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Abstract. We present a novel approach to complete property-oriented
white box module testing: a finite test suite, created and extended online
(that is, during test execution), in combination with model learning and
model checking allows to prove or disprove that a software module fulfils
an arbitrary LTL property. The approach is applicable for modules with
possibly infinite input and output domains. The testing strategy is based
on the concept of black box checking proposed by other authors and on
a complete model-based equivalence testing strategy developed previ-
ously by the authors of this paper. Since the white box approach allows
for static analyses, basic information about internal states, guards and
assignment expressions can be extracted from the module code. With this
information at hand, the approach effectively performs a proof whether
the implementation satisfies the specified property. The “classical” black
box checking method is accelerated by means of coverage-guided fuzzing,
in combination with effective methods for learning, failure monitoring,
and conformance testing. This combination allows to reduce the over-
all effort for proving that the software fulfils the desired property in a
considerable way.

Keywords: Property-oriented testing · Module testing · Linear
Temporal Logic · Model learning · Formal verification

1 Introduction

Objectives. In this paper, we apply the concept of black box checking, as origi-
nally presented by Peled et al. [21,22], in the context of white box module testing.
Given an LTL property ϕ, tests are executed for learning the true behaviour of
an implementation under test (IuT) which is a software module I; this behaviour
is expressed by means of an initially unknown symbolic finite state machine B.
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While trying to learn the true representation of B from the test cases executed so
far, violations of ϕ are detected either by means of a monitor checking the reac-
tions of I to the test case inputs, or during model checking the model increments
B = M1,M2, . . . learnt so far. If a complete test of I against B = Mk proves the
language equivalence between I and B, the verification campaign terminates: I
fulfils ϕ if and only if B fulfils this property. This “proof by testing and property
checking” holds under certain hypotheses about the maximal number n of distin-
guishable states in I, and the guard expressions and output assignments used by
I. This information can be extracted from the IuT by means of static analyses.
Since these analyses are fairly simple and do not require the full understanding
of the programming language semantics, this approach to property verification
is a suitable method for testing modules programmed using complex program-
ming languages like C++, Java, C#, where software model checkers accepting
the complete syntax do not exist.

Background: Black Box Checking. In the original work by Peled et al. [21,
22], model learning was performed using Angluin’s L∗ algorithm [1]: under the
assumption that I has at most n distinguishable states, the black box B can be
reconstructed incrementally by executing finitely many tests against I.

Some tests serve to elaborate a new hypothesis about B (say, B = Mi), other
tests serve to verify or falsify that I is language-equivalent to the current version
of B. For the latter task, the W-Method [9,26] was used in [21,22]. This is a
complete testing method in the sense that, under the hypothesis that I has at
most n states, I passes the tests generated by the W-Method if and only if it is
language-equivalent to Mi. Failed test cases can be used by the L∗-algorithm to
modify and extend Mi, in order to create a refined model version Mi+1.

Using model checking, each new version of B is verified against ϕ. To this end,
the product of B and a Büchi-automaton P accepting ¬ϕ is constructed. If the
language of product automaton B ×P is non-empty, this indicates the existence
of a counterexample, that is, an infinite input/output sequence π violating ϕ [2].
For safety properties, the violation of ϕ can already be demonstrated on a finite
prefix π′ of π [24]. For liveness properties, omega regularity implies that the
infinite counterexample π can be written as π1π

ω
2 (infinitely many copies of π2

are appended to π1), with finite input/output sequences π1, π2 [2]. Since I is
assumed to have at most n states, it accepts π = π1π

ω
2 if and only if it accepts

π1π
n
2 , since the latter already implies the existence of a “lasso” [4] starting with

π1 and ending in a loop endlessly repeating π2. Therefore, either π′ or π1π
n
2 are

run against I. If the counterexample is accepted by I, an error has been found,
and the combined learning and testing process can be aborted. If I does not
accept the counterexample, this information can again be used to update B via
continued learning. If the latest increment B = Mk passes the check against ϕ,
and the complete test suite proves that I and B are language-equivalent, the
black box testing campaign has proven that I satisfies ϕ, under the hypothesis
that I has at most n distinguishable states.
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Contributions. In this paper, we refine and optimise the black box checking
approach in several ways and specialise it for the purpose of white box soft-
ware module testing, including tool support. For B, we admit (nondeterministic)
symbolic finite state machines (SFSM) with finite state space, input and output
variables over arbitrary primitive data types (including infinite types like Z and
R) and transitions labelled by guard conditions over input variables and output
expressions over output and input variables. We advocate a white-box approach
which is quite realistic for software in safety-critical systems, where source code
needs to be verified by independent verification teams [28]. This allows us to
determine upper state bounds n and identify the guard and assignment expres-
sions used in the code by means of static analyses. These static analyses ensure
that a passed black box checking suite corresponds to an actual proof that I
satisfies property ϕ.

Regarding methodological contributions, the application of black box check-
ing to software with conceptually infinite input and output types is enabled by an
equivalence class partitioning method previously developed by the authors [14].
Otherwise black box checking would be infeasible, due to the large size of the
alphabets involved, when using interface variables of type double, float, int
directly.

