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Abstract. Model-based testing (MBT) promises a scalable solution to
testing large systems, if a model is available. Creating these models for
large systems, however, has proven to be difficult. Composing larger mod-
els from smaller ones could solve this, but our current MBT conformance
relation uioco is not compositional, i.e. correctly tested components,
when composed into a system, can still lead to a faulty system. To catch
these integration problems, we introduce a new relation over component
models called mutual acceptance. Mutually accepting components are
guaranteed to communicate correctly, which makes MBT compositional.
In addition to providing compositionality, mutual acceptance has benefits
when retesting systems with updated components, and when diagnosing
systems consisting of components.

Keywords: model-based testing -+ component-based testing -
compositional testing - labelled transition systems * uioco

1 Introduction

Modern software systems are becoming increasingly large and complex. Tradi-
tional testing scales poorly for systems of these sizes. This causes the develop-
ment and maintenance of test suites to become costly and time consuming, which
slows down the development of new functionality. Model-Based Testing (MBT)
is a technique that has been developed to increase the efficiency and effective-
ness of testing. With MBT, testers create a model of the system under test from
which an MBT tool can then automatically generate and execute test cases.
This reduces the problem of creating and maintaining a test suite to creating
and maintaining a model of the system under test.

Creating models for complex systems, however, is still difficult and labori-
ous, since often no single person understands the whole system well enough. A
solution is to divide and conquer: the system is decomposed into its components
which are modelled and tested separately. This requires that the applied MBT
methodology is compositional: if each component implementation is correct with
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respect to its component model, then it can be inferred that the composition of
component implementations, i.e. the system under test, is correct with respect
to the composition of component models, i.e. the system model.

In this paper, we investigate compositionality for MBT with labelled tran-
sition systems as models, uioco as the conformance relation, and parallelism
modelling component composition [4]. We define a relation over component spec-
ification models, called mutual acceptance, which guarantees that components
communicate neatly, and that uioco is preserved under composition. We gen-
eralise existing results on compositionality [4,8,11] by making less restrictive
assumptions and using a composition operator that is associative so that also
compositions of more than two components can be easily considered. Moreover,
we use the more recent uioco conformance relation instead of ioco [19]. A more
detailed comparison with related work can be found in Sect. 8.

In addition to compositionality, mutual acceptance also benefits testing evolv-
ing systems and software product lines. It enables more effective testing when a
component is replaced by an updated version, as will be elaborated in Sect. 7.
Diagnosis is the converse of compositionality: if the whole system has a failure,
then diagnosis tries to localise the failure in one of its components; Sect. 7 will
also discuss the use of mutual acceptance in diagnosis.

Overview. Section 2 contains preliminaries. Section 3 shows why the current app-
roach to compositional model-based testing is not desirable by means of an exam-
ple. Section4 formalises what it means for two models to be compatible with
each other for use in model-based testing, and defines the mutual acceptance
relation =. Then Sect. 5 goes on to prove that this leads to desirable properties,
after which Sect. 6 revisits the example. Section 7 discusses how these properties
also lead to a reduced testing effort when substituting components, and how =
can be used in diagnosis. Section 8 describes some of the large body of related
work previously done in the area of compositional model-based testing. Finally,
Sects. 9 and 10 discuss possible future work and summarise the main results of
this paper, respectively. All proofs for lemmas and theorems can be found in the
extended version of this paper [6].

2 Preliminaries

We give the formal definitions for the MBT theory that we consider. We base
our work on the theory developed in [4,18]. The main formalism used is that of
labelled transition systems (LTS) (Definition 1). An LTS has states and transi-
tions between states that model events. An event can be an input, an output or
T; T represents an internal transition which is not observable from the outside
and can therefore not be tested. I, Us, etc., indicate inputs and outputs, respec-
tively, coming from LTS s. The shorthand Ly means Iy U Us. The name of an
LTS is sometimes used as shorthand for its starting state. L7 S(I, U) denotes the
domain of labelled transition systems with inputs I and outputs U, or just LTS
if I and U are known. For technical reasons we restrict this class to strongly
converging and image-finite systems. Strong convergence means that infinite
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sequences of T-actions are not allowed to occur. Image-finiteness means that the
number of non-deterministically reachable states shall be finite. In examples,
inputs and outputs are given implicitly by prefixing inputs with 7, and outputs
with . The same label can be in the input set of one LTS and in the output set
of another.

