϑ] the following integral estimation of the move-
ment mismatch, taking into account (13), (15) and (2):

||x̂(t) − x(t)|| ≤
∥
∥
∥
∥
x̂(t0) +

t∫

t0

f(τ, x̂(τ), û(τ), α)dτ − x(t0) −
t∫

t0

f(τ, x(τ), uj(τ), α∗)dτ

∥
∥
∥
∥

≤ ||x̂(t0)−x(t0)||+
t∫

t0

(||f(τ, x̂(τ), û(τ), α)−f(τ, x(τ), û(τ), α)+f(τ, x(τ), û(τ), α)

− f(τ, x(τ), u(τ), α) + f(τ, x(τ), u(τ), α) − f(τ, x(τ), u(τ), α∗)||)dτ

≤ δx +

t∫
t0

L||x̂(τ) − x(τ)||dτ +

t∫
t0

ω(3)
(
û(τ) − u(τ)

)
dτ +

t∫
t0

ω(4)(α − α∗)dτ

≤ δx + L

t∫
t0

||x̂(τ) − x(τ)||dτ + (t − t0) · ω(3)
(3

8
M2Δ

2
α

)
+ (t − t0) · ω(4)(δα).

Hence, by virtue of the strengthened Gronwall lemma [21, ch. 1, §2, p. 26] it
follows that

||x̂(ϑ) − x(ϑ)|| ≤ δxeL(ϑ−t0) +
ω(3)

(3
8
M2Δ

2
α

)
+ ω(4)(δα)

L

(
eL(ϑ−t0) − 1

)
. (16)

The theorem assertion follows from (14) and (16).

5 Conclusion

For simplicity of presentation and clarity, in this article the case of a three-
dimensional vector parameter was considered, but it is obvious that the result
obtained is valid in the case of any finite dimension of the parameter. No funda-
mental difficulties are expected in proving the multidimensional analogue of the
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Lemma 1 using the method of induction by the number of variables (it is also
possible that there is a closer analogue of this auxiliary inequality in the litera-
ture than in the specified source [19]. But due to the specific technical character
of the Lemma 1, its search is difficult). Note that in the case of an n-dimensional
parameter α = (α1, ..., αn) the ball B3(α,Δα

√
3) from the condition C3 should

be replaced by the ball Bn(α,Δα
√

n), whose radius is calculated as the length
of the diagonal of an n-dimensional cube with side Δα. We also note that the
condition C3 has a generalized technical nature, and for the practical application
of the Algorithms 1 and 2, it is necessary to develop easily verifiable conditions
that sufficient for the fulfillment of the condition C3. In comparison with [15],
a significant simplification of the algorithm was made: in the new algorithm
“reverse” time is not introduced and additional “nodal” resolving controls are
not calculated for points inside the partition cells of the possible parameter value
set. Also, the number of necessary conditions for the control system is reduced.

Acknowledgements. This research was supported by the Russian Science Founda-
tion (grant no. 19-11-00105, https://rscf.ru/en/project/19-11-00105/).
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Abstract. Based on a two-factors economic growth model with a pro-
duction function of a constant elasticity of substitution, the paper con-
siders a control problem with the infinite time interval and analyzes
its stabilized solutions, when the elasticity parameter changes. A qual-
itative analysis of a Hamiltonian system reveals an existence of a sad-
dle steady state, which continuously depends on the elasticity coeffi-
cient. In the domain containing the steady state, the stabilization of a
Hamiltonian system is performed, and solutions of the stabilized system
are numerically constructed. Varying the elasticity coefficients of CES-
production function, these solutions undergo changes. The paper shows
that for a limit value of the elasticity parameter, when a production
function turns into the Cobb-Douglas production function, correspond-
ing stabilized solutions converge to the limit case associated with the
Cobb-Douglas function. Numerical experiments support the theoretical
conclusions.

Keywords: Hamiltonian systems · Steady state · Sensitivity analysis ·
Stabilizer · Production function

1 Introduction

The paper deals with the analysis of growth models with a production function
of a constant elasticity of substitution (CES) [9]. Well-known Cobb-Douglas and
Leontief production functions are particular (limit) cases of the CES-function. A
production function of Cobb-Douglas type is applied in the Solow-Swan exoge-
nous growth model [10]. The Solow-Swan economic model explains long-run eco-
nomic growth caused by capital accumulation, labor or population growth, and
increases in productivity largely driven by technological development. In these
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models, an output depends on production factors by means the production func-
tion often specified to be of Cobb-Douglas type. Leontief production function is
used, for example, in the Harrod-Domar economic growth model [10] that tries
to explain an economy’s growth rate in terms of the level of saving and of capi-
tal, assuming the absence of a natural reason for an economy to have balanced
growth. Nowadays, the Leontief function is mainly used to design small-scale
production systems and to describe fully automated production systems, while
the Cobb-Douglas production function fits for medium-scale production systems
with steady and stable performance.

Growth models serve as a basis for optimal control problems aiming at the
balanced distribution of investments for achieving the maximum level of a util-
ity function [1,2,4,5,12]. In the cited works, problem analysis was performed for
growth models with a production function of Cobb-Douglas type. These mod-
els consider production factors, usually one or several of the following: capital,
labour, population and resource use, and investigate their influence on the out-
put. However, as was mentioned in [9], there are models where the dependence
between the production factors and the output is better described by the CES-
function with non-unit elasticity of substitution. It motivates us to consider the
corresponding problem and investigate behavior of its stabilized solutions under
the changes of elasticity of substitution in order to compare these solutions
derived in the case with the Cobb-Douglas production function [12].

The paper has the following structure. The next section introduces a CES-
function and its properties, then we describe a two-sector growth model and the
corresponding control problem. Based on the Pontryagin maximum principle,
the Hamiltonian system is constructed and its qualitative analysis is performed.
Forth section deals with the stabilized Hamiltonian system and demonstrates
its stabilized solutions for different values of the elasticity parameter. Numerical
examples finalize the paper.

2 Problem Statement

2.1 CES Production Function

In the paper, we investigate a growth model with two production factors x1 and
x2 that are per-capita capital and the labour efficiency respectively. According to
the SEDIM model introduced in [14], the labor efficiency is the proportionality
coefficient between the labor force and the population. Output y depends on
the production factors as a function of the constant elasticity of substitution
(CES-function).

y = fγ(x1, x2) = a
(
α1x

−γ
1 + α2x

−γ
2

)− ν
γ . (1)

Positive scale parameter a is the total factor productivity. Coefficients α1 and
α2 determine the contribution of each factor in the output y and correspond



340 A. A. Usova and A. M. Tarasyev

the restrictions α1,2 ≥ 0, α1 + α2 = 1. Parameter ν (ν ∈ (0, 1]) is the degree of
positive homogeneity of the production function, namely

fγ(kx1, kx2) = a
(
α1(kx1)−γ + α2(kx2)−γ

)− ν
γ = kνfγ(x1, x2).

The power parameter γ (γ > −1) is inversely proportional to the elasticity
coefficient σ that satisfies the formula

σ = − d (lnx2/x1)

d
(
ln ∂f(x1,x2)

∂x2
/∂f(x1,x2)

∂x1

) =
1

γ + 1
.

As it was mentioned in the introduction, Leontief and Cobb–Douglas production
functions are particular (limit) cases of a CES-function (1). Specifically, Leontief
production function is y = amin{xν

1 , x
ν
2} has zero elasticity of substitution (for

γ → +∞). The Cobb–Douglas production function y = axα1ν
1 xα2ν

2 = f0(x1, x2)
is the CES-function with the unit elasticity (σ = 1 or γ = 0). Indeed,

lim
γ→0

a
(
α1x

−γ
1 + α2x

−γ
2

)− ν
γ = a lim

γ→0
exp

(

−ν ln
(
α1x

−γ
1 + α2x

−γ
2

)

γ

)

= a lim
γ→0

exp

(

ν
α1x

−γ
1 lnx1 + α2x

−γ
2 lnx2

α1x
−γ
1 + α2x

−γ
2

)

= axα1ν
1 xα2ν

2 = f0(x1, x2). (2)

Optimal control problems based on the economic growth models with the
Cobb-Douglas production function are comprehensively studied, their optimal
and stabilized solutions are also constructed (see [1,2,4,12]).

Before we move to the model description and the problem statement, let us
formulate properties of a CES-function related to the parameter γ.

Property 1. First and second order partial derivatives of the CES-function (1)
by phase variables tends to the corresponding first and second order partial
derivatives of the Cobb-Douglas production function as γ goes to zero, i.e.

lim
γ→0

∂fγ(x1, x2)
∂xi

=
∂f0(x1, x2)

∂xi
, lim

γ→0

∂2fγ(x1, x2)
∂xi∂xj

=
∂2f0(x1, x2)

∂xi∂xj
, i, j = 1, 2.

Proof. To proof the property, we find partial derivatives of the CES-function (1)
and express them through the function itself that converges to the Cobb-Douglas
function (2) as γ goes to zero. Also, we use here the fact that parameters α1 and
α2 are weight coefficients, and their sum equals to one.

∂fγ(x1, x2)
∂xi

=
ναix

−γ−1
i

α1x
−γ
1 + α2x

−γ
2

fγ(x1, x2) −→
γ→0

ναix
−1
i

α1 + α2
f0(x1, x2)

= ναi
f0(x1, x2)

xi
=

∂f0(x1, x2)
∂xi

, i = 1, 2.
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Similarly, we deal with the second derivative

∂2fγ(x1, x2)
∂x2

i

=

(

−ναi(γ + 1)x−γ−2
i

α1x
−γ
1 + α2x

−γ
2

+
ναiγx−2γ−2

i(
α1x

−γ
1 + α2x

−γ
2

)2

)

fγ(x1, x2)

+

(
ναix

−γ−1
i

α1x
−γ
1 + α2x

−γ
2

)2

fγ(x1, x2)

−→
γ→0

−ναi(1 − ναi)
f0(x1, x2)

x2
i

=
∂2f0(x1, x2)

∂x2
i

, i = 1, 2.

Finally, we check this property for the second-order mixed derivatives

∂2fγ(x1, x2)
∂x1∂x2

=
ν(ν + γ)α1α2 (x1x2)

−γ−1

(
α1x

−γ
1 + α2x

−γ
2

)2 fγ(x1, x2)

−→
γ→0

ν2α1α2
f0(x1, x2)

x1x2
=

∂2f0(x1, x2)
∂x1x2

.

Hence, the property is proven. ��
The present work discusses stabilized solutions of a control problem with the
CES-production function and investigates their behaviour when the elasticity
parameter σ tends to the unit (or γ → 0), in other words, when the CES-
production function switches to the Cobb-Douglas function (2).

Next subsection represents the dynamic growth model and poses the control
problem.

2.2 Dynamic Growth Model and Control Problem

The paper investigates an economic growth model [12] that describes an output
y as a CES-function (1) of two factors x = (x1, x2) ∈ R

2
>0. These factors grow

due to investments that are the shares u1 and u2 of the output y. Investments
shares u1 and u2 play roles of control parameters and satisfies the restrictions
u = (u1, u2) ∈ [0, ū1]×[0, ū2] = U ⊂ R

2. Negative trends of the factors are caused
by the capital depreciation and/or population growth rates denoted by symbols
δ and λ respectively. As a result, the dynamic equations of the production factors
have the form

{
ẋ1(t) = fγ(x(t))u1(t) − (δ + λ)x1(t), x1(0) = x0

1,

ẋ2(t) = bfγ(x(t))u2(t) − λx2(t), x2(0) = x0
2.

(3)

Initial data x0 = (x0
1, x

0
2) for the production factors are supposed to be given.

The quality of the control process is estimated by the accumulated consump-
tion index c

(
x(t), u(t)

)
= fγ(x(t))(1 − u1(t))(1 − u2(t)) of a logarithmic type

discounted at the infinite time interval

J(·) =
∫ +∞

0

e−ρt ln c
(
x(t), u(t)

)
dt. (4)
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The utility function J(·) measures the integrated relative changes of the con-
sumption c[t] = c

(
x(t), u(t)

)
indeed, using integration by parts, one can get

J(·) =
+∞∫

0

e−ρt ln c[t]dt =
ln c[0]

ρ
+

1
ρ

+∞∫

0

e−ρt ċ[t]
c[t]

dt =
ln c[0]

ρ
+

1
ρ

+∞∫

0

e−ρt dc[t]
c[t]

,

where c[0] = fγ(x0
1, x

0
2)(1− u0

1)(1− u0
2) and u0

1 and u0
2 are the initial investment

shares. The ratio dc[t]/c[t] can be interpreted as the relative consumption change.
Based on the presented growth model, we formulate the control problem

Problem 1. It is required to synthesize such a control process {x(t),u(t)} that
maximizes the utility function (4), satisfies the dynamic system (3) together with
the initial conditions x(0) = x0 and control restrictions u ∈ U = [0, ū1]× [0, ū2].

The problem for the Cobb-Douglas production function is thoroughly investi-
gated in [4,12] (one dimensional case can be found in [1,2]). In this paper, we
study this problem for the CES-production function, construct its stabilized solu-
tions and analyze their behaviour for different values of the elasticity parameter γ
up to its limit value of zero, when the CES-function turns into the Cobb-Douglas
production function.

2.3 Problem Analysis

Problem analysis is conducted using Pontryagin maximum principle [1,12]. In
accordance with the Principle, we construct the Hamiltonian function of the
form

H(x, ψ, u) = ln c(x, u) + ψ1(fγ(x)u1 − (δ + λ)x1) + ψ2(bfγ(x)u2 − λx2), (5)

and derive control parameters u = (u1,u2) ∈ U providing the maximum to the
Hamiltonian function. These controls do exists due to the strict concavity of the
Hamiltonian function (5) and the compactness of the control domain U .

ui =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

0, (x, ψ) ∈ Δi
1 =

{
bi−1ψifγ(x) ≤ 1

}

1 − b1−i

ψifγ(x)
, (x, ψ) ∈ Δi

2 =
{
1 ≤ bi−1ψifγ(x) ≤ 1

1 − ūi

}

ūi, (x, ψ) ∈ Δi
3 =

{
bi−1ψifγ(x) ≥ 1

1 − ūi

}
, i = 1, 2.

(6)

In [12], it is proven that the maximized Hamiltonian

H(x, ψ) = H(x, ψ,u) = max
u ∈ U

H(x, ψ, u) (7)

is a smooth function of its variables x, ψ and concave in phase variables x.
Further study deals with a Hamiltonian system of the form

ẋ =
∂H(x, ψ)

∂ψ
, ψ̇ = ρψ − ∂H(x, ψ)

∂x
, (8)
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and carries out its qualitative analysis, including investigation of the existence
and uniqueness of a steady state and its convergence to the steady state of the
Hamiltonian system with the Cobb-Douglas production function (see [12]) when
the parameter γ tends to 0.

3 Qualitative Analysis

First of all, we search for a steady state and check its location and uniqueness.
Due to the system (3) and the structure of the maximizing controls (6), station-
ary levels of the Hamiltonian system can be located in the domains with non-zero
control regimes, i.e. (x, ψ) ∈ Δ1

i ∩ Δ2
j (i, j = 2, 3). Therefore, we assume that

the steady state is located in the domain Δ1
2 ∩ Δ2

2 of the non-constant control
regime.