Furthermore, we reduce the number of situations where tentative models
B = Mi need to be checked by means of a complete testing method. In particular,
our strategy allows to check tentative models later, after many distinguishable
states (say, �) of the IuT have already been discovered. This significantly reduces
the exponential term pn−�+1 influencing the size of the complete test suite, where
n ≥ � is the upper bound of potential distinguishable states in I, and p is the
number of input/output equivalence classes derived from guard conditions and
output expressions extracted from the code, as described below. Instead of the
“classical” L∗-algorithm, we use a novel, highly effective state machine learning
algorithm proposed by Vaandrager et al. [25]. For generating complete test suites,
a variant of the complete H-Method [12] is used, which needs significantly fewer
test cases than the W-Method in the average case [13]. We have modified the H-
Method for online testing : this means that the test case generation is incremental
and interleaved with the test execution, so that it is unnecessary to create a
complete suite, when tests of I against the current version of B fail early. We
apply the monitor concept proposed by Bauer et al. [3] for detecting safety
violations on the fly, during tests intended for model learning. This reduces the
need to perform complete model checking runs of B × P against ϕ. To speed
up the learning process and to avoid having to create complete suites for too
many intermediate increments of B, we apply coverage-guided fuzz testing [5,17]
for finding many distinguishable states of the implementation at an early stage.
Again, this leads to small exponents n − � + 1 in the term pn−�+1 dominating
the number of test cases to perform for a complete language equivalence test.

While these techniques for effort reduction cannot improve the worst case
complexity that was already calculated by Peled et al. [21,22], their combina-
tion significantly improves black box checking performance in the average case.
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We confirm this by several experiments verifying control software from the auto-
motive domain. These experiments also show that the property testing approach
described in this paper is effectively applicable for testing modules performing
control tasks of realistic size and complexity. Therefore, the approach advocated
here is an interesting alternative to proving code correctness by means of code-
based model checkers or proof assistants. From the perspective of standards for
software development in safety-critical systems [8,16,28], our approach even has
a significant advantage in comparison to “pure” code verification, since tests are
actually executed against the IuT. The standards emphasise that verification
may never be based on static analyses (model checking, formal proof) alone: it
is always necessary to perform dynamic tests of the integrated HW/SW system
as well.

To the best of our knowledge, the approach presented here is the first to use
equivalence class abstractions for enabling complete property testing of source
code with large interfaces, using black box checking in combination with fuzzing.

Regarding the implementation of the approach, we present the open source
library libsfsmtest for complete model-based or property-oriented module test-
ing1, whose latest version supports the module testing strategy described in this
paper. For users only interested in the application of the library for practical
testing, a cloud interface2 is provided, supporting both test suite generation and
module test execution.

Related Work. Meng et al. [18] confirm that fuzz testing can be effective for
testing software against properties specified in LTL. However, their approach
does not provide any completeness guarantees: the tool LTL-fuzzer created by
the authors is to be used as an effective bug finder.

Pferscher et al. [23] also combine model learning and fuzzing, but with the
objective to check whether an implementation conforms to a reference model,
while our focus here is on property-oriented testing. The fuzzer is not guided by
the code coverage achieved, as in our approach, but by the coverage of a reference
model. Since the latter has not been validated with respect to completeness and
consistency, the testing process can only reveal discrepancies between reference
model and implementation, but not a correctness proof.

The model learning aspect of black box checking has received much attention
since Angluin’s seminal paper [1], and a comprehensive overview about improve-
ments and alternative approaches to automata learning is given by Vaandrager
et al. [25]. We could have made use of the LearnLib library [15] for the model
learning part in our Algorithm 2 (see Sect. 3). However, we would not have used
the W-Method or Wp-Method implemented there for equivalence testing and
finding counter examples, since our own library libfsmtest provides methods
like the H-Method that requires far less test effort in the average case. Moreover,
the new data structure and associated algorithms for learning that has been pro-

1 https://gitlab.informatik.uni-bremen.de/projects/29053.
2 https://fsmtestcloud.informatik.uni-bremen.de.

https://gitlab.informatik.uni-bremen.de/projects/29053
https://fsmtestcloud.informatik.uni-bremen.de
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posed by Vaandrager et al. [25] is not yet available in LearnLib, and it seemed
particularly attractive with respect to maintainability and performance to us.

An alternative to LearnLib is AALpy by Aichernig et al. [19]. While its
Python implementation seems less attractive to us, due to the better perfor-
mance of C++, AALpy uses a strategy for disproving conformance between
preliminary model versions and an implementation that is an interesting alter-
native to our current implementation: AALpy tries to avoid the generation of
unnecessary complete conformance test suites by combining random testing with
the W-Method, expecting to find early discrepancies between a preliminary ver-
sion of the model and the implementation by means of random testing. In our
approach, we prefer to focus the application of random testing in an initial phase
using coverage guided fuzzing with the objective to find an initial candidate for
machine B with as many states as possible. After that, we relay on conformance
tests without randomisation, but create the cases of the H-Method incremen-
tally, which also avoids the creation of a full conformance test suite as long as
B and I do not conform.

Waga [27] presents a black box checking approach that is complementary to
ours in several ways. (1) The main objective is bug finding for cyber-physical sys-
tems, while we focus on complete property checks for software modules. (2) Waga
applies signal temporal logic, while we apply LTL. (3) Waga does not use any
means of abstractions comparable to the equivalence class abstractions we con-
sider to be crucial for complete property checking. Summarising, Waga’s app-
roach performs well for the purpose of bug finding on system level, while the
method advocated here provides complete checks on module level.