Definition 1. A Labelled Transition System is a 5-tuple (Q,I,U, T, qo) where:

- @ is a non-empty, countable set of states;

— I is a countable set of input labels;

- U 1is a countable set of output labels, which is disjoint from I;
~TCQQx{TUUU{r}) xQ is a set of triples, the transition relation;
- qo € Q 1is the initial state.

Reasoning about labelled transition systems uses the concept of traces. A trace
is a sequence of labels that can occur when walking trough an LTS. Common
notation used when describing traces is repeated in Definition 2.

Definition 2. Let s € LTS; p1,p2 € Qs; £ € Ls; 0 € LE; 0. € Ly U{r};
or € (Ls U{7})*, where € denotes the empty sequence of labels.

€ def
b1 —p2 = PpP1=DpP2
. def
p1—p2 = (p1,4r,p2) €T
L0 def - -
pr "5 pe = Ips€Qsipr S p3sAps 5 po
o def o
pr— = 3dps€Qs:p1 — D3
def
P17U/'> = Pps € Qs :p1 = p3
def .
p=pe = Jpef{r) ip S
Y def ¢
pL=>p2 = 3ps,pa € Qs ipL S p3ADs — PaAPs= po
a def o
pr= = 3dp3€Qs:p1=p3
def

Pps € Qs :p1 = ps

While specifications are often given as an LTS, IOTS are used to represent
implementations. In MBT, we commonly assume that we can always give any
input to an implementation. ZO7S denotes the domain of all input-enabled
transition systems, and ZO7 S(I,U) denotes the domain of all input enabled
transition systems with input set I and output set U.

Definition 3. i € LTS is an Input-Enabled Transition System (TOTS) if in
every state for every input, its transition relation either contains that input, or
reaches with just internal transitions another state that does so:

YgeQ;, tel;: q:e>
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Fig. 1. Parallel composition of system s and its environment e.

Multiple labelled transition systems can be composed to form larger mod-
els. For component specifications this is often done using parallel composition
(Definition 5). The result of parallel composition represents a system where all
the components are being executed at the same time independently of each
other. Synchronisation occurs on shared labels. An overview of the label sets of
a parallel composition is shown in Fig. 1. Note that we do not require the input
sets of the components to be disjoint, which will be explained below. Parallel
composition assumes synchronous communication between components. Systems
with asynchronous communication can still be modelled, but this requires giving
explicit specification for the communication medium.

Definition 4. s,e € LTS are composable iff their respective output sets Us and
U, are disjoint: U;,NU, =)

Definition 5. Parallel composition || on two composable labelled transition sys-
tems s and e is defined as: s || e def (Q,I,U,T,qo), where

-Q = {plla|p€E@saeQe}

- I = (IS\Ue)U(Ie\US)

-U = Us;UU,

— 4o = dos ||q08

— T is the minimal set satisfying the following inference rules

(’LUh@T’@ p,P1,P2 € Q57Qa Q1,92 € QG)

l ?

P1 — P2 te(LsU{t}H)\Le F pillg —p2lla
Y4 YA

Q= G2 te(L.U{tH)\Ls F pllaa—p |l
¢ l l

D1 = P2, @1 — G2 teLsNLe + pillgi—=p2lla

Lemma 1. Parallel composition is commutative and associative (up to isomor-
phism =), i.e. for s,e,t € LTS, we have:

commutativity : slle

ell s
associativity : (slle) ||t sl (ellt)
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Our definition for composable is weaker than the one in other papers: Iy, N I, =
UsNU, =0 [1,4,7]. This is because requiring disjoint input sets leads to a com-
position operator that is not associative [3]. A more detailed discussion of the
properties of various types of parallel composition can be found in [20]. With our
less restrictive definition of composable, parallel composition is both associative
and commutative as expressed in Lemma 1. This is important, as it means that
more than two components can also be composed and the order in which compo-
nents are composed does not matter. The remaining restriction of disjoint output
sets does not really restrict the applicability of parallel composition. Output sets
can always be made disjoint by renaming one output label and then duplicating
the synchronising transitions for the new label.