For the convenience, we denote G(x, ψ) = 1/fγ(x)−ψ1 − bψ2. In the domain
Δ1

2 ∩ Δ2
2, the explicit form of the Hamiltonian system (8) has the form

⎧
⎨

⎩

ẋi = −1/ψi + bi−1fγ(x) − (
(2 − i)δ + λ

)
xi,

ψ̇i =
(
(2 − i)δ + λ + ρ

)
ψi + G(x, ψ)

∂fγ(x)
∂xi

, i = 1, 2.
(9)

Proposition 1. For the problem with the production CES-function, the Hamil-
tonian system (9) has a unique steady state. Its coordinates are found explicitly
through the solution of the following nonlinear algebraic equation with respect to
the parameter ξ =

x1

x2

Bξ2γ+1 + α1ξ
γ+1 − α2Kξγ − AK = 0, (10)

K =
α1(λ + ρ)

bα2(δ + λ + ρ)
, A = α1

(
1 − ν

δ + λ

δ + λ + ρ

)
, B = α2

(
1 − ν

λ

λ + ρ

)
.

Coordinates
(
x∗

γ , ψ∗
γ

)
of the steady state satisfy the formulae depending on the

parameter ξ

x∗
1γ =

(
(δ + λ + ρ) (α1 + α2ξ

γ)ν/γ (α1 + Bξγ)
aα1ν

) 1
ν−1

, x∗
2γ =

x∗
1γ

ξ
,

y∗
γ = fγ(x∗

1γ , x∗
2γ), ψ∗

iγ =
(
bi−1y∗

γ − ((2 − i)δ + ρ)x∗
iγ

)−1
, (i = 1, 2).

(11)

Proof of Proposition 1 can be found in [8, Section 3.1].

Proposition 2. Coordinates of the steady state (11) of the Hamiltonian sys-
tem (9) converges to the steady state of the Hamiltonian system corresponding
to the problem with Cobb-Douglas production function when the parameter γ goes
to zero.

lim
γ→0

x∗
1γ =

(
δ + λ + ρ

aα1ν

(
1 − α2λν

λ + ρ

)
ξα2ν
0

) 1
ν−1

= x∗
10, ξ0 =

A + α2

B + α1
K. (12)
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Proof. In [12], steady state coordinates for the model with Cobb-Douglas pro-
duction function is found, and they take the following values

ξ0 =
A + α2

B + α1
K, x∗

10 =
(

δ + λ + ρ

aα1ν

(
1 − α2λν

λ + ρ

)
ξα2ν
0

) 1
ν−1

.

The Eq. (10) with respect to the parameter ξ for γ = 0 becomes linear and has
the form

Bξ + α1ξ − α2K − AK = 0.

Obviously, it has the only solution ξ = ξ0.
Next, we find limit value for the first coordinate x∗

1γ when γ tends to zero.

lim
γ→0

x∗
1γ =

(
δ + λ + ρ

aα1ν

) 1
ν−1

lim
γ→0

(
(α1 + α2ξ

γ)ν/γ (α1 + Bξγ)
) 1

ν−1

=
(
(δ + λ + ρ)(α1 + B)

aα1ν

) 1
ν−1

exp
(

ν

ν − 1
lim
γ→0

ln (α1 + α2ξ
γ)

γ

)

=
(
(δ + λ + ρ)(α1 + B)

aα1ν

) 1
ν−1

exp
(

ν

ν − 1
ln ξα2

0

)
= x∗

10.

All other steady state coordinates are expressed through ξ0 and x∗
10. Thus, the

proposition is proven. ��
Figure 1 demonstrates phase coordinates x∗

iγ (i = 1, 2) of the steady state as
functions of the parameter γ. As is shown, they continuously depend on γ and
take values that correspond to the phase coordinates of the steady state in the
case with production function of Cobb-Douglas type, when γ equals zero.

Existence of the steady state is required to stabilize the Hamiltonian system.
The stabilization algorithm is based on the construction of a stable manifold [6,
7,12] and is discussed at the next subsection.

4 Stabilized Solutions

In this section, we construct stabilized solutions of the Hamiltonian system (9)
and investigate their behaviour when the parameter γ approaches zero.

4.1 Stabilized Solutions for the Model with CES-Function

Construction of a stabilized solution of the Hamiltonian system (9) that con-
verges to the steady state, requires for finding eigenvalues and eigenvectors of
Jacobi matrix J of the system (9) at (x∗

γ , ψ∗
γ). Jacobi matrix satisfies the formula

J =

⎛

⎜
⎜
⎝

∂2H(x∗
γ , ψ∗

γ)
∂ψ∂x

∂2H(x∗
γ , ψ∗

γ)
∂ψ2

−∂2H(x∗
γ , ψ∗

γ)
∂x2

ρE2 − ∂2H(x∗
γ , ψ∗

γ)
∂x∂ψ

⎞

⎟
⎟
⎠ (13)
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Fig. 1. Phase coordinates x∗
1γ and x∗

2γ of the steady state as functions of γ

Due to the properties of the Hamiltonian matrices [3] and their connection with
matrix J (13) [6,7], we can claim that the half of the eigenvalues of Jacobi
matrix (13) has negative real parts.

Consider matrix V (V ∈ R
4×2), which columns are composed by the eigen-

vectors h1, h2 corresponding to eigenvalues λ1, λ2 having negative reals parts,
i.e. V = (h1 h2). The stable manifold V is a linear subspace generated by these
vectors V = 〈h1, h2〉.

In order to stabilize the system (9), we project vectors
(

x
ψ

)
onto the sub-

space V, applying the projector X that is constructed as follows

X = V2·V −1
1 , where V =

(
V1

V2

)
, i.e.V1 =

(
h11 h21

h12 f22

)
, V2 =

(
h13 h23

h14 f24

)
. (14)

In the manifold V, the conjugate coordinates ψ = ψ̂ of the state
(

x
ψ

)
are

expressed through the phase ones x by the formula ψ̂ = ψ∗
γ + X(x − x∗

γ). Thus,
the stabilized Hamiltonian system has the form (see [7, Theorem1])

{
ẋ1 = fγ(x) − (δ + λ)x1 − ψ̂−1

1 (x),
ẋ2 = bfγ(x) − λx2 − ψ̂−1

2 (x), x(0) = x̂0 ∈ V ∩ (Δ1
2 ∩ Δ2

2).
(15)

Solutions x̂γ(t) of the system (15) asymptotically converges to the steady state
x∗

γ (11) for any admissible values of γ.
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4.2 Sensitivity Analysis of the Stabilized Solutions

This section considers behaviour of solutions of the stabilized system (15) when
the elasticity parameter γ tends to zero. We start with the analysis of the right-
hand parts of the system (15) that can be rewritten in the form

ẋ =
(
1
b

)
fγ(x) −

(
δ + λ 0
0 λ

)
x − Ψ̂−1(x), where (16)

Ψ̂−1(x) =

(
ψ̂−1
1 (x)

ψ̂−1
2 (x)

)

, ψ̂(x) =

(
ψ̂1(x)
ψ̂2(x)

)

= ψ∗
γ + X(x − x∗

γ).

It depends on the production CES-function fγ(x) (1), which is continuous
with respect to the parameter γ and converges to the Cobb-Douglas production
function when γ goes to zero.

Second term Ψ̂−1(x) in the right-hand part of the system includes matrix
X (X ∈ R

2×2) that is constructed by the coordinates of eigenvectors of Jacobi
matrix calculated at the steady state

(
x∗

γ , ψ∗
γ

)
. Therefore, first of all we should

note, that the steady state continuously depends on γ and approaches values of
the steady state (x∗

0, ψ
∗
0) derived for the model with Cobb-Douglas production

function (see Proposition 2). Next, according on the Hamiltonian system (9),
elements of Jacobi matrix (13) contains first and second order partial deriva-
tives of the production CES-function which are continuous with respect to the
parameter γ and go to the corresponding derivatives of the Cobb-Douglas pro-
duction function when γ tends to zero (see Property 1). Thus, elements of Jacobi
matrix are continuous functions of the parameter γ.

Eigenvalues and eigenvectors of a matrix continuously depend on matrix com-
ponents (see [11,13]). Continuous dependency of the eigenvalues on the matrix
elements follows from the representation of the characteristic polynomial, whose
coefficients are the sum of all matrix minors of the corresponding order, and,
therefore, they continuously depend on the matrix elements. Thus, the required
property of the eigenvalues follows from the theorem on the continuous depen-
dence of the roots of a polynomial on its coefficients. Regarding an eigenvector
hJ corresponding to an eigenvalue λJ , we recall that this vector can be found as
any non-zero column of the adjoint matrix adj(−J + λJE) (see [11]). Therefore,
an eigenvector is a continuous function of matrix elements. As a consequence,
matrix X (14) constructing by the eigenvectors corresponding to the negative
eigenvalues, is a continuous function of parameter γ.

Provided considerations imply the continuity with respect the parameter γ
of the right-hand parts of the system (16) and its partial derivatives in phase
variables x. Consequently, for any finite-time interval [0, T ] (T < +∞) solutions
of the stabilized system x̂γ(t) continuously depend on the parameter γ.

Convergence of the stabilized Hamiltonian system solutions at the infinite
time interval is guaranteed by Proposition 2 and the asymptotic stability of the
steady state x∗

γ (11) for all admissible values of the parameter γ (γ > −1). Thus,
stabilized trajectories of the problem with the CES-production function tend
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to the corresponding solutions of the problem with Cobb-Douglas production
function when γ approaches zero.

4.3 Numerical Results

For the illustration of the theoretical results, we construct solutions of the sta-
bilized Hamiltonian system for the range of parameter γ,

γ ∈ {0, 0.01, 0.02, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 1.0}.

Other model parameters are initialized as follows (see [4,12]): a = 1, α1 =
0.781, α2 = 0.219, ν = 0.5, ρ = 0.05, b = 0.31, δ = 0.025, and λ = 0.005.

Figures 2 and 3 demonstrate the convergence of the phase coordinates xiγ(t)
to the xi0(t) (i = 1, 2) when γ goes to zero. As is shown, trajectories have similar
shapes and, approximately at t = 60, they reach satiration (steady state) levels
x∗

iγ , which tend to x∗
i0 (i = 1, 2) as γ approaches zero.

First phase coordinate x1γ(t) grows when the parameter γ decreases. So, the
steady state level of x∗

1γ is higher for smaller γ.

Fig. 2. Stabilized solution for the phase variable x1γ(t) when γ goes to zero.

Second phase coordinate x2γ(t) has S-shape trends and demonstrates the
opposite behavior with respect to γ, i.e. it decreases when the parameter γ
becomes lesser. So, for the case with Cobb-Douglas function one gets lower sat-
uration level x∗

20 in comparison with the steady state value x∗
2γ in the case with

CES-function.
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Fig. 3. Stabilized solution for the phase variable x2γ(t) when γ goes to zero.

Figure 4 illustrates behaviour of the outputs yγ(t) corresponding to the dif-
ferent values of parameter γ, including its limit case γ = 0. All trajectories have
saturation levels corresponding the equality y∗

γ = fγ(x∗
γ), which get higher when

the parameter γ comes close to zero from above.

Fig. 4. Stabilized trends of the output yγ(t) when γ goes to zero.
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5 Conclusion and Future Work

The paper investigates sensitivity of stabilized solutions of Hamiltonian systems
with respect to the elasticity parameter γ of CES-production functions, which
is used in the economic growth model to describe dependency of the output
on production factors. In the limit case of the unit elasticity (or for parameter
γ = 0), the production function turns into Cobb-Douglas function. It is proven,
that the steady state levels of Hamiltonian systems continuously depends on
γ. Next, we perform system stabilization and show that the right-hand parts
of the stabilized dynamics are continuous functions of its variables including
the elasticity parameter γ. Finally, numerical examples calculated for several
values of γ illustrate theoretical conclusions on the convergence of the stabilized
solutions of the problems with CES-function to the corresponding solutions in
the case with Cobb-Douglas production function when γ approaches zero.

In the future research, we plan to analyze the growth model when the elastic-
ity coefficient σ tends to zero or takes values greater than one, that corresponds
to the case when parameter γ is negative, i.e. γ ∈ (−1, 0). Using proposed app-
roach, we can investigate long term trends of the production factors and describe
their qualitative behavior for these ranges of model parameters.
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Abstract. Cluster analysis is a powerful tool in network science and
it is well developed in many directions. However, the uncertainty anal-
ysis of clustering algorithms is still not sufficiently investigated in the
literature. To study uncertainty of clustering algorithms we propose to
use a new model, which we call correlation block model. We suggest to
measure uncertainty of clustering algorithms by error in cluster identifi-
cation by observations. Uncertainty of different clustering algorithms are
compared using proposed methodology. New and interesting phenomena
are observed.

Keywords: graph clustering · uncertainty · random variable networks

1 Introduction

Many network models can be represented as simple undirected weighted graph
G = (V,E,W ), where V is a set of nodes (vertices), E is a set of links (edges),
and W is a matrix of weights (wi,j = 0 iff (i, j) /∈ E). In usual setting weight wi,j

of the edge (i, j) represents a similarity (degree of connection) between vertices
i and j. Clustering or community detection in network is a partition of nodes
of network into groups such that nodes in one group are strongly connected,
and nodes from different groups are weakly connected. From machine learning
prospective clustering is reffered to unsupervised learning. In general there is
no ground truth for clustering. In other words, for a given network, communi-
ties obtained by one algorithm, have a priori the same value as communities
obtained by another algorithm. This explains a large family of clustering algo-
rithms existing in the literature [4,5]. Moreover, it was recently proved that “no
free lunch theorem” is valid for clustering too. This theorem is well known in
supervised learning [17], and it’s non-formal statement for clustering can be for-
mulated as follows (citation from [16]): “For the community detection problem,
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with accuracy measured by adjusted mutual information, the uniform average of
the accuracy of any method f over all possible community detection problems
is a constant that is independent of f ”.

The “no free lunch theorem” generates the following question: is it possible
to compare the quality of clustering algorithms, or in what sense one clustering
algorithms can be better than another one? One way to answer this question
is to generate a family of graphs with “planted partition” and test clustering
algorithms for their ability to recover this planted partition. In random graph
theory such generator is known as Stochastic Block Model (SBM) or Planted
Partition Model (PPM) [7]. In the simplest version of SBM model set of nodes
V is split into k groups V1, V2, . . . , Vk and random graphs are generated with
two probabilities: pin (probability to draw an edge between nodes from the same
group), and pout (probability to draw an edge between nodes from different
groups). For the case where pin >> pout, graph is expected to have a prescribed
cluster structure and for the case pin = pout the prescribed cluster structure
is lost. Planted partition can be considered in this case as a ground truth and
one can compare clustering algorithms by their ability to recover this planted
partition.