Overview. In Sect. 2, we summarise the foundations required for the combined
testing and black box checking approach described in this paper. In Sect. 3,
the methodological main result is presented. In Sect. 4, a short summary of the
available tool support is given. In Sect. 5, the application of our approach with
this tool platform is described, and performance data is presented. Section 6
contains a conclusion.

2 Theoretical Foundations

2.1 Black Box Checking

The strategy for combined learning, model checking, and testing proposed by
Peled et al. [22] is shown in Algorithm 1, with some adaptations for the notation
used in this paper. The strategy uses two sub-functions for learning and testing:
(1) As the first sub-function, Angluin’s L∗-algorithm [1] is invoked (lines 6, 25)
for learning the internal structure of the black box B representing the true
behaviour of implementation I. The L∗-algorithm is called in Algorithm 1 with
three parameters (I,Mi, π): I is the implementation, and the L∗-Algorithm may
execute additional tests against I, in order to produce a new model. Parameter
Mi specifies the latest assumption for the representation of B, and π is a word
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representing a counterexample that is either accepted by Mi, but not by B, or
vice versa. Based on this information, L∗ returns a more refined model Mi+1.

(2) As the second sub-function, the W-Method [9,26] VC(I,Mi, �, k) is used
as a conformance test that is able to prove or disprove the language equivalence
between Mi and I, under the hypothesis that I has no more than k distinguish-
able states. The algorithm is called with the implementation I to be used in
the test, the currently learnt, minimised model Mi that may or may not be
equivalent to I, the number � of distinguishable states in Mi, and the currently
assumed upper bound k ≤ n of distinguishable states in I. Note that the worst
case estimate for the number of test steps to be executed for such a conformance
test is O(�3pn−�+1) [9].

Initially, the L∗-algorithm is set up with the empty machine (line 6). Then
the implementation is tested until (a) either the learnt model B satisfies ϕ and
has been shown to be language-equivalent to I by means of complete tests, under
the hypothesis that I has at most n states (line 18), or (b) an approximation
Mi of B has been learnt that violates ϕ on an infinite word π1π

ω
2 , and this word

is accepted by the implementation (line 22).

Algorithm 1. Black box checking strategy, as proposed by Peled et al. [22].
1 function BlackBoxChecker(in I : Implementation;
2 in ϕ : LTL formula to be fulfilled by I;
3 in n : maximal number of states of I) : {pass, fail}
4 begin

5 P := Büchi-Automaton accepting ¬ϕ;
6 M1 := L∗(I,empty,−); -- initialise learning algorithm with empty machine
7 i := 1;
8 while ( true )
9 begin

10 X := Mi × P ; -- Product of machine learnt so far and BA checking ¬ϕ
11 if L(X) = ∅ then -- Mi does not violate ϕ

12 begin

13 � := number of states of Mi; k := �;
14 do

15 (conforms, π) := VC(I, Mi, �, k); -- apply the W-Method
16 k := k + 1;
17 while (k ≤ n ∧ conforms);
18 if ( conforms ) then return pass; -- Implementation conforms to Mi, and Mi

fulfils ϕ

19 end

20 else begin -- current model Mi violates ϕ

21 let π1, π2 such that π1πω
2 ∈ L(X); -- this word violates ϕ

22 if I passes test π1πn
2 then return fail;

23 else π := shortest prefix of π1πω
2 not accepted by I;

24 end

25 Mi+1 := L∗(I, Mi, π); -- extend model, using counterexample~π
26 i := i + 1;
27 end

28 end

Once a hypothetical model Mi has been proposed by the L∗-algorithm, its
product with the Büchi-automaton P accepting ¬ϕ is constructed (line 10). If
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the language of this product is empty, this implies that Mi does not accept a
word violating ϕ. Therefore, it is checked whether Mi is language equivalent to
I, under the hypothesis that I does not have more than n states (lines 11—
19). This is done incrementally over k = �, . . . , n, in order to avoid superfluous
tests if the non-equivalence can already be detected with a smaller value k < n.
Therefore, the full number of O(�3pn−�+1) test steps only needs to be executed if
I conforms to Mi. If language equivalence between Mi and I can be established
by the conformance tests, the strategy terminates with verdict ‘pass’, since I
conforms to a mealy machine B = Mi that fulfils ϕ.

If the language of the product X := Mi × P is non-empty, this means that
Mi accepts a word satisfying ¬ϕ. Omega regularity implies that such a word
can be written as π1π

ω
2 , with finite prefix π1, followed by an infinite repetition

of finite word segment π2. To test whether the implementation accepts π1π
ω
2 , it

suffices to check whether it accepts π1π
n
2 , since I is assumed to have at most n

distinguishable states. If I accepts the finite test π1π
n
2 , we know that it accepts a

word violating ϕ and can stop the procedure by returning ‘fail’ (line 22). There
is no further need to look for a more refined model B = Mi+j representing the
true behaviour of I, since the implementation must be fixed anyway.

If, however, I rejects π1π
n
2 , this implies that the implementation cannot be

language-equivalent to the currently assumed representation Mi of B. Now we
look for the shortest prefix π of π1π

ω
2 that is rejected by I. This prefix is suitable

as a “teacher’s response” for the L∗-algorithm, to be used to construct a more
refined version Mi+1 of the true implementation behaviour (line 25).