Another common approach to parallel composition is to replace all synchro-
nised transitions with 7 transitions. This is done under the assumption that
communication between components is by default not observable by the outside
world and therefore should be hidden. A downside is that this removes informa-
tion, which makes specification-based analysis less useful. Additionally, a large
part of the model-based testing theory assumes convergence, i.e. the absence
of divergence. This means that there are no infinite paths of just 7-transitions
possible in the specification. By automatically hiding the labels of synchronised
transitions, divergence is often introduced into the composed specification. For
these reasons, we choose not to automatically hide labels during composition.

The main purpose of a labelled transition system when used for model-based
testing is to describe when an implementation is considered correct. This is done
through a conformance relation.

Two common conformance relations are ioco [18] and the more recent uioco
relation [4]. uioco differs from ioco in how it deals with nondeterministic under-
specification, i.e. how non-specified inputs are handled. Among others, uioco is
better suited for reasoning about composition. A detailed comparison of the two
relations can be found in [19].

Definition 6. For s € LTS, § ¢ Ly is a special output denoting the absence of
outputs, called quiescence. It is defined as follows (with p1,ps € Qs):

§ def
p1 — P2 = p1=ps A VexeUsU{r}: p1 A

L°, U? is used as shorthand for L U {8}, U U {3} respectively.
Definition 7. Let s € LTS; p1 € Qs; PC Qs and o € L‘SS*.
def a
p1aftero = {p2€Qs | pr=p2}

out(p1) = {zell | ;m >}
out(P) ¥ U { out(p) | pc P}
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Definition 8. Leti € ZOTS(1,U); s € LTS(I,U):

Utraces(s) d:ef{JEL‘;* | s3> A(IpeQs, 01 a-00=0:
acl ANsZSpApH)}
iuiocos 2 voe Utraces(s) : out(i after o) C out(s after o)

3 DMotivating Example: A Parking System

We argue that parallel composition does not work nicely with uioco, which we
will show with an example in this section. Consider two components that together
function as an automatic parking system in a car: a sensor which observes the
environment and an actuator that parks the car. An illustration of how these
two components communicate with each other and their environment is shown
in Fig. 2. Specifications for the behaviour of these components are shown in solid
black in Fig. 3. Their behaviour is straightforward: the parking component keeps
parking as long as the sensor tells it that it is safe to do so, but stops parking if
there is an obstacle, at which point it will stop the car and turn the sensor off.
These components are left under-specified on purpose: it does not really matter
what the sensor does if it detects an obstacle after it has been turned off, as
long as it does not start beeping. This gives an implementer of the actual sensor
some freedom, but still specifies the important behaviour.

safe, beep‘ park
obs - ) stop
- sensor component parking component B
off
Car system

Fig. 2. Two component parking system

Possible implementations that are uioco correct are also given in Fig. 3 using
the extra dashed blue transitions. On first glance this all seems to make sense,
and model-based testing will not find any problems when testing the components.
LE. I} uioco S; A Iy uioco S,. After composing our components using parallel
composition, however, which is shown in Fig. 4, the composed implementation is
not uioco correct to the composed specification.

The problem with the implementation in Fig. 4 is that it contains unspecified
output transitions. These can be seen as some of the dashed transitions, which are
only present in the implementation and not in the specification. This means that
the previously valid implementations are now generating outputs that are not
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Isafe .
f o 7safe
— Polf ?beep !stop 7b€ep
lbeep ?0bs @{/ i P
20ff ?0bs _ ?safe '75(1f( 7saf€
?0bs ‘7% Zoff ‘ Tbeep Tbeep " ?beep
(a) S1 and Iy: car sensor component (b) S» and Is: automated parking component

Fig. 3. Car component specifications (—) and implementations (- »)

part of the composed specification. Model-based testing will report an error here,
while the components are actually behaving as specified. Additionally, hidden
within these false positives, there is also an actual error: if the sensor detects an
obstacle after already having communicated that there is no obstacle, the parking
system will not respond and will just continue parking. This is represented by
the !beep transition from B3 to B1, which could for instance happen if a moving
obstacle like a person is present. This shows that only looking at the individual
components is not enough, as there are real problems that only become visible
when looking at combinations of components together.