There is an interesting phenomena, called phase transition, observed in clus-
tering with SBM. Let N = |V | be the number of vertices in network. Consider
a low density case with 2 clusters: k = 2, |V1| = |V2| = N/2, pin = cin/N ,
pout = cout/N . Phase transition phenomena was discovered in [3]. More pre-
cisely, it was proven in [3] that there is a threshold in relation between cin and
cout, given by cin − cout =

√
2(cin + cout) such that from one side from this

threshold it is possible to recover planted cluster structure with some algorithm
and from the other side from this threshold there is no algorithm to recover the
planted cluster structure. Best algorithm in this sense is known to be a spectral
version of modularity maximization [14]. Recent development of clustering with
SBM is presented in [1].

In the present paper we develope the study of quality of clustering algorithms
for a large class of networks called random variable networks (RVN). This class of
networks arises in various network applications: gene expression network, brain
connectivity network, climate network, stock market network, and many others.
The main problem of interest in random variable networks is the problem of net-
work structure identification by observation [8]. Clustering algorithms applied
to random variable networks generate a new and not investigated phenomena -
uncertainty of cluster identification by observations. To measure uncertainty of
clustering algorithms we follow approach proposed in [8] and define uncertainty
of clustering algorithm by a difference between true cluster structure and clus-
ter structure obtained by the algorithm. This difference generates a loss from a
false decision. Expected value of this loss will give a measure of uncertainty of a
clustering algorithm. Using this uncertainty one can measure the quality of clus-
tering algorithms from a new point of view. To compare the quality of different
clustering algorithms we develop a new model, which we call Correlation Block
Model (CBM). Using this model we make a comparison of uncertainty of variety
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of clustering algorithms: from naive threshold method and MST algorithm to
advanced Louvain algorithm.

A priori, we have no clear hypothesis what algorithms will show a better
performance with respect to uncertainty of identification of cluster structure.
The problem is essentially different from clustering in stochastic block model.
We will see however, that algorithms with a good reputation in clustering in
stochastic block model confirm their abilities in correlation block model too.
Moreover we show that phase transition phenomena for SBM is also present
in CBM. This phenomena needs to be deeper investigated. Another novelty of
our study is related with dependence of uncertainty of clustering on probability
distribution behind RVN. We show that for distributions with heavy tails all
considered algorithms fail to recover a planted cluster structure in CBM and we
discuss how to fix this problem.

The paper is organized as follows. In Sect. 2 we present main definitions and
notations. Section 3 is devoted to correlation block model. In Sect. 4 we develop
our approach to measure uncertainty of clustering in correlation block model.
Results of numerical experiences to compare uncertainty of clustering algorithms
are discussed in the Sect. 5. Finally, in Sect. 6 we discuss obtained results and
directions for future research.

2 Basic Definitions and Notations

Random variable network is a pair (X, γ), where X is a random vector X =
(X1,X2, . . . , XN ), and γ = γ(Y,Z) is a measure of pairwise dependence (sim-
ilarity, association,...) between random variables (Y and Z). Random variable
network generates a network model - complete weighted graph Γ with N nodes.
Node i is associated with the random variable Xi (i = 1, 2, . . . , N). Weight of
edge (i, j), (i �= j) is given by γi,j = γ(Xi,Xj). Clustering in random vari-
able network is application of a clustering algorithm to the simple, undirected,
weighted graph Γ . However, in practice we have only observations of the ran-
dom vector X, which we model as independent identically distributed random
vectors X(1),X(2), . . . ,X(n) (sample of the size n from the distribution X).
The main problem in this case is to identify a cluster structure of the graph Γ
by observations. Uncertainty of clustering therefore is related with estimation of
how different can be clusters obtained by different observations from the same
distribution.

To estimate uncertainty of cluster algorithms we need to measure difference
between two cluster partitions. This topic is well studied in the literature (see
for example a comprehensive survey on information theoretic measures for clus-
terings comparison in [18]). For our experiments we choose Adjusted Rand Index
(ARI), and Adjusted Mutual Information (AMI). Let V = {V1, V2, . . . , Vk} and
U = {U1, U2, . . . , Ul} be two partitions of the set of nodes V = {1, 2, 3, . . . .N}.
Let PN0,0 be the number of pairs of nodes that are in the same clusters in V
and in U, PN0,1 be the number of pairs of nodes that are in the same clusters
in V but in different clusters in U, PN1,0 be the number of pairs of nodes that
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are in the same clusters in U but in different clusters in V, and PN1,1 be the
number of pairs of nodes that are in different clusters in V and in U. Then Rand
Index (RI) and Adjusted Rand Index (ARI) are defined by

RI =
2(PN0,0 + PN1,1)

N(N − 1)
,

ARI =
2(PN0,0PN1,1 − PN1,0PN0,1)

(PN0,0 + PN0,1)(PN0,1 + PN1,1) + (PN0,0 + PN1,0)(PN1,0 + PN1,1)

RI is a proportion of pairs of nodes that have the same classification in V and
in U, RI = 1 means that two partitions coincide. ARI is adjusted version of RI
with advantage to vary in the same interval for all pairs of partitions.

Comparison of two partitions by information based measures uses contin-
gency table between V and U. Let Ni,j = |Vi ∩ Uj | (number of nodes that are
common for Ui and Vj), Ni,∗ =

∑l
j=1 Ni,j , N∗,j =

∑k
i=1 Ni,j . Entropies H(V),

H(U) and conditional entropies H(V|U), H(U|V) are defined by

H(V) = −
k∑

i=1

Ni,∗
N

log
Ni,∗
N

, H(U) = −
l∑

j=1

N∗,j
N

log
N∗,j
N

H(V|U) = −
k∑

i=1

l∑

j=1

Ni,j

N
log

Ni,j

N∗,j
, H(U|V) = −

k∑

i=1

l∑

j=1

Ni,j

N
log

Ni,j

Ni,∗

Mutual Information (MI) is then defined by

MI(V,U) = H(V) − H(V|U) = H(U) − H(U|V)

MI ranges in the interval [0,min{H(V),H(U)}], and MI = 0 means indepen-
dence between partitions. Adjusted Mutual Information (AMI) is an adjusted
version of mutual information (MI) which ranges in [0, 1].

3 Correlation Block Model

We define Correlation Block Model (CBM) as a random variable network model,
where the measure of dependence γ is Pearson correlation and the correlation
matrix C has a special block structure:

C =

⎡

⎢⎢
⎣

C1,1 C1,2 · · · C1,k

C2,1 C2,2 · · · C2,k

· · · · · · · · · · · ·
Ck,1 Ck,2 · · · Ck,k

⎤

⎥⎥
⎦ (1)

where Ci,i (i = 1, 2, . . . , k) are square matrices with 1 on the diagonal and the
same value ri,i ∈ (−1, 1) outside the diagonal, Ci,j (i �= j) are rectangular
matrices with constant elements equal to ri,j , and Cj,i = CT

i,j . For the case
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k = 2 (two blocks model) and r1,1 = r2,2 one has (we denote rin = r1,1 = r2,2,
rout = r1,2 = r2,1):

C =

⎡

⎢⎢⎢⎢
⎢⎢⎢⎢
⎣

1 rin · · · rin rout · · · rout
rin 1 · · · rin rout · · · rout
· · · · · · · · · · · · · · · · · · · · ·
rin rin · · · 1 rout · · · rout
rout rout · · · rout 1 · · · rin
· · · · · · · · · · · · · · · · · · · · ·
rout rout · · · rout rin · · · 1

⎤

⎥⎥⎥⎥
⎥⎥⎥⎥
⎦

(2)

Correlation two-block model divides the set of vertices in random variable
network in two groups of the size N1 = dim(C1,1) and N2 = dim(C2,2)
(N1 + N2 = N). Correlation between random variables inside each group is
rin and correlation between random variables from different groups is rout. If
rin >> rout than the network has a clear cluster structure. For rin = rout this
cluster structure is obviously lost. Correctness of definition of CBM is related
with positive definetness of the matric C in (1). General discussion of block cor-
relation matrices is given in [2]. For the case of two equal blocks we prove the
following

Theorem 1. Let k = 2, N1 = N2 = M , rin ∈ (−1, 1), rout ∈ (−1, 1), then the
matrix C in (2) is positive definite if and only if

rout < rin +
1
M

(1 − rin) and rout > −rin − 1
M

(1 − rin).

In particular, if rin > 0, rout > 0 and rout < rin + 1
M (1− rin) then matrix C in

(2) is positive definite.

Proof. Symmetric matrix is positive definite iff all its eigenvalues are positive.
It is not difficult to calculate eigenvalues of the matrix C given by (2) for N1 =
N2 = M ≥ 2. Indeed, let P (λ) be characteristic polynomial of the matrix C:
P (λ) = det(C − λIN ). One has P (1 − rin) = 0, because the matrix (C − (1 −
rin)IN ) has at least two equal rows. For the case rin �= rout, this matrix has
rank 2 (only 2 independent rows) and therefore multiplicity of the eigenvalue
λ0 = (1 − rin) is (N − 2). Two other eigenvalues of the matrix C are λ1 =
1 + (M − 1)rin + Mrout and λ2 = 1 + (M − 1)rin − Mrout. First eigenvalue
is associated with eigenvector v1 = (1, 1, . . . , 1)T , and the second eigenvalue is
associated with eigenvector v2 = (1, . . . , 1,−1, . . . ,−1)T . For the case rin = rout
the matrix C has eigenvalue λ0 = (1−rin) of multiplicity (N −1) and eigenvalue
λ1 = 1 + (N − 1)rin of multiplicity 1. The theorem follows by making positive
all eigenvalues of the matrix C: λ0 > 0, λ1 > 0, λ2 > 0.

This result will be used as a theoretical basis of our numerical experiments.
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4 Uncertainty of Clustering in Correlation Block Model

In what follows, we consider the simplest case of correlation block model with
two blocks equal in size (k = 2, N1 = N2 = M) and rin ≥ rout. General case can
be investigated with the same methodology. To evaluate the quality of different
clustering algorithms for correlation block model we assume that the cluster
structure of the model is given by these two blocks (the set of vertices in random
variable network is split into two groups of the size M). Quality of a clustering
algorithm will be measured by it’s ability to identify planted cluster structure
by observations.

Our methodology is as follows. We fix random vector X = (X1,X2, . . . , XN )
and it’s distribution. Given a sample of the size n of observations
x(1), x(2), . . . .x(n), x(t) = (x1(t), x2(t), . . . , xN (t)), t = 1, 2, . . . , n we calcu-
late estimations r̂i,j of correlations ri, j between random variables Xi and Xj

(i, j = 1, 2, . . . , N , i �= j) and apply clustering algorithm to the graph Γ̂ = (r̂i,j).
Then using Adjusted Rand Index (ARI) and Adjusted Mutual Information
(AMI) we measure similarity between obtained and planted partition. Expected
values E(ARI) and E(AMI) over all samples will be our measure of quality of
clustering algorithm. Uncertainty of clustering algorithms in this setting can be
evaluated by (1−E(AMI)) or (1−E(ARI)) (maximal value of AMI and ARI is
1, and it corresponds to the case where there is no error in cluster identification).
Less is uncertainty better is ability of algorithm to recover the planted cluster
structure.

Uncertainty of a given clustering algorithm for correlation block model is
related with two aspects of associated random variable network:

– Distribution of the vector X = (X1,X2, . . . , XN ). In a standard situation,
vector X has a multivariate Gaussian distribution. In some applications (stock
market network) distributions of Xi have a heavy tails. To model this one can
use a large class of elliptical distributions. Multivariate Gaussian and Student
distributions are from this class.

– Measure of dependence γ. In standard situation Pearson correlation is used.
However, for elliptical distributions there is a connection between Pearson
and some other popular (Kendall, Fechner) correlations. It is proved in [8]
the following relations between Pearson, Kendall, and Fechner correlations
(you can find in this book a detailed description of these correlations and
connections between them):

ρKendall = ρFechner =
2
π
arcsin(ρPearson).

It implies that correlation bloc model for Pearson correlation is a correla-
tion bloc model for Kendall and Fechner correlations too. Moreover, relation
rin > rout for Pearson correlation block model is kept in these new correlation
block models. It allows to measure uncertainty of clustering algorithms using
these correlations (algorithm is looking to recover the same cluster structure)
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for elliptical distribution of the vector X. Difference with Pearson correla-
tion network model is in a different way to estimate Kendall and Fechner
correlations (see details in [8]). We will see that this can provide a substan-
tial improvement of uncertainty of clustering algorithms for non Gaussian
distributions.

5 Comparison of Uncertainty of Clustering Algorithms

In this section we present results of numerical simulations to measure uncertainty
of different clustering algorithms for correlation block model. We fix the following
parameters of correlation block model: N = dim(X) = 40 (size of network),
N1 = N2 = 20 (cluster size), n = 40, n = 80 (sample size). To estimate quality
E(ARI) and E(AMI) of clustering algorithms we generate sample for a given
distribution S = 100 times and calculate average.

We choose four algorithms for a comparison:

– Naive threshold method or MST algorithm. To obtain clusters by the thresh-
old method one can fix a threshold r0 and delete from the graph all edges with
similarity less or equal to r0. Connected components of the obtained graph
are considered as clusters. To obtain a desired number of clusters one needs
to choose appropriate value of r0. It can be shown that the threshold method
is equivalent to the construction of the maximum spanning tree of the graph
and to cutting a fixed number of weakest (by similarity) edges in this tree
(see [13]). MST algorithm is a divisive hierarchical clustering algorithm and
using this algorithm one can obtain any number of clusters. For a given undi-
rected weighted graph different experimental techniques are known to choose
an appropriate number of clusters. MST algorithm is popular in such applica-
tions as computer vision, bio-informatics and many others. Recent discussion
of MST algorithms is given in [6].

– Two versions of spectral clustering algorithm: unnormalized spectral cluster-
ing and normalized spectral clustering algorithms. Both are heuristics to solve
combinatorial optimization problems related with minimization of Ratio Cut
and Normalized Cut in weighted graph. Popular source is [11]. In fact, both
versions of spectral clustering algorithms can be considered as an embedding
of the graph vertices in a vector space of low dimension (space dimension is
equal to the prescribed number of clusters). The final step of spectral cluster-
ing algorithms is a clustering of points in this vector space. Usually a k-means
algorithm is applied at this stage. Important theoretical question, related with
spectral clustering algorithms is their consistency i.e. convergence of spectral
clustering for growing samples drawn from some underlying probability distri-
bution. From this point of view normalized clustering has a better properties
than unnormilized one [12]. Consistency of spectral clustering for Stochastic
Block Model is investigated in many sources (see for example [9]).

– Louvain algorithm. This is a heuristic for modularity maximization known
to be computationally very effective for large scale networks. Algorithm was
presented in 2008 in [10] and since attracted a great attention in the literature.
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Experiment 1. rin = 0, 8, rout is varying from 0 to rin, X has a multivariate
Gaussian distribution with zero mean and covariance matrix C given by (2),
n = 40. The results are presented on the Fig. 1.