Peled et al. prove ([22, Theorem 3]) that if the implementation satisfies ϕ, the
worst-case time complexity of the strategy described above is O(�3p�+l3pn−�+1+
l2mn), otherwise (error case), it is O(�3p�+ l2mn). The higher complexity in the
no-error case given by term l3pn−�+1 in the complexity sum is derived from the
fact that the equivalence tests of the implementation against the learnt model B
need to execute all test steps required for the conjecture that I has at most n
states. In the error case, these tests can be aborted earlier.

2.2 Equivalence Class Construction for SFSM

We summarise here previously obtained results [14] that are relevant for the
present paper. A symbolic finite state machine (SFSM) M is a state machine
operating on a finite set of control states and input variables and output variables
from a symbol set V = I ∪ O. Variables are typed by some (possibly infinite)
set D. A variable valuation is a function σ ∈ DV , associating a value σ(v) with
each variable symbol v ∈ V . Given a quantifier-free first order expression e with
free variables in V , we say that σ is a model for e (written σ |= e), if and only
if the formula e[v/σ(v) | v ∈ V ], that is created from e by exchanging every
occurrence of a variable symbol v ∈ V by its valuation σ(v), evaluates to true.

A transition relation s1
g/a−−→ s2 connects certain control states s1, s2. The

transition label g/a consists of a guard expression g, that is, a quantifier-free
first order expression over variables from I, and update expressions a that are
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Table 1. Construction method for I/O equivalence classes (from [14]).

1. Let Σ = ΣI ∪ ΣO ∪ AP be the set of all first-order formulae occurring in guard
conditions or output expressions of the IuT, or in the property specification ϕ.

2. For a set of formulae P ⊆ Σ, define a new first-order formula which is a conjunction
of formulae from P and negated formulae from Σ \ P :

φP ≡
∧

e∈P

e ∧
∧

e∈Σ\P

¬e. (1)

3. Let P denote the set of all formulae φ that have been constructed according to
Eq. (1) and that possess at least one valuation σ ∈ DV as model, so that σ |= φ.

4. For each φ ∈ P, define an input/output equivalence class io(φ) by

io(φ) = {σ ∈ DV | σ |= φ}.

5. Let A = {io(φ) | φ ∈ P} denote the set of all input/output equivalence classes.

first order expressions over at least one output variable and optional variables
from I. The language of M is the set L(M) ⊆ (DV )ω of all infinite traces of
valuations σ1, σ2, · · · ∈ DV , such that there exists a sequence of states s0, s1, . . .
starting in the initial state and guard and output expressions (g1/a1)(g2/a2) . . . ,
such that

∀i > 0 � si−1
gi/ai−−−→ si σi |= gi ∧ ai.

The property testing approach described in this paper applies to all software
modules whose input/output behaviour can be described by means of an SFSM.
The class of real-world applications that can be modelled by SFSM is quite large,
examples are airbag control modules, anti-lock braking systems (see Sect. 5) or
train control systems.

An input/output equivalence class io is a set of valuations σ ∈ DV con-
structed according to the specification in Table 1. The intuition behind this
specification is that the input/output equivalence classes partition the set DV

of valuations: two members of the same class are models for exactly the same
conjunction over all guard conditions, output expressions, and atomic proposi-
tions occurring in the LTL property ϕ to be verified, each conjunct occurring
either in positive or negated form. No valuation can be in more than one class,
since two classes differ in the sign (positive/negated) of at least one conjunct.

Two sequences π1, π2 ∈ (DV )ω of valuations are equivalent if each pair
of corresponding sequence elements (π1(i), π2(i)), i = 1, 2, . . . is contained in
the same input/output equivalence class. The following properties of equivalent



Complete Property-Oriented Module Testing 191

traces π1, π2 ∈ (DV )ω are crucial in the context of this paper [14, Theorem 2]3:
(1) π1 ∈ L(M) if and only if π2 ∈ L(M). (2) π1 and π2, when contained in L(M),
cover the same sequences of states in M (there is only one uniquely determined
state sequence if M is deterministic). (3) π1 |= ϕ if and only if π2 |= ϕ.4

3 Optimisation of the Test Method

Based on black box checking (Algorithm 1), we propose the new white box
module testing strategy specified in Algorithm 2 and incorporating several opti-
misations. This strategy is divided into three phases: (1) setup, (2) fuzzer-guided
exploration, and (3) learning as explained below.

Algorithm 2. White box module testing strategy.
1 function FuzzingBlackBoxLearner(in I : Implementation;
2 in ΣI : guard conditions;
3 in ΣO : output expressions;
4 in ϕ : LTL property to be verified;
5 in n : maximal number of states of I;
6 in rmax : maximum number of rounds of fuzzing;
7 ) : {pass, fail}
8 begin

9 -- Phase 1: Setup
10 AP := atomic propositions of ϕ;
11 A := input/output equivalence classes based on ΣI ∪ ΣO ∪ AP ;
12 H := set of input valuations σ1, σ2, . . ., such that for each ψ ∈ A, there exists

some σ ∈ H extendable to a valuation satisfying ψ;
13 T := {ε}; -- initialise a prefix-closed set of traces observed in I

14 P := construct a property monitor accepting ¬ϕ;
15

16 -- Phase 2: Fuzzer guided exploration
17 r := 0; -- number of performed fuzzing iterations
18 �T := 1; -- lower bound on the number of distinct states already observed
19 while ( r < rmax and lT < n )
20 begin