We argue that the main problem with this example is that the component
specifications rely on unspecified behaviour. The sensor specification describes
exactly when the sensor is allowed to beep, but the parking specification does not
always specify what the result should be. There is no guarantee that the result
does not crash the system or violate any requirements. One way this could be
resolved is by expanding the specifications to be input complete [4]. However,
doing so would remove the possibility for under-specification, which is a desir-
able feature in modelling behaviour. Under-specification keeps models smaller
and more readable, and gives more freedom when implementing the specifica-
tion. Another approach is therefore desired: a specification should specify all the
behaviour that is used by other specifications, but leave the possibility of not
specifying unused behaviour. This goal will be made more concrete in Sect. 4.

4 Mutual Acceptance

In order to reason about specified and unspecified behaviour an explicit notion of
what it means for behaviour to be specified is required. For uioco, the allowance
of outputs is always explicitly specified. They are either present in the model and
therefore allowed, or absent and disallowed. After a specified input, the model
again defines what is allowed. Inputs are always implicitly allowed, but if an
input is not part of the model all behaviour after that input is allowed. This
means that the behaviour after an absent input is unspecified: the model does
not tell us what should or should not happen. Therefore, if all outputs given by
one component, are inputs present in the model of the other component, there
will be no unspecified behaviour. This requirement is formulated in Definitions 9
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¥

Fig. 4. Car autopark and sensor composed S1||S2 (—) and Iy||Iz (- »)

to 11: if after some o € Utraces(s || e) some pair of states s', ¢’ is reached, and
s’ produces a synchronised output, then ¢’ must have this output as an input.
Note that this is trivially holds if e is input enabled which generalises earlier
results about component-based testing with uioco [4].

Definition 9. For s € LTS; p € Qs; P C Qs, the set of enabled inputs is
defined as:

in(p) ¥ {rer|ps}
in(P) ¥ N{inlg)|qeP}

Definition 10. Leto € L°*; L C L?; and { € L°. Projecting a trace to a smaller
set of labels is defined as:

el L d:efe
01 Y oro)eiftec

ol L otherwise

Definition 11. Let s,e € LTS be composable, then s accepts e iff:
s—e Y voe Utraces(s||e), s € Qs, € € Qe :
slle2s'||[e = outle)NI, C in(s')NU.

The symmetric version of the < relation is defined in Definitions 12. Though
it might look like an equivalence relation, it is neither reflexive nor transitive.
Reflexivity fails because = is indirectly defined using parallel composition. This
means it is only defined on specifications that are composable, and any specifi-
cation with outputs is not composable with itself. Transitivity is also not true,
because each pair of specifications has its own sets of state pairs and shared
labels for which the < relation must hold. This means each specification pair
must be checked independently of any other specifications.



210 G. van Cuyck et al.

Definition 12. Let s,e € LTS be composable, then s mutually accepts e:

def
sSs=e = s+—e N e+—s

5 Compositionalility for Uioco

The previous section defined what it means for a specification to not trigger
undefined behaviour in another specification using the < relation. This section
will prove that this property allows compositional testing using uioco.

Lemma 2 shows how for composable, input complete systems, traces in the
composed system can be transformed into traces in the component systems, and
the other way around. This allows for compositional model-based testing in input
complete systems. Lemma 3 then goes on to show that for Utraces, the same
is also possible as long as the two specifications are mutually accepting.

This is also where the composable requirement becomes important. It
enforces that all labels are either synchronised or only present in one of the
two label sets. This means that every trace o can be split into a unique pair
of two projected traces o | Lg and o | Lg which can be replayed in s and e,
respectively. Without this requirement, it would be unclear what to do with
unsynchronised shared labels.

5 *

ZsHie :

Lemma 2. let ig,i. be composable IOTS, i, € Q;_, i, € Q;,,0 € L

s Gy o olLy ., . elLl
is||te = 1|1, = i, —> 1, N i, —>1,

Lemma 3. let s,e be composable LTS, s' € Qs, €' € Q.,0 € Utraces(s || e).

L LS
s=e = (s]le2s|le «— s%s'/\e%e')

The = relation, and by extension Lemma 3, only consider Utraces and not
arbitrary traces because only states reachable by Utraces are important for
uioco. This does, however, create the extra requirement of checking that after
projecting a trace to a specific component, it is still part of the Utraces for
that component. Lemma 4 shows that the = relation ensures that Utraces are
preserved when projecting from a composed system, in both directions. This is
not trivial, as the special label ¢ is not normally preserved under composition.