One can see on the Fig. 1 that algorithms are different with respect to uncer-
tainty. For both measures ARI and AMI qualitative behavior is the same. Nor-
malized spectral clustering shows the best performance, followed by Louvain,
spectral clustering and naive MST algorithms. One can observe some indication
to a phase transition phenomena for clustering in correlation block model. In
this case the phase transition is displayed by a jump of uncertainty (AMI or
ARI) from the region of a good cluster recovery to the region of a bad cluster
recovery (clusters obtained by chance).

Fig. 1. Quality of clustering algorithms for Gaussian distribution as a function of rout
for rin = 0, 8, n = 40

Experiment 2. Degree di =
∑N

j=1 ri,j of each vertex in network is fixed for the
same value di = d = 16, i = 1, 2, . . . , N . In this case rin and rout are related by
19rin+20rout = 16 and one can vary rout from 0 to its maximal value (16/39) ≈
0, 41. Fixed degree of vertices is useful when we compare uncertainty for different
network dimensions (see similar approach for stochastic block model in [15]). X
has a multivariate Gaussian distribution with zero mean and covariance matrix
C given by (2), n = 40, 80. The results are presented on the Fig. 2.

One can see on the Fig. 2 the same behavior of algorithms uncertainty as for
Experiment 1. Similarly, one can observe some indication to a phase transition
phenomena for clustering in correlation block model. In this case, similar to
Fig. 1, the phase transition is displayed by a jump of uncertainty (AMI or ARI)
from the region of a good cluster recovery to the region of a bad cluster recovery
(clusters obtained by chance).

Experiment 3. Degree di =
∑N

j=1 ri,j of each vertex in network is fixed for
the same value di = d = 16, i = 1, 2, . . . , N . In this case rin and rout are
related by 19rin + 20rout = 16 and one can vary rout from 0 to its maximal
value (16/39) ≈ 0, 41. X has a multivariate Student distribution with 2 degree
of freedom with zero mean and correlation matrix C given by (2), n = 40, 80.
The results are presented on the Fig. 3.
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Fig. 2. Quality of clustering algorithms for Gaussian distribution as a function of rout
for fixed degree of vertices, d = 16, in network. Sample size on the left n = 40, sample
size on the right n = 80

One can see on the Fig. 3 a new and interesting phenomena. All algorithms
fail to recover a planted cluster structure for Student distribution. Note, that it is
the same cluster structure as for Gaussian distribution with the same correlation
matrix C. Quality of algorithms is therefor sensitive to distribution for clustering
in correlation block model with Pearson correlation.

Fig. 3. Quality of clustering algorithms for multivariate Student distribution as a func-
tion of rout for fixed degree of vertices, d = 16, in network. Sample size n = 40 on the
left, and sample size n = 80 on the right.

Experiment 4. Degree di =
∑N

j=1 ri,j of each vertex in network is fixed for
the same value di = d = 16, i = 1, 2, . . . , N . In this case rin and rout are
related by 19rin + 20rout = 16 and one can vary rout from 0 to its maximal
value (16/39) ≈ 0, 41. X has a multivariate Student distribution with 3 degree
of freedom with zero mean and correlation matrix C given by (2), n = 80.
Cluster structure is identified by normalized spectral clustering algorithm in
different correlation block models: Pearson, Kendall, and Fechner. The results
are presented on the Fig. 4.

One can see on the Fig. 4 another new and interesting phenomena. For cor-
relation block model with Student distribution in random variable network nor-
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malized spectral clustering algorithm has a better performance in Kendall and
Fechner block models in comparison with Pearson block model. It gives an idea
of possibility to construct robust clustering algorithms with uncertainty non
dependent on distribution.

Fig. 4. Quality of normalized spectral clustering algorithms for Student distribution
with 3 degree of freedom as a function of rout for fixed degree of vertices, d = 16 for
three different correlation block models, Pearson, Fechner, and Kendall. Sample size
n = 40 on the left, and sample size n = 80 on the right.

6 Conclusion

The paper deals with quality assessment of clustering algorithms in a new and
practically important setting of clustering in random variable networks. In this
case a new quality characteristic is shown to be relevant - uncertainty of clusters
identification by observations. The paper has two main contributions. First one
is methodological. We propose a methodology to assess error magnitude (uncer-
tainty) of a cluster identification by observations in random variable network.
Second one has a practical meaning. This is a comparison of different clustering
algorithms by their uncertainty of identification of hidden cluster structure in
correlation block model. This is also new and gives a new insight into the qual-
ity of clustering algorithms. Some new and interesting phenomena are observed.
They open a new and promising directions for future investigation of quality of
clustering algorithms.
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Abstract. In this paper, we consider the weakly supervised multi-target
regression problem where the observed data is partially or imprecisely
labelled. The model of the multivariate normal distribution over the tar-
get vectors represents the uncertainty arising from the labelling process.
The proposed solution is based on the combination of a manifold reg-
ularisation method, the use of the Wasserstein distance between multi-
variate distributions, and a cluster ensemble technique. The method uses
a low-rank representation of the similarity matrix. An algorithm for con-
structing a co-association matrix with calculation of the optimal number
of clusters in a partition is presented. To increase the stability and qual-
ity of the ensemble clustering, we use k-means with different distance
metrics. The experimental part presents the results of numerical experi-
ments with the proposed method on artificially generated data and real
data sets. The results show the advantages of the proposed method over
existing solutions.

Keywords: Weakly supervised learning · Multi-target regression ·
Manifold regularization · Low-rank matrix representation · Cluster
ensemble · Co-association matrix

1 Introduction

Weakly supervised learning is a type of machine learning technique in which a
model is trained using incomplete, imprecise, or ambiguous supervision signals,
rather than using fully correctly labeled data. Weak supervision often arises
in real problems for various reasons. This may be due to an expensive data
labeling process, poor accuracy of sensors, insufficient expert qualifications or
human error. For example, there is weak supervision in cases where the labeling
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is obtained using crowdsourcing techniques: for each object there is a set of
different (possibly inaccurate) labels, the quality of which depends on the skills
of the performers. In addition to that, some objects may remain unlabeled if
there is not enough budget for them.

Another example is the task of detecting objects in an image [1]. Bounding
boxes are a common way to represent the location and extent of objects detected
in an image or video frame in object detection tasks. A bounding box is a
rectangular box that surrounds the object and is defined by its four corners
or coordinates. In some difficult cases, such as detecting objects in medical CT
scans, the bounding boxes can be very inaccurate and may highlight unwanted
pixels. Moreover, the process of labeling CT images is very time-consuming, so
it is not possible to label many objects.

Generally, there are three types of weak supervision: incomplete supervision,
inaccurate supervision and inexact supervision [2]. In this work, we focus on the
first two types of weak supervision. In particular, we assume that only a small
part of the objects have labels, while the labels can be uncertain, and for most
of the dataset there are no labels at all.

We propose an algorithm for solving the multi-target weakly supervised
regression problem using Wasserstein metric, manifold regularization and a co-
association matrix as the similarity matrix. We follow the transductive setting,
which means that the objects from test data can be used during training and the
task is to find the labels only for these objects. The algorithm for calculating the
weighted average co-association matrix is also improved. Finally, we compare the
proposed algorithm with existing algorithms of supervised learning and weakly
supervised learning on synthetic and real data.

2 Problem Description

Let X = {x1, . . . , xn}, xi = (x1
i , . . . , x

p
i )

� ∈ R
p are sampled from distribution

PX , where n is the number of objects in the sample and p is the dimensionality
of the feature space. In turn, Y = {y1, . . . , yn}, yi = (y1

i , . . . , y
m
i )� ∈ R

m are
target labels, where m is the dimensionality of the target feature space.

In the semi-supervised transductive learning problem, a dataset X × Y =
{(x1, y1), . . . , (xn, yn)} is considered, but the target features {y1, ..., yn1} = Y1 ⊆
Y are only known for a small part of the available data {x1, ..., xn1} = X1 ⊆ X.
The rest of the objects {xn1+1, ..., xn} = X0 ⊆ X are unlabeled. The task is
to predict the labels Y0 = {yn1+1, ..., yn} as accurately as possible according to
some criterion.

To model the uncertainty of the observed labels, we use a multivariate normal
distribution. We suppose that for each i-th data point, i = 1, . . . , n1, the value
yi of the target feature is a realization of a random variable Yi with a cumulative
distribution function (cdf) Fi(y) defined on DY ⊂ R

m:

Yi ∼ N (μi, Σi), (1)

where μi ∈ R
m is a mean vector, Σi ∈ R

m×m is a covariance matrix, i = 1, . . . , n.
The overall degree of uncertainty can be interpreted as Ti = |Σi|: the larger it is,
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the greater the uncertainty of the label. Accordingly, for strictly labeled objects,
it is expected that Ti ≈ 0.

The task is to determine Fi(y) for i = n1 + 1, . . . , n following an objective
criterion.

3 Related Work

The work [3] provides algorithms WSR-RBF and WSR-LRCM for solving the
weakly supervised regression problem in the transductive formulation in the case
of a one-dimensional target variable. It uses a univariate normal distribution to
model inaccuracy:

Yi ∼ N (ai, σi),

where σi is an indicator of inaccuracy. Then it is proposed to solve the optimiza-
tion problem by minimizing the distance between the predicted and real distri-
butions using manifold regularization. To approximate the similarity matrix in
WSR-LRCM, the co-association matrix is used and to obtain the co-association
matrix, the cluster ensemble and the k-means algorithm are used. The WSR-
RBF variant uses a weight matrix based on the RBF kernel instead of a low-rank
representation:

Wij := W (h) = exp
(

− h2

2�2

)
, (2)

where h = ‖xi − xj‖, and � is a parameter.
However, the presented algorithm does not generalize to the multidimensional

case. To solve a multi-target regression, it is necessary to train a separate model
for each target variable. With this approach, it is possible to effectively solve
those problems in which the target variables are independent of each other. If
the target variables are not independent, for example, in the problem of object
detection [1], these dependencies will be lost during training. These dependencies
can be taken into account by using the distance between multivariate distribu-
tions, such as the Wasserstein distance [4].

The article [5] presents a detailed analysis of the co-association matrix and
the algorithm for its construction. However, it relies on the basic version of
the k-means algorithm, which has significant drawbacks, including the use of a
single metric option and the uncertainty in choosing the appropriate number of
clusters. In [7] the authors analyze the influence of metrics other than Euclidean
on the quality of clustering by the k-means algorithm.

4 Proposed Method

Let

– F ∗ = {F ∗
1 , ..., F ∗

n1
, ..., F ∗

n} be the set of arbitrary multivariate normal cdf’s,
each F ∗

i is represented by a pair (ai,Si);
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– F = {F1, ..., Fn1} be the set of known cdf’s, each Fi is represented by a pair
(μi, Σi).

In the following, we assume, both Σi and Si to be positive-definite matrices.

Therefore, they are admitting Cholesky decomposition: Σi = Σ
1/2
i Σ

1/2
i

�
, Si =

S
1/2
i S

1/2
i

�
. We denote elements of S1/2i as sijk, and elements of Σ

1/2
i as σi

jk.

4.1 Objective Functional

Consider the following optimization problem:

find F ∗∗ = argmin
F∗

J(F, F ∗), where

J(F, F ∗) =
∑

xi∈X1

W(Fi, F
∗
i ) + γ

∑
xi,xj∈X

W(F ∗
i , F ∗

j )Wij

where W is a 2-Wasserstein metric [4] (also known as Kantorovich-Rubenstein
distance), γ > 0 is a parameter, and matrix W = (Wij) represents the similarity
measures between elements of dataset. For two multivariate Gaussian distribu-
tions N(μ0, Σ0) and N(μ1, Σ1), 2-Wasserstein distance is

W(N(μ0, Σ0), N(μ1, Σ1)) = ||μ0 − μ1||22 + ||Σ1/2
0 − Σ

1/2
1 ||2F .

Following [3], we also add the regularisation term with parameter β > 0. We can
rewrite the objective as

find (a∗,S∗) = argmin
(a,S)

J(μ,Σ, a,S), where

J(μ,Σ, a,S) =
∑

xi∈X1

||μi − ai||22 + ||Σ1/2
i − S

1/2
i ||2F

+ γ
∑

xi,xj∈X

Wij(||ai − aj ||22 + ||S1/2i − S
1/2
j ||2F )

+β
∑

i=1,...,n

||ai||22 + ||Si||2F .

(3)

4.2 Optimal Solution

To find the optimal solution, we differentiate (3) with respect to elements of ai

and S
1/2
i , i = 1, ..., n:

∂J

∂aij
= 2(μij − aij) + 4γ

∑
l=1,...,n

Wlj(alj − aij) + 2βaij , i = 1, ..., n1

∂J

∂aij
= 4γ

∑
l=1,...,n

Wlj(alj − aij) + 2βaij , i = n1, ..., n

∂J

∂sijk
= 2(sijk − σi

jk) + 4γ
∑

l=1,...,n

Wli(sljk − sijk) + 2βsijk, i = 1, ..., n1

∂J

∂sijk
= 4γ

∑
l=1,...,n

Wli(sljk − sijk) + 2βsijk, i = n1, ..., n.
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Given that the matrices Σ
1/2
i are lower triangular, we introduce an auxiliary

operation vec2 : Rm×m → R
m(m+1)

2 that transforms all elements above the main
diagonal (including the main diagonal elements) into a row-by-row vector. Also,
a lower triangular matrix can be obtained from a vector using an operation
vec−1

2 : R
m(m+1)

2 → R
m×m. Similarly, operation vec3 : Rn×m×m → R

n×m(m+1)
2

(as well as vec−1
3 : Rn×m(m+1)

2 → R
n×m×m) can be defined for three-dimensional

tensors whose elements are lower triangular matrices. Let us denote

Y1,0 = (μ�
1 , ..., μ�

n1
, 0, ..., 0) ∈ R

n×m

Σ1,0 = (vec2(Σ
1/2
1 )�, ..., vec2(Σ1/2

n1
)�, 0, ..., 0) ∈ R

n×m(m+1)
2

B = diag(β + 1, ..., β + 1, β, ..., β) ∈ R
n×n.

Then the solution of the optimization problem can be given in the matrix form

a∗ = (B + 2γL)−1Y1,0

S
∗ = vec−1

3

(
(B + 2γL)−1Σ1,0

) (4)

where L is the Laplacian matrix, i.e., L = D − W , D is a diagonal matrix with
elements Dii =

∑
j

Wij . If we assume that there is exist V ∈ R
n×q, q 	 n, such

that W = V V � then

B + 2γL = B + 2γD − 2γV V � = G − 2γV V �.

where G = B + 2γD. By using the Woodbury identity [6], the inverse operator
B + 2γL in the solution, that takes O(n3) operations, can be represented as

(G − 2γV V �)−1 = G−1 + 2γG−1V (I − 2γV �G−1V )−1V �G−1 (5)

where G is diagonal matrix (and therefore can be inverted in linear time), I −
2γV �G−1V ∈ R

q×q. Therefore it takes O(nq+q3) to perform the inverse, which
reduces the computations significantly, since by the assumption q 	 n. Finally,
we get:

a∗ = (G−1 + 2γG−1V (I − 2γV �G−1V )−1V �G−1)Y1,0

S
∗ = vec−1

3

(
(G−1 + 2γG−1V (I − 2γV �G−1V )−1V �G−1)Σ1,0

)
.