21 b̄ := non−empty sequence of integers obtained from fuzzer;
22 x̄ := map each element b̄ to an element of H;
23 -- e.g. by selecting the (b mod |H| + 1)th element of H
24 outputQuery(I, T, P, x̄); -- apply x̄ to I and update T with the observed

output; return fail if P observes a violation of ϕ

25 r := r + 1;
26 �T := |maximalPairwiseDistinguishableSubsetOf(T )|
27 end

28

29 -- Phase 3: Learning using L#

3 Note that this theorem has only been formulated for finite traces πi in [14]. The
proof, however, holds for infinite traces πi ∈ (DV )ω as well, because π1, π2 ∈ (DV )ω

are equivalent if and only if all finite prefixes of π1, π2 with identical length are
equivalent.

4 Recall that LTL formulae over free variables from V have infinite sequences of val-
uations in DV as models [10].
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30 M1 := L#(I, H, A, T, P, −) -- start learning using input alphabet H, output
alphabet A, and the observations T observed during fuzzing

31 i := 1;
32 while ( true )
33 begin

34 X := Mi × P ; -- Product of machine learnt so far and BA checking ¬ϕ

35 if L(X) = ∅ then -- Mi does not violate ϕ

36 begin

37 � := number of states of Mi;
38 (conforms, π) := H(I, Mi, T, P, �, n); -- apply an online H-Method
39 if ( conforms ) then return pass;
40 -- Implementation conforms to Mi, and Mi fulfils ϕ

41 end

42 else begin -- current model Mi violates ϕ
43 let π1, π2 such that π1πω

2 ∈ L(X); -- this word violates ϕ

44 if I passes test π1πn
2 then return fail;

45 else π := shortest prefix of π1πω
2 not accepted by I;

46 end

47 Mi+1 := L#(I, H, A, T, P, π); -- learn more elaborate model,
48 -- based on counterexample π
49 i := i + 1;
50 end

51 end

Phase 1: Setup. In the first phase, we exploit white box knowledge on the
IuT in order to abstract from its possibly infinite input and output domains
to finitely many equivalence classes. To this end, the algorithm uses the two
input parameters ΣI and ΣO, denoting the guard conditions and output expres-
sions occurring in the IuT, respectively. Together with the atomic propositions
AP occurring in the LTL property ϕ to check, these are employed in comput-
ing input/output classes A (lines 10 and 11) using the techniques described in
Sect. 2. These classes could then already serve as symbolic inputs. However, since
multiple input/output classes may share the same input valuations, this could
introduce superfluous inputs. Thus, line 12 of the algorithm attempts to minimise
the number of inputs by only selecting sufficiently many input valuations σ ∈ H
to provide input representatives of all input/output classes. In the following, we
use elements of H both as symbols and as concrete input valuations.

The first phase concludes by initialising a tree T representing a prefix-closed
set of symbolic traces observed in the IuT (line 13), as well as a property monitor
P constructed as proposed by Bauer et al. [3] (line 14) to accept ¬ϕ. This
monitor detects violations of safety properties ϕ observed during the subsequent
execution of Algorithm 2. Since violations of liveness properties can only be
determined on infinite traces, these are accepted, but do not lead to failure
indications by the monitor.
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Phase 2: Fuzzer-Guided Exploration. In the second phase, coverage-guided
fuzzing is employed to quickly reach a large number of distinct states in the IuT
and record observations on the behaviour of the IuT, with the aim of speeding
up the subsequent learning phase. Experiments confirming the efficacy of this
approach are discussed in Sect. 5.

Fuzzing is used for several iterations (lines 19—27). In each iteration, a non-
empty sequence of integers b̄ is obtained from the fuzzer and translated into a
sequence of input symbols x̄ by mapping each integer to an element of H (lines
21 and 22). Thereafter, x̄ is applied to the IuT (line 24). All such invocations
of the IuT in Algorithm 2 occur via calls to procedure outputQuery(I, T, P, x̄).
These reset the IuT and P to their initial states and initialise a symbolic trace
γ = ε. The following steps are then performed for each input symbol x in x̄ in
turn: First, x is translated into the concrete input valuation σI it symbolises,
which is then applied as input to the IuT. Next, the outputs σO observed in
response are used to create a valuation σI ∪σO ranging over all input and output
variables. This valuation belongs to exactly one input/output class y ∈ A, which
is considered as the output symbol observed for input symbol x. Thereafter, x/y
is appended to observation γ, which is then added to T . Finally, P is used to
check whether γ violates ϕ, in which case Algorithm 2 returns fail.