Lemma 4. Let s,e € LTS be composable, o € L‘;He*.
s=e =

(o € Utraces(s||e) <= o | LS € Utraces(s) A o | L € Utraces(e) )

We now present Theorem 1, which is the main statement of this paper. It
states that for mutually accepting specifications, uioco is preserved under par-
allel composition. The other way around, if there is a problem that causes two
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ponent (b) Adapted S4 and I4: automated parking component

Fig. 5. Mutually accepting versions of Fig. 3. (spec: —, imp: - »)

composed implementations to be uioco-incorrect to their composed specifica-
tions, then this problem can also be found by testing with at least one of the
components. The reverse of this implication, however, does not hold, even if both
specifications are mutually accepting.

The reason for this is that the mutual acceptance relation only guarantees
that no invalid outputs are communicated. It does not enforce that something
is actually communicated. Therefore, it is possible for one of the two implemen-
tations to produce quiescence when this is not allowed, which is then masked in
the combined system by the outputs generated by the other component. This
highlights a property of the uioco relation: presence of specific outputs cannot
be enforced. One possible way to deal with this might be to extend the uioco
theory with a more fine grained concept of quiescence, allowing the detection of
quiescence in specific components, instead of only over the whole system. This
is further explored in [17].

Theorem 1. Let s,e € LTS be composable, is, i, € IOTS, then

s=e A isuiocos A i, uiocoe = i ||i. uioco s||e

Another thing to note is that when applying Theorem 1 in practice, this
makes the implicit assumption that you can correctly compose components. In
order to guarantee the correctness of the composed system, the composition
of components is; and i, must actually behave as i || i.. This means that any
communicating channels must be connected as described in s and e, and that
there must not be some hidden implicit environment part of the composition
setup that further influences the behaviour of either of the components.

6 The Parking System Revisited

Using the results from Sect. 4 and Sect. 5, the problems with the parking sys-
tem from Sect. 3 can be explained: the two specifications in Fig. 3 are not mutu-
ally accepting. A counterexample is the trace safe - obs, which is in the Utraces
of S1]|S2, and goes to state B3. In state 3, however, S; can perform output beep,
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lsafe

lsafe
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Fig. 6. Adapted car autopark and sensor composed (S3||S4 —) and (I||I4 - >)

while So does not accept input beep in state B. A number of other counterex-
amples can also be given, each one corresponding to one of the dashed output
transitions of S1||S2. These are the states where the composed implementation
produces unspecified outputs. Using these counterexamples, the points where
the specifications have to be extended can be identified. The result can be seen
in Fig.5. Figure 5b now has several extra transitions for safe and beep defined
in the specification, exactly in those places where the sensor might supply these
inputs. The developer is now forced to think about what actually should happen
there, while the developer is still free to not specify inputs that should not occur
in normal operation. This is especially relevant for the beep transition originat-
ing from state B, which was previously unspecified. On further inspection, it is
revealed that a simple self loop is not desired here, because after a beep the car
should stop, and not continue to park. This would have resulted in undesired
behaviour if the specifications were simply made input enabled in an automatic
way, as was done in previous approaches [4]. Using a self-loop here would mean
that implementations are possible which pass all tests, but still do not stop when
an object is detected.

The result of composing the adapted specifications from Fig.5 is shown in
Fig. 6. This specification now correctly finds that I, ||I; uieco Ss||Ss, which can
be seen with the trace safe - 0bs - beep which is present in the Utraces of S3||S4.
After this trace, I1||Iz can produce the output park, which is undesirable after
detecting an object, and also not allowed by S3||S4. But if each individual imple-
mentation is updated to be uioco correct according to its own adapted speci-
fication, as is done with I3 and 14, then their composition is again correct with
respect to the composed specifications, i.e. I3||I4 uioco S3||Ss4.

The example shows how the = relation can be used to find integration prob-
lems between components using their specifications. Possible problems are pre-
vented by expanding the specification, without requiring a full specification of
all inputs. This does not yet require any actual implementations, as the reason-
ing is done over the domain of all possible valid implementations. Finding these
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integration problems before starting integration testing, allows for fixing them
earlier in development.