(6)

In the article [3] it is shown that the weighted average co-association matrix
can be used as a similarity matrix. By definition, the weighted average co-
association matrix is

H =
r∑

l=1

ωlHl, (7)

where H1, . . . , Hr are the co-association matrices for partitions P1, ..., Pr with
elements indicating whether a pair xi, xj belong to the same cluster of this
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partition or not, ω1, . . . , ωr are weights of ensemble elements, ωl ≥ 0,
∑

ωl = 1.
This matrix has a low-rank representation:

H = V V �,

where V = [V1V2 . . . Vr] is a block matrix, Vl =
√

ωl Zl, Zl ∈ R
n×Kl is the

cluster assignment matrix for lth partition: Zl(i, k) = I[c(xi) = k], i = 1, . . . , n,
k = 1, . . . , Kl and Kl is the number of clusters in partition Pl, Kl 	 n. It is
also shown that the Laplacian matrix L for the matrix H can be written in the
following form:

L = D′ − H,

D′ = diag(D′
11, . . . , D

′
nn),

D′
ii =

n∑
j=1

H(i, j) =
n∑

j=1

r∑
l=1

ωl

Kl∑
k=1

Zl(i, k)Zl(j, k). (8)

Now the optimal solution (5) can be found by using the low-rank represen-
tation of the similarity matrix (7) and the diagonal matrix (8).

5 Co-association Matrix: Multimetricity and Optimality

To obtain a low-rank similarity matrix representation, we will use a weighted
average co-association matrix as the similarity matrix. However, the standard
algorithm for calculating the weighted average co-association matrix [5] has a
number of disadvantages:

– The k-means algorithm using the Euclidean metric can only find spherical
clusters, so some complex relationships in the data may not be found as a
result of clustering;

– The result is strongly influenced by both the choice of the desired number of
clusters for the k-means algorithm and the number of different partitions in
the ensemble.

To solve these problems, we decided to improve the algorithm for calculating
the weighted average co-association matrix. Firstly, we propose to average the
co-association matrix over the distance metrics used in the k-means algorithm.
Secondly, we propose to use only optimal partitions in terms of cluster validity
index in the ensemble in order to reduce the influence of unnecessary partitions
and reduce the size of the ensemble.

5.1 Multimetric Weighted Average Co-association Matrix

Let {Mt}dt=1 be the set of metrics that can be used in the k-means algorithm
as the distance between points, for example, the Minkowski distance of order
p. Then for each metric from this set, an arbitrary set of partitions variants
{PMt

l }rMt

l=1 can be obtained using cluster ensemble. Similarly, for each partition,
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the co-association matrix HMt

l can be found [3]. Then we define the multimetric
weighted average co-association matrix as follows:

H =
d∑

t=1

HMt =
d∑

t=1

rMt∑
l=1

ωMt

l HMt

l , (9)

where ωMt
1 , . . . , ωMt

r are weights of ensemble elements, ωMt

l ≥ 0,
rMt∑
l=1

ωMt

l = 1 for

each Mt, t = 1, ..., d.
It should be noted that the clustering quality index, on which partition

weights ωMt

l depend, should use the selected metric as the distance between

points. That is why we assume that
rMt∑
l=1

ωMt

l = 1 for each Mt, t = 1, ..., d rather

than
d∑

t=1

rMt∑
l=1

ωMt

l = 1. As a further improvement, co-association matrices can

also be weighted.
Thus, by using different metrics, we can obtain different partitions and reduce

the impact of some negative effects arising from the use of the Euclidean distance.
For example, in [7] it is shown that using the city blocks metric can reduce the
impact of the curse of dimensionality.

5.2 Optimal Weighted Average Co-association Matrix

In general, the number of clusters in each partition is a hyperparameter. For
example, in [3] two different set of parameters are used:

– The ensemble size r = 10, the number of clusters Ki in i-th partition: Ki =
2 + i, i = 1, ..., r;

– The ensemble size r = 10, the number of clusters Ki in i-th partition: Ki =
100 + i, i = 1, ..., r.

However, this choice may not be optimal. So, in the first case, for partitions with
a small number of clusters, the weights can be extremely small, which means that
their influence on the weighted average co-association matrix will be insignificant.
In the second case, in addition to the high computational complexity of finding
partitions with a large number of clusters, all resulting partitions can be similar
to each other and have almost the same weights. Also, in both cases, it is not
guaranteed that at least one optimal partition will be found in terms of any
criterion: for example, a partition that achieves a local optimum of the cluster
validity index.

We propose another algorithm that calculates weighted average co-
association matrix with optimal partitions. The matrix H∗ thus obtained is
called optimal weighted average co-association matrix. This matrix is optimal
in the sense that only optimal partitions according to the cluster validity index
are used in its calculation. Below is an algorithm for calculating the optimal
weighted average co-association matrix by steps:
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Input:
X - dataset.
r - cluster ensemble size.
kmin - minimum number of clusters in a partition.
kmax - maximum number of clusters in a partition.
Output:
H∗ - optimal weighted average co-association matrix.
Steps:
1. Find a set of partitions {Pk}kmax

k=kmin
of X using the k-means algorithm with

different number of clusters k.
2. Calculate a set of cluster validity index values {ωk}kmax

k=kmin
for the set of par-

titions {Pk}kmax
k=kmin

.
3. Select r largest values {ωki

}ri=1 from a set {ωk}kmax
k=kmin

and the corresponding
set of partitions {Pki

}ri=1.
4. Calculate a set of co-association matrices {Hki

}ri=1 for the set of partitions
{Pki

}ri=1.

5. Calculate optimal weighted average co-association matrix H∗ =
r∑

l=1

ωki
Hki

end.
The optimal weighted average co-association matrix thus obtained can be

used instead of the original one, including for calculating multimetric weighted
average co-association matrix:

H∗ =
d∑

t=1

H∗Mt . (10)

6 C-WSR Algorithm

We formulate three main variants of the Correlated Weakly Supervised Regres-
sion (C-WSR) algorithm:

– RBF: Radial Basis Function to calculate the similarity matrix is used;
– LRCM: a low-rank representation of the weighted average co-association

matrix to calculate the similarity matrix is used;
– LROMCM: a low-rank representation of the optimal multimetric weighted

average co-association matrix (10) to calculate the similarity matrix is used.

Input:
X - dataset with weak supervision, X1 ⊂ X - labeled sample, X2 ⊂ X inaccu-
rately labeled sample, X3 ⊂ X - unlabeled sample.
ai, Σi - mean vectors and covariance matrices of target distributions for each
xi ∈ X1 ∪ X2

LRCM variant: r, Ω - cluster ensemble size and set of parameters for the k-means
for clustering.
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LROMCM variant: M - set of metrics for algorithm k-means, r - cluster ensemble
size, kmin - minimum number of clusters in a partition, kmax - maximum number
of clusters in a partition.
Output:
a∗, S∗ - predicted mean vectors and covariance matrices of target distributions
for objects from sample X (including predictions for the unlabeled sample).
RBF Variant Steps:
Directly calculate predicted mean vectors and covariance matrices of target dis-
tributions using (2) and (4).
LRCM Variant Steps:
1. Generate r variants of clustering partition for parameters randomly chosen
from Ω; calculate weighted average co-association matrix.
2. Find graph Laplacian in the low-rank representation using (7) and D′ in (8).
3. Calculate predicted mean vectors and covariance matrices of target distribu-
tions using (6).
LROMCM Variant Steps:
1. Calculate optimal multimetric weighted average co-association matrix with
metrics from set M and parameters r, kmin, kmax using (9) and (10).
2. Find graph Laplacian in the low-rank representation using (7) and D′ in (8).
3. Calculate predicted mean vectors and covariance matrices of target distribu-
tions using (6).
end.

7 Experimental Results

In this section, we will compare three variants of the proposed Correlated Weakly
Supervised Regression (C-WSR) algorithm. We use the MWD metric when com-
paring with weakly supervised learning algorithms WSR-RBF and WSR-LRCM
from [3] and MAE when comparing with supervised learning algorithms such as
Multivariate Linear Regression and gradient boosting from framework XGBoost
on real data:

MWD(y, y∗) =
1

ntest

∑
xi∈Xtest

||μi − ai||22 + ||Σ1/2
i − S

1/2
i ||2F ,

MAE(y, y∗) =
1

ntest

∑
xi∈Xtest

||μi − ai||2.

Since the WSR-RBF and WSR-LRCM algorithms can only be used in a single
target scenario, we train a separate model for each target variable. To calculate
multimetric weighted average co-association matrix, we use Minkowski metric ρp
with different p ∈ {1, 2,∞} and Silhouette as index cluster validity to determine
the weights and the optimal number of clusters.

For experiments, we used an AMD Ryzen 9 3850X processor with a clock
frequency of 3.5GHz and 64 GB of RAM.
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7.1 Monte-Carlo Simulation

For the Monte Carlo simulation, we generated a dataset of 1000 objects from
a mixture of multivariate normal distributions N (μ∗

k, Σ
∗
k), μ∗

k = (8k + 1, 8k +
2, ..., 8k + dx) ∈ R

m, Σ∗
k = diag(1, ..., 1) ∈ R

dx×dx , dx = 8 and k ∈ {1, 2, 3}.
For objects generated from the k-th component, we assume that the tar-

get function is equal to Yk = k + εk, where εk is a random variable with
dy-dimensional normal distribution function N (0,DkD

�
k ), Dk is random lower-

triangular matrix with elements sampled from normal distribution and dy = 4.
To insure the weak supervision, we assumed 10% of the dataset to be strictly

labeled, 20% of the dataset consists of inaccurately labeled objects and the
remaining 70% of objects are unlabeled. To model the inaccurate labeling, we
use the parameters defined in (1): Σi = ΣY , where ΣY is a covariance matrix
of the target function over labeled data. For strictly labeled objects, we assume
that the matrix Σi is a zero matrix.

For the WSR-LRCM and C-WSR-LRCM algorithms, we used a cluster
ensemble of size r = 30 and the number of clusters Ki in i-th partition: Ki = 2+i,
i = 1, ..., 30. The C-WSR-LROMCM algorithm uses parameters r = 10, kmin = 2
and kmax = 30. Regularization coefficients β = 0.001 and γ = 0.001 are set for
all algorithms. The obtained quality metrics were averaged over 100 runs. The
results are presented in Table 1.

Table 1. Comparsion on Monte-Carlo simulation.

Supervision type WSR C-WSR
RBF LRCM RBF LRCM LROMCM

MWD 0.835 0.760 0.382 0.324 0.227

7.2 CO/NOx Dataset

For CO/NOx dataset [8] we use carbon monoxide (CO) and nitrogen oxides
(NOx) emissions for year 2015 as regression targets. This dataset contains 11
features that describe the characteristics of a gas turbine and include 36733
observations.

1% of data is assumed to be strictly labeled, 9% is assumed to be labeled
inaccurately, and 90% of data is considered unlabeled. Since the dataset is large,
to model the inaccurate labeling, we estimate the mean vectors μi and covariance
matrices Σi by 50 nearest neighbours. For strictly labeled objects, the exact label
is used as the mean vector μi, and Σi is equal to the zero matrix.

As with synthetic data, regularization coefficients β = 0.001 and γ = 0.001
are set. For the WSR-LRCM and C-WSR-LRCM algorithms, a cluster ensemble
of size r = 30 is used with the number of clusters Ki in i-th partition: Ki = 10+ i,
i = 1, ..., 30. The C-WSR-LROMCM algorithm trained with parameters r = 10,
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kmin = 2 and kmax = 50. Supervised learning algorithms (Multivariate Linear
Regression (MLR) and XGBoost (XGB)) are trained only on strictly labeled
objects. Note that due to the large amount of data in the dataset, finding the
inverse matrix in the RBF variant requires a significant amount of computing
resources, especially RAM. The results are presented in Table 2.

Table 2. Comparsion on CO/NOx dataset.

Supervision type WSR C-WSR SR
RBF LRCM RBF LRCM LROMCM MLR XGB

MWD 72.96 60.07 65.45 52.22 44.74 – –
MAE 42.11 35.92 38.84 31.92 26.83 38.69 30.48

Thus the results of the experiments show the considerable improvements in
the accuracy for the proposed method.

8 Conclusion

In this paper, we considered the problem of multi-target weakly supervised
regression with noisy labelling in a transductive setting. Using the multivari-
ate normal distribution, we described an imprecision model in the multi-output
case. We also proposed an algorithm for solving the optimisation problem using
the Wasserstein metric and manifold regularisation. To speed up the solution
of the optimisation problem, we used the cluster ensemble to obtain the co-
association matrix and the low-rank representation technique to compress the
resulting matrices.

The presented algorithm has shown its advantage over existing machine learn-
ing algorithms that cannot use uncertain multidimensional labels during train-
ing. We have also made several important improvements to the calculation of
the weighted average co-association matrix by introducing an optimal multimet-
ric weighted average co-association matrix. The new approach can significantly
improve the quality and stability of the algorithm, and also simplifies the search
for optimal hyperparameters to solve each specific problem.

As a further improvement, one can try different distances between distri-
butions in the optimisation problem, and another promising idea would be to
use deep learning approaches to find the co-association matrix. It is also worth
considering other imprecision models: for example, using different types of mul-
tivariate distributions than normal.
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Abstract. Nowadays much attention has been paid to the development
of the software, which makes it possible to process and visualize images,
and in particular, develop the mathematical models for monitoring and
predicting of crops quality to optimize the profit. Modelling the dynam-
ics of vegetation indices in this regard is very relevant and important
task especially if it is made with high level of detailing. A number of
studies are underway in the agricultural sector to better predict crop
yield using machine learning algorithms. In our research we suggest the
deterministic approach using general least deviation method to obtain
the model for a dynamic process. Using the obtained models data from
the previous periods we can compare them with data for the current
one and forecast the development of the crops in the current vegetation
period. Unlike neural networks, this approach makes it possible to explic-
itly obtain high-quality quasi-linear difference equations for any field and
any region. We use this model for modelling of normalized difference veg-
etation index dynamics for several years and discuss the opportunities to
use our algorithm as a base of software for crop prediction, and detection
of the problematic areas of a field.

Keywords: Forecasting · time series · quasilinear model · generalized
least deviations method · monitoring crop yields · NDVI dynamics

1 Introduction

Recently, much attention has been paid to the development of the software,
which makes it possible to process and visualize satellite and drone information,
and in particular, the development of mathematical models for monitoring and
predicting of crops quality [1] to optimize the profit. Modelling the dynamics of
vegetation indices in this regard is very relevant and important task nowadays,
especially if it is made with high level of detailing.

The main objective of the study is to develop a mathematical model based
on the available NDVI (Normalized Difference Vegetation Index) statistical data
that allows one to describe the dynamic process of development of crops in order
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to assess their productivity. The most of known researches use neural networks
[2–5], statistical [6,7] or elementary ordinary differential equations approaches
[8].