The fuzzer-guided exploration terminates as soon as one of the following con-
ditions is satisfied: (1) Fuzzing has been performed for rmax iterations, where
rmax is another input parameter of the algorithm, and the number of iterations
is tracked in variable r (lines 17 and 25), or (2) fuzzing has identified n distinct
states in the IuT. A lower bound on the number of identified distinct states in the
IuT is tracked in variable lT (lines 18 and 26), which is updated after each iter-
ation. This is realised via function maximalPairwiseDistinguishableSubsetOf(T )
as follows: First, pairs of traces are identified that are distinguishable in T .5
From these, a maximal set S ⊆ T is selected such that any pair of distinct traces
in S is distinguishable.6 Variable l is then set to |S|, as distinct traces in S must
reach distinct states in IuT I and hence |I| ≥ |S|.
Phase 3: Learning. The third phase (lines 30—50) finally implements learn-
ing in analogy to Algorithm 1. It differs from the latter in two aspects: First,
instead of Angluin’s L∗ algorithm [1], learning is performed using an adaptation
of the efficient L# algorithm proposed by Vaandrager et al. [25] (lines 30 and
47). L# follows the same minimally adequate teacher framework as L∗ in gen-
erating hypothesis state machines and providing these to the teacher to check
for equivalence with the IuT; hence it can directly replace the original calls to
L∗ in Algorithm 1. In contrast to line 6 of Algorithm 1 and also differing from
the original description of L#, which starts without prior knowledge, line 30 of

5 Traces α, β are distinguishable in T if there exists α.(x̄/ȳ), β.(x̄/ȳ′) ∈ T with ȳ �= ȳ′.
6 Note that finding the largest such set is equivalent to finding the largest clique [6]

in an undirected graph with vertexes T where traces are adjacent if and only if they
are distinguishable. This constitutes a computationally expensive problem, so that
we currently apply a greedy heuristic.
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Algorithm 2 provides initial knowledge to the learning algorithm in the form of
T , the previously observed traces.

The second difference consists in the conformance testing strategy employed
to check whether the current hypothesis Mi is language-equivalent to the IuT
(line 38). Instead of the W-Method [9,26], we employ the H-Method [12]. While
both strategies exhibit the same worst case behaviour in terms of test steps, the
H-Method has been observed in practice to require on average significantly fewer
test steps [13]. We adapted the H-Method for online testing. That is, instead of
computing the entire test suite and only thereafter applying it to the IuT, we
interleave test case generation and application in an attempt to find failures
early. This is particularly effective if the current hypothesis contains fewer than
n states, as the term |H|n−�+1 dominates the number of test cases to consider.

Finally, recall that all interactions with the IuT within Algorithm 2 are per-
formed via function outputQuery first called in the second phase. Thus, for every
query to the IuT performed by the H-Method or by L# (lines 30, 38, 47), prop-
erty monitor P continues to check for violations of ϕ.

4 Tool Support: libfsmtest and libsfsmtest

We have implemented the described approach as a C++ framework based on
libFuzzer7, the coverage-guided fuzzing engine distributed as a part of the
LLVM project and on ltl3tools8 supporting the generation of runtime monitors
for LTL properties [3].

The implementation I is integrated into a test harness, which contains an
implementation of Algorithm 2. Alphabets ΣI and ΣO and the LTL property
ϕ are read from files using the libsfsmtest9 library, which also extracts the
atomic propositions AP occurring in ϕ. From these, the equivalence classes over
ΣI ∪ ΣO ∪ AP and a propositional abstraction of ϕ are constructed, from which
ltl3tools can construct a runtime monitor in a specific pseudo code represen-
tation. Using libsfsmtest again, this monitor is transformed into an executable
version reading and checking input/output valuations observed on I. We have
implemented the L# algorithm in libfsmtest10. The fuzzer invokes the test
harness, which orchestrates the translation from fuzzer inputs to input equiva-
lence classes, the application of inputs to I and the feedback of the observations
on I to the runtime monitor for ϕ and the learning algorithm.

Libraries libfsmtest and libsfsmtest are available as open source under
MIT license. If users are not interested in obtaining the source code, they can
perform the whole testing approach described here by using a cloud service.11

7 https://llvm.org/docs/LibFuzzer.html.
8 https://ltl3tools.sourceforge.net/.
9 https://gitlab.informatik.uni-bremen.de/projects/29053.

10 https://bitbucket.org/JanPeleska/libfsmtest/.
11 https://fsmtestcloud.informatik.uni-bremen.de.

https://llvm.org/docs/LibFuzzer.html
https://ltl3tools.sourceforge.net/
https://gitlab.informatik.uni-bremen.de/projects/29053
https://bitbucket.org/JanPeleska/libfsmtest/
https://fsmtestcloud.informatik.uni-bremen.de
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5 Experiments

For evaluation of the property testing approach described in this paper, we
re-implemented an anti-lock braking system (ABS) for cars with lane stability
control, as designed and published by Bosch GmbH [11]. The full functionality
described there has been reduced to ABS for the front-left wheel only, and we
do not consider gravel road conditions.

The ABS system implements two fundamental tasks: (1) locking a wheel
should be avoided if the driver brakes too hard or brakes on slippery roads.
The ABS controller prevents wheel locking by alternately holding, reducing and
increasing the brake pressure for each wheel individually so that each wheel
rotates recurringly while braking, in order to keep the car steerable. (2) The ABS
controller implements a lane stability control to prevent the car from swerving
on asymmetric road conditions during braking with straight steering angle. The
ABS controller then adjusts the braking force in a car for all wheels, to facilitate
the steering intervention by the driver, while still applying the maximal possible
braking force. The ABS controller measures constantly the wheel velocity vU and
calculates the brake slip λB for each wheel, relative to the vehicle target speed
vR, which in this example is measured at the car powertrain. The equation to
calculate the slip is [11]

λB =
vU − vR

vR
.