7 Component Substitution and Diagnosis

In addition to providing compositionality in development and testing, mutual
acceptance has benefits when retesting systems with updated components, and
when diagnosing systems consisting of components. A common situation is that
one component becomes deprecated and needs to be replaced. This traditionally
has a high cost, because even if the new component is well tested, there is a
chance using it will cause problems with the other components already in use.
These issues mainly occur because replacing a component changes the environ-
ment for the other components. This means the other components, which are
the environment of the replaced component, might be called with new inputs
which have not yet been tested. A well known example where reuse of an old,
well tested component in a new environment caused the whole system to fail
is the crash of the Ariane-5 rocket [15,21]. Here, an important subsystem put
implicit requirements on the environment which were not documented or checked
to hold. Correctness was inferred from extensive testing, but after changing the
environment this testing became invalid, and the component failed anyway.

These problems can be reduced by using a specification-based analysis like
= in combination with model-based testing. Model-based testing can generate
tests for every defined sequence of inputs. If two specifications are mutually
accepting, then they only communicate outputs which are defined inputs for
the intended communication partner. These two points together mean that all
the model-based testing done up to the point of replacing a component is still
useful, because it was testing for all possible inputs, and not just the ones that
were in current use. This can give a much higher confidence that a component
switch will not cause any problems, because testing does not have to start from
square one. If the specification of the new component is not mutually accepting
with all the rest of the system, then the counterexamples point to all the places
where undefined inputs are given. This information can be used to improve the
specifications, and focus testing toward these possible problem areas.

The correctness reasoning made possible by the = relation can also be used
during diagnosis, by taking the converse of Theorem 1. If the whole system con-
tains a problem, and one or more components are found to be uioco correct, then
the problem must be located within one of the remaining components. Together
with Lemmas 3 and 4 this can then be used to narrow down a trace showing
uioco incorrectness of the whole system to a shorter trace showing uioco incor-
rectness of one specific component. This idea is expressed in Lemmab. Since
composable requires each label to be part of at most one output set, the last
output of the counterexample uniquely identifies the problem component. This
does not work if the last output was §, which could have been caused by a number
of components. In this case we can still find the faulty component by replaying
the projected traces in all components until the faulty one is found. This can,
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for example, more accurately determine the source of bugs from gathered logs
containing full system traces.

Lemma 5. Let s,e € LTS, is,i. € IOTS, s = e, o € Utraces(s || e).

o is a counterexample for is || i. uioco s||e =
o | L? is a counterexample for i uioco s V
o [ L? is a counterexample for i, uioco e

8 Related Work

The work in this paper is closely related to ideas already discussed in the context
of interface automata [8-10]. Interface automata are a type of labelled transition
system which can be used to model both the behaviour of a component and
the constraints it puts on its environment. These constraints are encoded in the
form of missing input transitions, which then signify that the component can
only be used in an environment that does not give these inputs. This closely
resembles the main idea behind the = relation. Apart from a slightly different
composability requirement which makes it associative, our definition for parallel
composition coincides with the one from [8]. Our definition for = also seems
to coincide with the absence of reachable (by Utraces) error states as defined
in [8]. The solution to reachable error states taken for interface automata is to
apply a pruning algorithm. This will remove input transitions to further restrict
the valid environments until all error states become unreachable. A downside of
this approach is that it becomes easy to generate composed models that after
pruning no longer give errors, but also no longer express the desired correct
behaviour. This is noted in [8] as the observation that the environment that
does not give any inputs at all, always avoids all avoidable error states. The
interface automata approach consists of removing transitions from the composed
specification until problem areas are unreachable. We instead choose to add
transitions to the component specifications until the problem areas no longer
exist. Another contribution of our work is the inclusion of quiescence, and the
direct link to the uioco implementation relation. This makes the theory easier
to apply in practice in the context of existing MBT tools.

An earlier attempt at formalising the correctness of a component with respect
to its environment was developed in [11]. It defines the eco (environmental con-
formance) relation with similar semantics to the accepts relation. The relation
eco, however, works on a specification for the environment, and a black box
implementation of the component. This means that eco conformance can only
be checked by testing, and this needs to be redone completely whenever a compo-
nent changes. Additionally, all labels of the component and its environment have
to communicate, i.e., there is no external communication, which further restricts
applicability. The eco approach also has a couple of advantages. Since eco is
checked using testing, it can be done on the fly. It also does not require how a
component calls other components as part of its input specifications. Instead,
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this information is gathered while testing and compared against the specifica-
tions of the components being called. This makes a possible combination of our
work with the eco theory and algorithms interesting.