Our study offers a higher level of detail, which is of particular interest to
potential customers. The article [8] considers the average value of NDVI for a
single field. There are also known works in which the authors consider the average
values of the vegetation index NDVI for rather large territorial objects: (1) for
one region [3,6,9], for each administrative region [10], for individual agricultural
enterprises, or the average long-term values of this indicator for decades for each
region. All these approaches have high errors since there may appear the valuable
differences of NDVI even for one field because of forest cover, relief, shading and
some other factors. In our research we suggest to divide each considered field
to tiles with common properties and NDVI values and research the dynamics of
NDVI for each tile separately. It allows us to define and recognize the problematic
areas of one field.

In our paper we discuss our methods for identifying the parameters of a sin-
gle quasilinear difference equation. We use it to solve the problem of regression
analysis with mutually dependent observable variables, which allows to imple-
ment the general last deviations method (GLDM). Unlike neural networks, this
approach makes it possible to explicitly obtain high-quality quasi-linear differ-
ence equations (adequately describing the considered process). Our approach is
flexible and runs for any initial data for any region and any agriculture, when the
neural networks need learning for each considered region, and each agriculture
separately. So, the results obtained using neural networks for China, Egypt or
even some regions of Russia do not describe the common approach for any data
and any region. Our approach also allows to get the model coefficients for all
the cases considered earlier: the average NDVI for a region, for administrative
region, for one corporation, for one field, and also for part of a field.

2 Data Organizing

A concept of data organizing somewhat similar to the approach of the authors
was considered in works [12–14]. The authors propose a method for element-by-
element image analysis for the formation of linear contours of objects depicted on
aerial photographs. The proposed method makes it possible to recognize objects
by their formal features, allows to analyse more details and properties of objects
in the process of recognition, and also improves the quality and accuracy of
recognition. Unfortunately, in addition to the algorithm itself, the authors do
not provide any additional, but very important information. There are no data
on the efficiency of using the algorithm, the time of its work with graphic files
of large dimensions, the results of computational experiments, analysis of the
accuracy of object detection are not given. And these authors, as many others
stop on recognition itself, do not concerning the further analysis of state of
recognized objects in time.

Our data used for analysis is obtained from the process shown in Fig. 1. Let
the object is already recognised, NDVI is already calculated. The NDVI scale
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Fig. 1. The scheme of the analysis system executing

S ∈ [−1; 1]. In common negative values S ≤ 0 show buildings, structures, paved
road surfaces, water surfaces, mountains, clouds and snow. Index S ∈ [0.1; 0.2)
usually corresponds to an open soil. In the case of plants, the NDVI index always
has positive values S ∈ [0.2; 1], where S ∈ [0.2; 0.4) satisfies the weak, sparse
vegetation, S ∈ [0.4; 0.6) means moderate vegetation, and the value S ≥ 0.6 is
an index for healthy, dense vegetation. So, the examined time series consists of
values between 0 and 1. And we need to determine the model describing the
dynamics of NDVI. In [8] authors showed that NDVI dynamics corresponds to
the normal distribution law and defined the model coefficients using the separable
differential equation. The parameters of this equation are later obtained using
statistical software for one field. In our approach we get all the parameters using
only our algorithm. One more peculiarity of approach considered in [8] is that
authors use the average NDVI values for the whole field. And in our approach we
can split the field for several tiles to discover the dynamics of vegetation index
for each of them (see Fig. 2). Each tile is characterized by several peculiarities.
For example, the field in Fig. 2 has 6 different tiles:

– T1 corresponds the area near the pond, it’s most likely low;
– T2 and T3 satisfy the shadowed area;
– T4 is the common field without any peculiarities;
– T5 is the shadowed area near the road;
– T6 is the area near the road.

For sure, the real examined field can have more areas and more properties defin-
ing the different velocity of crops growth. Let us save a vector of the tiles belong-
ing the field. This kind of data organizing may be implemented for the different
types of objects such as lakes and islands, crops and forests, etc. If we need
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Fig. 2. The example of a field and its division to several tiles

discovering the process in time we can form the 3-dimensional (in common case)
matrix as following (see Fig. 3): for each tile Ti, i = 1, . . . n of recognized image
we save the values for time t1, t2, . . ., tM for several layers Lj , j = 1, . . . k.

Fig. 3. The matrix of values for each tile in time

The layers may save the information for different bands of multispectral camera,
it may be information for different types of objects etc. As soon as the moni-
toring of crops developing is made in 3–5 days then the number of images M
is approximately 100–150 per year if we take images without dependency on a
season (for example, for recognition of waterlogged lakes), and 10–40 if we are
holding seasonal researches (for example, vegetation of crops, deciduous forest
research etc.) The number of tiles N depends on the real size of the recognized
objects, and their properties. Hence, to describe the dynamic process for each
tile of the recognized object we need to obtain the coefficients for N models.
This task is solvable for each agricultural object separately. Now let us consider
the common approach of defining the model coefficients.
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3 General Least Deviations Method Estimation

Let us consider a single time series for one selected tile. For other tiles, the
reasoning is similar up to the defined parameters.

Linear autoregressive models have a small forecasting horizon. The construc-
tion of adequate nonlinear models and/or neural networks may not be possible
for technical reasons. Quasilinear models allow to increase the forecasting hori-
zon. Let us implement our approach considered in [11] to determine the coeffi-
cients a1, a2, a3 . . . , am ∈ R of a m-th order quasilinear autoregressive model

yt =
n(m)∑

j=1

ajgj({yt−k}m
k=1) + εt, t = 1, 2, . . . , T (1)

by up-to-date information about of values of state variables {yt ∈ R}T
t=1−m

at time instants t; here gj : ({yt−k}m
k=1) → R, j=1, 2, . . . n(m) are given n(m)

functions, and {εt ∈ R}T
t=1 are unknown errors.

The considered approach consists in determining the parameters of the
recurrence Eq. (1). The GLDM estimation algorithm [11] gets a time series
{yt ∈ R}T

t=−1−m of length T + m ≥
(
1 + 3m + m2

)
as an input data and deter-

mines the factors a1, a2, a3 . . . , am ∈ R by solving the optimization task

T∑

t=1

arctan

∣∣∣∣∣∣

n(m)∑

j=1

ajgj({yt−k}m
k=1) − yt

∣∣∣∣∣∣
→ min

{aj}n(m)
j−1 ⊂R

(2)

The Cauchy distribution

F (ξ) =
1
π
arctan(ξ) +

1
2

has the maximum entropy among distributions of random variables that have
no mathematical expectation and variance. That’s why function arctan(∗) is
applied as loss function.

Let’s consider a m-th order model with quadratic nonlinearity. Then the
basic set gj(∗) may contain the following functions

g(k)({yt−k}m
k=1) = yt−k, (3)

g(kl)({yt−k}m
k=1) = yt−k · yt−l,

k = 1, 2, . . . ,m; l = k, k + 1, . . . ,m.

Obviously, in this case n(m) = 2m + C2
m = m(m + 3)/2 , and the numbering

of g(∗) functions can be arbitrary. In particular, for m = 2 functions g(∗) are the
following

g1 = y1, g2 = y2, g3 = y2
1 , g4 = y2

2 , g5 = y1 · y2.

The model for this case looks like following:

yt = (a1yt−1 + a2yt−2) +
(
a3y

2
t−1 + a4y

2
t−2 + a5yt−1yt−2

)
. (4)
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Predictor forms the indexed by t = 1, 2, . . . , T −1, T family of the m-th order
difference equations

y[t]τ =
n(m)∑

j=1

a∗
jgj

(
{y[t]τ−k}m

k=1

)
,

τ = t, t + 1, t + 2, t + 3, . . . , T − 1, T, T + 1, . . . (5)

for lattice functions y[t] with values y[t]τ which interpreted as constructed at time
moment t the forecasts for yτ . Let us use the solution of the Cauchy problem for
its difference Eq. (5) under the initial conditions

y[t]t−1 = yt−1, y[t]t−2 = yt−2, . . . , y[t]t−m = yt−m t = 1, 2, . . . , T − 1, T (6)

to find the values of the function y[t].

So we have the set Y τ =
{
y[t]τ

}T

t=1
of possible prediction values of yτ .

Further we use this set to estimate the probabilistic characteristics of the yτ

value.
The task (2), i.e. task of GLDM-estimation, is a concave optimization prob-

lem, and entering the additional variables reduces it to the following linear pro-
gramming task

T∑

t=1

ptzt → min
(a1,a2,...,an(m))∈Rm,

(z1,z2,...,zT )∈RT

(7)

−zt ≤
n(m)∑

j=1

[ajgj({yt−k}m
k=1)] − yt ≤ zt, t = 1, 2, . . . , T, (8)

zt ≥ 0, t = 1, 2, . . . , T. (9)

The task (7)–(9) has a canonical type with variables n(m)+T and 3n inequality
constraints including the conditions of non-negativity of zj , j = 1, 2, . . . , T .

The dual to (7) task is

T∑

t=1

(ut − vt) yt → max
u,v∈RT

, (10)

T∑

t=1

ajgj({yt−k}m
k=1) (ut − vt) = 0, j = 1, 2, . . . , n(m), (11)

ut + vt = pt, ut, vt ≥ 0, t = 1, 2, . . . , T. (12)

Let us introduce variables wt = ut − vt, t = 1, 2, . . . , T . Conditions (12) imply
that

ut =
pt + wt

2
, vt =

pt − wt

2
, −pt ≤ wt ≤ pt, t = 1, 2, . . . , T.
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So the optimal task (10)–(12) solution is equal to the optimal solution of task

T∑

t=1

wt · yt → max
w∈RT

, (13)

T∑

t=1

gj({yt−k}m
k=1) · wt = 0, j = 1, 2, . . . , n(m), (14)

−pt ≤ wt ≤ pt, t = 1, 2, . . . , T. (15)

Constraints (14) define (T−n(m))-dimensional linear variety L with (n(m) × T )-
matrix

S =

⎡

⎢⎢⎢⎣

g1({y1−k}m
k=1) g1({y2−k}m

k=1) . . . g1({yT+1−k}m
k=1)

g2({y1−k}m
k=1) g2({y2−k}m

k=1) . . . g2({yT+1−k}m
k=1)

...
...

. . .
...

gn(m)({y1−k}m
k=1) gn(m)({y1−k}m

k=1) . . . gn(m)({y1−k}m
k=1)

⎤

⎥⎥⎥⎦

Constraints (15) define T -dimensional parallelepiped T .
The simple structure of the allowed set for task (13)–(15) representing the

intersection of (T − n(m))-dimensional linear variety L (14) and T -dimensional
parallelepiped T (15) allows to obtain its solution by algorithm using the gradient
projection of the objective function (13) (i.e. vector ∇ = {yt}T

t=1 ) on the allowed
area L ∩ T defined by the constraints (14)–(15). The projection matrix on L is
as following

SL = E − ST ·
(
S · ST

)−1 · S,

and gradient projection on L is equal to ∇L = SL ·∇. Moreover, if outer normal
on any parallelepiped face forms the sharp corner with gradient projection ∇L
then movement by this face is equal to zero.

GLDM-estimates are robust to the presence of a correlation of values in
{yt ∈ R}T

t=−1−m, and (with appropriate settings) are the best for probability
distributions of errors with heavier (than normal distribution) tails (see [15]).
The above shows the feasibility of solving the identification problem by algorithm
of weighted less deviation method (WLDM) estimation. The established in [16]
results allow us to reduce the problem of determining GLDM estimation to an
iterative procedure with WLDM estimates [11].

The scheme of algorithm is shown in Fig. 4. Its input data are:

– S = {St ∈ R
N}t∈T , the matrix of a linear variety;

– ∇L, gradient projection of objective function on L;
– weight factors {pt ∈ R

+}T
t=1;

– values of the given state variables {yt ∈ R
+}T

t=1−m.

Algorithm runs as the iteration process for obtaining optimal GLDM solu-
tion A ∈ R

n(m) and the vector of residuals z ∈ R
T . This process stops when(

A(k) = A(k−1)
)
. To obtain A and z we run the WLDM estimation algorithm
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Fig. 4. The scheme of GLDM estimation algorithm

[17] which gets the same input data as GLDM algorithm and calculates the
factors

a1, a2, a3 . . . , an(m) ∈ R

by solving the optimization task

T∑

t=1

pt ·

∣∣∣∣∣∣

n(m)∑

j=1

ajgj({yt−k}m
k=1) − yt

∣∣∣∣∣∣
→ min

{aj}n(m)
j=1 ∈Rn(m)

(16)

The scheme of this algorithm is shown in Fig. 5. Computational complexity of
such algorithm does not exceed O(T 2) due to the simple structure of the admis-
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Fig. 5. The scheme of WLDM estimation algorithm

sible set: intersection of T -dimensional cuboid (15) and (T − n(m))-dimensional
linear variety (14).

Algorithm for dual task (13)–(15) solution begins the search of the optimal
solution at 0, moving along direction ∇L. If the current point falls on the face
of brick T , then the corresponding coordinate in the direction of the moving is
assumed to be 0.

If (w∗, R∗) is the result of executing the gradient projection algorithm [11],
then w∗ is the optimal solution to the task (13)-(15), and the optimal solution
of the task (10)–(12) is equal to

u∗
t =

pt + w∗
t

2
, v∗

t =
pt − w∗

t

2
, t = 1, 2, . . . , T.

It is following from the complementarity condition for a pair of mutually dual
tasks (7)–(9) and (10)–(12) that

yt =
n(m)∑

j=1

[ajgj({yt−k}m
k=1)] ∀t /∈ R∗, (17)

yt =
n(m)∑

j=1

[ajgj({yt−k}m
k=1)] + z∗

t , ∀t ∈ R∗ : w∗
t = pt, (18)
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yt =
n(m)∑

j=1

[ajgj({yt−k}m
k=1)] − z∗

t , ∀t ∈ R∗ : w∗
t = −pt. (19)

In fact, the solution ({a∗
j}

n(m)
j−1 , z∗) of linear algebraic equations system (17)–(19)

represents the dual optimal solution of task (13)-(15) and the optimal solution
of the task (16), that proves the validity of the following theorem.

Theorem 1. Let

– w∗ be the optimal solution of the task (13)-(15),
– ({a∗

j}
n(m)
j−1 , z∗) be solution of a system of linear algebraic equations (17)-(19).

Then {a∗
j}

n(m)
j−1 is the optimal solution to the task (16).

The main problem with the use of WLDM-estimator is the absence of general
formal rules for choosing weight coefficients. Consequently, this approach requires
additional research.

Theorem 2. [17] The sequence{
(
A(k), z(k)

)
}∞

k=1, constructed by GLDM-
estimator Algorithm, converges to the global minimum (a∗, z∗) of the task (2).

The description of GLDM estimation algorithm shows that its computational
complexity is proportional to the computational complexity of the algorithm for
solving of primal and/or dual WLDM tasks. Multiply computational experiments
show that the average number of iterations of GLDM estimation algorithm is
equal to the number of coefficients in the identified equation. If this hypothesis
is true then computational complexity in solving practical problems does not
exceed

O((n(m))3 T + n(m) · T 2).