The ABS controller evaluates the momentary acceleration α of each wheel
to detect each wheel’s tendency to lock. If α falls below the threshold −a < 0,
a possible wheel lock is detected and the input valve VI (in front of the brake
fluid inlet of the wheel brake cylinder) is closed, as well as the output valve VO
(after the brake fluid outlet of the wheel brake cylinder) to hold the current
brake pressure. The additional brake pump P to artificially increase the brake
pressure is set to mode OFF. Consequently, the negative wheel acceleration α is
not reduced any further. Then, if the brake slip falls below the maximum slip
threshold, the output valve is opened again. Thus, the brake pressure decreases
again, and α and the slip increase.

When α = −a, the valves are switched to hold pressure (both valves closed,
pump off). Now, the acceleration increases and can exceed two thresholds +a,+A
satisfying +a < +A. In the first iteration, the brake pressure will be increased
when α > +A, by setting VI := OPEN, VO := CLOSED, and P := ON. After a certain
time, α decreases and reaches +A, so that the ABS controller switches again to
hold pressure. The braking pressure is held until the +a threshold is reached.
At this point, the second iteration begins (henceforth repeating) and the brake
pressure is slowly increased until −a is reached. In the following cycles, α is
kept between the two thresholds −a and +a by the ABS controller. If the ABS
controller receives a signal from the yaw sensor that the car rotates around the z
axle during braking, an asymmetric road condition is detected. If the car rotates
to the direction of the current wheel, the driver is braking and the steering
angle is in direction straight ahead, the controller then tries to facilitate the
steering intervention by the driver by alternately reducing and increasing the
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brake pressure of the current wheel but applying maximum possible braking
force in threshold −aGMA (slightly higher than −a) and +a until the rotation is
within the yaw threshold again.

The C++ implementation consists of one model with approx. 700 lines of
code. It processes 6 input variables of type double and writes to three output
variables with small enumeration types. The module behaviour depends on 11
(not necessarily pairwise distinguishable) internal control states. Table 2 shows
the LTL properties we tested on the example implementation.

The atomic propositions in the LTL formulae, together with the guards and
update expressions contained in the code, result in up to 784 input/output equiv-
alence classes ioi ∈ A that were calculated in about 203 s.

For each LTL property, we created one mutant that violates that property.
For properties 1, 2 and 4 we did so by manually applying one of the five mutation
operators12 described in [20] at random locations in the program, until we found
a mutant that violated that property. For each mutant we determined how fast
it could be found with our approach for different numbers of fuzzing rounds. The
time it took for a mutant to be killed for each run is shown in Table 3.

From this small set of data we can already conclude that the fuzzing can
enable a learning-based approach to be used on problems where it would other-
wise be not a sensible choice for economic reasons: While a purely learning-based
approach was able to find the property violations for properties 2 and 3, it ran
out of memory space in the other cases. This happens when equivalence queries
are done with too large of a difference between the number of discovered states
and the specified upper bound on the number of states. In all cases, we noticed
that some amount of fuzzing usually drastically reduced the runtime of the app-
roach. However, we also see that there is a trade-off to be made between making
sure that learning does not start too early, as can be seen for the case where we
used 100 fuzzing rounds for property 1, and taking too much time fuzzing, as
can be seen for the other approaches where 100 fuzzing rounds found the viola-
tion faster than most other settings. Obviously, a violation for property 2 was
rather easy to find on the corresponding mutant, and we attribute the runtime
differences in the different fuzzing round configurations to runtime noise in the
execution setup.

To investigate the runtime of the approach when there is no property viola-
tion found, we also ran it for the unmutated implementation which satisfies all
four properties. In this case, the full model for the implementation, which has
11 states, has to be learnt. Due to the differing amounts of input/output equiv-
alence classes for the properties, the runtimes can differ significantly for runs
with different properties. We ran the approach with 5000 fuzzing cycles once for
each property and logged the runtimes, number of applied input sequences and
number of applied inputs of the fuzzing and learning portions of the approach,
separately. For the number of applied inputs and input sequences we also sepa-
rately noted how many were applied during equivalence queries. Table 4 shows
the average, minimum and maximum numbers determined this way over all

12 ABS, AOR, LCR, ROR, UOI.
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Table 2. The set of LTL properties checked on the example implementation.

LTL formula Description
G((driverBrakes ∧ vR ≥ vmin ∧

λB ≤ φ ∧ α ≤ −a ∧
|yaw| ≤ θ ∧ |β| ≤ ξ)

=⇒ (¬VI ∧ VO ∧ ¬P))

Whenever the driver brakes while the velocity is above the minimum
activation velocity vmin and when there is negative slip that is less
than threshold φ, the wheel circumference is decelerating and the car
is not yawing to either side more than θ radians per second while the
driver is not steering more than ξ radians to either side, then valve
VI shall be closed, VO opened, and the brake pump P shall be off to
release brake pressure.

G((driverBrakes ∧ vR ≥ vmin ∧
yaw < −θ ∧ |β| < ξ)

=⇒ (¬VI ∧ VO ∧ ¬P))

Whenever the driver brakes while the velocity is above the minimum
activation velocity vmin, the car is yawing to the left more than θ
radians per second while the driver is relatively straight (not more
than ξ radians to either side), then valve VI shall be closed, VO
opened, and the brake pump P shall be off to release brake pressure.