In this paper, we describe when a component is a valid environment for
another component. Earlier work looking into the set of valid environments for
a given component was done in the field of contract-based design. A detailed
overview of this field can be found in [2]. A contract is defined as a tuple of a set of
valid environments and a set of valid implementations, where every combination
of environment and implementation can be composed. The definition of what
it means for an environment to be composable with an implementation is very
similar to our definitions, and it also describes how a labelled transition system
can be seen as a contract. The scope under consideration in [2], however, is
limited to receptive environments with the same label set as the components. All
components also have to be deterministic, and internal transitions or quiescence
are not discussed. A more recent addition to contract theory extends the scope
of [2] to hyper-contracts [13]. While this extends the scope of properties that
can be expressed as contracts, the current instantiation of the meta-theory for
labelled transition systems still has many of the restrictions imposed in [2]. In
contrast to the bottom up approach of combining component contracts into a
composed contract, a top down approach is also possible and sometimes desired.
Decomposing a set of requirements into individual component contracts has been
studied in [14].

Another way of describing compatible components is defining a specification
for the most permissive communication partner. All concrete communication
partners are then in some form of a refinement relation with this “operating
guideline”. This approach is outlined in [16] for acyclic finite labelled transition
systems. It assumes all communications to be asynchronous, while we assume
synchronous communication.

9 Future Work

Making specifications mutually accepting involves defining extra behaviour.
Some of this extra specification is desirable, for instance the beep transition from
state B in S4. This transition represents interesting behaviour that was missed
in the specification phase. Most other added transitions, however, are just sim-
ple self-loops, which represent that the input has to be ignored. If receiving an
input that was not specified is considered undefined behaviour, this is required to
ensure correct behaviour. Another possible interpretation would be that unspec-
ified inputs are buffered, until the other component is ready to receive them. In
such a setting, it would not be required that every input that can be given is spec-
ified immediately. It would then be enough that such inputs are specified always
eventually, after some amount of internal actions of the receiving component.
In general, it can be investigated how to (automatically) repair non-mutually
accepting systems.

In this paper, we have defined mutual acceptance, but no ways for practically
checking it have been given. Algorithms to efficiently check mutual acceptance
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between specifications, or testing procedures to test mutual acceptance, analo-
gous to eco, need to be developed.

The theory introduced so far works on two components. Larger systems con-
sist of many components. Mutual acceptance can still be inferred by repeatedly
applying the parallel composition operator and Theorem 1. For example, when
combining specifications s1,s2 and s3 into (s1 || s2) || s3, we must check that
s1|| s2 = s3. Doing this directly using s1 || s2 might be complicated due to the
increasing number of parallel components. We postulate that multiway-mutual
acceptance can be inferred from pairwise-mutual acceptance. In general, mutual
acceptance of many components, with complicated communication structures,
should be further investigated.

Requiring = for all intermediate steps means that there cannot be any unex-
pected outputs. For real systems however, these outputs are only a problem if
they appear in the final composition of all the components. The fact that two
components do not work well in all environments is not a problem if you plan
to use them together with other components that will prevent this. Therefore,
a different definition of mutual acceptance for more than two components at a
time might be investigated.

To apply the theory in this paper to a practical use case, it will need to be
extended with the concept of data. Real systems can seldom be modelled with
a finite set of labels, but will instead send instances of data types to each other.
This has been formalised in the theory of symbolic transition systems (STS)
[5,12], which is the underlying formalism of several MBT tools. The concepts in
this paper could be extended to ST'S which would bring them closer to being
applied in practice.

10 Conclusion

Model-based testing is a promising technology for increasing the efficiency and
effectiveness of testing. The applicability of MBT, however, is limited by the
availability of models. Larger system models are hard to create, but can be com-
posed from multiple smaller component models. In this paper, we have defined
the mutual acceptance relation = between specifications, which guarantees that
model-based testing is compositional, i.e. if two components have been tested
for uioco-correctness with respect to their respective specifications, then the
composition of these implementations is also uioco-correct with respect to the
composition of their specifications, under the assumption that the parallel com-
position operator itself is faithfully implemented. This is an improvement over
previous results which obtained the same conclusion with a stricter requirement,
viz. that all specifications must be input-enabled [4]. In addition, we have shown
that this result can also help when updating older components with newer ones,
and when localising a faulty component during diagnosis of a large, component-
based system.
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