It is necessary to take into account that the search and finding of the high-
order autoregression equation have their own specific conditions. One of these
conditions, in particular, is the high sensitivity of the algorithm to rounding
errors. To eliminate the possibility of error in the calculations, it is necessary to
accurately perform basic arithmetic operations on the field of rational numbers
and supplement them with parallelization.

To analyse the quality of the obtained coefficients we use two errors: MAE,
and MBE. In statistics, the mean absolute error (MAE) is a measure of the
errors between paired observations expressing the same time series:

MAE =

∑minFH
t=3

∣∣∣y[t] − y[t]
∣∣∣

minFH
,

where minFH be a reasonable forecasting horizon. Mean Bias Error (MBE) is
the exact difference between the predicted value and the actual value without
any math function like absolute or square root applied to it

MBE =

∑minFH
t=3

(
y[t] − y[t]

)

minFH
.
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Hence, in terms of the problem of analyzing aerial photographs the developed
algorithm allows to get a mathematical model describing the process develop-
ment for each tile. This is useful if we compare a set of models between each
other, and then detect ones corresponding to areas with well-developed crops.
Moreover, using the models data from the previous periods we can compare them
with data for the current period and forecast the development of the crops in the
current vegetation period. As for known approaches, they may work perfectly
for some definite cases, and get chaos for some other cases. ARIMA, exponen-
tial smoothing and other classical approaches are not suitable for the case when
we try to forecast crops for a new period because only a few data is known.
Our model needs only 2 first points to apply the obtained model and forecast
the development of the process in future. The same is for machine learning
approaches. The approach considered in [8] uses the classical differential equa-
tion to solve the same task, but the coefficients of their model are defined by
Statistica software, so, this approach works for the only case, and should be
recalculated for the other objects manually, moreover, the obtained curve does
not depend on the initial value.

4 Experimental Results

Let us consider the computational experiment on constructing the solution of
Cauchy problem to one quasi-linear difference equation, the identification of this
equation, and let us show that the obtained solution shows the high quality of the
considered algorithm for the dynamics of NDVI for the following 2 experiments:
(1) the dynamics of index for winter wheat sowing in Stavropol region; (2) the
dynamics of NDVI for forests of Losiniy island. The data for experiments are
taken from dissertations [18,19], these researches are devoted to the other tasks,
so there is no way to compare our results with some other models. Although,
defining this index is a very important task, there are only a few small free
datasets to test the new approaches.

4.1 The Dynamics of NDVI for Winter Wheat Sowing in Stavropol
Region

Changes in the vegetative index NDVI in ontogenesis reflect its physiological
state and depend both on the phase of development and on growing conditions:
temperature and air humidity. Vegetation index NDVI as an optical-biological
characteristic of a crop can be used to assess its physiological state. The aver-
age dynamics of this indicator for the fields of winter wheat is a peak-shaped
non-uniform curve with a maximum at the beginning of the heading phase. We
consider the time series for one of the fields examined by the author of dis-
sertation [18] in 2014. The process and the results of modelling are shown in
Fig. 6.
This dataset contains the average data for a single field, but if a field is split to
several tiles, there is no problem to take average for a single tile if we have the
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Fig. 6. The observed dynamics of NDVI for one of the fields in Stavropol region in
2014 and the results of modelling

map of a field and its surroundings. The task of splitting the field to the tiles is
the subject of a separate research, and the methods of modelling the obtained
indexes do not depend on methods of splitting to tiles.

The observing in the considered experiment started in the end of February
when the snow goes away and continued until wheat ripening in the beginning of
July. The identification results for this experiment allow to obtain the following
model coefficients for model (4):

yt = (3.46935 · yt−1 − 2.18641 · yt−2) +(
−5.59237 · y2

t−1 − 2.5635 · yt−1yt−2 + 7.72991 · y2
t−2

)
.

The loss function value is 0.9172588, and the errors are MAE = 0.02095274 and
MBE = 0.01885199.

This experiment shows that the GLDM estimation algorithm allows to get
the model coefficients for experimental data obtained in the equal time periods.
If the time periods are not equal, for example, if we consider the whole life
cycle of the winter wheat developing from September till July (here the period
from the middle of November till the end of February is not observed), or we
held some measurements of NDVI daily sometimes, the obtained model cannot
adequately describe this process. So, the using of arbitrary time periods is the
topic of further research. This research is very urgent since it is impossible to
measure NDVI in the fixed time periods due to the crop technology and the
inability to launch a drone daily due to the high cost of this process for large
areas.

Once we obtain the model of NDVI dynamics for several years we can get
the average model for a fixed crop in a fixed field. This model can help the
farmer to detect the problematic areas (if at one moment the value of NDVI is
lower than the model value by an amount exceeding the threshold value) and
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facilitate monitoring of them, and also count the predicted volume of crops for
each considered field.

4.2 The Dynamics of NDVI for Modelling the Growth of Trees
in Losiniy Island

One more urgent agricultural and ecological task is monitoring of the forests.
Using NDVI dynamics for several years we can observe the quality either of a
whole forest or some tree species growing there. Let us for the experiment use
consider the time series satisfying the monitoring of forests in Losiniy island
from April till October. These time series are examined in [19]. But the author
of this work does not consider any model and only describes the observed data.
As in the case with crops, once we have a model for one year we can compare
it with the same model for the other years, obtain the seasonal model, or the
model based on the average coefficients for all the previous years. If we have a
model we can analyse the quality of trees and detect the problems with them.
As soon as now we are analysing the data for one season, we have very short
time series for which GLDM-estimation algorithm gets the following model of the
second order (the coefficients of the model (4), loss function, minimal forecasting
horizon (in months), and errors are shown in Tables 1). The analysis of Table 1
shows that the developed algorithm works almost perfect for different type of
data for different tree types. The errors of modelling are very low for most cases,
hence, the obtained models adequately describe the process of NDVI dynamics
for various tree types and can be used for analysis of monitoring results. The main
advantage of this approach is that all the obtained coefficients may be interpreted
in terms of practical task. The use of neural networks for the considered data sets
is not justified, since the length of the time series does not allow the efficient use

Table 1. The identification results (coefficients, loss function and errors) for different
tree species

Tree a1 a2 a3 a4 a5 Loss fun. MAE MBE

Birch −3,33289 4,3374 13,6638 8,41678 −22,82575 6,22E−015 1,00E−012 −1,00E−012
Elm −2,72226 3,50835 11,0937 6,64245 −18,05596 4,00E−015 1,42E−014 1,42E−014
Oak −3,04254 4,35999 13,2885 8,65894 −23,30116 4,88E−015 1,70E−014 −1,70E−014
Spruce −0,55497 3,03523 12,3839 10,3757 −26,43966 7,55E−015 4,13E−014 −3,51E−014
Willow −2,21953 2,71921 9,97028 6,33381 −16,02432 2,22E−015 3,93E−014 3,93E−014
Maple −19,3533 22,2068 54,9690 30,3626 −90,5544 1,95E−014 1,71164 −1,71164
Linden −0,88513 2,09379 10,0772 9,18861 −20,48208 3,11E−015 7,26E−013 7,26E−013
Larch −4,45510 5,07474 13,9688 6,54746 −20,55857 4,44E−015 3,65776 −3,65776
Alder −0,94055 1,94152 9,30427 8,30144 −18,28108 3,77E−015 1,21342 1,21342
Aspen −4,03793 5,60943 16,2789 10,01083 −28,17523 2,66E−015 3,07E−013 2,53E−013
Rowan −4,62792 4,21466 19,5855 12,74890 −30,28771 1,15E−014 6,22E−015 6,22E−015
Pine −0,96789 2,93664 11,2552 8,35734 −22,09748 1,33E−015 7,66E−015 −7,66E−015
Ash −0,91149 1,48240 9,41523 8,47214 −17,89959 2,22E−015 2,16E−014 2,16E−014
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of neural network methods, moreover, when using these methods, it is impossible
to represent the described process in the form of a general equation. The use of
a qualitative quasi-linear equation allows the process under consideration to be
scaled up for use in the analysis of other crop varieties and other vegetation.

5 Conclusion

The consideration of the relationship mechanisms between the vegetation index,
as an objective characteristic of the optical properties of crops, and the formation
of its yield is very urgent task. Since photosynthesis is the most essential part of
the production process, the study of the influence of the size and duration of the
functioning of the assimilation apparatus on the NDVI of plants is an important
and relevant area of research in the field of using Earth remote sensing data
in biology and agriculture. The model can be used to approximate the missing
values of the NDVI vegetation index, estimate the time to reach the maximum
value of the index and, therefore, predict the start of harvesting dates.

Speaking about the quality of the considered model itself we can mention
that its errors are not worse than ones for neural network approaches or clas-
sical statistical models [11] but needs less computational resources. It has one
significant advantage in comparison with these models that is in the opportunity
to interpret the model coefficients in terms of the research problem. The method
considered in the article is another alternative to the construction of digital
twins of the production process. Unlike neural networks, this approach makes it
possible to explicitly obtain high-quality quasi-linear difference equations (ade-
quately describing the considered process for any type of initial data). Directions
of further researches are improving the algorithm for time series using arbitrary
time periods, and application of the developed algorithm for multidimensional
time series. Also the research of different outer factors such as humidity and
temperature influence is the topic of further research.
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Abstract. We consider three problems in combinatorial geometry in
which the search for counterexamples and improvement of known esti-
mates is reduced to a finite-dimensional multi-extremal optimization
problem with piecewise-smooth constraints. The first problem is to find
a distance embedding of some graph into a given surface, i.e. to find a
set of points for which a part of pairwise distances and some additional
condition are given. The other two problems consist in minimization of
some functional computed for partitions of a compact set into a given
number of subsets. The solutions found have improved some quantitative
estimates in generalizations of the Borsuk hypothesis and variants of the
Hadwiger–Nelson–Erdös problem on the chromatic number of space.

Keywords: Borsuk problem · distance graphs · stochastic gradient
descent · global optimization

1 Introduction

In discrete and combinatorial geometry there are many famous results estab-
lished with computer assistance. The most important example is probably the
proof of the Kepler hypothesis and its formal verification [11]. In many cases,
counterexamples or estimates can be obtained as a solution to some optimization
problem. Sometimes even a reasonably good local minimum is of interest.

Some examples are a number of optimization problems on dense packing of
balls in a container of given shape and on optimal covering of the set by k balls,
cubes etc., for which exact values of the optimum are known only for small k. If
the enclosing set is bounded and the number of spheres (or covering sets) is given,
then we deal with a finite-dimensional multiextremal optimization problem with
piecewise smooth objective function and piecewise smooth constraints.

The first problem considered in this paper, the distance graph embedding
problem, is closely related to the Hadwiger–Nelson–Erdös problem on chromatic
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number space and its variants [2,21]. It is required to estimate the minimum
number of non-intersecting subsets into which a whole Euclidean space R

n (or
some set F ⊂ R

n with an induced metric) can be partitioned so that none of the
subsets contains two points at a unit distance. Lower bounds in most cases are
reduced to the construction of a finite graph whose vertices are points of space
and whose edges are pairs of points at a unit distance, and then the chromatic
number of this graph is calculated or estimated. We consider an approach where
at first a k-chromatic graph which presumably has a geometrical realization is
constructed and then this realization is calculated as a solution of some global
optimization problem.

The second problem is to determine the minimal diameter dF (k) such that
the compact set F ∈ R

n can be divided into k parts F1, . . . , Fk of diameter at
most dF (k). Equivalently, F can be covered by closures of Fk, and the maximal
diameter of the closures is the same. One can say that a question of this kind is a
particular case or a quantitative version of the Borsuk problem [20]. In [12] some
values of dF (k) were found for a circle, a triangle and a square. In [8,16,23,24]
this problem was studied for so-called universal covers, i.e. sets inside which
one can put a copy of any set of diameter 1 in space of a given dimension. In
recent years, some results have been achieved in a similar problem for the lp
metric [18,28,31]. Admittedly, problems of this type are computationally more
complicated than the much better studied problems on packings of balls or other
geometric objects in a container of given form and on covering sets [5,22,25,30].
The most studied particular problem of this kind seems to be the problem on
packing of circles in a square [22]. Packing of circles on a torus [19] has also
been considered. The paper [17] studied an approach to the problem of covering
a shape by circles based on wave propagation.

The third of the problems considered in this paper is to find partitions of
a given set into k non-adjoint subsets, none of which contains a pair of points
at a distance from the interval (1, α), where α should be maximally possible. In
other words, the width of the forbidden distance interval for which the chromatic
number of a subset of the metric space does not exceed k is maximized. For
the case of subsets of the plane, this problem has previously been studied in
[4,6]. In the present paper such partitions are constructed for the case of a two-
dimensional sphere.

In the second and third problems the search for a local minimum is reduced to
a finite-dimensional optimization problem since it is always possible to identify a
finite number of maximal diameters and (in the third problem) minimal distances
between sets. Moreover, to compute an optimal value with any given accuracy,
it is sufficient to consider a discrete approximation (e.g. points of a rectangular
grid) [29]. But reduction to a finite-dimensional problem of sufficiently small
dimension requires efficient heuristics for selecting an initial approximation. In
this paper, as in the previous work [24], the Voronoi diagram for centres of
balls in some package is applied. It should be noted that the final stage of the
search for local minimum is actually reduced to the search for an embedding of
the distance graph. In contrast to contact graphs described in [19], additional
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geometrical constraints arise when partitioning a given set. For the vertices of
a distance graph, which are also vertices of polygons of a partition, Karush–
Kuhn–Tucker conditions are usually fulfilled. General results from the theory of
combinatorial rigidity of bar and slider networks [13,14] apply to these graphs,
which helps to distinguish such a graph before the local minimum is found with
high precision.

The purpose of this paper is mostly to list the distance geometry problems
for which we have been able to obtain new results using standard optimization
methods implemented in open source software. We cannot claim that the meth-
ods used are close to the best, but they were good enough to get new results. It
seems that both the global search strategy and the numerical method for finding
the local minimum can be significantly improved.

The source code is available in the repository [26].

2 Preliminaries

Definition 1. The chromatic number of a subset of the Euclidean space F ⊆ R
n

for the set of forbidden distances Θ ⊂ R
+ is the minimum number of colors

needed to color F , so that the points u, v at a distance belonging to the set Θ
are colored differently, i.e.

χΘ(F ) = min{χ : F = F1 � F2 � · · · � Fχ ∀x, y ∈ Fi ‖x − y‖ �∈ Θ}.

In the classical formulation of Hadwiger–Nelson–Erdös problem it is assumed
that Θ = {1}.

Definition 2. By an Euclidean distance graph G = (V,E), or simply distance
graph we mean a graph whose vertices are points of Euclidean space R

n and
whose edges are connected by points whose distance between them belongs to a
given set Θ, i.e.

V ⊂ R
n; (x, y) ∈ E ⇐⇒ ‖x − y‖ ∈ Θ.

According to de Brujin–Erdös theorem [1], if one accepts the axiom of choice
or an equivalent statement, then the chromatic number of an infinite graph is
reached on a finite subgraph. So, the simplest way to prove the lower extimate
χΘ(F ) ≥ m is to consider a finite Euclidean distance graph G for which V ⊂ F
and check that χ(G) ≥ m.