G(P = SLOW ∧
X(driverBrakes ∧ vR ≥ vmin ∧

α > −a ∧ |β| < ξ ∧ yaw ≥ −θ)

=⇒
X(P = SLOW))

Whenever the brake pump is increasing the pressure slowly, it will
continue to do so if the pressure is still too low for the acceleration α
of the wheel’s circumference to be below −a and if the driver
continues braking and steering straight ahead, the road conditions
stay symmetric and the vehicle is moving fast enough for the system
to be active.

G((α < −a ∧ driverBrakes ∧
vR ≥ vmin ∧
|β| < ξ ∧ yaw ≥ −θ)

=⇒
((¬VI)
U

¬(α < −a ∧ driverBrakes ∧
vR ≥ vmin ∧
|β| < ξ ∧ yaw ≥ −θ)))

Whenever the acceleration of the wheel’s circum- ference is less than
−a while the driver is braking, the vehicle velocity is above the
minimum activation velocity, the driver is steering relatively straight
ahead (no more than ξ radians to either side), and the vehicle is not
turning to the left more than θ radians per second, the brake
pressure will not be increased until any of these conditions change.

Table 3. Program runtimes for the example described above. These were recorded on
a kubernetes cluster with 1 CPU core and 16 GiB of RAM allocated to the task. OOM
denotes that the property violation was not found during fuzzing, and the learning
approach ran out of memory. rmax denotes the maximal number of fuzzing rounds
performed.

rmax Execution time
Property 1 Property 2 Property 3 Property 4

0 OOM 310 ms 12.3 s OOM
100 OOM 5 ms 4.1 s 7.5 s
5000 21.4 s 10 ms 8.0 s 11.7 s
10000 39.1 s 4 ms 23.5 s 28.4 s

properties. We performed these experiments with the same fixed seed initializing
the random choices for the fuzzer, starting with seed = 1. This was incremented
by one only when the fuzzer would not discover enough states for the learning
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to be able to learn the rest of the states without posing equivalence queries with
too few discovered state. For the four properties tested on the conforming IuT,
we succeeded with seed 1 twice, and with seeds 2 and 3 once. While this could
seem inconvenient, we found that simply launching several fuzzing runs with
different seeds was inexpensive and fast enough to still be practical.

Table 4. Runtime, number of applied input sequences and number of inputs applied
during testing all properties against the implementation satisfying all properties.

Prop. 1 Prop. 2 Prop. 3 Prop. 4

I/O Eq. Classes 600 600 784 714
Input Eq. Classes 120 117 138 124
Input Seq. Fuzzing 5000 5000 5000 5000
Input Seq. Learning 3311 3022 3764 5377
Input Seq. Equivalence Queries 38956 27862 32654 29522
Inputs Fuzzing 15245 19229 15595 17889
Inputs Learning 12409 10642 14217 19954
Inputs Equivalence Queries 47856 39325 45259 33577
Runtime Fuzzing 22.7 s 37.2 s 25.8 s 36.6 s
Runtime Learning 29.6 s 36.7 s 42.4 s 41.3 s

Compared to testing the mutants, testing the conforming implementation
takes significantly longer, which matches the complexity results. In our set of
problems, the equivalence queries are consistently the most expensive part of
the whole approach which is also supported by the complexity results reported
in Sect. 2.1. Furthermore, some of the runtime variations can be explained by the
variations in input/output equivalence classes caused by the atomic propositions
of the respective properties.13

6 Conclusion

In this paper, a novel white box module testing strategy based on learning has
been presented. This strategy is complete: given an LTL property ϕ and an
implementation under test I, it decides whether I satisfies ϕ under the assump-
tion that a representation of I as a symbolic finite state machine contains at
most n states and employs only guard and assignment expressions contained in
a set of expressions Σ. As n and Σ can be determined from static analysis of I,
the strategy effectively performs a proof whether I satisfies ϕ.

The strategy improves previous checking strategies based on learning [22]
in several aspects. First, it performs input/output abstraction and hence allows
13 To reproduce these results, our implementations of Algorithm 2 and of the ABS

experiment can be accessed at https://doi.org/10.5281/zenodo.8143283.

https://doi.org/10.5281/zenodo.8143283
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checking of implementations with possibly infinite input and output domains.
Next, it employs fuzzing in order to quickly reach distinct states in I, speeding
up subsequent learning. Thereafter, it applies the efficient L# learning algo-
rithm [25] and reduces the number of required test cases for equivalence checks
by using the H-Method [12]. Finally, throughout the algorithm, violations of
ϕ observed in interactions with I are efficiently detected using a monitor [3].
The efficacy of these optimisations has been demonstrated in experiments with
modules performing control tasks of significant size and complexity

For future work, we plan to fully implement the LTL model checking per-
formed in Algorithm 2 in our tool and to pursue several further optimisations.
These include the use of parallelisation within computationally extensive tasks
such as the construction of input/output equivalence classes or applications of
the H-Method. Furthermore, we plan to evaluate various heuristics for tasks such
as the selection of input valuations (line 12 of Algorithm 2). Additionally, we plan
to lift the restriction that our current implementation of Algorithm 2 supports
only deterministic IuT (the underlying theory already covers nondeterministic
IuT behaviour). Finally, we plan to develop an argument for the tool qualifica-
tion [7] of our implementation based on the idea that if the strategy claims that
I satisfies ϕ, then the final hypothesis B = Mi of I’s model representation can
be used as reference model for and independent model-based testing algorithm
to be executed against I.
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