In addition, in order to obtain such an estimate, it is sometimes reasonable
to ask whether a given abstract graph can be realized as a distance graph (see
[10]). The particular case of this problem is discussed in the next section.

Definition 3. For a given integer k > 0 we denote by dF (k) the greatest real
number with the property that F can be covered by k sets F1, F2, . . . , Fk whose
diameters are at most x, that is,

dF (k) = inf{x ∈ R
+ : ∃F1, . . . , Fk : F ⊆ F1 ∪ . . . ∪ Fk, ∀i diam(Fi) � x}.
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One can observe that this problem is closely related to the previous one.
Namely, if a covering of F by k parts of diameter strictly smaller than d exists
then

χΘ(F ) ≤ k, Θ = [d; +∞).

On the other hand, if the chromatic number is larger, χΘ(F ) ≥ k + 1, and
there is a covering by k parts of diameter at most d, then it is known to be
optimal. As in the previous case, we can argue that any lower bound for the
chromatic number is reached on a finite graph. In some cases this graph can be
found simply on the vertex set of the computed partition and then it is possible
to prove that the minimum is global.

3 Distance Embedding of a Graph

Definition 4. We call φr : V → S2(r) a distance embedding of a graph G in
a sphere S2(r) if the mapping φ is injective and for every edge (u, v) ∈ E,
‖φr(u) − φr(v)‖ = 1 is satisfied.

Denote v1, . . . , vm, vi ∈ S2(r) ⊂ R3 by the coordinates of the vertices of the
graph G = (V,E) on the sphere of radius r. Then the distance embedding is
defined by the system of algebraic equations{

‖vi‖2 − r2 = 0;
‖vi − vj‖2 − 1 = 0; (i, j) ∈ E(G).

(1)

The problem is supposed to be set correctly (i.e. the number of variables
is equal to the number of equations) if the graph G is minimally rigid (i.e.
|E(G)| = 2n − 3 and for each subgraph G1 ⊂ G |E(G1)| ≤ 2|V (G1)| − 3 is
satisfied) and then some variables are fixed. For example,

x1 = (
√

r2 − 1/4,−1/2, 0); x2 = (
√

r2 − 1/4, 1/2, 0); (x1, x2) ∈ E(G).

The probabilistic algorithm for finding distance embedding of graph G on n
vertices in a sphere is based on generating a random coordinates of vertices in
the cube C = [−1; 1]3 and then finding a local minimum of the polynomial using
gradient descent:

Φ(G;V ) = c

n∑
i=1

(‖vi‖2 − r2)2 +
∑

(i,j)∈E(G)

(‖vi − vj‖|2 − 1)2,

where c > 0 is a penalty coefficient.
Obviously, not all local minima of Φ(G;V ) will correspond to graph embed-

dings in the sphere. The value of Φ in a local minimum may be different from
zero; moreover, at zero the vertices may coincide. Nevertheless, for a number of
examples this algorithm can find a distance embedding with accuracy limited by
the implementation of floating point.
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Note that the existence of the approximate solution under some additional
assumptions will follow from the existence of the exact solution. Namely, for a
correct problem of the form (1) the Jacobian A(x) = ∂F/∂X will be a non-
degenerate square matrix. Then it is sufficient to check the conditions of the
quantitative version of the implicit function theorem or the convergence theo-
rem of Newton’s method [15]. If the convergence conditions are satisfied, then
it can also be argued that the solution will be found with positive probability
under a random initial approximation.

This approach has been used in [27] to compute distance embeddings of
minimally rigid graphs with number of vertices 9 and 10. Here is a previously
unpublished result on the embedding of a 17-vertex unit distance graph G17

constructed in [7]. In the case of the plane G17 is the minimal known graph
having the above properties.

In addition, if the solution is found for some value of the radius, we can
find it for some interval of values by solving numerically the following system of
differential equations.

1
2
A(x)

∂x

∂t
= b, bi =

{
1, 1 ≤ i ≤ n,

0, n + 1 ≤ i ≤ 3n − 3

1
2
A(x) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

x1 0 0 0 . . . 0
0 x2 0 0 . . . 0
0 0 x3 0 . . . 0
...

. . .
0 0 0 0 . . . xn

x1 − xj 0 . . . xj − x1 . . . 0
...
0 . . . xk − xn . . . 0 xn − xk

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (2)

In fact, system (2) describes the deformation of the bar and hinge mechanism,
in which the hinges are the vertices of the graph, when the radius of the sphere
changes continuously (Fig. 1).

Claim. When 0.5522 = r∗ ≤ r ≤ r∗ = 0.577 <
√
3/3 there exists a distance

embedding of graph G17 in sphere S2
r .

Verifying this statement requires a large amount of one-type computation.
Namely, we consider the partitioning of the segment [r∗, r∗] with step h ≤ 10−4.
For each point ri, the distance embedding X∗

i is approximated and the con-
vergence radius of Newton’s method is estimated as r changes with the initial
approximation X∗

i . If the intervals on which Newton’s method converges cover
the whole interval [r∗, r∗], then we conclude that the statement is established,
otherwise we should reduce h.

Note that when r tends to an upper or lower bound where the distance
embedding ceases to exist, the Jacobian matrix A(x) becomes degenerate and the
radius of convergence tends to zero. It is not difficult to calculate the embedding
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k := 0;
while k < kmax do

for i=1,2, . . . , n do
xi = Random_Point();

end
X0 := xi, i = 1, 2, . . . , n;
X∗ = Minimize(Φ(X), X0);
if Φ(X∗) < ε1 then

if ‖x∗
i − x∗

j‖ > ε2, i �= j then
(* X∗ is a distance embedding of the graph G *);
Halt;

end
end
k := k + 1;

end
Algorithm 1: Computing the distance embedding

Fig. 1. The distance embedding of G17 in S2(r), r = 0.57

at any particular value of r, but this approach does not allow one to justify
the existence of the embedding up to the values of r∗ and r∗ found with high
accuracy or analytically.

4 Partitions of the Square and the Equilateral Triangle

Below is an algorithm for finding optimal coverings (partitions). The initial
approximation when reduced to a finite-dimensional problem is computed as
a Voronoi diagram constructed for some (far from optimal) packing of circles in
the polygon F . For a given location of the centers of the circles, the function
that gives their maximum radius is written as follows

ψ(V ) = min
{
min
p,t

{(vp, ct) + bt},
1
2
min
p,q

{‖vp − vq‖}
}

→ max . (3)

To compute a rough approximation we apply the SGD algorithm.
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In the second step, the minimization of the maximum diameter is performed
for the finite-dimensional problem of covering the set with polygons initialized
with a Voronoi diagram. As in the previous case, we use the implementation of
SGD in the pytorch library.

ϕ(X) = max
i

max
p,q∈Ji

‖xp − xq‖ → min, (4)

(xs, ct) + bt = 0, (s, t) ∈ L,

where Ji if the vertex set of the i-th polygon, and L is the set of edges of auxilary
bipartite graph describing the belonging of vertices xs to the sides of the polygon
F .

Note that the function is not formally stochastic, but with a large number
of regions we are dealing with the same situation as when minimizing the maxi-
mum of a large number of input signals in the neural network training problem.
Another motivation for using SGD is the availability of GPU implementations.

Finally, the computation of the optimum with high accuracy is done using
classical quasi-Newtonian algorithm BFGS [9], which is possible since we are
dealing with a system of polynomial equations in the last step. Note that the
partition structure may change if at any optimization step a vertex is found that
has points from four or more different subsets of Fi in a small neighborhood.

Let us show the results found by the Algorithm 2. Table 1 shows the found
values of diameters and parameters of the distance graph defining the exact
value. The bolded estimates were not given in [12]. In addition, one can derive
analytical expressions for some of the estimates.

Proposition 1.

d�(6) = d�(7) =
1

1 +
√
3
; d�(15) ≤ 1

1 + 2
√
3
.

d�(6) ≤ 1
3
√
3

√
7 − 200

a
+ a; a = 3

√
2(383 + 1293/2).

An analytic estimate for d�(6) can be obtained as the root of the cubic
polynomial by minimizing the edge length for the 5-vertex graph with 5 edges
(a rhombus with a hanging vertex), see Fig. 3.
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Input: F , k
for 1 � i � N do

V0 = {v1, . . . , vk} are random points distributed uniformly in [−1, 1]n;
(* Run s steps of SGD for the problem (3) *) for 1 � j < s do

Vj+1 ← SGD (G(V ) → max;Vj);
end
(* Initialize a set of partition vertices with a Voronoi diagram *)
X0 ← Vor(F ;Vs);
t ← 0;
(* Find the local minimum for the problem (4) *)
while not OptCondition(X) do

Xt+1 ← SGD (F (X) → min;Xt);
t ← t + 1 ; if some vertices in Xt+1 coincide then

rearrange vertices;
end

end
if F (Xt) < F (X∗) then

X∗ ← Xt;
end

end * Compute the graph of maximal diameters
H∗ ← MaxDiam(X∗);
(* Find the rigid subgraph H∗

rigid in H∗ *)
H∗

rigid ← RigidSubgraph(H∗);
(* Perform a high-precision optimization for H∗

rigid *)
X∗

prec ← BFGS(X∗, H∗
rigid);

Output: X∗
prec.
Algorithm 2: Search for a locally optimal partition

Let us show that with d�(7) = d�(6) = 1
1+

√
3
. Consider a graph with 12

vertices (Fig. 2, left) whose edges are shown by dashed lines (i.e. segments of
lenght d�(6)). If we construct on these 12 vertices an auxiliary graph G�,12 in
which vertices at a distance from the set [d�(6);+∞) are connected, then it is
easy to see that χ(G�,12) = 8. Therefore it is impossible to divide the triangle
into 7 pieces of smaller diameter. ��

Fig. 2. Optimal partitions of the equilateral triangle, k ∈ {6, 7} .
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Table 1. Estimates for partitions of � and �

k d�(k) ≤ d�(k) ≤
5 0.64423 0.5
6 0.59399... 0.36602
7 0.54858 0.36602...
8 0.51145... 0.33581...
9 0.45454... 0.333333
10 0.43647... 0.288675
11 0.41677... 0.27123...
12 0.39521... 0.26795...
13 0.38443... 0.25242...
14 0.36685... 0.25
15 0.35156... 0.22401...

Fig. 3. Optimal partitions of the square, k ∈ {6, 8, 9}, and partitions of the equilateral
triangle, k ∈ {8, 13, 15} .

5 Maximizing the Gap in the Partition of the Sphere

Let us consider a partition the sphere S2 of unit radius into spherical polygons
F1, . . . , Fk. Denote the partition F = {F1, . . . , Fk} and consider the problem

φ(F) = max
1≤i≤k

diamFi → min . (5)

The same algorithm as for polygons is used to find local minima in this
problem. The peculiarity is that if the initial approximation is poorly chosen or
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if the step in the finite-dimensional problem is too large, we may obtain a zero
value of the minimum when all vertices of the partition converge to one point of
the sphere.

Let us denote by dsph(k) the solution of (5) for a given k. The upper and
lower estimates for dsph(k) can be obtained from the results on the density of
coverage of the sphere by non-intersecting spherical caps [25]. Table 2 shows the
found estimates of the diameter of the sets that manage to cover the unit sphere
for a given k.

Now suppose that we are interested in the possibility of coloring polygons in
several colors so that some distance interval does not occur between points of the
same color. Assuming that the diameters of the polygons are close, this means
that neighboring polygons must be colored differently, as well as neighbors of
neighbors. That is, for a distance of 1 or 2 in a dual graph, the colors of the
polygons must be different. Moreover, we are interested in the fact that distance
3 in the dual graph corresponds to as large a value of the Euclidean distance as
possible, or more precisely, we should maximize the ratio of this distance to the
maximum of the diameters of the polygons.

Denote by G′(F) the dual graph, and by u1, . . . , uk its vertices. We define
the objective as follows:

Ψ1(F) =
mindist(ui,uj)=3 dist(Fi, Fj)

max1≤i≤s diamFi
→ max, (6)

where dist(ui, uj) is the (integer) distance in the dual graph, and dist(Fi, Fj) is
the Euclidean distance between polygons.

Having any given partition one can define some coloring and find the min-
imum in a finite-dimensional optimization problem with a piecewise smooth
function

Ψ2(X) =
min(i,j)∈E1 dist(xi, xj)
max(i,j)∈E2 dist(xi, xj)

→ max,

where the sets of index pairs E1,E2 mean respectively the belonging of vertices
to one polygon and the belonging of polygons that are at distance 3 in the dual
graph.

Finally, the sequence of computations is as follows.

1. Let V = {v1, . . . , vs} be a “uniform” arrangement of points on the sphere
(e.g., a random local minimum in the Thomson problem).

2. Construct the spherical Voronoi diagram for the set V .
3. Suppose that all the diameters are sides and diagonals of the polygons (i.e.

cells of the Voronoi diagram). Then we have a constrainted finite-dimensional
optimization problem.

4. Find a local minimum (using the SGD algorithm).
5. Check that the partition is correct, i.e. there is no distances greater than the

diagonals in each of the polygons.
6. Compute the objective function.
7. If the specified number of runs is not reached, go to the first step.
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The best found estimates for the minimum diameter and maximum ratio are
shown in Table 2.

Table 2. Estimates for partitions of the sphere

k dsph(k) ≤ k dsph(k) ≤ k max ratio ≥
2 2.0 12 1.154 12 1.414
3 2.0 20 0.981 13 1.210
4 1.776 30 0.791 14 1.277
5 1.732 40 0.683 15 1.209
6 1.732 50 0.618 16 1.320
7 1.634 100 0.439... 17 1.112
8 1.414 200 0.312... 18 1.298

6 Conclusion

In this paper we considered several problems of combinatorial geometry related
to the chromatic number of graphs of diameters or unit distance graphs. Improve-
ments to the algorithm considered in the previous paper [24] are proposed. New
upper estimates for cases of square, triangle, and sphere are obtained. In addi-
tion, in some cases, by considering a finite set of points, it is possible to prove
that the minimum that is obtained is global.

Note that this approach can be applied without any modification to finite
dimensional spaces with other metrics, if a particular problem of interest arises.

We list some questions that remain open:

Question 1. Can one find a 4-chromatic triangle-free unit distance graph embed-
ded in the sphere S2(r), r > 0.5522 with less than 17 vertices?

It is possible that the Exoo–Ismailescu graph is the minimal 4-chromatic
subgraph for all the radii belonging to the interval (0.5522,

√
3/3). Howewer, for

r = 0.540... there is an embedding of 11-vertex Grötzsch graph [3].

Question 2. Is it true that for k → ∞ the value in problems (5), (6) tends to
the limit defined by the hexagonal tiling of the plane?

In other words, is it true that with a sphere radius tending to infinity, irreg-
ularities can be evenly distributed?

Question 3. How many local minima can correspond to a given dual graph (i.e.
combinatorial structure of the partition)? If this number can be large, what is
the asymptotic as k → ∞?
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Since the function to be minimised is not convex, we should expect that
the number of local minima may be arbitrary large after choosing the partition
structure. However, at the moment we are not aware of any examples from which
this could be observed.
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